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Abstract

We consider the diffusive limit of a generic pure-jump Markov con-
trol problem as the intensity of the driving Poisson process tends to infin-
ity. We quantify the convergence speed in terms of the Hölder exponent
of the Hessian of the limit problem. This approximation provides an
efficient alternative method for the numerical resolution of these prob-
lems when the intensity of jumps is large. Considering the control of
unknown systems, we extend this approach to the context of online Re-
inforcement Learning. Under the Optimism in the Face of Uncertainty
paradigm, we leverage the eluder dimension framework for learning
and the diffusive limit for approximate resolution of the planning sub-
problem. Our algorithm extends existing theory from discrete processes
to continuous states and actions. Our study of diffusion limit systems is
motivated and illustrated by the bidding problem in a high-frequency
online auction against a revenue-maximising seller.

Résumé

On considère la limite diffusive d’un problème de contrôle Mar-
kovien à sauts purs quelconque lorsque l’intensité de son processus de
Poisson tend vers l’infini. On quantifie la vitesse de convergence en fonc-
tion de l’exposant de Hölder de l’Hessienne du problème limite. Cette
approximation fournit une méthode alternative efficace pour la résolu-
tion numérique de ces problèmes lorsque l’intensité des sauts est grande.
On s’attache ensuite au problème de l’incertitude dans les systèmes de
contrôle, et on étend notre étude au contexte de l’apprentissage par ren-
forcement en ligne. Dans le paradigme de l’optimisme devant l’incer-
tain, on exploite le carcan de la dimension d’eluder pour gérer l’ap-
prentissage et la limite diffusive pour résoudre approximativement le
sous-problème de planification. Notre algorithme étend la théorie exis-
tante des problèmes discrets aux problèmes avec états et actions conti-
nus. Notre étude des systèmes à limite diffusive est motivée et illus-
trée par le problème d’enchérir dans une enchère séquentielle à haute
fréquence contre un vendeur qui maximise son revenu sous contrainte
d’utiliser une règle de mise à jour en temps réel.
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Chapter 1
Introduction

The development of automatics in engineering has placed dynamical systems
at the heart of most industrial technologies. Early successes were exemplified
by manufacturing processes, rocket technology, and other heavy industrial
applications. The development of information technologies and the internet
has broadened the reach of this trend, with automated dynamical systems
becoming ubiquitous in most, if not all, aspects of our everyday lives.

In many of these real-world cases, the problems related to system noise
and uncertainty are inevitable. In the context of automation in dynamical
systems, accounting for noisy dynamics mathematically has led to the devel-
opment of Stochastic Control Theory, which has blossomed and branched
out since the second half of the twentieth century.

The branch of continuous (in time and space) stochastic control has de-
veloped a rich and successful theory, based on Partial Differential Equation
(PDE), starting with the works of Pontryagin’s research group in the 1960s;
see [59] for a bibliographical overview. This PDE-based approach was signi-
ficantly enriched in the 1980s by the development of the theory of viscosity
solutions [48, 49], allowing for many complex and irregular problems to be
solved. These new tools led to significant success in applications, most not-
ably within the domain of Financial Mathematics, e.g. [56].

Despite this success when incorporating randomness, control systems in
the real world must still account for the problem of uncertainty in the system
dynamics. In the continuous-time framework, this problem was addressed
by the fields of Adaptive and Robust Control, see for instance [30, 31]. While
Robust Control seeks to be resistant to uncertainty, Adaptive Control lever-
ages Statistics in order to learn to control the system. The classical statistical
methods used in this domain (e.g. maximum likelihood estimation) and their
focus on asymptotic convergence results contrast with more recent Machine
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1. INTRODUCTION

Learning methods.
The branch of discrete (in time and space) Stochastic Control, see e.g. [22,

102], has grown to address the problem of uncertainty in the controlled sys-
tem from the Machine Learning perspective with Reinforcement Learning,
see e.g. [23, 112]. This perspective focuses on task performance, computa-
tional efficiency, and finite-time guarantees rather than explanatory model-
ling.

The field of Reinforcement Learning acquired a great deal of notoriety
in the 2010s, with the development of Deep Reinforcement Learning [88].
Some practical applications have been widely publicised, most notably Al-
phaGo [111] which achieved super-human performance in the game of Go.

These Deep Reinforcement Learning methods heavily leverage statist-
ical methods and thus require intensive exploration efforts to generate data.
This implies using control policies that forcibly explore the system. Such
policies are inherently in conflict with the goal of the control problem, lead-
ing to wasteful behaviour. The study of this trade-off between exploration
and exploitation is the focus of the field of Reinforcement Learning Theory.

By using the notion of regret to quantify this trade-off, Reinforcement
Learning Theory has developed a fine analysis of the precise challenges of ef-
ficient exploration of unknown systems when the end goal is control [16]. By
allowing us to merge the conflicting objectives of the statistical learning prob-
lem and the control problem, this analysis laid the foundations for the con-
struction of optimal exploration methods for Reinforcement Learning [68].

Unfortunately, owing to its origins in discrete control, the field of Re-
inforcement Learning Theory has struggled to extend its methods to com-
plex continuous systems, limiting its real-world applicability. The primary
hurdle that must be overcome is the analysis and numerical resolution of the
control problem on a continuous state-space, both of which are well-studied
problems in Stochastic Control.

This observed complementarity between the two fields, stemming from
their shared genealogy, suggests that the Machine Learning framework in
general, and Reinforcement Learning in particular, holds a lot of promise for
the rejuvenation of the problem of learning to control dynamical systems.
Conversely, the tools of Stochastic Control Theory have the potential to un-
lock some of the challenges faced by Reinforcement Learning Theory in the
continuous setting.

The main objective of this thesis is to demonstrate this complementar-
ity by solving the continuous-state Reinforcement Learning problem for a
category of systems that admit a diffusive limit by leveraging continuous
stochastic control both for analytical tools and for computationally efficient
approximations. Owing to this dual-field nature, one part of this thesis is
primarily control-focused, which we describe in Section 1.1, while another
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1.1. Diffusive Limit Approximations

part focuses more resolutely on Reinforcement Learning, which we describe
in Section 1.2, leverages these results. A third part, which is transversal to
the two others, is described in Section 1.3 and focuses on a typical use-case
based on the problem of high-frequency online auctions in advertising, thus
grounding the theoretical approach in a practical setting.

1.1 Diffusive Limit Approximations
Learning Theory is predicated on observing single events (samples) and is
thus naturally constructed on discrete-time processes. On the other hand,
continuous Control Theory by definition studies processes defined on [0,𝑇],
for 𝑇 > 0, or ℝ+. In order to reconcile these two perspectives, we choose
to base our control problem on a pure-jump process whose events arrive ac-
cording to a Poisson process.

Let 𝑁 be a random measure on ℝ+ × ℝ𝑑′ with compensator ην(d𝑒)d𝑡,
for some probability measure ν on ℝ𝑑′ , 𝑑′ ∈ ℕ∗, η > 0. Given an initial
time 𝑡 ∈ [0,𝑇], an initial condition 𝑥 ∈ ℝ𝑑, 𝑑 ∈ ℕ∗, and a measurable map(𝑥, 𝑎, 𝑒) ∈ ℝ𝑑 × 𝔸 × ℝ𝑑′ ↦ 𝑏(𝑥, 𝑎, 𝑒) ∈ ℝ𝑑, we consider the solution to the
following Stochastic Differential Equation

𝑋𝑡,𝑥,α = 𝑥 +∫⋅
𝑡 ∫ℝ𝑑′ 𝑏(𝑋𝑡,𝑥,α𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠) , (1.1)

in which the control process α belongs to the set A of 𝔸-valued predictable
processes, for some 𝔸 ⊂ ℝ𝑑𝔸 compact, 𝑑𝔸 ∈ ℕ∗.

This choice of state dynamics makes the motion of the system evident:
the agent observes the current state of the system and chooses an action
based on past information. After waiting an exponentially distributed time,
an event happens and the state of the system jumps to a random point de-
pendent on the current state and the action chosen. This Markov nature of
the system is crucial.

At the same time, this type of random waiting time corresponds natur-
ally to many digital systems, whose state changes are driven by exogenous
events. Typical examples of this kind of system are given by queueing prob-
lems and by online advertising auctions. Low values of η cause the system to
behave more like a discrete-time system (with a random number of events 𝑁𝑇
close to η𝑇), while η → +∞ corresponds to a fully continuous-time system.

The scale of some internet-based digital systems has grown to regimes
under which η is large enough that the system can be realistically approx-
imated by a continuous-time diffusive system. This is notably the case for
online advertising auctions, which we use as an example throughout and
give an overview of in Section 1.3.
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1. INTRODUCTION

1.1.1 Diffusive limits in stochastic control

Consider the finite-horizon control problem, which is defined for (𝑡, 𝑥) ∈[0,𝑇] × ℝ𝑑 by

𝑉𝑇(𝑡, 𝑥) ∶= supα∈A [∫
𝑇

𝑡 𝑟(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁𝑠] (1.2)

in which 𝑁𝑡 ∶= 𝑁(ℝ𝑑′ , [0, 𝑡]) and (𝑥, 𝑎) ∈ ℝ𝑑 × 𝔸 ↦ 𝑟(𝑥, 𝑎) ∈ ℝ is a reward
function. Under some regularity conditions on the coefficients 𝑏 and 𝑟 (say,
bounded and Lipschitz in 𝑥 uniformly in other arguments), we can show that𝑉𝑇 is the unique bounded viscosity solution to the Hamilton-Jacobi-Bellman
(HJB) equation0 = 𝜕𝑡𝑉𝑇 + sup𝑎∈𝔸 {L𝑎𝑉𝑇 + η𝑟(⋅, 𝑎)} on [0,𝑇) × ℝ𝑑, (1.3)

with the boundary condition 𝑉𝑇(𝑇, ⋅) = 0 on ℝ𝑑, in which, given a functionϕ ∈ C0𝑏([0,𝑇) × ℝ𝑑; ℝ), the operator

L𝑎 ∶ ϕ ↦ η∫ℝ𝑑′ [ϕ(⋅, ⋅ + 𝑏(⋅, 𝑎, 𝑒)) − ϕ]ν(d𝑒) ∈ C0𝑏([0,𝑇) × ℝ𝑑; ℝ) (1.4)

is the infinitesimal generator (see e.g. [72, § 9.7]) associated to (1.1) with α ≡ 𝑎.
Because (1.4), and thus (1.3), is non-local, analysis of (1.3) is difficult:

both in regards to regularity estimates and numerical resolution. Further-
more, this effect is compounded when η grows large: numerical integration
error and ‖𝜕𝑡𝑉𝑇‖ both scale with η.

Many practical systems have large values of η, but maintain some degree
of structure at the macroscopic scale, due to having proportionally small in-
crements. Perhaps the most well-known example of this type of phenomenon
is in financial markets, e.g. [52, 67]. In the case of (1.1), there are several pos-
sible scaling regimes, such as the fluid limit regime of [54], but we choose to
focus on the diffusive limit regime because it preserves the stochasticity of
the process as η → +∞.

In this regime, we let η = ηε ∶= ε−1 for ε > 0, and assume the coefficient
scales as 𝑏 = ε𝑏1 + ε1/2𝑏2, for some locally bounded maps 𝑏1 and 𝑏2 such
that ∫ 𝑏2(⋅, 𝑒)ν(d𝑒) = 0 and inf∫ 𝑏2(⋅, 𝑒)2ν(d𝑒) > 0. As ε ↓ 0, the process𝑋𝑡,𝑥,α of (1.1) converges to a controlled diffusion process, see [66]. For (𝑡, 𝑥) ∈[0,𝑇) × ℝ𝑑 and ᾱ ∈ A,̄ with A ̄ the set of 𝔸-valued processes predictable
relative to the filtration of a 𝑑-dimensional Wiener process 𝑊, this diffusion
is given by the (unique) strong solution to the Stochastic Differential Equation
(SDE)

�̄�𝑡,𝑥,α = ∫⋅
𝑡 μ(�̄�𝑡,𝑥,α𝑠 ,α𝑠)d𝑠 +∫⋅

𝑡 σ(�̄�𝑡,𝑥,α𝑠 ,α𝑠)d𝑊𝑠 , (1.5)
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1.1. Diffusive Limit Approximations

whose coefficients are given by

μ ∶= ∫ℝ𝑑′ 𝑏1(⋅, 𝑒)ν(d𝑒) , σ ∶= (∫ℝ𝑑′ 𝑏2(⋅, 𝑒)𝑏2(⋅, 𝑒)⊤ν(d𝑒)) 12 ,
which are maps from ℝ𝑑 × 𝔸 to ℝ𝑑 and ℝ𝑑×𝑑, respectively.

In terms of the control problem, this is reflected in the PDE (1.3) (using a
second order Taylor expansion in L𝑎) by the fact that ε𝑉𝑇 → �̄�𝑇 (see e.g. [57]
for a similar analysis) �̄�𝑇 being the solution of

0 =𝜕𝑡�̄�𝑇 + sup𝑎∈𝔸 {L̄𝑎 + 𝑟(⋅, 𝑎)} on [0,𝑇) × ℝ𝑑, (1.6)

with the boundary condition �̄�𝑇(𝑇, ⋅) = 0 onℝ𝑑, in which, given any functionϕ ∈ C(1,2)([0,𝑇) × ℝ𝑑; ℝ), the operator

L̄𝑎 ∶ ϕ ↦ μ(⋅, 𝑎)⊤D𝑥ϕ + 12 Tr [σ(⋅, 𝑎)σ(⋅, 𝑎)⊤D2𝑥𝑥ϕ] ∈ C0([0,𝑇) × ℝ𝑑; ℝ)
is the infinitesimal generator of (1.5) with α ≡ 𝑎. Equation (1.6) is a standard
diffusive HJB whose analysis and numerical resolution are both well docu-
mented, see e.g. [78, 86] and references therein.

This method of approximation via the diffusion limit has a storied his-
tory. It has been studied extensively in the context of queuing networks, see
the books [43, 77] as well as [62], but has also seen use in the context of Actuar-
ial Science [21, 45] and Financial Mathematics [95], amongst others. However,
it appears that, in the context of a general problem, the convergence rate of
this approximation has not been studied.

Chapter 3 focuses on the study of this convergence rate to the diffusive
limit, with 𝑑 = 𝑑′ = 1 for simplicity. We consider the renormalised family
(indexed by ε ∈ ℝ+) of pre-limit problems

𝑉ε𝑇 (𝑡, 𝑥) ∶= supα∈𝔸 𝔼 [∫
𝑇

𝑡 ε𝑟(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁ε𝑠] (1.7)

in which 𝑁ε is the analogue of 𝑁 when η = ηε. To determine the convergence
of 𝑉ε𝑇 to �̄�𝑇, we use the HJB-based methodology described above.

We first study the regularity of the solution �̄�𝑇 of (1.6) and show that�̄�𝑇 ∈ C(1,2)𝑏 ([0,𝑇) × ℝ;ℝ) ∩ C0([0,𝑇] × ℝ;ℝ) with 𝜕𝑥𝑥�̄�𝑇 being γ-Hölder in
space for some γ ∈ (0, 1). We then show that the order of convergence of 𝑉𝑇
to �̄�𝑇 is εγ/2 in the sense that

||𝑉ε𝑇 (𝑡, 𝑥) − �̄�𝑇(𝑡, 𝑥)|| ≤ 𝐶(𝑇 − 𝑡)ε γ2 . (1.8)
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1. INTRODUCTION

We further show how to use (1.6) to construct a control which is εγ/2-
optimal for (1.7). Subsequently, we show how to construct error correction
terms for this approximation, in the first order and higher orders, at the ex-
pense of increased complexity of approximation. This is predicated on the
construction of a further PDE, or system of PDEs, and the extensive use of
viscosity solutions arguments.

Using an example inspired by the online auction problem (see also Sec-
tion 1.3), we demonstrate this approximation method and show the compu-
tational gains it can achieve relative to directly solving (1.3).

1.1.2 Ergodic control in the diffusive limit

Chapter 3 demonstrates that the diffusive limit approximation can lead to
significant computational improvements as compared to the direct resolu-
tion of (1.3). However, in many practical problems, the finite horizon fails
to capture the true nature of the control problem. When 𝑇 is very large, the
key question becomes whether the system enters a steady-state behaviour for
most of the duration, or is dominated by transient behaviour.

These long-term control problems, absent a natural form of discount, are
best represented by the ergodic control problem on (1.1) defined by

ρ∗(𝑥) ∶= supα∈A lim inf𝑇→+∞ 1𝑇𝔼 [∫𝑇
0 𝑟(𝑋0,𝑥,α𝑠− ,α𝑠)d𝑁𝑠] (1.9)

for any 𝑥 ∈ ℝ𝑑. This criterion is also the one we will use in Reinforcement
Learning, see Section 1.2. Due to the limit inferior, the feasibility of (1.9) is
inherently tied to the properties of the process 𝑋0,𝑥,α itself, and in particular
to the possibility of steady-state behaviour (ergodicity).

For example, if the system cannot be stabilised, i.e. if no control can
prevent the mass of the process from escaping to +∞, then ρ∗ will be ill-
defined. See also [102, § 8.3.1] for a discussion in the discrete control case.
This property demonstrates how the ergodic problem captures some funda-
mental complexities of the control problem which other settings may miss,
and highlights why it is of particular interest from a theoretical perspective.

Solving the ergodicity difficulty of the limit inferior, and thus show-
ing that (1.9) is well-posed, is achieved through Lyapunov conditions, see
e.g. [87]. We make Lyapunov assumptions on the process in which the Lya-
punov functions behave as ‖⋅‖𝑝 for some 𝑝 ≥ 3.

In Chapter 4, we first show the ergodicity of (1.1) from its Lyapunov as-
sumptions using Ordinary Differential Equation (ODE) methods. This ana-
lysis shows uniform Lipschitz estimates for the value functions of the dis-
counted control problem on the pure-jump processes (1.1), allowing us to
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show that the ergodic problem is well-posed by using the vanishing discount
method, see e.g. [14, 25].

This method shows that the control problem is meaningfully ergodic, in
that it forgets initial conditions: there is ρ∗ ∈ ℝ such that ρ∗(𝑥) = ρ∗ for
every 𝑥 ∈ ℝ𝑑. Moreover, the value ρ∗ accompanied by an auxiliary decision
function w ∶ ℝ𝑑 → ℝ, which is Lipschitz, form a viscosity solution couple
to the ergodic HJB equation0 = −ρ∗ + sup𝑎∈𝔸 {L𝑎w + η𝑟(⋅, 𝑎)} on ℝ𝑑. (1.10)

which is the ergodic analog of (1.3). A measurable pointwise maximiser of
the maximum in (1.10) yields an optimal stationary decision policy and thus
an optimal Markov control.

Using the analogous Lyapunov assumptions and the same ODE method
for (1.5), we can show the analogous result for the diffusive limit problem. In
particular, that there is a Lipschitz solution w̄ ∶ ℝ𝑑 → ℝ to the HJB equation0 = −ρ̄∗ + sup𝑎∈𝔸 {L̄𝑎w̄ + 𝑟(⋅, 𝑎)} on ℝ𝑑, (1.11)

in which ρ̄∗ ∈ ℝ is the value of the ergodic control problem on (1.5), defined
analogously to (1.9).

Having shown the two problems are well posed and satisfy the requisite
HJB equations, we will apply the methodology of Section 1.1.1 to the resolu-
tion of ergodic control problem (1.9) and the HJB equation (1.3). To this effect,
for ε ∈ ℝ+, we define

ρ∗ε ∶= supα∈A lim inf𝑇→+∞ 1𝑇𝔼 [∫𝑇
0 ε𝑟(𝑋0,0,α𝑠− ,α𝑠)d𝑁ε𝑠] (1.12)

in which 𝑁ε is defined as in Section 1.1.1.
We first focus on (1.11) and build on the Lipschitzness of w̄ to get strong

regularity estimates of w̄, for 𝑑 ∈ ℕ, assuming the volatility σ is independent
of the control 𝑎 ∈ 𝔸, bounded, and satisfies a uniform ellipticity condition.
This analysis shows that, for μ Lipschitz (but not-necessarily bounded), D2w̄
is locally γ-Hölder continuous for any γ ∈ (0, 1), with a constant growing at
most linearly in 𝑥.

This regularity estimate allows us to apply the arguments of Chapter 3,
up to the use of moment estimates (derived from Lyapunov conditions) on𝑋0,𝑥,α𝑡 , for any 𝑡 ∈ ℝ+, to handle the linear growth of μ and the Hölder con-
stant of w̄. This yields the following approximation bound in the ergodic
case with unbounded drift, uniform ellipticity, and uncontrolled volatility

||ρ∗ε − ρ̄∗|| ≤ 𝐶ε γ2 .
7
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We also show how to construct a control which is εγ/2-optimal for the pre-
limit ergodic control problem (1.12) using the optimal decision policy ob-
tained from (1.11).

Subsequently, we show how to construct error correction terms for this
approximation once again, but using a method that differs from the one in
Chapter 3. In this instance, the increase in complexity comes from iterat-
ing additional PDEs rather than from the construction of an increasingly
large system of PDEs. This method is more straightforward than the one
in Chapter 3 and relies on a verification argument.

Continuing towards the goal of efficient resolution of (1.9), we delve into
the numerical resolution of the ergodic control problem. Because numer-
ical schemes generally need ad-hoc constructions we take 𝑑 = 1 once again,
and strengthen the regularity and growth-order conditions in our assump-
tions. Under these assumptions, we construct a numerical scheme for (1.11),
in which we solve an equation of the form

0 = −ρ̄κ,∗ℎ + sup𝑎∈𝔸 {L̄𝑎ℎw̄κℎ + 𝑟(⋅, 𝑎)} (1.13)

on a mesh M̅κℎ on the interval [−κℎ, κℎ] of fineness ℎ > 0 containing 𝑁κ ∶=2κ + 1 points, κ ∈ ℕ∗, with

L̄𝑎ℎ ∶ 𝑣 ∈ ℝ𝑁𝑘 ↦ 𝑃ℎ𝑣 ∈ ℝ𝑁𝑘
for a transition matrix 𝑃ℎ ∈ ℝ𝑁κ×𝑁κ which is obtained via finite difference ap-
proximation of L̄𝑎. The solution couple (ρ̄κ,∗ℎ , w̄κℎ) of (1.13) corresponds to the
value and decision function of an ergodic control problem on a continuous-
time Markov Chain.

Since this structure corresponds to a pure-jump process on M̅κℎ, whose
intensity is 1/Δ𝑡ℎ, for Δ𝑡ℎ = O(ℎ2), we can use the same approximation meth-
odology described above, up to some care in handing the boundary condi-
tions of the scheme, to obtain convergence of order

||Δ𝑡ℎρ̄κ,∗ℎ − ρ̄∗|| ≤ 𝐶 (ℎγ + ℎ−1 |κℎ|1−𝑝) ,
in which 𝑝 ≥ 3 is the growth order of the Lyapunov function of the diffusion.
We also study the construction of an approximately optimal control for (1.12)
using w̄κℎ, in what seems to be a novel topic concerning the numerical resol-
ution of control problems.

We then return to a bidding problem which proposes a variant of the one
of Chapter 3. We use this numerical example to apply the numerical scheme
of (1.13) and display the computational efficiency gains of the diffusive limit
approximation.
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1.2 Reinforcement Learning

Reinforcement Learning (RL) studies the problem of learning how to control
a system such as (1.1) under uncertainty on its dynamics from the perspective
of Machine Learning. There are two main ways to formalise this uncertainty,
depending on whether one chooses to take the dynamics or the control as
the primary object of study. These are known as the value-based and policy-
search approaches respectively.

We focus on the former and adopt a model-based framework, which as-
sumes that 𝑏 in (1.1) is unknown but that one has access to a model classℱΘ of
possible dynamics, parametrised by θ ∈ Θ ⊂ ℝ𝑑Θ , 𝑑Θ ∈ ℕ∗. This paradigm
assumes that all the uncertainty is captured, within ℱΘ, by the lack of know-
ledge of a true parametrisation θ∗ ∈ Θ. This leads us to extend the definition
of 𝑋𝑡,𝑥,α to incorporate a driving parameter θ ∈ Θ by defining 𝑋𝑡,𝑥,α,θ as the
solution to the Stochastic Differential Equation

𝑋𝑡,𝑥,α,θ = 𝑥 +∫⋅
𝑡 ∫ℝ𝑑′ 𝑏θ(𝑋𝑡,𝑥,α,θ𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠) . (1.14)

We adopt the diffusive limit scaling of Section 1.1 for 𝑏θ, and since the
standard noise structure in Reinforcement Learning is an additive martingale,
we will take 𝑏θ(𝑥, 𝑎, 𝑒) ∶= εμ̄θ(𝑥, 𝑎) + ε1/2Σ̄𝑒, with regularity conditions on(μ̄θ, Σ̄) from Section 1.1.2. This framework is meant to model deterministic
systems under sub-Gaussian martingale perturbation, hence we will take ν
to be a centred standard Gaussian measure on ℝ𝑑 for simplicity.

Regardless of the form of the control problem at hand, as a value-based
method, we seek to explore the state-action space to learn 𝑏θ and the reward
function 𝑟 in order to approximate the control problem successfully. This
necessarily leads us to sample sub-optimal state-action pairs for the control
problem, creating an inherent tension between exploration and control. Con-
versely, a greedy agent which focuses solely on exploiting the empirical best
state at any given time will likely fail to learn. Indeed, it is liable to create
a closed-loop sub-system in which it remains in one region of space forever
due to unlucky observations outside of this region, unable to learn the rest
of the system.

This tension is a consequence of learning from within a decision prob-
lem, as was observed by studying the bandit (stateless) case [82]. Its source is
the nature of the feedback of the decisions: one only gets information about
state-action pairs actually traversed.

Consequently, since ε and Σ̄ are independent of actions taken, they are
unaffected by this trade-off and can be estimated by simple statistical meth-
ods. To avoid unnecessary complexity, we simply take them as known.
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Since 𝑋0,𝑥,α,θ∗ of (1.14) is a stochastic process, there are two notions of
samples one could consider: episodic in which we observe realisations of the
process 𝑋0,𝑥,α,θ∗(ω) from differentω ∈ Ω, possibly up to a reset time 𝑇 ∈ ℝ+;
or online in which we observe over time 𝑡 ∈ ℝ+ a trajectory 𝑋0,𝑥,α,θ∗(ω) for a
single fixed ω, like in a time series.

Learning online, one cannot revisit past events by relying on the reset
of the trajectory. Instead, the system has to be driven back into the relevant
conditions. This characterises the learning difficulty in a way that is inher-
ent to the dynamics of the process 𝑋𝑡,𝑥,α,θ. At the same time, it excludes the
study of nonstationary policies, including the finite horizon problem because
beginning-of-the-world effects can’t be reasonably learned along a single tra-
jectory.

We choose to focus on the online problem, following the large literature
of Online Reinforcement Learning Theory, and study the ergodic criterion

ρ∗θ∗(𝑥) ∶= supα∈A lim inf𝑇→+∞ 1𝑇𝔼 [∫𝑇
0 𝑟(𝑋0,𝑥,α,θ∗𝑠− ,α𝑠)d𝑁𝑠] ,

in which A is defined as in Section 1.1 with respect to 𝑋0,𝑥,α,θ∗ , because it
captures the difficulty inherent in the process 𝑋𝑡,𝑥,α,θ in the control problem.
As shown in Section 1.1.2, it also admits an optimal policy (see (1.10)) which
is stationary, meaning it is possible to learn an optimal policy online.

The choice of an ergodic problem introduces the well-posedness issues
of ρ∗θ∗ mentioned in Section 1.1.2, even in the discrete-state case see e.g. [103,
§ V.] and [12]. Until now, this ergodicity problem was a major hurdle in Rein-
forcement Learning with continuous states outside of the Linear Quadratic
Regulator case [7, 81].

Indeed, the methods used to establish ergodicity in discrete systems,
which are based on studying (discrete) transition matrices, see e.g. [102, § 8.],
do not easily extend to continuous problems. In the general setting which
was described in Section 1.1.2, we showed that the problem (1.9) was well-
posed under moderate Lyapunov and coefficient conditions.

In Chapter 5, we specialise this analysis to the structure of 𝑏θ of (1.14),
which allows us to relax the Lyapunov assumptions of Chapter 4 to a single
weaker condition from which the ergodicity and the stability of both the pure-
jump and diffusive limit problems follow. This condition is a mixing (contrac-
tion) condition on the instantaneous dynamics, which takes the form of𝒱 (𝑥 + εμ̄θ(𝑥, 𝑎) − (𝑥′ + εμ̄θ(𝑥′, 𝑎))) ≤ (1 − c𝒱 ε)𝒱 (𝑥 − 𝑥′) (1.15)

for any (𝑥, 𝑥′, 𝑎,θ) ∈ ℝ𝑑×ℝ𝑑×𝔸×Θ, in which 𝒱 ∈ C2(ℝ𝑑 ⧵{0}, ℝ+) is a suit-
able Lyapunov function and c𝒱 > 0 is a constant independent of ε. Using the
additive sub-Gaussian noise we leverage this assumption beyond ergodicity
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and show that (𝑋0,𝑥,α,θ𝑠 )𝑠∈ℝ+ behaves essentially like a sub-Gaussian process,
including high-probability concentration. This shows that ρ∗θ is well-posed
for any θ ∈ Θ by the arguments of Section 1.1.2.

Having shown that the problem is well-posed, we can seek to construct
an agentα ∈ Awhich maximises (1.9) absent knowledge ofθ∗, i.e. an optimal
learning algorithm. Unfortunately, this explicit maximisation problem has
remained out of reach, even in simple (discrete-state or bandit) problems.

Instead, the Reinforcement Learning literature has focused on designing
ad-hoc algorithms, and on understanding and comparing their performance
using performance upper bounds. This methodology is complemented by
problem hardness (minimax) lower bounds, which is a standard approach in
Theoretical Computer Science.

The primary metric used in these bounds is the notion of the regret of
an agent α ∈ A

R𝑇(α) ∶= 𝑇ρ∗θ∗ −∫𝑇
0 𝑟(𝑋0,𝑥,α,θ∗𝑠− ,α𝑠−)d𝑁𝑠 , (1.16)

defined for any (𝑥,𝑇) ∈ ℝ𝑑 × ℝ+, which one bounds in the high-probability
sense. This concept is naturally adapted to online decision-making problems,
see e.g. [58, 109], as it neatly quantifies the cost of uncertainty about θ∗ dir-
ectly in terms of the reward function of the control task. As can be seen by
dividing by 𝑇 and letting 𝑇 → +∞, the rate of growth of the regret quantifies
the efficiency of α at learning to control and, in a minimax sense, the inherent
difficulty of the problem.

In the absence of a formal optimum agent, many exploration agents have
been proposed. These all add some exploratory behaviour to the greedy
agent, which was discussed previously. One possibility is to force isotropic
exploration, either by taking random actions some of the time (ϵ-greedy, and
other forms of entropy-regularised policies), or by alternating phases of ex-
ploration and exploitation (Explore-Then-Commit, see e.g. [100]).

While these methods can be effective, calibrating the noise source gen-
erally requires prior knowledge about the system. In the absence of such in-
formation, their regrets are generally sub-optimal. To circumvent this issue
requires structuring the exploratory behaviour to the problem, which is done
by careful study and decomposition of the regret in order to identify and ad-
dress key sub-tasks of the exploration-exploitation dilemma. Historic works
have shown that it can be addressed via Thompson Sampling, see e.g. [6,
113], or by the use of the Optimism in the Face of Uncertainty paradigm, see
e.g. [15, 16, 68].

This paradigm identifies four key sub-tasks of the problem: learning, i.e.
the ability to estimate μ̄θ∗ and 𝑟 and give δ-confidence sets for them, δ ∈ (0, 1);
optimism, which is done by selecting a belief system θ̃ which maximises ρ∗θ
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over θ in the confidence set; planning, which computes the optimal decision
policy π̃∗ for θ̃; and lazy-updates, which ensure the agent executes the policyπ̃∗ for long enough to get useful feedback on θ̃ by exploring the system.

The groundwork for planning was laid in Section 1.1.2, in which we
showed how to use the Hamilton-Jacobi-Bellman equation (1.10) to solve the
control problem ρ∗θ, for any θ ∈ Θ. We also demonstrated an efficient ap-
proximate resolution method based on the diffusion limit and the numerical
scheme of (1.13). This provides the tools for efficient planning in our near-
diffusive setting.

Learning non-linear continuous dynamics has been addressed in the Re-
inforcement Learning literature through the establishment of the eluder di-
mension in the seminal articles [97, 107]. This framework however is only
suited for bounded coefficients. In Chapter 5, we refine the original argu-
ments to apply them to a stable process with unbounded drift (i.e. μ̄θ∗) onℝ𝑑,
which requires some finer care about measurability and covering arguments.
As a result, the learning quantities become adaptive to the regions of space
that are effectively visited by the trajectory 𝑋0,𝑥,α,θ∗(ω). We show that the res-
ulting confidence sets are well calibrated and that this low fit error translates
into a low prediction error using the eluder dimension. This allows us to
use the point estimates and confidence sets of Non-Linear Least Squares re-
gression to solve the learning problem for non-linear dynamics, under only
a Lipschitz condition on μ̄θ and the stability properties of 𝑋0,𝑥,α,θ∗ derived
from (1.15).

The need for lazy updates is an unintuitive consequence of the dynam-
ical nature of (1.14). Since the policy π̃∗ optimises the ergodic criterion it may
perform poorly in the short term until the system mixes. There is therefore
a potential cost at each update of the policy and one way to control the res-
ulting error is by only changing θ̃ infrequently. The difficulty is in doing so
without degrading the learning. We show, using refined functional inequal-
ities for sequences, that the low (O(log(𝑇))) prediction error can be used to
derive an update criterion that triggers only O(log(𝑁𝑇)) times by time 𝑇, at
the cost of only a constant factor downgrade in the efficiency of the learning.

Having tackled the sub-tasks, we are able to give an algorithm that gen-
erates a control process 𝜛 ∈ A and to bound its regret. We show that

ℙ(R𝑇(𝜛) ≤ O (√𝑇dE,𝑁𝑇 log(𝒩 ε𝑁𝑇) log(𝑁𝑇) log (1δ))) ≥ 1 − δ , (1.17)

in which dE,𝑁𝑇 and 𝒩 ε𝑁𝑇 are the 2√ε/𝑁𝑇-eluder dimension (see [107, Def. 4.]
and (5.56) in Section 5.5.2) and the ε‖Σ̄‖op/𝑁𝑇 covering number, respectively,
of the class ℱΘ with the domain of its elements restricted to a ball of radius
O(√log(𝑇/ε)).
12
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This matches (in 𝑇) the best known upper bounds for the regret in the
discrete-state case [20, 68, 97], up to logarithmic factors. For comparison,
known minimax lower bounds for the regret in the discrete-state case are
of order1 of Ω(√𝑇), e.g. [68], which is to say that there is no algorithm which
can achieve regret growth slower than √𝑇 on every instance.

Using the diffusion limit approximation of Chapter 4 we can also solve
the planning task efficiently up to an additive term εγ/2𝑇 which is linear in𝑇. This shows that in very high-frequency systems, with ε ≪ 1, the regret
bound (1.17) is achievable in a meaningful way using this kind of approxim-
ation to save computational effort.

This work in the specific context of systems admitting a diffusive limit
showcases how tools from Stochastic Control and continuous-time stochastic
processes can be applied to continuous-state Reinforcement Learning prob-
lems. It provides a first step towards a general theory of Reinforcement Learn-
ing in continuous state-space based on these tools.

1.3 Online Auction Problems

High-frequency control systems of the type described in Sections 1.1 and 1.2
are common in real-world applications. They often model a system that mon-
itors some outside event signals to which it reacts. A typical category of ex-
amples involves the purchase or sale of objects by algorithms via auctions,
markets, or other mechanisms. At scale, these involve high-frequency events,
each of which only contributes small changes to the relevant state process,
which could be, for instance, price, inventory volume, or some more com-
plex object such as an investment portfolio.

While financial markets are the most obvious example, they may not
be well represented by arrivals from a Poisson process at all scales, for in-
stance, because of self-excitation phenomena, see e.g. [52]. Instead, we focus
throughout this thesis on the online display advertising auction application,
which models the way that banner ads on webpages are sold during the load-
ing time of the page. The overall goal of Chapter 6 is to demonstrate in an
application how a control system of the type studied in Chapters 3 and 4
can arise as a natural response to the computational pressure of the high fre-
quency of interactions.

The business model of most internet applications is based on advertising:
either directly or indirectly via the trading of data. There are many different
types of ads, each of which has its own trading mechanisms. We will focus on

1A function 𝑇 ∈ ℝ+ ↦ 𝑓 (𝑇) ∈ ℝ+ is of order Ω(√𝑇) if there are (𝑁,𝐶) ∈ ℕ × ℝ+
such that for any 𝑇 > 𝑁, 𝑓 (𝑇) > 𝐶√𝑇.

13



1. INTRODUCTION

display ads, which are the ones that load in banners, typically at the top or on
the sides of websites. The display ad slots on a webpage are sold in an online
stream2 by automated algorithms during the loading time of the page (about
50 ms) using auctions. This makes the auction times dependent only on the
arrival of users, which should be reasonably modelled by a Poisson process.
In terms of frequency, the order of magnitude is of 1010 to 1012 auctions per
day, while individual costs and gains are very small due to the probability of
a user clicking on an ad being small.

The key particularity of the display advertising market relative to other
markets such, as financial ones, is concentration. Due to the computing in-
frastructure required by the scale of the automated auctions, the trading is
undertaken by intermediaries on both sides, so that there are only about half
a dozen participants in each auction. This has a large impact on the nature
of the revenue maximisation problem for a seller.

In Auction Theory, the question of the optimal auction, given knowledge
of the valuation distributions of bidders, was solved in the seminal 1981 art-
icle of Myerson [92]. Evidently, this assumption is unrealistic for display
advertising. On the other hand, the high frequency of events means that lots
of data are available to learn to maximise revenue from empirical observa-
tions. However, due to the complexity of the Myerson mechanism [92], it is
impossible to learn it directly [90], and we will thus study the simpler second-
price auction.

This format is both a reasonable approximation to the Myerson auction,
see [104] and is the format which is historically used in display advertising3.
In this format, the winning bid is simply the highest one, but the item is only
sold if the winning bidder beats their reserve price, which is an individualised
minimum sale price. If the reserve price is cleared, the winner pays the smal-
lest bid which still wins them the item, that is: the maximum between their
reserve price and the bids of the other bidders.

Because they are individualised, the problem of optimising revenue via
the reserve prices is separable and boils down to finding the monopoly price𝑟∗ of each bidder. For a bidder with stationary bid distribution 𝐹, this is the
maximiser of the monopoly revenue

Ψ𝐹 ∶ 𝑟 ∈ ℝ+ ↦∫ℝ+
𝑟1𝑟≥𝐵𝐹(d𝐵) ∈ ℝ+ . (1.18)

Several methods have been proposed to maximise (1.18), mostly based on
bandits, e.g. [73], or on non-convex optimisation, e.g. [89]. Unfortunately,
these methods all require storing many, if not all, past bids to update the price,

2That is, ads are sold sequentially and individually.
3Although it should be noted that this has been shifting in favour of the first-price auction

and similar formats recently.
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which will become computationally infeasible at the scales we are interested
in.

The motivating question of Chapter 6 is whether it is possible to design
an algorithm whose update is real-time (i.e. independent of the past number
of bids), even at the cost of degrading the convergence speed, so that it can
be applied online to the data stream.

The enticing candidate is a first-order method like Online Gradient As-
cent (OGA). Unfortunately, because (𝑟,𝐵) ∈ ℝ2+ ↦ 𝑝(𝑟,𝐵) ∶= 𝑟1𝑟≥𝐵 is discon-
tinuous (in 𝑟 for any bid 𝐵 ∈ ℝ∗+), random gradients from it will not give an
unbiased gradient estimate for Ψ𝐹. Consequently OGA need not converge
to 𝑟∗ ∈ argmaxΨ𝐹.

The problem of biased gradients can be solved by smoothing 𝑝 by con-
volution with a smooth kernel 𝑘 and then applying OGA to the result. The
resulting algorithm, CONV-OGA, is inevitably biased and we should like to
reduce its bias over time by reducing smoothing. The main contribution of
Chapter 6 is an algorithm, V-CONV-OGA, which does smoothing and OGA at
the same time in order to trade off the biased gradients and the stability of
OGA, thus retaining real-time updates.

We first give an analysis of the convexity4 properties of Ψ𝐹 under clas-
sical auction theory assumptions like monotone virtual valuation and increas-
ing hazard rate. This allows us to control the bias and variance trade-off in-
duced by the smoothing, which we use to show the almost sure convergence
of iterates to 𝑟∗ using the quasi-martingale method, see e.g. [32].

We strengthen this result by modifying arguments of [91] to obtain a
convergence rate under a stronger assumption which eliminates arbitrarily
small gradients. The full bounds exhibit the bias-variance trade-off, but upon
balancing it they correspond to

𝔼 [‖𝑟𝑛 − 𝑟∗‖2] = Õ (𝑛− 12)
in which (𝑟𝑛)𝑛∈ℕ∗ are the iterates of our algorithm and Õ hides polylogar-
ithmic in 𝑛 factors from the order notation. Since methods storing all bids,
e.g. [89], can reach a rate of Õ(𝑛−1), the corresponding gap can be viewed as
the cost of using a real-time algorithm.

In practice, bidders in display ad-auctions are known to exhibit non-
stationary or even strategic behaviour. By the nature of OGA, we can easily
adapt CONV-OGA, with constant learning rate γ0 ∈ ℝ+, to deal with a non-
stationary bidder. Given a reasonable number of bid distribution switches
by time 𝑁 ∈ ℕ, we show a dynamic regret relative to 𝑟∗ of order O(√𝑁).

4Precisely log-concavity and pseudo-concavity.
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1. INTRODUCTION

Given a sequence of bids (𝑏𝑛)𝑛∈ℕ∗ ⊂ ℝ+, the reserve prices (𝑟𝑛)𝑛∈ℕ∗
generated by CONV-OGA are given by some initial 𝑟1 ∈ ℝ+ and the recursion

𝑟𝑛+1 = 𝑟𝑛 + γ0 𝑓 (𝑟𝑛, 𝑏𝑛) , (1.19)

in which 𝑓 (𝑟,𝐵) ∶= D[𝑝(⋅,𝐵)⋆ 𝑘](𝑟)∨−𝑟, for a smoothing kernel 𝑘 and γ0 > 0.
In practice, numerous sources of noise affect the seller’s reserve prices

even with a deterministic update like (1.19), such as difficulty in attributing
bids to the correct bidder. This calls for cautious updates and, thus, reserve
price increments tend to be negligible, i.e. γ0 ≪ 1.

Meanwhile, from the point of view of the bidder, there are also other
sources of noise, such as possible aggregation by the seller over unknown fea-
tures. These multiple levels of noise explain why in practice noise dominates
the dynamics of CONV-OGA, as in the diffusion limit regime of Section 1.1.

Since the auction arrival times are well modelled by a high-frequency
Poisson process onℝ+, the bidder observes a reserve price process according
to the controlled Stochastic Differential Equation

𝑋0,𝑥0,α = 𝑥0 +∫⋅
0 ∫ℝ𝑑′ ε𝑏1(𝑋0,𝑥0,α𝑠− ,α𝑠, 𝑒) + ε 12 𝑏2(𝑋0,𝑥0,α𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠),

(1.20)

in which (α𝑡)𝑡∈ℝ+ is the bid process. This matches Section 1.1. Thus, the
bidder’s objective of maximising its gains, which is known as a bidding prob-
lem, is an example of a stochastic control problem of the form considered in
Section 1.1.

For the seller, 𝑏1(𝑥, 𝑎, 𝑒) = 𝑓 (𝑥, 𝑎) represents an optimal choice of a sta-
tionary Markov pricing dynamic, in the sense outlined above. However, the
definition of 𝑓 via a convolution complicates the manipulation of the process
when studying the bidding problem. This leads us to consider some simpli-
fying heuristics in our applications.

Considering, for simplicity, that 𝑏2(𝑥, 𝑎, 𝑒) = 𝑒, the simplest heuristic is
to take 𝑏1(𝑥, 𝑎, 𝑒) ∶= β(𝑎 − 𝑥), for β ∈ ℝ+. In Section 4.5, we consider this
dynamic with β random to model the uncertainty about the aggressivity of
the seller’s tracking of bids. In Section 3.4, we consider 𝑏1(𝑥, 𝑎, 𝑒) ∶= −𝑥 +𝑞𝑏 + (1 − 𝑞)𝑟0, 𝑞 ∈ (0, 1), which takes a convex combination of the last bid
with a benchmark price 𝑟0 ∈ ℝ+.

While these heuristic models are not definitive models of the behaviour
of sellers in display ad auctions, they are interesting because they exhibit
an emergent (Markov) diffusive limit behaviour. This behaviour arose as a
natural response to the problem of revenue maximisation in a highly concen-
trated auction format when faced with the heavy computational constraints
of high-frequency events.

16



1.3. Online Auction Problems

Chapter 6 thus motivates the examples adopted in Chapters 3 and 4 for
numerical experiments, and grounds the overall diffusion limit method in
the real world. Note that the monopoly price is not the only quantity of in-
terest in online display ad-auctions and that many other state variables and
control problems can be considered, see for instance [54] for other examples
in inventory management and conversion maximisation.
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Chapitre 2
Résumé de la thèse

Le développement de l’automatique dans le génie a placé les systèmes
dynamiques au cœur de la plupart des technologies industrielles modernes.
Les premiers succès se trouvèrent dans les chaînes de fabrication, le guidage
des fusées ainsi que d’autres applications industrielles lourdes. Le dévelop-
pement des technologies de l’information et de l’internet a élargi la portée
de cette tendance, les systèmes dynamiques automatisés devenant omnipré-
sents dans la plupart, sinon tous, les aspects de notre vie quotidienne.

Dans nombreux de ces applications, les problèmes liés au bruit et à l’in-
certitude sont inévitables. Dans le contexte de l’automatisation des systèmes
dynamiques, la prise en compte de dynamiques bruitées a conduit au déve-
loppement de la théorie du contrôle stochastique, qui a fleuri et s’est ramifiée
depuis la seconde moitié du vingtième siècle.

La branche du contrôle stochastique continu (en temps et en espace) s’est
fleurie d’une théorie riche et fructueuse, basée sur les Équation aux Dérivées
Partielles (EDP), à commencer par les travaux du groupe de Lev Pontriaguine
dans les années 1960 ; voir par exemple [59] pour une perspective bibliogra-
phique. Cette approche basée sur les EDP fut considérablement enrichie dans
les années 1980 par le développement de la théorie des solutions de viscosi-
té [48, 49], permettant ainsi la résolution de nombreux problèmes complexes
et irréguliers. Ces nouveaux outils ont conduit à des succès remarquables
dans les domaines d’application de la théorie, notamment dans le domaine
des mathématiques financières, voir par exemple [56].

Malgré ce succès dans l’incorporation de l’aléatoire, les systèmes de contrôle
dans le monde réel doivent encore tenir compte du problème de l’incertitude
dans les dynamiques du système. Dans le cadre du temps continu, ce pro-
blème a été abordé par les domaines du contrôle adaptatif et robuste, voir
par exemple [30, 31]. Alors que le contrôle robuste cherche à être résistant à
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l’incertitude, le contrôle adaptatif exploite les statistiques pour apprendre à
contrôler le système. Les méthodes statistiques classiques utilisées dans ce
domaine (par exemple, l’estimation du maximum de vraisemblance) et leur
accent sur les résultats de convergence asymptotique contrastent avec les mé-
thodes plus récentes de l’apprentissage automatique.

La branche du contrôle stochastique discret (en temps et en espace), voir
par exemple [22, 102] a développé vis-à-vis du problème de l’incertitude dans
les systèmes contrôlés la perspective de l’apprentissage automatique avec le
paradigme de l’apprentissage par renforcement, voir par exemple [23, 112].
Cette perspective met l’accent sur la performance vis-à-vis du contrôle opti-
mal, l’efficacité computationnelle des méthodes et les garanties de temps fini
plutôt que sur la modélisation explicative.

Le domaine de l’apprentissage par renforcement à acquis une grande
notoriété dans les années 2010, avec le développement des méthodes d’ap-
prentissage par renforcement profond, voir par exemple [88]. Certaines appli-
cations pratiques ont été largement médiatisées, notamment AlphaGo [111]
qui a atteint une performance supérieure à celle de l’humain au jeu de Go.

Ces méthodes d’apprentissage par renforcement profond exploitent in-
tensivement les méthodes statistiques et nécessitent donc des efforts d’ex-
ploration intensifs pour générer des données. Cela implique l’utilisation de
politiques de contrôle qui explorent de force le système. De telles politiques
sont intrinsèquement en conflit avec l’objectif du problème de contrôle, ce
qui conduit à un certain gâchis. L’étude de cette contrepartie entre explora-
tion et exploitation est au cœur du domaine de la théorie de l’apprentissage
par renforcement.

En utilisant la notion de regret pour quantifier ce compromis, la théorie
de l’apprentissage par renforcement a développé une analyse fine des défis
précis de l’exploration efficace des systèmes inconnus lorsque l’objectif final
est le contrôle [16]. En nous permettant de fusionner les objectifs contradic-
toires du problème d’apprentissage statistique et du problème de contrôle,
cette analyse a jeté les bases de la construction de méthodes d’exploration
optimales pour l’apprentissage par renforcement [68].

Malheureusement, de par ses origines dans le contrôle discret, le do-
maine de la théorie de l’apprentissage par renforcement a eu du mal à étendre
ses méthodes aux systèmes continus complexes, limitant ainsi son applicabi-
lité dans le monde réel. Le principal obstacle à surmonter est l’analyse et la
résolution numérique du problème de contrôle sur un espace d’états conti-
nu, tous deux étant des problèmes bien étudiés dans la théorie du contrôle
stochastique continu.

Cette complémentarité observée entre les deux domaines, découlant de
leur généalogie partagée suggère que le point de vue de l’apprentissage au-
tomatique en général, et de l’apprentissage par renforcement en particulier,
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offre beaucoup de promesses pour le renouvellement du problème de l’ap-
prentissage du contrôle des systèmes dynamiques. Inversement, les outils de
la théorie du contrôle stochastique ont le potentiel de débloquer certains des
défis auxquels la théorie de l’apprentissage par renforcement est confrontée
dans le cadre continu.

L’objectif principal de cette thèse est de démontrer cette complémentari-
té en résolvant le problème de l’apprentissage par renforcement à états conti-
nus pour une catégorie de systèmes qui admettent une limite diffusive en
tirant parti du contrôle stochastique continu, à la fois pour les outils analy-
tiques et pour des approximations efficaces en termes de calculs. En raison de
sa nature à l’interface de deux domaines d’étude, une partie de cette thèse est
principalement axée sur le contrôle, que nous décrivons dans la Section 2.1,
tandis qu’une autre partie se concentre plus résolument sur l’apprentissage
par renforcement, que nous décrivons dans la Section 2.2, exploite ces résul-
tats. Une troisième partie, qui est transversale aux deux autres, est décrite
dans la Section 2.3 et se concentre sur un cas d’utilisation typique basé sur
le problème des enchères séquentielles à haute fréquence dans la publicité,
ancrant ainsi l’approche théorique dans un cadre pratique.

2.1 Approximations par la limite diffusive

La théorie de l’apprentissage est fondée sur l’observation d’événements
singuliers (les échantillons), et est donc naturellement construite sur des pro-
cessus en temps discret. D’autre part, la théorie du contrôle continu étudie
par définition des processus définis sur [0,𝑇], pour 𝑇 > 0, ou sur ℝ+. Afin
de concilier ces deux perspectives, nous choisissons de baser notre problème
de contrôle sur un processus à sauts purs dont les événements arrivent selon
un processus de Poisson.

Soit 𝑁 une mesure aléatoire sur ℝ+ × ℝ𝑑′ admettant en guise de com-
pensateur ην(d𝑒)d𝑡, pour une mesure de probabilité ν surℝ𝑑′ , 𝑑′ ∈ ℕ∗, η > 0.
Étant donné un temps initial 𝑡 ∈ [0,𝑇], une condition initiale 𝑥 ∈ ℝ𝑑, 𝑑 ∈ ℕ∗,
et une application mesurable (𝑥, 𝑎, 𝑒) ∈ ℝ𝑑 × 𝔸 × ℝ𝑑′ ↦ 𝑏(𝑥, 𝑎, 𝑒) ∈ ℝ𝑑, nous
considérons la solution de l’Équation Différentielle Stochastique suivante

𝑋𝑡,𝑥,α = 𝑥 +∫⋅
𝑡 ∫ℝ𝑑′ 𝑏(𝑋𝑡,𝑥,α𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠) , (2.1)

dans laquelle le processus de contrôle α appartient à l’ensemble A des pro-
cessus prévisibles à valeurs dans 𝔸, pour 𝔸 ⊂ ℝ𝑑𝔸 compact, 𝑑𝔸 ∈ ℕ∗.

Ce choix de dynamique d’état rend le mouvement du système évident :
l’agent observe l’état actuel du système et choisit une action en fonction des
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informations passées. Après avoir attendu un temps distribué exponentiel-
lement, un événement se produit et l’état du système saute vers un point
aléatoire dépendant de l’état actuel et de l’action choisie. Cette nature mar-
kovienne du système est cruciale.

Dans le même temps, ce type de temps d’attente aléatoire correspond
naturellement à de nombreux systèmes numériques, dont les changements
d’état sont pilotés par des événements exogènes. Des exemples typiques de
ce type de système sont donnés par les problèmes de files d’attente et par
les enchères séquentielles pour la publicité. De faibles valeurs de η font que
le système se comporte davantage comme un système à temps discret (avec
un nombre aléatoire d’événements 𝑁𝑇 proche de η𝑇), tandis que η → +∞
correspond à un système entièrement continu en temps.

Le volume de certains systèmes digitaux basés sur l’internet a atteint des
régimes pour lesquels η est suffisamment grand pour que le système puisse
être raisonnablement approximé par un système diffusif en temps continu.
C’est notamment le cas pour les enchères séquentielles pour la publicité, que
nous utilisons comme exemple tout au long de la thèse et que nous présen-
tons dans la Section 2.3.

2.1.1 Limites Diffusives en Contôle Stochastique

Considérons le problème de contrôle à horizon fini, défini pour (𝑡, 𝑥) ∈[0,𝑇] × ℝ𝑑 par

𝑉𝑇(𝑡, 𝑥) ∶= supα∈A [∫
𝑇

𝑡 𝑟(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁𝑠] (2.2)

où 𝑁𝑡 ∶= 𝑁(ℝ𝑑′ , [0, 𝑡]) et (𝑥, 𝑎) ∈ ℝ𝑑 × 𝔸 ↦ 𝑟(𝑥, 𝑎) ∈ ℝ est une fonction
de récompense. Sous certaines conditions de régularité sur les coefficients 𝑏
et 𝑟 (par exemple, bornés et Lipschitziens en 𝑥 uniformément en les autres
arguments), nous pouvons montrer que 𝑉𝑇 est la solution viscosité bornée
unique de l’équation Hamilton-Jacobi-Bellman suivante0 = 𝜕𝑡𝑉𝑇 + sup𝑎∈𝔸 {L𝑎𝑉𝑇 + η𝑟(⋅, 𝑎)} on [0,𝑇) × ℝ𝑑, (2.3)

avec la condition au bord 𝑉𝑇(𝑇, ⋅) = 0 sur ℝ𝑑, où, étant donné une fonctionϕ ∈ C0𝑏([0,𝑇) × ℝ𝑑; ℝ), l’opérateur

L𝑎 ∶ ϕ ↦ η∫ℝ𝑑′ [ϕ(⋅, ⋅ + 𝑏(⋅, 𝑎, 𝑒)) − ϕ]ν(d𝑒) ∈ C0𝑏([0,𝑇) × ℝ𝑑; ℝ) (2.4)

est le générateur infinitésimal (voir par exemple [72, § 9.7]) associé à (2.1) avecα ≡ 𝑎.
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Puisque (2.4), et donc (2.3), est non locale, l’analyse de (2.3) est difficile :
tant en ce qui concerne les estimations de régularité que la résolution numé-
rique. De plus, cet effet est amplifié lorsque η devient grand : l’erreur d’inté-
gration numérique et ‖𝜕𝑡𝑉𝑇‖ croissent avec η.

De nombreux systèmes admettent de larges valeurs de η, mais main-
tiennent malgré cela un certain degré de structure à l’échelle macroscopique,
ceci puisque leurs incréments sont proportionnellement petits par rapport àη. L’exemple le plus connu de ce type de phénomène est celui des marchés
financiers, voir par exemple [52, 67]. Dans le cas de (2.1), il existe plusieurs ré-
gimes de mise à l’échelle possibles, tels que le régime de limite fluide de [54],
mais nous choisissons de nous concentrer sur la limite diffusive car elle pré-
serve la stochasticité du processus lorsque η → +∞.

Dans ce régime, nous posons η = ηε ∶= ε−1 pour ε > 0, et supposons
que le coefficient est de la forme 𝑏 = ε𝑏1 + ε1/2𝑏2, pour des applications loca-
lement bornées 𝑏1 et 𝑏2 telles que ∫ 𝑏2(⋅, 𝑒)ν(d𝑒) = 0 et inf∫ 𝑏2(⋅, 𝑒)2ν(d𝑒) > 0.
Lorsque ε ↓ 0, le processus 𝑋𝑡,𝑥,α de (2.1) converge vers un processus de dif-
fusion contrôlé, voir [66]. Pour (𝑡, 𝑥) ∈ [0,𝑇)×ℝ𝑑 et ᾱ ∈ A,̄ avecA ̄ l’ensemble
des processus à valeurs dans𝔸 prévisibles par rapport à la filtration d’un pro-
cessus de Wiener 𝑊 à 𝑑 dimensions, cette diffusion est donnée par la solution
forte (unique) de l’Équation Différentielle Stochastique suivante

�̄�𝑡,𝑥,α = ∫⋅
𝑡 μ(�̄�𝑡,𝑥,α𝑠 ,α𝑠)d𝑠 +∫⋅

𝑡 σ(�̄�𝑡,𝑥,α𝑠 ,α𝑠)d𝑊𝑠 , (2.5)

dont les coefficients sont donnés par

μ ∶= ∫ℝ𝑑′ 𝑏1(⋅, 𝑒)ν(d𝑒) , σ ∶= (∫ℝ𝑑′ 𝑏2(⋅, 𝑒)𝑏2(⋅, 𝑒)⊤ν(d𝑒)) 12 ,
qui sont des applications de ℝ𝑑 × 𝔸 dans ℝ𝑑 et ℝ𝑑×𝑑, respectivement.

En termes du problème de contrôle, ceci se reflète dans l’Équation aux
Dérivées Partielles (2.3) (en utilisant un développement de Taylor du second
ordre en L𝑎) par le fait que ε𝑉𝑇 → �̄�𝑇 (voir par exemple [57]) où �̄�𝑇 est la
solution de

0 =𝜕𝑡�̄�𝑇 + sup𝑎∈𝔸 {L̄𝑎 + 𝑟(⋅, 𝑎)} on [0,𝑇) × ℝ𝑑, (2.6)

avec la condition au bord �̄�𝑇(𝑇, ⋅) = 0 sur ℝ𝑑, où, étant donné une fonctionϕ ∈ C(1,2)([0,𝑇) × ℝ𝑑; ℝ), l’opérateur

L̄𝑎 ∶ ϕ ↦ μ(⋅, 𝑎)⊤D𝑥ϕ + 12 Tr [σ(⋅, 𝑎)σ(⋅, 𝑎)⊤D2𝑥𝑥ϕ] ∈ C0([0,𝑇) × ℝ𝑑; ℝ)
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est le générateur infinitésimal de l’EDS (2.5) avec α ≡ 𝑎. L’équation (2.6) est
une équation de HJB diffusive standard dont l’analyse et la résolution numé-
rique sont bien documentées, voir par exemple [78, 86] et les références qui
y sont citées.

Cette méthode d’approximation via la limite diffusive a une histoire
riche. Elle a été largement étudiée dans le contexte des réseaux de files d’at-
tente, voir les livres [43, 77] ainsi que [62], mais a également été utilisée dans
le contexte des sciences actuarielles [21, 45] et dans celui des mathématiques
financières [95], entre autres. Néanmoins, il semble que, dans le contexte d’un
problème général, le taux de convergence de cette approximation n’ait pas été
étudié.

Le Chapitre 3 se concentre sur l’étude de ce taux de convergence vers la
limite diffusive, avec 𝑑 = 𝑑′ = 1 pour simplifier. Nous considérons la famille
renormalisée (indexée par ε ∈ ℝ+) de problèmes prélimites

𝑉ε𝑇 (𝑡, 𝑥) ∶= supα∈𝔸 𝔼[∫
𝑇

𝑡 ε𝑟(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁ε𝑠] (2.7)

où 𝑁ε est l’analogue de 𝑁 quand η = ηε. Afin de déterminer la convergence
de 𝑉ε𝑇 vers �̄�𝑇, on utilise la méthodologie basée sur l’équation de HJB décrite
ci-avant.

Nous débuterons par l’étude de la régularité de la solution �̄�𝑇 de (2.6) et
montrons que �̄�𝑇 ∈ C(1,2)𝑏 ([0,𝑇) × ℝ;ℝ) ∩ C0([0,𝑇] × ℝ;ℝ) avec 𝜕𝑥𝑥�̄�𝑇 étantγ-Hölder en espace pour un certain γ ∈ (0, 1). Nous montrons ensuite que
l’ordre de convergence de 𝑉𝑇 vers �̄�𝑇 est εγ/2 au sens où

||𝑉ε𝑇 (𝑡, 𝑥) − �̄�𝑇(𝑡, 𝑥)|| ≤ 𝐶(𝑇 − 𝑡)ε γ2 . (2.8)

Nous montrerons ensuite comment utiliser (2.6) afin de construire un
contrôle qui est εγ/2-optimal pour (2.7). Par la suite, nous montrerons com-
ment construire des termes de correction d’erreur pour cette approximation,
au premier ordre et à des ordres supérieurs, au prix d’une complexité accrue
de l’approximation. Ceci est basé sur la construction d’une autre EDP, ou
d’un système d’EDP, et sur l’utilisation extensive d’arguments de solutions
de viscosité.

En utilisant un exemple inspiré par le problème des enchères séquen-
tielles (voir aussi la Section 2.3), nous présenterons une démonstration de
cette méthode d’approximation et montrons les gains computationnels qu’il
est possible d’atteindre par rapport à la résolution directe de (2.3).
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2.1.2 Contrôle Ergodique de la Limite Diffusive

Le Chapitre 3 a montré que l’approximation par limite diffusive peut
conduire à des gains computationnels significatifs par rapport à la résolution
directe de (2.3). Cependant, sur de nombreux problèmes concrets, l’horizon
fini ne capture pas la nature réelle du problème de contrôle. Lorsque 𝑇 est
très grand, la question clé devient de savoir si le système entre dans un com-
portement stationnaire pour la plupart de la période étudiée, ou est dominé
par un comportement transitoire.

Ces problèmes de contrôle à long terme, absents d’une forme naturelle
d’escompte, sont mieux représentés par le problème de contrôle ergodique
sur (2.1) défini par

ρ∗(𝑥) ∶= supα∈A lim inf𝑇→+∞ 1𝑇𝔼 [∫𝑇
0 𝑟(𝑋0,𝑥,α𝑠− ,α𝑠)d𝑁𝑠] (2.9)

pour tout 𝑥 ∈ ℝ𝑑. Ce critère est aussi celui que l’on utilisera en apprentissage
par renforcement, voir la Section 2.2. En raison de la limite inférieure, la fai-
sabilité de (2.9) est intrinsèquement liée aux propriétés du processus 𝑋0,𝑥,α
lui-même, et en particulier à la possibilité d’un comportement stationnaire
(ergodicité).

Par exemple, si le système ne peut pas être stabilisé, c’est-à-dire s’il n’y
a pas de contrôle qui puisse empêcher la masse du processus de s’échapper
vers +∞, alors ρ∗ sera mal défini. Voir aussi [102, § 8.3.1] pour une discus-
sion dans le cas du contrôle discret. Cette propriété illustre comment le pro-
blème ergodique capture certaines complexités fondamentales du problème
de contrôle que d’autres cadres peuvent manquer, et souligne pourquoi il est
particulièrement intéressant d’un point de vue théorique.

La résolution de la difficulté d’ergodicité de la limite inférieure, et donc
la démonstration que (2.9) est bien posé, est réalisée grâce à des conditions de
Lyapunov, voir par exemple [87]. Nous faisons des hypothèses de Lyapunov
sur le processus dans lequel les fonctions de Lyapunov se comportent comme‖⋅‖𝑝 pour un certain 𝑝 ≥ 3.

Au Chapitre 4, on montre d’abord l’ergodicité de (2.1) à partir de ses hy-
pothèses de Lyapunov en utilisant des méthodes d’Équation Différentielle
Ordinaire (EDO). Cette analyse montre des estimés uniformes de la Lipschit-
zité des fonctions de valeur du problème de contrôle escompté sur les pro-
cessus à sauts purs (2.1), ce qui nous permet de montrer que le problème
ergodique est bien posé via la méthode de la limite d’escompte nulle, voir
par exemple [14, 25].

Cette méthode montre que le problème de contrôle est véritablement
ergodique, en cela qu’il oublie la condition initiale : il existe une valeur ρ∗ ∈ℝ telle que ρ∗(𝑥) = ρ∗ pour tout 𝑥 ∈ ℝ𝑑. De plus, la valeur ρ∗ accompagnée
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d’une fonction de décision auxiliaire w ∶ ℝ𝑑 → ℝ, qui est Lipschitz, forment
un couple de solution de viscosité à l’équation de HJB ergodique

0 = −ρ∗ + sup𝑎∈𝔸 {L𝑎w + η𝑟(⋅, 𝑎)} on ℝ𝑑. (2.10)

qui est l’analogue ergodique de (2.3). Une application mesurable ℝ𝑑 → 𝔸
maximisant ponctuellement le maximum dans (2.10) fournit une politique
de décision stationnaire optimale et donc un contrôle de Markov optimal.

En utilisant une hypothèse de Lyapunov analogue et la même méthode
d’EDO pour (2.5), on peut montrer le résultat analogue pour le problème
limite diffusif. Notamment, il existe une solution Lipschitz w̄ ∶ ℝ𝑑 → ℝ à
l’équation de HJB suivante

0 = −ρ̄∗ + sup𝑎∈𝔸 {L̄𝑎w̄ + 𝑟(⋅, 𝑎)} on ℝ𝑑, (2.11)

dans laquelle ρ̄∗ ∈ ℝ est la valeur du problème de contrôle ergodique de (2.5),
defini de manière analogue à (2.9).

Ayant montré que les deux problèmes sont bien posés et satisfont les
équations de HJB requises, nous allons appliquer la méthodologie de la Sec-
tion 2.1.1 à la résolution du problème de contrôle ergodique (2.9) et de l’équa-
tion de HJB (2.3). À cet effet, pour ε ∈ ℝ+, nous définissons

ρ∗ε ∶= supα∈A lim inf𝑇→+∞ 1𝑇𝔼 [∫𝑇
0 ε𝑟(𝑋0,0,α𝑠− ,α𝑠)d𝑁ε𝑠] (2.12)

où 𝑁ε est définie comme dans Section 2.1.1.
On se concentre d’abord sur (2.11) et on s’appuie sur la Lipschitzité de

w̄ pour obtenir des estimée de régularité fortes de w̄, pour 𝑑 ∈ ℕ, en suppo-
sant que la volatilité σ est indépendante du contrôle 𝑎 ∈ 𝔸, bornée, et satisfait
une condition d’ellipticité uniforme. Cette analyse montre que, pour μ Lip-
schitz (mais pas nécessairement bornée), D2w̄ est localement γ-Hölder conti-
nue pour tout γ ∈ (0, 1), avec une constante croissant au plus linéairement
en 𝑥.

Cette régularité estimée nous permet d’appliquer les arguments de la
Section 2.1.1, et y ajoutant l’utilisation de conditions de moment (dérivées
de conditions de Lyapunov) sur 𝑋0,𝑥,α𝑡 , pour tout 𝑡 ∈ ℝ+, afin de gérer la
croissance linéaire de μ et la constante de Hölder de w̄. Ceci nous donne
la borne d’approximation suivante dans le cas ergodique avec dérive non
bornée, ellipticité uniforme, et volatilité non contrôlée

||ρ∗ε − ρ̄∗|| ≤ 𝐶ε γ2 .
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On montre aussi comment construire un contrôle qui est εγ/2-optimal pour
le problème de contrôle ergodique (2.12) en utilisant la politique de décision
optimale obtenue à partir de (2.11).

Ensuite, on montre comment construire des termes de correction d’er-
reur pour cette approximation, mais en utilisant une méthode différente de
celle du Chapitre 3. Dans ce cas, l’augmentation de la complexité vient de
l’itération d’EDP supplémentaires plutôt que de la construction d’un système
d’EDP de plus en plus grand. Cette méthode est plus simple que celle du Cha-
pitre 3 et repose sur un argument de vérification.

Continuant vers l’objectif d’une résolution efficace de (2.9), nous nous
plongeons dans la résolution numérique du problème de contrôle ergodique.
Puisque les schémas numériques nécessitent généralement des constructions
ad-hoc, nous prenons 𝑑 = 1 une fois de plus, et renforçons les conditions
de régularité et de vitesse de croissance dans nos hypothèses. Sous ces hy-
pothèses, nous construisons un schéma numérique pour (2.11), dans lequel
nous résolvons une équation de la forme0 = −ρ̄κ,∗ℎ + sup𝑎∈𝔸 {L̄𝑎ℎw̄κℎ + 𝑟(⋅, 𝑎)} (2.13)

sur une grille M̅κℎ sur l’intervale [−κℎ, κℎ] de finesse ℎ > 0 contenant 𝑁κ ∶=2κ + 1 points, κ ∈ ℕ∗, avec

L̄𝑎ℎ ∶ 𝑣 ∈ ℝ𝑁𝑘 ↦ 𝑃ℎ𝑣 ∈ ℝ𝑁𝑘
pour une matrice de transition 𝑃ℎ ∈ ℝ𝑁κ×𝑁κ qui est obtenue via une approxi-
mation par différences finies de L̄𝑎. Le couple solution (ρ̄κ,∗ℎ , w̄κℎ) de (2.13)
correspond à la valeur et à la fonction de décision, respectivement, d’un pro-
blème de contrôle ergodique sur une chaîne de Markov en temps continu.

Puisque cette structure correspond à un processus à sauts purs sur M̅κℎ,
dont l’intensité est 1/Δ𝑡ℎ, pour Δ𝑡ℎ = O(ℎ2), nous pouvons utiliser la même
méthodologie d’approximation décrite ci-dessus, modulo une certaine pru-
dence dans le traitement des conditions aux bords du schéma, pour obtenir
une convergence d’ordre||Δ𝑡ℎρ̄κ,∗ℎ − ρ̄∗|| ≤ 𝐶 (ℎγ + ℎ−1 |κℎ|1−𝑝) ,
où 𝑝 ≥ 3 est la puissance dans la vitesse de croissance de la fonction de
Lyapunov. Nous étudions aussi la construction d’un contrôle approximative-
ment optimal pour (2.12) en utilisant w̄κℎ, ce qui semble être un sujet nouveau
concernant la résolution numérique des problèmes de contrôle.

Nous nous tournons ensuite de nouveau vers un problème d’enchères
qui propose une variante de celui du Chapitre 3. Nous utilisons cet exemple
numérique pour appliquer le schéma numérique de (2.13) et illustrer les gains
d’efficacité computationnelle de l’approximation par limite diffusive.
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2.2 Apprentissage par renforcement
L’apprentissage par renforcement étudie le problème du contrôle d’un

système tel que (2.1) sous incertitude sur sa dynamique du point de vue
de l’apprentissage automatique. Il y a deux façons principales de formali-
ser cette incertitude, selon que l’on choisit de prendre la dynamique ou le
contrôle comme objet d’étude principal. Ces approches sont connues sous
les noms d’approche basée sur la valeur et de recherche de politique, respec-
tivement.

Nous nous concentrons sur l’approche basée sur la valeur et adoptons
une perspective dite “model-based”, c’est-à-dire basée sur une modélisation.
Cette perspective considère que 𝑏 dans (2.1) est inconnu mais que l’on a ac-
cès à une classe de modèles ℱΘ de dynamiques possibles, paramétrée parθ ∈ Θ ⊂ ℝ𝑑Θ , 𝑑Θ ∈ ℕ∗. Ce paradigme suppose que toute l’incertitude est
capturée, dans ℱΘ, par le manque de connaissance d’une vraie paramétrisa-
tion θ∗ ∈ Θ. Cela nous amène à étendre la définition de 𝑋𝑡,𝑥,α pour incorpo-
rer un paramètre de pilotage θ ∈ Θ en définissant 𝑋𝑡,𝑥,α,θ comme la solution
de l’Équation Différentielle Stochastique suivante

𝑋𝑡,𝑥,α,θ = 𝑥 +∫⋅
𝑡 ∫ℝ𝑑′ 𝑏θ(𝑋𝑡,𝑥,α,θ𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠) . (2.14)

Nous adoptons le régime de limite diffusive de la Section 2.1 pour 𝑏θ,
et puisque la structure de bruit standard en apprentissage par renforcement
est une martingale additive, nous prendrons 𝑏θ(𝑥, 𝑎, 𝑒) ∶= εμ̄θ(𝑥, 𝑎) + ε1/2Σ̄𝑒,
avec les conditions de régularité sur (μ̄θ, Σ̄) énoncées dans la Section 2.1.2.
Ce cadre est destiné à modéliser des systèmes déterministes sous perturba-
tion par une martingale sousgaussienne, nous prendrons donc ν comme une
mesure gaussienne centrée standard sur ℝ𝑑 pour simplifier.

Quelle que soit la forme du problème de contrôle dont il est question,
en tant qu’approche basée sur la valeur nous cherchons à explorer l’espace
d’états-actions pour apprendre 𝑏θ et la fonction de récompense 𝑟 avec pour
objectif de bien approximer le problème de contrôle. Cela nous conduit néces-
sairement à échantillonner des paires état-action sous-optimales pour le pro-
blème de contrôle, créant une tension inhérente entre exploration et contrôle.
Inversement, un agent avide qui se concentre uniquement sur l’exploitation
de l’état qui apparaît empiriquement le meilleur à un instant donné risque
d’échouer à apprendre. En effet, il est susceptible de créer un sous-système en
boucle fermée dans lequel il reste dans une région de l’espace pour toujours
en raison d’observations malheureuses en dehors de cette région, incapable
d’apprendre le reste du système.

Cette tension est une conséquence d’apprendre un système de décision
de l’intérieur, tel que cela a été observé en étudiant les problèmes de bandits
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manchots. Sa source est la nature de la rétroaction des décisions : on n’obtient
des informations que sur les paires état-action effectivement traversées.

En conséquence, puisque ε et Σ̄ sont indépendants des actions prises,
ils ne sont pas affectés par ce compromis et peuvent être estimés par des
méthodes statistiques simples. Pour éviter une complexité inutile, nous les
prendrons simplement comme connus.

Puisque 𝑋0,𝑥,α,θ∗ de l’équation (2.14) est un processus stochastique, il y
a deux notions d’échantillons que l’on pourrait considérer : épisodique dans
lequel on observe des réalisations du processus 𝑋0,𝑥,α,θ∗(ω) à partir de diffé-
rents ω ∈ Ω, éventuellement jusqu’à un temps de réinitialisation 𝑇 ∈ ℝ+ ;
ou bien en ligne dans lequel on observe au fil du temps 𝑡 ∈ ℝ+ une trajectoire𝑋0,𝑥,α,θ∗(ω) pour un seul ω fixé, comme dans une série temporelle.

Dans l’apprentissage en ligne, on ne peut pas revisiter les événements
passés en comptant sur la réinitialisation de la trajectoire. Au lieu de cela, le
système doit être ramené dans les conditions pertinentes de l’intérieur. Ce-
la caractérise la difficulté d’apprentissage d’une manière inhérente à la dy-
namique du processus 𝑋𝑡,𝑥,α,θ. En même temps, cela exclut l’étude des poli-
tiques non stationnaires, y compris le problème à horizon fini car les effets de
début du monde ne peuvent pas être raisonnablement appris le long d’une
seule trajectoire.

Nous choisissons de nous concentrer sur le problème en ligne, suivant
la vaste littérature de la théorie de l’apprentissage par renforcement en ligne,
et étudierons le critère ergodique

ρ∗θ∗(𝑥) ∶= supα∈A lim inf𝑇→+∞ 1𝑇𝔼 [∫𝑇
0 𝑟(𝑋0,𝑥,α,θ∗𝑠− ,α𝑠)d𝑁𝑠] ,

dans lequel A est défini comme dans la Section 2.1 par rapport à 𝑋0,𝑥,α,θ∗ ,
puisque celui-ci cerne la difficulté inhérente au processus 𝑋𝑡,𝑥,α,θ dans le pro-
blème de contrôle. Comme nous l’avons vu dans la Section 2.1.2, il admet
également une politique optimale (voir (2.10)) qui est stationnaire, ce qui si-
gnifie qu’il est possible d’apprendre une politique optimale en ligne.

Choisir un problème ergodique introduit les problèmes de bien-poséité
de ρ∗θ∗ mentionnés dans la Section 2.1.2, même dans le cas à états discrets,
voir par exemple [103, § V.] et [12]. Jusqu’à présent, ce problème d’ergodicité
était un obstacle majeur dans l’apprentissage par renforcement avec des états
continus en dehors du cas de la commande linéaire quadratique [7, 81].

En effet les méthodes utilisées pour établir l’ergodicité dans les systèmes
discrets, qui sont basées sur l’étude de leurs matrices de transition, voir par
exemple [102, § 8.], ne s’étendent pas facilement aux problèmes continus.
Dans le cadre général qui a été décrit dans la Section 2.1.2, nous avons mon-
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tré que le problème (2.9) était bien posé sous des conditions modérées sur les
coefficients d’une part et de type Lyapunov d’autre part.

Au Chapitre 5, nous spécialisons cette analyse à la structure que prends𝑏θ dans (2.14), ce qui nous permet de relâcher les hypothèses de Lyapunov
du Chapitre 4 à une seule condition plus faible sous laquelle on a l’ergodicité
et la stabilité du problème à sauts purs et celles du problème limite diffusif.
Cette condition est une condition de mélange (contraction) sur la dynamique
instantanée, qui prend la forme suivante𝒱 (𝑥 + εμ̄θ(𝑥, 𝑎) − (𝑥′ + εμ̄θ(𝑥′, 𝑎))) ≤ (1 − c𝒱 ε)𝒱 (𝑥 − 𝑥′) (2.15)

pour tout (𝑥, 𝑥′, 𝑎,θ) ∈ ℝ𝑑 ×ℝ𝑑 ×𝔸×Θ, dans laquelle 𝒱 ∈ C2(ℝ𝑑 ⧵ {0}, ℝ+)
est une fonction de Lyapunov appropriée et c𝒱 > 0 est une constante indé-
pendante de ε. En utilisant le bruit sous-gaussien additif, nous étendons cette
hypothèse au-delà de l’ergodicité et montrons que (𝑋0,𝑥,α,θ𝑠 )𝑠∈ℝ+ se comporte
essentiellement comme un processus sous-gaussien, y compris la concentra-
tion avec haute probabilité. Cela montre que ρ∗θ est bien posé pour tout θ ∈ Θ
par les arguments de la Section 2.1.2.

Ayant montré que le problème est bien posé, nous pouvons chercher à
construire un agent α ∈ A qui maximise (2.9) en l’absence de connaissance
deθ∗, c’est-à-dire un algorithme optimal d’apprentissage. Malheureusement,
ce problème explicite de maximisation est resté hors de portée, même dans
les problèmes simples (à états discrets ou de bandit).

En lieu et place, la littérature sur l’apprentissage par renforcement s’est
concentrée sur la conception d’algorithmes ad hoc, et sur la compréhension et
la comparaison de leurs performances en utilisant des bornes supérieures de
performance. Cette méthodologie est complétée par des bornes inférieures de
difficulté (minimax), ce qui est une méthodologie standard en informatique
théorique.

La mesure principale utilisée dans ces bornes est la notion de regret d’un
agent α ∈ A

R𝑇(α) ∶= 𝑇ρ∗θ∗ −∫𝑇
0 𝑟(𝑋0,𝑥,α,θ∗𝑠− ,α𝑠)d𝑁𝑠 , (2.16)

définie pour tout (𝑥,𝑇) ∈ ℝ𝑑 × ℝ+, que l’on borne dans le sens de la haute
probabilité. Ce concept est naturellement adapté aux problèmes de décision
en ligne, voir par exemple [58, 109], car elle quantifie de manière transparente
le coût de l’incertitude sur θ∗ directement en termes de la fonction de récom-
pense du problème de contrôle. Comme on peut le voir en divisant par 𝑇 et
en laissant 𝑇 → +∞, le taux de croissance du regret quantifie l’efficacité deα à apprendre à contrôler et, dans un sens minimax, la difficulté inhérente
du problème.
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En l’absence d’un agent optimal au sens formel, de nombreux agents
d’exploration ont été proposés. Tous ajoutent un comportement exploratoire
à l’agent avide, qui fut discuté précédemment. Une possibilité est de forcer
une exploration isotrope, soit en prenant des actions aléatoires une partie du
temps (agent ϵ-avide, et d’autres formes de politiques à entropie régularisée),
soit en alternant des phases d’exploration et d’exploitation (Explore-Then-
Commit, voir par exemple [100]).

Bien que ces méthodes puissent être efficaces, la calibration de leurs
sources d’aléa requiert généralement une connaissance a priori du système.
En l’absence de telles informations, leurs regrets sont généralement sous-
optimaux. Pour éviter ce problème, il faut structurer le comportement ex-
ploratoire en fonction du problème, ce qui est fait par une étude et une dé-
composition minutieuses du regret afin d’identifier et de traiter les princi-
pales sous-tâches du dilemme exploration-exploitation. Des travaux ayant
fait date ont montré que ce dernier pouvait être abordé par l’échantillonnage
de Thompson, voir par exemple [6, 113], ou par l’utilisation du paradigme
de l’optimisme devant l’incertain, voir par exemple [15, 16, 68].

Ce paradigme identifie quatre sous-tâches clés du problème : l’appren-
tissage, c’est-à-dire la capacité à estimer μ̄θ∗ et 𝑟 et à donner des ensembles
de confiance pour eux au niveau de confiance δ, δ ∈ (0, 1) ; l’optimisme, qui
est fait en sélectionnant un système de croyance θ̃ qui maximise ρ∗θ parmi lesθ dans cet ensemble de confiance ; la planification, qui calcule la politique
de décision optimale π̃∗ pour θ̃ ; et les mises à jour parcimonieuses, qui ga-
rantissent que l’agent exécute la politique π̃∗ suffisamment longtemps pour
obtenir des informations utiles sur θ̃ en explorant le système.

Les fondations de la tâche de planification ont été posées à la Section 2.1.2,
dans laquelle nous avons montré comment utiliser l’équation de Hamilton-
Jacobi-Bellman (2.10) pour résoudre le problème de contrôle ρ∗θ, pour toutθ ∈ Θ. Nous avons également montré une méthode de résolution approxima-
tive efficace basée sur la limite de diffusion et le schéma numérique de (2.13).
Cela fournit les outils pour une planification efficace dans notre cadre proche
de la limite diffusive.

Apprendre des dynamiques non-linéaires continues a été traité dans la
littérature de l’apprentissage par renforcement via l’introduction de “l’elu-
der dimension”, que l’on pourrait traduire par dimension d’évitement, dans
les articles fondateurs [97, 107]. Ce cadre ne sied malheureusement qu’aux
coefficients bornés. Au Chapitre 5, nous rafinerons les arguments originaux
de ces travaux afin de les appliquer à un processus stable à la dérive (c.a.d.μ̄θ∗) non borné sur ℝ𝑑, ce qui requiert une attention plus fine à la mesurabi-
lité et aux arguments de couverture. En conséquence, les quantités liées à la
difficulté d’apprentissage deviennent adaptives aux régions de l’espace qui
sont effectivement visitées par la trajectoire 𝑋0,𝑥,α,θ∗(ω).
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Nous montrerons que les ensembles de confiance résultant de ces mo-
difications sont bien calibrés, et que cela montre que l’erreur d’estimation
est faible. Cela nous permet d’utiliser les estimations ponctuelles et les en-
sembles de confiance de la régression des moindres carrés non-linéaires pour
résoudre le problème d’apprentissage pour les dynamiques non-linéaires,
sous une condition de Lipschitz sur μ̄θ et les propriétés de stabilité de 𝑋0,𝑥,α,θ∗
dérivées de (2.15).

Le besoin de mises à jour parcimonieuses est une conséquence contre-
intuitive de la nature dynamique de (2.14). Puisque la politique π̃∗ optimise
le critère ergodique, elle peut générer peu de récompenses à court terme jus-
qu’à ce que le système se mélange. Il y a donc un coût potentiel à chaque
mise à jour de la politique et une façon de contrôler l’erreur résultante est de
ne changer θ̃ qu’infréquemment. La difficulté est de le faire sans dégrader
l’apprentissage. Nous montrerons, en utilisant des inégalités fonctionnelles
sur mesure pour les suites, que l’erreur de prédiction faible (O(log(𝑇))) peut
être utilisée pour dériver un critère de mise à jour qui ne se déclenche que
O(log(𝑁𝑇)) fois jusqu’au temps 𝑇, au prix d’un facteur constant de dégrada-
tion de l’efficacité de l’apprentissage.

Ayant ainsi traité les sous-tâches, nous serons en mesure de donner un
algorithme qui génère un processus de contrôle 𝜛 ∈ A et de borner son
regret. Nous montrerons que

ℙ(R𝑇(𝜛) ≤ O (√𝑇dE,𝑁𝑇 log(𝒩 ε𝑁𝑇) log(𝑁𝑇) log (1δ))) ≥ 1 − δ , (2.17)

où dE,𝑁𝑇 et 𝒩 ε𝑁𝑇 sont la 2√ε/𝑁𝑇-dimension d’évitement (voir [107, Def. 4.]
et (5.56) à la Section 5.5.2) et le nombre de recouvrement, avec une finesse
de ε‖Σ̄‖op/𝑁𝑇, de la classe contenant les restrictions à une boule de rayon
O(√log(𝑇/ε)) des éléments de ℱΘ.

Ceci concorde avec les meilleures bornes supérieures connues pour le
regret dans le cas à états discrets [20, 68, 97], modulo des facteurs logarith-
miques. En guise de comparaison, les bornes inférieures connues pour le re-
gret dans le cas à états discrets sont de l’ordre deΩ(√𝑇), voir par exemple [68],
ce qui signifie qu’il n’existe pas d’algorithme qui puisse atteindre une crois-
sance du regret plus lente que √𝑇 sur toutes les instances.

En utilisant l’approximation par la limite de diffusive du Chapitre 4,
nous pouvons également résoudre le problème de planification efficacement
au détriment d’un terme additif de l’ordre de εγ/2𝑇, ce qui est linéaire en𝑇, dans la borne de regret. Cela montre que dans les systèmes à très haute
fréquence, avec ε ≪ 1, la borne de regret (2.17) est atteignable de manière
réaliste en utilisant ce type d’approximations pour économiser des efforts de
calcul.
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Ce travail, dans le contexte spécifique des systèmes admettant une li-
mite diffusive, montre comment les outils du contrôle stochastique et des
processus stochastiques en temps continu peuvent être appliqués aux pro-
blèmes d’apprentissage par renforcement à espace d’états et d’actions conti-
nu. Il fournit une première étape vers une théorie générale de l’apprentissage
par renforcement en espace d’états et d’actions continu basée sur ces outils.

2.3 Problèmes d'enchères séquentielles

Les systèmes de contrôle à haute fréquence du type qui fut décrit aux
Sections 2.1 et 2.2 sont courants dans les applications du monde réel. Ils mo-
délisent souvent un système qui surveille certains signaux d’événements ex-
térieurs auxquels il réagit. Une catégorie typique d’exemples implique l’achat
ou la vente d’objets par des algorithmes via des enchères, des marchés ou
d’autres mécanismes. À grande échelle, ceux-ci impliquent des événements
à haute fréquence, dont chacun ne contribue que de petits changements au
processus d’état pertinent, qui pourrait être, par exemple, le prix, le volume
d’un inventaire de stocks ou un objet plus complexe tel qu’un portefeuille
d’investissements.

Bien que les marchés financiers soient l’exemple le plus évident de sys-
tèmes à haute fréquence, ils ne sont pas bien représentés par des arrivées
d’un processus de Poisson à toutes les échelles, notamment en raison de phé-
nomènes d’auto-excitation, voir par exemple [52]. Au lieu de cela, nous nous
concentrons tout au long de cette thèse sur l’application aux enchères séquen-
tielles d’affichage publicitaire, qui modélise la façon dont les bannières pu-
blicitaires sur les pages Web sont vendues durant le temps de chargement
de la page. L’objectif global du Chapitre 6 est d’illustrer par une application
comment un système de contrôle du type étudié aux Chapitres 3 et 4 peut
émerger comme une réponse naturelle à une pression de la difficulté de cal-
cul issue de la haute fréquence des interactions.

Le modèle économique de la plupart des applications sur internet re-
pose sur la publicité : soit directement, soit indirectement via la vente de
données. Il existe de nombreux types de publicités, chacun ayant ses propres
mécanismes de négociation. Nous nous concentrerons sur les publicités dites
“display”, qui sont celles qui se chargent dans des bannières, généralement si-
tuées en haut ou sur les côtés des sites Web. Les emplacements de bannières
sur une page Web sont vendus séquentiellement et individuellement aux en-
chères par des algorithmes automatisés pendant le temps de chargement de
la page (environ 50 ms). Cela rend les temps d’enchères dépendants unique-
ment de l’arrivée des utilisateurs, qui devrait être raisonnablement modéli-
sée par un processus de Poisson. En termes de fréquence, l’ordre de grandeur
est de 1010 à 1012 enchères par jour, tandis que les coûts et les gains indivi-
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duels sont très faibles puisque la probabilité qu’un utilisateur clique sur une
annonce est faible.

La particularité clé du marché de la publicité display en comparaison
avec d’autres marchés, tels que les marchés financiers, est sa concentration.
En raison de l’infrastructure informatique requise par l’échelle des enchères
automatisées, la négociation est effectuée par des intermédiaires de part et
d’autre, de sorte qu’il n’y a qu’une demi-douzaine de participants à chaque
enchère. Cela a un impact important sur la nature du problème de maximi-
sation des revenus pour un vendeur.

En théorie des enchères, la question de l’enchère optimale, étant don-
né la connaissance des distributions de valorisation des enchérisseurs, a été
résolue dans l’article fondateur de Myerson [92]. Manifestement, cette hy-
pothèse est irréaliste pour la publicité display. D’un autre côté, la haute fré-
quence des événements signifie que beaucoup de données sont disponibles
pour apprendre à maximiser les revenus à partir d’observations empiriques.
Cependant, en raison de la complexité du mécanisme de Myerson [92], il est
impossible de l’apprendre directement [90], et nous étudierons donc les en-
chères au second prix.

Ce format est à la fois une approximation raisonnable de l’enchère de
Myerson, voir [104], et le format qui a été historiquement utilisé dans la pu-
blicité display1. Dans ce format, la mise gagnante est simplement la plus éle-
vée, mais l’objet n’est vendu que si l’enchérisseur gagnant dépasse son prix
de réserve, qui est un prix de vente minimum individualisé. Si le prix de ré-
serve est dépassé, le gagnant paie la plus petite mise qui lui aurait permis
d’encore remporter l’objet, c’est-à-dire le maximum entre son prix de réserve
et les mises des autres enchérisseurs.

Puisqu’ils sont individualisés, le problème de l’optimisation des prix de
réserve pour maximiser le revenu est séparable, et se résume à trouver le prix
de monopole 𝑟∗ de chaque enchérisseur. Pour un enchérisseur dont les mises
suivent une distribution stationnaire 𝐹, celui-ci est le maximiseur du revenu
de monopole

Ψ𝐹 ∶ 𝑟 ∈ ℝ+ ↦∫ℝ+
𝑟1𝑟≥𝐵𝐹(d𝐵) ∈ ℝ+ . (2.18)

Plusieurs méthodes ont été proposées pour maximiser (2.18), principalement
basées sur les bandits, par exemple [73], ou sur l’optimisation non convexe,
par exemple [89]. Malheureusement, pour mettre à jour le prix ces méthodes
nécessitent toutes de stocker de nombreuses enchères passées, voire leur to-
talité, ce qui deviendra informatiquement impossible aux échelles qui nous
intéressent.

1Bien qu’il convienne de noter que le marché a évolué ces dernières années en faveur de
l’enchère au premier prix et de formats similaires.
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La question qui sous-tend le Chapitre 6 est de savoir s’il est possible de
concevoir un algorithme dont la mise à jour est en temps réel (c’est-à-dire
indépendante du nombre d’enchères passées), même au prix d’une dégrada-
tion de la vitesse de convergence, afin qu’il puisse être appliqué en ligne au
flux de données.

Un candidat alléchant est une méthode du premier ordre comme la mon-
tée de gradients stochastique en ligne. Malheureusement, puisque (𝑟,𝐵) ∈ℝ2+ ↦ 𝑝(𝑟,𝐵) ∶= 𝑟1𝑟≥𝐵 est discontinue (en 𝑟 pour toute mise 𝐵 ∈ ℝ∗+), les
gradients aléatoires issus de cette méthode ne donneront pas un estimateur
non biaisé de gradient de Ψ𝐹. Par conséquent, une montée de gradients de
ce type n’a aucune raison de converger vers 𝑟∗ ∈ argmaxΨ𝐹.

Le problème des gradients biaisés peut être résolu en lissant 𝑝 par convo-
lution avec un noyau lisse 𝑘, puis en appliquant la montée de gradients sto-
chastique à ce résultat. L’algorithme résultant, CONV-OGA, est de ce fait biaisé
et nous aimerions réduire son biais au fil du temps en réduisant le lissage. La
contribution principale du Chapitre 6 est un algorithme, V-CONV-OGA, qui
effectue le lissage et la montée de gradients stochastiques en même temps
afin de faire un compromis entre le biais des gradients et la stabilité de la
montée de gradients, le tout en conservant les mises à jour en temps réel.

Nous commencerons par une analyse des propriétés de convexité2 deΨ𝐹 sous des hypothèses classiques de la théorie des enchères comme la mo-
notonie de la valeur virtuelle ou la croissance du taux de défaillance. Cela
nous permettra de contrôler le compromis biais-variance induit par le lissage,
ce que nous utiliserons pour montrer la convergence presque sûre des itérés
vers 𝑟∗ en utilisant la méthode des quasi-martingales, voir par exemple [32].

Dans un second temps nous renforcerons ce résultat en modifiant les ar-
guments de [91] pour obtenir un taux de convergence sous une hypothèse
plus forte qui élimine les gradients arbitrairement petits. Les bornes com-
plètes exhibent le compromis biais-variance, mais en optimisant le compro-
mis elles correspondent à

𝔼 [‖𝑟𝑛 − 𝑟∗‖2] = Õ (𝑛− 12)
où (𝑟𝑛)𝑛∈ℕ∗ sont les itérés de notre algorithme et Õ cache des facteurs poly-
logarithmiques en 𝑛 dans la notation de l’ordre. Puisque les méthodes qui
stockent toutes les mises, par exemple [89], peuvent atteindre un taux de
Õ(𝑛−1), l’écart correspondant peut être vu comme le coût d’utilisation d’un
algorithme en temps réel.

En pratique, les enchérisseurs dans les enchères display sont connus
pour présenter un comportement non stationnaire voire stratégique. Par la

2Plus précisément la log-concavité et la pseudo-concavité.
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nature de la montée de gradients stochastique en ligne, nous pouvons faci-
lement adapter CONV-OGA, avec un taux d’apprentissage constant γ0 ∈ ℝ+,
pour gérer un enchérisseur non stationnaire. Étant donné un nombre raison-
nable de changements de distribution de mise par le temps 𝑁 ∈ ℕ, nous
montrons un regret dynamique relatif à 𝑟∗ d’ordre O(√𝑁).

Étant donné une séquence d’enchères (𝑏𝑛)𝑛∈ℕ∗ ⊂ ℝ+, les prix de réserve(𝑟𝑛)𝑛∈ℕ∗ générés par CONV-OGA sont donnés par un prix initial 𝑟1 ∈ ℝ+ et la
récursion

𝑟𝑛+1 = 𝑟𝑛 + γ0 𝑓 (𝑟𝑛, 𝑏𝑛) , (2.19)

dans laquelle 𝑓 (𝑟,𝐵) ∶= D[𝑝(⋅,𝐵) ⋆ 𝑘](𝑟) ∨ −𝑟, pour un noyau de convolution𝑘 et γ0 > 0.
Dans les faits, il existe de nombreuses sources de bruit qui affectent

les prix de réserve du vendeur, même avec une mise à jour déterministe
comme (2.19), telles que la difficulté d’attribuer les mises au bon enchéris-
seur. Cela appelle des mises à jour prudentes et, par conséquent, les incré-
mentations de prix de réserve ont tendance à être négligeables, c’est-à-direγ0 ≪ 1.

En parallèle, du point de vue d’un enchérisseur, d’autres sources de bruit
existent également, telles que l’agrégation possible par le vendeur sur des
informations exogènes inconnues. Ces multiples niveaux de bruit expliquent
pourquoi, en pratique, le bruit domine la dynamique de CONV-OGA, comme
dans le régime de limite de diffusion de la Section 2.1.

Puisque les dates d’arrivées des enchères sont bien modélisées par un
processus de Poisson, le prix de réserve est observé par l’enchérisseur selon
l’Équation Différentielle Stochastique contrôlée

𝑋0,𝑥0,α = 𝑥0 +∫⋅
0 ∫ℝ𝑑′ ε𝑏1(𝑋0,𝑥0,α𝑠− ,α𝑠, 𝑒) + ε 12 𝑏2(𝑋0,𝑥0,α𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠),

(2.20)

dans laquelle (α𝑡)𝑡∈ℝ+ est le processus de mise. Cela correspond à ce qu’on a
étudié à la Section 2.1. Ainsi, l’objectif de l’enchérisseur, qui est de miser de
manière optimale afin de maximiser ses gains, est un exemple de problème
de contrôle stochastique de la forme considérée dans la Section 2.1.

Pour le vendeur, 𝑏1(𝑥, 𝑎, 𝑒) = 𝑓 (𝑥, 𝑎) représente un choix optimal d’une
dynamique de prix de Markov stationnaire, au sens décrit ci-dessus. Néan-
moins la définition de 𝑓 via une convolution complique la manipulation du
processus lors de l’étude du problème de l’enchérisseur. Cela nous amène à
considérer des heuristiques simplificatrices dans nos applications.

Considérant, pour simplifier, que 𝑏2(𝑥, 𝑎, 𝑒) = 𝑒, l’heuristique la plus
simple est de prendre 𝑏1(𝑥, 𝑎, 𝑒) ∶= β(𝑎−𝑥), pour β ∈ ℝ+. Dans la Section 4.5,
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nous considérons cette dynamique avec β aléatoire pour modéliser l’incerti-
tude sur l’agressivité avec laquelle le vendeur pousse son prix à suivre les
mises du vendeur. Dans la Section 3.4, nous considérons 𝑏1(𝑥, 𝑎, 𝑒) ∶= −𝑥 +𝑞𝑏 + (1 − 𝑞)𝑟0, 𝑞 ∈ (0, 1), qui prend une combinaison convexe de la dernière
mise avec un prix de référence 𝑟0 ∈ ℝ+.

Bien que ces modèles heuristiques ne soient pas des modèles définitifs
du comportement des vendeurs dans les enchères display, ils sont intéres-
sants car ils présentent un exemple d’émergence d’un comportement (mar-
kovien) de limite diffusive. Ce comportement est apparu naturellement en ré-
ponse au problème de maximisation des revenus dans un format d’enchères
hautement concentré, face aux contraintes de calcul lourdes des événements
à haute fréquence.

Le Chapitre 6 motive ainsi les exemples adoptés dans les Chapitres 3
et 4 pour les expériences numériques, et resitue dans le monde réel la mé-
thode de la limite diffusive. Notez que le prix de monopole n’est pas la seule
quantité d’intérêt dans les enchères display, et que de nombreuses autres
variables d’état et problèmes de contrôle peuvent être considérées, voir par
exemple [54] pour d’autres exemples en gestion des stocks et maximisation
de la conversion publicitaire.
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Chapter 3
Diffusive Limit

Approximation of
Optimal Control

Problems

We consider the diffusive limit of a typical pure-jump Markov
control problem as the intensity of the driving Poisson pro-
cess tends to infinity. We show that the convergence speed
is provided by the Hölder exponent of the Hessian of the limit
problem, and explain how correction terms can be constructed.
This provides an alternative efficient method for the numerical
approximation of the optimal control of a pure-jump problem
in situations with very high jump intensity. We illustrate this
approach in the context of a display advertising auction prob-
lema.

aThis Chapter appeared as an article in the Journal of Optimisation
Theory and Applications, see [4]

* * *

39



3. DIFFUSIVE LIMIT APPROXIMATION OF OPTIMAL CONTROL PROBLEMS

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 41
3.2 The Pure-Jump Optimal Control Problem . . . . . 43

3.2.1 Definition . . . . . . . . . . . . . . . . . . . 43
3.2.2 Dynamic programming equation and optimal

Markov control . . . . . . . . . . . . . . . . 44
3.3 Diffusive Approximation . . . . . . . . . . . . . . 47

3.3.1 The candidate diffusive limit . . . . . . . . . 48
3.3.2 Regularity properties . . . . . . . . . . . . . 49
3.3.3 Convergence speed toward the diffusive limit 54
3.3.4 Constructing an εγ/2-optimal control for the

pure-jump problem . . . . . . . . . . . . . . 56
3.3.5 First-order correction term . . . . . . . . . . 57
3.3.6 Higher-order expansions . . . . . . . . . . . 62

3.4 Application to an Auction Problem . . . . . . . . . 64
3.4.1 Model and description of the optimal policy 65
3.4.2 Numerical implementation . . . . . . . . . . 67

3.5 A Remark on the Diffusive Limit of Discrete-Time
Problems . . . . . . . . . . . . . . . . . . . . . . . 70

* * *

40



3.1. Introduction

3.1 Introduction

Let 𝑁 be a random point process with predictable compensator ην(d𝑒)d𝑡, for
some probability measure ν on ℝ, η > 0, and let 𝑋𝑡,𝑥,α be the solution of

𝑋𝑡,𝑥,α = 𝑥 +∫⋅
𝑡 ∫ 𝑏(𝑋𝑡,𝑥,α𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠) ,

in which α belongs to the set A of predictable controls with values in some
given set 𝔸. Then, under mild assumptions, the value of the control problem

𝑉𝑇(𝑡, 𝑥) ∶= supα∈A 𝔼 [∫
𝑇

𝑡 𝑟(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁𝑠] ,
with 𝑁𝑡 ∶= 𝑁(ℝ, [0, 𝑡]), 𝑡 ≥ 0, solves the integro-differential equation

𝜕𝑡𝑉𝑇 + η sup𝑎∈𝔸 (∫𝑉𝑇(⋅, ⋅ + 𝑏(⋅, 𝑎, 𝑒))ν(d𝑒) − 𝑉𝑇 + 𝑟(⋅, 𝑎)) = 0 (3.1)

on [0,𝑇) × ℝ, with boundary condition 𝑉𝑇(𝑇, ⋅) = 0, possibly in the sense of
viscosity solutions. From this characterization, standard numerical schemes
follow that allow one to approximate both the value function 𝑉𝑇 and the as-
sociated optimal control.

However, (3.1) is non-local and obtaining a precise approximation of the
solution is highly time-consuming as soon as the intensity η of 𝑁 is large. This
is the case, for instance, for ad-auctions on the web, see e.g. [54] and Chapter 6,
that are posted almost in continuous time, and on which one would typically
like to apply reinforcement learning techniques based on the resolution of
(3.1) for the current estimation of the parameters, leading to a possibly large
number of resolutions for different sets of parameters. On the other hand,
when η is very large, it is tempting to approximate the original jump diffusion
control problem by its asymptotic as η →∞.

In this thesis, we consider the diffusive limit approximation. Namely,
if one takes η of the form η = 1/ε, with ε small, and 𝑏 = ε𝑏1 + √ε𝑏2 with∫ 𝑏2(⋅, 𝑒)ν(d𝑒) = 0, then a second order Taylor expansion on (3.1) implies
that ε𝑉𝑇 converges as ε → 0 to the solution �̄�𝑇 of

0 = 𝜕𝑡�̄�𝑇 + sup̄𝑎∈𝔸 (∫ 𝑏1(⋅, ̄𝑎, 𝑒)ν(d𝑒)𝜕𝑥�̄�𝑇
+12 ∫|𝑏2|2 (⋅, ̄𝑎, 𝑒)ν(d𝑒)𝜕2𝑥𝑥�̄�𝑇 + 𝑟(⋅, ̄𝑎)) , (3.2)0 = �̄�𝑇(𝑇, ⋅). (3.3)
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The advantage of the above is that it is now a local equation that can be solved
in a much more efficient way. Note that another possibility is to consider
a first-order expansion as in [54], which corresponds to considering a fluid
limit, but this is less precise.

For such a specification of the coefficients (η, 𝑏), the existence of a dif-
fusive limit is expected, see e.g. [66] for general results on the convergence
of stochastic processes. For control problems, the convergence of the value
function can be proved by using the stability of viscosity solutions as in [57,
§3], which considers the limit of discrete time zero-sum games, or by apply-
ing weak-convergence results. In particular, a large body of work on this
subject exists within the insurance and queueing networks literatures, see
e.g. [21, 43, 45]. However, it seems that there is no general result on the speed
of convergence in the case of a (generic) optimal control problem as defined
in Section 3.2 below.

In Section 3.3, we verify that the above intuition is correct. Unlike [57],
we do not simply rely on the stability of viscosity solutions. Nor do we rely
on the weak convergence of the underlying process. The reason is that weak
convergence does not give access to the convergence speed in optimal control
problems. Instead, we directly study the regularity of the solution to (3.2).
Thanks to its vanishing terminal condition (otherwise it should be assumed
smooth enough), we show that 𝜕2𝑥𝑥�̄�𝑇 is uniformly γ-Hölder in space, for
some γ ∈ (0, 1], whenever the coefficients of (3.2) are uniformly Lipschitz
in space and under a uniform ellipticity condition. By a second order Taylor
expansion, this allows us to pass from (3.2) to (3.1) up to an error term of
order εγ/2, and therefore provides the required convergence rate. In general,
this rate cannot be improved. As a by-product, we obtain an easy way to
construct an εγ/2-optimal control for the original pure-jump control problem.
We then study the limit ε−γ/2(𝑉 − �̄�𝑇) as ε → 0. Under mild assumptions,
we show that it solves a (possibly non-linear) PDE. This provides a first error
correction term. To achieve higher orders of convergence, this approach can
be generalised to a system of non-linear PDEs, upon its existence.

As an example of application, we consider in Section 3.4 a simplified
repeated online auction bidding problem, where a buyer seeks to maximise
its profit when facing both competition and a seller who adapts the price to
incoming bids. Our numerical experiments show that our approximation
permits a considerable gain in computation time.

For ease of exposition, we shall restrict to situations where the controlled
process is of dimension one. This fact will be used explicitly only to de-
rive our regularity results in Section 3.3.2. Similar results can be obtained
in higher dimensions, by using standard regularity results for parabolic par-
tial differential equations, see e.g. [79, 84].
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Notations

Let us give some standard notations which will be used throughout. Given
an open set U ⊂ ℝ𝑛, 𝑛 ∈ ℕ, we denote C0(U), C1(U), C2(U) the spaces of real-
valued functions which are respectively: continuous, once continuously dif-
ferentiable, and twice continuously differentiable. Given 𝑇 > 0, C(1,2)([0,𝑇)×
U) denotes the space of functions which are once continuously differentiable
in time and twice in space. In addition, C(1,2)𝑏 ([0,𝑇)×U) denotes the elements
of C(1,2)([0,𝑇) × U)) with bounded derivatives of order up to one is time and
up to two in space. When clear from context, we will omit U and [0,𝑇) for
brevity.

3.2 The Pure‐Jump Optimal Control Problem

In this section, we begin by defining our pure-jump control problem and state
the well-known link with its associated Hamilton-Jacobi-Bellman equation.
The properties stated below are elementary but will be useful for the deriva-
tion of our main approximation result of Section 3.3.

3.2.1 Definition

Let Ω = 𝔻𝑇 denote the space of one dimensional càdlàg1 functions on ℝ+
andM+(ℝ×ℝ+) denote the collection of positive finite measures onℝ×ℝ+.
Consider a measure-valued map 𝑁 ∶ 𝔻𝑇 ↦M+(ℝ × ℝ+) and a probability
measure ℙ on 𝔻𝑇 such that 𝑁 is a continuous real-valued ℝ-marked point
process with compensator ην(d𝑒)d𝑡, in which η > 0 and ν is a probability
measure on ℝ. See e.g. [37]. For ease of notations, we set 𝑁𝑡 ∶= 𝑁(ℝ, [0, 𝑡])
for 𝑡 ≥ 0.

Let𝔽𝑡 = (F𝑡𝑠)𝑠≥𝑡 be theℙ-augmentation of the raw filtration generated by
the random measure 𝑁 restricted to [𝑡,∞), that is, for instance, by the process∫⋅𝑡 ∫ exp(𝑒)𝑁(d𝑒,d𝑠). Given a compact subset 𝔸 of ℝ, we let A𝑡 be the collec-
tion of 𝔽𝑡-predictable processes with values in 𝔸. For ease of notation, we
also define A ∶= ∪𝑡≥0A𝑡. Throughout this chapter, unless otherwise stated
we will work on the filtered probability space (Ω,F, 𝔽, ℙ), where F = F0𝑇 for𝑇 > 0 given and 𝔽 = 𝔽0.

We now consider a bounded measurable map (𝑥, 𝑎, 𝑒) ∈ ℝ × 𝔸 × ℝ ↦𝑏(𝑥, 𝑎, 𝑒). Given (𝑡, 𝑥) ∈ ℝ+ × ℝ and α ∈ A, we define the càdlàg process

1Also known as right continuous with left limits.
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𝑋𝑡,𝑥,α as the solution of

𝑋𝑡,𝑥,α = 𝑥 +∫⋅
𝑡 ∫ 𝑏(𝑋𝑡,𝑥,α𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠). (3.4)

Given a bounded measurable map (𝑥, 𝑎) ∈ ℝ × 𝔸 ↦ 𝑟(𝑥, 𝑎) ∈ ℝ, we
consider the expected gain function

(𝑡, 𝑥,α) ∈ [0,𝑇] × ℝ ×A↦ 𝐽𝑇(𝑡, 𝑥;α) ∶= 𝔼 [∫𝑇
𝑡 𝑟(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁𝑠] , (3.5)

together with the value function𝑉𝑇(𝑡, 𝑥) ∶= supα∈A𝑡 𝐽𝑇(𝑡, 𝑥;α), (𝑡, 𝑥) ∈ [0,𝑇] × ℝ. (3.6)

Throughout this chapter, we make the following standard assumption, which
will in particular ensure that 𝑉𝑇 is the unique (bounded) viscosity solution of
the associated Hamilton-Jacobi-Bellman (HJB) equation, see Proposition 3.2.1
below.

Assumption 3.1.
For each 𝑒 ∈ ℝ, (𝑥, 𝑎) ∈ ℝ×𝔸 ↦ (𝑏(𝑥, 𝑎, 𝑒), 𝑟(𝑥, 𝑎)) is continuous. Further-
more, (𝑏, 𝑟) is bounded.

Remark 3.2.1. Note that boundedness of the coefficients 𝑏 and 𝑟 is not essential in
the following arguments. One could assume only linear growth in space, uniformly
in the control. We make the above (strong) assumptions to avoid unnecessary com-
plexities.

3.2.2 Dynamic programming equation and optimal Markov control

Let us now state the well-known characterization of 𝑉𝑇 in terms of the theory
of viscosity solutions.

As usual, we say that a locally bounded lower-semicontinuous (resp.
upper-semicontinuous) map 𝑈 ∶ [0,𝑇] × ℝ ↦ ℝ is a viscosity supersolu-
tion (resp. subsolution) of

𝜕𝑡φ + sup𝑎∈𝔸 (∫φ(⋅, ⋅ + 𝑏(⋅, 𝑎, 𝑒))ν(d𝑒) − φ + 𝑟(⋅, 𝑎)) η = 0, on [0,𝑇) × ℝ,
(3.7)

if for all (𝑡, 𝑥) ∈ [0,𝑇) × ℝ and all C1 functions φ ∶ [0,𝑇] × ℝ ↦ ℝ such that(𝑡, 𝑥) attains a minimum (resp. maximum) of 𝑈 − φ on [0,𝑇) × ℝ we have

κ {𝜕𝑡φ(𝑡, 𝑥) + η sup𝑎∈𝔸 (∫𝑈(𝑡, 𝑥 + 𝑏(𝑥, 𝑎, 𝑒))ν(d𝑒) − 𝑈(𝑡, 𝑥) + 𝑟(𝑥, 𝑎))} ≤ 0
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with κ = 1 (resp. κ = −1).

Proposition 3.2.1.𝑉𝑇 is a continuous and bounded viscosity solution of (3.7) such that

lim𝑡′↑𝑇,𝑥′→𝑥 𝑉𝑇(𝑡′, 𝑥′) = 0, 𝑥 ∈ ℝ. (3.8)

Moreover, comparison holds for (3.7) in the class of bounded functions.

Proof. The argument being standard, we only sketch it.
First note that the continuity at 𝑇 follows immediately from the fact that 𝑟 is
bounded, namely |𝑉𝑇(𝑡, ⋅)| ≤ η(𝑇 − 𝑡) ‖𝑟‖∞ for 𝑡 ≤ 𝑇. Fix ℎ ∈ (0,𝑇 − 𝑡], 𝑡 ≤ 𝑇
and 𝑥 ∈ ℝ. Let τ𝑡1 be the first jump of 𝑁 after time 𝑡. Denote by 𝑉𝑇∗ and 𝑉∗𝑇
the lower- and upper-semicontinuous envelopes of 𝑉𝑇, i.e.𝑉𝑇∗(𝑡′, 𝑥′) ∶= lim inf(𝑠,𝑦)→(𝑡′,𝑥′)𝑉𝑇(𝑠, 𝑦) , 𝑉∗𝑇 (𝑡′, 𝑥′) ∶= lim sup(𝑠,𝑦)→(𝑡′,𝑥′)𝑉𝑇(𝑠, 𝑦) .
It follows from the same arguments as in [35] that 𝑉𝑇 satisfies the (weak)
dynamic programming principle

supα∈A𝑡 𝔼 [𝑉𝑇∗(τ𝑡1 ∧ ℎ,𝑋𝑡,𝑥,ατ𝑡1∧ℎ) + 𝑟(𝑋𝑡,𝑥,ατ𝑡1− ,ατ𝑡1)1{τ𝑡1≤ℎ}]≤ 𝑉𝑇(𝑡, 𝑥) (3.9)≤ supα∈A𝑡 𝔼 [𝑉∗𝑇 (τ𝑡1 ∧ ℎ,𝑋𝑡,𝑥,ατ𝑡1∧ℎ) + 𝑟(𝑋𝑡,𝑥,ατ𝑡1− ,ατ𝑡1)1{τ𝑡1≤ℎ}] .
Following [35] again and using [33, Lemma 22], this implies that 𝑉𝑇∗ and 𝑉∗𝑇
are, respectively, a super- and a subsolution in the viscosity sense of (3.7).
Since 𝑏 is bounded, the map (𝑡, 𝑥) ↦ (1 + 𝑥2)𝑒−𝐶𝑡 is also a viscosity super-
solution of the above with 𝑟 ≡ 0, as soon as 𝐶 > 0 is large enough. Stand-
ard arguments then imply that comparison holds for the above Hamilton-
Jacobi-Bellman equation in the class of bounded functions (or even with lin-
ear growth), and therefore that 𝑉𝑇∗ = 𝑉∗𝑇 , meaning that 𝑉𝑇 is continuous.

We next prove the existence of an optimal Markov control. In the follow-
ing, we denote by 𝒜𝑇 the collection of 𝔸-valued Borel maps on [0,𝑇) × ℝ.

Proposition 3.2.2.
For all (𝑡, 𝑥) ∈ ℝ+ × ℝ, there exists α̂[𝑡, 𝑥] ∈ A𝑡 such that 𝑉𝑇(𝑡, 𝑥) =𝐽𝑇(𝑡, 𝑥; α̂[𝑡, 𝑥]). It takes the formα̂[𝑡, 𝑥] = ∑𝑖≥0 1(τ𝑡𝑖 ,τ𝑡𝑖+1]â(⋅,𝑋𝑡,𝑥,α̂[𝑡,𝑥]τ𝑡𝑖 )
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in which τ𝑡𝑖 is the 𝑖-th jump of 𝑁 after time 𝑡, for 𝑖 ≥ 1, with τ𝑡0 ∶= 𝑡, and
â ∈ 𝒜𝑇 satisfies

â(𝑡′, 𝑥′) ∈ argmax𝑎∈𝔸 {∫𝑉𝑇(𝑡′, 𝑥′ + 𝑏(𝑥′, 𝑎, 𝑒))ν(d𝑒) + 𝑟(𝑥′, 𝑎) } ,
for every (𝑡′, 𝑥′) ∈ [0, 𝑡) × ℝ.

Proof. Since 𝑉𝑇, 𝑏 and 𝑟 are continuous, by Proposition 3.2.1 and Assump-
tion 3.1, and since 𝔸 is compact, we can find a Borel measurable map (𝑡, 𝑥) ↦
â(𝑡, 𝑥) such that â(𝑡, 𝑥) belongs to argmax{∫𝑉𝑇(𝑡, 𝑥 + 𝑏(𝑥, ⋅, 𝑒))ν(𝑑𝑒) + 𝑟(𝑥, ⋅)}
for all (𝑡, 𝑥) ∈ [0,𝑇) × ℝ, see e.g. [24, Proposition 7.33, p.153]. Let us fix(𝑡0, 𝑥0) ∈ [0,𝑇] × ℝ. By the dynamic programming principle in (3.9), the
continuity of 𝑉𝑇, and the definition of â above,

𝑉𝑇(𝑡0, 𝑥0) = supα∈A𝑡0
𝔼 [𝑉𝑇 (τ𝑡01 ∧ 𝑇,𝑋𝑡0,𝑥0,ατ𝑡01 ∧𝑇 ) + 𝑟 (𝑋𝑡0,𝑥0,ατ𝑡01 − ,ατ𝑡01 ) 1{τ𝑡01 ≤𝑇}]

= supα∈A𝑡0
𝔼 [(∫𝑉𝑇 (τ𝑡01 ∧ 𝑇, 𝑥0 + 𝑏(𝑥0,ατ𝑡01 ∧𝑇, 𝑒)) ν(d𝑒)

+𝑟 (𝑥0,ατ𝑡01 )) 1{τ𝑡01 ≤𝑇}]
= 𝔼 [(∫𝑉𝑇 (τ𝑡01 ∧ 𝑇, 𝑥0 + 𝑏(𝑥0, α̂τ𝑡01 ∧𝑇, 𝑒)) ν(d𝑒)

+𝑟 (𝑥0, α̂τ𝑡01 )) 1{τ𝑡01 ≤𝑇}]= 𝔼 [𝑉𝑇(τ𝑡01 ∧ 𝑇,𝑋𝑡0,𝑥0,α̂τ𝑡01 ∧𝑇 ) + 𝑟(𝑋𝑡0,𝑥0,α̂τ𝑡01 − , α̂τ𝑡01 )1{τ𝑡01 ≤𝑇}]
in which α̂ ∶= â(⋅, 𝑥0)1(𝑡0,τ𝑡01 ]. For ease of notations, we now set ϑ1 ∶= τ𝑡01 ∧𝑇
and 𝑋1 ∶= 𝑋𝑡0,𝑥0,α̂τ𝑡01 ∧𝑇 . By the same reasoning as above, we have, for a fixedω ∈ Ω,

𝑉(ϑ1(ω),𝑋1(ω)) = 𝔼 [𝑉𝑇 (τϑ1(ω)1 ∧ 𝑇,𝑋ϑ1(ω),𝑋1(ω),α̂(ω)τϑ1(ω)1 ∧𝑇 )
+𝑟 (𝑋ϑ1(ω),𝑋1(ω),α̂(ω)τϑ1(ω)1 − , α̂τϑ1(ω)1 (ω)) 1{τϑ1(ω)1 ≤𝑇}]

in which α̂(ω) ∶= â(⋅, 𝑥0)1(𝑡0,τ𝑡01 (ω)] + â(⋅,𝑋1(ω))1(τ𝑡01 (ω),τϑ1(ω)1 ].
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The right-hand side of the above coincides ℙ-a.e. with

𝔼 [𝑉𝑇 (τϑ11 ∧ 𝑇,𝑋ϑ1,𝑋1,α̂τϑ11 ∧𝑇 ) + 𝑟 (𝑋ϑ1,𝑋1,α̂τϑ11 − , α̂τϑ11 ) 1{τϑ11 ≤𝑇}|||Fϑ1]
= 𝔼 [𝑉𝑇 (τ𝑡02 ∧ 𝑇,𝑋𝑡0,𝑥0,α̂τ𝑡02 ∧𝑇 ) + 𝑟 (𝑋𝑡0,𝑥0,α̂τ𝑡02 − , α̂τ𝑡02 ) 1{τ𝑡02 ≤𝑇}|||Fτ𝑡01 ∧𝑇] .

Let us complete the definition of α̂ by now letting it be defined by

α̂ = ∑𝑖≥0 1(τ𝑡0𝑖 ,τ𝑡0𝑖+1]â (⋅,𝑋𝑡0,𝑥0,α̂τ𝑡0𝑖 ) .
By iterating the above procedure, we have

𝑉𝑇(𝑡0, 𝑥0) = 𝔼[𝑉𝑇 (τ𝑡0𝑛 ∧ 𝑇,𝑋𝑡0,𝑥0,α̂τ𝑡0𝑛 ∧𝑇 ) +∫τ𝑡0𝑛 ∧𝑇
𝑡0 𝑟(𝑋𝑡0,𝑥0,α̂𝑠− , α̂𝑠)d𝑁𝑠] , 𝑛 ≥ 1.

Since τ𝑡0𝑛 → ∞ ℙ-a.s. as 𝑛 → ∞, it now follows from the dominated conver-
gence theorem and (3.8) that

𝑉𝑇(𝑡0, 𝑥0) = 𝔼 [∫𝑇
𝑡0 𝑟(𝑋𝑡0,𝑥0,α̂𝑠− , α̂𝑠)d𝑁𝑠] .

3.3 Diffusive Approximation
As already mentioned, the characterization of Propositions 3.2.1 and 3.2.2
allows one to estimate numerically the value function and the associated op-
timal control. However, the integro-differential equation (3.7) is non-local
and the computational cost of its numerical resolution increases as η grows.
On the other hand, we can expect that our pure-jump problem admits a dif-
fusive limit as η → ∞ which is, by its local nature, much easier to solve
numerically, and can serve as a good proxy of the original problem as soon
as η is large enough.

In this section, we begin by defining the diffusion control problem that
is the candidate for the diffusive limit of our pure-jump problem. We then
study the regularity of the corresponding value function, from which we will
be able to derive our main approximation result, see Theorem 3.3.1 below,
and construct approximate optimal controls, see Proposition 3.3.2. Finally,
we identify a first-order correction term in Section 3.3.5, which is extended
to higher orders in Section 3.3.6.
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3.3.1 The candidate diffusive limit

Given ε ∈ (0, 1), we now take as η the intensityηε ∶= ε−1
so that it is large for ε > 0 small. To ensure the existence of a diffusive limit,
we need to assume that the jump coefficient 𝑏 introduced in Section 3.2 is of
the form 𝑏ε = ε𝑏1 +√ε𝑏2
for two bounded measurable maps 𝑏1, 𝑏2 ∶ ℝ × 𝔸 × ℝ ↦ ℝ, each satisfying
Assumption 3.1 (with 𝑏𝑖 in place of 𝑏, 𝑖 = 1, 2), and with 𝑏2 satisfying the
additional Assumption 3.2.

Assumption 3.2.
The function 𝑏2 satisfies:

∫ 𝑏2(𝑥, 𝑎, 𝑒)ν(d𝑒) = 0 for all (𝑥, 𝑎) ∈ ℝ × 𝔸, (3.10)

and there is ς > 0 such that

inf(𝑥,𝑎)∈ℝ×𝔸∫|𝑏2(𝑥, 𝑎, 𝑒)|2 ν(d𝑒) ≥ ς > 0. (3.11)

In the above, the coefficient 𝑏1 should be interpreted as a drift term while𝑏2 is a volatility. The respective scaling in ε and √ε together with Assump-
tion 3.2 are required to ensure that our pure-jump problem actually admits
a diffusive limit of the form (3.13) below. Problems in which this scaling of
coefficient is appropriate, involve many jumps of small relative size, with a
variance of the same order as their drift over time.

Likewise, we consider the value function

𝑉ε𝑇 (𝑡, 𝑥) ∶= supα∈A𝑡 𝐽ε𝑇(𝑡, 𝑥;α) with 𝐽ε𝑇(𝑡, 𝑥;α) ∶= 1ηε𝔼 [∫𝑇
𝑡 𝑟(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁𝑠]

(3.12)

for any (𝑡, 𝑥) ∈ [0,𝑇] × ℝ. Note that the scaling by 1/ηε means that (up to a
constant factor 𝑇 − 𝑡) we consider the gain by average unit of actions on the
system. Indeed 𝔼[𝑁𝑇 −𝑁𝑡] = ηε(𝑇 − 𝑡) and the control applies only at jump
times of 𝑁. Note that we omit the dependence of 𝑁 on ε, for ease of notation.
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We shall see that 𝑉ε𝑇 , together with the associated optimal policy, can be
approximated by considering its diffusive limit as ε → 0. The coefficients of
the associated Brownian diffusion Stochastic Differential Equation (SDE) are
given by:

μ(𝑥, 𝑎) ∶= ∫ 𝑏1(𝑥, 𝑎, 𝑒)ν(d𝑒), σ(𝑥, 𝑎) ∶= (∫ |𝑏2(𝑥, 𝑎, 𝑒)|2 ν(d𝑒)) 12 ,
for (𝑥, 𝑎) ∈ ℝ × 𝔸.

From now on, we assume that they satisfy the following.

Assumption 3.3.
The maps 𝑥 ∈ ℝ ↦ μ(𝑥, 𝑎), 𝑥 ∈ ℝ ↦ σ(𝑥, 𝑎) and 𝑥 ∈ ℝ ↦ 𝑟(𝑥, 𝑎) are
Lipschitz, uniformly in 𝑎 ∈ 𝔸, with respective Lipschitz constants ‖μ‖Lip,‖σ‖Lip and ‖𝑟‖Lip.

More precisely, let ℙ̄ be a probability measure on 𝔻𝑇 and let 𝑊 be a
stochastic process such that 𝑊 is a ℙ̄-Brownian motion, let �̄�𝑡 = (F�̄�𝑡𝑠)𝑠≥0 be
the ℙ̄-augmentation of the filtration generated by (𝑊⋅∨𝑡 − 𝑊𝑡), and let A�̄� be
the collection of �̄�𝑡-predictable processes. Given ᾱ ∈ A�̄�, we can then define�̄�𝑡,𝑥,ᾱ as the unique strong solution of

�̄�𝑡,𝑥,ᾱ = 𝑥 +∫⋅
𝑡 μ(�̄�𝑡,𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑠 +∫⋅

𝑡 σ(�̄�𝑡,𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑊𝑠. (3.13)

The candidate diffusive limit problem is then defined as

�̄�𝑇(𝑡, 𝑥) ∶= supᾱ∈A�̄� �̄� [∫𝑇
𝑡 𝑟(�̄�𝑡,𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑠] , (𝑡, 𝑥) ∈ [0,𝑇] × ℝ

where �̄� is the expectation operator under ℙ̄.

3.3.2 Regularity properties

We first prove that �̄�𝑇 is a smooth solution of its associated Hamilton-Jacobi-
Bellman equation. Most importantly, its second-order space derivative is γ-
Hölder continuous, for some γ ∈ (0, 1]. This will allow us, in Section 3.3.3
below, to prove that it actually coincides with the diffusive limit of 𝑉ε𝑇 asε vanishes. The precise value of the Hölder exponent γ will be further dis-
cussed in Remark 3.3.1 below.
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Proposition 3.3.1.
The function �̄�𝑇 belongs to C(1,2)𝑏 ([0,𝑇) × ℝ) ∩ C0([0,𝑇] × ℝ) and is the
unique bounded solution of

𝜕𝑡�̄�𝑇 + sup̄𝑎∈𝔸 (μ(⋅, ̄𝑎)𝜕𝑥�̄�𝑇 + 12σ2(⋅, ̄𝑎)𝜕2𝑥𝑥�̄�𝑇 + 𝑟(⋅, ̄𝑎)) = 0, on [0,𝑇) × ℝ,
(3.14)�̄�𝑇(𝑇, ⋅) = 0, on ℝ. (3.15)

Moreover, there exists γ ∈ (0, 1], such that 𝜕2𝑥𝑥�̄�𝑇 is (uniformly) γ-Hölder
continuous in space on [0,𝑇) × ℝ.

Proof.

1. We first show that �̄�𝑇 ∈ C(1,2)𝑏 ([0,𝑇)×ℝ)∩C0([0,𝑇]×ℝ). Note that the
continuity at 𝑇 follows again from the fact that 𝑟 is bounded: |�̄�𝑇(𝑡, ⋅)| ≤(𝑇 − 𝑡)‖𝑟‖∞ for 𝑡 ≤ 𝑇. Let us set

𝐹(𝑥, 𝑝, 𝑞) ∶= sup̄𝑎∈𝔸 (μ(𝑥, ̄𝑎)𝑝 + 12σ2(𝑥, ̄𝑎)𝑞 + 𝑟(𝑥, ̄𝑎)) , (𝑥, 𝑝, 𝑞) ∈ ℝ3 ,
and observe that, by Assumptions 3.2 and 3.3,12ς ||𝑞 − 𝑞′|| ≤ |𝐹(𝑥, 𝑝, 𝑞)−𝐹(𝑥, 𝑝, 𝑞′)| ≤ 12 ‖σ‖2∞ ||𝑞 − 𝑞′|| , (3.16)

𝑣𝐹(𝑥, 0, 0) ≤ ‖𝑟‖∞ (1 + |𝑣|2), (3.17)

and

||𝐹(𝑥, 𝑝, 𝑞) − 𝐹(𝑥′, 𝑝′, 𝑞′)|| ≤(||𝑝|| ‖‖μ‖‖Lip
+ ||𝑞|| ‖σ‖∞ ‖σ‖Lip + ‖𝑟‖Lip) |𝑥 − 𝑥′|

+ ‖‖μ‖‖∞ ||𝑝 − 𝑝′|| + 12 ‖σ‖2∞ ||𝑞 − 𝑞′|| (3.18)

for all (𝑥, 𝑥′, 𝑝, 𝑝′, 𝑞, 𝑞′, 𝑣) ∈ ℝ7.
Let us assume for the moment that 𝑞 ↦ 𝐹(𝑥, 𝑝, 𝑞) is differentiable for all(𝑥, 𝑝) ∈ ℝ2. For 𝑛 ≥ 1, existence of a C(1,2)([0,𝑇) × ℝ) solution �̄�𝑇,𝑛 to
(3.14) on [0,𝑇) × (−𝑛, 𝑛) with boundary condition �̄�𝑇,𝑛 = 0 on ([0,𝑇) ×{−𝑛, 𝑛})∪ ({𝑇}×[−𝑛, 𝑛]) follows from [84, Thm. 14.24], (3.16), (3.17) and
(3.18). It turns out that, using the notations of [84, Thm. 14.24], �̄�𝑇,𝑛
is even in 𝐻2+θ𝐵(𝐵) for some θ𝐵 ∈ (0, 1), on each compact subset 𝐵
of [0,𝑇) × (−𝑛, 𝑛). These 𝐻2+θ𝐵-norms depend only on the upper and
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lower bounds on the derivative of 𝑞 ↦ 𝐹(⋅, 𝑞) and not on the fact that
this map is differentiable. If it is not, one can thus first regularize 𝐹 with
respect to its last argument, by using a sequence of smooth kernels, and
then pass to the limit. The corresponding sequence will be uniformly
bounded in 𝐻2+θ𝐵(𝐵) on each compact subset 𝐵 of [0,𝑇) × (−𝑛, 𝑛), so
that the limit will keep these bounds. By stability, the limit solves the
required equation with the appropriate boundary conditions. See also
the discussion in the paragraph preceding [84, Theorem 14.24].

2. We now provide uniform estimates on the gradients. Note that, by the
Feynman-Kac formula and a comparison argument,

�̄�𝑇,𝑛(𝑡, 𝑥) = supᾱ∈A�̄� �̄� [∫𝑇∧τ𝑡,𝑥,ᾱ𝑛
𝑡 𝑟(�̄�𝑡,𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑠] (3.19)

in which τ𝑡,𝑥,ᾱ𝑛 ∶= inf{𝑠 ≥ 𝑡 ∶ �̄�𝑡,𝑥,ᾱ𝑠 ∉ (−𝑛, 𝑛)} .
It follows that, for ℎ ∈ (0,𝑇 − 𝑡],

�̄�𝑇,𝑛(𝑡 + ℎ, 𝑥) = supᾱ∈A�̄� �̄� [∫(𝑇−ℎ)∧τ𝑡,𝑥,ᾱ𝑛
𝑡 𝑟(�̄�𝑡,𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑠]

which readily implies that||�̄�𝑇,𝑛(𝑡 + ℎ, 𝑥) − �̄�𝑇,𝑛(𝑡, 𝑥)|| ≤ ℎ ‖𝑟‖∞ ,
and therefore 1𝑇 ‖�̄�𝑇,𝑛‖∞ ∨ ‖𝜕𝑡�̄�𝑇,𝑛‖∞ ≤ ‖𝑟‖∞ . (3.20)

Similarly, for ℎ ∈ (−1, 1) such that 𝑥 + ℎ ∈ [−𝑛, 𝑛],||�̄�𝑇,𝑛(𝑡, 𝑥 + ℎ) − �̄�𝑇,𝑛(𝑡, 𝑥)||
≤ supᾱ∈A�̄� �̄� [‖𝑟‖Lip ∫𝑇

𝑡 ||�̄�𝑡,𝑥+ℎ,ᾱ𝑠 − �̄�𝑡,𝑥,ᾱ𝑠 ||d𝑠 + ‖𝑟‖∞ ||τ𝑡,𝑥+ℎ,ᾱ𝑛 − τ𝑡,𝑥,ᾱ𝑛 ||] .
The first term is handled by using the uniform Lipschitz continuity in
space of (μ, σ):

�̄� [∫𝑇
𝑡 ||�̄�𝑡,𝑥+ℎ,ᾱ𝑠 − �̄�𝑡,𝑥,ᾱ𝑠 ||d𝑠] ≤ 𝐶1 |ℎ| (3.21)

in which 𝐶1 > 0 does not depend on 𝑛. As for the second term, As-
sumption 3.3, (3.10) and our boundedness assumptions on (𝑏1, 𝑏2), and
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therefore on (μ, σ), allow us to apply [34, Thm. 2.3]2 with (in their nota-
tion) π = 0, 𝑟 = 1 and for 𝑃 of the form φ(�̄�𝑡,𝑥+ℎ,ᾱ) or φ(�̄�𝑡,𝑥,ᾱ) for a
smooth bounded function φ, with bounded first and second derivat-
ives, such that φ(𝑦) = 𝑦 + 𝑛 for 𝑦 ∈ [−𝑛, −𝑛 + 1] and φ(𝑦) = 𝑛 − 𝑦 for𝑦 ∈ [𝑛 − 1, 𝑛]. It implies that

�̄� [||τ𝑡,𝑥+ℎ,ᾱ𝑛 − τ𝑡,𝑥,ᾱ𝑛 ||] ≤ 𝐶2�̄� [||�̄�𝑡,𝑥+ℎ,ᾱτ𝑡,𝑥+ℎ,ᾱ𝑛 ∧τ𝑡,𝑥,ᾱ𝑛 − �̄�𝑡,𝑥,ᾱτ𝑡,𝑥+ℎ,ᾱ𝑛 ∧τ𝑡,𝑥,ᾱ𝑛
||] ≤ 𝐶′2 |ℎ|

for some positive constants 𝐶2 and 𝐶′2 independent of 𝑛. Combined
with (3.21), this leads to‖𝜕𝑥�̄�𝑇,𝑛‖∞ ≤ ‖𝑟‖Lip 𝐶1 + ‖𝑟‖∞ 𝐶′2 . (3.22)

The fact that �̄�𝑇,𝑛 solves (3.14) combined with (3.16), (3.20), and (3.22)
then proves that ‖𝜕2𝑥𝑥�̄�𝑇,𝑛‖∞ ≤ 𝐶3 (3.23)

for some 𝐶3 > 0 that does not depend on 𝑛.

3. Let us now prove the uniform Hölder continuity of the gradients and
second derivatives. As in 1. above, let us first assume that 𝐹 is 𝐶1. Given
a neighbourhood U ⊂ [0,𝑇] × [−𝑛, 𝑛] of a point (𝑡, 𝑥), we derive as in
[11, § 3.1] that there exists 𝐶 > 0 and γ ∈ (0, 1], depending only on the
ellipticity constant ς and the Lipschitz constants of 𝐹 with respect to its
second and third arguments, such that

||𝜕𝑡�̄�𝑇,𝑛(𝑡′, 𝑥′) − 𝜕𝑡�̄�𝑇,𝑛(𝑡, 𝑥)|| ≤ 𝐶 (|𝑡′ − 𝑡| γ2 + |𝑥′ − 𝑥|γ) sup
U
|𝜕𝑡�̄�𝑇,𝑛|,

for (𝑡′, 𝑥′) ∈ U. If 𝐹 is not C1, one can first regularize it by using a se-
quence of kernels and then pass to the limit to obtain that the above still
holds for the original 𝐹. In view of (3.20), this implies that

||𝜕𝑡�̄�𝑇,𝑛(𝑡′, 𝑥′) − 𝜕𝑡�̄�𝑇,𝑛(𝑡, 𝑥)|| ≤ 𝐶 (|𝑡′ − 𝑡| γ2 + |𝑥′ − 𝑥|γ) ‖𝑟‖∞ , (3.24)

for (𝑡′, 𝑥′) ∈ [0,𝑇] × ℝ. Up to changing γ ∈ (0, 1], one can prove
similarly that

||𝜕𝑥�̄�𝑇,𝑛(𝑡′, 𝑥′) − 𝜕𝑥�̄�𝑇,𝑛(𝑡, 𝑥)|| ≤ 𝐶 (|𝑡′ − 𝑡| γ2 + |𝑥′ − 𝑥|γ) , (3.25)

for (𝑡′, 𝑥′) ∈ [0,𝑇] × ℝ, for some 𝐶 > 0 that does not depend on 𝑛.
We now set Δℎ�̄�𝑇,𝑛 ∶= ℎ−γ (�̄�𝑇,𝑛(⋅, ⋅ + ℎ) − �̄�𝑇,𝑛), ℎ ∈ ℝ. Again, up to

2Note that their Assumption (L) is not required since we are considering a finite time
interval [0,𝑇], this can be easily seen from the proof of this theorem.
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mollifying 𝐹 with a smooth bounded kernel with derivatives bounded
by 1, we can assume that 𝐹 is C1. Then, for 𝑡 < 𝑇 and 𝑥 ∈ (−𝑛+ℎ, 𝑛−ℎ),
ℎ−γ {𝐹(𝑥 + ℎ, 𝜕𝑥�̄�𝑇,𝑛(𝑡, 𝑥 + ℎ), 𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥 + ℎ))− 𝐹(𝑥, 𝜕𝑥�̄�𝑇,𝑛(𝑡, 𝑥), 𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥))}= ℎ−γ{𝜕𝑥𝐹(𝑥1ℎ, 𝑝1ℎ, 𝑞1ℎ)ℎ + 𝜕𝑝𝐹(𝑥2ℎ, 𝑝2ℎ, 𝑞2ℎ)[𝜕𝑥�̄�𝑇,𝑛(𝑡, 𝑥 + ℎ) − 𝜕𝑥�̄�𝑇,𝑛(𝑡, 𝑥)]+ 𝜕𝑞𝐹(𝑥3ℎ, 𝑝3ℎ, 𝑞3ℎ)[𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥 + ℎ) − 𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥)]}
for some 𝑥𝑖ℎ ∈ [𝑥, 𝑥+ℎ], 𝑝𝑖ℎ ∈ [𝜕𝑥�̄�𝑇,𝑛(𝑡, 𝑥+ℎ)∧𝜕𝑥�̄�𝑇,𝑛(𝑡, 𝑥), 𝜕𝑥�̄�𝑇,𝑛(𝑡, 𝑥+ℎ)∨𝜕𝑥�̄�𝑇,𝑛(𝑡, 𝑥)] and 𝑞𝑖ℎ ∈ [𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥+ℎ)∧𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥), 𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥+ℎ) ∨ 𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥)], for 𝑖 = 1, 2, 3. It follows that Δℎ�̄�𝑇,𝑛 satisfies a linear-
ized equation of the form0 = 𝜕𝑡Δℎ�̄�𝑇,𝑛 + 𝐴ℎ𝜕𝑥(Δℎ�̄�𝑇,𝑛) + 𝐵ℎ𝜕2𝑥𝑥(Δℎ�̄�𝑇,𝑛) + 𝐶ℎℎ1−γ
at every point (𝑡, 𝑥) ∈ [0,𝑇) × ℝ such that 𝑥 + ℎ ∈ (−𝑛, 𝑛), in which,
by Assumption 3.3, (3.10), and the estimates in 2/ above, (𝐴ℎ,𝐶ℎ)ℎ>0 is
uniformly bounded and infℎ>0 inf[0,𝑇]×ℝ 𝐵ℎ ≥ ς/2 > 0. Hence,

||𝜕2𝑥𝑥Δℎ�̄�𝑇,𝑛|| ≤ 2ς−1 (||𝜕𝑡Δℎ�̄�𝑇,𝑛|| + |𝐴ℎ| ||𝜕𝑥Δℎ�̄�𝑇,𝑛|| + |𝐶ℎ| ℎ1−γ)
We conclude from (3.24)-(3.25) that||𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥′) − 𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥)|| ≤ 𝐶 |𝑥′ − 𝑥|γ , 𝑥, 𝑥′ ∈ (−𝑛, 𝑛), 𝑡 < 𝑇,

(3.26)

for some 𝐶 > 0 independent on 𝑛. If we now set Δℎ�̄�𝑇,𝑛 = ℎ− γ2 (�̄�𝑇,𝑛(⋅ +ℎ, ⋅) − �̄�𝑇,𝑛), then the same type of arguments leads to

||𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡′, 𝑥) − 𝜕2𝑥𝑥�̄�𝑇,𝑛(𝑡, 𝑥)|| ≤ 𝐶 |𝑡′ − 𝑡| γ2 , 𝑥 ∈ (−𝑛, 𝑛), 𝑡, 𝑡′ < 𝑇,
(3.27)

for some 𝐶 > 0 independent on 𝑛.

4. It follows from steps 2. and 3. that (�̄�𝑇,𝑛)𝑛≥1 is uniformly bounded in𝐻2+γ([0,𝑇) × ℝ), as defined in [84, § IV.1]. By the Arzelà-Ascoli the-
orem, it admits a subsequence that converges in 𝐻2+γ(𝐵), for any com-
pact set 𝐵 ⊂ [0,𝑇) × ℝ, to a limit �̄�𝑇,∞. This limit shares the same
upper-bound in 𝐻2+γ([0,𝑇) × ℝ) as (�̄�𝑇,𝑛)𝑛≥1. Since each �̄�𝑇,𝑛 solves
(3.14) on [0,𝑇) × (−𝑛, 𝑛) and satisfies the boundary condition (3.15) on[−𝑛, 𝑛], it follows that �̄�𝑇,∞ solves (3.14) on [0,𝑇) × ℝ and (3.15) onℝ. As �̄�𝑇 is also a bounded solution of the same equation, comparison
implies that �̄�𝑇,∞ = �̄�𝑇.
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Remark 3.3.1.

a) Let ā ∶ [0,𝑇) × ℝ ↦ 𝔸 be a measurable map satisfying

ā ∈ argmax𝑎∈𝔸 (μ(⋅, 𝑎)𝜕𝑥�̄�𝑇 + 12σ2(⋅, 𝑎)𝜕2𝑥𝑥�̄�𝑇 + 𝑟(⋅, 𝑎)) on [0,𝑇) × ℝ,
see e.g. [24, Prop. 7.33, p.153]. Assume that there exists γ∘ ∈ (0, 1) such
that (μ, σ, 𝑟)(⋅, ā) belongs to 𝐻γ∘([0,𝑇) × ℝ), then we can take γ = γ∘. This
follows from [79, §IV.14, p.390].

b) If (μ(⋅, ā), σ(⋅, ā), 𝑟(⋅, ā)) has more regularity, one can obviously obtain more
regularity on �̄�𝑇 by, for instance, differentiating the associated partial differ-
ential equation.

c) In the case where σ does not depend on its 𝑎-argument, then one can appeal
to [84, Thm. 12.16] to deduce that we can take γ = 1. This follows from the
Lipschitz continuity of 𝐹.

3.3.3 Convergence speed toward the diffusive limit

We now exploit the Hölder regularity stated above to prove that 𝑉ε𝑇 converges
to �̄�𝑇 at a rate εγ/2 as ε vanishes. We shall see in Section 3.3.4 below that it
provides an εγ/2-optimal control for the pure-jump problem. In general, this
cannot be improved, see Example 3.3.1 in Section 3.3.5 below.

Theorem 3.3.1.
For all (𝑡, 𝑥) ∈ [0,𝑇] × ℝ and ε > 0,

||𝑉ε𝑇 − �̄�𝑇|| (𝑡, 𝑥) ≤ supα∈A𝑡 𝔼 [∫𝑇
𝑡 ||δ𝑟ε(𝑠,𝑋𝑡,𝑥,α𝑠 ,α𝑠)||d𝑠]

in which

δ𝑟ε ∶= 1ε ∫(�̄�𝑇(⋅, ⋅ + 𝑏ε) − �̄�𝑇) ν(d𝑒) − μ𝜕𝑥�̄�𝑇 − 12σ2𝜕2𝑥𝑥�̄�𝑇 (3.28)

satisfies

‖δ𝑟ε‖∞ ≤ 𝐶ε𝐾ε γ2 (3.29)

with

𝐶ε𝐾 ∶=12‖𝜕2𝑥𝑥�̄�𝑇‖∞ (ε1− γ2 ‖𝑏1‖2∞ + 2ε 1−γ2 ‖𝑏1‖∞ ‖𝑏2‖∞)
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+ 𝐾2 (ε 12 ‖𝑏1‖∞ + ‖𝑏2‖∞)2+γ ,
in which 𝐾 > 0 is the Hölder constant of 𝜕2𝑥𝑥�̄�𝑇 with respect to its space
variable. In particular,

lim supε↓0 ε− γ2 ‖𝑉ε𝑇 (𝑡, ⋅) − �̄�𝑇(𝑡, ⋅)‖∞ ≤ 12(𝑇 − 𝑡)𝐾‖𝑏2‖∞2+γ , 𝑡 ≤ 𝑇.
Proof. Since �̄�𝑇 ∈ C(1,2)𝑏 ([0,𝑇) × ℝ), for any (𝑡, 𝑥, 𝑎, 𝑒) ∈ [0,𝑇) × ℝ × 𝔸 × ℝ
�̄�𝑇(𝑡, 𝑥 + 𝑏ε(𝑥, 𝑎, 𝑒))−�̄�𝑇(𝑡, 𝑥) =𝜕𝑥�̄�𝑇(𝑡, 𝑥)𝑏ε(𝑥, 𝑎, 𝑒) + 12𝜕2𝑥𝑥�̄�𝑇(𝑡, 𝑥)|𝑏ε(𝑥, 𝑎, 𝑒)|2+ 12(𝜕2𝑥𝑥�̄�𝑇(𝑡, 𝑥ε) − 𝜕2𝑥𝑥�̄�𝑇(𝑡, 𝑥))|𝑏ε(𝑥, 𝑎, 𝑒)|2
for some 𝑥ε that lies in the interval formed by 𝑥 and 𝑥 + 𝑏ε(𝑥, 𝑎, 𝑒). By the
left-hand side of (3.10), the definition of (μ, σ), and since 𝜕2𝑥𝑥�̄�𝑇 is γ-Hölder
continuous in space with constant 𝐾,|||1ε ∫(�̄�𝑇(𝑡, 𝑥 + 𝑏ε(𝑥, 𝑎, 𝑒)) − �̄�𝑇(𝑡, 𝑥)) ν(d𝑒)

− μ(𝑥, 𝑎)𝜕𝑥�̄�𝑇(𝑡, 𝑥) − 12σ2(𝑥, 𝑎)𝜕2𝑥𝑥�̄�𝑇(𝑡, 𝑥)|||
≤ 12‖𝜕2𝑥𝑥�̄�𝑇‖∞ (ε ‖𝑏1‖2∞ + 2ε 12 ‖𝑏1‖∞ ‖𝑏2‖∞) + ε γ2 𝐾2 (ε 12 ‖𝑏1‖∞ + ‖𝑏2‖∞)2+γ

Hence,

μ𝜕𝑥�̄�𝑇 + 12σ2𝜕2𝑥𝑥�̄�𝑇 + 𝑟 = 1ε ∫[�̄�𝑇(⋅, ⋅ + 𝑏ε(⋅, 𝑒)) − �̄�𝑇 + ε(𝑟 − δ𝑟ε)] ν(d𝑒)
(3.30)

in which δ𝑟ε is the continuous function, defined in (3.28), and satisfies

‖δ𝑟ε‖∞ ≤12‖𝜕2𝑥𝑥�̄�𝑇‖∞ (ε ‖𝑏1‖2∞ + 2ε 12 ‖𝑏1‖∞ ‖𝑏2‖∞)
+ ε γ2 𝐾2 (ε 12 ‖𝑏1‖∞ + ‖𝑏2‖∞)2+γ .

Combined with Proposition 3.3.1, this shows that �̄�𝑇 is a smooth solution of

0 = 𝜕𝑡�̄�𝑇 + sup𝑎∈𝔸
1ε ∫(�̄�𝑇(⋅, ⋅ + 𝑏ε(⋅, 𝑎, 𝑒)) − �̄�𝑇 + ε(𝑟(⋅, 𝑎) − δ𝑟ε(⋅, 𝑎))) ν(d𝑒)

(3.31)
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on [0,𝑇) × ℝ with boundary condition �̄�𝑇(𝑇, ⋅) = 0 on ℝ. Applying Propos-
ition 3.2.1 (with the appropriate coefficients), this implies that

�̄�𝑇(𝑡, 𝑥) = supα∈A𝑡 𝔼[∫𝑇
𝑡 ε(𝑟 − δ𝑟ε(𝑠, ⋅))(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁𝑠] ,

so that, by the definition of 𝑉ε𝑇 ,

||𝑉ε𝑇 − �̄�𝑇|| (𝑡, 𝑥) ≤ supα∈A𝑡 𝔼 [∫𝑇
𝑡 ε |δ𝑟ε| (𝑠,𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁𝑠]

= supα∈A𝑡 𝔼 [∫𝑇
𝑡 |δ𝑟ε| (𝑠,𝑋𝑡,𝑥,α𝑠 ,α𝑠)d𝑠] .

3.3.4 Constructing an εγ/2‐optimal control for the pure‐jump problem
We now show that an εγ/2-optimal control for (3.12) can be constructed by
considering a measurable map ā ∶ [0,𝑇) × ℝ ↦ 𝔸 satisfying

ā ∈ argmax̄𝑎∈𝔸 (μ(⋅, ̄𝑎)𝜕𝑥�̄�𝑇 + 12σ2(⋅, ̄𝑎)𝜕2𝑥𝑥�̄�𝑇 + 𝑟(⋅, ̄𝑎)) on [0,𝑇) × ℝ, (3.32)

see e.g. [24, Prop. 7.33, p.153], and define ᾱ𝑡,𝑥 ∈ A𝑡 by

ᾱ𝑡,𝑥𝑠 = ā(𝑠,𝑋𝑡,𝑥,ᾱ𝑡,𝑥𝑠− ), 𝑠 ∈ [𝑡,𝑇),
recall (3.4). As it is driven by a compound Poisson process, the couple of
processes (𝑋𝑡,𝑥,ᾱ𝑡,𝑥 , ᾱ𝑡,𝑥) is well-defined.

Proposition 3.3.2.
For all (𝑡, 𝑥) ∈ [0,𝑇) × ℝ and ε > 0, ᾱ𝑡,𝑥 is εγ/2-optimal for 𝑉ε𝑇 . Namely,

1ηε𝔼[∫𝑇
𝑡 𝑟(𝑋𝑡,𝑥,ᾱ𝑡,𝑥𝑠− , ᾱ𝑡,𝑥𝑠 )d𝑁𝑠] ≥ 𝑉ε𝑇 (𝑡, 𝑥) − 2(𝑇 − 𝑡)𝐶ε𝐾ε γ2 .

Proof. It follows from Proposition 3.3.1, (3.32), and (3.30) that

𝜕𝑡�̄�𝑇 + 1ε ∫(�̄�𝑇(⋅, ⋅ + 𝑏ε(⋅, ā, 𝑒)) − �̄�𝑇 + ε𝑟(⋅, ā)) ν(d𝑒) ≥ − ‖δ𝑟ε‖∞ ,
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𝜕𝑡�̄�𝑇 + sup𝑎∈𝔸
1ε ∫(�̄�𝑇(⋅, ⋅ + 𝑏ε(⋅, 𝑎, 𝑒)) − �̄�𝑇 + ε𝑟(⋅, 𝑎)) ν(d𝑒) ≤ ‖δ𝑟ε‖∞ ,

so that applying Itô’s Lemma and using (3.15) leads to

�̄�𝑇(𝑡, 𝑥) − (𝑇 − 𝑡) ‖δ𝑟ε‖∞ ≤ 1ηε𝔼 [∫𝑇
𝑡 𝑟(𝑋𝑡,𝑥,ᾱ𝑡,𝑥𝑠− , ᾱ𝑡,𝑥𝑠 )d𝑁𝑠]

�̄�𝑇(𝑡, 𝑥) + (𝑇 − 𝑡) ‖δ𝑟ε‖∞ ≥ supα∈A𝑡
1ηε𝔼 [∫𝑇

𝑡 𝑟(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁𝑠] = 𝑉ε𝑇 (𝑡, 𝑥).
We conclude by appealing to (3.29).

3.3.5 First‐order correction term

Under additional conditions, one can exhibit a first-order correction term to
improve the convergence speed in Theorem 3.3.1 and Proposition 3.3.2. From
now on, we assume the following.

Assumption 3.4.

(i) The map (𝑡, 𝑥, 𝑎) ∈ [0,𝑇) × ℝ × 𝔸 ↦ ε−γ/2δ𝑟ε(𝑡, 𝑥, 𝑎) is continuous,
uniformly in ε ∈ (0, 1).

(ii) The pointwise limit

𝑟1 ∶= limε→0 ε− γ2δ𝑟ε, (3.33)

is well-defined on [0,𝑇) × ℝ × 𝔸.

(iii) Given

𝔸0 ∶= argmax̄𝑎∈𝔸 (μ(⋅, ̄𝑎)𝜕𝑥�̄�𝑇 + 12σ2(⋅, ̄𝑎)𝜕2𝑥𝑥�̄�𝑇 + 𝑟(⋅, ̄𝑎)) ,
comparison holds in the sense of bounded discontinuous viscosity
super- and subsolutions for

{𝜕𝑡φ + max ̄𝑎∈𝔸0 (μ(⋅, ̄𝑎)𝜕𝑥φ + 12σ(⋅, ̄𝑎)2𝜕2𝑥𝑥φ + 𝑟1(⋅, ̄𝑎)) = 0, on [0,𝑇) × ℝ,φ(𝑇, ⋅) = 0 on ℝ.
(3.34)
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(iv) For all (𝑡∘, 𝑥∘) ∈ [0,𝑇)×ℝ, ̄𝑎∘ ∈ 𝔸0(𝑡∘, 𝑥∘) and (𝑡𝑛, 𝑥𝑛)𝑛≥1 ⊂ [0,𝑇)×ℝ
such that (𝑡𝑛, 𝑥𝑛) → (𝑡∘, 𝑥∘) as 𝑛 →∞, we can find ( ̄𝑎𝑛)𝑛≥1 such that̄𝑎𝑛 ∈ 𝔸0(𝑡𝑛, 𝑥𝑛) for all 𝑛 ≥ 1 and ̄𝑎𝑛 → ̄𝑎∘ as 𝑛 →∞.

Remark 3.3.2. Let us comment the above:
a) Note that 𝑟1 is bounded, see (3.29) in Theorem 3.3.1. The right-hand side term

in (3.33) therefore admits a limit superior and a limit inferior. The condition
(3.33) implies that the limit is well-defined. This point will be further discussed
in Remark 3.3.3 below.

b) If �̄�𝑇 admits a continuous bounded third-order space derivative 𝜕3𝑥𝑥𝑥�̄�𝑇, then
one easily checks that γ = 1 and

𝑟1 = 12 ∫[13𝑏2(⋅, 𝑒)3𝜕3𝑥𝑥𝑥�̄�𝑇 + (𝑏1𝑏2)(⋅, 𝑒)𝜕2𝑥𝑥�̄�𝑇] ν(d𝑒),
by a simple Taylor expansion.

c) Assume that one can find a continuous map ā ∶ [0,𝑇) × ℝ ↦ 𝔸 such that𝔸0(𝑡, 𝑥) = {ā(𝑡, 𝑥)} for all (𝑡, 𝑥) ∈ [0,𝑇)×ℝ, and 𝑥 ∈ ℝ ↦ (μ, σ)(𝑥, ā(𝑡, 𝑥))
is Lipschitz uniformly in 𝑡 ≤ 𝑇, then comparison holds, see e.g. [48, Section
8]. In general, this can be checked on a case-by-case basis.

Under the above conditions, (3.34) admits a (unique) bounded viscos-
ity solution, denoted by δ�̄�(1)𝑇 , see below, and it is the first order term in the
difference 𝑉ε𝑇 − �̄�𝑇, i.e. (3.36) below holds with

�̄�(1),ε𝑇 ∶= �̄�𝑇 + ε γ2δ�̄�(1)𝑇 . (3.35)

Theorem 3.3.2.
Let Assumption 3.4 hold. Then, (3.34) admits a (unique) bounded viscos-
ity solution δ�̄�(1)𝑇 and, for all (𝑡, 𝑥) ∈ [0,𝑇] × ℝ,

limε↓0 ε− γ2 (𝑉ε𝑇 − �̄�𝑇)(𝑡, 𝑥) = δ�̄�(1)𝑇 (𝑡, 𝑥)
and therefore

lim supε↓0 ε− γ2 ||𝑉ε𝑇 (𝑡, 𝑥) − �̄�(1),ε𝑇 (𝑡, 𝑥)|| = 0, (3.36)

in which �̄�(1),ε𝑇 is defined as in (3.35). If in addition δ�̄�(1)𝑇 is C(1,2)([0,𝑇)×ℝ)
and 𝜕2𝑥𝑥δ�̄�(1)𝑇 is δγ-Hölder continuous in space, uniformly on [0,𝑇) × ℝ,
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for some constant δγ > 0 such that

lim supε↓0 ε− δγ2 ‖‖ε− γ2δ𝑟ε − 𝑟1‖‖∞ < ∞, (3.37)

then the control defined by

α̌𝑡,𝑥𝑠 = ǎ(𝑠,𝑋𝑡,𝑥,α̌𝑡,𝑥𝑠− ), 𝑠 ∈ [𝑡,𝑇) (3.38)

with

ǎ ∈ argmax̄𝑎∈𝔸0 {μ(⋅, ̄𝑎)𝜕𝑥δ�̄�(1)𝑇 + 12σ(⋅, ̄𝑎)2𝜕2𝑥𝑥δ�̄�(1)𝑇 + 𝑟1(⋅, ̄𝑎)} , on [0,𝑇) × ℝ,
(3.39)

satisfies

1ηε𝔼 [∫𝑇
𝑡 𝑟(𝑋𝑡,𝑥,α̌𝑡,𝑥𝑠− , α̌𝑡,𝑥𝑠 )d𝑁𝑠] ≥ 𝑉ε𝑇 (𝑡, 𝑥) − 𝑜 (ε γ2) , for all ε > 0,

where 𝑜 ∶ ℝ+ → ℝ is a continuous bounded function such that 𝑜(𝑦)/𝑦 →0 as 𝑦 ↓ 0.

Proof. We split the proof into two steps.

1. Let us set 𝑊ε ∶= ε−γ/2(𝑉ε𝑇 − �̄�𝑇) and consider its relaxed semi-limits

𝑊∗(𝑡, 𝑥) ∶= lim sup(𝑡′,𝑥′)→(𝑡,𝑥)ε↓0
𝑊ε(𝑡′, 𝑥′), 𝑊∗(𝑡, 𝑥) ∶= lim inf(𝑡′,𝑥′)→(𝑡,𝑥)ε↓0 𝑊ε(𝑡′, 𝑥′) .

Note that Theorem 3.3.1 ensures that the above are well-defined and
bounded. We claim that 𝑊∗ and 𝑊∗ are respectively bounded sub- and
supersolutions of (3.34). For brevity, we will only include the details
for the proof of the subsolution property, the supersolution property is
proved similarly and we only mention how to adapt the arguments. Fixφ ∈ C(1,2)𝑏 and let (𝑡∘, 𝑥∘) ∈ [0,𝑇)×ℝ achieve a strict maximum of 𝑊∗−φ
on a ball 𝐵𝑘 ∶= {(𝑡, 𝑥) ∈ [0,𝑇)×ℝ ∶ |𝑡∘−𝑡′| ≤ (𝑇−𝑡∘)/2, |𝑥∘−𝑥′| ≤ 𝑘} ⊂[0,𝑇) ×ℝ, for some 𝑘 > 0. Then, there exist a sequence (𝑡ε𝑛 , 𝑥ε𝑛)ε𝑛 such
that ε𝑛 → 0, 𝑊ε𝑛(𝑡ε𝑛 , 𝑥ε𝑛) → 𝑊∗(𝑡∘, 𝑥∘), (𝑡ε𝑛 , 𝑥ε𝑛) → (𝑡∘, 𝑥∘), and such
that (𝑡ε𝑛 , 𝑥ε𝑛) is a maximum of 𝑊ε𝑛 −φ in the interior of 𝐵2𝑘, see e.g. [17,
Lemma 6.1]. For 𝑘 > ε1/2𝑛 (‖𝑏1‖∞ + ‖𝑏2‖∞), the viscosity subsolution
property of 𝑉ε𝑛𝑇 , applying Proposition 3.2.1 to the test function �̄�𝑇 +
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εγ/2𝑛 φ, implies that

0 ≤𝜕𝑡 (�̄�𝑇 + ε γ2𝑛φ) (𝑡ε𝑛 , 𝑥ε𝑛) + 1ε𝑛 {(�̄�𝑇 + ε γ2𝑛φ) (𝑡ε𝑛 , 𝑥ε𝑛) + ε𝑛𝑟(𝑥ε𝑛 , ̄𝑎𝑛)
− ∫(�̄�𝑇 + ε γ2𝑛φ) (𝑡ε𝑛 , 𝑥ε𝑛 + 𝑏ε𝑛(𝑥ε𝑛 , ̄𝑎𝑛, 𝑒))ν(d𝑒)}

for some ̄𝑎𝑛 ∈ 𝔸. Since φ ∈ C(1,2)𝑏 , a second order Taylor expansion
combined with Assumption 3.2 implies that

ε γ2𝑛 [𝜕𝑡φ(𝑡ε𝑛 , 𝑥ε𝑛) + 1ε𝑛 (∫φ(𝑡ε𝑛 , 𝑥ε𝑛 + 𝑏ε𝑛(𝑥ε𝑛 , ̄𝑎𝑛, 𝑒))ν(d𝑒) − φ(𝑡ε𝑛 , 𝑥ε𝑛))]
goes to 0 as 𝑛 → ∞. Thus, if ̄𝑎 is a limit point of ( ̄𝑎𝑛)𝑛≥1, we deduce
from (3.28)-(3.29) and the above that

0 ≤ 𝜕𝑡�̄�𝑇(𝑡∘, 𝑥∘)+μ(𝑥∘, ̄𝑎)𝜕𝑥�̄�𝑇(𝑡∘, 𝑥∘)+ 12σ2(𝑥∘, ̄𝑎)𝜕2𝑥𝑥�̄�𝑇(𝑡∘, 𝑥∘)+ 𝑟(𝑥∘, ̄𝑎).
In view of Proposition 3.3.1, this shows that ̄𝑎𝑛 converges to some ele-
ment of ̄𝑎 ∈ 𝔸0(𝑡∘, 𝑥∘) as 𝑛 goes to infinity, after possibly passing to a
subsequence. By (3.31) and the above,

0 ≤ 𝜕𝑡φ(𝑡ε𝑛 , 𝑥ε𝑛) + 1ε𝑛 ∫(φ(𝑡ε𝑛 , 𝑥ε𝑛 + 𝑏ε𝑛(𝑥ε𝑛 , ̄𝑎𝑛, 𝑒)) − φ(𝑡ε𝑛 , 𝑥ε𝑛)
+ ε𝑛ε− γ2𝑛 δ𝑟ε𝑛(𝑡ε𝑛 , 𝑥ε𝑛 , ̄𝑎𝑛)) ν(d𝑒).

Sending 𝑛 →∞ and using parts (i) and (ii) of Assumption 3.4 together
with Assumption 3.2, this leads to

0 ≤ 𝜕𝑡φ(𝑡∘, 𝑥∘) + μ(𝑥∘, ̄𝑎)𝜕𝑥φ(𝑡∘, 𝑥∘) + 12σ(𝑥∘, ̄𝑎)𝜕2𝑥𝑥φ(𝑡∘, 𝑥∘) + 𝑟1(𝑡∘, 𝑥∘, ̄𝑎),
so that the required subsolution property is proved on [0,𝑇) × ℝ. The
fact that 𝑊∗(𝑇, ⋅) ≤ 0 follows from the last assertion of Theorem 3.3.1.
To prove the supersolution property, it suffices to follow the same ar-
guments but choose ̄𝑎𝑛 ∈ 𝔸0(𝑡ε𝑛 , 𝑥ε𝑛) that converges to some arbitrarȳ𝑎∘ ∈ 𝔸(𝑡∘, 𝑥∘), see (iv) of Assumption 3.4. For a test function φ ∈ C(1,2)𝑏
for 𝑊∗ at (𝑡∘, 𝑥∘) ∈ [0,𝑇)×ℝ, keeping the same notations as above, this
lead to

0 ≥𝜕𝑡(�̄�𝑇 + ε γ2𝑛φ)(𝑡ε𝑛 , 𝑥ε𝑛) + 1ε𝑛 {ε𝑛𝑟(𝑥ε𝑛 , ̄𝑎𝑛) − (�̄�𝑇 + ε γ2𝑛φ) (𝑡ε𝑛 , 𝑥ε𝑛)
+∫(�̄�𝑇 + ε γ2𝑛φ) (𝑡ε𝑛 , 𝑥ε𝑛 + 𝑏ε𝑛(𝑥ε𝑛 , ̄𝑎𝑛, 𝑒))ν(d𝑒)}
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=ε γ2𝑛 (𝜕𝑡φ(𝑡ε𝑛 , 𝑥ε𝑛) + 1ε𝑛 ∫[φ(𝑡ε𝑛 , 𝑥ε𝑛 + 𝑏ε𝑛(𝑥ε𝑛 , ̄𝑎𝑛, 𝑒)) − φ(𝑡ε𝑛 , 𝑥ε𝑛)
+ε𝑛ε− γ2𝑛 δ𝑟ε𝑛(𝑡ε𝑛 , 𝑥ε𝑛 , ̄𝑎𝑛)] ν(d𝑒))

by Proposition 3.3.1 and (3.28).
By comparison, 𝑊 ∶= 𝑊∗ = 𝑊∗ is the unique bounded viscosity solu-
tion of (3.34) and is therefore equal to δ�̄�(1)𝑇 .

2. We now assume that δ�̄�(1)𝑇 is C(1,2)([0,𝑇) × ℝ) and that 𝜕2𝑥𝑥δ�̄�(1)𝑇 is δγ-
Hölder continuous in space, uniformly on [0,𝑇) × ℝ, for some δγ > 0
such that (3.37) holds. Using (3.37) and the same arguments as in the
proof of Theorem 3.3.1 lead to

lim supε↓0 ε− δγ2 ‖‖δ𝑟(1)ε ‖‖∞ < ∞, (3.40)

in whichδ𝑟(1)ε ∶= 1ε ∫(δ�̄�(1)𝑇 (⋅, ⋅ + 𝑏ε) − δ�̄�(1)𝑇 ) ν(d𝑒) + ε− γ2δ𝑟ε − 𝑟1.
− μ𝜕𝑥δ�̄�(1)𝑇 − 12σ2𝜕2𝑥𝑥δ�̄�(1)𝑇

Moreover, direct computations using the above and (3.31) show that�̄�(1),ε𝑇 defined in (3.35) solves0 = 𝜕𝑡�̄�(1),ε𝑇 + 𝑟(⋅, ǎ)+ 1ε ∫(�̄�(1),ε𝑇 (⋅, ⋅ + 𝑏ε(⋅, ǎ, 𝑒)) − �̄�(1),ε𝑇 (𝑡, 𝑥) − εε γ2δ𝑟(1)ε (⋅, ǎ)) ν(d𝑒)
on [0,𝑇) × ℝ, in which ǎ is defined as in (3.39). Together with (3.40),
this implies that, for α̌𝑡,𝑥 defined as in (3.38), we have1ηε𝔼 [∫𝑇

𝑡 𝑟(𝑋𝑡,𝑥,α̌𝑡,𝑥𝑠− , α̌𝑡,𝑥𝑠 )d𝑁𝑠] ≥ �̄�(1),ε𝑇 (𝑡, 𝑥) − ε γ2𝑂(ε),
in which 𝑂 ∶ ℝ+ → ℝ is a continuous function with 𝑂(0) = 0. On
the other hand, it follows from Part 1. that |𝑉ε𝑇 (𝑡, 𝑥) − �̄�(1),ε𝑇 (𝑡, 𝑥)| ≤𝑜(εγ/2).

Remark 3.3.3. If the limit in (3.33) is not defined, one can still define its relaxed
limit superior and limit inferior (recall that it is bounded). Let us denote them by 𝑟∗1
and 𝑟1∗ respectively. Then, 𝑊∗ defined in the above proof is simply a viscosity sub-
solution of (3.34) with 𝑟∗1 in place of 𝑟1. Similarly, 𝑊∗ is a viscosity super-solution
of the same equation but with 𝑟1∗ in place of 𝑟1. This still provides asymptotic upper
and lower bounds for ε−γ/2(𝑉ε𝑇 − �̄�𝑇).
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Example 3.3.1. To illustrate the above, we consider a toy model in which explicit
solutions can be derived. Although it does not satisfy our general assumptions, e.g. of
boundedness and Hölder regularity in space, we shall see that a similar approach can
still be applied. We consider the dynamics

𝑋𝑡,𝑥,α = 𝑥 +∫⋅
𝑡 𝑋𝑡,𝑥,α𝑠− ∫(ε𝑏1(α𝑠, 𝑒) + √ε𝑏2(α𝑠, 𝑒))𝑁(d𝑒,d𝑠),

in which 𝑏1 and 𝑏2 are bounded and continuous with respect to their first argument,
uniformly in the second one. For β ∈ (0, 1], the value function is defined as

𝑉ε𝑇 (𝑡, 𝑥) = supα∈A𝑡
1ηε𝔼 [∫𝑇

𝑡 ∫||𝑋𝑡,𝑥,α𝑠− ||β 𝑟(α𝑠)d𝑁𝑠] ,
for some continuous function 𝑟. Then, one easily checks that �̄�𝑇(𝑡, 𝑥) = ̄𝑓 (𝑡) |𝑥|β in
which ̄𝑓 solves

𝜕𝑡 ̄𝑓 + sup̄𝑎∈𝔸 ( ̄𝑓 {βμ( ̄𝑎) + 12β(β − 1)σ2( ̄𝑎)} + 𝑟( ̄𝑎)) = 0, on [0,𝑇) × ℝ,
with ̄𝑓 (𝑇) = 0. Because |𝑥|β factorizes, the Hölder constant of 𝜕2𝑥𝑥�̄�𝑇 can be con-
sidered around 𝑥 = 1. Since the third-order space derivative of �̄�𝑇 is bounded in
a neighbourhood of 1, Theorem 3.3.1 applies with β = 1. The convergence rate is
therefore of order ε1/2. Moreover, by direct computations, the first order correction
term is of the form δ�̄�(1)𝑇 (𝑡, 𝑥) = δ ̄𝑓 (𝑡) |𝑥|β where δ ̄𝑓 ≢ 0 solves

𝜕𝑡δ ̄𝑓 + sup̄𝑎∈𝔸0 (δ ̄𝑓 (βμ( ̄𝑎) + 12β(β − 1)σ2( ̄𝑎)) + 𝑟1(⋅, ̄𝑎)) = 0 on [0,𝑇)
with δ ̄𝑓 (𝑇) = 0, in which

(𝑡, ̄𝑎) ∈ [0,𝑇] × 𝔸 ↦ 𝑟1(𝑡, ̄𝑎) ∶= β(β − 1)ℓ (∫(𝑏1𝑏2)( ̄𝑎, 𝑒)ν(d𝑒)) ̄𝑓 (𝑡)
for some (explicit) continuous map ℓ with linear growth. In particular, this shows
that the convergence rate in ε1/2 proved in Theorem 3.3.1 is sharp.

3.3.6 Higher‐order expansions

To conclude this section, note that higher order expansions can be obtained.
As opposed to Section 3.3.5, we only provide here a verification argument,
upon assuming the existence of an associated system of parabolic equations.
Namely, let us assume the following.
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Assumption 3.5.
There exists (δγ𝑖)𝑖=0,…,𝑖∘ ⊂ (0, 1]𝑖∘+1 together with C(1,2)([0,𝑇) × ℝ) ∩𝐶0([0,𝑇] × ℝ) functions (δ�̄�(𝑖)𝑇 )𝑖=0,…,𝑖∘ such that, for 𝑖 = 0,⋯ , 𝑖∘, 𝜕2𝑥𝑥δ�̄�(𝑖)𝑇
is δγ𝑖-Hölder in space, uniformly on [0,𝑇) × ℝ, and δ�̄�(𝑖)𝑇 solves

𝜕𝑡δ�̄�(𝑖)𝑇 + μ(⋅, ǎε)𝜕𝑥δ�̄�(𝑖)𝑇 + 12σ(⋅, ǎε)2𝜕2𝑥𝑥δ�̄�(𝑖)𝑇 + 𝑟𝑖(⋅, ǎε) = 0
on [0,𝑇) ×ℝ with boundary condition δ�̄�(𝑖)𝑇 (𝑇, ⋅) = 0 onℝ, in which ǎε is
a Borel measurable map such that

ǎε ∈ argmax̄𝑎∈𝔸 (μ(⋅, ̄𝑎)𝜕𝑥�̄�(𝑖∘),ε𝑇 + 12σ(⋅, ̄𝑎)2𝜕2𝑥𝑥�̄�(𝑖∘),ε𝑇 + 𝑟(⋅, ̄𝑎)) ,
with

 �̄�(𝑖∘),ε𝑇 ∶= δ�̄�(0)𝑇 + 𝑖∘∑𝑗=1 ε γ𝑗−12 δ�̄�(𝑗)𝑇 , in which γ𝑖∶= 𝑖∑𝑗=0 δγ𝑗 for 𝑖 ≤ 𝑖∘,
and, using the conventions δγ−1 ∶= 0 and δ𝑟(−1)ε ∶= 𝑟, for 0 ≤ 𝑖 ≤ 𝑖∘,

δ𝑟(𝑖)ε ∶= 1ε ∫(δ�̄�(𝑖)𝑇 (⋅, ⋅ + 𝑏ε) − δ�̄�(𝑖)𝑇 ) ν(d𝑒) + ε− δγ𝑖−12 δ𝑟(𝑖−1)ε
− μ𝜕𝑥δ�̄�(𝑖)𝑇 − 12σ2𝜕2𝑥𝑥δ�̄�(𝑖)𝑇 − 𝑟𝑖

𝑟𝑖 ∶= 𝑟1{𝑖=0} + 1{𝑖>0} limε→0 ε− δγ𝑖−12 δ𝑟(𝑖−1)ε for 𝑖 ≤ 𝑖∘. (3.41)

The limits in (3.41) are well-defined on [0,𝑇) × ℝ × 𝔸, and

lim supε↓0 ε− δγ𝑖∘2 ‖ε− δγ𝑖∘−12 δ𝑟(𝑖∘−1)ε − 𝑟𝑖∘‖∞ < ∞. (3.42)

Proposition 3.3.3.
Let Assumption 3.5 hold. Then, for all (𝑡, 𝑥) ∈ [0,𝑇] × ℝ,

lim supε↓0 ε− γ𝑖∘2 ||𝑉ε𝑇 − �̄�(𝑖∘),ε𝑇 || (𝑡, 𝑥) < ∞.
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Moreover, the control defined by

α̌𝑡,𝑥ε,𝑠 = ǎε(𝑠,𝑋𝑡,𝑥,α̌𝑡,𝑥ε𝑠− ), 𝑠 ∈ [𝑡,𝑇),
satisfies

1ηε𝔼 [∫𝑇
𝑡 𝑟(𝑋𝑡,𝑥,α̌𝑡,𝑥ε𝑠− , α̌𝑡,𝑥ε,𝑠)d𝑁𝑠] ≥ 𝑉ε𝑇 (𝑡, 𝑥) − 𝐶ε γ𝑖∘2 , for all ε > 0,

for some constant 𝐶 > 0.

Proof. With the above construction

0 = 𝜕𝑡�̄�(𝑖∘),ε𝑇 + 1ε ∫(�̄�(𝑖∘),ε𝑇 (⋅, ⋅ + 𝑏ε(⋅, ǎε, 𝑒)) − �̄�(𝑖∘),ε𝑇 ) ν(d𝑒)
− ε γ𝑖∘−12 δ𝑟(𝑖∘)ε (⋅, ǎε) + 𝑟(⋅, ǎε)

on [0,𝑇) × ℝ, while

0 ≥ 𝜕𝑡�̄�(𝑖∘),ε𝑇 + 1ε ∫(�̄�(𝑖∘),ε𝑇 (⋅, ⋅ + 𝑏ε(⋅, a, 𝑒)) − �̄�(𝑖∘),ε𝑇 ) ν(d𝑒)
− ε γ𝑖∘−12 δ𝑟(𝑖∘)ε (⋅, a) + 𝑟(⋅, a)

on [0,𝑇) ×ℝ for all a ∶ [0,𝑇) ×ℝ → 𝔸. By (3.42) and the same arguments as
in the proof of Theorem 3.3.1,

lim supε↓0 ε− δγ𝑖∘2 ‖δ𝑟(𝑖∘)ε ‖∞ < ∞,
so that the required result follows by verification.

3.4 Application to an Auction Problem
Repeated online auction bidding is a typical problem in which the real value
of the parameters 𝑏, 𝑟 and ν are unknown, and on which reinforcement learn-
ing techniques are applied. The latter requires to estimate, very quickly, the
optimal control for different sets of parameters. Being modelled as a discrete-
time problem, with fixed auction times, or more realistically in the form of
a pure-jump problem as in Section 3.2, see also [54], we face in any case the
fact that auctions are issued almost continuously which corresponds to a very
small time step in the discrete-time version or to a very large intensity in the
pure-jump modelling. The numerical cost of a precise estimation of the op-
timal control is too important to combine it with a reinforcement learning
approach.
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3.4.1 Model and description of the optimal policy

We consider here a simple auction problem motivated by online advertising
systems. A single ad campaign is provided several opportunities to buy ad
space to display its ad over the course of the day. These ad spaces arrive at
random, according to the point process 𝑁, since they are dependent on users
from specific targeted audiences loading a website. In real-world display ad-
vertising, the kind encountered on the sides of web pages, these opportunit-
ies take the form of an auction between several bidders and an ad-exchange
platform.

The format of the auction used is critical to the strategic behaviour of
bidders and the revenue of the seller, see Chapter 6 for details. There is a
large amount of literature in auction theory on the subject, see e.g. [92, 98, 99],
and real-world auctions can take very complex formats. For simplicity, we
consider an auctioneer who has implemented a lazy second-price auction [99,
115] with individualised reserve price. In this format, our bidding agent wins
the ad slot if it submits a bid above its (henceforth the) reserve price and the
competition, and if it wins it pays the maximum between the reserve price
and the competition. For a given reserve price 𝑥, a bid 𝑎 ∈ (0, +∞) and a
random competition bid 𝐵 ≥ 0 following a smooth probability distribution𝐹𝐵, the expected payoff 𝑟(𝑥, 𝑎) for an auction is thus expressible through a
simple integration by parts as

𝑟(𝑥, 𝑎) = 𝔼[(𝑣 − 𝑥 ∨ 𝐵)1𝑎≥𝑥∨𝐵] = 1𝑎≥𝑥 ((𝑣 − 𝑎)𝐹𝐵(𝑎) +∫𝑎
𝑥 𝐹𝐵(𝑏)d𝑏) , (3.43)

in which 𝑣 is the value of the ad-slot for the bidder. Note that 𝑟 is not con-
tinuous as it is assumed in the preceding sections. In practice, one can re-
place it with a smooth approximation. In the following, we shall construct a
numerical scheme directly on 𝑟, without smoothing. It turns out that conver-
gence still seems to be observed at the rate ε1/2. Intuitively, this is due to the
fact that the maximum values obtained in (3.7) and (3.14) are the same for 𝑟
defined with 1𝑎≥𝑥 and 1𝑎>𝑥 whenever 𝑥 < sup𝔸, which is true at each time
with probability one for the controlled processes defined below.

As the right-hand side of (3.43) highlights, reserve prices are a mech-
anism put in place by sellers to compensate for lack of competition, which
would drive down the price and their profits, see Chapter 6. It is well es-
tablished that a reserve price is not as profitable as increasing the number
of participants by one [41]. Consequently, when there are many bidders a
control will have little effect on the system. To clearly demonstrate the use
of controlling the reserve price, we study a strongly asymmetric setting, in
which the agent has a value 𝑣 = 0.5 much higher than the competition 𝐹𝐵,
which we take uniform on (0, 0.3). In this setting, it is directly competing
against the seller for its extra value above the average competition. For the
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purpose of this example, we do not want to go to the limit of this asymmetry,
the posted-price auction in which there is no competition, as it could lead the
control problem to degeneracy, such as negative prices and difficult bound-
ary conditions.

There is a large literature on revenue maximisation algorithms in on-
line auctions, or how to set the reserve price to maximise revenue, such as
[27, 39, 42]. See also Sections 1.3 and 5.1. For the sake of simplicity, in this ex-
ample, we will model the dynamics of the reserve price using a simple mean
reverting process:𝑏1(𝑥, 𝑎, 𝑒) = 𝑞𝑎 + (1 − 𝑞)𝑟0 − 𝑥 and 𝑏2(𝑥, 𝑎, 𝑒) = 𝑒 with ν ∼ Unif(−0.1, 0.1),

with 𝑞 ∈ (0, 1) and 𝑟0 ∈ ℝ+. The reserve price process 𝑋𝑡,𝑥,α is then
defined from these coefficients as in (3.4), with 𝑏 ∶= 𝑏ε = ε𝑏1 + √ε𝑏2 andη ∶= ηε = ε−1. This corresponds to setting a minimum reserve price (1−𝑞)𝑟0,
and tracking the agent’s bid with aggressiveness measured by 𝑞. Setting 𝑟0 =0.15 as the monopoly price of the competition guarantees the seller a better
revenue against the competition, while 𝑞𝑎 allows him to pursue the agent’s
extra value. We set 𝑞 = 1/2, for a balance between prudence and aggression.

The control problem consists in maximising the static auction revenue
while considering the impact bids have on the system. In the static auction
format, we can identify three domains the reserve price can be in: “non-
competitive”, “competitive”, and “unprofitable”. When the reserve price
is below the competition’s average3 There is essentially no prejudice to the
agent since the reserve price barely affects his profits. Therefore there is no
need to compete with and control the reserve price. On the other hand, when
the reserve price is in the range between 0.3 and 𝑣 = 0.5, the reserve price
becomes the dominant term in 𝑟 and the agent has to compete with the seller
over the value margin it has relative to other buyers. Finally, if the reserve
price is above 𝑣, there is no possible profit so no reason to take part in the
auction by bidding 𝑎 > 0. For the same reason, we take 𝔸 ∶= [0, 0.5].

When the reserve price is dynamic, a good control seeks to maximise
profit while pushing the reserve price to the non-competitive domain. One
can see this in effect on Fig. 3.1. In the non-competitive regime (left), starting
at a reserve price of 0.15, this policy recovers 85% of the best possible income
of the static setting, where the reserve price is 0 for all 𝑡, and the average price
is 0.5 − 𝔼[𝐵] = 0.35. In the competitive regime (centre), the policy bids just
above the reserve price to apply downward pressure until it reaches the non-
competitive domain again. Finally, in the unprofitable regime (right), the
agent boycotts the auction by bidding 0, bringing down the price. Notice how,
when the agent stops boycotting, there is an inflection point in the downward
trend of the price, schematically represented by the dotted line.

3Recall that the competition here models the distribution of the maximum bid of all other
participants, so this average is the average of the maximum of other participants’ bids.
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Figure 3.1: Selected sample realisations of the system for ε = 10−1.5, starting
from 𝑥 = 0.15 (left), 𝑥 = 0.35 (centre), and 𝑥 = 0.7 (right).

3.4.2 Numerical implementation

Adapting (3.7) and (3.14), we normalise the horizon 𝑇 to 1, and allow the
reserve price to vary in ℝ. This allows us to easily set boundary conditions
for the equation. When an auction happens with a price 𝑥 ≤ 0, the price is
set by the competition, which will be a.s. positive. Thus as 𝑥 → −∞, the
reserve price becomes irrelevant and the value converges to the value of a
single auction without reserve price. Conversely, for ε < 1, as 𝑥 → +∞,
the probability of 𝑋0,𝑥,α⋅ descending below 𝑣 by time 𝑇 and generating any
revenue decreases due to the noise. Hence, a Neumann boundary condition
set to 0 is appropriate at [0, 1) × {−∞,+∞}. In numerical resolution, we will
use Neumann boundary conditions equal to 0 on [0, 1) × {−1, 3}. Given this
domain for the reserve price, we can set the controls on an even mesh in𝔸 = [0, 0.5], of fineness 0.01, denoted by 𝔸𝑛 ∶= {10−2𝑘; 𝑘 = 0,… , 50}.

We solve both problems numerically with an explicit finite difference
solver, and for simplicity a Riemann sum using the same mesh for the nu-
merical integration part of (3.7). This formulation is equivalent to a Markov
Chain control problem, see e.g. [78]. Let M𝑡 ∶= {𝑘Δ𝑡 ; 𝑘 = 0,… , ⌊1/Δ𝑡⌋},
M𝑥 ∶= {−1 + 𝑘Δ𝑥 ; 𝑘 = 0,… , ⌊4/Δ𝑥⌋} be the time and space meshes, with
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finenesses Δ𝑥 = ε3/2/2, Δ𝑡 = Δ2/3𝑥 . Denote 𝑉ε,Δ𝑇,𝑛(𝑥𝑖) the output of the solver at
time 𝑡𝑛 ∈ M𝑡 and position 𝑥𝑖 ∈ M𝑥. For the pure jump problem, we explicitly
compute:

𝑉ε,Δ𝑇,𝑛(𝑥𝑖) = 𝑉ε,Δ𝑇,𝑛+1(𝑥𝑖)
+ Δ𝑡ε sup𝑎∈𝔸𝑛

( ∑𝑥𝑗∈M𝑥
𝑉ε,Δ𝑇,𝑛+1(𝑥𝑗)𝑓 ν,ε𝑥𝑖,𝑎(𝑥𝑗)Δ𝑥 − 𝑉ε,Δ𝑇,𝑛+1(𝑥𝑖) + 𝑟(𝑥𝑖, 𝑎))

in which 𝑓 ν,ε𝑥,𝑎 is the transition kernel induced by 𝑏1(𝑥, 𝑎, ⋅), 𝑏2(𝑥, 𝑎, ⋅), and ν.
For the diffusion, we consider meshes M̄𝑡 = {𝑘𝑑𝑡 ; 𝑘 = 0,… , ⌊1/𝑑𝑡⌋}, M̄𝑥 ={−1 + 𝑘𝑑𝑥 ; 𝑘 = 0,… , ⌊4/𝑑𝑥⌋}, with 𝑑𝑥 = 10−2, 𝑑𝑡 = 𝑑2𝑥 and solve recursively

�̄�Δ𝑇,𝑛(𝑥𝑖)= �̄�Δ𝑇,𝑛(𝑥𝑖)+𝑑𝑡 sup𝑎∈𝔸𝑛
{(𝑞𝑎+(1−𝑞)𝑟0−𝑥𝑖)δ𝑢𝑥�̄�Δ𝑇,𝑛(𝑥𝑖)+σ22 δ𝑥𝑥�̄�Δ𝑇,𝑛(𝑥𝑖)+𝑟(𝑥𝑖, 𝑎)}

where δ𝑢𝑥 and δ𝑥𝑥 are the uplift first order and centred second order finite
differences on M̄𝑥 respectively.

To give some insight into the complexity trade-off, see that, when ε is
large, there are relatively few jumps so the time iteration will not require
many steps to get an accurate solution. This scaling is indicated by the Δ𝑡/ε
term. At the same time, the jumps are large so even a coarse mesh in 𝑥 will
be sufficient for the numerical integration to approach the integral. Unfortu-
nately as ε → 0, one must refine both the time mesh, linearly with 1/ε, and
the integration mesh which is paid quadratically due to the non-local nature
of the equation. In practice, this makes computations grow at a super-cubic
rate with ε, which becomes prohibitively expensive quickly. In our example
problem, the noise is supported on a bounded interval of size ε1/2, and one
thus saves some computation time. Figure 3.2 shows the computation cost
(pictured with dots) still grows super-quadratically and overcomes the cost
of our accurate diffusion mesh (solid horizontal line) even for large ε. Even
though we computed the diffusive limit to very high precision, and with an
explicit scheme, for ε of the order of 10−3 the CPU time spent on the resol-
ution is already 6 times higher in the pure-jump problem. Note that, in the
pure-jump case, if the control were to intervene in a non-linear way we might
need to also refine the control mesh with ε, further increasing the computa-
tional burden.

Beyond gains in computation, Fig. 3.3 verifies that Theorem 3.3.1 holds
with meaningful constants in finite time on this problem. Figure 3.3 shows
that the error is very low even for large values of ε, and decreases at the
correct rate of ε1/2. Likewise, Fig. 3.4 shows the rate of Proposition 3.3.2 also
holds even for large ε.
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Figure 3.4: Limit policy error relative to 𝑉ε𝑇 , at 𝑡 = 0 (log scales).

3.5 A Remark on the Diffusive Limit of Discrete‐
Time Problems

Instead of considering the diffusive limit of a continuous time pure-jump
problem, one could similarly consider a sequence of pure discrete-time prob-
lems with actions at time 𝑡𝑛𝑖 ∶= 𝑖𝑇/𝑛, 𝑖 ≤ 𝑛:

𝑉𝑛𝑇(𝑡, 𝑥) ∶= supα∈A 𝑇𝑛𝔼 [ 𝑛∑𝑖=1 1{𝑡𝑛𝑖 ≥𝑡}𝑟(�̂�𝑡,𝑥,α𝑡𝑛𝑖 − ,α𝑡𝑛𝑖 )] ,
with �̂�𝑡,𝑥,α defined by

�̂�𝑡,𝑥,α = 𝑥 + 𝑛∑𝑖=1 1{𝑡𝑛𝑖 ∈(𝑡,⋅]}𝑏(�̂�𝑡,𝑥,α𝑡𝑛𝑖 − ,α𝑡𝑛𝑖 , ξ𝑛𝑖 )
and in which (ξ𝑛𝑖 )𝑖≥1 is i.i.d. following the distribution ν and A is the col-
lection of 𝔸-valued predictable processes, with respect to the ℙ-augmented
filtration generated by 𝑛∑𝑖=1 1{𝑡𝑛𝑖 ∈[0,⋅]} exp(ξ𝑛𝑖 ).

Upon taking 𝑏 of the form

𝑏𝑛 = 𝑇𝑛 𝑏1 +√𝑇𝑛 𝑏2, with 𝔼[𝑏2(⋅, ξ𝑛1)] = 0,
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one would obtain the same diffusive limit as in Section 3.3.3 when letting𝑛 → ∞. Namely, the same arguments as in [57, § 3] combined with Proposi-
tion 3.3.1 and the fact that comparison holds for (3.14) imply that lim𝑛→∞ 𝑉𝑛𝑇
is well-defined and is equal to �̄�𝑇.

One can also check that the convergence holds at a speed 𝑛−γ/2. Let us
sketch the proof. First, the same arguments as in the proof of Theorem 3.3.1
imply that

δ𝑟𝑛 ∶= 𝑛𝑇𝔼 [�̄�𝑇(⋅, ⋅ + 𝑏𝑛(⋅, ξ𝑛𝑖 )) − �̄�𝑇] − μ𝜕𝑥�̄�𝑇 − 12σ2𝜕𝑥𝑥�̄�𝑇
satisfies ‖δ𝑟𝑛‖∞ ≤ 𝐶𝑛− γ2 (3.44)

for some 𝐶 > 0 independent on 𝑛. Thus, by Proposition 3.3.1

0 = 𝜕𝑡�̄�𝑇(𝑡, 𝑥)𝑇𝑛+ sup𝑎∈𝔸 𝔼 [�̄�𝑇(𝑡, 𝑥 + 𝑏𝑛(𝑥, 𝑎, ξ𝑛1)) − �̄�𝑇(𝑡, 𝑥) + 𝑇𝑛 (𝑟(𝑥, 𝑎) − δ𝑟𝑛(𝑡, 𝑥, 𝑎))]
so that�̄�𝑇(𝑡𝑛𝑖 , 𝑥)
= sup𝑎∈𝔸 𝔼 [∫

𝑡𝑛𝑖+1
𝑡𝑛𝑖

𝜕𝑡�̄�𝑇(𝑡𝑛𝑖 , 𝑥)d𝑠 + �̄�𝑇(𝑡𝑛𝑖 , 𝑥 + 𝑏𝑛(𝑥, 𝑎, ξ𝑛𝑖+1))
+ 𝑇𝑛 (𝑟(𝑥, 𝑎) − δ𝑟𝑛(𝑡𝑛𝑖 , 𝑥, 𝑎))]= sup𝑎∈𝔸 (𝔼 [�̄�𝑇(𝑡𝑛𝑖+1, 𝑥 + 𝑏𝑛(𝑥, 𝑎, ξ𝑛𝑖+1)) + 𝑇𝑛 𝑟(𝑥, 𝑎)]

+ 𝔼 [∫𝑡𝑛𝑖+1
𝑡𝑛𝑖

[𝜕𝑡�̄�𝑇(𝑡𝑛𝑖 , 𝑥) − 𝜕𝑡�̄�𝑇(𝑠, 𝑥 + 𝑏𝑛(𝑥, 𝑎, ξ𝑛𝑖+1)) − δ𝑟𝑛(𝑡𝑛𝑖 , 𝑥, 𝑎)]d𝑠]) .
We then use (3.24) and (3.44) to obtain that�̄�𝑇(𝑡𝑛𝑖 , 𝑥)

= sup𝑎∈𝔸 𝔼 [�̄�𝑇(𝑡𝑛𝑖+1, 𝑥 + 𝑏𝑛(𝑥, 𝑎, ξ𝑛𝑖+1)) + 𝑇𝑛 𝑟(𝑥, 𝑎) +∫𝑡𝑛𝑖+1
𝑡𝑛𝑖

𝜛𝑛(𝑠, 𝑥, 𝑎)d𝑠]
in which ‖𝜛𝑛‖∞ ≤ 𝐶𝑛− γ2 , for some 𝐶 > 0 independent of 𝑛. It follows that

�̄�𝑇(𝑡𝑛𝑖 , 𝑥) = supα∈A 𝔼[𝑇𝑛 𝑛∑𝑗=𝑖 𝑟(�̂�𝑡,𝑥,α𝑡𝑛𝑗 − ,α𝑡𝑛𝑖 ) +∫𝑇
𝑡𝑛𝑖

𝜛𝑛(𝑠, �̂�𝑡,𝑥,α𝑠 ,α𝑠)d𝑠] ,
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which provides the expected result since 𝜕𝑡�̄�𝑇 is bounded.
Likewise, the Markov control defined through (3.32) can be shown to be𝑛−γ/2-optimal for 𝑉𝑛𝑇, see the proof of Proposition 3.3.2.

Conclusion
We studied the diffusion limit of a pure-jump control problem as the jump
intensity goes to infinity, upon assuming a correct scaling of the coefficients.
Under appropriate conditions, we showed that the second-order derivative
of the value function associated with the limiting diffusing problem is Hölder
continuous and that its Hölder exponent drives the convergence rate. Con-
vergence can even be improved by using a first (or even higher) order cor-
rection scheme. This approach is particularly efficient for the numerical ap-
proximation of the optimal control associated with a pure jump process with
large intensity, as is the case in auctions associated with online advertising
systems.
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Chapter 4
Diffusive Limit

Approximation of
Optimal Ergodic

Control Problems

Motivated by the design of fast reinforcement learning al-
gorithms, we study the diffusive limit of a class of pure jump
ergodic stochastic control problems. We show that, whenever
the intensity of jumps is large enough, the approximation er-
ror is governed by the Hölder continuity of the Hessian matrix
of the solution to the limit ergodic partial differential equation.
This extends to this context the results of Chapter 3. We also
explain how to construct a first-order error correction term un-
der appropriate smoothness assumptions. Finally, we quantify
the error induced by the use of the Markov control policy con-
structed from the numerical finite difference scheme associated
with the limit diffusive problem, which seems to be new in the
literature and of its own interest. This approach permits a very
significant reduction in numerical resolution costa.

aThis Chapter is under review as an article in Stochastic Processes
and Applications, see [3]

* * *
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4.1 Introduction

Let 𝑁 be a random point process ην(d𝑒)d𝑡, for some finite probability meas-
ure ν on ℝ𝑑′ , 𝑑′ ∈ ℕ, η > 0, and let 𝑋𝑥,α be the solution of

𝑋𝑥,α = 𝑥 +∫⋅
0 ∫ℝ𝑑′ 𝑏(𝑋𝑥,α𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠) ,

in which α belongs to the set A of predictable controls with values in some
given compact set 𝔸 ⊂ ℝ𝑚 and the initial data 𝑥 ∈ ℝ𝑑, 𝑚 ∈ ℕ. Under
some standard stability assumptions, the value of the ergodic optimal control
problem ρ∗ ∶= supα∈A lim inf𝑇→+∞ 1η𝑇𝔼 [∫𝑇

0 𝑟(𝑋0,α𝑠− ,α𝑠)d𝑁𝑠]
with 𝑁𝑡 ∶= 𝑁(ℝ𝑑′ , [0, 𝑡]), 𝑡 ≥ 0, along with some continuous function w,
solves the integro-differential equation

ρ∗ + sup𝑎∈𝔸 {η∫ℝ𝑑′ [w(⋅ + 𝑏(⋅, 𝑎, 𝑒)) − w]ν(d𝑒) + 𝑟(⋅, 𝑎)} = 0 on ℝ𝑑 (4.1)

possibly in the viscosity solution sense. This characterisation leads to nu-
merical schemes for approximating the value of the problem and the Markov
optimal control.

However, (4.1) is non-local in nature which means that, unless ν is con-
centrated on a small number of points, the cost of numerical approximation
is large, in particular when the intensity η is. This is a problem, e.g., for
bidding problems (see Section 1.3) in online display-ad auctions, where the
system moves near-continuously in time, meaning that η is very large, and
where unknown system parameters motivate the use of reinforcement learn-
ing to solve the control problem (see Section 1.2). Reinforcement learning
compounds the cost by requiring the computation of ρ∗ for many plausible
values of the parameters.

On the other hand, when η is very large, asymptotic regimes exist which
offer an alternative approximation path, notably the diffusive limit on which
this thesis focuses. Indeed, taking η = ε−1 and 𝑏(𝑥, 𝑎, 𝑒) = ε𝑏1(𝑥, 𝑎, 𝑒) +ε1/2𝑏2(𝑥, 𝑒), with ∫ℝ𝑑′ 𝑏2(⋅, 𝑒)ν(d𝑒) = 0, an immediate second order expansion
shows that (ρ∗,w) converges as ε → 0 to the solution (ρ̄∗, w̄) of

ρ̄∗ + sup̄𝑎∈𝔸 {Dw̄∫ℝ𝑑′𝑏1(⋅, ̄𝑎, 𝑒)ν(d𝑒) + Tr [∫ℝ𝑑′𝑏2𝑏⊤2 (⋅, 𝑒)ν(d𝑒)D2w̄] + 𝑟(⋅, 𝑎)} = 0
(4.2)

on ℝ𝑑.
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Unlike (4.1), (4.2) is a local equation and much more easily solved numer-
ically. Note that another possible limit regime, albeit less precise, is obtained
via a first-order expansion as in [54], which corresponds to considering a
fluid limit.

For such a specification of the coefficients (η, 𝑏), the existence of a dif-
fusive limit is expected, see e.g. [66] for general results on the convergence
of stochastic processes. Stability of viscosity solutions, see e.g. [57, § 3], can
also be used to prove the convergence of the value function of stochastic con-
trol problems. This has been a subject of particular interest in the insurance
and queueing network literatures, see e.g. [21, 43, 45]. Nonetheless, these ap-
proaches do not permit to characterize the speed of convergence in the case of
a (generic) ergodic optimal control problem as defined in Section 4.2 below,
which is essential for studying general reinforcement learning problems, see
Chapter 5.

The aim of this chapter is to characterize this convergence speed and
explain how to numerically construct, in an efficient way, an approximation
of the optimal control. A first step in this direction was made in Chapter 3
by considering finite time horizon problems. Such problems are easier to
handle from a mathematical point of view but are unfortunately less adapted
to reinforcement learning algorithms, see Section 1.2.

Still, a similar approach can be used, up to additional technicalities. As
in Chapter 3, we study the regularity of w̄ in the solution couple to (4.2). We
show that its second order derivative is (locally) γ-Hölder with a constant
of at most linear growth in 𝑥, for some γ ∈ (0, 1], whenever the coefficients
of (4.2) are uniformly Lipschitz in space, ∫ 𝑏1(⋅, 𝑒)ν(d𝑒) has linear growth, 𝑏2
and 𝑟 are continuous and bounded and under a uniform ellipticity condi-
tion. By a second-order Taylor expansion, this allows us to pass (rigorously)
from (4.2) to (4.1) up to an error term of order εγ/2 (locally), and therefore
provides the required convergence rate by verification. In general, this rate
cannot be improved. As a by-product, the Markov control taken from the
Hamilton-Jacobi-Bellman equation of the diffusive limit problem provides
an εγ/2-optimal control for the original pure-jump control problem. Under
additional regularity assumptions, it can even be improved by constructing
a first-order correction term.

In principle, this provides an efficient way of constructing an almost op-
timal Markov control . However, it still remains to build up a pure numerical
scheme. To complete the picture we therefore derive a convergence rate for a
finite difference method for the numerical estimation of ρ̄∗, depending again
on γ. More importantly, we explain how to numerically construct an almost
optimal Markov control process based on a smoothed version of the numer-
ical approximation of w̄ and we obtain a convergence rate towards ρ̄∗, and
therefore ρ∗, of the expected average gain associated to such a control. The
latter seems to be (surprisingly) completely new and of own interest in the
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optimal control literature.
As an example of application, we consider in Section 4.5 a simplified

repeated online auction bidding problem, where a buyer seeks to maximise
its profit when facing both competition and a seller who adapts its price to
incoming bids. This example extends the one of Section 3.4. Our numer-
ical experiments show that our approximation permits a considerable gain
in computation time (as expected).

Note that we restrict here to the case where 𝑏2 does not depend on the
value of the control, meaning that w̄ solves a semi-linear equation. In prin-
ciple, the fully non-linear case could be studied along the same lines of argu-
ments but the required regularity of the corresponding function w̄ would be
much more complex to derive. We avoid considering this more general case
for the sake of simplicity (note that standard reinforcement learning prob-
lems use simple additive noises, see Chapter 5).

Notations

We collect here some standard notations that will be used throughout this
chapter. Any element 𝑥 of ℝ𝑑 is viewed as a column vector. 𝕄𝑑 (resp. 𝕊𝑑)
denotes the collection of (resp. symmetric) 𝑑-dimensional matrices. On ℝ𝑑
or 𝕄𝑑, the superscript ⊤ denotes transposition, we set 𝑥𝑦 ∶= 𝑥⊤𝑦 and ‖𝑥‖ ∶=√𝑥𝑥 for 𝑥, 𝑦 ∈ ℝ𝑑. We let Tr[𝑀] denote the trace of 𝑀 ∈ 𝕄𝑑 and ‖𝑀‖ be
the Euclidean norm of 𝑀 viewed as a vector of ℝ𝑑×𝑑. We denote by Bℓ(𝑥)
the open ball centred at 𝑥 ∈ ℝ𝑑 of radius ℓ > 0. Given an open set U ⊂ ℝ𝑛,𝑛 ≥ 1, 𝑝 ∈ {0, 1, 2}, we use the standard notation C𝑝(U ) to denote the space
of 𝑝-times continuously differentiable real-valued maps 𝑢 on U, and C𝑝𝑏(U ) to
denote the subspace of functions 𝑢 ∈ C𝑝(U ) such that

‖𝑢‖C𝑝𝑏(U ) ∶= 𝑝∑𝑗=0 sup𝑥∈U ||D𝑗𝑢(𝑥)|| < ∞
in which D0𝑢 ∶= 𝑢, D1𝑢 is the gradient of 𝑢, as a line vector, D2𝑢 is the
Hessian matrix of 𝑢. When 𝑝 = 0, and even if 𝑢 is not continuous, we simply
write ‖𝑢‖∞,U to denote the sup of |𝑢| on U. Given γ ∈ [0, 1], we denote theγ-Hölder modulus of 𝑢 ∈ C0(U ) on U as

[𝑢]γC0(U ) ∶= sup𝑥,𝑥′∈U
|𝑢(𝑥′) − 𝑢(𝑥)||𝑥′ − 𝑥|γ ,

where we use the convention 0/0 = 0. If 𝑢 = (𝑢1,⋯ , 𝑢𝑑) takes values inℝ𝑑, 𝑑 ≥ 1, we use the same notation to denote the sum of the elements{[𝑢𝑖]γC0(U ), 𝑖 ≤ 𝑑}. We write 𝑢 ∈ C𝑝,γ(U ) if D𝑝𝑢 is γ-Hölder on each compact
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subset of U, and 𝑢 ∈ C𝑝,γ𝑏 (U ) if

‖𝑢‖C𝑝,γ𝑏 (U ) ∶= ‖𝑢‖C𝑝𝑏(U ) + [D𝑝𝑢]γC0(U ) < ∞.
In particular C0,1(U ) denotes the set of Lipschitz functions on U.

If 𝑢 is restricted to take values in a subset U′ of ℝ, we write C𝑝(U ;U′),
C𝑝𝑏(U ;U′), C𝑝,γ(U ;U′) or C𝑝,γ𝑏 (U ;U′) for the corresponding sets. We also use the
notation C0lin(U ) to denote the collection of continuous real-valued function 𝑢
such that

[𝑢]C0lin(U ) ∶= sup𝑥∈U
|𝑢(𝑥)|1 + ‖𝑥‖ < ∞.

In all the above notations, we omit U if it is equal to ℝ𝑑 and U′ if it is clear.

4.2 Pure‐Jump Ergodic Optimal Control

In order to alleviate notations, we first consider the case where the intensity of
the jump process is given, and recall rather standard results from the ergodic
control literature.

Let Ω = 𝔻 denote the space of 𝑑-dimensional càdlàg functions on ℝ+
andM(ℝ𝑑′×ℝ+)denote the collection of positive finite measures onℝ𝑑′×ℝ+,
for some 𝑑, 𝑑′ ∈ ℕ∗. Consider a measure-valued map 𝑁 ∶ 𝔻 ↦M(ℝ𝑑′×ℝ+)
and a probability measure ℙ on 𝔻 such that 𝑁 is a right-continuous real-
valuedℝ𝑑′-marked point process with compensator ην(d𝑒)d𝑡, in which η > 0
and ν is a probability measure on ℝ𝑑′ . See Chapter 3 or, e.g. , [37]. For ease
of notations, we set 𝑁𝑡 ∶= 𝑁(ℝ𝑑′ , [0, 𝑡]) for 𝑡 ≥ 0.

Let 𝔽 = (F𝑡)𝑡≥0 denote the ℙ-augmentation of the filtration generated
by (∫𝑡0 ∫ℝ𝑑′ exp(𝑒)𝑁(d𝑒,d𝑟))𝑡≥0. Given a compact set 𝔸 ⊂ ℝ𝑚, 𝑚 ∈ ℕ, let A
be the collection of 𝔽-predictable processes with values in 𝔸. Throughout
this chapter, unless otherwise stated, we will work on the filtered probability
space (Ω,F, 𝔽, ℙ), where F = F∞.

Given (𝑡, 𝑥) ∈ ℝ+ × ℝ𝑑, α ∈ A, and a measurable map (𝑥, 𝑎, 𝑒) ∈ ℝ𝑑 ×𝔸 × ℝ𝑑′ ↦ 𝑏(𝑥, 𝑎, 𝑒) ∈ ℝ𝑑, we define the càdlàg process 𝑋𝑥,α as the solution
of

𝑋𝑥,α = 𝑥 +∫⋅
0 ∫ℝ𝑑′ 𝑏(𝑋𝑥,α𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠) . (4.3)
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We then consider the ergodic gain functional

ρ(𝑥,α) ∶= lim inf𝑇→∞ 1η𝑇𝔼[∫𝑇
0 𝑟(𝑋𝑥,α𝑠− ,α𝑠)d𝑁𝑠] , (𝑥,α) ∈ ℝ𝑑 ×A, (4.4)

for some bounded measurable map (𝑥, 𝑎) ∈ ℝ𝑑 × 𝔸 ↦ 𝑟(𝑥, 𝑎) ∈ ℝ. Note that
this actually also pertains to the case where the reward function 𝑟 depends
on the mark 𝑒, by arguing as in Remark 4.2.1 below. By the same remark, the
cost could have an extra component given in terms of the Lebesgue measure.

In the above the scaling by 1/(η𝑇) means that we consider the gain by
average unit of time the controller acts on the system. Indeed, 𝔼[𝑁𝑇] = η𝑇
and the control applies only at jump times of 𝑁.

This functional induces an infinite horizon control problem correspond-
ing to finding the value functionρ∗ ∶= supα∈A ρ(⋅,α). (4.5)

This problem is meaningfully ergodic when ρ∗ is constant over ℝ𝑑, i.e. the
initial condition does not play any role.

Throughout this chapter, we make the following assumptions. First, we
impose some control on the coefficients (𝑏, 𝑟).
Assumption 4.1.

The map (𝑏, 𝑟) is continuous. Moreover, there exists 𝐿𝑏,𝑟 > 0 such that

[𝑏(⋅, 𝑎, 𝑒)]C0lin + ‖𝑟(⋅, 𝑎)‖C0,1𝑏 ≤ 𝐿𝑏,𝑟, for all (𝑎, 𝑒) ∈ 𝔸 × ℝ𝑑′ .
The next assumption, known as asymptotic flatness, guarantees that each

control process contracts all possible paths of (4.3) exponentially fast to a
single trajectory. This is a sufficient condition to ensure that ρ∗ does not
depend on the initial condition, refer to the proof of Lemma 4.A.1 in Sec-
tion 4.A. It can be compared to standard assumptions used in the Brownian
diffusion case as in e.g. [13, Pf. of Lemma 7.3.4], up to a more abstract state-
ment.

Assumption 4.2.
There is ζ ∈ C0(ℝ𝑑 × ℝ𝑑; ℝ+) such that

(i) There exists (ℓζ, 𝐿ζ) ∈ (ℝ∗+)2 and 𝑝ζ ≥ 1 for which

ℓζ ‖𝑥 − 𝑥′‖𝑝ζ ≤ ζ(𝑥, 𝑥′) ≤ 𝐿ζ ‖𝑥 − 𝑥′‖𝑝ζ , for all 𝑥, 𝑥′ ∈ ℝ𝑑.
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(ii) There exists 𝐶ζ > 0 such that for all 𝑥, 𝑥′ ∈ ℝ𝑑, 𝑎 ∈ 𝔸 and ι > 0
η∫ℝ𝑑′ {ζ(𝑥 + 𝑏(𝑥, 𝑎, 𝑒), 𝑥′ + 𝑏(𝑥′, 𝑎, 𝑒)) − ζ(𝑥, 𝑥′)} ν(d𝑒) ≤ −𝐶ζζ(𝑥, 𝑥′) .

(4.6)

Our last assumption is typically required to control the long-time beha-
viour of solutions of (4.3), see Lemma 4.A.2 in the Appendix. It is a form of
Lyapunov stability assumption, see e.g. [29, 63] for comparison.

Assumption 4.3.
There is ξ ∈ C0(ℝ𝑑 × ℝ𝑑; ℝ+) such that

(i) There exists (ℓξ, 𝐿ξ) ∈ (ℝ∗+)2 and 𝑝ξ ≥ 1 for which

ℓξ|𝑥|𝑝ξ ≤ ξ(𝑥) ≤ 𝐿ξ ‖𝑥‖𝑝ξ , for all 𝑥 ∈ ℝ𝑑.
(ii) There exists 𝐶1ξ > 0 and 𝐶2ξ ∈ ℝ such that for all 𝑥 ∈ ℝ𝑑, 𝑎 ∈ 𝔸

η∫ℝ𝑑′ {ξ(𝑥 + 𝑏(𝑥, 𝑎, 𝑒)) − ξ(𝑥)} ν(d𝑒) ≤ −𝐶1ξξ(𝑥) + 𝐶2ξ. (4.7)

Example 4.2.1. Consider a bidding problem in a repeated auction with reserve (see
Chapter 6 or [75] for an introduction), in which 𝑋 stands for the current reserve price
and α is the bid. We set 𝑒 = (𝑒1, 𝑒2, 𝑒3, 𝑒4) ∈ ℝ4 and consider the dynamic induced
by 𝑏(𝑥, 𝑎, 𝑒) ∶= 𝑒1(𝑎𝑒2+ 𝑒3− 𝑥) for 𝔸 ∶= [�̲�, ̅𝑎]⊂ ℝ+. This means that the dynamic
is mean-reverting around the level 𝑎𝑒2 + 𝑒3. In this formula, 𝑒2 correspond to the
retail value (the price at which the bidder will sell to the final client the product he
bought) so that the value 𝑎 of the control is the so-called shading factor. Then, 𝑒1 ≥ 0
is the realization of a random mean-reversion speed and 𝑒3 is an exogenous noise. If
the reserve price value 𝑥 is smaller than the bid price 𝑎𝑒2 (up to the additional noise𝑒3) then it moves up for the next auction, and the other way around if it is bigger. In a
second-price auction, with 𝑒4 as the value of the competition bid, the natural reward
function is 𝑟(𝑥, 𝑎) = ∫ℝ4(𝑒2 − 𝑥 ∨ 𝑒4)1{𝑎𝑒2≥𝑥∨𝑒4}ν(d𝑒) .
We assume that ν([0, 1]×ℝ+ × ℝ2) = 1, 1 − ∫ℝ4(1 − 𝑒1)2𝑝ν(𝑑𝑒) =∶ 𝑚1 ∈ (0, 1]
and that ∫ℝ4 sup𝑎∈𝔸 |𝑎𝑒1𝑒2 + 𝑒1𝑒3|2𝑝 ν(𝑑𝑒)<∞, for some integer 𝑝 ≥ 1. Then, As-
sumption 4.2 holds with ζ(𝑥, 𝑥′) ∶= |𝑥 − 𝑥′|2𝑝 and 𝐶ζ = η𝑚1, while Assump-
tion 4.3 holds with ξ(𝑥) = |𝑥|2𝑝, 𝐶1ξ = 12η𝑚1 and 𝐶2ξ = η𝐶𝑒 for some 𝐶𝑒 > 0 that
does not depend on η.
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Under a standard log-normal model for valuations (see e.g. [98]), and a uniform
competition on [0, ̄𝑐] for some ̄𝑐 > 0, it is easily verified that Assumption 4.1 holds.
This example is developed further in Section 4.5.

Under the above assumptions, we obtain the following classical result,
Theorem 4.2.1 below whose proof is rather standard, but produced in Sec-
tion 4.A by lack of an appropriate reference. To state it, we first need to intro-
duce the following auxiliary optimal control problems, defined for all 𝑥 ∈ ℝ𝑑,λ,𝑇 > 0, and 𝑡 ≤ 𝑇:

𝑉λ(𝑥) ∶= supα∈A 𝐽λ(𝑥,α) with 𝐽λ(𝑥,α) ∶= 1η𝔼 [∫∞
0 𝑒−λ𝑠𝑟(𝑋𝑥,α𝑠− ,α𝑠)d𝑁𝑠] (4.8)

and

𝑉𝑇(𝑡, 𝑥) ∶= supα∈A 𝐽𝑇(𝑡, 𝑥,α) with 𝐽𝑇(𝑡, 𝑥,α) ∶= 1η𝔼 [∫𝑇
𝑡 𝑟(𝑋𝑡,𝑥,α𝑠− ,α𝑠)d𝑁𝑠]

(4.9)

in which 𝑋𝑡,𝑥,α is defined as in (4.3) starting from 𝑡, see also (3.4)
Remark 4.2.1. Note that Assumption 4.1 implies that sup[0,𝑡]|𝑋𝑥,α| has moments
of any order, for all 𝑡 ≥ 0, (𝑥,α) ∈ ℝ𝑑 × A. Also, it follows from Assumption 4.1
again and the fact that ν is a probability measure that

ρ(𝑥,α) = lim inf𝑇→∞ 1𝑇𝔼 [∫𝑇
0 𝑟(𝑋𝑥,α𝑠 ,α𝑠)𝑑𝑠] ,

𝐽λ(𝑥,α) = 𝔼 [∫∞
0 𝑒−λ𝑠𝑟(𝑋𝑥,α𝑠 ,α𝑠)𝑑𝑠] , and

𝐽𝑇(𝑡, 𝑥,α) = 𝔼 [∫𝑇
𝑡 𝑟(𝑋𝑡,𝑥,α𝑠 ,α𝑠)𝑑𝑠] .

For the same reason, we could consider expected gains of the more general form1η𝑇𝔼 [∫𝑇
0 ∫ℝ𝑑′ ̃𝑟(𝑋𝑥,α𝑠− ,α𝑠, 𝑒)𝑁(d𝑒,d𝑠)] = 1𝑇𝔼 [∫𝑇

0 ∫ℝ𝑑′ ̃𝑟(𝑋𝑥,α𝑠 ,α𝑠, 𝑒)ν(d𝑒)d𝑠]
upon replacing 𝑟 by (𝑥, 𝑎) ∈ ℝ𝑑 × 𝔸 ↦ ∫ℝ𝑑′ ̃𝑟(𝑥, 𝑎, 𝑒)ν(d𝑒).
Theorem 4.2.1.

Let Assumptions 4.1 to 4.3 hold. Then, there exists sequences (λ𝑛)𝑛≥1 go-
ing to 0 and (𝑇𝑛)𝑛≥1 going to+∞ such that the sequences (λ𝑛𝑉λ𝑛)𝑛≥1 and(𝑇−1𝑛 𝑉𝑇𝑛(0, ⋅))𝑛≥1 converge uniformly on compact sets to ρ∗(0), and such
that (𝑉λ𝑛 − 𝑉λ𝑛(0))𝑛≥1 converges uniformly on compact sets to a function
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w ∈ C0,1 which solves

ρ∗ = sup𝑎∈𝔸 {η∫ℝ𝑑′ [w(⋅ + 𝑏(⋅, 𝑎, 𝑒)) − w] ν(𝑑𝑒) + 𝑟(⋅, 𝑎)} , on ℝ𝑑. (4.10)

Moreover, ρ∗ is constant over ℝ𝑑, and, if (w̃, ρ̃) ∈ C0lin × ℝ solves the
ergodic Hamilton-Jacobi-Bellman equation

ρ̃ = sup𝑎∈𝔸 {η∫ℝ𝑑′ [w̃(⋅ + 𝑏(⋅, 𝑎, 𝑒)) − w̃]ν(d𝑒) + 𝑟(⋅, 𝑎)} , on ℝ𝑑, (4.11)

then ρ̃ = ρ∗.

Remark 4.2.2. As a by-product of Theorem 4.2.1 and the first part of the proof of
Lemma 4.A.4, for all 𝑥 ∈ ℝ𝑑, there exists an optimal Markov control defined byα̂ ∶= â(𝑋𝑥,α̂⋅− ) in which â is a measurable map satisfying

η∫ℝ𝑑′ w(⋅ + 𝑏(⋅, â(⋅), 𝑒))ν(d𝑒) + 𝑟(⋅, â(⋅))
= max𝑎∈𝔸 {η∫ℝ𝑑′ w(⋅ + 𝑏(⋅, 𝑎, 𝑒))ν(d𝑒) + 𝑟(⋅, 𝑎)}

on ℝ𝑑. Moreover,

ρ∗ = lim𝑇→∞ 1η𝑇𝔼 [∫𝑇
0 𝑟(𝑋𝑥,α̂𝑠− , α̂𝑠)d𝑁𝑠] .

4.3 Approximation for Models with Large Activ‐
ity

Given an ε ∈ (0, 1), we now replace η byηε ∶= ε−1 .
In the following, we omit the dependence of 𝑁 and 𝑋𝑥,α on ε for ease of nota-
tions and set

ρ∗ε ∶= supα∈A lim inf𝑇→∞ 1ηε𝑇𝔼 [∫𝑇
0 𝑟(𝑋0,α𝑡− ,α𝑡)d𝑁𝑡] .

We shall see that ρ∗ε , together with the associated optimal policy, can be ap-
proximated by considering its diffusive limit as ε → 0, upon assuming that
the jump coefficient 𝑏 ∶= 𝑏ε introduced in Section 4.2 is of the form

𝑏ε = ε𝑏1 +√ε𝑏2 ,
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and making the following assumption.

Assumption 4.4.
We have 𝑏 = ε𝑏1+√ε𝑏2 for some continuous functions 𝑏1 ∶ ℝ𝑑×𝔸×ℝ𝑑′ ↦ℝ𝑑 and 𝑏2 ∶ ℝ𝑑 × ℝ𝑑′ ↦ ℝ𝑑 such that:

(i) There exists 𝐿𝑏1,𝑏2 > 0 such that

[𝑏1(⋅, 𝑎, 𝑒)]C0lin + ‖𝑏2(⋅, 𝑒)‖C0𝑏 ≤ 𝐿𝑏1,𝑏2 for all (𝑎, 𝑒) ∈ 𝔸 × ℝ𝑑′ .
(ii) There exists ς > 0 such that

∫ℝ𝑑′ 𝑏2(⋅, 𝑒)ν(d𝑒) = 0 and ∫ℝ𝑑′ 𝑏2(⋅, 𝑒)𝑏2(⋅, 𝑒)⊤ν(d𝑒) ⪰ ς I𝑑 on ℝ𝑑,
in which I𝑑 is the identity matrix.

(iii) The map

(𝑥, 𝑎) ∈ ℝ𝑑 × 𝔸 ↦ μ(𝑥, 𝑎) ∶= ∫ℝ𝑑′ 𝑏1(𝑥, 𝑎, 𝑒)ν(d𝑒)
is Lipschitz in 𝑥 uniformly in 𝑎, and there exists a Lipschitz ℝ𝑑×𝑑-
valued function σ defined on ℝ𝑑 such that

σσ⊤ = ∫ℝ𝑑′ 𝑏2(⋅, 𝑒)𝑏2(⋅, 𝑒)⊤ν(d𝑒).
(iv) The estimates of Assumptions 4.1 to 4.3 hold for each (ηε,𝑏ε, 𝑟) in

place of (η, 𝑏, 𝑟), uniformly in ε > 0.

Example 4.3.1. Consider the context of Example 4.2.1 in which η = ε−1 and

𝑏ε(𝑥, 𝑎, 𝑒) = 𝑒1 (ε(𝑒2𝑎 − 𝑥) + ε 12 𝑒3) , (𝑥, 𝑎, 𝑒) ∈ ℝ𝑑 × 𝔸 × ℝ4
with ν as in Example 4.2.1 such that in addition ∫ℝ4 𝑒1𝑒3ν(d𝑒) = 0. In this context,
we obtain μ(𝑥, 𝑎) = 𝑛2𝑎 − 𝑛1𝑥, with 𝑛1 ∶= ∫ℝ4 𝑒1ν(𝑑𝑒) and 𝑛2 ∶= ∫ℝ4 𝑒1𝑒2ν(d𝑒),
and σ(𝑥)2 = ∫ℝ4 |𝑒1𝑒3|2ν(d𝑒).
Assume that 𝑛1 > 0. Using a second order Taylor expansion around ε = 0, one
easily checks that Assumption 4.3 holds with ξ(𝑥) = ‖𝑥‖2𝑝, 𝑝 ≥ 1, for some 𝐶1ξ and𝐶2ξ that do not depend on ε > 0. Similarly, Assumption 4.2 holds with ζ(𝑥, 𝑥′) =‖𝑥 − 𝑥′‖2𝑝, 𝑝 ≥ 1, for some 𝐶ζ > 0, uniformly in ε ∈ (0, ε∘), for some ε∘ > 0 small
enough.
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4.3.1 Candidate diffusion limit

Let ℙ̄ be a probability measure on 𝔻 and let 𝑊 be a stochastic process such
that 𝑊 is a ℙ̄-Brownian motion, let �̄� = (F�̄�)𝑠≥0 be the ℙ̄-augmentation of the
filtration generated by 𝑊, and let A ̄ be the collection of �̄�-predictable pro-
cesses. Given ᾱ ∈ A,̄ we can then define �̄�𝑥,ᾱ as the unique strong solution
(see [114, Thm. 1]) of

�̄�𝑥,ᾱ = 𝑥 +∫⋅
0 μ(�̄�𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑠 +∫⋅

0 σ(�̄�𝑥,ᾱ𝑠 )d𝑊𝑠 . (4.12)

The corresponding ergodic control problem is defined by

ρ̄∗(𝑥) ∶= supᾱ∈A ̄ lim inf𝑇→∞ 1𝑇𝔼 [∫𝑇
0 𝑟(�̄�𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑠] , 𝑥 ∈ ℝ𝑑.

As in Section 4.2, we define for λ > 0 and 𝑥 ∈ ℝ𝑑
�̄�λ(𝑥) ∶= supᾱ∈A ̄ ̄𝐽λ(𝑥, ᾱ) with ̄𝐽λ(𝑥, ᾱ) ∶= 𝔼 [∫∞

0 𝑒−λ𝑠𝑟(�̄�𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑠] ,
and we impose conditions corresponding to the estimates obtained in Lem-
mas 4.A.1 and 4.A.2.

Assumption 4.5.
There exists 𝐿�̄� ,𝐶�̄� > 0 and 𝑝�̄� ≥ 1 such that:

(i) For all 𝑥, 𝑥′ ∈ ℝ𝑑 and λ ∈ (0, 1),||�̄�λ(𝑥) − �̄�λ(𝑥′)|| ≤ 𝐿�̄� ‖𝑥 − 𝑥′‖
(ii) For all 𝑥 ∈ ℝ𝑑 and ᾱ ∈ A,̄

𝔼 [‖�̄�𝑥,ᾱ𝑡 ‖𝑝�̄�] ≤ 𝐶�̄� {𝑒− 𝑡𝐶�̄� ‖𝑥‖𝑝�̄� + 1} , 𝑡 ≥ 0.
Remark 4.3.1.

a) The condition (i) of Assumption 4.5 holds for instance under [13, Assumption
7.3.1]. Indeed, the latter implies a similar bound as (4.50), see [13, Lemma
7.3.4], and the estimate of (i) then follows from the same arguments as in the
proof of Lemma 4.A.1. More generally, it suffices to find a family of C2(ℝ𝑑 ×
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ℝ𝑑; ℝ)-functions (ζ̄ι)ι>0 that is locally bounded, satisfies

Dζ̄ι(𝑥, 𝑥′) (μ(𝑥, 𝑎)μ(𝑥′, 𝑎)) + 12 Tr [Σ(𝑥, 𝑥′)D2ζ̄ι(𝑥, 𝑥′)] ≤ −𝐶ζ̄ζ̄ι(𝑥, 𝑥′) + ϱι ,
(4.13)

for any 𝑥, 𝑥′ ∈ ℝ𝑑, 𝑎 ∈ 𝔸, and ι > 0, and in which 𝐶ζ̄ > 0, limι→0 ϱι = 0
and Σ(𝑥, 𝑥′) ∶= ( σ(𝑥)σ(𝑥′) ) ( σ(𝑥)σ(𝑥′) )⊤ ,
and such that (ζ̄ι)ι>0 converges pointwise as ι → 0 to a map ζ̄ ∶ ℝ𝑑×ℝ𝑑 ↦ ℝ
satisfying1𝐶ζ̄ ‖𝑥 − 𝑥′‖𝑝ζ̄ ≤ ζ̄(𝑥, 𝑥′) ≤ 𝐶ζ̄ ‖𝑥 − 𝑥′‖𝑝ζ̄ , for all 𝑥, 𝑥′ ∈ ℝ𝑑,
for some 𝑝ζ̄ ≥ 1. This follows from the arguments that are used in the proof of
Lemma 4.A.1 upon first applying Itô’s lemma to ζ̄ι and then sending ι → 0 to
deduce the counterpart of (4.49) before using the inequalities just above.

b) The condition (ii) of Assumption 4.5 holds for instance if we can find a smooth
function ξ̄ and constants 𝐶1̄ξ > 0 and 𝐶2̄ξ such that

Dξ̄(𝑥)μ(𝑥, 𝑎) + 12 Tr [σσ⊤(𝑥)D2ξ̄(𝑥)] ≤ −𝐶1̄ξξ̄(𝑥) + 𝐶2̄ξ, (4.14)

and 1𝐶2̄ξ ‖𝑥‖𝑝ξ̄ ≤ ξ̄(𝑥) ≤ 𝐶2̄ξ|𝑥|𝑝ξ̄ , (4.15)

for all 𝑥 ∈ ℝ𝑑, for some 𝑝ξ̄ ≥ 1. This follows from the same arguments
as in the proof of Lemma 4.A.2, taking 𝑝ξ̄ = 𝑝�̄�. As in a) above, it suffices
that (4.14) holds for a sequence of approximating smooth functions. In par-
ticular, condition (ii) of Assumption 4.5 holds under [13, Assumption 7.3.1],
see [13, Lemma 7.6.3].

Example 4.3.2. Consider the context of Example 4.3.1 with σ constant, then it sat-
isfies [13, Assumption 7.3.1], and therefore Assumption 4.5, by [13, Example 7.3.3].

In order to state the counterpart of Theorem 4.2.1 for the diffusive limit
ergodic control problem, we also define, for 𝑇 > 0, 𝑡 ≤ 𝑇 and 𝑥 ∈ ℝ𝑑,

�̄�𝑇(𝑡, 𝑥) ∶= supᾱ∈A ̄ ̄𝐽𝑇(𝑡, 𝑥, ᾱ) with ̄𝐽𝑇(𝑡, 𝑥, ᾱ) ∶= 𝔼 [∫𝑇
𝑡 𝑟(�̄�𝑡,𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑠] ,

and set
L̄ ̄𝑎φ = Dφ⊤μ(⋅, ̄𝑎) + 12 Tr[σσ⊤D2φ], ̄𝑎 ∈ 𝔸,

for a smooth function φ ∶ ℝ𝑑 → ℝ.
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Theorem 4.3.1.
Let Assumptions 4.4 and 4.5 hold. Then, there exists sequences (λ𝑛)𝑛≥1
going to 0 and (𝑇𝑛)𝑛≥1 going to +∞ such that the sequences (λ𝑛�̄�λ𝑛)𝑛≥1
and (𝑇−1𝑛 �̄�𝑇𝑛(0, ⋅))𝑛≥1 converge uniformly on compact sets to ρ̄∗(0), and
such that (�̄�λ𝑛− �̄�λ𝑛(0))𝑛≥1 converges uniformly on compact sets to a func-
tion w̄ ∈ C2 ∩ C0lin that satisfies

ρ̄∗ = sup̄𝑎∈𝔸 {L̄ ̄𝑎w̄ + 𝑟(⋅, ̄𝑎)} , on ℝ𝑑, (4.16)

and[w̄]1C0 ≤ 𝐿γ
w̄ and ‖w̄‖C2,γ𝑏 (𝐵1(𝑥)) ≤ 𝐿γ

w̄(1 + ‖𝑥‖), for all 𝑥 ∈ ℝ𝑑, (4.17)

for some 𝐿γ
w̄ > 0, for all γ ∈ (0, 1).

Moreover, ρ̄∗ is constant overℝ𝑑, and, if (w̃, ρ̃) ∈ (C2∩C0lin)×ℝ solves
the ergodic equation

ρ̃ = sup̄𝑎∈𝔸 {L̄ ̄𝑎w̃ + 𝑟(⋅, ̄𝑎)} , on ℝ𝑑, (4.18)

then ρ̃ = ρ̄∗.

Proof. The proof is exactly the same as the one of Theorem 4.2.1 upon repla-
cing the estimates of Lemmas 4.A.1 and 4.A.2 by the ones of Assumption 4.5.
See Section 4.A. The only significant difference is that we have to show the
estimate (4.17).

1. The fact that, for an appropriate sequence (λ𝑛)𝑛≥0 that converges to 0,λ𝑛�̄�λ𝑛(0) → 𝑐 ∈ ℝ and �̄�λ𝑛 − �̄�λ𝑛(0) → w̄ uniformly on compact sets for
some w̄ ∈ C0,1 follows from Assumption 4.5 and the same arguments
as in the first part of the proof of Lemma 4.A.3 below.

2. We now argue as in the proof of [13, Thm. 3.5.6]. Fix 𝑛 ≥ 1, let τ̄𝑥,ᾱ𝑛 be
the first exit time of �̄�𝑥,ᾱ from 𝐵𝑛(0), for (𝑥, ᾱ) ∈ ℝ𝑑 ×A,̄ and set

�̄�𝑛λ(𝑥) ∶= supᾱ∈A ̄ 𝔼 [∫
τ̄𝑥,ᾱ𝑛

0 𝑒−λ𝑠𝑟(�̄�𝑥,ᾱ𝑠 , ᾱ𝑠)d𝑠] .
Then, �̄�𝑛λ ∈ C2(𝐵𝑛(0)) by the arguments in the proof of [13, Thm. 3.5.6].
Moreover, Assumption 4.5 and the linear growth of 𝑟 (recall that it is
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assumed Lipschitz) imply that

sup𝑛≥1 [�̄�𝑛λ]C0lin ≤ 𝐶λ
for some 𝐶λ > 0. Then, arguing as in the proof of [13, Thm. 3.5.6], we
obtain that, for all λ > 0, (�̄�𝑛λ)𝑛≥1 converges as 𝑛 →∞ to a mapψλ ∈ C2
that solves λψλ = sup̄𝑎∈𝔸 {L̄ ̄𝑎ψλ + 𝑟(⋅, ̄𝑎)} , on ℝ𝑑,
and has at most linear growth. Using this linear growth property, As-
sumption 4.5 and a verification argument, we deduce that ψλ = �̄�λ.

Since �̄�λ ∈ C0,1 by Assumption 4.5, it follows from Assumption 4.4 and
Lemma 4.B.2 that, given γ ∈ (0, 1), �̄�λ ∈ C2,γ and that there is 𝐾 > 0
(depending on γ but not on λ ∈ (0, 1)) such that

‖Δ�̄�λ‖C2,γ𝑏 (𝐵1(𝑥)) ≤ 𝐾(1 + |𝑥|), for all (𝑥,λ) ∈ ℝ𝑑 × (0, 1), (4.19)

where Δ�̄�λ ∶= �̄�λ − �̄�λ(0) solves

λ�̄�λ(0) + λΔ�̄�λ = sup̄𝑎∈𝔸 {L̄ ̄𝑎Δ�̄�λ + 𝑟(⋅, ̄𝑎)} , on ℝ𝑑.
Let (λ𝑛)𝑛≥0 be as in step 1. Passing to the limit in the above leads
to (4.16), with 𝑐 defined in step 1. in place of ρ̄∗, and to (4.17).

3. By the same arguments as in Lemma 4.A.4, if (w̃, ρ̃) ∈ (C2 ∩ C0lin) × ℝ
solves (4.11) then ρ̃ = ρ̄∗. In particular, ρ̄∗ is constant and 𝑐 = ρ̄∗ by
step 2.

4. The existence of (𝑇𝑛)𝑛≥1 going to +∞ such that (𝑇−1𝑛 �̄�𝑇𝑛(0, ⋅))𝑛≥1 con-
verge uniformly on compact sets to ρ̄∗(0) then follows from the same
arguments as in Lemma 4.A.5.

4.3.2 First‐order approximation guarantees

We can now turn to the main part of this chapter and quantify the approx-
imation error due to passing to the diffusive limit in the original pure jump
problem. We will show below that it is controlled by the Hölder regular-
ity of D2w̄, namely that the approximation error is of the order of εγ/2 for allγ ∈ (0, 1). In Section 4.3.3, we will see that it can be improved by considering
appropriate correction terms.
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The cornerstone of the analysis is the residual term of a second-order
Taylor expansion of w̄ performed on the Dynkin operator of the pure-jump
process (4.3), namely:

δ𝑟ε(𝑥, 𝑎) ∶= 1ε ∫ℝ𝑑′ [w̄(𝑥 + 𝑏ε(𝑥, 𝑎, 𝑒)) − w̄(𝑥)] ν(d𝑒) (4.20)

−Dw̄(𝑥)⊤μ(𝑥, 𝑎) − 12 Tr [σσ⊤(𝑥)D2w̄(𝑥)] , (4.21)

defined for (𝑥, 𝑎) ∈ ℝ𝑑 × 𝔸. The function δ𝑟ε measures the error of the diffu-
sion approximation explicitly in terms of the control problem, and thus will
be shown to effectively control the error in all quantities of interest. Lever-
aging the regularity results in (4.17), the Hölder regularity of D2w̄ yields
Proposition 4.3.1, which in turn yields Theorem 4.3.2.

Proposition 4.3.1.
Let Assumptions 4.4 and 4.5 hold with 𝑝ξ ≥ 3. Fix γ ∈ (0, 1). Then, there
exists 𝐿γ,1δ𝑟 , 𝐿γ,2δ𝑟 > 0 such that, for each 0 < ε ≤ ε∘ ∶= (𝐿𝑏1,𝑏2)−2 and(𝑥, 𝑎) ∈ ℝ𝑑 × 𝔸,

‖δ𝑟ε(𝑥, 𝑎)‖ ≤ ε γ2𝐿γ,1δ𝑟 (1 + ‖𝑥‖3), (4.22)

and

sup𝑡≥0 supα∈A 𝔼 [‖δ𝑟ε(𝑋𝑥,α𝑡 ,α𝑡)‖] ≤ ε γ2𝐿γ,2δ𝑟 (1 + ‖𝑥‖3) . (4.23)

Proof.

1. We first prove the estimate (4.22) using (4.17). Namely,

w̄(𝑥 + 𝑏ε(𝑥, 𝑎, 𝑒)) − w̄(𝑥) = w̄(𝑥 + ε𝑏1(𝑥, 𝑎, 𝑒) + ε 12 𝑏2(𝑥, 𝑒))− w̄(𝑥 + ε 12 𝑏2(𝑥, 𝑒))+ w̄(𝑥 + ε 12 𝑏2(𝑥, 𝑒)) − w̄(𝑥)
where

w̄(𝑥 + ε𝑏1(𝑥, 𝑎, 𝑒) + ε 12 𝑏2(𝑥, 𝑒)) − w̄(𝑥 + ε 12 𝑏2(𝑥, 𝑒))= εDw̄(𝑥 + ε 12 𝑏2(𝑥, 𝑒))𝑏1(𝑥, 𝑎, 𝑒)
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+∫1
0

ε22 𝑏1(𝑥, 𝑎, 𝑒)⊤D2w̄( ̂𝑥ε1(𝑢))𝑏1(𝑥, 𝑎, 𝑒)d𝑢
in which ̂𝑥ε1(𝑢) ∶= 𝑥 + ε 12 𝑏2(𝑥, 𝑒) + 𝑢ε𝑏1(𝑥, 𝑎, 𝑒)
is such that

sup𝑢∈[0,1] | ̂𝑥ε1(𝑢)| ≤ |𝑥| + ε 12𝐿𝑏1,𝑏2 + ε𝐿𝑏1,𝑏2(1 + |𝑥|),
by definition of 𝐿𝑏1,𝑏2 in Assumption 4.4. By (4.17) and Assumption 4.4,
this implies thatε22 ||𝑏1(𝑥, 𝑎, 𝑒)⊤D2w̄( ̂𝑥ε1(𝑢))𝑏1(𝑥, 𝑎, 𝑒)||

≤ ε22 (𝐿𝑏1,𝑏2)2(1 + ‖𝑥‖)2𝐿γ
w̄ (1 + ‖𝑥‖ + ε 12𝐿𝑏1,𝑏2 + ε𝐿𝑏1,𝑏2(1 + ‖𝑥‖)) .

Moreover, since ε1/2𝐿𝑏1,𝑏2 ≤ 1, we have‖‖‖Dw̄(𝑥 + ε 12 𝑏2(𝑥, 𝑒)) − Dw̄(𝑥)‖‖‖ ≤ 𝐿γ
w̄(1 + ‖𝑥‖)ε 12𝐿𝑏1,𝑏2

by (i) of Assumption 4.4 and (4.17). Using (ii) of Assumption 4.4, we
next obtain that

∫ℝ𝑑′ [w̄(𝑥 + ε 12 𝑏2(𝑥, 𝑒)) − w̄(𝑥)] ν(d𝑒)
= ∫ℝ𝑑′ ∫1

0
ε2𝑏2(𝑥, 𝑒)⊤D2w̄( ̂𝑥ε2(𝑢, 𝑒))𝑏2(𝑥, 𝑒)d𝑢 ν(d𝑒)

in which ̂𝑥ε2(𝑢, 𝑒) ∶= 𝑥 + 𝑢ε 12 𝑏2(𝑥, 𝑒) ∈ 𝐵1(𝑥)
since ε1/2𝐿𝑏1,𝑏2 ≤ 1 by assumption and (i) of Assumption 4.4. Then,
by (4.17) again and (iii) of Assumption 4.4|||∫ℝ𝑑′ [w̄ (𝑥 + ε 12 𝑏2(𝑥, 𝑒)) − w̄(𝑥)] ν(d𝑒) − ε2 Tr[σσ⊤(𝑥)D2w̄(𝑥)]|||= |||∫ℝ𝑑′ [w̄(𝑥 + ε 12 𝑏2(𝑥, 𝑒)) − w̄(𝑥)] ν(d𝑒)

−ε2 ∫ℝ𝑑′ 𝑏2(𝑥, 𝑒)⊤D2w̄(𝑥)𝑏2(𝑥, 𝑒)ν(d𝑒)|||
≤ ε2(𝐿𝑏1,𝑏2)2𝐿γ

w̄(1 + ‖𝑥‖)(ε 12𝐿𝑏1,𝑏2)γ.
The estimate (4.22) is obtained by combining the above.
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2. The estimate (4.23) follows from (4.22), Lemma 4.A.2, and the fact that𝑝ξ ≥ 3.

We are now in a position to state the main result of this section.

Theorem 4.3.2.
Let Assumptions 4.4 and 4.5 hold with 𝑝ξ ≥ 3. Then, for all γ ∈ (0, 1),
there exists 𝐿γδρ > 0 such that

||ρ̄∗ − ρ∗ε || ≤ ε γ2𝐿γδρ for all ε ∈ (0, 1).
Moreover, there exists a measurable map â ∶ ℝ𝑑 ↦ 𝔸 such that

L̄âw̄ + 𝑟(⋅, â) = sup̄𝑎∈𝔸 {L̄ ̄𝑎w̄ + 𝑟(⋅, ̄𝑎)} , on ℝ𝑑
and

ρ∗ε − ε γ2𝐿γδρ ≤ lim inf𝑇→∞ 1ηε𝑇𝔼 [∫𝑇
0 𝑟(𝑋â𝑠−, â(𝑋â𝑠−))d𝑁𝑠] , for all ε ∈ (0, 1),

in which 𝑋â solves

𝑋â⋅ = ∫⋅
0 ∫ℝ𝑑′ 𝑏ε(𝑋â𝑠−, â(𝑋â𝑠−), 𝑒)𝑁(d𝑒,d𝑠) .

Proof. Fix γ ∈ (0, 1). Hereafter, we denote by wε the function w introduced
in Theorem 4.2.1 for η = ηε = ε−1. By Theorems 4.2.1 and 4.3.1, Δε ∶= w̄−wε
solves

ρ̄∗ − ρ∗ε ≤ sup𝑎∈𝔸 {1ε ∫ℝ𝑑′ [Δε(⋅ + 𝑏ε(⋅, 𝑎, 𝑒)) − Δε] ν(d𝑒)−δ𝑟ε(⋅, 𝑎)} , on ℝ𝑑.
By the same arguments as in the proof of Lemma 4.A.4, (4.23) applied with𝑥 = 0, (4.17), (4.51), and Lemma 4.A.2, we deduce that

ρ̄∗ − ρ∗ε ≤ 𝐿1δρε γ2

for some 𝐿1δρ > 0 that does not depend on ε ∈ (0, 1). Replacing Δε by −Δε in
this argument implies that

ρ∗ε − ρ̄ ≤ 𝐿2δρε γ2
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for some 𝐿2δρ > 0 that does not depend on ε ∈ (0, 1).
The second assertion of the theorem is then proved by following the argu-
ments in the first part of the proof of Lemma 4.A.4 and using the above.

4.3.3 Higher‐order expansions

Under additional conditions, one can exhibit a first-order correction term to
improve the convergence speed in Theorem 4.3.2. It is in the spirit of the
correction term introduced in Section 3.3.5 but is formulated differently. In
particular, the function δw̄ε introduced below depends on ε and the optim-
ization in (4.24) is performed over the whole set 𝔸. This approach can be
iterated to higher order correction terms in an obvious manner, upon addi-
tional regularity conditions, without considering a coupled system of PDEs
as in Section 3.3.6.

From now on, we assume the following.

Assumption 4.6.
There exists γ∘ ∈ (0, γ] and (δγ, δ𝐶) ∈ (0, 1) × ℝ such that, for eachε ∈ (0, 1), we can find δρ̄∗ε ∈ ℝ and δw̄ε ∈ C0lin satisfying ‖δw̄ε‖C2,δγ𝑏 (𝐵1(𝑥)) ≤δ𝐶(1 + ‖𝑥‖) for all 𝑥 ∈ ℝ𝑑 and

δρ̄∗ε = sup̄𝑎∈𝔸 {L̄ ̄𝑎δw̄ε + ε− γ∘2 [δ𝑟ε + 𝑟](⋅, ̄𝑎)} on ℝ𝑑, (4.24)

in which

𝑓 (⋅, ̄𝑎) ∶= L̄ ̄𝑎w̄ + 𝑟(⋅, ̄𝑎) − ρ̄∗.
Theorem 4.3.3.

Let the conditions of Theorem 4.3.2 and Assumption 4.6 hold. Assume
further that 𝑝�̄� ≥ 3. Then,

lim supε↓0 ‖δρ̄∗ε ‖ < ∞
and ρ̄∗(1)ε ∶= ρ̄∗ + ε γ∘2 δρ̄∗ε , ε ∈ (0, 1),
satisfies

lim supε↓0 ε− γ∘+δγ2 |ρ∗ε − ρ̄∗(1)ε | < ∞.
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4. DIFFUSIVE LIMIT APPROXIMATION OF ERGODIC CONTROL PROBLEMS

Moreover, for each ε ∈ (0, 1), there exists a measurable map âε ∶ℝ𝑑 ↦ 𝔸 such that

L̄âεδw̄ε + ε− γ∘2 [δ𝑟ε + 𝑓 ](⋅, âε) = sup̄𝑎∈𝔸 {L̄ ̄𝑎δw̄ε + ε− γ∘2 [δ𝑟ε + 𝑓 ](⋅, ̄𝑎)} on ℝ𝑑
and

lim supε↓0 ε− γ∘+δγ2 |ρ∗ε − ρε(0, âε(𝑋âε⋅−))| < ∞,
in which 𝑋âε solves

𝑋âε = ∫⋅
0 ∫ℝ𝑑′ 𝑏ε(𝑋âε𝑠−, âε(𝑋âε𝑠−), 𝑒)𝑁(d𝑒,d𝑠) .

Proof. It follows from the same arguments as in Lemma 4.A.4 and the fact
that 𝑓 ≤ 0 (by (4.16)) that

δρ̄∗ε = supᾱ∈A ̄ lim𝑇→∞ 1𝑇𝔼 [∫𝑇
0 ε− γ∘2 [δ𝑟ε + 𝑓 ](�̄�0,ᾱ𝑠 , ᾱ𝑠)d𝑠]

≤ supᾱ∈A ̄ lim sup𝑇→∞
1𝑇𝔼 [∫𝑇

0 ε− γ∘2 δ𝑟ε(�̄�0,ᾱ𝑠 , ᾱ𝑠)d𝑠] .
Let â be as in Theorem 4.3.2. Then, 𝑓 (⋅, â) = 0 by (4.16). Hence,

δρ̄∗ε ≥ lim inf𝑇→∞ 1𝑇𝔼 [∫𝑇
0 ε− γ∘2 δ𝑟ε(�̄�â𝑠 , â(�̄�â𝑠 ))d𝑠]

in which �̄�â solves

�̄�â = ∫⋅
0 μ(�̄�â𝑠 , â(�̄�â𝑠 ))d𝑠 +∫⋅

0 σ(�̄�â𝑠 )d𝑊𝑠.
Note that the existence of a solution of the above is guaranteed, upon consid-
ering another probability space and Brownian motion. Combining the above
inequalities with (4.22), the fact that γ∘ ≤ γ, and the second assertion of As-
sumption 4.5 with 𝑝�̄� ≥ 3 shows that ‖δρ̄∗ε ‖ ≤ 𝐶′ for some 𝐶′ > 0 that does
not depend on ε ∈ (0, ε∘].
Moreover, by Assumption 4.6 and the same arguments as in the proof of Pro-
position 4.3.1,

δ𝑟′ε(𝑥, 𝑎) ∶= 1ε ∫ℝ𝑑′ [δw̄ε(𝑥 + 𝑏ε(𝑥, 𝑎, 𝑒)) − δw̄ε(𝑥)] ν(d𝑒) − L̄𝑎δw̄ε
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satisfies ‖δ𝑟′ε(𝑥, ⋅)‖∞ ≤ ε δγ2 𝐶″(1 + ‖𝑥‖3), 𝑥 ∈ ℝ𝑑,
for some 𝐶″ > 0 that does not depend on ε ∈ (0, ε∘]. Since, by construction,
w̄(1)ε ∶= w̄ + ε γ∘2 δw̄ε solves

ρ̄∗(1)ε = sup𝑎∈𝔸 [1ε ∫ℝ𝑑′ [w̄(1)ε (⋅ + 𝑏ε(⋅, 𝑎)) − w̄(1)ε ] ν(d𝑒) − ε γ∘2 δ𝑟′ε(⋅, 𝑎) + 𝑟(⋅, 𝑎)]
on ℝ𝑑, the same arguments as in the proof of Theorem 4.3.2 then imply that‖ρ̄∗(1)ε −ρ∗ε ‖ ≤ 𝐿ε(γ∘+δγ)/2, for some 𝐿 > 0 that does not depend on ε ∈ (0, ε∘],
and also lead to the last assertion of the theorem.

4.4 Numerical Resolution of the Ergodic Diffus‐
ive Problem

4.4.1 Numerical resolution of (4.16)

The numerical resolution of (4.16) can be done by using standard finite differ-
ence schemes as explained in [78, Ch. 7]. We focus on the one-dimensional
case 𝑑 = 1 for simplicity, and also because similar schemes in higher dimen-
sions often have to be constructed on a case-by-case basis, see e.g. [78, Ch. 5].

Given κ ∈ ℕ, κ ≥ 3, and ℎ > 0, we consider the space grid M̅κℎ ∶= {𝑧𝑖 ∶=−κℎ + (𝑖 − 1)ℎ, 1 ≤ 𝑖 ≤ 2κ + 1}. We use the notation M̆κℎ ∶= M̅κℎ ⧵ {𝑧1, 𝑧2κ+1}
and denote by Lκℎ the collection of real-valued maps φ defined on M̅κℎ. Forφ ∈ Lκℎ, we define the usual finite (central) differences operators:

Δℎφ(𝑥) ∶= φ(𝑥 + ℎ) − φ(𝑥 − ℎ)2ℎ , Δ2ℎφ(𝑥) ∶= φ(𝑥 + ℎ) + φ(𝑥 − ℎ) − 2φ(𝑥)ℎ2 ,
for 𝑥 ∈ M̆κℎ, and set

L̄ ̄𝑎ℎφ ∶= Δℎφμ(⋅, ̄𝑎) + 12σ2Δ2ℎφ, ̄𝑎 ∈ 𝔸. (4.25)

Then, we approximate the solution (ρ̄∗, w̄) of (4.16) by a solution (ρ̄κ,∗ℎ , w̄κℎ) ∈ℝ × Lκℎ of ρ̄κ,∗ℎ = sup̄𝑎∈𝔸 {L̄ ̄𝑎ℎw̄κℎ + 𝑟(⋅, ̄𝑎)} , on M̆κℎ, (4.26)

with a suitable reflecting boundary at 𝑧1 and 𝑧2κ+1, see below. Note that w̄κℎ
is defined only up to a constant and that we can, and will, set w̄κℎ(0) = ρ̄κ,∗ℎ
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in the following. Let us now denote by 𝒜 the collection of measurable maps
from ℝ to 𝔸 and identify, given ā ∈ 𝒜 , w̄κℎ and 𝑟(⋅, ā(⋅)) on M̅κℎ to column
vectors W̄κℎ ∶= (w̄κℎ(𝑧𝑖))1≤𝑖≤2κ+1 and Rκℎ(ā) ∶= (𝑟(𝑧𝑖, ā(𝑧𝑖)))1≤𝑖≤2κ+1 of ℝ2κ+1.
Let us fix Δ𝑡ℎ ∶= ℎ2(𝐿𝑏1,𝑏2)2 .
Then, to solve (4.26) on M̅κℎ with w̄κℎ(0) = ρ̄κ,∗ℎ Δ𝑡ℎ, for including a suitable
reflection term on the boundary {𝑧1, 𝑧2κ+1}, we search for (ρ̄κ,∗ℎ , W̄κℎ) ∈ ℝ ×ℝ2κ+1 that satisfies

W̄κℎ = sup
ā∈𝒜 �̄�āℎ {W̄κℎ − 𝑒ρ̄κ,∗ℎ Δ𝑡ℎ + Rκℎ(ā)Δ𝑡ℎ} , on M̅κℎ (4.27)

w̄κℎ(0) = ρ̄κ,∗ℎ Δ𝑡ℎ (4.28)

in which 𝑒 is the column vector of ℝ2κ+1 with all entries equal to 1, and �̄�āℎ =((�̄�āℎ)𝑖,𝑗)1≤𝑖,𝑗≤2κ+1 is the matrix with all entries null except for

(�̄�āℎ)𝑖,𝑖−1 ∶= 𝑞−ℎ (𝑧𝑖, ā(𝑧𝑖)) , (�̄�āℎ)𝑖,𝑖 ∶= 𝑞ℎ(𝑧𝑖, ā(𝑧𝑖)) , (�̄�āℎ)𝑖,𝑖+1 ∶= 𝑞+ℎ (𝑧𝑖, ā(𝑧𝑖)) ,
for 1 < 𝑖 < 2κ + 1, with

𝑞ℎ ∶= 1 − σ2(𝐿𝑏1,𝑏2)2 , 𝑞+ℎ ∶= μℎ + σ22(𝐿𝑏1,𝑏2)2 , and 𝑞−ℎ ∶= −μℎ + σ22(𝐿𝑏1,𝑏2)2 ,
and except for

(�̄�āℎ)1,𝑗 ∶= (�̄�āℎ)3,𝑗 for 𝑗 = 2, 3, 4(�̄�āℎ)2κ+1,𝑗 ∶= (�̄�āℎ)2κ−1,𝑗 for 𝑗 = 2κ − 2, 2κ − 1, 2κ.
The above scheme is of the form of [78, Ch. 7, (2.3)].

Without loss of generality, one can assume from now on that

𝐿𝑏1,𝑏2 > ‖σ‖∞ .
Then, recalling (i)–(ii) of Assumption 4.4, �̄�āℎ defines a Transition Probability
Matrix satisfying

min1≤𝑖≤2κ+1 min1∨(𝑖−1)≤𝑗≠𝑖≤(2κ+1)∧(𝑖+1) (�̄�āℎ)𝑖,𝑗 =∶ �̲�ℎ > 0
whenever

𝐿𝑏1,𝑏2(1 + κℎ)ℎ < ς. (4.29)
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Given ā ∈ 𝒜 , let (𝑍𝑥,ā𝑡 )𝑡∈ℕ be the Markov chain starting from 𝑥 ∈ M̅κℎ and
such that

ℙ [𝑍𝑥,ā𝑡+1 = 𝑧𝑗|𝑍𝑥,ā𝑡 = 𝑧𝑖] = (�̄�āℎ)𝑖,𝑗, 1 ≤ 𝑖, 𝑗 ≤ 2κ + 1, 𝑡 ∈ ℕ,
then

ℙ[𝑍𝑥,āκ = 0] ≥ (𝑝ℎ̲ )κ > 0, (4.30)

under (4.29). Then, assuming further that

(𝑏, 𝑟)(𝑥, ⋅) ∶ 𝔸 ↦ ℝ2 is continuous for all 𝑥 ∈ ℝ, (4.31)

it follows that the conditions of [78, Ch. 7, Thm. 2.1] hold so that (ρ̄κ,∗ℎ , W̄κℎ) is
well-defined and can be computed by using the iterative scheme of [78, Ch. 7,
(2.3)].

Under the following conditions, one can exhibit an upper bound on the
convergence rate of the above numerical scheme.

Assumption 4.7.
There exists a function ξ̄ ∈ C3(ℝ), 𝑝ξ̄ ≥ 2, and constants 𝐶1̄ξ > 0 and𝐶2̄ξ ∈ ℝ such that (4.14) and (4.15) hold for all 𝑥 ∈ ℝ𝑑. Moreover, there
are constants 𝐿 > 0, Υ > 0, and 𝐶Υ > 0, such that ‖D2ξ̄(𝑥)‖ + ‖D3ξ̄(𝑥)‖ ≤𝐿(1+‖𝑥‖𝑝ξ̄−1) for all 𝑥 ∈ ℝ, and sgn(𝑥)Dξ̄(𝑥) ≥ 𝐶Υ ‖𝑥‖𝑝ξ̄−1 for all ‖𝑥‖ ≥ Υ,
where sgn(⋅) is the sign function.

Proposition 4.4.1.
Let Assumptions 4.4, 4.5 and 4.7 hold with 𝑝�̄� = 𝑝ξ̄ ≥ 3. Assume further
that (4.31) is satisfied. Then, there exists 𝐿num > 0 and ℎnum > 0 such that,
for all (ℎ, κ) ∈ (0, ℎnum) × ℕ, satisfying (4.29), κℎ2 ≤ 1 and (κ − 3)ℎ ≥ Υ,
we have ||ρ̄κ,∗ℎ − ρ̄∗|| ≤ 𝐿num (ℎγ + ℎ−1 |κℎ|−||𝑝ξ̄−1||) .
In particular,

||ρ̄κ,∗ℎ − ρ∗ε || ≤ 𝐿num (ℎγ + ℎ−1 |κℎ|−||𝑝ξ̄−1||) + ε γ2𝐿γδρ for all ε ∈ (0, 1).
Proof. Given ā ∈ 𝒜 and 𝑥 ∈ M̅κℎ, let �̃�𝑥,ā𝑥,ā

be the pure jump continuous-
time Markov chain defined by a sequence of jump times (τ𝑛)𝑛≥1 such that
the increments (τ𝑛+1 − τ𝑛)𝑛≥0 (with the convention τ0 = 0) are independent
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and identically distributed according to the exponential law of mean Δ𝑡ℎ and
such that, for 𝑛 ≥ 1,

ℙ [�̃�𝑥,āτ𝑛 = 𝑧𝑖|(�̃�𝑥,ā0 , τ0),… , (�̃�𝑥,āτ𝑛−1 , τ𝑛−1), τ𝑛] = (�̄�āℎ)𝑖,𝑗(�̃�𝑥,āτ𝑛−1),
with 𝑗(�̃�𝑥,āτ𝑛−1)∈ ℕ s.t. 𝑧𝑗(�̃�𝑥,āτ𝑛−1) = �̃�𝑥,āτ𝑛−1 ,
and �̃�𝑥,ā = �̃�𝑥,āτ𝑛−1 on [τ𝑛−1, τ𝑛).

1. First note that, by construction, w̄κℎ is bounded on the finite set M̅κℎ.
Then, by the arguments in the proof of Lemma 4.A.4 and (4.27), we
have

ρ̄κ,∗ℎ = sup
ā∈𝒜 lim𝑇→∞ 1𝑇𝔼 [∫𝑇

0 𝑟(�̃�𝑥,ā𝑠 , ā(�̃�𝑥,ā𝑠 ))𝑑𝑠] . (4.32)

2. We now prove that there exists 𝐶1′ξ̄ ,𝐶2′ξ̄ , ℎnum > 0 such that, for all 𝑥 ∈ℝ, ā ∈ 𝒜 , 0 < ℎ ≤ ℎnum and κ such that (4.29) holds, κℎ2 ≤ 1 and(κ − 3)ℎ ≥ Υ, we have

𝔼 [‖�̃�𝑥,ā𝑡 ‖𝑝ξ̄] ≤ 𝐶2̄ξ {𝑒−𝐶1′ξ̄ 𝑡𝐶2̄ξ ‖𝑥‖𝑝ξ̄ + 𝐶2′ξ̄𝐶1′ξ̄ (1 − 𝑒−𝐶1′ξ̄ 𝑡)} , 𝑡 ≥ 0. (4.33)

Using Assumptions 4.4 and 4.7, and Taylor expansions of the first and
second orders, we first deduce that, for 𝑥 ∈ M̆κℎ,

Dξ̄(𝑥)μ(𝑥, ā(𝑥)) + 12σ2(𝑥)D2ξ̄(𝑥) = 1Δ𝑡ℎ𝔼 [ξ̄(�̃�𝑥,āτ1 ) − ξ̄(𝑥)] − 𝑐(𝑥)ℎ,
in which ‖𝑐(𝑥)‖ ≤ 𝐶(1 + ‖𝑥‖𝑝ξ̄) ≤ 𝐶(1 + 𝐶2̄ξξ̄(𝑥)) for some 𝐶 > 0 inde-
pendent on 𝑥 ∈ ℝ, ā ∈ 𝒜 , ℎ and κ. Using (4.14), this implies that, for𝑥 ∈ M̆κℎ,1Δ𝑡ℎ𝔼 [ξ̄(�̃�𝑥,āτ1 ) − ξ̄(𝑥)] ≤ − (𝐶1̄ξ − ℎ𝐶𝐶2̄ξ) ξ̄(𝑥) + 𝐶2̄ξ + 𝐶ℎ. (4.34)

Consider now the case 𝑥 = 𝑧1, the other boundary being symmetric. LetΞ be a discrete random variable taking value 𝑘 ∈ {1, 2, 3} with probab-
ility (�̄�āℎ)1,𝑘. Using Assumption 4.7 and (4.15), we obtain that, for some
random variable ̂𝑧Ξ such that ̂𝑧Ξ ∈ [𝑧1, 𝑧1 + Ξℎ] a.s.,1Δ𝑡ℎ𝔼 [ξ(𝑧1 + Ξℎ) − ξ(𝑧1)] = 1Δ𝑡ℎ𝔼[ΞℎDξ( ̂𝑧Ξ)]
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≤ −(𝐿𝑏1,𝑏2)2ℎ 𝐶Υ𝔼 [Ξ| ̂𝑧Ξ|𝑝ξ̄−1]≤ −(𝐿𝑏1,𝑏2)2𝐶Υ𝔼 [κℎ| ̂𝑧Ξ|𝑝ξ̄−1]≤ −𝐶′ξ̄(𝑧1) (4.35)

when |(κ − 3)ℎ| ≥ Υ and κℎ2 ≤ 1, in which 𝐶′ > 0does not depend on κ
nor ℎ. The above also holds with 𝑧2κ+1 in place of 𝑧1. Combining (4.34)–
(4.35), we obtain1Δ𝑡ℎ𝔼 [ξ̄(�̃�𝑥,āτ1 ) − ξ̄(𝑥)] ≤ − ((𝐶1̄ξ − ℎ𝐶𝐶2̄ξ) ∧ 𝐶′) ξ̄(𝑥) + 𝐶2̄ξ + 𝐶ℎ≤ −𝐶1′ξ̄ ξ̄(𝑥) + 𝐶2′ξ̄ ,
for all 𝑥 ∈ M̅κℎ, whenever ℎ ≤ ℎnum, in which 𝐶1′ξ̄ ,𝐶2′ξ̄ , ℎnum > 0 do not
depend on κ nor ℎ. One can then argue as in the proof of Lemma 4.A.2
to obtain (4.33).

3. From now on, we denote by 𝐶 > 0 a generic constant, which may
change from line to line, but does not depend on κ or ℎ. We now ap-
peal to (4.17) and the Lipschitz continuity of (μ, σ), and use the fact
that ℎ ≤ 1 to deduce by consistency arguments that, for 𝑥 ∈ M̅κℎ,

L̄ā(𝑥)w̄(𝑥) = 1Δ𝑡ℎ𝔼 [w̄(�̃�𝑥,āτ1 ) − w̄(𝑥)] + δ𝑟ℎ(𝑥, a(𝑥))
in which|δ𝑟ℎ(𝑥, ā(𝑥))| ≤𝐶((1 + |𝑥|)ℎ + ℎγ)(1 + |𝑥|) + 𝐶ℎ−1(1 + |𝑥|)1{|𝑥|=κℎ}.
The above combined with (4.16) implies that

ρ̄∗ = 1Δ𝑡ℎ sup̄𝑎∈𝒜 𝔼 [w̄(�̃�𝑥, ̄𝑎τ1 ) − w̄(𝑥) + (𝑟(𝑥, ̄𝑎) + δ𝑟ℎ(𝑥, ̄𝑎))Δ𝑡ℎ] for 𝑥 ∈ M̅κℎ.
Arguing again as in the proof of Lemma 4.A.4, recalling (4.32), and com-
bining (4.33) with the inequalities of Hölder and Markov, we deduce
that we can find 𝐶,𝐶′,𝐶″ > 0 independent of ℎ such that||ρ̄κ,∗ℎ − ρ̄∗||
≤ sup

ā∈𝒜 lim sup𝑇→∞
1𝑇𝔼 [∫𝑇

0 |δ𝑟ℎ| (�̃�0,ā𝑠 , ā(�̃�0,ā𝑠 )) (1{|�̃�0,ā𝑠 |<κℎ} + 1{|�̃�0,ā𝑠 |=κℎ}) 𝑑𝑠]
≤ sup

ā∈𝒜 lim sup𝑇→∞
𝐶𝑇 ∫𝑇

0 𝔼[(ℎ + ℎ|�̃�0,ā𝑠 |2 + ℎγ|�̃�0,ā𝑠 |)
+ ℎ−1(1 + |�̃�0,ā𝑠 |)1{|�̃�0,ā𝑠 |=κℎ}]d𝑠
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≤ sup
ā∈𝒜 lim sup𝑇→∞ ℎ−1𝐶𝑇 ∫𝑇

0 𝔼[(1 + |�̃�0,ā𝑠 |)𝑝ξ̄] 1𝑝ξ̄ (𝔼[|�̃�0,ā𝑠 |𝑝ξ̄](κℎ)𝑝ξ̄ )
𝑝ξ̄−1𝑝ξ̄

d𝑠
+ 𝐶′(ℎ + ℎγ)≤ 𝐶″ (ℎγ + ℎ−1|κℎ|−||𝑝ξ̄−1||) .

It remains to appeal to Theorem 4.3.2 to complete the proof.

4.4.2 Construction of a near‐optimal control

One can also construct from the above scheme an almost optimal control for
the original pure jump problem. For this purpose, let ϕ be a smooth density
function with support (−1, 1) such that ‖ϕ‖C2𝑏 ≤ 1. Given 𝑛 ≥ 1, let

w̄κ,𝑛ℎ (𝑥) ∶= ∫(w̄κℎ(𝑦) − ρ̄κ,∗ℎ Δ𝑡ℎ)ϕ(𝑛(𝑦 − 𝑥))d𝑦, 𝑥 ∈ ℝ,
with the convention that w̄κℎ = w̄κℎ(𝑧1) − ρ̄κ,∗ℎ Δ𝑡ℎ on (−∞, 𝑧1) and w̄κℎ =
w̄κℎ(𝑧2κ+1) − ρ̄κ,∗ℎ Δ𝑡ℎ on (𝑧2κ+1,∞).

Let āκ,𝑛ℎ ∈ 𝒜 be such that

āκ,𝑛ℎ ∈ argmax𝑎∈𝔸 [L̄𝑎w̄κ,𝑛ℎ + 𝑟(⋅, 𝑎)], on ℝ, (4.36)

and set α̂κ,𝑛ℎ = āκ,𝑛ℎ (�̂�κ,𝑛,ℎ) with

�̂�κ,𝑛,ℎ⋅ = ∫⋅
0 ∫ℝ𝑑′ 𝑏ε(�̂�κ,𝑛,ℎ𝑠− , āκ,𝑛ℎ (�̂�κ,𝑛,ℎ𝑠− ), 𝑒)𝑁(d𝑒,d𝑠) .

The control āκ,𝑛ℎ can be computed numerically at low cost, e.g. via first-order
conditions; Proposition 4.4.2 gives the associated error bounds. It appears
that this approach is novel in the literature and it seems of independent meth-
odological interest.

Proposition 4.4.2.
Let the conditions of Proposition 4.4.1 hold. Then, there exists 𝐶 > 0 such
that, for all 𝐾 > 0, 𝑛 ≥ 1 and ε ∈ (0, 1),||ρε(0, α̂κ,𝑛ℎ ) − ρ∗ε ||

≤ 𝐶 (𝑛−γ + ε γ2 + 𝑛 sup𝑥∈𝐵𝐾(0) ||w̄κℎ − ρ̄κ,∗ℎ Δ𝑡ℎ − w̄|| (𝑥) + 𝑛𝐾−1) . (4.37)

If, moreover,
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(i) σ is constant,

(ii) there exists 𝑐μ > 0 such that μ(𝑥)−μ(𝑥′) ≤ −𝑐μ(𝑥−𝑥′) if 𝑥 ≥ 𝑥′ ∈ ℝ,

(iii) there exists 𝑅 > 0 such that

sup|𝑥|>𝑅 sup̄𝑎∈𝔸 μ(𝑥, ̄𝑎)𝑥 < −12σ2, (4.38)

then
lim supℎ→0 sup𝑥∈𝐵𝐾(0) ||w̄κℎℎ − ρ̄κℎ,∗ℎ Δ𝑡ℎ − w̄|| (𝑥) = 0

for any family (κℎ)ℎ>0 ⊂ (2ℕ + 1) satisfying

limℎ↓0 κℎℎ2 = 0 and limℎ↓0 κℎℎ 𝑝ξ̄𝑝ξ̄−1 = ∞.
Proof.

1. We first note that

Dw̄κ,𝑛ℎ (𝑥) = ∫Dw̄(𝑦)ϕ(𝑛(𝑦 − 𝑥))𝑑𝑦
−∫(w̄κℎ − ρ̄κ,∗ℎ Δ𝑡ℎ − w̄)(𝑦)𝑛ϕ′(𝑛(𝑦 − 𝑥))𝑑𝑦

and

D2w̄κ,𝑛ℎ (𝑥) = ∫D2w̄(𝑦)ϕ(𝑛(𝑦 − 𝑥))𝑑𝑦
+∫(w̄κℎ − ρ̄κ,∗ℎ Δ𝑡ℎ − w̄)(𝑦)𝑛2ϕ″(𝑛(𝑦 − 𝑥))𝑑𝑦

for 𝑥 ∈ ℝ, in which ϕ′ and ϕ″ stand for the first and second order
derivatives of ϕ. Hence, it follows from (4.17), (i) of Assumption 4.4,
and (4.16) that

L̄āκ,𝑛ℎ (⋅)w̄κ,𝑛ℎ + 𝑟(⋅, āκ,𝑛ℎ (⋅)) = max𝑎∈𝔸 [L̄𝑎w̄κ,𝑛ℎ + 𝑟(⋅, 𝑎)]
≥ max𝑎∈𝔸 [L̄𝑎w̄ + 𝑟(⋅, 𝑎)] − 12δ𝑟κ,𝑛ℎ= ρ̄∗ − 12δ𝑟κ,𝑛ℎ
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in which δ𝑟κ,𝑛ℎ satisfies, for some 𝐶 > 0 independent on 𝑛, κ and ℎ,

0 ≤ δ𝑟κ,𝑛ℎ (𝑥) ≤ 𝐶(1 + |𝑥|) [𝑛−γ + 2𝑛2∫
B 1𝑛 (𝑥)

||w̄κℎ − ρ̄κ,∗ℎ Δ𝑡ℎ − w̄|| (𝑦)𝑑𝑦] .
Similarly,

ρ̄∗ − 12δ𝑟κ,𝑛ℎ ≤ L̄āκ,𝑛ℎ (⋅)w̄κ,𝑛ℎ + 𝑟(⋅, āκ,𝑛ℎ (⋅))
≤ L̄āκ,𝑛ℎ (⋅)w̄ + 𝑟(⋅, āκ,𝑛ℎ (⋅)) + 12δ𝑟κ,𝑛ℎ .

Recalling (4.21) and Theorem 4.3.2, we deduce that

ρ∗ε − ε γ2𝐿γδρ ≤ 1ε ∫[w̄(𝑥 + 𝑏ε(𝑥, āκ,𝑛ℎ (𝑥), 𝑒)) − w̄(𝑥)] ν(d𝑒)+ 𝑟(𝑥, āκ,𝑛ℎ (𝑥)) + δ𝑟κ,𝑛ℎ (𝑥) − δ𝑟ε(𝑥, āκ,𝑛ℎ (𝑥))
for all 𝑥 ∈ ℝ. We then deduce (4.37) by the same arguments as in the
proof of Theorem 4.3.2.

2. It remains to prove the second assertion of the proposition. For ease
of notations, we do not write the dependence of κ with respect to ℎ,
but we keep in mind that we can consider ℎ small and that κ can be
adjusted as soon as the following results can apply to sequences such
that limℎ↓0 κℎℎ2 = 0 and limℎ↓0 κℎℎ𝑝ξ̄/(𝑝ξ̄−1) = ∞.

2.a. We first prove that [w̄κℎ]C0lin(M̅κℎ) does not depend on κ nor ℎ. To this end,
we adapt the arguments of Lemma 4.A.1 and Theorem 4.2.1, and actu-
ally prove that it is Lipschitz, uniformly in κ and ℎ.
Let (ξ𝑗)𝑗≥1 be a sequence of i.i.d. random variables following the uni-
form distribution on [0, 1] and let (τ𝑛)𝑛≥1 be a random sequence, inde-
pendent of (ξ𝑗)𝑗≥1, such that the increments (τ𝑛+1 − τ𝑛)𝑛≥0 (with the
convention τ0 = 0) are independent and identically distributed accord-
ing to the exponential law of mean Δ𝑡ℎ. Given (𝑥, ̄𝑎, 𝑦) ∈ ℝ × 𝔸 × ℝ,
set Δx(𝑥, ̄𝑎, 𝑦) ∶= ℎ1{𝑦≤𝑞+ℎ (𝑥, ̄𝑎)} − ℎ1{𝑞+ℎ (𝑥,𝑎)<𝑦≤(𝑞+ℎ +𝑞−ℎ )(𝑥, ̄𝑎)}, if 𝑥 ∈ M̆κℎ,
andΔx(𝑧1, ̄𝑎, 𝑦)∶= 2ℎ + Δx(𝑧3, ̄𝑎, 𝑦), Δx(𝑧2κ+1, ̄𝑎, 𝑦)∶= −2ℎ + Δx(𝑧2κ−1, ̄𝑎, 𝑦).
Let ̌A denote the collection of 𝔸-valued processes that are predictable
with respect to the filtration generated by 𝑡 ↦∑𝑖≥1 exp(ξ𝑖)1{τ𝑖≤𝑡} Given
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α̌ ∈ ̌A and 𝑥 ∈ M̅κℎ, let �̌�𝑥,α̌ be the pure jump continuous time Markov
chain defined by

�̌�𝑥,α̌τ𝑖+1 = �̌�𝑥,α̌τ𝑖 + Δx(�̌�𝑥,āτ𝑖 , α̌τ𝑖 , ξ𝑖+1)
and �̌�𝑥,α̌ = �̌�𝑥,α̌τ𝑖 on [τ𝑖, τ𝑖+1), 𝑖 ≥ 0. It has the same law as the process�̃�𝑥,α̌ introduced at the beginning of the proof of Proposition 4.4.1, and
in particular

ρ̄κ,∗ℎ = supα̌∈ ̌A lim𝑇→∞ 1𝑇𝔼 [∫𝑇
0 𝑟(�̌�𝑥,ā𝑠 , α̌𝑠)𝑑𝑠] .

We set �̌�λ(𝑥) ∶= supα̌∈ ̌A 𝔼 [∫
∞

0 𝑒−λ𝑠𝑟(�̌�𝑥,α̌𝑠 , α̌𝑠)𝑑𝑠] .
2.a.i. We first need to obtain contraction estimates similar to the ones ob-

tained in the proof of Lemma 4.A.1. We restrict for the moment to the
case where the distance between the initial data is in 2ℎℤ.
Let us first observe that, for ℎ small enough for condition (4.29) to hold,
we have 𝑞+ℎ (𝑥) < (𝑞+ℎ + 𝑞−ℎ )(𝑥′) = σ2(𝐿𝑏1,𝑏2)−2 =∶ 𝑚 and conversely.
Although recall that, by assumption, μ(𝑥) − μ(𝑥′) ≤ −𝑐μ(𝑥 − 𝑥′) ≤ 0
and therefore 𝑞+ℎ (𝑥) ≤ 𝑞+ℎ (𝑥′) if 𝑥 ≥ 𝑥′ ∈ ℝ. Keeping this in mind,
direct computations show that, if 𝑥 − 𝑥′ ∈ 2ℎℤ and 𝑥, 𝑥′ ∈ M̆κℎ, and̄𝑎 ∈ 𝔸, then1Δ𝑡ℎ𝔼 [|𝑥 + Δx(𝑥, ̄𝑎, ξ1) − 𝑥′ − Δx(𝑥′, ̄𝑎, ξ1)| − |𝑥 − 𝑥′|]

= (|𝑥 − 𝑥′ + 2ℎ| − |𝑥 − 𝑥′|) 𝑞+ℎ (𝑥) ∧ 𝑚 − 𝑞+ℎ (𝑥) ∧ 𝑞+ℎ (𝑥′)Δ𝑡ℎ+ (|𝑥 − 𝑥′ − 2ℎ| − |𝑥 − 𝑥′|) 𝑞+ℎ (𝑥′) ∧ 𝑚 − 𝑞+ℎ (𝑥′) ∧ 𝑞+ℎ (𝑥)Δ𝑡ℎ= (|𝑥 − 𝑥′ + 2ℎ| − |𝑥 − 𝑥′|) μ(𝑥) − μ(𝑥) ∧ μ(𝑥′)2ℎ+ (|𝑥 − 𝑥′ − 2ℎ| − |𝑥 − 𝑥′|) μ(𝑥′) − μ(𝑥) ∧ μ(𝑥′)2ℎ= 1{𝑥≥𝑥′}(μ(𝑥) − μ(𝑥′)) + 1{𝑥′>𝑥}(μ(𝑥′) − μ(𝑥))≤ −𝑐μ |𝑥 − 𝑥′| .
On the other hand, if 𝑥 = 𝑧1, 𝑥′ ∈ M̆κℎ and 𝑧1 − 𝑥′ ∈ 2ℎℤ, then1Δ𝑡ℎ𝔼 [|𝑥 + Δx(𝑥, ̄𝑎, ξ1) − 𝑥′ − Δx(𝑥′, ̄𝑎, ξ1)| − |𝑥 − 𝑥′|]
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= 1Δ𝑡ℎ ( − 2ℎ𝑞+ℎ (𝑥′, ̄𝑎) − 4ℎ(𝑞+ℎ (𝑧3, ̄𝑎)) − 𝑞+ℎ (𝑥′, ̄𝑎)
− 2ℎ(1 − 𝑞+ℎ (𝑧3, ̄𝑎)))1{𝑥′≥𝑧1+4ℎ} − 1Δ𝑡ℎ |𝑥 − 𝑥′| 1{𝑥′<𝑧1+4ℎ}≤ −𝑐μ |𝑧3 − 𝑥′|≤ −12𝑐μ |𝑥 − 𝑥′| .

In the case, 𝑥′ = 𝑧2κ+1 (with κ ≥ 4 which we can assume here w.l.o.g.),
then1Δ𝑡ℎ𝔼 [|𝑥 + Δx(𝑥, ̄𝑎, ξ1) − 𝑥′ − Δx(𝑥′, ̄𝑎, ξ1)| − |𝑥 − 𝑥′|]
= 1Δ𝑡ℎ [−4ℎ𝑞+ℎ (𝑥′, ̄𝑎) − 6ℎ(𝑞+ℎ (𝑧3, ̄𝑎)) − 𝑞+ℎ (𝑧2κ−1, ̄𝑎) − 4ℎ(1 − 𝑞+ℎ (𝑧3, ̄𝑎))]≤ −𝑐μ |𝑧3 − 𝑧2κ−1|≤ −12𝑐μ |𝑥 − 𝑥′| ,

in which the last inequalities follow from the fact that κ ≥ 4. A similar
analysis can be done when 𝑥′ = 𝑧2κ+1 and 𝑥 ∈ M̅κℎ. The above implies
that, for ℎ small enough,1Δ𝑡ℎ𝔼 [|𝑥 + Δx(𝑥, ̄𝑎, ξ1) − 𝑥′ − Δx(𝑥′, ̄𝑎, ξ1)| − |𝑥 − 𝑥′|] ≤ −12𝑐μ |𝑥 − 𝑥′|
for any (𝑥, 𝑥′) ∈ M̅κℎ × M̅κℎ such that 𝑥− 𝑥′ ∈ 2ℎℤ, which is the required
contraction property, whenever 𝑥 − 𝑥′ ∈ 2ℎℤ. The key property is that�̌�𝑥,α̌− �̌�𝑥′,α̌ remains in 2ℎℤ whenever 𝑥− 𝑥′ ∈ 2ℎℤ (by the above calcu-
lations jumps of �̌�𝑥,α̌ − �̌�𝑥′,α̌ lie in {−6ℎ, −4ℎ, −2ℎ, 0, 2ℎ, 4ℎ, 6ℎ}). Then,
the same arguments as in the proof of Lemma 4.A.1 imply that one can
find �̌� > 0, that only depends on 𝑐μ, such that||�̌�λ(𝑥) − �̌�λ(𝑥′)|| ≤ �̌� |𝑥 − 𝑥′| (4.39)

for any (𝑥, 𝑥′) ∈ M̅κℎ × M̅κℎ such that 𝑥 − 𝑥′ ∈ 2ℎℤ. In particular,||�̌�λ(𝑥) − �̌�λ(0)|| ≤ �̌� |𝑥| , for 𝑥 ∈ M̅κℎ ∩ (2ℎℤ). (4.40)

2.a.ii. We now turn to the general case in which the distance between the ini-
tial data does not belong to 2ℎℤ. Take 𝑥 ∈ {𝑥∘−ℎ, 𝑥∘+ℎ}∩M̆κℎ, for some𝑥∘ ∈ M̅κℎ ∩ (2ℎℤ). Let θ1 be the first time at which |�̌�𝑥,α̌θ1 − 𝑥| = ℎ. By the
Dynamic Programming Principle,

||�̌�λ(𝑥) − �̌�λ(𝑥∘)|| ≤ supα̌∈ ̌A 𝔼 [1 − 𝑒−λθ1λ ‖𝑟‖∞ + 𝑒−λθ1 ||�̌�λ(�̌�𝑥,α̌θ1 ) − �̌�λ(𝑥∘)||]
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+ 𝔼 [(1 − 𝑒−λθ1) ||�̌�λ(𝑥∘)||]
in which �̌�𝑥,α̌θ1 − 𝑥∘ ∈ {−2ℎ, 0, 2ℎ} and therefore ||�̌�λ(�̌�𝑥,α̌θ1 ) − �̌�λ(𝑥∘)|| ≤2�̌� |ℎ| by (4.39). By exhaustive enumeration, one can compute

𝔼[𝑒−λθ1] = ∑𝑘≥1 𝑞ℎ(𝑥)𝑘−1(1 − 𝑞ℎ(𝑥))(∫∞
0 𝑒−λ𝑦 1Δ𝑡ℎ 𝑒−Δ𝑡−1ℎ 𝑦𝑑𝑦)𝑘

= ∑𝑘≥1 𝑞ℎ(𝑥)𝑘−1(1 − 𝑞ℎ(𝑥))(λΔ𝑡ℎ + 1)−𝑘

= (λΔ𝑡ℎ + 1)−1(1 − 𝑞ℎ(𝑥)) λΔ𝑡ℎ + 1λΔ𝑡ℎ + 1 − 𝑞ℎ(𝑥∘)= 1 − 𝑞ℎ(𝑥)λΔ𝑡ℎ + 1 − 𝑞ℎ(𝑥) ≤ 1.
Since 1 − 𝑞ℎ(𝑥) ≥ (σ/𝐿𝑏1,𝑏2)2 ≥ (ς/𝐿𝑏1,𝑏2)2 > 0 for all ℎ, by Assump-
tion 4.4, the above implies that, for some 𝐶 > 0, independent on λ, κ
and ℎ,

||�̌�λ(𝑥) − �̌�λ(𝑥∘)|| ≤ sup𝑎∈𝔸 𝔼 [ Δ𝑡ℎ ‖𝑟‖∞λΔ𝑡ℎ + 1 − 𝑞ℎ(𝑥) + 2�̌� |ℎ| (1 − 𝑞ℎ(𝑥))λΔ𝑡ℎ + 1 − 𝑞ℎ(𝑥)]+ 𝔼 [ λΔ𝑡ℎλΔ𝑡ℎ + 1 − 𝑞ℎ(𝑥) ||�̌�λ(𝑥∘)||]=𝐶 (Δ𝑡ℎ + ℎ + λΔ𝑡ℎ ||�̌�λ(𝑥∘)||) .
Note that λ�̌�λ is bounded by ‖𝑟‖∞ < ∞, while Δ𝑡ℎ ≤ ℎ ≤ |𝑥|, for 𝑥 ≠0 and ℎ small enough. Since 𝑥∘ ∈ M̅κℎ ∩ (2ℎℤ), the above, combined
with (4.40), thus shows that||�̌�λ(𝑥) − �̌�λ(0)|| ≤ �̌�′ |𝑥| , ∀ 𝑥 ∈ M̆κℎ, (4.41)

for some �̌�′ > 0 that does not depend on λ, ℎ nor κ. In the case where𝑥 ∈ {𝑧1, 𝑧2κ+1}, we can conduct a similar analysis by considering the first
time θ1 at which �̌�𝑥,α̌ jumps. In this case, �̌�𝑥,α̌θ1 ∈ M̆κℎ by construction
and |�̌�𝑥,α̌θ1 −𝑥∘| ≤ 2ℎ. Given (4.39), we retrieve a similar estimate as (4.41).
Hence, ||�̌�λ(𝑥) − �̌�λ(0)|| ≤ �̌�′ |𝑥| , ∀ 𝑥 ∈ M̅κℎ, (4.42)

for some �̌�′ > 0 that does not depend on λ, ℎ nor κ.

2.a.iii. We are now in position to show that [w̄κℎ]C0lin(M̅κℎ) does not depend onκ nor ℎ. Using (4.42) and the arguments of Lemma 4.A.3, we obtain
that, after possibly passing to a subsequence, (�̌�λ− �̌�λ(0))λ>0 converges
pointwise, as λ → 0, to w̄κℎ − ρ̄κ,∗ℎ Δ𝑡ℎ and that the latter satisfies||w̄κℎ(𝑥) − ρ̄κ,∗ℎ Δ𝑡ℎ|| ≤ �̌�′ |𝑥| , 𝑥 ∈ M̅κℎ. (4.43)
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2.b. To complete the proof, it remains to appeal to the stability of viscosity
solutions, and use comparison results in the class of semi-continuous
super/sub-solutions with linear growth. Let (κℎ)ℎ>0 be as in the state-
ment of the Proposition. By (4.43), (w̄κℎℎ − ρ̄κℎ,∗ℎ Δ𝑡ℎ)ℎ>0 admits locally
bounded relaxed semi-limits

w̄∞∗0 (𝑥) ∶= lim sup𝑥′→𝑥, ℎ↓0 w̄κℎℎ (𝑥′) − ρ̄κℎ,∗ℎ Δ𝑡ℎ
and

w̄∞0∗(𝑥) ∶= lim inf𝑥′→𝑥, ℎ↓0 w̄κℎℎ (𝑥′) − ρ̄κℎ,∗ℎ Δ𝑡ℎ.
which take the value 0 at 0, recall (4.28), and have linear growth. We
can then use (4.27), Proposition 4.4.1 and standard stability arguments
for viscosity solutions, see e.g. [57, § 3], to deduce that w̄∞0∗ and w̄∞∗0
are respectively viscosity super- and subsolutions of (4.11). We claim
that w̄∞∗0 = w̄ + 𝑔 for some 𝑔 ∈ ℝ. Then, we will deduce that 𝑔 =
w̄∞∗0 (0) − w̄(0) = 0 by construction. The same argument can be used
to prove that w̄∞0∗ = w̄. To prove the above, we follow the arguments
of [18, Pf. of Thm. 3.1]. We first fix 𝑅 > 0 and let 𝐵𝑅 ∶= 𝐵𝑅(0) be the
open ball of radius 𝑅 centred at 0. Set 𝑔 ∶= max𝜕𝐵𝑅(w̄∞∗0 − w̄). SinceΦ ∶= w̄∞∗0 − w̄ − 𝑔 has linear growth, see (4.17) and above, we can fixι > 0, independently of 𝑅, such that 𝑥 ↦ Φ(𝑥) − ι|𝑥|2 has a maximum
point ̂𝑥𝑅 on (𝐵𝑅)𝑐. If sup(𝐵𝑅)𝑐 Φ > 0, then, for ι > 0 small enough, we
have Φ( ̂𝑥𝑅) − ι| ̂𝑥𝑅|2 > 0 and therefore ̂𝑥𝑅 lies in the interior of (𝐵𝑅)𝑐.
We now use the subsolution property of w̄∞∗0 and the fact that w̄ is a
smooth solution of (4.11) to obtain

0 ≤ sup̄𝑎∈𝔸 {L̄ ̄𝑎w̄( ̂𝑥𝑅) + 𝑟( ̂𝑥𝑅, ̄𝑎) − ρ̄∗ + ι (2μ( ̂𝑥𝑅, ̄𝑎) ̂𝑥𝑅 + σ2)}
≤ι sup̄𝑎∈𝔸 {2μ( ̂𝑥𝑅, ̄𝑎) ̂𝑥𝑅 + σ2} .

Using (4.38), we get a contradiction for 𝑅 large enough. This shows
that sup(𝐵𝑅)𝑐 Φ ≤ 0. Now the fact that max𝐵𝑅∪𝜕𝐵𝑅 Φ = 0 follows by the
maximum principle applied to (4.11) on 𝐵𝑅 with Dirichlet boundary
conditions on 𝜕𝐵𝑅. Moreover, Φ is a viscosity subsolution of

0 ≤ sup̄𝑎∈𝔸 L̄
̄𝑎Φ.

We can thus now appeal to the strong maximum principle, see e.g. [70,
Thm. 1], to deduce that w̄∞0 − w̄ − 𝑔 = Φ ≡ 0, which concludes the
proof.
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4.5 Application to High‐Frequency Auctions

4.5.1 Motivation and setting

Web display advertising is a typical example of real-world high-frequency
pure jump control problems [54]. The ad-spaces are sold by algorithmic plat-
forms in automated auctions which occur at the dozen microsecond scale [98].
The frequency imposes computational issues on optimisation problems in
this industry, while at the same time, the volume creates a significant mon-
etary incentive for all parties to engage in revenue maximisation.

Consequently, the question of the strategic behaviour of bidders in re-
peated auctions in the face of learning sellers has been a popular topic in
contemporary auction theory, see e.g. [93, § 4] for a survey. A rich line of
work has focused on asymmetric problems where one player is significantly
more patient than the other [9, 94]. This asymmetry reduces game theoretic
considerations in the analysis to optimisation or control problems. In this
example, we take interest in the case where the buyer is infinitely patient (it
optimises an ergodic objective), while the seller’s algorithm has an effectively
finite memory of bidder behaviour.

Given these horizons, the format of the auction will strongly influence
the behaviour of bidders and sellers when they seek to maximise their profit,
see e.g. [75] for some generic examples. While it is a sub-optimal auction
format for the seller [92], we choose to focus on the second-price auction
format here. Indeed, there are unsurmountable difficulties in learning the
optimal auction format [90], and second-price is in practice a common com-
promise between tractability and optimality [105].

Recalling the notations introduced in Example 4.2.1, in a second-price
auction (with reserve) the bidder wins if it outbids the competition 𝑒4 and
the reserve price 𝑥, and pays the smallest bid which still wins the auction,
i.e. 𝑥 ∨ 𝑒4. As a result of the time scale there is little time in practice to per-
form computations to determine the bid, and one typically relies on using
a precomputed function of the value to bid when an auction arrives and 𝑒3
is revealed. More formally, the bid should be predictable. For simplicity, in
this example, we consider a linear shading of the value: 𝑎𝑒2, where the con-
trol input value 𝑎 is the shading factor. Consequently, we have the (expected)
reward function

𝑟(𝑥, 𝑎) ∶= ∫(𝑒2 − 𝑥 ∨ 𝑒4)1{𝑎𝑒2≥𝑥∨𝑒4}ν(d𝑒) . (4.44)

Such auctions are well-defined only for positive bids. Thus, we impose 𝑎 ∈ℝ+.
Within the constraints of a second-price auction, maximisation of profits
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corresponds to tuning the reserve price 𝑥. Dynamically optimising the re-
serve price is a difficult problem even for a stationary bidder, see Chapter 6.
To simplify, we consider the mean-reverting dynamic which we introduced
in Example 4.2.1. For some η = ε−1 fixed, this dynamic is given by (4.3) with𝑏 ∶= 𝑏ε = ε𝑏1 +√ε𝑏2, in which

𝑏1(𝑥, 𝑎,𝑒) ∶= 𝑒1(𝑎𝑒2 − 𝑥) and 𝑏2(𝑥, 𝑎, 𝑒) ∶= 𝑒1𝑒3. (4.45)

In the above framework, the noise 𝑒1 models seller aggressivity as exo-
genous randomness, while the noise 𝑒3 models the seller’s internal random-
isation whose aim is to increase robustness to strategic play. Under the con-
ditions outlined in Example 4.2.1, we can choose for simplicity

ν(d𝑒) = 4∏𝑖=1 𝑓𝑖(𝑒𝑖)d𝑒𝑖
in which 𝑓1 ∼ Unif(0, 1) & 𝑓3 ∼ N(0, σ20)
with σ0 = 12 .

Second-price auctions without reserve leave the most revenue on the
table when the buyers are highly asymmetrical, we therefore study

𝑓2 ∼ LogNorm(μ1, σ1) & 𝑓4 ∼ Unif(0, 1)
with μ1 = 0 and σ1 = 12 . Note that empirical observations [98] suggest log-
normal is a realistic statistical model for values.

Assumption 4.1, and the remaining conditions in Example 4.2.1 for As-
sumptions 4.2 and 4.3 are easily seen to hold under the above choices. There-
fore, this pure jump process admits, and converges to, a diffusion limit by
Theorem 4.3.2, in particular it is easily checked that the coefficients of the
limit diffusion are given by

μ(𝑥, 𝑎) ∶= 12 (𝑎𝐶 − 𝑥) and σ(𝑥) ∶= σ0√3 , (4.46)

where 𝐶 ∶= exp (μ1 + σ212 ). It is clear from (4.44) and (4.46) that values of 𝑎
larger than 1 cannot be optimal, therefore we fix 𝔸 = [0, 1].

4.5.2 Numerical resolution of the HJB equations

Using this example motivated by high-frequency auctions we illustrate in
this section the benefits of the diffusion limit problem in regard to numerical
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computation. We use the method detailed in Section 4.4 to solve numeric-
ally (4.16), with coefficients μ and σ given by (4.46). Throughout, we will
take κℎ ∶= ℎ−1/4, for which ℎ ≤ (σ/2)8/3 suffices to uphold condition (4.29)
since we have [μ]C0lin ≤ (1 + 𝑒1/8)/2. Note that, with 𝑓1, 𝑓2, 𝑓3 as above, 𝑝 in Ex-
ample 4.2.1 and Example 4.3.2 can be taken to be any positive real number.

In comparison to (4.16), solving (4.10) with coefficients given by (4.45)
is complicated by the computation of the integral term. In many situations,
when ν is a non-atomic measure with a known closed form, quadrature would
be the preferred method for resolution, see e.g. [47]. In this example, this
quadrature would be 4-dimensional, which is somewhat expensive.

In contrast, the relatively simple form of the combination of independent
noise sources makes Monte Carlo simulation competitive in this specific ex-
ample. Fixing a grid Mε analogous to the one in Section 4.4, we compute the
empirical transition distribution 𝑝aε ∶ (𝑥, 𝑎) ∈ Mε × 𝔸 → 𝑝aε(⋅; 𝑥, 𝑎) ∈ ∆2κε+1,
where ∆2κε+1 is the 2κε+1-dimensional probability simplex, based on Nε in-
dependent samples from each law, by projecting sample transitions onto Mε.
We then approximate for (4.10) by solving the analogue of (4.27), i.e. finding
(ρκε,∗ε,ℎε ,Wκεℎε),Wκεℎε ∶= (w̄κεℎε(𝑧𝑖))1≤𝑖≤2κε+1, solving

0 = max
a∈𝒜 {1ε (𝑃aε − I2κε+1)Wκεℎε − 𝑒Wκεℎε(0) + Rκεℎε(a)} (4.47)ρκε,∗ε,ℎε =Wκεℎε(0) (4.48)

by policy iteration, where 𝑃aε = (𝑝aε(𝑧𝑗; 𝑧𝑖, a(𝑧𝑖)))1≤𝑖,𝑗≤2κε+1, I2κε+1 is the 2κε+1-
dimensional identity matrix, and Rκεℎε(a) is as in Section 4.4.

As ε → 0, all the transitions concentrate into a ball of size ε 12 with a
drift of size ε, meaning that the mesh must refine faster than ε, in order
to avoid degeneracy. Therefore, we consider the sequence of grids (Mε)ε≥0,
with Mε ∶= {𝑦𝑖 = −10 + (𝑖 − 1)ℎε ∶ 1 ≤ 𝑖 ≤ 2κε + 1} with ℎε = ε3/2 andκε = Nε = 20ε3/2. Note that the refinement of the grid Mε as ε → 0 does not
imply that the accuracy of the scheme increases as ε → 0, the increasingly
fine resolution is a cost incurred due to ηε. The increase in this cost becomes
impossible to maintain as ε becomes small, this is illustrated by Fig. 4.1: it
rises at a rate ε−3/2.

In contrast, using the diffusion limit by combining Sections 4.3 and 4.4,
allows us to solve the problem to a high precision for relatively cheap. Fig-
ure 4.2 demonstrates the convergence in value of Theorem 4.3.2, with a rate
of ε1/2.

Explicit computation for an approximately optimal control using (4.36) is
impractical for the 𝑟 given in (4.44), due to its lack of a closed form derivative
to apply first order conditions. Nevertheless, in order to illustrate the bounds
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in Proposition 4.4.2, we resort to numerical approximation. We fix a grid𝔸Γ ∶= {𝑖Γ−1, 0 ≤ 𝑖 ≤ Γ} on 𝔸 = [0, 1], fixing Γ = 100, and then solve the
maximum in (4.36) on 𝔸Γ instead of 𝔸. Contrary to Section 4.4.2, we only
compute it on M̅κℎℎ . This yields a map aΓℎ ∶ M̅κℎℎ → 𝔸Γ, which can be viewed
as a vector of controls associated with M̅κℎℎ .
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Figure 4.1: Comparison of computation costs for (4.47) (ρ∗ε ) and (4.27) (ρ̄κ,∗ℎ ).

From here, we define ăΓℎ ∈ 𝒜 by ăΓℎ ∶= aΓℎ(ΠM̅
κℎℎ (⋅)) where ΠM̅

κℎℎ ∶ ℝ →
M̅κℎℎ is the projector onto the grid M̅κℎℎ ; consider the solution �̆�κℎ,ℎ,Γ of

�̆�κℎ,ℎ,Γ = ∫⋅
0 ∫ℝ𝑑′ 𝑏ε(�̆�κℎ,ℎ,Γ𝑠− , ăΓℎ(�̆�κℎ,ℎ,Γ𝑠− ), 𝑒)𝑁(d𝑒,d𝑠) ;

and evaluate ρε(0, ᾰΓℎ) for each ε, with ᾰΓℎ ∶= ăΓℎ(�̆�κℎ,ℎ,Γ⋅− ). In practice, we fix𝑇 = 1000 and compute

ε𝑇𝔼 [∫𝑇
0 𝑟(�̆�κℎ,ℎ,Γ𝑡− , ăΓℎ(�̆�κℎ,ℎ,Γ𝑡− ))d𝑁𝑡]

by Monte Carlo with 1000 trajectories1 of �̆�κℎ,ℎ,Γ.ß
Despite the noise and the simple approximate control scheme, we re-

cover the bounds of Proposition 4.4.2, in terms of ε in Fig. 4.3, with ℎ =0.002667 being the smallest ℎ on Fig. 4.1. Note that this convergence rate
matches the one of Fig. 4.2.

1Computing an ergodic average over each trajectory is very numerically expensive for
small values of ε, reducing the feasible amount of samples. In spite of the noise, the slope1/2 is still visible in Fig. 4.3.
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Figure 4.2: Approximation error of ρ∗ε by ρ̄κℎ,∗ℎ .
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Figure 4.3: Suboptimality of the diffusive control relative to ρ∗ε .

109



4. DIFFUSIVE LIMIT APPROXIMATION OF ERGODIC CONTROL PROBLEMS

Conclusion
In this chapter, we studied the diffusion limit of a pure-jump ergodic control
problem as the jump intensity goes to infinity, upon assuming a correct scal-
ing of the coefficients. Unlike in Chapter 3, ergodicity requires us to study
Lyapunov properties of the pre-limit and limit processes to establish the well-
posedness of the ergodic control problems.

With this done, we applied a similar methodology to Chapter 3: we
first studied the regularity of the solution to the diffusive Hamilton-Jacobi-
Bellman equation, which we showed is locally γ-Hölder continuous for anyγ ∈ (0, 1) with a Hölder constant which grows linearly in the state 𝑥. This
growth is inherited from the linear growth of the drift 𝑏1. This Hölder expo-
nent drives the convergence rate, which can be improved by error correction
schemes.

We then studied numerical schemes of the diffusive HJB equation, show-
ing a convergence rate via a similar methodology as the diffusive limit. We
also studied the question of obtaining an approximately optimal control from
the numerical solution of the diffusive HJB equation, which appears novel.

This overall methodology is effective at obtaining numerical approxima-
tions for high-frequency pure-jump ergodic control problems, as exemplified
by those seen in online advertising auctions.
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4.A Proof of Theorem 4.2.1
In this appendix, we first provide the proof of Theorem 4.2.1. It follows a
standard route. We adapt arguments of [14] and [13] to our context.

We first show that (𝑉λ)λ∈(0,1) is equi-Lipschitz continuous, under the con-
traction condition of Assumption 4.2.

Lemma 4.A.1.
Let Assumptions 4.1 and 4.2 hold, then|𝑉λ(𝑥) − 𝑉λ(𝑥′)| ≤ 𝐿𝑉|𝑥 − 𝑥′|, for 𝑥, 𝑥′ ∈ ℝ𝑑,λ ∈ (0, 1),
in which

𝐿𝑉 ∶= 𝐿𝑏,𝑟𝑝ζ𝐶ζ (𝐿ζℓζ)
1𝑝ζ .

Proof. Fix 𝑥, 𝑥′ ∈ ℝ𝑑, together with α ∈ A. By Assumption 4.2,η∫ℝ𝑑′ [ζ(𝑋⋅− + 𝑏(𝑋⋅−,α, 𝑒),𝑋′− + 𝑏(𝑋′⋅−,α, 𝑒)) − ζ(𝑋⋅−,𝑋′⋅−)] ν(d𝑒)
≤ −𝐶ζζ(𝑋⋅−,𝑋′⋅−)

in which (𝑋,𝑋′) ∶= (𝑋𝑥,α,𝑋𝑥′,α) and (𝑋⋅−,𝑋′⋅−) is its left-limit. Applying
Itô’s Lemma then implies that

ζ(𝑋𝑡,𝑋′𝑡) ≤ ζ(𝑥, 𝑥′) − 𝐶ζ∫𝑡
0 ζ(𝑋𝑠,𝑋′𝑠)d𝑠 + 𝑀𝑡, 𝑡 ≥ 0,

where 𝑀 is a local martingale. Upon using a localisation argument, recall (i)
of Assumption 4.2, taking the expectation and using an immediate compar-
ison result for ODEs leads to𝔼[ζ(𝑋𝑡,𝑋′𝑡)] ≤ ζ(𝑥, 𝑥′)𝑒−𝐶ζ𝑡, 𝑡 ≥ 0. (4.49)

It remains to use (i) of Assumption 4.2 to deduce that

𝔼 [‖𝑋𝑡 − 𝑋′𝑡‖𝑝ζ] ≤ 𝐿ζℓζ ‖𝑥 − 𝑥′‖𝑝ζ𝑒−𝐶ζ𝑡 , 𝑡 ≥ 0. (4.50)

Combining the above with Remark 4.2.1, the Lipschitz continuity assumption
on 𝑟, Assumption 4.1, and using Jensen’s inequality then leads to

|𝐽λ(𝑥,α) − 𝐽λ(𝑥′,α)| ≤ 𝐿𝑏,𝑟 ∫∞
0 𝑒−λ𝑡𝔼 [‖𝑋𝑡 − 𝑋′𝑡‖]d𝑡

111



4. DIFFUSIVE LIMIT APPROXIMATION OF ERGODIC CONTROL PROBLEMS

≤ 𝐿𝑏,𝑟 ∫∞
0 𝑒−λ𝑡𝔼[‖𝑋𝑡 − 𝑋′𝑡‖𝑝ζ] 1𝑝ζ d𝑡

≤ 𝐿𝑏,𝑟(𝐿ζℓζ)
1𝑝ζ ∫∞

0 ‖𝑥 − 𝑥′‖ 𝑒−λ𝑡−𝐶ζ𝑝ζ 𝑡
d𝑡

≤ 𝐿𝑏,𝑟𝑝ζ𝐶ζ + λ𝑝ζ(𝐿ζℓζ)
1𝑝ζ ‖𝑥 − 𝑥′‖ .

Since |𝑉λ(𝑥)−𝑉λ(𝑥′)| ≤ supα∈A|𝐽λ(𝑥,α)−𝐽λ(𝑥′,α)| and λ𝑝ζ ≥ 0, this completes
the proof.

We now use Assumption 4.3 to provide a uniform (in time and the con-
trol) estimate on the diffusion (4.3).

Lemma 4.A.2.
Let Assumptions 4.1 and 4.3 hold. Then,

𝔼 [‖𝑋𝑥,α𝑡 ‖𝑝ξ] ≤ 1ℓξ {𝑒−𝐶1ξ𝑡𝐿ξ‖𝑥‖𝑝ξ + 𝐶2ξ𝐶1ξ (1 − 𝑒−𝐶1ξ𝑡)} , 𝑡 ≥ 0,
for any (𝑥,α) ∈ ℝ𝑑 ×A.

Proof. Fix (𝑥,α) ∈ ℝ𝑑 × A and let us write 𝑋 for 𝑋𝑥,α. By (4.7) and the same
arguments as in the proof of 4.A.1,

𝔼[ξ(𝑋𝑡)] ≤ ξ(𝑥) +∫𝑡
0 𝔼[−𝐶1ξξ(𝑋𝑠) + 𝐶2ξ]𝑑𝑠, 𝑡 ≥ 0,

which implies that

𝔼[ξ(𝑋𝑡)] ≤ 𝑒−𝐶1ξ𝑡ξ(𝑥) + 𝐶2ξ𝐶1ξ (1 − 𝑒−𝐶1ξ𝑡) , 𝑡 ≥ 0.
We conclude with (i) of Assumption 4.3.

We can now prove a first convergence result.

Lemma 4.A.3.
Let Assumptions 4.1 and 4.2 hold. Then there is 𝑐 ∈ ℝ and a sequence (λ𝑛)𝑛≥1
going to 0 such that (λ𝑛𝑉λ𝑛)𝑛≥1 converges uniformly on compact sets to 𝑐, and
such that (𝑉λ𝑛 − 𝑉λ𝑛(0))𝑛≥1 converges uniformly on compact sets to a function
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w ∈ C0,1 that solves

𝑐 = sup𝑎∈𝔸 {η∫ℝ𝑑′ [w(⋅ + 𝑏(⋅, 𝑎, 𝑒)) − w] ν(𝑑𝑒) + 𝑟(⋅, 𝑎)} , on ℝ𝑑,
and satisfies |w(𝑥)| ≤ 𝐿𝑉 |𝑥| , 𝑥 ∈ ℝ𝑑. (4.51)

Proof. The proof applies classical arguments from [14] to the pure jump set-
ting. By Lemma 4.A.1, (𝑉λ − 𝑉λ(0))λ>0 is equicontinuous in the Lipschitz
sense and, in particular, |𝑉λ(𝑥) − 𝑉λ(0)| ≤ 𝐿𝑉 |𝑥| for all 𝑥 ∈ ℝ𝑑 and λ > 0.
Hence, (λ(𝑉λ−𝑉λ(0)))λ≥0 converges uniformly on compact sets to 0 as λ → 0.
Since (λ𝑉λ(0))λ≥0 is bounded (recall Lemma 4.A.2 and Assumption 4.1) there
is a sequence (λ𝑛)𝑛≥1 converging to 0 such that λ𝑛𝑉λ𝑛(0) → 𝑐 ∈ ℝ as 𝑛 →∞.
Thus, λ𝑛𝑉λ𝑛 → 𝑐 uniformly on compact sets.

By Lemma 4.A.1, (𝑉λ−𝑉λ(0))λ>0 is locally bounded. Then, a diagonalisation
argument allows one to extract a further subsequence (also denoted (λ𝑛)𝑛≥0)
such that 𝑉λ𝑛 − 𝑉λ𝑛(0) → w on ℚ𝑑 for some w ∶ ℚ𝑑 → ℝ. By the uniform
equicontinuity of (𝑉λ)λ∈(0,1), w can be extended to ℝ𝑑 and 𝑉λ𝑛 − 𝑉λ𝑛(0) → w
uniformly on compact sets. Moreover, w is 𝐿𝑉-Lipschitz and w(0) = 0, which
implies (4.51).

Next, it follows from standard arguments, see e.g. [35], that 𝑉λ𝑛 solves for
each 𝑛 ≥ 1

0 = sup𝑎∈𝔸 {η∫ℝ𝑑′ [𝑉λ𝑛(⋅ + 𝑏(⋅, 𝑎, 𝑒)) − 𝑉λ𝑛]ν(d𝑒) + 𝑟(⋅, 𝑎)} − λ𝑛𝑉λ𝑛 , on ℝ𝑑.
(4.52)

Hence,λ𝑛𝑉λ𝑛(0)= −λ𝑛(𝑉λ𝑛 − 𝑉λ𝑛(0))+ sup𝑎∈𝔸 {η∫ℝ𝑑′ [𝑉λ𝑛(⋅ + 𝑏(⋅, 𝑎, 𝑒)) − 𝑉λ𝑛(0) − (𝑉λ𝑛 − 𝑉λ𝑛(0))]ν(d𝑒) + 𝑟(⋅, 𝑎)}
on ℝ𝑑, and passing to the limit (recall Assumption 4.1 and that ν is a probab-
ility measure) implies that

𝑐 = sup𝑎∈𝔸 {η∫ℝ𝑑′ [w(⋅ + 𝑏(⋅, 𝑎, 𝑒)) − w]ν(d𝑒) + 𝑟(⋅, 𝑎)} , on ℝ𝑑.
113



4. DIFFUSIVE LIMIT APPROXIMATION OF ERGODIC CONTROL PROBLEMS

We now have to prove that the constant 𝑐 defined above equals ρ∗(0) and
that only (w, ρ∗(0)) solves (4.10), up to restricting to functions with linear
growth taking the value 0 at 0.

Lemma 4.A.4.
Let Assumptions 4.1 to 4.3 hold. Let (w̃, ρ̃) ∈ C0lin × ℝ be a solution of the
ergodic equation

ρ̃ = sup𝑎∈𝔸 {η∫ℝ𝑑′ [w̃(⋅ + 𝑏(⋅, 𝑎, 𝑒)) − w̃]ν(d𝑒) + 𝑟(⋅, 𝑎)} , on ℝ𝑑.
Then, ρ∗ is constant and equal to ρ̃. In particular, the constant 𝑐 of Lemma 4.A.3
is equal to ρ∗.

Proof. Let us fix 𝑥 ∈ ℝ𝑑.

1. By Lemma 4.A.3 and [24, Prop. 7.33, p.153], we can find a measurable
map 𝑥′ ∈ ℝ𝑑 ↦ â(𝑥′) ∈ 𝔸 such that

ρ̃ = η∫ℝ𝑑′ [w̃(⋅ + 𝑏(⋅, â(⋅), 𝑒)) − w̃]ν(d𝑒) + 𝑟(⋅, â(⋅)), on ℝ𝑑.
Let �̂� denote the solution of (4.3) associated to α̂ ∶= â(�̂�⋅−) and the
initial condition 𝑥. Then, Itô’s Lemma implies that

𝔼 [w̃(�̂�𝑡) − w̃(𝑥) + 1η∫𝑡
0 𝑟(�̂�𝑠−, α̂𝑠)d𝑁𝑠] = ρ̃𝑡, 𝑡 ≥ 0.

Moreover, since w̃ has linear growth, there exists 𝐶 > 0 such that

𝔼 [||w̃(�̂�𝑡) − w̃(𝑥)||] ≤ 𝐶𝔼[‖�̂�𝑡‖ + ‖𝑥‖].
By Lemma 4.A.2, 𝔼[‖�̂�𝑡‖]/𝑡 → 0 as 𝑡 →∞ since 𝑝ξ ≥ 1. Then, the above
implies that

lim𝑡→∞ 1η𝑡𝔼 [∫𝑡
0 𝑟(�̂�𝑠−, α̂𝑠)d𝑁𝑠] = ρ̃.

2. Conversely, for any α ∈ A,

𝔼 [w̃(𝑋𝑥,α𝑡 ) − w̃(𝑥) + 1η∫𝑡
0 𝑟(𝑋𝑥,α𝑠− ,α𝑠)d𝑁𝑠] ≤ ρ̃𝑡, 𝑡 ≥ 0.
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By Lemma 4.A.2 and the linear growth of w̃ again, we deduce that

lim sup𝑡→∞
1η𝑡𝔼 [∫𝑡

0 𝑟(𝑋𝑥,α𝑠− ,α𝑠)d𝑁𝑠] ≤ ρ̃.
3. Combining 1. and 2. implies that ρ̃ = ρ∗(𝑥). By arbitrariness of 𝑥 ∈ ℝ𝑑,ρ∗ is constant.

We are now in a position to prove our second convergence result, and
therefore to complete the proof of Theorem 4.2.1.

Lemma 4.A.5.
Let Assumptions 4.1 to 4.3 hold. Then, there exists a sequence (𝑇𝑛)𝑛≥1 going to+∞ such that (𝑇−1𝑛 𝑉𝑇𝑛(0, ⋅))𝑛≥1 converges uniformly on compact sets to ρ∗(0).

Proof. The proof follows from the same arguments as in [14, Prop. VI.1] ex-
cept that in their case the convergence holds uniformly onℝ𝑑. Let (λ𝑛)𝑛≥1 be
as in Lemma 4.A.3 and set 𝑇𝑛 ∶= δ/λ𝑛 for some δ ∈ (0, 1), so that λ𝑛 → 0
and 𝑇𝑛 → ∞ as 𝑛 → ∞. Fix 𝑥 ∈ ℝ𝑑. By Lemmas 4.A.1 and 4.A.2, we can
find 𝐶 > 0 such that 𝔼[|𝑉λ𝑛(𝑋𝑥,α𝑡 ) − 𝑉λ𝑛(𝑥)|] ≤ 𝐶(1 + |𝑥|) uniformly in α ∈ A
and for all 𝑥 ∈ ℝ𝑑, and 𝑡 ≥ 0. Arguing as in the proof of [14, Prop. VI.1], we
then deduce from the Dynamic Programming Principle applied to 𝑉λ𝑛 , see
e.g. [35], Lemmas 4.A.1 and 4.A.2 and Assumption 4.1 that, for some 𝐶′ > 0
that does not depend on 𝑛,|||ρ∗(1 − 𝑒−δ) − δ𝑇𝑛 𝑉𝑇𝑛(0, 𝑥)||| ≤ 2 ||λ𝑛𝑉λ𝑛(𝑥) − ρ∗ε || + λ𝑛𝐶′(1 + |𝑥|).
It remains to divide the above by δ, send 𝑛 → ∞ and use Lemmas 4.A.3
and 4.A.4 to obtain thatρ∗ (1 − 𝑒−δ)δ ≤ lim inf𝑛→∞ 1𝑇𝑛 𝑉𝑇𝑛(0, 𝑥) ≤ lim sup𝑛→∞

1𝑇𝑛 𝑉𝑇𝑛(0, 𝑥) ≤ ρ∗ (1 − 𝑒−δ)δ ,
and we conclude by arbitrariness of δ ∈ (0, 1). The fact that the convergence
is uniform on compact sets follows from the above and Lemma 4.A.3.

4.B Estimates for EllipticHJBEquationsWithout
Control of the Volatility Part
In this section, we collect standard estimates on elliptic HJB equations associ-
ated with infinite horizon optimal control problems of a diffusion, in which
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there is no control on the volatility part. This is a specific class of quasi-linear
equations whose analysis is standard. Our focus here is on the growth rate
of local C2,γ𝑏 -estimates in the case where the solution is already known to be
Lipschitz. We follow closely the arguments of [61] that consider compact do-
mains and insist only on the points where the Lipschitz continuity property
is used.

As usual, we first consider linear equations of the form

0 = ⟨b,D𝑢⊤⟩ + 12 Tr [aD2𝑢] − λ𝑢 − f on ℝ𝑑. (4.53)

We fix 𝑀 > 0 and a modulus of continuity ϱ (i.e. a real valued map on ℝ𝑑
that is continuous at 0 and such that ϱ(0) = 0). We let S(𝑀, ϱ) denote the
collections of real-valued maps 𝑢 ∈ C2 such that 𝑢(0) = 0, ‖D𝑢‖∞ ≤ 𝑀 and
that are strong solutions of (4.53) with coefficients satisfying:

(a) λ ∈ [0, 1],
(b) (b, f) ∶ ℝ𝑑 → ℝ𝑑 × ℝ is measurable and [b]C0lin + ‖f‖∞ ≤ 𝑀,

(c) a ∶ ℝ𝑑 → 𝕊𝑑 is bounded by 𝑀 and admits ϱ as a modulus of continuity,

(d) inf{ξ⊤aξ ∶ ξ ∈ ℝ𝑑, ‖ξ‖ = 1} ≥ 1/𝑀.

Hereafter, we use the convention 0/0 = 0.

Lemma 4.B.1.
For each γ ∈ (0, 1), there exists 𝐾γ𝑀,ϱ > 0 such that any 𝑢 ∈ S(𝑀, ϱ) satisfies

‖𝑢‖C1,γ𝑏 (𝐵2(𝑥)) ≤ 𝐾γ𝑀,ϱ(1 + ‖𝑥‖), for all 𝑥 ∈ ℝ𝑑.

Proof.

1. Given 𝑝 > 1, we first estimate ‖𝑢‖𝑊2,𝑝(𝐵2(𝑥)) in which ‖⋅‖𝑊2,𝑝(𝐵2(𝑥)) de-
notes the norm associated to the Sobolev space 𝑊2,𝑝(𝐵2(𝑥)). We follow
the proof of [61, Thm. 9.11]. Fix 𝑥0 ∈ 𝐵2(𝑥). By [61, (9.37)], for any𝑣 ∈ 𝑊2,𝑝(𝐵3(𝑥0)) supported in some 𝐵𝑅(𝑥0) ⊂ 𝐵3(𝑥), 𝑅 > 0, there is𝐶1 > 0, that depends only 𝑝, such that‖D2𝑣‖𝐿𝑝(𝐵𝑅(𝑥0))≤ 𝐶1𝑀 ( sup𝐵𝑅(𝑥0) ‖a − a(𝑥0)‖ ‖D2𝑣‖𝐿𝑝(𝐵𝑅(𝑥0)) + ‖Tr[aD2𝑣]‖𝐿𝑝(𝐵𝑅(𝑥0))) ,
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in which ‖⋅‖𝐿𝑝(𝐵𝑅(𝑥0)) denotes the usual norm of the 𝐿𝑝-space associated
to the Lebesgue measure on 𝐵𝑅(𝑥0).
The uniform continuity of a implies that there exists an 𝑅 > 0 small
enough, which only depends on 𝑝, 𝑀 and ϱ, such that |a − a(𝑥0)| ≤1/2𝑀𝐶1 on 𝐵𝑅(𝑥0), so that the above implies that‖D2𝑣‖𝐿𝑝(𝐵𝑅(𝑥0)) ≤ 2𝐶1𝑀‖Tr[aD2𝑣]‖𝐿𝑝(𝐵𝑅(𝑥0)). (4.54)

Take 𝑢 ∈ S(𝑀, ϱ) a solution to (4.53) in 𝐵3(𝑥), applying (4.54) yields‖D2𝑢‖𝐿𝑝(𝐵𝑅(𝑥0))≤ 𝐶2 (‖f‖C0𝑏(𝐵3(𝑥)) + λ ‖𝑢‖C0𝑏(𝐵3(𝑥)) + ‖b‖C0𝑏(𝐵3(𝑥)) ‖D𝑢⊤‖C0𝑏(𝐵3(𝑥)))
for some 𝐶2 > 0 that only depends on 𝑀, 𝑝 and ϱ. From the definition
of S(𝑀, ϱ), it follows that there is 𝐶3 > 0, independent of 𝑥0, such that‖𝑢‖𝑊2,𝑝(𝐵𝑅(𝑥0)) ≤ 𝐶3(1 + ‖𝑥‖) ,
and, by covering 𝐵2(𝑥)with finitely many balls of radius less that 𝑅, one
obtains ‖𝑢‖𝑊2,𝑝(𝐵2(𝑥)) ≤ 𝐶4(1 + ‖𝑥‖)
for some 𝐶4 that depends only on 𝑝, 𝑀 and ϱ.

2. Using an embedding theorem, see e.g. [61, Thm. 7.26], we can find�̄�γ,𝑝 > 0 such that‖𝑢‖C1,γ𝑏 (𝐵2(𝑥)) ≤ �̄�γ,𝑝‖𝑢‖𝑊2,𝑝(𝐵2(𝑥)), ∀ 𝑢 ∈ S(𝑀, ϱ), 𝑥 ∈ ℝ𝑑,
for all 𝑝 ∈ ℕ such that 0 < 𝑑/𝑝 < 1 and γ ∈ (0, 1 − 𝑑/𝑝). Givenγ ∈ (0, 1), the required result follows by combining the above for some𝑝 large enough.

Let us now turn to the quasilinear case

0 = b̂(⋅,D𝑢⊤) + 12 Tr[aD2𝑢] − λ𝑢 on ℝ𝑑, (4.55)

in which
b̂(𝑥, 𝑦) ∶= ⟨b(𝑥, 𝑦), 𝑦⟩ − f(𝑥, 𝑦), (𝑥, 𝑦) ∈ ℝ𝑑 × ℝ𝑑.

We again fix 𝑀 > 0, and take ρ = (ρ1, ρ2) ∈ (0, 1]2, and let S̃(𝑀, ρ) denote
the collection of real-valued maps 𝑢 ∈ C2 such that 𝑢(0) = 0, ‖D𝑢‖ ≤ 𝑀, and
that are solutions of (4.55) for some coefficients satisfying:

(a) λ ∈ [0, 1],
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(b) (b, f) ∶ ℝ𝑑 → ℝ𝑑 × ℝ is measurable and [b]C0lin(ℝ2𝑑) + ‖f‖C0𝑏(ℝ2𝑑) ≤ 𝑀,

(c) a ∶ ℝ𝑑 → 𝕊𝑑 is measurable and bounded by 𝑀.

(d) inf{ξ⊤a ξ ∶ ξ ∈ ℝ𝑑, ‖ξ‖ = 1} ≥ 1/𝑀,

(e) for all 𝑥, 𝑥′ ∈ ℝ𝑑 such that ‖𝑥 − 𝑥′‖ ≤ 1 and all 𝑦, 𝑦′ ∈ ℝ𝑑:‖a(𝑥) − a(𝑥′)‖ + ||b̂(𝑥, 𝑦) − b̂(𝑥′, 𝑦′)|| ≤ 𝑀 (‖𝑥 − 𝑥′‖ρ1 + ‖𝑦 − 𝑦′‖ρ2) .
Lemma 4.B.2.

Fix γ ∈ (0, ρ1 ∧ ρ2). Then, there exists �̃�γ𝑀,ρ > 0 such that any 𝑢 ∈ S̃(𝑀, ρ)
satisfies ‖𝑢‖C2,γ𝑏 (𝐵1(𝑥)) ≤ �̃�γ𝑀,ρ(1 + ‖𝑥‖), for all 𝑥 ∈ ℝ𝑑.

Proof. Fix 𝑥 ∈ ℝ𝑑. Since ‖D𝑢‖ ≤ 𝑀, by Lemma 4.B.1 applied to the coefficient𝑥′ ∈ ℝ𝑑 ↦ (b(𝑥′,D𝑢⊤(𝑥′)), a(𝑥′), f(𝑥′,D𝑢⊤(𝑥′))) in place of (b, a, f), for eachγ ∈ (0, 1), we can find 𝐶γ > 0 such that‖𝑢‖C1,γ𝑏 (𝐵2(𝑥)) ≤ 𝐶γ(1 + ‖𝑥‖) for all 𝑥 ∈ ℝ𝑑. (4.56)

It then follows from [61, Thm. 9.19] that 𝑢 ∈ C2,γ𝑏 (𝐵2(𝑥)) for any γ ∈ (0, ρ1 ∧ρ2).
To obtain an associated estimate, we turn to the proof of [61, Thm. 6.2] which
we apply to the solution 𝑤 = 𝑢 of the linear equation

𝐿𝑤 ∶= 12 Tr [aD2𝑤] = −b̂ (⋅,D𝑤⊤) + λ𝑤,
in our particular setting. Fix 𝑥0 ∈ 𝐵2(𝑥), and consider the constant coefficient
equation 𝐿0𝑤 ∶= (1/2) × Tr[a(𝑥0)D2𝑤] = 𝐹 with

𝐹(𝑧) ∶= 12 Tr [(a(𝑥0) − a(𝑧))D2𝑢(𝑧)] − b̂ (𝑧,D𝑢⊤(𝑧)) + λ𝑢(𝑧), 𝑧 ∈ ℝ𝑑.
We first introduce some notations. For ℧ ⊂ ℝ𝑑, γ ∈ (0, 1), and 𝑓 ∈ C2,γ(℧)
define the following norm and Schauder semi-norm respectively as follows:

‖ 𝑓 ‖(2)0,γ,℧ ∶= sup𝑧∈℧ 𝑑2𝑧‖ 𝑓 (𝑧)‖ + sup(𝑧,𝑧′)∈℧2 𝑑2+γ𝑧,𝑧′ ‖ 𝑓 (𝑧) − 𝑓 (𝑧′)‖‖𝑧 − 𝑧′‖γ
[ 𝑓 ]∗2,γ,℧ ∶= sup(𝑧,𝑧′)∈℧2 𝑑2+γ𝑧,𝑧′ ‖D2𝑓 (𝑧) − D2𝑓 (𝑧′)‖‖𝑧 − 𝑧′‖γ (4.57)
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[ 𝑓 ]∗2,℧ ∶= sup𝑧∈℧ 𝑑2𝑧‖D2𝑓 (𝑧)‖ , (4.58)

where 𝑑𝑧 is the distance of 𝑧 to the boundary of ℧ and 𝑑𝑧,𝑧′ ∶= 𝑑𝑧∧𝑑𝑧′ for any(𝑧, 𝑧′) ∈ ℧2.
We now fix γ ∈ (0, ρ1 ∧ ρ2). Let μ ∈ (0, 1/2] and set ℧ ∶=𝐵2(𝑥). Fix 𝑦0 ∈𝐵2(𝑥) such that 𝑑𝑥0 ≤ 𝑑𝑦0 (without loss of generality) and set 𝐵 ∶= 𝐵μ𝑑𝑥0 (𝑥0).
Then, [61, Lemma 6.1 (a.)] (see [61, (6.16)] for details) applied to 𝐿0𝑤 = 𝐹
implies that

𝑑2+γ𝑥0,𝑦0 ‖D2𝑢(𝑥0) − D2𝑢(𝑦0)‖‖𝑥0 − 𝑦0‖γ = 𝑑2+γ𝑥0 ‖D2𝑢(𝑥0) − D2𝑢(𝑦0)‖‖𝑥0 − 𝑦0‖γ≤ 𝐶γ1μ2+γ (‖𝑢‖C0𝑏(𝐵2(𝑥)) + ‖𝐹‖(2)0,γ,𝐵) + 4μγ [𝑢]∗2,𝐵2(𝑥)
for some 𝐶γ1 > 0, which only depends on γ ∈ (0, ρ1 ∧ ρ2). Then, using [61,
(6.8)] yields

𝑑2+γ𝑥0,𝑦0 ‖D2𝑢(𝑥0) − D2𝑢(𝑦0)‖‖𝑥0 − 𝑦0‖γ ≤ 𝐶γ1μ2+γ (‖𝑢‖C0𝑏(𝐵2(𝑥)) + ‖𝐹‖(2)0,γ,𝐵)
+ 4 (𝐶1(μ) ‖𝑢‖C0𝑏(𝐵2(𝑥)) + μγ[𝑢]∗2,γ,𝐵2(𝑥))

for some 𝐶1(μ) > 0 that only depends on μ. The Schauder estimate then
comes from bounding term by term ‖𝐹‖(2)0,γ,𝐵. First, we argue as for [61, (6.19)],
using (c) and (e) in the definition of S̃(𝑀, ρ), to obtain

‖Tr[(a(𝑥0) − a)D2𝑢]‖(2)0,γ,𝐵 ≤ 𝐶γ2μ2+γ [𝐶2(μ) ‖𝑢‖C0𝑏(𝐵2(𝑥)) + μγ[𝑢]∗2,γ,𝐵2(𝑥)]
for some 𝐶γ2,𝐶2(μ) > 0 which only depend on γ and μ. Second, we com-
bine (4.56) with items (a) and (e) in the definition of S̃(𝑀, ρ) to obtain that

‖b̂(⋅,D𝑢⊤)−λ𝑢‖(2)0,γ,𝐵2(𝑥) ≤ 𝐶γ3(1 + ‖𝑥‖)
for some 𝐶γ3 > 0, that only depends on γ.

Combining the above with (4.56) and using the arbitrariness of 𝑥0, 𝑦0 ∈ 𝐵2(𝑥)
leads to

[𝑢]∗2,γ,𝐵2(𝑥) ≤ 𝐶γ1μ2+γ (‖𝑢‖C0𝑏(𝐵2(𝑥)) + 𝐶γ3(1 + ‖𝑥‖))
+ 𝐶γ1𝐶γ22 [𝐶2(μ) ‖𝑢‖C0𝑏(𝐵2(𝑥)) + μγ[𝑢]∗2,γ,𝐵2(𝑥)]
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+ 4 (𝐶1(μ) ‖𝑢‖C0𝑏(𝐵2(𝑥)) + μγ[𝑢]∗2,γ,𝐵2(𝑥))
We now take μ > 0 small enough and recall (4.56) to obtain, for each 0 < γ <ρ1 ∧ ρ2, a constant 𝐶γ4 > 0, independent on 𝑥, such that

[𝑢]∗2,γ,𝐵2(𝑥) ≤ 𝐶γ4 (1 + ‖𝑥‖)
and we conclude by using [61, (6.9)] and the fact that the distance between a
point of 𝐵1(𝑥) and the boundary of 𝐵2(𝑥) is a least 1.
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Chapter 5
Near-Continuous Time

Reinforcement Learning
with Continuous States

To design Reinforcement Learning algorithms for high-
frequency systems with continuous state-action spaces, we con-
sider interactions with a pure-jump process of arbitrary trans-
ition kernel driven by a Poisson clock of frequency ε−1. This
model captures arbitrary time scales, from discrete (ε = 1) to
continuous time (ε ↓ 0), and richer systems than the rigid
discrete and Linear-Quadratic frameworks. We show that the
celebrated optimism protocol applies when the sub-tasks (learn-
ing and planning) can be performed effectively. Learning is
tackled within the eluder dimension framework and we propose
an approximate planning method based on a diffusive limit ap-
proximation of the jump process. Overall, our algorithm enjoys
a regret of order Õ(ε1/2𝑇 + √𝑇). As the frequency of interac-
tions blows up, the approximation error ε1/2𝑇 vanishes, show-
ing that Õ(√𝑇) is attainable in near-continuous timea.

aThis Chapter is under review as an article at the 3𝑅th Interna-
tional conference on Algorithmic Learning Theory (ALT), and appeared
at the 16th European Workshop on Reinforcement Learning (EWRL),
see [5]

* * *
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5.1 Introduction

Controlling a dynamical system to drive it to optimal long-term average be-
haviour is a key challenge in many applications, ranging from mechanical en-
gineering to econometrics. Reinforcement Learning (RL) aims to do so when
the system is a priori unknown by tackling jointly both the control and the
statistical inference of the system. This joint objective is even more important
in the online version of the problem, in which one interacts with the system
along a single trajectory (no resets or episodes). In the last decades, the in-
sights of Bandit Theory (see e.g. [82]) have been leveraged to tackle the RL
problem, while addressing the inherent exploration-exploitation dilemma
that naturally arises in sequential decision-making (see e.g. [112, § 4.2]).

Unfortunately, most literature considers interactions that occur in dis-
crete time, which is not always applicable when events are triggered by a
digital system. Such systems are pervasive in finance and advertising, for
instance, and typically have interactions occurring at a very high frequency,
with each interaction having only a marginal impact on the state of the sys-
tem. See also Sections 1.1 and 1.3.

A natural approach to planning in such systems is to directly model the
problem in continuous time. This is the common approach in finance, see
for instance [43, 47, 96]. However, the continuous-time approach conflicts
with the sample-based nature of statistical learning theory that fundament-
ally takes place in discrete time. As such, learning requires careful modelling
of the data-generating process and its arrival times. We consider interactions
governed by a Poisson clock, setting the expected inter-arrival time of the
clock to a parameter ε ∈ (0, 1). This allows us to model a continuum of situ-
ations: from discrete time ε = 1, to continuous time ε ↓ 0. We are interested
in the regime in which ε ≪ 1.

Concurrently, a prerequisite for real-world applicability is the ability to
model complex dynamics and rich reward signals for continuous state vari-
ables. With this in mind, we focus on the model-based approach where the
transition and the reward function belong to a parametrised class of func-
tions operating on a continuous state-action space. This level of generality
poses challenges regarding all three key sub-tasks of RL: which are planning,
learning, and the exploration-exploitation trade-off.

For discrete-time dynamics on finite state-action spaces, the planning
problem falls under the umbrella of Markov Decision Processes (MDPs), an
extensive review of which is available in [102]. The finite nature of MDPs
is at the heart of their theoretical and computational success. Their exten-
sion to countable or even continuous state spaces is, however, non-trivial;
see e.g. [22, § 4.6] for a review of the challenges. Perhaps the only exception
that retains those nice theoretical and computational properties is the celeb-
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5. NEAR-CONTINUOUS TIME RL WITH CONTINUOUS STATES

rated Linear Quadratic (LQ) framework [69]. However, both frameworks are
limited in their expressive power. In contrast, the continuous time theory
of Stochastic Control has demonstrated how to effectively solve the control
problem for arbitrary regular dynamics on continuous state spaces. It enjoys
a rich and mature literature [13, 14, 85], both on the theoretical aspects as well
as numerical solvers based on Partial Differential Equations (PDEs), another
storied field [19, 28, 78]. The near-continuous time framework lies between
the two theories, and the results of Chapter 4 show how to navigate between
them and approximately solve the planning problem in the high-frequency
interactions regime by solving its diffusive counterpart.

Similar to the planning problem, the natural way to push learning bey-
ond finite Markov chain models and towards continuous-state dynamics is
through linear models. The least-squares estimator enjoys strong theoretical
guarantees including adaptive confidence sets that can be efficiently main-
tained online, see e.g. [1]. Subsequent work, notably [97, 107], showed how
to extend this approach to richer model classes through the use of Non-Linear
Least Squares (NLLS). This framework subsumes standard least squares and
has been successful in many dynamics by retaining its key properties regard-
ing confidence sets. While providing a protocol for learning with NLLS,
Russo and Van Roy characterised, in [107], the trade-off between the rich-
ness of the model and the hardness of its learning through two quantities of
the model class: the log-covering number, and the eluder dimension which
summarises the difficulty of turning the information from data into predict-
ive power.

Optimism in the Face of Uncertainty (OFU) has proved highly successful
in sequential decision-making from bandits to RL. The works of [16, 20, 68]
showed how to extend the celebrated Upper Confidence Bound (UCB) [15] al-
gorithm from bandits to finite MDPs; later, extensions were made to continu-
ous state in the LQ setting, see e.g. [2, 7, 44] and references therein. Extension
from bandit to MDPs and then to LQ raised new challenges that persist in our
setting. First, the agent should not revise its behaviour too often to prevent
dithering, which requires the design of a lazy update scheme. Second, gen-
eric continuous states-spaces models come with inherent unboundedness,
and one must carefully address stability issues.

In this work, we consider the near-continuous time system interaction
model and propose an optimistic algorithm for online reinforcement learning
in the average reward setting1. Our approach builds on the work of Chapter 4
and the connection to the diffusive regime to address the planning sub-task,
yielding ε1/2-optimal policies. Furthermore, we perform the learning with
NLLS extending the work of [107] to our near-continuous time and unboun-
ded state setting. Underlying the extension of both these two approaches is a
careful treatment of the state boundedness which we do with Lyapunov sta-

1Also known as, average cost per stage, long-run average, or ergodic setting.
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bility arguments. Overall, our algorithm enjoys near-optimal performance
as its regret scales2 with Õ(ε1/2𝑇 + √𝑇). As the frequency of interactions
increases (ε ↓ 0) the approximation error vanishes, showing that Õ(√𝑇) is
attainable in near-continuous time.

5.2 Setting

We consider an agent interacting with its environment to maximise a long-
term average reward. At each interaction, it observes the current state of the
system 𝑥 ∈ ℝ𝑑, takes action 𝑎 ∈ 𝔸 ⊂ ℝ𝑑𝔸 , 𝑑𝔸 ∈ ℕ∗, and receives reward𝑟(𝑥, 𝑎), for 𝑟 ∶ ℝ𝑑 ×𝔸 → ℝ. The system then transitions to the state 𝑥′ accord-
ing to 𝑥′ = 𝑥 + μθ∗(𝑥, 𝑎) + Σξ with ξ ∼ N (0, I𝑑),Σ ∈ ℝ𝑑×𝑑, and in which μθ∗ ∶ ℝ𝑑 × 𝔸 → ℝ𝑑 is the deterministic motion of
the system. Contrasting with the standard setting, we consider here the in-
teractions to occur in a random fashion, which we model by an independent
Poisson process of intensity ε−1. As such, ε parametrises the mean wait time
between events and gives us direct control of the frequency of interactions.

Remark 5.2.1. While the additive noise structure is a design choice that simplifies
the analysis, the choice of parametrising the drift as 𝑥+μθ∗(𝑥, 𝑎) instead of μθ∗(𝑥, 𝑎)
does not affect its generality and is made only for convenience.

Let Ω ∶= 𝔻 be the space of càdlàg functions from [0, +∞) to ℝ𝑑, and letℙ be a probability measure on Ω. We formalise the interaction time and the
noise process as a markedℙ-compound Poisson process (𝑁𝑡)𝑡∈ℝ∗+ of intensityε−1 ≥ 1. We denote by (τ𝑛)𝑛∈ℕ its arrival (interaction) times, with τ0 ∶=0, and by (ξ𝑛)𝑛∈ℕ its marks, which are independent of everything else and
drawn i.i.d. according to the centred standard Gaussian measure ν onℝ𝑑. We
encode the information at time 𝑡 ∈ ℝ∗+ in the σ-algebra F𝑡 ∶= σ((τ𝑛, ξ𝑛)τ𝑛≤𝑡)
and with the filtration 𝔽 defined as the completion of (F𝑡)𝑡∈ℝ∗+ . Let A be the
set of 𝔽-adapted 𝔸-valued processes, referred to as controls. For any initial
state 𝑥0 ∈ ℝ𝑑 and α ∈ A, we let 𝑋α,θ∗ ∶= 𝑋𝑥0,α,θ∗ denote the pathwise-
unique solution of

{𝑋α,θ∗τ𝑛 = 𝑋α,θ∗τ𝑛−1 + μθ∗(𝑋α,θ∗τ𝑛−1 ,ατ𝑛−1) + Σξ𝑛𝑋α,θ∗τ0 = 𝑥0 . (5.1)

2Given maps 𝑔 ∶ ℝ+ → ℝ∗+ and 𝑓 ∶ ℝ+ → ℝ+, 𝑓 = Õ(𝑔) if there is a finite 𝑛 ∈ ℕ∗
such that 𝑓 / log(⋅)𝑛 = O(𝑔). In our case, these logarithmic factors in 𝑇 appear only in the
Õ(√𝑇) term.
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See (4.3) for an alternative definition3.
In (5.1), we model the dynamic according to a jump process and 𝑋α,θ∗ is

then defined at any time 𝑡 ∈ ℝ∗+ by considering that it is piece-wise constant
on each interval [τ𝑛−1, τ𝑛), 𝑛 ∈ ℕ∗. Although involved, this definition allows
us to define the state process at any time and feature the interplay of the
Poisson and wall-time clocks.

In our model-based paradigm, ignorance about the system is condensed
to a single parameter setΘ ⊂ ℝ𝑑Θ , 𝑑Θ ∈ ℕ∗ containing the unknown nominal
parameterθ∗. To single out the RL challenges, we further assume thatθ∗ only
affects the drift assuming other quantities (Σ, ε, 𝑟) are known to the agent. For
any 𝑥0 ∈ ℝ𝑑, we evaluate the performance of any strategy α ∈ A with the
long-term average reward criterion defined by

ραθ∗(𝑥0) ∶= lim inf𝑇→∞ 1𝑇𝔼 [𝑁𝑇∑𝑛=1 𝑟(𝑋α,θ∗τ𝑛 ,ατ𝑛)] . (5.2)

The goal of the agent is to accumulate as much reward as possible, i.e. to
try to compete with the best an omniscient agent can achieve: ρ∗θ∗(𝑥0) ∶=
supα∈A ραθ∗(𝑥0). We evaluate the quality of an online learning algorithm gen-
erating α ∈ A according to its regret.

Definition 5.1.
For any 𝑇 ∈ ℝ∗+, 𝑥0 ∈ ℝ𝑑, and α ∈ A, the regret of α is

R𝑇(α) ∶= 𝑇ρ∗θ∗(𝑥0) − 𝑁𝑇∑𝑛=1 𝑟(𝑋α,θ∗τ𝑛 ,ατ𝑛) . (5.3)

Noticing that 𝑁𝑇 is the number of events up to time 𝑇, the definitions of
the optimal performance (5.2) and the regret (5.3) highlight the interplay
between the wall-clock (𝑇) and Poisson clock (𝑁𝑇). The agent’s realised tra-
jectory uses the Poisson clock, which governs interactions, while the ideal
performance is understood per unit of wall-clock time.

5.2.1 Working assumptions

Of particular interest in our approach is the high-frequency regime in whichε ↓ 0. In this framework, many interactions occur per unit of time, each of
which is of negligible impact both in terms of dynamics and reward. This

3Note that relative to Chapters 3 and 4 we choose to work here with adapted controls
instead of predictable ones, up to a modification in the reward function
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regime can be encoded by introducing, for any parameter θ ∈ Θ, rescaled
coefficients (μ̄θ, Σ̄, ̄𝑟) connected to the original parametrisation by

μθ = εμ̄θ , Σ = ε 12 Σ̄ , and 𝑟 = ε ̄𝑟 .
In this rescaled parametrisation, μ̄θ, Σ̄, and ̄𝑟 are understood as independent
of ε. To improve legibility, we will use both representations (μθ,Σ, 𝑟) and(μ̄θ, Σ̄, ̄𝑟). While the scaling of μθ and 𝑟 in ε arises naturally, the one of Σ is a
design choice: we consider the covariance ΣΣ⊤ to be linear in ε. Known as
the diffusive regime, this preserves stochasticity4 as ε ↓ 0.

We now impose regularity assumptions on the drift and reward signal,
uniformly over the possible parametrisations and controls (α,θ) ∈ A × Θ.
We take ‖⋅‖ to be the Euclidean norm on ℝ𝑑 and ‖⋅‖op for the operator norm
on ℝ𝑑×𝑑 associated to ‖⋅‖.
Assumption 5.1.

The map (μ̄, ̄𝑟) is continuous, and there is 𝐿0 > 0 such that for all (θ, 𝑎) ∈Θ × 𝔸
𝐿0 > sup𝑥∈ℝ𝑑

‖μ̄θ(𝑥, 𝑎)‖1 + ‖𝑥‖ + sup(𝑥,𝑥′)∈ℝ𝑑×ℝ𝑑𝑥≠𝑥′
‖μ̄θ(𝑥, 𝑎) − μ̄θ(𝑥′, 𝑎)‖‖𝑥 − 𝑥′‖

+ sup𝑥∈ℝ𝑑 ‖ ̄𝑟(𝑥, 𝑎)‖ + sup(𝑥,𝑥′)∈ℝ𝑑×ℝ𝑑𝑥≠𝑥′
‖ ̄𝑟(𝑥, 𝑎) − ̄𝑟(𝑥′, 𝑎)‖‖𝑥 − 𝑥′‖ .

Furthermore, 𝐿0 > ‖Σ̄‖op and Σ̄Σ̄⊤ ⪰ ς I𝑑 for some ς > 0, in which ⪰
denotes the Loewner order.

Assumption 5.1 mainly imposes regularity on both μ̄θ and ̄𝑟 through a
Lipschitz condition. We also assume rewards to be bounded, which may be
relaxed but doing so is highly technical and involves trading off the growth
of 𝑟 with the stability of the process (see Assumption 5.2). Finally, we assume
non-degeneracy of the noise by requiring Σ̄ to be full rank.

We conclude with Assumption 5.2 to ensure the stability of the state pro-
cess. Letℝ𝑑∗ ∶= ℝ𝑑⧵{0} andℝ∗+ ∶= (0, +∞). For 𝑘 ∈ ℕ, let C𝑘(ℝ𝑑∗; ℝ∗+) denote
the set of 𝑘-times continuously differentiable functions fromℝ𝑑∗ toℝ∗+. Let∇
and ∇2 denote the gradient and Hessian operator respectively.

4Another common, but more rigid, regime is to consider Σ = εΣ̄, whose limit regime is
deterministic and known as the fluid limit, see [54].
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Assumption 5.2.
There is (ℓ𝒱 , 𝐿𝒱 , c𝒱 ,𝑀𝒱 ,𝑀′𝒱 ) ∈ ℝ∗+5 and a Lyapunov function 𝒱 ∈
C2(ℝ𝑑∗; ℝ∗+) satisfying, for any (𝑥, 𝑥′, 𝑎,θ) ∈ ℝ𝑑 × ℝ𝑑 × 𝔸 × Θ, 𝑥 ≠ 𝑥′ andε ∈ (0, 1):

(i) ℓ𝒱 ‖𝑥 − 𝑥′‖ ≤ 𝒱 (𝑥 − 𝑥′) ≤ 𝐿𝒱 ‖𝑥 − 𝑥′‖ ,
(ii) sup𝑥∈ℝ𝑑∗

‖∇𝒱 (𝑥)‖ ≤ 𝑀𝒱 and sup𝑥∈ℝ𝑑∗
‖∇2𝒱 (𝑥)‖op ≤ 𝑀′𝒱 ,

(iii) 𝒱 (ψεθ(𝑥, 𝑎) − ψεθ(𝑥′, 𝑎)) ≤ (1 − εc𝒱 )𝒱 (𝑥 − 𝑥′) . (5.4)

in which ψεθ(𝑥, 𝑎) ∶= 𝑥 + εμ̄(𝑥, 𝑎).
Assumption 5.2 is a Lyapunov-like condition through the function 𝒱 .

The condition (i) requires that 𝒱 behaves similarly to a norm, while (ii) asks
that 𝒱 be smoothly differentiable everywhere but at 0 and (iii) imposes a
contraction condition on the jumps.

Stability theory has been extensively studied in the special case of lin-
ear dynamics. In this case, we recover Assumption 5.2 from the Continuous
Algebraic Riccati Equation (CARE), see e.g. [81, § 4.4]. Considering linear dy-
namics μ̄θ(𝑥, 𝑎) = ̄𝐴𝑥+ �̄�𝑎 (given matrices ( ̄𝐴, �̄�) of appropriate dimensions),
continuous stability is guaranteed when the eigenvalues of ̄𝐴 have negative
real-part or, equivalently, by the existence of a Positive Semi-Definite mat-
rix 𝑃 solving the CARE ̄𝐴⊤𝑃 + 𝑃 ̄𝐴 = − I𝑑. For this 𝑃, its associated norm𝒱 = ‖⋅‖𝑃 is the appropriate Lyapunov function for Assumption 5.2. Indeed,
conditions (i) and (ii) follow as 𝒱 is a norm and, for ε ≤ 1/2λmax(𝑃), we have𝒱 (𝑥 + εμ̄(𝑥, 𝑎) − 𝑥′ − εμ̄(𝑥′, 𝑎))2 = (𝑥 − 𝑥′)⊤(𝑃 + ε ̄𝐴⊤𝑃 + ε𝑃 ̄𝐴 + ε2𝑃)(𝑥 − 𝑥′)= (𝑥 − 𝑥′)⊤(𝑃 − ε I𝑑 +ε2𝑃)(𝑥 − 𝑥′)≤ (𝑥 − 𝑥′)⊤(𝑃 − ε𝑃/λmax(𝑃) + ε2𝑃)(𝑥 − 𝑥′)≤ (1 − ε/2λmax(𝑃))𝒱 (𝑥 − 𝑥′)2 .
Taking the square-root and using√1 − ε/2λmax(𝑃) ≤ 1− ε/4λmax(𝑃) leads to
(iii) with c𝒱 = 1/4λmax(𝑃).

5.3 Contributions

5.3.1 Algorithm and guarantees

Our main contribution is a demonstration of the Optimism in the Face of
Uncertainty protocol in the near-continuous time continuous state-action RL
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problem. The ingredients of OFU are: learning from accumulated data to
design confidence sets; using lazy updates to trade-off policy revision and
learning guarantees; and planning amongst plausible parametrisations. We
summarise this protocol in Algorithm 1.

Algorithm 1 OFU-Diffusion
Input: confidence level δ, initial state 𝑥0, initial control 𝜛0
for 𝑛 ∈ ℕ∗ do

At time τ𝑛, receive 𝑟(𝑋𝜛,θ∗τ𝑛−1 ,𝜛τ𝑛−1) and 𝑋𝜛,θ∗τ𝑛 .
if 𝑛 satisfies (5.7) then𝑛𝑘 ← 𝑛, 𝑘 ← 𝑘 + 1,

Compute θ̂𝑛𝑘 using (5.5) and C𝑛𝑘(δ/3) with (5.6).θ̃𝑘 ← argmaxθ∈C𝑛𝑘(δ/3) ρ̄∗θπ𝑘 ← π̄∗̃θ𝑘 using (5.10)
end if
Play 𝜛τ𝑛 ∶= π𝑘(𝑋𝜛,θ∗τ𝑛 ).

end for

Our algorithm proceeds by episodes, indexed by 𝑘 ∈ ℕwith 𝑛𝑘 denoting
the start of the 𝑘th episode. At each 𝑛𝑘, Algorithm 1 revises its knowledge us-
ing the Non-Linear Least Squares fit and the associated confidence set C𝑛𝑘(δ),
defined (for β𝑛(δ) given in (5.14) for all 𝑛 ∈ ℕ) by

θ̂𝑛𝑘 ∈ argminθ∈Θ
𝑛𝑘−1∑𝑛=0 ‖‖𝑋𝜛,θ∗τ𝑛+1 − 𝑋𝜛,θ∗τ𝑛 − μθ(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛)‖‖2 , (5.5)

C𝑛𝑘(δ)∶= {θ ∈ Θ ∶√√√√
𝑛𝑘−1∑𝑛=0 ‖‖μθ(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) − μθ̂𝑛𝑘 (𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛)‖‖2 ≤ β𝑛𝑘(δ)} .

(5.6)

Our episodic scheme follows the same rationale as in [2, 68], and triggers
updates as soon as enough information is collected. Formally, it constructs
a sequence of episodes whose starting times are defined by 𝑛0 ∶= 0 and, for
any 𝑘 ∈ ℕ, 𝑛𝑘+1 is the first time 𝑛 satisfying (5.7)√√√√ supθ∈C𝑛𝑘(δ)

𝑛∑𝑖=0 ‖‖μθ(𝑋𝜛,θ∗τ𝑖 ,𝜛τ𝑖) − μθ̂𝑛𝑘 (𝑋𝜛,θ∗τ𝑖 ,𝜛τ𝑖)‖‖2 > 2β𝑛(δ) . (5.7)

At the heart of our proposal is the way in which we address the optim-
istic planning, detailed in Section 5.3.4. For a given parameter θ ∈ C𝑛𝑘(δ), we
leverage the connection between our setting and its continuous-time coun-
terpart. We consider continuous-time controls ᾱ ∈ A ̄ with diffusive average
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reward given by

ρ̄ᾱθ(𝑥0) ∶= lim inf𝑇→+∞ 1𝑇𝔼 [∫𝑇
0 ̄𝑟(�̄�ᾱ,θ𝑠 , ᾱ𝑡)d𝑠] (5.8)

in which

{d�̄�ᾱ,θ𝑡 = μ̄θ(�̄�ᾱ,θ𝑡 , ᾱ𝑡)d𝑡 + Σ̄d𝑊𝑡�̄�ᾱ,θ0 = 𝑥0 (5.9)

in which 𝑊 denotes a ℙ-Brownian motion, �̄� its filtration and A ̄ the set of𝔸-valued �̄�-predictable processes. This diffusive problem gives us an optim-
ality criterion and associated optimal control5:ρ̄∗θ(𝑥0) ∶= supα∈A ρ̄ᾱθ(𝑥0) and π̄∗θ ∘ �̄�π̄∗θ ,θ ∈ argmaxᾱ∈A ̄ ρ̄ᾱθ(𝑥0) (5.10)

which approximates the original jump-process problem ρ∗θ(𝑥0). This prob-
lem admits a Hamilton-Jacobi-Bellman equation (given in (5.19) below) char-
acterising an optimal policy π̄∗θ ∶ ℝ𝑑 → 𝔸which yields a computable optimal
Markov control for (5.10).

Theorem 5.3.1.
Under Assumptions 5.1 and 5.2, for any δ ∈ (0, 1), 𝑥0 ∈ ℝ𝑑, and γ ∈(0, 1), there is a pair (𝐶γ,𝐶) ∈ ℝ2+ of constants independent of ε such that
Algorithm 1 achieves

R𝑇(𝜛) ≤ 2𝐶γε γ2𝑇 + 𝐶√dE,𝑇ε−1 log(𝒩 ε𝑇ε−1)𝑇 log(𝑇δ−1) (5.11)

with probability at least 1−δ, in which dE,𝑇ε−1 is the 2ε/√𝑇-eluder dimen-
sion (see [107, Def. 4.] and (5.56) in Section 5.5.2) of the class (μθ)θ∈Θ re-
stricted to a ball of radiusO(√log(𝑇/ε)), and log(𝒩 ε𝑇ε−1) is the ε2‖Σ̄‖2op/𝑇-
log-covering number of this same restricted class.

Theorem 5.3.1 contains two terms of different nature. The linear term is
inherited from the diffusive approximation planning method and scales with𝐶γεγ/2. The dependency of the constant in γ is inherited from the analysis of
Chapter 4 and 𝐶γ < +∞ holds for γ < 1 (see Lemma 4.B.1). Quantifying the
behaviour of 𝐶γ as γ ↑ 1 for arbitrary dynamics is technically intricate. Never-
theless, our bound indicates that the long run approximation error vanishes

5Henceforth, we will use the obvious notational confusion between the policy π̄∗θ and
the control process π̄∗θ ∘ �̄�π̄∗θ ,θ it generates.
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as ε ↓ 0 almost as fast as ε1/2. The second term quantifies all other sources of
error and exhibits the expected scaling in the complexity measures of [107],
in terms of both eluder dimension and log-covering numbers, as well as the√𝑇 horizon dependency.

5.3.2 Stability results

Working with unbounded processes and generic drifts requires us to prevent
state blow-up, which could degrade regret regardless of learning. In Pro-
position 5.3.1 we combine the Lyapunov stability of (5.4) with concentration
arguments to show that unstable trajectories can only happen with low prob-
ability. A detailed proof is given in Section 5.4.

Proposition 5.3.1.
Let Assumptions 5.1 and 5.2 hold. Then, there is a function 𝐻δ(𝑛) =
O(√log(𝑛δ−1)) such that for any δ ∈ (0, 1), α ∈ A, 𝑥0 ∈ ℝ𝑑, and θ ∈ Θ

ℙ( sup𝑡∈ℝ+
‖𝑋α,θ𝑡 ‖𝐻δ(𝑁𝑡) ≥ 1) ≤ δ. (5.12)

Working on the high-probability event of Proposition 5.3.1 allows us to
handle the unbounded state in the learning, planning, and optimism.

5.3.3 Learning results

The crux of our analysis is incorporating Proposition 5.3.1 into the NLLS
method of [107] by refining it to be adaptive to the norm of the state pro-
cess. For 𝑅 > 0, let B(𝑅) ⊂ ℝ𝑑 denotes the Euclidean ball of radius 𝑅 at 0. To
adapt the log-covering number, we can work with 𝐻δ by formally defining𝒩 ε𝑛 as the size of the smallest cover 𝒞 ε𝑛 of ℱΘ ∶= (μθ)θ∈Θ such that

supμ1∈ℱΘ minμ2∈𝒞 ε𝑛 sup𝑥∈B(𝐻δ(𝑛))‖μ1(𝑥) − μ2(𝑥)‖ ≤ ε‖Σ̄‖2op𝑛 . (5.13)

Restricting the domain of ℱΘ allows us to handle the richness of unbounded
models and states while following [107] to define confidence sets. Let δ ∈(0, 1), set β0 ∶= ε1/2, and define β𝑛(δ) as

β0∨ 2ε 12 ‖Σ̄‖op (√√√√1+ 2(√2 log (4π2𝑛33δ )+√κ𝑛(δ)) +√κ𝑛(δ)) (5.14)

131



5. NEAR-CONTINUOUS TIME RL WITH CONTINUOUS STATES

for any 𝑛 ∈ ℕ∗, in which

κ𝑛(δ) ∶= log (2π2𝑛2ε𝒩 ε𝑛3δ (‖Σ̄‖2op + 8𝑛𝐿20(1 + 𝐻δ(𝑛)))) .
Using this choice (β𝑛)𝑛∈ℕ and replacing 𝑛𝑘 by 𝑛 in (5.6) formally defines the
confidence sets (C𝑛(δ))𝑛∈ℕ. For any α ∈ A, the probability that the state
process 𝑋α,θ∗𝑡 outgrows 𝐻δ(𝑁𝑡) is small and, thus, this confidence set will
hold with high probability as shown by Proposition 5.3.2.

Proposition 5.3.2. (Adapted from [97, Prop. 5])
Under Assumptions 5.1 and 5.2, for any 𝑥0 ∈ ℝ𝑑, and δ > 0,

ℙ({θ∗ ∈ ∞⋂𝑛=1 C𝑛(δ)} ∩ { sup𝑛∈ℕ∗
‖‖𝑋𝜛,θ∗τ𝑛 ‖‖𝐻δ(𝑛) ≤ 1}) ≥ 1 − δ , (5.15)

Well-posed confidence sets are insufficient for low-regret approaches in
the OFU paradigm. This high confidence (low fit error) of the NLLS estimator
must be translated as low online prediction error.

To adapt the ϵ-eluder dimension (defined for ϵ > 0 in [97, Def. 3.]),
which we denote dimE(⋅, ϵ), to our unbounded state we proceed along the
trajectory. The relevant extension for us is given for 𝑛 ∈ ℕ∗ by the 2√ε/𝑛-
eluder dimension of the class ( 𝑓 |𝐵)𝑓∈ℱΘ of elements ofℱΘ restricted to the set𝐵𝑛 ∶= B(sup𝑡≤τ𝑛‖𝑋𝜛,θ∗𝑡 ‖), denoted by dE,𝑛 ∶= dimE(( 𝑓 |𝐵𝑛)𝑓∈ℱΘ , 2√ε/𝑛). In
Proposition 5.3.3 we obtain first and second-order prediction error bounds
from this eluder dimension. In Proposition 5.3.3 the order notation Õ hides
terms that are poly-logarithmic in 𝑁𝑡 and dE,𝑁𝑇 whose full details are given
in Section 5.5.2.

Proposition 5.3.3.
Under Assumptions 5.1 and 5.2, for any δ ∈ (0, 1), α ∈ A, 𝑥0 ∈ ℝ𝑑, and𝑡 ∈ ℝ+, we have with probability at least 1 − δ

𝑁𝑡∑𝑛=1‖μθ̂𝑛 − μθ∗‖(𝑋α,θ∗τ𝑛 ,ατ𝑛) ≤ Õ (√εdE,𝑁𝑇 log(𝒩 ε𝑁𝑇)𝑁𝑡 + εdE,𝑁𝑇) ,
(5.16)
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and

𝑁𝑡∑𝑛=1‖μθ̂𝑛 − μθ∗‖2(𝑋α,θ∗τ𝑛 ,ατ𝑛) ≤ Õ (dE,𝑁𝑇 log(𝒩 ε𝑁𝑇)) . (5.17)

We leverage the second order bound (5.17) of Proposition 5.3.3 to define
our lazy-update scheme (5.7). We show in Section 5.7 that this scheme does
not degrade the speed at which Algorithm 1 learns by more than a constant
factor, while also ensuring that the policy is only updated logarithmically in
the number of interactions up to any horizon.

5.3.4 Planning results

Algorithm 1 requires us to be able to plan using any θ ∈ Θ, and as such we
will extend the definitions of 𝑋α,θ, ραθ(𝑥0), ρ∗θ(𝑥0) to any (𝑥0,α,θ) ∈ ℝ𝑑×A×Θ
by replacing θ∗ by θ in (5.1) and (5.2). Let 𝒜 be the set of measurable maps
from ℝ𝑑 to 𝔸. For a given θ ∈ Θ, the well-posedness of the control problemρ∗θ(𝑥0) and its resolution are non-trivial.

Proposition 5.3.4. (Adapted from Theorem 4.2.1 and Remark 4.2.2)
Under Assumptions 5.1 and 5.2, there is 𝐿𝑊 ∈ ℝ+, independent of ε, such
that for any θ ∈ Θ

(i) The map 𝑥 ↦ ρ∗θ(𝑥) is constant, taking only one value which we
denote by ρ∗θ ∈ ℝ;

(ii) There is an 𝐿𝑊-Lipschitz function 𝑊∗θ such thatερ∗θ = max𝑎∈𝔸 {𝔼[𝑊∗θ (𝑥 + μθ(𝑥, 𝑎) + Σξ)] − 𝑊∗θ (𝑥) + 𝑟(𝑥, 𝑎)} , (5.18)

for any 𝑥 ∈ ℝ𝑑;

(iii) There is π∗θ ∈ 𝒜 , such that for all 𝑥 ∈ ℝ𝑑, π∗θ(𝑥)maximises the right
hand side of (5.18), and π∗θ ∘𝑋π∗θ ,θ is an optimal Markov control, i.e.ρπ∗θθ (⋅) ≡ ρ∗θ.

Proposition 5.3.4.(i) shows that the control problem ρ∗θ is independent
of the initial conditions and meaningfully ergodic, which follows from stabil-
ity analysis of the process using (5.4). Points (ii) and (iii) show that there is
an optimal policy, which can be computed by solving the Hamilton-Jacobi-
Bellman equation (5.18). As before, confusing policies in 𝒜 and controls in
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A, we will write ρπθ and 𝑋π,θ to simplify notation. Unfortunately, (5.18) is
an integral equation with low regularity, owing to the non-local jumps of
the system, which complicates its analysis and the construction of numerical
solvers.

In the limit regime of interest, i.e. as ε ↓ 0, the non-local behaviour
of (5.18) vanishes and it becomes a diffusive HJB equation. The associated dif-
fusive control problem ρ̄∗θ(𝑥0) has been extensively studied, see e.g. [13, 14].

Proposition 5.3.5. (Adapted from Theorem 4.3.1)
Under Assumptions 5.1 and 5.2, for any θ ∈ Θ,

(i) The map 𝑥 ↦ ρ̄∗θ(𝑥) is constant, taking only one value which we
denote by ρ̄∗θ ∈ ℝ.

(ii) There is an 𝐿𝑊-Lipschitz function �̄�∗θ ∈ C2(ℝ𝑑; ℝ) such that

ρ̄∗θ = max𝑎∈𝔸 {μ̄θ(𝑥, 𝑎)⊤∇�̄�∗θ (𝑥) + ̄𝑟(𝑥, 𝑎)} + 12 Tr [Σ̄Σ̄⊤∇2�̄�∗θ (𝑥)]
(5.19)

for any 𝑥 ∈ ℝ𝑑.

(iii) There is π̄∗θ ∈ 𝒜 such that, for all 𝑥 ∈ ℝ𝑑, π̄∗θ(𝑥)maximises the right
hand side in (5.19), and π̄∗θ ∘ �̄�π̄∗θ ,θ is an optimal Markov control, i.e.ρ̄π̄∗θθ (⋅) ≡ ρ̄∗θ.

Proposition 5.3.5 ensures that the diffusive problem satisfies all the prop-
erties of Proposition 5.3.4 (ergodicity, optimal policy, and HJB equation).
However, the HJB (5.19) is now a second-order (local) Partial Differential
Equation instead of a non-local integral equation. This local equation does
not have cross-dependencies between points: the solution at 𝑥 depends only
on its derivatives at 𝑥, which is fundamentally simpler than the non-local
behaviour of (5.18). Moreover, this diffusivePDE belongs to a well-studied
family, both from the points of view of theory [61, 80] and of numerics [74, 76].
These facts motivate the use of these tools to construct approximate planning
methods for (5.18) in the near-continuous time regime as ε ↓ 0.

Proposition 5.3.6. (Adapted from Theorem 4.3.2)
Under Assumptions 5.1 and 5.2, for any γ ∈ (0, 1), there is a constant𝐶γ > 0, independent of ε, such that, for any θ ∈ Θ,

||ρ̄∗θ − ρ∗θ|| ≤ 𝐶γε γ2 and ρ∗θ − ρπ̄∗θθ (0) ≤ 𝐶γε γ2 . (5.20)
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Moreover, there is a function 𝑒θ ∶ ℝ𝑑 → ℝ such that,

ερπ̄∗θθ (0) = 𝔼[�̄�∗θ (𝑥 + μθ(𝑥, 𝑎) + Σξ)] − �̄�∗θ (𝑥) + 𝑟(𝑥, π̄∗θ(𝑥)) + 𝑒θ(𝑥)
(5.21)

for any 𝑥 ∈ ℝ𝑑, and there is 𝐶′γ > 0, independent of ε, such that |𝑒θ(𝑥)| ≤𝐶′γε1+γ/2(1 + ‖𝑥‖3) for all 𝑥 ∈ ℝ𝑑.

Proposition 5.3.6, combined with (5.19) provides a certifiable approxim-
ation for solving the control problem (5.2) with off-the-shelf diffusive HJB
solvers, at a cost independent of ε. An example of this methodology is seen
in Section 4.4, in which Fig. 4.1 shows the reduction in computational effort.
Proposition 5.3.6 also provides in (5.21) an HJB-like representation of the ap-
proximation, which provides a key with which to analyse the regret incurred
when using this approximation.

5.3.5 Regret decomposition

To sketch the proof of Theorem 5.3.1, we will work on the high-probability
event of Proposition 5.3.2, and omit martingale measurability issues which
this could cause. We will also ignore the randomness of jump times and
consider 𝑇 ≲ ε𝑁𝑇, with ≲ denoting inequality up to a constant. Section 5.7
is dedicated to a complete proof.

Sketch of the proof of Theorem 5.3.1. Let 𝑘 ∶ ℕ → ℕ map an event 𝑛 to the epis-
ode 𝑘(𝑛) to which it belongs and let θ𝑛 ∶= θ̃𝑘(𝑛). We begin the regret decom-
position by applying the HJB-like equation (5.21) of Proposition 5.3.6.(iii)to
the rewards collected along the trajectory 𝑟(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) in the definition of
the regret. Conditioning as appropriate, this yields

R𝑇(𝜛) = 𝑇ρ∗θ∗ − ε 𝑁𝑇∑𝑛=1 ρπ̄∗θ𝑛θ𝑛 (0) (𝑅1)
+ 𝑁𝑇∑𝑛=1𝔼[�̄�∗θ𝑛(�̃�𝜛,θ𝑛τ𝑛+1 )|Fτ𝑛] − �̄�∗θ𝑛(𝑋𝜛,θ∗τ𝑛 ) (𝑅2)
+ 𝑁𝑇∑𝑛=1 𝑒θ𝑛(𝑋𝜛,θ∗τ𝑛 ) (𝑅3)

in which �̃�𝜛,θτ𝑛+1 ∶= 𝑋𝜛,θ∗τ𝑛 + μθ(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) + Σξ𝑛+1, for (𝑛,θ) ∈ ℕ × Θ, is a
counterfactual one-step transition assuming parameter θ ∈ Θ.
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On the event of Proposition 5.3.2, θ∗ is in ∩𝑛∈ℕC𝑛(δ) and the optimism of
Algorithm 1 ensures that ρ̄∗θ∗ ≤ ρ̄∗θ𝑛 = ρ̄π̄∗θ𝑛θ𝑛 for all 𝑛 ∈ ℕ. Combining this
with Proposition 5.3.6, show that (𝑅1) decomposes into

𝑅1 ≲ ε (𝑁𝑇∑𝑛=1 (ρ∗θ∗ − ρ̄∗θ∗) + 𝑁𝑇∑𝑛=1 (ρ̄∗θ𝑛 − ρπ̄∗θ𝑛θ𝑛 )) ≤ 4𝑁𝑇𝐶γε1+ γ2 .
Also by Proposition 5.3.6, 𝑅3 ≤ ε1+γ/2𝑁𝑇(1 + 𝐻δ(𝑁𝑇)3). Thus 𝑅1 + 𝑅3 ≲𝐶γεγ/2𝑇.

For (𝑅2), the identity�̃�𝜛,θτ𝑛+1 = �̃�𝜛,θ∗τ𝑛+1 − μθ∗(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) + μθ(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛)
combined with the Lipschitzness of �̄�∗θ from Proposition 5.3.5, yields

𝑅2 ≤ 𝐿�̄�
𝑁𝑇∑𝑛=1 ‖‖μθ𝑛(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) − μθ∗(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛)‖‖ (𝑅4)

+ 𝑁𝑇∑𝑛=1𝔼[�̄�∗θ𝑛(𝑋𝜛,θ∗τ𝑛+1 ) − �̄�∗θ𝑛+1(𝑋𝜛,θ∗τ𝑛+1 )|Fτ𝑛] (𝑅5)
+ 𝑁𝑇∑𝑛=1𝔼[�̄�∗θ𝑛+1(𝑋𝜛,θ∗τ𝑛+1 )|Fτ𝑛] − �̄�∗θ𝑛(𝑋𝜛,θ∗τ𝑛 ) , (𝑅6)

by adding and subtracting𝔼[�̄�∗θ𝑛+1(�̃�𝜛,θ∗τ𝑛+1 )|Fτ𝑛] = 𝔼[�̄�∗θ𝑛+1(𝑋𝜛,θ∗τ𝑛+1 )|Fτ𝑛]. The
term (𝑅6) is a martingale term, which we can bound using concentration the-
ory. Our lazy update-scheme ensures that θ𝑛 ≠ θ𝑛+1 only O(log(𝑁𝑇)) times
by time 𝑇, keeping (𝑅5) small.

It remains to show that the lazy update-scheme, does not degrade the learn-
ing of (𝑅4), which is controlled by improvements to Proposition 5.3.3 in Sec-
tion 5.5 which yields

𝑁𝑇∑𝑛=1 supθ1∈C𝑘(𝑛)(δ)θ2∈C𝑘(𝑛)(δ)
‖‖μθ1 − μθ2‖‖ (𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) ≲ Õ (√dE,𝑇ε−1 log(𝒩 ε𝑇ε−1)𝑇) .

5.4 State Process Stability

A key aspect of our setting is that both the state process 𝑋α,θ, for any (α,θ) ∈
A × Θ, and the drift μ itself are unbounded. This can lead to an exponen-
tial blow-up of the state process, which can be harmful to both the learning
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and control aspects. In order to avoid this difficulty we imposed Assump-
tion 5.2, which corresponds to a stochastic Lyapunov condition, and ensures
that the state will not explode in expectation. We reinforce this result by
leveraging concentration theory to obtain the high-probability bound of Pro-
position 5.3.1. Section 5.4.1 is dedicated to its proof, and it will be used in the
proofs of learning results and high-probability regret bounds (Sections 5.5
and 5.7).

Proposition 5.3.1.
Let Assumptions 5.1 and 5.2 hold. Then, there is a function 𝐻δ(𝑛) =
O(√log(𝑛δ−1)) such that for any δ ∈ (0, 1), α ∈ A, 𝑥0 ∈ ℝ𝑑, and θ ∈ Θ

ℙ( sup𝑡∈ℝ+
‖𝑋α,θ𝑡 ‖𝐻δ(𝑁𝑡) ≥ 1) ≤ δ. (5.12)

Unlike learning and regret, the analysis of the control task is done in
expectation via the HJB equation. Here the unbounded drift will materialise
as higher moments of 𝑋α,θ. The counterpart of Proposition 5.3.1 in this case
is a moment result, given by Lemma 5.4.4, which is proved in Section 5.4.2
and will then be used in Section 5.6.

Lemma 5.4.4.
Under Assumptions 5.1 and 5.2, for any 𝑝 ≥ 2, there is a constant c′𝑝 > 0
independent of ε such that

𝔼 [‖‖𝑋𝑥0,α,θ𝑡 ‖‖𝑝] ≤ 1ℓ𝑝𝒱 (𝐿𝑝𝒱 𝑒− c𝒱4 𝑡‖𝑥0‖𝑝 + 4c′𝑝
c𝒱 (1 − 𝑒− c𝒱4 𝑡)) ,

for any (𝑥0,α,θ) ∈ ℝ𝑑 ×A ×Θ and 𝑡 ∈ [0, +∞).
5.4.1 Proof of Proposition 5.3.1

This section is dedicated to the proof of Proposition 5.3.1 which is a high-
probability bound on the state process. This proof follows the classical path
of the Chernoff method. We will derive an exponential moment bound for
the state process in Lemma 5.4.2. First, we must obtain a stochastic stabil-
ity condition in expectation in Lemma 5.4.1. In what follows, let 𝑅ε ∶=√8𝑑 log(1/ε) and ξ ∼ ν.
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Lemma 5.4.1.
Let Assumptions 5.1 and 5.2 hold. Then,

(i) for any (η, 𝑥, 𝑎,θ) ∈ ℝ𝑑 × ℝ𝑑 × 𝔸 ×Θ, we have𝒱 (ψεθ(𝑥, 𝑎) − √εη) ≤ (1 − εc𝒱 )𝒱 (𝑥 −√εη) + ε𝑀𝒱 𝐿0(1 + ‖η‖) ;
(5.22)

(ii) and, for any (𝑎,θ) ∈ 𝔸 ×Θ, and any 𝑥 ∉ B(ε1/2‖Σ̄‖op𝑅ε) we have

𝔼[𝒱 (ψεθ(𝑥, 𝑎) + Σξ)] ≤ (1 − εc𝒱 )𝒱 (𝑥) + εc′𝒱
in which c′𝒱 is a constant independent of ε.

Proof.

(i) By Lipschitzness of 𝒱 and (5.4), for any (η, 𝑥, 𝑎,θ) ∈ ℝ𝑑 ×ℝ𝑑 × 𝔸 ×Θ,
we have𝒱 (ψεθ(𝑥, 𝑎) − √εη) = 𝒱 (ψεθ(𝑥, 𝑎) − ψεθ(√εη, 𝑎) + εμ̄θ(√εη, 𝑎))≤ 𝒱 (ψεθ(𝑥, 𝑎) − ψεθ(√εη, 𝑎)) + 𝑀𝒱 ε‖μ̄θ(√εη, 𝑎)‖≤ (1 − εc𝒱 )𝒱 (𝑥 −√εη) + 𝑀𝒱 ε‖μ̄θ(√εη, 𝑎)‖ ,
from which (5.22) follows by using Assumption 5.1 which itself implies‖μ̄θ(√εη, 𝑎)‖ ≤ 𝐿0(1 + √ε‖η‖) ≤ 𝐿0(1 + ‖η‖) since ε ∈ (0, 1).

(ii) By the symmetry of the law of Σ̄ξ, by (5.22) applied for η = Σ̄ξ, and by
taking expectation, we have that for any 𝑥 ∈ ℝ𝑑

𝔼[𝒱 (ψεθ(𝑥, 𝑎) + Σξ)] = 𝔼[𝒱 (ψεθ(𝑥, 𝑎) − √εΣ̄ξ)]≤ (1 − εc𝒱 )𝔼[𝒱 (𝑥 −√εΣ̄ξ)]+ ε𝑀𝒱 𝐿0(1 + ‖Σ̄‖op𝔼[‖ξ‖]) . (5.23)

Since ξ is a standard Gaussian, ‖ξ‖2 is a random variable following aχ2 distribution with 𝑑 degrees of freedom, thus 𝔼[‖ξ‖2] = 𝑑, and by
Jensen’s inequality 𝔼[‖ξ‖] ≤ √𝑑. Thus, the second term in (5.23) is
bounded by ε𝑀𝒱 𝐿0(1 + ‖Σ̄‖op√𝑑).
We now focus on bounding𝔼[𝒱 (𝑥−Σξ)]. We would like to use a Taylor
expansion, but care needs to be taken to handle the non-differentiability
of 𝒱 at 0. Under the expectation, we distinguish two events: the event
on which ‖ξ‖ < 𝑅ε, which supports the main mass of ν, and the event
on which ‖ξ‖ ≥ 𝑅ε, corresponding to the tails.
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(ii).1. For the first event we consider (on which ‖ξ‖ < 𝑅ε), we must have0 ∉ B(𝑥, ‖Σξ‖) for any 𝑥 ∉ B(‖Σ‖op𝑅ε), and thus 0 ∉ {𝑥 + ΔΣξ}Δ∈[0,1].
Since this line segment doesn’t contain 0 (the only point at which 𝒱 is
not continuously differentiable), we can perform a second-order Taylor
expansion of 𝒱 to obtain𝔼 [𝒱 (𝑥 + Σξ)1{‖ξ‖<𝑅ε}]≤ 𝔼 [(𝒱 (𝑥) + ξ⊤Σ⊤∇𝒱 (𝑥) + 12 Tr [Σξξ⊤Σ⊤∇2𝒱 ( ̂𝑥)]) 1{‖ξ‖<𝑅ε}]
for some ̂𝑥 ∈ {𝑥 + ΔΣξ}Δ∈[0,1]. By the Cauchy-Schwartz inequality and
the derivative bounds of Assumption 5.2, we obtain𝔼[𝒱 (𝑥 + Σξ)1{‖ξ‖<𝑅ε}] ≤ 𝒱 (𝑥) + 𝔼[ξ⊤1{‖ξ‖<𝑅ε}]Σ⊤∇𝒱 (𝑥) + ε2𝑀′𝒱 ‖Σ̄‖2op≤ 𝒱 (𝑥) + ε2𝑀′𝒱 ‖Σ̄‖2op ,
since 𝔼[ξ⊤1{‖ξ‖<𝑅ε}] = 0 by the rotational invariance property of a trun-
cated Gaussian.

(ii).2. On the second event (on which ‖ξ‖ ≥ 𝑅ε), we cannot use a Taylor expan-
sion. Instead, we use the Lipschitzness of 𝒱 followed by the Cauchy-
Schwartz inequality, and then apply a sub-Gaussian concentration in-
equality (see e.g. [83, (3.5)]):𝔼[𝒱 (𝑥 + Σξ)1{‖ξ‖≥𝑅ε}] ≤ 𝒱 (𝑥) + 𝑀𝒱 ‖Σ‖op𝔼[‖ξ‖ 1{‖ξ‖≥𝑅ε}]≤ 𝒱 (𝑥) + 𝑀𝒱 ‖Σ‖op√𝔼[‖ξ‖2]ℙ(‖ξ‖ ≥ 𝑅ε)

≤ 𝒱 (𝑥) + 𝑀𝒱 ‖Σ‖op√4𝑑 exp (−𝑅2ε8𝑑)≤ 𝒱 (𝑥) + 2ε𝑀𝒱 ‖Σ̄‖op√𝑑 .
(ii).3. To complete the proof, we combine both cases in (5.23), and let

c′𝒱 ∶= 𝑀𝒱 𝐿0 (1 + ‖Σ̄‖op√𝑑) + 2𝑀𝒱 ‖Σ̄‖op√𝑑 + 𝑀′𝒱2 ‖Σ̄‖2op.
Lemma 5.4.2.

Let Assumptions 5.1 and 5.2 hold. Then, for any λ ∈ ℝ+, we have

𝔼 [exp (λ𝒱 (𝑋𝑥0,α,θτ𝑛 ))]
≤ (𝑛 + 1) exp (λ (c′𝒱

c𝒱 + 𝐿𝒱 (ε 12 ‖Σ̄‖op𝑅ε + ‖𝑥0‖)) + λ2𝑀2𝒱 ‖Σ̄‖2op2c𝒱 ) ,
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for all (𝑥0,α,θ) ∈ ℝ𝑑 ×A ×Θ and 𝑛 ∈ ℕ.

Proof. For 𝑛 ∈ ℕ∗, let us define the following events for any 0 ≤ 𝑖 < 𝑛:

𝐸𝑖,𝑛−1 ∶= {𝑖 = sup{ 𝑗 ∈ {0,… , 𝑛 − 1} ∶ ‖𝑋α,θτ𝑗 ‖ ≤ ‖Σ‖op𝑅ε}}
and

�̄�𝑛−1 ∶= { min𝑗∈{0,…,𝑛−1}‖𝑋α,θτ𝑗 ‖ > ‖Σ‖op𝑅ε}.
Note that both these events areFτ𝑛−1-measurable and �̄�𝑐𝑛−1 = ∪𝑖≤𝑛−1𝐸𝑖,𝑛−1, so
that {�̄�𝑛−1,𝐸0,𝑛−1,… ,𝐸𝑛−1,𝑛−1} induces a partition ofΩ. We begin by working
conditionally on each of these events, and in a second part we will collect
them to bound 𝔼[exp(λ𝒱 (𝑋α,θτ𝑛 ))].
For any 0 ≤ 𝑖 < 𝑛, an application of the tower rule, followed by adding and
subtracting 𝔼[exp (𝔼[λ𝒱 (𝑋α,θτ𝑛 )|Fτ𝑛−1]) 1𝐸𝑖,𝑛−1], yields

𝔼[𝑒λ𝒱 (𝑋α,θτ𝑛 )1𝐸𝑖,𝑛−1] = 𝔼[𝔼[𝑒λ𝒱 (𝑋α,θτ𝑛 )|Fτ𝑛−1]1𝐸𝑖,𝑛−1]= 𝔼[ exp (𝔼[λ𝒱 (𝑋α,θτ𝑛 )|Fτ𝑛−1]) 1𝐸𝑖,𝑛−1
× 𝔼 [exp (λ𝒱 (𝑋α,θτ𝑛 ) − 𝔼[λ𝒱 (𝑋α,θτ𝑛 )|Fτ𝑛−1]) |Fτ𝑛−1] ].

Using a result for Lipschitz functions of Gaussian random variables (see e.g.
[36, Thm 5.5]) applied to 𝒱 and ξ, we obtain

𝔼[𝑒λ𝒱 (𝑋α,θτ𝑛 )1𝐸𝑖,𝑛−1]≤ 𝑒 λ22 𝑀2𝒱 ‖Σ‖2op𝔼[ exp (𝔼[λ𝒱 (𝑋α,θτ𝑛 )|Fτ𝑛−1]) 1𝐸𝑖,𝑛−1]
= 𝑒 λ22 𝑀2𝒱 ‖Σ‖2op𝔼[ exp (𝔼[λ𝒱 (ψεθ(𝑋α,θτ𝑛−1 ,ατ𝑛−1) + Σξ𝑛)|Fτ𝑛−1]) 1𝐸𝑖,𝑛−1].

(5.24)

If 𝑖 = 𝑛 − 1, ‖𝑋α,θτ𝑛−1‖ ≤ ‖Σ‖op𝑅ε on the event 𝐸𝑖,𝑛−1, and thus we have

𝔼 [λ𝒱 (ψεθ(𝑋α,θτ𝑛−1 ,ατ𝑛−1) + Σξ𝑛)|Fτ𝑛−1]≤ 𝔼 [λ𝐿𝒱 ‖𝑋α,θτ𝑛−1 + μ(𝑋α,θτ𝑛−1 ,ατ𝑛−1) + Σξ‖|Fτ𝑛−1]≤ λ𝐿𝒱 ((1 + 𝐿0)‖Σ‖op𝑅ε + 1 + ‖Σ‖op√𝑑)
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by using the fact that 𝔼[‖ξ‖] ≤ √𝔼[‖ξ‖2] = √𝑑, as ξ ∼ ν. Noticing that
supε∈(0,1) ε1/2𝑅ε = √8𝑑𝑒−1, let us introduce

𝐶𝐻 ∶= 𝐿𝒱 ((1 + 𝐿0)‖Σ̄‖op√8𝑑𝑒−1 + 1 + ‖Σ̄‖op√𝑑) . (5.25)

Combining this with (5.24) yields

𝔼 [𝑒λ𝒱 (𝑋α,θτ𝑛 )1𝐸𝑖,𝑛−1] ≤ exp (λ22 𝑀2𝒱 ‖Σ‖2op + λ𝐶𝐻) , (5.26)

in the case 𝑖 = 𝑛 − 1.

If 𝑖 < 𝑛−1, we can apply the same methodology, and continuing from (5.24)
apply Lemma 5.4.1 to obtain

𝔼 [𝑒λ𝒱 (𝑋α,θτ𝑛 )1𝐸𝑖,𝑛−1]≤ 𝑒 λ22 𝑀2𝒱 ‖Σ‖2op𝔼[exp (𝔼[λ𝒱 (ψεθ(𝑋α,θτ𝑛−1 ,ατ𝑛−1) + Σξ𝑛)|Fτ𝑛−1])
× 1{𝑋α,θτ𝑛−1>‖Σ‖op𝑅ε}1𝐸𝑖,𝑛−2] , (5.27)

≤ 𝑒 λ22 𝑀2𝒱 ‖Σ‖2op+λεc′𝒱 𝔼[exp((1 − εc𝒱 )λ𝒱 (𝑋α,θτ𝑛−1))1𝐸𝑖,𝑛−2] .
It remains to use an induction argument in 𝑛 down to 𝑛 = 𝑖 + 1 and use the
fact that ‖𝑋α,θτ𝑖 ‖ ≤ ‖Σ‖op𝑅ε on 𝐸𝑖,𝑖, to obtain

𝔼 [𝑒λ𝒱 (𝑋α,θτ𝑛 )1𝐸𝑖,𝑛−1]
≤ exp (λ𝐶𝐻 + λεc′𝒱 𝑛−1−𝑖∑𝑘=0 (1 − εc𝒱 )𝑘 + λ2𝑀2𝒱 ‖Σ‖2op2 𝑛−1−𝑖∑𝑘=0 (1 − εc𝒱 )2𝑘)
≤ exp (λ𝐶𝐻 + λc′𝒱

c𝒱 + λ2𝑀2𝒱 ‖Σ̄‖2op2c𝒱 ) . (5.28)

On the event �̄�𝑛−1, that is if the process is never in the ball B(‖Σ‖op𝑅ε) before
time τ𝑛, we use the fact that (5.27) is valid with �̄�𝑛−1 and �̄�𝑛−2 in place of𝐸𝑖,𝑛−1 and 𝐸𝑖,𝑛−2. Applying the induction, we obtain

𝔼 [𝑒λ𝒱 (𝑋α,θτ𝑛 )1�̄�𝑛−1] ≤ exp (λ𝐿𝒱 ‖𝑥0‖ + λc′𝒱
c𝒱 + λ2𝑀2𝒱 ‖Σ̄‖2op2c𝒱 ) . (5.29)
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Using our partition and combining (5.26), (5.28), and (5.29) we can thus write,
for any 𝑛 ∈ ℕ

𝔼 [𝑒λ𝒱 (𝑋α,θτ𝑛 )] ≤ 𝔼 [𝑒λ𝒱 (𝑋α,θτ𝑛 ) (1�̄�𝑛−1 + 𝑛−1∑𝑖=0 1𝐸𝑖,𝑛−1)]
≤ (𝑛 + 1) exp (λ (c′𝒱

c𝒱 + 𝐶𝐻 + 𝐿𝒱 ‖𝑥0‖) + λ2𝑀2𝒱 ‖Σ̄‖2op2c𝒱 )
which concludes the proof.

With these two lemmas, we can now prove Proposition 5.3.1, the main
result of this section. First, let us give the exact definition of 𝐻δ(𝑛):
𝐻δ(𝑛) ∶= 1ℓ𝒱 (𝐶𝐻 + 𝐿𝒱 ‖𝑥0‖) + c′𝒱ℓ𝒱 c𝒱 + 𝑀𝒱ℓ𝒱 ‖Σ̄‖op

√√√ 2
c𝒱 log (π2(𝑛 + 1)36δ )

(5.30)

in which 𝐶𝐻 is defined in (5.25), so that 𝐻δ(𝑛) = O(√log(𝑛δ−1)).
Proposition 5.3.1.

Let Assumptions 5.1 and 5.2 hold. Then, there is a function 𝐻δ(𝑛) =
O(√log(𝑛δ−1)) such that for any δ ∈ (0, 1), α ∈ A, 𝑥0 ∈ ℝ𝑑, and θ ∈ Θ

ℙ( sup𝑡∈ℝ+
‖𝑋α,θ𝑡 ‖𝐻δ(𝑁𝑡) ≥ 1) ≤ δ. (5.12)

Proof. Fix 𝑛 ∈ ℕ, by Markov’s inequality and Assumption 5.2, for any 𝑢 > 0,
we haveℙ (‖𝑋α,θτ𝑛 ‖ > 𝑢) ≤ 𝔼 [𝑒λℓ𝒱 ‖𝑋α,θτ𝑛 ‖] 𝑒−λℓ𝒱 𝑢 ≤ 𝔼 [𝑒λ𝒱 (𝑋α,θτ𝑛 )] 𝑒−λℓ𝒱 𝑢 ,
which implies that

ℙ(‖𝑋α,θτ𝑛 ‖ − c′𝒱ℓ𝒱 c𝒱 − 𝐶𝐻ℓ𝒱 − 𝐿𝒱ℓ𝒱 ‖𝑥0‖ > 𝑢)
≤ 𝔼 [𝑒λ𝒱 (𝑋α,θτ𝑛 )] exp (−λℓ𝒱 (𝑢 + c′𝒱ℓ𝒱 c𝒱 + 𝐶𝐻ℓ𝒱 + 𝐿𝒱ℓ𝒱 ‖𝑥0‖)) .

Applying Lemma 5.4.2, and taking λ = c𝒱 ℓ𝒱 𝑢/(𝑀2𝒱 ‖Σ̄‖2𝑜𝑝), we obtain

ℙ(‖𝑋α,θτ𝑛 ‖ > 𝑢 + c′𝒱ℓ𝒱 c𝒱 + ε 12 𝐿𝒱ℓ𝒱 ‖Σ̄‖op𝑅ε + 𝐿𝒱ℓ𝒱 ‖𝑥0‖ )
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≤ (𝑛 + 1) exp (−λℓ𝒱 𝑢 + λ2𝑀2𝒱 ‖Σ̄‖2op2c𝒱 )
= (𝑛 + 1) exp (− c𝒱 ℓ2𝒱2𝑀2𝒱 ‖Σ̄‖2op

𝑢2) .
Letting 𝑢 = 𝑀𝒱 ‖Σ̄‖opℓ−1𝒱 √2c−1𝒱 log((𝑛 + 1)/δ′), yields

ℙ(‖𝑋α,θτ𝑛 ‖ ≥ 𝐶𝐻ℓ𝒱 + 𝐿𝒱ℓ𝒱 ‖𝑥0‖ + c′𝒱ℓ𝒱 c𝒱 + 𝑀𝒱ℓ𝒱 ‖Σ̄‖op√ 2
c𝒱 log (𝑛 + 1δ′ )) ≤ δ′.

Setting δ′ = 6δ/π2(𝑛 + 1)2, and taking a union bound over 𝑛 ∈ ℕ yields

ℙ( sup𝑡∈ℝ+
𝑋α,θ𝑡𝐻δ(𝑁𝑡) ≥ 1) = ℙ (⋃𝑛∈ℕ{‖𝑋α,θτ𝑛 ‖ ≥ 𝐻δ(𝑛)}) ≤ δ ,

which implies the result since δ ∈ (0, 1) implies log(𝑛3/δ) ≤ log(𝑛3/δ3) =3 log(𝑛/δ).
5.4.2 Expectation bounds of higher orders

In this section, we will focus on higher moment conditions of the state pro-
cess, which will be used in the control results of Section 5.6. In Lemma 5.4.3
and Corollary 5.4.1 we work to raise the stochastic stability condition from
Lemma 5.4.1 to a power 𝑝 ≥ 2. Lemma 5.4.4, the main result of this section,
will follow from this by arguments of Chapter 4.

Lemma 5.4.3.
Let Assumptions 5.1 and 5.2 hold. Then, for 𝑝 ≥ 2, there is a function 𝑔 ∶ℝ𝑑 × ℝ𝑑 → ℝ+ and a constant 𝐶𝑝 > 0 independent of ε satisfying

𝑔(𝑥, η) ≤ ε𝐶𝑝 (1 +𝒱 (𝑥 −√εη)𝑝−1) (1 + ‖η‖𝑝) ,
for any (η, 𝑥) ∈ ℝ𝑑 × ℝ𝑑, such that

𝒱 (ψεθ(𝑥, 𝑎) − √εη)𝑝 ≤ (1 − εc𝒱 )𝒱 (𝑥 −√εη)𝑝 + 𝑔(𝑥, η) . (5.31)

for any (η, 𝑥, 𝑎,θ) ∈ ℝ𝑑 × ℝ𝑑 × 𝔸 ×Θ.

Proof. We first raise both sides of (5.22) to the power 𝑝𝒱 (ψεθ(𝑥, 𝑎) − √εη)𝑝 ≤ ((1 − εc𝒱 )𝒱 (𝑥 −√εη) + ε𝑀𝒱 𝐿0(1 + ‖η‖))𝑝 .
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We will now expand the right-hand side. Let 𝑎 = (1− εc𝒱 )𝒱 (𝑥 −√εη) and𝑏 = ε𝑀𝒱 𝐿0(1 + ‖η‖), by the binomial theorem we have

(𝑎 + 𝑏)𝑝 = 𝑝∑𝑘=0 (𝑝𝑘)𝑎𝑘𝑏𝑝−𝑘 = 𝑎𝑝 + 𝑏 𝑝−1∑𝑘=0 (𝑝𝑘)𝑎𝑘𝑏𝑝−1−𝑘

≤ 𝑎𝑝 + 𝑏(1 + 𝑏)𝑝−1(1 + 𝑎)𝑝−1 𝑝−1∑𝑘=0 (𝑝𝑘) .
Since (1 − εc𝒱 ) ∈ (0, 1), ε ≤ 1, 𝑏 ≤ 1 + 𝑏, ∑𝑝−1𝑘=0 (𝑝𝑘) ≤ 2𝑝, and by using the
binomial identity (1 + 𝑎)𝑞 ≤ 2𝑞−1(1 + 𝑎𝑞) for (𝑎, 𝑞) ∈ [0, +∞) × [1, +∞), we
have𝒱 (ψεθ(𝑥, 𝑎) − √εη)𝑝≤ (1 − εc𝒱 )𝒱 (𝑥 −√εη)𝑝

+ ε(1 + 𝑀𝒱 𝐿0(1 + ‖η‖))𝑝 (1 +𝒱 (𝑥 −√εη)𝑝−1) 2𝑝−2+𝑝 .
(5.32)

Finally, we have

(1 + 𝑀𝒱 𝐿0(1 + ‖η‖))𝑝 = (1 + 𝑀𝒱 𝐿0 + 𝑀𝒱 𝐿0‖η‖)𝑝≤ (1 + 𝑀𝒱 𝐿0 + (1 + 𝑀𝒱 𝐿0)‖η‖)𝑝= (1 + 𝑀𝒱 𝐿0)𝑝(1 + ‖η‖)𝑝≤ (1 + 𝑀𝒱 𝐿0)𝑝(1 + ‖η‖𝑝)2𝑝−1 . (5.33)

Combining (5.32) and (5.33), leads to the required result.

Recall that ξ ∼ ν is a centred standard Gaussian random variable.
Corollary 5.4.1. Under Assumptions 5.1 and 5.2, for any 𝑝 ≥ 2, there is a constant
c𝑝 > 0 independent of ε such that

𝔼 [𝒱 (ψεθ(𝑥, 𝑎) + Σξ)𝑝] ≤ (1 − εc𝒱2 ) 𝔼 [𝒱 (𝑥 −√εξ)𝑝] + εc𝑝
for any (𝑥, 𝑎,θ) ∈ ℝ𝑑 × 𝔸 ×Θ.

Proof.

1. Taking the expectation of the bound on 𝑔 from Lemma 5.4.3 and apply-
ing Hölder’s inequality yields

𝔼[𝑔(𝑥, ξ)] ≤ ε𝐶𝑝𝔼 [(1 +𝒱 (𝑥 −√εξ)𝑝−1) (1 + ‖ξ‖𝑝)]
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≤ ε𝐶𝑝𝔼[(1 +𝒱 (𝑥 −√εξ)𝑝−1) (𝑝+1)𝑝 ]
𝑝𝑝+1𝔼[(1 + ‖ξ‖𝑝)𝑝+1] 1𝑝+1

≤ 4ε𝐶𝑝𝔼 [1 +𝒱 (𝑥 −√εξ) (𝑝−1)(𝑝+1)𝑝 ] 𝔼[(1 + ‖ξ‖𝑝)𝑝+1] 1𝑝+1 ,
by using the identities (1+𝑢)(𝑝+1)/𝑝 ≤ 4(1+𝑢(𝑝+1)/𝑝) and (1+𝑣)𝑝/(𝑝+1) ≤1 + 𝑣, for (𝑢, 𝑣) ∈ ℝ2+. Since ξ has bounded moments of any order,

𝐶′𝑝 ∶= 4𝐶𝑝𝔼[(1 + ‖ξ‖𝑝)𝑝+1] 1𝑝+1

is a finite constant and we have

𝔼 [𝑔(𝑥, ξ)] ≤ ε𝐶′𝑝𝔼 [1 +𝒱 (𝑥 −√εξ)𝑝− 1𝑝] .
2. Recalling Lemma 5.4.3, we have

𝔼 [𝒱 (ψεθ(𝑥, 𝑎) + Σξ)𝑝]≤ (1 − εc𝒱 ) 𝔼 [𝒱 (𝑥 −√εξ)𝑝] + 𝔼[𝑔(𝑥, ξ)]≤ (1 − εc𝒱2 ) 𝔼 [𝒱 (𝑥 −√εξ)𝑝]
+ ε𝔼 [𝐶′𝑝 (1 +𝒱 (𝑥 −√εξ)𝑝− 1𝑝) − c𝒱2 𝒱 (𝑥 −√εξ)𝑝] . (5.34)

3. For any 𝑝 ≥ 1, the function

𝑧 ∈ ℝ𝑑 ↦ ‖𝑧‖𝑝− 1𝑝1 + ‖𝑧‖𝑝 ∈ ℝ+
is bounded, thus there exists a constant 𝐶″𝑝 > 0 such that, for any 𝑧 ∈ℝ𝑑, 𝐶′𝑝𝒱 (𝑧)𝑝− 1𝑝 − c𝒱2 𝒱 (𝑧)𝑝 ≤ 𝐶″𝑝 .
Applying this to the expectation in (5.34), we have

𝔼 [𝒱 (ψεθ(𝑥, 𝑎) + Σξ)𝑝] ≤ (1 − εc𝒱2 ) 𝔼 [𝒱 (𝑥 +√εξ)𝑝] + ε(𝐶″𝑝 + 𝐶′𝑝) .
Letting c𝑝 ∶= 𝐶′𝑝 + 𝐶″𝑝 completes the proof.
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Lemma 5.4.4.
Under Assumptions 5.1 and 5.2, for any 𝑝 ≥ 2, there is a constant c′𝑝 > 0
independent of ε such that

𝔼 [‖‖𝑋𝑥0,α,θ𝑡 ‖‖𝑝] ≤ 1ℓ𝑝𝒱 (𝐿𝑝𝒱 𝑒− c𝒱4 𝑡‖𝑥0‖𝑝 + 4c′𝑝
c𝒱 (1 − 𝑒− c𝒱4 𝑡)) ,

for any (𝑥0,α,θ) ∈ ℝ𝑑 ×A ×Θ and 𝑡 ∈ [0, +∞).
Proof. Recall from Corollary 5.4.1 that we have

𝔼 [𝒱 (ψεθ(𝑥, 𝑎) + Σξ)𝑝] ≤ (1 − εc𝒱2 ) 𝔼 [𝒱 (𝑥 + Σξ)𝑝] + εc𝑝 (5.35)

for any (𝑥, 𝑎,θ) ∈ ℝ𝑑 × 𝔸 × Θ. We begin by eliminating the Σξ from the
right-hand side so that we have a proper Lyapunov contraction property on
the generator. We expand 𝒱 (⋅)𝑝 ∈ C2(ℝ𝑑; [0, +∞)) and use the fact that𝔼[ξ] = 0 to obtain

𝔼 [𝒱 (𝑥 + Σξ)𝑝]= 𝒱 (𝑥)𝑝 + ε𝑝𝔼 [𝒱 (𝑥 + ΔΣξ)𝑝−1 Tr[ξΣ̄Σ̄⊤ξ⊤∇2𝒱 (𝑥 + ΔΣξ)]]+ ε𝑝(𝑝 − 1)𝔼 [𝒱 (𝑥 + ΔΣξ)𝑝−2 Tr[ξΣ̄Σ̄⊤ξ⊤∇𝒱 (𝑥 + ΔΣξ)∇𝒱 ⊤(𝑥 + ΔΣξ)]]
for some random variable Δ taking value in [0, 1]. This is now bounded from
above by using the Lipschitzness of 𝒱 and the Cauchy-Schwartz inequality

𝔼 [𝒱 (𝑥 + Σξ)𝑝] ≤ 𝒱 (𝑥)𝑝 + ε𝑝𝑀′𝒱 ‖Σ̄‖2op𝔼 [(𝒱 (𝑥) + 𝑀𝒱 ΔΣ ‖ξ‖)𝑝−1 ‖ξ‖2]+ ε𝑝(𝑝 − 1)(𝑀𝒱 )2‖Σ̄‖2op𝔼 [(𝒱 (𝑥) + 𝑀𝒱 ΔΣ ‖ξ‖)𝑝−2 ‖ξ‖2] .
By the binomial theorem as in the proof of Lemma 5.4.3, and as |Δ| ≤ 1, we
have

𝔼[𝒱 (𝑥 + Σξ)𝑝]
≤ 𝒱 (𝑥)𝑝 + ε(𝑝𝑀′𝒱 ‖Σ̄‖2op𝔼[‖ξ‖2 𝑝−1∑𝑘=0 (𝑝 − 1𝑘 )𝒱 (𝑥)𝑘(𝑀𝒱 ‖Σ‖op ‖ξ‖)𝑝−1−𝑘]
+𝑝(𝑝 − 1)(𝑀𝒱 ‖Σ̄‖op)2𝔼[𝑝−2∑𝑘=0 (𝑝 − 2𝑘 )𝒱 (𝑥)𝑘(𝑀𝒱 ‖Σ‖op ‖ξ‖)𝑝−2−𝑘]) .

Since ‖ξ‖ is a sub-Gaussian random variable it has moments of all orders,
and we can express the interior of the bracket above as a polynomial in 𝒱 (𝑥)
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of order 𝑝 − 1 with finite coefficients {𝑎𝑘}𝑝−1𝑘=0 ⊂ ℝ+. Recalling (5.35), we thus
have

𝔼 [𝒱 (ψεθ(𝑥, 𝑎) + Σξ)𝑝] ≤ (1 − εc𝒱 ) (𝒱 (𝑥)𝑝 + ε 𝑝−1∑𝑘=0 𝑎𝑘𝒱 (𝑥)𝑘) + εc𝑝
≤ (1 − εc𝒱4 )𝒱 (𝑥)𝑝+ε(c𝑝 − c𝒱4 𝒱 (𝑥)𝑝+𝑝−1∑𝑘=0 𝑎𝑘𝒱 (𝑥)𝑘)

As in part 3. of the proof of Corollary 5.4.1, the interior of the second bracket
is a continuous function which goes to −∞ as ‖𝑥‖ → +∞, so there must be a
constant c′𝑝 ∈ ℝ+ (independent of ε) such that

c𝑝 + sup𝑥∈ℝ𝑑 (−c𝒱4 𝒱 (𝑥)𝑝 + 𝑝−1∑𝑘=0 𝑎𝑘𝒱 (𝑥)𝑘) ≤ c′𝑝 < +∞
for all 𝑥 ∈ ℝ𝑑. Therefore, we have the desired Lyapunov generator condition

𝔼 [𝒱 (ψεθ(𝑥, 𝑎) + Σξ)𝑝] ≤ (1 − εc𝒱4 )𝒱 (𝑥)𝑝 + εc′𝑝 ,
which is equivalently written for any (𝑥, 𝑎) ∈ ℝ𝑑 × 𝔸 as1ε ∫(𝒱 (ψεθ(𝑥, 𝑎) + Σ𝑒)𝑝 −𝒱 (𝑥)𝑝) ν(d𝑒) ≤ −c𝒱4 𝒱 (𝑥)𝑝 + c′𝑝 . (5.36)

By Itô’s Lemma, (5.36), and a localisation argument, we have, for any 𝑡 ≥ 𝑡0 ≥0, that𝔼[𝒱 (𝑋𝑥0,α,θ𝑡 )𝑝] = 𝔼 [𝒱 (𝑋𝑥0,α,θ𝑡0 )𝑝]
+𝔼 [∫𝑡

𝑡0
1ε∫[𝒱 (ψεθ (𝑋𝑥0,α,θ𝑠 ,α𝑠)+Σ𝑒)𝑝−𝒱 (𝑋𝑥0,α,θ𝑠 )𝑝] ν(d𝑒)d𝑠]

≤ 𝔼 [𝒱 (𝑋𝑥0,α,θ𝑡0 )𝑝] − c𝒱4 ∫𝑡
𝑡0 𝔼 [𝒱 (𝑋𝑥0,α,θ𝑠 )𝑝]d𝑠 + (𝑡 − 𝑡0)c′𝑝 .

By a simple comparison argument for ODEs, we then obtain

𝔼 [𝒱 (𝑋𝑥0,α,θ𝑡 )𝑝] ≤ 𝑒− c𝒱4 𝑡𝒱 (𝑥0)𝑝 + 4c′𝑝
c𝒱 (1 − 𝑒− c𝒱4 𝑡) .

Finally, using Assumption 5.2, we obtain

𝔼 [‖‖𝑋𝑥0,α,θ𝑡 ‖‖𝑝] ≤ 1ℓ𝑝𝒱 (𝐿𝑝𝒱 𝑒− c𝒱4 𝑡‖𝑥0‖𝑝 + 4c′𝑝
c𝒱 (1 − 𝑒− c𝒱4 𝑡)) .
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5.5 Learning: Concentration&OnlinePrediction
Error

The key result of this section, Proposition 5.3.2, extends and builds heavily
on [107, Prop. 5]. Proposition 5.3.2 differs from this existing result in three
ways. First, it is any-time i.e. does not require a priori knowledge of a time ho-
rizon. This is a minor technical refinement, but it is of practical importance.
Second, it applies to a pure-jump process defined onℝ+. This apparent com-
plexity vanishes when the filtration of the pure-jump process is chosen cor-
rectly, as the state process is piece-wise constant. Third, and most important,
it applies to learning in a function class (ℱΘ) of unbounded drifts for an un-
bounded process 𝑋α,θ, which is an inherent difficulty in handling continuous
state RL problems.

This third extension is non-trivial and leads us to significantly reshuffle
the proof structure of [107] and to incorporate some self-normalised inequal-
ity arguments as well as high-probability bounds on the state from Section 5.4.
While many of the original ideas are still used, the way they link together has
changed and thus we will include, in Section 5.5.1, a complete derivation for
the sake of clarity. In this spirit, we will prove a generic result (Theorem 5.5.1),
which itself implies Proposition 5.3.2.

Proposition 5.3.2. (Adapted from [97, Prop. 5])
Under Assumptions 5.1 and 5.2, for any 𝑥0 ∈ ℝ𝑑, and δ > 0,

ℙ({θ∗ ∈ ∞⋂𝑛=1 C𝑛(δ)} ∩ { sup𝑛∈ℕ∗
‖‖𝑋𝜛,θ∗τ𝑛 ‖‖𝐻δ(𝑛) ≤ 1}) ≥ 1 − δ , (5.15)

Proposition 5.3.2 ensures that the sets (C𝑛(δ))𝑛∈ℕ defined in (5.6) are
valid confidence sets. In order to bound the regret, we need to go further
and bound the online prediction error of functions within these confidence
sets along the trajectory (see. (5.57)).

For any 𝑛 ∈ ℝ, let dE,𝑛 denote the 2√ε/𝑛-eluder dimension of the model
classℱΘ, elements of which have been restricted to 𝐵𝑛 ∶= B(sup𝑠≤τ𝑛‖𝑋𝜛,θ∗𝑠 ‖),
i.e. dE,𝑛 ∶= dimE(( 𝑓 |𝐵𝑛)𝑓∈ℱΘ , 2√ε/𝑛). In Section 5.5.2, we derive a general
result (Proposition 5.5.6) from which Proposition 5.3.3 follows.
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Proposition 5.3.3.
Under Assumptions 5.1 and 5.2, for any δ ∈ (0, 1), α ∈ A, 𝑥0 ∈ ℝ𝑑, and𝑡 ∈ ℝ+, we have with probability at least 1 − δ

𝑁𝑡∑𝑛=1‖μθ̂𝑛 − μθ∗‖(𝑋α,θ∗τ𝑛 ,ατ𝑛) ≤ Õ (√εdE,𝑁𝑇 log(𝒩 ε𝑁𝑇)𝑁𝑡 + εdE,𝑁𝑇) ,
(5.16)

and

𝑁𝑡∑𝑛=1‖μθ̂𝑛 − μθ∗‖2(𝑋α,θ∗τ𝑛 ,ατ𝑛) ≤ Õ (dE,𝑁𝑇 log(𝒩 ε𝑁𝑇)) . (5.17)

5.5.1 Confidence sets

In this section, we work in a generic online learning framework, so that our
results can be more easily compared and contrasted with [97, 107] and others.
We, therefore, introduce some dedicated notation and a stand-alone assump-
tion for this section.

Consider a set of functions ℱ from ℝ𝑑 → ℝ𝑑, and fix 𝑓 ∗ ∈ ℱ . We will
study pairs of (random) ℝ𝑑-valued sequences ((𝑋𝑖)𝑖∈ℕ, (𝑌𝑖)𝑖∈ℕ) generated as𝑌𝑖 = 𝑓 ∗(𝑋𝑖) + ξ𝑖
for (ξ𝑖)𝑖∈ℕ a stochastic process in a filtered probability space (Ω ′,H∞, ℍ, ℙ),
with each ξ𝑖 independent of everything else up to time 𝑖. We take H𝑖 as the
completion of σ({ξ𝑗}𝑗≤𝑖), for 𝑖 ∈ ℕ, and we let ℍ = (H𝑖)𝑖∈ℕ.

Given some ℝ𝑑-valued and ℍ-adapted sequences (𝑍𝑖)𝑖∈ℕ and (𝑍′𝑖)𝑖∈ℕ,
and some 𝑛 ∈ ℕ∗, let us define

⟨𝑍|𝑍′⟩𝑛 ∶= 𝑛−1∑𝑖=0⟨𝑍𝑖|𝑍′𝑖⟩ and ‖𝑍‖𝑛 ∶= √⟨𝑍|𝑍⟩𝑛 . (5.37)

While ‖⋅‖𝑛 is not a norm, it plays this role and we follow here the notational
convention of [107]. We will extend the definitions of ⟨⋅|⋅⟩𝑛 and ‖⋅‖𝑛 to 𝑛 = 0
by simply taking the empty sum to be 0, i.e. ⟨𝑍,𝑍′⟩0 ∶= 0.

To simplify notation, we will drop the sequence (𝑋𝑖)𝑖∈ℕ when it is an
argument to a function inside ‖⋅‖𝑛 or ⟨⋅|⋅⟩𝑛: i.e. ‖ 𝑓 ‖𝑛 stands for ‖( 𝑓 (𝑋𝑖))𝑖∈ℕ‖𝑛.
With this notation in mind, for any 𝑛 ∈ ℕ, we define ̂𝑓𝑛 as an arbitrary element
of

argmin𝑓∈ℱ ‖𝑌 − 𝑓 ‖2𝑛 .
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In other words ̂𝑓𝑛 is a non-linear least-square fit in ℱ using the first 𝑛 points
of (𝑋𝑖,𝑌𝑖)𝑖∈ℕ. In this generic setting, we introduce Assumption 5.3, which
in our end-goal application is subsumed by Assumptions 5.1 and 5.2 and
Proposition 5.3.1.

Assumption 5.3.
There is (𝐿, Γ) ∈ ℝ2+ and a function 𝐻δ ∶ ℕ → ℝ+ such that

sup𝑓∈ℱ sup𝑥∈ℝ𝑑
‖ 𝑓 (𝑥)‖1 + ‖𝑥‖ ≤ 𝐿 ,

and for all 𝑖 ∈ ℕ∗, ξ𝑖 is an H𝑖−1-conditionally Γ2-sub-Gaussian random
variable, ξ0 is Γ2-sub-Gaussian, and the sequence (𝑋𝑖)𝑖∈ℕ satisfies

ℙ(sup𝑛∈ℕ
‖𝑋𝑛‖𝐻δ(𝑛) > 1) < δ

for all δ ∈ (0, 1).
Let (𝒞 Γ𝑛 )𝑛∈ℕ∗ denote a deterministic sequence of finite covers of ℱ , whose
cardinalities are respectively given by (𝒩 Γ𝑛 )𝑛∈ℕ∗ , such that for all 𝑛 ∈ ℕ∗

sup𝑓∈ℱ min𝑔∈𝒞 Γ𝑛 sup𝑥∈B(𝐻δ(𝑛))
‖‖𝑓 (𝑥) − 𝑔(𝑥)‖‖ ≤ Γ2𝑛 .

The definition of this cover corresponds to the one used in [107] with a do-
main restricted to lie in the high-probability region of the state process in-
stead of the whole domain. This ensures the cover remains finite for all𝑛 ∈ ℕ∗.

For any δ ∈ (0, 1), 𝑛 ∈ ℕ∗, and 𝑓 ∈ ℱ let us define the quantities

𝐿1𝑛(δ) ∶= log((Γ2 + 8𝑛𝐿2(1 + sup𝑖≤𝑛 ‖𝑋𝑖‖22))𝒩 Γ𝑛 δ−1) ,
𝐿0𝑛(δ) ∶= 𝐿1𝑛(6δπ−2𝑛−2) ,𝐶1𝑛(𝑓 ) ∶= Γ2 + ‖ 𝑓 − 𝑓 ∗‖2𝑛𝐶2𝑛(𝑓 ) ∶= sup𝑖≤𝑛 ‖𝑓 (𝑋𝑖) − ̂𝑓𝑛(𝑋𝑖)‖ ,

and the event
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E0𝑛 (δ) ∶=
{‖ ̂𝑓𝑛 − 𝑓 ∗‖𝑛 ≤ 2Γ√𝐿1𝑛 ( 3δπ2𝑛2)
+2√√√√Γ2+2Γ(𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)√2 log (4π2𝑛33δ ) +√√√2𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)𝐿1𝑛 ( 3δπ2𝑛2))} .

(5.38)

Building upon the proof method of [107], the cornerstone of this section
is Lemma 5.5.2, which shows that, with high-probability, 𝑓 ∗ is contained in
all the elements of a sequence of confidence sets, each centred at ̂𝑓𝑛 in the ‖⋅‖𝑛
norm.

Lemma 5.5.2.
Under Assumption 5.3, for 𝑛 ∈ ℕ∗ and δ ∈ (0, 1), we have

ℙ( ⋂𝑛∈ℕ∗ E
0𝑛 (δ)) ≥ 1 − δ .

We begin the proof of Lemma 5.5.2 by giving the concentration inequal-
ity of Lemma 5.5.1.

Lemma 5.5.1.
Let Assumption 5.3 hold. Then, for all 𝑛 ∈ ℕ∗, δ ∈ (0, 1), and 𝑓 ∈ ℱ
ℙ(||⟨ξ| 𝑓 − 𝑓 ∗⟩𝑛|| ≥ Γ√2(Γ2 + ‖ 𝑓 − 𝑓 ∗‖𝑛) log (Γ2 + ‖ 𝑓 − 𝑓 ∗‖𝑛δ )) ≤ δ .

Proof. This proof relies on extensively studied arguments for self-normalised
inequalities, but we include it for completeness because it uses nonstandard
constants. Let us begin by fixing 𝑓 ∈ ℱ . For all 𝑛 ∈ ℕ, let

𝑍𝑛( 𝑓 ) ∶= ⟨ξ| 𝑓 − 𝑓 ∗⟩𝑛 .
For any λ ∈ ℝ, let us define the process (𝑀λ𝑛( 𝑓 ))𝑛∈ℕ defined by

𝑀λ𝑛( 𝑓 ) ∶= exp (λ𝑍𝑛( 𝑓 ) − λ2Γ22 ‖ 𝑓 − 𝑓 ∗‖2𝑛) .
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Let us show that 𝑀λ𝑛( 𝑓 ) is a conditional supermartingale. For any 𝑛 ∈ ℕ, we
have𝔼 [𝑀λ𝑛+1( 𝑓 )|H𝑛]= 𝑀λ𝑛( 𝑓 )𝔼 [exp (λ⟨ξ𝑛+1| 𝑓 (𝑋𝑛) − 𝑓 ∗(𝑋𝑛)⟩𝑛)|||H𝑛] 𝑒−λ2Γ22 ‖ 𝑓 (𝑋𝑛)−𝑓 ∗(𝑋𝑛)‖2𝑛 .

(5.39)

By the Cauchy-Schwartz inequality||⟨ξ𝑛| 𝑓 (𝑋𝑛) − 𝑓 ∗(𝑋𝑛)⟩𝑛|| ≤ ‖ξ𝑛‖𝑛 ‖ 𝑓 (𝑋𝑛) − 𝑓 ∗(𝑋𝑛)‖𝑛
and thus, since ξ𝑛 is conditionally Γ2-sub-Gaussian with variance Γ2, ‖ξ𝑛‖ isΓ2-sub-Gaussian. Therefore

𝔼 [exp (λ⟨ξ𝑛| 𝑓 (𝑋𝑛) − 𝑓 ∗(𝑋𝑛)⟩𝑛 − λ2Γ22 ‖ 𝑓 (𝑋𝑛) − 𝑓 ∗(𝑋𝑛)‖2𝑛) |||H𝑛] ≤ 1
and thus, by (5.39), 𝑀λ𝑛( 𝑓 ) is a supermartingale. By definition of ⟨⋅|⋅⟩0 and‖⋅‖0, 𝑀λ0( 𝑓 ) = 1, so that 𝔼[𝑀λ𝑛( 𝑓 )] ≤ 1 for all 𝑛 ∈ ℕ.

We now perform a Laplace trick. Let Φ be the Gaussian measure of mean0 and variance Γ−4 on ℝ, and let us define, for every 𝑓 ∈ ℱ , the process(𝑀𝑛( 𝑓 ))𝑛∈ℕ by

𝑀𝑛( 𝑓 ) ∶ = ∫𝑀λ𝑛( 𝑓 )Φ(dλ)
= ∫ exp (λ𝑍𝑛( 𝑓 ) − λ2Γ22 ‖ 𝑓 − 𝑓 ∗‖2𝑛)Φ(dλ)
= 1Γ2 + ‖ 𝑓 − 𝑓 ∗‖2𝑛 exp { 𝑍2𝑛( 𝑓 )2Γ2 (Γ2 + ‖ 𝑓 − 𝑓 ∗‖2𝑛)} .

By Markov’s inequality, ℙ(𝑀𝑛( 𝑓 ) ≥ δ−1) ≤ δ, and thus

ℙ(𝑍𝑛( 𝑓 ) ≥ Γ√2(Γ2 + ‖ 𝑓 − 𝑓 ∗‖2𝑛) log (Γ2 + ‖ 𝑓 − 𝑓 ∗‖2𝑛δ )) ≤ δ .
We will turn to the proof of Lemma 5.5.2. Recall (5.38), which defined

for δ ∈ (0, 1) and 𝑛 ∈ ℕ∗, the event
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E0𝑛 (δ) ∶=
{‖ ̂𝑓𝑛 − 𝑓 ∗‖𝑛 ≤ 2Γ√𝐿1𝑛 ( 3δπ2𝑛2)
+2√√√√Γ2+2Γ(𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)√2 log (4π2𝑛33δ ) +√√√2𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)𝐿1𝑛 ( 3δπ2𝑛2))} .
Lemma 5.5.2.

Under Assumption 5.3, for 𝑛 ∈ ℕ∗ and δ ∈ (0, 1), we have

ℙ( ⋂𝑛∈ℕ∗ E
0𝑛 (δ)) ≥ 1 − δ .

Proof. The proof builds on elements of [107]. We begin by giving two small
auxiliary results which we will use.

1. Let 𝑛 ∈ ℕ∗, and δ ∈ (0, 1), by a union bound over the family of condi-
tionally sub-Gaussian random variables (‖ξ𝑖‖)𝑖∈[𝑛], we have

ℙ(sup𝑖≤𝑛 ‖ξ𝑖‖ ≤ Γ√2 log (2𝑛δ )) ≥ 1 − δ (5.40)

2. For any 𝑓 ∈ ℱ , and 𝑛 ∈ ℕ∗ we have‖ 𝑓 ∗ − 𝑌‖2𝑛 − ‖ 𝑓 − 𝑌‖2𝑛 = ⟨ 𝑓 ∗ − 𝑌| 𝑓 ∗ − 𝑌⟩𝑛− ⟨ 𝑓 − 𝑓 ∗ + 𝑓 ∗− 𝑌| 𝑓 − 𝑓 ∗ + 𝑓 ∗− 𝑌⟩𝑛= ⟨ 𝑓 ∗ − 𝑌| 𝑓 ∗ − 𝑌⟩𝑛 − ⟨ 𝑓 − 𝑓 ∗| 𝑓 − 𝑓 ∗⟩𝑛+ 2⟨𝑌 − 𝑓 ∗| 𝑓 − 𝑓 ∗⟩𝑛 − ⟨𝑌 − 𝑓 ∗|𝑌 − 𝑓 ∗⟩𝑛= −‖ 𝑓 − 𝑓 ∗‖2𝑛 + 2⟨ξ| 𝑓 − 𝑓 ∗⟩𝑛 . (5.41)

Applying (5.41) with 𝑓 ∶= ̂𝑓𝑛, the 𝑛-point non-linear least-square fit,
leads to a non-negative left-hand side and thus‖ ̂𝑓𝑛 − 𝑓 ∗‖2𝑛 ≤ 2 ||⟨ξ| 𝑓 − 𝑓 ∗⟩𝑛|| .
At the same time, for all 𝑛 ∈ ℕ∗, by definition of 𝒞 Γ𝑛 , it holds that for
all 𝑔 ∈ 𝒞 Γ𝑛 ‖ ̂𝑓𝑛 − 𝑓 ∗‖2𝑛 ≤ 2 ||⟨ξ|𝑔 − 𝑓 ∗⟩𝑛|| + 2 ||⟨ξ| ̂𝑓𝑛 − 𝑔⟩𝑛||≤ 2 ||⟨ξ|𝑔 − 𝑓 ∗⟩𝑛|| + 2𝑛 sup𝑖≤𝑛 ‖ξ𝑖‖2 𝐶2𝑛(𝑔) . (5.42)
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Combining (5.40) and (5.42), we obtain, for all δ ∈ (0, 1), 𝑛 ∈ ℕ∗, and 𝑔 ∈ 𝒞 Γ𝑛 ,
that

ℙ(‖ ̂𝑓𝑛 − 𝑓 ∗‖2𝑛 ≥ 2 ||⟨ξ|𝑔 − 𝑓 ∗⟩𝑛|| + 2𝑛𝐶2𝑛(𝑔)Γ√2 log (2𝑛δ )) ≤ δ (5.43)

Let us now provide two bounds on 𝐶1𝑛(𝑔) we will use. For all 𝑛 ∈ ℕ∗, δ ∈(0, 1) and 𝑔 ∈ 𝒞 Γ𝑛 , let

𝐶1𝑛(𝑔) ≤ Γ2 + 8𝑛𝐿2(1 + sup𝑖≤𝑛 ‖𝑋𝑖‖2) . (5.44)

𝐶1𝑛(𝑔) ≤ Γ2 + ‖ ̂𝑓𝑛 − 𝑓 ∗‖2𝑛 + ‖𝑔 − ̂𝑓𝑛‖2𝑛 ≤ 𝐶1𝑛( ̂𝑓𝑛) + 𝑛𝐶2𝑛(𝑔) , (5.45)

Applying Lemma 5.5.1 for each 𝑔 ∈ 𝒞 Γ𝑛 , by a union bound over 𝑔 ∈ 𝒞 Γ𝑛 , we
have for any δ0(𝑛) ∈ (0, 1) (to be fixed at the end), that

δ0(𝑛) ≥ ℙ( sup𝑔∈𝒞 Γ𝑛 ||⟨ξ|𝑔 − 𝑓 ∗⟩𝑛|| ≥ Γ√√√√2 sup𝑔∈𝒞 Γ𝑛 𝐶1𝑛(𝑔) log (sup𝑔∈𝒞 Γ𝑛 𝐶1𝑛(𝑔)𝒩 Γ𝑛δ0(𝑛) )) .
Applying (5.44) and (5.45) this becomes

δ0(𝑛) ≥ ℙ⎛⎜⎜⎝ sup𝑔∈𝒞 Γ𝑛 ||⟨ξ|𝑔 − 𝑓 ∗⟩𝑛|| ≥ Γ√√√√2(𝐶1𝑛( ̂𝑓𝑛) + 𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)) log (𝐶Γ,𝐿,𝑋,𝑛δ0(𝑛) )⎞⎟⎟⎠,
in which 𝐶Γ,𝐿,𝑋,𝑛 ∶= (𝐺𝑎𝑚𝑚𝑎2 + 8𝐿2(1 + sup𝑖≤𝑛 ‖𝑋𝑖‖2))𝒩 Γ𝑛 and thus

δ0(𝑛) ≥ ℙ( sup𝑔∈𝒞 Γ𝑛 ||⟨ξ|𝑔 − 𝑓 ∗⟩𝑛|| ≥ Γ√2𝐿1𝑛(δ0(𝑛)) (√𝐶1𝑛( ̂𝑓𝑛) +√𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔))) .
(5.46)

Combining (5.43) and (5.46) by a union bound gives us

δ0(𝑛) ≥ ℙ(‖ ̂𝑓𝑛 − 𝑓 ∗‖2𝑛 ≥ 2Γ√2𝐿1𝑛 (δ0(𝑛)2 ) (√𝐶1𝑛( ̂𝑓𝑛) +√𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔))
+ 2𝑛𝐶2𝑛(𝑔)Γ√2 log ( 4𝑛δ0(𝑛))) .

For all 𝑛 ∈ ℕ∗, on the complement of this event (whose probability is at least1 − δ0(𝑛)) we have

𝐶1𝑛( ̂𝑓𝑛) ≤ Γ2 + Γ√2𝐶1𝑛( ̂𝑓𝑛)𝐿1𝑛(δ0(𝑛)/2) + ℎΓ𝑛 , (5.47)
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in which

ℎΓ𝑛 ∶= 2Γ(𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)√2 log ( 4𝑛δ0(𝑛)) +√√√2𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)𝐿1𝑛 (δ0(𝑛)2 )) .
Viewing (5.47) as a second order polynomial in √𝐶1𝑛( ̂𝑓𝑛), we obtain via its
roots that

√𝐶1𝑛( ̂𝑓𝑛) ≤ Γ√𝐿1𝑛(δ0(𝑛)/2) +√(Γ√𝐿1𝑛(δ0(𝑛)/2))2 + 4(Γ2 + ℎΓ𝑛)
≤ 2Γ√𝐿1𝑛(δ0(𝑛)/2) + 2√Γ2 + ℎΓ𝑛 .

Since ‖ ̂𝑓𝑛 − 𝑓 ∗‖𝑛 ≤ √𝐶1𝑛( ̂𝑓𝑛) by definition of 𝐶1𝑛( ̂𝑓𝑛), ‖ ̂𝑓𝑛 − 𝑓 ∗‖𝑛 is upper
bounded by

2√√√√Γ2 + 2Γ(𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)√2 log ( 4𝑛δ0(𝑛)) +√√√2𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)𝐿1𝑛 (δ0(𝑛)2 ))
+ 2Γ√𝐿1𝑛(δ0(𝑛)/2) .

Therefore, letting

E1𝑛(δ)∶= {‖ ̂𝑓𝑛 − 𝑓 ∗‖𝑛 ≤ 2Γ√𝐿1𝑛 (δ2)
+2√√√√Γ2 + 2Γ(𝑛 sup𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔)√2 log (4𝑛δ ) +√√√2𝑛 sup𝑔∈𝒞 Γ𝑛𝐶2𝑛(𝑔)𝐿1𝑛 (δ2))} ,

we have, for all 𝑛 ∈ ℕ∗, that ℙ(E1𝑛(δ0(𝑛))) ≥ δ0(𝑛). Letting δ0(𝑛) = 6π2𝑛2δ, by
a union bound we obtain

ℙ( ⋂𝑛∈ℕ∗ E
1𝑛(δ0(𝑛))) ≥ 1 − δ 6π2 ∞∑𝑛=1 1𝑛2 = 1 − δ .

Noting that E0𝑛 (δ) = E1𝑛(δ0(𝑛)) for all δ ∈ (0, 1) and 𝑛 ∈ ℕ∗ completes the
proof.

In the proof of Lemma 5.5.2, we used self-normalised inequalities to gen-
eralise the results of [107] to unbounded states. We now incorporate the high
probability bound of Assumption 5.3 and formalise confidence sets, which
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will prove Theorem 5.5.1. Theorem 5.5.1 can then be specified for our setting
by merging it with the results of Section 5.4 in Proposition 5.3.2.

For δ ∈ (0, 1), let β0 ∈ ℝ+ and let us define the sequence (C𝑛(δ))𝑛∈ℕ in
which

C𝑛(δ) ∶= { 𝑓 ∈ ℱ ∶ ‖𝑓 − ̂𝑓𝑛‖𝑛 ≤ β𝑛} (5.48)

with

β𝑛(δ) ∶= β0 ∨ 2Γ(√√√1+ 2(√2Γ log (8𝑛δ ) +√2𝐿0𝑛 (δ4)) +√𝐿0𝑛 (δ4)) .
(5.49)

Theorem 5.5.1.
Let Assumption 5.3 hold. We then have

ℙ({ ⋂𝑛∈ℕ∗ { 𝑓 ∗ ∈ C𝑛(δ)}}⋂{ sup𝑛∈ℕ∗
‖𝑋𝑛‖𝐻δ(𝑛) ≤ 1}) ≤ δ for all δ ∈ (0, 1).

Proof. Fix δ ∈ (0, 1), and assume ω ∈ {ω′ ∈ Ω ∶ sup𝑛∈ℕ∗‖𝑋𝑛(ω′)‖2/𝐻δ(𝑛) ≤1}. In this case we have the following bound, for all 𝑛 ∈ ℕ∗
2𝑛 min𝑔∈𝒞 Γ𝑛 𝐶2𝑛(𝑔) ≤ 2Γ2

by definition of 𝒞 Γ𝑛 as a Γ2𝑛−1 cover on B(𝐻δ(𝑛)). Therefore, the event

{ ⋂𝑛∈ℕ∗ E
0𝑛 (δ)}⋂{ sup𝑛∈ℕ∗

‖𝑋𝑛‖2𝐻δ(𝑛) ≤ 1}
is contained in the event

E0(δ) ∶= { ⋂𝑛∈ℕ∗ {‖ 𝑓 ∗ − ̂𝑓𝑛‖𝑛 ≤ β𝑛(2δ)}}⋂{ sup𝑛∈ℕ∗
‖𝑋𝑛‖2𝐻δ(𝑛) ≤ 1} .

By Lemma 5.5.2, Assumption 5.3, and a union bound,ℙ (E0(δ)) ≥ 1−2δ, and
we obtain the result by (5.48) and (5.49), i.e. by definition of C𝑛(δ).
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Proposition 5.3.2. (Adapted from [97, Prop. 5])
Under Assumptions 5.1 and 5.2, for any 𝑥0 ∈ ℝ𝑑, and δ > 0,

ℙ({θ∗ ∈ ∞⋂𝑛=1 C𝑛(δ)} ∩ { sup𝑛∈ℕ∗
‖‖𝑋𝜛,θ∗τ𝑛 ‖‖𝐻δ(𝑛) ≤ 1}) ≥ 1 − δ , (5.15)

Proof. The proof follows by applying Theorem 5.5.1 to this setting. That is,
taking (𝑋𝑖)𝑖∈ℕ ∶= ((𝑋𝜛,θ∗τ𝑖 ,𝜛τ𝑖))𝑖∈ℕ, (𝑌𝑖)𝑖∈ℕ ∶= (𝑋𝜛,θ∗τ𝑖+1 − 𝑋𝜛,θ∗τ𝑖 )𝑖∈ℕ, ℱ ∶=ℱΘ and with (ξ𝑛+1)𝑛∈ℕ and (β𝑛(δ))𝑛∈ℕ∗ as defined in Section 5.2 and (5.14)
respectively. This sets Γ = ‖Σ‖op = ε1/2‖Σ̄‖op. The only subtlety is that the
process 𝑋𝜛,θ∗ is measured at random times, but since these times are inde-
pendent of anything else, and the process is almost surely constant between
them, they do not affect the proof.

5.5.2 Widths of confidence sets

In Section 5.5.1, we showed how to design confidence sets along a trajectory
of 𝑋α,θ for learning μ by using NLLS to minimise a fit error of the form

𝑁∑𝑛=1 ‖‖μ1(𝑋α,θ∗τ𝑛 ,ατ𝑛) − μ2(𝑋α,θ∗τ𝑛 ,ατ𝑛)‖‖ ,
for (μ1,μ2) ∈ C𝑁(δ) and 𝑁 ∈ ℕ∗. When analysing the regret of such a learn-
ing algorithm this is not sufficient: instead of the fit error, we need to control
a prediction error of the form

𝑁∑𝑛=1 ‖‖μθ𝑛(𝑋α,θ∗τ𝑛 ,ατ𝑛) − μθ∗(𝑋α,θ∗τ𝑛 ,ατ𝑛)‖‖ ,
for (μθ𝑛)𝑛∈ℕ ⊂ ℱΘ such that μθ𝑛 ∈ C𝑛(δ) for all 𝑛 ∈ ℕ. The difference is thatμθ𝑛 changes over time so that the sum counts the errors in predicting the next
state made by the sequence (μθ𝑛)𝑛∈ℕ.

Since we will want to implement lazy updates, we will need a more gen-
eral result where the μθ𝑛 are not all in their respective C𝑛(δ) but rather are
from a piece-wise constant sequence with μθ𝑛 ∶= μθ𝑘(𝑛) ∈ C𝑘(𝑛)(δ), where𝑘(𝑛) ≤ 𝑛, for all 𝑛 ∈ ℕ. Therefore, as in Section 5.5.1, we begin by showing
a general result (Proposition 5.5.4) in the learning framework of [107], then
we apply it to our setting to prove Proposition 5.3.3. Using the notation of
Section 5.5.1, let ℱ be a function class of functions fromℝ𝑑 → ℝ𝑑, and recall
the arbitrary sequence (𝑋𝑛)𝑛∈ℕ ⊂ ℝ𝑑.
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The ϵ-eluder dimension of a function class ℱ , for ϵ ∈ ℝ+, introduced
in [107] is a notion of dimension which is perfectly tailored to converting fit
errors into prediction errors. We defer to [107] for its technical definition.
Unlike [107], we must adapt our eluder dimension to work with unbounded
functions on unbounded processes. Failing to do so would lead our results
to be largely vacuous since the eluder dimension of ℱ might be infinite for
any ϵ.

We work with a modified eluder dimension, which takes three argu-
ments: a function classℱ whose elements have for domain a setX ⊂ ℝ𝑑; a set𝑆 ⊂ X; and ϵ ∈ ℝ+. Our modified eluder dimension is the ϵ-eluder dimen-
sion of ( 𝑓 |𝑆 ∶ 𝑓 ∈ ℱ ), the class containing the restrictions to some set 𝑆 ⊂ X
of elements of ℱ , which we denote by dim𝑆

E(ℱ , ϵ). In this way, the eluder
dimension of [107] is dimX

E (ℱ , ϵ). For 𝑛 ∈ ℕ∗, let 𝐵𝑛 ∶= B(sup𝑖∈[𝑛] ‖𝑋𝑖‖) and,
for any 𝑢 ∈ ℝ+, let us define the sequence (dℱ

E,𝑛(𝑢))𝑛∈ℕ∗ , in which

dℱ
E,𝑛(𝑢) ∶= dim𝐵𝑛

E (ℱ , 2𝑢√𝑛)
for all 𝑛 ∈ ℕ∗ and 𝑢 ∈ ℝ+.

For a function classℱ with domainX ⊂ ℝ𝑑, and any 𝑥 ∈ X, let us defineΛ(ℱ ; 𝑥) = sup(𝑓1,𝑓2)∈ℱ 2‖ 𝑓1(𝑥) − 𝑓2(𝑥)‖.
The quantity Λ(ℱ , 𝑥) is the maximal prediction gap at 𝑥 between two func-
tions in ℱ . Bounding the prediction error along (𝑋𝑖)𝑖∈ℕ of a sequence of
function classes (ℱ𝑖)𝑖∈ℕ ⊂ ℱ means bounding ∑𝑛𝑖=1Λ(ℱ𝑖,𝑋𝑖) in terms of𝑛 ∈ ℕ. The role of the eluder dimension is evident in the key result of [107]
which we reproduce in Lemma 5.5.3 (up to incorporating our extended defin-
ition of eluder dimension).

To prove Proposition 5.5.4, the result of [107] we leverage is Lemma 5.5.3
which we combine with two functional inequalities given in Lemma 5.5.5.

Lemma 5.5.3. ([107, Prop.3])
Let ( ̃𝑓𝑖)𝑖∈ℕ be a sequence of elements of ℱ , (ℱ𝑖)𝑖∈ℕ be a sequence of subsets ofℱ of the form ℱ𝑖 ∶= { 𝑓 ∈ ℱ ∶ ‖𝑓 − ̃𝑓𝑖‖𝑖 ≤ β̃𝑖}. For any ϵ ∈ (0, 1) and 𝑛 ∈ ℕ,
one has 𝑛∑𝑖=1 1{Λ(ℱ𝑖;𝑋𝑖)>ϵ} ≤ (4β̃2𝑛ϵ2 + 1)dim𝐵𝑛

E (ℱ , ϵ) .
Proof. Following the proof of [107, Prop. 3], the only modification involves
the bound ‖ ̅𝑓−�̲� ‖𝑛 ≤ β̃𝑛, for any ( ̅𝑓 , �̲� ) ∈ ℱ 2𝑛 , which holds by assumption.
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This result combined with some functional inequalities for sequences
(see Lemma 5.5.5 below) transforms a bound on fit error into a bound on
prediction error in Proposition 5.5.4.

Proposition 5.5.4.
Let (β̃𝑖)𝑖∈ℕ be a non-decreasing positive real-valued sequence, ( ̃𝑓𝑖)𝑖∈ℕ, and(ℱ𝑖)𝑖∈ℕ be a sequence of subsets of ℱ of the form ℱ𝑖 ∶= { 𝑓 ∈ ℱ ∶‖ 𝑓 − ̃𝑓𝑖‖𝑖 ≤ β̃𝑖}. Under Assumption 5.3, for any 𝑛 ∈ ℕ∗, we have

𝑛∑𝑖=1 sup(𝑓 , 𝑓 ′)∈ℱ 2𝑛 ‖ 𝑓 (𝑋𝑖) − 𝑓 ′(𝑋𝑖)‖ ≤ 2β̃𝑛√dℱ
E,𝑛(β̃0)𝑛

+ dℱ
E,𝑛(β̃0)2𝐿(1 + sup𝑖∈[𝑛] ‖𝑋𝑖‖), (5.50)

and

𝑛∑𝑖=1 sup(𝑓 , 𝑓 ′)∈ℱ 2𝑛 ‖ 𝑓 (𝑋𝑖) − 𝑓 ′(𝑋𝑖)‖2
≤ 4β̃2𝑛dℱ

E,𝑛(β̃0) (3 + log(8𝑛𝐿2(1 + sup𝑖∈[𝑛] ‖𝑋𝑖‖)16β̃4𝑛(dℱ
E,𝑛(β̃0))2 ))

+ 2dℱ
E,𝑛(1 + 2β̃2𝑛dℱ

E,𝑛(β̃0))(1 + 8𝐿2(1 + sup𝑖∈[𝑛] ‖𝑋𝑖‖2)) .
(5.51)

Proof. The proof consists in applying Lemma 5.5.5 to Lemma 5.5.3, by letting𝑥𝑖 = Λ(ℱ𝑖,𝑋𝑖), ζϵ𝑛 = 4β̃2 dim𝐵𝑛
E (ℱ , ϵ), recall 𝐵𝑛 ∶= B(sup𝑖∈[𝑛] ‖𝑋𝑖‖), andχϵ = dim𝐵𝑛

E (ℱ , ϵ). When we set the value of ϵ in the proof of Lemma 5.5.5,χϵ becomes

dim𝐵𝑛
E (ℱ ,√4(β̃𝑛)2𝑛 ) ≤ dim𝐵𝑛

E (ℱ ,√4(β̃0)2𝑛 )
as (β̃𝑛)𝑛∈ℕ is non-decreasing and the eluder dimension is decreasing in its
third argument. An analog remark holds for ζϵ𝑛. We can thus substitute ζϵ𝑛 =4(β̃𝑛)2dℱ

E,𝑛(β̃0) and χϵ = dℱ
E,𝑛(β̃0) in (5.53) and (5.54), which gives the result.

Before returning to the consequences of Proposition 5.5.4, let us now
prove Lemma 5.5.5.
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Lemma 5.5.5.
Let (𝑥𝑖)𝑖∈ℕ∗ ⊂ ℝ+ and assume the existence of a family of positive sequences((ζϵ𝑛)𝑛∈ℕ∗)ϵ∈ℝ∗+ and a family of positive constants (χϵ)ϵ∈ℝ∗+ such that

𝑛∑𝑖=1 1{𝑥𝑖>ϵ} ≤ ζϵ𝑛ϵ2 + χϵ for all (𝑛, ϵ) ∈ ℕ∗ × ℝ∗+. (5.52)

Then, the following two inequalities hold

𝑛∑𝑖=1 𝑥𝑖 ≤ 2√𝑛ζϵ𝑛 + χϵ sup𝑖∈[𝑛] 𝑥𝑖 (5.53)

𝑛∑𝑖=1 𝑥2𝑖 ≤ ζϵ𝑛 (3 + log (𝑛 sup𝑖∈[𝑛] 𝑥2𝑖(ζϵ𝑛)2 )) + χϵ(2 + ζϵ𝑛) (1 + sup𝑖∈[𝑛] 𝑥2𝑖 ) . (5.54)

Proof.

1. For ϵ > 0, we have by (5.52)
𝑛∑𝑖=1(𝑥𝑖 − ϵ)1{𝑥𝑖>ϵ} = 𝑛∑𝑖=1∫

𝑥𝑖
ϵ 1{𝑥𝑖>𝑢}d𝑢

≤ ∫sup𝑖∈[𝑛] 𝑥𝑖
ϵ

𝑛∑𝑖=1 1{𝑥𝑖>𝑢}d𝑢
≤ ∫sup𝑖∈[𝑛] 𝑥𝑖

ϵ
ζϵ𝑛𝑢2 + χϵd𝑢

= χ sup𝑖∈[𝑛] 𝑥𝑖 − ζϵ𝑛
sup𝑖∈[𝑛] 𝑥𝑖 − χϵϵ + ζϵ𝑛ϵ ,

and thus 𝑛∑𝑖=1(𝑥𝑖 − ϵ)1{𝑥𝑖>ϵ} ≤ ζϵ𝑛ϵ + χϵ sup𝑖∈[𝑛] 𝑥𝑖 . (5.55)

Combining (5.55) with
𝑛∑𝑖=1(𝑥𝑖 − ϵ) ≤ 𝑛∑𝑖=1(𝑥𝑖 − ϵ)1{𝑥𝑖>ϵ}

yields 𝑛∑𝑖=1 𝑥𝑖 ≤ 𝑛ϵ + ζϵ𝑛ϵ + χϵ sup𝑖∈[𝑛] 𝑥𝑖 .
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Setting ϵ = √ζϵ𝑛/𝑛 yields (5.53).

2. To prove (5.54), we iterate the bound (5.55)
𝑛∑𝑖=1 (𝑥𝑖 − ϵ)21{𝑥𝑖>ϵ} = 2 𝑛∑𝑖=1∫

𝑥𝑖
ε (𝑥𝑖 − 𝑢)1{𝑥𝑖>𝑢}d𝑢

≤ 2 𝑛∑𝑖=1∫
sup𝑖∈[𝑛] 𝑥𝑖

ϵ (𝑥𝑖 − 𝑢)1{𝑥𝑖>𝑢}d𝑢
≤ 2∫sup𝑖∈[𝑛] 𝑥𝑖

ϵ
ζϵ𝑛ϵ + χϵ sup𝑖∈[𝑛] 𝑥𝑖d𝑢

≤ 2(χ(sup𝑖∈[𝑛] 𝑥2𝑖 − sup𝑖∈[𝑛] 𝑥𝑖ϵ) + ζϵ𝑛 log (sup𝑖∈[𝑛] 𝑥𝑖ϵ ))
≤ 2ζϵ𝑛 log (sup𝑖∈[𝑛] 𝑥𝑖ϵ ) + 2χϵ sup𝑖∈[𝑛] 𝑥2𝑖 .

Now, by some algebraic manipulations of∑𝑛𝑖=1 𝑥2𝑖 , then completing the
square, discarding negative terms, and using (5.55) in the third step, we
get

𝑛∑𝑖=1 𝑥2𝑖 ≤ 𝑛∑𝑖=1 𝑥2𝑖 1{𝑥𝑖>ϵ} + ϵ2 𝑛∑𝑖=1 1{𝑥𝑖>ϵ}
≤ 𝑛∑𝑖=1(𝑥𝑖 − ϵ)21{𝑥𝑖>ϵ} + 2ϵ 𝑛∑𝑖=1 𝑥𝑖1{𝑥𝑖>ϵ} + 𝑛ϵ2
≤ 2ζϵ𝑛 log (sup𝑖∈[𝑛] 𝑥𝑖ϵ ) + 2χϵ sup𝑖∈[𝑛] 𝑥2𝑖 + ϵ (ζϵ𝑛ϵ + χϵ sup𝑖∈[𝑛] 𝑥𝑖 + 2ϵ𝑛) .

Taking ϵ = ζϵ𝑛/√𝑛 and factoring, using also 𝑢 ≤ 1+𝑢2 for 𝑢 ∈ ℝ, yields

𝑛∑𝑖=1 𝑥2𝑖 ≤ ζϵ𝑛 (3 + log (𝑛 sup𝑖∈[𝑛] 𝑥2𝑖(ζϵ𝑛)2 )) + χϵ(2 + ζϵ𝑛)(1 + sup𝑖∈[𝑛] 𝑥2𝑖 ) .
To complete this section, we apply Proposition 5.5.4 to our setting. For𝑛 ∈ ℕ∗, let us recall the shorthand notation

dE,𝑛 ∶= dim𝐵𝑛
E (ℱΘ, 2√ε𝑛) (5.56)

in which we extended the notation from (𝑋𝑖)𝑖∈ℕ to 𝑋α,θ in the evident man-
ner.
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Proposition 5.5.6.
Under Assumptions 5.1 and 5.2, for any (α,θ) ∈ A × Θ and 𝑡 ∈ ℝ+, any
non-decreasing positive real-valued sequence (β̃𝑛)𝑛∈ℕ, any (μ̃𝑛)𝑛∈ℕ ⊂ℱΘ, and any sequence (ℱΘ,𝑛)𝑛∈ℕ of subsets of ℱΘ of the form

ℱΘ,𝑛 = {μ ∈ ℱΘ ∶ √√√√
𝑛−1∑𝑖=0 ‖‖μ𝑛(𝑋α,θτ𝑖 ,ατ𝑖) − μ̃𝑛(𝑋α,θτ𝑖 ,ατ𝑖)‖‖22 ≤ β̃𝑛} ,

we have

𝑁𝑡∑𝑛=1 supμ1∈ℱΘ,𝑛μ2∈ℱΘ,𝑛
‖μ1 − μ2‖(𝑋α,θτ𝑛 ,ατ𝑛) ≤ 2β𝑁𝑡√dE,𝑁𝑇 + 2𝐿dE,𝑁𝑇(1 + sup𝑠≤𝑡 ‖𝑋α,θ𝑠 ‖),

(5.57)

and

𝑁𝑡∑𝑛=1 supμ1∈ℱΘ,𝑛μ2∈ℱΘ,𝑛
‖μ1 − μ2‖2(𝑋α,θτ𝑛 ,ατ𝑛)

≤4β2𝑁𝑇dE,𝑁𝑇(3+log(8ε2𝑁𝑡𝐿20 (1 + sup𝑠≤𝑡‖𝑋α,θ𝑠 ‖)16β4𝑁𝑡d2E,𝑁𝑇
))

+ 2dE,𝑁𝑡(1+2β2𝑁𝑡dE,𝑁𝑡)(1+8ε2𝐿20 (1 + sup𝑠≤𝑡 ‖𝑋α,θ𝑠 ‖2)) .
(5.58)

Proof. Immediate by applying Proposition 5.5.4 to our setting, as we did in
the proof of Proposition 5.3.2.

Under the event of Proposition 5.3.2, which ensures thatθ∗ ∈ ∩𝑛∈ℕC𝑛(δ),
we can derive from Proposition 5.5.6 a bound on the prediction error relative
to the true dynamics 𝑋α,θ∗ generated by the control α ∈ A, in particular we
are interested in α = 𝜛.

Proposition 5.3.3.
Under Assumptions 5.1 and 5.2, for any δ ∈ (0, 1), α ∈ A, 𝑥0 ∈ ℝ𝑑, and
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𝑡 ∈ ℝ+, we have with probability at least 1 − δ
𝑁𝑡∑𝑛=1‖μθ̂𝑛 − μθ∗‖(𝑋α,θ∗τ𝑛 ,ατ𝑛) ≤ Õ (√εdE,𝑁𝑇 log(𝒩 ε𝑁𝑇)𝑁𝑡 + εdE,𝑁𝑇) ,

(5.16)

and

𝑁𝑡∑𝑛=1‖μθ̂𝑛 − μθ∗‖2(𝑋α,θ∗τ𝑛 ,ατ𝑛) ≤ Õ (dE,𝑁𝑇 log(𝒩 ε𝑁𝑇)) . (5.17)

Proof. This follows from Proposition 5.5.6 by choosing (β̃𝑛)𝑛∈ℕ ∶= (β𝑛(δ))𝑛∈ℕ
and (ℱΘ,𝑛)𝑛∈ℕ ∶= (C𝑛(δ))𝑛∈ℕ, i.e. choosing (μ̃𝑛)𝑛∈ℕ ∶= (μθ̂𝑛)𝑛∈ℕ, the NLLS
fit on 𝑛 points. It is key to notice that these choices of (β̃𝑛)𝑛∈ℕ, (ℱΘ,𝑛)𝑛∈ℕ,
and (μ̃𝑛)𝑛∈ℕ are adapted to 𝔽, and therefore we can apply Proposition 5.5.6
on the event of Proposition 5.3.2 without issues. This yields

𝑁𝑡∑𝑛=1‖μθ̂𝑛 − μθ∗‖(𝑋α,θ∗τ𝑛 ,ατ𝑛) ≤ 2β𝑁𝑡(δ)√dE,𝑁𝑇 + 2ε𝐿0dE,𝑁𝑇(1 + 𝐻δ(𝑁𝑇)) ,
and

𝑁𝑡∑𝑛=1‖μθ̂𝑛 − μθ∗‖2(𝑋α,θ∗τ𝑛 ,ατ𝑛)
≤ 4β𝑁𝑇(δ)2dE,𝑁𝑇 (3 + log(8ε2𝑁𝑡𝐿20(1 + 𝐻δ(𝑁𝑡))16β𝑁𝑡(δ)4d2E,𝑁𝑇

))
+ 2dE,𝑁𝑡(1 + 2β𝑁𝑡(δ)2dE,𝑁𝑡)(1 + 8ε2𝐿20(1 + 𝐻δ(𝑁𝑡)2)) .

To obtain the bounds of (5.16)–(5.17), it suffices to recall the definitions ofβ𝑛(δ) (i.e. (5.14)) and 𝐻δ(𝑛) (i.e. (5.30)).

5.6 Planning and Diffusive Limit Approximation
The results of this section build upon those of Chapter 4 but with special-
ised results for our setting. In Chapter 4 the key results of this section (Pro-
positions 5.3.4 to 5.3.6) are shown under a stronger and more abstract set of
assumptions (Assumptions 4.2, 4.3 and 4.5). For the comfort of the reader,
we thus present only the necessary steps to extend its results to our assump-
tions. Since our assumptions do not directly subsume theirs, we exhibit in
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each case from Assumptions 5.1 and 5.2 how to recover the keystone results
that underpin the technical arguments of Chapter 4.

We begin with the well-posedness results for the pure jump case (Pro-
position 5.3.4) and the diffusive limit case (Proposition 5.3.5), and then focus
on the approximation result linking the two regimes (Proposition 5.3.6). In
Chapter 4, Proposition 5.3.4 corresponds to Theorem 4.2.1 and Remark 4.2.2.
In Section 5.6.1, we show how it follows from Assumptions 5.1 and 5.2 by
proving the two intermediary results used in Chapter 4 to prove the result.

5.6.1 Proof of Proposition 5.3.4

Proposition 5.3.4. (Adapted from Theorem 4.2.1 and Remark 4.2.2)
Under Assumptions 5.1 and 5.2, there is 𝐿𝑊 ∈ ℝ+, independent of ε, such
that for any θ ∈ Θ

(i) The map 𝑥 ↦ ρ∗θ(𝑥) is constant, taking only one value which we
denote by ρ∗θ ∈ ℝ;

(ii) There is an 𝐿𝑊-Lipschitz function 𝑊∗θ such thatερ∗θ = max𝑎∈𝔸 {𝔼[𝑊∗θ (𝑥 + μθ(𝑥, 𝑎) + Σξ)] − 𝑊∗θ (𝑥) + 𝑟(𝑥, 𝑎)} , (5.18)

for any 𝑥 ∈ ℝ𝑑;

(iii) There is π∗θ ∈ 𝒜 , such that for all 𝑥 ∈ ℝ𝑑, π∗θ(𝑥)maximises the right
hand side of (5.18), and π∗θ ∘𝑋π∗θ ,θ is an optimal Markov control, i.e.ρπ∗θθ (⋅) ≡ ρ∗θ.

In Chapter 4, Theorem 4.2.1 and Remark 4.2.2 follow from Lemmas 4.A.1
and 4.A.2, which respectively give a mixing condition and a moment bound
for 𝑋α,θ. We already proved Lemma 4.A.2 with Lemma 5.4.4 (reproduced
below for reference). Moreover, Lemma 5.6.1 which reproduces Lemma 4.A.1
holds with only minor modifications of the proof from Chapter 4.

Lemma 5.4.4.
Under Assumptions 5.1 and 5.2, for any 𝑝 ≥ 2, there is a constant c′𝑝 > 0
independent of ε such that

𝔼 [‖‖𝑋𝑥0,α,θ𝑡 ‖‖𝑝] ≤ 1ℓ𝑝𝒱 (𝐿𝑝𝒱 𝑒− c𝒱4 𝑡‖𝑥0‖𝑝 + 4c′𝑝
c𝒱 (1 − 𝑒− c𝒱4 𝑡)) ,
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for any (𝑥0,α,θ) ∈ ℝ𝑑 ×A ×Θ and 𝑡 ∈ [0, +∞).
Lemma 5.6.1.

For any (𝑥, 𝑥′) ∈ ℝ𝑑 × ℝ𝑑, θ ∈ Θ, and α ∈ A,

𝔼 [‖‖𝑋𝑥,α,θ𝑡 − 𝑋𝑥′,α,θ𝑡 ‖‖] ≤ 𝐿𝒱ℓ𝒱 ‖𝑥 − 𝑥′‖ 𝑒−c𝒱 𝑡
for any 𝑡 ∈ [0, +∞).

Proof. We can follow the proof of Lemma 4.A.1 using Assumption 5.2 dir-
ectly without resorting to the higher order Lyapunov function ζwhich is used
therein.

5.6.2 Proof of Proposition 5.3.5

In Chapter 4, Proposition 5.3.5 corresponds to Theorem 4.3.1. In Section 5.6.2,
we show that it also follows from Assumptions 5.1 and 5.2 by proving that
Assumption 4.5 holds under Assumptions 5.1 and 5.2.

Proposition 5.3.5. (Adapted from Theorem 4.3.1)
Under Assumptions 5.1 and 5.2, for any θ ∈ Θ,

(i) The map 𝑥 ↦ ρ̄∗θ(𝑥) is constant, taking only one value which we
denote by ρ̄∗θ ∈ ℝ.

(ii) There is an 𝐿𝑊-Lipschitz function �̄�∗θ ∈ C2(ℝ𝑑; ℝ) such that

ρ̄∗θ = max𝑎∈𝔸 {μ̄θ(𝑥, 𝑎)⊤∇�̄�∗θ (𝑥) + ̄𝑟(𝑥, 𝑎)} + 12 Tr [Σ̄Σ̄⊤∇2�̄�∗θ (𝑥)]
(5.19)

for any 𝑥 ∈ ℝ𝑑.

(iii) There is π̄∗θ ∈ 𝒜 such that, for all 𝑥 ∈ ℝ𝑑, π̄∗θ(𝑥)maximises the right
hand side in (5.19), and π̄∗θ ∘ �̄�π̄∗θ ,θ is an optimal Markov control, i.e.ρ̄π̄∗θθ (⋅) ≡ ρ̄∗θ.

Remark 5.6.1. Proposition 5.3.5.(iii) is not stated as is in Theorem 4.3.1, but it
follows from it by the same arguments as Remark 4.2.2.
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Proposition 5.3.5, such as it is stated in Theorem 4.3.1 relies on Assump-
tion 4.5. This assumption contains two conditions, which we will show re-
spectively in Lemmas 5.6.2 and 5.6.3.

As detailed in Remark 4.3.1.a), the first condition can be shown by prov-
ing an analog of Lemma 4.A.1 for the diffusive limit process (5.8). In terms
of arguments of the proof, this analog requires only a change in the infin-
itesimal generator used in Itô’s Lemma6. In the proof of Lemma 5.6.2, we,
therefore, show how to adapt Lemma 4.A.1 to the generator of the diffusion
under Assumptions 5.1 and 5.2.

In the proof of Lemma 4.A.1, there are two key steps. First, study the
discounted version of the control problem, and show that it is equi-Lipschitz
continuous in the discount, which rests on the result in Lemma 5.6.2. Then
one takes the vanishing discount limit in the Hamilton-Jacobi-Bellman equa-
tion using the theory of viscosity solutions to complete the proof.

Lemma 5.6.2.
For any (𝑥0, 𝑥′0) ∈ ℝ𝑑 × ℝ𝑑, θ ∈ Θ, α ∈ A,

𝔼 [‖‖�̄�𝑥,α,θ𝑡 − �̄�𝑥′,α,θ𝑡 ‖‖] ≤ 𝐿𝒱ℓ𝒱 ‖𝑥 − 𝑥′‖ 𝑒−c𝒱 𝑡
for any 𝑡 ∈ [0, +∞).

Proof. If 𝑥0 = 𝑥′0, this is trivially true by pathwise-uniqueness, so we suppose𝑥0 ≠ 𝑥′0. Let us consider (𝑥1, 𝑥2) ∈ ℝ𝑑 × ℝ𝑑 with 𝑥1 ≠ 𝑥2. By a Taylor
expansion in (5.4), we obtain as ε → 0(μ̄θ(𝑥1, 𝑎) − μ̄θ(𝑥2, 𝑎))⊤∇𝒱 (𝑥1 − 𝑥2) ≤ −c𝒱 𝒱 (𝑥1 − 𝑥2) . (5.59)

The Lyapunov function 𝒱 is not differentiable at 0, so we will construct an
approximating sequence for it. Let erf denote the error function and let𝒱ι ∶=𝒱 erf(ι𝒱 ) for ι > 0. Note that 𝒱ι ∈ C1(ℝ𝑑; ℝ+) and 𝒱ι is Lipschitz, let us
show that it satisfies (5.59) everywhere.

Let 𝑧 ∶= 𝑥1 − 𝑥2. Since 𝑧 ≠ 0 we have

∇𝒱ι(𝑧) = ∇𝒱 (𝑧) (erf(ι𝒱 (𝑧)) + 2ι√π𝒱 (𝑧)𝑒−ι2𝒱 2(𝑧)) .
By Assumption 5.2, this implies that(μ̄θ(𝑥1, 𝑎) − μ̄θ(𝑥2, 𝑎))⊤∇𝒱ι(𝑧) ≤−c𝒱 𝒱 (𝑧)erf(ι𝒱 (𝑧)) − 2ι√πc𝒱 𝒱 (𝑧)2𝑒−ι2𝒱 2(𝑧)

6For a general overview of this sort of stability results and of Stochastic Lyapunov con-
ditions in the diffusive case, see e.g. [71, § 5.7].
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≤ −c𝒱 𝒱ι(𝑧) . (5.60)

Since∇𝒱ι is continuous in 𝑧, and so is the right-hand side, we can let ‖𝑧‖ → 0
and conclude the bound also holds for 𝑥1 = 𝑥2.
We now apply Itô’s lemma for the process �̄�𝑥,α,θ − �̄�𝑥′,α,θ to 𝒱ι. Using (5.60),
this yields, for 𝑡 ≥ 𝑡0 ≥ 0,

𝔼 [𝒱ι (�̄�𝑥0,α,θ𝑡 − �̄�𝑥′0,α,θ𝑡 )]≤ 𝔼 [𝒱ι (�̄�𝑥0,α,θ𝑡0 − �̄�𝑥′0,α,θ𝑡0 )]
+ 𝔼 [∫𝑡

𝑡0 (μ̄θ (�̄�𝑥0,α,θ𝑠 ,α𝑠) − μ̄θ (�̄�𝑥′0,α,θ𝑠 ,α𝑠))⊤∇𝒱ι (�̄�𝑥0,α,θ𝑠 − �̄�𝑥′0,α,θ𝑠 )d𝑠]
≤ 𝔼 [𝒱ι (�̄�𝑥0,α,θ𝑡0 − �̄�𝑥′0,α,θ𝑡0 )] −∫𝑡

𝑡0 c𝒱 𝔼 [𝒱ι (𝑋𝑥0,α,θ𝑠 − 𝑋𝑥′0,α,θ𝑠 )]d𝑠 .
We then conclude by the same ODE comparison argument as in the proof of
Lemma 5.4.4 and then pass to the limit as ι → 0 to obtain the claimed result
using Assumption 5.2.(i).

While Lemma 5.6.2 showed that Assumption 4.5.(i) is implied by As-
sumptions 5.1 and 5.2. It remains now to verify Assumption 4.5.(ii). Note
that by Remark 4.3.1.b), an equation of the form of (4.14) is sufficient to do so.
Lemma 5.6.3 gives exactly this result with (5.61), by noting that (4.15) holds
by Assumption 5.2.

Lemma 5.6.3.
Let Assumptions 5.1 and 5.2 hold. Then, for any 𝑝 ≥ 2, there are ( ̄c𝑝, ̄c′𝑝) ∈ ℝ2+
such thatμ̄θ(𝑥, 𝑎)⊤∇𝒱 (𝑥)𝑝 + Tr [Σ̄Σ̄⊤∇2𝒱 (𝑥)𝑝] ≤ − ̄c𝑝𝒱 (𝑥)𝑝 + ̄c′𝑝 (5.61)

for any (𝑥, 𝑎,θ) ∈ ℝ𝑑 × 𝔸 ×Θ.

Proof. Let us take (𝑥, 𝑥′) ∈ ℝ𝑑 × ℝ𝑑 such that ‖𝑥 − 𝑥′‖ ≥ ε/(1 − ε𝐿0), which
implies ‖𝑥 − 𝑥′ + Δ(μθ(𝑥, 𝑎) − μθ(𝑥′, 𝑎))‖ > 0 for any Δ ∈ [0, 1] and for all(𝑎,θ) ∈ 𝔸 ×Θ and we can expand (5.4), which gives

−εc𝒱 𝒱 (𝑥 − 𝑥′) ≥ (μθ(𝑥, 𝑎) − μθ(𝑥′, 𝑎))⊤∇𝒱 (𝑥 − 𝑥′)+ 12(μθ(𝑥, 𝑎) − μθ(𝑥′, 𝑎))⊤∇2𝒱 ( ̂𝑥)(μθ(𝑥, 𝑎) − μθ(𝑥′, 𝑎)) ,
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in which ̂𝑥 = 𝑥 + Δ̂(𝑥′ − 𝑥) for some Δ̂ ∈ [0, 1]. Thus(μ̄θ(𝑥, 𝑎) − μ̄θ(𝑥′, 𝑎))⊤∇𝒱 (𝑥 − 𝑥′)≤ −c𝒱 𝒱 (𝑥 − 𝑥′) − ε2(μ̄θ(𝑥, 𝑎) − μ̄θ(𝑥′, 𝑎))⊤∇2𝒱 ( ̂𝑥)(μ̄θ(𝑥, 𝑎) − μ̄θ(𝑥′, 𝑎)) .
Letting ε → 0, the constraint on (𝑥, 𝑥′) vanishes as well as the second term
(on compact sets), and we recover

(μ̄θ(𝑥, 𝑎) − μ̄θ(𝑥′, 𝑎))⊤∇𝒱 (𝑥 − 𝑥′) + 12 Tr [Σ̄Σ̄⊤∇2𝒱 (𝑥 − 𝑥′)]
≤ −c𝒱 𝒱 (𝑥 − 𝑥′) + 𝑑2‖Σ̄‖2op𝑀′𝒱 .

Taking 𝑥′ = 0 implies thatμ̄θ(𝑥, 𝑎)⊤∇𝒱 (𝑥) + 12 Tr [Σ̄Σ̄⊤∇2𝒱 (𝑥)] ≤ −c𝒱 𝒱 (𝑥) + 𝐶
for all (𝑥, 𝑎) ∈ ℝ𝑑∗ × 𝔸, in which 𝐶 ∶= 𝑑‖Σ̄‖2op𝑀′𝒱 /2 + 𝐿0𝑀𝒱 .

Notice that, since 𝒱 ∈ C2(ℝ𝑑 ⧵ {0}; ℝ+) and vanishes at 0 (see Assump-
tion 5.1),𝒱 (⋅)𝑝 can be extended by continuity at 0 so that𝒱 (⋅)𝑝 ∈ C2(ℝ𝑑; ℝ+).
For any (𝑥, 𝑎,θ) ∈ ℝ𝑑 × 𝔸 ×Θ, letμ̄θ(𝑥, 𝑎)⊤∇𝒱 (𝑥)𝑝 + 12 Tr [Σ̄Σ̄⊤∇2𝒱 (𝑥)𝑝]= 𝑝μ̄θ(𝑥, 𝑎)⊤∇𝒱 (𝑥)𝒱 (𝑥)𝑝−1+ 12 Tr [Σ̄Σ̄⊤ (𝑝𝒱 (𝑥)𝑝−1∇2𝒱 (𝑥) + 𝑝(𝑝 − 1)𝒱 (𝑥)𝑝−2∇𝒱 (𝑥)∇𝒱 (𝑥)⊤)]
= 𝑝𝒱 (𝑥)𝑝−1 (μ̄θ(𝑥, 𝑎)⊤∇𝒱 (𝑥) + 12 Tr [Σ̄Σ̄⊤∇2𝒱 (𝑥)])

+ 𝑝(𝑝 − 1)2 𝒱 (𝑥)𝑝−2 Tr [Σ̄Σ̄⊤∇𝒱 (𝑥)∇𝒱 (𝑥)⊤]
≤ −𝑝c𝒱 𝒱 (𝑥)𝑝 + 𝐶𝑝𝒱 (𝑥)𝑝−1 + 𝑑𝑝(𝑝 − 1)2 (‖Σ̄‖op𝑀𝒱 )2𝒱 (𝑥)𝑝−2

and we can now choose ̄c𝑝 = −𝑝c𝒱 /2, for which there exists a constant ̄c′𝑝 such
that

− ̄c𝑝𝒱 (𝑥)𝑝 + 𝐶𝑝𝒱 (𝑥)𝑝−1 + 𝑑𝑝(𝑝 − 1)2 (‖Σ̄‖op𝑀𝒱 )2𝒱 (𝑥)𝑝−2 ≤ ̄c′𝑝
for all 𝑥 ∈ ℝ𝑑.

5.6.3 Proof of Proposition 5.3.6

Propositions 5.3.4 and 5.3.5 together ensure that both the prelimit and limit
regimes are well posed, while Proposition 5.3.6 gives the rate of convergence
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of the control problems along this limit. This result is essentially contained
in the proof of Theorem 4.3.2, but since its statement is different, we include
a proof for completeness in Section 5.6.3.

Proposition 5.3.6. (Adapted from Theorem 4.3.2)
Under Assumptions 5.1 and 5.2, for any γ ∈ (0, 1), there is a constant𝐶γ > 0, independent of ε, such that, for any θ ∈ Θ,

||ρ̄∗θ − ρ∗θ|| ≤ 𝐶γε γ2 and ρ∗θ − ρπ̄∗θθ (0) ≤ 𝐶γε γ2 . (5.20)

Moreover, there is a function 𝑒θ ∶ ℝ𝑑 → ℝ such that,

ερπ̄∗θθ (0) = 𝔼[�̄�∗θ (𝑥 + μθ(𝑥, 𝑎) + Σξ)] − �̄�∗θ (𝑥) + 𝑟(𝑥, π̄∗θ(𝑥)) + 𝑒θ(𝑥)
(5.21)

for any 𝑥 ∈ ℝ𝑑, and there is 𝐶′γ > 0, independent of ε, such that |𝑒θ(𝑥)| ≤𝐶′γε1+γ/2(1 + ‖𝑥‖3) for all 𝑥 ∈ ℝ𝑑.

Proposition 5.3.6 can be proven by modification of the proof of The-
orem 4.3.2 to which it corresponds. Below, we produce a self-contained proof
in order to clarify how (5.21) is derived from the proof.

Proof. The first part of Proposition 5.3.6, that is (5.20), corresponds to The-
orem 4.3.2, which we previously showed holds in our setting by verifying its
assumptions. We now prove the second claim. Letδ𝑟θε (𝑥, 𝑎) ∶=μ̄θ(𝑥, 𝑎)⊤∇�̄�∗θ (𝑥)+12 Tr [Σ̄Σ̄⊤∇2�̄�∗θ (𝑥)]−1ε (𝔼 [�̄�∗θ (ψεθ(𝑥, 𝑎)+Σξ)]−�̄�∗θ (𝑥))
for all (𝑥, 𝑎) ∈ ℝ𝑑 × 𝔸. From (5.19), and Proposition 5.3.5.(iii) we have

ρ̄∗θ = max𝑎∈𝔸 {μ̄θ(𝑥, 𝑎)⊤∇�̄�∗θ + 12 Tr[Σ̄Σ̄⊤∇2�̄�∗θ (𝑥)] + ̄𝑟(𝑥, 𝑎)}
= μ̄θ(𝑥, π̄∗θ(𝑥))⊤∇�̄�∗θ (𝑥) + 12 Tr[Σ̄Σ̄⊤∇2�̄�∗θ (𝑥)] + ̄𝑟(𝑥, π̄∗θ(𝑥))

which implies

ερπ̄∗θθ (0) =𝔼[�̄�∗θ (ψεθ(𝑥, π̄∗θ(𝑥))+Σξ)]−�̄�∗θ (𝑥)+𝑟(𝑥, π̄∗θ(𝑥))+ε(δ𝑟θε (𝑥, π̄∗θ(𝑥))+ρ̄∗θ−ρπ̄∗θθ (0)),
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for every 𝑥 ∈ ℝ𝑑. Note that |δ𝑟θε (𝑥, π̄∗θ(𝑥))| ≤ sup𝑎∈𝔸|δ𝑟θε (𝑥, 𝑎)|, which is
bounded by 𝑐γεγ/2(1 + ‖𝑥‖3) for some constant 𝑐γ > 0, by Theorem 4.3.2.
An application of (5.20) yieldsρ̄∗θ − ρπ̄∗θθ (0) = ρ̄∗θ − ρ∗θ + ρ∗θ − ρπ̄∗θθ (0) ≤ 2𝐶γε γ2
and, at the same time, ρ̄∗θ − ρπ̄∗θθ (0) ≥ ρ̄∗θ − ρ∗θ ≥ −𝐶γεγ/2. Therefore, there is
a function 𝑒θ ∶ ℝ𝑑 → ℝ such that (5.21) holds, which also satisfies|𝑒θ(𝑥)| ≤ (2𝐶γ + 𝑐γ)ε1+ γ2 (1 + ‖𝑥‖3) .

5.7 Regret Analysis
In this section, we complete the analysis of the regret of Algorithm 1 and
prove Theorem 5.3.1. First, we will give the regret decomposition, and then
in the later subsections, we will bound terms one by one calling upon the
results of the previous appendices.

Theorem 5.3.1.
Under Assumptions 5.1 and 5.2, for any δ ∈ (0, 1), 𝑥0 ∈ ℝ𝑑, and γ ∈(0, 1), there is a pair (𝐶γ,𝐶) ∈ ℝ2+ of constants independent of ε such that
Algorithm 1 achieves

R𝑇(𝜛) ≤ 2𝐶γε γ2𝑇 + 𝐶√dE,𝑇ε−1 log(𝒩 ε𝑇ε−1)𝑇 log(𝑇δ−1) (5.11)

with probability at least 1−δ, in which dE,𝑇ε−1 is the 2ε/√𝑇-eluder dimen-
sion (see [107, Def. 4.] and (5.56) in Section 5.5.2) of the class (μθ)θ∈Θ re-
stricted to a ball of radiusO(√log(𝑇/ε)), and log(𝒩 ε𝑇ε−1) is the ε2‖Σ̄‖2op/𝑇-
log-covering number of this same restricted class.

5.7.1 Regret decomposition

Recall that we defined 𝑘 ∶ 𝑛 ∈ ℕ ↦ 𝑘(𝑛) as the map associating to each event𝑛 the episode of Algorithm 1 in which they occur. Like in Section 5.3.5, let us
define θ𝑛 = θ̃𝑘(𝑛) for all 𝑛 ∈ ℕ. The regret of Algorithm 1, which generates
the control 𝜛 ∈ A, is

R𝑇(𝜛) ∶= 𝑇ρ∗θ∗ − 𝑁𝑇∑𝑛=1 𝑟(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛)
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By definition of 𝜛 in Algorithm 1, 𝜛τ𝑛 = π̄∗θ𝑛(𝑋𝜛,θ∗τ𝑛 ), so that

R𝑇(𝜛) ∶= 𝑇ρ∗θ∗ − 𝑁𝑇∑𝑛=1 𝑟(𝑋𝜛,θ∗τ𝑛 , π̄∗θ𝑛(𝑋𝜛,θ∗τ𝑛 ))
At the heart of the regret decomposition is the use of the HJB-type equa-

tion (5.21) applied for each 𝑛 at the point 𝑋𝜛,θ∗τ𝑛 . For clarity, let us introduce
for all 𝑛 ∈ ℕ the random variable �̃�𝜛,θ𝑛τ𝑛+1 equal in distribution, condition-
ally on Fτ𝑛 , to the random variable ψεθ𝑛(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) + Σξ𝑛+1. With this nota-
tion (5.21) becomes

ερπ̄∗θ𝑛θ𝑛 (0)= 𝔼[�̄�∗θ𝑛(�̃�𝜛,θ𝑛τ𝑛+1 )|Fτ𝑛] − �̄�∗θ𝑛(𝑋𝜛,θ∗τ𝑛 ) + 𝑟(𝑋𝜛,θ∗τ𝑛 , π̄∗θ𝑛(𝑋𝜛,θ∗τ𝑛 )) + 𝑒θ𝑛(𝑋𝜛,θ∗τ𝑛 ) .
(5.62)

This imagined evolution of the system represents the counterfactual in-
duced by a single step transition at time τ𝑛+1, according to the belief in θ𝑛.
With this notation, applying (5.62) yields

R𝑇(𝜛) = 𝑇ρ∗θ∗ − 𝑁𝑇∑𝑛=1 ερπ̄∗θ𝑛θ𝑛 (0) + 𝑁𝑇∑𝑛=1 𝑒θ𝑛(𝑋𝜛,θ∗τ𝑛 )
+ 𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛 (�̃�𝜛,θ𝑛τ𝑛+1 ) |Fτ𝑛] − �̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛 ) .

= (𝑇 − ε𝑁𝑇)ρ∗θ∗ (𝑅1)
+ ε 𝑁𝑇∑𝑛=1 (ρ∗θ∗ − ρπ̄∗θ𝑛θ𝑛 (0)) + 𝑁𝑇∑𝑛=1 𝑒θ𝑛 (𝑋𝜛,θ∗τ𝑛 ) (𝑅2)
+ 𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛 (�̃�𝜛,θ𝑛τ𝑛+1 ) |Fτ𝑛] − �̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛 ) . (5.63)

The first term, (𝑅1), quantifies the deviation of the Poisson clock from its
mean. On the other hand, (𝑅2) quantifies both the optimistic nature of Al-
gorithm 1 and the approximation error of its approximate planning. The
third term, (5.63), resembles a martingale (up to reordering), but it fails to
be one on two key counts. First, the element from the family of functions(�̄�∗θ𝑛)𝑛∈ℕ used at each step 𝑛 changes. Second, the expectation terms are
with respect to the counterfactual transitions (�̃�𝜛,θ∗τ𝑛+1 )𝑛∈ℕ while the random
terms use the real transitions (𝑋𝜛,θ∗τ𝑛+1 )𝑛∈ℕ.
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Note that we can control the difference between the counterfactual and
the real trajectory at a one-step time horizon, by using

�̃�𝜛,θτ𝑛+1 d= 𝑋𝜛,θ∗τ𝑛+1 − μθ∗(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) + μθ(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) , (5.64)

in which
d= denotes equality in the same conditionally distributional sense as

above. By adding and subtracting relevant terms to exhibit the key quantities
we get:

𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛 (�̃�𝜛,θ𝑛τ𝑛+1 ) |Fτ𝑛] − �̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛 )
≤ 𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛 (�̃�𝜛,θ𝑛τ𝑛+1 ) |Fτ𝑛] − 𝔼 [�̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛+1 ) |Fτ𝑛]
+ 𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛+1 ) |Fτ𝑛] − 𝔼 [�̄�∗θ𝑛+1 (𝑋𝜛,θ∗τ𝑛+1 ) |Fτ𝑛]
+ 𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛+1 (𝑋𝜛,θ∗τ𝑛+1 ) |Fτ𝑛] − �̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛 ) .

Using (5.64), and the uniform 𝐿𝑊-Lipschitzness of (�̄�∗θ𝑛)𝑛∈ℕ, we get for each𝑛 ∈ ℕ𝔼 [�̄�∗θ𝑛 (�̃�𝜛,θ𝑛τ𝑛+1 ) |Fτ𝑛] − 𝔼 [�̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛+1 ) |Fτ𝑛] ≤ 𝐿𝑊‖μθ𝑛 − μθ∗‖ (𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛)
and thus the regret term (5.63) is bounded by

𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛 (�̃�𝜛,θ𝑛τ𝑛+1 ) |Fτ𝑛] − �̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛 ) ≤ 𝑅3 + 𝑅4 + 𝑅5
in which

𝑅3 ∶ = 𝐿𝑊
𝑁𝑇∑𝑛=1 ‖‖μθ𝑛 (𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) − μθ∗ (𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛)‖‖ (𝑅3)

𝑅4 ∶ = 𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛+1 ) − �̄�∗θ𝑛+1 (𝑋𝜛,θ∗τ𝑛+1 ) |Fτ𝑛] (𝑅4)
𝑅5 ∶ = 𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛+1 (𝑋𝜛,θ∗τ𝑛+1 ) |Fτ𝑛] − �̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛 ) . (𝑅5)

At the end of this decomposition, we have constructed a true martingale
in (𝑅5), which we bound in Section 5.7.6. The first term (𝑅3) accumulates
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the fit error described in Proposition 5.3.3, up to the lazy updates, which we
study in Section 5.7.4. The term (𝑅4) is bounded by the number of effective
updates of θ𝑛 (namely, ∑𝑁𝑇𝑛=1 1{θ𝑛+1≠θ𝑛}) in Section 5.7.5. Finally, the bounds
on (𝑅1) and (𝑅2) are given in Sections 5.7.2 and 5.7.3 respectively.

To combine the high-probability events used to bound (𝑅1) and (𝑅5),
with the event of Proposition 5.3.2 used by the other terms, we will perform
a union bound. This corresponds to the δ/3 used in the definition of the con-
fidence sets of Algorithm 1.

5.7.2 The Poisson clock variation term (𝑅1)
We bound (𝑅1) using Lemma 5.7.1 which is a standard sub-exponential con-
centration result, see e.g. [40, Lemma 4.1]. It implies

ℙ(|𝑇 − ε𝑁𝑇| ≥ 2√ε𝑇 log (6δ) ∨ 2ε log (6δ)) ≤ δ3 .
Lemma 5.7.1.

For any 𝑇 ∈ ℝ∗+ and δ ∈ (0, 1),
ℙ(|ε𝑁𝑇 − 𝑇| > 2√ε𝑇 log (2δ) ∨ 2ε log (2δ)) ≤ δ .

Proof. Let υ ∶= ε−1𝑇. For any λ ∈ [−1, 1], 𝔼[𝑒λ(𝑁𝑇−υ)] = exp(υ(𝑒λ − 1 −λ)) ≤ 𝑒λ2υ. Therefore, 𝑁𝑇 is (√2υ, 1)-sub-exponential (see [40] once more)
and therefore,

ℙ (|𝑁𝑇 − υ| > ϵ) ≤ {𝑒− ϵ24υ for ϵ ∈ (0, 2υ]𝑒− ϵ2 for ϵ > 2υ ,
which implies

ℙ(|𝑁𝑇 − υ| > 2√υ log (2δ)1{δ≥𝑒−υ} + 2 log (2δ) 1{δ≤𝑒−υ}) ≤ δ .
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5.7.3 The optimistic approximation term (𝑅2)
There are two terms in (𝑅2). The second is the most straightforward as it can
be bounded by applying the bound on 𝑒θ𝑛 of Proposition 5.3.6, which yields

𝑁𝑇∑𝑛=1 𝑒θ𝑛(𝑋𝜛,θ∗τ𝑛 ) ≤ 2𝐶′γ𝑁𝑇ε1+ γ2 (1 + sup𝑠≤𝑇 ‖𝑋𝜛,θ∗𝑠 ‖3) .
We decompose the remaining term of (𝑅2) into

ε 𝑁𝑇∑𝑛=1 (ρ∗θ∗ − ρπ̄∗θ𝑛θ𝑛 ) = ε𝑁𝑇∑𝑛=1(ρ∗θ∗ − ρ̄∗θ∗ + ρ̄π̄∗θ∗θ∗ − ρ̄π̄∗θ𝑛θ𝑛 + ρ̄∗θ𝑛 − ρ∗θ𝑛 + ρ∗θ𝑛 − ρπ̄∗θ𝑛θ𝑛 )
≤ 4𝑁𝑇𝐶γε1+ γ2 + ε 𝑁𝑇∑𝑛=1 (ρ̄π̄∗θ∗θ∗ − ρ̄π̄∗θ𝑛θ𝑛 )

by applying Proposition 5.3.6 to all but the second pair of terms.
On the event of Proposition 5.3.2, with δ/3 in place of δ, we have θ∗ ∈∩𝑛∈ℕ∗C𝑛(δ/3) and thus, by definition of Algorithm 1, ρ̄π̄∗θ∗θ∗ − ρ̄π̄∗θ𝑛θ𝑛 ≤ 0 for all𝑛 ∈ ℕ∗. Thus, on this event we have

ε 𝑁𝑇∑𝑛=1 (ρ∗θ∗ − ρπ̄∗θ𝑛θ𝑛 ) ≤ 4𝑁𝑇𝐶γε1+ γ2 .
5.7.4 The prediction error term (𝑅3)

Because of the lazy updates, μθ𝑛 = μθ𝑘(𝑛) is chosen within C𝑘(𝑛)(δ/3) instead
of C𝑛(δ/3) preventing us from using directly Proposition 5.5.6. Nevertheless,
the lazy update scheme is designed not to degrade the overall learning per-
formance by more than a constant factor. Leveraging (5.7), we get

𝑛−1∑𝑖=1 ‖‖μθ𝑛(𝑋𝜛,θ∗τ𝑖 ,𝜛τ𝑖) − μθ∗(𝑋𝜛,θ∗τ𝑖 ,𝜛τ𝑖)‖‖ ≤ {2β𝑛(δ/3) if 𝑛 < 𝑛𝑘β𝑛(δ/3) if 𝑛 = 𝑛𝑘 . (5.65)

As a result, μθ𝑛is chosen within an inflated version of C𝑛(δ/3), defined as
in (5.6) but with β𝑛(δ/3) replaced by 2β𝑛(δ/3). Thus, we can follow the same
arguments as in the proof of Proposition 5.3.3, by applying Proposition 5.5.6
to the inflated confidence sets, up to the constant factor 2 in the bounds.
Therefore, on the event of Proposition 5.3.2, we have

𝑅3 = 𝐿𝑊
𝑁𝑇∑𝑛=1‖μθ𝑛 − μθ∗‖(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛)
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≤ 𝐿𝑊
𝑁𝑇∑𝑛=1‖μθ𝑛 − μθ̂𝑛𝑘‖(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛) + 𝐿𝑊

𝑁𝑇∑𝑛=1‖μθ̂𝑛𝑘 − μθ∗‖(𝑋𝜛,θ∗τ𝑛 ,𝜛τ𝑛)
≤ 3𝐿𝑊 (2β𝑁𝑇(δ/3)√dE,𝑁𝑡 + dE,𝑁𝑡𝐻δ/3(𝑁𝑇)) .

5.7.5 The lazy‐update term (𝑅4)
We observe that (𝑅4) is bounded by

𝑅4 = 𝑁𝑇∑𝑛=1𝔼 [�̄�∗θ𝑛 (𝑋𝜛,θ∗τ𝑛+1 ) − �̄�∗θ𝑛+1 (𝑋𝜛,θ∗τ𝑛+1 ) |Fτ𝑛]
≤ 2𝐿𝑊

𝑁𝑇∑𝑛=1𝔼 [(1 + ‖‖𝑋𝜛,θ∗τ𝑛+1 ‖‖) 1{θ𝑛≠θ𝑛+1}|Fτ𝑛]
≤ 2𝐿𝑊

𝑁𝑇∑𝑛=1 ((1 + ε𝐿0) (1 + ‖‖𝑋𝜛,θ∗τ𝑛 ‖‖) + ε 12 ‖Σ̄‖op𝔼 [‖ξ𝑛+1‖ |Fτ𝑛]) 1{θ𝑛≠θ𝑛+1}
≤ 2𝐿𝑊(1 + ε𝐿0) (1 + sup𝑠≤𝑇

‖‖𝑋𝜛,θ∗𝑠 ‖‖ + √𝑑ε 12 ‖Σ̄‖op) 𝑁𝑇∑𝑛=1 1{θ𝑛≠θ𝑛+1} .
Thus, bounding the number of updates with Lemma 5.7.2 bounds (𝑅4).

Lemma 5.7.2.
Let Assumptions 5.1 and 5.2 hold. Then, Algorithm 1 generates episodes which
satisfy for all 𝑇 ∈ ℝ+ and δ ∈ (0, 1)
𝑁𝑇∑𝑛=1!1{θ𝑛≠θ𝑛+1} ≤ 4β𝑁𝑇(δ3)2dE,𝑁𝑇

⎛⎜⎜⎝3+log
⎛⎜⎜⎝
8ε2𝑁𝑡𝐿20(1 + sup𝑠≤𝑡‖𝑋𝜛,θ∗𝑠 ‖)

16β𝑁𝑡( δ3)4d2E,𝑁𝑇

⎞⎟⎟⎠
⎞⎟⎟⎠+ 2dE,𝑁𝑡(1+2β𝑁𝑡(δ/3)2dE,𝑁𝑡)(1 + 8ε2𝐿20 (1+sup𝑠≤𝑡 ‖𝑋𝜛,θ∗𝑠 ‖2)).

Proof. Consider 𝑘 ∈ ℕ∗, by (5.7), each time we trigger an update we have

2β𝑛𝑘(δ/3)2 < supμθ∈C𝑛𝑘−1(δ)‖μθ − μθ̂𝑛𝑘−1‖2𝑛𝑘
≤ supμθ∈C𝑛𝑘−1(δ)‖μθ − μθ̂𝑛𝑘−1‖2𝑛𝑘−1
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+ supμθ∈C𝑛𝑘−1(δ)
𝑛𝑘∑𝑛=𝑛𝑘−1+1

‖‖μθ(𝑋𝜛,θτ𝑛 ,𝜛τ𝑛) − μθ̂𝑛𝑘−1(𝑋𝜛,θτ𝑛 ,𝜛τ𝑛)‖‖2
≤ β𝑛𝑘(δ/3)2 + 𝑛𝑘∑𝑛=𝑛𝑘−1+1Λ(C𝑛𝑘−1(δ/3);𝑋𝜛,θτ𝑛 ,𝜛τ𝑛)2 .

Since the sequence (β𝑛(δ/3))𝑛∈ℕ is non-decreasing, by summing over all epis-
odes we have that

𝑁𝑇∑𝑛=1Λ(C𝑛𝑘(δ/3); (𝑋τ𝑛 ,𝜛τ𝑛))2 ≥ 𝐾𝑇∑𝑘=1 β𝑛𝑘(δ/3)2 ≥ 𝐾𝑇β0(δ/3)2 ,
for all 𝑇 ∈ ℝ+, in which 𝐾𝑇 ∶= 𝑘(𝑁𝑇) ∈ ℕ is the number of episodes by
time 𝑇. An application of the second part of Proposition 5.5.6, i.e. (5.58) now
yields the desired result as β0(δ/3)2 = ε.

5.7.6 The martingale term (𝑅5)
For 𝑛 ∈ ℕ∗, let

𝑍𝑛 ∶= 𝔼[�̄�∗θ𝑛(𝑋α,θ∗τ𝑛 )|F𝑛−1] − �̄�∗θ𝑛(𝑋α,θ∗τ𝑛 ) .
By definition

𝑅5 = 𝔼 [�̄�∗θ𝑁𝑇+1 (𝑋𝜛,θ∗τ𝑁𝑇+1) |Fτ𝑁𝑇 ] + �̄�∗θ0(𝑥0) + 𝑁𝑇∑𝑛=1𝑍𝑛 .
On the one hand, 𝑍𝑛 is a 𝐿𝑊‖Σ‖op-Lipschitz function of ξ𝑛, which is Gaussian
and of mean 0. Therefore, by [36, Thm 5.5], 𝑍𝑛 is 𝐿𝑊 ‖Σ‖op-sub-Gaussian and

ℙ(𝑁𝑇∑𝑛=1𝑍𝑛 > 𝐿𝑊‖Σ̄‖op√2ε𝑁𝑇 log (1δ)) ≤ δ . (5.66)

On the other hand, by the uniform Lipschitzness of (�̄�∗θ )θ∈Θ, �̄�∗θ0(𝑥0) ≤𝐿𝑊(1 + ‖𝑥0‖) and

𝔼 [�̄�∗θ𝑁𝑇+1 (𝑋𝜛,θ∗τ𝑁𝑇+1) |Fτ𝑁𝑇 ]≤ 𝐿𝑊 (1 + 𝔼 [‖‖𝑋𝜛,θ∗τ𝑁𝑇+1‖‖ |Fτ𝑁𝑇 ])≤ 𝐿𝑊 (1 + ε𝐿0 + (1 + ε𝐿0) ‖‖𝑋𝜛,θ∗τ𝑁𝑇 ‖‖ + ε 12 ‖Σ̄‖op𝔼 [‖ξ𝑁𝑇+1‖|Fτ𝑁𝑇 ])
≤ 𝐿𝑊 (1 + ε𝐿0) (1 + sup𝑠≤𝑇

‖‖𝑋𝜛,θ∗𝑠 ‖‖2 + ε 12 ‖Σ̄‖op√𝑑𝐿𝑊) . (5.67)
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Combining (5.66) and (5.67) yields

𝑅5 ≤ 2𝐿𝑊(1 + ε𝐿0) (1 + sup𝑠≤𝑇
‖‖𝑋𝜛,θ∗𝑠 ‖‖ + ε 12 ‖Σ̄‖op√𝑑𝐿𝑊)

+ 𝐿𝑊 ‖‖Σ̄‖‖op √2ε𝑁𝑇 log (3δ) (5.68)

with probability at least 1 − δ/3.

5.7.7 Collecting the bounds

We conclude the proof of Theorem 5.3.1 by collecting all the terms from Sec-
tions 5.7.2–5.7.6 and simplifying them. By a union bound over the events
listed in steps Sections 5.7.2, 5.7.4 and 5.7.6, with probability at least 1 − δ
R𝑇(𝜛)≤ 2𝐿0 (√ε𝑇 log (6δ) ∨ 2ε log (6δ))+ 4𝑁𝑇𝐶γε1+ γ2 + 2𝐶′γ𝑁𝑇ε1+ γ2 (1 + 𝐻3δ/3(𝑁𝑇))+ 6𝐿𝑊β𝑁𝑇 (δ3)√dE,𝑁𝑇 + 2ε𝐿0𝐿𝑊dE,𝑁𝑇(1 + 𝐻δ/3(𝑁𝑇))
+ 2𝐿𝑊(1 + ε𝐿0) (1 + 𝐻δ/3(𝑁𝑇) + 3𝑑ε 12 ‖Σ̄‖op)

× (4β𝑁𝑇(δ3)2dE,𝑁𝑇 × (3+ log(8ε2𝑁𝑡𝐿20(1 + 𝐻δ/3(𝑁𝑇))16β𝑁𝑇(δ/3)4d2E,𝑁𝑇
))

+2dE,𝑁𝑇 (1+2β𝑁𝑡(δ3)2dE,𝑁𝑇)(1+8ε2𝐿20 (1 + 𝐻δ/3(𝑁𝑇)2)))
+ 𝐿𝑊‖Σ̄‖op√2ε𝑁𝑇 log (3δ) +2𝐿𝑊(1 + ε𝐿0)(1 + 𝐻δ/3(𝑁𝑇) + ε 12 ‖Σ̄‖op√𝑑𝐿𝑊),

for any 𝑇 ∈ ℝ+. This can be more simply expressed for some constants𝐶(𝑖)
R ∈ ℝ+, 𝑖 ∈ [5], as

R𝑇(𝜛)
≤ 𝐶(1)

R (𝐶γ + 𝐶′γ)ε1+ γ2𝑁𝑇 log (𝑁𝑇)3 + 𝐶(2)
R

√√√dE,𝑁𝑇ε𝑁𝑇 log (𝑁𝑇 (1 + ε𝒩 ε𝑁𝑇)δ )
+ 𝐶(3)

R (1 + εdE,𝑁𝑇 log(𝑁𝑇) log (𝑁𝑇 (1 + ε𝒩 ε𝑁𝑇)) )dE,𝑁𝑇 log (𝑁𝑇)4
+ 𝐶(4)

R √ε𝑇 log (1δ) + 𝐶(5)
R (1 + log (1δ))
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still with probability at least 1 − δ. On this high-probability event, we can
write R𝑇(𝜛) (up rounding up 𝑇ε−1 where necessary and up to a change in
the constants) as

R𝑇(𝜛)
≤ 𝐶(1)

R (𝐶γ + 𝐶′γ)ε γ2𝑇 log (𝑇ε ) + 𝐶(2)
R √dE,𝑇ε−1𝑇 log (𝑇ε−1(1 + ε𝒩 ε𝑇ε−1)δ )

+ 𝐶(3)
R (1 + εdE,𝑇ε−1 log (𝑇ε−1) log (𝑇ε−1 (1 + ε𝒩 ε𝑇ε−1)) )dE,𝑇ε−1 log (𝑇ε−1)4

+ 𝐶(4)
R √ε𝑇 log (1δ) + 𝐶(5)

R (1 + log (1δ)) .
Considering only the two dominant terms and ignoring logarithmic factors
we get the claimed bound.

Conclusion

In this work, we proposed a general framework for the Reinforcement Learn-
ing problem of controlling an unknown dynamical system, on a continuous
state-action space, to maximise the long-term average reward along a single
trajectory. In particular, we focused on the understudied high-frequency
systems driven by many small movements. Modelling such systems as con-
trolled jump processes, we provided an optimistic algorithm that leverages
Non-Linear Least Squares for learning and the diffusive limit regime for ap-
proximate planning. This proof of concept calls for several further refine-
ments to be implementable in practice.

The optimistic step of Algorithm 1 chooses θ̃𝑛 in an inefficient manner.
Like in the UCRL2 algorithm [68], optimistic exploration can be performed at
the same time as planning by solving an expanded Hamilton-Jacobi-Bellman
equation, that is (5.19) in which the maximum would now be taken over(𝑎,θ) ∈ 𝔸 ×Θ. Since our assumptions are uniform in θ, this is possible up
to a modified regret decomposition, as in [68].

The with which we quantify learning progress in order to design the lazy
update scheme (see (5.7)) remains fundamentally discrete. Through simpler
heuristics, it might be possible to obtain computationally cheaper lazy up-
date schemes. For instance, the scaling of the drift with ε suggests it could
be possible to update periodically, directly in terms of the wall-clock time 𝑇.

As a proof of concept, we endeavoured to study the RL problem in high
generality. However, practical applications must use all available model in-
formation to refine the method ad hoc. This is true for the learning method
(replace NLLS with a fit specialised to the model at hand and bound the
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eluder dimension and log-covering numbers), and for numerical schemes on
the PDE (5.19) which are built on a case-by-case basis for 𝑑 > 1, see [78].
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Chapter 6
Real-Time Optimisation

for Online Learning in
Auctions

In display advertising, a small group of sellers and bidders face
each other in up to 1012 auctions a day. In this context, rev-
enue maximisation via monopoly price learning is a high-value
problem for sellers. By nature, these auctions are online and
produce a very high-frequency stream of data. This results in
a computational strain that requires algorithms to be real-time.
Unfortunately, existing methods inherited from the batch set-
ting suffer O (√𝑛) time/memory complexity at each update,
prohibiting their use. In this chaptera, we provide the first al-
gorithm for online learning of monopoly prices in online auc-
tions whose update is constant in time and memory.

aThis Chapter appeared as an article in the proceedings of the37th International Conference on Machine Learning (ICML), see [50].

* * *
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6.1. Introduction

6.1 Introduction

Over the last two decades, online display advertising has become a key mon-
etisation stream for many businesses. The market for the trading of these
ads is controlled by a very small number of large intermediaries (less than
ten) who buy and sell at auction, which means that a seller-buyer pair might
trade together in 1010 to 1012 auctions per day. Repeated auctions on this
scale raise the stakes of revenue maximisation, while making computational
efficiency a key consideration. In his 1981 seminal work [92] on revenue max-
imisation, Myerson described the revenue-maximising auction when the bid
distributions of buyers are known. In the context of online display ads these
distributions are private, but the large volume of data collected by sellers on
buyers paves the way to learning revenue maximising auctions.

The learning problem associated with the Myerson auction has infinite
pseudo-dimension [90], making it impossible to learn [101]. Second-price
auctions with personalised reserve prices (i.e. different for each bidder) stand
as the commonly accepted compromise between optimality and tractability.
They provide a 2-approximation to the revenue of the Myerson auction while
securing finite pseudo-dimension [105].

Second-price auctions with personalised reserves can be either eager or
lazy. In the eager format, the item goes to the highest bidder amongst those
who cleared their reserve prices and goes unsold if none of them did. In the
lazy format, the item goes to the highest bidder if he cleared his reserve price
and goes unsold if he did not. While an optimised eager version leads to better
revenue than an optimised lazy version, solving the eager auction’s associated
Empirical Risk Minimisation (ERM) problem is NP-hard [99], and even APX-
hard [105]. In contrast, solving the ERM problem for the lazy version can
be done in polynomial time [105]: it amounts to computing a bidder-specific
quantity called the monopoly price. Not only is the monopoly price the optimal
reserve in the lazy second-price auction, but it is also a provably good reserve
in the eager one [105], and the optimal reserve in posted-price [99]. This
makes learning monopoly prices for revenue maximisation an important and
popular research direction.

Finding the monopoly price in a repeated second-price auction is a nat-
ural sequential decision making problem based on the incoming bids. All
three aforementioned settings relating to the monopoly price have been stud-
ied: posted-price [10, 27], eager [42, 73, 105], and lazy which we study [26, 27,
38, 89, 106, 110]. Each setting also corresponds to a different observability
structure. The offline problems are well understood, but no online method
offers the O(1) efficiency crucial for real-world settings. We focus, therefore,
on the key problem of learning monopoly prices, online and efficiently, in
stationary and nonstationary cases.
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We propose a real-time first-order algorithm that makes online learning
of monopoly prices computationally feasible when interacting with station-
ary and nonstationary buyers. After detailing the setting in Section 6.1.1, we
detail the setting and problem we consider. We review, in Section 6.2, the
existing approaches and stress the challenges of the problem including over-
coming computational complexities. Our approach, based on convolution
and the O(1) Online Gradient Ascent algorithm, is described in Section 6.3.
We study performance for stationary bidders in Section 6.4 with O(𝑛−1/2)
convergence rate to the monopoly price, and for nonstationary bidders in
Section 6.5 with O(√𝑁) dynamic regret.

6.1.1 Setting

A key property of a personalised reserve price in a lazy second-price auc-
tion is that it can be optimised separately for each bidder [99]. For a bidder
whose bids are sampled independently and identically from a distribution
with Cumulative Distribution Function (CDF) 𝐹, the optimal reserve price is
the monopoly price 𝑟∗, i.e. the maximiser of the monopoly revenue defined
as

𝑟 ∈ ℝ+ ↦ Ψ𝐹(𝑟) ∶= 𝑟(1 − 𝐹(𝑟)) ∈ ℝ+ . (6.1)

Thus, without loss of generality, we study each bidder separately in the fol-
lowing repeated game: the seller sets a reserve price 𝑟 and simultaneously the
buyer submits a bid 𝑏 ∈ [0, �̄�] drawn from his private distribution 𝐹, whose
Probability Density Function (PDF) is denoted by 𝑓 . The seller then observes𝑏 which determines the instantaneous revenue

(𝑟, 𝑏) ∈ ℝ2+ ↦ 𝑝(𝑟, 𝑏) ∶= 𝑟1𝑟≤𝑏 ∈ ℝ+ (6.2)

which satisfies 𝔼𝐹[𝑝(𝑟, 𝑏)] = Ψ𝐹(𝑟) for all 𝑟 ∈ ℝ+. In this work, we consider
two settings, depending on whether the bid distribution is stationary or not.

Stationarity here means 𝐹 is fixed for the whole game. We thus have a
stream of i.i.d. bids from 𝐹, where the seller aims to maximise her long-term
revenue Ψ𝐹. Or, equivalently, tries to construct a sequence of reserve prices(𝑟𝑛)𝑛∈ℕ∗ adapted to the filtration 𝔽 ∶= (F𝑛)𝑛∈ℕ in which F𝑛 = σ((𝑏𝑖)𝑛−1𝑖=1 )
such that Ψ𝐹(𝑟𝑛) → Ψ𝐹(𝑟∗) as fast as possible.

In real-world applications, bid distributions may change over time based
on the current context. For example, near Christmas, the overall value of ad-
vertising might go up since customers spend more readily, and thus bids
might increase. The bidder could also refactor his bidding policy for reasons
entirely independent of the seller. We relax the stationarity assumption by
allowing bids to be drawn according to a sequence of distributions (𝐹𝑛)𝑛∈ℕ∗
184



6.2. Related Work and Challenges

that varies over time. As a result, the monopoly prices (𝑟∗𝑛)𝑛∈ℕ∗ and op-
timal monopoly revenues (Ψ𝐹𝑛)𝑛∈ℕ fluctuate and convergence is no longer
defined. Instead, we evaluate the performance of an adaptive sequence of
reserve prices r ∶= (r𝑛)𝑛∈ℕ ⊂ ℝ+ by its expected dynamic regret

R𝑁(r) = 𝔼 [ 𝑁∑𝑛=1Ψ𝐹𝑛(𝑟∗𝑛) −Ψ𝐹𝑛(r𝑛)] , (6.3)

and our objective is to track the monopoly price as fast as possible to minimise
dynamic regret.

6.2 Related Work and Challenges

6.2.1 Related work

Lazy second-price auctions have been studied both in batch [89, 99, 106, 110]
and online [26, 27, 38] settings. All existing approaches aim to optimise, at
least up to a precision of 1/√𝑛, the Empirical Risk Minimisation objective

𝑟 ∈ ℝ+ ↦ Ψ�̂�𝑛(𝑟) ∶= 𝑟(1 − ̂𝐹𝑛(𝑟)) = 1𝑛 𝑛∑𝑖=1 𝑟1𝑟≤𝑏𝑖 . (6.4)

However, regardless of how well-behaved Ψ𝐹 is, Ψ�̂�𝑛 is very poorly be-
haved for optimisation: it is non-smooth, non-quasi-concave, discontinuous,
and is increasing almost everywhere (see Fig. 6.1, center, dashed). Thus, dir-
ect optimisation with first order methods is not applicable. Some attempts
have been made in the batch setting to optimise surrogate objectives but
ended up with an irreducible bias [106] or with hyper-parameters whose tun-
ing is as hard as the initial problem [110]. The classical approach relies on
sorting the bids (𝑏𝑖)𝑛𝑖=1 to be able to enumerate Ψ�̂�𝑛 linearly over (𝑏𝑖)𝑛𝑖=1, see
e.g. [89, 99]. A popular improvement in terms of complexity, especially used
in online approaches [26, 27] consists in applying the same principle on a
regular grid of resolution 1/√𝑛, which in the end provides an update with
complexity O(√𝑛) and a memory requirement of O(√𝑛).

This idea of discretising the bid space was widely adopted in partially
observable settings, for instance online eager and posted-price auctions, as
it reduces these problems to multi-armed bandits with their well-studied
algorithms [42, 73, 104] at the price of still suffering the same update and
memory complexities of O(√𝑛).

Numerous approaches with adversarial bandits also followed this dis-
cretisation approach to adapt the Exp3 or Exp4 algorithms to all of these set-
tings, see, amongst others, [38, 46, 73]. Furthermore, bandit algorithms also
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allow for the handling of nonstationary bidders. However, the work of [10]
stresses that bidders cannot behave in an arbitrary way, as they optimise their
own objective that is not incompatible with the seller’s1. Hence, the non-
stationarity mostly comes from the item’s value changing over time. This
suggest adapting a regular stochastic algorithms (ERM, the Upper Confid-
ence Bound algorithm, …), e.g. using sliding windows [60, 82].

Non-smooth or non-differentiable objectives such asΨ�̂�𝑛 , for any 𝑛 ∈ ℕ∗
have been studied in both stochastic and zeroth-order optimisation. In both,
convolution smoothing has been employed to circumvent these problems.
In [51] stochastic gradient with decreasing convolution smoothing is studied
for the convex case. Unfortunately, very few distributions yield a concaveΨ𝐹. In zeroth-order optimisation, the only feedback received for an input is
the value of the objective at that input. In this setting, Flaxman, Kalai, and
Mac Mahan [55] perturb their inputs to estimate a convolved gradient. In
contrast, we obtain a closed form and do not need to perturb inputs.

6.2.2 Challenges

The directing challenge of our line of work is to devise an online learning
algorithm for monopoly prices with minimal cost, to handle very large real-
world data streams. With 1010 daily interactions in one seller-bidder pair, it
is acceptable to forfeit some convergence speed in exchange for the feasibility
of the algorithm. It is not possible to accept update complexity or memory
requirement scaling with 𝑛. Our objective is thus to find a method which:
converges to 𝑟∗ in the stationary setting or has a low regret R𝑁 in the non-
stationary one; has O(1) memory footprint; and computes the next reserve
price 𝑟𝑛+1 with O(1) computations.

Unfortunately, none of the previously proposed methods fit these re-
quirements. On one hand, all methods based on solving ERM by sorting [42,
104] need to keep all past bids in memory (O(𝑛) dependence) and their up-
date steps require at bestO (√𝑛) computations. On the other hand, methods
such as Exp3 or Exp4, see e.g. [38, 46], which are adversarial, are designed
for finite action spaces and thus need to discretise [0, �̄�] into √𝑛 intervals to
keep their regret guarantees which also leads to a complexity ofO (√𝑛) from
sampling over the discretisation to compute 𝑟𝑛+1.

First-order methods such as Online Gradient Ascent are standard tools
in online learning and enjoy O(1) update and memory. This makes them
great candidates for our problem. OGA requires three ingredients to con-
verge: an objective whose gradients always point towards the optimum2, and

1An auction is not a zero-sum game: if the item goes unsold, neither player receives
payoff.

2A condition known as pseudo-concavity or variational coherency, see also Section 6.A.3.
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a gradient estimator which has bounded variance and is unbiased. Unfortu-
nately, discontinuity of 𝑝 makes D𝑝 a biased estimator of DΨ𝐹. A natural
approach is to construct a surrogate for 𝑝 which has unbiased gradients and
preserves the other two conditions.

Optimising a surrogate objective inherently creates a bias, which has to
be reduced over time. To do so without breaking the convergence of OGA,
we must conduct a careful finite-time analysis of the algorithm, which is an
analytical challenge. We must re-analyse classical results (e.g. [91]) for vary-
ing objectives: the challenge is to design a bias reduction procedure, and then
integrate it into these proofs to show we preserve consistency.

Resolving the above challenges is sufficient to achieve efficient conver-
gence in the stationary setting. However, it is not sufficient in order to track
nonstationary bid distributions. Taking a constant surrogate and learning
rate, it is possible to adapt the stationary solution to the nonstationary case
and keep its computational efficiency. The challenge is to devise this adapt-
ation and then to derive (sub-linear) regret for it.

We propose a method based on convolutional smoothing to design sur-
rogates in pseudo-concave problems with biased gradients. We use it to cre-
ate a first-order real-time optimisation algorithm which reduces the surrog-
ate’s bias during optimisation. We prove convergence and give rates in the
stationary setting and dynamic regret bounds for tracking.

We first translate standard auction theory assumptions (e.g. increasing
virtual value) into properties of generalised concavity of the monopoly rev-
enue, see Proposition 6.3.1. Next, we introduce our smoothing method and
show, in Proposition 6.3.2, that it preserves the properties of Proposition 6.3.1
while offering arbitrary smoothness, which fixes the biased gradient problem.
Finally, we provide controls on the bias and variance of the gradient estim-
ates of our surrogate in terms of the chosen kernel in Proposition 6.3.3. This
makes our surrogate compatible with Online Gradient Ascent.

We construct an algorithm (V-CONV-OGA) that performs gradient ascent
while simultaneously decreasing the strength of the smoothing over time, re-
ducing the bias to zero. As a result our algorithm almost surely converges
to the monopoly price (Theorem 6.4.1) while enjoying computational effi-
ciency. Further, under a minimum curvature assumption, we provide the
rate of convergence and optimal tuning parameters (Theorem 6.4.2 and Co-
rollary 6.4.1). At the cost of a slight degradation in convergence speed (from
O(𝑛−1) to O(𝑛−1/2)), our algorithm has update and memory complexity of
O(1) which is vital for real-world applications. These Results are summar-
ised in Table 6.1.

Contrary to the stationary setting, when tracking a nonstationary bid dis-
tribution we do not decrease the strength of the smoothing over time. When
the bias created is smaller than the level of noise, our algorithm can still
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achieve sub-linear dynamic regret when tracking changing bid distributions.
For reasonably varying distribution, we show a regret bound ofO(√𝑁) after𝑁 steps, see Theorem 6.5.1 and Corollary 6.5.1.

Update Memory Convergence
ERM O(𝑛) O(𝑛) O(𝑛−1)
Discretised ERM O(𝑛1/2) O(𝑛1/2) O(𝑛−1)
V-CONV-OGA O(1) O(1) O(𝑛−1/2)

Table 6.1: Comparison of our method (V-CONV-OGA) against solving ERM
at each step and ERM discretised on a grid of fineness 𝑛−1/2, in
terms of complexity and the convergence (i.e. |Ψ𝐹(𝑟𝑛) −Ψ𝐹(𝑟∗)|).

6.3 Smooth Surrogate for First‐Order Methods

Our objective, to reiterate, is to design an online optimisation procedure to
learn or track the optimal reserve price whose updates requireO(1) computa-
tional and memory cost. To this end, we focus on first-order methods and con-
sider classical Online Gradient Ascent. Unfortunately, the specific problem
of learning a monopoly price does not provide a way to compute unbiased
gradient estimates for Ψ𝐹 from bid samples. We therefore want to design a
surrogate that makes 𝑝 sufficiently smooth so that differentiation and integra-
tion (expectation) commute. This is a well-known property of convolutional
smoothing, suggesting its use. In addition, we must ensure our surrogate
preserves the optimisation properties that Ψ𝐹 already has. These must thus
be studied first, before smoothing to obtain a surrogate.

6.3.1 Properties of the monopoly revenue

The standard assumptions of auction theory are made to guarantee that the
monopoly price exists and, thus, that the optimisation problem is well-posed.
These assumptions generally take the form of assuming quasi-concavity of
the monopoly revenue. We refine this characterisation by translating the as-
sumptions we make on 𝐹 into specific concavity properties of the monopoly
revenue in Proposition 6.3.1. For ease of exposition, we will make a smooth-
ness assumption of 𝐹 in Assumption 6.1.
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Assumption 6.1.𝐹 ∈ C2([0, �̄�]; [0, 1]) and 𝑓 is supported on (0, �̄�).
The concavity properties of Ψ𝐹 critically depend on the regularity of its

hazard rate function, which we will denote by

ℎ𝐹 ∶ 𝑏 ∈ [0, �̄�) ↦ 𝑓 (𝑏)1 − 𝐹(𝑏) ∈ ℝ,
notably via the virtual value function ψ𝐹 defined by

ψ𝐹 ∶ 𝑏 ∈ ℝ+ ↦ 𝑏 − 1ℎ𝐹(𝑏) ∈ ℝ,
with the convention that 1/ℎ𝐹(𝑏) = 0 for 𝑏 ≥ �̄�.

Assumption 6.2.𝐹 is strictly regular, i.e. the virtual value ψ𝐹 is strictly increasing on ℝ+.

Assumption 6.2 is a classical assumption in auction theory, see [75] for a
review, and implies a pseudo-concave3 revenue as will be shown by Propos-
ition 6.3.1. This assumption is satisfied by common distributions, exhaust-
ively listed in [53] as well as by real-world data, see e.g. [98]. On the other
hand, Assumption 6.3 strengthens Assumption 6.2 by requiring a minimum
curvature around the maximum.

Assumption 6.3.
The hazard rate ℎ𝐹 of 𝐹 is strongly increasing on [0, �̄�), i.e. there is μ𝐹 > 0
such that

ℎ𝐹(𝑏′) − ℎ𝐹(𝑏) ≥ μ𝐹(𝑏′ − 𝑏) for any (𝑏, 𝑏′) ∈ [0, �̄�)2 such that 𝑏 ≤ 𝑏′.
Proposition 6.3.1.

Let Assumption 6.1 hold, then Ψ𝐹 ∈ C2 ([0, �̄�]; ℝ+), Ψ𝐹 > 0 on (0, �̄�) and

(i) if, additionally, Assumption 6.2 holds, then Ψ𝐹 is strictly pseudo-
concave;

3The definition of this, and other, notions of convex analysis are recalled in Section 6.A.3
for the convenience of the reader.
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(ii) if, additionally, Assumption 6.3 holds, then Ψ𝐹 is μ𝐹-strongly log-
concave for some μ𝐹 ∈ ℝ+.

Proof.

1. Under Assumption 6.2, ψ𝐹(𝑟) is strictly increasing. Moreover, for all𝑟 ∈ [0, �̄�],
DΨ𝐹(𝑟) = 1 − 𝐹(𝑟) − 𝑟𝑓 (𝑟) = −ψ𝐹(𝑟)𝑓 (𝑟). (6.5)

In view of Definition 6.1, we must first show that DΨ𝐹(𝑟1)(𝑟1 − 𝑟2) ≥0 implies Ψ𝐹(𝑟1) ≥ Ψ𝐹(𝑟2) for any (𝑟1, 𝑟2) ∈ [0, �̄�]2. Without loss of
generality, let us assume 𝑟1 ≤ 𝑟2.
Sinceψ𝐹 is strictly increasing,ψ𝐹(𝑟1) ≤ ψ𝐹(𝑟2) and as a result DΨ𝐹(𝑟1) ≤0 if and only if ψ𝐹(𝑟1) ≥ 0, which implies that ψ𝐹(𝑟) ≥ 0 if and only if
DΨ𝐹(𝑟) ≤ 0 for all 𝑟 ∈ [𝑟1, 𝑟2]. Therefore,

0 ≥ ∫𝑟2
𝑟1 DΨ𝐹(𝑟)d𝑟 = Ψ𝐹(𝑟2) −Ψ𝐹(𝑟1).

The case DΨ𝐹(𝑟1) ≥ 0 is treated similarly.
Now, given Definition 6.2, we must show that Ψ𝐹 has exactly one crit-
ical point. This follows immediately from (6.5), 𝑓 > 0 on (0, �̄�) and the
fact that ψ𝐹 is strictly increasing, meaning it can only cross 0 once.

2. Under Assumption 6.3, the hazard rate ℎ𝐹 satisfies ℎ𝐹(𝑟2) − ℎ𝐹(𝑟1) ≥μ𝐹(𝑟2 − 𝑟1), for any (𝑟1, 𝑟2) ∈ [0, �̄�]2 such that 𝑟1 ≤ 𝑟2. To show that
logΨ𝐹(𝑟) = log(𝑟) + log(1 − 𝐹(𝑟)) is μ𝐹-strongly concave, it suffices to
show that log(1 − 𝐹(𝑟)) is μ𝐹-strongly concave since log(𝑟) is concave.
Since 𝐹 ∈ C1([0, �̄�]; [0, 1]), we can use a characterisation of the strong
concavity of 𝐺 log(1 − 𝐹(⋅)) based on its derivative. Indeed, 𝐺 is μ𝐹-
strongly concave if and only if

(D𝐺(𝑟2) − D𝐺(𝑟1)) (𝑟2 − 𝑟1) ≤ −μ𝐹 |𝑟2 − 𝑟1|2 , for all (𝑟1, 𝑟2) ∈ (0, �̄�)2.
Consider (𝑟1, 𝑟2) ∈ (0, �̄�)2, and, without loss of generality, let 𝑟1 ≤ 𝑟2,
we have

D𝐺(𝑟2) − D𝐺(𝑟1) = −𝑓 (𝑟2)1 − 𝐹(𝑟2) − −𝑓 (𝑟1)1 − 𝐹(𝑟1) = ℎ𝐹(𝑟1) − ℎ𝐹(𝑟2)≤ −μ𝐹(𝑟2 − 𝑟1).
Thus 𝐺 and hence ψ𝐹 are μ𝐹-strongly concave on (0, �̄�).

190



6.3. Smooth Surrogate for First-Order Methods

6.3.2 A method based on smoothing

Proposition 6.3.1 ensures that the first condition for the convergence of On-
line Gradient Ascent is met under standard assumptions, i.e. Assumption 6.2
or Assumption 6.3. The main difficulty standing in the way of using OGA
for revenue optimisation lies in the undesirable shape of the instantaneous
revenue 𝑝. Indeed, 𝑝 is non-smooth (discontinuous even) and cannot be used
to construct an unbiased estimate of DΨ𝐹, which is necessary for first-order
methods.

Mohri and Medina [89] suggest replacing 𝑝(⋅, 𝑏) by a continuous upper
bound. This surrogate can be used for OGA, but it has potentially large areas
of zero-gradient, which means it does not learn from all samples. We give
a general surrogate construction (based on convolutional smoothing) which
can approximate the original monopoly revenue to arbitrary accuracy while
preserving the concavity properties of Ψ𝐹 and offering the desired level of
smoothness, and which exhibits no areas of zero-gradient.

Formally, given a kernel 𝑘 (considered a metaparameter), we use convo-
lution smoothing to create surrogates for 𝑝 and Ψ𝐹

𝑝𝑘(⋅, 𝑏) = 𝑝(⋅, 𝑏) ⋆ 𝑘 and Ψ𝐹𝑘 = Ψ𝐹 ⋆ 𝑘, respectively. (6.6)

This smoothing guarantees that D𝑝𝑘(⋅, 𝑏) is an unbiased estimate of DΨ𝐹𝑘 . On
Fig. 6.1, we illustrate the effect of this smoothing on 𝑝, Ψ�̂�𝑛 , and Ψ𝐹.
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Figure 6.1: The effect of smoothing the monopoly revenue of a bidder with𝐹 a Kumaraswamy4 (1,0.4) distribution with a Gaussian kernel.
Left: smoothing of 𝑝(⋅, 𝑏) for 𝑏 = 0.7. Center: smoothing of the
empirical revenue Ψ�̂�𝑛 for some randomly drawn values of 𝑏𝑛.
Right: smoothing of the monopoly revenue Ψ𝐹. Note the differ-

ences in the optima (i.e. the surrogate bias).

Let L1(ℝ;ℝ+) denote the Lebesgue space of absolutely integrable pos-
itive functions on ℝ, ‖⋅‖1 its standard norm, and let L11(ℝ;ℝ+) denote the
set of L1(ℝ;ℝ+) functions 𝑘 such that ∫ℝ 𝑘(𝑥)d𝑥 = 1. We introduce the set

4This distribution satisfies our concavity assumptions and can display highly eccentric
behaviour for easy visualisation of the impact of the surrogate. It is similar to a Beta distri-
bution.
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K of admissible kernels which contains all strictly log-concave elements of
C1(ℝ;ℝ+) ∩ L11(ℝ;ℝ+). This set contains a large family of kernels, including
standard smoothing ones such as Gaussian kernels and mollifiers. Proposi-
tion 6.3.2 shows that convolution with elements of K preserves pseudo- and
log-concavity.

Proposition 6.3.2.
Let Assumption 6.1 hold and let 𝑘 ∈ K, then:

(i) Ψ𝐹𝑘 and 𝑝𝑘 are in C1(ℝ;ℝ+),
(ii) Ψ𝐹𝑘 = ∫ 𝑝𝑘(⋅, 𝑏)d𝐹(𝑏) and DΨ𝐹𝑘 = ∫D𝑝𝑘(⋅, 𝑏)d𝐹(𝑏),

(iii) if, additionally, Assumption 6.2 holds,Ψ𝐹𝑘 is strictly pseudo-concave
on (0, �̄�),

(iv) if, additionally, Assumption 6.3 holds, Ψ𝐹𝑘 is strictly log-concave onℝ.

Proof. The proof is a straightforward application of the properties of the con-
volution, the Fubini-Tonelli theorem and of the stability of concavity under
convolution detailed in Section 6.A.3. Precisely, we have

(i) Since 𝑘 ∈ C1(ℝ;ℝ+) ∩ L1(ℝ;ℝ+), and since Ψ𝐹 and 𝑝 are in L1(ℝ;ℝ+),Ψ𝐹𝑘 and 𝑝𝑘 are in C1(ℝ;ℝ+) ∩ L1(ℝ;ℝ+).
(ii) Since 𝑝, Ψ𝐹, and 𝑘 are positive, so are Ψ𝐹𝑘 and 𝑝𝑘. By the Fubini-Tonelli

theorem Ψ𝐹𝑘 = ∫ 𝑝𝑘(⋅, 𝑏)d𝐹(𝑏) and DΨ𝐹𝑘 = ∫D𝑝𝑘(⋅, 𝑏)d𝐹(𝑏).
(iii) Under Assumption 6.2, by Proposition 6.3.1, the monopoly revenue Ψ𝐹

is strictly pseudo-concave. Since Ψ𝐹(0) = Ψ𝐹(�̄�) = 0 and 𝑘 ∈ K is
strictly log-concave, we can apply Lemma 6.A.2 to guarantee the strict
pseudo-concavity of Ψ𝐹𝑘 .

(iv) Under Assumption 6.3,Ψ𝐹 is strictly log-concave. Since 𝑘 ∈ K is strictly
log-concave, convolution with it preserves strict log-concavity (see The-
orem 6.A.2), Ψ𝐹𝑘 is strictly log-concave.

Proposition 6.3.2 guarantees that the surrogate satisfies the unbiased
gradient and pseudo-concavity conditions OGA. Applying OGA to the sur-
rogate Ψ𝐹𝑘 gives Algorithm 2, in which ΠI denote the orthogonal projection
onto the interval I. Notice that the usual convolution properties imply that
D𝑝𝑘(⋅, 𝑏) = 𝑝(⋅, 𝑏) ⋆ D𝑘, which is a simple (generally closed-form) computa-
tion. For any 𝑘 ∈ K, let us denote the variance of the surrogate gradient by
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𝑉𝑘 ∶= sup𝑟≥0 ∫|D𝑝𝑘(⋅, 𝑏)|2d𝐹(𝑏)
By controlling 𝑉𝑘 in terms of ‖𝑘‖∞, Proposition 6.3.3 shows that the bounded
variance condition of OGA also holds.

Since OGA’s three conditions are satisfied, we can guarantee conver-
gence to the maximum 𝑟∗𝑘 of Ψ𝐹𝑘 (see e.g. [32]). This defines CONV-OGA, see
Algorithm 2. However, in general, 𝑟∗𝑘 is not the monopoly price 𝑟∗ and the
surrogate is biased. For any 𝑘 ∈ K, this bias is denoted by𝐵𝑘 ∶= ||Ψ𝐹(𝑟∗) −Ψ𝐹(𝑟∗𝑘 )|| ,
on which Proposition 6.3.3 gives a control in terms of the 𝐿1 distance between
the Cumulative Distribution Function 𝐾 of 𝑘 and the CDF 1ℝ+ of the Dirac
mass at 0, which we denote δ0, which is the only kernel to guarantee 𝑟∗δ0 = 𝑟∗.

For any interval I ⊂ [0, �̄�], let ΠI denote the orthogonal projection onto
I.

Algorithm 2 CONV-OGA
Input: 𝑟0, (γ𝑛)𝑛∈ℕ, 𝑘 ∈ K, I ⊂ [0, �̄�].
for 𝑛 ∈ ℕ do

Observe 𝑏𝑛,𝑟𝑛 ← ΠI (𝑟𝑛−1 + γ𝑡D𝑝𝑘(𝑟𝑛−1, 𝑏𝑛)).
end for

Proposition 6.3.3.
Let Assumption 6.1 hold and let 𝑘 ∈ K. Then,

(i) 𝐵𝑘 ≤ 2‖DΨ𝐹‖∞‖𝐾 − 1ℝ+‖1,
(ii) 𝑉𝑘 ≤ 1 + �̄� (1 + ‖DΨ𝐹‖∞) ‖𝑘‖∞.

Proof.

(i) The bound on 𝐵𝑘 relies on Lemma 6.3.4, which guarantees that for all𝑟 ≥ 0,

||Ψ𝐹(𝑟) −Ψ𝐹𝑘 (𝑟)|| ≤ ‖DΨ𝐹‖∞∫ℝ |𝑟| 𝑘(𝑟)d𝑟.
Decomposing 𝐵𝑘 as𝐵𝑘 ≤ Ψ𝐹(𝑟∗) −Ψ𝐹𝑘 (𝑟∗) +Ψ𝐹𝑘 (𝑟∗) −Ψ𝐹𝑘 (𝑟∗𝑘 ) +Ψ𝐹𝑘 (𝑟∗𝑘 ) −Ψ𝐹(𝑟∗𝑘 )
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≤ Ψ𝐹(𝑟∗) −Ψ𝐹𝑘 (𝑟∗) +Ψ𝐹𝑘 (𝑟∗𝑘 ) −Ψ𝐹(𝑟∗𝑘 )
and applying (6.9) from Lemma 6.3.4 (see below) twice proves the de-
sired result.

(ii) For all (𝑟, 𝑏) ∈ ℝ+ × [0, �̄�], using properties of the convolution and
integrating by parts yields

D𝑝𝑘(𝑟, 𝑏) = ∫ℝ 𝑝(𝑠, 𝑏)D𝑘(𝑟 − 𝑠)d𝑠 = ∫𝑏
0 𝑠D𝑘(𝑟 − 𝑠)d𝑠

= −[𝑠𝑘(𝑟 − 𝑠)]𝑏0 +∫𝑏
0 𝑘(𝑟 − 𝑠)d𝑠 = ∫𝑏

0 𝑘(𝑟 − 𝑠)d𝑠 − 𝑏𝑘(𝑟 − 𝑏).
Since 𝑘 > 0, and ‖𝑘‖1 = 1 it is clear that 1 ≥ D𝑝𝑘(𝑟, 𝑏) ≥ −𝑏𝑘(𝑟− 𝑏), and
thus ||D𝑝𝑘(𝑟, 𝑏)||2 ≤ max (1, 𝑏2𝑘(𝑟 − 𝑏)2) ≤ 1 + 𝑏2𝑘(𝑟 − 𝑏)2.
Integrating with respect to 𝐹, one obtains:

∫ℝ ||D𝑝𝑘(𝑟, 𝑏)||2 d𝐹(𝑏) ≤ 1 +∫�̄�
0 𝑏2𝑘(𝑟 − 𝑏)2𝑓 (𝑏)d𝑏

≤ 1 + ‖𝑘‖∞∫�̄�
0 𝑏2𝑓 (𝑏)𝑘(𝑟 − 𝑏)d𝑏. (6.7)

By Assumption 6.1 𝑏𝑓 (𝑏) = 1 − 𝐹(𝑏) − DΨ𝐹(𝑏), for all 𝑏 ∈ (0, �̄�), which
implies

𝑏𝑓 (𝑏) ≤ 1 + ‖DΨ𝐹‖∞ < ∞. (6.8)

Combining (6.7) and (6.8) yields

∫ℝ ||D𝑝𝑘(𝑟, 𝑏)||2 d𝐹(𝑏) ≤ 1 + (1 + ‖DΨ𝐹‖∞) ‖𝑘‖∞∫�̄�
0 𝑏𝑘(𝑟 − 𝑏)d𝑏

≤ 1 + �̄� (1 + ‖DΨ𝐹‖∞) ‖𝑘‖∞ .
Lemma 6.3.4.

Let Assumption 6.1 hold and 𝑘 ∈ K, then|Ψ𝐹(𝑟) −Ψ𝐹𝑘 (𝑟)| ≤ ‖DΨ𝐹‖∞ ‖𝐾 − 1ℝ+‖1 (6.9)||DΨ𝐹(𝑟) − DΨ𝐹𝑘 (𝑟)|| ≤ ‖D2Ψ𝐹‖∞ ‖𝐾 − 1ℝ+‖1 , (6.10)
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for any 𝑟 ∈ [0, �̄�]. Moreover,

‖𝐾 − 1ℝ+‖1 ≤ ∫ℝ |𝑟| 𝑘(𝑟)d𝑟 (6.11)

Proof. First, note that DΨ𝐹 is bounded on [0, �̄�], since it is continuous on this
closed interval. Thus, integrating by parts leads to||Ψ𝐹(𝑟) −Ψ𝐹𝑘 (𝑟)|| = ||[Ψ𝐹 ⋆ (δ0 − 𝑘)](𝑟)||≤ |||[Ψ𝐹(𝑡)[1ℝ+ − 𝐾](𝑟 − 𝑡)]+∞−∞ − [DΨ𝐹 ⋆ (1ℝ+ − 𝐾)](𝑟)|||

(6.12)

The first term equals 0 since 𝐾(𝑠) → 1 as 𝑠 → +∞. Thus, by an application
of Young’s convolution inequality, we obtain||Ψ𝐹(𝑟) −Ψ𝐹𝑘 (𝑟)|| ≤ ‖DΨ𝐹‖∞‖𝐾 − 1ℝ+‖1
This proves (6.9), and by the same argument we obtain (6.10). Finally, integ-
rating by parts we obtain

‖𝐾 − 1ℝ+‖1 = ∫0
−∞𝐾(𝑟)d𝑟 +∫∞

0 [1 − 𝐾(𝑟)]d𝑟
= [𝑟𝐾(𝑟)]0−∞ −∫0

−∞𝑟𝑘(𝑟)d𝑟 + [𝑟(1 − 𝐾(𝑟))]∞0 +∫∞
0 𝑟𝑘(𝑟)d𝑟

= ∫ℝ|𝑟| 𝑘(𝑟)d𝑟.
which completes the proof with (6.11).

Remark 6.3.1. If one chooses a family of kernels, these bounds can be expressed in
terms of its parameters. For instance, when 𝑘 is zero-mean Gaussian with varianceσ2, one easily recovers:

‖𝐾 − 1ℝ+‖1 = σ√2/π ‖𝑘‖∞ = (√2πσ)−1. (6.13)

CONV-OGA converges only to 𝑟∗𝑘 . To remedy this, we would like to de-
crease 𝐵𝑘 over time by letting5 𝑘 → δ0. However, since ‖𝑘‖∞ → +∞ as𝑘 → δ0, we will have to tread carefully in our analysis which occupies the
next section.

5In the 𝐿1 sense (‖𝐾 − 1ℝ+‖ → 0), which in view of Remark 6.3.1 can also be done
parametrically. For instance in the Gaussian case of Remark 6.3.1 by sending σ → 0.
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6.4 Convergence with a Stationary Bidder
To decrease the bias 𝐵𝑘 over time, we introducing a decaying kernel sequence(𝑘𝑛)𝑛∈ℕ into CONV-OGA, giving V-CONV-OGA (Algorithm 3). This section
will demonstrate its consistency and convergence by controlling the trade-
off between bias 𝐵𝑘 and variance 𝑉𝑘, as 𝐵𝑘 is reduced to zero over time. This
trade-off decomposes the total error as:Ψ𝐹(𝑟∗) −Ψ𝐹(𝑟𝑛) = Ψ𝐹(𝑟∗) −Ψ𝐹(𝑟∗𝑘 )⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

(surrogate bias)

+Ψ𝐹(𝑟∗𝑘 ) −Ψ𝐹(𝑟𝑛)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
(estimation)

.
This decomposition highlights that the kernel should converge to δ0 quickly
enough to cancel the bias 𝐵𝑘, yet slowly enough to control 𝑉𝑘 and preserve the
convergence speed of Online Gradient Ascent.

Algorithm 3 V-CONV-OGA
Input: 𝑟0, (γ𝑛)𝑛∈ℕ, (𝑘𝑛)𝑛∈ℕ ⊂ K, I ⊂ [0, �̄�].
for 𝑛 ∈ ℕ do

Observe 𝑏𝑛,𝑟𝑛 ← ΠI (𝑟𝑛−1 + γ𝑛D𝑝𝑘𝑛(𝑟𝑛−1, 𝑏𝑛)).
end for

6.4.1 General convergence result

Theorem 6.4.1 provides sufficient conditions on the schedules of (𝑘𝑛)𝑛∈ℕ∗ and(γ𝑛)𝑛∈ℕ∗ that guarantees V-CONV-OGA converges almost surely to 𝑟∗. It is
derived by adapting stochastic optimisation results, see e.g. [32], to the chan-
ging objective Ψ𝐹𝑘𝑛 .

Theorem 6.4.1.
Let Assumptions 6.1 and 6.2 hold and (𝑘𝑛)𝑛∈ℕ ⊂ K. Then, by running
V-CONV-OGA with I = [0, �̄�], we have

𝑟𝑛 𝑎.𝑠.→ 𝑟∗ as 𝑛 →∞,
for any family (γ𝑛)𝑛∈ℕ such that ∑+∞𝑛=1 γ𝑛 = +∞, ∑+∞𝑛=1 γ𝑛‖𝐾𝑛 − 1ℝ+‖1 <+∞, and ∑+∞𝑛=1 γ2𝑛 ‖𝑘𝑛‖∞ < +∞.

Proof. The proof inherits a lot from classical methods, see e.g. [32]. The main
difference lies in the type of concavity required. The proof in [32] is derived
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for variationally coherent functions, i.e. functions (Ψ𝐹𝑘𝑛)𝑛∈ℕ such that

sup|𝑟−𝑟∗𝑘𝑛 |>ϵ (𝑟 − 𝑟∗𝑘𝑛)DΨ𝐹𝑘𝑛(𝑟) < 0, for any 𝑟 ∈ ℝ, 𝑛 ∈ ℕ, and ϵ > 0.
However, this assumption is clearly violated here since DΨ𝐹𝑘𝑛(𝑟) → 0 as 𝑟 →∞. Nevertheless, since Ψ𝐹𝑘𝑛 is strictly pseudo-concave and strictly positive,
one can obtain a similar result.

Following [32], we introduce the Lyapunov process 𝑣𝑛 = ‖𝑟𝑛 − 𝑟∗‖2. Using
the fact that the projection operator ΠI is a contraction, one obtains

𝑣𝑛+1 = (ΠI (𝑟𝑛 + γ𝑛D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛)) − 𝑟∗)2≤ (𝑟𝑛 + γ𝑛D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛) − 𝑟∗)2≤ 𝑣𝑛 + 2γ𝑛(𝑟𝑛 − 𝑟∗)D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛) + γ2𝑛(D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛))2.
Hence, 𝑣𝑛 satisfies the recursion:

𝑣𝑛+1 − 𝑣𝑛 ≤ 2γ𝑛(𝑟𝑛 − 𝑟∗)D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛) + γ2𝑛(D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛))2
Taking the conditional expectation with respect to F𝑛 yields

𝔼 [𝑣𝑛+1 − 𝑣𝑛||F𝑛]≤ 2γ𝑛(𝑟𝑛 − 𝑟∗)𝔼 [D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛)||F𝑛] + γ2𝑛𝔼 [(D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛))2||F𝑛]≤ 2γ𝑛(𝑟𝑛 − 𝑟∗)DΨ𝐹𝑘𝑛(𝑟𝑛) + γ2𝑛𝔼 [(D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛))2||F𝑛] (6.14)

as Proposition 6.3.2 implies that 𝔼[D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛)|F𝑛] = DΨ𝐹𝑘𝑛(𝑟𝑛).
We decompose the first term to isolate the gradient bias, obtaining

𝔼 [𝑣𝑛+1 − 𝑣𝑛||F𝑛] ≤ 2γ𝑛(𝑟𝑛 − 𝑟∗)DΨ𝐹(𝑟𝑛) (𝑈1)+ 2γ𝑛(𝑟𝑛 − 𝑟∗)(DΨ𝐹𝑘𝑛(𝑟𝑛) − DΨ𝐹(𝑟𝑛)) (𝑈2)+ γ2𝑛𝔼 [(D𝑝𝑘𝑛(𝑟𝑛, 𝑏𝑛))2||F𝑛] . (𝑈3)
The first term, that is (𝑈1), is negative by the pseudo-concavity of Ψ𝐹, see
Proposition 6.3.1. The second term, i.e. (𝑈2) is the gradient bias term, and
it is bounded by 2γ𝑛‖D2Ψ𝐹‖∞ ‖𝐾 − 1ℝ+‖1 by (6.10). Finally, (𝑈3) is bounded
by γ2𝑛 (1 + �̄�(1 + ‖DΨ𝐹‖∞) ‖𝑘‖∞) by Proposition 6.3.3.

Using the same quasi-martingale argument as in [32], we have that (𝑈1)–(𝑈3),
together with ∑∞𝑛=1 γ𝑛‖𝐾𝑛 − 1ℝ+‖1 < ∞ and ∑∞𝑛=1 γ2𝑛‖𝑘𝑛‖∞ < ∞, imply that
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(𝑣𝑛)𝑛∈ℕ converges, as 𝑛 →∞, almost surely to some finite limit ℎ∞. Moreover,
we have that

∞∑𝑛=1𝔼 [𝑣𝑛+1 − 𝑣𝑛||F𝑛] < ∞.
Thus, using (6.14), we have that

0 ≤ ∞∑𝑛=1 γ𝑛(𝑟∗ − 𝑟𝑛)DΨ𝐹(𝑟𝑛) < ∞. (6.15)

It remains to prove that ℎ∞ = 0. Suppose for a contradiction that ℎ∞ > 0.
In this case, for ϵ > 0 there is a time 𝑛ϵ such that for any 𝑛 ≥ 𝑛ϵ, (𝑟∗ −𝑟𝑛)DΨ𝐹(𝑟𝑛) ≥ ϵ > 0. This implies that

∞∑𝑛=1 γ𝑛(𝑟∗ − 𝑟𝑛)DΨ𝐹(𝑟𝑛) = +∞,
which is in contradiction with (6.15). The same argument applies to the caseℎ∞ < 0, and thus we have that 𝑣𝑛 → 0 almost surely as 𝑛 → +∞ andΨ𝐹(𝑟𝑛) → 0 almost surely as 𝑛 →∞.

If a constant kernel sequence were to be used in V-CONV-OGA, we would
recover the usual stochastic approximation conditions on the step size γ𝑛,
namely that ∑∞𝑛=1 γ𝑛 = +∞ and ∑∞𝑛=1 γ2𝑛 < +∞. This suggests settingγ𝑛 ∝ 1/𝑛. For such a choice of step-size, Theorem 6.4.1 asserts convergence
if ∑∞𝑛=1 γ𝑛‖𝐾𝑛 − 1ℝ+‖1 < +∞, which is guaranteed by 𝑘𝑛 → δ0. This means‖𝑘𝑛‖∞ →∞ as 𝑛 →∞, but∑∞𝑛=1 γ2𝑛 ‖𝑘𝑛‖∞ < +∞ tells us explicitly how slow
our decay must be in terms of the family of kernels. For example in the case
of a Gaussian kernel, (6.13) implies that a suitable choice of kernel variance
is σ𝑛 ∝ 𝑛−α for α ∈ (0, 1).

6.4.2 Finite‐time convergence rates

While Theorem 6.4.1 provides sufficient conditions on the kernel sequence(𝑘𝑛)𝑛∈ℕ for V-CONV-OGA to be consistent, it does not characterise the rate of
the convergence, and thus cannot be leveraged to optimise the step size γ𝑛
and the decay rate of the kernel.

To obtain finite time guarantees on the rate of convergence, we must
impose stronger conditions on the monopoly revenue Ψ𝐹. Recall that un-
der Assumption 6.2, Ψ𝐹 is strictly pseudo-concave. It is well known that
such functions can have large areas of arbitrarily small gradients. Since these
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can make first-order methods arbitrarily slow, no meaningful rate can be ob-
tained for them. Strengthening the assumption to Assumption 6.3, i.e. ex-
cluding vanishing gradients by ensuring Ψ𝐹 is μℎ-strongly log-concave (see
Proposition 6.3.1), will give a rate in Theorem 6.4.2 under the further tech-
nical assumption Assumption 6.4.

Assumption 6.4.
The seller is given a compact subset I ⊆ [0, �̄�] and a constant Ψ̲𝐹 > 0 such
that 𝑟∗ ∈ I and for all 𝑟 ∈ I, Ψ𝐹(𝑟) ≥ Ψ̲𝐹.

Assumption 6.4 ensures that the seller can lower bound revenue on a
compact subset of [0, �̄�]. It should be understood as prior knowledge of the
seller based on the format of the auction and the type of item sold. The inter-
val I exists for any Ψ̲𝐹 < Ψ𝐹(𝑟∗), so this hypothesis is not restrictive relative
to Assumption 6.3.

Theorem 6.4.2.
Let Assumptions 6.1, 6.3 and 6.4 hold. Let (𝑘𝑛)𝑛∈ℕ be a sequence in K
be such that ‖𝐾𝑛 − 1ℝ+‖1 ≤ ν1𝑛−α1 and ‖𝑘𝑛‖∞ ≤ ν∞𝑛α∞ with α, α1, α∞
satisfying the condition of Theorem 6.4.1, i.e. α ≤ 1, α + α1 > 1, and2α − α∞ > 1.

Running V-CONV-OGA on I with γ𝑛 ∶= νγ𝑛−α for 𝑛 ∈ ℕ∗, in whichνγ ≤ 1/Γ for Γ ∶= 2Ψ̲𝐹μℎ, yields

𝔼 [‖𝑟𝑛 − 𝑟∗‖2] ≤ (�̄�2 + 2𝐶νγν1φΓνγ−α1(𝑛) + 2𝐶∞ν2γν∞φΓνγ+α∞−1(𝑛)) 𝑛−Γνγ
for all 𝑛 ≥ 2, when α = 1. If α ∈ (0, 1), on the other hand, it yields

𝔼 [‖𝑟𝑛 − 𝑟∗‖2]
≤ (�̄�2 + 𝐶1νγν1φ1−α−α1(𝑛) + 𝐶∞ν2γν∞φ1+α∞−2α(𝑛)) exp (−2νγΓ 𝑛1−α)
+ 𝐶12ν1Γ 𝑛−α1 + 𝐶∞2νγν∞Γ 𝑛α∞−α

for all 𝑛 ≥ 2.
The function φ and the constants 𝐶1, 𝐶∞ are given by

φβ(𝑛) ∶= log(𝑛)1{β=0} + 𝑛β − 1β 1{β≠0},
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𝐶1 ∶= 2�̄�‖D2Ψ𝐹‖∞, and 𝐶∞ ∶= 1 + �̄� (1 + ‖DΨ𝐹‖∞) ,
for any (β, 𝑛) ∈ ℝ+ × ℕ∗.

Proof. The proof builds on [91, Thm. 2]. There are three main differences:
first, we do not require the local function 𝑝𝑘𝑛 to be concave; nor do we rely
on the strong concavity of Ψ𝐹𝑘𝑛 but instead on its strong log-concavity and its
lower bound Ψ̲𝐹; finally, our objective function varies over time because of
the sequence of convolution kernels (𝑘𝑛)𝑡≥1.
Assumption 6.3 together with the lower bounded revenueΨ𝐹𝑘𝑛 leads to a form
of local strong concavity of Ψ𝐹. From Proposition 6.3.1, the strongly increas-
ing hazard rate ensures that Ψ𝐹 is strongly log-concave with parameter μℎ.
Further, Ψ𝐹 admits a unique maximum 𝑟∗ such that 𝑟∗ ∈ I by assumption.
As a result, for any 𝑟 ∈ I,−μℎ ‖𝑟∗ − 𝑟‖2 ≥ (𝑟 − 𝑟∗) (D [logΨ𝐹] (𝑟) − D [logΨ𝐹] (𝑟∗))= (𝑟 − 𝑟∗) (DΨ𝐹(𝑟)Ψ𝐹(𝑟) − DΨ𝐹(𝑟∗)Ψ𝐹(𝑟∗) ) .
By the first-order optimality condition of Ψ𝐹, this implies that(𝑟 − 𝑟∗)DΨ𝐹(𝑟) ≤ −Ψ𝐹(𝑟)μℎ ‖𝑟∗ − 𝑟‖2 ≤ −μℎΨ̲𝐹 ‖𝑟∗ − 𝑟‖2 .
Let us introduce μ̃ℎ ∶= Γ/2 = μℎΨ̲𝐹 the quantity which plays the role of the
strong-concavity parameter in [91, Thm. 2].

As in the proof of Theorem 6.4.1, we introduce the Lyapunov process 𝑣𝑛 ∶=‖𝑟𝑛 − 𝑟∗‖22 and its expectation �̄�𝑛 ∶= 𝔼[𝑣𝑛]. From (𝑈1)–(𝑈3), we have𝔼[𝑣𝑛+1 − 𝑣𝑛|F𝑛] ≤ 2γ𝑛(𝑟𝑛 − 𝑟∗)DΨ𝐹(𝑟𝑛) + 2γ𝑛�̄�‖D2Ψ𝐹‖∞ ‖𝐾𝑛 − 1ℝ+‖1+ γ2𝑛 (1 + �̄� (1 + ‖DΨ𝐹‖∞) ‖𝑘‖∞) .
Combining the local strong-concavity ofΨ𝐹 and the kernel conditions6 of the
statement (‖𝐾𝑛 − 1ℝ+‖1 ≤ ν1𝑛−α1 , ‖𝑘𝑛‖∞ ≤ ν∞𝑛α∞), yields𝔼[𝑣𝑛+1 − 𝑣𝑛|F𝑛] ≤ 2μ̃ℎγ𝑛𝑣𝑛 + 𝐶1γ𝑛ν1𝑛−α1 + 𝐶∞γ2𝑛ν∞𝑛α∞ ,
in which 𝐶1 ∶= 2�̄�‖D2Ψ𝐹‖∞ and 𝐶∞ ∶= 1 + �̄� (1 + ‖DΨ𝐹‖∞).Taking the
expectation leads to�̄�𝑛+1 ≤ (1 − 2μ̃ℎγ𝑛)�̄�𝑛 + 𝐶1γ𝑛ν1𝑛−α1 + 𝐶∞γ2𝑛ν∞𝑛α∞ . (6.16)

In line with [91], we split the proof depending whether α = 1 or α ∈ (0, 1).
6Without loss of generality, we assume that ν∞ ≥ 1.
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1. Let us consider the case in which α = 1. Using the identity 1 − 𝑥 ≤
exp(−𝑥), for all 𝑥 ∈ ℝ, and applying the recursion 𝑛 times in (6.16), we
have

�̄�𝑛 ≤ �̄�1 exp (−2μ̃ℎ
𝑛−1∑𝑖=1 γ𝑖) + 𝐶1ν1 𝑛−1∑𝑖=1 γ𝑖𝑖−α1 exp(−2μ̃ℎ

𝑛−1∑𝑗=𝑖+1 γ𝑗)
+ 𝐶∞ν∞ 𝑛−1∑𝑖=1 γ2𝑖 𝑖α∞ exp(−2μ̃ℎ

𝑛−1∑𝑗=𝑖+1 γ𝑗)
≤ (𝐶1νγν1 𝑛−1∑𝑖=1 𝑖−α−α1 + 𝐶∞ν2γν∞ 𝑛−1∑𝑖=1 𝑖−2α+α0) exp(−2μ̃ℎνγ 𝑛−1∑𝑗=𝑖+1 𝑗−1)

+ �̄�1 exp (−2μ̃ℎνγ 𝑛−1∑𝑖=1 𝑖−1) .
Since,

𝑛−1∑𝑖=1 𝑖−1 ≥ log(𝑛)
𝑛−1∑𝑗=ℓ+1 𝑗−1 ≥ log(𝑛/ℓ + 1),

for all 𝑛 ≥ 2 and 1 ≤ ℓ ≤ 𝑛 − 1, we obtain that (assuming μ̃ℎνγ ≤ 1/2):

�̄�𝑛 ≤ �̄�1𝑛−2μ̃ℎνγ + 𝐶1νγν1𝑛−2μ̃ℎνγ 𝑛−1∑𝑖=1 𝑖−1−α1(𝑖 + 1)2μ̃ℎνγ
+ 𝐶∞ν2γν∞𝑛−2μ̃ℎνγ 𝑛−1∑𝑖=1 𝑖−2+α∞(𝑖 + 1)2μ̃ℎνγ

≤ �̄�1𝑛−2μ̃ℎνγ + 2𝐶1νγν1𝑛−2μ̃ℎνγ 𝑛−1∑𝑖=1 𝑖2μ̃ℎνγ−1−α1
+ 2𝐶∞ν2γν∞𝑛−2μ̃ℎνγ 𝑛−1∑𝑖=1 𝑖−2+α∞+2μ̃ℎνγ

≤ (�̄�2 + 2𝐶1νγν1φ2μ̃ℎνγ−α1(𝑛) + 2𝐶∞ν2γν∞φ2μ̃ℎνγ+α∞−1) 𝑛−2μ̃ℎνγ .
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2. Consider now the case in which α ∈ (0, 1). By applying the recursion
of (6.16) 𝑛 times, we have

�̄�𝑛 ≤ �̄�1 𝑛−1∏𝑖=1 (1 − 2μ̃ℎγ𝑖) (𝐴1𝑛)

+ 𝐶1 𝑛−1∑𝑖=1 γ𝑖ν1𝑛−α1 𝑛−1∏𝑗=𝑖+1(1 − 2μ̃ℎγ𝑗) (𝐴2𝑛)

+ 𝐶∞ 𝑛−1∑𝑖=1 γ2𝑖 ν∞𝑛α∞ 𝑛−1∏𝑗=𝑖+1(1 − 2μ̃ℎγ𝑗) (𝐴3𝑛)

The derivation slightly differs from the case α = 1. Following [91], one
has:

𝐴1𝑛 ≤ �̄�1 exp (−2μ̃ℎ
𝑛−1∑𝑖=1 γ𝑖)

𝐴2𝑛 ≤ 𝐶1ν1⌊𝑛/2⌋α12μ̃ℎ + 𝐶1ν1 exp(−2μ̃ℎ
𝑛−1∑𝑗=⌊𝑛/2⌋ γ) 𝑛−1∑𝑖=1 γ𝑖𝑛−α1

𝐴3𝑛 ≤ 𝐶∞ν∞γ⌊𝑛/2⌋⌊𝑛/2⌋α∞2μ̃ℎ + 𝐶∞ν∞ exp(−2μ̃ℎ
𝑛−1∑𝑗=⌊𝑡/2⌋ γ𝑗) 𝑛−1∑𝑖=1 γ2𝑖 𝑛α∞ .

Using the expression of γ𝑛, and the fact that α1 < 1, together with the
identities φ1−α(𝑡) − φ1−α(𝑡/2) ≥ 𝑡1−α/2 and φ1−α(𝑡) ≥ 𝑡1−α/2 for 𝑡 ≥ 1,
yields

𝐴1𝑛 ≤ �̄�1 exp (−2μ̃ℎνγφ1−α(𝑛)) �̄�1 ≤ exp (−μ̃ℎνγ𝑛1−α) ,
𝐴2𝑛 ≤ 𝐶1ν1μ̃ℎ 𝑛−α1 + 𝐶1νγν1 exp (−μ̃ℎνγ𝑛1−α) 𝑛−1∑𝑖=1 𝑖−α−α1

≤ 𝐶1ν1μ̃ℎ 𝑛−α1 + 𝐶1νγν1 exp (−μ̃ℎνγ𝑛1−α)φ1−α−α1(𝑛),
and

𝐴3𝑛 ≤ 𝐶∞νγν∞μ̃ℎ 𝑛α∞−α + 𝐶∞ν2γν∞ exp (−μ̃ℎνγ𝑛1−α) 𝑛−1∑𝑖=1 𝑖α∞−2α
≤ 𝐶∞νγν∞μ̃ℎ 𝑛α∞−α + 𝐶∞ν2γν∞ exp (−μ̃ℎνγ𝑛1−α)φ1+α∞−2α(𝑛).
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Putting everything together, the final bound we obtain is

�̄�𝑛 ≤ (�̄�2 + 𝐶1νγν1φ1−α−α1(𝑛) + 𝐶∞ν2γν∞φ1+α∞−2α(𝑛)) exp (−μ̃ℎνγ𝑛1−α)+ 𝐶1ν1μ̃ℎ 𝑛−α1 + 𝐶∞νγν∞μ̃ℎ 𝑛α∞−α.
Theorem 6.4.2 shows the existence of two distinct regimes which are

shared by either choice of α: a transient regime (whose rate is 𝑛−Γνγ if α = 1
and exp(−μℎΨ̲𝐹νγ𝑛1−α) if α ∈ (0, 1)), and a stationary regime (𝑛−α1 + 𝑛α∞−α
and 𝑛−α1 + 𝑛α∞−1, respectively).

On Fig. 6.2, the transient phase is visible up to 2 × 103 steps. Since the
rate of the transient regime depends only on νγ = γ0, Ψ̲𝐹 known from As-
sumption 6.4, and μℎ known from Assumption 6.3, we can set νγ to make the
stationary regime the driver of the rate.
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Figure 6.2: Expected error of V-CONV-OGA for different schedules of (σ𝑛)𝑛∈ℕ
on i.i.d samples from a Kumaraswamy (1, 0.4) distribution (log-

log scale). Bottom: representative reserve price trajectories.

To optimise the stationary regime we face a bias-variance trade-off. Like
Theorem 6.4.1, Theorem 6.4.2 requires that 𝑘 → δ0 (via the condition α1 > 0)
while imposing a bound on the growth speed of the variance bound 𝑉𝑘 (viaα∞ < α). Unlike Theorem 6.4.1, however, the detailed rates of Theorem 6.4.2
can be used to determine optimal parameters for the trade-off, taking into
account the antagonistic effects of α1 and α∞.

From Theorem 6.4.2, we recover that the optimal learning rate is γ𝑛 ∝1/𝑛. To tune the kernels it is sensible to fix a parametric family and tune its
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Figure 6.3: Representative sample trajectories of V-CONV-OGA for different
schedules of (σ𝑛)𝑛∈ℕ (γ𝑛 ∶= 𝑛−1 for 𝑛 ∈ ℕ∗) on i.i.d. samples

from a Kumaraswamy (1, 0.4) distribution.

parameters. For zero-mean Gaussian kernels (recall Remark 6.3.1), we have
Corollary 6.4.1.
Corollary 6.4.1. If we fix γ𝑛 ∝ 1/𝑛, and let (𝑘𝑛)𝑛∈ℕ be Gaussian (0, 1/𝑛) kernels
in V-CONV-OGA, Theorem 6.4.2 becomes

𝔼 [‖𝑟𝑛 − 𝑟∗‖2] = Õ (𝑛−1/2) .
This rate is optimal up to logarithmic factors.

Figure 6.3 demonstrates the optimality in the bias-variance trade-off of
this choice: the σ𝑛 ∶= 𝑛−1/2 (blue) curve is the optimal rate on the top pane,
and attains the rate of Corollary 6.4.1. The bottom pane illustrates the bias-
variance trade-off at hand in Theorem 6.4.2. If the kernel decays slower than𝑛−1/2 (red), the learning rate shrinks much faster and convergence is very
slow but very smooth. If σ𝑛 decreases too fast (green) the variance becomes
overwhelming and noise swallows the performance.

Our novel analysis of V-CONV-OGA showed its almost sure convergence
under Assumption 6.2, and that with the curvature condition of Assump-
tion 6.3 and the technical Assumption 6.4 we could fully characterise its con-
vergence rates. We could thus derive optimal learning rates and place condi-
tions on optimal kernel decay rates. We made the optimal decay rate explicit
for Gaussian kernels. This concludes the discussion of V-CONV-OGA in the
stationary bid distribution problem, and we now move to the nonstationary
setting.
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6.5. Tracking a Nonstationary Bidder

6.5 Tracking a Nonstationary Bidder
In practical applications of online auctions, such as display advertising, bid-
ders might change their bid distribution over time. These changes often res-
ult from non-stationarity in the private information of bidders. It is therefore
beneficial to be able to effectively adapt one’s reserve price over time to track
changing bid distributions (𝐹𝑛)𝑛∈ℕ. We use the dynamic regret R𝑁 to meas-
ure the quality of an algorithm’s tracking.

The difficulty in the nonstationary setting is to trade-off adaptability
(how fast a change in the bid distribution is detected) vs. accuracy (proximity
to the monopoly price between switches). Convergent algorithms like ERM
or V-CONV-OGA will have high accuracy in the first phase, but then suffer as
they try to adapt to changes later on when their learning rate is very small.
Windowed methods are more adaptable but still carry with them a lag, dir-
ectly dependent on their window size. First-order methods like CONV-OGA
(with constant learning rate γ0) are much more adaptable, but their conver-
gence rate (O(𝑛−1/2)) hurts their accuracy. Nevertheless, we show that CONV-
OGA is effective, with O(√𝑁) regret after 𝑁 steps.

The dynamic regretR𝑁 cannot be meaningfully controlled for arbitrary
sequences (𝐹𝑛)𝑛∈ℕ. As such it is customary to assume Assumption 6.5 that(𝐹𝑛)𝑛∈ℕ contains at most κ𝑁 − 1 switches up to a horizon 𝑁 ∈ ℕ∗, see
e.g. [60, 82]. This corresponds to approximating a slowly changing sequence
of distributions 𝐹𝑛 by a piece-wise constant sequence.

Assumption 6.5.
Given some horizon 𝑁, there exists κ𝑁 ≤ 𝑁 such that ∑𝑁−1𝑡=1 1{𝐹𝑛≠𝐹𝑡+1} ≤κ𝑁 − 1.

Under Assumption 6.5, the game (up to time 𝑁) decomposes into κ𝑁
phases. The first step towards controlling the regret is to bound the tracking
performance in each phase. We do this in Theorem 6.5.1, which shows an
incompressible asymptotic error (the bias of our surrogate plus the variance)
and a transient regime with exponential decay.
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Theorem 6.5.1.
Let Assumptions 6.1, 6.3 and 6.4 and 𝑘 ∈ K. Then, by running CONV-OGA
on Iwith a constant step-size γ0 > 0, we have

𝔼 [‖𝑟𝑛 − 𝑟∗𝑘 ‖2] ≤ (�̄�2 + 𝐶(γ0, 𝑘)(𝑛 − 1))𝑒−μℎΨ̲𝐹γ02 𝑛 + 2𝐶(γ0, 𝑘)μℎΨ̲𝐹
for in 𝑛 ∈ ℕ∗, in which 𝐶(γ0, 𝑘) = O (γ0 ‖𝐾 − 1ℝ+‖1 + γ20 ‖𝑘‖∞).

Proof. Similarly to the one of Theorem 6.4.2, this proof builds on [91]. SinceΨ𝐹 is μℎ−strongly log-concave, one has for all 𝑟 ∈ I,

(𝑟𝑛 − 𝑟∗)DΨ𝐹(𝑟) ≤ −Ψ𝐹(𝑟)μℎ ‖𝑟 − 𝑟∗‖2 ≤ −μ̃ℎ ‖𝑟 − 𝑟∗‖2 (6.17)

in which μ̃ℎ ∶= μℎΨ̲𝐹. As a result, although we do not assume the function to
be strongly concave, it still enjoys a similar property near 𝑟∗ on the bounded
subset I. Let 𝑣𝑛 = ‖𝑟𝑛 − 𝑟∗‖2 be the same Lyapunov process as in the proof
of Theorem 6.4.1. Since the projection operator over I is 1−Lipschitz and
from (𝑈1)—(𝑈3), one has𝔼 [𝑣𝑛+1 − 𝑣𝑛|F𝑛] ≤ 2γ0(𝑟𝑛 − 𝑟∗)DΨ𝐹(𝑟𝑛) + 2γ0�̄�‖D2Ψ𝐹‖∞ ‖𝐾 − 1ℝ+‖1+ γ2𝑛(1 + �̄�(1 + ‖DΨ𝐹‖∞) ‖𝑘‖∞ ). (6.18)

Letting

𝐶(γ0, 𝑘) ∶= 2γ0�̄�‖D2Ψ𝐹‖∞ ‖𝐾 − 1ℝ+‖1 + γ20(1 + �̄�(1 + ‖DΨ𝐹‖∞) ‖𝑘‖∞ )
and �̄�𝑛 ∶= 𝔼[𝑣𝑛], and taking the expectation in (6.18), yields

�̄�𝑛+1 ≤ (1 − 2γ𝑛μ̃ℎ)�̄�𝑛 + 𝐶(γ0, 𝑘). (6.19)

Further, (6.19) is exactly the same as [91, (25)] with different definitions for
the constants, and the rest of the proof follows. As a result, we have

�̄�𝑛 ≤ (�̄�0 + 𝐶(γ0, 𝑘)(𝑛 − 1)) exp (− μ̃ℎγ02 𝑛) + 2𝐶(γ0, 𝑘)μ̃ℎ ,
for any 𝑛 ∈ ℕ∗.

Theorem 6.5.1 shows that, immediately after a bid distribution switch,
there will be a transient regime of order 𝑛 exp(−μℎΨ̲𝐹γ0𝑛/2), but afterward𝑟𝑛 will oscillate in a band of size 2𝐶(γ0, 𝑘)/μℎΨ̲𝐹 around 𝑟∗𝑘 . We can then
use Theorem 6.5.1 to derive a sub-linear regret bound given 𝑁, κ𝑁 in Corol-
lary 6.5.1.
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Corollary 6.5.1. Let Assumptions 6.1 and 6.3 to 6.5 hold and 𝑘 ∈ K. Then, there
are positive functions Ξ(𝑘, γ0) and Λ(𝑘, γ0), independent of 𝑁 and κ𝑁, such that
CONV-OGA has a nonstationary regret of

R𝑁 ≤ Ξ(𝑘, γ0)𝑁 + Λ(𝑘, γ0)κ𝑁,
for all 𝑁 ≥ 0. Further, if the horizon 𝑁 is known in advance, running CONV-OGA
with γ0 = 𝑁−1/2 and 𝑘 a kernel satisfying ‖𝐾 − 1ℝ+‖1 ≤ 𝑁−1/2 and ‖𝑘‖∞ ≤ 𝑁1/2,
thenR𝑁 = O (√𝑁).
Proof. Denoting (𝑠𝑖)κ𝑁𝑖=1 and (𝑡𝑖)κ𝑁𝑖=1 respectively the start and the end of the
intervals in ℕ∗ on which the distribution is constant, we have

R𝑁 = 𝔼[ 𝑁∑𝑛=1Ψ𝐹𝑛(𝑟∗𝑛) −Ψ𝐹𝑛(𝑟𝑛)]
≤ 𝔼 [ 𝑁∑𝑛=1 ‖D2Ψ𝐹𝑛‖∞2 ‖𝑟∗𝑛 − 𝑟𝑛‖22]
≤ κ𝑁∑𝑖=1 ‖D2Ψ𝐹𝑠𝑖‖∞2 𝑡𝑖∑𝑛=𝑠𝑖

𝔼 [‖𝑟∗𝑠𝑖 − 𝑟𝑛‖22]
≤ κ𝑁∑𝑖=1 ‖D2Ψ𝐹𝑠𝑖‖∞2 𝑡𝑖−𝑠𝑖+1∑𝑛=1 𝔼 [‖𝑟∗𝑠𝑖 − 𝑟𝑛+𝑠𝑖−1‖22]

Let us define Γ̃ ∶= μℎΨ̲𝐹γ0/2, 𝑀Ψ ∶= max𝑖∈[κ𝑁]‖D2Ψ𝐹𝑠𝑖‖∞/2, and̄𝐶(γ0, 𝑘) ∶= 4𝑀Ψ ‖𝐾 − 1ℝ+‖1 + γ20 (1 + �̄� (1 + 2𝑀Ψ) ‖𝑘‖∞) .
Applying Theorem 6.5.1 on 𝔼 [‖𝑟∗𝑠𝑖 − 𝑟𝑛+𝑠𝑖−1‖22], we obtain

R𝑁 ≤ κ𝑁∑𝑖=1 ‖D2Ψ𝐹𝑠𝑖‖∞2 𝑡𝑖−𝑠𝑖+1∑𝑛=1 ((�̄�2 + ̄𝐶(γ0, 𝑘)(𝑛 − 1))𝑒−Γ̃𝑛 + 2 ̄𝐶(γ0, 𝑘)μℎΨ̲𝐹 )
≤ 𝑀Ψ (2 ̄𝐶(γ0, 𝑘)μℎΨ̲𝐹 𝑁 + κ𝑁∑𝑖=1

𝑡𝑖−𝑠𝑖+1∑𝑛=1 �̄�2𝑒−Γ̃𝑛 + ̄𝐶(γ0, 𝑘)(𝑛 − 1)𝑒−Γ̃𝑛)
≤ 𝑀Ψ (2 ̄𝐶(γ0, 𝑘)μℎΨ̲𝐹 𝑁 + κ𝑁∑𝑖=1

𝑡𝑖−𝑠𝑖∑𝑛=0 �̄�2𝑒−Γ̃(𝑛+1) + ̄𝐶(γ0, 𝑘)𝑛𝑒−Γ̃(𝑛+1))
≤ 𝑀Ψ (2 ̄𝐶(γ0, 𝑘)μℎΨ̲𝐹 𝑁 + κ𝑁∑𝑖=1 ( �̄�2𝑒−Γ̃1 − 𝑒−Γ̃ + 𝑡𝑖−𝑠𝑖∑𝑛=0 ̄𝐶(γ0, 𝑘)𝑛𝑒−Γ̃(𝑛+1)))
≤ 𝑀Ψ (2 ̄𝐶(γ0, 𝑘)μℎΨ̲𝐹 𝑁 + ( �̄�2κ𝑁𝑒Γ̃ − 1+
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Figure 6.4: Tracking by CONV-OGA of three Kumaraswamy distributions
(with parameters (1, 4), (1, 0.4), and (1, 1) resp.) with different

Gaussian kernels and learning rates.

̄𝐶(γ0, 𝑘)𝑒−2Γ̃ κ𝑁∑𝑖=1 1 − 𝑒−Γ̃(𝑡𝑖−𝑠𝑖) (1 + (𝑡𝑖 − 𝑠𝑖) (1 − 𝑒−Γ̃))(1 − 𝑒−Γ̃)2 ))
≤ 𝑀Ψ (2 ̄𝐶(γ0, 𝑘)μℎΨ̲𝐹 𝑁 + ( �̄�2𝑒Γ̃ − 1 + ̄𝐶(γ0, 𝑘)(𝑒Γ̃ − 1)2) κ𝑁)

Getting R𝑁 = O (√𝑁) when 𝑁 is known in advance just amounts to plug-

ging γ0 = 𝑁−1/2, ‖𝐾 − 1ℝ+‖1 ∝ 𝑁−1/2 and ‖𝑘‖∞ ∝ √𝑁 in the last equa-
tion.

Figure 6.4 illustrates the behaviour of CONV-OGA in a nonstationary en-
vironment. In agreement with Theorem 6.5.1 and Corollary 6.5.1, γ0 controls
the length of the transient regime due to the exp(−μℎΨ̲𝐹γ0𝑛/2) term. Increas-
ing γ0 shortens it but increases the width of the band of the asymptotic re-
gime as 𝐶(γ0, 𝑘) increases with γ0 (blue vs. green curves). For a fixed γ0, the
stationary regime in terms of 𝑘 exhibits a bias-variance trade-off: ‖𝐾 − 1ℝ+‖1
corresponds to the bias and ‖𝑘‖∞ to the variance (see Proposition 6.3.3). In
the case of a Gaussian kernel, increasing the kernel variance σ2 reduces the
trajectory variance but increases bias (green vs. red curves).

CONV-OGA using a constant learning rate is an effective and efficient (i.e.
real-time) algorithm for tracking monopoly prices of nonstationary bidders.
It incurs O(√𝑁) regret given the horizon and κ𝑁, by tuning γ0 and 𝑘, while
maintaining the computational efficiency of online methods.
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Conclusion

In this chapter we introduced V-CONV-OGA, the first real-time (O(1) update-
time and memory) method for monopoly price learning. We first gave some
theoretical results bridging auction theory and optimisation. Next, we pro-
ceeded to show how to fix the biased gradient problem with smooth surrog-
ates, giving CONV-OGA. Next, we let the smoothing decrease over time in
V-CONV-OGA, for whom we showed convergence ofO(𝑛−1/2). Finally, we ad-
apted CONV-OGA to perform tracking of nonstationary bid distributions and
obtained O(√𝑁) dynamic regret.

In the context of high-frequency auctions, computational efficiency pre-
cedes numerical precision, thus we traded O(𝑛1/2) complexity and O(𝑛−1)
speed for O(1) complexity and O(𝑛−1/2) speed. Whether or not it is possible
to reach the optimal rate with a real-time algorithm remains an open ques-
tion. We conjecture this to be impossible in general, but we know it is possible
in some instances. If 𝐹 is a symmetric distribution, then CONV-OGA with a
constant symmetric kernel has no bias andO(𝑛−1) convergence. Adapting the
chosen kernel to some a priori knowledge about 𝐹 is a possible direction to
match the optimal offline rate.

The second question concerns the extension to partially observable set-
tings, such as online eager auctions, when the seller does not observe bids
under the reserve. Obviously, extensions using a reduction to multi-armed
bandits (UCB, Exp3, Exp4, etc.) via a discretisation of the bid space cannot
be real-time: the discretisation creates a need for O(√𝑛) in memory and the
same for the update. Yet, it is possible to obtain a strait-forward extension of
V-CONV-OGA in this setting, by plugging it into an Explore-Then-Commit
(ETC) algorithm [100]: V-CONV-OGA learns an estimate of the monopoly
price during the exploration period, which is then used during the exploit-
ation period. As for other algorithms, by using a doubling trick to handle
an unknown horizon, ETC+V-CONV-OGA exhibits a sub-linear regret. Unfor-
tunately, like in the lazy auction setting, the regret is not optimal and the
question of whether a real-time algorithm can match this optimal regret is
still open.

The question of partial observability also applies to nonstationary bid-
ders. In this case, extending CONV-OGA with ETC is no longer straightfor-
ward, as the switching times are unknown. Thus, it is not obvious when to
re-trigger an exploration phase of ETC to adapt to the change of the bidder’s
distribution. A potential way to tackle this problem could be to use random-
ised resets for the algorithm [8] or change-point detection algorithms to trig-
ger exploration [64].
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6.A Pseudo‐ and Log‐Concavity
We recall in this appendix some results of convex analysis on log-concave and
pseudo-concave functions. Notations are independent from the rest of this
chapter. Let I ⊂ ℝ, be an interval and ℝ̄ ∶= ℝ ∪ {−∞,+∞} be the extended
real number line.

6.A.1 Pseudo‐concavity

Definition 6.1.
A function 𝑓 ∶ I→ ℝ, 𝑓 ∈ C1(I), is pseudo-concave on I if

D𝑓 (𝑥)(𝑥 − 𝑦) ≥ 0 ⇒ 𝑓 (𝑥) ≥ 𝑓 (𝑦) for any (𝑥, 𝑦) ∈ I2.
Definition 6.2.

A function 𝑓 ∶ I → ℝ, 𝑓 ∈ C1(I), is strictly pseudo-concave on I if it is
pseudo-concave and has at most one critical point.

6.A.2 Log‐concavity

Definition 6.3.
A function 𝑓 ∶ I→ ℝ̄ is log-concave on I if for any α ∈ [0, 1],

𝑓 (α𝑥 + (1 − α)𝑦) ≥ 𝑓 (𝑥)α𝑓 (𝑦)1−α (6.20)

for all (𝑥, 𝑦) ∈ I2. Note that, if 𝑓 is a map from I to ℝ+∗ , this is equivalent
to 𝑓 = 𝑒−φ for some function φ which is convex on I.

A log-concave function is strictly log-concave if (6.20) is strict for any(𝑥, 𝑦) ∈ I2 such that 𝑥 ≠ 𝑦. If 𝑓 ∶ I → ℝ+∗ , this is equivalent to 𝑓 = 𝑒−φ
for some function φ which is strictly convex on I.

Definition 6.4.
A function 𝑓 ∶ I → ℝ̄ is μ-strongly log-concave on I, for μ > 0, if 𝑥 ↦𝑓 (𝑥)𝑒−μ𝑥2 is log-concave.
Note that if 𝑓 ∶ I → ℝ+∗ this is equivalent to saying 𝑓 = 𝑒−φ for some
function φ which is μ-strongly convex on I.
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We also recall a useful technical result for any log-concave function 𝑓 ,
which is a straightforward consequence of the concavity characterization of
log( 𝑓 ).
Proposition 6.A.1.

Let 𝑓 ∶ ℝ → ℝ+ be a strictly log-concave function. Then

𝑓 (𝑣 + δ)𝑓 (𝑣) > 𝑓 (𝑢 + δ)𝑓 (𝑢)
for all δ > 0, for any 𝑢 > 𝑣 > 0.

Proof of Proposition 6.A.1. The proof is a straightforward application of prop-
erties of strictly concave functions applied to log( 𝑓 ). Let 𝐹(𝑥, 𝑦) = (log 𝑓 (𝑥) −
log 𝑓 (𝑦))/(𝑥 − 𝑦), then 𝐹 is strictly decreasing in 𝑥 for every fixed 𝑦 (and vice-
versa). Thus, 𝐹(𝑣 + δ, 𝑣) > 𝐹(𝑣 + δ, 𝑢) > 𝐹(𝑢 + δ, 𝑢)
which implies

log 𝑓 (𝑣 + δ) − log 𝑓 (𝑣) > log 𝑓 (𝑢 + δ) − log 𝑓 (𝑢)𝑓 (𝑣 + δ)𝑓 (𝑣) > 𝑓 (𝑢 + δ)𝑓 (𝑢) .

6.A.3 Stability under convolution

Theorem 6.A.1. ([65])
Let 𝑓 ∈ C1(I; ℝ+)∩L1(I; ℝ+) be pseudo-concave on I and 𝑔 ∈ L1(ℝ;ℝ+)
be log-concave. Then, 𝑓 ⋆ 𝑔 is pseudo-concave on ℝ.

We extend this theorem to strict pseudo-concavity.

Lemma 6.A.2. (Extension of [65])
Let 𝑓 ∈ C1(I; ℝ+) ∩ L1(I;𝑅𝑏+) be strictly pseudo-concave on I ∶= [𝑥1, 𝑥2].
Assume lim𝑥→𝑥1+ 𝑓 (𝑥) = lim𝑥→𝑥2− 𝑓 (𝑥) = 0 and 𝑔 ∈ L1(ℝ;ℝ+) is strictly
log-concave. Then, 𝑓 ⋆ 𝑔 is strictly pseudo-concave on ℝ.

Proof. For simplicity, let us consider 𝑓 to be extended by 0 on ℝ ⧵ I. The
proof is conducted in two steps. First, we show 𝑓 ⋆ 𝑔 admits a maximum on
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the interior of its domain (which is a critical point) and we denote it by 𝑥∗.
Second, we show that 𝑓 ⋆ 𝑔 is strictly increasing on (−∞, 𝑥∗) and strictly de-
creasing on (𝑥∗, +∞) which immediately proves the strict pseudo-concavity
(including unicity of 𝑥∗).

1. Since 𝑓 ∈ C1(I; ℝ+) ∩ L1(I;𝑅𝑏+) and 𝑔 ∈ L1(ℝ;𝑅𝑏+), the convolution𝑓 ⋆𝑔 is well defined and in C1(ℝ;ℝ+)∩L1(ℝ;ℝ+). As a result, [ 𝑓 ⋆𝑔](𝑥) →0 as |𝑥| → ∞ and Rolle’s theorem guarantees that there exists at least
one point 𝑥∗ ∈ ℝ such that [𝑓 ⋆ 𝑔](𝑥∗) ≥ [ 𝑓 ⋆ 𝑔](𝑥) for all 𝑥 ∈ ℝ.
Furthermore, Theorem 6.A.1 ensures that 𝑓 ⋆𝑔 is pseudo-concave, hence
D[ 𝑓 ⋆ 𝑔](𝑥∗) = 0.

2. Using the differentiation property of the convolution, one has that for
all 𝑥 ∈ ℝ,

D[ 𝑓 ⋆ 𝑔](𝑥) = ∫ℝ 𝑓 (𝑡)D𝑔(𝑥 − 𝑡)d𝑡 = ∫𝑥2
𝑥1 D𝑓 (𝑡)𝑔(𝑥 − 𝑡)d𝑡, (6.21)

as lim𝑥→𝑥1 𝑓 (𝑥) = lim𝑥→𝑥2 = 0. Let 𝑥∗ be a critical point of 𝑓 ⋆ 𝑔, apply-
ing (6.21) at 𝑥 = 𝑥∗ leads to

0 = ∫𝑥2
𝑥1 D𝑓 (𝑡)𝑔(𝑥∗ − 𝑡)d𝑡. (6.22)

Moreover, let 𝑦∗ be the unique critical point of 𝑓 , which is in (𝑥1, 𝑥2) by
Rolle’s theorem. Splitting the integral in (6.21) at 𝑦∗ yields

D[ 𝑓 ⋆ 𝑔](𝑥) = ∫𝑦∗
𝑥1 D𝑓 (𝑡)𝑔(𝑥 − 𝑡)d𝑡 +∫𝑥2

𝑦∗ D𝑓 (𝑡)𝑔(𝑥 − 𝑡)d𝑡. (6.23)

The crux of the proof consists in proving that D[ 𝑓 ⋆ 𝑔](𝑥∗ + δ) > 0 for
all δ > 0 and D[ 𝑓 ⋆ 𝑔](𝑥∗ + δ) < 0 for all δ < 0. Since the derivation is
similar in both cases, we only display here the case δ > 0. From (6.23),
we have:

D[ 𝑓 ⋆ 𝑔](𝑥∗ + δ)
=∫𝑦∗

𝑥1 D𝑓 (𝑡)𝑔(𝑥∗ + δ − 𝑡)d𝑡 +∫𝑥2
𝑦∗D𝑓 (𝑡)𝑔(𝑥∗ + δ − 𝑡)d𝑡

=∫𝑦∗
𝑥1 D𝑓 (𝑡)𝑔(𝑥∗ − 𝑡)𝑔(𝑥∗ + δ − 𝑡)𝑔(𝑥∗ − 𝑡) d𝑡 +∫𝑥2

𝑦∗D𝑓 (𝑡)𝑔(𝑥∗ − 𝑡)𝑔(𝑥∗ + δ − 𝑡)𝑔(𝑥∗ − 𝑡) d𝑡.
212



6.A. Pseudo- and Log-Concavity

We now provide upper and lower bounds for 𝑔(𝑥∗ + δ − 𝑡)/𝑔(𝑥∗ − 𝑡),
respectively on [𝑥1, 𝑦∗] and [𝑦∗, 𝑥2]. Let

𝑡∗ = argmax𝑡∈[𝑥1,𝑦∗]
𝑔(𝑥∗ + δ − 𝑡)𝑔(𝑥∗ − 𝑡)

which is well-defined under our assumptions. Then,

𝑔(𝑥∗ + δ − 𝑡)𝑔(𝑥∗ − 𝑡) ≤ 𝑔(𝑥∗ + δ − 𝑡∗)𝑔(𝑥∗ − 𝑡∗) for 𝑡 ∈ [𝑥1, 𝑦∗].
Moreover, applying Proposition 6.A.1, we have

𝑔(𝑥∗ + δ − 𝑡)𝑔(𝑥∗ − 𝑡) > 𝑔(𝑥∗ + δ − 𝑡∗)𝑔(𝑥∗ − 𝑡∗) ,
for (Lebesgue) almost every 𝑡 ∈ [𝑦∗, 𝑥2). Since 𝑓 is strictly pseudo-
concave, D𝑓 (𝑡) > 0 on [𝑥1, 𝑦∗) and D𝑓 (𝑡) < 0 on (𝑦∗, 𝑥2], which implies
that

D[ 𝑓 ⋆ 𝑔](𝑥∗ + δ) = ∫𝑦∗
𝑥1 D𝑓 (𝑡)𝑔(𝑥∗ − 𝑡)𝑔(𝑥∗ + δ − 𝑡)𝑔(𝑥∗ − 𝑡) d𝑡
+∫𝑥2

𝑦∗ D𝑓 (𝑡)𝑔(𝑥∗ − 𝑡)𝑔(𝑥∗ + δ − 𝑡)𝑔(𝑥∗ − 𝑡) d𝑡
< ∫𝑦∗

𝑥1 D𝑓 (𝑡)𝑔(𝑥∗ − 𝑡)𝑔(𝑥∗ + δ − 𝑡∗)𝑔(𝑥∗ − 𝑡∗) d𝑡
+∫𝑥2

𝑦∗ D𝑓 (𝑡)𝑔(𝑥∗ − 𝑡)𝑔(𝑥∗ + δ − 𝑡∗)𝑔(𝑥∗ − 𝑡∗) d𝑡
< 𝑔(𝑥∗ + δ − 𝑡∗)𝑔(𝑥∗ − 𝑡∗) D[ 𝑓 ⋆ 𝑔](𝑥∗) = 0,

by (6.22), which proves the desired result.

Similar stability properties under convolution are asserted for strictly
and strongly log-concave functions. The first result, Proposition 6.A.3, is
standard and can be derived from the Prépoka-Leindler inequality, while
Theorem 6.A.2 is retrieved from [108].

Proposition 6.A.3.
Let 𝑓 ∶ I ⊂ ℝ → ℝ+ and 𝑔 ∶ ℝ → ℝ+ be log-concave. Then, 𝑓 ⋆ 𝑔 is
log-concave.
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6. REAL-TIME OPTIMISATION FOR ONLINE LEARNING IN AUCTIONS

Theorem 6.A.2. ([108, Thm. 6.6])
Let 𝑓 ∶ I ⊂ ℝ → ℝ+ and 𝑔 ∶ ℝ → ℝ+ be μ ∈ ℝ+ and μ′ ∈ ℝ+
strongly log-concave, respectively. Then, 𝑓 ⋆ 𝑔 is μμ′/√μ2 + μ′2 strongly
log-concave. Furthermore, the convolution of two strictly log-concave
functions is strictly log-concave.
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NP-hard, 183
Numerical resolution, see Numerical

Scheme
Numerical Scheme, 8

ergodic, 93
finite horizon, 65

O
ODE comparison, 111, 147, 167
Online auctions, 205
Online Gradient Ascent, 15, 186, 188,

191, 192, 196
Online learning, 149, 186
Optimisation

first-order, 15, 186, 188
stochastic, 186
zeroth-order, 186

Optimism in the Face of Uncertainty,
11, 124, 131, 136

P
Partial observability, 185
Planning, 12, 123, 129

approximate, 130, 134, 171
optimistic, 129

Point process, 3, 41, 65, 75
compensator, 3, 41, 43, 78
intensity, 43

217



INDEX

marked, 43, 78
Poisson process, 3, 13, 125

compound, 56
Posted-price, see Auction
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Symbols

⟨⋅|⋅⟩𝑛 The inner product defined in (5.37). 149‖⋅‖𝑛 The inner product defined in (5.37). 149

𝔸0 For any (𝑡, 𝑥) ∈ [0,𝑇) × ℝ the set of maximisers of the maximum in
the diffusive HJB equation,see Assumption 3.4. 57

A�̄� The set of admissible controls starting from time 𝑡 ∈ ℝ+, i.e. all �̄�𝑡-
predictable processes taking values in 𝔸. 49

A ̄ The set of admissible controls, i.e. all �̄�-predictable processes taking
values in 𝔸. 84, 130𝒜𝑇 The set of Borel-measurable maps from [0,𝑇) × ℝ𝑑 to 𝔸. 45𝒜 The set of Borel-measurable maps from ℝ𝑑 to 𝔸. 94, 133

ā A pointwise maximiser in the HJB equation. 54
ǎε The maximiser map in Assumption 3.5 used in higher order error cor-

rection. 63
ǎ The first-order corrected decision rule, defined in (3.39). 59
â A pointwise maximiser in the HJB equation (3.7), see Proposi-

tion 3.2.2. 45𝔸 The set of admissible actions, a compact subset of ℝ𝑑𝔸 . 43, 78, 125
A The set of admissible controls, i.e all 𝔽-predictable processes taking

values in 𝔸. 43, 78, 125ᾱ𝑡,𝑥 The control in A𝑡 defined by using the decision rule ̄𝑎, see (3.32). 56ᾱ An arbitrary control in A.̄ 84α̌𝑡,𝑥 The first-order corrected control, defined in (3.38). 59α̂ A piecewise-constant optimal control in the pure-jump problem, see
Proposition 3.2.2. 45

A𝑡 The set of admissible controls starting from time 𝑡 ∈ ℝ+, i.e all 𝔽𝑡-
predictable processes taking values in 𝔸. 43

𝐵𝑛 The random set B(sup𝑡≤τ𝑛‖𝑋𝜛,θ∗𝑡 ‖). 132
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GLOSSARY OF SYMBOLS

𝑏1 The drift-like component of the pre-limit pure jump process. 48, 83𝑏2 The volatility-like component of the pre-limit pure jump process. 48,
83�̄� The maximum of the support of 𝐹 in Chapter 6. 184𝑏 The jump function of the pure-jump system. 43𝑏ε The jump function of the pre-limit problem for ε > 0. 48β𝑛𝑘 The radius of the lazily updated confidence set C𝑛𝑘 . 129β𝑛 The radius of the theoretical confidence set C𝑛. 131𝐵𝑘 The bias of the smoothed monopoly revenue Ψ𝐹𝑘 . 193

𝐶�̄� The constant in the moment condition on �̄�𝑥,ᾱ, see Assumption 4.5.
84

C𝑛𝑘 The confidence set of Algorithm 1, in episode 𝑘. 129𝒞 ε𝑛 The ε‖Σ̄‖op/𝑛 cover of ℱΘ, restricted to the ball B(𝐻δ(𝑛)). 131
C𝑛 The confidence set considered in Section 5.5.1. 156𝒞 Γ𝑛 The cover of ℱ considered in Section 5.5.1. 150𝐶Υ The coercivity constant of Assumption 4.7. 95𝐶1ξ The contraction coefficient under ξ of the stochastic generator in As-

sumption 4.3. 80𝐶2ξ The additive constant in condition (4.7) of Assumption 4.3. 80𝐶1̄ξ The contraction constant of (4.14). 85, 95𝐶2̄ξ The additive constant of (4.14) and growth rate constant of (4.15). 85,
95𝐶ζ The contraction coefficient under ζ of the stochastic generator in As-
sumption 4.2. 80

C0 The space of continuous functions. 43
C0,1 The space of Lipschitz functions. 78
C1 The space of functions which are once continuously differentiable. 43
C(1,2) The set of functions which are once continuously differentiable in

time and twice in space, with bounded derivatives up to these orders.
43

C(1,2)𝑏 The space of functions which are once continuously differentiable in
time and twice in space, with bounded derivatives up to these orders.
43

C2 The space of functions which are twice continuously differentiable.
43̄c𝑝 The contraction coefficient of the diffusive system in (5.61). 168

c𝑝 The additive constant in Corollary 5.4.1. 145
c′𝒱 The additive constant in the stochastic Lyapunov condition of

Lemma 5.4.1.(ii). 138
c𝒱 The contraction coefficient of the pure-jump system in Assump-

tion 5.2. 128
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𝑑Θ The dimension of the parameter space Θ. 126𝑑𝔸 The dimension of the action space 𝔸. 125𝔻𝑇 The Skorohod space of càdlàg functions defined on [0,𝑇]with values
in ℝ𝑑. 43𝔻 The Skorohod space of càdlàg functions defined on [0, +∞) with val-
ues in ℝ𝑑. 78, 84, 125

dE,𝑁𝑇 The 𝑁𝑇-point eluder dimension of ℱΘ, restricted to the ball
B(𝐻δ(𝑁𝑇)). 132

dE,𝑛 The 𝑛-point eluder dimension of ℱΘ, restricted to the ball B(𝐻δ(𝑛)).
132, 161

dE,𝑇ε−1 The 2ε/√𝑇-eluder dimension of ℱΘ, restricted to the ball B(𝐻δ(𝑇/ε)).
130, 170δ�̄�(1)𝑇 The unique bounded viscosity solution of (3.34). 58δ�̄�(𝑖)𝑇 The higher order error correction functions, see Assumption 3.5. 63δγ𝑖 The Hölder regularity exponent of 𝜕𝑥𝑥δ�̄�(𝑖)𝑇 , if it exists. 63δγ The Hölder regularity exponent of 𝜕𝑥𝑥δ�̄�(1)𝑇 , if it exists. 58δ The confidence level parameter of Algorithm 1. 129δ𝑟(1)ε The first order controlled process approximation correction function,
see 2. of the proof of Theorem 3.3.2. 61δ𝑟θε The controlled process approximation error for the pre-limit problem
associated to θ ∈ Θ, for ε > 0. 169δ𝑟ε The controlled process approximation error for the pre-limit problem
for ε > 0. 54, 88δ𝑟𝑛 The controlled process approximation error for the pre-limit problem
in the discrete-time case, see Section 3.5. 71

dℱ
E,𝑛 The 2⋅/√𝑛-eluder dimension of ( 𝑓 |𝐵𝑛)𝑓∈ℱ considered in Section 5.5.1.

158

𝑒θ The error function in the approximation of Proposition 5.3.6 for the
ergodic control problem with parameter θ. 135, 169ℓ𝒱 The lower growth rate of 𝒱 in Assumption 5.2. 128ηε The intensity of the pre-limit problem ηε ∶= ε−1. 48, 82η The intensity of the Poisson random measure 𝑁. 43, 78

𝔽𝑡 The ℙ-augmentation of the raw filtration generated by the restriction
of 𝑁 to [𝑡, +∞). 43𝔽 The ℙ-augmentation of the raw filtration generated by 𝑁 from 0 on-
wards in Chapters 3 to 5; The filtration generated by the bid process
in Chapter 6, see F𝑛. 43, 78, 125, 184
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F𝑡 equal to F0𝑠 ; The sigma-algebra generated by the past of 𝑁 (con-
sidered on [0, +∞) × ℝ𝑑) at time 𝑡. 78, 125

F𝑡𝑠 The sigma-algebra generated by the past of the restriction of 𝑁 to[𝑡, +∞) × ℝ𝑑 at time 𝑠 ≥ 𝑡 ≥ 0. 43
F The σ-algebra of the considered filtered probability space, either F0𝑇

in Chapter 3 or F∞ in Chapters 4 and 5. 43, 78𝐹 The bid distribution considered in Chapter 6. 184�̄�𝑡 The ℙ̄-augmentation of the raw filtration generated by the restriction
of 𝑊 to [𝑡, +∞). 49�̄� The ℙ̄-augmentation of the raw filtration generated by 𝑊. 84, 130

F�̄�𝑡𝑠 The σ-algebra generated by the past of the restriction of 𝑊 to [𝑡, +∞)
at time 𝑠 ≥ 𝑡 ≥ 0. 49

F�̄� Equals F0̄𝑠 ; The σ-algebra generated by the past of 𝑊 at time 𝑠 ≥ 0. 84ℱ The function class considered in Section 5.5.1. 149𝑓 ∗ The function to be estimated in Section 5.5.1. 149𝑓 ν,ε𝑥,𝑎 The transition kernel induced on the pure-jump problem by the nu-
merical scheme of Section 4.4 68

F𝑛 The σ-algebra engendered by the bid process up to time 𝑛 − 1 ∈ ℕ∗
in Chapter 6. 184ℱΘ The function class of drifts of the RL problem. 131γ0 The constant learning rate of CONV-OGA used in the nonstationary
setting. 206γ The Hölder regularity exponent of the second derivative of the value
function. 50, 86, 130, 170

ℍ Equals (H𝑖)𝑖≥0; The filtration generated by (ξ)𝑖∈ℕ considered in Sec-
tion 5.5. 149

H𝑖 The sigma-algebra generated by the past of the process (ξ)𝑖∈ℕ at time𝑖 ∈ ℕ. 149𝐻δ The high probability band in which the stable process lives 142ℎ The mesh size of M̅κℎ in Chapter 4. 93ℎnum The maximum value of ℎ for which the approximation result of Pro-
position 4.4.1 holds. 95

I The given interval containing the monopoly price. 193

𝐽ε𝑇 The gain functional of the pre-limit finite-horizon control problem forε−1. 48𝐽𝑇 The gain functional of the pure-jump finite-horizon control problem.
44, 81
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𝐽λ The gain functional of the pure-jump ergodic control problem with
discount factor λ. 81̄𝐽𝑇 The gain functional of the finite-horizon control problem (3.5). 85̄𝐽λ The gain functional of the diffusive ergodic control problem with dis-
count factor λ. 84

K The set of admissible smoothing kernels, i.e. log-concave elements of
C1(ℝ;ℝ+) ∩ L11(ℝ;ℝ+). 192𝑘 In Chapter 6, a convolution kernel in K. 191κ The number of points in M̅κℎ ∩ [𝑧1, 0), i.e. |M̅κℎ| = 2κ + 1. 93κ𝑁 The number of switches in the nonstationary setting, see Assump-
tion 6.5. 205

𝐿𝒱 The upper growth rate of 𝒱 in Assumption 5.2. 128𝐿𝑊 The Lipschitz constant of the family of functions (𝑊∗θ )θ∈Θ. 133, 164𝐿�̄� The Lipschitz constant of �̄�λ. 84𝐿𝑏1,𝑏2 The coefficient growth constant of 𝑏1 and 𝑏2, see Assumption 4.4. 83𝐿γ
w̄ The regularity constant of w̄ in Theorem 4.3.1. 86𝐿0 The coefficient regularity constant defined of Assumption 5.1. 127
L̄ ̄𝑎ℎ The generator of the controlled process induced by centred finite dif-

ferences with fineness ℎ, see (4.25). 93
L̄ The generator of the diffusion process in (4.12). 85𝐿𝑏,𝑟 The regularity constant of the coefficients, see Assumption 4.1. 79𝐿num The constant in the approximation result for the numerical scheme of

Section 4.4, see Proposition 4.4.1. 95𝐿𝑉 The Lipschitz constant of 𝑉λ, see Lemma 4.A.1. 111𝐿ξ The upper growth rate of ξ in Assumption 4.3. 80ℓξ The lower growth rate of ξ in Assumption 4.3. 80𝐿ζ The upper growth rate of ζ in Assumption 4.2. 79ℓζ The lower growth rate of ζ in Assumption 4.2. 79

M+ The restriction ofM to positive measures. 43
M The space of finite measures on the measure space given by the argu-

ment space and its Borel σ-algebra. 78, 223
M̄𝑡 The mesh of the time interval [0,𝑇] for. 68
M̄𝑥 The mesh on the space domain [−1, 3] for. 68
Lκℎ The set of maps from M̅κℎ to ℝ. 93
M𝑡 The mesh of the time interval [0,𝑇] for (3.7). 67
Mε The mesh for the numerical scheme of the pure-jump problem in Sec-

tion 4.5 107
M𝑥 The mesh on the space domain [−1, 3] for (3.7). 67
M̅κℎ The mesh for the numerical scheme of Section 4.4. 93
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M̆κℎ The mesh for the numerical scheme M̅κℎ without its boundary points.
93𝑀𝒱 The Lipschitz regularity upper bound on 𝒱 in Assumption 5.2. 128𝑀′𝒱 The hessian regularity upper bound on 𝒱 in Assumption 5.2. 128μ̄θ The drift given the parametrisation θ ∈ Θ. 127μ The drift of the diffusion limit SDE (3.13). 49, 83μ𝐹 The strong log-concavity constant of Ψ𝐹. 189

𝑁 An ℝ𝑑-marked Poisson process on ℝ+ (𝑑 = 1 in Chapter 3, 𝑑 ∈ ℕ
otherwise) with compensator ην(d𝑒)d𝑡. 43, 78, 125𝒩 ε𝑛 The ε‖Σ̄‖op/𝑛 covering number of ℱΘ, restricted to the ball B(𝐻δ(𝑛)).
131𝒩 ε𝑇ε−1 The ε2‖Σ̄‖2op/𝑇 covering number of ℱΘ, restricted to the ball
B(𝐻δ(𝑇/ε)). 130, 170𝒩 Γ𝑛 The Γ2/𝑛-covering number of ℱ considered in Section 5.5.1. 150ν A measure on ℝ𝑑 such that ν(Id) = 0 and ν(Id(⋅)2) < +∞. 43, 78, 125

ℙ A probability measures on 𝔻 which renders 𝑁 a ℙ-Poisson random
measure. 43, 78, 125�̄� The expectation under ℙ̄. 49ℙ̄ A probability measure on𝔻which renders 𝑊 a ℙ̄-Wiener Process. 49,
84𝑝(𝑟, 𝑏) The instant revenue of a single-buyer second-price auction with re-
serve price 𝑟 when the bid has value 𝑏 Chapter 6. 184𝑝�̄� The exponent in the moment condition on �̄�𝑥,ᾱ, see Assumption 4.5.
84Ψ𝐹𝑘 Equals Ψ𝐹 ⋆ 𝑘; the monopoly revenue smoothed by 𝑘 ∈ K. 191𝑝ξ The growth order of ξ in Assumption 4.3. 80𝑝ζ The growth order of ζ in Assumption 4.2. 79π̄∗θ An optimal Markov policy of the diffusive control problem (5.10)
parametrised by θ. 130π∗θ An optimal Markov policy of the control problem (5.2), according to
the parametrisation θ. 133, 164π𝑘 The policy of Algorithm 1, in episode 𝑘. 129𝑝𝑘 Equals 𝑝 ⋆ 𝑘. 191ψεθ The dynamic of the system ψεθ(𝑥, 𝑎) ∶= 𝑥 + μ̄θ(𝑥, 𝑎). 128Ψ�̂�𝑛 The Monopoly revenue of the empirical distribution ̂𝐹𝑛 given 𝑛
samples of 𝐹. 185Ψ𝐹 The Monopoly revenue of a distribution 𝐹 on ℝ+. 184ψ𝐹 The virtual value function of the distribution 𝐹. 189𝑝ξ̄ The growth order of ξ̄ in Assumption 4.7. 85, 95
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�̄�āℎ The transition matrix of the numerical scheme of Section 4.4. 94𝑞ℎ Equals 1−(σ/𝐿𝑏1,𝑏2)2; The diagonal entries of �̄�āℎ (except at the bound-
ary). 94𝑞−ℎ Equals (−μℎ+ σ2)/(2𝐿2𝑏1,𝑏2); The subdiagonal entries of �̄�āℎ (except at
the boundary). 94𝑞+ℎ Equals (μℎ + σ2)/(2𝐿2𝑏1,𝑏2) − Δ𝑡ℎλ; The supradiagonal entries of �̄�āℎ
(except at the boundary). 94

Rκεℎε The reward approximated on the mesh Mε. 107
Rκℎ The reward approximated on the mesh M̅κℎ. 94𝑅ε equal to √8𝑑 log 1/ε. 137
R𝑇(α) The regret of the control α at time 𝑇. 126̄𝑟 The reward function of the diffusion limit control problem. 127𝑟1 Equals limε→0 ε− γ2δ𝑟ε; see Assumption 3.4. 57𝑟 The reward function of the control problems. 44𝑟∗ The monopoly price of 𝐹. 184𝑟∗𝑘 The monopoly price of Ψ𝐹𝑘 in the nonstationary setting of Section 6.5.

193𝑟∗𝑛 The monopoly price of 𝐹𝑛 in the nonstationary setting. 185ρ̄ᾱθ The ergodic gain functional, evaluated at ᾱ of the RL problem accord-
ing to the parametrisation θ. 130ρ̄κ,∗ℎ The value of the Diffusion ergodic control problem, approximated on
the mesh M̅κℎ. 93ρ̄∗θ The value of the diffusive ergodic control problem parametrised byθ. 134, 165ρ̄∗ The value of the pure-jump ergodic control problem. 84ρ̄∗θ The value of the ergodic control problem in the diffusive limit corres-
ponding to the parametrisation θ. 130δρ̄∗ε The correction terms for the ergodic control problem see (4.24). 91ραθ∗ The ergodic gain functional, evaluated at α of the RL problem accord-
ing to the true parametrisation θ∗. 126ρ∗θ The value of the pure-jump ergodic control problem parametrised byθ 133, 164ρ∗θ∗ The value of the ergodic control problem in the system corresponding
to the true parametrisation θ∗. 126ρ∗ε The value of the pre-limit pure-jump ergodic control problem for ε >0. 82ρ∗ The value of the pure-jump ergodic control problem. 79, 82ρ The gain functional of the pure-jump ergodic control problem. 79
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𝕊𝑑 The set of symmetric matrices of size 𝑑 × 𝑑. 77Σ The covariance of the additive martingale noise in Chapter 5. 125Σ̄ The volatility of the SDE (5.9). 127σ The volatility of the diffusion limit SDE (3.13). 49, 83Δ𝑡ℎ Equals (ℎ/𝐿𝑏1,𝑏2)2; the intensity of the Poisson process of the Markov
chain scheme of Section 4.4. 94τ𝑛 The 𝑛-th arrival time of the process 𝑁, unless otherwise specified. 125θ̂𝑛𝑘 The NLLS estimate of the parameter θ∗ with 𝑛𝑘 points. 129Θ The parameter space indexing ℱΘ. 126θ𝑛 The chosen parametrisation of the system on [τ𝑛, τ𝑛+1]. 135, 170θ∗ The nominal (true) parametrisation of the system. 126Υ The radius of the ball in the coercivity condition of Assumption 4.7.
95

𝑉ε,Δ𝑇,𝑛 The numerical solution to (3.7). 68𝑉ε𝑇 The value function of the pre-limit finite-horizon control problem forε−1. 48𝑉𝑇 The value function of the pure-jump finite-horizon control problem.
44, 81𝑉𝑛𝑇 The discrete time control problem with 𝑛 jumps in [0,𝑇]. 70𝑉λ The value function of the pure-jump ergodic control problem with
discount factor λ. 81�̄�(1),ε𝑇 The first order corrected approximation, i.e. �̄�(1),ε𝑇 ∶= �̄�𝑇 + εγ/2δ�̄�(1)𝑇 .
58�̄�Δ𝑇,𝑛 The numerical solution to. 68�̄�𝑇 The value function of the Finite horizon diffusion limit control prob-
lem. 49, 85�̄�λ The value function of the diffusive discounted control problem with
discount factor λ. 84𝒱 The Lyapunov function of Assumption 5.2. 128𝑣 The value for the auctioned good in the auction example of Section 3.4
65ς The ellipticity constant of the diffusion limit, see Eq. (3.10). 48, 83, 127ε∘ The constant defined as (𝐿𝑏1,𝑏2)−2 in Proposition 4.3.1. 88ε The approximation parameter of the diffusion limit; the mean inter-
arrival time of 𝑁ε𝑠 . 48, 82, 125𝑉𝑘 The variance of the gradient of the smoothed revenue Ψ𝐹𝑘 . 193
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Wκεℎε The solution of the diffusive PDE (4.16) w̄κℎ approximated on the mesh
Mε. 107

W̄κℎ The solution of the diffusive PDE (4.16) w̄κℎ approximated on the mesh
M̅κℎ. 94𝑊ε Defined as ε−γ/2(𝑉ε𝑇 − �̄�𝑇). 59𝑊 A Wiener process on ℝ in Chapter 3 ℝ𝑑 in Chapter 4. 49, 84, 130

w̄κ,𝑛ℎ The smoothed version of w̄κℎ used in Section 4.4.2. 98
w̄κℎ The decision part of the solution of the HJB equation for the Diffusion

ergodic control problem, approximated on the mesh M̅κℎ. 93
w̄ The decision part of the solution of the HJB equation for the Diffusion

ergodic control problem. 86�̄�∗θ The decision function for the diffusive ergodic control problem, with
parameter θ. 134, 165

w The decision part of the solution of the HJB equation for the pure-
jump ergodic control problem. 75, 82𝑊∗θ The decision function for the ergodic control problem, with para-
meter θ. 133, 164

�̂� The discrete time controlled process with 𝑛 jumps in [0,𝑇]. 70𝑋𝑥,α The unique solution to the SDE (4.3)with initial condition 𝑥 ∈ ℝ𝑑 at
time 0 and control α ∈ A. 78𝑋α,θ∗ The true state process of the system in Chapter 5 for a control α ∈ A.
125𝑋𝑡,𝑥,α The unique solution to the SDE (3.4) with initial condition 𝑥 ∈ ℝ𝑑 at
time 𝑡 ∈ ℝ+ and control α ∈ A. 44�̄�𝑥,ᾱ The unique solution to the SDE (4.12) with initial condition 𝑥 ∈ ℝ𝑑 at
time 0 and control ᾱ ∈ A.̄ 84�̄�𝑡,𝑥,ᾱ The unique solution to the SDE (4.12) with initial condition 𝑥 ∈ ℝ𝑑 at
time 𝑡 ∈ ℝ+ and control ᾱ ∈ A.̄ 49(𝑋𝑖)𝑖∈ℕ The feature process considered in Section 5.5.1. 149�̃�𝜛,θτ𝑛+1 The counterfactual (in the system θ) of the state at time τ𝑛+1, given𝑋𝜛,θ∗τ𝑛 , according to the control 𝜛. 135𝑥0 The initial condition of the state process in Chapter 5. 125�̃�𝑥,ā The controlled Markov chain corresponding to the numerical scheme
of Section 4.4. 95ξ̄ The Lyapunov-like function of Assumption 4.7. 85, 95(ξ𝑖)𝑖∈ℕ The noise process considered in Section 5.5.1, iid centred Gaussian
random variables on ℝ𝑑. 149ξ A standard centred Gaussian random variable on ℝ𝑑. 125ξ The Lyapunov-like function of Assumption 4.3. 80
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(𝑌𝑖)𝑖∈ℕ The regresand process considered in Section 5.5.1. 149ζ The Lyapunov-like function of Assumption 4.2. 79
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CARE Continuous Algebraic Riccati Equation 128
CDF Cumulative Distribution Function 184, 193
DPP Dynamic Programming Principle 115
DRL Deep Reinforcement Learning 2
EDO Équation Différentielle Ordinaire 25, 26
EDP Équation aux Dérivées Partielles 19, 23, 24, 27
EDS Équation Différentielle Stochastique 21, 23, 24, 28, 36
ERM Empirical Risk Minimisation 183, 185, 186, 188, 205
ETC Explore-Then-Commit 209
HJB Hamilton-Jacobi-Bellman 4, 5, 7, 12, 22, 24, 26, 31, 44, 49, 110, 115, 130,

133–135, 166, 171, 178, 219
LQ Linear Quadratic 10, 124
MDPs Markov Decision Processes 123, 124
ML Machine Learning 1, 2, 9
NLLS Non-Linear Least Squares 12, 124, 129, 131, 132, 157, 163, 178
ODE Ordinary Differential Equation 6, 7, 111
OFU Optimism in the Face of Uncertainty v, 124, 128, 129, 132, 248
OGA Online Gradient Ascent 15, 186–188, 191–193, 196
PDE Partial Differential Equation 1, 5, 134, 179
PDF Probability Density Function 184
PSD Positive Semi-Definite 128
RL Reinforcement Learning 2, 6, 9–13, 121, 123, 126, 128, 178
SDE Stochastic Differential Equation 3, 4, 9, 16, 49
TPM Transition Probability Matrix 94
UCB Upper Confidence Bound 124, 186, 209
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MOTS CLÉS

Limite diffusive, contrôle stochastique, apprentissage par renforcement, enchères séquentielles, équations
de Hamilton-Jacobi-Bellman, optimisme devant l'incertain.

RÉSUMÉ

On considère la limite diffusive d'un problème de contrôle Markovien à sauts purs quelconque lorsque l'intensité de son
processus de Poisson tend vers l'infini. On quantifie la vitesse de convergence en fonction de l'exposant de Hölder de la
Hessienne du problème limite. On montre ensuite comment construire des termes de correction pour cette approximation,
selon deux méthodologies différentes. Notre analyse couvre le problème à horizon fini, escompté et ergodique. Dans le
cas ergodique, on quantifie l'erreur induite par l'utilisation de la politique de contrôle Markovienne construite à partir du
schéma numérique de différences finies associé au problème diffusif limite. Cette approche permet une réduction très
significative du coût de résolution numérique des problèmes de contrôle à sauts purs lorsque l'intensité des sauts est
grande.
On s'attache ensuite au problème de l'incertitude dans les systèmes de contrôle, et on étend notre étude au contexte de
l'apprentissage par renforcement en ligne. Dans le paradigme de l'optimisme devant l'incertain, on exploite le carcan de
la dimension d'eluder pour gérer l'apprentissage et la limite diffusive pour résoudre approximativement le sous-problème
de planification. Notre algorithme étend la théorie existante des problèmes discrets aux problèmes avec états et actions
continus. L'utilisation d'outils issus de la théorie des processus stochastiques à temps continu nous permet également
d'étudier une classe de coefficients plus générique que les travaux précédents.
Notre étude des systèmes à limite diffusive est motivée et illustrée par le problème d'enchérir dans une enchère séquen-
tielle à haute fréquence contre un vendeur qui maximise son revenu sous contrainte d'utiliser une règle de mise à jour en
temps réel.

ABSTRACT

We consider the diffusive limit of a generic pure-jump Markov control problem as the intensity of the driving Poisson
process tends to infinity. We quantify the convergence speed in terms of the Hölder exponent of the Hessian of the
limit problem. We then explain how correction terms can be constructed for this limit approximation, according to two
different methodologies. Our analysis covers the finite-horizon, discounted, and ergodic problems. In the ergodic case, we
quantify the error induced by the use of the Markov control policy constructed from the numerical finite difference scheme
associated with the limit diffusive problem. This approach permits a very significant reduction in numerical resolution cost
for pure-jump control problems when the intensity of jumps is large.
Considering the problem of uncertainty in control systems, we study these high-frequency pure-jump problems in the
context of online Reinforcement Learning. Using the Optimism in the Face of Uncertainty paradigm, we leverage the
eluder dimension framework for learning and lazy updates, as well as the diffusive limit for approximate resolution of the
planning sub-problem. This extends existing theory from discrete processes to continuous states and actions. The use of
tools for continuous-time stochastic processes also permits us to study a more generic class of coefficients than previous
work.
Our study of diffusion limit systems is motivated and illustrated by the bidding problem in a high-frequency online auction
against a seller who maximises its revenue under the constraints of using a real-time update rule.

KEYWORDS

Diffusive limit, Stochastic Control, Reinforcement Learning, online auctions, Hamilton-Jacobi-Bellman equa-
tions, Optimism in the Face of Uncertainty.
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