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Résumé : La polyarthrite rhumatoide (PR) est une
maladie auto-immune dont I'étiologie n'est pas
totalement comprise. La maladie se manifeste par
des douleurs, des raideurs et des gonflements
articulaires, ainsi que par une synovite chronique.
L'état pathologique du tissu synovial dans la PR est le
résultat d'interactions cellulaires entre les
synoviocytes résidents et les cellules immunitaires.
Ces interactions cellulaires définissent de nombreux
aspects de la maladie et pourraient constituer des
cibles thérapeutiques potentielles. Il n'existe
aujourd'hui aucun traitement curatif de la PR. Les
thérapies proposées ne peuvent qu'atténuer les
symptdmes et sont souvent associées a plusieurs
effets indésirables. Dans ce projet de thése, je
souhaite  étudier les interactions cellulaires
impliquées dans la maladie, comprendre le
mécanisme d'action des traitements actuels de la PR
et tester de nouvelles combinaisons de médicaments.
Je souhaite également identifier de nouvelles cibles
thérapeutiques et proposer d'éventuels
repositionnements de médicaments. Dans cette
optique,  j'ai développé une approche
computationnelle et systémique afin d'obtenir une
représentation multicellulaire des mécanismes
impliqués dans la PR. Pour cela, j'ai construit I'atlas
de la PR, un atlas qui récapitule les connaissances
actuelles sur les cascades intracellulaires impliquées
dans la maladie. L'atlas est basé sur une curation
manuelle de la littérature et des bases de données, et
enrichi avec des données omiques. Il comprend
quatre cartes spécifiques au macrophage, de
phénotypes M1 et M2, au fibroblaste et au
lymphocyte CD4+ de type Th1. Afin d'obtenir une
représentation multicellulaire de I'articulation, j'ai
créé la premiere carte multicellulaire de la PR en
intégrant les interactions intercellulaires
bidirectionnelles identifiées dans la littérature et les
données omiques. Cependant, cette carte reste
limitée par sa nature statique lorsqu'il s'agit de faire
des prédictions. Pour étudier le comportement

émergent de ce systeme, j'ai utilisé I'outil CaSQ
pour convertir les cartes en modéles Booléens. Ces
modeles logiques ne nécessitent pas de
parametres cinétiques et peuvent intégrer des
informations provenant de la littérature et de
données omiques, ce qui en fait une option
appropriée pour l'analyse des réseaux a grande
échelle. La recherche d'attracteurs est un point clé
dans I'analyse des modéles Booléens; cependant,
elle nécessite une puissance computationnelle
importante. De plus, les attracteurs
biologiquement cohérents doivent étre identifiés
d'une maniere spécifique aux cellules et aux
maladies étudiées. A cet effet, j'ai développé une
framework qui analyse les modéles Booléens en
mode synchrone a |'aide d'une nouvelle version de
I'outil BMA déployé dans un cluster de calcul haute
performance. La framework identifie tous les
attracteurs, puis teste leur cohérence par rapport
aux données omiques et aux connaissances
actuelles. Pour identifier de nouvelles options
thérapeutiques dans la PR, je me suis intéressée aux
macrophages. Jai effectué une recherche
exhaustive de cibles thérapeutiques dans les
modeles des macrophages M1 et M2. Jai ensuite
simulé des knock-outs (KOs) simples et doubles qui
m'ont permis d'identifier NF-kB, JAK1/JAK2 et
ERK1/Notch1 comme cibles potentielles pour
supprimer les macrophages pro-inflammatoires.
J'ai également identifi¢ GSK3B comme cible
potentielle pour activer les macrophages anti-
inflammatoires. La prochaine étape consiste a
étudier de nouvelles options thérapeutiques dans
un contexte multicellulaire en simulant des KO
simples et doubles sur le modéle multicellulaire.
L'objectif est d'étudier comment la suppression
et/ou [l'activation de certaines populations
cellulaires pourrait réguler l'inflammation et la
destruction du cartilage dans la synoviale de la PR.
Notre framework ouvre la voie pour l'analyse de
nombreuses autres cartes d'une maniére
intégrative et combinatoire.




ECOLE DOCTORALE

®
universite

PARIS-SACLAY (SDSV)

Structure et dynamique
des systémes vivants

Title : Computational modeling of the cellular interplay in rheumatoid arthritis. Deciphering the role of resident

and immune cells in the arthritic joint.

Keywords : Rheumatoid arthritis, Large-scale computational modeling, Macrophage model, Discrete

Multicellular model, Immuno-inflammation, Cellular crosstalks.

Abstract Rheumatoid arthritis (RA) is an
autoimmune disease whose etiology is still not fully
understood. The disease manifestation includes joint
pain, stiffness and swelling, and chronic synovitis. The
pathological state of the synovial tissue in RA is the
result of cellular crosstalks between the resident
synoviocytes and the immune cells. These cell-cell
interactions define many aspects of RA pathogenesis
and could offer potential targets for therapeutic
interventions. Today there exists no curative
treatment for RA. The proposed therapies can only
alleviate symptoms and are often associated with
several adverse effects. In my thesis, | was interested
in studying the cellular interplay involved in the
disease, comprehending the mechanism of action of
current RA treatments, and testing new drug
combinations.  Also, | wanted to identify new
potential therapeutic intervention points, and
perform drug repurposing analysis for the identified
targets. In this direction | developed an efficient
computational system biology approach to gain a
multicellular system-level understanding of the intra-
and intercellular cascades involved in RA
pathogenesis. | started with building the RA-Atlas, a
state-of-the-art atlas that recapitulates existing
knowledge about the intracellular cascades involved
in RA pathogenesis and evidence of their relationship
with pathophysiological causes and effects. The RA-
Atlas is based on manual curation of the literature
and pathway databases and enriched with omics
data. It includes four molecular interaction maps
specific to the macrophage, including the M1 and M2
phenotypes, the fibroblast and the CD4+ T helper 1.
To provide a multicellular-level representation of the
arthritic joint, | created the first RA multicellular map
through the integration of bidirectional intercellular
interactions that were identified using literature
mining and omics data. However, this multicellular
map remains limited by its static nature when it
comes to predictions. To study the emergent

behavior of this biological system, | used the CaSQ
tool to convert the maps to Boolean models. These
logic-based models do not require kinetic
parameters and can integrate information from
literature and high-throughput technologies,
providing a suitable option for analyzing large-
scale networks. Attractor search is a key point in
Boolean models’ analysis; however, it s
computationally  challenging in large-scale
systems, and the identified attractors need to be
validated as biologically consistent states in a cell-
and disease-specific manner. In this regard, |
developed an efficient computational framework
that analyzes Boolean models in a synchronous
scheme using a new version of the BMA tool
deployed to a high-performance computing
cluster. The framework identifies all the attractors
of the models, filters out the cycles, then tests the
coherence of the stable states against omics
datasets and prior knowledge. To investigate new
therapeutic options in RA, | focused on the synovial
macrophages. | conducted an exhaustive search for
therapeutic targets present in the RA M1 and M2
macrophage models. Using single and double
knockouts (KOs) simulations, | identified NF-kB,
JAK1/JAK2, and ERK1/Notch1 as potential targets
to selectively suppress pro-inflammatory RA
macrophages. | also identified GSK3B as a
promising target to promote anti-inflammatory RA
macrophages. The next step would be to
investigate new therapeutic options in a
multicellular setting by simulating single and
double KOs on the RA multicellular model. The goal
is to investigate how the suppression and/or
promotion of certain cell populations could
regulate chronic inflammation and cartilage
destruction in the RA synovium. My framework,
applied on the RA multicellular map, sets the path
to many other disease maps to be analyzed in an
integrative and combinatorial manner.
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Synthese en francais

La polyarthrite rhumatoide (PR) est une maladie auto-immune inflammatoire
chronique dont les mécanismes sous-jacents a son initiation ne sont pas encore
totalement élucidés. La pathogenése de la PR implique une combinaison de
facteurs génétiques, épigénétiques et environnementaux et résulte d'interactions
complexes entre la signalisation biologique, la régulation génique et le
métabolisme. L'activation dérégulée des voies telles que JAK/STAT, SAPK/MAPK
et de PI-3K/AKT/mTOR, entre autres, conduisent a une expression accrue des
métalloprotéinases et des cytokines pro-inflammatoires, ce qui entraine une
dégradation chronique et une inflammation du tissu synovial. La cascade
inflammatoire entraine une hyperplasie, une dégradation du cartilage et une
destruction osseuse dans les articulations. Les articulations touchées perdent leur
forme et leur alignement, ce qui entraine des déformations et une perte de
fonction. La douleur, le gonflement, et la raideur des articulations des mains et
des pieds sont les premiers symptoémes de la PR. Des manifestations extra-
articulaires peuvent également apparaitre, telles que des maladies gastro-
intestinales, respiratoires et cardiovasculaires.

Le comportement pathogene du tissu synovial chez les patients atteint de la PR
n‘est pas d0 a un seul type de cellule. Il résulte de la communication cellulaire
entre les synoviocytes locaux et les cellules du systéme immunitaire inné et
adaptatif. Ces interactions intercellulaires déterminent de nombreux aspects de
la physiopathologie de la maladie. Elles peuvent activer ou inhiber des
populations spécifiques de cellules synoviales. Elles régissent également les
cascades de signalisation intracellulaire et |'expression des substances
inflammatoires ainsi que les enzymes de remodelage de la matrice dans les
articulations. Ce qui régule I'inflammation chronique, la dégradation de la matrice
et I'érosion osseuse.

Il n‘existe actuellement aucune thérapie curative pour la PR. Le large éventail de
molécules associé a la PR, les réseaux cellulaires complexes et I'hétérogénéité de
la maladie sont autant d'obstacles a la guérison de la PR. De nombreuses
thérapies ont été développées pour soulager les symptomes de la maladie,
améliorer la survie et éviter l'invalidité a long terme. Cependant, elles sont
également associées a plusieurs effets indésirables et une grande partie de
patients atteints de PR ne répondent pas a ces traitements. Nous devons donc
mieux comprendre les communications cellulaires et les cascades intracellulaires
impliquées dans la pathogenese de la maladie afin d'élucider le mode d'action
des médicaments proposés actuellement contre la PR et d'identifier de nouvelles
options thérapeutiques.



La biologie des systemes peut aider a obtenir une compréhension holistique des
maladies complexes telles que la PR grace a la construction de cartes
d'interactions moléculaires. Ces cartes sont des réseaux d'interaction détaillés
décrivant les processus moléculaires ainsi que leurs associations avec les
phénotypes des maladies décrites. Les cartes d'interactions moléculaires sont
construites manuellement et annotées via des recherches bibliographes
extensives. Elles sont également standardisées pour permettre une
représentation, une visualisation, un stockage, un échange et une réutilisation
efficace et précise des connaissances. Les cartes peuvent étre utilisées pour
I'identification de biomarqueurs, de cibles thérapeutiques et de sous-types de
maladies. En outre, elles fournissent un support complet pour la visualisation,
I'analyse et l'interprétation des données omiques. Cependant, ces cartes sont
statiques et ne peuvent pas étre utilisées pour effectuer des simulations et
générer des prédictions.

La modélisation dynamique est un outil puissant pour comprendre les
caractéristiques et les comportements émergents des systemes complexes décrits
dans les cartes d'interactions moléculaires. Parmi les techniques de modélisation
disponibles, le formalisme Booléen est le mieux adapté aux larges systemes
biologiques. En effet, la modélisation Booléenne ne requiére pas de parametres
cinétiques, difficiles a déterminer dans la plupart des systemes. Elle permet
également d'utiliser la littérature, les données expérimentales et les données de
séquencage afin d'extraire une grande quantité de données qualitatives décrivant
les composants et les interactions qui composent ces larges systémes
biologiques. Dans ces modeles Booléens, les nceuds représentent des entités
biologiques (genes, protéines, métabolites...). Chaque nceud peut avoir deux
valeurs : zéro (0) pour l'inactivité et un (1) pour l'activité. Les différents
composants du systeme modélisé sont reliés par des arcs qui représentent leurs
interactions régulatrices. Ces interactions sont décrites par des fonctions
Booléennes : "AND", "OR" et "NOT", et la valeur de chaque composant est
déterminée par ces fonctions Booléennes.

Lorsqu'il est simulé, le modele change d'état global (c'est-a-dire I'état du systeme
entier) et finit par atteindre une configuration particuliere appelée attracteur. Les
attracteurs sont associés a des phénotypes biologiques, ce qui fait de leur calcul
un point clé dans I'analyse des modéles Booléens. Etant donné que le nombre
d'états globaux d'un modeéle Booléen dépend exponentiellement du nombre de
ses nceuds (2" états globaux pour n nceuds), la recherche d'attracteurs dans les
systemes biologiques a grande échelle nécessite une grande puissance
computationnelle. De plus, comme les attracteurs different en fonction des
perturbations externes que le modeéle recoit de son environnement, le nombre
total d'attracteurs peut étre trés élevé. Il est donc nécessaire d'identifier



correctement les états biologiquement cohérents et de les interpréter d'une
maniére spécifique aux types cellulaires et a la maladie étudiés.

Dans le cadre de ce projet de thése, nous nous sommes intéressés au
développement d'une approche computationnelle et systémique afin d'obtenir
une meilleure compréhension des mécanismes impliqués dans la PR. Notre
objectif était de fournir une représentation détaillée de la structure et de la
dynamique des interactions intercellulaires complexes impliquées dans la PR,
ainsi que des cascades intracellulaires et de leur régulation dans cette maladie.
Nous voulions également mieux comprendre le mécanisme d'action des
thérapies proposées actuellement pour la PR et identifier de potentielles
nouvelles options thérapeutiques en mono- et bi-thérapies.

La premiere étape de ce travail consistait a construire un atlas de la PR en
intégrant a la fois la littérature via des recherches bibliographiques et les données
omiques. Nous avons cherché a rassembler les données existantes mais
fragmentées (expression génique, voies de signalisation, phénotypes cellulaires)
sur la pathogenese de la PR d'une maniere spécifique aux types cellulaires
étudiés. Dans cette optique, nous avons construit quatre cartes d'interactions
moléculaires spécifiques aux populations cellulaires les plus abondantes dans la
synoviale de la PR : les macrophages synoviaux de phénotype M1 et M2, les
fibroblastes synoviaux et le sous-type CD4+ T helper 1 (Th1).

Ces cartes ont été construites en utilisant les informations provenant des articles
publiés et des bases de données telles que KEGG. Ces informations ont fait I'objet
d'une curation et d'une annotation manuelles selon la norme MIRIAM. La
premiére étape a consisté en une étude approfondie des données publiques afin
d'identifier les voies, les composants et les interactions impliquées dans la
pathogenése de la PR. Nous avons utilisé des études expérimentales a petite
échelle chez I'hnomme pour confirmer I'implication de composants ou
d'interactions dans la maladie. Nous avons suivi des critéres de curation strictes
lors de I'élaboration des cartes. Seuls les composants et les interactions ayant une
expression démontrée dans la pathogenese de la PR et dans le type de cellule
concerné ont été intégrés.

La représentation graphique de ces informations s'est faite a l'aide du logiciel
CellDesigner, un outil d'édition de diagrammes de réseaux biochimiques. Les
noeuds des cartes représentent des biomolécules telles que des protéines, des
genes et des complexes et sont décrits par des identifiants HGNC. Les arcs
représentent les interactions entre les nceuds, telles que I'activation, l'inhibition
et la catalyse. La syntaxe et la sémantique des symboles utilisés pour représenter
les nceuds et les interactions sont conformes au format SBGN PD. Les cartes sont
stockées dans le format SBML (Systems Biology Markup Language), un format



standard ouvert basé sur le langage de balisage extensible (XML) pour
représenter les réseaux de réactions biochimiques.

Toutes les cartes ont été construites en utilisant la méme structure. En effet, les
compartiments cellulaires ont été congus pour refléter la transduction du signal
dans une cellule depuis I'espace extracellulaire sous la forme d'un ligand, jusqu'a
la membrane plasmique, ou il se lie a son récepteur, en passant par le cytoplasme
et le noyau, jusqu'a la production de protéines. Ces protéines peuvent étre soit
sécrétées dans |'espace extracellulaire, soit transportées jusqu'a la membrane. Les
phénotypes sont des nceuds particuliers dans les cartes. lls représentent I'état de
la cellule, résultat de multiples processus cellulaires qui définissent et faconnent
la morphologie et la fonction de la cellule. lls décrivent des états biologiques
connus pour étre actifs ou inactifs dans la PR.

Les cartes d'interactions moléculaires ont été enrichies de voies de signalisations
par l'intégration de données d'expression génique spécifiques a la maladie et aux
types cellulaires étudiés a I'aide de logiciels d'analyse tels que IPA et MetaCore.

Toutes les cartes construites sont disponibles sous forme de cartes interactives
en ligne sur le serveur web autonome MINERVA a [I'adresse
https://ramap.uni.lu/minerva/. La plateforme MINERVA permet I'exploration
visuelle, I'analyse et la gestion de réseaux moléculaires encodés dans des formats
de biologie systémique, y compris CellDesigner, SBML et SBGN. Toutes les
références des articles scientifiques utilisés pour la construction des cartes sont
disponibles dans la section d'annotation des cartes. Des listes de genes sont aussi
disponibles pour visualiser les signatures de chacun des types cellulaires sur les
différentes cartes de I'Atlas de la PR.

La deuxieme étape de ce projet était d'obtenir une représentation multicellulaire
de l'articulation atteinte de la PR. En utilisant a la fois les connaissances préalables
et l'intégration des données omiques, nous avons identifié les interactions
intercellulaires bidirectionnelles entre les macrophages, les fibroblastes et les
types de cellules Th1 dans la synoviale de la polyarthrite rhumatoide. Ces
interactions ont été utilisées pour relier les cartes spécifiques aux cellules
correspondantes dans |'Atlas de la PR et construire la premiére carte
multicellulaire de la PR.

La recherche d'interactions intercellulaires dans la littérature et les bases de
données s'est faite via différents outils. Le premier est Causaly, un outil de
recherche biomédicale qui répond aux questions de recherche auxquelles il peut
étre difficile de répondre par une recherche traditionnelle par mots-clés. Le
systeme améliore le processus humain de recherche de preuves, qui prend
généralement beaucoup de temps en raison de la grande quantité de littérature
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biomédicale disponible. Causaly repose sur une intelligence artificielle avancée
qui lit la littérature a travers des millions de publications académiques et distille
les preuves dans un graphe de connaissances. Contrairement a d'autres outils qui
se contentent de compter statistiquement la fréquence d'apparition de mots
difféerents dans une méme phrase, Causaly comprend la directionnalité des
preuves grace a son graphe de connaissances qui comprend 220 millions de
relations directionnelles. Ces relations peuvent étre extraites de sources de
données non structurées et structurées ainsi que de données publiques, sous
licence et propriétaires (PubMed, brevets, protocoles d'essais cliniques, bases de
données chimiques, de cibles et de sécurité...).

Nous avons également utilisé PubMed pour rechercher les communications entre
les types de cellules qui nous intéressaient. Des mots-clés et des phrases clés
pertinents tels que "M1 macrophage fibroblast interactions in rheumatoid
arthritis”, "macrophage Th1 activation in RA", "M2 macrophage Th1 inhibition
RA", parmi beaucoup d'autres, ont été utilisés pour filtrer les articles dans

PubMed.

Pour identifier d'autres moyens de communication cellulaire, nous avons utilisé
la base de données CellPhoneDB. Il s'agit d'un référentiel public de récepteurs,
de ligands et de leurs interactions répertoriées manuellement. CellPhoneDB
contient un total de 978 protéines impliquées dans 1 396 interactions. A partir
des cartes d'interactions moléculaires correspondant aux quatre types cellulaires
d'intérét, nous avons extrait les protéines transmembranaires et sécrétées, ainsi
que les récepteurs. Dans des fichiers texte, nous avons combiné ces récepteurs et
ces ligands de maniere a couvrir les paires d'interactions bidirectionnelles
suivantes : M1 macrophage-fibroblaste, M1 macrophage-Th1, M2 macrophage-
fibroblaste, M2 macrophage-Th1 et fibroblaste-Th1. En ce qui concerne la paire
M1 macrophage-fibroblaste, par exemple, nous avons généré un premier fichier
texte contenant tous les ligands exprimés dans la carte du macrophage M1 et
tous les récepteurs exprimés dans la carte du fibroblaste. Un second fichier a
également été généré et comprend tous les ligands représentés dans la carte des
fibroblastes et tous les récepteurs exprimés dans la carte des macrophages M1.
A l'aide de la base de données CellPhoneDB, nous avons récupéré toutes les
interactions qui impliquent a la fois les ligands et les récepteurs présents dans
chaque fichier texte généré.

Nous avons également intégré des données omiques via ICELLNET et DiSiR afin
d'identifier les interactions statistiquement significatives observées dans ces
données. Ces outils se basent sur une ressource de connaissances préalables sur
les interactions intercellulaires et sur une méthode pour prédire les événements
potentiels de communication entre les cellules. Les événements sont représentés



comme une interaction entre une protéine émettrice et une protéine réceptrice
exprimée par le type de cellule source et le type de cellule cible. Les événements
sont prédits en estimant la probabilité de l'interaction sur la base du niveau
d'expression de |'émetteur et du récepteur dans le type de cellule source et cible,
respectivement.

Afin de procéder a une validation croisée des résultats et de ne conserver que les
interactions les plus fiables, nous les avons filtré en fonction des criteres suivants :

e Seules les interactions statistiquement significatives (seuil FDR égal a 0,05)
identifiées a la fois dans ICELLNET et dans DiSiR ont été conservées.

e Seules les interactions identifiées avec au moins deux paires différentes de
jeux de données ou deux approches différentes (sur la base de la littérature
ou des données omiques) ont été conservées.

e En ce qui concerne les interactions provenant de la littérature et des bases
de données, mais non inférées des données omiques, seules les interac-
tions provenant d'au moins deux sources d'information différentes (articles
publiés différents ou bases de données différentes) ont été conservées.

Nous avons utilisé ces interactions filtrées pour connecter les cartes d'interactions
moléculaires spécifiques aux macrophages, fibroblastes et Th1 entre elles et
générer la premiere carte multicellulaire de la PR.

La troisieme étape de ce travail consistait a utiliser les cartes d'interactions
moléculaires de la PR comme base pour générer automatiquement des modeles
Booléens exécutables. Le but était de développer une approche computationnelle
efficace qui utilise des clusters de calcul a haute performance pour effectuer d'une
maniere efficace la recherche d'attracteurs sur des modeles a grande échelle, et
de valider ces attracteurs en tant qu'états biologiquement cohérents en utilisant
I'analyse de données omiques et des connaissances préalables.

La construction et I'analyse de modeéles Booléens pour les systemes biologiques
complexes a grande échelle restent un défi en biologie des systemes. Les regles
logiques, lorsqu’elles sont définies manuellement, aboutissent a des modéles plus
petits qui ne peuvent pas décrire les systemes biologiques étudiés dans leur
entiereté. Tandis que les modeles inférés automatiquement a partir de cartes sont
beaucoup plus grands et permettent d'avoir des représentations plus précises des
systemes. Ces modeles a grande échelle, d'autre part, sont plus complexes, avec
un nombre considérablement plus élevé de variables, ce qui rend l'identification
de leurs attracteurs difficile sur le plan computationnel. De plus, un nombre
d'attracteurs considérablement grand entrave l'identification et l'interprétation
d'états biologiquement cohérents, en particulier dans un contexte spécifique a un



type cellulaire ou a une maladie donnée.

Nous avons développé une approche computationnelle efficace pour construire,
analyser et valider le comportement de modeles Booléens a grande échelle. La
premiére étape de notre approche consiste a utiliser les cartes d'interactions
moléculaires comme point de départ pour inférer automatiquement leurs
modeles Booléens exécutables via I'outil CaSQ. Pour chaque noeud du fichier XML
de départ, CaSQ déduit automatiquement des regles logiques basées sur la
topologie et la sémantique du réseau. Tout d'abord, la carte est réduite par le
biais d'une série de regles de réécriture de graphes. Certains composants de la
carte de départ sont fusionnés en un seul composant ou certaines formes
inactives afin d'éviter toute redondance dans le modele logique. Ensuite, des
regles logiques sont automatiquement inférées sur la base de la topologie de la
carte réduite. L'outil produit des fichiers exécutables en format SBML-qual ou
JSON. En utilisant ce dernier format, il est également possible de produire des
réseaux qualitatifs ou les nceuds peuvent varier sur une large gamme de valeurs
discrétes, appelée granularité. La granularité définit la valeur la plus élevée que
les nceuds peuvent prendre dans le modele. Puisque nous utilisons le formalisme
Booléen, la granularité utilisée dans I'analyse de nos modéles est égale a un.

Les modeles Booléens générés sont analysés dans un schéma synchrone a l'aide
d'une nouvelle version de I'outil BMA déployé dans un cluster de calcul a haute
performance. En effet, BMA a été initialement développé sur le Microsoft .NET et
le standard .NET, qui lient les outils aux environnements Windows. Pour permettre
I'analyse de modeles a haut débit et tirer parti de la parallélisation sur des clusters
a haute performance (généralement basées sur Linux), nous avons développé un
prototype de I'outil basé sur le noyau open-source .NET 3.1. Notre approche
utilise cette nouvelle version de BMA pour identifier tous les attracteurs possibles
des modeéles.

Les attracteurs dépendent des stimuli externes que le modele recoit de son
environnement. Dans les modeles Booléens, les stimuli sont modélisés sous la
forme de nceuds externes. Ce sont des nceuds sans régulation en amont. lls ne
sont associés a aucune regle logique dans le modeéle ; les valeurs qu'ils prennent
sont donc définies par |'utilisateur. Dans I'outil BMA, I'utilisateur peut attribuer
des valeurs a ces nceuds externes a l'aide de l'indicateur -ko. En fonction des
valeurs que prennent ces nceuds, le modele atteint différents attracteurs. Pour
identifier tous les attracteurs du modele, nous avons généré toutes les
combinaisons possibles de valeurs et les avons attribué aux nceuds externes. Pour
chaque combinaison, nous avons calculé I'attracteur correspondant.

Le temps de calcul pour ce type d'analyse est exponentiel. En effet, le nombre de
toutes les combinaisons possibles est égal a 2", n étant le nombre de nceuds



externes qui varient dans le modele. Compte tenu du nombre élevé de nceuds
externes dans les modeles Booléens, nous avons déployé BMA dans un cluster de
calcul a haute performance pour accélérer le processus.

On filtre ensuite les attracteurs qu'on a identifié pour ne conserver que les états
stables puis on teste leur cohérence par rapport a des données d'expression
génique et aux connaissances préalables. Pour ce faire, nous filtrons davantage
les états stables du modeéle et sélectionnons ceux qui sont capables de reproduire
ce qui est connu dans la littérature ou ce qui est observé dans les données
transcriptomiques. Tout d'abord, nous identifions les biomolécules
différentiellement exprimées présentes dans le modele en utilisant a la fois
I'exploration de la littérature et I'analyse de I'expression différentielle. Ensuite,
nous discrétisons les expressions des biomolécules identifiées pour les convertir
en un vecteur binaire de valeurs Booléennes. Nous comparons ensuite les états
stables filtrés a ce vecteur binaire a I'aide d'un score de similarité. Sur la base de
ce score, nous sélectionnons les états ayant le score le plus élevé et calculons leur
vecteur moyen. Le vecteur résultant représente I'état calibré du modeéle. Nous
avons d'abord appliqué notre méthodologie aux quatre cartes de I'Atlas et qui
sont spécifiques au macrophage M1, au macrophage M2, au fibroblaste RA et au
CD4+ Th1 RA. Les états calibrés de ces modeles ont ensuite été combinés pour
générer et valider le premier modele multicellulaire de la PR.

La derniére étape de ce travail consistait a utiliser les modeles validés et calibrés
pour étudier de nouvelles options thérapeutiques dans la PR par le biais de
simulations in-silico de simple et double knockouts. Le but était de comprendre
le mécanisme d'action des traitements actuels de la PR, de tester de nouvelles
combinaisons de médicaments, d'identifier de nouveaux points d'intervention
thérapeutique et d'effectuer une analyse de repositionnement des médicaments
pour les cibles identifiées.

Pour cela, nous nous somme tout d'abord intéressés aux macrophages synoviaux.
En effet, de récentes étudies ont révélé que le systeme immunitaire inné est un
acteur majeur dans l'initiation et le développement de la pathogenéese de la PR.
Les macrophages sont I'une des populations de cellules immunitaires innées les
plus abondantes dans la PR et leur nombre est en corrélation significative avec la
sevérité de la maladie. Les populations de macrophages sont hétérogenes et
peuvent se différencier en divers phénotypes en réponse aux stimuli du
microenvironnement local. Les phénotypes M1 et M2 représentent les deux
extrémes de leur spectre d'activation.

Par conséquent, en fonction de leur phénotype (M1 ou M2), les macrophages
jouent un réle a la fois dans l'initiation et la résolution de l'inflammation. Les
macrophages M1 sont responsables de la surproduction de cytokines



inflammatoires et de la libération d'enzymes de dégradation de la matrice,
conduisant a la destruction du cartilage. lls peuvent également attirer les cellules
T pro-inflammatoires et induire leur hyperactivation. D’autre part, les
macrophages M2 atténuent I'inflammation par 1) la production de cytokines anti-
inflammatoires, y compris I'lL-10 et le TGF-B, 2) I'homéostasie et la réparation des
tissus 3) l'activation des cellules T régulatrices. En raison de leur activation et de
leur prolifération excessive ainsi que de leur capacité renforcée a résister a
I'apoptose, la proportion de macrophages M1 est supérieure a celle des
macrophages M2.

Il existe actuellement deux approches pour cibler les macrophages : la régulation
a la baisse du phénotype M1 et I'expansion du phénotype M2, ou la repolarisation
des macrophages M1 en macrophages M2. Malgré cela, aucun médicament
ciblant spécifiquement les macrophages n'est actuellement utilisé en clinique. Par
conséquent, mieux comprendre |'approche qui permettrait la déplétion ciblée du
macrophage inflammatoire tout en épargnant les autres sous-types de
macrophages pourrait constituer une approche thérapeutique efficace dans la PR.

Bien que ['hétérogénéité des macrophages dans la PR n'est pas encore
entierement comprise, les modeles de macrophages M1 et M2 de la PR que nous
avons construits et validés visent a couvrir la diversité phénotypique des
macrophages grace a une représentation spécifique de leurs
cytokines/chimiokines sécrétées, de leurs stimuli, de leurs récepteurs et de leurs
facteurs de transcription. Nous avons donc utilisé ces modeles pour investiguer
les mono- et bithérapies qui permettraient de réduire spécifiquement les
macrophages pro-inflammatoires et de favoriser les macrophages anti-
inflammatoires dans la synoviale de la polyarthrite rhumatoide. Ceci passe par
I'induction du phénotype d'apoptose et I'inhibition du phénotype de prolifération
dans le modele de macrophage M1, et par l'activation du phénotype de
prolifération et l'inhibition du phénotype d'apoptose dans le modéle de
macrophage M2. Dans cette optique, nous avons testé les réponses de ces
modeles aux traitements actuels de la PR afin d'évaluer I'effet de ces traitements
sur les macrophages et d'acquérir une meilleure compréhension de leur
mécanisme d'action dans ce type de cellules. Nous avons également testé de
nouvelles combinaisons de médicaments et des points d'intervention
thérapeutique potentiels.

Afin d'identifier les cibles thérapeutiques potentielles présentes dans les modeéles,
nous avons effectué une recherche exhaustive a I'aide de la Therapeutic Target
Database (TTD). Il s'agit d'une base de données de médicaments congue pour
fournir des informations sur les cibles décrites dans la littérature, les conditions
pathologiques ciblées, les informations sur les voies de signalisation perturbées



et les médicaments associés a chacune de ces cibles. La base de données contient
actuellement 3578 cibles et 38 760 médicaments. Afin de simuler les knockouts
dans les modéles, nous avons sélectionné les cibles sur la base du mode d'action
des médicaments qui leur sont associés, et nous n‘avons gardé que celles qui
peuvent étre ciblées par au moins un inhibiteur (1643 cibles). Nous avons ensuite
identifié les cibles présentes dans les modeles de macrophages M1 et M2 puis
simulé leurs KOs.

Nous avons également testé I'effet synergique que pourraient avoir les cibles
thérapeutiques précédemment identifiées sur nos modeles. Pour cela les cibles
ont été combinées par paires et les modeles de macrophage RA M1 et RA M2 ont
été ensuite utilisés pour prédire I'effet de leurs inhibitions.

Nous avons retrouvé une cible thérapeutique et deux combinaisons de cibles
thérapeutiques potentielles, a savoir NFkB, JAK1/JAK2 et ERK1/Notch1, qui
permettent d'inhibier sélectivement les macrophages pro-inflammatoires de la
PR. Nous avons également retrouvé GSK3B comme cible prometteuse afin de
promouvoir les macrophages anti-inflammatoires dans la synoviale de la PR.
L'interet potentiel/prouvé de ces cibles dans la PR étant documenté dans la
literature, ces résultats nous permettent de valider d’avantage nos modéles de
macrophages.

L'inhibition du NF-kB a conduit a une suppression sélective du macrophage M1
de la PR. NF-kB représente une cible thérapeutique potentielle tres attrayante car
il s'agit d'un facteur de transcription clé des macrophages M1, responsable de
I'expression accrue des cytokines produites par les macrophages M1 dans la
synoviale de la PR. Plusieurs études soutiennent le concept de I'inhibition de NF-
KB pour des interventions thérapeutiques dans les maladies inflammatoires. Dans
la PR, I'inhibition in vitro de NF-kB induit I'apoptose des fibroblastes et contribue
a une diminution significative des marqueurs M1 et a une augmentation des
marqueurs M2. D'autres études ont montré que les effets bénéfiques observés
des anti-inflammatoires non stéroidiens (AINS) et des glucocorticoides, tous deux
utilisés dans le traitement de la PR, sont également dus a I'inhibition du NF-kB.
Toutefois, leur utilisation est limitée en raison d'effets secondaires graves.
D'autres inhibiteurs de NF-kB ont été identifiés, mais la majorité d'entre eux ne
répondent pas aux normes requises pour rejoindre des programmes d’essais
clinique. En effet, I'inhibition non sélective de NF-kB dans tous les types de
cellules a de multiples effets néfastes, car il est essentielle au maintien du
fonctionnement cellulaire de base. Des traitements biologiques ciblant
directement les genes régulés par NF-kB, tels que TNF, IL-6 et IL-1, ont été mis
au point. Cependant, I'inhibition d'une seule cytokine n'est peut étre pas optimale
car plusieurs cytokines ont des activités biologiques synergiques. Par conséquent,



la découverte de techniques d'inhibition de NF-kB qui ciblerait un type de cellule
en particulier est nécessaire pour modifier la balance bénéfices/risques.

Nous avons retrouvé GSK3B comme cible dintérét pouvant promouvoir les
macrophages M2 dans la PR. GSK3 est impliqué dans la progression de plusieurs
maladies, y compris la PR. Des études suggerent que cette protéine joue un role
central dans différentes voies de signalisation qui sont pertinentes pour la
fonction des macrophages, y compris la polarisation et la réponse inflammatoire.
L'inhibition de GSK3p dans la PR supprime les réponses inflammatoires dans les
synoviocytes de type fibroblaste. De plus, I'inhibition de GSK3[ dans la maladie
de la rhinite inflammatoire allergique augmente I'expression des marqueurs
phénotypique des macrophages M2. CREB1 est l'une des cibles de GSK3p.
Lorsque GSK3p est inhibée, elle induit un gain de fonction de CREB1 qui, a son
tour, envoie un signal de survie anti-inflammatoire et anti-apoptotique dans les
monocytes et les macrophages. CREB1 augmente également I'expression des
marqueurs M2 et favorise le phénotype M2 dans les macrophages provenant de
souris.

La prolifération des macrophages M1 a été supprimée par le knock-out d'ERK1.
Lorsque celui-ci est associé a I'inhibition de Notch1, il induit également I'apoptose
des macrophages M1 dans notre modele. L'intérét thérapeutique potentiel du
ciblage conjoint d'ERK1 et de Notch1 a déja été démontré dans le cancer, mais
pas dans la PR. Il a été démontré que le ciblage de Notch1 renforce I'efficacité
des inhibiteurs d'ERK1 chez les patients atteints de cancer. Dans la PR, les
inhibitions d'ERK1 et de Notch1l de maniere indépendante réduisent
I'inflammation dans la PR chez les souris. Notch1, d'autre part, est connue pour
influencer la fonction des macrophages M1 via une régulation transcriptionnelle
directe et une régulation métabolique indirecte.

Nous avons également retrouvé la paire JAK1/JAK2 comme une combinaison
ayant un effet synergique sur notre modele et permettant d’induire I'apoptose
chez les macrophages M1 dans la PR. Le baricitinib, un inhibiteur oral de JAK
sélectif pour JAK1 et JAK2, est approuvé par la Food and Drug Administration
(FDA) pour le traitement de la PR. Ce résultat valide donc d'avantage le
comportement de notre modeéle. Baricitinib empéche I'activation des voies STAT,
ce qui, a son tour, empéche les réactions auto-immunes et inflammatoires
associées a la PR, y compris la sécrétion d'IFNg. Cependant, la facon dont les
inhibiteurs de JAK modulent les phénotypes des macrophages, et si ce
meécanisme explique leur bénéfice clinique dans la PR, n'est pas encore
complétement comprise. Une étude récente a montré que le baricitinib modulait
I'expression des marqueurs phénotypiques membranaires ainsi que la sécrétion
de certaines cytokines signatures chez les macrophages sains. Une autre étude



confirme l'effet de l'inhibition des JAK sur les phénotypes des macrophages
atteints de PR en modifiant le profil métabolique des macrophages M1 et en
rééquilibrant la reprogrammation métabolique en faveur de la phosphorylation
oxydative.

Bien que les modeles de macrophages donnent une représentation détaillée de
la diversité phénotypique de la population de macrophages et nous permettent
d'étudier des processus spécifiques a ce type cellulaire comme I'apoptose et la
prolifération, ils ne fournissent aucune information sur I'état biologique global de
I'articulation dans la PR, tel que I'inflammation, la dégradation de la matrice et
I'angiogenese. En outre, ces modeéles peuvent prédire les réponses des
macrophages aux médicaments testés, mais pas les réponses cellulaires d'autres
types de cellules présentes dans la synoviale. Par conséquent, pour étudier de
nouvelles options thérapeutiques dans la PR, nous devons effectuer des
simulations dans un environnement multicellulaire qui prend en compte les
différents types de cellules présents dans la synoviale de la PR ainsi que leur
communication intercellulaire, tous deux impliqués dans la pathogenese de la
maladie.

Dans cette optique, nous avons étudié de nouvelles options thérapeutiques dans
un cadre multicellulaire en simulant des KOs simples et doubles sur le modele
Booléen multicellulaire calibré de la PR. Comme ce modéle offre une description
multicellulaire de la synoviale de la PR, il nous permet de mieux comprendre
comment la suppression et/ou l'activation de certaines populations cellulaires
et/ou de certains processus biologiques pourraient réguler I'inflammation
chronique, la destruction du cartilage et I'érosion osseuse dans |'articulation
atteinte.

De la méme maniere que pour les simulations sur les modeles de macrophages,
nous avons identifié les cibles thérapeutiques potentielles présentes dans le
modele multicellulaire en utilisant la base donnée Therapeutic Target Database
(TTD. Afin de simuler les knockouts dans les modeles, nous n'avons gardé que les
cibles qui sont associées a au moins un inhibiteur (1643 cibles). Nous avons
ensuite identifié les cibles présentes dans le modele puis simulé leurs KOs. Nous
avons utilisé |'état calibré du modele multicellulaire comme condition initiale pour
les simulations. Les états phénotypiques du modele apres inhibition des cibles
ont ensuite été comparés a leurs états calibrés.

Nous avons également testé I'effet synergique potentiel que pourraient avoir les
cibles thérapeutiques précédemment identifiées sur notre modele. Pour cela les
cibles ont été combinées par paires et le modele multicellulaire de la PR a ensuite
été utilisé pour prédire I'effet de leurs inhibitions.



Nous avons retrouvé AKT2, qui appartient a la famille des sérines/thréonines
kinases, comme cible potentielle pour l'inhibition de la prolifération et de la
migration des fibroblastes dans la PR. Il a été montré que la voie de signalisation
PI3K/AKT est corrélée a l'apparition et au développement de la PR. Plusieurs
études soutiennent le concept de l'inhibition de I'AKT2 pour une intervention
thérapeutique dans la PR. Elles ont montré que le blocage de la voie AKT inhibe
la progression de la PR. Elles ont également démontré que le silencage in vitro
d'AKT2 par siRNA empéche de maniére significative la prolifération cellulaire et
la migration des fibroblastes humains dans la PR.

Nous avons également retrouvé cavéoline 1 (CAV1) comme cible potentielle pour
induire I'apoptose et inhiber la prolifération et la migration dans les fibroblastes
de la PR. CAV1 est I'un des principaux composants structurels des cavéoles et
possede un certain nombre de fonctions de signalisation. En ce qui concerne les
troubles inflammatoires, CAV1 pourrait soit prévenir soit induire I'inflammation,
en fonction du contexte cellulaire. Dans la PR, le silencing in vitro de CAV1 réduit
considérablement la prolifération cellulaire et favorise l'apoptose dans les
fibroblastes humains. En revanche, l'expression forcée de CAV1 dans les
fibroblastes de la PR rétablit la prolifération cellulaire et atténue I'apoptose.

L'inhibition de CREB1 dans le modéle a conduit a I'inhibition de la prolifération
des fibroblastes de la PR tout en maintenant leur capacité a résister a I'apoptose.
Cet effet inhibiteur a été démontré dans une étude expérimentale ou la
suppression in vitro de I'activité de CREB1 a réduit les fonctions aberrantes des
cellules synoviales chez les patients atteints de PR via la suppression de la
prolifération des fibroblastes synoviaux.

L'inhibition de NF-kB dans le modele multicellulaire a bloqué la différenciation
des macrophages M1 en ostéoclastes. Il a également supprimé la migration des
fibroblastes, la prolifération et la migration des Th1 et la dégradation de la matrice
extracellulaire dans l'articulation. Des recherches ont démontré que NF-kB
médiait |'activation transcriptionnelle de plusieurs métalloprotéinases matricielles
(MMP), responsables de la destruction de la matrice extracellulaire et du cartilage
articulaire dans la PR. Elles ont également montré que l'inhibition de NF-kB
bloquait I'expression de ces MMPs. Le blocage de I'expression des MMP dans la
synoviale de la PR entraine la suppression de la migration et de I'invasion des
fibroblastes synoviaux de la PR.

L'importance critique de NF-kB dans le renouvellement osseux a également été
mise en évidence expérimentalement. En effet, les souris NF-kB1-/- NF-kB2-/-
développent un défaut d'ostéoclastes, montrant les fonctions critiques de NF-kB
dans le développement de cette lignée cellulaire. En outre, il a été démontré que
I'inhibition de NF-kB constituait une approche efficace pour inhiber la formation



d'ostéoclastes et la résorption osseuse, et que le blocage de I'activation nucléaire
de NF-kB présentait des avantages anti-inflammatoires et anti-ostéolytiques.

De plus, plusieurs études ont décrit le r6le de NF-kB dans la différenciation des
cellules Th1. Elles ont montré que les réponses Th1 étaient significativement
altérées et que la production d'IFN-g était abrogée en raison d'une diminution
de Il'activation du NF-kB. Une autre étude menée sur des souris transgéniques
dont les cellules T étaient dépourvues de la voie de signalisation NF-kB/Rel a
montré que NF-kB jouait un role dans les réponses d'hypersensibilité Th1-
dépendantes.

Nous avons également retrouvé deux cibles thérapeutiques potentielles pour
réguler les CD4+ Th1 dans la PR, a savoir mTOR et TBX21. TBX21 (ou T-bet) est
un facteur de transcription spécifique aux Th1 qui contrdle I'expression de la
cytokine phare des Th1, I''FNg. Des études ont démontré que l'inhibition de T-
bet supprimait de maniére significative I'expression des genes IFNg et IL-17 et
diminuait les symptomes de I'arthrite chez les souris. En outre, il a été montré que
les cellules CD4+ des souris T-bet-/- s'orientaient vers une différenciation Th2
anti-inflammatoire et exprimaient des niveaux élevés de GATA-3. Par conséquent,
la régulation du rapport T-bet/GATA-3, par la déplétion de T-bet, pourrait réduire
les fonctions pro-inflammatoires des cellules T dans la PR via la régulation du
rapport Th1/Th2.

Des études ont montré que mTOR jouait également un rdle important dans le
développement des cellules Th1. En effet, les cellules T CD4+ déficientes en
mMTOR ne parviennent pas a se différencier en cellules Th1 effectrices. mTOR
régule cette différenciation par I'intermédiaire de STAT4 et SOCS3, qui régulent
ensuite |'expression de T-bet. Dans le cas de la PR, l'inhibition de mTOR s'est
révélée efficace pour réduire I'inflammation dans les articulations de souris mais
aussi chez des patients atteints de PR.

Nous avons également retrouvé des cibles thérapeutiques potentielles qui
permettraient de réduire l'inflammation et I'angiogenese dans [I'articulation
atteinte de PR, a savoir JAK1/JAK2 et MIR221. Le double KO JAK1/JAK2 a inhibé
I'inflammation chronique de la synoviale et la différenciation des macrophages
en ostéoclastes dans notre modele. Le baricitinib, un inhibiteur oral de JAK sélectif
pour JAK1 et JAK2, est déja approuvé par la Food and Drug Administration (FDA)
pour le traitement de la PR et permet de diminuer I'inflammation systémique et
la progression de la destruction osseuse associée a la PR. MIR221, quant a lui, a
permis la baisse de I'angiogenese dans le modele. Il a été démontré que MIR221
inhibait THBS1, qui agit comme un facteur anti-angiogénique sur les cellules
endothéliales. Ainsi, I'inhibition de MIR221 rétablirait I'expression de THBS1 qui,
dans la PR, contribue a restaurer I'homéostasie tissulaire au cours de la résolution



de l'inflammation.

Une nouvelle combinaison a également été identifiée via les simulation in silico.
Le double KO de NF-kB et de STAT3 a inhibé la différenciation des cellules
précurseurs d'ostéoclastes dans le modéle multicellulaire. Qu'elle soit normale
ou pathologique, 'ostéoclastogenese dépend strictement de la présence des
cytokines nécessaires a la différenciation des ostéoclastes. On a constaté que
CSF1, RANKL, TNF-a et IL-6 induisent la différenciation des ostéoclastes et
I'activité de résorption osseuse chez les patients atteints de PR. STAT3 et NF-«B
sont des facteurs de transcription essentiels pour |'expression de ces facteurs
ostéoclastogéniques, par conséquent, cibler a la fois STAT3 et NF-kB pourrait étre
une stratégie prometteuse pour inhiber I'érosion osseuse dans la PR.

Pour conclure, grace a ce travail, nous avons contribué a une meilleure
compréhension de la PR au niveau multicellulaire grace a une approche
computationnelle et systémique efficace. Nous avons obtenu une représentation
détaillée de la structure et de la dynamique de la communication intercellulaire
dans la PR ainsi que des cascades intracellulaires et de leur régulation dans cette
maladie. Nous avons également validé notre approche via l'identification de
cibles thérapeutiques et la mise en évidence de nouvelles combinaisons de
médicaments. Méme si l'intérét potentiel/prouvé des cibles qu'on a identifié a
déja été documenté dans la PR, notre approche apporte une meilleure
compréhension des voies de signalisation associées a ces cibles ainsi que de leurs
mécanismes d'action d'une maniere spécifique a la PR et au type cellulaire étudié.

Pour résumer, durant cette these de doctorat:

e Nous avons construit les premieres cartes d'interactions moléculaires qui
décrivent d'une maniere spécifique les populations cellulaires les plus
abondantes dans la synoviale de la PR : les macrophages (y compris les
phénotypes M1 et M2), les fibroblastes et le sous-type CD4+ T helper 1
(Th1). Ces cartes récapitulent les connaissances existantes relatives aux
interactions intracellulaires impliquées dans la pathogenese de la PR d'une
maniere spécifique a chaque type de cellule. Elles ont été construites a
I'aide d'informations extraites de la littérature et de bases de données, et
ont été enrichies via l'intégration de données omiques. Les cartes d'inte-
ractions moléculaires spécifiques aux cellules de la PR sont accessibles a
I'adresse https://ramap.uni.lu/minerva/ et peuvent étre utilisées comme
base de connaissances interactive, a I'aide de la plateforme MINERVA.



https://ramap.uni.lu/minerva/

Nous avons construit la premiere carte d'interactions moléculaires multi-
cellulaire de la PR, un atlas qui décrit les interactions intra- et intercellu-
laires impliquées dans la pathogenése de la maladie. Pour cela, nous avons
connecté les cartes citées précédemment par I'ajout d'interactions inter-
cellulaires bidirectionnelles identifiées a I'aide de de la littérature et des
bases de données, et de I'intégration des données omiques spécifiques a
la maladie et au type cellulaire étudiés.

Pour comprendre les caractéristiques et les comportements émergents des
systemes biologiques décrits dans ces cartes, nous avons converti ces
cartes d'interactions moléculaires en modéles Booléens exécutables a
I'aide de CaSQ. Nous avons développé un framework qui analyse ces mo-
deles Booléens en mode synchrone a l'aide d'une nouvelle version de I'ou-
til BMA déployé dans un cluster de calcul haute performance. Le frame-
work identifie tous les attracteurs, puis teste leur cohérence par rapport
aux données omiques et aux connaissances actuelles. Nous avons utilisé
ce framework pour calibrer nos modeles Booléens, ouvrant ainsi la voie a
I'exploration de nombreuses autres cartes.

Pour étudier de nouvelles options thérapeutiques dans la PR, nous nous
sommes tout d'abord concentrés sur les macrophages synoviaux. Le
nombre de macrophages dans le tissu synovial enflammé augmente rapi-
dement au cours de la PR, et leur polarisation en un phénotype pro-in-
flammatoire M1 ou anti-inflammatoire M2 joue un réle critique dans la
progression pathologique de la PR. Ainsi, la suppression sélective des ma-
crophages M1 ou I'augmentation des macrophages M2 pourrait étre une
stratégie prometteuse pour le traitement de la PR. Dans cette optique,
nous avons simulé des KO simples et doubles dans les modeles calibrés de
macrophages M1 et M2. Nous avons retrouvé NF-kB, JAK1/JAK2 et
ERK1/Notch1 comme cibles pouvant potentiellement supprimer sélective-
ment les macrophages pro-inflammatoires de la PR. Nous avons égale-
ment retrouvé GSK3 comme une cible ayant un intérét potentiel pour la-
promotion des macrophages anti-inflammatoires.

Pour étudier de nouvelles options thérapeutiques dans un cadre multicel-
lulaire, nous avons simulé des KO simples et doubles dans le modele mul-
ticellulaire de la PR calibré. Nous avons retrouvé AKT2, CAV1 et CREB1
comme des cibles prometteuses pour limiter le comportement invasif des
fibroblastes. Nous avons montré que dans notre modeéle, l'inhibition de



mMTOR et de TBX21 pouvait réguler les cellules CD4+ Th1 hyperactives, que
I'inhibition de MIR221 pouvait réduire I'angiogenése dans l'articulation et
que l'inhibition de la paire NF-kB /STAT3 pouvait supprimer I'érosion os-
seuse. D'autres effets des inhibitions de NF-kB et de JAK1/JAK2 au niveau
multicellulaire ont également été révélés. L'inhibition de NF-kB a permis
de supprimer la différenciation des macrophages M1 en ostéoclastes, di-
minuer |'hyperactivation des fibroblastes et des cellules Th1 et réguler la
dégradation de la matrice extracellulaire dans l'articulation. L'inhibition de
JAK1/JAK2, de l'autre cOté, a permis de réduire I'inflammation et la des-
truction osseuse.

Nous proposons, pour ce projet de these, les perspectives suivantes :

e D'autres populations cellulaires importantes, notamment les lymphocytes
B, les cellules dendritiques, les plasmocytes, les mastocytes, les ostéo-
clastes et les chondrocytes, sont impliquées dans la pathogenése de la PR.
Il serait donc intéressant d'agrandir la carte multicellulaire de la PR en ajou-
tant d'autres cartes spécifiques a ces types cellulaires. Ces cartes pour-
raient étre reliées aux cartes existantes via l'identification d'interactions in-
tercellulaires supplémentaires. En outre, comme plusieurs études ont mis
en évidence la présence de divers points de contréle métaboliques dans la
PR, nous aimerions intégrer les voies métaboliques pertinentes dans nos
cartes afin de mieux comprendre les interactions complexes entre les voies
métaboliques et les réponses inflammatoires et immunitaires.

e Nous avons intégré divers jeux de données omiques pour construire les
cartes d'interaction moléculaire de la PR, identifier la interactions cellule-
cellule et valider les modeéles Booléens. Cependant, les échantillons de ma-
crophages, de fibroblastes et de Th1 provenant de la synoviale de patients
atteints de PR étaient trées difficiles a trouver et rarement disponibles dans
les mémes jeux de données. Par conséquent, I'accés a un plus grand
nombre d'échantillons synoviaux de patients atteints de la PR pour les
types cellulaires qui nous intéressent améliorerait la robustesse de notre
approche. La PR étant une maladie trés hétérogene, nous devrions égale-
ment mettre en ceuvre une stratégie pour gérer les incohérences entre ces
jeux de données omiques.



L'intégration de données multi-omiques avec des couches transcripto-
miques et protéomiques, par exemple, contribuerait a améliorer la métho-
dologie proposée. En outre, des modeles qualitatifs a valeurs multiples
peuvent étre envisagés pour prendre en compte les biomolécules qui ne
sont pas exprimées de maniere différentielle dans ces données omiques,
tels que les genes de ménage. Toutefois, une puissance de calcul plus im-
portante serait nécessaire pour faire face a la complexité exponentielle de
ces modeles.

Lors de la calibration des modeles Booléens, un mode synchrone a été
utilisé pour effectuer la recherche d'attracteurs, et seuls les états stables
ont été testés et validés. Il serait intéressant d'étudier des attracteurs plus
complexes en utilisant les modes synchrone et asynchrone. Méme s'il est
difficile d'estimer comment les états calibrés du modele changeraient lors-
que le mode est modifié, I'identification des attracteurs en mode syn-
chrone et asynchrone, et la comparaison de ces attracteurs aux connais-
sances existentes ainsi qu'aux données omiques pourraient aider a com-
prendre les effets de ces changements sur les prédictions des modeles.

Afin d'identifier d'avantages de cibles thérapeutiques et de combinaisons
médicamenteuses, nous pourrions élargir notre approche a tous les nceuds
des modeles, et non pas uniquement a ceux répértoriés dans TTD. Nous
pourrions effectuer des simulations in silico de KOs simples et doubles de
tous les noeuds présents dans nos modeles. Ceci aura pour conséquence
de générer une quantité considérable de données a analyser mais pourrait
potentiellement nous permettre d'identifier de nouvelles cibles qui n‘ont
pas été documentées dans la PR auparavant.

Pour valider davantage le comportement des modeles calibrés et tester les
prédictions générées, ce travail bénéficierait grandement de I'intégration
de données transcriptomiques de type single cell supplémentaires, en par-
ticulier de patients avant et aprés le traitement. Il bénéficierait également
d'expériences in vitro qui cibleraient les voies/facteurs prédits tout en me-
surant les processus cellulaires tels que l'apoptose, la prolifération ou
I'inflammation.

De nombreuses autres cartes d'interactions moléculaires ont déja été pu-
bliées pour plusieurs maladies, notamment la maladie de Parkinson, la ma-
ladie d'Alzheimer, le cancer, l'asthme et, plus récemment, le COVID19.



Notre approche, appliqué a la carte multicellulaire de la polyarthrite rhu-
matoide, ouvre la voie a |'exploration de ces cartes d'une maniere intégra-
tive et combinatoire.

D'autres approches prometteuses utilisant des cartes d'interactions molé-
culaires sont en cours de développement. Elles sont basées sur des mé-
thodes d'apprentissage automatique qui utilisent des réseaux biologiques
et des données de séquencage pour prédire, par exemple, les interactions
entre protéines, les fonctions des protéines, les interactions entre médica-
ments et cibles et le diagnostic des maladies. Les cartes que nous avons
créées pourraient étre utilisées dans ce type d'approche et pourraient ap-
porter des résultats complémentaires a ceux déja obtenus.
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Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease whose
causal mechanisms are still not fully understood. RA pathogenesis involves a
combination of genetic, epigenetic, and environmental factors and arises from
intricate interplays between different biological processes such as signal
transduction, gene regulation and metabolism. Deregulated activation of the
Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), the
stress-activated protein kinase/mitogen-activated protein kinase (SAPK/MAPK)
and Phosphatidylinositide-3-Kinase/AKT/mammalian Target of Rapamycin (PI-
3K/AKT/mTOR) pathways, among many others, lead to an up-regulated
expression of matrix metalloproteinase and proinflammatory cytokines, resulting
in the chronic degradation and inflammation of the synovial tissue (1). The
inflammatory cascade leads to joint hyperplasia, cartilage damage, and bone
destruction. The affected joints lose their shape and alignment, resulting in
deformities and loss of function (Figure 1). Pain, swelling, tenderness and stiffness
of small joints in the hands and feet are the first RA symptoms, but extra-articular
manifestations can also appear, affecting the gastrointestinal, respiratory, and
cardiovascular systems (2).

Boutonniere
deformity
of thumb

Ulnar deviation of
metacarpophalangeal
joints
Swan-neck deformity
of fingers

Figure 1. Deformities of the RA joints in the hand (taken from MedlinePlus (3)).



The pathogenic behavior of the RA synovial tissue cannot be associated with a
single cell type. It is the result of cellular communication between local synovio-
cytes and cells from the innate and adaptive immune system. These intercellular
interactions determine numerous aspects of the disease's pathophysiology and
can activate or downregulate specific synovial cell populations. Cell cell commu-
nication can also impact the intracellular signaling and the expression of inflam-
matory substances and matrix remodeling enzymes in the joints, leading to
chronic inflammation, matrix degradation, and bone erosion (4).

There is currently no curative therapy for RA. The wide range of molecules asso-
ciated with RA, the intricate cellular crosstalks and the disease heterogeneity are
all barriers to healing RA. However, many therapies have been developed to re-
lieve disease symptoms, improve survival, and avoid long-term disability (5). How-
ever, these therapies have been associated with several adverse effects, and a
substantial proportion of RA patients are non-responders (6,7). A better under-
standing of the cellular communication and the intracellular cascades involved in
the disease pathogenesis could help elucidate the mode of action of current RA
drugs and identify new therapeutic options.

Systems biology can offer a global view of such complex diseases through the
construction of disease maps (8). Disease maps are detailed interaction networks
describing molecular processes as well as evidence of their relationship to disease
phenotypes (9). Disease maps are manually curated and extensively annotated
through broad literature search. They are also standardized to enable an efficient
and accurate representation, visualization, storage, exchange, and reuse of
knowledge (10,11). These maps can be utilized for the identification of bi-
omarkers, potential drug targets and disease subtypes. Furthermore, they provide
a comprehensive template for visualization, analysis, and interpretation of omics
datasets. However, these maps are static and cannot be used to generate hy-
potheses or predictions regarding the behavior of the system under different per-
turbations.

Computational modeling is a powerful tool to understand the emergent features
and behaviors of the complex biological systems described in disease maps.
Among the modeling techniques available, Boolean formalism is the most suited
for large-scale biological systems. Indeed, Boolean modeling does not include
kinetic parameters that can be difficult to determine in most systems. It can make
use of experimental literature and high-throughput technologies to retrieve a
large amount of qualitative data on individual components and interactions
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(12,13). In these models, nodes represent biological entities (genes, proteins, me-
tabolites...). Each node can have two values: zero for inactivity or absence and one
for activity or presence. The different components of the modeled system are
connected through edges that represent their regulatory interactions. These reg-
ulatory dependencies are expressed by Boolean functions: “AND”, “OR" and
“NOT" (Figure 2), and the value of each component is determined by these Bool-
ean functions.

When simulated, the global state of the model (i.e., the state of the entire system)
changes and eventually reaches particular configurations called attractors. Attrac-
tors are single states or a reoccurring sequence of states that describe the long-
term behavior of the model. They have been connected to biological phenotypes,
making their computation a key point in the analysis of Boolean models (14).
Considering that the number of global states of a Boolean model is exponentially
dependent on its node number (2" global states for n nodes), attractors’ search
in large-scale biological systems is computationally demanding (15). Moreover,
as attractors change based on the external perturbations that the model receives
from its environment, their number can be massive, and the biologically con-
sistent states still need to be identified and interpreted in a cell and disease spe-
cific manner.

A) B)

A = B AND (C OR E) .

B = (A OR C) AND NOT D ~ >

C = A AND NOT (D AND E) @4 @
D =D //
E=E /

Figure 2. Boolean toy model to showcase different examples of Boolean formulas.
A) A B, C, D, and E are the network nodes. The directed edge — or —| denotes
activation or inhibition. B) Boolean rules governing the nodes’ states for the network
given in A. Figure taken from Montagud et al, 2022 (16).



This Ph.D. project is a collaboration between the Genhotel laboratory and Sanofi
in the context of a CIFRE (Conventions Industrielles de Formation par la Recher-
che) program. CIFRE is a french program that enables companies to benefit from
financial assistance to recruit a doctoral student whose research work, supervised
by a public research laboratory, will lead to the defense of a thesis. The objective
of this program is to reinforce exchanges between public research laboratories
and the socio-economic world, encourage the employment of PhDs in companies
and contribute to the innovation process of companies established in France. The
Cifre program is fully funded by the French Ministry of Higher Education, Research
and Innovation, which has entrusted its implementation to the National Associa-
tion for Research and Technology (ANRT) (17) .

The project proposal that was approved by the ANRT for this PHD thesis is pro-
vided in the CIFRE PhD project proposal section. We were interested in develop-
ing an efficient computational system biology approach to obtain a multicellular
system-level understanding of RA. We wanted to provide a detailed representa-
tion of the structure and dynamics of the intricate cell-cell interactions in RA as
well as the complex intracellular cascades and their regulation in this disease.
Also, we wanted to shed light on the mechanism of action of the current RA ther-
apies and to identify new potential therapeutic options and drug combinations.

The first objective of the Ph.D. thesis was to build a state-of-the-art RA-Atlas
that describes the rheumatic joint using both literature search and omics data
integration. We aimed at recapitulating the existing and fragmented knowledge
(gene expression, signaling pathways, cellular phenotypes) about RA pathogene-
sis in a cell-specific manner. In this direction, we constructed four molecular in-
teraction maps specific to the most abundant cell populations in RA synovium:
synovial macrophages, including the M1 and M2 phenotypes, synovial fibroblasts
and CD4+ T helper 1 (Th1) subtype.

The second objective was to obtain a multicellular level description of the RA
joint. Using both literature mining and omics data analysis and integration, we
identified bidirectional intercellular interactions between macrophages, fibro-
blasts and Th1 cell-types in the RA synovium. These cell-cell interactions were
used to connect the corresponding cell-specific molecular maps within the RA-
Atlas and build the first RA multicellular map.

The third objective was to use the RA molecular interaction maps as a scaffold
to automatically generate their corresponding executable Boolean models. The
goal was to develop an efficient computational framework that uses high-perfor-
mance computing clusters to efficiently perform the attractors search on such



large-scale models, and to validate these attractors as consistent biological states
using omics datasets analysis and prior knowledge.

The fourth objective consisted in using the validated and calibrated models to
investigate new therapeutic options in RA via in-silico single and double knockout
simulations. The goal was to investigate and comprehend the mechanism of ac-
tion of current RA treatments, test new drug combinations, identify new potential
therapeutic intervention points, and perform drug repurposing analysis for the
identified targets.

Through this collaboration, the Genhotel laboratory aims at expanding its exper-
tise in maps and models construction and validation for RA via the integration of
the multicellular scale. To achieve this objective, the laboratory benefits from
Sanofi's calculation services and facilitated access to commercially available da-
tabases and softwares as well as its expertise in RA.

Sanofi, on the other hand, is interested in increasing its skills in the domain of
disease map and Boolean based model simulation. The expected output from this
collaboration for the company is to have access to a multiscale model of RA, fully
operational and easy to maintain, that is able to simulate the pathogenesis. This
model will allow Sanofi to have a better understanding of the disease with a full
up to date knowledge base on RA. It will also be used to integrate and analyse
in-house data, perform large-scale screenings of potential therapeutic targets
and to better understand the mechanism of action of drugs currently under de-
velopment at Sanofi.

The thesis manuscript starts with an overview of the RA disease pathogenesis,
followed by an introduction to systems biology approaches suitable for studying
complex human diseases. Next, we describe the data available for our analyses,
and more precisely the omics datasets along with the statistical analyses and as-
sociated results. After that, five independent chapters follow, each subdivided into
an introduction, method, result and discussion sections, to describe a) the con-
struction of the RA cell-specific molecular interaction maps, b) the construction
of the RA multicellular map, c) the generation and calibration of the RA Boolean
models, d) the In-silico single and double knockouts simulations we performed
on the calibrated RA macrophages models and e) the In-silico simulations we
performed on the RA multicellular model. Finally, we complete this thesis manu-
script with a general discussion and future directions for the project.



Chapter 1. The pathogenesis of rheumatoid arthritis

1.1 Etiology

Figure 3 depicts how susceptibility genes, epigenetic alterations, and
environmental factors all contribute to the development of RA disease (1). This
combination leads to autoantibodies production and loss of tolerance. The
presence of autoantibodies results in systemic autoimmunity which, under the
influence of infectious/neuroimmune triggers, causes the transition to arthritis. In
this section, we describe the genetic, epigenetic and environmental factors
associated with the development of RA.
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Figure 3. Multistep progression towards RA disease development. Figure taken from
Mcinnes et al, 2011 (18).

1.1.1 Genetic susceptibility

The presence of autoantibodies like Rheumatoid Factor (RF) and Anti-
Citrullinated Protein (ACPA) in the RA patients’ synovial fluid and serum is an early
hallmark for the disease (19). Based on ACPA status, RA patients can be sub-
grouped into two major subsets: ACPA-positive RA (ACPA+ RA) and ACPA-
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negative RA (ACPA- RA). Genetic predisposition plays a significant role in the
development of RA in both groups. Indeed, the overall heritability of RA (the
amount of variation in disease susceptibility that can be explained by genetic
factors) is estimated to be 66% and is comparable in ACPA positive and ACPA
negative RA (20).

Genome-Wide Association Study (GWAS) meta-analysis have identified more
than 100 loci associated with RA (21). These loci provide important insights into
relevant pathways involved in the disease process but have limited utility in clinics
as a prediction tool. Most of them are not unique to RA but rather reflect suscep-
tibility alleles that associate with other autoimmune diseases as well, such as
PTPN22, for which a common single nucleotide polymorphism confers increased
risk for the development of type 1 diabetes, RA, systemic lupus erythematosus,
vitiligo, and Graves' disease (22). The association of HLA region with RA, on the
other hand, is distinct and unique. Indeed, HLA explains most of the genetic risk
(~13%) with an additional 5% of the genetic risk being explained by the 100 other
loci discovered to date. HLA region encodes the major histocompatibility complex
(MHC) and contains approximately 250 genes, 60% of which are immune-related
(21). HLA-DRB1 gene is the major genetic susceptibility locus for RA (Figure 4).
HLA-haplotypes associated with seropositive RA are characterized by HLA-DRB1
alleles having a common amino acid sequence, termed the HLA Shared Epitope
(HLA-SE) (22). On the other hand, HLA-haplotypes associated with seronegative
RA are non-SE-bearing HLA alleles. Differences between ACPA+ RA and ACPA-
RA are further supported by studies demonstrating that many of the identified
genetic risk loci in other chromosomal regions (non-HLA genes) only predispose
to ACPA-positive RA (23). This indicates that ACPA-positive and ACPA-negative
diseases are distinct disease entities.
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Figure 4. Manhattan plots of a GWAS meta-analysis showing the strong association
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of HLA-DRBT1 (in the red square) with RA in the Japanese population. The y axis
shows the —log10 P values of the SNPs in the meta-analysis. The SNPs for which
the P values were smaller than 1.0 x 10-15 are indicated at the upper limit of the
plot. This figure was adapted from Okada et al,, 2012 (24).

Despite the success to date in identifying risk loci for RA, mostly through meta-
analysis of multiple cohorts, about 40% of the genetic component of susceptibil-
ity remains unaccounted for. Indeed, genetic heterogeneity, low penetrance of
individual disease alleles and the potential for gene—gene interactions hinder the
identification of RA genetic factors (25). In this direction, several studies investi-
gated epistasis in RA, and provided evidence of epistatic interactions between
polymorphisms in TNFRSF14 and TNFRSF6B (26), BANK1 and BLK (25), HLA-DRB1
and PTPN22 (27), and HTR2A and HLA-DRB1 (28).

1.1.2 Epigenetic factors

Genetic heterogeneity cannot explain all aspects of RA. Thus, investigating the
epigenetic impact is becoming increasingly relevant (29). Epigenetic changes in
RA have been studied in different types of immune cells. Researchers revealed
that inflammatory phenotype of autoimmune monocytes is regulated on the
epigenetic level through the increased acetylation of disease-associated genes
such as CXCL9, CXCL10, IRF1, and IFNGR (30). They also identified differentially
methylated loci in RA B cells (31), including DNA hypermethylation at CD1C, DNA
hypomethylation at TNFSF10, both linked to an increased risk of RA, and
differential methylation at genes involved in CBL pathways, known to control the
B-cell-intrinsic checkpoint of immune tolerance (32). RA CD4+ T cells exhibit
hypermethylated genes as well, including JUN, STAT1, PTEN, and CD44. The
resulting upregulation of JUN expression activates the MAPK signaling pathway
and regulates cell proliferation, cell cycle, and apoptosis. STAT1 activation, on the
other hand, is related to IL-6 inflammatory factors and increases the joint
infiltration of T cells (33). Furthermore, histone modifications were observed in RA
PBMCs through a higher activation of histone deacetylases in RA patients
compared to healthy controls. These modifications may decrease expression of
cell-cycle related molecules such as p16, p21 and p53, and increase TNF
production in RA synovial tissue (34).

Because of the aggressive phenotype of fibroblasts in RA, epigenetic changes
were also investigated in this cell type. Fibroblasts have a distinct, non-random
methylation pattern that is rearranged specifically throughout the disease's
course and differs depending on joint localization (35). Several studies revealed
differentially methylated genes that are part of pathways known to be involved in
RA pathogenesis (36—-38). Other studies showed an overall increase of acetylation



associated with reduced histone deacetylases activity with an abnormal modifi-
cation of histones involved in the activation fibroblasts (39-41). These epigenetic
mechanisms lead to the expression of genes that are implicated in extracellular
matrix interactions, adhesion, cell recruitment, and migration in RA fibroblasts.
They also result in an increased resistance to apoptosis and promote fibroblasts’
proliferation (42).

Other epigenetic modifications include proteins’ post-translational modifications.
Two of these modifications, citrullination and carbamylation, seem to be involved
in the pathogenesis of RA. Citrullination is an enzymatic post-translational modi-
fication that is mediated by PeptidylArginine Deiminases (PAD), which transform
peptide-bound arginine residues into citrulline, a non-natural amino acid (43).
Studies suggest that citrullination is dysregulated in RA through a hyperactivation
of PADs, leading to an accumulation of citrullinated proteins in the joint (the RA
citrullinome) (44). Dysregulated PAD enzyme activity subsequently promotes pro-
inflammatory cytokine and autoantibodies production, and bone destruction in
RA joints (45). Carbamylation, on the other hand, is a chemical nonenzymatic
post-translational modification in which homocitrulline residues are generated by
the reaction of cyanate with the primary amine of lysine residues. Under normal
physiological circumstances, cyanate levels are too low to induce substantial car-
bamylation. However, conditions like inflammation, and the exposure to cigarette
smoke enhance cyanate levels (46). Even though increased level of carbamylated
proteins is associated with RA, their exact pathogenic role remains unaddressed
(43).

1.1.3 Environmental factors

RA has been linked to a variety of environmental, dietary, and lifestyle factors.
Multiple studies have estimated that tabaco exposure accounts for 20-30% of
environmental risk for RA (47). It is most strongly associated with ACPA positive
RA, and especially ACPA positive RA in the setting of the SE. Smoking has been
associated with the presence of RFs as well and may lead to increased
citrullination which in the setting of the right genetic background, leads to
presentation of citrullinated proteins and the generation of ACPA (48). Aside from
exposure to tobacco smoke, multiple studies have consistently shown a link
between dust exposure, air pollution and ACPA-positive RA. These findings are
likely influenced by confounders such as lower income, which is a supposed risk
factor for RA by itself (49-51). Several dietary or other factors, such as
supplements or medications, have also been linked to RA. Lower intake of vitamin
D and antioxidants, as well as higher intake of sugar, sodium, red meats, protein,
and iron, are associated with an increased risk of RA (52-56). On the other hand,
modest alcohol consumption and increased intake of fatty acids were associated
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with decreased risk for RA (57,58).

Women constitute approximately two-thirds of RA patients, and many epidemi-
ologic studies point to sex-related factors in RA risk. Female-specific variables that
increase RA risk include early menopause (59), the presence of polycystic ovary
syndrome (60), and potentially pre-eclampsia (61). On the other hand, several
studies indicate the presence of sex-specific protective factors including breast-
feeding (62), use of hormone replacement therapy (63) and oral contracep-
tion (64).

The impact of environmental factors on the risk of developing RA raises several
methodological and practical issues. The literature on environmental risk factors
is relatively scarce, with findings frequently lacking reproducibility (65).

1.2 Epidemiology

RA is a relatively common disease, affecting millions of people worldwide. It is the
most prevalent systemic autoimmune disease among the rheumatic inflammatory
musculoskeletal diseases (66). The prevalence and incidence of RA have been
evaluated in several studies. Given the high heterogeneity in the methodologies
and in the different definitions of RA that were used, epidemiological estimates
from the literature are challenging to compare. The Global Burden of Disease
(GBD) study of 2017 revealed a global prevalence at 0.25% (95% Cl 0.24-0.3%)
(67). More recently, a meta-analysis performed in 2021 using stricter inclusion
criteria revealed a pooled prevalence of 0.46% (95% Cl 0.37-0.57%) (68).

RA prevalence varies widely depending on geographic region. It is the highest in
North America (0.38%; 95% Cl 0.36—0.40%), Western Europe (0.35%; 95% CI 0.31—
0.38%) and the Caribbean (0.34%; 95% Cl 0.30-0.37%) (66) (Figure 5).
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Figure 5. Global prevalence of RA. The figure displays the reported prevalence
ranges for rheumatoid arthritis (RA) per country (per 100,000 of the population), as
denoted by the key. The figure was taken from Finckh et al., 2022 (66).

The prevalence of RA also varies depending on sex and age. It is 4-5 times higher
in females than male below the age of 50, but above 60-70 years the female/male
ratio is only about 2 (69).

RA has also increased mortality. Indeed, RA patients have 40% - 50% increased
total mortality risk compared to the population without RA, with significantly in-
creased respiratory and cardiovascular disease mortality (70,71). However, this
mortality difference appears to be narrowing (72-74), possibly as a result of early
aggressive therapy, increased therapeutic alternatives, and a better long-term
chronic inflammation control.

1.3 Diagnosis

Both RF and ACPA are used for RA early diagnosis. Their sensitivities are similar
(67% for ACPA and 69% for RF), however ACPAs are more specific for RA
compared to RF when compared to healthy controls (95% for ACPA and 85% for
RF) (75). Furthermore, patients with a variety of non-rheumatic diseases like
Sjogren's syndrome, bacterial and viral infections can also have RFs detected (76).
The presence of ACPA is associated with RA irrespective of RF status, while the
association of RF with disease relies on its interaction with ACPA (77). ACPA alone
have then enough predictive power to effectively distinguish high-risk individuals
from the background population (78); nevertheless, a third of RA patients are
ACPA negative, which makes RA difficult to diagnose in the early stages for this
population (79). Recent studies have been conducted in this direction to identify
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new markers in ACPA- RA patients like MMP3 (79) and antibodies against
carbamylated proteins (aCarP) (80). Imaging tests of the hands and feet, like X-
rays and Magnetic Resonance Imaging (MRI), can also be performed to check the
joint damage in RA patients and monitor the progression of the disease. However,
they are not generally abnormal in the early stages of RA, before joint damage
occurs (81).

To allow early interventions in the disease course and to prevent the joint de-
struction that follows inflammation, the American College of Rheumatology (ACR)
and the European League Against Rheumatism (EULAR) put in place revised clas-
sification criteria emphasizing RA characteristics that emerge early in the disease
course. These classification criteria combine imaging evidence, symptoms dura-
tion and serological markers identification. They are grouped into four categories,
with point scores for each: joint symptoms; serology (including RF and/or ACPA);
symptom duration, whether <6 weeks or >6 weeks; and acute-phase reactants
(C-Reactive Protein (CRP) and/or Erythrocyte Sedimentation Rate (ESR)) (Table 1).
The calculated scores are used to predict which patients would go on to develop
RA (82).
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Table 1. RA classification criteria: domains, categories and point scores. The table
was taken from Kay et al,, 2012 (82).

Domain Category Point score
Joint involvement (0-5 1 large joint 0
points)

2-10 large joints 1

1-3 small joints (large 2

joints not counted)

4-10 small joints (large 3
joints not counted)

>10 joints including at 5
least one small joint

Serology (at least one Negative RF and 0
test needed for negative ACPA
classification; 0-3
points) Low positive RF or low 2
positive ACPA
High positive RF or high 3
positive ACPA
Acute-phase reactants Normal CRP and normal 0
(at least one test ESR
needed for
classification; 0-1 point) Abnormal CRP or 1

abnormal ESR

Duration of symptoms <6 weeks 0

>6 weeks 1

1.4 Pathophysiology

The earliest break in self-tolerance in RA is characterized by the production of
autoantibodies, including RFs and Anti-post translationally Modified Protein
Antibodies (AMPA) (22). RF are primarily directed against antigenic determinants
in the Fc portion of the IgG molecules (19,83), while AMPA are directed against
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post-translationally modified proteins and comprise antibodies against various
modifications such as carbamylation (aCarP), acetylation (AAPA) and citrullination
(ACPA)(22). These abnormalities in the cellular and humoral immune response in
RA is likely influenced by genetic predisposition and environmental factors
including abnormal activation of T cells, infectious/neuroimmune triggers,
genetically susceptible B cell repertoire, or failing checkpoints of tolerance
control. HLA-DR genes, for instance, appear to regulate autoantibody production
and the Shared Epitope (SE) is considered as the most significant risk factor for
increased ACPA production in RA (84). Mechanistically, SE-bearing HLA-DR
molecules are able to present self-peptides that lead to a tolerized CD4 T cell
repertoire, enhancing the reactivity of these cells to citrullinated proteins and
subsequently leading to autoreactive B cells (22). Furthermore, RA susceptibility
haplotype in PADI4 produced more stable PAD transcripts (PAD is the enzyme
that catalyzes peptides citrullination), thus allowing for increased levels of ACPA
antibodies in RA patients (85). The presence of autoantibodies in RA leads to
systemic autoimmunity which by itself is initially reversible and self-limiting, but
under the influence of repetitive triggering and/or other unknown factors,
transient systemic autoimmunity become persistent (22). The produced
antibodies form immune complexes in the joint, leading to the attraction, through
complement or direct activation, of innate and adaptive immune cells, such as
dendritic cells, T-lymphocytes, neutrophils, and B-lymphocytes, in the synovium.
Migration of B cells and T cells towards the synovial compartment is involved in
initiating synovial inflammation through the subsequent activation of tissue-
resident cells including macrophages and fibroblasts (19,22). The interactions
between these cells cause high production of chemokines and cytokines such as
IL-1, IL-6, IL-17 and TNF which ultimately contributes to chronic inflammation of
the joint. The accumulation of several types of immune cells in the synovial tissue
turns the healthy lining structure into a pannus-like structure and leads to
angiogenesis via the high proliferation of blood vessels (86). The excessive
number of macrophages and fibroblast causes synovial hyperplasia. The synovial
lining, which usually has 1-3 cell layers, thickens noticeably and significant
amounts of matrix degradation enzymes are secreted, degrading the cartilage
matrix (Figure 6). This environment favors the polarization of macrophages
towards the M1 pro inflammatory phenotype and inhibits the proliferation of the
M2 anti-inflammatory phenotype. This RA environment also perturbs the delicate
balance among T-helper 1 (Th1) and T-helper 2 (Th2), leading to an aberrant and
uncontrolled Th1/M1 activation which further causes organ damage (87).
Osteoclastogenesis is affected by the inflammatory state in the joint as well.
Autoimmune responses in RA lead to increased osteoclastic bone resorption and
impaired osteoblastic bone formation (88). Indeed, under specific stimuli from the
RA joint, circulating monocytes migrate to a specific location in the bones and
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fuse with each other to become mature multinucleated osteoclasts (89).

HEALTHY JOINT ARTHRITIC JOINT

Osteoclast

Joint capsule Macrophage

Tcell
Synovial H\rperplas!:ic
Membrane sy nmrltal. lining
Articular cavity Dendritic Cell
(synovial fluid) B Cell
Synovial lining Leukocyte

(synoviocytes) extravasation

. Extensive
Cartilage angiogenesis
Plasma Cell

Bone

Figure 6. Differences between the joint structure in rheumatoid arthritis and a
healthy joint. Figure adapted from Castro-Sdnchez and Roda-Navarro, 2017 (90).

1.5 Cellular interplay and crosstalks

The joint synovium of RA patients contains a variety of immune cell-types that
are involved in the pathogenesis of the disease, including macrophages, Dendritic
Cells (DCs) Natural Killer (NK) cells, T cells and B cells. In addition, some non-
immune cells, like fibroblasts, and endothelial cells, can also participate in the
development of RA (91). Therefore, RA can no longer be considered as the result
of a distinct humoral or cellular autoimmune response to a single autoantigen.
Rather, a new perspective on this disease is emerging, one that aims to
understand it as the result of pathologic cell-cell interactions that take place
inside a distinct and defined environment, the synovium (Figure 7) (4). These cell-
cell interactions can be achieved in two general ways: first through secreted
mediators, notably inflammatory cytokines such as TNF, IL-6, IL-17, and many
others; and second through direct cell-cell contact that is mediated by cell surface
receptors and ligands, including some membrane-anchored proteins (92). These
mediators alter the activation and differentiation state of one or both cell types.
They regulate inflammation, autoimmunity, and articular destruction in the joints
by initiating cascades of signaling pathways further resulting in the expression of
pro inflammatory molecules. Such cascades trigger disease phenotypes like
angiogenesis, cartilage matrix degradation, inflammation, and synovial
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hyperplasia (93).

The three most abundant cell populations in RA synovium are synovial macro-
phages, synovial fibroblasts, and infiltrating T lymphocytes, with a bias towards
CD4+ T helper 1 (Th1) subtype in the latter population (4,94). These cell-types
play a crucial role in the initiation and progression of RA (95-97). Furthermore,
cell-cell interactions among these populations in the RA synovium not only define
many aspects of the synovial biology of this disease, but also offer targets for
therapeutic interventions (4). The following sections will focus on the pathogenic
role of RA macrophages, RA fibroblast and RA Th1 as well as their intercellular
interactions in the synovium.
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Figure 7. RA cellular interplay. The figure is taken from Walsh and Choi, 2014 (98).

1.1.4 Synovial fibroblasts

Synovial fibroblasts are the main stromal cells of the joint synovium. They are
found in the synovial sublining and lining layers (99). In healthy joints, fibroblasts
maintain synovial fluid and extracellular matrix homeostasis via the production of
articular and synovial fluid components such as lubricin and hyaluronic acid (100).
In RA, they are influenced by their environment and exhibit aggressive behavior
(Figure 8). Indeed, RA synovial tissue promotes survival of fibroblast, inhibits their
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deletion through apoptosis (101) and increases their invasiveness into the
extracellular membrane. Aggressive RA fibroblasts play an important part in the
development of the pannus by producing matrix metalloproteinases (MMPs),
which degrade the cartilage, allowing pannus to expand and invade further (102).
They have additional pro-inflammatory effects through production of cytokines
such as Tumor Necrosis Factor alpha (TNFa), InterLeukin-6 (IL-6) and Granulocyte
Macrophage Colony-Stimulating Factor (GM-CSF), chemotactic factors such as C-
C Motif Chemokine Ligand 2 (CCL2) and IL-8 (CXCL8). Several pro-angiogenic
factors are also expressed by fibroblasts, in particular Vascular Endothelial Growth
Factor (VEGF) and TGF-B. These mediators sustain inflammation in RA and
contribute to their interactions with other cell types (103).

The physical association of fibroblasts and macrophages is reflected by an intense
cellular communication between both cell types. Fibroblasts have a dual effect on
macrophages. They drive the pro-inflammatory differentiation of macrophages
by an excessive production of cytokines such as IL-6 and CCL2 within the RA syn-
ovial microenvironment. On the other hand, fibroblasts produce GAS6, which in
turn induces a pro-resolving and immune-regulatory phenotype in resident syn-
ovial macrophages that express the corresponding receptor (104). Fibroblasts are
also the most relevant source of CSF1 and CSF2 within the microenvironment of
macrophages, promoting the survival, proliferation, and maintenance of the local
macrophage pool (105,106).

Fibroblasts interact intensively with T cells as well. Accumulating evidence indi-
cates that bidirectional signaling between T cells and fibroblasts is robust and
functionally significant (107,108). Fibroblasts promote T cell survival, chemotaxis,
and activation via the secretion of cytokines such as type 1 IFN, IL-15 and IL-7
(109,110). In addition, Fibroblasts can promote the differentiation of proinflam-
matory T cells subtypes, including Th1, and inhibit the differentiation of anti-in-
flammatory subtypes of T cells in the RA synovial joints via IL-6, IL-26 and CCL20
secretion notably (111). Fibroblasts can also function as antigen-presenting cells
(APCs) and are able to present peptides derived from autoantigens found within
joint tissues to activated T cells (107).
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Figure 8. The role of fibroblasts in RA. Figure taken from Bottini and Firestein, 2013
(112).

1.1.5 Synovial macrophages

Tissue resident macrophages are distributed throughout the lining and sparsely
in the sub-lining region of the healthy synovium and have been shown to play an
essential role in normal tissue physiology, by providing the architecture of the
joint, maintaining and reinstating synovial tissue homeostasis notably (113). In
RA, macrophages are abundant in the inflammatory synovial membrane and at
the cartilage-pannus junction. They are highly activated; the degree of
macrophage activation correlates with the joint pain and general inflammatory
status of the patient (114). RA macrophages act as APCs by presenting
autoantigens through large amounts of major histocompatibility complex class I
molecules. They secrete proinflammatory or regulatory cytokines (IL-1, IL-6, IL-10,
IL-13), growth factors, chemokines (CXCL1 and CXCL10) to promote inflammation
and angiogenesis. They also produce metalloproteinases, contributing to the
destruction of the cartilage matrix (93,115).

Plasticity is a key feature of macrophages. They are capable of presenting heter-
ogeneous phenotypes, creating various subpopulations. Depending on their ac-
tivation state (M1 or M2), these innate immune system cells can have extensive
proinflammatory and damaging abilities, contributing significantly to inflamma-
tion and joint deterioration. Or, they can have remodeling and inflammation res-
olution abilities. The M1 and M2 phenotypes represent the extremes of a macro-
phage activated spectrum, which is characterized by the presence of intermediate
phenotypes involved in the immuno-regulation or in tissue repair and defined by

19



different signaling pathways, surface markers, and cytokine production (87). In
RA, the proportion of M1 macrophages is higher than that of M2 macrophages.
This increased pro-inflammatory ability of macrophages is related to their exces-
sive activation and proliferation as well as their enhanced resistance to apoptosis
(116).

Both M1 and M2 macrophages participate in the disease course by interacting
with other cell types (Figure 9). M2 macrophages can inhibit the proliferation,
activation, and cytokine production of CD4+ pro inflammatory T cells (117,118).
They can also boost CD4+ regulatory T cells function by producing immunoreg-
ulatory mediators like IL-10 and TGF-B (119). Inversely, M1 macrophages can at-
tract CD4+ T cells and induce their hyper activation by producing CXCL16 and IL-
15 (120,121). The increased CXCL16 expression in RA macrophages promotes re-
cruitment of CXCR6+ T cells and may thereby contribute to synovial inflammation
and immunopathology (122). Furthermore, M1 macrophage-derived IL-6, IL-12
and IL-18 contribute to the differentiation of naive CD4+ T cells into Th1 pro in-
flammatory subtype (123). These cytokines also participate in the inhibition of
regulatory T cells (124).

Macrophages interact with fibroblasts as well. They secrete PDGF, TGF-f3, IL-22
and HBEGF (heparin binding EGF-like growth factor) to promote the invasive be-
havior of resident synovial fibroblasts and the consequent destruction of the ar-
ticular cartilage (105,125,126). Moreover, cellular communication between mac-
rophages and fibroblasts amplifies the pro-fibrotic response and induce higher
production of IL-11, LIF, CSF3, IL-33, 1I-6 and growth factor receptors by fibro-
blasts (125,127).
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Figure 9. The role of macrophages in RA. Figure taken from Udalova et al, 2016
(128).
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1.1.6 CD4+ T helper 1 (Th1)

Although the exact role of T cells in RA remains unclear, there is compelling
evidence to support the significant contribution of CD4+ T-cells to the chronic
autoimmune response of RA. Indeed, highly expanded CD4+ T cell clones are
observed in RA synovium (129) and are characterized by increased apoptosis
resistance and higher autophagic flux compared to healthy cells (130).

CD4+ T cells play a central role in regulating the immune response through the
secretion of specific cytokines, the activation of innate and adaptive immune cells
as well as nonimmune cells, and the suppression of immune reaction (131). They
interact with Major Histocompatibility Class Il (MHC-II) molecules, expressed on
the surface of APCs (132). The key genetic association between the HLA-DR locus
and RA further supports that CD4+ T cells are directly implicated in the disease
(133). CD4+ T cells interaction with APCs results in CD4+ T cells differentiation
into distinct subtypes: Th1, Th2, Th9, Th17, Th22, Treg (regulatory T cells), and Tth
(follicular helper T cells) (134).

RA is considered a Th1-associated disease. Indeed, Th1 is the most abundant
CD4+ T cells subtype in synovial fluid of RA patients (135,136). Th1 cells promote
the development of a proinflammatory microenvironment in the synovium by in-
ducing the secretion of proinflammatory cytokines, interferon-g (IFN-g), Tumor
Necrosis Factor-a (TNF-a), LymphoToxin (LT), and IL-2 (137), leading to synovitis,
cartilage destruction and bone erosion (138). The high level of Th1-derived TNF-
a is responsible for dendritic cell differentiation, in charge of autoantigen presen-
tation to T cells in the synovium of RA patients (139). It also leads to osteoclasto-
genesis and bone resorption by activating osteoclast precursors and inhibiting
osteoblast differentiation (140). CXCR3 was identified as a surface marker for Th1
cells (141). CXCR3 is expressed in 40% of autoreactive CD4+ T cells in RA syno-
vium (142) and binds to CXCL9 and CXCL10, two chemokines highly expressed in
RA synovium (143). Furthermore, T-bet was identified as a master transcription
factorin Th1 (144), and is associated with several inflammatory diseases, including
RA (145-147).

Th1 cell-type interacts intensively with macrophages and fibroblasts. It contrib-
utes to the M1 polarization of macrophages via TNF-a, IFN-g and GM-CSF pro-
duction (148,149), but also via direct contact through T Cell Receptor (TCR)/CD3
molecules (150). The regulation of macrophages by Th1 cells in RA also reflects in
their ability to regulate the differentiation of macrophages to osteoclasts through
the expression of RANKL (151). Th1 cell-type interacts with fibroblasts as well and
has a strong ability to increase their proliferation, adhesion, invasiveness. Further-
more, Th1-associated cytokines, IFN-g and TNF-a are known to increase the ex-
pression of InterCellular Adhesion Molecule 1 (ICAM1) and Vascular Cell Adhesion
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Molecule 1 (VCAM1) in fibroblasts, subsequently leading to production of MMPs
and inflammatory cytokines including VEGF, IL-6 and IL-8 (152,153). Therefore,
these interactions participate in initiating and sustaining pro-inflammatory pro-
cesses and joint destruction in RA (152).

1.6 Treatments

There is currently no cure for RA. The broad range of molecules associated with
RA, the interplay between genetics and environment in RA initiation, the disease
heterogeneity, the limited ability to recognize the population at risk, and the
inability to make an early diagnosis are all obstacles to curing RA. The proposed
therapies merely seek to alleviate disease symptoms, relieve pain, increase
survival, and prevent long-term disability (5). Nonsteroidal anti-inflammatory
drugs (NSAIDs), including aspirin and ibuprofen, are used to help manage chronic
pain, inflammation, and swelling in RA but do not slow down the disease
progression and can have adverse effects after prolonged use
(154). Glucocorticoids are proposed as well to decrease disease activity but can
only be used for a limited period of time and in combination with Disease-
Modifying Antirheumatic Drugs (DMARDs) (155).

DMARDs are commonly used treatments in RA. DMARDs target inflammation and
thereby prevent further joint damage (6). They are categorized into conventional
DMARDs (methotrexate, hydroxychloroquine, and sulfadiazine) or biologic
DMARDs (TNF-a inhibitors (anti-TNF mAb), IL-6 inhibitors (anti-IL-6 mAb), B cell
depleting antibodies, and inhibitors of co-stimulatory molecules). Each DMARD
has a unique mechanism of action, ultimately interfering with critical pathways in
the inflammatory cascade. Conventional DMARDs include drugs that target the
entire immune system whereas biologic DMARDs are monoclonal antibodies and
soluble receptors that target protein messenger molecules or cells (156) (Figure
10).

Both conventional and biologic DMARDs have several side effects. Conventional
ones can cause bone marrow suppression, gastrointestinal distress, allergic reac-
tions, hepatotoxicity, liver cirrhosis and many other adverse effects (6). Even
though methotrexate monotherapy results in clinical symptoms and joint damage
reduction in about 25-40% of patients, which increases to almost 50% with glu-
cocorticoid addition (157), around 10-30% of patients discontinue therapy within
a year due to the previously described adverse effects (158). Biologic DMARDs,
on the other hand, can cause increased risk of bacterial, fungal, and viral infec-
tions, tuberculosis, herpes zoster, hepatitis B/C, skin cancers, congestive heart fail-
ure and drug-induced lupus (156).
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Although several alternative mechanisms of action therapies are approved as
first-line options, approximately 90% of biologic-naive RA patients receive an
anti-TNF as their first biologic treatment (159). Furthermore, a substantial propor-
tion of RA patients (30-40%) do not respond to this treatment. Some of these
non-responders never achieve a response (primary inefficacy), others may re-
spond and then lose the treatment efficacy over time (secondary inefficacy) (160).
Even after multiple DMARD therapy switching, about 20%—-30% of these patients
remain treatment refractory (7). In addition, despite diverse targets, all biologics
have comparable efficacy when used with methotrexate (ACR70 response rates
about 35-40%), which diminishes as previous drug exposure increases (157).

These limitations emphasize the urgent need for novel therapeutic options, as
well as a better understanding of the mechanism of action of current RA treat-
ments. A deeper comprehension of the cellular interaction and the intracellular
cascades involved in RA pathogenesis, as well as their regulation, could help over-
come this challenge.
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Chapter 2. Systems Biology to better understand
complex diseases

Complex disease mechanisms involve several interconnected biological processes
and signaling pathways that result in specific gene expression patterns and
cellular phenotypes. Each molecule can rarely be assigned a distinct biological
role, as in living organisms nothing acts in isolation (162). Rather, cellular
functions and phenotypes arise from the interactions between the subcellular
components of a biological system (13). This is further underlined by ongoing
developments in high-throughput experimental techniques and the increase of
the processing compute power, which provide tremendous amounts of data
regarding these molecular interactions and reinforce the importance of
considering biological systems as a whole. Therefore, there is an urgent need for
a system-level understanding of the structure and dynamics of these intricate
interactions and for the development of new methodologies to gain insights
through more holistic representations (163).

Systems biology is defined as a field of study that uses a holistic approach com-
bining mathematical modeling with experimental methodologies and bioinfor-
matics tools to better understand the mechanics of complex biological systems
and predict their behavior across multiple scales going from cells, tissues to or-
ganisms (8). One strategy to understand the complexity of biological systems is
their abstraction to complex, multi-layered networks of interactions. Several levels
can be identified, depending on the spatial scale of interest. At the cellular level,
the networks are composed of subcellular components like proteins and genes,
connected by edges, with each edge reflecting the biochemical interactions be-
tween these components (162). At the tissue level, the networks are composed of
interactions between different cell types and of the cells with their supporting
stroma. The networks at the organismic level are comprised of interactions be-
tween different organs or body systems (164).

2.1 Molecular interaction maps

To describe disease mechanisms and better understand their biological processes
at the cellular level, efforts have already been made to assemble the available and
fragmented knowledge in molecular interaction maps. A disease-specific map is
a detailed, knowledge-based network that describes disease mechanisms and
disease-related signaling, metabolic, and gene regulatory pathways. It also
provides evidence connecting these pathways to the disease’s causes and effects
(9). Disease maps are manually curated and extensively annotated through broad
literature search and an active involvement of domain experts, making them a
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more reliable and solid source of information compared to automatically inferred
biological networks. Indeed, such networks are often noisy, and rely on putative,
not manually curated interactions. They are associated with high uncertainty and
likely riddled with false positive and false negative interactions. Furthermore, they
do not provide mechanistic details regarding the diseases processes (165).

State-of-art mechanistic molecular interaction maps have already been published
for several diseases including Parkinson’s (166), Alzheimer's (167), rheumatoid ar-
thritis (168), cancer (169), asthma (170), and more recently COVID19 (171). They
consist of hundreds of nodes and interactions and illustrate manually curated
molecular mechanisms and signaling pathways in a disease-specific manner.
These maps can be used for identification of disease biomarkers, potential drug
targets and disease subtypes for better diagnosis and stratification of patients.
Furthermore, they provide a comprehensive template for visualization, analysis,
and interpretation of omics datasets. They can be analyzed in terms of the under-
lying network structure as well.

Disease maps are both human and machine-readable. Visual exploration of the
maps enables clinical and life sciences researchers to easily investigate complex
and interconnected diseases pathways, while machine-readable formats of the
underlying information create an interface to a broad range of bioinformatic
workflows (172). Therefore, maps play a critical role in bridging bioinformatics
and molecular biology.

2.1.1 Community developed standards for knowledge representation

To harmonize biological networks and cellular processes representation, Systems
Biology Graphical Notation (SBGN) standard has been developed (10). It allows
for an efficient and accurate representation, visualization, storage, exchange, and
reuse of information. Information in SBGN is represented using graphical objects
(glyphs) structured in a graph, and the regulated Systems Biology Ontology
language is used. SBGN consists of three complementary languages, covering
different granularity of biological processes (Figure 11): Process Description (PD),
Entity Relationship (ER) and Activity Flow (AF). PD is a directed, sequential
representation of the mechanistic and temporal details of the underlying process.
It illustrates how entities change form as a response to various influences (173).
ER diagrams emphasize the effects that entities have on one another's changes
rather than the transformations themselves. AF diagrams permit modulatory arcs
to directly link different activities, rather than entities and processes or
relationships. It is often used for coping with biochemical network complexity or
with incomplete or indirect knowledge (10).
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Standards regarding the manual curation of biological networks can also help
harmonizing the content in various disease maps. In this direction, Minimal Infor-
mation Requested In the Annotation of biochemical Models (MIRIAM) has been
developed as a set of guidelines for the proper annotation and curation pro-
cesses. MIRIAM is composed of two parts. The first is a qualifier describing the
relationship between a model component and the resource used to annotate it,
whereas the second is a proposed annotation scheme that specifies the docu-
mentation of the model by external knowledge (11). Annotations using MIRIAM
are in a machine-readable format which facilitates their import and exchange and
that can be unambiguously parsed by software to perform simulations and anal-
ysis.

b C
u0l126 u0126
MEK MEK

Figure 11. Three different types of SBGN networks are used to represent protein
phosphorylation catalyzed by an enzyme and modulated by an inhibitor. (a) Process
description. (b) Entity Relationship. (c) Activity Flow. Figure adapted from Le Novere
et al, 2009 (10).

2.1.2 From a cellular to a multicellular level

Multiscale knowledge management is at the heart of the disease map concept.
This means developing and exploiting protocols for the high-quality
representation of information at different levels of granularity including
subcellular, cellular, tissue, organ, and organism levels (9). Changes in
communication between cells and their surrounding microenvironment are a
feature of numerous human diseases including RA. Signaling crosstalk via soluble
and membrane-bound factors is critical for informing diverse cellular decisions,
including decisions to activate cell cycle or programmed cell death, undergo
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migration or differentiate along the lineage (174). However, these intercellular
interactions are missing from most disease maps that were built at the cellular
level. Therefore, an accurate representation of cell-cell signaling links and
effective systems-level analyses of those links is needed for understanding global
communications among cells and their contribution to diseases pathogenesis.

Biochemical tests including yeast two-hybrid screening, co-immunoprecipitation,
proximity labelling proteomics, and X-ray crystallography have been traditionally
used to identify interactions between proteins that are secreted or displayed ex-
tracellularly to mediate intercellular communication (175). Such information can
be retrieved through extensive literature search and curation. Another approach
is to make use of RNA-seq, single cell RNA-seq or spatial transcriptomic technol-
ogies to dissect cell-cell communication. Many tools have been developed for this
purpose (174,176-180) . They consist of a resource of intercellular interactions
prior knowledge and a method to predict potential cell-cell communication
events. Events are represented as a one-to-one interaction between a transmitter
and receiver protein expressed by the source and target cell type respectively.
Events are predicted by estimating the likelihood of crosstalk based on the ex-
pression level of the transmitter and the receiver proteins (181). Such interactions
may be incorporated into disease maps to describe communication between dif-
ferent cell-types involved in the diseases’ pathogenesis.

Disease maps, whether they are built at the cellular or multicellular level, represent
dense knowledge bases and comprehensive representations of complex biologi-
cal systems. Although maps remain limited by their static nature when it comes
to predictions and hypotheses testing, they can be used as the starting point for
different types of mathematical modelling and in-silico experiments.

2.2 Computational modeling in biology

One of the primary goals of dynamical modeling is to understand the emergent
features and behaviors of complex biological systems. It seeks to explain how
cellular functions such as mobility or proliferation are caused by interactions
between subcellular components such as proteins and small molecules (13). The
purpose of a model is to imitate the behavior of the system it mimics, based on
actual, known attributes of the system components. To achieve this purpose, the
model may need to span different length scales and contain data from various
fields of research (182). Developing a model entails formulation of a conceptual
model, constructing the model by translating the conceptual model to a list of
components, selecting mathematical expressions to characterize the relationships
between its components, determining parameter values, and performing
simulations and other mathematical analyses to reproduce observations or lead
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to predictions. Models' attributes can be modified as well as the rules that control
their interactions, allowing researchers to test hypotheses, determine which
features caused specific outcomes, and conduct nearly any type of virtual
experiment (183).

To account for the different quality of information that is available for a network
under study, modeling formalisms of different levels of complexity have been
developed over the last years.

2.2.1 Quantitave models in biology

The quantitative modeling approach is based on differential equations. It
describes the dynamics of signaling pathways by translating them into rate
equations. They can be based on ordinary differential equations (ODEs), Partial
Differential Equations (PDEs) or on probabilistic stochastic equations. The most
widely used ones are sets of coupled ordinary differential equations (ODEs) that
describe the system's development over time using mass-action kinetics for the
rates of production and consumption of the biomolecular species (184). These
types of models require shorter simulation time, and can be parametrised using
experimental lab data or clinical patients data because the large majority of
collected data describes the temporal changes in some variable of interest; e.g.,
levels of pro-inflammatory cytokines. These models can also be investigated
analytically via the identification of possible steady states and their stability.
Several ODEs models have developed to better understand several diseases like
Alzheimer’s (185), cancer (186-188) and Parkison’s (189).

In RA, several ODEs models have been published to describe joint erosion,
cytokines interactions, interactions of immune cells within the RA environment,
or the circadian dynamics involved in the progression of RA (190-193). Even if
PDEs are less commonly used to describe RA specific processes in comparison to
ODEs, a model describing the spatio-temporal interactions between immune
cells, cytokines and drugs in RA was also published (194).

ODEs and PDEs being deterministic models, stochastic mathematical models for
RA have been developed. Such models have been mainly applied in the context
of treatment decisions, to analyse RA incidence rates, or to predict radiological
progression within RA (195-197).

Quantitative models are more precise and specific about a system but require a
large effort in model construction as it demands knowledge of kinetic information
for each interaction, as well as a high number of parameters. Because many of
these characteristics are unknown and difficult to determine in most biological
processes, these models are limited to small and well-characterized networks (an
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ODE model is considered as large if it has more than 40 parameters to be inferred)
and cannot be used to describe large-scale systems (12,13).

2.2.2 Agent-based models in biology

Individual-based (IB) (or agent-based) modelling approaches have been used to
incorporate stochasticity at a cellular level within mathematical models (198). This
approach allows each cell to be described as an individual agent which follows a
set of predetermined rules. These agents reside in a defined spatial domain called
lattice. One strength of IB models is their ability to model heterogeneous
populations. Another advantage is that the researcher does not need to have an
understanding of the aggregate or big picture behavior of the phenomenon.
These behaviors emerge from the rules that are developed by the researcher.
However, such models can be computationally expensive especially when
modelling a large number of agents. Indeed, Each agent is moving about and
demanding calculations from the Central Processing Unit (CPU). When this
number gets too large, the CPU slows down. This expense can be reduced by
using a hybrid modelling approach that combines IB models with classical
methods such as differential equations. These hybrid approaches have been used
to model various biological phenomena and diseases (199-201). However, such
models remain limited in term of size as they require a huge number of
parameters that are often difficult to find in the literature. Adding only one
parameter in the model can substantially increase the amount of data required to
constrain it (202). Even simple models tend to contain a considerable number of
parameters that grows linearly with the number of agents in the model and results
in an exponential expansion of the parameter space. Moreover, the runtime of an
IB model does not only depend on how many agents are in the model, but also
on how complex their decision-making rules are, and how often they interact with
each other and with their environment (203).

2.2.3 Qualitative models in biology

Qualitative modeling approaches are more suitable for characterizing large-scale
systems for which the majority of kinetic parameters is unavailable. They do not
require kinetic parameters and can provide a qualitative dynamic description of
the system. Furthermore, experimental literature and high-throughput
technologies can be used to provide qualitative data on individual components
and interactions at the molecular level. In these models, variables can have a finite
number of states. A variable's state is defined by a logical combination of the
states of other variables. These models are scalable and suitable for systems
containing hundreds of components. They are increasingly being used to model
biological networks (204-206).

29



The class of qualitative modeling approaches comprises various formalisms of
different complexity. More refined techniques include Petri nets (207) and logical
modeling (208-210). As graph models, these frameworks solely rely on the
network structure, yet they enable the analysis of important functional properties
of large-scale signal transduction networks such as input—output relationships
and feedback loops, and they also allow certain predictions (184).

The application of Petri nets to biological systems was first proposed by Reddy et
al. (211). Some of the main advantages of Petri nets are that they are visual, have
different flavors and can be designed and analyzed by a range of tools (212).
While the Petri net approach is particularly suited for modeling mass flows as they
arise in metabolic networks, the description of signal or information flows as
characteristics of gene regulatory and signal transduction networks is less
straightforward.

In contrast, the logical modeling approaches have directly been introduced as
qualitative descriptions of signaling and regulatory networks. Logic-based
network models were pioneered in the biomedical sciences by Kauffman
(213,214), followed by Thomas (215) and represent a compromise between
structural analysis and ODE methods in terms of precision and complexity.

Several Logic-based models have been developed to study complex diseases
such as COVID-19 (216), cancer (16,217,218), diabetes (219) and RA (220,221). In
their simplest form, logic-based models permit each biochemical species to be in
one of two discrete states: ON or OFF. The state of a logic network evolves in a
dynamic fashion as nodes in the network are switched ON and OFF according to
the state of other nodes in the network (222). More complex logic-based methods
have been developed, such as multi-state and fuzzy logic methods, which permit
nodes to be in more than two discrete states (210,223). Although theoretically
able to more precisely simulate biochemical regulation, these more complicated
approaches require parameter value estimates that are rarely known and, in some
cases, are difficult to correlate with biophysical chemistry theory. Thus, discrete
two-state logic models (Boolean models) are an intuitive and predictive method
for describing biochemical interactions without requiring prior knowledge of
complex mechanistic details of reaction kinetics (needed for ODE systems) or
degrees of membership (needed for multi-state fuzzy logic systems).

Based on the advantages and disadvantages of all the previously described
modelling approaches, we can say that Boolean models are the most suited
option for this PhD project as they can handle large-scale systems and the
regulation of these model’'s components is given in a parameter-free way, without
the need for kinetic parameters and precise quantitative data.
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2.2.4 Boolean models

Boolean models are the simplest qualitative models describing an abstraction of
the biological system where each biomolecule can have two values: zero or one.
This indicates if a gene is expressed or not expressed, a transcription factor is
active or inactive, and a molecule’s concentration is above or below a certain
threshold. Changes in the biomolecules’ values depend on their interactions in
the system and are defined by logical rules using the Boolean operators “AND”,
“OR" and “NOT" (Figure 12). The regulation of this state variable is given in a
parameter-free way, making Boolean modeling a viable option for large-scale
systems with unknown kinetic parameters and precise quantitative data (14,224).
Several examples from models of genetic regulatory networks show that Boolean
approaches give meaningful biological information (16,220,225,226).

The state of a simulated Boolean model changes at each execution of its logical
rules. These states can be visualized at different timeframes using state transition
tables and state transition graphs where each node corresponds to one state of
the network, while edges represent transitions from one state to its successor
(Figure 12).

The order of executions is defined by the chosen updating scheme (Figure 13). In
the synchronous update, all functions are applied simultaneously at each execu-
tion. The dynamics of the models are deterministic, and each state has one suc-
cessor. Therefore, this approach does not consider the stochastic nature of bio-
logical processes.

In the asynchronous update approach, only one random component is selected
and modified at each time step. This stochastic update process results in several
successor states for each state, depending on the selected component (227). Even
though asynchronous models are usually considered as a closer representations
of the biological processes, the run time for asynchronous simulations can be-
come a strong limitation when analyzing large-scale Boolean models (228).

Many tools to perform simulations and analysis of logical models already exist,
including ADAM (229), BoolNet (230) , BooleanNet (231) , Cell Collective (232),
CellNetAnalyzer (233), GINsim (234) , and BioModel Analyzer (235).
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Figure 12. Different representations of a sample Boolean network consisting of three
nodes. (A) Graph representation, (B) logical Boolean rules, (C) state transition table
and (D) state transition graph. Figure taken from Kaderali and Radde, 2008. (236)
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Figure 13. Updating schemes in Boolean models. Figure adapted from Schwab et
al, 2020 (227).

2.2.5 Long-term behavior of Boolean models

When simulated, the biomolecules states may converge to periodic sequences of
states, called attractors. Once reached, they cannot be left unless an external
perturbation occurs. Attractors represent the model’s long-term behavior and
have been connected to biological phenotypes, making their computation a key
point in Boolean models’ analysis (14). Attractors can be steady states comprising
only one state. These attractors occur in both synchronous and asynchronous
updating schemes. Attractors can also have more than one state. In synchronous
models, they can be simple cycles, a fixed sequence of states that are periodically
replicated. In asynchronous models, complex attractors may be reached (Figure
14). Complex attractors are formed by overlapping loops which origin from the
possibility of reaching more than one successor state in the asynchronous update
scheme (237).
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Figure 14. Possible types of attractors in Boolean models. Figure taken from Garg
et al, 2008 (228).

It is still difficult to construct and analyze Boolean models for large-scale biolog-
ical systems. When Boolean models are constructed manually, researchers typi-
cally focus on a small number of nodes; hence, the resulting models fail to reflect
the whole range of a biological system. When models are inferred from maps,
they are much larger and are more accurate representations of the system of in-
terest (238). These large-scale models, on the other hand, are more complex, with
a far higher number of nodes. Therefore, computing and enumerating all attrac-
tors in such complex models are still challenging tasks (15). Furthermore, it is dif-
ficult to compose larger models from smaller building blocks using Boolean net-
works. Hierarchical structuring, which makes the design and analysis of models
simpler, is not possible in Boolean networks (212).

One of the most basic approaches to identify attractors is to enumerate state
transitions with all potential states as initial conditions and see which attractor
each initial condition eventually reaches. This work can be accomplished by cre-
ating and evaluating the corresponding state transition graph of the Boolean
model. Given that the size of a Boolean model's state space is proportional to the
number of nodes (2" states for n nodes), if n is large, constructing and analyzing
the state transition graph is impossible (15). One approach to overcome this lim-
itation is the use of efficient constraint-solving algorithms, like SAT, without ex-
plicitly calculating transitions of the model (15,239). Some of these logical mod-
elling tools also allow properties of the state transition graphs to be verified by
means of existing model-checking tools, such as NuSMV (240-243). The proper-
ties are formulated in terms of temporal logic or in a suitable high-level query
template capturing recurrent biological questions. The model checker tests if the
state transition graph, which may be explicitly generated or implicitly encoded in
a symbolic description of the model, satisfies the property. Another approach is
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to perform model reduction or model decomposition to allow for in-depth dy-
namic analysis while preserving the important dynamical properties and topolog-
ical features of the network (244,245).

Although these approaches enable the attractors’ search in large-scale Boolean
models, the resulting attractors still need to be validated as biologically consistent
states in a cell- or disease-specific manner.

35



Chapter 3. Description of data and data analysis

In this section we describe each omics dataset we used during this PhD work for
building the RA cell-specific maps, identifying the intercellular interactions
between fibroblasts, macrophages and Th1 cell-types, and calibrating the cell-
specific and multicellular models. We also discuss the statistical tools and the
analysis we performed on the selected datasets and their corresponding
outcomes.

3.1 GSE97779 dataset

GSE97779 dataset is a publicly available microarray dataset from the GEO
database (246). The dataset contains nine RA synovial macrophages samples from
nine patients and five peripheral blood monocyte-derived macrophages samples
from five healthy donors. In the original study, researchers aimed to test whether
a gene expression signature corresponding to IFN-g-mediated suppression of
transcription is present in the RA synovial macrophages (247). They performed
Gene Set Enrichment Analysis (GSEA) and Differential Expression Analysis (DEA)
to compare RA synovial and control macrophages. They found out that the
expression of IFN-g-induced genes was increased in RA synovial macrophages,
whereas the expression of IFN-g-repressed genes was decreased in RA synovial
macrophages relative to control macrophages. They also demonstrated that the
pathophysiological relevance of IFN-g in RA is mediated by the suppression of
MAF and downstream gene expression.

In this work, we quantile normalized the gene expression using the prepro-
cessCore package (248). We annotated the genes using BioMart package (249).
Then, we performed DEA using the Limma package (250) to identify the Differen-
tially Expressed Genes (DEGs) between RA and healthy macrophage samples. We
filtered the DEGs using a False Discovery Rate (FDR) adjusted p-value threshold
equal to 0,05 and an absolute fold change threshold equal to 1,5. 5430 statistically
significant DEGs were identified and used in the next steps of this work.

3.2 GSE164498 dataset

GSE164498 dataset is a publicly available RNA-seq Single-Cell dataset from the
GEO database. It contains 1766 HL-60-derived M1 macrophage cells and 2063
HL-60-derived M2 macrophage cells. M1 macrophages were polarized using LPS,
and IFN-g and M2 macrophages were polarized using IL-4 and IL-13. The
objective of the original study was to uncover the gene regulatory networks
underlying macrophage polarization through a comparative analysis of bulk,
single-cell and ATAC-seq data (251). Researchers constructed de novo gene

36



regulatory networks and revealed subtype-specific transcription factor
interactions and distinct activation trajectories during the macrophage
polarization process.

In this work, we used Bioturing software (252) with the Venice method (253) to
identify M1 and M2 macrophage marker genes. Venice method is a non-para-
metric approach that identifies the marker genes of a cell population. It searches
for genes that differentiate the two selected groups by constructing a classifier
that tries to identify the population of each cell given the expression level of a
specific gene. The classifier's accuracy and its p-value are then computed and
used as metrics to quantify the "marker quality" of the gene. Using the Venice
method and an FDR cut-off of 0.05, 2306 genes were identified as marker genes.
Since an M1 versus M2 macrophage comparison was performed, up-regulated
marker genes were assigned to the M1 macrophage gene signature, and down-
regulated marker genes were assigned to the M2 macrophage gene signature.

3.3 GSE109449 dataset

GSE109449 is a single cell (sc) RNA-seq dataset available in the GEO database
(246). It contains 384 freshly isolated synovial fibroblasts in two RA and two
OsteoArthritis (OA) patients. The objective of the original study was to identify
functional and transcriptional differences between targeted subpopulations of
fibroblast in the RA synovium (254). Researchers performed DEA and GSEA on
this dataset, in combination with microarray and bulk RNA-seq data and revealed
that a distinct subset of PDPN+CD34-THY1+ fibroblasts is expanded in RA and
may be pathogenic. They also demonstrated that this subset is enriched around
blood vessels in RA synovium, and its expression profile reveals potential
pathogenic role in matrix invasion, immune cell recruitment, and
osteoclastogenesis.

In this work, we performed DEA between RA and OA cells using the BioTuring
software and the Venice method (Figure 15). We filtered the DEGs using an FDR
adjusted p-value threshold equal to 0,05 and an absolute fold change threshold
equal to 1,5. 1998 statistically significant DEGs were identified.
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Figure 15. A) GSE109449 dataset visualization using BBrowser® in Bioturing tool.
B) DEA outcomes using the Venice method performed on the GSE109449 dataset.

3.4 SDY998 dataset

SDY998 is a single cell RNA-seq dataset from the Immport database (255)
containing 19 samples from RA patients and two synovial samples from OA
patients including four cell types: 1142 B cells, 1844 fibroblasts, 750 monocytes,
and 1529 T cells. In the initial study, researchers aimed to define the cell
populations that drive joint inflammation in RA (256). They analyzed 5,265 scRNA-
seq cells and identified unique cell populations that are expanded in RA synovia.
They also mapped inflammatory mediators to their source cell populations to
identify the subsets that are potentially key mediators of RA pathogenesis.
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In this project, we used Seurat package (257) to perform dimensionality reduction
on the CD4+ T cells via the Find_neighbors and Find_clusters functions. Ten CD4+
T cell clusters were identified. We used ABIS shiny app to select the relevant Th1
subtype markers (258) (Figure 16). Based on the expression of the marker genes
CXCR3, CCR7 and CCR6, the Th1 cluster was identified. Figure 17A illustrates how
we used the expression of CCR7 marker to identify CD4+ naive T cell clusters.
Figure 17B shows the expressions of both CXCR3 and CCR6 markers among the
ten CD4+ T cell clusters. We observe a high expression of CXCR3 in cluster 3, 5
and 9. Cluster 5 is the only one not expressing CCR6 marker at all (CCR®6 is specific
to Th17 subtype).

We also performed DEA using CXCR3+ CCR7- CCR6- Th1 cluster versus CCR7+
naive CD4+ T cells from RA samples using Seurat and Find_marker_genes func-
tion. We filtered the DEGs using an FDR adjusted p-value threshold equal to 0,05
and an absolute fold change threshold equal to 1,5. 102 statistically significant
DEGs were identified.
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Figure 76.

Screenshot

of

ABIS

Shiny application

https.//giannimonaco.shinyapps.io/ABIS/. A) shows the expression of CXCR3 within

the peripheral blood mononuclear cell (PBMC). B) shows the expression of CCR7
within the peripheral blood mononuclear cell (PBMC). C) shows the expression of
CCR6 within the peripheral blood mononuclear cell (PBMC).
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Figure 17. A) Umap plot showing CCR7 expression among the CD4+ T cells clusters
(dentified using Seurat. B) Violin plot showing the expressions of both CXCR3 and
CCR6 in the CD4+ T cell clusters. C) CD4+ T cells annotation based on markers
expression.

We also used the SDY998 dataset to perform GSEA. GSEA reflects the degree to
which a gene set is overrepresented at the top or bottom of a ranked list of genes.
A positive Enrichment Score (ES) indicates gene set enrichment at the top of the
ranked list while a negative ES indicates gene set enrichment at the bottom of the
ranked list. We used the 664 IPA gene sets (gmt format) and GSEA software (259).
The tool takes as input the gene expression matrix in a text format of the pheno-
types under study. In our case, the phenotypes correspond to Th1 and naive CD4+
T cells. 186 gene sets were enriched in the Th1 phenotype (gene sets with positive
enrichment scores). The list of enriched gene sets in the Th1 phenotype was fil-
tered with an FDR less or equal to 5% to keep only the statistically significant
ones. 101 gene sets were kept. To ensure that the results are Th1-specific, we
performed GSEA on three other datasets: GSE32901, GSE107011 and GSE135390
described below. Only gene sets identified with the SDY998 dataset and shared
by at least one of the GSE32901, GSE107011 or GSE135390 datasets were kept
(41 gene sets). Then, to avoid redundancy, only gene sets sharing less than 80%
of their core enrichment genes were kept (24 gene sets).
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3.5 GSE32901 dataset

GSE32901 is a publicly available microarray gene expression dataset containing
PBMC samples from 5 healthy donors. It includes four types of samples: naive
CD4+ T cells, Th1, Th17 rich, and Th17 poor memory CD4+ T cells. Researchers in
the original study examined pairwise differential gene expression between the
different types of samples available in the dataset (260). They demonstrated an
increased expression in memory CD4+ compared to naive CD4+ T cells of genes
contained among immune-mediated disease loci. They also identified a
differential regulation pattern for genes solely expressed in Th17 cells (IL17A and
CCL20) compared to genes expressed in both Th17 and Th1 cells (IL23R and
IL12RB2).

In this work, we normalized the gene expression using the log2 RMA method
(261). We performed GSEA using the 664 IPA gene sets (gmt format), GSEA soft-
ware, and the Th1 cells and naive CD4+ T cells gene expression matrices. The list
of enriched gene sets in the Th1 phenotype (with positive enrichment scores) was
filtered with an FDR equal to 10% to keep only the statistically significant ones.

3.6 GSE107011 dataset

GSE107011 dataset is bulk RNA-seq transcriptome profiling of 29 immune cell
types, including Th1 and naive CD4+ T cells, and extracted from PBMC sorted
from 4 healthy individuals. The data was used first in a study that aimed to identify
sets of genes that are specific, are co-expressed, and have housekeeping roles
across the 29 cell types (258). Researchers examined differences in gene
expressions revealing cell type specificity. They also performed absolute
deconvolution using the identified transcriptomics signatures.

In this project, we normalized the counts using the Transcripts Per Million (TPM)
method. We performed GSEA using the 664 IPA gene sets (gmt format), GSEA
software, and the Th1 cells and naive CD4+ T cells gene expression matrices. The
list of enriched gene sets in the Th1 phenotype (with positive enrichment scores)
was filtered with an FDR less or equal to 10% to keep only the statistically signif-
icant ones.

3.7 GSE135390 dataset

GSE135390 is an RNA-seq gene expression dataset. It contains PBMC samples
coming from 3 healthy donors. Several subtypes of CD4+ T cells are available in
the samples: Th1, TH2, TH22, Treg, naive CD4+ and Th17. The aim of the original
study was to provide a better understanding of the functional specialization and
differentiation of Th and Treg cell populations (262). Researchers identified in this
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dataset core transcriptional signatures shared across all Th and Treg cell
populations and unique signatures that define each of the Th or Treg
populations.

In this work, we normalized the count data using Trimmed Mean of M-values
(TMM). We performed GSEA using the 664 IPA gene sets (gmt format), GSEA soft-
ware, and the Th1 cells and naive CD4+ T cells gene expression matrices. The list
of enriched gene sets in the Th1 phenotype (with positive enrichment scores) was
filtered with an FDR less or equal to 10% to keep only the statistically significant
ones.

3.8 E. MTAB 8322 dataset

E_MTAB_8322 is an RNA-seq single cell dataset publicly available in ArrayExpress
database (263). It contains synovial samples coming from five treatment-naive
RA, six treatment-resistant RA, six in sustained remission and four patients with
UPA (Early undifferentiated arthritis). Four healthy donor synovial tissues were
included as control. The macrophage population was identified using FACS
sorting. Quality control of the dataset involved removal of cells with less than 500
expressed genes and removal of weakly expressed genes. The aim of the original
study was to identify the phenotypic changes in patients with early/active RA,
treatment-refractory/active RA and RA in sustained remission (104). Researchers
demonstrated that each clinical state was characterized by different frequencies
of nine discrete phenotypic clusters within four distinct macrophage
subpopulations with diverse homeostatic, regulatory and inflammatory functions.
They revealed two subpopulations (MerTKposTREMZ2high and
MerTKposLYVE1pos) with unique remission transcriptomic signatures, enriched in
negative regulators of inflammation that induced the repair response of synovial
fibroblasts in vitro.

In this work, we normalized gene expressions using Seurat’'s NormalizeData func-
tion. We only used the gene expression matrix of the five treatment naive RA
patients (5815 macrophage cells) in the next steps of the work.

Table 2 summarizes the datasets we analyzed for this PhD project, as well as the
main outcomes of their analysis.
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Table 2. Description of the omics datasets and their associated outcomes.

Dataset Technology Database Cell type(s) Outcomes
GSE97779 Microarray  GEO -RA synovial -DEGs between RA and
macrophages healthy macrophages
-Healthy
macrophages
GSE164498 Single cell GEO -Healthy M1 -M1 and M2 marker
RNA seq macrophages genes
-Healthy M2
macrophages
GSE109449 Single cell GEO -RA synovial -DEGs between RA and
RNA seq fibroblasts OA fibroblasts
-OA synovial
fibroblasts
SDY998 Single cell Immport -RA synovial - Synovial CD4+ Th1
RNA seq fibroblasts cluster
-RA synovial -DEGs between Th1
monocytes cluster and naive CD4+
-RA synovial T cells T cells
-RA synovial B cells  -Gene sets enriched in
the synovial Th1 cluster
GSE32901 Microarray  GEO -Healthy =~ PBMCs -Gene sets enriched in
(including naive the Th1 «cells from
CD4+ T cells and PBMCs samples
Th1 cells)
GSE107011 RNA seq GEO -Healthy =~ PBMCs -Gene sets enriched in
(including naive the Th1 «cells from
CD4+ T cells and PBMCs samples
Th1 cells)
GSE135390 RNA seq GEO -Healthy =~ PBMCs -Gene sets enriched in
(including naive the Th1 cells from
CD4+ T cells and PBMCs samples
Th1 cells)
E_MTAB_8322 Single cell ArrayExpress -RA synovial -Normalized gene
RNA seq macrophages expression in the RA

synovial macrophages
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Chapter 4. Construction of RA cell-specific molecular
interaction maps

4.1 Introduction

Knowledge assembly in the form of networks is of great interest in the field of
systems biology as it can help elucidate the complexity of human diseases. Many
public repositories of pathway assemblies are available, including KEGG (Kyoto
Encyclopedia of Genes and Genomes) (264), Reactome (265), Wiki Pathways (266),
Panther (267) as well as proprietary platforms, such as IPA (Ingenuity Pathway
Analysis) (268) and MetaCore (269). However, most of the networks and pathways
provided are generic, lack cell specificity, and are assembled without sufficient
annotations or access to the literature used for their construction.

Moving beyond generic characterizations of biological processes to more de-
tailed pathways that consider cell, tissue, organ, and disease states is a key ele-
ment of current research. International projects such as the Human Cell Atlas (270)
and the HapMap (271) have significantly contributed to our understanding of the
role of different cells in the human body and the specificities linked to the ana-
tomical or functional localization of these cells. Moreover, advancements in high-
throughput sequencing and proteomics techniques offer insights into unprece-
dented specificity and resolution for various cell types and subpopulations in nor-
mal and pathological conditions.

In this direction, we decided to work on building the first cellular atlas of the
rheumatic joint to recapitulate existing knowledge related to the intracellular in-
teractions involved in the disease’s pathogenesis in a cell-type and disease spe-
cific manner. We constructed cell-specific maps using a combination of infor-
mation extracted from published literature or pathway databases, and omics data
analysis and integration. The RA atlas includes for the moment four molecular
interaction maps specific to the most abundant cell populations in RA synovium:
synovial macrophages (including the M1 and M2 phenotypes), synovial fibro-
blasts and CD4+ T helper 1 (Th1) subtype, and it can be expanded to include a
variety of other cells relevant to the RA pathology, such as chondrocytes and os-
teoblasts, or osteoclasts.

4.2 Materials and methods

Figure 18 illustrates the three steps process we followed to build the RA cell-
specific maps.

45



Signaling, Gene Regulation Gene Expression Databases
) GEO
Immport
DEA GSEA
Pathway Analysis Software RA Atlas (MINERVA)
) CellDesigner o 3 v
Fibroblast MetaCore

M1

macrophage b Map Manual CD4+ Th1 Macrophage M1
m2 Construction Curation e iy

macrophage SBGN PD MIRIAM

- Fil phage M2

Pubmed
Existing maps
MSigDB
KEGG

Figure 18. Workflow for the construction and use of the RA map. First, cell specific
maps are constructed with the CellDesigner software (272) using information from
published literature and signaling pathway databases. Then, they go through
manual curation and annotation following MIRIAM standard. Next, maps are
enriched with additional pathways involved in RA pathogenesis via the integration
of disease- and cell-specific gene expression datasets using pathway analysis
software like IPA and MetaCore. The resulting RA-Atlas is accessible online as an
interactive map via MINERVA platform (273).

4.2.1 Molecular interaction maps construction

To construct the molecular interaction maps, we used the CellDesigner software
(272), a diagram editor tool of gene-regulatory and biochemical networks. Nodes
in the maps represent biomolecules like proteins, genes, complexes and other
molecules, and the edges represent the interactions between the nodes, such as
activation, inhibition, catalysis, and state transition. Syntax and semantics of the
symbols used to represent both species and interactions are compliant with SBGN
PD format (274). In addition, HUGO Gene Nomenclature Committee identifiers
(HGNC) (275) were used for naming signaling and gene regulatory pathways
components. Maps are stored in the Systems Biology Markup Language (SBML)
format, a standard open extensible markup language (XML)-based format for
representing biochemical reaction networks (276).

All cell-specific maps were built using the same structure. Cellular compartments
were designed to reflect the signal transduction in a cell from the extracellular
space in the form of ligand, going to the plasma membrane, where it binds to its
corresponding receptor, passing through the cytoplasm and nucleus and leading
to the production of proteins that can be either secreted in the extracellular space
or transported to the membrane. Phenotypes are particular nodes in the maps.
They represent the endpoint of multiple cellular processes that define and shape
the morphology and function of the cell. They describe biological states known
to be active or inactive in RA. To define the phenotypes of each cell-specific map
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and their corresponding regulators, we used databases such as the MSig
database (277), KEGG (264) and bio curation. The retrieved gene signatures were
used to connect molecules to the relevant cellular phenotypes included in the
maps.

4.2.2 Annotations and curation criteria

All the cell-specific maps were manually curated. The first step was a thorough
investigation of public data including published articles and databases to identify
pathways, components and interactions implicated in RA pathogenesis. We used
small-scale experimental investigations in human and included animal-based
studies where human-related data was insufficient to confirm the involvement of
components or interactions. Data from animal studies remains limited and
completely traceable. We followed strict curation criteria when constructing the
maps. Only components and interactions experimentally demonstrated to be
expressed in RA pathogenesis and in the relevant cell-type were added. When
disease- or cell-specific information was unavailable, general pathway
interactions were added to complete specific pathways. MIRIAM (11), a standard
for annotating and curating computational models and maps, was used to add
annotations and provide references for all the components and interactions.
References were added using the tag "bgbiol: isDescribedBy", available in the
MIRIAM section of CellDesigner. This tag is used to link a species or a parameter
to the literature that describes the concentration of the species or the value of
the parameter. We used it to connect a component or an interaction to the
literature or data that describe it (e.g.,, PubMed references (PMIDs), DOI, GEO,
KEGG identifiers) (Figure 19).
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Figure 19. Annotations added to the MIRIAM section of CellDesigner.

4.2.3 Integration of pre-existing maps

We integrated publicly available pre-existing maps where available for the cell-
types of interest. We used cell and disease-specific markers or gene expression
datasets to retrieve signaling pathways involved in RA pathogenesis and filter out
irrelevant components.

Some of these maps were not built in an SBGN PD compliant format and had to
be converted. To do this, relevant mechanistic details that we retrieved from pub-
lished literature and signaling pathway databases were used to complete the
missing parts in the pathways of interest before adding them to the maps.

4.2.3.1 RA macrophage map

The RA macrophage map was constructed by integrating three pre-existing maps.
The first map was the RA-specific macrophage map from IPA including 44
molecules and 47 interactions associated with PMIDs. The second and third
macrophage-specific maps (but not RA specific) were retrieved from the
published literature (278,279). As the second and third macrophage maps were
not RA-specific, we used the RA-specific marker gene lists from IPA as an overlay
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in MINERVA (Molecular Interaction NEtwoRks VisuAlization) (273) to identify
disease-specific molecules and submodules (Figure 20). We were able to extract
these submodules of interest from the macrophages’ maps using the Stream
export plugin (280). We identified the signaling pathways present in the retrieved
submodules and completed them by incorporating molecules from the literature
and pathway databases such as KEGG.

i

Figure 20. A) Macrophage maps from (Kanae Oda et al, 2004) (278) in MINERVA.
B) Macrophage map from (Pia Wentker et al., 2017) (279) in MINERVA. Green color
(ndicates the overlay with RA specific molecules retrieved from IPA.

4.2.3.2 RA fibroblast map

We constructed the RA fibroblast-specific map by filtering non-fibroblast-specific
components from the initial RA-map (281) (Figure 21) using the most recent RA
fibroblast overlay available in MINERVA (see Cell-specific overlays section). Non-
fibroblast-specific components were only conserved if they were essential for
signal transduction.
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Figure 21. Initial RA map from Singh et al,2020 (282). Purple color indicates the
overlay with the latest RA fibroblast overlay available in MINERVA.

4.2.3.3 RA CD4+ Th1

We used the multicellular map of inflammation (283) that provides a non-RA
specific Th1 submap. As we can see in Figure 22, the map is smaller in size
compared to the previous ones. This is due to the lack of information about gene
expression and signaling pathways that are specific to the Th1 subtype. Indeed,
the majority of public data merely investigate biological mechanisms involved in
the functions of the overall T lymphocytes population.

We were able to identify transcription factors and cell-specific receptors involved
in RA pathogenesis from this map through extensive literature mining. Only com-
ponents identified to be expressed in RA Th1 subtype in published literature were
added to the map.
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Figure 22. Th1 map within the atlas of inflammation resolution (283) in
CellDesigner.

4.2.4 Cell-specific maps enrichment using gene expression datasets

To expand the cell-specific maps, we utilized disease and cell-specific gene
expression datasets that are publicly available combined with pathways analysis
tools, namely IPA and MetaCore version 22.1 build 70800 (269). Both provide
massive map databases that we utilized to identify new pathways. We used the
"Pathway maps" option in MetaCore in the "One-click analysis" page (Figure 23A)
to map cell and disease specific lists of differentially expressed genes (DEGSs) to
the internal Metacore map database. Next to each retrieved map, the number of
overlapping DEGs is indicated. IPA's "canonical pathways" tool was used to
perform the same analysis (Figure 23B). The highlighted DEGs and pathways were
identified, added to the relevant cell-specific map, and annotated with PMIDs or
GEO accession numbers (284).

Some maps in IPA and MetaCore are not SBGN compliant. Before integrating the
highlighted pathways identified in these maps, we converted them into an SBGN
PD format by adding mechanistic details that we retrieved from published litera-
ture and signaling pathway databases.
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Figure 23. A) Screenshot showing "Pathway maps" option in MetaCore in the "One-
click analysis" page. B) Screenshot showing IPA's "canonical pathways" tool.

4.2.4.1 RA macrophage map

DEA was performed between RA and healthy synovial macrophages samples in
the GSE97779 microarray dataset (see Chapter 3. Description of data and data
analysis). The resulting list of DEG was mapped to existing pathways and
biological functions that are part of IPA and MetaCore knowledgebases.
Highlighted signaling pathways were retrieved from the overlapping maps,
manually curated, and annotated with PMIDs or GEO accession, and added to the
RA macrophage map.

To obtain separate maps for the M1 and M2 phenotypes, first we identified M1
and M2 gene signatures. DEA was performed between M1 macrophage and M2
macrophage cells present in the GSE164498 dataset (see Chapter 3. Description
of data and data analysis). We combined the resulting list of DEGs with M1 and
M2 macrophage Msig gene signatures. We also went through an extensive liter-
ature-search to retrieve information regarding the expression of the biomolecules
and pathways present in the RA macrophage map in each phenotype. Biomole-
cules found in the literature to be upregulated in the M1 or M2 phenotype were
added to the signatures. The percentage of shared components between each
pathway in the map and the M1 and M2 signatures was calculated and based on
these percentages, pathways were assigned to the M1 or M2 phenotype. How-
ever, it was impossible to assign a phenotype for some pathways due to lack of
information or expression. These pathways were kept in both M1 and M2 maps.
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4.2.4.2 RA fibroblast map

DEA was performed to identify differentially expressed gene between RA and
osteoarthritis fibroblast cells in the GSE109449 single-cell RNA-seq dataset (see
Chapter 3. Description of data and data analysis). The resulting DEG list was
mapped to IPA and MetaCore knowledgebases. Highlighted signaling pathways
were retrieved from the overlapping maps, manually curated, annotated with
PMIDs or GEO accession, and added to the RA fibroblast map.

4.2.4.3 RA CD4+ Th1 map

To enrich the map with additional pathways, first we used the SDY998 single-cell
RNA-seq dataset to identify the Th1 cluster. Then, we performed DEA between
the identified Th1 cluster and naive CD4+ T cells in RA samples (see Chapter 3.
Description of data and data analysis). Using the IPA and MetaCore databases
and the resulting DEGs list, new signaling pathways were identified and added to
the map. We also used Gene Set Enrichment Analysis (GSEA) software (259), IPA
gene sets, and the SDY998 gene expression dataset to further enrich the Th1 map.
We filtered the retrieved gene sets to only keep the statistically significant ones.
We also made sure that the results were Th1-specific by running GSEA on three
additional datasets: GSE32901, GSE107011, and GSE135390. Strict filtering criteria
were set up to keep gene sets that are at least identified in different datasets and
to discard the redundant ones. Details regarding GSEA analysis and datasets used
are described in Chapter 3. Description of data and data analysis. Filtered IPA
gene sets went through manual curation and were added to the Th1 map.

4.2.5 Cell-specific overlays

To calculate the cell specificity of the RA-Atlas maps or to visualize the cell specific
pathways and components, we provide three different cell-specific overlays,
namely fibroblasts, macrophages and Th1. They contain lists of biomolecules that
have been identified as being expressed in the relevant cell type. The fibroblast
overlay is an updated version of the overlay provided in the initial RA map article
(282). We added to it new components coming from literature mining and the list
of DEGs obtained from DEA (see Cell-specific maps enrichment using gene
expression datasets). The overlay file consists of 2,409 fibroblast-specific
components. The macrophage overlay includes the RA macrophage-specific
components identified in the literature, the DEG list obtained from DEA (see Cell-
specific maps enrichment using gene expression datasets) and the 44 molecules
present in the IPA RA-specific macrophage map (see Integration of pre-existing
maps). It consists of 648 RA macrophage-specific molecules. The Th1 overlay
consists of 523 molecules, including the list of DEGs used to enrich the map, the
core enrichment genes from GSEA (see Cell-specific maps enrichment using gene
expression datasets) and Th1-specific components identified in the literature.
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4.3 Results

We present an attempt to create the first cellular atlas of the rheumatic joint to
recapitulate existing knowledge related to the intracellular pathogenic
mechanisms in four different cell types: the fibroblast, the M1 macrophage, the
M2 macrophage and the Th1 (285). Figure 24 illustrates the main page of the RA-
Atlas in MINERVA platform.
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Figure 24. RA Atlas in MINERVA. Blue frames indicate clickable links leading to the
different cell-specific maps included in the RA-Atlas.

Full-page landscape images of the RA fibroblast map, the RA M1 macrophage
map, the RA M2 macrophage map and the RA CD4+ Th1 maps are provided in
Supplementary figure 1, Supplementary figure 2, Supplementary figure 3 and
Supplementary figure 4 respectively. However, due to their high complexity, these
images are not readable in a A4 size page and are displayed for illustrative pur-
poses only. For an optimal visual exploration of the maps, see Visualization and
accessibility section.

All the cell-specific maps are compartmentalized in a way to represent the flow
of information from the extracellular space (ligands) to the plasma membrane
(ligands-receptors complexes) through the cytoplasm (signaling cascades), the
nucleus (gene regulation) and the secreted compartments (phenotype activation)
(Figure 25).

54



Extracellular space
Cytoplasmic membrane

Cytoplasm

Cytoplasmic membrane

Secreted components

Phenotypes

8 ! .

o-BE-0--0-0-g-0-E5-6E0- 8808 0-Egp-0 B8 8 0 -8 . 0- BRE-08 HEEEE0EIE0-B

a8 o - L.
- L Sl LJ

DDDF'II‘ i E
il g8 8glg
g-0p
BB P B

Figure 25. Cellular compartments of the RA M1 macrophage map

4.3.1 RA fibroblast map

After manual curation and gene expression data analysis, 596 species were
identified as fibroblast-specific in the initial RA-map (282). We kept these 596
species in the map and filtered out the remaining non-fibroblast-specific
components. We also added 257 new species to the RA fibroblast map using IPA
and MetaCore. Table 3 displays the top five discovered signaling pathways.
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Table 3. IPA and MetaCore maps using the RA fibroblast DEGs list.

IPA maps Overlap  MetaCore pathways maps Overlap

Antigen presentation 48,70%  Immune response 45,20%
_Induction of the antigen
presentation machinery by

IFN-gamma
Inhibition of matrix 39% Cell adhesion_ECM 41,80%
metalloproteases remodeling

Hepatic fibrosis/Hepatic ~ 22,70%  IL-1 beta- and Endothelin-  47,50%
stellate cell activation 1-induced fibroblast/

myofibroblast migration

and extracellular matrix

production in asthmatic

airways

GP6 signaling pathway 20,50%  TGF-beta-induced 36,60%
fibroblast/ myofibroblast
migration and extracellular
matrix production in
asthmatic airways

Axonal guidance 15% Glucocorticoid-induced 32,20%
signaling elevation of intraocular

pressure as glaucoma risk

factor

The map is SBGN PD compliant. It contains 853 species, including 411 proteins,
115 genes, 115 RNAs, 96 molecular complexes, 2 simple molecules and 9 pheno-
types (8 of them coming from the initial RA-map, the 9" being T cells activation).
The components interact via 509 reactions.

77% of the map’s components are RA fibroblast-specific (Figure 26). Some of the
molecules that are not fibroblast-specific were added to the map to keep the
signal transduction going from the extracellular part to the nucleus. Indeed, in
some RA fibroblast-specific pathways, these molecules are needed to activate or
inhibit intermediate proteins. Other molecules that are not RA fibroblast-specific
are found in the extracellular space. These molecules are secreted by the other
cell types present in the synovial fluid and can activate specific intracellular path-
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ways in the fibroblasts via ligand/receptors interactions. Therefore, these se-
creted molecules do not have to be RA fibroblast specific to be kept in the map.
Other small molecules and adaptor proteins for which supporting literature was
not available were kept on the map.

4.3.2 RA macrophage maps

We constructed a global macrophage map by integrating the IPA cell- and
disease-specific map. As the map was built in SBGN AF language, we converted
it into an SBGN PD compliant map in CellDesigner by adding the missing
mechanistic details. New pathways were added from the RA-specific submodules
exported from the previously published macrophages maps (278,279), like TLRs
pathway, NF-kB pathway, PI3K-AKT pathway, MAPK signaling pathway, and IL-18.
Other pathways were identified from the literature, such as the IFN pathway,
Notch pathway, IL10 and IL23 pathways. KEGG and MSig database, and literature
screening allowed us to add 8 phenotypes to the map. The phenotypes include
inflammation, apoptosis, angiogenesis, extracellular matrix degradation, cell
chemotaxis/migration, T cells activation, proliferation/survival  and
osteoclastogenesis. In total, 492 species were added to the RA macrophage map.

The map was also enriched using the GSE97779 gene expression dataset via the
identification of 385 new species involved in RA macrophage-specific pathways
using IPA and MetaCore. The top 5 identified signaling pathways are shown in
Table 4.
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Table 4. Top 5 IPA and MetaCore maps using RA macrophage DEGs list.

IPA maps Overlap  MetaCore maps Overlap
DNA methylation and 32,30% Development_Role of 22,20%
transcriptional proteases in hematopoietic

repression signaling stem cell mobilization

Transcriptional 19,60%  Colorectal cancer (general 20%
regulatory network in schema)

embryonic stem cells

NER (nucleotide 10,10%  Cigarette smoke 13,80%
excision repair, components TCDD and
enhanced pathway) Benzol[a]pyrene and receptor

AHR signaling in lung
epithelial cells

Xenobiotic metabolism  6,60% Cigarette smoke-mediated 13,70%
AHR signaling regulation of NRF2-
pathway antioxidant pathway in

airway epithelial cells

LPS/ILT mediated 4,10% Inhibition of Ephrin receptors 13,30%
inhibition of RXR in colorectal cancer
function

4.3.3 RA M1 macrophage map

The RA macrophage M1-specific map includes all the signaling pathways from
the global RA macrophage map leading to the macrophage polarization into the
pro-inflammatory M1 phenotype. The RA macrophage M1-specific map includes
640 species: 278 proteins, 76 genes, 76 RNAs, 114 molecular complexes, 8 simple
molecules and the same phenotypes as the global RA macrophage map. These
components interact together via 448 reactions. 61% of the components of this
map are RA macrophage-specific (Figure 26). All the receptors and secreted
components are RA macrophage specific. Although less literature is available for
the construction of the RA macrophage map compared to the RA fibroblast map,
gene expression datasets integration enabled us to keep a high RA macrophage
specificity in the map.

4.3.4 RA M2 macrophage map
The M2 macrophage map includes all the signaling pathways from the global RA
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macrophage map leading to the macrophage polarization into the anti-
inflammatory M2 phenotype. The enriched map includes 520 species: 243
proteins, 59 genes, 59 RNAs, 90 molecular complexes, three simple molecules and
7 of the 8 phenotypes from the RA macrophage map. Indeed, osteoclastogenesis
is not associated with any of the molecules in the RA M2 macrophage map. The
M2 macrophage map’s components interact together via 342 reactions. 55% of
the components of this map are RA macrophage-specific (Figure 26). All the
receptors and secreted components are RA macrophage specific. Because RA
disease is mainly associated with the M1 phenotype, we can see that fewer
pathways are specific to the M2 phenotype.

4.3.5 RATh1 Map

We created the RA Th1 cell map by mining the literature for the major cell-specific
signaling pathways implicated in the pathogenesis of RA. However, there was less
information about the Th1 subtype in the literature than regarding fibroblasts and
macrophages. As a result, the map merely included 130 species at that point.
Therefore, it was critical to expand it using new ways. IPA, MetaCore, and GSEA
enriched gene sets were used to identify new signaling pathways. The top 5
identified signaling pathways using IPA and MetaCore are shown in Table 5. The
list of enriched gene sets in RA Th1 after filtering are displayed in Table 6.
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Table 5. Top 5 IPA and MetaCore maps using RA Th1 DEGs list.

IPA map Overlay MetaCore map Overlay
Antigen presentation 30,80% Generation of cytotoxic 24%
pathway CD8+ T cells in COPD
B cell developement 22,70% Maturation and migration of 19,50%
dendritic cells in  skin
sensitization
TH1 pathway 10,70% Immune response_Induction 18,80%
of the antigen presentation
machinery by IFN-gamma
TH2 pathway 10,20% COVID-19: immune 17%
dysregulation
TH1 and TH2 pathway 9,30% Chemokines in inflammation  14,50%
in adipose tissue and liver in
obesity, type 2 diabetes and
metabolic syndrome X
Table 6. List of enriched gene sets in RA Th1 after filtering.
Gene sets FDR
|ICOS-ICOSL SIGNALING IN T HELPER CELLS 0,003
CDC42 SIGNALING 0,003

COMMUNICATION BETWEEN INNATE AND ADAPTIVE IMMUNE 0,004

CELLS

TH1 ACTIVATION PATHWAY 0,004
PKC SIGNALING IN T LYMPHOCYTES 0,005
ANTIGEN PRESENTATION PATHWAY 0,005
PROTEIN UBIQUITINATION PATHWAY 0,007
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ALTERED T CELL AND B CELL SIGNALING IN RHEUMATOID ARTHRI- 0,007
TIS

CROSSTALK BETWEEN DENDRITIC CELLS AND NATURAL KILLER 0,009
CELLS

INTERFERON SIGNALING 0,01

OXIDATIVE PHOSPHORYLATION 0,01

REGULATION OF CELLULAR MECHANICS BY CALPAIN PROTEASE 0,013

REMODELING OF EPITHELIAL ADHERENS JUNCTIONS 0,014
GRANULOCYTE ADHESION AND DIAPEDESIS 0,016
POLYAMINE REGULATION IN COLON CANCER 0,023

ROLE OF IL-17F IN ALLERGIC INFLAMMATORY AIRWAY DISEASES 0,027

HYPOXIA SIGNALING IN THE CARDIOVASCULAR SYSTEM 0,031

PTEN SIGNALING 0,032

ACTIVATION OF IRF BY CYTOSOLIC PATTERN RECOGNITION RECEP- 0,034
TORS

IL-8 SIGNALING 0,038

TCA CYCLE Il (EUKARYOTIC) 0,038

ROLE OF CYTOKINES IN MEDIATING COMMUNICATION BETWEEN 0,039
IMMUNE CELLS

PD-1, PD-L1 CANCER IMMUNOTHERAPY PATHWAY 0,049

The resulting map consists of 321 species, including 167 proteins, 29 genes, 29
RNAs, 64 molecular complexes, and 7 phenotypes. The phenotypes are inflam-
mation, apoptosis, osteoclastogenesis, cell chemotaxis, angiogenesis, matrix deg-
radation and proliferation. RA Th1 map’s components are connected through 179
reactions. 58% of the components of this map are RA Th1-specific, including all
the transcription factors, most of the receptors, and secreted components (Figure
26).
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Figure 26. Percentage of cell-specific components per cell-specific maps. Figure
taken from Zerrouk et al., 2022 (285).

4.3.6 Visualization and accessibility

All cell-specific maps are available as online interactive maps on the standalone
web server MINERVA at https://ramap.uni.lu/minerva/. The MINERVA platform
enables the visual exploration, analysis and management of molecular networks
encoded in systems biology formats, including CellDesigner, SBML and SBGN. All
PMIDs of scientific articles used for the map construction are available in the
annotation section of the maps. We also provide cell-specific overlays (see Cell-
specific overlays) extracted from the literature and publicly available datasets to
visualize cellular signatures on the different RA-Atlas maps. All data and code
used to generate results, including XML files of the maps, cell-specificity, overlays,
and gene expression analysis are available on a GitLab repository at
https://gitlab.com/genhotel/a-mechanistic-multicellular-atlas-of-the-rheumatic-

joint.

4.3.7 Applications

MINERVA provides multiple possibilities for users to explore the various RA-Atlas
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maps. Users can search the maps for components of interest and their references
(Figure 27A) or visualize experimental data and cell-specific biomolecules using
the relevant overlays (Figure 27B). Users can search for drug targets online using
DrugBank (286) and CHEMBL (287). Users can also use plugins available in
MINERVA, such as the Stream export, to export parts of the network upstream
and downstream of a node, or GSEA plugin to calculate enrichment for uploaded
user-provided data overlays.
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Figure 27. Visualization of RA macrophage M2 map in MINERVA. (A) Snapshot of
the search for VEGFA. (B) Snapshot of the visualization of the macrophage overlay.
Figure taken from Zerrouk et al., 2022 (285).
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4.4 Discussion

We present here the first attempt to create a cellular atlas for RA disease (285),
an interactive, manually curated and enriched with extensive omics data analysis
representation of molecular mechanisms involved in RA’'s pathogenesis. It
includes cell-specific molecular interaction maps for resident fibroblasts, M1 and
M2 resident macrophages and CD4+ Th1 cells. Maps are primarily based on high-
quality manual curation of scientific literature and enrichment and cross-
validation using expression datasets. All the components and reactions in the RA
atlas are annotated using RA and human-specific studies and datasets.

These maps can be used as an interactive knowledge base, accessible online via
the platform MINERVA', and serve as a template for overlaying multiple datasets.
Visualization of experimental data through the maps could help highlight aspects
of the affected biological processes and make differences between experimental
conditions more evident.

We made a significant effort to implement the FAIR (Findable, Accessible, Interop-
erable and Reusable) principles in this work (288). Indeed, the atlas content is
compliant with SBGN PD for the representation, SBML for the construction, MIR-
|AM for the annotation, PMIDs and stable identifiers for the references, and HGNC
symbols for the annotation of the signaling and gene regulation components.
Moreover, we give a thorough description of the methodology used to build the
RA-Atlas in our open access publication (285), allowing for transparent and facil-
itated reuse of the resource.

The RA Atlas is a part of the Disease Map community project (9,171), making its
dissemination easier and further contributing to the community effort at fostering
collaborations for the creation of disease-specific maps such as The Parkinson’s
map (166), the AsthmaMap (170), the Atlas of Cancer Signaling Network (169),
The Atlas of Inflammation Resolution (283), and more recently, the COVID19 Dis-
ease Map (171).

The next steps of this work will be to expand the RA-Atlas with molecular inter-
action maps of B cells, chondrocytes, osteoblasts, and osteoclasts and enrich ex-
isting cell-specific maps with relevant metabolic pathways.
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Chapter 5. Construction of the RA multicellular map

5.1 Introduction

In the previous chapter, we presented the first RA cellular atlas of the rheumatic
joint that recapitulates existing knowledge related to the intracellular interactions
involved in the disease’s pathogenesis in a cell-type specific manner. However, in
the RA-Atlas, cells are isolated from one another and do not communicate with
each other. This representation does not consider the intricate cellular interplay
that occurs in the RA synovium. Therefore, to better understand RA, we need a
multicellular representation of the synovium, that describes both the intracellular
cascades and the cellular crosstalks involved in the disease pathogenesis (4).

Cellular communication can be achieved in two general ways: first through se-
creted mediators, notably inflammatory cytokines such as TNF, IL-6, IL-17, and
many others; and second through direct cell-cell contact that is mediated by cell
surface receptors and ligands, including some membrane-anchored proteins (92).
These mediators alter the activation or differentiation state of one or both cell
types. They regulate inflammation, autoimmunity, and articular destruction in the
joints by initiating cascades of signaling pathways further resulting in the expres-
sion of pro inflammatory molecules. Such cascades trigger disease phenotypes
like angiogenesis, cartilage matrix degradation, inflammation, and synovial hy-
perplasia (115). Mapping these ligand-receptor interactions is therefore funda-
mental to understanding cellular behavior and response to neighboring cells.

In this direction, we developed the first RA multicellular molecular interaction
map, a state-of-the-art description of the rheumatic joint that recapitulates
knowledge related to both intra- and intercellular interactions involved in the dis-
ease’s pathogenesis. We connected the RA cell-specific maps (see Chapter 4. Con-
struction of RA cell-specific molecular interaction maps) via the addition of bidi-
rectional intercellular interactions that were identified using both literature and
database mining, and omics data integration in a disease- and cell-specific man-
ner.

5.2 Materials and methods

Figure 28 illustrates the three steps process we followed to identify disease-spe-
cific cell-cell interactions between the cell-types represented in the RA cellular
atlas.
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Figure 28. Workflow for the construction of the RA multicellular map. We used
literature and databases mining via several tools like Causaly (289) and
CellphoneDB (179) as well as keywords search in PubMed, to retrieve the
intercellular interactions already identified in the published literature. We also
integrated omics datasets via ICELLNET (178) and DiSiR (180) to identify statistically
significant interactions observed in these datasets. We filtered the retrieved
(nteractions to cross validate the results and only keep the most reliable ones. We
used those filtered interactions to connect the RA cell-specific maps and generate
the first RA multicellular map.
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5.2.1 Identification of cell-cell interactions using literature and databases
mining

We used the tool Causaly (289) to uncover intercellular relationships between RA
M1 and RA M2 macrophages, RA fibroblasts, and RA Th1 subtypes in published
literature. Causaly is a biomedical discovery research tool that answers research
questions that can be hard to answer with traditional keyword search. The system
augments the human process of finding evidence which typically is very time-
consuming due to the vast amount of biomedical literature available.

Underlying Causaly is an advanced Artificial Intelligence that is machine-reading
literature across millions of academic publications and distills the evidence out of
it into a knowledge graph. Unlike other tools which just count statistically how
often different words appear in the same sentence, Causaly understands the di-
rectionality of evidence e.g., the difference between a treatment and a side effect,
via its knowledge graph that consists of 220 million directional relationships.
These relationships can be extracted from unstructured- and structured data
sources as well as public, licensed and Proprietary data (PubMed, Patents, clinical
trials protocols, chemical, target, and safety databases...). Causaly uses the Unified
Medical Language System ontology (UMLS) to structure all data including MeSH,
SNOMED, GO and many others. It also organizes knowledge by linguistic strength
from co-occurrence evidence to causal evidence.

Figure 29 shows a screenshot of the advanced search module in Causaly that we
used to identify intercellular interactions between our cell-types of interest,
namely macrophages, fibroblasts and Th1, in the context of rheumatoid arthritis
disease. All the retrieved information from Causaly was carefully and manually
verified to validate the quality of evidence.

68



Fibroblast Allinteractions Gt Macrophage

Toll-like receptors +31 Narrower Concepts +44 Related Concepts  (+ show all Inflammation +721 Narrower Concepts [ + 101 Related Concepts  (+ show al

Refine your search (7

Rheumatoid arthritis

Figure 29. Screenshot of the advanced search option in Causaly. We selected
fibroblast and macrophage as cell-types and rheumatoid arthritis as the condition
of interest in the concept boxes. We didn't specify any directionality.

We used PubMed as well to retrieve cell-cell communication between the cell-
types of interest. Relevant keywords and key sentences like ‘M1 macrophage fi-
broblast interactions in rheumatoid arthritis’, ‘'macrophage Th1 activation in RA’,
‘M2 macrophage Th1 inhibition RA" among many others were used to filter the
literature abstracts and studies in PubMed. Along with it, peer review articles con-
cerning RA and their bibliography were searched, and information was mined.

To identify additional ways of cellular communication, we used CellPhoneDB da-
tabase (Figure 30). It is a publicly available repository of manually curated recep-
tors, ligands, and their interactions (179). Subunit architecture (i.e., the subunits
that form the quaternary structure of a protein) is included for both ligands and
receptors, representing heteromeric complexes accurately. It integrates new man-
ually reviewed interactions with evidenced roles in cell-cell communication to-
gether with existing datasets that pertain to cellular communication. CellPhoneDB
stores a total of 978 proteins involved in 1,396 interactions. 501 of them are se-
creted proteins and 585 of them are membrane proteins. Out of all proteins
stored in CellPhoneDB, 466 are heteromers.

We used CellPhoneDB database to identify the intercellular interactions occurring
through ligands and receptors expressed by the four cell-types represented in the
RA-Atlas: the RA M1 macrophage, the RA M2 macrophage, the RA fibroblast and
the RA Th1. From their corresponding molecular interaction maps, we extracted
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the proteins they release from the secreted components maps’ compartments,
and the receptors and transmembrane proteins they express from the cytoplas-
mic membrane maps’ compartments. In text files, we combined these receptors
and ligands in a way that covers the following bidirectional cell-cell interaction
pairs: M1 macrophage-fibroblast, M1 macrophage-Th1, M2 macrophage-fibro-
blast, M2 macrophage-Th1, and fibroblast-Th1. Regarding the M1 macrophage-
fibroblast pair, for instance, we generated a first text file containing all the ligands
expressed in the M1 macrophage map and all the receptors expressed in the fi-
broblast map. A second file was also generated and consists of all the ligands
represented in the fibroblast map and all the receptors expressed in the M1 mac-
rophage map. This way, both outward and inward communications are consid-
ered. Using CellPhoneDB database, we retrieved all the manually curated interac-
tions that involve both the ligands and receptors present in each generated text
file.

CellPhoneDB
—Wf&%\p 1. Secreted and membrane
proteins
_ * UniProt

o . *Protein families
, °_o* Literature mining
n=2978 Subunit 1

r ( z L Subunit 1
; Receptor
( Subunllé
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*PDB

@

3. Protein—protein interactions

* IMEx & InnateDB
+ [lUPHAR
* Literature mining n = 878

Subumt 2

n= 1,396
n = 466 involving
protein complexes

Figure 30. Overview of CellPhoneDB dataset. Figure taken from Efremova et al,
2020 (179).

5.2.2 Identification of cell-cell interactions using omics data

Another approach to identify cell-cell interactions is to use transcriptomic data.
This approach consists of a resource of intercellular interactions prior knowledge
and a method to predict potential cell-cell communication events. Events are
represented as a one-to-one interaction between a transmitter and receiver
protein expressed by the source and target cell type. Events are predicted by
estimating the likelihood of crosstalk based on the expression level of the
transmitter and the receiver in the source and target cell type, respectively (181).
In this section, we present ICELLNET and DiSiR tool, both were applied on several
omics datasets to identify intercellular interactions between the cell-types of
interest.
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5.2.2.1 ICELLNET framework

First, we used ICELLNET (178), a versatile computational framework to infer cell-
to-cell communication from a wide range of microarray, bulk, and single-cell
transcriptomic datasets. It integrates an extensive database of 380 ligand-
receptor interactions collected from the literature and public databases. Expert
manual curation was carried out based on an in-depth investigation of original
publications in the literature. Unlike other databases, it doesn't include inferred
interactions predicted by protein-protein interactions and it combines biological
relevance and experimental validation. ICELLNET is the only database that
categorizes expected interactions into biological families: Growth factors,
Cytokines, Chemokines, immunological Checkpoints, Notch signaling, and
Antigen binding. ICELLNET, like CellPhoneDB, considers the various subunits of
ligands and receptors by adding logical principles for protein subunit co-
expression. A rigorous examination of cytokine connections identified 14
interactions that were present in ICELLNET but not in CellPhoneDB. Furthermore,
Although ICELLNET contains a small number of interactions in comparison to
other existing databases, it is very specific and exhaustive for cytokine interactions
that play a critical role in RA development.

ICELLNET makes use of its database to infer cell-cell communication via a com-
putational pipeline in R (Figure 31). ICELLNET takes as input the transcriptome
profile of the cells of interest. These profiles may be from the same dataset, or
from different transcriptomic datasets. All genes or only differentially expressed
genes from each transcriptome profile may be used, and no filtering threshold is
applied to gene expression. Using the ICELLNET database, the genes coding for
ligands/receptors are chosen from all 380 interactions. Since cell-to-cell commu-
nication is directional, ligand expression from the central cell, and receptor ex-
pression from the partner cell are considered in order to assess outward commu-
nication. Conversely, selected receptor expression from the central cell, and lig-
and expression from partner cell are considered in order to assess inward com-
munication. To avoid a communication score dominated by highly expressed
genes, expression levels for each gene are scaled by the maximum gene expres-
sion in the dataset. The score of an individual ligand-receptor interaction is com-
puted as the product of their expression levels by the respective source (central)
and target (partner) cell. Whenever a communication molecule (ligand or receptor
or both) was not expressed by a cell, the score of this particular interaction was
set to zero.
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Figure 31. ICELLNET pipeline to study intercellular communication from cell
transcriptional profiles. Figure taken from Noél et al., 2021 (178)

5.2.2.2 Dimer Signal Receptor Analysis (DiSiR) framework

DiSiR (180) is a permutation-based software framework for investigating how
individual cells interact with one another by analyzing multi-subunit ligand—-multi-
subunit receptor interactions from scRNA-seq data, not only for interactions listed
in curated databases of ligand-receptor interactions, but also for interactions not
listed in these databases.

As described in Figure 32, DiSiR uses a single-cell gene expression matrix, cell
type annotations, and a user—defined putative list of ligand-receptor interactions
at subunit level as inputs. For each ligand/receptor subunit, it calculates cell-type
A and B average expressions over all the cells within cell-type A and cell-type B
respectively. If a ligand or receptor subunit is not expressed in at least one of the
resulting average expressions, then it will be removed from the input interactions
for the cell type A—cell type B communication. Then, it generates k sets of shuffled
cell-type A and cell-type B average expressions’ by randomly permuting the cell-
type assignment of all cells and re-calculating the average expressions of the lig-
ands/receptors subunits over all the cells belonging to the new random cell-types.
The default value for K is 1000.

DiSiR identifies the ligand ‘L'-receptor 'R’ interaction between cell type A and B
based on the products of log-normalized expressions of ‘L' subunits by cell type
A and log-normalized expressions of ‘R' subunits by cell type ‘B'. This interaction
is considered as significant if these products are significantly higher than the re-
sult of random shuffling of cell type labels for all ‘L-R’ subunit combinations, ac-
cording to a two-sided non-parametric permutation test (results with a P-value <
0.05 are considered significant). DiSiR uses a filtering approach as well to discard
weak interactions that might be associated with noise by thresholding the fraction
of cells expressing each ligand/receptor subunit within its corresponding cell
type. A LR interaction between two cell types is then retained if this score is higher
than a certain threshold level Th for all ligand/receptor subunits.

To run DiSIiR, we used ICELLNET database as a putative list of ligand-receptor
interactions, some at the subunit level. We ran DiSiR with k=1000 (permutations)
and a Th threshold at zero, the default values.
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Figure 32. Schematic overview and illustration of DISiR framework taken from
Vahid et al, 2023 (180). (A) DiSiR uses as input 1) a single-cell gene expression
matrix, 2) cell type annotations, and 3) a list of putative ligands—receptor
interactions at subunit level. DiSiR then characterizes the ligand ‘L'-receptor ‘R’
interaction between cell types ‘A’ and ‘B’ based on the products of expressions of ‘L’
subunits by cell type ‘A’ and expressions of ‘R’ subunits by cell type ‘B’ This
interaction s identified by DiSIiR as a significant interaction if these products are
significantly higher than random shuffling results for all 'L-R’ subunit combinations.
(B) Diagram that shows the workflow of data processing, filtering, and visualization
of the obtained results in DiSiR. Weak interactions are filtered out if the fraction of
cells expressing the ligand (or receptor) within its corresponding cell type is less than
a threshold equation Th. DIiSiR also provides an interactive graph-based
representation module and heatmap/bubble plots to show the resulting interactions
for complex signaling pathways at different level.
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5.2.2.3 Selected omics datasets

To cover both outward and inward communication taking place between the four
cell-types of interest, we selected three single cell RNA-seq datasets. Detailed de-
scriptions of these datasets are available in Chapter 3. Description of data and
data analysis. In this section we illustrate how we utilize them to infer cell-cell
communication using both ICELLNET and DiSiR tools.

5.2.2.3.1 Bidirectional interactions between RA macrophage and RA
fibroblast

Table 7 summarizes the pairs of gene expression datasets that we used to infer
cell-cell communication between RA macrophages and RA fibroblasts cell-types.

Table 7. Pairs of datasets used to infer inward and outward cell-cell communication
between RA macrophages and RA fibroblast.

. RA RA fibroblast cells
Pair of datasets macrophage/monocyte
source
cells source

1 | SDY998 SDY998

2 | E_MTAB_8322 SDY998

3 | SDY998 GSE109449

4 | E_MTAB_8322 GSE109449

Synovial samples of such cell-types are not available within the same dataset. The
SDY998 dataset was the only one containing synovial fibroblasts (1844 cells) and
synovial monocytes (750) (pair 1 in Table 7). We used this dataset to identify in-
tercellular interactions, first with RA monocytes as sending cells and subsequently
with RA fibroblasts as sending cells. However, because this dataset only contains
monocytes and not macrophages, we cross-validated the results using additional
pairs of datasets to ensure reliable and macrophage-specific results.

We combined cells that come from different experimental designs (see pair 2, 3,
and 4 in Table 7). To reduce the resulting batch effect, we used ComBat (290), one
of the most popular batch effect adjustment methods when the effects come
from known sources. ComBat was originally developed for microarray gene ex-
pression data but had been successfully employed on single cell RNA-seq data
(291). ComBat models the batch effect and then subtracts out the modeled effect
in the gene expression matrix, creating a batch effect free dataset. To model the
batch effect, ComBat assumes that in the presence of batch effect, the mean and
variance of gene expression demonstrate systematic differences across batches
on a standardized scale and follow a linear model. Expression data is first stand-

75



ardized so that all genes have similar means and variances. Thereafter, the stand-
ardized data is fitted to standard distributions using a Bayesian approach to esti-
mate the batch effects present. The computed batch-effect estimators are then
used to correct the original expression matrix. There are two modes to run Com-
Bat, which are parametric and non-parametric adjustments to correct for batch
effects. Parametric mode includes scale adjustments whereas non-parametric
mode only corrects the mean of the batch effect.

To correct the batch effect in the pairs of independent datasets, we used the sva
package that supports direct adjustment for known batch effects with the ComBat
function (292). To do so, we pass the full gene expression matrix that comprises
RA monocyte/macrophage cells and RA fibroblast cells. Batch variables are
passed as a separate argument (batch) to the function. The output is a set of
corrected measurements, where batch effects have been removed. Plots shown
in Figure 33 represent visual outputs of the ComBat parametric mode applied on
pair n°4 in Table 7. If the distribution of the batch effect is normal, black and red
plots should overlap. In this case, we can see that the black and red plots do not
overlap. The same results were obtained with pairs 2 and 3 in Table 7. Therefore,
the non-parametric mode was applied on all pairs of independent datasets.

Batch corrected datasets were then utilized to run both ICELLNET and DiSiR tools,
first with RA monocytes/macrophages as sending cells, then with RA fibroblasts
as sending cells.
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Figure 33. Output plots of ComBat on E_MTAB_8322 and GSE109449 datasets
combined. The left plots are density estimates, and the right plots are QQ plots. Top
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plots represent the means and bottom plots represent the variances. The black plots
represent the mean and variance distributions of the combined datasets. The red
plots represent the theoretical normal distribution of the mean and variance. If the
distribution of the batch effect is normal, black and red plots should overlap. In this
case, red and black plots do not overlap, therefore, non-parametric mode of ComBat
should be used.

5.2.2.3.2 Bidirectional interactions between RA Th1 and RA fibroblast

Table 8 summarizes the pairs of gene expression datasets we used to infer cell-
cell communication between RA fibroblasts and RA CD4+ Th1 cell-types.

Table 8. Pairs of datasets used to infer inward and outward cell-cell communication
between RA fibroblasts and RA CD4+ Th1.

Pair of datasets RA fibroblast cells source  RA CD4+ Th1 cells source
1 ‘ SDY998 SDY998
2 | GSE109449 SDY998

RA synovial samples of such cell types, particularly T lymphocytes, are scarce. The
SDY998 dataset was the only publicly available one that contains synovial T cells
coming from RA patients. First, we applied clustering techniques to identify the
CD4+ Th1 subtype (see Chapter 3. Description of data and data analysis). Then,
cells within the Th1 cluster were paired with fibroblast cells (pair 1 in Table 8). As
both cell-types’ samples come from the same dataset, no batch effect adjustment
was required.

We also used GSE109449, an RNA-seq Single Cell dataset containing synovial fi-
broblasts from RA patients (see Chapter 3. Description of data and data analysis)
that we combined with the Th1 cluster from the SDY998 dataset (pair 2 in Table
8). To correct the batch effect, we used the sva package with the non-parametric
mode of ComBat function (292) as described previously.

Both ICELLNET and DiSiR were applied on pair 1 and pair 2 in Table 8, first with
RA CD4+ Th1 as sending cells, then with RA fibroblasts as sending cells.

5.2.2.3.3 Bidirectional interactions between RA CD4+ Th1 and RA
macrophage

Table 9 summarizes pairs of gene expression datasets that we used to identify
cell-cell communication between RA macrophage and RA CD4+ Th1 cell-types.
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Table 9. Pairs of datasets used to infer inward and outward cell-cell communication
between RA macrophages and RA CD4+ Th1.

Pair of datasets RA monocyte/macrophage RA CD4+ Th1 cells

cells source source
1 | SDY998 SDY998
2 | E_MTAB_8322 SDY998

Cells within the Th1 cluster from the SDY998 dataset were paired with the 750
monocytes from the same dataset (pair 1 in Table 9). Because this dataset only
contains monocytes and not macrophages, we cross-validated the results using
additional pairs of datasets to ensure reliable and macrophage-specific results.
We combined RA macrophage and RA Th1 samples coming from different
experimental designs (see pair 2 in Table 9). We adjusted the batch effect using
ComBat method through the sva package.

ICELLNET and DiSiR were then utilized to infer cell-cell interactions, considering
RA CD4+ Th1 as sending cells, then as receiving cells.

5.2.3 Cell-cell interactions filtering criteria

Two approaches were used to identify bidirectional cell-cell communication
between RA fibroblast, RA macrophage and RA Th1 cell types. The first one is
based on literature and databases mining using several tools like Causaly and
CellPhoneDB database. The second approach consists of integrating cell- and
disease-specific omics datasets through two different dedicated tools: ICELLNET
and DiSiR.

These different approaches, tools and datasets produced different outcomes. To
cross-validate the results, we put in place a list of filtering criteria regarding the
previously identified intercellular interactions. Indeed, among the interactions
identified between each directional cell-cell interaction pair:

= Only interactions with statistically significant p-values (FDR thresh-
old equal to 0.05) in DiSiR were kept.

= Only interactions identified with both ICELLNET and DiSiR were
kept.

= Only interactions identified with at least two different pairs of da-
tasets, or two different approaches (literature mining- and omics data-
based) were kept.

= Regarding interactions coming from published literature and data-
bases but not inferred from omics datasets, only interactions coming
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from at least two different sources of information (different published
articles or different databases) were kept.

5.2.4 Construction of the RA multicellular map in CellDesigner

The previously filtered cell-cell interactions were used to connect the RA cell-spe-
cific molecular interactions maps described in Chapter 4. Construction of RA cell-
specific molecular interaction maps. We used CellDesigner to link interacting lig-
ands and receptors as described in Figure 34. Ligands produced by the sending
cell (secreted components compartment in the cell-specific maps) are transported
via Transport arrows to the extracellular space of the receiving cell. The ligand will
then bind to its corresponding receptor and form a ligand/receptor complex that
can induce signal transduction in the cytoplasm of the receiving cell. When cell-
cell interactions occur through cell-cell contact, Heterodimer Complex Associa-
tion is used instead in CellDesigner to bind transmembrane proteins with their
corresponding receptors.
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Figure 34. Schematic representation of the intercellular interactions in CellDesigner.
The black arrow represents the transport of the secreted ligand (Ligand B) from the
sending cell (in yellow) to the extracellular space of the receiving cell (in blue) where
it binds to its corresponding receptor. The ligand/receptor complex will then
transduce the signal via a series of biochemical reactions in the cytoplasm.
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For some of the identified intercellular interactions, ligands, and receptors to-
gether with their upstream and downstream regulations were already repre-
sented in the RA cell-specific maps. In this case, only transport/complex associa-
tion arrows were added to connect both maps. For some other intercellular inter-
actions, ligands and/or receptors were missing from the maps. Therefore, we had
to search in the published literature and databases for the signaling pathways
upstream of these ligands and/or downstream of these receptors. The identified
signaling pathways went then through an extensive manual curation to ensure
that most of their components were expressed in a diseases and cell-specific
manner. For that, we used published articles as well as the previously generated
and relevant cell specific DEGs lists (see Chapter 3. Description of data and data
analysis). Once curated, the missing ligands and/or receptors together with their
corresponding signaling pathways were added to the relevant map(s) in CellDe-
signer and transport arrows were used to connect the interacting cell-types.

Identified cell-cell communication from published literature and databases that
involve macrophages is often not specific to the M1 or M2 phenotype as RA mac-
rophages are usually studied as a single cell-type. This is especially true for the
cell-cell interactions obtained from omics datasets. Indeed, no dataset encom-
passing synovial cells of RA M1 and RA M2 macrophages was found. Instead, RA
macrophage synovial samples were employed. Therefore, such cell-cell interac-
tions cannot be directly mapped on the RA M1 macrophage and RA M2 macro-
phage molecular interactions maps. To overcome this limitation, first we used the
previously identified M1 and M2 gene signatures coming from DEA outcomes
and Msig gene signatures (Chapter 5. Construction of the RA multicellular map.
We also went through an extensive literature search to retrieve information re-
garding the expression of the biomolecules missing from the maps in each phe-
notype. The percentage of shared components between each missing pathway in
the maps and the M1 and M2 signatures was calculated and, based on these per-
centages, cell-cell interactions were assigned to the M1 or M2 phenotype.

5.3 Results

In this section, we present the identified cell-cell interactions in literature and da-
tabases as well as the ones inferred from omics datasets. These interactions were
filtered using the previously described criteria.

5.3.1 Bidirectional interactions between RA macrophage and RA fibroblast

Table 10 summarizes the bidirectional intercellular interactions between RA mac-
rophage and RA fibroblast. Each interaction is associated with diverse resources
used to identify it: published literature in PubMed, the internal database of Cell-
PhoneDB and the various pairs of omics datasets used to infer it.
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Table 10. Cell-cell interactions between RA macrophage and RA fibroblast in the

synovium.
Ligand/ Sending cell | Receiving Source
receptor com- cell Literature | CellPhoneDB | Omics datasets pairs
plexes mining database
(PMID)
CXCL1/ Fibroblast M1 33087182 Absent (SDY998, SDY998)
CXCR1 macrophage (GSE109449, SDY998)
CCL2/ CCR2 Fibroblast M1 Present (SDY998, SDY998)
macrophage
CSF2/ Fibroblast M1 1700731 Present
CSF2RA+ macrophage | 27813830
CSF2RB 29997624
TNFSF11/ Fibroblast M1 Absent (GSE109449, SDY998)
TNFRSF11A macrophage (SDY998, SDY998)
(GSE109449,
E_MTAB_8322)
TNFA/ Fibroblast M1 29997624 Present
TNFRSF1A macrophage | 28807007
27813830
25057003
IL1B/IL1R Fibroblast M1 28807007 Present (GSE109449, SDY998)
macrophage | 26883280 (SDY998,
29997624 E_MTAB_8322)
UAG1/ Fibroblast M1 Present (SDY998, SDY998)
NOTCH1 macrophage (GSE109449,
E_MTAB_8322)
GAL/GALR2 Fibroblast M1 Absent (SDY998, SDY998)
macrophage (GSE109449, SDY998)
COL4A4/ Fibroblast M1 Present (GSE109449, SDY998)
ITGAT+ macrophage (SDY998, SDY998)
ITGB1
HLA-B/ Fibroblast M1 Absent (SDY998, SDY998)
LILRB1 macrophage (SDY998,
E_MTAB_8322)
(GSE109449,
E_MTAB_8322)
IFNE/ Fibroblast M1 Present (SDY998,
IFNART+ macrophage E_MTAB_8322)
IFNAR2
IL6/IL6R + Fibroblast M1 29997624 Present (SDY998,
IL6ST macrophage | 35663975 SDY998)
1L12/ Fibroblast M1 Present (GSE109449, SDY998)
IL12RB1+ macrophage
IL12RB2
HLA-B/ Fibroblast M2 Absent (SDY998, SDY998)
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LILRB1 macrophage (SDY998,
E_MTAB_8322)
(GSE109449,
E_MTAB_8322)
VEGFC/ Fibroblast M2 Present (GSE109449, SDY998)
VEGFR3 macrophage (SDY998, SDY998)
GAL/GALR2 Fibroblast M2 Absent (SDY998, SDY998)
macrophage (GSE109449, SDY998)
SEMA4D/ Fibroblast M2 Present (GSE109449,
PLXNB2+ macrophage E_MTAB_8322)
MET
EFNB1/ Fibroblast M2 Present (SDY998, SDY998)
EPHB1 macrophage
WNT5B/ Fibroblast M2 30022048 Present (GSE109449, SDY998)
FZD1+LRP5 macrophage
CSF1/CSF1R Fibroblast M2 27383913 Present (SDY998,
macrophage E_MTAB_8322)
1L34/ Fibroblast M2 Present (GSE109449,
CSFR1R macrophage E_MTAB_8322)
(GSE109449, SDY998)
TGFB/ Fibroblast M2 29997624 Present (GSE109449, SDY998)
TGFBR1+ macrophage | 31068444
TGFBR2
PRL/PRLR Fibroblast M2 Absent (SDY998, SDY998)
macrophage (GSE109449, SDY998)
COL4A4/ Fibroblast M2 Present (GSE109449, SDY998)
ITGB1+ macrophage (SDY998, SDY998)
ITGA1
SEMA3A/ Fibroblast M2 Present (GSE109449, SDY998)
PLXNA1 macrophage (SDY998, E_MTAB_8322)
GAS6/ Fibroblast M2 Absent (SDY998, SDY998)
MERTK macrophage (GSE109449, SDY998)
CD40L/ M1 Fibroblast Absent (SDY998, GSE109449)
CD40 macrophage (SDY998, SDY998)
UAG1/ M1 Fibroblast Present (SDY998, SDY998)
NOTCH3 macrophage
EDA/EDA2R M1 Fibroblast Absent (SDY998, GSE109449)
macrophage (E_MTAB_8322, SDY998)
ICAM1/ M1 Fibroblast Present (SDY998, SDY998)
ITGB2+ macrophage (E_MTAB_8322, SDY998)
ITGAL
IL18/IL18R M1 Fibroblast Present (E_MTAB_8322,
macrophage GSE109449)
(E_ZMTAB_8322, SDY998)
(SDY998, GSE109449)
IL1B/ M1 Fibroblast | 27383913 Present (E_ZMTAB_8322,
IL1R1 macrophage 31178859 GSE109449)
31068444
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TNFA/ M1 Fibroblast | 27383913 Present
[TNFRSF1B macrophage 31178859
CXCL10/ M1 Fibroblast Absent (SDY998, SDY998)
CXCR3 macrophage (E_MTAB_8322, SDY998)
(E_MTAB_8322,
GSE109449)
IFNG/ M1 Fibroblast Present (SDY998, SDY998)
IFNGR1+ macrophage (SDY998, GSE109449)
INFGR2 (E_MTAB_8322, SDY998)
FASL/FAS M1 Fibroblast Absent (SDY998, SDY998)
macrophage (SDY998, GSE109449)
CCL5/CCR5 M1 Fibroblast Present (SDY998, GSE109449)
macrophage
HBEGF/ M1 Fibroblast | 31068444 Present
EGFR macrophage
AREG/EGFR M1 Fibroblast Present (SDY998,
macrophage SDY998)
(E_ZMTAB_8322,
GSE109449)
SEMA4A/ M1 Fibroblast | 26303122 Present (E_ZMTAB_8322, SDY998)
PLXNB1+ macrophage
MET
FASL/FAS M2 Fibroblast Absent (SDY998, SDY998)
macrophage (SDY998, GSE109449)
CCL18/ M2 Fibroblast Absent (SDY998, GSE109449)
PITPNM3 macrophage (SDY998, SDY998)
(E_ZMTAB_8322,
GSE109449)
EDA/ M2 Fibroblast Absent (SDY998, GSE109449)
EDA2R macrophage (E_MTAB_8322, SDY998)
UAG1/ M2 Fibroblast Present (SDY998, SDY998)
NOTCH3 macrophage
IL10/ M2 macro- | Fibroblast Present (SDY998, GSE109449)
L10RA+ phage (SDY998, SDY998)
ILTORB
PDGFC/ M2 Fibroblast Present (SDY998,
PDGFRB macrophage SDY998)
(E_MTAB_8322,
GSE109449)
HBEGF/ M2 Fibroblast | 31068444 Present
EGFR macrophage
COL4A3/ M2 Fibroblast Present (SDY998, SDY998)
ITGA4 + macrophage (E_MTAB_8322, SDY998)
ITGB1 (SDY998, GSE109449)
SEMAT7A/ M2 Fibroblast Absent (SDY998, GSE109449)
ITGA4 + macrophage (SDY998, SDY998)
ITGB1
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VEGFA/ M2 Fibroblast Absent (SDY998, SDY998)

VEGFR macrophage (E_MTAB_8322, SDY998)

TGFB1/ M2 Fibroblast Present (SDY998, GSE109449)

TGFBRT macrophage (E_MTAB_8322,
GSE109449)

SEMA4A/ M2 Fibroblast | 26303122 Present (E_MTAB_8322, SDY998)

PLXNB1+ macrophage

MET

CD40L/ M2 Fibroblast Absent (SDY998, GSE109449)

CD40 macrophage (SDY998, SDY998)

5.3.2 Bidirectional interactions between RA macrophage and RA CD4+ Th1

Table 11 summarizes the bidirectional intercellular interactions between RA mac-
rophage and RA CD4+ Th1. Each interaction is associated with diverse resources
used to identify it: published literature in PubMed, the internal database of Cell-
PhoneDB and the various pairs of omics datasets used to infer the interaction.

Table 11. Cell-cell interactions taking place between RA macrophage and RA CD4+
ThT in the synovium.

Ligand/receptor |Sending cell | Receiving Source
complexes cell Literature | CellPhoneDB | Omics dataset(s)
mining database
IFNG/ IFNGR1+ Th1 M1 25329467 Present (SDY998,
IFNGR2 macrophage E_MTAB_8322)
CXCL13/ACKR4 Th1 M1 Absent (SDY998, SDY998)
macrophage (SDY998,
E_MTAB_8322)
FASL/FAS Th1 M1 Absent (SDY998, SDY998)
macrophage (SDY998,
E_MTAB_8322)
COL4A5/ Th1 M1 Present (SDY998, SDY998)
ITGA1+ITGB1 macrophage (SDY998,
E_MTAB_8322)
TNFSF11/ Th1 M1 16220542 Absent (SDY998, SDY998)
[TNFRSF11A macrophage
CD40L/ Th1 M1 Absent (SDY998, SDY998)
ITGB1+ITGAT1 macrophage (SDY998,
E_MTAB_8322)
SEMA4A/ Th1 M2 Present (SDY998,
PLXNB2+MET macrophage E_MTAB_8322)
CXCL13/ACKR4 Th1 M2 Absent (SDY998, SDY998)
macrophage (SDY998,
E_MTAB_8322)
FASL/FAS Th1 M2 Absent (SDY998, SDY998)
macrophage (SDY998,
E_MTAB_8322)
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CD40L/ITGB1+ Th1 M2 Absent (SDY998, SDY998)
ITGA1 macrophage (SDY998,
E_MTAB_8322)
COL4A5/ Th1 M2 Present (SDY998,
ITGB1+ITGA1 macrophage E_MTAB_8322)
TGFB1/TGFBR1+ Th1 M2 Present (SDY998, SDY998)
TGFBR2 macrophage
IL12/IL12Rb1+ M1 Th1 26635790 Present
IL12Rb2 macrophage
IFNG/IFNGR1+ M1 Th1 Present (SDY998, SDY998)
IFNGR2 macrophage (E_MTAB_8322,
SDY998)
CCL4/CCR5 M1 Th1 Present (E_ZMTAB_8322,
macrophage SDY998)
CXCL10/CXCR3 M1 Th1 Absent (SDY998, SDY998)
macrophage (E_MTAB_8322,
SDY998)
IL18/IL18R1+ M1 Th1 10562301 Present
IL18RAP macrophage
LGALS9/TIM3 M1 Th1 Absent (SDY998, SDY998)
macrophage (E_ZMTAB_8322,
SDY998)
ICOSLG/ICOS M1 Th1 Present (E_MTAB_8322,
macrophage SDY998)
HLA-DP-DQ-DR/ M1 macro- Th1 30915067 Absent (SDY998, SDY998)
TCR+CD3 phage
HLA-DP-DQ-DR M1 Th1 Absent (SDY998, SDY998)
LAG3 macrophage (E_MTAB_8322,
SDY998)
CXCL16/CXCR6 M1 Th1 26635790 Absent (E_MTAB_8322,
macrophage SDY998)
CD40L/ITGAM+ M1 Th1 Absent (SDY998, SDY998)
ITGB2 macrophage (E_MTAB_8322,
SDY998)
SEMA4A/PLXNB1 M1 Th1 Present (SDY998, SDY998)
macrophage
JAG1/NOTCH1 M1 Th1 Present (SDY998, SDY998)
macrophage
CD28/CD86 M1 Th1 29868020 Present
macrophage
LTA/TNFRSF14 M1 Th1 Absent (SDY998, SDY998)
macrophage (E_MTAB_8322,
SDY998)
CCL2/CCR2 M1 Th1 26635790 Present
macrophage
COL4A3/ M2 Th1 Present (SDY998, SDY998)
ITGA4+ITGB7 macrophage
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(E_ZMTAB_8322,
SDY998)
ICOSLG/ICOS M2 Th1 Present (E_ZMTAB_8322,
macrophage SDY998)
HLA-DP-DQ-DR M2 Th1 30915067 Absent (SDY998, SDY998)
YTCR+CD3 macrophage
HLA-DP-DQ-DR M2 Th1 Absent (SDY998, SDY998)
LAG3 macrophage (E_LMTAB_8322,
SDY998)
CXCL16/CXCR6 M2 Th1 26635790 Absent (E_ZMTAB_8322,
macrophage SDY998)
CD40L/ITGAM + M2 Th1 Absent (SDY998, SDY998)
ITGB2 macrophage (E_MTAB_8322,
SDY998)
SEMA4A/PLXNB1 M2 Th1 Present (SDY998, SDY998)
macrophage
JAGT/NOTCH1 M2 Th1 Present (SDY998, SDY998)
macrophage
CD28/CD86 M2 Th1 29868020 Present
macrophage
MIF/CD74 M2 Th1 Absent (SDY998, SDY998)
macrophage (E_MTAB_8322,
SDY998)

5.3.3 Bidirectional interactions between RA fibroblast and RA CD4+ Th1

Table 12 summarizes the bidirectional intercellular interactions between RA fibro-
blast and RA CD4+ Th1. Each interaction is associated with diverse sources of
information that enabled its identification: published literature in PubMed, the
internal database of CellPhoneDB and the various pairs of omics datasets used to
infer it.

Table 12. Cell-cell interactions taking place between RA CD4+ Th1 and RA
fibroblast in the synovium.

Ligand/receptor | Sending | Receiving Source
complexes cell cell Literature | CellPhoneDB Omics dataset(s)
mining database
CCL5/CCR5 Th1 Fibroblast Present (SDY998, SDY998)
COL4A5/ Th1 Fibroblast Absent (SDY998, SDY998)
ITGA5+ITGB1 (SDY998,
GSE109449)
TGFB1/TGFBR1 Th1 Fibroblast Present (SDY998, SDY998)
SEMA4A/ Th1 Fibroblast Present (SDY998,
PLXNB1+MET GSE109449)
CD40L/CD40 Th1 Fibroblast | 35844494 Absent (SDY998, SDY998)
15077296 (SDY998,
GSE109449)
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ICAM1/ Th1 Fibroblast | 27623446 Present
ITGB2+ITGAL
TNFSF11/ Th1 Fibroblast Absent (SDY998, SDY998)
TNFRSF11A (SDY998,
GSE109449)
IL18/IL18R Th1 Fibroblast Present (SDY998,
GSE109449)
CXCL13/CXCR3 Th1 Fibroblast Absent (SDY998, SDY998)
(SDY998,
GSE109449)
MIF/CXCR4 Th1 Fibroblast Absent (SDY998, SDY998)
(SDY998,
GSE109449)
IFNG/ Th1 Fibroblast | 32047926 Present (SDY998, SDY998)
IFNGR1+INFGR2
FASL/FAS Th1 Fibroblast Absent (SDY998, SDY998)
(SDY998,
GSE109449)
CCL5/CCR5 Fibroblast Th1 Present (GSE109449,
SDY998)
IL7R/IL2RG Fibroblast Th1 35844494 Absent (SDY998, SDY998)
(GSE109449,
SDY998)
TNFA/TNFRSF1B Fibroblast Th1 Present (SDY998, SDY998)
GAS6/MERTK Fibroblast Th1 Absent (SDY998, SDY998)
(GSE109449,
SDY998)
CD84/CD84 Fibroblast Th1 Absent (SDY998, SDY998)
(GSE109449,
SDY998)
CCL2/CCR2 Fibroblast Th1 Present (SDY998, SDY998)
MIF/CD74 Fibroblast Th1 Absent (SDY998, SDY998)
(GSE109449,
SDY998)
LTA/TNFRSF14 Fibroblast Th1 Absent (SDY998, SDY998)
(GSE109449,
SDY998)
JAG1/NOTCH1 Fibroblast Th1 Present (GSE109449, SDY998)
(SDY998, SDY998)
SEMA4D/PLXNB1 | Fibroblast Th1 Present (SDY998, SDY998)
(GSE109449,
SDY998)
VCAM1/ Fibroblast Th1 27623446 Present
ITGA4+ITGB7 35844494
ICOSLG/ICOS Fibroblast Th1 Present (SDY998, SDY998)
CXCL10/CXCR3 Fibroblast Th1 Absent (SDY998, SDY998)
(GSE109449, SDY998)
IL10/ Fibroblast Th1 Present (SDY998, SDY998)
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ILTORA+IL10RB

LGALS9/TIM3 Fibroblast Th1 Absent (SDY998, SDY998)
(GSE109449, SDY998)

5.3.4 RA multicellular map

Figure 35 depicts the RA multicellular map in CellDesigner. A full-page landscape
image of the RA multicellular map is provided in Supplementary figure 5. Due to
the high complexity of the network, this image is not readable in a A4 size page
and is displayed for illustrative purposes only. For a better visualization of the
multicellular map, an online interactive version of it will be made available in the
platform MINERVA. The link to this interactive version will be provided in the
publication that we are currently preparing regarding the multicellular map
construction.

The RA multicellular map includes the four cell-specific molecular interaction
maps that we built in Chapter 5. Construction of the RA multicellular map,
connected together via 118 intercellular interactions. The multicellular map is
composed of 2232 components that interact with one another via 1461
reactions.

To easily identify the sending cell in each interaction, a color coding was applied
to the displayed cell-cell interactions. Pink arrows indicate interactions where the
M1 macrophage is the sending cell, blue arrows indicate interactions where the
M2 macrophage is the sending cell, yellow arrows indicate interactions where the
fibroblast is the sending cell, and purple arrows indicate interactions where the
CD4+ Th1 is the sending cell.
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Figure 35. The RA multicellular map in CellDesigner. Red squares indicate the cell-
type of each cell-specific molecular interaction map. Arrows in pink, yellow, blue
and purple indicate cell-cell communication.

5.4 Discussion

The study of cell-cell interactions in the RA synovium offers an interesting and
thorough picture of RA pathogenesis. Current biologic and non-biologic
medicines have been shown to target some of these interactions in ways that are
still unknown. In addition, safer and more specific approaches to treatment could
flow from the discovery of cell-cell interaction pathways (92). Therefore, a more
complete multicellular representation of the RA joint is needed.

The RA-Atlas (see Chapter 4. Construction of RA cell-specific molecular interac-
tion maps) consists of cell-specific maps recapitulating molecular intracellular
mechanisms involved in RA pathogenesis. These maps represent a great source
of information but still describe a biological system where cells are in isolation
from each other, cells that are in fact highly interconnected in the RA synovium.
In this direction, we built the first RA multicellular map, a manually curated and
enriched with extensive omics data analysis representation of both inter- and in-
tracellular molecular mechanisms involved in RA’s pathogenesis.

Going one step further, we were able to connect the RA cell-specific maps to-
gether via the addition of bidirectional intercellular interactions that were identi-
fied using CellPhoneDB internal database. The number of identified intercellular
interactions varied depending on the number of ligands and receptors present in
each cell-specific map. Given that the RA CD4+ Th1 map is smaller than the other
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maps, with less ligands and receptors to query, knowledge about CD4+ Th1 in-
teractions was sparser and more difficult to obtain. Moreover, interactions iden-
tified in CellPhoneDb are merely based on the expression of interacting pairs of
ligands and receptors by the synovial cells of interest. These interactions are not
specific to a disease or a tissue. Therefore, the expression of these ligands and
receptors does not imply that they may interact together in the RA synovium.
Combining CellPhoneDB queries with experimental evidence coming from pub-
lished literature and/or omics data analysis can overcome this limitation.

First, we searched for cell-cell communication in published articles that were as-
sociated with experimental evidence in a cell- and disease-specific manner. We
used dedicated tools like Causaly and its underlying advanced artificial intelli-
gence to accelerate the process. The amount of information we could gather from
published literature varied depending on the cell type under investigation. In-
deed, studies on the interactions of fibroblasts and macrophages with their sur-
roundings were considerably easier to find than those on CD4+ Th1 contact with
other cells, as published literature usually focus on the overall T lymphocytes pop-
ulation and not on specific subtypes.

Second, we inferred cell-to-cell communication from transcriptomic datasets. For
each bidirectional cell-cell interaction pair, we used two dedicated tools,
ICELLNET and DiSiR, that we applied on disease- and cell-specific datasets. Un-
fortunately, macrophage, fibroblast, and Th1 cells from RA synovium were hard
to find and rarely available within the same dataset. The SDY998 was the only
publicly available one that included synovial monocytes, fibroblasts and a T cell
population that we subdivided into subtypes, including the Th1 one. As this da-
taset merely contains monocytes and not macrophages, we needed to cross val-
idate the interactions that we identified with the monocyte samples using mac-
rophage samples. To do so, we paired samples coming from independent studies,
and reduced the resulting batch effect using ComBat method.

Due to the heterogeneity of the omics datasets, the inferred cell-cell communi-
cation differs from one dataset to another, even when these datasets describe the
same biological condition (RA) and cell type. Moreover, using monocyte samples
rather than macrophage samples for some parts of this work, as well as combining
independent datasets, even after the correction of the resulting batch effect, adds
additional noise to the inferred intercellular interactions.

To ensure reliable and consistent cell- and disease specific results, we filtered the
identified interactions using stringent criteria. Only interactions identified with
both ICELLNET and DiSiR with statistically significant p values (FDR threshold

90



equal to 0.05) were kept. Also, only interactions identified with at least two differ-
ent pairs of datasets, or two different approaches (literature/database mining and
omics data) were kept. Regarding interactions that were not inferred from the
omics datasets that we analyzed, only those coming from at least two different
sources of information (published articles associated with different omics datasets
for example) were kept.

Applying such stringent filtering criteria allowed us to provide consistent results
that take into account the heterogeneity of omics datasets and published litera-
ture. As a counterpart, it also filters out potential intercellular interactions that
may be interesting to investigate in RA disease.

The resulting RA multicellular map can be expanded via the integration of addi-
tional cell-specific molecular interaction maps. These maps can be connected to
the already existing ones through the identification of cell-cell communication
using the previously described methodology.
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Chapter 6. Generation and calibration of large-scale
Boolean models

6.1 Introduction

Molecular interaction maps are standardized, graphic representations of complex
biological systems. They are useful for data visualization and comparison;
however, they remain limited by their static nature when it comes to predictions
and hypothesis testing. One of the primary goals of dynamical modeling is to
understand the emergent features and behaviors of the biological systems
described in these maps (13) through in silico simulations and predictions.
Boolean formalism is a well-suited approach for handling such large-scale
systems. The regulation of the model's components is given in a parameter-free
way, without the need for kinetic parameters and precise quantitative data
(14,224).

Building and analyzing Boolean models for large-scale complex biological sys-
tems remains challenging. Manually built models are usually smaller models that
leave out parts of the biological system under study, while models inferred auto-
matically from maps are far larger in size providing more accurate representations
of the systems (238). These large-scale models, on the other hand, are more com-
plex, with a substantially higher number of inputs, making it computationally chal-
lenging to identify all their possible attractors (293). Furthermore, a significantly
large state space hinders the identification and interpretation of biologically con-
sistent states, especially in a cell or disease specific context.

In this section, we present an efficient computational framework to build, analyze
and validate the behaviors of large-scale Boolean models with hundreds of nodes,
and a significant number of inputs. It uses molecular interaction maps as a start-
ing point to automatically infer their corresponding executable Boolean models
via the CaSQ tool (238). The generated Boolean models are analyzed in a syn-
chronous scheme using a new version of the Bio Model Analyzer (BMA) tool (294)
deployed to a high-performance computing cluster, set up for this purpose. The
framework identifies all the existing attractors of the models using parallel com-
puting. It filters them to keep only the steady states and then tests their coherence
against gene expression datasets and prior knowledge. We first applied the pro-
posed framework to the four maps of the RA-Atlas (285) specific to the RA M1
macrophage, RA M2 macrophage, RA fibroblast and RA CD4+ Th1. The resulting
calibrated states of their corresponding models were then combined, and the
same framework was then applied to generate and validate the first RA multicel-
lular model using the RA multicellular molecular interaction map.
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6.2 Materials and methods

In this section, we thoroughly describe the computational framework that we
propose to automatically convert molecular interaction maps into their
corresponding executable Boolean models, analyze their state space, and validate
their behaviors using both prior knowledge and transcriptomic data. Figure 36
illustrates the proposed computational framework.

Molecular Gene ATErTE E-D_i;‘.éééé: and cell- 3
interaction map expression mining . __specific data !
dataset
CasQ
JSON and SBML-
qual formats . . D :
Executable Discretized ' Overexpression =1,
Boolean model expressions  Underexpression = 0:
node value .
FSeeiur ol ST 1 node value 1 C.on.'lpu.tatlon of
1Computation of, = gma node value | similarity scores
1all the possible | 7 o !
' inputs’ l Parallel B ) i 1 Computation of
| combinations | | ¢omputing 0 mean values
""""""" ® 0
e ™
All the model's Filtered steady Validation of the
attractors states model’'s behavior

In silico simulations

Hypotheses testing
and predictions

S A

Figure 36. Schematic representation of the workflow we propose to generate and
analyze large-scale Boolean models. Molecular interaction maps built in
CellDesigner XML format are converted to executable Boolean models using CaSQ.
Then, a new version of BMA is deployed to a high-performance computing cluster
to identify all the models’ attractors. These attractors are filtered to keep only the
steady states. Next, the filtered steady states are validated. Differentially expressed
biomolecules present in the models are identified using both literature mining and
transcriptomic data analysis. The expressions of the identified biomolecules are
discretized and converted to a binary vector of experimentally observed Boolean
values. After that, similarity scores are computed to describe the similarity between
the steady states and the experimentally observed values. The steady states with
the highest score are selected, their mean vector represents the calibrated model’s
state.
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6.2.1 Generation of Boolean models from molecular interaction maps

As a starting point for building Boolean models, we use molecular interaction
maps and the tool CaSQ version 1.1.4 (238). For each node in the starting XML
file, CaSQ automatically infers logical rules based on the network topology and
semantics. First, the map is reduced through a pass of graph-rewriting rules. Some
species in the starting map might need to be merged into a single component or
into some inactive forms to avoid redundancy in the logical model. Then, logical
rules are automatically inferred based on the topology of the reduced map. Each
node’s logical rule is defined as the (i) disjunction (OR), for all reactions producing
it, of the (ii) disjunction (OR) of all catalysts of that reaction being activated and
the (iii) conjunction (AND) of all products of that reaction being activated and all
inhibitors being inactive.

Therefore, a target is ON if one of the reactions producing it is ON, and a reaction
is ON if:

1) all its reactants are ON
2) all its inhibitors are OFF
3) One of its catalysts at least is ON

Figure 37 shows a toy example of a map in CellDesigner describing the formation
of the complex AB. This reaction is catalyzed by either Activator 1 or Activator 2
and inhibited by Inhibitor 1. The logical rule of the complex AB infered using CaSQ
is “(Activator 2 | Activator 1) & ! Inhibitor 1" which means that Complex AB is
active if at least one of its catalysts (either Activator 1 or Activator 2) is ON and its
inhibitor (Inhibitor 1) is OFF.
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Complex AB

Protein B .,

C
Nodes Logical rules
Complex AB_complex (Activator 2 | Activator 1) & ! Inhibitor 1
Activator 1 Activator 1
Activator 2 Activator 2
Inhibitor 1 Inhibitor 1

Figure 37. A) Toy XML file describing the formation of the complex AB. This reaction
(s catalyzed by either Activator 1 or Activator 2 (green arrows) and inhibited by
Inhibitor 1 (red arrow). B) The Boolean model of the toy XML file depicted in A that
we generated using CaSQ. C) The logical rules associated with each node in the
Boolean model depicted in B.

The tool produces either Systems Biology Marked up Language qualitative
(SBML-qual) (295) or BMA JSON executable files. During this PhD, we worked on
optimizing the CaSQ export option in the latter format as we found inconsisten-
cies between the logical rules in the SBML-qual models and the mathematical
functions in the BMA JSON models, both produced by CaSQ. We identified the
sources of these inconsistencies and worked in collaboration with Benjamin Hall
(University College London) and Sylvain Soliman (Inria Saclay-ile-de-France) to
correct them.

Using the BMA JSON format, it is also possible to produce qualitative networks
where nodes can vary over a wide range of discrete values which is defined as
granularity in BMA (294). Granularity defines the higher value the nodes can take
in the model. Since we are using Boolean formalism, the granularity used in the
following analysis is equal to one.

6.2.2 Stabilization proof using Bio Model Analyzer (BMA)

BMA is a tool for constructing and analyzing, and since recently importing,
executable models of biological mechanisms (294). The user is presented with a
web-based user interface, allowing for rapid and simple model construction and
analysis. Whilst the GUI is the primary tool for interacting with BMA, a console
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tool is also available giving access to a wide range of analysis algorithms and
enabling scripting for large and complex combinatorial analyses. CaSQ is capable
of generating models in the BMA JSON format, which can be used with either
version of the BMA tool.

A key analysis in BMA is the proof of model stability. Using a synchronous update
scheduler, a modular proof algorithm is used to show whether or not there exists
a single steady state attractor, and no cycles. Briefly, this proceeds in two steps.
Initially, the ranges of individual variables are reduced to the set of reachable
values through examination of the input variable ranges, and the target function.
If this process reduces all ranges to a singleton, stability is proven, and the global
steady state attractor is returned to the user. If this fails, a constraint solver is used
with the reduced variable ranges for the first step to search first for multiple fix
points (bifurcation), and then cycles. Finally, if neither cycles nor multiple fix points
are found, the model must be stable and a final check searches for and returns
the steady state (296).

6.2.3 BMA architecture and underlying technologies

BMA is developed on the Microsoft .NET Framework and .NET standard, which tie
the tools to Windows environments. The BMA web tool is hosted on Azure, and
is structured as two services, one hosting the user facing client, and a second,
compute service, dedicated to calculating proofs and simulations. The console
tool, which provides similar functionality to the compute service, is developed for
Windows and is available via this Github link:
https://github.com/microsoft/BioModelAnalyzer.

To enable high-throughput model analysis and take advantage of parallelization,
we needed to run the analyses on high performance computing facilities.
Following Sanofi policy, these analyses had to be processed internally via Sanofi's
AWS services. Since these HPCs are Linux-based only, we needed a new version
of BMA that can run in Linux environments. In this direction, we worked in
collaboration with Benjamin Hall and Rachel Alcraft from University College
London who provided a new prototype of the BMA console tool that can run on
Linux and that is based on the open-source .NET core 3.1 which can be built using
the dotnet SDK. All codes are available at 10.5281/zenodo.7541023.

6.2.4 Parallel computing for the calculation of all possible attractors

Attractors depend on the external stimuli the model receives from its
environment. External stimuli in Boolean models are modeled in the form of
inputs. Inputs are nodes with no upstream regulation. They are not associated
with any logical rule in the model; therefore, the values they take are user-defined.
In the BMA console tool, the user can assign values to the input nodes with the
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flag -ko that allows setting the specified nodes to be constants (zero or one).
Depending on the inputs’ states, the model reaches different attractors. To
identify all the attractors of the model, we generate all the possible combinations
of inputs’ values. For each input combination, we search for the corresponding
attractor. When possible, we reduce the number of input combinations by fixing
the inputs associated with experimentally observed expressions. The Boolean
values of these inputs are set based on the available literature and/or
transcriptomic data (see Validation of the model's behavior).

The computation time is exponential. Indeed, the number of all the possible com-
binations of inputs’ values is equal to 2", n being the number of inputs that vary
in the model. Given the high number of inputs in the inferred large-scale Boolean
models, we failed to execute the attractors search on a local Windows machine
with 8 cores and 64 GBs of RAM. Therefore, we deployed BMA in a high-perfor-
mance computing cluster to compensate for the lack of computational power.

Figure 38 illustrates the number of input combinations the BMA console tool can
process per hour using one core and various model sizes. As the attractor search
is slower on larger models, the number of processed combinations decreases pro-
portionally with the model size. Therefore, Figure 38 can be used to estimate the
computational resources required to execute the analysis depending on the mod-
el's size. We utilized the Joblib python package as well (297) to parallelize the
process and considerably reduce the running time of the framework.
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Figure 38. Plot showing the number of processed inputs’ combinations by BMA per
hour using a single core machine with a base frequency of 2.3 GHz.

6.2.5 Filtering the model’s attractors

While cycles are linked with oscillations such as the cell cycle, steady states are
characterized by stable patterns of biomolecules activities (often called
phenotypes); they can therefore be compared with gene expression datasets. For
this reason, we filter the model's attractors to keep only the steady states.

6.2.6 Validation of the model’s behavior

The validation of the model’s state is based on the signal propagation from the
inputs to the internal nodes. The objective here is to select the inputs’
combinations that lead to coherent states in the internal nodes of the model. To
do this, we further filter the model’s steady states and select the ones that are
able to reproduce what is known in the literature or observed in transcriptomic
datasets. First, we identify the differentially expressed biomolecules present in the
model using both literature mining and differential expression analysis (DEA).
Then, we discretize the expressions of the identified biomolecules to convert
them to a binary vector of experimentally observed Boolean values. After that, we
compare the filtered steady states to this binary vector using a similarity score.
Based on this score, we select the states with the highest score and calculate their
average vector. The resulting vector represents the calibrated state of the model.
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6.2.6.1 Identification of differentially expressed biomolecules using
literature search and gene expression data analysis

We use both low and high-throughput experimental data to identify the
differentially expressed biomolecules present in the studied model. First, we
conduct a thorough review of the literature regarding each node in the model.
We extract information about the change of its expression level between two
biological conditions. These conditions are defined based on the biological
system under study. We curate the retrieved information to keep it disease- and
cell-specific. Second, we integrate transcriptomic data if available. We select the
dataset(s) according to the biological question we would like the model to
address and perform DEA on the selected one(s). We filter the DEGs using
appropriate log Fold Change (FC) and adjusted p-values thresholds. The final list
of differentially expressed molecules present in the model is a combination of
both literature search and DEA outcomes.

6.2.6.2 Computation of similarity scores and data discretization

To be able to compare the expressions of the identified differentially expressed
components with the model's steady states, we discretize the data.
Overexpressed biomolecules in the condition under study are associated with the
value one while under expressed molecules are associated with the value zero.
Since we are using Boolean formalism where each biomolecule can only have two
possible states, biomolecules that are not differentially expressed, or associated
with a low fold change are not considered (Figure 39).
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Figure 39. Example of gene expression discretization on a volcano plot showing the
DEGs between RA and osteoarthritis synovial fibroblasts from GSE109449 dataset.
DEGs were filtered using an FDR equal to 0.05 and a logFC equal to 0.584.
Overexpressed DEGs are associated with the value one while under expressed
molecules are associated with the value zero.

The resulting discretized vector of experimentally observed expressions is then
used to calculate similarity scores with each steady state to describe the ability of
these filtered steady states to reproduce the experimentally observed values. To
do so, we calculate a similarity score S (1).

S=(NOO + N11)/NOO + N11 + N10 +NOT (M
Where,

NOO = number of nodes with a state of zero in both the steady state and the
discretized vector of experimentally observed expressions

NO1 and N10 = number of nodes with different states in the steady state and the
discretized vector of experimentally observed expressions

N11 = number of nodes with a state of one in both the steady state and the
discretized vector of experimentally observed expressions.
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6.2.6.3 Selection of the steady states with the highest similarity score

We select the steady states with the highest similarity score. Then, we compute
the mean value of each node over these stable states to determine the nodes that
are fixed at either zero or one and those that can be found in both states. The
resulting average vector represents the calibrated model's state.

6.3 Results

We illustrate in this section how we use the cell-specific molecular interaction
maps of the RA-Atlas as a starting point to build cell-specific Boolean models
describing RA M1 and M2 synovial macrophages, RA fibroblast and RA Th1. We
also describe how we analyzed the state space, and then validated the behavior
of these models using gene expression data together with prior knowledge. Once
validated, the calibrated cell-specific models’ states were combined, and the same
analyses were performed on the RA multicellular model.

6.3.1 Updating the RA cell-specific molecular interaction maps

As a starting point of the work, we used cell-specific molecular interaction maps
that are part of the RA-Atlas (285). Phenotypes are particular nodes in these maps.
They describe biological states known to be active or inactive in RA. To make
them more appropriate to the purpose of this work, we divided them into two
categories. The first one corresponds to cell-specific phenotypes. They describe
the cellular outcomes of each cell-type of interest like proliferation and apoptosis.
Their names end with “M1_macrophage”, “M2_macrophage”, “fibroblast” or “Th1"
suffixes depending on the map. The second category is not specific to a particular
cell type. It corresponds to cellular signals and biological conditions in the RA
joint like inflammation, angiogenesis and matrix degradation. Their names end
with the "signal" suffix in all the updated cell-specific maps.

We updated the maps by looking for duplicates as well, removing them whenever
they were found and correcting the signaling pathways accordingly. Table 13
summarizes the number of nodes and reactions in the updated RA cell-specific
maps.

Table 13. Number of nodes and reactions in the RA cell-specific molecular
(nteraction maps.

RA cell-specific maps Number of nodes Number of reactions
RA M1 macrophage 601 407
RA M2 macrophage 511 322

RA fibroblast 837 541

RA CD4+ Th1 319 198
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6.3.2 Generation of the RA cell-specific Boolean models

We used CaSQ to convert the updated RA cell-specific maps to Boolean models
using BMA JSON as export format. Table 14 shows the number of nodes, inputs,
and interactions in each model.

The resulting JSON files will be made publicly available soon to allow the
visualization of the mathematical functions associated with each node that CaSQ
generated as well as an easy reuse of our models.

Table 14. Number of nodes, inputs, and interaction in the RA cell-specific Boolean
models

e Number of Number of Number of
Cell-specific model . . .
nodes Inputs Interactions
RA M1 macrophage 309 75 560
RA M2 macrophage 253 57 426
RA fibroblast 394 104 638
RA CD4+ Th1 166 38 218

In this section, we focused on the regulation of the first category of phenotypes,
the cell-specific ones. As the second category of phenotypes describes the bio-
logical conditions in the RA joint and is influenced by several cell-types, its regu-
lation will be tested and validated when calibrating the RA multicellular model.

We used the export option in CaSQ via the argument -u to identify all the nodes
that are upstream of these phenotypes. Table 15 describes the cell-specific phe-
notypes for each model, and the number of nodes and inputs upstream these
phenotypes. The nodes that are not involved in the regulation of our phenotypes
of interest were not taken into consideration and the inputs regulating these
nodes were fixed at one, the default value in BMA.

Table 15. Number of nodes and inputs upstream of the cell-specific phenotypes in
the RA cell-specific Boolean models.

Cell-specific Cell-specific Number  Number of = Number of
model phenotypes of nodes inputs interactions
Apoptosis
mas;: Mh1a . Proliferation 233 64 381
phag Osteoclastogenesis
RAM2 Apoptosis 169 39 278
macrophage Proliferation
RA fibroblast Apoptosis 275 73 446

Proliferation
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Migration
Apoptosis

RA CD4+ Th1 Proliferation 120 28 155
Migration

6.3.3 Identification of differentially expressed molecules using literature
search and transcriptomic data analysis

We extracted information from published literature regarding the differential
expression of the models’ components. These expressions can be at the mRNA
and/or protein levels, depending on literature availability. We curated the
extracted information to keep it specific to both RA disease and the relevant cell-

type.

We integrated gene expression datasets as well. DEA was performed between RA
and healthy synovial macrophages samples in the GSE97779 gene expression da-
taset. The resulting list of DEGs was combined with literature search outcomes
and used to calibrate the RA M1 and M2 macrophage models. The same analyses
were performed on the GSE109449 and SDY998 single cell RNA-seq datasets to
calibrate the RA fibroblast model and the RA CD4+ Th1 models respectively. De-
tails regarding datasets analyses are provided in Chapter 3. Description of data
and data analysis. Assuming a linear relationship between the expression of
mMRNAs and the expression of their corresponding proteins, the retrieved differ-
ential expressions can be associated with nodes at mRNA or protein levels in the
models. We discretized the differentially expressed molecules’ expressions: mol-
ecules that were overexpressed were linked to the value 1, whereas molecules
that were under expressed were linked to the value 0.

Supplementary table 1, Supplementary table 3, Supplementary table 5, and Sup-
plementary table 7 in ANNEX A provide the lists of these differentially expressed
molecules in each cell-specific model together with their observed Boolean values
in the literature and/or gene expression datasets.

6.3.4 Computation of all the possible attractors of the RA cell-specific
models

Given the high number of inputs in the models, we reduced the list of inputs’
combinations by fixing the values of the differentially expressed ones. Based on
the information displayed in Supplementary table 1, 43 out of the 64 inputs
present in the RA M1 macrophage model were fixed. The total number of inputs’
combinations was then equal to 22". We used the BMA tool deployed to a
machine with 96 single core CPUs and 768 GBs of RAM to run the attractors
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search. All the resulting attractors were steady states and were kept for further
analysis. Regarding the RA M2 macrophage model, 24 inputs were fixed using the
information provided in Supplementary table 3. The number of inputs’
combinations was then equal to 2'%. The same machine configuration was used
to run the attractor search. All the corresponding attractors were steady states
that we used for the following steps.

Based on the information displayed in Supplementary table 5, 53 out of 73 inputs
states were fixed in the RA fibroblast model. The number of inputs’ combinations
was then equal to 2%, All the resulting attractors were steady states. Regarding
the CD4+ Th1 model, 16 out of 28 inputs were fixed according to the information
displayed in Supplementary table 8. The number of inputs’ combinations was then
equal to 2'2. All the corresponding attractors were steady states.

6.3.5 Validation of the cell-specific models’ behaviors

First, we filtered the steady states according to the values of their cell-specific
phenotypes. The biologically coherent Boolean values of these phenotypes were
extracted from the literature in a disease and a cell-specific manner (Table 16).

In the RA M1 and M2 macrophage models, the Boolean state of the cell-specific
phenotypes should reflect the increased M1/M2 ratio in the synovial macrophage
population and the enhanced osteoclastic bone resorption in the RA joint. Indeed,
RA M1 macrophages predominate in RA synovial fluid due to their excessive pro-
liferation (Proliferation phenotype in the model should be ON) and enhanced
anti-apoptosis capabilities (Apoptosis phenotype in the model should be OFF)
compared to the RA M2 macrophages (Apoptosis phenotype should be ON, and
Proliferation phenotype should be OFF in the model) (116). In addition, Osteo-
clastogenesis phenotype, which is only present in the RA M1 macrophage model,
should be ON. All the steady states of the RA M1 macrophage model passed
through this filtering step while only 8192 of the steady states of the RA M2 mac-
rophage model did.

In the RA fibroblast model, the state of the cell-specific phenotypes should reflect
their resistance to apoptosis and excessive proliferation in RA synovium (Apop-
tosis should be OFF and Proliferation should be ON in the model) (96). They also
describe the fibroblast ability to spread to unaffected joints in RA patients (Mi-
gration should be ON in the model) (298). All RA fibroblast model's steady states
passed through this filtering step.

In the RA CD4+ Th1 model, the state of the cell-specific phenotypes should de-
scribe the increased ability of this cell-type to migrate and extravasate from blood
vessels to the inflamed RA joint (Migration should be ON in the model) (86). They
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also show their increased apoptosis resistance (Apoptosis should be OFF in the
model) and their hyperactivation and impaired proliferation in RA (Proliferation
should be ON in the model) (130). 1024 steady states passed through this filtering
step in the RA CD4+ Th1 model.

Table 16. Expected Boolean states of the phenotypes in the RA cell-specific Boolean
models according to the literature.

Model/ , , . o .
Phenotypes Proliferation ~ Apoptosis Migration Osteoclastogenesis
Fibroblast 1 0 1 /
M1 1 0 ) 1
macrophage
M2 3 : ) )
macrophage

For each cell-specific model, we calculated similarity scores between the lists of
differentially expressed molecules and their matching nodes in each filtered
steady state. Steady states with the highest similarity score in each model were
selected and their average vectors were calculated. The resulting mean vectors
represent the calibrated state of the RA cell-specific models (Supplementary table
2, Supplementary table 4, Supplementary table 6, Supplementary table 8). Table
17 shows the number of steady states with the highest similarity score for each
cell-specific model. It also describes the number of nodes that were fixed at zero
or one in the calibrated states of the models and the similarity score associated
with each one of them.

Table 17. Description of the RA cell-specific models’ calibrated states. The first row
displays the number of steady states with the highest similarity scores. The second
row shows similarity scores describing the ability of the calibrated models to
reproduce the experimentally observed expressions. The third row indicates the
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number of nodes fixed at zero or one in the calibrated states of the models.

Model M M2 Th1 Fibroblast
macrophage macrophage

Number of steady states

with the highest score 384 96 128 4096
Similarity score 99% 96,5% 100% 99%
Fixed nodes/Total number 222/233 158/169 109/120 254275

of nodes

Some mismatches were identified between the models’ calibrated states and the
experimentally observed Boolean values (Table 18). These inconsistencies will be
addressed later in the discussion section.

Table 18. Mismatches identified during the validation of the models’ behaviors.

) Experimentall
Boolean value in the P y

Node Model observed Boolean
model
value

CASP7 RA M1 0 1
macrophage

BCL2L1 RA M2 0 1
macrophage

CASP3 RA M2 1 0
macrophage

MCLT RA M2 0 1
macrophage

GAB2 RA fibroblast 1 0

6.3.6 Calibration of the RA multicellular model

We used CaSQ to convert the RA multicellular interaction map to a Boolean model
using the BMA JSON as export format. It consists of 1104 nodes, including 240
inputs, and 1845 interactions (Figure 40). A full-page landscape image of the RA
multicellular model displayed in BMA is provided in Supplementary figure 6. This
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image is not readable in a A4 size page due to the model’'s complexity and is
displayed for illustrative purposes only. The BMA JSON file of the corresponding
model will be publicly available in the open-access publication that we are cur-
rently preparing regarding the RA multicellular model. The BMA JSON file allows
for a better exploration of the model and for an easy visualization of the mathe-
matical functions associated with each node.

M1 macrophage Fibroblast M2 macrophage

CD4+ Thil

Figure 40. RA multicellular model in BMA graphical interface.

6.3.6.1 Combination of the calibrated states of the RA cell-specific models
via intercellular communication

To calibrate the resulting multicellular model, first we combined the cell-specific
models’ calibrated states via the addition of intercellular interaction present in the
multicellular model. 159 out of the 204 inputs that were already processed during
the cell-specific models' calibration (64 in the RA M1 macrophage model, 39 in
the RA M2 macrophage model, 73 in the RA fibroblast model, and 28 in the CD4+
Th1 model) are still inputs in the RA multicellular model. Their states were defined
according to the cell-specific models’ calibrated states. The remaining 45 nodes
are no longer inputs in the multicellular model. The intercellular interactions that
regulate them define their states in the model. Figure 41 shows an example of
how cell-cell interactions can modify an input's state. In Figure 41A, CXCL13 is an
input in the RA M1 macrophage model|, its value is user defined. In Figure 41B,
CXCL13 is no longer an input in the RA multicellular model. It participates in an
intercellular interaction in which Th1 cells release CXCL13, which is then captured
by the M1 macrophage cells.
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Some of these 45 nodes had already been fixed in the cell-specific models. Their
states remained unaltered in the multicellular model because cell-cell interactions
are in accordance with the calibrated states of the cell-specific models. Some of
them were not fixed in the cell-specific models. After the addition of the intercel-
lular interactions, their states were fixed (Table 19).

A

CXCLT8_M1_macrophage_ Extracellular_Space
CXCL13 M1 _macro Range|o 1

Target Function

M1 macrophage : Extracellular Space

1

CXCLU13_M1_macrophage__Extracellular_Space
CXCL13_M1_macro Range|o 1

Target Function

M1 macrophage : Extracellular Space

(max((min((min(
(CXCL13_TH1__ secreted_components),1)),1)),0)

)

Figure 41. A) CXCL13 mathematical rule in RA M1 macrophage model before
adding the intercellular interactions. B) CXCL13 mathematical rule in RA M1
macrophage model after adding the intercellular interactions.

Table 19. Number of nodes fixed in the RA cell-specific models before and after
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adding cell-cell interactions.

Model M M2 Th1 Fibroblast
macrophage  macrophage

Number of fixed
nodes before

o 222/233 158/169 109/120 254/275
adding intercellular
interactions
Number of fixed
nodes after adding
227/233 162/169 120/120 256/275

intercellular
interactions

6.3.6.2 Identification of differentially expressed molecules using literature
search and transcriptomic data analysis

307 nodes, including 81 inputs in the multicellular model are not upstream of the
cell-specific phenotypes and were not analyzed during the cell-specific models’
calibration. To be able to calibrate the entirety of the multicellular model, we ex-
tracted information from published literature regarding the differential expres-
sion of these remaining biomolecules. We curated the extracted information to
keep it specific to both RA disease and the relevant cell-type. We also integrated
additional DEGs from the same gene expression datasets we used for the cell-
specific models’ calibration. Supplementary table 9 in ANNEX A describes the ad-
ditional differentially expressed biomolecules identified in both omics datasets
and literature present this remaining part of the multicellular model.

6.3.6.3 Computation of all the possible attractors of the multicellular model

Given the high number of inputs in the model, we reduced the list of inputs’ com-
binations by fixing the values of some of them. First, we made use of the cell-
specific models’ calibrated states. Among the 240 inputs present in the multicel-
lular model, 141 were already fixed from the RA cell-specific models’ calibration
and combination. Then, we used information extracted from literature and gene
expression datasets to fix additional inputs. Based on the information displayed
in Supplementary table 9, 78 additional inputs were fixed. The total number of
fixed inputs was equal to 219. The 21 remaining inputs were not associated with
a Boolean value. The total number of input combinations was then equal to 22'.
We used the BMA tool deployed to a machine with 96 single core CPUs and 768
GBs of RAM to run the attractors search. All the resulting attractors were steady
states and were kept for further analysis.
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6.3.6.4 Validation of the multicellular model’s behavior

We calculated the similarity score between the list of differentially expressed mol-
ecules and their matching nodes in each steady state. Steady states with the high-
est similarity score were selected to calculate their mean vectors. The resulting
mean vector represents the calibrated state of the RA multicellular model. 32768
steady states had the highest similarity score. In their mean vector, 1076 out of
1104 nodes were fixed at zero or one, while 28 of them were not fixed (Supple-
mentary table 10). This multicellular model’s state can reproduce 98,8% of the
observed Boolean values used to calibrate it. No additional mismatches were
identified apart from the ones already highlighted in Table 18.

6.4 Discussion

In this chapter, we put in place a framework to calibrate large-scale Boolean
models that can be either automatically inferred from molecular interaction maps
using the CaSQ tool or manually built in the BMA JSON format. We analyze the
models using a newly developed version of the BMA tool that can be deployed
to Linux-based high-performance computing clusters to identify all the steady
states of the models. Depending on the model size and complexity, the
computation time varies. Given the high number of possible input combinations
in large-scale Boolean models, using HPC clusters that consist of hundreds, or
thousands of cores enables high throughput model analysis. It overcomes the
lack of computational power and takes advantage of parallel computing to
considerably reduce the running time of the analysis. We filter the resulting steady
states by selecting the biologically consistent ones. The average vector of these
selected steady states represents the calibrated model's state that most
accurately reflects the biological condition under study. All the files and scripts
needed to utilize  the proposed framework  are available
at: https://gitlab.com/genhotel/Large scale computational modelling of the M
1 and M2 synovial macrophages in Rheumatoid Arthritis

We applied the proposed methodology to four RA cell-specific molecular inter-
action maps, namely RA M1 macrophage, RA M2 macrophage, RA fibroblast and
RA CD4+ Th1, setting the path to many other disease maps to be explored.

To analyze their corresponding cell-specific models, we adjusted the framework
according to the disease and cell type under study. Indeed, we divided the phe-
notypes of the models into cell-specific ones to describe the cellular outcomes of
each cell-type of interest, and more generic ones to describe the overall condition
of the RA joint. We filtered the models’ steady states according to the values of
their cell-specific phenotypes and kept the ones that reflect the biological condi-
tions of the RA joint. In addition, to calibrate the models, we selected disease-
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and cell-specific gene expression datasets and carefully curated the extracted in-
formation from the literature to ensure that it was specific to both RA disease and
the cell-types of interest.

Mismatches between experimentally observed values and our models’ states were
identified. Regarding the RA M1 and M2 macrophages models, these observed
values are cell and disease specific but still contain a mix of M1 and M2 pheno-
types’ expressions. Indeed, the identified mismatches in both models are related
to biomolecules participating in the intrinsic and extrinsic apoptosis pathways.
The M1 phenotype is resistant to apoptosis so pro apoptosis components
(CASP7) tend to be inhibited. On the other hand, the M2 phenotype is pro-apop-
totic, hence pro apoptosis components are active (CASP3) while anti apoptosis
molecules are inhibited (BCL2L1, MCL1).

The calibration of the Boolean models can be performed using different datasets,
publicly available or in-house. As RA is a disease of great heterogeneity, differ-
ences in certain DEGs are expected.

We successfully applied our framework to the RA multicellular model as well. To
reduce the model's complexity, we first combined the cell-specific models’ states
via the integration of cell-cell communication. Then we applied the same protocol
as for the cell-specific models. As the model's size and complexity considerably
increased, we were able to demonstrate the scalability of our framework.

Since we are using Boolean formalism, the models’ steady states are binary vec-
tors. To compare them with the differentially expressed molecules, overexpressed
ones were associated with the value one while under expressed ones were asso-
ciated with the value zero. Biomolecules that are not differentially expressed like
housekeeping genes are not considered. To overcome this limitation, qualitative
models with a higher granularity could be envisioned; nevertheless, additional
computational resources would be needed to cope with the exponentially higher
complexity of these models.

Most of the models’ nodes were fixed at zero or one in the selected steady states.
Due to the lack of information regarding their expression, the remaining nodes
were not fixed, meaning they could be found in both states (in different steady
states). To set their Boolean values at either zero or one, we could incorporate
additional layers of information via the integration of other types of omics da-
tasets such as proteomic data. This would enrich the list of experimentally ob-
served Boolean values and help to narrow down the number of biologically con-
sistent steady states.
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Chapter 7. Selective M1 macrophage depletion and M2
macrophage promotion in the RA synovium

7.1 Introduction

Recently, research has revealed that the innate immune system is a major player
in the initiation and development of the RA pathogenesis (299). Macrophages are
one of the most common innate immune cell populations in RA and their number
significantly correlates with the disease severity (116). Macrophage populations
are heterogeneous and can differentiate into various phenotypes in response to
the local microenvironment stimuli. The M1 and M2 phenotypes represent the
extremes of their activation spectrum.

Consequently, depending on their phenotype (M1 or M2), macrophages play a
role in both the initiation and resolution of inflammation (87). The M1 macro-
phages are responsible for the overproduction of inflammatory cytokines and the
release of matrix degradation enzymes, leading to cartilage destruction (299).
They can also attract proinflammatory T cells and induce their hyperactivation. On
the other hand, the M2 macrophages alleviate inflammation via 1) the production
of anti-inflammatory cytokines, including IL-10 and TGF-B, 2) tissue homeostasis
and repair (300) 3) activation of regulatory T cells functions (119). Due to their
excessive activation and proliferation as well as their enhanced anti-apoptotic
ability, the proportion of M1 macrophages is higher than that of M2 macrophages
in RA (116). Two approaches currently exist for targeting macrophages: downreg-
ulating M1 phenotype and expanding M2 phenotype, or repolarizing M1 macro-
phages to M2 macrophages (301,302). In spite of this, no medicines specifically
targeting macrophages are currently used in the clinic (116,300). Thus, under-
standing the specific approach for targeted depletion of the inflammatory mac-
rophage while sparing other macrophage subsets and reestablishing macrophage
balance might be an effective therapeutic approach in RA (303).

Although the heterogeneity of macrophages in RA has not been fully uncovered,
the RA M1 and M2 macrophages models that we built and validated in the pre-
vious chapter (see Chapter 6. Generation and calibration of large-scale Boolean
models) aim to cover the phenotypic diversity of macrophages through a pheno-
type-specific representation of their secreted cytokines/chemokines, stimulatory
molecules, receptors, and transcription factors (303).

In this chapter, we utilize these validated models to investigate mono- and bi-
therapies that could specifically downregulate pro-inflammatory macrophages
and promote anti-inflammatory macrophages in RA synovium. This can be
achieved through the induction of the Apoptosis phenotype and the inhibition of

112



the Proliferation phenotype in the RA M1 macrophage model, and the activation
of the Proliferation phenotype and the inhibition of the Apoptosis phenotype in
the RA M2 macrophage model. In this direction, we tested the models' responses
to current RA therapies to evaluate the effect of these treatments on macro-
phages and gain a better understanding of their mechanism of action in this cell
type. We also tested new drug combinations and potential therapeutic interven-
tion points.

7.2 Methods and results

7.2.1 Single knockouts of the therapeutic targets present in the RA M1 and
M2 macrophage models

To identify potential therapeutic targets (targets that have already been
experimentally modulated) present in the models, we performed an exhaustive
search using the Therapeutic Target Database (TTD). It is a drug database
designed to provide information about the known therapeutic protein and nucleic
acid targets described in the literature, the targeted disease conditions, the
pathway information, and the corresponding drugs/ligands directed at each of
these targets. The database currently contains 3578 targets and 38760 drugs.
Targets can be divided into four categories: successful targets, clinical trial targets,
preclinical trial targets and research targets (304). In order to simulate knockouts
in the models, we only focused on the inhibition of the drug target. We screened
the targets based on the Mode Of Action (MOA) of their associated drugs, and
only kept the ones that can be targeted by at least one inhibitor (1643 targets).
Then, we identified the targets that are present in the RA M1 and M2 macrophage
models. Regarding the RA M1 macrophage model, 71 therapeutic targets that
988 different drugs can inhibit were identified (Supplementary table 11) while 60
targets that 1026 different drugs can inhibit were identified in the RA M2
macrophage model (Supplementary table 12).

We mimicked the effect of these targets’ KOs using in silico knockout simulations.
We used the calibrated state of both RA M1 and RA M2 macrophage models as
initial conditions for the simulations (Supplementary table 2 and Supplementary
table 4 respectively). Then, we compared the models' phenotype states after the
target knockouts to their corresponding calibrated states. Table 20 summarizes
the predicted therapeutic targets in both models.

To visualize the simulation results, we imported our models in an SBML qual for-
mat in the Cell Collective platform (232). The platform allows the simulation of
loss/gain of functions of user-defined nodes. As we can see it in Figure 42 and
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Figure 43, each point in the graphs provided by the platform represents the num-
ber of logical time steps in which the displayed node is active over a user-defined
number of time steps called sliding window (e.g. if the sliding window is 100, and
the node is active in 20 steps over the last 100 steps, the activity level displayed
at that point on the graph will be 20%).

NF-kB inhibition stimulated the M1 macrophage model’s death and inhibited the
M1 macrophage model’s growth (Figure 42). Its inhibition did not influence the
M2 macrophage model’s proliferation or apoptosis. Even though ERK1 inhibition
did not affect the M1 macrophage model’'s apoptosis, it did suppress its prolifer-
ation and reduce the release of most proinflammatory cytokines (CCL2, CSF2,
IFNG, IL-18, IL-1, IL-6, and TNF) in the model. It also blocked the synthesis of the
angiogenic factor VEGFA in the M2 macrophage model. GSK3p inhibition, on the
other hand, induced the M2 macrophage model’s proliferation while suppressing
its apoptosis (Figure 43).

Table 20. Single knockouts of the therapeutic targets from the TTD database that
perturb the RA macrophages' phenotypes.

Drug with highest

. T Associ :
arget arget type ssociated disease(s) status

Irritable bowel syndrome,
Successful Rheumatoid arthritis,
NF-kB Choreiform disorder,
target
Lupus erythematosus,
Multiple sclerosis, ...
Melanoma,
Clinical trial Pancreatic cancer, Cancer,
ERK1 target Arteries/arterioles BVD-523 (Phase 2)
disorder, Mature T-cell
lymphoma.
Myotonic disorder,
Acute myeloid leukemia,
Clinical trial Osteosarcoma, Fragile X Tideglusib (Phase
target chromosome, 2/3)
Myeloproliferative
neoplasm, ...

Sulfasalazine
(Approved)

GSK3B
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Figure 42. a) In silico simulation of the proliferation and apoptosis phenotypes in
the RA M1 macrophage model before the NF-kB KO. b) In silico simulation of the

proliferation and apoptosis phenotypes in the RA M1 macrophage model after the
NF-kB KO.
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Figure 43. a) In silico simulation of the proliferation and apoptosis phenotypes in
the RA M2 macrophage model before the GSK33 KO. b) In silico simulation of the
proliferation and apoptosis phenotypes in the RA M2 macrophage model after the
GSK3[ KO.

7.2.2 Double knockouts of the therapeutic targets present in the RA M1 and
M2 macrophage models

To investigate the potential synergistic effect of the previously tested therapeutic
targets on the models, the targets were combined in pairs. Both RA M1
macrophage and RA M2 macrophage models were used to predict the outcome
of their corresponding combined KO. We used the same initial conditions as for
the mono drug testing, then we compared the perturbed states with their
corresponding calibrated states.

We generated a list of all the possible unique pairs of the 71 previously identified
therapeutic targets in the RA M1 macrophage model. 2485 target combinations
were tested. Among these combinations, the Notch1/ERK1 pair and the
JAK1/JAK2 pair were predicted as combinations having a synergistic effect on the
model (Table 21). Indeed, ERK1 KO alone inhibited M1 macrophage model’s pro-
liferation. When combined with Notch1 KO, it also led to the promotion of the
M1 macrophage model’s apoptosis (Figure 44). JAK1 and JAK2 separate inhibi-
tions didn't perturb the macrophages models’ phenotypes either. When paired
together, they suppressed the M1 macrophage model’s proliferation and induced
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its apoptosis. All the other drug pairs didn't provide any addidive nor synergistic
effect on the models’ Apoptosis and Proliferation phenotypes. Apoptosis induc-
tion and proliferation suppression were only driven by NF-kB KO in the models.

We generated a list of all the possible pairs (without repetition) of the 60 previ-
ously identified therapeutic targets in the RA M2 macrophage model. 1770 target
combinations were tested. None of the drug combinations demonstrated a syn-
ergistic effect on the M2 macrophage model’'s phenotypes. Apoptosis suppres-
sion and proliferation activation were only driven by GSK3B knockouts in our
model.

Table 21. Combinations of therapeutic targets (from TTD database) that perturb the
RA macrophages’ phenotypes.

Synergistic Target Drug with
combination in Targets ¢ ge Associated disease(s) highest
the model yp status
Acquired
hypomelanotic
Successful disorder, AtOPIC Baricitinib
JAK1 taraet eczema, Crohn disease, (Approved)
9 Myeloproliferative PP
neoplasm, Pancreatic
cancer, ...
JAK1/JAK2 Acquired
hypomelanotic
disorder, Atopic
Successful eczema, Baricitinib
JAK2 . )
target Myeloproliferative (Approved)
neoplasm, Pancreatic
cancer, Rheumatoid
arthritis, ...
Melanoma, Pancreatic
ClerlcaI canFer, Can;er, BVD-523
ERK1 trial Arteries/arterioles
target disorder, Mature T-cell (Phase 2)
ERK1/Notch1 9 :
lymphoma
Clinical | ymphoma, Mature T-  1Y3039478
Notcht trial cell ymphoma, Cancer  (Phase 1/2)
target ymp '
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Figure 44. a) In silico simulation of the proliferation and apoptosis phenotypes in
the RA M1 macrophage model after ERK1 KO. b) In silico simulation of the
proliferation and apoptosis phenotypes in the RA M1 macrophage model after ERK1
and Notch1 KO.

7.2.3 Double knockouts of the receptors expressed by the RA M1 and M2
macrophages

Receptors, located on both the cell surface and within the cell, are the molecular
targets through which drugs produce their beneficial effects in various disease
states. They are coupled to various signal transduction systems located both
within the membrane and intracellularly and can therefore regulate responses to
the cellular/tissue microenvironment (305). These receptors can be targeted by
antibodies in clinics. The advent of antibody therapeutics has revolutionized the
pharmacological treatment of many rheumatic diseases, including RA (306).
However, various factors and multiple signaling pathways are involved in such
complex diseases; therefore, Monoclonal AntiBodies (MoAbs) are often
associated with drug resistance, and most studies on MoAb combination
therapies are still in the early stage (307). Bispecific AntiBodies (BsAbs) might treat
rheumatic diseases by taking advantage of the diversity of their functions
(306). Indeed, these antibodies have two binding sites directed at two different
receptors, which makes their clinical therapeutic effects superior to those of
MoAbs (308) with a lower rate of resistance. Approximately 70% of BsAbs in
clinical trials are for the treatment of oncological indications (309). Thus, a high
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unmet medical need in RA remains.

To investigate potential therapeutic targets for BsAbs in RA, we tested the effects
of double KOs of the cellular receptors present in both the M1 and M2 macro-
phage models. Receptors were combined two by two and both RA M1 macro-
phage and RA M2 macrophage models were used to predict the outcome of their
corresponding combined KOs. We used the same initial conditions as for the
mono and dual drug testing, then we compared the perturbed states with their
corresponding calibrated states.

406 double KOs were tested in the RA M1 macrophage model while 300 double
KOs were tested in the RA M2 macrophage model. None of these simulations
perturbed the RA macrophages models’ apoptosis or proliferation phenotypes.

7.3 Discussion

The number of macrophages in inflamed synovial tissue grows rapidly during the
course of RA, and their polarization plays a critical role in the physiological and
pathological progression of RA (310). Thus, selectively suppressing the M1
macrophages or boosting the M2 macrophage could be a promising strategy for
the treatment of RA. To investigate such complex mechanisms, we performed in
silico simulations on the calibrated RA M1 and M2 macrophage models to
investigate the effects of mono and bi-therapies on the RA macrophages'’
phenotypes.

NF-kB inhibition led to a selective suppression of the RA M1 macrophage model.
NF-kB represents a very attractive potential therapeutic target as it is a key tran-
scription factor of the M1 macrophages, responsible for the upregulated expres-
sion of M1 macrophage-derived cytokines in the RA synovium (311). Several stud-
ies support the concept of NF-kB inhibition for therapeutic interventions in in-
flammatory diseases, including RA (312-315). In RA, the in vitro inhibition of NF-
kB induces apoptosis in fibroblasts and contributes to a significant downregula-
tion of M1 markers and upregulation of M2 markers (87,316). This experimental
evidence validates the model’s response to NF-kB inhibition. Further investiga-
tions showed that the observed beneficial effects of NSAIDs and glucocorticoids,
both used for RA treatment, are also due to NF-kB inhibition (317-319). However,
their usage is limited due to severe side effects (320,321). Other NF-kB inhibitors
were identified but the majority of them do not meet the standards to reach clin-
ical development programs (322-325). Indeed, non-selective inhibition of NF-kB
in all cell types has multiple detrimental effects as it is critical for maintaining
homeostatic cellular pathways. Biological treatments that directly target the prod-
ucts of NF-kB-driven genes, such as TNF, IL-6 and IL-1 have been developed.
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However, the inhibition of a single cytokine is probably not optimal as various
cytokines have synergistic biological activities (326). This is further underlined by
the simulations performed on our models that mimic such treatments (anti-TNF,
anti-IL6, anti-IL1..) and fail to suppress the inflammatory RA macrophage popu-
lation alone. Therefore, the discovery of techniques for cell-type specific NF-kB
inhibition is needed to shift the benefit/risk balance (327).

Current strategies for a cell-specific uptake of substances are based on the devel-
opment of immunoliposomes/particles. Whole antibodies, or ligands are attached
to liposome/particle surfaces to achieve specificity for selective binding to recep-
tors expressed on the surface of the target cells (M1 markers in this case). After
receptor-mediated endocytosis, the encapsulated molecules are released into the
cell and can achieve their pharmacodynamic effect via interaction with their re-
spective intracellular targets. Another approach is based on recombinant proteins
named “armed antibody” and composed of tissue specific binding domains linked
to an effector domain. The armed antibody DEKAVIL is currently in the phase 1
clinical trial and showed first promising results in RA patients. DEKAVIL consists
of the human antibody F8, specific for the extra-domain A of fibronectin, linked
to the human anti-inflammatory cytokine IL-10. F8 exhibits a strong affinity to
cells from synovial biopsies and was shown to inhibit the progression of collagen-
induced arthritis (328). Despite a variety of already established strategies, there is
still an unmet need for targeted treatment approaches to inhibit NF-«B.

Regarding the RA M2 macrophage model, GSK3B was predicted as a promising
target leading to the promotion of M2 macrophage population in RA. GSK3p is
involved in the progression of a variety of diseases including RA (329). Evidence
suggests that this protein plays a central role in different signaling pathways that
are relevant to macrophage function including polarization and inflammatory re-
sponse (330). GSK3p inhibition in RA suppresses inflammatory responses in fibro-
blast-like synoviocytes and collagen-induced arthritis as well (331). Furthermore,
GSK3p inhibition in allergic rhinitis inflammatory disease increases the expression
of the M2 phenotypic signature markers (332). CREB1 is one of GSK3['s targets
(333). When GSK3 is inhibited, it induces CREB1 gain of function which, in turn,
sends an anti-inflammatory and antiapoptotic survival signal in monocytes and
macrophages (334). It also increases M2 marker expression and promotes M2
phenotype in murine macrophages (335,336). These findings validate the behav-
ior of the RA M2 macrophage model.

We also explored the synergistic effects that some therapeutic target pairs might
have on the macrophages models’ phenotypes. M1 macrophage model's prolif-
eration was suppressed by ERK1 knockout alone. When paired with Notch1 KO, it
also promoted M1 macrophage model’s death. Published literature validates the
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RA M1 macrophage model’s response to ERK1 Notch1 double KO. Indeed, po-
tential therapeutic value of co-targeting ERK1 and Notch1 have already been
demonstrated in cancer but not in RA. It has been shown that targeting Notch1
enhances the efficacy of ERK1 inhibitors in cancer patients (337,338). In RA, sep-
arate ERK1 and Notch1 inhibitions reduce inflammation in mouse collagen-in-
duced arthritis (339,340). Notch1 signaling, on the other hand, is known to regu-
late M1 macrophage fate through direct transcriptional regulation and indirect
metabolic regulation (341).

We also identified the JAK1/JAK2 pair as a potential drug combination for the RA
M1 macrophage model depletion. Baricitinib, an oral JAK inhibitor that is selective
for JAK1 and JAK2, is a Food and Drug Administration (FDA) approved for treating
RA (342). It prevents activation of STAT pathways and inhibits the cascade of tran-
scription initiation of effector genes which, in turn, prevents the autoimmune and
inflammatory reactions associated with RA including IFNg secretion (343). How-
ever, the way JAK inhibitors modulate macrophage’s phenotypes, and whether
this phenomenon explains their clinical benefit in RA is still not fully understood.
A recent study showed that Baricitinib modulated the expression of membrane
phenotype markers as well as the secretion of some signature cytokines in healthy
macrophages (342). Another study further supports the effect of JAKs inhibition
on RA macrophage’s phenotypes by shifting the metabolic profile of M1 macro-
phage and rebalancing the metabolic reprogramming toward oxidative phos-
phorylation (344).

We were also interested in investigating potential therapeutic targets for BsAbs
in RA, as their clinical therapeutic effects are superior to those of MoAbs with a
lower rate of resistance. We tested the effects of double KOs of the macrophages’
receptors represented in the models, but none of the KOs perturbed the apopto-
sis or proliferation phenotypes. These results underline the intricate crosstalk be-
tween the intracellular signaling pathways and the high synergistic activities of
the various receptors represented in the M1 and M2 macrophage models.

Taken all together, these results further validate the behavior of our macrophage
models through the identification of targets whose potential/proved therapeuti-
cal benefit in RA has already been highlighted in the literature. On the other hand,
the predicted synergistic effect of the newly identified ERK1/Notch1 combination
on our models still need to be validated experimentally in RA.

All files and scripts we used to run the simulations are publicly available at:
https://qitlab.com/genhotel/Large scale computational model-
ling of the M1 and M2 synovial macrophages in Rheumatoid Arthritis
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Chapter 8. Investigation of new therapeutic options in
RA using the RA multicellular model

8.1 Introduction

In the previous chapter, we investigated potential therapeutic options in RA by
focusing on the RA macrophage population. We utilized the RA M1 and M2
macrophage models to test mono- and bi-therapies that could specifically
downregulate pro-inflammatory macrophages and promote anti-inflammatory
macrophages in RA synovium. To do so, we focused on the apoptosis and the
proliferation phenotypes, the other macrophage-specific phenotypes were not
investigated. Moreover, while the RA macrophages models provide a detailed
representation of the phenotypic diversity of the macrophage population and
allow us to study cell-specific processes like apoptosis and proliferation, they do
not provide any information about the overall biological condition of the RA joint,
like inflammation, matrix degradation and angiogenesis. Besides, these models
can predict the effect of the tested drugs on the macrophage-specific phenotypes
present in the models but not the cellular responses of other cell-types present
in the synovium. Therefore, to investigate new therapeutic options in RA, we need
to perform simulations in a multicellular environment that considers the various
cell-types present in the RA synovium as well as their intercellular communication,
both involved in the disease pathogenesis.

In the prior steps of this work, we described how we built the first RA multicellular
map, a manually curated and enriched with extensive omics data analysis repre-
sentation of both inter and intracellular molecular mechanisms involved in RA's
pathogenesis. It includes four cell-types: the M1 macrophage, the M2 macro-
phage, the fibroblast, and the CD4+ Th1. We also demonstrated how we auto-
matically converted the RA multicellular map to a large-scale Boolean model that
we validated and calibrated using both prior knowledge and transcriptomic data.

In this chapter, the goal is to validate our calibrated multicellular model and sim-
ulation methods by identifying known therapeutic options, highighting their MoA
and even identifying new potential tagets and drug combinations. As this model
offers a comprehensive multicellular description of the RA synovium, we aim to
better understand how the suppression and/or activation of certain cell popula-
tions and/or biological processes could regulate chronic inflammation, cartilage
destruction and bone erosion in the rheumatic joint.
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8.2 Methods and results

8.2.1 Single knockouts of the therapeutic targets present in the RA
multicellular model

To identify potential therapeutic targets, present in the RA multicellular model,
we perform an exhaustive search using the Therapeutic Target Database (TTD)
(304). To simulate knockouts in the model, we only focus on the inhibition of the
drug target. We screen the targets based on the Mode Of Action (MOA) of their
associated drugs, and only keep the ones that can be targeted by at least one
inhibitor (1643 targets), as described in Chapter 8. Investigation of new
therapeutic options in RA using the RA multicellular model.

194 targets were present in the RA multicellular model (Supplementary table 13).
We mimic the effect of these targets’ KOs using in silico knockouts simulations.
We use the calibrated state of the RA multicellular model as initial conditions for
the simulations (Supplementary table 10). The models’ phenotype states after the
target knockouts are then compared to their corresponding calibrated states. Ta-
ble 22 summarizes the identified therapeutic targets and their effects on the
model’s phenotypes while Table 23 describes the identified targets.

In the previous chapter, we demonstrated that, in our model, GSK3p inhibition
induced M2 macrophage model’s proliferation while suppressing its apoptosis
(Figure 45). We also showed that NF-kBinhibition induced the M1 macrophage
model’s death and inhibited the M1 macrophage model’s growth, and that ERK1
inhibition suppressed the proliferation of the inflammatory macrophage model.

The simulations we performed on the multicellular model reinforce these results
by showing that GSK3[ KO had no effect on the other cell-types present in the
model, that NF-kB and ERK1 inhibitions suppressed the differentiation of the M1
macrophage model into osteoclasts (Figure 46) and that NF-kB KO perturbed the
behavior of other cell-types in the model (Table 22).

We can see that CAV1 KO induced the apoptosis of the RA fibroblast model while
suppressing its proliferation and migration (Figure 47). AKT2 KO on the other
hand inhibited its proliferation and migration while preserving its ability to resist
apoptosis. CREB1 inhibition led to the suppression of the RA fibroblast model's
proliferation but had no effect on the migration or apoptosis phenotypes. We can
also see that the migration phenotype in the fibroblast model can be suppressed
via NF-kB inhibition.
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Regarding the Th1 subtype model, two targets were identified, namely mTOR and
TBX21. The inhibition of these targets led to the suppression of both the prolifer-
ation and migration phenotypes in the model and to the activation of the Th1
apoptosis phenotype. NF-kB KO, on the other side, inhibited both the prolifera-
tion and migration phenotypes while preserving the resistance to apoptosis in
the Th1 model (Figure 48).

Potential therapeutic targets that perturb the general biological condition of the
RA joint were also predicted. MIR221 inhibition led to the suppression of the an-
giogenesis phenotype in the multicellular model (Figure 49), and NF-kB inhibition
suppressed the degradation of the extracellular matrix phenotype (Figure 50).

Table 22. Therapeutic targets from TTD database that perturb RA phenotypes in the
RA multicellular model. Red arrows describe the inhibition of the phenotypes that
were active in the calibrated state of the model. Green arrows describe the
activation of the phenotypes that were inhibited in the calibrated state of the model.
The absence of arrows means that the phenotype state remains unchanged.
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Table 23. Description of the therapeutic targets perturbing the RA phenotypes in
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the RA multicellular model.

Successful . : Drug with the
T A .
targets arget type ssociated disease(s) highest status
Literature-
CAVI reported target / /
AKT2 Literature- / Akt mh@tor VIII
reported target (Investigative)
CREB1 Literature- / /

reported target

Irritable bowel syndrome,
Rheumatoid arthritis,

NF-«kB Successful Choreiform disorder, Lupus Sulfasalazine
target (Approved)
erythematosus,
Multiple sclerosis...
TBX21 Literature- / /
reported target
Arteries/arterioles disorder,
Successful Chrom; myelomonocytic Everolimus
mTOR target leukemia, Hydrocephalus, (Approved)
Multiple myeloma, Renal
cell carcinoma
Melanoma, Pancreatic
. . cancer, Cancer,
ERK1 Clinical trial Arteries/arterioles BP\:]D-5223
target disorder, Mature T-cell (Phase 2)
lymphoma
Myotonic disorder, Acute
myeloid leukemia,
GSK3p Clinical trial Osteosarcoma, Tideglusib
target Fragile X chromosome, (Phase 2/3)
Myeloproliferative
neoplasm
MIR221 Literature- / /

reported target
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A B

GSK3B ON in the RA multicellular model GSK3B OFF in the RA multicellular model

Activity level
Activity level

Time (Steps) Time (Steps)

M2 macrophage apoptosis

M2 macrophage proliferation

Figure 45. A) In silico simulation of the M2 macrophage cell-specific phenotypes
before GSK3B KO. B) In silico simulation of the M2 macrophage cell-specific
phenotypes after GSK3 KO.
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A NFKB ON in the RA multicellular model B NFKB OFF in the RA multicellular model

Activity level
Activity level

Time (Steps) Time (Steps)

M1 macrophage apoptosis

M1 macrophage proliferaticn

M1 macrophage osteoclastogenesis

Figure 46. A) In silico simulation of the M1 macrophage cell-specific phenotypes
before NF-kB KO. B) In silico simulation of the M1 macrophage cell-specific
phenotypes after NF-kB KO.

127




A

CAV1 ON in the RA multicellular model CAV1 OFF in the RA multicellular model

Activity level
Activity level

Time (Steps) Time (Steps)

Fibroblast apoptosis

Fibroblast proliferation

Fibroblast migration

Figure 47. A) In silico simulation of the fibroblast cell-specific phenotypes before

CAV1 KO. B) In silico simulation of the fibroblast cell-specific phenotypes after CAV'1
KO.
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A B
TBX21 ON in the RA multicellular model TBX21 OFF in the RA multicellular model

Activity level
Activity level

Time (Steps)

Time (Steps)
Th1 apoptosis

Th1 proliferation

Th1 migration

Figure 48. A) In silico simulation of the Th1 cell-specific phenotypes before TBX21
KO. B) In silico simulation of the Th1 cell-specific phenotypes after TBX21 KO.

A B

MIR221 ON in the RA multicellular model MIR221 OFF in the RA multicellular model

Activity level
Activity level

Time (Steps) Time (Steps)

Angiogenesis

Figure 49. A) In silico simulation of the Angiogenesis phenotype before MIR221 KO.
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B) In silico simulation of the Angiogenesis phenotype after MIR221 KO.

A B
NFKB ON in the RA multicellular model NFKB OFF in the RA multicellular model
E K
3 2
Time (Ste:ps) ' . . . . 7 7 Time (Steps)
== [atrix degradation

Figure 50. A) In silico simulation of the Matrix degradation phenotype before NF-
kB KO. B) In silico simulation of the Matrix degradation phenotype after NF-«kB KO.

8.2.2 Double knockouts of the therapeutic targets present in the RA
multicellular model

To investigate the potential synergistic effect of the previously tested therapeutic
targets on the model, the targets were combined in pairs. The RA multicellular
model was then used to predict the outcome of these double KOs. We used the
same initial conditions as for the mono drug testing, then we compared the
perturbed states with their corresponding calibrated state.

We generated a list of all the possible pairs (without repetition) of the 194 previ-
ously identified therapeutic targets. 18721 drug combinations in total were
tested. Among these combinations, three pairs having a synergistic effect on the
model were predicted, namely ERK1/NOTCH1, JAK1/JAK2 and NF-kB /STAT3. Ta-
ble 24 summarizes the identified synergistic pairs and their effects on the model’s
phenotypes while Table 25 describes the identified targets.

In the previous chapter, we already predicted ERK1/NOTCH1 and JAK1/JAK2 as
promising combinations. We demonstrated that ERK1 KO alone inhibited the M1
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macrophage model's proliferation. When combined with Notch1 KO, it also led
to the promotion of the M1 macrophage model’s apoptosis. We also showed that,
when paired together, JAK1 and JAK2 KOs suppressed the M1 macrophage
model’s proliferation and induced its apoptosis.

The simulations we performed in this chapter further support these results and
show a stronger impact of these double KOs at the multicellular level. Indeed,
both ERK1/Notch1 and JAK1/JAK2 KOs lead to the suppression of the osteoclas-
togenesis phenotype in the M1 macrophage model, and JAK1/JAK2 double KO
inhibits the inflammation phenotype in the model (Figure 51).

A new target pair was predicted in the model as well. The combination of NF-kB
and STAT3 KOs inhibits the differentiation of the osteoclast precursor cells in the
RA synovium (Osteoclastogenesis phenotype) as described in Figure 52.

Table 24. Combinations of therapeutic targets (from TTD database) that perturb RA
phenotypes in the RA multicellular model. . Red arrows describe the inhibition of
the phenotypes that were active in the calibrated state of the model. Green arrows
describe the activation of the phenotypes that were inhibited in the calibrated state
of the model. The absence of arrows means that the phenotype state remains
unchanged.
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Table 25. Description of the therapeutic targets perturbing the disease phenotypes
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in the RA multicellular model.

Synergistic Drug with
combinationin  Targets Target type  Associated disease(s) highest
the model status
Acquired
hypomelanotic
disorder, Atopic
Successful eczema, Crohn Baricitinib
JAK1 .
target disease, (Approved)
Myeloproliferative
neoplasm, Pancreatic
cancer, ...
JAK1/JAK2 —
/ Acquired
hypomelanotic
disorder, Atopic
Successful eczema, Baricitinib
JAK2 . .
target Myeloproliferative (Approved)
neoplasm, Pancreatic
cancer,
Rheumatoid arthritis, ...
Melanoma, Pancreatic
cancer, Cancer,
Clinical trial Arteries/arterioles BVD-523
ERK1 .
target disorder, (Phase 2)
ERK1/Notch1 Mature T-cell
lymphoma
Clinical trial ~ -YMPhoma Mature -\ 330,78
Notch1 target T-cel (Phase 1/2)
9 lymphoma, Cancer
Irritable bowel
syndrome, Rheumatoid
Successful arthritis, Sulfasalazine
NF-kB . .
target Choreiform disorder, (Approved)
Lupus erythematosus,
NF-kB/STAT3 Multlplfe s'cleros.ls,
Psoriasis, Brain
cancer,
Successful  Colorectal cancer, Liver Acitretin
STAT3 .
target cancer, Malignant (Approved)

digestive organ
neoplasm.

132



JAK? and JAK2 ON in the RA

JAK1 and JAK2 OFF in the RA
multicellular model

multicellular model

Activity level
Activitv level

Time (Steps) Time (Steps)

Inflammation

Figure 51. A) In silico simulation of the Inflammation phenotype before JAK1/JAK2
KO. B) In silico simulation of the Inflammation phenotype after JAK1/JAK2 KO.
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A B
NFKB and STAT3 ON in the RA NFKB and STAT3 OFF in the RA
multicellular model multicellular model
. Time (Steps) Time (Steps)
Osteoclastogenesis

Figure 52. A) In silico simulation of the Osteoclastogenesis phenotype before NF-
kB/STAT3 KO. B) In silico simulation of the Osteoclastogenesis phenotype after NF-
kB /STAT3 KO.

8.3 Discussion

Various immune and non-immune cellular types, including macrophages, T cells,
B cells, fibroblasts and endothelial cells are found in the joint synovium of RA
patients. These cells communicate with one another through pathological cell-
cell interactions that occur within a specific and defined environment known as
the synovium. Therefore, to test new therapeutic options in RA and accurately
predict the effects of the tested drugs, we need a multicellular environment that
considers both the heterogeneity of the cellular responses to these drugs and the
intricate intercellular communication taking place in the RA synovium.

To investigate such complex mechanisms, we ran in silico simulations on the cal-
ibrated RA multicellular model, and tested the effects of mono- and bi-therapies
on the cellular behavior of the various cell types present in the model as well as
the overall pathological state of the arthritic joint.

We predicted AKT2, belonging to the serine/threonine kinase family, as a poten-
tial target for inhibiting both RA fibroblast's proliferation and migration pheno-
types in our model. It has been proven that the PI3K/AKT signaling pathway is
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correlated with the occurrence and development of RA (345). Several studies sup-
port the concept of AKT2 inhibition for therapeutic intervention in RA. They
showed that blocking AKT pathway inhibits RA progression (346). They also
demonstrated that in vitro siRNA-mediated down-regulation of AKT2 signifi-
cantly prevented cell proliferation and migration of human RA fibroblasts
(347,348).

We also identified Caveolin 1 (CAV1) as a potential target for inducing the apop-
tosis phenotype and inhibiting the proliferation phenotype and the migration
phenotype in the RA fibroblast model. CAV1 is one of the major structural com-
ponents of caveolae and has a number of signaling functions. Regarding inflam-
matory disorders, CAV1 could either prevent or induce inflammation, depending
on cellular context (349). In RA, in vitro silencing of CAV1 drastically reduces cell
proliferation and promotes apoptosis in human RA fibroblasts (349,350). On the
other hand, enforced expression of CAV1 in RA fibroblasts restores cell prolifera-
tion and attenuates apoptosis (349). CAV1 was also demonstrated to drive re-
sistance to apoptosis in a large-scale Boolean model describing the RA fibroblasts
(220).

Simulations of CREB1 KO in the model led to the inhibition of the proliferation
phenotype in the RA fibroblast model while maintaining its capacity to resist
apoptosis. This inhibitory effect was demonstrated in an experimental study
where in vitro suppression of CREB activity downregulates aberrant synovial cell
functions in patients with RA via the suppression of the RA synovial fibroblast's
proliferation (351). CREB1 effect on the cellular proliferation was also highlighted
through in silico simulations performed on a published large-scale Boolean
model of RA fibroblasts (220). These results further validate the behavior of our
model and highlight AKT2, CREB1, and CAV1 as promising targets for downreg-
ulating hyperactive fibroblasts in the rheumatic joint.

Regarding the RA macrophage models, GSK3p inhibition induced the M2 macro-
phage model's proliferation while suppressing its apoptosis. In contrast, NF-«kB
inhibition induced the M1 macrophage model’s apoptosis and inhibited the M1
macrophage model’s growth. ERK1 inhibition, on the other hand, had no effect
on the apoptosis phenotype, but suppressed the M1 macrophage model’s prolif-
eration. These results were already described in detail in Chapter 8. Investigation
of new therapeutic options in RA using the RA multicellular model. However, sim-
ulating NF-kB KO in the multicellular model further revealed that it affects other
macrophage-specific phenotypes by inhibiting the osteoclastogenesis phenotype
in the M1 macrophage model. It also affects other cell-types via the suppression
of the migration phenotype in the RA fibroblast model, the proliferation and mi-
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gration phenotypes in RA Th1 subtype, and degradation of the extracellular ma-
trix phenotype. These results are supported by experimental evidence. Indeed,
researchers have demonstrated that NF-kB mediates the transcriptional activation
of several Matrix MetalloProteinases (MMPs), responsible for the destruction of
the extracellular matrix and the articular cartilage in RA (352). NF-kB activation
was found necessary for the induction of MMP3, MMP9, and MMP13 expression
(353-355) and the inhibition of NF-kB signaling was found to block the expression
of these MMPs (356). Blockade of the MMPs expression in the RA synovium leads
to the suppression of RA synovial fibroblast's migration and invasion (357).

The critical importance of NF-kB in bone turnover was also highlighted experi-
mentally. Double-knockout NF-kB1-/- NF-kB2-/- mice develop a defect in osteo-
clasts, showing critical functions of NF-kB proteins in the development of this cell
lineage (358). Furthermore, it was shown that inhibition of NF-kB was an effective
approach to inhibit osteoclast formation and bone resorptive activity, and that
blocking nuclear activation of NF-kB displays anti-inflammatory and anti-osteo-
lytic benefits (359,360).

In addition, several studies have described a role of NF-«kB in Th1 differentiation.
They showed that Th1 responses were significantly impaired and IFN-g produc-
tion was abrogated due to diminished NF-kB activation (361,362). Another study
in transgenic mice whose T cells lack the NF-«kB/Rel signaling pathway shows that
NF-kB plays a role in Th1-dependent hypersensitivity responses (362).

Also, we predicted two potential therapeutic targets to downregulate the RA
CD4+ Th1 model, namely mTOR and TBX21. TBX21 (or T-bet) is a Th1-specific T
box transcription factor that controls the expression of the hallmark Th1 cytokine,
IFNg (144). Studies demonstrated that silencing of T-bet significantly suppressed
IFNg and IL-17 gene expression and improved the pathogenesis of arthritis in CIA
mice (363). Furthermore, CD4+ cells from T-bet-/- mice are skewed toward an
anti-inflammatory Th2 differentiation via the expression of high levels of GATA-
3. GATA-3 gain of function, after TBX21 depletion, was also highlighted in the KO
simulations we performed on the RA multicellular model. Hence, regulation of the
T-bet/GATA-3 ratio can reduce inflammatory damage to RA cells, and the mech-
anism may be related to the regulation of the Th1/Th2 ratio of RA cells through
T-bet depletion (364).

Mechanistic Target Of Rapamycin (mTOR) has been found to play important roles
in Th1 cell development as well. It was found that CD4+ T cells deficient of mTOR
failed to differentiate into effector Th1 cells, and that mTOR regulates Th1 cell
differentiation through STAT4 and SOCS3, which then regulate T-bet expression
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(365). In RA, mTOR inhibition has shown efficacy in reducing joint inflammation
in animal models of arthritis (366) and in patients with RA (367).

We also predicted potential therapeutic targets that reduce inflammation and an-
giogenesis in the rheumatic joint. JAK1/JAK2 double KO was already predicted in
the previous chapter as a promising synergistic combination for the depletion of
RA M1 macrophage model. Here we show that it also inhibits the inflammation
and osteoclastogenesis phenotypes in the RA multicellular model. Baricitinib, an
oral JAK inhibitor that is selective for JAKT and JAK2, is a Food and Drug Admin-
istration (FDA) approved for treating RA (342). It prevents activation of STAT path-
ways and inhibits the transcription initiation of effector genes which, in turn, de-
creases the systemic inflammation and the progression of bone destruction as-
sociated with RA (343,368).

MIR221, on the other hand, downregulated the angiogenesis phenotype in the
model. MIR221 was shown to downregulate THBS1, which acts as an anti-angio-
genic factor on endothelial cells (369). Thus, inhibiting MIR221 would restore
THBS1 expression, which, in RA, was found to help restore tissue homeostasis
during resolution of inflammation (370).

A new combination was also predicted in the model. NF-kB and STAT3 double
KO inhibited the differentiation of osteoclast precursor cells in the RA multicellu-
lar model. Whether normal or pathological, osteoclastogenesis strictly depends
upon support from accessory cells which supply cytokines required for osteoclast
differentiation (371). CSF1, RANKL, TNF-a and IL-6 have been found to induce the
differentiation of osteoclasts and the bone resorption activity in RA patients (372).
STAT3 and NF-kB are essential transcription factors for the expression of these
osteoclastogenic factors’ expression (373-376); therefore, targeting both STAT3
and NF-kB could be a promising strategy to inhibit bone erosion in RA.

The identification of therapeutic targets whose potential/proven value has al-
ready been highlighted in RA further validates our multicellular model. Taken all
together, these results show that our approach provides a better understanding
of the signalling pathways associated with these targets as well as their mecha-
nisms of action in a disease and cell-specific manner. On the other hand, the po-
tential new drug combinations that we predicted as having a synergistic effect on
the RA multicellular model still need to be validated via in vitro experiments, but
further demonstrates the power of executable mechanistic modelling to enable
rapid screening of combination therapies.
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General discussion

The main results and outputs that were expected from this work are defined in
the CIFRE PhD project proposal section that describes the initial proposal made
to the ANRT for this PhD project. These outputs are the following:

e Multiscale models of Rheumatoid Arthritis networks easy to maintain and
upgrade.

e Simulated models for RA fully operational and easy to maintain able to
simulate the pathogenesis.

e Better understanding of the disease with a full up to date knowledge
base on RA.

e Increase Sanofi's skills/capabilities in the domain of disease map and
Boolean based model simulation.

We were able to complete all of the required deliverables. Indeed, we started this
PhD work with the creation of the first molecular interaction maps that describe
the most abundant cell populations in the RA synovium: the macrophages (in-
cluding the M1 and M2 phenotypes), the fibroblasts and the CD4+ T helper 1
(Th1) subtype. These maps recapitulate existing knowledge related to the intra-
cellular interactions involved in RA pathogenesis in a cell-type specific manner.
Maps are primarily based on high-quality manual curation of scientific literature
and enrichment and cross-validation using expression datasets. All the compo-
nents and reactions in the RA atlas are annotated using RA and human-specific
studies and datasets. A thorough description of the methodology used to build
the RA-Atlas is available in our open access publication (285). Moreover, the RA
cell-specific  molecular interaction maps are freely accessible at
https://ramap.uni.lu/minerva/ and can be used as an interactive knowledge base,
using the platform MINERVA, and serve as a template for overlaying multiple da-
tasets.

Going one step further, we were able to provide a multicellular representation of
the RA synovium by constructing the RA multicellular molecular interaction map.
It is the largest manually curated map to date and the only one providing a mul-
ticellular representation of the RA synovium. The RA multicellular map is a state-
of-the-art atlas of the rheumatic joint that describes manually curated intra- and
intercellular interactions involved in the disease’s pathogenesis. This map will be
made available soon as an online interactive map on the platform MINERVA.

To build the RA multicellular map, we connected the RA cell-specific maps to-
gether via the addition of bidirectional intercellular interactions that were identi-
fied using both literature and databases mining in a disease- and cell-specific
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manner. The number of identified interactions from the literature and databases
varied depending on the amount of information we could gather on the cell type
under investigation in published articles. Studies on the interactions of fibroblasts
and macrophages with their surroundings for instance were considerably easier
to find than those on CD4+ Th1 contact with other cells. It also varied depending
on the number of ligands and receptors we had in each cell-specific map.

We also inferred cell-to-cell communication from transcriptomic datasets. For
each bidirectional cell-cell interaction pair, we used two dedicated tools,
ICELLNET and DiSiR, that we applied on disease- and cell-specific datasets. The
heterogeneity and scarcity of data regarding the synvial cell-types under study
were a limitation at this point of the work. To overcome this and to ensure reliable
and consistent results, we filtered the identified interactions using stringent crite-
ria. As a counterpart, we may also have filtered out potential interesting and new
intercellular interactions to investigate in RA disease.

The RA multicellular map can be expanded with additional cell-specific maps to
include a variety of other cells such as B lymphocytes, dendritic cells, plasma cells,
mast cells, osteoclasts and chondrocytes, all involved in RA pathogenesis (4).
These maps could be connected to the existing ones through the identification
of additional intercellular interactions. Moreover, as several studies have high-
lighted the presence of various metabolic checkpoints in RA (377), It would be
interesting to integrate relevant metabolic pathways to better understand the in-
tricate interactions between metabolic pathways and the inflammatory and im-
mune responses.

To understand the emergent features and behaviors of the biological systems
described in our maps, we needed to integrate dynamical modeling approaches.
Boolean formalism was the most suited option in our case as Boolean models can
handle such large-scale systems and the regulation of these model’'s components
is given in a parameter-free way, without the need for kinetic parameters and
precise quantitative data. Boolean models can be constructed manually. However,
defining the logical rules of a model by hands requires not only high amounts of
experimental data, but also of time and efforts in retrieving the relevant infor-
mation from published literature. Because it is impossible to cope with the very
high number of components present in large-scale biological systems, research-
ers study smaller and smaller parts and attempt to understand the whole systems.
Small models are efficient in answering very specific biological questions about a
limited number of genes or proteins.
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Leaving out parts of the biological system we wanted to study was not a viable
option for us as our main objective in this work was about providing a multicel-
lular system-level representation of the RA joint including the intricate cell-cell
interactions in RA as well as the complex intracellular cascades and their regula-
tion. We also needed to preserve all the information available in the maps we
built in order to be able to understand the mechanism of action of the current RA
therapies and to try to identify new therapeutic options that were not highlighted
in the literature.

Therefore, we used the tool CaSQ to automatically infer the logical rules of our
models from the topology of the maps. The generated models are far larger in
size compared to the manually built ones, providing more accurate representa-
tions of the systems (238). These large-scale models, on the other hand, are more
complex, with a substantially higher number of inputs, making it computationally
challenging to identify all their possible attractors (293). Furthermore, even when
the attractors of such big models can be identified, the identification of the states
that are biologically consistent in a cell or disease specific context remains chal-
lenging.

In this direction, we developed an efficient computational framework to build,
analyze and validate the behaviors of large-scale Boolean models. The framework
analyzes the generated Boolean models in a synchronous scheme using a new
prototype of the BMA console tool (294), set up for this purpose, deployed to
HPCs and validates their behaviors using gene expression datasets and prior
knowledge. We successfully applied our framework to explore the RA cell-specific
maps in an integrative and combinatorial manner. We also applied our framework
on the RA multicellular map to generate and calibrate the largest Boolean model
to date (our model comprises more than 1000 nodes while the the average num-
ber of nodes in published Boolean models is 150), demonstrating the method's
efficiency and scalability.

Our framework sets the path to explore many other state-of-art mechanistic maps
that were already published for several diseases including Parkinson’s (166), Alz-
heimer’s (167), cancer (169), asthma (170), and more recently COVID19 (171).

We made a significant effort in this work to implement the FAIR principles (288).
The maps are freely available and are part of the Disease Map community project
(9,171), which makes their dissemination easier. Their content is compliant with
SBGN PD for the representation, MIRIAM for the annotations, PMIDs and stable
identifiers for the references, and HGNC symbols for the annotation of the sig-
naling and gene regulation components. The Boolean models, on the other hand,

140



are available in SBML qual and JSON files, allowing for transparency, interopera-
bility and reusability, and promoting open science.

The RA multicellular map and model that we were able to construct in this project
are the largest multicellular static and dynamic representations of the RA syno-
vium to date. Indeed, models and networks for RA have already been proposed.
Large-scale networks were inferred using gene expression data (293,378,379).
They were built using the influence interaction approach that relates the expres-
sion of a gene to the expression of the other genes in the cell and then infer gene-
to-gene interaction. Such networks are often noisy, and rely on putative, not man-
ually curated interactions. RA models based on differential equations were also
published (380,381). They describe the dynamics of signaling pathways by trans-
lating them into rate equations. These quantitative executable models are limited
in terms of size and cannot be used to describe entire cellular pathways. Already
published large-scale Boolean models for RA overcome the size limitation. How-
ever, they remain smaller compared to our model, they only focus on the active
role of fibroblasts in RA and do not consider cell-cell communication (220,382).

We integrated various gene expression datasets in this work. We carefully se-
lected the relevant datasets and used disease and cell-specific ones when possi-
ble. However, macrophage, fibroblast, and Th1 samples from the synovium of RA
patients were scarce and rarely available within the same datasets. Therefore, we
had to utilize monocyte samples rather than macrophage samples for some parts
of the work, and to combine datasets coming from independent studies. Besides,
as phenotype-specific samples of the RA synovial macrophages were not availa-
ble, we also had to use healthy M1 and M2 macrophage samples instead. There-
fore, having access to more RA synovial samples of the cell-types of interest
would improve the robustness of our approach. As RA is a disease of great het-
erogeneity, we would also need to implement a strategy to handle inconsistencies
between these omics datasets.

To test the behavior of the RA Boolean models against gene expression datasets,
we assumed a positive correlation between the expression of mRNAs and the
expression of their corresponding proteins, which allowed us to connect experi-
mentally observed expressions at the mRNA level with nodes at the protein level
in the models. Published studies showed an overall positive correlation between
MRNA and protein expression levels, which suggests that mRNA expression can
be useful, but is certainly far from perfect, in predicting protein expression levels
(383). Therefore, integrating multi-omics datasets with transcriptomics (single cell
RNA-seq in particular) and proteomics layers, for instance, would help improve
the proposed methodology. Furthermore, multi valued qualitative models may
be envisioned to consider biomolecules that are not differentially expressed in
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these omics datasets, such as housekeeping genes. However, more computing
power would be required to cope with the exponentially increasing complexity of
these models.

To calibrate the RA Boolean models, synchronous update was used to perform
the attractor search, and stable states were tested against prior knowledge and
gene expression datasets. It would be interesting to investigate more complex
attractors using both synchronous and asynchronous modes. Even if it is difficult
to estimate how the calibrated states of the model would change when the up-
dating scheme is modified, identifying the models’ attractors in both synchronous
and asynchronous mode, and testing these attractors against prior knowledge
and omics datasets could help understand the effects of these changes on the
models’ predictions.

Other promising approaches that use molecular interaction maps are being de-
veloped. They are based on machine and deep learning methods that utilize bio-
logical networks and experimental high-throughput data as inputs to predict, for
instance, proteins interactions (384), proteins functions (385,386), Drug—target
interactions (387), and disease diagnosis (388). This kind of approach could be
used to further explore the RA cell-specific and multicellular maps that we created
and might complement the methodology we propose.

Researchers interested in using our molecular interactions maps to study specific
pathways or phenotypes in a quantitative manner can also opt for exporting sub-
parts of the XML files we provide. The exported biochemical networks can then
be used as a basis to build quantitative models and simulate their behavior using
ordinary differential equations, stochastic differential equation, or Gillespie's sto-
chastic simulation algorithm, all available via the tool COPASI (COmplex PAthway
Simulator) (389).

To study the therapeutic options in RA, first, we focused on the synovial macro-
phages. The number of macrophages in the inflamed synovial tissue grows rapidly
during the course of RA, and their polarization into a proinflammatory M1 or an
anti-inflammatory M2 phenotype plays a critical role in the pathological progres-
sion of RA (310). Thus, selectively suppressing the M1 macrophages or boosting
the M2 macrophages could be a promising strategy for the treatment of RA. In
this direction, we simulated single and double KOs in the calibrated RA M1 and
M2 macrophage models. The models predicted NF-kB, JAK1/JAK2, and
ERK1/Notch1 as potential targets to selectively suppress pro-inflammatory RA
macrophages. The models also predicted GSK3p as a promising target to promote
anti-inflammatory RA macrophages.
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We were also interested in studying the cellular behavior of the other cell-types
present in synovium as well as the biological processes affecting the overall con-
dition of the RA joint like inflammation, matrix degradation or angiogenesis. In
this direction, we tested new therapeutic options in a multicellular setting by sim-
ulating single and double KOs in the calibrated RA multicellular model. We iden-
tified AKT2, CAV1 and CREB1 as promising targets to limit the invasive behavior
of the RA fibroblast model. We showed that mTOR and TBX21 inhibition down-
regulates hyperactivity in the CD4+ Th1 model, that MIR221 inhibition reduces
angiogenesis in the model, and that the inhibition of the NF-kB /STAT3 pair sup-
presses bone erosion phenotype in the RA multicellular model. Additional effects
of NF-kB and JAK1/JAK2 inhibitions on the multicellular level were also revealed.
Inhibiting NF-kB suppresses the differentiation of the M1 macrophage model into
osteoclasts, decreases the hyperactivation of the fibroblast and Th1 models and
regulates the degradation of the extracellular matrix phenotype. Inhibiting
JAK1/JAK2, on the other hand, was found to downregulate inflammation and
bone destruction phenotype in the model.

The in silico simulations we performed further validate our models via the identi-
fication of therapeutic targets whose potential/proven value has already been
documented in RA. Our model provides a better understanding of the signalling
pathways associated with these targets as well as their mechanisms of action in a
disease and cell-specific manner. To enhance the number of identified therapeu-
tic targets and combinations, we could expand our approach to include all the
nodes in our models, instead of only targeting proteins in TTD database. We
would perform in silico simulations of single and double KOs of all the models’
components and retrieve the ones that are able tu perturb the cellular pheno-
types. This would generate a massive amount of data to be analyzed but could
help us identify new targets that have not been highlighted in RA yet.

To further validate the behavior of the calibrated models and to test the gener-
ated predictions, this work would benefit greatly from the integration of addi-
tional single cell RNA-seq data, in particular from patients before and after treat-
ment. It would also benefit from in vitro experiments that target the proposed
pathways/factors while measuring cellular processes like apoptosis, proliferation
or inflammation. The synergies we predicted with our models need also to be
validated experimentally using Bliss definition of drugs independence (390).

To conclude, we contribute, with this PhD work, to a better understanding of RA
at the multicellular level through an efficient computational system biology ap-
proach. We provide a detailed representation of the structure and dynamics of
the intricate cell-cell communication in RA as well as the complex intracellular
cascades and their regulation in this disease. We also validate our approach by
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identifying therapeutic targets that are already validated or currently under inves-
tigation in RA, highighting their mechanism of action in a disease- and cell-spe-
cific manner, and proposing new potential drug combinations in RA for in vitro

validation as well.
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ANNEX A

Supplementary Data

Supplementary table 1. The list of differentially expressed genes present in the RA
M1 macrophage model that we identified using literature search and omics data
analysis. . The first column contains the DEGs HGNC names. The second and fifth
columns contain their corresponding Boolean values (after data discretization) ob-
served in GSE97779 dataset and literature respectively.

DEG Boolean Adjusted  |logFC [Boolean [Reference
value in p_value value in
GSE97779 literature
C5A 1 29220376
PRKCD 1 0,0008 0,86
BAD 0 0,02492 -0,42
STAT2 1 27626941
IRF9 1 0,00987 065 |1 27626941
INHBA 1 13130463
SMAD4 0 0,012 -0,46
CASP1 1 0,03031 0,71
SIRT1 0 0,0284 -061 |0 25799392
CCL21 1 21225692
PRKCQ 1 0,0037 1,53
INHBB 1 26359667
TRAF6 0 0,00612 -0,73
SMAD7 1 7,88E-05 2,17
INPP5A 1 0,0091 0,9
DUSP1 1 559E-07 W4,17
PRKG1 1 0,00311 2,17
ACVR2A 0 0,01746 -0,79
ACVR2B 0 0,00045 -2,85
BCL2 1 0,01417 1,67
BCL2L1 1 28118944
BCL2L11 1 0,0833 1,78
BCL3 1 0,04434 0,42
BIRC2 1 0,00425 0,594
C5AR1 1 29220376
CASP3 0 0,00542 -0,86
CASP7 1 0,00655 0,96
CCL2 1 33330982
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CCR2 1 7,69E-07 5,85

CFLAR 1 0,0029 0,8 1 12228167
CSF2RA 1 0,00287 1,11 1 24936585
CSF2RB 1 0,00099 093 | 24936585
CXCL1 1 7561066
FAS 1 0,0005 2,45

FOS 1 299E-08 393 |1 27626941
GNA13 1 0,00017 1,62

GNAI3 1 0,00098 0,72

GNB1 1 0,00507 0,47

HLA-B 1 0,02221 0,42

HRAS 1 0,00388 0,94

IFNA1 1 0,00831 2,43

IFNB 1 15878901
IFNGR1 1 0,01789 1,35 |1 25708927
IFNGR2 1 0,00415 0,67 |1 25708927
IL11 1 29327326
IL12RB1 1 0,00343 1,29

IL18 1 10562301
IL18R1 1 0,00057 3,64

IL1RAP 1 0,00018 2,73

IL23 1 25799392
IL6 1 0,02477 1,56

IL6ST 1 0,01567 0,56

IL8 1 10491366
IRF7 1 1,89E-05 2,44 |1 22614743
JAKT 1 0,00433 1

JAK2 1 0,0011 2,3

LILRB1 1 0,0015 0,96

MAP2K1 1 0,0001 1,12

MAP2K?2 1 0,00845 0,64

MAP2K3 1 0,00258 1,03

MAP2K6 1 0,02686 1,78

MAPK14 0 0,0243 -0,61

MAPK3 1 17907188
MAPK8 1 0,00374 0,71

MAPKAPK?2 1 0,00399 0,78

MCL1 1 0,00118 1,39 |1 17009247
MDM2 0 0,01706 -1,06
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MYC 1 0,00027  [1,66
NFAT5 1 001494 [0,97

NFKB1 1 0,00235  [0,89 8630106
NFKBIA 1 0,00021 (0,98

NFKBIE 1 0,01037  [0,79

NLRP3 1 8,50E-06 4,44

OPN3 0 0,00517  |-0,87

PPIA 1 001626  [1,05

PTK2 1 0,00073  [1,87

PTPN6 1 2,86E-05 |1

RACT 1 003366  [0,44

RAF1 1 001113 |1

RBP) 1 3,82E-05 2,5

RELA 1 001152 (0,66

SMAD?2 0 001636  |-0,45

SOS1 1 001592  [1,32

STAT1 1 0,00057 [2,22 22614743
STAT3 1 0,00043 (0,89

STAT4 10779770
STAT5B 1 0,00037 2,34

SYK 0 0,03668  |-0,38

TLR1 1 121E-06  [1,65

TLR2 1 8,13E-07 [2.2 15146415
TLR4 0 001061  |-0,67

TLR5 0 0,00032  |-1,25

TLR8 1 0,04753 (0,68

TLR9 26759164
TNF 1 7,84E-05 [2.5 2109776
TNFRSF11 1 001287  [1,79

TNFRSF1A 9189061
TRADD 1 003339 (047

TRAF3 0 0,00022  |-1,14

TRAM1 0 001224 |04

XIAP 1 0,00215  [1,12 19171073
PPP4C 1 0,00131 (0,68

bigly- 19772831

can_simple_mole-
cule
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DNA_simple_mole- 1 19772831
cule
dsRNA_simple_mole- 1 19772831
cule

Supplementary table 2. List of nodes upstream the phenotypes of interest in the
RA M1 macrophage model associated with their mean values over the fixpoints
having the highest similarity score.

Nodes Mean values
CSF2RA_CSF2RB_complex
RELA_NFKB1_NFKBIE_complex

TLR5

IRF9

STAT2

IKK1_phosphorylated

coldad

PTPN6

PRKGT

ACVR2A_ACVR2B_complex
ACVR2A_ACVR2B_INHBA_complex
ACVR2A_ACVR2B_INHBB_complex

AP_1

AP_1_phosphorylated
apoptosis_M1_macrophage_phenotype

ASC

ASK1

BAD
BCL2_M1_macrophage__Mitochondria_membrane
BCL2_M1_macrophage__ Mitochondria_membrane_active
Bcl2_rna

BCL2L1_M1_macrophage_ Mitochondria
BCL2L1_M1_macrophage__Mitochondria_active
BCL3_rna

biglycan_simple_molecule

Bim

c_FOS_M1_macrophage__ Cytoplasm
c_FOS_M1_macrophage__ Cytoplasm_active
c_FOS_M1_macrophage__ nucleus

c_JUN

!

5
,66666667
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c_JUN_phosphorylated_M1_macrophage__ Cytoplasm

c_JUN_phosphorylated_M1_macrophage___nucleus

c_Myc_rna

c5a

C5a_C5aR1_complex

Casp1

CASP3

CASP7

CASP8

CCL2_CCR2_complex

CCL2_M1_macrophage__ Extracellular_Space

CCL2_M1_macrophage__ Secreted_components

CCI21

CCL21_CCR7_complex

CDA40LG_ITGB1_ITGA1_complex ,5

cFLIP

clAP1

col4ab ,66666667

CRKL_phosphorylated

CSF2_M1_macrophage__ Extracellular_Space

CSF2_M1_macrophage__Secreted_components

CSF2RA_CSF2RB_CSF2_complex

CXCL1_CXCR1_complex

CXCL1_M1_macrophage__ Extracellular_Space

CXCL1_M1_macrophage__ Secreted_components

CXCR1

CXCR1_IL8_complex

CypA

DAXX

DNA_simple_molecule

dsRNA_simple_molecule

DUSP1

ECSIT

ERK1_phosphorylated_M1_macrophage__ Cytoplasm

ERK1_phosphorylated_M1_macrophage__nucleus

FADD

FAS

FASL_FAS_complex

FASL_M1_macrophage__ Extracellular_Space
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FASL_M1_macrophage__ Secreted_components

FOXO_M1_macrophage__ Cytoplasm

FOXO_M1_macrophage___nucleus

gal

GAL_GALR2_complex

gamma_secretase_complex_complex

GNA12_GNA13_complex

GNAI3

GNB_GNG_GNAI3_complex

HLA_B_LILRB1_complex

HRAS

IFNa_M1_macrophage___Extracellular_Space

IFNa_M1_macrophage__Secreted_components

IFNAR1T_IFNAR2_complex

IFNART_IFNAR2_IFNa_complex

IFNAR1_IFNAR2_IFNb_complex

IFNb_M1_macrophage__ Extracellular_Space

IFNb_M1_macrophage__Secreted_components

IFNE

IFNE_IFNAR1_IFNAR2_complex

IFNg_M1_macrophage__ Extracellular_Space

IFNg_M1_macrophage___Secreted_components

IFNGR1_IFNGR2_complex

IFNGR1_IFNGR2_IFNg_complex

IKK_complex

IKK1_IKK2_complex

w

IKK2_phosphorylated

IKKE_TBK1_complex

w

IKKE_TBK1_TRAF3_complex

IL1_ILTR_complex

ILT1_ILT11Ra_IL6ST_complex

IL12_M1_macrophage__ Extracellular_Space

IL12_M1_macrophage__ Secreted_components

IL12RB_complex

IL12RB_IL12_complex

IL18_IL18R1_complex

IL18_M1_macrophage__Cytoplasm

IL18_M1_macrophage__ Extracellular_Space

IL18_M1_macrophage__ Secreted_components
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IL1B_M1_macrophage__Cytoplasm

IL1B_M1_macrophage__ Extracellular_Space

IL1B_M1_macrophage__Secreted_components

AKT1

ILT1R_complex

IL23_M1_macrophage__ Extracellular_Space

IL23_M1_macrophage__Secreted_components

IL23R_IL12RB1_complex

IL23R_ILT2RB1_IL23_complex

IL6_IL6R_IL6ST_complex

IL6_M1_macrophage__Extracellular_Space

IL6_M1_macrophage__ Secreted_components

IL8_M1_macrophage__Extracellular_Space

IL8_M1_macrophage__ Secreted_components

INHBA

INHBB

INPP5A

IRAK1

IRAK1_IRAK4_complex

IRAK4_phosphorylated

IRF3_phosphorylated

IRF7

ITGB1_ITGA1_col4a_complex

ITGB1_ITGA1_complex

JAKT

JAK1_JAK2_complex

JAK1_TYK2_complex

JAK?2

JAK2_TYK2_complex

UNK1_phosphorylated_M1_macrophage__ Cytoplasm

UNK1_phosphorylated_M1_macrophage___nucleus

Mcl1_rna

MDM2_phosphorylated

MEK1_phosphorylated

MEK?2_phosphorylated

MEKK1

MK2_phosphorylated

MKK3_phosphorylated

MKK4_phosphorylated
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MKK6_phosphorylated 1
MKK7_phosphorylated 1
MYD88 1
MYD88_TIRAP_TOLLIP_complex 1
NCID 1
NFAT5 1
NFKB1_TPL2_complex 1
NFKBIA_RELA_NFKB1_complex 1
NICD 1
NICD_CSL_SKIP_MAML1_ep300_complex 1
NIK 1
NLRP3 1
NLRP3_INFLAMMASOME_complex 1
notch1_JAG1_complex 1
OPN 0
osteoclastogenesis_M1_macrophage_phenotype 1
p15_rna 0
p21_rna 1
p300_SP1_complex 0
p38_MAP_KINASE_phosphorylated_M1_macrophage__ Cyto- [0
plasm
p38_MAP_KINASE_phosphorylated_M1_macrophage___nu- 0
cleus

p53_phosphorylated 1
PI3K 0
PIK3AP1_phosphorylated 0
PP4 1
Prkcd 1
PRKCQ 1
proliferation_survival_M1_macrophage_phenotype 1
PTK2 1
Rac1 1
RAF1 1
RELA_NFKB1_complex_M1_macrophage__Cytoplasm 1
RELA_NFKB1_complex_M1_macrophage___nucleus 1
RHOA 0
SHP2_GRB2_complex 1
Sirt1 0
SMAD2_phosphorylated 0
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SMAD2_SARA_complex

SMAD2_SMAD4_complex

SMAD4

SMAD7

SOS1

Src

STATT

STAT1_STAT1_complex

STAT1_STAT2_IRF9_complex

STAT3

STAT3_STAT3_complex

STAT4

STAT4_STAT4_complex

STAT5_CRKL_complex

STAT5_phosphorylated

SYK

TAB1

TAB2_phosphorylated

TAK1

TLR1_TLR2_biglycan_complex

TLR1_TLR2_complex

TLR2_TLR6_biglycan_complex

TLR2_TLR6_complex

TLR3_dsRNA_complex

TLR4_Md2_CD14_fibrinogen_complex

TLR7_TLR8_ssRNA_complex

TLR9_DNA_complex

TNF_M1_macrophage__ Extracellular_Space

TNF_M1_macrophage__Secreted_components

TNF_TNFRSF1A_complex

TNFA_rna

TNFSF11

TNFSF11_TNFRSF11_complex

TPL2

TRADD

TRADD_TRAF2_RIP1_complex

TRAF2_RIP1_TRADD_TAK1_TAB1_TAB2_complex

TRAF2_TRAF6_complex

TRAF3
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TRAF6 0
TRAF6_ECSIT_MEKK1_TAB1_TAB2_TAK1_complex 0
TRAF6_TAB1_TAB2_TAK1_complex 0
TRAF6_ubiquitinated 0
TRAM1 0
TRAM1_TRIF_complex 0
TRIF 1
TSG6 1
UEV1A_UBC13_complex 0,5
XIAP 1

Supplementary table 3. The list of differentially expressed genes present in the RA
M2 macrophage model that we identified using literature search and omics data
analysis. The first column contains the DEGs HGNC names. The second and fifth
columns contain their corresponding Boolean values (after data discretization) ob-

served in GSE97779 dataset and literature respectively.

DEG Boolean value |Adjusted logFC Boolean  |Reference
in GSE97779 |p_value value in
literature

VEGFB 0 9,64E-06 -1,46

PRLR 0 0,01306 -1,45

MDM?2 0 0,01706 -1,06

CASP3 0 0,00542 -0,86

TRAF6 0 0,00612 -0,73

CREB1 0 0,03541 -0,66

NRP2 0 0,03197 -0,65

MAPK14 0 0,0243 -0,61

SIRT1 0 0,0284 -0,61 0 25799392
SYK 0 0,015846  |-0,53

SMAD4 0 0,012 -0,46

SMAD?2 0 0,01636 -0,45

BAD 0 0,02492 -0,42

BCL3 1 0,04434 0,42

HLA-B 1 0,02221 0,42

CEBPB 1 0,00957 0,43

SHCT 1 0,03891 0,44

STAT6 1 0,02689 0,44

BAX 1 0,02724 0,45 1 12634940
GNB1 1 0,00507 0,47

IL6ST 1 0,01567 0,56
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CYLD 1 0,01375 0,61

FCGR2A 1 0,02327 0,63 17521421
MAP2K?2 1 0,00845 0,64

RELA 1 0,01152 0,66

CASP1 1 0,03031 0,71

GNAI3 1 0,00098 0,72

TGFB1 1 0,00044 0,78

NFKBIE 1 0,01037 0,79

CFLAR 1 0,0029 0,8 12228167
RXRA 1 0,0023 0,84

IL4R 1 0,00047 0,86 7492352
PRKCD 1 0,0008 0,86

NFKB1 1 0,00235 0,89 8630106
STAT3 1 0,00043 0,89

HRAS 1 0,00388 0,94

CASP7 1 0,00655 0,96

LILRB1 1 0,0015 0,96

NFAT5 1 0,01494 0,97

NFKBIA 1 0,00021 0,98

JAKT 1 0,00433 1

PTPN6 1 2,86E-05 1

RAF1 1 0,01113 1

SH2D1A 1 0,04778 1,01

IL17RA 1 0,0044 1,02 19265168
MAP2K3 1 0,00258 1,03

EFNB1 1 0,0094 1,09

MAP2K1 1 0,0001 1,12

PLCG2 1 0,00027 1,12

XIAP 1 0,00215 1,12 19171073
HCK 1 5,23E-05 1,13 17963503
IL12RB1 1 0,00343 1,29

SOS1 1 0,01592 1,32

HBEGF 1 0,04278 1,34 31068444
MCL1 1 0,00118 1,39 17009247
LIFR 1 0,01414 1,53

PRKCQ 1 0,0037 1,53

MYC 1 0,00027 1,66

BCL2 1 0,01417 1,67

BCL2L11 1 0,0833 1,78
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MAP2K6 1 0,02686 1,78

PTK2 1 0,00073 1,87

VEGFA 1 0,00429 1,9

SMAD7 1 7,88E-05 2,17

JAK2 1 0,0011 2,3

FAS 1 0,0005 2,45

FCGR3A 1 2,49E-05 2,77 1 22235253
FCGRTA 1 0,00011 3,32 1 17521421
DUSP1 1 5,59E-07 4,17

NLRP3 1 8,50E-06 4,44

KLF4 1 1,77E-08 4,66 1 29997611
BCL2L1 1 28118944
C5A 1 29220376
C5AR1 1 29220376
CCL21 1 21225692
CSF1 1 27036883
CSF1R 1 27036883
IL10 1 20001767
IL11 1 29327326
IL17F 1 19265168
IL17RC 1 19265168
IL23 1 25799392
IL34 1 22039170
L4 1 7492352
IL8 1 10491366
MAPK3 1 17907188
TGFBR1 1 7614737
TGFBR2 1 7614737

Supplementary table 4. List of nodes upstream the phenotypes of interest in the
RA M2 macrophage model associated with their mean values over the fixpoints

having the highest similarity score.

Nodes Mean values
AKT1 0
AKT1_phosphorylated 0
apoptosis_M2_macrophage_phenotype 1

ASC 0,5

ASKT 1

BAD 0
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BAX

BCL2_M2_macrophage_mitochondrion_membrane

BCL2_M2_macrophage_mitochondrion_membrane_active

Bcl2_rna

BCL2L1

BCL3_rna

Bim

C_EBPb_phosphorylated

c_Myc_rna

c5a

C5a_C5aR1_complex

Casp1

CASP3

CASP7

CASP8

CASP9

CClI21

CCL21_CCR7_complex

CD32a

CDA40OLG_ITGB1_ITGA1_complex

cFLIP

cMyc

cMyc_phosphorylated
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colda4

0,66666667

col4ab

0,66666667

CREB1_phosphorylated

0

CSF1_M2_macrophage__extracellular_space

CSF1_M2_macrophage__secreted_components

CSF1R

CSF1R_CSF1_complex

CSFRTR_IL34_complex

CXCR1_IL8_complex

CYLD

DAG_simple_molecule

DAXX

DUSP1

EFNB1_EPHB1_complex

ERK1_phosphorylated_M2_macrophage_ cytoplasm

ERK1_phosphorylated_M2_macrophage_nucleus
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FADD

FAS

FASL_FAS_complex

FASL_M2_macrophage__extracellular_space

FASL_M2_macrophage__secreted_components

FOXOT1

GAB2_phosphorylated

GAS6

GAS6_MERTK_complex

GNAI3

GNB_GNG_complex

GNB_GNG_GNAI3_complex

Grb2

GSK3B

HBGEF

HCK

HLA_B_LILRB1_complex

HRAS

IKK_complex

IKK1_IKK2_complex

IKK1_phosphorylated

IKK2_phosphorylated

IL10_M2_macrophage__extracellular_space

IL10_M2_macrophage__secreted_components

ILTOR1_ILTOR2_complex

ILTORT_ILTOR2_IL10_complex

ILT1TRa_IL6ST_IL11_complex

IL17Ra_IL17Rc_IL17F_complex

IL23_M2_macrophage__extracellular_space

IL23_M2_macrophage__secreted_components

IL23R_IL12RB1_complex

IL23R_IL12RB1_IL23_complex

IL34

L4

IL4_IL4Ra_complex

IL4R

IL8_M2_macrophage__extracellular_space

IL8_M2_macrophage_ secreted_components

immune_complex_CD16a_complex
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immune_complex_CD32a_complex

immune_complex_CD32b_complex

immune_complex_CD64_complex

immune_complex_complex

ITGB1_ITGA1_col4a_complex

ITGB1_ITGA1_complex

JAKT

JAKT_TYK2_complex

JAK?2

klf4

LIFR_IL6ST_CTF1_complex

mcl1

Mcl1_rna

MDM2_phosphorylated

MEK1_phosphorylated

MEK?2_phosphorylated

MKK3_phosphorylated

MKK6_phosphorylated

MSK1_phosphorylated

NFAT5_phosphorylated

NFKB1_TPL2_complex

NFKBIA_RELA_NFKB1_complex

NLRP3

NLRP3_INFLAMMASOME_complex

p15_rna

p38_MAP_KINASE_phosphorylated_M2_macrophage__cyto-
plasm

[N =Y <Y =Y EY EY EY ) EY EY Y Y e = N Y Y Y Y Y Y Y Y ey gy ey

p38_MAP_KINASE_phosphorylated_M2_macrophage_nu-
cleus

p53_phosphorylated_M2_macrophage__cytoplasm

p53_phosphorylated_M2_macrophage_nucleus

PI3K

PIK3AP1_phosphorylated

PIP2_simple_molecule

PLCG2

PRKCD

Prkcd

PRKCQ

PRL

[ ¥ =Y Y Y EY EY e ) Y =
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PRL_PRLR_complex

proliferation_survival_M2_macrophage_phenotype

PTK2

PTPNG6

RAF1

RBL1_E2F4_DP1_complex

RELA_NFKB1_complex_M2_macrophage_ cytoplasm

RELA_NFKB1_complex_M2_macrophage_nucleus

RELA_NFKB1_NFKBIE_complex

RXRa_NUR77_complex

SH2D1A

Shc_phosphorylated

SHIP1

Sirt1

SMAD2_phosphorylated

SMAD2_SARA_complex

SMAD2_SMAD4_complex

SMADA4

SMAD7

SOST

Src

STAT3

STAT3_STAT3_complex

STAT6

STAT6_STAT6_complex

SYK

Syk_phosphorylated

TAK1_phosphorylated

TGFB1_M2_macrophage__extracellular_space

TGFB1_M2_macrophage__secreted_components

TGFBR1_TGFBR2_complex

TGFBR1_TGFBR2_TGFB1_complex

TPL2

TRAF3IP2_phosphorylated

TRAF6_ubiquitinated

VEGFa_M2_macrophage__extracellular_space

VEGFa_M2_macrophage__secreted_components

Vegfa_rna

Vegfb_M2_macrophage__extracellular_space
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Vegfb_M2_macrophage__secreted_components
Vegfc_M2_macrophage__extracellular_space
Vegfc_M2_macrophage__secreted_components
vegfc_vegfr3_complex

VegfR1

VegfR1_Vegfa_complex

VegfR1_vegfb_complex
VegfR2_vegfc_nrp2_complex

XIAP

<
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Supplementary table 5. The list of differentially expressed genes present in the RA
fibroblast model that we identified using literature search and omics data analysis.
The first column contains the DEGs HGNC names. The second and fifth columns
contain their corresponding Boolean values (after data discretization) observed in

GSE109449 dataset and literature respectively.

DEG Boolean Adjusted p_value [logFC Boolean Reference
value in value in
GSE109449 literature

ADCY8 0 0.002 -3,02

AREG 1 18439312
ARHGEF2 1 17515956
BAX 0 23421940
BCL2 1 17515956
BCL2L1 1 28118944
BCL2L11 0 28118944
BID 0 0.004 -1,47

CASP3 0 4.524e-05 -0,72

CCL18 1 11745396
CCL2 1 0.001 2,19 1 33330982
CCL5 1 9756723
CCR2 1 11673556
CCR5 1 11673556
CD14 1 18452992
CD40 1 10799861
CFLAR 1 15593196
Cgas 1 26819496
COMP 1 5.036e-18 4,33 1 19652761
CSF2 1 31142839
CSF2RA 1 24936585
CSF2RB 1 24936585
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CSK 1 17515956
CXCL10 1 28148302
CXCL13 1 27102921
CXCL8 1 11178128
CXCR2 1 20036936
CXCR3 1 21811993
CXCR4 1 32782501
CYCS 0 0.004 -0,687

FN1 1 36225320
EDA 1 7748223
EGF 1 18439312
EGFR 1 18439312
GAB2 0 0.0004 -1,35

FAS 1 11169523
FASLG 1 0.022 0,14 1 11169523
FGF1 1 0.004 1,76 1 16893535
FGFR4 1 0.039 0,84 1 8651984
IGF1R 0 0.003 -1,17

FOS 1 7747113
FOXOT1 0 24812285
FZD5 1 11315916
NRP1 0 0.001 -0,89

HBEGF 1 31068444
ICAM1 1 17568789
IFNB 1 15878901
IFNG 1 31061532
IGF1 0 11934980
RHOA 0 0.004 -0,59

IL10 1 20001767
IL1TORA 1 27626941
IL10RB 1 27626941
IL17 1 23858337
IL18 1 10562301
IL18R 1 17530707
ILT1A 1 30272996
IL1B 1 30272996
DUSP7 1 0.003 0,85

IL6 1 32718086
IRAK4 1 18452992
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IRF5 1 26315890
EPHB2 0.013 1,75

GAB1 0.0003 1,55

IL1R1 0.01 1,16

JUN 1 7747113
LY96 1 26352601
MAP2K3 1 14695331
MAP2K4 1 13130464
MAP2K6 1 14695331
MAP2K7 1 13130464
MAP3K1 1 22736089
ITGA4 0.0002 2,12

MCL1 1 16339575
MDM2 1 26655743
MIF 1 12011381
MIR146A 0 29844864
MIR192 0 28321538
MIR650 0 28129626
MMP1 1 12379519
MMP13 1 11040455
MMP3 1 12379519
NFAT5 1 21717420
NFKB1 1 12010604
ITGAS 0.019 1,35

P53 1 11169523
PDGFC 0.042 0,18 1 26976956
PDGFRB 3.556e-08 1,86 1 26976956
PITPNM3 1 23728190
MAP4K4 1.941e-06 1,86

PTPN11 1 23335101
PLXNB1 0.0003 1,45

PTPRC 0.012 1,36

RANKL 1 10693864
RAC1 0.035 0,61

RIPK1 1 32116107
SEMA4A 1 26303122
SEMAT7A 1 28109308
SOCS3 1 30854695
SRC 0.003 1,78
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SST 0 9844773
SSTR 0 9844773
STAT1 1 0.006 1,79 1 25630235
STAT3 1 30477351
TAB2 1 18452992
TBK1 1 18452992
TCF19 1 0.030 1,76

TGFB1 1 11966774
TGFBR1 1 17594488
TIRAP 1 18452992
TLR2 1 32256787
TLR4 1 32256787
TLR5 1 22661088
TNF 1 34588517
TNFR 1 16951485
TRADD 1 16951485
TRAF2 1 16951485
TRAF6 1 18452992
TXK 1 0.010 0,79

VAV3 1 0.038 1,41

VEGFA 1 0.002 1,55 1 18439312
WNT5A 1 11315916
YY1 1 26821827

Supplementary table 6. List of nodes upstream the phenotypes of interest in the
RA fibroblast model associated with their mean values over the fixpoints having the
highest similarity score.

Nodes Mean values
ADCY8

AREG

ARHGEF2
BAX_Fibroblast__Mitochondrion

BCL2

BCL2L1_rna

BCL2L11_Fibroblast__ Cytoplasm

BID

CASP3

CCL18
CCL2_Fibroblast___secreted_components
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CCL5_Fibroblast___secreted_components

CCR2_CCL2_complex

CCL5_CCR5_complex

LBP_CD14_complex

CFLAR_Fibroblast___Cytoplasm

cGAS

COMP

CRKL_phosphorylated

CSF2_Fibroblast__ Extracellular_Space

CSF2RA_CSF2RB_complex

CSK

CXCL10_Fibroblast__ Extracellular_Space

CXCL13

CXCL8_Fibroblast__ Extracellular_Space

CXCR2_CXCL8_complex

CXCL10_CXCR3_complex

MIF_CXCR4_complex

CYCS

FN1_Fibroblast___secreted_components

EDA

EGF

EGFR

GAB2_phosphorylated

FAS_FASL_complex

FGF1

IGF1_IGF1R_complex

FOS

FOXOT1

WNT_FRIZZLED_complex

FN1_ITGAV_complex

VEGFR_NRP1_complex

HBEGF

IFNb1

IFNG_IFNGR1_R2_complex

IGF1

RHOA

ILTORA_IL10RB_IL10_complex

IL17A_Fibroblast__secreted_components

IL18_Fibroblast__secreted_components
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IL18_IL18R_complex

ILTA

IL1B_Fibroblast___secreted_components

DUSP7

IL6_Fibroblast___secreted_components

IRAK4_Fibroblast__ Cytoplasm

IRF5_Fibroblast__Cytoplasm

EPHB2

GAB1

IL1RT

JUN_phosphorylated

LY96

MAP2K3_phosphorylated

MAP2K4_phosphorylated

MAP2K6_phosphorylated

MAP2K7_phosphorylated

MAP3K1_phosphorylated

ITGA4_ITGB1_complex

MCL1

MDM?2

MIF

MIR146A_rna

MIR192_rna

MIR650 _rna

MMP1

MMP13

MMP3

NFAT5_phosphorylated

NFKB_complex

ITGAS5_ITGB1_col4a5_complex

TP53_phosphorylated

PDGFC

PDGFC_PDGFRB_complex

PITPNM3_CCL18_complex

MAP4K4_phosphorylated

PTPN11_phosphorylated

PLXNB1_MET_semada_complex

NECTIN3_PTPRC_NECTIN1_complex

RANK_RANKL_complex
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RAC1_ 2

RIPK1

ITGA4_ITGB1_sema7a_complex

SOCS3

SRC_phosphorylated

sst

sst_sstr_complex

STAT1_Fibroblast__Cytoplasm

STAT3_Fibroblast_ Cytoplasm

TAB1_TAB2_complex

TBK1_IKBKE_complex

TCF_LEF

TGFb1

TGFB1_TGFBR1_complex

TIRAP

LY96_TLR2_4_complex

TLR5

TNF_Fibroblast___secreted_components

TNF_TNFRSF1A_B_complex

TRADD

TRAF2

TRAF6

TXK

VAV1_2_3_phosphorylated

ADAMTS9 rna ,5
AKT?2

AKT2_phosphorylated

AMAP1

APAF1 5

apoptosis_fibroblast_phenotype

Apoptosome_complex

AREG_EGFR_complex

BAD

BAX_Fibroblast___Mitochondrion_active

BCL2L11_Fibroblast__Cytoplasm_active

BRAF_phosphorylated

CALCINEURIN

CASP8

CASP9
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CAV1_rna

CCL2_Fibroblast___Extracellular_Space

CCL5_Fibroblast___Extracellular_Space

CD40LG_CD40_complex

Cell_chemotaxis_migration_fibroblast_phenotype

CFLAR _Fibroblast__Cytoplasm_active

col4a3

CREB1_phosphorylated

CSF2_Fibroblast__secreted_components

CSF2RA_CSF2RB_CSF2_complex

CTNNB_CK1A_AXIN_GSK3B_APC_complex

CTNNB1

CXCL10_Fibroblast___secreted_components

CXCL13_CXCR3_complex

CXCL8_Fibroblast__secreted_components

CXCR3

DAXX

DOCK?2

DOCK2_CRKL_complex

DVL1_phosphorylated

EDA_EDA2R_complex

EGF_EGFR_complex

FADD

FASLG

FGF1_FGFR4_complex

FN1_Fibroblast__ Extracellular_Space

FOXO3

GNAI3

GRB2

HBEGF_EGFR_complex

HOMODIMER _space_STAT1

ICAM1_ITGB2_ITGAL_complex

IFNa

IFNa1_B1

IFNA1_B1_IFNAR1_R2_complex

IFNB1 _rna

IKBA_NFKB1_RELA_complex

IKBKB_phosphorylated

IKK_complex
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IKK1_IKK2_complex 0,25
IKK1_phosphorylated 0,5
IKK2_phosphorylated 0,5

IL17A_Fibroblast__ Extracellular_Space

—

IL17A_IL17RA_complex

IL18_Fibroblast__ Extracellular_Space

ILTA_ILTRT_complex

IL1B_Fibroblast__ Extracellular_Space

IL1B_ILTR1_complex

IL6_Fibroblast___Extracellular_Space

IL6_IL6R_complex

IL6_IL6ST_complex

IRAK1_Fibroblast__ Cytoplasm

IRAK1_Fibroblast__Cytoplasm_active

IRAK1_IRAK4_complex

IRAK4_Fibroblast__Cytoplasm_active

IRF3_phosphorylated

IRF5_Fibroblast___nucleus

IRF9

ISGF3_complex

ITGA4_ITGB1_col4a3_complex

w

JAKT

JAK?2

JAK3

LCK_phosphorylated

W

LTBP1

MAP2K1_phosphorylated

MAP3K14_phosphorylated

MAP3K2_3 4

MAP3K5_phosphorylated

MAP3K7_phosphorylated

MAP3K8_phosphorylated

MAPK1_empty

MAPK1_phosphorylated

MAPK14_phosphorylated

MAPK3_complex

w

MAPK3_phosphorylated

MAPK8_phosphorylated

MAPK9_phosphorylated
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MAPKAPK?2_phosphorylated

MDM2_phosphorylated

MIR10a_rna

MIR338 5P rna

w

MIR451A_rna

MYD88

NFKB_N_complex

NFKB1_MAP3K8_complex

ngef

NRAS

p38MAPK_empty

p38MAPK_phosphorylated

w

Pl4_5_P_ 2_simple_molecule

PIK3R5_phosphorylated

PP2A

PRKACA

PRKCQ

w

PRKG1

proliferation_survival_fibroblast_phenotype

PTEN

w

PTK2B_phosphorylated

PTPN6 2
pyk2_phosphorylated

RAB5A

RAF1 5
rasal

RELA_NFKB1_NFKBIE_complex

RIPK1_TRAF6_complex

RPS6KB1_phosphorylated

SARM1

sema’a

SH2D1A

w

SHC2_phosphorylated

SHP2_GRB2_complex

SOS1

STAT1_Fibroblast___nucleus

STAT1_STAT2_complex

STAT2
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STAT3_Fibroblast___nucleus
TAB1_TAB2_TAK1_complex
TAB1_TAB2_TRAF6_complex

tBID
TGFB1_Fibroblast___Extracellular_Space
TGFB1_Fibroblast__ Extracellular_Space_active
TICAM1

TICAM1_TICAM2_complex

TICAM2

TIRAP_MYD88_complex

TNF_Fibroblast__ Extracellular_Space
TNFRSF10A_rna

TNFRSF10B_rna
TNFSF11_Fibroblast__Extracellular_Space
TNFSF11_Fibroblast_ _secreted_components
TP73_phosphorylated
TRAF2_TRAF5_complex

TRAF3

TRAF3_TRAF6_complex
TRAF3IP2_phosphorylated
TRAF6_phosphorylated

TYK2
VEGFa_Fibroblast__Extracellular_Space
VEGFa_Fibroblast__secreted_components
VEGFA rna

VEGFA_VEGFR_NRP1_complex

WNT5A

YWHAQ

YY1

ZC3H12A
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Supplementary table 7. The list of differentially expressed genes present in the RA
CD4+ Th1 model that we identified using literature search and omics data analysis.
The first column contains the DEGs HGNC names. The second and fifth columns
contain their corresponding Boolean values (after data discretization) observed in
SDY998 dataset and literature respectively.

DEG Boolean  |Adjusted logFC Boolean value Reference
value in p_value in literature
SDY998

F2R 1 3,47E-13 3,77
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CCL2 1 1522232
CCR5 1 1,19E-16 3,81 1 10323208
CCL5 1 2,48E-11 6,45

CCL4 1 1,12E-13 5,97

CXCL10 1 28148302
CXCR3 1 27190305
CXCL16 1 16200580
EOMES 1 1,59E-44 5,67

FGR 1 1,59E-18 6,4

LAG3 1 1,46E-11 4,8

HLA-DRB5 1 0,0003 5,52

HLA-DQA1 1 4,19E-14 527

HLA-DQB?2 1 1,53E-08 4,94

HLA-DQAZ2 1 4,44E-16 52

HLA-DRB1 1 5,97E-09 3,97

HLA-DPB1 1 6,87E-08 3,59

IFNG 1 2,98E-15 5,06 1 8961900
IFNGR1 1 25708927
IFNGR2 1 25708927
IL12 1 32264938
IL12RB1 1 32264938
IL12RB2 1 32264938
IL18R1 1 14994387
IL18 1 14532149
IL9R 1 19723899
IL2R 1 32264938
IL9 1 26078482
TIM3 1 1,04E-19 7,35

CD74 1 0,014 2,89

IL27 1 17015723
IL27R 1 32518420
STAT1 1 33779079
STAT4 1 17804842
TBX21 1 3333523
TNFSF4 1 1,54E-09 5,96 1 11069062
VCAM1 1 2,97E-15 7,01

Supplementary table 8. List of nodes upstream the phenotypes of interest in the
RA CD4+ Th1 model associated with their mean values over the fixpoints having
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the highest similarity score.

Nodes

Mean values

AGT

AGT_F2R_complex

AKT1

apoptosis_TH1_phenotype

ARHGEF2

BCL2L11

CCL2

CCL2_CCR2_complex

CCL4_5_CCR5_complex

CCL4_TH1__ extracellular_space

CCL4_TH1__ secreted_components

CCL5_TH1__ extracellular_space

CCL5_TH1__ secreted_components

CCR5

CD28_CD86_complex

o

CD32b_igG_complex

CD84_CD84_complex

o

Cell_chemotaxis_migration_TH1_phenotype

COL4A3_ITGA4_ITGB7_complex

CREB1_phosphorylated

CXCL10_CXCR3_complex

CXCL10_TH1__ extracellular_space

CXCL10_TH1__secreted_components

CXCL16

CXCL16_CXCR6_complex

EOMES

FGR

GAS6

gas6_mertk_complex

GNA12_GNA13_complex

GNAI_GNB_GNG_complex

GNAI_TH1___cytoplasm

GNAI_TH1__ cytoplasm_active

GNB_GNG_complex

GRB2

HLA_DP_DQ _DR_LAG3_complex

HLA_DP_DQ_DR_TCR_CD3_complex
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icoslg_icos_complex

w

IFNG_IFNGR1_IFNGR2_complex

IFNg_TH1__extracellular_space

IFNg_TH1__ secreted_components

IFNGR1_IFNGR2_complex

igG

IKK_complex

ILT0_ILTORA_ILTORB_complex

IL12_TH1__extracellular_space

IL12_TH1___secreted_components

IL12Rb1_IL12Rb2_complex

IL12Rb1_IL12Rb2_IL12_complex

IL18_IL18R1_IL18RAP_complex

IL18_TH1__extracellular_space

IL18_TH1__ secreted_components

IL18R1_IL18RAP_complex

IL27

IL27_IL27RA_complex

IL7_IL7R_IL2RG_complex

w

ILOR_IL2RG_IL9_complex

IRAK1_IRAK4_complex

JAK1_JAK2_complex

JAKT_JAK2_TYK2_complex

JAK1_JAK3_complex

JAK1_TYK2_complex

JAK2_TYK2_complex

KRAS

LAT_phosphorylated

LGALS9

LGALS9_TIM3_complex

LTA_TH1__ extracellular_space

LTA_TH1__ secreted_components

LTA_TNFRSF14_complex

lyn

MAP2K1_phosphorylated

MAPK1_phosphorylated

MIF

MIF_CD74_complex

mtor
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MYD88

NFKB1_RELA_complex_TH1___cytoplasm

NFKB1_RELA_complex TH1___nucleus

NFKB1_RELA_NFKBIA_complex

NIK

PDCD1

PI3K_phosphorylated

PLCG1

PLXNB1

PRKCQ

proliferation_survival_TH1_phenotype

PTK2

Rac1

RAF1

RHOA

RPS6KA4

RN RN QU [ qy YN U N W P [P N PN, U\, [, [N N

RUNX3

—

SEMA4_PLXNB1_complex

0,75

SEMA4A _TH1___extracellular_space

SEMA4A_TH1__secreted_components

SEMA4D

SH2D1A

SHC1_phosphorylated

SHIP1

SOST

Src

STAT1

STAT1_STAT1_complex

STAT4

STAT4_STAT4_complex

thx21

tbx21_phosphorylated

TNF

TNF_TNFRSF1B_complex

TNFA

TNFSF4

TNFSF4_TNFRSF4_complex

TRAF1_TRAF2_TRAF3_complex

TRAF2_TRAF5_complex
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TRAF2_TRAF5_TRAF6_complex 1
TRAF6_phosphorylated 1
VAV 0
VCAM1_ITGA4_ITGB7_complex 1
ZAP70 0

Supplementary table 9. The list of additional differentially expressed biomolecules
present in the multicellular model that we identified using literature search and
omics data analysis. The first column contains the DEGs HGNC names. The second
and fifth columns contain their corresponding Boolean values (after data discreti-

zation) observed in the cell-specific datasets and literature respectively.

DEG Boolean  |Adjusted logFC Boolean  |References

value in p_value value in

gene literature

expression

datasets
ACKR3 1 0,0001 513 1 33453247
AREG 1 1,00E-07 4,48
BAX 1 12634940
CCL20 1 12695561
CCL3 1 15878203
CCL5 1 0,01 2,19
CD40 1 0,002 2,29
CD80 1 0,027 1,84
CFLAR 1 0,002 0,8 1 12228167
COX2 1 32530555
CSF1 1 27036883
CXCL10 1 0,0004 6,02 1 32211348
CXCL11 1 0,0005 4,98
CXCL12 1 12574387
CXCL13 1 0,0001 8,76 1 33292827
CXCL16 1 32211348
CXCL9 1 0,00004 513
GNB1 1 0,005 0,67
HBGEF 1 31068444
HES1 1 0,001 2,12
HIF1A 1 11465705
HLA-DPB2 |1 0,001 2,82
HMGB1 1 35250993
ICAM1 1 0,044 0,68
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IL10 1 20001767
IL15 1 0,0001 2,69

L4 1 7492352
IRAK3 1 0,0001 1,51

IRF5 1 26315890
ITCH 0 0,044 -0,6

JAG1 1 28256007
LGALS9 1 0,008 0,73 1 32771893
LTA 1 29541795
MMP14 1 18567920
MMP3 1 0,014 3,55

MMP9 1 18567920
NFKB1 1 0,002 0,89 1 8630106
NFKBIA 1 0,0002 0,98

NFKBIE 1 0,01 0,79

NOS?2 1 9236674
RXRA 1 0,002 0,84

SEMA4A 1 33605067
SOCS3 1 3,80E-07 511

TNFAIP3 1 0,00005 2,36

TRAF1 1 0,002 1,37

TRAF6 0 0,006 -0,73

VCAN 1 1,14E-06 52

VEGFA 1 0,004 1,9

ACVR2B 0 0,0004 -2,85

CCL18 1 17350968
CCL20 1 12695561
COL4A3 1 0,008 2,8

COX2 1 32530555
CXCL13 1 0,0001 8,76 1 33292827
CXCL16 1 32211348
FCGR2A 1 0,023 0,63 1 17521421
FN1 1 0,00007 4,74

FZD5 1 0,001 1,83

GAL 1 15616823
GNA13 1 0,00017 1,62

HLA-DPB2 |1 0,001 2,82

IFNA 1 0,008 2,43

IFNB 1 15878901
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IL12 1 9756640
IL15 1 0,0001 2,69

IL18 1 10562301
IL1B 1 0,004 2,17 1 15150426
IRF7 1 0,000018 2,44 1 22614743
ITCH 0 0,044 -0,6

JAG1 1 28256007
MAP2K4 1 13130464
MAP2K7 1 0,048 0,72 1 13130464
MAP3K1 0 0,009 -0,72

MAPK8 1 0,003 0,71

MAPKAPK2 |1 0,04 0,54

MIF 1 0,00007 1,36

MMP14 1 18567920
MMP3 1 0,014 3,55

MMP9 1 18567920
NFKB1 1 0,002 0,89 1 8630106
NFKBIA 1 0,0002 0,98

NFKBIE 1 0,01 0,79

NLK 1 0,003 0,73

OPN3 0 0,005 -0,87

PDGFC 1 16508943
PLXNB2 1 0,00001 1,48

PPRARG 1 22829690
PRKG1 1 0,003 2,17

RAC1 1 0,033 0,74

SEMA4D 1 0,0004 1,86

SEMA7A 1 28109308
SMADA4 0 0,001 -0,81

TCF7L2 1 0,019 1,97

TNFAIP3 1 0,00005 2,36

TRAF1 1 0,002 1,37

ADAMTS4 1 22324945
ARRB2 1 21855149
BAK1 0 18177509
BMP6 1 14558086
BSG 1 0,002 0,59

CCL21 1 21225692
CCL5 1 9756723
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CCNB 1 16518573
CD40 1 10799861
CDKN1C 0,003 -1,63

COL4A5 0,046 0,94

CPNE4 0,003 3,09

CSF1 1 27036883
CXCL1 1 7521808
CXCL2 1 33010041
CXCL3 1 29191223
CXCL9 1 15004722
DKK1 1 26785768
GAL 1 35023445
GAL 1 35023445
GAS6 1 34539648
HES1 0,003 0,64

HLA-B 23259760
HLA-DRBT

ICAM3 0,035 0,73

IKK1 1 11160335
IL10 1 20001767
IL11 1 29327326
IL26 1 23055831
IL32 1 19248119
L33 1 21431944
IL34 1 22264405
INHBB 1 26359667
IRF1 1 22401175
JAG1 1 32499639
JUNB 0,016 0,8 1 12905466
LGALS9 1 18050192
MAP3K7 1 17559674
MIR124A 0 21339227
MIR155 1 18383392
MIR203A 1 21279994
MIR221 1 25891943
MIR346 1 21611196
MIR34A 0 22161761
MMP9 1 3680518
NFKB1 1 12010604
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NOTCH3 1 16307184
PDE4B 1 0,000975925 [1,25

PDIA3 1 0,0014184 0,82

PLA2G2A 0 0,000480237  |-1,67 1 21068383
PRL 1 27616146
RIPK3 0 0,028700766  |-3,09

RUNX1 0 0,000528477 |-1,25

SEMA3A 1 3,24E-12 1,76

SEMA4D 1 25707877
STAT3 1 30477351
TGFB3 0 0,024324917  |-1,62

THBST 0 4,40E-06 -0,73

VCAM1 1 /,00E-05 1,71

VEGFC 1 2,26E-08 1,18 1 11824968
CCL3 1 3,64E-18 6,85 1 32211348
CD28 1 12823856
EP300 1 31178673
GATA3 0 15981085
ICOS 1 11983910
IRF7 1 34432649
LAG3 1 1,46E-11 4,8

NFAT 1 30538703
RBPJ 1 26604133
TCR 1 32115259
VCAM1 1 2,97E-15 7,01

Supplementary table 10. Calibrated state of the RA multicellular model.

Nodes

Mean values

FOS

CDKN1A

CSF1R

CSK

CTF1

CYCS

CYLD

DUSP7

Dvl1

EDNT

EFNB1

1
0
1
1
1
0
1
1
1
1
1
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EP300

FOXO3

GAB1

Grb2

HBEGF

IL1RT

[L4R

jag

KRAS

LY96

map3k5

MCL1

mcl1

TIRAP

NRAS

PDE4B

PLCG1

PLXNB1

POUZ2F1

PRKCD

RPS6KA4

SOCS3

STAT6

TRAF2

vegfa

YWHAQ

ACKR3_CXCL12_complex

ACVR2A_ACVR2B_complex

ACVR2A_ACVR2B_INHBA_complex

ACVR2A_ACVR2B_INHBB_complex

ADAMTS4

ADAMTS9 rna

ADCY8

AGT

AGT_F2R_complex

AKT1_M1_macrophage__ Cytoplasm

AKT1_M2_macrophage_nucleus

AKT1_phosphorylated

AKT1_TH1__ cytoplasm
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AKT?2

AKT2_phosphorylated

AMAP1

angiogenesis_signal_phenotype

AP_1

AP_1_phosphorylated

APAF1

apoptosis_fibroblast_phenotype

apoptosis_M1_macrophage_phenotype

apoptosis_M2_macrophage_phenotype

apoptosis_TH1_phenotype

Apoptosome_complex

AREG_EGFR_complex

IAREG_Fibroblast__ Extracellular_Space

AREG_M1_macrophage__ Secreted_components

ARHGEF12

ARHGEF2_Fibroblast__Cytoplasm

ARHGEF2_TH1__ cytoplasm

ARI_ARII_bmp6_complex

ARRB2_Fibroblast___Cytoplasm

ARRB2_M1_macrophage__ Cytoplasm

ARRB2_M?2_macrophage__cytoplasm

ASC_M1_macrophage__ Cytoplasm

ASC_M2_macrophage__cytoplasm

ASK1_M1_macrophage__ Cytoplasm

ASK1_M2_macrophage__cytoplasm

BAD_Fibroblast___Mitochondrion

BAD_M1_macrophage__Mitochondria_membrane

BAD_M2_macrophage_mitochondrion_membrane

BAKT

BAX_Fibroblast__Mitochondrion

BAX_Fibroblast___Mitochondrion_active

BAX_M1_macrophage__ Mitochondria_membrane

BAX_M2_macrophage_mitochondrion_membrane

BCL2_Fibroblast___Mitochondrion

BCL2_M1_macrophage__Mitochondria_membrane

BCL2_M1_macrophage_ Mitochondria_membrane_active

BCL2_M2_macrophage_mitochondrion_membrane
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BCL2_M2_macrophage_mitochondrion_membrane_ac-
tive

Bcl2_rna_M1_macrophage__nucleus

Bcl2_rna_M2_macrophage_nucleus

BCL2A1 rna

BCL2L1_M1_macrophage_ Mitochondria

BCL2L1_M1_macrophage__Mitochondria_active

BCL2L1_M2_macrophage__mitochondria

BCL2L1 rna

BCL2L11_Fibroblast__Cytoplasm

BCL2L11_Fibroblast___Cytoplasm_active

BCL2L11_TH1__ cytoplasm

BCL3_rna_M1_macrophage__ nucleus

BCL3_rna_M2_macrophage_nucleus

BID

biglycan_simple_molecule

Bim_M1_macrophage__Mitochondria

Bim_M2_macrophage__mitochondria

bmp6

BRAF_phosphorylated

BSG

BTK rna

BTRC_rna

C_EBPb_phosphorylated

c_FOS_M1_macrophage__ Cytoplasm

c_FOS_M1_macrophage__ Cytoplasm_active

c_FOS_M1_macrophage__ nucleus

c_JUN

c_JUN_phosphorylated_M1_macrophage__ Cytoplasm

c_JUN_phosphorylated_M1_macrophage___nucleus

c_Myc_rna_M1_macrophage__ nucleus

c_Myc_rna_M2_macrophage_nucleus

C5a_C5aR1_complex_M1_macrophage__Cytoplas-
mic_membrane_up
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C5a_C5aR1_complex_M2_macrophage__cytoplas-
mic_membrane_up

c5a_M1_macrophage__ Extracellular_Space

c5a_M2_macrophage__extracellular_space

CALCINEURIN
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Casp1_M1_macrophage__ Cytoplasm

Casp1_M2_macrophage__cytoplasm

CASP3_Fibroblast__Cytoplasm

CASP3_M1_macrophage__ Cytoplasm

CASP3_M2_macrophage__cytoplasm

CASP7_M1_macrophage__ Cytoplasm

CASP7_M2_macrophage__cytoplasm

CASP8_Fibroblast__Cytoplasm

CASP8_M1_macrophage__ Cytoplasm

CASP8_M2_macrophage__cytoplasm

CASP9_Fibroblast__Cytoplasm

CASP9_M1_macrophage__ Cytoplasm

CASP9_M2_macrophage__cytoplasm

CAV1_rna

CCL18_Fibroblast__ Extracellular_Space

CCL18_M2_macrophage__secreted_components

CCL2_CCR2_complex_M1_macrophage__Cytoplas-
mic_membrane_up
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CCL2_CCR2_complex_TH1__ cytoplasmic_membrane_up

CCL2_Fibroblast__ Extracellular_Space

CCL2_Fibroblast__secreted_components

CCL2_M1_macrophage__ Extracellular_Space

CCL2_M1_macrophage__ Secreted_components

CCL2_TH1__ extracellular_space

CCL20_M1_macrophage___ Secreted_components

CCL20_M2_macrophage__secreted_components

CCL21

CCL21_CCR7_complex_M1_macrophage__Cytoplas-
mic_membrane_up

_— | | e R A -

CCL21_CCR7_complex_M2_macrophage__cytoplas-
mic_membrane_up

CCI21_M1_macrophage__ Extracellular_Space

CCI21_M2_macrophage__extracellular_space

CCL3_M1_macrophage__Secreted_components

CCL3_TH1__secreted_components

CCL4_5_CCR5_complex

CCL4_M1_macrophage__Secreted_components

CCL4_TH1__ extracellular_space

CCL4_TH1__ secreted_components

_— e | | A -
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CCL5_ACKR2_complex

CCL5_CCR5_complex

CCL5_Fibroblast___Extracellular_Space

CCL5_Fibroblast___secreted_components

CCL5_M1_macrophage__Secreted_components

CCL5_TH1__ extracellular_space

CCL5_TH1__secreted_components

CCNA2

CCNB1_CDC2_complex

CCND1_rna

CCND2

CCR2_CCL2_complex

CCR5

CD28

CD28_CD86_complex

CD32a

CD32b_igG_complex

CD32b_rna

CD40_Fibroblast_ Cytoplasmic_membrane_up

CD40_M1_macrophage__Cytoplasmic_membrane_down

CD40LG_CD40_complex

CD40LG_ITGAM_ITGB2_complex

CD40LG_ITGB1_ITGA1_complex_M1_macrophage__Cyto-
plasmic_membrane_up

CD40LG_ITGB1_ITGA1_complex_M2_macrophage__cyto-
plasmic_membrane_up

—_—

CD40LG_M1_macrophage__Cytoplasmic_mem-
brane_down

CD40LG_M2_macrophage__cytoplasmic_mem-
brane_down

CD40LG_TH1__cytoplasmic_membrane_down

CD80

CD84_CD84_complex

CD84_Fibroblast_ Cytoplasmic_membrane_down

CD84_M1_macrophage__Cytoplasmic_membrane_down

CD84_M2_macrophage__cytoplasmic_membrane_down

CD84_TH1__ cytoplasmic_membrane_up

CD86_M1_macrophage__Cytoplasmic_membrane_down

CD86_M2_macrophage__cytoplasmic_membrane_down
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CDC25B_C

Cell_chemotaxis_migration_fibroblast_phenotype

Cell_chemotaxis_migration_TH1_phenotype

CFLAR _Fibroblast__Cytoplasm

CFLAR_Fibroblast___Cytoplasm_active

cFLIP_M1_macrophage__ Cytoplasm

cFLIP_M1_macrophage__Cytoplasm_active

cFLIP_M2_macrophage__cytoplasm

cFLIP_M2_macrophage__cytoplasm_active

cGAS

CHUK_phosphorylated

clAP1

cMyc

cMyc_phosphorylated_M2_macrophage__cytoplasm

cMyc_phosphorylated_M2_macrophage_nucleus

col4a3_Fibroblast__ Extracellular_Space

COL4A3_ITGA4_ITGB7_complex

col4a3_M2_macrophage__secreted_components

cold4a3_TH1__ extracellular_space

col4a4_Fibroblast__secreted_components

colda4d_M1_macrophage__ Extracellular_Space

colda4d_M2_macrophage__extracellular_space

COL4A5

col4a5_Fibroblast__ Extracellular_Space

col4a5_M1_macrophage__ Extracellular_Space

colda5_M2_macrophage__extracellular_space

COMP

COX2_rna_M1_macrophage__ nucleus

COX2_rna_M2_macrophage_nucleus

CPNE3_rna

CREB1_phosphorylated_Fibroblast__nucleus

CREB1_phosphorylated_M2_macrophage_nucleus

CREB1_phosphorylated_TH1___nucleus

CRKL_phosphorylated_Fibroblast__Cytoplasm

CRKL_phosphorylated_M1_macrophage__Cytoplasm

CSF1_Fibroblast__secreted_components

CSF1_M2_macrophage__extracellular_space

CSF1_M2_macrophage__secreted_components

CSF1_rna
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CSF1R_CSF1_complex

CSF2_Fibroblast___Extracellular_Space

CSF2_Fibroblast___secreted_components

CSF2_M1_macrophage__ Extracellular_Space

CSF2_M1_macrophage___Secreted_components

CSF2RA_CSF2RB_complex_Fibroblast_ Cytoplas-
mic_membrane_up

_— | A A -

CSF2RA_CSF2RB_complex_M1_macrophage__Cytoplas-
mic_membrane_up

CSF2RA_CSF2RB_CSF2_complex

CSFRTR_IL34_complex

CSL

CTNNB_CK1A_AXIN_GSK3B_APC_complex

CTNNB1_Fibroblast___nucleus

CTNNB1_M2_macrophage_nucleus

CTNNB1_TCF_LEF_complex

CTSK rna

CXCL1_CXCR1_complex

CXCL1_Fibroblast__secreted_components

CXCL1_M1_macrophage__ Extracellular_Space

CXCL1_M1_macrophage__Secreted_components

CXCL10_CXCR3_complex_Fibroblast__Cytoplasmic_mem-
brane_up

CXCL10_CXCR3_complex_TH1___cytoplasmic_mem-
brane_up

CXCL10_Fibroblast__ Extracellular_Space

CXCL10_Fibroblast___secreted_components

CXCL10_M1_macrophage___Secreted_components

CXCL10_TH1__ extracellular_space

CXCL10_TH1__secreted_components

CXCL11

CXCL12

CXCL13_ACKR4_complex_M1_macrophage_ Cytoplas-
mic_membrane_up
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CXCL13_ACKR4_complex_M2_macrophage__cytoplas-
mic_membrane_up

CXCL13_CXCR3_complex

CXCL13_Fibroblast__Extracellular_Space

CXCL13_M1_macrophage__ Extracellular_Space

CXCL13_M2_macrophage__extracellular_space

—_— ) | |
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CXCL13_TH1__secreted_components

CXCL16_CXCR6_complex

CXCL16_M1_macrophage___Secreted_components

CXCL16_M2_macrophage__secreted_components

CXCL16_TH1__extracellular_space

CXCL2

CXCL3

CXCL8_Fibroblast__ Extracellular_Space

CXCL8_Fibroblast__secreted_components

CXCL9_Fibroblast___secreted_components

CXCL9_M1_macrophage__Secreted_components

CXCRT1

CXCR1_IL8_complex_M1_macrophage__Cytoplas-
mic_membrane_up
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CXCR1_IL8_complex_M2_macrophage__cytoplas-
mic_membrane_up

CXCR2_CXCL8_complex

CXCR3

CypA

DAG_simple_molecule

DAXX_Fibroblast__ Cytoplasm

DAXX_M1_macrophage__ Cytoplasm

DAXX_M2_macrophage__cytoplasm

DAXX_TH1___cytoplasm

DKK1

DNA_simple_molecule

DOCK?2

DOCK2_CRKL_complex

dsRNA_simple_molecule

DUSP1_M1_macrophage__ Cytoplasm

DUSP1_M2_macrophage_ cytoplasm

DVL1_phosphorylated

DYNLRB1

ECSIT

EDA_EDA2R_complex

EDA_Fibroblast_ _Extracellular_Space

EDA_M1_macrophage__Secreted_components

EDA_M2_macrophage__secreted_components

EFNB1_EPHB1_complex
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efnb1_rna 1
EGF 1
EGF_EGFR_complex 1
EGFR 1
ELK1_phosphorylated 1
EOMES 1
EPHB2 1
ERK1_phosphorylated_M1_macrophage__ Cytoplasm 1
ERK1_phosphorylated_M1_macrophage__nucleus 1
ERK1_phosphorylated_M2_macrophage__cytoplasm 1
ERK1_phosphorylated_M2_macrophage_nucleus 1
FADD_Fibroblast__ Cytoplasm 1
FADD_M1_macrophage__ Cytoplasm 1
FADD_M2_macrophage__cytoplasm 1
FAS_FASL_complex 1
FAS_M1_macrophage_ Cytoplasmic_membrane_up 1
FAS_M2_macrophage__cytoplasmic_membrane_up 1
FASL_FAS_complex_M1_macrophage__Cytoplas- 1
mic_membrane_up
FASL_FAS_complex_M2_macrophage__cytoplasmic_mem-|1
brane_up

FASL_M1_macrophage__ Extracellular_Space 1
FASL_M1_macrophage__Secreted_components 1
FASL_M2_macrophage__extracellular_space 1
FASL_M2_macrophage__secreted_components 1
FASLG_FAS_complex 1
FASLG_Fibroblast__Extracellular_Space 1
FASLG_TH1__ extracellular_space 1
FASLG_TH1__ secreted_components 1
FGF1 1
FGF1_FGFR4_complex 1
FGR 1
FN1_Fibroblast__Extracellular_Space 0
FN1_Fibroblast__secreted_components 0
FN1_ITGAV_complex 0
FN1_M2_macrophage_ secreted_components 1
FOXO_M1_macrophage__Cytoplasm 1
FOXO_M1_macrophage__ nucleus 1
FOXO1_Fibroblast___nucleus 0
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FOXO1_M2_macrophage_nucleus

FZD1_LRP5_complex

FZD5_LRP5_wnt5a_complex

GAB2_phosphorylated_Fibroblast__Cytoplasm

GAB2_phosphorylated_M2_macrophage__cytoplasm

gal_Fibroblast___secreted_components

GAL_GALR2_complex_M1_macrophage_ Cytoplas-
mic_membrane_up
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GAL_GALR2_complex_M2_macrophage__cytoplas-
mic_membrane_up

gal_M1_macrophage__ Extracellular_Space

gal_M2_macrophage__extracellular_space

GAL_rna

gamma_secretase_complex

gamma_secretase_complex_complex

GAS6_Fibroblast__secreted_components

GAS6_M2_macrophage__extracellular_space

GAS6_MERTK_complex

gas6_mertk_complex

GAS6_TH1__ extracellular_space

gata3_rna

GNA12_GNA13_complex_ M1_macrophage__ Cytoplasm

GNA12_GNA13_complex_M2_macrophage__cytoplasm

GNA12_GNA13_complex TH1__ cytoplasm

GNAI_GNB_GNG_complex

GNAI_TH1___cytoplasm

GNAI_TH1__cytoplasm_active

GNAI3_Fibroblast__Cytoplasm

GNAI3_M1_macrophage__ Cytoplasm

GNAI3_M2_macrophage__cytoplasm

GNB_GNG_complex_ M1_macrophage__Cytoplasm

GNB_GNG_complex_M2_macrophage__cytoplasm

GNB_GNG_complex_TH1__ cytoplasm

GNB_GNG_GNAI3_complex_M1_macrophage__Cyto-
plasm
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GNB_GNG_GNAI3_complex_M2_macrophage__cyto-
plasm

GRB2_Fibroblast__Cytoplasm

GRB2_TH1___cytoplasm
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GSK3B

GSK3b_APC_AXIN1_CK1A_complex

GSK3b_APC_AXIN1_CTNNB1_CK1A_complex

HBGEF_EGFR_complex

HBGEF_M1_macrophage__ Secreted_components

HBGEF_M2_macrophage__secreted_components

HCK

HES1 _rna

hes1_rna

HEY1_rna

HIF1_complex

Hif1a

Hif1b

HLA_B

HLA_B_LILRB1_complex_M1_macrophage__Cytoplas-
mic_membrane_up

JESENRY S\ [N [\ [\ U NI NEEY NI NIy Y gy punyy puny I )

HLA_B_LILRB1_complex_M2_macrophage__cytoplas-
mic_membrane_up

HLA_DP_DQ _DR_LAG3_complex

HLA_DP_DQ_DR_M1_macrophage__Cytoplasmic_mem-
brane_down

HLA_DP_DQ_DR_M2_macrophage__cytoplasmic_mem-
brane_down

HLA_DP_DQ DR_TCR_CD3_complex

HLA_DRB1_rna

HMGB1

HOMODIMER _space_STAT1

HOMODIMER _space_STAT3

HRAS_M1_macrophage__ Cytoplasm

HRAS_M?2_macrophage__cytoplasm

HSPAS

ICAM1_Fibroblast__Cytoplasmic_membrane_down

ICAM1_ITGB2_ITGAL_complex

ICAM1_M1_macrophage__Cytoplasmic_mem-
brane_down
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ICAM1_TH1__ cytoplasmic_membrane_down

icos

ICOSLG_Fibroblast_ Cytoplasmic_membrane_down

icoslg_icos_complex

_— A
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ICOSLG_M1_macrophage__Cytoplasmic_mem-
brane_down

ICOSLG_M2_macrophage__cytoplasmic_mem-
brane_down

IFNa_M1_macrophage___Extracellular_Space

IFNa_M1_macrophage__ Secreted_components

IFNa_rna

IFNa1

IFNa1_B1

IFNA1_B1_IFNAR1_R2_complex

IFNAR1T_IFNAR2_complex

IFNAR1_IFNAR2_IFNa_complex

IFNAR1_IFNAR2_IFNb_complex

IFNb_M1_macrophage__ Extracellular_Space

IFNb_M1_macrophage__Secreted_components

IFNb_rna

IFNb1

IFNB1_rna

IFNE

IFNE_IFNAR1_IFNAR2_complex

IFNg_Fibroblast__Extracellular_Space

IFNG_IFNGR1_IFNGR2_complex

IFNG_IFNGR1_R2_complex

IFNg_M1_macrophage__ Extracellular_Space

IFNg_M1_macrophage___Secreted_components

IFNg_rna

IFNg_TH1___extracellular_space

IFNg_TH1__ secreted_components

IFNGR1_IFNGR2_complex_M1_macrophage__Cytoplas-
mic_membrane_up
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IFNGR1_IFNGR2_complex_TH1___cytoplasmic_mem-
brane_up

IFNGR1_IFNGR2_IFNg_complex

IFNGR1_R2_complex

IGF1

IGF1_IGF1R_complex

igG

IKBA_NFKB1_RELA_complex

IKBKB_phosphorylated
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IKK_complex_Fibroblast__Cytoplasm

IKK_complex_M1_macrophage__ Cytoplasm

IKK_complex_M2_macrophage__cytoplasm

IKK_complex_TH1___cytoplasm

IKK1_IKK2_complex_Fibroblast__Cytoplasm

IKK1_IKK2_complex_M1_macrophage__Cytoplasm

IKK1_IKK2_complex_M2_macrophage_ cytoplasm

IKK1_phosphorylated_Fibroblast__Cytoplasm

IKK1_phosphorylated_M1_macrophage__ Cytoplasm

IKK1_phosphorylated_M2_macrophage__cytoplasm

IKK2_phosphorylated_Fibroblast__Cytoplasm

IKK2_phosphorylated_M1_macrophage__ Cytoplasm

IKK2_phosphorylated_M2_macrophage__cytoplasm

IKKE_TBK1_complex

IKKE_TBK1_TRAF3_complex

IL1_ILTR_complex

IL10_Fibroblast__ Extracellular_Space

ILT10_ILTORA_ILTORB_complex

IL10_M2_macrophage__extracellular_space

IL10_M2_macrophage__secreted_components

IL10_rna

IL10_TH1__extracellular_space

ILTOR1_ILTOR2_complex

ILTORT_ILTOR2_IL10_complex

ILTORA_ILTORB_complex_Fibroblast__Cytoplasmic_mem-
brane_up

ILTORA_ILTORB_complex_TH1___cytoplasmic_mem-
brane_up

ILTORA_ILTORB_IL10_complex

IL11

IL11_ILT1Ra_IL6ST_complex

ILT1Ra_IL6ST_IL11_complex

IL12_M1_macrophage__ Extracellular_Space

IL12_M1_macrophage__Secreted_components

IL12_rna

IL12_TH1__extracellular_space

IL12_TH1__secreted_components

IL12A

IL12B
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IL12RB_complex

IL12RB_IL12_complex

IL12Rb1_IL12Rb2_complex

IL12Rb1_IL12Rb2_IL12_complex

IL15_M1_macrophage__ Secreted_components

IL15_M2_macrophage_ secreted_components

IL17A_Fibroblast__ Extracellular_Space

IL17A_Fibroblast__secreted_components

IL17A_ILT17RA_complex

IL17F

IL17Ra_IL17Rc_IL17F_complex

IL18_Fibroblast__Extracellular_Space

IL18_Fibroblast___secreted_components

IL18_IL18R_complex

IL18_IL18R1_complex

IL18_IL18R1_IL18RAP_complex

IL18_M1_macrophage__ Cytoplasm

IL18_M1_macrophage__ Extracellular_Space

IL18_M1_macrophage__Secreted_components

IL18_M2_macrophage__cytoplasm

IL18_M2_macrophage__cytoplasm_active

IL18_TH1__extracellular_space

IL18_TH1__secreted_components

IL18R1_IL18RAP_complex

ILTA

ILTA_ILTR1_complex

IL1B_Fibroblast__ Extracellular_Space

IL1B_Fibroblast__secreted_components

IL1B_ILTR1_complex

IL1B_M1_macrophage__ Cytoplasm

IL1B_M1_macrophage__ Extracellular_Space

IL1B_M1_macrophage__Secreted_components

IL1B_M2_macrophage__cytoplasm

ILTRN_rna

L2

IL23_M1_macrophage__ Extracellular_Space

IL23_M1_macrophage__Secreted_components

IL23_M2_macrophage__extracellular_space

IL23_M2_macrophage__secreted_components
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IL23R_IL12RB1_complex_M1_macrophage_ Cytoplas-
mic_membrane_up

—_—

IL23R_ILT2RB1_complex_M2_macrophage__cytoplas-
mic_membrane_up

—_—

IL23R_IL12RB1_IL23_complex_M1_macrophage__Cyto-
plasmic_membrane_up

IL23R_IL12RB1_IL23_complex_M2_macrophage__cyto-
plasmic_membrane_up

—_—

IL26

[L27

IL27_IL27RA_complex

IL32_rna

IL33_rna

IL34_Fibroblast___secreted_components

IL34_M2_macrophage__extracellular_space

L4

IL4_IL4Ra_complex

IL4 rna

IL6_Fibroblast__ Extracellular_Space

IL6_Fibroblast___secreted_components

IL6_IL6R_complex

IL6_IL6R_IL6ST_complex

IL6_IL6ST_complex

IL6_M1_macrophage__ Extracellular_Space

IL6_M1_macrophage__Secreted_components

IL7_Fibroblast___secreted_components

IL7_IL7R_IL2RG_complex

IL7_TH1__extracellular_space

IL7R_IL2RG_complex

IL8_M1_macrophage__Extracellular_Space

IL8_M1_macrophage__Secreted_components

IL8_M2_macrophage__extracellular_space

IL8_M2_macrophage_ secreted_components

IL9R_IL2RG_IL9_complex

immune_complex_CD16a_complex

immune_complex_CD32a_complex

immune_complex_CD32B_complex

immune_complex_CD64_complex

immune_complex_complex
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inflammation_signal_phenotype

INHBA

INHBB_Fibroblast___secreted_components

INHBB_M1_macrophage__ Extracellular_Space

INPP5A

IP3_simple_molecule

IRAK1_Fibroblast__ Cytoplasm

IRAK1_Fibroblast__Cytoplasm_active

IRAK1_IRAK4_complex

IRAK1_IRAK4_complex_M1_macrophage__ Cytoplasm

IRAK1_IRAK4_complex_TH1__cytoplasm

IRAK1_M1_macrophage__ Cytoplasm

IRAK3

IRAK4_Fibroblast__Cytoplasm

IRAK4_Fibroblast___Cytoplasm_active

IRAK4_phosphorylated

IRF1_Fibroblast__Cytoplasm

IRF1_Fibroblast___nucleus

IRF3_phosphorylated_Fibroblast___nucleus

IRF3_phosphorylated_M1_macrophage___nucleus

IRF5_Fibroblast___Cytoplasm

IRF5_Fibroblast___nucleus

IRF5_ubiquitinated

IRF7_M1_macrophage__nucleus

IRF7_M2_macrophage_nucleus

IRF7_TH1__ cytoplasm

IRF7_TH1__ cytoplasm_active

IRF9_Fibroblast__Cytoplasm

IRF9_M1_macrophage__Cytoplasm

ISGF3_complex

ITCH_phosphorylated_M1_macrophage__ Cytoplasm

ITCH_phosphorylated_M2_macrophage__cytoplasm

ITGA4_ITGB1_col4a3_complex

ITGA4_ITGB1_complex

ITGA4_ITGB1_sema7a_complex

ITGA4_ITGB7_complex

ITGAS5_ITGB1_col4a5_complex

ITGAS5_ITGB1_complex

ITGAL_ITGB2_complex
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ITGAM_ITGB2_complex

ITGB1_ITGA1_col4a_complex_M1_macrophage__Cyto-
plasmic_membrane_up

—_—

ITGB1_ITGA1_col4a_complex_M2_macrophage__cytoplas-
mic_membrane_up

—_—

ITGB1_ITGA1_complex_M1_macrophage_ Cytoplas-
mic_membrane_up

ITGB1_ITGA1_complex_M2_macrophage__cytoplas-
mic_membrane_up

JAG1_M1_macrophage_ Cytoplasmic_membrane_down

JAG1_M2_macrophage__cytoplasmic_membrane_down

JAGT_NOTCH1_complex

JAGT_NOTCH3_complex

JAG1_rna

JAK1_Fibroblast___Cytoplasm

JAK1_JAK2_complex_M1_macrophage__ Cytoplasm

JAK1_JAK2_complex_TH1__ cytoplasm

JAKT_JAK2_TYK2_complex

JAK1_JAK3_complex

JAK1_M1_macrophage__ Cytoplasm

JAK1_M2_macrophage__cytoplasm

JAK1_TYK2_complex_M1_macrophage__ Cytoplasm

JAK1_TYK2_complex_M2_macrophage_ cytoplasm

JAK1_TYK2_complex_TH1___cytoplasm

JAK2_Fibroblast__Cytoplasm

JAK2_M1_macrophage__ Cytoplasm

JAK2_M2_macrophage__cytoplasm

JAK2_TYK2_complex_M1_macrophage__ Cytoplasm

JAK2_TYK2_complex_TH1__ cytoplasm

JAK3

UNK1_phosphorylated_M1_macrophage__ Cytoplasm

UNK1_phosphorylated_M1_macrophage___nucleus

UJNK1_phosphorylated_M2_macrophage_nucleus

JUN_phosphorylated

JUNB

klf4

LAG3

LAT_phosphorylated

LBP_CD14_complex
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LCK_phosphorylated

LGALS9_Fibroblast___secreted_components

LGALS9_M1_macrophage__ Secreted_components

LGALS9 _TH1__ extracellular_space

LGALS9_TIM3_complex

LIFR_IL6ST_CTF1_complex

LTA_Fibroblast__secreted_components

LTA_M1_macrophage__ Secreted_components

LTA_TH1__ extracellular_space

LTA_TH1__ secreted_components

LTA_TNFRSF14_complex

LTBP1

LY96_TLR2_4_complex

lyn

maf_rna

MAMLT

MAP2K1_phosphorylated_Fibroblast__Cytoplasm

MAP2K1_phosphorylated_TH1__ cytoplasm

MAP2K3_phosphorylated

MAP2K4_phosphorylated

MAP2K6_phosphorylated

MAP2K7_phosphorylated

MAP3K1_phosphorylated

MAP3K14_phosphorylated

MAP3K2_3 4

MAP3K5_phosphorylated

MAP3K7_phosphorylated

MAP3K7 _rna

MAP3K8_phosphorylated

MAP4K4_phosphorylated

MAPK1_empty

MAPK1_phosphorylated_Fibroblast__ Cytoplasm

MAPK1_phosphorylated_TH1__ cytoplasm

MAPK14_phosphorylated

MAPK3_complex

MAPK3_phosphorylated

MAPK8

MAPK8_phosphorylated

MAPK9_phosphorylated
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MAPKAPK?2_phosphorylated

Matrix_degradation_signal_phenotype

Mcl1_rna_M1_macrophage___nucleus

Mcl1_rna_M2_macrophage_nucleus

MDM?2

MDM?2_phosphorylated_Fibroblast__Cytoplasm

MDM?2_phosphorylated_M1_macrophage__ Cytoplasm

MDM2_phosphorylated_M2_macrophage__cytoplasm

MEK1_phosphorylated_M1_macrophage__ Cytoplasm

MEK1_phosphorylated_M?2_macrophage__cytoplasm

MEK?2_phosphorylated_M1_macrophage__ Cytoplasm

MEK?2_phosphorylated_M2_macrophage__cytoplasm

MEKK1_M1_macrophage__ Cytoplasm

MEKK1_M2_macrophage__cytoplasm

MIF_CD74_complex

MIF_CXCR4_complex

MIF_Fibroblast__ Extracellular_Space

MIF_Fibroblast__secreted_components

MIF_M2_macrophage__secreted_components

MIF_TH1__ extracellular_space

MIF_TH1__ secreted_components

MIR10a_rna

MIR124A_rna

MIR146A_rna

MIR155 rna

MIR192_rna

MIR203A_rna

MIR221 rna

MIR338_5P_rna

MIR346_rna

MIR34A_rna

MIR451A_rna

MIR650 rna

MK2_phosphorylated_M1_macrophage___nucleus

MK2_phosphorylated_M2_macrophage_nucleus

MKK3_phosphorylated_M1_macrophage__ Cytoplasm

MKK3_phosphorylated_M2_macrophage__cytoplasm

MKK4_phosphorylated_M1_macrophage__ Cytoplasm

MKK4_phosphorylated_M2_macrophage__cytoplasm
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MKK6_phosphorylated_M1_macrophage__Cytoplasm

MKK6_phosphorylated_M2_macrophage__cytoplasm

MKK7_phosphorylated_M1_macrophage__ Cytoplasm

MKK7_phosphorylated_M2_macrophage__cytoplasm

MMP1

MMP13

MMP14_M1_macrophage__ Secreted_components

MMP14_M2_macrophage__secreted_components

MMP3_Fibroblast__secreted_components

MMP3_M1_macrophage__ Secreted_components

MMP3_M2_macrophage__secreted_components

MMP9_Fibroblast__secreted_components

MMP9_M1_macrophage__ Secreted_components

MMP9_M2_macrophage__secreted_components

MSK1_phosphorylated

mtor

MYD88_Fibroblast__Cytoplasm

MYD88_M1_macrophage__ Cytoplasm

MYD88_TH1__ cytoplasm

MYD88_TIRAP_TOLLIP_complex

NCID_Fibroblast___nucleus

NCID_M1_macrophage__ Cytoplasm

ncid_rbpj_snw1_complex

NECTIN3_PTPRC_NECTIN1_complex

NFAT

NFAT5

NFAT5_phosphorylated_Fibroblast___nucleus

NFAT5_phosphorylated_M2_macrophage_nucleus

NFKB_complex

NFKB_N_complex

NFKB1_Fibroblast__Cytoplasm

NFKB1_M1_macrophage__ Cytoplasm

NFKB1_M2_macrophage__cytoplasm

NFKB1_MAP3K8_complex

NFKB1_RELA_complex_TH1__ cytoplasm

NFKB1_RELA_complex TH1___nucleus

NFKB1_RELA_NFKBIA_complex

NFKB1_TPL2_complex_ M1_macrophage__Cytoplasm

NFKB1_TPL2_complex_M2_macrophage__cytoplasm
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NFKB2_RELB_complex

NFKBIA_phosphorylated_Fibroblast__Cytoplasm

NFKBIA_phosphorylated_M1_macrophage__ Cytoplasm

NFKBIA_phosphorylated_M2_macrophage_ cytoplasm

NFKBIA_phosphorylated_TH1__ cytoplasm

NFKBIA_RELA_NFKB1_complex_M1_macrophage__ Cyto-

plasm

_— | A A -

NFKBIA_RELA_NFKB1_complex_M2_macrophage__cyto-
plasm

—_—

NFKBIA_rna

NFKBIE_Fibroblast_ Cytoplasm

NFKBIE_M1_macrophage__ Cytoplasm

NFKBIE_M2_macrophage__cytoplasm

ngef

NICD_CSL_SKIP_MAML1_ep300_complex

NICD_EP300_SKIP_CSL_MAML1_complex

NICD_M1_macrophage___nucleus

NICD_TH1__ nucleus

NIK_M1_macrophage__ Cytoplasm

NIK_TH1__ cytoplasm

NLK_phosphorylated

NLRP3_INFLAMMASOME_complex_M1_macro-
phage__Cytoplasm
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NLRP3_INFLAMMASOME_complex_M2_macrophage__cy-

toplasm

—_—

NLRP3_M1_macrophage__ Cytoplasm

NLRP3_M2_macrophage__cytoplasm

NOD?2

NOS2

NOS2_phosphorylated

NOTCH1

notch1_JAG1_complex

notch3

OPN_M1_macrophage__ Cytoplasm

OPN_M2_macrophage__cytoplasm

osteoclastogenesis_M1_macrophage_phenotype

osteoclastogenesis_signal_phenotype

p15_rna_M1_macrophage__nucleus

p15_rna_M2_macrophage_nucleus
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p21_rna

p300_SP1_complex_M1_macrophage__nucleus

p300_SP1_complex_M2_macrophage_nucleus

p38_MAP_KINASE_phosphorylated_M1_macro-
phage__ Cytoplasm

olo|o|—

p38_MAP_KINASE_phosphorylated_M1_macro-
phage__nucleus

p38_MAP_KINASE_phosphorylated_M2_macrophage__cy-
toplasm

o

p38MAPK_empty

p38MAPK_phosphorylated

p53

p53_phosphorylated_M1_macrophage__ Cytoplasm

p53_phosphorylated_M2_macrophage__cytoplasm

p53_phosphorylated_M2_macrophage_nucleus

PDCD1

PDGFC_Fibroblast__Extracellular_Space

PDGFC_M2_macrophage__secreted_components

PDGFC_PDGFRB_complex

PDIA3_HLA_A_B2M_complex

PI3K_M1_macrophage__ Cytoplasm

PI3K_M2_macrophage__cytoplasm

PI3K_phosphorylated

Pl4_5 P_ 2 _simple_molecule

PIK3AP1_phosphorylated_M1_macrophage__ Cytoplasm

PIK3AP1_phosphorylated_M2_macrophage__cytoplasm

PIK3R5_phosphorylated

PIP2_simple_molecule

PITPNM3_CCL18_complex

PLA2G2A_phosphorylated

PLCG2

PLXNA1

PLXNA1_sema3A_complex

PLXNB1_MET_complex

PLXNB1_MET_semada_complex

PLXNB2_MET_complex

PMAIP1_Fibroblast__Cytoplasm

PMAIP1_Fibroblast__Cytoplasm_active
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PP2A

PP4

PPARg_rna

PRKACA

Prkcd_M1_macrophage__ Cytoplasm

Prkcd_M2_macrophage__cytoplasm

PRKCQ_Fibroblast__Cytoplasm

PRKCQ_M1_macrophage__ Cytoplasm

PRKCQ_M2_macrophage_ cytoplasm

PRKCQ_TH1__ cytoplasm

PRKG1_Fibroblast__Cytoplasm

PRKG1_M1_macrophage__ Cytoplasm

PRKG1_M2_macrophage__cytoplasm

PRL_Fibroblast__secreted_components

PRL_M2_macrophage__extracellular_space

PRL_PRLR_complex

proliferation_survival_fibroblast_phenotype

proliferation_survival_M1_macrophage_phenotype

proliferation_survival_M2_macrophage_phenotype

proliferation_survival_TH1_phenotype

PTEN

PTGS2 rna

PTK2_M1_macrophage__ Cytoplasm

PTK2_M2_macrophage__cytoplasm

PTK2_TH1__cytoplasm

PTK2B_phosphorylated

PTPN11_phosphorylated

PTPN6_Fibroblast__Cytoplasm

PTPN6_M1_macrophage__ Cytoplasm

PTPN6_M2_macrophage__cytoplasm

pyk2_phosphorylated

RAB5A

RAC1_2

Rac1_M1_macrophage__ Cytoplasm

Rac1_M2_macrophage_ cytoplasm

Rac1_TH1__ cytoplasm

RAF1_Fibroblast__Cytoplasm

RAF1_M1_macrophage__Cytoplasm

RAF1_M2_macrophage__cytoplasm
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RAF1_TH1__ cytoplasm

RANK_RANKL_complex

rasal

RBL1_E2F4_DP1_complex

rbpj

RDX

RELA_NFKB1_complex_M1_macrophage__Cytoplasm

RELA_NFKB1_complex_M1_macrophage___nucleus

RELA_NFKB1_complex_M2_macrophage_ cytoplasm

RELA_NFKB1_complex_M2_macrophage_nucleus

RELA_NFKB1_NFKBIE_complex_Fibroblast___Cytoplasm

RELA_NFKB1_NFKBIE_complex_M1_macrophage__ Cyto-
plasm

RELA_NFKB1_NFKBIE_complex_M2_macrophage__cyto-
plasm

RHOA _Fibroblast__Cytoplasm

RHOA_M1_macrophage__ Cytoplasm

RHOA_M2_macrophage__cytoplasm

RHOA_TH1__ cytoplasm

RIPK1

RIPK1_TRAF6_complex

RIPK3

RPS6KB1_phosphorylated

RUNX1

RUNX3

RXRa_NUR77_complex_ M1_macrophage__Cytoplasm

RXRa_NUR77_complex_M2_macrophage__cytoplasm

SARA_M1_macrophage__ Cytoplasm

SARA_M2_macrophage_ cytoplasm

SARM1

sema3A

SEMA4_PLXNB1_complex

SEMA4_PLXNB2_MET_complex

SEMAA4A _Fibroblast__Extracellular_Space

SEMA4A_M1_macrophage__ Secreted_components

SEMA4A_M2_macrophage__extracellular_space

SEMA4A_M2_macrophage__secreted_components

SEMA4A_TH1__extracellular_space

SEMA4A _TH1__secreted_components
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SEMAA4D_Fibroblast__secreted_components

SEMA4D_M2_macrophage__extracellular_space

SEMA4D_TH1__extracellular_space

sema7/a_Fibroblast__ Extracellular_Space

sema7a_M2_macrophage__secreted_components

SERPINE1 _rna

SH2D1A_Fibroblast__Cytoplasm

SH2D1A_M2_macrophage__cytoplasm

SH2D1A_TH1__cytoplasm

Shc_phosphorylated

SHC1_phosphorylated

SHC2_phosphorylated

SHIP1_M2_macrophage__cytoplasm

SHIP1_TH1__ cytoplasm

SHP2_GRB2_complex

SHP2_GRB2_complex

Sirt1_M1_macrophage___nucleus

Sirt1_M2_macrophage__cytoplasm

SKIP

smad1_phosphorylated

SMAD2_phosphorylated_M1_macrophage__Cytoplasm

SMAD2_phosphorylated_M2_macrophage__cytoplasm

SMAD2_SARA_complex_M1_macrophage__ Cytoplasm

SMAD2_SARA_complex_M2_macrophage_ cytoplasm

SMAD2_SMAD4_complex_M1_macrophage___nucleus

SMAD2_SMAD4_complex_M2_macrophage_nucleus

SMAD4_M1_macrophage__ Cytoplasm

SMAD4_M2_macrophage__cytoplasm

smad4_smad1_complex

SMAD7_Fibroblast___Cytoplasm

SMAD7_M1_macrophage__ Cytoplasm

SMAD7_M2_macrophage__cytoplasm

snw

SOCS3 rna

SOS1_Fibroblast__ Cytoplasm

SOS1_M1_macrophage__ Cytoplasm

SOS1_M2_macrophage_ cytoplasm

SOS1_TH1__ cytoplasm

Src_M1_macrophage__ Cytoplasm
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Src_M2_macrophage__cytoplasm

SRC_phosphorylated

Src_TH1__ cytoplasm

sst

sst_sstr_complex

STAT1_Fibroblast_ Cytoplasm

STAT1_Fibroblast___nucleus

STAT1_M1_macrophage__ Cytoplasm

STAT1_STAT1_complex_M1_macrophage__ nucleus

STAT1_STAT1_complex_TH1__ nucleus

STAT1_STAT2_complex

STAT1_STAT2_IRF9_complex

STAT1_TH1__ cytoplasm

STAT2_Fibroblast__Cytoplasm

STAT2_M1_macrophage__ Cytoplasm

STAT3_Fibroblast__Cytoplasm

STAT3_Fibroblast___nucleus

STAT3_M1_macrophage__ Cytoplasm

STAT3_M2_macrophage__cytoplasm

STAT3_STAT3_complex_M1_macrophage__ nucleus

STAT3_STAT3_complex_M2_macrophage_nucleus

STAT4_M1_macrophage__ Cytoplasm

STAT4_STAT4_complex_M1_macrophage__nucleus

STAT4_STAT4_complex_TH1__ nucleus

STAT4_TH1__ cytoplasm

STAT5_CRKL_complex

STAT5_phosphorylated

STAT6_STAT6_complex

SYK_M1_macrophage__ Cytoplasm

SYK_M2_macrophage__cytoplasm

Syk_phosphorylated

TABT

TAB1_TAB2_complex

TAB1_TAB2_TAK1_complex

TAB1_TAB2_TRAF6_complex

TAB2_phosphorylated

TAK1

TAK1_phosphorylated

tBID
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TBK1

TBK1_IKBKE_complex

tbx21

tbx21_phosphorylated

TCF_LEF

TCF_LEF

TCR_CD3_complex

TGFb1

TGFB1_Fibroblast_ Extracellular_Space

TGFB1_Fibroblast___Extracellular_Space_active

TGFB1_M2_macrophage__extracellular_space

TGFB1_M2_macrophage__secreted_components

TGFB1_TGFBR1_complex

TGFB1_TH1__ secreted_components

tgfb3

TGFBR1_TGFBR2_complex

TGFBR1_TGFBR2_TGFB1_complex

THBS1_rna

TICAM1

TICAM1_TICAM2_complex

TICAM2

TIRAP_MYD88_complex

TLR1_TLR2_biglycan_complex

TLR1_TLR2_complex

TLR2_TLR6_biglycan_complex

TLR2_TLR6_complex

TLR3_dsRNA_complex

TLR4_Md2_CD14_fibrinogen_complex

TLR5_Fibroblast_ Cytoplasmic_membrane_up

TLR5_M1_macrophage__Cytoplasmic_membrane_up

TLR7_TLR8_ssRNA_complex

TLR9_DNA_complex

TNF_Fibroblast__ Extracellular_Space

TNF_Fibroblast___secreted_components

TNF_M1_macrophage__ Extracellular_Space

TNF_M1_macrophage__ Secreted_components

TNF_TH1__ extracellular_space

TNF_TNFRSF1A_B_complex

TNF_TNFRSF1A_complex
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TNF_TNFRSF1B_complex

TNFA

TNFA_rna

TNFAIP3_rna_M1_macrophage__ nucleus

TNFAIP3_rna_M2_macrophage_nucleus

TNFRSF10A_rna

TNFRSF10B_rna

TNFSF11_Fibroblast__Extracellular_Space

TNFSF11_Fibroblast_ _secreted_components
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