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ABSTRACT

Driven by an exponential growth in mobile broadband-enabled devices and a con-

tinued increase in individual data consumption, mobile data traffic has grown 4000-

fold over the past 10 years and almost 400-million-fold over the past 15 years. Ho-

mogeneous cellular networks have been facing limitations to handle soaring mobile

data traffic and to meet the growing end-user demand for more bandwidth and better

quality of experience. These limitations are mainly related to the available spectrum

and the capacity of the network. Telecommunication industry has to address these

challenges and meet exploding demand. At the same time, it has to guarantee a

healthy economic model to reduce the carbon footprint which is caused by mobile

communications.

Heterogeneous Networks (HetNets), composed of macro base stations and low-

power base stations of different types, are seen as the key solution to improve spectral

efficiency per unit area and to eliminate coverage holes. In such networks, intelligent

user association and interference management schemes are needed to achieve gains

in performance. Due to the large imbalance in transmission power between macro

and small cells, user association based on strongest signal received is not adapted in

HetNets as only few users would attach to low power nodes. A technique based on

Cell Individual Offset (CIO) is therefore required to perform load balancing and to

favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is added

to users’ Reference Signal Received Power (RSRP) measurements and hence inducing

handover towards different eNodeBs. As Long Term Evolution (LTE) cellular net-

works use the same frequency sub-bands, mobile users may experience strong inter-cell

xv



interference, especially at cell edge. Therefore, there is a need to coordinate resource

allocation among the cells and minimize inter-cell interference. To mitigate strong

inter-cell interference, the resource, in time, frequency and power domain, should be

allocated efficiently. A pattern for each dimension is computed to permit especially

for cell edge users to benefit of higher throughput and quality of experience. The

optimization of all these parameters can also offer gain in energy use. In this thesis,

we propose a concrete versatile dynamic solution performing an optimization of user

association and resource allocation in LTE cellular networks maximizing a certain

network utility function that can be adequately chosen. Our solution, based on game

theory, permits to compute Cell Individual Offset and a pattern of power transmission

over frequency and time domain for each cell. We present numerical simulations to

illustrate the important performance gain brought by this optimization. We obtain

significant benefits in the average throughput and also cell edge user throughput of

40% and 55% gains respectively. Furthermore, we also obtain a meaningful improve-

ment in energy efficiency. This work addresses industrial research challenges and as

such, a prototype acting on emulated HetNets traffic has been implemented.

Index terms— enhanced Inter Cell Interference Coordination eICIC, Cell Indi-

vidual Offset CIO, time pattern, frequency sub-bands, power control, optimization,

HetNets.
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RÉSUMÉ

Conduit par une croissance exponentielle dans les appareils mobiles et une aug-

mentation continue de la consommation individuelle des données, le trafic de données

mobiles a augmenté de 4000 fois au cours des 10 dernières années et près de 400

millions fois au cours des 15 dernières années. Les réseaux cellulaires homogènes ren-

contrent de plus en plus de difficultés à gérer l’énorme trafic de données mobiles et à

assurer un débit plus élevé et une meilleure qualité d’expérience pour les utilisateurs.

Ces difficultés sont essentiellement liées au spectre disponible et à la capacité du ré-

seau. L’industrie de télécommunication doit relever ces défis et en même temps doit

garantir un modèle économique pour les opérateurs qui leur permettra de continuer

à investir pour répondre à la demande croissante et réduire l’empreinte carbone due

aux communications mobiles. Les réseaux cellulaires hétérogènes (HetNets), compo-

sés de stations de base macro et de différentes stations de base de faible puissance,

sont considérés comme la solution clé pour améliorer l’efficacité spectrale par unité de

surface et pour éliminer les trous de couverture. Dans de tels réseaux, il est primor-

dial d’attacher intelligemment les utilisateurs aux stations de base et de bien gérer les

interférences afin de gagner en performance. Comme la différence de puissance d’émis-

sion est importante entre les grandes et petites cellules, l’association habituelle des

mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptée

dans les HetNets. Une technique basée sur des offsets individuelles par cellule Offset

(CIO) est donc nécessaire afin d’équilibrer la charge entre les cellules et d’augmen-

ter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette

offset est ajoutée à la valeur moyenne de la puissance reçue du signal de référence

(RSRP) mesurée par le mobile et peut donc induire à un changement d’attachement

vers différents eNodeB. Comme les stations de bases dans les réseaux cellulaires LTE

utilisent les mêmes sous-bandes de fréquences, les mobiles peuvent connaître une forte

xvii



interférence intercellulaire, en particulier en bordure de cellules. Par conséquent, il est

primordial de coordonner l’allocation des ressources entre les cellules et de minimiser

l’interférence entre les cellules. Pour atténuer la forte interférence intercellulaire, les

ressources, en termes de temps, fréquence et puissance d’émission, devraient être al-

loués efficacement. Un modèle pour chaque dimension est calculé pour permettre en

particulier aux utilisateurs en bordure de cellule de bénéficier d’un débit plus élevé et

d’une meilleure qualité de l’expérience. L’optimisation de tous ces paramètres peut

également offrir un gain en consommation d’énergie

Dans cette thèse, nous proposons une solution dynamique polyvalente effectuant

une optimisation de l’attachement des mobiles aux stations de base et de l’allocation

des ressources dans les réseaux cellulaires LTE maximisant une fonction d’utilité du

réseau qui peut être choisie de manière adéquate.

Notre solution, basée sur la théorie des jeux, permet de calculer les meilleures

valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance à

appliquer au niveau temporel et fréquentiel pour chaque cellule. Nous présentons des

résultats des simulations effectuées pour illustrer le gain de performance important

apporté par cette optimisation. Nous obtenons une significative hausse dans le débit

moyen et le débit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains

respectivement. En outre, on obtient un gain important en énergie. Ce travail aborde

des défis pour l’industrie des télécoms et en tant que tel, un prototype de l’optimiseur

a été implémenté en se basant sur un trafic HetNets émulé.

Mots-clés— gestion de l’interférence intercellulaire, Offset, ressources temporel,

sous-bandes de fréquences, niveau de puissance, optimisation, HetNets.
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CHAPTER I

Introduction

Over the last decade, mobile data services have become an essential part of users’

lives. The number of mobile subscribers has grown rapidly and mobile data traffic has

nearly doubled each year. The pace of growth is expected to continue over the next

years with the never ending launch of new data-hungry applications. As the demand

of more bandwidth and capacity is increasing, current networks are reaching some

limits. Service providers need to find profitable and green solutions to handle this

growth level. Fortunately, there are multiple techniques that operators can leverage

today.

In this thesis, we explore one of the most popular solutions enhancing network

capacity, i.e, HetNets. The introduction of small cells within a macro cells coverage

permits to efficiently use the available spectrum and thus increase the network capac-

ity. However, two main challenges are facing the HetNets cellular technology: User

Association and inter-cell interference (ICI) Management.

This chapter is structured as follows. First, we will present a general overview of

current cellular networks and the limitations they face due to mobile data growth.

Then, we will explore some of the techniques that operators can use to increase

network capacity. In the second part, we will explain why HetNets are seen as the

key solution to improve spectrum efficiency and the challenges they face, namely user
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Figure 1.1: Homogeneous hexagonal-grid macro cells network.

association and interference management. Afterward, we will describe the problem

addressed in this work and summarize the thesis contributions.

1.1 Overview

Current cellular networks are typically deployed as homogeneous networks, i.e., a

set of identical Base Stations (BS) called macro BSs, having similar characteristics,

such as transmit power levels, backhaul capacities, antenna patterns, etc. These

networks use a macro-centric planning process and the cell sites are placed in a regular

pattern over an area as shown in Figure. 1.1.

Such homogeneous networks are also called “macro-only” networks, as only macro

cells are present in the deployment [18]. The base stations are carefully configured

to maximize the coverage, mitigate the interference with other BSs, and ensure a

roughly equivalent number of users connected to each cell.
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Figure 1.2: Mobile data traffic growth 2015-2020.

Yet, one of the most significant technology challenges operators face today is

coping with the data consumption deluge. According to the Cisco Visual Networking

Index (VNI) in 2016, [21] mobile data traffic has grown 4,000-fold over the past 10

years and almost 400-million-fold over the past 15 years. It grew an estimated 74

percent in 2015 and is expected to grow to 30.6 exabytes per month by 2020, an

eightfold increase over 2015. Mobile data traffic will grow at a Compound Annual

Growth Rate (CAGR) of 53 percent from 2015 to 2020, as shown in Figure. 1.2.

One of the primary contributors to global mobile traffic growth is the increasing

number of wireless connected devices. In 2015, more than half a billion (563 million)

mobile devices and connections were added. Global mobile devices and connections

grew to 7.9 billion in 2015, up from 7.3 billion in 2014 and are expected to grow to

11.6 billion by 2020 at a CAGR of 8 percent as shown in Figure. 1.3.

Till the past few years, homogeneous LTE cellular networks managed to optimize

the coverage and to handle the data traffic generated by users. The performance of

LTE networks has been improved in terms of data throughput and latency, thanks to

advancements in the air interface, using multi-antenna techniques and implementing

more efficient modulation and coding schemes. However, because of the exponential
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Figure 1.3: Global mobile devices and connections growth 2015-2020.

increase in the number of connected devices, the rapid growth of data traffic and

the demand for higher data rates, homogeneous LTE cellular networks have been

facing great difficulty to handle the data amount, especially in the most crowded

environments and at cell edges. These limitations are related to the available spectrum

and network capacity bound.

Claude Shannon showed that the capacity of any channel can be defined as the

maximum rate at which information can be transmitted over the channel [14]. This

theoretical maximum hasn’t been yet achieved, and, moreover, there are many meth-

ods to increase such capacity. How actual cellular networks can be optimized to get

closer to that theoretical maximum channel capacity?

The first element to increase channel capacity is bandwidth. We can either use

new frequency bands, or develop new ways to make better use of existing spectrum.

As spectrum is scarce; the acquisition of licensed bands is an expensive technique,

at least for now. Network operators prefer to use the available licensed spectrum

more efficiently. The LTE Release 10 standard specifies procedures for implementing

carrier aggregation, so that operators can use non-adjacent frequency band in the
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spectrum. But this aggregation does not come without a cost.

Another approach consists in enhancing macro network layer efficiency through some

technology upgrades [67]. For instance, the spatial dimension can be exploited using

a multiple input multiple output (MIMO) system. Such implementation increases

the number of antennas of the base station and the terminal, and as such, requires

more signal processing than in a single-antenna configuration. Operators can also

rely on smart scheduling to assign spectrum blocks to users every millisecond, or on

enhanced Coordinated Multi Point (eCoMP), which permits to transmit data to a

mobile device from multiple cells at the same time.

Cell size is another factor that affects the number of users connected to one base sta-

tion. One of the most well-known capacity-enhancing strategies is the use of smaller

cells. This permits to increase frequency reuse, also known as cell-splitting gain. The

macrocell network can also be densified by adding more sectors per macro site or by

deploying more BSs. However, it becomes more difficult and expensive to find new

macro sites.

Based on cell densification, heterogeneous cellular networks have been proposed in

3rd Generation Partnership Project (3GPP) LTE/LTE-Advanced (LTE-A) to cope

with the limited amount of spectrum. Generally, in homogeneous networks, the de-

ployment of macro BSs is planned in a way that minimizes overlapping cells and at

the same time guarantees a continuous coverage for all users in the network. HetNets

fundamentally change this notion by overlaying existing homogeneous LTE networks,

commonly called macro layer, with additional smaller power low-complexity base

stations while keeping infrastructure cost low.

The emergence of HetNets gives rise to two challenging network management

problems, i.e. user-cell association and inter-cell interference management. How to

ensure that small cells actually serve enough users? What is the best user attachment

policy? How to mitigate inter-cell interference, especially at cell edge? And what is
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Figure 1.4: HetNets deployment with a mix of macro, pico, femto and relay base
stations.

the best manner to distribute the available resources to connected users?

There is clearly a complex interplay between the different decisions an operator needs

to take to achieve optimal user association, resource allocation and interference man-

agement. In the next section, we discuss these schemes in more detail.

1.2 Motivations

1.2.1 HetNets Overview

At a high level, HetNets represent a strategic evolution of the mobile access net-

work to augment macrocell capacity in a cost effective way. This cellular system

consists of planned deployment of macro base stations that typically transmit at high

6



power level ( 5W - 40W), overlaid with several types of small base stations, which

transmit at substantially lower power levels ( 100mW - 2W). Since coverage is already

provided by macro BSs, small cells are often deployed in densely populated areas to

boost the capacity of LTE network or to fill in coverage holes. Due to their lower

transmit power and smaller physical size, these small base stations can offer flexible

site acquisitions and substantially reduces the network operational and capital ex-

penditures. As illustrated in Fig. 1.4, among the different types of small cells we can

cite:

• Femtocell, also known as home BSs or home eNodeB (eNB)s: initially intended

for home use, but also used in businesses, and in rural and metropolitan areas.

Its range is less than 50 m and its transmit power is less than 23 dBm.

• Picocell: intended for businesses and public indoor areas and sometimes used

in outdoor settings as well. It usually serves a few tens of users within a range

of 300 m, and has a typical transmit power range from 23 to 30.

• Relay: connects to the rest of the network and routes data from macro cell. It

has a transmit power ranging from 23 to 33 dBm for outdoor deployment, and

20 dBm or less for indoor deployment.

HetNets are considered as the most promising approach to improve network ca-

pacity and to increase coverage. But how do small cells actually enhance the network

overall performance?

The channel capacity of a cellular network can be defined as the achievable spectral

efficiency expressed in bits/s/Hz. In a co-channel deployment, small cells use the same

time-frequency resources as the macro cells. As the lower power nodes are placed on

top the macro cells layer, the spatial reuse of the time-frequency resources is highly

increased which results in higher network capacity. In this case, we talk about area

spectral efficiency.
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Figure 1.5: Cell Range Extension and Almost Blank Sub-frames.

The densification of the network results in reducing the average distances between a

user and the nearest BS and thus decreasing the pathloss experienced by the trans-

mitted signal and improving the link gain and the capacity of the channel.

Furthermore, the use of lower power base stations permits to reduce inter-cell inter-

ference and carbon footprint of mobile communications in the network.

An additional benefit of small cell deployments is that it allows offloading some users

from macro to small cells, balancing the traffic load and also increasing the overall

network throughput and efficiency.
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1.2.2 HetNets Challenges

While considered as the most attractive way to improve the network capacity,

HetNets are facing two main challenges. The first one is user association which

consists in a policy to assign the mobiles to different base stations in the network.

Attaching a user to a certain BS will not only impact the throughput of that user

but also the overall throughput.

In traditional cellular networks with frequency reuse equal to 1 (reuse-1), users usually

associate with the E-UTRAN Node B (eNodeB) that provides the strongest received

signal. The measure of signal strength depends essentially on the transmission power

of the cell and the pathloss encountered. In homogeneous cellular networks where

the BSs have similar transmission power, the user association is determined by the

pathloss, i.e., mainly by the user-BS distance. In HetNets, with high-power nodes

in the macro cells (e.g., 40 Watts) and low-power nodes in the small cells (e.g., 1

Watt), only few users would attach to these small cells. It could happen that a user,

which is closer to a SC and has a low pathloss, compared to that with a MC, has

a stronger signal strength from the MC as the latter transmits with a larger power.

And thus this user would attach to the MC, instead of the closer SC. Attaching to the

eNB with the strongest signal in such cases is often sub-optimal or even negative to

the system performance since we may under-utilize the small cells. Small cells, with

low transmission power and small coverage areas, may be lightly loaded compared to

macro cells.

This first challenge faced by the HetNets can be tackled with an intelligent users’

association policy that is more adapted to this new architecture. To address this

problem, one can systematically expand the area served by the small cell. This mech-

anism, shown in Fig. 1.5 is called Cell Range Extension (CRE). To offload MCs and

associate more users with SCs, a Cell Individual Offset is added to the users’ RSRP

measurements. This would enforce some User Equipment (UE)s, especially those in
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SC edge, to associate with their nearest SC instead of the MC, inducing a better

load balancing in the network. One question that we will address in this work is the

optimization of CIO values and the user association.

Although the CRE significantly mitigates interference in the Uplink (UL), the downlink

(DL) signal quality of UEs located in the range expanded area decreases. Such UEs

may suffer from downlink Signal-to-Interference-plus-Noise Ratio (SINR) below 0 dB

because they are connected to cells that do not have the best downlink RSRP.

The second challenge facing HetNets is to mitigate the interference in order to

enhance the SINR.

Note that in an Orthogonal Frequency Division Multiplexing (OFDM) system, the

whole bandwidth is divided into physical Resource Block (RB)s in frequency sub-

carrier and time slot that are orthogonal to each other. Thus, the intra-cell interfer-

ence is negligible. However, inter-cell interference is usually severe due to the practice

of reuse-1 cellular networks [82]. It could happen that neighboring macro and small

cells use the same resource blocks and result in high inter-cell interference, which

is even more severe to cell edge users. Reducing inter-cell interference is necessary.

Note that employing cell range extension in HetNets could also generate higher inter-

cell interference, especially for the users that change their attachment from macro to

small cells. Figure 1.5 illustrates this scenario. UE-1 which is located at the SC-1

border and attached to this eNB when CRE is applied, experiences high interference

from the macro.

It is vital to ensure that the reuse of the spectrum does not lead to high interfer-

ence scenarios in LTE networks. To mitigate the inter-cell interference, 3GPP LTE

standard has introduced Inter-Cell Interference Coordination (ICIC) and enhanced

Inter-Cell Interference Coordination (eICIC) methods at Release 8 and Release 10

specifications, respectively. They are provided to address interference issues in Het-

Nets and mitigate interference on data traffic and control channels. Generally, the
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ICIC techniques are limited to the frequency and/or power domain, for example split-

ting the frequency bandwidth into parts for adjacent cells or having their transmis-

sions with different power levels. In addition, eICIC focuses on time domain solution

through Almost Blank Sub-frames (ABS). This technique, shown in Figure 1.5, aims

to mute a cell during specific time slots so that its neighboring cells could transmit

under minimal interference.

As one can understand, users’ association and interference mitigation are closely

related since the available resources for each cell should be in relation with the amount

of users actually attached to the cell and their actual traffic demand. Better cell se-

lection strategies and more advanced techniques for efficient interference management

and resource coordination can improve the average user throughput and support high

spatial reuse in LTE networks. Substantial gains can be achieved in cell edge through-

put and the energy consumption.

A detailed explanation and a literature study of user association and interference

management are given in the next chapter.

1.3 Contributions & Outline

1.3.1 Contributions

In this thesis, starting from a powerful mathematical approach based on game

theory, we set up a flexible framework that supports the joint optimization of user

association, inter-cell interference management and radio resource sharing in LTE

cellular networks for enhancing an overall network utility. Our work is based on

a two-tier model that permits the separation of some control decisions among the

eNodeBs and the coordinator. The latter receives periodically, updated measurements

from the eNBs. Then, it performs a global optimization to select the best CIOs

for user association, to coordinate the allocation of subset of frequency and time
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resources to the eNBs, and to adjust the transmission power on each resource. This

optimization is based on an iterative algorithm and considering the state of the whole

network, it results in the best CIOs, frequency and power settings for each cell. These

values are then sent to the eNBs and to be used by their LTE local schedulers for

transmissions. Coordinating the transmission power and frequency reuse across cells

allows limiting the interference experienced by mobile users and improving the average

throughput and also at cell edge. It could also yield higher energy efficiency. The

proposed framework supports centralized or distributed architecture and different

utility functions depending on the operator optimization strategy.

The contributions of this work are listed below:

• we formulate the joint optimization problem of user association and inter-cell

interference management and describe certain relevant sub-problems, such ABS

or CIO optimization.

• We model the problem as a non-cooperative game where the players are the

base stations and prove that it is a potential game.

• We present a dynamic solution of user association and inter-cell interference

coordination optimizing Cell Individual Offsets and transmission power over

time and frequency domains in order to maximize a certain network utility.

• We provide an analytical investigation of the algorithm and comprehensive per-

formance study. Simulation results have shown significant improvement in the

user throughputs and also energy efficiency.

• We develop a prototype of the optimizer to demonstrate the feasibility and

performance of the approach. Connected to a logically centralized Software

Defined Networking (SDN) controller, the optimizer has a global view of the

network and delivers optimal settings.
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1.3.3 Outline

The rest of the thesis is organized as follows. Chapter. II presents an overview

of the related works. In Chapter. III, we define the system model and formulate a

user association and interference management problem. We describe the proposed

solution, based on game theory,and its technical implementation in Chapter. IV.

In Chapter. V, we present the simulation settings and show the numerical results by

comparing different configurations. A detailed description of the framework prototype

is also provided. Finally, Chapter. VI draws the conclusion and highlights some

potential future work.
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CHAPTER II

Fundamental Concepts and State of the Art

2.1 Introduction

User association and inter-cell interference management are well known problems

in the area of cellular networking with a direct impact on each other.

Associating a user with a specific base station will affect not only the throughput

of that user but also the throughput of all the users associated to the neighboring

base stations. Conventionally, UEs are attached to the BS providing the best SINR.

In HetNets, however, the BSs can have large differences in power transmission, so a

max-SINR user-cell association leads to lightly loaded small cells compared to macro

cells. This results in an inefficient use of available resources, and strongly motivates

intelligent user association (also known as cell selection) policy.

In order to satisfy the constantly expanding capacity demands of mobile applica-

tions, homogeneous and heterogeneous cellular networks usually use all the frequency

bands to achieve high spectral efficiencies, which leads to strong inter-cell interference,

especially for the users in the border of the cell. Cellular networks should be able to

provide efficient and flexible interference management schemes among the different

cells in the system. It is then necessary to have a good understanding of interference

management and user association in LTE cellular networks and to study the interplay

between these mechanisms.
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Figure 2.1: Simplified LTE network architecture.

In this chapter, first, we introduce the LTE cellular networks using Orthogonal

Frequency Division Multiple Access (OFDMA) as an access technology. Then an

overview of fundamental concepts and state of the art for interference management

and user association in both homogeneous and heterogeneous cellular networks is

provided. Finally we present the Software Defined Wireless Network (SDWN) ar-

chitecture and explain how this new paradigm can handle the major growth in data

traffic.

2.2 LTE & OFDMA Overview

2.2.1 LTE Overview

Due to the fast increase of mobile traffic and the emergence of new applications,

the 3GPP started to work on the Long-Term Evolution on the road to 4th Generation

mobile. The first version of LTE was documented in the 3GPP Release 8. LTE-A was

approved by the International Telecommunication Union (ITU) as a 4G technology
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and documented on the release 10. The main objective of LTE is to provide high

quality of service and data rates to all the users and to support flexible bandwidth

deployments and packet-switched traffic.

LTE has a flat, all-IP architecture with separation of control plane and user plane

traffic. As shown in Figure. 2.1, the main components of LTE networks are:

• User Equipment (UE): is any device used by an end-user to communicate and

connected to the LTE network via Radio Frequency (RF) channel. UE handles

different tasks, such as call control and identity management. Furthermore, UE

detects and monitors the presence of multiple cells to associate to the best cell.

It measures essentially RSRP and Channel Quality Indicator (CQI).

• Evolved UMTS Terrestrial Radio Access Network (E-UTRAN): is

responsible for all radio-related functions which include: (i) Radio Resource

Management (RRM) for both UL and DL like scheduling, dynamic resource

allocation, radio admission and mobility control, (ii) IP header compression, (iii)

data encryption and (iv) connectivity to the Evolved Packet Core (EPC). The

E-UTRAN has just one component: the evolved base stations, called eNodeB

or eNB. It sends and receives radio transmissions to all the mobiles using the

functions of the LTE air interface. The eNBs are inter-connected via the X2

interface and communicate with the core by means of the S1 interface.

• The Evolved Packet Core: composed by different entities: the Mobility

Management Entity (MME), the Serving Gateway (S-GW), the Packet Data

Network Gateway (P-GW), the Home Subscriber Server (HSS) and the Policy

Control and Charging Rules Function (PCRF). The EPC is connected to the

outside world such as the internet or the IP multimedia subsystem.

LTE uses OFDM and OFDMA as modulation scheme and multiple access technol-

ogy respectively [23]. In the next section, an overview of OFDM/OFDMA is given.
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Figure 2.2: OFDM vs OFDMA.

2.2.2 OFDM/OFDMA overview

The LTE physical layer (PHY) is a highly efficient means of carrying both data and

control information between an eNodeB and a UE. It employs some advanced tech-

nologies such OFDM, as the signal bearer and the associated access schemes, OFDMA

for the DL and Single Carrier Frequency Division Multiple Access (SC-FDMA) for

the UL.

For LTE, OFDM splits the carrier frequency bandwidth into many narrower sub-

carriers spaced at 15 kHz. The spacing is such that the subcarriers are orthogonal to

each other, so they won’t interfere with one another despite the lack of guard bands

between them. The use of orthogonal subcarriers avoids intra-cell interference and

allows more subcarriers per bandwidth resulting in an increase in spectral efficiency.

OFDMA uses OFDM; however, it is the scheduling and power assignment to the

resources that makes OFDMA distinctive. The OFDM diagram in Figure. 2.2 shows

that only a single user can transmit on all of the sub-carriers at any given time.

In the OFDMA diagram, multiple users share the bandwidth at each point in time.

This is valuable for LTE since OFDMA exploits the multi-user diversity and makes

conceivable to dynamically assign the best non-fading and low interference channels
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Figure 2.3: LTE generic frame structure.

for a particular user and avoid bad sub-carriers.

Although it involves added complexity, OFDMA is an excellent choice of multi-

plexing scheme for the DL in LTE, as it improves efficiency and latency. In OFDMA,

users are allocated a specific number of subcarriers for a predetermined amount of

time. These are referred to as resource blocks. RBs thus have both a time and fre-

quency dimension. The more resource blocks a user gets, the higher the bit-rate.

Advanced scheduling mechanisms determine which RBs and how many the user gets

at a given point in time.

In order to adequately explain OFDMA within the context of the LTE, we must

study its generic frame structure. As shown in Figure. 2.3, LTE frames are 10

millisecond (ms) in duration and are divided into 10 sub-frames. Each sub-frame

is 1 ms long and is also divided into 2 slots, each of 0.5 ms duration. Slots consist

of either 6 or 7 OFDM symbols depending on the Cyclic Prefix (CP) in use. When

a normal CP is used, one slot contains 7 symbols. When an extended CP is used, it
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Figure 2.4: Resource Block structure.

Bandwidth (MHz) 1.25 2.5 5 10 15 20
Subcarrier bandwidth (kHz) 15
Resource Block bandwidth

(kHz)
180

Number of available RBs 6 12 25 50 75 100

Table 2.1: Available RBs.

contains 6 symbols. The smallest modulation structure in LTE is the Resource Ele-

ment which is one 15 kHz subcarrier by one symbol. The smallest element of resource

allocation is the RB which consists of 12 consecutive subcarriers in the frequency

domain for 1 slot in the time domain (Figure. 2.4). The total number of available

subcarriers depends on the overall transmission bandwidth of the network. The LTE

specifications define parameters for bandwidths from 1.25 MHz to 20 MHz as shown

in Table 2.1.
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Figure 2.5: Interference scenario.

2.3 Interference Management

By orthogonal allocation of the OFDMA sub-carriers, intra-cell interference can

be avoided. However, inter-cell interference presents a great challenge that limits the

network performance, especially for users located at the cell edge. As LTE is originally

designed to reuse the same frequency among all the cells, there is a high probability

that a resource block scheduled to cell edge user, is also being transmitted by neighbor

cell, resulting in high interference and eventually low throughput (see Figure. 2.5).

2.3.1 Inter-Cell Interference Coordination (ICIC)

As illustrated in Figure. 2.6, inter-cell interference can be seen as a collision be-

tween resource blocks [16]. ICIC mechanisms aim to reduce the collision probabilities

and to mitigate the SINR degradation caused by the collisions in order to improve

the overall network performance.

ICIC was introduced by the 3GPP in Release 8. Several ICIC techniques have

been proposed in the literature. [38] and [102] survey various ICIC schemes used to
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Figure 2.6: Resource Block collision.

mitigate inter-cell interference in LTE networks. Due to the large number of published

papers treating ICIC, there have been several attempts to categorize ICIC schemes.

Authors of [38] and [30] classified them according to cell cooperation and frequency

reuse patterns. According to [4], there are 3 principal inter-cell interference mitigation

techniques: cancellation, randomization, and avoidance. The 3GPP recommended

these following schemes [6]:

• Interference randomization: to randomize the interference and achieve fre-

quency diversity using cell specific scrambling, interleaving or spreading spec-

trum techniques. Thus, the cell edge users will not always suffer strong ICI

during the entire transmission period [6].

• Interference cancelation: based on spatial filtering, to estimate and subtract the
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interference from the received signal. If the UE has multiple receiver antennas,

it can select the best quality signal among the various received signals.

• Adaptive beamforming: to change antenna radiation pattern depending on the

interference levels. The signals are combined in a manner which increases the

signal strength to/from a chosen direction.

• Interference avoidance/coordination: controls the resource allocation by coor-

dination between network entities. Interference avoidance schemes are mostly

limited to the frequency/power domain where there is a partial use of fre-

quency resources or adaptation of power levels. Figure. 2.7 depicts the various

types of interference avoidance schemes [38]: static ICIC (Frequency reuse-based

schemes) and dynamic ICIC (Cell coordinated-based schemes).

2.3.1.1 Static ICIC: Frequency Reuse-Based Schemes

Frequency reuse-based schemes include: conventional frequency reuse and frac-

tional frequency reuse schemes. All these schemes need to specify: (i) the set sub-

bands to be used in each cell, (ii) the transmission power of each channel, and (iii)

the region of the cell in which this set of channels are used .

• Conventional Frequency Reuse [60]: We focus on 2 well known schemes

in this category: Reuse Frequency 1 (RF1) and Reuse Frequency 3 (RF3). In

the first scheme, shown in Figure 2.8, all the bandwidth can be reused in each

cell in the system without any restrictions on power allocation or frequency

resource usage. RF1 permits to achieve a high network capacity. However, ICI

increases and the overall spectral efficiency degrade. In reuse factor of 3, shown

in Figure 2.9, the total bandwidth is divided into 3 equal sub-bands which are

allocated to cells in such a way that adjacent cells use different frequencies.

This scheme leads to lower ICI. However, as each cell only uses 1
3 of available
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Figure 2.7: Interference avoidance schemes.
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Figure 2.8: Frequency Reuse 1.

Figure 2.9: Frequency Reuse 3.

bandwidth, there is a large capacity loss. The higher the cluster size, the greater

the reduction in inter-cell interference is. However, this also generally leads to

a reduction in cell throughput as we underutilize the available resources.

• Partial Frequency Reuse (PFR): a part of the fractional frequency reuse

scheme. The idea of PFR was first presented in [88], then it has been studied

in the 3GPP and WINNER projects (see, [3], [4] and [10]). In PFR scheme,

shown in Figure 2.10, we use the same frequency subset with equal power in
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Figure 2.10: Partial Frequency Reuse - PFR.

Figure 2.11: Soft Frequency Reuse - PFR.

all the cell center regions. Cell edge UEs are allocated in the complementary

frequency subset using a reuse factor of 3. As PFR does not employ the whole

available bandwidth, it leads to lower cell throughput compared with reuse 1

scheme.

• Soft Frequency Reuse (SFR): initially proposed in [1] and [2]. In SFR

(shown in Figure 2.11), each cell uses the total available bandwidth. Cell edge

users are allocated in the subset of bandwidth with highest power level and
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cell centre users are allocated with lower power in the rest of the frequency

band. RF1 is used in the cell centre region and reuse factor greater than one is

employed at the cell edge regions.

Although such frequency reuse-based schemes can be easily implemented, they

can not cope with changes in data traffic. These shortcomings of static schemes are

addressed by dynamic ICIC schemes as they do not require prior frequency planning.

2.3.1.2 Dynamic ICIC:Cell Coordination-Based Schemes

Cell coordination schemes are considered as an efficient solution to cope with

the continuous dynamic traffic load changes in the system. To efficiently manage

the resource allocation and reduce the ICI, these schemes operate based on dynamic

interference information from neighboring cells. Coordination-based schemes can be

categorized, based on the level of coordination, into four main categorizes:

• Centralized: A central control entity collects the Channel State Informa-

tion (CSI) of all UEs in the network, that have been forwarded from their

serving eNBs. Then, it allocates the available resources to each cell and each

UE trying to maximize the overall capacity. These exchanges between the cen-

tral coordinator and the eNBs may result in high backhaul signaling. Examples

of centralized schemes can be found in [15], [24] and[35].

• Semi-distributed (e.g., [53], [78], [77]): Coordination is performed at the

central entity and at the eNB. First, the controller allocates in each slot of time

(for each 10 ms), a subset of resources to each eNB. Then the eNB is responsible

to schedule its UEs on the frame level using the envelope of allowed resources. In

this scheme, it is still required to exchange scheduling information and feedback

between the eNBs and the controller. But, as the resource allocation problem

is distributed, the computational complexity of the overall scheme is reduced.
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• Coordinated-distributed: Several Coordinated distributed schemes have been

proposed in the literature (e.g., [28], [32], [76], [97] , [105]). There is no need

of a central entity, as resource allocation is performed only at the eNB level.

However, some coordination is still needed between eNBs in order to perform

global ICIC. The optimization problem is divided into distributed single-cell

optimization problems that can be solved by each eNB using local information

from its attached UEs while exchanging minimal amount of information with

neighboring eNBs.

Coordinated distributed schemes permit to reduce network infrastructure com-

plexity and signaling overhead resulted from regular communication between

eNBs and the central entity. However, the realization of these schemes remains

limited due to constraints on inter-eNB communication and the non negligible

latency of the X2 interface.

• Autonomous-distributed: In these schemes, there is no need for a central

controller, neither for coordination between the eNBs. Each eNB is responsi-

ble for assigning its resources to attached UEs, based on their local reported

measurements. To efficiently manage the ICI, each eNB has to individually

apply some restrictions on power levels of selected RBs with low SINR. It is

clearly a trade-off between the value of reducing the ICI in neighboring cells and

the cost of under-utilizing the available spectrum [30]. The key advantage of

autonomous schemes is that the scheduling algorithm becomes independent of

the latency caused by the X2 interface and adapts faster to the changing traffic

conditions. Due to the complexity of autonomous distributed algorithms, there

is a limited, but growing, research effort reported in the literature for developing

autonomous distributed ICIC schemes (e.g., [89], [90], [19], [48], [51]).
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2.3.2 enhanced ICIC (eICIC)

ICIC techniques are mainly designed for homogeneous networks, and only provide

improvements for the physical data channels. In HetNets, where macro cells have

much higher transmission power than small cells, control channels of SCs are interfered

by those of MCs, making ICIC applied to the data channel ineffective. To support

increasing data traffic in mobile networks and to address LTE HetNets challenges,

3GPP Release 10 [5] introduced enhanced ICIC techniques. A comprehensive study

of the evolution of interference management techniques from simple ICIC to eICIC

is given in [75] and [84]. In [59], the authors present a comprehensive introduction

of eICIC in HetNets and [54] provides a survey on different eICIC techniques and a

summary of the evolution of LTE standards.

There are three different categories of eICIC solutions: time-domain techniques,

power control techniques and frequency-domain techniques. The major change com-

pared to ICIC, is the addition of time domain schemes based on time resource par-

titioning to limit the interference to small cell edge users. In the following, we only

concentrate on the time domain eICIC techniques, which we designate with eICIC.

The basic idea with eICIC is that an aggressor macro eNB creates “protected” sub-

frames for a victim small eNB by reducing its power or muting transmission during

certain sub-frames, called Almost Blank Sub-frames. During ABS, the aggressor

eNodeB does not transmit Physical Downlink Shared Channel (PDSCH) but, for

backward compatibility, certain signals must be transmitted in all DL sub-frames

even if they should be muted, namely:

• Common Reference Signals (CRS)

• Primary Synchronization Signals (PSS) and Secondary Synchronization Signals

(SSS)

• Physical Broadcast Channel (PBCH)
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Figure 2.12: Almost Blank Sub-frames.

• System Information Block-1 (SIB-1) and paging with their associated Physical

Downlink Control Channel (PDCCH)

Therefore, an ABS is characterized by minimum transmission, but not completely

null; that is why these sub-frames are called almost blank.

A neighboring SC having UEs that are interfered by the MC will preferentially

schedule those UEs in the protected sub-frames. Other UEs located at the cell cen-

ter can be scheduled over all sub-frames since the interference experienced from the

macro eNB aggressor is negligible compared to the signal of the SC. 3GPP speci-

fications define ABS in the format of a bitmap pattern of 40 sub-frames lasting 40

ms. The coordinating eNBs exchange these ABS patterns via customized Operation

Administration and Maintenance (OAM) or via X2-interface. In order to enable this,
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time-domain ICIC requires time-synchronized eNodeB transmissions. The mecha-

nism of ABS is illustrated in Figure 2.12. UE-1, associated to Small Cell-1 is highly

interfered by the macro cell, as it is located in SC edge. During each first three sub-

frames of the 40 ms pattern, macro cell is muted and does not send any traffic data.

Interference is lowered during these ABS and thus Small Cell-1 will take advantage

to schedule UE-1.

Although the principle of ABS has been described in 3GPP, its actual implemen-

tation is not clearly specified by the standard and there is no indication on how to

set the ABS patterns in different scenarios. The question remains on what amount

of sub-frames should be reserved from macros to small cells, balancing between the

performance gain of small cell border UEs and the capacity loss of remaining macro

cell UEs.

A wide range of solutions using ABS have been proposed in the literature. In [81],

the authors present an ABS scheme following a two-tiers approach consisting of (i)

the local schedulers, which perform the scheduling decisions locally and compute ABS

patterns, and (ii) a central coordinator, which supervises ABS decisions. In [43], a

strategy to estimate the SINR level during an ABS is proposed, based on the reported

CQI feedbacks from previous ABS instants. [20] proposes a way to approximate the

required number of ABS based on Poisson point process network deployment statistics

and derives the necessary number of ABS as a semi-analytical formula.

The eICIC proposal in LTE standards enables time sharing of spectrum for down-

link transmissions between MCs and SCs so as to mitigate the high interference

experienced especially by SC users in the downlink. The notion of eICIC via ABS

is generally coupled in the literature with another important technique for HetNets,

i.e., user association using Cell Individual Offset to ensure that small cells are neither

underutilized nor overloaded. We discuss some user association policies in the next

section.
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2.4 User Association

Before being able to receive and send data, as soon as it is powered on, a UE must

perform certain steps:

• Cell search: it includes some synchronization stages to determine time and fre-

quency parameters and to acquire critical system parameters such as cell iden-

tity and access mode. This procedure is performed for initial synchronization

and for detecting nearby eNodeBs in preparation for handover.

• Cell selection: Once UE knows the ID of a given cell, it also knows the location

of cell reference signals to be used in measuring the channel quality. Based on a

user association policy, the UE selects the best eNB to be associated with. We

give an overview of state of art of user association schemes in both homogeneous

and heterogeneous networks in the following.

• Attach procedure: It consists on establishing a connection between the UE

and the selected eNB. RRC messages are used for authentication, to verify

the id of the UE and request the activation of an EPS bearer context. The

decision whether a new radio-bearer admission request is admitted or rejected

is made according to the quality of service (QoS) requirements of the requesting

radio bearer, to the priority level of the request and to the availability of radio

resources, with the goal of maximizing the radio resource exploitation.

2.4.1 User Association in Homogeneous Networks

User association can be defined as a set of rules to optimally attach users to

different eNBs in the network. Attaching a user to the best eNB can significantly

improve its throughput as well as the overall network utility.

There has been an extensive work on user association focusing on different ob-

jectives such as load balancing, decreasing call blocking probability, and increasing
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the number of connected users. In [39], the authors provide a distributed joint power

control and cell-site selection optimization algorithm in spread spectrum cellular net-

works. In [80], the problem of load balancing in High Speed Packet Access (HSPA)

networks is addressed and a distributed load-awareness scheme is proposed. [79] pro-

posed an integrated framework consisting of MAC-layer cell breathing and load-aware

handover/cell-site selection based on load, throughput, and channel measurements.

[62] deals with cell site selection and frequency allocation in FDMA system. The

authors try to maximize the number of connected users in the system given a certain

blocking probability. Many anterior works on user association, used strategies based

on channel borrowing from lightly-loaded cells (e.g., [25] and [26]). Other works were

based on traffic transfer to lightly-loaded cells (e.g., [24] and [101]).

The most prevalent rule of cell selection in homogeneous deployments, where all

the cells transmit on similar power levels, is undoubtedly the comparison of the Ref-

erence Signal Received Power [9]. That is to say, each UE selects its serving cell ID

according to the cell from which the largest RSRP is provided (See Figure 2.13).

2.4.2 User Association in HetNets

In conventional homogeneous LTE networks, user association is based on the

strongest downlink received signal. This policy is not suitable to HetNets, where

small cells and macro cells operate at different transmission power. Based on this

traditional association rule, most of UEs would attach to macro eNBs, hence poten-

tially resulting in inefficient small cell deployment. While highly loaded macro cells

may not have enough resources to efficiently serve all the UEs, small cells may be

underutilized. Furthermore, because of the limited coverage of small cells, it could

happen that a UE located in the proximity of a low power node, selects a far macro

base station with larger pathloss. This creates disparity between the UL and DL

coverage and affects the uplink transmission.
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Figure 2.13: User association based on strongest RSRP.

User association has been extensively studied in the literature using various ap-

proaches ([22],[55], [56] [57],[99], [104]). [57] presented a detailed overview of the

state of the art for user association algorithms conceived for HetNets. In [104], a dis-

tributed user association algorithm was proposed to maximize a logarithmic concave

function of user data rate. Using convex optimization, the authors in [22], compute

an upper bound on the downlink sum rate and propose a heuristic user association

to maximize the achievable sum rate of all users in the network. With the goal of

achieving a network wide proportional fairness, [99] defines a dynamic programming

and a greedy approach to optimize user association in HetNets. Certain works ap-

plied game theory in the context of user association. The user association in HetNets

was formulated as a Nash bargaining problem in ([55], [56]) to maximize the sum of
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rate related utility, under users’ minimal rate constrains. User association decision

was modeled as Markov decision process (MDP) in a centralized approach in [29].

A distributed algorithm for load balancing is formulated as a convex optimization

problem in [46].

An important approach for user association that has attracted a lot of interest

lately is the concept of biased user association. It has been proposed by 3GPP in

Release 10 [8], to extend the coverage of small cells and increase their load. This

mechanism is also called Cell Range Extension (or Cell Range Expansion). The

power strength received at a user from small cell would be artificially added by an

offset, in order to offload macro cells and to ensure that more users would attach to

small cells. This offset is often named Cell Individual Offset. Other names can be

found in the literature like Cell Selection Bias (CSB) or Range Extension Bias (REB).

The mechanism of CRE is described in Figure. 2.14.

Each UE makes periodical RSRP measurements to its serving cell and to its

neighboring interfering cells. Based on these measurements, it may enter an A3 event

triggering a handover decision if one neighbor cell becomes more attractive than the

serving cell. There are 2 types of conditions for A3 event:

• Entering condition: RSRPn + OCn˘Hys > RSRPs + Off

• Leaving condition: RSRPn + OCn + Hys < RSRPs + Off

Where:

• RSRPn = L3 RSRP from the neighbor cell n (dBm) ;

• RSRPs = L3 RSRP from the serving cell s (dBm) ;

• Hys = Hysteresis for HO Event A3 (dB) ;

• OCn = Cell Individual Offset(CIO) for the neighbor cell n (dB) ;
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Figure 2.14: Cell Range Extension.

• Off = Offset parameter (dB).

The possible CIO values between each two neighboring cells range from (−24dB) to

(24dB) but reasonable values are in the 10dB range. Generally some reciprocity is

required in the CIO where CIO from eNB1 to eNB2 is equal to minus CIO from eNB2

to eNB1. Playing with the offset artificially biases the attraction of a neighboring cell.

This can “force" the user to perform the handover from or towards this neighboring cell

in an indirect manner. For instance, when CIO from macro to small eNB increases,

it implies that more users would be offloaded from the macro to the SC and this

enlarges the coverage area of SC.

CRE is a natural enabler of offloading. However, the main challenge of this mech-

anism is to determine the optimal CIO values for a desired optimal performance of

35



the network.

Many of the available works on CRE in the literature assume fixed bias ([87],

[65]). However, using a common fixed offset for all the eNBs and users turns out to

be not effective [12]. When the CIO value is very large, the footprint of the concerned

cell, typically SC, will be increased. The group of UEs in the extended range could

be very important and thus many UEs will suffer from higher interference and lack

of resources in SC. A set of papers determines the optimal range of CIO values

by simulations for a specific requirements of the network ([47], [70]). [47] evaluates

the impact of CRE on the performance of handover through system simulations and

estimates the optimal CIO range to be below 6 dB. Authors of [70] implemented a

testbed to prove that range expansion improves uplink bit rates at the cost of a limited

reduction in downlink throughput. To choose the best offset values, many researchers

used learning algorithms, heuristic or optimization techniques. In [93], the bias is

set adaptively according based on the feedback from the network performance. [45]

presents an adaptive CRE scheme in which, depending on its SINR, each user can

choose its optimal bias among two possible choices. The simulations results show

improvement in cell edge throughput. In [50], a Q-learning algorithm was proposed

to determine the offset value to be used by each UE minimizing the number of UE

outages. ([42],[86]) investigated the effect of CRE with the aid of stochastic geometry.

The authors in [91], proposed a polynomial time heuristic scheme with rate-based

CRE offsets in HetNets so that each user can decide on its attachment based on its

traffic demand.

Generally, users in the extended range of small cells, experience high interference

from the nearby macro cells and thus lower SINR, because they are no longer at-

tached to the strongest cell. For this reason, CRE is usually combined with suitable

interference management and resource allocation schemes.
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2.5 User Association, Resource Allocation & Inter-Cell In-

terference Optimization in HetNets

2.5.1 Disjoint optimization

Disjoint optimization of cell selection and resource allocation/interference man-

agement has been the subject of massive research.

In [98] all small cells use the same pre-determined CIO, and only the ABS is

permitted to vary in response to network dynamics. However, in [92], the proposed

algorithm comprises two self-optimizing mechanisms: a load balancing algorithm to

adapt the CIO values, and one algorithm to adapt ABS ratio maximizing a pro-

portional fair utility of user throughputs. Using a time based ICIC method, [11]

proposes a heuristic method that changes dynamically the bias value to adapt the

range of small cells to the load and interference situation. Through CDFs of the SINR

difference between macro cells and small cells, the authors of [37] analyzed the benefits

of biased user association offloading with a resource partitioning method in terms of

system capacity and fairness. [69] Analyzed the system capacity and user throughput

using different bias values with Lightly Load CCH transmission Sub-frame (LLCS) to

support ICIC. In order to improve the spectrum efficiency in the time domain, [65]

proposed to associate the users based on their SINR with an additional fixed offset

value and to manage interference using ABS with flexible ABS ratio which depends

on the number of UEs in macro cell/small cell/CRE region. In, [58], The authors

provided closed-form expressions to compute the appropriate CIO values to be added

to the DL received signal strengths to expand small cell to its Hot Spot Boundry

and its equal path-loss boundary. To mitigate both DL and UL interference and to

increase the performance of CRE, a cooperative scheduling schemes is also derived.

Using long term statistics, [74] proposed a distributed method to determine victim

UEs protected by ABS via dynamic programming, and then find the optimal amount
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of ABS by evaluating the overall system utility.

2.5.2 Joint Optimization

The joint optimization of user association, resource allocation and interference

management has prompted significant research efforts ([61], [31], [44], [83]). We

note that this joint optimization is NP-hard; hence finding the optimal solution is

not trivial. Joint user association and power control was investigated in ([83], [61]).

The optimization was distributed and performed sequentially in an iterative manner.

While [83] considers the network utility maximization problem under the proportional

fairness, [61] aims to maximize the sum utility of average rates. In [31], a joint

association, channel allocation, and inter-cell interference management problem was

formulated with the objective of maximizing the minimum data rate. The authors of

([44],[27]) presented a centralized self-optimization scheme delivering optimum offset

and muting ratio for HetNets deployment. In [44], the proposed method is based on

a surrogate model and only performs well for a pre-defined constrained optimization.

The joint optimization of almost blank sub-frame and user association was studied in

[103] and [41], where each macro BS is assumed to have the same muted sub-frames.

As the joint optimization is combinatorial if users can only associate with one BS, the

authors of [103] relaxed this assumption to allow users to attach with different eNBs

for a fraction of time, which results in a convex optimization. In [41], the optimal

ABS is considered as the ratio of the number of vulnerable users and total users.

Based on this assumption, the original combinatorial problem can be reformulated to

a pure optimal user association problem and solved with a greedy approach.
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2.6 Software Definded Networking

2.6.1 Trends & Challenges

Mobile operators must carry higher traffic volumes and simultaneously support

different wireless technologies (i.e., 3G, 4G and Wi-Fi) along with more sophisticated

applications (VoIP, videos, streaming media). Growing traffic has pushed operators

to deploy more and more cells in the Radio Access Networks (RAN). The intro-

duction of small cells and HetNets to increase capacity and spectrum efficiency, has

however brought more challenges, including user association, inter-cell interference,

and radio resource management. The current implementations of mobile networks are

very expensive and difficult to modify, which slows down the time-to-market for new

innovations and impacts the operators’ revenue. Furthermore, the tightly coupling

between the control and data planes in LTE core network makes the current mobile

network very slow and difficult to manage and control. Traditionally, radio resource

management is performed in a distributed manner [72], where each base station has

its own decision on radio resources. This distributed control plane of wireless net-

works is complex and suboptimal for managing the limited spectrum, and performing

efficient user-cell association.

To adress these challenges, operators should radically change current architectures.

2.6.2 SDN Architecture & Benefits

The software-defined network (SDN) [71] is an emerging centralized paradigm that

has been designed to enable more agile and cost-effective networks. SDN separates

the control and data plane and facilitates network configuration and management by

pushing all control tasks to a logically centralized controller. This migration of control

enables the underlying infrastructure to be abstracted for applications and network

services, which can treat the network as a logical or virtual entity. By centralizing
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Figure 2.15: SDN architecture.

network intelligence, decision-making is facilitated based on a global view of the

network, as opposed to today’s networks, which are built on a local system view.

Moreover, SDN can achieve rapid deployment of new services at lower costs through

programmable interfaces (e.g., Openflow [73]) in the controller.

The Open Networking Foundation (ONF) is taking the lead in SDN standardiza-

tion, and has defined an SDN architecture model as depicted in Figure. 2.15.

The SDN architecture is composed of three principal layers:

• the infrastructure layer also called data plane consists of the network ele-

ments that provide packet switching and forwarding.

• the control layer or control plane comprises a set of SDN controllers that

provide the consolidated control functionality that supervises the network for-
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warding behavior through southbound interfaces. These controllers communi-

cate with others using east/westbound interfaces.

• the application layer or application plane consists of one or more applica-

tions, such as routing, resource management and load balancing. The boundary

between the SDN applications and the controllers is traversed by northbound

interfaces such as REST API or Java API.

2.6.3 Research Work on SDN

There have been several approaches for SDN, as surveyed in [40], [49], [68], [94],

[66], [52]. In [94], the authors briefly presented a survey on SDN concepts and its

benefits while considering a limited number of surveyed works. An overview of Open-

Flow and a short literature review can be found in [52] and [68]. In [100], the authors

considered two main streams: SDN-based mobile network and wireless network virtu-

alization, as well as the simple integration of these two approaches. [66] presented a

comprehensive survey about the impact of SDN and virtualization on mobile network

architecture. The paper covered a wide range of up-to-date research works on SDN

and virtualization in mobile network.

2.7 Conclusion

Generally speaking, today’s solutions are usually limited in their scope due to

the inherent complexity of the optimization problem. Previous studies often either

consider:

• Often only disjoint optimization of ABS and CIO is performed because joint

optimization is considered as NP-hard ([98] and [92]), leading to inherent sub-

optimality.
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• When joint optimization is done, it is often in a centralized entity because the

search algorithm is too complex to implement locally ([44]).

• Frequently the optimization is only done for static configurations ([74], [13])

using long term statistics.

• When the optimization is performed in a decentralized manner, it does not yield

to the best results due to the local optimum search ([92]).

• Very often the search is only performed for specific cost functions, exhibiting

specific facilitating characteristics such as convexity ([27]). Many papers con-

sidered the sum of throughput as the utility function. However, it is widely

recognized that maximizing the sum data rate of all users may result in an

unfair data rate allocation.

To summarize, the above-mentioned studies handle either the disjoint optimization

of user association and interference management or consider specific network utility

functions for facilitating optimization algorithms using convexity and specific imple-

mentation constraints (e.g., centralized, distributed). To the best of our knowledge,

there has not been, so far, efficient and practical solution able to handle all these

requirements with high deployment flexibility.
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CHAPTER III

Problem formulation

In this chapter, we will first describe the system model and formulate a joint user

association and interference management/ resource allocation problem. Then, we will

relax the generalized problem and specify some relevant optimization sub-problems.

3.1 System Model

We consider an LTE cellular network composed of K cells: M macro cells and L

small cells, where L ≥ 0, to model both homogeneous and heterogeneous networks.

Denote K, M and L as the set of all cells, macro cells and small cells in the network

respectively. Each base station k has S sub-frames in the time domain and R resource

blocks in the frequency domain. The duration of all sub-frames is the same and the

bandwidth of all RBs is also a constant. According to 3GPP LTE standard [5], they

are 1 ms and 180 kHz, respectively. All the resource blocks are first grouped into F

frequency sub-bands, where each sub-band consists of a number Rf of RBs, f ∈ {1, 2,

. . . , F}. The bandwidth of each frequency sub-band is thus given by Rf × B, where

B = 180 kHz. Similarly, we reorganize the S sub-frames into T time slots, where

each slot consists of a number St of sub-frames, t ∈ { 1, 2, . . . , T}. The duration of

each slot t is equal to St ms. We note that this definition of a time slot is different

from the one used in LTE frame discussed in chapter II.
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We only consider downlink transmissions and make the following assumptions:

• A reuse factor of one is adopted, i.e., the whole bandwidth can be used by all

the cells in the system.

• The LTE transmissions in each cell are synchronized such that there is no intra-

cell interference. However, there exists inter-cell interference, i.e., a transmission

from a cell will cause interference to other cells which reuse the same resource

block at the same time.

• All base stations are active all the time. Also, a BS uses all its available transmit

power.

We will use Pk,f,t to denote the power (in Watt) allocated by cell k to frequency

sub-band f during time slot t. It means that during St ms, the cell k transmits

with same power Pk,f,t over sub-band f . We assume that the power is equaly divided

between the Rf resource blocks, i.e., each RB is allocated Pk,f,t

Rf
. Note that Pk,f,t is in

discrete value. The total power of a cell k during time slot t (and at each sub-frame

in t) is limited by a maximum value P max
k (in watt) such that:





F�
f=1

Pk,f,t ≤ P max
k , ∀t ∈ {1, 2, . . . , T}, ∀k ∈ K

Pk,f,t ≤ Rf × P max
k

R
, ∀t ∈ {1, 2, . . . , T}, ∀f ∈ {1, 2, . . . , F}, ∀k ∈ K

(3.1)

We define vector Pk := (Pk,1,1, Pk,2,1, . . . , Pk,F,1, Pk,1,2, Pk,2,2, . . . , Pk,F,2, . . . , Pk,F,T ) to

represent the power pattern of cell k during each time slot and over each sub-band.

Denote Uk as the set of users who are associated with cell k and U as the set of

all the users in the network. We use binary variable qu,k to indicate whether a user u

is served by cell k or not. We assume that each user can be served by only one cell

such that:
K�

k=1
qu,k = 1, ∀u ∈ U . (3.2)
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Let Nk be the set of the Nk neighboring eNBs of cell k. The actual definition of this

set will be presented in the next section. We will use Ok,k� to denote the Cell Individual

Offset (in dB) from cell k to its neighboring cell k�. The set of real numbers C defines

all possible values that Ok,k� can take. Generally, some reciprocity is required in the

offset settings, i.e., Ok,k� = −Ok�,k. We define vector Ok := (Ok,1, Ok,2, . . . , Ok,Nk
).

We use sk := (Pk, Ok) to represent the power and CIO settings for each cell and

s := (s1, s2, . . . , sK) to denote the network profile. Given a network state s, where s

is a configuration of Pk’s and Ok’s of the K cells, we aim to determine the optimal

values of Pk’s and Ok’s for maximizing the network utility U(s):

U(s) =
K�

k=1
Uk(s) (3.3)

where Uk(s) is the utility for cell k, which is usually determined by the achievable

throughputs of users attached to cell k given a network state s. Any cost function

can be choosen, as there is no requirement of specific characteristics. In the following,

we consider proportional fairness network utility, then we have

Uk(s) =
�

u∈Uk

log(ru(s)) (3.4)

where ru(s) denotes the throughput of user u given s. In the coming discussion, we

may write ru instead of ru(s) for notation simplicity.

Under the Additive white Gaussian Noise (AWGN) model by Shannon-Hartley

theorem, the achievable throughput (in bits/s) by user u can be expressed as

ru = W log(1 + sinru) (3.5)

where W is the bandwidth of the channel (in Hz) and sinru is the signal-to-interference-

plus-noise ratio of user u.

45



The SINR of user u when served by cell k which transmits over frequency sub-band

f during time slot t is expressible as

sinru,k,f,t = Pk,f,tGu,k,f,t

ηu + �
l �=k

Pl,f,tGu,l,f,t

(3.6)

where ηu represents the additive white Gaussian noise, Gu,k,f,t denotes the link gain

from cell k to user u over frequency sub-band f during slot t and �
l �=k

Pl,f,tGu,l,f,t

is the interference received from the cells in the network over frequency sub-band

f during slot t. The link gain accounts for antenna physical properties, pathloss,

shadow fading, fast fading and equipment losses.

3.2 Problem Setup

For generality, one can re-write (3.4) as

Uk(s) =
�

u∈Uk

C(sinru(s)) (3.7)

where C(·) is a utility function.

Let τu,k,f,t be the number of RBs out of Rf of frequency sub-band f granted by

cell k to user u during slot time t. Clearly, in the resource allocation and transmission

scheduling at each eNB, we will have the following constraints

T�

t=1

F�

f=1

�

u∈Uk

τu,k,f,t ≤ R × S (3.8)

where R × S is the total amount of resource blocks (RBs) in the system during S

sub-frames, and
�

u∈Uk

τu,k,f,t ≤ Rf × St (3.9)

for each frequency sub-band and time slot.
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Notation Description
K Number of cells in the network
M Number of macro cells
L Number of small cells
S Number of sub-frames
R Total number of resource blocks
Rf Number of resource blocks in sub-band f

F Number of frequency sub-bands
T Number of time slots
St Number of sub-frames in time slot t

Pk,f,t
Power allocated by cell k to sub-band f and

time solt t

Pk Power vector of cell k

P max
k Maximum transmission power by cell k

Uk Set of users associated with cell k

U Set of all users in the system

qu,k
indicator of whether user u is served by cell

k

Nk Set of neighboring base stations of cell k

Ok,k� CIO from cell k to cell k�

Ok CIO vector of cell k

s Network state
U Utility function
ru Throughput of user u

W Total bandwidth
B Resource block bandwidth
ηu Additive white Gaussian noise

Gu,k,f,t
Link gain from cell k to user u over
frequency sub-band f during slot t

τu,k,f,t
Number of RBs out of frequency sub-band f
granted by cell k to user u during slot time t

sinru
Signal-to-interference-plus-noise ratio of

user u

Table 3.1: Descriptions of notations.
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To address the power allocation optimization problem for LTE network manage-

ment, we will use long-term statistics in both frequency and time domains such that

sinru,k,f,t is a measure of averaged SINR of user u over RBs in the frequency sub-

band f and during time slot t. We will therefore write sinru,k,f,t after averaging the

channel variations which may be due to fast fading and frequency selectiveness. This

is also done to reduce the optimization problem and its dimension.

As a result, the total throughput received by a user u can be measured by

ru =
K�

k=1
qu,k

1
S

T�

t=1

F�

f=1
[τu,k,f,t × B log(1 + sinru,k,f,t)] . (3.10)

The bias user association problem using cell individual offsets can be addressed

as follows:

qu,k =





1 if ∀k� ∈ Nk, RSRP u,k > RSRP u,k� + Ok,k�

0 otherwise.
(3.11)

where RSRP u,k and RSRP u,k� are the Reference Signal Received Power measure-

ments in dB of user u corresponding to the cells k and k� and can be approximated

in this manner: 



RSRP u,k = P
max
k + Gu,k

RSRP u,k� = P
max
k� + Gu,k�

(3.12)

where Gu,k and Gu,k� are the averaged link gain from cell k and k� respectively to user

u over all the bandwidth and over a certain time duration, expressed in dB. Similarly,

P
max
k and P

max
k� are the maximum power transmission in dB of the cells k and k�,

respectively.

To summarize, our goal is to maximize the network utility (3.3) (for instance,

the sum of logarithmic throughput of all the users in the system) with the following

decision variables:
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• Ok := (Ok,1, Ok,2, . . . , Ok,Nk
): Cell Individual Offsets vector that defines the bias

to be added to RSRP measurements and directly affects User Association,

• Pk = (Pk,1,1, Pk,2,1, . . . , Pk,F,1, Pk,1,2, . . . , Pk,F,2, . . . , Pk,F,T ): Power vector over

frequency and time domain that defines the power allocation by each cell over

each frequency sub-band and time slot, and directly impacts inter-cell interfer-

ence.

The generalized optimization problem is described in 1. The resource scheduling

specified by variable τk,u,f,t can be formulated into another optimization procedure or

one may use a simple LTE downlink scheduler.

Algorithm 1 Generalized Optimization Problem
Maximize �

u∈U
log(ru(s))

Subject to :

ru =
K�

k=1
qu,k

1
S

T�
t=1

F�
f=1


τu,k,f,t × B log(1 + Pk,f,tGu,k,f,t

ηu+
�
l �=k

Pl,f,tGu,l,f,t
)



qu,k =




1 if ∀k� ∈ Nk, RSRP u,k > RSRP u,k� + Ok,k�

0 otherwise.
F�

f=1
Pk,f,t ≤ P max

k , ∀t ∈ {1, 2, . . . , T}, ∀k ∈ K
Pk,f,t ≤ Rf × P max

k

R , ∀t ∈ {1, 2, . . . , T}, ∀f ∈ {1, 2, . . . , F}, ∀k ∈ K
�

u∈Uk

τu,k,f,t ≤ Rf × St

3.3 Special Cases

From our generalized problem, we can specify certain special cases, with simple

modifications or restrictions to the optimization problem parameters.
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3.3.1 Disjoint Frequency Sub-bands Optimization

This sub-problem is to determine for each cell k which frequency sub-bands it is

allowed to use.

• We consider that T and S are equal to 1. We redefine all variables including

τu,k,f,t and Pk,f,t without taking into consideration the time dimension of the

problem. The same power pattern is applied all the time. The power vector is

then defined as Pk = (Pk,1, Pk,2, . . . , Pk,F ).

• We restrict the possible power levels per sub-band to either zero, i.e., the fre-

quency sub-band cannot be used by the cell k, or to the maximum power per

frequency sub-band, which is equal to Rf × P max
k

R
.

• The user association can be done according to the usual policy of strongest

received signal by restricting the possible values of CIO to zero.

By playing with the number of frequency sub-bands F and the size of each sub-band,

we obtain different frequency sub-bands optimization problems. We can distinguish

a special case which is to take F = R, i.e., each frequency sub-band is composed of

one RB. This optimization can yield to the best results. However, its complexity is

very high as we increase the number of possible combinations. The formulation of

this disjoint frequency sub-bands optimization is described in 2.

3.3.2 Disjoint Power Level Optimization

In this disjoint power level optimization problem, the goal is to determine for each

cell k the power value to be used over each frequency sub-band.

• The time dimension is not taken into account and the number of frequency

sub-bands and their size are fixed.

• Compared to the previous case, no restriction is performed to Pk,f .
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Algorithm 2 Disjoint Frequency Sub-bands Optimization Problem
Maximize �

u∈U
log(ru(s))

Subject to :

ru =
K�

k=1
qu,k

F�
f=1


τu,k,f × B log(1 + Pk,f Gu,k,f

ηu+
�
l �=k

Pl,f Gu,l,f
)



qu,k =




1 if ∀k� ∈ Nk, RSRP u,k > RSRP u,k�

0 otherwise.
Pk,f ∈ {0, Rf × P max

k

R }, ∀f ∈ {1, 2, . . . , F}, ∀k ∈ K
�

u∈Uk

τu,k,f ≤ Rf

• The offsets values are set to 0.

The optimization is accomplished by playing with the possible power values per RB.

Generally, each resource has a maximum power level defined as P max
k

R
. With the power

level optimization, it is possible to boost the power on some resources or lower it.

Algorithm 3 Almost Blank Sub-frames Optimization Problem
Maximize �

u∈U
log(ru(s))

Subject to :

ru =
K�

k=1
qu,k

1
S

T�
t=1


τu,k,t × B log(1 + Pk,tGu,k,t

ηu+
�
l �=k

Pl,tGu,l,t
)



qu,k =




1 if ∀k� ∈ Nk, RSRP u,k > RSRP u,k�

0 otherwise.



Pk,t ∈ {0, P max
k }, ∀k ∈ M

Pk,t = P max
k , ∀k ∈ L�

u∈Uk

τu,k,t ≤ R × St

3.3.3 Almost Blank Sub-frames Optimization

In the same way as the frequency sub-bands optimization, it is also possible to

determine for each cell k a time pattern over all the bandwidth, i.e., during which time
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slots the BS can transmit. 3GPP Release 10 has defined Almost Blank Sub-frames

to mute macro cells during certain slots and minimize their interference, while small

cells can transmit all the time. The ABS optimization problem can be expressed by

adding some restrictions to our generalized problem formulation.

• We regroup all RBs into one frequency sub-band, i.e., F = 1 and we redefine

the variables without considering the frequency dimension of the problem. The

power vector can be simply written as Pk = (Pk,1, Pk,2, . . . , Pk,T ).

• Generally, we only mute macro cells, while small cells always transmit with

maximum power. Pk,t is then defined by:





Pk,t ∈ {0, P max
k }, ∀k ∈ M

Pk,t = P max
k , ∀k ∈ L

The formulation of the ABS optimization is described in 3.

3.3.4 User Association Optimization

Several user association policies already exist in the literature and may be in-

tegrated to our problem formulation. It is also possible to integrate directly the

resulting attachments from any chosen policy by the operators. The most relevant

rule in homogeneous networks is to attach the user with the base station offering the

best signal. It can be integrated by setting the bias value to zero in our generalized

problem. When using cell range extension to define the user association, a general

formulation of the problem is to take different CIO values between each two neigh-

boring cells. However, the problem can be restricted by choosing a unique CIO value

for each cell k towards all its neighboring cells, we got then Ok = constant. It is also

possible to define an offset for each user class, for instance depending on its speed or

traffic.
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3.3.5 Utility Function Maximization

The use of the proportional fair is just an example of one possible network utility

to be used in the optimization. Other parameters can be taken into account in

the cost function such as other Quality of Service (QoS) criteria and minimum rate

requirement.

3.4 Conclusion

In this chapter, we formulated the joint user association and inter-cell interference

optimization problem using two decision variables: (i) cell individual offsets vector

and (ii) power patterns over frequency and time domains. Relevant sub-problems

have been also expressed. A detailed description of our proposed flexible framework

to solve these formulated problems is given in the next chapter.
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CHAPTER IV

A Game Theoretic Framework

In this chapter, we present an approach using potential games that achieve an opti-

mal solution for the user association, inter-cell interference coordination and resource

allocation optimization. Then, we describe the framework in details and explain the

different steps of the proposed algorithm.

4.1 Theoretical Background

We model the problem as a non-cooperative game where the eNBs are players

and we introduce the potential game approach that relies on approximating the non-

cooperative games with potential games.

4.1.1 Potential Game Formulation

Let the eNodeBs periodically broadcast pilot signals of a priory fixed power. We

formulate our objective function into a potential game by designing cost functions of

the base stations and their neighbors. To begin with, we define the set of all neighbors

of an eNB k, named Nk, as follows: eNB j is a neighbor of eNB k, if there exists a

user u served by cell k, i.e., u ∈ Uk , such that the received pilot signal power at user

u from eNB j is greater than a certain threshold, say θ.
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In our development we use the following propriety: For any eNBs pair (k, j),

j ∈ Nk ⇔ k ∈ Nj. We use N +
k to denote the set of eNBs including eNB k and its

neighbors, i.e., N +
k = k ∪ Nk.

We model our optimization problem as the following non-cooperative game:

Players: Let the base stations be the players and K denotes the set of players.

In the sequel we use base station (or eNB) and player interchangeably.

Strategies: For eNB k, a strategy is a tuple sk = (Pk, Ok) and its strategy set is

Sk := Pk × Ok, where Pk and Ok are the spaces of Pk and Ok, respectively. A joint

strategy s = (sk, k ∈ K) specifies the strategies of all players and belongs to the joint

strategy space S := ×k∈KSk. We define the strategies selected by all eNBs except

eNB k as:

s−k := (s1, . . . , sk−1, sk+1, . . . , sK),

and we define:

(s�
k, s−k) := (s1, . . . , sk−1, s�

k, sk+1, . . . , sK)

where player k adopts strategy s�
k and s−k specify the strategies of other players.

Payoffs: eNB k’s payoff function Pk : S → R is defined as

Pk(s) :=
�

j∈N +
k

Uj(s) (4.1)

where the function Uj(s) is defined as in (3.7) but the sinrdefined in (3.6) is replaced

by:

sinru,k,f,t = Pk,f,tGu,k,f,t

ηu + �
l∈Nk

Pl,f,tGu,l,f,t

. (4.2)

With this modification, each eNB k needs only to know some specific information

from its neighbors Nk.

We refer to this non-cooperative game as the strategic form game (K, (Sk, k ∈

K), (Pk, k ∈ K)).
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In the following, we will prove that this non-cooperative game is a potential game,

which is known to have interesting properties, such as existence of a Nash equilibrium

and convergence of best-response algorithm to this equilibrium in a finite number of

steps, for the completeness.

A game is said to be a potential game if the game admits a real-valued function,

called potential function, defined on the space of pure strategy profiles, such that the

change in any player’s payoffs is exactly matched by the change in potential. Nash

equilibrium can be reached within a finite number of plays if a player is randomly

chosen to update its strategy so that the player’s utility is maximized in each step.

Recall that our goal is to maximize the sum of logarithmic throughputs, based

on the selection of power and offsets patterns. When a base station k changes its

settings, it affects the neighboring eNBs’ user attachment and the throughputs of the

UEs who are associated to k and its neighboring stations. Besides power and offset

patterns, the utility of a station is also dependent on the downlink scheduler. We

assume that all eNBs use the same Proportional Fair Scheduler (PFS).

Theorem IV.1. The finite strategic form game (K, (Sk, k ∈ K), (Pk, k ∈ K)) is a

potential game and thus admits Finite Improvement Path (FIP) ([64]).

Proof. Let players use a strategy s = (sk, k ∈ K). Consider a player k and assume

that it changes its strategy from sk to s�
k. The change on U(·) due to the change of

player k’s strategy is:

U(s�
k, s−k) − U(s) =

�

j∈K
(Uj(s�

k, s−k) − Uj(s))

(*)=
�

j∈N +
k

(Uj(s�
k, s−k) − Uj(s)) +

�

j �∈N +
k

(Uj(s�
k, s−k) − Uj(s))

=
�

j∈N +
k

(Uj(s�
k, s−k) − Uj(s))

(#)= Pk(s�
k, s−k) − Pk(s)
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where (∗) is due to the fact that ∀j �∈ N +
k , k �∈ N +

j and thus Uj(s) is independent

of eNB k’s strategy. (#) indicates that the change of U(·) due to the change of a

player’s strategy equals the change of the payoff function of that player. Therefore,

the function U(·) is a potential function for the game (K, (Sk, k ∈ K), (Pk, k ∈ K)).

This implies FIP property.

Note that the accuracy of the potential game approach depends on the value of

the sensitivity threshold θ since the size of the neighborhood increases when the value

of θ decreases. With θ = 0, the Nash equilibrium of the potential game coincides with

the optimal solution of the utility (3.3).

4.1.2 Discussion

Based on game theory and potential game previously formulated, we propose a

generic framework performing these 3-steps optimization.

• (1): Start with any arbitrary initialization and fix the strategies of all the base

stations.

• (2): Randomly select a player k from K. For each strategy sk ∈ Sk, evalute the

payoff of the base station. Based on the jointly chosen power and offset settings,

evaluate the payoff of the selected player. We note that this algorithm is not

limited to the PF utility. Other kinds of utility functions can be used. Based on

best response algorithm, Select one strategy the best strategy that maximizes

Pk. In game theory, the best response is the strategy which produces the most

favorable outcome for a player, taking other players’ strategies as given [34]. It

is also possible to select a strategy with a certain distribution probability such

as Gibbs.

• (3): Repeat (2) until some stopping criterion is met. After a number of iter-

ations, utility function saturates to a value called Nash equilibrium, i.e., the
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point at which each player in a game has selected the best response (or one

of the best responses) to the other players’ strategies [33]. Depending on the

selection method, this equilibrium can be guaranteed to be a local or global op-

timum. While best response algorithm is very efficient, some other algorithms

can drive the system to a state of strict optimal solution by proper probabilistic

relaxation [17].

Although this game theoretic approach is meant to be implemented in a dis-

tributed fashion, in practice it may be useful to support also more centralized archi-

tecture, as distributed implementations require modification of the eNodeB code and

also some exchanges between the eNBs to converge to global optimum. To adapt to

these practical constraints, we propose a more pragmatic framework that is a trade-

off between complexity and performance: a centralized coordinator using the best

response Proportional Fairness approach and which fits with the characteristics of

existing LTE cellular networks:

• Limited CPU capacity on the eNBs: eNBs are primarily modems designed to

handle radio and network interfaces, hence the optimization algorithm should

be offloaded to a separate and more sophisticated node;

• Limited exchange capacity between the eNBs and the non negligible latency

of LTE X2 interface: distributed optimization requires, for fast convergence,

explicit data exchange between neighboring eNBs that does not scale;

• Introduction of a central entity in charge of performing the optimization and

called the coordinator;

• Precise cell state known locally by each eNB: to lower transport load to the

controller, Channel State Information should be aggregated by the eNB to create

meaningful scaled information later transmitted to the controller;
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Figure 4.1: Framework overview.

• Support of decentralization of the optimization computation: in some cases it

should be possible to relocate the computation next to the “high quality data”

source.

4.2 Proposed Solution

In the following, we will describe the algorithm and its operation in performing

user association and frequency/time resource allocation via power patterns optimiza-

tion for LTE cellular networks ([95], [96]). The algorithm in the more simple case of

the fully centralized and best response approach is represented in Figure. 4.1.
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Figure 4.2: Step 1: Data Collection.

4.2.1 Step 1 – Data Collection

Each UE reports to its serving eNB long term statistics, such as Channel Quality

Indication and Reference Signal Received Power. These measurements are processed

by the eNB to group the users in pools having similar channel quality, then they are

sent via S1 protocol to the coordinator (See Figure 4.2). Various examples of UE

grouping are presented in Figure. 4.3, for illustration.

• (A) Example of one ueGroup: includes all the users that are served by the cell.

• (B) Example of two ueGroups: one includes the cell edge UEs and the other one

the cell center UEs. This classification can be done using RSRP measurements

and a defined thereshold.
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Figure 4.3: Example of various UE grouping policies.

• (C) Example of multiple ueGroups: one group made of the cell center UEs +

neighboring cell ueGroups. A neighboring cell ueGroup k includes all the users

that reported cell k as the most interfering neighbor.

• (D) Example of singletons: as many ueGroups as users.

UE grouping allows limiting the data exchange between the eNBs and the coordinator.

This two-tier model enables a good balance between the local knowledge of the eNB

that is precise and real time but limited in scope to its attached UEs, and the global

knowledge of the coordinator that has access only to long-term statistics that are

averaged both in spatial dimension (by UE grouping) and in time dimension (between

two update messages) but with a system-wide scope. At the coordinator, the received

measurements constitute a database that reflects the state of the network.
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4.2.2 Step 2 – Optimization

Working on the database formed in step 1, the coordinator derives the optimal

parameters: CIO values and transmission power pattern for each cell using an adapted

algorithm. Fig. 4.1 shows the performed iterations.

4.2.2.1 Steps 2.1 & 2.2 – Choose a cell and store initial state

The coordinator picks up a cell randomly. It stores the initial network state,

which refers to the CIO and power setting of each cell in the system. The coordinator

computes the initial global utility which indicates the network performance.

4.2.2.2 Step 2.3 – Sampling

This step consists in sampling the couple (Pk, Ok) for the selected cell. For each

neighboring cell, we attribute a CIO value, which can be positive or negative. The

total number of RBs depends on the system, e.g., given 5 MHz and 10 MHz, there will

be 25 and 50 RBs, respectively. For simplicity and practical use, RBs are grouped

into F equally sized sub-bands or approximately. Figure. 4.4 shows the details in the

case of 10 MHz, where R = 50 and F ∈ {3, 4, 5, 6, 7}. In the same manner, we regroup

the S subframes into T equally sized slots. One resource element is defined by the

couple of frequency sub-band and time slot. Sampling Pk consists on allocating a

transmission power over each frequency sub-bands and time slot.

Note that the sampling of states is performed among the admissible combinations

of power settings and CIO values. In practice, the sampling of states can be done

in parallel. Given Nk neighboring cells and I possible offset values, we have INk

possible samples for Ok. Given F frequency sub-bands, T time slots and Y power

levels per RB, we have Y F ×T samples for the power patterns. This implies that one

will have INkY F ×T cases to be sampled for the cell selected in step 2.1. However,

some combinations can be easily discarded with respect to some constraints such as
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Figure 4.4: Resource blocks grouped into frequency sub-bands.

maximum power. As indicated in last chapter, performing disjoint optimization is also

possible in our framework. The complexity of the sampling can be then reduced. For

instance, in Almost Blank Sub-frames optimization, only macro cells are concerned

with the muting.

4.2.2.3 Step 2.4 – Virtual handover

For each sampled case where the CIO has been changed, we perform a virtual

handover by calling the ueGroupAttach function. This function tests if the user

group would make a handover to a neighboring cell due to the change in the CIO. It

compares the RSRP measurements to the serving and neighboring cells after adding

the new sampled CIO value, and virtually changes the user association accordingly.
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Algorithm (4) describes the virtual handover procedure applied to base station

k. Recall that Ok,k� is the CIO value from cell k to it neighboring cell k�. Denote

O
current

k,k� and O
sampled

k,k� as current CIO and sampled CIO respectively.

Algorithm 4 Virtual Handover
for k� ∈ Nk do

if O
sampled

k,k� > O
current

k,k� then
Check the RSRP of each UE attached to cell k to its neighbor k�

for u ∈ Uk do
if RSRP u,k� + O

sampled
k,k� > RSRP u,k then

Perform virtual handover of u from eNB k to k� ⇒ u ∈ U �
k

end if
end for

else if O
sampled

k,k� < O
current

k,k� then
Check the RSRP of each UE, attached to a neighbor cell of k, to
eNB k
for j ∈ Nk do

for i ∈ Uj do
if RSRP u,k + O

sampled
k,k� > RSRP u,j then

Perform virtual handover of i from eNB j to k ⇒ i ∈ Uk

end if
end for

end for
end if

end for

4.2.2.4 Steps 2.5 & 2.6 – Virtual scheduling & utility computation

For each sampled configuration, the optimizer calls the virtual scheduling function

to render the scheduling performed by the eNB selected in step 2.1 and its neigh-

boring eNBs, in order to estimate the expected bit rates of attached users. Several

options are available such as proportional fairness, absolute fairness (max-min), sum

rate maximization, etc. The one adopted in the current approach is the well-known
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PFS algorithm used in today’s LTE [82]: the PFS will serve a UE um when its in-

stantaneous channel quality is the highest according to

um = arg max
u∈Uk

Ru(m, t)
R̄u(t)

(4.3)

where R̄u(t) denotes the experienced average throughput of user u at time t and

Ru(m, t) is the achievable rate by user u if RB m is allocated to u.

After calling the virtual scheduling function for the selected cell and its neigh-

boring cells, the coordinator computes the utility function based on the resulting

achievable rates ru’s. Note that the proposed framework can support various op-

timization tools and utility definitions, depending on operator’s strategy. It is not

limited to proportional fairness utility.

4.2.2.5 Step 2.6 – Choosing optimal sample

After sampling all the possible states of the chosen cell and computing their cor-

responding utility values, the coordinator chooses one configuration according to an

optimization policy, for instance best response, i.e. the best one is selected with the

highest probability. As previously discussed, the best response update is guaran-

teed to converge to a local optimum (Nash equilibrium) through a finite number of

iterations. Another policy considers introducing randomness in the selection of the

sampled case using the Gibbs distribution. Under some cooling conditions, it is possi-

ble to prove the convergence towards a global optimum at the cost of more iterations.

For a comparison between the Gibbs and best response, please refer to [85].

4.2.3 Step 3 – Distribution & Execution

After the optimization, the coordinator sends the optimized setting to each eNB.

The optimized CIO values are added to RSRP measurements to trigger possible han-
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dovers. The local schedulers allocate their provided RBs with respect to their power

level patterns over time and frequency dimension, as advised by the coordinator.

4.2.4 Centralized vs Distributed

In the general case, the framework architecture may be centralized, distributed,

or partially distributed. In this case, a computing element function C is defined such

that C(k) gives the address of the element in charge of performing the optimization

of eNB k settings. Let us revisit the possible options:

• In the centralized case C(k) = centralized coordinator for each eNB k ∈ K.

• In the fully distributed case, C(k) = k for each eNB k ∈ K.

• In a partially distributed case (or partially centralized), one possibility is to

define:

C(k) =





k if k ∈ M,

M(k) otherwise.

where M(k) ∈ M and is the closest macro cell to small cell k.

A more general architecture for the partially distributed case is to define clusters

composed of a certain number of macro and small cells. Each cluster has its

own coordinator that manages dynamically the computation of CIO and power

patterns for the eNBs in the cluster. Whenever a cell c1 is selected, one has

to check if there exist a cell c2 ∈ Nc2 such that C(c1) �= C(c2) If this is the

case, C(c1) must give to C(c2) the new parameters selected at the end of the

optimization. Otherwise, there is no exchange needed. Therefore a trade-off of

the cluster size between the computing load on the cluster computing element

and the level of message exchanges between two iterations is required. As an

example shown in Figure. 4.5, we can see that whenever the small cell (1,2) gets

updated during an iteration, its coordinator C1 must send its new parameters
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Figure 4.5: Clustering.

to the coordinator C2. Similarly, whenever the Macro (2) gets updated during

iteration, the coordinator C2 must send its new parameters to the coordinator

C1. But no exchange has to occur for all other cells.

4.3 Conclusion

Starting from a powerful mathematical approach based on game theory that suits

the distributed case, we designed a flexible framework for addressing user association

and resource allocation in both homogeneous and heterogeneous networks. In the next

chapter, we provide simulation performance and describe the developed prototype.
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CHAPTER V

Performance Evaluation

In this chapter, we present the simulation settings and performance results of

different optimization configurations. We also provide a detailed description of the

framework prototype.

5.1 Simulation setup & metrics

To emulate the LTE network, we used a MATLAB-based LTE-compliant simulator

developed by the TU Wien’s Institute of Telecommunications [63]. Globally, the

simulator is structured in two main building blocks or layers: Link measurement

model and link performance model (see Figure 5.1). This tool generates eNBs, local

schedulers, pathloss and shadow fading model, UEs, etc. The simulation runs using

a Region Of Interest (ROI) in which the eNodeBs and UEs are positioned and total

simulation duration is expressed in Tansmission Time Interval (TTI)s. As output,

the simulator provides traces containing the main Key Performance Indicators (KPIs)

such as throughput and error rates.

Table 5.1 gives the general simulation parameters. To evaluate the performance

of the proposed framework, we measured:

• Average user throughput (Avg-user-Th) (kbps): mean value of all user rates in

the system.
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Figure 5.1: LTE system level simulator.

• Median throughput (Median-Th) (kbps): corresponds to the middle value of

sorted throughputs, i.e., the the 50th percentile point of the Cumulative Distri-

bution Function (CDF) of user throughput.

• Cell edge throughput (Cell-edge-Th) (kbps): defined as the 5th percentile point

of the CDF of user throughput. It represents the maximum throughput of the

5% users experiencing worst data rate in the network.

• Average energy efficiency (Avg-EE) (bits/joule): is the ratio of total amount

data delivered to all the users and the total power consumed in the network.

• Cell edge energy efficiency (Cell-edge-EE) (bits/joule): defined as the ratio of

bits delivered to cell edge users and the amount of power consumed to transmit

these data.

In the following, the first scenario, called ’macros only’ refers to the case where
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Radio LTE Rel. 8, Single Input Single Output (SISO), 10 MHz
TS 36.942 recommended pathloss and shadow fading models [7]

Macros: Hexagonal 1 ring, Inter-Site Distance (ISD) 500m
3 cells/macro site, Antenna: Kathrein, Power max: 40W

Small Cells: 30 SC at fixed location 0.5 ISD
Topolgy Antenna: Omnidirectional, Power max: 1W

Scenario 1: 25 users/MC, total of 525 users
Mobile users Scenario 2: 25 users/MC, 10 users/SC, total of 825 users

No mobility, full buffer model

Table 5.1: General simulation parameters

we simulate 525 users that are initially attached to only macro cells. In the second

scenario ’HetNets’, besides the users in the coverage of macro cells as in first scenario,

we simulate 300 more users that are initially associated to small cells. See Figure. 5.2

for an example of UEs’ distribution, where blue dots refer to the users. Macro and

small cells are in green and red respectively. We evaluate different sub optimization

problems, as discussed in III. For each configuration, 20 simulation sets were run with

different users distributions.

Figure 5.2: Example of a users’ distribution.
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5.2 Disjoint Frequency Sub-band Optimization

5.2.1 Specific optimization settings

As shown in Figure. 4.4, we consider frequency sub-bands with various possible size

for two scenarios: (i) macros only and (ii) HetNets. Table. 5.2 defines the sampling

parameters.

F ∈ {3, 4, 5, 6, 7} , T = 1 and Ok,k� = 0
Optimization sampling MC_Power_per_RB ∈ {0, 0.8}

SC_Power_per_RB ∈ {0, 0.02}

Table 5.2: Frequency sub-bands optimization - sampling parameters

5.2.2 Results

Results of frequency sub-bands optimization are presented in Tables 5.3 and 5.4.

The gains are computed against the case of frequency reuse-1. Figures 5.3 and 5.4

depict the CDF statistics of average user throughput. Results show that:

• we obtain about 14% gain in average user throughput which increases from 301

kbps in the case of static reuse-1 to 345 kbps using the 7 sub-bands dynamic

optimization in macros only scenario. In HetNets, the average throughout gain

is around 25%, due to the presence of small cells in the coverage of macros. In

general, we notice that the gains are increasing with the number of frequency

sub-bands. For macros only scenario, the average throughput difference between

each optimization configuration is less than 4%. From (F=6) to (F=7), the gain

is almost the same, with less than 1% difference. For HetNets scenario, very

good results are obtained since the 3 sub-bands optimization.

• compared to reuse-1, median throughput is increased by 36% and 45% in homo-

geneous et heterogenous networks, respectively with the 7 sub-bands dynamic

71



T =1 Static
reuse-1 F =3 F =4 F =5 F =6 F =7

Avg-user-Th
(kbps) 301.7 316.2 328.7 335.6 342.4 345.6

Gain % – +4.8% +9% +11.2% +13.5% +14.6%
Median-Th

(kbps) 223.8 252.7 290.5 294.3 302.1 304.7

Gain % – +12.9% +29.8% +31.5% +35% +36.1%
Cell-edge-Th

(kbps) 38.9 43.7 54.7 55 54.8 56

Gain % – +12.4% +40.8% +41.5% +41.1% +44.4%
Avg-EE

(bits/joule) 190.7 228 263.2 258.4 258 258.7

Gain % – +19.6% +38% +35.5% +35.3% +35.7%
Cell-edge-EE
(bits/joule) 20.5 25.7 32.2 30.1 29.5 30.2

Gain % – +25% +57% +47% +44% +47%

Table 5.3: Disjoint frequency sub-bands optimization results - Only Macros

optimization. In first scenario, we notice a significant gap from the 3 sub-bands

to the 4 sub-bands case, then the median throughput gain slows down from the

4 sub-bands to the 7 sub-bands configurations. In HetNets, an improvement of

more or less 5% from one optimization configuration to the next one.

• we reach about 40% gain in cell edge throughput for both macros and HetNets

scenarios with our optimization algorithm. This significant improvement is due

to a better inter-cell interference mitigation. Using a dynamic frequency sub-

band pattern, neighboring cells schedule their users in different sub-bands which

limits strongly the interference especially for cell edge users. In both scenarios,

we observe similar performance in the gains obtained from our dynamic fre-

quency sub-bands optimization as the gain significantly improves from (F=3)

to (F=4) and then slightly increases in the remaining configurations.
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T =1 Static
reuse-1 F =3 F =4 F =5 F =6 F =7

Avg-user-Th
(kbps) 381.4 458.4 464 462.4 474.3 477

Gain % – +20.1% +21.6% +21.2% +24.3% +25%
Median-Th

(kbps) 243 314.9 330.3 335.8 347.3 351.7

Gain % – +29.6% +35.9% +38.2% +42.9% +44.7%
Cell-edge-Th

(kbps) 40.4 49.5 54.5 55.4 57.9 58.5

Gain % – +22.6% +34.9% +37% +43.2% +44.8%
Avg-EE

(bits/joule) 365.6 583.1 583.1 561.8 588.2 588.2

Gain % – +59.5% +59.5% +53.6% +60.9% +60.9%
Cell-edge-EE
(bits/joule) 20.5 31.1 32.2 31.8 33.5 33.3

Gain % – +51.2% +56.7% +54.7% +63.2% +62%

Table 5.4: Disjoint frequency sub-bands optimization result - HetNets

This can be explained by the trade-off between throughput loss when muting

some resources for one cell, and interference decrease for the neighboring cells

which would improve the channel quality especially for cell edge users. In the

case of the 3 sub-bands configuration, as a result of the optimization, at most

only 1 sub-band of 16 or 18 RBs is muted per cell, which corresponds to a

third of the available bandwidth. In the other sub-bands configuration, it could

happen that 2 or even more sub-bands are muted for some cells. In general, the

optimized size of muted sub-bands does not exceed the half of the bandwidth.

• average energy efficiency is improved by 35% and 60% for macros and HetNets

scenarios, respectively. As we don’t use power boosting in this frequency sub-

bands optimization, the power transmission on one resource block is either zero

or equal to the maximum power per RB (0.8 W for MC and 0.02 W for SC).
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Figure 5.3: CDF user throughput (Freq Optim vs Reuse-1)- Macros.

Figure 5.4: CDF user throughput (Freq Optim vs Reuse-1)- HetNets.

On one hand, when some sub-bands are muted, the sum of powers on all other

sub-bands is inferior to the maximum of power of the cell, thus leads to energy

saving. On the other hand, muting some resources on one cell permits its

neighboring cells to have better spectral efficiency on the muted sub-band and

then to transmit more data to their attached users. We also see the increase of

the average energy efficiency from the macros only scenario to HetNets scenario.

74



• with proper frequency resource optimization, cell edge energy efficiency in-

creases about 50% and 60% for macros and HetNets scenarios, respectively.

We can conclude that dynamic frequency sub-bands optimization always outperforms

static frequency reuse-1 scheme in terms of user throughput and energy efficiency.

The gains obtained using our proposed framework are increasing with the number of

frequency sub-bands.

5.3 Disjoint Power Levels Optimization

5.3.1 Specific optimization settings

Table. 5.10 defines the sampling parameters. We fix the number of sub-bands to 3

and study the impact of power optimization for both (i) macros only and (ii) HetNets

scenarios. For each scenario, we have 3 configurations:

• 2 power levels per RB: 0 and 0.8 watts for macro cell and 0 and 0.02 watts for

small cell.

• 4 power levels per RB: 0, 0.4, 0.8 and 1.2 watts for macro cell and 0, 0.01, 0.02

and 0.03 watts for small cell.

• 5 power levels per RB: 0, 0.4, 0.8, 1.2 and 1.6 watts for macro cell and 0, 0.01,

0.02, 0.03 and 0.04 watts for small cell.

F = 3, T = 1 and Ok,k� = 0
Optimization sampling MC_Power_per_RB ∈ {0, 0.4, 0.8, 1.2, 1.6}

SC_Power_per_RB ∈ {0, 0.01, 0.02, 0.03, 0.04}

Table 5.5: Power levels optimization - sampling parameters
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F =3, T =1 2 power
levels

4 power
levels

5 power
levels

avg-user-Th (kbps) 316.2 330 331.1
Gain % +4.8% +9.4% +9.8%

Median-Th (kbps) 252.7 263.4 268.5
Gain % +12.9% +17.7% +20%

cell-edge-Th (kbps) 43.7 55 61.3
Gain % +12.4% +41.5% +57.9%

avg-EE (bits/joule) 228 217.2 218.1
Gain % +19.6% +13.9% +14.4%

cell-edge-EE (bits/joule) 25.7 24.3 25.2
Gain % +25% +18.4% +23%

Table 5.6: Disjoint power levels optimization result - only Macros

Figure 5.5: CDF user throughput (Power levels optimization vs Reuse-1) - Macros.

5.3.2 Results

The results are given in Table 5.6 and 5.7. The gains are computed in comparison

to the frequency static reuse-1 configuration. Figures 5.5 and 5.6 depict the CDF

statistics of average user throughput.
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F =3, T =1 2 power
levels

4 power
levels

5 power
levels

avg-user-Th (kbps) 458.4 458.6 465
Gain % +20.1% +20.2% +21.9%

Median-Th (kbps) 314.9 311.4 320
Gain % +29.6% +28.1% +31.6%

cell-edge-Th (kbps) 49.5 56.9 62
Gain % +22.6% +40.9% +53.6%

avg-EE (bits/joule) 583.1 485.4 470.6
Gain % +59.5% +32.8% +28.7%

cell-edge-EE (bits/joule) 31.1 28.3 27.3
Gain % +51.2% +37.7% +33%

Table 5.7: Power levels optimization result - HetNets

Figure 5.6: CDF user throughput (Power levels optimization vs Reuse-1) - Hetnets.

The simulation results show that:

• average and median throughputs are quite the same in the three different con-

figurations for HetNets and slightly increase for macros only.

• power levels optimization further improves the cell edge user throughput. We

notice that by moving from 2 to 5 power levels, we get 45% more gain in macros
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only scenario and 30% more gain in HetNets.

• average and cell edge energy efficiencies are more or less decreasing when we

increase the power levels. It means that the network is transmitting with more

power than the case of only 2 power levels. Generally speaking, the optimal

settings are either to boost the power on some sub-bands or to choose a low

power level different from zero. As the average throughput is almost stable

and the average energy efficiency is decreasing, we can say that the network is

consuming more power but not transmitting more data in the system. However,

the cell edge user throughput is increasing when using more power levels.

Figure 5.7: Average and cell edge throughput gains - only Macro.

Fig. 5.7 and Fig. 5.8 overview the average and cell edge throughput gains in

the macros only and HetNets scenarios, respectively. We regroup all the frequency

sub-bands and power levels optimization results for comparison. Generally speaking,

we observe that our proposed algorithm outperforms the frequency reuse-1 scheme.
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Figure 5.8: Average and cell edge throughput gains - HetNets.

The 7 sub-bands algorithm optimization results in the best average user throughput.

The cell edge user throughput is maximized with the 5 power levels optimization

algorithm. Further enhancement can be expected at the cost of higher computation

complexity.

5.4 Almost Blank Sub-frames Optimization

5.4.1 Specific optimization settings

Time resource optimization via Almost Blank Sub-frames consists in defining for

each macro cell a power pattern of 40 sub-frames over the whole bandwidth. In the

muted sub-frames, i.e, when corresponding power patter equals to 0, the macro eNB

is not allowed to send traffic channels. To limit the number of possible configurations,

we regroup the sub-frames into equal sized slots: (i) 4 time slots, each containing 10

sub-frames, (ii) 8 time slots and each slot is composed of 5 sub-frames.
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Table. 5.8 defines the sampling parameters.

F = 1, T ∈ {4, 8} and Ok,k� = 0
Optimization sampling MC_Power_per_RB ∈ {0, 0.8}

SC_Power_per_RB = 0.02,

Table 5.8: ABS optimization - sampling parameters

5.4.2 Results

The simulations results are summarized in Table 5.9 along with the case where is

no ABS optimization. The CDF of average user throughput is presented in Figure. 5.9.

F =1 No optim T =4 T =8
avg-user-Th (kbps) 381.4 442.3 461.3

Gain % – +15.9% +20.9%
Median-Th (kbps) 243 302.2 330

Gain % – +24.4% +35.7%
cell-edge-Th (kbps) 40.4 49.7 54.9

Gain % – +22.9% +35.9%
avg-EE (bits/joule) 365.6 527.8 541.3

Gain % – +44.3% +48%
cell-edge-EE (bits/joule) 20.5 29.6 31.5

Gain % – +43.9% +53.6%

Table 5.9: Disjoint ABS optimization result

Disjoint ABS optimization enhances the network performance, as we obtain:

• gains of 16%, 24% and 23% in average, median and cell edge throughput re-

spectively, using the 4 time slots optimization. This imrovement is even more

important with the second simulation configuration, i.e, using 8 time slots of

5 sub-frames. Choosing the optimal ABS for each macro cell, permits to mit-

igate the inter-cell interference and enhance user throughput. Muting certain
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macro cells during some time slots, allows their neighboring SC to schedule

their attached UEs, which are strongly interfered by the MC, in the protected

sub-frames. The other UEs located at the cell center are scheduled over all

sub-frames since the interference experienced from the macro eNBs is negligible

compared to the signal of the SC.

• about 50% of gain in average and cell edge energy efficiency. The increase of

transmitted bits per joule is much important than the throughput gains. This

implies that with the ABS optimization, the cells are transmitting more data

using lower power during the simulation. Muting some macro cells permits to

decrease the power consumption but not at the cost of users throughput.

Figure 5.9: CDF user throughput (ABS Optim vs Reuse-1)- HetNets.

5.5 User Association & Resource Allocation Optimization

5.5.1 Specific optimization settings

To study the impact of user association using cell individual offset, we made

multiple simulations using the first scenario, i.e, all the users are initially attached to

macro cells.

81



F ∈ {1, 3, 4} , T = 1 and Ok,k� ∈ {0, 5, −5}
Optimization sampling MC_Power_per_RB ∈ {0, 0.8}

SC_Power_per_RB ∈ {0, 0.02}

Table 5.10: CIO & Frequency sub-bands optimization - sampling parameters

The results are presented in Table 5.11 for various configurations:

• Static reuse of 1 and no optimization is performed in the coordinator,

• Disjoint user association optimization using CIOs,

• Joint CIO optimization and Frequency sub-bands optimization.

5.5.2 Results

When performing disjoint CIO optimization, average and median throughputs

increases slightly from 301 to 321 kbps and from 223 to 231 kbps, respectively. This

is due to the change in CIO values and hence associating some UEs to SCs offering

them higher bandwidth. However, the cell edge users remain highly interfered by MCs

which continue to transmit with maximum power over the bandwidth as there is no

interference mitigation in this case. This strong inter-cell interference is the reason

behind the decrease of the cell edge throughput compared to the first configuration

where is no CIO optimization.

The best performance are given by the joint optimization of CIO and frequency

sub-bands optimization. We note that, using CIO and 4 frequency sub-bands opti-

mization, the gains obtained in average and median throughput reach 20% and 37%

respectively. Cell edge throughput is increased by 27%. Significant improvement in

average and cell edge energy efficiency are also achieved. This optimization allows to

offload traffic from MCs and to have an efficient distribution of the resources among

the neighbouring cells which leads to better users experience.
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T =1 Static
reuse-1

CIO
optim
F =1

CIO
optim
F =3

CIO
optim
F =4

Avg-user-Th (kbps) 301.7 321.7 349.6 360
Gain % – +6.7% +15.9% +19.4%

Median-Th (kbps) 223.8 231.8 275.9 306.7
Gain % – +3.6% +23.3% +37%

Cell-edge-Th (kbps) 38.9 34.7 40.1 49.5
Gain % – -10.7% +3.3% +27.4%

Avg-EE (bits/joule) 190.7 200.7 255 282.1
Gain % – +5.2% +33.8% +48%

Cell-edge-EE (bits/joule) 20.5 18.9 23.4 27.5
Gain % – -8.1% +56.7% +54.7%

Table 5.11: User association and resource allocation optimization result

Figure 5.10: CDF user throughput (CIO and Frequency Resource Optimization vs
Reuse-1).
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5.6 From X2-Proxy to SDN Controller

Besides the validation of the proposed game theoretic framework through matlab

simulations, we needed to demonstrate the feasibility of the approach and its per-

formance with an actual prototype. In the following, we present the first prototype

version called X2-proxy, then we describe second version within a SDN controller.

5.6.1 X2Proxy

X2-proxy presents itself as a virtual eNB without actual radio resources. It con-

nects to all other eNBs via the standard X2 interface. It can then monitor the

network and provide advanced functions to optimize network performance. X2-proxy

processing consists of 4 phases:

• initialization phase: during this phase, X2-Proxy establishes X2 connections

with all other eNBs using X2 signaling above Stream Control Transmission

Protocol (SCTP). Then it sends X2 measurements requests to all connected

base stations.

• measurement phase: each eNB sends regular X2 resource status updates to

X2-Proxy. The latter stores collected data into its own database, which is

kept updated. Generally, the information sent from the eNBs concern user

association settings (CIO values, actual attachments, etc.), resource allocation

(ABS, power pattern, frequency usage) and users measurements (RSRP, CQI).

• optimization phase: at some point in time, X2-proxy freezes its database and

starts the optimization using the algorithm previously described. CIO vectors

and power patterns are derived for each eNB connected to X2-Proxy.

• emph execution phase: in this final phase, the optimized settings are transmit-

ted from X2-proxy to each eNB via X2 interface.
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Figure 5.11: X2-Proxy architecture.

The internal architecture of X2-proxy is composed of 4 layers (See Figure. 5.11):

Transport layer that is in charge of forwarding X2 messages. The second layer encodes

or decodes X2 messages. X2 Parser creates X2 structure and fills in this structure

with related information. The fourth layer of X2-proxy is the X2 optimizer which

provides advanced optimization functions.

A proof of concept (X2-Proxy For eICIC : Enabling 4G Dense Network Optimiza-

tion) has been showcased during the Bell Labs Open Days 2013. Refer to Appendix. B,

Figure. B.1 for the poster.

5.6.2 SDN-based Prototype

Inspired by SDN and OpenDayLight (ODL) we build a prototype using ODL con-

troller and emulated base stations. Our proposed optimization algorithm is then de-

ployed as a North Bound (NB) application [36]. This architecture, illustrated by Fig-
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Figure 5.12: SDN Platform for RAN architecture.

ure. 5.12, closely follows the SDN paradigm by providing global network view using a

logically centralized controller. Our optimizer can use the controller’s NB Application

Programming Interface (API)s to discover existing network topology, retrieve RAN

measurements and configuration parameters, and re-configure the eNBs using opti-

mal settings. SDN controller uses Radio Net Flow (RNF) as a South Bound (SB)

protocol. The corresponding protocol agent called Radio Net Flow Agent (RNFA)

can be integrated into base stations to communicate with SDN controller. In the

Service Abstraction Layer (SAL) of ODL, we can distinguish three principal service

modules: RAN Configuration Manager, RAN Statistics Manager, and RAN Topol-

ogy Manager. Through RNF, they can collect data and send configurations to the

eNBs. We introduced RAN Inventory that is an external database to maintain long

term network state history. The RAN Inventory is illustrated by Figure. 5.13. RAN
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Figure 5.13: RAN inventory in database.

service modules are responible of updating the RAN Inventory. The optimizer ap-

plication, called eICIC optimizer can access the RAN Inventory to retrieve network

informations via NB REST APIs.

This SDN-based prototype architecture (shown in Figure. 5.14) permits the sep-

aration of control decisions between the SDN controller and the eNBs, in order to

facilitate flexible and dynamic network management and optimization.

To validate our proposed prototype, we use Matlab based LTE-compliant simula-

tor to emulate the cellular networks. At some point, the simulator connects with the

eNBs emulators via User Datagram Protocol (UDP) messages to exchange measure-

ments and information. The IP addresses and ports of the emulated eNBs are known

by the simulator. An initial connection is done to send the information of network

topology, including a list of all cells in the cluster, their neighboring eNBs, and the

maximum transmission power of each cell. During optimization iteration, the Matlab
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Figure 5.14: Prototype for performance validation.

simulator creates UDP socket and sends any updated messages for each eNB: the

CIO values, the power patterns, the attachment of mobiles users, and the channel

conditions. All these messages are then sent via SCTP from the eNBs to the ODL

to be stored at the RAN Inventory. The optimizer therefore sends requests using

REST APIs to retrieve the information needed to conduct optimization iterations.

After computing the optimal settings, the optimizer sends them back to the eNBs via

SB interface. For example, in the case of jointly CIO and ABS optimization, CIO

re-configuration can trigger handovers and maintain a load balanced network. Opti-

mized ABS ratio permits to coordinate the use of the available resource and mitigate

inter-cell interference.

In the performance validation of the framework, we used a 16-core server tu exe-

cute the SDN controller, RAN Inventory and the optimizer application. We measured
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the latency between the control node and BSs. For 30 BSs, it takes about 2.7 ms to

completely update the RAN Inventory for each cycle of updates from all the BSs and

about 1.5 ms to send back the optimized parameters from the SDN controller to reach

all the BSs after the optimization. In the validation scenario, we have time budget

of 50 ms for applying optimal parameters to the BSs, so our SDN design can satisfy

the time requirement for user association and resource allocation optimization. The

latency increases steadily when the number of BSs increases which indicates that the

proposed architecture is scalable.

A proof of concept (CLOUD RAN: Scalable and flexible cloud-driven Radio Access

Network platform) has been showcased during the Bell Labs Future X Days 2015.

Refer to Appendix. B, Figure. B.2 for the poster.

5.7 Conclusion

In this chapter, we presented the simulation settings and performance results of

different optimization configurations. We also provided a detailed description of the

framework prototype.
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CHAPTER VI

Conclusion

Due to the exponential data traffic growth experienced in last decade, homoge-

neous LTE cellular networks face hard limits in terms of capacity and bandwidth

and can no longer meet the users’ requirement nor ensure higher quality services at

a reasonable cost. To address this issue and cope with the limited amount of spec-

trum, small cells are currently deployed complementary to macro cells coverage layer.

HetNets are seen as a promising approach to increase the network capacity via the

higher spatial reuse of spectrum. However, two main challenges are facing HetNets:

user association and Inter-cell Interference Management.

Generally speaking, current studies and solutions are often limited in their scope

and don’t handle the problem with high deployment flexibility.

Based on a potential game setup, we propose a practical solution to optimize the

user-cell association and to coordinate inter-cell interference among multiple cells in

LTE. The algorithm is based on a 2-tiers approach consisting of a logically central-

ized coordinator and local schedulers in the eNBs. Simulations results proove that

this framework can provide optimal cell individual offsets and power settings over

frequency and time resources for each cell to maximize a network utility. We observe

that the proposed algorithm outperforms the frequency reuse-1 scheme and achieves

substantial enhancement in user throughput and energy efficiency.
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It should be noted that the method presented could be also useful for other re-

source allocation optimization problems and different criteria of similar systems.

As future work, we plan to:

• integrate the traffic profile of the users and consider user satisfaction. Some

QoS parameters can be integrated to the virtual scheduler for example to take

into account required minimum throughput for each user.

• study eNBs clusterization to distribute the computation tasks correspondingly.

It is possible to have fully centralized, distributed or hybrid architectures, using

the same optimization approach as described in this work. Obviously, there

are trade-offs among the computational complexity in each cluster depending

on its size, the amount of message exchanges, and the performance loss from a

centralized to a fully distributed architecture.
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APPENDIX A

Résumé de la Thèse

1- Introduction
Au cours de la dernière décennie, les services et applications mobiles sont devenus

un élément essentiel de la vie des usagers. Le nombre d’abonnés mobiles a connu une

croissance rapide et le trafic de données mobiles a presque doublé chaque année. Le

rythme de croissance devrait se poursuivre au cours des prochaines années avec le lan-

cement continu de nouvelles applications gourmandes en données. Comme la demande

de plus de bande passante et de capacité ne cesse d’augmenter, les réseaux actuels

sont entrain d’atteindre leurs limites. Les fournisseurs de service doivent trouver des

solutions rentables et écologiques pour gérer ce niveau de croissance. Heureusement,

il existe aujourd’hui plusieurs techniques que les opérateurs peuvent exploiter. Dans

cette thèse, nous explorons l’une de ces solutions les plus populaires améliorant la

capacité du réseau, c.à.d. les réseaux hétérogènes. L’introduction des petites cellules

dans la couverture des macros permet d’utiliser efficacement le spectre disponible

et d’augmenter ainsi la capacité du réseau. Cependant, ces réseaux hétérogènes sont

confronté à deux principaux défis, à savoir l’association des mobiles aux stations de

bases et gestion des interférences entre les différentes cellules.
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2- Motivations
Les réseaux cellulaires actuels sont généralement des réseaux homogènes consti-

tués d’un ensemble de stations de bases appelées Macros ayant des caractéristiques

similaires, tels que les niveaux de puissance d’émission, les modèles d’antenne, etc.

Ces macros sont généralement placées dans un motif régulier sur une zone. Les sta-

tions de base sont soigneusement configurés pour maximiser la couverture, atténuer

les interférences avec d’autres stations de base, et pour assurer un nombre à peu près

équivalent de mobiles connectés à chaque cellule. Pourtant, les opérateurs sont aujour-

d’hui confronté à un défi technologique important avec le déluge de la consommation

des données.

Jusqu’à ces dernières années, les réseaux homogènes ont réussi à optimiser la cou-

verture et à gérer le trafic de données. La performance des réseaux LTE a été améliorée

en termes de débit de données et de latence, grâce aux progrès dans l’interface de l’air,

en utilisant des multi-antennes à l’émission et réception et grâce à une modulation et

des schémas de codage plus efficace. Toutefois, en raison de l’augmentation exponen-

tielle du nombre d’appareils connectés, de la croissance rapide du trafic de données

et de la demande pour des débits plus élevés, les réseaux homogènes atteignent leurs

limites.

Une des stratégies d’amélioration de capacité les plus connues est l’utilisation de

cellules plus petites qui permet d’augmenter la réutilisation des fréquences. Le réseau

des macros peut aussi être densifié en ajoutant plus de secteurs par site macro ou

en déployant plus de stations de bases. Cependant, il devient plus difficile et coûteux

de trouver de nouveaux sites de macro. Les réseaux cellulaires hétérogènes (HetNets)

ont été proposées par la 3GPP pour augmenté l’efficacité spectrale. En général, dans

les réseaux homogènes, le déploiement des macros est effectué de façon à minimiser

les chevauchements entre les cellules et à assurer une couverture continue pour tous

les utilisateurs du réseau. Les HetNets changent fondamentalement cette notion en
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superposant la couche macro avec des stations de base à faible puissance tout en

gardant des coûts d’infrastructure assez faible.

L’émergence des HetNets a donné lieu à essentiellement deux défis de gestion de

réseaux.

Le premier concerne l’association des mobiles aux stations de bases. Dans les

réseaux cellulaires traditionnels, l’utilisateur se connecte habituellement à la station

qui émet le signal le plus fort. Dans les réseaux hétérogènes, avec des stations de bases

émettant à des niveaux de puissance très différents, seuls quelques usagers seront

servis par les petites cellules à faible puissance d’émission. L’attachement des mobiles

aux stations ayant le signal le plus fort est souvent sous-optimal ou même négatif à la

performance du système, puisque nous sous-utilisons les petites cellules. Une politique

intelligente d’association d’utilisateurs et plus adaptée à cette nouvelle architecture,

est donc nécessaire. Pour résoudre ce problème, on peut systématiquement élargir

la zone desservie par les petites cellules. Ce mécanisme, illustré sur la figure 1.5 est

appelé Extension de la couverture cellulaire. Pour associer plus de mobiles aux petites

cellules, un offset est ajouté aux mesures RSRP reportés par les mobiles. Cela permet

de forcer certains utilisateurs, en particulier ceux en bordure de cellule, à s’associer aux

petites cellules les plus proches. Cela résulte en un réseau plus équilibré en termes de

nombres de mobiles par cellule. Une question que nous allons aborder dans ce travail

est l’optimisation des valeurs des offsets.

Le deuxième défi HetNets est la gestion des interférences afin d’améliorer la qualité

des signaux. Contrairement à l’interférence intra-cellulaire qui est négligeable dans les

réseaux LTE grâce à l’utilisation de OFDM et OFDMA, l’interférence inter-cellulaire

est généralement sévère due à la réutilisation des bandes de fréquences entre les cellules

voisines. Notez que l’utilisation de l’extension de la couverture cellulaire dans les

HetNets pourrait également générer des interférences inter-cellulaire plus élevée, en

particulier pour les utilisateurs qui changent leur attachement de macro à petites
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cellules. Il est essentiel de veiller à ce que la réutilisation du spectre ne conduit pas à

des scénarios élevés d’interférence dans les réseaux LTE. Pour atténuer l’interférence

inter-cellules, la 3GPP a spécifié plusieurs techniques de gestion d’interférence comme

l’ICIC et l’eICIC. En général, les techniques de ICIC sont limités au domaine de la

fréquence et / ou de puissance, par exemple diviser la largeur de bande de fréquence

en plusieurs sous-bandes pour les cellules adjacentes ou bien utiliser des niveaux

de puissance différents. eICIC se concentre sur le domaine temporel par le biais de

l’ABS. Cette technique a pour but d’interdire une macro d’émettre pendant des durées

spécifiques de telle sorte que les petites cellules voisines puissent transmettre avec un

minimum d’interférences.

Comme on peut le comprendre, l’association des utilisateurs et l’atténuation des

interférences sont étroitement liées puisque les ressources disponibles pour chaque

cellule sont liées au nombre d’utilisateurs réellement attachés à la cellule et leurs de-

mandes de trafic. De meilleures stratégies de sélection des cellules et des techniques

plus avancées pour la gestion des interférences et une coordination efficaces des res-

sources peuvent améliorer les débits des utilisateurs et l’efficacité spatiale dans les

réseaux LTE.

3- Contributions
3.1- Formulation du Problème

Nous considérons un réseau cellulaire LTE composé par K cellules : M macros

cellules et N micros/petites cellules, où N ≥ 0 afin de modéliser les réseaux homogènes

et hétérogènes. Chaque station de base k a S sous-trames dans le domaine temporel

et R blocs de ressources fréquentielles. Les blocs de ressources fréquentielles sont

groupés en F sous-bandes fréquentielles. De la même manière, nous organisons les

S sous-trames en T tranches temporelles. Dans la formulation de ce problème, nous

ne considérons que les transmissions descendantes, c’est à dire de la station de base

vers le mobile. L’objectif est de maximiser l’utilité globale du réseau (par exemple,
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la somme des logarithmes des débits des utilisateurs) en utilisant les variables de

décisions suivantes.

• Ok := (Ok,1, Ok,2, . . . , Ok,Nk
) : Vecteur d’offsets à ajouter aux mesures RSRP

pour définir la règle d’attachement des utilisateurs aux stations de bases.

• Pk = (Pk,1,1, Pk,2,1, . . . , Pk,F,1, Pk,1,2, . . . , Pk,F,2, . . . , Pk,F,T ) : Vecteur de puissance

par tranche temporelle et sous-bande fréquentielle.

Nous proposons la formulation générale du problème d’optimisation :

Algorithm 5 Problème d’optimisation général
L’objectif est de maximiser �

u∈U log(ru(s))

avec les conditions suivantes :

ru =
K�

k=1
qu,k

1
S

T�
t=1

F�
f=1


τu,k,f,t × B log(1 + Pk,f,tGu,k,f,t

ηu+
�
l �=k

Pl,f,tGu,l,f,t
)



qu,k =





1 si ∀k� ∈ Nk, RSRP u,k > RSRP u,k� + Ok,k�

0 sinon.
F�

f=1
Pk,f,t ≤ P max

k , ∀t ∈ {1, 2, . . . , T}, ∀k ∈ K

Pk,f,t ≤ Rf × P max
k

R , ∀t ∈ {1, 2, . . . , T}, ∀f ∈ {1, 2, . . . , F}, ∀k ∈ K
�

u∈Uk

τu,k,f,t ≤ Rf × St

A partir de cette formalisation générale du problème, nous pouvons spécifier des

sous problèmes, en effectuant de simples modifications ou restrictions aux paramètres

du problème général.

• Optimisation de l’allocation fréquentielle : Nous éliminons la dimension tempo-

relle du problème général en prenant T égal à 1 et en considérant que chaque

cellule suit un même schéma de puissance tout le temps. Aussi, nous limitons

97



les niveaux de puissance possible par sous-bande de fréquence à 2 valeurs uni-

quement : soit 0, soit la puissance maximale.

• Optimisation des niveaux de puissance : Nous éliminons la dimension temporelle

et fixons la taille des sous-bandes fréquentielles. L’optimisation se fait en jouant

avec les valeurs de puissance possibles par bloc de ressource.

• Optimisation de l’allocation des ressources temporelles : Nous définissons pour

chaque cellule k un pattern binaire pour toute la largeur de bande qui détermine

les trames durant laquelle la station a le droit d’émettre. Pour ce faire, nous

effectuons des restrictions aux problème originel : regrouper tous les RBS en

une seule sous-bande de fréquence, F=1.

• Optimisation de l’attachement des utilisateurs : Il est possible d’appliquer des

politiques déjà utilisées par l’opérateur (ou d’en définir d’autres en ajoutant des

paramètres de mobilité, de vitesse, ou encore de classe d’utilisateurs) et d’utiliser

le résultat de l’attachement dans le reste de l’optimisation. Le problème peut

également être limité en imposant une valeur unique d’offset à appliquer vers

tous les voisins d’une cellule donnée : Ok = constant.

• Fonction d’utilité : L’utilisation de la somme logarithmique des débits est un

exemple parmi tant d’autres. Aucune contrainte sur les caractéristiques de la

fonction du coût à choisir. D’autres paramètres peuvent être pris en compte

telles que la vitesse de l’utilisateur ou son trafic et le débit minimum requis.

3.2- Modèle de la Solution Proposée

Nous présentons une approche basée sur la théorie des jeux et utilisant un jeu

de potentiel convergeant vers une solution optimale. Nous commençons donc par

modéliser le problème formulé pour l’optimisation de l’attachement des mobiles et

la coordinations de l’interférence inter-cellulaire comme un jeu non coopératif où les
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stations de bases représentent les joueurs. La stratégie de chaque joueur est définie

comme un couple de variables décisionnelles : Ok and Pk. Nous montrons que la

fonction U(.), définie dans la partie précédente, est une fonction de potentiel et que

le jeu non coopératif est un jeu de potentiel qui est connu d’avoir des propriétés

intéressantes, i.e., l’existence d’un équilibre de Nash et la convergence de l’algorithme

"Meilleure réponse" (Best Response) vers cet équilibre en un nombre fini d’itérations.

L’idée générale de l’algorithme d’optimisation que nous proposons est :

• on commence par un état d’initialisation arbitraire

• A chaque itération, les variables décisionnels sont choisis d’une façon jointe afin

de maximiser une fonction d’utilité

• Après un nombre fini d’itérations, le système converge vers l’équilibre de Nash

qui peut être une solution optimale localement.

Afin d’effectuer cette optimisation, nous définissons un modèle 2-tiers qui consiste

essentiellement en 3 étapes :

• Chaque mobile renvoie ses mesures sur l’état du canal à sa station de base ser-

vante. Ces mesures peuvent être agrégées au niveau de l’eNB en regroupant les

mesures similaires. Puis chaque station renvoie ces informations à un coordina-

teur qui effectuera l’optimisation. Ce coordinateur peut être une entité centrale

avec une vue globale sur tout le réseau ou bien distribuée qui se rattache à une

cellule (ou groupe de macro + les petites cellules en sa couverture).

• Le coordinateur utilise la base de données contenant l’état du système (ou du

sous-système qu’il contrôle) afin d’optimiser les variables d’offsets et de puis-

sance à allouer pour les ressources. Commençant par un état initial, le coor-

dinateur sélectionne une cellule aléatoirement. Ensuite, il teste toutes les com-

binaisons possibles des 2 variables à optimiser, tout en respectant les condi-

tions mentionnées dans la formulation du problème. Pour chaque combinaison,
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le coordinateur vérifie si l’attachement des mobiles pourrait être virtuellement

modifié à cause d’un changement d’offset. Aussi, il effectue une allocation des

ressources virtuelle basée sur le choix du pattern de puissance. Ensuite, il cal-

cule l’utilité. Après avoir testé toutes les combinaisons possibles, le coordinateur

choisit la combinaison optimale : celle qui maximise l’utilité, ou bien en utilisant

Gibbs celle avec une certaine probabilité de distribution). Le coordinateur va

réitéré ces actions en choisissant à chaque fois une nouvelle cellule jusqu’à ce

que l’utilité globale du système converge vers l’équilibre.

• A la fin de l’optimisation, le coordinateur renvoie les paramètres optimisés aux

stations de bases concernées. Les valeurs d’offset sont rajoutées aux RSRP pour

initier de possibles changement d’attachement. Les ordonnanceurs locaux vont

allouer leurs ressources tout en respectant les patterns de puissance envoyés par

le coordinateur.

3.3- Résultats

Pour émuler le réseau LTE, nous avons utilisé un simulateur LTE sur MATLAB

développé par l’Institut des Télécommunications de l’Université Technique de Vienne.

Pour évaluer les performances de la solution proposé, nous avons effectué des simula-

tions pour différents scénarios pour les réseaux homogènes et hétérogènes. :

• Scénario de base : attachement des mobiles à la station de base offrant le signal

le plus fort et réutilisation des ressources avec facteur 1 entre les cellules.

• Optimisation disjointe de l’allocation des sous-bandes fréquentielles

• Optimisation disjointe des niveaux de puissance

• Optimisation disjointe des ressources temporelles

• Optimisation jointe de l’attachement des usagers et de l’allocation des ressources
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Nous avons par la suite mesuré les débits moyens, les débits des utilisateurs en bordure

de cellule, ainsi que l’efficacité énergétique. Les résultats obtenus sont récapitulés dans

la suite.

• L’optimisation dynamique de l’utilisation des sous-bandes fréquentielles sur-

passe en terme de performance le scénario de base. Les gains en débit et énergie

augmentent en fonction du nombre des sous-bandes. Pour les réseaux homo-

gènes, nous obtenons des résultats presque optimaux à l’optimisation avec 4

sous-bandes. Alors que en Hetnets, il suffit d’utiliser 3 sous-bandes.

• L’optimisation des niveaux de puissance impacte particulièrement les débits en

bordure de cellule. En passant de 2 niveaux à 5 niveaux de puissance, nous

obtenons 45 % et 30 % de gains dans les réseaux homogènes et hétérogènes

respectivement. Par contre, l’efficacité énergique diminue légèrement en aug-

mentant le nombre de niveaux de puissance.

• En configurant des patterns de tranches temporelles pour limiter les transmis-

sions des macros, cela permet d’obtenir des gains supérieurs à 15 % et 22 % en

débit moyen et en débit pour les utilisateurs en bordure de cellules. L’efficacité

énergique est améliorée d’environ 50 % ce qui signifie que les stations de bases

transmettent plus de données en utilisant moins de puissance.

• L’optimisation disjointe des valeurs des offsets permet d’augmenter le débit uti-

lisateur moyen. Toutefois, les mobiles en bordure de cellule, restent fortement

interféré par les macros. Les meilleures performances sont obtenues par l’op-

timisation conjointe des CIO et de l’allocation des sous-bande de fréquences.

Cette optimisation permet de balancer le trafic entre les macros et les petites

cellules et d’avoir une distribution efficace des ressources fréquentielles entre les

cellules voisines qui conduit à une meilleure expérience pour les utilisateurs.
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3.4- Prototype

En plus de la validation de notre approache via les simulations matlab, nous

avons développé un prototype afin de démontrer la faisabilité et la performance de la

solution proposée.

La première version du prototype, nommée X2-proxy se présente comme une

station de base virtuelle mais qui ne possède aucune ressource radio. X2-proxy se

connecte aux autres nodes via l’interface X2 afin de contrôler le réseau et fournir

des fonctionnalités d’optimisation avancées. L’architecture interne du X2 proxy est

composée de 4 couches : la première couche est la couche transport responsable de

l’envoi des messages X2. La deuxième couche se charge du codage et décodage des

messages X2. X2 Parser crée les structures des messages X2 et les remplit avec les

informations appropriées. La couche supérieure est celle de l’optimiseur.

Une deuxième version du prototype a été développée en se basant sur le modèle

SDN. Notre optimiseur est en fait déployé comme une application du contrôleur SDN

qui possède une vision globale du réseau. De ce fait, l’optimiseur peut utiliser les

interfaces du coordinateur afin de découvrir le réseau et sa topologie, de collecter les

mesures et paramètres de configuration, et pour reconfigurer les stations de bases

en utilisant des paramètres optimisés. Nous avons introduit une base de données

extérieure qui stocke les mesures et informations du réseau. Cette architecture permet

la séparation des décisions de control entre le contrôleur et les eNBs afin de faciliter

la gestion dynamique du réseau et rendre son optimisation plus flexible. Afin de

valider ce prototype, nous avons utilisé un simulateur LTE sur matlab pour émuler la

configuration d’un réseau cellulaire. A un moment donné, le simulateur se connecte

aux simulateurs des stations de base via des messages UDP pour échanger les mesures

et informations requises. Les adresses IP et ports des stations de bases émulées sont

préalablement connus au niveau du simulateur. Une première connexion est faite pour

envoyer la topologie du réseau, incluant une liste des cellules, leurs voisins et leurs

102



puissances d’émission. Ensuite, le simulateur crée des sockets UDP pour envoyer toute

mise à jour de la part des eNBs, par exemple les valeurs des offsets pour l’attachement

des usagers, ou bien les niveaux de puissance par ressource, les conditions du canal

de transmission, etc. Tous ces messages sont envoyés via SCTP des stations de bases

émulés au contrôleur SDN pour être stockés dans la base de données. L’optimiseur

envoie alors des requêtes en utilisant les REST API, pour retirer les données mises à

jour et commencer l’optimisation.

4- Conclusion
Basé sur un jeu de potentiel, nous proposons une solution générales pour optimiser

l’association des mobiles aux stations de base et la coordination entre les cellules pour

gérer les interférences dans les réseaux homogènes et hétérogènes. L’algorithme pro-

posé fournit des paramètres optimaux d’offsets et de puissances alloués pour chaque

cellule afin de maximiser l’utilité du réseau. Nous observons que l’algorithme proposé

surpasse la réutilisation des fréquences avec facteur 1 et réalise plus de 50 % de gains

en débits en bordures de cellules ainsi qu’une amélioration aussi importante pour le

débit et l’efficacité énergiques moyens.

Les contributions de ce travail sont énumérés ci-dessous :

• Nous avons formulé le problème d’association mobile/cellule et de gestion d’in-

terférence inter-cellules en utilisant un jeu de potentiel.

• nous avons proposé une solution dynamique optimisant les valeurs d’offsets et

un pattern des puissance de transmission pour maximiser l’utilité du réseau.

• nous avons effectué des séries de simulation afin d’étudier les performances de

notre solution. Les résultats de simulation ont montré une amélioration signifi-

cative des débits ainsi que de l’efficacité énergique.

• nous avons développé un prototype de l’optimisation qui se connecte à un

contrôleur SDN.
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Use case.............. 
The optimization algorithm is based on state of the art 
game theory and offers various performance points in 
convergence speed, global optimality and stability. Two 
cases are presented, one based on “best response 
algorithms” favouring fast convergence to local optimum 
and “stochastic relaxation” favouring global optimum with 
slower convergence. 
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The demonstration will be showcased on an ultra-realistic 
heterogeneous network radio scenario located Paris 
down-town and modelled in Matlab while the messaging 
based on X2 and the optimization process of the main 
eICIC parameters (Cell Individual Offset and duty factor) 
will be run on discrete machines in real-time. 

The demonstration will display the 3 main steps: (1) data 
collection via X2, (2) optimization search inside X2 proxy, 
(3) configuration execution via X2. Resulting performance 
gains in traffic and handover ratios are displayed on a 
separate GUI. 

 

Contact(s) : �
Laurent.Roullet@alcatel-lucent.com 
Alcatel-Lucent Bell Labs France�
�
YCorre@siradel.com 
Société SIRADEL�

Challenge.............. 
Cellular networks follow an exponential development 
requiring strong densification of traditional macro cells by 
small cells (metro and picos). This densification induces 
interference issues -tight radio planning of small cells is 
not an option- and handover issues -standard user 
attachment favours most powerful eNB -macro- to the 
detriment of less powerful eNBs -metros, femtos-. How 
can we optimize these two parameters in a dynamic, 
efficient and scalable manner? 

Innovation............. 

The innovative architecture introduces a new key element 
called the “X2 proxy”, basically a server, that connects to 
all eNBs to collect data, process optimization task and 
return optimal parameters. The solution uses 
standardized X2 interface to collect statistics and report 
recommended parameters, offloads optimization 
processing from the eNBs and therefore enables a “fast 
track” deployment with limited interoperability tests. 
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In addition to the X2 interoperability, the X2 brings nice 
features like: message frequency up to 1Hz and message 
extensibility via private information elements. 

Although this approach could be used for many data 
collection and optimization scenarios, it is here proposed 
to solve a very hot problem: heterogeneous network 
densification via 3GPP release 10 time diversity “Almost 
Blank Subframe”. 

���������������������������������������
����������������������
���������������������������������������������������������������������

Figure B.1: X2-Proxy Poster - Bell Labs Open Days 2013.
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Challenge............... 
Future radio networks will have to support many 
network configurations (macro, metro and femto, 
indoor, outdoor), various types of access waveforms
(3G, 4G, 5G, wifi), a variety of devices (multimedia 
handsets, low rate high latency sensors, low latency 
machines), and very different types of communications 
from intensive video to sporadic small messaging, 
most of them probably not yet known. Radio networks 
will therefore need to be extremely scalable to the 
network size, and extremely reconfigurable to services 
and devices. 

Innovation.............. 
The Cloud RAN vision is a disruptive cloud-driven 
wireless network architecture designed to support such 
flexibility in a sustainable way by “importing” several 
technologies from the IT industry and adapting them 
to the particular case of wireless networks (in terms of 
throughput, latency, topology): 

- Software-Defined Network (OpenDayLight) is 
used for abstracting wireless control by 
introducing “network applications and 
services” like the X2 proxy coordinator; 

- Virtualization (Docker containers and KVM 
virtual machines) is used for abstracting Radio 
Access Network and packet core functions 
from specialized telecom hardware and 
enabling telecom micro-services approach; 

- IT hardware acceleration (GPU and APU) is 
used for offloading intensive signal processing 
functions (Fast Fourier Transform) to maximize 
energy efficiency and computing density; 

- Orchestrator (Openstack) is used to 
dynamically map functions on IT resources; 

- Shared Ethernet network is used to replace 
expensive point-to-point dedicated fronthaul 
Common Public Radio Interface links. 

All resources are controlled by a “cloud manager”. 

Cloud 
manager

IT 
controller

Network 
controller

EPC eNB Fronthauling

 

Figure 1: Cloud RAN hierarchical vision 

Usecase ................ 
The Cloud RAN platform demonstrates several 
reference “radio as a service” use cases showing the 
elasticity of the solution: “RAN as a service”, “EPC as a 
service” and “SDN as a service” demonstrated on inter 
and intra private cloud resources. 
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Figure 1: Cloud RAN architecture 

BENEFIT: Cloud RAN is the Bell Labs 
technological platform used for de-risking 
“cloudification” of the access network on the 
road to 5G. It is open for internal (BU) as well as 
external (start up, IRT, industry) collaborations. 
laurent.roullet@alcatel-lucent.com, 
abdelkader.outtagarts@alcatel-lucent.com and Bell Labs 
Software Defined Wireless Networks team 
 
 
 
 
 

 

CLOUD RAN 
Scalable and flexible cloud-driven Radio Access Network platform 
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Figure B.2: SDN Controller Poster - Bell Labs Future X Days 2015.
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