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ABSTRACT

This thesis deals with the development of regularized methods using penalized maximum likelihood
estimation. More specifically, I use a sparsity-inducing iterative method called adaptive ridge. The
latter is competitive compared to other approaches, namely in terms of ease of implementation and
computational cost. My work consists in the application of this method to a wide range of problems:
survival analysis, spline regression, and spatial segmentation. Applications in several problematics
show that the adaptive ridge’s good performance in selection, great ease of implementation and low
computational cost can make it a good starting point in penalization-base variable selection.

In survival analysis, data are often collected by following a cohort, in which case the events are
widely spread through time and the sample is suspected to present heterogeneity. I first focus on
developing a method for the inference of the incidence, which allows to detect heterogeneity with
respect to the date of birth (or cohort). A closely related problem is the study of the evolution of the
inference as a joint function of the age, the date of birth (cohort), and the calendar time (period).
Epidemiologists have long resorted to the age-period-cohort model or its submodels. The latter as-
sume linear effects of each variable, which is deemed too simplistic to estimate potentially important
features of the incidence. In this framework, I develop a model allowing for the joint estimation of
two variables’ effects and of their interaction.

Spline regression is known to be a competitive method for non-parametric regression. However
the estimated spline depends highly on the initial choice of knots and choosing the best knots is a
computationally hard problem. I propose an approach for the estimation of the best knots jointly
with the spline function. By initiating a large number of knots and successively removing the least
relevant ones, my method makes a slightly restrictive hypothesis to remove much of the computa-
tional burden.

In spatial statistics, the spatial domain is often divided into “units” and data are gathered at the
unit level. The spatial effect is estimated on each unit and its representation is subject to the arbitrary
of the unit division, which makes its interpretation difficult. This can be resolved by regularization,
which reduces the variance and increases the interpretability. I present a model for segmentation of
spatial data based on the adjacency structure of the units.
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RÉSUMÉ

Cette thèse porte sur l’élaboration de méthodes régularisées utilisant l’estimation par maximum de
vraisemblance pénalisée. Plus précisément, j’utilise une méthode parsimonieuse itérative, appelée
adaptative ridge. Cette dernière est compétitive par rapport à d’autres approches, notamment en ter-
mes de facilité de mise en œuvre et de temps de calcul. Mon travail consiste à appliquer cette méth-
ode à un large éventail de problèmes : l’analyse de survie, la régression par splines et la segmentation
spatiale. Ces applications dans différentes problématiques montrent que la bonne performance de
l’adaptive ridge en sélection, sa grande facilité de mise en œuvre et son faible coût de calcul peuvent
en faire un bon point de départ dans les méthodes de sélection de variable par pénalisation.

En analyse de la survie, les données sont souvent recueillies en suivant une cohorte, auquel cas
les événements sont largement répartis dans le temps et l’échantillon peut présenter une hétérogénéité.
Je me concentre d’abord sur le développement d’une méthode d’estimation de l’incidence qui per-
met de détecter l’hétérogénéité par rapport à la date de naissance (ou cohorte). Un problème proche
est l’étude de l’évolution de l’inférence en fonction de l’âge, de la date de naissance (cohort) et de
la date calendaire (period). Les épidémiologistes ont longtemps eu recours au modèle age-period-
cohort ou à ses sous-modèles. Ces dernières supposent des effets linéaires de chaque variable, ce qui
est jugé trop simpliste pour estimer des caractéristiques potentiellement importantes de l’incidence.
Dans ce cadre, j’élabore un modèle estimant cojointement l’effet de deux variables et de leur inter-
action.

La régression par splines est connue pour être une méthode performante de régression non
paramétrique. Cependant, la spline estimée dépend fortement du choix initial des nœuds et le
choix des meilleurs nœuds est un problème difficile en pratique. Je propose une approche perme-
ttant l’estimation des meilleurs nœuds conjointement avec la fonction spline. En initiant un grand
nombre de nœuds et en supprimant successivement les moins pertinents, ma méthode fait une hy-
pothèse légèrement restrictive pour diminuer grandement le temps de calcul.

En statistiques spatiales, le domaine spatial est souvent divisé en "unités" et les données sont
recueillies au niveau des unités. L’effet spatial est estimé sur chaque unité et sa représentation est
soumise à l’arbitraire de la division de l’unité, ce qui rend son interprétation difficile. Ceci peut être
résolu par la régularisation, ce qui réduit la variance et augmente l’interprétabilité. Je présente un
modèle de segmentation des données spatiales basé sur la structure d’adjacence des unités.
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Plan of this thesis

This thesis is organised as follows:

Chapter 1 introduces, compares, and discusses the main statistical approaches to model selection.
A great emphasis is laid on penalized likelihood methods. First, I detail the most famous methods
of penalized maximum likelihood estimate: the lasso, the elastic-net, and further refinements. I de-
velop on the use of these penalties in the linear model. Secondly, I touch on two of the methods of
model selection which are not based on penalization: best subset selection and stepwise selection. In
the third section, I introduce the Majorize-Minimization (MM) optimization scheme, which, applied
to penalized likelihoods, yields two important iterative penalized methods: the Local Linear Approx-
imation (also termed adaptive lasso) and the Local Quadratic Approximation. I then introduce the
iteratively defined penalized method used throughout this work: the adaptive ridge. Finally, I de-
velop on the statistical methods which enforce an a priori structure on a parameter.

Chapter 2 deals with the application of the adaptive ridge to the context of hazard estimation in
survival analysis. After an introduction on the topic, and an illustration of the method to a one-
dimensional case, we detail how the fused adaptive ridge allows for a new method of regularized es-
timation of the bi-dimensional hazard rate, with detection of breakpoints. Even though this methods
applies to a wide array of problems, we illustrate it through the angle of age-period-cohort analysis.

Chapter 3 deals with the same problem than Chapter 1, but through the context age-period-cohort
analysis. We first introduce the topic of age-period-cohort analysis, as well as the use and drawbacks
of the age-period-cohort model. Then, we develop on the “Age-Cohort-Interaction ” model, which
builds on the works of the previous chapter. This model can be viewed as a generalization of the
age-period-cohort analysis, which does not suffer from its defects, at the added cost of computation
time.

Chapter 4 deals with a different application of the adaptive ridge. In this part, we apply this method
to the problem of finding the best knots to support a regression spline. This problem has long been
deemed computationally intractable. We show that provided some simplifying assumptions, our new
spline regression method can select the best knots as well as the regression spline in a fast fashion.
Before developing on our method, we introduce the topic of spline regression and present the main
tools and issues in this topic.

Chapter 5 deals with the applications of the adaptive ridge to regularization of spatially-correlated
data. When the statistical problem has a spatial structure that is given in already chosen zones, the
problem of regularization becomes challenging. We introduce a method for regularization along a
graph, with an application to inference for medical data.

The works of Chapters 2 and 4 has lead to two preprints currently under revision. These two
chapters consist of these preprints, reproduced as is and preceded by introductory talks on their
respective matters. These two papers are given in Sections 2.2 ad 4.2, with respective supplementary
materials given in Sections 2.3 and 4.3 respectively. These papers define their own notations, which
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are for the most part consistent with the rest of the manuscript. Except for these sections, the present
document forms a consistent manuscript, even if the Chapters were divided so as to be able to be
read separately.
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Notations and Definitions

Definitions

• The Lq norm of a vector u is noted ‖u‖q . The L2 norm is also abbreviated ‖u‖.

• E [X ] and V [X ] denote the respective expectation and variance of the random variable X .

• Tr denotes the trace.

• →d denotes the convergence in distribution.

• AT denotes the transpose of the matrix A.

• min+ {u} denotes the minimum taken only over the positive values of the vector u

• (x)+ denotes the positive part of x, that is max(x,0).

• diag{ui }i is the diagonal matrix whose non-zero entries are u1, . . . ,un .

• N (., .) denotes the (possibly multivariate) normal distribution. The two arguments are the
expectancy and variance.

• #A denotes the cardinal of the set A.

• When f is a function and x an element from its domain, f (x−) and f
(
x+)

denote the lim-
its limt→x f (t ) in the cases t < x and t > x, respectively.

Notations

• Vectors and matrices are noted in bold. When necessary, vectors are identified with column
matrices.

• n is the sample size

• i ∈ {1, . . . ,n} is the index of the individuals

• p is the number of covariates

• j ∈ {
1, . . . , p

}
is the index of the covariates

• In the context of penalized likelihood methods, λ ∈ R is the penalty constant; in the context of
survival analysis λ :R 7→R+ is the hazard rate.

• β is the parameter to be estimated

• I refers to the identity matrix, whose dimension depend on the context.

• `=− logL is the negative log-likelihood and L is the likelihood.

• I use the symbol “,” when the equality serves as a definition.
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Abbreviations

• MM: Majorize-Minimization optimization

• NLL: negative log-likelihood

• LQA: Local Quadratic Approximation

• LLA: Local Linear Approximation

• AIC: Akaike Information Criterion

• BIC: Bayesian Information Criterion

• OLS: Ordinary Least Squares (estimate)

• MLE: Maximum Likelihood Estimate

• PCH: Piecewise Constant Hazard (model)

• LARS: Least Angle Regression

Conflicts in notation between chapters

We have tried to use coherent and non-conflicting notations for the mathematical objects defined in
this thesis. However, for the sake of consistency with the conventions of the field, we made the choice
to keep conventional notations for known quantities. The instantaneous hazard rate for instance, is
noted λ(t ) (as a function of t ) as is standard in survival analysis and in the study of stochastic pro-
cesses. In other parts of the manuscript, we also used the variable λ to denote the penalty constant
in penalized maximum likelihood methods.

These notational conflicts have been kept to ease the understanding of the manuscript. They
occur between different chapters but not inside each chapter. We stress that the potential uncertainty
is removed when the context is taken into consideration.



Contents

Abstract i

Plan of the thesis v

Scientific communications vii

Definitions and Notations ix

1 Introduction 1

1.1 Regularized estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Ridge regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Lasso estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Elastic-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.4 Bridge regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.5 Berhu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.6 Penalized likelihood methods as a Bayesian prior . . . . . . . . . . . . . . . . . . . 13

1.1.7 Non-concave penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.7.1 Hard-thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.7.2 SCAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.7.3 Logarithmic penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.7.4 Available implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Subset selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Best subset selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Stepwise Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Iterative penalized methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 MM optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 MM optimization applied to non-concave penalties . . . . . . . . . . . . . . . . . 22

1.3.2.1 Local Quadratic Approximation . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.2.2 Local Linear Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.3 Adaptive Ridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3.1 Relation to similar procedures . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.3.2 Numerical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Structured variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Group lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.2 Overlapping groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.3 Hierarchical structured sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.4 Fused lasso and total variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.5 Fused Adaptive Ridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xi



xii CONTENTS

2 Regularized estimation of the hazard rate 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.2 The piecewise constant hazard estimation . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.2.1 Proportional hazard model with piecewise constant hazard . . . . . . . 41
2.1.3 Cohort data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Regularized estimation of the hazard rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Application to the evolution of breast cancer mortality . . . . . . . . . . . . . . . . . . . . 66

3 Estimating interactions in the age-cohort model 73
3.1 Introduction to age-period-cohort analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 The age-cohort-interaction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 The estimating procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4 Choice of the penalty constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.1 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5.2 Predictive performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.3 Perspective plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Spline regression with automatic knot selection 89
4.1 Introduction to spline regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1 Spline regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.1.1 Definition of splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.1.2 The truncated power basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.1.3 B-spline basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.1.4 Regression using splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.2 Penalized approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.2.1 Smoothing splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.2.2 O’Sullivan Penalized Splines . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.2.3 P-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Spline regression with automatic knot selection . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Comparison of A-spline with P-spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Segmentation of spatial data 135
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2 A model for spatial segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.1 Using graphical data for spatial segmentation . . . . . . . . . . . . . . . . . . . . . 137
5.2.2 Segmentation on a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.3 The adaptive ridge algorithm on a graph . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4 Real data application: Overweight prevalence in the Netherlands . . . . . . . . . . . . . 146
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Conclusion 149

Conclusion 149

List of Figures 154

List of Tables 155

Bibliography 162



Chapter 1

Introduction

This thesis deals with the application of penalized methods to different statistical problems. These
works all have in common the use of a penalized maximum likelihood method– called the “adaptive
ridge” – which performs model selection. The latter comes from a long line of historically, practically,
and theoretically important regularization methods, which date back to the very beginning of com-
putational statistics. These methods are at the intersection of different fields: statistics, optimization,
and computer science.

It is therefore necessary to introduce the most important of these methods in order to (i) highlight
the principle of penalized estimation methods, (ii) put the adaptive ridge in the context of the other
model selection methods, and (iii) compare the adaptive ridge with the competing methods. This
introduction serves this purpose.

Variable selection methods have been developed since the 1970’s, with the use of the stepwise
selection and the ridge regression in the context of linear regression. But their use and fame have
exploded only in the 1990’s and early 2000’s, with the development of penalized regression method,
and in the first place of the lasso, introduced in the field of statistics by Tibshirani (1996) and in
signal processing by Chen et al. (2001) under the name “basis pursuit”. These methods have been
introduced for linear regression, but their principle applies to any statistical model whose likelihood
is computable and practical to maximize. Penalized regression methods consist in adding a term in
the negative log-likelihood (NLL) to minimize. This term enforces the estimate to be close to an a
priori shape or distribution. Certain penalty terms have been found to induce the desired properties
of the estimate: the resulting estimate is both better quantitatively, i.e. it has better estimation per-
formance, and qualitatively, i.e. it infers models which are more relevant and easier to interpret, than
standard estimates. These methods sparked a revolution in the field of computational statistics: the
added penalty term increases the complexity of the computation by a low margin and the benefits
are huge in many practical applications.

A whole array of these penalized methods have then been developed and improved upon, with
penalties ever more refined and adapted to the problem at hand. However, the initial application of
penalized estimation with variable selection is the linear model, and its extension to non-Gaussian
errors, the generalized linear model. It seemed that in this case, the goal to find easy- and fast-to-
compute methods that are performant both theoretically and practically, has been met. Two other
major fields of applications of penalized methods have emerged around this period: high throughput
data and wavelet analysis. The former became widely popular in the last decade due to the onset of
next-generation sequencing technologies. Since many genes are studied at once, we are in a case
where p À n, usually by a factor ∼ 100. The problem posed by this high-dimensional setting was
seldom met in usual regression settings, and led to the development of penalized regression methods
for what is called high-dimensional statistics. The latter comes from the development of wavelets
bases and their applications to all fields of signal processing. Wavelets are families of functions that
form an orthogonal family of L2(R), are located in both the time and frequency domains, and are
all the scaled and shifted versions of one another. These properties make it the tool of choice for
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2 Chapter 1. Introduction

representing signals (i.e. audio signals, images, videos, etc.) efficiently. Indeed, the wavelet bases
allow for sparse representation of signals, with major applications to denoising, compression, and
compressed sensing. In these problems, the signal sparsity is enforced using a penalized approach.
This has sparked the development of penalized likelihood approaches that are specifically fit to the
topology of the signal. Note that the leap forward made in that domain around the year 2010 was also
enabled by the progress in convex optimization (Boyd and Vandenberghe, 2004). We refer to Mallat
(2009) for more details on the wavelet analysis and to Bach (2011) for more details on the application
of penalized methods to wavelet analysis.

This introduction is organized as follows. The first part draws a panorama of the main penal-
ized methods for model selection, with comparisons, explanations, and insights. The second part
deals with subset selection, the main model selection method that does not used a penalized ap-
proach. The third part puts the iterative penalized methods in the theoretical framework of Majorize-
Minimization (MM) optimization and compares the main iterative penalized methods amongst which
is the adaptive ridge. The last section presents modifications of the penalty terms which enforces the
estimate to have a certain sparsity structure, which is more general than being sparse. We arrive at
the fused adaptive ridge, which is used in Chapters 2 and 3.
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4 Chapter 1. Introduction

1.1 Regularized estimation

Linear regression. Consider the linear regression setting

y = Xβ+ε, (1.1)

where y is the n ×1-sized response variable, X = (
xi , j

)
is the n ×p-sized design matrix, β is the p ×1

parameter vector of linear effects, and ε is the p ×1 vector of random errors. The columns of X are
called the covariates and are noted x j . We consider the case of deterministic design, that is, X is
deterministic.

Linear regression is sometimes written

ŷ = β̂0 +X 1β̂1 +·· ·+X p β̂p ,

which includes the estimation of an intercept β0, adding a row of 1s in the design matrix X . Since
the maximum likelihood estimate of β0 is ȳ = 1

n

∑n
i=1 yi , we will instead consider the model (1.1) and

always assume that the response variable is centered: ȳ = 0.
It is also necessary that the covariates be scaled, both for the numerical stability of the computa-

tions and to be able to compare the effects of each covariate. For instance if the unit of x j is changed
from meters to millimeters, β̂ j is multiplied by 1000. Hence the effect of that covariate will be artifi-
cially inflated and it will always be selected by a model selection method. Thus, the covariates have
to be scaled for their effects to be comparable. Note that there is an equivalence between fitting the
parameters on the unscaled covariates and fitting them on the scaled covariates and applying the
corresponding scaling to each parameter. Therefore, without loss of generality, we will assume that

n∑
i=1

xi j = 0 and
n∑

i=1
x2

i j = 1, 1 ≤ j ≤ p.

The ordinary least squares (OLS) is

β̂
ols

, argmin
β

‖y −Xβ‖2
2 =

(
X T X

)−1
X T y . (1.2)

If not stated otherwise, we assume the two classical following assumptions to hold.

Assumption 1. yi = x iβ
∗+εi , where εi are independent and identically distributed random variables

of mean 0 and variance σ2, and β∗ is the real value of β that we estimate. Note that unless stated
otherwise, the errors are not assumed to be normally distributed.

Assumption 2. The matrix 1
n X T X →C , where C is positive definite.

Penalized likelihood. In the forthcoming sections we will discuss penalized regression methods, in
which the estimator is defined as the minimizer of the least squares residuals with an added penalty
term. In the linear model, when the residuals are normally distributed, the least squares residuals∥∥y −Xβ

∥∥2
2 is (proportional to) the negative log-likelihood `

(
β

)
of the model (this condition is in fact

an equivalence: the negative log-likelihood writes as a sum of squares only when ε∼N (0,σ2I )). The
regularization – and variable selection – methods present in this introduction have been developed
in the setting of linear regression, with the case of normal residuals as an important specific case. In
all generality, they can apply to any parametric model that we want to regularize. In this introduc-
tion, the notation `

(
β

)
refers to the negative log-likelihood in the linear model or in any unspecified

parametric model. In applications and illustrations however, we will mostly use the linear model to
illustrate the effect of penalized estimation.

We give two examples of such models, which are generalizations of the linear model:
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• Robust regression, in which the negative log-likelihood writes

`
(
β

)= n∑
i=1

ρ(yi −x iβ) (1.3)

where ρ is a function giving little importance to large values of the residuals. For instance,
when ρ(x) = |x|, the model becomes the least absolute deviation, a robust alternative to the
linear regression. When ρ is a ρ-function (as defined in Huber et al., 1964), the model is a
robust version of the linear model. See Maronna et al. (2006) for a thorough explanation of
robust regression.

• The generalized linear model the response variable has a distribution in the exponential family,
where the density of y i (in its canonical form, see McCullagh, 1984, Section 2.2.2) writes

f (y) = exp
(
θ∗i T (y)− A(θ∗i ))+B(y)

)
,

where A and B are known deterministic functions and θ∗i is the true unknown parameter to be
estimated. In the generalized linear model, we estimate the density’s parameter vector θ∗ by a
function of the linear effect x iβ, and we have E [Y ] = g−1

(
Xβ

)
where g is a link function. Usu-

ally we take the canonical link function given by the distribution of y : g−1 = A. The negative
log-likelihood (nll) writes

`
(
β

)=−
n∑

i=1
log f

(
g

(
x iβ

)
, yi

)
, (1.4)

where f is the distribution of y . For example, if y is Poisson distributed, the canonical link
function is the log function and the nll writes

−
n∑

i=1

{
yi x iβ−exp(x iβ)− log(yi !)

}
.

1.1.1 Ridge regression

The OLS estimate is unbiased and has minimal variance amongst all unbiased estimates. However,
when the covariates x j are highly correlated, X T X becomes close to singular, i.e. when its largest
eigenvalue gets close to zero, the variance of the OLS diverges to infinity. In this case, a biased modi-
fication of the OLS estimate is necessary to control the variance of the estimate. The ridge regression,
defined below, is the most famous of such modifications – owing first to its simplicity. It was intro-
duced in the context of linear regression and we use this specific case to illustrate its principle and
effect, but it extends naturally to any other model. It is obtained by adding a regularizing term to the
nll, in the way defined below.

Hoerl and Kennard (1970) introduced the ridge estimator. It is defined as the solution to

min
β

‖y −Xβ‖2
2 +λ‖β‖2

2, (1.5)

where λ> 0 is a trade-off hyper-parameter to be chosen.
Problem (1.5) has the explicit solution

β̂
ridge = (

X T X +λI
)−1

X T y . (1.6)

Equation 1.6 can be seen as a relaxation of the matrix X T X . When the covariates are too corre-
lated, the columns of X are close to being linearly dependent, and X T X tends to be singular. Equiv-
alently, this means that the lowest eigenvalue of X T X tends to zero. If λ1 is the lowest eigenvalue
of X T X , the lowest eigenvalue of X T X +λI is λ1 +λ. Equation 1.6 can be seen as a modification of
the OLS that ensures the design matrix does not become singular.
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●

β̂ols

●

β̂ridge

IIy − XβII2

−1

0

1

2

−1 0 1 2

β1

β 2

Figure 1.1: Visualization of the ridge estimate as the projection of the OLS onto an L2 norm ball. The
ellipses are level curves of the quadratic form ‖y−Xβ‖2

2. The projection onto the circle of radius t = 1
has the effect of shrinking the estimate’s coordinates together.

Projection on an L2 ball. Problem (1.5) is the Lagrangian dual of the problem

min
β

‖y −Xβ‖2
2 s.t. ‖β‖2

2 ≤ t (1.7)

for t > 0. The two problems have been shown (Boyd and Vandenberghe, 2004, B.1) to have strong
duality, that is, for every λ> 0, there exists a t > 0 such that the solution of (1.7) is also the solution of
(1.5), and conversely. The decreasing one-to-one relation between λ and t depends on the data.

The equivalent constrained optimization problem helps understand the effect of the penalty in-
cluded in ridge regression. Figure 1.1 illustrates the shrinkage of β̂ due to the projection onto the L2

norm ball. We recall that in a normed vector space, for a chosen norm, the ball of radius r > 0 and of
center c is the set of elements at a distance r or less to c, i.e. the set {x|‖x−c‖ ≤ r }. In this manuscript,
we will only consider centered balls, that is, balls of center 0. Balls of radius 1 are called unit balls.

Ridge regression in orthogonal design. Consider the case of orthogonal design, that is, when the
design matrix is orthogonal: X T X = I . Notice that in this case, the quadratic terms ‖y − Xβ‖2 =
y T y −2y T Xβ+βTβ and ‖X T y −β‖2 = y T X X T y −2y T Xβ+βTβ differ only by a constant. Then the
linear regression boils down to minimizing ‖z −β‖2, where z = X T y is the transformed data. The
ridge problem (1.5) rewrites

min
β

‖z −β‖2 +λ‖β‖.

This particular case is important because it is the case in which the covariates are uncorrelated, and
the estimation is done component by component. Also, the last equation can be interpreted as find-
ing the closest vector to the data z with a small L2 norm. This result can also be seen directly through
the simplifications in (1.2) and (1.6).

In this case, then, we have β̂
ols = X T y and

β̂
ridge = β̂

ols

1+λ .

Consequently, in orthogonal design, the ridge estimate simply shrinks every coordinate of the OLS
towards 0 by the same factor.

Minimization of the MSE. Define the mean square error as

MSEols = E
[
‖β̂ols −β∗‖2

2

]
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Define λ1 ≥ ·· · ≥ λp > 0 as the eigenvalues of X T X . Recall that the OLS is unbiased and from the

equality β̂
ols −β∗ = (X T X )−1X T ε, we obtain

MSEols =σ2Tr{
(

X T X
)−1

} =σ2
p∑

i=1

1

λi
. (1.8)

This MSE takes problematically large values when λ1 is small.
The ridge estimate aims at reducing the MSE to a value lower than (1.8). The ridge estimate

reduces the variance of the estimate, at the price of an non-zero bias. More precisely, the MSE of the
ridge estimate decomposes as follows. Consider the singular value decomposition of X :

X =U DV T , (1.9)

where U and V are n×p and p×p orthogonal matrices respectively, such that U T U =V T V = I p , and
D is a diagonal matrix whose entries d1 ≥ ·· · ≥ dp ≥ 0 are the singular values of X . From the equality
X T X = V D2V T , we can see that the d 2

j s are the eigenvalues of X T X . By plugging (1.9) into (1.6), we
get

MSE(λ) = E[‖β̂−β∗‖2]

=λ2β∗T (X T X )−2β∗+E[
εX (X T X +λI )−2X T ε

]
=λ2β∗T V D−4V Tβ∗+σ2

p∑
j=1

d 2
j

(d 2
j +λ)2

. (1.10)

In the last equation, the first term is the bias of the ridge estimate, the second term is its variance.
Since

dMSE

dλ
(λ)

∣∣∣∣
λ=0+

< 0,

there exists a value of λ such that the ridge estimate has a smaller MSE than the OLS.

1.1.2 Lasso estimation

Why select variables. In many practical situations, the statistician does not know what covariates
has an influence on the response variable or does not want to make such an assumption a priori. A
solution is to add all possible variables and find a regression procedure which simultaneously selects
the relevant covariates and estimates their effect. This is the framework of regression with variable
selection.

Lasso as a relaxation of the L0 norm. Define the L0 “norm” ‖x‖0 = #{i |xi 6= 0} as the number of non-
zero elements of a vector. This quantity is not a norm, because for α 6= 0, ‖αx‖0 6= |α|‖x‖. We still
refer to it as a norm since it can be seen as the limit of the Lq norm when q → 0.

The L0 penalized likelihood approach offers to minimize

‖y −Xβ‖2
2 +λ‖β‖0. (1.11)

The minimizer of (1.11) represents a trade-off : it has both to be close to the minimum of the squared
residuals and to have few non-zero coordinates. Consequently this estimate will only select the most
relevant covariates in the model and estimate their effect.

Unfortunately, to minimize the L0 norm is NP-hard (Natarajan, 1995), which implies that there is
no known algorithm that can solve an L0 norm-constrained problem in a polynomial time complexity
with respect to p. Consequently, this problem has to be solved by trying all the possibilities, which
has exponential time complexity in p. This is unfeasible in practice for p ' 50 or larger.
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Figure 1.2: Illustration of Lq unit balls for different values of q .

Tibshirani (1996) introduced the lasso estimator defined by

β̂
lasso

, argmin
β

‖y −Xβ‖2
2 +λ‖β‖1 (1.12)

where λ> 0 is a hyper-parameter which tunes the trade-off between goodness of fit and regulariza-
tion. The choice of λ is not touched on in this chapter. Lasso uses the L1 norm which can be seen as
a relaxation of the L0 norm.

The L1 norm has been used for many decades to recover sparse vectors. In signal processing, a
signal y is expressed as a combination of functions forming a dictionaryφ. Sinceφ is over-complete,
it has more columns than rows, and the coefficient vector x of the decomposition of the signal in
the dictionary is not uniquely determined by the problem y = φx . However one assumes that y
has a sparse representation in the dictionary. By enforcing a sparsity constraint over x , a compressed
representation of the signal y is obtained. Using the L1 penalized problem to recover a signal is called
basis pursuit. This method was developed by Chen et al. (2001); it was further analyzed by Donoho
and Huo (2001) and Elad and Bruckstein (2001).

Using the Lagrange multipliers, the lasso estimator can be defined as the projection of the OLS
onto the L1 ball of radius t :

β̂
lasso = argmin

β
‖y −Xβ‖2

2 s.t. ‖β‖1 ≤ t , (1.13)

where t > 0 has a decreasing one-to-one relation with λ. Figure 1.2, which represents Lq unit balls
for different values of q , illustrates why the L1 norm induces sparsity. When q > 1, the Lq ball is
smooth and the projection onto the ball does not set any coordinate to zero. When q ≤ 1, the Lq

ball has singularities at the axes and the projection onto the ball can set some coordinates to zero.
Moreover for q ≥ 1, Lq norms are convex, which makes computational minimization way easier. The
L1 norm naturally comes out as the only easily minimizable penalty which enables variable selection,
amongst all Lq norm penalties.

L1 norm and sparsity. As previously explained, the projection onto an L1 ball can set some coordi-
nates to zero. This phenomenon is illustrated in Figure 1.3 with p = 2. The grey areas represent the
half-cones from which a projection on the L1 ball sets one coordinate to zero. Consequently, when

β̂
ols

has a coordinate of small value, its projection maps it to zero. The lasso has the effect of select-
ing the covariates with a non-negligible effect on y . As illustrated in the figure, as λ increases the
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Figure 1.3: Illustration of the lasso estimation under orthogonal design. Projection onto two L1 norm
balls of radius t . As t decreases, the OLS will most probably end up in a greyed area and the lasso
estimate will become sparse.

radius of the ball decreases and the grey area takes up a larger proportion of the parameter space.
Consequently, the lasso will tend to set many covariates to zero as the penalty increases.

Lasso in orthogonal design: the soft-thresholding operator. In orthogonal design (see previous
Section), the lasso problem reduces to the component-wise problem β̂lasso

j = argminβ j f (β j ) where

f (β j ) = 1
2 (β̂ols

j −β j )2 +λ|β j | and where β̂
ols = X T y is the OLS estimate in orthogonal design. Since f

is the sum of two functions, who minima are in β̂ols
j and 0 respectively, its minimum is located either

at 0 or at βols
j . By considering the two cases |βols

j | ≤ λ and |βols
j | ≤ λ separately, we get that the lasso

solution has the explicit solution given by

β̂
lasso = S(β̂

ols
), sgn(β̂

ols
)
(∣∣∣β̂ols

∣∣∣−λ)
+ , (1.14)

where the function S is called the soft-thresholding function, and where the latter formula is to be
considered component by component. This function is equal to zero over the interval [−λ,λ], which
means that in orthogonal design, the lasso sets small value of the data to zero.

We refer to Section 1.1.7 for a graphical representation of the soft-thresholding operator and a
discussion of its properties.

Computation of the lasso solution. Nevertheless, since the L1 norm is not differentiable at the min-
imum, the computation of the lasso estimation is not straightforward. Two algorithms for solving the
lasso have gained popularity since its development.

The Least Angle Regression (LARS) algorithm has been proposed by Efron et al. (2004) and offers
to compute the whole regularization path1. It initiates with no covariates in the model and sequen-
tially adds the covariate that has the maximum correlation with the residuals. The estimate is in-
creased linearly in the direction of equal correlation between all active covariates (hence the names
least angle). Once a new covariate has the same correlation with the residuals as the current covari-
ate, it is added to the set of active covariates and becomes the current covariate. This method is
explained in more details in the Appendix.

1The regularization path of a regularized model is the path of solutions β̂(λ) represented as a function of λ. This path
illustrates the progressive effect of λ on the fitted parameters and is often obtained over a grid of values of λ
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Another approach is the coordinate descent, a simple optimization method that is particularly fit
to solving the lasso. This method is explained here.

The coordinate descent was initially proposed for the lasso by Fu (1998) under the name of shoot-
ing algorithm. It was generalized to other related penalties by Friedman et al. (2007). The method
solves the lasso problem for a fixed λ.

The algorithm starts with an initial guess β̂
(0)

and minimizes the penalized residuals with respect
to each component in a fixed cyclical order until convergence. For 1 ≤ k ≤ p, we denote by βk the
k-th component of β. The minimization of (1.12) with respect to βk writes

min
βk

n∑
i=1

(
ỹ (k)

i −xi ,kβk

)2 +λ|βk | (1.15)

where ỹ (k)
i , yi −∑

j 6=k xi jβ j . The solution to this problem is simply the soft-thresholding operator
applied to the modified output:

β∗
k =

(∣∣∣∣∣ n∑
i=1

ỹ (k)
i xi k

∣∣∣∣∣−λ
)
+

sgn

(
n∑

i=1
ỹ (k)

i xi k

)
(1.16)

Hence the coordinate descent algorithm for the lasso is simple, easy to implement and fast to com-
pute. However, contrarily to LARS, it does not compute the solution path for all penalties; we fix a
grid of penalties and compute the coordinate descent for each penalty. To speed up the computation,
the initial value in the coordinate descent is taken as the minimum found for the previous penalty.
This computational trick is often referred to as warm start. The coordinate descent procedure with
one penalty is given in Algorithm 1.

Algorithm 1 Coordinate descent with one penalty

1: function COORDINATE-DESCENT(y , X ,λ)

2: β̂← (
X T X

)−1
X y

3: k ← 1
4: while not converge do
5: ỹ (k)

i ← yi −∑
j 6=k xi j β̂ j

6: β̂k ← S
(∑n

i=1 ỹ (k)
i xi k ,λ

)
7: k ← (

k mod p
)+1

8: end while
9: end function

In the lasso regression, the function to minimize is the sum of the residuals, which is convex
differentiable, and the L1 norm, which writes as the sum of univariate convex functions. The rational
behind the use of coordinate descent to solve the lasso problem is the following property.

Property 1. Consider a function f :Rp →Rwhich writes f
(
β

)= g
(
β

)+∑p
j=1 h j

(
β j

)
where g is convex

differentiable and the hi ,1 ≤ i ≤ p are convex. Assume thatβ∗ is a minimum of f along all coordinates,
that is: ∀i ∈ {

1, . . . , p
}

,∀a ∈R, f
(
β∗+ae i

)≥ f
(
β∗)

where e j is the jth basis vector. Then β∗ is a global
minimum.

Proof. Let β∗ be a minimum of f along all coordinates. For any β:

f
(
β

)− f
(
β∗) = g

(
β

)− g
(
β∗)+ p∑

j=1

(
h j

(
β j

)−h j

(
β∗

j

))
≥

p∑
j=1

(
∂g

∂β j

(
β∗)(

β j −β∗
j

)
+h j

(
β j

)−h j

(
β∗

j

))
The inequality comes from the convexity and differentiability of g . Since f is maximal along all coor-
dinates, every term in the sum is positive. This completes the proof.
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This property gives an incentive to use the coordinate descent when the function to minimize has
the aforementioned form. This is the case for the lasso penalized regression as well as for any lasso
problem where the likelihood of the model is log-concave. This property alone does not guarantee
the coordinate descent converges to the global optimum. When g is strictly convex, the coordinate
descent has been proven to converge (Tseng, 1988).

Theoretical properties of the lasso. In this section we consider the asymptotic performances of the
lasso. Since this selection method performs selection and estimation, we need to define asymptotic
properties for both. The definitions and properties present in this section are found in Zou (2006).

Let An = { j : β̂ j 6= 0} be the selected covariates and A ∗ = { j :β∗
j 6= 0} the true non-zero covariates.

The cardinal of A ∗, i.e. the number of true non-zero covariates, is noted p0.

Definition 1. An estimate β̂ is said to be consistent in selection if limnP (An =A ∗) = 1.

For simplicity, we assume without loss of generality that A ∗ = {1, . . . , p0}. Let

C =
[

C 11 C 12

C 21 C 22

]
, (1.17)

where C 11 is a p0 ×p0 matrix. Let β̂A ∗ (resp. β∗
A ∗) be the first p0 elements of the estimate β̂ (resp.

β∗). If an estimate is consistent in selection, the support A ∗ will be known with large probability for
n large enough. The question arises of the estimation quality of β̂A ∗ .

Definition 2. The estimate β̂ is said to be vn-consistent in estimation if vn(β̂A ∗ −β∗
A ∗) →d N (0,C 11).

Note that C 11 is the variance matrix of the estimate knowing the right model, i.e. knowing A ∗.
An estimate which is both consistent in selection and

p
n-consistent in estimation is said to have

the oracle properties: it performs as well as the maximum likelihood estimate would if we knew the
true covariate indices. Consequently, the oracle properties is the best we can ask for in a variable
selection method, in terms of prediction accuracy. This means that when an estimate has the oracle
properties, it is always more advantageous to use it instead of the OLS.

These considerations have to be moderated by the fact that (i) in practice n is not always very
large (ii) the conditions about λ are related to its asymptotic speed.

Zou (2006) proved the following property.

Property 2. The lasso estimate is not necessarily consistent in selection. More precisely, if λn =O
(p

n
)
,

limsupnP (An =A ) ≤ c < 1, where the constant c depends on the true model.

A small modification of the lasso has been proven to enjoy the oracle properties. This estimate is
presented hereafter.

The adaptive lasso. Zou (2006) introduced a slight modification of the lasso with a weighted L1

norm:

β̂
al
, argmin

β
‖y −Xβ‖2 +λn

p∑
j=1

w j |β j |. (1.18)

The weights are defined as w j = 1/|β̂ j |γ, where β̂ is any consistent estimate of β (for instance the
OLS) and where γ > 0 is a hyper-parameter to be chosen. The weights have the effect to penalize
more coordinates which have a small estimate. Due to this rescaling, the adaptive lasso is proven
to have the oracle properties when λn/

p
n → 0 and λnn(γ−1)/2 → ∞. Moreover, the adaptive lasso

estimate has the same computational cost as the lasso.
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1.1.3 Elastic-net

The elastic-net penalty was introduced by Zou and Hastie (2005):

λ
(
α‖β‖2

2 + (1−α)‖β‖1
)

(1.19)

where α ∈ [0,1] is an hyper-parameter to be fixed. The elastic-net penalty defines a norm that is a
compromise between the L1 and the L2 norm: as α varies, the elastic-net estimate varies continu-
ously between the lasso and the ridge estimates. For α= 0 it becomes the lasso penalty and for α= 1
it becomes the ridge penalty.

Contrarily to the Lq norm (1 ≤ q ≤ 2), the elastic-net penalty is non-differentiable, as illustrated
in Figure 1.4. Consequently, the elastic-net always performs selection (for α 6= 1) like the lasso and
shrinkage like the ridge (which reduces the MSE). Comparatively, the Lq norm (1 < q < 2) does not
perform model selection and is of little interest. As discussed hereafter, the elastic-net enjoys the
desirable properties from both estimates.

The thresholding function of the elastic-net under orthogonal design is

β̂en
i = (|β̂ols

i |−λ1/2)+
1+λ2

sgn{β̂ols
i }. (1.20)

This thresholding function has the same behavior as the soft thresholding for small values of β̂ols
i

and the same behavior as the ridge thresholding for large values of β̂ols
i . An illustration is given in

Figure 1.7 with λ1 = 2 and λ2 = 1.
The elastic net is also more stable in selection than the lasso. More precisely, if several covariates

are very correlated, the lasso will arbitrarily select one covariate and discard the others. This is proven
(Zou and Hastie, 2005) not to be the case for the elastic-net: the difference

∣∣βi −β j
∣∣ is bounded by

1−corr{x i , x j }, so that highly correlated covariate effects have close to equal estimates. This property
is known as the grouping effect: the elastic net selects important covariates in group.

Moreover, in the p À n scenario, lasso does not perform well in selection because it cannot select
more than n covariates. The elastic-net overcomes this obstacles and, even with small α, can select
any number of covariates.

Finally, the elastic-net estimate writes also as the minimizer of

βT
(

X T X +λ2I

1+λ2

)
β−2X T y +λ1

∥∥β∥∥
1, (1.21)

hence it is computed as a lasso estimate with a modified design matrix.
The LARS algorithm can be adapted to estimate the elastic-net. Recall that LARS computes the

whole regularization path. Thus the LARS algorithm is called on a grid of values ofλ2 and the selected
value is the one which minimizes the (ten-fold) cross-validation error. The computational cost of this
procedure is K times more than that of a lasso fit, where K is the length of the grid of λ2.

1.1.4 Bridge regression

Bridge regression is based on the Lq penalty:

β̂
bridge

, argmin
β

`
(
β

)+λ p∑
j=1

∣∣β j
∣∣γ (1.22)

where γ> 0 is a parameter to be fixed. Bridge regression was first introduced by Frank and Friedman
(1993) as a generalization of the ridge (γ= 2) and the lasso (γ= 1) and was later studied by Fu (1998),
who compared it with the lasso. For 0 < q ≤ 1 the Lq penalty is singular around zero and the bridge
regression performs variable selection. This property is illustrated in Figure 1.2 which represents unit
balls of Lq norms for different values of q .
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Figure 1.4: Illustration of why the elastic net induces sparsity and not the Lq norm (1 < q < 2). Unit
radius balls of the elastic-net norm (α= 0.2) and the L1.2 norm.

Asymptotic properties of the bridge regression has been studied by Knight and Fu (2000) in both
cases γ≤ 1 and γ> 1.

Fu (1998) proposed an algorithm based on the Newton-Raphson procedure to compute the bridge
estimate when γ> 1. However, when 0 < γ< 1, the penalty is not convex and its minimization is com-
putationally challenging.

The bridge penalty is part of a general family of sparsity inducing penalties called non-concave
penalties These are defined in the next section. The oracle properties of the bridge estimate and the
algorithms available to compute it are given in this section.

1.1.5 Berhu

The Berhu penalty was introduced by Owen (2006):

pλ(|θ|) =
{
|θ| |θ| ≤λ
θ2+λ2

2λ |θ| >λ (1.23)

It is equal to the absolute value around zero and is quadratic away from zero. Consequently it is
sometimes referred to as inverse Huber function (Huber et al., 1964).

The presence of the singularity of the penalty at zero makes it a variable selection method. The
Berhu penalty replaces the absolute value penalty by a quadratic penalty for large values in order to
benefit from the properties of the ridge regression: the grouping effect, and an increased accuracy in
estimation. The Berhu penalty can be seen as mixing the L1 and L2 penalties; in this regards it is very
similar to the elastic-net.

1.1.6 Penalized likelihood methods as a Bayesian prior

Let the variable M denote the model. Recall that in the Bayesian framework, the data are generated
from a model which is also assumed to be random. The distribution of the model is an a priori
information that we must provide. The goal of Bayesian inference is to infer the posterior likelihood
P (M |data). From the Bayes formula:

P (M |data) = P (data|M )π(M )

P (data)
, (1.24)
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Figure 1.5: Bayesian priors on the parameter with the Ridge, Lasso, Elastic-net (α= 0.5), and Bridge
(q = 0.5) penalties.

where π(M ) is the prior distribution of the model, which includes a priori information about the
model distribution.

Here, the symbol for probability must be understood in the sense of density. The prior on the
data does not intervene in the minimization of the integrated negative log-likelihood. The first prob-
ability in the right-hand side of (1.24) is the likelihood (of the data). In this case, the model M is the
parameter β from which the data is generated. Then, Bayesian inference is made by minimizing:

−2logP
(
β|data

)= 2`
(
β

)−2logπ(β), (1.25)

where we recall that `(β) is the negative log-likelihood (of the data conditionally on the model).
Equation 1.25 is very similar to penalized maximum likelihood estimation. Notice that Equations
(1.25) and (1.5) are the same on the condition that

−2logπ
(
β

)=λ‖β‖2.

Consequently, the ridge penalty can be seen as a Bayesian inference with a normal prior distribution
on the parameter: β ∼ N

(
0,λ2

)
. The hyper-parameter λ is the standard deviation of the centered

normal prior on the parameter. More generally, the Lq norm penalty corresponds to the prior

π(β) = exp

(
−λ

‖β‖q
q

2

)
.

The lasso regression corresponds to a prior on the parameter with a Laplace distribution. These
priors are represented in Figure 1.5 in the univariate case. Likewise, the elastic-net corresponds to
the prior

π
(
β

)∝ exp

(
−λα‖β‖

2
2 + (1−α)‖β1‖

2

)
,

which is also represented in Figure 1.5.
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Figure 1.6: Several non-concave penalties with different values of λ.

1.1.7 Non-concave penalties

Non-concave penalized estimates are defined as the minimizers of

`
(
β

)+ p∑
j=1

pλ
(∣∣β j

∣∣) (1.26)

where p is a non-concave function, or non-concave penalty, in the following sense.

Definition 3 (Non-concave function). A real-valued function pλ(|θ|) defined on R is said to be non-
concave if it is (i) even on Rwith pλ(0) = 0 (ii) non-decreasing and concave on (0,∞) (iii) differentiable
over R∗.

The differentiability condition can be relaxed to piecewise differentiability without without loss
of generality. Since it is not a restrictive assumption in practice, we will assume differentiability for
the sake of the presentation. We emphasize the fact that in this work, the term “non-concave” is not
used to say that a function is not concave.

In the cases where pλ(|β j |) is proportional to λ, we will denote pλ(|.|) by λp(|.|) and drop the
index λ. One may also want to penalize some variables more than others, because of some a priori
knowledge about their importance. This is done by setting a different penalty for each coefficient.
For the sake of the presentation, we will assume that all the components ofβ are penalized the same.

The estimates defined by (1.26), where pλ is a non-concave penalty, will be called non-concave
estimates. Many important sparse estimates write as non-concave estimates, which makes (1.26) a
good framework to analyze and compare sparsity-inducing penalized likelihood methods. Using the
definition of non-concave penalty, we can (i) give conditions on the penalty for the corresponding
estimate to be sparse, (ii) give theoretical results shared by non-concave sparse estimates, (iii) com-
pare the behavior and performance of sparsity-inducing estimates by comparing their corresponding
penalty functions.

The lasso and the bridge (0 < q < 1) are both non-concave estimates ; this follows directly from
(1.12) and (1.22) respectively. In the following sections we define two important non-concave penal-
ties: the hard-thresholding and the smoothly clipped absolute deviation (SCAD). Figure 1.6 rep-
resents several non-concave penalties. Since non-concave penalties are concave and decreasing
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Figure 1.7: Thresholding functions in orthogonal design.
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on (0,∞), they verify p ′(0+) > 0. Since they are even functions, we also have p ′(0−) < 0. Thus by
definition, they are not differentiable at 0. This property is proven (Fan and Li, 2001) to be a suffi-
cient condition for a penalty to perform variable selection. Thus all non-concave penalties such that
p ′
λ

(0+) > 0 perform variable selection.
Figure 1.6 illustrates the shapes of several non-concave penalties. The sharper the penalty, the

better it approximates the L0 norm, which is the desired penalty. However, sharp penalties are harder
to minimize, which makes the estimation procedure more computationally intensive. First, penalties
like the SCAD and hard-thresholding, which are constant away from zero, are hard to minimize. The
lasso is an outstanding non-concave penalty: it is minimally non-concave, since it is linear on (0,∞),
which is the least concave function. Moreover, the derivative of the L1 penalty is constant on (−∞,0)
and (0,∞) and thus its minimization cannot be performed using classic optimization methods. Fi-
nally, note that empirically, the sharper the spike around zero, the “stronger” the estimates will be
enforced to be sparse.

Figure 1.7 represents the thresholding functions of some non-concave penalties under the case
of orthogonal design: β̂ j = f (β̂ols

j ) = f (X T y). Asymptotically the variables with a non-zero effect on
y will have an OLS estimate far away from zero and the variables with no effect on y will be around
zero. Consequently, the penalty

(i) Performs variable selection only if the thresholding function is identically equal to zero around
a neighborhood of zero;

(ii) Estimates the non-zero effect without bias only if the thresholding function is close to the iden-
tity function (dotted lines on the figure) for large values of the data.

(iii) Is stable in selection if the thresholding function is continuous. (By stable we mean that the
selected model is not highly sensitive to small variations in the data.)

The convergence properties of the non-concave penalties was studied by Fan and Li (2001). Un-
der mild regularity conditions on λn and pλ the non-concave penalties have the oracle properties.
The only restrictive condition is that

limsup
n→∞

limsup
θ→0

p ′
λn (θ)/λn > 0. (1.27)

The minimization of non-concave functions is a computationally difficult task. Derivative-based
optimization methods are not efficient in this context, because (i) the derivative of the penalty is not
always continuous and (ii) the second order derivative p ′′

λ
(|θ|) takes infinitely small values. Specific

optimization methods have to be used to derive numerical estimation procedures that are stable and
fast to compute. These methods are introduce in the framework of MM optimization, in Section 1.3.1.

1.1.7.1 Hard-thresholding

Consider the L0 penalty

pλ (|θ|) =λ21θ 6=0, (1.28)

also called the entropy penalty.
Note that in orthogonal design, the penalized least squares is

(
yi −βi

)2+λ21βi 6=0, and since ‖x‖0

is constant on (−∞,0) and (0,∞), it takes its minimal value either at yi or at 0. The minimal value
is taken at 0 when λ2 < y2

i . Thus, the thresholding function of the L0 penalty is the so-called hard
thresholding rule (Figure 1.7):

β̂hard =β1|β|<λ. (1.29)

This thresholding only clips the values below the threshold λ to zero, and leaves the other values
unmodified. As discussed, this penalty makes the computation of the estimation NP-hard.
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Let us now consider the penalty function

pλ (|θ|) =λ2 − (|θ|−λ)21|θ|<λ. (1.30)

Surprisingly, under orthogonal design, this penalty also gives the hard thresholding rule (see An-
toniadis, 1997; Fan, 1997). Since it is a much simpler quantity to minimize, this penalty is used when
we want to have an unbiased variable selection method. This penalty is also referred to as hard
thresholding penalty; it is represented in Figure 1.6.

The discontinuity in the hard thresholding makes the model selection unstable. The next penalty
offers to remedy this problem, while still having an unbiased estimate of the parameters.

1.1.7.2 SCAD

The smoothly clipped absolute deviation (SCAD) penalty was introduced by Fan (1997) and analyzed
by Fan and Li (2001). It is defined by

p ′
λ(

∣∣β∣∣
j ) =λI

(
β j ≤λ

)+λ (
aλ−β j

)
+

(a −1)λ
I
(
β j >λ

)
, (1.31)

for some a > 2 and for β j > 0. This penalty is linear over [0,λ], parabolic over [λ, aλ], and con-
stant over [aλ,∞). Therefore it behaves like the lasso for small values of the data and like the hard-
thresholding penalty for large values of the data. Under orthogonal design, the SCAD has the follow-
ing thresholding function (see Figure 1.7):

β̂ j =


sgn

(
β j

)(∣∣β∣∣
j −λ

)
+ when

∣∣β j
∣∣< 2λ{

(a −1)β j − sgn
(
β j

)
aλ

}
/(a −2) when 2λ< ∣∣β j

∣∣≤ aλ

β j when
∣∣β j

∣∣> aλ

(1.32)

This thresholding rule equals that of the lasso for
∣∣β j

∣∣<λ and equals the hard thresholding for
∣∣β j

∣∣>
aλ.

In addition to λ, the parameter a also needs to be determined. We can use cross-validation over
a two-dimensional grid, but the computational cost can be deterrent. Fan and Li (2001) performed
simulations under orthonormal design with a prior distribution β j ∼iid N (0, aλ) and estimated the
L2 risk E[‖β̂−β∗‖2]. They proposed to take the value a = 3.7 and noted that the risk does not vary a
lot for different values of a.

Note that the SCAD is the only non-concave penalty which is not proportional to λ. This has
no influence on the minimization of (1.26) for a fixed value of λ. However, this can make it more
complicated to minimize (1.26) for a sequence of values of λ. This difference can make the added
computational cost of the SCAD deterrent. We refer to Zou and Li (2008) for more details.

1.1.7.3 Logarithmic penalty

In order to recover highly sparse estimates, non-concave penalties are required to have a “sharp”
spike at zero, or in other words, to have a derivative that vanishes away from zero. We have discussed
that penalties which are constant away from zero are harder to minimize. An obvious and simple
choice is then to use the logarithmic function as a penalty: θ 7→ log(|θ|). Since the logarithm equals
−∞ at zero, this function does not comply as a penalty function. To remedy this issue, we cap the log
function away from −∞ in the following manner: define the “log penalty”

p(|θ|) = log(|θ|+ε), (1.33)

where ε > 0 is a numerical constant bigger than computer precision, but smaller than the order of
magnitude of the estimates. Typically, we chose a value of ε such that ε¿ min{|βols

j |,1 ≤ j ≤ p}.
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Name Penalty function
Additional
parameter

Package Reference

LASSO pλ(|θ|) = |θ| no glmnet Friedman et al. (2010b)
Elastic-net pλ(|θ|) = (1−α)|θ|+αθ2 0 <α< 1 glmnet Friedman et al. (2010b)

Bridge pλ(|θ|) = |θ|q 0 < q < 1 ncpen
Huang et al. (2008)
Lee et al. (2016)

SCAD p ′
λ

(|θ|) =λ1θ≤λ+λ (aλ−θ)+
(a−1)λ 1θ>λ a > 2

ncpen

ncvreg

Kim et al. (2018)
Breheny and Huang (2011)

Adaptive ridge pλ(|θ|) = log
(
1+ θ2

ε

)
ε∼ 10−12 l0ara

Dai et al. (2018)
Frommlet and Nuel (2016)

Table 1.1: Available implementations in R of the penalization-based variable selection methods for
the linear model.

Surprisingly, this penalty has never been formally introduced or even used in penalized mle esti-
mation, to the best of our knowledge. It was however used in the field of compressed sensing by Can-
dès et al. (2008), which also uses a small constant ε to cap the values of the penalty away from −∞.

Note that Zou and Li (2008) make reference to the penalty p(|θ|) = log(|θ|). More precisely, they
define a numerical procedure whose corresponding non-concave penalty would be the logarithm
function.

1.1.7.4 Available implementations

We gather in this section a short summary table of the aforementioned penalties with references to
their available implementations in R: see Table 1.1. No known implementations of the Berhu penalty
and the log-penalty have been found.

1.2 Subset selection

In this section we present the methods of variables selection which are not based on penalized esti-
mation. Instead, the methods select the best set of variables by choosing a set of variables and fitting
the model without penalty. These methods are simple to implement and are historically important,
but since the set of subsets of variables has a cardinal growing exponentially with the number of vari-
ables, they become impractical in the high dimensional case p À n. They have also been criticised
for being unstable in selection (see Breiman, 1996).

1.2.1 Best subset selection

The naive approach to model selection is to fit all possible models without penalization and to com-
pare them with a predefined metric. The metric can be a cross-validation procedure or a model se-
lection criterion, as the AIC (Akaike, 1974) or the BIC (Schwarz, 1978). Since each model is defined by
a subset of the variables

{
1, · · · , p

}
, this approach is called best subset selection. This method is com-

putationally feasible only for small number of variables. The total number of subsets of
{
1, · · · , p

}
is

2p . When p = 30, there are approximately one billion models to fit. In the case of model regression,
where model fitting is computationally fast, this is the limiting order of magnitude: when p ' 40, best
subset selection if no longer viable.

Branch and Bound. Furnival and Wilson (1974) introduced the “branch and bound” approach (also
called leaps and bound) to variable selection (see also Hand, 1981). This algorithm uses a trick to
reduce the computational cost of best subset selection. Consider the subsets of

{
1, · · · , p

}
as a binary

tree, with the full model at the root and all the possible submodels at the leaves; one moves from a
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;

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

Figure 1.8: All possible submodels with three variables, forming a Hasse diagram of the power-set of
{1,2,3}.

vertex to its two children by either keeping or removing one variable. The naive implementation of
the best subset method fits all submodels in this tree. The branch and bound does the same, but
uses bounds over the model selection criterion to prune some parts of the tree that are suboptimal
compared to the rest of the tree. For the sake of the presentation, assume that the model criterion
is the AIC: for model m with pm parameters and with MLE estimate θ̂m , we select the model with
the lower value of AIC(m) = −2`(θ̂m)+2pm . Consider a set of models M and define the model mu

which includes all variables present in any model m ∈ M and the model mi which includes only the
variables present in all models m ∈ M . From the inequalities

`(θ̂mi ) ≤ `(θ̂m) ≤ `(θ̂mu ) (1.34)

pmi ≤ pm ≤ pmu , (1.35)

we know that for any model m ∈ M , the AIC has the following lower bound: AIC(m) ≥ −2`(θmu )+
2pmi . (We can derive similar lower bounds for other selection criteria.) The branch and bound ex-
plores the binary tree from the root and keeps track of the lowest AIC encountered so far. If the
current vertex M has a lower bound greater than the lowest AIC in memory, then M cannot include
the model with the lowest AIC. It is useless to explore M , and the branch and bound removes it from
the tree search. This method is implemented in R in the package leaps (Miller, 2017).

The branch and bound makes the number of explored models way smaller in practice, but it is
still exponential with p. For p > 40, the best subset selection becomes unviable. We then have to
compare a smaller number of submodels; this is the approach developed in the following section.

1.2.2 Stepwise Selection

Stepwise selection consists in exploring a small subset of all the possible submodels. Consider the
Hasse diagram of the submodels partially ordered by the inclusion between models (see Figure 1.8).
On one extremity of the diagram is the model with no variables and on the other extremity is the
model with all variables. The stepwise selection methods explores one path between the null model
and the full model, using a greedy approach. We differentiate between three strategies of explo-
ration. The forward-stepwise method – or forward selection – starts at the null model and incremen-
tally adds variables to the model, drawing a path in the direction of the arrows in Figure 1.8. The
backward-stepwise method – or backward elimination – starts at the full model and incrementally
removes variables from the model, drawing a path in the opposite direction than the arrows in Figure
1.8. The forward-backward method is a combination of the two methods: at each step, we choose to
either remove or add a variable.

The greedy decision rule for the removal or addition of a new variable x j is based on testing
whether β̂ j = 0. When comparing the potential variables to add (or remove), it is not necessary to
fit the whole model. The new estimate is computed using the current estimate and an update of the
QR decomposition of X T

c X c , where X c is the current design matrix. This considerably improves the
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computational burden of this method. For more information on stepwise selection procedures, see
Miller (2002, Section 3). These methods are implemented in the R package leaps (Miller, 2017).

1.3 Iterative penalized methods

1.3.1 MM optimization

MM optimization (see Lange, 2004, Section 6) is a family of optimization procedures. The MM
algorithm generalizes the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). The
acronym MM stands for both majorization-minimization (if we want to minimize a function) and
minorization-maximization (if we want to maximize it). For the sake of the presentation, we focus
on the majorization-minimization version.

Let f
(
β

)
be the function to minimize. Let β(k) be the current point. We say that a function

g
(
β|β(k)

)
majorizes f if it satisfies: g

(
β(k)|β(k)

)
= f

(
β(k)

)
g

(
β|β(k)

)
≥ f

(
β

)
,∀β ∈C

(1.36)

where C is the convex set on which both f and g are defined. The idea of the MM algorithm is to
minimize g (β|β(k)) instead of f (β) directly.

In MM optimization, the parameter at the next step β(k+1) is defined as any vector verifying
g (β(k+1)|β(k)) < g (β(k)|β(k)). We could set

β(k+1) = argmin
β

g
(
β|β(k)

)
,

but this is not required – and is not considered optimal for most choices of g and of the minimization
algorithm for g (β|β(k)). The MM optimization comes from the fact that for any g satisfying (1.36):

f
(
β(k+1)

)
≤ g

(
β(k+1)|β(k)

)
≤ g

(
β(k)|β(k)

)
= f

(
β(k)

)
, (1.37)

so that the MM iterations always reduces the value of f .
An optimization procedure with this descend property is praised for being stable. Notice that

(1.37) does not imply convergence of the algorithm to the global minimum. Under mild regular-
ity conditions (Lange, 2004), the MM converges to a local minimum. Except when f is convex, we
cannot ensure that MM converges to the global minimum.

The effectiveness of the MM optimization depends highly on the choice of the majorizing func-
tion. Its expression must be simple, so that its minimization is not too computationally intensive.
Yet it must be “close” enough to f , in the sense that g (β|β(k))− f (β(k)) does not increase too much in
the neighborhood ofβ(k). Each choice of a majoring function g yields a different MM algorithm. The
function g is usually a local (linear or quadratic) approximation of the function f around the current
point β(k).

In the following section, we will show that many iteratively weighted penalized estimation arise
as the MM algorithm of some non-concave penalty.

Remark: EM is a special case of MM. We show here that the Expectation-Maximization (EM) algo-
rithm is a specific case of the MM optimization. The EM algorithm allows to perform inference in the
presence of missing, or unobserved data, and was introduced by Dempster et al. (1977). We refer to
McLachlan and Krishnan (2007) for an exhaustive reference to the EM.

We give a definition in a simple setting. Assume that you observe data from a random variable Y .
Assume also that Y is incomplete and that it comes from a random variable X that is not observed.
Define θ the parameter of the distribution of X and note f (x|θ) and g (y |θ) the respective densities of
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X and Y conditionally on θ. The goal is to make inference on g (y |θ). In the case of missing data, we
have X = (Y , Z ), where Z is the missing data. But the EM works in a more general setting, where we
assume that there is a function t that maps X to Y . The trick for the statistician is to find a complete
r.v. X whose distribution (and likelihood) is simple.

We can now define the EM algorithm. It consists of iterating between two steps: the E steps
defines the conditional expectancy of the missing data conditionally on the observed data (and of the
parameter). The M step maximizes this density. By sequentially maximizing a marginalized density,
we can infer the parameter of the missing data.

Algorithm 2 Expectation-Maximization

1: function EM(θ(0))
2: k = 1
3: while not converge do

4: Q(θ|θ(k)) ← E
[

log f (X |θ)|Y ,θ(k)
]

5: θ(k) ← argmax
θ

Q(θ|θ(k))

6: k ← k +1
7: end while
8: end function

It is clear from the algorithm that the E-step plays the role of a local approximation of g (y |θ). The
next proposition shows that the E step consists in fact of a function minorizing log g (y |θ).

Property 3. The function q(θ|θ(k)) =Q(θ|θ(k))−Q(θ(k)|θ(k))+ log(g (y |θ(k))) minorizes log(g (y |θ(k)))
in the sense of (1.36): {

q(θ|θ(k)) ≤ log(g (y |θ)),∀θ
q(θk |θ(k)) = log(g (y |θ(k))).

Thus E-step is the local approximation using q(θ|θ(k)) and the M-step is the maximization of q(θ|θ(k)).

Proof. The equality case is trivial. It suffices to prove that Q(θ|θ(k)) − log(g (y |θ)) ≤ Q(θ(k)|θ(k)) −
log(g (y |θ(k))). We need to apply the Lemma 1. The detailed proof of the applicability of this lemma
is somewhat technical, and is skipped here (we refer to Lange, 2004, p. 139). We have

Q(θ|θ(k))− log(g (y |θ)) =E
[

log( f (X |θ))|Y = y,θ(k)
]
−E

[
log(g (Y |θ))|Y = y,θ(k)

]
=E

[
log

(
f (X |θ)

g (Y |θ)

)
|Y = y,θ(k)

]
≤E

[
log

(
f (X |θ(k))

g (Y |θ(k))

)
|Y = y,θ(k)

]
=Q(θ(k)|θ(k))− log(g (y |θ(k)))

This completes the proof.

Lemma 1. Given two almost surely positive densities u and v, Eh
[
log(h)

]≥ Eh
[
log(k)

]
.

1.3.2 MM optimization applied to non-concave penalties

MM optimization can be used to minimize (1.26). Define f (β) = `(β)+∑p
j=1 pλ(|β j |) as the function

to minimize, where pλ(|θ|) is a non-concave function. The optimization algorithm will depend on
the choice of the dominating function g . In this section, we present two possibilities for g , which
yield to different numerical procedures. Even though they aim at minimizing the same quantity,
theses two algorithms have different properties in practice.
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Figure 1.9: Local linear approximation (a, in dashed line) and local quadratic approximation (b, in
dashed line) of the bridge penalty (solid line) p(|θ|) = |θ|0.5 around the current point θ(k) = 0.5.

1.3.2.1 Local Quadratic Approximation

Fan and Li (2001) proposed a dominating function based on the Local Quadratic Approximation
(LQA) of the penalty function. The original paper introduced this approximation as a mere numerical
trick. It was formalized as an MM procedure by Zou and Li (2008).

The first order approximation of p ′
λ

(|θ|) around θ(k) writes

(
pλ(|θ|))′ = p ′

λ(|θ|)sgn(θ) ' p ′
λ

(|θk |)
|θk | θ (1.38)

Taking the antiderivative of the both terms in the previous equation yields the following approxima-
tion of the penalty (see Figure 1.9b):

pλ(|θ|) ' qλ(θ|θ(k)), pλ(|θ(k)|)+ (θ2 −θ(k)2
)

p ′
λ

(|θ(k)|)
2|θ(k)| (1.39)

We will establish that qλ(θ|θk ) majorizes pλ(|θ|). We prove the property for θ ∈ (0,∞) and since
the same reasoning applies to θ ∈ (−∞,0) (and to θ = 0 by continuity), the property will be proven
over R. For θ ≥ 0, we have

[
qλ(θ|θ(k))−pλ(|θ|)

]′ = θ
p ′
λ

(|θ(k)|)
|θ(k)| − sgn(θ)p ′

λ(|θ|) (1.40)

= θ

(
p ′
λ

(|θ(k)|)
|θ(k)| − p ′

λ
(|θ|)
θ

)
. (1.41)

Since θ 7→ p ′
λ

(|θ|)/θ is non-increasing over (0,∞), the right hand-size term of the last equation is

strictly positive over (0,θ(k)) and strictly negative over (θ(k),∞). Consequently qλ(θ|θ(k))−pλ(|θ|) is
decreasing over (0,θ(k)) and increasing over (θ(k),∞). With qλ(θ(k)|θ(k))−pλ(|θ(k)|) = 0, this completes
the proof. The function p(|θ|) and its LQA q(θ|θ(k)) around θ(k) = 0.5 are represented in Figure 1.9a.

When minimizing q(θ|θ(k)), we can neglect the constant terms. We derive the following domi-
nating function for the penalized nll:

g (β|β(k)) = `(β)+
p∑

j=1

p ′
λ

(|β(k)
j |)

2|β(k)
j |

β2
j . (1.42)
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The minimization of g (β|β(k)) is a weighted ridge problem whose solution is explicit (from Equation
1.6). The MM algorithm iterates over

β(k+1) =β(k) −
(
∇2`(β)(k) +Ωλ(β(k))

)−1 (
∇`(β(k))+Ωλ(β(k))β(k)

)
, (1.43)

until convergence, whereΩλ(β(k)) is a diagonal matrix with diagonal entries
{

p ′
λ

(|β(k)
j |)/2|β(k)

j |
}

.

A notable special case is the linear model, for which (1.43) simplifies to:

β(k+1) = (X T X +Ωλ(β(k)))−1X T y , (1.44)

The denominator in (1.39) is source of numerical instabilities when β j gets close to zero. To
overcome this problem, we can either

(i) Set β j to zero if its absolute value becomes smaller than a fixed threshold, and continue the
iterations without the j th component This solution is easy to implement, but once a compo-
nent of β is set to zero, it will never be selected again. Thereby, the iterative estimate has same
disadvantage as stepwise backward elimination: once a variable is removed from the model, it
is never considered again. This restriction can be very limiting in practice.

(ii) Bound the denominator away from zero in (1.42) by fixing a small ε> 0 and solving

β(k) = argmin
β

`(β)+
p∑

j=1

p ′
λ

(|β(k)
j |)

2(|β(k)
j |+ε)

β2
j , (1.45)

as suggested by Hunter and Li (2005). This perturbed version is not an MM algorithm any more,
and the descent property is not verified. Hunter and Li (2005) showed that (1.45) is the dom-
inating function of a perturbed version of the negative nll, and the LQA estimator converges
towards the argmax of this quantity. Under a mild regularity condition (Hunter and Li, 2005)
on f (β), the limit estimator obtained by (1.45) is close to that of (1.44) when ε tends to zero.

1.3.2.2 Local Linear Approximation

Zou and Li (2008) introduced a dominating function based on the local linear approximation of the
penalty function. A first order approximation of pλ(|θ|) around the current point θ(k) gives the Local
Linear Approximation (LLA):

pλ(|θ|) ' lλ(θ|θ(k)), pλ(|θ(k)|)+ (|θ|− |θ(k)|)p ′
λ(|θ(k)|) (1.46)

Lets us prove that this approximating function majorizes pλ(|θ|). Since both terms of (1.46) are
even with respect to θ, one can assume θ > 0 in the following proof. The local linear approximation
l (θ|θ(k)) of the bridge penalty p(|θ|) = |θ|0.5 around the current point θ(k) = 0.5 is represented in
Figure 1.9a. From [

lλ(θ|θ(k))−pλ(|θ|)
]′ = pλ(|θ(k)|)−pλ(|θ|), (1.47)

and the concavity of pλ, it follows that lλ(θ|θ(k))−pλ(|θ|) is minimal at θ(k), where it equals zero. This
completes the proof.

Derive the following dominating function for the penalized nll:

g (β|β(k)) = `(β)+
p∑

j=1
p ′
λ(|β(k)

j |)|β j |. (1.48)

Minimizing this quantity is a weighted lasso problem. When the model at stake is the linear model
or the generalized linear model, g (β|β(k)) can be minimized efficiently using the LARS algorithm.
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The LLA iteration step is more computationally intensive than that of the LQA, which is explicit.
However the fact that each iteration step of the LLA is a lasso problem has deep consequences. The
LLA converges towards a sparse model using a sequence of sparse models. Consequently, the LLA
need not be very close to converge to provide a sparse model. Comparatively, the LQA’s converging
sequence is only asymptotically sparse, and many iterations might be necessary to obtain a good
approximation of the limiting sparse model. In practice, much fewer iteration steps are carried out
for the LLA than for the LQA.

The MM converges to a local minimum, so the choice of the initial guess β(0) is important. For
both LLA and LQA, the standard choice is to set β(0) as the unpenalized maximum likelihood. When
the model is not overparametrized, this initial guess is considered to be not too far from the global
minimum.

Zou and Li (2008) go as far as introducing the one-step estimator, which is obtained by performing
only one step of the MM algorithm:

β(1) = argmin
β

‖y −Xβ‖2 +
p∑

j=1
p ′
λ(|β(0)

j |)|β j |, (1.49)

where the initial guess is the OLS: β(0) = (X T X )−1X T y . This estimator is a weighted lasso estimator,
similarly to Zou (2006)’s adaptive lasso. In fact, for 0 < q < 1, the one-step estimate with the Lq

penalty is the adaptive lasso with parameter γ= 1−q > 0.

1.3.3 Adaptive Ridge

Definition of the adaptive ridge. The Adaptive Ridge is an iterative penalized regression method.
It shares some similarities with the adaptive lasso, with the notable difference that each iteration is
less computationally expensive. As its name suggests, it consists in iterating over a weighted ridge
penalty, with the value of the weights adapted at each iteration.

The adaptive ridge method was used by Rippe et al. (2012) as a numerical trick for approaching
an L0 norm penalty. It was analyzed in a more general setting by Frommlet and Nuel (2016) as an
iterative procedure to numerically approach any Lq penalty, for q ≥ 0. This method iterates over a
weighted L2 penalty problem while adaptively changing the weights at each iteration. It is defined as
the following procedure:

(i) Set w (0) = 1

(ii)

β̂
(k) = argmin

β

`
(
β

)+λ p∑
j=1

w (k−1)
j β2

j (1.50)

(iii)
w (k)

j = (|β(k)
j |γ+εγ)(q−2)/γ (1.51)

(iv) Iterate between the last two steps until convergence.

Equations (1.50) and (1.51) are justified empirically by the following reasoning. Assume β(k) is
reasonably close to the limit estimate β(∞). Then β(k+1) will be not too far from β(k) and the quantity
can be well approximated by

w (k−1)
j β2

j =
β2

j

(|β(k)
j |γ+εγ)(2−q)/γ

'
β2

j

(|β j |γ+εγ)(2−q)/γ
.

This function is differentiable and approximates well the Lq penalty. It is represented in Fig-
ure 1.10 for different values of q . The solid lines represent the penalties and the dotted lines repre-
sent their approximations. The parameter q is usually chosen a priori ; it is rarely cross-validated in
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Figure 1.10: Lq penalties (solid lines) and their approximations by the Adaptive Ridge (dotted lines)
with γ= 2 and ε= 10−4.

practice. Namely, for q = 1, the Adaptive Ridge gives another algorithm for computing the lasso. The
estimating function is continuous even in the case where q = 0 and the penalty is not continuous.

The approximation is very close to the Lq penalty on the sets (−∞,ε) and (ε,∞), thus choosing
a very small value for ε will increase the quality of the approximation. However ε has to be large
enough to avoid the numerical instabilities in (1.51). Using a theoretic argument, Hunter and Li
(2005) proposed a value that depends on the smallest valued OLS component. Using a simulation
study, Frommlet and Nuel (2016) proposed the value 10−8.

The parameter γ > 0 determines how well the approximating function tries to fit to the penalty
around zero. Simulations carried by Frommlet and Nuel (2016) highlight that setting a large value of
γ is however not necessary in practice and show that γ= 2 seems a reasonable choice.

The L0 adaptive ridge. The adaptive ridge is numerically efficient to approximate any Lq penalty,
q ≥ 0. Setting q > 0 yields a procedure to numerically estimate the bridge estimator. Since, to our
knowledge, the L0 norm has never been efficiently approximated in the contexted of penalized max-
imum likelihood estimation, the case q = 0 is of particular interest. We refer to this case as the
“L0 adaptive ridge”. Note that this term does not signify that the penalty used is the L0 norm. The
reweighing step of the L0 adaptive ridge with γ= 2 writes:

w (k)
j = 1

β(k)
j

2 +δ2

In orthogonal design, the limit estimate (k →∞) of the L0 adaptive ridge is:

f (βols
j ) =


0 |βols

j | ≤ 2
p
λ

1
2

(
βols

j + sgn(βols
j )

√
βols

j
2 −4λ

)
|βols

j | > 2
p
λ

(1.52)

which is represented in Figure 1.7. This thresholding function is equal to zero on the interval [−2
p
λ,2

p
λ],

which proves that the limit estimate of the L0 adaptive ridge is sparse.
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Figure 1.11: Approximations of Lq penalties by the Adaptive Ridge for different values of γ, and with
q = 0 and ε= 10−4.

The adaptive ridge iteration (with γ= 2) has already been used by Chartrand (2008) in the context
of compressed sensing. In compressed sensing, the signal y can be recovered completely from its
encoding β since the matrix X has more columns than rows. The author iteratively solves

min
β

p∑
j=1

w jβ
2
j s.t. y = Xβ,

instead of (1.50), but the weights wi are adaptive as in (1.51).
In their implementation, the authors adaptively reduce the value of ε as the absolute error be-

tween successive values of β̂
(k)

decreases. To ensure numerical accuracy, the value of ε is capped at
10−8. The authors compare the square log penalty to Candès et al. (2008)’s log penalty. The square
log penalty yields higher recovery rates of y with very sparse reconstructed signal β̂.

The L1 adaptive ridge. The adaptive ridge could be used to approximate the L1 norm, by setting q =
1 in (1.50). The L1 adaptive ridge bypasses the numerical difficulty posed by the minimization of the
L1 norm. However, different tools have been developed to solve the lasso problem efficiently (see
Section 1.1.2). Consequently, this version of the adaptive ridge is not particularly superior to the
lasso as far as computational speed is concerned. We note that it was already introduce by Vogel and
Oman (1996), who define the iterative procedure as a “lagged diffusivity fixed points iteration”. The
authors developed this method in the framework of image denoising and the minimization of the
penalized likelihood (Equation 1.50) was conducted using the Newton-Raphson method.

1.3.3.1 Relation to similar procedures

Weighted L1 regression. Candès et al. (2008) introduced a weighted L1 regression problem in the
context of compressed sensing. The algorithm uses a weighted L1 penalty (see Algorithm 3). The
constant ε > 0 ensures that the procedure stays stable when a coefficient is set to zero. It also helps
against numerical instability issues arising when dividing by small numbers. Candès et al. (2008) of-
fer to adapt the value of ε at each iteration, setting it to the smallest absolute value of the coefficients
of the current estimate (but no smaller than 10−3).

The formula for the weights is very close to that of the non-iterative procedure adaptive lasso (see
Equation 1.18) with γ= 1. In compressed sensing, the matrix X has more columns than rows and the
problem min‖y − Xβ‖ is ill-posed. Consequently there is no OLS estimate to plug in the formula of
the weights. This justifies the use of an adaptive procedure where the OLS estimate in Equation 1.18
is replaced by the current estimate.
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Algorithm 3 Candes’s weighted L1 minimization

1: function ITERATIVE L1(y , X ,λ, ε)
2: w (0) ← 1
3: k ← 0
4: while not converge do
5: β(k) ← argminβ`

(
β

)+λ∑p
j=1 w (k)

j |β j |
6: w (k)

j ← 1
|β(k)

j |+ε
7: end while
8: end function

Consider now the non-concave penalized problem

min
β

`
(
β

)+λ p∑
j=1

log
(|β j |+ε

)
. (1.53)

1.3.3.2 Numerical performance

This procedure is strikingly easy to implement and fast to compute. Indeed, the ridge problem is
easier to solve than the lasso problem and the reweighing step has complexity O

(
p

)
. Comparatively,

the lasso estimate is more computationally intensive. This makes the adaptive ridge quicker to com-
pute than Zou and Li (2008)’s one step estimates an Candès et al. (2008)’s adaptive procedure for
the log penalty. The downside of the adaptive ridge is that the k-th step estimate is not sparse: only
the limit estimate β̂(∞) is sparse. In practice, the adaptive ridge procedure must be stopped when it
is estimated to have converged, and the estimate’s coordinates that are close to zero must be set at
zero.

1.4 Structured variable selection

The methods introduced previously are useful in cases with the prior assumption that β∗ is sparse,
i.e., many of its components are zero. In some applications, the true parameter is assumed to have
a simple structure other than having many components to zero. This specific sparsity structure can
vary greatly and depends on the relationship between parameters. For instance if β∗ is assumed
piecewise constant, this prior is expressed as the sparsity of (β j −β j−1). In general, many prior struc-
tures of the parameters are expressed as the sparsity of a transformation of the data. This section
presents different possible transformations available to ensure different sparsity structures.

1.4.1 Group lasso

In some practical situations in statistical regression, the variables belong to a group. An important
example of such situation is the regression against factor variables that are represented as dummy
variables. Another instance of grouped variable occurs when we know a priori that some variables
have a common effect on the response variable. In these cases, it makes little sense to perform vari-
able selection that would select some variables inside a group and not the others. Variable selection
techniques have been developed to take into account the presence of groups, and to select groups of
variables together.

Yuan and Lin (2006) introduced the group lasso, building on ideas by Bakin (1999) and Lin and
Zhang (2006). Consider a partition G = (Gk )1≤k≤K of the set of indices of variables

{
1, · · · , p

}
. Assume

that the variables are partitioned into K groups which are given by G . For k ∈ {1, · · · ,K }, pk denotes
the number of covariates in the k-th group (we have

∑
k pk = p) andβk denotes the vector containing
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Figure 1.12: Unit ball of the group lasso norm with three variables and with G = {{1,2} , {3}}. We rep-
resent the 3d ball (a) and its restriction to the variables {x1, x2} (b) and {x1, x3} (c).

only the variables in Gk . Without loss of generality, we can write β= (βT
1 , · · · ,βT

K )T . The group lasso
is defined as the mimimizer of

`(β)+λ
J∑

k=1
wk

∥∥βk
∥∥

q , (1.54)

with positive weights wp j > 0 .
This group norm, also called L1/Lq norm or mixed norm (Bach, 2011) is the norm obtained by a

L1 averaging of the Lq norm defined on each group. It behaves as an Lq norm between variables of
each group and as an L1 norm between groups. Consequently, for q > 1, the L1/Lq norm performs
selection between groups and performs shrinkage (without selection) within each group. It is easy
to see that the Lp /Lq penalty is a norm for every p ≥ 1, q ≥ 1. Notice that when the partition of{
1, · · · , p

}
is the trivial partition composed of singletons, (1.54) becomes the lasso penalty and when

there is only one group, (1.54) becomes the ridge penalty. The group lasso can therefore be seen as a
compromise between the ridge and the lasso penalty.

There are several possible choices for q . Some authors (Turlach et al., 2005), (Zhao et al., 2009)
consider the L1/L∞ mixed norm, mainly because optimization with this penalty is numerically effi-
cient (see Mairal et al., 2011; Zhao et al., 2006). However the preferred choice in the literature is the
Euclidean norm, q = 2, which shrinks equally in all directions.

We now illustrate the group penalty on a simple example. Consider the case of p = 4 variables

divided into K = 2 groups: G1 = {1,2} and G2 = {3,4}. The group lasso penalty writes
√
β2

1 +β2
2 +√

β2
3 +β2

4. This mixed norm is a L1 norm with respect to the groups p1 and p2, and is a L2 norm
inside each group. Consequently, the L1 norm will enforce selection of (βp1

,βp2
) and will not enforce

selection of variables inside each group. The variables 1,2 can be selected together but not alone –
and the same goes for 3,4. The effect of the variables 1,2 inside the group p1 is given by the L2 norm.
The selection effect of the mixed norm is illustrated in Figure 1.12, which represents the unit ball in
the case where the p = 3 variables are partitioned by G = {{1,2} , {3}}. This ball is a double cone with
singularities at its top and bottom and at its central circle. As is the case for any penalty norm, these
singularities give the sparsity structure encoded by the mixed norm: either β1 and β2 are jointly set
to zero (in which case x3 is estimated with shrinkage), or only β3 is set to zero (in which case x1 and
x2 are estimated with ridge shrinkage).

The weights wp j are included to adjust for the relative importance of the groups. If one group

has twice as many components as another, it will be regularized
p

2 times less – assuming all vari-
ables have equal importance. Consequently, the choice wp j =p

p j is often used to renormalize the
importance of each group.

Yuan and Lin (2006) introduced a group LARS algorithm, a group version of the LARS algorithm
which successively adds groups of variable to the active set. Contrarily to the LARS, which can be
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Figure 1.13: Unit ball for the L1/L2 mixed norm with overlapping groups {{1,3} , {2,3}}.

easily modified to compute the lasso solution (Efron et al., 2004), the group LARS generally differs
from the solution of (1.54). However, since the L1/L2 penalty is a norm, the penalized likelihood (1.54)
is convex and the group lasso solution can be computed in reasonable time using the coordinate
descent algorithm (or any convex optimization method). Roth and Fischer (2008) presented a comp
utationally efficient algorithm to compute the group lasso.

The group lasso can be naturally extended to any mixed norm. One could for instance consider
the Lp /Lq mixed norm, where p < 1 and q > 1, such that the norm between groups induces sparsity
and the norm inside does not induce sparsity. Turlach et al. (2005) introduced a version of the group
lasso using the L1/L∞ norm.

We emphasize that the group lasso is to be used when clear a priori knowledge is known about
the variable group. Theoretically, we could set the partition as a Bayesian variable and try to find the
best partition. We could explore the set of partitions of {1, · · · ,d} by following the vertices of the Hasse
diagram defined by the partial order on partitions (see Figure 1.8). We could explore this set using a
discrete MCMC algorithm. However, in practice, this Hasse diagram is highly connected so exploring
this space with an MCMC approach is computationally unfeasible.

1.4.2 Overlapping groups

The previous section considers a bagging of the covariates based on a partitioning of
{
1, · · · , p

}
. This

group sparsity structure corresponds mainly to the case of factor covariates represented using dummy
variables. In this section we consider generalizations to subsets of

{
1, · · · , p

}
which do not form a par-

tition. It turns out that the sparsity obtained from such overlapping groups are of great use to include
interesting a priori structure between the variables. This extension of the group lasso was introduced
by Zhao et al. (2009) and Jacob et al. (2009).

We keep the same notation as in the previous section, except that here G = (G1, · · · ,GK ) is an
element of the power set of

{
1, · · · , p

}
. Without loss of generality, we can assume that each variable is

present in at least one group Gk . We consider the same penalty as before:

`(β)+λ
K∑

k=1

∥∥βk

∥∥
qk

, (1.55)

where qk > 1 is the order of the penalty norm inside Gk . As already discussed in the previous section,
setting qk = 2 for all k will give a ridge penalty inside each group.

First, note that the mixed norm (1.55) remains a norm when G is no longer a partition. Conse-
quently the penalty is convex and the group lasso has the same computational cost when the groups
have overlapping.

We now develop on the type of sparsity structure that overlapping groups can encode. Over-
lapping groups allow to encode a priori information of the type “if one variable is removed, other
variables have to be selected”. For the sake of the illustration, consider the following example, with
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4 covariates x1, · · · , x4. The a priori knowledge here is that the variable 1 and 3 are closely related, as
well as 1 and 2. Define G = ({1,2} , {2,3}). The group lasso estimate is the minimizer of

`(β)+λ
(√

β2
1 +β2

2 +
√
β2

2 +β2
3

)
.

This penalty sets all the variables inside one of the groups to zero. This penalty is represented in Fig-
ure 1.13. As illustrated, the singularities enforce that either β1 = β3 = 0 or β2 = β3 = 0. Consequently
the estimated model will either only select the variable 3 or only the variable 2.

There are a large number of possibilities to use overlapping groups to include prior knowledge
on the link between variables. However, defining groups that encode the desired sparsity structure
is a difficult task, and is somewhat counter-intuitive. Indeed if a variable is selected in the model, all
the variables which have one group in common with this variable will be kept in the model. Conse-
quently the selected variables will be formed by the complementary of a union of the groups Gk . It is
often easier to express the relationship between variables through a measure of their proximity and
we want to use the groups defined using this proximity measure. The relevant penalty corresponds
to selecting variables whose support is formed by a union of the groups Gk . Jacob et al. (2009) intro-
duced this group norm. For instance, with the group G = {{1,3} , {2,3}}, this penalty removes either β2

or β3 from the model, and does not select β3. This method is of great use in signal processing, where
it is easy to specify the prior structure of an object using a union of basic structures. For examples of
applications in signal processing and image processing, see Jenatton et al. (2011); Huang et al. (2009).

Sparse Group lasso. Friedman et al. (2010a) introduced an extension of the group lasso which en-
forces the estimate to be both sparse and sparse with respect to its group partition. We use the no-
tations of Section 1.4.1, i.e. G = (Gk )1≤k≤K denotes a partition of

{
1, · · · , p

}
. The penalty of the sparse

group lasso is obtained by adding an L1 penalty to (1.54) and choosing q = 2. The sparse group lasso
estimate minimizes

`(β)+λ1‖β‖1 +λ2

K∑
k=1

p
pk‖βk‖2.

Note that this penalty is a mere particular case of the overlapping group penalty. Indeed, the sparse
group penalty rewrites as (1.55) with the overlapping group G̃ =G ∪ {

{1} , · · · ,
{

p
}}

. In its generalized
version (Simon et al., 2013), the sparse group lasso uses a weighted mean between the lasso and the
group lasso.

1.4.3 Hierarchical structured sparsity

A particular case of the overlapping group lasso is of great interest in many applications. Suppose
that we dispose of a hierarchy between the variables, in the sense that one variable can be more
important or more primary than another one. We may want to include this a priori knowledge as
a constraint on β. If x1 is “above” x2 in this hierarchy, we say that x1 precedes x2, and it is noted
x1 ≺ x2 The hierarchy corresponds to a directed acyclic graph (DAG) between the variables, with
the property that the parent variables precede their children. In the following, we assume that the
hierarchy includes all the variables. We identify the variables to the vertices of the DAG.

We can build a grouping of the variables such that each variable will only be considered for re-
moval from the model if all of its children have already been removed. We define G as follows: it
contains all the singletons of child-less nodes, then all the groups of size 2 composed of the child-less
nodes and their respective parents, then all the groups of size 3 composed of the child-less vertices
and their grand-parents, etc until all the variables are included. Note that the groups are nested: if a
group contains a variable, it overlaps with all groups containing this variable. There is a one-to-one
correspondence between a DAG and its nested group G .

We define the hierarchical group lasso in the same way as before:

`(β)+λ
K∑

k=1

∥∥βk

∥∥
2. (1.56)
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Figure 1.14: (a) Hierarchical structure of the overlapping group G = {{1,2,3} , {2,3} , {3}}, (b) Unit ball
of the corresponding mixed norm, (c) Projection of the unit ball on the plane x2 = 0.

The following argument illustrates why the overlapping group penalty encodes the desired hierar-
chical structure. From the way G was constructed, we know that any variable xk appears in (1.56)
through an L1 norm of βk and an L2 norm of all the groups containing xk and its dominating vari-
ables. Consequently, xk will always be removed from the model before any of its ancestors.

We provide a simple example to illustrate hierarchical sparsity structures. Consider the three
variables x1 ≺ x2 ≺ x3. The group for this hierarchy is G = {{1,2,3} , {2,3} , {3}} (see Figure 1.14a). The

corresponding penalty is
√
β2

1 +β2
2 +β2

3+
√
β2

2 +β2
3+

√
β2

3. The unit ball is represented in Figure 1.14b.
The two “spikes” in the unit ball encode the sparsity β2 = 0. But since they are located in the plane
β3 = 0, the sparsity induced by these singularities necessarily induce that β3 = 0. The shape of the
unit ball correctly encodes the sparsity structure of Figure 1.14a. Finally, Figure 1.14c represents
the projection of the unit ball on the variables β1 and β3. It illustrate that the third variable will be
removed from the model before the first variable.

1.4.4 Fused lasso and total variation

In this section, the parameter vector is assumed to have a natural ordering. This is the case in sig-
nal processing, when the response variable yi = y(ti ) is indexed by time and each parametrization
reflects this time ordering. Tibshirani et al. (2005) was among the first to introduces a variable selec-
tion method on a transformation of the data. In their method, called fused lasso, one assumes that
the vector is sparse and that it deviates from zero only on intervals over which it is constant. The
fused lasso minimizes

`(β)+λ1

p∑
j=1

|β j |+λ2

p∑
j=2

|β j −β j−1|, (1.57)

where λ1 > 0 and λ2 > 0 are trade-off constants. When taking λ2 = 0, this estimate becomes the lasso
estimate. When taking λ1 = 0, the penalty becomes the total variation of the parameter.

The total variation, defined by TV(x) = ∑n
j=2 |x j − x j−1|, quantifies how much a sequence varies.

Thus, the total variation penalty enforces the parameter to be piecewise constant. In the linear model
with orthogonal design X T X = I , the total variation regularized problem writes

argmin
β

‖y −β‖2
2 +λ2

p∑
j=2

|β j −β j−1|, (1.58)

which is referred to as total variation denoising in the signal processing community (Rudin et al.,
1992a). It is used to recover noisy signals under the assumption that the original signal is piecewise
constant.
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Figure 1.15: Admissible solution set for the fused lasso penalty (dark grey) and for the lasso and total
variation penalties (light grey).

The joint use of lasso and total variation penalty enforces the signal to be both sparse and piece-
wise constant. The admissible solution set for the fused lasso penalty is illustrated in Figure 1.15
(dark grey). In light grey, the diagonal band represents the admissible set of |β2 −β1| ≤ c2 and the
rotated square represents the L1 ball |β1|+ |β2| ≤ c1, with c1 = 3 and c2 = 1.

The fused lasso inherits the following properties from the lasso:

(i) It is as computationally efficient, since Friedman et al. (2007) showed that a small modification
of the coordinate descent is viable to solve the fused lasso.

(ii) It enforces the same level of sparsity on the parameter than the lasso. Recall that if p > n, the
lasso selects at most n parameters (see Rosset et al., 2004, Appendix A). For the fused lasso, this
property remains true when replacing n by the number of constant plateaux:

∑p
j=11β j 6=β j−1

(with β∗
0 = 0).

Two-dimensional fused lasso. Consider now the case where the parameter β is parametrized by
two indices: β = (β j , j ′), where 1 ≤ j ≤ q and ,1 ≤ j ′ ≤ q ′, with q × q ′ = p. In some applications, this
parametrization appears naturally in the model, which then has a bi-dimensional structure. Then the
fused regularization introduced in the previous section generalizes naturally to the two-dimensional
case. Notice that in (1.58), we penalize over the difference operator∆β j ,β j −β j−1 of the parameter.
This operator generalizes in two dimensions to the penalty

q∑
j=1

q ′∑
j ′=1

|β j , j ′ −β j−1, j ′ |+ |β j , j ′ −β j , j ′−1|. (1.59)

which defines the two-dimensional total variation penalty As for the one-dimensional case, we can
add regularization over β j directly, so as to form the bi-dimensional equivalent of (1.57), called bi-
dimensional fused lasso. Note that there is not a unique difference operator in two dimensions.

This two-dimensional setting arises in image processing: each parameter corresponds to the grey
level of one pixel in a numerically-stored image. See Friedman et al. (2007) for an illustration of the
bi-dimensional fused lasso, applied to image denoising. Many statistical models dealing with spatial
data also falls within the scope of this bi-dimensional parameter structure.

Minimization of (1.59) does not enter in the framework of the coordinate descent, as presented
in Property 1. However, the optimization method can be slightly modified so as to solve (1.59), as was
shown by Friedman et al. (2007). Optimization methods for the bi-dimensional fused regularization
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is not given here in all generality. Instead, we present the computational approach used for the fused
adaptive ridge later in this section.

Many extensions of the bi-dimensional fused lasso are possible. First, the L1 penalty can be gen-
eralized to any penalty presented in this Chapter. In particular, this thesis focuses on the adaptive
ridge applied on bi-dimensional regularization, which we will call fused adaptive ridge. Second,
(1.59) makes use of the one-dimensional finite difference operator of the first order. To enforce β
to be close to linear instead of constant, we would use the penalty

4β j , j ′ −β j−1, j ′ −β j+1, j ′ −β j , j ′+1,β j , j ′−1

or
8β j , j ′ −β j−1, j ′ −β j+1, j ′ −β j , j ′+1,β j , j ′−1 −β j−1, j ′−1 −β j−1, j ′+1 −β j+1, j ′+1 +β j+1, j ′−1.

The two serve the same role, the difference between them being out of the scope of this work. Ex-
tensions to any order are available, although the first order given in (1.59) is the most used in many
applications.

1.4.5 Fused Adaptive Ridge

The work presented in this thesis makes extensive use of the (L0) adaptive ridge, and mostly of the
fused adaptive ridge, used in Chapters 2 and 3. We recall the method here and discuss some compu-
tational considerations that will be developed further in the corresponding Chapters.

Generalizing (1.59) to the adaptive ridge penalty is straightforward. The weighted penalty of the
adaptive ridge becomes a weighted difference along each dimension. Thus, we use two arrays of
weights: v and w .

Algorithm 4 Fused Adaptive Ridge

1: function FUSED ADAPTIVE RIDGE(λ)
2: w (0) ← 1, v (0) ← 1
3: k ← 1
4: while not converge do

5: β(k) ← argmin`(β)+λ∑q
j=2

∑q ′

j ′=2 v j+1, j ′+1(β j , j ′ −β j−1, j ′)2 +w j+1, j ′+1(β j , j ′ −β j , j ′−1)2

6: v (k)
j+1, j ′+1 ←

(
(β j , j ′ −β j−1, j ′)2 +ε2

)−1

7: w (k)
j+1, j ′+1 ←

(
(β j , j ′ −β j , j ′−1)2 +ε2

)−1

8: k ← k +1
9: end while

10: end function

The method is given in Algorithm 4. Notice that line 6 and 7 are done in complexity O(q×q ′). The
computational bottleneck is the minimization of the penalized likelihood in line 5. This is typically
done using the Newton-Raphson method. This method requires a number of successive inversions
of the Hessian (i.e. the second order derivative) of the penalized likelihood. This matrix equals the
Hessian of `(β) to which is added the second order derivative of the penalty term (given in line 6).
Note by H(β) this function, whose values are (qq ′)× (qq ′) matrices. Note that the form of the fused
penalty induces that H is a (symmetric) band matrix. More precisely, assuming that β is ordered β=
(β1,1, . . . ,β1,q ′ ,β2,1, . . . ,βq,1, . . . ,βq,q ′) it has 5 non-zeros diagonals: the main three diagonals, and two
diagonals located at distance ±q ′ of the main diagonal. Inverting H can be done cleverly by making
use of its symmetry and bandedness, using QR decomposition for banded matrices. We have found
no way of taking advantage of the fact that most diagonals are zero to speed up this inversion; hence
the QR decomposition method inverts H in O(q ×q ×q ′), which is usually of the same order as p3/2.

This remark is only relevant is ∇2`(β) is also banded, with a band no bigger than q ′. This turns
out to be the case in our applications. More details of computational considerations are given in the
corresponding chapters.
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1.5 Conclusion

In this introducing chapter I have developed on the many and diverse methods of penalized likeli-
hood estimation that perform selection of variables.

In a first part, I explain in details the simplest and mostly used methods of penalized likelihood:
the lasso and its extensions: elastic-net and bridge regression. These methods’ have historically been
developed from the generalization of the norm penalty: the lasso penalty (L1 norm), which is often
introduced as a relaxation of the L0 norm, was considered an extension of the ridge penalty (L2 norm)
to enable both shrinkage and sparsity. Most other methods are built as extensions of the L1 norm,
as is the case for the elastic-net and the bridge. A breakthrough was made when Fan and Li (2001)
introduced the idea of “non-concave” penalty, generalizing the previous methods to a wide class of
sparsity inducing penalties. These non-concave penalties benefit from satisfying asymptotic prop-
erties of consistence in selection and asymptotic normality in estimation, with the lowest possible
variance. These penalties are hard to minimize, making the computation of their corresponding es-
timate a difficult problem. Fan and Li (2001) and Zou and Li (2008) introduced two different iterative
procedures to minimize these penalties: the LQA and the LLA.

The next Section is dedicated to briefly introducing the other important approach to variable se-
lection: stepwise selection. Instead of enforcing a prior on the distribution of the estimated param-
eter, like the penalized methods do, the stepwise selection methods (including forward-backward
selection) performs variable selection by successively fitting the model with different subset of vari-
ables.

In Section 1.3, I resume to penalized methods and I develop on the iterative methods for solving
penalized likelihood problems. I also introduce the iterative penalized method that is central to this
thesis: the adaptive ridge. I discuss its strengths and particularities and I develop on a particular case
of interest: the L0 adaptive ridge.

Finally in the last section I introduce an important application of sparsity-inducing estimation:
structured sparsity. In many applications, the parameter is assumed to have a certain characteris-
tic. Two examples have a historical importance and have played a large role in the development of
structured sparsity: (i) in image processing, images are assumed to be mainly composed of large re-
gions of equal brightness and (ii) in many models, the variables are assumed to belong to groups,
and we want to select the variables by groups. Structured sparsity focuses on finding ways to apply
the penalized likelihood variable selection methods to a specific function of the parameter.

The work of this thesis makes an extensive use of structure sparsity in different applications. We
will consistently use the (L0) adaptive ridge with a structured sparsity adapted to the problem at
hand.

Why the adaptive ridge? Many efficient penalized likelihood methods have been successfully brought
to light and the class of non-concave penalties seem to enjoy both optimal theoretical properties and
numerical procedures for fast computation. We see the adaptive ridge as a new and interesting ap-
proach to iterative model selection methods. Its simplicity of implementation makes it easily appli-
cable to new statistical problems. Indeed, the adaptive ridge procedure is a weighted ridge problem;
for which readily available numerical solvers can be used.

The adaptive ridge was introduced by Rippe et al. (2012) and Frommlet and Nuel (2016) with an
empirical justification for its formulation. In Chapter 1.3.3, we make an important connection be-
tween the adaptive ridge and non-concave penalty. The adaptive ridge is the numerical procedure
obtained when applying Fan and Li (2001)’s LQA to a particular penalty, which is a relaxation of the
logarithmic function. This provides the pertinent framework for a study of the properties of the adap-
tive ridge. It can be shown that although the relaxation used to generalize the non-concave penalty
to the adaptive ridge procedure makes its computation easier, the theoretical properties of the latter
do not apply for the former. We lay the ground for a study of these properties.
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Appendix: Least angle regression

The least angle regression (LARS) is an iterative method for penalized regression introduced by Efron
et al. (2004). A modified version of the LARS, called lasso-modified LARS or abusively LARS, allows to
compute the solution path of the lasso. Indeed, the lasso estimate, as a function of the parameterλ, is
piecewise linear. As long as the active variables are the same, the estimates are a linear function of λ.
Each time a variable is included in or removed from the model, the slope of the other variables’ effects
shift. The LARS – and the LARS-lasso – make use of this property: the estimates are only computed
at the values of λ were a variable is added to or removed from the model. The entire solution path
is then drawn by connecting the dots. In this respect, the LARS-lasso compares favorably with the
coordinate descent, which computes the lasso estimate only on a grid of values of λ.

The LARS-lasso is initiated with no “active” variables in the model and it iteratively adds variables
one by one in the model. The current estimate of y is noted ŷ = X β̂ and is initiated at zero. The
LARS-lasso operates by selecting the variable with the greatest correlation with the current residuals
ĉ = X T (y − ŷ) and adding is to the active set of variables. The current estimate is then updated in
the direction u such that the current residuals have equal correlation with the newly added variable
than with the other active variables, that is: ŷ ← ŷ + α̂u. The value of α̂ is chosen such that the
correlation between the current residuals and the new variable becomes equal to the correlation
between the current residuals and any other non-active variable. The first non-active variable to
satisfy this condition is in turn added as an active variable. Then, the current estimate ŷ is updated
in the direction with equal correlation between the two last variables to be activated. By iteration, the
current estimate follows the path of equal correlation – i.e. of equal angle – between all covariates,
until they are all added to the model. Hence the name “least angle regression”.

The LARS-lasso is the same as the LARS algorithm, except for the following small modification.
When moving the current estimate along the least angle direction, if an active variable j makes its
estimate cross zero: (i) update the current estimate at the corresponding value of α̂, (i) remove j
from the set of active variables, and (iii) carry on the LARS procedure. The LARS-lasso was proven
by Efron et al. (2004) to make the algorithm compute the lasso solution path, under the condition
that no two variables have equal correlation with the current estimate. This condition is always met
in practice. The proof is technical and there does not seem to be an intuitive explanation to the
connexion between least-angle regression and L1 norm.
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Regularized estimation of the hazard rate

In this section we introduce a statistical method for hazard rate estimation with automatic detection
of breakpoints. This methods uses the adaptive ridge penalization to effectively produce a piecewise
constant estimate of the hazard rate, where the cuts are chosen from the data. This method is general
and could be applied to a wide range of statistical problems, like density estimation. We only present
it in a more specific setting, where instead of estimating a density, we estimate a typical quantity
of interest in survival analysis: the hazard rate, which can be seen as a conditional density. This
choice is motivated by two reasons. First, this problem was motivated by the study of heterogeneity
in survival analysis. Secondly, we present another model in Chapter 3 which answers the problems
of age-period-cohort analysis and is built on the method presented in this Chapter. Thus, we choose
to present our method in the specific context of survival analysis, and more specifically age-period-
cohort analysis.

More precisely, we focus on the estimation of the hazard rate λ(t ,u) taken as a function of two
variables t and u, were t is the time dependent variable and u is another variable. In particular, we
present our method in the context of age-period-cohort analysis. We will show that we can consider
only the case of two variables: one is time-dependent (either the age or the period) and the other, the
cohort (i.e. date of birth), is not time-dependent. For the sake of simplicity, our method is illustrated
with u as the cohort variable.

This chapter is organized as follows. In a first part, we give a general introduction to time-to-
event data and the statistical study of censored variables. We go on to introduce a simple model for
the estimation of the hazard rate in the case of right-censored data. This model is the piecewise con-
stant hazard model, with automatic detection of the breakpoints. This first model was developed by
Bouaziz and Nuel (2017). We present it because it provides a good illustration of application of the
fused adaptive ridge to hazard estimation. In fact, the model developed in this Chapter is built as
an extension of the work from Bouaziz and Nuel (2017). We then present the setting of age-period-
cohort analysis, and more specifically, the estimation of the hazard rate in presence of another con-
tinuous variable. Finally, Sections 2.2 and 2.3 present our contribution.

37
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2.1 Introduction

2.1.1 Survival Analysis

Survival analysis is the statistical study of duration variables, sometimes called time-to-event vari-
ables. This duration variable is the time between an origin and an event of interest. The origin is the
moment where the individual starts being at risk of having the event. (In the example where death is
the event of interest, the origin is the birth of the individual.) In order to collect time-to-event data
we have to wait until the event of interest has occurred. In cases where the duration time is long (as
in demographics and epidemiology), studies are stopped before all events have occurred.

Thus, not all the duration times are observed. We can only observe the event of interest (for
instance death) if it happened before all events that would make its observation impossible (for in-
stance that the individual exit the epidemiological study). This problem can occur for a large pro-
portion of the sample, for example with demographic studies where the event of interest is death.
Removing the corrupted individual from the study and carrying the statistical inference with the re-
maining sample is a mistake because it would introduce a bias in the observed sample.

This problem is called censoring. When the variable cannot be observed after the occurrence of
another incompatible event, it is called right-censoring. In this section, right-censoring is statistically
defined and the assumptions under which inference on the event of interest can be recovered are
discussed.

Time-to-event data. Let T ∗ ≥ 0 be the time-to-event random variable of interest. In the case of
right-censoring, T ∗ is not observed. Instead we observe (Ti ,∆i ), an i.i.d sample of the observed time
T and the right-censoring time C :

T ,min
(
T ∗,C

)
(2.1)

∆,1T ∗≤C =1T=T ∗ . (2.2)

The term right censoring comes from the fact it is the higher values of T ∗ that are censored by C –
and hence the right part of the distribution. To observe ∆i is to know whether we observe T ∗

i or Ci .

Terminology. We provide and recall a few terms used in time-to-event data. The event of interest is
the event which marks the end point of the duration T ∗ at stake. It is typically death of the onset of a
disease. A duration T i is said to be observed if ∆i = 1, otherwise, it is said to be censored (and ∆i = 0).
An individual is said to be at risk at a time t if Ti > t , that is, if he is at risk of having the event of
interest.
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Survival function. The survival function is defined as

S (t ),P (T > t ) = 1−F (t−) , (2.3)

where F is the cumulative probability distribution function of the variable of interest. The survival
function at time t gives the probability of survival at time t – i.e. the probability that the individual
has not had the event of interest at time t .

Hazard Rate. The hazard rate (or instantaneous hazard) rate is defined as the infinitesimal proba-
bility of the event to occur now, conditionally on the fact that it has not occurred yet:

λ∗ (t ), lim
δt→0

P (t ≤ T ∗ < t +δt | T ∗ ≥ t )

δt
. (2.4)

This function is important in survival analysis for (i) theoretical reasons as is illustrated in the
next paragraph (ii) practical reasons because it has an important meaning in demographics and epi-
demiology.

Many simple statistical models are formulated using the hazard rate rather than the survival func-
tion. Denote by f the density of T ∗; then simple calculations yield λ (t ) = f (t )/S (t ). This equation
shows that there is a one-to-one correspondence between a distribution and its hazard rate function
(if it exists).

Assumptions on the censoring variable. Define the following assumptions.

Assumption 3 (Independent censoring). The random variables C and T ∗ are independent

Assumption 4 (Non-informative censoring). The censoring variable C does not depend on the model
parameters

Inference under right-censoring. Define the crude hazard rate as:

λ (t ), lim
δt→0

P (t ≤ T < t +δt | T ≥ t ,C ≥ t )

δt
. (2.5)

We recall the following property (Fleming and Harrington, 2011, p. 25).

Property 4. Under Assumption 3, λ(t ) =λ∗(t ).

This property is essential for inference with censored data. Indeed, the crude hazard depends
on T and C and not on T ∗. Consequently, under Assumption 3, inference on T ∗ is straightforward
and we can perform inference on T ∗ (through its hazard rate) without directly observing it.

This assumption is not equivalent to Property 4. It is stronger than necessary and we can con-
struct examples of dependent censoring where λ= λ∗ (Fleming and Harrington, 2011, Exercice 1.8).
The precise assumption that is equivalent to Property 4 is

lim
δt→0

1

δt
P

(
t ≤ T ∗ < t +δt |T ∗ ≥ s

)= lim
δt→0

1

δt
P

(
t ≤ T ∗ < t +δt |T ∗ ≥ t ,C ≥ t

)
, (2.6)

for all t such that P (T ∗ > u) > 0 (see Fleming and Harrington, 2011, , Theorem 1.3.1). This equal-
ity signifies that C does not convey any information supplementary on T ∗. However, for the sake
of simplicity, we assume independent censoring and not the latter, weaker assumption. This is a
simplification often made in the literature.

Moreover, wherever necessary, it is implicitly assumed that T ∗ and C are absolutely continuous
with respect to the Lebesgue measure.
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Remark on censoring and competing risk. As explained previously, the censoring is due to the
individual leaving the study. We make remark here to note that not all events preventing the event of
interest from being observed are censoring events. Take the example where the event of interest is the
birth of the first child. If the individual leaves the study before his first child is born, this individual
is censored. But the death of the individual is not a censoring variable, because after dying, the
individual is no longer at risk. Censoring requires that the individual still be at risk of having the
event of interest. The question “is the individual still at risk ?” allows to understand whether an
alternative event is a censoring event or a competing risk. This simple question is often overlooked
in applications.

2.1.2 The piecewise constant hazard estimation

The piecewise constant hazard model. In this section we introduce a simple model upon which
this chapter’s work is built. Let c = (

c1, . . . ,c J
)

be a vector of positive-valued cuts sorted in increasing
order: c1 < ·· · < c J . In the piecewise constant hazard model the hazard is constant on the intervals
defined by c :

λ (t ) =
J∑

j=1
exp(α j )1c j−1≤t<c j , (2.7)

where α j are the values of the log-hazard rate over each interval and where c0 = 0 and c J+1 =∞ by
convention. The logarithmic transformation ensures that the parameter α can take any real value,
and thus, no constraints need to be added to its estimation. The parameter of the model isα ∈RJ .

The interest of the piecewise constant hazard model comes from its simplicity. Indeed the hazard
rate is directly interpretable and in many applications (e.g. medicine or epidemiology), the practi-
tioner is interested in a simple hazard function in order to draw conclusions. On the other hand,
with sufficiently enough cuts, this model is very flexible. One of the aim of this chapter is to choose
the number and values of the cuts from the data. In this manuscript we use the acronym “PCH” to
denote the piecewise constant hazard function.

In this section we will discuss the estimation in the PCH model with an automatic detection of
the knots. This gives a good introduction to the contribution of this chapter, which is estimation
of bi-dimensional hazard rate with automatic selection of the knots. This work was developed by
Bouaziz and Nuel (2017) who also introduced a procedure for inferringα.

Maximum likelihood estimation. Under Assumptions 3 and 4, the likelihood writes

L(α) =
n∏

i=1
f (Ti )∆i S (Ti )1−∆i . (2.8)

This product has n terms: the information provided by individual i is f (Ti ) if the event is observed
(i.e. ∆i = 1) and S(Ti ) = P (T ∗ > Ti ) if the event is censored (i.e. ∆i = 0). The NLL `=− logL writes

` (α) =
n∑

i=1

{∫ Ti

0
λ (t )d t −∆i log(λ (Ti ))

}
. (2.9)

Combining (2.7) into (2.9), we get

`(α) =
n∑

i=1

∫ Ti

0
λ(t )d t −

n∑
i=1
∆i log(λ(Ti ))

=
n∑

i=1

J∑
j=1

eα j

∫ Ti

0
1c j−1≤t<c j d t −

n∑
i=1

J∑
j=1

α j∆i1c j−1≤Ti<c j .

Define

Ri , j ,
∫ Ti

0
1c j−1≤t<c j d t =1Ti≥c j−1 (max(Ti ,c j )− c j−1) (2.10)
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and
Oi , j ,∆i1c j−1≤Ti<c j . (2.11)

The former quantity is equal to the time spent by individual i in the interval [c j−1,c j ). It is called time
at risk. The latter quantity is equal to the number of observed events in the interval [c j−1,c j ) – note
that the censored events are not taken into account here. Then

`(α) =
J∑

j=1
exp(α j )R j −α j O j , (2.12)

where R j =∑n
i=1 Ri , j is the total time at risk and O j =∑n

i=1 Oi , j is the total number of events, both in
the interval [c j−1,c j ).

A few remarks need to be made at this point. The two quantities (O j ) j and (R j ) j are exhaustive
statistics. They gather all the information from the data (Ti ,∆i )i with respect to the PCH model.
They have a crucial role in any survival model with a piecewise constant hazard. When there is no
ambiguity, they will be referred to as the "exhaustive statistics".

Moreover, `(α) writes as a very simple function of the exhaustive statistics. In fact Equation 2.12
is also the likelihood of the Poisson regression model whose response variable is O j ∼ P (µ j ) with
mean µ j = log(α j )R j . For this reason, the PCH model is often called “Poisson model”, even though it
does not assume that the O j s be Poisson distributed or that the R j s be fixed quantities. Notice that
the MLE is explicit here, since the minimum of `(α) is

αmle
j = log

(
O j

R j

)
.

Fused penalization using the adaptive ridge. The former considerations yield an explicit maxi-
mum likelihood estimate of the hazard in the PCH model. We want to regularize over the successive
differences of α j . Define the penalized negative log-likelihood corresponding to the fused adaptive
ridge regularization:

`pen(α, w ), `(α)+λ
J−1∑
j=1

w j (α j+1 −α j )2, (2.13)

where λ> 0 is a trade-off constant and (w j )1≤ j≤J−1 is the vector of weights used in the adaptive ridge.
The penalized estimate is obtained by iterating between (2.13) and an update of the weights w , as

in Algorithm 4. The principle of the estimation follows the iterative procedure of the adaptive ridge,
which is given in Section 1.3.3.

2.1.2.1 Proportional hazard model with piecewise constant hazard

The previous model generalizes easily to the setting of right censored data with covariate, that is, the
data consists of (Ti ,∆i , Xi )1≤i≤n , where x i is a p×1 vector of covariates. We assume that the covariate
are not time-dependent. Consider now the PCH model with proportional effect of the covariates,
that is:

λ(t |x i ) =λ0(t )exp(xT
i β), (2.14)

where λ0(t ) is the piecewise constant baseline hazard (see Equation 2.7) and β= (β j )1≤ j≤p is the p-
length parameter of the covariates’ effect. Define θ = (α,β) the (J + p)-length parameter vector of
this model: α represents the values of the hazard rate across time and β represents the proportional
effect due to the covariates.

Equation 2.14 is called proportional hazard model. In this model, the parameter β has an im-
portant interpretation. Assume for the sake of the illustration that the j -th variable is binary. Then
under this model, two individuals whose covariates are equal except the j -th have proportional haz-
ard rates:

λ(t |xi , j = 1) =λ(t |xi ′, j = 0)exp(β j ).
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Figure 2.1: Lexis Diagrams in the Age-Period plane (a) and in the Age-Cohort plane (b).

In this model, logβ j can be interpreted as the multiplicative effect of the j -th covariate on the base-
line hazard rate λ0(t ). We choose to model a proportional effect of the covariates because it offers
a simple model with highly interpretable parameter β. Unlike Cox’s model (Cox, 1972) – which is
semiparametric – the baseline hazard is specified here, and the model is fully parametric.

2.1.3 Cohort data

In demographics and epidemiology, an important problem is the study of the evolution of the hazard
rate of death (or disease onset) with respect to time. But there are different time scales that we can
consider.

• the cohort refers to the date of the time origin.

• the period refers to the calendar time (i.e., the date).

• The age refers to the time spent since the time origin.

When the event of interest is the death from a specific disease, the time origin is the onset of the
disease and the age variable is the time since the disease onset.

When the event of interest is death or the onset of a disease, the time origin is the birth of each
individual. Then, the age variable is the age of the individual and the cohort variable is the date of
birth of the individual.

The two time-dependent variables are period and age. In all cases, we have the linear relation:

period = cohort + age. (2.15)

This section introduces inference of the hazard rate, when one considers more than one of these
three variables.

The Lexis Diagram. Consider Figure 2.1a, called the Lexis diagram. It represents the plane with
the age in the y-axis and the period in the x-axis. The life of 2 individuals is represented by the black
solid lines. These lines are oblique at a 45-degree angle: at the increment of each year, the age of every
person increments by one year. In the Lexis diagram, the time origin is the birth of the individual and
the lines represent the time spent at risk. The event of interest is represented by the dot at the end
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of each line. There is another variable that is hidden in these two variables, the date of birth of each
individual, or cohort, which is the x-intercept of the lines.

Figure 2.1b represents the age-cohort plane: the only time-dependent variable is age, on the y-
axis. The cohort is on the x-axis, so that the life of the individuals are vertical lines, growing upwards
as time passes. The same two individuals represented in Figure 2.1a are also represented here.

The age-cohort plane may be easier to represent the evolution of the time at risk, because they are
represented by vertical lines. But the Age-period plane is a more natural presentation of the problem,
because the period appears directly in most time-to-event data bases. Indeed, cohort studies have a
starting date and an end date, and consequently the times for the event are comprised between two
limiting periods. Between these two periods, events are registered for individuals with any age, and
any date of birth (i.e. cohort). Consequently, cohort study data are represented as events comprised
in a rectangle in the age-period plane.

Inference of the hazard rate. We present here the different approaches taken to infer the hazard
rate over the Lexis diagram.

Age-period-cohort analysis can be interested in estimating the hazard as a bivariate function,
defined in the following way:

λ (t |u) = lim
δt→0

P (t ≤ T < t +δt |T ≥ t ,U = u)

δt
, (2.16)

where U is the cohort variable.
An important approach is that of the factor models. The factor models assume a discretization of

the variables: suppose the age and cohort variables are discretized into J and K intervals respectively.
Then the period variable is naturally divided into J+K intervals (see Figure 2.1b, where J+K = 10 and
we count 20 period intervals). Consider the discretized hazard rate (λ j ,k ) j ,k obtained by discretizing
(2.16). The factors model assume that the age, cohort, and period variables have an additive effect
on log(λ j ,k ):

log(λ j ,k ) =α j +βk +γ j+k , (2.17)

where the parameter vectorsα, βk , andγ j+k are the effects of each variable. Equation (2.17) is called
the age-period-cohort model. Because of the linear dependency between the three variables (Equa-
tion 2.15), this model is not identifiable (Clayton and Schifflers, 1987) and arbitrary constraints need
to be added. We also define three submodels of (2.17): the age-period (logλ j ,k = α j +γ j+k ), age-
cohort (logλ j ,k = α j +βk ), and period-cohort (logλ j ,k = βk +γ j+k ) models, which are identifiable.
The factors models denote the age-period-cohort model and its submodels. They play an important
role in epidemiology (see Section 3.1) but the additive effect that they assume on the variables can
be too restrictive.

In this chapter, we focus on developing a regularized estimation of the discretized hazard. In the
next chapter, we develop an extension of the factor models that uses regularization to infer the effect
of two variables and the interaction between the two effects. Both chapters rely on the application of
the adaptive ridge to the discretized hazard rate.

2.2 Regularized estimation of the hazard rate

In this section, I include the preprint entitled “Regularized Bidimensional Estimation of the Hazard
Rate”. This work was conducted with my PhD supervisors and with the help of Jean-Christophe Tha-
labard.
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Abstract

In epidemiological or demographic studies, with variable age at onset, a typical
quantity of interest is the incidence of a disease (for example the cancer incidence).
In these studies, the individuals are usually highly heterogeneous in terms of dates of
birth (the cohort) and with respect to the calendar time (the period) and appropriate
estimation methods are needed. In this article a new estimation method is presented
which extends classical age-period-cohort analysis by allowing interactions between
age, period and cohort effects. In order to take into account possible overfitting issues,
a penalty is introduced on the likelihood of the model. This penalty can be designed
either to smooth the hazard rate or to enforce consecutive values of the hazards to
be equal, leading to a parsimonious representation of the hazard rate. The method is
evaluated on simulated data and applied on breast cancer survival data from the SEER
program.

Keywords Survival Analysis, Penalized Likelihood, Piecewise Constant Hazard,
Age-Period-Cohort Analysis, Adaptive Ridge Procedure

Introduction
In epidemiological or demographic studies, with variable age at onset, a typical quantity of
interest is the incidence or the hazard rate of a disease (for example the cancer incidence).
In these studies, individuals are recruited and followed-up during a long period of time,
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usually from birth. The data are then reported either in the form of registers, which contain
the number of observed cases and the number of individuals at risk to contract the disease,
or in the form of the observed time for each individual. These types of studies are of great
interest for the statistician, especially when the event of interest will tend to occur at late
ages, such as in cancer studies. However, these data are usually highly heterogeneous in
terms of dates of birth and with respect to the calendar time. In such cases, it is therefore
very important to take into account the variability of the age, the cohort (date of birth) and
the period (the calendar time) in the hazard rate estimation. This is usually done using
age-period-cohort estimation methods (see Yang and Land, 2013, and citations therein).

In age-period-cohort analysis, the effects of age, period and cohort are fit as factor
variables in a regression model where the output is the logarithm of the hazard rate. How-
ever, this induces an identifiability problem due to the relationship: period = age + cohort.
There have been several solutions proposed to this problem. Osmond and Gardner (1982)
proposed to compute each submodel (age-cohort, age-period, and period-cohort) and use
a weighting procedure to combine the three models. Different constraints have also been
proposed to make the age-period-cohort model identifiable. However, as noticed by Heuer
(1997, p 162), the obtained estimates highly depend on the choice of the constraints. Hol-
ford (1983) proposed to directly estimate the linear trends of each effect. This procedure
leads to results that are difficult to interpret. See Carstensen (2007) for a detailed discussion
of the identifiability problem of the age-period-cohort model. More recently, Kuang et al.
(2008) proposed to estimate the second order derivatives of the three effects. This model is
implemented in the package apc Nielsen (2015). Finally, Carstensen (2007) proposed to
first fit one submodel (say age-cohort) and then to fit the period effect over the residuals of
the first model. This model is implemented in the R package Epi (Carstensen et al., 2017),
Plummer and Carstensen (2011).

All these approaches can be viewed as parametric models, where the parameters are
the age, period, and cohort vector parameters. As such they are also restrictive because
they do not allow for interactions between the three effects, that is they assume that one
effect does not depend on the other effect’s value. A different approach consists in con-
sidering the hazard rate as a function of age and either period or cohort and to estimate
this bi-dimensional function in a non-parametric setting. No specific structure of the haz-
ard rate is assumed. However, for moderate sample sizes, non-parametric approaches are
prone to overparametrization. As a consequence, regularized methods have been proposed
in order to avoid overfitting in this non-parametric context. A kernel-type estimator was
proposed by Beran (1981) and McKeague and Utikal (1990) where the cumulative hazard
is smoothed using a kernel function. See Keiding (1990) for a thorough discussion of meth-
ods for hazard inference in age-period-cohort analysis. More recently, Currie and Kirkby
(2009) proposed a spline estimation procedure to infer the hazard rate as a function of two
variables. The authors use a generalized linear model using B-splines and overfitting is
dealt with using a penalization over the differences of adjacent splines’ coefficients.
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In this article, we propose a new non-parametric method for bi-dimensional hazard rate
estimation. As the previous non-parametric approaches, this model considers the estima-
tion of the hazard rate with respect to two variables, i.e. either age-cohort, age-period,
or period-cohort, without assuming any specific structure on the hazard rate. Inference is
made in two dimensions, but through the linear relationship period = age + cohort, the
hazard rate can be represented as a function of any two of the three variables. Finally, in
order to take into account the issue of overfitting, we use the L0 penalization procedure in-
troduced by Rippe et al. (2012), Frommlet and Nuel (2016), and Bouaziz and Nuel (2017).
This penalty offers a segmentation of the hazard rate into constant areas. It makes use of
an approximation of the L0 norm which is computationally tractable. The novelty of this
method lies in the parsimonious representation of the bi-dimensional hazard rate into seg-
mented areas. In particular, the method can efficiently exhibit cohort, age or period effects,
that is, specific changes of the hazard rate due to the date of birth, the age or the calen-
dar time. Our approach also allows L2 norm penalization, which will induce a smoothed
estimate of the hazard in a similar way as the aforementioned non-parametric methods.

Our model is introduced in Section 1. The regularization method is then presented in
Section 2. In Section 3, the penalty term selection problem is discussed. Finally, the per-
formance of our model is assessed through a simulation study in Section 4 and illustrations
on the SEER cancer dataset is provided in Section 5.

1 Modeling strategy
In the age-period-cohort setting, the date of birth (the cohort) U of each individual is
available and the variable of interest is a time-to-event variable of this individual de-
noted T . The data are subject to right-censoring and they are represented as tabulated
data over the J cohort intervals and the K age intervals [c0, c1), [c1, c2), . . . , [cJ−1, cJ)
and [d0, d1), [d1, d2), . . . , [dK−1, dK) respectively, with the convention c0 = d0 = 0 and
cJ = dK = ∞. On a sample of n individuals, the available data can then be rewritten in
terms of the exhaustive statistics O = (O1,1, . . . , OJ,K), R = (R1,1, . . . , RJ,K), where for
j = 1, . . . , J , k = 1, . . . , K, Oj,k represents the number of observed events that occurred
in the j-th cohort interval [cj−1, cj) and k-th age interval [dk−1, dk) and Rj,k represents the
total times individuals were at risk in this j-th cohort and k-th age interval. In the case of
register data, the discretization (cj) , (dk) is imposed by the data and the available data is
directly R and O, which are often called the cases and person-years, respectively. See for
instance Carstensen (2007) for an example of such data. The aim is to use the available
data to provide an estimator of the hazard rate, defined in the age-cohort setting as:

λ(t|u) = lim
dt→0

1

dt
P(t < T < t+ dt|T > t, U = u),

3
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(a) Lexis diagram: Age-Period diagram (b) Age-Cohort diagram

Figure 1: Diagrams representing the lives of individuals: in the age-period plane (a) – called
Lexis diagram – and in the age-cohort plane (b). Solid lines represent lives of individuals
until occurrence of the event of interest. The same age, cohort, and period intervals are
displayed in light gray. The intersection of two intervals forms a parallelogram and the
intersection of three intervals forms a triangle.
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in the situation where λ(t, u) is assumed to be piecewise constant. That is, we assume that

λ(t|u) =
J∑

j=1

K∑

k=1

λj,k1[cj−1,cj)×[dk−1,dk)(t, u),

and inference is made over the J×K dimension parameter λ = (λ1,1, . . . , λJ,K). Note that
the hazard can be equivalently defined as a function of age and period or as a function of
period and cohort where the period is defined as the calendar time, that is: period = cohort
+ age. For illustration, the change of coordinates between the age-period and age-cohort
diagrams is represented in Figure 1. In our models, the hazard will be considered as a
function of solely age and cohort since the influence of any of the two elements of age,
period or cohort can be retrieved using this reparametrization.

Following Aalen et al. (2008, p. 224) the negative log-likelihood takes the form

`n(λ) =
J∑

j=1

K∑

k=1

{λj,kRj,k −Oj,k log (λj,k)}. (1)

The authors also noticed that this log-likelihood is equivalent to a log-likelihood arising
from a Poisson model. However, note that no distribution assumptions are made on the
data and in particular the Oj,k are not assumed to be Poisson distributed (see Carstensen,
2007, for a discussion on the “Poisson” model). Minimizing `n yields an explicit maximum
likelihood estimator λ̂mle

j,k = Oj,k/Rj,k. However, for moderate sample sizes this estimator
is overfitted, especially in places of the age-cohort plane where few events are recorded.
To remedy this problem we propose in the following to penalize the differences between
adjacent values of the hazard in the log-likelihood.

For computation convenience, we first reparametrize the model: ηj,k = log λj,k, for
1 ≤ j ≤ J and 1 ≤ k ≤ K. The estimate is obtained by minimizing the penalized function

`κn(η,v,w) = `n(η) +
κ

2

J−1∑

j=1

K∑

k=1

vj,k (ηj+1,k − ηj,k)2 +
κ

2

J∑

j=1

K−1∑

k=1

wj,k (ηj,k+1 − ηj,k)2 ,

(2)

where `n(η) was defined in (1), κ is a penalty constant used as a tuning parameter, and
v = (v1,1, . . . , vJ−1,K),w = (w1,1, . . . , wJ,K−1) are constant positive weights of respective
dimensions (J−1)K and J(K−1). Note that the case κ = 0 corresponds to the maximum
likelihood estimation and the case κ =∞ corresponds to a hazard uniformly constant over
the age and cohort intervals. The parameter κ needs to be chosen in an appropriate way in
order to obtain a compromise between these two extreme situations.

This model does not attempt to estimate the age, period and cohort effect as parameter
vectors. Instead, it performs a regularized estimation of λ that has no age-period-cohort-
type structure. Two choices for the weights v and w can be made: one will lead to a
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smooth hazard rate and the other to a segmented hazard rate. This will be discussed in the
next section. The choice of the optimal value for κ is addressed in Section 3.

Minimization of `κn is performed using the Newton-Raphson algorithm (see Algorithm
1). Let Uκ

n (η,v,w) = ∂`κn/∂η be the gradient vector of the negative log-likelihood and
Iκn(η,v,w) = ∂Uκ

n (η,v,w)/∂ηT be its Hessian matrix.
For 1 ≤ j, j′ ≤ J and 1 ≤ k, k′ ≤ K, we have

∂`n
∂ηj,k

(η) = exp (ηj,k)Rj,k −Oj,k,
∂2`n(η)

∂ηj′,k′∂ηj,k
= 1j=j′,k=k′ exp (ηj,k)Rj,k, and

∂`κn
∂ηj,k

(η) =
∂`n(η)

∂ηj,k
+ κ [−vj,k (ηj+1,k − ηj,k) + vj−1,k (ηj,k − ηj−1,k)]

+ κ [−wj,k (ηj,k+1 − ηj,k) + wj,k−1 (ηj,k − ηj,k−1)] ,

∂2`κn(η)

∂ηj′,k′∂ηj,k
=

∂2`n
∂ηj′,k′∂ηj,k

(η) + κ [1j=j′,k=k′ (vj′,k′ + vj′−1,k′ + wj′,k′ + wj′,k′−1)

− vj′,k′1j=j′+1,k=k′ − vj′−1,k′1j=j′−1,k=k′
−wj′,k′1j=j′,k=k′+1 − wj′,k′−11j=j′,k=k′−1] .

As a consequence, the Hessian matrix can be written

Iκn(η,v,w) =
∂2`n(η)

∂η∂ηT
+ κB(η),

where B(η) is a band matrix of bandwidth equal to min(J,K) − 1. Thus the Hessian
matrix has the same structure as B(η) and the calculation of Iκn(η,v,w)−1Uκ

n (η,v,w)
has a O(min(J,K)JK) complexity instead of O(J3K3). Fast inversion of the Hessian
matrix is done using Cholesky decomposition as implemented in Rcpp in the package
bandsolve 1.

2 Choice of the regularization parameters v and w
In this section, two different expressions of the weights v and w are proposed which cor-
respond to two different types of regularization of the hazard rate. The first one yields a
smooth estimate. The second one uses an iterated adaptation of the weights to approximate
an L0 norm penalization of the first order differences.

1http://github.com/Monneret/bandsolve
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Algorithm 1 Newton-Raphson Procedure with constant weights

1: function NEWTON-RAPHSON(O,R, κ,v,w)
2: η← 0
3: while not converge do
4: ηnew ← η − Iκn(η,v,w)−1Uκ

n (η,v,w)
5: η← ηnew

6: end while
7: return η
8: end function

2.1 L2 Norm Regularization
A ridge-type penalization is performed when setting v = w = 1. In this case the pe-
nalization corresponds to the square of the first-order differences of δ. In the penalized
estimation model, this choice of weights yields a globally smooth estimator of the hazard
rate. Note that our penalized maximum likelihood model will yield similar results as the
spline method of Ogata and Katsura (1988) presented in Section 1. In our method the pe-
nalization is performed over the first order differences of the parameter while in the spline
method it is performed over the second order differences. This means that for arbitrarily
large values of the penalty constant, the regularized hazard will be a constant function in-
stead of a linear function. This model will be referred to as L2 regularized estimation or
smooth estimation.

Finally, one notes that Equation 2 allows for some flexibility in the regularization. In-
deed, manually setting the weights v and w will allow to tune the importance of the regu-
larization between different regions of the plane and between the two variables.

2.2 Approximate L0 Norm Regularization
Following the work from Rippe et al. (2012), Frommlet and Nuel (2016), and Bouaziz and
Nuel (2017) an adaptive ridge procedure is performed when the weights are updated at each
iteration of the Newton-Raphson algorithm. At the m-th iteration of the Newton-Raphson
algorithm the weights are computed from the following formulas:





v
(m)
j,k =

((
η
(m)
j+1,k − η

(m)
j,k

)2
+ ε2v

)−1
,

w
(m)
j,k =

((
η
(m)
j,k − η

(m)
j,k−1

)2
+ ε2w

)−1
,

where εv and εw are constants negligible compared to 1 (in practice one typically chooses
εv = εw = 10−5). We iterate between minimizing `κn for fixed weights and reevaluat-
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Figure 2: Representation of the method used to select the constant areas for the adaptive
ridge procedure. In this example, J = K = 3. In Panel (a), the circles represent the values
of the differences vj,k (ηj+1,k − ηj,k)2 and wj,k (ηj,k+1 − ηj,k)2: empty circles correspond to
the value 0 and filled circles correspond to the value 1. Panel (b) represents the graph that
is generated from these values. Adjacent nodes whose difference is null are connected by a
vertice. Panel (c) represents the last step, where the connected components of the graph are
extracted. Each connected component corresponds to one constant area. The numbering is
arbitrary.

ing the weights such that at the m-th step, v(m)
j,k (η

(m)
j+1,k − η

(m)
j,k )2 ' ‖η(m)

j+1,k − η
(m)
j,k ‖0 and

w
(m)
j,k (η

(m)
j,k+1−η

(m)
j,k )2 ' ‖η(m)

j,k+1−η
(m)
j,k ‖0, where ‖.‖0 denotes the L0 norm – i.e. ‖u‖0 = 0 if

u = 0 and ‖u‖0 = 1 otherwise. In other words, this adaptive ridge procedure approximates
the L0 norm regularization over the differences of ηj,k and yields a segmentation of ηj,k
into piecewise constant areas. As with other classical penalized methods (e.g. LASSO,
ridge) and as pointed out in Frommlet and Nuel (2016), the adaptive ridge penalization
scheme induces a shrinkage bias. Therefore, after segmentation of the ηi,js, the hazard rate
is estimated on each constant area using the unpenalized maximum likelihood estimator.
More precisely, at convergence of the adaptive ridge algorithm, vj,k (ηj+1,k − ηj,k)2 will
be approximately equal to 0 if |ηj+1,k − ηj,k| is smaller than εv and approximately equal
to 1 if |ηj+1,k − ηj,k| is greater than εv – and similarly for wj,k (ηj,k+1 − ηj,k)2. Then one
creates the graph whose vertices are the JK discretization cells and whose edges are the
connexions between adjacent cells that have differences close to 0. Each connected com-
ponent of this graph is a different area over which the hazard has been estimated to be
constant. The extraction of connected components from the graph is done using the pack-
age igraph (Csardi and Nepusz, 2006). The log-hazard η(r) of the r-th constant area is
such that ∀[cj−1, cj)×[dk−1, dk) ∈ r, ηj,k = η(r). Finally, the values of η(r) are not estimated
using the results of the adaptive ridge algorithm, but by unpenalized maximum likelihood
estimation: η̂(r) = log

(
O(r)/R(r)

)
where O(r) is the number of events in the r-th constant

area and R(r) is the time at risk in the r-th constant area.
This estimation method will be called L0 regularized estimation or segmented estima-
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tion. This method is illustrated through the toy-example of Figure 2 and the adaptive ridge
procedure is summarized in Algorithm 2. In practice, the stopping criterion for the adaptive
ridge algorithm is when the absolute difference between successive values of the weighted
differences is smaller than a predefined value – we use 10−8 in our implementation.

Algorithm 2 Adaptive Ridge Procedure

1: function ADAPTIVE-RIDGE(O,R, κ)
2: η← 0
3: v← 1
4: w← 1
5: while not converge do
6: ηnew ← NEWTON-RAPHSON(O,R, κ,v,w)

7: vnew
j,k ←

((
ηnew
j+1,k − ηnew

j,k

)2
+ ε2v

)−1

8: wnew
j,k ←

((
ηnew
j,k − ηnew

j,k−1
)2

+ ε2w

)−1

9: η← ηnew

10: end while
11: Compute (Onew, Rnew) for selected (η,vnew,wnew)
12: ηnew ← log (Onew/Rnew)
13: return ηnew

14: end function

3 Choice of the penalty constant κ
In practice, the hazard rate needs to be estimated for a set of penalty constants and the
choice of κ is determined as the penalty that provides the best compromise between model
fit and reduced variability of the hazard rate estimate. For the L0 regularization model,
different values of the penalty constant lead to different segmentations of the ηj,k. As a
consequence, the problem of choosing the optimal penalty constant can be rephrased as the
problem of choosing the optimal model among a set of modelsM1, . . . ,MM , where each
of these models corresponds to a different segmentation of the ηj,k and M is the maximum
number of different models. In this section we propose different methods to select the
optimal model. Comparison of the efficiency of the different methods will be analyzed in
Section 4 on simulated data.

We recall that R and O are the exhaustive statistics and η is the parameter to be esti-
mated in our two models. Bayesian criteria attempt to maximize the posterior probability
P(Mm|R,O) ∝ P(R,O|Mm)π(Mm), where P(R,O|Mm) is the integrated likelihood
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and π (Mm) is the prior distribution on the model. This problem is equivalent to minimiz-
ing −2 log P(Mm|R,O). By integration

P(R,O|Mm) =

∫

η

P(R,O|Mm,η)π(η)dη,

where P (R,O|Mm,η) is the likelihood and π(η) is the prior distribution of the parameter,
which is taken constant in the following. Thus Bayesian criteria are defined as

−2 log (P(Mm|R,O) = 2`n(η̂m) + qm log n− 2 log π(Mm) +OP(1),

where qm is the dimension of the modelMm i.e., the number of constant areas selected by
the adaptive ridge algorithm.

The BIC (Schwarz, 1978) corresponds to the Bayesian criterion obtained when one
neglects the term π(Mm), which is equivalent to having a uniform prior on the model:

BIC(m) = 2`n(η̂m) + qm log n. (3)

As explained by Żak-Szatkowska and Bogdan (2011), a uniform prior on the model
is equivalent to a binomial prior on the model dimension B(JK, 1/2). When the true
model’s dimension is much smaller than the maximum possible dimension JK, the BIC
tends to give too much importance to models of dimensions around JK/2, which will result
in underpenalized estimators. To this effect, Chen and Chen (2008) have developed an
extended Bayesian information criterion called EBIC0 (or EBIC for short). One can write
π(Mm) = P(Mm|Mm ∈ M[qm])P(Mm ∈ M[qm]) whereM[qm] is the set of models of
dimension qm. The EBIC0 criterion is defined by setting P(Mm|Mm ∈M[qm]) = 1/

(
JK
qm

)

and P(Mm ∈M[qm]) = 1. Thus

π(Mm) =

(
JK

qm

)

and

EBIC0 (m) = 2`n(η̂m) + qm log n+ 2 log

(
JK

qm

)
. (4)

Note that the EBIC0 assigns the same a priori probability to all models of same dimen-
sion. Therefore, when the true model’s dimension is not close to JK/2 the EBIC0 will be
able to select this model more easily. Namely, when the true model’s dimension is very
small the EBIC0 will tend to choose very sparse models.

The last criterion that will be used is the Akaike Information Criterion (Akaike, 1998),
or AIC, defined as AIC(m) = 2`n(η̂m) + 2qm. This criterion is known for performing
better than the BIC in terms of mean squared error, however the BIC will tend to select
sparser models than the AIC.
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Note that Bayesian criteria and the AIC can only be used for the L0 regularized es-
timation only, since the L2 model does not perform a model selection. An alternative to
performing model selection is to use the K-fold cross validation. With this method, the
data are split at random into L parts. The estimated parameter obtained when the l-th part
is left out is noted η̂−l(κ) and the cross-validated score is defined as

CV(κ) =
L∑

l=1

`κ,ln (η̂−l),

where `κ,ln is the negative log-likelihood evaluated on the l-th part of the data. The optimal
penalty constant is obtained by minimizing CV(κ) with respect to κ. The L-fold cross
validation method can be used for both the L0 regularized estimation and the L2 regularized
estimation. However, this method is numerically time consuming as the estimator has to
be computed L times while Bayesian criteria or the AIC provide direct methods to perform
model selection from the original estimator. In the simulation studies and data analysis, we
set L = 10.

4 Simulation study

4.1 Simulation designs
In this section, our segmented estimation method with L0 norm is compared with the AGE-
COHORT model and with the smoothed hazard estimate with the L2 norm. The different
criteria for model selection are also compared with each other. We present two simulation
designs. In the first one, the true hazard rate is generated from a smooth age-cohort model
which includes an interaction term on a small region of the age-cohort plane. In the second
case, the true hazard rate is a piecewise constant function with four heterogeneous areas.
The two true hazards are displayed in Figure 3, both in greyscale and in perspective plot.

The simulation design is as follows. We set J = 10 equally spaced age intervals and
K = 10 equally spaced cohort intervals. The age intervals are defined as [0, 10), . . .,
[90, 100] and the cohorts intervals are defined as [1900, 1910) ,. . ., [1990, 2000]. In order
to simulate a dataset, the cohorts are first sampled on K = 10 cohort group intervals of
10 years length ranging from 1900 to 2000. Censoring is then simulated as a uniform
distribution over the age interval [75, 100] for all cohorts such that all observed events are
comprised in the age interval [0, 100]. Since in practice one does not know the appropriate
discretization in advance, a different discretization was used for the estimation procedure
: the age and cohort intervals were defined as 5-year length intervals instead of 10 for the
true hazard. As a result, a total of 20× 20 parameters need to be estimated.

For each of the two designs, we simulated data of sample sizes 100, 400, 1000, 4000,
and 10000. For each sample size, the simulation and estimation were replicated 500 times.

11



cohort

1920

1940

1960

1980

age

20

40

60

80

hazard
0.00

0.02

0.04

0.06

0.08

0.10
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Figure 3: True hazard of the two simulation designs: smooth hazard in heatmap (a) and
perspective plot (b) and piecewise constant hazard in heatmap (c) and perspective plot (d).
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L0 method L2 method

Sample size AIC BIC EBIC CV CV

100 412.90 401.50 4.60 4.50 1.00
400 269.60 225.50 37.90 7.10 1.00
1000 168.00 111.50 4.30 3.60 1.00
4000 79.40 24.90 5.00 3.40 1.00
10000 26.10 5.90 4.60 2.40 1.00

(a) Smooth true hazard

L0 method L2 method

Sample size AIC BIC EBIC CV CV

100 429.90 428.90 1.30 1.30 1.00
400 81.70 64.30 3.00 2.40 1.00
1000 34.20 16.80 3.80 3.50 1.00
4000 12.20 2.20 1.50 1.90 1.00
10000 6.70 0.80 0.60 0.80 1.00

(b) Piecewise constant true hazard

Table 1: Relative mean squared errors with respect to the cross-validated L2 estimator, for
different sample sizes and different estimation methods. Panel (a): smooth true hazard.
Panel (b): piecewise constant true hazard.

Smooth true hazard The smooth true hazard (Figures 3a and 3b) is generated using the
age-cohort model log λj,k = µ + αj + βk with an intercept µ = log(10−2). The age effect
vector α and cohort effect vector β are arithmetic sequences such that α2 = 0, αJ = 2.5,
β2 = 0, and βK = 0.3. An interaction term is added to the hazard. It corresponds to
a bump in the hazard located in the neighbourhood of the region of the age-cohort plane
(45,1945). The bump is defined as 10 times the Gaussian density function with mean
(1945, 45) and with a diagonal variance-covariance matrix with diagonal equal to (50, 50).
This true hazard displays a sharp increase for high values of the age, which implies that
few events will be recorded in this region. On average, 91 % of the events are observed in
this simulation design.

Piecewise constant true hazard The piecewise constant true hazard (Figures 3c and 3d)
has four constant areas over the age-cohort square [0, 100] × [1900, 2000]. On average, 71
% of the events are observed in this simulation design.

13



4.2 Performance of the estimation methods in terms of MSE
Our two estimation methods (L0 and L2 norm) are compared in terms of the Mean Squared
Errors in each simulation scenario. The different selection methods for the penalty (AIC,
BIC, EBIC and cross-validation) are also compared. The results are presented in Table 1.
On the overall, the EBIC and cross-validated criteria outperform the AIC and the BIC for
the two simulations scenarios. This is particularly true for small sizes where the AIC and
the BIC behave very poorly. As expected, the L2 norm estimator is the most performant of
all estimators in the smooth true hazard scenario (Table 1a) and the L0 method performs
better in the piecewise constant hazard scenario (Table 1b) than in the smooth true haz-
ard scenario. The L2 norm estimator is also the most performant of all estimators in the
piecewise constant hazard scenario except for very large sample sizes (n = 10000) where
the BIC, EBIC and cross-validated criterion provide slightly better performances. Finally,
in both scenarios, the EBIC always outperforms the AIC, the BIC and the cross-validated
criterion. Different censoring rates were also studied which showed a degradation of the
performances of the overall estimators as the percentage of censoring increased. The per-
formance in terms of number of selected areas was also investigated. It showed that the
EBIC and CV criterion perform better at selecting sparse models with few areas, while
the AIC and BIC tend to overestimate the true number of areas. Indeed, for sample size
4000, the 80% inter-quantile range of the selected number of areas is [3, 5] for the EBIC
and [1, 5] for the CV, whereas it is [3, 13] and [36, 72] for the BIC and AIC respectively.
These experiments are not reported here.

In conclusion, the simulation experiments suggest to use the EBIC among all different
criteria for the L0 norm estimator as it provides the best tradeoff between computation time
and estimation performance.

4.3 Perspective plots of the estimation methods
In this section the performance of our adaptive ridge (L0 norm) and ridge (L2 norm) es-
timates is assessed visually by comparison of the true hazard. The standard age-cohort
model (Holford, 1983) has also been implemented. This model assumes that the hazard
has the following expression:

log λj,k = µ+ αj + βk,

where µ is the intercept, α is the age effect and β is the cohort effect. It should be noted
that this model does not allow for interactions between age and cohort effects. Perspective
plots of the median hazard estimations over 500 replications are presented in Figures 4 and
5 for the smooth and piecewise constant true hazard respectively. For the L0 regularized
estimate, the penalty constant is chosen using the EBIC.
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Figure 4: Smooth true hazard and corresponding estimates. The sample size is 4000 and the
hazard estimates are medians taken over 500 simulations. The estimations are performed
in the age-cohort plane and with different methods. Panel (a) represents the true hazard
used to generate the data, Panel (b) represents the hazard estimated using the age-cohort
model, Panel (c) represents the smoothed estimate, and Panel (d) represents the segmented
estimate with the EBIC criterion.

15



cohort

1920

1940

1960

1980

age

20

40

60

80

hazard

0.00

0.01

0.02

0.03

cohort

1920

1940

1960

1980
age

20

40

60

80

hazard

0.00

0.01

0.02

0.03

(a) True hazard (b) Median of age-cohort estimates

cohort

1920

1940

1960

1980

age

20

40

60

80

hazard

0.00

0.01

0.02

0.03

cohort

1920

1940

1960

1980

age

20

40

60

80

hazard

0.00

0.01

0.02

0.03

(c) Median of smooth estimates (d) Median of segmented estimates

Figure 5: Piecewise constant true hazard and corresponding estimates. The sample size is
4000 and the hazard estimates are medians taken over 500 simulations. The estimations
are performed in the age-cohort plane and with different methods. Panel (a) represents the
true hazard used to generate the data, Panel (b) represents the hazard estimated using the
age-cohort model, Panel (c) represents the smoothed estimate, and Panel (d) represents the
segmented estimate with the EBIC criterion.
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In Figure 4, it is seen that the age-cohort model is not able to estimate the central bump
in the hazard. On the contrary, the smoothed estimate accurately recovers the shape of the
true hazard except for the high values of age where few events are observed. Interestingly,
it is seen that our segmentation method provides similar results as the smoothing technique
even though the true hazard is not piecewise constant.

The results in Figure 5 yield similar conclusions. The age-cohort model behaves very
poorly due to its constrained structure while the ridge and adaptive estimates provide sat-
isfactory results. In particular the shape of the true hazard is correctly captured by the
adaptive ridge on the majority of replicated samples.

5 Real data application
Our method is applied to data of survival times after diagnosis of breast cancer. The dataset
is provided by the Surveillance, Epidemiology, and End Results (SEER) Program from
the US National Cancer Institute (NCI). SEER collects medical data of cancers (including
stage of cancer at diagnosis and the type of tumor) and follow-up data of patients in the
form of a registry. Around 28 percent of the US population is covered by the program.
The registry started in February 1973 and the available current dataset includes follow-up
data until January 2015. We refer to the website https://seer.cancer.gov/ for
information about the SEER Program and its publicly available cancer data.

In this study the duration of interest T is the time from breast cancer diagnosis to death
in years, the variable U is the date of diagnosis (in years) and the period is the calendar
time (in years). Patients continuously entered the study between 1973 and 2015 and right-
censoring occurred for patients that were still alive at the end of follow-up or for those that
were lost to follow-up.

The breast cancer data was extracted using the package SEERaBomb. For the sake
of comparison, the subsample of malignant, non-bilateral breast tumor cancers was ex-
tracted from the dataset, such that the data comprises 1, 265, 277 women with 60 percent
of censored individuals. Times from diagnosis to last day of follow-up vary between 0 and
41 years, and the dates of cancer diagnosis Ui vary between 1973 and 2015. Death from
another cause than cancer is available in the dataset and is accounted for as right-censoring.

The implementation of our adaptive ridge method aims at two goals. Firstly we aim at
simultaneously detecting a cohort effect and an age effect, that is the evolution of the mor-
tality with respect to the time elapsed since cancer diagnosis (age effect) and with respect
to the date of diagnosis (cohort effect). Secondly, our method will provide estimation of the
hazard rates on the resulting heterogeneous areas. The method is first applied on the whole
sample of 1265277 individuals. In order to take into account the fact that mortality from
cancer highly depends on the cancer stage, we also perform a stratified analysis with respect
to the stage of cancer at diagnosis. For this purpose, we use the cancer stage classification
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Figure 6: Estimated hazard of death after diagnosis of breast cancer for different stages
of cancer. The estimate is obtained with the L0 regularization. The upper right corner of
every graph corresponds to the region where no data are available. Note that the scales are
different between panels.

18



provided by the SEER data: we keep the patients with cancer stages 1, 2, and 3 at the time
of diagnosis. This classification closely follows that of the American Joint Comitee on Can-
cer (AJCC), 3rd Edition; the details are given at page 86 of the manual entitled Comparative
Staging Guide for Cancer, available at https://seer.cancer.gov. The main dif-
ference between the two classifications is that the SEER Program classifies the cases where
lymph node status cannot be assessed as if there was no regional lymph node metastasis.

The L0 estimates for the whole sample and for each cancer stage are displayed in Figure
6. We see that the different stages of cancer at diagnosis have a great impact on the survival
times. For Stage 1 cancers, the mortality is low between 0 and 4–5 years after diagnosis,
and steadily increases afterwards. The date of diagnosis seems to have no impact on the
mortality of Stage 1 cancers. On the other hand, Stage 2 cancers exhibit a strong effect of
the date of diagnosis: around 1995 − 1997, the mortality significantly decreases. This can
correspond to an improvement of the treatment of breast cancer around that period in the
United States. Finally, Stage 3 cancers display a very high hazard rate across all dates of
diagnosis. This seems to indicate that the evolution in treatments of breast cancer had a sig-
nificant impact on the survival times after diagnosis, but almost exclusively when cancers
were diagnosed at Stage 2. Two additional analyses of the hazard rate with stratification
with respect to age at diagnosis and estrogen receptor status were performed in the Supple-
mentary Materials. The results suggest that the shift in mortality around year 1996 could
correspond to the introduction of hormone-blocking therapy (Fisher et al., 1999).

Conclusion
In this article, we have introduced a new estimation method to deal with age-period-cohort
analysis. This model assumes no specific structure of the effects of age and cohort and the
hazard rate is directly estimated without estimating the effects. In order to take into account
possible overfitting issues, a penalty is used on the likelihood to enforce similar consecutive
values of the hazard to be equal. Two different types of penalty terms were introduced. One
leads to a ridge type regularization while the other leads to a L0 regularization. Different
selection methods of the penalty parameter were also introduced. To our knowledge, a
segmented estimation model of this kind has never been introduced in this context.

Using simulated data, it has been shown that the cross validated ridge estimator and the
EBIC0 adaptive ridge estimator perform the best in terms of mean squared error. The cross
validation criterion was shown to provide the best fit of the hazard rate, but its very high
computationally cost makes it non-competitive. In this context, this modified BIC criterion
comes out as a powerful tool to select the best bias-variance tradeoff.

The method was successfully applied to data of survival after breast cancer provided by
the SEER program. The segmented estimate of the hazard rate displays important informa-
tion about the shift in mortality after being diagnosed of breast cancer in the United States
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in the mid-1990s.
Our method could be directly extended to a different discretization of the age-period-

cohort plane, such as 1× 1× 1-year triangles that are represented in dark gray in Figure 1
(see Section 3 of Carstensen, 2007, for an example of this discretization). Another exten-
sion would be to consider other types of penalizations. Instead of estimating a piecewise
constant hazard, one could estimate a piecewise linear hazard by penalizing over second
order differences of the hazard.
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2.3 Application to the evolution of breast cancer mortality

In this section, I include the supplementary material to the paper “Regularized Bidimensional Esti-
mation of the Hazard Rate”.
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1 Application to Breast Cancer Mortality: Stratification with respect
to the Age at Diagnosis

The mortality of breast cancer is known to greatly vary on whether the cancer is pre or post-
menopausal (Consensus, 1985). Consequently, a thorough analysis of the mortality from breast
cancer would require to stratify with respect to the menopausal status at diagnosis. Since this co-
variate is not present in the data, we decided to stratify the sample with respect to the age of the
patient at diagnosis, which is a proxy of menopausal status. Most women are known to have their
menopause between 45 and 55 years old (Hill, 1996; Henderson et al., 2008; Gold, 2011), with 25th,
50th, 75th percentiles ranging from years 47-49, 50-51, 52-54, respectively, according to countries
and surveys (Mishra et al., 2017). Consequently, based on the available information in SEER, for
each cancer stage, the patients were divided into three classes of age at diagnosis: (., 45], (45, 55],
and (55, .) as a proxy for pre- menopausal, peri- menopausal and post- menopausal ages, respec-
tively. The resulting estimated hazards are represented in Figure 1.

The stage 1 cancer patients younger than 45 and the stage 3 cancer patients older than 55 display
the same mortality across all dates of diagnosis, i.e. with no cohort effect.

Moreover, the mortality of stage 1 cancer patients aged 45 and older at diagnosis has a slight
cohort effect corresponding to a progressive decrease in the mortality across all survival times (Peto
et al., 2000). This could suggest a trend of slow and steady improvement of the treatment of breast
cancer in the United States over the period 1887− 2005.

Finally, we observe a clear decrease of the mortality for stage 2 cancers for all three age classes.
This shift is located at the year 1995 for middle-aged patients and around the years 1997 − 1998
for patients younger than 45 and older than 55. The same drop in mortality is observed for stage 3
cancers with patients younger than 45 at diagnosis, around year 1995. This could correspond to the
introduction of improvements in the treatments of breast cancer in the United States (Consensus,
1985). Among the three main medical innovations, which can be considered in this period, the im-
provement of the surgical procedures for the loco- regional control of the disease and the assessment
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Figure 1: Estimated hazard of death since diagnosis of breast cancer for different cancer stages and
for different ages at diagnosis. The estimate is obtained with the L0 regularization. The upper right
corner of every graph corresponds to the region where no data are available. All graphs share the
same scale.
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of the beneficial effect of hormone-receptor therapies could be reflected in the observed survival in
stages 1-2, whereas the later emergence during this period of new classs of chemotherapeutic agents
like taxoids (Rowinsky et al., 1992; Crown et al., 2004) or herceptin-based therapies targeted on new
class of tumor markers (Pegram et al., 1998; Emens and Davidson, 2004) would be related with the
changes in survival observed in stage 3. In the next section, we will use a stratified analysis to
understand the effect of hormone-receptor therapies on the mortality shift in the mid-1990s.

2 Application to Breast Cancer Mortality: Stratification with respect
to the Estrogen Receptor Status

The cohort effect highlighted in the previous section could correspond to the introduction of Se-
lective Estrogen Receptor Modulator (SERM) treatments and in particular the use of Tamoxifen as
a treatment for breast cancer, showing improved survival in women with estrogen receptor posi-
tive tumor, initially in post- menopausal women (Fisher et al., 1989), later in both post - and pre-
menopausal women (Early Breast Cancer Trialists’ Collaborative Group, 1988; Fisher et al., 1998;
Pritchard, 2005; Cochrane, 2008). Indeed, Tamoxifen was gradually used in the early years of
1990’s (Gail et al., 1999; Harlan et al., 2002; Mariotto et al., 2006) to decrease the mortality of
breast cancer patients. This treatment is only efficient on estrogen receptor-sensitive cancers. To
validate our hypothesis, we conducted the estimation of mortality separately for patients with es-
trogen receptor sensitive and non-sensitive cancers. Since stage 2 cancers displayed a strong cohort
effect across all ages at diagnosis, we only kept stage 2 cancers in this study. The estimated mor-
tality is given in Figure 2. Note that the spikes in the mortality are an artifact of the segmentation
procedure when the sample sizes tend to be too small in some regions of the age-cohort plane and
are not to be taken into account in the interpretation of the mortality.

There is a clear difference in the evolution of mortality with respect to time at diagnosis between
sensitive and non-sensitive estrogen cancers. For estrogen sensitive cases, the mortality displays the
same sudden decrease around years 1997− 1998 as in Figure 1, across all age classes. In particular
for individuals aged 55 or more at the time of diagnosis, the mortality has gradually decreased for
estrogen sensitive patients, whereas it did not evolve with time for estrogen non-sensitive patients.
On the other hand, the mortality for non-estrogen sensitive cancers displays almost no cohort effect
for all ages at diagnosis (Knight et al., 1977).

The same analysis was run with stratification with respect to progesterone receptor status, with
very similar morality estimates (results not shown here). Further analyses could be carried out to
better understand the effect of the introduction of hormone-blocking therapies on mortality. How-
ever, the segmentation of the hazard rate, even with this simple stratified analysis, highlighted that
the adoption of SERM therapies in the United States is a potential reason for the sharp decrease of
mortality in the middle of the 1990s (Peto et al., 2000).
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3.1 Introduction to age-period-cohort analysis

In the study of diseases with age at onset, the incidence – or hazard rate – is an important quantity to
estimate. In these studies, data are either present in the form of registers or collected from a cohort
that is being followed. In both cases, the individuals are usually very heterogeneous in terms of date
of birth – also called cohort. Equivalently, the event of interest is observed at widely different calendar
times – also called period. It is therefore necessary to adjust for this heterogeneity. Namely, many
models have been developed to infer the hazard rate as a function of age, cohort, and period, called
age, cohort, and period effects. This is the goal of age-period-cohort analysis.

The simplest models in age-period-cohort analysis are the age-cohort and age-period models
(Clayton and Schifflers, 1987). These models assume that each variable has an additive effect on the
logarithm of the hazard. In the age-cohort model,

logλ j ,k =α j +βk , (3.1)

whereα j is the age effect at age j ,βk is the cohort effect at calendar time c, andλ is the hazard rate. In
this model, the hazard rate is assumed to be the product of the age effect and the cohort effect. Since
there are fewer parameters than values of the hazard, this model yields a regularized estimation of
λ, and thus of the age and cohort effect. But this model is very restrictive because it assumes that
the age and cohort have an additive effect only, that is, the log-hazard difference between two ages
is the same for all cohorts and that the log-hazard difference between two cohorts is the same for all
ages. The full model in age-period-cohort analysis is called the age-period-cohort model (Clayton
and Schifflers, 1987). It jointly estimates the three additive effects:

logλ j ,k =α j +βk +γ j+k , (3.2)

where γl is the period effect at calendar time l = j + k. Because of the linear dependency (age +
cohort = period) between the variables, these effects are only identifiable up to a linear trend. This
makes the estimated effects hard to interpret and many attempts have been made to overcome this
difficulty. Carstensen (2007) offered to choose a cohort of reference and to infer the relative hazard
with respect to this cohort. Kuang et al. (2008) introduced a reparametrization based on the second
order derivatives of the effects which allows estimation of the three effects when the index set

{(
i , j

)}
is a trapezoid.

Both the two-factor models and the age-period-cohort model are useful to infer the influence
of the corresponding variables over the hazard rate. Indeed the age, cohort, and period effects are
important information to understand the evolution of the incidence. However they can represent a
simplistic view of the evolution of the hazard along time. We study the age-cohort model where an
interaction term is added. This term is introduced in order to capture non-linear relations between
age and cohort effects. The interaction between age and cohort can be interpreted as regions of
the age-cohort plane where the hazard is either unexpectedly high or unexpectedly low. Thus, the
interaction between effects is an important tool to detect peculiar features of the event of interest.

In this chapter, we introduce a generalization of the age-cohort model which includes the es-
timation of the interaction between the age and cohort effects. This model is called age-cohort-
interaction model, or “ACI” model. For the sake of simplicity, we only consider the age-cohort model
in this work, but the period-cohort and age-period models can be generalized in the same way to
estimate interactions between effects. We introduce a penalized likelihood approach to jointly in-
fer the age and cohort effects as well as the interaction effect. For the model to be interpretable, we
enforce a regularization of the interaction term. We offer a choice between two types of regulariza-
tion: one provides a smooth estimate of the interaction and one provides a segmented estimate of
the interaction. We illustrate these two regularizations and their respective advantages.

The rest of this chapter is constructed as follows. Section 3.2 introduces the age-cohort-interaction
model. Section 3.3 develops on a procedure for the estimation of the model. In Section 3.4, we ex-
plain how to choose the tuning parameter of the regularization. Finally, our method is illustrated on
simulated data in Section 3.5.
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3.2 The age-cohort-interaction model

We assume that the time of interest is subject to independent right-censoring (Fleming and Harring-
ton, 2011, p. 27), such that the available data is of the form (Ui ,Ti ,∆i ), i = 1, . . . , n, where Ti is the
censored time-to-event of individual i and ∆i equals 0 if individual i is censored and 1 otherwise.
The hazard rate as a function of the cohort u and age t is defined by

λ(t |u) = lim
δt→0

1

δt
P(t < T < t +δt |T > t ,U = u),

where U is the random variable of the cohort. The cohort variable is discretized into J intervals
[c0,c1), . . . , [c J−1,c J ) and the age variable is discretized into K intervals [d0,d1), . . . , [dK−1,dK ). The
data is rewritten using the exhaustive statistics O = (

O1,1, . . . ,O J ,K
)

and R = (
R1,1, . . . ,R J ,K

)
, where O j ,k

and R j ,k are respectively the number of observed events and total time at risk in the j -th cohort
interval and in the k-th age interval. We assume that λ (t |u) is constant over each set [c j−1,c j )×
[dk−1,dk ) and infer the discretized hazard rate

(
λ1,1, . . . ,λJ ,K

)
. The negative log-likelihood takes a

simple expression:

`n (λ) =
∑

j

∑
k
λ j ,k R j ,k −O j ,k log

(
λ j ,k

)
. (3.3)

We introduce the age-cohort-interaction (“ACI”) model:

logλ j ,k =µ+α j +βk +δ j ,k , (3.4)

where α j is the cohort effect for the j -th cohort interval, βk is the age effect for the k-th age interval,
and δ j ,k is the interaction term for the

(
j ,k

)
-th rectangle. The parameter µ plays the role of the

intercept (that is λ1,1 = µ), and we impose α1 = β1 = δ1,k = δ j ,1 = 0 so that the model has JK freely
varying parameters and is identifiable. The parameter of the model is θ = (µ,α,β,δ), where α =
(α j )2≤ j≤J , β= (βk )2≤k≤K , and δ= (δ j ,k )2≤ j≤J ,2≤k≤K .

Note that the interaction term δ between the age and cohort is different from the period effect γ
in the age-period-cohort model (3.2). The period effect can be seen as an interaction effect between
age and cohort, which is a function of the period only. Contrarily to the age-period-cohort model,
our model can estimate an interaction between age and cohorts which is any function of these two
variables. Consequently, the ACI model can be seen as an extension of the age-cohort model which
is also more general than the age-period-cohort model.

The negative log-likelihood takes the form

`n(θ) =
J∑

j=1

K∑
k=1

exp
(
µ+α j +βk +δ j ,k

)
Rk

j −
(
µ+α j +βk +δ j ,k

)
Ok

j . (3.5)

For the parameter δ to correctly estimate the interaction between age and cohort – that is, the part
of the hazard which diverges from the age-cohort model – one needs to impose a constraint on δ.
We want the δs to be zero-valued everywhere except for values of

(
j ,k

)
for which the hazard is too

different from the age-cohort model. To this end, the parameters are estimated using the penalized
negative log-likelihood:

`n (θ)− κ

2

∑
j ,k

{‖δ j ,k −δ j−1,k‖0 +‖δ j ,k −δ j ,k−1‖0},

where ‖x‖0 is the L0 norm, equal to 0 if x = 0 and to 1 otherwise and κ > 0 is a trade-off parameter.
This penalty is proportional to the number of non-zero differences of δ j ,k . Consequently, the penal-
ized estimation enforces the differences of δ to be equal to zeros except in a small amount of times.
Since δ1,k = δ j ,1 = 0, this penalty also enforces the interaction term to be equal to zero except where
necessary.
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This penalty term ensures that δ’s second order total variation is small. Thus the parameters
µ, α, and β estimate the age-cohort model that is the closest to the data, and δ estimates the di-
vergence of the data from the age-cohort model. The penalty constant tunes the trade-off between
goodness-of-fit and regularization. When κ= 0, the ACI model is subject to no regularization and the
corresponding estimate is the maximum likelihood estimate. When pen →∞, the interaction term
is set to be uniformly equal to zero and the ACI model is the age-cohort model. In this sense, the ACI
model is an extension of the age-cohort model which allows for interaction between age and cohort
effects.

This penalty is however not continuous, which makes the maximization of the penalized log-
likelihood intractable in practice. The next section deals with a numerical method for approximating
the latter penalized likelihood.

3.3 The estimating procedure

Following the works from Rippe et al. (2012) and Frommlet and Nuel (2016), we use an iterative algo-
rithm to approximate the L0 norm penalty. The estimate is the minimizer of:

`κn (θ), `n (θ)+ κ

2

∑
j ,k

v j ,k
(
δ j ,k −δ j−1,k

)2 +w j ,k
(
δ j ,k −δ j ,k−1

)2 , (3.6)

where v j ,k and w j ,k are positive weights. The procedure iterates between minimizing (3.6) with fixed
weights and updating the weights, using the formula


v (m)

j ,k =
((
δ(m)

j+1,k −δ(m)
j ,k

)2 +ε2
v

)−1

, 1 ≤ j ≤ J −1, 2 ≤ k ≤ K ,

w (m)
j ,k =

((
δ(m)

j ,k −δ(m)
j ,k−1

)2 +ε2
w

)−1

, 2 ≤ j ≤ J , 1 ≤ k ≤ K −1,
(3.7)

where (m) is the iteration step, δ(m)
j ,k is the parameter from the last iteration and εv and εw are posi-

tive constants negligible compared to 1 (in practice we choose εv = εw = 10−6 (Frommlet and Nuel,
2016)).

At convergence, v j ,k
(
δ j+1,k −δ j ,k

)2 are very close to 1 if the adjacent values δ j+1,k and δ j ,k have
been estimated to have different values and to 0 if they have been estimated to have the same value –
and similarly for w j ,k

(
δ j ,k+1 −δ j ,k

)2. We typically use a threshold of 10−8, so that values smaller than
10−8 are set to 0 and values larger than 1−10−8 are set to 1. Then one creates the graph whose vertices
are the JK discretization rectancles and whose edges are the connexion between adjacent rectangles
that have a difference close to 0. As with other classical penalized methods (e.g. lasso, ridge) and as
pointed out in Frommlet and Nuel (2016), the adaptive ridge penalization scheme induces a shrink-
age bias. Therefore, the unpenalized maximum likelihood estimate is used to infer the value of the
hazard over the constant areas estimated using the adaptive ridge procedure. The values of δ(r ) are
not estimated using the results of the adaptive ridge algorithm but by unpenalized maximum like-
lihood estimation: δ̂(r ) = O(r )/R(r ) where O(r ) is the number of events in the r -th constant area and
R(r ) is the time at risk in the r -th constant area.

The estimating procedure is summarized in Algorithm 5. See also (Bouaziz and Nuel, 2017) and
(Goepp et al., 2018) for implementations of the adaptive ridge procedure in similar contexts. The pe-
nalized likelihood in Equation (3.6) is minimized using the Newton-Raphson algorithm. Expressions
of first and second order derivatives of `κn are given in Appendix A. The Hessian matrix has JK rows
and columns, so its inversion is computationally intensive. A fast inversion method for its inversion
is detailed in Appendix B.
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Algorithm 5 Adaptive Ridge Procedure

1: function ADAPTIVE-RIDGE(O,R ,κ)
2: θ← 0
3: v ← 1
4: w ← 1
5: while not converge do
6: θnew ← NEWTON-RAPHSON(O,R ,κ, v , w )

7: vnew
j ,k ←

((
δnew

j+1,k −δnew
j ,k

)2 +ε2
v

)−1

8: wnew
j ,k ←

((
δnew

j ,k −δnew
j ,k−1

)2 +ε2
w

)−1

9: θ← θnew

10: end while
11: Compute (Onew,Rnew) selected (δ, v new, w new)
12: θ̂←Onew/Rnew

13: return θ̂
14: end function

3.4 Choice of the penalty constant

In practice, the hazard rate needs to be estimated for a set of penalty constants and the optimal κ is
chosen as the penalty that provides the best compromise between model fit and reduced variability
of the hazard rate estimate. In the piecewise constant estimation, different values of the penalty
constant yield to different segmentations of δ j ,k . As a consequence, to choose the optimal penalty
constant is to choose the optimal model, where each model corresponds to a different segmentation
of the δ j ,k s.

The computational burden of cross validation dissuades us from using it for the ACI model. We
offer to use a criterion for model selection. The AIC (Akaike, 1974), the BIC (Schwarz, 1978), and,
following a similar work in Goepp et al. (2018), a modified version of the BIC called “EBIC” (for “Ex-
tended BIC”, see Chen and Chen, 2012). The latter is defined as a BIC criterion with a specific prior
on the model. It is defined as

EBIC(κ) = BIC(κ)+2log

(
JK

m(κ)

)
, (3.8)

where m(κ) is the model dimension. Notice that the term on the right hand side of the latter equation
takes small values when the model dimension is close to 1 or to JK , the maximal dimension. Thus
the prior of the EBIC gives more weight to models of small and large dimensions, compared to JK /2.

Comparison of the efficiency of the different methods will be analyzed in Section 3.5 on simulated
data.

3.5 Simulation results

3.5.1 Simulation setting

The simulation setting is as follows. The data is simulated using a “true” (conditional) hazard rateλ(t |u),
given as piecewise constance function:

λ(t |u) =
J∑

j=1

K∑
k=1

λ j ,k1[c j−1,c j )×[dk−1,dk )(t ,u), (3.9)

where (λ j ,k ) is the discrete hazard rate. We set J = 20 equally spaced age intervals [0,5), . . . , [95,100]
and K = 20 equally spaced cohort intervals [1900,1905), . . . , [1995,2000]. The censoring distribution
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Figure 3.1: True hazard (λ∗
j ,k ) for simulation design.
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is uniform over [75,100]× [1900,2000]. For inference, we use the same discretization into 5-year age
and cohort intervals. Consequently, there are J ×K = 400 parameters in the full model. We use three
simulation designs, with three different hazard rates; see Figure 3.1.

For each design, we simulate data of sample sizes 400, 100, 4000, and 10000. For each sample size,
the simulation and estimation were replicated 100 times. In all simulation designs, the log-hazard
rate is the sum of and age effect, a cohort effect, and an interaction effect:

logλ∗
j ,k =µ∗+α∗

j +β∗
k +δ∗j ,k ,

where µ∗ = log(10−2) and (α∗
j ) and (β∗

k ) are sequences in arithmetic progression ranging from α∗
2 = 0

to α∗
J = 1.4 and from β∗

2 = 0 to β∗
K = 0.3 respectively. We defined three simulation designs, with

different choices for the interaction effect δ∗j ,k .

Simulation Design 1. In this simulation design δ∗j ,k is the sampling of the mixture of two Gaussian
densities:

δ∗j ,k = 15 fµ1,σ1 (c j ,dk )+3 fµ2,σ2 (c j ,dk ),

where fµ,σ(t ,u) denotes the bivariate Gaussian density at age t and cohort u. We setµ1 = (40,1940)T ,
µ2 = (50,1965), σ1 = 100I 2, and σ2 = 10I 2. The resulting hazard is represented in Figure 3.1a: the
general (increasing) trend is given by the age and cohort effects, and the two “bumps” are given by
the interaction effect. The first bump is spread out and has a large amplitude; the second bump
however is smaller and more spiky. The latter can be difficult to estimate.

Contrarily to Design 2, the interaction term has a low amplitude compared to the combined (ad-
ditive) effect of age and cohort. Consequently, the interaction effect is purposefully hard to estimate
in this design, as it is hard to separate it from the age and cohort effects.

Simulation Design 2. In this simulation design, the interaction term is a piecewise function whose
support is a circle at the center of the age-cohort plane:

δ∗j ,k = 0.01∗1(( j ,k) ∈C (1950,50,500)).

where C
(
mk ,m j ,R

)
is the circle of center

(
mk ,m j

)
and of radius R.

The interaction term is a very simple piecewise constant function. The resulting hazard is rep-
resented in Figure 3.1b. In this design, it is required that the ACI model infers correctly the support
of δ∗j ,k .

Simulation Design 3. This simulation design is piecewise constant with two levels:

δ∗j ,k = 0.015∗1(
( j ,k) ∈C (1950,50,700)

)+0.015∗1(
( j ,k) ∈C (1955,45,200)

)
.

The resulting hazard is represented in Figure 3.1c. The two terms in this equations are functions
whose supports are circles and one circle is inside the other. Consequently the interaction effect has
a large support and a large amplitude (compared to the age and cohort effects). Hence it is easy to
estimate the presence of the interaction term. However it can be harder to estimate correctly the
presence and shape of the higher level.

3.5.2 Predictive performance

We represent the estimation performance of the ACI model compared to two other estimates: the AC
model and the MLE. Note that in all simulation designs, the interaction term takes values close to zero
and consequently the true hazard is purposefully close to a age-cohort model. This simulation setting
is aimed at quantifying how well the interaction term can be inferred by the ACI model. Another
simulation setting should be used to quantify how well the ACI model performs when the true hazard
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Sample size MLE AC model ACI model

AIC BIC EBIC

400 2.905×10−2 6.320×10−4 6.666×10−4 6.235×10−4 6.235×10−4

1000 8.813×10−3 2.951×10−4 3.027×10−4 2.954×10−4 2.954×10−4

4000 3.167×10−3 7.417×10−5 8.109×10−5 7.671×10−5 7.435×10−5

10000 1.303×10−3 4.133×10−5 5.700×10−5 4.136×10−5 4.136×10−5

(a) Simulation Design 1

Sample size MLE AC model ACI model

AIC BIC EBIC

1000 4.332×10−3 9.263×10−5 9.911×10−5 9.299×10−5 9.209×10−5

4000 6.459×10−4 2.701×10−5 3.059×10−5 2.702×10−5 2.702×10−5

10000 2.195×10−4 1.463×10−5 1.662×10−5 1.465×10−5 1.465×10−5

40000 4.976×10−5 7.992×10−6 7.808×10−6 8.002×10−6 8.002×10−6

(b) Simulation Design 2

Sample size MLE AC model ACI model

AIC BIC EBIC

400 1.578×10−2 4.305×10−4 4.377×10−4 4.368×10−4 4.368×10−4

1000 7.168×10−3 2.068×10−4 2.325×10−4 2.074×10−4 2.074×10−4

4000 1.051×10−3 7.273×10−5 9.689×10−5 7.302×10−5 7.302×10−5

10000 3.242×10−4 5.386×10−5 5.585×10−5 5.381×10−5 5.409×10−5

(c) Simulation Design 3

Table 3.1: Mean squared errors of the AC model, the ACI model, and the maximum likelihood esti-
mate. For each sample size, the mean squared error was computed over 100 repetitions. The smallest
mean squared error in each row is highlighted in bold.
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is very dissimilar from an additive effect between age and cohort. This is beyond the scope of this
study.

In this section, we compare the predictive performance of the ACI model with the AIC, BIC, and
EBIC criteria, to the AC model and to the MLE. We simulate the data a repeated number of L = 100
times. For each repetition, we compute the ACI, AC, and MLE estimates. The MLE estimate is ex-
plicit: λ̂ j ,k =O j ,k /R j ,k . The AC estimate is not explicit but is easy to compute – we provide a Newton-
Raphson-based estimation in the package hazreg. For each estimate, we then compute the mean
squared error

MSE = 1

L

L∑
l=1

∥∥λ̂l −λ∗∥∥2
,

where λ̂l is the estimated hazard for the l-th sample. This procedure is completed for different sam-
ple sizes: 400, 1000, 4000, and 10000. A sample size of 10000 is considered small for applications in
epidemiology. With J = K = 20, this sample size is 25 times larger than the number of parameters.

The results are gathered in Table 3.1. The ACI model performs always (almost) as well as the AC
model, which performs way better than the MLE. This is coherent with the fact that in three simula-
tion designs, the true hazard is close (in L2 norm) to the age-cohort model. For larger sample sizes,
the ACI model outperforms the AC model (results not shown here). No criteria stands out as better
for the task of model selection. These remarks hold likewise for all three simulation designs.

Consequently, the ACI model is shown to perform as well as the AC model, even when the true
hazard is close to that of the AC model. In addition, the ACI infers the interaction effect. In the next
section, we will qualify, how well the interaction term is estimated.

3.5.3 Perspective plots

In this section, we represent the hazard rate estimated by the ACI model. We also represent the inter-
action effect. We simulate datasets of sample size 40000 a repeated number of 100 times. We repre-
sent the pointwise medians of the estimates over the 100 replications. The estimates are represented
in Figures 3.2, 3.3, and 3.4 for the three simulation designs, respectively.

Figure 3.2 represents the results for Simulation Design 1. We compare the hazard estimated
with the ACI model (Figure 3.2b) and with the MLE (Figure 3.2a). The MLE infers accurately the
two “bumps” forming the interaction effect, as well as the general trend forming the age and cohort
effects. But the regularizing effect of the ACI model improves the quality of the estimation, espe-
cially for large values of the age, where there are fewer data points and thus a lower signal-to-noise
ratio. We also represent the decomposition of the estimated hazard (Figure 3.2b) in the age and co-
hort effects and the interaction effect: Figure 3.2c represents

(
exp(µ+α j +βk )

)
j ,k and Figure 3.2d

represents
(
exp(δ j ,k )

)
j ,k . The interaction effect is accurately estimated, which leads to think the ACI

model is useful to detect the presence of interactions between the age and cohort effects. (We stress
that the functions represented here are medians over 100 repetitions. The estimation of interaction
effect with such precision as that of Figure 3.2 requires a greater sample size than 40000). The esti-
mated age and cohort effects presented in Figure 3.2c are very close to their true values. Figures 3.2e
and 3.2f represent the age (α2, · · · ,αJ ) and cohort (β2, · · · ,βK ) effects respectively The estimates of
each of the 100 replications are in light grey, their median is in red and the true value is in blue.
The age effect is well estimated: the estimate is close to the true value and the replicated estimate
highlight a symmetrical variance thereof. The cohort effect displays the same behavior, but with a
decreased quality of estimation: the empirical variance is large and the median estimate presents
two bumps, whereas the true cohort effect has none. This is explained by the small values taken
by β∗ compared to that of µ∗, α∗, and δ∗. We used the AIC selection criterion in this simulation.
The same simulations were done with the BIC and EBIC criterion (results not shown here) and yield
similar, albeit visually slightly worst, results. This remark holds for Figures 3.3-3.4.

Figure 3.3 represents the estimated hazard with the ACI model for Simulation Design 2. Fig-
ure 3.3a represents the true hazard. The hazard estimated by the AC model and ACI model are repre-
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Figure 3.2: Estimates of the ACI model in Simulation Design 1. (a) Maximum likelihood estimate (b)
Estimated hazard (logλ j ,k ) in the ACI model (c) Age and cohort effects (µ+α j +βk ) in the ACI model
(d) Interaction effect (δ j ,k ) from the ACI model (e) Age effects (α j ) (f) Cohort effects (βk ).
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Figure 3.3: Estimates in Simulation Design 2 with the ACI model: (a) True hazard, (b) AC model
(logλ j ,k = µ+α j +βk ), (c) Estimated hazard in the ACI model, and (d) Interaction effect (δ j ,k ) in the
ACI model.
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sented in Figures 3.3b and 3.3c. The AC model fails to estimate the shape of the hazard. In particular,
the interaction term cannot – by definition – be estimated by the AC model, and the estimated age
and cohort effects are skewed to fit the interaction term. Figure 3.3 represents the interaction term.
The estimated interaction is not visually close to a piecewise constant function. Its circular support
is however well estimated.

Figure 3.4 represents the same results as Figure 3.3 for Simulation Design 3. The remarks are
the same: the ACI model infers both the age-cohort trend and the interaction term satisfyingly. The
added difficulty of this simulation design is the presence of two levels instead of one. Figure 3.4d
shows that in this case, the interaction effect is still well estimated.

3.6 Conclusion

We have introduced a new model to estimate the interaction between effects in the age-period-
cohort setting. This model was developed to generalize the age-cohort model and is called age-
cohort-interaction model. (The age-period and period-cohort models can be generalized in the same
fashion.)

This model uses penalized maximum likelihood estimation. Indeed, a fused adaptive ridge method
is used to regularize the interaction term. This regularization forces the interaction term to be piece-
wise constant. We propose different model selection criteria for the choice of the penalty constant:
the AIC, the BIC, and the EBIC. We compare the criteria using simulations. The AIC is underpenal-
izing and consequently, the estimated interaction effect is piecewise constant with many different
values (simulation results not shown here). The BIC and EBIC tend to select similar penalties and
consequently to provide the same estimate, the EBIC being slightly more penalizing than the BIC
(results not shown here).

The estimation performance of our model is evaluated on simulations and compared with that
of the age-cohort model and the MLE. With sample size 400, 1000, 4000, and 10000, our method
performs as well as the age-cohort model and outperform the MLE. For higher sample sizes, our
model slightly outperforms the age-cohort model (results not shown here). Finally, perspective plots
of the interaction term illustrate that the age-cohort-interaction model performs well at estimating
the presence and support of interaction between age and cohort effects. The shape of the interaction
is inferred correctly in the case where it is piecewise constant.

Perspectives include using a bootstrapping of the data to provide empirical confidence intervals
of the estimate. Averaging the collection of estimates provides an estimate of the interaction term
that is not piecewise constant. I have performed exploratory analysis in this direction, with promis-
ing results. Moreover, I have started to apply this method to the study of breast cancer incidence
among Norwegian women. I plan to apply the ACI model to the data provided by the NOWAC cohort
(Lund et al., 2008). Finally, the ACI model could be used to test for the presence of a (non-linear)
interaction effect. Indeed, if we had an asymptotic distribution for the estimated interaction effect,
one could build a test with null hypothesis “∀ j ,k,δ j ,k = 0”. This would require to establish asymp-
totic properties of the adaptive ridge. We refer to the conclusion of this manuscript for perspectives
on this matter.

Appendix A: Expressions of the score and Hessian matrix

Unpenalized likelihood in the ACI model. We give the expressions of the (unpenalized) negative
log-likelihood given in Equation 3.5. Its first order derivative is given by

∂`

∂µ
(θ) =

J∑
j=1

K∑
k=1

exp
(
µ+α j +βk +δ j k

)
Rk

j −Ok
j ,
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Figure 3.4: Estimates in Simulation Design 2 with the ACI model: (a) True hazard, (b) AC model
(logλ j ,k = µ+α j +βk ), (c) Estimated hazard in the ACI model, and (d) Interaction effect (δ j ,k ) in the
ACI model.
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∂`

∂α j ′
(θ) =

K∑
k=1

exp
(
µ+α j ′ +βk +δ j ′k

)
Rk

j ′ −Ok
j ′ ,

∂`

∂βk ′
(θ) =

J∑
j=1

exp
(
µ+α j +βk ′ +δ j k ′

)
Rk ′

j −Ok ′
j ,

and
∂`

∂δ j ′k ′
(θ) = exp

(
µ+α j ′ +βk ′ +δ j ′k ′

)
Rk ′

j ′ −Ok ′
j ′ ,

with 1 ≤ j ′ ≤ J and 1 ≤ k ′ ≤ K . Its second order derivative is given by

∂2`

∂µ2 (θ) =
J∑

j=1

K∑
k=1

exp
(
µ+α j +βk +δ j k

)
Rk

j ,

∂2`

∂α j ′′∂µ
(θ) =

K∑
k=1

exp
(
µ+α j ′′ +βk +δ j ′′k

)
Rk

j ′′ ,

∂2`

∂βk ′′∂µ
(θ) =

J∑
j=1

exp
(
µ+α j +βk ′′ +δ j k ′′

)
Rk ′′

j ,

∂2`

∂δ j ′′k ′′µ
(θ) = exp

(
µ+α j ′′ +βk ′′ +δ j ′′k ′′

)
Rk ′′

j ′′ ,

∂2`

∂α j ′′∂α j ′
(θ) =1 j ′= j ′′

K∑
k=1

exp
(
µ+α j ′′ +βk +δ j ′′k

)
Rk

j ′′ ,

∂2`

∂βk ′′∂α j ′
(θ) = exp

(
µ+α j ′ +βk ′′ +δ j ′k ′′

)
Rk ′′

j ′ ,

∂2`

∂δ j ′′k ′′∂α j ′
(θ) =1 j ′= j ′′ exp

(
µ+α j ′′ +βk ′′ +δ j ′′k ′′

)
Rk ′′

j ′′ ,

∂2`

∂δ j ′′k ′′∂βk ′
(θ) =1k ′=k ′′ exp

(
µ+α j ′′ +βk ′′ +δ j ′′k ′′

)
Rk ′′

j ′′ ,

∂2`

∂βk ′′∂βk ′
(θ) =1k ′=k ′′

J∑
j=1

exp
(
µ+α j +βk ′′ +δ j k ′′

)
Rk ′′

j ,

∂2`

∂δ j ′′k ′′∂δ j ′k ′
(θ) =1 j ′= j ′′,k ′=k ′′ exp

(
µ+α j ′′ +βk ′′ +δ j ′′k ′′

)
Rk ′′

j ′′ ,

with 1 ≤ j ′, j ′′ ≤ J and 1 ≤ k ′,k ′′ ≤ K .

Likelihood with piecewise constant regions. Let Zl define the l-th region, for 1 ≤ l ≤ L. Let `c be
the constrained negative log-likelihood function, depending on the parameter vectorθ = (

µ,α,β,δ(1), . . . ,δ(L)
)

of size 1+ J −1+K −1+L. Then

λ j ,k = exp

(
µ+α j +βk +

L∑
l=1

1( j ,k)∈Zlδ
(l )

)

and

`c (θ) =
J∑

j=1

K∑
k=1

λ j ,k R j ,k − log
(
λ j ,k

)
O j ,k . (3.10)

Then
∂`c

∂δ(l ′) (θ) =
J∑

j=1

K∑
k=1

1( j ,k)∈Zl ′
(
λ j ,k R j ,k −O j ,k

)
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∂2`c

∂µ∂δ(l ′) (θ) =
J∑

j=1

K∑
k=1

1( j ,k)∈Zl ′λ j ,k R j ,k

∂2`c

∂α j ′∂δ(l ′) (θ) =
K∑

k=1
1( j ′,k)∈Zl ′λ j ′,k R j ′,k

∂2`c

∂βk ′∂δ(l ′) (θ) =
K∑

k=1
1( j ′,k)∈Zl ′λ j ,k ′R j ,k ′

∂`c

∂δ(l ′)∂δ(l ′′) (θ) =1l ′=l ′′
J∑

j=1

K∑
k=1

1( j ,k)∈Zl ′λ j ,k R j ,k

Penalized Likelihood. The penalized likelihood’s derivatives with respect to µ, α, and β are un-
changed. For 2 ≤ j ′ ≤ J and 2 ≤ k ′ ≤ K we have:

∂`κ

∂δ j ′k ′
(θ) = ∂`

∂δ j ′k ′
(θ)+κ[−v j ′,k ′

(
δ j ′+1,k ′ −δ j ′,k ′

)+ v j ′−1,k ′
(
δ j ′,k ′ −δ j ′−1,k ′

)]
+κ[−w j ′,k ′

(
δ j ′,k ′+1 −δ j ′,k ′

)+w j ′,k ′−1
(
δ j ′,k ′ −δ j ′,k ′−1

)]
,

(3.11)

with by convention δJ+1,k = δ j ,K+1 = 0 and v J ,k = w j ,K = 0. For 2 ≤ j ′ ≤ J , 2 ≤ k ′ ≤ K , 2 ≤ j ′′ ≤ J and
2 ≤ k ′′ ≤ K we have:

∂2`κ

∂δ j ′,k ′∂δ j ′′,k ′′
(θ) = ∂2`

∂δ j ′,k ′∂δ j ′′,k ′′
(θ)+κ[

1 j ′′= j ′,k ′′=k ′
(
v j ′,k ′ + v j ′−1,k ′ +w j ′,k ′ +w j ′,k ′−1

)
− v j ′,k ′1 j ′′= j ′+1,k ′′=k ′ − v j ′−1,k ′1 j ′′= j ′−1,k ′′=k ′

−w j ′,k ′1 j ′′= j ′,k ′′=k ′+1 −w j ′,k ′−11 j ′′= j ′,k ′′=k ′−1
] (3.12)

Appendix B: Fast Inversion of the Hessian matrix

The Newton-Raphson iteration requires the computation of
(
Iκn

)−1 Uκ
n . This linear problem is the

computational bottleneck of the algorithm. The Hessian matrix has the form

Iκn =
(

A B
B T D

)
where

A = ∂2`κn

∂(µ,α,β)∂(µ,α,β)T
, B = ∂2`κn

∂(µ,α,β)∂δT
, and D = ∂2`κn

∂δ∂δT
.

The Hessian matrix is inverted using the Schur block matrix inversion formula (Zhang, 2005):

(
Iκn

)−1 =
(

S−1 −S−1BD−1

−D−1C S−1 D−1 +D−1C S−1BD−1,

)
where S = A−BD−1C is the Schur complement of the matrix D . Consequently

(Iκn )−1Uκ
n =

(
S−1U1 −S−1BD−1U2

−D−1B T S−1U1 +D−1U2 +B T S−1BD−1U2

)
, (3.13)

where U1 = ∂`κn/∂
(
µ,α,β

)
and U2 = ∂`κn/∂δ. Since D is a symmetric band diagonal matrix, D−1B T is

computed using Cholesky factorization and the computation complexity of
(
Iκn

)−1 Uκ
n using Equation

(3.13) reduces from O
(
(JK )3

)
to O

(
max(J ,K )2 JK

)
.





Chapter 4

Spline regression with automatic knot
selection

The problem of finding a function f that links a (potentially multivariate) explanatory variable x to
a univariate response variable y is central in statistics. In all generality the link between x and y is
not affine and the linear model is often deemed too restrictive. Often, the link between x and y is
supposed complex and is unknown, and we do not want to make restrictive assumptions on f . This
is the framework of non-parametric regression, where the unknown function f is assumed to belong
to a family of functions that cannot be configured by Rp (or a subset thereof). Instead, we infer the
function from the data without additional assumptions on f .

We count four important tools for non-parametric regression: Gaussian process regression, ker-
nel regression, spline regression, and regression trees. Among those, spline regression has been
praised for being simple and efficient in many practical cases. This domain has grown in popularity
since the development of computational statistics in the years 1980’s and has gained mainstream ap-
peal in the years 2000’s. Strictly speaking, spline regression does not fall inside the category of non-
parametric regression, because splines are families of parametric functions. They are still termed
non-parametric because (i) they are over-parametrized and each parameter has no interpretability
inside the model and (ii) splines with a sufficiently large number of parameters can approximate any
function inside some infinite-dimensional function space with arbitrary precision (the details are
beyond the scope of this work, see Curry and Schoenberg, 1966). Some refer to spline regression as
being semiparametric, which is also technically incorrect.

Spline regression is simple in practice: we set the number of knots, their position, and the order
of the spline (knots are positions on the x-axis where the spline displays a discontinuity in its deriva-
tive and a spline’s order accounts for its regularity). Conditionally on this choice, the regression is
a parametric method and is easy to compute. However, with sufficiently large order and number of
knots, the spline approximates any function inside a very large (i.e. infinite-dimensional) function
set. This is the simplifying trick which makes spline regression both simple and powerful.

In practice, performing regression with one choice of knots (and order) is not enough: we need to
select the best number and position of knots and order a posteriori. This is a complicated problem.
The order of the spline is always chosen by the statistician. With sufficiently enough knots, a spline
of sufficiently high order can approximate any spine of lower order. Thus the order is chosen as the
lowest value such that the fit is deemed satisfactory (rarely more than 5 in practice). The knots are
however harder to choose. The regression will change drastically if there are too many knots or if
they are not well placed. This is the hidden cost of spline regression. Two main solutions have been
brought forward. The first avoids the problem by voluntarily over-parametrizing the splines and
taking overfitting into account with penalization. The second tackles the problem of optimizing with
respect to the knots, either through a Bayesian framework or through a well-chosen optimization
scheme.

In this chapter, we introduce a novel approach to automatic spline selection. It consists in jointly
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selecting the number and position of knots as well as the fitted spline. The method relies on the
adaptive ridge and we iterate between penalized spline regressions to find the best unpenalized re-
gression spline. We iteratively remove the least relevant knots from a large initial collection of knots.
This approach takes a simplifying approach to the problem, but the computational burden is vastly
reduced and simulations show that the resulting fit has good prediction performance.

This chapter is organized as follows. In the first part, we introduce splines and spline regres-
sion through its different methods, with emphasis on interpretation and computational cost. We
elaborate on the different unpenalized and penalized spline regression methods. The paper “Spline
Regression with Automatic Knot Selection” is given in the second part.

We refer to Green and Silverman (2000), Härdle (1990), and Wahba (1990) for reviews on spline
regression.
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4.1 Introduction to spline regression

4.1.1 Spline regression

We consider the problem of regressing a real-valued response variable y = (yi )1≤i≤n onto a real-
valued explanatory variable x = (xi )1≤i≤n , where n is the sample size. We assume that there exists
an unknown function f such that

yi = f (xi )+εi , 1 ≤ i ≤ n, (4.1)

where εi are realizations of a centered random variable ε, not necessarily independent. The values of
the xi s are assumed to be inside an interval [a,b]. Without loss of generality, we order the x variable,
so that x1 ≤ ·· · ≤ xn . In this setting, the x variable is considered deterministic and the aim of regres-
sion is to find an approximation f̂ of the f that links x to y . This problem being ill-posed, we must
assume that f satisfies some additional property. This property is most often a level of smoothness,
for instance, an order of differentiability.

4.1.1.1 Definition of splines

Splines are a parametric family of functions that are smooth and general enough to approximate a
wide range of functions. Splines are defined using a series of knots, which are base points for the
spline located on the x-axis. Let q ≥ 1 denote the number of knots. Let t = (t j ) define the knots in
increasing order, such that a ≤ t1 < ·· · < tq ≤ b. Furthermore, we denote by k ≥ 1 the order of the
spline. For j ∈ {

1, · · · , q −1
}
, the splines of order k are the functions defined on [a,b] which are piece-

wise polynomials of degree k−1 on each interval [t j , t j+1) and whose k−2-th derivatives are defined
and continuous at each knot t j (we use the convention that a function’s derivative of a negative or-
der is the function itself). For illustration, splines of order 1 are piecewise constant functions with
possible discontinuities at each t j ; we easily verify that these functions are polynomials of degree 0
on each interval [t j , t j+1) and that they are possibly discontinuous at the knots. Splines of order 2 are
broken lines, i.e. piecewise linear functions which are continuous but possibly non-differentiable at
each knot t j . We can easily verify that these are the functions that are polynomials of degree 1 on
each knot interval and are continuous everywhere.

The set of splines of order k defined over the same knots are a linear space of dimension k + q
(this property is easy to verify and we omit the proof). Moreover, splines are slightly more general
functions than polynomials, which allows them to approximate a wider range of functions, in the
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Figure 4.1: Representation of the truncated power basis (T j ,k,t (x))1≤ j≤k+q for k = 3 and t = (0.5,1,1.5).

sense of interpolation. It turns out that polynomials of degree smaller of equal than a constant k ≥ 0
are a poor choice of function family for interpolation. For example, polynomial interpolation is glob-
ally sensitive to a local perturbation of the data, while spline interpolation will only change locally if
the data is perturbed locally. See (De Boor, 1978, Chapter 2) for a detailed discussion of the drawback
of polynomial bases for function approximation.

In the following, we will use splines as approximating functions f̂ for the regression (4.1). We
stress that since few knots are used (q ≤ 40 typically), and with an order k typically smaller than 5, the
spline linear space has a low dimension. This makes the regression problem a parametric estimation
problem, in a parameter space of small dimension. We first have to define a well-suited base of the
spline linear space.

4.1.1.2 The truncated power basis

The truncated power basis is a basis for the spline linear space. For fixed q , t and k, the j -th truncated
power basis spline if defined as

T j ,k,t (x) =
{

x j if 0 ≤ j ≤ q −1

(x − t j−k )q−1
+ if k +1 ≤ j ≤ k +q.

(4.2)

We recall that the notation (x)+ denotes the positive part max(x,0); hence the naming of truncated
power basis. The indices t , k, and t will be dropped from the notation T j ,k,t when they can be inferred
from the context.

We will show that these functions form a basis of the spline space. It is easy to see that it has
k +q elements who are linearly independent. It remains to show that each element of the basis is a
spline. For j ∈ {1, · · · ,k −1}, T j ,k,t is a spline of order k because is it a polynomial of degree k −1. For
j ∈ {k, · · · ,k+q}, T j ,k,t is polynomial on both [a, t j ] and [t j ,b] and it is continuously differentiable on
[a,b] up to the order k −1. This completes the proof.

Numerical stability issues. An example of truncated power basis is given in Figure 4.1, for t =
(t1, t2, t3),= (0.5,0.1,0.15) and k = 3. The truncated power basis is then composed of the k + q = 6
elements x0 = 1, x1 = x, x2, (x − t1)2+, (x − t2)2+, and (x − t3)2+.

The figure also illustrates the major problem with the truncated power basis: it yields poorly
conditioned problems. We develop on this issue here. When the number of knots increases, two
consecutive knots t j and t j+1 can be so close that the truncated basis functions (x − t j )q

+ and (x −
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Figure 4.2: Illustration of the numerical instability of the decomposition in truncated power basis,
with a spline of order 2 supported by 3 knots (tick line) and its decomposition with 2-digit machine
precision coefficients (dotted line).

t j+1)q
+ become very highly correlated. As is shown after, the fitting of splines to a data set (xi , yi ) is

done by linear regression. The design matrix of this linear regression is the n×k+q matrix composed
of the basis functions T j ,k,t (xi ) evaluated at the data points. When the columns of this matrix are too
close to being correlated, numerical precision issues occur. This is due to the subtraction of numbers
that are potentially large and have almost opposite values. In the truncated power basis, the base
functions span over a large number of knots, so the error made on one coefficient has an effect on
whole fitted function (more precisely, on the right side of the corresponding knot). This issue makes
the representation of spline in the truncated power basis prone to numerical instabilities, and thus
unfit to computation. As an illustrating example, consider the example adapted from (De Boor, 1978,
page 85) of a spline of order q = 2 defined on [a,b] = [0,1] and supported over the knots (t1, t2, t3, t4) =
(0.1,0.5−h/2,0.5+h/2,0.8), with values (0,1.1,−1.1,0) at the knots, and where h is a small constant.
This spline allows the following decomposition in the truncated power basis:

f (x) =α1(x − t1)++α2(x − t2)++α3(x − t3)++α4(x − t4)+, where



α1 = 1.1
t2−t1

α2 = −
(

2.2
h + 1.1

t2−t1

)
α3 =

(
2.2
h + 1.1

t4−t3

)
α4 = −

(
1.1

t4−t3

)
.

When h gets small, we have α2 ' −α3, and both get large in absolute value. With an illustrative
machine precision of 2 significant numbers and h = 0.05, we have α1 ' 2.9, α2 ' −47, α3 ' 48, and
α4 '−4. Figure 4.2 illustrates the loss of quality suffered by this decomposition.

This makes the truncated power basis unfit in practice. In the next section, we introduce the
spline basis which solves all the pitfalls that the truncated power basis has.

4.1.1.3 B-spline basis

The B-spline basis is a reparametrization of the truncated power basis. It is defined by recurrence,
for fixed order k ≤ 1 and fixed knots t , as

B j ,1,t = I
{

t j ≤ x < t j+1
}

B j ,k,t (x) = x − t j

t j+k−1 − t j
B j ,k−1,t (x)+ t j+k −x

t j+k − t j+1
B j+1,k,t (x), for k > 1, (4.3)
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Figure 4.3: B-spline bases of order 1 to 4 with three equally spaced knots t = c(0.25,0.5,0.75).

where by convention t0 = a and tq+1 = b. We can easily verify by recurrence that this formula defines
indeed splines. There are k+q B-splines of order k, which form a base. The suffixes of the splines are
dropped when they can be inferred from context.

Consider first the B-spline basis of order 1: they are the characteristic functions of the inter-knot
intervals [t j , t j+1). Compare now these functions to the truncated power basis of order 1: T j ,1,t =
I
{

t j ≤ x
}
. Here, the B-splines are equal to the consecutive difference of two truncated power splines.

This allows them to have a small support and to have have the same order of magnitude. Likewise,
the B-splines of order 2 are triangular functions such that B j ,2(t j−1) = 1, B j ,2(x) = 0 for x 6∈ [t j−2, t j ).
We can show that the B-splines have the following properties for any k:

• B j ,k (x) has exactly the support [t j−k , t j )∩ [a,b].

• At any point x ∈ [a,b], there are exactly k B-splines with non-zero values.

• The B-spline base is normalized, i.e. at any point x ∈ [a,b],
∑k+q

j=1 B j ,k (x) = 1.

This makes the representation of splines in this base better fitted to computations. More precisely

• The decomposition coefficients of a spline are of the same order of magnitude as the spline.

• These coefficients represent the local value of the spline, and have no global effect on the
spline.

This makes B-splines optimally fitted to spline representation. For instance, in the example given in
the last section (see Figure 4.2), B-spline decomposition recovers perfectly the initial spline.

For the sake of completeness, we give an illustration of B-spline bases of different orders and with
equally spaces knots in Figure 4.3.

Computation of B-splines. The recurrence formulas defining B-splines are directly used to com-
pute B-splines. De Boor (1978) gave an algorithm to compute B-splines of any order based on B-
spline of lower order (recall that splines of order 1 are piecewise constant). This method is efficient
for computing B-splines and most B-spline implementations use FORTRAN routines implementing
de Boors’ algorithm (de Boor, 1977).
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4.1.1.4 Regression using splines

Spline regression as linear regression. We want to solve the regression problem (4.1) using a spline
to estimate f . Given an order and the sequence of knots, we define

f̂ (x) =
k+q∑
j=1

α j B j (x), (4.4)

where α = (α j ) is the vector parameter which gives the decomposition of f̂ in B-splines. We chose
the L2 norm as our loss function, i.e. we select the estimated function which minimizes the sum of
square

n∑
i=1

(yi − f (xi ))2.

Notice now that from this equation and (4.4), the criterion to minimize writes∥∥y −Xα
∥∥2,

where the n×(k+q) design matrix X has (i , j )-th entry B j (xi ). This is the framework of linear regres-
sion, whose estimate is explicit:

α̂= (X T X )−1X T y .

From the aforementioned properties of B-splines, the design matrix has the following form. For
j ∈ {

0, · · · , q
}

let n j be the number of points xi in the interval [t j , t j+1) (we have
∑

j n j = n). Then X
has non-zero values on blocks of size n j ×k ordered one above the other, each block being shifted
by one entry compared to the previous block. An easy calculation shows that X T X is banded, of
bandwidth k: its ( j , j ′)-th entry is zero if | j − j ′| > k.

Numerical efficiency. As noted by (Hastie et al., 2001, Chap. 5, Appendix), the numerical cost is
vastly reduced in this setting. Its inversion is computed efficiently in the following steps: (i) compute
the Cholesky decomposition X T X +λΩ = LLT , with complexity O(nk2), (ii) solve Lx̃ = X T y for x̃
using forward substitution, in complexity O(n), and (iii) solve LT x = x̃ for x using back substitution,
in the same complexity. Overall, smoothing spline regression is computed in O(nk2) time complexity.
In practice, k is small (often set to 4) and so fitting B-splines is fast.

Remark. In the following, we will discuss about the properties of the underlying function f . Indeed,
the order of the spline to choose and the number and location of knots all depend on the shape of
f , as does the quality of the regression. In this chapter, we say that a function is regular, or smooth,
if is has few non-zero high-order derivatives. This is a local notion, which means that a function can
be smoother in one place of the segment [a,b] and less smooth in another. Since no assumption
is made on f , we don’t give a proper mathematical definition of regularity; it is used to discuss the
difficulties of spline regression.

Choice of the knots. Spline regression is fast and easy to implement and it provides a flexible enough
setting to approximate a large spectrum of functions. But the quality of the fit depends on the choice
of the knots. With splines of order 1 and 2, the knots ought to be placed at the cut-points in the
data, which can be selected by visual inspecting (although this method is not data-driven and highly
arbitrary). For splines of higher order, the selection criterion is more difficult to choose.

It turns out that equally-spaced knots is not always a good choice, because the function f may
have more variability in one region than in another. One may choose equally spaced knot, which
seems to be a “neutral” setting, and which works well when the true function has enough regularity.
However, a spline with too many knots will (i) be prone to “wiggliness” and (ii) be overfitted, because
as the number of knots gets close to the number of data points, the fit becomes an interpolation.
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(a) Helmet data, equidistant knots
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(b) Helmet data, quantile knots
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(c) Titanium data, equidistant knots
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(d) Titanium data, quantile knots

Figure 4.4: Spline regression with 9 knots placed at equi-distance (c, d) and at the quantiles (a, b), for
two different data sets.

A spline with more knots has more flexible fitting to the data, i.e. it can fit to functions with high
variability (in the sense that it has higher order derivatives with important values). Since B-splines
are locally adaptive, a region with more knots will accommodate high variability of the function in
this region. Thus, we would want to choose the knots in an adaptive, data-driven way that puts more
knots when it is necessary to fit the high variability, and less when the function is smoother. This is a
difficult task.

A possible solution is to place the knots at the quantiles of (xi ), allowing for higher adaptability
where there are many data points. But this is efficient only if highly-varying regions have more data
points, which is not always verified. We illustrate this problem on two different datasets (Figure 4.4).
The “helmet” data (see de Souza and Heckman, 2013) set is helmet crash test data, representing ac-
celeration against time (n = 132). It is repeatedly used to illustrate spline regression methods and
compare them (Silverman, 1985; Eilers and Marx, 1996). The “titanium” data represents a heat prop-
erty of titanium as a function of its temperature (n = 49) (used for instance by Dierckx, 1995; de Boor,
1986; Jupp, 1978). Since this data contains close to no noise, we add a Gaussian noise of standard
deviation 0.05 to the y values in order to make the inference reasonably challenging. Compare now
Figures 4.4b and 4.4b, which display spline regressions of order 4 with 9 knots placed at the quan-
tiles, for two different data sets. In the first one, the xi s are not spread uniformly, and the sharp shift
at x ∼ 17 is where the xi s are the most dense. The knots set at the quantiles allow for many knots
in this region, and the fit is of good quality comparatively to equidistant knots (Figure 4.4a). On the
other one, the xi s are uniformly spread, and there is a high variability in one region. This lead a poor
fit (at least as poor as with equidistant knots, see Figure 4.4c).

The problem of finding the “best” position of the knots is a difficult one. In the next section, we
present a few solutions present in the literature.
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4.1.2 Penalized approaches

In this part, we will see some methods that circumvent the difficulty of choosing the knot’s position.
Instead, they set a (too) large number of knots and deal with overfitting through penalized estima-
tion. They all differ in their choice of knot number and placement and type of penalization, but
essentially follow this simple principle.

Natural cubic splines. We first introduce a family of spline called natural cubic spline.
Spline of order 2 are continuous, splines of order 3 are continuous and have continuous first order

derivatives, splines of order 4 are continuous and have continuous first and second order derivatives.
For order ≤ 3, the splines’ shifts at the knots are visible. For order 4 and larger, it becomes almost
impossible to tell where the knots are: the splines are seamless. This is why in practice splines of
order 4 are chosen when f is assumed “smooth” without any other assumption. They are called
cubic splines – they are made of piecewise cubic polynomials.

Around the boundary of [a,b], there are fewer data points then in the center of [a,b]. Conse-
quently, the regression has more variance close to the margins a and b. To remedy this issue, one
solution is to add constraints at the boundary. For cubic splines, we can add the constraints that
the spline be linear on (−∞, t1] and [tq ,∞), i.e. that the second and third order derivatives are zero
left of t1 and right of tq . This adds 4 constraints on the spline, which can now be parametrized by
k +q −4 = q freely varying parameters.

Definition 4. A natural cubic spline is a spline of order 4 linear outside of its boundary knots.

4.1.2.1 Smoothing splines

Consider the problem of finding the function f̂ which solves

argmin
f

n∑
i=1

(yi − f (xi ))2 +λ
∫
R

[
f ′′(t )

]2 d t (4.5)

where f is any function such that this quantity is defined andλ> 0 is a smoothing parameter. Conse-
quently, f belongs to the Sobolev space of functions whose derivatives of order 0, 1, and 2 are square-
integrable. Equation 4.5 is minimization problem in infinite dimension.

Fortunately, the solution to (4.5) is proven to be a natural cubic spline with n knots placed at the
xi s. These splines are called smoothing splines. Consider a basis (N j (x))1≤ j≤n for the space of cubic
splines defined on the knots (xi ) and write f̂ (x) =αT N (x) (we can define such a basis with properties
similar to B-splines. We do not give the details here for the sake of the presentation and refer to Hastie
et al., 2001, Section 5.2.2). Then problem (4.5) rewrites

min
α

‖y −Xα‖2 +λαTΩα (4.6)

where X is the design matrix of the values of N j (xi ) and

Ωi , j =
∫
R

N ′′
i (t )N ′′

j (t )d t (4.7)

is the n ×n symmetric matrix enforcing the smoothing of the spline. Consequently, the smoothing
spline is not over-parametrized, because its estimated vector is the solution of a ridge regularized
regression:

α̂= (X T X +λΩ)−1X T y .

SinceΩ is positive definite, it acts as a regularization of the estimate, in a way similar to ridge regres-
sion (if Ω were diagonal, the previous equation would be a weighted ridge regression). Note that Ω
acts as a weighting matrix and it depends on x and λ, but not on y . Hence the term smoothing spline:
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the projection matrix X (X T X +λΩ)−1X T y that maps y to ŷ is obtained by a smoothing independent
from y .

It comes that X T X +λΩ is symmetric definite positive and 4-banded. Since smoothing splines
are of order 4, we know that X T X is also 4-banded. Consequently smoothing splines have the same
computational cost as B-splines.

4.1.2.2 O’Sullivan Penalized Splines

O’Sullivan (1986) introduced a penalized regression spline that it closely related to smoothing splines.
Indeed, the method (called O’Sullivan splines for clarity) uses cubic B-splines (although any order
could be used without modifications to the method) with k+4 knots located anywhere on [a,b]. The
estimate is the cubic spline

f (x) =
k+4∑
j=1

α j B j ,4(x)

Consider the n×(k+4) design matrix X with (i , j )-th entry B j (xi ). O’Sullivan penalized splines use the
same penalization as smoothing splines, but in the context of B-splines (instead of natural splines).
Likewise (4.5), the estimate is defined as

argmin
α

∥∥y −Xα
∥∥+λ∫ xmin

xmin

{
k+4∑
j=1

α j B ′′
j ,4(t )

}2

d t , (4.8)

and likewise smoothing splines, the estimate reduces to

â = (X T X +λΩ)−1X y , (4.9)

where the penalty matrix Ω is defined by (4.7), where N j is replaced by B j ,4. The rationale behind
(4.8) is similar to smoothing splines. Using many knots creates wiggliness in the spline. For a spline
of order 4, the penalization of its integrated squared second order derivative forces it to have a small
second order part and to have small third order derivative differences around each knot.

Consequently, smoothing splines are a particular case of O’Sullivan splines, with k = n knots
placed at the data points xi . Whereas smoothing splines perform a trade-off between interpolation
(for λ→ 0) and linear regression (for λ→∞), this method performs a trade-off between unpenalized
B-splines (forλ→ 0) and linear fit (λ→∞). It enjoys the same computational efficiency as smoothing
splines, since the penalty function is also 4-banded. It is in fact more efficient since we usually define
way fewer knots then there are data points (n ≤ k). This makes O’Sullivan splines a tool of choice for
penalized spline regression. In the next section, a further simplification of this method is presented.

4.1.2.3 P-splines

Eilers and Marx (1996) introduced a penalized spline regression method called P-splines (for penal-
ized splines). Its simplicity made it the most widely used penalized spline regression model, having
been used in many applications and extended to more general settings (Eilers et al., 2015; Currie
et al., 2004; Wand and Ormerod, 2010; Jiang and Carriere, 2014).

Consider the same framework as the previous section: the regression spline is a B-spline of any
order k. P-splines are defined with knots equidistant over [a,b].

Recall that ∆α j ,α j −α j−1 denotes the difference operator and ∆p ,∆p−1 ◦∆, p ≥ 2 denotes the
p-th composition of the difference operator with itself. P-splines are defined as the solution of the
penalized problem

argmin
α

‖y −Xα‖2 +λ
q+k∑
j=k

(∆k−2α j )2. (4.10)

This penalty has an intuitive explanation, at least with the order 2. In this paragraph, consider
q = 2, i.e. piecewise linear functions. Recall that f̂ =∑

j α j B j ,2(x) and that over [t j−1, t j ), B j0,2(x) has
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slope −1, B j0−1,2(x) has slope 1 and all the other B-splines are equal to zero. Then at t j0 , the slope shift
of f̂ (x) is α̂ j0 −α̂ j0−1. When (∆2α̂ j0 )2 is small, α̂ j0 ' α̂ j0−1, and the slope shift of f̂ (x) at t j0−1 vanishes.
This enforces the spline to have small variations in slope at each knot, and throughout [a,b]. This
result generalizes to other orders, and in particular cubic splines will have small differences in their
third order derivatives.

The penalized problem (4.10) gives the explicit estimate

α̂= (X T X +λDT D)−1X T y ,

where D is the q×(q+k) matrix of the operator∆k−2. The entries of D are the signed binomial coeffi-
cients. Consequently, DT D is much simpler to compute than the penalty matrixΩused in smoothing
splines or O’Sullivan splines, which depend on the knots. The difference in computational cost and
complexity increases for higher orders of the spline.

We will see that the penalty used in P-splines is however quite close to that of O’Sullivan splines.
For comparison we also assume k = 4 in this paragraph. From (De Boor, 1978, p. 115)’s formula of
spline derivatives, we have the identity

(t j − t j−1)B ′
j ,k (x) = k

(
B j ,k−1(x)−B j+1,k−1(x)

)
.

Using this formula, the O’Sullivan spline penalty rewrites

∫ xn

x1

∑
j

{
α j B ′′

j ,4(x)
}2

d x ∝
∫ xn

x1

{∑
j
∆2α j B j ,2(x)

}2

d x (4.11)

=
∫ xn

x1

∑
j

(∆2α j )2B j ,2(x)2d x +
∫ xn

x1

∑
j
∆2α j∆

2α j−1B j ,2(x)B j−1,2(x)d x (4.12)

= c1
∑

j
(∆2α j )2 + c2

∑
j
∆2α j∆

2α j−1, (4.13)

where the indices are defined implicitly by the order of the spline in each sum. The constants c1 and
c2 are integrals of second order splines over [x j , x j+1); they are proportional to 2/3 and 1/6 respec-
tively. These results follow from simple algebra and are not detailed further (see Eilers and Marx,
1996, Section 3).

From this result we see that where the P-Spline penalty for the j -th knot is proportional to (∆2α j )2,
that of O’Sullivan is proportional to 2/3(∆2α j )2+1/6∆2α j∆

2α j−1. These two penalties are quite sim-
ilar for many values of α (and even more so as ∆3α gets small). This gives an understanding of
the close relation between the two methods. We don’t investigate this topic further (see Wand and
Ormerod, 2010).

P-splines are praised for their simplicity. In comparison, O’Sullivan splines are somewhat nu-
merically less simple, although Wand and Ormerod (2010) provides explicit formula for the penalty
matrix in (4.9). O’Sullivan splines have been generalized to any order, so both methods stand equal
in terms of generality. P-splines can be deemed too restrictive for their choice of setting equal knots.
But in fact the penalization that it enforces will compensate for knots that are set too close (simu-
lation work by Ruppert, 2002, show that above a certain threshold, the number of knots has little
impact on the performance of P-splines).

4.2 Spline regression with automatic knot selection

In this section, I include the preprint “Spline regression with automatic knot selection”.
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1 Introduction

After witnessing great developments in the past decades (see Wahba, 1990; Hastie et al.,

2001; Ruppert et al., 2009; Wood, 2017) spline regression has become a tool of choice for

semiparametric regression: it is restrictive enough to bene�t from the simplicity of para-

metric estimation and general enough to accurately approximate a large range of smooth

functions. For a while, the knots over which the splines are built was arbitrary chosen by

the data analyst. Yet the number of knots has an important in�uence in the resulting �t:

with not enough knots the regression is under�tted and with too many knots it is over�tted.

Choosing the knots' position is also important since uniformly distributed knots can lead

to over�tting in an area where there are few points and under�tting in an area where there

are many points.

During the 1990's, penalization methods have been developed to overcome this di�culty.

The idea is to set (too) many knots and to control over�tting by penalizing over the spline

parameters. In smoothing splines (see Hastie et al., 2001, Section 5), knots are set at

each data point and the spline's wiggliness is controlled by penalizing over the integrated

squared second order derivative
∫
{f ′′ (t)}2 dt. The smoothing spline estimate has a closed-

form expression and is computationally e�cient. O'Sullivan (1986) generalized smoothing

splines to an arbitrary choice of knots, allowing to set fewer knots than the sample size.

Later, Eilers and Marx (1996); Marx and Eilers (1998) introduced P-splines, based on a

penalty over the �nite order di�erences of the parameters. This penalization is closely

related to that of O'Sullivan (see Eilers and Marx, 1996, Section 3) and is a generalization

of Whittaker (1922)'s graduation method, which can be seen as a P-spline of order 0 with

knots placed at data points. See Eilers et al. (2015) and citations therein for a review of

P-splines and see Wand and Ormerod (2010) and Eilers et al. (2015, Appendix A) for a

comparison between O'Sullivan's splines and P-splines. Smoothing splines are implemented

in the R packages gam (Hastie et al., 2001; Hastie, 2018) and mgcv (Wood, 2017) and P-

splines are implemented in the R package pspline.

These regularized spline regression methods are simple and computationally fast. How-

ever, a spline with fewer knots is easier to interpret, which in many cases is a desired goal.

Indeed a knot corresponds to a discontinuity in the spline's kth derivative (where k is the
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spline's order) and thus to a shift in the trend of the estimated function. As pointed out by

Wand (2000), setting a very large number of knots and exploring the set of splines de�ned

on any subset of the knots is not tractable in practice. Friedman (1991) has developed a

multivariate variable selection technique called MARS (Multivariate Adaptive Regression

Splines). It uses a recursive partitioning of the domain and sequentially selects the knots

with a forward/backwards step size procedure (see Friedman and Silverman (1989) and

(Hastie et al., 2001, Section 9.4) for details). Luo and Wahba (1997) have later developed

a closely related approach called Hybrid Adaptive Splines which uses a forward stepwise

procedure and �ts penalized splines instead of using a backward procedure. Other paths

have been taken to solve this computationally intensive problem. Namely, Jamrozik et al.

(2010) have o�ered to estimate the best location of knots using a di�erential evolution

algorithm. However, their approach was limited to a number of knots varying between 4

and 7 and to splines of order 1.

A di�erent approach is to jointly estimate the spline coe�cients and the position of the

knots, as well as their number. The splines estimated by allowing the knots' position to

vary are called free-knot splines. Jupp (1978) was among the �rst to introduce a method for

free knot spline �tting. The squared residuals are regarded as a function of both the knot

positions and the spline coe�cients and the procedure uses a reparametrization of the knots'

location and the Levenberg-Marquardt optimization algorithm (Marquardt, 1963) to avoid

staying in local minima. Lindstrom (1999) improved on this method by adding a penalty

over the dispersion of the knots. Secondly, Bayesian methods have also been widely used to

select the knots' number and position, which are viewed as priors. In this context, Denison

et al. (1998) developed a reversible jump Monte Carlo-based method (RJMCMC, see Green,

1995). For each knot set, unpenalized least square regression is used to �t the spline and

the RJMCMC algorithm is used to roam the space of possible knot number and positions.

The best knots are selected using a model averaging approach. Biller (2000) extended this

approach to the case where the coe�cients are also estimated in a Bayesian framework;

DiMatteo et al. (2001) and Holmes and Mallick (2001) presented developments around the

same lines, but limited to 3rd order splines. Leitenstorfer and Tutz (2007) introduced a

method of knot selection using families of radial functions (in practice Gaussian densities)
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instead of splines. It uses a boosting algorithm to iteratively select the best �tting function

among a prede�ned number of candidate functions, to estimate its parameter, and to add

it to the current �t. Finally, penalized estimation has been used previously by Osborne

et al. (1998) to perform knot selection. This work uses power series basis splines and

selection is performed using the Lasso (Tibshirani, 1996). This penalty is only used for

knot selection and an unpenalized �t is used to infer the coe�cients selected by the Lasso.

Stepwise selection has been used for a long time for knot selection (see Smith, 1982; Stone

et al., 1997). A formulation of the procedure for one-dimensional splines is available in

Wand (2000). Not many of these methods for knot selection have a currently available

implementation in R. The method developed by DiMatteo et al. (2001) was implemented

in C with an R wrapper by Wallstrom et al. (2008) and is publicly available1. The package

freeknotsplines implements Spiriti et al. (2013)'s method for knot selection.

In this article we introduce a new computationally e�cient method � called A-splines,

for adaptive splines � to automatically select the number and position of the knots from

the data. Contrarily to most free-knot spline methods, we set a high number of evenly

distributed initial knots and use a penalized likelihood approach to gradually remove the

least relevant knots. It is based on a regularization method with an approximate L0 norm

penalty. Therefore, it bene�ts from the simplicity and computational speed of penalized-

based methods and is orders of magnitude faster to run than comparable knot-selection

methods.

Section 2 gives a short summary of B-splines and B-spline regression. Section 3 intro-

duces our spline regression method. In Section 4, our method is extended to the generalized

linear model. Section 5 deals with the choice of the bias-variance tradeo� parameter. Sec-

tion 6 compares the prediction performance of our model to comparable methods through a

simulation study. Section 7 gives some details about the fast implementation of the �tting

algorithm. Finally, A-spline is illustrated on several real datasets in Section 8.

1https://www.jstatsoft.org/article/view/v026i01
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Figure 1: Bases of B-spline of degree 0 to 3 (Panels a to d) with 3 knots: (0.25, 0.5, 0.75).

Note that with 3 knots, there are 4 splines in the basis of degree 0 and 7 splines in the

basis of degree 3.

2 B-spline Regression

2.1 B-spline Basis

In this section we recall the de�nition and some basic properties of splines and B-splines.

Throughout this work, let t1, . . . , tk be the ordered knots included in a real interval [a, b].

A spline of order p ≥ 1 is a piecewise polynomial function of degree p − 1 such that its

derivatives up to order p − 2 are continuous at every knot t1, . . . , tk. In the following, we

will refer to the degree q ≥ 0 of a spline and not to its order q + 1. The set of splines of

degree q ≥ 0 over the knots t = (t1, . . . , tk) is a vector space of dimension q + k + 1.

A possible choice of spline basis is the truncated power basis: {x0, . . . , xq, (x− t1)q+, . . . ,
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(x− tk)q+}, where (u)+ = max (u, 0). The �rst q + 1 functions of the basis are polynomials

and the other k functions are truncated polynomials of degree q. Decomposing a spline

into the truncated power basis brings out powers of large numbers, which lead to rounding

errors and numerical inaccuracies (De Boor, 1978, p. 85).

Schoenberg introduced (Schoenberg, 1946; Curry and Schoenberg, 1966) a spline basis

called B-splines � for Basic-splines. This spline basis provides more stable computations

of spline regression (see de Boor, 1972). A B-spline is a spline which is non-zero over

[xk, xk+q+1] for some k. For i = 1, . . . , q + k + 1, the i-th B-spline of degree q is noted

Bi,q (x) and is de�ned by

Bi,q (x) =
x− ti
ti+q − ti

Bi,q−1 (x) +
ti+q+1 − x
ti+q+1 − ti+1

Bi+1,q−1 (x) if q > 0

and Bi,0 (x) = 1ti≤x<ti+1
. Important properties of a B-spline are: (i) the B-spline is non-

zero over an interval spanning q+ 2 knots; (ii) at a point, only q+ 1 B-splines are non-zero;

(iii) Bi,q (x) ∈ [0, 1]. An illustration of B-spline bases of degree 0 to 3 is given in Figure

1. In practice, B-splines can be computed using the function bSpline from the R package

splines2 (Wang and Yan, 2017).

2.2 B-Spline Regression

Let (xi, yi) ∈ R × R be the univariate data and consider the non-parametric regression

setting

yi = f (xi) + εi, 1 ≤ i ≤ n, (1)

where f is a �smooth� function and where εi are i.i.d. Gaussian errors. The function f is

estimated by a spline over an interval [a, b] containing all xis. Fitting the data consists in

minimizing the sum of squares

SS (a, t) =
n∑

i=1

{
yi −

q+k+1∑

j=1

ajBj,q (xi)

}2

, (2)

where a = (a1, . . . , aq+k+1) is the B-spline coe�cients, and t are kept as parameters to high-

light that the �tting procedure depends on the choice of the knots. This is the framework

of ordinary least squares regression with design matrix B = [Bj,q (xi)]i,j and parameter a:

SS (a, t) = ‖y −Ba‖22. (3)
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3 Automatic Selection of Knots

3.1 Model selection

When there are many knots, spline regression is prone to over�tting. In the extreme case,

when there as as many parameters as data points, the �tted spline interpolates the data.

In this paper, we propose to estimate the spline which makes the best tradeo� between

model dimension (i.e. number of knots) and goodness of �t. To this e�ect, we choose a

high number of equally spaced initial knots and penalize over the number of knots. When

a B-spline is de�ned over the knots t1, . . . , tk and is such that ∆q+1aj∗ = 0 for some j∗, it

can be reparametrized as a B-spline over the knots t1, . . . , tj∗−1, tj∗+1, . . . tk. Consequently,

we penalize over the number of non-zero (q + 1)-order di�erences

λ

2

k∑

j=q+2

‖∆q+1aj‖0, (4)

where ‖.‖0 is the L0 norm, i.e. ‖x‖0 = 0 if x = 0 and ‖x‖0 = 1 otherwise, and where the

parameter λ > 0 tunes the tradeo� between goodness of �t and regularity. This penalty

allows to remove a knot tj∗ that is not relevant for the regression, to merge the adjacent

intervals [tj∗−1, tj∗) and [tj∗ , tj∗+1), and to continue the �tting procedure with a spline

de�ned over the remaining knots. When λ → 0, the �tted function is a B-spline with all

knots t1, . . . , tk and when λ→∞, the �tted function is a polynomial of degree q.

However, the penalty in Equation (4) is non di�erentiable and the estimation is therefore

computationally non-tractable. An approximation method for the L0 norm is introduced

in the next section to overcome this di�culty.

3.2 Adaptive ridge

Following the work from Rippe et al. (2012) and Frommlet and Nuel (2016), we approximate

the L0 norm by using an iterative procedure called Adaptive Ridge. The new objective

function is the weighted penalized sum of squares

WPSS (a, λ) = ‖y −Ba‖22 +
λ

2

q+k+1∑

j=q+2

wj
(
∆q+1aj

)2
, (5)
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where ∆aj = aj − aj−1 is the �rst order di�erence operator, ∆iaj = ∆i−1∆aj, and wj

are positive weights. The penalty is close to the L0 norm penalty when the weights are

iteratively computed from the previous values of the parameter a following the formula:

wj =
((

∆q+1aj
)2

+ ε2
)−1

,

where ε > 0 is a small constant. Indeed the function x 7→ x2/ (x2 + ε2) approximates

the function x 7→ ‖x‖0 if ε is su�ciently small. In practice, one typically sets ε = 10−5

(Frommlet and Nuel, 2016). At convergence, (∆q+1aj)
2
wj ' ‖∆q+1aj‖0 gives a measure of

how relevant the j-th knot is. One chooses a threshold of 10−2 and selects the knots with

a weighted di�erences higher than 0.99, which we note tselj . The number of selected knots

will be noted kλ, such that the number of parameters of the selected spline is q + kλ + 1.

Since the selected knots are present in breakpoints of the curve, one then �ts unpenalized B-

splines over the knots tsel, as explained in Section 2.2. Consequently, this method provides a

regression model that is both regularizing and simple, in the sense that the model dimension

is small.

We note that Frommlet and Nuel (2016) give a more general formula for the weights that

allows to approximate any Lp norm, for p > 0. In particular, the L1 norm could be chosen,

which induces both shrinkage and selection of the coe�cient. This penalty was already

used in this context by Tibshirani (1996), which used in the Lasso for knot selection.

WPSS (a, λ) of Equation (5) easily rewrites

‖y −Ba‖22 + λDTWDa, (6)

where W = diag (w) and D is the matrix representation of the di�erence operator ∆q+1.

The minimization of WPSS is explicit:

â =
(
BTB + λDTWD

)−1
BTy. (7)

The adaptive ridge procedure is detailed in Algorithm 1.

The penalty term is conveniently written with the circulating matrix D. However, for

computational e�ciency, D is never computed and instead we implement a fast computa-

tion algorithm for the penalty term. More details about the implementation are given in

Section 7.
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Algorithm 1 Adaptive Ridge Procedure for Spline Regression

Input: x,y, λ

Output: â

1: function Adaptive-Spline (x,y, λ)

2: a ← 0; w ← 1

3: while not converge do

4: anew ← arg mina WPSS (a, λ)

5: wj ←
((

∆q+1anewj

)2
+ ε2

)−1

6: a ← anew

7: end while

8: Compute tsel using (∆q+1a)
2
w

9: â ← arg mina SS
(
a, tsel

)

10: return â

11: end function

Relation to P-Splines �tting It is interesting to note that A-splines are closely related

to P-splines (Eilers and Marx, 1996), whose objective function writes

PSS (a, λ) = SS(a) +
λ

2

k+q+1∑

j=p+1

(∆paj)
2 , (8)

where the di�erence order p is a parameter to be chosen. Thus, the implementation of

A-splines can be seen as a weighted P-splines �tting. The philosophies of A-splines and

P-splines are however very di�erent. P-splines avoid choosing the best knots by penalizing

over the di�erences of the coe�cients. Instead, we directly choose the best knots for spline

regression.

4 Generalized Linear Model

Spline regression has also been used to �t values in the general linear model setting, like in

Eilers and Marx (1996); Hastie et al. (2001). In this section, we extend A-spline regression

to the generalized linear model. The goal is to estimate µ = E [y|x] = g−1 (Ba), where g is
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the canonical link function and the variance of y is a function V of µ: Var [y] = V (µ). Like

the linear model, µ can be estimated using spline regression. The generalized linear model

is �tted using the Iteratively Reweighted Least Squares (IRLS) algorithm (McCullagh and

Nelder, 1989, Section 2.5). With weighted penalization, the IRLS iteration writes:

â(k+1) =
(
BTΩ(k)B + λDTWD

)−1
BT

(
Ω(k)Bâ(k) + y − µ(k)

)
(9)

where k is the step index and Ω(k) is the diagonal matrix with entries

ω
(k)
i,i =

1

V
(
µ
(k)
i

)
g′
(
µ
(k)
i

)2 ,

with µ
(k)
i = g−1

(
Biâ

(k)
)
. In practice, the estimation procedure in Algorithm 1 remains

the same, except that WPSS is minimized by the Newton-Raphson procedure given in

Equation (9).

5 Choice of the Penalty Constant

In this section, one selects the penalty that performs the best trade-o� between goodness

of �t and regularity. A �rst criterion is the AIC, which was used by Eilers and Marx (1996)

in a similar context:

AIC(λ) = SS (âλ) + 2 (q + kλ + 1) . (10)

A di�erent criterion is the Bayesian Information Criterion (BIC) (see Schwarz, 1978):

BIC (λ) = SS (âλ) + (q + kλ + 1) log n. (11)

Bayesian criteria maximize the posterior probability P(Mλ|data) ∝ P(data|Mλ)π(Mλ),

where P(data|Mλ) is the integrated likelihood and π (Mλ) is the prior distribution on the

modelMλ. This problem is equivalent to minimizing −2 logP(Mλ|data). By integration

P(Mλ|data) =

∫

a

P(data|Mλ,a)π(a)da,

where P (data|Mλ,a) is the likelihood and π(a) is the prior distribution of the parameter,

which is taken constant in the following. Thus Bayesian criteria are de�ned as

−2 logP (Mλ|data) = SS(âλ) + (q + kλ + 1) log n− 2 log π(Mλ) +OP(1).

10



The BIC is the Bayesian criterion obtained when one chooses a uniform prior on the

model: π(Mλ) = 1. As explained by �ak-Szatkowska and Bogdan (2011), a uniform prior

on the model is equivalent to a binomial prior on the model dimension. Therefore, the

BIC tends to give too much importance to models of dimensions around q+k+1
2

. Since the

adaptive knot selection is performed with a large number of initial knots, this will result

in underpenalized estimators. To this e�ect, Chen and Chen (2008) have developed an

extended Bayesian information criterion called EBIC0. The EBIC0 criterion is de�ned by

choosing:

π(Mλ) =

(
q + k + 1

q + kλ + 1

)−1

and

EBIC0 (λ) = SS (âλ) + (q + kλ + 1) log n+ 2 log

(
q + k + 1

q + kλ + 1

)
. (12)

The EBIC0 assigns the same a priori probability to all models of same dimension.

Therefore the EBIC0 will tend to choose sparse models even with a high number of initial

knots. These criteria's selection performances are compared in the next section through a

simulation study.

6 Simulation Study

6.1 Comparing the Selection Criteria for A-spline

A simulation study has been conducted to compare the performances of the three criteria.

Data are simulated as follows. The xi are taken uniformly over [0, 1] and yi are simulated

using Equation (1), where f is a known function and εi ∼ N (0, σ2
i ). We use four di�erent

functions: the Bump function

f1 (x) = 0.4
(
x+ 2 exp

[
−{16 (x− 0.5)}2

])
,

the Logit function

f2 (x) =
1

1 + exp {−20 (x− 0.5)} ,

the Sine function

f3 (x) = 0.5 sin (6πx) + 0.5,

11
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(a) Logit Function
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(b) Sine Function

●

●

●

●

●

●●

●●
●

●●

●

●
●

●
●●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●
●●

●

●●

●
●●

●●

●

●
●
●

●

●

●

●
●

●

●

●●●
●

●

●
●

●

●●

●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

0.0

0.4

0.8

1.2

0.00 0.25 0.50 0.75 1.00

(c) Bump Function
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(d) SpaHet Function

Figure 2: Simulated data using functions Logit (a), Sine (b), Bump (c) and SpaHet (d), in

solid line. Each dataset has size 200. The errors are chosen homoscedastic (σ = 0.15) for

(a) and (b) and heteroscedastic (σi =
(
0.3xi + 0.2

√
xi
)2
) for (c) and (d).
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Sample size AIC BIC EBIC

50 0.02220 0.02 0.02418

100 0.00754 0.00324 0.00248

200 0.00285 0.00136 0.00127

400 0.00131 0.00071 0.00072

(a) Logit Function

Sample size AIC BIC EBIC

50 0.02239 0.02001 0.02459

100 0.00755 0.00486 0.00458

200 0.00316 0.00231 0.00247

400 0.00156 0.00132 0.00141

(b) Sine Function

Sample size AIC BIC EBIC

50 0.02000 0.01801 0.02211

100 0.00735 0.00627 0.00479

200 0.00354 0.00234 0.00217

400 0.00177 0.00106 0.001

(c) Bump Function

Sample size AIC BIC EBIC

50 0.02082 0.01784 0.02138

100 0.00727 0.00509 0.00371

200 0.00333 0.00194 0.00161

400 0.00170 0.00081 8e− 04

(d) SpaHet Function

Table 1: Mean squared errors of adaptive spline regression for di�erent selection criteria and

for di�erent sample sizes. Di�erent datasets are simulated using four di�erent functions:

the Bump function (a), the Logit Function (b), the Sine function (c) and the SpaHet

function (d). The smallest value of each row is highlighted in bold.

and the SpaHet � for spatially heterogeneous � function

f4 (x) =
√
x (1− x) sin

(
2π
(
1 + 2−3/5

)

x+ 2−3/5

)
+ 0.5.

These functions were used by Wand (2000) and Ruppert (2002) in similar contexts for

benchmarking the e�ciency of spline regression. The functions f1 to f4 have been rescaled

in order to vary in [0, 1], so that all simulation cases have similar signal-to-noise ratios. We

choose homoscedastic errors σi = 0.15 for the functions Logit and Sine and heteroscedastic

errors for the Bump and SpaHet functions: σi =
(
0.3xi + 0.2

√
xi
)2
, so that the variance

increases from 0 when x = 0 to 0.25 when x = 1. Data are simulated with sample sizes

50, 100, 200, and 400. Illustration of the functions and of the simulated data are given

in Figure 2. For each example 500 datasets were simulated. A-splines are �tted and we

compare the Mean Squared Error (MSE) of the estimated function for the three criteria:

‖f − f̂‖22 =

∫ 1

0

(
f (x)− f̂ (x)

)2
dx.
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The median MSEs are displayed in Table 1 for each value of the sample size. For all

functions and for all criteria, the MSE decreases with the sample size, as is expected. The

comparison between the criteria brings the same conclusions for all four functions: the BIC

and EBIC0 always perform better than the AIC. Moreover, note that the EBIC0 always

outperforms the BIC for the sample size 100, and performs almost as well for the sample

size 200. In conclusion, the BIC and EBIC0 are to be preferred over the AIC and overall,

the EBIC0 seems a better choice than the BIC. In the remaining of this work, A-splines

will be used with the EBIC0 criterion.

6.2 Comparing A-spline with knot selection methods

In this section, the performance of A-spline is compared to that of other knot selection

methods. As mentioned in the introduction, only two knot selection methods are currently

available in R. DiMatteo et al. (2001)'s method, implemented by Wallstrom et al. (2008), is

essentially an RJMCMC over the space of knot number and position. Spiriti et al. (2013)'s

method, implemented in the package freeknotsplines initiates the knots uniformly and

uses an optimization algorithm to search for the best location of each knot between its two

neighboring knots. The method performs four passes through the list of ordered knots:

two passes in increasing order and two in decreasing order. Two choices are provided for

the optimization algorithm: a blind search or a genetic algorithm (see Haupt and Haupt,

2004). In the genetic algorithm, the crossover step consists in keeping the leftmost knots

of one parent and the rightmost knots of the other parent. The mutation step consists

in choosing one knot at random and sampling it uniformly between its neighboring knots.

The selection function is set to either the residual sum of squares or the general cross

validation (GCV). With both algorithms, the number of knots is chosen using an adjusted

GCV criterion. Of the two optimization algorithms, we will use the genetic algorithm in

our simulation setting.

We use the same simulation setting as in the previous section. Figure 3 represents

the MSE distribution over 500 replications for every sample size and for every function.

We see that the three methods display close to equal performances. Across all sample

sizes and all functions, the BARS seems to perform better than the genetic optimization

14
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Figure 3: Mean squared errors of A-spline (solid line), BARS (dashed line), and Spiriti's

genetic optimization (dotted line) estimates for di�erent sample sizes: 50, 100, 200, and

400. The simulations are performed with the Bump, Logit, Sine, and SpaHet functions and

repeated 500 times.
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method, which in turn performs slightly better than the A-spline. However these di�erences

are very small compared to the variation of the MSE inside each method, which remains

important even for high sample sizes. Moreover, with sample size 800, the A-spline performs

almost to as well as the genetic optimization method. Furthermore, we compare A-spline's

predictive performance with P-splines through a similar simulation study, as shown in the

Supplementary Materials. It results that P-splines have lower MSE on average, but the

di�erence between the two become negligible for large data sets (n ∼ 400). It is worth

noticing that the comparison also illustrates how A-splines provide models that are easier

to interpret.

The three methods compared here have very di�erent computational costs. Simulations

were carried on an Intel Core i3 CPU running at 2.3 GHz. For a sample size of 400,

the median running time over 500 repetitions is 0.28 seconds for A-spline, while it is 2.66

seconds and 123.02 seconds for the BARS and genetic optimization methods respectively.

This illustrates the computational e�ciency of A-spline compared to state-of-the-art knot-

selection methods.

In conclusion, the BARS and Spiriti's genetic optimization knot selection methods per-

form slightly better than A-spline, but this comes at the cost of inconveniently intensive

computation.

7 Practical Implementation

In this section, the implementation of A-splines is explained in details. Particular attention

has been brought to the computation of matrix products. Consequently, �tting A-splines

is almost instantaneous: on a standard laptop, it takes 1.3 seconds with 200 initial knots

and 5000 data points. In the next three sections, several bottlenecks in the computation

of A-splines are addressed. Matrix products computations are accelerated using an Rcpp

(Eddelbuettel, 2013) implementation. An R implementation of the A-spline estimation

procedure is publicly available in the package aspline2.

Let us note that the design matrix only appears in the regression model through BTB

and BTy, so apart from the computation of B, BTB, and BTy, which is done only once,

2github.com/goepp/aspline
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the algorithm does not depend on the sample size.

7.1 Adaptive Spline Regression with Several Penalties

The penalty constant λ tunes the tradeo� between goodness of �t and regularity. To choose

the optimal λ, regression is performed for a sequence of penalties λ = (λ`) , 1 ≤ ` ≤ L and

a criterion is used to determine which regression model to select. Computing the procedure

for a series of values of λ signi�cantly increases the computing time. Note that a small

variation of λ yields a small variation of âλ = arg mina WPSS (a, λ). Consequently, âλ`

is a good initial point for the minimization of WPSS(a, λ`+1). Making use of this hot

start signi�cantly speeds up the minimization of WPSS (a, λ`+1) and thus decreases the

computation time of the adaptive ridge procedure. This implementation of the adaptive

ridge is introduced in Rippe et al. (2012) and Frommlet and Nuel (2016) and a similar idea

is used in the implementation of the LASSO in the package glmnet (Friedman et al., 2010).

7.2 Fast Computation of the Weighted Penalty

The matrix inversion in Equations (7) and (9) is the computational bottleneck of the

adaptive ridge procedure. The matrix DTWD is symmetric and q-banded, and as noticed

by Wand and Ormerod (2010), so is BTB. Consequently, the inversion is done using

Cholesky decomposition and back-substitution, as implemented in the package bandsolve3.

This reduces the temporal complexity from O
(
(k + q + 1)3

)
to O ((k + q + 1) (q + 2)). For

example, if k = 50 and q = 3, the computation time will be reduced by a factor 500. It is

important to note that the matrices W and D are not stored in memory: only the vector

w and the �rst row of D are used. This leads to improvements in spatial complexity, the

details of which are not given here.

7.3 Fast Computation of the Weighted Design Matrix

In the setting of generalized linear regression, the matrix productBTΩB in Equation (9) is

computed at each iteration of the Newton-Raphson procedure. Since the design matrix has

3github.com/monneret/bandsolve
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n rows, this operation makes the generalized linear regression computationally expensive for

large datasets. Fortunately B is sparse: it has q+ 1 non-zero elements in each row. Due to

this structure, the productBTΩB only has (q + k + 1) (q + 1) non-zero entries. Each entry

takes O
(
n
k

)
operations to compute on average. Thus the matrix product can be computed

with a O ((q + k + 1) (q + 1)n/k) temporal complexity, compared to the O
(
(q + k + 1)2 n

)

complexity of the naive implementation. For instance, even with q = 3 and k = 50, this

implementation is faster by a factor ∼ 700.

8 Real Data Applications

Our method is illustrated with several real data applications. All the data sets used in this

section and the code used to produce the �gures are available in Supplementary Materials.

We �rst present a dataset of simulated motorcycle accidents used to crash-test helmets.

The data consists of 132 observations of helmet acceleration (in units of g) measured along

time after impact (in milliseconds). These data have being used as illustration of spline

regression by Silverman (1985) and Eilers and Marx (1996) and are available in Härdle

(1990). A history of the data set and its use in spline regression is given in de Souza and

Heckman (2013). This dataset represents a good test for non parametric regression since the

variance of the errors varies a great deal and there are several breakdown moments in the

data. A-spline regression and BARS regression with order q = 3 are performed (Figures 4a

and Figure 4b respectively). In Figure 4a, the solid lines represent the estimated �t and

the dashed lines represent the decomposition of the �t onto the B-spline family. The

two estimations are almost equal; the A-spline �t seems visually �smoother� than BARS,

especially around the points of high variation. Many non-parametric regression methods

have been criticised for �tting a function which increases slightly between 15 and 20 ms,

as is the case for BARS, and (to a lesser extent) for A-spline. The rational is that since

the helmet is subject to no exterior force before the impact (∼ 15 ms), the real signal is

equal to zero before that time, and the �tted function should not display variations in that

region. However our work aims to �nd a function that can simply represent a set of points,

regardless of whether they respect some constraint about the real function. We could

imagine extensions of spline regression that would incorporate such a priori knowledge on
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Figure 4: Motorcycle helmet crash data: helmet acceleration (unit of g) as a function of

time (in ms). A-spline (a) regression and BARS (b) regression are �tted. In Figure (a),

the bold lines represent the estimates and grey lines represent the decomposition of the

estimates onto the B-spline bases.
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Figure 5: aCGH data of bladder cancer: probes 1 through 500. A-splines of order 0 are

�tted (solid line) as well as the mean values �tted using the PELT changepoint detection

method (dashed line).
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Figure 6: LIDAR data: log-ratio of light intensity as a function of the travelled distance.

A-splines of order 1 (solid line) and Multivariate Adaptive Regression Splines (dashed lines)

are �tted.
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Figure 7: Yearly number of coal accidents in Britain (grey bars) with P-splines regression

(dashed curve) A-spline regression (solid curve). The three knots selected by A-splines are

represented by vertical lines.

the signal; this is beyond the scope of this article. A-spline regression has selected only

5 knots as relevant, and thus the �tted function is a linear combination of 5 + 3 + 1 = 9

splines.

The second illustrative example uses a dataset of array Comparative Genomic Hy-

bridization (aCGH) pro�les for 57 bladder tumor samples (see Stransky et al., 2006, for

references and access to the data). This dataset was used by Bleakley and Vert (2011)

in the similar context of changepoint detection. The data represent the log-ratio of DNA

quantities along 2215 probes. For the illustration, the 500 �rst observations of individual

1's aCGH pro�le are used. We �t a spline of order 0, i.e. a piecewise constant function.

Indeed, A-splines of order 0 perform a regression with changepoint detection of the data,

which is a desired goal for these data. The �tted spline is represented in solid line in Fig-

ure 5. The estimated function performs a satisfying estimation of the changepoints and

of the mean values over each interval. Our regression method estimated 9 changepoints,

each corresponding to a shift in the mean value of the signal. Our method is compared to

a popular changepoint detection algorithm (dashed line of Figure 5) called PELT (Killick

et al., 2012). We used the R package changepoint.np (Haynes et al., 2016) . This method

detects 8 changepoints, all of which correspond to a changepoint detected by the A-spline

regression.
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The third example is based on the LIDAR data (Sigrist et al., 1994; Holst et al., 1996),

which is used by Ruppert et al. (2003) to illustrate regression methods. The data come

from a light detection and ranging (LIDAR) experiment. It consists of 221 observations of

log-ratio of measured light intensities between two sources, as a function of the distance

travelled by the light before being re�ected (in meters). The data are available in the R

package SemiPar and are represented in Figure 6.

The y-variable looks to be linear on three intervals: it is almost constant before x = 550

m, decrease steeply between x = 550 m and x = 600 m, after which the slope increases. To

highlight these shifts in slope, splines of order 1 (i.e. piecewise linear functions) are chosen

to �t the data. The A-spline �t displays two slope changes, at x = 567 m and x = 607 m.

These moments visually correspond to the two biggest shifts in slope. We also �t Friedman

(1991)'s MARS procedure (in dashed line, Figure 6) and compare it to A-splines. We use

an implementation of the procedure in the R package earth. This method also selects two

breakpoints of the slope, at x = 558 and x = 612, which are very close to the breakpoints

detected by A-splines.

The last example uses the data of the registered number of disasters in British coal mines

per year between the years 1850 and 1962 (Diggle and Marron, 1988). The number of coal

disasters in each year is assumed to be Poisson distributed and the mean of the distribution

is �tted using a Poisson regression. The data are �tted using A-spline regression of order 3.

The �tted curve µ̂ = g−1 (Bâ) is given in Figure 7. The 3 selected knots are represented

by vertical dashed lines. The regression is now compared with P-splines (in dashed lines),

which yields a similar estimation � although less regularized.

9 Conclusion

In this paper we introduce a method called A-spline (for adaptive spline) performing spline

regression which automatically selects the number and position of the knots. For that

purpose, we set a large number of initial knots and use an iterative penalized likelihood

approach (the adaptive ridge) to sequentially remove the unnecessary knots. The model

achieving the best bias-variance tradeo� is selected using the EBIC0.

Our method yields sparse models which are more interpretable than classical penalized
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spline regressions (e.g. P-splines). Other methods in the literature o�er to jointly �t the

spline and select the knot's position. Through simulations, we highlight that our method

performs almost as well as these methods, while being way less computationally intensive

(by at least a factor 100).

Since knots correspond to a shift in the trend of the spline, their position is an important

information about the data. To illustrate this, we apply A-splines to several real data sets.

When using A-spline with low order splines (e.g. 0 or 1), the approach allows performing

changepoint detection. Indeed, A-splines of order 0 �t a piecewise constant function to the

data and hence detect changepoint in terms of mean. A-spline of order 1 �ts a piecewise

linear continuous function (i.e. a continuous broken line) that detects changepoints in terms

of slope. For splines of degree 3, the knots indicate shifts in the third order derivative of

the underlying function.

A fast implementation of A-spline is provided in R. Thanks to this, the computation

of A-spline is very fast (∼ 1 sec for n ∼ 10000 and k ∼ 1000 on a standard laptop), even

when �tting generalized linear models with large sample sizes.

Our work can be naturally generalized to multivariate data using multidimensional B-

splines. Moreover, we limited our work to using B-splines for the sake of simplicity. But a

variety of other splines can be used instead. For example M-splines, which are a basis of

non-negative splines, could be used for �tting non-negative functions (e.g. densities) and

I-splines, which are a basis of monotonous splines, would yield a sparse isotonic regression

model. Finally, our method can be used for non-parametric transformation of variables.

In particular, splines of order 0 could provide an automatic categorization of continuous

covariates in regression models.

Supplementary Materials

The Supplementary Materials are available online as a single archive. They include all

the code necessary to replicate the simulations and the real data applications present in

this paper. The package aspline implementing A-splines is also given in Supplementary

Materials. We refer to https://github.com/goepp/aspline for the latest version of the
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package. Below is a description the �les included in the Supplementary Materials.

Data sets

Motorcycle helmet crash data set (helmet.csv).

aCGH data set of bladder cancer (bladder.csv).

LIDAR measurement data set (lidar.csv).

Coal mine accident data set (coal.csv).

Code

simu_hetero Simulations with heteroscedastic errors (simu_hetero.R)

simu_homo Simulations with homoscedastic errors (simu_homo.R)

real_data_ Illustration of A-splines on real data sets and comparison with other spline

regression methods. (real_data_helmet.R, real_data_bladder.R, real_data_lidar.R,

real_data_coal.R)

Files

R package A-spline package (aspline-master.zip)

Appendix Simulation study comparing the A-spline and B-spline methods (appendix.pdf)

Readme Description of the Supplementary Materials and of their use (readme.txt).
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4.3. Comparison of A-spline with P-spline 129

4.3 Comparison of A-spline with P-spline

The following pages consist in the supplementary materials to the previous section. In this section,
I provide additional simulations aimed at comparing the A-splines with the P-splines, both qualita-
tively and quantitatively.
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In this Appendix, the performance of A-splines is compared to a penalized spline re-

gression method. For the sake of simplicity, we limit our study to the comparison with

P-splines (Eilers and Marx, 1996), which is one of the most successful penalized spline

regression methods. The goal of A-splines is �t a model that is sparser and consequently

more interpretable then that of P-splines. Therefore, A-splines are not required to have a

better predictive performance than P-splines. This simulation study aims to illustrate that

the loss in performance is acceptable when using A-splines instead of P-splines. We use

the same simulation setting as in Section 6.2 of the article. We use the EBIC0 criterion to

select the penalty.

Figure 1 represents the �tted functions with A-splines and P-splines for the four func-

tions with datasets of size 200. The thick lines represent the estimated functions; the

thin lines represent the splines' basis decomposition. With every function, A-spline and

P-spline yield similar estimates. The basis decomposition highlights that A-spline selects

very sparse models, which are also simpler. Over the 500 replications, A-spline selects a

median number of 9 splines for the Bump function, 6 for the Logit function, 11 for the Sine

function, and 7 for the SpaHet function. An important remark is that when there are few

knots, their location carry an important information about the underlying signal. Indeed,

∗vivien.goepp@parisdescartes.fr
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Figure 1: A-spline and P-spline regressions over di�erent functions (tick lines). Basis

decomposition of the �tted splines are represented in thin lines. For the A-spline regression,

triangles represent the selected knots. The sample size is 200.
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Figure 2: Mean squared errors of A-spline (solid line) and P-spline (dashed line) estimates

for di�erent sample sizes: 50, 100, 200, and 400. The simulations are performed with the

Bump, Logit, Sine, and SpaHet functions and repeated 500 times.
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the knots selected by A-spline are mostly located at shifts � when they exist � in the signal:

for the Bump function, the knots corresponds to places in the data with a lot variation,

and for the Logit function, two knots are placed at the in�ection point.

In order to verify that A-spline's gain in interpretability is not detrimental to its predic-

tive performance, we compare the Mean Square Errors between the two methods. Figure

2 shows the MSE for A-splines (solid lines) and P-splines (dotted lines) for every sample

size and every function. It shows that for sample size 50, P-splines performs on average

better than A-splines. For greater sample size however, A-splines performs almost as well

as P-splines. These results are the same for every function. In conclusion, P-splines has

better predictive performance for small sample sizes, but for data sets of size 200 and above,

A-splines and P-splines turn out to have comparable predictive performance.
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Figure 5.1: Map of cholera outbreaks in the neighborhood of Soho (London) by John Snow (1854).
Crosses are water wells, dots are cholera outbursts.

5.1 Introduction

Spatial statistics plays a prominent role in epidemiology. The founding of epidemiology is said to
occur with studies of spatial data of contamination. In 1854, the physician John Snow studies the
geographical distribution of cholera outbreaks during the cholera epidemic of 1854 in the London
neighborhood of Soho. He represented each outbreaks on a city map and over imposed the loca-
tions of water pumps in this neighborhood (see Figure 5.1). It enabled to identified a public water
pump as the origin of the epidemic. This is the first record of a geographical analysis being used to
epidemiology, and John Snow is considered to be the founding father of epidemiology.

Nowadays, the study of disease with respect to the geographical location of the patients has be-
come widespread, and it plays a major role in epidemiology. Spatial (or geographical) epidemiology
is based on the comprehension that there are geographical factors that are connected to a disease or
to health indicators. It is interested in the detection and study of (i) “disease clusters” which are lim-
ited regions with unusually high values of a health indicator and (ii) “geographic correlation studies”,
which are the study of the effect of geographical location on the risk of disease onset. The data for
these studies can be of various types, leading to different statistical tools to answer the epidemiolog-
ical questions at hand. We refer to Lawson et al. (2016); Lawson (2006) for a review of the field and to
Elliott and Wartenberg (2004); Rezaeian et al. (2007) for a summary of the tools and stakes thereof.

A regular problem in spatial statistics is the regularization of the spatial data. Most regulariza-
tion methods perform a spatial smoothing of the data. These methods offer some advantages: (a)
reduction of spatial covariance, (b) higher interpretability of the resulting map, and (c) interpolation.
One of the most popular approaches to spatial smoothing is kriging, or Gaussian process regression
(Cressie, 1993, Section 3). It assumes that the spatial data are the realization of a Gaussian process,
with a specific covariance structure. The Gaussian process can be computed over the whole map
using the covariance process at the observed points and the values of the process at the observed
points. Since the Gaussian process is a Gaussian random variable at any point, the process’s mean
and variance can be estimated, and the whole distribution of the process is estimated. Computa-
tionally, this estimate requires the inversion of the covariance matrix, whose dimension is the sam-
ple size. This method is thus easy to compute and to interpret, and the assumption of an underlying
Gaussian process is reasonable in many cases in absence of other information. The choice of co-
variance kernel tunes the estimated process: the smoother the covariance kernel, the smoother the
estimated process. Other techniques of spatial smoothing have been developed; a popular approach
is kernel smoothing (Wand and Jones, 1995).

Spatial smoothing has many advantages. In some cases, one may want to obtain a segmented es-
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timation of the spatial distribution instead of a smoothed estimation, in cases where the underlying
spatial effect is assumed to be discontinuous by nature. In many public health indicators, the spa-
tial information is a proxy for a very located information, that is discontinuous by nature. In cities,
the discretization into small neighborhoods is often very significant to tackle the spatial inequali-
ties. When adjusted for professional category, income, wealth, and other quality-of-life variables,
the neighborhood in which we live codes for the sole quality of life of each neighborhood provides,
which is often a discontinuous variable. The same principle applies to demographic and epidemio-
logic studies where the quality of life is an important explanatory variable. This variable is of discrete
nature and is indirectly present in the spatial distribution of the individuals. As an example, demo-
graphic studies on longevity focus namely on finding specific geographic areas where the longevity
is unexpectedly high (Poulain et al., 2004) – called blue zones. These areas are discrete by nature, and
such studies use a spatial division into (administrative) areas to identify blue zones.

Our work is considering the case where the spatial distribution is indexed by a finite number
of geographical units, called “areas” here (sometimes also called geographical sites). These areas
represent a partition of the spatial domain. They often correspond to an administrative division of
a territory, for instance census tracts, municipalities, or counties. Many studies present this type of
data. This is due to the way data are collected by the administration (as is the case for demography)
or to the imperative of privacy (as is the case in epidemiology). The areas are defined as polygons
on R2. This work is built on solely using the planar graph of the adjacency structure of the areas as
the information representing the spatial distribution. Doing so can seem to throw away information
about the geographical proximity between areas, namely because two areas can be geographically
close on average (i.e. for the Euclidean distance) and not be adjacent. However when the division
into areas is regular enough, as is the case for most administrative unit types, the adjacency between
areas is a good measure of proximity (see Section 5.2.1). Examples of studies based on the adjacency
of areas are popular in epidemiology (van de Kassteele et al., 2017) and demographics (Poulain et al.,
2004). This field of spatial statistics has been widely studied, including modelizations using Gaussian
distributions and Markov random fields (Cressie, 1993, see Sections 6.3 and 6.4). We refer to Cressie
and Read (1989) and (Cressie and Chan, 1989) for applications of such models to real-world data.

In this context, we introduce a new model for estimation of the spatial effect with segmentation
based only on the adjacency of the areas. To the best of our knowledge, this problem has not been
tackled in this context. We use a regularization method by penalized likelihood to perform segmen-
tation over the graph. This approach can be seen as a generalization of the fused lasso-type regular-
ization used in image denoising (Tibshirani et al., 2005), where the adjacency structure of pixels is a
lattice. As in previous chapters, we use the Adaptive Ridge to penalize over the differences between
adjacent areas. Our method yields a segmented estimate of the spatial effect in a computationally
efficient way, because the complexity depends on the number of areas and not on the number of in-
dividuals. Particular attention has been brought to speeding up the computation, which is tractable
up to a large number of areas. Our work is organized as follows. Section 5.2 introduces the model. In
Section 5.3, we illustrate on simulated data that out method performs well to recover areas of con-
stant spatial effect. Moreover, our method is shown to perform well also in the case where the true
(unknown) effect has a smooth variation over space. Illustration with a real-data example of obesity
prevalence in the Netherlands is provided in Section 5.4. The implementation of our method in R is
publicly available (github.com/goepp/graphseg).

5.2 A model for spatial segmentation

5.2.1 Using graphical data for spatial segmentation

Our work is built on the following assumption: the areas provide a spatial discretization adapted
to the sample distribution. This implies that the areas are not too small with respect to the overall
spatial distribution, and not too large either. When the areas are too large (or equivalently when
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Figure 5.2: (a) Division of continental France into 94 départements of roughly uniform size. (b) Eu-
clidean distances between the centroids of each départements, using the latitude and longitude as
coordinates. (c) Shortest path distances between départements, using the adjacency graph.

there are too few areas), most of the sample is located in few areas, and a lot of information is lost.
When the areas are too small (or equivalently when there are too many areas), many areas have no
individuals and thus carry no information on the outcome variable. This case is not problematic in
our work, since our objective is to find groups of adjacent areas with similar effects. However the
total number of areas is a limiting factor for computation efficiency. Moreover, we assume that the
areas are roughly equal in size, so that the discretization into geographical units is roughly uniform
over space. In applications where there are several connected components (like islands), one can
consider each component as a separate problem an perform segmentation independently from each
other. If one wishes to introduce a notion of proximity between the connected components, one can
connect every pair of components by artificially adding an edge between their closest areas (using the
Euclidean distance). This case is not considered in the remainder of this work. In the forthcoming,
we assume that the areas form a planar graph with only one connected component.

Under these conditions, we can see that the distance between two areas is well approximated
by its adjacency distance, that is the minimal number of other areas one needs to cross to join the
two areas. This is illustrated with the following example. We use the départements of France as
the geographical areas (data obtained at github.com/gregoiredavid/france-geojson, collected
from the French national statistical institute (INSEE) and the French national geographical institute
(IGN)). We exclude the overseas départements as well as the two départements forming the island
of Corsica. The 94 départements are represented in Figure 5.2a, numbered using their codes. Since
départements number 7 and 8 are removed, the numbering of the départements number 9 and more
are offset by 2. We make the assumption that the distance given by the shortest path on the adja-
cency gives a good approximation of the geographic (i.e. Euclidean) distance between the areas – in
practice, we will take the distances between the centroids of the areas. We compare the similarity
matrices of these two distances, whose (i , j )-th entry is the distance between the areas i and j . There
is a strong visual similarity between the two similarity matrices: see Figures 5.2b and 5.2c. We could
test whether the two distances are similar in a sense to be defined. This is beyond the scope of this
study.

5.2.2 Segmentation on a graph

Let n be the sample size and yi , i = 0, . . . ,n be the response variable for the n individuals. Let D ∈R2 be
the connected subset of R2 representing the spatial domain of interest. Let A = (A j )1≤ j≤p denote the
areas and p denote the number of areas. The areas form a partition of D: ∀ j , A j ⊂D, ∀ j , j ′, A j ∩A j ′ =
;, and ∪ j A j =D. Each individual is assumed to be in only one area:

∑n
i=11i∈A j = 1. Let G = (V ,E ) be
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the adjacency graph of (A j ) j : each vertex v ∈ V corresponds to an area A j and there exists and edge
between two edges (v, v ′) if their corresponding areas have a border in common (areas connected by
only one point are not said to be adjacent). The areas (A j ) are identified with their nodes V . The
effect of each area over the response variable is noted γ= (

γ1, . . . ,γp
)
.

Our method applies to segmenting any area-based signal γ. When this signal is itself an estimate
over the individuals in each area, our model includes its estimated variance σ̂2 = (σ̂2) as a measure
of the relative importance to give to each area.

We assume that γ̂ j ∼ N
(
θ j , σ̂2

j

)
for each area j . In this context of meta-analysis, γ̂ j are consid-

ered as observations and θ j as parameters. The negative log-likelihood simply writes:

` (θ) =− log

[
p∑

j=1

1p
2πσ̂ j

exp

(
−

(
γ̂ j −θ j

)2

2σ̂2
j

)]
, (5.1)

In order to enforce the values of γ which are both adjacent and close in value to have close esti-
mated θ, we use a penalized likelihood estimated defined as the minimizer of:

`pen(θ, v ) = `(θ)+ κ

2

∑
j ,k

p(θ j −θk ) (5.2)

with respect to θ. where the sum is taken over all adjacent nodes ( j ,k), κ> 0 is the penalty constant,
and p is a zero inducing penalty function (for instance a non-concave penalty, see Section 1.1.7).
Since we penalize over the differences of values between adjacent edges, many adjacent areas will be
estimated to have the same value. Consequently, the penalized estimate is piecewise constant over
few connected components of the graph. In this regard, this penalization procedure over a graph is
related to the graphical lasso (Friedman et al., 2008), which penalizes over the non-zero entries of the
sensitivity matrix.

5.2.3 The adaptive ridge algorithm on a graph

To ensure segmentation of θ, we must take a zero-inducing penalty. We choose the L0 Adaptive Ridge
penalty, an iterative method developed by Rippe et al. (2012) and Frommlet and Nuel (2016). We
define a matrix of weights v = (v j ,k )1≤ j ,k≤p between adjacent areas (the areas that are not adjacent
have a weight v j ,k set to zero by convention). The L0 adaptive ridge procedure is defined iteratively.
The current estimate is defined as the minimizer of

`pen(θ) =
p∑

j=1

(θ j − γ̂ j )2

2σ2
j

+κ∑
j ,k

v j ,k
(
θ j −θk

)2 . (5.3)

The weights are initialized at the beginning of the iteration and are adapted at each step following
the formula:

v j ,k = 1(
θ j −θk

)2 +ε2
. (5.4)

where ε > 0 is a small numerical constant. We iterate between estimating θ using (5.3) with fixed
weights and adapting the weights using the previously estimated values of θ. At convergence, the
weighted differences δ j ,k , v j ,k (θ j − θq )2 is almost equal to either zero (if the two values are set
equal) or one (if the two values are set different). Using a cutoff threshold, the weighed differences
are rounded to zero or one, which defines a set of connected components of the graph, that we call
“regions”. These connected component are the segmentation of the areas into groups of constant
spatial effect. The adaptive ridge procedure performs a model selection amongst all the possible di-
vision of the graph into connected components. This effect θ is then estimated over each connected
component by unpenalized estimation The weighted differences δ is used to diagnose the conver-
gence of the algorithm. The whole procedure is given in Algorithm 6.
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Algorithm 6 Adaptive ridge procedure over a graph

1: function ADAPTIVE-RIDGE(γ̂,σ̂2)
2: θold ← 0
3: vold

i , j ←1i and j are adjacent

4: δold
j ,k ← v j ,k (θ j −θk )2

5: while not converge do
6: θ← argminθ `

pen(θ, v old)

7: v j ,k ←
((
θ j −θk

)2 +ε2
)−1

8: δ j ,k ← v j ,k (θ j −θk )2

9: if ‖δ−δold‖ < 10−8 then
10: break
11: end if
12: θold ← θ

13: v old ← v
14: δold ←δ

15: end while
16: return θ
17: end function

The last point is the numerical minimization of Equation 5.3 (Line 6 in Algorithm 6). We first re-
formulate (5.2) using the following property. Let L be the Laplacian matrix of the weighted adjacency
graph, that is, L = D −V , where D is the degree matrix of the graph and V = (v j ,k ) j ,k is the matrix
of weights between adjacent areas. Then the following identity (see Mohar, 1997, Proposition 2.2)
holds: ∑

j ,k
v j ,k (θ j −θk )2 = θT Lθ

and thus (5.2) rewrites
`pen(θ) = ‖W T (θ−Γ)‖2 +κθT Lθ. (5.5)

Where

W = (
1√
2σ2

j

) j

is a vector of weights of the areas (not to be mixed up with the weights between areas, noted v j ,k ).
The minimizer of this quantity is explicit:

argmin
θ
`pen(θ) = (W W T +κL)−1W W TΓ. (5.6)

Consequently, the minimization of `pen(θ) in Line 6 of Algorithm 6 is explicit. This significantly im-
proves the computational speed of our method. Note that the computation of (5.6) is the bottleneck
of our method, the complexity thereof depends on the dimension of L, that is, on p. Hence the lim-
iting factor of our algorithm is the number of areas.

Remark. Our method is closely related to the problem of dividing an image into connected clusters
of equal brightness. (This is not to be mistaken for the clustering of images into unconnected clus-
ters of equal brightness, called image thresholding.) Consider a graph that is a lattice (or a square grid
graph): each area has 4 neighboring areas (except those on the “border” and in the “corners”, which
have 3 and 2 neighboring areas, respectively). Since an image is a grid of pixels, the lattice is the adja-
cency structure of the image, where each area is a pixel. Then penalizing over the adjacent areas (see
Equation 5.3) is like penalizing over the differences of adjacent pixels. This is the approach taken by
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penalty-based denoising methods, such as total variation (Rudin et al., 1992b). The image process-
ing community usually uses a penalization of the L1 norm of the differences of adjacent pixel values.
But this choice is mainly motivated by the development of methods for solving this problem numer-
ically, like the coordinate descent (Friedman et al., 2007) or the primal-dual algorithm (Chambolle
and Pock, 2011). We could instead apply another penalty, like that of the L0 adaptive ridge. Conse-
quently, the present work generalizes directly to segmentation of images (into a piecewise constant
image). This is however beyond the scope of this chapter.

Choice of the trade-off constant The penalized likelihood approach makes use of a penalty con-
stant: κ. In this section, we tackle the choice of this tradeoff parameter. In practice, the choice of κ is
done a posteriori: we run the penalized estimation for a series of values of κ, and then select the best
value. We denote κ= (κ(1), · · · ,κ(L)), the sequence of values of the penalty constant, in increasing or-
der. As previously explained, the adaptive ridge performs model selection: to each κ(l ) corresponds
one model. Several values of the penalty constant can induce the same model and according to the
procedure of the adaptive ridge, if two models are the same, their estimate are the same. Conse-
quently the criteria used for model selection depend only on the model dimension.

We use the Bayesian Information Criterion (BIC, see Schwarz, 1978):

B IC (m) = 2`(θ̂m)+m logn, (5.7)

where m is the model dimension (i.e., the number of estimated regions) and θ̂m denotes here its
corresponding estimate.

Remark. This criterion is shown to perform well in simulations and on real data. However, the BIC
does not ensure that the selected models are of small enough dimensions, especially when p gets too
large. This is explained here. The BIC is the criterion that maximizes the posterior probability of the
model conditionally on the data, in the Bayesian framework. The BIC implicitly sets a uniform prior
over all the models. Now consider what this prior implies on the dimension of the model: there are
very few models of small dimension (close to 1) and of maximal dimension (close to p) and there
are many models of medium dimension (close to p/2). This implies that the a priori probability of
models of small dimensions is very small and consequently, the BIC will very probably not select
very sparse models. When p gets large, the BIC fails to select sparse models (in practice, with ∼ 20
parameters), which is a desired goal. We note that other well-known model selection criteria are less
penalizing than the BIC, so are of no use here.

One can add a corrective prior term to the BIC which would assign equal probability to all model
dimensions. This requires to enumerate the number of models for each dimension. That is: for k ∈
{1, · · · , p}, we want to compute the number of ways of dividing the planar graph G in k connected
components. There seems to be no easy approach of this problem, which, interestingly, is not men-
tioned in the literature on planar graphs. Finding an exact formula seems out of reach. I believe
there are good hopes to develop an algorithm that computes this enumeration. However (i) finding
a polynomial-time algorithm seems much harder a problem (ii) even in that case, such an algorithm
could take a long time to run on a large graph (p & 1000). The study of this problem has been rele-
gated as potential future work.

Visual inspection. As an alternative to the BIC, we propose to use visual inspection to choose the
best-fitting penalty. This does not provide an automated and non-arbitrary way of selecting the best
model and as such, is not a satisfying method. Instead, we advise the practitioner to use visual in-
spection as a verification that the BIC selects a “coherent” model. Concretely, our method is applied
on a sequence of penalty and one can consider that the resulting estimate is a sequence of segmenta-
tions, ranging from the least regularized to the most regularized. In this case, the practitioner can in-
spect if some segmented regions correspond to a sensible division or if they are isolated areas which
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Figure 5.3: Iris of the city of Paris used for simulation

may have been detected due to the method’s instability in selection (we refer to Fan and Li, 2001,
Section 2 for an introductory discussion on the selection instability of penalized methods).

5.3 Simulation

We illustrate the model on several simulation settings. We use the spatial structure of iris (for Ilots
Regroupés pour l’Information Statistique, i.e. “grouped islets for statistical information” ), a geograph-
ical division of the French territory used by the national French statistical institute. There are 16100
iris areas dividing the territory into roughly uniform areas geometrically and demographically. The
iris data can be openly accessed from the French government’s website1; more information about
iris can be found from the INSEE’s website2. We choose iris because they are a good example of uni-
form division into administrative areas, as is the case in many problems in spatial statistics. More-
over, they are numerous enough to illustrate the numerical efficiency of our approach and the iris
are connected (in the sense of graph connectivity). We limit the domain to the city of Paris, which
comprises 987 iris of roughly equal size (see Figure 5.3). For the sake of the visual representation,
we removed the 5 disproportionally large iris that constitute two forests east and west of Paris. We
simulate a spatial distribution γ of different types, leading to different simulation settings. In both
simulation settings, the variance term σ̂2 is set to 1 for each area.

First simulation setting. We defined the observed spatial effect to be piecewise constant over a
small number of regions. These regions are the arrondissements of Paris. We merge the arrondisse-
ments 1 and 2 together as well as the 3rd and 4th arrondissements, so that there are a total of 18

1www.data.gouv.fr/fr/datasets/contours-iris-insee-ign/
2www.insee.fr/fr/information/2017499
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(c) Segmented signal θ using the BIC
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Figure 5.4: Result of simulation setting 1: piecewise constant effect α (a), noisy piecewise constant
effect with additive Gaussian noise γ (b), segmented estimate using the L0 adaptive ridge penaliza-
tion θ with the BIC (c), and with 18 regions (d).
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Figure 5.5: Regularization path in simulation setting 1: trajectories of the estimated (θ j ) j for different
values of κ. For a better visualization, the x axis gives the number of estimated parameters instead
of κ. The vertical line represents the estimate selected by the BIC. Each color represents a different
area.

regions of comparable size, noted (Rk )1≤k≤18 in the increasing order of the arrondissement number-
ing. The aim of this simulation setting is to quantify how well our method can recover these regions.
The spatial term is defined as

γ j =α j +ε j , (5.8)

where α j = ∑18
k=11A j∈Rkηk is the effect over A j , η = (ηk )1≤k≤K is the vector of values taken by this

function, and ε= (ε j )1≤ j≤p is a vector of iid Gaussian errors:

ε j ∼N (0,0.25). (5.9)

We set η = (4,2,4,6,3,7,3,5,3,1,6,8,1,5,2,4,8,6). This piecewise constant “function” is illustrated in
Figure 5.4a and the observed effect is given in Figure 5.4b.

The resulting estimate obtained using our method is given in Figure 5.4c. Our method accurately
estimates most regions R j . The limits between the regions are accurately estimated, except for a total
number of 7 areas. However, the BIC tends to underestimate the total number of regions: it selects 12
regions but there are 18 regions.

To illustrate that the segmentation method performs well if the correct number of regions is cor-
rectly selected. We represent in Figure 5.4d the segmented estimate with a penalty constant κ chosen
such that there are 18 selected regions. This estimate is close to the original piecewise constant sig-
nal; the only difference in terms of segmentation being that the arrondissements 9 and 18 are fused
together, as well as 1/2 and 3/4. Since this information is not known a priori, this estimate cannot
be used to assess the method’s performance in selection. It is however used here to highlight that
the correct segmentation can appear somewhere on the regularization path. This indicates that with
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Figure 5.6: (a) Smooth spatial signal γ used in simulation setting 1 (b) and segmented estimate θ
using the BIC.

additional work done on finding a model selection method more fitted to this problem, our method
could show an even good performance in selecting regions of constant effect.

We represent the regularization path of the estimation procedure in Figure 5.5. Each line repre-
sent the estimate value for on area across different values ofκ, or rather for different values of number
of estimated parameters, which is equivalent (the greater κ the fewer regions are estimated). The ver-
tical line represents the model chosen by the BIC. The path illustrates the functioning of the adaptive
ridge: for high values of κ, only one region is estimated, and as κ decreases, there are sudden shifts
in the number of estimated regions. The breaking point where an additional region is estimated cor-
responds to a splitting of a colored line in two. The trajectories illustrate that the segmentations are
encapsulated models: once two regions have been fused together (as κ increases), the region is never
split again for higher values of κ. Consequently, the dendrogram provided that the regularization
path forms is a hierarchical clustering of all the areas.

Second simulation setting. In the first simulation setting, γ is constant over a set of regions and
our method satisfyingly estimates these regions. In order to test the performance of our model it
is necessary to evaluate it in a setting where the underlying signal is not piecewise constant. What
it means for a signal over a graph to be “smoothed” is defined here. Signal processing on graphs
have been developed using the shortest-path distance. We refer to Shuman et al. (2013) for a review
on this topic. The Laplacian of the graph plays a major role in the study of signals on graphs. This
work naturally extends the results in signal processing of signals with discrete support. For example
when the graph is a two-dimensional lattice, the Laplacian of the graph is the same as the Laplacian
operator for discrete two-dimensional signals. We can apply filters to graph-based signals as for the
signals indexed by integers (see Kalofolias, 2016, and references therein).

In this simulation, we define the spatial signal as the smoothing of γ(0) obtained by heat filtering
(Zhang and Hancock, 2008). This writes simply

γ= exp(−sL)γ(0), (5.10)

where the exponential is the matrix exponential, L is the Laplacian of the graph, and s ∈ (0,∞) is the
smoothing parameter. We take s = 2 here. The resulting spatial effect is represented in Figure 5.6a.
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The estimated segmentation is represented in Figure 5.6b. The BIC has selected 13 regions and
their estimated effect θ has similar values. In fact, the “segmented” estimate (Figure 5.6b) displays a
gradient of values and is close to the underlying smooth effect γ. This highlights that our method is
robust to models where the true spatial effect is not in fact piecewise constant.

5.4 Real data application: Overweight prevalence in the Netherlands

We apply our method to the analysis of overweight prevalence indicators in the Netherlands. The
data comprises 387,195 persons in the Netherlands. The individuals are spread over a domain span-
ning 415 Dutch municipalities and divided into 11,432 areas, which are neighborhoods. We have
limited our studies to the region of Utrecht, comprising p = 2955 areas. The response variable is bi-
nary: it equals 1 is an individual is overweight and 0 if he is not. There are 11 explanatory variables
(outside of the area): 6 qualitative variables (sex, ethnicity, marital status, household type, household
income source, and home ownership) and 5 quantitative variables (age, household size, household
capital, household income, and neighborhood urbanization). An additive binomial regression model
is used to link η= logit(E

[
y |x]

) (the prevalence of being overweight) to the covariates and to the area.
The model is a generalized additive model (Wood, 2017):

η= X (1)T
β(1) +

p∑
j=1

f j (x (2)
j )β(2)

j +
p∑

j=1
1i∈ jγ j ,

where ( f j ) are (known) spline functions, X (1) is the (binary-coded) design matrix for the 6 qualitative
variables, X (2) is the design matrix for the spline regression for the 5 quantitative variables, and β(1)

and β(2) are their corresponding variables. Finally, γ is the log-odds-ratio of the area location. Con-
ditionally on the choice of the spline knots, the model writes

η= Xβ+
p∑

j=1
1i∈ jγ j , (5.11)

where X = (X (1), X (2)) is the design matrix for all covariates except the area location. This model was
fitted and I have used γ̂ and its estimated variance σ̂2. From the theory on logistic regression, we
know that

σ̂2
j ,Var

[
γ̂ j

]= (
n∑

i=1
1i∈ j

p̂i

1− p̂i

)−1

, (5.12)

where p̂i is the estimate probability that individual i is overweight. The computation of σ̂was made
by people with access to the design matrix. From (5.12) we see that it is not possible to recover per-
sonal information from the estimated variance, as long as there are enough individuals in each area.
Thus, (γ̂,σ̂) can be communicated publicly without concerns of data privacy.

Remark. Define X̃ , the extended design matrix obtained by column-concatenation of X (1) and the
matrix with (i , j )-th entry 1i∈ j . Equation 5.11 is a linear model with design matrix X̃ and parame-
ter β̃= (β,γ). We could define a regularized estimate ofγ by introducing a penalty term overγ in this
linear model. We take another two-fold approach. We first estimate β from (5.11), considering γ as
a nuisance parameter. We obtain an estimated γ̂ corresponding to the spatial effects from the latter
step. Then, we perform a regularization of γ using the previously estimated spatial effects γ̂, its es-
timated variance σ̂2, and the adjacency graph. This has some advantages. The first one is regarding
the privacy of the data. The second step of spatial segmentation can be performed without having to
know the potentially sensitive data present in X . This methodology allows to apply the segmentation
method to many studies where access to privacy-sensitive data is impossible, as is the case here.
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Figure 5.7: Unregularized (a) and segmented (b) values of overweight prevalence score in the Nether-
lands, adapted for 11 ethnic, financial, and social covariates.

Results. The vector γ̂ is represented in Figure 5.7a. The segmented estimate θ̂ is represented in
Figure 5.7b. We identify 40 regions of constant overweight prevalence using the BIC. The values with
a higher risk (with respect to the overall risk) of being overweight are coded in red, the ones with
the lower risk of being overweight are coded in blue. Our method highlights three disconnected
regions with a specifically low overweight risk: two in light blue, in the central left and central right
part of the map and in the center of the map one very large light blue zone, which includes three
smaller regions with a very low overweight risk. The two light blue regions correspond to urban
areas around the cities of Gouda (west-most region) and Arnhem (east-most region). The big blue
region consists of a densely populated area spanning from Amsterdam to Utrecht. The three dark
blue regions correspond almost exactly to the cities of Amsterdam (north-west), Hilversum (center-
north) and Utrecht (center-south). These three urban regions represent sites where the quality of
life is better, since individuals are less likely to be overweight, even when adjusted for a series of
important financial, social, and demographic variables.

The red regions span across the west, east and (mostly) south of the Amsterdam-Utrecht axis. We
identify two major dark red regions: one south of the city of Gouda (west on the map) and one in
the south-east, the two being rural areas. There are also a few notable informations that can be seen
from Figure 5.7b. There is a (light) red area in the eastern suburbs of Amsterdam, which seems like
an important message for public health policy. Moreover there are few areas that have a different
overweight prevalence than their neighboring areas. Further investigation by public health specialist
need be carried about these specific neighborhoods to determine if there is indeed an abnormally
increase risk of overweight or if this phenomenon is an artifact due to statistical uncertainty.

To conclude, the segmented estimate obtained by our method (Figure 5.7b) is not so different
from the unregularized estimate (Figure 5.7b) and has some advantages:

• It defines few zones with different risks.

• It removes the arbitrariness of having to define what regions are part of a blue zone or a red
zone.

• It provides a more strikingly visual message which is easier to communicate with.
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5.5 Conclusion

Many public health studies now require precise geographic information to enforce policies and take
action. This faces two issues: that of the privacy issues that go with sensitive (medical) personal in-
formation and that of finding models that make sense of the sometimes very geographically precise
data. These two problems are solved by using a post-treatment of the spatial effect that estimates a
segmentation into constant regions. We show that using a Bayesian framework, this approach only
requires data aggregated at a unit of spatial resolution, called “area” (for instance, neighborhoods).
We develop an approach to perform this segmentation using the adjacency structure of the areas.
We show through simulations that (i) it performs well to recover the initial segmentation in the case
where the underlying spatial signal is piecewise constant (ii) it is robust to other models for instance
smoothly varying spatial signals. We found no record of another statistical method performing seg-
mentation over an adjacency graph. Consequently, we had no reference method to compare to.

We illustrated our method on the motivating example for this work: an application to the study
of prevalence of overweight individuals in the Amsterdam-Utrecht area. We have used data from a
pre-existing epidemiological study (van de Kassteele et al., 2017) and perform segmentation of the
parameter coding for the spatial effect. Note that the personal data of individuals was not accessible
in this case, and our method does not require to rerun the logistic regression of the original study.
Instead, we perform segmentation of the estimated parameters.

The computation time is very sensible to the number of areas, which is the limiting factor. The
method is computation-intensive due to important number of possible edges in a planar graph,
which makes the adjacency matrix a computational burden. We highlight that our method scales
relatively well with the number of areas in practical applications, up to p ' 1000. For that number of
areas, the typical computation time is 7 minutes on a laptop equipped with an Intel Core™i3 CPU.
An R implementation of the method is available in the package graphseg3. It makes use of sparse
matrices and warm start to boost up computations.

Some work is still needed for this method to be fully validated. Future works include a quanti-
tative analysis of the performance in selection and estimation. An extension of the BIC to take into
account the specifics of the model seems to be of interest. The EBIC (for Extended BIC Chen and
Chen, 2008) is an extension of the BIC that includes a Bayesian prior on the model to give equal im-
portance between the models of different dimension. This does not apply directly to our graphical
model. We would require to compute the number of ways to divide a (planar) graph into k con-
nected components, for varying values of k. Work in that direction has been undertaken, and would
significantly add to the performance of our method.

3github.com/goepp/graphseg



Chapter 6

Conclusion

The adaptive ridge and its applications

This thesis provides several applications of the adaptive ridge in age-period-cohort analysis, spline
regression, and spatial epidemiology. When I started this thesis, the tentative title of my work was
“Latent classes in survival analysis and heterogeneity of response to cancer treatment”. The initial
project was to study different approaches to tackle heterogeneity in survival analysis. My work was
not initially meant to be focused on the adaptive ridge, but it evolved in this direction.

My work began with the study of the possibilities to extend the work of Bouaziz and Nuel (2017)
to more general frameworks in survival analysis. Age-period-cohort analysis was our first choice to
generalize the PCH model to bidimensional hazard. Age-period-cohort analysis is concerned with
inference of follow-up data, where in most cases, regularization is needed. The factor models im-
plicitly perform regularization of the log-hazard as they infer the effect of the age, period, and cohort
variables. But they are too restrictive to infer the interaction between the effects of these variables. I
have applied the fused adaptive ridge method to two models: the direct estimation of the log hazard
(Chapter 2) and age-cohort-interaction model (Chapter 3). The former does not infer the effects of
age, period, and cohort but instead performs segmentation of the log-hazard into regions of equal
value. The latter provides an extension of the age-cohort model (or whatever two-variable model)
and performs regularization of the interaction term.

The work on spline regression, in Chapter 3, was motivated by a discussion with G. Nuel. We
thought that using a sparsity-inducing penalty on the coefficient of a spline would enforce non-
relevant knots to be selected out. At that time, I knew little about P-splines, which performs a ridge
penalty over the difference of the coefficients. Only when implementing the adaptive ridge on this
problem did I understand that it makes an iterated use of the same penalized likelihood estimation as
the P-splines. The resulting estimate is, to my knowledge, the fastest procedure to perform selection
of the knots.

Finally, I have had the occasion to apply the adaptive ridge on a widely different topic: spatial
epidemiology (Chapter 5). This work was motivated by the application to the study of overweight
prevalence (see Section 5.4). When discussing with the author of van de Kassteele et al. (2017), I real-
ized that segmentation of the spatial effect would enable to detect a simpler and more interpretable
spatial effect of the prevalence of being overweight. The data used in the generalized additive model
in van de Kassteele et al. (2017) is sensitive and I could not have access to the design matrix. Thus I
developed a method that used only the estimate for each area (i.e. spatial unit) and an estimate of
its variance. This method performs a fused adaptive ridge over a graph: the graph of adjacency of
the areas. This work can be seen as a generalization of the fused adaptive ridge over a grid, which is
used in Chapters 2 and 3. I believe the method I developed, albeit somewhat simple, can be of great
interest for the epidemiologist: a segmented spatial signal gives a clear message, which is important
to take decisions of public health policy.

149
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Figure 6.1: Level set of the square log penalty
∑2

j=1 log(β2
j +δ2) with δ2 = 10−2.

Why the adaptive ridge? The adaptive ridge is just one in a wide range possible model selection
methods. The adaptive ridge was introduced under different names in different contexts, but has
only been introduced as an iterative penalized maximum likelihood methods in Frommlet and Nuel
(2016). Contrarily to the adaptive lasso, it requires many iteration to provide a sparse estimate. It
is however easier to implement, since its uses the L2 norm penalty at each iteration, which in many
cases has an explicit solution. I chose to use this method because it seemed like a good trade-off
between computational cost and ease of implementation.

However, no proof has yet been given of the asymptotic properties of the adaptive ridge. Thus,
an important perspective of the present thesis is the theoretical study of the adaptive ridge. The next
section presents the framework for this analysis.

Perspective: the adaptive ridge and its properties

In this Thesis I have used the adaptive ridge extensively. This method was first introduced as a nu-
merical trick by Rippe et al. (2012) and an investigation into its numerical performance was provided
by Frommlet and Nuel (2016). In this section, we lay the ground for a statistical study of this method.
In a first part, we demonstrate that the L0 adaptive ridge can be equivalently defined as the LQA of
a penalized estimate, as defined by Fan and Li (2001). The corresponding penalty is a function that
has interesting properties. It can be seen as a relaxation of the log penalty, which was already intro-
duced in the LLA one-step estimator by Zou and Li (2008). This framework gives good insight into
the strength of the adaptive ridge: it gives up the non-concave property in exchange for a gain in
computational cost. Indeed, the oracle properties of non-concave penalties (Fan and Li, 2001) do
not apply for the adaptive ridge because its function has an inflexion point.

Adaptive ridge as the LQA of a penalized estimate

Define the “square-log” penalty

p(|θ|) = log(θ2 +δ2), (6.1)

where δ2 ¿ 1 is a small numerical constant. This function is not a non-concave penalty (see Sec-
tion 1.1.7): it is convex on (−δ,δ). However, this penalty converges pointwise towards the penalty
log(θ2) = 2log(|θ|). Since δ is set to a very small value in practice, Equation 6.1 can be seen as an
heuristic approximation of the log penalty.

The level set of the square log penalty in two dimensions is represented in figure 6.1.
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Around zero, the square log penalty is a convex function and does not induce sparsity. For greater
values of (β1,β2), the square-log penalty is concentrated around the axes. This function has no sin-
gularity, so it enforces the penalized estimate to have coordinates set to almost zero, but not equal to
zero.

We will show in this section that the Local Quadratic Approximation (see Section 1.3.2.1) of the
square-log penalty is the L0 adaptive ridge. Since the square-log penalty is not a non-concave func-
tion, the LQA of the square-log penalty is not proven to have the oracle properties that non-concave
penalties enjoy. But writing the L0 adaptive lasso as the MM Optimization procedure with the square-
log penalty allows to prove that the procedure is stable and to give a criterion to ensure that the pro-
cedure converges.

From the definition (1.42), the local quadratic approximating function of the square-log penalty
writes

q(θ|θ(k)) = θ2

θ(k)2 +δ2
+ log(θ(k)2 +δ2)− θ(k)2

θ(k)2 +δ2
. (6.2)

Hence the dominating function of the penalized nll writes

g (β|β(k)) = `(β)+λ
p∑

j=1

β2
j

β(k)
j

2 +δ2
+λ

p∑
j=1

D(β(k)
j ), (6.3)

where D(β(k)
j ) = log(β(k)

j

2 + δ2)− (β(k)
j

2
)/(β(k)

j

2 + δ2) is constant with respect to β j . This D(β(k)
j ) is

constant in (6.3), we can neglect this term in the minimization of g (β(k)
j ).

In the minimization step of the MM optimization, we minimize g (β|β(k)). The criteria for the
MM procedure is g (β(k+1)|β(k)) ≤ g (β(k)|β(k)) = f (β(k)). In practice, we minimize g with the Newton-
Raphson algorithm (or another second-order derivative-based method). These methods are unstable
when the second-order derivative of `(β) is too close to zero. It is therefore important to verify that
the minimization step has decrease the function g . Equation 6.3 gives the following criteria for a
candidate β(k+1):

`(β)+λ
p∑

j=1

β2
j

β(k)
j

2 +δ2
≤ `(β(k))+λ

p∑
j=1

β(k)
j

2

β(k)
j

2 +δ2
. (6.4)

From the theory on MM optimization, if this criteria is met at each step, the procedure is stable and
converges to a local minima.

This framework motivates the study of the theoretical properties of the adaptive ridge.
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