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Comprendre les galaxies à l’origine de la fusion des trous noirs binaires

Résumé La détection d’ondes gravitationnelles (OG) provenant de la fusion de deux
trous noirs de 30 masses solaires en 2015 a surpris les astrophysiciens, car tous les trous
noirs connus de la Voie Lactée ont des masses de l’ordre de 10-15 masses solaires, et le
consensus général de la communauté était que la formation de trous noirs au delà de 20
masses solaires par l’effondrement d’une étoile massive était improbable. Cette découverte
a immédiatement soulevé la question de l’origine des trous noirs de masse stellaire. Si
la plupart des fusions de trous noirs proviennent d’étoiles massives évoluant dans des
systèmes binaires, de grandes incertitudes subsistent sur leur évolution. Mon objectif est
de comprendre l’environnement galactique typique dans lequel se produisent les fusions de
trous noirs.

À cette fin, j’adopte une approche systématique avec plusieurs modèles de formation
d’étoiles et d’évolution binaire. Je modélise les progéniteurs des fusions de trous noirs
en fonction de leur époque de formation, de la masse actuelle de la galaxie hôte et de la
métallicité stellaire pour 240 modèles. J’utilise des modèles semi-analytiques du taux de
formation d’étoiles et des codes de synthèse de population binaire. Je fournis des lignes
directrices pour déduire les propriétés des galaxies et de l’époque de formation, en soulignant
l’interaction entre le taux de formation stellaire et l’efficacité de la formation de trous noirs
binaires, qui dépendent tous deux fortement de la métallicité. Je trouve que si pour plus de
50% des fusions de trous noirs la métallicité du progéniteur est de quelques dixièmes de
la métallicité solaire, il existe cependant de fortes disparités selon les modèles. Les trous
noirs de faible masse (< 15 masses solaires) sont plutôt situés dans les galaxies plus lourdes
que la Voie Lactée. En revanche, les fusions de trous noirs plus massifs proviennent surtout
de galaxies naines de plus faible métallicité. Je trouve que les progéniteurs des trous noirs
binaires détectables proviennent de galaxies naines à un redshift de formation plus faible (z
< 1). Enfin, je construis la distribution de probabilité des propriétés de l’environnement du
progéniteur pour tout signal d’OG détecté. Pour la fusion massive GW150914, je montre
qu’elle provient probablement d’un environnement de très faible métallicité. Les résultats
sont publiés dans la revue MNRAS [Srinivasan et al., 2023].

J’ai aussi conçu une validation de principe d’un nouvel algorithme de détection d’OG,
avec un autre doctorant. Nous utilisons une méthode d’estimation parcimonieuse et ap-
prentissage de dictionnaire pour reconstruire les signaux d’OG enfouis dans le bruit du
détecteur. Se distinguant des méthodes traditionnelles basées sur le filtrage adapté, cette
technique d’apprentissage automatique permet d’identifier rapidement la présence d’OG
dans les données. J’ai testé les performances de l’agorithme avec des injections d’OG
provenant de la population astrophysique de trous noirs générée par mes simulations.

Mots-clés − ondes gravitationnelles, galaxies, étoiles, astrophysique, modélisation,
apprentissage automatique



ii

Understanding the progenitor formation galaxies of merging binary
black holes

Abstract The first gravitational wave (GW) detection, the merger of two 30 M⊙ black
holes, came as a surprise to the astrophysicists as all black holes we know of in the Milky Way
have masses around 10-15 M⊙ and the general consensus of the stellar physics community
was that forming black holes with mass ≳ 20 M⊙ from the collapse of a massive star was
unlikely. This discovery immediately raised the question regarding the origins of massive
stellar-mass black holes. Most black hole mergers are thought to come from massive stars
evolving in binary systems, but major uncertainties remain both on the formation and the
evolution of massive binary stars. I focus on understanding the typical galactic environment
in which binary black hole mergers arise.

To this end, I take a systematic approach in simulating multiple models of the star
formation and binary evolution in the Universe. I synthesize progenitors of binary black
hole mergers as a function of the redshift of progenitor formation, present-day formation
galaxy mass, and progenitor stellar metallicity for 240 star formation and binary evolution
models. I use semi-analytic models of the star formation rate and binary population
synthesis codes to simulate probable binary evolution models. I provide guidelines to infer
the formation galaxy properties and time of formation, highlighting the interplay between
the star formation rate and the efficiency of forming merging binary black holes from binary
stars, both of which strongly depend on metallicity. I find that across models, over 50%
of BBH mergers have a progenitor metallicity of a few tenths of solar metallicity, however,
inferring formation galaxy properties strongly depends on both the binary evolution model
and global metallicity evolution. The numerous, low-mass black holes (< 15 M⊙) trace
the bulk of the star formation in galaxies heavier than the Milky Way. In contrast, heavier
BBH mergers typically stem from larger black holes forming in lower metallicity dwarf
galaxies. I find that the progenitors of detectable binary black holes tend to arise from
dwarf galaxies at a lower formation redshift (z < 1). I finally produce a posterior probability
of the progenitor environment for any detected gravitational wave signal. For the massive
GW150914 merger, I show that it likely comes from a very low-metallicity environment.
The results are published in the MNRAS journal [Srinivasan et al., 2023].

In addition to the astrophysical analysis of binary black holes, in collaboration with
another PhD student, I am designing a proof-of-concept of a novel GW detection pipeline.
We use sparse dictionary coding to reconstruct GW signals buried in detector noise. Distin-
guishing itself from traditional, match filtering-based pipelines, our machine learning-based
technique can rapidly identify the presence of GWs within the detector data. I test the perfor-
mance of the pipeline with injections of GWs from the astrophysical population of merging
black holes generated by my simulations.

Keywords: gravitational waves, galaxies, stars, astrophysics, modeling, machine learn-
ing
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Chapter 1

Introduction

Gravitational wave (GW) astronomy has become a staple topic of discussion in the context
of understanding the astrophysics and origins of compact objects like back holes (BHs) and
neutron stars. The number of detections of binary black holes (BBHs) has exponentially
risen from successive observing runs. In addition to the existing 90 [Abbott et al., 2023]
compact binary coalescence (CBC) detections declared by the LIGO-Virgo-KAGRA (LVK)
collaboration, the advent of the fourth observing run (O4) is expected to bring the number
of detections well into the hundreds [Abbott et al., 2018]. With this wealth of GW data,
we can statistically probe the origins of black holes by combining information from the
detected GW parameters with its progenitor, ie. parent, star formation and evolution models
[Lamberts et al., 2016, O’Shaughnessy et al., 2017, Mapelli et al., 2017, Schneider et al.,
2017, Boco et al., 2019, Neĳssel et al., 2019, Artale et al., 2020, Broekgaarden et al., 2022,
Santoliquido et al., 2022]. The aim of my thesis is to understand the properties of the
progenitor galaxies of BBH mergers that form via the isolated binary evolution of massive
stars.

The poor sky localization capabilities of GW detectors do no permit them to identify
the host galaxies of CBCs [Abbott et al., 2018]. The host galaxy of the first detected
binary neutron star merger, GW170817 [Abbott et al., 2017] was identified by observing
its electromagnetic (EM) counterparts with telescopes with far greater angular resolution
than GW detectors. Unfortunately, most BBH mergers are unlikely to have a detectable EM
counterpart [Veres et al., 2019]. Therefore, to understand their progenitor environment,
we cannot rely on GW or EM observations alone and must include simulations to infer the
formation galaxy parameters. Current literature has highlighted the challenge in predicting
the progenitors of BBH mergers primarily due to uncertainties in modeling their formation
mechanisms [see Mapelli, 2021a, Mandel and Broekgaarden, 2022, for recent reviews].
Two widely accepted formation channels of merging BBHs are isolated binary evolution of
stars [e.g. Bethe and Brown, 1998, Belczynski et al., 2002, Kalogera et al., 2007, Dominik
et al., 2012, Belczynski et al., 2016, Eldridge and Stanway, 2016, Stevenson et al., 2017,
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2 CHAPTER 1. INTRODUCTION

Kruckow et al., 2018, Giacobbo and Mapelli, 2018, Kruckow et al., 2018] and dynamical
interactions of black holes in dense environments such as young star clusters, globular
clusters or nuclear star clusters [e.g. Sigurdsson and Hernquist, 1993, Portegies Zwart and
McMillan, 2000, Rodriguez et al., 2015, Mapelli, 2016, Rodriguez et al., 2016, Askar et al.,
2017, Samsing, 2018, McKernan et al., 2018, Di Carlo et al., 2019, Zevin et al., 2019].

The astrophysical interpretation of GW events comes in different flavors. Some studies
build detailed models for stellar and binary evolution which produce BBH mergers with
global properties, such as masses and spins, that can be compared with observations [Spera
et al., 2019, Marchant et al., 2021, Bavera et al., 2021, Zevin and Bavera, 2022, Bavera
et al., 2023, Dorozsmai and Toonen, 2022]. Other models rely on sets of simplified models
that can be easily used to build entire populations of compact objects, which can be directly
compared with observations [Mapelli et al., 2017, Giacobbo et al., 2018, Mapelli and
Giacobbo, 2018, Mapelli et al., 2019, Baibhav et al., 2019, Broekgaarden et al., 2022, van
Son et al., 2022]. These populations are based on a combination of models of binary
evolution and metallicity-dependent global star formation in the Universe, which can be
built using cosmological simulations, semi-analytic models and/or observations.

Recent studies have highlighted the importance of the star formation model when it
comes to population inference of merging black holes, as these often stem from low-
metallicity progenitor stars. Modeling the whole range of progenitor metallicity across
cosmic history is a key aspect towards understanding compact object mergers but it is far
from being straightforward [Chruslinska and Nelemans, 2019]. One can assume a simple
evolution with redshift [Giacobbo et al., 2018], including a scatter in the metallicity distribu-
tion at all redshifts [Santoliquido et al., 2021]. Models based on cosmological simulations
directly provide redshift-dependent distributions of the metallicity, across different types of
galaxies [Mapelli et al., 2017, Schneider et al., 2017, Artale et al., 2020]. Otherwise, one can
use the combination of the mass-metallicity relation (or the fundamental metallicity relation
Santoliquido et al., 2022) across different galaxy masses with a galaxy stellar mass function
to build a star formation model [Boco et al., 2019, Neĳssel et al., 2019, Broekgaarden et al.,
2022]. These studies find that the choice of star formation model, through the distribution of
metallicity, is equally important as the choice of binary evolution model, when it comes to
determining BBH merger rates. I focus on studying how the uncertainties of the metallicity
distribution throughout cosmic history impact our inference of the progenitor environment
of BBH mergers.

Such an analysis requires both observations of BBHs, and simulations of the formation
and evolution of stars that form the BBHs of the Universe. The former can be found in the
wealth of GW data regarding BBH population properties [Abbott et al., 2023], whereas the
latter requires an understanding of the star formation in the Universe and its binary evolution
mechanisms. To this end, this chapter has been organized into sections that examine and
explain the evolution of the Universe at different scales. In § 1.1, I describe the formation of
the large-scale structure in the Universe, specifically, dark-matter halos and galaxies. Within
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galaxies, in § 1.2 I discuss the star formation rate, its parameterization, and the associated
model uncertainties. Then, looking at a given binary star system, in § 1.3 I discuss various
binary evolution prescriptions used to model the evolution of binaries. Finally, in § 1.4, I
discuss the formation, simulation, and simulated detection of GWs from BBH mergers by
ground-based detectors.

1.1 Formation of large scale structure
In this section, I provide an overview of the formation of large-scale structure, their prop-
erties, and their rate of occurrence based on Mo et al. [2010], Planelles et al. [2015] and
Cimatti et al. [2019]. The underlying framework of any model describing the large-scale
structure of the Universe is the assumed cosmology. One such cosmological framework is
the ΛCDM model which is used to describe the accelerated expansion of the Universe from
the Big Bang, to the emergence of the cosmic microwave background radiation, and up to
the present-day rate of expansion. In this manuscript, I assume a flat ΛCDM cosmology
model with cosmological parameters ΩM = 0.3089, ΩΛ = 0.6911, and Hubble constant 𝐻0 =
67.74 km/s/Mpc [Planck Collaboration et al., 2016]. Within the ΛCDM cosmology, large-
scale structure arises from quantum fluctuations in the matter density of the pre-inflationary
Universe. Eventually, regions of over-density underwent gravitational collapse resulting in
the formation of large-scale structure primarily comprised of dark matter in the shape of
halos. In the early Universe, the process of baryogenesis [Sakharov, 1967] is hypothesized
to have brought about a baryonic asymmetry, ie., matter dominated over anti-matter. Early
dark-matter halos were host to this baryonic matter in the form of hot hydrogen gas. As the
hot gas eventually cooled, they collapsed to form galaxies. Observation-based analytical
models [Tegmark et al., 1997, Barkana and Loeb, 2001] and 3-dimensional N-body nu-
merical simulations [Klypin and Shandarin, 1983] have shown that the earliest dark-matter
halos and the galaxies within emerged at a redshift of 10 to 30, with a typical halo mass
of 105 − 108 M⊙. Over cosmic time, the halos gravitationally interact with each other,
sometimes merging to form larger halos. These halo mergers also led to the merger of their
galaxies, facilitating the growth of galaxies.

A halo merger history describes the redshift evolution of the masses and the number of
previously-formed smaller halos that merged to ultimately form a present-day halo. The
former, earlier halos are known as the progenitors of the latter, present-day halos. The
halo merger history has been theoretically modeled and verified by observations. The
Press-Schechter formalism [Press and Schechter, 1974] is one such mathematical model
that predicts the number of objects (like halos and galaxies) that are formed of a certain
mass at a given time and within a given volume. It is derived by evolving smooth density
perturbations of matter under the influence of gravity and constrained by observations that
indicate a power law for the mass distribution of halos with an exponential cutoff above a
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Figure 1.1: Halo merger history: redshift evolution of a present-day halo of mass 1013 M⊙
as a function of the progenitor halo’s mass ratio 𝑀ratio, defined as the ratio of the masses of
the progenitor and the present-day halo, and the fraction of mass 𝑀frac from the present-day
halo that comes from the progenitor halos with the given mass ratio. The figure was made
using the fit from Cole et al. [2007], based on the extended Press-Schechter formalism
[Lacey and Cole, 1993]. Shown in color is the progenitor halo distribution at different
redshifts.

characteristic mass that increases with time. Better adapted towards mapping present-day
halos with their progenitors, the extended Press-Schechter formalism [Lacey and Cole,
1993] includes a conditional mass function to keep track of the halo merger history. In
order to monitor the history of a halo, the extension accounts for the probability that a halo
of a given mass 𝑀1 Halo at redshift 𝑧1 will have a mass 𝑀2 Halo at a redshift 𝑧2.

To elaborate on a typical merger evolution of a halo in the Universe, I show the halo
merger history of a present-day halo with mass 1013 M⊙ in Figure 1.1. I depict the merger
history of a present-day halo by showing the redshift evolution of the mass ratio of its
progenitor halos. The figure shows that at high redshifts, the progenitor halos are numerous
and have low mass. For example, for redshift 4 and above, all progenitor halos have a
mass that is well below 50% of the present-day halo mass (mass ratio < 0.5). As redshift
decreases, the progenitors get larger through mergers as can be seen in the shift of the halo
mass ratio to higher values. Eventually, the mass fraction of progenitor halos approaches
a delta function and the mass ratio approaches 1, indicating the formation of the massive
present-day halo.

One can model the relation between the mass of galaxies and their corresponding host
halos from cosmological simulations of galaxy formation (such as the FIRE suite Hopkins
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Figure 1.2: Top left Galaxy mass 𝑀Gal as a function of the present-day mass of the
corresponding host halo 𝑀Halo at different redshifts 𝑧, shown in color. This figure was
produced by following the abundance matching technique using the prescription from
Behroozi et al. [2010]. Bottom left Galaxy formation efficiency, defined as the mass
of galaxy formed per unit halo mass, as a function of present-day halo mass. Here, the
efficiency of galaxy formation is quantified by the ratio of the galaxy mass to halo mass.
The dotted black line at present-day MHalo = 1012 M⊙ indicates the typical halo mass
with maximum efficiency of forming galaxies for redshift < 8. Right galaxy stellar mass
function: the number density (Mpc−3 dex−1

MGal
) of galaxies as a function of galaxy mass 𝑀Gal

and 𝑧 using the fit from Tomczak et al. [2014].
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et al., 2014) or using fitting functions that are based on observations of galaxies and
their host-halos (such as the abundance matching technique Behroozi et al., 2010), or a
combination of the two. In this manuscript, I use abundance matching, a method that maps
the rank-order galaxy mass with the rank-order halo mass from observations such that the
heaviest halos contain the heaviest galaxies (due to their large gravitational potential well),
and vice-versa. Figure 1.2, top left, illustrates this relationship. Moreover, it shows that as
we go back in time (increasing redshift), a given present-day halo had progressively smaller
progenitors that hosted progressively smaller galaxies, consistent with halo merger history
(Figure 1.1).

The efficiency of forming galaxies within halos has been observed to depend on the
mass of the halo, and on feedback processes from stellar evolution and the supermassive
black hole at the center of the galaxy. To understand the galaxy formation efficiency for a
given halo mass, I show the galaxy mass formed per unit halo mass in Figure 1.2, bottom
left. The dotted black line at present-day MHalo = 1012 M⊙ indicates the typical halo mass
with maximum efficiency of forming galaxies for redshift < 8. Across redshifts, small halos
(𝑀Halo ≲ 1011 M⊙) fail to form large galaxies due to the halo’s weak gravitational potential
well. Due to their low escape velocity, dwarf galaxies lose the majority of star-forming gas
by stellar feedback processes like winds, radiation of energetic ultraviolet photons capable
of ionizing cold gas, and supernovae explosions from the first generation of stars. On the
other hand, large halos (𝑀Halo ≳ 1013 M⊙) lose efficiency at forming proportionally large
galaxies due to a feedback effect of active galactic nuclei (AGN) at the center of massive
galaxies [Garrison-Kimmel et al., 2013] which heats and disturbs the gas, hampering star
formation.

Ultimately, the relative abundance of galaxies in the Universe is determined by the
merger history of halos and their efficiency of forming galaxies. This can be modeled
by a number density of galaxies as a function of their mass and redshift, known as the
galaxy stellar mass function. In Figure 1.2, right, I show an observation-based fit of the
galaxy stellar mass function from Tomczak et al. [2014]. Generally, across redshift, smaller
galaxies are more numerous. Moreover, with time, the number density of galaxies generally
tends to increase as can be inferred from the increasing area under the galaxy stellar mass
function with decreasing redshift.

1.2 Star formation rate
The star formation rate (SFR) within a galaxy directly depends on the amount of star-forming
gas available within it which can be modeled by the host galaxy’s mass and redshift (or
equivalently, time) of formation. Figure 1.3 shows the observed redshift evolution of the
SFR density (SFRD), commonly referred to as the "cosmic star formation history". The star
formation in the early Universe rose, peaking between redshift 1.5 and 2, and subsequently
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Figure 1.3: The star formation rate density (SFRD) of the Universe as a function of redshift
(from Figure 3 of Behroozi et al. [2013]) based on the data from Madau and Dickinson
[2014]. Shown in black dots with error bars are observations from the ultraviolet and
infrared spectrums (listed in Table 1 of Madau and Dickinson, 2014). The red line and
shaded region correspond to the best fit and the 1 sigma confidence region of the SFRD.

gradually fell. The co-moving SFRD at redshift 7 is approximately equal to that of today.
The observations of the cosmic star formation history come from emission of stars in the
ultraviolet, visible and infrared spectrums from the present-day to redshift 8 [Madau and
Dickinson, 2014]. Due to faint luminosities, observations at high redshifts are sparse and
have large error bars which is also seen in the increasing width of the 90% confidence
region.

The chemical composition of the star-forming gas has a large influence on the evolution
of stars and their binary interactions (§ 1.3.3) which can drastically affect the merger
rate and the mass of black holes. To quantify the stellar chemistry, the metallicity 𝑍 is
defined as the mass fraction of elements heavier than helium, 𝑍 ≔ 𝑀m/𝑀baryons, where
𝑀m refers to the mass of elements heavier than helium. Commonly, the metallicity of the
gas is represented relative to that of the Sun, where the value of solar metallicity Z⊙ is
derived from observations (for e.g., Asplund et al., 2009 find that Z⊙ = 0.014). Based on
observations, the relative fraction of stars of a certain metallicity can be characterized by
the galaxy mass and redshift of formation. The metallicity can therefore also be used to
parameterize the SFR.

At high redshift (𝑧 ≳ 2), the star-forming gas in all galaxies is hydrogen, ie., of low
metallicity. To understand the evolution of metallicity in the Universe, it is important
to understand its evolution within a stellar lifetime. From its birth, until its death, the
metallicity of a star increases due to the fusion of lighter elements into heavier elements.
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This implies that at the end of a star’s life cycle, the metallicity of the ejected gas from
its supernova explosion is higher than the initial metallicity of the star. Therefore, with
time, as large galaxies (of mass 𝑀Gal ≳ 109 M⊙) host successive generations of stars, higher
metallicity in the star-forming gas is accumulated. In contrast, galaxies with low mass (𝑀Gal
<109 M⊙), generally referred to as dwarf galaxies, do not have many generations of stars
and hence maintain a low-metallicity environment.

1.2.1 Metallicity modeling uncertainties
Deriving the metallicity, and hence the abundance of elements heavier than helium, of
star-forming gas in galaxies is not a trivial process. Observationally, it is often easier to
measure the abundance of certain elements such as oxygen, 𝑍O/H = 12 + log10(O/H), where
(O/H) represents the abundance ratio of oxygen to hydrogen. The abundance ratio of other
elements is usually assumed to scale linearly with that of oxygen, maintaining the abundance
ratio with respect to that of the Sun, ie., log10(Z/Z⊙) = log10(O/H) − log10(O/H)⊙ where
Z/Z⊙ represents the relative metallicity with respect to the Sun. However, this assumption
is not necessarily true. For example, oxygen and iron are released into the interstellar
medium of galaxies by different sources and evolve with drastically different timescales (10
Myr and 1 Gyr respectively) [Tinsley, 1979, Nomoto et al., 2013]. As a result, metallicity
measurement from (O/H) abundance deviates from direct measurements of metallicity by
redshift 2. Comparison of the measurements of the two abundances in high redshift (𝑧 ≳
2) galaxies [Steidel et al., 2016, Cullen et al., 2021, Strom et al., 2022] shows that the
metallicity derived from (O/H) is significantly overestimated.

To model the metallicity of star-forming gas in galaxies based on observations, the
mass-metallicity relation (MZR) describes the mean metallicity of the gas as a function
of galaxy mass and redshift. Modeling the MZR strongly depends on the method used to
approximate the oxygen abundance (O/H). Different calibrations can be used to estimate
(O/H) and different fits are used to extrapolate the MZR to high redshifts. The metallicity
inferred from the spectra of massive stars is from measurements in the nearby Universe.

The direct method of estimating (O/H) involves measuring auroral lines from the HII-
regions. However, these emission lines are typically weak (although observable at high 𝑧

(≃ 3) with JWST, Rieke et al., 2019). Instead of direct measurements of (O/H), several
calibrations have been used to estimate the oxygen abundance from stronger emission lines.
Popular calibrations include Pettini and Pagel [2004], which use measurements of the gas
electron temperature, Kobulnicky and Kewley [2004] and Tremonti et al. [2004], which are
based on the photo-ionization mechanism, and large redshift measurements from deep near-
IR spectroscopy as done in Maiolino et al. [2008], later refined by Mannucci et al. [2009].
Beyond the local universe, the metallicity can be measured at 𝑧 ≃ 3 where the ultraviolet
light from the galaxy spectrum is affected by the stellar emission (Damped Lyman 𝛼 (DLA)
measurements Rafelski et al., 2012) and is redshifted into the sensitivity band of optical
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Figure 1.4: The stellar mass-gas phase oxygen abundance relation at redshifts = 0, 0.8, 2.2,
3 from different observations with different calibrations (colored lines and shaded regions),
and cosmological zoom-in simulations (black dots) from Figure 6 of Ma et al. [2016]. The
upper panels highlight the change in the relation using different calibrations for the two
observations.
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telescopes. At higher redshifts (𝑧≳ 3), measurements can be sparse, and a combination
of different observational techniques and simulations must be used. Therefore, connecting
low and high redshift measurements of the MZRs can be challenging.

Observations and simulations of different galaxy masses and their corresponding gas
phase oxygen abundance, ie., 𝑍O/H are shown in Figure 1.4. Generally, the galaxy mass
- oxygen abundance relation shifts to lower metallicities with increasing redshift. This is
consistent with the narrative that the Universe was initially full of low-metallicity gas, which
over time were polluted with heavier "metals" from successive generations of stars.

Modeling the metallicity as a function of galaxy mass and redshift ignores the range
in metallicity seen across galaxies of a given mass. Observations of the metallicity in the
Milky Way [Bergemann et al., 2014] highlight the variance of the metallicity about the
mean metallicity of the MZR. This scatter in the metallicity about the MZR can result
from differences in the galaxy type [Tremonti et al., 2004], from differences at a given
galactocentric radius [Berg et al., 2013], from radial variations within a galaxy [Henry
et al., 2010], and from the low-metallicity concentration seen in the outskirts of galaxies
[Chakrabarti et al., 2017]. The importance and effect of metallicity on stellar and binary
evolution will be made clear in § 1.3.3 and § 2.2.3

1.2.2 Initial condition of binary stars
Star formation occurs when pockets of over-density of star-forming gas begin to collapse
inwards due to their self-gravity [Stahler and Palla, 2004]. The density and temperature of
the gas increase in a runaway process that ultimately forms high-density hot cores which
eventually form the stars of the galaxy. In the context of forming binary stars, it is important
to include the fraction of binaries in stellar systems. The binary fraction of massive stars
seems to be independent of metallicity [Moe and Di Stefano, 2017]. Observations of massive
stars indicate that this is likely to be 0.7 [Sana et al., 2012]. Before modeling the evolution
of binary systems, one must consider the initial conditions of the binary. The initial mass
function (IMF) of stars is an observation-based model of the mass of stars at the time of
formation. Initial studies used a power-law distribution of the IMF, originally adopted by
Salpeter [1955] based on the observed luminosity function of stars. More modern forms
of the IMF like the one by Kroupa [2001] use a series of power-laws to describe the IMF
for all masses. There exist large uncertainties across different models of IMF for low-mass
stars 𝑀 ≲ 0.2 M⊙ [Thies and Kroupa, 2007, Thies and Kroupa, 2008, Kroupa et al., 2013].
This arises due to a number of observational biases and systematic uncertainties in the
observation of the luminosity function and converting it to an IMF [Jeffries, 2012, Luhman,
2012]. However, stars with higher masses have an IMF that is better agreed upon by different
models. Figure 1.5 shows the IMF of different models from Offner et al. [2014]. Note the
discrepancy in the models at low mass and the general agreement at higher stellar-mass
𝑀 ≳ M⊙. In this manuscript, for the purpose of creating binary black holes, I focus on



1.2. STAR FORMATION RATE 11

Figure 1.5: Comparison of the initial mass function (IMF) of different models from Figure 1
of Offner et al. [2014]. For stars more massive than the Sun, the IMF is consistent across
models.

stars that are more massive than the Sun (∼ 20 M⊙). However, the uncertainties in the low
mass spectrum result in the uncertainty in the overall normalization of the IMF. In a binary
system, the mass of the primary star follows the IMF. Mazeh et al. [1992] have shown that the
mass ratio of the binary, based on observations of 23 nearby systems, approximately follows
a uniform distribution, slightly favoring higher mass ratios. The mass of the secondary is
determined by the sampled value of the primary mass and mass ratio.

Finally, uncertainties from the initial conditions of binary systems can arise from the
orbital parameters. From more than 20 massive star surveys, Moe and Di Stefano [2017]
found correlations between the stellar masses, periods, and eccentricities, which I have
ignored here, instead, using the data from Sana et al. [2012]. Incorporating the correlated
initial binary parameters of Moe and Di Stefano [2017] in their BPS simulations, Klencki
et al. [2018] find that the global merger rates of binary black holes decrease by about a
factor 2. Tang et al. [2020] perform a similar analysis with their binary model and show
an increase in the merger rate by a factor of two. These different findings indicate that
one should be careful when introducing new uncertainties and that generalization should
be done with caution.
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1.3 Binary evolution of stars into black holes

1.3.1 Typical massive single star evolution
Massive stars (with a mass of a few tens to hundreds of M⊙) are formed from the collapse
of star-forming gas called molecular clouds or nebulae. At the time of formation, the
star begins its evolution in the main-sequence (MS) phase. MS stars have a characteristic
temperature and brightness that fall within a continuous band of values seen in most stars
of the Universe. The star stays in the MS as long as it continues to fuse hydrogen nuclei
at its core. Throughout the stellar evolution, stars continuously lose mass due to stellar
winds which are expulsions of stellar material, primarily due to radiation pressure (further
discussion in § 1.3.4). The mass loss due to winds increases with increasing metallicity due
to enhanced opacity in the stellar atmosphere.

As the stellar core exhausts its hydrogen supply, fusion stops. The resulting absence
of radiation pressure to counteract the gravitational attraction causes the core to contract.
After the completion of hydrogen buring, the star briefly enters the Hertzsprung gap (HG)
stage. As seen on a Hertzsprung-Russel diagram, very few stars populate the HG region
due to the transient nature of this stage, hence the "gap". Soon after transitioning into an
HG, the contracting core heats to a temperature when helium begins to undergo fusion and
the star begins its supergiant evolution, characterized by its large stellar radius. The core
progressively fuses heavier elements such as carbon, oxygen, neon, etc, until eventually
forming an iron core and the fusion ends. At the culmination of the fusion process, the core
of the massive star collapses. Depending on properties of the star and its core, some of the
massive stars can undergo a direct collapse to form a black hole [Mapelli, 2021c], while
others can undergo a supernova explosion that results in a compact object. The supernova
explosion results in the expulsion of ejecta material, although, a likely stage in the process
is the fallback of some ejecta back into the core. In the case of a supernova explosion, stars
with a pre-supernova mass ≳ 8 M⊙ result in the formation of a black hole or neutron star.
The black hole is given a "kick" from the supernova explosion, characterized by the kick
velocity. The mechanism of the supernova and its associated kicks are further discussed in
§ 1.3.4.

1.3.2 Typical binary evolution of massive stars
Binary black holes (BBHs) can be formed from the binary evolution of massive stars. The
evolution depends on many parameters that describe both the evolution of single stars and
their binary interactions. The process begins with the massive stars formed in the MS
denoted as the zero-age main sequence (ZAMS) stage. Like in the case of single-star
evolution, these stars continuously lose stellar material through winds.
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A mass transfer can initiate when the stellar radius of one star (donor) exceeds its Roche
lobe, resulting in a stable mass transfer from the donor to the accretor star. Stable mass
transfers result in a change in the binary separation through the conservation of orbital
angular momentum. The mass transfer ends when the donor star no longer overflows its
Roche lobe. However, if the donor keeps expanding as a result of the mass loss or if the
separation keeps decreasing, the mass transfer can occur on a dynamical timescale and
undergo a run-away process of unstable mass transfer which results in mass from the donor
star lost to a common envelope (CE) surrounding the binary [Ivanova et al., 2013]. This
process leads to a significant loss in the mass and orbital momentum of the system [Webbink,
1984b, Mapelli, 2020]. The CE provides a drag on the system, significantly shortening the
system’s orbit. If the orbital energy is large enough to eject the common envelope, the
unstable mass transfer phase ends. However, failure to eject the common envelope will
result in the stellar merger of the binary.

The BBH is formed when both stars eventually undergo supernovae explosions. During
these explosions, a significant fraction of mass can be ejected, and the remaining mass
collapses to form a black hole remnant. However, depending on the mass of the pre-
supernova star, the amount of mass that is ejected can vary, sometimes even leaving behind
no remnant. This is the case with the Pair-Instability supernova (PISN) [Rakavy and Shaviv,
1967, Fryer et al., 2001]. The PISN occurs in massive stars (typically 130 - 250 M⊙) where
the electron-positron pair production drains away the radiation energy from the star. This
results in a partial collapse and a subsequent runaway thermonuclear explosion that leaves
no remnant. Stars below the PISN mass range, specifically between 100 and 130 M⊙, can
undergo a pulsational pair-instability supernova (PPISN). Much like the PISN, the PPISN
is driven by spontaneous electron-positron pair production. However, due to the relatively
lower mass of the star in comparison to the PISN case, the star is not blown away. Instead,
mass is lost through successive smaller explosions until eventually, the core collapses,
leaving behind a black hole.

Associated with a supernova explosion is the kick imparted to the black hole. Supernova
kicks can impact the final fate of the BBH by modifying its orbit and potentially unbinding
the binary. These natal kicks are imparted by the conservation of momentum of the binary
due to the mass lost as ejecta [Blaauw, 1961] and possibly because of asymmetric stellar
collapse [Janka and Mueller, 1994, Burrows and Hayes, 1996]. Once the black holes are
formed, through the emission of GWs, the binaries gradually lose orbital angular momentum
and spiral inward until eventually merging. The relation of the delay time 𝑡delay between the
time of the formation of the BBH and its merger [Peters and Mathews, 1963] is as follows,

𝑡delay =
5𝑎4𝑐5

256𝐺3 ` 𝑀 2
Tot BBH

, (1.1)

where 𝑀Tot BBH represents the total mass of the black holes, ` represents the reduced mass
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of the BBH given by (𝑀1 BBH ∗𝑀2 BBH)/(𝑀1 BBH+𝑀2 BBH), and 𝑎 represents the separation
at the time of formation of the BBH. As 𝑡delay is proportional to 𝑎4, the delay time can have
a wide range of values, from tens of million years to the order of a Hubble time or more.
Therefore, for the purpose of forming merging BBHs, it is vital that at the time of formation
of the BBHs, the orbital separation should be small (a few tens of stellar radii); highlighting
the importance of processes like mass transfer and kicks that influence the separation.

Figure 1.6 depicts an example of the binary evolution of stars that ultimately form a
BBH with masses comparable to the first GW detected system. The binary stars are initially
in the ZAMS stage. After about 3.9 Myr, one of the stars completes its hydrogen burning
in the core, and enters the transient HG phase. Soon afterwards, the star becomes a giant,
overfills its Roche lobe, and begins a phase of stable mass transfer between the donor (itself)
and the accretor (the secondary MS) star. During this period of mass transfer, the orbital
separation changes due to angular momentum conservation. After the mass transfer, the
donor star becomes a small, stripped, naked helium MS star, and the secondary MS star has
grown significantly in mass from the accretion. At this stage, each star evolves through their
life cycles. Eventually, at about 4.2 Myr, the primary star undergoes a supernova explosion
and forms black hole. The resulting supernova kick increases the orbital separation slightly
and imparts a small eccentricity to the orbit. After 1.6 Myr, the secondary burns through
the hydrogen in its core, evolves into a HG star, and soon after expands into the giant phase.
This time, the secondary rapidly overflows its Roche lobe and a mass transfer is initiated
between the secondary donor and the primary black hole. However, the mass transfer occurs
on a dynamical timescale and a runaway process leads to the formation of a CE surrounding
the binary. The CE significantly shortens the orbit until eventually being ejected, leaving
behind a black hole-naked helium star binary 39 R⊙ apart. Soon after, the star undergoes a
supernova explosion, and collapses into a black hole. Thus forming a BBH with component
masses 25.6 M⊙ and 30 M⊙. The orbital energy is slowly lost through the emission of GWs
until, after nearly 13.4 Gyr, the BBH merges to form a single black hole of mass 55 M⊙. In
this simulation, 0.6 M⊙ of the total BBH mass is emitted as GW radiation.

1.3.3 Influence of metallicity in stellar evolution
To effectively model the binary stellar evolution of stars until eventually merging as binary
black holes, it is important to understand the effect of metallicity in stellar evolution and
binary interactions. For massive stars, the effect of metallicity is most prominent in wind-
driven mass loss [Pauldrach et al., 1986, Kudritzki et al., 1987, Vink et al., 2001, Mokiem
et al., 2007, Gräfener and Hamann, 2008, Puls et al., 2008, Vink and Sander, 2021].
Depending on the atmospheric opacity of the star, radiation pressure can interact with the
atmosphere and drive stellar winds. Stars with higher metallicity have a higher atmospheric
opacity, resulting in a larger mass loss due to winds. In addition to mass, winds also carry
angular momentum from the star [Maeder and Meynet, 2000]. In comparison to high 𝑍
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Figure 1.6: Example of a binary evolution of stars that eventually form binary black holes
with masses similar to that of the first GW detection (GW150914). I made this illustration
based on the output of a simulation produced using a binary population synthesis (BPS)
code, COSMIC [Breivik et al., 2020]. The stage of the evolution is shown in the center
of each column and the time of the evolution is shown on the left. Also shown in relevant
locations are the mass, distance of separation, and the eccentricity of the orbit. The size
and distance between the circles are indicative of the masses and separation of the binary
(although not to scale). Acronyms: RLOF - Roche lobe overflow, CE - common envelope,
ZAMS - zero-age main sequence star, HG - Hertzsprung gap, CHeB - core He burning,
NaHeMS - naked helium main sequence, and BH - black hole, GWs - gravitational waves.
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stars, this implies that massive low 𝑍 stars have a lower wind-driven mass loss and are more
likely to retain their angular momentum, thus likely to form high-spinning massive black
holes.

In binary star systems, the mass and angular momentum loss from winds can result in
changes to the orbital separation [Schrøder et al., 2021] such that pronounced mass loss in
higher metallicity systems results in wider binaries. Brunish and Truran [1982] and Baraffe
and El Eid [1991] show that the radius of a star and, hence, its Roche lobe, depends on its
metallicity. As a result, metallicity also plays a role in determining mass transfers between
the star overflowing its Roche lobe and its companion. This has far-reaching implications
as mass transfers play a pivotal role in determining the separation of the system, governing
whether they merge within the age of the Universe. Mass transfers can also result in
stripped stars that lack an envelope. Stripped stars tend to eject less mass than typical stars
when undergoing a supernova explosion. Thus, these systems have low supernova kicks,
increasing the likelihood of forming bound compact binaries.

1.3.4 Binary models and their uncertainties
Numerical simulation codes like the MESA code [Paxton et al., 2011] provide accurate
simulations of stars but at the cost of being computationally intensive and time-consuming.
The MESA code is a numerical, 1-dimensional single-star evolution code that is especially
good at predicting the internal structure and evolution of the star. However, the simulation
ends at the pre-supernova stage. The MESA code has also been adopted for binary star
systems using semi-analytical models of binary interactions. The binary interactions and
supernova mechanisms are determined by analytical models similar to those used in popu-
lation synthesis codes. Moreover, most population studies require the evolution of millions
of binaries. Therefore, numerical simulations are not a feasible option. As an alternative,
I resort to codes that use semi-analytical prescriptions of different stages of binary and
single-star evolution. Such binary population synthesis (BPS) codes provide a fast, albeit
approximate, evolution of a population of binary stars. The first widely used BPS code was
developed by Hurley et al. [2002], which forms the basis of many modern BPS codes. In
Hurley et al. [2002], prescriptions of the different evolution stages are denoted by flags and
their values. The formation of merging BBHs is mostly affected by the choice of the flags
(or models) of stellar winds, mass transfers, and supernova mechanisms. In the following
paragraphs, I elaborate on popular prescriptions for these phenomena.

Higher metallicity stars tend to have larger winds. Therefore, most wind prescriptions
[Vink et al., 2001, Vink and de Koter, 2005] have a metallicity dependence. Relevant to
black hole formation, wind parameters like the wind velocity factor and the mass loss near
the Eddington limit can play an important role in determining the mass of the final black
hole. The wind velocity factor is a proportionality constant equating the wind velocity
to the surface escape velocity of the star (Eq. (9) of Hurley et al. [2002]). As described
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in Belczynski et al. [2008], the velocity factor for massive stars can take different values
depending on the metallicity and evolutionary stage of the donor star. For example, it can
have high values (≃ 7.0) for high-metallicity stars, while low-metallicity giant stars have
low values (≃ 0.125). The prescription for the mass loss near the Eddington limit can be
metallicity independent or can be modeled based on the metallicity [Giacobbo et al., 2018].

Modeling the CE requires 3D hydro-dynamical simulations that are not feasible in rapid
population synthesis. Instead, BPS codes typically use a simplified model of Eq. (71) in
Hurley et al. [2002], adapted from the principles of Paczynski [1976], Webbink [1984a],

𝐸bind CE = 𝛼CE(𝐸orb f − 𝐸orb i), (1.2)

where 𝛼CE is the CE efficiency defining the efficiency of transferring orbital energy to the
envelope. 𝐸bind CE is the total binding energy of the envelope, 𝐸orb i and 𝐸orb f show the
orbital energy of the binary at the onset and ejection of the CE. Eq. (1.2) assumes that the
envelope is ejected, ie., the final binding energy of the CE is zero. Large uncertainties are
associated to the CE efficiency. As a result, 𝛼CE can usually have a wide range of values;
from 0.1 to 10. The total binding energy of the envelope, 𝐸bind CE, is related to the sum of
the binding energy of the envelope with the component masses by a binding energy factor.
Popular prescriptions of the binding energy factor include a fixed value like 0.5 (Eq. (69)
of Hurley et al., 2002) or a variable prescription, as given in the Appendix of Claeys et al.
[2014]. The variable prescription, based on the results of the STARS code [Eggleton, 1971,
Pols et al., 1995], assigns different values of the binding energy factor based on whether
the star is hydrogen-rich or helium-rich. For example, in hydrogen-rich stars, the binding
energy factor is a function of the mass of the convective envelope to distinguish between
stars with radiative and deep convective envelopes. The prescription also depends on the
type of star (e.g. Main sequence, HG, AGB). Uncertainties also exist in the calculation of
the initial orbital energy (𝐸orb i). For example, one method is to calculate the orbital energy
with just the binary’s core masses as per Eq. (70) of Hurley et al. [2002],

𝐸orb,i =
G𝑀2(𝑀e + 𝑀c1)

2𝑎i
, (1.3)

or with core + envelope mass from the de Kool [1990] prescription,

𝐸orb,i =
G𝑀c2𝑀c1

2𝑎i
, (1.4)

where 𝑎i is the initial separation and 𝑀e, 𝑀c1, 𝑀2, 𝑀c2 are the masses of the envelope,
core of the primary star, secondary star, and the core of the secondary star respectively.
Finally, the onset of CE is determined by the critical mass ratio of the donor and accretor
stars which depends on the state of the donor star (MS, HG, Asymptotic Giant Branch, etc).
Uncertainties and different assumptions have led to multiple competing critical mass ratio
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models [Hjellming and Webbink, 1987, Hurley et al., 2002, Belczynski et al., 2008, Claeys
et al., 2014, Neĳssel et al., 2019].

An accurate supernova kick model is essential to evaluate the final separation of black
holes or even the disruptions of binaries. Unlike neutron stars, we do not have observational
data for black hole kicks and must instead base models on neutron star data. Observations
of pulsar kicks show a Maxwellian distribution with the dispersion parameter set to 265
km/s. Black hole kick models are modifications to the distribution of pulsar kicks. Popular
models prescribe the supernova kick of black holes by re-scaling the observed distribution
of neutron star kicks using the conservation of momentum involving different functions of
the ejecta mass, remnant mass, and initial masses [Bray and Eldridge, 2016, Giacobbo and
Mapelli, 2020].

The prescription of the supernova can influence the mass of the remnant drastically.
Some models account for a fallback of ejecta material back into the core of the proto-
neutron star at the center of the supernova. This can occur when the material that is initially
shocked away from the core interacts with in-falling matter and slows below the escape
velocity. Depending on the delay between the supernova explosion and the fallback of
matter, one can have a rapid or delayed fallback of matter [Fryer et al., 2012] which can
determine the presence or absence of a mass gap between neutron stars and black holes.
The PISN and PPISN mechanisms are modeled by simulations of single star evolution of
massive stars [Marchant et al., 2019, Woosley, 2019] and can also include the effect of close
binaries on the supernova mechanism [Spera and Mapelli, 2017].

1.3.5 Example of a binary population evolution
To illustrate the results of a BPS simulation, I show, in Figure 1.7, the relation between
the total ZAMS mass and the mass of the post-merger remnant black hole for different
metallicities using the default models of the BPS code, COSMIC [Breivik et al., 2020].
High metallicity binaries tend to have light pre-supernova stars which can hamper BH
formation or result in small BHs. This is due to high winds causing large mass loss during
the evolution of the binary. The low-mass BHs are subject to large BH kicks, potentially
disrupting the binary. Irrespective of metallicity, there appear to be two channels of binary
evolution based on whether the binary was formed with equal mass or not. Systems with
nearly equal masses have similar stellar evolution timescales. During their evolution, the
binaries enter giant phases together, where both stars undergo a common envelope phase
where their respective stellar envelopes are stripped, leaving behind a naked helium core.
The double CE event results in significant mass loss. Hence, equal mass ZAMS tend to form
smaller remnants. In contrast, unequal mass ZAMS stars do not necessarily both undergo
CE, thus resulting in lower mass loss and larger remnants. The drop in final remnant mass
for total ZAMS mass ≳ 170 M⊙ is due to the present default PISN prescription in COSMIC.
As shown in Table 1 of Marchant et al. [2019], as the pre-supernova mass of the progenitor
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Figure 1.7: Remnant black hole mass 𝑀f versus total initial stellar mass 𝑀Tot ZAMS from
my default binary population synthesis simulation for metallicities 0.01 Z⊙ (red), 0.1 Z⊙
(green) and 1.0 Z⊙ (blue). The color map represents the probability density function for
each metallicity.

stars increases beyond ≳ 50 M⊙, there is significant mass loss due to the PPISN mechanism
resulting in a black hole with progressively smaller mass.

1.4 Gravitational waves from binary black holes
GWs are solutions to Einstein’s equations and they manifest as space-time deformations
that travel at the speed of light. GWs are generated when an accelerating mass causes
the quadrupole moment tensor to vary with time [Maggiore, 2007]. So far, the only GW
sources that are detectable by ground-based detectors are coalescences of compact binary
objects (black holes or neutron stars). In the following sections, I describe the properties
and detection of GWs from these compact binary coalescences.

1.4.1 Gravitational wave properties
The GW emission from a compact binary has three basic stages, namely, the inspiral, merger,
and ringdown. The evolution of the waveform during the inspiral can be approximated by
post-Newtonian expansions. The merger, due to the highly non-linear regime of gravity,
is obtained using numerical relativity simulations. And, the ringdown waveform follows
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an exponentially damped sinusoid. For accurate GW simulation, we are required to model
these three phases. General relativity dictates that these waves have two polarizations.
Using the far-field approximation to simplify the equations for GWs from distant merging
compact binaries, the GW strains for the two polarizations are

ℎ+(𝑡) =
4

𝑐4𝐷L
(𝐺M)5/3(𝜋 𝑓GW)2/3

(
1 + 𝑐𝑜𝑠2]

2

)
𝑐𝑜𝑠(2𝜋 𝑓GW𝑡 + 𝜙0), (1.5)

ℎ×(𝑡) =
4

𝑐4𝐷L
(𝐺M)5/3(𝜋 𝑓GW)2/3𝑐𝑜𝑠 ] 𝑠𝑖𝑛(2𝜋 𝑓GW𝑡 + 𝜙0), (1.6)

where ℎ+ and ℎ× are the "plus" and "cross" polarizations. 𝐷L is the luminosity distance
to the source, 𝑡 is the time, and ] is the inclination defined as the angle between the line of
sight of the source and the axis of rotation of the binary. During the inspiral of the binary,
the frequency 𝑓GW of the GW (which is twice the orbital frequency for circular binaries) is
given by:

𝑓GW(𝑡) = 1
𝜋

(
5

256
1

(𝑡c − 𝑡)

)3/8 (
𝐺M
𝑐3

)−5/8
, (1.7)

where, 𝑡c is the time of coalescence (such that t < 𝑡c) and M is the chirp mass of the binary,
defined as,

M =
(𝑚1𝑚2) (3/5)

(𝑚1 + 𝑚2) (1/5)
, (1.8)

where 𝑚1 and 𝑚2 are the component masses in the detector frame of reference, ie., the
redshifted masses. The detector frame and source frame masses are related as 𝑀Detector =

𝑀Source(1 + 𝑧), where 𝑧 is the cosmological redshift. Eq. (1.7) shows that the frequency
increases with time indicating that the orbital frequency also increases. Conservation of
angular momentum dictates that the orbit must therefore shrink until eventually merging.
Like the inspiral, the frequency of the merger is also determined by the masses and is
approximately equal to 15 𝑘𝐻𝑧/(𝑚1 + 𝑚2) Centrella et al. [2010].

As briefly mentioned in § 1.3.2 and shown in Figure 1.6, the delay time between the
formation of the BBH and its eventual merger can be very large and is almost always the
stage of binary evolution with the longest time duration. This is due to the relatively low
amount of orbital energy that is lost in the form of GWs, at least during the inspiral. Current
GW detectors are only able to detect the high frequency parts of the signal, ie., the pre-
merger and merger phases of BBHs. As a result, we can only detect the GWs of BBHs that
merge. Hence, the delay time is an important factor that determines GW sources that are
detectable.
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Figure 1.8: Power spectral density of the three GW detector network during the second
half of the third observing run (O3b) of the LIGO-Virgo-Kagra collaboration [Abbott et al.,
2023].

1.4.2 Gravitational wave detector network
Ground-based GW detectors are based on the Michelson’s interferometer and are capable
of detecting strain amplitude of the order 10−21. At the time of writing the thesis, the GW
detectors that are observing sources formed a 3-detector network of LIGO Hanford, LIGO
Livingston, and Virgo, with a fourth detector, KAGRA, that has just become operational.
LIGO Hanford and LIGO Livingston are located in the USA, Virgo is in Italy, and KAGRA
is located in Japan. The ’L’ shaped detectors have perpendicular arms, each of length 4 km
for the two LIGO detectors and 3 km for the Virgo and KAGRA detectors. A larger number
of detectors helps improve the sky sensitivity of the network of detectors and helps increase
confidence in the detection of a particular GW. The GW detectors have an antenna response
function, 𝐹+ and 𝐹×, that describes the response of the detector to each polarization and
which depends on the sky position of the source. The measured strain, h(t), is the projection
of the two GW polarizations onto the antenna response function of the detector

ℎ(𝑡) = 𝐹+(\, 𝜙) × ℎ+(𝑡) + 𝐹×(\, 𝜙) × ℎ×(𝑡), (1.9)

where \ and 𝜙 are the source sky coordinates.
The noise and the frequency response of a detector are fully characterized by the

one-sided power spectral density 𝑆𝑛 ( 𝑓 ) which is given by the Fourier transform of the
auto-correlation of the noise in the detector
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𝑆𝑛 ( 𝑓 ) = 2
∫ ∞

−∞
⟨𝑛(𝑡 + 𝜏)𝑛(𝑡)⟩𝑒−𝑖2𝜋 𝑓 𝜏𝑑𝜏, (1.10)

where the angle brackets ⟨ ⟩ denote an ensemble average over many noise realisations.
Figure 1.8 shows the one-side PSD, 𝑆𝑛 ( 𝑓 ), of the three GW detectors during the third GW
observing run (in early 2020). As louder signals are more likely to be detected, there is
an observational bias towards GWs with greater amplitude, ie., massive black holes and
nearby mergers. However, as shown in Figure 1.8, ground-based detectors are typically
sensitive to GWs with frequencies greater than 10 Hz which places a lower limit on the
merger frequency. As a consequence, current ground-based detectors can detect GWs from
black hole mergers up to a total mass of a few hundred M⊙. To quantify the strength of the
signal, one uses the optimal signal-to-noise ratio (SNR), 𝜌opt described below

𝜌2
opt = 4

∫ +∞

0

| ℎ̃( 𝑓 ) |2
𝑆n( 𝑓 )

d 𝑓 , (1.11)

where ℎ̃( 𝑓 ) is the Fourier transform of the GW signal, and 𝑆n( 𝑓 ) is the one-sided PSD. The
optimal SNR is essentially the autocorrelation of the whitened signal.

When simulating the GW signal, one can compute the GW waveforms using often
time-consuming, but very accurate, numerical relativity codes [Boyle et al., 2019] or using
fast, and arguably slightly inaccurate, waveform approximations. For the purpose of this
study, I use the IMRPhenomD [Hannam et al., 2014] waveform approximation that models
the phenomenology of the three phases.

1.5 Unanswered questions
GW detectors have been collecting data since September 2015 with the seminal detection of
GW150914. Inter-spaced between periods of observations are periods when detectors are
upgraded in order to improve their sensitivity to observe further into the Universe. By the
end of the third observing run of the LIGO-Virgo detectors, there have been over 80 confident
detections of BBH mergers whose properties are listed in Abbott et al. [2023]. This catalog
of mergers provides observational data about the rates of mergers, the mass spectrum, and
spin distribution of black holes which can be used to carry out a population analysis. The
fourth observing run, O4, began on 24 May 2023. At the time of writing the thesis, after just
8 weeks of observations, we already have over 20 confident GW alerts. By the end of O4,
we expect to more than double the number of GW detections. With this wealth of data, the
stellar physics community have begun to analyze the astrophysical origins of binary black
holes. Figure 1.9 shows a mass comparison of the black holes detected via GWs and through
electromagnetic (EM) observations. There is an apparent mass disparity between the two
detection channels. Moreover, the spin distribution of EM-detected and GW-detected black
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Figure 1.9: Black holes in the stellar graveyard: illustration of the black holes detected
from GW (blue) and EM (red) observations by LIGO-Virgo / Aaron Geller / Northwestern
University. The size of the circles are indicative (but not to scale) of the black hole mass.

holes show significant tension, at the 99.9% level [Fishbach and Kalogera, 2022]. The
discrepancy between the populations of black holes (a) can potentially arise due to different
observational biases between GW and EM detectors [Liotine et al., 2023], or, (b) can perhaps
indicate an underlying difference in the astrophysical origins of black holes observed by the
two detection channels. In this thesis, I would like to probe the latter, by understanding the
environment in which these black holes form.

Typical sources of EM-detected stellar-mass black holes come from black hole X-ray
binaries [Corral-Santana et al., 2016, Fortin et al., 2023]. These systems are comprised of
a stellar-mass black hole in a binary with a companion star that has overflown its Roche
lobe. During the stable mass transfer of gas from the star into the black hole, an accretion
disk can sometimes emerge, resulting in the emission of soft or hard X-ray emission or, in
some cases, soft gamma-rays. These black hole-star systems are classified into categories
(low, intermediate, and high mass X-ray binaries) based on the mass of the component
star. There have been around 70 candidates of black hole X-ray binaries (listed in the
online BlackCAT catalog Corral-Santana et al., 2016). Most are in the Milky Way and
only a few are extragalactic. We have an indication of the host galaxy and the environment
within. Some information can be gathered on the metallicity based on observations of the
companion star. However, in contrast to EM telescopes, current GW detectors lack the sky
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and distance sensitivity to precisely locate the galaxy of black hole mergers. Therefore, the
galactic environment of GW-detected binary black holes is unlikely to be observed directly.

Hence, I resort to model-based simulations that produce a representative population of
the BBH mergers in the Universe to extract information about the progenitor environment. I
use LVK observations of the merger rate and black hole mass spectrum [Abbott et al., 2023]
to validate the veracity of a model of the Universe. I use a collection of probable models
of the Universe to map merging black hole properties (like masses, distance of mergers,
and merger rate) to their progenitor properties (metallicity, galaxy mass, redshift of star
formation) to better understand the relation between the black holes we observe and their
astrophysical environment.



Chapter 2

Merging binary black hole population
simulation

To understand the progenitor environment of merging binary black holes (mBBHs), I create
a set of models that combine star formation rate (SFR) models and binary stellar evolution
models. I parametrize the star formation environment by the present-day formation galaxy
mass 𝑀Gal, the metallicity of star-forming gas in the galaxy 𝑍 , and the redshift of star
formation 𝑧f (§ 2.1). Using a binary population synthesis code, I produce a representative
population of mBBHs from binary systems with different metallicities (§ 2.2). In § 2.3,
I convolve the star formation rate with the binary models to get the astrophysical merger
rate of mBBHs and the formation rate of their progenitors. Finally, I generate the GW
signals emitted by these systems and simulate their detection by the LIGO-Virgo three-
detector network considering their sensitivity during the third observing run. I describe the
construction of my simulation in the flowchart shown in Figure 2.1.

2.1 Star formation rate
The SFR describes the mass accretion rate of the formation of stars in the Universe.
Typically, the SFR is represented as a function of the redshift of formation 𝑧f . However, as
I am interested in eventually modeling and understanding the progenitor formation galaxy
environment of merging black holes, I must also incorporate the formation galaxy properties
into the SFR. The mass of the formation galaxy, 𝑀Gal, influences the amount of star-forming
gas available to form binary systems. In addition, the metallicity of the star-forming gas, 𝑍 ,
is correlated with 𝑀Gal and also strongly influences the evolution of the binary star systems.
Thus, for the purpose of producing merger rates of binary black holes, I am interested in
building a 3-dimensional model of the SFR as a function of 𝑍 , 𝑀Gal, and 𝑧f . To this end, I
follow a modified version of the model proposed in Lamberts et al. [2016].

25
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Figure 2.1: Workflow of my pipeline to simulate the merging BBH population. First, I model
the star formation rate as a function of metallicity, galaxy mass, and redshift of formation.
Then, the astrophysical formation rate is obtained by integrating the star formation rates
with the binary population synthesis of binary stars that form merging binary black holes.
The detection rate of black holes mergers is calculated by simulating the detection process
of gravitational waves emitted by the astrophysical population.

2.1.1 Galaxy mass and redshift dependence of the SFR
To develop the 3-dimensional SFR, I first use the star formation history (SFH) from Behroozi
et al. [2013] which provides an observation-based fit of the average SFR in a given dark-
matter halo at a given redshift. I use the SFH from Behroozi et al. [2013] as it is a
self-consistent relation that accounts for observational uncertainties and biases, and also
implicitly incorporates the halo merger history (for more information, see discussion in
§ 1.1) using dark matter simulations.

Figure 2.2 shows the SFH where the average observed SFR (in units M⊙ yr−1) is shown as
a function of redshift 𝑧f and dark-matter halo with a present-day halo mass 𝑀Halo. Generally,
massive halos have large SFRs that peak at 𝑧f ≃ 2. However, unlike the SFR, the efficiency of
star formation in halos increases up to 𝑀Halo = 1012 M⊙ and falls thereafter (see discussion
of Figure 1.2, left). Using the abundance matching relation between present-day halo mass
and the corresponding present-day galaxy mass 𝑀Gal, I can express the SFH as a function
of 𝑀Gal and 𝑧f . The SFH(𝑀Gal, 𝑧f) only describes the star formation for a given galaxy
mass. To account for the number density of galaxies as a function of 𝑀Gal, I use the galaxy
stellar mass function d2𝑁Gal (𝑀Gal)

dlog 𝑀Gal d𝑉c
derived from observations. For my analysis, I use the

galaxy stellar mass function fitted by Tomczak et al. [2014] (Figure 1.2, right). However, it
is important to note that observational errors in the galaxy stellar mass relation, especially
at higher redshift, result in model uncertainties [Neĳssel et al., 2019]. Multiplying the
SFH(𝑀Gal, 𝑧f) by the galaxy stellar mass function at 𝑧f = 0, I produce the SFR density
(SFRD) as a function of present-day galaxy mass and redshift.
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Figure 2.2: Star formation history from Behroozi et al. [2013] shown in the color map, as a
function of present-day dark-matter halo mass 𝑀Halo and formation redshift 𝑧f .

2.1.2 Metallicity dependence of the SFR
In this analysis, I assume that the solar metallicity Z⊙ = 0.014 [Asplund et al., 2009]. To
model the metallicity of star-forming gas in galaxies, I use the mass-metallicity relation
(MZR). As described in § 1.2.1, large uncertainties in the MZR arises from different
calibrations. In order to probe the effect of different metallicity models in the progenitor
environment of mBBHs, I incorporate the following MZR calibrations that were explored in
the comprehensive study of Chruślińska [2022]: Kobulnicky and Kewley [2004], Pettini and
Pagel [2004], Tremonti et al. [2004], and Mannucci et al. [2009]. I chose these calibrations
also due to their large differences in the MZR. In addition, I also probe different models
of extrapolating the MZR to higher redshifts (𝑧f ≳ 3). I use two fits of the MZR with
significantly different models at high redshifts. The first fit is prescribed in Eq. (3) and
Eq. (4) and Table 2 of Chruslinska and Nelemans [2019] for the aforementioned metallicity
calibrations (whose MZRs will be henceforth denoted as PP04, KK04, T04, and M09
respectively). My second fit is provided by Ma et al. [2016] for the Pettini and Pagel
[2004] and Kobulnicky and Kewley [2004] calibrations (MZRs denoted as PP04_Ma16
and KK04_Ma16 respectively) which are based on high-resolution cosmological zoom-in
simulations of galaxy formation using the FIRE suite [Hopkins et al., 2014] and consistent
with observations at low redshift. Due to the large uncertainties in the calibrations and
extrapolation to higher redshift, I explore all six MZRs in my analysis. By default, I use the
MZR of KK04_Ma16 as it shows reasonable consistency with observations at low redshift.

Figure 2.3 shows the MZRs for different calibrations and redshift extrapolation consid-
ered in my analysis. The solid lines represent the fits of Chruslinska and Nelemans [2019]
(Ch19) and the dashed lines are that of Ma et al. [2016] (Ma16). The Ch19 fits assumes a
broken power-law in the MZR with a turnover point at 𝑀Gal ≃ 109.7 M⊙. In contrast, Ma16
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Figure 2.3: Mass metallicity relation (MZR) for different calibrations and redshift fits. The
MZR is represented as a function of the oxygen abundance, 12 + log(O/H) and the galaxy
mass 𝑀Gal. The colors represent the MZR at different redshifts. The calibrations with
the redshift extrapolation fit are respectively (clockwise from top-left): Pettini and Pagel
[2004] calibration with Ch19 [Chruslinska and Nelemans, 2019] fit (solid) and Ma16 [Ma
et al., 2016] fit (dashed), Kobulnicky and Kewley [2004] calibration with Ch19 fit (solid)
and Ma16 (dashed) fit, Tremonti et al. [2004] calibration with Ch19 fit, and Mannucci et al.
[2009] calibration with Ch19 fit.
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Figure 2.4: Fraction of stars in a given metallicity bin as a function of galaxy mass and
redshift. The color bar represents the fraction of stars within a metallicity bin of size 0.2
dex, centered at 0.01 Z⊙ (left), 0.1 Z⊙ (center), and Z⊙ (right) respectively. The white
regions contribute to near-zero star fraction.

assumes a power-law description of the MZR. Moreover, comparing the MZR extrapolation
at high redshift (𝑧f ≳ 2.5), Ma16 shows very little variation, whereas Ch19 extrapolates
the low redshift trend of the MZR to high redshifts as well. Hence, Ch19 shows a constant
shift of the MZR towards lower metallicities with increasing redshifts, without changes to
its dependence on galaxy mass.

Accounting for variance around the mean metallicity, I approximate the metallicity dis-
tribution in a galaxy as a Normal distribution N with a mean metallicity from the MZR and
a scatter 𝜎 of three origins: ≃ 0.1 dex due to differences between galaxies [Tremonti et al.,
2004], ≃ 0.2 dex due to radial variations within a galaxy [Henry et al., 2010] and ≃ 0.2 dex
for differences at a given galactocentric radius [Berg et al., 2013]. Adding the contributions
in quadrature, I get 𝜎 = 0.3 dex. Thus, the fraction Ψ(𝑍 ,𝑀Gal,𝑧f) of stars forming within a
metallicity bin of size Δlog Z is the integral of N(`= 12 + log10(𝑂/𝐻), 𝜎= 0.3) over the
metallicity bins of 𝑍 .

Taking an example MZR of KK04_Ma16, Figure 2.4 shows the fraction of stars for
different metallicities as a function of 𝑀Gal(𝑧f=0) and 𝑧f . I show that different metallicities
dominate in different redshift and galaxy mass ranges. Low-metallicity stars tend to form
in low-mass galaxies (𝑀Gal ≲ 109 M⊙) at high redshifts (𝑧f ≳ 3). Conversely, high
metallicity stars tend to arise in larger galaxies (𝑀Gal ≲ 1010 M⊙) at all redshifts. Stars
with intermediate metallicities (𝑍 ≃ 0.1 Z⊙) can form in low-mass galaxies at low redshift
and high-mass galaxies at high redshift.
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Figure 2.5: Star formation history for different metallicities in my default model. Star
formation rate density (SFRD), shown in the color map, as a function of present-day galaxy
mass 𝑀Gal and formation redshift 𝑧f or look-back time 𝑡f for metallicities 0.01 Z⊙ (left),
0.1 Z⊙ (center) and 1.0 Z⊙ (right). The contour lines, in decreasing order of line width,
contain the 90th, 50th and 10th percentile of the SFRD. This particular SFRD is generated
using the mass-metallicity relation from the Ma et al. [2016] fit for the Kobulnicky and
Kewley [2004] calibration (KK04_Ma16).

2.1.3 Constructing the SFR

I construct the SFRD d4𝑀∗
d𝑉c d𝑡f dlog𝑀Gal dlog𝑍 as a function of 𝑀Gal, 𝑍 , 𝑧f by incorporating the star

formation history of halos, the galaxy mass to dark-matter halo mass abundance matching,
the galaxy stellar mass function, and the metallicity dependence of star formation

d4𝑀∗(𝑍, 𝑀Gal, 𝑧f)
d𝑉c d𝑡f dlog𝑀Gal dlog𝑍

=
d𝑀∗(𝑀Gal, 𝑧f)

d𝑡f
× d2𝑁Gal(𝑀Gal, 𝑧f)

dlog𝑀Gal d𝑉c

× dΨ(𝑍, 𝑀Gal, 𝑧f)
dlog𝑍

, (2.1)

where d𝑀∗ (𝑀Gal,𝑧f)
d𝑡f is the star formation history as a function of 𝑀Gal and 𝑧f . Following

the limits on 𝑀Gal and 𝑧f from Behroozi et al. [2013], I span the ranges 107 − 1011.25 M⊙
and 0 − 8 respectively. The range of metallicity covered by the COSMIC BPS code is from
10−4 to 1.78 × 10−2. I use these ranges for my global model of merging black holes. Upon
checking for robustness to different bin-sizes (further elaborated in § 2.1.4), the galaxy
mass is logarithmically spaced with 200 samples, the redshift of formation is distributed
uniformly in look-back time in intervals of 100 Myr. The number of metallicity bins is
limited by the computational cost of running BPS simulations and will be defined in § 2.2.

I show the SFRD as a function of 𝑀Gal, and 𝑧f in Figure 2.5 for the KK04_Ma16 model.
Globally, the peak of star formation occurs at 𝑧f ≃ 2.5, in galaxies larger than the Milky-Way
(𝑀Gal ≃ 1011 M⊙) at nearly solar metallicity. Very low metallicity stars (𝑍 ≃ 0.01 Z⊙) are
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Figure 2.6: Star formation history as a function of metallicity for the different mass-
metallicity models that I study. Clock-wise from the top-left, I show the star formation
rate density based on different mass-metallicity relations: Ma et al. [2016] fit for Kobul-
nicky and Kewley [2004] (KK04_Ma16), Ma et al. [2016] fit for Pettini and Pagel [2004]
(PP04_Ma16), Chruslinska and Nelemans [2019] fit based on Mannucci et al. [2009] refine-
ment of Maiolino et al. [2008] (M09), Chruslinska and Nelemans [2019] fit for Tremonti
et al. [2004] (T04), Chruslinska and Nelemans [2019] fit for Pettini and Pagel [2004] (PP04)
and Chruslinska and Nelemans [2019] fit for Kobulnicky and Kewley [2004] (KK04). The
contour lines in decreasing order of line width, contain the 90th, 50th and 10th percentile of
the SFRD, with the peak shown by ’+’.
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Figure 2.7: Comparing the star formation rate density of the Universe as function of redshift
(from Figure 3 of Behroozi et al. [2013]) based on the data from Madau and Dickinson
[2014] with my model for different bin sizes: coarse binning in 𝑧f (left), coarse binning in
𝑀Gal (center), converged distribution (right). The blue line represents the SFRD from my
model. The black dots with error bars are observations and the red line and shaded region
correspond to the best fit and the 1 sigma confidence region of the SFRD.

few in number and tend to form in dwarf galaxies (𝑀Gal ≲ 109 M⊙) at high redshifts (2 < 𝑧f
< 4). In contrast, high metallicity (𝑍 ≃ Z⊙) stars are more numerous and are predominantly
formed in large galaxies (𝑀Gal ≳ 1010 M⊙) over a wide range of redshifts. Stars with
metallicity 𝑍 ≃ 0.1 Z⊙ can form in all types of galaxies. They are formed in dwarf galaxies
at low redshift (𝑧f < 1), average sized galaxies (109 to 1010 M⊙) at high redshifts (2 < 𝑧f <4),
and large galaxies at very high redshifts (𝑧f > 4).

Figure 2.6 shows the SFRD as a function of 𝑍 , and 𝑧f for the six different SFR/MZR
models. The distributions show different peak values in terms of metallicity. The KK04
calibration has the highest mode of metallicity (𝑍 ≃ Z⊙), followed by the mode of the M09
and T04 calibrations. The PP04 calibration shows the lowest mode of metallicity (𝑍 ≃
0.5). Comparing the 90% contours of the SFRD in different extrapolated fits of the MZR
at high redshift (𝑧f ≳ 3), the Ma_16 fits (corresponding to SFR/MZR of KK04_Ma16 and
PP04_Ma16) show that most stars are formed with 𝑍 ≳ 0.1 Z⊙. In contrast, fits which
consider a smooth drop in the MZR with redshift (corresponding to SFR/MZR of KK04,
PP04, T04 and M09) predict that, for 𝑧 𝑓 > 3, most stars are formed with 𝑍 ≲ 0.1 Z⊙.

As I am interested in binary systems and their rate of formation, I include the fraction of
binaries among stellar systems, ie., the binary fraction, into the SFRD. Based on observations
of massive stars [Sana et al., 2012], it is set to a constant value of 0.7.

2.1.4 Testing the SFR
I compare my SFRD with observational data, specifically, the observed SFR as function of
redshift [Madau and Dickinson, 2014]. I integrate the SFRD along the 𝑀Gal and 𝑍 axes to
produce the SFRD shown in Figure 2.7. In comparison to the finely binned case, coarse
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binning of the time of formation (or equivalently 𝑧f) brings the SFRD to lower values and
coarse binning of the 𝑀Gal artificially brings the rates to higher values. Although only 2
scenarios of large bin sizes is shown here, progressively coarse binning further amplifies this
effect. The size of the bins for the converged SFR relation corresponds to 0.02 dex in galaxy
mass, 1 Myr in the time of formation. As the SFRD is integrated over the metallicity, all bin
sizes of metallicity and different SFR/MZR models produce the same relation. The bin size
in metallicity is therefore determined by the computational demand of the binary evolution
codes (§ 2.2). The SFRD from my model is relatively consistent with observations at low
redshifts. At higher redshifts (𝑧f ≳ 0.5), deviation can arise due to improper modeling of
the metallicity dependence of the SFR as elaborated in studies like Neĳssel et al. [2019],
Langer and Norman [2006].

2.1.5 Programming optimizations
A key improvement I introduce into my adaptation of the program used to produce the SFR
in Lamberts et al. [2016] is a vastly more time efficient algorithm by 5 to 6 orders of mag-
nitude. The current version of my code can produce the SFRD within a second. The same,
run using the original Lamberts et al. [2016] code would take well over the duration of my
PhD to compute. This was possible using an algorithm that uses existing optimized func-
tions in built-in python libraries (numpy, scipy), hashing complicated and time-consuming
integration (eg. cosmology-based conversion between time and redshift) into simpler fits,
and using a few basic dynamic programming and pre-computation techniques that employ
the use of stored data. The improvement in the computational complexity allows me to
probe 2 orders of magnitude of finer binning along the three axes of the SFR for a fraction
of the running time. As discussed in Figure 2.7, fine bin sizes along both the 𝑧f and 𝑀Gal
axes is essential to produce a converging rate distribution.

2.2 Binary population synthesis
In order to understand the galactic environments that produce mBBHs, I simulate different
models of the SFR (§ 2.1) and binary evolution to produce an astrophysical population of
mBBHs which can then be used to map back to its progenitor properties. To produce a
catalog of mBBHs for a given model of binary evolution, I use COSMIC [Breivik et al.,
2020] to semi-analytically evolve binary star systems. From the catalog of mergers produced
for different metallicities, I identify a representative sub-population of binary star systems
with varying metallicities 𝑍 and binary parameters \BPS that ultimately form merging binary
black holes (mBBHs), denoted by 𝑃𝑜𝑝BPS(𝑍 , \BPS). I space the metallicities given in § 2.1
in 22 log-spaced bins, optimized for computational efficiency and checking for convergence
in the 𝑃𝑜𝑝BPS population to different binning.
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For every metallicity, 𝑍 , I use COSMIC to iteratively sample and evolve binary zero-age
main sequence (ZAMS) stars, selecting those that form mBBHs until recovering a con-
verging distribution of BBH stellar-masses and orbital parameters at the time of formation
with a tolerance mismatch of at most 10−4. The primary star mass is sampled from the
initial mass function in Kroupa [2001] between 15 and 100 M⊙and the secondary mass
is sampled from a uniform mass distribution from 15 M⊙ to primary mass. The binary
fraction is already incorporated into the SFR and is not used in the COSMIC simulations.
The orbital parameters are sampled from Sana et al. [2012]. For each BPS model, across
all metallicities, I evolve 1.2 × 1011 M⊙ binary ZAMS star masses, forming a converging
population of 2.2 × 106 progenitors of mBBHs. Due to the large number of binary simula-
tions required for this analysis, I cannot use numerical simulations such as the MESA code.
For example, García et al. [2021] uses MESA to perform a targeted simulation of ∼ 66,000
stellar binaries. In comparison, my simulations span a wider range of initial conditions for
40 binary evolution models, requiring 109 binary simulations.

The synthetic catalogs of binary stars allow me to compute the efficiency of forming
mBBHs from binary stars, defined as the number of mBBH progenitors per unit mass of
initial binary stars.

[mBBH(𝑍) =
𝑛BPS(𝑍)
𝑀BPS(𝑍)

, (2.2)

where 𝑀BPS is the total initial stellar-mass sampled to produce 𝑃𝑜𝑝BPS and 𝑛BPS is the
number of mergers.

2.2.1 Establishing parameters explored
In this study, the default values of the binary evolution models (or COSMIC flags) have
been set to values prescribed by the COSMIC documentation, v3.4.0 1. In the following
paragraphs, I describe relevant flags and the values I explore. When exploring different
values of a given parameter, all other parameters are set to their default values, thus varying
only one parameter at a time. Note that I am not interested in commenting on the validity
of the parameter values. Instead, I include variations in the BPS modeling to infer and
compare the progenitor environments they predict. I emphasize that the motivation behind
this agnostic approach is to focus on understanding how the inference of host galaxies
depends on uncertainties in modeling binary evolution. In total, I simulate 40 different
binary evolution models. Of these models, one is the default prescription and the remaining
39 have a different value of one of the flags. I summarize the values and corresponding
BPS model of the parameters I explore in the following paragraphs and explicitly show in
Table A.1 of the Appendix (§ A).

1https://github.com/COSMIC-PopSynth/COSMIC/tree/v3.4.0
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The wind parameters I explore include the wind velocity factor (𝛽w) and the mass loss
near the Eddington limit ( ¤𝑀𝐿edd). 𝛽w is set to the Belczynski et al. [2008] prescription by
default and I explore high (7) and low (0.125) values for Eq. (9) of Hurley et al. [2002]. The
¤𝑀𝐿edd flag is set to be independent of the metallicity by default and I explore the metallicity

dependence from Giacobbo et al. [2018].
I set the CE efficiency 𝛼 by default to 1, and explore the values 0.1, 0.2, 0.3, 0.5, 2, 3, 5,

10. Efficiency greater than 1 violates the conservation of energy such that it is not possible
for the envelope to be ejected due to the change in orbital energy alone. However, setting
𝛼 > 1 accounts for other potential energy sources (like ionization energy, and jets) to help
eject the envelope. Sources of external energy include nuclear energy from burning at the
center of the envelope or from burning at the accretor surface. The longer the CE phase lasts,
the greater the likelihood that there is a deviation from the energy equation described in
Eq. 1.2 [Ivanova et al., 2013]. Focusing on an agnostic approach toward model selection, and
in order to understand the effect of the efficiency parameter at relatively unexplored values,
I explore high values of 𝛼 (> 3) that fall beyond the range that is typically considered
possible. My default value for the binding energy factor of the envelope _ is set to the
prescription from the appendix of Claeys et al. [2014], without the extra ionization energy.
I also explore a case with the extra ionization energy as well as a constant _ set to 1/𝛼 (see
§ 2.7.1 of Hurley et al. [2002]). I also check a CE prescription that prevents the direct stellar
merger of systems lacking a core-envelope boundary of the donor (𝐶𝐸Merger(0)). Regarding
the initial orbital energy calculation (𝐸orb,i), I use, by default, the core masses as per Eq. (70)
of Hurley et al. [2002] (here, Eq. (1.4)) and I explore the calculation with core + envelope
mass from the de Kool [1990] prescription (here, Eq. (1.3)). The critical mass ratio model
(𝑞crit) determining the onset of CE is given by Table 2 of Claeys et al. [2014] and I explore
alternate models from Hurley et al. [2002], Belczynski et al. [2008], and Hjellming and
Webbink [1987] for GB/AGB stars.

In my default model, I use the natal kick prescription 𝑣Kick of Hurley et al. [2002]
where kicks are drawn from a Maxwellian distribution with dispersion parameter, 𝜎, set
to 265 km/s. I also simulate large (530 km/s) and small (90 km/s) values of 𝜎. I explore
other kick models described by two equations from Giacobbo and Mapelli [2020], and a
relation for neutron star kick velocity from Bray and Eldridge [2016]. Eq 1 of Giacobbo
and Mapelli [2020] scales the sampled kick velocity by the relative ratio of the ejecta mass
by the remnant mass with respect to that of the typical neutron star and ejecta masses. Eq 2
scales the velocity by the ratio of the ejected mass with the typical ejecta mass for neutron
star formation. Bray and Eldridge [2016] describes the kick as a linear function of the ratio
of the ejected mass to remnant mass. Upon sampling the natal kick using 𝑣Kick and 𝜎, it is
modulated for BHs by the 𝑣BH flag. By default, the Fryer et al. [2012] prescription accounts
for ejecta fallback. I also explore a model that re-weights the natal kick by the ratio of the
remnant black hole mass to that of- a typical neutron star (1.44 M⊙), and a model that does
not alter the sampled natal kick.



36 CHAPTER 2. MERGING BINARY BLACK HOLE POPULATION SIMULATION

The prescription of the supernova can influence the mass of the remnant drastically,
denoted by the 𝑀NS−BH flag. I set my default supernova mechanism to the rapid prescription
of Fryer et al. [2012] with the proto-core mass from Giacobbo and Mapelli [2020] which
results in a mass-gap between neutron stars and black holes. I also explore Belczynski et al.
[2008], and the delayed prescription from Fryer et al. [2012], both of which fill the mass-
gap. The pair-instability supernova (PISN) and the pulsational pair-instability supernova
(PPISN) mechanisms are modeled by the 𝑃𝐼𝑆𝑁 flags. The default flag uses the Marchant
et al. [2019] prescription which sets an upper limit on the component black hole mass of 45
M⊙ and I explore the models of Spera and Mapelli [2017] and Woosley [2019]. In addition,
I also switch off the PISN and PPISN mechanisms. Finally, I also explore the effect of
different tide modeling, 𝑇𝑖𝑑𝑒ST, using Belczynski et al. [2008] for the default and exploring
Hurley et al. [2002].

2.2.2 Coding binary population simulations
The SFRD from § 2.1 can be produced with an extremely fine grid in metallicity within a
second of runtime due to analytic model described. The BPS simulations, however, require
a semi-analytical approach to produce a converging population of mBBH from progenitors
of a given metallicity that requires a long runtime (≃ 10-100 hrs using 20 CPU cores,
depending on the metallicity and evolution model). Hence, I limit the number of metallicity
bins to 22 to efficiently explore the 40 BPS models.

Figure 2.8 shows a flowchart describing the structure of my program. I use batch scripts
to execute commands on the Slurm Workload Manager to parallelize my workflow. I used
the computational resources of my university cluster, Licallo, which provided over 250
nodes with 40 cores in each node for parallel computation. The "controller" batch script
initializes 40 "agents" scripts that parallelly and independently simulates 40 BPS models.
Each agent simultaneously executes 22 COSMIC runs for every metallicity bin. Instructions
to COSMIC regarding the metallicity of the progenitors and the flags of the BPS model
is specified within 22 configuration files generated by the agents. The agents supervise
the COSMIC runs, logging down any outputs or errors which I can use to monitor the
progress and to potentially troubleshoot problems. Once COSMIC successfully produces
a converging population of mBBHs for each of the metallicities, the agents assimilates the
population into a large database 𝑃𝑜𝑝BPS that is unique to every BPS model. The agents
then terminate and the control is passed back to the controller. The controller catalogues
the progress and errors of the agents in its log file.

In the interest of efficiency and due to the limited allocation of resources per user of
the cluster, the large number of BPS models were simulated in a joint effort by a fellow
PhD student, and good friend, Tristan Bruel and myself. We parallelly ran simulations
of 20 models each. In order to optimize the performance of the program, I maximize the
use of the allocated memory, and RAM (nodes and cores) of the cluster. The controller
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Figure 2.8: Flowchart describing the architecture of my code to run a host of BPS simulations
to produce 40 different populations of mBBHs (𝑃𝑜𝑝BPS), one for each BPS model. This
program was executed using batch scripts (1 "controller" and 40 "agents") that utilize the
Slurm Workload Manager on a local cluster with a Linux-like kernel. For a given BPS
model, 𝑃𝑜𝑝BPS is produced by combining the separately produced populations of 22 BPS
simulations 𝑃𝑜𝑝Z:i, one for each metallicity 𝑍 , indexed by i. The executions of COSMIC
codes are represented by the dotted arrows. E+O/P refers to the error and outputs log files.
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Figure 2.9: Initial orbital period 𝑝ZAMS and initial eccentricity 𝑒ZAMS of binary systems
that form mBBHs using the default binary evolution model. The relative size of the circle is
indicative of the total mass of the mBBH, and the colorbar represents the relative formation
rate.

distributes a node to every agent and the agents allocate 10-20 cores of the node for each
of the 22 COSMIC runs. COSMIC efficiently uses the CPUs of the cores to parallelly
evolve the multitude of binary systems. Typically, for every BPS model, the population for
low metallicities progenitors take 1-2 days to compute, while the higher metallicities can
take 1-2 weeks. This is due to the low efficiency of forming mBBHs in high metallicity
systems. In the ideal scenario of 100% available computational resources in the local
cluster, the entire simulation of 40 BPS models would simultaneously complete within 2
weeks. However, due to the variable percentage of resources shared between users of the
clusters, the complete simulation took nearly 2 months to execute. Keeping in mind the
layers of parallelization used to rapidly produce the results (40 BPS × 22 metallicities), the
use of the cluster and the Slurm scheduling algorithm was a vital step in ensuring the timely
completion of the simulations.

2.2.3 Understanding binary evolution
To understand the correlations of binary parameters and their influence on the mBBH
population, I illustrate the properties of a 𝑃𝑜𝑝BPS produced using the default model of
COSMIC (unless specified otherwise).

Effect of initial orbital parameters

Figure 2.9 shows the orbital period 𝑝ZAMS versus the eccentricity 𝑒ZAMS of the initial
ZAMS stars. Systems with low orbital period (𝑝ZAMS ∈ 10−200 days) and low eccentricity
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(𝑒ZAMS ∈ 0−0.1) tend to form mBBHs. The low 𝑝ZAMS corresponds to low initial separation
between the stars which encourages mass-transfer due to the small Roche lobe of the stars.
Depending on the relative mass of the donor and accretor, this process can crucially bring the
bodies closer together. Moreover, in the case of an unstable mass transfer and the formation
of a CE, the orbital energy lost towards ejecting the envelope can drastically shorten the
orbit and hence increase the chances of merging within the present-day. Note that Figure 2.9
only represents systems which merge as black holes, and ignore those that undergo stellar
mergers. The dearth in the formation of mBBH from systems with low 𝑝ZAMS and high
𝑒ZAMS is due to the increased probability of stellar mergers as a result of the close proximity
of the stars. Moreover, maximally eccentric systems can undergo disruptions that break the
binary. Systems with high 𝑝ZAMS and low 𝑒ZAMS also do not form mBBH due to the large
separation between the stars, thereby increasing the delay time, and preventing the system
from merging by the present-day. In comparison, systems with high 𝑝ZAMS and high 𝑒ZAMS
are likely to form mBBHs due to the close proximity of interaction in highly eccentric
systems. The black hole masses generally appear to be uniformly distributed across the
parameters, with minor trends. For example, very low 𝑝ZAMS systems tend to form small
mBBHs. This is expected due to the increased probability of unstable mass-transfers which
can lead to mass loss.

Effect of initial binary masses

Figure 2.10 shows the correlation between the initial mass ratio 𝑞ZAMS, initial total mass
𝑀Tot ZAMS and the number of CE events. First, it is apparent that the vast majority of
binaries that form mBBHs undergo one CE event. Moreover, as shown by the relative sizes
of the circles, binaries which do not undergo CE generally form larger black holes than
those which do as a result of the mass lost by the donor star in the latter case. Systems
which do not undergo CE have stars that have unequal masses (𝑞ZAMS ≳ 1.5) due to the
critical mass ratio 𝑞crit parameter that determines the onset of CE. Moreover, most systems
do not undergo multiple CEs due to the increased chance of stellar mergers and large mass
loss preventing black hole formation. Finally, the large density of systems with low initial
total mass is due to the inverse power law of the initial mass function.

Influence of metallicity in mass loss

Figure 2.11 shows the effect of metallicity on the total black hole mass for a range of initial
total mass. In high metallicity stars (𝑍 ≳ 0.5 Z⊙), large mass loss primarily due to enhanced
winds leads to the formation of small final black holes as indicated by the small circles.
Thus, high metallicity stars that form black holes tend to be massive. However, due to the
power law nature of the initial mass function [Kroupa et al., 2013], these systems are few
in number. Low-metallicity environment (𝑍 ≲ 0.05 Z⊙) does not greatly influence the final
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Figure 2.10: Initial mass ratio 𝑞𝑍𝐴𝑀𝑆 versus total initial mass 𝑀𝑡𝑜𝑡 𝑍𝐴𝑀𝑆 of binary systems
that form mBBHs for different number of CE events 𝑁CE using the default binary evolution
model for all metallicities. The relative size of the circle is indicative of the total mass of
the mBBH, and the colorbar represents the relative formation rate.

Figure 2.11: Metallicity 𝑍 versus total initial mass 𝑀𝑡𝑜𝑡 𝑍𝐴𝑀𝑆 of binary systems that form
mBBHs using the default binary evolution model. The relative size of the circle is indicative
of the total mass of the mBBH, and the colorbar represents the relative formation rate.
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Figure 2.12: Normalized histogram of the delay time (𝑡delay) of the mBBHs from the
𝑃𝑜𝑝BPS of the binary population synthesis simulation for different BPS models (colors and
symbols), across 3 metallicity bins: 0.01 Z⊙ (left), 0.1 Z⊙ (center), 1 Z⊙ (right).

black hole mass. Instead, the final mass mostly depends on the initial total mass.

Delay time distribution

Figure 2.12 shows the delay time distribution of mBBHs for 3 metallicities for systems
which merge within a Hubble time. The different colored lines represent different BPS
simulations, shown for the comparison of trends. The vast majority of delay times in
the BPS simulation are short, implying that the systems typically merge soon after the
formation of the binary, ie., the redshift of merger 𝑧mBBH ≃ 𝑧f . Figure 2.12 also shows
that large delay times are common for higher metallicity progenitors. As such, I expect
high redshift progenitors of nearby systems to have 𝑍 > 0.1 Z⊙. Although typical delay
time distributions follow a power-law relation of the form t−𝛼delay, some binary models at low
metallicity (𝑍 = 0.01 Z⊙) flatten at high delay times (>6 Gyr). This is due to the abundance
of massive black hole binaries in low metallicity environments. The massive black holes are
likely to merge by the present day due to the greater loss in orbital energy to GW emission.
Moreover, this effect is pronounced for the low CE efficiency model (𝛼(0.2)_(1)) as the
low metallicity, massive stars have larger orbital angular energy which can be used to eject
the envelope.

2.3 Astrophysical and detectable mBBH population
A quick estimation of the astrophysical progenitor formation rate can be obtained by com-
puting the product of the efficiency of forming mBBHs [mBBH as a function of metallicity
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𝑍 , the fraction of systems from 𝑃𝑜𝑝BPS which can merge by the present day when formed at
a given redshift of formation 𝑧f , and the SFRD as a function of the galaxy properties (𝑀Gal,
𝑍 , 𝑧f). However, in order to map a given set of mBBH properties (such as the masses, and
luminosity distance to the merger) to the progenitor galaxy properties, it is useful to create
an astrophysically representative population of mBBH systems 𝑃𝑜𝑝Astro as a function of
the three-dimensional galaxy properties.

2.3.1 Producing the astrophysical population
For every element in the 3D progenitor parameter space with a given metallicity 𝑍 , I
randomly sample 𝑁s systems with the same metallicity from the population of binary black
holes produced by the simulation of binary evolution (𝑃𝑜𝑝BPS) to produce an astrophysical
population of merging binary black hole progenitors, 𝑃𝑜𝑝Astro. I discard systems that
merge after the present day. Every sampled system is assigned an astrophysical progenitor
formation rate 𝑅i that is proportional to the SFRD and the efficiency of mBBH formation
[mBBH

𝑅i(𝑍, 𝑀Gal, 𝑧f) =
d2𝑁i(𝑍, 𝑀Gal, 𝑧f)

d𝑉c d𝑡
(2.3)

=
d2𝑀∗ i(𝑍, 𝑀Gal, 𝑧f)

d𝑉𝑐 d𝑡
× [mBBH(𝑍) ×

1
𝑁s

,

where 𝑖 denotes the 𝑖th mBBH progenitor system in 𝑃𝑜𝑝Astro, d2𝑁i is the number of
such systems within the differential co-moving time-volume element d𝑉c d𝑡, and d2𝑀∗ i

d𝑉cd𝑡 is the
SFRD from Eq 2.1 integrated over the width of the galaxy mass and metallicity bin. 𝑅i is
expressed in units of Mpc−3yr−1. I compute the 3D astrophysical rate of mBBH progenitor
formation, 𝑅, by summing over all mBBH progenitor systems. In § 2.3.4, I elaborate on
two methods of choosing 𝑁s: variable, and constant value. I also discuss the benefits and
shortcomings of the resulting 𝑃𝑜𝑝Astro distributions.

Astrophysical merger rate

The merger rate of systems that coalesce within a look-back time bin centered at 𝑡mBBH can
be directly mapped back to the corresponding progenitor formation rate within an identically
sized time bin centered at 𝑡f [Dominik et al., 2013], with Δ𝑡 = 100 Myr. I obtain the merger
rate evolution, 𝑅mBBH(𝑧mBBH), by summing over the progenitor parameter space the product
of the progenitor formation rate and the corresponding fraction of progenitors that merge
within the time bin 𝑡mBBH.
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2.3.2 Detectable mBBH population
To understand the detector selection effect on the progenitor population of mBBHs, I simu-
late GWs from the merger of every mBBH system in 𝑃𝑜𝑝Astro. I use the phenomenological
inspiral-merger-ringdown waveform approximant IMRPhenomD [Khan et al., 2016], im-
plemented in lalsuite [LIGO Scientific Collaboration, 2020], called from the python library
PyCBC [Usman et al., 2016]. The masses and 𝑧mBBH of the merging black holes are ex-
tracted from my astrophysical population 𝑃𝑜𝑝Astro. The luminosity distance is calculated
from 𝑧mBBH using a flat ΛCDM cosmology model described in § 1.1. I assume the black
holes are non-spinning. I distribute the sky positions isotropically and I sample the cosine
of the inclination angle from a uniform distribution.

I consider a GW detector network of LIGO Hanford (H), LIGO Livingston (L) and
Virgo (V) with their sensitivity during the second half of the O3 observation run [Abbott
et al., 2023]. Their power spectral density are shown in Figure 1.8. I designate an mBBH
as detectable if the optimal signal-to-noise ratio (Eq 1.11) in each detector is larger than 6
and the network signal-to-noise ratio is larger than 12.

Simulating GWs and their detection, I calculate the detection rate density, 𝑅𝐷𝑒𝑡 , in units
of yr−1z−1

mBBH using the relation

𝑅𝐷𝑒𝑡 (𝑧mBBH) =
d𝑁Det(𝑧mBBH)
d𝑡𝐷𝑒𝑡 d𝑧mBBH

= 𝑅mBBH(𝑧mBBH) ×
d𝑡

d𝑡Det
× d𝑉𝑐

d𝑧𝑚𝐵𝐵𝐻

× 𝑓Det(𝑧mBBH) × [GW, (2.4)

where 𝑓Det(𝑧mBBH) is defined as the fraction of binaries in 𝑃𝑜𝑝Astro merging at 𝑧mBBH
that are detectable by the three detectors. d𝑡/d𝑡Det = (1+ 𝑧mBBH)−1 accounts for the redshift
in the rate of time in the source-frame with respect to that in the detector-frame. [GW is the
duty cycle of the detector network and dVc

dzmbbh
is the co-moving volume per unit redshift as

described by the cosmology. Finally, we calculate the detection rate of mBBH per year by
integrating 𝑅Det across all 𝑧mBBH.

d𝑁Det

d𝑡Det
=

∑︁
∀ 𝑧mBBH

𝑅Det × d𝑧mBBH (2.5)

2.3.3 Progenitor galaxy posterior of a GW event
As a follow-up of my simulations, I infer the properties of the progenitor formation galaxy
of detected mBBHs from real observational data of the LIGO-Virgo detectors. For this
purpose, I download the posterior samples of confident detections from the catalog of the
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Gravitational Wave Open Science Center website 2. To produce the posterior probability
distribution of 𝑀Gal, 𝑍 , and 𝑧f for any detected GW event, I compute the probability of the
progenitor formation rate 𝑝sim as a function of the component black hole masses 𝑀1,BBH,
𝑀2,BBH and luminosity distance 𝐷Lum, weighted by the corresponding detected posterior
distribution of the GW event as shown below

𝑝(𝑀Gal, 𝑍, 𝑧f |𝑥GW) =
∫

𝑝(𝑀1,BBH, 𝑀2,BBH, 𝐷Lum |𝑥GW)

× 𝑝sim(𝑀Gal, 𝑍, 𝑧f |𝑀1,BBH, 𝑀2,BBH, 𝐷Lum)
× d𝑀1,BBH d𝑀2,BBH d𝐷Lum, (2.6)

where 𝑥GW represents the GW event, 𝑀1 BBH is the primary black hole mass, 𝑀2 BBH is the
secondary mass, and 𝐷Lum is the luminosity distance of the merger. This simple statistical
method involves re-weighting the typical 𝑀Gal, 𝑍 , 𝑧f values from the simulation by the most
credible 𝑀1 BBH, 𝑀2 BBH, 𝐷Lum values of detected GW events. In the hypothesis that a given
detected GW is formed by the processes described by the simulation, 𝑝(𝑀Gal, 𝑍, 𝑧f |𝑥GW)
provides the most credible values for 𝑀Gal, 𝑍 , 𝑧f .

2.3.4 Generating 𝑃𝑜𝑝Astro

When implementing the discussed method of generating the astrophysical population of
systems that form mBBHs, it is important to adequately represent the different kinds of
systems, each identified by the multitude of properties (such as the metallicity, black hole
masses, distance of merger, initial star properties, sequence of binary evolution, etc). This
"resolution" of the astrophysical population, 𝑃𝑜𝑝Astro, is set by the choice of 𝑁s, the
number of systems sampled for a given progenitor environment. In this section, I detail the
generation of 𝑃𝑜𝑝Astro using a variable and constant value of 𝑁s.

Variable sampling

In the variable sampling method I designed, for a given set of progenitor parameters
(𝑍 ,𝑀Gal,𝑧f), 𝑁s is proportional to the progenitor formation rate in order to ensure conver-
gence of 𝑃𝑜𝑝Astro towards the astrophysical population. 𝑁s is described by

𝑁s = ⌊d2𝑀∗ i(𝑍, 𝑀Gal, 𝑧f)
d𝑉𝑐 d𝑡

× [mBBH(𝑍) ×
1

𝑅Thresh
⌋, (2.7)

where the function ⌊𝑥⌋ returns the greatest integer less than or equal to x. 𝑅Thresh is a
threshold rate that sets the lowest value of the progenitor formation rate 𝑅i. Elaborating

2https://gwosc.org/eventapi/html/GWTC/
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Figure 2.13: Left Histogram of the number of samples 𝑁s extracted from 𝑃𝑜𝑝BPS to
generate 𝑃𝑜𝑝Astro for every element of the 3-dimensional set of parameters 𝑍 , 𝑀Gal, 𝑧f . The
number of samples for a given set of parameters in the cube is proportional to the progenitor
formation rate corresponding to that element. Right Total number of systems for a given
number of samples. Note that around 90% of progenitor systems have 𝑁s = 0 and are not
shown in this figure.

further, any progenitor for which the product of the SFR and the efficiency of forming
mBBH is less than the threshold rate will not be represented in 𝑃𝑜𝑝Astro, i.e., 𝑁s = 0.
However, as the threshold rate 𝑅Thresh approaches the minimum value of the product of the
SFR and efficiency, 𝑁s ≳ 1 for an increasing fraction of progenitor parameters. This results
in a large size of 𝑃𝑜𝑝Astro.

Figure 2.13 summarizes the frequency and number of systems with a given 𝑁s in
𝑃𝑜𝑝Astro. The histogram on the left shows that most progenitor systems have low 𝑁s
(≲ 10), and very few have high values (𝑁s ≳ 1000). As a result, Figure 2.13, right,
shows that the total number of systems sampled with a given 𝑁s is approximately constant
≃ 20, 000.

This technique of sampling emphasizes a greater representation of systems with larger
formation rates, i.e., they are sampled more. However, it suffers from two flaws.

• Large space complexity The size of the file containing 𝑃𝑜𝑝Astro rapidly increases
as 𝑅Thresh is set to lower values. As the formation rate of progenitors spans 6 to 8
orders of magnitude, and the number of samples 𝑁s increases with the rate, I have
to set 𝑅Thresh to relatively high values (3-4 orders of magnitude below the maximum
formation rate) to limit the file size of 𝑃𝑜𝑝Astro ≲ 20 GBs.

• Under-representation of detectable mBBHs As most progenitor parameters (𝑍 ,
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𝑀Gal, 𝑧f) have a low progenitor formation rate that falls below 𝑅Thresh, 𝑃𝑜𝑝Astro
misses out on their representation. Over 90% of the total progenitor formation rate
across cosmic time is not sampled as a result. This is especially concerning as low
metallicity, small galaxies (𝑍 ≲ 0.05 Z⊙, 𝑀Gal ≲ 109 M⊙) have low formation rates.
However, these galaxies contribute to the majority of detectable mBBHs (discussed
in detail in Chapter 3).

As a result of these flaws, I discarded the variable sampling and developed the fixed sampling
method instead.

Fixed sampling

To address the issue of large file sizes and under-sampling associated with the variable 𝑁s,
I designed a fixed sampling method. This technique is superior due to its reduced space
usage and better representation of systems with low formation rates. Setting 𝑁s to a fixed
value, every 3D progenitor element is sampled the same number of times from 𝑃𝑜𝑝BPS to
produce 𝑃𝑜𝑝Astro (upon filtering out systems that do not merge by the present-day). Thus,
irrespective of the formation rate, each system gets equal representation in the astrophysical
population. Moreover, the size of the 𝑃𝑜𝑝Astro file is proportional to 𝑁s and thus remain
constrained. The typical size of the 𝑃𝑜𝑝Astro file is ≃ 20 GB for 𝑁s = 100.

Figure 2.14 illustrates the convergence of population properties with increasing 𝑁s.
For 𝑁s = 1, there are visible under-sampling effects in the coarse histogram of the mass
spectrum (top) and the black pixels of the progenitor formation rate (bottom) corresponding
to progenitor parameters whose sampled systems did not merge by the present day. As the
number of samples per progenitor element increases, the mass spectrum becomes smooth
and converges to a final shape. Moreover, the formation rate also becomes smooth, with
fewer black pixels indicating better sampling. In contrast, the present-day merger rate does
not show a large variation with the number of samples (𝑅0, in Gpc−3 yr−1, of 385 for 𝑁s = 1,
385 for 𝑁s = 10, and 391 for 𝑁s = 100).

As a good compromise between population robustness, computational efficiency, and
memory management I set 𝑁s = 100 for analysis that requires population properties such as
the BH mass spectrum and trends in the progenitor formation rate. However, to save time
and space, I set 𝑁s = 1 when I’m only interested in calculating the present-day merger rate.
This creates the 𝑃𝑜𝑝Astro 100 times faster, and 50 times smaller in size than that of 𝑁s =
100.

2.3.5 Constructing a pipeline to visualize data
Iterating over the discussed 6 models of the SFR/MZR and 40 models of the BPS evolution,
I generate 240 realizations of 𝑃𝑜𝑝Astro. To understand the progenitor formation rates for the
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Figure 2.14: Top Mass spectrum of the primary black hole and bottom progenitor formation
rate as a function of 𝑍 and 𝑧f for different values of 𝑁s. The black pixels in the bottom plots
represent regions that do not have sampled systems that merge.
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Figure 2.15: Screenshots illustrating the graphical user interface I designed to display the
progenitor formation rates of mBBH with user-specified values of the BPS model, total
black hole mass 𝑀Tot BBH, and mass ratio 𝑞BBH. The BPS model is selected using radio
buttons on the left column in yellow, while the mBBH properties are selected using a slider.
Regions of black in the formation rate indicate an absence of systems in the 𝑃𝑜𝑝Astro of
the BPS model which merge by the present-day and which satisfy the selected mBBH
properties. The SFR/MZR model and the axes of the formation rate were specified by the
user-input keystrokes when starting the program.
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host of models, I require an efficient and convenient tool to visualize patterns and overlapping
trends. In addition to the 240 models, I am interested in seeing changes in the progenitor
formation rate for different mBBH properties like the primary mass and mass ratio of the
black holes, and the luminosity distance of the merger. In order to visualize a 3 dimensional
(𝑍 , 𝑀Gal, 𝑧f) progenitor formation rate with 3-4 degrees of freedom (SFR/MZR+BPS model,
and 2-3 mBBH properties like 𝑀1 BBH, 𝑞BBH, etc), I design a graphical user interface (GUI)
program that provides interactive options for the user to probe the vast data.

Using the matplotlib python library along with its derivatives, I construct the GUI to
display the progenitor formation rates of the astrophysical and detectable mBBHs along
the user-specified axes of progenitor properties. The controls include radio buttons for the
different SFR/MZR and BPS models along with slider bars to select the mBBH total mass
𝑀Tot BBH and mass ratio 𝑞BBH. Figure 2.15 shows snapshots of the GUI. Shown here is an
example for the user-specified KK04_Ma16 SFR/MZR model and along the 𝑍 , 𝑀Gal axes.
Black regions in the plot indicate failure to identify systems in the selected BPS model that
merge by the present day and which satisfy the selected bins of 𝑀Tot BBH and 𝑞BBH.

Showcasing the ease of extracting information using this GUI, I show the trends in the
progenitor properties for increasing 𝑀Tot BBH and 𝑞BBH in the sub figures of Figure 2.15.
As as example, I show that black holes with large 𝑀Tot BBH can arise from small galaxies
with low metallicity. I also show that equal mass mBBHs (𝑞BBH ≃ 1) have lower rates than
slightly unequal mBBHs (𝑞BBH ≃ 1.3).

2.3.6 Quantifying the overlap
One cannot exclusively rely on visual tools to analyze data, especially when there are many
degrees of freedom with large correlations between parameters. It can be overwhelming
to keep track of the changes seen by eye. Therefore, in order to quantify common trends
between different SFR/MZR and BPS models, I designed an overlap metric. Simplifying
the visual process, the overlap quantifies the degree of overlapping trends in the progenitor
formation rate for different models. To do so, I first define an "area" about which I can
calculate the overlap. This "area" is a surface in a projected 2D parameter space, say 𝑍 versus
𝑀Gal, which contains the top 50 percentile of the progenitor formation rate. Essentially, it is
the area enclosed by a 50-percentile contour of the progenitor formation rate as a function
of 𝑍 , 𝑀Gal. The overlap, 𝑂, for a given set of models is defined as

𝑂 =
𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷...

𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷...
, (2.8)

where 𝐴, 𝐵, 𝐶, 𝐷, etc are 50 percentile areas of the progenitor formation rate along
𝑍 , 𝑀Gal for different SFR/MZR + BPS models. ∩ is the intersection and ∪ is the union
of sets. The same exercise can be applied to calculating the overlap for a 3D surface
containing the top 50 percentile of the progenitor formation rate. This 3D overlap 𝑂3D is
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defined just as in Eq. (2.8), however, now 𝐴, 𝐵, 𝐶, 𝐷, etc represent the volumes of the
50 percentile progenitors. Figure 2.16 represents the overlap (dark shaded region) of the
50 percentile of the progenitors of astrophysical and detectable mBBHs calculated about 4
BPS models (default, 𝛼(0.2)_(1), 𝛼(0.3)_(1), 𝛼(0.5)_(1)), shown for different SFR/MZR
models. The union of all the areas is shown by the white shading. The 3D overlap fractions
𝑂3D (mentioned in the figure caption) themselves are indicative of the relative agreement
of the different models. Illustrating the power of the overlap technique, Figure 2.16 shows
that the PP04_Ma16 SFR/MZR model shows the most consistency across the selected BPS
models, and the KK04_Ma16 shows the largest variation between the BPS models by a
factor of ≃ 130. Moreover, I show that the progenitor galaxies in T04 and M09 are in
agreement across BPS models. Finally, the overlap calculations depict a stark difference
between the astrophysical and detected population, with the latter showing large variation
between models (note the log scale of the axes).
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Figure 2.16: The overlap, shaded in black and shown on the left (right), of the 50% contours
of the astrophysical (detected) progenitor formation rate for different BPS models. Different
SFR/MZR models are shown from top to bottom. The representative BPS models are listed
in the legend. The 3-dimensional overlap of the BPS contours for the SFR/MZR models of
PP04_Ma16, KK04_Ma16, M09, and T04 is 44% (2%), 0.36% (0.033%), 50% (0.35%),
47% (0.48%) respectively. The color map depicts log10(SFRD) as a reference to illustrate
the effect of the SFR on the overlapping region in the progenitor parameter space.
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Chapter 3

Progenitor environments of merging
binary black holes

To understand the effect of different models in predicting the progenitors of merging binary
black holes (mBBHs), I generate 240 models from a combination of the 40 binary population
synthesis (BPS) models and the star formation rates (SFRs) based on the 6 mass-metallicity
relations. First, I discuss the present-day astrophysical merger rate for the different models
and how it connects with the efficiency of forming mBBHs as a function of metallicity
and the global stellar metallicity distribution in the Universe (§ 3.1). Then, in § 3.2, I
show the progenitor environment predicted by the different combinations of models and
highlight their main differences and common points. In § 3.3, I look at the selection bias
introduced by gravitational wave (GW) detectors on the detected mBBH population and
their inferred progenitor environment. Finally, in § 3.4, I describe the application of my
method to produce posteriors of the formation galaxy properties with real observational
data from a given GW detection, taking GW150914 as an example. The results presented in
this chapter have been published in the Monthly Notices of the Royal Astronomical Society
[Srinivasan et al., 2023].

3.1 Astrophysical merger rate
Figure 3.1, top, depicts the values of the present-day astrophysical merger rate (from § 2.3.1
and Eq. (2.4)), 𝑅0 ≡ 𝑅mBBH(𝑧mBBH = 0), for my 240 models. For comparison, I show the
90% confidence range of 𝑅0 inferred by the LVK collaboration (16 to 61 mergers Gpc−3yr−1

from Table II of Abbott et al., 2023) after the O3 observing run. The merger rates from my
models span about 2 orders of magnitude. For a given BPS model, the rates typically span
a factor of 4 across SFR/MZR models. Globally, BPS models do not show much variation
in the merger rates, with a few outliers with large deviations. For illustrative purposes in the

53
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Figure 3.1: Top: Present-day astrophysical merger rate density of the different models. I
show the merger rate in my binary population models along the x-axis and the different
mass-metallicity models of the star formation rate are shown with different colors and
symbols (legend). The hatched region designates LVK’s 90% confidence interval of the
inferred merger rate (Table II of Abbott et al., 2023) after O3. The BPS models shaded in
green will be further explored in later sections. Bottom: Present-day merger rate of BPS
models that vary from the default by two flags as indicated on the x-axis. In comparison to
the top, the bottom figure illustrates that lower merger rates are attainable as one deviates
further from the default model.
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following analysis, I chose a subset of BPS models, highlighted in green, as representative
of the 40 BPS models. These models were chosen to illustrate typical variations around the
default model.

Almost all the models shown in Figure 3.1, top, predict effectively too high merger
rates in comparison with LVK observations. Moreover, the range of 𝑅0 spans almost 2
orders of magnitude. I emphasize the aim of my thesis is to understand the agreement and
disagreement across models on the progenitor galaxy environment. The comparison with
observations is a secondary consideration. Moreover, the galaxy stellar mass function that I
incorporate (from Tomczak et al., 2014) contains a larger fraction of low-mass galaxies than
other models which also favors the formation of merging BBHs. It is important to note that
these BPS models correspond to 1-dimensional variations around the default choices (see
Table A.1 of Appendix § A). Therefore, one can conclude that the consistently large rates
irrespective of the SFR/MZR model show evidence that the underlying default BPS model
proposed by COSMIC is too optimistic in forming mBBHs and are not the ones governing
BBH formation in the Universe. As this study focuses on progenitor environments, I choose
not to tune the BPS models in order to match the observed rate. However, as shown in
Figure 3.1 bottom, certain combinations of parameters can potentially lead to rates that are
compatible with the observations. Taking an example, using the KK04_Ma16 SFR/MZR
and the default BPS model with two variations: 𝛼(0.5)_(1) and 𝑞crit(4) results in a merger
rate 𝑅0 = 25 Gpc−3 yr−1, within the boundaries of the observed rate.

The wide range of rates suggests that caution should be used when interpreting the
simulations. Still, global trends arise from my analysis. The uncertainties of the mass-
metallicity relations (MZR) result in rate differences of roughly a factor 4, which is higher
than the uncertainties of the bulk of the binary models I have explored here. This is
consistent with other works, such as Neĳssel et al. [2019], Tang et al. [2020], Briel et al.
[2022], which find that differences in the star formation model, which includes the global
star formation rate, mass metallicity relation and its spread, and galaxy stellar mass function,
dominate the differences between the binary evolution models they explore, both for models
based on simulations and observations. Broekgaarden et al. [2022] and Santoliquido et al.
[2021] confirm these findings in a systematic exploration of models.

This suggests that the choice of MZR, and particularly its high redshift extension is a
key parameter in modeling BBH mergers. Based on the models I have explored, MZRs
with more low-metallicity star-forming gas such as the one from Pettini and Pagel [2004]
are difficult to reconcile with observed BBH rates, especially when the low metallicity
evolution is extrapolated beyond 𝑧f ≃ 3.5 [as in Chruslinska and Nelemans, 2019]. Fitting
these MZR models with the measured LVK rates would require a typical decrease in the
efficiency of forming merging BBH of more than an order of magnitude. The majority of
my BPS models would require a reduction of a factor 2.

To understand the influence of the SFR/MZR models and mBBH formation efficiency
on the merger rate 𝑅0, I show the interplay between the mBBH formation efficiency and the
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ṀLedd(1)

β(0.125)

β(7.0)

vKick(-3)

vKick(-2)

vKick(-1)

σ(90)

σ(530)

vBH(2)

vBH(3)

PISN(-3)

PISN(-1)

PISN(0)

MNS−BH(2)

MNS−BH(4)

TideST(0)

10−3

10−2

10−1

S
F

R
D

(M
�

M
p

c−
3
d

ex
−

1
Z

)

SFR/MZR Models
KK04 Ma16

PP04 Ma16

M09

KK04

PP04

T04

Figure 3.2: Efficiency of mBBH formation, [mBBH, as a function of metallicity 𝑍 . I show
all the binary population models (upper legend) and highlight the models which are chosen
for further analysis with brighter colors. I show in black, the star formation density for my
different mass-metallicity models (lower legend).
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star formation as a function of metallicity in Figure 3.2. Across BPS models, the mBBH
formation efficiency sharply drops beyond low metallicities ( ≳ 0.1 Z⊙). This is due to
increased mass loss from stellar winds resulting in a lower mass BH and a comparatively
larger impact of supernova kick. In contrast, in all SFR/MZR models, the star formation
drops in the low-metallicity region. As described in § 2.3.1, the progenitor formation
rate depends on the product of the SFR and [mBBH (Eq. (2.4)). As such, the region of 𝑍
≃ 0.1 − 0.3 Z⊙ dominates the production rate of merging black holes. whilst regions of
very low metallicity (𝑍 ≲ 0.01 Z⊙) do not contribute significantly because of the low star
formation rate and the regions of very high metallicity (Z ≳ Z⊙) do not contribute because
of their low [mBBH. This comforts the choice of the metallicity range from 0.0078 Z⊙ to
1.27 Z⊙ that I use in my simulations (see § 2.2).

Figure 3.2 shows that one can expect the largest influence on the progenitor formation
rate in intermediate metallicities, around 0.1 to 0.3 Z⊙. Models with large efficiency in
intermediate metallicities will tend to have higher progenitor formation rate and as a result
have higher merger rates. As an example, the 𝛼(0.2)_(1) model has consistently lower
efficiency than the 𝑣BH(3) model for all metallicities except between the crucial 0.1 to 0.3
Z⊙. As a result, the merger rate of 𝛼(0.2)_(1) is higher than that of 𝑣BH(3).

For most BPS models, Figure 3.1 shows a consistent trend in the rates across SFR/MZR
models: KK04_Ma16 and KK04 produce the lowest rates while PP04 and PP04_Ma16
produce the highest rates. T04 and M09 fall in between and with nearly equal rates. Again,
this trend can be attributed to the metallicity dependence of the SFR/MZR models and
[mBBH, as shown in Figure 3.2. As the efficiency of mBBH formation sharply drops off for
𝑍 ≳ 0.2 Z⊙, SFR/MZRs that favor lower 𝑍 (like PP04 and PP04_Ma16) will produce higher
merger rates while SFR/MZRs that favour high 𝑍 (KK04_Ma16 and KK04) will result in
low merger rates. The similar SFR/MZRs of T04 and M09 result in similar, intermediate
merger rates. The high-redshift extrapolation from Chruslinska and Nelemans [2019] results
in higher merger rates than the Ma et al. [2016] extension due to a faster decrease of the
global metallicity at high redshifts. The consistently large rates of PP04 and PP04_Ma16
in comparison with that of GW observations indicate that either the default BPS model is
overly optimistic and overproduces mBBH by more than an order of magnitude or that the
calibration associated with the MZRs of PP04 and PP04_Ma16 [Pettini and Pagel, 2004] is
in tension with the observations.

3.1.1 Mass spectrum
The global merger rate 𝑅0 is a useful tool to evaluate a model’s efficiency to produce mBBH.
However, to understand the astrophysical population of each model, it is useful to look at
the merger rate as a function of black hole mass. Figure 3.3 shows the mass spectrum of
astrophysical black holes for the default model. For black holes with primary mass 30 − 40
M⊙, the default model is broadly consistent with LVK observations. Moreover, much like
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Figure 3.3: Astrophysical primary black hole mass distribution of mBBHs from my simula-
tions (see legend) in comparison with that of the observation-based estimates from GWTC-3
[Abbott et al., 2023] and GWTC-2 [Abbott et al., 2021]. The 90% confidence interval of
posterior population distribution from GWTC-3 is shown in blue shade and that of GWTC-2
is shown by the dotted black lines.

the trend in observations, there is a higher abundance of small black holes (< 30 M⊙)
in comparison to large black holes (> 30 M⊙). This is primarily due to the decreasing
power-law shape of the initial mass function of the progenitor stars (Figure 1.5), and also
due to the large abundance of high metallicity stars in the Universe (2.5). However, the
effect of the overly optimistic merger rates of my models is evident in the low mass region
which shows significant deviation from observations. This same effect is not quite seen in
high-mass black holes due to the effect of the PPISN mechanism. Furthermore, the PISN
prescription prevents black holes of mass > 45 M⊙from forming altogether. Moreover, I do
not model the dynamical mergers of black holes in dense stellar clusters that can give rise
to higher black hole masses.

In Figure 3.3, I also show examples from models that influence the black hole mass due
to different metallicity and supernova models. The higher mass spectrum of the PP04 model
in comparison with the default KK04_Ma16 is primarily due to the increased merger rate of
the former. PP04’s relatively large abundance of lower metallicity progenitors (Figure 2.6)
further increases the merger rate of high-mass black holes. I also show 𝑀NS−BH(4) which
lacks a neutron star - black hole mass gap due to the delayed supernova fallback prescription.
The lowest black hole mass of 𝑀NS−BH(4) is ≃ 3 M⊙, in lieu of the default ≃ 5 M⊙. As a
result, the peak in the default mass rate at ≃ 7 M⊙ is absent 𝑀NS−BH(4).
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Figure 3.4: Merger rate of my default simulation model, in black, as a function of the redshift
of merger 𝑧mBBH. The LVK estimation of the merger rate evolution from Abbott et al. [2023]
is shown in blue: the light and dark shades corresponds to the 90% and 50% confidence
intervals respectively. For comparison, the SFR of the default model (KK04_Ma16) is
re-scaled and shown in orange.

3.1.2 Merger rate evolution

Using the relation derived in § 2.3.1, in Figure 3.4 I show the merger rate evolution,
𝑅(𝑧mBBH), of my default model (black line) in comparison with LVK observations (blue
shade). Although the initial merger rate 𝑅0 is over-estimated in my model, both observations
and the default model show a monotonous increase in the merger rate. Unlike LVK
observations which have rate measurements up to redshift 1 due to limitations of the
detector sensitivity, my simulation extends up to a merger redshift of ≃ 7-8. The figure also
shows that the peak black hole merger rate occurs at around redshift 1.19 (8.6 Gyr ago).
This follows after the peak in star formation which occurs at redshift ≃ 1.53 (9.6 Gyr ago).
The delay between the peak in SFR and merger rate is primarily due to large number of
systems with similar delay times (≲ 1000 Myr) as shown in the delay time histogram of
Figure 2.12.
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3.2 Astrophysical progenitor formation rates

3.2.1 Global trends
Figure 3.5 depicts the progenitor galaxy mass and redshift (or equivalently look-back time)
of the formation of mBBHs. The color map shows the global star formation rate density
of each model. In the 1-dimensional distributions, all my models present a tri-modal
distribution of the typical formation galaxy, with variations owing to the specific MZR or
BPS model. One can observe three peaks in progenitor formation rates at 𝑀Gal = 107 M⊙,
𝑀Gal ≃ 3 × 109 M⊙ and 𝑀Gal ≃ 1011 M⊙. In comparison, the global SFRD is strongly
dominated by massive galaxies (𝑀Gal ≳ 2 × 1010 M⊙). This strong SFRD at high 𝑀Gal
and high 𝑧f (≳ 2) causes the corresponding high mBBH formation rate. As such, the peak
of SFRD (cross in the two dimensional plots) always lies within the contour of mBBH
progenitor formation rate. At high galaxy masses, the mBBH progenitor formation can be
well mapped to the global star formation, with a small shift towards higher redshifts.

Away from the peak SFRD, at low redshifts (𝑧f≲ 1), the progenitor contours significantly
deviate from the SFRD and favor dwarf galaxies (𝑀Gal < 109 M⊙) across most BPS models,
irrespective of the SFR/MZR model. This is primarily due to the abundance of low-
metallicity star-forming gas in dwarf galaxies (see § 2.1) which have the highest efficiencies
of mBBH formation (Figure 3.2). This effect causes the upturn for dwarf galaxies that
is present in most of the models, except for the ones which have comparatively small
efficiencies at low metallicity (𝑍 ≲ 0.1 Z⊙), for e.g., the 𝛼(0.2)_(1) model. In models with
the highest efficiency at low metallicity (𝛼_=1 and 𝛼(5)_(1) models) formation in dwarf
galaxies can be equal to (for the KK04 and M09 MZRs) or larger than (for the KK04_Ma16
MZR) the contribution from the most massive galaxies.

Figure 3.6 shows the progenitor 𝑍 and 𝑧f for the same models. In all my BPS models,
the metallicity region of 0.1-0.3 Z⊙ strongly contributes or even dominates the formation
of mBBH progenitors, irrespective of formation time. As an example, looking at the
1-dimensional plots (top row) for the default, 𝛼(0.2)_(1), 𝑞crit(4), and 𝑀NS−BH(4) BPS
models, the fraction of systems with 𝑍 ∈ 0.1 - 0.3 Z⊙ is at least 50%. As described in § 3.1,
this is due to the interplay between the SFR which favors high metallicities and [mBBH
(Figure 3.2) which favors low metallicities. Outside the 0.1-0.3 Z⊙ metallicity range, the
overlap across different BPS models can be very limited due to the large dependence on
metallicity in BPS modeling.

Looking at the 2-dimensional 𝑧f-𝑍 plane of Figure 3.6, throughout cosmic history, the
progenitor metallicity shows a wide distribution centered at 0.1-0.3 Z⊙. For all models, the
metallicity distribution of the progenitors narrows with decreasing redshift, and again, this
can be attributed to the combination of the SFR and the efficiency of mBBH formation,
[mBBH. The plots of M09 and KK04 calibrations show a correlation at high redshift (𝑧f
≳ 3) between the contour of the progenitor formation rate and the global SFR. This is
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Figure 3.5: Typical formation galaxy mass and formation time redshift (or equivalently
lookback time 𝑡f) of merging black holes. In the second and fourth row, I show the contours
containing 90% of the progenitor formation rate in terms of present-day galaxy mass and
time of formation, for different binary population synthesis models (colored lines with
symbols) and different mass-metallicity models in each 2 × 1 panel (mentioned in the
label). The logarithmic color map depicts the global star formation rate in each model
for comparison. In the first and third rows, I show the same distributions, summed over
formation time, with the corresponding star formation model shown with the black dotted
line.
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Figure 3.6: Typical formation galaxy metallicity and formation redshift (or equivalently,
lookback time 𝑡f) of merging black holes. In the second and fourth row, I show the contours
containing 90% of the progenitor formation rate in terms of galaxy metallicity and time of
formation, for different binary population synthesis models (colored lines with symbols)
and different mass-metallicity models in each 2 × 1 panel (mentioned in the label). The
logarithmic color map depicts the global star formation rate in each model for comparison.
In the first and third row, I show the same distributions, summed over all formation time,
with the corresponding star formation model shown with the black dotted line.
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Figure 3.7: Typical formation galaxy mass of merging binary black holes. The logarithmic
color map shows the 𝑀Gal with the maximum progenitor formation rate for a given 𝑍 and
𝑧f . The blue contours contain 90% of the progenitor formation rate of my default binary
population synthesis model and the black contours contain 90% of the star formation rate for
different mass metallicity models. The white spaces correspond to the progenitor formation
rates that fall below the resolution of my simulation.

the region of the SFR which is extrapolated based on the assumption of the high redshift
evolution of the MZR. In these SFR/MZR models, most of the star formation occurs at
low metallicity (𝑍 < 0.1 Z⊙) for 𝑧 𝑓 > 3 (see the yellow extension towards the upper left
corner in Figure 2.6). Figure 3.2 shows that the efficiency of mBBH formation does not
vary significantly in this metallicity region. Therefore, the BPS contours directly trace
the SFR at high 𝑧f . With decreasing 𝑧f the increasingly high metallicity causes the lower
metallicity limit of the colored contours containing 90% of the progenitor formation rate to
shift slightly towards higher metallicities. However, a deciding factor that places an upper
limit on the metallicity of progenitors (𝑍 ≲ 0.5 Z⊙) is the nearly constant [mBBH for low
metallicities (𝑍 < 0.1 Z⊙) and its rapid decline for higher values (𝑍 > 0.2 Z⊙). Thus the
progenitor contours generally favor lower metallicities as compared to the SFR, while also
slightly shifting towards higher metallicities at lower redshifts, hence its narrowing shape.

To help elaborate further, Figure 3.7 shows the mode of the distribution of formation
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galaxy masses of mBBH progenitors for a given 𝑍 and 𝑧f for the default BPS model. Low-
metallicity progenitors tend to come from dwarf galaxies (𝑀Gal <109 M⊙) while larger
galaxies have higher metallicities. At large 𝑧f , most of the progenitor formation is driven by
the SFR, meaning that across 𝑍 , the progenitors are mostly present in galaxies that would
now be massive. At lower 𝑧f , stars in massive galaxies have increasingly high metallicity
while low-metallicity environments can be found in dwarf galaxies.

Looking closely at the trends in individual BPS models, the 𝛼(0.2)_(1) model stands
out along the three dimensions of my star formation models (see Figures 3.5-3.6). The
[mBBH of this specific BPS model has a peculiar shape with low efficiency at high and
low 𝑍 while peaking between 0.1 and 0.2 Z⊙. As a result, the progenitor formation rate
is concentrated within 0.1-0.2 Z⊙. This implies that the formation rate contours are also
smaller in 𝑀Gal versus 𝑧f and 𝑍 versus 𝑧f . On the other hand, the contours for 𝛼_(1) and
𝛼(5.0)_(1) models show a large overlap as a result of their very similar [mBBH(𝑍) seen in
Figure 3.2.

Combined uncertainties on both binary/stellar evolution and star formation make the
inference of the birth conditions (formation galaxy mass, metallicity, and cosmic time) non-
trivial, especially for the typical formation galaxy mass. Still, I find that in all the models I
explored, the most likely progenitor metallicity is around Z≃ 0.2 Z⊙ and is narrowly peaked.
Liotine et al. [2023] have also found similar trends in the mBBH progenitor metallicity,
further highlighting its significance. This effect translates from the interplay between
the mBBH formation efficiency, and the star formation rate as a function of metallicity
(Figure 3.2). Based on the range of models presented here, I find that one can predict
the typical progenitor metallicity for merging BBHs formed through different BPS models
provided the corresponding [mBBH(Z) and a star formation model.

The determination of the typical formation times is also rather consistent across models,
with a steady increase of progenitor formation up to a look-back time of ≃ 10 Gyr. Beyond
that, I find that the formation rate decreases in my models using the Ma et al. [2016] metal-
licity evolution at high redshift. On the other hand, models based on the Chruslinska and
Nelemans [2019] extrapolation at high redshift show a sharp peak of progenitor formation
more than 12 Gyr ago, owing to the low-metallicity gas. This is consistent with the findings
of Graziani et al. [2020], who find a typical formation time lies between 6 < 𝑧f< 8. Within
the models I have explored, different binary evolution models show limited differences
in their typical formation times. This is because the delay time distributions prefer short
timescales and the combination of the wide range of metallicities tends to wash out strong
features in the delay time distributions.

The largest uncertainty is for the determination of the typical formation galaxy. Fig-
ure 3.5 shows three peaks whose heights vary strongly depending on both binary and MZR
models. Extracting global trends of the progenitor environment based on the mBBH for-
mation efficiency and global star formation model seems unclear at this point. Still, my
results show agreement with the analysis of Santoliquido et al. [2022] where the authors
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Figure 3.8: Top: Typical progenitor galaxy mass, metallicity, and time of formation for
merging black holes with different ranges of primary black hole mass, 𝑀1,BBH. The
logarithmic color map shows the normalized progenitor formation rate for all mass ranges.
The contours contain 90% of the progenitor formation rate, for different 𝑀1,BBH ranges
(legend) as a function of 𝑀Gal versus 𝑧f (left) and 𝑍 versus 𝑧f (right). I use my default
model of the mass-metallicity relation (KK04_Ma16) and binary population synthesis.

simulate the merger rate, formation galaxy and merger host galaxy of compact objects using
observational scaling relations. Using an MZR similar to ours [Chruslinska and Nelemans,
2019] to build their SFR, and BPS models probing different values of the CE efficiency (𝛼),
they find that mBBHs tend to form in low mass, low-metallicity galaxies, with a metallicity
mode ≃ 0.1 Z⊙ for a range of redshifts. They additionally show that BBHs tend to merge
in more massive galaxies, as dwarf galaxies merge into more massive ones.

3.2.2 Effects of the black hole mass
Taking my default SFR/MZR model and BPS model (KK04_Ma16, default respectively), I
look at the typical progenitor environment for black holes of different masses. For simplicity,
I consider the mass of the primary black hole, defined as the larger of the two merging black
holes. In practice, almost all the BHs have an almost equal mass ratio.

Figure 3.8 shows the contours containing 90 % of the formation of BH merger progenitors
for three ranges in primary black hole mass 𝑀1 BBH: 5-10 M⊙, 10-30 M⊙, and 30-45 M⊙.
The color map shows the overall normalized progenitor formation rate. The plot on the
right shows that with increasing primary black hole mass, the progenitor contours favor
lower metallicities (see § 2.2). The black hole mass only indirectly depends on 𝑀Gal and
𝑧f which correlates with 𝑍 through the SFR. For example, massive black holes tend to be
formed from low-metallicity progenitors. Figure 3.7 shows that low-metallicity progenitors
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Figure 3.9: Progenitor contours containing 50% of the progenitor formation rate for 4
example BPS models (default mass-metallicity relation, KK04_Ma16) showing overlapping
trends. From left to right, I show the contours for increasing primary black hole mass ranges
5-10 M⊙, 10-30 M⊙, and 30-45 M⊙. The region of intersection is depicted with black lines
and the region of union is shown with white lines. The overlap (i.e., ratio of the intersection
and union areas) of the progenitor contours are 20%, 53%, 42% respectively. The colormap
shows the SFRD of KK04_Ma16 for context.

are found both at low redshifts in typically low-mass galaxies and at high redshifts in a wide
range of galaxy mass. Combining all BH masses (color map), I recreate the global trends
in the progenitor formation rate that is shown in Figures 3.5-3.6.

Using the overlap metric, defined as the ratio of the intersection and union areas, I
am able to determine that this trend is seen in most of the 240 models. As an example,
Figure 3.9 shows the overlap of the 50% contours of a few BPS models. Here, the trend in
the black hole mass - galaxy mass correlation is evident and consistent across models.

3.3 Progenitors of detectable merging black holes

Using the astrophysical population of mBBH, I explore the detected population and the effect
of GW detector selection effect on the inference of the progenitor formation environment.
Figure 3.10 shows the progenitor 𝑀Gal and 𝑧f for mBBHs that are detectable (i.e., individual
detector SNR > 6, network SNR > 12) by the LIGO-Virgo three-detector network in the
O3 configuration. The 1-dimensional plot shows fewer variations across BPS models as
compared to the astrophysical progenitors in Figure 3.5. This indicates that the detection
bias largely limits the fraction of the astrophysical mBBH population current detectors can
observe.

Moreover, there is a large overlap in the contours of the 2-dimensional plot in two
distinct progenitor environments: high 𝑧f (> 2), large 𝑀Gal (>1010.5 M⊙) progenitors and
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Figure 3.10: Typical formation galaxy mass and formation redshift (or equivalently, look-
back time 𝑡f) of detectable merging black holes. In the second and fourth row, I show the
contours containing 90% of the progenitor formation rate in terms of galaxy mass and time
of formation, for different binary population synthesis models (colored lines with symbols)
and different mass-metallicity models in each 2 × 1 panel (mentioned in the label). The
logarithmic color map depicts the global star formation rate in each model for comparison.
In the first and third row, I show the same distributions, summed over all formation time,
with the corresponding star formation model shown with the black dotted line.
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Figure 3.11: Normalized histogram of the delay time (𝑡delay) of the mBBHs from the subset
of the astrophysical population 𝑃𝑜𝑝Astro that are detectable (dashed lines), and from 𝑃𝑜𝑝BPS
of the binary population synthesis simulation (solid lines), for different BPS models (colors
and symbols), across 3 metallicity bins: 0.01 Z⊙ (left), 0.1 Z⊙ (center), 1 Z⊙ (right).
Figure 2.12 showed the 𝑡delay histogram just from the BPS simulation, whereas here, I show
its comparison with that of the detected population.

low 𝑧f , small 𝑀Gal (< 1010 M⊙) progenitors. Comparing with the astrophysical progenitors
in Figure 3.5, it is evident that the abundance of astrophysical progenitors at high 𝑧f , in
large 𝑀Gal has influenced the progenitors of detected mBBHs in the same part of the
parameter space, albeit, with a very low formation rate as shown in the 1-dimensional plot
(KK04_Ma16 with default BPS progenitor formation rate in massive galaxy fall by a factor
of 2 in the detected population).

Across all models, the progenitor formation at low 𝑧f in small 𝑀Gal (< 1010 M⊙) galaxies
is more prominent than in the case of the astrophysical population. The inverse relation
between the signal-to-noise ratio (SNR) and luminosity distance implies that the detectors
are biased towards a low redshift of the merger. To analyze the relationship between the
redshift of merger and the redshift of progenitor formation, I look at the distribution of
the delay time defined as the time interval between the formation of the binary stars to the
merger of BBH. Figure 3.11 shows the delay time distribution of mBBHs for 3 metallicities
for the subset of the astrophysical population 𝑃𝑜𝑝Astro that are detectable (dashed lines) and
for systems from the BPS simulation 𝑃𝑜𝑝BPS (solid lines). Note that the 𝑡delay of 𝑃𝑜𝑝BPS
was discussed in Figure 2.12 and is also shown here for comparison. I do not show the
global 𝑃𝑜𝑝Astro as they closely follow the BPS curves, but with a sharp drop in the number
of systems with 𝑡delay ≳ 10 Gyr as these systems generally fail to merge by the present-day.
The vast majority of delay times in the BPS simulation are short, implying that the merger
redshift closely follows the formation redshift 𝑧f for the astrophysical population. However,
considering the detectable mBBH population, the bias towards detecting mergers at low
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Figure 3.12: Typical formation galaxy metallicity and formation redshift (or equivalently,
lookback time 𝑡f) of detectable merging black holes. In the second and fourth row, I show
the contours containing 90% of the progenitor formation rate in terms of galaxy metallicity
and time of formation, for different binary population synthesis models (colored lines with
symbols) and different mass-metallicity models in each 2 × 1 panel (mentioned in the
label). The logarithmic color map shows the global star formation rate in each model for
comparison. In the first and third row, I show the same distributions, summed over all
formation time, with the corresponding star formation model shown with black dotted line.
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Figure 3.13: Typical progenitor galaxy mass, metallicity, and time of formation for detected
merging black holes with different ranges of primary black hole mass, 𝑀1,BBH. The
logarithmic color map shows the normalized progenitor formation rate for all mass ranges.
Contours contain 90% of the progenitor formation rate, for different 𝑀1,BBH ranges (legend)
as a function of 𝑀Gal versus 𝑧f (left) and 𝑍 versus 𝑧f (right). I use my default model of the
mass-metallicity relation (KK04_Ma16) and binary population synthesis.

redshift, in combination with the influence of the SFR towards high 𝑧f progenitors, it seems,
results in a preference towards long delay times.

Figure 2.6 showed that the astrophysical formation rate of high metallicity (𝑍 > 0.1
Z⊙) stars is much higher than that of low-metallicity stars. As such, I expect high redshift
progenitors of detected systems to have 𝑍 > 0.1 Z⊙. Figure 3.12 indeed shows that the
concentration of progenitors at high 𝑧f corresponds to higher 𝑍 (> 0.1 Z⊙). This also
contributes to the slight shift towards higher metallicities in the 1-dimensional plot as
compared to the astrophysical metallicity distribution (Figure 3.6). The first peak in the 1-
dimensional plot between 0.1-0.3 Z⊙ is due to the astrophysical bias, while the second peak
around 𝑍 ≃ 0.5 Z⊙ is due to the large delay times of mBBHs from high 𝑧f . Furthermore,
there exists a secondary detector bias towards larger black holes due to their larger GW
signal amplitude which plays a role in selecting low-metallicity progenitors. This can be
seen in the low 𝑧f progenitors of the 2-dimensional plots of Figure 3.12.

Figure 3.13 shows the progenitor distribution of detected mBBHs for different primary
black hole masses. The majority of detected mBBHs come from dwarf galaxies, at low 𝑧f ,
and with metallicity of 0.1 to 0.3 Z⊙. This is in good agreement with existing progenitor
predictions of GW events [Lamberts et al., 2016]. Massive black holes are predominantly
formed in low mass galaxies (< 1010 M⊙) and with lower metallicities (≤ 0.1 Z⊙) as
compared to smaller black holes, which in contrast, arise from a wide range of galaxy
masses and higher metallicities (≥ 0.3 Z⊙).
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Figure 3.14: Posterior probability density function (PDF) of the progenitor galaxy mass
𝑀Gal, metallicity 𝑍 and time of formation 𝑡f for the first detected gravitational wave event
(GW150914) based on my default star formation model (KK04_Ma16) and binary evolution
model (default COSMIC). This illustrates the method described in § 2.3.3 to produce
progenitor posteriors given posterior samples of a detected merger.

3.4 Posterior generation pipeline
As shown by Eq. (2.6), I can produce a posterior distribution of the progenitor galaxy
properties (𝑀Gal, 𝑍 , 𝑧f) for a GW event using my model and given the posterior samples of
the mBBH masses and luminosity distance. Figure 3.14 shows the progenitor environment
of the first discovered mBBH event, GW150914 [Abbott et al., 2016a], for my default model
(KK04_Ma16 with default BPS flags). It distinctly shows that GW150914 likely came from
a dwarf galaxy (𝑀Gal ≲ 109 M⊙) with very low metallicity (𝑍≃ 0.025 Z⊙), and with a broad
distribution of progenitor formation look-back time which peaks at a corresponding redshift
of 𝑧f ≃ 1. This is consistent with the initial study of [Abbott et al., 2016b, Lamberts et al.,
2016, Marassi et al., 2019] of the GW event. The secondary peak in metallicity follows
from the peak in astrophysical formation rates at around 0.1 Z⊙, as discussed in detail in
§ 3.2.1. The primary peak in metallicity is due to GW150914’s combination of a high-mass
BBH merging at close proximity. We can see in Figure 1.7 that a remnant mass BH ≃ 70-80
M⊙, which was the mean total mass of GW150914, can be formed from progenitors with
𝑍≃ 0.01 Z⊙ (consistent with Figure 3.13). This low metallicity is typically seen in dwarf
galaxies, especially in low 𝑧f , as shown in Figure 3.7. The broad posterior distribution in
𝑡f is due to the presence of dwarf galaxies with low metallicities at almost all redshifts,
as can be inferred from Figure 3.7. I find that the progenitor posteriors prediction from
other BPS and SFR/MZR models broadly agree that GW150914 had a low metallicity (𝑍
≲ 0.1 Z⊙) dwarf galaxy (𝑀Gal ≲ 109 𝑀Gal) progenitor with small deviations depending
on the different values of [mBBH(𝑍) value of each BPS model.
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Figure 3.15: Comparison of the progenitor posterior of GW150914 for the KK04_Ma16
SFR/MZR and different BPS models: default (top-left), 𝑀NS−BH(4) (top-right), 𝛼(0.2)_(1)
(bottom-left), and 𝑞crit(4) (bottom-right). For each BPS model, I show the 1 and 2 dimen-
sional posteriors in galaxy mass 𝑀Gal, metallicity 𝑍 , and 𝑧f .
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It is important to test the robustness of the progenitor posteriors to different models.
To this end, Figure 3.15 shows the progenitor posteriors for four models. Moreover, I
represent the 2 dimensional posterior to show the correlation of 𝑀Gal and 𝑍 with 𝑧f . It is
interesting to see that all models are in agreement that the progenitor galaxy of GW150914
was a dwarf galaxy. In addition, although the relative probabilities of the bi-modal peak in
metallicity varies between models (sometimes, collapsing into a single peak), the fact that
the progenitors of GW150914 had low metallicity (𝑍 ≲ 0.1 Z⊙) is invariant. These trends
are also consistent with other models in my simulations.

The statistical method that I apply simply consists of re-weighting the typical galaxy
properties from the simulation by the most credible black holes parameters of detected
GW mBBHs. In the hypothesis that all the mBBHs detected are generated from processes
described by my simulation, this method rapidly provides the most credible values for 𝑀Gal,
𝑍 , and 𝑧f for a given event.

However, binary simulations are limited to black hole masses in the range of around
5-45 M⊙, the upper mass limit is enforced by the PISN effect discussed in § 2.2.1. If
a GW detection has posterior samples with black hole mass that falls outside this range,
such a progenitor posterior cannot be generated from my current simulations and would
require a different formation mechanism or channel (like dynamical interactions in dense
environments) that can produce larger black holes. In the case that the formation channel is
not known, or the detection rate and GW event are not consistent with my simulation, one
should use a hierarchical inference approach (e.g. Bouffanais et al., 2021, Mastrogiovanni
et al., 2022) considering other formation channels. In my analysis, I did not consider
multiple formation channels but instead provided the most credible 𝑀Gal and 𝑍 assuming
that a particular GW event can be described with my simulation.

3.5 Uncertainties

3.5.1 Potential Sources
My star formation model builds on a global star formation rate based on Behroozi et al.
[2013] and hence inherits the uncertainties it its estimation. My galaxy stellar mass function
is based on Tomczak et al. [2014], which, as detailed in Chruslinska and Nelemans [2019],
includes more low-mass galaxies than other models. As I show in Figure 3.5, these dwarf
galaxies can be large contributors to the BBH merger rates. As such, the uncertainties on the
number of low-mass galaxies, at all redshifts, are another important driver of uncertainties.
Neĳssel et al. [2019] showed that different galaxy mass functions can lead to a change
in detected BBH merger rates up to a factor of five. Additional uncertainties stem from
the exact initial conditions of the BPS models, such as the binary fraction and potential
correlations between initial masses and orbital parameters (mentioned § 1.2.2). These
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uncertainties can lead to an increase or decrease in the merger rate up to a factor of two.
BPS modeling is an ongoing field of research, with large uncertainties and oversimpli-

fication of complex mechanisms like the common envelope in unstable mass transfers and
supernova kicks. We are severely limited by sparse observations due to the dynamic and
transient nature of these mechanisms and defining a preferred model remains a challenge.

Dynamical environments are likely significantly contributing to the observed mergers
as well [Wong et al., 2021, Bouffanais et al., 2021, Zevin et al., 2021, Mapelli, 2021b]. In
dense clusters within galaxies, black holes can form successive binary mergers governed by
N-body interactions that can lead to the formation of progressively larger black holes. The
progenitor environments of dynamically formed mBBHs are clusters within large galaxies
[Mapelli et al., 2022], unlike the typical dwarf galaxy progenitors of isolated mBBHs. A
potential signature of the dynamical formation of black hole binaries is the spin orientation
of the black holes. Black holes formed from isolated binary evolution will have aligned
spins, whereas those formed through dynamic interactions in dense stellar environments
will likely have random spins. Although, currently, more observations of mBBHs are
required in order to confidently test the presence of misaligned spins among the detected
mBBHs [Vitale et al., 2022]. The uncertainties on typical conditions of formation of
clusters [e.g. Brodie and Strader, 2006] and the uncertainty on the associated merger rates
add an additional layer of ambiguity to the inference of the typical formation conditions of
mBBHs. In order to accurately predict the progenitor galaxies of mBBHs, it is necessary
to incorporate this formation channel into the analysis.

3.5.2 Mitigation
Ultimately breaking the degeneracies between initial conditions (global star formation
rate, metallicity evolution) and binary stellar evolution will require including additional
information. First, one can limit the sample of explored models by only including those
that have merger rates compatible with measurements. Then one can take this a few steps
further by also including the information on the mass and possibly spin distributions. All
of these will ultimately be measured as a function of redshift as detectors improve. With
third-generation detectors like the Einstein Telescope [Maggiore et al., 2020] and Cosmic
Explorer [Reitze et al., 2019] which are expected to detect sources up to a redshift of 15 to
20, the astrophysical and detected distributions will be very similar, removing the effects
of detector biases from the analysis. Along the same lines, improved measurements of
metallicity, star formation rates, and the galaxy stellar mass function, especially at high
redshift will progressively decrease the allowed range for star formation models.

Still, degeneracies are likely to remain between star formation models and binary stellar
evolution models. Joint modeling and observations of other types of transients associated
with massive stars will be key. Neutron star mergers, and neutron star-black hole mergers
to some extent, are much less dependent on stellar metallicity, and their merger rate more
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directly traces the global star formation rate [Mapelli et al., 2018, Artale et al., 2020,
Santoliquido et al., 2022].

As such, most of the differences arise due to the different assumptions on binary and
stellar evolution. Eldridge et al. [2019] and Briel et al. [2022] showed population models
of an ensemble of transients, including core-collapse supernovae, long gamma-ray bursts,
and pair-instability supernovae, which are likely related to the same underlying population
of massive stars. They show how transients of different delay times are sensitive to different
uncertainties. Combined modeling of a range of phenomena seems to be the way forward
when breaking degeneracies and ultimately determining likely progenitor environments.

Future research could extend the analysis to include massive black hole mergers as those
formed for instance in active galactic nuclei and binary neutron star mergers. These sources
have potential electromagnetic counterparts which can be used to test my estimation of the
galaxy posterior. Such an analysis would entail BPS simulations of neutron star mergers
and the simulation of dynamical black hole mergers in the dense environment of active
galactic nuclei.

3.5.3 Applications of my simulations
In addition to Srinivasan et al. [2023], the astrophysical populations I simulated have also
been used in Srinivasan et al [2023b] (in prep), Lehoucq et al. [2023], Mastrogiovanni et al.
[2022]. In the latter two papers, as a co-author, I wrote the sections describing the BPS
simulations. Lehoucq et al. [2023] studied the stochastic gravitational wave background
produced by mBBHs and binary neutron stars in the frequency ranges of LIGO/Virgo/Kagra
and the space-based GW detector LISA. For this purpose, Lehoucq et al. [2023] explored
analytical and simulation-based population models. In order to establish a range of the
background GW strain that are predicted by BPS simulations, we have used my default
model and 2 other BPS models with the lowest and highest merger rates. Mastrogiovanni
et al. [2022] have used a few populations of my common envelope models to demonstrate a
method to implement synthetic catalogs for multi-channel hierarchical Bayesian inference
and have quantified a match between the phenomenological reconstruction of merger rates
with synthetic catalogs. Finally, in Srinivasan et al [2023b] (in prep), I use my default
population to test and demonstrate a proof of concept of a ML-based GW detection pipeline.
I elaborate on this project in Chapter 4.
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Chapter 4

Towards a novel gravitational wave
detection algorithm using machine
learning

By the end of Chapter 3, I developed an astrophysical population of mBBHs in the Universe.
A natural extension of my research is to work on the other side of the story: the detection
of these sources. In this chapter, I detail my on-going project on developing a prototype
algorithm to detect mBBHs using a machine learning (ML) algorithm, specifically sparse
dictionary coding. A distinguishing feature of this study is the use of my synthetic popu-
lation of mergers (𝑃𝑜𝑝Astro) that is based on observations and simulations, as opposed to a
phenomenological model usually used in the development of pipelines.

Over the course of my research on understanding the progenitors of mBBHs, I identified
my interest and ability to incorporate computer programming techniques into astrophysics.
Building on my programming capabilities, I am interested in exploring the field of machine
learning (ML) due to its growing importance in astrophysics and in general, all areas of
research. The superior adaptability of ML techniques to parse complex problems without the
need for complicated, problem-specific, user-defined algorithms makes ML an indispensable
tool of research and engineering. However, applications of ML in astrophysics is arguably
still in its early development stages, rich with scope for exploration, and therein lies its
appeal to me as a researcher. To explore the use of ML in GW data processing, I initiated
a project in collaboration with another doctoral student Charles Alexander Badger from
King’s College, London.

In this Chapter, § 4.1 provides an overview of existing detection techniques based on
classical and ML algorithms. § 4.2 elaborates on the creation and evaluation of the sparse
dictionary coding method. Finally, the ongoing and future developments are mentioned in
§ 4.3.

77
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4.1 Introduction to ML and GW detection methods

Machine learning algorithms help statistical models to learn patterns, make predictions,
and derive insights from data. These algorithms can be broadly categorized into three
main types: supervised learning, unsupervised learning, and reinforcement learning. In
the context of the algorithm explored in this thesis, I focus on supervised learning which
involves training models on labeled data, where the algorithm learns the mapping between
input features and corresponding output labels. The objective of supervised learning is to
predict the output of new instances based on previously seen examples. In the context of
GWs, the input feature is the detector data, and the output data can be any quantity that is
to be determined, for example, the underlying GW signal.

The concepts of training and testing an algorithm is a vital phase governing the develop-
ment and evaluation of a predictive statistical model. The training phase is a foundational
process wherein a model reproduces patterns and relationships inherent in the provided
dataset. This dataset used to train the model is aptly referred to as the training dataset.
In my case of labeled data, the ML training algorithm attempts to minimize the disparity
between the predicted and expected output that is encapsulated by a loss function. In this
process, the model adjusts its parameters iteratively, thereby refining its ability to make
predictions or classifications. Conversely, the testing phase serves as the litmus test for the
model’s efficacy and generalization to new, unseen data. This phase involves evaluating
the model’s performance on a separate dataset, distinct from the one used in training, to
gauge its ability to accurately predict outcomes of data that it has not encountered before.
The training and testing datasets must be disjoint to ensure the robustness of the model to
real-world scenarios, avoiding overfitting to training data.

In this section, I elaborate on the typical algorithm of popular GW detection pipelines
in § 4.1.1. Then, in § 4.1.2, I discuss current ML-based techniques for GW detection and
in § 4.1.3 I introduce the principle behind the ML technique that we use in our algorithm.

4.1.1 The canonical GW detection algorithm
At the heart of compact binary coalescence (CBC) detection pipelines that ascertain the
presence of a GW signal inside detector data is a match-filtering algorithm which I explain
below. I shall focus on providing a simple explanation of the underlying principle used in
Allen et al. [2012].

The CBC detection algorithm involves the calculation of the match-filter SNR 𝜌MF
between the detector data 𝑠(𝑡) and a collection of waveform templates ℎ(𝑡). The template
waveform is the projection of a GW onto the detector. The template banks built by the LVK
are comprised of a large number of pre-generated waveforms whose parameters (masses)
cover the parameter space of CBC sources. The match-filter SNR, 𝜌MF, is defined as the
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correlation between the data 𝑠(𝑡) and the template waveform ℎ(𝑡) and is given by,

𝜌MF(ℎ) = max
𝑡

|⟨𝑠( 𝑓 ) | ℎ̃( 𝑓 )e𝑖2𝜋 𝑓 𝑡⟩C |√︁
⟨ℎ̃( 𝑓 ) | ℎ̃( 𝑓 )⟩

, (4.1)

where max𝑡 is the maximization function that iterates over 𝑡 and the corresponding 𝑡 value
that maximizes the correlation is the inferred time of coalescence. The subscript C extracts
the complex value, and ⟨. | .⟩ is the noise-weighted inner product which "whitens" the signals
and is defined as,

⟨ℎ | 𝑔⟩ =
∫ ∞

−∞

ℎ̃( 𝑓 )�̃�∗( 𝑓 ) + ℎ̃∗( 𝑓 )�̃�( 𝑓 )
𝑆𝑛 ( 𝑓 )

𝑑𝑓 , (4.2)

where 𝑆𝑛 ( 𝑓 ) is the one sided PSD defined in § 1.4 and ℎ̃∗ is the complex conjugate of
ℎ̃. Iterating over the relevant templates, the pipeline identifies the one with the highest
𝜌MF and designates that as the SNR of the given segment of the detector data 𝑠(𝑡). When
𝜌MF exceeds a given threshold, a trigger of interest is defined in the dataset. In practice,
in order to confidently identify the presence of GWs in triggers, the template search in a
LVK detection pipeline defines a detection statistic based on 𝜌MF that incorporates other
consistency quantities to make it robust against non Gaussian features present in real GW
data (see for instance, Usman et al., 2016).

In order to evaluate the chance of noise producing the observed SNR, and hence to
establish confidence in a detection, one needs a model of the noise over an extended period.
To this end, pipelines compute a false-alarm-rate (FAR), a useful detection metric used to
asses the significance of a GW candidate.

4.1.2 Present ML-based detection algorithms
Most CBC detection pipelines use match filtering and with great success [Aubin et al., 2021,
Usman et al., 2016, Messick et al., 2017]. Currently, the match filtering technique provides
the best efficiency of detection among all existing methods. However, match filtering long
segments of data can prove to be very computationally intensive and time-consuming. As
an alternative, ML algorithms have been explored. Popular ML algorithms for GW signal
processing [Cuoco et al., 2020] include the principle component analysis, deep learning,
and decision trees. The deep neural network (DNN) architecture of deep learning have been
shown to be useful for CBC searches among other applications (like noise subtraction and
glitch detection) in GW data [George and Huerta, 2018, Schäfer et al., 2022, Schäfer et al.,
2023, Schäfer, 2023], and even for detecting multi-messenger events like binary neutron star
detection from both GW and EM counterparts [Baltus et al., 2022]. One of the strengths of
deep networks is their ability to interpolate between waveform templates and to generalize to
new classes of signals outside the template bank. Moreover, although teaching the network
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can take time and computational resources, once trained, neural networks can potentially
perform the detection analysis much faster than traditional algorithms.

The backbone of deep learning is the use of DNNs. In a typical deep learning based
detection pipeline, the detector data undergoes a pre-processing step to extract the key
features from the data that would provide the network with the optimal input to identify a
GW signal, if present. For example, a pre-processing step usually adopted for unmodelled
short signals is a Q-transform [Brown, 1991] which provides, as input features, the energy
of the detector data as a function of frequency and time. The DNN itself is comprised of
a series of convolutional neural networks and a fully connected network. The former is a
neural network architecture that is best suited to extract features from image data (here, the
energy-frequency-time plot) and the latter is used to classify the features (here, presence or
absence of GW). Optionally, a post-processing step might involve parsing the output of the
DNN into a probability or FAR of GW detection.

A supervised neural network requires data to train and to test its performance. In the
context of neural network-based detection pipeline, the data is a collection of noise-only and
noise + GW signal realizations. The term supervised implies that the user has access to the
ground truth, i.e., the data is accurately labelled to denote the presence or absence of GW.
The data is separated into two groups; one for training and the other for testing. During the
training phase, the pipeline is shown examples of the data along with the ground truth in
order to tune its system parameters to best predict the presence/absence of GW. The tuning
of the neural network parameters is performed using the principle of gradient descent to
locate the local minima of the loss function, a measure of the error between the prediction
and ground truth. After training the pipeline, its performance is evaluated using a testing
dataset. The pipeline is only fed the inputs of the testing dataset and its predicted output is
compared with the corresponding ground truth. Depending on the specific ML algorithm
one can introduce further steps such as repeated training-testing processes, performance
confirmation with a validation dataset, and tuning system hyper-parameters (such as the
number and size of the layers of a network).

Among ML-based detection pipelines, techniques like deep learning and decision trees
have been explored. In this chapter, I investigate the potential of another ML algorithm
called sparse dictionary coding.

4.1.3 Sparse dictionary coding

The sparse dictionary coding is a type of feature learning that aims to identify a sparse
representation of the raw data as a linear combination of basis vectors called atoms. The
collection of atoms comprise a dictionary.



4.1. INTRODUCTION TO ML AND GW DETECTION METHODS 81

Reconstructing the signal from data

I describe the adaptation of the sparse dictionary coding to GW data analysis based on the
prescription of Torres-Forné et al. [2016]. This method solves the de-noising goal as a
variational problem. Let 𝑦 = 𝑢 + 𝑛, where 𝑦 is the detector data, 𝑢 is the true signal, and 𝑛

is the noise. A solution for 𝑢 is given by

𝑢_ = argminu

{
R(𝑢) + _

2
F (𝑢)

}
, (4.3)

where F is a measure of the similarity between the predicted and expected values, R is
a regularization term used to constrain the fitting parameters, and _ is a regularization
parameter that controls the relative weight of R.

The dictionary D is a matrix consisting of a series of column vectors called atoms. I
designate the length and number of the atoms in a dictionary by 𝑤 and 𝑝 respectively. In
theory, any GW signal can be represented by a linear combinations of the atoms of the
dictionary. Therefore, there exists a sparse vector 𝛼 such that 𝑢 ∼ D𝛼. The similarity term
F can then be defined as

F (𝛼) = | |D𝛼 − 𝑦 | |2, (4.4)

where | |.| | represents the L2-norm, or Euclidean distance, of the vector defined as the square
root of the sum of the squares of the vector components. Therefore, to solve Eq. (4.3), one
needs to find the optimal sparse vector 𝛼 that can best reconstruct the GW signal 𝑢 using
the dictionary. The regularization term is set as the L1-norm, or Manhattan distance, of the
sparse vector, i.e., R = |𝛼 |. Eq. (4.3) can be re-written as,

𝛼_ = argmin𝛼
{
|𝛼 | + _

2
| |D𝛼 − 𝑦 | |2

}
, (4.5)

known as “least absolute shrinkage and selection operator" (LASSO) [Tibshirani, 1996] or
basis pursuit [Chen et al., 2001]. Using the optimal sparse vector 𝛼_ from Eq. (4.5), the
reconstructed signal ("best guess") of the dictionary is D𝛼_. One can solve for the basis
pursuit by using the Alternating Direction Method of Multipliers (ADMM) algorithm from
Boyd et al. [2011]. Taking, as input, the detector data 𝑦, the ADMM algorithm produces
the first reconstruction D𝛼. A residual is defined as the difference between the input, 𝑦,
and the reconstruction. The residual is then fed back into the ADMM algorithm as the
new input and the process repeats. At each iteration, the new residual is equal to the input
subtracted by the current reconstruction. Theoretically, with subsequent iterations, more
signal is subtracted from the data until the residual eventually converges to the underlying
noise. This convergence is evaluated by the norm of the residual. When the norm falls
below a specified tolerance, the algorithm stops. The reconstructed signal is the sum of the
reconstructions from all iterations.
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Figure 4.1: Examples of signal reconstruction (orange curve) using a trained dictionary for
a given detector data (blue curve). The ground-truth GW signal (black curve) present in the
detector data is shown for comparison. In the two panels, I illustrate the reconstructions for
different optimal SNRs 𝜌opt (shown in legend).

Figure 4.2: Illustrating the convergence of the reconstruction: evolution of the norm of
the residual (blue curve) from successive iterations of the ADMM algorithm to evaluate
Eq. (4.5). The residual is defined as the current reconstruction subtracted from the previous
residual. The initial residual is set as the data itself. When the norm of the residual
falls below 0.1 (dotted black line), the algorithm terminates and returns the sum of the
reconstructions from all iterations.
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I illustrate an example of the reconstruction of a signal in Figure 4.1. I show the
reconstructions of CBC signal (70-70 M⊙ system at different distances) embedded in noise
using a trained dictionary for two values of the signal optimal SNR 𝜌opt. The GW with the
higher 𝜌opt is better reconstructed. Elaborating further, the low SNR signal is dominated
by noise. As the noise is uncorrelated with GWs, and because the dictionary is trained to
reconstruct GW signals, the fidelity term in Eq. (4.5) cannot be minimized for any value of
𝛼. Hence, only the regularization term |𝛼 | can be minimized. As a consequence, 𝛼 tends
towards the null vector and the reconstruction (D𝛼) approaches a time-series of nearly zero
amplitude. In terms of the ADMM algorithm, the residual soon falls below the tolerance
threshold and the returned reconstruction have small amplitudes.

The reconstruction also shows erroneous non-zero values after the true merger time,
especially in the case for high 𝜌opt. This follows from the fact that when the algorithm
reconstructs the signal in the high-frequency merger regime, it is also susceptible to the
high frequency noise fluctuations shortly afterwards.

Figure 4.2 illustrates the evolution of the norm of the residual which is used to check for
the convergence of the ADMM algorithm to solve Eq.( 4.5). The norm shows a converging
trend until falling below the defined threshold (here, 0.1). Thus, after five iterations of the
ADMM algorithm, the reconstruction is over.

Note that different values of D and _ can result in different reconstructions. To obtain
the best reconstruction, one must optimize the hyper-parameters of the algorithm (𝑤, 𝑝, and
_) and the values of the dictionary itself (i.e., the atoms) by comparing the reconstruction
D𝛼_ with the ground truth GW signal 𝑢.

Training the dictionary

Eq. (4.5) assumes that the best values of the dictionary has already been identified (for
instance, as a set of wavelets) and can be used to reconstruct any GW signal. Significant
improvement can be achieved by training the dictionary [Elad and Aharon, 2006] on the
CBC waveform. The training dataset is comprised of a set of GW signal realizations. No
noise is added. Each training signal is segmented into overlapping patches, each of length
𝑤 (i.e., equal to the atom lengths). The total number of patches in the training dataset 𝑚
depends on the number of training signals, patch length 𝑤, and the number of overlapping
samples between consecutive patches. Following Torres-Forné et al. [2016] and Mairal
et al. [2009], the dictionary is trained by recursively evaluating 𝛼 and D by the equations

𝛼𝑘+1 = argmin𝛼

{
1
𝑤

𝑚∑︁
𝑖=1

| |D𝑘𝛼𝑖 − 𝑢𝑖 | |2 + _ |𝛼𝑖 |
}

(4.6)

D𝑘+1 = argminD

{
1
𝑤

𝑚∑︁
𝑖=1

| |D𝛼𝑘+1
𝑖 − 𝑢𝑖 | |2 + _ |𝛼𝑖 |

}
, (4.7)
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where the superscript 𝑘 identifies the training iteration and the subscript 𝑖 indicates the
index of the training data patch. In comparison to Eq. (4.5), the above two equations have
replaced 𝑦 with 𝑢 because the training data is devoid of noise. Eq. (4.6) and Eq. (4.7) are
repeatedly calculated until the dictionary converges, at which point training is complete. In
practice, both Mairal et al. [2009] and Torres-Forné et al. [2016] have empirically found
that a single iteration of this step is sufficient for convergence (see Goldstein and Osher,
2009 for detailed discussion). Note that the aim of the training is to learn and fix the values
of the dictionary D, and not the sparse vector 𝛼. The latter is used to produce the signal
reconstruction for a given data and a given dictionary D.

4.2 Methods: designing and evaluating a dictionary
We are interested in exploring the use of dictionaries to detect stellar-mass black hole
binaries with a total mass between 10 and 200 M⊙ from GW detectors (LIGO Hanford,
LIGO Livingston, Virgo, and KAGRA) during the planned 5th observing run, O5 [Abbott
et al., 2018]. To explore the detection of GWs from merging binary black holes (mBBHs)
using sparse dictionary coding, we train two competing dictionaries, establish the detection
statistics, evaluate their performances with simulated data, and select the best dictionary.
We build upon the dictionary training procedure discussed in Torres-Forné et al. [2016,
2020] and Badger et al. [2023]. All plots in this chapter are made using dictionaries trained
on the LIGO-Hanford detector data.

In this section, Charlie produced the noise and training dataset. I produced the testing
dataset. Charlie trained the dictionaries with the training dataset, and produced signal
reconstructions for the noise and testing datasets. I identified the detection metrics, produced
the detection statistic, and evaluated the performance of the dictionaries and metrics. The
following subsections describe the procedure in detail.

§ 4.2.1 details the procedure to generate the datasets to train and evaluate the dictionaries.
In § 4.2.2, I establish the detection metrics I explore. Then, in § 4.2.3 I discuss our choice
of dictionary hyper-parameters (size of atoms, number of atoms, regularization parameter)
that we explore. Finally, in § 4.2.4, I evaluate the performance of the two dictionaries.

4.2.1 Data generation
The dictionary takes as input, whitened detector data, and returns a reconstruction of the
underlying whitened GW signal, if any. We focus on analyzing the merger phase as it
contains a significant portion of the GW SNR, especially for heavier black holes. The
sampling frequency and duration of the data that is passed into the dictionary is determined
by the trade-off between the computational load of processing large time-series and the
duration of the mBBH in the detector bandwidth (with a lower frequency of 10Hz). We
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Figure 4.3: Flowchart illustrating the procedures involved in generating the noise, training,
and testing datasets. The size of the data are written in text in the format duration of each
realization × number of such realizations.

fix the sampling frequency 𝑓𝑠 to 8192 Hz. This sets the Nyquist frequency, the highest
frequency that the system can theoretical reproduce, to 4092 Hz which is higher than the
merger frequency of all stellar-mass mBBH systems. The duration of the time-series 𝑇w
is derived by the relation 𝑇w = 𝑁𝑠/ 𝑓𝑠, where 𝑁𝑠 is the number of samples considered.
Typically, the number of samples is set to powers of 2 [Torres-Forné et al., 2016]. Having
a small 𝑇w we run the risk of not capturing the pre-merger and merger phases of high mass
black holes because the duration of these phases decreases with increasing mBBH mass.
Whereas, increasing 𝑇w, and hence the number of samples, increases the computational
complexity. The interplay between the two is such that 𝑁𝑠 = 512 is too short for heavy
mBBHs, whereas, 𝑁𝑠 = 1024 is computationally prohibitive. As a compromise, we set
𝑁𝑠 = 720. This sets 𝑇w to 0.08789 s which is optimally short for computation and also long
enough to accommodate the pre-merger and merger phase of all stellar-mass black holes.

GW detector noise contain different power at different frequencies as given by the PSD.
The process of whitening normalizes the power at all frequencies so that excess power at
any frequency is more obvious. Therefore, the data provided to the dictionary is always
whitened. To whiten a given time-series, we take its Fourier transform, divide it by the
square-root of the PSD, and take its inverse Fourier transform. To account for edge-effects
from the whitening procedure, we discard the first and last 0.1 s of the whitened data.

In the paragraphs below, I detail the procedure to produce the datasets for training,
testing, and noise analysis for a dictionary of a given detector. The flowchart of Figure 4.3
also illustrates these steps.

Noise dataset

The noise dataset is comprised of whitened noise realizations. It is used to produce a
distribution of the detection statistic for data that is devoid of GW signal. To generate noise
realizations, we use the PSDs of the LVK’s future fifth observing run O5. The size of the



86 CHAPTER 4. A NOVEL GW DETECTION ALGORITHM USING ML

dataset is limited by the time taken to generate the noise. For each detector, one month-long
duration of noise in half-day chunks is produced. All chunks are whitened in parallel to
improve computational efficiency. Month-long noise is split in segments of duration 𝑇w s.
The steps involved in generating the noise dataset are shown by the blue lines of Figure 4.3.

Training dataset

The dictionary is trained with whitened GW signals. Badger et al. [2023] use 100 training
signals to model their dictionary on GW signals in the data of the future space-based
interferometer LISA. Due to differences in the population analyzed, our dictionary performs
better with more training signals. However, the size of the training set is limited by the
time required to train. Moreover, the dictionary shows diminishing improvement in the
reconstruction when the number of training signals increases beyond 150. Hence, optimized
for computational efficiency, the training dataset is comprised of 150 whitened, GW signals.
These GW signals are generated from a population of mBBHs with a uniform distribution of
primary black hole mass (5 to 100 M⊙), mass-ratio (1 to 3), luminosity distance (10 to 104

Mpc), sky-position angles, and inclination of non-spinning black holes. The coalescence
time and phase of the GW is also sampled from a flat distribution.

For each mBBH system in the training dataset, the GW strain data in each detector
is generated using the IMRPhenomD waveform approximant [Khan et al., 2016]. One
second of the waveform containing the end of the coalescence is sampled. The signal is
then whitened. Finally, a segment of duration 𝑇w containing the merger is sampled from
the whitened signal. In order to ensure at least 70% of the segment is occupied by the
pre-merger + merger phases, the merger is aligned at about 0.7 𝑇w. The collection of such
segments for the above-defined set of 150 GW signals makes up the training dataset. The
steps described is illustrated by the green lines in Figure 4.3. Note that we whiten 1 s of
data (8192 samples) and then sample 𝑇w s, instead of directly whitening 𝑇w s (720 samples),
because of the improved robustness of whitening with the increasing number of samples.

Testing dataset

The testing dataset is divided in two categories: the flat-prior dataset, and the astrophysical
dataset. The former is used to evaluate the performance of the dictionary and to identify
the detection biases it entails. It is comprised of 150,000 noise+GW data that I generate
with flat-priors on the GW signal (similar to the training signals) for all parameters but the
masses. To investigate the performance of the dictionary for different black hole masses
and mass ratio, I set the black hole mass to have five equally probable configurations:
5-5, 10-10, 40-40, 70-70, and 80-20 M⊙. Note that the training dataset only contains a
maximum mass ratio of three. As remarked earlier, one of the key features of ML-based
detection pipelines is its ability to generalize to a new class of waveforms beyond its trained
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template bank. Therefore, I include the 80-20 M⊙ system with a mass ratio of four to test
the performance of the algorithm for systems outside its training population. I produce the
astrophysical testing dataset by sampling from my simulation of the default astrophysical
population 𝑃𝑜𝑝Astro to simulate a detection period of one year. I plan to use this dataset to
infer about the subset of the astrophysical population that is detectable by our dictionary.
It is important to note that the training and the flat-prior testing datasets are produced with
the same CBC priors (except for the 80-20 M⊙, high mass-ratio system). It is therefore
imperative to check whether the algorithm is over-trained using the astrophysical testing
dataset.

For a given mBBH system in the testing dataset, I generate the corresponding GW signal
of duration 1 s, with the merger time at 0.7 s. To this, I add 1 s of simulated coloured-noise.
Thereafter, the steps are identical to those involved in producing the training dataset. For
the current goal of establishing a proof-of-concept of the algorithm, we fix the merger time
to 0.7 𝑇𝑤. In future analysis, we must explore reconstructions with the merger at random
times in the window. The procedure for generating the testing dataset is shown by the red
lines of Figure 4.3.

4.2.2 Detection metrics
A detection metric is a quantity that can distinguish the presence and absence of GW signal
in data. The dictionary algorithm produces a reconstructed waveform for a given detector
data. Following the idea of the match filtering technique, I explore metrics involving the
correlation of the detector data and the dictionary’s reconstruction. Specifically, the overlap
and match-SNR of the data and reconstruction. The overlap O is defined as follows,

O =
⟨𝑠( 𝑓 ) | ℎ̃𝑟 ( 𝑓 )⟩√︁

⟨𝑠( 𝑓 ) | 𝑠( 𝑓 )⟩⟨ℎ̃𝑟 ( 𝑓 ) | ℎ̃𝑟 ( 𝑓 )⟩
, (4.8)

where 𝑠 represents the detector data, ℎ𝑟 is the dictionary’s reconstruction, and ⟨. | .⟩ is
the noise-weighted inner product defined in Eq. (4.2). Similar to the match-filter SNR of
Eq. (4.1), the second metric, match SNR 𝜌M , is defined as

𝜌M =
⟨𝑠( 𝑓 ) | ℎ̃𝑟 ( 𝑓 )⟩√︁
⟨ℎ̃𝑟 ( 𝑓 ) | ℎ̃𝑟 ( 𝑓 )⟩

, (4.9)

which is related to the overlap by a factor
√︁
⟨𝑠( 𝑓 ) | 𝑠( 𝑓 )⟩, which quantifies the energy of the

time-series data. The overlap is a normalized quantity, with a range of 0 to 1. The match
SNR, in contrast, increases with increasing GW signal amplitude and can have any value
greater than 0.
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4.2.3 Dictionary hyper-parameters explored
The sparse coding algorithm is defined by its hyper-parameters: atom length (or column
size) 𝑤, number of atoms (or row size) 𝑝, and the regularization parameter _. Note that the
atom length 𝑤 cannot be greater than the length of the input data (i.e., 𝑤 <= 720).

As we are only interested in providing a proof of concept for a dictionary-based GW-
detection algorithm, we do not perform an extensive search for the best set of hyper-
parameters. Based on an empirical evaluation of the reconstructions, we observed no clear
trends in the performance of the dictionaries for different 𝑤 and 𝑝. Moreover, Torres-
Forné et al. [2020] have remarked that the number of atoms does not show variation in
performance as long as the dictionary is over-completed (i.e., 𝑝 > 𝑤). Following the
procedure in [Torres-Forné et al., 2020, Badger et al., 2023], we explore an atom length that
is a power of two, 𝑤 = 512. We also chose to explore the case of maximum atom length,
i.e., 𝑤 = 720. Following the convention in Badger et al. [2023], we also set 𝑝 = 1.5 × 𝑤.

The hyper-parameter _ controls the "step-size" of the basis pursuit algorithm described
in Eq. (4.5), typically taking a value between 0.1-0.0001. As _ decreases, the time taken
to train the dictionary and to produce reconstructions increases. The desired value of _
is one that produces a dictionary that demands a low computational load and produces
reconstructions that are highly correlated with the underlying true GW signal. For the two
dictionaries, we empirically find that _ = 0.0001 is a good trade-off between computational
efficiency and high fidelity reconstructions.

In summary, we chose to explore the performance of dictionaries with hyper-parameters
𝑤 = 512, 𝑝 = 768, _ = 0.0001 and 𝑤 = 720, 𝑝 = 1080, _ = 0.0001. For ease of notation,
I hereon refer to the former by D512 and latter by D720. I describe a detailed study on the
efficiency of detection for both dictionaries in the following section.

4.2.4 Detection statistics and dictionary evaluation
To compare the two detection metrics (O, 𝜌M) and to analyze the detection efficiency of
the competing dictionaries (D720, D512), I compute the detection statistics and evaluate the
performance of the two dictionaries using reconstructions of the noise and the flat-prior
testing datasets.

Evaluating the detection metric

Figure 4.4 shows the probability density function of the detection metrics for D720 and D512
for the noise and testing datasets. I also show sub-sets of the testing dataset with different
optimal SNR 𝜌opt. D512 generally produces higher values of O and 𝜌M in comparison to
D720 for both datasets. Moreover, in comparison to D720, the detection statistic of D512
shows slightly greater overlap between noise and signal, especially for signals with low
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Figure 4.4: Probability density function (PDF) of the detection metrics, overlap O (left)
and match SNR 𝜌M (right), for the two dictionaries, D720 (top) and D512 (bottom). The
figures show the results for 28 million noise realizations totalling to one-month of data
(black curve) and 150,000 testing data comprised of GW + noise (blue curve). The PDF for
the subset of testing data with different ranges of the optimal SNR 𝜌opt is also shown (see
legend). For clarity, I limit the maximum value of 𝜌M in the figure to 50.

Figure 4.5: Probability density function (PDF) of the overlap O for the two dictionaries
D720 (left) and D512 (right) for different mass systems in the testing dataset (see legend).
For comparison, I show the one-month of noise-only data (black curve) and all 150,000 of
the testing data (blue curve).
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optimal SNR. For 𝜌opt > 12, both dictionaries have O and 𝜌M values that are mostly larger
than the noise statistic. This indicates that the chosen metrics perform well and show
promise towards classifying signal and noise.

For D720, there is a bi-modal distribution in high SNR signals (𝜌opt > 12). In the case
of D512, instead of a bi-modal distribution, there appears to be one major peak at high
metric values and a flattened distribution for lower metric values. Figure 4.5 shows that
these effects are due to the different detection statistics for different mass ranges for the
two dictionaries. Specifically, the 5-5 M⊙ and 10-10 M⊙ systems contribute to the peak
in the probability density function at lower values of the metric and more massive systems
contribute to the peak at higher metric values. Moreover, Figure 4.5 also shows that this
effect is less pronounced for D512 as evident by the relatively flatter distribution for low
mass systems in comparison to that for D720. These results indicate that in addition to the
SNR, the dictionaries are sensitive to the masses of the black holes.

False-alarm-rate

To quantify the confidence of detecting a signal, I define the false-alarm-rate (FAR) of a
given metric as the ratio of the number of noise realizations from the noise dataset which
surpass the metric threshold, divided by the total time of noise-data analysed. I calculate
the FAR distribution for the two dictionaries, and for each metric. Figure 4.6 shows the
FAR as a function of the detection statistic O and 𝜌M for the two dictionaries. The figure
shows, for example, the number of realizations (of duration 𝑇w) in the one month of noise
data which have O ≳ 0.25 is ≃ 100 for D720 and nearly 10 million for D512. Thus, the FAR
of the dictionaries at O = 0.25 is about 100/yr and 107/yr respectively.

The minimum value of the FAR from the noise dataset is 12/yr (or 1/month). As shown
in Figure 4.4, the testing dataset have a large fraction of signals with metric values greater
than the noise distribution. Therefore, it is important to probe lower FARs for which I
lack noise data. One solution is to simulate more noise realizations. However, this is a
very time consuming task. Moreover, the FARs we would need to probe (up to one in
several thousands of years for a 5𝜎 discovery) require over four orders of magnitude of
more noise data. Instead, I extrapolate the relation between the FAR and the detection
metric. Specifically, I use a cubic polynomial fit of the log10 FAR as a function of the
metric. Other extrapolation fits such as a power-law multiplied by an exponential can also
be used. However, the root-mean-squared error between the fit and the data is the least for
a simple polynomial fit. Future iterations of the extrapolation should include the statistical
error of the data, such that the error scales inversely with the number of noise realizations
surpassing the metric. In Figure 4.6, I illustrate the agreement between the fit function and
the data, and also show the extrapolation to lower FAR values.
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Figure 4.6: The false-alarm-rate (FAR) of the detection metrics: overlap O (left) and match
SNR 𝜌M (right), for the two dictionaries D720 (blue curves) and D512 (orange curves). As
our current simulations only have one month of simulated noise data to analyze, the lowest
FAR probed with data is 12/yr (or 1/month). The noise simulation of one month is shown
by the lines without markers, above the green shaded region. I extrapolate the FAR to
higher values of the detection metric using a cubic polynomial fit of the log10 FAR versus
the metric. The fit is shown by the lines with circle markers and the region extrapolated is
highlighted by the green shading.
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Receiver operating characteristics

In order to evaluate the performance of the competing dictionaries and metrics, I analyze
their receiver operating characteristic (ROC) curves. In this context, the ROC curve is
a graph of the true positive rate of GW detection versus the false alarm rate for a given
detection metric. The true positive rate is the fraction of all testing signals that are detected
i.e., that surpass the metric threshold. When comparing ROC curves, the curve with greater
true positive rate for a given FAR represents a better classifier of signal from noise and is
hence more desirable.

Figure 4.7 shows that irrespective of the dictionary, 𝜌M is the superior detection metric.
This is understandable because although both metrics compute the correlation between
the reconstruction and input data, 𝜌M also takes into account the energy of the data (as
remarked in the discussion of Eq. (4.9)). Hence signals with large SNRs are easier to
distinguish using 𝜌M . It is also interesting to note that as the FAR increases, the difference
between the performance of the metrics decreases. Signals with low SNRs tend to have
higher FARs because they are often confused with noise. As a result, the extra information
in 𝜌M regarding the energy of the low SNR (high FAR) data is not as significant, causing
the disparity between 𝜌M and O to decrease.

Figure 4.7 shows that the two dictionaries have nearly identical performance as seen by
the large overlap in the detection efficiency, especially considering the deviations from the
FAR estimate. This is consistent with our analysis of different dictionary hyper-parameters
in § 4.2.3. Due to this similarity, either dictionary can be chosen for future analysis.
Although not perfect, the extrapolation does provide a rough estimate of the efficiency of
detection for low FARs. The extrapolation continues the trend and shows that over 35%
of the flat-prior testing dataset is detected with an FAR less than one per thousand years,
indicating that the algorithm shows promise.

The ROC graph can also be used to understand the detection biases of the dictionary
method. Figure 4.8 shows the ROC curves of the dictionaries for different signal SNRs
𝜌opt (left) and black hole masses (right). The true positive rate is normalized to each
sub-population specified in the legend. Looking at the left column, the performance of
the dictionaries improves with greater signal SNR, i.e., for a given FAR, signals with a
greater SNR have a higher rate of detection. It is encouraging to see that for 𝜌opt > 12, the
algorithm is able to detect 80% (for D720) and 90% (for D512) of the signals with an FAR
< 1/month. Only the ROC curve for 𝜌opt > 6 (orange) falls below the global ROC curve
(blue) further highlighting that the dictionaries struggles to reconstruct low SNR signals.
As the SNR depends primarily on the distance of the merger, this indicates a detection bias
of the dictionaries towards nearby systems. Interestingly, the D512 outperforms D720 for
signals with high SNR (𝜌opt > 12), whereas for lower SNRs, D720 has a higher efficiency.

The right column of Figure 4.8 shows the ROC curve for different dictionaries and
black hole masses. In both dictionaries, low mass systems (5-5 M⊙ and 10-10 M⊙) have



4.2. METHODS: DESIGNING AND EVALUATING A DICTIONARY 93

Figure 4.7: Receiver operating characteristic (ROC) curve describing the true positive rate as
a function of the false-alarm-rate (FAR) of the D720 (orange) and D512 (blue) dictionaries,
and for different detection metrics overlap O (solid curve) and match SNR 𝜌M (dashed
curve). These ROC curves are produced for the flat-prior testing dataset. The portion of
the ROC curve produced using the extrapolated values of the FAR is shaded in green.
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Figure 4.8: Receiver operating characteristic (ROC) curve of the D720 (top), D720 (bottom)
dictionaries using the match SNR 𝜌M metric for different ranges of the testing signal’s
optimal SNR (left, see legend) and black hole masses (right, see legend). The ROC
curves for all test signals combined is shown in blue. Note that I show the results without
extrapolation and show FAR in units of month−1.
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worse detection rates. This can be attributed to the low SNRs due to the lower chirp
mass Mc (see legend) of these mBBHs in comparison to the other massive systems. Thus
indicating a detection bias in the dictionaries towards systems with higher chirp mass (CBC
signal amplitude scales with M5/3

c ). This is consistent with the discussion from Figure 4.5
regarding the lower values of the detection metric for low (chirp) mass systems in comparison
to high (chirp) mass systems. D720 outperforms D512 for all system masses except for the
10-10 M⊙ system. Torres-Forné et al. [2020] have remarked that dictionaries with smaller
atom lengths are more sensitive to higher frequencies. As the merger frequency increases
with decreasing black hole masses, this could potentially explain the better performance of
D512 over D720 for the low mass 10-10 M⊙ systems. However, in the case of the even lower
mass 5-5 M⊙ systems, although the merger frequency is high, the effect of the low SNR due
to the smaller chirp mass plays a bigger role. Moreover, the fraction of 𝜌opt inside the 𝑇w
window is lesser for 5-5 M⊙ systems in comparison to that of 10-10 M⊙ systems indicating
that we must lose a larger fraction of the 5-5 M⊙ signal. And as remarked by the above
discussion on 𝜌opt, D720 outperforms D512 for low SNR events.

The brown curve of the 80-20 M⊙ systems shows that high mass ratio systems can
be detected by both dictionaries. As mentioned before, this high mass-ratio falls outside
the training population (which have mass-ratio ≲ 3). Thus, it is encouraging to see that
the dictionaries are able to detect systems outside their trained population. Comparing the
80-20 M⊙ and 40-40 M⊙ systems, the latter has a consistently higher efficiency, even though
both systems have nearly identical chirp masses. This could be due to the absence of the
high mass-ratio systems in the training, or can potentially indicate a bias against unequal
mass ratio. To investigate further, I am currently probing the performance of the dictionary
for lower mass-ratios, within the training range.

Going forward with the ongoing analysis of the astrophysical testing dataset, we are
using the 𝜌M metric for both dictionaries. The difference in the mass and SNR sensitivities
of the two dictionaries may play a role in determining their relative detection efficiencies
and potential differences in the detected mBBH population.

4.3 Prospects of development
I am currently analyzing the reconstructions of the astrophysical testing dataset to ascertain
the mass, distance, and SNR of black holes that are detected. The final results, although
not available as of now, will be submitted for publication by the end of my PhD. There is
a bias towards large black holes due to their higher SNRs in both current GW pipelines
and in our dictionaries (§ 4.2.2). With the astrophysical testing data, it will be possible to
ascertain the degree of the mass bias in our method. Chapter 3 has shown that the majority
of astrophysical mBBHs have low masses. Therefore, even slight difference in the mass
bias between match-filtering pipelines used in the LVK and our dictionary method could
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potentially lead to significantly different detected rates and population.
In addition to the simulated testing data, I will test the dictionary reconstruction on real

data. Comparing the FARs between the dictionary method and the LVK pipeline using
detected events in the GWTC-3 catalog [Abbott et al., 2023] can be a litmus test to rank the
performance and identify shortcomings of our algorithm in comparison to the state-of-the-
art match-filtering pipelines. For completeness, we also plan to analyze chunks of real data
that have no triggers to test the performance of our algorithm. Meanwhile, Charlie is in the
process of producing more noise realizations, extending the total time up to a year. With
this, I can verify and improve the robustness of the extrapolation method.

I have thus far shown the performance of the dictionary for a single detector (Hanford).
The next step is to produce the results for the other detectors and to define a network
analysis. This will require steps that check if the signal is above the detection threshold in
the individual and the network of detectors, in addition to checks for coincidence i.e., the
time difference between the reconstructed merger should be less than or equal to the GW
travel time between detectors. This will help decrease the FAR and improve our detection
performance significantly.



Chapter 5

Conclusions and perspectives

In this thesis, I analyzed the merging binary black holes (mBBHs) in the Universe using a
two-pronged approach. First, from an astrophysical perspective, I focused on understanding
the progenitor environment of mBBHs using simulations of star formation and binary evo-
lution. Second, from the observation side, I developed a machine learning-based algorithm
with the goal of detecting gravitational wave (GWs) signals from mBBHs and understanding
the detectable population.

To understand the progenitor environments of the astrophysical population of mBBHs
in the Universe, I created 240 models, built using 6 mass-metallicity relations in the star
formation rate (SFR) and 40 binary population synthesis (BPS) models. Crucial factors
influencing the formation and mass of mBBHs are the initial binary parameters, metallicity,
mass transfers, and supernova prescription. I found that the default BPS model and the
variations explored in my analysis are overestimating the merger rate when compared to
GW observations by about a factor of three for the mass-metallicity model with a higher
abundance of high metallicity stars [Kobulnicky and Kewley, 2004], and by an order of
magnitude for the model with a comparatively low abundance of high metallicity [Pettini
and Pagel, 2004]. Globally, the merger rates of mBBHs do not show significant variations
across BPS models, although with a few outliers with large deviations. In contrast, the
choice of the SFR can influence the rate by up to a factor of four. The merger rate for my
different models primarily result from the interplay between the SFR and the efficiency of
the formation of mBBHs as a function of metallicity. For progenitor metallicity below 0.1
Z⊙, the SFR is low, whereas, for metallicity greater than 0.3 Z⊙, the efficiency of mBBH
formation drops significantly. As a result, BPS models with large efficiencies at intermediate
metallicities (0.1 to 0.3 Z⊙) have large progenitor formation rates which contribute to large
merger rates.

Mass-metallicity relation models that predict high formation rates of low-metallicity
stars lead to high BBH merger rates. As a result, the redshift extrapolation of the Chruslinska
and Nelemans [2019] model which predict a higher abundance of low-metallicity stars
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has consistently higher merger rates than that of Ma et al. [2016]. Moreover, the large
BBH merger rates predicted by the Pettini and Pagel [2004] mass-metallicity calibration in
comparison with GW observations indicate that either all BPS models are overly optimistic
or that Pettini and Pagel [2004] calibration is in tension with GW observations.

Generally, high-metallicity progenitor environments lead to the formation of smaller
black holes due to the effect of metallicity on wind-driven mass loss. As a result, massive
black holes (30 - 45 M⊙) tend to form from low-metallicity progenitors, and small black
holes (5 - 10 M⊙) arise from higher metallicity progenitors. The mass spectrum of the
black holes in my default simulation is in tension with the LVK observations, except in the
30 - 40 M⊙ region, indicating limitations in our model of stellar binary physics. However,
consistent with the trend seen from LVK observations, there is a higher abundance of low
mass black holes due to the shape of the initial mass function and the abundance of high
metallicity in the Universe.

The observed evolution of the merger rate as a function of redshift is limited by the GW
detector sensitivity. However, with my simulations, I can evaluate the merger rate up to
redshift eight. The merger rate peaked ≃ 8.6 Gyr ago. This is about 1 Gyr after the peak in
my SFR (≃ 9.6 Gyr ago), consistent with the delay time distribution of the binary evolution
models.

When trying to infer to the typical progenitor environment of the whole astrophysical
population of merging black holes, I find that most systems come from regions with 𝑍

≃ 0.1 − 0.3 Z⊙, regardless of the model. On the other hand, I find strong variations in the
typical formation galaxy mass, depending both on the metallicity and the binary evolution
model.

Nevertheless, the inferred formation galaxy distribution typically presents three peaks
of varying importance: present-day dwarf galaxies with low metallicity (𝑀Gal ≲ 108 M⊙,
𝑍 ≲ 0.05 Z⊙), larger galaxies with intermediate metallicity (𝑀Gal≃ 109 − 1010 M⊙, 𝑍

≃ 0.1 − 0.3 Z⊙), and massive galaxies with high metallicity (𝑀Gal ≳ 1011 M⊙, 𝑍 ≳ 0.5
Z⊙). The three peaks are respectively due to the high mBBH formation efficiency for low
metallicities, the interplay between the SFR and the mBBH formation efficiency for inter-
mediate metallicities, and the high SFR of massive galaxies. Given the current uncertainties
on the global star formation history of the Universe and stellar/binary evolution, inferring
the typical formation-galaxies of merging black holes should be done with caution.

When considering the progenitor formation rates of currently detectable mBBHs, I
find that I can predict the progenitor environment with more confidence. The majority of
detected mBBHs are from dwarf galaxies with intermediate metallicities. Across models,
I showed a distinct contribution from progenitors formed at high 𝑧f (> 2), in large galaxies
(𝑀Gal≳ 1010.5 M⊙) as well as a contribution from progenitors formed recently (𝑧f < 0.5)
in intermediate-mass galaxies (𝑀Gal≲ 1010 M⊙). The latter arise from binaries with small
delay times (< 700 Myr) while the former comes from systems with much longer delay time
scales. My progenitor posterior generation pipeline shows that GW150914 likely came
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from small, dwarf galaxies (𝑀Gal≲ 109 M⊙) with very low metallicity (𝑍≃ 0.025 Z⊙).
In this thesis, I construct the SFR assuming one model of the galaxy stellar mass function

based on Tomczak et al. [2014]. Other models have lower number of low-mass galaxies
which, as I’ve shown, are likely progenitor galaxies of mBBHs. Differences in the assumed
galaxy distribution can vary the merger rate by up to half an order of magnitude [Neĳssel
et al., 2019]. Therefore, an important follow-up study to my analysis, is to probe the effect
of different galaxy stellar mass function models (e.g. Furlong et al., 2015, Panter et al.,
2004) on the progenitor environment.

The novel procedure proposed in this manuscript to produce galaxy posteriors of mBBH
progenitors has two drawbacks. First, it does not take into account other mBBH formation
channels, primarily dynamical interactions in dense stellar clusters. Black holes interact-
ing in dense clusters can undergo successive BBH mergers. Importantly, the component
masses of these systems can be greater than the upper mass limit of black holes in isolated
binary evolution (i.e., ≳ 45 M⊙). There are multiple LVK observations in this mass range
highlighting the importance of including this formation channel. Therefore, an important
next step is to include dynamical formation of mBBHs into my existing model (containing
only isolated binary evolution) to provide a better informed progenitor posterior. I can
model the relation between the black hole mergers in galactic clusters and the properties of
the formation galaxy based on semi-analytical prescription to model mBBH populations in
star clusters [Kritos et al., 2022]. An exciting future avenue of research is to analyze the
progenitor environment posteriors of all LVK mBBH detections and to present a population
study of the progenitors based on real observations.

The second drawback of the progenitor posterior generation method is that I cannot
compare the galaxy posteriors with real observations as it is limited to mBBHs which
are unlikely to produce an electromagnetic (EM) counterpart. A logical extension of
the method is to include binary neutron star (BNS) mergers whose EM counterparts can
provide information about the galactic environment [Abbott et al., 2017]. However, this
is not trivial. Similar to the procedure for my current mBBH analysis, it is important to
first explore different binary evolution and SFR models, and understand its effect on the
BNS progenitor environment. Moreover, it would entail a a fair amount of rerunning of
the simulation to produce a population of BNS. Eq. (2.6) will still hold true for BNSs after
swapping the black hole mass terms to that of the neutron stars.

The second part of my thesis focused on the detection of GWs from mBBHs in collabo-
ration with another doctoral student. We have developed a novel adaptation of the machine
learning technique, sparse dictionary coding, to detect GWs from mBBHs. I developed two
detection metrics, the overlap O, or correlation, between the detector data and dictionary
reconstruction, and the match SNR 𝜌M , i.e., the overlap weighted by the energy of the data,
to help classify the presence and absence of a GW signal. I computed the noise statistic
and evaluated the false alarm rate (FAR) of the method for two competing dictionaries. I
then generated and analyzed the receiver operating characteristics (ROC) for the two dic-
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tionaries and two metrics to identify the optimal detection metric 𝜌M . I also find that the
two dictionaries have similar detection efficiencies indicating a robustness of performance
to dictionary hyper-parameters. However, the two dictionaries show differences in their
sensitivity towards different signal SNR and mBBH masses. I use both dictionaries with
the 𝜌M metric for the ongoing analysis with my default astrophysical mBBHs population.
The dictionary method shows a detection bias towards mBBHs that are nearby and with
higher chirp mass.

The short-term goals of this GW detection algorithm are to analyze my astrophysical
population of mergers and to ascertain the types of systems that are detectable in comparison
to that of the LVK pipelines. A novelty in our approach is the use of the synthetic astrophys-
ical mBBH population from my simulations in the development of our algorithm, in lieu of
phenomenological models used in the development of most detection pipelines. Besides,
it is important to gauge the performance of the algorithm with real data in comparison to
LVK pipelines. To this end, by analyzing real GW triggers, I will compare the FARs of our
method and that from state-of-the-art match filtering pipelines. With regards to long-term
goals for the project, we aim to incorporate a four detector network detection statistic. I
also wish to investigate the use of the dictionary reconstructions as a pre-processing step
in existing detection pipelines, similar to the function of a de-noising filter. Similarly, the
reconstructions of the dictionary of a GW trigger can potentially help guide rapid parame-
ter estimation pipelines towards a faster, and computationally efficient, initial guess of the
best-fitting template waveform.
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Appendix A

Binary population synthesis flags

BPS Flag Description Values

Z⊙ (zsun) Value of solar metallicity from Asplund et al. [2009]. 0.014

𝛽 (beta) Wind velocity factor 𝛽𝑤. -1: Belczynski et al. [2008]; positive
value: supplied to Equation 12, Hurley et al. [2002] .

-1, 0.125, 7

¤𝑀𝐿edd
(eddlimflag)

Wind mass loss dependence on metallicity near the Eddington
limit. 0: No dependence; 1: Giacobbo et al. [2018].

0, 1

𝛼 (alpha) CE efficiency parameter from Equation 71, Hurley et al. [2002]. 0.2, 0.5, 1,
5, 10

_

(lambdaf)
CE binding energy factor from Equation 69, Hurley et al.
[2002]. 0: Claeys et al. [2014] prescription without extra
ionization energy contribution; -1: _ chosen to satisfy 𝛼_ = 1;
1: Claeys et al. [2014] prescription with full contribution of
extra ionization energy.

-1, 0, 1

𝐶𝐸Merger
(ce_merge-
flag)

Determining whether stars beginning CE while lacking core-
envelope boundary automatically lead to a stellar merger [Bel-
czynski et al., 2008]. 0: No stellar merger; 1: stellar merger.

0, 1.

𝐸orb, i
(ceflag)

CE initial orbital energy calculation. 0: Using core mass as in
Equation 70, Hurley et al. [2002]; 1: Using total binary mass
as in de Kool [1990].

0, 1
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𝑞crit
(qcflag)

CE onset based on critical mass ratio models. 0: Section 2.6
of Hurley et al. [2002]; 1: Hjellming and Webbink [1987] for
GB/AGB stars, otherwise same as 0; 2: Table 2 of Claeys et al.
[2014], 3: Hjellming and Webbink [1987] for GB/AGB stars
otherwise same as 2; 4: Section 5.1 of Belczynski et al. [2008].

0, 1, 2, 3, 4

𝑣Kick
(kickflag)

Natal kicks of Fe core-collapse supernova based on Maxwellian
dispersion parameter 𝜎 (for 𝑣Kick = 0, -1, -2). 0: Standard
COSMIC prescription with additional options from 𝑣BH; -1:
Kick based on Eq. (1) of Giacobbo and Mapelli [2020]; -2:
kicks based on Eq. (2) of Giacobbo and Mapelli [2020]; -3:
Kicks based on Eq. (1) of Bray and Eldridge [2016].

0, -1, -2, -3

𝜎 (sigma) Maxwellian dispersion parameter for SN kick (km/s). 90, 256,
530

𝑣𝐵𝐻 (bh-
flag)

Scalling BH kicks. 1: fallback-modulated [Fryer et al., 2012];
2: Linear momentum conservation which scales down kick by
BH to neutron star mass; 3: Kicks not scaled.

1, 2, 3

𝑃𝐼𝑆𝑁

(pisn)
Sets pair-instability supernova (PISN) and pulsational pair-
instability supernova (PPISN) model. 0: No PISN or PPISN;
-1: Spera and Mapelli [2017]; -2: Table 1 in Marchant et al.
[2019]; -3: Table 5 in Woosley [2019].

-3,-2, -1, 0

𝑀NS−BH
(remnant-
flag)

Remnant mass prescription specifically for BHs. 0: Section 6 of
Hurley et al. [2002]; 1: Belczynski et al. [2002]; 2: Belczynski
et al. [2008]; 3: rapid prescritopn from Fryer et al. [2012]; 4:
delayed prescription from Fryer et al. [2012].

0, 1, 2, 3, 4

𝑇𝑖𝑑𝑒ST
(ST_tide)

Tide prescription. 0: Hurley et al. [2002]; 1: Belczynski et al.
[2008].

0, 1

Table A.1: The description and values of the flags I explore with the COSMIC binary
population synthesis (BPS) code. The three columns depict the symbol of the flag, its
description, and the values I explore in my 40 simulations. Values in bold are the default
values. For each BPS simulation, besides the default, I assign a given flag its value described
in the table and set all other flags to their default (bold) value.
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