
HAL Id: tel-04362470
https://theses.hal.science/tel-04362470

Submitted on 22 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Post-hoc Explainable AI for Black Box Models on
Tabular Data
Nedeljko Radulovic

To cite this version:
Nedeljko Radulovic. Post-hoc Explainable AI for Black Box Models on Tabular Data. Artificial
Intelligence [cs.AI]. Institut Polytechnique de Paris, 2023. English. �NNT : 2023IPPAT028�. �tel-
04362470�

https://theses.hal.science/tel-04362470
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
3I

PP
A

T
02

8

Post-hoc Explainable AI for Black
Box Models on Tabular Data

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de
Paris (ED IP Paris)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 29.09.2023., par

NEDELJKO RADULOVIĆ

Composition du Jury :

Marcilio De Souto
Full Professor, Université d’Orléans
(Laboratoire d’Informatique d’Orléans - LIFO) Président/Rapporteur

Dino Pedreschi
Full Professor,University of Pisa
(Department of Computer Science - DI-UNIPI) Rapporteur

Elisa Fromont
Full Professor, Université de Rennes Examinatrice

Armen Aghasaryan
Head of AI lab, Nokia Bell Labs Examinateur

Albert Bifet
Full Professor, Télécom Paris, Institut Polytechnique de
Paris / Artificial Intelligence Institute, University of
Waikato, New Zealand

Directeur de thèse

Fabian Suchanek
Full Professor
Télécom Paris, Institut Polytechnique de Paris Co-directeur de thèse

PHD THESIS

Post-hoc Explainable AI for Black
Box Models on Tabular Data

Author:
Nedeljko RADULOVIĆ

TÉLÉCOM PARIS

Institut Polytechnique de Paris

December 20, 2023

THESIS TITLE:
Post-hoc Explainable AI for Black Box Models on Tabular Data

PHD CANDIDATE:
Nedeljko Radulović

SUPERVISORS:
Albert Bifet, professor at Waikato University, Hamilton, New Zealand
Fabian Suchanek, professor at Télécom Paris, France

ACADEMIC INSTITUTION:
Institut de Polytechnique de Paris
Département d’Informatique, de Données et d’Intelligence Artificielle
Laboratoire Traitement et Communication de l’Information (LTCI)

LOCATION:
Palaiseau, France

DEFENSE DATE:
September 29, 2023

4

Contents

1 Introduction 1
1.1 Preliminaries . 2
1.2 Motivation . 8
1.3 The taxonomy of interpretable ML methods 11

1.3.1 Evaluation . 14
1.4 The challenges of post-hoc interpretability 15
1.5 Challenges of data stream mining 18

2 eXplainable Artificial Intelligence 20
2.1 Literature review . 21
2.2 White-box models . 21
2.3 Post-hoc interpretability . 25

2.3.1 Model-agnostic methods . 27
2.3.2 Model-specific methods . 33

3 STACI 38
3.1 Introduction . 39
3.2 Desiderata . 40
3.3 Method’s Approach . 42
3.4 Training algorithm . 43
3.5 Regression . 47
3.6 Experiments . 49

3.6.1 Competitors . 50
3.6.2 Settings . 50
3.6.3 Counterfactuality . 53

5

3.6.4 Regression experiments . 57
3.7 User study . 59

4 BELLA 64
4.1 Introduction . 65
4.2 Methodology . 66

4.2.1 Goal . 66
4.2.2 Desiderata . 67
4.2.3 Method . 68

4.3 Experiments . 75
4.3.1 Experimental setup . 75
4.3.2 Experimental results . 76
4.3.3 Verification on an interpretable model 81

5 SCALAR 84
5.1 Introduction . 85

5.1.1 Streaming learning setting 86
5.2 Platform for real-time machine learning competitions 87

5.2.1 Architecture . 87
5.3 Development . 89

5.3.1 Implementation details . 89
5.4 Real-time Machine Learning competition on SCALAR 94

5.4.1 Data . 94
5.4.2 Workflow . 94

5.5 Winning Solutions . 96
5.5.1 Results . 98

6 Conclusion 101
6.1 Summary . 101
6.2 Future Works . 103

6.2.1 Perspectives . 104

Bibliography 105

6

List of Figures

1.1 Example of a white-box Machine Learning Model 5
1.2 Example of a black-box Machine Learning model 6
1.3 Google trends for the term: Explainable Artificial Intelligence5 . . 11
1.4 Google trends for the term: Interpretable Machine Learning5 . . . 12
1.5 Interpreting a black-box model . 13
1.6 3-way trade-off for local interpretability approaches 17

2.1 Taxonomy of xAI approaches . 23
2.2 Running example: Binary classification 24
2.3 White-box model: Decision Tree . 25
2.4 Tree/Rule -based classification boundary 26
2.5 White-box model: Decision list . 26
2.6 White-box model: Linear classifier 27
2.7 White-box model: Bayesian network 28
2.8 White-box model: kNN classifier 29
2.9 Intuition behind LIME . 30

3.1 STACI . 42
3.2 Binary classification scenario . 46
3.3 Example of a STACI interpretation 57
3.4 User preferences regarding characteristics of interpretations . . . 63

4.1 Left: an explanation for a data point x that is too specific, applying
only to a very small neighborhood. Right: An explanation that
applies to a larger neighborhood, which is what we aim at. 70

4.2 Explanation example. 73

7

4.3 Counterfactual explanation using the reference point 76

5.1 Stream data mining scenario . 86
5.2 Initial and regular batches in the data stream 87
5.3 Architecture of the platform . 88
5.4 Online evaluation engine pipeline 92
5.5 Data stream used in competition 95
5.6 Windows with a distance equal to stream period 97

8

List of Tables

1.1 Labeled dataset . 4
1.2 Example of a labeled dataset . 4

3.1 Datasets . 51
3.2 Fidelity (%) with NN as black box model 52
3.3 Fidelity (%) with RF as black box model 53
3.4 Average Complexity . 54
3.5 Maximal Complexity . 55
3.6 Confidence (%) of the interpretations (NN) 55
3.7 Confidence (%) of the interpretations (RF) 56
3.8 Generality comparison and counterfactuality 56
3.9 Regression Datasets . 58
3.10 Fidelity (RMSE) with RF as black box model 59
3.11 Fidelity (RMSE) with NN as black box model 60
3.12 Average Complexity . 61
3.13 Maximal Complexity . 62
3.14 User study . 62

4.1 Regression Datasets . 77
4.2 Accuracy comparison (RMSE – smaller is better) 78
4.3 Generality comparison (% - larger is better) 78
4.4 Simplicity comparison (smaller values are better). LIME requires

the explanation size as input, and we give it the size of the expla-
nation computed by BELLA. 79

4.5 Robustness comparison (0 to 1 – larger is better) 80

9

4.6 RMSE of BELLA’s counterfactual explanations (smaller is better).
Factual explanations for comparison. 81

4.7 Accuracy comparison (RMSE – smaller is better) 82
4.8 Generality comparison (% - larger is better) 82
4.9 Simplicity comparison (smaller values are better). LIME requires

the explanation size as input, and we give it the size of the expla-
nation computed by BELLA. 83

4.10 Robustness comparison (0 to 1 – larger is better) 83

5.1 Time series . 99
5.2 Time series transformed into the data stream with a number of

features n = 3 . 99
5.3 Competition results . 100
5.4 Test results . 100

10

Abstract

Current state-of-the-art Artificial Intelligence (AI) models have been proven to
be very successful in solving various tasks, such as classification, regression,
Natural Language Processing (NLP), and image processing. Coupled with the
rise of available data, cloud computing power, and plenty of automatization
tools, these AI models became a logical choice for numerous applications with
high stakes and high volume decision making. The resources that we have in our
hands today allow us to train very complex AI models to solve different tasks in
almost any field: medicine, finance, justice, transportation, forecast, etc. With the
popularity and widespread use of AI models, the need to ensure trust in them
also grew. Complex as they come today, these AI models are impossible to be
interpreted and understood by humans. The most common example is the Deep
Neural Networks, which cannot be interpreted even by its own developer. These
models are often called “black-box“ models. One could ask: ”Why do we even
need to interpret these models?”. Well, while the need for model interpretation
may not seem obvious as long as the model performs the task correctly, the same
cannot be said for the situation when the model makes a mistake. Even though
they may be very rare, depending on their impact, they can be very significant.
At that moment, the possibility to interpret the model and discover a cause for
an error is very important. Motivated by these reasons, it became mandatory by
law in Europe to ensure an explanation for decisions made by AI agents.

In this thesis, we focus on a specific area of research, namely post-hoc Explain-
able Artificial Intelligence (xAI) for black-box models on tabular data, which
aims to provide the approaches to interpret the complex AI models and explain
their decisions. Our work was focused on classification and regression tasks for
tabular data and has resulted in two approaches, which represent the two main
contributions:

11

1. STACI is a method to interpret complex classification and regression AI
models, using surrogate decision trees to produce confident, general, sim-
ple, and accurate interpretations.

2. BELLA is a method to explain the individual predictions of complex
regression models, using local linear surrogate models that are optimized
to provide accurate, simple, and general explanations.

Both methods are model-agnostic post-hoc approaches, which means that
the architecture of the black-box model is not important and that the method
does not impact the inner workings of the black-box model. An important
novelty of both of these approaches is their deterministic nature. As such,
they provide consistent explanations and can be used to explain data and the
predictions of the black-box models. Additionally, both approaches account not
only for accuracy of explanations but for their simplicity and generality, thus
ensuring explanations that are more robust and easier to understand. BELLA
also provides “counterfactual“ explanations, that provide information on how
data point should be altered to reach the desired output. We confirmed their
high performance through extensive experiments and user study.

Additionally, in this thesis, we present a work that contributes to another
field of Machine Learning, Data Stream Mining. The importance of data stream
mining lies in its ability to harness insights from continuous, high-velocity
data sources, thereby addressing the evolving dynamics of contemporary data
ecosystems. Data stream mining offers a solution by providing real-time analytics
capabilities, making it a critical component in various domains. Industries
such as finance, healthcare, and cybersecurity rely on instantaneous analysis
of incoming data to detect anomalies, identify emerging patterns, and make
informed decisions promptly. The ability to process data streams in real time
ensures that organizations can respond swiftly to changing conditions, capitalize
on emerging opportunities, and mitigate potential risks.

Moreover, data stream mining is pivotal in handling concept drift, a phe-
nomenon where the underlying patterns in the data evolve over time. Traditional
machine learning models, designed for static datasets, struggle to adapt to these
changes. In contrast, data stream mining techniques are specifically tailored to
handle concept drift, providing a more accurate and reliable means of extracting
meaningful patterns from dynamic data streams. Seeing the importance and the
success of, already existing, platforms for Machine Learning competitions on
static datasets, we have developed a platform for Machine Learning competi-
tions on data streams. SCALAR is an open-source, first of its kind, platform that
supports online learning scenarios. The platform has been used for an online
Machine Learning competition at IEEE BigData Conference.

12

Résumé

Les modèles d’intelligence artificielle (IA) actuels ont fait leurs preuves dans
la résolution de diverses tâches, telles que la classification, la régression, le
traitement du langage naturel (NLP) et le traitement d’images. Associés à
l’augmentation des données disponibles, à la puissance de l’informatique en
nuage et à de nombreux outils d’automatisation, ces modèles d’IA sont devenus
un choix logique pour de nombreuses applications à fort enjeu et pour la prise
de décision en grande quantité. Les ressources dont nous disposons aujourd’hui
nous permettent d’entraı̂ner des modèles d’IA très complexes pour résoudre
différentes tâches dans presque tous les domaines : médecine, finance, justice,
transport, prévisions, etc. Avec la popularité et l’utilisation généralisée des
modèles d’IA, la nécessité de leur faire confiance s’est également accrue. Aussi
complexes soient-ils aujourd’hui, ces modèles d’IA sont impossibles à interpréter
et à comprendre par les humains. L’exemple le plus courant est celui des réseaux
neuronaux profonds, qui ne peuvent souvent pas être interprétés même par
leur propre développeur. Ces modèles sont souvent appelés modèles de “boı̂te
noire“. On pourrait se demander : “Pourquoi avons-nous besoin d’interpréter
ces modèles? “. Si la nécessité d’interpréter un modèle ne semble pas évidente
tant que le modèle exécute correctement la tâche, il n’en va pas de même lorsque
le modèle commet une erreur. Même si elles sont très rares, elles peuvent être
très importantes en fonction de leur impact. À ce moment-là, la possibilité
d’interpréter le modèle et de découvrir la cause d’une erreur est très importante.
C’est pour ces raisons que la loi européenne a rendu obligatoire l’explication des
décisions prises par les agents d’intelligence artificielle.

Dans cette thèse, notre focalisation se porte sur un domaine de recherche
particulier, à savoir l’Intelligence Artificielle Explicable (xAI) post-hoc pour
les modèles de boı̂te noire sur les données tabulaires, avec pour objectif de

13

proposer des approches pour interpréter les modèles d’IA complexes et expliquer
leurs décisions. Notre travail s’est concentré sur les tâches de classification et
de régression pour les données tabulaires et a abouti à deux approches, qui
représentent les deux contributions principales :

1. STACI est une méthode d’interprétation des modèles complexes de classifi-
cation et de régression de l’IA, utilisant des arbres de décision de substi-
tution pour produire des interprétations confiantes, générales, simples et
précises.

2. BELLA est une méthode permettant d’expliquer les prédictions individu-
elles de modèles de régression complexes, à l’aide de modèles de substi-
tution linéaires locaux optimisés pour fournir des explications précises,
simples et générales.

Les deux méthodes sont des approches post-hoc agnostiques du modèle, ce
qui signifie que que l’architecture du modèle boı̂te noire n’est pas importante et
que la méthode n’a pas d’impact sur le fonctionnement interne du modèle boı̂te
noire. Une nouveauté de ces deux approches est leur nature déterministe. En tant
que telles, elles fournissent des explications cohérentes et peuvent être utilisées
pour expliquer les données et les prédictions des modèles de boı̂te noire. données
et les prédictions des modèles de boı̂te noire. En plus, les deux approches
tiennent compte non seulement de la précision des explications, mais aussi de
leur simplicité et de leurs avantages. de l’exactitude des explications, mais aussi
de leur simplicité et de leur généralité, garantissant ainsi des explications plus
robustes et plus faciles à comprendre. garantissant ainsi des explications plus
robustes et plus faciles à comprendre. BELLA fournit également des explications

“contrefactuelles“, qui fournissent des informations sur la manière dont les points
de données devraient être modifiés pour atteindre les objectifs fixés. point de
données devrait être modifié pour obtenir le résultat souhaité. Nous avons
confirmé leur Nous avons confirmé leur haute performance par des expériences
approfondies et des études d’utilisateurs.

En outre, l’exploration des flux de données est essentielle pour gérer la
dérive des concepts, un phénomène dans lequel les modèles sous-jacents dans
les données évoluent au fil du temps. nomène où les modèles sous-jacents
des données évoluent au fil du temps. Les modèles Les modèles tradition-
nels d’apprentissage automatique, conçus pour des ensembles de données sta-
tiques, peinent à s’adapter à ces changements. changements. En revanche,
les techniques d’exploration des flux de données sont spécifiquement conçues
pour gérer la dérive des concepts, ce qui permet d’obtenir des résultats plus
fiables. pour gérer la dérive des concepts, offrant ainsi un moyen plus précis

14

et plus fiable d’extraire des schémas significatifs à partir de flux de données
dynamiques. des modèles significatifs à partir de flux de données dynamiques.
L’importance et le succès des plateformes l’importance et le succès des plate-
formes déjà existantes pour les concours d’apprentissage automatique sur des
ensembles de données statiques. sur des ensembles de données statiques, nous
avons développé une plateforme pour les concours d’apprentissage automa-
tique sur les flux de données. d’apprentissage automatique sur des flux de
données. SCALAR est une plateforme open-source, première en son genre, qui
prend en charge les scénarios d’apprentissage en ligne. qui prend en charge des
scénarios d’apprentissage en ligne. La plateforme a été utilisée pour un concours
d’apprentissage d’apprentissage automatique en ligne lors de la conférence IEEE
BigData.

15

16

1
Introduction

With the widespread use of Artificial Intelligence (AI) agents in various tasks
across every aspect of research and industry, it became inevitable to impose
legislative control on their usage. Even though they are very powerful and suc-
cessful in tasks they have been trained for, these models lack one very important
characteristic, transparency. Most of these powerful AI models are very complex
models such as Deep Neural Networks and ensemble models such as Random
Forests or XGBoost. The need to be able to understand how these opaque models
came to a certain decision or to understand the global logic of their decision
making process led to increased research interest in the explainable models and
to establishing explainable AI (xAI) as an independent research field.

In this first chapter, we define the relevant terms and notations, we discuss
the motivation, and possible use-cases and give an overview of the thesis.

Contents
1.1 Preliminaries . 2

1.2 Motivation . 8

1.3 The taxonomy of interpretable ML methods 11

1.3.1 Evaluation . 14

1.4 The challenges of post-hoc interpretability 15

1.5 Challenges of data stream mining 18

1

1.1 Preliminaries

Since the beginning of human history, people have sought to find ways to
make their daily tasks easier and more efficient. This has led to the development
of tools and technologies that have allowed us to automate many of the tasks
that we once did by hand. One of the earliest examples of automation can
be seen in the development of waterwheels, windmills, and other mechanical
devices used to power various types of machinery. However, the widespread
adoption of automation did not occur until the industrial revolution, which saw
the development of steam power, the assembly line, and other technologies that
revolutionized the way we live and work.

Since then, the development of computers and software has led to even
greater levels of automation, with machines now able to perform tasks once
thought impossible for a machine to do. These developments allowed scientists
to pursue the idea of creating machines that can perform tasks that would
otherwise require human-level intelligence, such as recognizing patterns, making
predictions, and solving complex problems. This idea has been named and
formulated by John McCarthy in 1956 when he organized the first academic
conference on Artificial Intelligence (McCarthy et al., 2006).

Definition 1.1.1. Artificial Intelligence is a branch of computer science that is concerned
with the development of computers able to engage in human-like thought processes such
as learning, reasoning and self-correction. (Kok et al., 2009)

The early work on AI focused on developing systems that could reason and
make decisions based on rules and logic. However, these systems were limited
by the fact that they required human programmers to input the rules and logic,
which made them inflexible and unable to learn from experience. During the
1980s, a new approach to AI advanced significantly, known as machine learning.

Definition 1.1.2. Machine Learning is the field of study that gives computers the ability
to learn without explicitly being programmed. (Samuel, 1959)

Machine Learning (ML) is a sub-field of AI and it is mainly concerned with
statistical techniques that enable learning from data. AI, on the other hand,
includes a broader range of techniques that allow machines to perform tasks that
usually need human intelligence such as problem-solving, reasoning, language
understanding. AI models can be rule-based models, expert systems, and also
ML models that learn from data.

Machine learning (ML) has significantly impacted various domains and
transformed the way we approach complex problems. The development of
machine learning algorithms, along with advances in computer hardware, has

2

led to rapid progress in AI in recent years. In particular, deep learning, a type
of machine learning that uses neural networks to simulate the structure and
function of the human brain, has enabled machines to achieve state-of-the-art
performance in tasks such as image recognition, speech recognition, and natural
language processing.

In its early stages, simple applications of ML included pattern recognition
and character recognition, enabling machines to recognize handwritten letters
and digits. These early applications laid the groundwork for more advanced ML
techniques.

In modern times, machine learning applications have expanded exponentially,
revolutionizing industries and improving efficiency. In natural language pro-
cessing (NLP), ML algorithms power systems that can understand and respond
to human language, enhancing human-computer interactions. Additionally,
language translation and sentiment analysis benefit from ML-driven approaches,
making communication across languages more accessible and efficient.

In the field of computer vision, ML algorithms enable object detection, image
recognition, and facial recognition systems, contributing to advancements in
autonomous vehicles, surveillance, and medical imaging. ML has also found
extensive applications in healthcare, where it aids in disease diagnosis and
prognosis.

Recommendation systems suggest products, movies, or content based on user
preferences, enhancing user experiences and increasing user engagement. MLs
is used in finance, where it is employed in fraud detection, credit risk assessment,
and algorithmic trading, contributing to more secure financial transactions and
better risk management. Additionally, ML plays a vital role in optimizing supply
chains, predicting demand, and improving inventory management, leading to
enhanced operational efficiency in various industries.

ML relies on statistical methods to enable machines to learn from data. De-
pending on the type of data that is available, there exist three main types of
machine learning: supervised learning, unsupervised learning, and reinforce-
ment learning.

In supervised learning, the algorithm learns to map the input to the output,
and it assumes the existence of a training labeled dataset, i.e., the correct output
is provided for each input. Unsupervised learning, on the other hand, involves
training a model on an unlabeled dataset, i.e., a dataset that is similar to a labeled
training dataset except that it doesn’t include the label. The algorithm learns
intrinsic patterns and groupings in the data without any guidance. This helps
in a better understanding of the data and its segmentation. An example of
unsupervised learning is clustering, where the algorithm groups similar data
points together based on similarities in their features. Reinforcement learning

3

is a type of machine learning where the algorithm learns by interacting with
an environment and receiving feedback in the form of rewards or punishments.
The goal is to find the optimal set of actions to make in order to maximize the
cumulative reward over time.

Throughout this thesis, we are focused on the interpretability of supervised
machine learning models. Supervised learning involves training a machine learn-
ing algorithm on labeled data, meaning the desired output is already known.

Definition 1.1.3. A labeled training dataset is a set of n d-dimensional data points
Xi, where Xi = (xi,1, xi,2, ...xi,d), and xi,1, xi,2, ...xi,d are features. Each of the data
points Xi has one or more corresponding labels Yi attached to it. These labels are used to
train supervised machine learning models, where the model learns to map input data to
output labels based on the patterns found in the dataset.

Table 1.1: Labeled dataset

Features Label

x1,1 x1,2 · · · x1,d Y1

x2,1 x2,2 · · · x2,d Y2

x3,1 x3,2 · · · x3,d Y3
...

...
...

...
...

xn,1 xn,2 · · · xn,d Yn

For example, a supervised learning algorithm could be trained to predict
the risk of heart disease in patients. In this particular case, the labeled dataset
would be data from electronic health records, such as patient age, sex, blood
pressure, cholesterol levels. These data are labeled i.e. we already know which of
these patients have a heart disease. The algorithm, through the training process,

Table 1.2: Example of a labeled dataset

Features Label

Age Gender Blood Pressure Cholesterol Heart Disease

45 Male 130/80 200 No
60 Female 140/90 240 Yes
55 Male 150/95 180 Yes
50 Female 120/70 160 No
65 Male 135/85 220 Yes

4

Figure 1.1: Example of a white-box Machine Learning Model

learns from the data such that it can make predictions if the new patient has
heart disease (Table 1.2).

Definition 1.1.4. A prediction is the output of a machine learning model when it
processes new input data, based on learned patterns from previously seen data. (Alpaydin,
2020)

We categorize two types of supervised machine learning tasks based on
the nature of the label: these are known as classification and regression. In
classification tasks, the goal is to predict a categorical label or class for each
input. On the other hand, in regression tasks, the goal is to predict a continuous
numerical value as output. Once the algorithm has been trained on the training
dataset to make decisions on new data, we refer to it as a machine learning model.
In other words, a machine learning model is a way to represent patterns in data
that can be used to make predictions or decisions about new data. For example,
the aforementioned ML model that predicts the risk of heart disease in patients
can be a set of rules as shown in Figure 1.1.

The process of creating a machine learning model typically involves several
steps. First, a dataset is collected that contains examples of input data and
the corresponding output data. This dataset is then used to train the model by
adjusting its parameters to minimize the difference between the predicted output
and the actual output.

According to the level of understanding of the decision-making process of a
machine learning model, we distinguish two groups: interpretable or “white-box“
(transparent) models and non–interpretable or “black-box“ (opaque) models.

Definition 1.1.5. White-box model refers to all recognized interpretable machine learn-
ing models, e.g. the models that are understandable for humans. The white-box models
are, for example: decision trees, linear models, rule based models, etc. (Guidotti et al.,
2018b)

5

Figure 1.2: Example of a black-box Machine Learning model

One example of a white-box model is presented in Figure 1.1. The decision-
making process of “white-box“ can be described with a set of rules or simple
(linear) equations, both of which are easy to understand and interpret.

Definition 1.1.6. In the context of explainable AI (xAI), “black-box“ model refers to a
machine-learning obscure model, whose internals are either unknown to the observer or
they are known but uninterpretable by human. (Guidotti et al., 2018b)

The “black-box“ models are: Deep Neural networks, ensemble models (Ran-
dom forests) etc. As shown in Figure 1.2, even when we know the architecture
of the black-box model itself and the mathematics behind it, it is impossible
to deduce the reasons for a certain prediction. On the other hand, we have

“white-box“ models.
Despite the huge progress in ML, there are still many challenges that need

to be addressed. One of the biggest challenges is developing ML models and,
more generally, all AI systems that are trustworthy and reliable. As AI systems
become more complex, it becomes harder to understand how they work and to
ensure that they are making decisions that are fair and unbiased. The techniques
that help us understand how these complex systems make decisions are the main
focus of this thesis.

From the very title of this thesis, we are using the terms “explainability“ and
“interpretability“. Interpretability and explainability are both important concepts
in the field of artificial intelligence and are often used interchangeably in the
literature, but at the same time, there exist slightly different definitions.

Definition 1.1.7. Interpretability is the ability to present the model in terms under-
standable by humans. (Doshi-Velez and Kim, 2017)

Interpretability refers to the ability to understand how a machine learning
model works and how it arrives at its decisions. It focuses on the internal

6

workings of the model and the ability to understand its features, variables, and
mathematical processes. A model can be interpretable if a human can inspect its
internal mechanisms and understand its decision-making process.

On the other hand, explainability refers to the ability to provide an explana-
tion of the model’s output in a way that is understandable to a non-technical
user.

Definition 1.1.8. Explainability is associated with the notion of explanation as an
interface between humans and a decision maker that is, at the same time, both an
accurate proxy of the decision maker and comprehensible to humans. (Guidotti et al.,
2018b; Arrieta et al., 2020)

The explanation is the notion that comes from social sciences and it is a
complex phenomenon whose definition has been a subject of debate throughout
history. Still, there is no consensus about one unique definition of an explanation.
Rather there exist many types of explanations depending on what kind of ques-
tion they answer or who are they meant to. In the context of AI, we are mainly
interested in answering the question “ Why? “. For example, if a patient would
ask a doctor: “Why do I have high risk of getting a heart disease? “, the doctor could
provide an explanation such as: “Your blood pressure and cholesterol levels are too
high“. If, instead of a doctor, we have a ML model, a corresponding explanation
would involve parts of an input that had the biggest impact on the decision.

Definition 1.1.9. An explanation is additional meta information, generated by an exter-
nal algorithm or by the machine learning model itself, to describe the feature importance
or relevance of an input instance towards a particular output classification. (Das and
Rad, 2020)

Even though there is no definitive distinction in the literature, interpretability
is often related to the understanding of the whole model while explainability
is more related to understanding individual predictions of the model. (Burkart
and Huber, 2021) In the example of the heart disease prediction model, inter-
pretability would involve understanding how the machine learning algorithm
uses various factors to predict the risk of heart disease. This could be achieved
by presenting the decision making logic of the model in understandable terms,
for example, list of rules such as in Figure 1.1. Explainability, on the other hand,
would involve presenting the patient and doctor with a clear explanation of why
the algorithm made a particular prediction, such as highlighting the specific
risk factors that contributed to the prediction. In the aforementioned example,
it would justify the model’s prediction of a high risk of heart disease with the
given patient because they are 46 years old and because they have high blood
pressure and cholesterol levels.

7

In this thesis, we will adopt the term interpretability and interpretable for
all methods that aim to demystify the decision-making process of black-box
models. We will refer to explainability and explanations for methods that explain
particular predictions of black-box models.

1.2 Motivation

The ability to quickly and successfully learn patterns and relations in huge
amounts of data, made ML models are being used in various applications. To-
day, almost every industry strongly relies on data. Almost everything is being
recorded and measured and those records are later used either to help and pre-
dict some unwanted events like natural catastrophes (earthquakes, floods) or
health issues (heart attacks), they are used in justice to improve policing, in
finance for forecasting and decision making. It is obvious that these models
handle very sensitive and important tasks, thus we need not just to minimize the
number of errors but we also need to understand how these models make their
decisions. What follows is that the accuracy is not enough. Even though it is a
significant indication of the model’s performance, accuracy is just not sufficient
to validate and deploy the model into a real-world scenario. Wrong decisions can
have a huge impact on people’s lives and it is important to ensure that models’
decisions are justified and that they are the result of learned patterns in the data
rather than a random lucky guess.

As mentioned before, very powerful AI models are used in many different
applications and we have many examples of them being successful. On the
other hand, there are also examples where AI models didn’t behave as expected,
once they were deployed in the real world. The first example comes from
justice, where AI models are used to predict crime recidivism (the probability
that a sentenced criminal will commit crimes again). A statistical study on
risk assessment tool 1, shows that offenders of African-American descent were
attributed a higher risk score than white offenders. The study found that they
were almost twice as likely to be marked higher risk and not re-offend than white
people. A higher risk of recidivism can then lead to longer imprisonment, i.e., a
material disadvantage for the defendant. Even though ethnicity and recidivism
may correlate, it is illicit to predict recidivism based on ethnicity. This is because
such a prediction would penalize a person merely for belonging to a certain
ethnicity (i.e., what the person is), rather than on the past behavior of the person
(what the person does). It is thus important not just which decision was taken,
but why that decision was taken. (Russell and Blackburn, 2020)

1https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing

8

There is one more very well known case of failure of an AI system due to
racial bias: Google Photos app labeling black people as gorillas 2. Even though
it is impossible to have a model that is correct 100% of the time, not all errors
are the same. If the model labels a photo of a dog as a horse, this mistake would
have barely some impact. On the other hand, labeling a photo of black people as
gorillas could have higher consequences. Since the model that has been used for
this particular application was a complex, opaque model it was not possible to
determine how this mistake was made and the fix that was implemented at the
moment was simply removing anything related to gorillas.

Another common bias is gender bias, which in the professional world is
usually exhibited by employing men in higher paid positions. One example
where an AI agent exhibited this kind of bias is Amazon’s hiring bot 3. The AI
agent was eventually shut down after it was discovered that it ranked female
candidates lower for technical jobs. Another study showed the gender bias in
Google online ads 4. The study revealed that men were shown ads for high
paid jobs much more often than women. But since the algorithm for targeting is
proprietary and as such a black-box, it wasn’t possible to determine where the
bias comes from.

The “Wolf vs. Husky“ experiment presented in Ribeiro et al. (2016), showed
how we can have a false perception of the quality of the AI model. The exper-
iment consisted of training a model to recognize if there is a wolf or a husky
in the image. Bias has been added intentionally in the data, where all images
with wolfs had snow in the background. After the training, the model had high
accuracy and without further inspection one could assume that the model is
valid. In the second part of the experiment, to verify how the model is making
decisions, the important parts (features/pixels) of the images were extracted.
These features showed, that the model actually learned that when there is snow
in the image – it’s an image of a wolf. It is clear that this model will not recognize
a husky in snow. The idea of the experiment was to emphasize the importance
of being able to interpret and understand the decision making logic of complex
AI models.

The aforementioned cases are some examples of the impact that wrong AI
decisions can have on the world, people, health, business etc. – even though
the models performed the task they were trained on accurately. We thus have
to accept that accuracy on testing data alone cannot be the sole criterion of
performance for AI models. We also have to understand how the model arrives

2https://archive.nytimes.com/bits.blogs.nytimes.com/2015/07/01/google-photos-
mistakenly-labels-black-people-gorillas/

3https://theconversation.com/amazons-sexist-hiring-algorithm-could-still-be-better-than-
a-human-105270

4https://www.cmu.edu/news/stories/archives/2015/july/online-ads-research.html

9

at its decision so that we can validate whether the model took its decision
for good reasons. Therefore, the importance of interpretability in AI models
cannot be overstated. By gaining insights into how the model arrives at its
predictions, we can identify potential biases, uncover hidden patterns, and
detect any weaknesses in the model’s reasoning. This interpretability not only
benefits the developers but also end-users, stakeholders, and regulators. It
enables better debugging and fine-tuning of the models, ultimately leading to
improved performance and robustness. Additionally, it aids in complying with
regulatory requirements in sensitive domains, ensuring that models do not make
decisions based on discriminatory or biased factors.

The EU has adopted the General Data Protection Regulation i.e. GDPR (Good-
man and Flaxman, 2017) to legally regulate data protection and privacy. In addi-
tion, the GDPR regulates the use of AI models in the decision making process in
the way that the right to explanation is guaranteed to anyone being affected by
the decision of an AI model. Due to the AI’s impact and infiltration in every as-
pect of modern lives, the EU proposed an updated regulation, popularly known
as the AI Act (Commission, 2021). AI Act is the first law on AI proposed by a
major regulatory body. This framework aims to regulate the use of AI and to
ensure the protection of health, environment, safety and human rights through
trustworthy AI. The AI act proposes a framework for categorizing AI systems
into 4 tiers, according to the level of risk, they pose to the health and safety of a
person: minimal, limited, high and unacceptable (Veale and Zuiderveen Borge-
sius, 2021). Transparency requirement is aligned with the risk level the system
poses – the higher the risk, the higher level of transparency is required. For
example, real-time biometric identification systems present unacceptable risk
systems and therefore are prohibited. There exist certain exceptions e.g. when
peoples’ lives are endangered. Systems used in law enforcement, management of
critical infrastructure, employment etc. present high risk systems. In such cases,
the provider is obliged to ensure the data quality, accuracy and robustness of the
system, the technical documentation, logging for traceability, human oversight,
etc. The systems with limited risks, such as chatbots, don’t have to comply with
strict requirements, but the provider needs to inform users that they interact
with an AI system rather than with a real person.

The EU countries are among the first ones to implement legal regulations
on the use of AI. In that sense, the EU is also encouraging research in the
fields of xAI and trustworthy AI. Several big projects are funded by the EU,
uniting numerous prestigious researchers and institutions in order to compute
meaningful explanations of AI models’ decisions and to prevent their undesired

10

Figure 1.3: Google trends for the term: Explainable Artificial Intelligence5

effects 5 and to lay down the foundations of trustworthy AI 6.
Ultimately, interpretability is a necessary aspect of the responsible and ethical

use of machine learning. All of this led to the expansion of xAI as a separate
research topic, which, in recent years, became very popular. The figures 1.3
and 1.4 show the popularity of the terms “Explainable Artificial Intelligence“ and
“Interpretable Machine Learning“ respectively, in the Google search engine from
2010 to 2022. The y axis shows the interest in the term, which has been min−max
normalized, such that it ranges from 0 to 100, and the time (in months) is on the
x axis. From these figures, we can see that in the last three years, these terms hit
the peak of their popularity.

In this section, we discussed some real-world examples to point out the
motivation for xAI. In the rest of this chapter, we will introduce the relevant
definitions and notations. Later we will give an overview of the current state-of-
the-art.

1.3 The taxonomy of interpretable ML methods

The interpretability of ML models can be perceived and categorized according
to different criteria. Interpretability can be categorized by the time when it is
implemented in the ML model (before or after training), by its scope (local or
global) and its applicability (model-specific or model-agnostic). In the following,

5https://xai-project.eu/index.html
6https://cordis.europa.eu/project/id/952215
5Data source: Google Trends (https://www.google.com/trends).

11

Figure 1.4: Google trends for the term: Interpretable Machine Learning5

we explain these notions as an introduction to the taxonomy of techniques for
interpretable ML.

From the definition of white-box models, it is clear that their transparency
comes built-in with their design. On the other hand, black-box models don’t
have this characteristic and the usual way to improve their transparency is by
applying appropriate techniques after the model has been trained and without
interfering with its internal architecture. From this stance, we distinguish two
types of interpretability of ML models: ante-hoc and post-hoc.

Definition 1.3.1. Ante-hoc interpretability is considered to be built-in from the begin-
ning of the model creation. It is fulfilled by using the white-box models. (Burkart and
Huber, 2021)

In our heart disease example, ante-hoc interpretability would imply using an
interpretable machine learning model such as a decision tree or a rule-based
model (as in Figure 1.1) to predict the patient’s risk of getting a heart disease. On
the other hand, post-hoc interpretability would involve a complex model making
a prediction and an interpretable model explaining it, as shown in Figure 1.5.

Definition 1.3.2. Post-hoc interpretability is added to the model after its creation. (Burkart
and Huber, 2021)

This is done by applying some of many techniques that aim to provide
insights into models’ decision making process such as feature importance, inter-
pretable surrogate models, rule extraction etc.

12

Figure 1.5: Interpreting a black-box model

The second aspect to categorize interpretability approaches is their applica-
bility. Some approaches benefit from the black-box model architecture and thus
are tailored to be used only with certain black-box models. These approaches
are known as “model-specific“. The other group of approaches, “model-agnostic“
approaches, is more general and they don’t rely on the internal architecture of
the black-box model and can be used to interpret any model.

In this thesis, we focus on post-hoc, model-agnostic techniques of improving
the interpretability of complex ML models. More specifically, we will rely on
white-box models as the proxy, so called surrogate models, for enabling the
interpretability of black-box models without interfering with their inner archi-
tecture. That means that interpretability is an added feature of the black-box
model. The training of these surrogate models is done only based on the input
and the output for the black-box model. With post-hoc interpretability we get
insights of how the black-box model arrives at its decision and we get to keep
the black-box model and exploit its high performance. Even though, post-hoc
interpretability provides insights, interpreting complex models comprehensively,
remains a challenge.

The third criterion for the categorization of interpretability is its scope. We
differentiate between the explanations of individual predictions and the inter-
pretation of the whole model.

Definition 1.3.3. Local interpretability holds for an individual prediction and its close
vicinity. (Burkart and Huber, 2021)

Definition 1.3.4. Global interpretability holds for the entire black-box model. (Burkart

13

and Huber, 2021)

To provide explanations for individual predictions, local interpretable models
are usually trained for each prediction separately. Global interpretable models
can also be used to explain individual predictions, but in contrast to the local
interpretable models, they are trained only once on the whole domain.

Each group of approaches has some limitations: global interpretable models
tend to be too complex and local interpretable models apply only to small regions
thus not providing general insights about the black-box model. We will discuss
these limitations in more detail in Chapters 3 and 4. We will present our two
approaches, STACI and BELLA, that address the aforementioned limitations of
global and local interpretable models, respectively.

1.3.1 Evaluation

How do we evaluate an interpretation model? How do we compare two
different interpretation models? These are the questions that we discuss in this
section. We define the metrics that are used for the evaluation of the interpreta-
tion models.

Similarly to any other ML/AI model, the interpretation models are trained
in a way to optimize a specific loss function and are evaluated according to
some predefined metric. Evaluation allows us to determine how the model is
performing in a given task and to compare different models against each other.
Thus, the evaluation is an indispensable step in the process of building any
AI/ML model.

Usually, the quality of ML models is measured by how close the predictions it
makes are to the real value. This can be measured by different evaluation metrics
such as: accuracy, F1 measure, precision, kappa characteristic, mean squared
error (MSE), etc. In a general classification/regression scenario, calculating some
of the aforementioned metrics would give enough information about the quality
of the model. On the other hand, the xAI setting is different. Except for the
quality of the predictions we also want to measure how understandable is our
model.

The post-hoc interpretation models aim to replicate the behaviour of the black-
box models in a simple, understandable fashion. With this in mind, we define
the most common characteristics that “good“ interpretation models should have:
fidelity (in literature also referred to as accuracy or correctness), simplicity (i.e.
complexity, compactness), and generality (representativeness).

Definition 1.3.5. Fidelity is the measure of how good is the interpretation model in
mimicking the behavior of the black-box model. (Guidotti et al., 2018b)

14

Fidelity can be defined through accuracy, F1 measure, MSE etc., depending
on the task at hand. The main difference is that in this setting we don’t evaluate
against the true values but against the values predicted by the black-box model.

The other important desiderata of the interpretation models is how under-
standable they are to humans. It is not always easy to have humans evaluate
and verify manually if the interpretation model is in fact understandable, so it is
very common to define a metric that will measure how complex/simple is the
interpretation model or the explanations that it provides.

Definition 1.3.6. Simplicity (complexity (Guidotti et al., 2018b), compactness((Nauta
et al., 2022))) measures how understandable is the model, through its size.

It is defined depending on the type of the interpretation model (Guidotti
et al., 2018b):

• Linear models: number of features included in the model

• Decision trees: maximum depth of the tree or number of internal nodes

• Rule-based models: number of rules

Fidelity and simplicity (complexity) represent the two most often used evalu-
ation metrics and seem to be widely adopted in the literature. Another important
metric is the generality (representativeness (Molnar, 2018)) of the interpretations.
General interpretations

Definition 1.3.7. Generality represents the percentage of instances (data points) that
the interpretation covers. (Molnar, 2018)

Global interpretation models reflect the global behavior of the black-box
model, but as has been mentioned before, they provide interpretations for in-
dividual predictions as well. Thus we argue that these interpretations should
cover not just a single instance but its neighbourhood also to ensure interpre-
tations that are more stable and more representative of the black-box model’s
decision-making process.

These metrics constitute a basis for desiderata that interpretable models. At
the same time, they define the main difficulties that xAI poses.

1.4 The challenges of post-hoc interpretability

Our main goal is to learn the same patterns as the complex black-box model
with a simple interpretable one. Usually, opaque architectures like deep Neural
Networks and Random Forests are used for solving more difficult tasks and thus

15

they usually capture very complex patterns in the data. If we want to perfectly
mimic the behaviour of such a complex model, we might end up with a very
complex interpretable model. The dilemma arises is that if this, very complex
interpretable, model is actually interpretable in practice. For example, if we
consider a rule-based model, like the one in Figure 1.1. This model is very simple
and can be summarized by one if...then rule. In contrast, if this model could
only be summarized by, let’s say, hundreds of if..then rules, it would make the
model very complex and difficult to interpret. At the same time, this model
would be able to capture more intricate patterns in the data than the simple one.
This would, most often, lead to better performance. Through that, we arrive
at the main challenge in xAI approaches. The balance between the complexity
of the interpretable model and its performance, is commonly referred to as the
“complexity vs accuracy“ trade-off. In this work, instead of the complexity we will
use the term simplicity, such that the trade-off can be seen as balancing between
maximizing both simplicity and accuracy.

We discuss this trade-off only related to post-hoc xAI approaches. In general,
the simplicity of the model depends on the complexity of the task at stake and
the requirements for the model performance. Sometimes it may happen that
the simple (interpretable) model will satisfy the requirements and sometimes
even perform better than the complex black-box model. As it has been discussed
in Rudin (2018), when facing a new machine learning problem, as a first step,
it is advisable to try solving it using some of the interpretable models (decision
trees, linear models). If the precision requirements have not been met, only then
one should consider complex, non-interpretable models such as deep NNs and
RFs.

Here we consider a common xAI scenario, where we have a trained black-
box model and interpretability needs to be implemented afterwards. We argue
that in this case, the “simplicity vs accuracy“ trade-off is relevant and solving it
represents the main goal of xAI. The task that xAI approaches are trying to solve
is to accurately explain the decision-making process of the complex model in
simple terms.

The aforementioned “simplicity vs accuracy“ trade-off is present with ap-
proaches that assess the interpretability on a global level, e.g. methods that
interpret the black-box model as a whole. On the other hand, with approaches
that assess the interpretability on a local level, interpreting each individual pre-
diction, this two-way trade-off adopts a third dimension which is generality, as
shown in Figure 1.6. While being focused on individual predictions, we argue
that, in order to ensure that the local interpretable models provide relevant
interpretations, these interpretations have to be applicable not just to a single
data point but also on its neighbourhood.

16

Figure 1.6: 3-way trade-off for local interpretability approaches

The works presented in this thesis aim to tackle and overcome the afore-
mentioned challenges, common for xAI approaches. We present two post-hoc
model-agnostic approaches, for global interpretation of classification black-box
models - STACI, and for local explanations of predictions of regression black-box
models - BELLA.

STACI is a global interpretation method for black-box classifiers that tackles
the “simplicity vs accuracy“ trade-off. STACI uses a set of decision trees, trained
separately to represent each of the classes. The decision trees are trained once on
the whole dataset and thus represent a global interpretation model. We propose
a specific training algorithm that results in simple yet accurate interpretation
models. At the same time, the optimization function accounts for generality
thus providing the interpretations that apply to a larger portion of the dataset.
Being accurate, simple and applicable to a wider range of data points, these
interpretations have been preferred by the users in the user study that we have
conducted for the purpose of validating our approach and the choice of the
metrics that it optimizes.

• Nedeljko Radulovic, Albert Bifet, and Fabian Suchanek. Confident inter-
pretations of black box classifiers. In 2021 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2021.
DOI: 10.1109/IJCNN52387.2021.9534234. [code]

BELLA is focused on explaining individual predictions of regression black-
box models. The main idea behind this approach stems from the intention to
overcome the three-way “simplicity vs accuracy vs generality“ trade-off. BELLA
provides explanations from local linear models that are trained to account for
accuracy and generality, while regularization controls the simplicity of the expla-
nation. Additionally, the explanation is provided in a way that allows users to

17

https://doi.org/10.1109/IJCNN52387.2021.9534234
https://github.com/dig-team/STACI

compute the explained (approximation of predicted) value by themselves. This,
along with the improved generality (the explanation can be applied to multiple
data points) proved to be of importance for the users, which we again verified
through a user study.

• Nedeljko Radulovic, Albert Bifet, and Fabian Suchanek. BELLA: Black Box
Model Explanations by Local Linear Approximations. UNDER REVIEW
AAAI - Association for the Advancement of Artificial Intelligence [Preprint]

Both STACI and BELLA, use only already existing, available, real data points,
which makes them deterministic, in contrast to most of the state-of-the-art ap-
proaches. The deterministic nature of these approaches guarantees that these
interpretation models for one data point always provide the same explanation,
which is not the case with the approaches that rely on synthetic data points.

1.5 Challenges of data stream mining

The previous sections have focused on explaining the decisions of ML models.
This assumes that ML models are already available and working well. However,
there is one domain of ML where the scientific community is still struggling with
developing these models in the first place: data stream mining. In this section,
we discuss the motivations for online learning and define its main challenges.

Artificial intelligence, and especially machine learning has attracted a huge
audience of researchers, industry practitioners and freelance enthusiasts. Due to
its versatility, people are continuously applying machine learning to solve new
problems. Finding the best model for the task at hand is not a one-way street
and thus can be a long and complicated process. We will often have several
different models that perform similarly and only by tweaking hyper-parameters
or relying on specific ideas that stem from our previous experience, we can
make a significant difference in performance. It follows that the best model
doesn’t always come only from the book and theoretical knowledge. This is why
companies often when privacy constraints allow it, ask the “public“ to solve
some classification or regression problems for a reward. To allow for this several
platforms have been established, the most popular being, Kaggle. Most of the
existing platforms for data science competitions are tailored to offline learning
where a static dataset is made available to the participants before the competition
starts. This dataset is divided into training and test sets. The training set is used
to build and train the model, which is then tested on the test set.

But, today, data is produced in real-time. We are surrounded by Internet of
Things (IoT) devices monitoring various activities, every mouse clicks in our
browser, each message, and each call on our phone represents a data point in

18

https://arxiv.org/abs/2305.11311

some huge dataset. Each second billions of these data points are created around
the world. Obviously, at some point, it became crucial to have models that can
learn and make decisions in real time without storing the data. This is defined as
an online learning scenario. In online learning, the data arrive at high speed in
real-time and the model has to make predictions in a short time. Also, the model
has to be able to learn from these new data.

We recognize that current, state-of-the-art, platforms for machine learning
competitions do not conform with the requirements of online learning and thus
are not suitable for this kind of competition. We propose a novel platform tailored
for machine learning competitions on data streams – SCALAR. SCALAR supports
this data stream machine learning scenario where data is continuously released,
in batches every time interval. Predictions for each current batch, that are sent
before a defined deadline, are evaluated in real-time, and the results are shown on
the live leaderboard. In Chapter 5, we present an implementation of a SCALAR
and we discuss the machine learning competition that was organized using
SCALAR on the IEEE Big Data Challenge Cup 2019.

• Nedeljko Radulovic, Dihia Boulegane, and Albert Bifet. Scalar- a platform
for real-time machine learning competitions on data streams. Journal of
Open Source Software, 5(56):2676, 2020. DOI: 10.21105/joss.02676. [code]

• Dihia Boulegane, Nedeljko Radulovic, Albert Bifet, Ghislain Fievet, Jimin
Sohn, Yeonwoo Nam, Seojeong Yu, and Dong- Wan Choi. Real-time ma-
chine learning competition on data streams at the IEEE big data 2019. In
2019 IEEE International Conference on Big Data (Big Data), pages 3493–3497.
IEEE, 2019. DOI:10.1109/BigData47090.2019.9006357

19

https://doi.org/10.21105/joss.02676
https://github.com/nedRad88/SCALAR
https://doi.org/10.1109/BigData47090.2019.9006357

2
eXplainable Artificial Intelligence

In this chapter, we provide a comprehensive literature review on Explainable Ar-
tificial Intelligence (xAI). We begin by presenting a taxonomy of xAI approaches,
categorizing them based on their scope and applicability. Subsequently, we
delve into an in-depth analysis of the most prominent and state-of-the-art xAI
approaches, highlighting both their strengths and limitations.

Contents
2.1 Literature review . 21

2.2 White-box models . 21

2.3 Post-hoc interpretability . 25

2.3.1 Model-agnostic methods 27

2.3.2 Model-specific methods 33

20

2.1 Literature review

There have been many works to enable interpretability in complex ML mod-
els. In this section, we give a review of some most prominent, state-of-the-art
approaches and some most common principles. Explainable AI has received
a lot of attention lately in the research community, and several survey papers
discuss recent approaches (Beaudouin et al., 2020; Guidotti et al., 2018b; Adadi
and Berrada, 2018; Murdoch et al., 2019; Burkart and Huber, 2021). In Figure 2.1
we categorize the most prominent approaches in the field. The two main groups
of approaches are ante-hoc and post-hoc. The ante-hoc group uses models that are
interpretable by design: decision trees CART (Breiman et al., 1984), rule-based
models, linear models, Bayesian models, kNN etc. One school of thought argues
that these methods should be preferred for high stake tasks (Rudin, 2018). These
already interpretable, models are often used to interpret the complex black-box
models. In this scenario, we refer to them as surrogate models and they add
the interpretability post-hoc. Thus, contrary to ante-hoc, post-hoc approaches add
interpretability without interfering with the inner architecture of the black-box
model. Post-hoc approaches are further categorized into the approaches that
can be applied to any machine learning model, i.e. model-agnostic, and the ones
that are tailored to explain specific types of machine learning models, i.e. model-
specific. We then divide model-agnostic approaches based on the scope of the
explanations that they provide: global or local. On the other hand, model-specific
approaches we categorize based on the type of the model that they apply to.
Throughout this chapter, we will address each category and give an overview of
these approaches.

2.2 White-box models

Not all machine learning models are opaque. There exist several classes of ma-
chine learning models that can be interpreted and replicated by humans. These
models are transparent and are usually referred to as “white-box“ models. In
essence, just by looking at the parameters of the model, once it has been trained,
one can compute the prediction for each new data point. The models that allow
this are: tree-based (Breiman et al., 1984), rule-based (Rivest, 1987; Letham et al.,
2015; Yang et al., 2017), linear (Ustun and Rudin, 2016), Bayesian networks (Fried-
man et al., 1997) and k-Nearest Neighbors. All these approaches propose readily
interpretable models. In what follows, we describe these white-box models and
analyze their transparency using a simple 2-D binary classification example
shown in Figure 2.2.

21

The decision tree model is a widely adopted ML model. It has a hierarchical
tree structure with nodes and branches. At each node, the data is split into two
separate parts based on the value of one feature, such that the loss function is
optimized. The most popular decision tree algorithm is CART (Classification
and Regression Trees) (Breiman et al., 1984). The split at each node is binary and
is computed to optimize the Gini index.

Now let’s consider that we train a CART decision tree to solve the running
example classification problem (Figure 2.2), and that supposed decision tree is
shown in Figure 2.3. The decision tree algorithm partitions the feature space and
for the 2-D binary classification example, assuming that the classifier is perfectly
accurate, can be represented as in Figure 2.4. Knowing the values α, β, γ we can
reproduce the output of this decision tree for each data point in feature space
and we can also divide the space in the same way the decision tree does it.

The next group of white-box models are rule-based models. Let’s consider
decision lists proposed by authors in Rivest (1987). These models consist of a
list of if . . . then . . . elseif . . . else rules. Each item e.g. node in the decision list, is of
size k, which means that each rule in the list represents a formula in conjunctive
normal form of up to k clauses. Contrary to a binary decision tree, where True
branch can lead to another node, in the decision list, each True branch leads to
a leaf node. Assuming that the decision list is trained such that it fits the data
perfectly (same as we assumed for the decision tree above), it will partition the
feature space the same as the decision tree (Figure 2.4) and the model is given as
a list of rules in Figure 2.5.

Linear models are another set of simple, interpretable by design models. The
output is computed as a linear combination of features. In the case of a binary
classification task, the output of the model function is compared to a threshold
in order to decide which class the given data-point belongs to. In a given 2-d
classification scenario, a linear model function can be written as:

y = αx+ β, (2.1)

where α is the weight attached to the feature x and β is the intercept. To make
a classification for a certain data-point the output y is computed and then com-
pared with a threshold r, such that:

y =

{
1, if y ≥ r

0, if y < r
(2.2)

Once the model has been trained and the parameters α, β and r are known, one
can compute the output for each given data point. Thus, this model can also be
replicated and depending on its parameters one can understand how changing
the input value (in this case x) affects the outcome.

22

xAI

post-hoc

model-specific

Tree ensem-
bles [116; 132;
77; 55; 35; 75]

NN [6; 10;
20; 42; 45;

44; 4; 85; 109;
110; 125; 133]

SVM [91; 13;
14; 46; 12; 76]

model-agnostic

Global
[33; 64; 15;
23; 69; 68;

54; 126; 96]

Local
[99; 100; 74; 93; 52;

129; 107; 124; 36; 73;
87; 94; 128; 28; 121]

White-box

Decision trees

Linear models

Rule-based
models

kNN

Bayesian
models

Figure 2.1: Taxonomy of xAI approaches

23

Figure 2.2: Running example: Binary classification

Bayesian models are probabilistic models, usually represented by directed
acyclic graphs (DAG). The edges in Bayesian networks depict conditional depen-
dencies between the variables. Based on the visual representation, one can easily
reason about how each variable affects the outcome. In Figure 2.7 we show a
prototype of a Bayesian network for our running example. For simplicity, we
consider that this model has also perfectly learned the training dataset and that
it partitions the space as shown in Figure 2.4, e.g. parameters α, β, γ are the same
as for the decision tree. We then define two categorical variables A,B such that:

A =


high, if y > α

medium, if γ < y ≤ α

low, if y ≤ γ

B =

{
1, if x < β

0, otherwise

According to the values of the features x and y the model assigns the probabilities
for each of the classes. Having in mind that we assumed a perfect model, the
probabilities for classes are either 0 or 1.

As the last group of white-box models, we mention k-Nearest Neighbours (kNN)
classifier. This classifier outputs the most common class among the data points
in some neighbourhoods. In the case of a regression problem, the output is
computed by aggregation, e.g. average value. The size of the neighbourhood is
defined through the parameter k and the neighbouring data points are chosen
according to some similarity/distance metric. Given this similarity/distance

24

Figure 2.3: White-box model: Decision Tree

metric and the parameter k one can compute the neighbourhood and replicate
the output of kNN classifier. Let us consider a kNN classifier with k = 5 and the
Euclidean distance as a distance metric. An example of how kNN model makes
a prediction is shown in Figure 2.8. The neighbourhood of size 5 is marked by
the circle (Euclidean distance). The output of the model for a given data point
(green cross) would be a red circle because 4

5
neighbours (marked with numbers

1− 5) are red circles.

2.3 Post-hoc interpretability

White-box models come with transparency that is already integrated because
of their intuitive architecture. On the other hand, for certain problems, the
predictive performance of Deep Learning (DL) and ensemble models has been
shown to be higher than with white-box models. Thus, the white-box models
are preferred when the interpretability of the model is of crucial importance. In
other cases, when predictive performance is the most important, one usually

25

Figure 2.4: Tree/Rule -based classification boundary

Figure 2.5: White-box model: Decision list

relies on DL and ensemble models. To implement the interpretability while not
disrupting the predictive performance of the model we use post-hoc interpretation
approaches. These approaches do not interfere with the inner workings of the
black-box model, thus keeping its performance intact. Some approaches benefit
from the architecture of the model to provide interpretations and those are
model-specific approaches. These approaches are designed to interpret NNs,
Tree ensembles or SVMs. The other group of approaches are more general and
they don’t utilize the architecture and can be applied to any black-box model.
These methods are model-agnostic. We review the most prominent approaches
from each of the two groups.

26

Figure 2.6: White-box model: Linear classifier

2.3.1 Model-agnostic methods

Model-agnostic interpretable methods can be applied to any black-box model.
They do not rely on or interact with the inner workings of the black-box model,
yet they mainly provide interpretations by learning the input-output relation
through probing the model. There exist two main groups of model-agnostic
approaches: local and global. Local model-agnostic methods provide interpreta-
tions for individual input data points by building a new interpretable model for
each data point. Global model-agnostic methods can also provide explanations
for individual data points but the main difference is that they train one inter-
pretable model, on the whole space, and probe it with individual data points
to provide interpretation. Global methods allow for easier interpretation of a
black-box model’s behaviour in general but they are less accurate than local
interpretable models.

2.3.1.1 Local model-agnostic methods

One of the most important works from this group of approaches for sure
is LIME (Ribeiro et al., 2016). It stands for Local Interpretable Model-agnostic

27

Figure 2.7: White-box model: Bayesian network

explanations and it trains interpretable simple local linear models around indi-
vidual data points. It then provides an explanation in the form of a list of the
most relevant features with their weights. The weights are proportional to the
contribution of the features to the outcome probability. The main idea of LIME
is to approximate the complex black-box model with a linear model locally, as
shown in Figure 2.9. The algorithm synthetically generates new training data
points, weighing them according to their distance to the original data point
(the one in which the prediction is being explained). The further the synthetic
data point is, its weight is smaller. LIME also provides a sampling algorithm,
sub-modular pick, that combines multiple explanations for individual data points
to provide a global explanation.

Another method, MAPLE (Plumb et al., 2018), combines the use of SILO (Blo-
niarz et al., 2016), the Random Forests approach to assign weights to the training
examples and DStump (Kazemitabar et al., 2017), the feature selection method
to assign weights to the features. It then goes on to train a local linear model to
compute the explanation.

The same authors proposed another approach (Ribeiro et al., 2018), called
Anchors. Anchors are also local approximations of the complex model that
provide explanations in the form of sufficient if . . . then rules. These rules include
only the features that influence the outcome, i.e. changing the value of other
features will not have an impact on the outcome.

SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017) introduces
a game theory approach to compute the contribution of each feature. In coalition
game theory, Shapley values are used to make a fair distribution of payout
between the players. In the context of xAI, the features are considered as the

28

Figure 2.8: White-box model: kNN classifier

players, and the Shapley value for a feature corresponds to the average change
in prediction when this feature is removed from a coalition. To compute the
average change one needs to assess all possible coalitions. SHAP computes
the attribution of all features, without removing any of them, which yields
explanations that score high on fidelity but low on simplicity. In this work, the
authors define an entire group of similar approaches, namely “Additive feature
attribution methods“. This group of approaches provides an explanation that is
a linear function of simplified input features projected to a binary space. This
explanation is given with the following equation:

g(z) = ϕ0 +
M∑
i=0

ϕizi, (2.3)

where z ∈ {0, 1}M and M is the number of simplified input features. The authors
go on to show that in this group fall methods such as LIME and DeepLIFT.

While previous approaches focused on training local models to mimic the
behavior of the black-box model, and compute features’ contributions, there
is another group of approaches that aims to select important features for each
prediction. Chen et al. (2018) propose a method L2X - Learning to explain,
to select the important features. The feature selector maximizes the mutual
information between the selected features and the target variable. While the
number of features can be fine-tuned as a hyper-parameter, it is usually left

29

Figure 2.9: Intuition behind LIME

to the user to choose it. A related work by Yoon et al. (2018), uses actor-critic
framework to train three neural networks to allow instance-wise feature selection.
A recent work by Vo et al. (2022), combines additive feature attribution methods
with instance-wise feature selection to compute explanations for multi-class
classification problems.

LORE (Local Rule-Based Explanations) (Guidotti et al., 2018a) proposes using
local interpretable models, specifically decision trees, from which local rule-based
explanations are extracted. Each local interpretable model is trained on a dense
set of synthetic data-points generated by a genetic algorithm. The interpretable
model provides one rule to explain the decision (the branch of the tree with a
given data-point) and several counterfactual rules for reversed decisions (the
other branches of the tree).

All of these approaches train the interpretable models using synthetically
generated data points. These data points are generated usually by random
perturbation methods, which introduces uncertainty in explanations. To avoid
this, a deterministic version of LIME has been proposed in Zafar and Khan (2019).
DLIME uses hierarchical clustering (HC) to cluster the training data and then
k Nearest Neighbours (kNN) to determine which cluster the data point, that’s
to be explained, belongs to. DLIME provides stable explanations but it requires
additional input parameters: the number of clusters for HC and the number of
neighbours for kNN.

There exists a specific subgroup of the local interpretation methods that pro-
vide counterfactual explanations. These methods usually compute the minimal
change needed to be applied to a given data-point such that the black-box model
would assign a different class label to it.

30

CLEAR (White and Garcez, 2019) is the first work that addresses the quality of
the explanations, providing counterfactual explanations for each data point and
measuring the fidelity of each explanation. It uses the idea of b-counterfactuals,
which represents the minimal change in the feature in order to gauge the predic-
tion of the complex model. Then, a regression model is fitted in the neighborhood
of the data point to find the best explanation.

A more recent work by Dandl et al. (2020), proposes to use Multi-Objective
Optimization to compute counterfactual explanations, both for classification
and regression. The search for counterfactuals is formalized as a multi-objective
optimization problem and the four criteria that constitute a good counterfactual
are: data-point and its counterfactual are near in feature space, they differ only
in a few features, the outcome for the counterfactual is close to the desired set of
outcomes and counterfactual is plausible data-point.

Looveren and Klaise (2021) proposes using class prototypes to compute
counterfactual explanations. These prototypes are obtained either using encoders
or k-d trees. This helps to speed up the search process for counterfactual instances.
Then, the prototype loss term is included in the objective function to produce
more interpretable explanations.

Since counterfactual explanations determine a minimal change needed to
revert the outcome, several works (Mothilal et al., 2020; Poyiadzi et al., 2020)
argue that feasibility is important criteria for counterfactuals to satisfy. Mothilal
et al. (2020) propose DiCE (Diverse counterfactual explanations) algorithm that
computes the set of diverse and actionable counterfactuals, which are computed
using determinantal point processes (DPP), which has been used for subset
selection with diversity constraints. By proposing multiple diverse counterfac-
tuals, they increase the probability that some of them will be actionable. On
the other hand, Poyiadzi et al. (2020) propose FACE (Feasible and actionable
counterfactual explanations) that first creates a graph over data-points and then
the counterfactuals are selected based on the shortest path distances that are
computed such that they account for the path length and the density over the
path. Therefore, the counterfactual explanation doesn’t necessarily represent the
minimal change but the emphasis is on its feasibility.

2.3.1.2 Global model-agnostic methods

Global interpretation methods try to summarize and interpret the behavior
of the black-box model on a whole space. They still can be used to provide
individual explanations but they are trained only once on a whole data space.

One of the first global methods was TREPAN (Craven and Shavlik, 1996),
which queries the complex model in order to train a decision tree that mimics its
behavior. The tree grows in the best-first manner, where the best node is the one

31

that increases the fidelity of the tree. Another specificity of this approach is that
the splits can be based not only on a single feature but on multiple, which can
increase the comprehensibility of the tree by reducing its depth.

Dectext (Boz, 2002) refined this idea by using C4.5 decision trees with different
types of splits and a specific tree pruning strategy to improve its fidelity. Since
the number of instances that are used to compute the best split decreases with the
depth of the tree, they propose using a fixed number of instances to decide a split.
If there are not enough training instances left, one can use unlabeled instances or
generate synthetic ones, label them using the black-box model and use them in
the training process of a decision tree. Another method based on decision trees
by Johansson and Niklasson (2009) uses a genetic programming algorithm to
evolve decision trees. They also propose using different combinations of training
and test data to increase the fidelity of the decision tree to a black-box model.

A more recent global approach by Bastani et al. (2017) proposes DTExtract, a
method that first fits a mixture of axis-aligned Gaussians to estimate the input
distribution over features of the training dataset. Then the method builds binary
decision trees iteratively, using an active sampling strategy. At each step of the
training of the decision tree, new training data is generated under the constraints
of previous nodes in that branch of the tree. Generating additional training data
at each step has as its goal to ensure fidelity to the original black-box model.

GIRP (Yang et al., 2018) use a compact binary decision tree to extract the
rules that black-box model has learned. The global interpretations are learned
from local explanations for individual data points. This approach relies on the
contribution matrix which consists of the contributions of input variables to
predicted scores for each single prediction and which can be very difficult to
obtain.

SP-LIME (Ribeiro et al., 2016) is an extension of the original LIME approach
that uses a specific sub-modular pick algorithm to choose a set of local explana-
tions to summarize the global behavior of the black-box model. The main idea
of the sub-modular pick algorithm is to cover as many cases as possible with as
few as possible local explanations.

K-LIME (Hall et al., 2017) is a variant of LIME (Ribeiro et al., 2016), that
instead of using synthetically generated samples to explain local regions, uses
clustering or user-defined regions. It provides local explanations of each of K
clusters and it trains one global surrogate model. These models are trained to
minimize R2.

Apart from linear models and decision trees, there exist methods that use
rule-based models for interpreting the black-box models. In Lakkaraju et al.
(2016), authors propose interpretable decision sets as surrogate models for inter-
preting the behavior of the black-box model on the whole feature space. These

32

decision sets are sets of unordered classification rules and they are the result of
optimizing the objective function that accounts for accuracy and interpretability.
The same authors proposed MUSE (Model Understanding through Subspace
Explanations) (Lakkaraju et al., 2019), which interprets the black-box model by
explaining its behavior in subspaces defined by certain features. MUSE also
produces explanations in the form of decision sets which consist of rules that are
unambiguous and optimized for fidelity and interpretability.

As mentioned before, the main challenge when building global surrogate
models is the trade-off between fidelity and complexity. Among the aforemen-
tioned methods, we saw different strategies to tackle this trade-off: limiting the
number of nodes in the surrogate tree (Bastani et al., 2017; Craven and Shav-
lik, 1996), applying specific pruning algorithms (Boz, 2002), or stopping the
growth of the tree when a node covers the instances of only one class with high
probability (Craven and Shavlik, 1996).

2.3.2 Model-specific methods

The model-specific post-hoc approaches are built to interpret only a certain
class of black-box models, contrary to model-agnostic methods that can interpret
any model. They usually exploit the structure of the black-box model to compute
explanations or to be more efficient. We review some of the important works
in this area and we categorize them based on the class of black-box model that
they interpret: Support Vector Machine (SVM), Neural Networks (NN) and Tree
ensembles.

2.3.2.1 Interpreting SVMs

Support Vector Machines (SVM) is a supervised machine learning algorithm
that can be used for classification, regression and outlier detection. It uses
support vectors to optimize the decision border between the classes. Support
vectors are the data points that are the closest to the decision line or hyperplane.
The main idea of SVM is to find an optimal line or hyperplane such that the
distance to the support vectors is the largest. These hyperplanes can have very
complex shapes and thus can be difficult to interpret. In the literature, there exist
works that are built specifically to interpret the SVM models. Most of them try
to extract rules that conform with the decision boundary of the SVM model.

SVM+Prototypes method has been proposed by Núñez et al. (2002) to extract
if-then rules from SVM. This method uses a clustering approach to determine
prototypes for each class. Then it combines these prototypes with support vectors
to define regions (hyper-rectangles or ellipsoids) that are later translated into
if-then rules.

33

Another approach (Barakat and Diederich, 2005) suggests using decision
trees as a comprehensible model to interpret SVMs. They suggest creating a
synthetic dataset where support vectors are labelled with already trained SVMs.
This synthetic dataset is then used to train a decision tree which, in that way,
represents the comprehensible interpretation of concepts learned by SVMs.

Barakat and Bradley (2007) propose SQRex-SVM method to extract rules
from SVMs using sequential covering, which aims to cover as many as possible
positive examples and as few as possible negative examples with each learned
rule. The method learns the rules directly from correctly classified support
vectors, minimizing the effects of noisy and misclassified data.

A recommender system approach was presented by Barbella et al. (2009). This
approach defines a kind of similarity measure between a given data point and
each support vector and then uses the support vector with the highest similarity
to provide an explanation. Also, they propose a technique to compute a minimal
change that moves the data point to the decision boundary. They refer to it as
inverse classification, which in fact produces counterfactual explanations.

Focusing solely on linear SVMs, an efficient approach to extract rules was
proposed by Fung et al. (2005). The algorithm is based on constrained optimiza-
tion which makes it very efficient. Two optimization criteria have been proposed
such that each rule covers the largest volume in feature space or the largest
number of data points from the training set.

Active learning-based approach (ALBA) is used in Martens et al. (2008) to
extract rules from SVMs. Since the highest noise is found in the regions near the
decision boundary, this approach focuses more on these specific regions. It uses
support vectors as proxies to generate additional data points in their vicinity
using active learning. After this step, one can apply multiple rule induction
techniques (C4.5, RIPPER (Cohen, 1995)) can be applied.

2.3.2.2 Interpreting NNs

Neural networks (NN) are a machine learning model that represents the
core of deep learning techniques. The structure of NN’s is inspired by the
structure of the human brain. They consist of, often, a large number of highly
interconnected layers of nodes. The connections between the nodes have weights,
which hold the knowledge. They show the ability to learn, memorise and
generalize based on data that they have been trained on. They are used in many
different applications and often reach state-of-the-art results. On the other hand,
because of their complexity, they are opaque models and understanding how
they reach the decision became of crucial importance. There have been many
works on interpreting NNs and here we outline the most prominent ones.

One possible way of introducing interpretability to NNs is to alter their archi-

34

tecture such that each layer has a clear semantic meaning. One such approach is
Self-Explaining Neural Networks (SENN) (Alvarez Melis and Jaakkola, 2018).
They propose an architecture that first maps the input into a set of interpretable
concepts, then a parametrizer that computes relevance scores for each concept.
The last step is an aggregation function that combines the concepts and their
scores to produce a prediction. Another approach that offers a specific architec-
ture to ensure the interpretability in NNs is proposed in Angelov and Soares
(2020), xDNN (explainable Deep Neural Networks). This approach consists in a
specific architecture that extracts class prototypes, which are then used to form a
list of interpretable if-then rules.

Several works try to extract interpretable rules from already trained NNs.
One of the earlier works is KT method (Fu, 1994). The KT method performs a tree
search of combinations of relevant attributes (the ones that make neurons fire) to
generate a rule for each hidden and output node in the NN. OSRE (orthogonal
Search-based Rule Extraction) (Etchells and Lisboa, 2006) fits Boolean rules to
the smooth decision surface of NN. It assumes the discrete attributes which
are 1-from-N encoded and performs the rule search by successive examination
of orthogonal neighbours. In Augasta and Kathirvalavakumar (2012), authors
propose Rule Extraction by Reverse Engineering the Neural network (RxREN).
This approach uses reverse engineering to prune the neurons that aren’t sig-
nificant for classification and then constructs if-then rules for each class using
only the significant neurons and data ranges that lead to correct classification.
An extension of RxREN was proposed in Biswas et al. (2017), RxNCM (Rule
extraction from NN using Classified and Misclassified data), that, as its name
suggests, uses both correctly and incorrectly classified data to determine the
ranges and significant neurons. In that way, they ensure that not only patterns
that can be classified according to one attribute can be discovered, but also the
common patterns, the ones that can be classified based on multiple attributes.
DeepRED (Zilke et al., 2016) algorithm extracts the rules from each layer of a
NN. Then all the rules for one class are merged into a rule set that describes the
given class. In the merging process, unsatisfiable rules and redundant terms
are deleted and for simplification purposes, the rules are pruned similarly as in
RxREN.

Similarly, as with decision trees, we can combine multiple NNs to achieve
better results in certain tasks, so called NN ensembles. These models are also
opaque and REFNE (Zhou et al., 2003) method has been proposed to interpret
them by extracting rules. It looks for values of categorical attributes that ensure
that all instances that possess that value belong to the same class, to generate
a rule. The process continues by examining the combinations of attributes. To
ensure comprehensibility the length of the rules is limited to 3.

35

The method proposed in Montavon et al. (2017) uses back-propagation to
decompose the complex decision function of NN on its inputs. It uses Taylor
decomposition to factorize the function of each neuron to its inputs. As the
last step, this decomposition results in the relevance score of each pixel that
is then visualized in the form of a heatmap, that represents the explanation.
Even though by nature this approach applies to image data it can be applied to
other data types. Another approach to producing visual explanations of CNNs
(convolutional neural networks) is proposed in Selvaraju et al. (2016). Grad-
CAM (Gradient-weighted Class Activation Mapping) discovers and visualizes
important regions for each class. Deep-LIFT (Shrikumar et al., 2017) introduces
concepts of reference input and output. It uses the differences between current
and reference input to explain the differences between current and reference
output. The reference input is the default one, chosen according to the problem
at hand.

A set of methods tries to represent the knowledge contained in trained NN
with an interpretable model, namely a decision tree. In Frosst and Hinton
(2017) a method for distilling a NN into a soft decision tree has been proposed.
The decision tree is trained to mimic the input-output behavior of NN using
stochastic gradient descent. To train a decision tree one can use predictions of
NN on unlabelled data or, use various data generation methods to generate
synthetic data. A method proposed in Wu et al. (2018) includes an additional
regularization parameter in the objective function for NN training. In each
iteration a decision tree is trained to mimic the behavior of NN and the average
path length is computed on a selected part of the dataset. In that way, the
optimization algorithm will prefer the models that can be approximated and
interpreted with simpler decision trees.

2.3.2.3 Interpreting tree ensembles

Another powerful, yet opaque, group of models are tree ensembles. Tree
ensembles, as the name suggests, are the models that combine multiple decision
trees into one single model for better predictive performance. Some examples of
tree ensemble models are Random Forests (RF), AdaBoost trees, and Gradient
Boosted trees. These models are used both for classification and regression. There
exist several approaches that are tailored to exploit the specific tree structure of
these models, to interpret their predictions.

In Cui et al. (2015), authors address the problem that tree ensembles don’t pro-
vide an interpretable actionable plan to alter their outcome. Thus they propose a
method to extract actionable knowledge from a tree ensemble. This approach
computes which feature values should be changed to alter the outcome of the
black-box tree ensemble method while minimizing some cost function, e.g. the

36

number of features changed. A similar idea of tweaking feature values has been
proposed in Tolomei et al. (2017). The algorithm focuses only on decision trees in
the ensemble that have predicted a negative class (binary classification scenario).
Similarly to the previous approach, it tries to find the set of feature values that
need to be changed to achieve the positive output of the ensemble model, while
minimizing a cost function.

On the other hand, Hara and Hayashi (2016) argues that the main source of
the lack of transparency of tree ensemble models is the number of regions that it
creates in feature space. They propose to learn a simple model, with a limited
number of regions, while minimizing the model error.

Since the tree-based models can be easily rewritten as sets of rules, three
rule extraction algorithms from tree ensemble models have been proposed
in Mashayekhi and Gras (2017). All three approaches start from the same set
of rules, which represent nodes, under certain constraints, from decision trees
in the ensemble. Then in the first algorithm, a heuristic search is employed to
find the set of rules optimizing the accuracy and coverage. The second approach
converts the rule extraction problem to a regression problem and uses the Sparse
Group Lasso method, which finds a small group of features that optimizes for
sparsity and prediction error. Finally, the third approach is the adaptation of the
second one for multi-class classification problems.

TreeExplainer (Lundberg et al., 2020) represents an extended version of
SHAP (Lundberg and Lee, 2017) specifically tailored to interpret tree ensemble
models. utilizing the tree structure it allows for exact computation of SHAP
values. Also, they propose a method to combine local explanations with global
ones, to interpret the behaviour of the model on the whole space.

Different visualization techniques are often used to improve interpretability
of black-box models, e.g. feature importance, partial dependency plots (PDP),
and decision paths. All these techniques are contained in iforest (Zhao et al., 2018)
framework. The framework aims to reveal the relationships between features
and predictions, to discover underlying working mechanisms (e.g. open the
black box) and to allow for case base reasoning.

37

3
STACI

We propose a novel method to interpret the classification results of a black box
model a posteriori. We emulate the complex classifier by surrogate decision trees.
Each tree mimics the behavior of the complex classifier by overestimating one of
the classes. This yields a global, interpretable approximation of the black box
classifier. Our method provides interpretations that are at the same time general
(applying to many data points), confident (generalizing well to other data points),
faithful to the original model (making the same predictions), and simple (easy to
understand). This chapter is based on our paper: Confident interpretations of black
box classifiers (Radulovic et al., 2021) and its extended version (Radulovic et al.,
2023a), available as a preprint.

Contents
3.1 Introduction . 39

3.2 Desiderata . 40

3.3 Method’s Approach . 42

3.4 Training algorithm . 43

3.5 Regression . 47

3.6 Experiments . 49

3.6.1 Competitors . 50

3.6.2 Settings . 50

3.6.3 Counterfactuality . 53

3.6.4 Regression experiments 57

3.7 User study . 59

38

3.1 Introduction

STACI is a new deterministic approach to interpreting the behavior of com-
plex black-box models. Since it uses decision trees as surrogate models it also
allows extraction of interpretations of individual predictions. STACI provides
concise and accurate interpretations, and as we have discussed in section 1.4,
our approach takes into account the generality of an interpretation. In fact, in
this chapter, we argue that aside from accuracy and simplicity, a third important
metric is generality: the number of data points that the interpretation applies
to. If an interpretation applies to more data points, it appears less ad-hoc to a
user. The interpretation should also have a high confidence, i.e., all data points
concerned by the interpretation should be classified in the same way.

It is intuitively clear that these desiderata are pitted against each other: Higher
fidelity means higher complexity. This problem is known as the comprehensibility-
complexity trade-off. In the same spirit, higher generality means lower confidence
(akin to the precision-recall trade-off). Finally, higher generality at low complex-
ity also means lower fidelity.

In this chapter, we propose a new methodology that addresses this impasse:
We propose to mimic a given black box classifier not by a single surrogate model,
but by several – one for each class. In this way, each of the models can be simple
while their combination still has high fidelity. Our method has not just a high
fidelity and a low complexity, it also provides very general interpretations with
high confidence.

Our main contributions are as follows:

• We develop an abstraction of surrogate models, and formalise the quality
metrics of surrogate models.

• We present our method STACI1, which learns surrogate models that are at
the same time simple, general, confident, and faithful to the original.

• We perform an extensive empirical evaluation on several popular datasets
from the UCI Machine Learning Repository, showing that STACI outper-
forms other state-of-the-art methodologies in these desiderata.

• We perform a user study that shows that users prefer the interpretations of
our method over others.

The rest of the chapter is organised as follows. Section 3.6.1 discusses related
work. Section 3.3 presents our new method, STACI. Section 3.6 evaluates our
method on several datasets and compares it to a baseline and the state of the art.

1Surrogate Trees for A posteriori Confident Interpretations

39

3.2 Desiderata

Post-hoc Interpretation. We are given a black box multi-class classification
model. We wish to make it interpretable post-hoc, i.e., after the model
has been trained. There is considerable debate about the meanings of the
terms “explainable” and “interpretable” (Beaudouin et al., 2020; Guidotti
et al., 2018b; Došilović et al., 2018; Adadi and Berrada, 2018; Doshi-Velez
and Kim, 2017). In this chapter, we aim at interpretability in the following
sense: We want to provide a meaning for the results of a model in terms that are
understandable to humans (Doshi-Velez and Kim, 2017).

Local vs. global interpretations. Local interpretations help us understand the
classification of one given input data point (“Why does the model predict
that this particular patient should undergo chemotherapy?”). While these
interpretations can be very tailored, they are less well adapted for scenarios
where the model is used repeatedly: Local interpretations can be unstable
and can provide very different interpretations even in a very close neighbor-
hood (Alvarez-Melis and Jaakkola, 2018). Individual interpretations may
also be contradictory to each other (Tan et al., 2018). Global interpretations,
in turn, consider the model as a whole (“What are the criteria that make
patients more likely to be recommended chemotherapy in general?”). Such
interpretations can also help understand an individual classification, but
they are more geared towards an understanding of the model as a whole.
In this chapter, we study global interpretations.

Interpretation Models. Formally, we aim at global post-hoc interpretations of
the following form:

Definition 3.2.1. Given a set S of labeled data points and a labeled input point
i ∈ S , an interpretation of point i is a set of conditions that i satisfies so that the
majority of the data points in S that satisfy these conditions carry the same label
as i.

An interpretation model is then a model that can provide such interpretations.
This definition applies to a wide variety of models, be it decision trees,
Bayesian rule lists, linear models, or our own method. Let us now discuss
some quality metrics of such models.

Fidelity. All post-hoc approaches have the problem that the interpretation model
usually deviates from the black box model because it has to be simpler than
the black box model. If the model deviates for a given point, the approach
cannot deliver an interpretation for this point.

40

Thus, fidelity is just the ratio of points on which the surrogate model agrees
with the complex model. In the case of a decision tree trained on S, the
fidelity is just the weighted average confidence of the leaf nodes.

Confidence. An interpretation will identify some characteristics of the input
point, and say that the majority of points with these characteristics are clas-
sified in a certain way. Naturally, such an interpretation is more convincing
when that majority is larger. To quantify this intuition, we define the notion
of confidence:

Definition 3.2.2. Given an interpretation modelM, a labeled dataset S, and a
labeled input data point i ∈ S that the model can interpret, the confidence at
point i is the ratio of data points of S that satisfy the interpretation of i and share
the label of i over the data points of S that satisfy the interpretation of i.

This definition can be generalized to the average confidence of the modelM
on the set S, which is simply the average confidence for all points of S.
In the case of a decision tree trained on S, the average confidence is just
the weighted average confidence of the leaf nodes (and thus identical to
fidelity). In general, however, the fidelity gauges the percentage of data
points where the model applies (no matter their class). The confidence, in
contrast, measures whether the data points concerned by the interpretation
are of the same class. In this way, confidence corresponds to the precision
of the interpretation of the set of cases to which it applies. Optimizing only
confidence for a given class may reduce the fidelity.

Generality. An interpretation will be more convincing if it applies to more input
data points. For example, imagine an interpretation model in the medical
domain that provides interpretations based on the social security number
of the patient. This model will have high fidelity and high confidence
because it just “explains” the illness of the patient by her social security
number. To avoid such interpretations, we need the notion of generality:

Definition 3.2.3. Given an interpretation modelM, a labeled dataset S, and a
labeled input data point i ∈ S that the model can interpret, the generality at point
i is the ratio of data points in S that satisfy the interpretation of i and share the
label of i over all the data points of S that share the label of i.

The larger that percentage, the more satisfactory the interpretation will be.
We define generality as a measure relative to the class size in order to be
scale-invariant, and in order to guard against skewed class distributions.
Generality thus corresponds to the recall of the interpretation on the set of
all data points with the same label.

41

(a) Complex model (b) Interpretable model for
left class

(c) Interpretable model for
right class

Figure 3.1: In order to approximate the complex decision boundary of the black
box model (Figure 3.1a), we train two specialised surrogate models: One, shown
in Figure 3.1b, overgeneralizes the “square” class. The other, shown in Figure 3.1c,
overgeneralizes the “circle” class.

Complexity. The goal of an interpretation model is to provide interpretations
that are as simple as possible. Intuitively, the complexity of an interpreta-
tion corresponds to the number of conditions it contains: Simpler interpre-
tations have fewer conditions. Formally, the complexity of an interpretation
depends on the type of the interpretation model. For decision trees, the
complexity of an interpretation is usually the length of the path from the
root to the leaf node (Guidotti et al., 2018b). The worst-case complexity of
a tree is the maximal depth.

3.3 Method’s Approach

Goal. Our approach receives as input a black box classification model. It pro-
duces as output a surrogate model, which makes (by and large) the same pre-
dictions as the black box model but is simpler and thus easier to understand.
When this surrogate model is presented with a new data point of a class C, it will
produce an interpretation such as: “This data point has the characteristics X, Y, Z
and was classified as C. There are 500 other data points with these characteristics and
80% of them are also classified as C.”
Approach. The key idea of our method is to generate not a single surrogate
model but one specialized surrogate model for each class. Each specialized
model is trained to overgeneralize its class. Figure 3.1 exemplifies this for a binary
classification model: model (a) is the black box model. Model (b) overgeneralizes
the “square” class, while model (c) overgeneralizes the “circle” class. We then
interpret an incoming data point in two steps:

42

1. We first classify the data point by the black box model. This may appear
to be cheating, but the goal is not to replicate the black box model in its
absence. Rather, the goal is to interpret a prediction of the black box model.
Thus, this prediction is necessarily available. In Figure 3.1, if we receive
the point marked by a star, we classify it as “square”.

2. We then use the specialized surrogate model for that class to provide an
interpretation. In the example, we use the model of Figure 3.1 (b). The
result is an interpretation such as: This data point has the characteristics of
Model (b), and was classified as “square”; there are 30 other data points
with these characteristics, and 80% of them are also classified as “square”.

Fulfilment of the Desiderata. For the specialized models, we use decision trees
with limited depth. This entails that our interpretations have a low complexity.
Since we have one specialized tree per class, their combination is still sufficiently
complex to approximate the black box model. We thus achieve a high fidelity.
Finally, our trees are constructed in such a way that they maximize both the
percentage of correctly classified points (the confidence) and the percentage of
points of the target class (the generality).

In general, training more trees leads to higher confidence, less complexity
per tree, and higher fidelity. Thus, one could think that one should simply train
many more trees. However, more trees lead to a decrease in generality. If we train
only one tree per class, in contrast, this does not lead to a decrease in generality.
This is because generality is computed per class. Furthermore, one tree per class
satisfies our goal of providing global interpretations: A single tree provides a
human-understandable interpretation of a single, entire class.

3.4 Training algorithm

We are given a black box N -class classification model, and a set S of data
points. We want to construct a surrogate model that can interpret these points.
As is customary, we use the black box model to label the data points S. On this
labelled dataset, we train one decision tree per class in a one-vs-all fashion.

Our goal is to train our class-specific trees in such a way that they maximize
confidence and generality. For this purpose, we do not use standard metrics
such as the Gini Impurity Index or the Information Gain when deciding a split
on a node in the decision tree. Rather, we employ the F1 score.

The F1 score is a measure of the model’s accuracy on the dataset and is
defined as a harmonic mean of precision and recall:

F1 = 2× Precision×Recall

Precision+Recall
(3.1)

43

Precision and recall are defined for a binary classification scenario. Precision
is the ratio of true positives (TP), i.e. of positive data points that the model
has classified as such, and overall data points that the model has classified as
positive. The recall is the ratio of true positives, i.e., the ratio of positive data
points that the model has classified as such, overall positive data points in the
dataset:

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

where FP and FN represent false positives and false negatives, respectively.
If we recall the definitions of confidence (Def. 3.2.2) and generality (Def. 3.2.3),

we can see that they directly correspond to the definitions of precision and recall,
respectively, in our scenario of one tree per class. It is worth mentioning that
optimizing only one of these two metrics would lead to pathological solutions.
Optimizing only precision would result in splits that are highly confident but
that would not cover a lot of data points (i.e., the generality would be low). In
the extreme case, the split would single out only one data point, resulting in
a confidence of 100%. On the other hand, optimizing only for recall, the split
would tend to encapsulate as many points of one class as possible, including
many points of the other classes, thus significantly degrading the confidence.
The F1 score is the harmonic mean of precision and recall and is thus a natural
metric to optimize both desiderata together. It complies with our approach in
multiple aspects:

• It is an asymmetric metric (false positives and false negatives count dif-
ferently), and thus it fits our strategy of training one surrogate model per
class in a one-vs-all manner.

• It is a widely used metric for the evaluation of classifiers, and optimizing it
will thus, by definition, not harm fidelity.

• It optimizes both confidence and generality.

• It does not require any user-defined parameters.

In fact, our training algorithm has just one user-defined input: the desired
complexity of the interpretation, i.e. the maximal depth of the surrogate decision
trees. Our method trains one decision tree per class on the labelled S , using the
F1 score to decide node splits, and limiting the depth of the trees as specified
by the user. The tree growth stops when the gain in the split metric is less or

44

equal to zero or when the maximal depth has been reached. The output of our
algorithm is a set of decision trees, one for each class.

Let us now discuss how we can provide an interpretation for a given input
data point. Algorithm 1 receives as input the black box model M , a data point
x, and the surrogate trees {Tc}Nc=1 for each of the N classes. We first use M to
classify x. Then we check if the corresponding surrogate tree Tc agrees with
M . If so, we produce an interpretation: The characteristics of the data point
can be read off the path from the root of Tc to the leaf for x. The generality and
confidence can be found directly at the leaf node. If Tc does not agree with M
on x, we are in an area that fell victim to the constraint of limited complexity,
and we cannot provide an interpretation. (If many data points fall in this area,
fidelity suffers.)

Algorithm 1 Interpret with STACI

Input: black box Model: M
Data point x
Surrogate trees {Tc}Nc=1

1: c = M(x)
2: if Tc(x) = c then
3: return “This data point has the characteristics Tc.pathFor(x), and is clas-

sified as c. There are Tc.numSamples(x) − 1 other data points with these
characteristics, and Tc.leafConf(x)% of them are also classified as c.“

4: end if
5: return “STACI cannot provide an interpretation.“

Theorem 3.4.1. Let M (Figure 3.2a) be an interpretable model trained on a labeled
dataset D with 2 classes – C0 and C1. Let’s denote correctly classified instances as TC0M
and TC1M and wrongly classified ones as FC0M and FC1M . Then let P (Figure 3.2b)
be an interpretable model, trained on the same dataset D, such that M ̸= P . Similarly,
let TC0P and TC1P be the sets of correctly classified and FC0P and FC1P of wrongly
classified instances. Now, consider a case where model M is not perfect, i.e.

F1C1
M =

2|TC1M |
2|TC1M |+ |FC1M |+ |FC0M |

< 1 ∧ F1C1
P ≥ F1C1

M , (3.4)

where F1C1
M is F1 score for model M when C1 is considered as positive class and

analogously F1C1
P is the same for model P . We build a STACI model as M + P , such

that model M interprets the instances of class C0 and model P interprets instances of
class C1. Then the STACI model has a higher fidelity and higher average F1 measure
than model M .

45

(a) Single model (b) Two models

Figure 3.2: Binary classification scenario

Proof. We will first provide the proof for fidelity and then for the F1 measure.

1° When only one model is available, M (Figure 3.2a), fidelity is actually the
ratio of correctly classified instances:

fidelityM =
|TC0M |+ |TC1M |

|D|
(3.5)

2° After adding the second model P (Figure 3.2b), the fidelity can be computed
as:

fidelityM+P =
|TC0M |
|D|

+
|TC1M |
|D|

+
|TC0P \ TC0M |

|D|
+
|TC1P \ TC1M |

|D|
(3.6)

We want to prove that fidelityM+P > fidelityM . From Equations 3.5 and 3.6, we
have:
|TC0M |
|D|

+
|TC1M |
|D|

+
|TC0P \ TC0M |

|D|
+
|TC1P \ TC1M |

|D|
>
|TC0M |+ |TC1M |

|D|
(3.7)

Removing common factors we get:

|TC0P \ TC0M |+ |TC1P \ TC1M | > 0 (3.8)

Which, taking into account the assumption that model M is not perfect, is always
true since we can create model P by just changing one of the wrong predictions
of the model M .

Now we provide the proof for the average F1 measure:

46

1° We compute the average F1 metric for the scenario in Figure 3.2a, as:

AverageF1M =
|TC0M |F1C0

M

|D|
+
|TC1M |F1C1

M

|D|
(3.9)

2° For the scenario in Figure 3.2b, the average F1 measure is given by:

|TC0M |F1C0
M

|D|
+
|TC1P |F1C1

P

|D|
+
|TC0P \ TC0M |F1C0

P

|D|
+
|TC1M \ TC0P |F1C1

M

|D|
(3.10)

Comparing 1° and 2° we get:

|TC1P |F1C1
P +|TC0P \TC0M |F1C0

P +|TC1M \TC1P |F1C1
M > |TC1M |F1C1

M (3.11)

According to our assumption: F1C1
P ≥ F1C1

M , we can exchange:

F1C1
M |TC1P |+ |TC1M \ TC1P | − |TC1M |+ |TC0P \ TC0M |F1C0

P > 0 (3.12)

This gives us two conditions:

|TC1P |+ |TC1M \ TC1P | − |TC1M | > 0 ∨ |TC0P \ TC0M | > 0 (3.13)

Which results in the same conditions as in the proof for fidelity:

|TC1P \ TC1M | > 0 ∨ |TC0P \ TC0M | > 0 (3.14)

This comes down to the same conclusion as in the case of fidelity, proving that
adding additional model P improves both fidelity and F1 measure.

3.5 Regression

The STACI method that has been presented in 3.3 naturally supports only clas-
sification problems. The main idea of the approach is to train one interpretable
model per class and optimize the F1 measure, which accords directly and only
to the classification task. In this subsection, we describe the extension of our
approach to enable the support for regression tasks.

Contrary to the classification, where the task is to assign a discrete class label
to the input data, in the regression task we assign a real value to each input data
point. For example, the regression tasks are: predicting the price of real estate,
the number of people visiting a certain event, electricity power consumption,

47

etc. To enable our approach to support regression tasks, we adopt the idea of
solving the regression by classification proposed by Torgo and Gama (1996). The
main idea is to map the regression task to a classification one, by dividing the
original continuous class values into a series of intervals, and then each of these
intervals will represent one discrete class. This step can be considered as a data
pre-processing step. After mapping the continuous class value into discrete class
labels, we train the interpretable models in the same way as for the classification
task. The prediction is also made similarly to in the classification task, on the
leaf of the decision tree. Instead of the discrete class label, the median value
is computed on the leaf. In this way, the accuracy of the predictions doesn’t
depend only on the number of discrete intervals, but it can also be improved by
increasing the tree depth.

The mapping of continuous values to discrete class labels can be seen as a
clustering task. One of the main caveats here is the fact that usually, we don’t
know the true number of clusters. To overcome this challenge we propose several
scenarios. Depending on the level of the domain knowledge, the user can choose
to provide:

• The width of the intervals i.e. the range, in which case we apply Equal width
intervals (EW) division strategy. The whole range of the target variable
is divided in n intervals of the same width, regardless of the number of
points inside each interval.

• The size of intervals i.e. the number of points that each interval contains,
in which case we apply the Equal frequency intervals(EF) division strategy.
Contrary to the previous case, the width of the intervals can vary, but the
number of data points in each interval is approximately the same.

• The number of intervals i.e. the number of discrete classes. In this case,
the user provides the number of intervals n, based on which we compute
intervals using both, previously mentioned approaches (EW and EF) and
K-means (Hartigan and Wong, 1979). For the first two approaches, we
compute the width of the interval (EW) and the number of data points pre-
interval (EF), based on the given number of intervals n. For each approach,
we compute the Silhouette score (Rousseeuw, 1987), and select the division
strategy that achieves the highest value. The Silhouette score represents the
cluster validation metric and it is computed using the following equation:

Silhouette score =
b(i)− a(i)

max(a(i), b(i))
(3.15)

where a(i) is the average distance between the data point i and the rest
of the data points of the same cluster, and b(i) is the minimum average

48

distance between data point i and all data points in each cluster that i
doesn’t belong to. The Silhouette score takes values in range [−1, 1]. The
Silhouette score of 1 means that the clusters are well apart.

• Maximal percentage error of discretization, which is computed as weighted
mean absolute percentage error (WMAPE), which represents a variation of
mean absolute percentage error (MAPE), adjusted to avoid infinite values
of error when the true value is equal to 0:

WMAPE =

∑n
i=1 |yi − ŷi|∑n

i=1 |yi|
(3.16)

In this case, we increase the number of intervals until the WMAPE is smaller
or equal to the given maximal allowed error. Similar to the previous case,
we employ all three methods for mapping and choose the one that first
reaches the requested maximal allowed error rate. If multiple approaches
reach the requested error rate at the same time, we choose the approach
that achieves the highest Silhouette score.

• No input at all. There are many situations when the user is not familiar
with the data and lacks domain knowledge, which would help them to
propose how the continuous values should be mapped into discrete classes.
If this is the case, there is no need for the user to provide any of the previ-
ously mentioned parameters. We employ the non-parametric clustering
method UNIC proposed by Leopold and Rose (2020). The UNIC method
computes the cluster borders and the optimal number of clusters, based
on the distances between several arbitrarily chosen points and the rest of
the dataset. We then use the number of clusters acquired using the UNIC
algorithm to compute the clusters using previously mentioned methods:
EW, EF, K-means. Additionally, we explore the clustering results for several
different numbers of clusters, in the neighbourhood of the one proposed by
the UNIC algorithm. We compare the methods, again, using Silhouette score
and select the best one.

3.6 Experiments

We perform an extensive experimental evaluation of our approach on the
datasets of the UCI Machine Learning repository. We compare the performance
of our approach with the state of the art method DTExtract (Bastani et al., 2017),
the interpretable-by-design method SBRL (Yang et al., 2017), LIME (Ribeiro et al.,
2016), and CART (Breiman et al., 1984) as a baseline. We have also conducted a

49

user study to validate the desiderata defined in Section 3.2 and to determine the
users’ preferences.

3.6.1 Competitors

One of the first global methods was TREPAN (Craven and Shavlik, 1996),
which queries the complex model in order to train a decision tree that mimics its
behavior. Dectext (Boz, 2002) refined this idea by using different types of splits
in the decision tree and a specific tree pruning strategy to improve its fidelity.
Another method based on decision trees (Johansson and Niklasson, 2009) uses a
genetic programming algorithm to sample new data points, which are then used
to learn the behavior of the black box model. A recent global approach (Bastani
et al., 2017) proposes DTExtract, a method that first fits a mixture of axis-aligned
Gaussians to estimate the input distribution over features of the training dataset.
Then the method builds binary decision trees iteratively, using an active sam-
pling strategy.
As mentioned before, the main challenge when building surrogate models is
the trade-off between fidelity and complexity. There are different approaches to
tackle this trade-off: limiting the number of nodes in the surrogate tree (Bastani
et al., 2017; Craven and Shavlik, 1996), applying specific pruning algorithms (Boz,
2002), or stopping the growth of the tree when a node covers the instances of
only one class with high probability (Craven and Shavlik, 1996).
In contrast to all of these works, our approach builds not a single surrogate model,
but one per class. This allows us to achieve high fidelity and low complexity
without corrupting the resulting models through pruning. In our experiments,
we compare our approach to the state of the art global post-hoc method, DTEx-
tract (Bastani et al., 2017). We also compare to a model that is interpretable by
design (Scalable Bayesian Rule Lists (Yang et al., 2017)), to LIME (Ribeiro et al.,
2016), and to CART (Breiman et al., 1984) as a baseline.

3.6.2 Settings

Datasets. All the datasets used in our experiments are publicly available at the
UCI Machine Learning Repository (Dua and Graff, 2017). Table 3.1 shows their
key characteristics.
Metrics. We report the four metrics from Section 3.2: The complexity is the
average depth of the path for the decision trees, the number of rules for SBRL,
and the number of features in the explanation for LIME. The confidence is the

2We used a subset of Adult dataset, removing less relevant features (race and native-country)

50

Table 3.1: Datasets

Dataset Features Num. Cat. Classes Instances

Heart 13 6 7 2 303
Breast 31 31 0 2 569
Diabetes 8 8 0 2 768
Voting 16 0 16 2 435
Sick 29 7 22 2 2800
Hypothyroid 25 7 18 2 3163
Adult2 11 5 6 2 30162
Wine 13 13 0 3 179
Dermatology 34 33 1 6 358
Vehicle 14 18 0 4 846

average confidence on the decision path of the decision tree, the confidence of
the firing rule in the case of SBRL, or the confidence of the set of conditions in
the case of LIME. The fidelity is the percentage of data points where the model
agrees with the black box model. The generality is the percentage of the data
points of one class that is covered by an interpretation.
Black-box Models. For every dataset, we train two different black box models, a
Neural Network and a Random Forest. We use the implementations of the scikit-
learn Python package (Pedregosa et al., 2011). We train the Multi Layer Perceptron
classifier with 500 nodes in the hidden layer and the Random Forest classifier with
1000 trees. We use 10% of the data as the test set.
Systems. For DTExtract3 and SBRL4, we use the code published by the authors.
For CART, we train the decision tree with limited depth, as we do for our method.
We train SBRL using the default parameters and setting the length of the rule
list to 10. Since this method supports only categorical features, we discretize the
numerical features. Also, SBRL doesn’t support the multi-class scenario, and
we thus cannot provide results for the Wine, Dermatology and Vehicle datasets.
For LIME5, we use its global version, where Submodular pick algorithm is
used to provide multiple explanations that represent the black box model as a
whole. We fix the number of features to the maximal number of conditions. We
allow an arbitrary number of explanations for each dataset, except for Adult,
Sick and Hypothyroid datasets, where we limit the number to 1000. To validate
our method, we also evaluate the fidelity of a modified STACI method, called

3https://github.com/obastani/dtextract
4https://github.com/Hongyuy/sbrl-python-wrapper
5https://github.com/marcotcr/lime

51

Table 3.2: Fidelity (%) with NN as black box model

Dataset DTE SBRL LIME CART STACI’ STACI

Heart 87.34 85.88 84.84 80.97 79.68 84.84
Breast 94.93 91.57 87.28 89.65 91.05 93.16
Diabetes 80.58 83.38 71.49 75.19 76.23 84.55
Voting 95.91 94.55 95.34 95.34 94.55 95.00
Sick 97.88 97.25 75.36 96.66 97.79 98.46
Hypo. 96.39 97.88 94.32 98.99 98.45 99.31
Adult 92.35 93.88 87.56 73.53 98.23 99.58
Wine 91.11 N/A 52.78 66.67 86.67 97.78
Derma. 94.86 N/A 82.70 80.28 95.28 96.11
Vehicle 74.47 N/A 54.71 69.06 68.24 86.35

STACI’. This method does not have access to the black box model at testing time.
For each prediction, it computes the average confidence along the decision path
of each surrogate tree. The confidence of a node in the tree is computed as the
ratio of correctly classified data points by the split on that node over the total
number of data points on that node. Finally, the method uses the tree with the
highest average confidence to make the prediction. Thus, STACI’ is a kind of
disadvantaged variant of STACI, which has to make do without access to the
black box model at testing time.

We train our models on 90% of the dataset, run all experiments on 20 random
train/test splits, and report the averaged results. The code for our approach,
as well as all experimental data, is available at https://github.com/nedRad88/
STACI.
Fidelity. The results of the fidelity comparison are shown in Table 3.2 for the NN
model, and in Table 3.3 for the RF model. We can see that our method, STACI,
outperforms all competitors in most cases. This is not surprising, because STACI
has one tree per class to ensure fidelity. Even our disadvantaged method STACI’
outperforms competitors in several cases, while in others it has comparable
performance. This means that our training algorithm successfully ensured a high
fidelity of the specialized surrogate trees.
Complexity. Table 3.4 shows the average complexity of the surrogate models.
CART and LIME always have the same complexity – simply because we set the
maximal depth of the trees (in CART) and the maximal number of conditions (in
LIME) to the same value as the maximal depth of the tree for our approach. We
show that interpretations provided by our approach are usually shorter than the
ones of DTExtract and SBRL.

52

https://github.com/nedRad88/STACI
https://github.com/nedRad88/STACI

Table 3.3: Fidelity (%) with RF as black box model

Dataset DTE SBRL LIME CART STACI’ STACI

Heart 87.10 88.06 91.13 86.94 83.87 92.90
Breast 96.32 92.21 89.82 96.49 92.63 97.89
Diabetes 87.86 87.01 71.56 85.00 81.82 94.16
Voting 97.96 96.59 98.07 97.05 98.86 98.86
Sick 99.43 94.61 73.93 99.20 97.86 98.46
Hypo. 98.97 95.93 93.85 99.45 99.31 99.96
Adult 83.89 87.56 80.36 89.69 85.73 96.74
Wine 91.67 N/A 62.78 93.89 91.11 96.67
Derma. 96.75 N/A 76.98 90.00 93.06 96.39
Vehicle 74.35 N/A 58.33 72.94 70.82 86.11

At the same time, the complexity of STACI remains always limited, even in
the worst case. That is not the case for our competitors: Table 3.5 shows the
maximal complexity of an interpretation. In the worst case, DTExtract and SBRL
will deliver interpretations of more than 10 conditions. STACI, in contrast, always
delivers simple interpretations, as the maximum tree depth is fixed. The method
can still keep a high fidelity because it uses multiple surrogate trees.
Confidence. Tables 3.6 and 3.7 show the average confidence of the interpretations
for the two different black box models. As we can see, STACI gives interpretations
with higher confidence in most cases.
Generality. We compare the generality of our model and DTExtract in Table 3.8.
STACI has higher generality in most cases. Even though there is a clear trade-off
between confidence and generality (or precision and recall), the results show
that our specific training strategy and choice of F1 measure successfully solves
this challenge.

In summary, our method outperforms the other methods in terms of all four
aforementioned criteria: fidelity, complexity, confidence and generality. Thus,
STACI overcomes the trade-off between confidence and generality, achieves
higher fidelity, and still never delivers long interpretations. Figure 3.3 shows an
example interpretation given by our system.

3.6.3 Counterfactuality

In this section, we discuss another property of interpretations: counterfactu-
ality. An interpretation for a data point is counterfactual if the following is true: If
we modify the data point in such a way that the conditions of the interpretation

53

Table 3.4: Average Complexity

Dataset Black DTE SBRL LIME CART STACI

Heart NN 3.15 3.90 3 3 2.89
RF 3.11 2.29 4 4 3.28

Breast NN 2.88 4.20 3 3 1.9
RF 3.18 6.16 4 4 2.88

Diabetes NN 2.89 5.78 3 3 1.49
RF 2.75 7.21 4 4 1.85

Voting NN 3.11 1.57 3 3 1.58
RF 3.00 1.63 3 3 1.69

Sick NN 2.40 3.64 3 3 1.40
RF 2.25 3.77 3 3 2.07

Hypo. NN 2.58 4.50 3 3 1.20
RF 2.16 4.78 3 3 1.09

Adult NN 3.25 8.49 4 4 1.87
RF 2.75 7.22 4 4 1.83

Wine NN 3.95 N/A 3 3 2.42
RF 4.29 N/A 4 4 2.93

Derma. NN 4.91 N/A 3 3 2.24
RF 4.85 N/A 4 4 2.36

Vehicle NN 3.99 N/A 3 3 2.68
RF 4.50 N/A 4 4 2.91

no longer hold, then the black box model classifies the data point differently.
Counterfactuality is a very attractive property, and counterfactual interpretations
have been considered tantamount to explanations (Miller, 2018; Wachter et al.,
2017b). That said, counterfactuality alone is not sufficient: A counterfactual
interpretation could just pose a condition that is so extreme that it is guaranteed
to catapult the data point out of its current class – as in “You suffer from senil-
ity because you are not a baby. If you were a baby, you would not be senile.”
Such explanations are obviously absurd. Therefore, counterfactuality is always
accompanied by the requirement to find the smallest modification that changes
the class of the data point (Wachter et al., 2017b) – as in “You suffer from senility
because you are older than 100 years.” Counterfactuality in this sense is not
possible in the global setting, because it inherently depends on the individual
data point. Therefore, there are no guarantees that our approach will provide
such explanations. However, we can assess counterfactuality a posteriori.

We report the counterfactuality as the percentage of data points for which

54

Table 3.5: Maximal Complexity

Dataset Black DTE SBRL LIME CART STACI

Heart NN 9.30 7.00 3 3 3
RF 10.80 5.4 4 4 4

Breast NN 10.30 6.55 3 3 3
RF 9.4 11.00 4 4 3

Diabetes NN 9.50 10.40 3 3 3
RF 10.2 11.90 4 4 4

Voting NN 10.85 3.80 3 3 3
RF 11.30 4.10 3 3 3

Sick NN 10.50 5.60 3 3 3
RF 10.60 7.60 3 3 3

Hypo. NN 9.7 6.40 3 3 3
RF 10.00 6.10 3 3 3

Adult NN 10.6 12.20 4 4 4
RF 10.8 18.85 4 4 4

Wine NN 7.8 N/A 3 3 3
RF 6.7 N/A 4 4 4

Derma. NN 8 N/A 3 3 3
RF 8.5 N/A 4 4 4

Vehicle NN 6.4 N/A 3 3 3
RF 6.4 N/A 3 3 3

Table 3.6: Confidence (%) of the interpretations (NN)

Dataset DTE SBRL LIME STACI

Heart 85.04 87.83 78.80 88.57
Breast 94.18 93.47 88.95 95.57
Diabetes 81.71 84.50 60.11 83.47
Voting 95.17 95.56 94.84 95.91
Sick 97.17 96.55 77.96 97.83
Hypo. 97.38 97.63 86.92 98.98
Adult 92.46 93.85 75.34 98.20
Wine 88.58 N/A 90.36 92.23
Derma. 78.63 N/A 53.12 89.21
Vehicle 66.02 N/A 40.41 74.98

55

Table 3.7: Confidence (%) of the interpretations (RF)

Dataset DTE SBRL LIME STACI

Heart 82.28 81.75 85.74 80.38
Breast 93.49 91.86 95.33 95.52
Diabetes 76.23 77.33 68.00 80.22
Voting 96.50 95.30 94.98 95.89
Sick 97.61 93.90 74.55 97.79
Hypo. 98.08 95.81 95.82 99.07
Adult 80.12 82.21 82.09 87.53
Wine 88.84 N/A 59.82 93.48
Derma. 78.83 N/A 64.48 90.00
Vehicle 59.45 N/A 52.99 61.38

Table 3.8: Generality comparison and counterfactuality

Dataset Black DTE STACI Counterfactuality

Heart NN 59.21 76.63 66.81
RF 58.83 68.35 64.63

Breast NN 80.31 92.59 75.20
RF 84.82 88.67 7.88

Diabetes NN 66.92 74.47 72.33
RF 64.23 71.51 90.99

Voting NN 73.37 95.01 64.39
RF 82.14 95.15 69.89

Sick NN 94.70 94.18 17.14
RF 93.39 94.65 30.44

Hypo. NN 89.62 97.08 10.99
RF 96.79 96.94 15.32

Adult NN 92.06 95.53 52.35
RF 92.25 73.84 42.12

Wine NN 77.03 86.67 69.38
RF 79.51 85.12 22.27

Derma. NN 91.74 91.33 12.99
RF 91.54 91.54 9.11

Vehicle NN 53.98 68.70 48.21
RF 46.16 55.54 27.39

56

The datapoint
Pregnancies 5
Glucose 166
Blood pressure 72
Skin thickness 19
Insulin 175
BMI 25.8
Diabetes pedigree 0.59
Age 51

is classified as diabetic. It has these characteristics:
Glucose>154, Insulin>145, Age>30

There are 37 other data points with these characteristics,
and 94.59% of them are also classified as diabetic.

Figure 3.3: Example of a STACI interpretation

the prediction of the black box model changes when we modify the data point
so that it no longer satisfies the conditions of the interpretation. The results are
shown in Table 3.8. As we can see, our approach is able to achieve a respectable
ratio of counterfactuality, despite not being designed for it.

3.6.4 Regression experiments

As we have shown in Section 3.5, STACI can also interpret regression black-
box models. We run similar experiments as for the classification task. We run
experiments for both Neural Network and Random Forest as black-box models.
We compare it to TREPAN and LIME but not SBRL, since they do not support
regression problems. As a baseline, we again use the CART regression decision
tree, with the same depth as the surrogate trees of STACI. We evaluate these
methods on several regression datasets from the UCI Machine Learning Reposi-
tory (Dua and Graff, 2017) and Penn Machine Learning Benchmarks (Romano
et al., 2021). The datasets and their characteristics are listed in Table 3.9.

Tables 3.10 and 3.11 show the fidelity results for all the systems. The fidelity
is measured through RMSE (smaller is better). We can see that STACI is achieving
better results than its competitors in the majority of the cases and in the rest of
the cases has comparable performance.

As in the previous section, we measure the average and the maximal com-

57

Table 3.9: Regression Datasets

Dataset Features Num. Cat. Instances

Auto MPG 7 6 1 393
Bike 12 9 3 8761
Concrete 8 8 0 1031
Servo 4 0 4 168
Electrical 12 12 0 10000
Superconductivity 81 81 0 21263
White Wine Quality 11 11 0 4898
Real estate valuation 5 5 0 414
Wind 14 14 0 6574
CPU activity 12 12 0 8192
Echocardiogram 9 6 3 17496
Iranian Churn 11 8 3 3150

plexity. We again show that STACI provides the shortest interpretations in both
scenarios. CART and LIME always have the same complexity, because we set the
maximal depth of the trees (in CART) and the maximal number of conditions (in
LIME) to the same value as the maximal depth of the tree for STACI. But, taking
into account fidelity results, we can see that for the same level of complexity
STACI achieves better fidelity.

Finally, we compare the generality of interpretations provided by STACI to
those of DTExtract. We do not compare the confidence of the interpretations since
it is not defined for regression problems. Only in the case of STACI, it is possible
to compute it because the regression problem is solved using first clustering
and then classification. Having in mind the regression setup, we compute
generality with regards to the total number of data points in the training set.
Recall that for the classification task, we reported generality as percentage of data
points of that class. In this scenario, the generality of interpretations of STACI
is impacted by the clustering step. A bigger the number of clusters produces
a lower generality. At the same time, it allows for better fidelity. Nevertheless,
STACI is able to achieve both better fidelity and generality than its competitors.
On top of that, STACI provides much shorter interpretations. Additionally, no
matter the number of clusters, interpretations of STACI cover on average 65% of
the data points from the same cluster (class).

58

Table 3.10: Fidelity (RMSE) with RF as black box model

Dataset DTE LIME CART STACI’ STACI

Auto MPG 1.59 3.66 2.31 3.77 2.61
Bike 283.31 640.47 356.98 537.41 145.93
Concrete 6.85 10.40 8.61 9.53 6.18
Servo 0.23 1.22 0.60 1.46 0.22
Electrical 0.02 0.04 0.02 0.03 0.01
Superconductivity 14.72 33.10 12.58 35.44 10.69
White Wine Quality 0.39 0.51 0.41 0.57 0.37
Real estate valuation 4.46 8.69 4.94 6.96 3.44
Wind 1.89 3.95 2.26 3.10 1.42
CPU activity 3.09 19.23 4.16 6.57 4.82
Echocardiogram 3.80 6.59 3.72 8.60 3.88
Iranian churn 88.51 238.54 117.98 172.72 68.10

3.7 User study

To evaluate which characteristics of the interpretations are subjectively most
valuable, we conducted a user study. We used the Diabetes dataset and trained a
Random Forest with 1000 trees as a black box model. Then, we trained three in-
terpretable models: DTExtract, LIME and STACI. The length of the interpretation
was set to 3 for both LIME and STACI. For LIME we show only the features that
had a positive influence (weight) on the outcome. Each participant in the user
study was invited to look at a single patient. We showed the data of this patient
and the model prediction, and we proposed the interpretations provided by the
three approaches. In this study, we are not interested in the visual representation
of the interpretations, so we showed all three interpretations in textual form.
Each interpretation consists of the set of conditions identified by the model. Since
STACI also provides confidence and generality, we computed the same measures
for the other two systems as well and provided them to the participant. For
LIME, we also show the importance of each feature. We asked the participants
to evaluate how satisfactory each interpretation was, using a scale from 1 (least
satisfactory) to 5 (most satisfactory). We also asked them to identify which char-
acteristics of the interpretations were important for their choice: the length of
the interpretations, the feature importance, the confidence, or the generality. 55
people participated, and most of them have a background in computer science.

Table 3.14 shows the average characteristics of the interpretations provided
by each system and the average rating by the users. Our method achieves the

59

Table 3.11: Fidelity (RMSE) with NN as black box model

Dataset DTE LIME CART STACI’ STACI

Auto MPG 1.73 2.17 2.22 1.97 1.34
Bike 259.33 466.37 281.53 334.43 201.61
Concrete 7.47 8.08 8.81 8.38 5.33
Servo 0.31 1.22 0.75 0.55 0.37
Electrical 0.03 0.02 0.03 0.04 0.01
Superconductivity 21.46 35.53 12.44 13.91 9.03
White Wine Quality 0.23 0.43 0.27 0.36 0.20
Real estate valuation 1.72 4.62 2.58 3.85 2.62
Wind 2.27 4.73 2.47 2.86 1.84
CPU activity 126.91 27.41 323.67 110.75 54.86
Echocardiogram 1.60 4.31 1.56 1.90 1.37
Iranian churn 90.69 231.71 122.09 156.50 75.08

highest confidence and ranks second in generality after DTExtract. This is be-
cause DTExtract classified many instances on the root node. This entails shorter
interpretations, and more generality, but comes at the cost of confidence. LIME
achieves very low generality, which is because it provides local interpretations,
which are not designed to regroup many data points.

Overall, STACI achieves the highest user rating. The reason for this good
performance of STACI is shown in Figure 3.4: The users rated confidence and
generality as the two most valuable properties of interpretations. These are
exactly the metrics that we introduced in this work, and that STACI optimizes.
This preference for more general interpretations also explains why LIME, with its
local explanations, performs poorly: the participants did not like interpretations
that appear tailored to a few data points. The reason why STACI outperforms
DTExtract in the user rating is that users value confidence above everything else.
Hence, DTExtract’s strategy of providing short, general, but low-confidence inter-
pretations falls behind STACI’s more balanced approach of optimizing generality
and confidence at the same time.

Overall, our user study emphasizes the importance of generality and confi-
dence as qualities of an interpretation. and shows that the interpretations by our
method were considered the most satisfactory.

60

Table 3.12: Average Complexity

Dataset Black DTE LIME CART STACI

Auto MPG NN 4.98 4 4 3.51
RF 5.10 3 3 2.75

Bike NN 5.27 3 3 2.66
RF 5.35 3 3 2.41

Concrete NN 5.52 4 4 3.60
RF 5.38 3 3 3

Servo NN 5.64 4 4 3.24
RF 5.53 3 3 2.29

Electrical NN 5.61 3 3 2.64
RF 5.32 3 3 2.73

Superconductivity NN 5.39 3 3 2.82
RF 5.47 3 3 2.08

White Wine Quality NN 5.44 3 3 2.43
RF 5.69 3 3 2.07

Real estate valuation NN 5.24 3 3 2.51
RF 5.52 3 3 2.83

Wind NN 5.04 3 3 2.94
RF 5.09 3 3 2.58

CPU activity NN 3.71 3 3 2.37
RF 5.99 3 3 2.64

Echocardiogram NN 5.71 3 3 2.89
RF 4.87 4 4 2.73

Iranian churn NN 5.93 4 4 3.55
RF 5.73 3 3 2.86

61

Table 3.13: Maximal Complexity

Dataset Black DTE LIME CART STACI

Auto MPG NN 4.98 4 4 4
RF 5.10 3 3 3

Bike NN 5.27 3 3 3
RF 5.35 3 3 3

Concrete NN 5.52 4 4 4
RF 5.38 3 3 3

Servo NN 5.64 4 4 4
RF 5.53 3 3 3

Electrical NN 5.61 3 3 3
RF 5.32 3 3 3

Superconductivity NN 5.39 3 3 3
RF 5.47 3 3 3

White Wine Quality NN 5.44 3 3 3
RF 5.69 3 3 3

Real estate valuation NN 5.24 3 3 3
RF 5.52 3 3 3

Wind NN 5.04 3 3 3
RF 5.09 3 3 3

CPU activity NN 3.71 3 3 3
RF 5.99 3 3 3

Echocardiogram NN 5.71 3 3 3
RF 4.87 4 4 4

Iranian churn NN 5.93 4 4 4
RF 5.73 3 3 3

Table 3.14: User study

System Confidence(%) Generality(%) Length Average Rating

DTExtract 76.61 74.68 1.16 3.12
LIME 59.18 0.41 1.86 1.93
STACI 85.23 42.42 2.52 3.91

62

Figure 3.4: User preferences regarding characteristics of interpretations

0 5 10 15 20 25 30 35 40 45 50

Confidence

Generality

More Features

Feature Importance

Less Features

None

36.27

27.45

17.65

10.78

5.88

1.96

Percentage %

63

4
BELLA

Understanding the decision-making process of black-box models has become
a legal requirement and an additional way to assess their performance. How-
ever, the state of the art post-hoc explanation approaches rely on synthetic data
generation, which introduces uncertainty and can hurt the reliability of the ex-
planations. Furthermore, they tend to produce explanations that apply to only
very few data points. We present BELLA, a deterministic model-agnostic post-
hoc approach for explaining the individual predictions of regression black-box
models. BELLA provides explanations in the form of a linear model trained in
the feature space. BELLA maximizes the size of the neighborhood to which the
linear model applies so that the explanations are accurate, simple, general, and
robust. BELLA can produce both factual and counterfactual explanations. This
chapter is based on our paper Radulovic et al. (2023b), available as a pre-print.

Contents
4.1 Introduction . 65

4.2 Methodology . 66

4.2.1 Goal . 66

4.2.2 Desiderata . 67

4.2.3 Method . 68

4.3 Experiments . 75

4.3.1 Experimental setup . 75

4.3.2 Experimental results . 76

4.3.3 Verification on an interpretable model 81

64

4.1 Introduction

Several approaches exist to provide post-hoc explanations. However, most
of them have been naturally tailored for classification tasks, and only a few
can be applied to regression tasks. According to (Nauta et al., 2022), among the
papers that propose methods for explaining black-box models, only 10% consider
the regression task. The most prominent approaches of those who can handle
regression tasks are LIME (Ribeiro et al., 2016), SHAP (Lundberg and Lee, 2017)
and MAPLE (Plumb et al., 2018). Even though they have been widely adopted
because of their ease of use, they both rely on random feature perturbations that
introduce a level of uncertainty that can affect their trustworthiness (Zhang et al.,
2019; Slack et al., 2020). Moreover, while these approaches provide accurate
explanations, they do not optimize for their generality. Thus, they tend to
provide explanations that apply to very few data points. Finally, the explanations
by LIME and SHAP are not verifiable: they provide intuitive scores for the
importance of the different features, but they do not allow the user actually to
compute the predicted value from feature values. This means the user cannot
see how this explanation applies to neighboring data points.

With our approach, we aim to remedy these shortcomings: We present
BELLA (Black-box Explanations by Local Linear Approximations), which is,
to the best of our knowledge, the first deterministic model-agnostic post-hoc
approach for explaining the individual predictions of a regression. It has the
following properties:

• BELLA learns local linear surrogates that are not only simple, but also
accurately mimic the black-box regression model with high fidelity and
high generality.

• BELLA produces explanations that are verifiable, i.e., that humans can use
to compute the predicted value from the feature values.

• BELLA can provide both factual and counterfactual explanations (given a
reference value).

• BELLA is deterministic, and relies only on actually existing data points.
Therefore, it can be used without access to the predictive model, and can
interpret any real-valued variable of a tabular dataset.

We perform an extensive evaluation on several popular datasets from the UCI
Machine Learning Repository and Penn Machine Learning Benchmarks and
show that BELLA outperforms other state-of-the-art methodologies. The rest
of the chapter is organised as follows: Section 3.3 presents our new method,
BELLA. Section 4.3 evaluates our method on several datasets and compares it to
several state-of-the-art methods.

65

4.2 Methodology

4.2.1 Goal

We are given a tabular dataset T ⊂ F1 × ... × Fn, where each Fi is a set of
feature values. We are also given a function Y : T → R that yields, for each x ∈ T ,
a target value Y (x) ∈ R. These target values may, e.g., have been produced by a
black-box model, in which case the target value is a prediction. Consider now one
data point x ∈ T with its target value Y (x). We aim to compute an explanation in
the following sense Das and Rad (2020):

Definition 4.2.1. An explanation is additional meta information, generated by an
external algorithm or by the machine learning model itself, to describe the feature
importance or relevance of an input instance towards a particular output classification.

If the target value was produced by a black-box model, we cannot be sure post-
hoc that the features we identify really contributed to the computation of the
target value (the model may just as well have thrown a dice, independently
of any feature values). However, if several data points with these or similar
feature values produce a similar prediction, we can use abductive reasoning
to infer that these features may have contributed to the prediction, and that,
hence, the features constitute an explanation. This is in fact common in the
literature Ribeiro et al. (2016); Lundberg and Lee (2017); Radulovic et al. (2021);
Ignatiev et al. (2019).
Quality measures.. Several properties of “good” explanations have been pro-
posed. Some of them, such as plausibility and accordance with prior beliefs,
require human evaluation. Among the criteria that do not, we commonly
find Miller (2019); Guidotti et al. (2018b); Burkart and Huber (2021); Molnar
(2018):

1. Accuracy: we want the value that the surrogate model explains to be close
to value that the black-box model predicts.

2. Simplicity: we want the explanation to contain few features.

3. Robustness: we want similar data points to have similar explanations.

In addition, users tend to favor explanations that apply to many data points Radulovic
et al. (2021). This appears counter-intuitive, as we aim to explain only a single
data point, no matter the others. And yet, it is easy to see that an explanation
such as “You have a high risk of diabetes because your body mass index is 27,
your A1C level is 7%, and your blood sugar level is 210mg/dL” is little satis-
factory, as it allows no generalization. More helpful is to know that, generally,

66

people with a body mass index larger than 25, an AIC level above 6.5%, and a
blood sugar level of 200 mg/dL have a high risk of diabetes Mayo-Clinic (2023).
We would thus like to have:

4. Generality: we want the number of data points to which an explanation
applies to be large.

4.2.2 Desiderata

In addition to the above quality measures, there are also several criteria in
the literature that either apply or don’t apply to a given method of explanation.
One of them is Miller (2018); Wachter et al. (2017a):

5. Counterfactuality: the ability to provide a set of modifications to the data
point at hand that would entail a change in the decision of the black-box
model.

Counterfactuality is obviously of interest to a user who wishes not just to un-
derstand the prediction, but also to actively influence it (e.g., after having been
attributed a high risk of diabetes based on the results of a blood test).

Several methods for post-hoc explainability use randomization to probe the
black-box model. However, this entails that the same data can lead to different
explanations, which introduces uncertainty for the user Zhang et al. (2019); Slack
et al. (2020). We thus have:

6. Determinism: the avoidance of randomization steps

Finally, some methods Plumb et al. (2018) propose explanations that take the
form of a linear equation, which allows computing the predicted value from
the feature values. This is a very attractive property, as the user can toy with
the explanation and apply it also to neighboring data points. We thus have a
desideratum that we call

7. Verifiability: the possibility to compute the predicted value from the
feature values

Given this plethora of quality measures and desiderata, it is not surprising that no
existing method (including our own) can satisfy all of them perfectly. However,
we can at least show that our method ticks all desiderata, and outperforms
existing methods across nearly all quality measures.

67

4.2.3 Method

We are given a tabular dataset T , a data point x ∈ T , and a real-valued target
value y, and we aim to compute an explanation for this target value. Our idea is
to find a linear equation y ≈ w1 · f1 + w2 · f2 + · · · + wn · fn + w0, where wi are
real-valued regression coefficients and fi are feature values of x in T . Such an
equation tells the user (1) what the important features are and (2) how their can
be used to compute the predicted value. To find this equation, BELLA proceeds
in three steps (Algorithm 2):

1. Compute the distance of x to the other points in T .

2. Conduct a linear search to find the best neighborhood of x, according to a
defined metric.

3. Train a sparse linear model on that neighborhood, and propose this model
as an explanation.

Algorithm 2 BELLA
Input: Dataset T with labels Y

Labeled data point x ∈ T
1: d← ComputeDistances(x, T)
2: L,N ← OptimalNeighborhoodSearch(x, T, d)
3: return L,N

Step 1: Computing the distances.. To compute the neighborhood of the input
data point, we need a distance measure. A good starting point is to have all
numerical features on the same scale so that each feature contributes to the
distance measure in the same range. Therefore, we first standardize all numerical
features to have a mean of 0 and a standard-deviation of 1.

To compute the distances, we employ the generalized distance function Hariku-
mar and Surya (2015), which consists of three separate distance measures to
account for numerical, categorical, and binary data types, as follows:

d(x1, x2) =
mn∑
i=1

dn(x1i, x2i) +
mc+mn∑
j=mn+1

dc(x1j, x2j)+

mn+mc+mb∑
k=mc+mn+1

db(x1k, x2k) (4.1)

68

Here, mn, mc and mb are the number of numerical, categorical, and binary
features, respectively. The distance measure for the numerical attributes dn is the
L1 norm dn(x1, x2) = |x1 − x2|, which is preferred over L2, as it is more robust to
outliers Hopcroft and Kannan (2014). For categorical features, dc is the distance
measure Ahmad and Dey (2007), which takes into account the distribution of
values and their co-occurrence with values of other attributes. The distance
between two values x and y of an attribute Ai with respect to attribute Aj is
given by:

δij(x, y) = P (Aj ∈ ω|Ai = x) + P (Aj ̸∈ ω|Ai = y)− 1

Here, P (Aj ∈ ω|Ai = x) is the conditional probability that attribute Aj will take
a value from the set ω given that the attribute Ai takes the value x. ω is a subset
of all possible values of attribute Aj that maximizes the sum of the probabilities.
Since both probabilities can take values from [0, 1], we subtract 1 in order to arrive
at δij(x, y) ∈ [0, 1]. Lastly, for binary features, we use the Hamming distance:
dh(a, b) = 1 if a = b, and zero otherwise. In Line 1 of Algorithm 2, the function
ComputeDistances returns the distances by Eq. 4.1.
Step 2: Optimal Neighborhood Search.. After computing the distances, we
proceed with the exploration of the neighborhood of the input data point x. The
goal is to find a set of points, closest to x according to the distance measure,
that will serve as a training set for a local surrogate model. Several common
techniques could be considered to that end, including kNN, K-Means, and other
distance-based clustering methods. In our case, however, we aim to find a
neighborhood such that a linear regression model trained on that neighborhood
represents an accurate local approximation of the black-box model. Hence, the
quality of the neighborhood is proportional to the quality of the performance
of the linear model fitted on it. Common drawbacks of regression evaluation
metrics metrics are missing interpretability, sensitivity to outliers and near-zero
values, divisions by zero, missing bounds, and missing symmetry. We find that
the Berry-Mielke universal R value ℜ Berry and Mielke Jr (1988) avoids most of
these pitfalls. ℜ represents the measure of agreement between raters and it is a
generalization of Cohen’s kappa Cohen (1960). ℜmeasures how much better the
model is compared to a naive one (e.g., to a random predictor). ℜ takes values
from the range [0, 1], and it can be interpreted easily: If ℜ is equal to 0, the model
performance is equal to the one of the random model and if it is 1, then the model
has perfect performance. ℜ is defined as ℜ = 1− δ

µ
, where δ and µ are defined as:

δ =
1

n

n∑
i=1

∆(ŷi, yi), µ =
1

n2

n∑
i=1

n∑
j=1

∆(ŷj, yi). (4.2)

Here, n is the number of samples, yi is the actual target value, ŷi is the predicted

69

y

x

y

x

Figure 4.1: Left: an explanation for a data point x that is too specific, applying
only to a very small neighborhood. Right: An explanation that applies to a larger
neighborhood, which is what we aim at.

value, and ∆(·) represents the distance function between the true and the pre-
dicted value. The original work by Berry and Mielke Jr (1988) uses the Euclidean
distance, but later works Janson and Olsson (2001, 2004) propose to use the
squared Euclidean distance instead, because this distance is equivalent to the
variance of the variable, which further improves the interpretability of ℜ. We
follow this argumentation, and use ∆(x, y) = (x − y)2. This definition implies
that ∆ is in fact equal to the Mean Squared Error (MSE). Thus, by optimizing ℜ,
we are actually optimizing the accuracy of the local model.

Our next goal is to avoid explanations that are too specific, i.e., explanations
that apply to very small neighborhoods, as in Figure 4.1 (left). We rather aim for
explanations that are at the same time accurate and general (Figure 4.1 (right)).
Therefore we include the size of the neighborhood in the optimization function.
One way to do this is to maximize the lower bound of the confidence interval
of ℜ. The lower and upper bounds for the confidence interval of ℜ are given
by Berry and Mielke Jr (1988):

CIℜ = ℜ±MOEℜ = 1− δ ∓MOEδ

µ
(4.3)

Here, MOE stands for the Margin of Error. From Equation 4.3, it follows that
computing the lower bound of ℜ is analogous to computing the upper bound of
δ. Therefore, we can compute the margin of error for δ as MOEδ = t σ√

n
, where

σ is the standard deviation of the sample, n is the sample size and t represents
the critical value from the t-distribution. We use the t-distribution because it
is adapted for small sample sizes, which is what we encounter when we grow
the neighborhood. The distribution converges to the normal distribution as the
sample size increases.

70

Due to the non-monotonic nature of the ℜ value, we have to explore the
whole space to maximize its lower bound. We employ a linear search algorithm
(Algorithm 3) to this end.

Algorithm 3 Optimal Neighborhood Search
Input: Labeled data point x ∈ T

Dataset T with labels Y
Distances d :T→ R of the data points to x

1: Sort T by ascending d
2: n← number of features in T
3: maxℜlb ← 0, bestN← 0, bestL← ∅
4: for i = min(2n, |T |) to |T | do
5: L← TrainLocalSurrogateModel(T [0 : i])
6: if ℜlb(L) > maxℜlb then
7: maxℜlb ← ℜlb(L), bestN← i, bestL←L
8: end if
9: end for

10: return bestL, T[0:bestN]

The algorithm receives as input a labeled data point x that is to be explained, a
labeled training set T , and a vector of distances between x and each point in the
training set T . We sort the training set by increasing distance to x, train a linear
model on the first i data points for increasing i, and return the set of neighbors
for which the lower bound of ℜ is maximal. As the neighbourhood is very small
in the beginning, the training easily lead to overfitting. Therefore, we consider
at least 2n data points for our neighborhood, where n is the number of features.
This ensures that the estimation of regression coefficients exhibits less than 10%
relative bias Austin and Steyerberg (2015).
Step 3: Building a local surrogate model.. We build our local surrogate model
on the neighborhood we have found. To obtain a model with few parameters
(i.e., a simple model), we use regularization. In terms of feature selection, L1
regularization (e.g. Lasso Hastie et al. (2009)) is able to select a nearly perfect
subset of variables in a wide range of situations. The only condition for this
to work is that there are no highly collinear variables Candès and Plan (2009),
which can significantly reduce the precision of estimated regression coefficients.
To remove highly collinear features, we compute the variance inflation factor (VIF),
and, following a rule of thumb Stine (1995), adopt 10 as the cut-off value for the
VIF.

After removing highly collinear features, the next step is to train a linear
model with Lasso regularization. Lasso regularization adds a penalty term in

71

the form of the sum of absolute values of regression coefficients. The objective
function is minβ∈Rp(||y − βX||22 + λ||β||1), where λ is the shrinkage parameter.
This provides a sparse model, by forcing some coefficients to be zero. Removing
some features ensures a better generalization, and results in simpler, and thus
more comprehensible explanations. On the other hand, coefficients obtained
by minimizing the Lasso objective function are biased towards zero. Therefore,
Lasso is preferred for model selection rather than for prediction. The common
strategy is to train an Ordinary Least Squares (OLS) linear model on the subset
of variables selected by Lasso. This corresponds to a special variation of the
relaxed Lasso Meinshausen (2007), with ϕ = 0.

To determine the value of the shrinkage coefficient λ, we use 5-fold cross-
validation (CV). To preserve the deterministic nature we perform CV on adjacent
slices of the dataset, without random shuffles. CV selects the best model in terms
of a prediction error. Since the goal of this step is model selection, we want to
avoid choosing λ too small, and hence we apply the common one-standard-error
rule. According to this rule, the most parsimonious model is the one whose error
is no more than one standard error above the error of the best model Hastie et al.
(2009).

Once we have obtained the most parsimonious model, i.e., the best set of
features, we train the final local surrogate model as an OLS model using the
features selected by Lasso. This procedure is described in Algorithm 4, and it
returns a local linear model.

Algorithm 4 Train Local Surrogate Model
Input: Neighborhood of data points N

1: F ← the set of all features in N
2: F ′ ← {f |f ∈ F ∧ VIF(f) < 10.0}
3: FeaturesLasso ← Lasso(cv = 5, features = F ′)
4: return OLS(FeaturesLasso)

Providing an explanation.. As the final result, BELLA outputs the OLS model
computed by Algorithm 4, together with the size of the neighborhood. As an
example, consider the Iranian Churn dataset Jafari-Marandi et al. (2020). It
contains the (anonymized) customers of a telecommunication company, with
their age, subscription length, the satisfaction with the service, etc. The goal is to
predict the commercial value of the customer to the company (in dollars).

Let us now consider a given customer, for which a black-box model predicted
a commercial value of $551. The explanation that BELLA can provide for this
prediction is shown in Figure 4.2.

All numerical features have been standardized to have mean value equal to 0
and standard deviation equal to 1. (Thus, a customer has a “negative age” if they

72

Figure 4.2: Explanation example.

The value predicted by the model is 551.08 and the explained value is
557.68. This explanation applies to 476 other instances.

are younger than the average customer.) In the explanation, the base value is the
output of the model when all inputs are set to zero (i.e., to their mean value). Each
bar shows the total contribution of each feature to the predicted value: The more
the customer phones (variable seconds), the more revenue the company generates.
The age (which is below average for this particular customer), likewise, has
a small positive impact. The number of SMS, in contrast, (variable freqSMS)
impacts the revenue negatively. Finally, the number of distinct phone numbers
called (variable distnum) has a small negative impact. These sizes of the bars
are easy to interpret: The size of each bar is equal to the value of the feature
multiplied by the weight computed by our method. Their sum is then directly
equivalent to the explained value:

y ≈ 458.47 + 190.27× seconds− 102.91× age+
480.08× freqSMS− 17.71× distNums

This computation applies to all data points in the neighborhood of the input
data point (to the current instance and 476 others in our example). We thus see
that BELLA’s explanations are verifiable (because they take the form of a linear

73

equation), deterministic (because BELLA does not use any randomized steps),
simple (because we applied regularization), general (because we maximized the
neighborhood), and accurate (because we optimized the linear model on the
local neighborhood). In addition, BELLA does not probe the black-box model.
This means that, unlike many of its competitors, BELLA can explain not just the
decisions of a black-box model, but any numerical variable in a tabular dataset –
even if that variable was not generated by a model at all but merely observed in
reality (such as, e.g., housing prices). Let us now turn to the missing desideratum,
counterfactuality.

Counterfactual explanations.provide information about a (minimal) change
needed to alter the prediction of the black-box model. In a classification scenario,
the goal is to make the model predict a different class. In a regression scenario,
the goal is not to make the model predict any other value, but the value that the
user would like to see. In our example of the Iranian churn dataset, an analyst
may ask why the model predicted $551 instead of, say, $1000. A counterfactual
explanation should suggest a set of changes that should be applied to reach
this reference value. To provide such an explanation with BELLA, we select
candidates, i.e. data points whose target value is in an ϵ-vicinity to the reference
value (with ϵ = 5%). There can be multiple candidates. To find the best one, we
optimize two criteria: the distance between the given data point and the candi-
date, and the amount of change needed. The first criterion will favor candidates
that are in the vicinity of the given data point. The second criterion controls the
amount of change applied. To alter the outcome, one can usually either apply
a small change to several features, or a big change to few features. The second
approach is risky: without human intervention, we can end up with a set of
features that are difficult or impossible to change (e.g., the age of a customer).
Therefore, we rather aim to minimize the average amount of change and suggest
smaller adjustments to multiple features (such as frequency of use, or the number
of SMS messages). This yields the following objective function:

min
xi∈S

(d(x, xi) +
d(x, x′)

|∆|
) (4.4)

Here, xi is a counterfactual candidate data point, d is a distance measure defined
in Equation 4.1, x′ represents the modified data point x according to the counter-
factual explanation and |∆| is the number of features that have been modified.
The modified data point, x′, represents the counterfactual explanation. This
process is described in Algorithm 5.

74

Algorithm 5 Computing a counterfactual explanation
Input: Dataset T of data points xi with labels yi

Labeled data point x ∈ T
A reference value yref ∈ R
Deviation from reference value ϵ = 0.05

1: Xc ← {xi ∈ T : yi ∈ [yref − ϵ, yref + ϵ]}
2: for xi ∈ Xc do
3: Li, Ni ← BELLA(T, xi) ▷ Algorithm 2
4: x′

i ← xi modified according to Li

5: end for
6: xref ← argminx′

i
(d(x, xi) +

d(x,x′
i)

|∆|)
7: return xref

The algorithm takes as input the labeled dataset T , a labeled data-point x ∈ T ,
a reference value yref ∈ R, and a permitted deviation ϵ from the reference value.
We first choose the set of counterfactual candidates Xc that have the target value
in the ϵ neighbourhood of the reference value yref. For each xi among these
candidates, we compute the explanation using BELLA. This explanation gives
us a set of features, and the proposed modification of x is to set all these features
of x to the values given by xi.

Among these proposed modifications, we choose the one that minimizes
the objective function in Equation 4.4. Figure 4.3 shows how BELLA computes
a counterfactual explanation for the data point x1 and the reference value yref.
BELLA first identifies a candidate data point xref, whose target value is equal
to the reference value yref. Then, it computes the local surrogate model for
this candidate (straight blue line). The local surrogate model selects the set of
important features whose values should be altered. In this simple example, there
is just one feature, x, and the data point is just a one-dimensional real value x1.
Consequently, the counterfactual explanation suggests changing the value of
that feature x from x1 to xref to achieve the reference value. In more complex
scenarios, the surrogate model identifies the most important features to alter.

4.3 Experiments

4.3.1 Experimental setup

Datasets. We performed experiments on datasets from two standard repos-
itories: the UCI Machine Learning Repository Dua and Graff (2017) and the
Penn Machine Learning Benchmarks Romano et al. (2021) (shown in Table 4.1).

75

y

yref

xref x1 x

Figure 4.3: Counterfactual explanation using the reference point

Among them is also a high-dimensional dataset, Superconductivity, with 81
features. All categorical features have been one-hot encoded and all numerical
features have been standardized. To show that BELLA works with different
families of models, we trained a random forest (with 1000 trees), and a neural
network (with one hidden layer with 500 nodes) as black-box models.

BELLA. Our method is implemented in Python. For the black-box models,
we use the implementations of scikit-learn Pedregosa et al. (2011). All
experiments are run on a Fedora Linux (release 38) computer with an Intel(R)
Xeon(R) v4 @ 2.20GHz CPU, a memory of 64 GB, and Python 3.9. All code and
the data for BELLA and the experiments will be made publicly available on
Github and are part of the submission material.

Competitors. We compare BELLA to LIME Ribeiro et al. (2016), SHAP Lund-
berg and Lee (2017) and MAPLE Plumb et al. (2018). We use the implementations
by the authors123. We do not compare to methods that are designed for classifica-
tion tasks, or that can provide only counter-factual explanations and not factual
ones.

4.3.2 Experimental results

We compare BELLA’s performance against the competitors on the quality
measures from Section 4.2.1. All tables show the average performance on the
test set of each method with confidence intervals at α = 95%.

Accuracy is measured by the Root Mean Squared Error (RMSE) of the local
surrogate models wrt. the predictions of the black-box models (Table 4.2, with a

1https://github.com/marcotcr/lime
2https://github.com/slundberg/shap
3https://github.com/GDPlumb/MAPLE/tree/master

76

Table 4.1: Regression Datasets

Dataset Features Numerical Categorical Instances

Auto MPG 7 6 1 392
Bike 12 9 3 8760
Concrete 8 8 0 1030
Servo 4 0 4 167
Electrical 12 12 0 10000
Superconductivity 81 81 0 21262
White Wine Quality 11 11 0 4898
Real Estate Valuation 5 5 0 414
Wind 14 14 0 6574
CPU activity 12 12 0 8192
Echocardiogram 9 6 3 17496
Iranian Churn 11 8 3 3150

min-max normalized average). SHAP always has an error of 0. This is because it
provides exact explanations that apply only to a single data point. Among the
methods that apply to a neighborhood of points, MAPLE is generally the best,
followed closely by BELLA. LIME comes last.

Generality is measured by the number of data points to which the explana-
tion applies (as a percentage of all data points in the training set). For BELLA,
we simply return the size of the neighborhood. For MAPLE we return the num-
ber of data points that have weights larger than 0. For LIME, an explanation
comes with the range of values for each feature. We count the number of data
points that fall into this range. The results are shown in Table 4.3. For SHAP, the
size of the neighborhood is always 0. This is because SHAP provides feature
contributions that are specific for the given data point, and there is no way to
apply these explanations to other data points. LIME’s explanations are more
general, and MAPLE’s explanations even more. Still, they are vastly less general
than the explanations of BELLA.

Simplicity is most commonly measured by the number of features that an
explanation contains (Table 4.4). LIME has the same size of explanations as
BELLA. This is because LIME takes this parameter as input and we set it to
the size of the explanation provided by BELLA. SHAP and MAPLE constantly
provide longer explanations than BELLA. MAPLE has higher complexity than
SHAP, even though it comes with lower accuracy.

Robustness judges how similar the explanations for close data points are. We

77

Table 4.2: Accuracy comparison (RMSE – smaller is better)

Dataset LIME MAPLE BELLA SHAP

Auto MPG 2.16±0.487 1.04±0.239 0.75±0.245 0.00
Bike 392.00±23.70 67.60±5.110 164.00±11.00 0.00
Concrete 11.70±1.540 2.30±0.382 3.71±0.554 0.00
Servo 0.87±0.289 0.26±0.092 0.88±0.197 0.00
Electrical 0.03±0.002 0.01±0.001 0.02±0.001 0.00
Supercond. 25.20±1.271 2.56±0.357 6.84±0.978 0.00
White Wine 0.35±0.041 0.19±0.026 0.19±0.023 0.00
Real Estate 5.22±1.350 1.83±0.641 0.84±0.511 0.00
Wind 3.85±0.539 1.28±0.233 1.45±0.231 0.00
CPU Activity 18.70±1.700 0.75±0.058 0.92±0.114 0.00
Echocard. 9.56±0.250 2.09±0.087 2.92±0.119 0.00
Iranian Churn 147.00±20.70 2.82±0.468 14.30±2.530 0.00

Norm. avg. 0.11±0.008 0.03±0.003 0.04±0.006 0.00

Table 4.3: Generality comparison (% - larger is better)

Dataset LIME SHAP MAPLE BELLA

Auto MPG 10.08±2.520 0.00 38.33±3.100 37.27±8.710
Bike 4.14±0.458 0.00 5.42±0.088 32.11±2.160
Concrete 1.10±0.400 0.00 31.75±1.000 21.55±4.142
Servo 16.82±4.130 0.00 74.35±3.730 76.31±9.410
Electrical 0.02±0.011 0.00 20.67±0.321 21.61±3.180
Supercond. 0.01±0.709 0.00 15.98±0.498 30.25±3.480
White Wine 0.83±0.243 0.00 17.89±0.369 15.34±1.950
Real Estate 3.75±1.710 0.00 46.34±3.990 16.21±6.410
Wind 0.24±0.044 0.00 12.69±0.186 94.00±1.520
CPU Activity 0.71±0.250 0.00 9.30±0.227 17.50±1.610
Echocard. 0.00±0.001 0.00 5.13±0.060 83.76±1.180
Iranian Churn 0.65±0.202 0.00 12.10±0.417 6.41±2.140

Average 3.21±1.190 0.00 24.16±1.166 37.95±3.813

78

Table 4.4: Simplicity comparison (smaller values are better). LIME requires the
explanation size as input, and we give it the size of the explanation computed by
BELLA.

Dataset SHAP MAPLE BELLA/LIME

Auto MPG 9.00±0.000 6.75±0.208 4.90±0.369
Bike 11.63±0.038 12.44±0.080 7.30±0.115
Concrete 8.00±0.000 7.00±0.000 5.42±0.297
Servo 13.06±0.218 15.71±0.155 5.06±0.645
Electrical 12.00±0.000 12.00±0.000 8.63±0.087
Supercond. 77.97±0.246 79.99±0.008 13.10±0.555
White Wine 11.00±0.000 10.00±0.000 7.54±0.198
Real Estate 5.00±0.000 4.00±0.000 4.05±0.327
Wind 13.65±0.132 13.00±0.000 9.47±0.102
CPU Activity 12.00±0.000 12.00±0.000 10.80±0.204
Echocardiogram 9.00±0.000 8.47±0.026 8.23±0.037
Iranian Churn 9.15±0.054 9.53±0.059 5.65±0.166

Norm. Avg. 0.92±0.002 0.91±0.004 0.59±0.022

measure robustness as

robustness = 1− 1

n

n∑
i=1

|β1i − β2i|
|β1i|+ |β2i|

. (4.5)

Here, n is the number of features, and β1i and β2i are the weights of feature i in
the first and second explanation, respectively. Robustness is in the range of [0, 1],
with 1 indicating that two explanations are identical. We compute explanations
for each data point in the test set, and compute robustness wrt. the 10 closest
data points (Table 4.5). LIME samples 5000 data points to create a synthetic
neighborhood. Thus, LIME can perform slightly better than our approach on
datasets that have fewer observations. Still, in the majority of cases, and on
average, BELLA outperforms LIME. BELLA also outperforms SHAP by a wide
margin. This is because SHAP’s explanations are tailored for a single data point.
BELLA also outperforms MAPLE. This is because the crisp neighbourhood
of BELLA provides much more robust explanations than MAPLE’s weighted
neighbourhood.

From Tables 4.2, 4.3, 4.4, and 4.5, we can see that at the same level of simplicity,
BELLA provides more general, more robust, and more accurate explanations

79

Table 4.5: Robustness comparison (0 to 1 – larger is better)

Dataset LIME SHAP MAPLE BELLA

Auto MPG 0.78±0.023 0.68±0.083 0.84±0.037 0.80±0.038
Bike 0.79±0.026 0.70±0.037 0.66±0.033 0.76±0.050
Concrete 0.78±0.047 0.72±0.028 0.68±0.041 0.65±0.081
Servo 0.77±0.017 0.59±0.021 0.56±0.097 0.64±0.029
Electrical 0.63±0.015 0.59±0.022 0.76±0.022 0.76±0.041
Supercond. 0.89±0.014 0.87±0.031 0.58±0.076 0.93±0.059
White Wine 0.67±0.035 0.56±0.051 0.66±0.030 0.65±0.064
Real Estate 0.70±0.057 0.74±0.041 0.77±0.058 0.65±0.085
Wind 0.64±0.037 0.62±0.035 0.67±0.023 0.99±0.109
CPU Activity 0.46±0.034 0.73±0.035 0.76±0.031 0.83±0.039
Echocardiogram 0.75±0.039 0.66±0.034 0.55±0.039 0.96±0.017
Iranian Churn 0.62±0.035 0.79±0.045 0.84±0.039 0.76±0.049

Average 0.71±0.032 0.69±0.039 0.68±0.044 0.78±0.055

than LIME. BELLA provides less accurate explanations than SHAP and MAPLE,
but at the same time, BELLA’s explanations are more general, more robust, and
vastly simpler.

What follows are the experimental results on the same desiderata with Ran-
dom Forest as a black-box model (Tables 4.7, 4.8, 4.9, 4.10). Key takeaways
are inline with the previous experiments where black-box model was a Neural
Network.

Other desiderata outlined in Section 4.2.1 were counterfactuality, determin-
ism, and verifiability (the possibility to compute the explained value from the
feature values). SHAP offers none of these. Neither does LIME. While both
SHAP and LIME compute linear models with feature weights, these models are
not verifiable in our sense: There is no way that the user can insert the feature
values of a neighboring point into these models and obtain an explained value.
This is because the linear models do not operate in the original input feature
space. Only MAPLE offers this verifiability. However, it relies on randomization
and provides no counterfactuality.

Let us now evaluate the quality of BELLA’s counterfactual explanations. We
measure the accuracy of an explanation wrt. a reference value. For each data
point x with its target value y, we set the reference values to yref = y ± 0.3 ×
|ymax − ymin|. Table 4.6 shows the RMSE of the counterfactual explanations (as
well as of the factual explanations by BELLA and LIME for comparison). We

80

Table 4.6: RMSE of BELLA’s counterfactual explanations (smaller is better).
Factual explanations for comparison.

Factual Counterf.
Dataset Black-box LIME BELLA BELLA

Auto MPG 2.30 2.16±0.487 0.75±0.245 3.74±1.100
Bike 235.21 392.00±23.70 164.00±11.00 474±20.72
Concrete 4.75 11.70±1.540 3.71±0.554 1.23±0.410
Servo 0.34 0.87±0.289 0.88±0.197 0.89±0.203
Electrical 0.02 0.03±0.002 0.02±0.001 0.03±0.001
Supercond. 11.44 25.20±1.270 6.84±0.978 58±1.860
White Wine 0.70 0.35±0.041 0.19±0.023 0.86±0.058
Real Estate 7.91 5.22±1.350 0.84±0.511 8.76±2.231
Wind 3.07 3.85±0.539 1.45±0.231 4.62±0.204
CPU Activity 2.97 18.70±1.700 0.92±0.114 2.76±0.370
Echocard. 12.18 9.56±0.250 2.92±0.119 13.1±0.422
Iranian Churn 3.27 147.00±20.70 14.30±2.530 28±5.970

Norm. avg. 0.07 0.11±0.008 0.04±0.006 0.12±0.047

see that the counterfactual explanations of BELLA are often of similar accuracy
as its factual explanations. Even in the cases where the error of counterfactual
explanations is an order of magnitude larger, it is still lower or comparable to
the error of the factual-only explanations provided by LIME.

4.3.3 Verification on an interpretable model

To confirm that the explanations provided by BELLA represent what the
black-box model has learned, we evaluate them with regard to an already inter-
pretable model. Instead of a black-box model, we train an Ordinary Least Square
linear regression model and consider the 5 most important features. We then
compute the explanations for each data point in the test set with our method.
BELLA was able to recover on average 85.12% of the original top-5 features
across all datasets from the ones in Table 3.1. This shows that our method
provides explanations that generally agree with prior beliefs, as encoded in an
interpretable model.

81

Table 4.7: Accuracy comparison (RMSE – smaller is better)

Dataset LIME MAPLE BELLA SHAP

Auto MPG 1.63±0.430 0.74±0.218 1.36±0.421 0.00
Bike 322.72±16.83 66.14±5.420 176.42±10.58 0.00
Concrete 6.09±0.954 2.36±0.381 3.75±0.601 0.00
Servo 0.49±0.129 0.16±0.088 0.52±0.146 0.00
Electrical 0.01±0.001 0.01±0.000 0.01±0.00 0.00
Supercond. 28.40±1.470 2.94±0.409 5.41±0.499 0.00
White Wine 0.31±0.027 0.16±0.013 0.28±0.023 0.00
Real Estate 4.08±1.202 3.16±1.050 3.39±0.756 0.00
Wind 1.49±0.084 0.55±0.036 1.01±0.060 0.00
CPU Activity 11.66±1.030 0.71±0.101 1.44±0.238 0.00
Echocard. 3.51±0.113 1.74±0.069 3.17±0.121 0.00
Iranian Churn 146.68±20.73 10.92±2.335 14.28±2.543 0.00

Norm. avg. 0.07±0.008 0.02±0.004 0.04±0.005 0.00

Table 4.8: Generality comparison (% - larger is better)

Dataset LIME SHAP MAPLE BELLA

Auto MPG 4.25±2.653 0.00 43.91±3.493 77.05±9.229
Bike 1.30±0.225 0.00 5.48±0.089 39.99±2.392
Concrete 0.33±0.168 0.00 31.18±1.444 23.26±4.079
Servo 4.63±1.900 0.00 79.57±5.023 81.69±12.721
Electrical 0.01±0.001 0.00 17.12±0.305 16.89±1.882
Supercond. 0.01±0.159 0.00 14.93±0.439 53.55±2.386
White Wine 0.68±0.245 0.00 18.44±0.306 65.31±2.879
Real Estate 2.52±0.968 0.00 49.42±3.936 55.38±12.020
Wind 0.37±0.057 0.00 12.41±0.176 99.97±0.014
CPU Activity 0.75±0.146 0.00 9.54±0.215 51.63±1.570
Echocard. 0.31±0.040 0.00 5.90±0.081 86.40±1.080
Iranian Churn 1.5±0.216 0.00 11.91±0.429 12.49±1.843

Average 1.18±0.565 0.00 24.98±1.328 55.21±4.341

82

Table 4.9: Simplicity comparison (smaller values are better). LIME requires the
explanation size as input, and we give it the size of the explanation computed by
BELLA.

Dataset SHAP MAPLE BELLA/LIME

Auto MPG 8.00±0.000 7.90±0.097 3.90±0.382
Bike 12.00±0.032 12.57±0.080 7.43±0.303
Concrete 8.00±0.000 7.00±0.000 5.40±0.301
Servo 10.12±0.845 15.94±0.125 6.76±1.068
Electrical 12.00±0.000 12.00±0.000 8.06±0.201
Supercond. 48.90±1.159 80.00±0.007 15.50±0.344
White Wine 11.00±0.000 10.00±0.000 6.70±0.291
Real Estate 5.00±0.000 4.00±0.000 3.76±0.256
Wind 13.63±0.048 13.00±0.000 7.82±0.155
CPU Activity 12.00±0.000 11.00±0.000 10.35±0.523
Echocardiogram 9.00±0.000 7.48±0.025 5.65±0.145
Iranian Churn 9.19±0.043 9.44±0.063 5.56±0.176

Norm. Avg. 0.90±0.006 0.89±0.003 0.57±0.022

Table 4.10: Robustness comparison (0 to 1 – larger is better)

Dataset LIME SHAP MAPLE BELLA

Auto MPG 0.87±0.017 0.67±0.044 0.65±0.060 0.70±0.028
Bike 0.77±0.004 0.66±0.005 0.51±0.063 0.79±0.009
Concrete 0.76±0.020 0.65±0.019 0.70±0.050 0.69±0.035
Servo 0.90±0.019 0.79±0.038 0.52±0.108 0.75±0.030
Electrical 0.82±0.002 0.50±0.004 0.59±0.028 0.81±0.006
Supercond. 0.76±0.006 0.85±0.005 0.49±0.033 0.80±0.011
White Wine 0.62±0.007 0.51±0.007 0.59±0.042 0.77±0.013
Real Estate 0.63±0.040 0.69±0.038 0.66±0.057 0.85±0.060
Wind 0.71±0.006 0.63±0.006 0.61±0.027 0.98±0.002
CPU Activity 0.52±0.005 0.69±0.008 0.65±0.040 0.84±0.006
Echocardiogram 0.81±0.004 0.52±0.002 0.46±0.037 0.99±0.011
Iranian Churn 0.75±0.017 0.79±0.011 0.65±0.055 0.78±0.012

Average 0.74±0.012 0.66±0.016 0.59±0.050 0.81±0.019

83

5
SCALAR

SCALAR is a new platform for real-time machine learning competitions on
data streams. Following the intent of Kaggle, which serves as a platform for
organizing machine learning competitions adapted for batch learning, we pro-
pose SCALAR as a novel platform designed specifically for stream learning in
real-time. SCALAR supports both classification and regression problems in data
streaming setting. SCALAR is open source and it has been published in Journal
of Open Source Software (JOSS) (Radulovic et al., 2020). Also, it has been used
to organize, first of its kind, a competition on data streams on IEEE Big Data
Cup (Boulegane et al., 2019). In this section, we describe its architecture and
discuss the results and the experiences of the competition.

Contents
5.1 Introduction . 85

5.2 Platform for real-time machine learning competitions 87

5.3 Development . 89

5.4 Real-time Machine Learning competition on SCALAR 94

5.5 Winning Solutions . 96

84

5.1 Introduction

While xAI focuses on providing insights into the “black-box“ of AI decision-
making, data stream mining addresses the dynamic and continuous nature of
modern data streams. In this chapter, we will uncover the unique challenges
posed by the continuous and dynamic nature of modern data streams. Data
stream mining plays a crucial role in extracting knowledge and patterns from
rapidly evolving data streams in real-time.

Here, we are focused on one specific segment of the machine learning com-
munity: publicly available platforms for machine learning competitions, such
as Kaggle1 and Alibaba Tianchi2. These platforms, especially Kaggle, are
widely recognized for data science competitions and collaborative machine learn-
ing projects, and have played a crucial role in advancing the field of machine
learning. Designed predominantly for batch learning, the participants access
large datasets, apply pre-existing models, and submit predictions to compete for
the best-performing solutions. This framework has been instrumental in foster-
ing innovation, attracting talent, and promoting the development of cutting-edge
algorithms that excel in batch learning scenarios.

However, as the landscape of data continues to evolve rapidly with the
emergence of real-time data streams, the limitations of Kaggle in facilitating
online learning become apparent. Online learning, also known as incremental or
streaming learning, poses unique challenges as models must continuously adapt
to new incoming data. The lack of a similar platform tailored for online learning
hinders the collaborative efforts and experimentation necessary to tackle real-
time, dynamic data analysis. With all this in mind, following the principles of
Free and Open Source Software (FOSS), we developed and proposed SCALAR,
a platform for real-time machine learning competitions. SCALAR supports this
data stream machine learning scenario where data is continuously released, in
batches every time interval. Predictions for each current batch, that are sent

1https://www.kaggle.com/
2https://tianchi.aliyun.com/

85

before a defined deadline, are evaluated in real-time, and the results are shown
on the live leaderboard.

SCALAR has been used for organizing, a first Real-time Machine Learning
Competition on Data Streams (Boulegane et al., 2019) as part of the IEEE Big
Data 2019 Cup Challenges3.

5.1.1 Streaming learning setting

Most of the existing platforms for data science competitions are tailored to
offline learning where a static dataset is made available to the participants before
the competition starts. This dataset is divided into training and test sets. The
training set is used to build and train the model, which is then tested on the test
set.

In online learning, data arrive in a stream of records (instances) and the model
needs to be trained incrementally as new instances are released. Since the data
arrive at high speed, predictions have to be issued within a short time. Having
in mind this specific setup of the data stream mining scenario (Figure 5.1), every
model should use a limited amount of time and memory, process one instance
at a time and inspect it only once and the model must be able to predict at any
time (Bifet et al., 2010).

Figure 5.1: Stream data mining scenario

The model is updated using the labelled instances and then evaluated on new
unlabeled instances. This scenario represents the prequential evaluation scenario

3http://bigdataieee.org/BigData2019/BigDataCupChallenges.html

86

Figure 5.2: Initial and regular batches in the data stream

or “test-then-train“ setting. To make this scenario possible in SCALAR, we first
assume that the records in the data stream arrive in batches and that each batch
can be of size 1 or more. Then, we define two different kinds of batches:

• Initial batch: This batch is used to build and train the initial model. It is
aimed to avoid the cold start problem and as such contains both features
and targets. The initial batch usually has a large number of instances.

• Regular batch: The regular batch contains new test instances while pro-
viding training instances of previous batches that are used to evaluate the
quality of the model up to the current time.

5.2 Platform for real-time machine learning
competitions

In this section, we describe the architecture and the development details of
SCALAR. We will give an overall overview of all parts of the system and then we
will focus specially on the online evaluation engine and the user interaction with
the platform.

5.2.1 Architecture

To support all the aforementioned requirements for stream data mining,
and to be able to organize competitions in such a scenario, a specific dedicated
platform was needed. To the best of our knowledge, there doesn’t exist such a
platform, thus we propose SCALAR. Figure 5.3 highlights the architecture of the
platform that includes a web application and a streaming engine following the
fundamentals of Information Flow Processing (IFP) (Cugola and Margara, 2012).
We explain layer by layer:

87

Figure 5.3: Architecture of the platform

• Data sources: SCALAR allows creating competitions by providing data in
the form of a CSV file. That file is used to recreate a continuous stream
following predefined competition settings such as the time interval between
two releases and the number of instances at a time.

• Data layer: represents the persistence node in the system where different
kinds of information are stored. MongoDB is used for unstructured data
(e.g. user’s predictions, records from the stream, evaluation metrics) and
MySQL for structured data (competition information, user information).

• Streaming Engine: is responsible for handling the streams. From CSV files,
Kafka recreates multiple streams to be sent to multiple users. SCALAR pro-
vides a secure and independent bi-directional streaming communication
between the user and the streaming engine. This allows each user to con-
sume training and test instances and submit the respective predictions
according to the competition’s predefined data format. The resource server
is the API that handles all authenticated requests from the client applica-

88

tion whereas the authorization server is in charge of users’ identification.
The Online evaluation engine handles both the stream of instances and the
streams of participants’ predictions in order to compute and update the
evaluation metrics online before storing them in the dedicated database.

• Application: The application layer consists of two parts: a web applica-
tion and a client application. Web application represents a user-friendly
interface that allows participants to register, subscribe to competitions, and
follow leaderboard and models’ performance online. The client applica-
tion is provided in order to accommodate participants’ code to solve the
machine learning problem at hand. It delivers a secure communication
channel to receive the stream of training and test instances and send their
respective predictions to the server.

5.3 Development

SCALAR was designed using state of the art big data processing tools where
streams are handled by Kafka ((Kreps et al., 2011), (Garg, 2013)) and the online
evaluation is performed using Spark Structured Streaming4 ((Zaharia
et al., 2010), (Armbrust et al., 2018)). In order to ensure safe and fast bi-directional
streaming communication between users and the server, we use a combination
of gRPC5 and Protobuf6. We use Docker ((Merkel, 2014)) for the deployment
to provide portability and easy integration across Linux, Windows and macOS
operating systems.

The code, the links to Docker containers and the documentation are available
at: https://github.com/nedRad88/SCALAR.

5.3.1 Implementation details

Wrappers for multiple language support. The platform has been built in a way
that it should provide complete independence for each user. Every user should
be able to use different programming languages, software stacks, libraries, and
additional data for building and improving his model. For communication be-
tween the server and the client, we used gRPC framework with Protobuf. This
combination provides secure communication, full-duplex bidirectional stream-
ing and an easy way to describe services.(gRPC, 2018) (Developers, 2018) The
services and data formats are defined once in a .proto file. Also, this framework

4https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
5https://grpc.io/
6https://developers.google.com/protocol-buffers

89

is language- and platform-neutral and supports several programming languages
(Java, Python, Go, C#, Ruby). As mentioned earlier, gRPC and Protobuf support
both Java and Python so in this case, we can use those languages directly.
R programming language. Except for Java and Python, there is another program-
ming language that is used more and more for data science and data analysis
tasks, and that is R. R is a programming language and software environment
for statistical computing and graphical analysis(CRAN, 2018). R is interpreted
language and usually is used from command-line but also has several front-ends
of which the most important is RStudio7. R has a variety of libraries and pack-
ages that provide statistical and graphical techniques. Those libraries provide
classification, clustering, regression techniques, linear and nonlinear modelling,
time series analysis and many others. Its source code is written in C, Fortran
and R. It runs and compiles under many UNIX platforms (including Linux),
Windows and MacOS. It is available free of charge and is a competitor to some
commercial statistical tools such as SAS8, SPSS9, and Stata10. It is widely used
by statisticians and data scientists so it was natural to include R as one of the
programming languages supported on our platform.

There is one important difference when it comes to using R for our platform.
As explained earlier, users need to connect to the server through gRPC channel
and communicate over Protobuf protocol. Both of these are not supported by the
R programming language. In order to enable R for our platform, we developed
a package/wrapper that offers extended capabilities for R and allows users to
connect to gRPC server.

A specific package for R, Reticulate offers an appropriate solution. The Reticu-
late package offers a set of tools for interoperability between R and Python(Ushey
et al., 2022). It provides several solutions:

• Calling Python from R (sourcing Python scripts, importing Python mod-
ules, R markdown)

• Translation between Python and R objects (R and Pandas data frames)

• Binding to different versions of Python

For our use case, the most interesting feature is importing Python modules.
Since we already have enabled communication with the server via Python script,

7https://www.rstudio.com/products/rstudio/
8https://www.sas.com/en us/solutions/analytics.html
9https://www.ibm.com/analytics/spss-statistics-software

10https://www.stata.com/

90

it would be convenient to use that script and its classes in order to enable
communication from R. The main idea is to import classes for communication
from Python and call them in R. In that way, we establish communication and
use rich libraries in R for processing the data.
Online evaluation engine. Our platform is specially designed to work with
data streams. The stream of records (instances) is provided from the server side
and streams of predictions are provided by users. Due to various use cases and
also to be able to verify if our model is working correctly, we need to have an
online evaluation. The main idea is to be able to compute evaluation metrics
according to competition settings online, as the stream of predictions arrives and
provide the live graphics of the quality of the model to users. We have several
requirements for a stream processing tool for our system. The stream processing
tool should provide:

• low latency

• exactly once fault tolerance

• integration with Kafka

• Python API

• parallelism

Apache Spark is an open-source framework for cluster-computing. Originally,
it supports batch computations on large data. With its API - Spark Streaming,
Spark is able to do stream processing in a micro-batch setting. This means that
Spark is not able to do true stream processing but it considers records in the
stream as micro-batches and applies the same logic as in batch processing. The
base of its architecture is RDD - resilient distributed dataset. It is a read-only
multiset of data distributed over a cluster of machines, which is maintained in a
fault-tolerant way. Another Spark API is a DataFrame. The DataFrame is similar
to RDD as it also represents an immutable collection of data but it is organized
in named columns, similar to a table in a relational database. It is designed in
a way to make big data processing even easier and more understandable to a
wider audience. (Bill Chambers, 2018)

Spark has four main components on top of the foundation of the framework
Spark Core. Spark Core provides basic I/O functionalities and scheduling. It has
a programming interface for Java, Scala, Python, and R and it is based on RDD
abstraction. On top of the Spark Core, there are four components: Spark SQL,
Spark MLlib, GraphX and Spark Streaming.

For the purpose of our system, we are interested in two components: Spark
Streaming and Spark SQL. Spark SQL is a component of Spark that introduced

91

the concept of DataFrame. It provides support for structured data and semi-
structured data. Spark Streaming is a component of Spark that uses fast schedul-
ing from Spark Core to provide streaming analytics. It ingests data in micro-
batches and performs RDD transformations on the micro-batches. It has the
capability to use as data sources: Twitter, Kafka, Flume, TCP I/O sockets. The
pipeline of the online evaluation engine is shown in figure 5.4.

Figure 5.4: Online evaluation engine pipeline

The central point in this pipeline is the Spark module. On input, it is con-
nected to the Kafka cluster and subscribes to Kafka topics for certain competi-
tions. For every competition, there will be two data streams. One is the stream
of records sent by the server and the other is the stream of predictions from
users. These two streams are then processed in Spark to compute evaluation
measures according to competition settings. On the output side, the stream of
predictions and evaluation measures is then written again to Kafka and after to
MongoDB.(Neha Narkhede, 2017) After storing the results in MongoDB, on a
request from web application the results will be streamed to the live chart and
leaderboard.

As already mentioned earlier, the latest versions of Spark introduced a new
concept of Structured streaming. Structured streaming is based on Spark SQL
component. The basic idea behind this concept is to think of the data stream in
the same way as the SQL table. Every new record in the data stream is considered
as a new row in the table. Since we consider stream as infinite we refer to the
table as unbounded.(Apache, 2018) It is obvious that keeping this whole table in
memory is not feasible and because of that after computations data are written

92

either on disk or to some of the available sinks.
Data are read from specified input at every trigger interval. Trigger interval

can be set manually (for example 1s), which means that the memory table will
be updated with new rows every interval. Since we are actually working with
micro-batches, during every interval we consider the memory table to be static
and with that in mind we apply operations and transformations as if it was an
ordinary SQL table.
Baseline competitor. Whenever we need to evaluate our model, as explained
earlier, we compute appropriate evaluation metrics. Metrics alone, usually, will
not give the perfect idea of how good our model is. We know, depending on the
evaluation metric, which values are considered good and which are not, but to
have some more precise clue about the quality of our model we need to compare
it with some baselines. For this purpose, we implemented an artificial competitor
that will represent the baseline model used for comparison. Having in mind the
nature of the platform that we are building, one way to evaluate your model will
also be the comparison to other competitors, but their models remain unknown
to other users. The baseline model is important as it is the basic model and if
your model is any good, it should be better than the baseline.

Since we support both classification and regression we had to provide differ-
ent types of baselines. Depending on the competition type appropriate baseline
will be activated. Some of the most simple classifiers out there are the ones that
predict: random value, constant value, average value etc. As mentioned earlier,
to provide support for various types of competition we implemented:

1. Classification baseline - We chose the majority class classifier. This model
is used for classification and it predicts the most common class for the
target. During the training period it counts class appearances and later
based on those numbers predicts a class. This classifier is really simple and
usually will not provide high accuracy, but it is good to compare with to
realize if the model that you are using is any good.

2. Regression baseline - As regression baseline, we chose average value pre-
dictor. This model keeps the statistic of the average value of the target and
predicts the average value at a given moment. It is also very simple as we
only keep track of the sum of values and the number of instances. It will
not provide high accuracy but again will give a clue if our model is better
than the simple one.

93

5.4 Real-time Machine Learning competition on
SCALAR

We have conducted a real-case competition on data streams using SCALAR for
IEEE Big Data Cup Challenge (Boulegane et al., 2019). We have involved several
competitors from all over the world to adhere to this novel competition. Our
competition scenario falls within the network activity monitoring application.
This includes time series forecasting where the goal is to predict at time t the n
upcoming values of the series based on values observed in the past. We describe
below the data used to run the competition in addition to the settings related to
the release of the stream and the evaluation.

5.4.1 Data

We have long-term, continuous data from the network activity recorded every
second summarising the density of communications in terms of the number of
messages conveyed. The dataset under study is synthetic but strongly inspired
by real time-series following this use-case. The time series has been specifically
designed to meet the challenges of stream mining, comprising:

• Concept drift: stands for a change in the statistical properties of the target
variable that we are trying to predict. The change can be Sudden or Gradual.
Sudden change occurs when the distribution has remained unchanged for
a long time, then changes in a few steps to a significantly different one.
Gradual change occurs when, for a long time the distribution experiences at
each step a tiny, barely noticeable change, but these accumulated changes
become significant over time (Gama et al., 2014).

• Anomalies: are patterns in data that do not conform to a well defined
notion of normal behavior (Chandola et al., 2009). We address two types
of anomalies: Point and Group anomalies. If an individual data instance
can be considered as anomalous to the rest of the data, then the instance is
referred to as a point anomaly. On the other hand, group anomaly is a set of
consecutive points where the points are relatively normal, but as a whole
they are unusual.

5.4.2 Workflow

We describe below the setting used to run the competition following the
streaming setting. The stream settings are as follows:

94

Figure 5.5: Data stream used in competition

• Initial batch: we have initially provided a time series lasting for 2 days
with a record every second summarizing the number of messages conveyed
in the network. A period of time was granted to competitors to tune their
models at first before the stream of test instances is released.

• Regular batch: a batch of fixed size is sent at regular time intervals (5
seconds). The latter contains 5 test instances to be predicted before the
deadline assigned (arrival of the next batch). The batch contains also true
values corresponding to the test instances released in the batch before. If
predictions are submitted after the due date, the competitor is penalized.

Evaluation. We conduct a prequential evaluation scenario where each instance
is first used to test and then to train. We provide a range of evaluation metrics
to support time-series forecasting tasks and keep track of the time delay while
submitting the prediction. We compute time latency for each competitor to show
the average delay for submitting. One can distinguish between models that are
less time-consuming and greedy. We provide the following evaluation metrics
where n is the number of samples, Y is the true value and Ŷ is the predicted
value:

1. Mean absolute percentage error (MAPE): By definition, this measure
cannot be used if the target takes zero value. It gives the value of error as a
percentage. The definition is given by equation 5.1.

MAPE = 100%
1

n

n∑
t=1

|Yt − Ŷt

Yt

| (5.1)

95

2. Mean absolute error (MAE): Represents the absolute difference between
continuous values. The definition is given by equation 5.2.

MAE =
1

n

n∑
t=1

|Yt − Ŷt| (5.2)

3. Mean squared error (MSE): Measures the average of squares of error. The
definition is given by equation 5.3.

MSE =
1

n

n∑
t=1

(Yt − Ŷt)
2 (5.3)

5.5 Winning Solutions

In this section, we present the solutions which achieved the best scores. Three
solutions that yielded the best results are:
1. Adaptive moving average on n previous equally distant windows method
(AMA).

This model takes advantage of the periodicity of the data stream. It takes
into account the current window and previous k windows where the distance
between all the windows is the period of the stream. The period of the stream
is computed using Partial Auto-correlation Function (PACF). The size of the
window is updated during the stream. For every one of these windows, the
average value is computed.

window meank =
1

win size

t−k∗period+win size∑
i=t−k∗period

Yi (5.4)

The model keeps only n windows whose mean is the closest to the mean value
of the current window. This avoids considering the mean of the windows during
anomalies periods. The prediction for the next m values is made by computing
the distance between the mean of each window and every one of the next m
points following the window.

prediction meanl =
1

n

n∑
i=1

|Yl − window meani| (5.5)

where l in [1,m]. The prediction is then computed as the sum of the mean value
of the current window and the average distance for every of m points.

predictionl = (current window mean+ prediction meanl) (5.6)

96

Figure 5.6: Windows with a distance equal to stream period

where l in [1,m].

Additionally, the model adapts its prediction methods to deal with anomalies.
Anomalies are assumed to be the values whose distance to the window mean
value is greater than the threshold t. If the prediction is to be made inside, what
is detected as, an anomaly period, the prediction is made by a simple moving
average algorithm. The method requires a vector of 9 parameters such as the
windows size, the threshold to detect anomalies, the number of windows to
consider, etc... During the competition a custom genetic algorithm makes these
parameters evolve to fit as best as possible the past 30 minutes data.

2. Moving average method with Robust Random Cut Forest for anomaly
detection (MA-RRCF).

The second solution uses the moving average method to predict the next
values and Robust Random Cut Forest (RRCF)(Guha et al., 2016). The prediction
model, in this case, relies on the fact that the data has an increasing, monotonous
pattern and thus using the moving average method for prediction seems ade-
quate. The training phase consists of keeping the last m values, where m is the

97

size of the batch in the stream, and computing the average value:

predictiont =
1

m

t−1∑
i=t−m

Yi (5.7)

The average value of the last m points is then used for the whole next batch and
then updated in the same way. To deal with anomalies this solution proposes
using RRCF. RRCF provides anomaly detection on streaming data. It uses
the ensemble of independent Robust Random Cut Trees. It constructs a tree
of 10-1000 vertices from a random sampling of the pool and creates more trees
of the same size 1-1000 times which creates the forest. It decides whether the
new data point is an anomaly or not by injecting it into the trees and analyzing
how much that changes the complexity of the forest(e.g. depth). Previous values
in the stream are used to build the trees and new values are inserted and the
average displacement degree is computed to decide if the point is an anomaly
or not. If the degree is larger than the threshold, that point is assumed to be
an anomaly and then it is replaced by the average computed on the whole stream.

3. Mondrian Forest with Robust Random Cut Forest for anomaly detection
(MF-RRCF).

The third solution proposes using regression Mondrian Forest (Lakshmi-
narayanan et al., 2014) for prediction and RRCF for detecting anomalies. Mon-
drian Forests are fast incremental random forests that use Mondrian Processes(Roy
et al., 2008) to build the ensembles of random decision trees. For this specific use
case, since the data stream represents the univariate time series, to use Mondrian
Forest to make predictions the data had to be transformed. It is necessary to pro-
vide the features and the target to Mondrian Forest, so the stream is transformed
in a way that previous n values are considered as features for the current value.
The example of the time series is given in Table 5.1 and its transformation to the
data stream is shown in Table 5.2.

The second part of the solution deals with detecting the anomalies. Similar
to the previous solution, here also RRCF are used for anomaly detection. The
difference is that anomaly values are being replaced not by the average on the
whole stream but by the average of the last received batch.

5.5.1 Results

In this part, we present the results achieved by the mentioned solutions.
We present the results achieved during the competition following all the rules
of the competition which include penalties for late predictions or not sending
predictions at all. After we present the results that have been achieved during

98

date target
00 : 00 : 01 397
00 : 00 : 02 388
00 : 00 : 03 341
00 : 00 : 04 361
00 : 00 : 05 359
00 : 00 : 06 369
00 : 00 : 07 387
00 : 00 : 08 415

Table 5.1: Time series

date target previous1 previous2 previous3
00 : 00 : 04 361 341 388 397
00 : 00 : 05 359 361 341 388
00 : 00 : 06 369 359 361 341
00 : 00 : 07 387 369 359 361
00 : 00 : 08 415 387 369 359

Table 5.2: Time series transformed into the data stream with a number of
features n = 3

independent testing of provided solutions, on a wider test set and without any
disturbance where prediction has been sent for all records in the stream on time.
We evaluate models using Mean Absolute Percentage Error(MAPE), described
in section 5.4.2. Also, we note the time latency, to measure how fast models were
in sending predictions.

We compare the proposed methods with the baseline model, which in the
case of regression was the model predicting the average value of whole data. In
the competition results, we ignore the time latency of the baseline model since it
doesn’t include the delays caused by the network. The results show that in both
scenarios the Adaptive Moving Average method had the best performance. Also
with the lowest time latency. The better performance comes from the adaptive
nature of the algorithm, which chooses the best algorithms online while the
stream is running and specifically the adaptive way of treating the anomalies.
The differences in the results in Table 5.3 and Table 5.4 are coming from delays
in network communication. Due to those delays, some predictions have been
received late and thus penalized, which caused higher values of MAPE and

99

Team Method MAPE Latency[s]
Ghislain Fievet AMA 12.71261 0.68632

Sohn Jimin MA−RRCF 13.10381 0.91592
Yeonwoo Nam MF −RRCF 13.73831 1.04440

Baseline MEAN 16.50072 0.0055

Table 5.3: Competition results

Team Method MAPE Latency[s]
Ghislain Fievet AMA 3.64622 0.09418
Yeonwoo Nam MF −RRCF 3.78128 0.27986

Sohn Jimin MA−RRCF 4.16643 0.11134
Baseline MEAN 16.03232 0.00347

Table 5.4: Test results

latency too. Also, we have participants who started the competition after the
official start causing them to be penalized for the records that they have missed.

100

6
Conclusion

6.1 Summary

Post-hoc interpretations of black-box models. The first part of this manuscript
focused extensively on post-hoc interpretations of black box models for tabular
data. Importantly, the use of post-hoc interpretations does not negate the inherent
advantages of leveraging powerful black-box models. Instead, it empowers us
to harness the full potential of these sophisticated algorithms while ensuring
that their decision-making processes remain interpretable and comprehensible.

We recognize that interpreting complex black-box models in a comprehen-
sible way is the main challenge of post-hoc interpretations. Additionally, we
acknowledge that most of the state-of-the-art approaches rely on randomization
techniques and synthetic data which introduces uncertainty and hinders the
trust in AI models overall. Finally, the interpretations of individual predictions
are computed to reflect the black-box model’s behavior only for a single instance
or a small artificial neighbourhood. Thus, we proposed two post-hoc approaches:
STACI and BELLA. While they address the interpretability from different scopes,
both methods address the aforementioned limitations of current state-of-the-art
approaches and provide deterministic, accurate, comprehensible, and general
interpretations.

STACI is a deterministic post-hoc method for providing interpretations of black
box classification models. It interprets the black-box model on the global level
but thanks to the tree structure of surrogate models it provides interpretations for
individual predictions as well. Our method uses one surrogate decision tree per
class, each trained using the F1 score as a metric to decide a split. The resulting
models provide simple, confident, but general interpretations. Originally it

101

was designed only for classification, but then it was extended to support also
regression problems.

Since it relies only on the existing data points from the training set, it is a
deterministic approach and the generality of its interpretations is grounded in
real data points. We have shown that our new method outperforms state of
the art methods in terms of fidelity, complexity, confidence and generality. The
experiments suggest that with our method we obtain higher accuracy, coupled
with higher generality and lower simplicity. Not only we balance this trade-off
better than state-of-the-art approaches, but we achieve better results on each
metric. Finally, our user study confirms that the metrics we proposed, confidence
and generality, are important features of an interpretation and that users prefer
our interpretations over others.

BELLA is a deterministic approach to provide post-hoc local explanations
for any regression black-box model, or indeed any static tabular dataset with a
numeric variable to be explained. It can provide both factual and counterfactual
explanations. The local linear approximations are computed by optimizing an
objective function that ensures accurate, general, and simple explanations.

Translating the idea of generality from our earlier work to regression prob-
lems, resulted in an algorithm to construct an optimal neighbourhood, which
depicts similar data points that can be explained with one simple local linear
model. We showed through detailed experiments that BELLA outperforms
state-of-the-art approaches in terms of generality and simplicity of explanations,
while achieving high accuracy. Again, our user study showed, that even in the
case of individual explanations, generality plays an important role. Additionally,
being able to point out real data points that are affected by the same decision,
adds to users’ trust in the model.
Data Stream Mining. Data stream mining is of paramount importance in today’s
fast-paced world, where data is generated at an unprecedented rate from various
sources such as sensors, social media, and IoT devices. Unlike traditional batch
data processing, data stream mining deals with continuous and rapidly changing
data streams in real-time or near-real-time. While there are platforms like Kaggle
that excel in hosting data science competitions on static datasets, there is indeed a
lack of similar platforms specifically tailored for data stream mining competitions.
This gap represents a missed opportunity for the data science community to
explore and tackle real-world challenges related to streaming data. Therefore, we
developed SCALAR to address these drawbacks of the popular existing platforms,
tailored only for batch learning.

SCALAR is the first of its kind, a platform for data science competitions on
data streams. Its architecture was designed to support the distribution of the
data to the users and the processing of incoming data from users in real-time.

102

In contrast to the existing data science competition platforms, SCALAR stands
alone as the one that supports online learning scenarios.

SCALAR has been developed in Python and it relied on popular open source
tools for processing big data and data streams. It was designed to let users
choose their preferred working environment. Users have to conform to the
communication protocol, but other than that, they are free to use different pro-
gramming languages, and different tools to train their machine learning model.
The platform provides real-time evaluation and a leaderboard. It integrates
also the baseline models, so that users can track how their model performs in
comparison to others to the baseline model as well. We had the opportunity
to try the platform in a real world setting, as we organized a machine learning
competition on data streams. It proved to be a very exciting experience both for
us, the organizers, as well as for the participants.

6.2 Future Works

STACI and BELLA showed that accuracy is not the only important parameter
to ensure users’ trust in the model. Both methods allow for further improve-
ments. In many applications, human intervention could lead to more plausible
explanations. For example, our counterfactual explanations could be improved
if users specified which features can be modified. STACI can be further improved
such that it automatically computes the model complexity and stops growing
the tree once the criteria have been met.

To extend BELLA, one can investigate if density-based clustering algorithms
can be used for computing the neighborhoods. Finally, a common challenge for
all distance-based machine learning algorithms is the search for more efficient
ways to compute neighborhoods. For example, one way can be to investigate
the Approximate Nearest Neighbours methods.

For SCALAR, an important step would be to focus on growing the community
around it. SCALAR is a prototype solution for the stream data mining platform
and there still remains a lot of possibilities to improve the platform. This would
allow us to test the platform for scalability and also to show the benefits that our
platform offers.

Some of the possible ways to improve the platform is to explore ways to
enable it to consume data from various sources. This can be extended through
options offered by Kafka Connect. Also, the system should be able to send
push notifications to users in order to inform them if there is some problem in
communication or if the predictions are arriving late.

103

6.2.1 Perspectives

We hope that the results that our methods achieve, as well as the users’
preferences demonstrated through our user studies, will lead towards a definite
set of desiderata that will define what “a good explanation“ is. While it is crucial
that explanations depict the reasoning of the black-box models, we aimed to
investigate what other characteristics the explanations should have to satisfy
the expectations of their recipients. Especially with recent advancements, AI
is becoming omnipresent, and it affects almost every person on this planet.
Therefore, we tried to determine which parameters are important to end users.

We believe that getting to the transparent and responsible AI is a battle in
multiple fields. On one side, it needs to ensure faithful interpretation of black-
box models and on the other, it needs to ensure that those can be presented and
justified in an understandable way. As xAI research continues to advance, it will
remain a vital component in the ethical and sustainable integration of AI across
various domains, supporting the realization of a more transparent, responsible,
and socially beneficial AI-powered future.

104

Bibliography

A. Adadi and M. Berrada. Peeking inside the black-box: A survey on explainable
artificial intelligence (xai). Access, 6, 2018.

A. Ahmad and L. Dey. A k-mean clustering algorithm for mixed numeric and
categorical data. Data & Knowledge Engineering, 63(2):503–527, 2007.

E. Alpaydin. Introduction to machine learning. MIT press, 2020.

D. Alvarez Melis and T. Jaakkola. Towards robust interpretability with self-
explaining neural networks. Advances in neural information processing systems,
31, 2018.

D. Alvarez-Melis and T. S. Jaakkola. On the robustness of interpretability meth-
ods. arXiv preprint arXiv:1806.08049, 2018.

P. Angelov and E. Soares. Towards explainable deep neural networks (xdnn).
Neural Networks, 130:185–194, 2020.

Apache. Spark structured streaming programming guide. https:
//spark.apache.org/docs/latest/structured-streaming-programming-guide.
html#structured-streaming-programming-guide, 2018.

M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica,
and M. Zaharia. Structured streaming: A declarative api for real-time appli-
cations in apache spark. In Proceedings of the 2018 International Conference on
Management of Data, pages 601–613, 2018.

A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garcı́a, S. Gil-López, D. Molina, R. Benjamins, et al. Explainable artificial

105

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#structured-streaming-programming-guide
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#structured-streaming-programming-guide
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#structured-streaming-programming-guide

intelligence (xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai. Information fusion, 58:82–115, 2020.

M. G. Augasta and T. Kathirvalavakumar. Reverse engineering the neural
networks for rule extraction in classification problems. Neural processing letters,
35(2):131–150, 2012.

P. C. Austin and E. W. Steyerberg. The number of subjects per variable required
in linear regression analyses. Journal of clinical epidemiology, 68(6):627–636,
2015.

N. Barakat and J. Diederich. Eclectic rule-extraction from support vector ma-
chines. International Journal of Computational Intelligence, 2(1):59–62, 2005.

N. H. Barakat and A. P. Bradley. Rule extraction from support vector machines:
A sequential covering approach. IEEE Transactions on Knowledge and Data
Engineering, 19(6):729–741, 2007.

D. Barbella, S. Benzaid, J. M. Christensen, B. Jackson, X. V. Qin, and D. R. Musi-
cant. Understanding support vector machine classifications via a recommender
system-like approach. DMIN, 1:305–311, 2009.

O. Bastani, C. Kim, and H. Bastani. Interpreting blackbox models via model
extraction. arXiv preprint arXiv:1705.08504, 2017.

V. Beaudouin, I. Bloch, D. Bounie, S. Clémençon, F. d’Alché Buc, J. Eagan,
W. Maxwell, P. Mozharovskyi, and J. Parekh. Flexible and context-specific ai
explainability: a multidisciplinary approach. SSRN 3559477, 2020.

K. J. Berry and P. W. Mielke Jr. A generalization of cohen’s kappa agreement mea-
sure to interval measurement and multiple raters. Educational and Psychological
Measurement, 48(4):921–933, 1988.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa: Massive online analysis.
Journal of Machine Learning Research, 11(May):1601–1604, 2010.

M. Z. Bill Chambers. Spark: The Definitive Guide, Big Data Processing Made Simple.
O’Reilly Media, 2018.

S. K. Biswas, M. Chakraborty, B. Purkayastha, P. Roy, and D. M. Thounaojam.
Rule extraction from training data using neural network. International Journal
on Artificial Intelligence Tools, 26(03):1750006, 2017.

106

A. Bloniarz, A. Talwalkar, B. Yu, and C. Wu. Supervised neighborhoods for
distributed nonparametric regression. In Artificial Intelligence and Statistics,
pages 1450–1459. PMLR, 2016.

D. Boulegane, N. Radulovic, A. Bifet, G. Fievet, J. Sohn, Y. Nam, S. Yu, and D.-W.
Choi. Real-time machine learning competition on data streams at the ieee big
data 2019. In 2019 IEEE International Conference on Big Data (Big Data), pages
3493–3497. IEEE, 2019.

O. Boz. Extracting decision trees from trained neural networks. In SIGKDD,
2002.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression
trees. CRC press, 1984.

N. Burkart and M. F. Huber. A survey on the explainability of supervised
machine learning. Journal of Artificial Intelligence Research, 70:245–317, 2021.

E. J. Candès and Y. Plan. Near-ideal model selection by l1 minimization. The
Annals of Statistics, 37(5A):2145–2177, 2009.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):15, 2009.

J. Chen, L. Song, M. Wainwright, and M. Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In International
conference on machine learning, pages 883–892. PMLR, 2018.

J. Cohen. A coefficient of agreement for nominal scales. Educational and psycho-
logical measurement, 20(1):37–46, 1960.

W. W. Cohen. Fast effective rule induction. In Machine learning proceedings 1995,
pages 115–123. Elsevier, 1995.

E. Commission. Proposal for a Regulation Laying down Harmonised Rules on Arti-
ficial Intelligence (Artificial Intelligence Act). European Commission: Brussels,
Belgium, 2021, 2021.

CRAN. An introduction to r programming language. https://cran.r-project.org/,
2018.

M. Craven and J. W. Shavlik. Extracting tree-structured representations of trained
networks. In Advances in neural information processing systems, 1996.

107

https://cran.r-project.org/

G. Cugola and A. Margara. Processing flows of information: From data stream
to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62, June 2012.
ISSN 0360-0300. doi: 10.1145/2187671.2187677. URL http://doi.acm.org/10.
1145/2187671.2187677.

Z. Cui, W. Chen, Y. He, and Y. Chen. Optimal action extraction for random
forests and boosted trees. In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pages 179–188, 2015.

S. Dandl, C. Molnar, M. Binder, and B. Bischl. Multi-objective counterfactual
explanations. In International Conference on Parallel Problem Solving from Nature,
pages 448–469. Springer, 2020.

A. Das and P. Rad. Opportunities and challenges in explainable artificial intelli-
gence (xai): A survey. arXiv preprint arXiv:2006.11371, 2020.

G. Developers. Protcol buffers developer guide. https://developers.google.
com/protocol-buffers/docs/overview, 2018.

F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608, 2017.

F. K. Došilović, M. Brčić, and N. Hlupić. Explainable artificial intelligence: A
survey. In MIPRO, 2018.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

T. A. Etchells and P. J. Lisboa. Orthogonal search-based rule extraction (osre) for
trained neural networks: a practical and efficient approach. IEEE transactions
on neural networks, 17(2):374–384, 2006.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers.
Machine learning, 29(2):131–163, 1997.

N. Frosst and G. Hinton. Distilling a neural network into a soft decision tree.
arXiv preprint arXiv:1711.09784, 2017.

L. Fu. Rule generation from neural networks. IEEE Transactions on Systems, Man,
and Cybernetics, 24(8):1114–1124, 1994.

G. Fung, S. Sandilya, and R. B. Rao. Rule extraction from linear support vector
machines. In Proceedings of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, pages 32–40, 2005.

108

http://doi.acm.org/10.1145/2187671.2187677
http://doi.acm.org/10.1145/2187671.2187677
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on
concept drift adaptation. ACM computing surveys (CSUR), 46(4):44, 2014.

N. Garg. Apache Kafka. Packt Publishing Ltd, 2013.

B. Goodman and S. Flaxman. European union regulations on algorithmic
decision-making and a “right to explanation”. AI magazine, 38(3), 2017.

gRPC. grpc documentation. https://grpc.io/docs/, 2018.

S. Guha, N. Mishra, G. Roy, and O. Schrijvers. Robust random cut forest based
anomaly detection on streams. In International conference on machine learning,
pages 2712–2721, 2016.

R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Giannotti.
Local rule-based explanations of black box decision systems. arXiv preprint
arXiv:1805.10820, 2018a.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. A
survey of methods for explaining black box models. ACM computing surveys,
51(5), 2018b.

P. Hall, N. Gill, M. Kurka, and W. Phan. Machine learning interpretability with
h2o driverless ai. H2O. ai, 2017.

S. Hara and K. Hayashi. Making tree ensembles interpretable. arXiv preprint
arXiv:1606.05390, 2016.

S. Harikumar and P. Surya. K-medoid clustering for heterogeneous datasets.
Procedia Computer Science, 70:226–237, 2015.

J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering al-
gorithm. Journal of the royal statistical society. series c (applied statistics), 28(1):
100–108, 1979.

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer,
2009.

J. Hopcroft and R. Kannan. Foundations of data science. Cambridge University
Press;, 2014.

A. Ignatiev, N. Narodytska, and J. Marques-Silva. Abduction-based explanations
for machine learning models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33(01), pages 1511–1519, 2019.

109

https://grpc.io/docs/

R. Jafari-Marandi, J. Denton, A. Idris, B. K. Smith, and A. Keramati. Optimum
profit-driven churn decision making: innovative artificial neural networks in
telecom industry. Neural Computing and Applications, 32:14929–14962, 2020.

H. Janson and U. Olsson. A measure of agreement for interval or nominal
multivariate observations. Educational and Psychological Measurement, 61(2):
277–289, 2001.

H. Janson and U. Olsson. A measure of agreement for interval or nominal multi-
variate observations by different sets of judges. Educational and Psychological
Measurement, 64(1):62–70, 2004.

U. Johansson and L. Niklasson. Evolving decision trees using oracle guides. In
Symp. on Computational Intelligence and Data Mining, 2009.

J. Kazemitabar, A. Amini, A. Bloniarz, and A. S. Talwalkar. Variable importance
using decision trees. Advances in neural information processing systems, 30, 2017.

J. N. Kok, E. J. Boers, W. A. Kosters, P. Van der Putten, and M. Poel. Artificial
intelligence: definition, trends, techniques, and cases. Artificial intelligence, 1:
270–299, 2009.

J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging system for
log processing. In Proceedings of the NetDB, volume 11, pages 1–7, 2011.

H. Lakkaraju, S. H. Bach, and J. Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pages
1675–1684, 2016.

H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec. Faithful and customiz-
able explanations of black box models. In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, pages 131–138, 2019.

B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Mondrian forests: Efficient
online random forests. In Advances in neural information processing systems,
pages 3140–3148, 2014.

N. Leopold and O. Rose. Unic: A fast nonparametric clustering. Pattern Recogni-
tion, 100:107117, 2020.

B. Letham, C. Rudin, T. H. McCormick, D. Madigan, et al. Interpretable classifiers
using rules and bayesian analysis: Building a better stroke prediction model.
The Annals of Applied Statistics, 9(3), 2015.

110

A. V. Looveren and J. Klaise. Interpretable counterfactual explanations guided
by prototypes. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 650–665. Springer, 2021.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predic-
tions. In NEURIPS, 2017.

S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal, and S.-I. Lee. From local explanations to global
understanding with explainable ai for trees. Nature machine intelligence, 2(1):
56–67, 2020.

D. Martens, B. Baesens, and T. Van Gestel. Decompositional rule extraction from
support vector machines by active learning. IEEE Transactions on Knowledge
and Data Engineering, 21(2):178–191, 2008.

M. Mashayekhi and R. Gras. Rule extraction from decision trees ensembles:
new algorithms based on heuristic search and sparse group lasso methods.
International Journal of Information Technology & Decision Making, 16(06):1707–
1727, 2017.

Mayo-Clinic. Diabetes, 2023. URL https://www.mayoclinic.org/
diseases-conditions/diabetes/diagnosis-treatment/drc-20371451.

J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon. A proposal for the
dartmouth summer research project on artificial intelligence, august 31, 1955.
AI magazine, 27(4):12–12, 2006.

N. Meinshausen. Relaxed lasso. Computational Statistics & Data Analysis, 52(1):
374–393, 2007.

D. Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux journal, 2014(239):2, 2014.

T. Miller. Contrastive explanation: A structural-model approach. arXiv preprint
arXiv:1811.03163, 2018.

T. Miller. Explanation in artificial intelligence: Insights from the social sciences.
Artificial intelligence, 267:1–38, 2019.

C. Molnar. A guide for making black box models explainable. URL:
https://christophm. github. io/interpretable-ml-book, 2:3, 2018.

111

https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-treatment/drc-20371451
https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-treatment/drc-20371451

G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller. Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern
recognition, 65:211–222, 2017.

J. Montiel, J. Read, A. Bifet, and T. Abdessalem. Scikit-multiflow: A multi-output
streaming framework. The Journal of Machine Learning Research, 19(1):2915–2914,
2018.

R. K. Mothilal, A. Sharma, and C. Tan. Explaining machine learning classi-
fiers through diverse counterfactual explanations. In Proceedings of the 2020
conference on fairness, accountability, and transparency, pages 607–617, 2020.

W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Interpretable
machine learning: definitions, methods, and applications. arXiv preprint
arXiv:1901.04592, 2019.

M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters, Y. Schmitt, J. Schlötterer,
M. van Keulen, and C. Seifert. From anecdotal evidence to quantitative evalua-
tion methods: A systematic review on evaluating explainable ai. arXiv preprint
arXiv:2201.08164, 2022.

T. P. Neha Narkhede, Gwen Shapira. Kafka: The Definitive Guide, Real-Time Data
and Stream Processing at Scale. O’Reilly Media, 2017.

H. Núñez, C. Angulo, and A. Català. Rule extraction from support vector
machines. In Esann, pages 107–112, 2002.

F. Pedregosa, G. Varoquaux, Gramfort, et al. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2011.

G. Plumb, D. Molitor, and A. S. Talwalkar. Model agnostic supervised local
explanations. Advances in neural information processing systems, 31, 2018.

R. Poyiadzi, K. Sokol, R. Santos-Rodriguez, T. De Bie, and P. Flach. Face: feasible
and actionable counterfactual explanations. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pages 344–350, 2020.

N. Radulovic, D. Boulegane, and A. Bifet. Scalar-a platform for real-time machine
learning competitions on data streams. Journal of Open Source Software, 5(56):
2676, 2020.

N. Radulovic, A. Bifet, and F. Suchanek. Confident interpretations of black box
classifiers. In 2021 International Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE, 2021.

112

N. Radulovic, A. Bifet, W. Maxwell, and F. Suchanek. Confident interpretations
of black box classifiers. In preprint, pages 1–8. arxiv, 2023a.

N. Radulovic, A. Bifet, and F. Suchanek. Bella: Black box model explanations by
local linear approximations. In PREPRINT. READY FOR SUBMISSION TO
A CONFERENCE, 2023b. URL https://arxiv.org/abs/2305.11311.

M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you? – explaining
the predictions of any classifier. In SIGKDD, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic
explanations. In AAAI, 2018.

R. L. Rivest. Learning decision lists. Machine learning, 2(3):229–246, 1987.

J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, P. Chakraborty,
N. L. Ray, D. Himmelstein, W. Fu, and J. H. Moore. Pmlb v1.0: an open source
dataset collection for benchmarking machine learning methods. arXiv preprint
arXiv:2012.00058v2, 2021.

P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987.

D. M. Roy, Y. W. Teh, et al. The mondrian process. In NIPS, pages 1377–1384,
2008.

C. Rudin. Please stop explaining black box models for high stakes decisions.
Stat, 1050:26, 2018.

B. Russell and S. Blackburn. Why I am not a Christian: and other essays on religion
and related subjects. Routledge, 2020.

C. Russell. Efficient search for diverse coherent explanations. In Proceedings of
the Conference on Fairness, Accountability, and Transparency, pages 20–28, 2019.

A. L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of research and development, 3(3):210–229, 1959.

M. K. Sarker, N. Xie, D. Doran, M. Raymer, and P. Hitzler. Explaining trained
neural networks with semantic web technologies: First steps. arXiv preprint
arXiv:1710.04324, 2017.

R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra.
Grad-cam: Why did you say that? arXiv preprint arXiv:1611.07450, 2016.

113

https://arxiv.org/abs/2305.11311

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features
through propagating activation differences. In International conference on ma-
chine learning, pages 3145–3153. PMLR, 2017.

D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling lime and shap:
Adversarial attacks on post hoc explanation methods. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186, 2020.

R. A. Stine. Graphical interpretation of variance inflation factors. The American
Statistician, 49(1):53–56, 1995.

S. Tan, R. Caruana, G. Hooker, P. Koch, and A. Gordo. Learning global ad-
ditive explanations for neural nets using model distillation. arXiv preprint
arXiv:1801.08640, 2018.

R. C. Team et al. R: A language and environment for statistical computing, 2013.

G. Tolomei, F. Silvestri, A. Haines, and M. Lalmas. Interpretable predictions of
tree-based ensembles via actionable feature tweaking. In Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and data mining,
pages 465–474, 2017.

L. Torgo and J. Gama. Regression by classification. In Brazilian symposium on
artificial intelligence, pages 51–60. Springer, 1996.

K. Ushey, J. Allaire, and Y. Tang. reticulate: Interface to ’Python’, 2022.
https://rstudio.github.io/reticulate/, https://github.com/rstudio/reticulate.

B. Ustun and C. Rudin. Supersparse linear integer models for optimized medical
scoring systems. Machine Learning, 102(3), 2016.

M. Veale and F. Zuiderveen Borgesius. Demystifying the draft eu artificial
intelligence act—analysing the good, the bad, and the unclear elements of the
proposed approach. Computer Law Review International, 22(4):97–112, 2021.

V. Vo, V. Nguyen, T. Le, Q. H. Tran, G. Haffari, S. Camtepe, and D. Phung. An
additive instance-wise approach to multi-class model interpretation. arXiv
preprint arXiv:2207.03113, 2022.

S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explanations without
opening the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:
841, 2017a.

114

S. Wachter, B. D. Mittelstadt, and C. Russell. Counterfactual explanations with-
out opening the black box: Automated decisions and the GDPR. CoRR,
abs/1711.00399, 2017b. URL http://arxiv.org/abs/1711.00399.

A. White and A. d. Garcez. Measurable counterfactual local explanations for any
classifier. arXiv preprint arXiv:1908.03020, 2019.

M. Wu, M. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and F. Doshi-Velez. Beyond
sparsity: Tree regularization of deep models for interpretability. In Proceedings
of the AAAI conference on artificial intelligence, volume 32-1, 2018.

C. Yang, A. Rangarajan, and S. Ranka. Global model interpretation via re-
cursive partitioning. In 2018 IEEE 20th International Conference on High Per-
formance Computing and Communications; IEEE 16th International Conference
on Smart City; IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 1563–1570. IEEE, 2018.

H. Yang, C. Rudin, and M. Seltzer. Scalable bayesian rule lists. In ICML, 2017.

J. Yoon, J. Jordon, and M. van der Schaar. Invase: Instance-wise variable selection
using neural networks. In International Conference on Learning Representations,
2018.

M. R. Zafar and N. M. Khan. Dlime: A deterministic local interpretable model-
agnostic explanations approach for computer-aided diagnosis systems. arXiv
preprint arXiv:1906.10263, 2019.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al. Spark:
Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

Y. Zhang, K. Song, Y. Sun, S. Tan, and M. Udell. ” why should you trust my
explanation?” understanding uncertainty in lime explanations. arXiv preprint
arXiv:1904.12991, 2019.

X. Zhao, Y. Wu, D. L. Lee, and W. Cui. iforest: Interpreting random forests via
visual analytics. IEEE transactions on visualization and computer graphics, 25(1):
407–416, 2018.

Z.-H. Zhou, Y. Jiang, and S.-F. Chen. Extracting symbolic rules from trained
neural network ensembles. Ai Communications, 16(1):3–15, 2003.

J. R. Zilke, E. Loza Mencı́a, and F. Janssen. Deepred–rule extraction from deep
neural networks. In International conference on discovery science, pages 457–473.
Springer, 2016.

115

http://arxiv.org/abs/1711.00399

Titre: L’IA Explicable a posteriori pour les modèles de boı̂te noire sur les données tabulaires

Mots clés: Apprentissage automatique, Interprétabilité, Explicabilité, Classification, Régression,
Données tabulaires

Résumé: Les modèles d’intelligence artificielle (IA)
actuels ont fait leurs preuves dans la résolution
de diverses tâches, telles que la classification, la
régression, le traitement du langage naturel (NLP)
et le traitement d’images. Les ressources dont nous
disposons aujourd’hui nous permettent d’entraı̂ner
des modèles d’IA très complexes pour résoudre
différents problèmes dans presque tous les do-
maines : médecine, finance, justice, transport,
prévisions, etc. Avec la popularité et l’utilisation
généralisée des modèles d’IA, la nécessité d’assurer
la confiance dans ces modèles s’est également
accrue. Aussi complexes soient-ils aujourd’hui,
ces modèles d’IA sont impossibles à interpréter
et à comprendre par les humains. Dans cette
thèse, nous nous concentrons sur un domaine de
recherche spécifique, à savoir l’intelligence artifi-
cielle explicable (xAI), qui vise à fournir des ap-

proches permettant d’interpréter les modèles d’IA
complexes et d’expliquer leurs décisions. Nous
présentons deux approches, STACI et BELLA, qui
se concentrent sur les tâches de classification et de
régression, respectivement, pour les données tab-
ulaires. Les deux méthodes sont des approches
post-hoc agnostiques au modèle déterministe, ce
qui signifie qu’elles peuvent être appliquées à
n’importe quel modèle boı̂te noire après sa création.
De cette manière, l’interprétabilité présente une
valeur ajoutée sans qu’il soit nécessaire de faire
des compromis sur les performances du modèle
de boı̂te noire. Nos méthodes fournissent des in-
terprétations précises, simples et générales à la
fois de l’ensemble du modèle boı̂te noire et de ses
prédictions individuelles. Nous avons confirmé
leur haute performance par des expériences appro-
fondies et étude d’utilisateurs.

Title: Post-hoc Explainable AI for Black Box Models on Tabular Data

Keywords: Machine Learning, Interpretability, Explainability, Classification, Regression, Tabular Data

Abstract: Current state-of-the-art Artificial Intel-
ligence (AI) models have been proven to be very
successful in solving various tasks, such as clas-
sification, regression, Natural Language Process-
ing (NLP), and image processing. The resources
that we have at our hands today allow us to train
very complex AI models to solve different prob-
lems in almost any field: medicine, finance, justice,
transportation, forecast, etc. With the popularity
and widespread use of the AI models, the need to
ensure the trust in them also grew. Complex as they
come today, these AI models are impossible to be
interpreted and understood by humans. In this the-
sis, we focus on the specific area of research, namely
Explainable Artificial Intelligence (xAI), that aims

to provide the approaches to interpret the complex
AI models and explain their decisions. We present
two approaches STACI and BELLA which focus
on classification and regression tasks, respectively,
for tabular data. Both methods are deterministic
model-agnostic post-hoc approaches, which means
that they can be applied to any black-box model af-
ter its creation. In this way, interpretability presents
an added value without the need to compromise on
black-box model’s performance. Our methods pro-
vide accurate, simple and general interpretations of
both the whole black-box model and its individual
predictions. We confirmed their high performance
through extensive experiments and a user study.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Preliminaries
	Motivation
	The taxonomy of interpretable ML methods
	Evaluation

	The challenges of post-hoc interpretability
	Challenges of data stream mining

	eXplainable Artificial Intelligence
	Literature review
	White-box models
	Post-hoc interpretability
	Model-agnostic methods
	Model-specific methods

	STACI
	Introduction
	Desiderata
	Method's Approach
	Training algorithm
	Regression
	Experiments
	Competitors
	Settings
	Counterfactuality
	Regression experiments

	User study

	BELLA
	Introduction
	Methodology
	Goal
	Desiderata
	Method

	Experiments
	Experimental setup
	Experimental results
	Verification on an interpretable model

	SCALAR
	Introduction
	Streaming learning setting

	Platform for real-time machine learning competitions
	Architecture

	Development
	Implementation details

	Real-time Machine Learning competition on SCALAR
	Data
	Workflow

	Winning Solutions
	Results

	Conclusion
	Summary
	Future Works
	Perspectives

	Bibliography

