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Abstract
Global warming is one of the biggest humanity challenges. Fossil fuels are one of the
world’s main sources of energy production, which emits greenhouse gas emissions (GHG)
in the atmosphere. Paris Agreement established some objectives for the end of Century
21. The main goal is to limit the temperature increase to 2 ◦C, trying to limit it to 1.5 ◦C.
However, recent reports show we are walking toward a temperature increase of 2.8 ◦C. The
data center sector is a significant GHG emitter, with 1% of the global energy-related GHG
emissions. A way to reduce the data center’s impact on GHG emissions is by reducing
the energy needed by the servers. However, some authors pointed out a reduction in the
processor energy improvements. Furthermore, with the expected increase in Internet users
(up to 5.3 billion in 2023), the situation tends to get even worse. A possible solution is
migrating energy production from brown sources (fossil fuels) to green sources (renewable
energy sources - RES). It generates energy from natural sources, such as solar and wind.
The biggest drawback of implementing RES is its intermittence since its production comes
from nature, depending on the climate conditions. Big cloud providers invest in off-site
solar and wind power plants, which means they provide renewable energy to the grid with
the same amount they expend. Therefore, they transfer the intermittence problem to third
parties. This thesis takes place in Datazero2 project proposing a renewable-only data cen-
ter with only on-site renewable production. This kind of data center would drastically
reduce their GHG emissions. However, a renewable-only data center introduces several
challenges. We deal with these challenges in two parts: offline and online. The offline side
uses predictions to plan decisions considering the long-term. The online side must apply
the offline plan, reacting to the actual events of the data center. Since the predictions
are imperfect, the online must find ways to adapt the offline plan, reducing the impact on
the user’s jobs. Considering these elements, this thesis proposes some approaches to mix
offline and online decisions, dealing with the uncertainty coming from renewable produc-
tion and workload demand. First, we propose four policies for energy compensation. The
main objective of these policies is to adapt the offline plan to approximate the storage
levels to the planned levels at the end of a time window. These adaptations are necessary
since power production and demand can vary. We demonstrate the impact of respecting
the storage levels on the Quality of Service (QoS). After that, we introduce Reinforce-
ment Learning algorithms in the compensation problem, trying to improve the QoS of
our policies. More specifically, we use these algorithms to define how to compensate for
different scenarios, aiming to increase the number of finished jobs. Therefore, we could
still respect the energy storage levels and improve the QoS. Finally, our last contribution is
a heuristic that mixes both power and scheduling decisions, seeking to reduce the number
of killed jobs and wasted energy. This heuristic is named BEASY and uses predictions to
make better decisions, maintaining the battery between safe thresholds, which increases
the battery’s lifetime. BEASY respects the power constraints, having low wasted energy,
and the lower number of killed jobs among all algorithms.

iii



0. Abstract

iv



Résumé
Le réchauffement climatique est un des principaux défis de l’humanité. Les combustibles
fossiles sont une importante source de production d’énergie dans le monde, entraînant
des émissions de gaz à effet de serre (GES) dans l’atmosphère. L’Accord de Paris sur le
climat a comme objectif principal de limiter la hausse de température à 2 ◦C, et si pos-
sible à 1,5 ◦C. Or, des rapports montrent que l’on se dirige vers une augmentation de
2,8 ◦C. Le secteur des centres de données est un important émetteur de GES, respon-
sable de 1% des émissions mondiales liées à l’énergie. Un moyen de réduire leur impact
est de réduire l’énergie nécessaire aux serveurs. Mais, des auteurs signalent une réduc-
tion des améliorations énergétiques des processeurs, ce qui, lié à l’augmentation prévue
du nombre d’internautes (jusqu’à 5,3 milliards en 2023), tend à aggraver la situation.
Une solution serait de faire passer la production d’énergie des combustibles fossiles aux
sources vertes (sources d’énergie renouvelables - SER), qui génèrent de l’énergie à partir
de sources naturelles, comme l’énergie solaire et éolienne. Le principal inconvénient des
SER est leur intermittence, car leur production dépend de la nature. Les grands fournis-
seurs d’informatique investissent dans la production renouvelable hors site pour fournir
au réseau la même proportion d’énergie qu’ils consomment, transférant le problème de
l’intermittence à des tiers. Cette thèse se situe dans le cadre du projet Datazero2 qui pro-
pose la création d’un centre de données avec une production d’énergie renouvelable sur site,
ce qui réduirait considérablement les émissions de GES. Mais un centre de données 100%
renouvelable introduit des défis en matière d’énergie et de technologies de l’information.
Pour les traiter, on les divise en deux parties : hors ligne et en ligne. La première planifie
les décisions à partir des prévisions, prenant en compte le long terme. La partie en ligne
applique le plan hors ligne et réagit aux événements réels. Comme les prévisions sont im-
parfaites, le plan en ligne doit trouver des moyens d’adapter le hors ligne, en réduisant
l’impact sur les tâches des utilisateurs. En considérant ces éléments, cette thèse propose
des approches pour combiner les décisions hors ligne et en ligne, en traitant l’incertitude de
la production renouvelable et de la demande de la charge de travail. Tout d’abord, on pro-
pose quatre politiques de compensation énergétique dont l’objectif principal est d’adapter
le plan prévu hors ligne pour rapprocher les niveaux de stockage des niveaux prévus à
la fin d’une fenêtre temporelle. Ces adaptations sont nécessaires car la production et la
demande d’énergie peuvent varier. On montre l’impact du respect des niveaux de stockage
sur la qualité de service. Ensuite, on introduit des algorithmes d’apprentissage par ren-
forcement dans le problème de la compensation afin d’améliorer la qualité de service de
nos politiques. Ainsi, on utilise ces algorithmes pour définir la compensation des différents
scénarios, dans le but d’augmenter le nombre de travaux terminés. En effet, on peut res-
pecter les niveaux de stockage d’énergie tout en améliorant la qualité de service. Enfin,
on présente l’heuristique BEASY, qui combine les décisions relatives à la puissance et à
l’ordonnancement pour réduire le nombre de tâches abandonnées et le gaspillage d’énergie.
Elle utilise des prédictions pour prendre des décisions, en respectant les limites de la bat-
terie pour prolonger sa vie. BEASY respecte les contraintes de puissance, avec un faible
gaspillage d’énergie et le plus faible nombre de tâches détruites parmi tous les algorithmes.
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Chapter 1

Introduction

1.1 Context

Global warming is one of the biggest challenges humanity is facing. A recent report shows
that we are walking toward a global mean temperature increase by 2100 of 2.8 ◦C, well
above the 1.5°C defined by the Paris Agreement [1]. A previous report predicts the rise
in mean global temperature will be around 1.8°C even after implementing all announced
Paris Agreement goals [2]. Achieving 1.5°C demands an engagement of all sectors to reduce
greenhouse gas (GHG) emissions. GHG is generated during the combustion process of
fossil fuel, one of the world’s main sources of energy production [3].

One significant GHG emitter is the Information and Communications Technology
(ICT) sector. It produces around 1.8-2.8% of the world’s total GHG [4]. Inside ICT,
Data centers and transmission networks are responsible for nearly 1% of global energy-
related GHG emissions [5]. The data center sector is one of the most electricity-expensive
ICT actors due to its uninterrupted operation. A report revealed that Google data cen-
ters consumed the same amount of energy as the entire city of San Francisco in 2015 [6].
In addition, the situation tends to get even worse due to the improvements reduction in
processor technologies and the predicted expansion of internet usage [4, 7].

Big cloud providers such as Google and Amazon are trying to reduce energy consump-
tion and increase the power coming from Renewable Energy Sources (RES) [8]. RES is
the most encouraging method to eliminate fossil fuel use [3]. Renewable sources generate
energy from clean sources such as biomass, hydropower, geothermal, solar, wind, and ma-
rine energies [9, 10, 11, 12, 13]. A significant drawback of RES is the weather conditions
dependency, creating power intermittence. These providers smooth this intermittence by
not migrating entirely to RES, maintaining a connection to the grid [11]. Therefore, they
are not 100% clean. A renewable-only data center must consider this intermittence in its
decision-making.

A way to reduce the impact of RES power production intermittence is by adding storage
elements [11]. Batteries and hydrogen tanks can shift generation and/or consumption over
time. A renewable-only data center demands a massive storage capacity [11]. For example,
Google plans to use energy from 350 MW solar panels connected to a storage system with
280 MW (megawatt-hour energy capacity undisclosed) [14]. While helping to deal with
RES intermittence, storage management introduces another level of decision. For example,
a battery coupled with solar panels can store energy during the day and then use the energy
stored at night. Nevertheless, the demand during the day could be higher than at night,
so maybe it is better to use the energy during the day. This is another big challenge for
migrating to a 100% clean data center. Another source of uncertainty comes from the
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user’s demand. Users can send their requests at any time. Providing high availability is a
challenge for a renewable-only data center.

Some works propose ways to deal with both demand and weather uncertainties using
predictions [15, 16, 17, 18]. Forecasting the upcoming requests and the weather helps to
plan storage usage. They use these predictions to maximize renewable usage but with the
grid as backup. All these works are valuable and important to optimize renewable usage.
However, the forecast can vary from the actual values. Other works focus on reacting
to real events [19, 20, 21, 22]. They try to minimize the data center operational cost,
maximize renewable usage, increase the revenue of job execution, or improve the Quality
of Service. Usually, they define ways to schedule the jobs, optimizing their objective.
However, they focus on short-term decisions without long-term management. Since these
works also have the grid as backup, storage management is not a concern. Some works
mix predictions with reactive actions. For example, Goiri et al. [18] propose a scheduling
algorithm that predicts solar power production and uses it to define the best moment to
start new jobs, using brown energy (from the grid) when necessary. Venkataswamy et al.
[23] created a job scheduler that defines job placement according to the available machines.
The available machines are given by a fixed plan (which can use power from renewable,
batteries, or grid), with no modifications.

Few research initiatives are investigating how to design and operate a renewable-only
data center. One of them is the ANR Datazero2 project [24]. This project aims to
define a feasible architecture to maintain a renewable-only data center. This architecture
includes several elements to provide energy to the IT servers, such as Wind turbines,
Solar panels, Batteries, and Hydrogen tanks. Considering the decision-making, Datazero2
divides the problem into two parts: offline and online. The offline part finds the optimal
solution for the problem, which takes time. On the other hand, the online part reacts to
real events, making fast decisions on-the-fly. The offline module uses power demand and
production predictions to create a power and IT plan for the near future, considering long-
term constraints in this decision process. This decision-making process can take several
minutes.

The online module schedules the users’ jobs, using the offline plan as a guide. Online
is the only one that knows exactly the jobs submitted to the data center. So, it needs
to place them in the available servers. Online could just apply the offline plan without
modifications. However, this behavior would impact the Quality of Service (QoS). Online
can improve the QoS, using more energy from storage to turn on more servers (to run
more jobs) or speed up the running servers (to finish jobs earlier). Besides, online must be
renewable production aware. For example, online can identify a lower production that can
dry the energy storage faster, so it must reduce its usage. Finding a good trade-off between
QoS and energy storage management is even harder in online mode, which demands fast
decisions. In this thesis, we focus on these online decisions. The goal is to design and
prove the efficiency of a novel approach for scheduling users’ jobs, finding a good trade-off
between QoS and energy storage management.

1.2 Problem Statement

In the context of this thesis, we align prediction and energy storage elements, defining the
best strategy to handle users’ requests. However, actual demand and production can vary
from the predictions. So, the online module must react to the actual values. This reaction
can improve the QoS (e.g., when there is more production than expected). In addition,
online reaction optimally absorbs the impact of the demand and production power to stay
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close to the offline plan. Figure 1.1 illustrates all the elements in the decision process. We
consider only renewable sources and energy storage elements without grid connection. An
offline optimization gives an offline plan using production and demand prediction. The
offline plan has a limited size named time window (e.g., three days). So, offline suggests
actions to online during this time window. Online receives the actual renewable production
from wind turbines and solar panels. Online adapts energy storage usage according to the
actual production. Since hydrogen has a longer start-up time, it is difficult to manage it
in online mode. Therefore, we let hydrogen usage from the offline optimization, using it
to provide energy during seasonal periods with low renewable production (e.g., during the
winter). So, online decides about battery usage only.

Battery management introduces two new challenges regarding the Battery’s State of
Charge (SoC):

• Challenge 1: SoC means the level of charge of a battery relative to its capacity. A
good practice to extend the battery’s lifetime is to avoid drying or overcharging it
[25]. Therefore, our solution must maintain the SoC between reasonable levels;

• Challenge 2: Online has the entire time window to make modifications in battery
usage. However, it must finish the time window close to the expected SoC (given by
the offline plan). Since the data center runs continuously, it is not viable to always
use more battery than expected for every time window. Therefore, our solution must
finish with more or equal SoC than planned.
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Figure 1.1: Problem overview. Online receives an offline plan, the actual renewable pro-
duction, and the users’ jobs. It must define energy storage usage, job placement in the
servers, and server speed.

On the IT side, online receives the jobs from the users and must schedule them on the
available servers. Online receives an offline plan for server configuration (machine on/off
and speed). However, it can modify the server configuration to react to incoming events
(e.g., more production, demand peak). Changing the speed of a server is possible due
to the Dynamic Voltage and Frequency Scaling (DVFS) technique. DVFS allows servers’
speed reduction, spending less energy. However, putting a job on a server with a decreased
speed can impact the job QoS. On the other hand, DVFS also allows increasing CPU speed
to run the jobs faster. To sum up, online must manage the battery (maintaining the SoC
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between thresholds and finishing the time window with the battery level close to the
target), schedule the jobs, and balance the servers’ speed.

This thesis’ objectives are:

1. Mixing offline and online decisions, dealing with the uncertainty coming from renew-
able production and workload demand. These decisions aim to improve QoS while
meeting power constraints;

2. Mixing power, scheduling, and server online decisions, turning the scheduling energy
storage aware. This mix allows the scheduling to make better decisions than usual
algorithms;

These goals help to find a better trade-off between QoS and energy storage manage-
ment, taking into account the power and demand predictions. Different contributions
address these questions in this manuscript.

1.3 Main contributions
Defining offline power and IT decisions

As illustrated in Figure 1.1, an important part is the offline plan. This plan must con-
sider the power and demand predictions to define the actions for the next time window.
We separate the problem into two parts. First, we present the optimization problem to
define power engagement, giving a power prediction. This optimization problem results
in expected renewable power production, energy storage usage, and expected SoC. The
sum of the expected renewable power production and energy storage usage is named the
power envelope. The second part is the IT servers’ state (on/off) and speed definition.
This optimization problem defines the state and speed according to the power envelope.
The objective of this optimization problem is to maximize the servers’ speed. The results
of both optimizations are the input for the online module.

Reacting to power fluctuations

We propose a heuristic to react to the power fluctuations using the result of the offline
plan as a guide. Since there is no perfect prediction, one source of divergence is the
difference between the prediction and actual values. This divergence occurs in both power
demand and production. Additionally, the offline model considers that the servers will
maintain constant power usage. However, the server consumption can vary according to
the scheduling and/or job. Yet, the scheduling can modify the battery usage to improve
the QoS (e.g., avoiding killing jobs). Considering all these sources of power fluctuations,
the heuristic must adapt the usage, aiming to approximate the state of charge of the target
level at the end of the time window. Since this is an online problem, we can not re-run the
offline optimization solution with the actual values. Therefore, we propose four policies
to compensate for these divergences in the power envelope. Each one finds a different
moment in the future to place the compensation.

Learning the actions to deal with power fluctuations

The four compensation policies apply the same behavior throughout the entire execution.
However, different moments inside the time window can demand distinct policies. So, the
third contribution aims to learn when to use each policy. So, we introduce two Reinforce-
ment Learning (RL) algorithms to discover the best mix of policies. Considering each
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policy as RL’s action, we present the RL’s state and reward. The premise of applying RL
is that optimizing the decisions locally generates a global optimal. In other words, if the
algorithm chooses the best action each time, in the end, we will have the best results. We
implemented two well-known RL algorithms named Contextual Multi-Armed Bandit and
Q-Learning. We present the learning results and a comparison between the RL algorithms
and baseline choices.

Defining energy storage-aware scheduling using production and demand
predictions

Finally, the last contribution is an energy storage-aware scheduling heuristic. This
algorithm is based on the well-known EASY-Backfilling. The algorithm is named BEASY
(Battery-aware EASY backfilling). BEASY uses the predictions given by the offline to
predict dangerous moments, where it must be careful in the scheduling. Furthermore, we
introduce another level of validation, verifying if the servers allocated to the job would be
available during the entire execution. Regarding power compensations, it creates several
possible scenarios of production and demand using the forecasts. According to these
scenarios, the heuristic finds the best moment to make the compensations. For example,
BEASY tries to reduce the usage before the moments when the predictions indicate that
the battery could be lower than a critical value. This heuristic mixes all decisions providing
a well-balanced answer to the online multi-objective problem.

Proposing a simulation environment

A crucial step to simulate data center management is defining the workload, weather,
and server configuration, in a complete simulation tool. Regarding the workload, some
traces are used in literature, such as Google [26], Parallel Workloads Archive [27], and
Alibaba [28]. We propose a trace from Parallel Workloads Archive named Metacentrum
[29]. We detail the filtering process of this trace. Considering the weather, it is possible
to collect data from everywhere in the world. We present the methodology to generate
power production from a NASA trace, using the framework Renewables.ninja1 [30]. The
third input is the server configuration. We demonstrate the data collected from a server in
GRID50002 used in this thesis. Finally, we present the simulation tool named BATSIM3,
based on SIMGRID4. We introduced in this simulation tool the modifications needed to
manage battery and power production. The whole of these data and definitions allows
future work inside and outside the Datazero2 project.

1.4 Publications and Communication
Accepted Peer Reviewed Conferences:

• I. F. de Nardin, P. Stolf and S. Caux, “Adding Battery Awareness in EASY Back-
filling”, 2023 IEEE 35th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), Porto Alegre, Brazil, 2023 [31].

• I. F. de Nardin, P. Stolf and S. Caux, “Analyzing Power Decisions in Data Cen-
ter Powered by Renewable Sources”, 2022 IEEE 34th International Symposium on

1https://www.renewables.ninja/
2https://www.grid5000.fr
3https://batsim.org/
4https://simgrid.frama.io/
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Computer Architecture and High Performance Computing (SBAC-PAD), Bordeaux,
France, 2022, pp. 305-314 [32];

• I. F. de Nardin, P. Stolf and S. Caux, “Evaluation of Heuristics to Manage a Data
Center Under Power Constraints”, 2022 IEEE 13th International Green and Sus-
tainable Computing Conference (IGSC), Pittsburgh, PA, USA, 2022, pp. 1-8 [33];

• I. F. de Nardin, P. Stolf and S. Caux, “Mixing Offline and Online Electrical Deci-
sions in Data Centers Powered by Renewable Sources”, IECON 2022 – 48th Annual
Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 2022, pp.
1-6 [34];

• I. F. de Nardin, P. Stolf and S. Caux, “Smart Heuristics for Power Constraints in
Data Centers Powered by Renewable Sources”, Conférence francophone d’informatique
en Parallélisme, Architecture et Système (COMPAS 2022), Jul 2022, Amiens, France.
paper 7 [35].

Others Disseminations:

• Talk: Analyzing Power Decisions in Data Center Powered by Renewable Sources,
GreenDays@Lyon, March 2023.

1.5 Dissertation Outline
The remaining dissertation has the following organization:

Chapter 2 - Context and Related Works: This chapter presents the funda-
mentals to understand this dissertation. Considering the scope of the topic, the
context consists of four parts. First, we introduce the context of global and ICT
GHG emissions. Then, we describe renewable energy as an alternative to replace
brown energy. After, we explain the usage of renewable to maintain a data center.
Then, we define the uncertainties of weather and workload in a renewable-only data
center. This last part also clarifies the importance of using predictions but with an
online adaptation. After presenting the context, we introduce a list of works that
solve part of our problem, highlighting the existing gaps in the state-of-the-art;

Chapter 3 - Modelling, Data, and Simulation: In this chapter, we describe
the model to deal with several elements that compose a renewable-only data center.
Datazero2 creates a division between Offline and Online decisions. We present the
model to deal with offline decisions using predicted power demand and production.
Then, we detail the output of Offline used by the Online. Finally, we define the
Online model, which englobes the job scheduling and modifications in the Offline
plan. After describing the model, we explain the source of the different data (e.g.,
workload, weather, servers) applied in the simulations. We present an explanation
of the work done in the traces of the literature. Finally, we present the simulation
tools used in this work;

Chapter 4 - Introducing Power Compensations: This chapter describes the
proposed algorithm to react to power uncertainties. We created four heuristics to
find the best place to compensate for battery changes, which aim to reduce the
number of killed jobs and the distance between the battery level and the target
level. The results presented are related to the publications [32] and [34];
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Chapter 5 - Learning Power Compensations: This chapter presents the idea
and the results of the introduction of Reinforcement Learning (RL) in the power
compensation problem. We propose two RL algorithms (Q-Learning and Contextual
Multi-Armed Bandit) to learn the best moment to compensate;

Chapter 6 - Adding Battery Awareness in EASY Backfilling: This chapter
explains a heuristic to mix scheduling and power compensation decisions. This
heuristic is based on the EASY Backfilling scheduling algorithm but considers the
battery’s State of Charge to make better decisions. The results presented are related
to the publication [31];

Chapter 7 - Conclusion and Perspectives: Finally, in this chapter, we summa-
rize the contributions of this work, providing a discussion about future works.
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2.1 Global Warming and ICT Role

Global warming is one of the most critical environmental issues of our day [36]. Global
warming is the effect of human activities on the climate, mainly the burning of fossil fuels
(coal, oil, and gas) and large-scale deforestation [36]. Both activities have grown greatly
since the Industrial Revolution. The burning of fossil fuels process results in greenhouse gas
emissions [3]. Today, fossil fuels are one of the world’s main sources of energy production,
emitting more and more GHG [3]. GHG stays in the atmosphere creating a layer as
a blanket over the planet’s surface. Without this blanket, the Earth can balance the
radiation energy from the sun and the thermal radiation from the Earth to space [36].
However, this human-generated blanket imposes a barrier to the thermal radiation from
the Earth, heating the planet. All this process works as a greenhouse which is the reason
for the name greenhouse gas [36].

This situation brings us to the United Nations Climate Change Conference (COP21)
in Paris, France, on 12 December 2015. At this conference, 196 parties signed the Paris
Agreement aiming to [37]:

1. Reduce global greenhouse gas emissions substantially, limiting the global tempera-
ture increase in this century to 2 ◦C while pursuing measures to limit the growth
even further to 1.5 ◦C;

2. Review countries’ commitments every five years (through the Nationally Determined
Contribution, or NDC);

3. Provide financing to developing countries to mitigate climate change, strengthen
resilience, and enhance their abilities to adapt to climate impacts.
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These are ambitious but necessary objectives. Since then, countries and organizations
have proposed several actions and pledges. However, a recent report indicates that the
actual world’s effort is not enough [2]. Figure 2.1 shows GHG emission and temperature
estimations. We could see that there is a small reduction in emissions increase tendency.
Nevertheless, this figure estimates that real-world actions based on current policies will
lead to an increase of somewhere between 2.6 and 2.9 ◦C by 2100. Another recent report
confirms the estimation of 2.8 ◦C by 2100 [1]. This estimation is well above the 1.5
◦C pursued by the Paris Agreement. Considering the targets proposed by the countries
through NDC, the temperature will be around 2.4 ◦C. In a scenario based on 2030 NDC
targets and submitted and binding long-term targets, the prediction is a temperature of 2
◦C by 2100, the limit proposed by the Paris Agreement. The report forecasts an optimistic
scenario considering the effect of full implementation of all announced targets (e.g., net
zero targets) in about 140 countries. Even in this optimistic scenario, the estimated
temperature would be 1.8 ◦C. The situation tends to be even worse with the gold rush for
gas [38]. The report indicates that in 2022 we arrived at 1.2 ◦C warming [2].

Figure 2.1: Estimated global GHG emissions [2].

We have started to feel the impacts of global warming on humanity, such as heatwaves,
droughts, and floods, impacting flora and fauna directly [39, 40]. In a cascade effect, this
increases food and water insecurity worldwide [40, 41]. In addition, high temperatures
increase mortality, impact labor productivity, impair learning, increase the possibility
of adverse pregnancy outcomes, increase conflict, hate speech, migration, and infectious
disease spread [42]. Therefore, an increase of the temperature by 2.7 ◦C as forecasted
would impact one-third (22–39%) of the world’s population by 2100 [42]. Climate change
has already impacted around 9% of people (>600 million) [42]. Reducing global warming
from 2.7 to 1.5 ◦C results in a ∼5-fold decrease in the population exposed to unprecedented
heat (mean annual temperature ≥29 ◦C) [42]. Thus, all sectors must reduce their GHG
emissions as much as possible.

Information and Communication Technology is one of these sectors which has acceler-
ated growth in the last 70 years. Unesco defines ICT as [43]:

“Information and communication technologies (ICT) is defined as a diverse set
of technological tools and resources used to transmit, store, create, share or
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exchange information. These technological tools and resources include comput-
ers, the Internet (websites, blogs, and emails), live broadcasting technologies
(radio, television, and webcasting), recorded broadcasting technologies (pod-
casting, audio and video players, and storage devices), and telephony (fixed or
mobile, satellite, visio/video-conferencing, etc.).”

Regarding the ICT role in GHG emissions, the global share is around 1.8%-2.8%, or
2.1%-3.9% considering the supply chain pathways in 2020 [4]. The situation tends to get
even worse, driven by the boom in Internet-connected devices. A Cisco report indicates
that the Internet had 3.9 billion users in 2018 [7]. The same report predicted an increase
to 5.3 billion by the end of 2023 (66 percent of the global population). However, the
International Telecommunication Union (ITU), a United Nations specialized agency for
ICTs, indicates that we arrived at 5.3 billion connected users in 2022 due to the COVID-19
pandemic [44]. But will the growth in internet users increase GHG emissions? Andrae and
Edler [45] and Belkhir and Elmeligi [46] agree that this growth could lead to an increase
in GHG emissions. Figure 2.2 shows the predictions of both works.

Figure 2.2: Projections of ICT’s GHG emissions from 2020 [4].

This figure illustrates the contraction in the Paris Agreement targets (see Figure 2.1)
and the predictions about usage in the ICT sector. In all forecasts of Figure 2.2, the ten-
dency is the growth of emissions. However, ICT needs to reduce its emissions drastically.
Figure 2.3 illustrates the carbon emission share if the ICT stays at the same level as 2020
and the other sectors decrease their emissions. Without changes, ICT would have 35.1%
of global emissions in 2050. So, ICT must move towards reducing its emissions. One of
the biggest GHG emitters inside the ICT sector is data centers [4]. IBM defines the data
center as “a physical room, building or facility that houses IT infrastructure for building,
running, and delivering applications and services, and for storing and managing the data
associated with those applications and services” [47]. The International Energy Agency
(IEA) defines data center as [5]:

“Data centers are facilities used to house networked computer servers that
store, process and distribute large amounts of data. They use energy to power
both the IT hardware (e.g., servers, drives, and network devices) and the sup-
porting infrastructure (e.g., cooling equipment).”
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Figure 2.3: ICT’s emissions, assuming the 2020 level remains stable until 2050, and global
CO2 emissions reduced in line with 1.5 ◦C [4].

Data centers are very energy consumers [48]. IEA published an article indicating that
data centers and networks were responsible for almost 1% of energy-related GHG emissions
in 2020 [5]. Google data centers consumed the same amount of energy as the entire city of
San Francisco in 2015 [6]. Global data center electricity usage in 2021 was 220-320 TWh,
corresponding to 0.9-1.3% of the global demand [5]. For example, the domestic electricity
consumption of Italy was 300 TWh in 2021 [49]. In Ireland, electricity consumed by data
centers went from 5% of the total electricity consumption in 2015 to 14% in 2021 [50].
Denmark predicts tripling data center consumption, corresponding to 7% of the country’s
electricity use [51].

Despite the strong growth in demand, data center energy usage has only moderately
grown [5]. A reason that explains it is the improvements in IT energy consumption (in
hardware and software). These improvements allowed a boost in microchips’ speed with
a reduction in their power consumption, letting big data center companies cope with the
peak in demand. Gordon Moore predicted in 1965 (Moore’s law) that [52]:

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate can
be expected to continue, if not to increase. Over the longer term, the rate of
increase is a bit more uncertain, although there is no reason to believe it will
not remain nearly constant for at least 10 years.”

Even if he predicted it just until 1975, it is the case nowadays. However, the future is
uncertain, and the community is divided to confirm continuous efficiency improvements
[4]. While Andrae and Edler [45] and Belkhir and Elmeligi [46] expected an ending in
power-consuming improvements (indicated in Figure 2.2), Malmodin and Lundén [53] are
more optimistic. Malmodin and Lundén suggest that ICT’s carbon footprint in 2020 could
be halved by 2030. To achieve that, they consider two key factors. First, the improvements
will continue. However, all these improvements are not enough because of the increase in
usage (demonstrated in Figure 2.2). Second, the migration to renewable sources.

2.2 Renewable Energy Sources
The ICT migration to renewable energy sources (RES) is one of the factors that helped re-
duce the growth in GHG emissions despite the rapidly growing demand for digital services
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[5]. RES is one of the principal solutions to decarbonize electrical production [3, 11]. RES
is also named green energy, in contrast to brown energy from fossil fuels. Basically, RES
generates energy from natural sources, such as solar, wind, geothermal, hydropower, wave
and tidal, and biomass [9, 10, 11, 12, 13]. These natural sources have a low impact on
GHG emissions. For example, manufacturing is the stage with higher emissions for wind
and solar [54]. So, these components could produce energy with no or low GHG emissions.
The renewable term comes from the idea that these sources are constantly replenished.
On the other hand, fossil fuels are non-renewable because they need hundreds of millions
of years to develop. In the Net Zero Emissions by 2050 Scenario, RES is responsible for
one-third of the reductions between 2020 and 2030 [55]. Some countries focus on nuclear
power plants to produce energy. Even if nuclear power is a low carbon emissions energy
source, it introduces the risk of accidents and environmental impacts of radioactive wastes
[56]. It also consumes a lot of water.

The biggest challenge of implementing RES is its intermittence management [11]. Since
RES production comes from nature, it depends on the climate conditions. For example,
there is no power production from solar during the night. There are two approaches for
implementing RES production: on-site and off-site generation [57]. On-site generation
uses local renewable resources, and off-site takes resources available on the grid. In an off-
site generation, it is not possible to guarantee that the incoming energy is from RES since
the grid mixes all types of power generation [11]. Giant cloud providers (e.g., Google,
Amazon, and Facebook) invest in solar and wind power plants in an off-site approach
[8, 14, 58]. So, they could say that they provide RES to the grid with the same amount
that they expend. However, they transfer the RES uncertainty problem to third parties
[11]. For example, in a case with a peak in demand, they will use the power from the grid,
renewable or not. Therefore, they are still non-renewable-dependent.

2.3 Renewable-only Data center

Since data centers have a stable infrastructure (e.g., the number of servers tends to stay
constant, the network is stable, changes in the infrastructure are planned, etc.), they
are a good target to migrate to a renewable-only environment [11]. However, creating a
renewable-only data center imposes several challenges. In a data center using grid energy,
a manager receives the tasks from the users and defines a placement on servers and cores.
This manager focuses on maintaining a good QoS. However, in a renewable-only data
center, the manager also needs to control the available energy usage. In this kind of
data center, all the generation is on-site without backup from the grid. Nevertheless, the
production and demand can not match. Figure 2.4 exemplifies the mismatch between
the power demanded by a data center and power generation. This mismatch requires a
production, storage, or demand shift. This thesis focuses on the manager in a renewable-
only data center. We will present both electrical and IT elements needed for this kind of
data center.

2.3.1 Electrical elements

As mentioned before, different renewable sources can generate power. We focus on wind
and solar since they are the most prominent in current years [55]. For wind turbines, the
wind speed is crucial. Equation 2.1 gives the power output Pwt(t) at the moment t of a
wind turbine, given the wind speed v [59, 60, 61].
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Figure 2.4: Comparison of small data center load and the generation from a theoretical
photovoltaic in Belfort, France. Both load and production have the same average value
[11].

Pwt(t) =


0 v(t) ≤ vin or v(t) > vout

PW T,rated × v(t)−vin

vrated−vin
vin < v(t) ≤ vrated

PW T,rated vrated < v(t) ≤ vout

(2.1)

Where:

• Pwt(t): Power generated by a wind turbine (kW);

• v(t): Wind speed (m/s);

• vin: Cut-in wind speed (m/s);

• vout: Cut-out wind speed (m/s);

• vrated: Speed related to wind turbine nominal power (m/s);

• PW T,rated: Wind turbine nominal power (kW).

If the wind speed v(t) is lesser or equal to the cut-in vin or greater than the cut-out
vout, it does not produce power. It tests the cut-out vout to protect the generator. If
the speed v is greater than the cut-in vin and lesser or equal to the rated speed vrated, it
generates proportionally to the rated power PW T,rated and rated speed vrated. Finally, if
the speed v is greater than the rated speed vrated and lesser or equal to the cut-out vout,
it produces constant power PW T,rated.

Regarding solar production, the photovoltaic (PV) system uses solar panels to generate
power from solar irradiance. Equation 2.2 demonstrates how to calculate the output power
of a solar panel Ppv(t) [60, 61, 62].

Ppv(t) = PR,P V × (R/Rref )× ηP V (2.2)

Where:

• Ppv(t): Power generated by each PV panel (W);

• PR,P V : PV panel nominal power (kW);
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• R: Solar irradiance (W/m2);

• Rref : solar irradiance at reference conditions. Usually set as 1000 (W/m2) [60];

• ηP V : PV efficiency, including power eletronics and power point control [61, 62].

Some works simplify PV efficiency by applying a constant value [16, 60]. Equations
2.1 and 2.2 demonstrate that both wind turbines and solar panels depend on wind speed
and solar irradiance, respectively. So, the weather conditions drive how much power both
can generate.

Due to the weather intermittence, it is necessary to introduce storage elements [63].
These storage elements allow for shifting generation and consumption over time [11]. For
example, power coming from wind turbines during the night can be stored and used
during the day. Big companies are investing in massive storage elements. An example is
Google which is planning a 350 MW solar plant in Nevada connected to a storage system
with a maximal power of 280 MW (MWh not revealed) [14]. There are different types of
storage with advantages and drawbacks [64]. One of them is hydropower and underground
compressed air storage. However, this kind of storage is very geographical, geological, and
terrain dependent, which makes it inappropriate to use in data centers [11]. Another
type is the very short-term storage such as flywheels or supercapacitors. These storages
can output and absorb energy over miliseconds to minutes [64]. They are very suitable
for maintaining power stability but not for storing energy for a larger time horizon (e.g.,
hours or days) [11]. In this thesis, we focus on the batteries and Hydrogen Storage System
(HSS).

Batteries are electrochemical devices that store energy in chemical form [11, 64, 65].
They are very reactive because they do not need a warm-up to store/generate power. Bat-
teries are good for short-term storage scenarios (e.g., several hours, day/night cycles) [11].
However, they are inappropriate for longer periods due to their self-discharge rate and low
energy density [11, 65]. Historically, Uninterruptible Power Supply (UPS) added batteries
to avoid the server’s blackout, doing a soft shutdown that avoids several problems, such as
data loss, data corruption, work loss, etc. A problem with batteries is the degradation in
capacity and performance over time, requiring battery replacement [11]. A way to extend
battery life is by avoiding charging/discharging too extensively [25]. There are some meth-
ods to model the energy level inside the battery, such as energy-based, Current-based, or
State of Charge [11]. We focus on the State of Charge since it represents the percentage
of energy inside the battery according to its capacity (e.g., 100% means battery full and
0% dry). Xu et al. present results showing that maintaining SoC at a narrow range re-
duces battery degradation [25]. However, using a narrow range would reduce the battery’s
effectiveness because it can deliver less energy to deal with intermittence. So, the battery
SoC must be maintained within a range considering this trade-off. Equations 2.3 and 2.4
demonstrate how to calculate the State of Charge [16].

Ebat(t) = (Ebat(t− 1)× (1−σ)) + (Pch(t− 1)× ηch×∆t)− (Pdch(t− 1)× ηdch×∆t) (2.3)

SoC(t) = Ebat(t)
Cbat

× 100 (2.4)

Where:

• ∆t: Duration of t (h);

• Ebat(t): Energy in the battery at instant t (kWh);
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• Pch(t): Charging power (kW);

• Pdch(t): Discharging power (kW);

• σ: Battery self-discharge rate (%);

• ηch: Battery charge efficiency (%);

• ηdch: Battery discharge efficiency (%);

• Cbat: Capacity of the battery (kWh);

• SoC(t): State of Charge at instant t (%);

We can divide Equation 2.3 into three parts. The first part (Ebat(t − 1) × (1 − σ))
calculates the natural self-discharge, ignoring charging or discharging the battery. The
second part (Pch(t−1)×ηch×∆t) computes the energy stored in the battery according to
the charging power. The last part (Pdch(t− 1)× ηdch ×∆t) is similar but for discharging.
Both charging and discharging are not perfect with some losses given by ηch and ηdch. For
example, if we apply 1 kW this does not mean that, after one hour, we charged 1 kWh.
We will charge 1kW × ηch (where ηch < 1). Besides, we can not charge and discharge the
battery simultaneously, so if Pch > 0 then Pdch = 0, and vice-versa [16]. Equation 2.4
normalizes the SoC to percentage.

Hydrogen, likely batteries, is reversible energy storage, allowing it to charge and dis-
charge (using or creating hydrogen). However, it is more suitable for long-term storage
(e.g., over seasons), mainly because it can store large amounts of energy with very low
self-discharge [66]. A big limitation of this kind of storage is the lack of reactivity since
it demands a longer warming-up time. Furthermore, it includes performance degradation
concerns, low efficiency compared to batteries, high costs, and complicated safety mea-
sures [11]. Even with all these drawbacks, it is a good solution for storing energy during
abundant periods (e.g., summer) and using it during lacking periods (e.g., winter). Three
elements compose an HSS: electrolyzer, hydrogen tank, and fuel cell. The electrolyzer
produces hydrogen from electricity, according to Equation 2.5 [16].

Eez = Pez(t)×∆t = HHh2 ×Qez(t)
ηez

(2.5)

Where:

• ∆t: Duration of t (h);

• Eez: Energy put into the electrolyzer (Pez(t)×∆t);

• Pez(t): Power put into electrolyzer (kW);

• HHh2 : H2 higher heating value (kWh/kg);

• Qez(t): Electrolyzer H2 mass flow (kg);

• ηez: Electrolyzer efficiency (%).

This equation indicates how much hydrogen is added to the tank (Qez(t)) according
to the electrolyzer operating power (Pez(t)). On the other hand, the fuel cell transforms
hydrogen into electricity, according to Equation 2.6 [16].

Efc = Pfc(t)×∆t = LHh2 ×Qfc(t)× ηfc (2.6)
Where:
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• ∆t: Duration of t (h);

• Efc: Energy delivered by fuel cell (Pfc(t)×∆t);

• Pfc(t): Power delivered by fuel cell (kW);

• LHh2 : H2 lower heating value (kWh/kg);

• Qfc(t): Fuel cell H2 mass flow (kg);

• ηfc: Fuel Cell efficiency (%).

Similarly, this equation indicates how much hydrogen is removed from the tank (Qfc(t))
according to the output power of the fuel cell (Pfc(t)). To calculate the Level of Hydrogen
(LoH(t) (kg)) Equation 2.7, consolidates the result of the electrolyzer and the fuel cell.

LoH(t) = LoH(t− 1) + Qez(t− 1)−Qfc(t− 1) (2.7)

2.3.2 IT elements

While electrical elements are power producers (wind turbines and solar panels) or produc-
ers/consumers (batteries and hydrogen), the IT elements are entirely power consumers.
IT power consumption can be divided into two parts: IT hardware (e.g., servers, data stor-
age, and network devices) and supporting infrastructure (e.g., cooling equipment) [5, 67].
This thesis focuses on computing nodes (servers) and scheduling policies on the IT side,
so we do not consider data storage, network devices, and supporting infrastructure. There
are several articles dealing specifically with these components [67, 68, 69, 70, 71]. The
servers are powerful, high-performance machines designed to handle intensive computa-
tional tasks and ensure the efficient functioning of various applications and services. They
are optimized for reliability, scalability, and performance. Even with these optimizations,
they do not have a negligible power consumption [68, 72].

The server power consumption is divided into two parts: static and dynamic [68, 73].
Static power consumption is constant and given by current leakage present in any powered
system. Dynamic power is not constant and depends on computing usage. There are
different models to estimate power consumption, such as mathematical linear and non-
linear, linear regression, lasso regression, support vector machines, etc [72]. Equation 2.8
expresses a mathematical linear representation of static and dynamic power [72, 73].

Pcpu(t) = P static + (P dynamic × ucpu(t)) (2.8)

Where:

• Pcpu(t): Power consumption at moment t (W);

• P static: Static power consumption (W);

• P dynamic: Dynamic power consumption (W);

• ucpu(t): CPU usage (%) at moment t;

While Ismail and Materwala indicate that P static can be considered as the power idle
[72], Heinrich et al. demonstrate a slight difference between the power usage at fully idle
and when the real P static [73]. Power idle (or Pidle in Figure 2.5) is the CPU power usage
when all its cores are idle with nothing running. The processor enters a power-saving mode,
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reducing power consumption. On the other hand, P static is the power consumption when
at least one core is running something. Then, starting with P static, the relation between
the number of active cores and power is linear, as presented in Figure 2.5. The work of
Heinrich et al. is the base for a well-known data center simulator named Simgrid1 and its
evolutions. This article also indicates that P dynamic depends on the application and the
server frequency. Figure 2.5 shows the linearization of the power consumption according
to the frequency for the same application. Setting different frequencies is possible through
the Dynamic Voltage and Frequency Scaling (DVFS) technique. Putting the server at
a lower frequency reduces the server’s power consumption (as illustrated in Figure 2.5).
However, it also decreases the server’s speed. Nevertheless, DVFS is a possible solution
to reduce energy consumption in moments with lower power available.

Figure 2.5: Power consumption on a GRID5000 server when running the same application,
but varying the frequency and the number of active cores [73].

Another possibility, more drastic, is putting the server to sleep. In the sleep state,
the server is unavailable but consuming the lowest possible. Besides being inaccessible,
another consideration in the sleep state is that sleep transitions (on→off and off→on) are
not instantaneous and waste energy. Raïs et al. present a Dynamic Power Management
(DPM) solution [74]. This DPM estimates a Twait threshold that when the server is idle
for more than Twait seconds, it is more energy-efficient to switch the server off. Equation
2.9 represents their idea.

Twait = max(EOnOff + EOffOn − (POff × (TOnOff + TOffOn))
Pidle − POff

, (TOnOff + TOffOn))

(2.9)
Where:

• Twait: Waiting time before putting the server to sleep (s);

• Pidle: Power consumption when the server is unused, but powered on (W);
1https://simgrid.org/
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• POff : Power consumption when the server is off (not null and lower than Pidle) (W);

• EOnOff : Energy consumed during the On→Off transition (J);

• EOffOn: Energy consumed during the Off→On transition (J);

• TOnOff : Time spent by the server on On→Off (s);

• TOffOn: Time spent by the server on Off→On (s);

A data center’s main objective is to execute users’ applications. Running applications
in the servers variates the server’s CPU usage ucpu. Data centers receive plenty of different
application types. We can separate these applications into two big categories: services and
batch [11, 75]. Services are applications that interact with different clients. These clients
make requests answered by a running service. Each request has a low processing time,
but the set of these requests can be very CPU-consuming [76]. In addition, the service
must answer the request as soon as it arrives. On the other hand, batch applications (or
parallel jobs [27]) do not run interactively. While services can run indefinitely, batches
have a start and end time. Usually, these applications aim to solve complex problems,
such as weather prediction, optimization problems, and simulations, being very long and
CPU-consuming [76]. Batch jobs are more flexible considering the moment to execute
them, allowing the batch scheduler to define the best moment in the future to run them.
Both services and batches demand different approaches and algorithms to deal with them.
This thesis focuses on batch applications. An batch job is composed by [11, 77, 78]:

• Submission time: The moment when the user sends the job;

• Requested resources: The resources demanded by the job, such as the number of
cores, servers, memory, etc;

• Estimated execution time or walltime: The user indicates how long the job executes.
If the real execution time is equal to the walltime, the scheduler kills the job.

One of the most important components in a data center is the scheduler. The scheduler
is responsible for managing all the IT elements. The scheduler actions are:

• Job filtering: The scheduler must accept or reject incoming jobs from users. For
example, it can reject a job because it is too big to process in this data center;

• Waiting queue management: All the accepted jobs wait in a queue. The scheduler
uses this list to take the jobs to process. Additionally, the scheduler can sort the
list by any metric, such as size, importance, arrival (e.g., First-Come, First-Served),
etc.;

• Job placement: The scheduler selects a server to process a job from the waiting queue.
The server must match the job’s resource requirements (e.g., memory, processors,
storage, etc.);

• Execution management: The scheduler can capture metrics of the execution of the
jobs, such as execution time, energy usage, CPU usage, job state, etc. These metrics
can help in decision-making. It can interrupt the job execution, killing, suspending
(to finish later), or migrating it. In addition, it should kill the jobs with execution
time higher than the walltime given by the user, avoiding a job with infinity execution
using the resources;
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• Server configuration: In a power-aware system such renewable-only data center, the
scheduler must set the server’s states. The server state can be sleeping or running
at some speed (through DVFS). So, it can turn on servers to deal with new jobs or
shutdown or change the processor’s frequency to save energy;

All these responsibilities make the scheduler a crucial element of optimization in a data
center. It is even more important with the introduction of renewable-only power con-
straints.

2.4 Sources of Uncertainty

After describing renewable-only data center elements, in this section, we detail the sources
of uncertainty. First, we start presenting the uncertainty from electrical components
due to weather conditions. After that, we describe the uncertainties from server power
consumption and batch jobs. Finally, we discuss the challenges in dealing with all these
uncertainties.

2.4.1 Weather Uncertainties

As presented in Section 2.3.1, the objective of the electrical components (solar panels
and wind turbines) is to generate power. So, they transform natural renewable resources
into energy. Due to the intermittence of these renewable resources, the output power
is also intermittent [79]. Regarding solar panels, the output power is calculated easily,
using Equation 2.2, in a "clear-sky" condition [80]. "Clear-sky" considers an exposition
total of the panels to the sun. However, solar irradiance is impacted by several weather
conditions, such as clouds, aerosols, and other atmospheric constituents [80]. Besides, the
panel efficiency is temperature dependent. Concerning wind turbines, the power output
depends on the wind speed (see Equation 2.1). The production has lower and higher wind
speed thresholds, meaning that even too slow/fast wind will not produce power.

Due to the renewable intermittence, it is crucial to forecast weather conditions to
estimate future power production. Several works propose ways to predict these conditions
[80, 81, 82, 83]. Two key terms are important in renewable production: Predictability
and Variability [79, 83]. Predictability means the ability to anticipate the availability of
a generation resource [79]. For example, solar irradiance is more predictable than wind
speed because the forecast accuracy on clear days is high, and satellite data tracks precisely
the direction and speed of clouds. On the other hand, due to the erratic nature of the
atmosphere, there is randomness in wind power production [82]. Variability indicates
the variation over time in production [79]. Both wind and solar can vary. For example,
the wind has high variability because it will deviate from 0%–100% over a day. Another
element that influences forecast accuracy is the time horizon. For example, the next five
minutes are more predictable than the next three days.

Besides the weather conditions, the material can also introduce uncertainties. Two
elements (wind turbines and solar panels) of the same model can produce energy differently.
Besides, different battery cells and hydrogen components have different efficiency. Another
aspect is the impact of aging on the elements efficiently. Furthermore, these elements can
have failures, reducing the total power production. Therefore, it is hard to model the
exact electrical elements’ power production, charge, and discharge.
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2.4.2 Server Uncertainties

Estimating the real power consumption of a server is not trivial. Several works try to find
a model to describe energy consumption or even apply machine learning to define it [67].
Even two machines with the same configuration can consume differently [84]. It is also
true that distinct applications can have completely different energy consumption, mainly
because they use the CPU differently [84, 85]. Equation 2.8 presents a simplification of
server power consumption. However, this equation is still applicable since different servers
can have different dynamic (P dynamic) and static (P static) power. Considering that energy
consumption is the integral of Equation 2.8, different applications can have distinct CPU
usage (ucpu) over time. Even if the equation is still appropriate, predicting its parameters
is challenging. For example, the CPU usage (ucpu) of a job can vary between executions
(e.g., due to different application parameters). Furthermore, new applications do not have
records to estimate their usage. Considering the static power (P static), it is known that it
can vary according to the processor’s heat [86].

2.4.3 Workload Uncertainties

Besides impacting server consumption, jobs have their own uncertainties. A workload (set
of jobs) can be predicted as a load mass or resource usage (e.g., CPU usage over time)
[76, 87]. These predictions help the scheduler to define how many machines are needed
to cope with the demand load. However, the exact jobs’ arrival is very difficult to predict
and can lead to energy waste. For example, if a server is available expecting a job, but the
job does not come or arrives late, this server wastes energy unnecessarily. The submission
is one of the job uncertainties. The second job uncertainty is the execution time. The
scheduler receives jobs with requested resources and walltime. So, the scheduler will find
a placement for each job to match the requested resources during the walltime. The
walltime is a user expectation of the execution time that can be overestimated [78]. An
overestimated walltime reduces the effectiveness of the scheduler because it will reserve
more resources than necessary for the job [77, 78].

2.4.4 Dealing with Uncertainties

After describing the uncertainties in electrical and IT elements, we present some ways to
deal with them. The renewable-only data center global problem is a scheduling problem
under power constraints. Therefore, the problem includes:

1. Scheduling: The first objective of a data center is scheduling jobs. The scheduler
must choose the actions (from Section 3) to deal with the arriving jobs. The uncer-
tainty comes from the jobs;

2. Power : The second objective is finding the best power decisions for the electrical
part, mainly the energy storage. The scheduler can decide to use more or less energy
from batteries. For example, the scheduler can use more energy from the battery to
finish a job earlier. In addition, it must adapt the power consumption according to
over/underproduction. Finally, it must respect the state of charge constraints, such
as letting the SoC at a safe level;

3. Server : Finally, the scheduler must translate power consumption to server configu-
rations. Therefore, it must decide which machine impact when there is more or less
energy.
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An optimization problem for a renewable-only data center must consider all these el-
ements. We can divide the problem into offline and online. Offline optimization uses
predictions (from weather and workload) to optimize the decisions. Some methods are
available to estimate power production and demand, such as Artificial Neural Networks,
Support Vector Machines, Markov Chains, Regression Models, Autoregressive Models,
and a combination of the methods, such as using genetic algorithms to optimize a neural
network [76, 80, 82, 83, 87]. Then, this optimization finds the best approach to match
production and demand (e.g., shifting the load, using more power from batteries, rejecting
jobs, etc.). Finally, the offline optimization result is applied to the real scenario of produc-
tion and demand. The idea is to show that even under the uncertainties, the optimized
result is good enough. However, offline optimization does not react to real events. For
example, it maintains the plan even in a scenario with under/overproduction. Further-
more, the power demand for the workload is treated as a mass, even if in practice a data
center receives jobs. This workload simplification helps to solve the optimization problem
since the scheduling problem is an NP-Complete [88, 89]. Some works propose offline
scheduling, knowing all information from the jobs. However, this is unrealistic in reality
[88].

On the other hand, online optimization does not know any future events (e.g., job
arrival and power production), discovering them on the fly. Since online just knows actual
events, it can not find the optimal global solution. So, online reacts to the incoming
events optimizing the problem locally. Differently from offline, online works in real-time
and can not take too long to find a solution. This real-time reaction complicates finding
a near-optimal global solution. Besides, the uncertainties are reduced, since the online
knows the actual events. However, future events are yet uncertain. Sometimes online
optimization can introduce fast predictions, but they have a small time horizon (seconds
to minutes). To sum up: offline uses predictions to optimize, but it is not reactive; online
reacts to actual events, but without global optimization. Then, a third possibility emerges:
A mix between offline and online. This combination allows taking the best from each side
(prediction and global optimization from offline and reactivity from online).

There are several methods to optimize this problem. We can divide them into five
groups: (i) exact algorithms; (ii) heuristics; (iii) machine learning; (iv) metaheuristics;
and (v) game theory.

The exact methods consist of creating a mathematical model of the problem. The
model defines an objective function. It is possible to optimize the objective function
through Linear Programming (LP). Solvers such as CPLEX2 and Guroby3 are used to
find the optimal. The drawback of this approach is its high computation time in large
problems, especially if one or more variables are integers (called Mixed Integer Linear
Programming - MILP). So, it is not suitable for online optimization, but it is the best
approach for offline (when the solving time is not a constraint).

Heuristic is a problem-solving strategy employed in algorithm design that aims to effi-
ciently find approximate solutions by making locally optimal choices at each step, without
considering the overall global optimality. Heuristic operates by iteratively selecting the
most advantageous option based on defined criteria or objective functions. Although it
may not guarantee the optimal solution, the heuristic’s simplicity and computational ef-
ficiency make it particularly useful for tackling large-scale problems. Two examples of
heuristics for job scheduling are First Come First Served (FCFS) and Easy Backfilling.
Figure 2.6 demonstrates the differences between both algorithms. In FCFS, the jobs are

2https://www.ibm.com/fr-fr/analytics/cplex-optimizer
3https://www.gurobi.com/
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placed in the order they arrive. The greedy heuristic Easy Backfilling approach tries to
fill the hole in scheduling with small jobs (J4 in the figure). Easy Backfilling is highly
dependent on walltime estimation in this backfilling step, highlighting the impact of the
uncertainties [77, 78]. Walltime is the maximum execution time for the job given by the
user. The user can overestimate this walltime, making the scheduling challenging [78].
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Figure 2.6: Comparison between FCFS and EASY Backfilling scheduling heuristics.

Machine learning is a subfield of artificial intelligence that contains algorithms capa-
ble of automatically learning from data and improving performance on specific tasks. In
some cases, they emulated the process of human learning. For example, Artificial neural
networks simulate the neural network from the human brain. Another example is Rein-
forcement Learning (RL), which considers the trial-and-error approach, where an agent
explores an environment, takes actions, and receives feedback [90]. Three components
compose an RL model: state, action, and reward. Let’s exemplify it by using RL to
define the website content. A website can apply RL to define which content to display
for the user. The idea is to discover the user’s subject preferences (e.g., sports, politics,
technology, etc.) The state is the information about the user, such as age, previous sub-
jects read, etc. Using this state, the RL evaluates it and chooses the articles to show to
the user. The chosen articles’ subjects are the actions. Finally, the reward can be 1 if
the user clicked on the article and 0 if the user did not click on it. RL algorithm tries to
maximize (in this case) the reward, increasing the number of clicks. Since RL does not
know the user’s behavior, it tries some articles. The clicked articles reinforce the user’s
subject preferences. Then, the following process is performed at each decision moment
(see Figure 2.7):

1. RL receives a state from the environment;

2. RL verifies which action to take for this state;

3. RL applies the action in the environment;

4. The environment returns a reward for this action;

5. RL uses the reward to calculate the relation between state and action;

6. The environment goes to a new state, restarting the process.

The RL interacts with the environment in this way several times. RL uses the feedback
(reward) to learn which are the best actions for the states. Another important aspect is the
exploration-exploitation. Since the RL agent does not know the environment in the early
interactions, it starts exploring the different actions in the state. After some interactions,
the agent stops the exploration and starts to exploit the actions with higher rewards in the
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Action

Agent

State Reward

Environment

Figure 2.7: Agent learning process in an environment. At each step, the agent verifies the
actual state and chooses an action. The environment executes the action and returns a
reward. The agent learns the reward obtained in that state for that action.

past. Different approaches can be used to model the exploration-exploitation transition,
which also depends on the RL algorithm.

Metaheuristics are another kind of algorithm to solve hard optimization problems. The
"meta" term indicates that they are "higher level" heuristics, different from the problem-
specific heuristics [91]. They are nature-inspired (based on some principles from physics,
biology, or ethology). An example is the Genetic algorithm which simulates the evolu-
tion and mutation process from biology. Another example is Particle Swarm algorithms
inspired by the collective behavior of social insect colonies and other animal societies.
Generally, metaheuristics are used to solve problems with no satisfactory problem-specific
algorithm [91].

Finally, Myerson defines game theory as “the study of mathematical models of conflict
and cooperation between intelligent rational decision-makers” [92]. Game theory uses
mathematical techniques to make decisions in situations with two or more individuals and
where the decisions impact the welfare of each individual. Even having the word "game" in
its name, it is not only related to recreative activities, and it could be applied to different
situations [92, 93]. Therefore, like in a game, a set of actions is given to each individual,
that needs to make their actions using their interests. The individual’s actions return
gains or losses (depending on the model) for all "players". This kind of algorithm is known
for solving conflict problems.

In this thesis, we apply exact algorithms, greedy heuristics, and machine learning. A
game theory can be applied between offline and online parts (the following section explains
its usage). In the offline part, we applied exact algorithms to find optimal solutions. For
online, we propose heuristics to solve the specific problem. We also attempted to introduce
RL to learn the environment’s behavior. Since the online problem needs a fast solution
for a specific problem, metaheuristics were not studied.

2.5 Datazero2 Project

The Datazero2 project (project from Agence Nationale de la recherche number ANR-
19-CE25-0016) aims to integrate all IT and electrical elements in a feasible architecture
[24]. This integration englobes the sizing of all elements (e.g., number of serves, model of
wind turbines and solar panels, battery and hydrogen capacity, etc.), the interconnections
between electrical and IT devices, power and workload predictions, message format among

24



2. Context and Related Work

all elements, and decision processes. Figure 2.8 presents the architecture of the project.
The figure’s bottom part illustrates the IT (nodes/servers) and power (battery, hydrogen,
wind turbines, and solar panels) elements. All the components (servers, electrical elements,
decision modules, etc.) communicate through a Message BUS. On the decision side, it is
possible to divide the decision into two main parts: offline and online. Offline consists
of IT Decision Module (ITDM), Negotiation Module (NM), and Power Decision Module
(PDM). Negotiation is a crucial step in Datazero2 architecture. A renewable-only data
center introduces several constraints and decision variables. On the PDM side, it must
approximate demand and production while considering long-term storage elements. For
example, PDM can provide more power from hydrogen in a case with low renewable
generation. However, PDM must evaluate the impact of its actions since the energy of the
storage is finite. On the other hand, ITDM maximizes the Quality of Service. Thus, it
demands more energy to run more servers at faster speeds. Both PDM and ITDM make
their decisions using predictions (weather prediction for PDM and workload prediction for
ITDM).
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Figure 2.8: Datazero2 architecture [24].

NM is between PDM and ITDM, trying to find an agreement. NM works iteratively
in several rounds, using a game theory algorithm. On each round, both PDM and ITDM
propose a power envelope to NM, considering the objective of each module. A power
envelope is a time series of the power production from the sources in a time window.
While PDM tries to reduce the power envelope to control the storage, ITDM increases
it to run more jobs faster. NM compares both envelope propositions and returns a new
one. Then, each module verifies if they can use the proposed power envelope. They run
several rounds until both agree or reach a timeout. At the end of the negotiation game,
each module creates a plan for the IT and electrical elements, respecting the power profile.
ITDM produces the IT Plan and PDM creates the Power Plan. This step ends the offline
part.

The only decision module that works in online mode is Online Decision Module (ODM).
This module is the focus of this thesis. It receives both plans from the offline modules.
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ODM can control all the IT and electrical elements. Besides the plans, ODM also receives
through the message BUS the real events, such as power production and job arrival.
Therefore, ODM applies the plan, making modifications according to the real events. For
example, in a lower power production situation, ODM can reduce IT power usage to match
production and usage. The following chapters will explore the algorithms to implement
ODM.

2.6 Literature Review

This section presents works to solve the issues related to a renewable-only data center.
Several works introduce data centers powered fully or partially by renewable sources. Ro-
stirolla et al. propose an extensive survey about the challenges and solutions of renewable
sources in data centers [11]. The survey highlights the importance of IT and electrical
(production and storage) sizing. An overestimated sizing can be too expensive to buy and
manage, while an underestimated sizing can not be enough to cope with the workload
demand. In this thesis, we do not focus on the sizing, considering that the sizing is known
a priori. The survey also indicates open challenges in infrastructure. They present two
open challenges: power redundancy and cooling. Power redundancy allows to switch the
power provider in case of failure. However, it introduces infrastructure challenges (e.g.,
failure detection, different redundancy architectures, energy storage architecture, etc.).
Several articles study the cooling system of a data center, providing different approaches
for controlling the room temperature of the servers. Some solutions include thermal-aware
scheduling and free-cooling approaches. Both infrastructure problems are out of our scope
in this thesis. Another aspect is related to geo-distributed data centers. A geo-distributed
data center increases server availability by using geographically distributed power produc-
tion. Even if this is a hot topic, we consider a single data center with local production in
this thesis.

Finally, the survey also presents some predictions and online decision challenges. The
authors indicate that mixing prediction (workload and power production) with online
decisions can provide a more robust solution. Also, they highlight the importance of
studying the impact of uncertainties in the solution, adding reactiveness in the decision-
making. Therefore, we verify the decisions on both offline and online levels for single data
centers. Some articles are not renewable only but introduce renewable in the decision
process. We divided the articles into three groups: offline only, online only, and mixed
decisions. The works are presented in chronological order inside each group.

2.6.1 Offline Decisions Only

Gu et al. [94] proposed an Integer Linear Programming for minimizing the carbon emis-
sions of a data center while meeting the scheduling QoS (response time), and considering
distributed data centers. Their LP finds the optimal solution to meet a response time
constraint, the minimal number of servers, and the best moments to make the server
available (e.g., when there is more renewable production). They used an M/M/n model
to schedule service requests. They inserted an electricity budget as a constraint. Kassab
et al., in [95], [96], and [97], defined an offline scheduling model to minimize the makespan
under power constraints (renewable-only data center). The works were developed in the
context of the Datazero project. They proposed heuristics and metaheuristics to find the
optimal solution to the NP-Hard scheduling problem. The works [95] and [96] focus only
on schedule, maintaining the server availability static (e.g., the server state is previously),
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while in [97], the authors take a step further, adding server decisions (machines on/off).
The server decisions are to turn on servers when needed (and there is power available in
the power envelope) and shut down idle servers. All three works ignore power decisions,
such as using more or less power from batteries, or online uncertainty.

In [98], the authors created a weighted average scheduling algorithm (WALECC). This
algorithm receives a Directed acyclic graph (DAG) of a parallel application and defines
the job placement. This article is unrelated to renewable energy. However, the problem
of a system with energy constraints is similar to a renewable-only data center. WALECC
mixes heterogeneous processors with DVFS decisions to find the optimal placement (con-
sidering makespan) respecting the energy constraints. WALECC works offline because it
knows all the jobs in advance, having the information of each job execution time on each
processor/speed. Since it receives the relationship between the jobs through a DAG, it
respects the jobs’ precedence. Lu et al. [99] presented a robust optimization for schedul-
ing and power decisions aiming to minimize energy costs. Their scheduling model knows
the execution time of each job at different nodes (servers). The authors introduced re-
newable production uncertainty in the model. Since the uncertainty introduces a random
variable, they created a threshold-based algorithm to choose the solution considering the
uncertainty distribution. The cost minimization is solved using Linear programming on
MATLAB’s MOSEK optimization toolbox.

Caux et al. [100] introduced RECO, a Genetic based algorithm. RECO aims to mini-
mize jobs’ due date violations in a renewable-only data center. In an offline way, RECO
defines the optimal DVFS frequency to run batch jobs and the server states (on/off).
Therefore, it works on both scheduling and server configuration. RECO applies a genetic
algorithm, creating several scheduling possibilities (pair of job and server) as chromo-
somes. It applies crossover and mutation, selecting the best-fitted genes. They proposed
two fitness functions (to choose the genes). First, a function to reduce the number of due
date violations, and the second one uses a weight-based approach, mixing due date and
power consumption. The exact processor, frequency, and starting time are assigned using
a greedy heuristic. [21] is an evolution of [100], where Caux et al. proposed a new heuristic
named MinCCMaxE and a heuristic for degradation (jobs taking more time to finish and
services not answering all users’ requests). The objective is to maximize the profit from
the batches and services execution. Both services and batches are composed of different
phases. Services run all the time window duration. On the other hand, MinCCMaxE
must find the best placement for batches. MinCCMaxE cross-correlates task and proces-
sor loads (both as time series). If it does not find placement (due to power constraints),
it delays or degrades the jobs. The degradation step considers the impact on the profit.
Both works ([100] and [21]) were developed in the context of the Datazero project.

Haddad et al. [16] modeled a Constraint Satisfaction Problem to define power decisions
in a renewable-only data center. This work considers wind and solar as renewable pro-
duction and battery and hydrogen as energy storage. The objective is to find the power
decisions (e.g., battery charge, hydrogen discharge, etc.) that approximate the power pro-
duced and demanded. They defined target levels of battery and hydrogen hard constraints.
So, the decision variables are battery and hydrogen usage and a relax factor applied to the
relationship between produced and demanded. The model considers all losses in power
generation, such as battery discharge rate, battery charge/discharge efficiency, hydrogen
charge/discharge efficiency, etc. This work is also in the context of the Datazero project.
In [101], the authors proposed a system for matching renewable production and demand.
They predicted renewable generation and energy demand using Long Short-Term Mem-
ory (LSTM). Renewable production comes from wind turbines and solar panels, using
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brown energy as a backup. The model uses the result of the predictions to map renewable
sources to physical machines. They solved the problem using integer linear programming
and Deep Q-Network. Deep Q-Network is an extension of the Reinforcement Learning
algorithm Q-Learning.

Wiesner et al. [15] created Cucumber, an admission control policy. The authors use
probabilistic forecasts to predict power demand (from workload) and production (from
renewable sources). Using both predictions, they calculate how much energy is free to use
(named freep). The freep is a time series of renewable production minus power demand.
Since probabilistic forecasts results in several predictions, they introduced a parameter
to tune the forecasts’ optimism. Then, they evaluate the freep time series to accept or
reject new jobs in an FCFS fashion. They verify if placing a new job using freep capacity
would violate the deadline from the other jobs. If so, they reject the new job. The
idea is to maximize the peak of renewable production without adding batteries. Yuan
et al. [71] proposed an optimization problem to minimize the operating cost of the entire
data center. The data center is powered by renewable energy coming from wind turbines
and solar panels, energy storage, and the grid. Their model considers the possibility of
selling and buying energy to the grid. For solar and wind turbines, the authors take
into account the operation and maintenance costs. They modeled the IT part considering
network equipment and cooling system. Similar to other works, they consider batches and
services, considering their delay characteristics.

2.6.2 Online Decisions Only

Aksanli et al. [102] presented an online heuristic that uses short-term (30 min) forecasts
for green energy in the scheduling process. The green energy comes from wind and solar.
The scheduler has two queues, one for services and another for batch. Services will run
independently of the green energy available, using brown if needed. Then, they predict the
green energy available in the next period. Using this prediction, they estimate the number
of slots available to run batch jobs. If the number is greater than the currently available
slots, they schedule new jobs and spread the remainder to the running ones. If this number
is smaller, the scheduler deallocates some jobs (reducing slots, killing, suspending them,
or using brown energy). The authors compared their predictive heuristic with a reactive
scheduler that allocates servers according to the energy available. Their solution achieves
3 times better green energy usage and reduces the number of canceled tasks up to 7.7
times.

The authors in [22] presented Blink, a renewable-only manager which fastly changes
the state (on and off) to meet a power constraint. For example, if the power supply
drops by 10%, blink deactivates the servers 10% of the time. They propose this manager
completely off-grid. However, the applications must have the ability to stop and resume
their execution instantaneously, which is not the case in the majority of the applications.
They focused mainly on memcached applications, a general-purpose distributed memory-
caching system. These applications manage a distributed database, answering other client
applications. memcached applications have very low execution time since they only have
to answer the requests with the demanded data. Applying this policy in applications with
higher execution times can lead to execution interruption. They focused in maximize the
percentage of answered requests (hit rates).

In [18], the authors proposed a parallel job scheduler, named GreenSlot, for data centers
powered by solar energy but using the grid as backup. Their scheduler uses predictions of
solar generation to place jobs in the moments with higher production. If it is impossible
to place all the jobs in these moments, GreenSlot finds the moments where the grid energy
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price is lower. GreenSlot saves energy by deactivating idle servers. It creates several slots
with the cost. GreenSlot calculates the cost assuming zero for green and the grid price
for brown. It assigns penalty costs on slots that cause the job’s deadline, avoiding them.
The authors indicated some limitations in their work, such as high job rejection or missed
deadlines in data centers with high utilization.

Li et al. [103] created a framework named GreenWorks to manage power and server
decisions in a data center powered by renewable energy and using battery and grid as
backup. They defined a heuristic to manage power generation in four stages. Stage I is
when renewable generation is enough to ensure full-speed server operation. In this stage,
the renewable production excess is stored in the batteries. Stage II is active when the
production is inadequate to provide the power demanded. Here, the heuristic balance
between discharging the battery and impacting the jobs (through DVFS). If this stage
is not enough to handle the power mismatch, the system enters stage III. In this stage,
GreenWorks tries to decrease load power more, use UPS energy if it has power, and, the
last resource, it uses the grid. They only use power from the grid for the same amount of
energy that they exported previously. So, they accumulate a budget of net green energy
exported. If it is not enough, stage IV shuts down the servers. GreenWorks does not use
predictions and relies on the first-come-first-serve (FCFS) scheduler.

The authors in [104] created an opportunistic scheduling heuristic. This heuristic
tries to minimize brown energy usage by mixing batteries and solar production. The
heuristic takes into account services and batches. When the energy consumption is higher
than the solar supply, they suspend batch jobs and consolidate the Virtual machines
(VMS), switching off the servers. The scheduler takes energy from the battery before
going to the grid. Just after the batteries dry, it starts to consume brown energy. They
implemented a First Fit Decreasing (FFD) scheduling algorithm. Grange et al. [105]
proposed an algorithm named Attractiveness-Based Blind Scheduling Heuristic (ABBSH).
ABBSH introduces a negotiation model for electrical and IT systems, where both know
only their own model. Negotiation helps to deal with different objectives. For example, the
objective of the electrical system is to reduce brown energy usage, while IT is to respect
the System Level Agreement (SLA) criteria. Both calculate a normalized metric named
attractiveness. This metric represents the quality of a given proposal. So, for each job,
it calculates the attractiveness of its placement in the IT and electrical context. Then,
a function defines, among all possible placements, which one has the best attractiveness.
The authors select the best attractiveness using a simple weighted sum of both (electrical
and IT), a weighted sum of the hyperbolic sinus of both, or a fuzzy-based one. In this work,
the authors consider the electrical part as a black box without making power decisions.

Haghshenas et al. [106] developed a heuristic aiming to minimize energy costs. The
energy cost (from the grid) is the IT and cooling usage minus solar generation. This
heuristic considers services and batches. It always schedules the services in the FIFO
approach. It finds the best moment to place batches using best-fit and considering solar
production and energy price. Even online, the authors assume knowing all the jobs for
the next period. They used solar production predictions to make decisions for the next
time slot. They consider the possibility of selling solar production to the grid. They do
not consider power on/off transitions, assuming the IT energy consumption is zero when
the servers are not running jobs. Finally, the authors updated their algorithm, adding
a simplified battery model. The battery will store the surplus solar generation to use
later, reducing the energy cost. [107] proposed an online heuristic to schedule jobs in
servers. The main objectives are to minimize the makespan, energy cost, and overall cost
and maximize renewable usage. The authors separated the heuristic into three phases.
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First, they estimated the completion time and cost for the execution of a user request on
each data center. The cost considers if the data center is powered by renewable or non-
renewable. The second phase calculates the fitness value, normalizing completion time
and cost. Finally, the last phase takes the data center with higher fitness to place the
user request. The work considers that all the data centers are available all the time (using
renewable or not).

In [20], He et al. created an online scheduling heuristic to minimize the energy cost of
a data center called ODGWS (Online workload Scheduling algorithm with Delay Guar-
antee). The authors take into account solar, wind, and grid energy. They simplified the
job description to be the power requested at each time step by services and batches. The
scheduler must deliver the services’ power requested in the same step that they arrive.
On the other hand, the scheduler can delay the batches’ power demand until a fixed time
horizon. So, even if the authors named their algorithm workload scheduling, the decisions
are which source to use to provide the energy to the jobs. They do not consider the
placement problem (e.g., which server will receive the jobs). Besides, they assume that
the servers are available all the time. Their problem is a constrained stochastic problem
solved by dynamic programming, but they translated it into an online heuristic, which
can work without knowing future events.

Peng et al. [108] designed REDUX3 an energy management system with a renewable-
aware scheduler. REDUX3 uses energy from different sources, such as wind turbines,
solar panels, the grid, diesel generators, and batteries. The system focuses on batch
tasks, allowing them to postpone jobs to match production and demand. They added
the grid to deal with uncertainties. They created three energy states: Outage Case,
Stable Case, and Fluctuate Case. An Outage Case is when the renewable supply is at
the minimum, a Stable Case is when the renewable supply exceeds the maximum level,
and a Fluctuate Case is when the previous energy state was Outage Case but is stable
now. In addition, they introduced three key components. First, the scheduling window
module defines the number of available processors according to the energy case. Second,
the scheduling algorithm uses a backfilling algorithm to place the jobs in the available
processors. This scheduler receives a job priority, considering it in the decision process.
Finally, they do a job power profiling, providing data to create a job power model.

In [19], the authors defined an online energy-aware scheduling algorithm using deep
reinforcement learning. The main idea is to use the grid power when the carbon emission
rate is lower. They used a DAG to define the different tasks of a batch job. The DAG
indicates when a task can start (e.g., task 2 can run after task 1 is finished). A typical
reinforcement learning algorithm has three key elements: state, actions, and reward. The
state in this article is given by server usage, task queue, electricity price, and emission
rate. The task queue contains only the tasks ready to run, considering the job’s DAG.
The actions are the tuple of task and server, considering the feasibility of this tuple (if a
server can not receive the task, it is not a feasible action). Finally, the reward is carbon,
cost, and QoS. They do not introduce server decisions, so the servers are always available.

2.6.3 Mixed decisions

The only work that mixed offline and online decisions is [23]. In the offline part, the
authors predict renewable energy production. They use these predictions, energy storage,
and brown energy to fix the number of resources. After that, online makes the scheduling
decisions considering the offline server configuration. They created a deep reinforcement
learning algorithm to define the jobs to run. The state is composed of tuples containing
both the resource availability and the array of job metadata. The job metadata includes
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the price that the user is willing to pay, QoS, expected finish time, duration, and resource
requirements. The actions are which job run, suspend a job, or do nothing. So, they can
suspend a job, placing a job with a higher price first. This suspended job will run later.
Finally, the reward is the total value obtained by running the jobs respecting the QoS. The
authors indicate that power decisions would transform their problem into a multi-criteria
optimization problem. These power decisions include changing battery usage and selecting
power sources. They claimed that this multi-criteria optimization is future work. They
evaluated the impact of the power supply intermittence on the algorithm, but DRL does
not consider it in the model.

2.6.4 Discussion and Classification of the Literature

Table 2.1 presents all the works presented in the previous section. We classified them
considering 5 criteria:

• Objective: It describes what each article aims to optimize;

• Electrical infrastructure: It synthesizes the power sources, such as solar panels, wind
turbines, batteries, hydrogen, diesel generator, and the grid;

• Offline decision: The type of decisions in offline way. We classify these decisions into
scheduling, server, and power decisions. Scheduling decisions focus on placing the
jobs, deciding the order, rejecting jobs, selecting the servers, etc. Server decisions
are the decisions about the availability of the servers, such as server state (on/off)
or speed (DVFS). Power decisions define power usage (e.g., charging/discharging
batteries);

• Online decisions: Same as offline decisions, but in online mode;

• Method: The method used to solve their problem (e.g., Heuristic, Exact algorithm,
etc);

It is possible to notice that several works introduce renewable energy in data cen-
ters environment. As mentioned before, renewable sources provide clean but intermittent
power. The majority of works add a connection to the grid, aiming to reduce the impact
of the intermittence. However, these approaches maintain the brown energy dependency.
Some of the works with the grid have as their objective to minimize energy costs, adding
the possibility of selling energy to the grid. This could lead to a solution where selling
energy is more attractive than running jobs due to price fluctuations. As presented in this
chapter, migrating entirely to renewable sources is mandatory. Several works without grid
connections are from the Datazero project. They are pertinent works and are the base of
this thesis. The only outside Datazero no-grid works are from Wiesner et al. and Sharma
et al.. The first one focuses on using the peak of renewable sources to schedule new jobs.
In our work, and other works from the literature [16, 23, 71, 103, 104, 106, 107, 108], these
peaks are stored in energy storage. These energy storages (e.g., batteries or hydrogen)
help to smooth the RES intermittence but introduce another decision level. The work from
Sharma et al. deals with web service applications by blinking (deactivating/activating) the
servers. This behavior demands small applications (low execution time) or applications
with the possibility of fastly stopping and resuming their execution.

Usually, the works with energy storage only apply it as an energy cache. So, they
can dry or overflow these resources, without good management. Maintaining the state of
charge of batteries between a narrow range can increase the battery’s life. Only Li et al.
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consider good battery decisions to maximize the battery life span. However, the authors
balance using the battery or buying energy from the grid. Another important aspect of
battery management is related to mixing short, and long-term decisions. In short-term
decisions (online), it could dry the battery to maximize the QoS. However, the battery is
finite and this behavior could lead to future QoS degradation (e.g., drying the battery in
the short-term would reduce battery usage in the future, decreasing the power available
to IT servers).

Table 2.1 also highlights that the majority of the previous works only focus on one side
of the decision process. Sometimes they make offline decisions considering knowing all the
future events or using predictions. These works focus on finding an optimal solution for the
problem. However, the uncertainties of a renewable-only data center demand a reaction
when the solution is not feasible in reality. Another possibility is working online entirely,
reacting to events or using fast predictions. In this case, we lose the long-term aspects.
For example, it is simple to maximize the number of jobs running in a renewable-only data
center if the system dries the energy storage. However, in the big picture, this behavior
leads to problems in the following days. [23] is the only work aggregating decisions on two
levels, but with a simple offline server configuration. They create this configuration using
power from the grid, and they do not change battery usage to react to actual production.

This thesis aims to provide algorithms to integrate both offline and online decisions.
While the offline creates a plan considering long-term, online reacts and adapts this plan.
To the best of our knowledge, there are still no approaches integrating both sides to make
better decisions. Furthermore, we introduce three levels of decisions, considering server
states, job scheduling, and power decisions. Mixing all these aspects allows us to follow
the long-term plan while improving QoS. Finally, we focus on batch jobs. The services
appear in some works as a constraint, since they do not make big decisions about them
(e.g., some authors use brown to meet service QoS).
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Table 2.1: Summary of characteristics for existing renewable data center scheduling works.

Article Year Objective Electrical infras-
tructure Offline decisions Online decisions Method

Aksanli et al.
[102] 2011 Maximize green

energy usage
Solar panels, wind
turbines, and grid - Server and

Scheduling Heuristic

Sharma et al. [22] 2011
Minimize perfor-
mance degrada-
tion

Solar panels, wind
turbines, and bat-
teries

- Server Heuristic

Goiri et al. [18] 2015

Maximize green
energy usage
and reduce grid
energy cost

Solar panels and
grid - Server and

Scheduling Heuristic

Gu et al. [94] 2015 Minimize carbon
emissions

Solar panels, wind
turbines, and grid

Server, Schedul-
ing, and Power - Exact algorithm

Li et al. [103] 2016

Balance QoS,
battery life span,
and average
backup time

Wind turbines,
batteries, and grid - Server and Power Heuristic

Kassab et al. [95] 2017
Minimize
makespan and
flowtime

Solar panels and
wind turbines Scheduling - Heuristic

Li et al. [104] 2017 Maximize green
energy usage

Solar, batteries,
and grid - Server, Schedul-

ing, and Power Heuristic

Kassab et al. [96] 2018
Minimize
makespan and
flowtime

Solar panels and
wind turbines Scheduling - Metaheuristic

Grange et al. [105] 2018
Minimize grid en-
ergy and respect
QoS

Solar and grid - Server and
Scheduling Heuristic
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Article Year Objective Electrical infras-
tructure Offline decisions Online decisions Method

Hu et al. [98] 2018

Minimize
makespan un-
der energy con-
straints

- Scheduling - Heuristic

Lu et al. [99] 2018 Minimize energy
cost

Solar panels and
grid

Scheduling and
Power - Exact algorithm

Caux et al. [100] 2018
Maximize QoS
under power con-
straints

Solar panels and
wind turbines

Server and
Scheduling - Metaheuristic

and heuristic

Caux et al. [21] 2019
Maximize profit
under power con-
straints

Solar panels and
wind turbines

Server and
Scheduling - Heuristic

Haddad et al. [16] 2019
Match power de-
mand and pro-
duction

Solar panels, wind
turbines, batteries,
and hydrogen

Power - Exact algorithm

Gao et al. [101] 2020

Match power
demand and
production min-
imizing QoS
violations

Solar panels, wind
turbines, and grid Power -

Exact algorithm
and machine
learning

Haghshenas et al.
[106] 2020 Minimize energy

cost

Solar panels, bat-
teries, diesel gener-
ator, and grid

- Scheduling and
Power Heuristic

Nayak et al. [107] 2021

Minimize
makespan, energy
consumption,
and overall cost,
and maximize
renewable usage

Not specified (re-
newable and non-
renewable without
battery)

- Scheduling Heuristic
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Article Year Objective Electrical infras-
tructure Offline decisions Online decisions Method

He et al. [20] 2021 Minimize energy
cost

Solar panels, wind
turbines, and grid - Power Heuristic

Peng et al. [108] 2022 Minimize energy
cost

Solar panels, wind
turbines, batteries,
diesel generator,
and grid

- Server, Schedul-
ing, and Power Heuristic

Wiesner et al. [15] 2022
Maximize renew-
able excess energy
usage

Solar panels and
wind turbines Scheduling - Heuristic

Yuan et al. [71] 2022 Minimize energy
cost

Solar panels, wind
turbines, batteries,
and grid

Power - Exact algorithm

Liu et al. [19] 2023

Minimize the en-
ergy consumption
cost and carbon
footprint

Grid - Scheduling Machine learning

Venkataswamy
et al. [23] 2023 Maximize job

value (revenue)

Solar panels, wind
turbines, batteries,
and grid

Server Scheduling Machine learning
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2.7 Conclusion
This chapter focused on presenting the motivations and fundamentals for understanding
this work. We started explaining the context, going from global warming to the role of
renewable-only data centers on climate change. Then, we detailed the several elements
that compose a renewable-only data center. Finally, we described the different sources of
uncertainty, presenting some classes of algorithms to deal with them. In the second part
of this chapter, we showed different works on applying renewable sources in data centers.
We clarify the different approaches, highlighting the gaps in the state-of-the-art.
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Modelling, Data, and Simulation
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3.1 Introduction
After describing the state-of-the-art, this chapter presents the models, data, and simulation
tools used in this thesis. First, we focus on the model describing the offline and online
scheduling problem. We explain what kind of information is exchanged between offline
and online. After the model, we introduce the traces used in the experiments. These
traces emulate a real environment regarding workload, weather, and platform. Finally, we
detail the simulation tools, explaining the modifications needed to create the experimental
environment.

3.2 Model
As presented in Chapter 2, a gap in the state-of-the-art is the mix of offline and online.
Figure 2.8 illustrates the architecture proposed by the Datazero2 project, mixing both
decision levels [24]. Since this work is part of this project, we use the same architec-
ture. There are four main modules: IT Decision Module (ITDM), Power Decision Module
(PDM), Negotiation Module (NM), and Online Decision Module (ODM). ITDM, PDM,
and NM are responsible for the offline decisions, and ODM manages the online actions.
This thesis focuses on the Online Decision Module. However, we present in the following
sections the optimizations made in offline modules to provide the data needed by ODM
since we propose a mix between offline and online decisions.

Besides these four modules, Datazero2 also includes an event generator and a metronome.
Both components are essential for the simulations. Event generator simulates the real
events of a data center, such as job submissions, weather conditions, etc. It simply reads a
file and sends the data to the bus. The metronome synchronizes the simulation messages.
So, every component waits for the time evolution from the metronome. This thesis does
not detail these components, concentrating on the decision modules and their interactions.
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3.2. Model

Table 3.1: General notations.

Notation Description
t Time step (int)
T Last time step (int)
∆t Time step length (s)
Tw Time window length (s)
Pload(t) Estimated power demand (kW)
uload(t) Uncertainty of Pload(t) at t (See Section 3.2.2) (float)
Pprod(t) Power production by all sources at t (kW)
Prenew(t) Power delivered by renewable sources at t (kW)
urenew(t) Uncertainty of Prenew at t (See Section 3.2.2) (float)

Table 3.1 presents the general notations and each following section introduces its own
notations. Both offline and online use the time division from Figure 3.1. The time window
is the horizon of the offline plan. Offline considers the time window to define how far
to predict weather and workload. In addition, it uses the time window to determine the
planned actions. Our model divides the time window into several time steps, as represented
in Figure 3.1 by the different t. The actions for power and server are constant inside the
time step. For example, if a server is at some state in step t = 0, it will remain at this
state during the step duration.

Figure 3.1: Time window definition. It gives an example of a time window of 3 days and
a time step of 5 minutes. Each hour has 12 steps of 5 minutes (60 minutes / 5 minutes =
12 steps). So, three days have 864 steps (12 steps × 24 hours × 3 days = 864 steps).

3.2.1 Offline Decision Modules

This section starts presenting the offline decision modules. First, we demonstrate how
PDM and ITDM agree on a power envelope through NM. Then, we explain the power
decisions from PDM, resulting in a power plan. Finally, we detail the ITDM, which
defines the IT plan.

Negotiation (NM)

The negotiation Module is between PDM and ITDM, trying to find an agreement about
the power profile. Since this thesis focuses on the online part, we simplify this process.
We implemented the negotiation in three steps. First, ITDM proposes a power envelope
Pload based on the energy demanded to run a predicted workload. Pload is a prediction
from ITDM. We do not include it in this model, but we present in the following chapters
how we generated it. Then, PDM takes this envelope and runs its optimization. It can
degrade the power envelope to meet its objectives, resulting in a new power envelope Pprod.
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Finally, ITDM takes the PDM power production and finds the best server configuration
that meets it. The following sections present the PDM and ITDM optimizations.

Power Decision Module (PDM)

Table 3.2 gives the notations for PDM. PDM plans the renewable source engagement to
provide the energy needed to maintain the IT elements running. A renewable-only data
center introduces several constraints in power generation. Therefore, PDM must approx-
imate the demanded power while considering long-term storage elements. For example,
it can use more energy coming from hydrogen during the winter, which has lower power
production, compensating for this usage in the summer, which has higher power genera-
tion. On the other hand, PDM can degrade the provided energy due to a lack of energy
from storage and estimated renewable. Previously, Haddad et al. created the first model
to solve this problem [16]. This thesis uses a similar model to PDM. Equation 3.1 gives
the power production from all renewable sources. Equation 3.2 indicates that Prenew

comes from wind and solar production. Pwt(t), Ppv(t), Pfc(t), Pez(t), Pdch(t), and Pch(t)
are calculated using Equations 2.1, 2.2, 2.6, 2.5 and 2.3 from Section 2.3.1. Batteries
are reversible, which means that they can charge (Pch(t)) and discharge (Pdch(t)) energy.
Similarly, hydrogen can be considered reversible using an electrolyzer to charge (Pez(t))
and a fuel cell to discharge (Pfc(t)).

Table 3.2: Notations for PDM.

Notation Description
Pwt(t) Power delivered by wind turbines at t (kW)
Ppv(t) Power delivered by solar panels at t (kW)
Pfc(t) Power delivered by fuel cell at t (kW)
Pez(t) Power put into electrolyzer to generate hydrogen at t (kW)
Pdch(t) Battery discharging power at t (kW)
Pch(t) Battery charging power at t (kW)
ηch Battery charge efficiency (%)
ηdch Battery discharge efficiency (%)
SoC(t) State of Charge at t (%)
LoH(t) Level of Hydrogen at t (kg)
SoCmax Maximal battery State of Charge (%)
SoCmin Minimal battery State of Charge (%)
Cbat Capacity of the battery (kWh)
LoHmax H2 tank limit (kg)
Pdchmax Battery maximum discharging power (kW)
Pchmax Battery maximum charging power (kW)
Pfcmax Fuel cell maximum charging power (kW)
Pezmin Electrolyzer minimum charging power (kW)
Pezmax Electrolyzer maximum charging power (kW)
SoCtarget(T ) Target State of Charge at the end of the time window T (%)
LoHtarget(T ) Target Level of Hydrogen at the end of the time window T (kg)
rf Relax factor. The values is between 0 and 1 (float)
P real

load (t) Real power demand at t (kW)
P real

renew(t) Real power production at t (kW)
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Pprod(t) = Prenew(t) + (Pfc(t) + Pdch(t)− Pez(t)− Pch(t)), ∀0 ≤ t ≤ T (3.1)

Prenew(t) = Pwt(t) + Ppv(t), ∀0 ≤ t ≤ T (3.2)

Pch(t), Pdch(t), Pez(t), and Pfc(t) are the decision variables in Equation 3.1, since
Pwt(t) and Ppv(t) come from wind speed and solar irradiance. As presented in Section
2.3.1, SoC(t) depends on the charge Pch(t) and discharge Pdch(t) (see Equation 2.3), and
LoH(t) depends on the power of the electrolyzer Pez(t) and fuel cells Pfc(t) (see Equation
2.7). Regarding SoC(t), the state of charge must be between the boundaries SoCmin and
SoCmax, as written in Equation 3.3. These boundaries help to extend the battery lifespan
[25].

SoCmin ≤ SoC(t) ≤ SoCmax, ∀0 ≤ t ≤ T (3.3)

On the other hand, hydrogen only has the tank size as a boundary. So, Equation 3.4
presents the level of hydrogen constraint.

0 ≤ LoH(t) ≤ LoHmax, ∀0 ≤ t ≤ T (3.4)

Considering the power to charge/discharge the batteries, both have upper limits. These
boundaries avoid destroying the battery. So, we introduce constraints 3.5 and 3.6.

0 ≤ Pdch(t) ≤ Pdchmax , ∀0 ≤ t ≤ T (3.5)

0 ≤ Pch(t) ≤ Pchmax , ∀0 ≤ t ≤ T (3.6)

Fuel cells and electrolyzers also have boundaries. While fuel cells have only a maximum
limit, electrolyzers have an operating range. So, Equations 3.7 and 3.8 present them.

0 ≤ Pfc(t) ≤ Pfcmax , ∀0 ≤ t ≤ T (3.7)

Pezmin ≤ Pez(t) ≤ Pezmax , ∀0 ≤ t ≤ T (3.8)

Another important constraint is the target hydrogen and battery level at the end of
the time window (SoC(T )). Using only the previous constraints, the model can use all the
power available in the energy storages, drying them but providing a high quality of service.
However, Figure 3.1 shows that the time windows are chained. So, the next time window
will not have energy in the storage. Therefore, we introduce these targets. So, the state of
charge and level of hydrogen in the last step of the time window must respect Equations
3.9 and 3.10. These targets can be the subject of another optimization or indicated by
hand by the data center manager. Furthermore, the targets must consider the long-term
perspective, such as seasons with lower/higher production, the peak of demand over an
external event, etc.

SoC(T ) ≥ SoCtarget (3.9)

LoH(T ) ≥ LoHtarget (3.10)
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Finally, the objective is to approximate the power production to the power demand.
So, Equation 3.11 shows the relation between demand (Pload) and generation (Pprod). The
optimization finds a solution where the production is higher or equal to the demand.
However, it can not match both in every case. Therefore, the model introduces a demand
degradation using a relax factor (rf). With the relax factor equal to 0, it matches demand
and production. Increasing the relax factor would reduce the power given to IT, impacting
the QoS. Thus, the objective is reducing the relax factor, as presented in Equation 3.12.

Pprod(t) ≥ (1− rf)× Pload(t), ∀0 ≤ t ≤ T (3.11)

minimize rf (3.12)

IT Decision Module (ITDM)

ITDM aims to maximize QoS, translating Pprod(t) into server configuration. Table 3.3
introduces the notations for ITDM. Server configuration means the CPU P-state of the
servers. For each P-state, the server has a speed (in flops [109]) and power consumption
(in W). Table 3.4 exemplifies this relation. The CPU frequency range is discrete, although
some works define it to be continuous [110]. ITDM must find the best combination of
servers off and on at some speed that uses equal or less energy than the power envelope
Pprod(t). Thus, given a data center with S servers, each server s has a list of states
Ds. Each state d in Ds has a speed Fs,d and a power Ps,d. Ds,d(t) is the boolean decision
variable that indicates that the server s is at state d at step t. The sleep state has a different
state Dsls(t) which helps to identify the transition between sleeping and running. The
transition between on→off is called sedating and off→on is waking.

Table 3.3: Notations for ITDM.

Notation Description
S Servers (list)
NS Number of servers (int)
s Server index (int)
Ds States of server s (list)
NDs Number of states of server s (int)
d State index (int)
Fs,d Speed of server s at state d (Flops)
Ps,d Power of server s at state d (W)
Ds,d(t) Indicates that the server s is at state d at t (boolean)
Dsls(t) Indicates that the server s is sleeping at t (boolean)
was(t) Indicates if the server is waking, transiting from off→on at t (boolean)
Twas Transition time from off→on (s)
ses(t) Indicates if the server is being sedate, transiting from on→off at t (boolean)
Tses Transition time from on→off (s)
Etot(t) Energy total spent by the servers at t (J)
Erun(t) Energy spent by the running servers at t (J)
Ewa(t) Energy spent by waking the servers at t (J)
Ese(t) Energy spent by sedating the servers at t (J)
Esle(t) Energy spent by the sleeping servers at t (J)
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Table 3.4: Server definition example. The power is for all server’s processors busy. The
values are from Grid5000’s Parasilo server [111, 112].

State Power (W) Speed (Gflops)
0 221.77 38.4
1 216.77 37.78
2 213.58 36.93
3 208.90 36.01
4 204.45 34.72
5 200.62 33.90
6 197.28 32.84
7 192.49 31.72
8 184.26 30.63
9 182.04 29.25
10 179.75 27.93
11 176.70 26.37
12 175.53 25.01

13 (sleep) 4.5 0

First, Equation 3.13 ensures only one state per time t. The state can be anyone from
Ds,d to indicate a P-state, or Dsls(t) to specify the sleep state. Since both variables are
booleans (accepting only 0 or 1 values), summing them must be equal to 1 (at least one
must be true). Both Ds,d and Dsls(t) are the only decision variables in the ITDM model.

Dsls(t) +
NDs∑
d=0

Ds,d(t) = 1, ∀0 ≤ t ≤ T, ∀0 ≤ s ≤ NS (3.13)

Then, we must model the sedating (ses(t)) and waking (was(t)) transitions. These
transitions take time and spend energy. During these transitions, the servers are unavail-
able to run jobs. So, Equations 3.14 and 3.15 model the waking transition (off→on) and
the sedating transition (on→off), respectively. For example, Equation 3.14 verifies if the
previous state is sleeping (Dsls(t− 1) = 1) and now is not sleeping (Dsls(t) = 0). So the
result of Dsls(t − 1) − Dsls(t) will be 1, which indicates that the server s is waking. If
both are 0 or both are 1, the result is 0, implying that the server is not transiting. If the
previous state is not sleeping (Dsls(t − 1) = 0) and now is sleeping (Dsls(t) = 1), the
result will be −1. However, the max(0) function will put 0 as was(t). Equation 3.15 does
the same but inverts the order of states.

was(t) = max(0, (Dsls(t− 1)−Dsls(t))), ∀0 ≤ t ≤ T, ∀0 ≤ s ≤ NS (3.14)

ses(t) = max(0, (Dsls(t)−Dsls(t− 1))), ∀0 ≤ t ≤ T, ∀0 ≤ s ≤ NS (3.15)

Equation 3.16 introduces the power constraint. We transform the power into energy
(multiplying Pprod(t) by ∆t) because we are dealing with the transitions. Thus, the power
from a server is not constant inside a time step (e.g., in the waking transition, first a
server spent energy turning on and just after running jobs). Since Etot(t) is in J and the
energy generated (Pprod(t) × ∆t, where Pprod(t) is in W and ∆t is in seconds) is in kJ,
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we transformed the generation into J by multiplying by 1000. Etot(t) is the total energy
spent by the servers calculated using Equation 3.17. This equation sums the expended
energy by running, waking, sedating, and sleeping states.

Pprod(t)×∆t× 1000 ≥ Etot(t), ∀0 ≤ t ≤ T (3.16)

Etot(t) = Erun(t) + Ewa(t) + Ese(t) + Esle(t), ∀0 ≤ t ≤ T (3.17)

Equations 3.18, 3.19, 3.21, and 3.20 demonstrate the energy of each state. Equation
3.18 verifies if the server is in one of the possible P-states Ds,d. If so, it multiplies the
power by the time in this state. For calculating the time in the state, the equation verifies
if the server is waking, removing the transition time if so. Equation 3.19 does the same
for the sleeping state, considering the sedating transition. Equations 3.20 and 3.21 are
simpler, just multiplying the power usage in the transition state by the time, if the server
is in the state.

Erun(t) =
NS∑
s=0

NDs∑
d=0

Ds,d(t)× Ps,d × (∆t− (was(t)× Twas)), ∀0 ≤ t ≤ T (3.18)

Esle(t) =
NS∑
s=0

Dsls(t)× Psls × (∆t− (ses(t)× Tses)), ∀0 ≤ t ≤ T (3.19)

Ewa(t) =
NS∑
s=0

was(t)× Twas × Pwas , ∀0 ≤ t ≤ T (3.20)

Ese(t) =
NS∑
s=0

ses(t)× Tses × Pses , ∀0 ≤ t ≤ T (3.21)

Finally, Equation 3.22 demonstrates the objective function of ITDM. The objective is
to maximize the total flops executed by the server. We do not consider idle servers here,
since we do not make offline scheduling. So, when the server is running, we consider that
it is providing all the flops possible at state Ds,d. Like in the energy consumption in the
running state (Equation 3.18), the objective function also considers the transition state
for reducing the total flops delivered by the server.

maximize
T∑

t=0

NS∑
s=0

NDs∑
d=0

Ds,d(t)× Fs,d × (∆t− (was(t)× Twas)) (3.22)

3.2.2 Offline Plan

The PDM and ITDM optimizations result in a plan for the next time window, providing
two time series: The power plan (PDM) and the IT plan (ITDM), as follows:

• Power plan (PDM)

– Time step (t);
– For battery (for every t):

∗ Power usage (Pdch(t) and Pch(t));
∗ Expected storage level (SoC(t));
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– For hydrogen (for every t):
∗ Power usage (Pfc(t) and Pez(t));
∗ Expected storage level (LoH(t));

– For solar panels and wind turbines (for every t):
∗ Estimated renewable power production (Prenew(t));
∗ Power production uncertainty (urenew(t));

• IT plan (ITDM)

– Time step (t);
– For each server (for every t):

∗ P-state (Ds,d(t) and Dsls(t));
– Estimated power demand (Pload(t)) (for every t);
– Power demand uncertainty (uload(t)) (for every t);

urenew and uload indicate confidence in the prediction. They give the range that the
actual values can be. For example, let’s say Pload(t) = 500 and uload(t) = 200. So, the
real value of Pload(t) (P real

load (t)) is between 300 and 700 (P real
load (t) = Pload(t) ± uload(t)).

Equations 3.23 and 3.24 present the possible actual values interval.

Prenew(t)− urenew(t) ≤ P real
renew(t) ≤ Prenew((t)) + urenew(t), ∀0 ≤ t ≤ T (3.23)

Pload(t)− uload(t) ≤ P real
load (t) ≤ Pload((t)) + uload(t), ∀0 ≤ t ≤ T (3.24)

So, PDM and ITDM send this plan to ODM, which uses it as a guide for real-time
decisions. However, the following sections present the reasons for changing this plan.

3.2.3 Online Decision Module (ODM)

ODM is a power-aware scheduler. A power-aware scheduler means having all responsi-
bilities described in Section 2.3.2 while managing electrical elements. In this section, we
present the job scheduler and the modifications in the offline plan. Table 3.5 introduces
the notations for ODM.

Job scheduler

Since the offline in the model does not know the jobs exactly, it can not execute the job
scheduling. Therefore, ODM must define the scheduling. The job scheduler’s objective is
to maximize the number of finished jobs, considering the power constraints. It does not
know exactly when the jobs will arrive. As soon as a job arrives, the scheduler places
it in a waiting queue Q. Each job j in the waiting queue Q is composed by submission
time (Sbj), walltime (Wallj), and the number of cores requested (Rj). Walltime is the
maximum execution time allowed for the job. The job executes flops (Dflj), but it is
discovered only after the job execution.

After placing the job in the waiting queue, the scheduler must select which job will
start. For selecting the next job to place, the scheduler must sort the queue Q. This sort
puts the more important jobs in front, according to a specified rule. One rule can consider
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Table 3.5: Notations for online scheduling and adaptations.

Notation Description
Q Waiting queue of jobs (list)
j Job index (int)
Wallj Walltime of job j (s)
Waitj Waiting time of job j (s)
Sbj Submission time of job j (s)
Exreal

j Total execution time of job j. This is unknown in advance (s)
Exj Execution time of job j. It is how many seconds the job is executing

from the beginning to now (s)
Dflj Demanded flops of job j. This is unknown in advance (flop)
Dfl′j Estimated demanded flops of job j. The scheduler estimates it using

Equation 3.29 (flop)
Rj Number of cores requested by job j (int)
Sizej Estimated job j size. It is the walltime multiplied by the number of

servers requested (float)
bsldj Bounded Slowdown of job j (float)
Gflj Flops processed by the job j from the beginning to now (flops)
Fs,d Speed of server s at state d (Flops)
ϵu User execution time estimation error (float)
∆Ebat Difference of target and calculated battery energy at the end of the time

window (kWh)
Ecomp Energy to compensate (kWh)

the jobs’ size, using Equation 3.25. Since the scheduler does not know the real size, it
estimates using the walltime and number of resources requested.

Sizej = Wallj ×Rj (3.25)

Another way to sort the waiting queue Q is using Bounded Slowdown [113]. Equation
3.26 demonstrates how to calculate the Bounded Slowdown. It estimates the ratio between
the total time a job stays in the system and its actual processing time. This order helps
to let a job wait proportionately to its size. τ is a constant to avoid smaller jobs from
reaching a very high Bounded Slowdown. Since the scheduler does not know the actual
execution time Exreal

j , we make Exreal
j = Wallj .

bsldj = max(
Waitj + Exreal

j

max(Exreal
j , τ)

, 1) (3.26)

After sorting the queue, it places the front job in Rj cores. Due to a possible heteroge-
neous data center, the scheduler takes first the servers with higher speed. After starting,
Ds,d controls how fast the job will finish. The scheduler considers a job as a mass (un-
known) flops Dflj . So, increasing the speed Ds,d increases the number of flops processed
by the server and reduces the execution time Exj . On the other hand, reducing the speed
reduces the server’s flops and increases the execution time. Constraint 3.27 verifies if the
execution time is lower than the walltime Wallj . The moment when the execution time
becomes equal to or greater than the walltime, the scheduler kills the job. The job finishes
correctly when it executes all its flops Dflj before the walltime Wallj .
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Exj < Wallj (3.27)

Modifying Offline Plan

An important part of ODM is adapting the offline plan. The offline plan gives a guide in
a predicted scenario, but the reality can be different. The main reason for adaptations is
due to power production and demand variations. There are three sources of variation: IT
consumption, renewable production, and scheduling adaptations.

The IT consumption is the difference between the ITDM planned usage and the real
usage. Since ITDM does not know the real scheduling, it considers the worst-case where
the server usage is the higher possible. Equation 2.8 demonstrates the relation of the
power consumption at an instant according to the CPU. Inside a time step t, the server’s
CPU usage can vary according to the jobs. Figure 3.2 illustrates this difference due to the
job variance. Since we consider the worst-case in ITDM, the real energy usage is always
lower or equal to the predicted.

Power (W)

Time (s)

Estimated energy

Figure 3.2: Energy consumption comparison between predicted and real. The black boxes
are jobs. The green area is the energy predicted, but not used.

The renewable production variation comes from the wind and solar variations. These
uncertainties can increase or decrease power generation Prenew. Finally, the scheduler
adapts the server configuration to improve the QoS. Since the objective of the scheduling
is to maximize the finished jobs, it must modify the offline plan. For example, if a job is
running on a server, but the IT offline plan indicates putting this server to sleep, it would
kill the job. So, ODM can change this decision, using more energy now and maintaining
the job running. Another case is considering the speed given to the job. Letting a job in
a server with a slower P-state can increase the execution time (Exj), violating Constraint
3.27 and killing the job. A way to reduce this possibility is by using Equation 3.28. This
equation verifies the minimum speed to complete the remaining job’s flops.

(Wallj − Exj)×Ds,d × Fs,d ≥ Dfl′j −Gflj (3.28)

Since ODM does not know the job’s flops exactly, it can estimate using the walltime.
Equation 3.29 shows a way for estimating Dfl′j , similar to [78]. F ′

s is a fixed and constant
speed applied to estimate the job size. ϵu is a user error because the user can overestimate
the execution time. We do not consider the walltime underestimation, because this always
leads to killing the job (respecting Equation 3.27). Takizawa and Takano [78] calculate ϵu

for each user, using previous users’ requests. Even if Equation 3.28 does not exactly use
the real size, it is a good way to balance the states of a job.
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Dfl′j = wallj × F ′
s × ϵu (3.29)

The batteries smooth these variations, providing the power needed in case of under-
production or absorbing the generation excess. At the end of time step t, the SoC(t)
can be different from the prediction. Therefore, ODM recalculates all future SoC using
Equations 2.3 and 2.4. With the SoC(T ) updated, Equation 3.30 can estimate how far
the SoC at the end of the time window will be from the target. This equation gives a
value of energy (in kWh). A positive ∆Ebat means that the battery will have more energy
than predicted, allowing the scheduler to use this excess to run more jobs or speed up the
servers. On the other hand, a negative ∆Ebat means that the battery will have less energy
than predicted. In this case, ODM must reduce future usage to approximate SoC(T ) to
SoCtarget.

∆Ebat = SoC(T )− SoCtarget

100 × Cbat (3.30)

Then, ODM calculates how much energy it can compensate, using Equation 3.31. This
equation considers the loss in the process of charge/discharge.

Ecomp =


∆Ebat

ηch
∆Ebat > 0

∆Ebat
ηdch

∆Ebat < 0
(3.31)

Finally, ODM must modify futures Pdch and Pch to use Ecomp. We focus on battery
modifications since it is faster to make online decisions on it. Hydrogen is not too reactive.
We proposed some ways to deal with it in the following chapters. Since ODM modifies
Pdch and Pch, Pprod will also change (see Equation 3.1). So, ODM must adapt the IT plan
(servers’ states Ds,d) to meet the new Pprod. The algorithm to modify Ds,d on-the-fly is
also presented in the following chapters. This modification must respect the Constraint
3.16. We name the process of adapting the power plan power/energy compensation or
migration. The compensations/migration can be:

• Positive: In this case ∆Ebat > 0. So, we can increase the battery power usage now
or in the future.

• Negative: In this case ∆Ebat < 0. So, we should reduce the battery power usage
now or in the future.

Figure 3.3 illustrates the positive and negative compensations. Both compensations
first observe a variation in battery usage (green box). In positive compensation, it verifies
a lower usage in step 1. This reduction makes ∆Ebat > 0, so we can increase the battery
usage in the future (yellow box in step 4). The negative compensation is the opposite,
where we observe a higher usage in step 1 (making ∆Ebat < 0), demanding a lower usage
in the future. As mentioned before, this variance in battery usage comes from scheduling
modifications, server idleness, and renewable production fluctuations.

3.3 Data

After describing the models, we describe the data used to simulate our environment. Our
simulators expect three data: workload, weather, and platform. We explain the source of
each one in the following sections.
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Figure 3.3: Positive and negative compensations. We observe a variation in step 1 and
compensate it in step 4, according to the compensation type (positive or negative).

3.3.1 Workload Trace

Workload trace is a log of job submissions in a resource (servers) provider. Some trace
examples are Microsoft Azure [114], Google [26], and Alibaba [28]. Regarding batch,
Feitelson et al. proposed the Standard Workload Format (SWF) format, which allows the
data center providers to distribute logs to the research community [27]. In SWF, each line
is a job with the fields separated by whitespace. Each line contains the following fields
[27]:

• Job Number : The job ID starting with 1;

• Submit Time: The submission time. The first job has 0 as submit time, and the
following jobs use the first job as reference (in seconds);

• Wait Time: How long the job waited in the queue (in seconds);

• Run Time: The execution time in the data center (in seconds);

• Number of Allocated Processors: The number of processors allocated to the job
(integer);

• Average CPU Time Used: The time that the job used the CPU. It is the average
from all processors (integer);

• Used Memory: The used memory, also average from all processors (kilobytes);

• Requested Number of Processors: The number of processors requested by the user
(integer);

• Requested Time: This is the walltime (seconds);

• Requested Memory: Requested memory per processor (kilobytes);

• Status: 1 if the job was completed, 0 if it failed, and 5 if canceled;

• User ID: The user ID. Can be used to identify different jobs from the same user
(integer);

• Group ID: A group ID (some systems control the group and not the user ID) (inte-
ger);

• Executable (Application) Number : Can link different jobs from the same application
(integer);
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• Queue Number : Indicates in which queue the job was allocated (integer);

• Partition Number : Indicates in which partition the job was allocated. For example,
it is possible to use partition numbers to identify which machine in a cluster was
used (integer);

• Preceding Job Number : Indicates the number of a previous job in the workload,
such that the current job can only start after the termination of this preceding job
(integer);

• Think Time from Preceding Job: The time between this job and the Preceding Job
(seconds);

It is not mandatory to insert all information in a SWF file. Currently, Parallel Work-
loads Archive1 has 40 traces in SWF format. We chose the MetaCentrum2 workload trace
from the Czech National Grid Organization [115]. MetaCentrum is a grid with resources
in several cities in the Czech Republic. They have 19 clusters with 495 nodes and 8412
cores in total. Nodes are individual machines or servers within a cluster. A cluster is a set
of nodes. Each node can have its own set of resources such as CPU, memory, storage, and
network connectivity. A core refers to a processing unit within a CPU (Central Processing
Unit). Modern CPUs often have multiple cores, allowing them to perform multiple tasks
simultaneously. The trace has 5,731,100 jobs from January 2013 to April 2015. Meta-
centrum does not provide the Average CPU Time Used, Used memory, Status, Group ID,
Executable (Application) Number, Preceding Job Number, and Think Time from Preceding
Job fields. It has different queues according to the job type. The Partition number indi-
cates which cluster executed the job. We do not have more information about the servers,
just the number of nodes, cores, and memory.

Figure 3.4 illustrates the inter-arrival and execution time distribution for MetaCen-
trum2. Inter-arrival is the time between job submissions, and execution time is the real
runtime. Applying the Kolmogorov-Smirnov test to these data, we observed that both fol-
low a log-normal distribution with p-value = 0.2174 for inter-arrival and p-value = 0.1802
for execution time (excluding 0.003838705% of jobs as outliers). In the Kolmogorov-
Smirnov test, if the p-value is smaller than the chosen significance level (we chose a con-
fidence level of 95%, so smaller than 0.05), it indicates that there is strong evidence to
suggest that the data doesn’t follow the specified distribution (both values are higher than
the significance level).
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Figure 3.4: Inter arrival and execution time distribution for MetaCentrum2 workload
trace.

Another aspect of the MetaCentrum2 workload is the Requested Time field. This field
could be considered as walltime. Nevertheless, MetaCentrum2 defines this field according

1https://www.cs.huji.ac.il/labs/parallel/workload/index.html
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to the job queue. Consequently, it does not come from the user. We recalculate the
walltime using the proposition from Takizawa and Takano [78]. Thus, we equally divided
the jobs into five groups. Each group estimates the walltime as follows:

1. walltime = real execution time × 5

2. walltime = real execution time × 3.333333333

3. walltime = real execution time × 2

4. walltime = real execution time × 1.428571429

5. walltime = real execution time × 1.111111111

This uncertainty complicates the scheduling decisions but it is more realistic. We
created two scripts for translating the SWF format to the simulator chosen (see Section
3.4.1) and Datazero2 Middleware formats. We simulated several possibilities of workload,
and each chapter will describe the selection process.

3.3.2 Weather Trace

Regarding weather, we are interested in the traces of solar irradiance and wind speed,
which allow us to estimate power generation using Equations 2.2 and 2.1. NASA’s Modern-
Era Retrospective Analysis for Research and Applications (MERRA) provides a dataset
of solar irradiance and wind speed from any place in the world [116]. Regarding wind
speed, we get the data directly from the MERRA site2. Renewable Ninja3 is a tool
that transforms the weather from MERRA to electricity production [30, 117]. Renewable
Ninja uses some solar panel models to estimate power generation. We use Renewable
Ninja to obtain ground-level solar irradiance because the authors consider cloud cover
and aerosols’ impact on the irradiance. We chose Toulouse, France as the reference point,
getting the data from 2020. After exporting the data, we also translate the output CSV
to the simulator chosen (see Section 3.4.1) and Datazero2 Middleware formats. We took
different days from 2020 for our simulations. The following chapters will present the
selection process.

3.3.3 Platform Configuration

Finally, the last data is the hardware specification. This configuration simulates the real
behavior of the different components of a data center, such as servers, storage, network,
etc. In this thesis, we focused on the server specification. For simulating a DVFS-enabled
server, the following information is necessary:

• Sleeping power: Power used to maintain a server sleeping;

• Time for on→off transition: Time to turn off a server;

• Power for on→off transition: Power to turn off a server;

• Time for off→on transition: Time to turn on a server;

• Power for off→on transition: Power to turn on a server;
2https://power.larc.nasa.gov/data-access-viewer/
3https://www.renewables.ninja/

50



3. Modelling, Data, and Simulation

• Power idle: Power used when the server is idle;

• DVFS states: A list of states containing:

– Power: The power used in the state with all processors busy;
– Speed: The speed in the state.

We chose to model a data center using the specification from GRID5000 servers.
da Costa performed experiments in GRID5000 to obtain the data for the DVFS states
[111, 112]. Some other authors also simulated GRID5000 machines, giving information
about their simulation [21, 74, 100, 118]. We consolidate these works to create a platform
for both the simulator chosen (see Section 3.4.1) and Datazero2 Middleware. Table 3.6
exemplifies the consolidated data for GRID5000’s Gros server used in the experiments.

Table 3.6: Gros definition. The power is for all server’s processors busy. The values are
from Grid5000’s Gros server.

Parameter Value
Sleeping power 4.5 W
Time on→off 6 s
Power on→off 76.5 W
Time off→on 164 s
Power off→on 110.52 W
Power idle 62 W

State Power (W) Speed per core (Gflops)
0 143.45 35.2
1 123.57 33.59
2 122.34 31.98
3 121.68 30.36
4 118.49 28.79
5 115.8 27.14
6 114.58 25.57
7 110.89 23.85
8 108.06 22.38
9 106.81 20.78
10 104.13 19.18
11 102.83 17.59
12 100.78 15.99

3.4 Simulation
After describing the source of data, we detail our simulation environment. We explain
two simulators and the work done to adapt our data for these simulators. We define the
different metrics used to evaluate the algorithms in the following chapters.

3.4.1 Batsim Simulator

Batsim is an infrastructure simulator that enables the study of resource management
policies [119]. This simulator is based on the well-known Simgrid [120]. The Batsim
protocol helps to develop scheduling and resource management algorithms without Simgrid
knowledge. The protocol works via a socket and includes the following events:

• Bidirectional (Batsim→Scheduler and Scheduler→Batsim):

– QUERY : It has two queries. First, in the consumed_energy query, the scheduler
asks Batsim about the total consumed energy (from time 0 to now). On the
other hand, in the estimate_waiting_time, Batsim demands the scheduler what
would be the waiting time of a potential job;
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– ANSWER: The QUERY answer;
– NOTIFY : This event allows a peer to notify something to its counterpart. This

message can be a specific message from an external event.

• Batsim→Scheduler:

– JOB_SUBMITTED: A new job was submitted;
– JOB_COMPLETED: The job has completed its execution;
– JOB_KILLED: The job was killed;
– RESOURCE_STATE_CHANGED: The state of a resource (server) changed;

• Scheduler→Batsim:

– EXECUTE_JOB: Execute the job in the servers;
– KILL_JOB: Kill the running job;
– SET_RESOURCE_STATE : Set the state of a resource (server);

These are some messages of the protocol (the entire protocol is in Batsim documen-
tation4). The messages QUERY and ANSWER enable the scheduler to receive IT en-
ergy consumption. The scheduler uses the JOB_SUBMITTED, JOB_COMPLETED,
JOB_KILLED, EXECUTE_JOB, and KILL_JOB messages to control the jobs. Finally,
the SET_RESOURCE_STATE and RESOURCE_STATE_CHANGED allow server con-
figuration. However, Batsim does not provide the electrical management of renewable
sources and energy storage. Considering renewable sources, the main objective is receiv-
ing power production. Therefore, we applied Equations 2.1 and 2.2 on the data from
Section 3.3.2, resulting in a time series of power production. Then, we create a file with
several JSON lines:

1 {"type": " user_specific_type ", " timestamp ": 0, " power_available ": 0.0}
2 {"type": " user_specific_type ", " timestamp ": 300, " power_available ": 460.4}
3 {"type": " user_specific_type ", " timestamp ": 600, " power_available ": 5172.26}

Batsim reads this file and sends at each "timestamp" a NOTIFY message. Then,
we parse the JSON in the message, taking the power available. ∆t defines the interval
between messages. The scheduler does not know all the events in this JSON file, receiving
them just when the simulation arrives at the "timestamp". Regarding energy storage, we
implemented two classes to simulate them. The first class is for the battery and uses
Equations 2.3 and 2.4 to estimate the state of charge. The second class is for hydrogen
and implements Equations 2.5, 2.6, and 2.7. The energy storage implementation must
respect the following constraint:

((Prenew + Pdch + Pfc − Pez − Pch)×∆t× 1000)− Etot = 0 (3.32)

Constraint 3.32 indicates that the difference between energy production ((Prenew +
Pdch+Pfc−Pez−Pch)×∆t×1000) and the energy expended by the IT (Etot) must be equal
to zero. Prenew comes from the JSON input with no modifications. Etot is calculated using
QUERY and ANSWER messages. Since it returns the total energy expended (from 0 to
now), we calculate the difference between two QUERY calls. So, the simulator balances
Pdch, Pfc, Pez, and Pch. In the default implementation, the simulator first adapts the
battery (Pdch and Pch), and, just if necessary, it changes the hydrogen (Pfc and Pez).

4https://batsim.readthedocs.io/en/latest/protocol.html
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However, it depends on the implementation (e.g., if the offline plan indicates something
different). This simulation respects the boundaries 3.5, 3.6, 3.7, and 3.8.

Another input for Batsim is the platform file. Batsim uses the Simgrid platform
format5. Using the results from Section 3.3.3, we created a script to generate this file
with all DVFS states. This script receives the server parameters (e.g., Table 3.6) and
the number of nodes from this server. It can create homogeneous and heterogeneous
data centers according to the user specification. Finally, the last input for Batsim is the
workload file. Batsim simplifies the workload definition of batch jobs. We focused on
the Homogeneous Parallel Task kind of application in the experiments. In this application
type, we define the amount of floating-point operations (flops) to execute on each machine.
Here, we create another script to translate the SWF format (from Section 3.3.1) to Batsim
JSON format. An example of a workload file is:

1 {
2 "jobs": [
3 {
4 "id": "1",
5 " profile ": " profile_ 1",
6 "res": 1,
7 " subtime ": 773,
8 " walltime ": 9112
9 }

10 ],
11 " profiles ": {
12 " profile_ 1": {
13 "cpu": 163137000000000,
14 "type": " parallel_homogeneous "
15 }
16 },
17 }

In this example, we have only one job with the id equal to 1. This job is submitted
after 773 seconds from the simulation beginning ("subtime": 773 ), with a walltime of 9112
seconds ("walltime": 9112 ), and requests one machine ("res": 1 ). The scheduler only
knows these fields. The profile field indicates the number of flops to execute. Therefore,
the job must calculate 163137000000000 flops. The real execution time is cpu divided by
the speed of the server which runs this job. The script estimates the field cpu by the
execution time in SWF multiplied by a server’s average speed. We defined the average
speed considering the servers in our data center. We took a median DVFS state’s speed,
avoiding over/underestimating. This estimation is necessary because SWF does not pro-
vide any metric of the real computation. All experiments in this thesis use Batsim as the
simulator. In parallel, we implement our algorithms in Datazero2 Middleware.

3.4.2 Datazero2 Middleware

The Datazero2 project proposes a middleware to integrate all components from Figure
2.8. This middleware has all electrical and IT components, external event integrations,
and decision modules. It works on two coding languages: Python and C++. It depends
on different frameworks, such as:

• ActiveMQ 5.14.4;

• C++:

– Protobuf 3.21.8;
5https://simgrid.org/doc/latest/Platform.html
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– Apache APR 1.7.4;
– ActiveMQ C++ library 3.9.5;
– Simgrid 3.27;

• Python:

– Stomp 8.1
– Protobuf 3.20.3
– Pandas
– Pulp

Some modules work in Python, and some in C++. The messages from the modules
are exchanged via ActiveMQ, using Protobuf as protocol. Simgrid is used to simulate the
IT side. The electrical side is implemented using the same rules presented in this thesis.
This middleware is still in development by different actors in the project. During this
thesis, we worked on the ODM implementation. The results from the Batsim simulations
are being implemented in the middleware.

However, we helped with all these dependencies management, allowing every project’s
partner to execute the middleware on their computers. Therefore, we create a docker
version of the middleware. We create three containers: ActiveMQ, C++, and Python. The
ActiveMQ provides the message BUS for all the modules. C++ implements the Simgrid
and some modules (e.g., ODM). Python has the electrical control and other modules
(e.g., ITDM and PDM). We create a docker-compose script that installs and compiles
everything. We included some advanced parameters for developers for coding inside docker
without the need to rebuild everything.

Regarding the middleware’s simulation input, some changes were done. The weather
data is passed directly to the middleware, which applies the equations to transform weather
into power. Even if it uses Simgrid (so, same platform file format), the middleware divides
this file into two files: Model and Machines. The Model file defines the DVFS states,
including a model id. The Machine file indicates all the servers, linking each one to a
model id. This division simplifies the modifications in the model. So, we create a new
version of the platform script, choosing between Batsim or Datazero2 middleware. Finally,
the workload file is not JSON but XML. We also create a new version of our script to
migrate from SWF to Datazero2 middleware XML.

3.4.3 Metrics

In this section, we present the metrics used in this thesis. We evaluate four aspects:
jobs finished, storage state at the end of the time window, wasted energy, and bounded
slowdown.

The first objective is to increase the number of finished jobs and reduce the number
of killed jobs. It is possible to have a high number of finished jobs and a high number of
killed jobs in aggressive scheduling, where the scheduler starts jobs even if it is impossible
to finish them. However, this is unacceptable because it wastes energy with the killed
jobs. Each job can finish in one of five states:

1. Finished: Jobs that finished their computation before the walltime;

2. Postponed: Jobs postponed to the next time window;
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3. Reached walltime: The jobs that reached the walltime because they do not finish all
the computation due to the servers speed;

4. Not completely finished: The jobs that were not finished completely because they
are still running at the end of the time window;

5. Killed: The killed jobs.

Therefore, we present the absolute number of jobs in each state at the end of the
simulation. In addition, we introduce this metric considering the size of the job (Dflj×Rj).
The size of the job shows the impact of the decisions on bigger and small jobs. The second
metric is related to the storage level at the end of the time window. Our objective is to
finish as close as possible to the planned level. This means the algorithms can not "cheat"
by using more storage than planned. As explained before, finishing close to the target
levels helps to plan the next time window. We present a metric of the distance from the
target. This distance can be positive (save more energy) or negative (use more energy).
For battery, we present it as the % difference of target SoC, and for hydrogen, we present
it as the kg difference of target LoH.

The third metric is wasted energy. We consider wasted energy the energy expended
not computing finished jobs, englobing, for example, the energy used in killed jobs, turning
on/off servers, and letting servers idle. This metric is present as kWh.

Finally, the fourth metric is the bounded slowdown. This metric is the same as pre-
sented in Equation 3.26. The bounded slowdown is a difficult metric to compare in exe-
cutions without the same number of jobs finished. For example, starting and killing a job
in the sequence will result in a very low slowdown. On the other hand, maintaining jobs
running will make the jobs in the queue wait for more time, which impacts directly on the
slowdown. So, we will analyze this metric with precaution.

3.5 Conclusion
This chapter focused on presenting the model, data, and simulation utilized in the remain-
der of this thesis. The aim is to provide the basis to understand the following chapters.
The model introduces all aspects of offline decisions. This offline module builds a plan for
the online module. The online model considers the offline as a guide but improves this
plan according to the real events. Moreover, the online model considers job scheduling in
the decision process. Then, we describe the work done in the data for the simulations.
This work includes workload, weather, and platform information. Finally, we explained
simulation tools. We detailed the modifications in Batsim to use renewable energy and en-
ergy storage. Moreover, we present the metrics used in this thesis to compare the different
approaches.

The next chapter introduces the first heuristic to deal with power compensations,
trying to improve QoS. After that, Chapter 5 proposes a model for learning the best
power compensations. Finally, Chapter 6 presents our final heuristic, using predictions to
make better decisions.
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Introducing Power Compensations
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4.1 Introduction

In this chapter, we propose some heuristics to solve the problem from the model presented
in Section 3.2.3. Due to the uncertainties, online scheduling needs to adapt the offline plan.
To address this, we propose two contributions in this chapter. First, we schedule the jobs
according to the power envelope. The second contribution is to adapt the power envelope,
using power compensations. Power compensations are modifications in the power envelope
to approximate the battery SoC at the end of the time window to the offline plan. First, we
describe the heuristics to solve it, linking with the model from Chapter 3. This heuristic
includes scheduling and power decisions. Then, we explain the experimental environment
used in the experiments. Finally, we present and discuss the results, highlighting the
impact of the power constraints.

4.2 Proposed Approach

We divided the heuristic into two parts. First, we detail the scheduling decisions. The
scheduler defines the job priority and placement. The main objective of the scheduling is
to finish the jobs, avoiding killing them. To do so, the scheduler can demand more power,
adapting the power envelope. Then, we describe the power compensation heuristics. Power
compensations are modifications in the power envelope (given by the offline side). These
modifications are needed because the real power production and demand can vary from the
offline, due to the uncertainties. The power compensations’ objective is to approximate the
battery’s state of charge from the target level at the end of the time window. Finally, the
scheduler must translate the power modifications into server configurations. We explain
our heuristic to do it.
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4.2.1 Scheduling

Job scheduling is a well-known problem NP-complete problem [88, 89]. Several heuristics
are proposed to solve this problem in an acceptable time. We implemented and adapted
a well-known algorithm named EASY Backfilling in this chapter for the job placement
[121]. This heuristic is known for its simple and robust implementation [77]. Furthermore,
it maximizes server utilization [77]. EASY backfilling focuses on job placement, but the
scheduler also adapts the power envelope to avoid killing jobs. The placement heuristic
runs on every job arrival, job finished, and new time step. On the other hand, the power
envelope adaptation runs at each new time step only. First, we present the placement
algorithm. This algorithm englobes queue sorting and placement. First, it places priority
jobs in the available servers. Then, it fills the scheduling holes with small jobs (see Figure
2.6). Algorithm 1 denotes a pseudo-code of EASY Backfilling, presented by Lelong et al.
as EASY-PR-PB policy [122].

Algorithm 1: EASY-PR-PB scheduling [122].
input : Queue Q of waiting jobs, PR as priority order, and PB as backfilling order.
output: None (calls to Start())

1 begin
2 Sort Q according to PR;
3 for job j in Q do
4 Pop j from Q;
5 Sj ← select_servers(j);
6 if j can be started in servers Sj then
7 Start(j, Sj);
8 else
9 Reserve j at the earliest time possible according to the walltime of the currently

running jobs;
10 Sort Q according to PB ;
11 for job j

′
in Q do

12 Sj ← select_servers(j
′
);

13 if j
′

can be started in servers Sj without delaying the reservation on j then
14 Start(j

′
, Sj);

15 end
16 end
17 break;
18 end
19 end
20 end

First, this heuristic sorts the jobs in the queue in a priority order PR (line 2). Then, it
selects the servers to run this job (line 5). If the job j can start in the servers Sj (line 6),
it places the job in the servers (line 7). When it finds a job that can not start now, the
algorithm starts to backfill (lines 9-17). Then, it reserves the first moment to run this job
(named priority job) in the future (line 9). So, it re-sorts the queue using PB (line 10),
placing the other jobs in the servers (lines 11-16) without delaying the (future) priority job
execution (line 13). As presented, the algorithm sorts the queue using PR (in the priority
moment) and PB (in the backfilling moment). Our first implementation applies different
orders for PR and PB. Regarding PR, we implemented the descending bounded slowdown
(higher Bounded Slowdown first) sort from Equation 3.26. This order helps to let a job
wait proportionately to its size. Then, we implemented the smallest area first for PB using
Equation 3.25. This order simplifies the backfill placement, taking small jobs first to fill
the holes in the scheduling.
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Besides the placement, the scheduler makes power envelope adaptations to maintain
the jobs running at least at a "minimal speed". These decisions occur at each new time
step. This minimal speed is given by Equation 3.28. The idea is to keep the jobs’ servers
at the speed Ds,d (it is the DVFS speed). For example, if Ds,d is too slow, the job can
reach the walltime without finishing all its computing. Besides, if a server goes to sleep, its
running jobs are killed. So, every time step t, the scheduler verifies the energy needed to
maintain the jobs running at least at minimal speed. If it is necessary to use more energy
now (changing the plan), it verifies if it is possible to migrate power from the future to
now. This verification consists of two tests:

1. Will battery boundaries be violated? Equation 3.3 must be respected. So, migration
can not violate the SoC boundaries;

2. Is it possible to compensate for this change? Section 4.2.2 explained this verification;

If possible, the scheduler modifies the offline IT plan to let the servers run at P-state
Ds,d. If not, the scheduler does not change the offline plan.

4.2.2 Power compensations

After describing the scheduling algorithm, this section explains the heuristic to compensate
for power fluctuations presented in Section 3.2.3. The power compensations’ objective is
to ensure that SoC and LoH are close to the offline plan at the end of the time window.
Therefore, every time step t, ODM calculates Ecomp using Equation 3.31. As explained in
Chapter 3, we can have two kinds of compensations: positive and negative. So, Ecomp can
be positive or negative, according to battery usage or renewable production. A positive
compensation indicates that the scheduler can use more energy to run jobs. On the other
hand, negative compensation demands a reduction in usage to finish the time window
close to the battery target level. Thus, the problem is to define the future time step to
use energy Ecomp. Let t′ be the future time step. Then, ODM must change Pdch(t′) and
Pch(t′). Of course, Pdch and Pch are power, and Ecomp is energy, so we adapt to work
only with energy in this process. Furthermore, the changes must consider the boundaries
from Equations 3.5 and 3.6. In addition, the power usage in the sleep state is not zero,
demanding minimal power production. Let Pmin be the minimal power possible. Then,
Pprod(t′) ≥ Pmin, considering that Pprod comes from Equation 3.1.

ODM spreads the energy over different t′ until all modifications compensate for Ecomp.
The power compensations happen in two cases:

Case 1 Every time step, ODM recalculates SoC(T ) using Equation 2.3 from the actual
step until T . Then, it compares SoC(T ) and SoCtarget, using Equation 3.30.
Finally, ODM compensates Ecomp (from Equation 3.31), approximating SoC(T )
to SoCtarget (respecting Equation 3.9);

Case 2 When the scheduler demands more power, as presented in Section 4.2.1, it tries
to maintain the servers with jobs running. So, it increases the power usage at
the step. This increase will change the SoC(T ), demanding compensation. This
compensation is always negative (if ODM uses more power now, it reduces the
usage in the future).

If ODM can not entirely compensate Ecomp, it has two possible actions. If the request
for compensation comes from the scheduler (case 2), it does not make the modifications
demanded by the scheduler, impacting the jobs. On the other hand, in case 1, ODM will
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modify as much as possible. Therefore, in the impossibility of completely compensating
in this case, we let the simulation run to see the impact of these cases, resulting in a SoC
difference at the end of the time window.

The question now is: in which future time step t′ can we compensate? To answer
this question, we propose four policies: Peak, Next, Last, and Load. Figure 4.1 illustrates
an example of these policies. The Next and Last policies execute the same search in-
dependently of the type of compensation (positive or negative). While Next takes the
t + 1, Last takes T . On the other hand, Peak and Load take different steps according to
the compensation (positive or negative). Peak policy finds the higher power production
(Pprod) peak in negative compensation and the lower peak in positive. This policy will
"shave" the peaks, tending to a flat curve. Load policy considers the difference between
demand (Pload) and production (Pprod). In positive compensation, this policy takes the
higher difference Pload − Pprod, while in negative it takes the smaller one. In Figure 4.1,
if the scheduler saves energy at step 1, it could compensate for it at step 3 (Next), step
12 (Peak), step 15 (Last), or step 14 (Load). Even if Figure 4.1 compensates only one
time, the algorithm can select more than one, compensating Ecomp entirely and following
its policy (e.g., Next will take steps 2, 3, 4, etc.).
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Figure 4.1: Compensation policies. This is an example of positive compensation (it uses
less energy at step, so we need to increase the usage in the future). The blue curve is
the offline usage plan (Pprod) and the orange line is the estimated demand (Pload). In this
example, it saves some energy in time step 1 (see the green square). So, our algorithm
can reintroduce this energy in future time steps (see the yellow squares).

4.2.3 Server configuration

Finally, the last part of the heuristic is transforming the power modifications into server
configuration. Since the IT offline plan gives the P-state of the servers for each step t, we
must adapt this plan for the new power. We propose a heuristic to find quick solutions.
The four policies use the same heuristic to distribute the compensation. This heuristic has
a list of all power and speed differences between two P-states, so it can fastly decide which
one will impact the most on data center speed. First, it calculates the difference between
the power usage in the offline plan and the power to use. If this difference is positive, it
can improve the server configuration, speeding up or turning on servers. It searches on
the list for the highest flops improvement below or equal to the power increment. It does
it in the following order:

1. Find the highest improvement possible for the servers running some job;

2. Find the highest improvement possible for the servers not running jobs.
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Taking Table 3.6 as an example, let’s say that we have two servers running jobs: one
on state 5 and another on state 10. The system has 30 W to increase. So, it will increase
first the server on state 10 to state 1, because it will increase 14.41 Gflops (against 6.45
Gflops from state 5 to state 1). If a server is sleeping, it also considers the power needed
to turn the server on. When the difference between offline and online power is negative,
the algorithm must reduce the speed of the servers. So, it does the following:

1. Reduce the DVFS state of servers not running jobs;

2. We calculate (wallj−elapT imej) for each job running. Then, we sort the servers by
this value in decreasing order. Finally, we reduce the speed of these servers following
this order.

It stops after the first modification that lets the power usage lower or equal to the
power production Pprod(t). The second step will reduce servers’ speed with more time to
compensate for this reduction in the future. It is better to maintain jobs closer to finish
with the maximum speed, granting that they will be complete.

4.3 Experimental environment

In this section, we present the environment used to run our simulations. This environment
englobes IT servers definition, electrical elements, workload trace, and weather trace. We
focus on simulating a time window of three days (Tw = 259200s), divided into time steps
of 5 minutes (∆t = 300). We chose time steps of 5 minutes because it is neither too long to
react to events nor too short for server transitions. For example, a time step of 1 minute is
a good choice for adapting the battery usage, but it is not enough to turn on a server (Table
3.6 shows that a Gros server takes 164 seconds to finish the off→on transition). A longer
time step can be too late to adapt battery usage. Concerning the server specification,
we simulated a homogeneous data center using the GRID5000’s Gros server. Table 3.6
presents their parameters. We demonstrate the experiments in a homogeneous data center
to ease the understanding. However, we proposed different experiments in a heterogeneous
data center in [32]. Our data center is composed of 400 servers with Gros specifications.
We ignored other aspects, such as network and memory.

Considering the electrical components, the data center is composed of solar panels,
wind turbines, batteries, and one hydrogen tank. The total size of the batteries is 800
kWh (Cbat = 800kWh). The efficiency of charging is 0.82 (ηch = 0.82), and discharging is
0.82 (ηdch = 0.82). We defined the thresholds SoCmin and SoCmax as 20% and 90%. So,
the battery energy range maintains the whole data center for 9.76 hours. We set the max
charge and discharge power as 80% of the battery size (Pchmax = 640kW and Pdchmax =
640kW ). The hydrogen tank has 20000 kg (LoHmax = 20000). For the electrolyzer, we
used the H2 higher heating value (HHh2) as 39 and the electrolyzer efficiency (ηez) as 0.4
(see Equation 2.5). For the fuel cell, we used the H2 lower heating value as 33.33 and
the fuel cell efficiency (ηfc) as 0.4 (see Equation 2.6). These values come from previous
experiments inside the Datazero project. At the beginning of the experiment, the battery
starts half charged (SoC(0) = 50%) and the hydrogen with 300 kg (LoH(0) = 300kg).
We also specified that they should return at least to the same value as they started at the
end of the time window (SoCtarget = 50% and LoHtarget = 300kg).

We have divided the experiments into two parts that use different weather and workload
traces. The first part analyzes the decisions in critical cases (named critical scenarios),
and the second part focuses on the random cases (named random scenarios).
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4.3.1 Critical Scenarios

In the first part, we have taken two workloads from the Metracentrum dataset with the size
of three days. The first workload has jobs arriving mainly on the first day and the second
one on the third day. Figure 4.2 illustrates the demanded power of both workloads. We
calculated this power using 400 Gros servers without power constraints (e.g., the servers
are always available). The first workload has 3729 jobs and the second workload has 3158
jobs. Even if the second one has fewer jobs, it is more complicated to manage since the
jobs arrive on the last day.
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Figure 4.2: The power demanded for the critical scenarios.

We generated the three-day weather data using MERRA [116] and renewable ninja
[30] for the critical scenarios. Figure 4.3 shows the weather power production using the
electrical components of our data center.
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Figure 4.3: The power production for the critical scenarios.

We consider both workload and weather as predictions. Then, we use them to create
the offline plan from Section 3.2.2. First, we solved the PDM model from Section 3.2.1
using the linearization proposed by Haddad et al. [16]. Then, we took the production
(Pprod) and solved the ITDM model. The ITDM model presented in Section 3.2.1 is too
complex to solve a three-day time window with 400 servers. So, we simplified the problem,
ignoring the transitions on→off and off→on. This new model returns the number of servers
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at each P-state at each time step and can be solved faster. After that, we have the offline
plan.

The next step is to introduce noise in the predictions to emulate the variations in
reality. Every prediction provides a range of where the forecast is likely to be. So, we
generated noises inside this range. In the critical scenarios, we considered that the range is
±20%. Then, we created two new power productions: a worst-case and a best-case. In the
worst-case scenario, all the productions are 20% lower than predicted. On the other hand,
in the best-case power production, all productions are 20% higher. Figure 4.4 illustrates
the power production. Therefore, we simulated the worst and best cases of production
(the reason for the name critical scenarios).
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Figure 4.4: The power production with noise for the critical scenarios.

Regarding the workload, we introduced Gaussian noises in interarrival and job duration
with a standard deviation of 20% of the predicted value. The relation between these
workload noises and the power demand is more complicated than the power production
since the power demand depends on the scheduling algorithm and queue sort. Figure 4.5
shows the impact of these noises on the power demand. To generate this power demand, we
applied Easy Backfilling without power constraints. Even if the impact on the workload
power demand is not huge, these variances impact the offline IT plan since offline can
indicate the wrong moment to turn on/off the servers. The workload’s criticality comes
from when the jobs arrive (in the end or beginning).

Finally, we mixed the two productions (worst and best-case) with the two workloads
(in the end and beginning), creating four scenarios:

1. Critical 1 : Power profile best-case and workload in the beginning;

2. Critical 2 : Power profile best-case and workload in the end;

3. Critical 3 : Power profile worst-case and workload in the beginning;

4. Critical 4 : Power profile worst-case and workload in the end;

The first scenario is the best possible, with more energy and having all the jobs in the
beginning. Therefore, the scheduler has the energy and time to decide when to place the
jobs. However, the last scenario is more complicated, with lower production and receiving
the jobs on the third day.
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Figure 4.5: The power demand with noise for the critical scenarios.

4.3.2 Random Scenarios

In the Random Scenarios, we took ten workload traces from Metracentrum [115] and
ten weather traces from MERRA [116]. Both workload and weather traces have a 3-day
length. Figures 4.6 and 4.7 show the power production and demand, respectively. Using
the traces, we created ten offline plans, one for each pair of workload and profile traces.
For example, workload 1 receives the production of profile 1, workload 2 receives profile 2,
etc. We created the offline plans in the same way as the critical cases for each combination.
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Figure 4.6: The power production for the random scenarios.

After creating the plans, we introduce noise in the workload and profile. Here, we
applied Gaussian random noises in power production and job interarrival and size. Con-
sidering the power production, we introduce a Gaussian random noise in the predicted
value for each hour. Thus, the values can be higher or lower than predicted. Regarding
the workload, we apply Gaussian random noises for each job, increasing/decreasing the
interarrival and size. We increase the standard deviation to 50%, giving a wider range to
generate values. Therefore, we have higher uncertainty with values farther from normal,
aiming to validate the algorithms’ performance. For each pair (workload + profile), we
produced ten new workloads and profiles with noise, resulting in 100 combinations. We
called these scenarios Random Scenarios due to the way we generate the values.

In both parts (critical and random), besides the production and jobs noises,
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Figure 4.7: The power production for the random scenarios.

we also have the uncertainty from the walltime, presented in Section 3.3.1. So,
our experiments introduce several uncertainties in different aspects of workload and power
production. Furthermore, these uncertainties are cumulated from the different steps.

4.3.3 Baselines

We created three baselines to compare the results of the four policies. The baselines are
Follow plan, Power reactive, and Workload reactive. Follow plan is an algorithm that
applies the offline plan without changing it. This algorithm emulates the execution of
only the offline side. Power reactive changes the server state according to the renewable
power incoming. So, at each time step, it takes the power coming from renewable and
calculates how many servers are possible to maintain running. It uses power from the
batteries to maintain jobs running, if the renewable is not enough. Power reactive uses
the server configuration heuristic presented in Section 4.2.3. Workload reactive turns on
the servers according to the job’s arrival. It starts with all servers off. For each new
job submitted, it turns on the needed server at maximum speed if there is no server idle.
After finishing a job, the server waits for Twait seconds (using the DPM technique from
Equation 2.9). The scheduler sedates the server if it stays idle for Twait seconds. In all
cases (baselines and compensation policies), if the battery’s state of charge arrives at less
than 20% (defined SoCmin), the scheduler kills the jobs and sedates all servers.

4.4 Results Evaluation
After describing the experimental environment, this section presents the results of the
experiments. We detail the critical and random scenarios. After that, we discuss the
results globally.

4.4.1 Critical cases

Scenario Critical 1

Scenario Critical 1 (Profile best-case and workload in the beginning) has the jobs arriving
at the beginning, and the production is higher than expected. However, this scenario is
tricky. Since the battery starts with SoC = 50%, if the scheduler starts too many jobs
in the beginning, this can lead to a very low SoC on the first day. This is exactly what
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happened with Workload reactive in this scenario. Figure 4.8 shows the evolution of the
state of charge in the Workload reactive execution. At step 264 (79200 seconds after the
simulation begins), Workload reactive has less than 20% of SoC. So, the scheduler kills
several jobs.
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Figure 4.8: State of Charge for Workload reactive.

Figures 4.9 and 4.10 give the battery level at the end of the time window and jobs
states, respectively. Figure 4.10 shows two graphs. The first one considers only the number
of jobs, ignoring their size. Therefore, all jobs are equal. In the second graph, we consider
the size of the job. So, bigger jobs have more importance than smaller ones. The second
graph illustrates the mass of work to do.
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Figure 4.9: Difference between the battery target level (50%) and the real battery level at
the end of the time window for scenario critical 1.

It is important to analyze the battery level and finished jobs together. For example,
Follow plan saves energy, finishing with 20% more battery than the target. This result
seems very good, but analyzing Figure 4.10, Follow plan has the lower finished jobs and
higher killed jobs. Besides, it kills a lot of big jobs, resulting in only 55.72% of finished
jobs considering the size. This result illustrates the importance of reacting to real events
and using the saved energy to improve QoS. Follow plan tends to kill bigger jobs since it
does not adapt the plan to maintain them running.

Power reactive has the worst battery level, with an SoC of around 28% (difference
of -21.729269%). This algorithm allocates all incoming power from renewable sources to
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Figure 4.10: Jobs states at scenario critical 1. The first graph (above) considers only
the number of jobs, ignoring their size. In the second graph (below), the jobs’ size is
considered.

servers, not recharging the battery. The battery slightly recharges due to power fluctu-
ations (e.g., the server is idle, so the incoming renewable power recharges the battery
instead of going to the server). So, Power reactive uses the battery to avoid killing jobs,
but it does not compensate for this change. Power reactive is the second-worst finished
jobs metric (ignoring or considering the size), with some jobs reaching the walltime. Since
it only uses the battery to avoid killing jobs, sometimes it let the servers at slower speeds,
increasing the possibility of reaching walltime. It also kills some jobs because it also
reaches the SoCmin.

As mentioned at the beginning of this section, Workload reactive can not manage well
the state of charge, killing some jobs. Even so, it finishes with a good battery level. The
DPM technique helps to save some energy, letting the incoming renewable to recharge the
battery. Since it always put the servers at maximum speed, no job reached the walltime.
It has the third-worst finished and killed jobs (ignoring the size). All the policies are
very close to the target level. Just Last saved more than the target because it puts all
the compensations in the end. Therefore, Last can not use all the power before the end.
Considering the metrics about the job, all policies finished more jobs and killed less than
the three baselines. The best one is Last with 98.87% of the finished jobs considering the
number of jobs and 94.88% considering the size. In addition, it has the lowest killed jobs.
Load places the compensations in the steps where it expects high demand. In this case, it
is worth it with the second-best results. We will see in future cases that this behavior is
dangerous.
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Next has the worst job result among the policies. It also kills more big jobs than
the other policies and Workload reactive. This result can be explained by comparing
Next and Last. For example, let’s say we saved energy in step 0. So, Last increases the
usage in the last possible step. If at any moment between step 0 and the last step, it
is necessary to increase the usage, Last can migrate the energy from the end and use it
now. On the other hand, Next expended this energy as soon as possible. Therefore, Next
can arrive in some moments without energy to avoid killing jobs. Finally, Peak has the
third-best result, with some jobs reaching the walltime. Since it shaves the power usage
(negative/positive) peaks, it can reduce speed in critical moments (e.g., with several jobs
running). However, it can maintain the big jobs running. Even if Peak finishes fewer jobs
than Load (a difference of 1.66 percentage points), Peak approximates the finished jobs
considering the size (a difference of 0.98 percentage points).

The second analysis is regarding wasted energy. This metric is the energy expended
not computing finished jobs, englobing, for example, the energy used in killed jobs, turning
on/off servers, and letting servers idle. Figure 4.11 shows the results. Workload reactive
turns on resources on demand and does not let idle servers available too much. Therefore,
it has the best wasted energy metric compared with the other algorithms. The worst
case is Power reactive which turns on servers according to the power available, not the
demand. Follow plan and the four policies are guided by the offline plan. Therefore, the
noise introduced in the real workload can lead to some mismatch between demand and
production. Since Follow plan kills more jobs than the policies, this metric is higher for
this algorithm. The energy expended in killed jobs is wasted since the result of the killed
job is useless. Last has the second-best wasted energy since it runs more jobs than the
other algorithms.
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Figure 4.11: Wasted energy at scenario critical 1.

Finally, Figure 4.12 demonstrates the slowdown of the finished jobs. This figure in-
cludes the bounded slowdown of each job in the execution. The outliers ("o" marks) are
values that differ significantly from other observations. As mentioned before, this metric is
complicated to compare with different numbers of finished jobs. We can see that Workload
reactive has some jobs with a very high slowdown. It happens due to the long period with
the SoC below SoCmin (as illustrated in Figure 4.8). So, it has a long period without
servers running. Load has a good mean and median. In this case, Load can place the
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compensations close to the jobs’ arrival.

Fo
llo

w 
pl

an

Po
we

r r
ea

ct
ive

W
or

klo
ad

 re
ac

tiv
e

Pe
ak

Ne
xt

La
st

Lo
ad

0

100

101

102

103

Bo
un

de
d 

slo
wd

ow
n

Bounded slowdown
Median
Mean

Figure 4.12: Bounded slowdown at scenario critical 1.

Scenario Critical 2

Scenario Critical 2 has more energy (Profile best-case) and the jobs arriving on the third
day. The policies do not have a long time to compensate since the load comes on the last
day. Figures 4.13 and 4.14 demonstrate the battery level and finished jobs.
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Figure 4.13: Difference between the battery target level (50%) and the real battery level
at the end of the time window for scenario critical 2.

Workload reactive finished all jobs. This scenario is the best one for this algorithm since
it can fulfill the battery in the first two days, consuming all in the last day. Even so, it
finishes with a battery deficit (-5.186277%). Follow plan has the second-worst finished jobs
and the worst killed jobs (in number) but finishes with a battery surplus of around 20%.
So, it misses the opportunity of using this surplus to avoid killing jobs. Considering the
size, it kills more than 40%. Power reactive has the third-best finished jobs (in number),

69



4.4. Results Evaluation

30 40 50 60 70 80 90
% of jobs

Follow plan
Power reactive

Workload reactive
Peak
Next
Last
Load

85.48%

90.08%

100.00%

87.10%

83.64%

93.21%

88.08%

Finished jobs (number of jobs)

Finished
Postponed
Reached walltime
Not Completely Finished
Killed

30 40 50 60 70 80 90
% of jobs

Follow plan
Power reactive

Workload reactive
Peak
Next
Last
Load

57.70%

81.06%

100.00%

81.55%

78.50%

90.63%

88.85%

Finished jobs (considering size)

Figure 4.14: Jobs state at scenario Critical 2. The first graph (above) considers only
the number of jobs, ignoring their size. In the second graph (below), the jobs’ size is
considered.

but with a good part not completely finished. These jobs are still running at the end
of the time window, so we do not know if they would finish or not. However, it has the
third-worst finished jobs considering the size of the jobs. Like in Scenario Critical 1, Power
reactive has a large battery deficit, with around -20%. All policies have a perfect battery
level, finishing with the SoC at around 50% (the target level). All policies kill fewer jobs
than the Follow plan, using the higher production to do so. However, they kill jobs to
arrive at the battery target level, avoiding using more battery than predicted.

Just Next policy finishes fewer jobs than Follow plan in number, but more considering
the size. This policy consumes all incoming energy as soon as possible, not having too
much to use on the last day. Peak has the third-worst finished jobs metric considering
the number, worse than Power reactive. This policy puts the surplus energy in the mo-
ment with less energy (negative peak). This behavior creates a more constant number of
servers available during the time window. However, this case has a load in the end. So,
reintroducing the energy in the Peak approach does not help to finish more jobs. On the
other hand, Peak finishes bigger jobs than Power reactive. It can finish bigger jobs due to
its constant number of servers behavior. However, since the majority of jobs arrive at the
end, it is better to place the positive compensations at the end (like Load and Last).

We can see a small difference in jobs finished (in number) between Peak and Load,
where Load puts the energy in the moments with a higher difference between demand and
production. It helps to increase almost 1% of finished jobs and decreases around 2% of
killed jobs. Besides, Load can increase the number of bigger jobs finished compared to the
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Peak policy. Nevertheless, the best results come from Last. This policy stocks all surplus
at the last moment, allowing to execute more jobs. It can finish 3.13% (number of jobs)
more than the third-best, the only above 90% finished jobs considering the size (besides
Workload reactive), and having a perfect level of battery at the end of the time window.

Considering the wasted energy, Figure 4.15 illustrates the results in this scenario.
Again, Workload reactive has the lowest wasted energy due to its workload reactiveness
approach. The worst one is Power reactive, for the same reason as scenario Critical 1.
It turns on and increases the speed according to the incoming power, not the demand.
Follow plan has not-so-bad wasted energy, even with a high killed jobs. Peak and Next
wasted more than the Follow plan. Both policies place the energy at the wrong moments.
For example, if Next has a positive compensation (increase the usage) in step 1, it will
increase in step 2. However, the demand is in the end. Then, the energy is wasted on
idle servers. Peak policy has a similar problem. With the load in the beginning, it was
not a problem for Peak (it can delay the jobs for later execution). Nevertheless, in this
scenario, it puts positive compensations in the moments with lower usage, leading to more
moments with idle servers. On the other hand, Last and Load have better energy usage
than the Follow plan. Both policies put the energy in the right moment (last steps).

Fo
llo

w 
pl

an

Po
we

r r
ea

ct
ive

W
or

klo
ad

 re
ac

tiv
e

Pe
ak

Ne
xt

La
st

Lo
ad

0

100

200

300

400

500

W
as

te
d 

en
er

gy
 (k

W
h)

232.68

525.10

131.71

280.24 283.64
210.36 215.70

Wasted energy

Figure 4.15: Wasted energy at scenario Critical 2.

Regarding the bounded slowdown, Figure 4.16 shows the results. Workload reactive
has the best results due to its workload reactiveness. Without the SoC problem from the
previous scenario, it can execute all jobs as soon as they arrive. The policies present a
better median than Follow plan but a higher mean, due to several jobs with bounded
slowdown higher than 100. Yet, since Last, Peak, and Load finish more jobs than Follow
plan, it is complicated to compare them.

Scenario Critical 3

Scenario 3 introduces less energy than predicted with the jobs arriving on the first day.
Figure 4.17 gives the final battery level in this scenario. This figure demonstrates that
the policies finished closer to the target level than the baselines, with -6.177244% in the
worst case (Load). This scenario is particularly difficult to finish at 50% since the policies
migrate power to the first day expecting to compensate for it on the second and third
days. However, it receives less energy than expected, being a little far from the target
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Figure 4.16: Bounded slowdown at scenario Critical 2.

level. Nevertheless, the policies are way better compared to the Workload reactive, Power
reactive, and Follow plan.

40 20 0 20 40
Difference of battery storage (%)

Follow plan

Power reactive

Workload reactive

Peak

Next

Last

Load

Battery difference

Figure 4.17: Difference between the battery target level (50%) and the real battery level
at the end of the time window for scenario critical 3.

Concerning finished jobs, Figure 4.18 illustrates the results. As presented in scenario
1, Workload reactive has a problem with the load on the first day because it will place all
jobs as soon as they arrive, drying the battery. We can see that scenario 3 is even worse,
having more than 20% killed jobs in number and more than 40% in size. Power reactive
finishes more jobs than any other algorithm, with 85.60% (in number) and 61.43% (in
size). This algorithm follows the real production to set the servers’ speeds. This behavior
helps to start several jobs, but it can not maintain the jobs running when the battery
arrives at SoCmin. So, it has more than 10% of killed jobs considering the number and
almost 40% considering the size. Follow plan finishes more jobs than the policies in both
number and size. However, it kills several jobs, with more than 20% in number and almost
50% in size (the worst result).
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Figure 4.18: Jobs state at scenario critical 3. The first graph (above) considers only
the number of jobs, ignoring their size. In the second graph (below), the jobs’ size is
considered.

Among the policies, Load has the worst result of finished and killed jobs in both
number and size, compared to the other policies. In this scenario, Load puts any positive
compensation on the first day, approximating too fast to SoCmin. Then, it has to kill
several jobs to avoid this boundary. This result shows that Load aggressivity does not
always worth it. On the other hand, Next stays close to the SoC planned. In this case,
it can manage the SoC better, finishing more than 80% of jobs in number. Among the
policies, Next is only worse than Peak. As mentioned before, Peak can smooth the peaks
maintaining more servers available constantly. We can see that it finishes fewer jobs in
number than Next but more in size. Peak has a similar result to Follow plan, using less
battery and killing fewer jobs, highlighting the need for reactivity.

Figure 4.19 shows the wasted energy in this scenario. We can see that all policies
present lower wasted energy than the baselines, a crucial result in a scenario with less
energy available. Next policy wasted 45.96% less energy than Workload reactive (the best
baseline). Load has the worst wasted energy among the policies due to the number of
killed jobs. Even so, Power reactive has lower killed jobs than Load, but it has higher
wasted energy. Power reactive follows the power available, turning on servers according
to the power available. Therefore, it expends more energy than the other algorithms in
transition states.

Finally, Figure 4.20 shows the bounded slowdown. Workload reactive has a similar
result to Scenario 1. When it arrives at SoCmin, it has a long time without servers
available, increasing the waiting time and slowdown for some jobs. However, it still has a
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Figure 4.19: Wasted energy at scenario critical 3.

very low median, showing that the majority has a small slowdown. In this scenario, the
policies let the jobs wait longer, delaying the starting time for the moment with enough
energy to finish them. So, the policies have higher mean and median slowdowns.
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Figure 4.20: Bounded slowdown at scenario critical 3.

Scenario Critical 4

The last critical scenario is the harder one, with less energy and jobs arriving on the last
day. Figure 4.21 shows the impact on the battery level. Both Workload reactive and Power
reactive finished with a deficit higher than 30%, with 31.45% and 30.78%. Both ended the
battery with less than the SoCmin of 20% (18.55% and 19.22%). Follow plan finished with
the SoC at 35.72% (-14.28%), far from the target level. Nevertheless, the policies finished
very close to 50%. Since the first two days provide less energy, the policies can adapt the
usage of the last day to approximate the target level. However, Figure 4.22 shows the
impact on QoS.
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Figure 4.21: Difference between the battery target level (50%) and the real battery level
at the end of the time window for scenario critical 4.
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Figure 4.22: Jobs state at scenario critical 4. The first graph (above) considers only
the number of jobs, ignoring their size. In the second graph (below), the jobs’ size is
considered.

Figure 4.22 demonstrates that the policies finished fewer jobs than the baselines in
number and size. Considering the number of killed jobs, only Peak kills fewer jobs than
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the other algorithms, but very close to the Power reactive. In a scenario with less energy,
the policies will impact the QoS, approximating the battery’s SoC to the target level.
Follow plan has the best number of finished jobs, but it finishes mainly small jobs. It kills
more than 40% of the jobs considering the size (the worst result). Workload reactive has
the second-best finished jobs in number and the best in size. However, Workload reactive
kills more jobs in number than Power reactive, Peak, Last, and Load. The battery goes
below 20% on the last day, killing several jobs. The same happens to Power reactive. Even
with several jobs killed, Figure 4.23 indicates that all policies wasted less energy than the
baselines. The policies adapt the plan to maximize energy usage. In a scenario with low
energy production, it is essential to improve energy usage. Figure 4.24 shows that the
policies also impact the slowdown, having worse results than the baselines.
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Figure 4.23: Wasted energy at scenario critical 4.
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Figure 4.24: Bounded slowdown at scenario critical 4.

The results in this scenario indicate that the policies degrade the QoS (finished jobs
and slowdown) to approximate the target level. The policies’ compensation imposes the
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adaptations on power usage and server configuration, by turning off some servers or re-
ducing their speed.

4.4.2 Random cases

After presenting the critical scenarios, this section demonstrates the results of 100 random
cases. These random cases vary the power production and workload randomly, applying
a Gaussian noise. So, they are not always the worst or best, like in critical scenarios. We
do not present the slowdown in this scenario. The workload and power productions vary
a lot between executions. So, it is inappropriate to compare them. First, Figure 4.25
illustrates the state of charge difference from the target level. The red line indicates the
perfect SoC at the end of the time window (0% of difference from the target level). We
can see that the three baselines (Workload reactive, Power reactive, and Follow plan) have
a large variance in the results. An important thing to notice is that even in non-critical
scenarios, the minimal values of Workload reactive and Power reactive can arrive at -30%.
This value means they finished with the battery level at 20%, which is the SoCmin. Follow
plan finishes with a higher Median and Mean, indicating that it saves more energy than
the other algorithms. However, it also has a large variance.
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Figure 4.25: Difference between the battery target level (50%) and the real battery level at
the end of the time window at 100 random cases. The line shows the standard deviation.
The outliers ("o" marks) are values that differ significantly from other observations.

The policies maintain the SoC between -10% and 10%, with some outliers below/above
these values. The median and mean are very close to the target level, showing they can
approximate the target level which is their main objective. Last has the larger variance
among the policies, but with median and mean almost perfect. This heuristic compensates
in the last moments. Sometimes, this behavior can reduce the possibility to use the energy
since the heuristic will not have enough time.

Regarding the QoS, Figures 4.26 and 4.27 illustrate the finished and killed jobs. Work-
load reactive has the best percentage of finished jobs (in number and size). This result is
expected since this algorithm dries the battery to maximize the number of finished jobs.
Workload reactive also has low median and mean killed jobs. However, concerning the
number of killed jobs, it has some results higher than 15% (with two higher than 20%).
Power reactive has good finished jobs but never finishes more than 97.90%. This algo-
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rithm also has some executions with more than 15% of killed jobs in number. The worst
execution is Follow plan, with high mean and median killed jobs (in number and size) and
low finished jobs in size. Combining the state of charge from Figure 4.25 with this result,
we can notice that Follow plan misses opportunities of using more power to execute more
jobs or maintain big jobs running.
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Figure 4.26: Finished jobs at 100 random cases.
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Figure 4.27: Killed jobs at 100 random cases.

The policies have good finished jobs (in number), with Last being a little below the
Power reactive. They also have some executions with almost 100% of finished jobs (above
99%). Considering the number of jobs killed, Last and Peak maintain the results in control,
with no value above 15%. Load has the worst case close to 15% and Next with 16.37%.
Considering the size, the policies have worse results than Power reactive and Workload
reactive. These jobs are harder to maintain running because they demand more time and
power. So, the policies can kill them to guarantee the battery target level.

Finally, Figure 4.28 illustrates the wasted energy of over 100 executions. The best
execution is Workload reactive. As mentioned before, this heuristic focuses on running
jobs, letting the servers down until they are needed. Besides, the DPM technique reduces
wasted energy. The worst algorithm is Power reactive. This algorithm turns on servers
even if they are not necessary. Follow plan is better than three policies (Peak, Next,
and Load). The best policy is Last, mainly because it runs more jobs than the other
policies and Follow plan. While Follow plan uses only the energy planned, the policies
can reintroduce the energy from power variations. However, these policies change the
usage using simplified heuristics. So, they can place the energy in moments without jobs
to run. Last is the policy that suffers the least from this problem because it places the
compensations in the end. Therefore, it can re-migrate this energy at any moment before
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the end. Section 4.4.3 presents an overview of the advantages and problems of these
policies.
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Figure 4.28: Wasted energy at 100 random cases.

4.4.3 Discussion

After presenting all results, this section discusses them generally. We highlight the advan-
tages and disadvantages of all algorithms. Finally, we detail the gaps in the four policies
that the following sections explore. The first algorithm is Follow plan. This algorithm
does not react to real events, applying the offline plan with no modifications. The results
show that this approach tends to kill big jobs. Since the workload is composed of several
small jobs (see Figure 3.4), it can finish several jobs by number but not so much con-
sidering their size. Figure 4.22 illustrates this case, where the algorithm finishes 85.48%
of jobs considering the number but only 57.70% considering the size. This behavior also
happens in random cases, where it finishes more than 90% of the jobs in number but just
more than 60% in size (considering the median). Besides, Follow plan does not use the
surplus energy to run more jobs in scenarios 1 and 2. So, it saves energy but kills several
jobs. This behavior can lead to highly wasted energy, like in critical scenario 1 (see Figure
4.11). Since Follow plan does not adjust the plan, it finishes with higher SoC in cases
with higher energy and lower SoC with less energy. The 100 random cases show that
the minimal value is close to -20% and the maximum value is above 30%. These results
highlight the importance of plan adaptations.

Then, a question comes up: why not use fully reactive algorithms? Then, we presented
Power reactive and Workload reactive. Power reactive adapts the servers’ speed according
to the power available from renewable. It uses the battery to maintain a server available
if the incoming renewable production is not enough. Power reactive finishes with a very
low battery level, even in scenarios with more energy incoming from renewable. This
algorithm only recharges the battery if the servers do not use the incoming renewable
(e.g., a server stays idle). However, it is not enough. Another problem in Power reactive
is wasted energy. It has the worst results in every scenario. Since it does not use an offline
plan, it wastes a lot of energy in transition states. For example, if renewable production
is high, it will turn on several servers. Nevertheless, if the production drops in the next
step, it turns them off. So, it wasted energy just reacting to the power available.
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Workload reactive is a very good algorithm from the QoS point of view. Considering
the slowdown, for example, jobs do not wait too long to be placed. In addition, it can finish
more jobs than the other algorithms. However, it can be too aggressive. It kills several
jobs due to poor battery management in critical scenarios 1 and 3. Figure 4.8 illustrates
that Workload reactive places all the incoming jobs on the first day, dropping the battery
level too fast. When SoC arrives at 20%, Workload reactive turns off all servers, killing
several jobs and increasing the slowdown. This also happens in critical scenario 3. In
critical scenarios 2 and 4, it finishes with less battery level than the target. In random
scenarios, the final battery level of Workload reactive varies a lot, going from -30% to more
than 40%. So, this algorithm has poor battery management, like Power reactive. Even
if it seems appropriate to use the battery to maximize the number of finished jobs, the
next time window will not have energy in the batteries to use. Therefore, both reactive
algorithms are not viable for a renewable-only data center.

So, we proposed four policies to adapt power usage, mixing the offline plan with reac-
tiveness. Peak, Next, Last, and Load fulfill their main objective, approximating the battery
level to the target level. In the profile worst-case scenarios (3 and 4), they degrade the
QoS to approximate the battery level to the target. They do it by reducing power usage
before the end of the time window. On the other hand, they use the surplus energy from
scenarios with profile best-case (1 and 2) to run more jobs. In scenario 1, they are even
better than the Workload reactive. The policies finished very close to the target level in
the random cases. To do so, they impact the total finished jobs but have a more controlled
number of killed jobs than the baselines. For example, Last never killed more than 12% (in
number). Therefore, these experiments show the impact on QoS of respecting the battery
level.

It is hard to indicate the best policy. Last policy is the best one in critical scenarios 1
and 2. It finishes more jobs in number and size in critical scenario 1. In critical scenario 2,
it is the best finished among the policies (worse only than Workload reactive considering
the baselines). These scenarios have more energy, so Last puts the positive compensations
in the last step. When it needs more energy to keep servers running, it takes the energy
from the same step. So, it is more likely for Last to use the surplus energy. The drawback
of the Last policy is that the last step can be too late to use the energy (see Figure 4.9),
and it can miss opportunities to turn on servers to run more jobs. For example, Load has
a better slowdown than Last in critical scenario 1 (see Figure 4.12). Load turns on servers
in the moments where they are needed. So, when the jobs arrive, servers are waiting for
them. Load is the second best among the policies (ignoring the baselines) in scenarios
1 and 2. With more energy, it puts energy in the steps with a higher deficit between
production and demand. However, the prediction is not perfect. So, Load can improve
the wrong step. Next has the worst results in these scenarios because it uses the surplus
as soon as possible. Therefore, Next makes it difficult to find energy in future steps to
avoid killing jobs. Finally, Peak has a balanced result in scenarios 1 and 2. It tends to
maintain a more constant number of servers available over the steps.

Regarding critical scenario 3, Next and Peak are good. This scenario has less energy
available. Therefore, Next adapts as soon as possible the usage. Peak reduces the usage
peak, maintaining a more stable usage. The behavior of both policies helps to avoid the
lower battery boundary without starting too many jobs that can not be finished. Load is
too aggressive here, dropping the SoC too fast and killing several jobs. Here, Last is not so
good. It does not adapt the usage on the first day, arriving faster at SoC lower boundary.
In the last critical scenario, Peak is the best among the policies. It has the lowest killed
jobs (in number and size). Next has a good number of finished jobs, but a high number of
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killed jobs. Considering the size, it has the worst percentage of finished jobs. Load is still
aggressive, finishing fewer jobs (in number). Last is a little better in this critical scenario,
compared to the previous one. However, it still kills several jobs (second-worst among the
policies).

Finally, considering the 100 random cases, Last finishes more jobs in number and size.
Peak and Load are close, with Next being the worst one. Comparing killed jobs, Last and
Peak killed fewer jobs than Next and Load. Load is too aggressive, and Next compensates
too soon.

Considering all these results, we can say that:

1. Last policy is the best one when we have more power arriving. Letting the power
in the end, helps to migrate a second time when needed. However, it can miss the
opportunities to turn on more servers in demand peak;

2. Peak policy has a good overall result, independent of the power profile;

3. Next policy is good in a context where the production is lower, and the demand
peak is on the first day. In this scenario, the SoC drops too fast, and Next adapts
the usage sooner than the other policies;

4. Load policy is aggressive, which improves slowdown but can lead to several killed
jobs.

Regarding wasted energy, Next is more likely to waste more than the other policies.
It reintroduces the surplus as soon as possible, even if it is not necessary. Last uses the
energy wisely, since it places at the end, using before if necessary. Peak and Load depend
on the scenario. Then, a new question comes up: is it possible to improve the Quality of
Service in these scenarios, while still respecting the battery level at the end of the time
window? To do so, the next chapter tries to mix the policies. For example, we can use
Load for some positive compensations to improve QoS, then use Last for the remaining
energy surplus. We proposed a model using reinforcement learning to find out which policy
to use at each moment.

4.5 Conclusion
This chapter proposed new heuristics to manage the battery storage level to reach the
target level. These heuristics use surplus energy to improve the QoS, mainly the finished
jobs. The policies try to reduce the impact on QoS in scenarios with less energy. The
following chapter takes a step further, trying to mix the policies and improving QoS even
more.
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5.1 Introduction

This chapter proposes the introduction of Reinforcement Learning (RL) to choose the best
compensation policy. We previously saw that the heuristics proposed (Next, Peak, Last,
and Workload) have good results compared to just following the plan. The best heuristic
depends on the workload and power production. So, the idea is to let RL algorithms
learn which are the best policies to use at each different moment inside the three-day time
window. We expect that the global result will be good by improving decisions locally. The
following sections will describe our approach for solving the compensation problem. First,
we describe the model, detailing the states, actions, and rewards. Then, we define the
algorithms used in this section to compare with the previous results. Finally, we present
the results and a discussion.

5.2 Reinforcement Learning

As mentioned in Chapter 2, Reinforcement Learning (RL) performs a trial-and-error ap-
proach, where an agent explores an environment, takes actions, and receives feedback [90].
An RL algorithm, for each time step t should evaluate the state St and define an action
at. After applying the action at, it receives a reward rt. We chose RL algorithms, such
as Q-Learning and Multi-Armed Bandit, because they are fast, have a simple implemen-
tation, and are lightweight compared, for example, to Deep neural networks [123]. These
notations are used for our RL algorithms. Section 5.6 presents them. However, before
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presenting the algorithms, we describe our state, action, and rewards model. Our objec-
tive with RL is to define: where to compensate the power difference (positive or negative)
for each step within a three-day time window. For example, the best actions in the early
steps can be to put the power in the steps with a higher power deficit, but not too much
to not dry the battery too fast. So, RL must find a balance between the actions. For ease
the comprehension, this chapter uses the following terms:

• Decision step: The step that takes action to modify the power of a future step. It
will receive a reward according to the impact of this action. It can impact only one
future step;

• Future step: The step that receives more or less power from one or several decision
steps. When this future step finishes, it is possible to give back a reward for the
decision step(s);

• Iterations: During the learning process, an iteration is the re-execution of an ex-
periment without changing the workload and production but using the previous
knowledge.

5.3 States
In our problem, the state must englobe three aspects: moment of the decision, how far
we are from the plan, and the energy to compensate. The moment of the decision is the
decision step. For example, for a three-day time window divided into 5-minutes steps, we
have an integer from 0 to 863. The idea of this aspect is that the best decisions depend
on the moment inside the time window. For example, the best decision at the beginning
of the time window can be different from the best decision at the end of the time window.
For how far we are from the plan aspect, we calculate the difference between the actual
and predicted state of charge at the moment of decision t:

∆SoCt = SoCactual
t − SoCplan

t (5.1)

∆SoCt indicates if the battery is close to the offline PDM plan (∆SoCt close to 0), has
less energy than predicted (∆SoCt < 0), or has more energy than predicted (∆SoCt > 0).
For example, if the battery has less energy than predicted, it is better to reduce the
usage in the next steps. Finally, the energy to compensate is given by energy needed to
compensate to make SoCplan

t at the end of the time window equal to the target (given by
Equation 3.31). This can be positive (we need to discharge the battery) or negative (we
need to charge the battery). This variable can indicate, for example, that a big positive
energy compensation must be done in the Last step, instead of Load (avoiding drying the
battery too fast). So, our state is composed by:

• Decision step: Integer from 0 to 863;

• ∆SoCt: Difference from the actual and planned SoC;

• Energy compensation: The power to compensate to have SoC(T ) = SoCtarget;

5.4 Actions
Since our problem is to define where to compensate the power, our actions are in which
future step to compensate. Here, we have a big difference between RL and the previous
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heuristics. Previously, at each decision step, we compensated the energy entirely. This
means that one decision step could change several future steps. In RL, we will choose only
one step, compensating for the remaining power in the future. Let the future step be t′.
We define two ways to choose t′. The first way is similar to our heuristics from Chapter
4. In this way, RL has four actions: Next, Peak, Last, and Workload. Figure 4.1 shows
these heuristics. The second way is to decide at which hour to compensate. This way
gives more freedom to RL to define the best step. The hour action includes 72 possible
actions (a three-day time window has 72 hours). Therefore, the RL algorithm takes a
step inside the hour chosen. To specify exactly which step inside the hour, it applies the
peak policy (takes the higher usage to negative compensation and lower usage to positive
compensation). Another possibility would be to choose the exact step to compensate.
However, this would increase the action space (864 possible actions), demanding higher
learning time. So, we have the following action types:

• Heuristic: We choose next, peak, workload, or last;

• Hour: We choose the hour inside the time window.

5.5 Rewards

The reward is one of the most important elements in RL because it drives the learning
process. We have defined two rewards linked to Quality of Service (QoS). We focus on
the QoS to direct the actions to make better QoS decisions. Mainly, we consider started,
finished, and killed jobs in our rewards. The two rewards are called started jobs and
finished jobs.

Started Jobs Reward

The started jobs reward considers the number of started jobs. The reward given by an
action is defined as:

• If the future step t′ kills at least one job: -1 multiplied by the number of the jobs
killed;

• If the sum of compensations on step t′ is positive and step t′ does not kill any job:
1 multiplied by the number of the jobs started;

Since we can have more than one decision step changing the future step t′, we must
distribute this reward between the decision steps. To do so, we spread the reward according
to how much each decision step impacts the future step t′. Furthermore, we consider only
the decision steps that helped to arrive at the reward. For example, when we have a
negative reward, we take only the decision steps that reduce the energy at the step. For
example, if we have only three decision steps that reduced the energy in the future step
t′ with -1500 Wh, -1000 Wh, and -500 Wh (sum of -3000 Wh), respectively, and the
scheduler killed one job in the future step t′, the reward (-1) will be:

• Decision step 1: −1
3000 × 1500 = −0.5

• Decision step 2: −1
3000 × 1000 = −0.333333333

• Decision step 3: −1
3000 × 500 = −0.166666667
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Finished Jobs Reward

The second reward uses the number of finished jobs. This reward gives the reward for all
decision steps that impacted the job. It is defined as:

• If a job is killed: -1;

• If a job is finished: 1;

We distribute the reward between the decision steps in the same way as the previous
reward. The only difference here is that we consider all the steps that the job passed by. For
example, if a job is killed, we give a proportion of -1 for each decision step that decreases
the power in the steps that the job was running, according to how much it impacted. The
same is done for finished jobs. This approach aims to reinforce the decisions that help
to finish jobs and discourage the ones that kill jobs. Since the environment can calculate
the reward only after executing the future step (to know how many started, finished, and
killed jobs in the step t′), the RL algorithm will not receive the reward right after the
decisions. For example, in iteration 0, the RL algorithm does not have prior knowledge,
choosing only random actions. We standardized the reward update at the end of the
iteration, reducing the bias (e.g., giving a reward earlier for Next action than Last can
make Next be chosen more times). So, at the end of iteration 0, we calculate all rewards
for all actions in this iteration. Then, iteration 1 uses the knowledge from iteration 0 in
the decision-making process, updating the reward at the end of iteration 1.

5.6 Algorithms
In this section, we present the algorithms used in this section. We compare the following
algorithms with the baselines and heuristics from the previous chapter.

5.6.1 Random

Before describing the RL algorithms, we present two random algorithms. We used these
random algorithms to verify the RL results. We expect the rewards from random actions
to be equal to RL in the first steps, but, after some iterations, the RL must improve its
reward. Since we have two possible action types (heuristic and hour), we proposed two
random algorithms. The first is the Random heuristic, which randomly chooses a heuristic
from Chapter 4 (Peak, Next, Last, or Load) using a uniform distribution. The second is
named Random step, choosing a random step using a uniform distribution. Both random
algorithms compensate only in one future step, in the same way as the RL.

5.6.2 Q-Learning

Q-Learning can be understood as a table where the rows are the states, the columns are
the actions, and the values are the Q-values. Therefore, for each row (state) and column
(action), a Q-value is calculated using the Bellman equation:

Qnew(St, at) = (1− α) Q(St, at) + α(rt + γ max
a

Q(St+1, a)) (5.2)

Where:

• Qnew(St, at): New Q-value;

• St: State;
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• at: Action;

• rt: Reward observed;

• Q(St, at): Actual Q-value;

• α: Learning factor;

• γ: Discount factor;

• St+1: New state after taking action at at state St;

• maxa Q(St+1, a): Best expected future reward.

Q-Learning updates the Q-value using this equation for every action taken in a state.
Q(St, at) is the Q-Value before the action is taken. α indicates how the new information
overrides the old information. α = 0 makes the agent exploits prior knowledge exclusively,
while α = 1 makes the agent consider only the most recent information. γ determines the
importance of the expected future reward. γ = 0 makes the agent ignore future rewards,
while γ = 1 makes the agent makes it attempt for a long-term high reward. As presented
before, we calculate the reward only at the end of the iteration. Therefore, at the end of
each iteration, we use the Bellman equation to update the Q-values of all actions taken
in this iteration. Since we updated the reward in the end, we know the state transition
(from St to St+1).

A Q-Learning limitation is that both state and action must be discrete because having
state or action as continuous would demand an infinite table. Hence, we simplified some
of the state variables (action is discrete already). Our state consists of three variables:
Decision step, ∆SoCt, and Energy compensation. The Decision step variable is discrete
(from 0 to 863), so there is no need to change it. ∆SoCt is how far the SoC is from the
planned SoC. This can be, theoretically, from -100% to 100%, where the negative values
indicate the SoC is below the plan, and positive values indicate the SoC is above the plan
(see Equation 5.1). This variable can have continuous values (e.g., if SoCactual

t = 22.5
and SoCplan

t = 30.75, ∆SoCt will be −8.25), Q-Learning demands a discretization. So,
we create 20 slices of 10%, going from a difference of -100 to a difference of 100. So, a
difference of -8.25% will be in a slice with the range from -10% to 0%. Each slice has an
index, discretizing this value. Considering the energy compensation, it is how much we
need to compensate, so it is continuous. Therefore, we transform the energy compensation
using the battery size, splitting the result into 20 slices of 10% in the same way as ∆SoCt.
For example, if the compensation is 140000 Wh and the battery size is 800000 Wh, the
compensation is 17.5% of the battery, which puts it in the slice between 10% and 20%.
Even if our slices are from -100% to 100%, the battery thresholds are still 20-90%, as in the
previous chapter. So, some slices are not achievable, for example with a ∆SoCt > 90%.
However, we let these slices, aiming to simplify the problem.

We use the epsilon-greedy policy for the exploration-exploitation model (or ϵ−greedy).
We start with ϵ = 1, reducing it for every new iteration. Using ϵ, we verify if we take the
higher Q(St, at) or a random action:

at =
{

max Q(St, at), with probability 1− ϵ

random at, with probability ϵ
(5.3)

So, iteration 0 has ϵ = 1, choosing random actions for every state. At the end of every
iteration, we reduce ϵ by 0.0125. For example, iteration 1 will have ϵ = 0.9875, allowing
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it to use a little from prior knowledge. ϵ will be 0.975 in iteration 2, 0.9625 in iteration 3,
and so on. We define the learning factor α = 0.1 and discount factor γ = 0.9. These were
the values with better results in our different tests.

5.6.3 Contextual Multi-Armed Bandit with LinUCB

While Q-Learning works with a table creating the relationship between states, actions, and
rewards, Contextual Multi-Armed Bandit (especially using the LinUCB algorithm) tries
to find a linear relation between them [124]. LinUCB (Linear Upper Confidence Bound)
algorithm learns the correlation between the state (named context in Multi-Armed Bandit)
and the reward using linear regression [125]. Each arm (action) has its linear model of
context (state) and reward. This algorithm estimates the upper confidence bound, using
the standard deviation of previous rewards. So, the algorithm chooses the arm (action)
with higher upper confidence bound, taking the arm with the higher possible return.
Figure 5.1 illustrates this behavior, even if action (arm) 3 has a higher average, it chooses
action 2 because of the higher UCB.

Figure 5.1: LinUCB algorithm for choosing the best arm [126].

We implemented the algorithm 2 from [124]. Let d be the number of variables of
the context St (state). In our experiments, d = 3. Aa and ba are the variables used in
ridge regression. This regression tries to find the correlation between state and reward.
Lines 2-5 initialize both Aa and ba for all actions in the set of possible actions At. This
initialization makes all arms (actions) start with a very high UCB, forcing each arm to
be chosen at least once. So, it calculates the UCB for every arm at each step t (lines
6-10). To do so, line 8 calculates the ridge regression (θ̂a), and line 9 applies it to find
the UCB. The UCB ρt,a is calculated by ρt,a ← θ̂a

⊤
St + ν

√
S⊤

t A−1
a St where the first part

(θ̂a
⊤

St) is the expected mean, and the second part (ν
√

S⊤
t A−1

a St) is the upper confidence
bound. ν is a hyperparameter to indicate the importance of the standard deviation in the
UCB. The higher ν is, the wider the confidence bounds become. So, a higher ν results in
a higher emphasis on exploration instead of exploitation. We defined ν = 20 after several
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experiments, with the best results with this value.

Algorithm 2: LinUCB algorithm [124].
1 begin
2 forall a ∈ At do
3 Aa ← Id (d-dimensional identity matrix);
4 ba ← 0dx1 (d-dimensional zero vector);
5 end
6 for t = 0, 1, 2, 3, ..., T do
7 forall a ∈ At do
8 θ̂a ← A−1

a ba;
9 ρt,a ← θ̂a

⊤
St + ν

√
S⊤

t A−1
a St;

10 end
11 Choose arm at = arg maxa∈At ρt,a, and observe a real-valued reward rt;
12 Aat ← Aat + StS

⊤
t ;

13 bat ← bat + rtSt;
14 end
15 end

After that, line 11 verifies the action at with higher UCB among the actions in At.
This line applies the action and receives a reward rt. Then, it updates the ridge regression
variables (Aa and ba) for chosen action at in lines 12 and 13 (Aat and bat). Differently
from Q-Learning, Contextual Multi-Armed Bandit does not need a discretization of the
state. Therefore, we can use the state directly without modifications.

5.7 Results Evaluation
After presenting the algorithms, we apply them to the critical scenarios from the previous
chapter. We have four different RL executions combining the RL algorithm and action
types:

1. Bandit + heuristic;

2. Q-Learning + heuristic;

3. Bandit + hour ;

4. Q-Learning + hour ;

These algorithms use the same scheduling from Chapter 4, changing only in which
step compensating. We run 200 iterations for each critical case of each RL algorithm
with the different reward types. The idea is to verify if the RL algorithms can learn by
repeating the same inputs (workload and weather). In addition, we want to verify if they
can improve the number of finished jobs. We do not execute the random cases due to their
complexity. There are 100 different cases, demanding high processing time for executing
200 iterations of each one. Again, the critical cases are:

1. Critical 1 : Profile best-case and workload in the beginning;

2. Critical 2 : Profile best-case and workload in the end;

3. Critical 3 : Profile worst-case and workload in the beginning;

4. Critical 4 : Profile worst-case and workload in the end;
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The results from the baselines and compensation policies (Last, Next, Peak, and Work-
load) are the same results from the previous chapter. We compare them with the new
results from Reinforcement Learning. The results of the random algorithms are an average
of 200 iterations.

5.7.1 Started Jobs Reward

Beginning with the Started Jobs reward, we present the results in the four critical cases in
Figures 5.2, 5.3, 5.4, and 5.5. Each figure shows five graphs. The first two on top are the
graphs about the finished jobs. The two graphs in the middle are the battery level and
wasted energy. The wasted energy is the energy expended not computing finished jobs,
englobing, for example, the energy used in killed jobs, turning on/off servers, and letting
servers idle. The last graph is the reward evolution over the 200 iterations. The reward is
calculated by summing all rewards from the different actions inside the iteration.
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Figure 5.2: Results of Started Jobs Reward in critical case 1.

Figure 5.2 shows that in critical case 1, all RL improved their reward over time. They
started with similar rewards to random executions. However, at the end of 200 iterations,
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Figure 5.3: Results of Started Jobs Reward in critical case 2.

they improved the reward. This result shows that the algorithms find the decisions which
give higher rewards. Even so, it is possible to notice that the reward is not constant, having
some variation even in the last iterations. Considering the reward, the best algorithm is
Bandit + heuristic. Q-Learning + heuristic, Q-Learning + hour, and Bandit + hour
have very similar rewards, with Bandit + hour having more variance than the other two.
However, considering the finished jobs in number (first graph), the results indicate Q-
Learning + hour as the best one, with Bandit + hour as the second one with a similar
result. So, even if Bandit + heuristic has the best reward, it does not mean it has the
best global QoS. This result shows a problem in this reward, where just starting jobs does
not guarantee they will finish. Additionally, the best RL result is still worst than the Last
policy in the finished jobs metric (both in number and size). Random step has a similar
result to the best RL algorithm (in number), showing that even a random choice is a
good option here. Considering the Battery level, all RL algorithms have the same results.
Finally, both Bandit and Q-Learning algorithms expend more energy than Last policy in
this case.
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Figure 5.4: Results of Started Jobs Reward in critical case 3.

The results of critical case 2 in Figure 5.3 show that both RL algorithms using the
action of the hour have the highest reward. However, it is not translated to good QoS.
These algorithms have worse finished jobs in number than Q-Learning + heuristic, Random
step, Random heuristic, Workload, Last, and Peak policies (ignoring the baselines). Q-
Learning + heuristic has the best number of finished jobs among the RL algorithms, with
the third-best reward. However, it kills more jobs. Bandit + Heuristic has the worst
QoS among the RL algorithms. Both random algorithms finished several jobs, but they
also have a high number of killed jobs. Considering the size, Q-Learning + hour and
Q-Learning + heuristic finished more jobs than the other RL algorithms and the random,
but they are still far from Workload and Last policies. Regarding the battery level, all
RL algorithms ended close to the target level. Finally, Q-Learning + heuristic, Bandit +
hour, and Q-Learning + hour wasted less energy than the random algorithms but more
than Last and Workload policies.

Starting the cases with less energy, Figure 5.4 illustrates the results of critical case 3.
Here, again, all RL algorithms have higher rewards than both random algorithms. Again,
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Figure 5.5: Results of Started Jobs Reward in critical case 4.

the Q-Learning + hour and Bandit + hour have the best results among the RL algorithms.
Bandit + hour has a lower reward but a higher number of jobs finished. However, all RL
algorithms have fewer finished jobs than Next policy (in number and size). Besides, they
kill more jobs than Next and Peak policies. These results show again that the RL could
not learn which are the best policies to use. Considering the battery level, Q-Learning +
hour and Bandit + hour use slightly more battery than the other policies. Nevertheless,
they are all below the baselines. Finally, the wasted energy results of the RL algorithms
are higher than the Peak and Next policies.

Figure 5.5 presents the last scenario, critical case 4. All RL algorithms have higher
rewards than random heuristics. In this scenario, the reward varies a lot, showing that
it still has indecision to define the best actions. Bandit + hour has the highest number
of finished jobs among the RL algorithms. However, it kills more than the other RL
algorithms. No RL algorithm is better than the Peak policy in finished and killed jobs in
both number and size (ignoring the baselines). All RL algorithms finished with the battery
level close to the target. Finally, only Bandit + hour wasted less energy than Workload

93



5.7. Results Evaluation

(the best policy). Regarding the slowdown, we chose to present only one case in Figure
5.6 for critical case 4 since it is the case with more variations between the executions. We
can see that the best RL algorithm is Q-Learning + hour, with a mean slowdown near
10. However, this is the algorithm with lower finished jobs in number. Random step has
a good slowdown but it kills several jobs. The algorithm with the best finished jobs (in
number) is Peak (among the ones that respect the battery). However, it results in the
highest mean bounded slowdown. It is unfair to compare the algorithms using this metric
since they have different jobs finished. Besides, the slowdown is not in our reward. So, our
RL algorithms are not driven by this metric. Any improvement would be achieved only
because the RL executed fewer/smaller jobs. Therefore, we will ignore bounded slowdown
in the following experiments of this chapter.
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Figure 5.6: Slowdown of Started Jobs Reward in critical case 4.

Consolidating the results of the Started Jobs Reward, Table 5.1 presents a ranking
of the different tested scenarios. We highlight in green the top 3 results on each metric
for each scenario. The bottom 3 results are in red. Both finished and killed jobs are
considered in number. Killed jobs are: killed jobs + reach the walltime + not completely
finished. For SoC, we assume the best results as the higher real SoC at the end of the
time window. The learning algorithms could not improve the metrics, compared to the
reactive algorithms and the policies from Chapter 4. In the two scenarios with profile
best-case, Last has the best results, with no metric at bottom 3 and 7 metrics at top
3. On the other hand, in profile worst-case executions, Next and Peak are quite good.
The RL algorithms have some results in top 3, but they generally stay out of the top 3
results. Regarding the reward, it is possible to notice that Q-Learning + hour and Bandit
+ hour improved the reward after 200 iterations. Usually, the reward from these cases
has a distance from the random rewards after 200 iterations. This result indicates that
the RL learning algorithms are learning the policies to choose the actions which give a
high reward. However, having a high reward does not result in good global results (mainly
finished/killed jobs). This reward reinforces the actions which put more energy into steps
that start more jobs. However, starting jobs does not mean that they will finish. So, it
can start several jobs but kill a lot also. Aiming to solve this problem (starting some jobs
but not finishing them), we proposed the next reward.
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Table 5.1: Consolidate average results in every scenario for reward started.

Scenario Metric Follow
plan

Power
reactive

Workload
reactive Peak Next Last Load Rand.

heuris.
Rand.
step

Bandit +
heuristic

Q-Learn. +
heuristic

Bandit +
hour

Q-Learn. +
hour

Profile best-case
and

workload in
beginning

Finished jobs 13th 12th 11th 7th 10th 1st 5th 6th 3rd 8th 9th 4th 2nd

Killed jobs 13th 12th 11th 7th 10th 1st 5th 6th 3rd 8th 9th 4th 2nd

SoC 1st 13th 2nd 9th 12th 3rd 7th 4th 5th 11th 8th 10th 6th

Wasted energy 11th 13th 1st 7th 10th 2nd 8th 6th 4th 12th 9th 5th 3rd

Profile best-case
and

workload in end
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5.7.2 Finished Jobs Reward

The next reward aims to solve the problem of starting jobs and not finishing them. So,
this reward reinforces the actions that help to finish more jobs. Figures 5.7, 5.9, 5.11, and
5.13 present the results of this reward.
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Figure 5.7: Results of finished jobs reward in critical case 1.

We introduce in this section a new graph in Figures 5.8, 5.10, 5.12, and 5.14. In these
figures, the graphs on the top are from finished jobs, where blue+red means the total
number of finished jobs, blue is the finished jobs included in the reward, and red is the
finished jobs ignored in the reward. The higher the red+blue, the better. On the other
hand, the bottom graphs are the killed jobs, where blue+red means the total number of
killed jobs, blue is the jobs included in the reward, and red is the jobs finished but ignored
by the reward. The higher the red+blue, the worse. The idea in these graphs is to see
if, over the iterations (x-axis), the global finished jobs increase and the killed jobs reduce.
Besides, these graphs illustrate if the reward reflects our objective of improving the global
QoS (by improving locally). A job is considered ignored in the reward when no previous
step impacts the power usage of the steps where it executes. For example, let’s say a job
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executes from steps 50 to 52. A job is ignored in the reward if no previous step increases
the power usage in steps 50, 51, and 52. The same for killed jobs.
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Figure 5.8: The jobs (finished and killed) included in the reward in critical case 1.

Starting with critical case 1, Figure 5.7 illustrates the results. The highest reward is
from Q-Learning + hour, which has the highest finished jobs in number and size among
the RL algorithms. The second-best reward is Q-Learning + heuristic, having also the
second-best finished jobs (in number and size). However, we see a large difference between
both rewards, which does not appear in the final finished jobs. Figure 5.8 highlights the
problem. It is possible to notice that the reward’s improvement of Q-Learning + hour is
not linked to more jobs finished, but due to more finished jobs included its reward. So,
it puts energy into steps with more finished jobs just to receive the reward of them. Q-
Learning + heuristic "touches" fewer finished jobs, even finishing quite the same number
of jobs. Q-Learning + heuristic, Bandit + heuristic, and Bandit + hour do not increase
the number of jobs finished, comparing the first iterations to the last ones, having constant
finished jobs. Therefore, they do not improve the global finished jobs in this execution.
Q-Learning + heuristic is the only algorithm improving the global QoS comparing first
iterations to the last ones (finished and killed jobs). Regarding the killed jobs, Q-Learning
+ hour kills fewer jobs and almost every killed job is inside the reward. On the other hand,
Q-Learning + heuristic kills more jobs and has some killed jobs not included in the reward.
Both Bandit algorithms have higher killed jobs and high reward variance, even in the last
iterations. Going back to the results, Q-Learning + hour presents quite the same result as
the Last policy in the number of finished jobs and lower finished jobs in size. Considering
the battery, all RL algorithms are close to the target battery level. So, compared with
Last, the RL algorithms use more energy from the battery but not finishing more jobs.
The wasted energy metric shows that the RL wasted more energy than the Last policy.
Hence, the more energy used by RL algorithms is wasted. We can observe that even doing
a random algorithm is a good option in this scenario. Random step has good finished jobs
(in number), finishing more jobs than three of four RL algorithms. Furthermore, Random
step has the lowest wasted energy between random and RL algorithms.

Figure 5.9 shows the results of critical case 2. In this scenario, Q-Learning + hour has
the highest reward, with Bandit + hour being the second best. However, Q-Learning +
heuristic has the best number of finished jobs and killed jobs among the RL algorithms.
Figure 5.10 shows that Q-Learning + hour and Bandit + hour touched more finished
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Figure 5.9: Results of finished jobs reward in critical case 2.

jobs than Q-Learning + heuristic. Besides, Bandit + hour touched less killed jobs. This
algorithm "learns" to avoid some steps with killed jobs. So, it results in a higher reward,
even with a lower QoS. Another important aspect is that Q-Learning + hour reduces
the number of finished jobs, comparing the first iterations to the last ones. This result
indicates that this algorithm prefers to "touch" more finished jobs than finish more globally.
Here, we can see that improving locally the reward does not mean that we will improve it
globally. The same happened to Q-Learning + heuristic. Going back to Figure 5.9, all RL
algorithms are worst than Workload and Last, considering both finished and killed jobs.
Even Random heuristic is better than RL algorithms in finished jobs (in number), but it
has higher killed jobs. Considering the battery level, the RL algorithm results are close to
the target level. Finally, they wasted more energy than Last and Workload policies.

Starting the cases with less energy, Figure 5.11 shows the results of critical case 3.
Q-Learning + hour has the best reward but is not the best algorithm in finished/killed
jobs metrics. The best result comes from Bandit + heuristic, with the highest number of
finished jobs and the lowest number of killed jobs among the RL algorithms. However,
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Figure 5.10: The jobs (finished and killed) included in the reward in critical case 2.

Bandit + heuristic has the lowest reward. Figure 5.12 shows a higher global number of
finished jobs and lower killed jobs in Bandit + heuristic compared to the other algorithms.
So, we can see that doing good local decisions does not mean good global results in our
problem. Both Q-Learning + hour touched more jobs than Bandit + heuristic, increasing
their reward. However, Q-Learning + hour increases the number of touched finished jobs,
which leads to a reduction in the global finished jobs. At least, this algorithm arrives to
reduce the number of killed jobs in this scenario. Coming back to Figure 5.11, no RL is
better than Next policy in number of finished jobs and better than Peak policy in size
of finished jobs. Both Next and Peak are still the executions with the lowest killed jobs.
Both random algorithms kill several jobs. So, random is not an option either. Considering
the battery level, all RL algorithm results are close to the policies. Regarding wasted
energy, all RL algorithms wasted more than Peak and Next policies. This scenario shows
that even including QoS decisions in the algorithm, a renewable-only data center demands
better battery management, like Next policy. Maintaining the QoS above SoCmin is the
most important constraint in a scenario with less energy.

Finally, the last results of critical case 4 are presented in Figure 5.13. This scenario also
has less energy arriving. We can see that Q-Learning + hour has the highest reward. It
also has the second-best finished jobs among the RL. Again, the highest number of finished
jobs come from the RL with not the highest reward, Q-Learning + heuristic. Figure 5.14
illustrates that Q-Learning + heuristic touches fewer jobs than Q-Learning + hour, but
finishes more. This shows again that the best local decisions (see the reward obtained
by Q-Learning + hour) do not improve the global QoS. In this case, Q-Learning + hour
improves more jobs but increases the number of killed jobs. It avoids the steps with these
killed jobs, increasing its reward. However, both Q-Learning + hour and Bandit + hour
do not stabilize the number of killed jobs, having high variation even in later iterations.
Returning to Figure 5.13, Q-Learning + heuristic has the best finished jobs considering
the size, even better than the policies. However, it also kills more than Peak and Workload.
Considering the battery level, again, all the RL algorithms are close to the target level.
Finally, the Q-Learning + heuristic presents the lowest wasted energy. This result is
linked to the finished jobs considering the size, where this algorithm finished more than
all policies. So, this algorithm arrives to maintain more big jobs running for longer, using
the energy well.
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Figure 5.11: Results of finished jobs reward in critical case 3.

Similarly to the previous reward, Table 5.2 presents the final metrics of the algorithms.
Again, the RL algorithms do not improve the results, having just some metrics at the top
3 and some at the bottom 3. The results majority of RL algorithms stay out of the top
3 and bottom 3 ranking. After presenting all results, Section 5.7.3 discusses them more
generally, indicating the problems of our RL model and proposing future possibilities in
machine learning.
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Figure 5.12: The jobs (finished and killed) included in the reward in critical case 3.
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Figure 5.13: Results of finished jobs reward in critical case 4.
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Figure 5.14: The jobs (finished and killed) included in the reward in critical case 4.

5.7.3 Discussion

After presenting and briefly discussing the results of the Reinforcement Learning algo-
rithms in critical scenarios, this section analyzes the RL proposal deeper. We opted to
begin with the critical scenarios as they offer greater potential for improvement compared
to the random cases. The idea is that if the RL could improve in these scenarios, we
could take a step further and apply RL in a scenario with more uncertainty. We proposed
200 iterations in each critical scenario, letting the RL test the different approaches to
deal with them. However, even in this simplified test, our RL model was not sufficient
to improve the QoS. In every case, at least one policy is better than the RL algorithms.
Tables 5.1 and 5.2 show that RL did not improve the final metrics, even after several
iterations. Several reasons help to explain these results. First, we verified a difference
between Bandit and Q-Learning algorithms learning. Usually, Q-Learning has a slower
learning curve, going from bad rewards in the beginning but increasing over the iterations.
On the other hand, Bandit does not have this learning curve. The reason is linked to the
algorithm idea. While Q-Learning has a different Q-value for each state, Bandit defines a
unique linear function for all states. For example, let’s consider only the step variable as
the state. Q-Learning can define that the best action in step 1 is Next, in step 2 is Last,
and in step 3 is Next again. On the other hand, Bandit defines a linear function, making
it harder to do the same variation. However, while Q-Learning needs several iterations
to try all action possibilities in all states, Bandit has the linear function for all states in
the first iteration. Therefore, Q-Learning is slower to learn but can find the best action
for each state, while Bandit is faster but must have a linear relation between state and
reward.
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Table 5.2: Consolidate average results in every scenario for reward finished.

Scenario Metric Follow
plan

Power
reactive

Workload
reactive Peak Next Last Load Rand.

heur.
Rand.
step

Bandit +
heuristic

Q-Learn. +
heuristic

Bandit +
hour

Q-Learn. +
hour

Profile best-case
and

workload in
beginning

Finished jobs 13th 12th 11th 9th 10th 1st 5th 8th 3rd 7th 4th 6th 2nd

Killed jobs 13th 12th 11th 9th 10th 1st 5th 8th 3rd 7th 4th 6th 2nd

SoC 1st 13th 2nd 10th 12th 3rd 7th 4th 5th 11th 8th 9th 6th

Wasted energy 12th 13th 1st 7th 10th 2nd 8th 6th 3rd 11th 5th 9th 4th

Profile best-case
and

workload in end

Finished jobs 12th 3rd 1st 7th 13th 2nd 5th 4th 10th 11th 6th 9th 8th

Killed jobs 13th 7th 1st 9th 10th 5th 3rd 11th 12th 8th 2nd 6th 4th

SoC 1st 13th 12th 3rd 4th 6th 7th 2nd 9th 8th 10th 5th 11th

Wasted energy 5th 13th 1st 11th 12th 2nd 3rd 8th 10th 9th 4th 7th 6th

Profile worst-case
and

workload in
beginning

Finished jobs 2nd 1st 5th 8th 3rd 11th 13th 10th 6th 4th 12th 7th 9th

Killed jobs 12th 10th 13th 2nd 1st 5th 9th 8th 11th 3rd 4th 7th 6th

SoC 11th 13th 12th 3rd 1st 4th 7th 6th 9th 2nd 5th 10th 8th

Wasted energy 12th 13th 11th 2nd 1st 6th 10th 4th 9th 3rd 5th 8th 7th

Profile worst-case
and

workload in end

Finished jobs 1st 3rd 2nd 4th 6th 8th 12th 9th 11th 10th 5th 13th 7th

Killed jobs 11th 2nd 7th 1st 8th 5th 3rd 9th 12th 6th 4th 13th 10th

SoC 11th 12th 13th 1st 2nd 10th 4th 7th 6th 5th 8th 9th 3rd

Wasted energy 12th 13th 11th 4th 10th 5th 2nd 3rd 7th 6th 1st 8th 9th
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Our proposed RL model also introduces some problems. The three concepts (state,
action, and reward) present issues. Starting with the reward, it is possible to verify in the
experiments that our reward does not represent well our multi-objective problem. More
specifically, it rewards the decisions considering the local impact (finish more and kill less)
and does not include the global QoS. This behavior introduces two problems. First, since
we share the reward of finishing/killing jobs among all the steps which impacted the jobs,
the RL algorithm prefers to modify steps with fewer modifications from other steps. For
example, choosing Next action would give a higher reward to the step because it receives
all the reward from the step without sharing it with the other steps. The second problem
is that our model only considers the jobs impacted by the actions. So, RL finds ways to
impact more jobs, even with no need to receive more rewards. However, this behavior can
lead to QoS degradation, such as in Figure 5.12 of Q-Learning + hour algorithm. This
algorithm increases the reward but reduces the total finished jobs. Aiming to solve this
reward problem, we could change the reward model to use the global finished jobs for
all actions. Nevertheless, this new reward would demand a higher learning time (more
iterations) to try all combinations of actions, which can be impeditive in an online system.

Another problem with the reward is that it is not an immediate reward. This problem
means we do not know the action’s reward right after applying it since it changes a
future step. We discover the reward only after running the future step impacted by the
compensation. Therefore, this can make it even harder to learn the best actions quickly.
Besides, it is difficult to find the best share of reward for each action since several actions
can impact the same future step. Regarding the action, we tested two action types:
heuristic and hour. We noticed that the hour action type has more freedom to choose the
best action. Usually, Q-Learning + hour is among the best results. We could not use the
compensation step as action since it increases the action space, demanding higher learning
time (more iterations). Future work can introduce a more flexible action space. Besides,
the action hour to compensate chooses the peak step inside the hour to compensate.
Maybe this is not the best approach, so further experiments can be conducted.

Finally, the last problem of our model is the state space. We defined a simplified state
space to reduce the learning time. However, this state space could include some QoS
metrics, such as queue length, slowdown, waiting time, etc. Another big problem that the
state could solve is related to the SoC. As mentioned before, the scheduler kills the jobs
when the SoC arrives at SoCmin. So, it chooses future steps without knowing the impact
of the action on the SoC. It would be interesting to introduce the expected SoC time series
in the state. However, time series has too much information for the RL state, demanding
a migration to a more complex algorithm, such as Deep Reinforcement Learning. This
algorithm introduces a neural network to find the relation between a complex state to
the expected reward. However, this kind of algorithm demands more learning time and
more computational effort to maintain. Since it is heavier than a simple RL, this kind of
algorithm also expends more energy, which is the opposite of what we look for.

Regarding the impact of the moment of job arrival and having more or less energy,
we could see that critical case 1 with more energy and jobs in the beginning was the best
result of RL (see Figures 5.2 and 5.7), being close to the best algorithm (Last policy).
However, this case is the simplest one, with even Random Step having good results. The
other results show that even with several repetitions (iterations), RL could not learn the
best moment to place the compensations. For example, in critical case 2, we expected the
RL to have similar results to the Last policy since the jobs arrived in the end. However,
this was not the case. The cases with less energy were even worse, having distant results
from the best policies.
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Another problem that could be solved by changing the learning algorithm is decision
dependency. Decision dependency means that the actions are chained. So, the best actions
in the last steps depend on the first steps actions. These chained decisions, linked to
the global reward, turn this problem really hard to solve using a simple RL algorithm.
Additionally, we still maintain scheduling and compensation divided. So, the scheduling
can start new jobs even if the SoC is in a dangerous place or if the battery does not
have the energy to maintain this job running until the end. A new algorithm should mix
compensations and scheduling decisions, improving the decisions. Due to the complexity
of all these elements, our next approach will be a new heuristic that mixes all these aspects.
Chapter 6 presents this heuristic.

5.8 Conclusion
This chapter presented a new model for solving the compensation problem using Rein-
forcement Learning algorithms. We presented two algorithms: Bandit and Q-Learning.
The algorithms analyze the state, trying to find the best compensation steps. We pro-
posed two rewards linked to QoS. Then, we presented the results and a discussion. The
results show that our problem could not be solved by a simple RL algorithm due to the
different constraints. Therefore, the next chapter presents a new heuristic, which mixes
compensations and scheduling decisions.
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6.1 Introduction
After trying to introduce reinforcement learning in our model to choose the best compensa-
tion policy, this chapter describes a heuristic that englobes several elements to make better
decisions. We named this heuristic BEASY (Battery EASY backfilling). This heuristic
considers the power production and demand to find the best moment to compensate. In
addition, BEASY mixes the compensations with the scheduling decisions. We present the
algorithm, followed by the results compared with the previous heuristics.

6.2 BEASY
This heuristic acts in three different moments. First, Section 6.2.1 explains the predictions
used through BEASY ’s decisions. These predictions are made at the beginning of the
time window, just one time. Then, Section 6.2.2 describes the modifications in the EASY
Backfilling heuristic to introduce battery awareness. The modified EASY Backfilling acts
every time a job finishes, arrives, or new servers are available. Finally, Section 6.2.3 defines
the compensation policies. BEASY compensates every time step.

6.2.1 Predictions

As presented in Section 3.2.2, ODM receives two predictions from offline modules: power
production and power demand. Since ODM works online, it will not predict itself but use
the predictions from offline. So, this section will not focus on the forecasting method but
on using its results.

Figure 6.1 illustrates both forecasts showing the area of uncertainty. The real value
can be any value inside the uncertainty area. BEASY uses these predictions to create
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Figure 6.1: Renewable production and demand prediction. The blue (production) and
green (demand) areas are the uncertainty given by the forecast.

different possible states of charge using equations 2.3 and 2.4. To do so, we estimated Pdch

and Pch using Equations 6.1, and 6.2:

Pch(t) =
{

P est
renew − P est

load, if P est
renew > P est

load

0, otherwise
(6.1)

Pdch(t) =
{

P est
load − P est

renew, if P est
renew < P est

load

0, otherwise
(6.2)

Where:

• P est
renew: Estimated power production from renewable;

• P est
load: Estimated power demanded from the load.
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Figure 6.2: Result of the Equation 2.4 for different predictions. The dangerous area is
when 5 or more curves (so, more than half of them) are below 20%.

Figure 6.2 demonstrates the result of estimating the SoC (with Equation 2.4) using
nine different predictions. BEASY calculates these SoC combining lower, median, and
upper boundaries from the area presented in Figure 6.1 (e.g., demand lower boundary
+ production lower boundary, demand median + production lower boundary, demand
median + production higher boundary, etc...). It is possible to notice that the SoC can
vary a lot. Section 6.2.3 will describe how we use these SoCs to compensate. Figure 6.2
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also illustrates both SoC upper and lower thresholds (red dashed lines). Setting upper
and lower thresholds helps to increase the battery lifetime [25]. The narrower the range,
the longer the expected lifetime [25]. However, selecting a narrow range limits the battery
benefits. The figure presents both thresholds as 90-20%, but they are parameterizable.
Finally, BEASY estimates dangerous areas in the time window. Figure 6.2 indicates this
moment. It considers the dangerous areas when more than half of the predicted SoC
curves are below the lower threshold (in Figure 6.2, 5 curves). Section 6.2.2 will explain
how it uses these moments to make better scheduling decisions. The opposite is the green
areas, where the battery will be overcharged. In these moments we could use more energy
from the batteries to stay below the thresholds. However, just expending energy without
need will increase the wasted energy. So, BEASY focuses on using the energy efficiently
(detailed in Section 6.2.3).

6.2.2 Job Scheduling

One of the most important ODM’s duties is placing jobs on servers. To do so, BEASY
implements EASY backfilling using two different sorts [121, 122]. Algorithm 3 presents
the main idea. This algorithm is similar to Algorithm 1 but with some modifications (we
highlighted them). BEASY runs this algorithm when a job arrives, finishes, or new servers
are available. First, this heuristic defines the priority order (line 2) and sorts the jobs in
the queue in a priority order PR (line 3). We explain later how it defines the priority order.
Then, it finds the servers to run this job (line 6). The server must be available at least
at the actual time step to be chosen. Line 7 has the first modification. Usually, EASY
backfilling only verifies if servers S are available now. We added the following verifications:

1. It verifies if servers S are available during the entire execution, considering the
walltime given by the user as the execution time. If so, it returns true. If not, it
goes to the next verification;

2. It verifies if it is possible to change the plan to keep servers S running the entire
execution. To do so, it does the following steps:

(a) First, it calculates how much energy is needed. Let’s say Edt is the energy
demanded in step t without modification and Ed

′
t is with modification. So, it

calculates Ed
′
t for each time step t that the server sleeps, putting the server

in the same state/speed as the previous time step (t − 1). The total energy
demanded is

∑
t Ed

′
t−Edt considering all the time steps that the job executes;

(b) Then, it calculates how much energy is possible to take from future steps,
putting idle servers to sleep. Let it be Eposs. Since we need to maintain the
SoC between both thresholds, we can not "migrate" all the energy to use now.
So, it only considers the idle servers from the actual time step until the time
step where the SoC will be equal or lower to the lower threshold. We can
migrate the energy freely between the actual time step and this future one.
Figure 6.3 illustrates this verification. In the figure’s example, the actual step
is at hour 10. In this step, it needs to verify how much energy is possible to
save from future steps. So, it verifies the idle servers from hour 10 to hour 29,
because at hour 30 the SoC is equal to 20%. It can change the usage from hour
10 to hour 29 freely. Taking energy from after hour 30 could violate the lower
threshold since we will use more energy from the batteries;
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(c) Then, it tests if Eposs >=
∑

t Ed
′
t−Edt. If this is false, it returns false and does

not change the plan. If this is true, it makes Edt = Ed
′
t, changes the server

speeds, and recalculates the planned SoC (using Equation 2.4).

Algorithm 3: BEASY scheduling. Modified from [122].
input : Queue Q of waiting jobs, PR as priority order, and PB as backfilling order.
output: None (calls to Start())

1 begin
2 PR ← define_priority_sort();
3 Sort Q according to PR;
4 for job j in Q do
5 Pop j from Q;
6 S ← select_servers(j);
7 if j can be started and finished in servers S then
8 Start(j, S);
9 else

10 Reserve j at the earliest time possible according to the walltime of the currently
running jobs;

11 Sort Q according to PB ;
12 for job j

′
in Q do

13 S ← select_servers(j
′
);

14 if j
′

can be started and finished in servers S without delaying the reservation
on j then

15 Start(j
′
, S);

16 end
17 end
18 break;
19 end
20 end
21 end
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Figure 6.3: Verification of possible energy to save.

These verifications do not increase the complexity. Verification 1 goes through the plan
with limited size (e.g., in our three-day time window, we have a plan with 864 time steps).
Verification 2-a is done together with verification 1. Verification 2-b is faster than the
others since it can process fewer steps and stop when Eposs >=

∑
Ed

′
t−Edt. Verification

3-c is just to apply the modifications. It recalculates the SoC to keep it updated for the
next jobs to schedule. So, if a job puts a future SoC close to the lower threshold, the next
job takes it into account. Continuing in algorithm 3, if the tests pass, then it starts the job
(line 8). When it finds a job that can not be placed now, the algorithm does the backfill
process (lines 10-18). Then, it finds the first moment to run this job (named priority job)
in the future (line 10). So, it re-sorts the queue using PB (line 11), placing the other jobs
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in the servers (lines 12-17) without delaying the (future) priority job execution (line 14).
Line 14 does the same verification as line 7.

As mentioned before, EASY backfilling sorts the jobs by PR and PB. Line 2 defines
PR. Our implementation starts with PR using Bounded Slowdown from Equation 3.26.
Bounded Slowdown estimates the ratio between the total time a job stays in the system
and its actual processing time. This order helps to let a job wait proportionately to its size.
For PB, BEASY sorts the waiting queue by the smallest sizes first (walltime multiplied by
the number of resources needed). This order helps in the backfill process since sometimes
the "holes" in the scheduling demand very small jobs. Besides, these jobs are less likely
to demand more energy from future time steps (BEASY lets the energy to the priority
ones). Figure 6.2 highlights a dangerous area. In this area, BEASY changes PR to also
use the smallest sizes first. These are not good moments to start big jobs, even if they
are waiting too long in the queue. Small jobs demand less energy and are more likely to
finish.

6.2.3 Power compensation

After describing the scheduling algorithm, this section explains the heuristic to compensate
for power fluctuations. While the scheduling algorithm runs for every job arrival, end, or
server state modification, the power compensation algorithm will execute at every new
time step. Since the scheduling algorithm modifies future time steps (it places the jobs in
servers that are already on) and verifies the violations, we do not need to run the power
compensations for every placement. We defined that the state and speed stay constant
inside each time step. Changing the server state too much between on and off can degrade
it faster. Besides, these transitions take time. Therefore, a constant state/speed inside
time steps simplifies the decision-making.

The main objective of this part of the heuristic is to finish the time window with the
SoC as close as possible to the planned. Renewable sources can produce more or less than
predicted. Furthermore, the power usage can vary due to server idleness or scheduling
modifications. So, at each time step, BEASY calculates the SoC for all future time steps
using Equation 2.4. Then, it calculates the energy difference Ecomp between the target and
the estimated SoC at the end of the time window using Equations 3.30 and 3.31. BEASY
needs to reintroduce/remove the energy Ecomp before the end of the time window.

When the compensation is positive (Ecomp > 0), we can increase the speed of the
servers or run more jobs. First, BEASY uses the Ecomp to speed up the running jobs.
It improves from the actual step until the last step. In each step, BEASY increases the
processor’s speed of the running jobs on this step. So, it tends to put more energy into
the jobs right now than in the future. This behavior helps in avoiding jobs to reach their
walltime and also avoiding steps with predicted SoC higher than 90%. After that, if there
is still energy, it verifies if there are jobs in the waiting queue. If so, it turns on some
servers to run these jobs. If there is not or it turned all the servers needed to run jobs,
it lets the remaining energy in the battery. Expending the energy only by increasing job
speeds and starting new jobs can be very conservative. Even so, these actions help to avoid
the battery’s higher threshold of 90%. BEASY could be aggressive, using the remaining
energy to turn on machines in the future without knowing exactly if there will be jobs to
execute. However, we prefer to finish with more energy in the batteries than expend this
energy not wisely. Being aggressive can lead to a higher wasted energy.

In the negative compensation (Ecomp < 0), BEASY considers the estimated SoCs from
Figure 6.2. First, it finds the time step with the higher number of predictions below 20%
or the last time step if there are no predictions below 20% (let’s name it the violation
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time step). The idea is to reduce the usage before the violation, reducing the violation
probability. Then, BEASY reduces servers speed in the following order (stopping when it
is enough):

1. Impacts idle servers from the violation time step to the actual time step (it goes
through the time steps backward);

2. Impacts idle servers from the violation time step to the last time step (it goes through
the time steps forward);

3. Impacts running servers from the violation time step to the last time step (it goes
through the time steps forward);

4. Impacts running servers from the violation time step to the actual time step (it goes
through the time steps backward);

BEASY focuses first on idle servers because impacting running servers can increase
the number of killed jobs. Killing jobs increases wasted energy. So, BEASY searches for
idle servers in both ways (violation time step → actual time step and violation time step
→ last time step). If reducing the usage from idle servers is insufficient, we start to impact
running servers (steps 3 and 4). Our idea is to impact them as far as possible from the
actual step, considering the violation step. The real total job execution time is uncertain
(e.g., they could finish earlier than predicted). If we change the order (step 4 before step
3), the chance of really impacting the job is higher since it will reduce the energy from
the violation step to the actual step. Doing step 3 before, we expect that the job finishes
before these changes, while impacting the steps around the violation step. BEASY kills
jobs only when there is no power action possible (e.g., migrating power from the future)
to keep them running. Aiming to avoid a blackout in the data center, we turn off the
servers gently, killing the running jobs in the process. We do not focus on the killed jobs
resubmission.

6.3 Results Evaluation

After presenting BEASY, we compare its results with the algorithms presented previously.
We execute the same critical cases and 100 random cases presented in Section 4.3. Just
to remember, the critical cases are:

1. Critical 1 : Profile best-case and workload in the beginning;

2. Critical 2 : Profile best-case and workload in the end;

3. Critical 3 : Profile worst-case and workload in the beginning;

4. Critical 4 : Profile worst-case and workload in the end;

The random cases are the 100 workloads and power productions generated by Gaussian
noise over 10 different traces of each (workload and power production). The results of the
baselines and policies are the same as the previous sections.
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6.3.1 Critical cases

Scenario Critical 1

Figure 6.4 illustrates all the results obtained for the execution with the profile best-case and
workload in the beginning. This scenario has more space for improvement because the job
majority arrives on the first day, and we have more energy to finish them than predicted.
So, the heuristics have time to decide when to start the jobs and how to approximate
the target SoC. The best algorithm is BEASY, with 99.01% finished jobs in number and
96.07% size. The jobs not finished are postponed and not killed. It ends above the target
SoC. Regarding wasted energy, it is possible to notice that BEASY better expends the
energy received, resulting in a saving of 35.33% compared with the second-best wasted
energy result (Workload reactive). It has a higher bounded slowdown compared to the
policies but a lower mean than the baselines. It runs more jobs, which makes more jobs
wait longer. However, it maintains all slowdowns below 100, while all other algorithms
have some jobs with higher slowdowns.
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Figure 6.4: Results of BEASY on critical case 1.

Workload reactive execution kills 8.05% of jobs. This heuristic is too aggressive com-
pared to BEASY. As mentioned before, Workload reactive puts all jobs to start as soon
they arrive. Figure 6.5 compares the SoC of the Workload reactive and BEASY. Workload
reactive dries too fast the battery and needs to kill the jobs, while BEASY is conservative.
We can see in this scenario that BEASY makes better decisions than all other executions.
Here, being conservative helped in the result. It finishes more than 99% of the submitted
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jobs, guaranteeing they have the energy to finish. The 1% is postponed to the next time
window. We discuss this approach later. In addition, it finishes saving energy in the
battery, which can help the next time step to run the postponed jobs.
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Figure 6.5: Comparison between the SoC of Workload reactive and BEASY.

Scenario Critical 2

The second case is more complicated than the previous one. Here, the job majority arrives
on the last day of the time window. So, the algorithms have a shorter time to schedule
them. Figure 6.6 illustrates the results.
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Figure 6.6: Results of BEASY on critical case 2.

BEASY is the second best in finished jobs in number. Considering the size, it has
lower finished jobs than Workload and Last policies. However, BEASY does not kill any
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job, while Workload and Last policies kill almost 5% (in number). Only Workload reactive
is better than BEASY in finished and killed jobs (in number and size). As mentioned
before, this is the perfect scenario for the Workload reactive approach since it can recharge
the battery and expend everything to run jobs at the end of the time window. Considering
the battery level, BEASY ended with more energy in the battery. Since the jobs arrive at
the end of the time window, BEASY prefers to save this energy than starting jobs without
knowing if they would finish. Workload reactive starts the jobs, ignoring the target level
and resulting in a deficit of energy in the battery. Considering the wasted energy, BEASY
wasted 22.10% more energy than Workload reactive, but it wasted less than all the other
algorithms. Finally, BEASY has a similar bounded slowdown to Workload reactive, but
with some values above 100. Again, it is complicated to compare algorithms with different
jobs finished. But it has a better slowdown than the other algorithms.

Scenario Critical 3

The third case is with the worst-case profile and workload in the beginning. In this
case, the algorithms have time to schedule the jobs but receive less energy coming from
renewable. So, besides finding the best moment to place the jobs, they must adapt their
power usage. Figure 6.7 shows the results.
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Figure 6.7: Results of BEASY on critical case 3.

BEASY is the second best in finished jobs, very close to the best one Power reactive.
Besides, BEASY kills very few jobs (0.10%). Considering the size, BEASY is the best
one, finishing more than the Power reactive. Comparing BEASY and Power reactive, the
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former has a better battery level. Power reactive finishes with more than 20% of battery
deficit. Next policy is the best policy, but it is worst than the BEASY in finished jobs (in
number and size). The policies and BEASY have quite similar battery levels. BEASY
has the best result on wasted energy, reducing by 31.17% compared to the Next (the
second-best). This is a scenario where it is essential to use energy efficiently. So this is
an excellent result. Finally, BEASY has the best mean bounded slowdown, with no job
having more than 1000. The other algorithms have several jobs with a very high bounded
slowdown (> 1000). However, it has a higher median than all baselines but lower than
the policies.

Scenario Critical 4

The last case is with the profile worst-case and the jobs arriving at the end of the time
window. Figure 6.8 shows the results.
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Figure 6.8: Results of BEASY on critical case 4.

Comparing BEASY with the executions that respected the battery level (Peak, Next,
Last, and Workload policies), BEASY has the highest finished jobs (in number and siz-
ing). Including executions that do not respect the battery level (Workload reactive, Power
reactive, and Follow plan), BEASY is only better than the Power reactive in number
but finishes less in size. Besides, BEASY finishes less than Workload reactive and Follow
plan in number and size. However, BEASY kills fewer jobs than all other algorithms
(baselines and policies). We can see that Workload reactive finishes in number almost the
same percentage as BEASY but finishes far from the battery target level. This scenario
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makes it hard to start big jobs, resulting in a big impact on the size of the jobs executed
by BEASY. Again, BEASY has an outstanding result regarding wasted energy. It wastes
less energy than all the other algorithms, with 19.70% less than the second-best, Workload
policy. Finally, in this case, BEASY has a higher median bounded slowdown compared
to the other algorithms, but the Next policy. The mean value of BEASY is similar to
Workload, Last, and Power reactive but higher than Follow plan and Workload reactive.
BEASY finishes more small jobs due to the power constraints, in which the waiting time
has higher importance. Since our bounded slowdown considers only the finished jobs,
executing more small jobs can produce a higher slowdown.

6.3.2 Random cases

After presenting the critical cases, this section details the random cases. As mentioned
previously, we have taken 100 different profiles and workloads. Figure 6.9 illustrates the
results of the 100 executions.
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Figure 6.9: Results of BEASY on random cases.

Like in the critical cases, BEASY presents the lowest number of killed jobs. BEASY
has no execution with more than 5% (in number) or 20% (in size) of killed jobs. The
other algorithms have a higher mean and worst-case. For example, Workload reactive has
two executions with more than 20% killed jobs in number and one execution with more
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than 50% in size. The policies reduce these numbers but have higher values than BEASY.
Considering finished jobs, BEASY has the second-best mean of 93.29% (in number) and
85.42% (in size). Workload reactive has the best mean with 97.27% (in number) and 90.86%
(in size). Workload reactive is very aggressive, which helps to have a higher number of
finished jobs but also leads to a high killed job number. Figure 6.10 compares the SoC
of Workload reactive and BEASY in the execution where Workload reactive killed several
jobs. Workload reactive could not avoid the 20% threshold, resulting in several killed jobs.
BEASY avoids this threshold.

0 100 200 300 400 500 600 700 800
Time step (300 s)

0

50

100

So
C 

(%
)

Kill jobs
Workload reactive
BEASY

Figure 6.10: SoC in one of the scenarios. Workload reactive kills several jobs when the
battery is lower than 20%. Workload reactive almost kills jobs between time steps 350 and
400, but it can keep SoC above 20%. BEASY avoids this threshold and could maintain
the jobs running.

Comparing the number of jobs killed, Workload reactive has 19% of the executions
above 5% of killed jobs (in number), while BEASY has none. This result shows that
BEASY can maintain the SoC above the target level. Furthermore, Workload reactive has
the two worst number of jobs killed among all executions. Power reactive has the third-
best number of completed jobs but also 19% of the executions above 5% of killed jobs (in
number). Considering the battery target level, BEASY has good levels since it is near
the target level (average of 54.47%). 75% of the executions in BEASY finished with the
battery at the target level or higher. While Workload reactive has a wider battery level,
with the minimal being close to -30%, BEASY has a better result. The best executions
in this metric are the policies (Peak, Next, Last, and Workload), always around 50% and
with a very low standard deviation. But, we could see they can not reduce the killed jobs
as much as BEASY. Finally, BEASY and Workload reactive have the best result in wasted
energy, well below the other executions. Workload reactive is very energy aware since it
tends to maintain running only the servers needed due to its DPM technique. So, being
close to the same result is quite outstanding for BEASY.

6.3.3 Discussion

After presenting the results of critical and random cases, this section consolidates our
discussion. Table 6.1 ranks all algorithms over the different tested scenarios. We highlight
in green the top 3 results on each metric for each scenario. The bottom 3 results are in
red. Both finished and killed jobs are considered in number. Killed jobs are: killed jobs
+ reach the walltime + not completely finished. For SoC, we assume the best results as
the higher real SoC at the end of the time window. This table highlights the excellent
results of BEASY over the different experiments, where it finishes in top 3 in all cases.
BEASY is always the best one in killed jobs. This heuristic can identify when it is possible
to execute more jobs and when it is better to be conservative, postponing some jobs.
Running everything is not always possible due to power constraints in our data center
environment. Postponing the jobs allows us to plan the next time window considering
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them. For example, the next time window could use more energy coming from hydrogen
to deal with these jobs. In an online way, it is not possible to change the hydrogen usage
since it has a warm-up time. Besides, offline can consider the seasonality of renewable
production in its decision (e.g., spend more energy from hydrogen in winter and recharge
it in summer). Even postponing jobs, BEASY is always between the top 3 finished jobs.

The worst result of BEASY is third place in finished jobs in critical case 4 (Profile
worst-case and workload in the end). This critical case is complicated to guarantee the
execution of all jobs. The algorithm with the highest finished jobs metric (Follow plan)
also has the highest killed jobs in this scenario. Furthermore, the second-best (Workload
reactive) is the third-worst in killed jobs. On the other hand, BEASY is the third-best in
finished jobs and the best in killed jobs. Follow plan and Workload reactive also have worse
SoC level than BEASY. Regarding the random cases, Workload reactive seems a good
possibility. However, the third place in SoC (considering the mean) does not illustrate
the variance in the SoC. Figure 6.9 shows that this algorithm varies its SoC, being very
unstable. BEASY has the second-best SoC. We can see in Figure 6.9 that BEASY has a
higher SoC variance than the policies, but it is still lower than the baselines. In addition,
75% of its values are higher than the target level, showing that it usually finishes with
more energy to use in the next time window. Follow plan has a similar result in SoC, but
this algorithm has the worst killed jobs and second-worst finished jobs. Follow plan saves
battery because it does not adapt its plan to improve QoS (finished/killed jobs).

Besides, BEASY also has good wasted energy over all executions. It has the best
wasted energy three times and the second-best two times. The only algorithm with better
results is Workload reactive. We expected Workload reactive to have good wasted energy
since it reacts to job arrival and applies DPM to turn off the servers. Even so, BEASY
outperforms Workload reactive in three of five scenarios. In the random cases, Workload
reactive has lower wasted energy than BEASY, but with a very similar result. Workload
reactive has two high wasted energy results in the scenarios with lower power production
due to the high number of killed jobs. Besides BEASY, only Last policy has no wasted
energy in the bottom 3. However, Last policy is always in third or fourth place.

Finally, let’s compare BEASY globally. BEASY has the best overall results, showing a
balanced algorithm. As mentioned before, it finishes in top 3 in all cases. Workload reactive
also has several good results, mainly regarding job metrics. However, it is too aggressive,
which is not a good approach in critical cases 1 and 3 (with more jobs on the first day).
On the other hand, following strictly the plan in a conservative way (Follow plan) is not
a good approach either. The proposed policies are the first step away from being too
conservative, showing some good results. For example, Last policy has only two bottom 3
QoS results in the scenarios with less energy. However, they are still not enough. BEASY
can find a balance between QoS and power constraints. The SoC predictions help the SoC
to finish close to the target. The finished and killed jobs have good results in BEASY
due to its scheduling approach. The BEASY ’s scheduling validation helps to guarantee
job executions. Finally, the wasted energy good results come from both scheduling and
SoC predictions. Executing small jobs in dangerous moments maintains the SoC under
control and reduces killed jobs. Reducing killed jobs also reduces wasted energy. So,
combining good scheduling and power compensation decisions makes BEASY achieve
these outstanding results. BEASY manages in the same way both power consumption
(real-time jobs) uncertainties and power production (weather) uncertainties.
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Table 6.1: Consolidate average results in every scenario.

Scenario Metric Follow plan Power reactive Workload reactive Peak Next Last Load BEASY
Profile best-case

and
workload in
beginning

Finished jobs 8th 7th 6th 4th 5th 2nd 3rd 1st

Killed jobs 8th 7th 6th 4th 5th 2nd 3rd 1st

SoC 1st 8th 3rd 6th 7th 4th 5th 2nd

Wasted energy 7th 8th 2nd 4th 6th 3rd 5th 1st

Profile best-case
and

workload in end

Finished jobs 7th 4th 1st 6th 8th 3rd 5th 2nd

Killed jobs 8th 5th 1st 6th 7th 4th 3rd 1st

SoC 1st 8th 7th 3rd 4th 5th 6th 2nd

Wasted energy 5th 8th 1st 6th 7th 3rd 4th 2nd

Profile worst-case
and

workload in
beginning

Finished jobs 3rd 1st 5th 6th 4th 7th 8th 2nd

Killed jobs 7th 6th 8th 3rd 2nd 4th 5th 1st

SoC 6th 8th 7th 3rd 2nd 4th 5th 1st

Wasted energy 7th 8th 6th 3rd 2nd 4th 5th 1st

Profile worst-case
and

workload in end

Finished jobs 1st 4th 2nd 5th 6th 7th 8th 3rd

Killed jobs 8th 3rd 6th 2nd 7th 5th 4th 1st

SoC 6th 7th 8th 1st 3rd 5th 4th 2nd

Wasted energy 7th 8th 6th 3rd 5th 4th 2nd 1st

100 average cases

Finished jobs 7th 3rd 1st 6th 8th 4th 5th 2nd

Killed jobs 8th 6th 2nd 4th 7th 3rd 5th 1st

SoC 1st 8th 3rd 6th 7th 4th 5th 2nd

Wasted energy 4th 8th 1st 5th 7th 3rd 6th 2nd
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6.4 Conclusion
This chapter presented and evaluated BEASY, a heuristic that mixes power and schedul-
ing decisions. BEASY uses power production and demand predictions to estimate the
SoC. This SoC estimation helps to make better power compensation decisions. Besides,
BEASY identifies dangerous moments where the SoC could be too close to the battery’s
lower boundary. In these dangerous moments, BEASY starts to be conservative, prefer-
ring to run small over big jobs. On the scheduling side, it validates if the job can run
entirely. It verifies if the job’s servers are available during the entire execution or if it is
possible to migrate energy to maintain the servers running. We compared BEASY with
three baselines (Follow plan, Power reactive, and Workload reactive) and the four policies
presented in Chapter 4. BEASY showed outstanding results in finished jobs, killed jobs,
SoC difference from the target, and wasted energy. It is in the top 3 of all metrics in every
scenario. We could see that BEASY manages the different objectives of QoS and energy
storage.
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Chapter 7

Conclusion and Perspectives

In this chapter, we make overall conclusions and summarize the contributions of this work,
along with a discussion of future work.

7.1 Conclusion

The world has a big challenge to reduce its GHG emissions and stop global warming.
GHG reduction demands the engagement of all sectors of governments, industry, and
research. One sector is Information and Communication Technology (ICT) with emissions
in 2020 around 1.8%-2.8% or 2.1%-3.9% considering the supply chain pathways. Data
centers are one of the actors inside ICT with a good share of the emissions. Both academy
and industries focus their efforts on reducing emissions of the big data center providers.
Reducing their emissions is particularly difficult due to the growth in Internet users and
network devices. Even with this growth, the emissions did not increase at the same pace
due mainly to the power optimizations. However, some authors claim that these power
consumption improvements are close to their limit. Therefore, data center providers must
find other ways to reduce emissions, such as renewable energy migration.

Some providers, such as Google and Amazon, are investing in an off-site renewable
production approach to maintain their servers. In an off-site generation, the data center
and power production are not in the same place. So, the providers generate the same
amount of energy to the grid that they expend on their servers. However, the biggest
challenge of renewable sources is the power intermittence. Since RES production comes
from nature, it depends on the climate conditions. Therefore, these providers transfer
the problem to third parties. In a net zero scenario (where no energy comes from brown
sources), they can not maintain their quality of service without changing the strategy.

The Datazero2 project proposes an architecture and decision process for a renewable-
only data center. The architecture is disconnected from the power grid, using only the
energy produced by solar panels and wind turbines but with power storage as backups.
Using just renewable sources demand different decision levels. We divided the decision
level into two possibilities: offline and online. The offline approach has time to search for
an optimal solution to match power production and demand. Usually, it predicts both
production and demand. The main drawback of the offline approach is that it does not
know the real events, so its optimal solution only works if the predictions are good enough.
On the other hand, the online approach reacts to real events. However, an online-only
approach is myopic, ignoring long-term decisions. In this thesis, we proposed ways to mix
offline and online dealing with uncertainties from power production and consumption. We
demonstrated in Chapter 2 a lack of propositions mixing both. The main objectives of an
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integrated offline-online approach are to improve the QoS (maximizing finished jobs and
reducing killed jobs), respect the power constraints (approximating battery target level),
and reduce the wasted energy (maximizing renewable usage).

First, we focused on respecting the power constraints. So, we proposed four compen-
sation policies to adapt power usage, approximating the battery target level at the end
of the time window. The compensation changes the power usage according to the power
fluctuations derived from production/consumption variations. The compensation policies
are Peak, Last, Next, and Workload. All policies arrive with better battery levels than
the baselines (Follow plan, Power reactive, and Workload reactive). The policies improved
the finished jobs in the scenarios with more energy available, compared to an offline-only
execution (Follow plan). In scenarios with less energy available, they reduced the number
of finished jobs but approximated the target battery level at the end of the time win-
dow. Nevertheless, there was not a good policy in every execution, demanding further
improvements.

The second contribution tried to introduce a Reinforcement Learning (RL) model to
make better compensation decisions. Since every policy arrived at a good battery level at
the end of the time window, we tried to mix the compensations driven by a QoS metric.
Therefore, we proposed an RL model with two reward propositions linked to QoS (finished
and started jobs). The idea is still to compensate for power variations, which proved to
be enough to respect the power constraint, but choosing the actions which improved QoS.
We proposed two RL algorithms: Q-Learning and Contextual Multi-Armed Bandit with
LinUCB. The results show that they could not improve the QoS, resulting in even worse
QoS. These results were explained by several factors, such as chained decisions making it
harder to find the best actions, the reward did not represent the global QoS, state/action
size limitations, and separated scheduling and power decisions.

Finally, the last contribution is a heuristic which consolidates all the aspects discovered
in previous sections. The heuristic is named BEASY and englobes the compensation idea
(from the policies) and solves the problems from the Reinforcement Learning, such as
mixing scheduling and power decisions and using more information from the state of charge
estimation. Besides, this heuristic is completely parameterizable, in size aspects (number
of servers, power production, battery sizes, etc.) and constraints (SoC target level, SoC
boundaries, etc.). We compared BEASY with the baselines and policies, showing good
overall results of the new heuristic. BEASY had the lowest killed jobs than all the other
algorithms while respecting the power constraints. Regarding the finished jobs, it was
among the top-3 in every scenario. Workload reactive maintains the servers sleeping until
a job arrives. This behavior helps this algorithm to have low wasted energy. Even so,
BEASY had lower wasted energy than Workload reactive in three of five cases.

7.2 Perspectives

The work presented in this thesis proposes some ways to mix offline and online decisions
in a renewable-only data center. As perspectives, there are some remaining subjects for
further improvement.

Change learning process
As we presented in Chapter 5, our model for learning the best compensations did not

improve the policy’s results. We presented several problems in our model. Therefore,
future work can introduce a different learning algorithm, such as Deep Reinforcement
Learning (DRL). DRL allows a larger state and action space. Using a larger state space,
we could introduce more variables, such as jobs waiting to run, estimated SoC of the future
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steps (time series), the actual state of running jobs, etc. Besides, the action space can be
more precise, using the right step to compensate. Future work can compare DRL with
the heuristics in the time and energy spent to learn and apply the algorithms. Another
possibility is changing our reward for the total finished and killed jobs of a time window.
This reward demands more learning iterations in a simple RL but could produce better
results. We hypothesized that doing the best local actions would result in the best global
results. However, we saw that this is not true.

Add flexibility in energy constraints
The model presented in Chapter 3 considered a hard constraint of the battery’s SoC

at the end of the time window. Even if the algorithms (policies and BEASY ) did not
finish with the exact target level, their decisions consider this battery constraint. Future
work can evaluate the possibility of a flexible battery level. For example, they can accept
±5% as flexibility at the end of the time window. This flexibility can improve even
more the QoS, running more jobs and reducing killed jobs. However, this flexibility must
be studied along with the PDM module. Giving ±5% as the battery’s flexibility would
finish the battery with −5% than the target in every scenario (the algorithms use all the
possible energy available). Nevertheless, this behavior can lead to PDM demanding an
overestimated target level (e.g., always +5%), which does not change the actual behavior.
Another possibility is to introduce hydrogen decisions in the model. In the current model,
we considered hydrogen production as fixed input production without changes due to the
hydrogen’s slow dynamics. However, the online model can consider hydrogen dynamics
and use hydrogen in critical cases, following recent and future developments in Hydrogen
technologies. As for the battery’s flexibility, this must be studied together with PDM.

Modify the application type
This thesis focused on batch applications. Future work can evaluate BEASY and the

policies for other application types. For example, let’s imagine a renewable-only streaming
scheduler using BEASY. A new user sends a request to watch a video from the catalog.
The catalog has several videos with different sizes. The video size can be our walltime,
which BEASY uses to estimate the energy demanded. The user should wait for his
time to watch (supposing that they agreed with this to use clean energy). Changing the
processor’s speed would impact the video quality. Killing a job interrupts the streaming.
In dangerous moments (SoC close to the battery lower boundary), BEASY lets only small
videos. We can evaluate the QoS (waiting time, quality degradation, etc) of BEASY in
this environment. A possible uncertainty comes from the possibility of pausing the video,
which changes the video’s finish time. Another possible future work is to introduce in
the model other job aspects, such as memory, network communication, etc. This thesis
considered that the jobs are impacted only by the CPU. Even if this is the main factor, it
is not the only one. Besides, we can evaluate the impact of killed jobs resubmission.

Explore different time definitions
Our work considered a time window of three days and a time step of five minutes. The

time window size is not too long to make it difficult to predict the weather conditions and
not too short to reduce ODM decision possibilities. In addition, the time step is short
enough to maintain ODM reactive (e.g., fastly adapt battery usage) and long enough
to finish the server transitions (e.g., the server on and off). However, future works can
compare different time windows and time steps, to find the best configurations. For
example, would a time window of one day impact the ODM decisions? And a time
window of one week? Does a longer time step be too late to adapt power usage? Another
possible evaluation is to evaluate chained time windows. For example, the execution of
Datazero2 during one year with all modules integrated. This thesis created some offline
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modules without a direct connection with the online. We ran the offline optimizations,
generating input for the online experiments. A complete one-year execution demands the
total Datazero2 middleware implementation.

Miscellaneous data centers
Our experiments focused on a data center with on-site renewable power production.

We considered only the servers in our power consumption. However, more complex archi-
tecture can include network consumption, cooling, etc. A new version of BEASY could
consider the impact of these additional elements in decision-making. In the first approach,
we could consider the power consumption of these elements constant, and just introduce
them in the power consumption model. However, are they constant? How can we intro-
duce the cooling in the scheduling decision? Another possibility is to introduce BEASY
in a distributed data center. This kind of data center can maximize renewable usage even
more, by following the production by the sun. In the first moment, BEASY can be applied
individually in each site. However, is it sufficient? Is a new decision level (such as the
site to place a job definition) necessary? How does BEASY need to manage the battery
(globally or locally)?
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