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Abstract

The generation of realistic data with complex patterns often relies on the use
of expressive probabilistic models. The goal of these models is to characterize
and approximate data distributions in high-dimensional spaces. However,
even with the current power of deep neural networks, constructing robust
probabilistic models remains a significant challenge. While obtaining quality
samples is a tough task, many scientific applications further require the abil-
ity to explicitly estimate the probability density learned by the model. This
added requirement necessitates adopting constrained model architectures, a
limitation that becomes quickly restrictive in a complex and high-dimensional
space. This thesis proposes to address these challenges by adapting training
protocols or sampling strategies of generative model architectures. Moreover,
it explores several applications of deep generative models to solve practical
problems.

In the first part, this work proposes a hybrid training strategy that strikes
a balance between generating realistic samples and the ability to estimate the
learned probability density of the model. This strategy involves enriching
the usual training function with an approximate transport distance. This
distance is also utilized in a second contribution aiming to solve the opti-
mal transport problem between empirical distributions through the specific
training of invertible generative models. Next, a sampling technique explor-
ing latent space is introduced. Based on Langevin diffusion, it overcomes
the limitations observed when using deep generative models to generate data
with a multimodal distribution defined in disconnected spaces. Finally, a
significant portion of this thesis work focuses on using these deep genera-
tive models to learn prior laws. These can then be easily employed within
a Bayesian inversion framework in computational imaging, ensuring efficient
sampling of the underlying posterior laws.

Overall, deep generative models offer a flexible, powerful, and versatile so-
lution for data generation and density estimation. They encompass not only
the field of machine learning but also find applications in various scientific
disciplines and engineering techniques.
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Résumé

La génération de données réalistes aux motifs complexes repose fréquemment
sur l’utilisation de modèles probabilistes expressifs. Ces modèles ont pour
objectif de caractériser et d’approcher les distributions de données dans des
espaces en grandes dimensions. Cependant, même avec la puissance actuelle
des réseaux de neurones profonds, la construction de modèles probabilistes
robustes demeure un défi de taille. Alors que l’obtention d’échantillons de
qualité est donc une tâche ardue, de nombreuses applications scientifiques ex-
igent de surcroit la capacité à estimer explicitement la densité de probabilité
apprise par le modèle. Cette thèse propose de relever ces défis en adaptant
les protocoles d’entraînement ou les stratégies d’échantillonnage des architec-
tures de modèles génératifs. Par ailleurs, elle explore plusieurs applications
des modèles génératifs profonds dans le but de résoudre des problèmes pra-
tiques.

Tout d’abord, ce travail propose une stratégie d’entraînement hybride qui
établit un compromis entre la génération d’échantillons réalistes et la capac-
ité à estimer la densité de probabilité apprise par le modèle. Cette stratégie
consiste à enrichir la fonction d’entraînement usuelle par une distance de
transport. Cette distance est également mise à profit dans une deuxième
contribution qui vise à résoudre le problème de transport optimal entre dis-
tributions empiriques grâce à l’entraînement spécifique de modèles génératifs
inversibles. Ensuite, une technique d’échantillonnage explorant l’espace la-
tent est proposée. S’appuyant sur une diffusion de Langevin, elle permet de
s’affranchir des limitations des modèles génératifs profonds pour générer des
données dont la distribution est multimodale à support disjoint. Enfin, une
dernière partie est consacrée à l’utilisation des modèles génératifs profonds
pour l’inférence Bayésienne, assurant un échantillonnage efficace des lois a
posteriori.

Dans leur ensemble, les modèles génératifs profonds offrent une solution
souple et puissante pour la génération de données et l’estimation de densité,
englobant non seulement le domaine de l’apprentissage automatique, mais
trouvant également des applications dans diverses disciplines scientifiques.
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In the fields of machine learning and signal/image processing, a multi-
tude of challenges deal with solving complex statistical inference problems.
These challenges resonate with various scientific domains ranging from med-
ical imaging [1] to astronomy [2]. Advances in the field hold the promise
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Chapter 1 : Introduction

of significantly enhancing the efficiency of solutions for critical inverse prob-
lems. In the realm of geophysics, such advances have the potential to tan-
gibly reduce the expenses associated with valuable mineral prospecting [3].
In medical imaging, they pave the way for more cost-effective and expedi-
tious diagnostics, steering us towards a preventive approach to addressing
illnesses [4, 5]. Furthermore, these developments contribute to a deeper com-
prehension of climate and ocean dynamics through the refinement of remote
sensing and radar signal reconstruction [6, 7]. They also play a pivotal role
in advancing our understanding of the universe laws by leveraging the latest
advancements in telescopes [8, 9]. Within this framework, the first section of
this chapter recalls that addressing these scientific challenges can be formu-
lated as a statistical inference task.

1.1 Statistical inference

1.1.1 Bayesian estimation
For a large part of the encountered scientific problems mentioned above, the
object x to be inferred typically represents the solution of a variational or
stochastic optimization problem. Within a Bayesian framework, this solution
x̂ minimizes a cost function known as the posterior loss, defined as:

x̂ ∈ argmin
x

E[L(δ, x) | y] with E[L(δ, x) | y] =
∫

L(δ, x)p(x | y)dx

Here, y represents the available data, modeled as the realization of a ran-
dom variable characterized by the likelihood function p(y | x). The posterior
distribution p(x | y) relates to the likelihood function p(y | x) and prior dis-
tribution p(y) through Bayes’ formula. Additionally, L(·, ·) is a specified loss
function. When this loss function takes the form of a quadratic function, i.e.,
L(y, z) ≜ ∥y − z∥2

2, the Bayesian estimator x̂ is recognized as the posterior
mean x̂MMSE = E[x | y], minimizing the mean square error (MSE) [10].

1.1.2 Uncertainty
In addition to point-wise Bayesian estimators, the Bayesian framework also
enables the derivation of valuable credibility intervals. These credibility inter-
vals serve as vital tools for assessing the uncertainty surrounding the estima-
tion of unknown parameters. Such credibility information proves especially
crucial when there is no available ground truth for the parameters under in-
ference. Similarly to the MMSE estimator, these intervals are expressed as

14



Chapter 1 : Introduction

integrals and write
∫

Cα
p(x | y)dx where Cα is an (1 − α) credibility region

such that Pp (x ∈ Cα) = 1− α, with α ∈ (0, 1).

In practice, computing such integrals is often complex. A practical al-
ternative is to employ Monte Carlo integration, which approximates any
expectations of the form:

E[h(Z) | Z ∼ p(z)] =
∫

f(z)p(z)dz

by empirical averaging:
f̄ = 1

n

n∑
i=1

f (zi) .

Here, f(·) is an arbitrary function, {z1, . . . , zn} is a sample drawn from the
distribution p(z) [11]. In Bayesian inference, this distribution p(z) corre-
sponds to the target posterior distribution p(x | y). Monte Carlo integration
necessitates efficient algorithms for generating samples from the desired dis-
tribution. A substantial body of literature dedicated to random variable
generation has proposed various Monte Carlo algorithms [11]. For instance,
Markov chain Monte Carlo (MCMC) methods, including well-known tech-
niques like the Gibbs sampler and Metropolis-Hastings algorithm, define a
broad class of algorithms capable of generating a Markov chain {z1, . . . , zn}
with a stationary distribution of interest [12]. However, despite their appar-
ent simplicity and generality, MCMC algorithms may prove computationally
inefficient for large-scale or highly structured problems. Particularly when
dealing with high-dimensional spaces or highly nonlinear and non-standard
distributions. Popular Monte Carlo methods will be discussed further in
Section 1.2.

1.1.3 Toward learning models
Fundamental challenges in statistical inference lie in the potential misalign-
ment or underspecification of the probabilistic model describing the dataset
and its relationship to the parameters of interest. This misalignment can
significantly impact the performance of various statistical inference tech-
niques. Indeed, both the likelihood and prior distributions play pivotal roles
in the foundation of these methods, such as the Bayesian framework discussed
above. However, it is worth noting that, at the same time, the machine learn-
ing community has made substantial progress in recent years in the quest of
learning complex high dimensional distributions. This progress offers a po-
tential solution to the intricate task of describing the underlying probabilistic
model.
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Consequently, this thesis embarks on an innovative journey, proposing a
synergy between machine learning and statistical inference. In particular,
it explores the integration of deep generative models to hybridize existing
inference methods. Achieving this fusion necessitates the training of precise
models tailored to the desired probability distributions and the development
of efficient sampling strategies to enable the seamless integration of these
models with existing methodologies.

This chapter aims at providing the reader key elements of the tools mo-
bilized by this thesis. Section 1.2 discussed existing Monte Carlo method
to sample from a targeted distribution. Section 1.3.2 will describes the un-
derlying mechanism behind statistical modelling and learning a distribution
from data. Finally, Section 1.4 will present in detail two deep generative
architectures that will be later used in the manuscript.

1.2 Sampling methods
The achievement of statistical inference objectives often relies on the utiliza-
tion of various essential techniques. They involve the drawing of samples
from probability distributions, which are then employed to generate Monte
Carlo estimates for desired quantities. One key advantage of sampling is its
ability to provide cost-effective approximations for a wide range of sums and
integrals especially expectations. Moreover, sampling can be the primary
objective itself, particularly when training a model to generate samples from
the target distribution, e.g, a posterior distribution. Samples also unlocks to
capacity to approximate uncertainty quantification.

1.2.1 Monte Carlo integration
In cases where the exact computation of a sum or integral is not feasible,
an alternative approach is to approximate it using Monte Carlo integration.
The fundamental concept behind this method is to treat the sum or integral
as an expectation under a specific distribution, and then approximate this
expectation by computing the corresponding empirical average. Let

I =
∫

f(x)p(x)dx = Ep[f(x)] (1.1)

be the integral to estimate, rewritten as an expectation of f(.) over p(x).
To approximate I, one can use a method that involves selecting n samples,

labeled as x(1), . . . , x(n), from the distribution p. Computing the empirical

16



Chapter 1 : Introduction

average as the sum of function evaluations over the sampled values, gives

În = 1
n

n∑
i=1

f
(
x(i)

)
. (1.2)

This approximation is justified by a few different properties. The first trivial
observation is that the estimator Î is unbiased, since

E
[
În

]
= 1

n

n∑
i=1

E
[
f
(
x(i)

)]
= 1

n

n∑
i=1

I = I (1.3)

Moreover, according to the law of large numbers, if the samples x(i) are inde-
pendent and identically distributed (i.i.d.), the empirical average converges
almost surely to the expected value:

lim
n→∞

În = I (1.4)

Assuming that the variance of the individual terms, denoted as Var
[
f
(
x(i)

)]
,

remains bounded, an analysis of the variance of În as the value of n increases
reveals that, with growing n, the variance Var

[
În

]
steadily decreases and

converges to 0, provided that Var
[
f
(
x(i)

)]
<∞

Var
[
În

]
= 1

n2

n∑
i=1

Var[f(x)]

= Var[f(x)]
n

.

(1.5)

This valuable outcome also provides insights into estimating the uncer-
tainty associated with a Monte Carlo average, or equivalently, quantifying
the expected error of the Monte Carlo approximation. To achieve this, one
computes both the empirical average of f

(
x(i)

)
and its empirical variance.

Subsequently, the estimated variance is divided by the number of samples n
to obtain an estimator for Var

[
În

]
. According to the central limit theorem,

the distribution of the average În converges to a normal distribution with
mean I and variance Var[f(x)]

n
. Consequently, confidence intervals around the

estimate În can be estimated using the cumulative distribution of the normal
density.

However, the aforementioned approaches heavily rely on the feasibility
of easily sampling from the base distribution p(x). Unfortunately, sampling
from p may not always be possible.
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1.2.2 Independent sampling
This section 1.2.2 considers some simple strategies to generate random sam-
ples from a given distribution. The process of generating such numbers in-
volves several nuances, which are thoroughly addressed and examined in
details in [11]. Because the samples will be generated by a computer al-
gorithm they will in fact be pseudo-random numbers, that is, they will be
deterministically calculated, but must nevertheless pass appropriate tests for
randomness. Here one shall assume that an algorithm has been provided that
generates pseudo-random numbers distributed uniformly over (0, 1), and in-
deed most software environments have such a facility built in.

Inverse transform sampling

As a starting point, one may consider a basic Monte Carlo sampler employing
a uniform distribution and a change of variable. Let F (x) be a cumulative
density function (CDF) and U be a uniform random variable on [0, 1], then
then the random variable F −1(U) is distributed according to F:

Pr
(
F −1(U) ≤ x

)
= Pr(U ≤ F (x))
= F (x).

(1.6)

An important practical consequence of this observation is a process for sam-
pling from an arbitrary CDF: first draw a variable U uniformly distributed
over (0, 1) and then apply F −1 to get a sample x distributed according to a
distribution which F as a CDF.

Rejection sampling

Rejection sampling consists in sampling x0 from a proposal distribution q(x)
such that kq(x) ≥ p̃(x) where k is some constant and p̃(x) is the unnormalized
version of p(x). Subsequently, u0 is sampled from the uniform distribution
U (0, kq(x0)). In this way, (x0, u0) is drawn uniformly under the graph of
kq(x). The sample x0 is accepted if u0 ≤ p̃ (x0).

Importance sampling

Unlike other methods discussed above, importance sampling is not a method
to sample from p. Rather, it is a method to approximate the integral (1.1).
As with rejection sampling, importance sampling takes an easy-to-sample
distribution q(x). The expectation of any function can be expressed as an
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expectation over q(x) of a ratio multiplied by the function of interest. The
idea of importance sampling is illustrated by the following approximation

∫
f(x)p(x)dx =

∫
f(x)p(x)

q(x)q(x)dx ≈ 1
n

n∑
i=1

p
(
x(i)

)
q (x(i)) f

(
x(i)

)
, x(i) ∼ q(x).

(1.7)
Note that this technique does not requires the evaluation of the normalizing
constant of neither p(x) and q(x).

Ancestral sampling

When sampling from a joint distribution defined by several related variables,
a common strategy consists in benefiting from the conditioning relations
and performing ancestral sampling. This is the case, for instance, when
handling a Bayesian model (or Bayesian network) described by a directed
acyclic graph, as represented in Fig.1.1. It commences with the sampling of
top-level variables from their marginal distributions, followed by the sampling
of other nodes conditioned on their parent nodes’ samples. For instance,
consider sampling from the following distribution:

p(A, B, C, D) = P (A)P (B)P (C | A, B)P (D | B, C). (1.8)

The following procedure can be implemented

A ∼ P (A), B ∼ P (B), C ∼ P (C | A, B), D ∼ P (D | B, C). (1.9)

Nonetheless, ancestral sampling may encounter limitations when the distri-
bution cannot be decomposed into straightforward conditional distributions.
This complexity arises, for instance, in undirected graphical models where
computing the partition function is challenging. Another scenario is evident
in a conditional distribution like P (A, B, C | D) from the above Bayesian
network, where the marginal distribution P (D) might remain unknown, or
if one of the intermediate step is hard to sample from.

Limitations of simple Monte Carlo Methods

Rejection sampling and importance sampling may not work well in high
dimensions. Here is an example. Let p(x) and q(x) be the probability density
function of N(0, I) and N (0, σ2I), respectively with x ∈ RD. Then the
acceptance rate of rejection sampling is∫ p(x)

kq(x)q(x)dx = 1
k

(1.10)
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A B

C

D

Figure 1.1: DAGs associated with the proposed hierarchical model.

where k = σD (recall the density at origin for normal distributions with
mean zero). This means that the acceptance rate will be very low when the
dimensionality D becomes large. For importance sampling, one can show
that the variance of the importance weight is

(
σ2

2−1/σ2

)D/2
− 1, which also

becomes large as D increases. In general, for kq(x) ≥ p(x) to hold, the ratio
of the volume of p(x) to the volume outside p(x) tends to zero as D increases,
so it is very inefficient to use the proposal distribution to sample from p(x).

1.2.3 Markov chain Monte Carlo methods
When independent samples from the distribution p(x) cannot be drawn,
Monte Carlo techniques can still be employed using Markov chain Monte
Carlo (MCMC) methods. Markov chain Monte Carlo methods draw these
samples by running a cleverly constructed Markov chain for a long time [11].
The objective is to employ Markov chains for sampling from a specified dis-
tribution. This can be achieved by establishing a Markov chain where the
desired distribution remains invariant.

Principle

MCMC methods mainly consist in performing stochastic updates iteratively
until the state of the chain begins to generate samples from the equilib-
rium distribution. The specification of the Markov chain involves providing
the probability distribution for the initial variable p(x(0)) and specifying the
conditional probabilities for subsequent variables through transition proba-
bilities

T (x(i), x(i+1)) = p(x(i+1) | x(i)). (1.11)

A Markov chain is called homogeneous if the transition probabilities are the
same for all i. Additionally, it is essential to ensure that as i→∞, the distri-
bution p(x(i)) converges to the desired invariant distribution p(x), regardless
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of the initial distribution choice p(x(0)). This property is called ergodicity,
and the invariant distribution is then called the equilibrium distribution and
is unique. A sufficient condition to ensure that the required distribution p(x)
is invariant is to choose the transition probabilities to satisfy the property of
detailed balance, defined by

p(x)T (x, x′) = p (x′) T (x′, x) . (1.12)

Intuitively, the reversibility constraint means that the proposed kernel is di-
rection and time-invariant. This property ensures that no matter the starting
point, asymptotically the samples will be drawn by p(x). It can be shown
that a homogeneous Markov chain will be ergodic, subject only to weak re-
strictions on the invariant distribution and the transition probabilities [13].

In the subsequent subsections, three types of MCMC algorithms will be
discussed: the Metropolis-Hastings algorithm, along with the Langevin and
Gibbs sampling algorithms. These three algorithms are among the most
popular and will be later used in Chapters 4 and 5.

Metropolis-Hastings algorithm

The most famous MCMC algorithm is by far the Metropolis-Hastings algo-
rithm [14]. Broadly, the Metropolis-Hastings algorithm formulates a Markov
process by deriving transition probabilities from the proposal density q (x′ | x).
and will choose to accept or reject the proposed candidates according to the
probability :

α(x′, x) = min
(

1,
p (x′) q (x | x′)
p(x)p (x′ | x)

)
. (1.13)

The algorithm is outlined in Algo.1. Two conditions are needed for the
Metropolis-Hastings algorithm to work: (i) the resulting forms a Markov
Chain characterized by a unique stationary distribution, (ii) the stationary
distribution needs to be equal to the targeted distribution. Condition (i)
holds if the Markov chain is irreducible, aperiodic and not transient. The
latter two conditions (aperiodic and not transient) hold for a random walk
on any proper distribution, and irreducibility holds if the random walk has
positive probability of eventually reaching any state from any other state.
This holds for all proposal densities that could be utilized. Next, the rationale
for equation (1.13) is elucidated through the proof of the detailed balance
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Algorithm 1: Metropolis-Hastings
Input: Initial state x(0), size of the chain NMC, a transition kernel

q (· | ·) and a target density p (·)
1 for i← 1 to NMC do
2 Draw x′ ∼ q

(
x′ | x(i)

)
3 Draw u ∼ U(0, 1)
4 if u < α(x′, x(i)) then
5 Set x(i+1) = x′

6 else
7 Set x(i+1) = x(i)

8 end
9 end

Output: Collection of samples
{
x(1) · · ·x(NMC)

}
drawn

approximately from p (·).

condition as outlined below.

p(x)T (x′, x) = p(x)q (x′ | x) min
(

1,
p (x′) q (x | x′)
p(x)q (x′ | x)

)
= min (p(x)q (x′ | x) , p (x′) q (x | x′))

= p (x′) q (x | x′) min
(

1,
p(x)q (x′ | x)

p (x′) q (x | x′)

)
= p (x′) T (x, x′) .

(1.14)

The choice of q (x | x′) should satisfy additional technical criteria. Typical
proposals employ q (x′ | x) = N (x, σ2) and require a suitable variance (σ2) :
large σ2 leads to an excessive number of rejections while a low σ2 results in
slow diffusion (limited exploration). In practical terms, an acceptance rate
ranging from 40% to 70% can serve as an indicator of an appropriate step
size, as noted in [11]. This aspect represents a limitation of the Metropolis-
Hastings (MH) algorithm. On the one hand, with a simple proposal such
as the Gaussian one considered above, it may encounter major difficulties
to sample from multi-modal distributions. On the other hand, the benefit
of MH is that it is simple to implement and it is reasonable for sampling
from correlated high dimensional distributions. An example of implemented
results is illustrated in Fig.1.2. Visual inspection of the random walk algo-
rithm aimed at approximating a mixture of Gaussians, employing a Normal
proposal distribution N (0, δ2). The figures from left to right correspond to
different values of δ: δ = 0.01, and δ = 1. When δ is exceedingly small,
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Figure 1.2: Example of Metropolis-Hastings algorithm. From left to right
correspond to different values of δ: δ = 0.01, and δ = 1. Where the target
density is q(x) = 1

2(N (−1, 0.7) +N (1, 0.7)).

as in the case of δ = 0.01, the random-walk algorithm generates samples
with high correlation and faces challenges in efficiently exploring the param-
eter space. Conversely, setting δ = 1 results in improved convergence and
enhanced mixing properties of the Markov chain.

Langevin algorithms

Alternatives to the Metropolis-Hastings algorithm can be derived from the
diffusion theory as proposed in [15]. The fundamental concept is to de-
rive a diffusion equation (or a stochastic differential equation) that yields a
continuous-time diffusion process with stationary distribution p(x). Subse-
quently, the process is discretized to implement the method. More specifi-
cally, the Langevin diffusion Xt is defined by the stochastic differential equa-
tion

dXt = 1
2∇ log p (Xt) dt + dBt (1.15)

where Bt is the standard Brownian motion. Under appropriate assumptions
on p(x), it can be shown that the dynamic generated by (1.15) is ergodic with
unique invariant distribution p(x) [16]. This is a key property of (1.15) and
taking advantage of it permits to sample from the invariant distribution p(x).
In particular, if one could solve (1.15) analytically and take time t to infinity
then it would be possible to generate samples from p(x). Nonetheless, the
presence of an analytical formula exists in only a limited number of instances,
as indicated in [17]. The actual implementation of the diffusion algorithm
involves an Euler-Maruyama discretization step where (1.15) is replaced by
a random walk like transition

x(t+1) = x(t) + σ2

2 ∇ log p
(
x(t)

)
+ σεt (1.16)
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where εt ∼ Np (0, Ip) and σ2 corresponds to the discretization step. The
drawback of this approach is that it introduces a bias, because in general
p(x) is not invariant with respect to the Markov chain defined by the dis-
cretization [18, 19, 20]. Alternatively, the Metropolis-adjusted Langevin al-
gorithm (MALA) uses a combination of two mechanisms to generate the
states of a random walk that has the target probability distribution as an
invariant measure. First, new states are proposed using Langevin dynamics
(1.16). Second, the proposals are accepted or rejected using the Metropo-
lis–Hastings algorithm Sec.1.2.3. This two step MALA procedure will be
later used in Chapter 4.

Gibbs sampling algorithm

Gibbs sampling is used to draw samples from multivariate distributions. It
can be seen as a variant of the Metropolis-Hastings algorithm in which a
sequence of proposal distributions, denoted as q (x | x′), is defined based on
the conditional distributions of the joint distribution p(x). Interestingly, the
Gibbs algorithm systematically accept samples without ever need to compute
the acceptance rate α in (1.13). This approach relies on the assumption that
while direct sampling from the complex distribution p(x) may be challenging,
its conditional distributions p (xi | xj ̸=i) are tractable and easy to sample
from.

For many graphical models, these conditional distributions are straight-
forward to sample. The procedure is reported as Algo.2. It is not hard to

Algorithm 2: Gibbs
Input: Initialize x

(0)
1 , x

(0)
2 , . . . , x

(0)
K , size of the chain NMC,

1 for i← 1 to NMC do
2 Draw x

(i+1)
1 ∼ p

(
x1 | x(i)

2 , x
(i)
3 , . . . , x

(i)
K

)
3 Draw x

(i+1)
2 ∼ p

(
x2 | x(i+1)

1 , x
(i)
3 , . . . , x

(i)
K

)
4 · · ·
5 Draw x

(i+1)
K ∼ p

(
xK | x(i+1)

1 , x
(i+1)
2 , . . . , x

(i+1)
K−1

)
6 end

Output: Collection of samples
{
x(1) · · ·x(NMC)

}
approximately

drawn from p (·).

see that the original joint distribution is the stationary distribution of the
Markov chain defined by these transition kernels as discussed in [11].
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The benefits of Gibbs sampling are as follows: (i) assessing the conditional
distributions can be straightforward, (ii) conditionals may be conjugate and
permit exact sampling, (iii) conditionals typically have lower dimensions
compared to the joint distribution, which facilitates the use of techniques
like rejection sampling or importance sampling. Nonetheless, a significant
limitation arises when variables exhibit strong interdependencies, making it
challenging to navigate through the sampling process.

Limitations

Our exploration of Monte Carlo sampling has equipped us with powerful tools
to sample from complex probability distributions. However, a crucial caveat
arises: these methods presuppose explicit knowledge of the targeted density
distribution, at least up to the normalization constant. In the domain of
probabilistic modeling, scenarios frequently arise in which obtaining such an
explicit density proves challenging. Having explored various techniques for
effective distribution sampling, the forthcoming section will discuss modern
approaches for learning these elusive probability distributions.

1.3 Generative models for high dimensional
distribution

1.3.1 Learning distributions
Modeling and generating high-dimensional data are two essential compo-
nents of machine learning and statistics. These tasks form the foundation
of probabilistic modeling and the process of making informed decisions in
the presence of uncertainty. One initial strategy for probabilistic modeling
involves relying on expert knowledge to deduce an explicit law for a given
object of interest. However, this approach has its limitations, primarily con-
strained by the extent of existing knowledge and the capability to translate
it into mathematical equations.

Alternatively, another approach entails employing sensors to observe the
target object and infer its underlying probability law based on the collected
data. In that sense, probabilistic modeling addresses one of the most funda-
mental problems in machine learning i.e., the discovering of structure from
data in an unsupervised manner. Interestingly density estimation can be
seen as the reverse paradigm of the sampling task. For density estimation,
the task entails working with provided samples to recover the underlying
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Figure 1.3: The deep generative model fθ aims at mapping samples from
a simple distribution qZ (located at the bottom right) to a more complex
distribution qX (located at the top right), with the objective of achieving
similarity to the true distribution pX (located at the top left).

density function that generated those samples. In contrast, for sampling, the
objective involves working with a given density function to generate samples
from it.

Utilizing expressive deep neural networks, generative models can param-
eterize complex probability distributions to estimate the underlying data
distribution of a given dataset. On can then compare the quality of various
data points by computing the corresponding likelihood function, or create
new data points by sampling from the estimated distribution.

1.3.2 Statistical foundations of deep generative models
Generative models

The main objective of generative modeling is to acquire a representation of
an intricate and high-dimensional probability distribution pX defined over
X . This distribution is often characterized by its complexity, such as being
multimodal with possibly a disjoint support. To achieve this, one uses a
potentially large, but finite, set of independent and identically distributed
(i.i.d) samples from pX known as the training data. Unlike conventional
statistical inference approaches that aim to derive a mathematical expression
for the underlying probability, the goal in generative modeling is to obtain a
generator function parametrized by θ

fθ : Z → X (1.17)
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that maps samples from a tractable distribution qZ supported in Z to points
in X resembling the given data. In other words, the assumption is that for
each sample x drawn from the distribution pX , there exists at least one point
z drawn from the distribution qZ such that fθ(z) provides an approximation
of x. The transformation of the latent distribution qZ by fθ(·) is denoted as
qX . The presence of a generator capable of mapping points from the simpler
distribution qZ to the more complex distribution qX enables the generation
of samples within the complex space X , which is desirable in various appli-
cations.

The latent space

The latent variable z, which corresponds to a given vector x, is often un-
known, leading to its characterization as a latent variable and referring to Z
as the latent space. For convenience, Gaussian is a common choice for qZ .
This assumption is made without loss of generality, as qZ can, in principle,
represent any tractable distribution. It is essential to have the capability to
sample from qZ and, in certain cases, compute or evaluate the probability
density function qZ(z). Figure 1.3 provides an illustration of our notations.

It is worth noting that the dimensionality of the latent space Z, may differ
from the dimensionality of the data space X . For instance, in the case of
high-resolution images with millions of pixels, the actual representation does
not truly reside in such a high-dimensional space. Instead, their content is
typically preserved even when the dimensionality is reduced, indicating the
existence of a hidden manifold with an unknown dimension in which the
images are embedded. This is usually referred as the manifold hypothesis
[21].

Deep Generative models

Once the generator function fθ is known, it is possible to generate new data
points by sampling from the distribution z ∼ qZ and computing fθ(z). This
capability of generating new samples is the primary objective in various ap-
plications, including deep fakes and Bayesian statistics. However, this direct
sampling approach called ancestral sampling (see paragraph 1.2.2), may lead
to undesirable consequence as discussed in Chapter 4.

For most datasets of interest, it is not feasible or practical to derive the
function fθ from fundamental principles. For instance, modeling the trans-
formation process that converts a sample from a Gaussian distribution to an
image of a celebrity can be highly challenging. As a result, there has been a
growing trend in recent years to use generic function approximators, such as
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neural networks with multiple hidden layers. This approach forms the foun-
dation of deep generative models (DGMs), where the generator function fθ is
represented by a deep neural network (DNN). One of the key advantages of
DNNs is their ability to effectively approximate functions in high-dimensional
spaces. The DGM fθ, with θ ∈ RNθ represents the parameters of the neural
network.

Determining the architecture of the deep neural network fθ is a complex
topic that requires careful considerations. It involves making decisions about
the number of layers and the specific operations performed within each layer.
For a more comprehensive understanding and a wider range of options. In-
terested readers are directed to the excellent textbook [22].

It is important to emphasize that the choice of an architecture plays a
crucial role in both modeling the generative process and effectively train-
ing the parameters of the generator. However, the lack of clear theoretical
guidelines makes this task challenging. The quality of the architecture di-
rectly impacts our ability to accurately represent the generative process and
successfully address the learning problem. Hence, careful considerations and
experimentations are necessary to determine an effective architecture.

1.3.3 Training deep generative models
As discussed in section 1.3.2 the common goal of deep generative models is to
learn a parameter θ such that new samples, fθ(z) where z ∼ qZ , are statisti-
cally indistinguishable from samples from the training data. In other words,
once θ is learned, fθ will transforms the latent probability distribution, qZ ,
close to the probability distribution of the data qX ≈ pX . Determining the
distance between two distributions is a two-sample hypothesis testing prob-
lem. This problem is very difficult, especially for complicated distributions
in high dimensions. The quality of the generator can be also assessed visually
when handling image datasets.

Loss functions

Generative models can be trained using many methodologies for various ap-
plications. In tasks related to density estimation and similar objectives, the
log-likelihood (or equivalently Kullback-Leibler divergence) has traditionally
served as the standard loss function for both training and evaluating gener-
ative models. However, computing the likelihood for interesting models can
be computationally infeasible. For instance, the normalization constant of
energy-based models is typically a challenging task [22]. These models may
still be trained using alternative objectives related to log-likelihood. These

28



Chapter 1 : Introduction

include techniques like contrastive divergence [23], score matching [24], lower
bounds on the log-likelihood [25], noise-contrastive estimation [26], probabil-
ity flow [27], maximum mean discrepancy (MMD) [28, 29], or approximations
of the Jensen-Shannon divergence (JSD) [30].

Maximum likelihood training

Instead of guessing that some loss function might make a good candidate
to learn a data distribution, the aim is to establish guiding principles that
facilitate the derivation of effective loss functions for various models.

The most common principle is the maximum likelihood principle. Con-
sider a set of m examples X =

{
x(1), . . . , x(m)

}
drawn independently from

the true but unknown data generating distribution pX(x). Let qθ(x) be a
parametric family of probability distributions over the same space indexed
by θ. In other words, qθ(x) maps any configuration x to a real number es-
timating the true probability pX(x). The maximum log-likelihood estimator
for θ is then defined as

θML = argmax
θ

m∑
i=1

log qθ

(
x(i)

)
. (1.18)

As the arg max remains unaffected by rescaling the cost function, it is possible
to divide by m in order to derive a form of the criterion expressed as an
expectation with respect to the empirical distribution p̂data defined by the
training data:

θML = argmax
θ

Ex∼p̂data log qθ(x) (1.19)

An alternative interpretation involves seeing it as minimizing the dissimilarity
between the model distribution qθ and the empirical distribution p̂data defined
by the training set. This dissimilarity between the two distributions is defined
by the KL divergence:

DKL (pX∥qθ) = EpX
[log pX(x)− log qθ(x)] . (1.20)

Where pX is approximated using the empirical distribution p̂data. Since the
quantity p̂data(x) does not depend on the network parameters, minimizing
the KL divergence is clearly equivalent as maximizing the likelihood function
(1.18).

Choosing the learning objectives

The main motivation for introducing new training methods revolves around
the challenge of adapting probabilistic models with likelihoods that are com-
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putationally challenging to handle. Most training procedures exhibit consis-
tency, meaning that if the data is sampled from a model distribution, then
this particular model distribution will approach optimality according to the
training objective as the number of training examples tends towards infinity.
Nevertheless, in scenarios where a disparity exists between the data distri-
bution and the model, distinct objective functions can lead to very different
results.

Usual losses

One well-known objective function among the available options is the Maxi-
mum Mean Discrepancy (MMD) [28] is defined as,

DMMD(p, q) = (Ep,q [k (x, x′)− 2k(x, y) + k (y, y′)])
1
2 (1.21)

where k is any kernel function, x, x′ are independent and distributed ac-
cording to the data distribution p, and y, y′ are independently distributed
according to the model distribution q. Popularized by GAN, the Jensen-
Shannon divergence (JSD) is defined as

DJSD(p, q) = 1
2DKL(p∥m) + 1

2DKL(q∥m), (1.22)

where m = (p+q)/2 is an equal mixture of distributions p and q. The JSD is
directly optimized using the data density, which is generally not possible in
practice when its distribution can only be accessed from samples. In this case,
one can employ generative adversarial networks (GANs) to approximate the
optimization of the Jensen-Shannon divergence (JSD). However, it’s worth
noting that in practical applications, the objective function optimized by
GANs can substantially deviate from JSD.

Trade-offs

Figure 1.4 taken from [31] illustrates this on a toy example where an isotropic
Gaussian distribution has been fit to a mixture of Gaussians by minimizing
various cost functions. Maximizing average log-likelihood or equivalently
minimizing Kullback-Leibler divergence (KLD) avoids assigning extremely
small probability to any data point but assigns a lot of probability mass to
non-data regions. In contrast, MMD has been used with generative moment
matching networks [29, 32] and JSD is usually used in generative adversarial
networks [30]. Minimizing MMD or JSD results in a Gaussian distribution
that fits one mode effectively but disregards other data regions.
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Data KLD MMD JSD

Figure 1.4: An isotropic Gaussian distribution was fit to data drawn from
a mixture of Gaussians. Training procedure from left to right: minimizing
Kullback-Leibler divergence (KLD), MMD, JSD. The different fits demon-
strate different tradeoffs made by the three divergences. Results reported in
[31].

Understanding the trade-offs between different metrics is crucial. Dif-
ferent applications demand varying trade-offs, necessitating the selection of
appropriate metrics. For instance, while compression benefits from assigning
probability to all plausible images, image reconstruction may only require
generating one plausible example [33].

Additionally, grasping these trade-offs better enhances the interpretation
of empirical results. Generative image models [30, 28, 34, 29], are often
evaluated based on visual fidelity. Figure 1.4 suggests that optimizing a
model with Kullback-Leibler divergence (KLD) may yield atypical samples,
in contrast to models optimized with other measures. In essence, generating
plausible samples, with high target distribution density, doesn’t necessarily
imply a good density model when measured by KLD, but it might be expected
when optimizing Jensen-Shannon divergence (JSD).

The discussion of the theoretical foundations of generative models and
their training methodologies now converges toward a practical juncture. In
the upcoming section, the transition from theory to practice is marked by an
examination of two deep generative model architectures. These models will
serve as central focal points for the subsequent discussions and applications.

1.4 Deep generative model architectures
This section explores two key deep generative models: Normalizing Flows
(NF) and Denoising Diffusion Probabilistic Models (DDPM). These architec-
tures are pivotal for addressing the challenges of learning complex and poten-
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tially high dimensional distributions. In particular, this section presents the
modelization and the sampling of the associated distributions, as discussed
in the previous paragraphs

Our examination of NF and DDPM encompasses their definitions, train-
ing procedures, and inference methodologies. These models are specifically
chosen for their remarkable properties, including NF tractable likelihood and
DDPM extensive capacity. Chapters 2, 3, and 4 will expand upon and apply
NF in diverse applications, while Chapter 5 will harness DDPM to efficiently
tackle inverse problems.

Appendix B further explores the connection between the discrete trans-
formations of NF and DDPM and their continuous counterparts, Continu-
ous Normalizing Flow and Stochastic Differential Equation (SDE) Diffusion
Models. This exploration offers a comprehensive perspective on the interplay
between these models.

1.4.1 Normalizing Flows
Principle

The fundamental concept behind NF entails representing the generator, de-
noted as fθ, as a diffeomorphic function with orientation-preserving prop-
erties. In pursuit of this objective, NF models are deliberately designed to
maintain equivalence between the latent space dimension and the dimension
of the data space, i.e., X ,Z ∈ Rn. While this is a significant restriction in
practice, NF can be used as an add-on in other approaches that overcome
this restriction. Under these assumptions, the change of variables formula
used to approximate the likelihood of a given data point x is given by

pX(x) ≈ qX(x) = qZ

(
f−1

θ (x)
) ∣∣∣Jf−1

θ
(x)

∣∣∣ (1.23)

where Jf−1(x) is the Jacobian of the function f−1
θ evaluated at x, | · | denotes

the determinant of a matrix and qX(·) is the likelihood prescribed by the
learned model fθ (see 1.3.2).

Using (1.23), one can evaluate qX exactly when qZ has a sufficiently
smooth density, and efficient computation of both f−1

θ and its Jacobian deter-
minant are achievable. To sample from qX , an additional prerequisite is the
development of an efficient method for evaluating fθ(z) to transform samples
from the latent distribution qZ . These requirements drive the choice about
the generator modeling.

A finite NF [35, 36] is constructed by concatenating diffeomorphic trans-
formations with tractable Jacobian determinants, which leads to the gener-
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ator
fθ(z) = fK ◦ fK−1 ◦ · · · ◦ f1(z). (1.24)

In the context of deep learning, fj commonly represent the layers of the
network and K the depth of the network. Assuming that efficient expressions
for the inverses of the layer functions fj are available, the maximum likelihood
loss (1.23) can be computed using

f−1
θ (x) = f−1

1 ◦ f−1
2 ◦ · · · ◦ f−1

K (x) and log
∣∣∣Jf−1

θ
(x)

∣∣∣ =
K∑

j=1
log

∣∣∣∣Jf−1
j

(hj)
∣∣∣∣

(1.25)
Here, hK , hK−1, . . . , h1 are the hidden features, h0 = z = f−1

θ (x), and

hj−1 = f−1
j (hj) , for j = K, . . . , 1, with hK = x (1.26)

Note that maximum likelihood training is feasible as long as it is possible to
compute the inverse of the generator and the logarithm of the determinant
of its Jacobian.

Examples

The key trade-off in NF involves designing the layers fj to be expressive
while also ensuring that the determinants of their Jacobians remain compu-
tationally tractable. Ideally, this entails achieving equal computational costs
for evaluating both fj and its inverse. These considerations enable the cate-
gorization of existing approaches based on their capacity to compute either
fθ, f−1

θ , or both:
• Examples of NF that efficiently compute both the generator and its

inverse efficiently are non-linear independent components estimation
(NICE) [37], real non-volume preserving (real NVP) flow [38], Gener-
ative Flow with Invertible 1x1 Convolutions (Glow) [39] and [40]. A
central concept in these approaches is that their layers partition the
variables into two blocks and utilize components known as coupling
layers, which are easily invertible. These approaches fall within the
broader category of invertible neural networks. Further details and
applications can be found in the comprehensive literature review, in-
cluding its applications to inverse problems, as outlined in [41].

• Instances of NF that can efficiently compute fθ but not its inverse in-
clude the planar and radial flows [35], Sylvester flows [42] and inverse
autoregressive flows (IAF) [43]. These models lack a closed-form ex-
pression for the inverse, which is essential to train the generator using
the maximum likelihood objective function.
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• An example of NF capable of forward pass but slow reverse is the
masked autoregressive flow (MAF) [44]. Although these models can be
trained straightforwardly using maximum likelihood, their capability
remains constrained when learning complex distributions.

• Examples of normalizing flow that cannot perform explicit density es-
timation are Residual Flows [45] and i-ResNets [46]. These residual
networks architectures are composed of simple transformations f(x) =
x + g(x), and are invertible when g is contractive. These architectures
allow great capacity but lack of explicit formulation of the determinant
of the Jacobian. Applying the change of variable formula reveals a
trace of power series which can be only approximated numerically.

Coupling layers

Some examples discussed in this manuscript are special instances of cou-
pling layers. These layers guarantee an invertible transformation and provide
an explicit expression of the Jacobian, as necessitated in the change of vari-
ables (1.23). The relationship between the input and output of the jth layer
can be expressed as (

hid
j+1, hch

j+1

)
= fj

(
hid

j , hch
j

)
(1.27)

with hid
j+1 = hid

j

hch
j+1 =

(
hch

j + Dj

(
hid

j

))
⊙ exp

(
Ej

(
hid

j

)) (1.28)

where hid
j and hch

j (resp. hid
j+1 and hch

j+1) are disjoint subsets of components
of the input vector hj (resp. the output vector hj+1). The partitioning of
the input, h, into hid and hch is achieved through a masking process. This
process transforms hch, into a function of the unchanged part, hid . The scale
function Ej(·) and the offset function Dj(·) are described by neural networks
whose parameters θj are adjusted during the training. It is worth noting
that imposing the flow architecture detailed in (1.24) will lead to an explicit
discretization scheme of the mapping fθ(·) into a sequence of elementary
functions fj(·). This property will be used in the Chapter 3.

Our prior examination has centered on normalizing flows, which involve a
deterministic mapping from a Gaussian latent space to the data space. This
deterministic approach imposes specific constraints on the model architec-
ture. In the upcoming section, the discussion will explore a more flexible
model type characterized by a stochastic mapping between the latent space
and the data distribution.
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1.4.2 Denoising diffusion probabilistic modeling
Principle

A denoising diffusion probabilistic model (DDPM) [47, 48] employs two
Markov chains: a forward chain that introduces noise to the data, and a re-
verse chain that converts noise back to data. Formally, starting from a data
distribution x0 ∼ pX (x), the forward Markov process generates a sequence
of random variables x1, x2 . . . xT using a transition kernel q (xt | xt−1). By
applying the chain rule of probability and leveraging the Markov property,
one can factorize the joint distribution into

q (x1, . . . , xT | x0) =
T∏

t=1
q (xt | xt−1) . (1.29)

One typical design for the transition kernel for DDPM is a Gaussian pertur-
bation, and the most common choice for the transition kernel is

q (xt | xt−1) = N
(

xt;
√

1− β(t)xt−1, β(t)I
)

, (1.30)

where β(t) ∈ (0, 1) is a predefined function of significant importance. It
governs the level of noise introduced during the process, with higher values
leading to noisier samples. Typically, it is chosen as a linearly increasing
function [47]. However, recent techniques have proposed to use cosine-based
functions [49].

As observed by Sohl-Dickstein et al. [48], this Gaussian transition ker-
nel allows us to marginalize the joint distribution in Eq.(1.29) to obtain
the analytical form of q (xt | x0) for all t ∈ {0, 1, · · · , T}. Specifically, with
α(t) := 1− β(t) and ᾱ(t) := ∏t

s=0 α(s), this leads to

q (xt | x0) = N
(

xt;
√

ᾱ(t)x0, (1− ᾱ(t)) I
)

. (1.31)

Given x0, one can easily obtain a sample of xt by sampling a Gaussian vector
ϵ ∼ N (0, I) and applying the transformation

xt =
√

ᾱ(t)x0 +
√

1− ᾱ(t)ϵ. (1.32)

When ᾱ(T ) ≈ 0, xT is almost Gaussian in distribution, one can write q (xT ) :=∫
q (xT | x0) q (x0) dx0 ≈ N (xT ; 0, I).

To generate new data samples, DDPMs initiate the process by creating
an unstructured noise vector sampled from the prior distribution. Then,
it gradually removes noise from this vector by running a trainable Markov

35



Chapter 1 : Introduction

chain in the reverse time direction. Specifically, the reverse Markov chain is
parameterized by a prior distribution p (xT ) = N (xT ; 0, I) and a trainable
transition kernel pθ (xt−1 | xt). The trainable transition kernel pθ (xt−1 | xt)
is given by

pθ (xt−1 | xt) = N (xt−1; µθ (xt, t) , Σθ (xt, t)) (1.33)

where the mean µθ (xt, t) and variance Σθ (xt, t) are deep neural networks
with parameters θ. With this reverse Markov chain in hand, one can generate
a data sample x0 by first sampling a noise vector xT ∼ N (xT ; 0, I), then
iteratively sampling from the learnable transition kernel xt−1 ∼ pθ (xt−1 | xt)
until t = 1.

Training

The key to the success of this sampling procedure lies in training the re-
verse Markov chain to mirror the actual time reversal of the forward Markov
chain. To accomplish this, it is essential to adjust the parameter θ such
that the joint distribution of the reverse Markov chain pθ (x0, x1, · · · , xT ) :=
p (xT )∏T

t=1 pθ (xt−1 | xt) closely approximates that of the forward process
q (x0, x1, · · · , xT ) := q (x0)

∏T
t=1 q (xt | xt−1) (Eq.(1.29)). This is achieved

by minimizing the KL divergence:

KL (q (x0, x1, · · · , xT ) ∥pθ (x0, x1, · · · , xT )) (1.34a)
(i)= −Eq(x0,x1,··· ,xT ) [log pθ (x0, x1, · · · , xT )] + const (1.34b)
(ii)= q (x0, x1, · · · , xT )

[
− log p (xT )−

T∑
t=1

log pθ (xt−1 | xt)
q (xt | xt−1)

]
︸ ︷︷ ︸

:=−LVLB(x0)

+ const (1.34c)

(iii)
≥ E [− log pθ (x0)] + const, (1.34d)

where (i) is the definition of KL divergence, (ii) arises from the fact that
both q (x0, x1, · · · , xT ) and pθ (x0, x1, · · · , xT ) are products of distributions,
and (iii) is a consequence of Jensen’s inequality. The first term in Eq.(1.34c)
corresponds to the Variational Lower Bound (VLB) of the log-likelihood of
the data x0, a common objective for training probabilistic generative models.
The training objective of DDPM is to minimize the negative VLB, which
is particularly straightforward to optimize. It consists of a summation of
independent terms [11] and optimized by stochastic optimization techniques
[50].

Ho et al. [47] propose to reweight some terms in LVLB for better sample
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quality. The loss in [47] takes the form of

Et∼U [1,T ],x0∼q(x0),ϵ∼N (0,I)
[
λ(t) ∥ϵθ (xt, t)− ϵ∥2

]
(1.35)

where λ(t) is a positive weighting function, xt is computed from x0 and ϵ by
Eq.(1.32), U [1, T ] is a uniform distribution over the set {1, 2, · · · , T}, and ϵθ

is a deep neural network with parameter θ that predicts the noise vector ϵ
given xt and t.

1.5 Remaining challenges
This concise overview has highlighted the multitude of strategies aimed at en-
hancing the efficiency of sampling methods through the reciprocal integration
of simulation and machine learning. However, despite these advancements,
certain challenging statistical problems persist. The subsequent sections will
explore two of these problems, which will be discussed in this manuscript.

• Probability distributions - The growing volume and diversity of
data, coupled with recent advances in specialized research domains
such as signal and image processing, have rendered statistical inference
problems increasingly intricate. This complexity is particularly no-
table within the Bayesian framework, where numerous scenarios present
great challenges. The accumulation of extensive observations, some of
which may include outliers, leads to intricate likelihood functions. Ad-
ditionally, the requirement to incorporate supplementary prior infor-
mation further complicates posterior inference.

• Scalable MCMC sampling - Despite recent advances in Monte Carlo
sampling that have reduced the number of iterations needed for con-
vergence and the associated computational time, MCMC algorithms
generally remain computationally expensive. Unlike machine learning,
MCMC approaches do not leverage many of the sophisticated tools
that enhance their attractiveness for large-scale inference tasks. Con-
sequently, addressing one of the many ongoing challenges is essential:
bridging the gap between the fields of machine learning and stochastic
simulation in terms of computational cost and scalability.

• Imperfect deep generative models - Although machine learning
methods have the ability to approximate high-dimensional probability
distributions, they encounter challenges when it comes to representing
complex densities. Several push-forward generative models (e.g VAE,
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GAN, NF) have shown a propensity to generate unrealistic data, such
as images, and have difficulties in detecting out-of-distribution data.
The fusion of deep generative models with existing statistical inference
methods necessitates a deeper understanding of these challenges and
the development of methodologies to circumvent these limitations.

1.6 Contributions of the manuscript
The content within this manuscript is an attempt to address the sampling
challenges mentioned earlier. In alignment with the works discussed earlier,
the solutions presented in this manuscript are closely intertwined with ma-
chine learning, fostering the establishment of new connections between this
domain and Monte Carlo sampling. The subsequent chapters of this work
delineate the primary contributions in detail.

Chapter 2 introduces a new NF training paradigm based on a hybrid
objective function combining the maximum likelihood (ML) principle and
a sliced-Wasserstein distance. Vanilla ML-based training generally suffers
from several shortcomings including out-of-distribution sampling. One rea-
son for these deficiencies lies in the training strategy which traditionally only
exploits a ML principle. Our proposed hybrid training shows better genera-
tive abilities in terms of both likelihood and visual aspects of the generated
samples. Reciprocally, the proposed approach leads to a lower likelihood of
out-of-distribution data, demonstrating a greater data fidelity of the result-
ing flows.

Chapter 3 proposes to leverage the flexibility of neural networks to learn
an approximate optimal transport plan. More precisely, SWOT-Flow, a new
and original method is presented to address the problem of transporting a
finite set of samples associated with a first underlying unknown distribution
towards another finite set of samples drawn from another unknown distri-
bution. To this aim, the approach involves relaxing the Monge formulation
of optimal transport (OT) by replacing the equality constraint on the push-
forward measure with the minimization of the corresponding Wasserstein
distance. The push-forward operator to be retrieved is then restricted to
be a NF which is trained by optimizing the resulting cost function. This
approach allows the transport plan to be discretized as a composition of
functions. Each of these functions is associated to one sub-flow of the net-
work, whose output provides intermediate steps of the transport between the
original and target measures. This discretization yields also a set of interme-
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diate barycenters between the two measures of interest.

Chapter 4 studies the pathological behaviours of push-forward genera-
tive model when targeting complex distributions. For instance, such prob-
lems may appear for distributions on multi-component topologies or charac-
terized by multiple modes with high probability regions separated by very
unlikely areas. A typical symptom is the explosion of the Jacobian norm of
the transformation in very low probability areas. The proposed approach,
NF-SAILS, aims to overcome this issue through the utilization of a new
Markov chain Monte Carlo algorithm to sample from the target distribution
in the latent domain before transporting it back to the target domain. The
approach relies on a Metropolis adjusted Langevin algorithm (MALA) whose
dynamics explicitly exploits the Jacobian of the transformation. Contrary
to alternative approaches, the proposed strategy preserves the tractability of
the likelihood and it does not require a specific training. Notably, it can be
straightforwardly used with any pre-trained NF network, regardless of the
architecture.

Chapter 5 is dedicated to solving inverse imaging problems using deep
generative model as prior. It introduces PnP-SGS, a stochastic plug-and-play
(PnP) sampling algorithm that leverages variable splitting to efficiently sam-
ple from a posterior distribution. The algorithm based on split Gibbs sam-
pling (SGS) draws inspiration from the alternating direction method of mul-
tipliers (ADMM). It divides the challenging task of posterior sampling into
two simpler sampling problems. The first problem depends on the likelihood
function, while the second is interpreted as a Bayesian denoising problem
that can be readily carried out by diffusion-based generative models. Akin to
its deterministic PnP-based counterparts, the proposed method exhibits the
great advantage of not requiring an explicit choice of the prior distribution,
which is rather encoded into a pre-trained generative model. However, un-
like optimization methods (e.g., PnP-ADMM) which generally provide only
point estimates, the proposed approach allows conventional Bayesian esti-
mators to be accompanied by confidence intervals at a reasonable additional
computational cost.

The concluding chapter summarizes the results presented in this the-
sis. It then discusses remaining open questions and draws some perspectives
for future work.

For sake of reproducible research, the codes associated to the numerical
results presented in our research works are available online at
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�https://github.com/FlorentinCDX
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Approximating probability distributions thanks to NF has proven to be
a powerful approach to accurately represent the underlying processes at the
origin of collected data [51]. Despite being a commonly used method for NF
models, maximum likelihood training has inherent limitations. Specifically,
it exhibits sensitivity to the selection of the reference latent distribution qZ ,
resulting in suboptimal performance and limited expressiveness [52]. Ad-
ditionally, the constraint of relying on a parametric family of distributions
can give rise to significant challenges and concerns [53, 54]. In this chapter,
we delve into the known imperfections of Normalizing Flows (NF) models
and propose an alternative approach to their training that overcomes the
limitations of maximum likelihood training.

To overcome these challenges and move beyond maximum likelihood esti-
mation (MLE), we introduce a novel hybrid loss function which incorporates a
term to measure the discrepancy between the generated and the targeted dis-
tribution. This term derives from the Sliced-Wasserstein distance (SW) [55]
between the true data distribution and the generated samples. Experimental
results show that augmenting the MLE objective with this term consistently
achieves higher likelihood as well as better quality of the generated samples.
It also demonstrates better out of distribution (OOD) detection capabilities
compared to classical training of flow-based models.

Section 2.1 will review the typical NF training procedure. Section 2.2 will
state the problem and discuss the known flaws of NF. Section 2.3 will then in-
troduce the Sliced-Wasserstein statistical distance. Section 2.4 presents the
proposed method referred to as SW-NF and its hybrid learning objective.
Section 2.5 illustrates its performances on numerical experiments. Conclu-
sions and prospects are reported in Section 2.6.

The major part of the material of this chapter has been presented at an
international conference:

 F. Coeurdoux, N. Dobigeon, P. Chainais. "Sliced-Wasserstein nor-
malizing flows: beyond maximum likelihood training". ESANN 2022,
Bruges, arXiv:2207.05468

2.1 Conventional training of normalizing flows

2.1.1 Learning a change of variable
As discussed in the introduction, NFs define a flexible class of deep generative
models that seek to learn a change of variable between a reference Gaussian
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measure qZ and a target measure pX through an invertible transformation
f : Z → X with f ∈ F where F defines the class of NFs. NF training aims
to minimize a discrepancy measure between the target measure pX and the
push-forwarded measure qX defined as

qX = f♯qZ (2.1)

where f♯ stands for the associated push-forward operator. This discrep-
ancy measure is generally chosen as the Kullback-Leibler (KL) divergence
DKL(pX∥qX). Explicitly writing the change of variables

qX(x) = qZ(f−1(x)) |Jf−1(x)| (2.2)

where Jf−1 is the Jacobian matrix of f−1, the training is thus formulated as
the minimization problem

DKL(pX∥qX) = EpX

[
log

(
pX(x)
qX(x)

)]
= EpX

[log pX(x)− log qZ(f−1(x)) + log |J−1
f (x)|].

(2.3)

We can then find transport maps by solving the following optimization prob-
lem:

min
f∈F

EpX
[− log qZ(f−1(x)) + log |Jf−1(x)|]. (2.4)

Note that the term log pX(x) does not appear in the objective function since
this latter does not depend on f . In the present work, the class F of admis-
sible transformations is chosen as the structures composed of coupling layers
([51, 36, 39]) ensuring the Jacobian matrix of f to be lower triangular with
positive diagonal entries. Because of this triangular structure, the Jacobian
Jf and the inverse of the map f−1 are available explicitly. In particular the
Jacobian determinant |Jf (z)| evaluated at z ∈ Z measures the dilation, the
change of volume of a small neighborhood around z induced by f , i.e., the
ratio between the volumes of the corresponding neighborhoods of x and z.

2.1.2 Empirical loss function
In practice, the target measure pX is available only though observed samples
x = {xn}N

n=1. Adopting a sample-average approximation, the objective func-
tion in (2.4) is replaced by its Monte Carlo estimate. For this fixed set of
samples per data batch, the NF loss function is formulated as

LMLE(f) = 1
N

N∑
n=1

[
− log qZ(f−1(xn)) + log |Jf−1(xn)|

]
. (2.5)
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Note that this loss function optimizes over f−1, however since the mapping f
is bijective the network is the same and can be used in both direction. More-
over, training NF explicitly uses a Gaussian likelihood qZ(.), i.e, a function
of the two first moments. We can write the complete explicit loss function
as follows:

LMLE(f) = 1
N

N∑
n=1

[
∥f−1(xn)∥2

2 + log |Jf−1(xn)|
]

(2.6)

It appears that optimizing a Gaussian likelihood function forces the latent
space to be centered around zero but leaves any higher order moments com-
pletely free of the prescribed latent distribution. We will see in chapter 4
that in practice the latent space is not really Gaussian. A more refined way
of fully characterizing the targeted distribution would be to match all the
other higher order moments as well. Clearly, using a statistical distance be-
tween distributions during the training process would shift the optimization
task from a nonlinear regression problem w.r.t. the likelihood parameters
to a more relevant problem of looking for the best matching between the
generated distribution and the targeted one.

2.2 Problem statement

The choice of the architecture of a deep generative model usualy boils down
to a trade off between perceptually good-looking samples at the expense of
tractable likelihoods. This compromise generally hides a training method de-
cision. First, MLE training is asymptotically statistically efficient and serves
as natural objective for learning generative models, but is also widely known
to output bad quality samples [51]. Second, adversarial training strategies
have demonstrated state of the art sample quality, but lacking characteri-
zation of an explicit density. Recent work [53] showed that exact likelihood
generative models fail to distinguish training data from OOD data according
to the model likelihood. This phenomenon occurs not only when the data
sets are similar but also when they have dramatically different underlying se-
mantics. For instance, Glow [39], a state-of-the-art normalizing flow, trained
on CIFAR-10 will assign a higher likelihood to SVHN than to its CIFAR-10
training data [53]. This result is surprising since CIFAR-10 contains images
of frogs, horses, ships, trucks, etc. and SVHN contains house numbers. A
human would be very unlikely to confuse the two sets.
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2.2.1 Limitations of MLE training
This well known issue can be traced back to training procedure of NF and
more specificaly MLE. To further examine this curious phenomenon, Nalis-
nick et al. [53] inspect the change-of-variables objective itself, investigating
if one or both terms give the OOD data a higher value. They report the
constituent qZ(z) and log Jf−1(z) terms in (2.2) for in distribution data as
well as OOD data. While qZ(z) behaves mostly as expected, they noticed
that the volume element |Jf−1(z)| seems to cause higher likelihood for OOD
data. This behaviour can be explained by the change-of-variables objective
which rewards the maximization of the Jacobian determinant and encourages
the model to increase its sensitivity to perturbations in X .

For the particular form of f , most works to date have constructed the
bijection from affine coupling layers [51] which transform x by way of trans-
lation and scaling operations. Each coupling layer updates the masked part
xchange of the input x to be xchange ← (xchange + t (xid)) · exp (s (xid)), where
xid is the non-masked part of x, and s and t are the outputs of the st-network
given xid . The flow is encouraged to predict high values for s since for a given
coupling layer the Jacobian term in the likelihood is given by ∑j s (xid)j (see
Introduction). Intuitively, to afford large values for scale s without making
the latent representations large in norm and hence decreasing the density
term qZ(z), the shift t(.) has to be an accurate approximation of the masked
input xchange . The likelihood for a given image will be high whenever the
coupling layers can accurately predict masked pixels. These mechanisms has
been studied by [56] which demonstrates that MLE trained NF do not rep-
resent images based on their semantic contents, but rather directly encode
their visual appearance.

2.2.2 Limitations of GANs
In contrast, an alternate training procedure consists of generating data in-
distinguishable from the training data. Adversarially learned models such as
GAN [57], Wasserstein GAN [58] and Sliced-Wasserstein generative model
[59] can sidestep specifying an explicit density for any data point and belong
to the class of implicit generative models. Those architectures are known to
partition the latent space according to the semantic character of the training
dataset [60]. The lack of characterization of an explicit density in GANs is
however problematic. Several application areas of deep generative models
rely on density estimates; for instance, count based exploration strategies
based on density estimation or inverse problem resolution. To sidestep the
above issues, Grover et al. [61] proposed a hybrid objective that bridges im-
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plicit and prescribed learning by combining MLE and adversarial training us-
ing a GAN. The hybrid objective has a balancing effect between perceptually
good-looking samples and an accurate density estimation of the inputs. The
authors also demonstrate that this hybrid objective has a regularizing effect,
which permits the model to outperform MLE as well as adversarial learn-
ing. However the choice of using an adversarial architecture is accompanied
by the well-documented drawbacks of GANs. An adversarial architecture
requires the training of an additional discriminator network which is notori-
ously unstable, can lead to mode collapse [62] and can produce overconfident
predictions from OOD inputs [63].

2.2.3 Towards a hybrid loss function
In order to overcome the aforementioned challenges, this Chapter presents a
novel hybrid loss function for training NF models. In addition to the con-
ventional maximum likelihood estimation (MLE)-based term, our proposed
approach incorporates a term that measures the discrepancy between the
generated samples and the desired distribution. This discrepancy is quan-
tified using the Sliced-Wasserstein distance (SW), as introduced by Rabin
et al. [55], which compares the true data distribution with the generated
samples.

2.3 Sliced-Wasserstein distance
In recent years, Wasserstein distance, which is intimately related to the the-
ory of optimal transport (OT), has received a considerable attention from
the machine learning (ML) community because of its theoretical properties
when comparing distributions. However, it suffers from strong computational
and statistical limitations, which have severely hindered its effective use in
problems in high dimensions. Several workarounds have been proposed to
alleviate these issues and to enable the use of OT in ML applications. In par-
ticular, the Sliced-Wasserstein (SW) distance is an alternative OT metric [55].
It has been increasingly popular since it benefits from a significantly reduced
computational cost over the Wasserstein distance, especially on large-scale
problems.

2.3.1 Vector space Sliced-Wasserstein
Formally, for any p ≥ 1 and dimension d ≥ 1, we first define the Wasserstein-p
distance [64, 65] between two probability measures pX and pY , which is given
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by:

Wp(pX , pY ) :=
(

inf
π∈Π(pX ,pY )

∫
Rd×Rd

∥x− y∥p
pdπ(x, y)

) 1
p

(2.7)

where Π(pX , pY ) :=
{
π ∈

(
Rd × Rd

)
|
∫
Rd π(x, y)dx = pY ,

∫
Rd π(x, y)dy = pX

}
is the set of transportation plans between pX and pY .

When d = 1, the Wasserstein distance has a closed form which is Wp(pX , pY ) =(∫ 1
0 | F −1

X (z)− F −1
Z (z)

∣∣∣p dz
)1/p

where FX and FY are the cumulative distri-
bution function (CDF) of pX and pY respectively. Given this closed-form
property of Wasserstein distance in one dimension, the sliced Wasserstein
distance [55] between pX and pY had been introduced and admits the follow-
ing formulation:

SWp (pX , pY ) =
(∫

Sd−1
W p

p (Su♯pX , Su♯pY )p du
) 1

p

(2.8)

where the projection operator Su : Rd → R is defined as Su(x) ≜ ⟨u, x⟩
for any vector on the unit sphere u ∈ Sd−1 and Su♯pX is the push-forward
operator of Su(.) on the measure pX . However, the integration over the unit
sphere in the sliced Wasserstein distance is intractable. Therefore, a Monte
Carlo scheme is employed to approximate the integration, namely, u1, . . . , uL

are drawn uniformly on the sphere Sd−1 and the approximation of the vector
sliced Wasserstein distance is given by:

LVSW(x, y) = 1
L

L∑
ℓ=1

W p
p

(
1
N

N∑
n=1

Suℓ
(xn), 1

N

N∑
n=1

Suℓ
(yn)

)
(2.9)

where xn and zn are realisations drawn from pX and pY respectively. In
practice, the number of projections L should be chosen to be sufficiently
large compared to the dimension d, but not too large to avoid computational
burden.

The usual SW is defined between two probability measures that have
realizations as vectors. To be able to compute SW over images we have
to first vectorize the image tensor. For better understanding, we visualize
an example of projecting a probability measure pX ∈ Rc×d×d in Figure 2.1.
Input images are represented in RBG (Red Blue Green), then vectorized to
form vectors. Moreover, vectors in orange, yellow and purple representing
u1, . . . , uL are drawn uniformly on the sphere and multiplied to the vectorized
images.
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Figure 2.1: The conventional slicing process of sliced Wasserstein distance.

2.3.2 Convolution Sliced-Wasserstein
Images inherently contain spatial relations across channels and local infor-
mation. Therefore, when images are transformed into vectors, it becomes
challenging to preserve and access that information. Furthermore, vectoriza-
tion necessitates the use of projecting directions from the unit hyper-sphere,
and of these directions may lack effective discriminative power. Addition-
ally, working within the unit sphere in high-dimensional spaces can be both
time-consuming and memory-intensive. As a result, avoiding the vectoriza-
tion step can enhance the overall efficiency of the process. To address these
challenges, Nguyen et al. [66], proposed the so-called convolution SW (CSW)
1 which generalizes SW to images using a series of convolutions in the spirit
of a multiresolution approach.

For M ≥ 1, given a sequence of matrix kernels κ1 ∈ Rc1×d1×d1 , . . ., κM ∈
RcM ×dM ×dM , a convolution slicer Sκ(x) is a composition of M convolution
functions with kernels :

κ = κ1 ⊛ κ2 ⊛ . . . ⊛ κM (2.10)

=
M

⊛
m=1

κm (2.11)

(with stride or dilation if needed) such that Sκ(x) ≜ x ⊛ κ is a scalar for all
x ∈ Rc×d×d, with ⊛ the convolution operator and where each κm is drawn
from a uniform distribution and normalized such that the sum of all the
entries equal one.

1First ever implementation of CSW https://github.com/FlorentinCDX/Convolution-
Sliced-Wasserstein
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The concept behind the convolution slicer is to transform a given data
point x into a one-dimensional subspace using a series of convolution ker-
nels. These kernels are designed to capture both the spatial relationships
across channels and the local information within the data. Note that this
sequence of convolution imposes a dimensional constraint on the kernels,
several dimensioning methods are discussed in [66]. For our experiments we
used the so-called convolution-base slicer where κ1 ∈ Rc×(2−1d+1)×(2−1d+1)
and κh ∈ R1×(2−hd+1)×(2−hd+1) for h = 2, . . . , M −1, and κM ∈ R1×a×a where
a = d

2N−1 .
Formally, for any p ≥ 1, the convolution sliced Wasserstein (CSW) of

order p > 0 between two given probability measures pX , pY ∈ Rc×d×d is given
by:

CSWp(pX , pY ) :=
(
E
[
W p

p (Sκ♯pX ,Sκ♯pY )
]) 1

p ,

where the expectation is taken with respect to κm ∼ U (Km). Here, U (Km)
is the uniform distribution with the realizations being in the set Km which
is defined as Km :=

{
κm ∈ Rcm×km×km | ∥κl∥2

2 = 1
}
.

Similar to the conventional sliced Wasserstein, the expectation with re-
spect to kernels κ1, . . . , κM uniformly drawn from the sets K1, . . . ,KM in the
convolution sliced Wasserstein is intractable to compute. Therefore, we also
make use of Monte Carlo method to approximate the expectation, which
leads to the following approximation of the convolution sliced Wasserstein:

LCSW(x, y) = 1
L

L∑
ℓ=1

W p
p

(
1
N

N∑
n=1
Sκ(ℓ)(xn), 1

N

N∑
n=1
Sκ(ℓ)(yn)

)
(2.12)

where κ(ℓ)
m are uniform samples from the sets Km for any integer m ∈ [1, M ].

An illustration of the convolution slicer mecanism is given in Figure 2.2. Since
each of the convolution slicer Sκ(ℓ)(·) is in one dimension, we can utilize the
closed-form expression of Wasserstein metric in one dimension to compute the
Wasserstein distance. More theoretically, the convolution sliced Wasserstein
CSWp(., .) is a pseudo-metric on the space of probability measures on Rc×d×d,
namely, it is symmetric, and satisfies the triangle inequality. Nguyen et al.
[66] establishes that CSWp(., .) < Wp(., .) and shows that the convolution
sliced Wasserstein does not suffer from the curse of dimensionality.

2.4 Hybrid objective function
The proposed SW-NF method builds on a NF neural architecture f to target
a normal latent distribution qZ so that the likelihood of the observed data pX
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Figure 2.2: The convolution slicing process. The images are directly mapped
to a scalar by a sequence of convolution functions which have kernels as
random tensors

is well-defined and tractable for exact evaluation and MLE training. Depart-
ing from conventional strategies deployed to train NFs, this work proposes to
derive a hybrid objective function that binds the likelihood of a prescribed
model to higher order moment matching. To this aim, the conventional
MLE-based objective is augmented with an additional term measuring the
discrepancy between the respective distributions of the original data x ∼ pX

and the generated data x̃ = f(z) with z ∼ qZ . Note that the likelihood loss
is prescribed on the latent space while the SW-based distance between the
generated and target distributions can be prescribed over the data space.
Thus the proposed hybrid objective is a combination of reconstruction and
feature losses defining the new NF training as

f̂ ∈ min
f∈F
L⋆SW(x, f(z)) + αLMLE(f) (2.13)

where α is a hyperparameter balancing the two terms and L⋆SW refers to
either LVSW for vector data sets or to LCSW for image inputs, respectively. It
is worth noting that the new objective function can be interpreted as a regu-
larized counterpart of the change of variable on the data space. Moreover, it
has the great advantage of not depending on an auxiliary network as in [61].
Note that the SW-based discrepancy measure between the generative model
and the data distributions can also be prescribed over the latent space by
replacing the SW-based term in (2.13) by L⋆SW(z, f−1(x)).

2.4.1 Logit space for images
The hybrid loss proposed in (2.13) shows how to learn distributions on un-
bounded space. In general, the data of interest have bounded magnitude.
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(a) Hybrid training

(b) MLE training

(c) True CIFAR-10

Figure 2.3: Samples from an unconditional Glow model with affine coupling
layers trained on the CIFAR-10 dataset with temperature 1.0
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For instance, the pixel values of an image typically lies in [0, 256]. Training
images samples are thus drawn from a discrete distribution, while the NF
model is a continuous distribution with infinite support. In order to reduce
the impact of boundary effects, we instead model the density over the logit
space [44]. Let x be an image of D pixels in logit space and x′ be the corre-
sponding image in [0, 256] image space. The transformation from x to x′ is
:

x = logit
(

λ + (1− 2λ) x′

256

)
(2.14)

where λ is picked here at 0.05. We take into account this transformation
when computing the final log likelihood in the original pixel space. Given
that p(x) is the density in the logit space as returned by the model, using the
above transformation the density of x′ can be calculated from the change of
variable formula as

p(x′) = p(x)
(

1− 2λ

256

)D (∏
i

σ (xi) (1− σ (xi))
)−1

(2.15)

where σ(·) is the logistic sigmoid function. From that, we can calculate the
neg bits per dimensions of image x as follows:

− log p(x)
D log 2 − log2(1− 2λ) + 8 + 1

D

∑
i

(log2 σ (xi) + log2 (1− σ (xi))) (2.16)

The above equation was used to convert between the average log likelihoods
reported in the figure 2.5.

2.5 Numerical experiments
This section assesses the versatility and the accuracy of proposed SW-NF
method through numerical experiments. First, experiments conducted on
the Circle data set from scikit-learn are presented to provide some insights
about key ingredients of the proposed approach. Then the performance of
SW-NF is illustrated through more realistic experimental settings exploiting
the CIFAR-10 and SVHN image data sets. It is compared to the alternative
training strategies which consist in relying on the sole MLE or SW terms in
(3.9) and to the Flow-GAN method which hybridizes MLE and GAN losses
[61].

2.5.1 Implementation details
For all results reported below, the stochastic gradient descent is implemented
in Pytorch, with the Adam optimizer, a learning rate of 10−4 and a batch
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Objective NLL SW ∥c3∥2
2 ∥c4∥2

2
MLE 0.52 0.0033 0.2233 5.6124
SW 1.78 0.0007 0.0026 0.1822
SW-Flow 0.41 0.0008 0.0501 0.2259
Flow-GAN [61] 0.51 1.23 0.4756 7.7725

Table 2.1: Circle data set: assessment of goodness-of-fit (for all metrics, the
lower the better).

Objective Inception NLL (bits/dim) CSW ∥c3∥2
2 ∥c4∥2

2
MLE 2.42 3.54 1514.26 64.94 2462.37
SW 1.28 9.81 1190.11 13.13 598.54
SW-Flow 3.04 3.19 1014.26 6.24 656.37
Flow-GAN 3.21 4.21 1621.78 72.3 3079.12

Table 2.2: CIFAR-10 data set: assessment of goodness-of-fit (for inception
score, the higher the better; for all other metrics, the lower the better).

size of 4096 or 8192 samples. When dealing with toy examples, the NF
implementing the unknown mapping f is chosen as a RealNVP [36] and the
conventional SW distance is chosen for hybridization. When dealing with
the image-driven experiments, the network architecture is Glow [39] and the
CSW is considered as a statistical distance. The NF models are composed of
M = 4 flows, each composed of two four-layer neural networks corresponding
to Dm(·) and Em(·) (d → 8 → 8 → d) (see Sec.1.4.1) using hyperbolic
tangent activation function. During training, the number J of slices drawn
to approximate the SW distance has been progressively increased, starting
from J = 500 to J = 2000 by step of 50 slices. At each epoch, new slices
are uniformly drawn over the unit sphere and 100 epochs are carried out
for each number of slices. The proposed learning strategy is compared with
conventional methods from two task-driven perspectives, namely goodness-
of-fit and OOD detection.

Figure 2.4 shows the evolution of the negative log likelihood prescribred
by the model on a test dataset during training. Not only our hybrid loss
function performs better (i.e attain lower optimum) than the other approches
but also stabilizes the evolution of the training. Indeed, MLE training shows
multiple training instabilities when our approches demonstrate a smoother
learning curve. However, the hybrid approach seems to converge slower than
MLE in the first iterations.
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Figure 2.4: Evolution of the negative log likelihood prescribed by the model
during training. In blue SW training, in red MLE trainig, in green hybrid
training.

2.5.2 Goodness-of-fit
We first study the goodness-of-fit of the targeted latent space through the
learned inverse transform. This evaluation is conducted by evaluating not
only the negative log likelihood (NLL) but also the (C)SW distance and the
3rd- and 4th-order cumulants c3 and c4 defined as

c3(X) = E
(
(X − E(X))3

)
(2.17)

c4(X) = E
(
(X − E(X))4

)
− 3

(
E
(
(X − E(X))2

))2
(2.18)

which are expected to be equal to zero for the prescribed normal distribution
qZ .

Table 2.1 and Table 2.2 report the results reached by the proposed SW-
NF approach for the circle-shaped and the CIFAR-10 data sets, respectively.
Table 2.2 also gives the inception score for visual inspection of the images.
The Inception Score is a metric for automatically evaluating the quality of
image generative models [62]. This metric was shown to correlate well with
human scoring of the realism of generated images from the CIFAR-10 dataset.
The IS uses an Inception v3 Network pre-trained on ImageNet and calculates
a statistic of the network’s outputs when applied to generated images.

Interestingly, the proposed SW-NF method provides significantly better
NLL scores than the sole MLE-based learning strategy. For the two data sets,
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it also leads to competitive results in terms of (C)SW and normality features,
reaching scores close to SW-based learning. In addition, when considering the
CIFAR-10 images, it leads to higher inception score, thus suggesting higher
visual quality of the generated samples as demonstrated on the samples from
both training methods in Fig.2.3.

Method Moons Blobs
MLE 0.37 0.54
SW 0.61 0.70
SW-NF 0.53 0.73

Table 2.3: Circle data set: performance of OOD in term of AUROC (the
closer to 1 the better).

2.5.3 Out-of-distribution detection

The second set of experiments assesses the ability of detecting OOD data.
The classification decision is made from the model log-likelihood, more pre-
cisely when the likelihood is below 0.4 the data points is consider OOD and
in distribution otherwise. Table 2.3 reports the area under the receiving
operator characteristics (AUROC) for moon-shaped and blob-shaped data
sets given a model trained on circles. In the absence of SW term in the
training loss, the model constantly shows lower ability to discriminate OOD
data from the training distribution data. In the context of CIFAR-10 data
sets, the experimental setup of [56] has been considered. Glow-based NFs
have been trained on CIFAR-10 and we monitor the prescribed likelihood
for both CIFAR-10 and SVHN images. Note that this likelihood is in bits
per dimension as disced in section 2.4.1. Fig. 2.5 (a) shows the results ob-
tained by a sole MLE-based training: this model predicts a higher likelihood
of OOD data. We see that for the MLE training the prescribed likelihood
for OOD data corresponding to the blue histogram is shifted on the right
(higher value) of the in distribution data likelihood in orange. Fig. 2.5 (b)
depicts similar plots when considering the proposed hybrid loss: it leads to
lower likelihood for OOD data coming from the SVHN data set. Indeed the
OOD likelihood in blue is shifted in the left of the in-distribution data in
orange.
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(a) MLE training
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(b) Hybrid training

Figure 2.5: Likelihood histogram for 1000 CIFAR-10 images (orange) and
1000 SVHN images (blue) prescribed by a CSW-NF trained on CIFAR-10
images.

2.6 Conclusion
This chapter presented a novel hybrid training strategy for normalizing flow
models. The resulting hybrid loss function thus combines a Gaussian like-
lihood with a (convolutional) sliced-Wasserstein distance between distribu-
tions. Numerical experiments show the better performance of the proposed
hybrid training procedure in terms of perceptual as well as statistical quan-
titative metrics. On top of that, one observes a better robustness of the
out-of-distribution behavior. This works consists of a step towards the de-
sign of more powerful NF implemented as true generative models, beyond
their simple use as nonlinear regressors structurally imposed by a conven-
tional MLE training.

In the next chapter we will use NF models and the Sliced-Wasserstein sta-
tistical distance to approximate the optimal transport between two empirical
distributions.
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The optimal transport (OT) problem was initially formulated by the
French mathematician Gaspard Monge. In his seminal paper published in
1781 [67], he raised the following question: how to move a pile of sand to a
target location with the least possible effort or cost? The objective was to
find the best way to minimize this cost by a transport plan, without having
to list all the possible matches between the starting and ending points. More
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recently, thanks to recent advances related to computational issues [65], OT
has founded notable successes with respect to applications ranging from im-
age processing and computer vision [68] to machine learning [69] and domain
adaptation [70].

Normalizing flows (NFs) have also attracted a lot of interest in the ma-
chine learning community, motivated in particular by their ability to model
high dimensional data [51, 71]. Motivated by the similarities between the
problem of OT and the training of NF, this chapter discused a neural ar-
chitecture and a corresponding training strategy that permits to learn an
approximate transport plan between any two empirical distributions. The
proposed framework is based on a relaxation of the Monge formulation of
OT. To adapt the training loss to the flow-based structure of the network,
this loss function is supplemented with a Sobolev regularisation to promote
minimal efforts achieved by each flow. Numerical simulations show that this
regularisation results in a smoother and more efficient trajectory. Interest-
ingly, the discretization inherent to the flow-based structure of the network
implicitly provides intermediate transports and, at the same time, Wasser-
stein barycenters [72].

Section 3.1 will recall the Monge formulation of OT and proposes a relax-
ation in the case of a transport between two empirical distributions. Section
3.2 presents the generic framework based on NFs and describes a particular
instance to solve the OT problem. Section 3.3 presents some experimental
results illustrating the performance of the proposed method. Conclusions
and prospects are reported in Section 5.5.

The major part of this chapter has been published and presented at two
conferences:
 F. Coeurdoux, N. Dobigeon, P. Chainais. "Learning Optimal Transport

Between two Empirical Distributions with Normalizing Flows". ECLM-
PKDD 2022 arXiv:2207.01246

 F. Coeurdoux, N. Dobigeon, P. Chainais. "Approximation du trans-
port optimal entre distributions empiriques par flux de normalisation".
GRETSI Septembre 2022 Nancy, hal-03704666

3.1 Relaxation of the optimal transport prob-
lem

Let µ and ν be two probability measures with finite second order moments.
More general measures, for example on X = Rd (where d ∈ N∗ is the di-
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mension), can have a density dµ(x) = pX(x)dx and dν(y) = pY (y)dy with
respect to the Lebesgue measure, often noted pX = dµ

dx
and pY = dν

dy
, which

means that

∀h ∈ C
(
Rd
)

,
∫
Rd

h(x)dµ(x) =
∫
Rd

h(x)pX(x)dx (3.1)

where C(·) is the class of continuous functions. In the remainder of this
Chapter, dµ(x) and pX(x)dx will be used interchangeably as well as dν(y)
and pY (y)dy .

3.1.1 Background on optimal transport
Let consider X and Y two separable metric spaces. Any measurable appli-
cation f : X → Y can be extended to the so-called push-forward operator f♯

which moves a probability measure on X to a new probability measure on
Y . For any measure µ on X , one defines the image measure ν = f♯µ on Y
such that

∀h ∈ C(Y),
∫

Y
h(y)dν(y) =

∫
X

h(f(x))dµ(x). (3.2)

Intuitively, the application f : X → Y can be interpreted as a function mov-
ing a single point from one measurable space to another [65]. The operator f♯

pushes each elementary mass of a measure µ on X by applying the function
f to obtain an elementary mass in Y . The problem of OT as formulated
by Monge is now stated in a general framework. For a given cost function
c : X × Y → [0, +∞], the measurable application f : X → Y is called the
OT plan from a measure µ to the image measure ν = f#µ if it reaches the
infimum

inf
f

{∫
X

c(x, f(x))dµ(x) : f♯µ = ν
}

. (3.3)

Alternatively the Kantorovitch formulation of OT results from a convex re-
laxation of the Monge problem (3.3). By defining Π as the set of all proba-
bilistic couplings with marginals µ and ν, it yields the optimal π that reaches

min
π∈Π

∫
X ×Y

c (x, y) dπ (x, y) (3.4)

Under this formulation, the optimal π, which is a joint probability measure
with marginals µ and ν, can be interpreted as the optimal transportation
plan. It allows the Wasserstein distance of order p between µ and ν to be
defined as

Wp (µ, ν) def= inf
π∈Π


(

E
(x,y)∼π

d (x, y)p

) 1
p

 (3.5)
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where d(·, ·) is a distance defining the cost function c (x, y) = d (x, y)p. The
Wasserstein distance is also known as the Earth mover’s distance in the
computer vision community. It defines a metric over the space of square
integrable probability measures.

3.1.2 Proposed relaxation of OT

OT boils down to a variational problem, i.e., it requires the minimization of
an integral criterion in a class of admissible functions. Given two probabil-
ity measures µ and ν, the existence and uniqueness of an operator f that
belongs to the class of bijective, continuous and differentiable functions such
that f♯µ = ν is not guaranteed. The difficulty lies in the class defining these
admissible functions. Indeed, even when µ and ν are regular densities on
regular subsets of Rd, the search for a transport plan such that f♯µ = ν
makes the problem (3.3) difficult in a general case. To overcome the diffi-
culty of solving this equation on f♯, we propose to reformulate the Monge’s
OT statement by relaxing the equality on the operator defining the image
measure.

More precisely, the equality between the image measure f♯µ and the tar-
get measure ν is replaced by the minimization of their statistical distance
d(f♯µ, ν). The choice of the distance d(·, ·) is crucial because it determines
the quality of the approximation of the image measure by the transport plan
f . In this work, we propose to choose d(·, ·) as the Wasserstein distance
Wp(·, ·). This choice will be motivated by the fact that this distance can be
easily approximated numerically without explicit knowledge of the probabil-
ity distributions µ and ν, in particular when they are empirically described
by samples only. The relaxation of the Monge problem (3.3) can then be
written as

inf
f

{
Wp(f♯µ, ν) + λ

∫
X

c(x, f(x))dµ(x)
}

(3.6)

where the cost function defined in (3.3) is interpreted here as a regularisation
term adjusted by the hyperparameter λ.

remark The relaxed formulation (3.6) relies on the Wasserstein distance
between the target measure ν and the image measure f♯µ. This term should
not be confused with the Wasserstein distance Wp(µ, ν) which is the infimum
reached by the solution of the Kantorovitch’s formulation of OT (3.4).
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∑
i δxi

∑
i δyi

f

Discrete measure
µ νf

Continuous measure

Figure 3.1: Comparison of the push-forward operator f♯, which can take as
an input any measure

3.1.3 Discrete formulation

In a machine learning context, the underlying continuous measures are con-
ventionally approximated by empirical point measures thanks to available
data samples. Therefore, we are interested in discrete measures and the em-
pirical formulation of the OT problem. Figure 3.1 illustrates the distinction
between these discrete and continuous formulation. Within this framework,
we will consider µ and ν two discrete measures described by the respec-
tive samples x = {xn}N

n=1 and y = {yn}N
n=1 such that µ = 1

N

∑N
n=1 δxn and

ν = 1
N

∑N
n=1 δyn . In the following, an empirical version of the criterion (3.6)

is proposed in the case of discrete measures.
The formulation (3.6) requires the evaluation of a Wasserstein distance

whose computation is not trivial in its original form, especially in high di-
mension. An alternative consists in considering its rewriting in the form of
the Sliced-Wasserstein (SW) distance discussed in Section 2.3. Depending
on the application any implementation of the SW might be used, we will
denote ŜW p(·, ·) any Monte Carlo SW between two mathematical objects of
same dimension, i.e, Eq (2.9) or (2.12). The empirical form of the relaxation
of the Monge problem (3.6) is then written as

min
f

{
ŜW p(f(x), y) + λ

N∑
n=1

c (xn, f (xn))
}

(3.7)

where, with a slight abuse of notations, f(x) ≜ {f(xn)}N
n=1.
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3.2 Normalizing flows to approximate OT
This section proposes to solve the problem (3.7) by restricting the class of the
operator f to a class of invertible deep networks referred to as normalisation
flows. The strategy proposed to train these networks to solve the problem
(3.7) is then detailed in paragraph 3.2.1.

3.2.1 Loss function
As mentioned before, the objective of this work is to learn a bijective oper-
ator relating any two distributions pX and pY described by samples x and
y. The search for this operator is restricted to the class of invertible deep
networks f described in Section 1.4.1. The conventional strategy to train the
network would be to maximize the likelihood defined by (2.5). However this
approach cannot be implemented in the context of interest here since the base
distribution pY is no longer explicitly given: it is only available through the
knowledge of the set of samples y. As a consequence, to adjust the weights of
the network, the proposed alternative interprets the underlying learning task
as the search for a transport plan. Then a first idea would be to adjust these
weights by directly solving the problem (3.7). However, to take advantage
of the flow-based architecture of the operator f(·), it seems legitimate to
equally distribute the transport efforts provided by each flow. Thus, the reg-
ularization in (3.7) will be instantiated for each elementary transformation
fm(·) associated to each flow of the network.

Moreover, when fitting deep learning-based models a major challenge
arises from the stochastic nature of the optimization procedure, which im-
poses to use partial information (i.e., mini-batches) to infer the whole struc-
ture of the optimization landscape. On top of that, the cost function to be
optimized is not numerically constant since the approximation ŜW of the SW
distance in (3.7) depends on the precise set of random vectors {uj}J

j=1 drawn
over the unit sphere. To alleviate these optimization difficulties, we propose
to further regularize the objective function by penalizing the energy |Jfm(·)|2
of the Jacobians associated with the transformations fm(·), m = 1, . . . , M .
These Sobolev-like penalties promote regular operators fm(·), promoting an
overall operator f(·) regular itself. In the context of optimal transport, this
regularization has already been studied in depth in [73]. In that work, the
author focused on the penalization of the Monge’s formulation of OT by the
ℓ2-norm of the Jacobian. It stated the existence of an optimal transport plan
f solving the minimization problem

inf
f

{∫
X

(
|f(x)− x|2 + γ|Jf |2

)
f(x)dx : f#µ = ν

}
. (3.8)
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f1 f2 fm fM

f[m]♯µ
µ f♯µ

Figure 3.2: Architecture of the proposed SWOT-Flow.

This formulation of OT imposes the transport plan f to be regular rather
than deducing its regularity from its optimal properties.

Finally, the training of the NF is carried out by minimizing the loss
function

ŜW p(f(x), y)︸ ︷︷ ︸
SW

+
N∑

n=1

M∑
m=1

[
λc(fm−1(xn), fm(xn)) + γ |Jfm(xn)|2

]
︸ ︷︷ ︸

Reg

(3.9)

with f0(xn) = xn. The proposed networt, whose general architecture is
depicted in Fig. 3.2, will be referred to as SWOT-Flow in what follows.

3.2.2 Intermediate transports

As a consequence of the multiple-flow architecture of the NF, the transport
plan operated by the proposed SWOT-Flow is a composition of the M indi-
vidual flows fm(·) (m = 1, . . . , M). Thus each flow implements an elementary
transport and the composition of the first m flows defined as

f[m](·) ≜ fm ◦ . . . ◦ f1(·) (3.10)

can be interpreted as an intermediate step of the transport plan from the
input measure µ towards the target measure ν, with f[M ](·) ≜ f(·). Interest-
ingly, these intermediate transports can be related to Wasserstein barycenters
between µ and ν defined by [72]

inf
β
{αWp(µ, β) + (1− α)Wp(β, ν)} . (3.11)

Indeed, the next section dedicated to numerical experiments will empirically
show that f[m]♯µ approaches the solution of the problem (3.11) for the specific
choice of the weight α = m

M
. In other words, the image measures provided

by each intermediate transport operated by SWOT-Flow, i.e., as the out-
puts of each of the M flows, can legitimately be interpreted as Wasserstein
barycenters.
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3.3 Numerical experiments

This section assesses the versatility and the accuracy of SWOT-Flow through
two sets of numerical experiments. First, several toy experiments are pre-
sented to provide some insights about key ingredients of the proposed ap-
proach. Then the performance of SWOT-Flow is illustrated through the more
realistic and challenging task of unsupervised alignment of word embeddings
in natural language processing. The source code is publicly available on
GitHub 1.

3.3.1 Toy examples

In these experiments, the proposed framework SWOT-Flow is implemented
and tested with synthetic data. In all experiments, the input distributions
are described by the respective samples x = {xn}N

n=1 and y = {yn}N
n=1 such

that µ = 1
N

∑N
n=1 δxn and ν = 1

N

∑N
n=1 δyn with N = 20000. The cost function

c(·, ·) is chosen as the squared Euclidean distance, i.e., c(x, y) = ∥x − y∥2
2.

However, it is worth noting that the proposed method is not limited to this
Euclidean distance and can handle other costs.

Implementation details.

The stochastic gradient descent used to solve (3.9) is implemented in Pytorch.
We use Adam optimizer with learning rate 10−4 and a batch size of 4096 or
8192 samples. The NF implementing f(·) is a RealNVP [38] for the example
of Fig. 3.3 and an ActNorm type architecture network [39] for Fig. 3.4 and
Fig. 3.5. It is composed of M = 4 flows, each composed of two four-layer
neural networks corresponding to Dm(·) and Em(·) (d → 8 → 8 → d) using
hyperbolic tangent activation function. During training, the number J of
slices drawn to approximate the SW distance in (2.9) has been progressively
increased, starting from J = 500 to J = 2000 by step of 50 slices. At each
epoch, new slices are uniformly drawn over the unit sphere and 100 epochs
are carried out for each number of slices. The training procedure consists
in 1) defining the loss function as the sole SW term in (3.9) from J = 500
to 1500 slices and then 2) incorporating the regularization term denoted as
Reg in (3.9) where hyperparameters λ and γ are increased by a factor of 5%
every step of 100 slices.

1FlorentinCDX/SWOT-Flow
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x ∼ pX y = f(x)

y ∼ pY x = f−1(y)

f♯

f−1
♯

Figure 3.3: Operator f learnt by SWOT-Flow when the base distribution pX

is a double-moon (top left) and the target distribution pY is a circle (bottom
right).

Qualitative results.

As a first illustration of the flexibility of the proposed approach, Fig. 3.3
shows the results obtained after learning an operator f that transports a
double moon-shaped distribution pX (top left) to a circle-shaped distribu-
tion (bottom right). The empirical image measures f♯pX (top right) and
f−1

♯ pY (bottom left) are obtained by applying the estimated f(·) operator or
its inverse f−1(·). It is worth noting that the difficulty inherent to this ex-
periment lies in the respective disjoint and non-disjoint supports of the two
distributions. The difficulty of NF models to learn bijective map between
topologically different probability measure is known and will be discussed in
the next chapter. Despite the regularity of the trained NF, a very good ap-
proximation of the OT is learnt, even in presence of this topological change.

Fig. 3.4 aims at illustrating the relevance of the Sobolev-like regulariza-
tion (i.e., the ℓ2-norm of the Jacobian) included into the loss function (3.9)
defined to train the NF. The first simulation protocol considers circle-shaped
distributions while the second case considers rectangle-shaped distributions.
In what follows, these two cases will be referred to as P1 and P2, respectively.
In this experiment, the objective is to learn the transport plan from an initial
distribution pX (light blue) to a target distribution pY (dark blue) which is
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Figure 3.4: Elementary transports achieved by the proposed NF when trained
without (left) or with (right) the regularization for protocols P1 (top) and
P2 (bottom).

translated for P1 and both translated and stretched for P2. The color gradi-
ent shows the outputs of the M successive flows of the network, i.e. the image
measures f[m]♯pX for m = 1, . . . , M . In the absence of regularization (left),
the successive elementary transports clearly suffer from multiple unexpected
deformations (superfluous translations and dilations). In contrast, when the
loss is complemented with the proposed Sobolev-type penalty (right), the
learnt operator f is decomposed as a sequence of much more regular elemen-
tary transports. The resulting transport appears to be very close to optimal.
In case P1, the expected translation is recovered, as well as the combined
translation and stretching in case P2.

To be more precise quantitatively, Table 3.1 compares some metrics ob-
tained when the NF has been trained using the regularization-free or regular-
ized loss function, as defined in (3.9). For the two aforementioned simulation
protocols, it reports the elementary costs

c̄m = 1
N

N∑
n=1
∥fm−1(xn)− fm(xn)∥2

2 (3.12)

spent by each of the M flows f1(·), . . . , fM(·) to achieve the transport plans
retrieved by SWOT-Flow. This table (last column) also reports the overall
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Table 3.1: Overall cost C̄ and elementary costs c̄m required by each flow
fm(·) of the NF trained with or without (w/o) regularization for protocols
P1 (circle-shaped distributions) and P2 (rectangle-shaped distributions).

c̄1 c̄2 c̄3 c̄4 C̄

P1
w/o regularization 150.13 110.94 108.41 151.65 521.12
with regularization 90.20 90.70 90.71 90.22 361.22

P2
w/o regularization 154.99 98.67 52.49 101.21 407.38
with regularization 88.77 89.42 89.43 89.38 357.0

(a) Training set (b) Squares (c) Triangles (d) Gaussians

(e) Training set (f) Circles (g) Squares (h) Gaussians

Figure 3.5: Examples of transported data sets for protocols P1 (top) and P2
(bottom).

cost C̄ = ∑M
m=1 c̄m. For the two simulation protocols P1 and P2, these results

clearly show cheaper transports when using the proposed regularization. For
instance, for the simulation protocol P1, the overall cost is C̄ = 360 with the
regularization, compared to C̄ = 520 when it is omitted. Moreover, when
using the regularized loss function, this cost is distributed homogeneously
over the successive flows, with a variation of at most ±1% from one flow to
another, against ±20% otherwise.

Fig. 3.5 aims at illustrating the capacity of generalization of the trans-
port plan learnt by SWOT-Flow. In this experiment, SWOT-Flow has been
trained following the simulation protocols P1 (Fig. 3.5a) or P2 (Fig. 3.5e).
Once trained on the data set associated with each protocol, the NFs are fed
with differently shaped data and the elementary transports are monitored
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as above. Fig 3.5b-3.5d and 3.5g-3.5h show the results when using square-
, triangle-, Gaussian-shaped data sets for both protocols, respectively. As
expected, all initial distributions are either simply translated in case P1 or
translated and stretched in case P2. The intermediate distributions corre-
spond to the expected barycenters as well. Fig. 3.5 clearly demonstrates the
generalization capacity of the proposed approach.

Multivariate Gaussians with varying dimensions.

When the source and target distributions µ and ν of a transportation problem
are multivariate Gaussians, the Wasserstein barycenters defined by (3.11) are
also multivariate Gaussian distributions. In this case, an efficient fixed-point
algorithm can be used to estimate its mean vector a and covariance matrix
Σ [74]. This experiment capitalizes on this finding to assess the ability of
SWOT-Flow to approximate Wasserstein barycenters, as stated in Section
3.2.2. To this end, the algorithm designed in [74] is implemented to estimate
the actual barycenter associated with two prescribed multivariate Gaussian
distributions for α = 1 − α = 1

2 . This barycenter is compared to the image
measure f[m]♯µ estimated by SWOT-Flow with m = M

2 . More precisely, the
mean vector and the covariance matrix of the barycenter are compared to
their maximum likelihood estimates â and Σ̂ computed from the samples
{f[m](xn)}N

n=1 transported by the first m flows. The resulting mean square
errors (MSEs)

MSE(a) = ∥a − â∥2
2 and MSE(Σ) = ∥Σ− Σ̂∥2

F (3.13)

are reported in Table 3.2 for varying dimensions ranging from 2 to 8. This
table also reports the MSEs reached by other state-of-the-art free-support
methods [75, 76, 77]. For the methods [75] and [76], n = 5000 and n = 100
support points have been used, respectively, since these are the maximum
numbers allowed for the algorithms to terminate in reasonable computational
times. SWOT-Flow compares favorably to state-of-the-art methods since
reported MSEs in Table 3.2 appear to be most often the smallest. These
observation may call for a more general study, but remains noticeable since
SWOT-Flow has not been specifically designed to compute the Wasserstein
barycenters, contrary to alternate methods.

3.3.2 Unsupervised word translation
In a second set of experiments, the performance of SWOT-Flow has been
assessed on the task of unsupervised word translation. Given word embed-
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Table 3.2: Performance of the estimation of the median barycenters. Re-
ported scores result from the average over 5 Monte Carlo runs.

[75] [76] [77] SWOT-Flow

D
im

en
sio

n

2 MSE(a) 9.99 · 10−5 3.14 · 10−4 1.17 · 10−4 8.09 · 10−5

MSE(Σ) 7.28 · 10−4 2.39 · 10−3 1.98 · 10−3 1.44 · 10−4

4 MSE(a) 1.73 · 10−3 1.68 · 10−3 1.44 · 10−3 1.44 · 10−4

MSE(Σ) 1.35 · 10−2 2.50 · 10−2 1.22 · 10−2 3.61 · 10−4

6 MSE(a) 2.04 · 10−3 2.58 · 10−3 3.24 · 10−3 1.23 · 10−2

MSE(Σ) 4.38 · 10−2 8.86 · 10−2 2.37 · 10−2 5.29 · 10−4

8 MSE(a) 1.23 · 10−3 1.48 · 10−3 3.14 · 10−3 1.29 · 10−2

MSE(Σ) 8.31 · 10−2 1.64 · 10−1 4.23 · 10−2 2.22 · 10−3

dings trained on two monolingual corpora, the goal is to infer a bilingual
dictionary by aligning the corresponding word vectors.

Experiment description.

This experiment considers the task of aligning two sets of points in high
dimension. More precisely, it aims at inferring a bilingual lexicon, with-
out supervision, by aligning word embeddings trained on monolingual data.
FastText [78] has been implemented to learn the word vectors used for repre-
sentation. It provides monolingual embeddings of dimension 300 trained on
Wikipedia corpora. Words are lower-cased, and those that appear less than
5 times are discarded for training. As a post-processing step, only the first
50k most frequent words are selected in the reported experiments.

Architecture.

The proposed SWOT-Flow method has been implemented using a RealNVP
architecture. The scale function Em(·) and the offset function Dm(·) (See
Sec.1.4.1) are multilayer neural networks with two hidden layers of size 512
and hyperbolic tangent activation function. Adam has been used as an op-
timizer with a learning rate of 1 · 10−3. The number of slices involved in
the Monte Carlo approximation of the SW distance in (2.9) has been pro-
gressively increased from J = 500 slices to J = 3000 by steps of 50. For
each number of slices, 100 epochs have been performed. The hyperparame-
ters λ and γ adjusting the weights of the composite regularization have been
increased by a factor of 5% every steps of 500 slices.
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Table 3.3: Comparison of accuracies obtained by SWOT-Flow and adv-net
[79] for unsupervised word translation (’en’ is English, ’fr’ is French, ’de’ is
German, ’ru’ is Russian).

Method en-es es-en en-fr fr-en en-de de-en en-ru ru-en

SWOT-Flow 20-NN 37.4 24.2 46.6 34.1 44.4 27.6 14.4 3.8
10-NN 33.5 22.5 42.5 32.5 39.5 26.8 10.2 2.1

adv-net [79] 10-NN 31.4 21.2 39.6 35.1 40.1 27.1 7.1 2.3

Main results.

To quantitatively measure the quality of SWOT-Flow, the problem of bilin-
gual lexicon induction is addressed, with the same setting as in [79]. The
same evaluation data sets and codes, as well as the same word vectors have
been used. Given an input word embedding (n = 1, . . . , N with Ntest = 1000)
in a given language, the objective is to assess if its counterpart f(xn) trans-
ported by SWOT-Flow belongs to the close neighborhood of the output word
embedding yn in the target language. The neighborhood V(yn) is defined as
the set of K-nearest neighbors computed in a cosine similarity sense with
K = 10 or 20 in dimension 300. The overall accuracy is computed as the
percentage of correctly transported input samples. Denoting by 1A the indi-
cator function, i.e., 1A = 1 if the assertion A is true and 1A = 0 otherwise,

accuracy = 1
Ntest

Ntest∑
n=1

1{f(xn)∈V(yn)} × 100 (%) (3.14)

Table 3.3 reports the accuracy scores for several pairs of languages. Al-
though SWOT-Flow has not been specifically designed to perform word
translation, these results show that its overall performance is on par with
the adversarial network (adv-net) proposed specifically for this task in [79].
In particular, SWOT-Flow seems to perform well for translation between
languages with close origins.

Fig. 3.6 qualitatively illustrates this good performance by showing how
close a set of translated words f(xn) are to their true translation yn. This
representation is obtained by a classical projection on the 2 first PCA com-
ponents of the target embedded space. The translation of 5 specific words
from English to French or German fall in the close vicinity of their true
counterparts.
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T(university)

T(love)

T(history)

T(tennis) T(research)

universidad

amor

historia

tenis

investigación

(a) english → spanish

T(university)

T(love)

T(history)

T(tennis)

T(research)

(b) english → russian

T(university)

T(love)

T(history)

T(tennis)

T(research)

université

amour

histoire

tennis

recherche

(c) english → french

T(university)

T(love)

T(history)

T(tennis)
T(research)

universität

liebe

geschichtetennis

forschung

(d) english → german

Figure 3.6: 2D PCA representation of the target word embedding space: the
targeted translated (in green) and the transported source (in blue) embedded
words.
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3.4 Discussion
Cycle consistency.

Cycle consistency, as proposed in CycleGAN [80], aims at learning meaning-
ful cross-domain mappings such that the data translated from the domain
X to the domain Y via fX →Y can be mapped back to the original data
points in X via fY→X . That is, fY→X ◦ fX →Y(x) ≈ x for all x ∈ X . For
CycleGan, and many other domain transfer models such as [69], this key
property should be enforced by including a cycle consistency term into the
loss function. Conversely, since NF-based generative models learn bijective
mappings, the proposed SWOT-Flow inherits the cycle consistency property
by construction.

Semi-discrete formulation.

The proposed SWOT-Flow framework has been explicitly derived to approxi-
mate OT between two discrete empirical distributions. It can be instanciated
to perform semi-discrete OT, i.e., to handle the case where one of distribu-
tion is not described by data points but rather given as an explicit continuous
probability measure. Instead of relaxing the Monge formulation (3.3) as in
(3.6), it would consist in replacing the SW distance with a log-likelihood term
log pY (·) associated with the target continuous measure ν. The loss function
in (3.9) would be replaced by

−
N∑

n=1
log pY (f(xn)) +

N∑
n=1

M∑
m=1

[
λc(fm−1(xn), fm(xn)) + γ |Jfm(xn)|2

]
(3.15)

where the log-likelihood term is evaluated at the data points {f(xn)}N
n=1

transported by the NF.

NF to approximate barycenters.

As discussed in Section 3.2.2 and experimentally illustrated in Section 3.3.1,
the flow-based architecture of the SWOT-Flow network leads to intermediate
transports, that can be related to Wasserstein barycenters. On the toy Gaus-
sian example considered in Section 3.3.1, SWOT-Flow provides good approx-
imation of the barycenters, although it has not been specifically designed to
perform this task. If one is interested in devising a NF approximating these
barycenters, the definition (3.11) would lead to the optimization problem

inf
f

{
M∑

m=1
αmWp(µ, f[m]♯µ) + (1− αm)Wp(f[m]♯µ, ν)

}
(3.16)
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with αm = m
M

. When handling empirical measures described by samples, the
subsequent discretization would require to replace both terms with Monte
Carlo approximations (2.9) of the SW distances. However, this would lead
to a computationally demanding training procedure.

3.5 Conclusion
We propose a new method to learn the optimal transport plan between two
empirical distributions from sets of available samples. To this aim, we write
a relaxed and penalized formulation of the Monge problem. This formulation
is used to build a loss function that balances between the cost of the trans-
port and the proximity in Wasserstein distance between the transported base
distribution and the target one. The proposed approach relies on normalizing
flows, a family of invertible neural networks. As a side benefit, the multiple
flow architecture of the proposed network interestingly yields intermediate
transports and Wasserstein barycenters. The proposed method is illustrated
by numerical experiments on toy examples as well as an unsupervised word
translation task. Up to our knowledge, this is the first method that is able
to learn such a generalizable transport operator.
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We saw in Chapter 2 and 3 that NF use a continuous generator to map
a simple latent (e.g. Gaussian) distribution, towards an empirical target
distribution associated with a training data set. Once trained by minimizing
a variational objective, the learnt map provides an approximate generative
model of the target distribution. Since standard NF implement differentiable
maps, they may suffer from pathological behaviors when targeting complex
distributions. For instance, such problems may appear for distributions on
multi-component topologies or characterized by multiple modes with high
probability regions separated by very unlikely areas as previously encountered
in figure 3.3. A typical symptom is the explosion of the Jacobian norm of
the transformation in very low probability areas. This chapter proposes to
overcome this issue thanks to a new Markov chain Monte Carlo algorithm to
sample from the target distribution in the latent domain before transporting
it back to the target domain. The approach relies on a Metropolis adjusted
Langevin algorithm (MALA) whose dynamics explicitly exploits the Jacobian
of the transformation. The proposed strategy preserves the tractability of
the likelihood and it does not require a specific training. Notably, it can be
straightforwardly used with any pre-trained NF network, regardless of the
architecture. Interestingly the resulting Langevin diffusion is defined on the
Riemannian manifold whose geometry is driven by the Jacobian of the NF.

Section 4.1 will state the problem and its causes. Section 4.2 reports on
related works. Section 4.3 studies the theoretical implications of a topolog-
ical mismatch between the latent distribution and the target distribution.
Section 4.4 introduces the proposed sampling method based on a Langevin
dynamics in the latent space. In Section 4.7, numerical experiments illustrate
the advantages of the proposed approach by reporting performance results
both for 2D toy distributions and in high dimensions on the usual Cifar-10,
CelebA and LSUN data sets.

This work is based on a long paper which has been submitted to an
international journal:

 F. Coeurdoux, N. Dobigeon, P. Chainais. "Normalizing flow sampling
with Langevin dynamics in the latent space", Submitted to Machine
Learning Journal, arXiv:2305.12149
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(a) (b) (c)

Figure 4.1: (a) Target distribution pZ in the latent space; (b) Learnt la-
tent distribution in the latent space q̃Z ; (c) Output of naive sampling, i.e.,{
x(n)

}N

n=1
with x(n) = f(z(n)) and z ∼ qZ .

4.1 Problem statement
Normalizing flows are known to be a very efficient generative model to ap-
proximate probability distributions in an unsupervised setting [39, 51]. De-
spite some early theoretical results about their stability [53] or their approx-
imation and asymptotic properties [81], their training remains challenging
in the most general cases. Their capacity is limited by intrinsic architec-
tural constraints, resulting in a variational mismatch between the targeted
distribution and the actually learnt distribution. In particular Cornish et al.
[82] pointed out the capital issue of target distributions with disconnected
support featuring several components. Since NFs provide a continuous differ-
entiable change of variable, they are not able to deal with such distributions
when using a monomodal (e.g., Gaussian) latent distribution. Even targeting
multimodal distributions featuring high probability regions separated by very
unlikely areas remains problematic. The trained NF is a continuous differ-
entiable transformation so that the transport of latent samples to the target
space may overcharge low probability areas with (undesired) samples. These
out-of-distribution samples will correspond to smooth transitions between
different modes, which leads to out-of-distribution samples, as discussed by
Cornish et al. [82].

Fig. 4.1 illustrates this behavior on a archetypal bimodal 2D two-moon
distribution using a latent Gaussian distribution. The NF is first trained on
a large set of samples from the true target distribution. Fig. 4.1(a) shows
the likelihood of the inverse transformation of the target distribution back to
the latent space. It appears that the NF splits the Gaussian latent space into
two sub-regions separated by an area of minimal likelihood. In the target
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domain, these minima correspond to the low probability area between the
two modes of the target distribution, which is somewhat expected.

Fig. 4.1(c) shows the result of a naive sampling from the Gaussian model
latent distribution to explore the target distribution thanks to the NF change
of variable. Latent Gaussian independent samples are transformed by the
NF to the target domain. The purple line represents the 97.5% level set. It
appears that many samples through this naive sampling procedure are out-
of-distribution in the low probability area between the two moons, see the
top of the plot. They correspond to samples of the latent distribution around
the low-likelihood area highlighted on Fig. 4.1(a). Note that this illustrative
example and in particular Fig. 4.1(b) will be more deeply discussed in the
above contributive sections.

The observations made above illustrate a behavior that is structural. NFs
are diffeomorphisms that preserve the topological structure of the support of
the latent distribution. If the information about the structure of the target
distribution is ignored, many out-of-distribution samples will be generated.
This effect is reinforced by the fact that the NF is trained on a finite dataset so
that in practice there exist close to empty areas in low probability regions.
In other words, since the latent distribution is usually a simple Gaussian
unimodal distribution, there is a topological mismatch with the often much
more complex target distribution [82], in particular when it is multimodal.
This chapter will present a so called method NF SAmpling In Latent Space
(NF-SAILS) to circumvent this unwanted behavior.

4.1.1 Learning of change of variable
As discussed in section 2.1, NFs seek to learn a change of variable between a
reference Gaussian measure qZ and a target measure pX through an invertible
transformation f : Z → X with f ∈ F where F defines the class of NFs.
We summarized the relation between the target measure pX , the pushed-
forwarded measure qX , the Gaussian measure qZ and the true latent measure
pZ in figure 4.2.

In the following, it will be worth keeping in mind that the obtained so-
lution f̂ ∈ minf∈F LMLE(x) is only an approximation of the exact transport
map due to two reasons. First, the feasible set F (i.e., the class of admissible
NFs) is reduced to the set of continuous, differentiable and bijective func-
tions. The existence of a transformation belonging to this class such that
DKL(pX∥qX) = 0 is not guaranteed. This remark holds even in the case of a
parametric form of the target distribution pX , i.e., when minimizing the real
(non-empirical) objective function in (2.4). Second, even when such a trans-
formation exists in F , the solution f̂ recovered by (2.5) coincides with the
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pX DKL(pX∥qX)

pZ

qX

qZ = N (0, I)

{
x(n)

}N

n=1
∼

f f−1 f−1f
learn

Figure 4.2: NF learns a mapping f from data points
{
x(n)

}N

n=1
assumed to

be drawn from pX towards the latent Gaussian measure qZ . The training
consists in minimizing the KL divergence between pX and qX = f♯qZ . Once
trained, the learnt map permits to go from qZ to qX , which is an approxima-
tion of the true target distribution pX .

minimizer of (2.4) in an asymptotic sense only, i.e., when N → ∞. On top
of that, only a proxy of f̂ can be computed because of the use of a stochastic
optimization procedure (e.g., stochastic gradient descent), which may suffer
from issues not discussed anyfurther here.

4.1.2 A Gaussian latent space?
As noticed by Marzouk et al. [83], learning the transformation f by varia-
tional inference can be reformulated with respect to (w.r.t.) the correspond-
ing inverse map f−1. Since the KL divergence is invariant to changes of vari-
ables, minimizing DKL(pX∥qX) is equivalent to minimizing DKL(pZ∥qZ) with
pZ = f−1

♯ pX . The training procedure is thus formulated in the latent space
instead of the target space. In other words, the NF aims at fitting the target
measure pZ expressed in the latent space to the latent Gaussian measure
qZ . However, due to inescapable shortcomings similar to those highlighted
above, the target measure pZ in the latent space is only an approximation
of the latent Gaussian measure qZ . This mismatch can be easily observed
in Fig. 4.1(a) where the depicted actual measure pZ is clearly not Gaussian.
This issue may be particularly critical when there is a topological mismatch
between the respective supports of the target and latent distributions. This
will be discussed in more details in Section 4.3.

4.1.3 Beyond conventional NF sampling
Once the NF has been trained, the standard method to sample from the
learnt target distribution is straightforward. It consists in drawing a sample
zk from the latent Gaussian distribution qZ and then applying the learnt
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transformation f to obtain a sample x(n) = f
(
z(n)

)
. This method will be

referred to as “naive sampling” in the sequel of this paper.
Unfortunately, as discussed in Section 4.1.2 (see also Fig. 4.1), the latent

distribution qZ is expected to be different from the actual target distribu-
tion pZ expressed in the latent space. As suggested in the next section, this
mismatch will be even more critical when it results from topological differ-
ences between the latent and target spaces. As a consequence the naive
NF sampling is doomed to be suboptimal and to produce out-of-distribution
samples, as illustrated in Fig. 4.1(c). In contrast, the approach proposed in
Section 4.4 aims at devising an alternative sampling strategy that explicitly
overcomes these shortcomings.

4.2 Related works
Geometry in neural networks – Geometry in neural networks as a tool
to understand local generalization was first discussed by Bengio et al. [84].
As a key feature, the Jacobian matrix controls how smoothly a function in-
terpolates a surface from some input data. As an extension, Rifai et al. [85]
showed that the norm of the Jacobian acts as a regularizer of the determin-
istic autoencoder. Later Arvanitis et al. [86] were the first to establish the
link between push forward generative models and surface modeling. In par-
ticular, they showed that the latent space could reveal a distorted view of
the input space that can be characterized by a stochastic Riemannian metric
governed by the local Jacobian.

Distribution with disconnected support – As highlighted by Cornish
et al. [82], when using ancestral sampling, the structure of the latent dis-
tribution should fit the unknown structure of the target distribution. To
tackle this issue, several solutions have been proposed. These strategies in-
clude augmenting the space on which the model operates [87], continuously
indexing the flow layers [82], and including stochastic [88] or surjective layers
[89]. However, these approaches sacrifice the bijectivity of the flow trans-
formation. In most cases, this sacrifice has dramatic impacts: the model is
no longer tractable, memory savings during training are no longer possible
[90], and the model is no longer a perfect encoder-decoder pair. Other works
have promoted the use of multimodal latent distributions [91, 92, 93]. Never-
theless, rather than capturing the inherent multimodal nature of the target
distribution, their primary motivation is to perform a classification task or
to solve inverse problems with flow-based models. Pamakarios et al. [44] has
shown that choosing a mixture of Gaussians as a latent distribution could
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lead to an improvement of the fidelity to multimodal distributions. Alterna-
tively, Pires et al. [94] has studied the learning of a mixture of generators.
Using a mutual information term, they encourage each generator to focus
on a different submanifold so that the mixture covers the whole support.
More recently, Stimper et al. [95] predicted latent importance weights and
proposed a sub-sampling method to avoid the generation of the most irrele-
vant samples. However, all these methods require to implement elaborated
learning strategies which handle several sensitive hyperparameters or impose
specific neural architectures. On the contrary, as emphasized earlier, the
present approach does not require a specific training strategy, is computa-
tionally efficient, and can be implemented to any pre-trained NF.

Sampling with normalizing flows – Recently NFs have been used to fa-
cilitate the sampling from distributions with non-trivial geometries by trans-
forming them into distributions that are easier to handle. To solve the prob-
lem, samplers that combine Monte Carlo methods with NF have been pro-
posed. On the one hand, flows have been used as reparametrization maps
that improve the geometry of the target distribution before running local
conventional samplers such as Hamiltonian Monte Carlo (HMC) [96, 97]. On
the other hand, the push-forward of the NF base distribution through the
map has also been used as an independent proposal in importance sampling
[98] and Metropolis-Hastings steps [99, 100]. In this context, NFs are trained
using the reverse Kullback-Leiber divergence so that the push-forward dis-
tribution approximates the target distribution. These approaches are partic-
ularly appealing when a closed-form expression of the target distribution is
available explicitly. In contrast, this paper does not assume an explicit knowl-
edge of the target distribution. The proposed approach aims at improving
the sampling from a distribution learnt by a given NF trained beforehand.

4.3 Implications of a topological mismatch

4.3.1 Topology preservation
The push-forward operator f♯ learnt by a NF transports the mass allocated
by qZ in Z to X , thereby defining qX by specifying where each elementary
mass is transported. This imposes a global constraint on the operator f if
the model distribution qX is expected to match a given target measure pX

perfectly. Let supp(qZ) = {z ∈ Z : qZ(z) > 0} denote the support of qZ .
Then the push-forward operator f♯ can yield qX = pX only if

supp(pX) = f (supp(qZ)) (4.1)
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where B is the closure of set B. The constraint (4.1) is especially onerous
for NFs because of their bijectivity. The operators f and f−1 are continu-
ous, and f is a homeomorphism. Consequently, for these models, qZ and pX

are isomorphic, i.e., homeomorphic as topological spaces [101, Def. 3.3.10].
This means that supp(qZ) and supp(pX) must share exactly the same topo-
logical properties, in particular the number of connected components. This
constraint may be unlikely satisfied when learning complex real-world distri-
butions, leading to an insurmountable topological mismatch. In such cases,
this finding has serious consequences on the operator f learnt and imple-
mented by a NF. Indeed, the following proposition states that if the respec-
tive supports of the latent distribution qZ and the target distribution pX are
not homeomorphic, then the norm of the Jacobian |Jf | of f may become
arbitrary large. Here D→ denotes weak convergence.

Proposition 1. Let qZ and pX denote distributions defined on Rd. Assume
that supp(qZ) ∼= supp(pX). For any sequence of measurable, differentiable
Lipschitz functions ft : RdZ → RdX , if ft♯qZ

D−→ pX when t→ +∞, then

lim
t→∞

sup
z∈Z

(∥Jft(z)∥) = +∞.

The proof is reported in Appendix A.1.

It is worth noting that training a generative model is generally conducted
by minimizing a statistical divergence. For most used divergence measures,
(e.g., KL and Jensen-Shannon divergences, Wasserstein distance), this min-
imization implies a weak convergence of the approximated distribution qX

towards the target distribution pX [58]. As a consequence, Proposition 1
states that, when training a NF to approximate pX by qX = limt→∞ ft♯qZ ,
the supremum of the Jacobian of the learnt mapping may become arbitrarily
large in some regions. This result is in line with the experimental findings
early discussed and visually illustrated by Fig. 4.1. Indeed, Fig. 4.1(b)
depicts the heatmap of the log-likelihood

log qX(f(z)) = log qZ(z)− log |Jf (z)| (4.2)

given by (2.2) after training an NF. The impact of the term governed by the
determinant of the Jacobian is clear. It highlights a boundary separating
two distinct areas, each associated with a mode in the target distribution
pX . This result still holds when qZ and qX are defined on RdZ and RdX ,
respectively, with dZ ̸= dX . This shortcoming is thus also unavoidable when
learning injective flow models [102] and other push-forward models such as
GANs [57].
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In practice, models are trained on a data set of finite size. In other words,
the underlying target measure pX is available only through the empirical
measure 1

N

∑N
n=1 δx(n) . During the training defined by (2.5), areas of low

probability possibly characterizing a multi-modal target measure are likely
interpreted as areas of null probability observed in the empirical measure.
This directly results in the topological mismatch discussed above. Thus,
even when targeting a distribution pX defined over a connected support with
regions of infinitesimal support, the learnt mapping is expected to be char-
acterized by a Jacobian with exploding norm in these regions, see Fig 4.1.
The following section suggests that these regions correspond to the frontiers
between cells defining a partition of the latent space.

4.3.2 Partition of the latent space

A deterministic generative model can be interpreted as a surface model or a
Gauss map, if the generator f is sufficiently smooth [86]. When targeting a
multi-modal distribution, the learnt model implicitly partitions the Gaussian
latent space into a set of disjoint subsets, each associated with a given mode.
The Gaussian multi-bubble conjecture was formulated when looking for a
way to partition the Gaussian space with the least-weighted perimeter. This
conjecture was proven recently by Milman al. [103]. The result states that
partitioning a Gaussian space of Rd into m clusters of equal measures (2 ⩽
m ⩽ d+1) consists in recovering “simplicial clusters" defined as Voronoi cells
of m equidistant points in Rd. According to convex geometry principles, the
boundary is the union of m convex cones, each of them contained in a distinct
hyperplane that goes through the origin of Rd. Recently, Issenbuth al. [104]
leveraged on this finding to assess the optimality of the precision of GANs.
They show that the precision of the generator vanishes when the number of
components of the target distribution tends towards infinity.

Again, in practice, NFs models are trained on a data set with a finite
number of samples. This results in a partitioning of the Gaussian latent
space into cells separated by frontiers of arbitrarily large widths. Figure
4.1(b) allows a connection to be drawn between the statement by Milman al.
[103] and the Proposition 1. Indeed, in this figure, the frontiers defining this
partitioning are clearly identified as the areas with exploding Jacobian norm.
As a consequence, exploring naively the Gaussian latent space to sample from
the target distribution seems to be inappropriate. Because of these wide
frontiers, large areas of the latent space are expected to be associated with
potentially numerous out-of-distribution samples.
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4.4 NF sampling in the latent space

4.4.1 Difficulties of sampling the target space
As explained in Section 4.1.3, naive NF sampling boils down to drawing
a Gaussian variable before transformation by the learnt mapping f . This
strategy is expected to produce out-of-distribution samples, due to the topo-
logical mismatch between qX and pX discussed in Section 4.3. The proposed
alternative elaborates directly on the learnt target distribution qX .

The starting point of our rational consists in expressing a Langevin diffu-
sion in the target space. This Markov chain Monte Carlo (MCMC) algorithm
would target the distribution qX using only the derivative of its likelihood
∇x log qX(x). After initializing the chain by drawing from an arbitrary dis-
tribution x0 ∼ π0(x), the updating rule writes

xk+1 ← xk + ϵ2

2 ∇x log qX(xk) + ϵξ (4.3)

where ξ ∼ N (0, I). When ϵ → 0 and the number of samples K → ∞,
the distribution of the samples generated by the iterative procedure (4.3)
converges to qX under some regularity conditions. In practice, the error
is negligible when ϵ is sufficiently small and K is sufficiently large. This
algorithm referred to as the unadjusted Langevin Algorithm (ULA) always
accepts the generated sample proposed by (4.3), neglecting the errors induced
by the discretization scheme of the continuous diffusion. To correct this
bias, Metropolis-adjusted Langevin Algorithm (MALA) applies a Metropolis-
Hastings step to accept or reject a sample proposed by ULA [15].

Again, sampling according to qX thanks to the diffusion (4.3) is likely
to be inefficient due to the expected complexity of the target distribution
possibly defined over a subspace of Rd. In particular, this strategy suffers
from the lack of prior knowledge about the location of the mass. Conversely,
the proposed approach explores the latent space by leveraging on the closed-
form change of variable (2.2) operated by the trained NF.

After technical derivations reported in the next section 4.4.2, the coun-
terpart of the diffusion (4.3) expressed in the latent space writes

z′ = zk + ϵ2

2 G−1(zk)∇z log q̃Z(zk) + ϵ
√

G−1(zk)ξ (4.4)

where
q̃Z(z) = qZ(z) |Jf (z)|−1 (4.5)

and
G−1(z) =

[
J−1

f (z)
]2

. (4.6)
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Note that the distribution q̃Z in (4.5) originates from the change of variable
that defines qX in (2.2) and has been already implicitly introduced by (4.2)
in Section 4.3. Interestingly, the matrix G(·) is a definite positive matrix (see
Appendix A.2). Thus the diffusion (4.4) characterizes a Riemannian manifold
Langevin dynamics where G(·) is the Riemannian metric associated with the
latent space [105, 106]. More precisely, it defines the conventional proposal
move of the Riemannian manifold ajusted Langevin algorithm (RMMALA)
which targets the distribution q̃Z defined by (4.5). This distribution is explic-
itly defined through the Jacobian Jf (·) of the transformation whose behavior
has been discussed in depth in Section 4.3. It can be interpreted as the Gaus-
sian latent distribution qZ tempered by the (determinant of the) Jacobian of
the transformation. It has also been evidenced by depicting the heatmap of
(4.2) in Fig. 4.1(b), which shows that it appears as a better approximation
of pZ than qZ . Since it governs the drift of the diffusion through the gradient
of its logarithm, the diffusion is expected to escape from the areas where the
determinant of the Jacobian explodes, see Section 4.3.

4.4.2 Latent diffusion equation
This technical section will derive the latent diffusion equation (4.4). First
we recall some preliminary results from stochastic calculus and multivariate
calculus. We then propose a step by step derivation of diffusion equation and
its induced proposal distribution.

Preliminaries

The Langevin diffusion is a particular instance of the Itô process defined in
the following Lemma of which a proof is given in [107].

Lemma 1 (Itô’s lemma). Let Xt denote an Itô drift-diffusion process defined
by the stochastic differential equation

dXt = µtdt + σtdBt. (4.7)

If f : R2 → R is a differentiable scalar function, then

df (t, Xt) =
(

∂f

∂t
+ µt

∂f

∂x
+ σ2

t

2
∂2f

∂x2

)
dt + σt

∂f

∂x
dBt. (4.8)

It yields that f (t, Xt) is an Itô drift-diffusion process itself.

The following property shows that for any bijective transformation, the
Jacobian of the inverse transformation is equal to the inverse of the Jacobian
of the transformation. This result will be useful later.
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Property 1. Let f : Z → X denote a bijective transformation and Jf (·) its
Jacobian, then

Jf−1(f(z)) = J−1
f (z).

Proof. Let h and g denote two multivariate functions. The chain rule writes

Jh◦g(·) = Jh(g(·))Jg(·) (4.9)

thus
Jh(g(·)) = Jh◦g(·)J−1

g (·). (4.10)
Moreover, for any multivariate bijective function f , we have

Jf◦f−1(·) = Jf−1◦f (·) = Id. (4.11)

Combining (4.10) and (4.11) with h = f−1 and g = f yields

Jf−1(f(z)) = Jf−1◦f (z)J−1
f (z) = IdJ−1

f (z) = J−1
f (z). (4.12)

The following property demonstrates that the gradient of the score of qX

can be expressed over the latent space Z using q̃Z defined in (4.5).
Property 2. Let f : Z → X be a bijective transformation which maps a
latent measure qZ towards a target measure qX . Then the score of qX(x) is
given by

∇x log qX(x) = J−1
f (z) · ∇z log q̃Z(z)

where q̃Z(z) = qZ(z) |Jf (z)|−1.
Proof. From the definition of qX(x) in equation (2.2), the score of qX(x)
writes

∇x log qX(x) = ∇x

[
log qZ(f−1(x)) + log |Jf−1(x)|

]
(4.13)

and, from Property 1,

∇x log qX(x) = ∇f(z)
[
log qZ(z) + log |Jf (z)|−1

]
(4.14)

= ∇f(z) log q̃Z(z) (4.15)

The chain rule now leads to

∇x log qX(z) = ∇xf−1(x) · ∇z log q̃Z(z) (4.16)
= Jf−1(f(z)) · ∇z log q̃Z(z) (4.17)

which, using Property 1, can be finally rewritten as

∇x log qX(x) = J−1
f (z) · ∇z log q̃Z(z). (4.18)
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Derivation of the proposal distribution

The following property shows that the Lanvegin diffusion which targets the
distribution qX can be rewritten as a diffusion over the latent space Z.

Property 3. We consider the overdamped Langevin Itô diffusion

dXt = ∇x log qX(Xt)dt + σtdBt (4.19)

driven by the time derivative of a standard Brownian motion Bt. In the limit
t → ∞, this probability distribution Xt approaches a stationary distribution
qX . Let f : Z → X be a bijective transformation which maps a latent measure
qZ towards the target measure qX . A counterpart Langevin diffusion expressed
over the latent space Z writes

dZt = G−1(Zt)∇z log q̃Z(Zt)dt + σt

√
G−1(Zt)dBt (4.20)

Proof. The Langevin diffusion is a particular instance of the Itô process where
the drift µt in (4.7) is given by the gradient of the log-density ∇x log qX(Xt),
i.e.,

dXt = ∇x log qX(Xt)dt + σtdBt. (4.21)

We are interested in the diffusion process of f−1(Xt) when f(·) is a NF
which is continuous, differentiable and bijective such that f(Zt) = Xt and
f−1(Xt) = Zt. The Îto’s Lemma 1 states

df−1(Xt) =
(

Jf−1(Xt)∇x log qX(Xt) + σ2
t

2 tr(Hf−1(Xt))
)

dt + σtJf−1(Xt)dBt.

(4.22)
Neglecting the second-order terms yields

df−1(Xt) = Jf−1(Xt)∇x log qX(Xt)dt + σtJf−1(Xt)dBt. (4.23)

Using Property 1, Eq. (4.23) can be rewritten as

dZt = J−1
f (Zt)∇x log qX(Xt)dt + σtJ

−1
f (Zt)dBt. (4.24)

Finally, by denoting G−1(z) =
[
J−1

f (z)
]2

and using Property 2, the diffusion
in the latent space writes

dZt = G−1(Zt)∇z log q̃Z(Zt)dt + σt

√
G−1(Zt)dBt. (4.25)
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The discretization of the stochastic differential equation (4.25) using the
Euler–Maruyama scheme can be written as in (4.4). This discretized coun-
terpart of the diffusion corresponds to the proposal move of a Riemann man-
ifold Metropolis-Adjusted Langevin algorithm which targets q̃Z . The follow-
ing property shows that the associated proposal kernel can be rewritten as
(4.35).

Property 4. The discrete Langevin diffusion given by

z′ = z + ϵ2

2 ·G
−1(z)∇z log q̃Z(z) + ϵ ·

√
G−1(z)ξ (4.26)

with ξ ∼ N (0, I) is defined by the transition kernel

g (z′ | z) ∝ |Jf (z)| exp
− 1

2ϵ2

∥∥∥∥∥Jf (z)(z′ − z) + ϵ2

2 J−1
f (z)∇z log q̃(z)

∥∥∥∥∥
2
 .

(4.27)

Proof. From the Gaussian nature of ξ, the conditional distribution of z′ is
a Gaussian distribution whose mean is governed by the drift and covariance
matrix is parametrized by the inverse of the Jacobian, namely

z′ | z ∼ N (µ, Σ) (4.28)

with

µ = z + ϵ2

2 ·G
−1(z)∇z log q̃Z(z) (4.29)

Σ = ϵ2J−1
f (z)J−⊤

f (z). (4.30)

The corresponding probability density function writes

g (z′ | z) =
( 1

2π

) d
2 1
|Σ|1/2 exp

(
−1

2(z′ − µ)⊤Σ−1(z′ − µ)
)

. (4.31)

First, let notice that Σ−1 = ϵ−2J⊤
f (z)Jf (z). Then we have

(z′ − µ)⊤Σ−1(z′ − µ) = ϵ−2
[
z′ − z − ϵ2

2 ·
[
J−1

f (z)
]2
∇z log q̃Z(z)

]⊤

J⊤
f (z)

(4.32)

× Jf (z)
[
z′ − z − ϵ2

2 ·
[
J−1

f (z)
]2
∇z log q̃Z(z)

]

= ϵ−2
∥∥∥∥∥Jf (z)(z′ − z)− ϵ2

2 J−1
f (z)∇z log q̃(z)

∥∥∥∥∥
2

(4.33)
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Finally, using |Σ|1/2 = ϵ|J−1
f (z)| = ϵ|Jf (z)|−1 yields

g (z′ | z) ∝ |Jf (z)| exp
− 1

2ϵ2

∥∥∥∥∥Jf (z)(z′ − z)− ϵ2

2 J−1
f (z)∇z log q̃(z)

∥∥∥∥∥
2
 .

(4.34)

It is worth noting that the pdf of this transition kernel should be com-
puted when evaluating the acceptance ratio (4.37). When using the canonical
writing (4.31), evaluating this pdf would require to compute G−1(z) in (4.29)
and J−1

f (z)J−⊤
f (z) in (4.30) which can be very costly.

The next section 4.5 will discus some efficient implementation techniques
to avoid expensive computation.

4.5 Efficient implementation
The proposal distribution

The above Property 4 derived the proposal kernel g(z′|z) associated with
the diffusion (4.4). We demonstrate in (4.34) that g(z′|z) is a Gaussian
distribution whose probability density function can be conveniently rewritten
as:

g (z′ | zk) ∝ |Jf(zk)| exp
− 1

2ϵ2

∥∥∥∥∥Jf (zk)(z′ − zk)− ϵ2

2 s̃Z(zk)
∥∥∥∥∥

2
 . (4.35)

where s̃Z(·) denotes the so-called latent score
s̃Z(z) = J−1

f (z)∇z log q̃Z(z). (4.36)
The sample proposed according to (4.4) is then accepted with probability

αRMMALA(zk, z′) = min
(

1,
q̃Z (z′) g (zk | z′)
q̃Z (zk) g (z′ | zk)

)
. (4.37)

It is worth noting that the formulation (4.35) of the proposal kernel leads to
a significantly faster implementation than its canonical formulation. Indeed,
it does not require to compute the metric G−1(·) defined by (4.6), which de-
pends on the inverse of the Jacobian matrix twice. Moreover, the evaluation
of the latent score (4.36) can be achieved in an efficient manner, bypassing
the need for evaluating the inverse of the Jacobian matrix, as elaborated
bellow in 4.5.2. Finally, only the Jacobian associated with the forward trans-
formation is required to compute (4.35). This approach enables a streamlined
calculation of the acceptance ratio (4.37), ensuring an overall computational
efficiency.
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4.5.1 Fast approximation of the proposal move
As discussed above, the proposal scheme (4.4) requires to generate high di-
mensional Gaussian variables with covariance matrix ϵ2G−1(·) [108]. Gen-
erating such an high dimension Gaussian variables according to (4.4) is ex-
pected to be very costly, even if the corresponding Cholesky factor ϵJ−1

f (·) is
lower triangular and explicit (see Appendix A.2.1). Alternatively, to lighten
the computation, we take advantage of the 1st order expansion

f−1 (f(zk) + ϵξ) ≃ f−1 ◦ f(zk) + ϵJf−1(f(zk))ξ. (4.38)

Using Property 1, this amounts to approximate (4.4) by the diffusion

z′ = f−1 (f(zk) + ϵξ) + ϵ2

2 G−1(zk)∇z log q̃(zk) (4.39)
= f−1 (f(zk) + ϵξ) + ϵ2

2 J−1
f (zk)s̃Z(zk). (4.40)

According to (4.40), this alternative proposal scheme only requires to gen-
erate high dimensional Gaussian variables whose covariance matrix is now
identity, i.e., most cheaper. Moreover, it is worth noting that i) the latent
score s̃Z(·) can be evaluated efficiently (see below) and ii) using J−1

f (z) =
Jf−1(f(z)) (see Property 1), sampling z′ according to (4.4) only requires to
evaluate the Jacobian associated with the backward transformation. The al-
gorithmic procedure to sample according to this kernel denoted KRMMALA(·)
is summarized in Algo. 3.

4.5.2 Fast computation of the latent score
The latent score s̃Z(z) is a critical quantity in the proposed method, as it
contributes to the drift term in the proposal move (4.4) and to the proposal
kernel (4.35). Property 2 shows that the latent score is equal to the score of
qX expressed in the target domain, i.e.,

∇x log qX(x) = J−1
f (z) · ∇z log q̃Z(z) with x = f(z)

The adopted implementation bypasses the costly evaluation and storage of
the inverse Jacobian by directly computing the latent score as ∇x log qX(x).
The evaluation of the score of qX can be conveniently performed thanks to
the auto-differentiation modules provided by numerous deep learning frame-
works.

The next section will present our proposed model NF-SAILS which con-
sists of combining MCMC steps using properties discussed above.
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Algorithm 3: Sampling kernel KRMMALA(·).
Input: trained NF f(·), time step ϵ, current state zk of the sampler.
/* Draw the candidate */

1 Draw ξ ∼ N (0, 1)
2 Set z′ = f−1 (f(zk) + ϵ · ξ) + ϵ2

2 J−1
f (zk)s̃Z(zk)

/* Accept/reject procedure */
3 Draw u ∼ U(0, 1)
4 if u < αRMMALA(zk, z′) then
5 Set zk+1 = z′

6 else
7 Set zk+1 = zk

Output: New state zk+1 = KRMMALA(zk) of the sampler.

4.6 NF-SAILS
The adaptive MCMC we propose concurrently sample new data by combining
a local sampler based on NF and a nonlocal one which leverage the Normal
shape of the latent space. The so-called procedure SAmpling In Latent Space
(NF-SAILS) is summarized in Algorithm 5 which combines local MALA from
Algorithm 3 and a nonlocal 4.

4.6.1 Local exploration with MALA
Our proposed MALA algorithm combines two steps, one diffusion step from
(4.4) accelerated by the fast approximation in 4.5.2 and one accept-reject
step using the corresponding proposal distribution 4.35. Algorithm 3 shows
the pseudo code of the proposed Riemannian MALA algorithm. This MALA
kernel will leverage the knowledge of the curvature of the latent space and
thus perform great exploration at a local space while rejecting zones corre-
sponding to out of distribution samples.

Handling distributions that exhibit several modes or defined on a complex
multi-component topology is a major issue raised by the problem addressed
here. In practice, local information based sampling schemes such as those
based on Langevin dynamics fail to explore the full distribution when modes
are isolated since they may get stuck around one of these modes. Thus,
the samples proposed according to (4.4) in areas with high values of ∥Jf (·)∥
are expected to be rejected. These areas have been identified in Section 4.3
as the low probability regions between modes when targeting a multimodal
distribution. To alleviate this problem, one strategy consists in resorting to
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another kernel to propose moves from one high probability region to another,
without requiring to cross the low probability regions.

4.6.2 Global exploration with I-MH
Following this strategy, we propose to combine the diffusion (4.4) with an
independent Metropolis-Hastings (I-MH) with the distribution qZ as a pro-
posal. The corresponding acceptance ratio writes

αI-MH(zk, z′) = min
(

1,
q̃Z (z′) qZ(zk)
q̃Z (zk) qZ(z′)

)

= min
(

1,
|Jf (zk)|
|Jf (z′)|

)
.

(4.41)

It is worth noting that this probability of accepting the proposed move only
depends on the ratio between the Jacobians evaluated at the current and
the candidate states. In particular, candidates located in regions of the
latent space characterized by exploding Jacobians in case of a topological
mismatch (see Section 4.3) are expected to be rejected with high probability.
Conversely, this kernel will favor moves towards other high probability regions
not necessarily connected to the regions of the current state. The algorithmic
procedure is sketched in Algo. 4.

Algorithm 4: Sampling kernel KI−MH(·).
Input: trained NF f(·), current state zk of the sampler.
/* Draw candidate */

1 Draw z′ ∼ N (0, 1)
/* Accept/reject procedure */

2 Draw u ∼ U(0, 1)
3 if u < αI−MH(zk, z′) then
4 Set zk+1 = z′

5 else
6 Set zk+1 = zk

Output: New state zk+1 = KI−MH(zk) of the sampler.

4.6.3 Local/Global exploration
Finally, the overall proposed sampler, referred to as NF-SAILS for NF SAm-
pling In the Latent Space and summarized in Algo. 5, combines the tran-
sition kernels KRMMALA and KI−MH, which permits to efficiently explore the
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latent space both locally and globally. At each iteration k of the sampler,
the RMMALA kernel KRMMALA associated with the acceptance ratio (4.37)
is selected with probability p and the I-MH kernel KI−MH associated with ac-
ceptance ratio (4.41) is selected with the probability 1−p. Again, one would
like to emphasize that the proposed strategy does not depend on the NF
architecture and can be adopted to sample from any pretrained NF model.

Algorithm 5: NF-SAILS: NF SAmpling In the Latent Space.
Input: trained NF f(·), time step ϵ, probability p
/* Initialization */

1 Draw z0 ∼ π0(z)
2 for k = 0 to K do

/* Choose the kernel */
3 Draw u ∼ U(0, 1)
4 if u < p then

/* LOCAL EXPLORATION (see Algo. 3) */
5 zk+1 = KRMMALA(zk)
6 else

/* GLOBAL EXPLORATION (see Algo. 4) */
7 zk+1 = KI−MH(zk)
8 end

Output: Collection of samples {zk}K
k=1.

4.7 Experiments
This section reports performance results to illustrate the efficiency of NF-
SAILS thanks to experiments based on several models and synthetic data
sets. It is compared to state-of-the-art generative models known for their
abilities to handle multimodal distributions. These results will show that
the proposed sampling strategy achieves good performance, without requir-
ing to adapt the NF training procedure or resorting to non-Gaussian latent
distributions. We will also confirm the relevance of the method when working
on popular image data sets, namely Cifar-10 [109], CelebA [110] and LSUN
[111].

To illustrate the versatility of proposed approach w.r.t. the NF archi-
tecture, two types of coupling layers are used to build the trained NFs. For
the experiments conducted on the synthetic data sets, the NF architecture
is RealNVP [36]. Conversely, a Glow model is used for experiments con-
ducted on the image data sets [39]. However, it is worth noting that the
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proposed method can apply on top of any generative model fitting multi-
modal distributions. In all experiments we trained our models to maximize
the log-likelihood using the ADAM optimiser with default hyperparameters
and no weight decay. We used a held-out validation set and trained each
model until its validation score stopped improving, except for the synthetic
data experiments where we train for a fixed number of 1000 epochs.

4.7.1 Figures-of-merit
To evaluate the performance of the NFs, several figures-of-merit have been
considered. When addressing bi- dimensional problems, we perform a Kol-
mogorov Smirnov test to assess the quality of the generated samples w.r.t.
the underlying true target distribution [112]. The goodness-of-fit is also mon-
itored by evaluating the mean log-likelihood of the generated samples and
the entropy estimator between samples, which approximates the Kullback-
Leibler divergence between empirical samples [113].

For applications to higher dimensional problems, such as image genera-
tion, the performances of the compared algorithms are evaluated using the
Fréchet inception distance (FID) [114] using a classifier pre-trained specif-
ically on each data set. Besides, for completeness, we report the bits per
dimension (bpd) [44], i.e., the log-likelihoods in the logit space, since this is
the objective optimized by the trained models.

The model architectures used in the experiments conducted on images
are reported in Table 4.1.

Dataset Minibatch Size Levels Depth per level Coupling
CIFAR-10 512 3 32 Affine
LSUN, 64× 64 128 4 48 Affine
LSUN, 96× 96 320 5 64 Affine
LSUN, 128× 128 160 5 64 Affine
CelebA, 96× 96 320 5 64 Affine
CelebA, 128× 128 160 6 32 Affine

Table 4.1: Architectures of the Glow model implemented for the experiments
conducted on the image data sets.

4.7.2 Results obtained on synthetic dataset
As a first illustration of the performance of NF-SAILS, we consider to learn
a mixture of k bidimensional Gaussian distributions, with k ∈ {2, 3, 4, 6, 9}.

94



Chapter 4 : NF Sampling with Langevin dynamics in the latent space

↑ log pX ↓KL ↓KS

k
=

2
Naive sampling −4.13 0.263 0.177

NF-SAILS −1.41 0.057 0.047
WGAN-GP N/A 0.308 0.287

DDPM −2.98 0.121 0.066

k
=

3

Naive sampling −3.52 0.914 0.248
NF-SAILS −1.83 0.056 0.034
WGAN-GP N/A 0.973 0.237

DDPM −2.97 0.364 0.124

k
=

4

Naive sampling −3.08 0.967 0.295
NF-SAILS −1.07 0.044 0.041
WGAN-GP N/A 1.012 0.317

DDPM −1.81 0.427 0.127

k
=

6

Naive sampling −2.06 1.219 0.205
NF-SAILS −1.09 0.039 0.309
WGAN-GP N/A 1.392 0.212

DDPM −1.99 1.004 0.179

k
=

9

Naive sampling −2.297 1.764 0.215
NF-SAILS −0.801 0.151 0.052
WGAN-GP N/A 1.939 0.340

DDPM −1.258 0.906 0.205

Table 4.2: Goodness-of-fit of the generated samples w.r.t. the number k of
Gaussians. Reported scores result from the average over 5 Monte Carlo runs.

The NF model f(·) is a RealNVP [36] composed of M = 4 flows, each
composed of two three-layer neural networks (d → 16 → 16 → d) using an
hyperbolic tangent activation function. We use the Adam optimizer with
learning rate 10−4 and a batch size of 500 samples.

Table 4.2 reports the considered metrics when comparing the proposed
NF-SAILS sampling method to a naive sampling (see Section 4.1.3) or to
state-of-the-art sampling techniques from the literature, namely Wasserstein
GAN with gradient penalty (WGAN-GP) [115] and denoising diffusion proba-
bilistic models (DDPM) [47]. These results show that NF-SAILS consistently
competes favorably against the compared methods, in particular as the de-
gree of multimodality of the distribution increases. Note that WGAN-GP
exploits a GAN architecture. Thus, contrary to the proposed NF-based sam-
pling method, it is unable to provide an explicit evaluation of the likelihood,
which explains the N/A values in the table.

Figure 4.3 illustrates this result for k = 6 and shows that our method
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(a) Naive sampling (b) NF-SAILS (c) WGAN-GP (d) DDPM

Figure 4.3: Mixture of k = 6 Gaussian distributions (green), and 1000 gen-
erated samples (blue). The proposed NF-SAILS method in Fig. 4.3b does
not generate samples in-between modes.

considerably reduces the number of out-of-distribution generated samples.
These qualitative results demonstrate that, unlike other models, our method
allows each mode to be sampled evenly, without producing out-of-dribution
samples.

Figure 4.4 shows the difference of sampling quality between naive sam-
pling and the proposed NF-SAILS method for RealNVP model trained on
k-mixtures of Gaussians for k ∈ {2, 3, 4, 9}. Our model seems to sample well
the targeted distributions, we also notice that our method produces samples
with less variance.

4.7.3 Results obtained on real image datasets
Moreover, we further study the performance of NF-SAILS on three different
real image data sets, namely Cifar-10 [109], CelebA [110] and LSUN [111].
Following the same protocol as implemented by [39], we use a Glow architec-
ture where each neural network are composed of three convolutional layers.
The two hidden layers have ReLU activation functions and 512 channels. The
first and last convolutions are 3 × 3, while the center convolution is 1 × 1,
since its input and output have a large number of channels, in contrast with
the first and last convolutions.

We compare the FID score as well as the average negative log-likelihood
(bpd), keeping all training conditions constant and averaging the results
over 10 Monte Carlo runs. The results are depicted in Fig. 4.5 reports the
results when compared to those obtained by naive sampling or WGAN-GP
[115]. As shown by the different panels of this figure, the proposed NF-
SAILS method considerably improves the quality of the generated images,
both quantitatively (in term of FID) and semantically. Our methodology

96



Chapter 4 : NF Sampling with Langevin dynamics in the latent space

Figure 4.4: Mixture of k Gaussian distributions (green), and 1000 samples
(blue) generated by the naive sampling (top) and the proposed NF-SAILS
method (bottom) with, from left to right, k = 2, k = 3, k = 4 and k = 9.

compares favourably w.r.t. to WGAN-GP for the two data sets CelebA and
LSUN.

4.8 Conclusion
This chapter discusses the sampling from the target distribution learnt by
a normalizing flow. Architectural constraints prevent normalizing flows to
properly learn disconnect support measures due to the topological mismatch
between the latent and target spaces. Moreover, we theoretically prove that
the Jacobian norm of the transformation become arbitrarily large to closely
represent such target measures. The conducted analysis exhibits the exis-
tence of pathological areas in the latent space corresponding to points with
exploding Jacobian norms. Using a naive sampling strategy leads to out
of distribution samples located in these areas. To overcome this issue, we
propose a new sampling procedure based on a Langevin diffusion directly
formulated in the latent space. This sampling is interpreted as a Riemanian
manifold Metropolis adjusted Langevin algorithm, whose metrics is driven
by the Jacobian of the learnt transformation. This local exploration of the
latent space is complemented by an independent Metropolis-Hastings kernel
which allows moves from one high probability region to another while avoid-
ing crossing pathological areas. One particular advantage of the proposed
method is that it can be applied to any pre-trained NF model. Indeed it
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↓ bpd ↓ FID
Naive sampling 3.35 44.6

NF-SAILS 3.08 43.11
WGAN-GP N/A 18.8

(a) Cifar10

↓ bpd ↓ FID
Naive sampling 1.03 15.82

NF-SAILS 0.96 14.12
WGAN-GP N/A 12.89

(b) CelebA

↓ bpd ↓ FID
Naive sampling 2.38 8.91

NF-SAILS 2.11 7.86
WGAN-GP N/A 9.56

(c) LSUN (bedroom)

Figure 4.5: Tables report quantitative and perceptual metrics computed from
the samples generated by the compared methods. The figures show some
samples generated from Glow using the proposed NF-SAILS method.

does not require a particular training strategy of the NF or to adapt the
distribution assumed in the latent space. The performances of the proposed
sampling strategy compares favorably to state-of-the art, with very few out-
of-distribution samples.
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This chapter introduces a stochastic plug-and-play (PnP) sampling algo-
rithm that leverages variable splitting to efficiently sample from a posterior
distribution. The algorithm based on split Gibbs sampling (SGS) draws in-
spiration from the alternating direction method of multipliers (ADMM). It
divides the challenging task of posterior sampling into two simpler sampling
problems. The first problem depends on the likelihood function, while the
second is interpreted as a Bayesian denoising problem that can be readily car-
ried out by a deep generative model. Specifically, for an illustrative purpose,
the proposed method is implemented using state-of-the-art diffusion-based
generative models. Akin to its deterministic PnP-based counterparts, the
proposed method exhibits the great advantage of not requiring an explicit
choice of the prior distribution, which is rather encoded into a pre-trained
generative model. However, unlike optimization methods (e.g., PnP-ADMM)
which generally provide only point estimates, the proposed approach allows
conventional Bayesian estimators to be accompanied by confidence intervals
at a reasonable additional computational cost. Experiments on commonly
studied image processing problems illustrate the efficiency of the proposed
sampling strategy. Its performance advantageously compares to recent state-
of-the-art optimization and sampling methods.

Section 5.1 outlines existing methods for solving inverse problems. Sec-
tion 5.2 recalls necessary notions about the split Gibbs sampler (SGS) and
Denoising Diffusion Probabilistic Models (DDPMs) that will be used as PnP-
denoisers in the sequel. Section 5.3 describes how the proposed PnP-SGS
adapts to several usual inverse problems frequently encountered in image
processing. Section 5.4 describes numerical experiments and reports the per-
formances in comparison with state-of-the-art methods. Section 5.5 finally
enlightens the contributions.

This work is based on a long paper which has been submitted to an
international journal:

 F. Coeurdoux, N. Dobigeon, P. Chainais. "Plug-and-Play split Gibbs
sampler: embedding deep generative priors in Bayesian inference", Sub-
mitted to IEEE Transactions on Image Processing, arXiv:2304.11134
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5.1 Solving inverse problems: state of the art

5.1.1 Problem statement
Many scientific problems raise the challenge of inferring an unknown object
of interest x ∈ RN from partial and noisy measurements y ∈ RM . These
inverse problems frequently encountered in image processing are typically
formulated as the minimization task

min
x

f(x, y) + g(x) (5.1)

where f(·, y) denotes the data-fitting term. Due to the ill-posed or ill-
conditioned nature of the inverse problem, it is often not possible to uniquely
and stably recover x from the sole observations y. Therefore, additional in-
formation about the unknown object x is incorporated in the form of the
regularization g(·) to obtain a well-posed estimation problem, leading to
meaningful solutions [116]. Due to the increasing volume, dimensionality,
and variety of available data, solving such inference problems can be com-
putationally demanding and may rely on methods such as variational opti-
mization or stochastic sampling.

5.1.2 A brief history
Until recently, most of the optimization methods have relied on priors de-
signed as explicit model-based regularizations such as the total variation,
promoting piecewise constant behaviors, or the ℓ1 norm, promoting spar-
sity. In this context, convex optimization algorithms have played an im-
portant role and their convergence properties have been well-established
[117, 118, 119, 120]. However, for an always larger family of problems re-
lated to image processing, methods based on explicit convex priors are now
significantly outperformed by deep learning based approaches.

End to End

There exist a number of deep neural network architectures that can directly
learn a description of the solution space [121, 122, 123, 124, 34]. Such so-
called end-to-end approaches that bypass the problem of explicitly defining
the prior knowledge do not even need the knowledge of the forward operator
itself. Instead, they are implicitly learnt from a large data set of degraded
images (i.e., network input) along with their original versions (i.e., network
output) when training the network. However, such end-to-end methods suf-
fer from the lack of interpretability and generality of black-box deep neural
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networks (DNN). Moreover, they do not take advantage of the generally
well-established expertise of the end-users about the acquisition or damag-
ing protocols, which makes the training process particularly energy and data
intensive.

Plug-and-play

To overcome these limitations, more and more deep learning based methods
propose to combine DNN with conventional optimization algorithms within
the so-called plug-and-play (PnP) framework [125]. The main ingredient
of PnP approaches is a variable splitting strategy as implemented by half-
quadratic splitting (HQS) [126] or alternating direction method of multipliers
(ADMM) [127]. The main idea of this splitting consists in introducing an
auxiliary variable z such that the problem (5.1) rewrites

min
x,z

f(x, y) + g(z) subject to x = z. (5.2)

The equality constraint ensures that solving (5.2) is equivalent to solving the
initial problem (5.1). Adopting an alternate minimization strategy, this tricks
permits to separately deal with the data-fitting term and the regularization
[128]. In particular, the subproblem with respect to z is solved by using the
proximal operator of the regularization term, which can be interpreted as a
denoising task. Recent PnP methods replace this proximal mapping by a
DNN-based denoiser that implicitly encodes the regularization. They now
stand as a reference that yield state-of-the-art performance in a variety of
applications [129, 130].

Splitting for sampling

However, PnP-based optimization algorithms generally produce point esti-
mates only. More generally, except in special cases [131], optimization meth-
ods do not give any information about the posterior distribution

π(x) ≜ p(x|y) ∝ exp[−f(x, y)− g(x)] (5.3)

associated with (5.1) and do not quantify uncertainties. Conversely, Bayesian
approaches and Markov chain Monte Carlo (MCMC) methods have the great
advantage of providing a comprehensive description of (5.3) in very general
settings. In particular, this knowledge permits to derive credibility intervals
on the parameter x of interest. This uncertainty quantification is often of
crucial importance, for instance when only very few observations are available
[132], when one is interested in extreme events [133] or when no ground
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truth is available, like in astrophysics. There is still a price to pay: sampling
methods and MCMC in particular suffer from their high computational cost
which can be prohibitive in high-dimensional problems. Optimization-driven
Monte Carlo methods [134, 135, 136] tentatively overcome this limitation.

More recently, the split Gibbs sampler (SGS) [137] proposes to sample
from an augmented distribution defined as an asymptotically exact data aug-
mentation model [138]. By introducing an auxiliary variable as in (5.2), it
yields a divide-to-conquer strategy by splitting the initial sampling problem
into individual simpler sampling tasks. Sampling according to the augmented
distribution with Gibbs steps permits to deal separately with the distinct
components of the problem, i.e., the likelihood on the one hand and the
prior on the other hand. Per se, SGS can be seen as a stochastic counterpart
of HQS or ADMM algorithms. It both makes the sampling more scalable
to high dimensions and significantly improves the mixing properties of the
Markov chain.

Proposed approach : PnP-SGS

The main contribution of the work reported in this chapter is to provide a
straightforward and systematic instantiation of the PnP paradigm within a
Monte Carlo sampling framework. This is made possible thanks to the split-
ting strategy implemented by the SGS scheme. Moreover the timeliness of
devising such an approach can be easily justified by the recent advances in the
design of powerful deep generative models. The proposed approach coined
as PnP-SGS is based on three main rationales. First, as any PnP-based
methods, PnP-SGS allows Bayesian inference problems to be solved without
explicitly defining a prior distribution, which is rather implicitly encoded into
a DNN trained beforehand. Second, we show that diffusion-based or score-
based models [139, 140, 141] initially derived for generative purposes can be
diverted to be employed as universal stochastic denoisers. Third, PnP-SGS
generate samples that can be used to build confidence intervals, which is
not possible with its deterministic counterpart, i.e., PnP-ADMM, that only
provides point estimates [129, 130]. High dimensional image processing ex-
periments will illustrate the strong potential of the proposed approach when
using a diffusion model [142, 47, 143, 48, 144, 145, 146] as a denoiser. These
extensive experiments include various inverse problems such as inpainting,
super-resolution, and deblurring. The experimental results show that the
proposed PnP-SGS is a general approach to solve ill-posed inverse problems
in high dimension with superior quality and uncertainty quantification.
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5.2 SGS and generative models for PnP

5.2.1 Split Gibbs sampling (SGS)
Starting from the target posterior distribution (5.3), the introduction of a
splitting variable z ∈ RN leads to the augmented distribution

πρ(x, z) ≜ p
(
x, z|y; ρ2

)
(5.4)

∝ exp
[
−f(x, y)− g(z)− 1

2ρ2 ∥x− z∥2
2

]

where ρ is a positive parameter that controls the coupling between x and
z. As shown in [138], for a large variety of coupling kernels including the
quadratic one, the marginal distribution of x under πρ in (5.4) coincides
with the target distribution π in (5.3) when ρ2 tends to zero, i.e.,

∥π − πρ∥TV →ρ2→0
0 (5.5)

which defines an asymptotically exact data augmentation scheme with solid
theoretical foundations [138]. In other words, the original target distribu-
tion π(x) in ((5.3)) is recovered from the marginal distribution πρ(x) derived
from (5.4) in the limiting case ρ→ 0. Instead of sampling directly according
to π(x), SGS proposes to sample according to the augmented distribution
πρ(x, z) using Gibbs steps. More specifically, the associated conditional dis-
tributions to sample from πρ(x, z) are given by

p
(
x | z, y; ρ2

)
∝ exp

[
−f(x, y)− 1

2ρ2 ∥x− z∥2
2

]
(5.6)

p
(
z | x; ρ2

)
∝ exp

[
−g(z)− 1

2ρ2 ∥z− x∥2
2

]
(5.7)

It is now clear that sampling alternatively from ((5.6)) and ((5.7)) dissociates
the potential functions f(·, y) and g(·) associated with the likelihood and
the prior distribution, respectively. The MCMC algorithm associated with
the split distributions (5.4) are special instances of Gibbs samplers where
samples are alternatively drawn according to the conditional distributions of
each variable (5.6) and (5.7). The directed acyclic graph (DAG) associated
with the proposed splitting model is depicted in Fig.5.1 As a consequence,
SGS inherits well-known advantages already exhibited by its deterministic
counterparts (i.e., HQS and ADMM), e.g., easier implementations, faster
convergences and possibly distributed computations. In particular, sampling
according to ((5.6)) can be interpreted as solving the initial problem defined
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x

θx

ρ2

z θz

Posterior Splitting

Figure 5.1: DAGs associated with the proposed hierarchical Bayesian model.
In black: DAG associated to (5.6) and in red: DAG associated to (5.7). θz

stand for that parameters of the deep learning based prior model and θx for
possible additional parameters of the forward model.

by the same potential function f(·, y) but now granted with a Gaussian prior
distribution of mean z and diagonal covariance matrix ρ2I. It is thus expected
to be significantly simpler than sampling according to the initial posterior
distribution π(x) defined by ((5.3)).

Moreover, note that the conditional distribution ((5.7)) can be interpreted
as the posterior distribution associated with a Bayesian denoising problem.
Its goal is to recover an object z from a noisy observation x contaminated
by an additive white Gaussian noise with variance ρ2. Instead of sampling
directly from ((5.7)), we propose to resort to deep generative models used
as stochastic denoisers. Generative adversarial network (GAN), variational
autoencoders (VAE) or more recently denoising diffusion probabilistic mod-
els (DDPM) are powerful candidates to tackle this task [139, 140, 141]. This
work instantiates the PnP-SGS framework and reports experimental results
based on DDPM-based denoisers. Note however that any pre-trained prob-
abilistic denoising generative model can be plugged into the proposed ap-
proach.

5.2.2 Denoising diffusion probabilistic models (DDPM)

Denoising diffusion models [142, 47, 143, 48] and score based models [144,
145, 146] are trendy classes of generative models. They have recently drawn
significant attention from the community due to their state-of-the-art perfor-
mances. Although nourished by different inspirations, they share very similar
aspects and can be presented as variants of each other [147, 143, 146]. They
are often referred to under the generic name diffusion models 1.4.2.
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DDPM as generative models

A denoising diffusion probabilistic model [142] makes use of two Markov
chains: a forward chain that perturbs data to pure noise, and a backward
chain that converts noise back to data. The former is typically model-based
designed with the goal of transforming any data distribution into a simple
prior distribution, i.e., a standard Gaussian. Conversely the latter Markov
chain aims at reversing the noising process by learning transition kernels
parametrized by a DNN. Once the DNN has been trained, new data points
can be generated by first drawing from the prior distribution, and then sam-
pling through the backward Markov chain.

Formally, given a data distribution v0 ∼ p (v0), the forward Markov
process generates a sequence of random variables vt ∈ RN , t ∈ {0, . . . , T}
according to the transition kernel p (vt | vt−1). Using the probability chain
rule and the Markovian property, the joint distribution p (v1, . . . , vT | v0)
can be factorized as

p (v1, . . . , vT | v0) =
T∏

t=1
p (vt | vt−1) . (5.8)

In DDPMs, the transition kernel p (vt | vt−1) is arbitrarily chosen to incre-
mentally transform the data distribution p (v0) into a tractable prior dis-
tribution p(vT ) ≈ N (vT ; 0, I). One typical design for the transition kernel
exploits a Gaussian perturbation and the most common choice for the tran-
sition kernel is

p (vt | vt−1) = N
(

vt;
√

1− β(t)vt−1, β(t)I
)

(5.9)

where β(t) ∈ (0, 1) is a predefined function which plays a key role. It directly
adjusts the amount of noise along the process such that larger values lead to
noisier samples. Conventionally, it is chosen as a linearly increasing function
[47]. More recent techniques have proposed to use cosine-based functions
[49]. Intuitively speaking, this forward process slowly injects noise into data
until all structures are lost and only noise prevails.

For generating new data samples, DDPMs start by first drawing a sam-
ple vT from an instrumental prior distribution q (vT ) = N (vT ; 0, I). Then
DDPMs gradually remove noise by running a Markov chain in the reverse
time direction. This Markov chain is defined thanks to a kernel modeled by
DNNs. The learnable transition kernel qθ (vt−1|vt) takes the form of

qθ (vt−1 | vt) = N (vt−1; µθ (vt, t) , Σθ (vt, t)) (5.10)

where the mean µθ (vt, t) and the covariance matrix Σθ (vt, t) are DNNs
parametrized by θ and t with vt as an input.
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DDPM as stochastic denoisers

According to the above discussion, it is clear that the forward diffusion pro-
cess (5.9) progressively adds noise to a noise-free image v0. Following a dis-
cretization scheme generally adopted by these deep generative models, each
vt corresponds to a scaled version of vt−1 corrupted by a Gaussian noise with
covariance matrix β(t)I. Thanks to the factorization induced by the direct
Markov chain and the Gaussian nature of the transition kernel, the transition
from the original image v0 to any intermediate noisy image vt can be written
as

p (vt | v0) = N
(

vt;
√

ᾱ(t)v0, α(t)I
)

(5.11)

where α(t) =
t∏

j=1
(1− β(j)) (5.12)

and ᾱ(t) = 1 − α(t). In other words, at any arbitrary time instant t∗ < T ,
the image vt∗ resulting from t∗ steps of the forward process is a noisy version
of the input image v0 corrupted by a Gaussian noise of variance α(t∗).

Therefore, it appears that a trained DDPM can be used as a stochastic
Gaussian denoiser. Contrary to the normal use of a DDPM as a generator
(see above), the key idea is rather to start the backward diffusion process from
a noisy image vt∗ for some t∗ and not as usual from a realization of noise vT .
The noise-free image v0 can be recovered by applying the backward process
defined by (5.10) from time instant t∗.

5.2.3 Proposed DDPM-based PnP-SGS algorithm
In a nutshell, the proposed PnP-SGS alternatively samples according to the
conditional posterior distributions (5.6) and (5.7). Along this iterative pro-
cess, SGS generates a set of NMC samples

{
x(n), z(n)

}NMC

n=1
asymptotically

distributed according to the augmented posterior πρ(x, z). From this set of
samples, various Bayesian quantities can be approximated, such as Bayesian
estimators and credibility intervals. In particular, the samples

{
x(n)

}NMC

n=1
are

marginally distributed according to πρ(x). Thus the minimum mean square
estimator (MMSE or posterior mean) x̂MMSE = E[x|y] associated with πρ

can be easily approximated by the empirical average

x̂MMSE ≈
1

NMC −Nbi

NMC∑
n=Nbi+1

x(n) (5.13)

where Nbi is the number of burn-in iterations.
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Regarding the first step of SGS, sampling according to (5.6) is problem
dependent and should be suitably adapted to the targeted task. For illustra-
tion purpose, it will be explicitly specified for various imaging problems in
Section 5.3. As expected and already pointed out in Section 5.2.1, sampling
according to (5.6) will appear significantly simpler than directly sampling
according to the target posterior distribution π(x) defined by (5.3).

Regarding the second step of SGS, at the nth iteration of the algorithm,
sampling according to (5.7) is interpreted as a stochastic denoising of the
current value x(n). This sampling according to (5.7) is performed in a PnP
manner thanks to a previously trained DDPM, following the strategy detailed
in Section 5.2.2. With the notations adopted in the previous paragraph, it
assigns the current sample x(n) to the variable vt∗ for some t∗ at iteration n
and then iterates the backward diffusion (5.10). After t∗ steps, the produced
denoised image v0 is allocated to the new sample z(n) according to (5.7) of
the current SGS iteration.

Note that DDPMs used as generators are known to be generally com-
putationally demanding due to the number T of overall steps involved in
the backward process. The proposed approach obviates this impediment by
initiating the process from a generally weakly noisy image, which signifi-
cantly reduces the necessary number t∗ ≪ T of denoising steps to be applied
[148]. Next section provides some insights into this number t∗ and proposes
a systematic and reliable strategy to adjust it.

5.2.4 Some insights into the number t∗ of steps
Role of t∗: control regularization

This section discusses the role and the tuning of the time instant t∗ which
defines the number of denoising steps to be applied at a given iteration of the
SGS sampler. As already stated, Eq. (5.11) shows that the variance of the
noise corrupting v0 after t∗ transitions of the forward Markov chain is α(t∗).
This variance is defined by the product (5.12) of continuous strictly monotone
functions β(·), thus it is also continuous and strictly monotone. This has two
consequences: i) a level of noise α(t∗) is associated to a unique instant t∗

of the forward diffusion process (i.e., α(t) is an invertible function of t) and
ii) the larger t∗, the noisier the image vt∗ . Reciprocally, when applying the
backward diffusion to a noisy image, the larger t∗, the higher the impact of
the denoising, that is of the regularization. Note that the DDPM, that is
used for regularization here, has no explicit hyperparameter. An important
consequence is that, within the framework of PnP-SGS, the number t∗ of
denoising steps can be interpreted as the hyperparameter that adjusts the
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amount of imposed regularization, the coupling parameter ρ being kept fixed.

Inferring t∗

The proposed approach capitalizes on the explicit and unequivocal mapping
between the hyperparameter t∗ and the variance α(t∗) of the noise contained
in vt∗ . This relationship permits a simple and efficient strategy to set the
number t∗ of required denoising steps (5.10) when sampling according to
(5.7). Given a current sample x(n) generated by SGS, the identification of
the appropriate instant t∗ to generate z(n) according to (5.7) boils down to
estimating the level α(t∗) of the noise corrupting the sample x(n). This is
possible using any good conventional estimator σ̂ = Φ(x(n)) of the noise level
in x(n) [149, 150, 151], see Appendix 5.4.3 for implementation details. Since
the function t → α(t) is invertible, one can finally set t̂∗ = α−1(σ̂2) to start
the backward diffusion (5.10). Appendix 5.4.3 discusses technical details of
the inversion of α(·).

In practice, during the experiments reported in Section 5.4, the number
t̂∗ of achieved steps has been shown to stabilize at a fixed value after the
burn-in period of PnP-SGS (Figure 5.5). Therefore the transition kernel
associated with the denoising procedure becomes invariant, which ensures
that SGS converges towards a stationary distribution πρ; recall that ρ is
fixed, typically of order 1.

The resulting distribution πρ is eventually similar to (5.4) where the role
of the explicit regularizing potential g(·) has been implicitly replaced by the
DDPM.

Algorithm 6 describes the final sampling PnP-SGS algorithm using a
DDPM for the denoising step, with the proposed strategy to set the hyper-
parameter t∗.

5.3 Application to Bayesian inverse problems

5.3.1 Inverse problems
The proposed PnP-SGS method is now instantiated for three different imag-
ing problems, namely deblurring, inpainting and superresolution, following
the protocols already considered in [137]. The considered linear Gaussian
inverse problems define an archetypal class of problems that can efficiently
tackled by the proposed method. More specifically, a degraded image y is
observed and one wants to infer a restored image x under the linear model

y = Hx + n (5.14)
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Algorithm 6: PnP-SGS using DDPM
Input : Parameter ρ2, total number of iterations NMC, number of

burn-in iterations Nbi, pre-trainted DDPM sθ(·, ·),
scheduling variance function α(·), initialization z(0)

1 for n← 1 to NMC do
2 # Sampling the variable of interest x(n)

3 Draw x(n) ∼ p(x | z, y; ρ2) according to (5.6)
4 # Estimating noise level in x(n)

5 Set σ̂ = Φ(x(n)) using [149]
6 # Setting the number of diffusion steps to denoise x(n)

7 Set t̂∗ = α−1(σ̂2)
8 # Sampling the splitting variable z(n) according to (5.7)
9 Set v

t̂∗ = x(n)

10 for j ← t̂∗ downto 1 do
11 Draw vj−1 ∼ qθ(vj−1 | vj) according to (5.10)
12 end
13 Set z(n) = v0
14 end

Output: Collection of samples
{
x(n), z(n)

}NMC

t=Nbi+1
asymptotically

distributed according to (5.4).
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where H is a forward operator and n accounts for noise or error modeling.
Assuming that n is a Gaussian random vector with covariance matrix Ω−1,
the likelihood function associated with the observation y writes

p(y | x) ∝ exp
[
−1

2(Hx− y)T Ω(Hx− y)
]

.

In most applicative contexts, inferring the unknown parameter vector x from
the observation vector y under the linear model (5.14) is known to be an ill-
posed or ill-conditioned inverse problem. A common approach to tackle such
problems consists in using some regularization defined through the choice of
a prior distribution p(x) ∝ exp [−g(x)], leading to the posterior distribution
(5.3). Instead of explicitly specifying the potential function g(·) in (5.3), the
proposed PnP-SGS algorithm targets an augmented posterior similar to (5.4)
to capitalize on a pre-trained denoising diffusion model presented in Section
5.2.2.

The three considered tasks mainly differ by the nature of the linear op-
erator H. Following the SGS algorithmic scheme, a special care should be
taken to ensure an efficient sampling according to the conditional posterior
(5.6) which involves H, see Algo. 6, line 3. Since the sampling according
to (5.7) does not depend on the forward operator, it is achieved in a unique
manner from a DDPM. Thus the sequel of this section is only devoted to the
technical derivations associated with (5.6). Experimental results obtained by
the proposed PnP-SGS will be reported in Section 5.4.

5.3.2 Image deblurring
In this setup, the operator H is assumed to be an N × N circulant convo-
lution matrix associated to a blurring kernel. The noise covariance matrix
is assumed to be diagonal, i.e., Ω−1 = diag [σ2

1, . . . , σ2
N ] where distinct diag-

onal elements mimic a spatially-variant noise level. Even when choosing a
simple model-based regularizing potential g(·), direct sampling according to
the posterior distribution (5.3) may remain a challenging task, mainly due to
the presence of the precision matrix Ω which prevents a direct computation
in the Fourier domain. Conversely, the proposed PnP-SGS algorithm yields
the conditional distribution (5.6) defined here as

p(x | z, y; ρ2) = N
(
x; µx, Q−1

x

)
(5.15)

with  Qx = HT ΩH + 1
ρ2 IN

µx = Q−1
x

(
HT Ωy + 1

ρ2 z
)

.
(5.16)
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Thanks to the splitting trick inherent to the proposed PnP-SGS algorithm,
this step does not depend on g(·) and boils down to a high-dimensional Gaus-
sian sampling task. This task has been deeply investigated in [108] and can
be efficiently achieved by using the auxiliary method of [152]. Finally, sam-
pling from (5.7) is straightforward using the pre-trained network as discussed
in Section 5.2.2.

5.3.3 Image inpainting
Image inpainting problems aim at recovering an original image x ∈ RN from
the noisy and partial measurements y ∈ RM under the linear model (5.14).
The operator H ∈ {0, 1}N×M now stands for a binary matrix associated with
a irregular subsampling with M ≪ N . The noise is assumed to be white and
Gaussian such that Ω−1 = σ2IM . As for the deblurring task, the conditional
distribution (5.6) is (5.15) with Qx = 1

σ2 HT H + 1
ρ2 IN

µx = Q−1
x

(
1

σ2 HT y + 1
ρ2 z
)

.
(5.17)

The difficulty of sampling according to this Gaussian distribution comes from
the operator H which is not diagonalizable in the Fourier domain. However,
since it consists of a subset of rows of the identity matrix IN , one has HHT =
IM and the Sherman-Morrison-Woodbury formula yields

Q−1
x = ρ2

(
IN −

ρ2

σ2 + ρ2 HT H
)

. (5.18)

Since HT H is diagonal, the covariance matrix (5.18) is diagonal and sam-
pling from (5.15) can be conducted efficiently with the exact perturbation-
optimization (E-PO) algorithm [152].

5.3.4 Image super-resolution
Image super-resolution is characterized by a forward model composed of a
blurring kernel followed by a subsampling step. The forward operator writes

H = SB (5.19)

where B is a N × N circulant convolution matrix, as in Section 5.3.2, and
S ∈ {0, 1}M×N is associated with a binary mask, as in Section 5.3.3. The
noise n is assumed to be white and Gaussian. To fully benefit from the
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advantages of the SGS, two auxiliary variables z1 and z2 are introduced to
define the augmented posterior distribution

p(x, z1, z2|y; ρ2
1, ρ2

2) ∝

exp
[
− 1

2σ2∥y− Sz1∥2 − 1
2ρ2

1
∥z1 −Bx∥2 − g(z2)−

1
2ρ2

2
∥z2 − z1∥2

]
(5.20)

This double splitting leads to a SGS algorithm which samples alternatively
according to the conditional distributions

p(z1 | x, y) ∝ exp
[
− 1

2σ2∥y− Sz1∥2 − 1
2ρ2

1
∥z1 −Bx∥2

]
(5.21)

p(x | z1, z2) ∝ exp
[
− 1

2ρ2
1
∥z1 −Bx∥2 − 1

2ρ2
2
∥z1 − z2∥2

]
(5.22)

p(z2 | z1) ∝ exp
[
−g(z2)−

1
2ρ2

2
∥z2 − z1∥2

]
(5.23)

The two distributions (5.21) and (5.22) correspond to the previously dis-
cussed tasks of inpainting and deblurring, respectively. Sampling according
to the last one (5.23) is achieved thanks to a DDPM used as a stochastic
PnP denoiser.

5.4 Experiments

5.4.1 Experimental setup
Experiments have been conducted on two data sets each composed of 1000
RGB images of size 256 × 256 with various characteristics, namely FFHQ
256× 256 [153], and Imagenet 256× 256 [154]. Pre-trained diffusion models
have been directly taken from [142, 155] and used without any additional fine-
tuning. The test images have never been seen by the model while training to
avoid any bias due to potentially over-fitted pre-trained models. All images
are normalized to the range (0, 1). For the inversion tasks described in Section
5.3, the forward measurement operators have been designed as follows:

• deblurring: two blurring kernels are considered, namely a Gaussian
blur with a kernel size of 61× 61 with standard deviation of 3.0, and a
randomly generated motion blur1 with size 61× 61 and intensity value
0.5,

1Following the code available at https://github.com/LeviBorodenko/motionblur.
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PnP-SGS SPA TV-ADMM PnP-ADMM Score-SDE DDRM MCG
[137] [156] [157] [146] [158] [159]

In
pa

in
tin

g PSNR ↑ 32.59 26.09 22.03 8.41 13.52 9.19 21.57
SSIM ↑ 0.913 0.524 0.784 0.325 0.437 0.319 0.751
FID ↓ 37.36 71.12 181.56 123.61 76.54 69.71 29.26

LPIPS ↓ 0.144 0.785 0.463 0.692 0.612 0.587 0.286

D
eb

lu
rr

in
g

(G
au

ss
ia

n) PSNR ↑ 27.96 23.17 22.37 24.93 7.12 23.36 6.72
SSIM ↑ 0.837 0.499 0.801 0.812 0.109 0.767 0.051
FID ↓ 59.667 78.67 186.74 90.42 109.07 74.92 101.2

LPIPS ↓ 0.331 0.452 0.507 0.441 0.403 0.332 0.340

D
eb

lu
rr

in
g

(m
ot

io
n) PSNR ↑ 28.46 17.73 21.36 24.65 6.58 N/A 6.72

SSIM ↑ 0.828 0.211 0.751 0.825 0.102 N/A 0.055
FID ↓ 60.01 103.87 152.39 89.08 292.28 N/A 310.5

LPIPS ↓ 0.294 0.446 0.508 0.405 0.657 N/A 0.702

Su
pe

rr
es

.
(×

4)

PSNR ↑ 25.99 N/A 23.86 26.55 17.62 25.36 19.97
SSIM ↑ 0.812 N/A 0.803 0.865 0.617 0.835 0.703
FID ↓ 58.82 N/A 110.64 66.52 96.72 62.15 87.64

LPIPS ↓ 0.259 N/A 0.428 0.353 0.563 0.294 0.520

Table 5.1: FFHQ 256 × 256 data set: image reconstruction (PSNR, SSIM)
obtained by the compared methods. Bold: best, underline: second. PnP-
SGS is evaluated on xMMSE.

• inpainting: 80% of the total pixels have been randomly masked accross
all RGB channels,

• superresolution: the operator S corresponds to a downsampling factor
d = 4 in both directions and the operator B stands for a Gaussian blur
with a kernel size of 9× 9 and a standard deviation of 1.5.

5.4.2 Compared methods & figures-of-merit
The proposed method has been compared to state-of-the-art methods related
to the rationales motivating PnP-SGS:

• SPA [137]: split-and-augmented Gibbs sampler is an extension of SGS;
in our experiments, it is used with a usual Tikhonov regularizer for
deblurring and superresolution and with total-variation (TV) for in-
painting;

• TV-ADMM [156]: ADMM using the isotropic regularization. The reg-
ularization parameter λ and some penalty parameter ρ linked to the
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PnP-SGS SPA TV-ADMM PnP-ADMM Score-SDE DDRM MCG
[137] [156] [157] [146] [158] [159]

In
pa

in
tin

g PSNR ↑ 25.22 23.14 20.96 8.39 18.62 14.29 19.03
SSIM ↑ 0.870 0.802 0.676 0.300 0.517 0.403 0.546
FID ↓ 34.28 41.33 189.3 114.7 127.1 114.9 39.19

LPIPS ↓ 0.297 0.323 0.510 0.677 0.659 0.665 0.414

D
eb

lu
rr

in
g

(G
au

ss
ia

n) PSNR ↑ 21.76 21.08 19.99 21.81 15.97 22.73 16.32
SSIM ↑ 0.701 0.577 0.634 0.669 0.436 0.705 0.441
FID ↓ 64.12 98.78 155.7 100.6 120.3 63.02 95.04

LPIPS ↓ 0.399 0.537 0.588 0.519 0.667 0.427 0.550

D
eb

lu
rr

in
g

(m
ot

io
n) PSNR ↑ 21.47 20.49 20.79 21.98 7.21 N/A 5.89

SSIM ↑ 0.695 0.681 0.677 0.702 0.120 N/A 0.037
FID ↓ 47.57 91.51 138.8 89.76 98.25 N/A 186.9

LPIPS ↓ 0.372 0.538 0.525 0.483 0.591 N/A 0.758

Su
pe

rr
es

.
(×

4)

PSNR ↑ 24.33 N/A 22.17 23.75 12.25 24.96 13.39
SSIM ↑ 0.772 N/A 0.679 0.761 0.256 0.790 0.227
FID ↓ 59.09 N/A 130.9 97.27 170.7 59.57 144.5

LPIPS ↓ 0.418 N/A 0.523 0.433 0.701 0.339 0.637

Table 5.2: Imagenet 256×256 data set: image reconstruction (PSNR, SSIM)
obtained by the compared methods. Bold: best, underline: second. PnP-
SGS is evaluated on xMMSE.
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splitting have been adjusted by grid search to reach the best perfor-
mance. Final values are (λ, ρ) = (2.7 × 10−2, 1.4 × 101) for deblur-
ring, (λ, ρ) = (2.7 × 10−2, 1.0 × 10−2) for inpainting and (λ, ρ1, ρ2) =
(2.7 × 10−2, 1.0 × 10−2) for superresolution which requires a double
splitting.

• PnP-ADMM [157]: ADMM with a PnP regularization chosen as DnCNN
[122]; this can be interpreted as the deterministic counterpart of PnP-
SGS. The implementation is from the SCICO2. library. The parameters
are set to ρ = 0.2 (ADMM penalty parameter) and maxiter = 12.
Proximal mappings use the pretrained DnCNN denoiser [122].

• DDRM [158]: the denoising diffusion restoration model is implemented
using the same DDPM as PnP-SGS. All experiments have been per-
formed with the default setting ηB = 1.0 and η = 0.85. For the Gaus-
sian deblurring task, the forward model was implemented by separable
1D convolutions for efficient SVD.

• MCG [159]: manifold constrained gradients. The variance scheduling
function α(·) has been chosen as the one used by PnP-SGS. At each
step, complementary data consistency steps are applied as Euclidean
projections onto the measurement set C = {xi | Hxi = yi, yi ∼ p (yi | x0)}

• Score-SDE [146]: implemented using the same DDPM as the one used
by PnP-SGS. Score-SDE solves the inverse problems by iteratively ap-
plying a denoising step followed by data consistency projections onto
the measurement set C, as in MCG.

Uncertainty quantification

Note that PnP-ADMM, TV-ADMM, DDRM and Score-SDE yield point es-
timates only. In contrast, PnP-SGS provides a comprehensive description of
the targeted posterior distribution so that it permits to quantify uncertain-
ties. It yields variances and credibility intervals and multiple statistics of the
posterior for a variety of estimators such as MMSE and MAP.

Fig. 5.2 and 5.3 first qualitatively evaluated through visual inspection.
Quantitative comparisons are conducted based on four widely-used metrics.
The first two criteria are standard image reconstruction metrics, namely peak
signal-to-noise-ratio (PSNR) and structural similarity index (SSIM). The two
other criteria are perceptual metrics: Fréchet Inception Distance (FID), and

2https://scico.readthedocs.io
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Learned Perceptual Image Patch Similarity (LPIPS) distance. Results are
averaged over 1000 test images.

5.4.3 Technical details of PnP-SGS
For the experiments on the FFHQ data set, the pre-trained DDPM has been
taken from [155] also available online3 and the coupling parameter has been
manually set to ρ = 0.7. For the Imagenet data set, we have used the pre-
trained DDPM of [142] and available online4 and the coupling parameter has
been choosen as ρ = 1.625 after a gridsearch procedure.

Burn-in and early stopping

For all experiments, the number of iterations of the PnP-SGS has been fixed
as NMC = 100 including Nbi = 20 burn-in iterations. During the burn-in
period, instead of applying the kernel (5.10) for t = t̂∗, . . . , 1, we suspend
the process in the middle of the diffusion, i.e., t = t̂∗, . . . , t̂∗

2 . This early-
stopping trick not only provides empirically better results but also allows
the computational burden to be lightened by reducing the number of DNN
evaluations.

Estimating the noise level

The stochastic denoising task corresponding to the conditional distribution
(5.7) requires an estimation of the level σ̂ = Φ(x(n)) of a Gaussian noise
assumed to affect the current state x(n) at each iteration of PnP-SGS (see
Algo. 6, line 5). The problem of estimating the level of the noise corrupting
natural images has motivated plenty of research works, see [149, 150, 151].
In our implementations, this estimation has been carried out following the
strategy proposed in [149]. This robust wavelet-based estimator is already
implemented in the library scikit-image (aka skimage) as the function
estimate_sigma(). When handling RGB natural images, this function has
been used with the parameter average_sigmas=True to average the noise
level estimates over the three channels.

Inverting the variance function α(·)

Given the current estimate of the noise level σ̂, sampling according to (5.7)
is achieved by performing the backward diffusion with kernel (5.10) from a

3https://github.com/jychoi118/ilvr_adm
4https://github.com/openai/guided-diffusion
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time instant t̂∗ such that σ̂2 = α(t̂∗) where α(t) is defined by (5.12). This
diffusion scheduling function is controlled by the function b(·) that adjusts
the variance of the forward transition kernel (5.9) from t − 1 to t. Various
choices of b(·) exist in the literature. We have tested two particular choices.
For experiments with FFHQ, we chose a linearly increasing function

b(t) = b(0) + rt (5.24)

where b(0) = 10−4 and the slope r has been adjusted such that b(T ) =
2.0 × 10−2 [47]. For experiments with ImageNet, we adopted the cosine-
based variance schedule [49]

α(t) = 1− γ(t)
γ(0) (5.25)

with γ(t) = cos
(

π
2

t/T +s
1+s

)2
. In both cases, an explicit inverse function α−1(·)

can be derived, which yields t̂∗ = α−1(σ̂2). For more complex scheduling func-
tions, an alternative is to use a tabbing strategy, which saves computation
cost as well. Given a pre-computed list of T +1 values α = {α(0), . . . , α(T )},
the diffusion start time is set to

t̂∗ = argmin
t∈{0,...,T }

|α(t)− σ̂2|.

In our experiments, the scheduling functions have been sampled on T = 1000
regularly spaced time instants.

5.4.4 Experimental results
Illustration of performances

Tables 5.1 and 5.2 report the quantitative results in terms of image recon-
struction and perceptual metrics for the two data sets FFHQ and Imagenet,
respectively. The proposed method outperforms all the other compared
methods by significant margins for the SNR and for the visual perception
metrics. Particularly, DDRM and Score-SDE rely on a DDPM where the
pre-trained generative model is exactly the same as the one implemented in
PnP-SGS. Results appearing as N/A correspond to tasks which are either
not relevant for the model or not implemented by the original authors. It
is worth noting that PnP-ADMM performs very poorly for inpainting tasks
on both datasets. The implementation shows that PnP-ADMM has diverged
for some of the tested images which explains the reported numbers, similar
behaviors have been observed in the literature [160].
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Figure 5.2: Inpainting task on the FFHQ (first two columns) and Imagenet
data sets (last two columns), from up to bottom: measurement, true image,
PnP-SGS (xMMSE), SPA [137], MCG [159], DDRM [158].
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PnP-SGS SPA PnP-ADMM Score-SDE DDRM MCG
13.81 218.90 3.63 36.71 2.03 80.10

Table 5.3: Inpainting: computational times (in s.) of the compared methods.

Fig. 5.2 permits to assess the performances by visual inspection when in-
painting 4 test images taken from the FFHQ and Imagenet data sets. In par-
ticular, PnP-SGS is compared to state-of-the-art methods which are known
to be robust to measurement noise. PnP-SGS is able to provide high-quality
reconstructions that are crisp and realistic. In particular it is able to recover
more granular details.

Uncertainty quantification

As already stated, the proposed PnP-SGS generate samples asymptotically
distributed according to the posterior distribution. These samples can be
used to approximate various Bayesian estimators but also to derive credibility
intervals. Fig. 5.3 illustrates this advantage by depicting various restored
images (in term of MMSE estimates) as well as 90% credibility intervals for
different tasks. This added value cannot be provided by optimization-based
methods, e.g., TV-ADMM and PnP-ADMM, which provide point estimates
only. Besides, stochastic samplers such as DDRM, MCG and Score-SDE are
not able to provide this information either. Indeed, they do not generate
multiple samples drawn from a stationary posterior. Several runs of these
methods produce outputs that may be individually relevant but that are not
consistent between them in their details, in particular because they originate
from different noise realizations. This is also why averaging multiple outputs
of these methods does not yield reliable MMSE estimators but rather tends to
recover blurred images, as illustrated in Fig. 5.4 (6th right panel for MCG).

When targeting (5.4), PnP-SGS generates two sets of samples
{
x(n)

}
n

and
{
z(n)

}
n

that are marginally distributed according to the marginals of
πρ(x, z). It follows a splitting strategy where the variables x and z are
coupled thanks to a quadratic kernel that is controlled by the parameter
ρ. Thus the posterior means x̂MMSE = E[x|y] and ẑMMSE = E[z|y] should
be very similar up to some variations adjusted by the coupling parameter
ρ. Fig. 5.4 depicts the two estimates as well as pixel-wise 90% credibility
intervals. As expected, slight differences are observed. In particular, the
point estimate x̂MMSE seems to be characterized by sharper details (better
viewed by zooming on screen). Recall that this estimate is closer to the
observation, while ẑMMSE is closer to the prior, therefore smoother.
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Figure 5.3: From left to right: measurement, true image, MMSE estimate,
pixel-wise 90% credibility intervals. From top to bottom: Gaussian blur,
superresolution and two motion blurs. The first three and the last images
are from the FFHQ and Imagenet data sets, respectively.

Figure 5.4: Image inpainting, from left to right: measurement, true image,
MMSE estimate x̂MMSE, MMSE estimate ẑMMSE, pixel-wise 90% credibility
intervals, averaged samples generated by MCG [159]
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Figure 5.5: Inpainting: evolution of t̂∗ along the PnP-SGS iterations (T =
1000). Results have been averaged over 100 runs conducted on the same
image. Shaded areas stand for the corresponding standard deviation.

Execution time

Table 5.3 reports the execution times for the task of inpainting of the var-
ious methods implemented on a single GTX 2080Ti GPU. Noticeably, the
computational time of PnP-SGS is similar to its competitors. In particu-
lar, this stochastic MCMC method (13.81s) is more than twice faster than
Score-SDE (36.71s). It remains within a factor less than 4 with respect to
PnP-ADMM (3.63s), its deterministic counterpart. The price to pay to get
quantified uncertainties sounds very reasonable. It is worth noting that using
a DDPM-based PnP with SGS significantly reduces the number of iterations
required by the sampler to reach the steady regime, which explains the re-
duced computational cost with respect to SPA.

Convergence of t⋆

In Section 5.4, the estimated number t̂∗ of denoising steps is automatically
adjusted by the procedure described in Section 5.2.4. At the first iteration
of the PnP-SGS, t̂∗ is usually a fraction of T . Along the iterations of the
PnP-SGS, this number reduces and then stabilizes around a small fraction
of T , as illustrated in Fig. 5.5 where the initial value of t̂∗ is around 0.07T
for the inpainting task.

5.5 Conclusion
This work proposes the plug-and-play split Gibbs sampler (PnP-SGS) as a
stochastic counterpart of the well-known PnP-ADMM. Thanks to the SGS
divide-to-conquer strategy, the PnP-SGS algorithm permits to target a poste-
rior distribution that involves an implicit PnP prior where the regularization
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is ensured by some efficient stochastic denoiser. The proposed methodology
can make use of any well-suited PnP prior, depending on the final appli-
cation. For instance, it can be based on a denoising diffusion probabilistic
model (DDPM), as proposed here, since it appears that a DDPM can be
turned into a Bayesian sampler of a denoising problem. With the same ver-
satility as PnP-ADMM, sampling from the posterior distribution noticeably
permits to build credibility intervals on top of point estimates. Extensive nu-
merical experiments show that the proposed approach competes favourably
with existing state-of-the-art models on typical imaging problems, namely de-
blurring, inpainting and superresolution. The quantitative performances are
at least comparable when not better, while the computational times remain
very moderate as well. PnP-SGS appears as a scalable MCMC sampling
method that can benefit from the most recent progress in machine (deep)
learning at the price of a reasonable computational cost.
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Chapter 6

Conclusion

Closing discussion
Expressive probabilistic models are often employed to generate realistic data
exhibiting intricate patterns across various domains, including images, au-
dio, and molecular arrangements. These models serve the purpose of char-
acterizing and approximating data distributions in high dimensional spaces.
However, even with the potential of deep neural networks, building robust
probabilistic models remains a challenging endeavor. While providing high-
quality samples is itself a difficult task, numerous scientific applications also
requires the capability to undertake density estimation. This tractability
requirement mandates the adoption of restricted model architectures, a de-
cision that quickly becomes impractical in high-dimensional disconnected
space. This manuscript addresses these challenges through some improve-
ments of either the training protocol or the sampling methodology.

• Chapter 2 proposes NF-SW by hybridizing the vanilla NF loss func-
tion. The approach complements the conventional maximum likelihood
training with a sliced Wasserstein statistical divergence. Experimental
results show that augmenting training strikes a balance between the
generation of realistic samples and improved density estimation capac-
ity. The resulting model demonstrates better out of distribution (OOD)
detection capabilities compared to classical training of flow-based mod-
els.

• Chapter 3 proposes SWOT-Flow, a training method which enables dis-
crete normalizing flow architectures to tackle optimal transport prob-
lem between two arbitrary empirical distributions. This approach also
allows easy sampling from Wasserstein barycenters distributions.
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• Chapter 4 focuses on the sampling of generative models in the case of
complicated pathological multimodal hight dimensional distributions
with disjoint supports. We propose a new MCMC algorithm to sample
from the NF learned distribution in the latent domain before transport-
ing it back to the target domain. Notably, it can be straightforwardly
used with any pre-trained NF network, regardless of the architecture.
Interestingly the resulting Langevin diffusion is defined on the Riemann
manifold whose geometry is driven by the Jacobian of the NF in the
latent domain.

• Chapter 5 focuses on the resolution of inverse problems in the context
of degraded image reconstruction. We propose PnP-SGS a new sam-
pling algorithm that leverage deep generative model as prior in a Gibbs
sampling framework. The method showcases state-of-the-art results in
Bayesian estimation and credibility intervals while maintaining rapid
computation times. It introduces a novel avenue of stochastic plug-and-
play methodology, harnessing the potential of deep generative models
in Bayesian inference tasks.

Perspectives for future work
The generality of deep generative models associated with MCMC sampling
algorithm, along with their relations with optimization, allow to consider
various prospective works. They can be divided into methodological gener-
alizations, theoretical contributions and new applications.

Methodological generalizations

• Deep generative models as likelihood surrogate - In the con-
text of inverse problem solving, the misalignment or lack of precision
in the probabilistic model characterizing the dataset and its relation-
ship with the parameters of interest poses challenges. Typically taking
the form of a likelihood function, this description plays a pivotal role
in fundamental statistical methods, including maximum likelihood and
Bayesian estimations. For many inverse problems deriving a likeli-
hood function is impossible. To address these challenges, Approximate
Bayesian Computation (ABC) [161] presents a promising alternative.
ABC aimed at estimating the posterior distribution without directly
evaluating the likelihood function but with a direct model simulator.
Notably, ABC methods offer robust and well-documented properties,
facilitating the accurate quantification of the resulting approximations.
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Deep architectures can be employed to implicitly represent the like-
lihood function through extensive training datasets within ABC or
splitting-based Monte Carlo methods [137]. Given some pairs of data
and observation {x, y}, one could train a conditional generative model
to approximate the likelihood. Once trained the generative model could
be used to sample from the posterior distribution. One could also force
the latent distribution of a generative model to be the one of the prior
distribution and perform semi-supervised training to map from the data
to the observation.

• Integrate reverse ODE to estimate posterior distribution -
A significant portion of the existing literature that applies diffusion-
based models to address inverse problems relies on approximations
[141, 158, 159]. Specifically, these approaches involve denoising from
the learned prior distribution during each diffusion step, followed by
a projection onto the observational space described by the likelihood
function. Conversely, when the diffusion-based model described in
paragraph 1.4.2 is cast as an Ordinary Differential Equation (ODE)
(see Appendix B), the sampling process thus becomes deterministic
and rely on ODE solver to map the latent space to the data space. The
advances of efficient GPU implementations of ODE solvers have un-
locked the potential to compute the true log posterior of a data point.
For a conditional score model sθ(x, y, t) ≈ ∇x log pt(x | y), the learned
probability flow ODE is given by

dxt

dt
= f (xt, y, t)− 1

2g(t)2sθ (xt, y, t) =: f̃θ (xt, y, t) . (6.1)

By the continuous-time change-of-variables formula [162], the log prob-
ability of an image x = x0 under the p0 distribution is given by the
log probability of xT under the pT Gaussian, plus a normalization fac-
tor accounting for the change in probability density from x0 to xT .
We compute the log-probability under the learned ODE (Eq. 6.1) by
solving an initial-value problem:

log p0 (x0 | y) = log pT (xT | y) +
∫ T

0
∇ · f̃θ (xt, y, t) dt, (6.2)

where x0 = x. The divergence ∇ · f̃θ (xt, y, t) quantifies the instan-
taneous change in log-probability of xt caused by applying f̃θ (xt, y, t)
in either time direction. It can be estimated with Hutchinson-Skilling
estimation of the trace of ∂

∂xt
f̃θ (xt, t) [163]. Consequently, this would

allows to perform density estimation over the posterior density function
and thus uncertainty quantification without the need for sampling.
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Theoretical contributions

• Theoretical convergence of Stochastic PnP methods - While
we have presented compelling experimental results for our PnP-SGS
algorithm, methods involving classical sampling approaches and deep
generative modelling lack a well-defined theoretical framework. Fol-
lowing a similar approach as that taken for PnP-ULA [164] or [165],
it would be valuable to delve into the theoretical properties and con-
vergence of PnP-SGS. Moreover, as contemporary models increasingly
gravitate toward the plug-and-play methodology, it becomes even more
crucial to investigate the convergence guarantees of Monte Carlo sam-
pling with pre-trained deep priors. In particular, it would sound impor-
tant to derive some bounds with respect to uncertainty quantification
performance.

• Adaptive PnP-SGS sampling - So far, the presentation and the
application of the PnP-SGS framework has considered a fixed tolerance
parameter ρ. Even if the implemented method proposed to estimate
the step t⋆ corresponding to the level of noise of the image, the sam-
pler and the target augmented distribution are governed by a fixed ρ
prescribed by the dissimilarity term. Nevertheless, it is still unknown
at the moment whether an adaptive PnP-SGS associated to a sequence
ρk∈N will perform better than its standard version with a fixed toler-
ance parameter ρ. Hence, an interesting methodological extension of
the proposed work is to derive an adaptive PnP-SGS sampling strat-
egy which will permit to bypass the empirical tuning of ρ. Note that
such a method has been proposed for an optimization counterpart PnP
method in [129].

Applications to other challenging problems

• Non linear inverse problems - The proposed PnP-SGS methodol-
ogy has not been applied so far on Bayesian inference problems charac-
terized by non-log-concave and potentially multimodal posteriors. In
such scenarios, the efficiency of PnP-SGS remains unverified and may
be compromised due to the presence of multiple modes in the target
distribution and the sequential nature of the Gibbs sampling proce-
dure. An example of such a problem is blind source separation and
its constrained formulations, such as nonnegative matrix factorization
and linear unmixing, which find applications in various domains like
astrophysics and hyperspectral imaging [166, 167]. These problems en-
tail the simultaneous estimation of the mixing matrix and the sources,
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resulting in a high-dimensional posterior distribution that lacks log-
concavity. Therefore, a potential avenue for future research involves
investigating whether the proposed MCMC sampling algorithm can ef-
fectively address such challenges and scale with the dimension of the
state space. More precisely, given an explicit likelihood corresponding
to a non linear direct model, one could use a proximal MCMC [168] to
sample from the first conditional distribution of the Gibbs kernel.

• Posterior guided latent diffusion normalizing flow - The NF-
SAILS sampling method proposes to sample from any pretrained NF
using a Langevin algorithm on the latent space. More specifically it
leverages the information of the Jacobian to avoid out of distribution
area in the case of disconnected support of the data. Now one can
use this pretrained NF as a prior in the context of Bayesian inference.
Using the Bayes formula, ∇x log p(x | y) ∝ ∇x log p(y | x)·∇x log p(x)
and one can deduce the posterior latent diffusion to sample from the
posterior using the Jacobian of the transformation. Note that a similar
idea has been recently introduced in [169] but in the data space.

Progress in deep generative modeling not only benefits immediate ap-
plications of data generation, like lage-scale datasets and generating high
quality artwork, but also deepens our comprehension of the structure un-
derlying the data. Leveraging this powerful capacity using well understand
statistical method may ignite a transformative process that reshapes the very
fabric of scientific discovery.
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Appendix A

Langevin dynamics in the
latent space

A.1 Proof of Proposition 1
The proof of Proposition 1 in Section 4.3.1 combines existing results from
topology and real analysis. The complete background can be found in [170]
and [82]. The proof is mainly based on the following results.

Theorem 1 ([82]). Let qZ and qX define probability measures on Rd, with
supp(qZ) ̸̸= supp(qX). For any sequence of measurable, differentiable Lip-
schitzian functions fn : Rd → Rd, if the sequence weakly converges as
fn#qZ

D→ qX , then
lim

n→∞
Lip fn =∞. (A.1)

Moreover, [81] showed the relation between the Lipschitz constant and
the Jacobian of a transformation, as stated below.

Lemma 2 (Rademacher’s theorem). If f : Rm → Rn is Lipschitzian, then f
is continuous and differentiable at almost all points of Rm and

Lip f = sup
z∈Z
∥Jf (z)∥op (A.2)

Both Theorem 1 and Lemma 2 rely on the same starting hypothesis, i.e.,
f is required to be continuous, differentiable and Lipschitzian. Combining
these two results yields Proposition 1 following a development of the proof
of the results by [82] and [81].
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A.2 Properties of the Jacobian of coupling
layer-based NFs

A.2.1 Structure of the Jacobian matrix and computa-
tion of its determinant

RealNVP model defines a NF by implementing a sequence of M invertible
bijective transformation functions, herein referred to as coupling layers [170].
In other words, the mapping f writes as f = f (M) ◦ f (M−1) ◦ f (2) ◦ f (1). Each
bijection f (m) : u 7→ v associated to the mth layer splits the input u ∈ RD

into two parts of sizes d and d − D (d ≤ D), respectively, such that the
output v ∈ RD writes v1:d = u1:d

vd+1:D = ud+1:D ⊙ exp
(
h(m) (u1:d)

)
+ t(m) (u1:d) (A.3)

where hm(·) : Rd → RD−d and tm(·) : Rd → RD−d are scale and translation
functions implemented as deep networks and ⊙ stands for the Hadamard
product. The Jacobian of the above transformation is a lower triangular
matrix

J (m)(u) =
[

Id 0d×(D−d)

A(m)(u) E(m)(u)

]
(A.4)

where Id and 0d×(D−d) are the identity and zero matrices with indexed sizes,
respectively, and A(m)(u) = ud+1:D ⊙ ∂ exp h(m)(u1:d)

∂u1:d
+ ∂t(m)(u1:d)

∂u1:d

E(m)(u) = diag
(
exp

(
h(m) (u1:d)

))
.

(A.5)

Thanks to the chain rule, it follows that the Jacobian of the overall NF is

Jf (z) =
J∏

j=1
J (m)(u(m)) (A.6)

with u(m) = f (m−1)(u(m−1)) and z = u(0).
Moreover, because of the structure of each layer, the determinant of the

Jacobian J (m)(u) associated with the mth layer is

|J (m)(u)| =
d∏

k=1
exp

(
h(m) (uk)

)
. (A.7)

The determinant of the Jacobian Jf (·) characterizing the overall NF can be
easily computed from (A.6) and (A.7).
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A.2.2 Positive definiteness of the Jacobian
Property 5. The product of two lower triangular matrices with strictly pos-
itive diagonal elements is a positive definite lower triangular matrix.

Proof. Let A = [aij] and B = [bij] be two n × n lower triangular matrices
with positive diagonal entries, i.e.,

∀i, j such that i < j, then aij = bij = 0. (A.8)
∀i aii > 0 and bii > 0 (A.9)

Let C = [cij] denote the product matrix C = AB with cij = ∑n
k=1 aikbkj.

The upper elements cij (i < j) of C can be computed as

cij =
i∑

k=1
aikbkj +

n∑
k=i+1

aikbkj. (A.10)

In the right hand side of (A.10), if k ≤ i then bkj=0. Moreover if k > i then
aik = 0. As a consequence, cij = 0 and C is triangular.

Moreover, the eigenvalues of a triangular matrix is its diagonal elements.
It follows that C is positive definite. ■

Thanks to the structure of coupling layer-based NFs discussed in Ap-
pendix A.2.1, we have the two following corollaries.

Corollary 1. The Jacobian matrix Jf (·) and its inverse J−1
f (·) of coupling

layer-based NFs are positive definite.

Corollary 2. The matrix G(·) and its inverse G−1(·) are positive definite.
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Appendix B

From Normalizing Flow to
DDPM, the continuous bridge

This appendix continues our exploration of generative modeling by transi-
tioning from the discussion of Normalizing Flows (NF) and Denoising Diffu-
sion Probabilistic Models (DDPM). In the preceding sections, we’ve explored
the intricacies of NF, a deterministic approach, and DDPM, a probabilistic
framework. Here, we aim to bridge these discrete models with their contin-
uous counterparts.

Through this exploration, we delve into Continuous Normalizing Flows
(CNF) and Score-Based Models (SBM), examining the implications as we
extend the number of layers in NF and the number of steps in DDPM to
approach infinity. This investigation uncovers a fundamental continuity be-
tween these distinct generative modeling paradigms, shedding light on their
convergence and enriching our understanding of deep generative modeling.
This appendix acts as a bridge, connecting the discrete and continuous as-
pects, providing a deeper perspective on the interaction between NF and
DDPM in generative modeling.

B.1 Continuous normalizing flows
Architectures like residual networks, based on recurrent neural networks, and
certain finite normalizing flow models construct intricate transformations by
combining a sequence of transformations applied to a hidden state:

ht+1 = ht + f (ht, θt)

where t ∈ {0 . . . T} and ht ∈ RD,The initial data point is denoted as h0,
while hT represents its transformation in the latent space. These sequential
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updates can be thought of as discretizing continuous transformations using
an Euler method. As the number of transformations approaches infinity,
we describe the continuous dynamics of hidden units through an ordinary
differential equation (ODE), which is determined by a neural network:

dh(t)
dt

= fθ(h(t), t) (B.1)

Beginning with the input h(0), we can define the output h(T ) as the solution
to this ODE initial value problem at a time T . This solution can be calculated
using a differential equation solver, which operates like a black box, and
evaluates the hidden unit dynamics f whenever needed to determine the
solution with the desired level of accuracy.

The change in log-density under this model follows a second differential
equation, called the instantaneous change of variables formula [162]:

∂ log p(h(t))
∂t

= −Tr
(

∂fθ

∂h(t)

)
(B.2)

We can compute total change in log-density by integrating across time:

log p (h (t1)) = log p (h (t0))−
∫ t1

t0
Tr
(

∂fθ

∂h(t)

)
dt (B.3)

CNFs are trained to maximize (B.3). This objective involves the solution
to an initial value problem with dynamics parameterized by θ. For any scalar
loss function which operates on the solution to an initial value problem

L (h (t1)) = L
(∫ t1

t0
fθ(h(t), t)dt

)
(B.4)

then Pontryagin [171] shows that its derivative takes the form of another
initial value problem

dL

dθ
= −

∫ t1

t0

(
∂L

∂h(t)

)T
∂fθ(h(t), t)

∂θ
dt. (B.5)

The quantity −∂L/∂h(t) is referred to as the adjoint state of the ODE.
In their work, Chen et al. [162] employ a black-box ODE solver to com-
pute h (t1), and then a separate call to a solver to compute (B.5) with the
initial value ∂L/∂h (t1). This approach is a continuous-time analog to the
backpropagation algorithm [172] and can be integrated with gradient-based
optimization to adjust the parameters θ through maximum likelihood.
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In general, computing Tr(∂fθ/∂h(t)) scales quadratically with dimen-
sionality, since computing each entry of the diagonal of the Jacobian involves
a separate derivative of f [173]. To mitigate this cost, [174] suggests to
uses a Monte Carlo estimator of the trace of the Jacobian matrix, known as
Hutchinson’s trace estimator [175] :

Tr(A) = Ep(ϵ)
[
ϵT Aϵ

]
Which holds for any n-by-n matrix A and distribution p(ϵ) over n-dimensional
vectors such that E[ϵ] = 0 and Cov(ϵ) = I.

To keep deterministic dynamics throughout each call to the ODE solver,
it’s possible to employ a constant noise vector ϵ throughout the entire solving
process without introducing bias:

log p (h (t1)) = log p (h (t0))−
∫ t1

t0
Tr
(

∂fθ

∂h(t)

)
dt

= log p (h (t0))−
∫ t1

t0
Ep(ϵ)

[
ϵT ∂fθ

∂h(t)ϵ

]
dt

= log p (h (t0))− Ep(ϵ)

[∫ t1

t0
ϵT ∂fθ

∂h(t)ϵdt

] (B.6)

Typical choices of p(ϵ) are a standard Gaussian or Rademacher distribution
[175].

The trajectory of continuous normalizing flows are modelled by an ordi-
nary differential equation (ODE) dh(t)

dt
= fθ(h(t), t). Recently a new class of

generative models has emerged and proposed to model the trajectory using a
stochastic differential equation (SDE). The next section will further discuss
diffusion based model which can be seen as an SDE version of continuous
normalizing flows.

B.2 Score-based diffusion models
Two successful classes of probabilistic generative models involve sequentially
corrupting training data with slowly increasing noise, and then learning to
reverse this corruption in order to form a generative model of the data. Score-
based diffusion models (SBM) [144] estimate the score (i.e., the gradient of
the log probability density with respect to data ∇x log qt(x)) at each noise
scale, and then uses Langevin dynamics to sample from a sequence of decreas-
ing noise scales during generation. Denoising diffusion probabilistic modeling
(DDPM) [48] [47] trains a sequence of probabilistic models to reverse each
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step of the noise corruption, using knowledge of the functional form of the
reverse distributions to make training tractable.

Score-based diffusion models are deep generative models that transform
data into noise through a gradual diffusion process and generate samples by
learning and simulating the reverse of this diffusion process. It constructs a
diffusion process {x(t)}T

t=0 indexed by a continuous time variable t ∈ [0, T ],
such that x(0) ∼ pX(x), for which we have a dataset of i.i.d. samples, and
the prior distribution x(T ) ∼ N (0, I). This diffusion process can be modeled
as the solution to an Itô SDE:

dx = f(x, t)dt + g(t)dw (B.7)

here f(x, t) and g(t) represent the diffusion and drift functions of the SDE,
and w denotes a standard Wiener process (a.k.a., Brownian motion). It
naturally appears that continuous normalizing flows correspond to the special
case where g(t) = 0. In the following discussion, we use qt(x) to refer to
the probability density of x(t), and employ qst(x(t) | x(s)) to denote the
transition kernel from x(s) to x(t), where 0 ⩽ s < t ⩽ T .

There are multiple ways of designing the SDE in Eq.(B.7) such that it
diffuses the data distribution into a Normal distribution. One of the most
widely recognized methods in the literature is Variance Preserving (VP),
which is given by

dx = −1
2β(t)xdt +

√
β(t)

(
1− e−2

∫ t

0 β(s)ds
)

dw (B.8)

where β(t) ∈ (0, 1) is a predefined function which plays a key role. It regu-
lates the level of noise throughout the process, where larger values result in
more pronounced noise in the samples. Conventionally, it’s common to use
a linearly increasing function [47]. More recent techniques have suggested to
use cosine-based functions [49].

For any diffusion process structured as (B.7), Anderson [176] demon-
strates that it can be reversed by solving the following reverse-time SDE

dx =
[
f(x, t)− g(t)2∇x log qt(x)

]
dt + g(t)dw (B.9)

where w is a standard Wiener process when time flows backwards, and dt
denotes an infinitesimal negative time step. The solution trajectories of this
reverse SDE share the same marginal densities as those of the forward SDE,
except that they evolve in the opposite time direction [146]. Intuitively, solu-
tions to the reverse-time SDE are diffusion processes that gradually convert
noise to data. Moreover, Song et al. [146] prove the existence of an ODE,

158



Conclusion

namely the probability flow ODE, whose trajectories have the same marginals
as the reverse-time SDE. The probability flow ODE is given by

dx =
[
f(x, t)− 1

2g(t)2∇x log qt(x)
]

dt. (B.10)

Both the reverse-time SDE and the probability flow ODE allow sampling from
the same data distribution as their trajectories have the same marginals.

Once accessed to the score function at each time step, one unlock both the
reverse-time SDE (B.9) and the probability flow ODE (B.10). Subsequently,
one can generate samples by solving these equations using various numerical
techniques. These techniques encompass methods like annealed Langevin
dynamics [144], numerical SDE solvers [177, 146], numerical ODE solvers
[178, 179, 180], and predictor-corrector methods (combination of MCMC
and numerical ODE/SDE solvers) [144].

The score of a distribution can be approximated by training a neural
network with score matching [181, 182]. In order to estimate ∇x log qt(x),
one can train a time-dependent neural network sθ(x, t) using:

Et∼U [0,T ],x0∼pX ,xt∼q(xt|x0)
[
λ(t) ∥sθ (xt, t)−∇xt log q0t (xt | x0)∥2

]
(B.11)

Here λ : [0, T ]→ R>0 is a positive weighting function, t is uniformly sampled
over [0, T ], x(0) ∼ pX(x) and x(t) ∼ q0t(x(t) | x(0)). Given sufficient data
and model capacity, score matching ensures that the optimal solution to
(B.11), denoted by sθ∗(x, t), equals ∇x log qt(x) for almost all x and t. This
learned score sθ∗(x, t) will then be utilized in (B.9) to sample from the model.

SBM and DDPM

Recall that DDPM have a discretized version of the backward process mod-
elled by a markov chain with a gaussian kernel (1.35). More specifically this
Gaussian kernel is parametrized by a neural network ϵθ which predict the
noise present in an arbitrary xt. Comparing (B.11) with (1.35), it is clear
that the training objectives of SBM and DDPM are equivalent, once we set
ϵθ (xt, t) = sθ (xt, t). Consequently, DDPM can be regarded as an explicit
discretization of a continuous Stochastic Differential Equation (SDE)-based
Scored-Based Diffusion Model.
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