
HAL Id: tel-04360323
https://theses.hal.science/tel-04360323

Submitted on 19 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Institution-based Semantics and Tool Support for the
UML

Tobias Rosenberger

To cite this version:
Tobias Rosenberger. Institution-based Semantics and Tool Support for the UML. Programming Lan-
guages [cs.PL]. Université Grenoble Alpes [2020-..]; University of Swansea (Swansea (GB)), 2022.
English. �NNT : 2022GRALM062�. �tel-04360323�

https://theses.hal.science/tel-04360323
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : VERIMAG

Sémantique et outils institutionnels pour le UML

Institution-based Semantics and Tool Support for the UML

Présentée par :

Tobias ROSENBERGER
Direction de thèse :

Saddek BENSALEM
PROFESSEUR DES UNIVERSITES - PRATICIEN HOSPITALIER,
Université Grenoble Alpes

Directeur de thèse

Markus ROGGENBACH
 Swansea University

Co-directeur de thèse

Rapporteurs :
Till MOSSAKOWSKI
PROFESSEUR, Otto-von-Guericke-Uniersitat Madeburg
Martin WIRSING
PROFESSEUR, Ludwig-Maximilians-University Munich

Thèse soutenue publiquement le 3 novembre 2022, devant le jury composé de :
Rapporteur

Rapporteur

Examinatrice

Examinateur

Till MOSSAKOWSKI
PROFESSEUR, Otto-von-Guericke-Uniersitat Madeburg
Martin WIRSING
PROFESSEUR, Ludwig-Maximilians-University Munich
Monika SEISENBERGER
ASSOCIATE PROFESSOR, Swansea University
Marius BOZGA
INGENIEUR DE RECHERCHE, CNRS DELEGATION
ALPES
Arnold BECKMAN
PROFESSEUR, Swansea University

Président

THÈSE
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE
ALPES

preparée dans le cadre d’une cotutelle entre
l’Université Grenoble Alpes

et
Swansea University

Spécialité: Informatique
Arrêté ministériel : le 6 janvier 2005 -7 août 2006

présentée par

Tobias ROSENBERGER
Thèse dirigée par

Markus Roggenbach
et

Saddek Bensalem

préparée

à Swansea, au sein du Department of Computer Science et

à Grenoble, au sein du Laboratoire VERIMAG
dans l’École Doctorale Mathématiques, Sciences et

Technologies de l’Information, Informatique (MSTII)

«Sémantique et outils institutionnels
pour le UML »

Thesis defended

3 November 2022

before a jury consisting of

Arnold Beckmann
Professor at Swansea University

Jury Chair

Monika Seisenberger
Associate Professor at Swansea University

Internal Examiner

Marius Bozga
Research Engineer at Université Grenoble Alpes

Internal Examiner

Till Mossakowski
Professor at Otto-von-Guericke-Universität Magdeburg

External Examiner

Martin Wirsing
Professor emeritus at Ludwig-Maximilians-Universität München

External Examiner

Abstract
Model-based techniques, in particular the Unified Modeling Language (UML), have found wide
adoption in the software industry. Formal methods can produce software which is guaranteed to
possess desired properties, this being of particular interest where safety or security are concerned.
Formal methods have been used very successfully in certain fields like the railway domain (e.g.,
the verification of the fully automatic lines of the Paris metro system). However, in the wider
software industry the adoption of formal methods has been limited. This thesis is part of an effort
to ease the uptake of formal methods by enabling a fully formal use of the UML. In pursuing this
goal, we want to follow software engineering best practices such as the don’t-repeat-yourself
principle and modularity.

To achieve this, we use Institution Theory and the Heterogeneous Toolset (HeTS). Institution
Theory is a principled way to relate different formalisms in a modular way. The Heterogeneous
Toolset is based on Institution Theory and implements tool reuse across different formalisms. This
is the context into which we wish to integrate the UML, by providing institutional semantics and
HeTS implementations for the different UML sublanguages. Translations between these UML
institutions then give joint semantics. Translations to other established languages implemented
in HeTS allow us to borrow their tool-support.

The contributions of this thesis to the effort outlined above consist in the development of
languages for UML State Machines and Composite Structures and translations to the existing
language Casl. We give an account of our languages and translations in terms of Institution
Theory, as well as a prototypical implementation in HeTS. Further, we verify properties based on
specifications in our languages to demonstrate the feasibility of our approach. The experiences
from our work on institutionalisation, implementation and verification moreover point to several
opportunities for future work.

Abstract
Les techniques basées sur des modèles, en particulier le Unified Modeling Language (UML), ont
trouvées une large adoption dans l’industrie du logiciel. Les méthodes formelles peuvent produire
des logiciels avec des garanties de certaines propriétés souhaitées, ce qui est particulièrement
intéressant concernant des questions de sûreté ou de sécurité. Les méthodes formelles ont
été utilisées avec beaucoup de succès dans certains domaines comme la programmation de
systèmes ferroviaires (ex. la vérification des lignes automatiques du métro parisien). Malgré
ces avantages, l’adoption de méthodes formelles dans la plupart de l’industrie du logiciel a été
limitée. Cette thèse fait partie d’une série de travaux visant à faciliter l’adoption de méthodes
formelles en permettant une utilisation entièrement formelle d’UML. En poursuivant cet objectif,
nous voulons suivre les meilleures pratiques d’ingénierie du logiciel comme le principe de
non-répétition et la modularité.

À cette fin, nous utilisons la théorie des institutions et le Heterogeneous Toolset (HeTS).
La théorie des institutions est une manière systématique et modulaire de mettre en relation de
différents formalismes. Le Heterogeneous Toolset est basé sur la théorie des institutions et met en
œuvre la réutilisation d’outils à travers différents formalismes. C’est dans ce contexte que nous
souhaitons intégrer l’UML, en apportant des sémantiques institutionnels et des implémentations
dans HeTS pour les différents sous-langages de l’UML. Traductions entre ces institutions
donnent alors une sémantique commune. Des traductions vers d’autres langages établis et
implémentés dans HeTS nous permettent d’emprunter leurs outils.

Les contributions de cette thèse à l’effort décrit ci-dessus consistent dans le développement
de langages pour les UML State Machines et les UML Composite Structures et les traductions
de ces langages vers le langage Casl. Nous présentons nos langages et traductions en termes de
la théorie des institutions, ainsi qu’une implémentation prototypique dans HeTS. De plus, nous
vérifions les propriétés de quelques spécifications dans nos langages pour une démonstration de
la faisabilité de notre approche. Les expériences de nos travaux sur l’institutionnalisation, sur la
programmation et la vérification font d’ailleurs ressortir plusieurs possibilités de travaux futurs.

Acknowledgements

I want to take this opportunity to thank some of the many people who have supported and
enriched my work and life in this season. First of all, I want to thank my family. Words cannot
express my gratitude for what you have been and done for me, not just these last years.

I thank my Swansea supervisor Prof. Markus Roggenbach for inviting me to Wales, for
sharing advice, encouragement and perspectives, be it about science, organisation, or life in
general. Thank you also for involving me in teaching, for organising social events and for
treating all those who work for and with you as humans, not robots. I thank my Grenoble
supervisor Prof. Saddek Bensalem for enabling me to spend time in Grenoble, for making me
familiar with the ideas of BIP, and for sending me to conferences and meetings with industry
partners I thank Prof. Alexander Knapp for working with us. Thank you for all you have taught
me about software semantics and verification. Thank you for your good humour in and out of
the discussions on our work. I thank my brother Johannes Rosenberger and my friend Marco
Eggersmann for proofreading parts of this thesis. I thank Dr. Xiuyi Fan for allowing me to run
theorem provers on his server. I thank all the administrative staff who helped me navigate the
complications that arise from doing a PhD at two universities and in two countries. I thank
Erwin R. Catesbeiana Jr., who joined the research group when he was still wet behind the ears,
for all the wisdom he imparted. I thank the examiners for taking the time to read my thesis and
to conduct a viva on it, and for their valuable and encouraging feedback.

I am grateful for many interactions with fellow research students and with staff members. It is
with a special gratitude that I look back on sharing my office in Grenoble with Dr. Lotfi Mediouni
and Dr. Rany Kahil. Thank you for our discussions and for introducing me to everything at the
university. Thank you for all the time we spent together outside of work. Without you, I would
not have enjoyed the time in Grenoble half as much as I did. May our friendship endure.

I want to thank everyone at Mount Pleasant Baptist Church in Swansea, at Mission Timothée
in St. Michel and the Église Chrétienne Evangelique in Grenoble, as well as at the Christian
Union in Swansea and the FEU and GBU in Grenoble. I thank you for sharing music and food,
excursions and games, for your prayer and encouragement. Thank you for allowing me to see
drug addicts find back to an ordered life and generally to see people face life and death in peace.
Thank you for helping me see Jesus more clearly in all parts of scripture. Thank you for showing
me so many examples of Christian love and service and for making it easy to join in that service.
You have given me invaluable help to grow in life and faith.

Again, I thank all of you for walking parts of this journey with me. To speak with the poet:
“I don’t know half of you half as well as I should like; and I like less than half of you half as well
as you deserve.”

ix

Contents

1 Introduction 1
1.1 Contributions and Publications . 3
1.2 Outline of the Remainder of this Thesis . 4

I Background Material 5

2 The Unified Modeling Language 7
2.1 Example: A Simple Security Protocol . 8
2.2 Class Diagrams . 9
2.3 State Machines . 10
2.4 Composite Structure Diagrams . 11
2.5 Tools . 12

3 Institutions and Comorphisms 15
3.1 Running Example: Modal Logics . 15
3.2 Why use Institutions? . 17
3.3 Categories and Functors . 17
3.4 Institutions . 18
3.5 Example: An Institution for Modal Logics . 19
3.6 Comorphisms . 24

4 The Algebraic Specification Language Casl and its Toolset HeTS 29
4.1 The Casl Language Family . 29
4.2 Heterogeneous Tooling with HeTS . 32
4.3 A Short Introduction to Haskell . 35
4.4 Parsec . 40

5 Related Work 43
5.1 Automatic Verification of Finite UML Models 44
5.2 Interactive Verification of Potentially Infinite Models 50

xi

II Methodology Construction 63

6 A Bird’s-eye View of our Languages 65

7 EDHML: An Institution for Embedding Simple State Machines 69
7.1 Example: The Counter Machine . 70
7.2 Event/Data Structures and the Problem with Institutionalising UML State Machines 71
7.3 A Hybrid Modal Logic for Event/Data Systems 76

8 A Theoroidal Comorphism from EDHML to Casl 89
8.1 Comorphism Definition . 89
8.2 Satisfaction Condition . 93

9 EDHMLO: Extending EDHML with Outputs 99
9.1 The Underlying Data Universe . 100
9.2 Data States and Transitions . 101
9.3 Events and Messages . 102
9.4 Event/Data Signatures . 102
9.5 Event/Data Structures . 103
9.6 Event/Data Formulæ and Sentences . 104
9.7 Satisfaction Relation for EDHMLO . 106
9.8 Satisfaction Condition . 107

10 A Theoroidal Comorphism from EDHMLO to Casl 115
10.1 Translating Signatures . 115
10.2 Reducing Structures . 116
10.3 Translating Sentences . 117
10.4 Satisfaction Condition . 118

11 UMLComp: Simple UML Composite Structures 125
11.1 Signatures . 125
11.2 Structures . 127
11.3 Sentences . 129
11.4 Satisfaction Relation and Satisfaction Condition 130

12 Implementing our Institutions and Comorphisms in HeTS 133
12.1 Implementation of the UMLState Syntax in HeTS 135
12.2 Implementing Static Analysis for UMLState 136
12.3 Translation of State Machines . 138
12.4 Design of Composite Structures and State Machines with Output 140
12.5 Interfacing with UMLStateO and UMLComp 143
12.6 How to Obtain our Implementation . 145

13 Verification Examples 147

13.1 The Counter Machine: Proofs about State Machines without Outputs with HeTS
and Spass . 147

13.2 The ATM Scenario: Verifying Composite Structures with KIV 149

III Conclusions 153

14 Conclusion 155
14.1 Summary . 155
14.2 Future Work . 156

Bibliography 159

A Language Definitions for UMLState 165
A.1 Lexical Primitives . 165
A.2 Abstract Syntax . 165
A.3 Concrete Syntax . 166
A.4 Static Semantics . 167

B Diagrams for the Security Protocol Example 171

C A Heterogeneous Specification for the Counter example 173

D A Heterogeneous Specification for the ATM example 179

E Language Definitions for UMLComp 183
E.1 Abstract Syntax . 183
E.2 Concrete Syntax . 183
E.3 Static Semantics . 183

List of Figures

1.1 UML diagrams for the ATM example verified in Sect. 13.2 (implicit completion
events omitted): Composite Structure diagram: top; State Machines: left ATM, right
Bank. 1

2.1 A Class Diagram for the security protocol example. 10
2.2 State Machine for the Reader from the security protocol. The conditions and actions

are those from Sect. 2.1, but with an ASCII notation where ID is renamed to
theid and nR to N_Reader, and the nonces, keys and ids are explicitly embedded
into a common type of message data. Reaching s3 means a Tag has been verified.
Reaching s4 indicates a failed verification. 11

2.3 Composite Structure Diagrams for our example protocol from Sect. 2.1. 12
2.4 PlantUML source for Fig. 2.2 . 13

3.1 A possible accessibility relation for time over our weather signature. 21
3.2 A possible accessibility relation for places over our weather signature. 21
3.3 A possible accessibility relation R(M)(nearby) over an extended weather signature. 21

4.1 A Casl specification for natural numbers. 31
4.2 The HeTS language graph, showing UMLState with the translation to Casl. Green

as opposed to white indicates higher stability of the logic; blue indicates logics with
direct prover support[MMCL14]. 32

4.3 A development graph in HeTS. 33
4.4 The development graph from Fig. 4.3 after applying the global decomposition proof

rule. 33
4.5 A context menu of actions possible on the red node from Fig. 4.4. 33
4.6 The GUI for configuring proof attempts in HeTS. 33
4.7 A proof window in HeTS with some proof obligations resolved (in green) and some

open. 34
4.8 A proof window in HeTS with some proof obligations resolved (in green), one

timed out (in blue), and some open. 35

5.1 A Class Diagram including an OCL constraint from [SWK+10], specifying a
processor with its registers. 44

5.2 A diagram from [SWK+10], showing the SAT-encoding of a system state which
could be checked for conformance to Fig. 5.1. 45

xv

5.3 A diagram from [SWK+10], showing their verification flow. 45
5.4 Figure from [MSLF14], showing their tool-supported process for generating a model

of an Automatic Train Supervision system. 47
5.5 A metro network layout from [MSLF14]. 47
5.6 A state transition for the train Green1 from [MSLF14]. The array G1M is the train’s

mission. G1P is the train’s position, given as an index into the mission. Missions
from other trains are mentioned to forbid collisions. SA to SF are train counters for
critical sections. The two-dimensional array G1C (an example defined in Fig. 5.8
prescribes how movements of Green1 affect these counters. Each critical section
counter also has a prescribed maximum value. 49

5.7 An abstraction rule from [MSLF14] for detecting deadlocks. For a system with two
green trains and two red ones, the abstract name ARRIVED is given to system states
where each train’s position is the final one in its mission (here 13 for all). 49

5.8 A definition from [MSLF14] of how each movement in the mission of the train
Green1 affects the train counters for critical sections A to Z, given in the form of a
two-dimensional array. 49

5.9 A Class Diagram from [KFdB+05], showing the architecture of their example
system, an implementation of the Sieve of Eratosthenes, a classical technique for
generating prime numbers. 51

5.10 A State Machine diagram from [KFdB+05] for the Generator class from Fig. 5.9. 51
5.11 A State Machine diagram from [KFdB+05] for the Sieve class from Fig. 5.9. . . . 52
5.12 A specification fragment in PVS from [KFdB+05], showing the result of translating

a transition of the Generator State Machine from Fig. 5.10, namely, the transition
going from state_1 to state_1 and passing a number to the next Sieve. 52

5.13 Two Class Diagrams from [Grö10] (given only textually) which, when combined,
specify cyclical inheritance. 54

5.14 A selection of language features from [Grö10]. 54
5.15 Two Isabelle lemmas with proofs from [Grö10], the first stating that subclass

relationships in a valid system model are non-circular, the second stating that they
are transitive. 55

5.16 The Isabelle theorem from [Grö10] establishing the incompatibility, in a particular
language configuration, of the Class Diagrams from Fig. 5.13. Some proof steps
about the unfolding of definitions have been skipped. 55

5.17 The Class Diagram for the calendar from [Grö10]. 56
5.18 The Object Diagram for the calendar from [Grö10]. 56
5.19 The lemma from [Grö10] restating the invariant from the Class Diagram Fig. 5.17. 57
5.20 The lemma from [Grö10] restating the attribute values from the Object Diagram

Fig. 5.18. 57
5.21 The theorem from [Grö10] showing that the objects from Fig. 5.18 violate the

constraint from Fig. 5.17. 57
5.22 The State Diagram for the authentication system from [Grö10]. 58
5.23 The Sequence Diagram from [Grö10] showing a hypothetical (illegal) run of the

authentication system specified in Fig. 5.22. 58

5.24 A theorem from [Grö10] stating that the Sequence Diagram Fig. 5.22 violates the
State Diagram Fig. 5.23. 58

5.25 The Class Diagram and State Machine for the Bank example from [BBK+04]. . . . 60
5.26 A diagram from [BBK+04] showing their verification flow. 60
5.27 The proof tree for the example from [BBK+04]. 61

6.1 The languages and formalisms involved in our verification approach. 66

7.1 Simple UML State Machine Counter . 70
7.2 A counterexample (assuming s′ is not in the image of σ) to the satisfaction condition

for earlier attempts at institutionalising UML State Machines. 77

8.1 Frame for translating EDHML into Casl . 90

9.1 UML diagrams for the ATM example verified in Sect. 13.2 (implicit completion
events omitted): Composite Structure diagram: top; State Machines: left ATM, right
Bank. 99

10.1 Extended frame for translating EDHMLO into Casl. 116

12.1 The development graphs shown by HeTS after parsing the example files from
Apps. C and D. 134

12.2 Part of the output shown by HeTS for the resulting Casl specification System from
App. D. 134

12.3 A brief excerpt from our Counter specification, together with a screenshot of the
scoping error which results from removing line 3. The specification is handwritten
in our language UMLState, which we crafted to resemble PlantUML. It has not
been generated from a graphical notation, rather, the philosophy here would be to
generate the graphical notation from the textual one. That said, it could be possible
in the future to implement a (necessarily partial) translation from the XML-based
XMI interchange format for UML. 136

13.1 A partial Casl specification of the counter. Appendix C shows a full, heterogeneous
version. 148

13.2 UML diagrams for the ATM example verified in Sect. 13.2 (implicit completion
events omitted): Composite Structure diagram: top; State Machines: left ATM, right
Bank. 149

B.1 State Machine for the DolevYaoIntruder from the security protocol. 171
B.2 State Machine for the SimpleIntruder from the security protocol. 171
B.3 State Machine for the Tag from the security protocol 172

Chapter 1

Introduction

Contents
1.1 Contributions and Publications . 3

1.2 Outline of the Remainder of this Thesis 4

Model-based techniques are widely used in industrial software engineering. Chief among the
languages used is the Unified Modeling Language (UML) [FL08, TTR+13, WBCW20]. The
work presented in this thesis sits at the intersection between model-based software engineering in
UML on the one hand and formal specification and verification on the other. It is a contribution
to a larger effort to apply software engineering principles, in particular, modularity and the reuse
of tools and semantics, to specification and verification, and to make the UML usable in such a
context.

Figure 1.1 shows a motivating example system specified by three UML diagrams. The
so-called Composite Structure diagram at the top shows how the system is a composite of two

Figure 1.1: UML diagrams for the ATM example verified in Sect. 13.2 (implicit completion events omitted): Composite
Structure diagram: top; State Machines: left ATM, right Bank.

1

1. Introduction

subsystems, representing an ATM (Automated Teller Machine) and a bank in a typical usage
scenario. The behaviour of the subsystems is then specified by the State Machines at the bottom.

The state machines are for a scenario where a user wants to withdraw money from the ATM,
which requires entry of a bank card and pin, as well as their verification by the bank. In such
a scenario the bank and its customer (the user) have an obvious interest in ensuring that an
ATM will only behave as if a bank card had been verified if the bank has actually performed
that verification successfully. This thesis builds towards expressing such properties and systems
in a way that is both mathematically rigorous and has tool-support in accordance with the
above-mentioned software engineering principles. In Sect. 13.2 we are then able to prove the
stated safety property over the example from Fig. 1.1.

To the best of our knowledge, existing work on UML verification falls into two categories:
On the one hand, there are approaches based on model-checking [CE81, QS82], e.g.

[SWK+10, tBGM15]. Model-checking is a technique to establish whether a finite-state system
satisfies a temporal logic property. Its advantages include full automation and the generation
of counterexamples when a property turns out not to hold. However, the applicability of
model-checking is limited in theory by the requirement of a finite state space, in practice by the
state space explosion problem, where exponential growth of the state space of concurrent systems
can quickly exhaust system resources, although there is a large body of work on mitigating this
problem [NGYJ21].

On the other hand, there are approaches that verify UML models using interactive theorem
provers, e.g. [KFdB+05, Grö10, BBK+04]. These approaches can handle systems with large or
even infinite state spaces, but bring with them the cost of a human proof engineer.

We suggest to combine the best aspects of both worlds and apply fully automatic theorem
provers to infinite state systems. While acknowledging the well-known limits of possibility and
feasibility, we aim to make the fully automatic provers available for such UML verification tasks
as they can handle while, at the same time, allowing recourse to interactive techniques where
subtasks require them. We want to achieve this without requiring a remodelling of the system
for each tool or a reimplementation of each checking or proving technique for UML. To achieve
these goals, we work within the verification framework HeTS and its theoretical underpinnings,
Institution Theory.

The present work is part of a larger effort to provide semantics and tools for the UML in
the context of Institution Theory, as first outlined in the position paper [KMR15]. Earlier work
as part of this effort includes [KMRG15] (on State Machines) and [KM17] (on Interactions).
In [Ros17] we established that the existing approaches to UML State Machines did not satisfy
a fundamental condition of Institution Theory, called the Satisfaction Condition. We then
proposed that this could best be remedied by creating a multi-modal logic for requiring the
presence or absence of certain transitions. A particular State Machine can then be described
by sentences requiring that a transition should be possible if the machine mentions it and
impossible otherwise1. Hennicker et al. [HMK19] propose a similar approach using a simpler
logic for event-data systems, as well as an algorithm for systematically computing the sentence

1To be precise, the sentences require a semantic transition to be possible if it conforms to some syntactic
transition of the machine, and impossible otherwise.

2

1.1. Contributions and Publications

characterising such a system. Their notion of system can be seen as simple UML State Machines
without output events, input queues or data parameters. Here, we extend their approach to allow

1. events with data parameters,

2. output events and

3. the combination of State Machines by means of UML Composite Structures, for which
purpose we also introduce communication ports and message queues.

We demonstrate the feasibility of our approach by creating a prototypical implementation,
integrated into an existing tool landscape, and by carrying out verification tasks on example
machines expressed in our formalisms. We will a more extended overview of our approach in
Chapter 6, once we have established some background concepts.

1.1 Contributions and Publications
The main contributions of the present work are:

1. the development of two modal logic institutions (EDHML and EDHMLO) for embedding
and reasoning about simple UML State Machines (the first lacking output events, the second
including them),

2. two embeddings to give semantics to simple UML State Machines in terms of our institutions,

3. the development of an institution for simple UML Composite Structures,

4. the comorphisms from these three institutions to Casl,

5. implementations of our languages and translations in HeTS,

6. demonstration of the feasibility of our approach by verifying simple examples which we
adapted from the literature and which contain typical challenges.

The most difficult aspects were, on the one hand, the construction of actual institutions, where
translation between different vocabularies preserves meaning in the sense required by Institution
Theory2, on the other hand, making the fully automatic provers cope with the inductive reasoning
in the presence of many possible axioms from which the prover has to select the relevant ones
for each step.

We have published our results in two papers, on which the contribution chapters of this thesis
are substantially based: Our work on State Machines without output events, including EDHML
and UMLState, was published as [RBKR20]. The extension to State Machines with outputs and
our work on Composite Structures has been published as [RKR22]. This includes EDHMLO,
UMLStateO and UMLComp. The results of both papers were obtained in collaboration with
our coauthors. Although the delineation of individual contributions in a joint research project is
always difficult, we attempt to give an indication thereof at the beginning of each contribution
chapter.

2Especially the handling of control states is surprisingly difficult.

3

1. Introduction

1.2 Outline of the Remainder of this Thesis
The remainder of this thesis is organised as follows:

In Chapter 2, we give a brief introduction to the UML, including a brief history and the
motivations for its creation, a discussion of the model types most relevant for us and an overview
of some UML tools. Chapter 3 introduces the notions and notations of Category Theory
and Institution Theory which we will be using throughout this thesis. Chapter 4 introduces
the specification and proof framework HeTS and its central specification language Casl. In
Chapter 5 we discuss existing approaches to the verification of models specified in UML.

In Chapter 6, we then give a bird’s eye view of our verification approach and its development,
i.e., an overview over the contribution chapters of this thesis aimed at readers familiar with
the background chapters. Chapter 7 presents the event/data structures underlying our language
UMLState, the institution EDHML and a translation from the former to the latter. Chapter 8
introduces a comorphism (a well-behaved translation between institutions) from EDHML to
Casl. In Chapter 9, we prepare the connection of State Machines with Composite Structures by
extending EDHML to EDHMLO, which adds output events and a notion of ports. We make
corresponding extensions to our surface language (now UMLStateO) and to its embedding into
the logic. Chapter 10 then extends the comorphism, so it now goes from EDHMLO to Casl
Chapter 11 introduces our notion of Composite Structures (UMLComp) and a comorphism
from UMLComp to Casl. In Chapter 12, we discuss the implementation of our languages
and translations in the context of the Heterogeneous Toolset (HeTS). Chapter 13 contains
exemplary verification tasks which we carried out on State Machines and Composite Structures.
In Chapter 14 we conclude with a summary and some suggestions for future work.

4

Part I

Background Material

5

Chapter 2

The Unified Modeling Language

Contents
2.1 Example: A Simple Security Protocol . 8
2.2 Class Diagrams . 9
2.3 State Machines . 10
2.4 Composite Structure Diagrams . 11
2.5 Tools . 12

The Unified Modeling Language (UML) is a modelling methodology and a family of diagram
languages which are widely used in software engineering. It was developed in the 1990s to unify
the different object-oriented modelling methodologies in use, the number of which had increased
to over 50 by 1994. The authors of three of these methods, Grady Booch, Ivar Jacobson and
James Rumbaugh, at first adopted ideas from each other’s methodologies and then began to
actively cooperate in creating a common standard which unified the advantages of each. Their
stated goals were as follows [BRJ98]:

1. To model systems, from concept to executable artefact, using object-oriented techniques.

2. To address the issues of scale inherent in complex, mission-critical systems.

3. To create a modelling language usable by both humans and machines.

Since 1997, several versions of the UML have been standardised by the Object Management
Group (OMG). The current version of the standard, UML 2.5.1 was released in 2017. UML
is widely used in industry and taught in academia. [RHQH+17] report that, although the use
of UML in open-source projects has been regarded as relatively uncommon, they were able to
extract a dataset of 93000 UML diagrams from over 24000 projects on GitHub.

UML has a common mechanism – the Meta Object Facility (MOF) – to express the abstract
grammars of the various model types, as well as the XML based standardised exchange language
XMI and, with QVT (Query/View/Transformation), a family of model transformation languages.

7

2. The Unified Modeling Language

Strictly speaking, the abstract grammar defines the notion of a UML model, parts of which
can be rendered as diagrams or serialised in XMI. In the following, we will discuss diagrams
and model elements without distinction, confident that the reader will remember that details of
the graphical presentation are not part of the model as such.

The different UML sublanguages broadly fall into two categories: On the one hand there
are static diagrams, which describe, e.g., data models (Class Diagrams) or the hierarchical
composition structure of a system (Composite Structure Diagrams). On the other hand, there
are dynamic diagrams, which capture run-time behaviour, e.g., State Machines and Interaction
Diagrams. Static and dynamic diagrams can be related to one another, two common ways being
to specify the behaviour of a component from a Composite Structure Diagram by means of a
State Machine, and to specify types in a Class Diagram which are then referred to in a State
Machine.

In this thesis, we present formalisations for the basic features of State Machines and
Composite Structure Diagrams. UML has an extension mechanism by means of so-called
profiles; we do not support this. Adding such support would be straightforward for profiles
that only introduce syntactic restrictions. On the other hand, profiles can introduce so-called
stereotypes and constraints, the semantics of which can be arbitrarily difficult to model.

In the following, we will introduce a simple security protocol and use it to illustrate our
discussion of some UML diagram types.

2.1 Example: A Simple Security Protocol

In this section, we will introduce the example of a simple security protocol adapted from
[KCL07], which we will use for the remainder of this chapter to illustrate the different UML
diagram types.

This protocol is meant to operate, e.g., at the entrance of a warehouse to allow only authorised
goods to enter. Authorisation to enter is expressed by attaching an RFID chip, called a Tag, to
the goods in question. The Tag may confirm that the goods have undergone a customs check,
or have been checked to be free of explosives, or any other property we want to ensure for all
goods in the warehouse.

Concretely, the protocol can be expressed as follows:

1.R→ T : nR
2.T→ R : ID⊕nT , h(nR, k)⊕nT

Participants of the protocol are a Reader (R) and a Tag (T). First, the Reader sends the Tag a
nonce nR as a challenge. To this message, the Tag responds with a pair of values computed
by cryptographic operations. The operations used are an exclusive or (written ⊕) and a hash
function h, both of which can be realised on an RFID chip. The Tag holds two variables: ID
and k. ID and the key k identify the system. nT is a second nonce, generated by the Tag. The
Reader authenticates the Tag based on the following computation:

8

2.2. Class Diagrams

computed_nT =

received from Tag︷ ︸︸ ︷
(ID⊕nT) ⊕ ID

computed_h = (h(nR, k)⊕nT)︸ ︷︷ ︸
received from Tag

⊕ computed_nT

if computed_h = h(nR, k)
then authentication_success
else authentication_ f ailure

In the above, the ID, the nonce nR and the key k are known to the Reader beforehand, but
the nonce nT is not. The Reader sends its nonce Rn, which need not remain secret, but must not
be reused to prevent replay attacks. Based on its knowledge of the preshared secret k, the Tag
can then construct its reply as indicated above. The Reader can then reconstruct first nT and
from this the hash value constructed by the Tag, using ⊕’s self-inverseness. The computed hash
is then compared to the expected one, leading to an authentication success or failure.

“Security protocols address the question of how one communicates ‘securely’ in an untrusted
‘hostile’ environment” [RSN22]. By design, the above protocol includes communication between
two entities: The Tag and the Reader. The enviroment is hostile in that anyone might obtain a
Tag, approach the door from the outside and interpose a device under their control between the
Reader and the Tag. Such an Intruder would be a third, undesired protocol participant. In the
tradition of Dolev and Yao [DY83], the Intruder will be able to read, modify or suppress any
messages transmitted between the regular protocol participants.

The above protocol has the authentication property of aliveness, i.e., a protocol run can
only be completed if the Tag has participated in some way. To be more precise, the Reader
authenticates a Tag if a legitimate Tag was involved in some protocol run, although not necessarily
the one with the Reader. A detailed discussion of these authentication properties can be found
in [RSN22].

In the following, we will give an introduction to the UML. Therein we will mostly focus on
those UML sublanguages that we will also treat formally later on in this thesis. We take the
ability of our chosen sublanguages to encode the protocol example as an indication of its ability
to express real-world problems.

2.2 Class Diagrams
Class Diagrams consist of classes and related concepts (see Fig. 2.1 for an example). More
precisely, they contain classifiers with their various kinds of relationships. A classifier classifies
a set of values called its instances – it is, roughly speaking, UML’s concept of a type, although
there is also a particular kind of classifiers known as a datatype. The most common kinds of
classifier are classes and interfaces, which behave mostly like the classes and interfaces which
the reader will know from object-oriented programming.

Figure 2.1 shows some classes and interfaces which model participants in the simple
cryptographic protocol from Sect. 2.1. The diagram shows interfaces and a class with inheritance

9

2. The Unified Modeling Language

Figure 2.1: A Class Diagram for the security protocol example.

relationships (the arrows) and associations (without arrows). Instances of Reader and Tag are
meant to be the regular participants of the protocol. Intruder inherits from both, because it
implements the protocols of both – the Intruder will act as a man in the middle. A classifier
can have features. These include attributes and receptions for signals (as in the example) or
for operations1. Attributes are just the familiar concept, except that what is an attribute in an
implementation may also be expressed by an association in the model. The example shows an
attribute seen of type List<Data>, which contains the data from all messages seen so far by
the intruder. The difference between signals and operations is that the former are asynchronous –
signals do not return, and execution continues without waiting for them to return – whereas the
latter are synchronous – operations can be waited for and can also have a return value.

The example also shows associations between the DolevYaoIntruder class and the two
interfaces. These associations specify by the numbers at the ends that we expect exactly one
Tag and exactly one Reader to be associated with each DolevYaoIntruder. In general,
associations can have more than two participants and can make additional requirements, e.g.,
in which directions the association should be navigable, that instances of one end should be
considered aggregates or, as a special case, composites of instances of the other end, etc.

Attached on the right to the DolevYaoIntruder class is a comment. Comments can contain
arbitrary text and can be attached to (in general: sets of) elements in arbitrary diagrams.

Finally, and importantly for us, a classifier can have an associated Behaviour, i.e., a dynamic
diagram (e.g., a State Machine) specifying how it will react to signals and operation calls.
However, formalising Class Diagrams themselves is outside the scope of our thesis project2.

2.3 State Machines
A State Machine is a dynamic diagram, modelling behaviour. That behaviour could, e.g., be
associated with a class, specifying the behaviour of its objects. Let us consider as an example
Fig. 2.2. At the most basic level, it is a graph: A set of vertices, representing control states,
connected by edges, representing state transitions. In addition to the control states, transitions

1We only formalise signals, not operations.
2There is existing work on institutions for Class Diagrams, e.g., [JKMR13]. Connecting their work to ours could

be a direction for future work.

10

2.4. Composite Structure Diagrams

Figure 2.2: State Machine for the Reader from the security protocol. The conditions and actions are those from
Sect. 2.1, but with an ASCII notation where ID is renamed to theid and nR to N_Reader, and the nonces, keys
and ids are explicitly embedded into a common type of message data. Reaching s3 means a Tag has been verified.
Reaching s4 indicates a failed verification.

can depend on and modify a data state. For a State Machine associated with a class, the data
state would consist of the attributes of an object of that class. We will refer to the combination
of the control and data state as a configuration.

Transitions have labels of the general form trigger[guard]/action. Each of the three parts
can be omitted. The trigger is an event which can cause the transition to be taken. Explicit
triggers will usually be signal receptions or operation calls. The guard is a condition over the
data state. Where the right event was received, the truth of the guard, given current data, decides
which of the transitions can be taken. An omitted guard is always true. UML does not specify in
what language the guards and actions are to be expressed. A mixture of natural language and
computer languages is common in UML diagrams, particularly for early design stages, or where
diagrams are made only for human consumption. Of course, in this generality, UML cannot be
formalised. Our formalisation in Chapter 7 will include a fixed language for expressing guards
and actions, which is suitable for tool-supported reasoning.

UML has a variant of State Machines used purely for specifying the input language of a
classifier: Protocol State Machines are mostly like ordinary State Machines, but their states can
have no hierarchy or other associated behaviour, and their actions are replaced by post-conditions.

In this thesis, we refrain from formalising choice states, hierarchy, state behaviour and
Protocol State Machines, as well as the priority rules for completion events. We do not model
(synchronous) operation calls, but only (asynchronous) signal receptions.

2.4 Composite Structure Diagrams
Composite Structure Diagrams describe so-called structured classifiers. A structured classifier
is a classifier – again, by default that means a class – which is considered to have an internal
structure. Some examples for our security protocol example can be seen in Fig. 2.3. The internal
structure shown by a Composite Structure Diagram consists of a number of roles (drawn as
boxes) with ports (little boxes on the borders of the roles) and connectors (shown by lines

11

2. The Unified Modeling Language

(a) A Reader by itself.

(b) A Tag by itself.

(c) A Reader and Tag put together.

(d) An Intruder by itself.

(e) A Reader, Tag and Intruder put together.

Figure 2.3: Composite Structure Diagrams for our example protocol from Sect. 2.1.

between ports, possibly with a socket/circle pair in the middle). The diagrams can also show
interfaces a port offers (the circles) or uses (the sockets).

In the example (Fig. 2.3), we first show systems with just one role; then the intended system,
with the roles of Reader and Tag; and, finally, a system for a man-in-the middle attack, with the
Reader and the Tag communicating through the Intruder.

2.5 Tools

In the following we will briefly describe some of the tool landscape available for UML.

12

2.5. Tools

@startuml
hide empty description
[*] --> s1
s1 --> s2 : start / r2t.msg1(nonce(N_Reader))
s2 --> s3 : msg2(d3,d4) [id(theId) xor d3 xor d4 =

hash(nonce(N_Reader), key(k))]
s2 --> s4 : msg2(d3,d4) [not (id(theId) xor d3 xor d4 =

hash(nonce(N_Reader), key(k)))]
@enduml

Figure 2.4: PlantUML source for Fig. 2.2

2.5.1 Classical Modelling Tools

As of May 2022, Wikipedia3 lists no fewer than 49 UML tools, where the features considered
relevant for comparison include support for UML2 and the languages for which code generation
or reverse engineering exist.

Notably, these features do not include analysis methods of UML2 models, such as simulation,
model checking, theorem proving or refinement.

Classical modelling tools provide support for UML models in the strict sense, i.e., following
the abstract syntax as prescribed by the MOF-expressed UML metamodel. Apart from editing
models, they can check constraints in the Object Constraint Language (OCL) and typically allow
some form of model transformations and code generation in certain programming languages.
This category includes Enterprise Architect4, according to [OE20] the most-used UML tool in
industry, as well as the Eclipse Modeling Tools5.

Mostly in the academic realm, some formalisations and formal tools for UML sublanguages
exist. More information on these can be found in Chapter 5.

2.5.2 PlantUML

PlantUML [pla] has been used to render all the UML diagrams in this thesis. Also, the formal
languages we develop are meant to provide a bridge between the worlds of PlantUML and the
verification framework HeTS by using a PlantUML-inspired syntax.

PlantUML itself is a tool mostly offering graphical rendering of UML diagrams, based on a
simple human-readable textual language (see Fig. 2.4). There are integrations into various other
tools, including Eclipse, Microsoft Word, Matlab and WordPress6. The author of a diagram can
tweak many graphical features, but for the most part, the tool is meant to choose good defaults.
For many diagram types, Graphviz is used as the underlying graph layout tool.

3https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
4Proprietary software by Sparx Systems, available at: https://sparxsystems.com/products/ea/index.

html
5Free software (Eclipse Public License) available from: https://www.eclipse.org/downloads/packages/

release/2022-03/r/eclipse-modeling-tools
6For a current list of PlantUML integrations, we refer the reader to https://plantuml.com/running

13

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://sparxsystems.com/products/ea/index.html
https://sparxsystems.com/products/ea/index.html
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://plantuml.com/running

2. The Unified Modeling Language

PlantUML is primarily a graphical tool, not a semantic one, and it is easily possible to
generate invalid diagrams. There is, however, experimental support for exporting models in
XMI.

14

Chapter 3

Institutions and Comorphisms

Contents
3.1 Running Example: Modal Logics . 15

3.2 Why use Institutions? . 17

3.3 Categories and Functors . 17

3.4 Institutions . 18

3.5 Example: An Institution for Modal Logics 19

3.6 Comorphisms . 24

In this chapter, we introduce the concepts of institutions (well-behaved logical formalisms
with a notion of vocabulary) and theoroidal comorphisms (well-behaved translations between
institutions). But, before we turn to a general discussion, let us first introduce a formalism which
we can use as an example.

3.1 Running Example: Modal Logics

Throughout this chapter, we will study a simple modal logic [Lam06, VPMY04] in order to
illustrate the concepts of institutions and comorphisms. Modal logic is concerned with the
discussion of possible situations. To this end it includes an operator ⟨⟩ϕ which indicates the
possibility of a formula ϕ being true. Such logics can include different modality labels, each of
which corresponds to a notion of possibility. For example, in a logic describing the weather,
possibility of rain could mean that it rains somewhere or that it rains at some time. Thus, we
would have a geographic and a temporal modality label.

For each notion of possibility we immediately gain a corresponding notion of necessity:
Whatever cannot possibly be false is necessarily true. This gives us a pair of modalities for each
label. In our weather example, geographic necessity of sunshine would mean that the sun shines
everywhere, whereas temporal necessity of sunshine would mean that the sun always shines.

15

3. Institutions and Comorphisms

Modal logic is a widely applicable method of reasoning for many areas of computer
science. These areas include artificial intelligence, database theory, distributed systems, program
verification, and cryptography theory.

We will now use a multimodal logic as a running example for building up to the notion of
institution.

Let M be a set whose elements we call modality labels and P a nonempty set whose elements
we call propositions. Then, sentences are defined by the following grammar, where modality
labels are referred to by m and propositions by p:

ϕ, ψ ::= p
|¬ϕ

|ϕ ∨ ψ

| ⟨m⟩ϕ
Necessity and the other propositional junctors can then be defined in the obvious way:

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ)

ϕ⇒ ψ := ψ ∨ ¬ϕ

ϕ⇔ ψ := (ϕ⇒ ψ) ∧ (ψ⇒ ϕ)

[m]ϕ := ¬⟨m⟩¬ϕ

Fixing an arbitrary sentence ϕ, we can moreover define:

true := ϕ ∨ ¬ϕ

false := ϕ ∧ ¬ϕ

In order to avoid ambiguity, we use the following operator precedence rules: Negation binds
the most tightly; followed by, on one level, conjunction and disjunction; followed by implication;
then equivalence; then the modal operators.

For our weather subject, we would use the modality labels M = {time,place} and the
atomic propositions P = {sunny,raining}.

Then, we might wish time and place to relate in such a way that

(⟨place⟩ [time]sunny)⇒ ([time] ⟨place⟩sunny)
holds. In words this would be: If there is a place that is always sunny, there is always a sunny
place. Of course, the converse would not be tautological.

With some optimism for our food production we might claim:

⟨place⟩ ((⟨time⟩sunny) ∧ (⟨time⟩raining))
In words this would be: There are places where both sunshine and rain do occur.

We will use this notion of modal logics to illustrate the definitions of institutions and
theoroidal institution comorphisms. The logics we develop for UML sublanguages are related to
the multimodal logics presented here, but somewhat more complicated through their inclusion
of constructs from hybrid logic.

16

3.2. Why use Institutions?

3.2 Why use Institutions?

What is a logic? To answer this question formally, Goguen and Burstall developed the concept of
an institution [GB83]. Their account contains all the standard ingredients: Signatures, sentences,
structures and a notion of satisfaction. However, the collections of structures and, crucially,
of signatures, are not simply given as sets, but as categories, i.e., each includes a notion of
morphisms. Moreover, there are (several) notions of morphisms between different institutions.

Structure morphisms are, of course, well known in all areas of mathematics. The addition
of signature morphisms and morphisms between institutions is particularly interesting for us
in a software and systems specification context: By enabling us to reason about changes of
notation, they simplify and justify code reuse, refinement and relationships between artefacts
in different specification or programming languages. In our general research programme, they
allow us to develop small semantics for parts of the UML and combine them by means of a
general framework for heterogeneous specification. But already when we are specifying in
one particular logic tailored to the problem at hand, we can apply established verification tools
developed for different logics, even several different tools within one proof, as long as logics and
their translations fulfil the requirements of Institution Theory.

3.3 Categories and Functors

We briefly recapitulate the notions of category and functor and introduce our notations for both.

Definition 3.1 A category C is given by

– a class Obj(C), with elements called objects,

– classes C(X,Y), with elements called morphisms from X to Y, for all X,Y ∈ Obj(C),

– an identity morphism 1X : C(X, X) for each X ∈ Obj(X)

– composition1 operations _ ◦X,Y,Z _ : C(Y, Z)×C(X,Y)→C(X, Z) for all X,Y, Z ∈Obj(C)

satisfying

1B ◦A,B,B f = f = f ◦A,A,B 1A

(f ◦B,C,D g) ◦A,B,D h = f ◦A,C,D (g ◦A,B,C h)

for all A, B, C ∈ Obj(C), f ∈ C(C, D), g ∈ C(B, C), h ∈ C(A, B).

Definition 3.2 A functor F between two categories C and D (written F : C→ D, like for
functions) is given by

– an object part Obj(F) : Obj(C)→ Obj(D), where we abbreviate Obj(F)(O) to F(O)

1We will usually write composition omitting indices when types are clear. Where the category is clear, we will
write morphisms as m : X→ Y.

17

3. Institutions and Comorphisms

– morphism parts, which are functions

F(O,O′) : C(O,O′)→ D(F(O), F(O′)) for all O,O′ ∈ Obj(C),

where we abbreviate F(O,O′)(f) to F(f),

preserving identities and composition, i.e.:

F(1O) = 1F(O)

F(f ◦ g) = F(f) ◦ F(g)

Definition 3.3 A natural transformation ν between two functors F, G : C → D (written
ν : F→ G) is given by a morphism νO : F(O)→ G(O) for each object O ∈Obj(C), satisfying
the conditions that νY ◦ F(f) = G(f) ◦ νX for all morphisms f ∈ C(X,Y).

3.4 Institutions
We are now ready to define institutions, which we will then illustrate by defining an institution
for modal logics.

Definition 3.4 An institution I is given by

– a category SigI , with objects called signatures,

– a functor SenI assigning

– to each signature Σ a set SenI (Σ) with elements called Σ-sentences and
– to each signature morphism σ : Σ→ Σ′ a function SenI (σ) : SenI (Σ)→ SenI (Σ′),

– a functor ModI from signatures to categories2 called “the reduct functor” assigning

– to each signature Σ a category with objects called models and
– to each signature morphism σ : Σ→ Σ′ a functor ModI (σ) : ModI (Σ′)→ModI (Σ)

going backwards between the categories of models

and

– a relation |=IΣ∈ModI (Σ)× SenI (Σ) for each signature Σ, called the satisfaction relation

fulfilling the satisfaction condition:

ModI (σ)(M′) |=IΣ ϕ⇔M′ |=IΣ′ SenI (σ)(ϕ)

for all signatures Σ, Σ′ and all Σ′ modelsM′, Σ sentences ϕ and signature morphisms σ : Σ→ Σ′.
2The reduct functor has the signature ModI : (SigI)op→ CAT. It comes from the opposite category of the

category of signatures, i.e., the same category, except that morphisms go in the opposite direction. In other words,
the functor ModI reverses the direction of morphisms. For the target of this functor, some standard precautions have
to be taken about size issues: It is the category of all (smaller) categories, which has to be large enough to include all
categories of models we are interested in. This makes sense in any setting supporting a hierarchy of set universes.

18

3.5. Example: An Institution for Modal Logics

The slogan for the satisfaction condition is: “Truth is invariant under change of nota-
tion” [GB83].

We will freely abbreviate SenI (σ)(ϕ) to σ(ϕ) and ModI (σ)(M) toM|σ.
An institution as such does not include a notion of inference. There are established notions

of an institution equipped with an inference system, see e.g. [Mos02].

3.5 Example: An Institution for Modal Logics
We will now introduce an institution for the modal logics described in Sect. 3.1.

Definition 3.5 A modal signature Σ ∈ Obj(O) is a pair (P(Σ), M(Σ)), where P and M are
sets, giving us propositions and modality labels, respectively.

Example 3.6 In our weather example a signature Σ = (P, M) could be given as:

P = {sunny,raining}
M = {time,place}

Definition 3.7 A modal signature morphism σ : C(Σ, Σ′) is given by

– a proposition part P(σ) : P(Σ)→ P(Σ′) and

– a modality part M(σ) : M(Σ)→ M(Σ′).

Given signatures Σ, Σ′, Σ′′ and morphisms σ ∈ C(Σ′, Σ′′), τ ∈ C(Σ, Σ′), we define identities
and composition:

P(1Σ) = 1P(Σ)

M(1Σ) = 1M(Σ)

P(σ ◦ τ) = P(σ) ◦ P(τ)
M(σ ◦ τ) = M(σ) ◦M(τ)

Example 3.8 Returning again to the weather example, we could have an embedding from
a specialised Californian weather logic. There, sunshine, being almost universal, needs no
mentioning. Rain, however, when it occurs, is the topic of every conversation. So the Californian
weather signature ΣC would look as follows:

PC = {dripping}
MC = {when,where}

This signature can then be embedded into our original weather signature Σ by the following
morphism σ = (P(σ), M(σ)) : ΣC→ Σ:

P(σ)(dripping) = raining

M(σ)(when) = time

M(σ)(where) = place

19

3. Institutions and Comorphisms

Definition 3.9 Modal sentences are defined by the grammar in Sect. 3.1.

To recall, a sentence would be, e.g.:

⟨place⟩ ((⟨time⟩sunny) ∧ (⟨time⟩raining))

Definition 3.10 Moreover, given any signature Σ ∈ Obj(O), we define a category Mod(Σ) of
all structures over Σ: An objectM∈ Obj(Mod(Σ)) is given by a Kripke frame, i.e.,

– a set W(M), with elements called worlds,

– relations R(M)(m)⊆W(M)×W(M) called (world) accessibility relations for all modality
labels m ∈ M(Σ) and

– a relation Sat(M) ⊆W(M)× P(Σ) called proposition satisfaction.

Between two structures, there is a single morphism ≤! :M→M′ if the world set, accessibility
relations and proposition satisfaction inM are all subsets of their counterparts inM′. Otherwise,
the set of morphisms is empty.

Example 3.11 Over our weather signature, worlds could be given as the Cartesian product of
times and places, i.e. W(M) = Wt ×Wp. Figure 3.1 shows a possible set of times with its
accessibility relation; Fig. 3.2 shows the same for places. In these cases the relations would be
extended to worlds by ignoring the other tuple component (places or times).

The examples given are very simple in at least two ways that cannot be generalised to
arbitrary multimodal logics:

1. Each world is accessible from each. To justify a more interesting relation, we could consider
another modality nearby which holds in all nearby cities, defined as those reachable from
our current location by a train journey. We could then indicate sunshine somewhere around
here (⟨nearby⟩sunny) or all around here ([nearby]sunny). Figure 3.3 gives an example
relation for this modality. Likewise, in the case of time, modalities with more restrictive
accessibility can be imagined, and are commonly used in temporal logics. In theories over
our old weather signature, we might wish to use axioms ensuring this all-connectedness.

2. Time and place are effectively independent. If we wanted a relativistic weather logic, we
would need to consider the space-time continuum. Worlds could not then be given by a
Cartesian product of independent places and times. The two accessibility relations would
then need to be stated directly over whole set of worlds, and time and space could interact.
Such interactions between accessibility relations are common in practice. However, where
the relations are independent, human and automated reasoning can often be simplified by
exploiting this natural modularity.

The reader can easily imagine a proposition satisfaction relation for the worlds and the
weather propositions given.

20

3.5. Example: An Institution for Modal Logics

1 March

2 March

3 March

Figure 3.1: A possible accessibility relation for time
over our weather signature.

Munich

Augsburg

Los Angeles

Figure 3.2: A possible accessibility relation for places
over our weather signature.

Munich

Augsburg

Los Angeles

Figure 3.3: A possible accessibility relation
R(M)(nearby) over an extended weather signature.

Definition 3.12 We now define translation for multimodal sentences as the structural closure of
proposition and modality translation:

σ(p) = P(σ)(p)
σ(¬ϕ) = ¬σ(ϕ)

σ(ϕ ∨ ψ) = σ(ϕ) ∨ σ(ψ)

σ(⟨m⟩ϕ) = ⟨M(σ)(m)⟩σ(ϕ)

Example 3.13 The Californian weather sentence

⟨when⟩dripping

translates into

⟨time⟩raining

.

Definition 3.14 Reduction for multimodal structures preserves the world set and transports
accessibility relations and proposition satisfaction.

W(M′|σ) = W(M′)

21

3. Institutions and Comorphisms

R(M′|σ)(m)(v, w) ⇐⇒ R(M′)(M(σ)(m))(v, w)

Sat(M′|σ)(w, p) ⇐⇒ Sat(M′)(w, P(σ)(p))

Example 3.15 Reducing general weather models to Californian weather models is slightly more
involved than embedding sentences. A model given by

W(M′) = {(Frisco,April 1)}
R(M′)(time) = {((Frisco,April 1), (Frisco,April 1))}

R(M′)(place) = {((Frisco,April 1), (Frisco,April 1))}
Sat(M′) = {((Frisco,April 1),raining),

((Frisco,April 1),sunny)}

reduces to

W(M′) = {(Frisco,April 1)}
R(M′)(when) = {((Frisco,April 1), (Frisco,April 1))}

R(M′)(where) = {((Frisco,April 1), (Frisco,April 1))}
Sat(M′) = {((Frisco,April 1),dripping)}.

So we have dropped one proposition and “renamed” the accessibility relations as well as the
remaining proposition. If the Californian logic additionally had no concept of time, we would
drop one accessibility relation, but worlds would still carry time information, and the remaining
accessibility relation would still only be renamed without being modified.

In any of these variations, consider a sentence the translation of which holds in all models of
the translated signature. Then, by the satisfaction condition, the sentence must already hold in all
those models over the original signature which arise as reducts of some model over the translated
signature. In fact, all Californian weather models arise this way, so a sound proof system for
general weather sentences would give rise to another sound proof system for Californian weather
sentences. A general theory of such borrowings can be found in [CM97]. For our proof case
studies, we establish a borrowing principle in Prop. 10.3.

Definition 3.16 The satisfaction relation for multimodal sentences and structures is defined by:

M |=ϕ ⇐⇒ for all w ∈W(M), we have (M, w) |= ϕ

(M, w) |=p ⇐⇒ Sat(M)(w, p)
(M, w) |=¬ϕ ⇐⇒ (M, w) ̸|= ϕ

(M, w) |=ϕ ∨ ψ ⇐⇒ (M, w) |= ϕ or (M, w) |= ψ

(M, w) |= ⟨m⟩ϕ⇐⇒ exists v ∈W(M)

s.t. R(M)(m)(w, v)
and (M, v) |= ϕ

Then the following theorem establishes the satisfaction condition by a typical proof using
structural induction over the grammar of sentences:

22

3.5. Example: An Institution for Modal Logics

Theorem 3.17 Let Σ, Σ′ ∈ Sig(C) , σ ∈ C(Σ, Σ′) , M′ ∈ Mod(Σ′) , w ∈ W(M′|σ) ⊆
W(M′). Then the following equivalence holds:

(M′, w) |= σ(ϕ) ⇐⇒ (M′|σ, w) |= ϕ

Proof. We proceed by induction over ϕ:
case p:

(M′, w) |= σ(p)
⇐⇒ [def. form. trans]

(M′, w) |= P(σ)(p)
⇐⇒ [def. sat. rel.]

Sat(M′)(w, P(σ)(p))
⇐⇒ [def. reduct]

Sat(M′|σ)(w, p)
⇐⇒ [def. sat. rel.]

(M′|σ, w) |= p

case ¬ϕ:

(M′, w) |= σ(¬ϕ)

⇐⇒ [def. form. trans]
(M′, w) |= ¬(σ(ϕ))

⇐⇒ [def. sat. rel.]
((M′, w) ̸|= ¬(σ(ϕ)))

⇐⇒ [IH]

((M′|σ, w) ̸|= ϕ)

⇐⇒ [def. sat. rel.]
(M′|σ, w) |= ¬ϕ

case ϕ ∨ ψ:

(M′, w) |= σ(ϕ ∨ ψ)

⇐⇒ [def. form. trans]
(M′, w) |= (σ(ϕ)) ∨ (σ(psi))

⇐⇒ [def. sat. rel.]
(M′, w) |= (σ(ϕ))or(M′, w) |= (σ(ψ))

⇐⇒ [IH]

((M′|σ, w) |= ϕ)or((M′|σ, w) |= ψ)

⇐⇒ [def. sat. rel.]

23

3. Institutions and Comorphisms

(M′|σ, w) |= ϕ ∨ ψ

case ⟨m⟩ϕ:

(M′, w) |= σ(⟨m⟩ϕ)
⇐⇒ [def. form. trans.]

(M′, w) |= ⟨M(σ)(m)⟩σ(ϕ)
⇐⇒ [def. sat. rel.]

(exists v′ ∈W(M′)

s.t. R(M′)(M(σ)(m))(w, v′)
and (M′, v′) |= σ(ϕ)))

⇐⇒ [from def. form. trans.:
R(M′)(M(σ)(m))(w, v′)⇒ v′ ∈W(M′|σ)]
(exists v ∈W(M′|σ)
s.t. R(M′)(M(σ)(m))(w, v)
and (M′, v) |= σ(ϕ))

⇐⇒ [IH]

(exists v ∈W(M′|σ)
s.t. R(M′)(M(σ)(m))(w, v)
and ((M′|σ, v) |= ϕ))

⇐⇒ [def. reduct]
(exists v ∈W(M′|σ)
s.t. R(M′|σ)(m)(w, v) and ((M′|σ, v) |= ϕ))

⇐⇒ [def. sat. rel.]
(M′|σ, w) |= ⟨m⟩ϕ

3.6 Comorphisms

Definition 3.18 An (institution) comorphism [GR02] ν : I → J between institutions I and J
is given by

– a functor νSig : SigI → SigJ translating signatures,

– a natural transformation νSen : SenI → (SenJ ◦ νSig) translating sentences and

– a natural transformation νMod : (ModJ ◦ (νSig)op)→ModI reducing models

fulfilling the satisfaction conditionM′ |= Sen(ν)(ϕ) ⇐⇒ M′|ν |= ϕ.

24

3.6. Comorphisms

Note that as before, sentences are translated forward and structures reduced backward.
Signatures and their morphisms are translated forward.

We will actually use a slight variation of the notion of comorphism, which allows properties
that are inherent in a signature of the source institution to be expressed by sentences in the target
institution. To make this precise, we first extend signatures to theory presentations:

Definition 3.19 A theory presentation T = (Σ, Φ) in the institution I consists of a signature
Σ ∈ |SigI |, also denoted by Sig(T), and a set of sentences Φ ⊆ SenI (Σ). Its model class
ModI (T) is the class {M ∈ModI (Σ) |M |=IΣ ϕ for all ϕ ∈ Φ} of the Σ-structures satisfying
the sentences in Φ. A theory presentation morphism σ : (Σ, Φ)→ (Σ′, Φ′) is given by a signature
morphism σ : Σ→ Σ′ such that M′ |=IΣ′ SenI (σ)(ϕ) for all ϕ ∈ Φ and M′ ∈ModI (Σ′, Φ′).
Theory presentations in I and their morphisms form the category PresI .

Note that Φ can be an infinite set of sentences, making theory presentations more general
than finitary notions of a specification.

Definition 3.20 A theoroidal institution comorphism3 ν = (νSig, νMod, νSen) : I → J is given
by

– a functor νPres : SigI → PresJ inducing the functor νSig = Sig ◦ νSig : SigI → SigJ on
signatures,

– a natural transformation νMod : ModJ ◦ (νSig)
op→ModI on models and structures, and

– a natural transformation νSen : SenI → SenJ ◦ νSig on sentences,

such that for all Σ∈ |SigI |, M′ ∈ |ModJ (νSig(Σ))|, and ϕ∈ SenI (Σ) the following satisfaction
condition holds:

νMod
Σ (M′) |=IΣ ϕ ⇐⇒ M′ |=J

νSig(Σ) νSen(Σ)(ϕ) .

A theory presentation (Σ, Φ) over the institution I is translated via a theoroidal institution
comorphism ν : I → J into the theory presentation νPres(Σ, Φ) = (Σν, Φν ∪ νSen

Σ (Φ)) over
J where νSig(Σ) = (Σν, Φν) and νSen

Σ (Φ) = {νSen
Σ (ϕ) | ϕ ∈ Φ}.

3.6.1 Example: A Theoroidal Comorphism for the Standard Translation

As an example of a theoroidal comorphism, we present the standard translation from our
institution for multimodal logics into an institution for first-order logic. We will not present the
latter institution in detail. The interested reader can find an example of a first-order institution
in [DM16].

The standard translation is the established way of relating modal logics to predicate logic
[BS95]. We will use an adapted version of it in our treatment of State Machines. Intuitively, it

3What we call theoroidal institution comorphism was introduced as simple map of logics [Mes89]. A similar
notion using theories (closed under semantic consequence) instead of presentations (arbitrary sets of sentences) is
called simple theroidal institution comorphism in [GR02], where there is also a notion of theoroidal comorphism
mapping from, as well as to, theories.

25

3. Institutions and Comorphisms

is best understood by observing that the sentence translation directly mirrors the semantics of
multimodal logic.

Translation of signatures. Assume a multimodal signature Σ = (P, M).
We will here take a first-order signature ΣFOL = (S, F, Pr) to consist of three sets, giving us

sorts (S), function symbols (F) and predicate symbols (Pr), respectively, which are compatible
in the obvious ways. In our translation of modal logic signatures, we have just one sort, namely
that of worlds, no function symbols, per proposition one predicate symbol Sat(p) for proposition
satisfaction, and per modality label m one accessibility relation R(m). Observe how this mirrors
the definition of multimodal models.

νSig(Σ) = ((S, F, Pr), Φ)

S = {W}
F = {}

Pr = {Sat(p) : W | p ∈ P} ∪ {R(m) : W ×W | m ∈ M}
Φ = {}

If we wished to have axioms restricting the class of legal accessibility relations, as mentioned
above, these could go into Φ. Here, however, we are going to allow all relations of appropriate
type.

Translation of sentences. For sentences, we first give a version of the translation indexed over
a variable for the current world. This version we define by recursion over the argument sentence.
Then, as needed for the comorphism, we define a version without the index by universally
quantifying over worlds.

νSen
w (p) = Sat(p)(w)

νSen
w (¬ϕ) = ¬νSen

w (ϕ)

νSen
w (ϕ ∨ ψ) = νSen

w (ϕ) ∨ νSen
w (ψ)

νSen
w (⟨m⟩ϕ) = ∃v : W.R(m)(w, v) ∧ νSen

v (ϕ),
where v is a variable not free in ϕ

νSen(ϕ) = ∀w : W.νSen
w (ϕ)

Example 3.21

(⟨place⟩ [time]raining)⇒ ([time] ⟨place⟩raining)

would translate to

∀w1 : W.(∃w2 : W.R(place)(w1, w2)∧
¬∃w3 : W.R(time)(w2, w3) ∧ ¬(Sat(raining)(w3)))

⇒ (¬∃w2 : W.R(place)(w1, w2) ∧ ¬

26

3.6. Comorphisms

∃w3 : W.R(time)(w2, w3) ∧ Sat(raining)(u)).

We can observe that the sentences of our specialised logic are more succinct than the
corresponding first-order sentences. Note, however, that the latter can be somewhat shortened
by adding a specialised translation for the necessity modalities.

Reduction of structures. First-order structures are functions that take each symbol to its
interpretation: Sorts to nonempty sets, and function and predicate symbols to appropriate subsets
of Cartesian products of interpreted sorts. We only have to handle structures that conform to
the translation of the modal signature (P, M), which makes it straightforward to recover our
multimodal structures:

νMod(M′) = (M′(W),{M′(R(m)) | m ∈ M},{M′(Sat(p)) | p ∈ P})

27

Chapter 4

The Algebraic Specification Language
Casl and its Toolset HeTS

Contents
4.1 The Casl Language Family . 29
4.2 Heterogeneous Tooling with HeTS . 32
4.3 A Short Introduction to Haskell . 35
4.4 Parsec . 40

This chapter introduces the reader to the technical setting for our proof examples and our
implementation: first to the Common Algebraic Specification Language (Casl); then to the
Heterogeneous Toolset (HeTS), a specification toolset based on Institution Theory in which
Casl is the central language; then to Haskell, the language in which HeTS, including our
extensions, are implemented; and finally to Parsec, the Haskell library used for all parsing needs
in HeTS.

4.1 The Casl Language Family
In 1995, the Common Framework Initiative (CoFI) [Mos97] was started to reduce the fragmenta-
tion of the field of algebraic specification. Convinced that there had been enough experimentation
for the community to know which features, convictions and tastes should be considered in
such an effort, CoFI set out to build a core language that should be acceptable to the whole
community with comprehensive documentation and agreed principles for defining restrictions
and extension of that language. In 1997 a language design was proposed, featuring abstract
syntax and semantics, but deliberately leaving the concrete syntax open. Version 1.0 of the
Common Algebraic Specification Language (Casl) was adopted in 2001. The current version
(1.0.2) was adopted in 2003, with no further changes planned [BM03].

The language Casl is the core output of CoFI. The comprehensive documentation, which
the earlier, fragmented efforts were often missing, comes in the form of two manuals: The User
Manual [BM03] is an example-based introduction to the language and to some supporting tools.

29

4. The Algebraic Specification Language Casl and its Toolset HeTS

It aims to be didactical rather than complete, but is still more comprehensive than we can be in
this thesis. The Reference Manual, on the other hand, aims for completeness above all else. It
provides a language overview, formal grammars for the abstract and concrete syntax of Casl, as
well as the formal semantics [RMS03].

Several aspects of Casl can be understood and used largely independently from one another:
Basic Specifications are a notation for many-sorted first-order theories with sort generation
constraints, subsorting, partiality and equality. Much effort went into combining the availability
of total and partial functions on the one hand with subsorting on the other hand. The language
of Structured Specifications provides constructs for parameterising, modifying (by hiding and
renaming of symbols) and combining Basic Specifications. The structuring here applies only
to the presentation of the specification and does not affect the models. In contrast to this,
Architectural Specifications can require structure and parameterisation of models (pragmatically
speaking: of conforming software artefacts). Libraries are sequences of named specifications,
where earlier specifications can be included by name in later Structured and Architectural
Specifications.

Consider the specification of natural numbers in Fig. 4.1. Everything between Nat = and
then is a Basic Specification. A Basic Specification introduces sorts, operation symbols and
predicate symbols with type signatures, and axioms. In our natural numbers example, this
is the order in which they are given, with one exception: With the free type construction we
simultaneously introduce operation symbols for the constructors and axioms that requires the
sort to be freely generated by the constructors. A sort could also be introduced with just
generatedness or with no generation constraints at all. The meaning of these constraints is as
usual, but can be summarised by the slogan “no junk, no confusion”: essentially, for a generated
type, all values can be written as constructor terms (“no junk”). This establishes an induction
principle, which actually takes us somewhat beyond first-order logic. For free types, different
constructor terms additionally have to stand for different values (“no confusion”). For the precise
semantics, we refer the reader to the Reference Manual [RMS03].

Turning again to the example, we see three sections separated by then. This is the first
structuring concept we will consider, that of extension. Each section here is spelled out directly,
but we could also refer to other specifications by name. The later sections add symbols and
axioms that can refer back to the earlier sections, e.g., a new operation can have a sort introduced
in an earlier section. The reader will further notice that that axioms can be given names (here:
decimal_def) and that then can be followed by annotations about the relationship of the
following to the previous section. Here, the second section is a definitional extension of the
first, and third merely adds implied axioms – when we come to proving, these will be our proof
obligations.

Besides extension, Casl offers the structuring concepts of union, renaming and hiding of
symbols, naming of specifications, and generic (parameterised) specifications, which will not
here be discussed in detail.

30

4.1. The Casl Language Family

1 %prec({__+__}<{__*__})%
2 %left_assoc(__+__, __*__)%
3 %number __@@__
4

5 spec Nat =
6 free type Nat ::= 0 | suc (Nat)
7 op __ + __ : Nat * Nat -> Nat;
8 __ * __ : Nat * Nat -> Nat;
9 pred __<=__, __ < __, __>__, __>=__: Nat * Nat

10

11 forall n,m,o: Nat
12 . 0 + n = n
13 . suc(n) + m = suc(n+m)
14

15 . 0 * n = 0
16 . suc(n) * m = m + (n * m)
17

18 . 0 <= n
19 . not suc(m) <= 0
20 . suc(m) <= suc(n) <=> m <= n
21

22 . m >=n <=> n <= m
23 . m < n <=> m <= n /\ not m=n
24 . m > n <=> n < m
25

26 then %def
27 %% Operations to represent natural numbers with digits:
28 ops 1: Nat = suc(0);
29 2: Nat = suc(1);
30 3: Nat = suc(2);
31 4: Nat = suc(3);
32 5: Nat = suc(4);
33 6: Nat = suc(5);
34 7: Nat = suc(6);
35 8: Nat = suc(7);
36 9: Nat = suc(8);
37 __@@__(m: Nat; n: Nat): Nat = m * suc(9) + n %(decimal_def)%
38

39 then %implies
40 op __ + __ : Nat * Nat -> Nat, assoc, comm, unit 0;
41 __ * __ : Nat * Nat -> Nat, assoc, comm, unit 1;
42 end

Figure 4.1: A Casl specification for natural numbers.

31

4. The Algebraic Specification Language Casl and its Toolset HeTS

Figure 4.2: The HeTS language graph, showing UMLState with the translation to Casl . Green as opposed to white
indicates higher stability of the logic; blue indicates logics with direct prover support[MMCL14].

4.2 Heterogeneous Tooling with HeTS

The Heterogeneous Toolset HeTS1
,
2 [MMCL14, MML07a] is a verification suite built around

Casl and Institution Theory. It is written in the functional programming language Haskell
[M+10], and contains parsers for various formal languages, as well as translations between
those languages. HeTS includes bindings to many existing verification tools. It provides proof
support for heterogeneous specifications, i.e., specifications using more than one language. This
heterogeneous verification is meaningful as long as the languages involved are institutions and
the translations are theoroidal comorphisms, as introduced in Chapter 3.

We will now briefly discuss some screenshots and graphics to illustrate some principles of
HeTS and our use of it, simultaneously giving the reader an impression of its user interface.

Figure 4.2 shows HeTS with a visualisation of its language graph. UMLState (leftmost in
the top row) is a language we implement in this thesis for UML State Machines – more on this
in Chapter 12. It is easy to see the central place of Casl as both the source and target of many
translations. Our approach fits neatly into that picture: We use translations via Casl to borrow
[CM97] existing verification tools for our new languages.

Specifications and verification tasks are represented as development graphs. An example of
such a graph is shown in Fig. 4.3. A development graph represents a library, which is mostly like
a Casl library, but allows the specifications contained in the library to be written in any of the
logics implemented in HeTS, not just Casl itself. Here we see in action the independence of the

1https://hets.eu/
2In active development at https://github.com/spechub/Hets.

32

https://hets.eu/
https://github.com/spechub/Hets

4.2. Heterogeneous Tooling with HeTS

Figure 4.3: A development graph in HeTS. Figure 4.4: The development graph from Fig. 4.3 after
applying the global decomposition proof rule.

Figure 4.5: A context menu of
actions possible on the red node
from Fig. 4.4.

Figure 4.6: The GUI for configuring proof attempts in HeTS.

Casl structuring concepts from the Basic Specifications. However, in addition to renaming, we

33

4. The Algebraic Specification Language Casl and its Toolset HeTS

Figure 4.7: A proof window in HeTS with some proof obligations resolved (in
green) and some open.

now have translation along comorphisms as another kind of change of notation. Specifications
can be mixed by translating a specification into the logic of another with which we wish to
combine it. Heterogeneous libraries can be written in the Casl extension HetCasl [Mos05] or
the language DOL [Mos16], derived from HetCasl and standardised by the OMG. Moreover,
HeTS can support other notations for structuring concepts, as it does for the Haskell module
system in the context of higher-order specifications with HasCASL, another Casl extension.

Returning for a moment to the graph representation of libraries, we see that the nodes
are Basic Specifications or specification extensions. The edges show that a specification is
based on another, be it through translation from a different logic or through Casl structuring
concepts. Some such edges, most importantly those corresponding to uses of then %implies
(e.g., Fig. 4.1, line 39) give rise to proof obligations.

HeTS offers a graphical and a textual user interface for discharging such proof obligations.
The GUI interaction for a typical proof could go as follows: Figure 4.3 shows a development

graph with named nodes for name specifications and unnamed nodes for intermediate extension
steps (separated in HetCasl by the uses of then). Applying a rule from the heterogeneous
proof system transforms this into the graph of Fig. 4.4. Here proof obligations have been turned
into local proof obligations in a node (in red) in one logic. We will later deal with cases where
proof obligations are localised into several nodes. Figure 4.5 shows the actions we can perform
on the red node containing the proof obligation. Choosing the action Proof leads us to the
window of Fig. 4.6, where we can configure our proof attempt. In particular, we can choose a
prover, a comorphism into the input language of that prover, as well as a selection of axioms and

34

4.3. A Short Introduction to Haskell

Figure 4.8: A proof window in HeTS with some proof obligations resolved (in
green), one timed out (in blue), and some open.

proof goals to include. The interaction with the chosen prover then occurs through the window
shown in Fig. 4.7. The selected prover here is Spass [WDF+09], a fully automatic prover, so
interaction is restricted to starting and stopping proof attempts with variations in timeout and
other options.

4.3 A Short Introduction to Haskell

We will briefly introduce the reader to the three main aspects setting Haskell apart from most
earlier functional programming languages, namely typeclasses, lazy evaluation and encapsulation
of effects using monads. This section and the next were written as a Jupyter notebook3 with
IHaskell4. This allows us to automatically display results of evaluation, type inference, etc.

4.3.1 Typeclasses

A typeclass can be thought of as a predicate with one or more types5,
6 as arguments, together

with certain values (the methods), the types of which can mention the typeclass arguments. The

3https://jupyter.org/
4https://github.com/gibiansky/IHaskell
5They are type level functions, which are also commonly called types in this context.
6Some typeclass features, such as typeclasses with multiple parameters, require language extensions. Several

such extensions are in common use.

35

https://jupyter.org/
https://github.com/gibiansky/IHaskell

4. The Algebraic Specification Language Casl and its Toolset HeTS

type expressions for the methods have to involve some of the argument types of the typeclass. The
predicate is defined loosely: It is is always possible to add an instance for another combination
of argument types.

This enables us to write programs with a constrained parametric polymorphism7: Expressions
which are given solely in terms of the methods of certain type classes are available for all
combinations of types implementing those type classes.

A simple example is the functor typeclass:

[1]: class Functor f where
fmap :: (a -> b) -> f a -> f b

fmap then has the constrained polymorphic type:

[2]: :type fmap

fmap :: forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b

Instances of this typeclass should be thought of as endofunctors, where objects are Haskell
types, and morphisms are Haskell functions. Then the typeclass parameter f is the functor’s
object part and fmap is the morphism part. fmap promotes a function on so-called pure values
to a function on functorial values. Of course, the same value can be thought of as pure or
functorial in different contexts. It is common to require the instances of a typeclass to satisfy
some laws – for functors, these are the usual preservation laws for identities and composition.

The following defines the Functor instance for the “list of’ ’ endofunctor:

[3]: instance Functor [] where
fmap g [] = []
fmap g (x:xs) = g x : fmap g xs

4.3.2 Lazy Evaluation

Haskell uses non-strict evaluation. In practice, implementations use lazy evaluation, which is
non-strict evaluation with sharing. Strictness can be explicitly enabled in certain situations.

Non-strictness here means that Haskell terms are only evaluated as far as is necessary. This
usually means that when a function matches one of its arguments against a constructor8, the
argument is evaluated until the constructor at its root is known. Failure to produce such a
constructor, be it through non-termination or some other way, is represented by a special value
⊥, which each Haskell type contains.

For example, the following defines a nonterminating computation by a simple recursion:

[4]: regress = regress

7Unconstrained parametric polymorphism is also possible.
8This is the situation for Algebraic Data Types, “Int“, “Char“, etc., . For values of function types, λ-abstraction

is treated somewhat like a constructor.

36

4.3. A Short Introduction to Haskell

The evaluation of regress would then fail to terminate. The follwing likewise produces ⊥,
but through an incomplete case distinction:

[5]: incompleteHead (x:xs) = x

[6]: incompleteHead []

<interactive>:1:1-25: Non-exhaustive patterns in function␣
↪→incompleteHead

Another way of producing ⊥ is by explicitly raising an error:

[7]: error "Oops..."

Oops...
CallStack (from HasCallStack):
error, called at <interactive>:1:1 in interactive:Ghci117

However, non-strictness allows us to usefully define:

[8]: aList = [1,regress]
anInfiniteList = [1,3..]
sharingFun xs = incompleteHead xs + length xs

Now the following computations all yield results:

[9]: incompleteHead aList

1

[10]: anInfiniteList !! 7

15

[11]: sharingFun aList

3

37

4. The Algebraic Specification Language Casl and its Toolset HeTS

In words, we can take the head of a list with undefined second element. We can likewise take
a (sufficiently defined) infinite list and retrieve its seventh entry. Finally, we see that Haskell can
compute the length of a list with an undefined element, since the length of a list only depends on
its spine, formed by the constructors (:) (i.e., cons) and [] (i.e., empty list).

In this setting, a function argument has to be a representation of the computation that would
produce both the constructor and the representation of the constructor’s arguments. Haskell
implementations avoid copying these representations, but instead pass them around by means
of pointers, thus also avoiding the need to evaluate them repeatedly, which could arise in a
naive implementation of non-strict semantics. For example, without this sharing aspect of lazy
evluation, the argument to sharingFun would be copied and (partly) evaluated twice.

Sharing is an implementation detail, which does not show up in the denotational semantics
and is not required by the Haskell standards. In practice, however, Haskell implementations use
lazy evaluation, i.e., non-strict evaluation with sharing.

The theoretical underpinnings for strict and non-strict evaluation and their denotational
semantics are to be found in domain theory [Sco82].

4.3.3 Monads: Encapsulating Side Effects

In Haskell, a function should be thought of as doing nothing beyond producing a value of its
return type. This does not mean that effectful programs cannot be implemented in Haskell, only
that their type must9 indicate which effects are possible.

A Monad is a special kind of Functor. Its type level function turns a type of values into a
type of so-called monadic actions with result values of the original type. Monads must implement
two methods, the first being:

return :: Monad m => a -> m a

This method takes a pure value and turns it into a computation that does nothing beyond
returning that value. In other words, it allows us to consider a pure computation as an effectful
one.

The second method of Monad is:

(>>=) :: Monad m => m a -> (a -> m b) -> m b

This method is pronounced “bind” and is, roughly, sequential composition of two actions.
However, the second action can depend on the result of the first, so the actual second argument
is a family of actions, as can be seen in the type signature.

These two methods are expected to satisfy:

1) the left identity law:

return x >>= f == f x

2) the right identity law:
9There are ways around this, which we will not discuss here.

38

4.3. A Short Introduction to Haskell

m >>= return == m

3) associativity:

(m >>= f) >>= g == m >>= (\x -> f x >>= g)

A Monad can be defined simply by implementing an instance of the Monad typeclass. Haskell
has a special notation for writing monadic computations in an imperative style without losing
the effect encapsulation:

[12]: import Control.Monad
divisors :: (Integral a, Enum a, Show a) => a -> [String]
divisors bound = do
x <- [2..bound]
y <- [2..x]
guard (x ‘mod‘ y == 0)
return (show y ++ " divides " ++ show x)

divisors 4

["2 divides 2","3 divides 3","2 divides 4","4 divides 4"]

The above is a computation in the list monad, which can be considered to provide a
non-determinism effect. Sequencing in the do-notation is equivalent to ordinary applications of
(>>=), where the intermediate results are λ-bound.

In terms of list comprehensions, the above computation could be stated as:

[13]: divisors bound = [show y ++ " divides " ++ show x
| x <- [2..bound]
, y <- [2..x]
, x ‘mod‘ y == 0
]

divisors 4

["2 divides 2","3 divides 3","2 divides 4","4 divides 4"]

Haskell provides an IO-Monad, which contains most effects one would usually expect from
an imperative programming language, including File IO, mutable variables and concurrency.
Beyond this, there are many specialised Monads, to which, as mentioned, the user can easily add.
One of the areas where such monads have proved very successful is parsing, to which we will
turn our attention in the next section.

39

4. The Algebraic Specification Language Casl and its Toolset HeTS

4.4 Parsec
The parsers of the various input languages of HeTS are implemented using Parsec [LM01].
Parsec is a library of monadic parser combinators for Haskell and, to our knowledge, was the
first industrial strength parser combinator library. As of 13th of June 2022, 1023 packages on
Hackage10 depend on parsec11 and a further 907 on the attoparsec12 library built on similar
principles.

Parser combinators, in contrast to parser generators like yacc, are directly implemented as
functions in the host language.

We will show the use of Parsec by means of the classic expr language from [ALSU07]. To
do so, we first recapitulate its grammar in the form of Haskell type declarations. The grammar
defines the problem which the parser then solves.

The particular language we are dealing with consists of simple arithmetical expressions
without variables, with the usual operator precedence rules.

[14]: data EXPR = EXPR :+ TERM | EXPR :- TERM
| TermExpr TERM
deriving Show

data TERM = TERM :* FACTOR | TERM :/ FACTOR
| FacTerm FACTOR
deriving Show

data FACTOR = DigitFac DIGIT | ParensFac EXPR
deriving Show

type DIGIT = Char -- [’0’..’9’]

The above are (the parse tree types of) the nonterminals of the expr language. The
constructors (:+), (:-), (:*) and (:/) encode the basic arithmetic operators. Next, we will bring
relevant modules into scope and define the type for our parsers:

[15]: import Text.Parsec
import Data.Functor (($>))
type Parser t = Parsec String () t

In Parsec, a parser can parse some type of streams (here: String), keeping state of some
type (here: (), so we are not keeping any state) and give a result of some type (the type variable
t, as we have several different parse tree types).

Now, it is time to see the first parser:

[16]: digitP :: Parser DIGIT
digitP = oneOf [’0’..’9’] <?> "DIGIT"

Here we used two parser combinators: oneOf and (<?>)

10Hackage, the main Haskell package archive site, is accessible at https://hackage.haskell.org/.
11Hackage reverse dependencies of parsec according to https://packdeps.haskellers.com/reverse/

parsec.
12Hackage reverse dependencies of attoparsec according to https://packdeps.haskellers.com/reverse/

attoparsec.

40

https://hackage.haskell.org/
https://packdeps.haskellers.com/reverse/parsec
https://packdeps.haskellers.com/reverse/parsec
https://packdeps.haskellers.com/reverse/attoparsec
https://packdeps.haskellers.com/reverse/attoparsec

4.4. Parsec

Given any list cs of characters, oneOf cs consumes the first character c and, if c `elem`
cs, returns it. If the character does not match, an error occurs:

[17]: parseTest (oneOf [’0’..’9’]) "5a"

’5’

[18]: parseTest (oneOf [’0’..’9’]) "a5"

parse error at (line 1, column 1):
unexpected "a"

The combinator (<?>) takes a parser p and a string s, describing the unit we want to
parse. The parser p <?> s behaves just like p in the case of success, but uses s to give more
meaningful error messages in the case of parse failures:

[19]: parseTest digitP "a5"

parse error at (line 1, column 1):
unexpected "a"
expecting DIGIT

Parsers can have values of any type as their result, including functions. We will make use of
this in the following auxiliary definitions:

[20]: exprOpP :: Parser (EXPR -> TERM -> EXPR)
exprOpP = do char ’+’ $> (:+)

<|> do char ’-’ $> (:-)
termOpP :: Parser (TERM -> FACTOR -> TERM)
termOpP = do char ’*’ $> (:*)

<|> do char ’/’ $> (:/)
pairP :: Parser a -> Parser b -> Parser (a,b)
pairP aP bP = do a <- aP

b <- bP
return (a,b)

op :: a -> (a->b->c, b) -> c
op a (f,b) = f a b

Here, we combine alternative parsers with (<|>). Parsec tries to parse the first option. If
that fails without consuming any input, the second one is tried. If, however, the first parser does
consume input, we are committed to that option. This behaviour is due to the ineffeciencies
that would arise if Parsec always preserved the information required for backtracking. However,
controlled backtracking can be introduced throught the try combinator: Where p would fail
after consuming input, try p will fail without consuming any.

41

4. The Algebraic Specification Language Casl and its Toolset HeTS

We have seen two more new combinators: char has the obvious meaning. The ($>)
combinator combines a parser p with a pure value v. The resulting parser returns v if p succeeds.

The remaining parsers refer to each other, so we present them together:
[21]: factorP :: Parser FACTOR

factorP = (do DigitFac <$> digitP
<|> do ParensFac <$>

(char ’(’ *> exprP <* char ’)’)
) <?> "FACTOR"

exprP :: Parser EXPR
exprP = (do term1 <- TermExpr <$> termP

opsTerms <- many $ pairP exprOpP termP
return $ foldl op term1 opsTerms

) <?> "EXPR"
termP :: Parser TERM
termP = (do fac1 <- FacTerm <$> factorP

opsFacs <- many $ pairP termOpP factorP
return $ foldl op fac1 opsFacs

) <?> "TERM"
parseTest factorP "7*5+8"

DigitFac ’7’

[22]: parseTest factorP "(7*5+9)"

ParensFac (TermExpr (FacTerm (DigitFac ’7’) :* DigitFac ’5’) :+␣
↪→FacTerm (DigitFac ’9’))

New combinators used here are:

– (<$>): This is the same as fmap and is available for all functors. In the case of parsers, f
<$> p parses with p and applies f to the result.

– many: Parses zero or more matches of its argument parser, collecting the results in a list.

– (*>) and (<*): Each of these combines two parsers, ignoring the result of the first ((*>)) or
the second ((<*)).

This should be sufficient to aquaint the reader with the ideas underlying Parsec and to
handle many common parsing problems. The complete API reference of Parsec is available at
https://hackage.haskell.org/package/parsec.

42

https://hackage.haskell.org/package/parsec

Chapter 5

Related Work

Contents
5.1 Automatic Verification of Finite UML Models 44
5.2 Interactive Verification of Potentially Infinite Models 50

We now turn to a comparison of our work with other approaches to the formalisation of and
verification of properties for parts of the UML. The approaches we found fall into the categories
of fully automatic model-checking on the one hand, and the use of interactive theorem provers
on the other hand. In contrast to the model-checkers, the provers can be applied where infinitely
many states have to be considered. However, this is bought with a partial loss of automation.

For each approach, after a general description and a comparison with our approach, we
summarise one or more examples which the authors of the approach have used to illustrate
the same. These example summaries are not meant to make separate points about how each
approach compares to ours, but rather to support the reader’s imagination in reflecting the goals,
methods and potential of each approach.

A number of other authors give formal semantics to communicating State Machines, however
with a purpose different from symbolic analysis of UML. Most authoritatively, the Object
Management Group provides an executable semantics of UML Composite Structures [Obj19].
Their objective is to provide an interpreter for the executable subset fUML of the UML. However
the approaches we discuss in more detail here are all focused on symbolic analysis.

Closely related to our approach are the works [KMRG15, KM17]. Both these papers
address the topic of communicating state machines, however, both fail to provide entirely
correct institutions of State Machines. Learning from the reason for this shortcoming, rather
than capturing UML state machines directly as an institution, in Chapter 7 we build up a new
logic in which UML State Machines can be embedded. In Chapter 9, we extend this logic
for communication. In particular, we treat UML event pools as part of Composite Structure
Diagrams rather than of State Machines. State Machines are seen as a completely open system,
which is (partially) closed by ‘wiring up’ in a communication structure. Overall, this leads to a
separation of concerns: event pools and transitions can be analysed independently. Chapter 7
contains additional details on how our work is related to theirs, so we will not dwell on this here.

43

5. Related Work

Figure 5.1: A Class Diagram including an OCL constraint from [SWK+10], specifying a processor with its registers.

Next, we will discuss several approaches that fall into the two categories we outlined in a bit
more detail.

5.1 Automatic Verification of Finite UML Models

First, let us consider two examples of the fully automatic approaches, one using SAT-solving,
the other using the UMC model-checker.

5.1.1 “Verifying UML/OCL Models Using Boolean Satisfiability”

Soeken et al. [SWK+10] use SAT solving to tackle a class of UML verification problems. Given
a Class Diagram, a set of OCL constraints, and finite bounds on the number of objects and on
the domains of attributes, they generate propositional formulae. SAT solving on these formulae
can then determine whether a satisfying instantiation exists and whether the OCL constraints are
free of redundancy. The authors report having implemented this approach in a C++ tool. They
have performed benchmarks, in which they report obtaining better verification times than the
existing tools USE and Alloy in those cases where a comparison was possible.

We see the main advantage of this approach in the highly tuned tools which are available for
SAT solving. In terms of structure, their treatment is more general than ours, in that we only
treat the fixed structures described in Composite Structure diagrams, whereas they treat Class
Diagrams, in which associations can admit a range of cardinalities, and the number of total
instances is not fixed. However, their approach is only concerned with structure, whereas our
focus is on behaviour. Moreover, the theory of institutions allows our approach to be integrated
with other parts of UML and other specification mechanisms.

As an example, Soeken et al., discuss a verification problem over the Class Diagram in
Fig. 5.1. The diagram specifies a processor in relationship to its registers, for both of which
classes are given. Further, the diagram contains an enumeration type used for encoding the

44

5.1. Automatic Verification of Finite UML Models

Figure 5.2: A diagram from [SWK+10], showing the SAT-encoding of a system state which could be checked for
conformance to Fig. 5.1.

Figure 5.3: A diagram from [SWK+10], showing their verification flow.

purpose of a register. Multiplicities require each register to be linked to exactly one processor and
each processor to one or more registers. Attributes specify, among other things, a bitwidth for
each register and for each processor. An OCL constraint requires the bitwidths of a processor’s
registers to equal that of the processor itself.

Figure 5.2 shows a finite system state over this Class Diagram. It further shows how that
system is encoded into propositional variables, i.e., variables ranging over bits: Each link
(represented by a λ⃗ value) between objects and each attribute (represented by an α⃗ value) is
represented by, in this case, one, three, or eight bits. For the links, each bit encodes the presence
or absence of that link to one of the appropriately typed objects. For the attributes, strings are
here abstracted to a 2 bit representation, a register’s purpose uses three bits for the four cases of
the enum and the special value null. The integers representing bitwidth are here restricted to
eight bits each.

Soeken et al. can then express properties over system state by propositional logic formulae.

45

5. Related Work

For example, they express the OCL constraint from Fig. 5.1 as

.

This replaces the forAll over a known finite number of registers by the conjunction of a
finite family of propositional formulae. Each register is only considered if it is linked to the one
processor. Then, the bitwidth attributes are required to agree – the equation is shorthand for
the obvious propositional equivalences between corresponding bits. In like manner, the Class
Diagram itself is encoded into propositional formulae.

SAT solving over these then yields information about the specification’s consistency: If
the SAT solver returns a satisfying assignment of the propositional variables, this corresponds
to a valid system state, and the specification is consistent. If the formulae are reported to be
unsatisfiable, there is no valid system state conforming to the bounds imposed, but the Class
Diagram and OCL constraints may or may not be consistent. If SAT solving does not complete
within acceptable resource bounds, no information is gained, of course.

Verification tasks other than consistency can likewise be checked using a SAT solver. This
requires encoding the verification task as another propositional formula, included in the SAT
problem given to the solver – the verification flow is shown in Fig. 5.3. The authors report
verifying the independence of certain OCL constraints from certain models, where a constraint
is considered independent if it is not implied by the requirements of the model itself.

5.1.2 “From EU Projects to a Family of Model Checkers”

UMC1 by terBeek et al. [tBGM15] is a modelling language and associated model checker meant
to correspond to a subset of UML. It is part of the KandISTI suite for on-the-fly model-checking.
UMC provides a language for specifying classes, each with an associated State Machine, a
statically determined set of objects instantiating those classes and a set of abstraction rules. The
State Machines can be hierarchical. The abstraction rules determine which aspects of the system
should be visible during model-checking. Each system so specified is closed off from the outside
world in that no messages can enter or leave it. UMC then provides a fully automatic tool to
check its temporal logic UCTL against such models.

UMC supports more features of UML State Machines than do we. However, for the features
we do support, our approach has mainly one advantage in principle and one in terms of tools: It
is somewhat more general in principle in that we show properties that a State Machine – or a
system of such – has in all possible contexts, whereas UMC checks properties in one particular
context. This one context can of course contain a nondeterministic machine modelling an
almost arbitrary environment. However, the nondeterminism only applies to control states, and
therefore, to finitary branching. Branching between arbitrary values from an infinite data type is
not possible in an approach based on state enumeration. In terms of tools, our approach makes
several, ideally all formal methods tools available to establish a property – this could include
UMC in those cases to which it is well suited.

1An online interface to UMC can be accessed at http://fmt.isti.cnr.it/umc/V4.8/umc.html

46

http://fmt.isti.cnr.it/umc/V4.8/umc.html

5.1. Automatic Verification of Finite UML Models

Figure 5.4: Figure from [MSLF14], showing their tool-supported process for generating a model of an Automatic
Train Supervision system.

Figure 5.5: A metro network layout from [MSLF14].

One case-study to which UMC has been applied is the prevention of deadlocks in railway
routing. We will base the remainder of this section on a paper reporting on this case study,
namely [MSLF14] by Mazzanti et al, wherein they provide a tool-supported process (Fig. 5.4)
for modelling an Automatic Train Supervision system (ATS). The ATS routes metro trains
between stations, ensuring that each of the trains will eventually arrive at its final destination.
This implies that the ATS has to prevent deadlock situations. Deadlocks arise when trains
block each other, which translates straightforwardly into a classical resource-based formulation
of deadlocks: Trains that move acquire and release track segments, where the segments are
considered not at the signalling level, but somewhat more abstractly. A deadlock then exists iff
all movements of trains from their current position would require the previous release of some
track segment.

The approach starts with a discrete-time model given by a collection of trains. Each train has
as its state a current point and a mission, i.e., a list of points it ought to traverse. The missions of

47

5. Related Work

all trains form the overall metro network layout. An example layout can be seen in Fig. 5.5. At
this modelling stage, the system can make a transition iff there is a train whose next mission
point is unoccupied. The further modelling process then essentially consists in finding further
conditions that prevent deadlocks from arising.

To enable the formulation of such conditions, the authors give criteria for identifying basic
and then composite critical sections. For each such section, they extend the system state with
a counter for the trains present in that section and another variable indicating its capacity.
Deadlocks in basic sections arise by trains moving in opposite directions or by a cyclic section’s
being completely filled with trains, none of which can leave the cycle.

The model is updated with conditions preventing these deadlocks and with actions updating
the counters. Figure 5.6 shows an example of a possible resulting transition rule. Then,
model-checking is used to detect two conditions which necessitate another iteration:

1. There are still deadlocks, so some more composite critical sections must be identified. This
situation is identified by defining the abstraction rule in Fig. 5.7, defining what it means for
all trains to have arrived, and then checking whether such a state is always finally reached,
i.e., whether the CTL-like2 UMC formula

holds.

2. There are forbidden transitions that would not necessarily lead to deadlocks (false positives).
Such transitions can arise due to the way composite critical sections are identified. Eliminating
the false positives requires refining the use of counters. No precise algorithm for this refinement
is given, but examples of resulting UMC files are provided, and the process of finding false
positives is outlined as follows: False positives are found by

a) removing the conditions for entering critical sections from the model, but

b) introducing an abstraction DEAD for the newly allowed states and

c) establishing by model-checking that the formula

holds, i.e., there is no reachable state that is marked as DEAD, but allows the eventual
arrival of all trains.

Mazzanti et al. [MSLF14] further discuss how to make the sizes of state spaces more
manageable by checking different regions of a layout separately.

2CTL[CES86] (Computation Tree Logic) is an established branching-time temporal logic, of which UMC’s
UCTL is a variant.

48

5.1. Automatic Verification of Finite UML Models

Figure 5.6: A state transition for the train Green1 from [MSLF14]. The array G1M is the train’s mission. G1P is the
train’s position, given as an index into the mission. Missions from other trains are mentioned to forbid collisions.
SA to SF are train counters for critical sections. The two-dimensional array G1C (an example defined in Fig. 5.8
prescribes how movements of Green1 affect these counters. Each critical section counter also has a prescribed
maximum value.

Figure 5.7: An abstraction rule from [MSLF14] for detecting deadlocks. For a system with two green trains and
two red ones, the abstract name ARRIVED is given to system states where each train’s position is the final one in its
mission (here 13 for all).

Figure 5.8: A definition from [MSLF14] of how each movement in the mission of the train Green1 affects the train
counters for critical sections A to Z, given in the form of a two-dimensional array.

49

5. Related Work

5.2 Interactive Verification of Potentially Infinite Models

Having seen two examples of fully automatic UML verification approaches, we now give three
examples of interactive approaches: First we discuss an approach using the PVS prover; then a
second one, which builds a notion of system models within the Isabelle theorem prover; and
finally, an approach based on symbolic execution and on the KIV prover.

5.2.1 “Formalising UML Models and OCL Constraints in PVS”

Kyas et al. [KFdB+05] introduce a translation of certain Class Diagrams, of non-hierarchical
State Machines and of OCL constraints into the input language of the PVS theorem prover. Then
they use PVS to interactively prove a safety property formulated in OCL. As intermediate steps,
they formulate invariants directly in PVS and prove them.

The approach is similar to ours in many ways. Verification is done by first translating into
a conventional logic of an existing prover. Again, their treatment includes Class Diagrams
and OCL constraints and is therefore more general than ours in terms of structure. In terms
of behaviour it covers a similar subset of UML State Machine features. At the intersection of
structure and behaviour their approach, unlike ours, covers object creation. Being a symbolic
approach like ours, it can deal with properties that involve infinitely many configurations. Like
us, they encountered the difficulties of reasoning about message queues.

Our approach goes beyond theirs in the following ways: We give principles of inductive
proof steps with invariants that could be automatically generated (see Chapter 13). This will, of
course, never cover all proofs and lemmas for all verification tasks. Where it is possible for our
translations, it will usually also be possible for theirs if one makes use of the advances in proof
automation and computation power that have been made since 2005. A further advantage of our
approach is, again, the multiplicity of tools we have available for proving. But already in terms
of specification itself we profit from the modularity provided by Institution Theory. The authors
of [KFdB+05] in giving a joint formalisation for Class Diagrams, State Machines and OCL,
cannot just compose existing formalisations of the subformalisms. Extending their approach to
a larger fragment of the UML suffers from similar problems. Our approach, on the other hand,
can more easily integrate formalisations of other subformalisms of UML, as well as unrelated
formalisms, as long as the formalisms are institutions and suitable comorphisms are given.

Kyas et al. show the application of their approach to the example of the Sieve of Eratosthenes,
a classical technique for generating prime numbers. They verify the property that the generated
numbers are actually primes.

Figure 5.9 shows their architecture, consisting of the classes Generator and Sieve. There
are associations from Generator to Sieve and from Sieve to Sieve, which are both called
itsSieve.

The system contains exactly one Generator, the behaviour of which follows Fig. 5.10.
It starts by creating the first Sieve. The generator keeps a counter x, which must at first be
initialised to 2. Every 20 time units, the value of x is forwarded to the first Sieve, after which x
is incremented.

Each Sieve behaves in accordance with Fig. 5.11. A Sieve repeatedly receives numbers.
The first number so received must be prime and is stored in the attribute p. After that, a successor

50

5.2. Interactive Verification of Potentially Infinite Models

Figure 5.9: A Class Diagram from [KFdB+05], showing the architecture of their example system, an implementation
of the Sieve of Eratosthenes, a classical technique for generating prime numbers.

Figure 5.10: A State Machine diagram from [KFdB+05] for the Generator class from Fig. 5.9.

Sieve is created, and each further number that is received is tested for divisibility by p. If it is
divisible, it is silently dropped, otherwise it is forwarded to the next Sieve. In this manner, a
pipeline of Sieves is constructed, corresponding to a linked list of all primes less than x. If
x is passed through to the last Sieve in the pipeline, it is not divisible by any smaller prime
and, therefore, is prime itself. The authors express this safety property by the following OCL
constraint:

In words: In any Sieve, p only takes values divisible by no number from 2 to p− 1.
The authors have developed a compiler that generates the specification corresponding to the

diagrams in PVS, and likewise the verification goal. Figure 5.12 shows the result of translating a
transition from Fig. 5.11 into PVS. In particular, it shows definitions for

51

5. Related Work

Figure 5.11: A State Machine diagram from [KFdB+05] for the Sieve class from Fig. 5.9.

Figure 5.12: A specification fragment in PVS from [KFdB+05], showing the result of translating a transition of the
Generator State Machine from Fig. 5.10, namely, the transition going from state_1 to state_1 and passing a
number to the next Sieve.

52

5.2. Interactive Verification of Potentially Infinite Models

– a TYPE+ (i.e., a non-empty type), giving the locations (i.e., control states) for both State
Machines by an enumeration of nullary constructors;

– the Transition itself, given as a record of a source, a trigger, a guard, a list of actions,
a target, and the class to which the transition belongs, whereof the guard is of function
type, making use of PVS’s higher-order capabilities; and

– a setof[Transition], stating which transitions are available in the whole system of a
Generator and Sieves.

The goal turns out to depend on particular properties of the event queues. After formulating and
proving these as lemmas, the authors were able to prove the safety property.

5.2.2 “System-model Based Definition of Object-Based Modelling Languages
with Semantic Variation Points” (title translated by us)

Grönniger [Grö10] defines a notion of model for object based systems (called a system model).
A model (in the sense of UML) in a UML sublanguage is then interpreted to select a set of
conforming system models. The author further proposes a general approach to treating variation
points in the concrete and abstract syntax, as well as the semantics of modelling languages.
Grönninger applies this approach to variation points of the UML. He provides a translation of
several UML sublanguages to Isabelle/HOL, and a formalisation of the theory of system models
in the same language, thus providing a proof tool.

Compared to our approach, the main theoretical difference of the system model approach is
its complexity, due to the need to treat all aspects of all possible object based systems. Their
treatment is modular in the sense that it is given by structured theories, but if at any point a
variation on the notion of system model itself became necessary, this would lead to new, not
easily comparable, model classes for existing UML models. Properties once thought established
would be subject to doubt again. Likewise, translations into a complex formalism involve many
possibilities of making bad choices, which likewise would be hard to undo without losing
established results.

In terms of tools, the system model is formalised in Isabelle/HOL. The interactive Isabelle
system contains integrations of several automatic provers. Isabelle/HOL is also integrated into
HeTS, allowing to some extent the highly principled tool reuse and formalism combination that
Institution Theory permits, although with some difficulties: Reuse of existing tools for the system
model formalism would require comorphisms out of higher-order logic. For these comorphisms
to exist, the target logic would need to have signatures and sentences corresponding to all
signatures and sentences of higher-order logic. Going in the other direction, translations from
another formalism into Isabelle/HOL would not usually result in sentences over the system model
signatures, requiring significant formalisation effort within Isabelle to establish a relationship.
The somewhat arbitrary nature of this formalised relationship would then impair the usefulness
of the guarantees Institution Theory gives us.

That said, the system model approach gives a useful semantics to a significant subset of
UML, which makes a powerful tool available to the modeller and provides an integrated view
of what an object based system can be. That view, even if we should find it too complex to

53

5. Related Work

Figure 5.13: Two Class Diagrams from [Grö10] (given only textually) which, when combined, specify cyclical
inheritance.

Figure 5.14: A selection of language features from [Grö10].

connect to formally, can still inspire our approach to modelling parts of such a system and the
relationships between such models.

We will now discuss three example systems verified by [Grö10] using the system model
approach.

The first such verification task refers to the Class Diagrams shown in Fig. 5.13. The
inheritance relationships specified in the two diagrams constitute a cycle. The author then shows,
for a particular language variant, that this cycle makes the combination of these two diagrams
inconsistent. As discussed, Grönninger [Grö10] studies language variation points. Choices
with respect to such variation points can be combined in a language configuration file, which
can however leave some options unspecified. An example of such a file is given in Fig. 5.14.

54

5.2. Interactive Verification of Potentially Infinite Models

Figure 5.15: Two Isabelle lemmas with proofs from [Grö10], the first stating that subclass relationships in a valid
system model are non-circular, the second stating that they are transitive.

Figure 5.16: The Isabelle theorem from [Grö10] establishing the incompatibility, in a particular language configuration,
of the Class Diagrams from Fig. 5.13. Some proof steps about the unfolding of definitions have been skipped.

This configuration selects, among others, the variant AntiSymSub, which requires the subclass
relation to be antisymmetric. The verification task at hand can only be carried out if this variant
is active.

The configuration and the diagrams are translated to Isabelle. The diagram languages are
deeply embedded into Isabelle, so the diagrams are translated into an explicit representation
of their syntax. Based on the configuration, there is an axiomatisation for a semantic function,
which is likewise represented explicitly in Isabelle as a thing to be reasoned about. The lemmas
shown in Fig. 5.15 then establish that, in a valid system model, subclass relationships cannot be
cyclical and must be transitive. The theorem shown in Fig. 5.16 then concludes that the two
diagrams from Fig. 5.13 are in fact incompatible, i.e., that the sets of system models satisfying
each have an empty intersection.

55

5. Related Work

Figure 5.17: The Class Diagram for the calendar from [Grö10].

Figure 5.18: The Object Diagram for the calendar from [Grö10].

As a second example, the author discusses the modelling of a calendar. First, the general
concept of a calendar is modelled in a Class Diagram (Fig. 5.17). The Class Diagram models
points in time via the DateTime class and then, using these, models calendar entries (class:
Entry), where a calendar entry is given by a start time and an end time. Further, an Object
Diagram is given (Fig. 5.18). The author then shows a lemma (Fig. 5.19) which restates the
invariant from the Class Diagram and proves that this holds in all reachable states of system
models conforming to the Class Diagram. Another lemma (Fig. 5.20) is shown, which restates

56

5.2. Interactive Verification of Potentially Infinite Models

Figure 5.19: The lemma from [Grö10] restating the invariant from the Class Diagram Fig. 5.17.

Figure 5.20: The lemma from [Grö10] restating the attribute values from the Object Diagram Fig. 5.18.

Figure 5.21: The theorem from [Grö10] showing that the objects from Fig. 5.18 violate the constraint from Fig. 5.17.

the content of the Object Diagram. Finally, the author proves that the Object Diagram violates
the Class Diagram (Fig. 5.21).

As a third example, an authentication system is discussed, which is specified by the State
Diagram in Fig. 5.22. The Sequence Diagram Fig. 5.23 then shows a run where the system
authenticates a user who offered an incorrect key. After several lemmas, which we do not show
here, the author proves the theorem Fig. 5.24, which shows that the State Chart rules out the run
from the Sequence Diagram.

57

5. Related Work

Figure 5.22: The State Diagram for the authentication system from [Grö10].

Figure 5.23: The Sequence Diagram from [Grö10] showing a hypothetical (illegal) run of the authentication system
specified in Fig. 5.22.

Figure 5.24: A theorem from [Grö10] stating that the Sequence Diagram Fig. 5.22 violates the State Diagram
Fig. 5.23.

5.2.3 “Interactive Verification of UML State Machines”

Balser et al. [BBK+04] provide a calculus for temporal logic into which they embed UML
State Machines. They implement their calculus in the interactive theorem prover KIV. The
tool Hugo/RT provides a translation of XMI files into the temporal logic, thus connecting their
approach to any full-featured UML modelling tool on the input side. They then use KIV to

58

5.2. Interactive Verification of Potentially Infinite Models

verify properties stated in the same temporal logic.
Our approach is a direct successor of theirs. It results from the ongoing effort to find

formalisations and translations of State Machines that satisfy the coherence conditions of
Institution Theory. We found a difficulty in principle of such approaches in our Master’s thesis
[Ros17] and developed a modal logic of State Machines up to refinement, with an embedding
of fully refined State Machines into that logic. The logic we formalise and implement in this
thesis for State Machines is a development on the logic from our Master’s thesis. More on the
underlying problems and our approach to solving them can be found in Chapter 7.

A main advantage from [BBK+04] for the user of their proof tool is their use of symbolic
execution. In future work, we may well want to integrate a similar feature into HeTS, either
for generating lemmas supporting fully automatic verification, or for discharging certain proof
obligations by that mechanism itself.

We also make use of KIV to verify an example of a Composite Structure, however, we only
use KIV’s first-order and inductive capabilities, and only in a fully automated fashion.

In terms of examples, Balser et al. prove a property about an ATM scenario, an example
family that is often found in the literature. We ourselves have performed proofs on a similar
example, which we will discuss in Sect. 13.2. Their form of the example contains one class,
Bank, for which a Class Diagram and State Machine are shown in Fig. 5.253. Over this system,
they want to prove that, in all reachable configurations with control state DispenseMoney, it
holds that the maximum number of tries has not been exceeded and the flag PINValid has been
set. They express this through the formula:

Figure 5.26 shows the flow of information by which the authors transform such a State
Machine into a form usable for proving: First, a suitable UML editor is used to create the
diagrams. The editor must be able to export the diagrams in the XMI format. The tool Hugo/RT,
developed by the authors of the paper, can then be used to translate from XMI into a KIV
specification, from which desired properties can then be proved.

For the example at hand, after fixing an initial condition and an invariant, Balser et al. arrive
at the proof graph shown in Fig. 5.27. It is worth stressing that the proof graph is not a tree
because states that can be reached by several paths are nevertheless treated only once – the
authors refer to this as sequencing. The structure of the proof graph is closely linked to the
possible runs of the State Machine. Each proof step is either directly the execution of a State
Chart step, or it expresses sequencing, or the application of the inductive hypothesis. The
numbers on the nodes of the proof tree refer back to the states shown in Fig. 5.25 – a close
inspection of this correspondence will do much to support the reader’s intuition for how the
symbolic execution supports the proof development.

3In particular, this means that unlike us, they do not separate the ATM from the bank, because their focus is on
the semantics of a single State Machine.

59

5. Related Work

Figure 5.25: The Class Diagram and State Machine for the Bank example from [BBK+04].

Figure 5.26: A diagram from [BBK+04] showing their verification flow.

60

5.2. Interactive Verification of Potentially Infinite Models

Figure 5.27: The proof tree for the example from [BBK+04].

61

Part II

Methodology Construction

63

Chapter 6

A Bird’s-eye View of our Languages

In this chapter, we give an overview over the input languages, logics and translations developed
or used within this thesis project and our two-stage process for developing them.

The most important points in this respect are summarised in Fig. 6.1: Arranged vertically,
we have several formal logics, which are established or conjectured to be institutions, with
(theoroidal) comorphisms translating between them. This starts at the top with our institution
for UML Composite Structures. Then, we have our modal logic for event/data systems in two
variants: EDHML (Event/Data Hybrid Modal Logic, without output events) and EDHMLO
(with output events). Composite Structures translate into the latter variant. From our modal
logics, we can then translate into CASL, the central logic of the HeTS framework, in which
we are working. From there, we have translations to the tool-facing logics. Of these, we have
used SoftFOL via an automatic and KIV via a manual translation. Other tool-facing languages
could be added here. SoftFOL and the fragment of KIV we use (first-order logic with inductive
data types) are standard enough that a violation of the Satisfaction Conditions for institutions or
comorphisms seems unlikely here. To our knowledge, however, these results have never been
formally established, so they remain conjectural.

Our input languages somewhat depart from the institutional logics. In the Composite
Structures institution, which is built over EDHMLO, we have merely factored out the underlying
State Machines. In the case of the State Machines, there is a larger difference: There are
technical difficulties to directly creating a language for State Machines that is an institution1.
Therefore, we needed to create a more expressive modal logic, which is a bit further removed
from the structure of machines themselves. Sentences in this logic demand the presence or
absence of certain transitions and could be regarded as expressing machines up to refinement.
There is then an algorithm for constructing a formula that requires exactly the behaviour of one
particular State Machine. This algorithm corresponds to the semantic function in Fig. 6.1, from
outside the institutional world (depicted as coming from the side rather than above), and embeds
State Machines (with or without outputs) into the relevant modal logic institution.

As mentioned before, we developed our languages in two steps. The first step treats State
Machines in isolation, i.e., they can consume inputs, but their actions include no communication.

1For more detail on these difficulties and their consequences for our approach, see Chapter 7.

65

6. A Bird’s-eye View of our Languages

UMLStateO
user-facing

EDHMLO
institution

⟦_⟧

CASL
institution

comorphism

SoftFOL, KIV (language)
tool-facing,

conjecture: institution,
logics for theorem proving

conjecture:
comorphisms

for KIV:
manually for now

UMLComp
user-facing,
institution

comorphism

Figure 6.1: The languages and formalisms involved in our verification approach.

Actions here are limited to updating the data of the local configuration. For these machines, we
have developed the input language UMLState and the institution EDHML. Chapter 7 explains
EDHML, as well as why and how we embed State Machines into it. Appendix A contains the
grammars (abstract and concrete syntax, static semantics) for our concrete State Machine input
language UMLState. Chapter 8 introduces the theoroidal comorphism from EDHML to Casl.

In a second step, we developed an extended notion of State Machines, suitable for combination

66

in Composite Structures, on which we then built a notion of Composite Structures themselves.
Our extended State Machine languages UMLStateO and EDHMLO are distinguished from the
isolated versions mainly by the addition of output events and, in a mostly transparent way, of
ports. We discuss these languages mathematically in Chapter 9 and the comorphism to Casl in
Chapter 10. Chapter 11 outlines mathematically how an institution for Composite Structures
can be built over EDHMLO. A comorphism to Casl is obtained with the help of a flattening
into EDHMLO. In Chapter 12 we discuss our surface languages and their implementation in
HeTS. Chapter 13 contains some verification experiments based on our approach.

67

Chapter 7

EDHML: An Institution for
Embedding Simple State Machines

Contents
7.1 Example: The Counter Machine . 70

7.2 Event/Data Structures and the Problem with Institutionalising UML State
Machines . 71

7.3 A Hybrid Modal Logic for Event/Data Systems 76

In this chapter, we motivate and present an institution for the modal logic Event/Data Hybrid
Modal Logic (EDHML), which allows us to embed Simple UML State Machines. As discussed
in Chapter 3, modal logics are used to reason about notions of possibility and necessity. A hybrid
modal logic additionally has constructs to require a sentence to hold in particular states/possible
worlds. Events and data encode the notions of communication and state from UML which we
wish to capture.

In our EDHML the relevant notion of possibility is that of a machine allowing a particular
kind of transition. The modality is a specification of the events consumed in such a transition.
The formula under the modality makes requirements of the state in which we arrive, which can
themselves again be modal formulæ describing further transitions. The reader will observe that
our logic does not necessarily fix the exact set of transitions possible in a machine, but gives a
loose specification that can allow further refinement. This is by design and is the key ingredient
to formula and structure translations that fulfil the Satisfaction Condition. We then describe an
algorithm for translating a particular State Machine into that logic.

The contents of this chapter have appeared in similar form as part of our paper at WADT
2020 [RBKR20].

The construction of EDHML was a common effort between Alexander Knapp, Markus
Roggenbach and myself. In our virtual meetings, we jointly sketched the constructions, proofs
and examples, which I then worked out in detail and wrote down in their final form.

69

7. EDHML: An Institution for Embedding Simple State Machines

Figure 7.1: Simple UML State Machine Counter
. The red transitions are those one would usually show in a UML State Machine. In UML, by
default, an event is implicitly discarded if it occurs in a state where it is not explicitly handled.

Here, these dicarding transitions are displayed in grey.

7.1 Example: The Counter Machine
Figure 7.1 shows the example of a bounded, resettable counter working on an attribute cnt
(assumed to take values in the natural numbers) that is initialised with 0. The counter can be
reset to 0 or increased by a natural number k, subject to the current control state (s1 or s2) and
the guards (shown in square brackets) and effects (after the slash) of the outgoing transitions. An
effect describes how the data state before firing a transition (referred to by unprimed attribute
names) relates to the data state after (primed names) in a single predicate; this generalises the
more usual sequences of assignments such that cnt′ = cnt+ k corresponds to cnt := cnt+ k
and cnt′ = cnt to a skip. The machine is specified non-deterministically: If event inc(k) occurs
in state s1 such that the guard cnt+ k = 4 holds, the machine can either stay in s1 or it can
proceed to s2. Seemingly, the machine does not react to reset in s1 and to inc in s2. However,
UML State Machines are meant to be input-enabled such that all event occurrences to which
the machine shows no explicit reacting transition are silently discarded. We show the explicit
transitions in red and the implicit ones in grey. Overall, the machine Counter shall ensure that
cnt never exceeds 4: In fact, we will prove this in Chapter 13.

For example (the reader can follow along in Fig. 7.1), a run could

– start in s1 with cnt = 0; then

– consume inc(6), leaving us still in s1 with cnt = 0, as the limits cnt == 4 and cnt > 4
explicit, red transitions were exceeded; then

– consume inc(3), leaving us still in s1, but now with cnt = 3; then

– consume inc(1), taking us to s2 with cnt = 4; then

– consume inc(2), leaving us still in s2 with cnt = 4 (via the grey self-loop on s2)

– consume reset, returning to s1, now with cnt = 0; and, finally

70

7.2. Event/Data Structures and the Problem with Institutionalising UML State Machines

– consume another reset, again leaving us at an unchanged s1 with cnt = 0 via the rightmost
grey self-loop on s1.

7.2 Event/Data Structures and the Problem with Institutionalising
UML State Machines

It is for such simple UML State Machines as the counter in Fig. 7.1 that we want to provide
proof support in Spass, one of the provers integrated into HeTS, via an institutional encoding in
Casl. The sub-language covers the following fundamental State Machine features: data, states,
and (non-deterministic) guarded transitions for reacting to events. However, for the time being,
we defer all advanced modelling constructs, like hierarchical states or compound transitions
to future work. An extension of UMLState with communication between machines will be
presented in the following chapters in the form of the languages UMLStateO (State Machines
with outputs) and UMLComp (Composite Structures).

In the following we first make precise the syntax of the machines by means of event/data
signatures, data states and transitions, guards and effects. Then we introduce semantic structures
for the machines and define their model class. Syntax and semantics of simple UML State
Machines form the basis for their institutionalisation. We thus also introduce event/data signature
morphisms and the corresponding sentence translation and structure reducts in order to be able
to change the interface of simple UML State Machines.

7.2.1 Event/Data Signatures, Data States and Transitions

We capture the events for a machine in an event signature E that consists of a finite set |E|
with elements called events and a map υ(E) assigning to each e ∈ |E| a finite set with elements
called variables, where we write e(X) for e ∈ |E| and υ(E)(e) = X, and also e(X) ∈ E in this
case. For the data state, we use a data signature A consisting of a finite set with elements called
attributes. An event/data signature Σ consists of an event signature E(Σ) and a data signature
A(Σ).

Example 7.1 The event/data signature Σ of the simple UML State Machine in Fig. 7.1 is given
by the set of events |E(Σ)| = {inc, reset} with argument variables υ(E(Σ))(inc) = {k} and
υ(E(Σ))(reset) = ∅ such that inc(k) ∈ E(Σ) and reset ∈ E(Σ); as well as the data signature
A(Σ) = {cnt}.

For specifying transition guards and effects, we exchange UML’s notorious and intricate
expression and action languages both syntactically and semantically by a straightforward Casl
fragment rendering guards as data state predicates and effects as data transition predicates,
which, in the implemented language, take the form of assignments.

We assume given a fixed universeDwith elements called data values and a Casl specification
Dt with a dedicated sort dt in its signature Sig(Dt) such that the universe dtM of every model
M ∈ModCasl(Dt) is isomorphic toD, i.e., there is a bĳection ιM,dt : dtM ∼=D. This puts at our
disposal the open formulæ F Casl

Sig(Dt),X over sorted variables X = (Xs)s∈S and their satisfaction

71

7. EDHML: An Institution for Embedding Simple State Machines

relation M, β |=Casl
Sig(Dt),X φ for models M ∈ModCasl(Dt), variable valuations β : X→ M, and

formulæ φ ∈F Casl
Sig(Dt),X.

Example 7.2 Consider the natural numbers N as data values D. The Casl specification in
Fig. 4.1 characterises N up to isomorphism as the carrier set of the dedicated sort dt = Nat. It
specifies an abstract data type with sort Nat, operations +, 0, suc, and a predicate < .

The very simple choice of D capturing data with only a single sort can, in principle, be
replaced by any institutional data modelling language that, for our purposes of a theoroidal
institution comorphism (see Chapter 8), is faithfully representable in Casl; one such possibility
are UML class diagrams, see [JKMR12].

Data states and guards. A data state ω for a data signature A is given by a function
ω : A→D; in particular, Ω(A) = DA is the set of A-data states. The guards of a machine are
state predicates in FD

A,X = F Casl
Sig(Dt),A∪X, taking A as well as an additional set X as variables of

sort dt. A state predicate ϕ ∈FD
A,X is to be interpreted over an A-data state ω and valuation

β : X→D and we define the satisfaction relation |=D by

ω, β |=DA,X ϕ ⇐⇒ M, ι−1
M,dt ◦ (ω ∪ β) |=Casl

Sig(Dt),A∪X ϕ

where M ∈ModCasl(Dt) and ιM,dt : M(dt)∼=D. For a state predicate φ ∈FD
A,∅ not involving

any variables, we write ω |=DA φ for ω |=DA,∅ φ.

Example 7.3 The guard cnt+ k ≤ 4 of the machine in Fig. 7.1 features both the attribute cnt
and the variable k. A data state fulfilling this state predicate for k = 0 is cnt 7→ 3.

Data transitions and effects. A data transition (ω, ω′) for a data signature A is a pair of
A-data states; in particular, Ω2(A) = (DA)2 is the set of A-data transitions. It holds that
(DA)2 ∼= D2A, where 2A = A ⊎ A and we assume that no attribute in A ends in a prime ′
and all attributes in the second summand are adorned with an additional prime. The effects
of a machine are transition predicates in F 2D

A,X = FD
2A,X. The satisfaction relation |=2D for a

transition predicate ψ ∈F 2D
A,X, data transition (ω, ω′) ∈Ω2(A), and valuation β : X→D is

defined as

(ω, ω′), β |=2D
A,X ψ ⇐⇒ ω + ω′, β |=D2A,X ψ

where ω + ω′ ∈Ω(2A) with (ω + ω′)(a) = ω(a) and (ω + ω′)(a′) = ω′(a).

Example 7.4 The effect cnt′ = cnt+ k of the machine in Fig. 7.1 describes the increment of
the value of attribute cnt by a variable amount k.

7.2.2 Syntax of Simple UML State Machines

A simple UML State Machine U uses an event/data signature Σ(U) for its events and attributes
and consists of a finite set of control states C(U), a finite set of transition specifications

72

7.2. Event/Data Structures and the Problem with Institutionalising UML State Machines

T(U) of the form (c, ϕ, e(X), ψ, c′) with c, c′ ∈ C(U), e(X) ∈ E(Σ(U)), a state predicate
ϕ ∈FD

A(Σ(U)),X, a transition predicate ψ ∈F 2D
A(Σ(U)),X, an initial control state c0(U) ∈ C(U),

and an initial state predicate φ0(U)∈FD
A(Σ(U)),∅, such that C(U) is syntactically reachable, i.e.,

for every c ∈ C(U) \ {c0(U)} there are (c0(U), ϕ1, e1(X1), ψ1, c1), . . . , (cn−1, ϕn, en(Xn), ψn,
cn) ∈ T(U) with n > 0 such that cn = c. Syntactic reachability guarantees initially connected
State Machine graphs. This simplifies graph-based algorithms (see Alg. 1).

In our input language, we will use different notations for guards and assignments. Guards
we will write in the style expr1 == expr2. In assignments, instead of transition equations
for attributes, we will write in the style attr1 := expr, which will then translate to the primed
variant attr1′ = expr in the semantic notation and the translation to Casl.

Example 7.5 The machine in Fig. 7.1 has as its control states {s1, s2}, as its transition
specifications {(s1,cnt+ k ≤ 4, inc(k),cnt′ = cnt+ k, s1), (s1,cnt+ k = 4, inc(k),cnt′ = 4,
s2), (s2, true, reset, cnt′ = 0, s1)}, as initial control state s1, and as initial state predicate
cnt= 0.

7.2.3 Event/Data Structures and Models of Simple UML State Machines

For capturing machines semantically, we use event/data structures that are given over an event/data
signature Σ and consist of a transition system of configurations such that all configurations
are reachable from its initial configurations. Herein, configurations show a control state,
corresponding to machine states, and a data name from which a proper data state over A(Σ) can
be retrieved by a labelling function. Transitions connect configurations by events from E(Σ)
with their arguments instantiated by data from D.

Formally, a Σ-event/data structure M = (Γ, R, Γ0, ω) over an event/data signature Σ consists
of a set of configurations Γ ⊆ C× D for some sets of control states C and data names D, a
family of transition relations R = (Re(β) ⊆ Γ× Γ)e(X)∈E(Σ),β:X→D, and a non-empty set of
initial configurations Γ0 = {c0} × D0 ⊆ Γ with a unique initial control state c0 ∈ C such that
Γ is reachable via R, i.e., for all γ ∈ Γ there are γ0 ∈ Γ0, n ≥ 0, e1(X1), . . . , en(Xn) ∈ E(Σ),
β1 : X1→D, . . . , βn : Xn→D, and (γi, γi+1) ∈ Rei+1(βi+1) for all 0≤ i < n with γn = γ; and
a data state labelling ω : D→Ω(A(Σ)). We write c(M)(γ) = c and ω(M)(γ) = ω(d) for
γ = (c, d) ∈ Γ, Γ(M) for Γ, C(M) for {c(M)(γ) | γ ∈ Γ(M)}, R(M) for R, Γ0(M) for Γ0,
c0(M) for c0, and Ω0(M) for {ω(M)(γ0) | γ0 ∈ Γ0}.

The restriction to reachable transition systems is not strictly necessary and could be replaced
by constraining all statements on event/data structures to take into account only their reachable
part (see, e.g., Lem. 7.11).

Example 7.6 For an event/data structure for the machine in Fig. 7.1 over its signature Σ in
Ex. 7.1 we may choose the control states C as {s1, s2}, and the data names D as the set
Ω(A(Σ)) = D{cnt}. In particular, the data state labelling ω is just the identity function. The
only initial configuration is (s1,{cnt 7→ 0}). A possible transition goes from configuration
(s1,{cnt 7→ 2}) to configuration (s2,{cnt 7→ 4}) with the instantiated event inc(2).

A Σ(U)-event/data structure M is a model of a simple UML State Machine U if

73

7. EDHML: An Institution for Embedding Simple State Machines

C(M)⊇ C(U) up to a bĳective renaming, c0(M) = c0(U), Ω0(M)⊆ {ω ∈ |Ω(A(Σ(U)))| |
ω |=DA(Σ(U)) φ0(U)}, and if the following holds for all (c, d) ∈ Γ(M):

– for all (c, ϕ, e(X), ψ, c′) ∈ T(U)
and β : X→D
with ω(M)(d), β |=DA(Σ(U)),X ϕ,
there is a ((c, d), (c′, d′)) ∈ R(M)e(β)

with (ω(M)(d), ω(M)(d′)), β |=2D
A(Σ(U)),X ψ;

– for all ((c, d), (c′, d′)) ∈ R(M)e(β)

there is either some (c, ϕ, e(X), ψ, c′) ∈ T(U)
with ω(M)(d), β |=DA(Σ(U)),X ϕ

and (ω(M)(d), ω(M)(d′)), β |=2D
A(Σ(U)),X ψ,

or ω(M)(d), β ̸|=DA(Σ(U)),X
∨

(c,ϕ,e(X),ψ,c′)∈T(U) ϕ, c = c′,
and ω(M)(d) = ω(M)(d′).

A model of U thus on the one hand implements each transition prescribed by U, but on the
other hand must not show semantic transitions beyond those covered by the specified syntactic
transitions. Moreover, it is input-enabled, i.e., every event can be consumed in every control
state: If no precondition of an explicitly specified transition is satisfied, there is a self-loop
which leaves the data state untouched. In fact, input-enabledness, as required by the UML
specification [Obj17], can also be rendered as a syntactic transformation making a simple UML
State Machine U input-enabled by adding the following set of transition specifications for idling
self-loops:

{(c,¬(
∨

(c,ϕ,e(X),ψ,c′)∈T(U)

ϕ), e(X), 1A(Σ(U)), c)

| c ∈ C, e(X) ∈ E(Σ(U))

} .

Example 7.7 For the simple UML State Machine in Fig. 7.1 the “grey” transitions correspond
to an input-enabledness completion w.r.t. the “red” transitions.

7.2.4 Event/Data Signature Morphisms, Reducts, and Translations

The external interface of a simple UML State Machine is given by events, its internal interface
by attributes. Both interfaces, represented as an event/data signature, are susceptible to change
in the system development process which is captured by signature morphisms. Such changes
must also be reflected in the guards and effects, i.e., data state and transition predicates, by
syntactical translations as well as in the interpretation domains by semantical reducts.

A data signature morphism from a data signature A to a data signature A′ is a function α : A→
A′. The α-reduct of an A′-data state ω′ : A′→D along a data signature morphism α : A→ A′ is
given by the A-data state ω′|α : A→Dwith (ω′|α)(a) = ω′(α(a)) for every a∈ A; the α-reduct
of an A′-data transition (ω′, ω′′) by the A-data transition (ω′, ω′′)|α = (ω′|α, ω′′|α). The

74

7.2. Event/Data Structures and the Problem with Institutionalising UML State Machines

state predicate translation FD
α,X : FD

A,X→FD
A′ ,X along a data signature morphism α : A→ A′

is given by the Casl-formula translation F Casl
Sig(Dt),α∪1X

along the substitution α ∪ 1X; the
transition predicate translation F 2D

α,X by FD
2α,X with 2α : 2A→ 2A′ defined by 2α(a) = α(a)

and 2α(a′) = α(a)′. For each of these two reduct-translation-pairs the satisfaction condition
holds due to the general substitution lemma for Casl:

ω′|α, β |=DA,X ϕ ⇐⇒ ω′, β |=DA′ ,X FD
α,X(ϕ)

(ω′, ω′′)|α, β |=2D
A,X ψ ⇐⇒ (ω′, ω′′), β |=2D

A′ ,X F 2D
α,X(ψ)

An event signature morphism η : E→ E′ is a function η : |E| → |E′| such that υ(E)(e) =
υ(E′)(η(e)) for all e ∈ |E|. An event/data signature morphism σ : Σ→ Σ′ consists of an event
signature morphism E(σ) : E(Σ)→ E(Σ′) and a data signature morphism A(σ) : A(Σ)→
A(Σ′). The σ-reduct of a Σ′-event/data structure M′ along σ is the Σ-event/data structure M′|σ
such that

– the model components Γ(M′|σ) ⊆ Γ(M′) and R(M′|σ) = (R(M′|σ)e(β))e(X)∈E(Σ),β:X→D
are inductively defined by

• Γ(M′|σ) ⊇ Γ0(M′) and

• for all γ′, γ′′ ∈ Γ(M′), e(X) ∈ E(Σ), and β : X→D, if γ′ ∈ Γ(M′|σ) and (γ′, γ′′) ∈
R(M′)E(σ)(e)(β), then γ′′ ∈ Γ(M′|σ) and (γ′, γ′′) ∈ R(M′|σ)e(β);

– Γ0(M′|σ) = Γ0(M′); and

– ω(M′|σ)(γ′) = (ω(M′)(γ′))|σ for all γ′ ∈ Γ(M′|σ).

Building a reduct of an event/data-structure does not affect the single configurations, but
potentially reduces the set of configurations by restricting the available events, and the data
state observable from the data name of a configuration. We denote by ΓF(M, γ) and ΓF(M),
respectively, the set of configurations of a Σ-event/data structure M that are F-reachable from a
configuration γ ∈ Γ(M) and from an initial configuration γ0 ∈ Γ0(M), respectively, with a set of
events F⊆ E(Σ) where a γn ∈ Γ(M) is F-reachable in M from a γ1 ∈ Γ(M) if there are n≥ 1,
e2(X2), . . . , en(Xn) ∈ F, β2 : X2→D, . . . , βn : Xn→D, and (γi, γi+1) ∈ R(M)ei+1(βi+1) for
all 1≤ i < n.

Lemma 7.8 Let σ : Σ→ Σ′ be an event/data signature morphism, F ⊆ E(Σ), and M′ a
Σ′-event/data structure.

1. For all γ′1, γ′2 ∈ Γ(M′), if γ′1 ∈ Γ(M′|σ), then (γ′1, γ′2) ∈ R(M′|σ)e(β) if, and only if,
(γ′1, γ′2) ∈ R(M′)E(σ)(e)(β).

2. For all γ′, γ′′ ∈ Γ(M′) such that γ′ ∈ Γ(M′|σ), γ′′ ∈ ΓF(M′|σ, γ′) if, and only if, γ′′ ∈
ΓE(σ)(F)(M′, γ′).

3. For all γ′ ∈ Γ(M′), γ′ ∈ ΓF(M′|σ) if, and only if, γ′ ∈ ΓE(σ)(F)(M′).

75

7. EDHML: An Institution for Embedding Simple State Machines

Proof. (1) This follows directly from the inductive definition of the σ-reduct of Σ′-event/data
structures.

(2) Let γ′, γ′′ ∈ Γ(M′) with γ′ ∈ Γ(M′|σ). By induction, it holds that γ′′ ∈ ΓE(σ)(F)(M′) if,
and only if, there are n ≥ 0, e1(X1), . . . , en(Xn) ∈ F, and β1 : X1→D, . . . , βn : Xn→D, and
(γ′i , γ′i+1) ∈ R(M′)E(σ)(ei+1)(βi+1) for all 0 ≤ i < n with γ′ = γ′0 and γ′′ = γ′n. Thus, by (1),
since γ′ ∈ Γ(M′|σ), γ′′ ∈ ΓE(σ)(F)(M′) if, and only if, γ′′ ∈ ΓF(M′|σ).
(3) Let γ′ ∈ Γ(M′). By definition it holds that γ′ ∈ ΓE(σ)(F)(M′) if, and only if, γ′ ∈
ΓE(σ)(F)(M′, γ′0) for some γ′0 ∈ Γ0(M′); if, and only if γ′ ∈ ΓF(M′|σ, γ′0) for some γ′0 ∈ Γ(M′)
by (2) since γ′0 ∈ Γ0(M′|σ); if, and only if, γ′ ∈ ΓF(M′|σ) since Γ0(M′|σ) = Γ0(M′).

Example 7.9 Let Σ be as in Ex. 7.1 and Σ0 the event/data signature with E(Σ0) = E(Σ) and
A(Σ0) = ∅. Consider the signature morphism σ : Σ0→ Σ as the identity on the events and the
trivial embedding on the attributes. Let M be a model of the simple UML State Machine in
Fig. 7.1. The syntactic transition (s1,cnt+ k ≤ 4, inc(k),cnt′ = cnt+ k, s1) induces, among
others, the two semantic transitions ((s1, d1), (s1, d2)), ((s1, d2), (s1, d3)) ∈ R(M)inc({k 7→1})
where ω(M)(di) = {cnt 7→ i} for 1 ≤ i ≤ 3. In the reduct M|σ we find exactly these two
semantic transitions, however, ω(M|σ)(di) = ∅ for all 1 ≤ i ≤ 3. This illustrates why we
distinguish between data states and data names. With the distinction, we have a bĳection between
semantic transitions in the reduct and semantic transitions in the original structure. Without the
distinction, the two different transitions in M would collapse into one transition only as there is
just a single data state ∅.

Although it is straightforward to define a translation of simple UML State Machines along
an event/data signature morphism, the rather restrictive notion of their models prevents the
satisfaction condition from holding. In fact, this is already true for previous endeavours to
institutionalise UML State Machines as part of this general research programme [KMRG15,
KM17]. There, machines themselves were taken to be sentences over signatures comprising both
events and states, and the satisfaction relation also required that a model should show exactly the
transitions of such a machine sentence. For signature morphisms σ that are not surjective on
states, building the reduct could result in fewer states and transitions, which leads to the same
violation of the satisfaction condition which we found in [Ros17], shown here in Fig. 7.2.

We therefore propose to make a detour through a more general hybrid modal logic. This
logic is directly based on event/data structures and thus close to the domain of State Machines.
For forming an institution, its hybrid features allow to avoid control states as part of the signature
and its event-based modalities allow to specify both mandatory and forbidden behaviour in a
more fine-grained manner. Still, the logic is expressive enough to characterise the model class
of a simple UML State Machine syntactically.

7.3 A Hybrid Modal Logic for Event/Data Systems

The logic EDHML is a hybrid modal logic for specifying event/data-based reactive systems
and reasoning about them. The EDHML-signatures are the event/data signatures, the EDHML-
structures the event/data structures. The modal part of the logic allows to handle transitions

76

7.3. A Hybrid Modal Logic for Event/Data Systems

s
s1 s2

e/
{
|= s1 s2

e/

7→ |σ

7→

σ

u

www
v

σ(s1) σ(s2)

s′

e/

e/

}

���
~
̸|= σ(s1) σ(s2)

e/

Figure 7.2: A counterexample (assuming s′ is not in the image of σ) to the satisfaction condition for earlier attempts
at institutionalising UML State Machines.

between configurations where the modalities describe moves between configurations that adhere
to a pre-condition or guard as a state predicate for an event with arguments and a transition
predicate for the data change corresponding to effects. The hybrid part of the logic allows to bind
control states of system configurations and to jump to configurations with such control states
explicitly, but leaves out nominals as interfacing names as well as the possibility to quantify over
control states.

The logic builds on the hybrid dynamic logic D↓ for specifying reactive systems without
data [MBHM16] and its extension E↓ to handle also data [HMK19]. We restrict ourselves to
modal operators consisting only of single instead of compound actions as done in dynamic logic.
However, we still retain a box modality for accessing all configurations that are reachable from a
given configuration. Moreover, we extend E↓ by adding parameters to events.

The category of EDHML-signatures SigEDHML consists of the event/data signatures and
signature morphisms. The Σ-event/data structures form the discrete category ModEDHML(Σ)
of EDHML-structures over Σ. For each signature morphism σ : Σ→Σ′ in SigEDHML the σ-reduct
functor ModEDHML(σ) : ModEDHML(Σ′)→ModEDHML(Σ) is given by ModEDHML(σ)(M′) =
M′|σ. As the next step we introduce the formulæ and sentences of EDHML together with their
translation along SigEDHML-morphisms and their satisfaction over ModEDHML. We then show
that for EDHML the satisfaction condition holds and thus obtain EDHML as an institution.
Subsequently, we show that EDHML is expressive enough to characterise the model class of
simple UML State Machines.

7.3.1 Formulæ and Sentences of EDHML

EDHML-formulæ aim at expressing control and data state properties of configurations as well
as accessibility properties of configurations along transitions for particular events. The pure data
state part is captured by data state sentences over D. The control state part can be accessed and
manipulated by hybrid operators for binding the control state in a state variable, ↓s; checking
for a particular control state, s; and accessing all configurations with a particular control state,
@F, which, however, only pertains to reachable configurations relative to a set F of events.
Transitions between configurations are covered by different modalities: a box modality for

77

7. EDHML: An Institution for Embedding Simple State Machines

accessing all configurations that are reachable from a given configuration, 2F, again relative to
a set F of events; a diamond modality for checking that an event with arguments is possible with
a particular data state change, ⟨e(X)(ψ⟩; and a modality for checking the reaction to an event
with arguments according to a pre-condition and a transition predicate, ⟨|e(X) : ϕ(ψ|⟩.

Formally, the Σ-event/data formulæ F EDHML
Σ,S over an event/data signature Σ and a set of

state variables S are inductively defined by

– φ — data state sentence φ ∈FD
A(Σ),∅ holds in the current configuration;

– s — the control state of the current configuration is s ∈ S;

– ↓s .ϱ — calling the current control state s, formula ϱ ∈F EDHML
Σ,S⊎{s} holds;

– (@Fs)ϱ — in all configurations with control state s ∈ S that are reachable with events from
F ⊆ E(Σ), the formula ϱ ∈F EDHML

Σ,S holds;

– 2Fϱ — in all configurations that are reachable from the current configuration with events
from F ⊆ E(Σ) formula ϱ ∈F EDHML

Σ,S holds;

– ⟨e(X)(ψ⟩ϱ — in the current configuration there is a valuation of X and a transition for event
e(X) ∈ E(Σ) with these arguments that satisfies transition formula ψ ∈F 2D

A(Σ),X and makes
ϱ ∈F EDHML

Σ,S hold afterwards;

– ⟨|e(X) : ϕ(ψ|⟩ϱ — in the current configuration for all valuations of X satisfying state formula
ϕ ∈FD

A(Σ),X there is a transition for event e(X) ∈ E(Σ) with these arguments that satisfies
transition formula ψ ∈F 2D

A(Σ),X and makes ϱ ∈F EDHML
Σ,S hold afterwards;

– ¬ϱ — in the current configuration ϱ ∈F EDHML
Σ,S does not hold;

– ϱ1 ∨ ϱ2 — in the current configuration ϱ1 ∈F EDHML
Σ,S or ϱ2 ∈F EDHML

Σ,S hold.

We write (@s)ϱ for (@E(Σ)s)ϱ, 2ϱ for 2E(Σ)ϱ, 3Fϱ for ¬2F¬ϱ, 3ϱ for 3E(Σ)ϱ, [e(X)(ψ]ϱ
for ¬⟨e(X)(ψ⟩¬ϱ, and true for ↓s . s.

Example 7.10 An event/data formula can make two kinds of requirements on an event/data
structure: On the one hand, it can require the presence of certain mandatory transitions, on the
other hand it can require the absence of certain prohibited transitions. Considering the simple
UML State Machine in Fig. 7.1, the formula

(@s1)⟨|inc(k) : cnt+ k = 4(cnt′ = 4|⟩s2

requires for each valuation of β : {k} →N such that cnt+ k = 4 holds that there is a transition
from control state s1 to control state s2 for the instantiated event inc(β) where cnt is changed to
4. On the other hand, the formula

(@s2)[reset(¬(cnt′ = 0)]false

78

7.3. A Hybrid Modal Logic for Event/Data Systems

prohibits any transitions out of s2 that are labelled with the event reset but do not satisfy cnt′ = 0.
In the context of Fig. 7.1, these formulæ only have their explained intended meaning when

s1 and s2 indeed refer to the eponymous states. However, EDHML does not show nominals
for explicitly naming control states as part of the State Machine’s interface and the reference to
specific states always has to build these states’ context first using the modalities and the bind
operator. On the other hand, as indicated in Sect. 7.2.4, the inclusion of nominals may interfere
disadvantageously with the reduct formation.

Let σ : Σ→ Σ′ be an event/data signature morphism. The event/data formulæ translation
F EDHML

σ,S : F EDHML
Σ,S →F EDHML

Σ′ ,S along σ is recursively given by

– F EDHML
σ,S (φ) = FD

A(σ),∅(φ);

– F EDHML
σ,S (s) = s;

– F EDHML
σ,S (↓s .ϱ) = ↓s .F EDHML

σ,S⊎{s}(ϱ);

– F EDHML
σ,S ((@Fs)ϱ) = (@E(σ)(F)s)F EDHML

σ,S (ϱ);

– F EDHML
σ,S (2Fϱ) = 2E(σ)(F)F EDHML

σ,S (ϱ);

– F EDHML
σ,S (⟨e(X)(ψ⟩ϱ) = ⟨E(σ)(e)(X)(F 2D

A(σ),X(ψ)⟩F
EDHML
σ,S (ϱ);

– F EDHML
σ,S (⟨|e(X) : ϕ(ψ|⟩ϱ)

= ⟨|E(σ)(e)(X) : FD
A(σ),X(ϕ)(F 2D

A(σ),X(ψ)|⟩F
EDHML
σ,S (ϱ);

– F EDHML
σ,S (¬ϱ) = ¬F EDHML

σ,S (ϱ);

– F EDHML
σ,S (ϱ1 ∨ ϱ2) = F EDHML

σ,S (ϱ1) ∨F EDHML
σ,S (ϱ2).

The set SenEDHML(Σ) of Σ-event/data sentences is given by F EDHML
Σ,∅ , the event/data

sentence translation SenEDHML(σ) : SenEDHML(Σ)→ SenEDHML(Σ′) by F EDHML
σ,∅ .

7.3.2 Satisfaction Relation for EDHML

The EDHML-satisfaction relation connects EDHML-structures and EDHML-formulæ, express-
ing whether in some configuration of the structure a particular formula holds with respect
to an assignment of control states to state variables. Let Σ be an event/data signature, M a
Σ-event/data structure, S a set of state variables, v : S→ C(M) a state variable assignment, and
γ ∈ Γ(M). The satisfaction relation for event/data formulæ is inductively given by

– M, v, γ |=EDHML
Σ,S φ iff ω(M)(γ) |=DA(Σ) φ;

– M, v, γ |=EDHML
Σ,S s iff v(s) = c(M)(γ);

– M, v, γ |=EDHML
Σ,S ↓s .ϱ iff M, v{s 7→ c(M)(γ)}, γ |=EDHML

Σ,S⊎{s} ϱ;

79

7. EDHML: An Institution for Embedding Simple State Machines

– M, v, γ |=EDHML
Σ,S (@Fs)ϱ iff M, v, γ′ |=EDHML

Σ,S ϱ

for all γ′ ∈ ΓF(M) with c(M)(γ′) = v(s);

– M, v, γ |=EDHML
Σ,S 2Fϱ iff M, v, γ′ |=EDHML

Σ,S ϱ for all γ′ ∈ ΓF(M, γ);

– M, v, γ |=EDHML
Σ,S ⟨e(X)(ψ⟩ϱ iff there is a β : X→D and a γ′ ∈ Γ(M) such that (γ, γ′) ∈

R(M)e(β), (ω(M)(γ), ω(M)(γ′)), β |=2D
A(Σ),X ψ, and M, v, γ′ |=EDHML

Σ,S ϱ;

– M, v, γ |=EDHML
Σ,S ⟨|e(X) : ϕ(ψ|⟩ϱ

iff for all β : X→D with ω(M)(γ), β |=DA(Σ),X ϕ

there is some γ′ ∈ Γ(M)
such that (γ, γ′) ∈ R(M)e(β),
(ω(M)(γ), ω(M)(γ′)), β |=2D

A(Σ),X ψ,
and M, v, γ′ |=EDHML

Σ,S ϱ;

– M, v, γ |=EDHML
Σ,S ¬ϱ iff M, v, γ ̸|=EDHML

Σ,S ϱ;

– M, v, γ |=EDHML
Σ,S ϱ1 ∨ ϱ2 iff M, v, γ |=EDHML

Σ,S ϱ1 or M, v, γ |=EDHML
Σ,S ϱ2.

This satisfaction relation is well-behaved with respect to reducts of EDHML-structures. On
the one hand, this is due to the use of abstract data names rather than data states in the structures,
and on the other hand, to the satisfaction condition of D and 2D.

Lemma 7.11 Let σ : Σ→ Σ′ be an event/data signature morphism and M′ a Σ′-event/data
structure. For all ϱ ∈F EDHML

Σ,S , all γ′ ∈ Γ(M′|σ)⊆ Γ(M′), and all v : S→ C(M′|σ)⊆ C(M′)
it holds that

M′|σ, v, γ′ |=EDHML
Σ,S ϱ ⇐⇒ M′, v, γ′ |=EDHML

Σ′ ,S F EDHML
σ,S (ϱ) .

Proof. We apply induction on the structure of Σ-event/data formulæ.
Case φ:

M′|σ, v, γ′ |=EDHML
Σ,S φ

⇔ { def. |=EDHML }
ω(M′|σ)(γ′) |=DA(Σ) φ

⇔ { def. |σ }
ω(M′)(γ′)|σ |=DA(Σ) φ

⇔ { sat. cond. D }
ω(M′)(γ′) |=DA(Σ′) A(σ)(φ)

⇔ { def. |=EDHML }
M′, v, γ′ |=EDHML

Σ′ ,S A(σ)(φ)

⇔ { def. FEDHML
σ,S }

M′, v, γ′ |=EDHML
Σ′ ,S F EDHML

σ,S (φ)

80

7.3. A Hybrid Modal Logic for Event/Data Systems

Case s:
M′|σ, v, γ′ |=EDHML

Σ,S s
⇔ { def. |=EDHML }

v(s) = c(M′|σ)(γ′)
⇔ { def. |σ }

v(s) = c(M′)(γ′)
⇔ { def. |=EDHML }

M′, v, γ′ |=EDHML
Σ′ ,S s

⇔ { def. FEDHML
σ,S }

M′, v, γ′ |=EDHML
Σ′ ,S F EDHML

σ,S (s)

Case ↓s .ϱ:
M′|σ, v, γ′ |=EDHML

Σ,S ↓s .ϱ
⇔ { def. |=EDHML }

M′|σ, v{s 7→ c(M′|σ)(γ′)}, γ′ |=EDHML
Σ,S⊎{s} ϱ

⇔ { def. |σ and I. H. }
M′, v{s 7→ c(M′)(γ′)}, γ′ |=EDHML

Σ′ ,S⊎{s} F EDHML
σ,S⊎{s}(ϱ)

⇔ { def. |=EDHML }
M′, v, γ′ |=EDHML

Σ′ ,S ↓s .F EDHML
σ,S⊎{s}(ϱ)

⇔ { def. FEDHML
σ,S }

M′, v, γ′ |=EDHML
Σ′ ,S F EDHML

σ,S (↓s .ϱ)

Case (@Fs)ϱ:
M′|σ, v, γ′ |=EDHML

Σ,S (@Fs)ϱ
⇔ { def. |=EDHML }

M′|σ, v, γ′′ |=EDHML
Σ,S ϱ

for all γ′′ ∈ ΓF(M′|σ) with c(M′|σ)(γ′′) = v(s)
⇔ { Lem. 7.8(3) }

M′|σ, v, γ′′ |=EDHML
Σ,S ϱ

for all γ′′ ∈ ΓE(σ)(F)(M′) with c(M′|σ)(γ′′) = v(s)
⇔ { def. |σ and I. H. }

M′, v, γ′′ |=EDHML
Σ′ ,S F EDHML

σ,S (ϱ)

for all γ′′ ∈ ΓE(σ)(F)(M′) with c(M′)(γ′′) = v(s)
⇔ { def. |=EDHML }

M′, v, γ′ |=EDHML
Σ′ ,S (@E(σ)(F)s)F EDHML

σ,S (ϱ)

⇔ { def. FEDHML
σ,S }

81

7. EDHML: An Institution for Embedding Simple State Machines

M′, v, γ′ |=EDHML
Σ′ ,S F EDHML

σ,S ((@Fs)ϱ)

Case 2Fϱ:

M′|σ, v, γ′ |=EDHML
Σ,S 2Fϱ

⇔ { def. |=EDHML }
M′|σ, v, γ′′ |=EDHML

Σ,S ϱ for all γ′′ ∈ ΓF(M′|σ, γ′)

⇔ { Lem. 7.8(2) }
M′|σ, v, γ′′ |=EDHML

Σ,S ϱ for all γ′′ ∈ ΓE(σ)(F)(M′, γ′)

⇔ { I. H. }
M′, v, γ′′ |=EDHML

Σ′ ,S F EDHML
σ,S (ϱ) for all γ′′ ∈ ΓE(σ)(F)(M′, γ′)

⇔ { def. |=EDHML }
M′, v, γ′ |=EDHML

Σ′ ,S 2E(σ)(F)F EDHML
σ,S (ϱ)

⇔ { def. FEDHML
σ,S }

M′, v, γ′ |=EDHML
Σ′ ,S F EDHML

σ,S (2Fϱ)

Case ⟨e(X)(ψ⟩ϱ:

M′|σ, v, γ′ |=EDHML
Σ,S ⟨e(X)(ψ⟩ϱ

⇔ { def. |=EDHML }
M′|σ, v, γ′′ |=EDHML

Σ,S ϱ for some β : X→D, γ′′ ∈ Γ(M′|σ) with
(γ′, γ′′) ∈ R(M′|σ)e(β) and
(ω(M′|σ)(γ′), ω(M′|σ)(γ′′)), β |=2D

A(Σ),X ψ

⇔ { Lem. 7.8(1) }
M′|σ, v, γ′′ |=EDHML

Σ,S ϱ for some β : X→D, γ′′ ∈ Γ(M′) with
(γ′, γ′′) ∈ R(M′)E(σ)(e)(β) and
(ω(M′|σ)(γ′), ω(M′|σ)(γ′′)), β |=2D

A(Σ),X ψ

⇔ { def. |σ }
M′|σ, v, γ′′ |=EDHML

Σ,S ϱ for some β : X→D, γ′′ ∈ Γ(M′) with
(γ′, γ′′) ∈ R(M′)E(σ)(e)(β) and
(ω(M′)(γ′)|σ, ω(M′)(γ′′)|σ), β |=2D

A(Σ),X ψ

⇔ { sat. cond. 2D }
M′|σ, v, γ′′ |=EDHML

Σ,S ϱ for some β : X→D, γ′′ ∈ Γ(M′) with
(γ′, γ′′) ∈ R(M′)E(σ)(e)(β) and
(ω(M′)(γ′), ω(M′)(γ′′)), β |=2D

A(Σ′),X F 2D
A(σ),X(ψ)

⇔ { I. H. }

82

7.3. A Hybrid Modal Logic for Event/Data Systems

M′, v, γ′′ |=EDHML
Σ′ ,S F EDHML

σ,S (ϱ) for some β : X→D, γ′′ ∈ Γ(M′) with
(γ′, γ′′) ∈ R(M′)E(σ)(e)(β) and
(ω(M′)(γ′), ω(M′)(γ′′)), β |=2D

A(Σ′),X F 2D
A(σ),X(ψ)

⇔ { def. |=EDHML }
M′, v, γ′ |=EDHML

Σ′ ,S ⟨E(σ)(e)(X)(F 2D
A(σ),X(ψ)⟩F

EDHML
σ,S (ϱ)

⇔ { def. FEDHML
σ,S }

M′, v, γ′ |=EDHML
Σ′ ,S F EDHML

σ,S (⟨e(X)(ψ⟩ϱ)

Case ⟨|e(X) : ϕ(ψ|⟩ϱ:
M′|σ, v, γ′ |=EDHML

Σ,S ⟨|e(X) : ϕ(ψ|⟩ϱ
⇔ { def. |=EDHML }

M′|σ, v, γ′′ |=EDHML
Σ,S ϱ

for all β : X→D such that ω(M′|σ)(γ′), β |=DA(Σ),X ϕ and
some γ′′ ∈ Γ(M′|σ) with (γ′, γ′′) ∈ R(M′|σ)e(β) and
(ω(M′|σ)(γ′), ω(M′|σ)(γ′′)), β |=2D

A(Σ),X ψ

⇔ { Lem. 7.8(1) }
M′|σ, v, γ′′ |=EDHML

Σ,S ϱ

for all β : X→D such that ω(M′|σ)(γ′), β |=DA(Σ),X ϕ and
some γ′′ ∈ Γ(M′) with (γ′, γ′′) ∈ R(M′)E(σ)(e)(β) and
(ω(M′|σ)(γ′), ω(M′|σ)(γ′′)), β |=2D

A(Σ),X ψ

⇔ { def. |σ }
M′|σ, v, γ′′ |=EDHML

Σ,S ϱ

for all β : X→D such that ω(M′)(γ′)|σ, β |=DA(Σ),X ϕ and
some γ′′ ∈ Γ(M′) with (γ′, γ′′) ∈ R(M′)E(σ)(e)(β) and
(ω(M′)(γ′)|σ, ω(M′)(γ′′)|σ), β |=2D

A(Σ),X ψ

⇔ { sat. cond. D, sat. cond. 2D }
M′|σ, v, γ′′ |=EDHML

Σ,S ϱ

for all β : X→D such that ω(M′)(γ′), β |=DA(Σ′),X FD
A(σ),X(ϕ)

and some γ′′ ∈ Γ(M′) with (γ′, γ′′) ∈ R(M′)E(σ)(e)(β) and
(ω(M′)(γ′), ω(M′)(γ′′)), β |=2D

A(Σ′),X F 2D
A(σ),X(ψ)

⇔ { I. H. }
M′, v, γ′′ |=EDHML

Σ′ ,S F EDHML
σ,S (ϱ)

for all β : X→D such that ω(M′)(γ′), β |=DA(Σ′),X FD
A(σ),X(ϕ) and

some γ′′ ∈ Γ(M′) with (γ′, γ′′) ∈ R(M′)E(σ)(e)(β) and
(ω(M′)(γ′), ω(M′)(γ′′)), β |=2D

A(Σ′),X F 2D
A(σ),X(ψ)

⇔ { def. |=EDHML }

83

7. EDHML: An Institution for Embedding Simple State Machines

M′, v, γ′ |=EDHML
Σ′ ,S ⟨|E(σ)(e)(X) : FD

A(σ),X(ϕ)(F 2D
A(σ),X(ψ)|⟩F

EDHML
σ,S (ϱ)

⇔ { def. FEDHML
σ,S }

M′, v, γ′ |=EDHML
Σ′ ,S F EDHML

σ,S (⟨|e(X) : ϕ(ψ|⟩ϱ)

Case ¬ϱ:

M′|σ, v, γ′ |=EDHML
Σ,S ¬ϱ

⇔ { def. |=EDHML }
M′|σ, v, γ′ ̸|=EDHML

Σ,S ϱ

⇔ { I. H. }
M′, v, γ′ ̸|=EDHML

Σ′ ,S F EDHML
σ,S (ϱ)

⇔ { def. |=EDHML }
M′, v, γ′ |=EDHML

Σ′ ,S ¬F EDHML
σ,S (ϱ)

⇔ { def. FEDHML
σ,S }

M′, v, γ′ |=EDHML
Σ′ ,S F EDHML

σ,S (¬ϱ)

Case ϱ ∨ ς:

M′|σ, v, γ′ |=EDHML
Σ,S ϱ ∨ ς

⇔ { def. |=EDHML }
M′|σ, v, γ′ |=EDHML

Σ,S ϱ or M′|σ, v, γ′ |=EDHML
Σ,S ς

⇔ { I. H. }
M′, v, γ′ |=EDHML

Σ′ ,S F EDHML
σ,S (ϱ) or M′, v, γ′ |=EDHML

Σ′ ,S F EDHML
σ,S (ς)

⇔ { def. |=EDHML }
M′, v, γ′ |=EDHML

Σ′ ,S F EDHML
σ,S (ϱ) ∨F EDHML

σ,S (ς)

⇔ { def. FEDHML
σ,S }

M′, v, γ′ |=EDHML
Σ′ ,S F EDHML

σ,S (ϱ ∨ ς)

For a Σ ∈ |SigEDHML|, an M ∈ |ModEDHML(Σ)|, and a ρ ∈ SenEDHML(Σ) the satisfaction
relation M |=EDHML

Σ ρ holds if, and only if, M, ∅, γ0 |=EDHML
Σ,∅ ρ for all γ0 ∈ Γ0(M).

Theorem 7.12 (SigEDHML,ModEDHML, SenEDHML, |=EDHML) is an institution.

Proof. The satisfaction condition that for any σ : Σ→ Σ′ in SigEDHML, M′ ∈ |ModEDHML(Σ′)|,
and ρ ∈ SenEDHML(Σ), it holds that

ModEDHML(σ)(M′) |=EDHML
Σ ρ ⇐⇒ M′ |=EDHML

Σ′ SenEDHML(σ)(ρ)

directly follows from Lem. 7.11.

84

7.3. A Hybrid Modal Logic for Event/Data Systems

Alg. 1 Constructing an EDHML-sentence from a set of transition specifications
Require: T ≡ a set of transition specifications

ImT(c) = {(ϕ, e(X), ψ, c′) | (c, ϕ, e(X), ψ, c′) ∈ T}
ImT(c, e(X)) = {(ϕ, ψ, c′) | (c, φ, e(X), ψ, c′) ∈ T}

1 function sen(c, I, V, B) ▷ c: state, I: image to visit, V: states to visit, B: bound states
2 if I ̸= ∅ then
3 (ϕ, e(X), ψ, c′)← choose I
4 if c′ ∈ B then
5 return (@c)⟨|e(X) : ϕ(ψ|⟩(c′ ∧ sen(c, I \ {(ϕ, e(X), ψ, c′)}, V, B))
6 else
7 return (@c)⟨|e(X) : ϕ(ψ|⟩(↓c′ . sen(c, I \ {(ϕ, e(X), ψ, c′)}, V, B ∪ {c′}))
8 V← V \ {c}
9 if V ̸= ∅ then

10 c′← choose B ∩V
11 return sen(c′, ImT(c′), V, B)
12 return (

∧
c∈B fin(c)) ∧∧

c1∈B,c2∈B\{c1}¬(@c1)c2

13 function fin(c)
14 return (@c)

∧
e(X)∈E(Σ(U))

∧
P⊆ImT(c,e(X))

[e(X)(
(∧

(ϕ,ψ,c′)∈P(ϕ ∧ ψ)
)
∧

¬
(∨

(ϕ,ψ,c′)∈ImT(c,e(X))\P(ϕ ∧ ψ)
)
]
(∨

(ϕ,ψ,c′)∈P c′
)

7.3.3 Representing Simple UML State Machines in EDHML

The hybrid modal logic EDHML is expressive enough to characterise the model class of a simple
UML State Machine U by a single sentence ϱU , i.e., an event/data structure M is a model of
U if, and only if, M |=EDHML

Σ(U) ϱU . Such a characterisation is achieved by means of Alg. 1 that
is a slight variation of the characterisation algorithm for so-called operational specifications
within E↓ [HMK19] by including also events with data arguments. The algorithm constructs a
sentence expressing that

– all semantic transitions according to the explicit syntactic transition specifications are indeed
possible and that

– no further semantic transitions exist, i.e., every semantic transition adheres to some syntactic
transition.

This sentence is expected to hold in the initial configuration and characterizes the entire
machine. State names from the input are reused as variable names for control states. All state
variables except the initial state are bound. Their distinctness is ensured (see the ¬(@c1)c2 in
Alg. 1). Together, this ensures state names can be consistently renamed, but are otherwise fixed.

The algorithm proceeds as follows: For a set of transition specifications T, a call sen(c, I, V,
B) performs a recursive breadth-first traversal1 starting from c, where I holds the unprocessed

1We are traversing the graph spanned by the transition specifications, i.e., by the elements of T.

85

7. EDHML: An Institution for Embedding Simple State Machines

quadruples2 (ϕ, e(X), ψ, c′) of transitions in T outgoing from c, V the remaining states to visit,
and B the set of already bound states. The function first requires the existence of each outgoing
transition of I in the resulting formula, binding any newly reached state. Having visited all states
in V, it requires that no other transitions from the states in B exist using calls to fin, and adds
the requirement that all states in B are pairwise different. Formula fin(c) expresses that at c,
for all events e(X) and for all subsets P of the transitions in T outgoing from c, whenever an
e(X)-transition can be done with the combined effect of P but not adhering to any of the effects
of the transitions currently not selected, the e(X)-transition must have one of the states as its
target that are target states of P.

Example 7.13 Applying Alg. 1 to the set of explicitly mentioned, “red” transition specifications
T of the simple UML State Machine Counter in Fig. 7.1, i.e., calling sen(s1, ImT(s1),{s1, s2},
{s1}) yields ϱs1,s1 with

ϱs1,s1 = (@s1)⟨|inc(k) : cnt+ k ≤ 4(cnt′ = cnt+ k|⟩(s1∧ ϱs1,s2)

ϱs1,s2 = (@s1)⟨|inc(k) : cnt+ k = 4(cnt′ = cnt+ k|⟩↓s2 . (ϱs2,s1)

ϱs2,s1 = (@s2)⟨|reset : true(cnt′ = 0|⟩(s1∧ ϱfin)

ϱfin = ϱfin(s1) ∧ ϱfin(s2) ∧ ¬(@s1)s2

ϱfin(s1) = (@s1)
(
[inc(k)(¬((cnt+ k ≤ 4∧ cnt′ = cnt+ k) ∨

(cnt+ k = 4∧ cnt′ = 4))]false∧
[inc(k)((cnt+ k ≤ 4∧ cnt′ = cnt+ k) ∧

¬(cnt+ k = 4∧ cnt′ = 4)]s1∧
[inc(k)((cnt+ k = 4∧ cnt′ = 4) ∧

¬(cnt+ k ≤ 4∧ cnt′ = cnt+ k)]s2∧
[inc(k)((cnt+ k ≤ 4∧ cnt′ = cnt+ k) ∧

(cnt+ k = 4∧ cnt′ = 4)](s1∨ s2) ∧
[reset(true]false

)
ϱfin(s2) = (@s2)

(
[inc(k)(true]false∧
[reset(¬(cnt′ = 0)]false∧
[reset(cnt′ = 0]s1

)
In fact, there is no outgoing “red” transition for reset from s1, thus P = ∅ is the only choice

for this event in fin(s1) and the clause [reset(true]false is included. For inc(k) there are two
outgoing transitions resulting in four different clauses checking whether none, the one or the
other, or both transitions are executable.

In order to apply the algorithm to simple UML State Machines, the idling self-loops for
achieving input-enabledness first have to be made explicit. For a syntactically input-enabled
simple UML State Machine U a characterising sentence then reads

ϱU = ↓c0 . φ0 ∧ sen(c0, ImT(U)(c0), C(U),{c0}) ,
2To recall from Sect. 7.2.2: A transition specification consists of an start control state c, a (data) state formula ϕ

acting as a guard, an event e(X) acting as a trigger, a (data) transition formula ψ encoding the assignment actions,
and resulting control state c′.

86

7.3. A Hybrid Modal Logic for Event/Data Systems

where c0 = c0(U) and φ0 = φ0(U). Due to syntactic reachability, the bound states B of Alg. 1
become C(U) when sen is called for B = {c0(U)} and V reaches ∅.

87

Chapter 8

A Theoroidal Comorphism from
EDHML to Casl

Contents
8.1 Comorphism Definition . 89
8.2 Satisfaction Condition . 93

In this chapter, we define a theoroidal comorphism from EDHML to Casl1. The construction
mainly follows the standard translation of modal logics to first-order logic [VPMY04] which
has been considered for hybrid logics also on an institutional level [Mad13, DM16].

The contents of this chapter have appeared in similar form as part of our paper at WADT
2020 [RBKR20].

The construction of the comorphism was a common effort between Alexander Knapp,
Markus Roggenbach and myself. In our virtual meetings, we jointly sketched the constructions,
proofs and examples, which I then worked out in detail and wrote down in their final form.

8.1 Comorphism Definition
The basis is a representation of EDHML-signatures and the frame given by EDHML-structures
as a Casl-specification as shown in Fig. 8.1. The signature translation

νSig : SigEDHML→ PresCasl

maps an EDHML-signature Σ to the Casl-theory presentation given by TransΣ and a EDHML-
signature morphism to the corresponding theory presentation morphism.

We will now give a line-by-line discussion of the translation frame in Fig. 8.1 for TransΣ.
1The translation indeed lands in Casl. However, as one of the referees pointed out, the structured free construct,

which we use to define an inductive predicate, is not part of the Casl institution, but rather of Casl’s institution
independent structuring constructs. Structured specifactions over an arbitrary institution again form institutions, for
many notions of structuring [DM03]. In particular, this is the case for freeness constraints [GB92, Def. 25, Prop.
26]. Our comorphism technically lands in such an institution over Casl.

89

8. A Theoroidal Comorphism from EDHML to Casl

from Basic/StructuredDatatypes get Set % import finite sets
spec TransΣ = Dt
then free type Evt ::= τe(E(Σ))

% τe({e(X)}) = e(dt|X|), τe({e(X)} ∪ E) = e(dt|X|) | τe(E)
free type EvtNm ::= τn(E(Σ)) % τn({e(X)}) = e, τn({e(X)} ∪ E) = e | τn(E)
op nm : Evt→ EvtNm
axiom ∀x1, . . . , xn : dt · nm(e(x1, . . . , xn)) = e % for each e(x1, . . . , xn) ∈ E(Σ)

then Set[sort EvtNm]
then sort Ctrl

free type Conf ::= conf(c : Ctrl;τa(A(Σ)))
% τa({a}) = a : dt, τa({a} ∪ A) = a : dt;τa(A)

preds init : Conf;
trans : Conf× Evt×Conf

·∃g : Conf · init(g) % there is some initial configuration
·∀g, g′ : Conf · init(g) ∧ init(g′)⇒ c(g) = c(g′) % single initial control state
free { pred reachable : Set[EvtNm]×Conf×Conf

∀g, g′, g′′ : Conf, E : Set[EvtNm], e : Evt
· reachable(E, g, g)
· reachable(E, g, g′) ∧ nm(e) ∈ E ∧ trans(g′, e, g′′)⇒ reachable(E, g, g′′) }

then preds reachable(E : Set[EvtName], g : Conf)⇔
∃g0 : Conf · init(g0) ∧ reachable(E, g0, g);

reachable(g : Conf)⇔ reachable(E(Σ), g)
end

Figure 8.1: Frame for translating EDHML into Casl

– TransΣ uses finite sets from the Casl standard library.

– TransΣ itself starts with a specification Dt of the underlying data universe.

– Next, it introduces a free type Evt for events. The case distinction between the different event
constructors is here generated by a meta-language function τe, which recurses over the event
set |E(Σ)| from the signature. For each event, we generate a constructor. To recall, each
event e(X) comes with a finite set v(e(X)) of variables, which we here include as arguments
to the event constructor.

– Next, we introduce the free type EvtNm for event names. The constructors are generated by
the recursive function τn, which is similar to τe, but leaves out the arguments, i.e., an event
name is an event without the data.

– Next, we include into TransΣ the specification of finite sets, specialised to event names as
elements.

– Next, we introduce a sort Ctrl for the control states.

– Next, we introduce a free type for configurations with only one constructor conf. A
configuration is given by a control state and, for each attribute, one value from the data

90

8.1. Comorphism Definition

universe dt. The data value arguments to conf are generated by the function τa, which
recurses over the attribute set A(Σ) from the signature.

– Next, we introduce the predicate init which characterises initial configurations.

– Next, we introduce the transition predicate trans, which characterises triples of a configuration
before the transition, an event and a configuration after the transition.

– Next, we require by an axiom that there is an initial configuration.

– Next, we require by an axiom that any two initial control states are equal.

– Next, we introduce the predicate reachable by a structured free block. In our experiments,
we had to use different methods to encode the inductive nature of reachability, due to a lack
of tools support for Casl’s structured free construct. However, in the formal definition, we
considered the structured free to be the clearest way of expressing what is going on here. In
the structured free block we

1. introduce the predicate reachable, taking a set of event names (as we are considering
reachability using only events with these names) and the configurations in which we start
and end;

2. quantify over variables we will need in the following two axioms;

3. state the base case axioms, that each configuration is reachable from itself; and

4. state the step axiom, that transitions with allowed triggers preserve reachability.

– Finally, we introduce two abbreviated reachability predicates by first specialising the starting
configuration to any allowed initial configuration, then by specialising the allowed set of event
names to all event names from the signature.

The model translation

νMod
Σ : ModCasl(νSig(Σ))→ModEDHML(Σ)

can rely on the encoding just described. In particular, for a model M′ ∈ModCasl(νSig(Σ)),
there are, using the bĳection ιM′ ,dt : dtM′ ∼= D, an injective map ιM′ ,Conf : ConfM′ ↣ CtrlM′ ×
Ω(A(Σ)) and a bĳective map ιM′ ,Evt : EvtM′ ∼= {e(β) | e(X) ∈ E(Σ), β : X → D}. The
EDHML-structure resulting from a Casl-model of TransΣ can thus be defined by

– Γ(νMod
Σ (M′)) = ι−1

M′ ,Conf({g′ ∈ M′Conf | reachableM′(g′)})

– R(νMod
Σ (M′))e(β) = {(γ, γ′) ∈ Γ(νMod

Σ (M′))× Γ(νMod
Σ (M′)) |

transM′(ιM′ ,Conf(γ), ι−1
M′ ,Evt(e(β)), ιM′ ,Conf(γ

′))})

– Γ0(νMod
Σ (M′)) = {γ ∈ Γ(νMod

Σ (M′)) | initM′(ιM′ ,Conf(γ))})

– ω(νMod
Σ (M′)) = {(c, ω) ∈ Γ(νMod

Σ (M′)) 7→ ω}

91

8. A Theoroidal Comorphism from EDHML to Casl

For EDHML-sentences, we first define a formula translation

νF
Σ,S,g : F EDHML

Σ,S →F Casl
νSig(Σ),S∪{g}

which, mimicking the standard translation, takes a variable g : Conf as a parameter that
records the “current configuration” and also uses a set S of state names for the control
states. The translation embeds the data state and 2-data state formulæ using the substitution
A(Σ)(g) = {a 7→ a(g) | a ∈ A(Σ)} for replacing the attributes a ∈ A(Σ) by the accessors
a(g). The translation of EDHML-formulæ then reads

– νF
Σ,S,g(φ) = F Casl

νSig(Σ),A(Σ)(g)(φ)

– νF
Σ,S,g(s) = (s = c(g))

– νF
Σ,S,g(↓s .ϱ) = ∃s : Ctrl . s = c(g) ∧ νF

Σ,S⊎{s},g(ϱ)

– νF
Σ,S,g((@

Fs)ϱ) = ∀g′ : Conf . (c(g′) = s ∧ reachable(F, g′))⇒ νF
Σ,S,g′(ϱ)

– νF
Σ,S,g(2

Fϱ) = ∀g′ : Conf .reachable(F, g, g′)⇒ νF
Σ,S,g′(ϱ)

– νF
Σ,S,g(⟨e(X)(ψ⟩ϱ) = ∃X : dt .∃g′ : Conf . trans(g, e(X), g′) ∧

F Casl
νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X

(ψ) ∧ νF
Σ,S,g′(ϱ)

– νF
Σ,S,g(⟨|e(X) : ϕ(ψ|⟩ϱ) = ∀X : dt .F Casl

νSig(Σ),A(Σ)(g)∪1X
(ϕ)⇒

∃g′ : Conf . trans(g, e(X), g′) ∧
F Casl

νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X
(ψ) ∧ νF

Σ,S,g′(ϱ)

– νF
Σ,S,g(¬ϱ) = ¬νF

Σ,S,g(ϱ)

– νF
Σ,S,g(ϱ1 ∨ ϱ2) = νF

Σ,S,g(ϱ1) ∨ νF
Σ,S,g(ϱ2)

Example 8.1 The translation of (@s1)⟨|inc(x) : cnt+ x ≤ 4(cnt′ = cnt+ x|⟩s1 over the state
set {s1} and the configuration variable g is

νF
Σ,{s1},g((@s1)⟨|inc(x) : cnt+ x ≤ 4(cnt′ = cnt+ x|⟩s1)

= ∀g′ : Conf . (c(g′) = s1∧ reachable(g′))⇒
νF

Σ,{s1},g′(⟨|inc(x) : cnt+ x ≤ 4(cnt′ = cnt+ x|⟩s1)

= ∀g′ : Conf . (c(g′) = s1∧ reachable(g′))⇒
∀x : dt . cnt(g′) + x ≤ 4⇒
∃g′′ : Conf . trans(g′, inc(x), g′′) ∧

cnt(g′′) = cnt(g′) + x ∧ νF
Σ,{s1},g′′(s1)

= ∀g′ : Conf . (c(g′) = s1∧ reachable(g′))⇒
∀x : dt . cnt(g′) + x ≤ 4⇒
∃g′′ : Conf . trans(g′, inc(x), g′′) ∧

cnt(g′′) = cnt(g′) + x ∧ s1 = c(g′′)

92

8.2. Satisfaction Condition

Building on the translation of formulæ, the sentence translation

νSen
Σ : SenEDHML(Σ)→ SenCasl(νSig(Σ))

only has to require additionally that evaluation starts in an initial state, as sentences are stated
from the perspective of an initial state. Thus, sentence translation is defined by:

– νSen
Σ (ρ) = ∀g : Conf . init(g)⇒ νF

Σ,∅,g(ρ)

8.2 Satisfaction Condition
The translation of Casl-models of TransΣ into EDHML-structures and the translation of
EDHML-formulæ into Casl-formulæ over TransΣ fulfil the requirements of the “open” satis-
faction condition of theoroidal comorphisms:

Lemma 8.2 For a ϱ ∈F EDHML
Σ,S , an M′ ∈ModCasl(νSig(Σ)), a v : S→ C(νMod

Σ (M′)), and a
γ ∈ Γ(νMod

Σ (M′)) it holds with β′M′ ,g(v, γ) = ι−1
M′ ,Ctrl ◦ v ∪ {g 7→ ιM′ ,Conf(γ)} that

νMod
Σ (M′), v, γ |=EDHML

Σ,S ϱ ⇐⇒ M′, β′M′ ,g(v, γ) |=Casl
νSig(Σ),S∪{g} νF

Σ,S,g(ϱ) .

Proof. We apply induction on the structure of Σ-event/data formulæ.
Case φ:

νMod
Σ (M′), v, γ |=EDHML

Σ,S φ

⇔ { def. |=EDHML }
ω(νMod

Σ (M′))(γ) |=DA(Σ) φ

⇔ { def. |=D , def. |=Casl }
M′, ι−1

M′ ,dt ◦ω(νMod
Σ (M′))(γ) ∪

{g 7→ ιM′ ,Conf(γ)} |=Casl
νSig(Σ),{g} F Casl

νSig(Σ),A(Σ)(g)(φ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} F Casl
νSig(Σ),A(Σ)(g)(φ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(φ)

Case s:
νMod

Σ (M′), v, γ |=EDHML
Σ,S s

⇔ { def. |=EDHML }
v(s) = c(νMod

Σ (M′))(γ)
⇔ { def. νMod, |=Casl }

M′, β′M′ ,g(v, γ) |=Casl
νSig(Σ),S∪{g} s = c(g)

⇔ { def. νF }

93

8. A Theoroidal Comorphism from EDHML to Casl

M′, β′M′ ,g(v, γ) |=Casl
νSig(Σ),S∪{g} νF

Σ,S,g(s)

Case ↓s .ϱ:
νMod

Σ (M′), v, γ |=EDHML
Σ,S ↓s .ϱ

⇔ { def. |=EDHML }
νMod

Σ (M′), v{s 7→ c(νMod
Σ (M′))(γ)}, γ |=EDHML

Σ,S⊎{s} ϱ

⇔ { I. H. }
M′, β′M′ ,g(v{s 7→ c(νMod

Σ (M′))(γ)}, γ) |=Casl
νSig(Σ),(S⊎{s})∪{g} νF

Σ,S⊎{s},g(ϱ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} ∃s : Ctrl . s = c(g) ∧ νF
Σ,S⊎{s},g(ϱ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(↓s .ϱ)

Case (@Fs)ϱ:
νMod

Σ (M′), v, γ |=EDHML
Σ,S (@Fs)ϱ

⇔ { def. |=EDHML }
νMod

Σ (M′), v, γ′ |=EDHML
Σ,S ϱ

for all γ′ ∈ ΓF(νMod
Σ (M′)) with c(νMod

Σ (M′))(γ′) = v(s)
⇔ { I. H. }

M′, β′M′ ,g′(v, γ′) |=Casl
νSig(Σ),S∪{g′} νF

Σ,S,g′(ϱ)

for all γ′ ∈ ΓF(νMod
Σ (M′)) with c(νMod

Σ (M′))(γ′) = v(s)
⇔ { def. |=Casl }

M′, β′M′ ,g(v, γ) |=Casl
νSig(Σ),S∪{g}

∀g′ : Conf . (c(g′) = s ∧ reachable(F, g′))⇒ νF
Σ,S,g′(ϱ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g((@

Fs)ϱ)

Case 2Fϱ:
νMod

Σ (M′), v, γ |=EDHML
Σ,S 2Fϱ

⇔ { def. |=EDHML }
νMod

Σ (M′), v, γ′ |=EDHML
Σ,S ϱ for all γ′ ∈ ΓF(νMod

Σ (M′), γ)

⇔ { I. H. }
M′, β′M′ ,g′(v, γ′) |=Casl

νSig(Σ),S∪{g′} νF
Σ,S,g′(ϱ) for all γ′ ∈ ΓF(νMod

Σ (M′), γ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} ∀g′ : Conf .reachable(F, g, g′)⇒ νF
Σ,S,g′(ϱ)

94

8.2. Satisfaction Condition

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(2

Fϱ)

Case ⟨e(X)(ψ⟩ϱ:
νMod

Σ (M′), v, γ |=EDHML
Σ,S ⟨e(X)(ψ⟩ϱ

⇔ { def. |=EDHML }
νMod

Σ (M′), v, γ |=EDHML
Σ,S ϱ

for some β : X→D, γ′ ∈ Γ(νMod
Σ (M′)) with

(γ, γ′) ∈ R(νMod
Σ (M′))e(β) and

(ω(νMod
Σ (M′))(γ), ω(νMod

Σ (M′))(γ′)), β |=2D
A(Σ),X ψ

⇔ { I. H., def. |=2D , def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(ϱ)

for some β : X→D, γ′ ∈ Γ(νMod
Σ (M′)) with

(γ, γ′) ∈ R(νMod
Σ (M′))e(β) and

M′, ι−1
M′ ,dt ◦ ((ω(νMod

Σ (M′))(γ) + ω(νMod
Σ (M′))(γ′)) ∪ β) ∪

{g 7→ ιM′ ,Conf(γ), g′ 7→ ιM′ ,Conf(γ
′)} |=Casl

νSig(Σ),X∪{g,g′}
F Casl

νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X
(ψ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g}
∃X : dt .∃g′ : Conf . trans(g, e(X), g′) ∧

F Casl
νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X

(ψ) ∧ νF
Σ,S,g(ϱ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(⟨e(X)(ψ⟩ϱ)

Case ⟨|e(X) : ϕ(ψ|⟩ϱ:
νMod

Σ (M′), v, γ |=EDHML
Σ,S ⟨|e(X) : ϕ(ψ|⟩ϱ

⇔ { def. |=EDHML }
νMod

Σ (M′), v, γ |=EDHML
Σ,S ϱ

for all β : X→D such that ω(νMod
Σ (M′))(γ), β |=DA(Σ),X ϕ

and some γ′ ∈ Γ(νMod
Σ (M′)) with (γ, γ′) ∈ R(νMod

Σ (M′))e(β)

and (ω(νMod
Σ (M′))(γ), ω(νMod

Σ (M′))(γ′)), β |=2D
A(Σ),X ψ

⇔ { I. H., def. |=D , def. |=2D , def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(ϱ)

95

8. A Theoroidal Comorphism from EDHML to Casl

for all β : X→D such that
M′, ι−1

M′ ,dt ◦ (ω(νMod
Σ (M′))(γ) ∪ β) ∪

{g 7→ ιM′ ,Conf(γ)} |=Casl
νSig(Σ),X∪{g} F Casl

νSig(Σ),A(Σ)(g)∪1X
(ϕ)

and some γ′ ∈ Γ(νMod
Σ (M′)) with (γ, γ′) ∈ R(νMod

Σ (M′))e(β)

and M′, ι−1
M′ ,dt ◦ ((ω(νMod

Σ (M′))(γ) + ω(νMod
Σ (M′))(γ′)) ∪ β) ∪

{g 7→ ιM′ ,Conf(γ), g′ 7→ ιM′ ,Conf(γ
′)} |=Casl

νSig(Σ),X∪{g,g′}
F Casl

νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X
(ψ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g}
∀X : dt .F Casl

νSig(Σ),A(Σ)(g)∪1X
(ϕ)⇒

∃g′ : Conf . trans(g, e(X), g′) ∧
F Casl

νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X
(ψ) ∧ νF

Σ,S,g(ϱ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(⟨|e(X) : ϕ(ψ|⟩ϱ)

Case ¬ϱ:
νMod

Σ (M′), v, γ |=EDHML
Σ,S ¬ϱ

⇔ { def. |=EDHML }
νMod

Σ (M′), v, γ ̸|=EDHML
Σ,S ϱ

⇔ { I. H. }
M′, β′M′ ,g(v, γ) ̸|=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(ϱ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} ¬(ν
F
Σ,S,g(ϱ))

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(¬ϱ)

Case ϱ ∨ ς:
νMod

Σ (M′), v, γ |=EDHML
Σ,S ϱ ∨ ς

⇔ { def. |=EDHML }
νMod

Σ (M′), v, γ |=EDHML
Σ,S ϱ or νMod

Σ (M′), v, γ |=EDHML
Σ,S ς

⇔ { I. H. }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(ϱ) or M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(ς)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} (ν
F
Σ,S,g(ϱ)) ∨ (νF

Σ,S,g(ς))

⇔ { def. νF }

96

8.2. Satisfaction Condition

M′, β′M′ ,g(v, γ) |=Casl
νSig(Σ),S∪{g} νF

Σ,S,g(ϱ ∨ ς)

Theorem 8.3 (νSig, νMod, νSen) is a theoroidal comorphism from EDHML to Casl.

Proof. Let Σ ∈ SigEDHML, M′ ∈ |ModCasl(νSig(Σ))|, and ρ ∈ SenEDHML(Σ). The satisfaction
condition follows from

νMod
Σ (M′) |=EDHML

Σ ρ

⇔ { def. |=EDHML }
νMod

Σ (M′), ∅, γ0 |=EDHML
Σ,∅ ρ for all γ0 ∈ Γ0(ν

Mod
Σ (M′))

⇔ { Lem. 8.2 }
M′, β′M′ ,g(∅, γ0) |=Casl

νSig(Σ),{g} νF
Σ,∅,g(ρ) for all γ0 ∈ Γ0(ν

Mod
Σ (M′))

⇔ { def. |=Casl }
M′ |=Casl

νSig(Σ) ∀g : Conf . init(g)⇒ νF
Σ,∅,g(ρ)

⇔ { def. νSen }
M′ |=Casl

νSig(Σ) νSen
Σ (ρ)

97

Chapter 9

EDHMLO: Extending EDHML with
Outputs

Contents
9.1 The Underlying Data Universe . 100
9.2 Data States and Transitions . 101
9.3 Events and Messages . 102
9.4 Event/Data Signatures . 102
9.5 Event/Data Structures . 103
9.6 Event/Data Formulæ and Sentences . 104
9.7 Satisfaction Relation for EDHMLO . 106
9.8 Satisfaction Condition . 107

Figure 9.1: UML diagrams for the ATM example verified in Sect. 13.2 (implicit completion events omitted): Composite
Structure diagram: top; State Machines: left ATM, right Bank.

99

9. EDHMLO: Extending EDHML with Outputs

In this chapter, we extend the institution and State Machine language from Chapter 7 with output
events, thereby preparing the State Machines for Communication in the context of a Composite
Structure. As a motivating example, Fig. 9.1 repeats the ATM system from the introduction,
for we include a full specification parsable by our implementation in App. C and prove a safety
property in Chapter 13.

In our architecture of communication, the queues are removed from machine configurations
and treated instead in the Composite Structures. In the State Machines themselves, communi-
cation with the outside needs no handling beyond mentioning the messages in transitions; the
existence of ports can largely be ignored by machines. This architecture means that, to handle
communication on the State Machine side, we need only add output events. However, doing
this in a way that respects the satisfaction condition is again somewhat involved, in particular,
expressing the sets of input and output events in a context without full higher-order logic.

The contents of this chapter have been published in similar form as part of [RKR22].
The construction of EDHMLO was a common effort between Alexander Knapp, Markus

Roggenbach and myself. In our virtual meetings, we jointly sketched the constructions, proofs
and examples, which I then worked out in detail and wrote down in their final form.

9.1 The Underlying Data Universe

We assume a consistent, monomorphic Casl specification Dt of data. The interpretation of the
sorts S(Dt) of Dt represents the different kinds of data. In EDHML we had no need for such a
type system. We do need it now because later, when we flatten Composite Structures, it will have
to be possible for an attribute to contain a message queue or an entire submachine configuration.
Requiring Dt to be monomorphic fixes the carrier sets as there is, up to isomorphism, a single
model D of Dt. We also use open formulæ F Casl

Sig(Dt),X over sorted variables X = (Xs)s∈S(Dt)

and their satisfaction relation D, β |=Casl
Sig(Dt),X φ for a variable valuation β : X → D, i.e.,

β = (βs : Xs→ sD)s∈S(Dt).

Example 9.1 In our implementation, the State Machines themselves still use data signatures
containing the natural numbers as the sole and implicit sort (richer data signatures will be needed
to encode Composite Structures as Event/Data systems). A suitable specification for natural
numbers would be the one from Fig. 4.1. The guards from Fig. 9.1 are examples of the open
formulæ. The formulæ are open because they can contain both attributes and variables bound by
the trigger specification. An example valuation

{trialsNum 7→ 2;cardId 7→ 0;pin 7→ 42}

would not satisfy the formula trialsNum≥ 3, whereas the valuation

{trialsNum 7→ 6;cardId 7→ 0;pin 7→ 2}

would.

100

9.2. Data States and Transitions

9.2 Data States and Transitions
A data signature A consists of a finite set of attributes |A| and a sorting s(A) : |A| → S(Dt).
A data signature morphism from a data signature A to a data signature A′ is a function
α : |A| → |A′| such that s(A)(a) = s(A′)(α(a)) for all a ∈ |A|. We sometimes identify A
with the S(Dt)-sorted family (s(A)−1(s))s∈S(Dt).

Example 9.2 A data signature for the ATM machine in Fig. 9.1 could be given by

|A| = {trialsNum,cardId,pin}
s(A)(x) = Nat for all x

A data state ω for a data signature A is given by an attribute valuation ω : A→D, i.e.,
ω(a) ∈ s(A)(a)D for a ∈ |A|; in particular, Ω(A) = DA is the set of A-data states. The
state predicates FD

A,X are the formulæ in F Casl
Sig(Dt),A∪X, taking A as well as an additional

S(Dt)-indexed family X as variables. A state predicate ϕ ∈FD
A,X is to be interpreted over an

A-data state ω and variable valuation β : X→D and we define the satisfaction relation |=D by

ω, β |=DA,X ϕ ⇐⇒ D, ω ∪ β |=Casl
Sig(Dt),A∪X ϕ .

The α-reduct of an A′-data state ω′ : A′→D along a data signature morphism α : A→ A′

is given by the A-data state ω′|α : A→D with (ω′|α)(a) = ω′(α(a)) for every a ∈ |A|. The
state predicate translation FD

α,X : FD
A,X → FD

A′ ,X along α : A→ A′ is given by the Casl-
formula translation F Casl

Sig(Dt),α∪1X
along the substitution α ∪ 1X. Reduct and translation fulfil the

following satisfaction condition due to the general substitution lemma for Casl:

ω′|α, β |=DA,X ϕ ⇐⇒ ω′, β |=DA′ ,X FD
α,X(ϕ) .

A data transition (ω, ω′) for a data signature A is a pair of A-data states; in particular,
Ω2(A) = (DA)2 is the set of A-data transitions. It holds that (DA)2∼=D2A, where 2A = A⊎ A
and we assume that no attribute in A ends in a prime ′ and all attributes in the second summand
are adorned with an additional prime. The transition predicates F 2D

A,X are the formulæ FD
2A,X.

We will write clA(ψ) for the transition predicate asserting that ψ holds and that all attributes
a ∈ A not mentioned by ψ remain unchanged.

The satisfaction relation |=2D for a transition predicate ψ ∈F 2D
A,X, data transition (ω, ω′) ∈

Ω2(A), and valuation β : X→D is defined as

(ω, ω′), β |=2D
A,X ψ ⇐⇒ ω + ω′, β |=D2A,X ψ

where ω + ω′ ∈Ω(2A) with (ω + ω′)(a) = ω(a) and (ω + ω′)(a′) = ω′(a).
The α-reduct of an A′-data transition (ω′, ω′′) along a data signature morphism α : A→ A′ is

given by the A-data transition (ω′, ω′′)|α = (ω′|α, ω′′|α). The transition predicate translation
F 2D

α,X along α by FD
2α,X with 2α : 2A→ 2A′ defined by 2α(a) = α(a) and 2α(a′) = α(a)′. Like

for data states, reduct and translation fulfil the following satisfaction condition:

(ω′, ω′′)|α, β |=2D
A,X ψ ⇐⇒ (ω′, ω′′), β |=2D

A′ ,X F 2D
α,X(ψ) .

101

9. EDHMLO: Extending EDHML with Outputs

9.3 Events and Messages
An event signature E consists of a finite set of events |E| and a map s(E) : |E| → S(Dt)∗

assigning to each e ∈ |E| its list of parameter sorts. An event signature morphism η : E→ E′

is a function η : |E| → |E′| such that s(E)(e) = s(E′)(η(e)) for all e ∈ |E|. We write e(X)
for e ∈ |E| and s(E)(e) = s1, . . . , sn when choosing n different parameters X = x1, . . . , xn, and
also e(X) ∈ E in this case; when f = e(X), we write X(f) for X and we furthermore lift
this notation to sets and lists of events. We sometimes identify the parameter list X with the
S(Dt)-sorted family ({xi | si = s})s∈S(Dt) and write s(E)(e)(xi) for si.

A message e(β) over an event signature E is given by an event e(X) ∈ E with its parameters
X instantiated by a parameter valuation β : X→D such that β(x) ∈ sD for s(E)(e)(x) = s;
the set of all messages over an event signature E is denoted by Ê(E). When ê = e(β) ∈ Ê(E),
we write β(ê) for β, and when e(X) ∈ E and β : Y→D for X ⊆ Y, we write e(β) for e(β↾X);
both notations are furthermore lifted to sets and lists of messages.

Example 9.3 An event signature for the output events of the ATM machine in Fig. 9.1 could be
given by:

|E| = {bankCom.verify,userCom.ejectCard,userCom.keepCard}
s(E)(bankCom.verify) = (Nat,Nat)
s(E)(userCom.ejectCard) = ()

s(E)(userCom.keepCard) = ()

Note that these events contain port names (before the dot) in a way that is transparent to the
formalism. This will be become important when we discuss Composite Structures. In our
example signature, we have one event which takes two parameters of sort Nat and two events
which take none. A message could then be given by (bankCom.verify, (7,1)), which we write
more conveniently as bankCom.verify(7,1).

In order to mimic the UML ‘ignore operator’, we define the set of shuffling F̂1 ∥ F̂2 of two
message lists F̂1 and F̂2 inductively by

F̂ ∥ ε = {F̂}
=ε ∥ F̂ , (f̂ :: F̂1) ∥ F̂2

={ f̂ :: F̂ | F̂ ∈ F̂1 ∥ F̂2}
=F̂1 ∥ (f̂ :: F̂2) .

An event signature morphism η : E→ E′ is lifted to a message e(β) ∈ Ê(E) by setting
Ê(η)(e(β)) = η(e)(β) ∈ Ê(E′) and also to sets and lists of messages.

9.4 Event/Data Signatures
An event/data signature Σ consists of input and output event signatures I(Σ) and O(Σ),
and a data signature A(Σ). An event/data signature morphism σ : Σ→ Σ′ consists of an

102

9.5. Event/Data Structures

input event signature morphism I(σ) : I(Σ)→ I(Σ′), an output event signature morphism
O(σ) : O(Σ)→ O(Σ′), and a data signature morphism A(σ) : A(Σ)→ A(Σ′). We lift the
event signatures and signature morphisms to messages by writing Î(Σ) for Ê(I(Σ)), Ô(Σ) for
Ê(O(Σ)), Î(σ) for Ê(I(σ)), and Ô(σ) for Ê(O(σ)).

The category of EDHMLO-signatures SigEDHMLO consists of the event/data signatures and
signature morphisms.

9.5 Event/Data Structures

A configuration γ = (c, d) consists of

– a control state c from some set of control states C and

– a data state d from some set of data states D.

Given a data signature A the data state of γ may be labelled by a map ω such that
ω(d) ∈Ω(A). For a set of configurations Γ we write C(Γ) for its set of control states.

A Σ-event/data structure M = (Γ, R, Γ0, ω) over an event/data signature Σ consists of

– a set of configurations Γ ⊆ C× D,

– a family of transition relations R = (Rı̂,Ô ⊆ Γ× Γ)ı̂∈ Î(Σ),Ô∈Ô(Σ)∗ , and

– a non-empty set of initial configurations Γ0 ⊆ Γ

such that Γ is reachable from Γ0 via R, i.e., for all γ ∈ Γ there are γ0 ∈ Γ0, n ≥ 0, ı̂1, . . . ,
ı̂n ∈ Î(Σ), Ô1, . . . , Ôn ∈ Ô(Σ)∗, and (γk, γk+1) ∈ Rı̂k+1,Ôk+1

for all 0 ≤ k < n with γn = γ;
and a data state labelling ω : D→Ω(A(Σ)). We write c(M)(γ) = c and ω(M)(γ) = ω(d)
for γ = (c, d) ∈ Γ, Γ(M) for Γ, C(M) for {c(M)(γ) | γ ∈ Γ(M)}, R(M) for R, Γ0(M) for
Γ0, C0(M) for C(Γ0), and Ω0(M) for {ω(M)(γ0) | γ0 ∈ Γ0}.

The above definition restricts structures to reachable ones only. This corresponds to our
upcoming definition of the EDHMLO logic. In this logic, sentences will hold in a structure
if they are satisfied in its initial states. However, using modalities, we still want to be able to
express that a certain property holds for all states.

The σ-reduct of a Σ′-event/data structure M′ along the event/data signature morphism
σ : Σ→ Σ′ is the Σ-event/data structure M′|σ such that

– Γ(M′|σ) ⊆ Γ(M′) as well as R(M′|σ) = (R(M′|σ)ı̂,Ô)ı̂∈ Î(Σ),Ô∈Ô(Σ)∗ are inductively de-
fined by Γ0(M′) ⊆ Γ(M′|σ) and, for all γ′, γ′′ ∈ Γ(M′), ı̂ ∈ Î(Σ), and Ô ∈ Ô(Σ)∗, if
γ′ ∈ Γ(M′|σ) and (γ′, γ′′) ∈ R(M′) Î(σ)(ı̂),Ô(σ)(Ô), then γ′′ ∈ Γ(M′|σ) and (γ′, γ′′) ∈
R(M′|σ)ı̂,Ô;

– Γ0(M′|σ) = Γ0(M′); and

– ω(M′|σ)(γ′) = (ω(M′)(γ′))|A(σ) for all γ′ ∈ Γ(M′|σ).

103

9. EDHMLO: Extending EDHML with Outputs

This σ-reduct keeps exactly those transitions that are a direct image along σ. It would also
be possible to additionally keep transitions that show a super-list of the outputs that can be
reached by σ. When moving to EDHMLO sentences, however, it turns out to be impossible to
fix a particular list of outputs.

Given sets of input events J ⊆ I(Σ) and output events N ⊆O(Σ), we denote by ΓJ,N(M, γ)
and ΓJ,N(M), respectively, the set of configurations of a Σ-event/data structure M that are
J, N-reachable from a configuration γ ∈ Γ(M) and from an initial configuration γ0 ∈ Γ0(M),
respectively. Here a γn ∈ Γ(M) is J, N-reachable in M from a γ1 ∈ Γ(M) if there are n ≥ 1,
ı̂2, . . . , ı̂n ∈ Î(J), Ô2, . . . ,Ôn ∈ Ô(N)∗, and (γi, γi+1) ∈ R(M)ı̂k+1,Ôk+1

for all 1≤ k < n.
The Σ-event/data structures form the discrete category ModEDHMLO(Σ) of EDHMLO

structures over Σ. For each σ : Σ→ Σ′ in SigEDHMLO the σ-reduct functor ModEDHMLO(σ) :
ModEDHMLO(Σ′)→ModEDHMLO(Σ) is given by ModEDHMLO(σ)(M′) = M′|σ.

9.6 Event/Data Formulæ and Sentences
The Σ-event/data formulæ F EDHMLO

Σ,S over an event/data signature Σ and a set of state variables
S are inductively defined by

– φ — data state sentence φ ∈FD
A(Σ),∅ holds in the current configuration;

– s — the control state of the current configuration is s ∈ S (unchanged compared to EDHML);

– ↓s .ϱ — calling the current control state s, formula ϱ ∈F EDHMLO
Σ,S⊎{s} holds; note that s is turned

into a fresh variable by adding it with the disjoint sum operator to the set of state variables
(unchanged compared to EDHML);

– (@J,Ns)ϱ — in all configurations with control state s ∈ S that are J, N-reachable, formula
ϱ ∈F EDHMLO

Σ,S holds (compared to EDHML, the output events N have been added here);

– 2J,Nϱ — in all configurations that are J, N-reachable from the current configuration formula
ϱ ∈F EDHMLO

Σ,S holds (‘jump’ operator; compared to EDHML, the output events N have been
added here);

– 3i[O]Nψϱ — in the current configuration there are valuations β : X(i)→D, β′ : X(O)→D,
and a transition for the incoming message i(β) ∈ Î(Σ) and the outgoing messages Ô′ ∈
O(β′) ∥ N̂ for O(β′) ∈ Ô(Σ)∗, N̂ ∈ Ô(N)∗ such that β ∪ β′ satisfies transition formula
ψ ∈F 2D

A(Σ),X(i)∪X(O) and ϱ ∈F EDHMLO
Σ,S holds afterwards (compared to EDHML, the stated

(O) and ignored (N) output messages have been added);

– ⟨|i : ϕ([O]N : ψ|⟩ϱ — in the current configuration for all valuations β : X(i)→D satisfying
state formula ϕ ∈FD

A(Σ),X(i) there are a valuation β′ : X(O)→D and a transition for the
incoming message i(β) ∈ Î(Σ) and the outgoing messages Ô′ ∈ O(β′) ∥ N̂ for O(β′) ∈
Ô(Σ)∗, N̂ ∈ Ô(N)∗ such that β ∪ β′ satisfies transition formula ψ ∈F 2D

A(Σ),X(i)∪X(O) and
ϱ ∈F EDHMLO

Σ,S holds afterwards (compared to EDHML, the stated (O) and ignored (N) output
messages have been added);

104

9.6. Event/Data Formulæ and Sentences

– ¬ϱ — in the current configuration ϱ ∈F EDHMLO
Σ,S does not hold (unchanged compared to

EDHML);

– ϱ1 ∨ ϱ2 — in the current configuration ϱ1 ∈F EDHMLO
Σ,S or ϱ2 ∈F EDHMLO

Σ,S holds (unchanged
compared to EDHML).

We write (@s)ϱ for (@I(Σ),O(Σ)s)ϱ, 2ϱ for 2I(Σ),O(Σ)ϱ, 2i[O]Nψϱ for ¬3i[O]Nψ¬ϱ, and true
for ↓s . s; we write O for [O]∅.

Two different kinds of relativisations are used in EDHMLO-formulæ: For the jump operator
(@J,Ns)ϱ and the always operator 2J,Nϱ the subsets of input events J ⊆ I(Σ) and output events
N ⊆O(Σ) restrict the referrable states in an EDHMLO-structure to those that are J, N-reachable.
Note that this information can be kept through translations to another EDHMLO-signature. On
the other hand, [O]N specifies that besides messages from O additional messages for events in
N ⊆O(Σ) can be mixed into the output. However, in particular, [O]∅ requires exactly O. The
purpose of the relativisation [O]N is to specify with finitely many formulae (the set of output
events is finite) to ignore message lists of arbitrary length.

Let σ : Σ→ Σ′ be an event/data signature morphism. The event/data formulæ translation
F EDHMLO

σ,S : F EDHMLO
Σ,S →F EDHMLO

Σ′ ,S along σ is recursively given by

– F EDHMLO
σ,S (φ) = FD

A(σ),∅(φ);

– F EDHMLO
σ,S (s) = s;

– F EDHMLO
σ,S (↓s .ϱ) = ↓s .F EDHMLO

σ,S⊎{s} (ϱ);

– F EDHMLO
σ,S ((@J,Ns)ϱ) = (@I(σ)(J),O(σ)(N)s)F EDHMLO

σ,S (ϱ);

– F EDHMLO
σ,S (2J,Nϱ) = 2I(σ)(J),O(σ)(N)F EDHMLO

σ,S (ϱ);

– F EDHMLO
σ,S (3i[O]Nψϱ) =

3I(σ)(i)[O(σ)(O)]O(σ)(N)F
2D
A(σ),X(i)∪X(O)(ψ)F

EDHMLO
σ,S (ϱ);

– F EDHMLO
σ,S (⟨|i : ϕ([O]N : ψ|⟩ϱ) =
⟨|I(σ)(i) : FD

A(σ),X(i)(ϕ)([O(σ)(O)]O(σ)(N) : F 2D
A(σ),X(i)∪X(O)(ψ)|⟩F

EDHMLO
σ,S (ϱ);

– F EDHMLO
σ,S (¬ϱ) = ¬F EDHMLO

σ,S (ϱ);

– F EDHMLO
σ,S (ϱ1 ∨ ϱ2) = F EDHMLO

σ,S (ϱ1) ∨F EDHMLO
σ,S (ϱ2).

The set SenEDHMLO(Σ) of Σ-event/data sentences is given by F EDHMLO
Σ,∅ , the event/data

sentence translation SenEDHMLO(σ) : SenEDHMLO(Σ)→ SenEDHMLO(Σ′) by F EDHMLO
σ,∅ .

Example 9.4 In EDHMLO, just like in EDHML, we can express that a given class of transition
must be possible, or that it must be impossible.

For the ATM machine in Fig. 9.1, we could have a set of state variables

S = {cardId,pin, trialsNum},

105

9. EDHMLO: Extending EDHML with Outputs

the identity function as a state variable assignment v, as well as a data state d given by:

d : cardId 7→ 7
pin 7→ 42
trialsNum 7→ 2

The transition from PINEntered to Verifying could be encoded in the following formula:

(@PINEntered)⟨|complOfATM.PINEntered : true
([{bankCom.verify(cardId,pin)}]∅
: clA(true)|⟩CardEntered

This claims that in state PINEntered, there is a possible transition, regardless of the data
state, which is triggered by the completion event for PINEntered1, and emitting exactly the
event bankCom.verify, which is given as arguments the current values of cardId and pin. No
data is changed, and the transition lands in the control state CardEntered.

Likewise, the transition from Verifying to CardEntered could be expressed by:

(@Verifying)⟨|bankCom.reenterPIN : trialsNum< 3
([∅]∅ : clA(trialsNum

′ = trialsNum+ 1)
|⟩CardEntered

This asserts that in any configuration with control state Verifying, if trialsNum evaluates to a
number strictly less than 3, then there is a transition with no outputs, increasing trialsNum by 1,
leaving all other attributes unchanged and landing in control state CardEntered

9.7 Satisfaction Relation for EDHMLO

Let Σ be an event/data signature, M a Σ-event/data structure, S a set of state variables,
v : S→ C(M) a state variable assignment, and γ ∈ Γ(M). The satisfaction relation for
event/data formulæ is inductively given by

– M, v, γ |=EDHMLO
Σ,S φ iff ω(M)(γ), ∅ |=DA(Σ),∅ φ;

– M, v, γ |=EDHMLO
Σ,S s iff v(s) = c(M)(γ);

– M, v, γ |=EDHMLO
Σ,S ↓s .ϱ iff M, v{s 7→ c(M)(γ)}, γ |=EDHMLO

Σ,S⊎{s} ϱ;

– M, v, γ |=EDHMLO
Σ,S (@J,Ns)ϱ iff M, v, γ′ |=EDHMLO

Σ,S ϱ for all γ′ ∈ ΓJ,N(M) with c(M)(γ′) =
v(s);

– M, v, γ |=EDHMLO
Σ,S 2J,Nϱ iff M, v, γ′ |=EDHMLO

Σ,S ϱ for all γ′ ∈ ΓJ,N(M, γ);
1The completion event is delivered over a special internal port for completion events

106

9.8. Satisfaction Condition

– M, v, γ |=EDHMLO
Σ,S 3i[O]Nψϱ

iff there are valuations β : X(i)→D, β′ : X(O)→D,
output messages Ô′ ∈O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
and a configuration γ′ ∈ Γ(M)
such that (γ, γ′) ∈ R(M)i(β),Ô′ , (ω(M)(γ), ω(M)(γ′)), β ∪ β′ |=2D

A(Σ),X(i)∪X(O) ψ, and
M, v, γ′ |=EDHMLO

Σ,S ϱ;

– M, v, γ |=EDHMLO
Σ,S ⟨|i : ϕ([O]N : ψ|⟩ϱ

iff for all valuations β : X(i)→D that satisfy ω(M)(γ), β |=DA(Σ),X(i) ϕ

there are a valuation β′ : X(O)→D, output messages Ô′ ∈O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
and a configuration γ′ ∈ Γ(M)
such that (γ, γ′) ∈ R(M)i(β),Ô′ , (ω(M)(γ), ω(M)(γ′)), β ∪ β′ |=2D

A(Σ),X(i)∪X(O) ψ,
and M, v, γ′ |=EDHMLO

Σ,S ϱ;

– M, v, γ |=EDHMLO
Σ,S ¬ϱ iff M, v, γ ̸|=EDHMLO

Σ,S ϱ;

– M, v, γ |=EDHMLO
Σ,S ϱ1 ∨ ϱ2 iff M, v, γ |=EDHMLO

Σ,S ϱ1 or M, v, γ |=EDHMLO
Σ,S ϱ2.

For a Σ ∈ |SigEDHMLO|, an M ∈ |ModEDHMLO(Σ)|, and a ρ ∈ SenEDHMLO(Σ) the satisfac-
tion relation M |=EDHMLO

Σ ρ holds if, and only if, M, ∅, γ0 |=EDHMLO
Σ,∅ ρ for all γ0 ∈ Γ0(M).

Example 9.5 For the ATM machine in Fig. 9.1, we could again have the set of state variables

S = {cardId,pin, trialsNum},

the identity function as a state variable assignment v, as well as the data state d given by:

d : cardId 7→ 7
pin 7→ 42
trialsNum 7→ 2

Then, the satisfaction of the transition formula from Verifying to CardEntered in the
configuration γ = (Verifying, d) would be expressed as:

(Γ, R, Γ0, ω), v, γ |=EDHMLO
Σ,S (@Verifying)⟨|bankCom.reenterPIN : trialsNum< 3

([∅]∅ : clA(trialsNum
′ = trialsNum+ 1)

|⟩CardEntered

This would hold iff (γ, (CardEntered, d{trialsNum 7→ 3})) ∈ RbankCom.reenterPIN,∅.

9.8 Satisfaction Condition
Theorem 9.6 (SigEDHMLO,ModEDHMLO, SenEDHMLO, |=EDHMLO) is an institution.

107

9. EDHMLO: Extending EDHML with Outputs

Proof. The satisfaction condition for sentences follows directly from that for formulæ, i.e., for
signature morphisms σ : Σ→ Σ′, models M′ ∈ |ModEDHMLO(Σ′)|, state variables S, state
variable assignments v : S→ C(M′), configurations γ ∈ Γ(M) and formulæ F EDHMLO

Σ,S , we
have to show that

M′|σ, v, γ |=EDHMLO
Σ,S ϱ

is equivalent to

M′, v, γ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S (ϱ).

We prove this by structural induction over ϱ.
Case φ:

M′|σ, v, γ |=EDHMLO
Σ,S φ

⇔ { def. |=EDHMLO }
ω(M)(γ), ∅ |=DA(Σ),∅ φ;

⇔ { def. |σ }
ω(M′)(γ′)|σ |=DA(Σ),∅ φ

⇔ { sat. cond. D }
ω(M′)(γ′) |=DA(Σ′),∅ A(σ)(φ)

⇔ { def. |=EDHMLO }
M′, v, γ′ |=EDHMLO

Σ′ ,S A(σ)(φ)

⇔ { def. FEDHMLO
σ,S }

M′, v, γ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S (φ)

Case s:
M′|σ, v, γ′ |=EDHMLO

Σ,S s
⇔ { def. |=EDHMLO }

v(s) = c(M′|σ)(γ′)
⇔ { def. |σ }

v(s) = c(M′)(γ′)
⇔ { def. |=EDHMLO }

M′, v, γ′ |=EDHMLO
Σ′ ,S s

⇔ { def. FEDHMLO
σ,S }

M′, v, γ′ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S (s)

Case ↓s .ϱ:
M′|σ, v, γ′ |=EDHMLO

Σ,S ↓s .ϱ
⇔ { def. |=EDHMLO }

108

9.8. Satisfaction Condition

M′|σ, v{s 7→ c(M′|σ)(γ′)}, γ′ |=EDHMLO
Σ,S⊎{s} ϱ

⇔ { def. |σ and I. H. }
M′, v{s 7→ c(M′)(γ′)}, γ′ |=EDHMLO

Σ′ ,S⊎{s} F EDHMLO
σ,S⊎{s} (ϱ)

⇔ { def. |=EDHMLO }
M′, v, γ′ |=EDHMLO

Σ′ ,S ↓s .F EDHMLO
σ,S⊎{s} (ϱ)

⇔ { def. FEDHMLO
σ,S }

M′, v, γ′ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S (↓s .ϱ)

Case (@J,Ns)ϱ:
M′|σ, v, γ′ |=EDHMLO

Σ,S (@J,Ns)ϱ
⇔ { def. |=EDHMLO }

M′|σ, v, γ′′ |=EDHMLO
Σ,S ϱ

for all γ′′ ∈ ΓJ,N(M′|σ) with c(M′|σ)(γ′′) = v(s)
⇔ { def. |σ; Γ reachable from Γ0 via R }

M′|σ, v, γ′′ |=EDHMLO
Σ,S ϱ

for all γ′′ ∈ ΓI(σ)(J),O(σ)(N)(M′) with c(M′|σ)(γ′′) = v(s)
⇔ { I. H. }

M′, v, γ′′ |=EDHMLO
Σ,S F EDHMLO

σ,S (ϱ)

for all γ′′ ∈ ΓI(σ)(J),O(σ)(N)(M′) with c(M′)(γ′′) = v(s)
⇔ { def. |=EDHMLO }

M′, v, γ′ |=EDHMLO
Σ′ ,S (@I(σ)(J),O(σ)(N)s)F EDHMLO

σ,S (ϱ)

⇔ { def. FEDHMLO
σ,S }

M′, v, γ′ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S ((@J,Ns)ϱ)

Case 2J,Nϱ:
M′|σ, v, γ′ |=EDHMLO

Σ,S 2J,Nϱ

⇔ { def. |=EDHMLO }
M′|σ, v, γ′′ |=EDHMLO

Σ,S ϱ for all γ′′ ∈ ΓJ,N(M′|σ, γ′)

⇔ { def. |σ; Γ reachable from Γ0 via R }
M′|σ, v, γ′′ |=EDHMLO

Σ,S ϱ for all γ′′ ∈ ΓI(σ)(J),O(σ)(N)(M′|σ, γ′)

⇔ { I. H. }
M′, v, γ′′ |=EDHMLO

Σ′ ,S F EDHMLO
σ,S (ϱ) for all γ′′ ∈ ΓI(σ)(J),O(σ)(N)(M′, γ′)

⇔ { def. |=EDHMLO }
M′, v, γ′ |=EDHMLO

Σ′ ,S 2J,NF EDHMLO
σ,S (ϱ)

⇔ { def. FEDHMLO
σ,S }

109

9. EDHMLO: Extending EDHML with Outputs

M′, v, γ′ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S (2J,Nϱ)

Case 3i[O]Nψϱ:

M′|σ, v, γ′ |=EDHMLO
Σ,S 3i[O]Nψϱ

⇔ { def. |=EDHMLO }
M′|σ, v, γ′′ |=EDHMLO

Σ,S ϱ

for some β : X(i)→D,
β′ : X(O)→D,
Ô′ ∈O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′|σ)
and (γ′, γ′′) ∈ R(M′|σ)i(β),Ô′

with (ω(M′|σ)(γ′), ω(M′|σ)(γ′′)), β ∪ β′ |=2D
A(Σ),X(i)∪X(O) ψ

⇔ { event signature morphism preserve parameter sorts }
M′|σ, v, γ′′ |=EDHMLO

Σ,S ϱ

for some β : X(I(σ)(i))→D,
β′ : X(O(σ)(O))→D,
Ô′ ∈O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′|σ)
and (γ′, γ′′) ∈ R(M′|σ)i(β),Ô′

with (ω(M′|σ)(γ′), ω(M′|σ)(γ′′)), β ∪ β′ |=2D
A(Σ),X(i)∪X(O) ψ

⇔ { def. |σ; Γ reachable from Γ0 via R }
M′|σ, v, γ′′ |=EDHMLO

Σ,S ϱ

for some β : X(I(σ)(i))→D,
β′ : X(O(σ)(O))→D,
Ô′ ∈O(σ)(O)(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′|σ)
and (γ′, γ′′) ∈ R(M′)I(σ)(i)(β),Ô′

with (ω(M′|σ)(γ′), ω(M′|σ)(γ′′)), β ∪ β′ |=2D
A(Σ),X(i)∪X(O) ψ

⇔ { sat. cond. 2D }
M′|σ, v, γ′′ |=EDHMLO

Σ,S ϱ

for some β : X(I(σ)(i))→D,
β′ : X(O(σ)(O))→D,
Ô′ ∈O(σ)(O)(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′|σ)
and (γ′, γ′′) ∈ R(M′)I(σ)(i)(β),Ô′

with (ω(M′)(γ), ω(M′)(γ′)), β ∪ β′ |=2D
A(Σ),X(i)∪X(O) F 2D

A(σ),X(ψ)

⇔ { I. H. }

110

9.8. Satisfaction Condition

M′, v, γ′′ |=EDHMLO
Σ′ ,S 3I(σ(i)[O(σ)(O)]O(σ)(N)ψF EDHMLO

σ,S (ϱ)

for some β : X(I(σ(i))→D,
β′ : X(O(σ)(O))→D,
Ô′ ∈O(σ)(O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′)
and (γ′, γ′′) ∈ R(M′)I(σ)(i)(β),Ô′

with (ω(M′|σ)(γ′), ω(M′)(γ′′)), β ∪ β′ |=2D
A(Σ),X(i)∪X(O) ψ

⇔ { def. |=EDHMLO }
M′, v, γ′ |=EDHMLO

Σ′ ,S 3I(σ(i)[O(σ)(O)]NψF EDHMLO
σ,S (ϱ)

⇔ { def. FEDHMLO
σ,S }

M′, v, γ′ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S (3i[O]Nψϱ)

Case ⟨|i : ϕ([O]N : ψ|⟩ϱ:

M′|σ, v, γ′ |=EDHMLO
Σ,S ⟨|i : ϕ([O]N : ψ|⟩ϱ

⇔ { def. |=EDHMLO }
M′|σ, v, γ′′ |=EDHMLO

Σ′ ,S ⟨|i : σ, X(i)(ϕ : [O]N |⟩ψϱ

for all β : X(i)→D satisfying ω(M′|σ)(γ), β |=DA(Σ),X(i) ϕ

and some β′ : X(O)→D,
Ô′ ∈O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′)
and (γ′, γ′′) ∈ R(M′|σ)i(β),Ô′

with (ω(M′|σ)(γ′), ω(M′|σ)(γ′′)), β ∪ β′ |=2D
A(Σ),X(i)∪X(O) ψ

⇔ { event signature morphism preserve parameter sorts }
M′|σ, v, γ′′ |=EDHMLO

Σ′ ,S ⟨|i : FD
σ,A(σ),X(i)(ϕ)([O(σ)(O)]N : F 2D

σ,A(σ),X(i)(ψ)|⟩ϱ
for all β : X(I(σ(i))→D satisfying ω(M′)(γ)|A(σ), β |=DA(Σ),X(i) ϕ

and some β′ : X(O(σ)(O))→D,
ˆO(σ)(O)

′ ∈O(σ)(O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′)
and (γ′, γ′′) ∈ R(M′|σ)i(β),Ô′

with (ω(M′)(γ′)|A(σ), ω(M′)(γ′′)|A(σ)), β ∪ β′ |=2D
A(Σ),X(i)∪X(O(σ)(O)) ψ

⇔ { def. |σ; Γ reachable from Γ0 via R }
M′|σ, v, γ′′ |=EDHMLO

Σ′ ,S ⟨|i : FD
σ,A(σ),X(i)(ϕ)([O(σ)(O)]N : F 2D

σ,A(σ),X(i)(ψ)|⟩ϱ
for all β : X(I(σ(i))→D satisfying ω(M′)(γ)|A(σ), β |=DA(Σ),X(i) ϕ

and some β′ : X(O(σ)(O))→D,
ˆO(σ)(O)

′ ∈O(σ)(O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′)
and (γ′, γ′′) ∈ R(M′)

I(σ)(i)(β), ˆO(σ)(O)
′

with (ω(M′)(γ′)|A(σ), ω(M′)(γ′′)|A(σ)), β ∪ β′ |=2D
A(Σ),X(i)∪X(O(σ)(O)) ψ

111

9. EDHMLO: Extending EDHML with Outputs

⇔ { sat. cond. 2D; sat. cond. 2D }
M′|σ, v, γ′′ |=EDHMLO

Σ,S ⟨|i : FD
σ,A(σ),X(i)(ϕ)([O(σ)(O)]N : F 2D

σ,A(σ),X(i)(ψ)|⟩ϱ
for all β : X(I(σ(i))→D satisfying ω(M′)(γ), β |=DA(Σ′),X(i) FD

σ,A(σ),X(i)(ϕ)

and some β′ : X(O(σ)(O))→D,
ˆO(σ)(O)

′ ∈O(σ)(O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′)
and (γ′, γ′′) ∈ R(M′)

I(σ)(i)(β), ˆO(σ)(O)
′

with (ω(M′)(γ′), ω(M′)(γ′′)), β ∪ β′ |=2D
A(Σ′),X(i)∪X(O(σ)(O)) F 2D

σ,A(σ),X(i)(ψ)

⇔ { I. H. }
M′, v, γ′′ |=EDHMLO

Σ′ ,S ⟨|i : FD
σ,A(σ),X(i)(ϕ)([O(σ)(O)]N : F 2D

σ,A(σ),X(i)(ψ)|⟩F
EDHMLO
σ,S (ϱ)

for all β : X(I(σ(i))→D satisfying ω(M′)(γ), β |=DA(Σ′),X(i) FD
σ,A(σ),X(i)(ϕ)

and some β′ : X(O(σ)(O))→D,
ˆO(σ)(O)

′ ∈O(σ)(O(β′) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′′ ∈ Γ(M′)
and (γ′, γ′′) ∈ R(M′)

I(σ)(i)(β), ˆO(σ)(O)
′

with (ω(M′)(γ′), ω(M′)(γ′′)), β ∪ β′ |=2D
A(Σ′),X(i)∪X(O(σ)(O)) F 2D

σ,A(σ),X(i)(ψ)

⇔ { def. |=EDHMLO }
M′, v, γ′ |=EDHMLO

Σ′ ,S

⟨|I(σ)(i) : FD
σ,A(σ),X(i)(ϕ)([O(σ)(O)]N) : F 2D

σ,A(σ),X(i)(ψ)|⟩F
EDHMLO
σ,S (ϱ)

⇔ { def. FEDHMLO
σ,S }

M′, v, γ′ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S (⟨|i : ϕ([O]N : ψ|⟩ϱ)

Case ¬ϱ:
M′|σ, v, γ′ |=EDHMLO

Σ,S ¬ϱ

⇔ { def. |=EDHMLO }
M′|σ, v, γ′ ̸|=EDHMLO

Σ,S ϱ

⇔ { I. H. }
M′, v, γ′ ̸|=EDHMLO

Σ′ ,S F EDHMLO
σ,S (ϱ)

⇔ { def. |=EDHMLO }
M′, v, γ′ |=EDHMLO

Σ′ ,S ¬F EDHMLO
σ,S (ϱ)

⇔ { def. FEDHMLO
σ,S }

M′, v, γ′ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S (¬ϱ)

Case ϱ ∨ ς:
M′|σ, v, γ′ |=EDHMLO

Σ,S ϱ ∨ ς

⇔ { def. |=EDHMLO }
M′|σ, v, γ′ |=EDHMLO

Σ,S ϱ or M′|σ, v, γ′ |=EDHMLO
Σ,S ς

112

9.8. Satisfaction Condition

⇔ { I. H. }
M′, v, γ′ |=EDHMLO

Σ′ ,S F EDHMLO
σ,S (ϱ) or M′, v, γ′ |=EDHMLO

Σ′ ,S F EDHMLO
σ,S (ς)

⇔ { def. |=EDHMLO }
M′, v, γ′ |=EDHMLO

Σ′ ,S F EDHMLO
σ,S (ϱ) ∨F EDHMLO

σ,S (ς)

⇔ { def. FEDHMLO
σ,S }

M′, v, γ′ |=EDHMLO
Σ′ ,S F EDHMLO

σ,S (ϱ ∨ ς)

113

Chapter 10

A Theoroidal Comorphism from
EDHMLO to Casl

Contents
10.1 Translating Signatures . 115
10.2 Reducing Structures . 116
10.3 Translating Sentences . 117
10.4 Satisfaction Condition . 118

In this chapter, we define a (theoroidal) comorphism from EDHMLO to Casl, extending the
comorphism from EDHML. The construction mainly follows the standard translation of modal
logics to first-order logic [VPMY04] and extends the scheme of Chapter 8 by outputs.

The contents of this chapter have been published in similar form as part of [RKR22].
The construction of the comorphism was a common effort between Alexander Knapp,

Markus Roggenbach and myself. In our virtual meetings, we jointly sketched the constructions,
proofs and examples, which I then worked out in detail and wrote down in their final form.

10.1 Translating Signatures
The basis is a representation of EDHMLO-signatures and the frame given by EDHMLO-
structures as a Casl-specification as shown in Fig. 10.1. The signature translation

νSig : SigEDHMLO→ PresCasl

maps an EDHMLO-signature Σ to the Casl-theory presentation given by TransΣ and an
EDHMLO-signature morphism to the corresponding theory presentation morphism. TransΣ
first of all covers the events according to I(Σ) and O(Σ) with types InEvt and OutEvt, and
the configurations with type Conf showing a single constructor conf for the control state from
Ctrl and a data state given by assignments to the attributes from A(Σ). Furthermore, TransΣ
sets the frame for describing reachable transition systems with a set of initial configurations,

115

10. A Theoroidal Comorphism from EDHMLO to Casl

from Basic/StructuredDatatypes get List, Set % import finite lists and sets
spec TransΣ = Dt
then free type InEvt ::= I(Σ)

free type OutEvt ::= O(Σ)
then List[sort OutEvt] and Set[sort InEvt] and Set[sort OutEvt]
then sort Ctrl

free type Conf ::= conf(c : Ctrl; A(Σ))
preds init : Conf;

trans : Conf× InEvt× List[OutEvt]×Conf
·∃g : Conf · init(g) % there is some initial configuration

then free { pred reachable : Set[InEvt]× Set[OutEvt]×Conf×Conf
∀g, g′, g′′ : Conf; J : Set[InEvt]; N : Set[OutEvt]; i : InEvt;O : List[OutEvt]
· reachable(J, N, g, g)
· reachable(J, N, g, g′) ∧ i ∈ J ∧O ⊆ N ∧ trans(g′, i,O, g′′)⇒

reachable(J, N, g, g′′) }
then preds reachable(J : Set[InEvt], N : Set[OutEvt], g : Conf)⇔

∃g0 : Conf · init(g0) ∧ reachable(J, N, g0, g);
reachable(g : Conf)⇔ reachable(I(Σ),O(Σ), g)

then pred mixed : List[OutEvt]× Set[OutEvt]× List[OutEvt]
∀o, o′ : OutEvt;O,O′ : List[OutEvt]; N : Set[OutEvt]
· mixed(O, N,O)
· mixed(o :: O, N, o :: O′) if mixed(O, N,O′)
· mixed(o :: O, N, o′ :: O′) if mixed(o :: O, N,O′) ∧ o′ ∈ N

end

Figure 10.1: Extended frame for translating EDHMLO into Casl.

a transition relation, and reachability predicates, where the specification of reachable uses
Casl’s “structured free” construct to ensure reachability to be inductively defined. Finally,
a predicate mixed is included for representing the shufflings of a list of outputs with some
additional output events.

10.2 Reducing Structures
The model translation

νMod
Σ : ModCasl(νSig(Σ))→ModEDHMLO(Σ)

then can rely on this encoding. In particular, for a model M′ ∈ModCasl(νSig(Σ)), there
are bĳective maps ιM′ ,Conf : ConfM′ ∼= CtrlM′ ×Ω(A(Σ)) for the configurations as well as
ιM′ ,InEvt : InEvtM′ ∼= Î(Σ) and ιM′ ,OutEvt : OutEvtM′ ∼= Ô(Σ) for the messages. Moreover,

mixedM′(ι−1
M′ ,OutEvt(Ô), ι−1

M′ ,OutEvt(N), ι−1
M′ ,OutEvt(Ô

′))

holds iff Ô′ ∈ Ô ∥ N̂′ with N̂′ ∈ N∗.
The EDHMLO-structure resulting from a Casl-model M′ of TransΣ can thus be defined

by

116

10.3. Translating Sentences

– Γ(νMod
Σ (M′)) = ι−1

M′ ,Conf({gM′ ∈ ConfM′ | reachableM′(gM′)})

– R(νMod
Σ (M′))ı̂,Ô = {(γ, γ′) ∈ Γ(νMod

Σ (M′))× Γ(νMod
Σ (M′)) |

transM′(ιM′ ,Conf(γ), ι−1
M′ ,InEvt(ı̂), ι−1

M′ ,OutEvt(Ô), ιM′ ,Conf(γ
′))}

– Γ0(νMod
Σ (M′)) = {γ ∈ Γ(νMod

Σ (M′)) | initM′(ιM′ ,Conf(γ))})

– ω(νMod
Σ (M′)) = {(c, ω) ∈ Γ(νMod

Σ (M′)) 7→ ω}

10.3 Translating Sentences
For EDHMLO-sentences, we first define a formula translation

νF
Σ,S,g : F EDHMLO

Σ,S →F Casl
νSig(Σ),S∪{g}

which, mimicking the standard translation, takes a variable g : Conf as a parameter that
records the “current configuration” and also uses a set S of state names for the control
states. The translation embeds the data state and 2-data state formulæ using the substitution
A(Σ)(g) = {a 7→ a(g) | a ∈ A(Σ)} for replacing the attributes a ∈ A(Σ) by the accessors
a(g). The translation of EDHMLO-formulæ then reads

– νF
Σ,S,g(φ) = F Casl

νSig(Σ),A(Σ)(g)(φ)

– νF
Σ,S,g(s) = (s = c(g))

– νF
Σ,S,g(↓s .ϱ) = ∃s : Ctrl . s = c(g) ∧ νF

Σ,S⊎{s},g(ϱ)

– νF
Σ,S,g((@

J,Ns)ϱ) = ∀g′ : Conf . (c(g′) = s ∧ reachable(J, N, g′))⇒ νF
Σ,S,g′(ϱ)

– νF
Σ,S,g(2

J,Nϱ) = ∀g′ : Conf .reachable(J, N, g, g′)⇒ νF
Σ,S,g′(ϱ)

– νF
Σ,S,g(3i[O]Nψϱ) = ∃X : s(I(Σ))(i); X′ : s(O(Σ))(O);

O′ : List[OutEvt]; g′ : Conf .
mixed(O(X′), N,O′) ∧ trans(g, i(X),O′, g′) ∧
F Casl

νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X∪X′
(ψ) ∧ νF

Σ,S,g′(ϱ)

– νF
Σ,S,g(⟨|i : ϕ([O]N : ψ|⟩ϱ) = ∀X : s(I(Σ))(i) .F Casl

νSig(Σ),A(Σ)(g)∪1X
(ϕ)⇒

∃X′ : s(O(Σ))(O);O′ : List[OutEvt]; g′ : Conf .
mixed(O(X′), N,O′) ∧ trans(g, i(X),O′, g′) ∧
F Casl

νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X∪X′
(ψ) ∧ νF

Σ,S,g′(ϱ)

– νF
Σ,S,g(¬ϱ) = ¬νF

Σ,S,g(ϱ)

– νF
Σ,S,g(ϱ1 ∨ ϱ2) = νF

Σ,S,g(ϱ1) ∨ νF
Σ,S,g(ϱ2)

117

10. A Theoroidal Comorphism from EDHMLO to Casl

Building on the translation of formulæ, the sentence translation

νSen
Σ : SenEDHMLO(Σ)→ SenCasl(νSig(Σ))

only has to require additionally that evaluation starts in an initial state:

– νSen
Σ (ρ) = ∀g : Conf . init(g)⇒ νF

Σ,∅,g(ρ)

10.4 Satisfaction Condition
Lemma 10.1 For a ϱ ∈F EDHMLO

Σ,S , an M′ ∈ModCasl(νSig(Σ)), a v : S→ C(νMod
Σ (M′)), and

a γ ∈ Γ(νMod
Σ (M′)) it holds with β′M′ ,g(v, γ) = ι−1

M′ ,Ctrl ◦ v ∪ {g 7→ ιM′ ,Conf(γ)} that

νMod
Σ (M′), v, γ |=EDHMLO

Σ,S ϱ ⇐⇒ M′, β′M′ ,g(v, γ) |=Casl
νSig(Σ),S∪{g} νF

Σ,S,g(ϱ) .

Proof. We proceed by structural induction over ϱ. Case φ:

νMod
Σ (M′), v, γ |=EDHMLO

Σ,S φ

⇔ { def. |=EDHMLO }
ω(νMod

Σ (M′))(γ) |=DA(Σ),∅ φ

⇔ { def. |=D , def. |=Casl }
M′, ι−1

M′ ,dt ◦ω(νMod
Σ (M′))(γ) ∪

{g 7→ ιM′ ,Conf(γ)} |=Casl
νSig(Σ),{g} F Casl

νSig(Σ),A(Σ)(g)(φ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} F Casl
νSig(Σ),A(Σ)(g)(φ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(φ)

Case s:
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S s

⇔ { def. |=EDHMLO }
v(s) = c(νMod

Σ (M′))(γ)
⇔ { def. νMod, |=Casl }

M′, β′M′ ,g(v, γ) |=Casl
νSig(Σ),S∪{g} s = c(g)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(s)

Case ↓s .ϱ:
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S ↓s .ϱ

⇔ { def. |=EDHMLO }

118

10.4. Satisfaction Condition

νMod
Σ (M′), v{s 7→ c(νMod

Σ (M′))(γ)}, γ |=EDHMLO
Σ,S⊎{s} ϱ

⇔ { I. H. }
M′, β′M′ ,g(v{s 7→ c(νMod

Σ (M′))(γ)}, γ) |=Casl
νSig(Σ),(S⊎{s})∪{g} νF

Σ,S⊎{s},g(ϱ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} ∃s : Ctrl . s = c(g) ∧ νF
Σ,S⊎{s},g(ϱ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(↓s .ϱ)

Case (@J,Ns)ϱ:
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S (@J,Ns)ϱ

⇔ { def. |=EDHMLO }
νMod

Σ (M′), v, γ′ |=EDHMLO
Σ,S ϱ

for all γ′ ∈ Γ(νMod
Σ (M′)) with c(νMod

Σ (M′))(γ′) = v(s)
⇔ { I. H. }

M′, β′M′ ,g′(v, γ′) |=Casl
νSig(Σ),S∪{g′} νF

Σ,S,g′(ϱ)

for all γ′ ∈ Γ(νMod
Σ (M′)) with c(νMod

Σ (M′))(γ′) = v(s)
⇔ { def. |=Casl }

M′, β′M′ ,g(v, γ) |=Casl
νSig(Σ),S∪{g}

∀g′ : Conf . (c(g′) = s ∧ reachable(J, N, g′))⇒ νF
Σ,S,g′(ϱ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g((@

J,Ns)ϱ)

Case 2J,Nϱ:
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S 2J,Nϱ

⇔ { def. |=EDHMLO }
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S ϱ for all γ′ ∈ ΓJ,N(M′, γ)

⇔ { I. H. }
M′, β′M′ ,g′(v, γ′) |=Casl

νSig(Σ),S∪{g′} νF
Σ,S,g′(ϱ) for all γ′ ∈ Γ(νMod

Σ (M′), γ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} ∀g′ : Conf . (c(g′) = s ∧ reachable(J, N, g′))

⇒ νF
Σ,S,g′(2

J,Nϱ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(2

J,Nϱ)

119

10. A Theoroidal Comorphism from EDHMLO to Casl

Case 3i[O]Nψϱ:
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S 3i[O]Nψϱ

⇔ { def. |=EDHMLO }
νMod

Σ (M′), v, γ′ |=EDHMLO
Σ,S ϱ

for some βi : X(i)→D,
βO : X(O)→D,
Ô′ ∈O(βO) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′ ∈ Γ(νMod

Σ (M′))
such that (γ, γ′) ∈ R(νMod

Σ (M′))i(βi),Ô′
,

and (ω(νMod
Σ (M′))(γ), ω(νMod

Σ (M′))(γ′)), βi ∪ βO |=2D
A(Σ),X(i)∪X(O) ψ

⇔ { I. H., def. |=2D , def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g′(ϱ)

for some βi : X(i)→D,
βO : X(O)→D
Ô′ ∈O(βO) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′ ∈ Γ(νMod

Σ (M′))
with (γ, γ′) ∈ R(νMod

Σ (M′))i(βi),Ô′

and
M′, ((ι−1

M′ ,s(I(Σ))(O)
◦ω(νMod

Σ (M′))(γ) + ◦ι−1
M′ ,s(O(Σ))(O)

ω(νMod
Σ (M′))(γ′)) ∪ β) ∪

{g 7→ ιM′ ,Conf(γ), g′ 7→ ιM′ ,Conf(γ
′)} |=Casl

νSig(Σ),X∪{g,g′}
F Casl

νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X∪X′
(ψ)

⇔ { def. |=Casl; def. νMod
Σ (M′) }

M′, β′M′ ,g(v, γ) |=Casl
νSig(Σ),S∪{g,g′}

∃X : s(I(Σ))(i); X′ : s(O(Σ))(O);
O′ : List[OutEvt]; g′ : Conf .

mixed(O(X′), N,O′) ∧ trans(g, i(X),O′, g′) ∧ νF
Σ,S,g′(ϱ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(3i[O]Nψϱ)

Case ⟨|i : ϕ([O]N : ψ|⟩ϱ:
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S ⟨|i : ϕ([O]N : ψ|⟩ϱ

⇔ { def. |=EDHMLO }
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S ϱ

120

10.4. Satisfaction Condition

for all βi : X(i)→D with F Casl
νSig(Σ),A(Σ)(g)∪1X

(ϕ)

and some βO : X(O)→D
Ô′ ∈O(βO) ∥ N̂ with N̂ ∈ Ô(N)∗,
γ′ ∈ Γ(νMod

Σ (M′))
with (γ, γ′) ∈ R(νMod

Σ (M′))i(βi),Ô′

and (ω(νMod
Σ (M′))(γ), ω(νMod

Σ (M′))(γ′)), βi ∪ βO |=2D
A(Σ),X(i)∪X(O) ψ

⇔ { I. H., def. |=2D , def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g′(ϱ)

for all βi : X(i)→D with F Casl
νSig(Σ),A(Σ)(g)∪1X

(ϕ)

and some βO : X(O)→D, γ′ ∈ Γ(νMod
Σ (M′)),

Ô′ ∈O(βO) ∥ N̂ with N̂ ∈ Ô(N)∗,
with (γ, γ′) ∈ R(νMod

Σ (M′))i(βi),Ô′

and M′, ((ι−1
M′ ,s(I(Σ))(O)

◦ω(νMod
Σ (M′))(γ) + ◦ι−1

M′ ,s(O(Σ))(O)
ω(νMod

Σ (M′))(γ′)) ∪ β) ∪
{g 7→ ιM′ ,Conf(γ), g′ 7→ ιM′ ,Conf(γ

′)} |=Casl
νSig(Σ),X∪{g,g′}

F Casl
νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X∪X′

(ψ)

⇔ { def. |=Casl; def. νMod
Σ (M′) }

∀X : s(I(Σ))(i) .F Casl
νSig(Σ),A(Σ)(g)∪1X

(ϕ)⇒
∃X′ : s(O(Σ))(O);O′ : List[OutEvt]; g′ : Conf .

mixed(O(X′), N,O′) ∧ trans(g, i(X),O′, g′) ∧
F Casl

νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X∪X′
(ψ) ∧ νF

Σ,S,g′(ϱ)

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(⟨|i : ϕ([O]N : ψ|⟩ϱ)

Case ¬ϱ:
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S ¬ϱ

⇔ { def. |=EDHMLO }
νMod

Σ (M′), v, γ ̸|=EDHMLO
Σ,S ϱ

⇔ { I. H. }
M′, β′M′ ,g(v, γ) ̸|=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(ϱ)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} ¬(ν
F
Σ,S,g(ϱ))

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(¬ϱ)

Case ϱ1 ∨ ϱ2:
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S ϱ1 ∨ ϱ2

121

10. A Theoroidal Comorphism from EDHMLO to Casl

⇔ { def. |=EDHMLO }
νMod

Σ (M′), v, γ |=EDHMLO
Σ,S ϱ1 or νMod

Σ (M′), v, γ |=EDHMLO
Σ,S ϱ2

⇔ { I. H. }
M′, v, γ |=EDHMLO

Σ,S νF
Σ,S,g(ϱ1) or M′, v, γ |=EDHMLO

Σ,S νF
Σ,S,g(ϱ2)

⇔ { def. |=Casl }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} (ν
F
Σ,S,g(ϱ1)) ∨ (νF

Σ,S,g(ϱ2))

⇔ { def. νF }
M′, β′M′ ,g(v, γ) |=Casl

νSig(Σ),S∪{g} νF
Σ,S,g(ϱ1 ∨ ϱ2)

Theorem 10.2 (νSig, νMod, νSen) is a theoroidal comorphism from EDHMLO to Casl.

Proof. Let Σ ∈ SigEDHMLO, M′ ∈ |ModCasl(νSig(Σ))|, and ρ ∈ SenEDHMLO(Σ). The satisfac-
tion condition follows from

νMod
Σ (M′) |=EDHMLO

Σ ρ

⇔ { def. |=EDHMLO }
νMod

Σ (M′), ∅, γ0 |=EDHMLO
Σ,∅ ρ for all γ0 ∈ Γ0(ν

Mod
Σ (M′))

⇔ { Lem. 10.1 }
M′, β′M′ ,g(∅, γ0) |=Casl

νSig(Σ),{g} νF
Σ,∅,g(ρ) for all γ0 ∈ Γ0(ν

Mod
Σ (M′))

⇔ { def. |=Casl }
M′ |=Casl

νSig(Σ) ∀g : Conf . init(g)⇒ νF
Σ,∅,g(ρ)

⇔ { def. νSen }
M′ |=Casl

νSig(Σ) νSen
Σ (ρ)

For a Casl-proof of an EDHMLO-invariant 2φ such that φ has to hold in every reachable
configuration, the full generality of the reachable predicate can sometimes be avoided by
replacing the proof obligation ∀g : Conf .reachable(g)⇒ F Casl

νSig(Σ),A(Σ)(g)(φ) by the usual
stepwise induction scheme that only requires to demonstrate the invariant to hold in all initial
configurations and that it is preserved by every transition. Moreover, the EDHMLO-state
formula φ can be generalised into a Casl-invariant.

Proposition 10.3 Let (Σ, P) be a theory presentation in EDHMLO and (νSig(Σ), Φ) a theory pre-
sentation in Casl such that ModCasl(νPres(Σ, P)) ⊆ModCasl(νSig(Σ), Φ). Let invCasl(g) ∈
F Casl

νSig(Σ),{g} be a Casl-formula with a single free variable g and invEDHMLO ∈ FD
A(Σ),∅ an

EDHMLO-state formula, such that

∀g : Conf . invCasl(g)⇒F Casl
νSig(Σ),A(Σ)(g)(invEDHMLO) (I0)

122

10.4. Satisfaction Condition

∀g : Conf . init(g)⇒ invCasl(g) (I1)
∀g, g′ : Conf; i ∈ InEvt;O ∈ List[OutEvt] .

invCasl(g) ∧ trans(g, i,O, g′)⇒ invCasl(g′)
(I2)

hold in every model M′ ∈ModCasl(νSig(Σ), Φ). Then νMod
Σ (M′) |=EDHMLO

Σ 2invEDHMLO

holds for all models M′ ∈ModCasl(νPres(Σ, P)).

Proof. Fix an arbitrary signature Σ and model M′ ∈ ModCasl(νPres(Σ, P)). From the
assumptions and the definition of reachable we get that in all reachable configurations
γ ∈ M′(reachable), the condition M′,{g := γ} |=Casl invCasl(g) holds.

From this, we get

M′ |=Casl ∀g : Conf.reachable(g)⇒ invCasl(g),

hence

M′ |=EDHMLO ∀g : Conf.reachable(g)⇒ invCasl(g),

hence

M′ |=EDHMLO F Casl
νSig(Σ),A(Σ)(g)(invEDHMLO)

hence, by the satisfaction condition,

νMod
Σ (M′) |=EDHMLO

Σ 2invEDHMLO.

123

Chapter 11

UMLComp: Simple UML Composite
Structures

Contents
11.1 Signatures . 125
11.2 Structures . 127
11.3 Sentences . 129
11.4 Satisfaction Relation and Satisfaction Condition 130

In this chapter, we present a notion of simple UML Composite Structures built on EDHMLO.
The contents of this chapter have been published in similar form as part of [RKR22].
They result from a common effort between Alexander Knapp, Markus Roggenbach and

myself. In our virtual meetings, we jointly sketched the constructions, proofs and examples,
which I then worked out in detail and wrote down in their final form.

11.1 Signatures
A UML Composite Structure specifies the internal structure and external connections of a
class or component. For our purposes, a Composite Structure is given by class or component
instances, its so-called parts, that can communicate through their attached ports specifying input
and output interfaces and being linked by connectors. All connectors are assumed to be binary
and each part to be equipped with a State Machine for describing its behaviour.

A Composite Structure signature ∆ over EDHMLO consists of

– a set Cmp(∆) of parts c,

– each equipped with an EDHMLO-signature Sig(∆, c) for its input and output events and
internal attributes;

– a set Prt(∆) of ports p, each showing

125

11. UMLComp: Simple UML Composite Structures

– an owning part cmp(∆)(p) ∈ Cmp(∆) as well as

– an EDHMLO-signature Sig(∆, p) without attributes (i.e., A(Sig(∆, p)) = ∅) for its input
and output events; and

– a symmetric binary relation Con(∆) ⊆ Prt(∆)× Prt(∆) of connectors

such that

– for each part c ∈ Cmp(∆), the input and output events of Sig(∆, c) are the input and
output events of c’s ports prefixed with the port name, i.e., for F ∈ {I,O}, F(Sig(∆, c)) =⋃

p∈cmp(∆)−1(c){p. f | f ∈ F(Sig(∆, p))};

– for each part c ∈ Cmp(∆), the attributes of Sig(∆, c) are all prefixed with c, i.e., if a ∈
A(Sig(∆, c)), then a = c.a∗;

– for each connection (p, p′) ∈ Con(∆), the output events of port p are input events for port p′,
i.e., O(Sig(∆, p)) ⊆ I(Sig(∆, p′)).

We say that port p ∈ Prt(∆) is open in ∆ if there is no p′ ∈ Prt(∆) such that (p, p′) ∈ Con(∆);
otherwise p is connected.

A Composite Structure signature morphism δ : ∆→ ∆′ over EDHMLO consists of

– a function Cmp(δ) : Cmp(∆)→ Cmp(∆′) mapping parts, together with

– an EDHMLO-signature morphism Sig(δ, c) : Sig(∆, c)→ Sig(∆′,Cmp(δ)(c)) for each
c ∈ Cmp(Σ);

– a function Prt(δ) : Prt(∆)→ Prt(∆′) mapping ports,

– together with an EDHMLO-signature morphism Prt(δ)(p) : Sig(∆, p)→ Sig(∆′,Prt(δ)(p)),

preserving

– the part c owning each port p, i.e., if c= cmp(∆)(p), then Cmp(δ)(c) = cmp(∆′)(Prt(δ)(p));

– the connections, i.e., if (p, p′) ∈ Con(∆), then (Prt(δ)(p),Prt(δ)(p′)) ∈ Con(∆′).

The category of cs(EDHMLO)-signatures Sigcs(EDHMLO) consists of the Composite Structure
signatures and signature morphisms over EDHMLO.

Example 11.1 Considering the ATM example (Fig. 9.1), we would have parts

Cmp(∆) = {atm,bank}.

The signature for the atm component could be given by the following input events, output events
and attributes:

126

11.2. Structures

|I(Sig(∆, atm))| = { userCom.card,
userCom.PIN,
bankCom.verified,
bankCom.reenterPIN

}
s(I(Sig(∆, atm))) = { userCom.card 7→ (N),

userCom.PIN 7→ (),
bankCom.verified 7→ (),
bankCom.reenterPIN 7→ ()

}
|O(Sig(∆, atm))| = { bankCom.verify,

userCom.ejectCard,
userCom.keepCard

}
s(O(Sig(∆, atm))) = { bankCom.verify 7→ (N,N),

userCom.ejectCard 7→ (),
userCom.keepCard 7→ ()

}
|A(Sig(∆, atm))| = { cardId,

pin,
trialsNum}

s(A(Sig(∆, atm))) = { cardId 7→N,
pin 7→N,
trialsNum 7→N}

The ports of the ATM Composite Structure could be given as:

Prt(∆) = {atm.bankCom,atm.userCom,bank.atmCom}

The connectors could then be given by:

Con(∆) = {(atm.bankCom,bank.userCom)}

To all this, we could add a completion event for each control state of each part and a
completion port, connected to itself, for each part.

11.2 Structures
For an cs(EDHMLO)-signature ∆, a ∆-Composite Structure structure (sic!) over EDHMLO is
a family

C ∈ (C (c) ∈ |ModEDHMLO(Sig(∆, c))|)c∈Cmp(∆)

consisting of an EDHMLO-structure for each part c. The δ-reduct C ′|δ of a ∆′-Composite
Structure structure C ′ over EDHMLO along a Composite Structure signature morphism δ : ∆→

127

11. UMLComp: Simple UML Composite Structures

∆′ is computed componentwise as (C ′(Cmp(δ)(c))|Sig(δ, c))c∈Cmp(∆). The ∆-Composite
Structure structures form the discrete category Modcs(EDHMLO)(∆) of cs(EDHMLO)-structures
over ∆. For each signature morphism δ : ∆→ ∆′ in Sigcs(EDHMLO) the δ-reduct functor

Modcs(EDHMLO)(δ) : Modcs(EDHMLO)(∆′)→Modcs(EDHMLO)(∆)

is given by Modcs(EDHMLO)(δ)(C ′) = C ′|δ.
In UML, State Machines organised in a Composite Structure communicate with each other

by sending messages which are stored in event pools. A State Machine draws a message from
its event pool, which is typically implemented as an event queue, and reacts to this message
by firing one of its enabled transitions or by discarding it when no transition is enabled. This
communication scheme is obtained for a ∆-Composite Structure structure C over EDHMLO by
constructing an overall EDHMLO-structure over an EDHMLO-signature that reflects the parts,
the ports, and the connections in its events and attributes, but includes explicit event queues
as additional attributes. The overall EDHMLO-structure over this queue-based EDHMLO-
signature then implements the selection of an event from a part’s event queue, the reactions of
this part to this event, and the distribution of the produced messages to the connected parts.

Formally, we construct a functor Sigq : Sigcs(EDHMLO)→ SigEDHMLO assigning to a Compos-
ite Structure signature ∆ the queue-based event/data signature Sigq(∆) =

⋃
c∈Cmp(∆)(Sig(∆, c)∪

{qc : Î(Sig(∆, c))∗}) and to a Composite Structure signature morphism the canonically cor-
responding event/data signature morphism. For a Composite Structure signature ∆ and a part
c ∈ Cmp(∆) there is a natural signature embedding η

q
∆,c : Sig(∆, c)→ Sigq(∆).

For a ∆-Composite Structure structure C we construct an overall Sigq(∆)-event/data structure
MC as follows: An overall configuration of MC consists, for each part c ∈ Cmp(∆), of an event
queue q(c) ∈ Î(Sig(∆, c))∗ stored in the attribute qc and a part configuration γ(c) ∈ Γ(C (c));
initially, all parts are in some of their initial configurations and all event queues are empty. The
family of component control states forms the overal control state. In an overall configuration
(q(c), γ(c))c∈Cmp(∆) an overall transition to another overall configuration (q′(c), γ′(c))c∈Cmp(∆)

reacts to some ı̂ ∈ Î(Sigq(∆)) and outputs some Ô ∈ Ô(Sigq(∆))
∗. This ı̂ can either instantiate

some input event i ∈ I(Sig(∆, p∗)) of some of the open ports p∗ ∈ Prt(∆)with c∗ = cmp(∆)(p),
or it is the head of the event queue of some c∗ ∈ Cmp(∆) such that i ∈ I(Sig(∆, c∗)). In the
latter case, ı̂ is removed from the event queue of c∗. In both cases, the reaction of part c∗ is
any transition (γ(c∗), γ′∗) ∈ R(C (c))ı̂,Ô and overall γ′ = γ{c∗ 7→ γ′∗}. Finally, all outputs
p.ô ∈ Ô such that (p, p′) ∈ Con(∆) and cmp(∆)(p′) = c′ are appended to the respective
event queue of part c′, while preserving their order. This defines a natural transformation
Modcs(EDHMLO)

q : Modcs(EDHMLO) →̇ModEDHMLO ◦ Sigq with Modcs(EDHMLO)
q,∆ (C) = MC .

Example 11.2 Returning to the ATM example (Fig. 9.1), let us now construct its queue-based
signature 1. EDHMLO structures over this signature are then the Composite Structure structures
for the ATM Composite Structure signature, here called ∆.

1We will omit some redundant information. Such omissions are indicated by dots (. . .).

128

11.3. Sentences

First, we have have input and output events with their sorts:

|I(Sigq(∆))| = { atm.userCom.card,
atm.userCom.PIN,
atm.bankCom.verified,
atm.bankCom.reenterPIN,
bank.atmCom.verify

}
s(I(Sigq(∆))) = { . . .}
|O(Sigq(∆))| = { atm.bankCom.verify(card,pin),

atm.userCom.ejectCard,
atm.userCom.keepCard,
bank.atmCom.verified,
bank.atmCom.reenterPIN

}
s(O(Sigq(∆))) = { . . .}

Then, we have the attributes, now crucially including the queues:

|A(Sigq(∆))| = { . . .}
s(A(Sigq(∆))) = { atm.cardId 7→ N,

atm.pin 7→ N,
atm.trialsNum 7→ N,
bank.wasVerified 7→ N,
qatm 7→ |I(Sig(∆, atm))|∗,
qbank 7→ |I(Sig(∆, bank))|∗,

}

Like before, we could add completion events.

11.3 Sentences

cs(EDHMLO) inherits the event/data formulæ of EDHMLO:

Sencs(EDHMLO) = SenEDHMLO ◦ Sigq

and the underlying D, though extended by queue attributes. In particular, we have for a part
c ∈ Cmp(∆) that a transition sentence2

⟨|i : ϕ(O : ψ|⟩ϱ

2As a reminder, this sentence means: In the current configuration there are valuations and a transition for the
incoming message and the outgoing messages such that these valuations satisfy the transition formula ψ and that ϱ
holds afterwards.

129

11. UMLComp: Simple UML Composite Structures

locally formulated for this part can be faithfully transferred to the global Composite Structure,
abbreviating the embedding η

q
∆,c to η,

⟨|η(i) : FD
A(η),X(i)(ϕ) ∧ (hd(qc)

= I(η)(i) ∨ open∆,c(I(η)(i)))(
O(η)(O) : F 2D

A(η),X(i)∪X(O)(ψ) ∧
∧

a∈A(Sigq(∆))\(A(Sig(∆,c))∪{qc|c∈Cmp(∆)}) a = a′ ∧
dist∆,c(I(η)(i),O(η)(O), (qc, q′c)c∈Cmp(∆))|⟩SenEDHMLO(η)(ϱ) ,

where hd yields the head of a queue, open checks whether the part’s port for the event is open,
the frame condition a = a′ ranges over all attributes not pertaining to c or the queues, dist
removes the input and distributes the outputs to the queues.

Binding of control states remains unchanged.
For control state assertions s in a component d, it is necessary to remember that an overall

control state is a family (member of a cartesian product) of the component control states.
Therefore, in a Composite Structure, s has to be expressed by the data sentence sd = c(γ(d)),
asserting that the component control state projected from s and that projected from the current
component configuration are equal.

11.4 Satisfaction Relation and Satisfaction Condition
The satisfaction relation is an extension of that of EDHMLO: C |=cs(EDHMLO)

∆ ϱ if, and only if,
Modcs(EDHMLO)

q,∆ (C) |=EDHMLO
Sigq(∆)

ϱ.

Theorem 11.3 (Sigcs(EDHMLO),Modcs(EDHMLO), Sencs(EDHMLO), |=cs(EDHMLO)) is an institu-
tion.

Proof. This directly carries over from EDHMLO, as cs(EDHMLO)inherits everything except
signatures directly from EDHMLO. However, we will unfold the definitions explicitly:

C ′|σ |=cs(EDHMLO)
∆ ϱ

⇔ { def. |=cs(EDHMLO) }
Modcs(EDHMLO)

q,∆ (C ′|σ) |=EDHMLO
Σ ϱ

⇔ { def. Modcs(EDHMLO)
q }

Modcs(EDHMLO)
q,∆ (C ′)|σ |=EDHMLO

Σ ϱ

⇔ { satisfaction condition of EDHMLO }
Modcs(EDHMLO)

q,∆ (C ′) |=EDHMLO
Σ ϱ

⇔ { def. Sigq }

C ′ |=cs(EDHMLO)
∆′ Sigq(σ)(ϱ)

⇔ { def. sentence translation }
C ′ |=cs(EDHMLO)

∆′ σ(ϱ)

130

11.4. Satisfaction Relation and Satisfaction Condition

Corollary 11.4 The comorphism to Casl also directly carries over from EDHMLO to
cs(EDHMLO) by prefixing each of its components with Sigq.

131

Chapter 12

Implementing our Institutions and
Comorphisms in HeTS

Contents
12.1 Implementation of the UMLState Syntax in HeTS 135
12.2 Implementing Static Analysis for UMLState 136
12.3 Translation of State Machines . 138
12.4 Design of Composite Structures and State Machines with Output 140
12.5 Interfacing with UMLStateO and UMLComp 143
12.6 How to Obtain our Implementation . 145

In this chapter, we describe the implementations of our institutions and comorphisms in the
Heterogeneous Toolset HeTS. To be precise, we implemented the languages UMLState
(State Machines without outputs), UMLStateO (State Machines with outputs) and UMLComp
(Composite Structures), and, for each of the above, a translation to Casl.

The concepts underlying these implementations are the result of joint work with our coauthors
in [RBKR20, RKR22]. The implementation itself and its description here are exclusively the
work of the present author.

The precise UMLState input language we implement is specified in App. A. We have
crafted it to resemble PlantUML. For UMLStateO, the changes to the input language are
discussed in this chapter as part of a discussion of the design choices for our implementation. A
heterogeneous specification involving UMLState is given in App. C, another one for an example
system involving UMLStateO and UMLComp is given in App. D. In the case of UMLState,
the specification is the one for our Counter example on which we actually perform our proofs
in Chapter 13. In the case of UMLStateO and UMLComp, we show the ATM example. For
this, we have performed proofs on a manual translation into KIV, for reasons we explain in
Chapter 13. Figure 12.1 shows the development graphs resulting from parsing and analysing
these two specifications. Part of the output of the automatic translation for the ATM example
can be seen in Fig. 12.2.

133

12. Implementing our Institutions and Comorphisms in HeTS

Figure 12.1: The development graphs shown by HeTS after parsing the example files from Apps. C and D.

Figure 12.2: Part of the output shown by HeTS for the resulting Casl specification System from App. D.

134

12.1. Implementation of the UMLState Syntax in HeTS

To give the reader an idea of both the size of the system into which we integrated our
work and the code itself which we wrote in that context, we report some line counts: The
Haskell source files of HeTS after our changes have 284976 lines of code, including everything
(comments, empty lines, etc.). Of these 1005 lines are in the files specifically dedicated to
UMLState and its translation to Casl, 1285 lines are in the files dedicated to UMLStateO
and its translation (adapted from the ones for UMLState) and 738 lines for UMLComp and its
translation. We made minor changes to other parts of the HeTS codebase to enable HeTS to use
our code. Moreover, we use the declarative nix package management language to reproducibly
install dependencies. Our nix files contain a total of 280 lines.

12.1 Implementation of the UMLState Syntax in HeTS

A syntax in HeTS is implemented as an instance of the Syntax typeclass by giving a parser for
basic specifications and a pretty printer, the latter being undefined in our case.

1 instance Syntax UMLState BASIC_SPEC Token () () where
2 parsersAndPrinters UMLState = makeDefault (basicSpec [], pretty)

We define the abstract syntax in a style similar to a dedicated language for grammars. To be
precise, for each non-terminal symbol we define an algebraic datatype for its syntax trees, e.g.:

1 data BASIC_SPEC = Basic [BASIC_ITEMS] deriving (Eq,Ord,Show,D.Data)
2 data BASIC_ITEMS = SigB SIG_ITEMS
3 | VarB VAR_ITEMS
4 | SenB SEN_ITEMS
5 | EvtB EVENT_ITEMS
6 deriving (Eq,Ord,Show,D.Data)

That is, a BASIC_SPEC is given by a list of BASIC_ITEMS, which can be either SIG_ITEMS,
VAR_ITEMS, SEN_ITEMS or EVENT_ITEMS. The deriving clauses add automatically derivable
instances for some Haskell typeclasses. Here, they give us support for deciding equality and order
among elements, for showing elements as strings and for a certain kind of generic programming.

Then we define a Parsec parser for each non-terminal, e.g.:

1 basicItems :: Parsec [Char] st BASIC_ITEMS
2 basicItems = do SigB <$> sigItems
3 <|> do SenB . TransB <$> transItem
4 <|> do SenB <$> (key "init" >> (InitB <$> (stateP <<

asSeparator ":") <*> guardP))
5 <|> do EvtB <$> evtItems
6 <|> do VarB <$> varItems

The above is the parallel composition of the parsers for the different constructor cases of the
BASIC_ITEMS type.

135

12. Implementing our Institutions and Comorphisms in HeTS

1 logic UMLState
2 spec Counter =
3 var cnt;
4

5 event inc(k);
6 event reset;
7

8 states s1,s2;
9

10 init s1 : [cnt == 0];
11 trans s1 --> s1 : inc(k) [cnt+k<4]/{cnt:=cnt+k};
12 trans s1 --> s2 : inc(k) [cnt+k==4]/{cnt:=cnt+k};
13 trans s2 --> s1 : reset [cnt==4]/{cnt:=0}
14 end

Figure 12.3: A brief excerpt from our Counter specification, together with a screenshot of the scoping error which
results from removing line 3. The specification is handwritten in our language UMLState, which we crafted to
resemble PlantUML. It has not been generated from a graphical notation, rather, the philosophy here would be to
generate the graphical notation from the textual one. That said, it could be possible in the future to implement a
(necessarily partial) translation from the XML-based XMI interchange format for UML.

In general, we algebraically build up the parsers from combinators (cf. Sect. 4.4). This
approach to parsing allows us again to closely follow the structure of the grammar, while of
course adding some operational details.

12.2 Implementing Static Analysis for UMLState

After parsing, we perform static analysis. Again, we give our implementation by instantiating a
typeclass provided by HeTS:

1 instance StaticAnalysis UMLState BASIC_SPEC EDHML () () Library
Morphism Token () where

2 basic_analysis _ = Just $ \ (spec,sign,annos) -> do
3 (spec’,lib) <- runStateT (ana_BASIC_SPEC spec) mempty
4 let sign = lib
5 symSet = sign2SymSet $ lib2Sign lib
6 extSign = ExtSign sign symSet
7 annos = []
8 return (spec’, extSign, annos)

136

12.2. Implementing Static Analysis for UMLState

The above is an implementation of the basic_analysis method of the StaticAnalysis
typeclass of HeTS. At the core of this is the stateful action ana_BASIC_SPEC spec, where
spec is the parse tree of a basic specification. The Haskell library function runStateT takes
such a stateful action together with an initial state (here: mempty, i.e., the empty signature) and
returns a pair of the action’s return value and final state. The remainder of the above code is
concerned with computing a symbol set for our signature and an (empty) list of annotations, as
the method’s return type requires.

The goal of our static analysis is to report scoping errors (see, e.g., Fig. 12.3) and to extract
signature items from the basic specification. The signature, which is the state and result of the
static analysis, is of the following type1.

1 data Library = Library
2 { statesL :: Set STATE
3 , attrL :: Set VAR_NAME
4 , actsL :: Map (EVENT_NAME, Arity) EVENT_ITEM
5 , initL :: [(STATE, GUARD)]
6 , transL :: [TRANS_ITEM]
7 } deriving (Eq,Ord,Show)

These UMLState signatures correspond to the simple UML State Machines of Sect. 7.2.2
together with the underlying event/data signature. The following points are noteworthy:

– The event/data signature is realised as a map/dictionary data structure indexed by EVENT_NAMEs
and Arities, the number of arguments. The names of the argument variables are not
considered part of their identity – where two EVENT_NAMEs match except for the argument
names, one of them will be dropped.

– Instead of one initial control state and initial state predicate, the formula contains a list of
pairs of such. The reason is that Casl requires us to be able to combine two signatures by a
monoidal operation. Changing to a list here seemed the best way to fulfil that requirement.

Like in the case of parsing, we can largely just follow the structure of the grammar, with
state and errors being passed along implicitly using a monad:

1 ana_BASIC_ITEMS :: BASIC_ITEMS -> Check BASIC_ITEMS
2 ana_BASIC_ITEMS (SigB items) = SigB <$> ana_SIG_ITEMS items
3 ana_BASIC_ITEMS (SenB items) = SenB <$> ana_SEN_ITEMS items
4 ana_BASIC_ITEMS (EvtB items) = EvtB <$> ana_EVENT_ITEMS items
5 ana_BASIC_ITEMS (VarB items) = VarB <$> ana_VAR_ITEMS items

1In UMLState, we named this type Library, which is unfortunate, as it does not correspond to the library
concept of Casl. In UMLStateO, the corresponding type is known as Sign. Moreover, in UMLState we have a
Sign type which only contains those entries of Library that define symbols, i.e., not the initialisation and transition
“sentences”. Note however, that these are not proper sentences, as their effect is not limited to the exclusion of models.
They do belong in the signature, and in UMLStateO we abolish the distinction.

137

12. Implementing our Institutions and Comorphisms in HeTS

Mainly in the leaves of the syntax tree do we need to explicitly access the state, for both
correctness checks and to compute the resulting library. E.g., the following code analyses an
attribute declaration by first retrieving the state (the library computed so far), raising an error if
an attribute with the same name has already been declared and finally, if there is no error, saving
a new state with the variable added.

1 ana_VAR_ITEM :: VAR_NAME -> Check VAR_NAME
2 ana_VAR_ITEM var = do
3 lib <- get
4 let vars = attrL lib
5 when (var ‘Set.member‘ vars) $ errC ("variable declared twice: " ++

show var)
6 put $ lib {
7 attrL = var ‘Set.insert‘ vars
8 }
9 return var

12.3 Translation of State Machines
Our translation algorithm into EDHML can be written in Haskell on a similar level of abstraction
as it would be in pseudocode, due to the availability of list comprehensions and defined operators,
including infix operators. As an example, we show the definition of EDHML sentences as an
inductive data type and the expression for constructing the fin sentences. The latter corresponds
to the fin family in line 13 and 14 of Alg. 1). Note, however, that the fin in the implementation
takes the conjunction of the fins over all control states c, and explicitly takes arguments that
were taken from the surrounding context in Alg. 1. Moreover, in the below we make use of a
function complements that generates a list of the complemented pairs of sets used in Alg. 1.
The plural variable names here (bs, es) correspond to the upper case variables there.

1 data EDHML = DtSen FORMULA
2 | St STATE
3 | Binding STATE EDHML
4 | At EVENT_NAMES STATE EDHML
5 | Box EVENT_NAMES EDHML
6 | DiaEE EVENT_ITEM FORMULA EDHML
7 -- exists valuation and transition ...
8 | DiaAE EVENT_ITEM FORMULA FORMULA EDHML
9 -- for each valuation satisfying phi

10 -- there exists a transition ...
11 | Not EDHML
12 | And EDHML EDHML
13 | TrueE
14 deriving (Eq,Ord,Show,D.Data)
15

138

12.3. Translation of State Machines

16

17 fin :: EVENT_NAMES
18 -> [STATE]
19 -> ((STATE, EVENT_NAME, Int) -> [(FORMULA, FORMULA, STATE)]
20)
21 -> [EVENT_ITEM]
22 -> EDHML
23 fin allEvts bs im2 es = conjunctE
24 [At allEvts c
25 $ conjunctE [boxAA e (
26 (
27 conjunctF [phi :/\ psi
28 | (phi, psi, c’) <- ps
29]
30) :/\ NotF (
31 disjunctF [phi :/\ psi
32 | (phi, psi, c’) <- nps
33]
34)
35) $ disjunctE [St c’
36 | (phi, psi, c’) <- ps
37]
38 | e <- es, (ps, nps) <- complements c e im2
39]
40 | c <- bs
41]

The translation we register with HeTS goes directly from UMLState to Casl. We generate
Casl signatures from the result of our static analysis. We have implemented a translation from
EDHML to Casl sentences, which we apply to the EDHML sentence generated by our usual
algorithm. As explained in Sect. 13.1, we have implemented some modifications to the formal
comorphism that make proofs easier, such as Skolemisation and eliminating double negations.
Moreover, as we have to generate basic rather than structured specifications, we leave imports
from the standard library up to the user. For an example, see the specification in the appendices,
i.e., App. C for the Counter machine and App. D for the ATM system. This also allows limiting
the axioms that are brought into scope, which is often necessary for feasible fully automatic
proving.

We then use these parts to define an instance of the Comorphism typeclass, just as we did
before with the Syntax typeclass.

139

12. Implementing our Institutions and Comorphisms in HeTS

12.4 Design of Composite Structures and State Machines with
Output

Our implementation of UMLStateO is similar to that of UMLState, with the main difference
that we have to thread outputs through everything. To allow easier proofs and interoperability
with UMLComp and other formalisms, we have further made the following design choices:

We now introduce a notion of port names and of messages. However, we wish to keep
treating messages just like plain events as far as possible. In the input language, a message,
consisting of a port name and an event name, is always treated as one unit. In the translation to
CASL, we need separate types for events and messages, however, to enable the combination
of State Machines with Composite Structures: Composite Structures consider events to be an
opaque type, defined by State Machines, but they need to be able to change a message’s sending
port to its receiving port before inserting the message into the receiver’s queue.

We further introduce a name for each machine specification (considered the machine type
name), which we have to pass into most computations, because we include it in the names of
the transition predicate, as well as most predicates and sorts. However, we have decided to not
include the name in the event and message sorts and their operations, with the effect that those
signature elements are shared between all State Machines and Composite Structures unless they
are explicitly renamed. This removes the need of applying and reasoning about type conversions
when a message is produced by one machine and consumed by another. We likewise give a
name to a composite structure and to each of its components (machine instances).

Given these names, we generate a configuration sort, an initialisation predicate and a
transition predicate, respectively, for each State Machine and the Composite Structure. These
are identified using Casl’s “same name, same thing” principle: They are named by appending
the machine or structure name to ConfOf, initOf, and transOf. Moreover, we define a predicate
with name distOf prepended to the Composite Structure name, which relates a list of output
events to message queues before and after distributing those events.

As in the semantics, the configurations of the Composite Structure are defined to consist
of a configuration and a message queue for each machine. By handling message queues in the
Composite Structure, we simplify the machine definitions and ease separate reasoning about the
communication and the internal behaviour of components.

The Composite Structure is in its initial configuration iff all the machines are in their
respective initial configurations and, in addition, the queues are empty.

The Composite Structure makes a transition iff :

– the machine to which the input message is addressed can make a transition for this trigger for
the indicated configurations and outputs,

– the configurations of the other machines remain unchanged,

– events are added to the queues as the distOf predicate and the output list require, and

– the trigger message belongs to an external port or is removed from the appropriate queue.

Note that this behaviour of Composite Structures directly corresponds to that specified in
Chapter 11, with the State Machines factored out as described here.

140

12.4. Design of Composite Structures and State Machines with Output

Messages from or to the outside do not interact with queues at all. They appear in the
transition relations, but are otherwise ignored by the Composite Structure. As the Composite
Structure itself is given by the same interface as a State Machine, it can itself become part of
other Composite Structures which would then handle its external communication.

12.4.1 Extending the UMLState grammar to UMLStateO

We introduce MESSAGE_NAMEs, each consisting of a PORT_NAME and an EVENT_NAME. These
new MESSAGE_NAMEs are used wherever we were using EVENT_NAMEs so far.

MESSAGE_NAME ::= PORT_NAME EVENT_NAME
PORT_NAME ::= Token

To the BASIC_SPEC we add a MACHINE_NAME to identify a machine in the context of a
Composite Structure, so

BASIC_SPEC ::= basic-spec ⟨BASIC_ITEMS+ ⟩

becomes:

MACHINE_NAME ::= Token
BASIC_SPEC ::= MACHINE_NAME ⟨BASIC_ITEMS+⟩

In BASIC_ITEMS, we now have MESSAGE_ITEMS instead of EVENT_ITEMS.

BASIC_ITEMS ::= sig-its ⟨SIG_ITEMS⟩
| var-its ⟨VAR_ITEMS⟩
| evt-its ⟨MESSAGE_ITEMS⟩
| sen-its ⟨SEN_ITEMS⟩

EVENT_ITEMS become MESSAGE_ITEMS and gain a direction, so that in addition to inputs
we can now also handle outputs. This turns:

EVENT_ITEMS ::= evt-it ⟨EVENT_ITEM+ ⟩
EVENT_ITEM ::= EVENT_NAME VAR_NAME+ VAR_NAME

into:

MESSAGE_ITEMS ::= (input | output) ⟨MESSAGE_ITEM+⟩
MESSAGE_ITEM ::= MESSAGE_NAME VAR_NAME+ VAR_NAME

Triggers become optional as we are now handling completion events, although without
giving them a special priority. So we turn:

TRANS_LABEL ::= TRIGGER ⟨GUARD⟩ ⟨ACTIONS⟩
TRIGGER ::= EVENT_ITEM

141

12. Implementing our Institutions and Comorphisms in HeTS

into:

TRANS_LABEL ::= ⟨TRIGGER⟩ ⟨GUARD⟩ ⟨ACTIONS⟩
TRIGGER ::= MESSAGE_ITEM

We add another kind of ACTION beside assignment, namely that of sending a MESSAGE,
turning:

ACTION ::= VAR_NAME TERM

into:

ACTION ::= assign-act VAR_NAME TERM
| send-act MESSAGE_INSTANCE

MESSAGE_INSTANCE ::= MESSAGE_NAME ⟨TERM+⟩

The resulting signatures for UMLStateO are now of the form:

1 data Sign = Sign
2 { nameS :: Set MACHINE_NAME
3 , statesS :: Set STATE
4 , attrS :: Set VAR_NAME
5 , trigS :: Map (MESSAGE_NAME, Arity) MESSAGE_ITEM
6 , actsS :: Map (MESSAGE_NAME, Arity) MESSAGE_ITEM
7 , initS :: [(STATE, GUARD)]
8 , transS :: [TRANS_ITEM]
9 } deriving (Eq,Ord,Show)

Composite Structure signatures take the form:

1 data Sign = Sign
2 { nameS :: [COMP_NAME]
3 , machinesS :: Map MACHINE_NAME MACHINE_TYPE
4 , machineTysS :: Set MACHINE_TYPE
5 , exportsS :: Map PORT_NAME MACHINE_NAME
6 , connsS :: Map PORT_NAME (MACHINE_NAME, MACHINE_NAME,

PORT_NAME)
7 } deriving (Eq,Show,Ord)

The reader may wish to take a moment to compare the two before we continue in the next
section with an explanation how to interface with our languages.

142

12.5. Interfacing with UMLStateO and UMLComp

12.5 Interfacing with UMLStateO and UMLComp

The design we have described makes it possible to interface between UMLStateO, UMLComp
and other formalisms. The recommended way to do so is by translating to Casl and combining
the resulting specifications using Casl’s structuring constructs. The best way to connect to
UMLStateO is through UMLComp, or by the same interface used by UMLComp.

UMLComp can connect with any formalisation that axiomatises compatible initialisation
and transition predicates. In the following, we will show the sort, function and predicate symbols
arising from the translation of a Composite Structure using our comorphism. For compatibility
and maintainability, they can and should be imported from UMLComp.Logic_UMLComp. By
excerpts from that module, we will now acquaint the reader with the interface our Composite
Structures expose through the comorphism.

There are the following sort symbols, where each exists either once per machine type (not
machine instance!) and once for the entire Composite Structure, or just once for the Composite
Structure2. The below list contains each sort symbol paired with an (empty) set of supersorts.
The list specifies a binary relation of sorts, the reflexive transitive closure of which will be
Casl’s subsorting relation for our specification.

1 -- per machine type/composTy
2 [(s tyName, Set.empty)
3 | tyName <- composTy : machTys
4 , s <- [confSort]
5] ++
6 -- just once (per composTy)
7 [(s, Set.empty)
8 | s <- [portSort
9 , evtSort

10 , msgSort
11 , msgListSort
12 , msgQueueSort
13]
14]

The following predicate symbols are generated, where, as with the sorts, each symbol exists
either for the Composite Structure and each machine type or just once for the entire Composite
Structure. The list pairs each predicate symbol with the (singleton) list of types to which it can
belong.

1 -- per machine type/composTy
2 [(pname, Set.fromList [pty])
3 | tyName <- composTy : machTys
4 , (pname, pty) <- [initP tyName
5 , transP tyName
6]

2Without renaming, they are even global, i.e., shared between Composite Structures.

143

12. Implementing our Institutions and Comorphisms in HeTS

7] ++
8 -- just once (per composTy)
9 [(pname, Set.fromList [pty])

10 | (pname, pty) <- [distP composTy $ length machs]
11]

Moreover, the comorphism generates operation symbols. Like the predicate symbols, these
appear paired with the set of their possible types. The operations symbols are now for individual
machines (not types) or for the entire structure. Note the reference to constructors for free types,
a list of which will follow.

1 -- per individual machine (and composTy)
2 [(oname, Set.fromList [oty])
3 | (machName,_) <- machs
4 , (oname,oty) <- [queueProjOp composTy machName
5]
6] ++
7 -- just once (per composTy)
8 [(oname, Set.fromList [oty])
9 | (oname,oty) <- [con

10 | (_,cons) <- constructors
11 , con <- cons
12]
13 ++ [dequeueOp]
14 ++ (portConOp <$> portNames)
15]

The following are the types and constructors for which the translation of a Composite
Structure will contain the symbols and freeness axioms:

1 -- Constructors for free types.
2 -- Note that machine specific types,
3 -- as well as event types,
4 -- are not free as far as the composite structure is concerned.
5 constructors = [((confSort composTy)
6 , [confConOp composTy machs]
7)
8 , (msgSort
9 , [msgConOp]

10)
11 , (msgListSort
12 , [nilOp, consOp]
13)
14 , (msgQueueSort
15 , [emptyQueueOp, enqueueOp]
16)

144

12.6. How to Obtain our Implementation

17]

For an example specification that makes use of this interface for the case of UMLStateO
and UMLComp, we refer the reader once more to App. D.

12.6 How to Obtain our Implementation
Our implementation is available as a fork3 of the HeTS git repository4. The current commit at
the time of writing has the id dca77099c442c0df67111c54e5aa78f19d685609. We intend to
contribute our work to upstream HeTS, but also to keep the version on which this thesis is based
available in our fork. Within our fork, the file README.md contains information on how to
build HeTS while recursively using the same versions of the dependencies that we also built
with.

3https://github.com/rosento/Hets/
4https://github.com/spechub/Hets/

145

https://github.com/rosento/Hets/commit/dca77099c442c0df67111c54e5aa78f19d685609
https://github.com/rosento/Hets/
https://github.com/spechub/Hets/

Chapter 13

Verification Examples

Contents
13.1 The Counter Machine: Proofs about State Machines without Outputs with

HeTS and Spass . 147
13.2 The ATM Scenario: Verifying Composite Structures with KIV 149

In this chapter, we discuss two verification examples which we carried out using our methodology,
formalisms and, to an extent, our newly developed tools. The material on the counter machine
has been published in similar form as part of [RBKR20]. The material on the ATM scenario
has been published as part of [RKR22].

The examples and verification goals are the result of discussions with Alexander Knapp
and Markus Roggenbach. The development of our general formalisms was in part guided by
formalisations of the examples. I formalised the examples and carried out the proofs, including
the development of necessary auxiliary lemmas, our trick for inductive verification without
tool-support for the structured free construct, and the manual translation to KIV.

The ATM example is a variation on a popular theme; see, e.g., [KMR15].

13.1 The Counter Machine: Proofs about State Machines without
Outputs with HeTS and Spass

We implemented the translation of simple UML State Machines into Casl specifications within
the heterogeneous toolset HeTS [MML07b]. Based on this translation we explain how to prove
properties symbolically in the automated theorem prover Spass [WDF+09] for our running
example of a counter.

Figure 13.1 shows the Casl specification representing the State Machine from Fig. 7.1,
extended by a proof obligation %(Safe)% and proof infrastructure for it. We want to prove the
safety property

“cnt never exceeds 4”

147

13. Verification Examples

spec Counter = Trans
then pred invar(g : Conf)⇔ (c(g) = s1 ∧ cnt(g) ≤ 4) ∨ (c(g) = s2 ∧ cnt(g) ≤ 4)

%% induction scheme for “reachable” predicate, instantiated for “invar”:
· ((∀ g : Conf · init(g)⇒ invar(g))
∧ ∀ g, g’ : Conf ; e : Evt
· (reachable(g)⇒ invar(g)) ∧ reachable(g) ∧ trans(g, e, g’)⇒ invar(g’))

⇒ ∀ g : Conf · reachable(g)⇒ invar(g)
then . . . machine axioms . . .
then %implies

%% the safety assertion for our counter:
∀ g : Conf · reachable(g)⇒ cnt(g) ≤ 4 %(Safe)%
%% steering Spass with case distinction lemmas, could be generated algorithmically:
∀ g, g’ : Conf ; e : Evt; k : Nat
· init(g)⇒ invar(g) %(InvarInit)%
· (reachable(g)⇒ invar(g)) ∧ reachable(g) ∧ trans(g, e, g’) ∧ e = reset
⇒ invar(g’) %(InvarReset)%

· (reachable(g)⇒ invar(g)) ∧ reachable(g) ∧ trans(g, e, g’) ∧ e = inc(k)
⇒ invar(g’) %(InvarInc)%

· (reachable(g)⇒ invar(g)) ∧ reachable(g) ∧ trans(g, e, g’)
⇒ invar(g’) %(InvarStep)%

· invar(g)⇒ cnt(g) ≤ 4 %(InvarImpliesSafe)%

Figure 13.1: A partial Casl specification of the counter. Appendix C shows a full, heterogeneous version.

using the automated theorem prover Spass.
The Casl specification Counter imports a specification Trans which instantiates the generic

frame translating EDHML into Casl, cf. Fig. 8.1. However, the first-order theorem prover Spass
does not support Casl’s structured free construct that we use for expressing reachability. For
invariance properties this deficiency can be circumvented by loosely specifying reachable (i.e.,
omitting the keyword free), introducing a predicate invar, and adding a first-order induction
axiom. This means that we have to establish the safety property for a larger model class than we
would have with freeness. When carrying out symbolic reasoning for invariants referring to a
single configuration, the presented induction axiom suffices. Other properties would require
more involved induction axioms, e.g., referring to several configurations.

Then the specification provides the machine axioms as stated (partially) in Thm. 7.13. The
axioms following the %implies directive are treated as proof obligations. We first state the safety
property that we wish to establish: in all reachable configurations, the counter value is less or
equal 4 – %(Safe)%. The remainder steers the proving process in Spass by providing suitable
case distinctions. For invariants referring to a single configuration, these could also be generated
automatically based on the transition structure of the state machine, although we have written
them by hand.

As a proof of concept, we automatically verified the safety property from Fig. 13.1 in Spass.
In this experiment, we performed some optimising, semantics-preserving logical transformations

148

13.2. The ATM Scenario: Verifying Composite Structures with KIV

Figure 13.2: UML diagrams for the ATM example verified in Sect. 13.2 (implicit completion events omitted):
Composite Structure diagram: top; State Machines: left ATM, right Bank.

on the result of applying the comorphism, to make the specification more digestible to the
theorem prover. These transformations include the removal of double negations, splitting a
conjunction into separate axioms, and turning existentially quantified control states into constants
by Skolemisation. Our automatic translation as implemented includes these transformations.

13.2 The ATM Scenario: Verifying Composite Structures with KIV
Recall the ATM example. For convenience, we repeat it’s diagrams in Fig. 13.2 and briefly
recall the scenario: An ATM and a Bank communicate to enable a user to withdraw money. This
withdrawal should only be possible after the bank has confirmed that the user has entered the
correct bank card and PIN.

We formalised1
,
2 the State Machines for the Bank and the ATM as well as their communication

in Casl. We then set out to show the safety property:

C(γ(atm)) = Verified→wasVerified(γ(bank)) = 1

This states that, whenever atm reaches the control state Verified, the bank’s attribute
wasVerified has the value 1. To recall some notation: γ(c) projects a component c’s configura-
tion from the system configuration; C projects the control state from a part’s configuration; an
attribute (here: wasVerified) gives us a projection from it’s parts configuration.

We show the safety property by inductive verification, as justified by Prop. 10.3, using a
stronger invariant. We first tried to show the preservation of said invariant using fully automatic
provers connected to HeTS. Unfortunately, the handling of freely generated datatypes in this tool

1The full formalisation of the ATM example, including an importable KIV project, is available in the digital
appendix to [RKR22] at https://rosento.github.io/2021-paper-composite/.

2A heterogeneous formalisation of the ATM example using our languages UMLState and UMLComp can be
found in App. D. However, this was not directly used for automatic verification for the reasons outlined in this section.

149

https://rosento.github.io/2021-paper-composite/

13. Verification Examples

combination turned out not to be efficient enough without a laborious manual axiom selection
that would defeat our goal of automation, leading us to employ the prover KIV.

KIV [EPS+15] is an interactive theorem prover for program verification, which we used
effectively as an automatic prover for first-order logic with freely generated types. There is
currently no integration of KIV into HeTS, nor is there, to our knowledge, a formulation of its
logic as an institution. However, for the fragment of KIV we are using we are confident that such
a formalisation would be tedious, but straightforward. Consequently, we resorted to a manual
translation to KIV, which we judged sufficient for demonstration purposes.

With our process clarified, we can define a KIV predicate for our safety property:
safe-def: safe(g)↔ (ctrl(caConf(g)) = Verified→ wasVerified(cbConf(g)) = 1); used for: s, ls;

The above introduces an axiom safe-def defining the predicate safe and marks the axiom for
use as a simplifier rule (s) and a local simplifier rule (ls) for the KIV system.

The predicate safe ranges over a type of system configurations, each consisting of the ATM
configuration (caConf) and queue, as well as the bank configuration (cbConf) and queue. The
machine configurations in turn consist of the control state and attributes. The safety predicate
holds in a configuration iff, whenever ATM is in control state Verified, the Bank’s attribute
wasVerified has the value 1.

The behaviours of Bank and ATM are defined in the form of an initial state predicate and a
transition predicate. For space reasons we show only one transition:
atmTrans-def: atmTrans(atmConf(sa1, c1, p1, t1), in, out, atmConf(sa2, c2, p2, t2))
↔ ∃ c : CardId, p : Pin

∨ (sa1 = CardEntered
∧ in = msg(userCom, PIN(p)) ∧ out = (msg(atmCompl, PINEnteredCompl) +l [])
∧ p2 = p ∧ sa2 = PINEntered ∧ c2 = c1 ∧ t2 = t1)

∨ . . .; used for: s, ls;

The ATM transitions from one configuration to another, receiving an input event and sending
out a list of messages. Each ATM configuration consists of (in that order) the control state, the
card id to be verified, the PIN to be verified and the counter for the number of verification
attempts. We give the definition of the transition predicate by a disjunction of the conditions
of all syntactic transitions, including the control state before, the input event, the output list,
variables to be set, the control state after and variables to remain unchanged. Given these
machine predicates and a predicate dist to encode connectors, we can then define the transition
predicate for the overall system:
trans-def: trans(conf(ca1, qa1, cb1, qb1), in, out, conf(ca2, qa2, cb2, qb2))
↔ dist(out, qa1, qa2, qb1, qb2)
∧ ((atmTrans(ca1, in, out, ca2) ∧ cb2 = cb1)
∨ (bankTrans(cb1, in, out, cb2) ∧ ca2 = ca1)); used for: s, ls;

Initially, the queues are empty and the machines are in their initial configurations.
Having thus defined the machines, we turn to verification and define an invariant strong

enough to show both its own preservation and our safety property. The essential idea is that we
must control when the events allowing us to enter the Verified state on the ATM or to reset the
wasVerified attribute of the bank are in the queues.
invar-def: invar(conf(ca,qa,cb,qb)) ↔ ∃ x.

(ctrl(ca) = Idle ∧ ctrl(cb) = Idle ∧ qa = empty ∧ qb = empty)

150

13.2. The ATM Scenario: Verifying Composite Structures with KIV

∨ (ctrl(ca) = CardEntered ∧ ctrl(cb) = Idle ∧ qa = empty ∧ qb = empty)
∨ (ctrl(ca) = PINEntered ∧ ctrl(cb) = Idle ∧ qa = enq(x, empty) ∧ qb = empty)
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = Idle ∧ qa = empty ∧ qb = enq(x, empty))
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = Verifying ∧ qa = empty ∧ qb = enq(x, empty))
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = VeriSuccess ∧

qa = empty ∧ qb = enq(x, empty) ∧ wasVerified(cb) = 1)
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = VeriFail ∧ qa = empty ∧ qb = enq(x,empty))
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = Idle ∧

qa = enq(msg(bankCom, reenterPIN), empty) ∧ qb = empty)
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = Idle ∧

qa = enq(msg(bankCom, verified), empty) ∧ qb = empty ∧ wasVerified(cb) = 1)
∨ (ctrl(ca) = Verified ∧ ctrl(cb) = Idle ∧

qa = enq(x, empty) ∧ qb = empty ∧ wasVerified(cb) = 1); used for: s, ls;

Note that we can mostly ignore attribute values, as well as all distinctions between queue
elements unrelated to our verification task. We can then formulate lemmas to the effect that this
invariant does in fact imply the safety property, that it is satisfied in all legal initial configurations
and that it is preserved by all transitions. These lemmas are as follows, again limited to one
example for the transitions:
lemmas
Safe: invar(g) → safe(g);
Init: init(g) → invar(g);
. . .
Trans6: g1 = conf(atmConf(Verifying, c, p, t), qa, cb, qb)

∧ qa ̸= empty ∧ top(qa) = msg(atmCom, verified)
∧ g2 = conf(atmConf(Verified, c, p, t),

enq(msg(atmCompl, VerifiedCompl), deq(qa)), cb, qb)
∧ invar(g1) → invar(g2);

Formulating separate lemmas for each transition instead of one lemma using the transition
predicate helps us avoid a combinatorial explosion in the theorem prover.

Providing our specification to KIV with all definitions marked as simplifier rules and
activating the heuristics mode “PL heuristics + structural induction”, each of our lemmas is
proved without noticeable delay, i.e., the verification of the invariant is successful and does not
pose any difficulty to the prover.

At the moment, verifying other examples with this approach would proceed as follows:

1. formulate the system in UMLStateO and UMLComp

2. translate it (manually) into KIV

3. formulate the desired property

4. formulate the invariant and preservation lemmas

5. let KIV prove the lemmas

We expect that further automation could remove the manual steps 2 and 4, leaving only 1, 3 and
5.

151

Part III

Conclusions

153

Chapter 14

Conclusion

Contents
14.1 Summary . 155
14.2 Future Work . 156

14.1 Summary

The UML was developed to unify existing modelling approaches and has successfully established
itself as the main modelling language used in industry. It is the topic of ongoing research
to establish formal semantics and tools for rigorous reasoning about UML models and the
systems they specify. The work presented in this thesis forms part of one long-term effort
[KMR15, KMRG15, KM17, Ros17] to develop such semantics and tools. Through it, we
advance this effort significantly by providing concrete input languages and semantics for simple
UML State Machines and Composite Structures. Further, we provide tool support for these UML
models by implementing our languages in HeTS and providing well-behaved translations to Casl,
which mediates access to existing general purpose provers, both interactive and fully automatic.
We give exemplary models and properties involving typical challenges of inductive reasoning
about software systems for which we show the feasibility of fully automatic verification.

We approach the semantics of UML State Machines in two steps: Following a key insight
we had in earlier work [Ros17], we first translate via a semantic function from a more direct
State Machine description into a modal logic. This modal logic is built to require the presence
or absence of sets of transitions in a way that admits the semantics-preserving translations of
Institution Theory (i.e., signature morphisms and institution comorphisms). Once the semantic
function has brought us into the realm of Institution Theory, we can then gain a semantically
sound relationship with other formalisms by means of comorphisms.

We develop our State Machine language in two steps. The first only involves State Machines
without output events, the second involves output events and adds ports in a somewhat transparent
way. These extensions allow us to compose State Machines using an institution of Composite
Structures, which we also introduce. Our two State Machine institutions and our Composite
Structure institution are equipped with comorphisms to Casl, which can be composed with the

155

14. Conclusion

numerous comorphisms out of Casl to other logics, allowing us to borrow [CM97] their proof
systems and reasoning tools.

To sum up, our theoretical results are three new institutions for modelling sublanguages of
the UML, each with a comorphism to Casl. Our practical contributions are

– the development of concrete input languages for these institutions and a prototypical imple-
mentation for these languages and for our comorphisms in the Heterogeneous Toolset HeTS
and

– the verification, as a proof of concept, of two concrete example systems specified in UML,
supported by our theory and tools.

14.2 Future Work
There are several immediate continuations of our work we can suggest. First, we suggest to create
full automation for the generation of the auxiliary lemmas we needed to establish invariants in
our examples. Next, it would be useful to link the data universe of EDHMLO to UML Class
Diagrams (possibly following [JKMR12]) and make types from the Class Diagrams available
inside the implemented State Machines.

A larger project which would complete our automation, but also bring benefits beyond the
world of UML, would be the addition of KIV to HeTS. In our practical verification attempts,
KIV’s direct support for inductive data types and for giving operational meanings to axioms
or theorems made results feasible which were simply out of reach using HeTS’s existing fully
automatic provers. Not all the relevant constructs of KIV have direct correlates in Casl. In our
experiments, our use of these inductive and operational KIV features was limited to defining
a well-founded relation on the natural numbers and marking all axioms without distinction as
rewrite rules. In general, good and fully automatic proof support might require one or more
comorphisms using heuristics to recognise which of KIV’s proof support constructs should
be used where. Further, although there seems to be no reason to think KIV would not be an
institution, to our knowledge this has never been formally established. To sum up, integrating
KIV into HeTS would be a larger project, possibly a PhD project in itself, which could greatly
improve HeTS’s fully automatic capabilities for inductive reasoning, which is a central ingredient
to the verification of models and programs.

Casting the net wider in the area of UML verification, it would be worthwhile to integrate
UML Interaction Diagrams into HeTS and carry out experiments on how they can be related to
State Machines and Composite Structures. Further, we suggest that there should be a systematic,
experimental and theoretical study of notions of refinement between different UML models in
HeTS and Institution Theory. The signature morphisms (for models of the same kind) and the
comorphisms (between different kinds of models) would be the obvious starting points in the
search for such notions.

Moreover, it would be worthwhile to connect to other formalisms for concurrent programming.
Two such formalisms which are already available in the institutional world are the process
algebra CSP and the (non-UML) State Machine based language Event-B. For CSP, an integration
with CASL was developed in the form of CSP-CASL [Rog06], an implementation of which

156

14.2. Future Work

[Gim08, O’R12] has been integrated into upstream HeTS. Likewise, in the case of Event-B,
there is a formalisation as an institution [FMP17]. Event-B is a descendant of the successful
B-method, which has been used, among other applications, to develop the verified control
software for the driverless Paris metro lines [BG00]. The Event-B institution of [FMP17] has
also been implemented in a fork1 of HeTS. The fork features an integration of the Rodin tool for
analysing Event-B models [FMP17]. Unfortunately, it seems that this fork was never merged
into upstream HeTS and has received no updates since 2015. It would be an opportunity for
future work to integrate Event-B into upstream HeTS and perform a mixed case study involving,
e.g., industry-supplied UML Composite Structure Diagrams and State Machines, a desired
property expressed in CSP, and a development process by refinement in and code-generation
from Event-B, all the while using HeTS to relate the different languages.

Finally, we would propose future work on the trustworthiness of HeTS itself. This is not only
a moving target, as new logics get added to HeTS, but it is also a subtle challenge: A minimal
trusted core in the tradition of LCF [Mil79, Har96] can easily guarantee that a proof does in fact
prove something. However, it is in general difficult to ensure that what has been proved is the
intended property. In the case of a heterogeneous specification, this problem becomes even more
difficult, as it involves the semantics of several languages and the translations between these.
Making all of these part of a trusted core can hardly be acceptable. One way forward could be
to create a high-trust code path connecting the proof rules on development graphs, as well as
basic Casl specifications (or a subset thereof) to the core languages of one or a few provers.
Trust in this code path could be established by a mixture of semantic modelling, formally proved
theorems, and testing. Trust in other provers, where they output proof terms, can be replaced by
reconstruction of their proof terms in one of the trusted core languages.

It would then be possible to model a system in a less trustworthy language of the HeTS
ecosystem, and express the main theorems over this system in Casl (or its trusted subset), like
we did in our verification examples. Auxiliary lemmas could then be phrased in any convenient
language supported by HeTS. A lemma can then be translated into the language of a trusted
prover, can be proved in that form, and used to prove the ultimately desired theorems. The
correctness of the proof of a theorem would then depend on the formal correctness of the proofs
of the translated lemmas within the trusted core, but not on the formal or intuitive correctness of
the lemmas as originally phrased, or of their translation procedure into the core.

We are, of course, not the first to propose a verification of the logics and translations included
in HeTS. In particular, the work we propose, in its formal aspects, will find a strong basis in the
infrastructure and the logic atlas created by the LATIN project [CHK+10].

1The Event-B fork of HeTS is available at https://github.com/mariefarrell/Hets.

157

https://github.com/mariefarrell/Hets

Bibliography

[ALSU07] Alfred V. Aho, Monika S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison/Wesley, Boston, 2nd edition, 2007.

[BBK+04] Michael Balser, Simon Bäumler, Alexander Knapp, Wolfgang Reif, and Andreas
Thums. Interactive Verification of UML State Machines. In Jim Davies, Wolfram
Schulte, and Mike Barnett, editors, Proc. 6th Intl. Conf. Formal Engineering
Methods (ICFEM 2004), volume 3308 of Lect. Notes Comp. Sci., 2004.

[BG00] J. L. Boulanger and M. Gallardo. Validation and verification of meteor safety
software. WIT Transactions on The Built Environment, 50, 2000.

[BM03] Michel Bidoit and Peter D. Mosses. CASL User Manual: Introduction to Using
the Common Algebraic Specification Language, volume 2900. Springer, 2003.

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison Wesley, October 1998.

[BS95] Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic,
Language and Information, 4(3):251–272, 1995.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on logic of programs,
pages 52–71. Springer, 1981.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems (TOPLAS), 8(2):244–263,
1986.

[CHK+10] Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, Florian
Rabe, and Kristina Sojakova. Towards logical frameworks in the heterogeneous
tool set hets. In International Workshop on Algebraic Development Techniques,
pages 139–159. Springer, 2010.

[CM97] Maura Cerioli and José Meseguer. May I borrow your logic? (transporting logical
structures along maps). Theoretical Computer Science, 173(2):311–347, 1997.

159

Bibliography

[DM03] Francisco Durán and José Meseguer. Structured theories and institutions. Theo-
retical Computer Science, 309(1-3):357–380, 2003.

[DM16] Razvan Diaconescu and Alexandre Madeira. Encoding Hybridized Institutions
into First-order Logic. Math. Struct. Comp. Sci., 26(5):745–788, 2016.

[DY83] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE
Transactions on information theory, 29(2):198–208, 1983.

[EPS+15] Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, Dominik Haneberg, and Wolfgang
Reif. KIV: overview and VerifyThis competition. International Journal on
Software Tools for Technology Transfer, 17(6):677 – 694, 2015.

[FL08] Andrew Forward and Timothy C. Lethbridge. Problems and opportunities for
model-centric versus code-centric software development: a survey of software
professionals. In Proceedings of the 2008 international workshop on Models in
software engineering, pages 27–32, 2008.

[FMP17] Marie Farrell, Rosemary Monahan, and James F Power. Combining Event-B
and CSP: An institution theoretic approach to interoperability. In International
Conference on Formal Engineering Methods, pages 140–156. Springer, 2017.

[GB83] Joseph A. Goguen and Rod M. Burstall. Introducing institutions. In Workshop on
Logic of Programs, pages 221–256. Springer, 1983.

[GB92] Joseph A Goguen and Rod M Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the ACM (JACM), 39(1):95–146, 1992.

[Gim08] Andy Gimblett. Tool support for CSP-CASL. Master’s thesis, Swansea University,
2008.

[GR02] Joseph Goguen and Grigore Roşu. Institution morphisms. Formal aspects of
computing, 13(3):274–307, 2002.

[Grö10] Hans Grönniger. Systemmodell-basierte Definition objektbasierter Model-
lierungssprachen mit semantischen Variationspunkten. PhD thesis, RWTH
Aachen, 2010.

[Har96] John Harrison. HOL light: A tutorial introduction. In International Conference
on Formal Methods in Computer-Aided Design, pages 265–269. Springer, 1996.

[HMK19] Rolf Hennicker, Alexandre Madeira, and Alexander Knapp. A Hybrid Dynamic
Logic for Event/Data-Based Systems. In Reiner Hähnle and Wil M. P. van der Aalst,
editors, Proc. 22nd Intl. Conf. Fundamental Approaches to Software Engineering,
volume 11424 of Lect. Notes Comp. Sci., pages 79–97. Springer, 2019.

160

Bibliography

[JKMR12] Phillip James, Alexander Knapp, Till Mossakowski, and Markus Roggenbach.
Designing Domain Specific Languages — A Craftsman’s Approach for the Railway
Domain Using CASL. In Narciso Martí-Oliet and Miguel Palomino, editors, Rev.
Sel. Papers 21st Intl. Ws. Recent Trends in Algebraic Development Techniques
(WADT 2012), volume 7841 of Lect. Notes Comp. Sci., pages 178–194. Springer,
2012.

[JKMR13] Phillip James, Alexander Knapp, Till Mossakowski, and Markus Roggenbach.
Designing domain specific languages–a craftsman’s approach for the railway
domain using CASL. In International Workshop on Algebraic Development
Techniques, pages 178–194. Springer, 2013.

[Kah87] Gilles Kahn. Natural semantics. In Annual symposium on theoretical aspects of
computer science, pages 22–39. Springer, 1987.

[KCL07] Il Jung Kim, Eun Young Choi, and Dong Hoon Lee. Secure mobile RFID system
against privacy and security problems. In 3rd Intl. Ws. Security, Privacy and Trust
in Pervasive and Ubiquitous Computing (SecPerU 2007), pages 67–72, 2007.

[KFdB+05] Marcel Kyas, Harald Fecher, Frank S. de Boer, Joost Jacob, Jozef Hooman, Mark
van der Zwaag, Tamarah Arons, and Hillel Kugler. Formalizing UML Models and
OCL Constraints in PVS. In Gerald Lüttgen and Michael Mendler, editors, Proc.
Ws. Semantic Foundations of Engineering Design Languages (SFEDL 2004),
volume 115 of Electr. Notes Theo. Comp. Sci., 2005.

[KM17] Alexander Knapp and Till Mossakowski. UML Interactions Meet State Machines
— An Institutional Approach. In Filippo Bonchi and Barbara König, editors,
Proc. 7th Intl. Conf. Algebra and Coalgebra in Computer Science (CALCO 2017),
volume 72 of LIPIcs, pages 15:1–15:15, 2017.

[KMR15] Alexander Knapp, Till Mossakowski, and Markus Roggenbach. Towards an
Institutional Framework for Heterogeneous Formal Development in UML —
A Position Paper. In Rocco De Nicola and Rolf Hennicker, editors, Software,
Services, and Systems — Essays Dedicated to Martin Wirsing on the Occasion
of His Retirement from the Chair of Programming and Software Engineering,
volume 8950 of Lect. Notes Comp. Sci., pages 215–230. Springer, 2015.

[KMRG15] Alexander Knapp, Till Mossakowski, Markus Roggenbach, and Martin Glauer.
An Institution for Simple UML State Machines. In Alexander Egyed and Ina
Schaefer, editors, Proc. 18th Intl. Conf. Fundamental Approaches to Software
Engineering (FASE 2015), volume 9033 of Lect. Notes Comp. Sci., pages 3–18.
Springer, 2015.

[Lam06] Leigh Lambert. Modal logic in computer science. 2006.

[LM01] Daan Leĳen and Erik Meĳer. Parsec: A practical parser library. Electronic Notes
in Theoretical Computer Science, 41(1):1–20, 2001.

161

Bibliography

[M+10] Simon Marlow et al. Haskell 2010 language report. Available on: https://www.
haskell. org/onlinereport/haskell2010, 2010.

[Mad13] Alexandre Madeira. Foundations and Techniques for Software Reconfigurability.
PhD thesis, Universidade do Minho, 2013.

[MBHM16] Alexandre Madeira, Luis S. Barbosa, Rolf Hennicker, and Manuel A. Martins.
Dynamic Logic with Binders and Its Application to the Development of Reactive
Systems. In Proc. 13th Intl. Coll. Theoretical Aspects of Computing, volume 9965
of Lect. Notes Comp. Sci., pages 422–440. Springer, 2016.

[Mes89] José Meseguer. General logics. In Studies in Logic and the Foundations of
Mathematics, volume 129, pages 275–329. Elsevier, 1989.

[Mil79] Robin Milner. LCF: A way of doing proofs with a machine. In International
Symposium on Mathematical Foundations of Computer Science, pages 146–159.
Springer, 1979.

[MMCL14] Till Mossakowski, Christian Maeder, Mihai Codescu, and Dominik Lucke. Hets
user guide-version 0.99, 2014.

[MML07a] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The heterogeneous
tool set, Hets. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 519–522. Springer, 2007.

[MML07b] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool
Set. In Orna Grumberg and Michael Huth, editors, Proc. 13th Intl. Conf. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2007), volume
4424 of Lect. Notes Comp. Sci., pages 519–522. Springer, 2007.

[Mos97] Peter D. Mosses. Cofi: The common framework initiative for algebraic specifi-
cation and development. In Colloquium on Trees in Algebra and Programming,
pages 115–137. Springer, 1997.

[Mos02] Till Mossakowski. Comorphism-based grothendieck logics. In International
Symposium on Mathematical Foundations of Computer Science, pages 593–604.
Springer, 2002.

[Mos05] Till Mossakowski. Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, University of Bremen, 2005.

[Mos16] Till Mossakowski. The distributed ontology, model and specification language–
DOL. In Rev. Sel. Papers 23rd Intl. Ws. Algebraic Development Techniques (WADT
2016), volume 10644 of Lect. Notes Comp. Sci., pages 5–10. Springer, 2016.

[MSLF14] Franco Mazzanti, Giorgio Oronzo Spagnolo, Simone Della Longa, and Alessio
Ferrari. Deadlock avoidance in train scheduling: a model checking approach. In
International Workshop on Formal Methods for Industrial Critical Systems, pages
109–123. Springer, 2014.

162

Bibliography

[NGYJ21] Faranak Nejati, Abdul Azim Abd Ghani, Ng Keng Yap, and Azmi Bin Jafaar.
Handling state space explosion in component-based software verification: A
review. IEEE Access, 9:77526–77544, 2021.

[Obj17] Object Management Group. Unified Modeling Language. Standard formal/17-12-
05, OMG, 2017.

[Obj19] Object Management Group. Precise Semantics of UML Composite Structures.
Standard formal/2019-02-01, OMG, 2019.

[OE20] Mert Ozkaya and Ferhat Erata. A survey on the practical use of UML for
different software architecture viewpoints. Information and Software Technology,
121:106275, 2020.

[O’R12] Liam O’Reilly. Structured Specification with Processes and Data. PhD thesis,
Swansea University, 2012.

[pla] Drawing UML with PlantUML – PlantUML language reference guide (version
1.2021.2).

[Plo81] Gordon D Plotkin. A structural approach to operational semantics. Aarhus
university, 1981.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in cesar. In International Symposium on programming, pages 337–351.
Springer, 1982.

[RBKR20] Tobias Rosenberger, Saddek Bensalem, Alexander Knapp, and Markus Roggen-
bach. Institution-based Encoding and Verification of Simple UML State Machines
in CASL/SPASS. In Markus Roggenbach, editor, Rev. Sel. Papers 25th Intl. Ws.
Recent Trends in Algebraic Development Techniques (WADT 2020), volume 12669
of Lect. Notes Comp. Sci., pages 120–141. Springer, 2020.

[RHQH+17] Gregorio Robles, Truong Ho-Quang, Regina Hebig, Michel RV Chaudron, and
Miguel Angel Fernandez. An extensive dataset of UML models in GitHub. In
2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR), pages 519–522. IEEE, 2017.

[RKR22] Tobias Rosenberger, Alexander Knapp, and Markus Roggenbach. An institutional
approach to communicating UML State Machines. In 25th Intl. Conf. Fundamental
Approaches to Software Engineering (FASE 2022), pages 205–224. Springer,
2022.

[RMS03] Markus Roggenbach, Till Mossakowski, and Lutz Schröder. CASL reference
manual. 2003.

[Rog06] Markus Roggenbach. CSP-CASL – a new integration of process algebra and
algebraic specification. Theoretical Computer Science, 354(1):42–71, 2006.

163

Bibliography

[Ros17] Tobias Rosenberger. Relating UML state machines and interactions in an institu-
tional framework. Master’s thesis, Elite Graduate Program Software Engineering
(Universität Augsburg, Ludwig-Maximilians-Universität München, Technische
Universität München), 2017.

[RSN22] Markus Roggenbach, Siraj Ahmed Shaikh, and Hoang Nga Nguyen. Formal
verification of security protocols. In Markus Roggenbach, Antonio Cerone,
Bernd-Holger Schlingloff, Gerardo Schneider, and Siraj Ahmed Shaikh, editors,
Formal Methods for Software Engineering – Languages, Methods, Application
Domains, pages 393–449. Springer, 2022.

[Sco82] Dana S. Scott. Domains for denotational semantics. In International Colloquium
on Automata, Languages, and Programming, pages 577–610. Springer, 1982.

[SWK+10] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf
Drechsler. Verifying UML/OCL models using boolean satisfiability. In 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE 2010),
pages 1341–1344. IEEE, 2010.

[tBGM15] Maurice H. ter Beek, Stefania Gnesi, and Franco Mazzanti. From EU projects to
a family of model checkers. In Software, Services, and Systems, pages 312–328.
Springer, 2015.

[TTR+13] Marco Torchiano, Federico Tomassetti, Filippo Ricca, Alessandro Tiso, and
Gianna Reggio. Relevance, benefits, and problems of software modelling and
model driven techniques—a survey in the italian industry. Journal of Systems and
Software, 86(8):2110–2126, 2013.

[VPMY04] Valentin Goranko, Patrick Blackburn, Maarten de Rĳke, and Yde Venema. Modal
logic, Cambridge Tracts in Theoretical Computer Science. 53, 2004.

[WBCW20] Andreas Wortmann, Olivier Barais, Benoit Combemale, and Manuel Wimmer.
Modeling languages in industry 4.0: an extended systematic mapping study.
Software and Systems Modeling, 19(1):67–94, 2020.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin
Suda, and Patrick Wischnewski. SPASS Version 3.5. In Renate A. Schmidt, editor,
Proc. 22nd Intl. Conf. Automated Deduction, volume 5663 of Lect. Notes Comp.
Sci., pages 140–145. Springer, 2009.

164

Appendix A

Language Definitions for UMLState

A.1 Lexical Primitives

The following lexical primitives are available. Their syntax is that of ordinary (non-mixfix)
Casl identifiers or of (unsigned decimal integer) numerals.

VAR_NAME ::= Token
EVENT_NAME ::= Token

STATE ::= Token
NAT_LIT ::= Int

A.2 Abstract Syntax

With these lexical primitives in place, we can now define the abstract syntax of UMLState. We
stay close to the BNF-like notation usual in CASL-related work, our main departure being the
explicit parentheses for rules including terminal symbols: terminal ⟨NONTERMINALS⟩

This choice emphasises the tree structure which the grammar induces on each word of the
language, which simplifies our description of the static semantics.

Each rule of the abstract syntax expands a non-terminal symbol, written to the left of ::=.
The expansion, written on the right may contain a leading terminal symbol, written in lower
case. If a terminal symbol is present, the rest of the expansion is parenthesised as shown above.
The remaining symbols are non-terminals, where the Kleene plus can be added to indicate the
possibility of repetition. Both non-terminals and parts of terminals can be underlined to mark
them as optional.

Given these conventions, the following grammar is then an abstract description of parse
trees for UMLState basic specifications, which can be embedded in HeTS heterogeneous
specifications. The terminal symbol at the root is BASIC_SPEC.

BASIC_SPEC ::= basic-spec ⟨BASIC_ITEMS+ ⟩
A basic specification consists of a number of items, each of which introduces variables or

events into the signature, or describes a (possibly initial) transition the machine should contain.

165

A. Language Definitions for UMLState

BASIC_ITEMS ::= sig-its ⟨SIG_ITEMS⟩
| var-its ⟨VAR_ITEMS⟩
| evt-its ⟨EVENT_ITEMS⟩
| sen-its ⟨SEN_ITEMS⟩

VAR_ITEMS ::= VAR_NAME+

SEN_ITEMS ::= trans-it ⟨TRANS_ITEM⟩
| init ⟨STATE GUARD⟩

EVENT_ITEMS ::= evt-it ⟨EVENT_ITEM+ ⟩
EVENT_ITEM ::= EVENT_NAME VAR_NAME+ VAR_NAME
SIG_ITEMS ::= st-it ⟨STATE_ITEM+⟩
STATE_ITEM ::= STATE
TRANS_ITEM ::= STATE STATE TRANS_LABEL
TRANS_LABEL ::= TRIGGER GUARD ACTIONS

TRIGGER ::= EVENT_ITEM
GUARD ::= FORMULA

ACTIONS ::= ACTION+

The following terms, actions and data formulae are available in UMLState as we imple-
mented it. Note that these are specific to the natural numbers as our data universe, whereas our
institution as formalised is parametric in the data universe used. Data formulae are a subset of
Casl.

TERM ::= var-term ⟨VAR_NAME⟩
| lit-term ⟨NAT_LIT⟩
| plus-term ⟨TERM TERM⟩
| minus-term ⟨TERM TERM⟩
| mult-term ⟨TERM TERM⟩
| div-term ⟨TERM TERM⟩

FORMULA ::= comp-form ⟨TERM COMP_OP TERM⟩
| true-form | false-form
| not-form ⟨FORMULA⟩
| and-form ⟨FORMULA FORMULA⟩
| or-form ⟨FORMULA FORMULA⟩
| impl-form ⟨FORMULA FORMULA⟩
| if-form ⟨FORMULA FORMULA⟩
| equiv-form ⟨FORMULA FORMULA⟩

COMP_OP ::= less-op | less-eq-op | eq-op | greater-eq-op | greater-op
ACTION ::= VAR_NAME TERM

A.3 Concrete Syntax

The grammar for the concrete syntax follows conventions similar to those for the abstract syntax.
We make the connection between the two grammars by using the same non-terminal symbols.
Terminal symbols can now be anything that is not a non-terminal or meta-symbol, and are
freely mixed with the non-terminals. Repetition now indicates a separator to be used (comma or
semicolon) and is given in the form NON_TERM; . . . ;NON_TERM or NON_TERM, . . . ,NON_TERM.

166

A.4. Static Semantics

As in the case of the abstract syntax, we start with the rules for basic specifications and the
various items they can consist of.

BASIC_SPEC ::= BASIC_ITEMS; . . . ;BASIC_ITEMS
BASIC_ITEMS ::= SIG_ITEMS

| VAR_ITEMS
| SEN_ITEMS
| EVENT_ITEMS

VAR_ITEMS ::= vars VAR_NAME, . . . ,VAR_NAME
SEN_ITEMS ::= TRANS_ITEM

| init STATE : GUARD
EVENT_ITEMS ::= events EVENT_ITEM, . . . ,EVENT_ITEM
EVENT_ITEM ::= EVENT_NAME (VAR_NAME, . . . ,VAR_NAME)
SIG_ITEMS ::= states STATE_ITEM, . . . ,STATE_ITEM
STATE_ITEM ::= STATE
TRANS_ITEM ::= trans STATE −− > STATE : TRANS_LABEL
TRANS_LABEL ::= TRIGGER GUARD ACTIONS

TRIGGER ::= EVENT_ITEM
GUARD ::= [FORMULA]

ACTIONS ::= /{ACTION; . . . ;ACTION}
The following rules are once more specific to our choice of data universe:
ACTION ::= VAR_NAME := TERM
FORMULA ::= TERM COMP_OP TERM

| true | false
| not FORMULA
| FORMULA /\ FORMULA
| FORMULA \/ FORMULA
| FORMULA => FORMULA
| FORMULA if FORMULA
| FORMULA <=> FORMULA
| (FORMULA)

TERM ::= VAR_NAME
| NAT_LIT
| TERM + TERM
| TERM − TERM
| TERM ∗ TERM
| TERM / TERM
| (TERM)

COMP_OP ::= < | <= | == | >= | >

A.4 Static Semantics
With the abstract and concrete syntax in place, we can now turn to the description of the
static semantics of UMLState, which we will describe in the style of natural semantics
([Plo81, Kah87]).

167

A. Language Definitions for UMLState

Our main judgements are of the form Σ ⊢ w ▷ (∆, Ψ), meaning that over a signature Σ a
word w is well-formed, and produces a signature extension ∆ and a set Φ of transition sentences
(i.e., SEN_ITEMs). A signature is a triple of sets, the first containing states (STATE_ITEMs), the
second attributes (VAR_ITEMs), the third events (the set is a function from name-arity pairs to
EVENT_ITEMs). A signature extension is given by the same data. We make use of unions of
signatures and signature extensions, which we define componentwise. We assume w to be a
word over our abstract grammar. It is useful to think of these words as trees. in which each
terminal symbol from the abstract grammar is an inner node and its parentheses enclose a
subtree. This way, non-terminals whose defining rule involves no terminal symbol do not form
sub-trees of their own and need not here be treated by their own semantic rules. Where there
is no derivation tree to infer the well-formedness of a word in a given context, we consider it
ill-formed, i.e., well-formedness is defined inductively.

We start with four rules which merely traverse subtrees and take the union of all the signature
extensions and sentences produced. Earlier definitions are in scope for later ones. These rules
are identical, except for the terminal symbol of the interpreted word.

Σ ∪⋃0
i=1 ∆i ⊢ it1 ▷ (∆1, Ψ1) · · · Σ ∪⋃n−1

i=1 ∆i ⊢ itn ▷ (∆n, Ψn)

Σ ⊢ basic-spec ⟨it1 . . . itn⟩ ▷ (
⋃n

i=1 ∆i,
⋃n

i=1 Ψi)

Σ ∪⋃0
i=1 ∆i ⊢ it1 ▷ (∆1, Ψ1) · · · Σ ∪⋃n−1

i=1 ∆i ⊢ itn ▷ (∆n, Ψn)

Σ ⊢ var-its ⟨it1 . . . itn⟩ ▷ (
⋃n

i=1 ∆i,
⋃n

i=1 Ψi)

Σ ∪⋃0
i=1 ∆i ⊢ it1 ▷ (∆1, Ψ1) · · · Σ ∪⋃n−1

i=1 ∆i ⊢ itn ▷ (∆n, Ψn)

Σ ⊢ sen-its ⟨it1 . . . itn⟩ ▷ (
⋃n

i=1 ∆i,
⋃n

i=1 Ψi)

Σ ∪⋃0
i=1 ∆i ⊢ it1 ▷ (∆1, Ψ1) · · · Σ ∪⋃n−1

i=1 ∆i ⊢ itn ▷ (∆n, Ψn)

Σ ⊢ evt-its ⟨it1 . . . itn⟩ ▷ (
⋃n

i=1 ∆i,
⋃n

i=1 Ψi)

An attribute can be added if it is not already in the signature. This produces a signature
extension containing only the new attribute.

v ̸∈ Attr
(State, Attr, Evt) ⊢ var-it ⟨v⟩ ▷ ((∅,{v}, ∅), Ψ)

168

A.4. Static Semantics

A state can be introduced if it is not already in the signature. The resulting signature
extension contains only the new state.

s ̸∈ State
(State, Attr, Evt) ⊢ st-it ⟨s⟩ ▷ (({s}, ∅, ∅), ∅)

A sentence for an initial transition can be introduced if the target states and all variables of
the guard are in the signature. The sentence is given as an added sentence.

s ∈ State vars(g) ⊆ Attr
(State, Attr, Evt) ⊢ init ⟨s g⟩ ▷ (∆,{(s, g)})

The definition of a new event is valid if no event with the same name and arity is already
contained in the signature. The signature extension contains just a mapping from the name and
arity of the new event to the word defining it.

(name, |vars|) ̸∈ dom(Evt)
(State, Attr, Evt) ⊢ evt-it ⟨name vars⟩ ▷ ((∅, ∅,{(name, |vars|) 7→ evt-it ⟨name vars⟩}, ∅)

A transition item is valid if its source and target state are defined, the trigger is defined up to
renaming of parameters and the guard and actions are valid. We define guard and action validity
by separate judgement forms. Their definitions amount to saying that a guard is valid if all its
variables are either defined attributes or trigger parameters, and an action is valid if it assigns a
valid term to a known attribute. Term validity follows the same rule as guard validity.

{s1, s2} ⊆ State (Attr, e) ⊢ g guard (Attr, Evt, e) ⊢ a actions
(State, Attr, Evt) ⊢ trans-it ⟨s1 s2 e g a⟩ ▷ ((∅, ∅, ∅),{trans-it ⟨s1 s2 e g a⟩})

vars(g) ⊆ Attr ∪ evars
(Attr,evt-it ⟨ename evars⟩) ⊢ g guard

(ename, |evar|) ∈ dom(Evt)
⋃n

i=1{vi} ⊆ Attr
⋃n

i=1 vars(ti) ⊆ Attr ∪ evars
(Attr, Evt,event-item ⟨ename evars⟩) ⊢ act-it ⟨v1 t1⟩ . . .act-it ⟨vn tn⟩ actions

169

Appendix B

Diagrams for the Security Protocol
Example

Here we show the remaining diagrams for the State Machine example. Note that the nonde-
terministic choice expression used by the Dolev-Yao intruder is not directly representable in
UMLState or UMLStateO. We can could, however, express it in Casl and still link to it via
UMLComp.

The reader will here observe a downside of PlantUML, namely, that it is not good at laying
out self-loops.

Figure B.1: State Machine for the DolevYaoIntruder from the security protocol.

Figure B.2: State Machine for the SimpleIntruder from the security protocol.

171

B. Diagrams for the Security Protocol Example

Figure B.3: State Machine for the Tag from the security protocol

172

Appendix C

A Heterogeneous Specification for the
Counter example

%prec({__+__}<{__*__})%
%right_assoc(__+__, __*__)%
%number __@@__

logic CASL
spec Nat =
type Nat ::= 0 | suc (Nat)
op __ + __ : Nat * Nat -> Nat;

__ * __ : Nat * Nat -> Nat;
pred __<=__, __ < __, __>__, __>=__, __==__ : Nat * Nat

forall n,m: Nat
. 0 + n = n
. suc(n) + m = suc(n+m)

. 0 * n = 0

. suc(n) * m = m + (n * m)

. 0 <= n

. not suc(n) <= 0

. suc(m) <= suc(n) <=> m <= n

. m >=n <=> n <= m

. m < n <=> m <= n /\ not m=n

. m > n <=> n < m

. m == n <=> m = n

173

C. A Heterogeneous Specification for the Counter example

then %def
%% Operations to represent natural numbers with digits:
ops 1: Nat = suc(0);

2: Nat = suc(1);
3: Nat = suc(2);
4: Nat = suc(3);
5: Nat = suc(4);
6: Nat = suc(5);
7: Nat = suc(6);
8: Nat = suc(7);
9: Nat = suc(8);
__@@__(m: Nat; n: Nat): Nat = m * suc(9) + n %(decimal_def)%

then
op __ + __ : Nat * Nat -> Nat, assoc, comm, unit 0;

__ * __ : Nat * Nat -> Nat, assoc, comm, unit 1;

forall r,s,t: Nat
. (r + s) * t = r * t + s * t
. t * (r + s) = t * r + t * s

end

spec GenerateSet [sort Elem] = %mono
generated type Set[Elem] ::= {} | __+__ (Set[Elem];Elem)
pred __eps__: Elem * Set[Elem]
forall x,y: Elem; M,N: Set[Elem]
. not x eps {} %(elemOf_empty_Set)%
. x eps M+y <=> x=y \/ x eps M
%(elemOf_NonEmpty_Set)%

. M = N <=> (forall x: Elem . x eps M <=> x eps N) %(equality_Set)%

end

spec Set [sort Elem] given Nat = %mono
GenerateSet [sort Elem]

then %def
preds isNonEmpty: Set[Elem];

__ isSubsetOf __: Set[Elem] * Set[Elem]
ops {__}: Elem -> Set[Elem];

#__: Set[Elem] -> Nat;
__ + __ : Elem * Set[Elem] -> Set[Elem];
__ - __ : Set[Elem] * Elem -> Set[Elem];
__ intersection __,
__ union__,

174

__ - __,
__ symDiff __: Set[Elem] * Set[Elem] -> Set[Elem];

logic UMLState
spec Counter =
var cnt;

event inc(k);
event reset;

states s1,s2;

init s1 : [cnt == 0];
trans s1 --> s1 : inc(k) [cnt+k<4]/{cnt:=cnt+k};
trans s1 --> s2 : inc(k) [cnt+k==4]/{cnt:=cnt+k};
trans s2 --> s1 : reset [cnt==4]/{cnt:=0}

end

logic CASL
spec CounterCASL = Counter with translation UMLState2CASL
spec EvtNameSet = Set[sort EvtName] with Set[EvtName] |-> EvtNameSet

spec Trans =
Nat

then
CounterCASL

then
EvtNameSet

then
forall e:Evt; k,l:Nat
. (e=evt_reset) \/ (exists k:Nat. e=evt_inc(k))
. not (evt_reset=evt_inc(k))
. evt_inc(k)=evt_inc(l) <=> k=l

type Conf ::= conf(ctrl:Ctrl; cnt:Nat)
forall g:Conf. exists c:Ctrl; k:Nat
. g=conf(c,k)
forall c,d:Ctrl; k,l:Nat
. conf(c,k)=conf(d,l) <=> c=d /\ k=l

end

spec Prove =

175

C. A Heterogeneous Specification for the Counter example

Trans
then
op s1, s2 : Ctrl
axiom not(s1=s2)

then
op allEvts : EvtNameSet = evtName_inc + evtName_reset + {}
pred reachable1(g:Conf) <=>

init(g) \/ exists g0:Conf; e:Evt
. reachable1(g0) /\ trans(g0,e,g)

axiom exists g:Conf. init(g)

forall g1,g2:Conf. init(g1) /\ init(g2) => ctrl(g1) = ctrl(g2)
pred invar(g:Conf) <=>

(ctrl(g)=s1 /\ cnt(g)<=4)
\/ (ctrl(g)=s2 /\ cnt(g)<=4)

%% induction scheme for "reachable" predicate, instantiated for invar
forall es:EvtNameSet
. (

forall g:Conf
. init(g) => invar(g)

) /\ (
forall g,g’:Conf; e:Evt
. (reachable2(es,g) => invar(g)) /\ reachable2(es,g) /\

trans(g,e,g’) => invar(g’)
) => (
forall g:Conf
. reachable2(es,g) => invar(g)

) %(InvarIsReachableInd)%

then %implies

%% case distinction lemmas, can be generated algorithmically
forall g,g’:Conf; e:Evt; k:Nat
. init(g) => invar(g) %(InvarInit)%
. (reachable2(allEvts,g) => invar(g)) /\ reachable2(allEvts,g) /\
trans(g,e,g’) /\ e=evt_reset => invar(g’) %(InvarReset)%

. (reachable2(allEvts,g) => invar(g)) /\ reachable2(allEvts,g) /\
trans(g,e,g’) /\ e=evt_inc(k) => invar(g’) %(InvarInc)%

. (reachable2(allEvts,g) => invar(g)) /\ reachable2(allEvts,g) /\
trans(g,e,g’) /\ e=evt_inc(k) /\ ctrl(g)=s1 /\ cnt(g)+k<4 =>
invar(g’) %(InvarInc)%

176

. (reachable2(allEvts,g) => invar(g)) /\ reachable2(allEvts,g) /\
trans(g,e,g’) /\ e=evt_inc(k) /\ ctrl(g)=s1 /\ cnt(g)+k=4 =>
ctrl(g’)=s2 %(InvarInc)%

. (reachable2(allEvts,g) => invar(g)) /\ reachable2(allEvts,g) /\
trans(g,e,g’) /\ e=evt_inc(k) /\ ctrl(g)=s1 /\ cnt(g)+k=4 =>
cnt(g’)=4 %(InvarInc)%

. (reachable2(allEvts,g) => invar(g)) /\ reachable2(allEvts,g) /\
trans(g,e,g’) /\ e=evt_inc(k) /\ ctrl(g)=s2 /\ cnt(g)+k=4 => false
%(InvarInc)%

. (reachable2(allEvts,g) => invar(g)) /\ reachable2(allEvts,g) /\
trans(g,e,g’) => invar(g’) %(InvarStep)%

. invar(g) => cnt(g)<=4 %(InvarImpliesSafe)%

%% the safety theorem for our counter
forall g:Conf
. reachable2(allEvts,g) => cnt(g)<=4 %(Safe)%

axiom false %(thm_false)% %% proof fails as it should

forall m,n : Nat; g : Conf
. m = n <=> __==__(m,n) %(thm_eq)%
. init(g) => ctrl(g) = s1 %(thm_init_ctrl)%
. init(g) => cnt(g) = 0 %(thm_init_cnt)%
. 0*m+n = n %(thm_0at0)%
. 0*9+n = n %(thm_0at0)%
. 0@@n = n %(thm_0at0)%

end

177

Appendix D

A Heterogeneous Specification for the
ATM example

logic UMLStateO
spec ATM =
name ATM;

vars cardId
, pin
, trialsNum
;

inputs userCom.card(c)
, userCom.PIN(p)
, bankCom.verified
, bankCom.reenterPIN
;

outputs bankCom.verify(card, pin)
, userCom.ejectCard
, userCom.keepCard
;

states Idle, CardEntered, PINEntered, Verifying, Verified;

init Idle : [true];

trans Idle --> CardEntered : userCom.card(c) / { cardId:=c };
trans CardEntered --> PINEntered : userCom.PIN(p) / { pin:=p };
trans PINEntered --> Verifying : / { bankCom.verify(cardId,pin) };
trans Verifying --> Verified : bankCom.verified;

179

D. A Heterogeneous Specification for the ATM example

trans Verified --> Idle : / { userCom.ejectCard; trialsNum := 0 };

trans Verifying --> Idle : bankCom.reenterPIN [trialsNum >= 3] / {
userCom.keepCard; trialsNum := 0 };

trans Verifying --> CardEntered : bankCom.reenterPIN [trialsNum < 3
] / { trialsNum := trialsNum+1 }

end

spec Bank =
name Bank;

vars wasVerified;

inputs atmCom.verify;

outputs atmCom.verified
, atmCom.reenterPIN
;

states Idle, Verifying, VeriSuccess, VeriFail;

init Idle : [true];

trans Idle --> Verifying : atmCom.verify / { wasVerified := 0 };
trans Verifying --> VeriSuccess : / { wasVerified :=1 };
trans Verifying --> VeriFail : ;
trans VeriSuccess --> Idle : / { atmCom.verified };
trans VeriFail --> Idle : / { atmCom.reenterPIN }

end

logic UMLComp
spec Composite =
name ATMSystem;

comp atm : ATM;
comp bank : Bank;

export atm.userCom ;
conn atm.bankCom -- bank.atmCom

end

logic CASL
spec System =
{Composite with translation UMLComp2CASL}

180

and
{ATM with translation UMLStateO2CASL}
and
{Bank with translation UMLStateO2CASL}

end

181

Appendix E

Language Definitions for UMLComp

E.1 Abstract Syntax
BASIC_SPEC ::= basic-spec ⟨DECL+ ⟩

DECL ::= name-decl ⟨COMP_NAME⟩
| mach-decl ⟨MACHINE_DECL⟩
| export-decl ⟨EXPORT_DECL⟩
| conn-decl ⟨CONN_DECL⟩

MACHINE_DECL ::= MACHINE_NAME MACHINE_TYPE
EXPORT_DECL ::= MACHINE_NAME PORT_NAME
CONN_DECL ::= MACHINE_NAME PORT_NAME MACHINE_NAME PORT_NAME

E.2 Concrete Syntax
BASIC_SPEC ::= DECL; . . . ;DECL

DECL ::= COMP_NAME
| MACHINE_DECL
| EXPORT_DECL
| CONN_DECL

MACHINE_DECL ::= comp MACHINE_NAME : MACHINE_TYPE
EXPORT_DECL ::= export MACHINE_NAME.PORT_NAME
CONN_DECL ::= conn MACHINE_NAME.PORT_NAME MACHINE_NAME.PORT_NAME

E.3 Static Semantics
Σ = (nameS, machinesS, machineTysS, exportsS, connsS)

nameS = {}
(nameS, machinesS, machineTysS) ⊢ name-decl ⟨name⟩ ▷ ({name},{},{},{},{},{})

183

E. Language Definitions for UMLComp

mach ∈ machinesS
(nameS, machinesS, machineTysS) ⊢ mach-decl ⟨name type⟩ ▷ ({},{mach},{type},{},{},{})

m ∈ machinesS
(nameS, machinesS, machineTysS) ⊢ export-decl ⟨m p⟩ ▷ ({},{},{},{},{m p},{})

{m1, m2} ⊆ machinesS
(nameS, machinesS, machineTysS) ⊢ conn-decl ⟨m1 p1 m2 p2⟩ ▷ ({},{},{},{},{},{m1 p1 m2 p2})

184

	Introduction
	Contributions and Publications
	Outline of the Remainder of this Thesis

	Background Material
	The Unified Modeling Language
	Example: A Simple Security Protocol
	Class Diagrams
	State Machines
	Composite Structure Diagrams
	Tools

	Institutions and Comorphisms
	Running Example: Modal Logics
	Why use Institutions?
	Categories and Functors
	Institutions
	Example: An Institution for Modal Logics
	Comorphisms

	The Algebraic Specification Language Casl and its Toolset HeTS
	The Casl Language Family
	Heterogeneous Tooling with HeTS
	A Short Introduction to Haskell
	Parsec

	Related Work
	Automatic Verification of Finite UML Models
	Interactive Verification of Potentially Infinite Models

	Methodology Construction
	A Bird's-eye View of our Languages
	EDHML: An Institution for Embedding Simple State Machines
	Example: The Counter Machine
	Event/Data Structures and the Problem with Institutionalising UML State Machines
	A Hybrid Modal Logic for Event/Data Systems

	A Theoroidal Comorphism from EDHML to Casl
	Comorphism Definition
	Satisfaction Condition

	EDHMLO: Extending EDHML with Outputs
	The Underlying Data Universe
	Data States and Transitions
	Events and Messages
	Event/Data Signatures
	Event/Data Structures
	Event/Data Formulæ and Sentences
	Satisfaction Relation for EDHMLO
	Satisfaction Condition

	A Theoroidal Comorphism from EDHMLO to Casl
	Translating Signatures
	Reducing Structures
	Translating Sentences
	Satisfaction Condition

	UMLComp: Simple UML Composite Structures
	Signatures
	Structures
	Sentences
	Satisfaction Relation and Satisfaction Condition

	Implementing our Institutions and Comorphisms in HeTS
	Implementation of the UMLState Syntax in HeTS
	Implementing Static Analysis for UMLState
	Translation of State Machines
	Design of Composite Structures and State Machines with Output
	Interfacing with UMLStateO and UMLComp
	How to Obtain our Implementation

	Verification Examples
	The Counter Machine: Proofs about State Machines without Outputs with HeTS and Spass
	The ATM Scenario: Verifying Composite Structures with KIV

	Conclusions
	Conclusion
	Summary
	Future Work

	Bibliography
	Language Definitions for UMLState
	Lexical Primitives
	Abstract Syntax
	Concrete Syntax
	Static Semantics

	Diagrams for the Security Protocol Example
	A Heterogeneous Specification for the Counter example
	A Heterogeneous Specification for the ATM example
	Language Definitions for UMLComp
	Abstract Syntax
	Concrete Syntax
	Static Semantics

