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5 Abstract

Abstract

The thesis focuses on the concept of generalization, particularly in the context of super-
vised machine learning classification. This approach involves learning to solve a task
(classification) based on labeled training data. Generalization is defined as the ability to
make accurate predictions on unseen data during training. Traditionally, generalization
is limited to data that belongs to the same domain as the training task.

However, recent literature highlights the capability of deep learning architectures to
generalize beyond their training task. Thus, a model trained on a specific task can be
partially reused for other tasks.

The thesis explores various possible extensions of generalization, including learning on
a set of classes and the ability to generalize to a larger set of classes, learning on coarse
labels to predict more complex labels, learning on artificially complex tasks to improve
generalization, and learning invariant operators for a specific task.

French

La thèse s’intéresse à la notion de généralisation, en particulier dans le cadre de la classi-
fication en apprentissage automatique de manière supervisée. Cette approche consiste
à apprendre à résoudre une tâche (classification) à partir de données d’entrainement
étiquetées. La généralisation est définie comme la capacité à réaliser des prédictions
correctes sur des données non observées pendant l’entraînement. Cette notion est gé-
néralement restreinte à des données qui correspondent au même domaine que celui de
la tâche d’entrainement.

Cependant, une littérature récente met en exergue la capacité des architectures d’ap-
prentissage profond à généraliser en dehors de leur tâche d’entrainement. Ainsi, un
modèle entrainé sur une tâche particulière peut être réutilisée en partie sur d’autres
tâches.

Ainsi, nous explorons différentes extensions possibles de la généralisation : apprentis-
sage sur un ensemble de classe et l’habilité à généraliser sur un ensemble de classes plus
grands, l’apprentissage sur des labels grossiers pour prédire des labels plus complexes,
l’apprentissage sur une tâche artificiellement complexe pour améliorer la généralisation
ou encore l’apprentissage d’opérateurs invariants pour résoudre une tâche spécifique.
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7 Abstract

Résumé Long (french summary)

Introduction

De la compréhension du langage naturel à la reconnaissance d’images, l’intelligence
artificielle (IA) est parvenue à résoudre des tâches très complexes qui étaient jusqu’à
récemment considérées comme impossibles pour des machines (DEVLIN et al., 2018 ;
RADFORD et al., 2021 ; RADFORD et al., 2018). L’une des capacités impressionnantes de
l’IA est sa capacité à apprendre et à reconnaître des motifs par elle-même à partir de
larges quantités de données, puis à réaliser des prédictions précises sur de nouvelles
données. En apprentissage automatique, cette capacité est classiquement appelée géné-
ralisation (GOODFELLOW et al., 2016).

À l’origine, la notion de généralisation se limitait aux prédictions effectuées sur des
données similaires à celles utilisées pour entraîner le modèle d’IA (CARUANA, 1997 ;
ZHUANG et al., 2020a). Cependant, on peut constater dans la littérature récente en
rapport à l’apprentissage par transfert que la notion de généralisation a été étendue
largement au-delà de son contexte d’origine (CARON et al., 2020 ; FEI-FEI et al., 2004 ;
KRIZHEVSKY et al., 2017 ; PAN & YANG, 2010 ; RADFORD et al., 2015). L’apprentissage
par transfert permet en effet aux systèmes d’IA de transférer les connaissances et repré-
sentations apprises vers de nouveaux domaines et des tâches différentes. La générali-
sation englobe alors la capacité à prendre des décisions, non plus uniquement sur des
données non observées, mais également sur de nouvelles tâches.

Cependant, malgré ces grandes avancées, le domaine de l’apprentissage par transfert
présente encore certaines limites et plusieurs questions fondamentales restent sans ré-
ponse, typiquement en ce qui concerne les procédures d’apprentissage qui conduisent
à une généralisation optimale dans un contexte de transfert et les mécanismes sous-
jacents (HUH et al., 2016 ; JANOCHA & CZARNECKI, 2017a ; TIAN et al., 2020a ; YOSINSKI

et al., 2014). Dans ce manuscrit, nous envisageons plusieurs extensions de la notion de
généralisation et imaginons plusieurs scénarios pour aborder ces questions.

Intelligence Artificielle et Apprentissage Profond

La démocratisation de l’apprentissage automatique a été rendue possible par l’accès
à de grandes quantités de données (appelées "big data") et à des ressources informa-
tiques puissantes et moins coûteuses, en particulier les unités de traitement graphique
(GPU), au début du XXIe siècle (BOMMASANI et al., 2021). Dans ce contexte particulier,
l’apprentissage profond a émergé comme une approche dominante. L’une des percées
les plus significatives dans l’apprentissage profond a été le développement des réseaux
neuronaux convolutifs (CNN)(KRIZHEVSKY et al., 2017 ; LECUN et al., 1998), qui ont
révolutionné la vision par ordinateur. Les CNN sont capables d’extraire des caracté-
ristiques d’images selon plusieurs échelles et emplacements, les rendant très efficaces
pour des tâches telles que la détection d’objets(REDMON et al., 2016), la classification (S.
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REN et al., 2015), la segmentation d’images (MINAEE et al., 2021). Le succès des CNN
a très vite conduit au développement de modèles d’apprentissage profond très perfor-
mants pour des problèmes de vision par ordinateur (HE et al., 2016 ; WIGHTMAN et al.,
2021).

Apprentissage Supervisé et par Transfert

L’apprentissage supervisé est une approche couramment employée pour résoudre de
nombreux problèmes (GOODFELLOW et al., 2016). Cependant, l’une des principales li-
mites de cette approche est qu’elle a tendance à construire souvent un modèle trop spé-
cifique à la tâche d’entraînement (RADFORD et al., 2015). En général, cela implique que
si la tâche d’application est modifiée, la performance du modèle peut être gravement
impactée, nécessitant parfois de devoir ré-entraîner complètement le modèle. Récem-
ment, des chercheurs ont développé des approches d’apprentissage dites par transfert
qui visent à exploiter les connaissances acquises sur une tâche d’entraînement pour les
appliquer sur de nouvelles tâches (PAN & YANG, 2010 ; ZHUANG et al., 2020a). Ces ap-
proches peuvent être particulièrement utiles dans des situations où, pour une nouvelle
tâche, il y a peu de données étiquetées disponibles.

Initialement, l’apprentissage par transfert se réduisait principalement à l’adaptation de
domaine (CARUANA, 1997 ; M. WANG & DENG, 2018), où la tâche cible restait inchan-
gée, mais le domaine des données (ajouts de bruits, luminosité différente) était modifié.
Avec le temps, le domaine de l’apprentissage par transfert a fortement évolué, ouvrant
de nouvelles possibilités permettant la réutilisation de modèles pré-entraînés sur des
tâches autrefois considérées comme hautement spécialisées et difficiles (JING & TIAN,
2020 ; PAN & YANG, 2010 ; ZHUANG et al., 2020a).

Cette avancée a été particulièrement marquante dans plusieurs domaines : imagerie
médicale (MAGOULAS & PRENTZA, 1999), compréhension du langage naturel (DEVLIN

et al., 2018 ; RADFORD et al., 2018), industrie automobile (BOJARSKI et al., 2016), etc.
Cependant, ces approches présentent également leurs propres défis. En effet, il existe
de nombreux paramètres qui peuvent influencer les représentations apprises et leur ca-
pacité à être réutilisées sur différentes tâches : les critères utilisés pour l’apprentissage,
les régularisations, le nombre de paramètres à optimiser, l’architecture et la finesse des
informations disponibles pour s’entraîner (par exemple, étiquetage hiérarchiques, sé-
mantiques, multi-classes)(HUH et al., 2016 ; TIAN et al., 2020a ; WIGHTMAN et al., 2021 ;
WU et al., 2017). Il n’est donc pas aisé de déterminer quelles procédures d’apprentissage
conduisent à la plus grande transférabilité et quelles pourraient être leurs éventuelles
biais et limitations(D’ASCOLI et al., 2021).

Ainsi, dans cette thèse, nous nous sommes concentrés sur plusieurs extensions de la no-
tion de généralisation qui illustrent la capacité des architectures d’apprentissage pro-
fond à généraliser au-delà de leurs tâches d’entraînement, notamment dans le cadre
de la classification. Nous avons envisagé plusieurs scénarios : de la classification d’éti-
quettes grossières à raffinées, d’un ensemble de classes à un autre, de tâches artificiel-
lement complexifiées à des tâches plus simples.



9 Abstract

Résumé des Contributions

Apprentissage d’Opérateurs Invariants sur des Domaines Irréguliers pour
des Tâches de Classification

Les couches et les opérations utilisées pour construire un modèle d’apprentissage pro-
fond impactent profondément les performances ainsi que les propriétés des caractéris-
tiques apprises par le modèle, en particulier en termes d’invariance et d’équivariances
aux transformations géométriques. Dans le cadre de la vision par ordinateur, l’utilisa-
tion de réseaux de neurones convolutifs (CNN) a permis d’obtenir des gains significa-
tifs de précision grâce à des représentations invariantes aux translations et aux faibles
perturbations (LECUN et al., 1998 ; MALLAT, 2016).

Cependant, s’il est aisé d’opérer des convolutions sur des domaines réguliers comme
des images, définir de telles opérations sur des domaines abstraits, tels que les graphes,
devient considérablement plus complexe. En effet, par définition, la notion de direction
n’est pas explicite sur des graphes, alors que cette notion est centrale pour parvenir à
définir des translations, puis des convolutions.

En traitement du signal sur graphe, plusieurs chercheurs ont proposé des définitions
analogues (graphe anneau) à celles du traitement du signal, pour la transformée de
Fourier et les translations sur graphe (ORTEGA, FROSSARD, KOVAČEVIĆ, MOURA et al.,
2018). L’approche classique pour obtenir des translations consiste à partir de la struc-
ture du graphe, par exemple en utilisant son Laplacien (ORTEGA, FROSSARD, KOVAČEVIĆ,
MOURA et al., 2018). Cependant, le problème de ces approches est qu’elles sont com-
plètement agnostiques du signal porté par le graphe et conduisent à des opérateurs
isotropes (MONTI et al., 2018 ; PASDELOUP et al., 2018)

Dans le chapitre II, nous proposons donc de renverser le paradigme des réseaux de
neurones convolutifs (CNN), qui combinent des couches de convolutions et de pooling
pour obtenir des représentations invariantes aux translations, en définissant les transla-
tions comme des opérateurs invariants pour les tâches de classification. Pour cela, nous
définissons des pseudo-couches de convolutions à l’aide d’opérateurs apprenables via
un mécanisme de partage de poids (weight-sharing). Notre approche produit des archi-
tectures qui peuvent être entraînées de bout en bout pour résoudre des tâches de classi-
fication. Les opérateurs employés dans les couches de convolutions sont contraints par
la structure du graphe et appris en résolvant une tâche prétexte de classification. En fin
de compte, nous interprétons les opérateurs appris comme des translations sur graphe.

Cette méthode est d’abord employée sur des images représentées sur des graphes ré-
guliers (grilles). Dans ce cadre, nous avons réussi à retrouver les translations d’images
usuelles verticales. De manière plus surprenante, nous avons également appris des opé-
rations de compression et de dilatation horizontales, qui correspondent effectivement
à des opérations invariantes dans le cadre de la classification d’images. Nous avons
ensuite testé cette approche en remplaçant les grilles par un graphe plus irrégulier
construit à partir de la matrice de covariances de ces images. Les résultats sont illus-
trés sur la Figure 12. Dans ce cadre, nous retrouvons une nouvelle fois les opérations
précédentes. Enfin, nous expérimentons sur des réseaux d’hyperliens où nous avons
démontré la capacité à atteindre des résultats similaires à l’état de l’art, tout en appre-
nant des translations.

Ce travail illustre comment les architectures profondes peuvent être délibérément ap-
prises pour incorporer des propriétés d’invariances dans leurs représentations en fonc-
tion de la tâche d’intérêt. Cette approche ouvre une voie prometteuse pour la définition
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METHOD CIFAR-10 CIFAR-100 Fashion-MNIST SVHN

Baseline 4.98± 0.03 30.6± 0.27 6.20± 0.2 10.01± 0.15
Mixup 4.13± 0.03 29.23± 0.4 6.36± 0.16 8.31± 0.14

Local Mixup 4.03± 0.03 29.08± 0.34 5.97± 0.2 8.20± 0.13

TABLE 1 – Taux d’erreur (%) sur CIFAR-10, CIFAR-100 (Resnet18), Fashion-MNIST
(DenseNet) et SVHN (LeNet). Les valeurs sont moyennées sur 100 exécutions pour
CIFAR-10 et 10 exécutions pour CIFAR-100, Fashion-MNIST et SVHN. Les erreurs
moyennes avec leurs intervalles de confiance sont représentées.

Régularisation de l’entropie des caractéristiques pour améliorer la transféra-
bilité des architectures d’apprentissage profond

Le chapitre précédent explore la possibilité d’améliorer la généralisation en s’entraî-
nant sur une tâche artificiellement plus complexe. Dans ce chapitre, nous examinons
cette fois-ci la possibilité pour un modèle entraîné sur des tâches simplifiées de prendre
des décisions sur des tâches plus complexes, liées à la tâche d’entraînement. Par cette
étude, nous montrons la capacité d’un modèle à généraliser au-delà de sa tâche d’en-
traînement. Nous observons qu’il peut effectivement extraire des informations à propos
de tâches plus fines grâce à l’emploi de régularisations appropriées.

Dans ces travaux, nous introduisons une nouvelle méthode de régularisation entro-
pique de l’extracteur de caractéristiques dénommée FIERCE. Notre méthode vise à
augmenter l’entropie de l’espace des caractéristiques des modèles d’apprentissage pro-
fond, tout en préservant les informations essentielles pour des tâches ultérieures. Nos
expériences démontrent en effet le rôle crucial de l’entropie de l’espace des caractéris-
tiques dans des approches de transfert d’apprentissage.

Tout d’abord, nous examinons si une architecture d’apprentissage profond peut étendre
sa généralisation au-delà de sa tâche d’entraînement avec les critères usuels d’entraî-
nement (Entropie Croisée). Dans ce cadre, nous transformons une tâche de régression
(étiquettes raffinées) en une tâche de classification (étiquettes grossières, approximées).
Ensuite, nous entraînons un réseau sur la tâche de classification et essayons d’extraire
des informations correspondantes aux étiquettes raffinées, ignorées durant l’apprentis-
sage.

En utilisant l’entropie croisée et une descente de gradient stochastique, nous obser-
vons deux phases durant l’apprentissage, similairement à d’autres auteurs (SHWARTZ-
ZIV & TISHBY, 2017). Dans un premier temps, l’espace des caractéristiques est capable
de fournir des informations sur les étiquettes affinées, mais dans une deuxième phase
d’apprentissage plus longue, ces informations sont progressivement effacées au fur et
à mesure que le modèle privilégie sa performance sur la tâche d’entraînement. De ma-
nière analogue, l’entropie de l’espace de caractéristiques suit ces deux phases. Nous
présentons ces résultats sur la Figure 20.

D’un point de vue théorique, nous montrons que l’entropie croisée et les méthodes
de régularisations entropiques sur la sortie du réseau encouragent la sélection des ca-
ractéristiques les plus discriminantes au détriment de leur diversité. C’est pourquoi
nous appliquons notre méthode de régularisation FIERCE pour encourager le modèle
à utiliser davantage de caractéristiques, qui bien que moins discriminantes, peuvent
porter de l’information sur la tâche raffinée. Nos expériences montrent que notre mé-
thode permet effectivement d’augmenter l’entropie de l’espace des caractéristiques, ré-
sultant ainsi sur de meilleures performances pour plusieurs scénarios de transfert : de
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FIGURE 4 – Évolution de l’entropie de l’espace des caractéristiques (mise à l’échelle
entre 0 et 1) et de l’erreur quadratique moyenne sur l’ensemble de données de régres-
sion d’âge (ROTHE et al., 2018) pour différents critères : Cross Entropy (rouge), FIERCE
(proposé) avec � = 0.3 (vert), Label Smoothing (bleu). Nous observons que les modèles
entraînés avec l’entropie croisée standard ou le lissage d’étiquettes affichent brièvement
une MSE minimale avant de se stabiliser à une valeur plus importante. Au contraire, la
méthode FIERCE proposée atteint une MSE globalement plus basse qui est maintenue
au fil de l’apprentissage. Cette capacité à atteindre et maintenir une MSE plus faible est
négativement corrélée avec l’entropie de l’espace des caractéristiques, comme le montre
la figure de gauche.

la régression à la classification, de l’apprentissage avec peu d’exemples (Fewshot) et de
l’apprentissage "coarse to fine grains".

En résumé, nos résultats plaident en faveur du potentiel de notre méthode FIERCE
dans des scénarios de classification grossière à fine et de transfert d’apprentissage. Il
serait intéressant d’appliquer ces travaux sur des jeux de données hiérarchiques tels
que CIFAR-100 ou iNaturalist. Notamment, étudier les métaclasses existantes et éva-
luer l’émergence de structures hiérarchiques et de sous-classes dans l’espace des carac-
téristiques qui peuvent résulter avec notre méthode.

En outre, il serait pertinent de réaliser une étude sur les propriétés géométriques de
l’espace des caractéristiques et de l’évolution de ces dernières pendant l’apprentissage.
Notre étude a démontré que l’entropie peut révéler des phases distinctes pendant l’ap-
prentissage qui ne sont pas apparentes lorsque l’on surveille uniquement la précision. Il
est possible que d’autres propriétés, comme la courbure de l’espace des caractéristiques
ou bien sa dimension intrinsèque, évoluent pendant l’apprentissage. Pour analyser de
manière exhaustive la géométrie de l’espace des caractéristiques, on pourrait envisager
d’utiliser des outils tels que les graphes et métriques dérivées. Cette approche pour-
rait conduire au développement de nouveaux critères d’entraînement reposant sur des
propriétés géométriques.

Modèle théorique sur le Transfert en Classification : Dans quelle mesure les
Sous-ensembles de Classes peuvent-ils généraliser ?

Dans ce dernier chapitre, notre attention se porte sur le transfert dans le contexte de la
classification. Le transfert de connaissance est devenu une approche importante dans le
domaine de l’apprentissage profond, permettant aux modèles de tirer profit de connais-
sances acquises sur une tâche d’entraînement pour les appliquer efficacement sur de
nouvelles tâches. Néanmoins, malgré son application étendue, les mécanismes sous-
jacents à cette habilité restent énigmatiques.
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Notre intérêt se porte en particulier sur la capacité des neurones profonds à apprendre
à partir d’un sous-ensemble de classes, puis à généraliser ensuite à de nouveaux sous-
ensembles de classes. Notre objectif est de caractériser ce phénomène à l’aide de fon-
dements théoriques définis dans un cadre rigoureux. En pratique, ces définitions nous
permettent de mieux comprendre la notion de transférabilité dans le cadre de la classi-
fication transfert et d’étudier des questions fondamentales dans ce domaine.

Dans notre modèle théorique, nous considérons qu’un problème de classification à n
classes est soluble si chaque paire de classes peut être séparée par un modèle. Dans le
cadre général, nous définissons un modèle comme une bipartition composée de sous-
espaces, celle-ci séparant deux classes si les supports de classe sont inclus de manière
disjointe dans les sous-espaces. Ensuite, nous définissons une relation d’ordre entre les
modèles, ce qui nous permet de caractériser les modèles les plus expressifs, ceux qui
séparent un grand nombre de paires de classes. Cette relation d’ordre peut s’illustrer
aisément à l’aide d’un Diagramme de Hasse (voir Figure 27). Dans un cadre plus ap-
pliqué, nous proposons de considérer des modèles construits à partir d’hyperplans et
adaptons les définitions générales à ce cas.

dog/truck cat/dogauto/cat

cat/truck auto/dog auto/truck

shirt/bag shirt/trousercoat/trouser

shirt/coat coat/bag trouser/bag

FIGURE 5 – Diagrammes de Hasse illustrant la relation d’ordre entre des modèles ap-
pris sur des paires de classes. Chaque modèle est caractérisé par les paires de classes
qu’il sépare. Les flèches qui pointent d’un modèle A à un autre B signifient que le mo-
dèle A présente une meilleur expressivité, car il sépare efficacement toutes les paires
que le modèle B sépare. Les modèles mis en couleur représentent les plus expressifs et
sont appelés modèles ’fondamentaux’. Les modèles partageant les mêmes couleurs sont
considérés comme équivalents, car ils séparent des paires identiques de classes. En re-
vanche, les modèles non colorés sont considérés comme redondants, car les paires qu’ils
séparent peuvent être séparées par d’autres modèles. À gauche, nous examinons un
scénario avec 4 classes de CIFAR-10 : auto, chat, chien, camion. Le diagramme illustre
que chat/camion et auto/chat sont non seulement équivalents, mais aussi plus expres-
sifs que ’auto/chien’ et ’chien/camion’. En termes plus simples, les modèles ’auto/-
chien’ et ’chien/camion’ peuvent être omis car ils n’offrent aucune séparation supplé-
mentaire par rapport à chat/camion et auto/chat. À droite, en considérant 4 classes de
FASHION-MNIST : sac, manteau, chemise, pantalon. Le diagramme révèle que man-
teau/sac et chemise/sac sont équivalents et possèdent une plus grande expressivité
que manteau/pantalon et chemise/pantalon.

D’un point de vue expérimental, nous considérons des jeux de données composés d’un
ensemble de classes C, et nous cherchons à nous entraîner sur des sous-ensembles C 0 ⇢
C. Dans ce cadre, nous nous demandons s’il est possible d’identifier les sous-ensembles
de classes conduisant à la meilleure généralisation. Cela nous amène à exploiter notre
modèle théorique et à introduire la notion de séparabilité, qui caractérise le potentiel



15 Abstract

de transfert d’un modèle entraîné sur un ensemble de classes C 0.

Nous montrons que la séparabilité est un bon indicateur de performances en transfert
dans plusieurs scénarios : fine-tuning où un réseau pré-entraîné est fine-tuné sur un
sous-ensemble de classes, entraînement de zéro où une architecture est entraînée sur un
sous-ensemble de classe, et Fewshot. Une approche plus qualitative nous amène à dé-
finir la séparabilité par classe que nous représentons sur la Figure. Cette figure illustre
l’impact de chaque classe sur la généralisation. En axe x, la séparabilité est donnée par
un réseau pré-entraîné, en axe y, la séparabilité d’un réseau entraîné uniquement sur
le sous-ensemble de classe. Sur la Figure 34, nous pouvons observer que pour le jeu
de données CIFAR-10, les classes les plus importantes sont le cerf, l’oiseau, le chien et
l’oiseau.
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(a) Entraîné à partir de zéro sur 6 classes
de CIFAR10. L’analyse met en évidence les
classes les plus prometteuses, telles que le
cerf, l’oiseau, le chien et la grenouille.
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(b) Entraîné à partir de zéro sur 4 classes
de CIFAR10. L’analyse met en évidence les
classes les plus prometteuses, telles que le
cerf, la grenouille, le cheval et l’oiseau.

FIGURE 6 – Entraînement à partir de zéro sur des sous-ensembles de classes de CI-
FAR10. L’axe des x représente les résultats du VIT-8 préentraîné, tandis que l’axe des y
correspond au Resnet18 entraîné à partir de zéro sur des sous-ensembles de classes de
CIFAR10.

Des recherches supplémentaires pourraient exploiter le cadre présenté dans ce cha-
pitre afin d’explorer plusieurs questions d’importance de l’apprentissage par transfert.
Dans WIGHTMAN et al., 2021, les auteurs soulignent qu’il est crucial d’adapter la rou-
tine d’entraînement à chaque architecture, mais trouver la routine d’entraînement op-
timale (critères, augmentations de données, régularisations, etc.) reste une tâche com-
plexe. Notre modèle pourrait être exploité pour examiner l’impact des différentes pro-
cédures d’entraînement sur les représentations apprises et leur transférabilité. De plus,
le formalisme introduit dans ce travail ouvre des possibilités pour l’élaboration de jeux
de données difficiles pour des scénarios de transfert. En choisissant soigneusement des
ensembles de classes avec des caractéristiques spécifiques, les chercheurs peuvent créer
des benchmarks servant à t
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Conclusion générale

En résumé, nous nous sommes plongés dans plusieurs scénarios où les architectures
d’apprentissage profond démontrent leur capacité à généraliser au-delà de leur tâche
d’entraînement. Cette habileté a été largement exploitée dans le domaine de l’apprentis-
sage par transfert. La quintessence serait d’atteindre une intelligence artificielle dite gé-
nérale capable de généraliser, d’apprendre de manière indépendante, tout en pouvant
résoudre des tâches nouvelles. Comme l’a déclaré Demis Hassabis, l’apprentissage par
transfert est la clé de l’intelligence générale. [...] La clé d’un apprentissage par transfert réussi
réside dans l’acquisition de connaissances conceptuelles abstraites des détails perceptuels
de sa source.

Par conséquent, au cours des dernières années, le domaine de l’apprentissage profond
a connu une prolifération de nouvelles architectures, de nouveaux critères et de proces-
sus d’entraînement, amenés par la communauté afin de fournir des représentations de
données de plus en plus abstraites et générales. Notamment, il y a eu un changement
de paradigme, avec de plus en plus de chercheurs et d’industriels qui tendent à exploi-
ter de larges modèles pré-entraînés sur d’immenses jeux de données, pour les affiner
sur leurs tâches d’intérêts. Dans le domaine de la vision par ordinateur, l’aspiration
ultime est le développement d’un extracteur de caractéristiques universel, capable de
représenter des images naturelles, qui pourrait résoudre n’importe quel problème de
classification.

Pourtant, il reste encore de nombreuses problématiques fondamentales à explorer dans
le domaine de l’apprentissage par transfert. Bien que les méthodes d’apprentissage
auto-supervé et non supervisé soient devenues des approches dominantes dans ce do-
maine, la détermination des processus d’entraînement optimaux pour du transfert de-
meure ambiguë. Cette ambiguïté est exacerbée par le fait que chaque architecture tend
à s’accompagner de son propre processus d’entraînement (WIGHTMAN et al., 2021). En
conséquence, des questions fondamentales persistent, notamment :

• Quels composants de l’architecture devraient être affinés ou figés ?

• Quel type d’information est extrait à chaque couche du modèle ?

• Quelles propriétés géométriques (invariance, équivariance) devraient être ciblées
par différentes parties du modèle ?

• Pouvons-nous concevoir une architecture avec une généralité suffisante pour évi-
ter le surajustement à la tâche d’entraînement? Que signifie être trop spécialisé
pour une tâche, et dans quels scénarios cela pose-t-il problème?

Dans cette thèse, notre exploration s’est principalement centrée sur des scénarios dans
le cadre de la classification. Nous avons examiné l’apprentissage par transfert d’une
tâche de classification à une autre, appris des opérateurs invariants par rapport à la
classification, généré des tâches artificielles complexes pour améliorer la généralisation
sur des ensembles de données de classification. Nous nous sommes concentrés sur la
reconnaissance de motifs (pattern recognition), et avons mis en lumière comment la
capacité des réseaux de neurones profond à apprendre des motifs généraux applicables
à d’autres tâches.

Cependant, comme le souligne (LAKE et al., 2017), les modèles d’apprentissage pro-
fond, malgré leur habileté en terme de reconnaissance de motifs et leurs performances
impressionnantes sur de nombreuses tâches, manquent toujours de certaines caracté-
ristiques essentielles similaire à celle des humains. Une véritable intelligence, dite géné-
rale, englobe davantage que la simple reconnaissance de motifs ; elle englobe la capacité
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à raisonner, à apprendre à partir de peu d’exemples, et à comprendre les relations cau-
sales entre les objets et les événements du monde.

Les modèles d’apprentissage profond ont obtenu un succès remarquable dans des tâches
telles que la reconnaissance d’images, le traitement du langage naturel. Cependant, ils
ne possèdent pas le même niveau d’abstraction et de bon sens que les humains. Bien
que l’apprentissage profond ait ses forces, de nouvelles techniques et des paradigmes
supplémentaires seront nécessaires pour atteindre une intelligence polyvalente.
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1.1 Scientific context

From natural language processing to image recognition, Artificial Intelligence (AI) has
managed to solve very complex tasks that were until relatively recently thought impos-
sible for machines (Devlin et al., 2018; Radford et al., 2021; Radford et al., 2018). One of
AI’s impressive abilities is its capacity to learn and recognize patterns by itself in large
amounts of data, and achieve accurate predictions on unseen data. This capability is
called generalization (Goodfellow et al., 2016).

Originally, generalization in AI was limited to predictions on data similar to that used
to train the AI (Caruana, 1997; Zhuang et al., 2020a). However, recent literature in the
field of transfer learning have extended the notion of generalization beyond its original
context (Caron et al., 2020; Fei-Fei et al., 2004; Krizhevsky et al., 2017; Pan & Yang, 2010;
Radford et al., 2015). Transfer learning allows AI systems to transfer knowledge and
skills to distinct domains and distinct tasks.

Despite these advancements, the field of Transfer Learning still presents some limita-
tions and unanswered questions, such as which training procedures lead to the best
results on the final task and what mechanisms underlie them (Huh et al., 2016; Janocha
& Czarnecki, 2017a; Tian et al., 2020a; Yosinski et al., 2014). In this manuscript, we con-
sider an extension of the usual scope of generalization and envision multiple scenarios
to address these questions.

1.1.1 Artificial Intelligence

Originally, artificial intelligence faced a significant hurdle when it came to tackling tasks
that humans find easy to execute but difficult to articulate formally (Goodfellow et al.,
2016). These are the kind of problems that we solve naturally such as identifying spoken
language or facial recognition in images.

Nevertheless, researchers have managed to design computer programs capable of solv-
ing not only some of theses tasks (Chan et al., 2015) but also tasks considered as very
complex by humans such as driving cars (Bojarski et al., 2016), competing at the highest
level in strategy games (Bakhtin et al., 2022; Silver et al., 2016), generating audiovisu-
al/text content (Radford et al., 2018; Rombach et al., 2022).

Such breakthroughs have been achieved by the use of Machine Learning (ML), a sub-
field of artificial intelligence that enables computers to acquire knowledge by extracting
patterns from data without being explicitly programmed (Bishop & Nasrabadi, 2006).
The democratization of Machine Learning was brought by the access to large amounts
of data (referred to as “big data”), and powerful and cheaper computational resources,
especially graphical processing unit (GPU), at the beginning of the XXI century (Bom-
masani et al., 2021).

1.1.2 Deep learning

Deep learning, in particular, has emerged as a dominant approach within ML, driv-
ing many of the most significant advances in the field. Deep learning architectures are
designed with a series of simple building blocks, often called layers, that extract in-
creasingly complex features from the input. This allows a deep learning architecture to
learn representations of the data, which can capture subtle patterns and relationships
that may not be apparent or clearly defined by human experts.

One of the most significant breakthroughs in deep learning was the development of
convolutional neural networks (CNNs) (Krizhevsky et al., 2017; LeCun et al., 1998),
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which have revolutionized computer vision. CNNs are able to extract features from
images at multiple scales and locations, making them highly effective for tasks such as
object detection (Redmon et al., 2016) and image segmentation (Minaee et al., 2021).

The success of CNNs has led to the development of deep learning models for a wide
range range of problems in artificial intelligence, including classification or regression
in computer vision.

1.1.3 Supervised learning: Generalization on a specific task

Supervised learning is the classical approach used to solve the aforementioned prob-
lems (Goodfellow et al., 2016). In this approach, each example is labeled with a corre-
sponding target value – e.g. an element of a finite dictionary in the case of classification–
, and the architecture is trained by comparing its predicted output with the correct label
through a predefined criterion. This process enables the model to learn the relationship
between the input data and the output labels, allowing it to make accurate predictions
on new, unseen data. However, one of the main limitations of supervised learning is
that it builds a model that is specific to the given task (Radford et al., 2015). This means
that if the task is modified, such as by adding new classes to a classification problem, the
model’s performance can be severely impacted, and it may need to be fully re-trained.
This makes it challenging to adapt the model to new, related tasks, which is a common
problem in real-world applications.

1.1.4 Transfer Learning

Recently, researchers have developed transfer learning approaches that aim to leverage
knowledge learned from one task to improve the performance on related tasks (Pan
& Yang, 2010; Zhuang et al., 2020a). These approaches can be particularly useful in
situations where there is limited labeled data available for a new task, as they can enable
the model to learn from a related task with more labeled data. Moreover, they prove
invaluable when training is too costly or resource-intensive to collect extensive labeled
data for each specific task. One common approach is Self Supervised Learning where a
neural network is trained on a large labeled dataset to learn a general feature extractor
that can then be leveraged on smaller, possibly distinct, datasets (T. Chen et al., 2020;
He et al., 2020; Jing & Tian, 2020; Oord et al., 2018).

However, these approaches present their own challenges. There are multiple param-
eters that can influence the representations learned and their ability to be reused on
different tasks, including the criteria used for training, regularizations, number of pa-
rameters, architecture, and subtlety of the labels (e.g., hierarchical, semantic, multi-
class) (Huh et al., 2016; Tian et al., 2020a; Wightman et al., 2021; Wu et al., 2017).

Therefore, it is not clear which training procedures would necessarily lead to the high-
est transferability and what possible limitations there may be (d’Ascoli et al., 2021).
Future research will need to explore these questions further in order to develop more
effective transfer learning approaches for AI.

1.2 Classification and Vision: An Overview of Supervised Learn-

ing with Deep Neural Networks

Supervised learning has been a key area of research in machine learning and has shown
significant progress in a wide range of applications, particularly in classification tasks (Le-
Cun, 2015a) in computer vision. In this chapter, we focus on classification in the context
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of supervised learning. Specifically, we examine the use of deep learning architectures
known to achieve state of the art in classification tasks (Voulodimos et al., 2018).

Vision datasets have become increasingly popular in recent years as a benchmark for
evaluating the performance of deep learning models (L. Deng, 2012; Goodfellow et al.,
2016; Krizhevsky, Hinton, et al., 2009; Krizhevsky et al., 2017). Although our focus is
not exclusively on vision tasks, we leverage the availability of solutions for this domain
to explore the notion of generalization later on in the manuscript.

1.2.1 Deep Learning Architecture for classification

The field of deep learning has rapidly evolved with increasingly complex architectures
being designed for various applications, particularly on the task of classification in vi-
sion (Dosovitskiy et al., 2020; He et al., 2016; LeCun et al., 1998). However, the incor-
poration of more and more parameters has led to difficulties in training these archi-
tectures (d’Ascoli et al., 2021; Krizhevsky et al., 2017; Wightman et al., 2021). These
challenges include for instance vanishing gradients (Glorot & Bengio, 2010), where gra-
dients become too small, hindering information propagation across deep layers; dimen-
sional collapse (Jing et al., 2021), which leads to the loss of crucial features in network
representations; overfitting, causing models to become overly specialized to training
data; and the risk of exploding gradients (Pascanu et al., 2013), which disrupts training
stability. These collectively hinder the effective training of complex deep architectures.

As a result, novel techniques and architectures have been proposed to address this
issue, such as Residual Neural Networks (He et al., 2016). In this section we present
the architectures that we widely used in the experiments of this thesis.

Deep Learning Architecture

The goal of a Deep Learning Architecture is to approximate some function f⇤. In the
context of classification, an example is a classifier y = f⇤(x) that maps an input x to a
class y. One of the key to the success of Deep Learning Architectures lies in their large
number of parameters and complexity to approximate such functions (He et al., 2016;
LeCun, 2015a; Simonyan & Zisserman, 2014).

Definition 1: Deep Learning Architecture

A Deep Learning Architecture defines a mapping y = f(x;θ) and learns the
parameters θ that result in a approximation of f⇤. The mapping is represented
by a composition of simpler functions called layers.

The basic architecture is a chain structure, also referred to as a feedforward neu-
ral network, where l layers are connected in a sequence f = f (l) � f (l�1) � f (1).
The length of the chain, l, determines the depth of the architecture, and can be
very large, resulting in a complex and powerful models. Hence the name deep
learning.

Definition 2: Layers of a Deep Learning Architecture

A layer is a function that takes an input vector x and produces an output vec-
tor (Goodfellow et al., 2016). It consists of a linear transformation followed by a
non-linear function �, also known as the activation function: real-valued func-
tions applied component-wise to real-valued variables.
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The transformation is defined as follows:

x 7! �(Wx+ b) where W is a matrix and b a vector.

The parameters {W,b} are learned during training over a set of data. When
there is no constraint on the form of W, the layer is said to be fully connected

The non-linearity is essential and enable to capture complex patterns in the data.
Common activation functions include sigmoid, hyperbolic tangent, and Rectified
Linear Unit (ReLU).

The last layer is usually fully connected and commonly referred to as the output. Its
activation function is typically chosen to produce a specific range of values, such as [0, 1]
(useful e.g. to represent probabilities) in the case of the softmax function or real-valued
outputs in the case of the hyperbolic tangent or the Rectified Linear Unit (ReLU).

The layers in between are called hidden layers. Of particular interest is the output of the
penultimate layer, often referred to as the feature space. This is because it represents
a learned abstraction of the input data that is used by the final layer to produce the
output. Hence, the feature space captures the most important aspects of the input data
that are relevant for the task.

Therefore, in the context of classification, we will typically view the architecture in two
parts: a feature extractor and a classifier. The goal of the feature extractor is to deliver
a representation of the data on which the classifier can separate the classes. Typically,
the classifier is linear, i.e. a logistic regression, as it is defined by a simple linear layer
followed by the softmax function.

Convolutional Neural Network

The breakthrough in computer vision can be largely attributed to the success of Convo-
lutional Neural Networks (CNNs) (LeCun et al., 1998). These networks utilize Convo-
lutional layers to learn and represent visual features in a hierarchical manner. By doing
so, they capture the relevant patterns and structures present in the input data, enabling
state-of-the-art performance on tasks such as object detection, image classification, and
semantic segmentation.

Definition 3: Convolutional Layer

Convolutional layers have a matrix W constrained to define convolution opera-
tions. This design ensures that the hidden layers combine only local information,
as research has shown the benefits of extracting local features and combining
them into high-order representations called feature maps.

Convolutional layers can be followed by a pooling layer to reduce the dimension of
the output. Moreover, in the case of images, the association of a convolutional and
pooling layer provide a transformation that its invariant to translation and small per-
tubations (LeCun et al., 1998; Mallat, 2016).

In the following definition, we will assume that the input data is in the form of images
with shape (N,C,H,W ), where N represents the number of samples, C denotes the
number of channels (e.g., black and white, RGB, hyperspectral), H indicates the height,
and W the width of the image. To represent a specific input in vector notation, we will
use the notation X[i, j, k, l], and x to refers to a single image of shape (C,H,W ).
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Definition 4: Pooling Layer

A pooling layer is a type of layer, typically applied after a convolutional layer,
that operates on its input by partitioning it into non-overlapping regions and
computing a fixed-dimensional output for each region. As a result, the dimen-
sion size of the input is reduced.

Two common types of pooling layers are average pooling and max pooling.

Definition 5: Average Pooling

Given an input tensor X of shape (N,C,H,W ), an average pooling operation
computes the output tensor Y of shape (N,C,H 0,W 0) by partitioning each chan-
nel of X into non-overlapping regions and computing the average of the values
in each region.

Definition 6: Max Pooling

Given an input tensor X of shape (N,C,H,W ), a max pooling operation com-
putes the output tensor Y of shape (N,C,H 0,W 0) by partitioning each channel
of X into non-overlapping regions and computing the maximum value in each
region.

Residual Neural Networks

Multiple papers have highlighted the crucial importance of the depth of the architec-
ture in achieving high accuracy on challenging vision datasets (Simonyan & Zisserman,
2014). However, one issue with such architectures is the degradation problem, which
limits the depth of the network. Indeed, as the depth increases, accuracy saturation
occurs, leading to reduced performance (He et al., 2016).

To address the degradation problem, Residual layers have been introduced as an effec-
tive solution. One of the most popular and widely used architectures that uses residual
networks is ResNet, as described in (He et al., 2016). ResNet has been widely used
as a benchmark in computer vision (Tan & Le, 2019; Yun et al., 2019; H. Zhang et al.,
2017). Although the emergence of attention layers and self-supervised learning have
questioned the use of ResNets (Dosovitskiy et al., 2020), recent studies have shown
that ResNets can still compete and achieve state-of-the-art performance with improved
training procedures, as demonstrated in (Wightman et al., 2021).

Definition 7: Residual Layers

A residual layer is defined as a building block H(x) = F(x) + x, where F is a
stack of several layers, such as the composition of multiple convolutional layers:

H(x) = F(x) + x

If the optimal mapping is the identity F should converge to 0.
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Figure 7 – An illustration of a residual layer with Relu as activation function.
Here F is the composition of two layers. Figure is from (He et al., 2016).

As we conclude this section, our attention naturally turns to the presentation of the
standard datasets used in supervised learning, building upon the foundation we have
laid by introducing standard architectures in classification.

1.2.2 Standard Vision Datasets for Supervised Learning

MNIST

The MNIST dataset (L. Deng, 2012) is a popular benchmark in computer vision and
machine learning. It is composed of 70,000 grayscale images of handwritten digits,
each of which is 28x28 pixels in size. The images are split into a training set of 60,000
images and a test set of 10,000 images. Each image in the dataset is labeled with the
corresponding digit it represents, ranging from 0 to 9.

The MNIST dataset has been widely used as a benchmark for evaluating the perfor-
mance of machine learning models, particularly those for image classification tasks.
It allowed to demonstrate the ability of convolutional neural networks (LeCun et al.,
1998). Since then, it has also been used in numerous research studies and publications
to test various method in computer vision (LeCun, 2015a).

Compared to others dataset in vision, MNIST is relatively small which allow to run
numerous experiments and test various hypothesis. One disadvantage is that the task
is relatively easily and current state-of-the art networks reach a nearly perfect accuracy.

CIFAR10 and CIFAR100

The CIFAR-10 dataset (Krizhevsky, Hinton, et al., 2009) is another widely used as a
benchmark dataset in the field of computer vision. It consists of 60,000 color images
in 10 classes, with 6,000 images per class. Each image in the dataset is 32x32 pixels in
size. The classes include: airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck.

The CIFAR-10 dataset has been used for a variety of computer vision tasks, including
image classification, object detection, and segmentation. It has been a popular choice
for evaluating the performance of deep learning models, particularly convolutional
neural networks (CNNs).

One advantage of CIFAR10 is the high quality and diversity of the data. The classi-
fication is more challenging than MNIST and it still used to test recent and advanced
architecture such as Resnet (He et al., 2016). Moreover, it has been used in numerous
research studies and publications, including papers on image classification, object de-
tection, and transfer learning. For example, (Krizhevsky, Hinton, et al., 2009) used the
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CIFAR-10 dataset to train a deep convolutional neural network that achieved state-of-
the-art performance on image classification, while (Girshick et al., 2014) used it to study
the transferability of features learned from pre-trained CNNs.

Overall, the CIFAR-10 dataset remains a valuable resource for the development and
testing of new computer vision algorithms and techniques.

Similarly, the CIFAR-100 dataset (Krizhevsky, Hinton, et al., 2009), an extension of
CIFAR-10, serves as another essential benchmark in the field of computer vision. CIFAR-
100 comprises 60,000 color images, divided into 100 classes, each containing 600 im-
ages. Like its predecessor, each image in the CIFAR-100 dataset maintains a resolution
of 32x32 pixels. The diversity of classes in CIFAR-100 ranges from common objects to
more fine-grained categories, making it a valuable resource for assessing the robustness
and versatility of computer vision models.

CIFAR-100 presents unique challenges due to its increased class complexity, demand-
ing deeper and more discriminative models to achieve high classification accuracy.
Researchers often leverage CIFAR-100 to explore a wider range of computer vision
tasks, including fine-grained image classification (Touvron et al., 2021), object recog-
nition (Redmon et al., 2016), and transfer learning. It has been instrumental in the de-
velopment and evaluation of state-of-the-art models, such as ResNet (He et al., 2016),
which have consistently demonstrated their effectiveness in handling this rich and var-
ied dataset. Additionally, CIFAR-100 has been a subject of investigation in numerous
studies focusing on feature transferability, model generalization, and the impact of var-
ious architectural and training strategies (Krizhevsky et al., 2017; Radford et al., 2015).

Imagenet

The ImageNet dataset (J. Deng et al., 2009) is a widely used benchmark dataset in the
field of computer vision and machine learning. It is one of the largest publicly available
datasets for visual object recognition, containing over 14 million images categorized
into more than 20,000 object classes. The images in the dataset have been annotated
with bounding boxes and image-level labels, which makes it suitable for training and
evaluating object detection and classification models.

The large size of the dataset makes it more difficult than MNIST and CIFAR10 (Rus-
sakovsky et al., 2015). It has been widely used in research studies and competitions
to benchmark and evaluate the performance of computer vision models, particularly
deep learning models. For example, the annual ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) has used a subset of the ImageNet dataset for its image classi-
fication and object detection challenges since 2010, which has resulted in many break-
throughs in the field of computer vision. In addition to classification and detection,
the dataset has also been used for other computer vision tasks such as segmentation or
object detection.

Many state-of-the-art deep learning models for computer vision have been developed
and tested on the ImageNet dataset. For instance, the VGG-16 (Simonyan & Zisserman,
2014) and ResNet models(He et al., 2016) were developed by training on subsets of the
dataset, achieving significantly higher accuracy rates than previous models.

The availability and high quality of the ImageNet dataset have made it a critical re-
source for both supervised and self-supervised learning in computer vision. For trans-
fer learning, numerous models has been pre-trained on ImageNet and fine-tuned on
other datasets for specific tasks (Oquab et al., 2014; Yosinski et al., 2014).
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Futhermore, self-supervised learning has recently emerged as a promising approach
for pre-training deep neural networks on large datasets such as ImageNet without re-
quiring manual annotations. Several works have shown that models pre-trained with
contrastive learning on ImageNet achieve state-of-the-art results on a variety of down-
stream computer vision tasks (T. Chen et al., 2020; He et al., 2020; Tian et al., 2020b).

1.2.3 Training Procedure

Deep learning architectures are trained using an optimization algorithm that minimizes
a loss function over a large dataset. Depending on the task various loss functions can
be used. In classification, the cross entropy is the most popular choice.

Definition 8: Cross-Entropy Loss

The cross-entropy loss is a fundamental criterion in machine learning used to
measure the dissimilarity between predicted and true probability distributions
for a given dataset. Let’s formally introduce the key terms involved:

• N : The number of instances in the dataset.

• K: The number of distinct categories or classes in the classification prob-
lem.

• pi: The true probability distribution over the K categories for the i-th in-
stance, where pi = (pi1, pi2, . . . , piK), with pij denoting the probability of
category j for instance i.

• qi: The predicted probability distribution over the same K categories for
the i-th instance, where qi = (qi1, qi2, . . . , qiK), with qij denoting the pre-
dicted probability of category j for instance i.

The cross-entropy loss for the entire dataset is defined as:

H(p,q) = � 1

N

NX

i=1

KX

j=1

pij log(qij) (1)

The cross-entropy loss quantifies how well the predicted probabilities q match
the true probabilities p across the entire dataset.

One of the key advantages of deep learning architectures is that they allow for auto-
matic differentiation, which makes it possible to compute gradients of the loss function
with respect to the model parameters efficiently using the chain rule and backpropa-
gation. Among the most widely adopted techniques for optimizing these gradients is
Stochastic Gradient Descent (SGD) and its variants (Amari, 1993; Sutskever et al., 2013)

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a widely used optimization algorithm for training
deep Learning Architecture (Bottou & Cun, 2003; Robbins & Monro, 1951). It works by
randomly selecting a small subset of the training data (known as a batch) and comput-
ing an estimate of gradient of the loss function with respect to the model parameters
using only the examples in the batch.

The gradients are computed using the chain rule method and backpropagation (Le-
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Cun, 2015a), which involves computing the gradient of each layer of the network with
respect to its inputs and passing the gradients backward through the network. The
model parameters are then updated in the direction of the negative gradient, scaled
by a learning rate hyperparameter. This process is repeated for many iterations, called
epochs, over the entire dataset.

Stochastic gradient descent presents many advantages:

• Efficiency: By splitting the training data into smaller subsets SGD is computa-
tionally efficient and can be used to train large deep neural networks on massive
datasets.

• Generalization: Because SGD updates the model parameters incrementally using
small batches of training data, it can help prevent overfitting and improve gener-
alization. This is because it introduces randomness into the optimization process,
which can help prevent the model from becoming overly specialized to the train-
ing data and instead encourages it to learn more generalizable features.

• Flexibility: SGD is a flexible optimization algorithm that can be adapted to dif-
ferent learning scenarios and loss functions. For example, different learning rates
can be used for different model parameters, and the optimization process can be
modified using techniques such as momentum or adaptive learning rate sched-
ules (Smith, 2017; Sutskever et al., 2013)

• Robustness: SGD is a robust optimization algorithm that can handle noisy and
non-convex loss functions. This is because it updates the model parameters incre-
mentally and can navigate complex loss landscapes more effectively than batch
optimization algorithms.

• Scalability: SGD is a scalable optimization algorithm that can be parallelized and
distributed across multiple machines, enabling faster training of large-scale deep
neural networks.

While stochastic gradient descent (SGD) remains a popular choice for training neural
networks, the Adam optimizer (Kingma & Ba, 2014) presents a compelling alternative
since it overcomes some of the limitations of traditional SGD (Keskar & Socher, 2017).
It incorporates adaptive learning rates, ensuring that each parameter receives an ap-
propriate update size, which can significantly accelerate convergence. Additionally,
Adam employs momentum and bias correction, enhancing the stability and robustness
of the optimization process. These features collectively make Adam a preferred choice
for optimizing neural networks, as it often leads to faster convergence and improved
performance compared to SGD.

Regularization

Due to their large number of parameters Deep Neural Network are prone to overfitting
(He et al., 2016; Krizhevsky et al., 2017). Overfitting occurs when the model is able to
fit the training data very well, but performs poorly on new data. To prevent overfitting,
regularization techniques are used to encourage the model to learn simpler and more
generalizable representations.

One common regularization technique is weight decay (Loshchilov & Hutter, 2017),
which adds a penalty term to the loss function proportional to the L2 norm of the model
parameters. This encourages the model to use smaller weights, which tends to result in
smoother decision boundaries and less overfitting. Another commonly used technique
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is dropout, which randomly drops out a fraction of the activations in the network dur-
ing training (Srivastava et al., 2014). This makes the network more robust to noise and
encourages the model to learn redundant representations.

The choice of optimization algorithm, loss function, and regularization techniques can
have a significant impact on the performance of a Deep Neural Architecture. In particu-
lar, regularization affects the geometry of the feature space (Janocha & Czarnecki, 2017a;
Shen et al., 2021). Therefore, the choices of regularizations depend on the specifics of
the problem being solved (Tian et al., 2020a).

1.3 Problem Statement

In classification, the ultimate goal is to learn a function f that maps input data to output
labels, and achieve high performances on unseen data. Such ability is called general-
ization. We will first define this concept and then discuss the limit of this definition.

1.3.1 Criterion (Loss Function)

The criterion, or loss function, is a metric that tells us how well the model’s predictions
match the ground truth labels. In other words, it quantifies the error between the pre-
dicted labels and the actual labels. The goal of training a deep learning model is to
minimize this error, so that the model can make accurate predictions on new data.

In the context of classification, the criterion is typically used to quantify the error be-
tween the predicted labels ŷ = f(x) and the ground truth labels y in a training set
Dtrain = {(xi, yi)}

N
i=1. The criterion is a non-negative function that is minimized dur-

ing training, typically by adjusting the model’s parameters through optimization algo-
rithms such as stochastic gradient descent. There are various types of criteria, such as
mean squared error, cross-entropy, and binary cross-entropy, each suited to different
types of problems (Bishop & Nasrabadi, 2006).

1.3.2 Risk Minimization

In machine learning, the optimal solution is the one which minimizes the loss function
over all possible inputs and outputs. This is known as risk minimization, and it ensures
that the model generalizes well to unseen data.

Definition 9: Expected Risk

Let us assume that we are given a joint distribution P (x, y) over the inputs and
labels, a model f and a criterion L, the expect risk is defined as:

R(f) = E[L(f(x, y))] =

Z

L(f(x, y))dP (x, y).

However, in practice, we do not have access to the joint distribution, and it is impossible
to directly minimize the expected risk. Instead, we rely on empirical risk minimization,
which minimizes the average loss over the training set Dtrain. The empirical risk if then
defined as:

R̂(f) = EDtrain
[L(f(x, y)] =

1

N

NX

i=1

L(f(xi, yi)).
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By minimizing the empirical risk, we hope to find a function f that performs well on
unseen data. However, this approach can lead to overfitting if the model becomes too
complex and fits the noise in the training set rather than the underlying patterns.

1.3.3 Generalization

Generalization usually refers to the ability of a model to perform well on new, unseen
data. To measure generalization performance, we evaluate the model on a test set,
which is separate from the training set. In classificaiton, the performance of the model
is measured using a metric such as accuracy, which is the fraction of correctly classified
samples. When the model performs well on the training data (small empirical risk), but
poorly on test data this is called overfitting.

In addition to generalizing to new data, recent literature shows that deep learning ar-
chitecture can also generalize beyond their training task. For example, a model trained
on a classification task can be fine-tuned on a related task with only minor modifica-
tions. The feature space can be either frozen, i.e only the output layer is retrained, or
the whole architecture can be retrained with a very small learning rate. In other words,
given task, a model can learn features general enough to be reused for others tasks.

1.3.4 Beyond the training task in classification: looking at extensions of the
notion of generalization

The ability of deep learning architectures to generalize beyond their training tasks is
a remarkable achievement which was not obvious, particularly given their numerous
layers and millions of parameters. Given their complexity, one might naturally assume
that these architectures would learn highly specific parameters tailored to their training
task. Nevertheless, the significant advancements in the field of transfer learning have
unequivocally demonstrated the capacity to repurpose such architectures for tasks dif-
ferent from the ones they were originally trained on (Zhuang et al., 2020a).

Initially, transfer learning primarily revolved around domain adaptation (Caruana, 1997;
M. Wang & Deng, 2018), where the target task remained unchanged, but the target do-
main is changed. For instance, consider the transition from recognizing handwritten
letters of one alphabet to the same but with distinct handwriting styles. Over time, the
landscape of transfer learning has evolved, ushering in a new era of possibilities that
enable the reuse of pre-trained models for tasks once considered highly specialized
and challenging (Jing & Tian, 2020; Pan & Yang, 2010; Zhuang et al., 2020a). This trans-
formative advancement has been particularly prominent in several critical domains,
illuminating the remarkable adaptability and versatility of deep learning architectures.

In the realm of Medical Image Analysis, pre-trained models, initially trained on vast
datasets of general images, can be fine-tuned for specific medical imaging tasks. This
includes the detection of diseases in X-rays, the identification of abnormalities in MRI
scans, and the precise segmentation of medical images to aid in accurate diagnoses (Magoulas
& Prentza, 1999). In the domain of Natural Language Understanding, models like
BERT (Devlin et al., 2018) and GPT (Radford et al., 2018) have undergone pre-training
on extensive text corpora, endowing them with the capability to excel in a broad spec-
trum of NLP tasks. These tasks encompass sentiment analysis, language translation,
question-answering, and summarization, often requiring minimal task-specific fine-
tuning for outstanding performance(Sun et al., 2019). In the Automotive industry, deep
learning models trained on diverse driving scenarios have demonstrated their prowess
in the realm of autonomous driving (Bojarski et al., 2016). These models exhibit the
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capacity to comprehend intricate traffic patterns, recognize pedestrians, identify lane
boundaries, and make real-time decisions, thus significantly advancing the develop-
ment of self-driving vehicles and enhancing road safety.

Therefore, in this thesis we have centered on extending this notion of generalization
and investigating the ability of deep learning architectures to generalize beyond their
considered tasks, especially in the case of classification. We envisioned multiple sce-
narios of generalization, including coarse to fine-grained classification, from one set of
inputs and classes to other inputs and classes, or from artificially complexified tasks to
simpler ones.

1.4 Related Work

1.4.1 Extension of the notion of generalization

Deep learning architectures have been shown to be highly effective in creating mean-
ingful representations of data for a diverse range of applications, such as image classifi-
cation (Krizhevsky et al., 2017), regression (Rothe et al., 2018), object detection (Redmon
et al., 2016), reconstruction or generation (Goodfellow et al., 2020). Although these rep-
resentations are inferred on specific tasks and datasets, recent research has shown that
they can be utilized for other tasks and data (Bengio, 2012; Caron et al., 2020; Pratt,
1992), illustrating the ability of deep learning architectures to generalize beyond their
training task.

A task is typically defined on a specific domain (Atanov et al., 2022; Zhuang et al.,
2020b). A natural extension of the definition of generalization is to evaluate the perfor-
mance of a trained architecture on the same task but with different domains, such as
images captured under different lighting conditions or colors (Pratt, 1992). This process
is known as domain adaptation, which is extensively covered in the literature (M. Wang
& Deng, 2018). In addition to domain adaptation, the robustness literature also covers
another type of domain adaptation that involves noisy data.

Another extension is to consider a new type of tasks with or without altering the do-
main. For example, in (S. Ren et al., 2015) the authors employed an architecture trained
on ImageNet with the classification criteria as a feature extractor to perform object de-
tection. In the context of classification, another example is to changes the classes. For
instance in Few Shot Learning, a feature extractor is trained on large dataset of classes
and then reused to classify unseen classes (Vinyals et al., 2016).

The extensions discussed previously suggest that deep learning architectures are capa-
ble of capturing more subtle information during training on specific tasks. In a study
by (Gonzalez-Garcia et al., 2018), the authors found that convolutional neural networks
(CNNs) can learn to represent objects as a set of semantically meaningful parts, without
explicit part annotations during training. Similarly, in (Bau et al., 2017), the authors ex-
amined deep architectures used for semantic segmentation and noted the emergence of
disentangled representations. These representations signify that the network encodes
information in a way that separates and isolates individual attributes or features of
different classes, enhancing the model’s interpretability.

This ability of architectures to generalize beyond their training task can be leveraged for
various purposes (Fei-Fei et al., 2004; Girshick et al., 2014; Radford et al., 2015; Redmon
et al., 2016; Zhuang et al., 2020a). For example, it has been demonstrated that very
deep architectures with a large number of parameters can achieve higher accuracy in
classification tasks (Nakkiran et al., 2021; Simonyan & Zisserman, 2014). However, such
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architectures require a substantial amount of data for successful training. Therefore,
one can take advantage of large datasets to pretrain an architecture on them and reuse
the inferred parameters to work on smaller datasets (Donahue et al., 2014; Girshick et
al., 2014; Zeiler & Fergus, 2014). This approach, known as transfer learning, has been
successfully applied in various domains, including computer vision, natural language
processing, and speech recognition (Devlin et al., 2018; Jia et al., 2018; Simonyan &
Zisserman, 2014).

Using an architecture trained on a different task is also a promising approach as it has
the potential to lead to better accuracy compared to training directly on the final task.
For example, in (Stewart et al., 2023), the authors discuss how deep learning archi-
tectures exhibit improved performance on regression tasks when trained using a clas-
sification loss (Cross Entropy) as opposed to a regression loss (Mean Square Error).
Additionally, training on a very difficult task that includes solving the final task can
also lead to better generalization. One example is Mixup (H. Zhang et al., 2017), which
generates virtual samples that may not necessarily adhere to the input geometry, re-
sulting in more complex tasks. Another example, is the use of an additional criterion to
predict image rotations while training the network, resulting in improved classification
accuracy (Gidaris et al., 2018; Mangla et al., 2020).

1.4.2 The difficulty of generalization

While the ability of generalizing beyond the training tasks is a fundamental question
that has been always considered in the community of Artificial Intelligence (Atanov
et al., 2022; Bengio et al., 2013; Caruana, 1997; Pratt, 1992; Ying et al., 2018), but such
capability is not always guaranteed.

In (Tian et al., 2020a), the authors demonstrate that the optimal representation for a
given task depends of the task itself. Furthermore, (Shwartz-Ziv & Tishby, 2017) iden-
tified two distinct phases that may occur during the training of a deep learning archi-
tecture using stochastic gradient descent. In the first phase, the mutual information be-
tween the feature space and the output increases. Subsequently, in the second and usu-
ally much longer phase, the mutual information between the input and feature space
decreases. In other words, the neural network initially discovers the features that can
be used to predict the labels before compressing them to retain only the most relevant
information for the classification task.

The ability of deep learning architectures to specialize on specific tasks can lead to over-
fitting on the training task, as demonstrated in (C. Zhang et al., 2021), where the au-
thors showed that a deep learning architecture can perfectly fit random labels. As a
result, (Rosenstein et al., 2005) pointed out that transfer learning may hinder the per-
formances when the tasks are too dissimilar. Recently, researchers try to characterize
which tasks are compatible with the training task (Atanov et al., 2022).

Moreover, in transfer learning, selecting which part of the architecture to reuse for new
tasks is not always obvious (Bordes et al., 2022; Yosinski et al., 2014). Some approaches
freeze the feature extractor and train a classifier on it (B. Zhou et al., 2016), while others
fine-tune the whole architecture (Krizhevsky et al., 2017; Simonyan & Zisserman, 2014).
To identify which layers contain the most general features, (Yosinski et al., 2014) inves-
tigated this question and found that early layers capture general patterns while later
layers become more specialized to the training task. In (Bordes et al., 2022), the authors
cut the last layers of an architecture at different levels to perform transfer learning and
demonstrated that this approach can increase performance in transfer.
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1.4.3 Representation Learning

Representation learning is a fundamental concept in computer vision, essential for tasks
such as image classification, object detection, and segmentation. It involves extracting
meaningful and informative features from raw data, allowing machines to understand
and interpret visual information effectively. The training process involves various pa-
rameters that affect the inferred representation (d’Ascoli et al., 2021; Wightman et al.,
2021). These parameters included (not only) the training data (input, labels) (Bagher-
inezhad et al., 2018; Eshratifar et al., 2021; Touvron et al., 2021; Wu et al., 2017), the
criterion (T. Chen et al., 2020; He et al., 2020; Janocha & Czarnecki, 2017b; Stewart et al.,
2023), the regularization (Krogh & Hertz, 1991; Loshchilov & Hutter, 2017; Srivastava
et al., 2014), the architecture (Caron et al., 2021; He et al., 2016; LeCun et al., 1998; Tian
et al., 2020a), the optimizer (Amari, 1993), number of epochs (Goodfellow et al., 2016).

A significant paradigm shift in representation learning for computer vision has been
the adoption of Transformers as a viable alternative to CNNs (Caron et al., 2021). While
CNNs (LeCun et al., 1998) have excelled at tasks involving spatial hierarchies, Trans-
formers have demonstrated their ability to capture long-range dependencies and global
context, making them suitable for a broader range of vision tasks (Caron et al., 2021;
Dosovitskiy et al., 2020). Vision Transformers (ViTs) have gained popularity for their
impressive performance in image classification and object detection (Caron et al., 2021).

Traditionally, supervised learning criteria, such as cross-entropy loss, have been the
norm in computer vision tasks (Goodfellow et al., 2016; Krizhevsky et al., 2017). How-
ever, self-supervised learning has gained momentum as an alternative approach (T.
Chen et al., 2020; He et al., 2020). Self-supervised learning tasks involve creating a
pretext task where labels are generated from the data itself, eliminating the need for
manual annotation (Radford et al., 2015). Techniques like contrastive learning and mo-
mentum contrast have shown that self-supervised criteria can lead to representations
that are as effective as those learned through traditional supervised methods (T. Chen
et al., 2020; He et al., 2020; Oord et al., 2018). This shift has reduced the reliance on large
datasets, making representation learning more scalable (Bommasani et al., 2021).

Data augmentation, a form of regularization, has become a cornerstone in modern rep-
resentation learning (Shorten & Khoshgoftaar, 2019; Simard et al., 2001). Data augmen-
tation techniques involve applying random transformations to the training data, such
as rotation (Gidaris et al., 2018), scaling (J. Deng et al., 2009), and cropping (Takahashi
et al., 2019), to create a more diverse training set. This helps the network generalize
better and reduces overfitting. Recent advancements in data augmentation strategies,
such as RandAugment, have shown that well-designed augmentations can significantly
improve the quality of learned representations (Cubuk et al., 2020).

1.5 Summary of Contributions

My work has centered on extending this notion of generalization and investigating the
ability of deep learning architectures to generalize beyond their considered tasks, espe-
cially in the case of classification. I have envisioned multiple scenarios of generaliza-
tion, including coarse to fine-grained classification, from one set of inputs and classes
to other inputs and classes, or from artificially complexified tasks to simpler ones.
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1.5.1 Learnable Operators for Translation-Invariant Representations on Ir-
regular Domains

The layers and operations employed in the construction of a deep learning architecture
play a pivotal role in shaping the characteristics of its representation, particularly in
terms of invariance and equivalence to geometric transformations. However, defining
these operations becomes considerably more challenging when dealing with irregular
or abstract domains, such as graphs. By definition, graphs inherently lack directional
information. One notable complication arises from the traditional definitions of graph
translations, which rely on the graph’s Laplacian matrix, resulting in isotropic opera-
tors (Monti et al., 2018; Pasdeloup et al., 2018).

Our research focuses on the development of invariant operators for classification tasks
on graphs, which we interpret as graph translations. Drawing inspiration from Con-
volutional Neural Networks (CNNs), which leverage input label invariance through
weight-sharing mechanisms, we propose the formulation of adaptable operators that
align with the graph’s inherent structure. These operators serve as the foundation for
pseudo-convolutions achieved by learning specialized weight-sharing schemes. Con-
sequently, our approach yields architectures that can be trained end-to-end for solv-
ing classification tasks, effectively functioning as pseudo-translations or classification-
invariant operations.

Utilizing this methodology, we have successfully inferred conventional 2D image trans-
lations, including vertical and horizontal translations, as well as compression and dila-
tion operators for grid-graphs. Our experiments involving abstract hyperlink networks
further demonstrate the effectiveness of our proposed methodology, highlighting its ca-
pacity for generalization and interpretability in the context of 2D images.

This work exemplifies how architectures can be purposefully designed to incorporate
invariance properties into their representations, which can be learned based on the spe-
cific task at hand. This approach presents a promising avenue for the definition of novel
operations and layers that are better suited for handling irregular domains.

1.5.2 Using virtual tasks to obtain a better generalization

While the architectural design plays a pivotal role in achieving generalization, regular-
ization techniques have also been widely employed to enhance generalization perfor-
mance. Interestingly, some of these techniques can be seen as methods for artificially in-
creasing the complexity of the training task. For example, Mixup (H. Zhang et al., 2017)
achieves this augmentation by generating synthetic samples through linear interpola-
tion. Mixup has demonstrated its ability to enhance the generalization performance of
deep learning models, leading to improved accuracy. However, it is worth noting that
in certain cases, these synthetic samples may not accurately align with the underlying
data geometry, leaving room for improvement.

In this study, we introduce an enhanced data augmentation technique called Local
Mixup, which builds upon the foundation of Mixup by incorporating locality informa-
tion. The implementation of these constraints involves the utilization of a weight matrix
that assigns weights to interpolations based on the distances between the data points
involved in the interpolation. Remarkably, this weight matrix directly corresponds to
the adjacency matrix of a graph. We explore various techniques for constructing this
graph, including threshold graphs, K-nearest neighbor (KNN) graphs, and decreasing
exponential graphs.

We provide a theoretical framework to understand the generalization capabilities of
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Mixup, highlighting its role in regularization and its impact on adversarial defenses.
Furthermore, we demonstrate that our Local Mixup method can mitigate these effects,
effectively striking a balance between bias and variance, resulting in superior gener-
alization performance on standard computer vision benchmarks. In our experiments,
Local Mixup consistently outperformed Mixup on well-established datasets such as
SVHN, CIFAR-10, and FASHIONMNIST.

Future research directions may involve exploring improved metrics for constructing
interpolations, extending our findings to more general scenarios, and investigating the
impact of Mixup, particularly on the gradient of the loss function.

1.5.3 Entropy regularization of the feature to enhance transferability of deep
learning architecture

The preceding contribution delves into the prospect of enhancing generalization in tar-
get tasks by training on a more intricate artificial task. In this work, we reverse this
approach and investigate the outcome when training on simpler tasks. Does the model
exhibit the capacity to generalize beyond its training tasks? We observe that it indeed
possesses the ability to extract information from finer, related tasks through appropriate
regularization techniques.

We introduce a novel regularization method named "Feature Information Entropy Reg-
ularized Cross Entropy" (FIERCE). Our method aims to amplify the entropy within the
feature space of deep learning models while preserving essential information for sub-
sequent tasks. Our experiments underscore the pivotal role of feature space entropy in
transfer learning and the model’s ability to discern more intricate labels.

Initially, we scrutinize whether a deep learning architecture, initially trained on spe-
cific tasks, can extend its generalization beyond them. To investigate, we transform a
regularization task involving label refinement into a classification task entailing coarse
labels. We illustrate that it is feasible to extract information related to the refined labels
from the feature space when the model is trained on coarse labels. However, similar to
the findings in (Shwartz-Ziv & Tishby, 2017), we discern two distinct phases in these
performances. Initially, the feature space naturally conveys information about the re-
fined labels, but subsequently, this information is progressively erased as the model
prioritizes performance on the training tasks.

We assumed that these two phases are intricately linked to the entropy of the feature
space. During the training phase with coarse labels, we apply our FIERCE regulariza-
tion method to encourage the model to augment the entropy of its feature space. This
facilitates improved generalization and mitigates early convergence during training.
In our experiments, we evaluate our method across various benchmark datasets. The
results underscore that our approach outperforms other entropy regularization tech-
niques such as Label Smoothing and Cross Entropy in preserving information within
the feature space. Additionally, we present a technique for estimating feature space
entropy in a differentiable manner, enabling the training of deep learning models with
our proposed regularization.

In summary, our findings advocate for the potential of the FIERCE method in coarse-
to-refined classification and transfer learning scenarios. By elevating feature space en-
tropy, our method equips deep learning models with the capability to generalize more
effectively and to discern more intricate labels.
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1.5.4 A theoretical framework on Transfer in Classification: How Well do
Subsets of Classes Generalize?

Finally, our focus shifts to the broader context of transfer learning within the realm of
classification. Transfer learning has emerged as a fundamental aspect of deep learning,
enabling models to harness knowledge from one task and effectively apply it to another.
Nevertheless, despite its extensive application, the underlying mechanisms driving this
phenomenon remain enigmatic.

Our particular interest lies in the ability of neural networks to learn from a subset of
classes and subsequently generalize to different subsets of classes, and our aim is to
characterize this phenomenon comprehensively. We endeavor to provide both theo-
retical foundations and practical insights, with our primary objectives centered on es-
tablishing a rigorous framework for comprehending transferability within this specific
scenario and utilizing this framework to elucidate fundamental questions in this do-
main.

Our pioneering theoretical model, embodied by Hasse Diagrams, serves as an essential
tool for establishing an order relationship of learning. This tool enables us to precisely
delineate the transferability relationship between distinct sets of classes, shedding light
on which classes can generalize to others. Through empirical investigations, we seek to
address pivotal questions such as identifying performance indicators when transition-
ing from one set of classes to another and determining which classes play a pivotal role
in achieving optimal generalization and transferability.

We conduct experiments across a range of scenarios, providing empirical evidence and
valuable insights into the transferability of deep learning models. Our framework lays
the foundation for future research to explore the impact of various training method-
ologies, construct challenging few-shot learning datasets, and delve into transferability
across diverse domains and tasks through the utilization of interpretability techniques.
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2.1 Introduction

2.1.1 Deep Learning Architecture: equivariance and invariance

The mathematical expression of layers and models play a crucial role in determining the
geometric properties of its feature space, such as invariance or equivariance (Bronstein
et al., 2017; T. Cohen & Welling, 2016; Mallat, 2016). For instance, convolution and
pooling layers in CNNs (LeCun et al., 1998) combine to produce representations that
are invariant to translation and small perturbations. This is why CNNs are widely used
in computer vision and classification tasks, as it is recognized that the output of a neural
network should be invariant to these operations in order to achieve accurate and robust
results (Lenc & Vedaldi, 2015; Simonyan & Zisserman, 2014).

However, achieving invariance or equivariance to specific operators requires a good
understanding of the dataset’s geometry (T. S. Cohen et al., 2018; Masci et al., 2015a).
Convolutional layers, for example, are based on the concept of Euclidean translations,
particularly in the vertical and horizontal directions. While these operations are well-
defined in the Euclidean case, they are not straightforward on non-Euclidean domains.
Several studies have attempted to redefine convolutional layers on non-Euclidean man-
ifolds particularly those with constant curvature, such as hyperspheres and hyperbolic
manifolds (Bachmann et al., 2020; Masci et al., 2015a, 2015b), which could be benefi-
cial in various applications. These operators are usually discovered by identifying the
invariances and symmetries present in the geometry of the data (T. Cohen & Welling,
2016; Girault et al., 2015; Pasdeloup et al., 2018).

2.1.2 Graph Signal translations

Recently, efforts have been made to unify these investigations under the field of Geo-
metric Deep Learning, which aims to provide a mathematical framework for deriving
relevant architectures (Bronstein et al., 2017). The concept of translation, along with
convolution, plays indeed a fundamental role in deep learning. It enables us to detect
patterns and information within data, regardless of their position or orientation. This
property is crucial for various tasks, including feature extraction, object recognition,
and signal analysis. Additionally, the efficient parameter sharing in convolution helps
optimize the learning process, making it indispensable for handling large-scale inputs
like high-resolution images.

Graphs have gained considerable attention due to their diverse range of applications,
including computer vision (Monti et al., 2017), social analysis (Backstrom & Leskovec,
2011), traffic prediction (Y. Li et al., 2017) and many others. Nevertheless defining trans-
lations becomes challenging when dealing with irregular domains, such as graphs (Gi-
rault et al., 2015; Girault et al., 2018; Monti et al., 2018; Sandryhaila & Moura, 2013;
Shuman et al., 2012b).

There are fundamental reasons why it is difficult to define translations for graph sig-
nals. One of the reasons is that a graph inherently includes only a notion of neighbor-
hood or similarity between its vertices, and no explicit notion of direction. It is worth
noting that the construction of the graph can vary depending on the metrics used, and
even small changes can significantly impact the derived operators (Shuman et al., 2013).

Moreover, it is not always clear which operation the architecture should be invariant to,
as it depends both on the specific signal being processed and the considered task (Bron-
stein et al., 2017). Most proposed approaches are independent of the signal and pri-
marily focus on the graph structure (Ortega, Frossard, Kovačević, Moura, et al., 2018;
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Pasdeloup et al., 2018; Shuman et al., 2013). However, in certain cases, especially with
images, this can lead to inconsistent operators (Pasdeloup et al., 2018).

In our work (Baena et al., 2021), we propose a solution that infers graph signal trans-
lations by leveraging not only the graph itself but also additional information such as
labeled signals on the graph. In our applications, the graph represents the input geom-
etry. For instance, images can be mapped onto grid-graphs, with the pixel values as
signals. Thus, it’s important to note that the graph nodes do not represent individual
samples. For a given task, the graph structure (edges) remains constant but the signal
(values of the node) varies for each example.

Our solution builds upon the idea of translation invariance of classification tasks. In
more details, given a graph and samples from different classes, our goal is to find oper-
ators that are constrained by the graph’s structure. These operators should allow us to
create efficient deep learning models with shared weights, resulting in high accuracy
for the classification task at hand. As such, the inferred operators can be interpreted
as transformations that are invariant for the considered task. In the context of regular
n-dimensional signals (e.g., grid graphs), we expect these transformations to include
conventional translations, such as horizontal and vertical shifts. However, they may
also involve other operators like directional dilations or contractions. Notably, this ap-
proach doesn’t require strict assumptions about graph structure regularity, making it
applicable even in abstract domains like relational networks.

But before we dive into the details of our proposed approach, let is introduce the fun-
damental tools for processing signals on graphs.

2.2 Graph Signal Processing

Recently, the field of Graph Signal Processing (GSP) arose with the aim of generaliz-
ing classical harmonic analysis to irregular domains described using graphs (Ortega,
Frossard, Kovačević, Moura, et al., 2018). GSP introduces tools to manipulate signals
on graphs. These tools include convolutions, filtering, smoothing, translations. The
rationale is that such operators are defined by taking into account the graph structure
(i.e. the graph edges). In this section, we will show that in the case of an oriented
ring graph, the tools defined within the framework of GSP align perfectly with those
defined for 1D signals (Sandryhaila & Moura, 2013).

2.2.1 Classical tools in Graph Signal Processing

Notations: For simplicity we will use slicing notation for vector to refers to specific
values of a multi-way array, for instance x[i, j, k]. This notation is particularly suited to
the field of discrete signal processing.

Let us first define fundamental concepts in GSP (Shuman et al., 2013).

Definition 10: Graph

A graph is an pair G = hV,Ei, where V is a finite set of vertices and E is a set
of pair of vertices called the edges. Such a graph can be conveniently expressed
using its binary adjacency matrix A defined as:

A[i, j] =

⇢
1 if (i, j) 2 E
0 otherwise

. (2)
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An illustration of a graph with its adjacency matrix is given in Figure 8. A Graph
is said to be undirected graph when its adjacency matrix is symmetric. One can
also define the degree matrix of G as as:

D[i, j] =

⇢ P

i02V A[i, i0] if i = j
0 otherwise

. (3)

In this work, we are interested in processing signals on graphs. Provided a graph G =
hV,Ei, we define a graph signal as a vector s 2 R

V . In other words, a graph signal is
a collection of scalar measures, one per vertex in the considered graph. Of particular
interest are Dirac signals which are simple one-hot vectors. As an example, we depict
a graph signal on three different graphs in Figure 9.

In the field of spectral graph theory, it is common to also introduce the (combinatorial)
Laplacian of the graph as the matrix defined as L = D � A. Researchers have pro-
posed multiple ways to normalize the Laplacian, such as the symmetrically normalized
Laplacian (Ortega, Frossard, Kovačević, Moura, et al., 2018), the random walk Lapla-
cian (Chung, 1997), or normalizing with the largest eigenvalue of the Laplacian (Girault
et al., 2018), among others.

The Laplacian or its normalized derivatives are typically used to define the graph Fourier
transform (GFT). The rationale is inspired from the classical Fourier transform which
can be defined with the eigenfunctions of the one-dimensional Laplace operator. Anal-
ogously, the graph Fourier Transform is defined with the eigenvectors and eigenvalues
(ul,�l) of the Graph Laplacian. When the graph is undirect the Laplacian matrix is real
and symmetric: the eigenvectors form a complete set of orthogonal vectors on which
one can define the GFT: f̂(�l) =

PN
i=1 f [i]ul[i].

It is important to note that the GFT can only be well defined when the Laplacian matrix
is diagonalizable. Consequently, in the case of a directed graph, there is no guarantee
that the GFT exists. One potential solution is to symmetrize the adjacency matrix, ef-
fectively treating the graph as undirected. However, this approach results in the loss of
directional information, and the adjacency matrix becomes an isotropic operator. For
example, in the case of a ring graph (undirected), utilizing the Laplacian for translation
will cause the signal to diffuse equally in both directions.

Furthermore, the GFT depends greatly of the Laplacian, i.e, the graph structure or the
possible normalization used for the Laplacian (Ortega, Frossard, Kovačević, Moura, et
al., 2018). In Figure 9 we depict the same signal on three different graphs. As observed,
the spectral domains of the graphs exhibit significant differences.

2.2.2 Connection between GSP and Discrete Signal Processing

To illustrate the relationship between GSP and Discrete Signal Processing, let us con-
sider a one-dimensional discrete periodic signal s. As shown in Figure 8, this signal can
be represented on an oriented Ring Graph (Sandryhaila & Moura, 2013).

Definition 11: Oriented Ring Graph

A ring graph, also known as a circular graph or cycle graph, is a type of math-
ematical graph that consists of a single closed loop. Formally, a ring graph can
be defined as a graph G = hV,Ei, where the number of vertices is equal to the
number of edges, and each vertex is connected to exactly one vertex, on its right,
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forming a circular structure.

s[0] s[1] s[2] s[3] s[4] s[5] s[6]

Figure 8 – Example of an Oriented Ring Graph representing a periodic signal s.

The adjacency matrix of a ring graph can be written as A =

0

B
B
B
B
B
@

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 1
1 0 0 · · · 1

1

C
C
C
C
C
A

.

Later on, we will refers to this matrix as J. This matrix is extremely helpful since
any circulant matrix can be written as a polynomial in J.

For a temporal signal, the adjacency matrix is sometimes called the shift operator be-
cause multiplying a signal s = [s1, s2, · · · , sN ]T with the matrix J shifts the signal:
sTJ = [sN , s1, · · · , sN�1]

T . Similarly, the opposite direction is obtained by changing the
orientation of the ring. In Euclidean geometry, such operations are translations.

Translations are among the most fundamental transformations in signal processing (Op-
penheim, 1999). They are often used as a basic building block to define convolutions,
Fourier transform, filters and related tools. In machine learning, they can be exploited
to define ad-hoc operators that benefit from the underlying simple regular structure of
processed signals, such as in the case of Convolutional Neural Networks (CNNs).

In fact, we will demonstrate that the discrete one-dimensional convolution can be de-
fined and derived from the adjacency matrix J of the oriented ring graph.

Definition 12: Discrete 1-d Convolution

Let us consider two periodic signals x and y of periodicity N . The 1-d convolu-
tion is defined as:

(x ⇤ y)[k] =
NX

i=1

x[i]⇥ y[l � i],

y[i] = y[i mod N ]

The previous equation can be written as the product of x with a circulant matrix T or
polynomial expression in the matrix J :

x ⇤ y[k] =

0

B
B
B
@

y[1] y[n] y[n� 1] · · · y[2]
y[2] y[1] y[n] · · · y[3]

...
. . . . . . . . .

...
y[n] y[n� 1] y[n� 2] · · · y[1]

1

C
C
C
A

=

NX

k=i

(y[i]J i�1)x. (4)

In other words, the adjacency matrix of the ring graph serves as the core operator
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analogy fails in higher dimensions.

Another solution proposed in the early days of GSP, was to define translations on top
of convolutions. In (Hammond et al., 2011; Shuman et al., 2012a) the authors defined
convolutions in three steps: first computing the GFT of the considered signals, then
pointwise multipliing their spectral coordinates, and finally performing an inverse GFT
on the resulting vector. Graph signal translations can then be obtained by convolving
signals with a Dirac.

But the authors of (Girault et al., 2015) point out that translations defined through the
spectral domain are not isometric. They introduce alternative definitions using complex
exponentials of the Laplacian matrix. Problematically, it has been shown that these
operators do not generalize well to classical circular translations on signals defined on
torus or grid graphs (Pasdeloup et al., 2018).

While these previous rationales (Hammond et al., 2011; Sandryhaila & Moura, 2013;
Shuman et al., 2012a) do not match the classical definition of signal processing, they are
still widely used to defined Graph Neural networks (Scarselli et al., 2008), especially,
graph spectral neural networks (Bruna et al., 2013) or graph convolutional neural net-
works (Kipf & Welling, 2016) (GCN).

Let us introduce the concept of graph layer convolutional layers, which forms the fun-
damental core of GCN. Consider a graph represented by its adjacency matrix A and
degree matrix D. A graph layer convolutional layer can be defined as �(D�1/2A(A +
ID�1/2HW)), where H represents a graph signal and W denotes the layer weights.
Notably, this definition exhibits similarities with conventional layers, but the opera-
tions (weights) performed are specifically constrained by the adjacency matrix of the
graph. Indeed, the original definition of the adjacency or Laplacian matrix leads to an
isotropic operator, causing the signal to diffuse to all neighboring nodes. This diffusion
behavior is not always desirable in graph signal processing tasks, as it may result in the
loss of localized information and hinder the ability to capture meaningful patterns or
structures within the graph (Pasdeloup et al., 2018).

As an attempt to propose nonisotropic operators, the authors of (Monti et al., 2018) aim
at identifying directions or relevant graph motifs. These motifs represent meaningful
connectivity patterns, e.g triangle motifs which are crucial for social networks (Benson
et al., 2016). Once a set of motifs is chosen, nonisotropic Laplacians are defined for
each one. Convolutions are then defined as multivariate polynomials of the Laplacian
matrices and can be used to define graph neural networks. Two key issues with this
methods are the huge amount of parameters it relies upon and the difficulty of choosing
relevant motifs.

Using a completely different approach, the authors in (Pasdeloup et al., 2018) defined
translations of graph signals directly in the vertex domain (without using the GFT),
thus providing an actual generalization of classical tools. In their work they character-
ize translations as functions �, defined from a subset of vertices V 0, that are i) injective
(�(v) = �(v0) ) v = v0, 8v, v0 2 V 0), ii) edge-constrained ((v,�(v)) 2 E, 8v 2 V 0) and
iii) neighborhood-preserving ((v, v0) 2 E , (�(v),�(v0)) 2 E, 8v, v0 2 V 0). Injectiv-
ity and neighborhood-preservation are key characteristics to ensure the matching with
regular translations, but they are poorly suited for abstract graph structures such as so-
cial networks. Moreover, this approach comes with a large computational complexity,
and struggles with abstract and irregular graph structures. Another issue is that the
methodology relies only on the graph structure and therefore it is completely agnostic
of the signal’s nature.
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In (Vialatte et al., 2017), the authors introduce pseudo-convolutions for deep neural
networks that can be seen as implementing the edge constraint previously introduced.
Namely, they introduce a tensor S and a vector w. The binary tensor S is of dimension
N ⇥ N ⇥ K, where N is the number of vertices in the considered graph and K is a
hyperparameter. Moreover, S[i, j, k] is zero if (i, j) 62 E, and S[i, j, :] contains at most
one nonzero entry. The vector w contains K coordinates. The tensor-matrix product
along the third mode of S by w, denoted as S ⇥3 w creates a N ⇥N matrix W that can
be seen as a weighted version of the adjacency matrix A of the considered graph. The
authors show that for particular choices of S, they can retrieve classical convolutions for
regular grid graphs. More generally, slices S[:, :, k] can be interpreted as graph signal
translations. We then decide to use a weight-sharing scheme and we propose to infer
the tensor S using both the graph structure and a set of labeled signals.

2.3.2 Equivariant layers through weight sharing

Weight sharing is a technique commonly employed in Convolutional Neural Networks
where the same set of parameters is utilized across different layers (LeCun et al., 1998),
resulting in a reduction in the number of learnable parameters. Specifically applied
in CNNs for image processing tasks, weight sharing facilitates the processing of im-
ages using shared filters, thereby enhancing the network’s generalization capabilities
by capturing local patterns and enabling the acquisition of more abstract and general
representations (Krizhevsky et al., 2017). Additionally, weight sharing promotes trans-
lational invariance within CNNs, as it compels the network to learn pattern recognition
irrespective of the pattern’s position, ensuring consistency across different locations in
an image (T. Cohen & Welling, 2016).

Recently, the authors of (T. Cohen & Welling, 2016) have proposed Group Equivariant
Convolutional Networks G-CNNs, an extension of CNN. They highlight that tradi-
tional CNNs lack the ability to retain spatial relationships under general transforma-
tions such as rotations and reflections, which limits their applicability in certain do-
mains. To address this limitation, they proposes G-CNN to maintain spatial relation-
ships by incorporating the concept of group theory to learn equivariant representations.

G-CNNs utilize group convolutional filters that leverage weight sharing across differ-
ent spatial locations and orientations. The sharing of weights enables the network to
learn shared patterns that remain consistent across different transformations. Conse-
quently, G-CNNs can produce more robust and invariant representations. Similarly, in
another study (Yeh et al., 2022a), the authors propose two parameter-sharing schemes
that achieve equivariance with respect to any discrete group-action.

One limitation of the aforementioned works (T. Cohen & Welling, 2016; Yeh et al.,
2022a) is that they rely on prior knowledge of the equivariance properties of the data.
However, such knowledge may not be readily available, particularly when encoun-
tering a new domain. In contrast, posterior to our work (Yeh et al., 2022b) proposes
a method to discover equivariant layers by solving an optimization problem over a
model’s parameter-sharing schemes.

2.4 Problem Statement and Methodology

The motivation for employing Convolutional Neural Networks (CNNs) lies in harness-
ing the inherent invariance of input labels to translations (LeCun et al., 1998). This is
accomplished through the implementation of weight sharing mechanisms. To elaborate
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further, translations serve as the basis for the definition of convolutions. When convo-
lutions layers are integrated with pooling operations, they have the capacity to generate
representations that exhibit invariance with respect to translations. As a result, CNNs
produced in this manner can achieve significant improvements in accuracy when com-
pared to translation-agnostic architectures like multi-layer perceptrons (Krizhevsky et
al., 2017; LeCun, 2015a).

The key idea of our proposed methodology is to reverse this reasoning. Namely, we

propose to define learnable operators that are aligned with the graph structure, from

which we build pseudo-convolutions by learning tailored weight sharing schemes.
When combined with pooling operations, this results in architectures that can be seam-
lessly trained from end to end to address classification tasks. Once we have identified a
network exhibiting acceptable performance, we can subsequently integrate the learned
operators into the architecture as pseudo-translations, or more broadly, as operations
invariant to classification.

To delve deeper into the subject, let’s explore a straightforward example involving a
ring graph, with an associated adjacency matrix denoted as A. As previously eluci-
dated, this graph can accommodate a periodic graph signal, which we’ll denote as s.
To keep things uncomplicated, we assume that s is of dimension N = 4. Within this
example, we can defined k = 3 translations and each of which can be represented by a

matrix (Tk), where Tk 2 R
N⇥N . The translations are T0 =

0

B
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circular translations corresponding

to the two orientations of the ring. We define a tensor S 2 R
N⇥N⇥K by concatenat-

ing the matrices (Tk)k. Additionally, we introduce a convolutional kernel w, with its
elements indexed by the K translations. Then it holds that:

S⇥3 w =
X

k

w[k]S[:, :, k]
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@
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w2 0 w1 w0

1

C
C
A

. (5)

Indeed, we can identify this as a Toeplitz circulant convolution matrix. These equations
can be readily extended to any regular nD graph and, with appropriate constraints on
the structure of S, to any arbitrary graph as well. Consequently, we can define the
graph convolution operation ? as follows:

s ?w = s>(S⇥3 w). (6)

Our approach involves the optimization of deep neural networks with the dual ob-
jective of classifying graph signals and learning the matrices (Tk)k concurrently. This
learning process adheres to a crucial constraint: Tk[i, j] 6= 0 if and only if A[i, j] 6= 0,
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x GSL1 GSLn Pool FC SM y

Figure 10 – Depiction of the used deep learning architecture. GSL stands for Graph-
Signal Layer, Pool for a global average pooling, FC for a fully connected layer and SM
for a softmax.

where A signifies the graph adjacency matrix. In essence, the matrices (Tk)k represent
transformations that are bound by the edges of the graph, ensuring edge-constrained
transformations.

2.4.1 Problem Statement

As previously mentioned, our objective is to learn a set of operators that exhibit invari-
ance properties for classification tasks. In practice, this set is represented by a tensor
S in R

d⇥d⇥k, where d represents the dimension of the output graph signal (the num-
ber of nodes), k is the number of learned operators, and the individual slices S[:, :, k]
correspond to invariant operators. These learned operators form the core foundation
of Graph-Signal Layers (GSLs), serving as the primary building blocks for these layers,
which, in turn, are employed in deep learning architectures.

Similar to convolutional layers where the weight tensor W implements a convolution
operation, GSL layers provide a generalization of convolutional layers. In GSL layers,
a signal s is transformed as follows:

s 7! �(s>(S⇥3 w))

where the slices S[:, :, k] are subject to edge constraints: S[i, j, k] 6= 0 if and only if
A[i, j] 6= 0, with A representing the adjacency matrix.

Now, let’s delve into the process of learning the tensor of operators S. To simplify the
explanation, we will describe the procedure for tensors with only one filter, i.e., a single
w. It’s crucial to note that all the equations presented here can be extended to the case
of multiple filters, which essentially involves adding an additional dimension to all
tensors and computations.

In the context of deep neural networks, we can represent the mapping from input to
output as a function denoted as f . This function f is constructed by combining elemen-
tary functions known as layers. These layers typically take the form of:

x 7! �(Wx+ b),

where W represents a weight matrix, b is a bias vector, and � is a nonlinear function
that is usually applied component-wise. The weight matrix W and its corresponding
bias vector b are the trainable parameters denoted as ✓ of the network.

In classification settings, the goal is to train the function f to map raw inputs (e.g.,
images) to their respective classes. This typically involves using two datasets: a train-
ing dataset denoted as Dtrain, which is used to learn the parameters, and a validation
dataset used to evaluate the performance of the trained function f in correctly clas-
sifying previously unseen inputs. The network function f concludes by applying a
softmax operator.

The most common approach for training a classifier involves using a cross-entropy loss
function L. Given a pair (x, y) 2 Dtrain, where x is an input and y is its corresponding
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output label, the loss function is defined as:

L(x, y) = � log(f(x)[y]).

Then, we aim to optimize the following equation:

argmin
θ

X

(x,y)2Dtrain

L(x, y).

In practice, optimization is accomplished through the utilization of various Stochas-
tic Gradient Descent (SGD) algorithm variants. Now, consider a scenario involving
a deep neural network function denoted as f with parameters S,!, ✓, which encom-
passes Graph Shift Layers (GSLs). In this context, S represents the graph transforma-
tions, implicitly employed in Convolutional Neural Networks (CNNs), ! signifies the
parameters associated with GSLs, and ✓ encompasses the remaining parameters, such
as those related to fully connected layers. Our goal now is to determine the solution to
the following optimization problem:

arg min
S,ω,θ

X

(x,y)2Dtrain

L(x, y).

We are particularly concerned with solutions in which S[i, :, k] takes on the character-
istics of one-hot vectors, facilitating the interpretation of the slices S[:, :, k] as pseudo-
translations. In the following subsection, we will offer a more thorough explanation of
our approach to enforcing this constraint.

2.4.2 Temperature-Based Optimization for One-Hot Constraints

As outlined in the introduction, Convolutional Neural Networks (CNNs) with pool-
ing layers possess the advantage of yielding translation-invariant decisions. However,
applying pooling to graph signals can be challenging due to the necessity of comput-
ing graph downsampling (Shuman et al., 2013). To address this, we employ a simple
workaround wherein we exclusively perform a single pooling operation at the penulti-
mate layer of our proposed architecture, just before the final fully connected layer. This
pooling operation is global, causing a complete reduction in the graph dimension: all
vertex values are averaged into a single value for each filter considered. An illustration
of the proposed architecture can be found in Figure 10.

Optimizing deep learning architecture over a discrete domain is a complex endeavor,
primarily because it entails binary matrix constraints that are not easily enforced (Cour-
bariaux et al., 2016). Given our objective of obtaining one-hot vectors, which aligns with
the approach in (Hacene et al., 2019), we adopt a similar strategy. Specifically, we ap-
ply a softmax operator to the second dimension of S, with a variable temperature t
(x 7! softmax(x/t)). This temperature begins with an initial value of tinit, typically
large. In this case, the softmax operator effectively maintains the lines S[i, :, k] con-
stant where defined (recall that S[:, :, k] is edge-constrained). Towards the end of train-
ing, the final temperature is reduced to tfinal, typically small, causing the softmax

operator to approximate a regular max operator, thereby transforming the lines S[i, :, k]
into one-hot vectors.

We experimented various strategies to interpolate the temperature between tinit and
tfinal. Our most consistent results were obtained using an exponential interpolation:

t(s) = tinit

⇣
tfinal

tinit

⌘ s
stotal , where s is the current step in the training phase, and stotal is
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the total number of steps used for training. At the end of the training process, we use
a temperature of 0 to interpret the slices of S[:, :, k] as pseudo-translations. In the next
section, we present experiments on toy and real datasets.

2.5 Experiments

In this section, we conduct experiments across multiple graph types, ranging from
regular structures (e.g., images supported on 2D grid graphs) to more abstract ones
(e.g., hyperlink networks). Our method is assessed using two distinct datasets: CIFAR-
10 (Krizhevsky, Hinton, et al., 2009) and webKB (Pei et al., 2020). CIFAR-10 is a classi-
fication dataset comprising images, each composed of 32⇥32 pixels and utilizing three
primary color channels, distributed among 10 distinct classes. WebKB, on the other
hand, consists of 877 web pages sourced from computer science departments of univer-
sities, categorized into one of five classes: student, project, course, staff, and faculty. The
dataset is characterized by word-based feature vectors, each of dimension 1703, corre-
sponding to the content of the webpages, as well as a hyperlink graph representing
the relationships between these pages. This dataset is commonly employed in semi-
supervised classification scenarios, where only a subset of the webpages are labeled.

2.5.1 Sanity check with regular grid graphs

In our initial experiment, our objective is to assess the capability of our proposed method
to recover classical translations when dealing with 2D signals and structures. To accom-
plish this, we employ the CIFAR-10 dataset, which has been downscaled to 16⇥16 pixel
images. We represent the image signals on a regular grid graph. In greater detail, the
grid graph is constructed such that each vertex corresponds to a pixel, and each pixel
is connected to its four immediate neighbors via edges.

Figure 11 illustrates the outcomes of our proposed method. We represent inferred
pseudo-translations T as grids of size 16 ⇥ 16. Each vertex is denoted by an arrow
pointing to the neighboring vertex it connects to through T (it is important to note that
inferred pseudo-translations are edge-constrained, ensuring the validity of this repre-
sentation). For each Tk, we highlight the vertices corresponding to the predominant
direction. Interestingly, we observe that T0 and T3 tend to approximate conventional
translations. It’s worth noting that T1 is nearly an identity function. Surprisingly, T4

and T2 resemble horizontal dilation and compression, respectively. Importantly, such
transformations remain valid within our framework and are typically invariant for the
classification task at hand.
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ric quantifies the number of disparities between the obtained transformations and the
closest 2D translation, dilation, or contraction. For this assessment, we employ the
CIFAR-10 dataset, assuming that the images are based on the grid-graph structure. As
the results indicate, the method exhibits a notable robustness to changes in these hy-
perparameters.
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Figure 13 – Comparison of the impacts of tfinal and tinit on accuracy and distance of the
obtained translation: identity (orange), up (green), down (purple), dilation (blue), and
the average distance (red).

2.6 Conclusion

In this chapter, we’ve introduced an novel deep learning method that allows us to
learn graph signal translations using both a graph structure and a set of labeled sig-
nals. Through experiments, we’ve demonstrated the method’s effectiveness in retriev-
ing conventional 2D translations from regular images. Additionally, we conducted ex-
periments on an abstract hyperlink network and achieved performance comparable
to state-of-the-art methods. Further research include exploring alternative approaches
for learning the translations, different criteria, datasets and refining the selection of
hyperparameters. From a broader perspective, these findings pave the way for ex-
tending this methodology to derive invariant operators suited for irregular domains,
tailored to address specific target tasks. This perspective work aligns with previous
research (d’Ascoli et al., 2021), which suggests that fixing learned operators could po-
tentially enhance accuracy by using a task-specific architecture.

In the upcoming chapter, we’ll delve into another avenue for improving generalization:
by modifying the training process itself. Typically, this involves the inclusion of regu-
larization techniques and data augmentation. Our focuswill be on Mixup, a method
that generates new data samples through linear interpolation.
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3.1 Introduction

3.1.1 Regularization methods to enhance generalization

As discussed in chapter III, the architecture and the layers used to build the model have
a significant impact over the generalization achieved on the target tasks. But, another
way to enhance generalization and address overfitting issues is to rely on regularization
techniques that have been widely employed in the field of deep learning (Goodfellow
et al., 2016). In this chapter, our primary focus will be on Mixup, a technique designed
to generate virtual samples and improve generalization, as outlined in (H. Guo et al.,
2019). This method can be viewed as a regularization technique that artificially intro-
duces complexity into the training task.

Regularization techniques can be categorized into two categories: data-independent
or data-dependent (H. Guo et al., 2019). Typically, data-independent regularization
techniques constrain the model by penalizing the norm of the parameters, for instance
through weight decay (Loshchilov & Hutter, 2017). Another frequently employed tech-
nique is dropout, which involves the random omission of the weights during the train-
ing process, as described in (Srivastava et al., 2014).

Among data-dependent regularization techniques, data augmentation plays a signifi-
cant role (H. Guo et al., 2019). Data augmentation artificially generates new samples,
thereby increasing the size of the training dataset Dtrain (Simard et al., 2001). It can
be applied to either the outputs (Sukhbaatar et al., 2014) or the inputs (Cubuk et al.,
2018; DeVries & Taylor, 2017; He et al., 2016; Krizhevsky et al., 2017; Yun et al., 2019;
R. Zhang et al., 2016). In computer vision, for example, it is very common to generate
new samples using class-invariant transformations (He et al., 2016; Krizhevsky et al.,
2017).

Data augmentation can be viewed as a method to introduce complexity into train-
ing tasks by enforcing certain invariance properties through geometric transforma-
tions. While it is evident that certain transformations –particularly in computer vision
applications– are beneficial and contribute to improved generalization, the advantages
of other augmentation methods remain somewhat mysterious (Verma et al., 2019).

3.1.2 Mixing method as data augmentation

Recently, data-dependent methods incorporating some form of mixing methods have
emerged (J. Chen et al., 2020; Chou et al., 2020; DeVries & Taylor, 2017; Hendrycks
et al., 2019; Kim et al., 2020; Z. Liu et al., 2021; Rame et al., 2021; Verma et al., 2019;
Yin et al., 2021; Yun et al., 2019; H. Zhang et al., 2017). These methods typically in-
volve mixing two or more inputs along with their corresponding labels. The pioneering
method in this category is Mixup (H. Zhang et al., 2017), where mixed samples (x̃, ỹ)
are generated by linear interpolations between pairs, i.e., x̃i,j,λ = �xi + (1 � �)xj and
ỹi,j,λ = �yi + (1� �)yj , where (xi,yi) and (xj ,yj) are training samples, and � 2 [0, 1].
Mixup has been shown to improve generalization of state-of-the-art models on Ima-
geNet, CIFAR10, speech, even tabular datasets (H. Zhang et al., 2017) and successfully
in the context of few shot learning (Dhillon et al., 2019; Fei-Fei et al., 2006).

3.1.3 Side Effect of mixup

By using linear interpolation, virtual samples can sometimes contradict one another or
even generate inputs that are outside the input distribution. These spurious examples
are more likely to occur when the input signals are situated on a complex topology.
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For instance, directly interpolating pixels in natural images is unlikely to produce a
coherent or meaningful image. This phenomenon has been recently described in (H.
Guo et al., 2019), where the authors use the term manifold intrusion. As such, it is not
clear if Mixup is always desirable. More generally, the question arises of whether Mixup
could be constrained to reduce the risk of generating such spurious interpolations.

By definition, Mixup encourages the model f to associate linearly interpolated inputs
with the corresponding linearly interpolated outputs (H. Zhang et al., 2017). But, sev-
eral authors have questioned the positive effect of this linear behavior between samples
and have aimed to theoretically and empirically explain the behavior of Mixup.

For example, in (Carratino et al., 2020) the authors showed that Mixup can be inter-
preted as a combination of a data transformation and a data perturbation, where a
first transformation shrinks both inputs and outputs towards their mean, and a second
transformation applies a zero-mean perturbation. The proof was given by reformulat-
ing the Mixup loss. In (Gyawali et al., 2020), they highlighted that Mixup impacts the
Lipschitz constant L of the gradient of the model function.

In (Chidambaram et al., 2021), the authors identify cases where Mixup fails to minimize
the empirical risk (ERM). They also proved that in certain situations, Mixup can achieve
better generalization in terms of margin, while in other situations, there is no difference.

Posterior to our work (Baena et al., 2022b), the authors in (Oh & Yun, 2023) show that
the minimization of the logistic loss to estimate the optimal Bayes classifier requires an
exponentially increasing number of data, while Mixup grows quadratically. In (Park et
al., 2022), the authors propose a unified theoretical analysis of mixed sample data aug-
mentation (MSDA), such as Mixup and CutMix. They demonstrate that regardless of
the specific mixing strategy, MSDA serves as a regularization technique for the training
loss and the first layer parameters. They also prove that MSDA improves adversarial
robustness and generalization compared to vanilla training.

In addition to Mixup, several works have proposed improvements using various ap-
proaches. For example, in (Chou et al., 2020), the idea is to use different �x and �y

values to mix the inputs and outputs; in (Z. Liu et al., 2021; Rame et al., 2021; Yun et al.,
2019), the authors explore the use of other (nonlinear) interpolation methods., while
approaches described in (J. Chen et al., 2020; Greenewald et al., 2021; Yin et al., 2021)
extend the mixing to more than two elements is proposed.

3.2 Problem Statement and proposed Approach

3.2.1 Problem Statement

We aim to investigate the reasons behind the improved generalization achieved through
Mixup during training and address the phenomenon known as manifold intrusion intro-
duced in (H. Guo et al., 2019). This phenomenon occurs when Mixup generates virtual
samples that extend beyond the expected boundaries of the manifold domain for a
given class. This scenario is illustrated in Figure 14, where the inter-class interpolations
between samples from the red class intersect and conflict with the ground truth of the
blue class.

We explore the possibility of enhancing the benefits of this regularization by introduc-
ing a modified approach called Local Mixup. In this approach, we assign weights to the
virtual samples within the training loss. The weight of each virtual sample is based
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samples can vary depending on the selected graph and the randomly chosen batch. In
cases where certain weights are 0, the corresponding virtual samples are discarded dur-
ing gradient descent. Consequently, the method focuses solely on local interpolations
of samples, giving rise to the name Local Mixup.

In Figure 14 we depict our proposed approach with a thresholded graph. By restrict-
ing interpolation we can observe than contrary to Mixup, the inter-class interpolation
between red segments does not contradict the ground truth of the blue class.

3.3 Optimal Mixup Criterion Function in dimension 1

3.3.1 Mixup Criterion

Let us introduce proper notations before defining the Mixup Criterion. We denote
Dtrain a training dataset used for learning the model’s parameters, and Dtest a test
dataset used to evaluate the model’s performance on unseen inputs (LeCun, 2015a).
We assume that both input and output data lie in normed vector spaces with (X , k · kX)
and (Y, k · kY ), with X and Y typically being Euclidean spaces with the usual norms.
We refer to f : X ! Y as a parametric model to be trained, and F as an hypothesis set,
which contains all candidate parametrizations of the model.

We denote L the loss function that quantifies the discrepancy between the model out-
puts and the expected outputs. We consider typically the cross-entropy as loss function
which we will denote as Lvanilla:

Lvanilla =
X

(x,y)2D

L(f(x),y).

Definition 13: Mixup Criterion

Given � ⇠ Beta[↵,�], where ↵ and � are parameters of the Beta distribution,
n represents the size of the dataset, and i and j are discrete variables that are
uniformly drawn with replacements from the set 0, . . . , n� 1. The function f⇤

that minimizes the Mixup criterion is:

f⇤ = argmin
f2F

1

n2
Eλ

2

6
6
6
6
6
6
4

X

D2

train

L (ỹi,j,λ, f(x̃i,j,λ))

| {z }

Lmixup

3

7
7
7
7
7
7
5

.

3.3.2 Optimal Mixup Criterion Function

Consider the case where the model, denoted as f , is defined on R. Without loss of
generality, let us assume that the training set Dtrain = {xi, yi} is ordered in ascending
order of inputs, i.e., xi  xi+1.

For a given input x̃, the loss function of the Mixup technique implies that the output
f⇤(x̃) of the model is determined by the set E(x̃), which consists of all convex combi-
nations that yield x̃ from any pair of training inputs xi and xj . Mathematically, we can
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express E(x̃) as follows: E(x̃) = {i, j,�i,j |x̃ = �ijxi + (1 � �ij) xj}. In one-dimensional
space, the set E(x̃) is non-empty and finite for any x̃ 2 [x0, xn�1].

In practice, the distribution of � is often considered uniform, as in previous works such
as Mixup (H. Zhang et al., 2017) and Manifold Mixup (Verma et al., 2019): � ⇠ Beta(↵ =
1,� = 1) = U(0, 1). Under this assumption, we demonstrate that the output f⇤(x̃) for
an input x 2 [x0, xn] corresponds to the barycenter (weighted mean) of the target values
associated with the elements in E(x̃).

Lemma 1: Expression of f⇤

Let us assume that the error function L is either the cross entropy or the L2 loss.
In this case, the function f⇤ can be described for any x in the interval [x0, xn�1]
by the following equation:

f⇤(x̃) =
1

card(E(x̃))

X

(i,j,λi,j)2E(x̃)

�i,jyi + (1� �i,j)yj . (8)

Proof: Lemma 1

Let us consider an input x̃ 2 [x0, xn�1] and 0  �  1. For a given triplet
(i, j,�) 2 E(x̃), we have E[L(yi, j,�i,j , f

⇤(x̃))|x̃, i, j,�ij ] = L(yi, j,�i,j , f
⇤(x̃)) as

the values of yi, j,�i,j and x̃ are known. We aim to minimize the error for all
yi,j,λi,j

in E(x̃). Thus, the value of f⇤(x) is determined solely by the sum of the
losses over E(x̃), assuming equal probabilities for the elements of E(x̃) due to
uniform distributions of i, j,�.

E[L(f⇤(x̃), yi,j,λi,j
) =

X

E(x̃)

E[L(f⇤(x̃), yi,j,λi,j
)|x̃, i, j,�ij ]

=
X

E(x̃)

L(f⇤(x̃), yi,j,λi,j)) (9)

Assuming that the error function L is either the cross-entropy (used in classifi-
cation tasks) or the squared L2 loss (used in regression tasks), we can derive an
equation for f⇤(x̃) by setting the derivative of Equation (9) with respect to f⇤(x̃)
equal to zero, we obtain:

f⇤(x̃) =
1

card(E(x̃)))

X

E(x̃)

yi,j,λi,j

The following theorem is a consequence of the preceding lemma:

Theorem 1

Considering the L2 loss or the cross entropy, the function f⇤ that minimizes the
loss on the training set is piecewise linear on the interval [x0, xn�1]. Specifically,
it is linear on each segment [xi, xi+1] for 0  i < n � 1. The definition of f⇤ on
each segment is given by Equation (8).

When the input x̃ varies within the interval [xi, xi+1], the set of possible combinations
of training samples that result in x̃ remains unchanged, except for the linear variation of
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the corresponding coefficients �. As Equation (8) is linear with respect to each of these
coefficients, the function f⇤ is linear with respect to x̃. The set of possible combinations
changes whenever x̃ transitions to another interval, such as [xi�1, xi]. In such cases, new
combinations may emerge, while others may disappear, resulting in a different linear
function. Nonetheless, f⇤ remains continuous everywhere because the appearance or
disappearance of combinations is associated with � = 0 or � = 1 for x̃ = xj , where
j 2 {1, · · · , n}.

In practical machine learning scenarios, it is often undesirable to infer a function f⇤

that minimizes the Mixup criterion. Instead, the aim is to find a function f with a
sufficiently small loss, which has a regularization effect. This is because f⇤ is unlikely
to generalize well. However, it should be noted that f⇤ tends towards an average of
convex combinations, resulting in a model with low variance.

3.4 Local Mixup

3.4.1 The Bias/Variance Trade-off

In this section, our objective is to demonstrate that Local Mixup provides the ability to
adjust the bias and variance trade-off in trained models. To facilitate our analysis, we
simplify the problem to one dimension and consider a thresholded graph. Notably, by
varying the threshold, we can create a range of settings where a threshold of 0 corre-
sponds to vanilla training, while a threshold of N , where N represents the number of
training samples, corresponds to classical Mixup. To begin, let us revisit the definitions
of bias and variance in the context of a machine learning problem.

Definition 14: Bias and Variance

Consider a training set Dtrain and a function f mapping from X to Y . The bias
and variance of this model are defined as follows:

• Bias: Bias(f)2 = Etrain[(f(x)� y)2]

Bias measures how far off our model’s predictions are from the true values on
average. In simpler terms, it quantifies the error introduced by approximating a
real-world problem, which may be complex, by a much simpler model. A high
bias indicates that the model oversimplifies the data and may not capture impor-
tant patterns, leading to systematic errors in predictions. This is often referred to
as underfitting.

• Variance: V ar(f) = Etrain[(f � Etrain[f ])
2]

Variance serves as a quantification of the model’s susceptibility to fluctuations
within the training data. It effectively measures the extent to which predictions
for a specific data point may diverge when trained on distinct datasets. Elevated
variance signifies that the model is excessively responsive to the inherent noise
in the training data, thereby accommodating incidental fluctuations rather than
encapsulating the intrinsic underlying patterns. This propensity is commonly
referred to as overfitting.

The pivotal notion of a trade-off between bias and variance emanates from the
inherent challenge in machine learning, which is finding a model capable of gen-
eralizing to unseen data. During the model training process, an intricate balance
must be struck. On one hand, overly simplistic models (characterized by high
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bias) will inadequately represent the intricacies inherent in the data, resulting in
underfitting. Conversely, an alternative extreme arises when constructing overly
intricate models (typified by high variance). These models may exhibit an excep-
tional fit to the training dataset, encompassing even the intrinsic noise or random
fluctuations present within the data. Nevertheless, this seemingly favorable at-
tribute precipitates a lackluster capacity to generalize to fresh data instances.

In the following, we consider two scenarios. In the first scenario, the input domain
Z/nZ is periodic, thereby resulting in a finite number of samples. In the second sce-
nario, the input domain Z is infinite, and the outputs are independent and identically
distributed (i.i.d) using a random variable. In both scenarios, the dataset size N can be
arbitrarily large, allowing us to study the asymptotic cases.

3.4.2 Periodic setting

Let us consider a training set Dtrain consisting of pairs (x, y), where {x | 9y, (x, y) 2
Dtrain} = Z/nZ. Additionally, we assume that the distance metric dX (x, x

0) = |x �
x0| takes values in the range {0, · · · , n � 1}. This assumption simplifies the proofs by
assuming regularly spaced samples, although we believe that similar results could be
obtained even if the inputs are not defined over Z/nZ.

Since the input domain is discrete, we can indicate the threshold parameter K of the
graph as an integer. Notably, each time K is increased by 1, every sample becomes con-
nected to two additional neighbors. Under these circumstances, we can derive an ex-
plicit formulation of f⇤

K , which represents the function that minimizes the Local Mixup
criterion for K-thresholded graphs. By employing arguments similar to those used to
derive Equation (8), we can determine that, for a given xi,the optimal value of f⇤

K(xi)

is an average of the ỹ values corresponding to the possible interpolations. This can be
expressed as follows:

8xi 2 Z/nZ, f⇤
K(xi) =

1

K(K + 3)/2
(2Kyi + SK(xi)), (10)

where SK(xi) is defined recursively as follows:

SK+1 =

⇢
0 if K = 0
SK(xi) +AK+1(xi) 8K � 1

. (11)

and:

AK(xi) =
1

K

K�1X

k=1

(K � k) · yi�k + k · yi+K�k.

Proof: Equation (10)

These expressions can be proven through induction on the parameter K. Let
xi 2 Z and K > 1. The term 1

K(K+3)/2 represents the cardinality of E(xi), which
denotes the number of interpolations satisfying xi = �x+ (1� �)x0. To be more
precise, we distinguish between direct interpolations and indirect interpolations.

Direct interpolations correspond to interpolations between xi and its immediate
neighbors xj . For example, when K = 2, the direct neighbors are xi+1, xi+2, xi�1,
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xi�2 xi�1 xi xi+1 xi+2 xi�2 xi�1 xi xi+1 xi+2

Figure 15 – We depict here the terms of f⇤
K(xi) given by Eq (10) for different K. In blue

the interpolations corresponding to 2Kyi and in red the terms of the sum SK . On the
right, K = 2 and on the left K = 1.

and xi�2. When evaluating SK(xi), the direct interpolations are performed using
� = 1 : xi = 1.xi + 0.xj . Thus, the corresponding interpolated output y value is
determined as yi since y = �yi + (1� �)yj = yi.

Indirect interpolations refer to interpolations between points other than xi that
intersect with xi, for instance the interpolation between xi�1 and xx+1. Figure 15
illustrates these interpolations. As K increases, the influence of SK (depicted as
red points in the figure) also increases, as we will prove below.

We can prove by induction over K that there are at 1
K(K+3)/2 interpolations,

specifically 2K direct interpolations and K(K � 1)/2 indirect interpolations.

• For K = 1, the data point xi is connected to xi�1 and xi+1, resulting in
2 neighbors. In this case, no indirect interpolation occurs because |xi�1 �
xi+1| = 2 > K = 1.

• For K = 2, the point xi is connected to xi�1, xi+1, xi�2, and xi+2, resulting
in 4 direct neighbors. Finally, there is 1 indirect interpolation: 1/2(yi�1 +
yi+1) (see Figure 15).

• Assuming the expression holds true for some K, the function f⇤
K+1 includes

the 2K + K(K � 1)/2 interpolations from f⇤K. Additionally, it includes
the new direct interpolations : (xi, xi+K+1), (xi, xi�K�1), and the indirect
interpolations: (xi�1, xi+K), (xi�1, xi+K), · · · , (xi�K , xi+1). In total, there
are K(K + 3)/2 + 2 +K = (K + 1)(K + 1 + 3)/2 interpolations.

Upon closer examination, one can observe that in Equation 10 direct interpola-
tions are associated with the term 2Kyi (� = 1), whereas indirect interpolations
correspond to the term SK .

Directly, we obtain the following lemma, which demonstrates the invariance of the
expected value of f⇤

K with respect to K:

Lemma 2: Expected value of f⇤
k

For any K, the expected value of f⇤
K is

Etrain[f
⇤
K ] = Etrain[y]. (12)
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Proof: Lemma 2

By definition we can write:

Etrain[f
⇤
K ] =

1

n

nX

i=1

f⇤
K(xi)

=
2

nK(K + 3)
(2nKEtrain[y] +

nX

i=1

KX

k=1

Ak(xi)).

and using the fact that yi+n = yi:

nX

i=1

KX

k=1

Ak(xi) =

nX

i=1

KX

k=1

k�1X

l=1

k � l

k
yi�l +

l

k
yi+k�l

=

nX

i=1

yi

KX

k=1

k�1X

l=1

1 = nEtrain[y]
K(K � 1)

2
.

then Etrain[f
⇤
K ] = Etrain[y].

In the periodic setting, we obtain the following theorem:

Theorem 2: Convergence of f⇤
K in the periodic setting

As K grows, it holds that:

8xi 2 Z/nZ,

f⇤
K(xi) ! EDtrain

[y], (13)

Bias2(f⇤
K) ! Etrain[(yi � Etrain[y])

2], (14)

V ar(f⇤
K) = Etrain[(f

⇤
K(xi)� Etrain[f

⇤
K(xi)])

2] ! 0, (15)

V ar(f⇤
K) is eventually nonincreasing.

This theorem presents two main results: In the case of Mixup, the function f⇤ that min-
imizes the loss exhibits zero variance and converges to the expected value Etrain[y].

Eventually, the variance of the function that minimizes the Local Mixup criterion de-
creases, demonstrating that the proposed Local Mixup approach effectively adjusts the
trade-off between bias and variance.

In order to establish the theorem, we will explicitly express the limit of f⇤
K , ie., SK . To

begin, we first demonstrate the following lemma:

Lemma 3

Let K = Mn+ r, M 2 N
⇤ and 0 < r < n� 1. We assume Etrain(y) � 0, then:

(M + 1)n · Etrain(y) + ⌘ � AK � Mn · Etrain(y)� ⌘, (16)

with ⌘ = O(KEtrain(y)).
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Proof: Lemma 3

Let be K = Mn+ r, M > 1, n� 1 > r > 0. We have:

AK =
1

K

K�1X

k=1

(K � k) · yi�k + k · yi+K�k

The sum above can be decomposed into the sum:

AK =
1

K

M�1X

m=0

n�1X

k=1

(K � k �mn)yi�k�mn

+ (k +mn)yi+K�(mn+k)

+
r�1X

k=1

(K � k �Mn)yi�k + (K � k)yi+K�k

For m � 0 and 1  k  n � 1, we can establish that yi�mn�k = yi�k and
yi+K�(mn+k) = yi+(M�m)n+r�k = xi+r�k. This is due to the periodic nature of
signal y with a period of n, and the fact that K = Mn+ r. Then:

AK =
1

K

M�1X

m=0

nX

k=1

(K � k �mn)yi�k + (k +mn)yi+r�k

+

r�1X

k=1

(K � k �Mn)yi�k + (k +Mn)yi+r�k

=
1

K

M�1X

m=0

nX

k=1

(K � k �mn)yi�k + (k + r +mn)yi�k

+

r�1X

k=1

(K � k �Mn)yi�k + (k +Mn)yi+r�k

=

nX

k=1

yi�kM(1 + r/K) + ⌘

with ⌘ = kPr�1
k=1(K � k � Mn)yi�k + (k + Mn)yi+r�k = O(KE[y])k, the value

of ⌘ compared to KE[y] � 0 will be negligible. For the time being, let us assume
that E[y] � 0. We can then proceed with the following expressions:

MnE[y]� ⌘  AK  (M + 1)nE[y] + ⌘. (17)

Similarly, if E[y]  0, we can derive the following inequalities:

(M + 1)nE[y]� ⌘  AK  MnE[y] + ⌘. (18)

Thus, in both cases, K = Mn+ r ⇠ Mn and AK ⇠ KE[y].

By combining the previous lemma and Equation (11), we can demonstrate the conver-
gence of the sum SK and determine its limit using the following corollary:
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Corrolary 1

For K = nM ! 1

SK ! 1

2

nX

i=1

yiM
2n =

1

2
Etrain(y)K

2. (19)

Proof: Corrolary 1

First, we demonstrate the convergence of SK/K2. This can be shown directly us-
ing the equations provided: we can express kAKk ⇠ KkE[y]k and

PK
k=1KE[y]/K2 =

E[y]. Thus, SK/K2 converges absolutely.

Next, we aim to find an equivalent expression for SK/K2. To accomplish this, we
utilize either Equation (17) or (18), depending on the sign of E[y]. Let us consider
Equation (17) without loss of generality:

Given that SK =
PK

k=1Ak, when K = Mn, we have the following expression:

n

M�1X

m=0

(m+ 1)nE[y] � SK �
M�1X

m=0

mnE[y]

n2M(M + 1)/2 E[y] � SK � n2(M � 1)(M + 1)/2 E[y]

Thus, we have:

Sk ! 1

2
E(y)K2 (20)

This result holds true even when E[y]  0.

In order to demonstrate the monotonicity of the variance, our goal is to establish the
inequality: V ar(f⇤

K+1)  V ar(f⇤
K) for for a K large enough. To accomplish this, we

employ the König-Huygens theorem and make use of Lemma 2 to calculate the dis-
crepancy between the two variances:

V ar(fK+1)� V ar(fK)

= EDtrain
[(fK+1(x))

2]� EDtrain
[(fK(x))2]

= EDtrain
[(fK+1(x))

2 � (fK(x))2].

Next, we establish that for any x 2 [x0, xn�1] and a sufficiently large value of K, it holds
that (fK+1(x))

2  (fK(x))2. To do so, we obtain an asymptotic equivalence:

(fK+1(x))
2 � (fK(x))2 ⇠ �K

C
· E2

train[y],

where C is a positive constant.

3.4.3 Independent and Identically Distributed Random Output Setting

Now, let us consider a training set consisting of inputs {x | 9y, (x, y) 2 Dtrain} = Z and
outputs yi are independent and identically distributed (i.i.d.) according to a distribu-
tion of variance �2.
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Theorem 3

For a signal with i.i.d outputs, the variance is eventually bounded by:

42�2

K2
 V ar(fK(xi)) 

8�2

K
. (21)

Proof: Theorem 3

Let us select xi and K > 1. It can be observed that f⇤
K(xi) is a sum of random

variables. By redefining SK with coefficients aKk =
PK

l=k+1
l�k
l we express SK

as followSK =
PK�1

k=1 (yi�k + yi+k)a
K
k . Consequently, we obtain the variance of

f⇤
K(xi) as:

V ar(f⇤
K(xi)) = V ar

✓
2 · (2Kyi + SK)

K(K + 3)
.

◆

which leads to:

V ar(f⇤
K(xi)) = 42

✓
K

K(K + 3)

◆2

V ar(yi)

+
K�1X

k=1

 

2a
(K)
k

K(K + 3)

!2

(V ar(yi�k) + V ar(yi+k)).

We use the fact that 1
K  aKk  K. As K tends to infinity, the following inequali-

ties hold:

42�2

K2
 V ar(fK(xi)) 

8�2

K
.

This proof can be easily extended to signals on R as long as the dataset is finite and
sufficiently large.

Invariance of linear models

Remarkably, it can be shown that both Mixup and Local Mixup yield the same optimal
linear models, as stated in the following theorem:

Theorem 4

For a linear model: f(x) = ax+ b, a, b 2 R, the functions that minimizes the loss
of Mixup and Local Mixup are equal (that function is denoted as f⇤).

Proof: Theorem 4

We previously demonstrated in Equation (8) that the function f⇤ resulting from
Mixup is a piecewise linear function. The same equation applies to Local Mixup,
except that the set Ex is smaller in Local Mixup due to the restricted number
of endpoints. As a piecewise linear function, which is linear on each segment
[xi, xi+1], f⇤ can be represented as f⇤ = aix + bi, where each (ai, bi) is defined
over [xi, xi+1]. Let F denote the class of restricted linear functions, then the coef-
ficients a and b are obtained as the averages of the corresponding (ai, bi) coeffi-
cients.
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3.4.4 High Dimension and Lipschitz constraint

The proofs provided in low-dimensional settings have certain limitations. Essentially,
the phenomenon of averaging occurs because any point x within the interval [x1, xn]
can be expressed as a convex combination of pairs from the training set. Contradictions
may arise, as demonstrated earlier, when multiple combinations correspond to x. In
higher dimensions, explicit contradictions of this nature are not necessarily expected,
as the probability of a training sample being an interpolation of two other training
samples tends to zero (Balestriero et al., 2021). However, we demonstrate that Local
Mixup has an impact on the Lipschitz constant of the networks.

First, let us recall the definition of a q-Lipschitz function:

Definition 15: Lipschitz Continuity and Lipschitz Constant

Given two metric spaces (X , dX), (Y, dY) and a function f : X ! Y , f is Lipschitz
continuous if there exists a real constant q � 0 s.t for all xi and xj in X ,

dY (f(xi), f(xj))  qdX (xi, xj). (22)

If f is q-Lipschitz continuous, we define the optimal Lipschitz constant Qsup as

Qsup = sup
xi,xj2X,xi 6=xj

dY (f(xi), f(xj))

dX (xi, xj)
. (23)

For simplicity, let us consider a classification problem where dY is 0 if the two consid-
ered samples are of the same class, and 1 otherwise.

Then, the training set imposes a lower bound on the optimal Lipschitz constant:

Qsup �
✓

min
xi,xj2D,yi 6=yj

dX (xi, xj)

◆�1

| {z }

Q(D)

. (24)

For Mixup and Local Mixup, the virtual samples increase the size of the training set,
resulting in stronger constraints on the optimal Lipschitz constant.

In more detail, let us consider the case of a thresholded graph with parameter " when
using Local Mixup. In this case, the augmented training set for each class y can be
written as Sε(y) = {�xi + (1 � �)xj | 0  �  1 yi = yj = y, dX (xi,xj)  "}, which
represents the set of all segments constructed from two samples that are sufficiently
close in the input domain and share the same label y. We can then state the following
theorem:

Theorem 5

The lower bound Q(D) is increasing with ".

Proof: Theorem 5

We directly use the inclusion Sε(y) ⇢ Sε0(y), 8"  "0.

In the experiments, we will demonstrate that " can indeed impact Q(D) on standard
vision datasets.
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Figure 16 – Illustration of the two coiling spiral dataset with 1000 samples per class and
� = 1.5.

3.5 Experiments

METHOD CIFAR-10 CIFAR-100 Fashion-MNIST SVHN

Baseline 4.98± 0.03 30.6± 0.27 6.20± 0.2 10.01± 0.15
Mixup 4.13± 0.03 29.23± 0.4 6.36± 0.16 8.31± 0.14

Local Mixup 4.03± 0.03 29.08± 0.34 5.97± 0.2 8.20± 0.13

Table 2 – Error rates (%) on CIFAR-10, CIFAR-100 (Resnet18) Fashion-MNIST
(DenseNet) and SVHN (LeNet). The values are averaged over 100 runs for CIFAR-10
and 10 runs for CIFAR-100, Fashion-MNIST and SVHN. Mean errors with their confi-
dence interval are represented.

3.5.1 Low dimension

As mentioned in the introduction and in the study (H. Guo et al., 2019), the use of Mixup
can result in interpolated samples that mislead the model. To demonstrate this effect,
we employ a 2D toy dataset consisting of two coiling spirals where such interpolations
occur frequently. The dataset represents a binary classification problem, with each spi-
ral corresponding to a distinct class. We expect Local Mixup to outperform Mixup in this
scenario, as local interpolations are more likely to remain within the same spiral, thus
avoiding intrusion into the other manifold. In this experiment, we employ a thresh-

olded graph with parameter ".

To conduct this experiment, we generate 1000 samples for each class and introduce
Gaussian noise with a standard deviation of � = 1.5 to control the thickness of the
spirals. The dataset is depicted in Figure 16. We randomly split the dataset into a
training set containing 80% of the samples and a test set containing the remaining 20%
(used for computing the error rates).

We then use a fully connected neural network consisting of layers composed of 100
neurons, and ReLU function as the non-linearity. The test errors are averaged over 1000
runs. For small values of ", many weights of the graph become zero, resulting in the
corresponding interpolations being disregarded in the loss calculation. This means that
for a given batch, only a small proportion of samples are considered when computing
the loss. Without any correction, different values of " lead to different batch sizes. To
avoid potential side effects, we vary the batch size such that, on average, the same
number of samples is used to update the loss.
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Figure 17 – On the right: Error rate as a function of " for the two coiling spirals dataset.
Values are averaged over 1000 runs. Extremes correspond respectively to Vanilla (" = 0)
and Mixup (" > 4). On the left: Histogram of Euclidean distances dX between pairs of
inputs on the two coiling spirals dataset.

To select an appropriate value of ", we examined the distribution of distances between
pairs of inputs in the training set. The distribution is illustrated in Figure 17. We note
that the distribution is relatively uniform within the range of 0 to 4. Therefore, in our
experiments, we varied " between 0 and 4 using increments of 0.5.

In Figure 17, we present the average error rate as a function of the parameter ". It is
important to recall that the extremes, " = 0 and " = 4, correspond to Vanilla and Mixup
respectively. Notably, both Mixup and Local Mixup exhibit significant improvements
over Vanilla. As expected, Local Mixup achieves a minimum error rate that is substan-
tially lower than that of Mixup. It is noteworthy that the minimum error rate is attained
with a value of " smaller than the first quartile. This suggests that, for this particular
dataset, interpolations above this threshold are either ineffective or misleading for the
network’s training.

It is important to emphasize that this toy dataset is specifically designed to generate
contradictory virtual samples. In the subsequent subsection, we will delve into more
complex and real-world datasets.

3.5.2 High dimension

Lipschitz lower bound: To demonstrate the influence of " on the optimal Lipschitz
constant, we employ the CIFAR-10 dataset (Krizhevsky, Hinton, et al., 2009). Our ob-
jective is to examine the variation of Q(D) as " is modified. The results are illustrated
in Figure 18.

For classical Mixup, we obtained Q(D) = 0.11, and for Vanilla, Q(D) = 0.073. It is
worth noting that these two extremes are achieved with Local Mixup when " = 0 and
" � 50. We observe that " can be utilized to smoothly adjust the lower bound Q(D).
In practice, a lower Q(D) is preferred, as it corresponds to a smaller optimal Lipschitz
constant. However, this only accounts for the Lipschitz constraint. Larger values of "
result in larger training sets, which can potentially lead to improved generalization.

3.5.3 Experiments on Classification Datasets

We proceed to test our approach on various classification datasets and architectures. In
the following experiments we used a smooth decreasing exponential graphs.
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Figure 18 – Evolution of Q(D) on the dataset cifar10. Note that " = 0 corresponds to
Vanilla. " = 50 corresponds to classical Mixup.

Classification

The datasets considered are CIFAR10 (Krizhevsky, Hinton, et al., 2009), SVHN (Net-
zer et al., 2011), and Fashion-MNIST (Xiao et al., 2017). Fashion-MNIST consists of
grayscale images of clothing items with dimensions of 28 ⇥ 28 pixels. The training set
contains 60,000 images classified into 10 classes. SVHN is a real-world image dataset
comprising small cropped digits with dimensions of 32⇥32 pixels and 3 color channels.
The training set consists of 73,257 digits categorized into 10 classes.

For the CIFAR10 dataset, we use a ResNet18 (He et al., 2016) following the approach
in (H. Zhang et al., 2017). In table 2, we average the error rates over 100 runs and report
the mean with a 95% confidence interval. We observed that Local Mixup with a value of
↵ = 0.003 achieved a lower error rate than both the Vanilla network and Mixup, with
non-overlapping confidence intervals.

For the Fashion-MNIST dataset, we employ a Densenet (Huang et al., 2017) architecture
and average the error rates over 10 runs. We report the mean and 95% confidence
intervals as well. Once again, Local Mixup with ↵ = 1e � 3 yielded a lower error rate
compared to both the baseline and Mixup. Notably, for this dataset Mixup negatively
impacted the error rate, suggesting that Mixup generated spurious interpolations, as
discussed in (H. Guo et al., 2019). For the SVHN dataset, we implemented a LeNet-
5 (LeCun et al., 1998) architecture consisting of three convolutional layers. As before,
Local Mixup outperformed Vanilla and Mixup in terms of error rate.

In these experiments, we also attempted to use a K-nearest neighbor graph or a thresh-
olded graph, but we were unable to achieve lower error rates compared to Mixup or
even Vanilla. This may indicate that some segments generated by Mixup are crucial for
acting as a regularizer during training, despite the possibility of manifold intrusions.
By adjusting the value of ↵, we can control the importance of this regularization.

Adversarial Attack

Following the methodology outlined in the original Mixup paper(H. Zhang et al., 2017),
we conducted a black box attack on the CIFAR-10 dataset. The images were rescaled
to the range [0, 1], and Gaussian noise N (0, ") was added with varying standard devia-
tions. The error rates for different noise levels are presented in Table 3.

We observed that for low noise values, Mixup and Local Mixup produced similar results.
However, as the noise standard deviation increased, the performance gap between the
two methods widened, with Local Mixup outperforming Mixup. This outcome aligns
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with our theoretical analysis, which demonstrates that our approach relaxes the Lips-
chitz constraint imposed by Mixup, resulting in smaller values of the Lipschitz constant.

Table 3 provides an overview of the error rates obtained for different noise levels, show-
casing the superiority of Local Mixup in scenarios with higher noise level.

Epsilon " Vanilla Local Mixup Mixup

0.0025 7, 55 6, 30 5,75
0.005 16, 70 12, 82 12,28
0.0075 30, 90 22,81 23, 60
0.01 45, 60 33,59 37, 00

Table 3 – Black box attack: error rates (%) on CIFAR-10, for different values of noise ".

Comparaison with Adamixup
We conducted a comparison between our proposed approach, Local Mixup, and another
method called Adamixup (Verma et al., 2019), which is also designed to prevent man-
ifold intrusion. To perform this comparison, we utilized the GitHub repository of the
Adamixup author and made modifications to implement our method, while keeping the
rest of the framework unchanged.

For the CIFAR-10 dataset, we used 1400 epochs for both Local Mixup and Adamixup,
as the authors of Adamixup used this number in their experiments. Upon analysis, we
observed a slight advantage for Adamixup on the MNIST dataset, with an error rate of
0.49% ± 0.03 for Adamixup and 0.54% ± 0.02 for Local Mixup (averaged over 10 runs).
However, on the CIFAR-10 dataset, our method, Local Mixup, outperformed Adamixup,
with error rates of 4.11%±0.12 for Adamixup and 3.89%±0.12 for Local Mixup (averaged
over 5 runs).

It is important to note that while Adamixup completely discards interpolations that are
considered to cause manifold intrusions, Local Mixup weighs these interpolations in-
stead of discarding them. The fact that Local Mixup achieves comparable or better re-
sults than Adamixup suggests that even interpolated samples causing manifold intru-
sions can be beneficial as long as they do not dominate the loss function. This highlights
the potential usefulness of such samples in training.
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Figure 19 – Evolution of the error rate for Local Mixup and Mixup on MNIST. We observe
a faster convergence for Local Mixup.

In terms of convergence speed, our proposed approach, Local Mixup, seems to converge
faster on the MNIST dataset, as demonstrated in Figure 19. One advantage of our
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method is its simplicity and the small number of parameters required. Specifically,
for the CIFAR-10 dataset, Local Mixup only requires 836,522 parameters compared to
11,171,146 parameters for Adamixup.

3.6 Additional studies

3.6.1 Graph Construction in High Dimension

Instead of using smooth decreasing exponential graphs, we explored the use of K-
nearest neighbor graphs for high-dimensional datasets. The graph is computed for
each batch. In Table 4, we report the test error rates on CIFAR-10 for different values of
K. Unfortunately, the results were significantly worse compared to the baseline results
reported in Table 2.

K = 1 K = 5 K = 10

0.607% 0.606% 0.601%

Table 4 – Error rates for different value of K when using a K-nearest neighbor graph
on CIFAR-10.

We attempted to compute the graph on the entire dataset, but we did not observe any
significant improvements in the error rates. These results suggest that it may be benefi-
cial not to completely discard interpolations outside the manifold, but rather to reduce
their influence on the loss function.

3.6.2 Inter and Intra Mixup

It is worth considering whether Local Mixup is beneficial solely because it restricts the
interpolations to samples of the same class (Intra Mixup). To investigate this, we con-
ducted additional experiments on CIFAR-10 where we allowed interpolations only be-
tween samples of the same class (Intra Mixup) or only between samples of different
classes (Inter-Mixup). In both cases, the error rates were worse than those obtained
with classical Mixup. Specifically, the error rate was 4.5% for Inter-Mixup and 4.7% for
Intra-Mixup. Moreover, on the spiral dataset, we calculated the proportion of inter-
class interpolations versus intra-class interpolations carried out by Local Mixup. We
found that 30% of the interpolations were intra-class, while 70% were inter-class. These
results indicate that using both intra-class and inter-class mixing is necessary for im-
proved performance.

3.6.3 Hyperparameter α

In this section, we provide ablation studies for different datasets to validate our hyper-
parameter ↵. Due to the large range of the confidence intervals, our goal was to select
an appropriate order of magnitude rather than specific values. On Fashion-MNIST, the
error rate is {6.5%, ↵ = 1e� 1}, {5.97%, ↵ = 1e� 3} and {6.02%, ↵ = 1e� 4} . On cifar10,
the error rate is {4.3%, ↵ = 1e� 2}, {4.05%, ↵ = 1e� 3} and {4.03%, ↵ = 3e� 3}. Hence,
we use the hyperparameters given in Table 5 to carry out the experiments in Table 2.
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CIFAR-10 CIFAR-100 Fashion-MNIST SVHN

3e� 3 3e� 3 1e� 3 5e� 2

Table 5 – Value of hyperparameter ↵ for the different datasets used in experiment re-
ported in Table 2.

3.7 Limitations and perspectives

3.7.1 Limitations

Experiments conducted in both low and high dimensions have demonstrated the ability
of Local Mixup to outperform Mixup by leveraging locality. However, the choice of
hyperparameters such as ↵, ", or K is crucial and depends on the data. In our current
work, we reported results by selecting the parameter values that led to the best test
error rate among a small number of possibilities.

Additionally, it is important to note that we used the Euclidean metric to embed the
notion of locality, even though datasets generally lie on nonlinear manifolds. For ex-
ample, on CIFAR-10, (Abouelnaga et al., 2016) demonstrated that using the Euclidean
metric can achieve classification scores significantly better than chance level but still
far from state-of-the-art performance. There are several possibilities for improvement,
including the use of pullback metrics(Jost & Jost, 2008; Kalatzis et al., 2020), which in-
volve the Euclidean distance between samples once they are projected into the feature
space corresponding to the penultimate layer.

3.7.2 Perspectives

Further research includes delving into intriguing possibilities for enhancing the Mixup
technique. To begin, extending the theoretical findings to encompass broader contexts
(higher dimension) would yield valuable insights into the influence of locality on the
Mixup framework.

Another avenue for exploration involves the application of Local Mixup within the la-
tent space, where the underlying geometry tends to conform more closely to Euclidean
principles. This shift in perspective offers the potential to generate new samples us-
ing more relevant distance metrics and interpolation functions. Moreover, it opens the
door to the fascinating prospect of employing generative neural networks, such as nor-
malizing flows, for interpolation within the latent space, facilitating subsequent natural
image reconstruction.

In addition to improving Mixup’s geometric aspects, further research can delve into
its role as a regularization technique. An in-depth examination of Mixup as a means
to introduce anisotropic noise along specific directions, guided by the interpolation
coefficient, holds promise. Furthermore, exploring Mixup’s capacity to rebalance the
gradient contributions of training samples, particularly those that become marginalized
as training progresses, is a compelling avenue of investigation. Specifically, Mixup has
the potential to reintroduce significance to these samples by interpolating them with
more challenging examples.

3.8 Conclusion

We introduced a methodology called Local Mixup, which incorporates the notion of
locality into the Mixup framework by interpolating and weighting pairs of samples
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based on their distance in the input domain. By introducing a hyperparameter, Local
Mixup provides a continuous range of solutions between Vanilla and classical Mixup.

Through our experiments, we demonstrated that Local Mixup can effectively control the
bias/variance trade-off of trained models. Furthermore, in more general settings, we
showed that Local Mixup can tune a lower bound on the Lipschitz constant of the trained
model. By comparing it with Vanilla and classical Mixup on real-world datasets, we
observed that Local Mixup achieves better generalization, as measured by the test error
rate.

Both Mixup and Local Mixup techniques can be seen as methods to artificially increase
the complexity of the training task with the aim of enhancing generalization on the
final, less complex target task. In the upcoming chapter, we will explore an inverse
approach: training on simpler tasks and then tackling more challenging, closely related
target tasks. Surprisingly, we will discover that with appropriate regularization, neural
networks can exhibit the capacity to generalize beyond the training task.
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4.1 Introduction

4.1.1 From Coarse to Refined Labels

As previously discussed, deep learning models often struggle with overfitting during
training. To address this issue, we have mentioned methods like regularization and
adjusting the training criteria to enhance the generalization. For instance, techniques
like Mixup and Local Mixup involve creating an artificial training task more complex
to improve generalization on the primary target task.

Now, our focus turns to another aspect of generalization: the ability of neural archi-
tectures to learn to solve broader tasks on their own while having been trained on a
specific problem, without explicit guidance.

More specifically, we are examining a supervised classification scenario that involves
two types of labels: refined labels, which are not available during training, and coarse
labels, which are used for the training process. Typically, this represents a subtle clas-
sification or regression task represented by refined labels, which has been simplified
into a more straightforward classification task using"coarse labels. In line with prior
work (Huh et al., 2016; Touvron et al., 2021), we are interested in investigating whether
training on these coarse classes can yield features capable of refined recognition. Such
scenarios are likely to occur in practical applications, as coarse labeling can be signifi-
cantly less expensive, (Xu et al., 2021). Conversely, numerous classification problems,
and hierarchical datasets (J. Deng et al., 2009; Horn et al., 2018), can be seen as dis-
cretizations of more intricate regression problems, where the labels are not inherently
discrete (Grandvalet & Bengio, 2004). In certain studies concerning hierarchical image
classification (Eshratifar et al., 2021; Y. Guo et al., 2018; Ristin et al., 2015; Taherkhani et
al., 2019), a coarse annotation is provided for all training images, whereas only a subset
of these images is meticulously labeled with refined labels.

4.1.2 The Loss of Information Caused by the Cross Entropy Loss

The training process has a significant impact of the inferred representation (Janocha &
Czarnecki, 2017b; Müller et al., 2019) and the output distributions qθ(y|x) (C. Guo et al.,
2017; Hinton et al., 2015; Meister et al., 2020; Pereyra et al., 2017). The emergence of self-
supervised learning has led to the proposal of numerous criteria, resulting in highly
generalized representations, which can be directly employed as feature extractors to
solve diverse tasks without even requiring fine-tuning (Radford et al., 2015; Raina et
al., 2007; Y. Wang et al., 2019)). With abundant data and computational resources, large
architectures have emerged with the ability of leveraging knowledge gained from their
task task and apply it to another one (Krizhevsky et al., 2017; Zhuang et al., 2020a)).
These criteria aim to uncover the representations with the best transferability (Bom-
masani et al., 2021; Dosovitskiy et al., 2020).

However, we decide to focus on the Cross-Entropy loss since it is the standard criterion
used in supervised learning for classification problems (Goodfellow et al., 2016) and we
show that it can actually retrieve information on the refined labels. However, this ability
is not granted for free. Indeed, when employing the Stochastic Gradient Descent (SGD)
optimization algorithm or its variants to minimize the Cross Entropy, non-informative
features for the given task tend to be eliminated. This phenomenon was observed by
the authors in (Shwartz-Ziv & Tishby, 2017) through two distinct sequential phases.

During the first phase, the mutual information I(y, r) between the features r and the
output y increases. We recall that Mutual information is formally defined as:
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Definition 16: Mutual Information

The mutual information I(X,Y) between two continuous random variables X

and Y is defined as follows:

I(X,Y) =

Z

X

Z

Y
pX,Y(x,y) log

✓
pX,Y(x,y)

pX(x)pY(y)

◆

.dx.dy (25)

Where:

• pX is the probability mass function of random variable X.

• pY is the probability mass function of random variable Y.

• pX,Y is the joint probability mass function of X and Y.

In this context, the mutual information I(y, r) serves as a measure of the statistical de-
pendence between the feature vector r and the output vector y. This quantification
underscores the growing extent of information shared between them, signifying the in-
creasing relevance of the feature representation for the associated tasks. Subsequently,
in a second, longer phase, the mutual information I(x, r) between the input and the
features decreases: the information is compressed.

In summary, the architecture first identifies the features that enable accurate label pre-
diction before compress

In classification settings, the output of the architecture fθ(x) can be interpreted as the
conditional class probabilities qθ(yi|x), once a softmax function with a temperature
parameter ⌧ , has been applied (Hinton et al., 2015):

qθ(yi|x) =
exp(fθ(x)i/⌧)

P

j exp(fθ(x)j/⌧)
. (26)

Hence qθ(y|x) represents the inferred distribution that ideally aligns with the true dis-
tribution pθ(y|x). This transformation is governed by the temperature parameter ⌧ ,
which regulates the level of uncertainty in the model’s predictions. A higher ⌧ results
in a more uniform and uncertain distribution, while a lower ⌧ makes the distribution
sharper and more confident.

Similarly to our previous discussion, a study (C. Guo et al., 2017)) demonstrated that as
architectures minimize classification errors, there is simultaneous degradation in prob-
abilistic errors and miscalibration between qθ(y|x) and the true distribution pθ(y|x).
Miscalibration refers to inconsistencies between model-predicted probabilities or con-
fidences and the actual probabilities or frequencies of predicted events.

This miscalibration might serve as an indicator of lost information within the feature
space. One common approach to alleviate miscalibration is to introduce a regulariza-
tion term R(x,y,θ) into the loss function (C. Guo et al., 2017), leading to the following
optimization problem:

min
θ

EDtrain
[LCE(x,y,θ)) +R(x,y,θ)]. (27)
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4.1.3 Entropy Regularization and refined labels

One effective approach to regularize deep neural networks is by incorporating refined la-
bels, which prevents them from becoming overly specialized to the training task (Bagher-
inezhad et al., 2018). There are various methods to achieve label refinement, such as
utilizing predefined taxonomies as described in (Wu et al., 2017), extracting semantic
information from pre-trained networks (Bagherinezhad et al., 2018; Hinton et al., 2015),
or employing data augmentation techniques like noisy or interpolated labels, as well
as smoothed labels (Baena et al., 2022c; J. Li et al., 2020; Szegedy et al., 2016; H. Zhang
et al., 2017). These pseudo-refined labels may be based on an underlying truth, such as a
taxonomy, but more often they are artificially generated, employing techniques such as
noisy or smoothed labels.

In contrast, our aim is to retrieve the ground truth refined labels, either from the fea-
ture space or through output regularization using pseudo labels. Notably, several au-
thors have shown that techniques like label smoothing (Szegedy et al., 2016), distilla-
tion (Szegedy et al., 2016), and confidence penalization (Pereyra et al., 2017) can be seen
as forms of entropy regularization on the output distribution (Dubey et al., 2017; Meis-
ter et al., 2020; Pereyra et al., 2017). Entropy regularization of outputs leads to smoother
and more accurate output distributions (Dubey et al., 2017; Pereyra et al., 2017), while
also influencing the geometry of the feature space (Müller et al., 2019; Shen et al., 2021).
More detailed explanations of these techniques are provided in the next paragraphs.

Confidence penalization involves incorporating a regularization term that represents
the negative entropy of the output distribution: R(x,y,θ) = �H(qθ(y|x)) (Pereyra et
al., 2017) . The purpose is to penalize confident output distributions, as they typically
correspond to low-entropy distributions. This results in a smoothed output distribu-
tion and can improve generalization performance under certain conditions.

Label Smoothing (Szegedy et al., 2016) is another technique that produces similar ef-
fects to confidence penalization (Pereyra et al., 2017). It helps distinguish classes that
are semantically similar, which can be advantageous in classification tasks (Shen et al.,
2021). Label Smoothing is a form of output regularization that smooths the target distri-
bution p(y|x). In classification, this distribution is represented by coarse labels encoded
as one-hot vectors, where the correct label has a probability of 1, and all other labels
have a probability of 0. In uniform Label Smoothing with coefficient �, a probability
boost of 1�� is assigned to the correct label, and a penalty of �/(c�1) is applied to the
probabilities of other labels (where c is the number of classes).

Distillation involves utilizing the class probabilities from a larger model to train a
smaller one. These probabilities are considered as refined labels, and when they exhibit
high entropy, they are believed to provide more information than coarse labels (Hinton
et al., 2015). Distillation can be viewed as a form of non-uniform label smoothing (Yuan
et al., 2019; Z. Zhang & Sabuncu, 2020), where the output distribution of the larger
model serves as a prior for the refined target distribution. However, other methods
propose inferring the smoothed labels as well, as seen in (Bagherinezhad et al., 2018;
Yu et al., 2021). The authors of (Dubey et al., 2018; Dubey et al., 2017) argue that dis-
tillation can lead to more generalizable features and encourage the classifier to reduce
the specificity of the features.

While these techniques have shown promising results, they have also sparked some
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controversies. The authors of (Müller et al., 2019) emphasize that the loss of informa-
tion in distillation may negatively impact the quality of the inferred refined labels. More
recently, the authors of (Kornblith et al., 2021) demonstrated that "better losses" such as
Label Smoothing, which promote greater class separation, can be detrimental to trans-
fer performance as they produce less generic features. In our experiments, we also
found that when the inferred features are reused for regression tasks, Label Smoothing
can have negative effects.

4.1.4 Problem Statement

In this study (Baena et al., 2022a), our objective is to demonstrate the potential of re-
vealing the disregarded refined labels while training a model on derived coarse labels. A
challenge when learning from coarse labels is that the model tends to lose its capacity
for refined generalization due to overfitting to the training task. This phenomenon is
commonly observed in transfer learning involving deep neural networks, especially in
few-shot problems. In such cases, stopping the training early can result in better perfor-
mance on subsequent tasks (Mangla et al., 2020). This behavior can be explained by the
two-phase nature of cross-entropy loss training described in (Shwartz-Ziv & Tishby,
2017), where mutual information between the feature space and the inputs diminishes
in the second phase as the focus shifts towards excelling at the training task.

Considering these observations, we conducted an experiment to further illustrate the
impact of retrieving refined labels when models are trained solely on coarse labels. Our
experiment focused on an age estimation problem (Rothe et al., 2018) aiming to predict
individuals’ ages from their photos. We transformed this regression task into a classifi-
cation task with approximated labels, training a neural network accordingly. We noted
a significant relationship between the entropy of the feature space and the ability to ex-
tract information regarding the regression task, Mean Square Error (MSE), similar to the
phases observed in (Shwartz-Ziv & Tishby, 2017). Initially, the MSE of the regression
task decreased with the classification error rate. However, in a longer, second phase,
the MSE reached a minimum before progressively increasing, while the classification
error rate remained stable.

To address the challenge of enhancing generalization to subtle, unseen labels, we intro-
duce a regularization method named Feature Information Entropy Regularized Cross
Entropy (FIERCE). FIERCE is an entropy-based regularization defined in the feature
space of trained architectures. The rationale behind employing entropy as a regular-
ization is that entropy promotes diversity (Qin & Zhu, 2013), countering the tendency
for aggressive selection of the best features observed with vanilla cross-entropy. We
illustrate theoretically how this criterion promotes diversity.

Through multiple experiments, we show that with our criterion the ability to transfer
to refined labels, once acquired, remains uncompromised with further training. Conse-
quently, the trained models demonstrate improved generalization capabilities beyond
their training task.

4.2 Impact of the Criteria on the Feature Space

In this section, we will explore the relationship between feature selection and the Cross
Entropy and Label Smoothing criteria within a Bayesian framework. This analysis will
demonstrate why promoting entropy in the feature space can potentially enhance per-
formance in tasks involving refined labels.
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4.2.1 Links between Feature Selection and Cross Entropy and Label Smooth-
ing

In classification settings, a deep learning architecture typically transforms inputs into
feature vectors, which are then classified using logistic regression. Let r represents
the features with respect to x, and y denotes the class of a sample, such that y =
argmaxi y[i]. To simplify the equations, we adopt a Bayesian framework, where the
classification is determined by p(y = yi|r), derived from the inferred feature distribu-
tion pθ(r|x). For the sake of simplicity, we consider the classification layer as fixed in
the equation, noting that this does not affect the generality of the proof since the gra-
dient is updated using the chain rule. Within this framework, the model first samples
features r according to x, following the distribution pθ(r|x). Subsequently, it assigns
class probabilities log(p(y = yi|r)) based on the output probability from the classifier.
In the following equations, we assume that the distributions are differentiable and that
their derivatives are bounded by integrable functions, allowing us to interchange inte-
grals and derivatives.

Cross Entropy: In the Bayesian framework, the Cross Entropy can be rewritten as:

LBayesian
CE (x,y,θ) = ED

⇥
�Er⇠pθ(r|x)[log(p(y = yi|r))]

⇤
,

where yi is the coarse label of x. (28)

By computing the gradient of LBayesian
CE (x,y,θ) w.r.t to θ, we obtain:

rθL
Bayesian
CE (x,y,θ) =

ED



�
Z

rθ(pθ(r|x)) log(p(y = yi|r)dr

�

. (29)

Remarkably, we observe that rθ(pθ(r|x)) is weighted by log(p(y = yi|r)) indicating
that the more selective the features r are for the classifier, the more they will be encour-
aged to be sampled. To visualize this effect on the gradient, let us consider a binary
classification problem with a fixed classifier. Suppose the neural network can infer a
1-dimensional feature space where the features are linearly separable by the classifier.
The features that are further away from the decision boundary will have a greater im-
pact on log(p(y = yi|r)) . Therefore, despite already having linearly separable features,
the Cross Entropy gradient will eventually force the features to be pushed as far as
possible towards the margin, resulting in the collapse of the features towards the two
extremes of the feature space. Consequently, Cross Entropy can lead to overconfidence
in the network’s predictions, as reported in (C. Guo et al., 2017).

Label Smoothing: A similar derivation can be carried out for Label Smoothing, where
the coarse labels y are uniformly smoothed by a factor � < 0.5: y = (1 � �)y + �1, or

y[i] =

⇢
(1� �) if i is the class of x,
� otherwise

, where 1 = [1, 1, · · · , 1]T . The gradient becomes:

Ex



�
Z

rθ(pθ(r|x))[(1� �) log(p(y = yi|r)

+
�

c� 1
log(

Y

j,j 6=i

p(y = yj |r))]dr

3

5 . (30)

We observe that log(p(y = yi|r)) is reduced by a factor of (1 � �). However, Label
Smoothing introduces additional terms σ

c�1 log(
Q

j,j 6=i p(y = yj |r)), which encourage
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the most discriminant features for the other classes j. Thus, while Label Smoothing
reinforces discriminant features with respect to relevant classes, it also encourages dis-
criminant features for all classes. It is worth noting that the same derivation can be
applied to confidence penalization.

In conclusion, Label Smoothing promotes diversity but only among discriminant fea-
tures. Features that contribute to high accuracy (p(y = yi|r) > 0.5) are not explicitly
encouraged. This observation aligns with previous studies (Müller et al., 2019; Shen
et al., 2021), which reported that Label Smoothing diminishes intra-class information in
order to promote inter-class information.

4.2.2 Entropy regularization to encourage diversity in the feature space

Based on experimental evidence highlighting the correlation between the entropy of the
feature space and regression performance, we investigate the use of entropy regulariza-
tion on the features to promote diversity. While Cross Entropy and Label Smoothing
tend to prioritize the most discriminant features, our approach aims to maintain a di-
verse set of features.

We incorporate the entropy of the feature space directly as a regularization term. Within
the Bayesian framework, the criterion can be then written as follow:

LBayesian
Entropy (x,y,θ) = Ex

⇥
�Er⇠pθ(r|x)[log(p(y = yi|r))]

⇤

��Hθ(r). (31)

where the entropy Hθ(r) is estimated for each batch and � > 0 is a scalar hyperparam-
eter. The derivation of the gradient of Hθ(r) is:

rθ(�Hθ(r)) = rθ

Z

pθ(r(s) log(pθ(r(s)))ds

= rθ

Z

Ex [pθ(r(s)|x) log(pθ(r(s)))ds]

= Ex

Z

rθ(pθ(r(s)|x))(log pθ(r(s)))]ds

�

+

Z

pθ(r(s))
1

pθ(r(s))
rθ(pθ(r(s)))ds

= Ex

Z

(rθ(pθ(r(s)|x))(log pθ(r(s))) +rθpθ(r(s)|x))ds

�

.

Hence, the final gradient of Cross Entropy with the entropy regularization of the feature
can be expressed as:

�Ex

Z

rθ(pθ(r(s)|x))[log(p(y = yi|r(s))

��(log(pθ(r(s))) + 1)]ds] . (32)

Remarkably in this formulation, if a feature has a high probability, i.e., p(r) is large,
the gradient will be penalized. The second term acts as a constant regularization. By
adjusting the hyperparameter �, we can control the extent to which the model retains
discriminant features while encouraging also diversity in the feature space.
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4.3 Implementation of feature entropy regularization

4.3.1 Estimation of the features entropy

With FIERCE, we propose to incorporate the negative entropy of the features, denoted
as H̃θ(r̃), into the Cross Entropy loss. However, directly computing and differentiating
the entropy of the feature space Hθ(r) is not feasible since it requires computing the
probability distribution p(r). To overcome this challenge, we rely on an approximation
of the real entropy, denoted as H̃θ(r̃):

LEntropy(x,y,θ) = LCE(x,y,θ)� H̃θ(r̃),

To facilitate the estimation of entropy, we approximate the conditional distribution of
the feature space pθ(r|x) as a categorical distribution pθ(r̃|x), where r̃ is an approxi-
mation of the true features r. Specifically, we define categories using e anchor points
r̃ 2 R

d, where d is the dimension of the feature space. For a given input x, its feature
r is mapped to the anchor point r̃i that exhibits the highest similarity (cosine similarity
or Euclidean distance):

r̃(x) = argmax
r̃i

sim(r(x), r̃i) (33)

Within a batch, the probability coefficients pθ(r̃i) for the mapping r̃i are estimated by
the number of features mapped to the i-th anchor point divided by the batch size. Con-
sequently, the entropy of the anchor points can be computed.

The anchor points are initially randomly sampled uniformly and kept fixed throughout
the training process. Although it is possible to update these anchor points with a dif-
ferentiable approach to better align the observed features. We left it for future research
since in practice is was not beneficial.

4.3.2 Differentiation of the feature entropies

Equation (33) is not differentiable, which poses a challenge for gradient-based opti-
mization. To address this issue, we employ the softmax-gumbel function (Jang et al.,
2017; Maddison et al., 2017), which enables auto-differentiation. This method utilizes
the Gumbel-Max trick (Maddison et al., 2017) to efficiently sample from a categorical
distribution in a differentiable manner:

pθ(r̃ = i|x) =
exp((log(⇡⇡⇡i(x)) + gi)/⌧)

P

j exp((log(⇡⇡⇡i(x)) + gi)/⌧)
(34)

π(x) =
sim(r(x), r̃i)

Pe
j=1 sim(r(x, r̃j)

Here, g1, g2, . . . , ge are i.i.d. samples drawn from a Gumbel distribution with param-
eters: Gumbel(0, 1). As the softmax temperature ⌧ approaches 0, the samples from
the Gumbel-Softmax distribution become one-hot vectors, and the Gumbel-Softmax
distribution converges to the categorical distribution p(z). This allows us to perform
differentiable computations involving the categorical distribution and its entropy.
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4.4 Experiments

In this section, we conduct experiments to demonstrate the relationship between the
entropy of the feature space and the ability of the features to be reused for inference
on refined labels. We approach this by transforming a regression problem into a coarse
classification problem and then recycling the feature space to infer refined labels.

4.4.1 Relationship between the Entropy of the Feature Space and Transfer
Ability

Let Dreg be a dataset representing a regression problem. We convert Dreg into a coarse
classification problem where only coarse labels (approximations of the regression labels)
are available. The dataset is split into training and test sets: Dclassification

train = {(xi,yi =
coarsen(zi)), 1  i  Ntrain}, where coarsen is a function that transforms refined
input zi into a coarse output yi. We then train a model using the coarse labels from
Dclassification

train and utilize the feature space to predict the refined labels of Dreg.

We compare three criteria in this experiment: Cross Entropy, Label Smoothing, and our
proposed method, Feature Information Entropy Regularized Cross Entropy (FIERCE).
We use the age estimation dataset based on face pictures (Rothe et al., 2018). The objec-
tive is to predict the ages corresponding to the face images. The dataset can be trans-
formed into a binary classification problem by creating coarse labels y = one_hot(1age<36),
where 36 is the median age. Note that this regression dataset has already been con-
verted into a classification dataset by splitting the ages into multiple classes (X. Liu et
al., 2015; Rothe et al., 2015).

We utilize a Resnet-18 (He et al., 2016) model, but instead of using the usual penulti-
mate layer, we average the feature maps to obtain a one-dimensional feature space. We
expect that a one-dimensional feature space will preserve the order relation that exists
in the true age labels to some extent.

To estimate the refined ages, we compute the features of 10,000 samples. We rank the
features by their values and, assuming that the probability distribution of the ages is
known, we map it to the distribution of the features using an Optimal Transport 1D
mapping (Peyré & Cuturi, 2019). For more robust results, we interpolate this prediction
with the average age of individuals in the considered class. We report the evolution of
the Mean Squared Error (MSE) and the entropy on Figure 20.

When using Label Smoothing or raw Cross-Entropy, we observe two phases. First, the
MSE decreases as the accuracy improves. Then, a much longer second phase starts
(around epoch 50) where the MSE increases while the accuracy remains stable. Simi-
larly, the entropy of the feature space reaches a maximum before decreasing, and the
decrease is negatively correlated with the drop in regression ability. These phases are
very similar to the evolution of the mutual information I(r,x) described in (Shwartz-
Ziv & Tishby, 2017), providing strong motivation for the introduction of FIERCE.

Our proposed method, FIERCE, provides the lowest MSE and impacts the entropy of
the feature space by increasing it around epoch 200. In Figure 24, we show the evo-
lution of the MSE and the interpolation coefficient with respect to the hyperparameter
�. Tuning � allows us to retrieve more information on the coarse labels from the fea-
ture space, as the optimal coefficient of interpolation keeps increasing. This serves as
more evidence of the relationship between entropy in the latent space and the ability to
generalize to finer labels.
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have demonstrated that smoothing the output distribution using entropy regulariza-
tion techniques reduces peaks and provides a wider range of output values (Pereyra
et al., 2017; Szegedy et al., 2016). The common interpretation of the smoothed output
values is as a measure of uncertainty in predictions (C. Guo et al., 2017). However, an
alternative viewpoint is to consider these output values as information on the refined
labels, such as degrees of similarity with each class.

To explore the validity of this interpretation, we utilize a dataset where the output un-
certainty can be readily interpreted as the refined labels. For this purpose, we use a
dataset consisting of crops from a single hyperspectral image in the remote sensing
domain (Ghamisi et al., 2017). This dataset is composed of w ⇥ h crops from a hyper-
spectral image, capturing reflectance values for c contiguous wavelengths (channels)
in the visible and near-infrared domains. Two essential interconnected problems in
hyperspectral imaging are supervised semantic pixel classification and spectral unmix-
ing (Ghamisi et al., 2017). In the classification task, the objective is to assign a class to
each pixel of a predefined set of identified classes. On the other hand, unmixing can
be seen as a refinement of classification, accounting for the possibility that objects to be
detected may be smaller than the size of a pixel. Therefore, the goal in unmixing is to
predict the proportion of each material (referred to as abundances) in each pixel.

To transform the regression problem of unmixing into a classification problem, we use
coarse labels y = one_hot(argmaxi zi) where zi is the proportion of material i: z 2
[0, 1]m,

P

i(zi) = 1. We train a fully connected neural network fθ with two hidden
layers, where θ denotes the network’s parameters.

The class probabilities of the network can easily be interpreted as the proportions of
each material. Thus we evaluate the regression performance of the network using the
output of the network on the entire image with the Mean Squared Error (MSE) metric.
The raw MSE is then defined as follows:

raw MSE(fθ) = EDreg

"
X

i

(qθ(y|x)i � zi)2
#1/2

, (35)

where Dreg represents the dataset for regression, and qθ(y|x) denotes the predicted
class probabilities. We also compute another metric called transfer MSE, which eval-
uates the transferability of the inferred feature spaces for performing the regression
task. This assessment involves employing the refined labels and, and for each crite-
rion, we retrain the last layer of the network with a regression criterion (Mean Squared
Error), keeping the others layers (feature space) inferred with the classification criteria
frozen. The transfer MSE, denoted as transfer MSE(fθ), is then computed with the
new heads. It is important to note that in practical scenarios, this approach is not viable,
as refined labels are assumed to be inaccessible. However, in our context, it serves as a
valuable metric to evaluate which feature space retains the most pertinent information
from the refined labels.

Table 7 presents the MSEs estimated on the hyperspectral dataset for the different cri-
teria. We observe that both Label Smoothing and FIERCE demonstrate a strong ability
to recover the regression labels directly from the output, with lower MSEs (averaged
over all materials) compared to Cross Entropy. However, FIERCE exhibits the highest
transferability (lowest transfer MSE), indicating that its feature space allows for the re-
trieval of more information on the refined labels than other criteria. As an attempt to
better understand the geometric impact of our proposed method, we embed features
into a 2D space using t-Distributed Stochastic Neighbor Embedding (TSNE) (Van der
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lems (Mangla et al., 2020).

Few-shot learning involves first training a model on a generic dataset and then using
the feature space to classify new classes with a limited number of samples.

Table 8 – Classification accuracy (1-shot) on novel tasks for CIFAR-FS and CUB. Dis-
played accuracy are averaged over 10,000 random fewshot runs. Confidence intervals
are computed over 10 randomly initialized training of each model under each criterion.

Cross Entropy Label Smoothing FIERCE

CIFAR-FS 64.32± 0.7 65.76± 0.57 66.16± 1.04
CUB 59.61± 0.84 59.87± 0.81 62.18± 0.59

To evaluate our method, we use two datasets: CIFAR-FS (Y. Liu et al., n.d.) with a
Resnet18 model, and CUB (Wah et al., 2011). We compare the three criteria: Cross En-
tropy, Label Smoothing, and FIERCE. CIFAR-FS is a dataset consisting of 60,000 color
(RGB) images of size 32⇥32 pixels. The dataset is divided into three splits, each contain-
ing 64 training classes, 16 validation classes, and 20 testing classes, with 600 examples
in each class. CUB is composed of 11,788 images of size 84 ⇥ 84 pixels and has 200
classes. We use the splits: 100 base classes and 50 novel classes recommended in (Hu
et al., 2021).

On both datasets, our method outperforms the baseline and Label Smoothing. Interest-
ingly, despite the distinct impact on the feature space of Label Smoothing and FIERCE,
both methods improve the accuracy in transfer.

4.4.5 Additional experiments: Influence of hyperparameters

In this section we provide the ablation studies used to select the hyperparameters in the
experiments reported in Section 5. Let us recall that FIERCE introduces two hyperpa-
rameters: �, tuning the influence of the entropy constraint and e, the number of anchor
points of E used to approximate the entropy of the features.

Influence of the number of anchor points e: On Figure 24 we plot for the hyperspec-
tral and age estimation datasets the influence of e on the MSEs. We note that after a
certain limit, e = 100 for the hyperspectral dataset and e = 75 for age estimation, the
MSE remains stable. These values are around the batch size for each dataset: 200 for
the hyperspectral dataset and 64 for age estimation. Therefore, we take for the other
experiments a value of e close to the batch sizes.

Influence of �: we plot for each dataset the influence of �. For the hyperspectral dataset
we report the evolution of the raw MSE and the transfer MSE; for age estimation the
evolution of the MSE.

TSNE-Representation on CIFAR10: In addition to the representations we have gener-
ated for the age estimation dataset and the hyperspectral dataset, we have applied the
same methodology to the CIFAR-10 dataset. The results are illustrated in Figure 25. We
observe that FIERCE effectively reduces the distances between different classes while
smoothing the overall representation. Notably, we observe a significant reduction in
the intra-class distance between dogs and cats compared to Label Smoothing or Cross
Entropy. This reduction suggests that the network is better at detecting semantic simi-
larities between classes, potentially leading to improved classification performance.
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Figure 26 – Entropy of the feature space (in blue) and approximation of our method (in
red) on the hyperspectral dataset.

Overall, our approximation closely follows the actual entropy of the feature spaces,
with a correlation coefficient of 0.86 between the two measures. While there are a few
anomalies, the general trend indicates that our method provides an accurate estimation
of entropy for the feature spaces.

4.5 Limitations and Perspectives

4.5.1 Limitations

We observed that the entropy of the feature space was related to the transferability,
particularly in regression tasks. However, the entropy may not be the optimal criterion
to use as a regularizer. For instance, in (Shwartz-Ziv & Tishby, 2017) suggests that
the mutual information could be used although estimating it a differentiable way is to
an easy task (Tschannen et al., 2019). On regression datasets, our method yields the
lowest MSEs, but it does not significantly outperform raw Cross Entropy during the
first epochs of training. The main advantage of the proposed method lies in its ability
to avoid early stopping.

Another challenge in our method is the computation of a high-dimensional feature
space, which must also be auto-differentiable. Our estimation relies on random an-
chor points, and the generation and distribution of these anchor points may impact
the geometry of the feature space. With high values of �, we force the features to be
uniformly aligned with these anchor points. One potential solution would be to use a
learnable dictionary, as done in VQ-VAE (Van Den Oord, Vinyals, et al., 2017), but this
would introduce an additional loss term and another hyperparameter.

Finally, tuning the hyperparameter � may be challenging in practice, especially in do-
mains where there is no clear insight into the future use of the coarsely trained model.

4.5.2 Perspectives

In recent years, the field of Self-Supervised Learning has seen the emergence of various
criteria, all aimed at attaining highly abstract and universally applicable data repre-
sentations (Radford et al., 2015). One notable approach involves the application of the
contrastive loss (T. Chen et al., 2020; Tian et al., 2020b). This loss operates on pairs of
data points, typically called "anchor" and "positive" samples, and aims to maximize the
similarity (or minimize the distance) between similar pairs while pushing apart dis-
similar pairs. The loss function encourages the model to map similar data points closer
together in the feature space and push dissimilar points further apart.

Contrastive learning can be seen as a mechanism that encourages the model to disperse
representations of distinct data points in the feature space, promoting a higher level of
entropy. This approach serves a dual purpose: it enables the model to learn meaning-
ful data representations through positive sample pairs, while concurrently maximizing
entropy via the incorporation of negative sample pairs.
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However, it is important to note that contrastive loss is not the sole criterion that ad-
dresses these objectives (Caron et al., 2020; Radford et al., 2015; Zhuang et al., 2020a);
other approaches such as the triplet loss (Schroff et al., 2015) and InfoNCE Loss (Oord et
al., 2018) also target similar outcomes. As a future research direction it would be inter-
esting to conduct a comprehensive study comparing various methods closely related
to entropic regularization of the feature space, and analyse their impacts on transfer-
ability. This endeavor aims to identify the most effective techniques and gain a deeper
understanding of their underlying principles.

Additionally, it is essential to consider the phenomenon known as dimensional collapse
in neural networks (Glorot & Bengio, 2010; Jing et al., 2021), which can occur when the
learned representations become excessively compressed or entangled, potentially lim-
iting the model’s capacity to capture meaningful information in high-dimensional data
spaces. Intuitively, dimensional collapse seems closely related to the second phase that
we observe in this chapter and in (Shwartz-Ziv & Tishby, 2017). It would be beneficial

to investigate whether this relationship holds true.

To monitor changes in the geometry of the feature space during learning, various tools
such as graphs (Cosentino et al., 2022; Papernot & McDaniel, 2018) or metrics like the
rank of the covariance matrix of the feature space (Garrido et al., 2023; Jing et al., 2021)
could be employed. Furthermore, by constraining the geometry of the feature space as
done in (Bontonou et al., 2019), it might be possible to ensure better transferability. In a
more recent study (Y. Guo et al., 2023), the authors propose a method in which features
are mapped to randomly distributed anchors on a hypersphere. This approach enables
the introduction of repulsive forces between samples and clustering classes, offering a
novel perspective on feature space manipulation. The idea of using anchors points is
similar to our except that they imposes a geometric prior.

4.6 Conclusion

In summary, we have showcased the neural network’s capability to extend its general-
ization beyond the tasks it was trained on, particularly when utilizing coarse labels. We
have observed two distinct phases during the learning process. Initially, information
regarding refined labels is retrieved, followed by a second phase where the focus shifts
towards achieving accurate predictions for coarse labels. Our experimentation across
diverse datasets and benchmarks has shed light on the crucial role of feature space
entropy in the realms of transfer learning and achieving more precise label predictions.

Through the development of our proposed method, Feature Information Entropy Reg-
ularized Cross Entropy (FIERCE), we aimed to enhance the entropy of the feature space
while retaining the essential information required for addressing more intricate tasks.
The experimental results demonstrated that our FIERCE method outperforms other
entropy regularization techniques, such as Label Smoothing and Cross Entropy, in pre-
serving information within the feature space. Furthermore, we have introduced a novel
differentiable approach to estimate the entropy of the feature space, thereby enabling
the training of deep learning models with the proposed regularization. Overall, the
findings from this study indicate that the FIERCE method holds great promise for tasks
involving coarse to refined classification and transfer learning.
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5.1 Introduction

5.1.1 Generalizing beyond the training task: Foundation models

In the preceding chapter, our investigation centered on the capacity of deep learning
architectures to exhibit the ability to generalize beyond their training tasks, specifically
within specific scenarios. Our findings, as well as others papers (Touvron et al., 2021;
Wu et al., 2017), demonstrated that deep learning models, when trained using coarse
labels, exhibited the ability to retrieve information on refined/fine labels related to the
coarse labels. In such scenarios the input domains remained consistent –only the labels
were changed.

In the present chapter, our focus shifts to a more general context within the realm of
classification that aligns more with the current context in the field with for instance
the advent of foundation models. Indeed, as highlighted in the introduction of the
manuscript, there was a resurgence in neural network-based models during the early
2010s (Bommasani et al., 2021). This revival was propelled by the availability of large
datasets and architectures with substantial parameters (J. Deng et al., 2009; LeCun,
2015b). Quickly, researchers realized that these large pre-trained models could be reused
in various domains and tasks (J. Deng et al., 2009). Subsequently, these pretrained mod-
els evolved into larger models called foundation models (Bommasani et al., 2021). Such
models are trained on auxiliary tasks and demonstrate remarkable knowledge transfer
capabilities across a wide spectrum of tasks and domains (Redmon et al., 2016; C. Zhou
et al., 2021; K. Zhou et al., 2022). The remarkable versatility and effectiveness of foun-
dation models triggered a shift of paradigm within the research community, commonly
referred to as "homogenization" (Bommasani et al., 2021). This shift led a large number
of researchers to adopt widely-used pre-trained models like BERT (Devlin et al., 2018),
GPT (Radford et al., 2018), and CLIP (Radford et al., 2021), which have since become
established benchmarks in the field.

On the paper, foundation models can be understood as serving a role akin to transfer
learning. When training on a comprehensive, representative universal dataset, the ne-
cessity to adapt to distinct domains diminishes. Nevertheless, recent research papers,
as illustrated in (Touvron et al., 2021; Wu et al., 2017) as well as our previous chapter,
highlight the advantages of transfer learning, even in scenarios where the downstream
task involves fine-grained refinements within the original domain. These recent ad-
vancements compel us to develop a pragmatic theoretical framework for exploring and
comprehending the concept of transferability.

5.1.2 Transfer Learning

Transfer learning aims to leverage knowledge gained from a source task and dataset,
even if they bear little resemblance to the target task or dataset, with the goal of re-
ducing the learning cost and facilitating the solution of the target task (Zhuang et al.,
2020a). An approach particularly valuable when acquiring a substantial volume of la-
beled data proves costly or when the risk of overfitting needs to be mitigated.

Initially, models were trained for specific tasks, such as classification using labeled
datasets that correspond to specific data domains (Caruana, 1997). Then the challenge
lied in extending their capabilities to address other tasks or adapt to different domains.
Originally, transfer learning was limited to domain adaptation. However, as the field
has evolved, the concept of transfer has expanded to encompass adjustments in both
task and data domain, as mentioned in (Zhuang et al., 2020a), (Pan & Yang, 2010),
and (Radford et al., 2015).
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Such ability has been gained thanks to new training methods, in particular within Self-
Supervised Learning, where models are trained on pretext tasks that do not require
human-labeled annotations, thereby allowing models to acquire meaningful and gen-
eral data representations (He et al., 2020) and SimCLR (T. Chen et al., 2020).

Transfer learning can be categorized into three types: transductive, inductive, and un-
supervised (Pan & Yang, 2010; Zhuang et al., 2020a). Transductive transfer learning
arises when only the source data is labeled, while inductive transfer learning encom-
passes labeling both the source and target data. Unsupervised deep transfer learning,
on the other hand, deals with scenarios where none of the data is labeled.

Furthermore, transfer learning can be dissected into four fundamental approaches, as
outlined in (Pan & Yang, 2010; Zhuang et al., 2020a): instance-based (Jiang & Zhai,
2007), feature-based or mapping-based (Raina et al., 2007), parameter-based or model-
based (Finn et al., 2018), and relational-based or adversarial-based strategies (Davis &
Domingos, 2009). In this chapter, we will focus on feature-based methods as they are
widely leveraged in many transfer learning applications, such as Few-shot Learning,
for instance.

5.1.3 Few-Shot Learning

Few-Shot Learning (Fei-Fei et al., 2004) constitutes a research area that aligns with the
theoretical framework that we present in this chapter. The objective of Few-Shot is to
infer model that recognize new classes (novel classes), with a limited number of labeled
examples (shots) per class, even when the model was originally trained on a differ-
ent set of classes (base classes). This transfer learning scenario reflects well real-world
situations where acquiring abundant labeled data for each new class is expensive. Var-
ious approaches to few-shot learning exist, with one common method being feature-
based (Y. Wang et al., 2020). In this approach, the model, initially trained on base classes,
functions as a feature extractor for novel class samples. Subsequently, a new classifier,
often a simple linear one, is trained on these features to adapt to novel classes.

5.1.4 Problem Statement

Despite the widespread success of transfer learning, the underlying mechanisms that
enable this ability remain unclear and, to our knowledge, insufficiently formulated.
Progress in transfer learning has incited several authors to delve into fundamental
questions within the domain. In (Atanov et al., 2022), the authors introduce a method
called Task Discovery for identifying tasks (subsets of classes) on which a trained net-
work can generalize effectively. This method involves computing similarity scores,
with higher similarity scores suggesting that networks are more likely to converge to
stable solutions. The researchers demonstrate that employing human labels leads to su-
perior generalization compared to random labels, facilitating the identification of tasks
or sets of classes that result in optimal generalization in terms of error rate. However, it
is crucial to note that our work differs from theirs as we provide a comprehensive the-
oretical framework, whereas their focus centers on identifying subsets of classes that
lead to stable solutions.

Prominent theoretical contributions in transfer learning encompass also (Zhuang et al.,
2020a) and (Pan & Yang, 2010), where authors categorize transfer learning approaches
and furnish definitions for key concepts such as tasks and data domains. Additionally,
in (Tripuraneni et al., 2020; Yang et al., 2013), the authors derive theoretical bounds on
convergence rates in specific scenarios.
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While these existing approaches offer valuable insights, we think it is possible to com-
plement them by introducing new perspectives. We aim to provide a simple yet mean-
ingful definition of transfer learning within classification and to leverage it for investi-
gating fundamental questions in the field, such as which subsets of classes generalize
to which others.

We present a comprehensive theoretical framework for characterizing the transferabil-
ity of models trained on one set of classes (C) to another set of classes (C 0), even in
scenarios where the input domains may differ. As discussed earlier, this generalization
is particularly sought in the context of few-shot learning that involves tasks where the
training and target domains do not overlap (Fei-Fei et al., 2004; Y. Wang et al., 2020), at
least in terms of semantics.

More generally, this framework serves as a tool for investigating fundamental questions
related to learning, such as:

1. Can we identify informative indicators of how well a model trained on one set of
classes (C) will perform on another set of classes (C 0)?

2. Which classes play the most crucial role in the learning process when fine-tuning
a model? Which set of classes lead to the best generalization and transferability ?

To investigate these fundamental questions and illustrate the effectiveness of our method-
ology, we carry out experiments in various scenarios. In doing so, we highlight our
ability to identify the optimal subsets of classes during processes such as fine-tuning,
training models from scratch, and few-shot learning.

5.2 Proposed Theoretical Framework

In this section, we introduce a theoretical model within the classification domain, where
the goal is to separate each class from the others. To this aim, we employ models that
function as bi-partitions. For instance, a hyperplane splits a Euclidean space into two
distinct regions, with the ideal scenario being one class occupying one side and the
other class residing on the opposite side of the hyperplane. While deep learning archi-
tectures often employ a one-vs-all classifier, our approach takes a more fundamental
stance: we consider a set classes to be successfully separated only when each pair of

classes can be distinctly separated. In essence, we approach the classification problem
as a partitioning challenge, wherein, for every pair of classes, there must exist at least
one partition in which one class is allocated to one set while the other class belongs to
the opposite set. Embracing this perspective reveals that certain bipartitions or models
exhibit greater expressive power than others. Consequently, we introduce an ordering
relationship among these models.

5.2.1 General Case

Let us denote E a space, and C a set consisting of n disjoint subsets of E. Each element
in C is referred to as a class. We define a model as a bipartition of the space E, denoted
as M = {M1,M2}, where M1 and M2 are two disjoint subsets of E. The bipartition
separates two classes I and J when one class is included in subset M1 while the other
class is included in subset M2.
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Definition 17: Model

A model M = {M1,M2} is a bipartition of the space E, i.e, E = M2 = E \M1.

Let us say that a model M separates two classes I and J 2 C, if: (I \ M1 =
;) ^ (J \M2 = ;) and we note I ?M J .

In practical applications, models are typically inferred from data. In this context, we
make the assumption that for every pair of classes, a dedicated model is learned to
effectively separate that particular pair. Without this hypothesis, the problem would

be inherently inseparable. Consequently, each model is uniquely associated with a
specific pair of classes on which it was trained.

Definition 18: Model associated with a pair of classes

We note MI,J the model learned on {I, J} and that separates I and J : I ?MI,J
J.

The method by which we derive these models is intentionally left implicit at this stage,
and will be elaborated upon in the methodology section. Furthermore, it is worth not-
ing that with the previous definition, some models may separate not only the specific
pair they are associated with but also others pairs of classes. Therefore, we introduce for
each model M , the set C(M) that comprises all the pairs of classes effectively separated
by the model M .

Definition 19: Set of separable pairs

Let us note C(M) the set of pairs of elements in C that are separated by M .

This definition reveals that certain models separate more pairs than others, demon-
strating greater expressiveness. For instance, a model M may successfully separate all
the pairs that another model M 0 separates. This observation naturally prompts us to
establish the following order relationship:

Definition 20: Ordering models

Let us consider two models M,M 0. The model M is said to be less expressive
than the model M 0 if: C(M) ✓ C(M 0), and we use the notation M  M 0. More-
over, the relation  is an order relationship.

Models that separate the same set of pairs are said to be equivalent.

Definition 21: Equivalent models

Two models M,M 0 are equivalent if M  M 0 and M 0  M , denoted M ⌘ M 0.

The previous order relationship can be effectively visualized with Hasse Diagrams –
providing a clear representation of the partial order among models. In the Hasse Dia-
gram, each model is depicted as a node, and the presence of an arrow from M 0 to M
signifies that M is less expressive than or equivalent to M 0. It facilitates the identifi-
cation of the most expressive models. Models with lower expressiveness can be disre-
garded since they can be superseded by other models for distinguishing the pairs they
separate. Figure 27 provides illustrations of Hasse diagrams for two distinct datasets,
each restricted to only 4 classes.
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dog/truck cat/dogauto/cat

cat/truck auto/dog auto/truck

shirt/bag shirt/trousercoat/trouser

shirt/coat coat/bag trouser/bag

Figure 27 – Hasse Diagrams illustrating the hierarchical order of models learned on
pairs of classes. Each model’s is characterized by the pairs of classes it successfully sep-
arates. Arrows pointing from one model A, to another B, signify that model A exhibits
greater expressive capacity, since it effectively separates all the pairs that model B sep-
arates. The models highlighted in color represent the most expressive and are referred
to as ’fundamental’ models. Models sharing the same colors are considered equivalent,
as they separate identical pairs of classes. Conversely, uncolored models are consid-
ered redundant since the pairs they separate can be separated by others models. On
the left, we examine a scenario with 4 classes from CIFAR-10 : auto, cat, dog, truck. The
diagram illustrates that cat/truck and auto/cat are not only equivalent but also more
expressive than ’auto/dog’ and ’dog/truck’. In simpler terms, models ’auto/dog’ and
’dog/truck’ can be omitted since they do not offer any additional separations compared
to cat/truck and auto/car. On the right, considering 4 classes from FASHION-MNIST :
bag,coat,shirt,trouser. The diagram reveals that coat/bag and shirt/bag are equivalent
and possess greater expressiveness than coat/trouser and shirt/trouser.

Our focus now shifts to the models with the highest expressiveness –those that cannot
be acquired through any other means except by using an equivalent model. These
models are trained on specific pairs of classes referred to as fundamental pairs, as they
are indispensable and cannot be disregarded.

Definition 22: Fundamental pair

A pair of classes {I, J} is said to be fundamental if I ?MK,L
J ) MI,J ⌘ MK,L.

Of significant interest is the determination of the minimum number of pairs required
to separate all the classes. This number is referred to as the ’fundamental number’
because it involves that it is impossible to learn all fundamental models with a smaller
number of pairs.

Definition 23: Fundamental number

The fundemental number F(C) is defined as the minimum cardinal of a set S of
models such that: 8I, J 2 C, 9M 2 S, I ?M J . Note that by definition we have
an upper bound: F(C) 

�
n
2

�
.

Instead of defining the fundamental number based on pairs, we can utilize models, as
demonstrated by the following theorem. This approach enables us to perceive the fun-
damental number as the minimum number of models required to effectively separate
all the pairs.
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Theorem 6

Consider the set of all fundamental pairs. Let us remove pairs until this set con-
tains only the ones whose associated models are not equivalent to one another.
Then the cardinality of this set is noted F(C).

Proof. Let us consider such a set of fundamental pairs P and a set of separators S of
cardinal F(C).

Let us consider p an element of P . By construction of P , p is separated by a single sepa-
rator of S. Otherwise the element would have an equivalent leading to a contradiction.
Hence the cardinal of P is smaller than or equal to the cardinal of S.

Conversely, let us consider a separator M 2 S. We show it separates one single fun-
damental pair. By definition of P , the following set: P \ C(M) has no more than one
element. By contradiction, let us assume that this set is empty, i.e, C(M) contains only
pairs which are not fundamental. So, for any element c 2 C(M), there is a fundamental
pair p 2 P s.t c < p. But p is necessarily separated by a separator M 0 2 S and con-
sequently c is also separated by M 0. At the end, we have two separators M,M 0 for c.
Since the reasoning is true for any c 2 C(M), then S \M separates all pairs of C. Hence
a contradiction with the cardinal of S being equal to F(C). Therefore, each model of S
separates a single fundamental pair; the cardinal of S is smaller or equal to the cardinal
of P . In conclusion, the cardinal of P equals F(C).

Definition 7 established an upper bound for F(C). Interestingly, it is possible to estab-
lish a lower bound for F(C) as well. Remarkably, both of these bounds can be achieved
by at least one example.

Theorem 7

Let n � 2. Then the fundamental number F(C) is bounded as follows:

log2(n)  F(C) 
✓
n

2

◆

.

Both bounds are achieved by at least one example.

Proof. Let us prove the lower bound. We consider n � 2, we want to distribute the pairs
of C on a minimal number of models F(C). First, we note that in any case, the mini-
mum can be achieved when all elements of C belong to one partition of each model: if
one element X does not belong to any partition of a model M it can be added without
consequences to one of the partitions M1,M2.

By doing so, the models describe all elements of C which can be represented by a binary
encoding: 0 for element included in M1 and 1 for element included in M2. The problem
is then equivalent to the encoding of a source alphabet C into a decodable code over an
binary alphabet. Then according to the Kraft-McMillan inequality, the following bound
holds: F(C) � log2(n) (Kraft, 1949).

We provide one example that reaches the upper bound.
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Figure 28 – Encoding of 16 classes with a minimal number of bi-partitions (models):
log2(16) = 4. Pairs/edges with same color correspond to equivalent models.

Proof. Let be n an even number, we define C = {{1, 2}, {3, 4}, · · · , {n�1, n}} composed
of n sets. Let us consider a pair I, J ⇢ C. Without loss of generality, we assume that
I < J . We define the model MI,J a biparition (M1

I,J ,M
2
I,J) as follows:

I ⇢ M1
I,J and J ⇢ M2

I,J ,

8X 2 {1, · · · , n} \ (I [ J), X mod 2 = 0 ) X ⇢ M1
I,J ,

8X 2 {1, · · · , n} \ (I [ J), X mod 2 = 1 ) X ⇢ M2
I,J .

We have constructed
�
n
2

�
models and by definition none of the models are equivalent.

We provide an example that reaches the lower bound. Notably, the lower bound is
achieved by the hypercube configuration, as illustrated in Figure 28.

Proof. Let us consider C = {0, 1}k the set of natural integers between 0 and 2k�1 written
in base 2 with k digits. For instance, when k = 2, C = {00, 01, 10, 11}. By definition of
C, n = 2k.

Let us define k models (M0, · · · ,Mk�1) such that for i 2 {0, · · · , k� 1} the partition M1
k

contains the numbers with a kth digit equal to 0 and M2
k the number with a kth digit

equal to 1. We consider a pair I, J 2 C, by construction of C, I and J differ from one
bit at least at position k. Thus I ?Mk

J and we set MI,J = Mk.
Hence F(C) = k = log2(n)

5.2.2 Hyperplanes

The preceding definitions have provided a broad framework for comprehending the
challenge of class separation, yet they are completely agnostic of the geometric aspects
of the classes. To render these definitions more pragmatic and suited to real-world
situations, we propose a refinement.
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Let us consider a Euclidean space E = R
d. We define n classes as independent variable

Ci within this space. Each class follows its own probability density function pi, and we
introduce a scalar value " > 0. We now narrow our focus to models consisting of affine
hyperplanes with an error of " (as formally defined in Definition 5.2.2 below).

Definition 24: Affine hyperplane

An affine hyperplane h is a affine subset of Rn described with a single equation:
hw,xi+ b = 0 where w is a nonzero vector, and b a scalar.
This hyperplane defines a model H of E with the associated bipartion M1 =
{x 2 E|hw,xi+ b � 0} and M2 = {x 2 E|hw,xi+ b < 0}.

In (Boland & Urrutia, 1995), the authors presented an elegant proof demonstrating that
in R

d, it is possible to separate n points using at most d(n � 2dlog(d)e)/d + dlog(d)ee hy-
perplanes. This result provides an upper bound on F(C) in scenarios where the classes
consist of individual points, employing the same definitions as previously outlined.

Extending these findings to radius 1 balls, is straightforward. However, when dealing
with non-convex geometries, the interfaces between sets can exhibit intricate complex-
ities, making it challenging to establish meaningful bounds on the requisite number of
hyperplanes, as observed in (van den Berg, 2016).

In the context of random variables, it becomes necessary to introduce new definitions
for separability. In real-world scenarios, hyperplanes may not achieve perfect separa-
tion of classes.

Definition 25: Epsilon-Separability

Let us consider two random variables Ci,Cj , and a hyperplane H . Without
loss of generality, let us assume that P [hw,Cii+ b � 0] � 0.5. We define the
probability error of the hyperplane H as:

Perr(H,Ci,Ci) =
1

2
(Pi [hw,Cii+ b < 0]

+Pj [hw,Cji+ b � 0])

H separates Ci,Cj if: Perr < " and we note Ci ?H Cj .

Let us apply this definition to two real-valued random variables following a normal
distribution with unit variance: Ci ⇠ N (µi, 1), Cj ⇠ N (µj , 1). Assuming µj > µi, the
probability error of a hyperplane h is:

Perr(h, i, j) = Pi [Ci < �b/w] + 1� Pj [Cj  �b/w]

=
1

4

✓

2 +

✓

erf

✓

�b/w + µ2p
2

◆

� erf

✓

�b/w + µ1p
2

◆◆◆

.

Note that the error is minimal when: b/w+µ1 = b/w�µ2 i.e b/w = (µ1+µ2)/2 (Bishop
& Nasrabadi, 2006).

Definition 26: Empirical Probability of Error

In practical scenarios, exact probability density functions are often unavailable,
and instead, they are approximated empirically based on a given set of data



Chapter 5. Transfer in Classification: How Well do Subsets of Classes Generalize? 104

points. Let us consider a hyperplane h, and two classes i and j. Without loss
of generality, we assume that samples xi belonging to class i are correctly clas-
sified if h(xi) > 0, and conversely, samples xj belonging to class j are correctly
classified if h(xi)  0. Let Xi = {xi

1, · · · ,x
i
n} and Xj = {xi

1, · · · , x
i
n}, repre-

sent sets of n samples drawn of classes i and j respectively. The approximated
probability error is defined as follows:

P̂err(h, i, j) =
1

2n

nX

k=1

⇣

1h(xi
k
)<0 + 1

h(xj
k
)�0

⌘

5.3 Methodology

When dealing with a set of classes denoted as C, it is possible for a model to learn to dis-
tinguish more classes than those explicitly present in C. In this study, we examine the
selection of subsets C 0 ⇢ C where the model can learn to separate the largest number
of new classes. To accomplish this, we leverage the theoretical framework previously
introduced. In this section, we provide a detailed description of our methodology for
identifying such subsets.

5.3.1 Settings

Let us introduce a scalar parameter " > 0, a set of classes denoted as C, a set P encom-
passing all possible pairs of classes in C, and X representing a set of examples drawn
from these classes. As outlined in the theoretical section, we learn a model for each pair
of classes. In our experiments, we adopt linear hyperplanes, which can be typically the
final layer of a neural network. However, instead of inferring these hyperplanes di-
rectly on the input data domain, we determine them based on features extracted from
pretrained networks. This approach is favored as pretrained networks are more likely
to capture high-level information.

In our experiments, we utilize two widely used pretrained models: a ResNet-50 (He et
al., 2016) and a Vision Transformer DINO VIT-8 (Caron et al., 2021), both pretrained
on the IMAGENET dataset (J. Deng et al., 2009). Vision Transformer models have
gained large recognition for their proficiency in learning generic features through self-
supervised learning, while ResNet-50 has served as a standard benchmark in trans-
fer learning (Krizhevsky et al., 2017). Furthermore, works such as (Z. Liu et al., 2022;
Wightman et al., 2021) have shown that residual networks remain competitive despite
the prevalent use of transformers.

In line with common practice in classification tasks, we divide the network into two
components: the feature extractor f and the heads h. The heads, denoted as hI,J for
each pair {I, J} according to Definition 9, play a key role in our framework. A pair
{K,L} is considered separated by a head hI,J , if the empirical probability error of the
head hI,J is less than ". We refer to the sum of distinct pairs that the models separate as
separability.

5.3.2 Estimating the generalization potential of a subset

Initially, we employ a feature extractor to represent the data, and subsequently, we train
one head per pair based on this representation. To evaluate the potential of a subset
C 0 ⇢ C, we exclusively consider the heads that correspond to the pairs in P 0. Here,
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P 0 is the set of pairs derived from C 0. Subsets that attain the highest separabilities are
considered the most promising candidates.

Once such subsets are identified, we investigate two distinct approaches: fine-tuning
and training from scratch. In the case of fine-tuning, we fine-tune the pretrained net-
works on the selected subsets of classes. The separabilities serve as relevant perfor-
mance indicators in this scenario since the same network is employed. However, when
training from scratch, the relationship between separabilities and performance becomes
more uncertain, and it is challenging to predict whether separabilities will reliably in-
dicate performance.

5.3.3 Training procedure

Upon selecting a subset C 0, we initiate training process on the pairs within C 0. As
previously explained, we employ one head per pair, assigning binary labels to each
pair, where one class is labeled as 0 and the other as 1. For loss computation, we utilize
binary cross-entropy for each head.

It’s important to note that the fine-tuning process comprises two steps. In the first step,
the feature space is frozen, and only the heads are trained. This step has already been
completed during the assessment of subset potential. Consequently, instead of repeat-
ing this step, we retain the heads corresponding to the selected pairs. In the second
fine-tuning step, the entire network is fine-tuned, including the feature extractor.

5.3.4 Evaluation

We evaluate the separability of the model across the entire set of pairs P of C. To
determine whether pairs are separated, we follow a specific procedure. Consider a pair
{I, J}. For one of the classes in this pair, say I , we calculate the average sign of the
predictions provided by a head. Subsequently, we count the number of examples from
the class I where the sign of the prediction aligns with the average sign. For the other
class J , we count the number of examples where the sign of the prediction is opposite
to the average sign. Finally, we compute the ratio of correctly predicted examples to
the total number of examples and iterate over all the heads. If the error is less " for at
least one of the heads, we consider the pair to be separated.

5.4 Experiments

We conduct experiments using classification datasets, and for each dataset, we refer
to its set of classes as C. Our primary goal is to investigate the identification of the
most promising subsets of classes, denoted as C 0, that exhibit the highest potential for
generalization in terms of transferability. It is important to note that C 0 can either be a
subset of C or completely disjoint, like it is the case in a few-shot setting. The process
of determining these subsets relies on the methodology outlined earlier.

We assess our approach in three distinct settings: Fine-tuning, where we employ a
pretrained architecture and fine-tune it on specific subsets of classes; Training from
scratch, where we train a new architecture exclusively on the subsets; and Few-Shot
Learning, where we train an architecture solely on base classes and evaluate its ability
to distinguish novel classes (additional explanations are provided later).
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5.4.1 Finetuning

In this experiment, we employ pretrained architectures to identify promising subsets
of classes using our methodology. We focus our experiments on the CIFAR10 dataset
as it serves as a standard benchmark in computer vision and comprises N = 10 classes,
allowing us to explore various subset sizes. Dealing with datasets with a larger number
of classes would make it practically infeasible to compute all potential subsets. More-
over, conducting experiments on very large datasets, where a single training may take
days, would make it impossible to compute enough runs for rigorous statistical analy-
sis.

We generate all possible subsets composed of n 2 {2, 4, 6, 8} classes. We refer to
CIFAR_n when the dataset is restricted to n classes. As described in the methodol-
ogy section, for each subset of n classes, we compute the number of pairs of classes
separated before and after finetuning. For n = 4 or 6, there are 210 possible subsets.
Separability of these runs before and after finetuning are shown in Figure 31 and 32.

In Table 9, we provide the correlation between the two metrics, as well as the slope and
intercept of the regression line for both VIT-8 and ResNet50. It is important to note that
in both cases, the correlation is high, indicating that separability before finetuning is a
reliable indicator of finetuning performance.

Additionally, we carry out an analysis of the classes having the most impact on finetun-
ing performance. For this matter, we calculate a metric that we call class separability
sep(I). This metric is computed as follows. Let us consider a class I . We take all the
runs where the class I appears in the selected subset of classes. For each run, we utilize
the corresponding model and associated heads –these are all the heads h assigned to
pairs that include class I . We then consider the smallest error given by the heads for
each pair and check if it is smaller than ".

For instance, let K,L be a pair we are considering. The separability sepK,L(I) is deter-
mined as follows:

sepK,L(I) =

(

0 if minj2{1,··· ,n} P̂err(hI,K ,K, L) > "

1 otherwise.

Finally, we sum the separabilites of all pairs so that: sep(I) =
PN

I=1

PN
J=I+1 sepK,L(I).

The values of this metric are depicted in Figure 29 and 30, and we report the correlations
in 10. Notably, we observe a high correlation between class separability before and after
finetuning on CIFAR10. With the ResNet50 model, the correlation is 0.90 on CIFAR_4
and 0.86 on CIFAR_6, while with the VIT-8 model, it is 0.96 and 0.95, respectively.

Therefore, we can confidently identify the classes that are likely to yield the best fine-
tuning performance. For n = 6, these classes are bird, frog, and horse for Resnet50
and truck, dog and frog for VIT-8. Notably, these classes are included in the subset of
classes that consistently lead to the best fine-tuning performance within the 210 com-
puted runs: ("bird," "cat," "deer," "dog," "horse," "ship") for Resnet50. Animal classes
appear to be particularly conducive to achieving the best generalization, although the
optimal subsets consistently include at least one non-animal class.

We highlight that subtle distinctions exist between the graphical representations pro-
duced by VIT-8 and Resnet50, as shown in Figure 29 and 30. These distinctions can
be attributed to the dissimilarities in their training procedures. Typically, VIT-8 is a
recent architecture trained with a contrastive loss function, coupled with various data
augmentation techniques and contemporary regularization methods.
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Furthermore, we have undertaken the computation of analogous metrics by consider-
ing pairs rather than classes. Let us consider a pair P , we proceed as follows to compute
the metric. We consider all the runs where the pair P is included in the selected pairs
of classes. For each run, we take the corresponding model and the associated head h
assigned to the pair P . We then count the pairs that can be separated to obtain sep(P ).

Once again, a noteworthy observation emerges concerning CIFAR_6. Detailed correla-
tions can be found in Table 10. Interestingly, within both experimental settings, the pair
that exhibits the lowest values of separability is "dog vs. cat." This observation implies
that the learned hyperplane may excessively specialize in distinguishing this particular
pair. Conversely, the "airplane/bird" pair proves to be the most effective.

We conduct a similar experiment on the fine-grained CUB200 dataset, which consists of
200 distinct bird classes (accessible at: https://www.vision.caltech.edu/datasets/cub_
200_2011/). Our approach includes finetuning the networks on subsets of 60 classes;
we generate 300 distinct subsets. In Table 9, we report the correlation and slope coef-
ficients of the regression analysis between the separability prior to and following the
fine-tuning process for both the VIT-8 and Resnet50 networks on the CUB200 dataset.
gain correlation are very high indicating that the separability before finetuning is rele-
vant indicator of performances.

Table 9 – Correlation and Slope Coefficient of the regression between the separability
before and after finetuning for the pretrained Resnet50.

Network Dataset Corr. Slope Intercept

Resnet-50 CIFAR10_4 0.76 0.73 0.89
CIFAR10_6 0.79 0.89 2.8
CUB200_60 0.71 0.63 7766

VIT-8 CIFAR10_4 0.97 0.88 3.88
CIFAR10_6 0.95 0.86 4.2
CUB200_60 0.88 0.60 8090

Table 10 – Correlation between multiple metrics given by a pretrained network and
separability when training from scratch.

Network Metric CIFAR10_4 CIFAR10_6

Resnet-50 Class Separability 0.95 0.92
Pair separability 0.92 0.89

VIT-8 Class Separability 0.99 0.98
Pair separability 0.98 0.98

https://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.vision.caltech.edu/datasets/cub_200_2011/
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(a) Finetuning on 6 classes of CIFAR10.
The analysis highlights the most promising
classes, such as bird, frog, dog and horse.
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(b) Finetuning on 4 classes of CIFAR10.
The analysis highlights the most promising
classes, such as bird, frog, dog and horse.

Figure 29 – Separability given by a Resnet-50 before and after finetuning on subsets
of CIFAR10. The x-axis represents the results from the Pretrained Resnet-50, while the
y-axis corresponds to the same network finetuned on subsets classes of CIFAR10.
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(a) Finetuning on 6 classes of CIFAR10.
The analysis highlights the most promising
classes, such as truck, dog, frog.
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(b) Finetuning on 4 classes of CIFAR10.
The analysis highlights the most promising
classes, such as ship, airplane, automobile.

Figure 30 – Separability given by a VIT-8 before and after finetuning on subsets of
CIFAR10. The x-axis represents the results from the Pretrained VIT-8, while the y-axis
corresponds to the same network finetuned on subsets of classes of CIFAR10.
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(b) Subsets of 6 classes of CIFAR10.

Figure 31 – Resnet50: Number of Pairs Separated before vs after finetuning on subsets
of CIFAR10.
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(a) Subsets of 4 classes of CIFAR10.
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(b) Subsets of 6 classes of CIFAR10.

Figure 32 – VIT8: Number of Pairs Separated before vs after finetuning on subsets of
CIFAR10.
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5.4.2 Training From Scratch

We delve into the possibility of identifying the subset that yields optimal generalization
in a transfer learning scenario when training a network from scratch.

We opt to utilize a Resnet18 (He et al., 2016), a standard and competitive architecture
within the field of Computer Vision (Wightman et al., 2021). On CIFAR10, we conduct
training on subsets comprising both n = 4 and n = 6 classes. Once again, we leverage
either the pre-trained Resnet50 or VIT-8 to derive a data representation, which subse-
quently facilitated the assessment of separability within the subsets prior to training.
It is crucial to note that, unlike fine-tuning, the separability indicators furnished by the
pre-trained networks may not necessarily align with the post-training separability. This
discrepancy arises from variations in dataset used for training, architectural differences,
and disparate training procedures.

Nevertheless, as detailed in Table 11, the pre-trained networks still serve as relevant
performance indicators, exhibiting robust correlation coefficients, especially concerning
class separability. We depict as well the separability of each run on Figure 37 and 38.

Similar to our approach during fine-tuning, we have graphically depicted the mean
separability for each class in Figure 29 and 30, offering valuable insights for the iden-
tification of the most promising classes. Intriguingly, in comparison to the fine-tuning
experiments, the optimal subsets reveal only marginal disparities. For instance, with
n = 6, the optimal subset is (automobile/bird/cat/deer/horse/truck) for Resnet-50.
As illustrated in Figure 29, most of these classes exhibit substantial potential.

We have also conducted a similar experiment on FASHION-MNIST (Xiao et al., 2017)
and MNIST (L. Deng, 2012), encompassing 10 distinct classes. For FASHION-MNIST,
the "Dress" class emerges as the most promising, which aligns logically with its dissim-
ilarity from the other clothing categories. It is noteworthy that, across both datasets,
none of the models produced by this optimal subset of classes are equivalent when
visualized via the Hasse Diagram.

Table 11 – Correlation between multiple metrics given by a pretrained network and
separability when training from scratch.

Metric CIFAR10_4 CIFAR10_6 FASHION MNIST

R
es

ne
t-

50

8

<

:

Separability 0.68 0.47 0.86 0.51
Class Separability 0.93 0.76 0.92 0.67
Pair separability 0.90 0.74 0.95 0.67

V
IT

-8

8

<

:

Separability 0.78 0.44 0.88 0.58
Class Separability 0.94 0.97 0.96 0.73
Pair separability 0.92 0.95 0.94 0.68

5.4.3 Few-Shot Learning

We carry out experiments in few-shot learning, a common scenario for assessing a
model’s ability to adapt to new classes. Specifically, our focus lies on inductive few-
shot learning, where predictions hinge solely upon a limited set of labeled examples. To
assess performance in transfer, we employ a nearest mean classifier (NCM) approach,
a well-established method in the realm of inductive few-shot learning (Y. Wang et al.,
2019).



111 5.4. Experiments

40.6 40.8 41 41.2 41.4 41.6
36.8

37

37.2

37.4

37.6

37.8

38

Separability by pretrained network

Se
p

ar
ab

ili
ty

af
te

r
tr

ai
ni

ng

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

(a) Training from scratch on 6 classes of CI-
FAR10. The analysis highlights the most
promising classes, such as deer, frog, horse,
and bird.
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(b) Training from scratch on 4 classes of CI-
FAR10. The analysis highlights the most
promising classes, such as truck, ship, air-
plane, and automobile.

Figure 33 – Training from scratch on subsets of classes of CIFAR10. The x-axis rep-
resents the results from the Pretrained Resnet-50, while the y-axis corresponds to the
Resnet18 trained from scratch on subsets of classes of CIFAR10.
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(a) Trained from scratch on 6 classes of CI-
FAR10. The analysis highlights the most
promising classes, such as deer, bird, dog
and frog.
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(b) Trained from scratch on 4 classes of CI-
FAR10. The analysis highlights the most
promising classes, such as deer, frog, horse,
and bird.

Figure 34 – Training from scratch on subsets of classes of CIFAR10. The x-axis rep-
resents the results from the Pretrained VIT-8, while the y-axis corresponds to the
Resnet18 trained from scratch on subsets of classes of CIFAR10.
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(a) Trained from scratch on 4 classes of
FASHION-MNIST. The analysis highlights
the most promising classes, such as Dress,
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(b) Trained from scratch on 4 classes of
FASHION-MNIST. The analysis highlights
the most promising classes, such as Dress,
Pullover, Coat, Trouser and T-shirt.

Figure 35 – Training from scratch on subsets of classes of FASHION-MNIST. The x-
axis represents the results from the Pretrained Resnet-50, while the y-axis corresponds
to the Resnet18 trained from scratch on subsets of classes of CIFAR10.
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(a) Trained from scratch on 4 classes of
MNIST with a Resnet-50. The analy-
sis highlights the most promising classes,
such as 7 and 4
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(b) Training from scratch on 4 classes of
MNIST. The analysis highlights the most
promising classes, such 6, 7 and 3

Figure 36 – Training from scratch on subsets of classes of MNIST. The x-axis represents
the results from the Pretrained Resnet-50, while the y-axis corresponds to the Resnet18
trained from scratch on subsets of classes of CIFAR10.
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(a) Separability by pretrained network vs
after training from scratch on subsets of 4
classes of CIFAR10.

10 15 20 25

0

10

20

30

Separability by pretrained network

Se
p

ar
ab

ili
ty

af
te

r
tr

ai
ni

ng

(b) Separability by pretrained network vs
after training from scratch on subsets of 6
classes of CIFAR10.

Figure 37 – Training from Scratch on subsets of CIFAR10, Resnet-50 employed to iden-
tify promising subsets.
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(a) Separability by pretrained network vs
after training from scratch on subsets of 4
classes of CIFAR10. X-axis corresponds to
the number of pairs separated by the Pre-
trained VIT-8.
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(b) Separability by pretrained network vs
after training from scratch on subsets of 6
classes of CIFAR10. X-axis corresponds to
the number of pairs separated by the Pre-
trained VIT-8.

Figure 38 – Training from Scratch on subsets of CIFAR10, VIT-8 employed to identify
promising subsets.
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(a) Separability by pretrained network vs
after training from scratch. X-axis corre-
sponds to the number of pairs separated by
the Pretrained Resnet50.
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(b) Separability by pretrained network vs
after training from scratch. X-axis corre-
sponds to the number of pairs separated by
the Pretrained VIT-8.

Figure 39 – Training from Scratch on subsets composed of 4 classes of FASHION-

MNIST.
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(a) Separability by pretrained network vs
after training from scratch. X-axis corre-
sponds to the number of pairs separated by
the Pretrained Resnet50.
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(b) Separability by pretrained network vs
after training from scratch. X-axis corre-
sponds to the number of pairs separated by
the Pretrained VIT-8.

Figure 40 – Training from Scratch on subsets composed of 4 classes of MNIST.
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Aligned with our methodology, we evaluate the separability of novel classes by em-
ploying representations derived from a pre-trained network, namely Resnet-50. How-
ever, in this instance, our separability assessment is derived only on models inferred

from pairs of the base classes, as few-shot learning exclusively trains on these classes.
For each dataset, we identify potential sets of pairs that exhibit the best and worst sep-
arability.

Once again, it remains uncertain whether the separability offered by the pre-trained
network serves as a reliable predictor for few-shot learning. The networks are trained
exclusively on base classes, and evaluation differs from standard classification.

To conduct our experiments, we use the networks provided by (Bendou et al., 2022).
Our experiments are carried out on standard few-shot learning datasets, that includes
MINIIMAGENET (Vinyals et al., 2016), FC100 (Oreshkin et al., 2018), TIEREDIMA-
GENET (M. Ren et al., 2018) and CIFAR-FS (Y. Liu et al., n.d.), all of which are widely
acknowledged benchmarks in the field. We evaluate performance using the Nearest
Class Mean (NCM) approach on both the best and worst class pair sets under the 1-shot
learning scenario, where each novel class has only a single labeled example. Addition-
ally, we establish a baseline by reporting performance across all class pairs. To ensure
robust results, we conduct 10,000 runs for each scenario, calculating average accuracy
and a 95% confidence interval across these runs.

As reported in Table 12, the worst sets consistently produce lower performance com-
pared to both the baseline and the best sets, in most datasets, with the exception of
TIEREDIMAGENET. Notably, the best sets consistently outperform the others across
all datasets. Specifically, on MINIIMAGENET, the most challenging pairs include crab
vs ants, lion vs bus, and Siberian Husky vs Dalmatian. Visual examples of these chal-
lenging pairs are provided in 41. A closer examination of these visual examples reveals
that “crab" and “ants" share similar colors, textures, and structural patterns. Similarly,
“lion" and “bus" are depicted against a comparable grassy background. Additionally,
Dalmatian and Husky both belong to the category of dog breeds and exhibit similar
color patterns, making them harder to distinguish.

Table 12 – Accuracy averaged over 10000 runs in Inductive Few Shot Learning (2-Ways,
1-Shot 15-Queries).

Dataset Best Worst Base

MINI-IMAGENET 0.94± 0.12 0.86± 0.12 0.87± 0.11
CIFARFS 0.87± 0.11 0.83± 0.15 0.85± 0.14
FC100 0.74± 0.1 0.68± 0.14 0.70± 0.15
TIERED-IMAGENET 0.95± 0.07 0.94± 0.07 0.95± 0.07
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(a) Crab (b) Ants

(c) Lion (d) Bus

(e) Husky (f) Dalmatian

Figure 41 – Depiction of the most challenging pairs on TIEREDIMAGENET: Crab vs
Ants; Lion vs Bus; Husky vs Dalmatian.
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5.5 Limitations and Perspectives

5.5.1 Limitations

Our proposed framework comes with limitations. We focus on models based on pairs,
and in practice, we potentially overlook interactions that may emerge when learning
is done on subsets of multiple pairs. However, it is worth noting that our theoretical
framework could be easily extended to include subsets of several pairs, instead of sin-
gleton of pairs, offering a potential solution to overcome this limitation. Furthermore,
our assertion about identifying promising subsets during training from scratch might
be overly ambitious and constrained, given that the effectiveness of subset identifica-
tion relies on pretrained networks.

5.5.2 Perspectives

We believe that further research can build upon the presented framework to investigate
several intriguing questions and explore various aspects of transfer learning. In Wight-
man et al., 2021, the authors highlight the need to adapt training to the considered deep
architecture, but finding the optimal training process remains a complex task. Our
framework could be leveraged to examine the impact of different training procedures
on the inferred representations and transferability.

By systematically varying the training settings, such as data augmentation techniques,
loss functions, and optimization algorithms, researchers can gain deeper insights into
how these factors affect the generalization capabilities of pretrained models. Under-
standing the nuances of training procedures could lead to the development of more
robust and transferable models. Moreover, the framework’s potential extends to in-
vestigating the transferability of representations across different domains and tasks.
Researchers can explore how pretrained models generalize across different datasets,
domains.

Additionally, the formalism introduced in this work opens up possibilities for con-
structing challenging few-shot learning datasets. By carefully designing subsets of
classes with specific characteristics, such as similarity, diversity, or hierarchical rela-
tionships, researchers can create benchmarks that thoroughly assess the generalization
capabilities of few-shot learning algorithms. These datasets can aid in evaluating the
effectiveness of different few-shot learning methods and shed light on the strategies
that work best.

5.6 Conclusion

In this chapter, we addressed the concept of transfer learning in classification tasks
by introducing a novel theoretical model. We provide an order relationship of learn-
ing, allowing us to precisely define transferability between different sets of classes. By
conducting experiments on multiple datasets, we demonstrated that the separability
achieved by classes before fine-tuning is a strong indicator of the transferability poten-
tial during the fine-tuning process. This finding opens up new possibilities for predict-
ing model performance and optimizing transfer learning practices.

Additionally, we explored training from scratch and few-shot learning scenarios, find-
ing that the separability provided by pretrained networks remains relevant for assess-
ing future performance. Overall, this work contributes to a deeper understanding of
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transfer learning mechanisms and paves the way for enhanced model generalization
and transferability in various real-world applications.

The proposed framework opens new research possibilities. It enables the study of the
impact of different training procedures on representations and transferability. More-
over, it helps creating challenging few-shot learning datasets and exploring transfer-
ability across domains. This framework paves the way for advancing transfer learning
research.
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6.1 Conclusion

Originally, generalization in machine learning mainly focused on how well models per-
formed on new data that was closely related to their training tasks. However, the ad-
vent of deep learning has brought about significant changes, revealing that deep learn-
ing architectures can actually generalize beyond their original training tasks. In this
manuscript, we have delved into various situations where this extended generalization
ability becomes apparent and proves to be advantageous.

To begin, let us provide a concise summary of each contribution and outline how they
could be further enhanced with additional dedicated time. Subsequently, we will con-
textualize this manuscript within a broader research framework.

6.1.1 Task-Related Invariant Operators

We have seen that deep learning architectures can provide versatile data representa-
tions, but their ability to generalize well, whether on new data or tasks, depends largely
on how the architecture is designed. The layers or operators used in building the ar-
chitecture can make it either invariant or equivariant to geometric transformations. For
instance, deep convolutional neural networks achieve invariance to Euclidean trans-
lations, which can be harnessed to create highly effective feature representations for
natural images.

But, determining the specific invariances or equivariances that should be achieved, es-
pecially in the case of irregular domains like graphs, can be a challenging task. Nonethe-
less, our research has demonstrated the feasibility of training models to learn these
layers as invariant operators tailored to a specific training task. In doing so, we have
successfully uncovered standard operations such as dilation, compression, and transla-
tion in the context of natural images. Importantly, our findings extend beyond regular
domains, showing that these operators can also be learned effectively for irregular and
abstract graph structures.

However, with additional time and further research efforts, our work stands to gain
valuable insights from complementary investigations. Several noteworthy directions
for future exploration include:

• Fixing learned operators: Building upon (d’Ascoli et al., 2021), an intriguing av-
enue of research involves investigating whether improved generalization can be
achieved by initially training the operators and subsequently fixing them to rede-
fine the architecture’s layers.

• Investigating others tasks and losses: While our current work primarily focuses
on classification tasks using cross-entropy, it would be enlightening to explore al-
ternative criteria, such as unsupervised and self-supervised losses. Analyzing the
potential differences between the inferred operators and discussing their implica-
tions. Similarly, assessing how data augmentation influences the learned operator
represents an intriguing area to understand their impact over the training process.

• Invariances in Transfer Learning: In the context of transfer learning, it would be
particularly insightful to study which invariances prove advantageous or detri-
mental. Some of these invariances may depend on the specific target tasks. For
example, invariance to colors may be beneficial in digit classification but subop-
timal for a birds dataset, where variations in colors is leveraged to distinguish
species.
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• Graphs and Transformers: Our methodology employs graph to embed data ge-
ometry, for instance treating an image as a grid graph. Considering the archi-
tecture of transformers (Dosovitskiy et al., 2020) and their self-attention layers, it
reveals a connection between graph neural networks and transformers. Indeed,
self-attention layers, originally designed for sequences, can be adapted to images
by viewing an image as a patchwork of smaller images. Each element in an image
(e.g., pixel) possesses spatial relationships with its neighbors, similar to nodes in
a graph connected to neighboring nodes. This relationship opens doors to further
exploration into how attention mechanisms can learn equivariant or invariant op-
erators (d’Ascoli et al., 2021), contributing to enhanced generalization capabilities.

6.1.2 Artificial Tasks for Improved Generalization

In the context of deep learning, the challenge of overfitting has led to the development
of various regularization techniques. Interestingly, some of these techniques can be
viewed as methods for artificially augmenting the complexity of the training task. For
instance, Mixup achieves this augmentation by generating virtual samples through lin-
ear interpolation. Unfortunately, in certain cases, these virtual samples may deviate
from the underlying data geometry.

To address this issue, we proposed an improvement to Mixup by incorporating locality-
based constraints. This adjustment led to enhanced generalization while mitigating the
regularization impact of Mixup, and we denoted this approach as Local Mixup. The
implementation of these constraints involves the use of a weight matrix that allocates
weights to interpolations based on the distances between the data points engaged in the
interpolation. Interestingly, this weight matrix corresponds directly to the adjacency
matrix of a graph. We conducted an exploration of several techniques for constructing
this graph, encompassing threshold graphs, K-nearest neighbor (KNN) graphs, and
decreasing exponential graphs.

Our theoretical analysis revealed that in low-dimensional spaces, Mixup exerted an
averaging effect that impacted the model’s bias and variance. In high-dimensional
spaces, Mixup influenced the Lipschitz constant of the model. Experimentally, we
demonstrated that Local Mixup outperformed Mixup in performance on well estab-
lished datasets such as SVHN, CIFAR-10, and FASHIONMNIST.

However, there remains ample opportunity for further investigation and enhancement
of our work. Some notable directions for future exploration include:

• Extending the Theoretical Framework to Higher Dimensions: We could exam-
ine cases where a function f⇤ achieves a zero loss on the training data, while con-
sidering neural networks composed of two hidden layers. This analysis could
shed light on properties of such functions, such as how Mixup encourages a
form of convexity, as the Mixup criterion expects that f(�x1 + (1 � �)x2) =
�f(x1) + (1 � �)f(x2). This exploration could also encompass convex interpo-
lation on simplicial complexes.

• Improving Mixup with geometry: It would be intriguing to investigate the im-
plementation to explore the use of Local Mixup in a latent space, as opposed to
the direct space, where the geometry is more likely to be Euclidean. One could
also use more relevant distance metrics and interpolation functions to generate
new samples, including the possibility of using a generative neural network like
a normalizing flow for interpolation in the latent space and subsequent recon-
struction of natural images.



Chapter 6. General Conclusion 122

• Further Exploring the Regularization Effect of Mixup: An engaging avenue of
research involves a comprehensive examination of the interpretation of Mixup as
a method for generating anisotropic noise along a specific direction determined
by the interpolation coefficient. Additionally, one could investigate Mixup as a
means to rebalance the gradient contributions of samples during training, espe-
cially those that tend to be disregarded as the training progresses. In particular,
Mixup can potentially reintroduce importance to these samples by interpolating
them with more challenging examples.

These unexplored avenues hold the promise of advancing our understanding of regu-
larization techniques like Mixup and their impact on deep learning generalization.

6.1.3 Generalization Beyond the Training Task: Coarse to Refined Labels

Deep learning architectures have showcased their remarkable ability to extend their
generalization capabilities beyond their original training tasks, particularly in the do-
main of transfer learning (Krizhevsky et al., 2017; Radford et al., 2015; Touvron et al.,
2021; Zhuang et al., 2020a). This achievement is often attained through training on
large datasets using self-supervised losses. In our investigation, we sought to deter-
mine whether it is possible to retrieve information from refined labels when training
on approximated, coarse, labels. Intriguingly, we identified two distinct phases in the
learning process, akin to what was observed by a prior study Shwartz-Ziv and Tishby,
2017. These phases can not be observed when solely considering the accuracy on the
training task but can be seen when monitoring the entropy of the feature space, as we
have demonstrated, or by assessing the mutual information between the input and the
feature space.

Moreover, we demonstrated that it is feasible to apply an entropic regularization in the
feature space to recover information related to the refined labels. This approach also
yields improvements in the model’s transferability in scenarios like Few Shot Learning.
We see the following avenues for further exploration:

• Hierarchical Datasets: Investigate our approach using hierarchical datasets such
as CIFAR100 or INaturalist. Additionally, examine existing metaclasses on Ima-
genet and assess the emergence of hierarchical structures and subclasses. Evalu-
ate whether these structures align with the dataset’s inherent hierarchy or differ
from it. It is worth noting that hierarchical datasets may not necessarily conform
to the latent space’s underlying geometry. For example, two birds from different
species may be classified by an expert as belonging to the same genus, while la-
tent spaces may indicate alternative metaclasses. Many researchers are exploring
the application of hyperbolic networks to solve hierarchical datasets (Peng et al.,
2021). Specifically, they are leveraging hyperbolic geometry’s unique properties
to better represent complex hierarchical relationships.

• Evolution of Feature Space Geometry: Most self-supervised learning research
typically focuses on achieving high accuracy on the test set. However, as in-
dicated, this metric often inadequately reflects the model’s transferability. Our
study demonstrated that entropy can reveal distinct phases during learning that
are not apparent when monitoring accuracy alone, potentially linked to collapses
in the feature space. Nonetheless, this metric provides a global perspective and
may not capture variations between individual classes. To comprehensively an-
alyze the feature space’s geometry, consider leveraging tools such as graphs and
derived metrics. This approach could lead to the development of new geometric
criteria for evaluating deep learning models.
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6.1.4 A Theoretical Framework for Generalization in Classification and Trans-
fer Learning

In chapter IV, we investigated the generalization from coarse to refined labels: a specific
scenario where training and target labels were related, and the input domain remained
unchanged. Therefore, we then extended our exploration to a more generalized context
of transfer learning that occurs in classification settings. We considered the case where
a model is trained on a set of classes C and demonstrates its ability to generalize to
another set of classes C’.

We proposed a theoretical framework for accurately defining such scenarios. We re-
visit a general definition of separability: a set of classes C is deemed separable if any
pair of classes of C is separated by at least one model. We proceed to define models as
bi-partation, such as hyperplanes that split the space into two parts. We characterize
models learned on pairs of classes and the set of pairs that they can effectively separate.
This framework allows us to introduce an ordering relationship among models, reveal-
ing which pairs of classes are more useful when learning. Ideally, the concept attempts
to address questions, such as, determining the minimal size of a set of classes C to learn
to separate a set of classes C’.

Experimentally, we tested our approach on multiple scenarios, such as identifying op-
timal subsets of classes for fine-tuning or training a neural network; identifying classes
that may pose difficulty in few-shot learning. While this framework retains simplicity,
it serves as a valuable tool for identifying promising subsets of classes. Moreover, we
observed that the choice of the deep learning architecture employed in building the
models exhibits different models and ordering, suggesting differences in their underly-
ing geometry. Future research could be conducted in the following directions:

• Extension to Subsets of Classes: While the current framework primarily focuses
on pairs of classes, it could be extended to subsets of classes. This extension will
offer the advantage of defining relationships of learning at different cardinalities.
One application could involve generating, or decomposing a dataset into, classifi-
cation datasets with varying degrees of complexity and investigating incremental
learning strategies, for example.

• Incorporation of Data Geometry: The current framework provides limited in-
sights into the geometry of the data. To enhance its effectiveness, theoretical
results might be obtained by considering simple statistical hypotheses, such as
Gaussian distributions to represent classes. Considering the work of (Fang et
al., 2022) which proposed a "probably approximately correct" (PAC) approach for
out-of-distribution scenarios, one could extend this work by seeing it as an exten-
sion in the context of transfer learning.

• Investigating Architectural Differences: Utilizing the framework to investigate
the impact of different architectures and training processes on learning. In re-
cent years, multiple architectures and training processes have been proposed by
the community. This exploration could reveal how architectural choices lead to
varying representations.

• Characterizing Minimal Class Requirements: Determining the minimum num-
ber of classes necessary to learn to distinguish all classes in a data set composed
of N classes. While in worst-case scenarios, this number would be N, it is con-
ceivable that very large datasets like ImageNet may be solvable with a smaller
number of classes, paving the way for efficient transfer learning strategies.
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6.1.5 Global conclusion

In summary, our research has delved into multiple scenarios where deep learning ar-
chitectures demonstrate the ability to generalize beyond their initial training task. This
ability has been extensively leveraged in the field of transfer learning. The ultimate
goal is to achieve strong or general artificial intelligence capable of improvising and
learning independently, addressing new and unseen tasks. As Demis Hassabis stated,
transfer learning is the key to general intelligence. [...] The key to successful transfer learning
lies in the acquisition of conceptual knowledge abstracted from the perceptual details of its
source.

Consequently, over the years, the field of deep learning has witnessed a proliferation
of new architectures, criteria, and training process introduced by the community to
deliver increasingly abstract data representations. There has been a noticeable shift in
research practices, marked by a growing tendency to utilize the same large pretrained
models as a starting point and fine-tune it for specific target tasks. In the realm of com-
puter vision, the ultimate aspiration is to develop a universal feature extractor capable
of representing natural images that could solve any classification problem.

Yet, there remains room for investigating transfer learning and its underlying mech-
anisms. While self-supervised and unsupervised learning methods have become the
dominant approaches in the field, the optimal training processes leading to the highest
transferability are still ambiguous. This ambiguity is exacerbated by the fact that each
architecture comes with its own training process (Wightman et al., 2021). As a result,
fundamental questions persist, including:

• Which components of the architecture should be fine-tuned, or frozen?

• What type of information is extracted at each layer of the model?

• What geometric properties (invariance, equivariance) should be targeted by dif-
ferent parts of the model?

• Can we design an architecture with sufficient generality to avoid overfitting to the
training task? What does it mean being overspecialized for a task, and in which
scenarios is it problematic?

The last question might be unsolvable with current architectures. Let us consider our
experience with learning from coarse-grained data to predict fine-grained labels. Our
regularization technique enabled us to extract information about the fine-grained la-
bels. However, achieving the right balance between the supervised learning criterion
and the regularization was crucial. If we applied too much regularization, the problem
remained unsolvable because no useful information was learned from the labeled data.
On the other hand, insufficient regularization made the representation too specific to
the coarse-grained labels. The optimal balance between these two criteria depends

on the specific target task. A different target task would likely necessitate a different
balance.

In this thesis, our exploration primarily centered around scenarios within the domain
of classification. We examined transfer learning from one classification task to another,
learned invariant operators with respect to classification, generated artificial tasks to en-
hance generalization on classification dataset. We delved into transfer learning within
the realm of pattern recognition, highlighting how learning from specific data can yield
general patterns applicable to other datasets.

However, as noted by (Lake et al., 2017), deep learning models, despite their prowess
in pattern recognition and impressive performance across various tasks, still lack cer-
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tain essential traits of human-like general intelligence. True general intelligence encom-
passes more than mere pattern recognition; it encompasses the ability to reason, learn
from minimal examples (few-shot learning), and comprehend causal relationships be-
tween objects and events in the world.

Deep learning models have achieved remarkable success in tasks like image recogni-
tion, natural language processing, and playing complex games. However, they do not
possess the same level of abstract reasoning and common-sense understanding that
humans do. Deep learning has its strengths, but additional techniques and paradigms
may be necessary to achieve the kind of versatile, human-like intelligence that many
envision for the future of AI.
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Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F., & Vandergheynst, P. (2018).
Graph signal processing: overview, challenges, and applications. Proceedings of
the IEEE, 106(5), 808–828.

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., & Vandergheynst, P. (2018). Graph
signal processing: overview, challenges, and applications. Proceedings of the IEEE,
106(5), 808–828.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on knowl-
edge and data engineering.

Papernot, N., & McDaniel, P. (2018). Deep k-nearest neighbors: towards confident, in-
terpretable and robust deep learning. arXiv preprint arXiv:1803.04765.

Park, C., Yun, S., & Chun, S. (2022). A unified analysis of mixed sample data augmen-
tation: a loss function perspective. arXiv preprint arXiv:2208.09913.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. International conference on machine learning, 1310–1318.



Bibliography 134

Pasdeloup, B., Gripon, V., Vialatte, J.-C., Grelier, N., & Pastor, D. (2018). A neighborhood-
preserving translation operator on graphs.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., & Yang, B. (2020). Geom-gcn: geometric graph
convolutional networks.

Peng, W., Varanka, T., Mostafa, A., Shi, H., & Zhao, G. (2021). Hyperbolic deep neural
networks: a survey. IEEE Transactions on pattern analysis and machine intelligence,
44(12), 10023–10044.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., & Hinton, G. (2017). Regularizing neu-
ral networks by penalizing confident output distributions. International Confer-
ence on Learning Representations (ICLR).

Peyré, G., & Cuturi, M. (2019). Computational optimal transport: with applications to
data science. Foundations and Trends® in Machine Learning, 11(5-6), 355–607.

Pratt, L. Y. (1992). Discriminability-based transfer between neural networks. Advances
in neural information processing systems, 5.

Qin, L., & Zhu, X. (2013). Promoting diversity in recommendation by entropy regular-
izer. Twenty-Third International Joint Conference on Artificial Intelligence.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning transfer-
able visual models from natural language supervision.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv:1511.06434.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving lan-
guage understanding by generative pre-training.

Raina, R., Battle, A., Lee, H., Packer, B., & Ng, A. Y. (2007). Self-taught learning: transfer
learning from unlabeled data. ICML, 759–766.

Rame, A., Sun, R., & Cord, M. (2021). Mixmo: mixing multiple inputs for multiple out-
puts via deep subnetworks. arXiv preprint arXiv:2103.06132.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: unified,
real-time object detection. Proceedings of the IEEE conference on computer vision
and pattern recognition, 779–788.

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J. B., Larochelle, H.,
& Zemel, R. S. (2018). Meta-learning for semi-supervised few-shot classification.
arXiv:1803.00676.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems, 28.

Ristin, M., Gall, J., Guillaumin, M., & Van Gool, L. (2015). From categories to subcate-
gories: large-scale image classification with partial class label refinement. Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 231–239.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of math-
ematical statistics, 400–407.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution
image synthesis with latent diffusion models. Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 10684–10695.

Rosenstein, M. T., Marx, Z., Kaelbling, L. P., & Dietterich, T. G. (2005). To transfer or not
to transfer. NIPS 2005 workshop on transfer learning, 898(3).

Rothe, R., Timofte, R., & Van Gool, L. (2015). Dex: deep expectation of apparent age
from a single image. Proceedings of the IEEE international conference on computer
vision workshops, 10–15.



135 Bibliography

Rothe, R., Timofte, R., & Van Gool, L. (2018). Deep expectation of real and apparent age
from a single image without facial landmarks. International Journal of Computer
Vision, 126(2-4), 144–157.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recogni-
tion challenge. International journal of computer vision, 115, 211–252.

Sandryhaila, A., & Moura, J. M. F. (2013). Discrete signal processing on graphs. IEEE
Transactions on Signal Processing, 61(7), 1644–1656.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph
neural network model. IEEE transactions on neural networks, 20(1), 61–80.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: a unified embedding for face
recognition and clustering. Proceedings of the IEEE conference on computer vision
and pattern recognition, 815–823.

Shen, Z., Liu, Z., Xu, D., Chen, Z., Cheng, K.-T., & Savvides, M. (2021). Is label smooth-
ing truly incompatible with knowledge distillation: an empirical study. arXiv
preprint arXiv:2104.00676.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for
deep learning. Journal of big data, 6(1), 1–48.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The
emerging field of signal processing on graphs: extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Processing Maga-
zine, 30(3), 83–98.

Shuman, D. I., Ricaud, B., & Vandergheynst, P. (2012a). A windowed graph fourier
transform. 2012 IEEE Statistical Signal Processing Workshop (SSP), 133–136.

Shuman, D. I., Ricaud, B., & Vandergheynst, P. (2012b). A windowed graph fourier
transform. 2012 IEEE Statistical Signal Processing Workshop (SSP), 133–136.

Shwartz-Ziv, R., & Tishby, N. (2017). Opening the black box of deep neural networks
via information. arXiv preprint arXiv:1703.00810.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Master-
ing the game of go with deep neural networks and tree search. nature, 529(7587),
484–489.

Simard, P., Lecun, Y., Denker, J., & Victorri, B. (2001). Transformation invariance in pat-
tern recognition – tangent distance and tangent propagation. International Jour-
nal of Imaging Systems and Technology, 11.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. 2017 IEEE win-
ter conference on applications of computer vision (WACV), 464–472.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1), 1929–1958.

Stewart, L., Bach, F., Berthet, Q., & Vert, J.-P. (2023). Regression as classification: influ-
ence of task formulation on neural network features. International Conference on
Artificial Intelligence and Statistics, 11563–11582.

Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., & Fergus, R. (2014). Training convolu-
tional networks with noisy labels. arXiv preprint arXiv:1406.2080.

Sun, C., Huang, L., & Qiu, X. (2019). Utilizing bert for aspect-based sentiment analysis
via constructing auxiliary sentence. arXiv preprint arXiv:1903.09588.



Bibliography 136

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initializa-
tion and momentum in deep learning. International conference on machine learn-
ing, 1139–1147.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the in-
ception architecture for computer vision. Proceedings of the IEEE conference on
computer vision and pattern recognition, 2818–2826.

Taherkhani, F., Kazemi, H., Dabouei, A., Dawson, J., & Nasrabadi, N. M. (2019). A
weakly supervised fine label classifier enhanced by coarse supervision. Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, 6459–6468.

Takahashi, R., Matsubara, T., & Uehara, K. (2019). Data augmentation using random
image cropping and patching for deep cnns. IEEE Transactions on Circuits and
Systems for Video Technology, 30(9), 2917–2931.

Tan, M., & Le, Q. (2019). Efficientnet: rethinking model scaling for convolutional neural
networks. International conference on machine learning, 6105–6114.

Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., & Isola, P. (2020a). What makes for
good views for contrastive learning? Advances in neural information processing
systems, 33, 6827–6839.

Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., & Isola, P. (2020b). What makes for
good views for contrastive learning? Advances in neural information processing
systems, 33, 6827–6839.

Touvron, H., Sablayrolles, A., Douze, M., Cord, M., & Jégou, H. (2021). Grafit: learning
fine-grained image representations with coarse labels. Proceedings of the IEEE/CVF
international conference on computer vision, 874–884.

Tripuraneni, N., Jordan, M., & Jin, C. (2020). On the theory of transfer learning: the
importance of task diversity. Advances in neural information processing systems.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S., & Lucic, M. (2019). On mutual
information maximization for representation learning. arXiv preprint arXiv:1907.13625.

Van Den Oord, A., Vinyals, O., et al. (2017). Neural discrete representation learning.
Advances in neural information processing systems, 30.

van den Berg, E. (2016). Some insights into the geometry and training of neural net-
works. arXiv:1605.00329.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Lopez-Paz, D., & Bengio, Y.
(2019). Manifold mixup: better representations by interpolating hidden states.
International Conference on Machine Learning, 6438–6447.

Vialatte, J.-C., Gripon, V., & Coppin, G. (2017). Learning local receptive fields and their
weight sharing scheme on graphs.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016). Matching networks for
one shot learning. Advances in neural information processing systems, 29.

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., et al. (2018). Deep
learning for computer vision: a brief review. Computational intelligence and neu-
roscience, 2018.

Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The caltech-ucsd
birds-200-2011 dataset.

Wang, M., & Deng, W. (2018). Deep visual domain adaptation: a survey. Neurocomput-
ing, 312, 135–153.

Wang, Y., Chao, W., Weinberger, K., & van der Maaten, L. S. (2019). Revisiting nearest-
neighbor classification for few-shot learning. arXiv:1911.04623.

Wang, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2020). Generalizing from a few examples: a
survey on few-shot learning. ACM computing surveys (csur), 53(3), 1–34.



137 Bibliography

Wightman, R., Touvron, H., & Jégou, H. (2021). Resnet strikes back: an improved train-
ing procedure in timm. arXiv preprint arXiv:2110.00476.

Wu, C., Tygert, M., & LeCun, Y. (2017). A hierarchical loss and its problems when clas-
sifying non-hierarchically. arXiv preprint arXiv:1709.01062.

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xu, Y., Ding, J., Zhang, L., & Zhou, S. (2021). Dp-ssl: towards robust semi-supervised
learning with a few labeled samples. Advances in Neural Information Processing
Systems, 34.

Yang, L., Hanneke, S., & Carbonell, J. (2013). A theory of transfer learning with appli-
cations to active learning. Machine learning, 90, 161–189.

Yeh, R. A., Hu, Y.-T., Hasegawa-Johnson, M., & Schwing, A. (2022a). Equivariance dis-
covery by learned parameter-sharing. International Conference on Artificial Intel-
ligence and Statistics, 1527–1545.

Yeh, R. A., Hu, Y.-T., Hasegawa-Johnson, M., & Schwing, A. (2022b). Equivariance dis-
covery by learned parameter-sharing. International Conference on Artificial Intel-
ligence and Statistics, 1527–1545.

Yin, W., Wang, H., Qu, J., & Xiong, C. (2021). Batchmixup: improving training by inter-
polating hidden states of the entire mini-batch.

Ying, W., Zhang, Y., Huang, J., & Yang, Q. (2018). Transfer learning via learning to trans-
fer. International conference on machine learning, 5085–5094.

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in
deep neural networks? Advances in neural information processing systems, 27.

Yu, Y., Jiang, H., Bahri, D., Mobahi, H., Kim, S., Rawat, A. S., Veit, A., & Ma, Y. (2021).
An empirical study of pre-trained vision models on out-of-distribution gener-
alization. NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and
Applications.

Yuan, L., Tay, F. E., Li, G., Wang, T., & Feng, J. (2019). Revisit knowledge distillation: a
teacher-free framework.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). Cutmix: regulariza-
tion strategy to train strong classifiers with localizable features. Proceedings of
the IEEE/CVF international conference on computer vision, 6023–6032.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional net-
works. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part I 13, 818–833.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM,
64(3), 107–115.

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). Mixup: beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412.

Zhang, R., Isola, P., & Efros, A. A. (2016). Colorful image colorization. European confer-
ence on computer vision, 649–666.

Zhang, Z., & Sabuncu, M. (2020). Self-distillation as instance-specific label smoothing.
Advances in Neural Information Processing Systems, 33, 2184–2195.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep
features for discriminative localization. Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2921–2929.

Zhou, C., Loy, C. C., & Dai, B. (2021). Denseclip: extract free dense labels from clip.
arXiv:2112.01071.

Zhou, K., Yang, J., Loy, C. C., & Liu, Z. (2022). Learning to prompt for vision-language
models. International Journal of Computer Vision, 130(9), 2337–2348.



Bibliography 138

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2020a). A
comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43–
76.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2020b). A
comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43–
76.



139 Index

Index

A

Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . 24
Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Average Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C

Confidence Penalization . . . . . . . . . . . . . . . . . . . . 80
Convolutional layers . . . . . . . . . . . . . . . . . . . . . . . . 25
CrossEntropyLoss . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D

Deep Learning Architecture . . . . . . . . . . . . . . . . . 24
Depth of an Architecture . . . . . . . . . . . . . . . . . . . . 24
Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

E

Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Empirical Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Epoch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

F

Feature Extractor. . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Feature maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Feature space of Deep Learning Architecture 25
Fully Connected Layers . . . . . . . . . . . . . . . . . . . . . 25
Fundamental number . . . . . . . . . . . . . . . . . . . . . 100
Fundamental Pairs . . . . . . . . . . . . . . . . . . . . . . . . 100

G

Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Graph Fourier Transform . . . . . . . . . . . . . . . . . . . 42
Graph Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Graph Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

L

Label Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

M

Max Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
MutualInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78, 79

O

Output of Deep Learning Architecture . . . . . . 25
Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 32

P

Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 26

R

Residual Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

S

Separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

U

Undirected Graph. . . . . . . . . . . . . . . . . . . . . . . . . . .42

V

Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



Index 140






	Abstract
	Acknowledgments
	Introduction
	Scientific context
	Artificial Intelligence
	Deep learning
	Supervised learning: Generalization on a specific task
	Transfer Learning

	Classification and Vision: An Overview of Supervised Learning with Deep Neural Networks
	Deep Learning Architecture for classification
	Standard Vision Datasets for Supervised Learning
	Training Procedure

	Problem Statement
	Criterion (Loss Function)
	Risk Minimization
	Generalization
	Beyond the training task in classification: looking at extensions of the notion of generalization

	Related Work
	Extension of the notion of generalization 
	The difficulty of generalization
	Representation Learning

	Summary of Contributions
	Learnable Operators for Translation-Invariant Representations on Irregular Domains
	Using virtual tasks to obtain a better generalization
	Entropy regularization of the feature to enhance transferability of deep learning architecture
	A theoretical framework on Transfer in Classification: How Well do Subsets of Classes Generalize?


	Inferring invariant operators for classification tasks
	Introduction
	Deep Learning Architecture: equivariance and invariance
	Graph Signal translations

	Graph Signal Processing
	Classical tools in Graph Signal Processing
	Connection between GSP and Discrete Signal Processing

	Translation in Signal Processing and GSP
	Graph Signal Translation
	Equivariant layers through weight sharing

	Problem Statement and Methodology
	Problem Statement 
	Temperature-Based Optimization for One-Hot Constraints

	Experiments
	Sanity check with regular grid graphs
	Experiments with a near-regular inferred graph structure
	Experiments with hyperlink networks
	Influence of hyperparameters

	Conclusion

	Enhancing Generalization through Local Mixup: leveraging locality to prevent manifold intrusion 
	Introduction
	Regularization methods to enhance generalization
	Mixing method as data augmentation
	Side Effect of mixup

	Problem Statement and proposed Approach
	Problem Statement 
	Proposed approach: Local Mixup

	Optimal Mixup Criterion Function in dimension 1
	Mixup Criterion
	Optimal Mixup Criterion Function 

	Local Mixup
	The Bias/Variance Trade-off
	Periodic setting
	Independent and Identically Distributed Random Output Setting
	High Dimension and Lipschitz constraint

	Experiments
	Low dimension
	High dimension
	Experiments on Classification Datasets

	Additional studies
	Graph Construction in High Dimension
	Inter and Intra Mixup
	Hyperparameter 

	Limitations and perspectives
	Limitations
	Perspectives

	Conclusion

	From coarse to refined labels: generalizing beyond the training task
	Introduction
	From Coarse to Refined Labels
	The Loss of Information Caused by the Cross Entropy Loss
	Entropy Regularization and refined labels
	Problem Statement

	Impact of the Criteria on the Feature Space
	Links between Feature Selection and Cross Entropy and Label Smoothing
	Entropy regularization to encourage diversity in the feature space

	Implementation of feature entropy regularization 
	Estimation of the features entropy
	Differentiation of the feature entropies

	Experiments
	Relationship between the Entropy of the Feature Space and Transfer Ability
	Retrieving information on refined label from the Output distribution
	Output Distribution as an indicator of transferability
	Transfer learning: fewshot applications
	Additional experiments: Influence of hyperparameters
	Does our method correctly approximate entropy?

	Limitations and Perspectives
	Limitations
	Perspectives

	Conclusion

	Transfer in Classification: How Well do Subsets of Classes Generalize?
	Introduction
	Generalizing beyond the training task: Foundation models
	Transfer Learning
	Few-Shot Learning
	Problem Statement

	Proposed Theoretical Framework
	General Case
	Hyperplanes

	Methodology
	Settings
	Estimating the generalization potential of a subset
	Training procedure
	Evaluation

	Experiments
	Finetuning
	Training From Scratch
	Few-Shot Learning

	Limitations and Perspectives
	Limitations
	Perspectives

	Conclusion

	General Conclusion
	Conclusion
	Task-Related Invariant Operators
	Artificial Tasks for Improved Generalization
	Generalization Beyond the Training Task: Coarse to Refined Labels
	A Theoretical Framework for Generalization in Classification and Transfer Learning
	Global conclusion


	Bibliography
	Index

