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ABSTRACT

This thesis deals with the development of regularized methods using penalized maximum likelihood
estimation. More specifically, I use a sparsity-inducing iterative method called adaptive ridge. The
latter is competitive compared to other approaches, namely in terms of ease of implementation and
computational cost. My work consists in the application of this method to a wide range of problems:
survival analysis, spline regression, and spatial segmentation. Applications in several problematics
show that the adaptive ridge’s good performance in selection, great ease of implementation and low
computational cost can make it a good starting point in penalization-base variable selection.

In survival analysis, data are often collected by following a cohort, in which case the events are
widely spread through time and the sample is suspected to present heterogeneity. I first focus on
developing a method for the inference of the incidence, which allows to detect heterogeneity with
respect to the date of birth (or cohort). A closely related problem is the study of the evolution of the
inference as a joint function of the age, the date of birth (cohort), and the calendar time (period).
Epidemiologists have long resorted to the age-period-cohort model or its submodels. The latter as-
sume linear effects of each variable, which is deemed too simplistic to estimate potentially important
features of the incidence. In this framework, I develop a model allowing for the joint estimation of
two variables’ effects and of their interaction.

Spline regression is known to be a competitive method for non-parametric regression. However
the estimated spline depends highly on the initial choice of knots and choosing the best knots is a
computationally hard problem. I propose an approach for the estimation of the best knots jointly
with the spline function. By initiating a large number of knots and successively removing the least
relevant ones, my method makes a slightly restrictive hypothesis to remove much of the computa-
tional burden.

In spatial statistics, the spatial domain is often divided into “units” and data are gathered at the
unit level. The spatial effect is estimated on each unit and its representation is subject to the arbitrary
of the unit division, which makes its interpretation difficult. This can be resolved by regularization,
which reduces the variance and increases the interpretability. I present a model for segmentation of
spatial data based on the adjacency structure of the units.






RESUME

Cette these porte sur 'élaboration de méthodes régularisées utilisant I’estimation par maximum de
vraisemblance pénalisée. Plus précisément, j'utilise une méthode parsimonieuse itérative, appelée
adaptative ridge. Cette derniére est compétitive par rapport a d’autres approches, notamment en ter-
mes de facilité de mise en ceuvre et de temps de calcul. Mon travail consiste a appliquer cette méth-
ode a un large éventail de problemes : I'analyse de survie, la régression par splines et la segmentation
spatiale. Ces applications dans différentes problématiques montrent que la bonne performance de
I'adaptive ridge en sélection, sa grande facilité de mise en ceuvre et son faible cotit de calcul peuvent
en faire un bon point de départ dans les méthodes de sélection de variable par pénalisation.

En analyse de la survie, les données sont souvent recueillies en suivant une cohorte, auquel cas
les événements sont largement répartis dans le temps et ’échantillon peut présenter une hétérogénéité.
Je me concentre d’abord sur le développement d’'une méthode d’estimation de I'incidence qui per-
met de détecter I'hétérogénéité par rapport a la date de naissance (ou cohorte). Un probléme proche
est I'étude de I'évolution de 'inférence en fonction de 'age, de la date de naissance (cohort) et de
la date calendaire (period). Les épidémiologistes ont longtemps eu recours au modele age-period-
cohort ou a ses sous-modeles. Ces dernieres supposent des effets linéaires de chaque variable, ce qui
est jugé trop simpliste pour estimer des caractéristiques potentiellement importantes de I'incidence.
Dans ce cadre, j’élabore un modele estimant cojointement I'effet de deux variables et de leur inter-
action.

La régression par splines est connue pour étre une méthode performante de régression non
paramétrique. Cependant, la spline estimée dépend fortement du choix initial des nceuds et le
choix des meilleurs nceuds est un probléme difficile en pratique. Je propose une approche perme-
ttant I'estimation des meilleurs nceuds conjointement avec la fonction spline. En initiant un grand
nombre de nceuds et en supprimant successivement les moins pertinents, ma méthode fait une hy-
pothése légérement restrictive pour diminuer grandement le temps de calcul.

En statistiques spatiales, le domaine spatial est souvent divisé en "unités" et les données sont
recueillies au niveau des unités. Leffet spatial est estimé sur chaque unité et sa représentation est
soumise a 'arbitraire de la division de 'unité, ce qui rend son interprétation difficile. Ceci peut étre
résolu par la régularisation, ce qui réduit la variance et augmente l'interprétabilité. Je présente un
modele de segmentation des données spatiales basé sur la structure d’adjacence des unités.
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Plan of this thesis

This thesis is organised as follows:

Chapter 1 introduces, compares, and discusses the main statistical approaches to model selection.
A great emphasis is laid on penalized likelihood methods. First, I detail the most famous methods
of penalized maximum likelihood estimate: the lasso, the elastic-net, and further refinements. I de-
velop on the use of these penalties in the linear model. Secondly, I touch on two of the methods of
model selection which are not based on penalization: best subset selection and stepwise selection. In
the third section, I introduce the Majorize-Minimization (MM) optimization scheme, which, applied
to penalized likelihoods, yields two important iterative penalized methods: the Local Linear Approx-
imation (also termed adaptive lasso) and the Local Quadratic Approximation. I then introduce the
iteratively defined penalized method used throughout this work: the adaptive ridge. Finally, I de-
velop on the statistical methods which enforce an a priori structure on a parameter.

Chapter 2 deals with the application of the adaptive ridge to the context of hazard estimation in
survival analysis. After an introduction on the topic, and an illustration of the method to a one-
dimensional case, we detail how the fused adaptive ridge allows for a new method of regularized es-
timation of the bi-dimensional hazard rate, with detection of breakpoints. Even though this methods
applies to a wide array of problems, we illustrate it through the angle of age-period-cohort analysis.

Chapter 3 deals with the same problem than Chapter 1, but through the context age-period-cohort
analysis. We first introduce the topic of age-period-cohort analysis, as well as the use and drawbacks
of the age-period-cohort model. Then, we develop on the “Age-Cohort-Interaction ” model, which
builds on the works of the previous chapter. This model can be viewed as a generalization of the
age-period-cohort analysis, which does not suffer from its defects, at the added cost of computation
time.

Chapter4 deals with a different application of the adaptive ridge. In this part, we apply this method
to the problem of finding the best knots to support a regression spline. This problem has long been
deemed computationally intractable. We show that provided some simplifying assumptions, our new
spline regression method can select the best knots as well as the regression spline in a fast fashion.
Before developing on our method, we introduce the topic of spline regression and present the main
tools and issues in this topic.

Chapter 5 deals with the applications of the adaptive ridge to regularization of spatially-correlated
data. When the statistical problem has a spatial structure that is given in already chosen zones, the
problem of regularization becomes challenging. We introduce a method for regularization along a
graph, with an application to inference for medical data.

The works of Chapters 2 and 4 has lead to two preprints currently under revision. These two
chapters consist of these preprints, reproduced as is and preceded by introductory talks on their
respective matters. These two papers are given in Sections 2.2 ad 4.2, with respective supplementary
materials given in Sections 2.3 and 4.3 respectively. These papers define their own notations, which
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are for the most part consistent with the rest of the manuscript. Except for these sections, the present

document forms a consistent manuscript, even if the Chapters were divided so as to be able to be
read separately.
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Notations and Definitions

Definitions

* The L; norm of a vector u is noted || u| 4. The L norm is also abbreviated | u.

e E[X] and V [X] denote the respective expectation and variance of the random variable X.
* Tr denotes the trace.

* —, denotes the convergence in distribution.

« AT denotes the transpose of the matrix A.

e min* {u} denotes the minimum taken only over the positive values of the vector u

* (x);+ denotes the positive part of x, that is max(x,0).

* diag{u;}; is the diagonal matrix whose non-zero entries are uy,..., Uy,.

e ¥(,.) denotes the (possibly multivariate) normal distribution. The two arguments are the
expectancy and variance.

¢ #A denotes the cardinal of the set A.

* When f is a function and x an element from its domain, f (x~) and f(x*) denote the lim-
its lim;_., f(¢) in the cases t < x and ¢ > x, respectively.

Notations

* Vectors and matrices are noted in bold. When necessary, vectors are identified with column
matrices.

* nisthe sample size

e j€{l,...,n}is the index of the individuals
* pisthe number of covariates

e je{1,..., p}is the index of the covariates

* In the context of penalized likelihood methods, A € R is the penalty constant; in the context of
survival analysis A : R — R™ is the hazard rate.

* fisthe parameter to be estimated
¢ I refers to the identity matrix, whose dimension depend on the context.
* ¢ = —logLis the negative log-likelihood and L is the likelihood.

I“A”

e Tuse the symbo when the equality serves as a definition.

ix



Abbreviations
* MM: Majorize-Minimization optimization
e NLL: negative log-likelihood
* LQA: Local Quadratic Approximation
e LLA: Local Linear Approximation
* AIC: Akaike Information Criterion
 BIC: Bayesian Information Criterion
e OLS: Ordinary Least Squares (estimate)
e MLE: Maximum Likelihood Estimate
e PCH: Piecewise Constant Hazard (model)

* LARS: Least Angle Regression

Conflicts in notation between chapters

We have tried to use coherent and non-conflicting notations for the mathematical objects defined in
this thesis. However, for the sake of consistency with the conventions of the field, we made the choice
to keep conventional notations for known quantities. The instantaneous hazard rate for instance, is
noted A(t) (as a function of #) as is standard in survival analysis and in the study of stochastic pro-
cesses. In other parts of the manuscript, we also used the variable A to denote the penalty constant
in penalized maximum likelihood methods.

These notational conflicts have been kept to ease the understanding of the manuscript. They
occur between different chapters but not inside each chapter. We stress that the potential uncertainty
is removed when the context is taken into consideration.
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Chapter 1

Introduction

This thesis deals with the application of penalized methods to different statistical problems. These
works all have in common the use of a penalized maximum likelihood method- called the “adaptive
ridge” —which performs model selection. The latter comes from a long line of historically, practically,
and theoretically important regularization methods, which date back to the very beginning of com-
putational statistics. These methods are at the intersection of different fields: statistics, optimization,
and computer science.

It is therefore necessary to introduce the most important of these methods in order to (i) highlight
the principle of penalized estimation methods, (ii) put the adaptive ridge in the context of the other
model selection methods, and (iii) compare the adaptive ridge with the competing methods. This
introduction serves this purpose.

Variable selection methods have been developed since the 1970’s, with the use of the stepwise
selection and the ridge regression in the context of linear regression. But their use and fame have
exploded only in the 1990’s and early 2000’s, with the development of penalized regression method,
and in the first place of the lasso, introduced in the field of statistics by Tibshirani (1996) and in
signal processing by Chen et al. (2001) under the name “basis pursuit”. These methods have been
introduced for linear regression, but their principle applies to any statistical model whose likelihood
is computable and practical to maximize. Penalized regression methods consist in adding a term in
the negative log-likelihood (NLL) to minimize. This term enforces the estimate to be close to an a
priorishape or distribution. Certain penalty terms have been found to induce the desired properties
of the estimate: the resulting estimate is both better quantitatively, i.e. it has better estimation per-
formance, and qualitatively, i.e. it infers models which are more relevant and easier to interpret, than
standard estimates. These methods sparked a revolution in the field of computational statistics: the
added penalty term increases the complexity of the computation by a low margin and the benefits
are huge in many practical applications.

A whole array of these penalized methods have then been developed and improved upon, with
penalties ever more refined and adapted to the problem at hand. However, the initial application of
penalized estimation with variable selection is the linear model, and its extension to non-Gaussian
errors, the generalized linear model. It seemed that in this case, the goal to find easy- and fast-to-
compute methods that are performant both theoretically and practically, has been met. Two other
major fields of applications of penalized methods have emerged around this period: high throughput
data and wavelet analysis. The former became widely popular in the last decade due to the onset of
next-generation sequencing technologies. Since many genes are studied at once, we are in a case
where p > n, usually by a factor ~ 100. The problem posed by this high-dimensional setting was
seldom met in usual regression settings, and led to the development of penalized regression methods
for what is called high-dimensional statistics. The latter comes from the development of wavelets
bases and their applications to all fields of signal processing. Wavelets are families of functions that
form an orthogonal family of 12(R), are located in both the time and frequency domains, and are
all the scaled and shifted versions of one another. These properties make it the tool of choice for
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representing signals (i.e. audio signals, images, videos, etc.) efficiently. Indeed, the wavelet bases
allow for sparse representation of signals, with major applications to denoising, compression, and
compressed sensing. In these problems, the signal sparsity is enforced using a penalized approach.
This has sparked the development of penalized likelihood approaches that are specifically fit to the
topology of the signal. Note that the leap forward made in that domain around the year 2010 was also
enabled by the progress in convex optimization (Boyd and Vandenberghe, 2004). We refer to Mallat
(2009) for more details on the wavelet analysis and to Bach (2011) for more details on the application
of penalized methods to wavelet analysis.

This introduction is organized as follows. The first part draws a panorama of the main penal-
ized methods for model selection, with comparisons, explanations, and insights. The second part
deals with subset selection, the main model selection method that does not used a penalized ap-
proach. The third part puts the iterative penalized methods in the theoretical framework of Majorize-
Minimization (MM) optimization and compares the main iterative penalized methods amongst which
is the adaptive ridge. The last section presents modifications of the penalty terms which enforces the
estimate to have a certain sparsity structure, which is more general than being sparse. We arrive at
the fused adaptive ridge, which is used in Chapters 2 and 3.
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4 Chapter 1. Introduction

1.1 Regularized estimation
Linear regression. Consider the linear regression setting
y=Xp+e, 1.1

where y is the n x 1-sized response variable, X = (x;,;) is the n x p-sized design matrix, § is the p x 1
parameter vector of linear effects, and € is the p x 1 vector of random errors. The columns of X are
called the covariates and are noted x;. We consider the case of deterministic design, that is, X is
deterministic.

Linear regression is sometimes written

y=Po+X1p1+ -+ XpPp,

which includes the estimation of an intercept By, adding a row of 1s in the design matrix X. Since
the maximum likelihood estimate of By is y = %Z?ﬂ ¥i, we will instead consider the model (1.1) and
always assume that the response variable is centered: y = 0.

It is also necessary that the covariates be scaled, both for the numerical stability of the computa-
tions and to be able to compare the effects of each covariate. For instance if the unit of x; is changed
from meters to millimeters, §; is multiplied by 1000. Hence the effect of that covariate will be artifi-
cially inflated and it will always be selected by a model selection method. Thus, the covariates have
to be scaled for their effects to be comparable. Note that there is an equivalence between fitting the
parameters on the unscaled covariates and fitting them on the scaled covariates and applying the
corresponding scaling to each parameter. Therefore, without loss of generality, we will assume that

n n
Y xij=0 and fojzl, 1<j<p.
i=1 i=1

The ordinary least squares (OLS) is

~ols

B éargmﬁinlly—XﬁII%z(XTX)_IXTy. (1.2)

If not stated otherwise, we assume the two classical following assumptions to hold.

Assumption 1. y; = x; B* +¢€;, wheree; are independent and identically distributed random variables
of mean 0 and variance o2, and B* is the real value of B that we estimate. Note that unless stated
otherwise, the errors are not assumed to be normally distributed.

Assumption 2. The matrix %X TX — C, where C is positive definite.

Penalized likelihood. In the forthcoming sections we will discuss penalized regression methods, in
which the estimator is defined as the minimizer of the least squares residuals with an added penalty
term. In the linear model, when the residuals are normally distributed, the least squares residuals
|y - X8| is (proportional to) the negative log-likelihood ¢ () of the model (this condition is in fact
an equivalence: the negative log-likelihood writes as a sum of squares only when € ~ A7(0, o2I)). The
regularization — and variable selection — methods present in this introduction have been developed
in the setting of linear regression, with the case of normal residuals as an important specific case. In
all generality, they can apply to any parametric model that we want to regularize. In this introduc-
tion, the notation ¢ () refers to the negative log-likelihood in the linear model or in any unspecified
parametric model. In applications and illustrations however, we will mostly use the linear model to
illustrate the effect of penalized estimation.
We give two examples of such models, which are generalizations of the linear model:
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* Robust regression, in which the negative log-likelihood writes

(B)=) plyi—xiP) (1.3)
i=1

where p is a function giving little importance to large values of the residuals. For instance,
when p(x) = |x|, the model becomes the least absolute deviation, a robust alternative to the
linear regression. When p is a p-function (as defined in Huber et al., 1964), the model is a
robust version of the linear model. See Maronna et al. (2006) for a thorough explanation of
robust regression.

* The generalized linear model the response variable has a distribution in the exponential family,
where the density of y; (in its canonical form, see McCullagh, 1984, Section 2.2.2) writes

f() =exp (6] T(y) - A©B) +B(y)),

where A and B are known deterministic functions and 67 is the true unknown parameter to be
estimated. In the generalized linear model, we estimate the density’s parameter vector 8* by a
function of the linear effect x; B, and we have E [Y] = g~! (X ) where g is a link function. Usu-
ally we take the canonical link function given by the distribution of y: g~! = A. The negative
log-likelihood (nll) writes

0(B) =~ illogf(g (xiB),yi), (1.4)

where f is the distribution of y. For example, if y is Poisson distributed, the canonical link
function is the log function and the nll writes

{yixiB—exp(x; ) —log(y:)}.

g2

n
i=1
1.1.1 Ridge regression

The OLS estimate is unbiased and has minimal variance amongst all unbiased estimates. However,
when the covariates x; are highly correlated, X7 X becomes close to singular, i.e. when its largest
eigenvalue gets close to zero, the variance of the OLS diverges to infinity. In this case, a biased modi-
fication of the OLS estimate is necessary to control the variance of the estimate. The ridge regression,
defined below, is the most famous of such modifications — owing first to its simplicity. It was intro-
duced in the context of linear regression and we use this specific case to illustrate its principle and
effect, but it extends naturally to any other model. It is obtained by adding a regularizing term to the
nll, in the way defined below.
Hoerl and Kennard (1970) introduced the ridge estimator. It is defined as the solution to

rr}BinIIy—XﬁII%wlllﬁII%, (1.5)

where A > 0 is a trade-off hyper-parameter to be chosen.
Problem (1.5) has the explicit solution

B = (xTx+ A1) xTy. (1.6)

Equation 1.6 can be seen as a relaxation of the matrix X7 X. When the covariates are too corre-
lated, the columns of X are close to being linearly dependent, and X’ X tends to be singular. Equiv-
alently, this means that the lowest eigenvalue of X7 X tends to zero. If A is the lowest eigenvalue
of XT X, the lowest eigenvalue of X TX 4+ AIis Ay +A. Equation 1.6 can be seen as a modification of
the OLS that ensures the design matrix does not become singular.
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Figure 1.1: Visualization of the ridge estimate as the projection of the OLS onto an L, norm ball. The
ellipses are level curves of the quadratic form | y— X II§. The projection onto the circle of radius t = 1
has the effect of shrinking the estimate’s coordinates together.

Projection on an L, ball. Problem (1.5) is the Lagrangian dual of the problem

mgnlly—Xﬁllﬁ st Ipl3=t 1.7)

for £ > 0. The two problems have been shown (Boyd and Vandenberghe, 2004, B.1) t