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Abstract

Deep learning has become a powerful technique for solving complex problems across
numerous domains, owing to its ability to learn and model intricate non-linear relationships
from data. However, the substantial computational power, memory, and energy requirements
of deep learning models make them unsuitable for deployment on devices with limited
resources. Simultaneously, the emergence of microelectromechanical sensors (MEMS),
microcontroller units (MCUs), and the Internet of Things (IoT) has resulted in a growing
number of applications that depend on embedded systems for local data processing and
environmental interaction. MEMS provide an interface to continuously sense data from
the real world to the digital world. MCUs are low-cost devices with high consumer market
volumes, where targeting the lowest-power hardware can result in billions in saving per
year. Thus, delivering always-on, real-time sensing pose ultra-low power constraints, with
direct and high technical and economic implications and challenges.

The intersection of deep learning and embedded systems has given rise to the field of
tinyML, which offers significant opportunities and challenges. Deep learning promises the
automation of the algorithm design process, which enables practitioners to customize a
product behavior at will. The primary challenge lies in adapting deep learning techniques
to operate efficiently on ultra-low-power MEMS-based devices with constrained resources
and operations, while maintaining acceptable performance levels.

This thesis aims to provide strategies for optimizing power footprint and deploying
deep learning models in ultra-low power settings for MEMS-based applications. We first
investigate model compression methods, such as pruning, knowledge distillation, and
quantization. Then, we enable end-to-end deployment of deep learning models for efficient
inference on the most resource-constrained MCUs in the industry and state-of-the-art,
effectively redefining the concept of ultra-low power as extreme-low power. Finally, we
present a novel approach to generalize the quantization process, accommodating any
number of bits, and extending to extreme quantization levels, such as 1-bit.

The outcomes of this research contribute to the advancement of tinyML and enable
the broader adoption of intelligent sensing devices across various real-world applications.





Résumé

L’apprentissage profond est devenu une technique puissante pour résoudre des problèmes
complexes dans de nombreux domaines, grâce à sa capacité à apprendre et à modéliser
des relations non linéaires complexes à partir de données. Cependant, la puissance de
calcul, la mémoire et les besoins énergétiques substantiels des modèles d’apprentissage
profond peuvent les rendre inadaptés au déploiement sur des systèmes à ressources
limitées. Parallèlement, l’émergence des capteurs microélectromécaniques (MEMS),
des microcontrôleurs (MCUs) et de l’Internet des objets (IoT) a entrâıné un nombre
croissant d’applications qui dépendent de systèmes embarqués pour le traitement local des
données et pouvant interagir avec l’environnement. Les MEMS fournissent une interface
permettant de détecter en continu des données du monde réel vers le monde numérique.
Les MCUs sont des plateformes à faible coût ayant des volumes de marché très élevés pour
les consommateurs, où cibler le matériel à la plus faible consommation peut entrâıner
des économies de plusieurs milliards par an. Ainsi, offrir une inférence en temps réel et
en continu impose des contraintes ultra-faibles en matière de consommation d’énergie,
avec des implications et des défis techniques et économiques directs et significatifs.

L’intersection de l’apprentissage profond et des systèmes embarqués a donné naissance
au domaine du tinyML, qui offre à la fois des opportunités et des défis significatifs. Le
principal défi consiste à adapter les techniques d’apprentissage profond pour fonctionner
efficacement sur des systèmes MEMS ultra-faible consommation avec des ressources et
des opérations limitées, tout en maintenant des niveaux de performance acceptables.

Cette thèse vise à fournir des stratégies pour optimiser l’empreinte énergétique et
le déploiement des modèles d’apprentissage profond dans des contextes ultra-faible
consommation pour des applications basées sur des MEMS. Nous étudions d’abord les
méthodes de compression de modèles, telles que l’élagage, la distillation de connaissance
et la quantification. Ensuite, nous permettons le déploiement de bout en bout de
modèles d’apprentissage profond pour une inférence efficace sur les MCUs les plus
limités en ressources de l’industrie, redéfinissant ainsi le concept de l’inférence ultra-
faible consommation en tant qu’extrème-faible consommation. Enfin, nous présentons
une nouvelle approche pour généraliser le processus de quantification, compatible avec
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n’importe quel nombre de bits et s’étendant à des niveaux de quantification extrêmes,
tels que 1-bit.

Les résultats de ces recherches contribuent à l’avancement du domaine tinyML et
permettent une adoption plus large des systèmes de détection intelligents embarqués
dans diverses applications du monde réel.
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Chapter 1

Introduction

“Everything is both simpler than we can imagine,
and more complicated that we can conceive.”

— Johann Wolfgang von Goethe

Artificial intelligence. Over the last decade, artificial intelligence (AI) has revolutionized
our daily experiences and technological advancements, empowering machines to perform
tasks that traditionally require human-like intelligence, such as recognizing objects or
speech or playing advanced games like Go.
Machine learning (ML) is the most prominent AI approach, which trains computers to
learn patterns and representations from data without explicit programming.
Deep learning (DL) is an advanced subset of machine learning inspired by the organization
of the brain, using artificial neural networks (NNs) to model and solve complex problems in
a wide variety of fields, including language processing, protein generation, or automation.

Sensors and microcontrollers. Simultaneously, there has been an increase in the
adoption and development of the Internet of Things (IoT), bringing new devices and
applications into our daily lives. Microelectromechanical sensors (MEMS) and microcontroller
units (MCUs) are essential hardware components of IoT, which allows hardware devices
to collect and process information (movement, voice, temperature, pressure, ...) directly
at the source, in their local environment, excluding the need for additional resources
or external communication. Local and autonomous data processing optimizes the flow
of information but inherently poses power constraints. Some applications also require
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continuous data processing, which put additional power constraints. MEMS and MCUs
serve as the interface to sense information between the analog and the digital world.
These devices are found in a wide range of applications, including mobiles, cars, wearables,
environmental monitoring, and healthcare systems. Their consumer market scales to
several billion in annual sales, so a slight deviation in power constraints can result in
significant costs.

TinyML. The convergence of machine learning and IoT has sparked significant interest
in research and industry because it enables embedded hardware to process local data
and interact with their environment in an automated and intelligent way, thus leading to
the emerging field of tinyML (Figure 1.1). TinyML focuses on developing efficient neural
network models and deployment techniques tailored for low-power, resource-constrained
devices. Some examples of tinyML applications are detecting or counting events, gesture
recognition, predictive maintenance, or keyword spotting, commonly found in home
appliances, remote control devices, smartphones, smart watches, or augmented reality
glasses.
However, the exponential growth of deep learning is closely linked to the development of
powerful hardware, such as graphical processing units (GPUs), capable of supporting
its large computation requirements. Therefore, deep learning has yet to reach the same
growth and support on low-power devices, such as microcontrollers, to enable deep
learning to run at the edge. Indeed, the power footprint of deep learning, as well as the
vast landscape of embedded devices, pose new challenges but exciting opportunities that
must be addressed by researchers and industrials.

Industrial context. TDK InvenSense is a world-leading manufacturer and supplier
of motion, sound, or pressure sensors. Their sensors are integrated into a wide range
of applications and products, including smartphones, wearables, cars, home appliances,
remote controls, ... In many of these applications, the sensors must operate always-on and
in real-time, which requires extreme attention to memory, latency, and power constraints.
Meeting these power constraints can help reduce costs and differentiate their products in
a highly competitive industry that sells billions of units annually.

Moreover, the promise of deep learning to automatically learn, extract and classify
information from labeled data with state-of-the-art performance under a fast time-to-
market and uniform design process is highly attractive. Practically, this would allow
non-practitioners to create and design new sensor-based algorithms at will. However,
while deep learning has proven high performance, it is an expensive method in terms of
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data collection, training, and inference, which makes it challenging to deploy on the most
constrained devices. Moreover, even a slight increase in power footprint may require the
use of an upgraded hardware model, resulting in significant additional costs for consumers
and a less competitive market advantage.

Therefore, researching new ways to incorporate the promises of neural networks into
the extreme ultra-low power class of embedded targets poses significant challenges and
opportunities.

Introduction outline. In the following section, we introduce deep learning, its
applications, and limitations (Section 1.1), for low-power devices (Section 1.2) for research
and industry. This has led us to explore the challenges and methods (Section 1.3), along
with the tools and practices (Section 1.4) used to combine both areas, contributing to
the emerging field of tinyML.
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Fig. 1.1 TinyML as the intersection between artificial intelligence and embedded systems.
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1.1 Neural networks

We introduce neural networks (Section 1.1.1), then we motivate how their theoretical
properties (Section 1.1.2) and modern architectures (Section 1.1.3) are of interests in
tinyML, and finally explain its implications for our work (Section 1.1.4).

1.1.1 Feedforward neural networks

The concept of artificial neural networks was introduced by McCulloch and Pitts (1943) as
a mathematical model to simulate the human biological neural system but was limited in
its ability to learn. This laid the foundation for the perceptron model, which was the first
neural model capable of learning and classifying linearly separable data (Rosenblatt, 1958,
Sakib et al., 2018). In turn, the backpropagation (Rumelhart et al., 1986) and gradient
descent algorithms (Baldi, 1995, Lecun et al., 1998) were developed to allow efficient
training of multi-layer perceptron (MLP) that is capable of classifying non-linear inputs.
The MLP is a type of feedforward neural network that consists of alternatively stacking
multiple layers L of neurons and non-linear functions ϕ (Rumelhart et al., 1986, Huang,
2009) as represented in Figure 1.2. These layers include an input layer, one or more hidden
layers, and an output layer. Stochastic gradient descent (SGD) and backpropagation
algorithms, and progress in hardware computation have enabled the revolution in the
field of neural networks, leading to the modern era of deep learning algorithms (LeCun
et al., 2015), for example capable of achieving state-of-the-art performance on ImageNet
(Krizhevsky et al., 2012).

Formally, a neural network can be defined as a function f and a directed, weighted
graph composed of nodes (neurons) and edges (connections between neurons) with
associated weight parameters W , bias B, where inputs x are propagated forward in the
graph to produce an output y. The objective of the neural network f defined as

y = f(x) = h(L)

h(l) = ϕ(l)
(
W (l)h(l−1) + B(l)

)
for l = 1, . . . , L

h(0) = x

(1.1)

is to approximate some function f ∗ mapping an input vector x to an output vector y by
learning weights matrix W (Goodfellow et al., 2016).

Neural networks have interesting theoretical and practical properties, as we will see
in the next sections.
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Fig. 1.2 Feedforward neural network.

1.1.2 Properties

Neural networks possess powerful theoretical properties that stand out from standard
machine learning approaches, making them of great interest for a wide range of applications.

Expressiveness

Neural networks are universal approximators. Cybenko (1989), Hornik et al. (1989) have
theorized that a sufficiently wide hidden layer is able to approximate any continuous
function on a compact set to an arbitrary level of precision. More recent work by Lin
and Jegelka (2018) has extended the universal approximation theorem to residual neural
networks (ResNets) (He et al., 2016), proving that a sufficiently deep neural network
with one-neuron hidden layers with residual connections has enough expressive power to
approximate any continuous function.

The direct implication is that feature extraction can be done automatically without
domain knowledge, unlike standard machine learning. Thus, this allows for a uniform
algorithm design process across a wide range of applications, facilitating the creation of
algorithms from a set of labeled data, and their use in the industry and research fields.

Although these theorems prove that neural networks are able to learn “by heart” any
function, given enough input samples, they do not tell anything about how to reach
generalization ability to new samples.

Generalization

Neural network models have shown that it is possible to generalize to new data with fewer
examples than parameters with very large models (Li and Liang, 2018, Kawaguchi and
Huang, 2019), and are even capable of labeling random data (Zhang et al., 2021a). This
overparametrization results in a highly-dimensional non-convex space and redundancy,
but results in higher quality and quantity of local minima (Choromańska et al., 2014).
This implies that the optimization function has a higher chance of not getting stuck
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in a bad local minimum compared to small-size networks. These results differentiate
neural networks from standard ML models where the overparametrization is usually
detrimental to generalization, especially if there are more parameters than needed. Thus,
the learnable capacity of neural networks makes them of great interest for performing
various tasks in tinyML, using a uniform approach.

We saw an overview of the theoretical properties of deep learning, we will now explore
which modern deep learning architectures are commonly used in practice and why.

1.1.3 Modern deep learning

Although in the modern deep learning era, the hardware progress can allow supporting
the given high volume of computation and data, the design of the architecture is critical
to the final performance and depends on the applications.

Developing and finding new neural network architectures is of great interest in research
to surpass the state-of-the-art. Most of these state-of-the-art architectures are variations
and combinations of the one we present below. Table 1.1 provides a summary of standard
architectures used in modern deep learning, and their strengths and weaknesses.

Fully-connected layers

Fully-connected (FC) layers, also known as dense layers were the first type of layers used in
neural networks, specifically in MLP as presented in Section 1.1.3 and depicted in Figure
1.2. They connect each neuron of a layer to all the neurons in the next layer and process
each input independently. by applying a non-linear transformation. They are often used
toward the end of the model to aggregate the higher-level features from the previous layer
and make the final predictions. The simplest form of a fully-connected layer is a weighted
sum, which makes them very general and not specialized to any particular application.
Thus, they are building blocks of modern deep learning architectures. However, they are
prone to overfitting, and may poorly perform on spatial or temporal data.

Convolutional neural networks

Convolutional neural networks (CNNs) are commonly used as feature extractors, showing
their strength in processing spatial structures, such as images (Krizhevsky et al., 2012),
videos (Simonyan and Zisserman, 2014), or signal processing (Alnaim and Abbod, 2019,
Gong and Poellabauer, 2018). As they suggest, they consist of applying convolutional
operations using filters, also called kernels on the input in 1D, 2D or 3D, and are shared
across the spatial dimensions. They are often stacked all together with max-pooling, to
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summarize a group of values by their maximum, (Krizhevsky et al., 2012), batchnorm
to normalize activations and facilitate training (Ioffe and Szegedy, 2015), and ReLU
activation for non-linearity. Compared to FC layers, this design allows CNNs to efficiently
learn spatial hierarchical structures and detect local to global patterns, such as edges,
shapes, and textures. In addition, the weight sharing aspect reduces the number of
parameters and makes them more robust to spatial translations and distortions. Some
classic CNN architectures are AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan and
Zisserman, 2015), or GoogleLeNet (Szegedy et al., 2015), each using increasing network
depths, thereby large model size.

Thus, in modern deep learning architectures, CNNs are often found in the early stages
of the network serving as powerful feature extractors, but they have shown limitations in
learning with sequential data structure or modeling long-range dependencies (Shorten
and Khoshgoftaar, 2019, Liu et al., 2020a).

Recurrent neural network

Recurrent neural networks (RNNs) are specialized layers for modeling sequential data
(Rumelhart et al., 1986, Elman, 1990), such as signals (Graves and Jaitly, 2014, Alnaim
and Abbod, 2019), speech (Zhang et al., 2018) or text (Bahdanau et al., 2015). Compared
to CNNs, they are able to model longer temporal contexts by keeping a description of
previous contexts because each output directly depends on previous inputs. This is of
particular interest for sensor-based applications that inherently deal with sequential data.

The building block of an RNN can be defined as a simple RNN (Elman, 1990):

ht = ϕh(Wh[ht−1, xt] + bh),
yt = ϕy(Wyht + by),

(1.2)

where xt is the input, ht is a shared internal state, serving as a memory at time t, bh

and by are bias terms. However, they are difficult to train because of the effects of the
vanishing or exploding gradient when the sequence is long (Bengio et al., 1994). Then
long-short term memory (LSTM) (Hochreiter and Schmidhuber, 1997, Gers et al., 1999,
2003) and gated-recurrent units (GRU) (Chung et al., 2014) layers were designed to
alleviate the limitations of the simple RNN.

They are based on two forms of memory updates:

• “Leak”: Progressive update of the current memory: ht+1 = ht + ϕ(ht, xt)

• “Gate”: Context-dependent updates of the memory: ht+1 = αht + (1− α)ϕ(ht, xt),
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where α can be a scalar or the output of a gated function g(ht, xt) ∈ [0, 1] as in GRU or
LSTM. Note that the “gated” mechanism is a specific form of the attention mechanism
(Vaswani et al., 2017), allowing it to focus its attention on specific inputs depending on
the context.

In particular, LSTM has three gates (input, forget, and output) and has two hidden
temporal streams ct and ht where ct corresponds to ht in the previous definition of the
RNN (Equation (1.2)) and ht is an auxiliary stream used to compute α thus controlling
the quantity of updates.

GRU is a simplified version of LSTM (update and forget) as well as one hidden
temporal stream ht, which has shown performance close to LSTM with a lower power
footprint (Cahuantzi et al., 2021).

However, RNNs are limited in handling spatially structured data and processing
sequences in parallel. This is because RNNs process input one time step at a time
(Equation 1.2).

Residual neural networks

Residual neural networks (ResNets) were introduced in He et al. (2016). They provide
each layer with direct feedback from distant previous layers to minimize the loss of
gradient information during the backpropagation in deep networks. Although ResNets
has shown state-of-the-art performance in computer vision (Khan et al., 2020), they are
typically on the scale of millions of parameters (Menghani, 2023) and are more commonly
applied on deep networks, which is not suitable for tinyML hardware.

Transformers

Transformers are attention-based models introduced in Vaswani et al. (2017) that surpass
state-of-the-art performance on large-scale natural language processing tasks or computer
vision tasks (Lin et al., 2022). They allow the model to focus their attention on each token
of the input sequence (local) with respect to other tokens (global). This design addresses
the limitations of CNNs and RNNs as stated previously because Transformers can process
long-term dependencies and sequences in parallel. Although they have encountered great
success and interest, they require a large amount of data, and a power footprint for both
training and inference, even more than ResNets, which makes them bad candidates for
tinyML.
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Table 1.1 Summary of standard architectures used in modern deep learning.

Layer Definition Strength Weakness
FC Connects all neurons in-between layers High-level aggregations Overfitting, not specialized
CNN Convolutional operations with shared parameters Local and global spatial patterns Struggles with sequences
RNN Processes sequences with a hidden state Temporal dependencies Struggles with spatial patterns
ResNets Deep nets with residual connections Eases training deep networks Large model size, expensive
Transformers Self-attention for input relationships Long-term local and global patterns Large training data and power footprint

Activation functions

Activation functions in deep learning introduce non-linearity to the model, enabling deep
learning models to achieve higher levels of expressiveness and create more complex decision
boundaries. This non-linearity is essential for processing real-world data, characterized by
diverse and often non-linear features, effectively capturing intricate relationships within
the data. Table 1.2 references standard activations used in modern deep learning.

Table 1.2 Reference table of standard activation functions.

Name Definition Notes

ReLU f(x) =
x, if x ≥ 0

0, otherwise
Returns identity if positive, else 0

Leaky ReLU f(x) =
x, if x ≥ 0

αx, otherwise
Allows small negative values

PReLU f(x) =
x, if x ≥ 0

αix, otherwise
Per-neuron learnable αi values

Tanh f(x) = ex−e−x

ex+e−x Returns value in range [−1, 1]
Sigmoid f(x) = 1

1+e−x Returns value in range [0, 1]
Softmax f(xi) = exi∑K

j=1 exj
Returns class probabilities

Regularization

In Section 1.1.2, we have seen that neural networks possess interesting generalization
properties. We will now explore popular regularization choices that help with generalization
in practice.

As in standard machine learning, regularization can help neural networks to generalize
better to unseen data, and make them less complex. Regularization techniques can either
be of two forms, based on whether or not they directly alter the objective function:

• Explicit:
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– L1 penalizes the absolute values of the weights, encouraging sparsity, and thus
simpler models,

– L2 penalizes the squared values of the weights, constraining their magnitude,
and thus encourages smoother and simpler models.

• Implicit:

– Dropout (Srivastava et al., 2014) as an average of probabilistic architectures
where each dropout-realization results in a different sub-network (Gal and
Ghahramani, 2016),

– Batch normalization limits the range of values and adds noise to the activation,
preventing the model from memorizing the training data too well (Ioffe and
Szegedy, 2015, Bjorck et al., 2018),

– Early-stopping prevents the model from becoming too specialized during
training (Sjöberg and Ljung, 1992, Bishop, 1995),

– Data augmentation increases the size and diversity of the training set, which
helps the model learn more robust features (Shorten and Khoshgoftaar, 2019),

– Random noise injected into the input (also a form of data augmentation)
(Goodfellow et al., 2016),

– Noise introduced by SGD optimization (Poggio et al., 2020a,b).

Most of these regularization methods add negligible computation costs and help with
generalization performance.

In this section, we provided a brief overview of the layers used in modern deep learning
and which have the most potential for low-power hardware applications.

1.1.4 From large deep learning models to tinyML

In this section, we give an overview of the recent trends of deep learning model sizes,
then we explicit the challenges of tinyML based on the neural network theory (Section
1.1.2) and practices (Section 1.1.3), and motivate our interest to apply them for tinyML.

Trend in deep learning models. Since the first AlexNet model was trained on a
graphic processor unit (GPU) (Krizhevsky et al., 2012), we entered the modern era of
deep learning where the limits of the state-of-the-art are regularly pushed on numerous
complex tasks. Meanwhile, deep learning models are geared towards exponential increases
in model size. As of 2023, the GPT4 model (OpenAI, 2023) is said to be even larger than
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the GPT3 model with 175 billion parameters (≈ 800GB) (Brown et al., 2020), marking
a growth of 179900% parameters size in just over 5 years. In general cases, model sizes
are at least in the order of 107 parameters.

Although model performance can benefit from overparameterization, large neural
networks have been shown to have high redundancy (Han et al., 2016, Frankle and Carbin,
2019). Denil et al. (2013) estimated that in some cases only ≈ 5% of the total parameters
are critical to the final output decision. Thus, we can see that these models fail in terms
of algorithm efficiency, where the objective is to achieve a task with minimal effort.

This raises questions on how to train more efficient models and also suggests the
existence of smaller but viable models.

Trend in efficient deep learning models. A new wave of efficient deep learning
models emerged, such as SqueezeNet (Iandola et al., 2016), MobileNet V1, V2, and V3
(Howard et al., 2017, Sandler et al., 2018, Howard et al., 2019), or EfficientNet (Tan and
Le, 2019), ranging in one to five million parameters, entering the scale of the feasibility
on mobile devices. These new models can achieve up to a 510 time model size reduction
compared to AlexNet (Tan and Le, 2019) with equal performance. In general cases,
model sizes are in the order of at least 106.

Trend in ultra-low power deep learning models. Although mobile-sized models
show a great shift toward efficient deep learning architectures, they are still too large
for deployment on microcontrollers (Liberis and Lane, 2020, Lin et al., 2020, Banbury
et al., 2021a). Deep learning on microcontrollers (Unlu, 2020) is an alternative paradigm
that is still at an earlier stage compared to mobile-size research, where the term tinyML
has been first appearing in 2019 (Han and Siebert, 2022). However, there has been a
success in the deployment of neural networks on MCUs on audio classification tasks
(Zhang et al., 2018, Lin et al., 2020, Fedorov et al., 2020) by using efficient CNNs, RNNs,
or NAS (Banbury et al., 2021a). In Lin et al. (2020), they succeeded in deploying a
person detection model with less than 1MB memory. In general cases, model sizes must
be in the order of less than 106 and less than 1MB. These models reach a memory size
of under 512 kB or even 256 kB, entering the scale of microcontroller hardware. The
high resource limitations of MCUs present unique requirements and need the design of
dedicated workflow and tools to enable end-to-end deep learning pipelines. Table 1.3
provides a summary of example model sizes for each platform we reviewed.

Motivations. Neural networks are powerful algorithms that can operate with a uniform
approach in terms of algorithm design: labeled data, automated feature extraction and
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Table 1.3 Comparison of representative deep learning model sizes across cloud, mobile,
and MCU platforms.

Platform Model Parameters Model size
Cloud Inception-v3 ≥ 107 ≥ 102MB
Mobile MobileNet-v3 106 ≥ 100MB
MCU MCUNet < 106 < 100MB

modeling, and deployment, for a wide range of applications. This makes them a great
class of algorithm candidates for MEMS-based applications relying on signal processing.

Unfortunately, the expressiveness and generalization ability of neural networks is
dependent on their size, which makes them inherently complex and “black box” functions
that are analytically difficult to interpret and design. However, they are mostly composed
of very primitive operations (Equation (1.1)): multiplications and additions, which are
accessible to any microcontrollers. Concerning the non-linear activations, some are very
straightforward, such as ReLU (Fukushima, 1975, Nair and Hinton, 2010) or LeakyReLU
(Maas et al., 2013), while other activations like tanh or sigmoid pose more challenges due
to their computational complexity.

Moreover, prior literature has shown that it is possible, albeit challenging, to design and
deploy small enough neural networks on resource-constrained microcontrollers. Therefore,
following the trend of efficient deep learning models to reduce their inherent power
footprint, we are interested in pushing the state-of-the-art of low-power footprint models
to make them viable to microcontrollers, without degrading performance. Additionally,
deep learning models in practice are commonly overparametrized (Denil et al., 2013), so
the field of deep learning will benefit from more contributions to designing and deploying
more efficient and accessible neural networks.

To summarize, we provided background on neural network theory and practices, their
limitations and challenges, and why they are of great research interest for MEMS-based
applications running in ultra-low power settings.

Next, we explore the literature on specialized methods to design efficient deep learning
models for tinyML in Section 1.3, but we must first provide the necessary background on
embedded hardware, which we will reference throughout our work in Section 1.2.
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1.2 MEMS-based applications on ultra-low power
microcontrollers

We provide a brief overview of MEMS and MCU hardware technology (1.2.1) to
understand which specific applications we will focus on in this work (1.2.2) and their
intrinsic challenges for deep learning (1.2.3).

1.2.1 Overview

MEMS and MCUs. MEMS are miniaturized (microscale dimensions) sensors and
actuators omnipresent in a wide range of electronic devices, as they convert physical and
analog information into digital inputs about their local environment (Lammel, 2015, Zhu
et al., 2020), that can be processed by MCUs in real-time. Some examples of MEMS
are accelerometers, microphones, or pressure sensors. Table 1.5 provides examples of
different sensor types and their applications. Thus, they provide an interface to sense
real-world information from hardware to software.

MCUs are miniaturized computers that are non-invasive (~1 mm2 silicon area), cheap
(~1$), low-power (≤ 0.5 W), and are dedicated to performing one task for months or even
years within a device (Banbury et al., 2021a, Garbay et al., 2022). MCUs are composed
of connectors, input/output interface, on-chip storage (ROM), volatile memory (SRAM)
for intermediate data, and a CPU with a frequency usually below the 103 MHz range
(Banbury et al., 2021a). With over 250 billion MCUs already in use, forecasts predict
a volume of 38.2 billion in 2023 alone (Lin et al., 2020). In this context, we emphasize
that even a small difference in the power footprint between low-power hardware targets
can translate to several billions of dollars in savings for the consumer market. This is
exemplified by the 2$ difference observed between the low-end of MCUs in Table 1.4.
Even between MCUs, there are several orders of magnitude in terms of low-power (Table
1.4). For example, the Cortex-M4 only consumes 0.1W, yet it still represents a target
that is 1500 times more power-hungry and 20 times more memory (SRAM) capacity
compared to the Cortex-M0+. Additionally, it is three times more costly for consumers.
Consequently, it is important to highlight the strong industrial incentive to target the
low-cost and low-power consumer market as much as possible with tiny hardware targets.
By focusing on the power scale between these targets, we can realize billions in cost
savings and other benefits that low-power MCUs offer for the consumer market.

Applicability. Sensing data at the edge allows for offline operations, as opposed to
using online cloud computing, always-on and real-time processing, no network latency,
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Table 1.4 Comparison of hardware for cloud, mobile, and TinyML, including the MCU
targeted in this work, provided by TDK InvenSense (Banbury et al., 2021a, Saha et al.,
2022).

Platform Architecture Memory Storage Frequency Power FLOPS Price
Cloud GPU HBM SSD/Disk
Nvidia V100S NVIDIA Volta 32GB TB~PB 1.2GHz-1.3GHz 250W ~16.4G 14500$
Mobile CPU DRAM Flash
Galaxy Note 20 Kryo 585 8GB 128GB 1.8GHz-3.1GHz ~8W 1.2T 550$
TinyML MCU SRAM eFlash/ROM
SAME70Q21B Cortex-M7 384kB 2048kB 300MHz 0.3W ~432M 5$
SAMG55J19 Cortex-M4 160kB 512kB 120MHz 0.1W ~180M 3$
Newport Cortex-M0+ 8kB 16kB 6.14MHz 70µW N/A 1$
Newport eDMPv1 4kB 16kB 6.14MHz 66µW N/A 1$

limited energy overhead, and inherent privacy. MCUs are ubiquitous in modern electronic
devices, including cars, mobiles, TVs, and cameras. Their high volume in the consumer
market and wide applicability reinforce the significance of research and industry efforts
in tinyML applications.

In this work, we target the most extreme low-end range of MCUs, with less than 8kB
of RAM and 10MHz processing speed for extreme low-power deep learning inference.
Therefore, we aim to push the hardware limit that is currently not considered in the
state-of-the-art for embedded deep learning. In particular, we focus on the common
ARM Cortex-M series microcontrollers (Yiu, 2019), and particularly the Cortex-M0+
and M4 (Table 1.4), or the eDMPv1 depending on the application. Hardware is provided
by TDK InvenSense.

1.2.2 Scope of applications

As previously stated, the ability to embed neural networks at the edge can already
benefit a wide variety of applications and can potentially lead to completely new types
of products (Kanjo, 2022).

In this work, we will focus on motion detection, gesture recognition, such as human
activity recognition (HAR), and keyword spotting. Note that these are all wireless
applications, that must operate in real-time and are always-on. In this context, the device
returns a decision at all times, so it is expected to provide a seamless user experience
(e.g., not missing any user intention (false negatives) or over-triggering (false positives)).
Their sensor types and target devices are specified in Table 1.5. Data is provided by
TDK InvenSense.
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Table 1.5 Example of sensor applications and their target MCU devices. We indicate our
focus applications in italics.

Sensor types Applications Target devices
Accelerometer,
Gyroscope,
Magnetometer

Human activity recognition,
gesture recognition, motion detection,
voice detection, predictive maintenance

Arm Cortex-M0+, eDMPv1

Pressure Fingerprint detection Arm Cortex-M0+, M4
Microphone Sound classification, keyword spotting Arm Cortex-M4, M7

1.2.3 Challenges of ultra-low power hardware

Cortex-A

L1 (46kB)
L2 (4MB)

DRAM (4GB)
Flash (64GB)

On-chip

Cortex-M
Cache (16kB)

SRAM eFlash
(384kB) (2MB)

On-chip

Fig. 1.3 Illustration of memory hierarchies for a mobile processor (left) and an Arm
Cortex-M7 microcontroller (right). The microcontrollers process all computation and
data transfer on-chip.

Compared to mobile devices, the all-on-chip design, as shown in Figure 1.3, allows the
processing of data at the closest location to the source, resulting in lower communication
latency and lower power consumption. Thus, this is ideal for real-time and low-power
constraints. However, it also makes them inherently constrained because additional
memory cannot be extended with an SD card for example.

Moreover, Table 1.4 highlights that the Cortex-M0+ and M4 are among the most
resource-constrained devices, with the Cortex-M0+ lacking support for floating-point
operations. Consequently, we restrict to fixed-point (in contrast to floating point) values
(Figure 1.4) and arithmetic which approximates real-values and computations (Menard
et al., 2006), to comply with the inherent hardware and energy constraints of MCUs.
Floating-point to fixed-point conversion requires a scaling factor of a power of two, which
can be inferred as a simple bit shift and rounding as follows:

Q(F, n) = ⌊F ∗ 2n⌉
F (Q, n) = Q ∗ 2−n

(1.3)
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where Q and F are the fixed point and floating point numbers, respectively, and n is the
number of bits. In practice, this means that we are limited to integer-only operations.
Thus, only primitive operations like bit-manipulation, boolean operators, and basic
additions or multiplications are supported in contrast to computationally intensive
operations, such as explicit division or exponentiation. Additionally, the memory is
typically the first bottleneck, so we seek lower-bit precision parameters than 32-bits, but
this may increase the risk of overflow, or numerical precision loss and thus erroneous
inference. From a hardware point-of-view, restricting to integer-only inference removes
the need for a floating-point unit, which saves silicon area for each embedded chip, and
thus billions of dollars of annual savings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sign (1-bit) exponent (8-bits) significand (23-bits)

(a) Single precision floating-point 32-bit representation from IEEE754 (Rajaraman, 2016).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
integer part (m-bits) fractional part (n-bits)

(b) Fixed-point Q16.16 (Qm.n) on 32-bit representation.

Fig. 1.4 Floating-point and fixed-point 32-bit representations. Floating-point allows a
dynamic range (minimal to maximal possible value) of roughly [−1038, 1038], compared to
fixed-point [−2m−1, 2m−1−2−n] ≈ [−215, 216], which is approximately a 1033 smaller range
(Novac et al., 2021). The smallest resolution (step between each consecutive representable
value) of floating-point is ≈ 10−38 while it is [2−n] ≈ 10−5 for n = 16 for fixed-point.

After a comprehensive review of the literature, the Cortex-M0+ and eDMPv1 appear
to be one of the most resource-constrained platforms on which successful implementation
of state-of-the-art deep learning has been reported (Zhang et al., 2018, Banbury et al.,
2021a, Saha et al., 2022). Zhang et al. (2018) deployed a 70kB keyword spotting
application on an Arm Cortex M7, while Banbury et al. (2021a) deployed the same
application on an Arm Cortex-M4 with a higher accuracy.

Furthermore, embedded hardware has a very heterogeneous ecosystem because
specifications may differ from one manufacturer to another, and even between new
series of the same brand, making it challenging to find common tools and approaches
that are widely supported.

Therefore, the ultra-low power hardware context presents a unique set of challenges
due to their inherent resource limitations. Addressing these challenges pose high research
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and industry potential value and can lead to transformative advancements in real-time
and low-power applications across numerous domains.

To summarize, in Section 1.1 and Section 1.2 we provided background on neural
networks, and low-power sensors and motivated the challenges and objectives of our work.
We will now examine the literature on methods (Section 1.3) and tools (Section 1.4) to
design and deploy efficient neural networks for MEMS-based applications.

1.3 Efficient neural networks for tinyML

Building upon the concepts and motivations surrounding neural networks and embedded
systems introduced in the previous sections, we now turn our attention to their intersection:
tinyML.

This emerging field aims to combine the powerful benefits of neural networks with
the cost-effectiveness of ultra-low power devices with limited power, memory, and
processing capabilities. Given the constraints of tinyML, developing efficient neural
network architectures and algorithms is essential. In light of the growing efforts in this
area, there is an increasing need for methods that can effectively scale to the most
challenging embedded hardware, particularly in the context of MEMS-based applications.

In this section, we explore the methods to train and design efficient neural networks
for deployment on MCUs, enabling the deployment of intelligent applications on low-cost
devices.

1.3.1 Efficient RNNs

Sensor applications mainly process time-related data continuously, so we are naturally
interested in standard RNNs layers, such as RNN (Rumelhart et al., 1986, Elman, 1990),
GRU (Chung et al., 2014), LSTM (Hochreiter and Schmidhuber, 1997). Arik et al.
(2017), Bhardwaj et al. (2022), Lu et al. (2022) have used convolutional recurrent neural
networks (CRNNs) with a GRU or LSTM as the recurrent layer for keyword spotting or
motion recognition applications for low-power and real-time inference, which matches
our target applications and environment. The CRNN architecture offers strengths both
in feature extraction, and time sequence processing, as well as compatible size for our
target hardware (Bhardwaj et al., 2022).

In particular, Arik et al. (2017) empirically showed that GRU layers offer better
size-performance tradeoff over LSTM in keyword spotting applications, which is our most
demanding use case.
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Moreover, there have been research efforts to find efficient alternatives to standard
RNNs, such as minimal RNN (Chen, 2018), minimal gated unit (MGU) (Zhou et al.,
2016), MGU1, MGU2, MGU3 (Heck and Salem, 2017). The MGUs differ from GRU
by reusing the gates, removing the bias term or the weight matrix completely, or a
combination, detailed as follows:

MGU : ft = σ (Ufht−1 + Wfxt + bf )
MGU1 : ft = σ (Ufht−1 + bf )
MGU2 : ft = σ (Ufht−1)
MGU3 : ft = σ (bf ) ,

(1.4)

where ft is the unique gate of the recurrent unit.
We notice that the MGU1, MGU2, and MGU3 variants do not directly gate the

current input xt, but instead, they indirectly gate the previous input xt−1 by gating the
previous state ht−1, that has processed the previous input xt−1.

Zhou et al. (2016), Heck and Salem (2017) suggest that these alternatives are
competitive with GRU in terms of accuracy with a smaller parameter budget and
thus should be more low-power friendly.

Next, we explore the methods that apply directly to models in order to reduce their
power footprints.

1.3.2 Overview of model compression techniques

Model compression is a set of methods aiming to address the growing power footprint and
costs associated with the deployment of neural networks in terms of size and computation
on resource-constrained devices (Neill, 2020, Hoefler et al., 2021), such as MCUs. In
this section, we will provide an overview of the most commonly used techniques, which
essentially encompass five methods: knowledge distillation, pruning, quantization, weight
sharing, and low-rank matrix decomposition (Neill, 2020).

Knowledge distillation

Knowledge distillation is a high-level approach to model compression, first explored
in Buciluǎ et al. (2006) to reduce the model size by learning a small (student) model
from an ensemble of models (teacher). Then Hinton et al. (2015) popularized knowledge
distillation for neural networks where a small model (student) is trained from the
supervision of a larger and overparameterized trained model (teacher) that has learned
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“dark knowledge”. The idea is to leverage the latent knowledge the large teacher has
captured and transfer it to the student during the training process. The loss encompasses
both the original student loss (e.g., cross-entropy) and the difference between the teacher
and student distribution, expressed as follows:

LKD(x, y) = αLS(x, y) + (1− α)DKL

(
softmax

(
T (x, y)
temp

)
, softmax

(
S(x, y)
temp

))
, (1.5)

where LS is the student loss function, S(x, y) is the output of the student model, T (x, y) is
the output of the teacher model, DKL is the Kullback–Leibler (KL) divergence, α ∈ [0, 1]
is a hyperparameter that controls the amount of distillation given by the teacher to the
student, and temp is another hyperparameter that softens the probability distributions
of the output models.

In practice, we must choose and train one teacher and one student architecture.
Hinton et al. (2015) showed promising results across general computer vision tasks and
sequential data. However, the disadvantages are that it requires empirical knowledge to
find good teacher and student models, as well as additional computations to train the
teacher and the forward pass of the teacher during the student’s training. Although the
design of the teacher would consist of training an overparameterized model, which works
well in practice, the student should be the size of our target model. Moreover, we can
bypass the additional forward pass of the teacher by storing its output along with the
training set.

Therefore, the general framework design of knowledge distillation is flexible for our
case and has proven promising performance in a wide range of applications.

Model pruning

While knowledge distillation involves training a new smaller model, pruning focuses
on removing less important parts of a model. From a neuroscience perspective, the
human brain has a pruning mechanism that removes redundant connections or irrelevant
information from past experiences (Walsh, 2013, Neill, 2020). In the case of deep learning
models, they are notoriously overparameterized (Section 1.1.2), which provides them
with a large degree of freedom. In fact, it has been found that only a small fraction of the
total parameters are critical (Denil et al., 2013). Model pruning is a very active research
area at the intersection of promoting efficient deep learning and understanding neural
network training and generalization ability, where new methods emerge continuously
(Alqahtani et al., 2021, Hoefler et al., 2021, Freire et al., 2023).
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Han et al. (2016), Ullrich et al. (2017) made a major breakthrough for model
compression in the modern deep learning era, where they combined pruning, quantization
(Section 1.3.2) and Huffman encoding (Huffman, 2006) to reduce a CNN model by 49
times its size with less than 0.5% accuracy loss on the ImageNet dataset.

Seminal work by Frankle and Carbin (2019), Liu et al. (2019) provided more theoretical
understanding; the lottery ticket hypothesis (LTH) states that there exists a sparse
subnetwork (winning ticket) that can be trained from scratch with the same initialized
weights and reach the performance of the original network (10 times larger). In this view,
a large model has a greater chance of containing a good subnetwork. They suggest that
the network architecture itself is more critical than keeping the values of the weights in the
original trained network. In practice, Frankle and Carbin (2019) requires iterative pruning
trials of subnetworks to find the winning ticket, which is computationally expensive.
Further work extended the LTH, showing that universal tickets could be reused across
other applications (Burkholz et al., 2021, Fischer and Burkholz, 2022). In particular,
Ramanujan et al. (2020) generalized the LTH to the strong lottery ticket hypothesis
(SLTH) where the subnetwork performs well with the randomly initialized parameters
and thus does not require retraining. Additionally, Burkholz et al. (2021) demonstrates
that SLTH can also yield universal tickets across other applications. Consequently, the
SLTH promises that training deep learning models could be replaced by efficient neural
network pruning (Fischer and Burkholz, 2022).

Alternatively, pruning can be seen as a form of neural architecture search (NAS)
(Elsken et al., 2019), aiming to find Pareto-optimal architectures (Liu et al., 2019).
Moreover, it is also a form of regularization because it reduces the complexity of the
model, similar to dropout, but the effect remains permanent.

There are essentially two types of pruning: unstructured and structured pruning,
referring to how the pruning is performed in a weight matrix of a model, as illustrated in
Figure 1.5.

Fig. 1.5 Unstructured pruning (left panel) versus structured pruning (middle and right
panels).
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Fig. 1.6 Pruning rate over epochs with a polynomial schedule function (Zhu and Gupta,
2017) with sf = 0.8, s0 = 0, t0 = 0, n = 13260, ∆t = 100 (Equation (1.6)).

Unstructured pruning. Unstructured pruning refers to the removal of fine-grained
weights in contrast to a group of weights. It is the simplest and most sparsity-inducing
type of pruning because trained neural networks are less sensitive to one weight than a
specific block.

The most intuitive pruning scheme is to remove weights based on their absolute
values, which is the simplest form of magnitude-based pruning, so it does not require
any data. This simple approach has been studied early (Hagiwara, 1993) and is very
effective (Han et al., 2016, Zhu and Gupta, 2017, Gale et al., 2019, Hoefler et al., 2021).
In general, it involves re-training to adapt the model to its new architecture.

While there are a plethora of pruning algorithms, Gale et al. (2019) suggested that
magnitude-based pruning provides state-of-the-art or comparable performance to other
pruning methods (Thakker et al., 2020, Louizos et al., 2018).

In particular, Zhu and Gupta (2017) introduced a gradual sparsity technique using a
polynomial during the training schedule as follows

st = sf + (s0 − sf )
(

1− t− t0

n∆t

)3
, for t ∈ {t0, t0 + ∆t, . . . , t0 + n∆t}, (1.6)

where st and t are the current sparsity and step, sf is the target sparsity, s0 and t0 are
the initial sparsity and training step (usually 0), n is the number of pruning steps, and
∆t is the pruning step frequency. In other words, at every ∆t, a gradual number of
weights is set to zero based on their magnitude until we reach the desired sparsity level.
The objective of the polynomial schedule is to prune quickly and early when there is
the most redundancy, and then slow down the pruning rate as there is little remaining
redundancy (Zhu and Gupta, 2017).
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Noting that pruning is a form of regularization, Golatkar et al. (2019) found that the
early regularization phase is the most critical to performance and that late regularization
can even worsen the results, thus supporting the effectiveness of polynomial schedule.

The advantage of magnitude-based pruning is that it is model and task agnostic, can
seamlessly incorporate within training, and is easy to implement. Moreover, progressive
pruning (Zhu and Gupta, 2017) is natively supported by the TensorFlow framework
(Abadi et al., 2015). Additionally, they demonstrate a 90% sparsity rate with acceptable
accuracy loss and found that their approach on large-sparse networks performs better than
their smaller-dense counterpart. An explanation of this is that larger models are easier
to prune because the magnitude of single weights becomes smaller as the model grows
larger when the model has converged (Neill, 2020). However, the biggest disadvantage is
that unstructured pruning results in sporadically induced weights, which may be difficult
to efficiently leverage on embedded hardware, but previous work demonstrated that it is
possible to leverage high sparsity with practical encoding (Han et al., 2016).

Structured pruning. Structured pruning alters the architecture of the neural network
in blocks, such as neurons, filters, or an entire row or column of a weight matrix.
Structured pruning can be induced by using a systematic criterion based on redundancy,
as in Srinivas and Babu (2015), where neurons were removed in neural networks by
identifying duplicate pairs of neurons, performing a recovery step to compensate for
removal. Another common approach is to use regularization penalty to encourage
pruning at the channel level in CNN models (He et al., 2017, Liu et al., 2017), by neurons
(Alvarez and Salzmann, 2016), or layers (Wen et al., 2016), resulting in models with 60%
sparsity without significant loss. The clear advantage of structured pruning is that it is
hardware efficient because it may allow skipping entire filters or rows during a matrix
multiplication, as suggested in Figure 1.5. Although, block-based pruning techniques
have strict compression rules that make them more difficult to achieve without degrading
performance and require a certain amount of block sparsity to obtain a faster run time
than baseline (Thakker et al., 2020). However, recent research suggests that wider and
sparser networks generalize better than their smaller dense counterparts designed by
structured pruning (Zhu and Gupta, 2017, Li et al., 2020, Golubeva et al., 2021, Timpl
et al., 2021, Ballas, 2022).

In summary, pruning has strong theoretical and practical incentives that make it a
high-potential and relevant choice. Unstructured pruning approaches are more flexible
across diverse architectures and yield the highest sparsity rate, while structured pruning
is more hardware efficient.
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Moreover, multiple works have shown that combining pruning with other model
compression methods, such as quantization, can produce a high compression rate without
significant performance loss (Han et al., 2016, Van Baalen et al., 2020, Zhang et al.,
2021b).

Quantization

A different perspective on model compression is quantization. It is a method that maps
input values from a larger set (often continuous) to a smaller set (often discrete) (Gholami
et al., 2021) to find lossless approximations of numerical input values, and can be seen in
related work dating back to the 1800s in the foundations of calculus (e.g., least-squares,
approximation of integrals) (Gray and Neuhoff, 1998, Gholami et al., 2021).

In particular, fixed-point attempts to represent continuous values (larger set) with a
fixed amount of precision (smaller set); thus, quantization is a mandatory method to
meet the low-power requirements of fixed-point arithmetic inference on MCUs, as stated
in Section 1.2.3.

Recent work on neural network quantization builds upon prior work but presents
unique challenges due to the high power footprint and overparameterized nature of deep
learning models. The inherent redundancy in deep learning models allows for some
leniency in quantization errors, limiting accuracy loss (Guo, 2018, Gholami et al., 2021).
Consequently, very small models, that can be found in tinyML, should be more sensitive
to quantization.

Minimizing quantization performance loss can be seen as an optimization problem,
where the objective is to find a discrete distribution (quantized weights) that is closest
to the original distribution (real weights, activation, or data). In practice, this translates
by rounding or truncating the model’s parameters (weights, activations) and data from
floating points (e.g., 32-bits) to integer values (e.g., 8-bits).

Compared to pruning, quantization often results in less accuracy loss because weights
lose precision but are not removed, hence a lower level of information loss (Saha et al.,
2022).

Quantization approaches can be characterized by several factors: the stage of the
quantization process as quantization-aware training (QAT) or post-training quantization
(PTQ), the type of quantization steps as uniform or non-uniform, and the arrangement
of quantization levels around the zero-point Z as symmetric or asymmetric (Equation
(1.7)).
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Quantization-aware training (QAT). QAT involves integrating quantization into
the training process or fine-tuning the model by simulating the effects of quantization
during the forward or backward pass. However, the quantized function is not differentiable
(Equation (1.7)) and can result in zero-gradients in low bit-precisions, making it difficult
to train the model. Prior works have quantized values in the forward pass and used real
values during the backward pass such as the straight-through estimator (STE) (Bengio
et al., 2013, Courbariaux et al., 2015, Jacob et al., 2017), or other approximations (Yin
et al., 2018, Louizos et al., 2019). In addition, Choi et al. (2018) learns to optimize the
range of activation clipping values and then linearly quantize both weights and activations
to 4-bits, while Bhalgat et al. (2020) uses a gradient estimate to learn scaling factors
of weights and activations. The objective of QAT is to obtain a stabilized quantized
model by the end of training. These methods enable below 8-bit quantization and even
down to 1-bit weights or activations (Courbariaux et al., 2015, Rastegari et al., 2016,
Hubara et al., 2016, Liu et al., 2018, Qin et al., 2020) with competitive results compared
to full precision networks and PTQ. Additionally, AskariHemmat et al. (2022) found
that quantization is a form of regularization, where the induced quantization noise can
help improve generalization, and particularly to 8-bits on several computer vision tasks.
However, QAT often requires a lot of tuning, additional computation, and access to the
dataset to re-train the model, especially for low-bit quantization.

Post-training quantization (PTQ). PTQ is the simplest and fastest approach,
where quantization can be applied to any trained model without re-training or access
to the dataset (Han et al., 2016, Choukroun et al., 2019, Banner et al., 2019, Cai et al.,
2020b, Fang et al., 2020). Previous work corrected the mean and variance of quantized
weights (Banner et al., 2019, Gholami et al., 2021), or minimized the mean squared error
between the quantized and full-precision distributions (Choukroun et al., 2019), allowing
4-bit quantization with acceptable performance. Another approach used piecewise linear
functions to partition the quantization range into non-overlapping regions for each weight
in order to minimize the quantization error (Fang et al., 2020).

The most widely used quantization method for MCUs is uniform affine PTQ to int8
because it is straightforward and supported by MCUs (Krishnamoorthi, 2018, Gholami
et al., 2021, Saha et al., 2022). Moreover, uniform PTQ with int8 provides sufficient
performance compared to the original full-precision 32-bits (FP32) model for a wide
variety of NNs (Krishnamoorthi, 2018, Lee et al., 2018, Fang et al., 2020). However,
PTQ may lead to a more significant loss in accuracy, especially for quantization below 8
bits (Banner et al., 2019, Gholami et al., 2021).
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(Non-)uniform quantization. In uniform quantization, the quantization steps are
evenly spaced, so it is the most straightforward type of quantization while being natively
supported in all embedded hardware (Saha et al., 2022).

In contrast, non-uniform quantization may better capture the original distribution,
thus yielding higher accuracy (Gholami et al., 2021). For example, Miyashita et al.
(2016), Zhou et al. (2017) uses a logarithmic distribution with exponential quantized
steps instead of linear steps. Alternatively, Fu et al. (2020) quantize activations and
gradients by finding optimal quantization points that fit their full-precision distributions
based on their Weibull prior properties (Vladimirova et al., 2019, 2021), and obtained
competitive results compared to the full precision training using less bits than their
uniform-based counterpart (Fu et al., 2020).

However, non-uniform quantization schemes are challenging to deploy on embedded
hardware because they require a custom implementation to efficiently exploit their specific
distribution, in contrast to uniform quantization which is deployable out of the box.
Therefore, we restrict the scope of our review to uniform quantization schemes for a wide
hardware support.

(A-)symmetric quantization. In symmetric quantization, the lower and upper
bounds of the quantization range are equidistant from the zero-point, and Z = 0, which
simplifies as follows

Q(r) = int(r/S)− Z, (1.7)

where Q is the quantization function, r the value to quantize, S a scaling factor, Z

represents the zero-point value in the integer discrete space, α, β denote the lower and
upper bounds (α < β), respectively, of the clipping range where we constrain r, and b is
the bit-width.

The scaling factor for symmetric and asymmetric quantization is computed as follows:

Ssym = max(|α|, |β|)
2b−1 − 1

Sasym = max(|α|, |β|)
(2b − 1) /2 ,

(1.8)

Asymmetric quantization schemes consider the full range of quantized values, e.g., [−128, +127],
in contrast to [−127, +127]. This provides a slightly larger range to minimize quantization
error but is a more complicated implementation due to the zero point Z ̸= 0 in Equation
(1.7), and may lead to more computational overhead (Wu et al., 2020).
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In summary, quantization methods have a long history and exist in many flavors
to achieve lossless approximations in the most constrained settings. QAT emerges
as a superior option in below 8-bit settings, but is more complex and requires more
computations than PTQ.

However, uniform PTQ with lower bit quantization is more sensitive due to the
distributional properties of weight, which are clustered around zero (Gaussian or Laplacian)
(Han et al., 2016, Lin et al., 2016), and few of them are in a long tail (Sub-Weibull)
(Vladimirova et al., 2019, 2021). Consequently, uniform quantization maps too few
quantization levels to small weights and too many to large ones, leading to performance
loss (Fang et al., 2020). However, overparameterized models are less sensitive to PTQ
due to having more degrees of freedom (Neill, 2020) in contrast to smaller models.

Thus, we would favor uniform 8-bit PTQ due to its simplicity and acceptable results
until we need lower-bit precision for more power footprint reduction.

Weight sharing

Weight sharing is the simplest form of model compression, involving sharing weights
values in different parts of the model, so it imposes a model architecture prior to training
(Neill, 2020). We could set the amount and location of weight sharing in a strategic way
in the model, such as in rows or columns of the weight matrix, for efficient inference.
However, manual weight sharing design may be difficult because we cannot predict the
final performance, even if redundancy is part of the design of deep learning models.

Prior works have used an automated approach, such as clustering weights with K-
means that shares the centroid value among weight clusters with re-training (Wu et al.,
2018), where they compressed a CNN model by a factor of three without significant loss,
or by using a penalty term to encourage grouping weight (Nowlan and Hinton, 1992,
Ullrich et al., 2017).

In particular, quantization is a form of weight sharing because lowering the bit-
precision of parameters forces them to be aggregated into a common set of values.

Low-rank matrix and tensor decompositions

Since neural network weight parameters are essentially matrix or tensors, we can apply
approximation methods from linear algebra such as single value decomposition (SVD) or
its generalization to tensor decomposition (TD) (Neill, 2020). The weight matrix is then
replaced by a product of two lower-rank matrices (Xue et al., 2013, Sainath et al., 2013,
Novikov et al., 2015, Alvarez and Salzmann, 2017). In particular, Alvarez and Salzmann
(2017) obtained a compression rate of up to 96% compared to the original model.



1.4 Deployment of deep learning models on ultra-low power MCUs 27

However, these methods require additional hyperparameter tuning (Lebedev et al.,
2015), as well as trial and error to find the optimal rank, which may not generalize between
applications. Furthermore, for MCUs, it is crucial to consider that the incorporation
of additional products from the lower rank matrix may not always lead to increased
efficiency and reduced power consumption, so further evaluation of the device is required.

1.3.3 Summary

In summary, we have provided a comprehensive overview of the key methods to design
and train efficient tinyML models, accompanied by their related theoretical concepts and
practical implications. These methods have generated growing interest, as they bridge
the gap between deep learning theory and the deployment of efficient neural networks.

Specifically, model pruning, knowledge distillation, and quantization have demonstrated
very promising compression rates, particularly in larger-scaled networks (Mobile or Cloud
size) that are more robust to model adjustments. Furthermore, some model compression
methods are also forms of regularization that can even help the model to generalize better.
Thus, these approaches show high potential to meet the ultra-low power requirements
MCUs.

In practice, since tinyML is at an early stage, tools and processes are not mature
enough yet to evaluate and truly leverage the high compression rate of existing methods
for ultra-low power MCUs, so we will review practical tinyML tools and aspects of the
deployment of compressed neural networks in the next section.

1.4 Deployment of deep learning models on ultra-low
power MCUs

In this section, we define and review existing tools for the end-to-end deployment of
efficient neural networks on ultra-low power MCUs.

TinyMLOps. The first framework for training deep learning models was developed in
2008 (Al-Rfou et al., 2016), with TensorFlow (Abadi et al., 2015) and PyTorch (Paszke
et al., 2019) following suit in 2015 and 2016, respectively. These frameworks enabled the
large-scale development and deployment of deep learning models, which in turn led to the
emergence of Machine Learning Operations (MLOps) (Kreuzberger et al., 2022). MLOps
consolidates best practices and outlines steps for mitigating technical debt (Sculley et al.,
2015) during the development and deployment of machine learning systems.
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Fig. 1.7 TinyMLOps pipeline.

In contrast, the earliest known publication on tinyML dates back to 2019 (Han and
Siebert, 2022), and the first dedicated deep learning framework for microcontrollers,
TensorFlow Lite for Microcontrollers (TFLM), was also released in 2019 (Warden and
Situnayake, 2020, David et al., 2021). As tinyML gained traction in the industry, MLOps
naturally expanded to include tinyMLOps as a subset (Sah et al., 2022, Leroux et al.,
2022, Antonini et al., 2022), focusing on refining the process of deploying machine learning
on embedded devices, as depicted in Figure 1.7. In the context of tinyML, deployment
refers to the process of taking a trained model and enabling it to run on an embedded
system, such as compiling the model, firmware integration, and verification of the solution
on the target device.

Consequently, the tinyMLOps ecosystem is still in an earlier stage than MLOps, with
challenges yet to be fully addressed. In the next sections, we detail the challenges for
tinyMLOps tools, and then we review existing solutions.

Challenges. The fundamental characteristic of tinyML is the tight dependency between
software and hardware components. In fact, failure to adapt the delivered machine
learning software to the constraints of particular hardware renders it unusable, resulting
in wasted efforts in previous tinyMLOps steps. Additionally, the diverse landscape of
embedded hardware further complicates the task of developing a versatile software base
capable of supporting a wide range of embedded hardware platforms (Sah et al., 2022,
Leroux et al., 2022), resulting in a manual and iterative approach to the design of new
models. As a result, designing new models that work on different hardware remains
a manual and iterative approach (different firmware, debugging interfaces, ...). The
challenge of tinyMLOps is to improve the entire pipeline, from design to deployment,
from data to computation.

Even though tinyML shares some tools with traditional ML (e.g., TensorFlow,
PyTorch, Tensorboard), its more recent emergence means that specialized tools are
not yet created or are less mature in providing comprehensive solutions. As the tinyML
community continues to grow, greater awareness and adoption of tools will lead to faster
innovation and the development of comprehensive solutions.
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1.4.1 TinyML tools

We restrict tinyML frameworks to the one that supports TensorFlow models as input
due to wide adoption within TDK InvenSense, and also targets Arm Cortex-M MCUs for
inference.

We essentially consider these two common approaches to tinyML frameworks (Sipola
et al., 2022):

1. Using a runtime that loads the model from read-only device memory at runtime
(e.g., TensorFlow Lite Micro),

2. Using a transcompiler that converts and compiles models to C or C++ code that
then can be built within a project (NNoM, Edge Impulse, µTVM).

Low-level library

CMSIS-NN. CMSIS-NN (Cortex Microcontroller Software Interface Standard for
Neural Networks) is a low-level library specifically developed by Arm (Lai et al., 2018)
for the Cortex-M microcontroller ecosystem (Table 1.4). It provides a collection of
efficient neural network core functions for low-level acceleration. These functions include
optimized operations for common neural network operations, such as fully-connected
(FC) layers, convolutions, and activation functions (ReLU, sigmoid, tanh, ...). CMSIS-NN
has been shown to provide a 4.6x speedup and 4.9x energy savings over non-optimized
convolutional models (Lai et al., 2018, Saha et al., 2022).

TinyML frameworks

TensorFlow Lite Micro. TensorFlow Lite Micro (TFLM) is an extension of the
TensorFlow ecosystem, specifically designed for deploying neural networks on low-power
MCUs such as ARM Cortex-M (David et al., 2021, Warden and Situnayake, 2020). (Sipola
et al., 2022, Ray, 2022, Saha et al., 2022). TFLM emphasizes portability by discarding
uncommon features, data types, and operations and avoids reliance on specialized libraries
or operating systems, thereby achieving memory efficiency and support for a wide range
of hardware. It converts and quantizes a 32-bit floating-point TensorFlow model to a
compressed flat buffer file (.tflite) using 8-bit integers for weights and 32-bit integers for
activations and data. TFLM uses an interpreter-based approach to process the neural
network graph at runtime and consists of three primary components: operator resolver,
memory stack pre-allocation, and interpreter (Sponner et al., 2021, Schizas et al., 2022).
The operator resolver links only essential operations to the model binary file, and the
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memory stack is used for initialization and storing runtime variables. The interpreter
resolves the network graph at runtime, allocates the memory stack, and performs runtime
calculations. More technical details are provided in David et al. (2021), Schizas et al.
(2022).

However, TFLM has limitations, such as missing support of some layers or operations
(GRU, Conv1D, some important activation functions, ...), arbitrary bit-widths of weights,
and activations. Moreover, TFLM lacks target-specific optimizations during compilation
because it relies on a graph-level representation that does not include device-specific
function kernels and execution details (Sponner et al., 2021, Schizas et al., 2022), and
can result in larger memory usage, so it may not meet our extreme memory requirements.
Moreover, it does not provide built-in tools to measure power footprint metrics such as
inference time or memory usage. Moreover, the interpreter-based approach at runtime
makes it difficult to debug and extend, compared to standard compiled code, which
hinders research efforts. Despite these limitations, TFLM remains the most popular
choice for microcontroller-based deep learning applications.

NNoM. Neural Network on Microcontrollers (NNoM) (Ma, 2020) is an open source
project that relies on a C code generation approach with a set of function calls. It is
flexible, easy to debug, and supports a wide range of MCUs, but only supports models
created using TensorFlow. The project includes a compiler that converts and quantizes a
TensorFlow model to plain C code with 8-bit weights and 32-bit activations and data.
Additionally, the NNoM compiler supports the CMSIS-NN to generate optimized code
for ARM Cortex-M processors (Sipola et al., 2022). It does support all RNN layers
including GRU, in contrast to TensorFlow. However, it does not support lower bit-width
quantization and has a smaller community and adoption compared to TFLM, so this
hinders the development of new features.

Edge Impulse. Edge Impulse (Hymel et al., 2023) is a closed-source cloud service
that develops TinyML machine learning models for edge devices and supports AutoML
for mobile and microcontrollers (Saha et al., 2022, Ray, 2022). Edge Impulse provides
a complete end-to-end model deployment solution, including data collection, feature
extraction, training, and deployment (Saha et al., 2022), with an intuitive graphical
interface and a friendly no-code approach. The training is carried out in the cloud and
the learned model can be exported to an edge device using a data-forwarding capable
connection (Schizas et al., 2022).
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For model deployment, Edge Impulse uses an interpreter-less edge-optimized neural
compiler, which directly compiles the model into C++ source code. This approach
eliminates the need to store unused ML operators, resulting in reduced memory requirements
at the expense of portability compared to TFLM. Studies have shown that the EON
compiler can run the same model with 25%–55% less SRAM and 35% less flash memory
than TFLM (Saha et al., 2022).

In conclusion, tinyML brings together the embedded systems and machine learning
communities, which have traditionally operated independently. Both academia and
industry have developed several software frameworks for TinyML to streamline the
deployment of machine learning models on microcontrollers. In particular, we are
interested in TFLM because it integrates with TensorFlow and provides a complete
toolchain for deploying low-power models MCUs. We are also interested in NNoM
because it provides a flexible and simple approach to quantizing and deploying models
from plain C code and CMSIS-NN support for Arm Cortex-M MCUs. Moreover, these
two frameworks are open-source, which makes them accessible as well as potentially
extendable. However, these frameworks are still in the early stages of development,
with some missing features and functionality. Despite their limitations, the current first
generation of tinyML tools can transition the state-of-the-art machine learning models
to ultra-low power environments.

1.5 Summary and contributions

In summary, in Section 1.1 we presented the state of neural networks and motivate our
interest in them for our applications, then we provided an overview of MEMS-based
applications, emphasized the opportunities and challenges of our extremely low-power
constraints, that reinforce the need for more tinyML research efforts in Section 1.2, then
in Section 1.3, we presented the existing methods to design efficient neural networks on
ultra-low power MCUs, and finally, we provided an overview of existing tools to deploy
neural networks to enable for tinyML applications in Section 1.4.

Contributions

Here, we outline the rest of the manuscript and highlight the main contributions of our
work.

• Chapter 2 investigates methods for designing efficient neural networks, such as
efficient RNNs, knowledge distillation, and pruning.
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• Chapter 3 introduces our tinyMLOps solution to deploy 8-bit neural networks on
ultra-low power MCUs for MEMS-based applications:

Lê, M. T. and Arbel, J. (2023). TinyMLOps for real-time ultra-low power MCUs
applied to frame-based event classification. In EuroMLSys ’23: Proceedings of
the 3rd European Workshop on Machine Learning and Systems, Rome, Italy,
May 08-12, 2023. ACM, New York, NY.

Ponçot, R., Lê, M. T., de Foras, E., Ataya, A., and Hartwell, P. G. (2022).
Method for improved keyword spotting. Pending patent.

• Chapter 4 presents a novel approach to generalize the quantization to N -bits, and
extend to extreme low-precision levels, such as 1-bit:

Lê, M. T. and de Foras, E. (2022). Towards Universal 1-Bit Weight Quantization
of Neural Networks with end-to-end deployment on ultra-low power sensors.
tinyML EMEA Innovation Forum 2022.

Lê, M. T., de Foras, E., and Arbel, J. (2023). Regularization for hybrid N -bit
weight quantization of neural networks on ultra-low power microcontrollers.
In Iliadis, L., Papaleonidas, A., Angelov, P., and Jayne, C., editors, Artificial
Neural Networks and Machine Learning – ICANN 2023, Cham. Springer Nature
Switzerland.

de Foras, E. and Lê, M. T. (2022). One bit quantization for embedded systems.
Pending patent.

• Chapter 5 discusses the significance and contributions of this thesis.



Chapter 2

Methods for design of efficient
neural networks

Abstract

In this chapter, we focus on methods to design efficient neural networks to make
them as small as possible before on-device deployment (Chapter 3). In particular, we
explore efficient alternatives of RNN layers (Section 2.1) for MEMS-based applications,
then we experiment with the higher-level compression: knowledge distillation (Section
2.2), then we investigate model pruning (Section 2.3), and finally we present results,
limitations, and directions for future work (Section 2.4).
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2.1 Efficient RNNs

Our applications are sequential signals from sensors, in rather short context, compared
to full sentences or paragraphs in NLP, so we choose to focus on RNNs layers that
can capture time-dependent patterns with moderate size. In particular, we found that
GRU-based models have a good size-performance tradeoff, as stated in Section 1.1.3. So
we chose to experiment with GRU alternatives, like MGU (Zhou et al., 2016), and MGUs
alternatives (Heck and Salem, 2017).

We implemented and compared the size with the performance between GRU and
MGU in Figure 2.1 on an HAR dataset. The results show that MGU and MGU2 perform
close to GRU above 35 neurons for the same number of neurons. If we look at the
corresponding parameter budget, MGU and MGU2 perform similarly to GRU from
around 600 to 700 parameters. However, MGU1 performs as poorly as MGU3, while it
has more parameters and complexity than MGU2 (Equation 1.4). The results obtained
by MGU, MGU2, and MGU3 are on par with the original paper (Heck and Salem, 2017)
on the MNIST and Reuters Newswire Topics (text classification) datasets. However, we
obtained contrasting results with MGU1, which is surprising because MGU1 is a superset
of MGU2, as it only has an additional bias term (Equation (1.4)).

Therefore, MGU2 appears to be the most efficient gated RNN. This suggests that
(i) the forget and update gate of the GRU layer can share the same weights without
performance loss, and (ii) the gate can omit to process the current input values if the
bias of the gate is also removed. However, the same parameter budget as GRU is needed
to obtain the same accuracy in MGU and MGU2.
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(a) Accuracy over the number of neurons
in GRU-based models.
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in GRU-based models.

Fig. 2.1 Comparison of test results of GRU baseline (Chung et al., 2014) versus MGU
(Zhou et al., 2016) versus MGU1, MGU2, MGU3 (Heck and Salem, 2017) over the number
of neurons (left) and parameters (right). Each training is repeated 10 independent times
on an HAR dataset.
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Next, we experimented with popular model compression methods, such as knowledge
distillation and model pruning.

2.2 Knowledge distillation

Knowledge distillation is a high-level method to make smaller models learn from larger
models (Section 1.3.2). We started to experiment with the knowledge distillation
algorithm (Hinton et al., 2015) presented in Section 1.3.2, which has popularized
distillation algorithms. They showed promising results across general computer vision
tasks and sequential datasets.

We first experimented with the MNIST dataset (Section 2.2.1), and then with the
HAR dataset (Section 2.2.2). We trained a teacher and a student of the same architecture:
MLP to MLP (Figure 2.3), GRU to GRU (Figure 2.4), or between different architectures:
LSTM to GRU (Figure 2.6), GRU to simple RNN (Figure 2.5).

For each experiment, we vary the temperature and α hyperparameter to tune
the influence of the teacher on the student model. We also repeat each experiment
independently five times.

2.2.1 MNIST dataset

Figure 2.2 shows that the student model, which is 10 times smaller than the teacher,
consistently outperforms the student model trained from scratch and even the teacher. A
temperature of at least 10 to 40 would be recommended, while the best trade-off would
be between 25 and 40.

The outcome is on par with the results obtained in Hinton et al. (2015), so the results
are promising.

2.2.2 HAR dataset

Knowledge distillation with the same architectures

Figure 2.3 illustrates that MLP to MLP knowledge distillation yields a 1% accuracy
gain when the teacher’s influence increases to 99% of its distilled knowledge at lower
temperature settings. In this case, we note that MLP students have a lower accuracy
variance than a model trained from scratch. In other cases, distillation does not improve
or degrade the student’s performance. Similarly, GRU to GRU distillation (Figure 2.4)
does not enhance the accuracy of the student, even with the high influence of the teacher.
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(b) Test loss.

Fig. 2.2 Knowledge distillation on MNIST dataset with CNN models. Comparing student
models trained with the teacher, teacher, and student models trained from scratch. The
teacher is 10 times larger than the student model.
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(a) Test accuracy (α = 0.1).
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(b) Test loss (α = 0.1).
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(c) Test accuracy (α = 0.01).
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(d) Test loss (α = 0.01).

Fig. 2.3 Knowledge distillation on HAR dataset with MLP models. Comparing student
models trained with the teacher, teacher, and student models trained from scratch. The
teacher is 5 times larger than the student model.

Different architectures

We also experimented between different types of models to try to reduce the size of the
model with the distillation of LSTM to GRU (Figure 2.6) and GRU to RNN (Figure 2.5)
distillation.

GRU to RNN and LSTM to GRU distillation do not improve the results compared
to the student trained from scratch. The results on the RNN student may be due to the
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(a) Test accuracy (α = 0.1).
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(b) Test loss (α = 0.1).
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(c) Test accuracy (α = 0.01).
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(d) Test loss (α = 0.01).

Fig. 2.4 Knowledge distillation on HAR dataset with GRU(80) to GRU(30) models.
Comparing student models trained with the teacher, teacher, and student models trained
from scratch. The teacher is about 6 times larger than the student model.

larger size ratio between the student and the teacher, or to the more limited capacity
of the RNN to process longer input sequences. The GRU student trained from scratch
in Figure 2.6a loses robustness using a temperature between 10 and 13, overwise it still
performs close to the other student model.

In summary, we succeeded in reproducing positive compression results on MNIST but
obtained mixed results with this approach on the HAR dataset. This could be because
RNNs need a more specialized distillation approach than MLP or CNNs, where MLP
distillation showed some improvements with the HAR application.

In the next section, we present our experiments with model pruning.

2.3 Model pruning

Network pruning is a very common technique to reduce the number of parameters of a
model. It has been shown to be able to significantly reduce the size of large networks
with minimal performance losses (Section 1.3.2).

We chose to experiment with unstructured pruning, with a polynomial sparsity
schedule (Zhu and Gupta, 2017). For the datasets, we continued experiments on
MNIST and the HAR dataset. The models are trained to convergence, and then
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(b) Test loss (α = 0.1).
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(c) Test accuracy (α = 0.01).
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(d) Test loss (α = 0.01).

Fig. 2.5 Knowledge distillation on HAR dataset with GRU(80) to RNN(40) models.
Comparing student models trained with the teacher, teacher, and student models trained
from scratch. The teacher is about 11 times larger than the student model.

they are progressively pruned and fine-tuned for two and 10 epochs on MNIST and HAR,
respectively.

2.3.1 MNIST dataset

Figure 2.8 shows that we can easily reach 80-82% of sparsity and 3-3.5x smaller model
(in bytes) without significant performance losses, which is on par with Zhu and Gupta
(2017) and our overview of the pruning literature (Section 2.3).

2.3.2 HAR dataset

Similarly to the previous experiments on efficient RNNs, and knowledge distillation,
where results were promising, we want to compare the effectiveness of pruning against
compact models trained from scratch.

In order to do so, we train multiple GRU baseline models over different numbers
of neurons from scratch (in five neuron steps). Then, we train additional large (120
neurons), medium (80 neurons), and small (40 neurons) GRU models and prune them
to different levels of sparsity in 5% steps, and then restart the pruning process for each
sparsity level.
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(a) Test accuracy (α = 0.1).
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(b) Test loss (α = 0.1).
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(c) Test accuracy (α = 0.01).
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(d) Test loss (α = 0.01).

Fig. 2.6 Knowledge distillation on HAR dataset with LSTM(80) to GRU(30) models.
Comparing student models trained with the teacher, teacher, and student models trained
from scratch. The teacher is about 8 times larger than the student model.

In Figure 2.8, we compare the accuracy of baseline models trained from scratch
against pruned models with 40, 80, and 120 neurons in the GRU layer. We observe that
pruning demonstrates the potential to reduce up to 80-82% parameters without incurring
a significant loss in accuracy, such as previously in the MNIST dataset, highlighting
the existence of a Pareto-optimal frontier. We notice a higher variance in smaller GRU
models trained from scratch than larger ones, which corresponds to a smaller quantity of
optimal local minima (as discussed in Section 1.1.2). Otherwise, the variance between all
models remains minimal.

In contrast, the pruned GRU(40) model exhibits enhanced robustness compared to
the baseline within the range of 1500 to 2500 parameters because it already started
from a favorable local minimum rather than from random initialization. In this case,
the pruned GRU(40) models perform similarly to the baseline above 3000 parameters.
However, its performance falls below that of the baseline when operating with fewer than
1000 parameters.

The pruned GRU(80) models perform slightly better than the baseline above 1000
parameters with remarkably low variance, also related to the larger number of favorable
local minima.
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Fig. 2.7 Magnitude-based (unstructured) pruning with polynomial decay (Zhu and Gupta,
2017) from one base CNN model on MNIST, with two epochs for fine-tuning.

Furthermore, pruned GRU(120) underperforms compared to baseline when operating
with less than 9000 parameters. Above this threshold, it can be hypothesized that
both models would have comparable performance, with minimal variance, due to the
abundance of optimal local minima.

2.4 Conclusion

2.4.1 Discussion and limitations

In this chapter, we explored popular methods on both standard and sensor-based datasets
to try to improve the efficiency of deep learning architectures. These methods are either
model-agnostic or can be applied to a wide range of sequence-based applications. We found
some cases where we can find smaller models than their baseline without performance loss,
particularly when using MLP models and knowledge distillation, and pruning smaller
GRU models to a certain extent.

Despite the promising results found in the literature on MGUs, knowledge distillation,
and pruning, we also found that the obtained improvement did not align with our
expectations of efficient neural network design.

Efficient RNNs

Our experiments on HAR suggest that we could use GRU, MGU, or MGU2 interchangeably
above 35 neurons but would not decrease the overall memory footprint given a target
accuracy. We also found surprising results where MGU1 performed as poorly as the
lightweight MGU3, whereas it has theoretically more expressiveness capacity.
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Fig. 2.8 Magnitude-based (unstructured) pruning with polynomial decay (Zhu and Gupta,
2017) on GRU models applied to the HAR dataset. The blue curve is obtained from
five independent training of GRU models at different sizes, acting as a baseline. This
baseline is the same for all three plots. The red curve is obtained from re-pruning five
GRU models (large, medium, and small) for each sparsity rate (5% pruning step rate).

Overall, this means that MGUs would not improve memory or computation footprint,
so we decided not to follow this lead because it would not give a significant inference
advantage on the embedded sensor in our case.

Knowledge distillation

Overall, we found that distillation in RNN models did not improve or degrade performance,
unlike CNNs or MLP-based models, where we successfully found a smaller student in
certain settings. This may suggest that RNNs need a more specialized distillation
approach than MLP or CNNs.

Previous work found that using a teacher assistant as an intermediate-sized model
between the teacher and the student network improves its performance over vanilla
knowledge distillation (Mirzadeh et al., 2020, Ozerov and Duong, 2021, Mazlan et al.,
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2022). Mirzadeh et al. (2020), Cho and Hariharan (2019) suggested that the student’s
performance can deteriorate when the knowledge gap between the teacher and student is
too large to learn from, so a given student has limited capacity to learn from a teacher
whose knowledge exceeds their individual learning threshold.

However, this teacher-assistant approach is not straightforward and requires additional
training and iterations.

Pruning

For smaller models, our findings suggest that training from smaller and compact models
under 1000 parameters from scratch would yield better results than pruning larger models,
contradicting the findings of Zhu and Gupta (2017). This may be because compact
networks are more robust than large sparse networks when the model is underfitting
scenarios. In the case of small and medium models, the performance of pruned models is
generally more robust and slightly superior to models trained from scratch, given the
same parameter budget, so we could use pruning as a design strategy to find smaller
models with a given parameter budget.

However, it raises the question of how embedded MCUs can exploit such sparsity
efficiently for inference (without storing the zero values). Common approaches for sparse
computations are look-up tables (table that maps input values to precomputed output
values) or specialized hardware accelerators. Moreover, the accuracy gap between the
pruned GRU models and the baseline is not substantial enough for future applications.

Finally, we have not tested these methods on more datasets than MNIST and HAR,
so our results may not generalize to other applications, and further investigation could
reveal additional insights.

2.4.2 Future work

We propose several directions for future research based on our results and limitations.
One potential direction concerns testing efficient RNNs on a wider variety of datasets

to verify if our findings generalize to other sequence-based datasets.
Future work could focus on exploring specialized knowledge distillation techniques for

RNN-based models, employing a finer level of knowledge distillation, such as layer-wise
or group-wise distillation approaches, and considering multi-teacher strategies (Liu et al.,
2020b) or teacher assistant for larger model size ratios (Mirzadeh et al., 2020, Mazlan
et al., 2022). Moreover, we could also investigate the combination of distillation with
other model compression methods, such as quantization (Qu et al., 2020).
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A potential lead for pruning would be to investigate hardware-friendly sparsity
methods such as structured pruning or hardware-aware pruning (Hawks et al., 2021, Shen
et al., 2022). Structured pruning could provide a valuable tool for guiding compact model
architecture design. Moreover, developing hardware capable of exploiting unstructured
sparsity could really accelerate on-device inference.

Finally, our study did not experiment with other compression methods, such as
weight sharing (Section 1.3.2) and tensor decomposition (Section 1.3.2), which could be
combined with other approaches would require further investigation.

In this chapter, we focused on high-level methods to improve the algorithm efficiency
of deep learning models. In the following chapters, we investigate the methods and
process of deploying tinyML models on ultra-low power MCU through quantization.





Chapter 3

TinyML for 8-bit neural networks on
ultra-low power MCUs

Abstract

In this chapter, we comprehensively examine the design and deployment of deep
learning models on ultra-low power MCUs for MEMS-based applications. In particular,
we first provide an overview of the challenges and solutions of the end-to-end tinyMLOps
pipeline. We argue that our use case presents unique challenges and solutions that
differentiate it from previous processes, as it requires overcoming state-of-the-art
constraints through careful consideration and joint efforts from the machine learning
and hardware communities in research and industry. Overcoming the challenges of
tinyMLOps promises to automatize algorithm design for embedded MEMS-based
applications and to democratize deep learning solutions at a large scale on low-cost
devices.

Then, we present our own tinyMLOps solution that can train, quantize, and deploy
efficient neural networks in 8-bit ultra-low power settings. Our contributions shed
light on the deployment process and establish solid ground for the automation of
large-scale deployment of tiny neural networks in the most constrained power settings
for industrial applications. As a result, we effectively redefine the concept of ultra-low
power inference to extreme low-power levels, pushing the boundaries of efficiency and
performance in tinyML.
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This chapter is based on a publication (Lê and Arbel, 2023) and pending patent
(Ponçot et al., 2022):

Lê, M. T. and Arbel, J. (2023). TinyMLOps for real-time ultra-low power MCUs
applied to frame-based event classification. In EuroMLSys ’23: Proceedings of the
3rd European Workshop on Machine Learning and Systems, Rome, Italy, May 08-12,
2023. ACM, New York, NY.

Ponçot, R., Lê, M. T., de Foras, E., Ataya, A., and Hartwell, P. G. (2022). Method
for improved keyword spotting. Pending patent.

3.1 Introduction

Over the course of the modern deep learning era, practitioners have developed and refined
the process of designing and deploying neural networks for large-scale applications in
high-end clusters through MLOps. Following this, the emergence of tinyML requires a
novel approach to MLOps that incorporates specific considerations such as memory and
power limitations, real-time inference, and on-device processing.

Furthermore, on the consumer end, sensor data is the interface between the physical
and digital worlds. It enables efficient, always-on, low-cost processing of these data in
real-time and directly at the source, presenting a multitude of high-potential applications.
Furthermore, on the practitioner’s end, the promise of deep learning to design efficient
algorithms at will for these smart applications under said constraints is highly attractive.

In this section, we highlight our contributions that address the challenges of tinyML
and enable the potential of smart and efficient MEMS-based applications and algorithm
design. The contributions are listed as follows:

• an overview of the challenges and solutions of tinyMLOps, applied to event-based
classification,

• a high-level data augmentation API for robust keyword spotting,

• a novel, and comprehensive tinyMLOps framework for 8-bit neural networks on
ultra-low power microcontrollers for a wide range of MEMS-based application

• automation of the algorithm design process from end-to-end under state-of-the-
art hardware constraints, facilitating wide adoption and deployment of efficient
smart sensors continuously interfacing with their surrounding environment in
real-time.
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3.2 TinyMLOps for real-time ultra-low power MCUs
applied to frame-based event classification

TinyML applications such as speech recognition, motion detection, or anomaly detection
are attracting many industries and researchers because of their innovative and cost-
effective potential. Since tinyMLOps is at an even earlier stage than MLOps, the best
practices and tools of tinyML are yet to be found to deliver seamless production-ready
applications. TinyMLOps has common challenges with MLOps, but it differs from it
because of its hard footprint constraints. In this work, we analyze the steps of successful
tinyMLOps with a highlight on challenges and solutions in the case of real-time frame-
based event classification on low-power devices. We also report a comparative result of
our tinyMLOps solution against tf.lite and NNoM.

3.2.1 Introduction

TinyML. The increased adoption of the Internet of Things (IoT) and machine learning
(ML) has led to the emergence of tinyML (Han and Siebert, 2022, Doyu et al., 2021), in
response to the strong demand to enable advanced applications running on embedded
systems. Opening ML to a smaller scale of devices such as wearables or low-power
microcontrollers (MCUs) at the tiniest scale, offers new opportunities for various
applications including object detection, keyword spotting, face or activity recognition,
and predictive maintenance.

However, as tinyML is in its early and rapidly-evolving stage, established best
practices are still lacking for designing efficient and accurate tinyML solutions. This gap
is hindering the widespread adoption and development of tinyML across the research
and industry communities.

TinyMLOps. Similar to MLOps, tinyMLOps aims to automate production-ready
applications by utilizing the most efficient tools and practices, from data to model
inference on an embedded platform. Therefore, deploying and monitoring tinyML
systems face many common objectives and challenges as standard machine learning such
as: interfacing each step of the workflow (e.g., data format and model input, model
training and delivery), model versioning, integration tests of data, model logging, and
codes (Kreuzberger et al., 2022, Antonini et al., 2022).

However, tinyMLOps essentially differs from MLOps in the following aspects (Shafique
et al., 2021):
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• Models make inferences on very resource-constrained devices (e.g., FPGA or MCU)
with limited operations (integer-only, no explicit division, small buffer, and slower
clock) and memory as low as 32 KB storage, and up to 48 MHz processor frequency.
However, some critical applications require low latency and/or high accuracy.

• Some devices, such as ultra-low power MCUs, may only operate off-grid and may
be expected to run autonomously for months or even years at the 1 µW scale. Thus,
power consumption, latency, and model size are critical metrics rather than raw
accuracy.

• Model deployment must support very heterogeneous and specific hardware platforms,
in contrast to standard Linux GPU servers. Additionally, monitoring and updating
models after edge deployment is difficult.

• TinyML enables high privacy and responsiveness without the cost of communicating
with another device.

• Industry and research communities face new challenges in creating meaningful
benchmarks due to platform heterogeneity, but there is a growing effort towards
finding a common ground (Sudharsan et al., 2021, Banbury et al., 2021b).

• Most tinyML tools are not mature enough yet because of the field’s novelty, so
they may not include essential features or be in the alpha stage.

Model compression. Recent works focus on model compression methods to reduce
model inference costs (Cheng et al., 2020, Hoefler et al., 2021). These methods include
weight sharing (Wu et al., 2018), model pruning (Alvarez and Salzmann, 2016, Zhu and
Gupta, 2017, Frankle and Carbin, 2019), which can remove redundant weights up to 90%
(Han et al., 2015) with decent results, knowledge distillation (Hinton et al., 2015), which
learns smaller models from a large teacher model, neural architecture search (NAS) (Cai
et al., 2020a, Liberis et al., 2021, Banbury et al., 2021a), that automates model design
with user-defined constraints, and quantization (Han et al., 2016, Gholami et al., 2021),
which can reduce bit-precision as low as 1-bit with acceptable performance (Tang et al.,
2017, Tu et al., 2022) for computation and storage efficiency, and is a mandatory step
for edge inference. In general cases, full 8-bit integer quantization is used, as it does
not degrade accuracy at inference time (Jacob et al., 2017) and is natively supported by
MCU platforms.
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Frame-based event classification. We consider the case of frame-based event
classification where each input generates one output (many-to-many), that is coming
continuously at some frequency f . This corresponds to many real-world applications, such
as audio detection (keyword spotting, speech detection. . . ), motion detection (activity or
gesture recognition. . . ), or anomaly detection problems.

t

y

Truth 0 0 1 1 1 1 0 0 1 . . .
Prediction 0 1 1 1 0 1 1 0 0 . . .

1

0

Early detection False negative Late detectionFalse positive

Fig. 3.1 Example of a frame-by-frame event-based classification encoded by binary vectors.
We observe four possible misclassifications.

When dealing with such frame-based event classification, some ambiguity arises in
model predictions, as Figure 3.1 shows. In particular, designing an appropriate custom
metric is essential because the dataset may have a significant class imbalance between
the presence or absence of an event. So using a plain accuracy metric comparing two
binary vectors is not sufficiently relevant. However, designing such a metric adds more
challenges since it requires some domain-specific knowledge and may involve multiple
iterations before automating the tinyML workflow.

To address this challenge, we propose a novel tinyMLOps solution that can design
datasets, deploy and evaluate models on ultra-low power sensors for both general and
event-based classification.

In this work, we focus on the entire tinyMLOps process (Figure 3.2) rather than the
technical implementation details. Specifically, we consider frame-based event classification
on real-time sensors with ultra-low power MCUs, such as Arm Cortex-M0+ or M4. We
also report some comparative results against tf.lite (David et al., 2021) and NNoM (Ma,
2020) for activity recognition (Table 3.1). Finally, we evaluate a model using our solution
with a custom-designed metric for frame-based event detection on a head gesture dataset
(Figure 3.3) that allows us to deliver the optimal user experience.
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3.2.2 TinyMLOps for real-time sensors applied to frame-based
event classification

Figure 3.2 illustrates the tinyMLOps workflow as an iterative process and shows some
examples of indirect iteration causes. We discuss each tinyMLOps step and discuss its
specific challenges and solutions for frame-based event classification on real-time sensors.

Dataset design
Section 3.2.2

Model training,
optimization, selection

Section 3.2.2

Hardware deployment
Section 3.2.2

Evaluation,
monitoring

Section 3.2.2

Complex pre-processing,
data mismatch (frequency, calibration. . . )

Re-training, architecture change, pruning. . .

Poor predictions, latency shift. . .

Fig. 3.2 TinyMLOps: Steps and examples of indirect iteration causes.

Dataset design

Building a good frame-based event dataset is difficult because it often requires some expert
knowledge for preprocessing. For instance, in audio classification, domain knowledge is of
great value to create realistic background noise and other data augmentation strategies
(Park et al., 2019) which are crucial to the overall model performance.

In the case of a continuous signal, it may require domain knowledge to annotate the
precise time window (start to finish) of an event. Moreover, the sampling frequency of
the data must be set prior to proceeding with future steps, as it can impact the entire
process. A low frequency is cost-effective, but may affect model accuracy due to the loss
of details in the continuous inputs. While a high frequency may not be supported or will
drain the power supply.

Figure 3.1 illustrates some issues encountered in frame-by-frame event-based classification.
For the first event, the model predicts three ambiguous outputs: an early detection, a
false negative in the middle, and a late classification at the end. These predictions raise
the questions such as:

• Is early detection considered valid? If so, how much early?

• Same for late detection: how much is too late?

• Should the model be correct at all times during an event? If so, what is the accepted
tolerance for classification errors? It may indicate a failed model or a noisy sample.
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The tolerance for early and late detection can actually be considered as a hyperparameter
of the dataset and model metric, requiring fine-tuning as well as going through the whole
workflow to have feedback. We can design the expected truth vector y to account for
this tolerance by padding an event of n frames in the y vector. However, a high latency
tolerance may lead to a more lenient model, poor user experience, or higher power
consumption. Determining the impacts of these factors during dataset design can be
challenging.

Model training, optimization, and selection

The first challenges in model training for tinyML and event-based classification are to
select a viable architecture in terms of size, and then ensure that it can contain operations
(e.g., activations) that will be supported for MCU inference.

The most common model architectures for sequential data classifications essentially
include these models or a variation of them: CNN, RNN, transformers (Vaswani et al.,
2017), or residuals (He et al., 2016). However, due to their smaller size and performance,
CNNs and RNNs are better candidates for ultra-low power MCUs. For less complex
or shorter sequences, we may choose GRU over LSTM for a lower energy footprint
(Cahuantzi et al., 2021).

The next challenge is to carefully select hardware-compatible activations or to design
custom approximations such as piece-wise functions. Typically, exponentials, explicit
divisions ( ̸= 2n), or square roots are difficult to support on constrained hardware.

Hardware deployment and code generation

Once the model is trained, it must be quantized, converted, and deployed for the
target hardware, which is a tremendous challenge for tinyMLOps because each hardware
platform has its own specifications and requirements.

TinyML is still in its early stages, so suitable libraries for model conversion and
inference on ultra-low power MCUs still remain scarce. Some important criteria for
industry adoption are:

• high performance: accuracy, multiply-accumulate operations (MACs), latency, code
size,

• flexibility, and support for custom layers/activations or some final optimization,

• hardware compatibility and ease of deployment,
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• white-box solution to debug and understand the deployed model bottlenecks or
issues for developers, appropriate metric,

• open source for commercial use if possible.

We tested both tf.lite (David et al., 2021) and NNoM (Ma, 2020) as framework
candidates for hardware deployment. We found that tf.lite gives the best performance out
of the two, but is heavy in size (Table 3.1) and the generated model is difficult to debug
and does not allow for easy customization or optimization of layers and activations. In
particular, it does not support GRU layers with a stateful option, which can be necessary
for some real-time applications (e.g., speech or gesture recognition) and has a better
performance tradeoff than LSTM for some event-detection problems (Cahuantzi et al.,
2021).
In contrast, NNoM generates standard C code, hence it is more transparent and flexible.
It also supports CMSIS-NN (Lai et al., 2018), which can reduce the inference cost by
four on ARM Cortex-M MCUs, but outputs unstable results (Table 3.1).

To overcome the aforementioned drawbacks, we created our own tinyMLOps solution.
We chose to generate standard C code with CMSIS-NN from a TensorFlow model, like
NNoM, to provide more usage and implementation flexibility, cost-efficient inference,
debugging, wide hardware support, and lightweight deployment. This approach allows
us to test and add custom activations and layers.

Table 3.1 Comparison of a model quantized to int8 deployed on an Arm Cortex-M4 MCU
using tf.lite (David et al., 2021), NNoM (Ma, 2020) and our tinyMLOps solution on an
activity recognition dataset.

Metric tf.lite NNoM Our
Accuracy (%) 85.5 68.24 86.95
Model size (KB) 6.72 0.29 1.41
Stack size (KB) 12 6.1 5.5
Code memory (KB) 303 16.12 5.5

Evaluation and monitoring

TinyMLOps comparison. To evaluate our solution against tf.lite and NNoM, we
quantized and deployed the same model to 8-bit integers on an activity recognition
dataset using the same MCU platform, and measured the accuracy and memory sizes.
We restricted the model selection by what was supported by all three solutions.
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(a) False positive rate versus error rate for
different error types (See Appendix 3.A listing
errors in a confusion matrix): False negative
rate and misclassification rate between positive
classes are measured by varying the model
output threshold.
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(b) Model threshold versus average number
of frames latency. Early accepted frames are
defined as those captured 10 prior to the actual
event, and late accepted frames are set to 20
after the actual event. Frame rate is at 20Hz.

Fig. 3.3 Custom metrics evaluated by varying the decision threshold and measuring event
errors or latency of a GRU model on a four-class head gesture test set. The model is
deployed on an Arm Cortex-M0+ MCU.

Based on the results presented in Table 3.1, using C code generation, as opposed to
an interpreter-based approach, enables the deployment of lighter working models on ultra
low-power MCUs. Our solution achieved an acceptable memory footprint, even though
the NNoM model size was the lightest among the three, while tf.lite may not even fit in
some ultra-low power settings. In addition, our solution obtained the best accuracy, with
tf.lite coming in second place.

Custom event metric. In addition to padding the dataset for early/late event windows
(Figure 3.1), we can also create a custom metric that accepts early/late detections and
have some frame tolerance. This allows us to properly evaluate the model’s prediction
from a frame-by-frame vector to an event-based confusion matrix (Appendix 3.A) shows
an example of a generalized confusion matrix for multiclass event-based classification.).
We evaluate a stateful GRU model with return sequences for an always-on real-time
multiclass head gesture detection problem, with a rejection class (i.e., no gestures). The
model was quantized to 8-bit integer and deployed on an Arm Cortex-M0+.

As depicted in Figure 3.3a, there is a tradeoff between false positives versus false
negatives and misclassification through the model threshold output. Setting a high
threshold results in more false negatives, which adversely impacts user intent (e.g., missed
a screen wake-up or wrong gestures) and also increases latency (Figure 3.3b). In contrast,
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a low threshold results in more false positives, which wastes power supply (e.g., unwanted
screen wake-up), but reduces latency. For example, if a user desires a false positive rate
below 1.5%, then they must accept an overall classification error (excluding false positive)
of at least ≈ 3%, which corresponds to a threshold of at most 0.25. This threshold
also leads to an average frame latency of ≈ -0.5 frame, indicating early detection. The
threshold sweet spot varies depending on the specific application: critical applications in
cars may require accurate and quick detection (low false negative and low threshold),
while wearable applications such as motion detection may tolerate less false positive for
better battery life.

Thus, the evaluation and design of metrics for frame-based events require domain
knowledge to fine-tune time-related hyperparameters to assess real-life user experience.
It can also serve as a model selection criterion for specific applications. In addition,
deploying on edge devices requires consideration of more hardware-related metrics, such
as MACs and power usage or data movement costs (sRAM and flash) (Svoboda et al.,
2022).

3.2.3 Conclusion

Our work highlights unique key challenges at each direct and indirect iteration of the
tinyMLOps workflow and demonstrates the potential to deliver working neural network
applications on the tiniest constrained hardware with care and given the early stage of
the field. Specifically, we showed that frame-based events classification requires domain
knowledge and careful fine-tuning to design appropriate datasets and metrics to deploy
optimal models for real-time inference on ultra-low power MCUs.

The successful advancement and potential of the tinyML field critically depend on
the continual innovation and implementation of efficient tools and methods by both the
industry and researchers to deliver impactful and practical applications at the edge.

3.3 ML2MCU: Towards automated large-scale deployment
of tiny neural networks

In the following sections, we introduce our tinyMLOps solution called ML2MCU (Ataya,
2022) to train, quantize, and deploy deep learning systems for MEMS-based applications
in the most constrained settings: under 8 kB RAM, 16 kB ROM memory, and 70 µW
power usage (Table 1.4). In particular, the 4MHz clock frequency is the lowest found
in 32-bit microcontrollers, effectively achieving extreme-low power levels, compared to
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other MCUs that use 120 to 300MHz. This extreme-low power setup is applied to
motion-related applications. Audio-related applications, which are more demanding,
target the Arm Cortex-M4 or M7. Our solution enables the automatization of the design
process of creating efficient algorithms for MEMS-based applications for non-practitioners
in machine learning through a uniform approach.

ML2MCU provides comprehensive features for tinyMLOps, the main contributions of
this work are emphasized by the following features:

• data augmentation, specialized for sensor signals (audio, motion),

• model training,

• 8-bit weight quantizer, and model conversion to lightweight and portable fixed-point
C code library,

• integer-only inference with fixed-point arithmetic for extreme-low power always-on
and real-time inference,

• wide hardware support,

• specialized metrics for event-based classification to match user experience

• data visualization per sample,

• meta-optimization, and model selection,

• on-device evaluation.

3.3.1 Dataset design

Overview of the MEMS-based dataset

Table 3.2 provides a reference to the datasets on MEMS-based applications we benchmark
in this work, provided by TDK InvenSense. They essentially consist of motion-based
applications, which are typically low-frequency (up to 100Hz), and audio applications
with higher frequency (up to 16kHz).

All of these applications are expected to run always-on, in real-time, on battery, and
attempt to fit the lowest end possible of target hardware platforms to reduce production,
consumption, and consumer costs (Table 1.4).
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Table 3.2 Dataset reference for TDK InvenSense’s MEMS-based applications.

Dataset Data type Description Classs number Class Frequency (Hz)

Bring-to-see Accelerometer Wake up a smartwatch
from wrist motion 2 Wake motion, other 20

Hand gesture Accelerometer
gyrosccope Wrist gestures for a smartwatch 6 Wrist in, out, up, down,

shake, other 50

Head gesture Accelerometer
gyrosccope Head gestures for an earbud 4 Yes, no, nod, other 50

Finger gesture Accelerometer
gyrosccope Finger gesture from a smartwatch 9 Clench, (1x, 2x) pinch

(1x, 2x, 3x, 4x) tap, other 50

Voice activity
detection (VAD) Accelerometer Wake up an earbud on voice

from motion detection 2 Voice activity, other 800

Keyword spotting:
wake word Microphone Wake a device on spoken

keyword (e.g., “Siri”) 2 Keyword spotted, other 16k

Keyword spotting:
command words Microphone Spoken keyword command action 12 Google Speech commands v2-12

(Warden, 2018) 16k

Data augmentation

Among the various applications listed in Table 3.2, keyword spotting is the most
challenging in terms of dataset design and training a model to generalize. Audio data
have a high variance in voices, pitch, accents, and background noise; plus, some words
may sound similar or be a subset of other words, such as “Alexa” and “Alexandra”.
Thus, keyword spotting requires capturing a large quantity and diversity of human voices
in various contexts.

Therefore, we need to use data augmentation to design a dataset that is robust for
real-world usage and against adversarial contexts, such as music background or distorted
voices.

We propose a high-level algorithm (Algorithm 1) and an AudioSample API class
provided in Appendix 3.B to design a robust keyword spotting dataset. This work is
part of the contribution of the patent (Ponçot et al., 2022), under review, and laid the
foundation for further work by Rémi Ponçot, who improved the data augmentation scheme
at a lower level with specialized audio processing (e.g., time distortion). From a high-level
point of view, a robust keyword spotting classification can differentiate between target
keywords (positives) and non-keywords (negatives) in any given sound environment
(background). We define an audio sample by a random background noise with a certain
volume level target_decibel of a fixed duration, which is overlaid with a random
number of positive and negative samples in a random position.

Figure 3.4 illustrates what an audio sample is and the API is provided in Appendix 3.B.
We hypothesize that data augmentation can help design smaller and more robust

models because higher quality training data results in better and easier convergence, so
a smaller expressiveness capacity would be required to reach generalization.
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Algorithm 1 High-level data augmentation for robust audio samples for keyword spotting.

1: Input: duration, positive_samples, negative_samples,
2: background_samples, target_decibel
3: Output: audio_sample
4: n_positives← random_integer(min = 0, max = 3)
5: n_negatives← random_integer(min = 0, max = 3)
6: background← sample_N_audio(background_samples, n = 1)
7: list_samples← sample_N_audio(positive_samples, n = n_positives)
8: list_samples← sample_N_audio(negative_samples, n = n_negatives)
9: audio_sample← match_target_amplitude(background,

target_decibel, duration)
10: for sample ∈ list_samples do
11: if not is_overlapping_previous_samples(audio_sample, sample) then
12: audio_sample← overlay(audio_sample, sample)
13: else
14: Repeat
15: end if
16: end for
17: Return audio_sample

3.3.2 Model design and training

As mentioned in Section 2.1, GRU-based models have been shown to provide a good
size-performance tradeoff. Adding a 1D convolution to the GRU model can provide more
efficient feature extraction and improve accuracy, with reasonable additional computation.
Our experiments empirically support Arik et al. (2017), Cahuantzi et al. (2021) that GRU
or 1D convolutional GRU (CGRU) models consistently provide acceptable performance
across all of our MEMS-based applications for always-on, real-time inference listed
in Table 3.2 with reasonable size. Thus, we found a polyvalent hardware-friendly
template model that contributes toward an automated and uniform algorithm design
process for future MEMS-based applications. Therefore, the remaining most critical
hyperparameters are only the number of filters f of the CNN and cells c of the GRU
layer, so the hyperparameter space is reduced and easier to explore and exploit.

ML2MCU provides a meta-optimizer interface to probe the best size-performance
tradeoff between f , and c, as illustrated in Figure 3.5, and supports other hyperparameters
such as activations, boolean addition of layers (dropout, batchnorm, ...).
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Negative sample

Positive samples

Background noise

Fig. 3.4 Illustration of an audio sample, with random samples, position, and a number of
positive and negative keywords.

3.3.3 Deployment

In this section, we first motivate our choice to create a quantization framework from
scratch due to the gap in the existing literature, then present our objectives, requirements,
and methods for our proposed solution, and demonstrate that our deployed neural
networks successfully deliver robust and competitive results under the strictest power
footprint constraints as per state-of-the-art and industry standards.

Comparison of quantization framework candidates

Based on our review of quantization frameworks in Section 1.4.1, TFLM (David et al.,
2021) and NNoM (Ma, 2020) seem the most appropriate framework candidates for
deploying neural networks.

However, TFLM has unsupported operations, such as GRU or 1D convolution, which
we rely on in all of our applications. TFLM uses an interpreter-based approach at
runtime, which increases its complexity and makes it difficult to develop missing features.
Moreover, this prevents it from providing hardware-specific optimizations.

Moreover, as stated in Lê and Arbel (2023), we found supporting results that TFLM
is on the heavier side, and NNoM is on the lighter side of the quantization frameworks
(Zingg and Rosenthal, 2020). When deploying a CNN model on a microcontroller, Zingg
and Rosenthal (2020) measured a 25 times RAM usage ratio and a 75% increase in
flash size between TFLM and NNoM. Consequently, this means that in some of our
applications, using TFLM would require upgrading the MCU model to a more power-
hungry and costly target, such as Arm-Cortex M4 instead of M0+, which could increase
production costs by a factor of 10, and power usage by a factor of approximately 1500
(Table 1.4). In addition, they also show that on-device inference is at least five times
slower in TFLM than NNoM, and has lower quantized accuracy.
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Fig. 3.5 Tradeoff between size and on-device accuracy for a CGRU model applied on the
bring-to-see dataset, using ML2MCU’s meta-optimizer. Optimal tradeoffs are highlighted
in green, suboptimal tradeoffs in red, and manually designed models in black.

Thus, we argue that while TFLM is a popular option due to its wide support and
ecosystem, it is not a viable option for our extreme-low power requirements.

Regarding NNoM, while it offers an accessible and flexible approach based on C code
generation, we found unstable results in the HAR application, as previously mentioned
(Table 3.1).

Therefore, this required us to create and develop our own deployment framework
(Ataya, 2022) to quantize and deploy neural networks on ultra-low power embedded
devices: ML2MCU.

Proposed framework for quantization and deployment of neural networks

Our proposed quantization framework is based on C code generation, similar to NNoM,
but includes the following features that differentiate it from previous work:

• added full support for RNNs (simple RNN, GRU, LSTM), 1D CNN, with standard
options (e.g., return_sequence for GRU), and other missing features from TFLM,

• full integer-only inference of neural networks, with 8-bit weights and 32-bit activations
and data,
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• re-implementation of more efficient activations in fixed-point arithmetic, using only
basic operations, such as additions, multiplications, bit-shift, power of twos, missing
in NNoM,

• an API to simulate fixed-point inference in Python for fast prototyping and
verification,

• minimal and plain C code generation of neural networks for the most constrained
power footprint requirements in the state-of-the-art, not previously achievable
through TFLM,

• flexibility for implementing custom layers or activations, difficult in TFLM,

• wide hardware support for lower integration efforts,

• stable inference and bug fixes, encountered in NNoM,

• causal inference for real-time predictions.

The deployment process takes as input a trained model and outputs portable C code
as model.c, and model.h files and consists of the following steps:

1. Parsing the model, layer by layer,

(a) converting the layer’s weights to 8-bit integers, and remaining parameters to
32-bit integers (bias, batch normalization, activations) using min/max uniform
symmetric quantization (Algorithm 2),

(b) computing the scale S (Equation (1.7)) for the current layer,

(c) generating the corresponding C code for this layer, which makes calls to the
inference library and writes the weights to a model.c file.

2. Compile and build the C code source.

3. Integrate and deploy the built source to the microcontroller.

Quantization and fixed-point arithmetic

In this section, we provide a step-by-step computation of some standard neural network
operations in fixed-point. As stated in Section 1.1.1, neural networks are complex
functions composed of a chain of compound operations, such as multiplications, additions
or non-linear functions.
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We first detail how to quantize a matrix to N -bits, then we present a side-by-
side comparison of the computation of an FC layer in floating-point and 8-bit fixed-
point. Finally, we apply the same principle to a GRU layer, based on the TensorFlow
implementation.

Symmetric quantization. Algorithm 2 quantizes a matrix to N -bits. On line four, the
maximum value of W becomes mapped to the lower or upper bound in 2N−1, e.g., −127
if the absolute maximum value of W is the minimum. Then, the clipping function in
line five forces for symmetric quantization. Note that line four and five are where the
numerical precision of values is reduced.

Algorithm 2 Symmetric quantization of a floating-point matrix to N -bits : NBitQuantize.

1: Input: W , N
2: maxw ← max(|W |)
3: S ← ⌊maxw ∗2N⌉
4: Wq ← ⌊W ∗ 2N−1/ maxw⌉
5: Wq ← clip(Wq,−2N−1, 2N−1)
6: Output: Wq, S
7: Return Wq, S

FC layer. We compute a step-by-step floating-point versus fixed-point inference of
an FC layer with 8-bit weights and 32-bit activations. Algorithm 4 is highly efficient
because it only uses hardware-friendly operations, such as additions, multiplication, and
bit shifts.
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Algorithm 3 Floating-point fully-
connected: FloatFC.

Input: W , b, x

Output: y

y ←W x + b

Return y

Algorithm 4 Integer-only fixed-point
fully-connected inference: QuantizedFC.

Input: W , b, x

Output: yq

Wq, S ←NBitQuantize(W, 8)

bq, _←NBitQuantize(W, 32)

xq, _←NBitQuantize(x, 32)

yq ← Sxq + 27

yq ← (yq ≫ 8)

yq ← yqWq + 27/2

yq ← yq ≫ 7

yq ← yq + bq

Return yq

Quantized activations. For each commonly use activations (ReLU-based, tanh,
sigmoid, softmax, ...) we implemented an optimized quantized alternative that only relies
on hardware-efficient operations, such as bit-shifts, simple multiplications, additions, ...

Currently, these quantized activation functions are proprietary and cannot be disclosed.
Nonetheless, we can provide an instance of such functions to illustrate the concept.

We introduce the hard Elu function, a hardware-friendly approximation of the Elu
function for α = 1, which removes the expensive exponential computation, as an example
of an efficient activation as follows:

hard Elu(x) =


−1 if x < −2,

−0.5x if − 2 ≤ x ≤ 0,

x otherwise.

(3.1)

The L1 distance between the original Elu and our approximation is equal to 0.32, as
illustrated in Figure 3.6 and explained in Algorithm 6.
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Fig. 3.6 Elu versus hard Elu function. A L1 distance between the original Elu and our
approximation ≈ 0.32 for x ∈ R.

Algorithm 5 Floating-point hard Elu:
FloatHardElu.

1: Input: x

2: Output: y

3: if x < −2 then
4: y ← −1
5: end if
6: if x ∈ [−2, 0] then
7: y ← x/2
8: else
9: y ← x

10: end if
11: Return y =0

Algorithm 6 Fixed-point hard Elu:
QuantizedHardElu.

1: Input: xq

2: Output: yq

3: if x < −2 then
4: yq ← −1
5: end if
6: if x ∈ [−2, 0] then
7: yq ← x≫ 2
8: else
9: yq ← x

10: end if
11: Return yq

Other quantized layers, such as RNNs or CNNs, are built on the same principle and
call the QuantizedFC function.

We implemented all standard layers in Python, which allows us to simulate the
inference and accuracy and provides an interface for debugging each quantized operation
before deployment. We chose to quantize weights with lower precision than activations
because the weights are more robust to low-bit quantization than activations, as confirmed
in previous studies (Gong et al., 2019, Liang et al., 2021). In particular, Liang et al. (2021)
recommends keeping the biases, first and last layers, at higher precision to maintain
performance. We empirically confirmed that activation precision is more critical than
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weights (Liang et al., 2021), so weights can be converted to lower-bit precision than
weights.

3.3.4 Evaluation

As presented in Lê and Arbel (2023), event-based classification requires custom metrics
that can closely represent the user experience in the real world. However, our contribution
in Ponçot et al. (2022) demonstrates that relying solely on plain frame-by-frame accuracy
for evaluating event-based classification is insufficient due to the high class imbalance
of non-events (class 0), and the low frame granularity that results in biased accuracy
results. To more accurately reflect the user experience, we propose a higher-level metric
that evaluates complete events as a list of continuous frames.

Additionally, we revisit the standard labeling approach because labeling each sample
to the precise frame can be challenging. For example, in gesture recognition, the sensor
may detect small variations in hand position throughout the movement, making it
difficult to define the clear start and end boundaries of an event. Therefore, we introduce
tolerance hyperparameters for early and late frame accepts, which correspond to the
maximum number of frames around the labeled events. These hyperparameters affect
the evaluation of the user experience. A high late frame tolerance may result in higher
benchmark performance, but it can overestimate accuracy and underestimate latency
in real settings. Conversely, a high early frame tolerance may result in underestimated
accuracy but lower latency.

We can also adjust the model output threshold as presented in Lê and Arbel (2023),
which directly impacts the measured false positive and negative tradeoff, in addition to
the latency.

Careful consideration of these hyperparameters promises to accelerate the algorithm
design feedback loop to iterate in the tinyMLOps process (Figure 3.2), and deliver
high-quality specialized models that match user experiences in real-life.

In the next section, we present our results on a portfolio of MEMS-based applications
(Table 3.2) that showcase such high-quality user experience while respecting our tight
constraints.

3.4 Results

Table 3.3 presents our benchmark results for motion detection datasets, using accelerometers
or gyroscope sensors. We keep the model size under 8kB, except for the finger gestures
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applications, enabling to use the low-cost Arm Cortex M0+ MCU. Moreover, neural
networks on-device are highly responsive; we obtain a latency under 60ms and an inference
time per sample under 10ms. Furthermore, we obtain energy-efficient models that require
under 40 µA of power consumption.

Table 3.3 Benchmark results of 8-bit neural networks deployed on ultra-low power
MCUs for motion detection datasets.

Specification Bring-to-see Hand gestures Head gestures Finger gestures HAR
MCU M0+ (4 MHz) M0+ (4 MHz) M0+ (4 MHz) M4 (120 MHz) M0+(4 MHz)
Accuracy (%) 98.59 99.15 99.05 97.77 89.3/ 86.95
Data frequency (Hz) 20 50 50 400 100/20
Flash (kB) 2.2 3.61 2.8 6.1 9.9 /1.41
Data RAM (kB) 0.4 0.8 0.7 3.6 2.3 /5.5
Power (µA) 27 (29nJ) 39 35 — —
Latency (ms) 17 26 55 25 —
Inference (ms) 3.2 8 4.33 2.9 2.9
Cycle count 14693 — — — —

Table 3.4 presents our benchmark results for audio applications, using only an
accelerometer for VAD, and a microphone for KWS. We achieve competitive accuracy for
keyword spotting under 40kB, with again responsive and low-energy on-device inference.

We also compared the embedded inference of our keyword spotting system with a
cloud server, where only the wake word model is embedded, and the more demanding
command word model is deployed on the cloud, when the wake word model triggers.
In this scenario, the cloud-based solution adds an inference overhead of 2.5 seconds to
the wake word model due to additional network connection, resulting in approximately
15 times slower inference and inherently larger power footprint overall, compared to a
self-contained fully embedded model.

Therefore, we successfully meet the constraints of ultra-low power hardware on motion
and audio applications. In particular, in motion applications (except finger gestures), we
reach extreme-low power inference levels, which redefines the state-of-the-art notion of
tiny neural network models while maintaining high accuracy above 97%, except for HAR.

3.5 Discussion

3.5.1 Conclusion

TinyML poses novel and unique challenges for the machine learning and hardware
communities to fit expensive functions on constrained devices, which requires careful
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Table 3.4 Benchmark results of 8-bit neural networks deployed on ultra-low power
MCUs for audio applications.

Specification VAD KWS: wake word with command words (MCU)
MCU M0+ (4 MHz) M7 (300 MHz)
Accuracy (%) 99 99.43
Data frequency (Hz) 800 16k
Flash (kB) 1.16 37.50
Data RAM (kB) 0.59 9.80
Stack (kB) — 1.3
Power (µA) 175 39
Latency (ms) 130 —
Inference (ms) — 160
Cycle count 1318 —

consideration and specialized solutions. Its corresponding high potential for large-scale
intelligent sensing applications motivates our interest. We demonstrated that existing
state-of-the-art solutions lack performance, power footprint, flexibility, and production
readiness. This motivated us to create our own tinyMLOps solution that addresses
previous issues, to automatically train, quantize to 8-bits, deploy, and evaluate deep
learning-based systems that can run on the most constrained platforms found in research
and industry.

Our contribution laid the foundation for a platform that enables cost-efficient
deployment of neural networks on ultra-low power devices for MEMS-based applications.
In particular, we dedicated special attention to designing and evaluating event-based
models to ensure that the reported inference closely aligns with real-world user experiences.
We successfully deployed responsive and ultra-low power neural network models that
utilize as little as 1kB of memory, or 30 µA of power, to adhere to the always-on, real-
time inference requirements. These figures represent a reduction in power footprint by
hundreds to billions of orders of magnitude compared to models and platforms designed
for cloud or mobile applications (Table 1.3), redefining the notion of tiny neural networks
and extreme-low power inference levels. This billion order of magnitude also effectively
translates into billions of savings in the microcontroller consumer market. Additionally,
our work allowed us to apply a uniform algorithm design process that can be generalized
to all of our MEMS-based applications. Consequently, this empowers anyone to easily
create new algorithms for MEMS-based applications, paving the way for large-scale
adoption and deployment of intelligent embedded devices capable of interacting with
their local environment in a low-cost and low-power manner.
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3.5.2 Limitations

We restricted our benchmark to TFLM and NNoM as they appeared to be the most
popular or promising framework candidates for our context. However, other quantization
tools initiatives exist, such as µTVM (Chen et al., 2018, Liu et al., 2023,?), N2D2 (Bichler
et al., 2017), which have shown promising results in the deployment of neural networks
on embedded devices. However, the first µTVM release was not available1 before we
finalized our first release2, and is still in the early development stage (Sipola et al., 2022).
N2D2 (Bichler et al., 2017) is another European research initiative for end-to-end design
and deployment of neural networks that supports a wide range of software solutions
(TensorFLow, PyTorch, ONNX, C++, TensorRT, ...), and hardware, from GPUs to
microcontrollers, and is open source.

3.5.3 Future work

While we laid a strong foundation for developing and deploying efficient neural networks
on the most limited embedded devices, the field is still in its early stages. There remain
numerous exciting challenges and opportunities for improvement.

We identify several future avenues of exploration for our work. We can aim to speed
up the time-to-market by improving each step of the tinyMLOps workflow. We can work
on bug fixes and improvements for a more seamless user experience and deployment
process for non-practitioners in machine learning. In particular, exploring new data
augmentation strategies can help reduce manual data collection and labeling efforts,
train more robust models, and also smaller architectures (due to less expressive power
required). Additionally, we seek to extend our portfolio of MEMS-based applications to
refine our deployment pipeline for efficient neural networks on MCUs. Finally, we can
focus on researching new methods to further reduce our models’ power footprint, such as
structured pruning, experimenting with new architectures for sequence classification, or
lower-bit quantization of activations or weights.

In Chapter 4, we introduce a generalized N-bit quantization scheme that can enable
extreme low-bit precision, such as 1-bit.

1commit hash: 7b3a22e, November 12th, 2021.
2This thesis started June 15th, 2020, and our first proof of concept was operational in April 2021.

https://github.com/apache/tvm/commit/7b3a22e465dd6aca4729504a19beb4bc23312755
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Fig. 3.A.1 Error types of a generalized confusion matrix for multiclass event classifications
with a rejection class (i.e., non-event). There is an additional error type compared to
binary event classification: misclassification between positive classes.

3.B AudioSample API class documentation
1 NAME
2 AudioSample - Define the AudioSample class to synthesize audio samples.
3

4 CLASSES
5 AudioSample
6

7 class AudioSample(builtins.object)
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8 AudioSample(st: str, positives: List[pydub.audio_segment.AudioSegment],
negatives: List[pydub.audio_segment.AudioSegment], backgrounds:
List[pydub.audio_segment.AudioSegment], target_dBFS: int, db_pos_path:
str, subfolder_to_create: str = '')

↪→

↪→

↪→

9

10 This class defines how one audio sample data is synthesized.
11 - It has a fixed duration of 10s.
12 - It has 1 random background sample.
13 - It has a random number (or none) of random overlaid positive

samples.↪→

14 - It has a random number (or none) of random overlaid negative
samples.↪→

15

16 The constructor takes as input arguments:
17 - Sample type in [train, val, test]
18 - All the audio databases (positives, negatives, and background

audio),↪→

19 - Target dBFS: target dB for the background noise,
20 - db_pos_path: positive database folder to use,
21 - new database folder (if not exists) to create and write the

AudioSample in.↪→

22

23 Any successful instantiation of this object results in the creation of:
24 - A new audio sample .wav,
25 - Its corresponding spectrogram (using PSD) X of Tx timestep and

n_freq frequencies (shape=(101, 1998)),↪→

26 - Its corresponding Y label vector (binary) of length Ty (shape=(1,
498)) where a positive sample is identified by nb_ones_label '1'
continuous values,

↪→

↪→

27 - An index file if not created or new index lines appended to this
file,↪→

28 - A new database folder containing 3 nested folders among
'train'/'val'/'test' if not created.↪→

29

30 Methods defined here:
31

32 __init__(self, st: str, positives: List[pydub.audio_segment.AudioSegment],
negatives: List[pydub.audio_segment.AudioSegment], backgrounds:
List[pydub.audio_segment.AudioSegment], target_dBFS: int, db_pos_path:
str, subfolder_to_create: str = '')

↪→

↪→

↪→

33 Args:
34 st (str): dataset type
35 positives (List[AudioSegment]): list of the positive samples
36 negatives (List[AudioSegment]): list of the negative samples
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37 backgrounds (List[AudioSegment]): list of the background samples
38 target_dBFS (int): target dB of the background
39 db_pos_path (str): positive database folder to use
40 subfolder_to_create (str): database folder to write the

AudioSample in↪→

41 This function creates a new synthesized AudioSample.
42

43 create_audio_sample(self) -> Tuple[pydub.audio_segment.AudioSegment,
numpy.ndarray, numpy.ndarray]↪→

44 Creates a new synthesized audio file from the whole database as well as
the corresponding spectrogram data and y labels. Also creates the
necessary new folders if not created

↪→

↪→

45 Returns: the new synthesized audio, x data (spectrogram), and label y.
46

47 generate_audio_filename(self) -> str
48 Generate a unique filename to give to the AudioSample to be created
49 Returns: New filename
50

51 get_all_self_attributes_in_list(self) -> List
52 Construct the index file of one folder to log the AudioSample creation

process (which/where/what composes the synthesized audio)↪→

53 Returns: List of dictionaries (1 line of the index file)
54

55 get_last_filename_index(self) -> int
56 Get the index number of the last .wav file created to find a unique

filename for the current AudioSample to be created↪→

57 Returns: Last index file number of a .wav, else -1 if no audio files are
found.↪→

58

59 get_random_negative_samples(self, negatives:
List[pydub.audio_segment.AudioSegment]) -> Tuple[List[int],
List[Tuple[pydub.audio_segment.AudioSegment, int, int]]]

↪→

↪→

60 Select self.nb_neg random positive samples from the positive database
61 Args:
62 negatives (List[AudioSegment]): negative database
63 Returns: Return the index list of the selected samples, and List of the

extracted audio background, starting timestamp of the extracted
audio, ending timestamp of the extracted audio

↪→

↪→

64

65 get_random_positive_samples(self, positives:
List[pydub.audio_segment.AudioSegment]) -> Tuple[List[int],
List[pydub.audio_segment.AudioSegment]]

↪→

↪→

66 Select self.nb_pos random positive samples from the positive database
67 Args:
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68 positives (List[AudioSegment]): positive database
69 Returns: Return the index list of the selected samples and the list of

samples↪→

70

71 insert_ones(self, y, segment_end_ms) -> Tuple[numpy.ndarray, int]
72 Update the label vector y. The labels of the 50 output steps strictly

after the end of the segment should be set to 1. By strictly we mean
that the label of segment_end_y should be 0 while the 50 following
labels should be one.

↪→

↪→

↪→

73

74 Arguments:
75 y -- numpy array of shape (1, Ty), the labels of the training example
76 segment_end_ms -- the end time of the segment in ms
77

78 Returns:
79 y -- updated labels
80 segment_end_y -- Ending position of last '1' to insert in vector y
81

82 save_all_to_csv(self) -> None
83 Write X data, Y data, and index_origin to file
84 Returns: None
85

86 -------------------------------
87 Static methods defined here:
88

89 extract_random_audio_sample_from_original(original_audio:
pydub.audio_segment.AudioSegment, is_bg: bool) ->
Tuple[pydub.audio_segment.AudioSegment, int, int]

↪→

↪→

90 Extract an audio subsample from an original audio
91 Args:
92 original_audio (AudioSegment): original audio to extract a

subsample from↪→

93 is_bg (bool): if it is a background sample
94 If original_audio is a background then extract 10s else, extract a random

duration (~near 1s).↪→

95 Returns: Tuple of the extracted audio sample, starting timestamp origin
of the extracted audio,↪→

96 ending timestamp origin of the extracted audio
97

98 get_random_background(backgrounds: List[pydub.audio_segment.AudioSegment]) ->
Tuple[int, pydub.audio_segment.AudioSegment, int, int]↪→

99 Args:
100 backgrounds (List[AudioSegment]): background audio database
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101 Returns: index of the selected sample, the extracted audio background,
starting timestamp of the extracted audio,↪→

102 ending timestamp of the extracted audio
103

104 get_random_time_segment(segment_ms) -> Tuple[int, int]
105 Gets a random time segment of duration segment_ms in a 10,000 ms audio

clip.↪→

106 Arguments:
107 segment_ms -- the duration of the audio clip in ms ("ms" stands for

"milliseconds")↪→

108 Returns:
109 segment_time -- a tuple of (segment_start, segment_end) in ms
110

111 insert_audio_clip(background, audio_clip, previous_segments) ->
Tuple[pydub.audio_segment.AudioSegment, Tuple[int, int]]↪→

112 Insert a new audio segment over the background noise at a random time
step, ensuring that the audio segment does not overlap with existing
segments.

↪→

↪→

113

114 Arguments:
115 background -- a 10 second background audio recording.
116 audio_clip -- the audio clip to be inserted/overlaid.
117 previous_segments -- times where audio segments have already been placed
118

119 Returns:
120 new_background -- the updated background audio
121

122 is_overlapping(segment_time, previous_segments) -> bool
123 Checks if the time of a segment overlaps with the times of existing

segments.↪→

124

125 Arguments:
126 segment_time -- a tuple of (segment_start, segment_end) for the new

segment↪→

127 previous_segments -- a list of tuples of (segment_start, segment_end) for
the existing segments↪→

128

129 Returns:
130 True if the time segment overlaps with any of the existing segments,

False otherwise↪→

131 -------------------------------
132 Data and other attributes defined here:
133 Tx = 1998
134 Ty = 498
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135 audio_type_dict = {'bg': 3, 'neg': 1, 'pos': 0}
136 db_root_path = '/shared/db_train_val_test/'
137 duration = 10000
138 n_freq = 101
139 nb_max_neg = 3
140 nb_max_pos = 3
141 nb_ones_label = 18
142 ratio_reference_Tx_Ty = 4.008
143 ratio_reference_Ty_ones = 27.5
144 seed = 369
145 valid_set_type = ['train', 'val', 'test']
146 db_root_path = '/shared/db_train_val_test/'



Chapter 4

Regularization for hybrid N-Bit
weight quantization of neural
networks on ultra-low power
microcontrollers

Abstract

In this chapter, we introduce a novel approach that generalizes quantization to N-bits,
down to extreme low-bit precision, such as 1-bit quantization. This approach builds
upon our tinyMLOps solution introduced in Chapter 3, as it is designed to integrate
into our established tinyML end-to-end process seamlessly.

We propose a novel regularization method for hybrid quantization of neural
networks, enabling efficient deployment on ultra-low power microcontrollers in embedded
systems. Our approach introduces alternative regularization functions and a uniform
hybrid quantization scheme targeting {1, 2, 4, 8}-bits. The method offers flexibility to
the weight matrix level, negligible costs, and seamless integration into existing 8-bit
post-training quantization pipelines. Additionally, we propose novel schedule functions
for regularization, addressing the critical yet often-overlooked timing aspect and
providing new insights into pacing quantization. Our method achieves a substantial
reduction in model byte size, nearly halving it with less than 1% accuracy loss,
effectively minimizing power and memory footprints on microcontrollers. Our contributions
advance resource-efficient models in resource-constrained devices and the emerging
field of tinyML, overcoming limitations of existing approaches and providing new
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perspectives on the quantization process. The practical implications of our work span
diverse real-world applications, including IoT, wearables, and autonomous systems.

This chapter is based on a pending patent (de Foras and Lê, 2022), which was
presented as a poster at tinyML EMEA Innovation Forum 2022 (Lê and de Foras, 2022),
and a paper (Lê et al., 2023):

Lê, M. T. and de Foras, E. (2022). Towards Universal 1-Bit Weight Quantization of
Neural Networks with end-to-end deployment on ultra-low power sensors. tinyML
EMEA Innovation Forum 2022.

Lê, M. T., de Foras, E., and Arbel, J. (2023). Regularization for hybrid N -bit weight
quantization of neural networks on ultra-low power microcontrollers. In Iliadis, L.,
Papaleonidas, A., Angelov, P., and Jayne, C., editors, Artificial Neural Networks and
Machine Learning – ICANN 2023, Cham. Springer Nature Switzerland.

de Foras, E. and Lê, M. T. (2022). One bit quantization for embedded systems.
Pending patent.
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4.1 Introduction

Neural networks and resource-constrained devices

As neural networks (NNs) continue to deliver impressive results across a wide range
of domains, they are primarily powered by highly over-parameterized models, which
come with a substantial power consumption cost. This energy barrier inadvertently
restricts their deployment in resource-constrained applications, such as ultra-low power
microcontroller units (MCUs), like Arm Cortex-M0+ and M4 (Unlu, 2020). MCUs are
integral components of embedded systems commonly found in wearables and IoT devices.
These systems demand efficient neural network models that can operate within their
limited memory (as low as 8 KB), computational capacity (as low as to 6 MHz), and
strict power constraints that must run always-on, in real-time, for months or even years.
The need for innovative solutions for compressing and deploying neural networks on
resource-constrained embedded devices emerged into the field of tinyML (Lê and Arbel,
2023).

Quantization

TinyML necessitates the development of novel quantization methods that retain the
flexibility of existing approaches while achieving better trade-offs between model size,
accuracy, and efficiency for resource-constrained applications. Quantization is a widely-
used technique for compressing deep neural network models by converting their floating-
point parameters into lower-bit precision integers, as illustrated in the following diagram.
It has become an essential method for meeting the requirements of MCUs that perform
inference based on fixed-point arithmetic (Gholami et al., 2021). Uniform symmetric post-
training quantization (PTQ) at 8-bits is a prevalent approach due to its model-agnosticism,
simplicity, and broad embedded hardware support with acceptable performance loss
(Zmora et al., 2019, Gholami et al., 2021). However, it suffers from sensitivity to outliers
and performs poorly at low-bit precision, such as binary or ternary networks (Zmora
et al., 2019).

min max
32-bit weight distribution.

-127 127
8-bit quantized weight distribution.

Quantization
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Contributions

In this paper, we propose a novel regularized quantization method that enables hybrid
quantization at the weight matrix level across various combinations of bit precision:
{1, 2, 4, 8}-bits. Our approach introduces alternative 1-bit regularization functions for
quantization based on the work of Darabi et al. (2020), and generalizes them to {2, 4,
8}-bits regularization functions.

By building upon PTQ, our method maintains its flexibility and compatibility with
existing end-to-end pipelines already using 8-bit quantization, specifically targeting
resource-constrained devices. Additionally, our approach offers a uniform hybrid quantization
scheme across {1, 2, 4, 8}-bits, extendable to any bit precision, thereby reducing the model
inference power footprint on MCU platforms. Furthermore, we introduce a scheduled
regularization technique for progressive quantization, offering crucial insights on the
often-overlooked but critical timing aspect of regularization (Golatkar et al., 2019) in the
case of quantization. Our primary contributions are summarized as follows:

1. We propose new regularization functions for 1-bit quantization and their generalization
to {2, 4, 8}-bits , extendable to any other bit-precision;

2. We introduce a hybrid quantization scheme at the weight matrix level, designed to
reduce the model power footprint for ultra-low power MCUs;

3. We present a novel scheduled regularization approach for progressive weight
quantization to {1, 2, 4, 8}-bits;

4. We conduct comprehensive experiments demonstrating the effectiveness of our
method across various settings, including activation, regularization, schedule, layer
combination, and size. These experiments provide new insights on how to use and
pace regularization with schedule functions for quantization.

Related work

Prior works have focused on quantization-aware training approaches (QAT) using the
straight-through estimator for binary or ternary networks (Courbariaux et al., 2015, Zhu
et al., 2017), or other approximations (Yin et al., 2018, Louizos et al., 2019) to simulate
the quantization effect during training. Other approaches introduce an additional term
to the objective function (Tang et al., 2017, Darabi et al., 2020) of the neural network to
encourage weights to converge to a set of points during training, minimizing the loss of
accuracy during PTQ. Alternative approaches have used knowledge distillation (Alemdar
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et al., 2017) or Bayesian methods (Van Baalen et al., 2020) to learn lower-bit precision
networks. Moreover, previous studies have shown that lower bit-precision models can
achieve better performance by utilizing PReLU activation functions in CNN models
(Bulat et al., 2019, Kim et al., 2021).

Regularization techniques are widely used to improve the generalization performance
of neural networks. Various implicit methods include dropout, early stopping, data
augmentation (Shorten and Khoshgoftaar, 2019) or SGD (Zhang et al., 2017), while
explicit regularization involves the L2 penalty. Additionally, the L1 regularization can be
used to encourage weight pruning. Regularization can also be employed for quantization,
as demonstrated in Darabi et al. (2020), where regularization functions are used to
quantize models down to 1-bit using the following regularization functions

R1(w) = |α− |w||, R2
1(w) = (α− |w|)2, (4.1)

with α = 1, depicted in Figure 4.2.2. They achieve acceptable results on ImageNet close
to the full precision model.

The early training stages are the most critical for convergence, so introducing an
explicit high-penalty regularization term for quantization at the beginning can negatively
impact and disrupt the gradient optimization (Achille et al., 2019, Frankle et al., 2020).
Moreover, Golatkar et al. (2019) discovered that when using regularization, the initial
phase is the most crucial and sensitive period for performance. They also show that
starting with late regularization does not improve generalization, and can even worsen
the outcome in some cases. They conclude that the role of regularization is to steer the
initial transient towards regions of the loss with multiple equivalent solutions, rather
than bias the final solution towards critical points. Our study fills a gap in the literature
by exploring the effect of transient dynamics on regularization for quantization, an aspect
that has not been previously investigated.

In the following sections, we present our proposed method encompassing generalized
regularization functions, a hybrid quantization scheme, and a scheduled regularization
approach (Section 4.2), experimental setup (Section 4.3), and results demonstrating the
efficacy of our approach (Section 4.4).

4.2 Proposed method

In this section, we introduce our regularization approach for hybrid {1, 2, 4, 8}-bits
quantization of neural networks at the weight matrix level, illustrated in Figure 4.2.1,
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using a convolutional neural network (CNN), a gated recurrent unit (GRU) model, with
a fully-connected (FC) layer as an example.

Model
CNN

GRU

FC

. . .

. . .

Regularization choice
{2, 4, 8}-bits
Section 4.2.2

Scheduler choice
or none

Section 4.2.3
Training PTQ

Section 4.2.4

Fig. 4.2.1 Regularized quantization pipeline using hybrid {1, 2, 4, 8}-bits quantization
with schedule option using a convolutional (CNN) GRU model with a fully-connected
(FC) layer as example.

The explicit regularization adds a term to the loss function L in the objective function
J as follows (Darabi et al., 2020):

J(W, x, y) = L(f(x, W ), y) + λ
M∑

i=1
Reg(Wi), (4.2)

where, f is the neural network with weights W , λ controls how much the weights are
penalized by the regularizer function Reg, and M is the number of weight matrices to
quantize. Notice that in the notation Reg(Wi), the function Reg is applied element-wise
to the weight entries of Wi.

The proposed following regularizations in Section 4.2.1 and 4.2.2 are fully differentiable
as well as model-agnostic and enable full or hybrid quantization at the weight matrix level,
by selecting the number of bits N . Thus, it can easily be integrated into any training
procedure and will be transparent to any embedded deployment process. Moreover, the
regularization optimization is executed in conjunction with the training process, resulting
in minimal computational overhead.

4.2.1 1-bit regularization

We propose three new regularizers for 1-bit quantization having global minima at −1
and +1 and local maximum in zero as illustrated in Figure 4.2.2:
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Fig. 4.2.2 1-bit regularization functions of Equations (4.1), (4.3), (4.4), and (4.5).

Rega
1(w) = (w2 − 1)2, (4.3)

Regb
1(w) = |w2 − 1|, (4.4)

Regc
1(w) =

cos(πw) + 1 if |w| ≤ 3/2,

π(|w| − 3/2) + 1 if |w| > 3/2.
(4.5)

Function Regc
1 is defined in such a way that it is continuously differentiable (C1) on R.

Such a regularization forces the weights to converge to a discrete set of values during
training while minimizing the function J . We can characterize each minima pits by
its angle around the global minimum and the curvature (convex, concave) between the
minima and 0. A shallower angle or a concave curve gives more room for the model to
learn since it has a gentler impact on the quantization penalty around the minima than a
steeper angle. This results in a greater variance around the minima and a higher chance
of experiencing PTQ accuracy loss. On the contrary, a steeper angle or a convex curve
may impede the network’s learning ability due to a higher penalty but leads to better
quantization convergence, so there is a tradeoff between minimizing PTQ accuracy loss
and learning performance.

We can then rank the regularization by their angle from shallower to steeper angle:
R2

1 < Rega
1 < Regc

1 < R1 < Regb
1.
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4.2.2 N-bit generalization

We then generalize our regularization functions for quantization RegN for N ∈ {2, 4, 8}
as follows:

RegN(w) =

1− cos
(
2π(2N−1 − 1)w

)
if |w| ≤ 1 + 1

4(2N−1−1)

1 + 2π
(
(|w| − 1)(2N−1 − 1)− 1

4

)
if |w| > 1 + 1

4(2N−1−1)

(4.6)

These functions are depicted in Figure 4.2.3. They are all based on the cosine function
with a frequency that matches the cardinality of unique values in N -bits between [−1; +1]
and also has a minimum in 0. As observed in Figure 4.2.3, a higher frequency leads
to steeper minima angles. All RegN are continuously differentiable (C1) on R. For any
N ∈ {2, 4, 8}, function RegN has 2N − 1 global minima defined by:

{
k

2N−1 − 1 , k ∈ Z, |k| ≤ 2N−1 − 1
}

. (4.7)
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(a) {1,2}-bits regularization functions.
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(b) 4-bits regularization function.
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(c) 8-bits regularization function.
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(d) 8-bits regularization function (detailed
view).

Fig. 4.2.3 N -bit regularization functions of Equation (4.5) and Equation (4.6), N ∈
{1, 2, 4, 8}.



4.2 Proposed method 83

4.2.3 Scheduled regularized quantization

The high density of global minima, especially in the 8-bit regularization in Figure 4.2.3c,
may cause high gradient spikes throughout training and prevent convergence, or drive
the optimizer toward a suboptimal region of the loss early on.

To overcome this issue, we employ a scheduled regularization scheme (Golatkar et al.,
2019) that progressively increases the quantization penalty over time, as depicted in
Figure 4.2.4. Thus, this allows more time for the weights to properly converge before being
trapped by incremental regularization in the global minima, as shown in Figure 4.2.5.

A fast schedule function has similar effects to a steep minima angle: weights should
converge faster towards their quantized values, but it may hinder the learning process if
the penalty is excessive. Conversely, starting with a slower pace allows more time for
the model to learn; however, if the last period is too accelerated, it might cause abrupt
gradient surges, negatively impacting the performance.

The schedule function S is scaled to the quantized regularization over time during
training as

Reg(W, t) = Reg(W )S(t). (4.8)

This also has the effect of increasing the angle steepness over time, which traps weights
to a minimum. Schedule functions S(·) need to satisfy the following properties:

S(t = 1) ≈ 0 and ≥ 0, S(t = tfinal) ≤ 1, S ′(t) ≥ 0.

We then define eight schedule functions in Table 4.2.1 depicted in Figure 4.2.4.

0 50 100 150 200 250 300 350

0.00

0.25

0.50

0.75

1.00
Linear
2-polynomial
N-polynomial
Inverse linear
Inverse polynomial
Step-based linear
Step-based inv.
Step-based bounded

Fig. 4.2.4 Schedule functions for quantized regularization for tfinal = 350.

Figure 4.2.5 demonstrates the quantization convergence of weights over epochs using
a linear schedule. We notice that the weight distribution becomes more and more discrete
and converges towards Reg4 minima, so we can minimize the loss of PTQ accuracy after
rounding the weights.
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Table 4.2.1 Schedule functions for regularization. Here, d is set to 0.01 and 0.001 for
schedule inverse linear and inverse polynomial respectively, and rate is set to 0.8 by
default. For step-based functions, step is set to 10 by default. For step-based inverse, a
higher rate leads to a faster schedule, contrary to step-based bounded.

Scheduler name Function
Linear S(t, tfinal) = t−1

tfinal−1

2-polynomial S(t, tfinal) = t2−1
t2
final−1

N -polynomial S(t, tfinal, N) =
(

t
tfinal

)N

Inverse linear S(t, d) = 1
1+ 1

dt

Inverse polynomial S(t, d) = 1
1+ 1

dt2

Step-based linear S(t, tfinal, step) = ⌊
t

step⌋
⌊ tfinal

step ⌋
Step-based inverse scale(tfinal, step, rate) = 1

rate⌊
tfinal
step ⌋

S(t, step, rate) = 1

scale×rate⌊ t
step⌋

Step-based bounded S(t, step, rate) = 1− rate⌊
t

step⌋

4.2.4 Post-training quantization

We choose the simple symmetric linear min-max as the PTQ algorithm for its ease of
implementation and seamless deployment to low-power embedded devices, as well as
reasonable performance results in most scenarios (Zmora et al., 2019, Gholami et al.,
2021).

The model weights are quantized in two straightforward steps. First, we round the
regularized weights to their nearest global minima with respect to their regularization
function ({1, 2, 4, 8}-bits), and quantize them to int-N integers. Finally, we quantize
the remaining weights to 8-bit integers, and bias and activations are quantized to 32-bit
integers.

4.3 Experiments

This section details the experimental design and choices to extensively evaluate our
proposed method for regularized quantization on two classification tasks.
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Fig. 4.2.5 Scheduled regularization of GRU weights at epoch 1, 25, and 500 (left to right)
to 4-bits with Reg4 regularization and linear schedule in the background, on the BTS
dataset.

4.3.1 Datasets

Bring-to-see

We experimented with a bring-to-see (BTS) dataset, which refers to the binary detection
of the motion of a user’s wrist toward their face as a means of waking a watch or mobile
device. We have raw data from a 3-axis accelerometer at 20 Hz as input, and each gesture
sample is 2 seconds. Thus, each input is shaped as 40 sequence length, 3 features (x, y, z
accelerometer axis).

Google Speech Commands v2-12

We also tested the Google speech commands v2-12 (GSCv2-12) dataset (Warden, 2018)
consisting of 12 keyword spotting words. The audio samples are pre-processed with
MFCC and have a shape of 94 sequence length, 13 features.

4.3.2 Model

We use a convolutional RNN and specifically convolutional GRU because of their size-
performance tradeoff (Arik et al., 2017) and standard usage for sequence classification.
They are also compatible with causal architectures, which is critical for real-time inference
(Takeuchi et al., 2020). We also use batch normalization, dropout, and spatial dropout
(Tompson et al., 2015) layers. Additionally, we evaluate the PReLU activation over
the ReLU (Bulat et al., 2019, Kim et al., 2021). We refer to the baseline model as the
configuration in Table 4.3.1. For the BTS dataset and GSCv2-12 dataset, each model
is trained for 500 and 350 epochs, respectively using the Nadam optimizer with default
parameter on TensorFlow.
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Table 4.3.1 Baseline model configuration size and parameters where (c, k) refers to the
number of channels and the kernel size of the CNN1D. Weights are stored in 8-bits and
activations in 32-bits integers.

Layer Configuration Parameters Size (B)
BTS GSCv2-12 BTS GSCv2-12 BTS GSCv2-12

CNN1D (c, k) (6, 5) (128, 10) 96 16,768 114 17,512
Batchnorm ✓ 24 512 96 2,048
Activation ReLU/PReLU c if PReLU else 0 c× 4 if PReLU else 0
SpatialDropout ✓ ✗ ✗

GRU 5 196 195 191,688 285 195,216
Dropout ✓ ✗ ✗

Batchnorm ✗ ✓ ✗ 784 ✗ 3,136
FC 2 12 12 2,364 18 2,400
Total 327(+6) 212,116(+128) 513(+24) 219,952(+512)

4.3.3 Experimental design

We aim to address the following questions through our experiments:

Q1. Which regularization functions are optimal for 1-bit, and when?
Q2. Where to apply {1, 2, 4, 8}-bits quantization, and when?
Q3. Is PReLU superior to ReLU for N -bit quantization?
Q4. Is scheduling beneficial to regularization? When is scheduling versus non-scheduling

most effective? Is a faster schedule better than a slower one?
Q5. Can training a larger model for 1-bit quantization compensates for the performance

gap between the 8-bit baseline and its 1-bit counterpart? Which layer sizes are
most appropriate?

We experiment with our proposed method and provide answers to the previous
questions through making two key components vary: the regularization design and
the model configuration. The next sections elaborate on the details of the extensive
experimental scenarios. Each training is replicated five times independently to test the
robustness of our approach.

Regularization configuration

Regularization choice. We compare our alternative 1-bit regularization function
(Equation (4.3), (4.4), and (4.5)) in Section 4.2.1, against the regularizations in Equation
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(4.1) from Darabi et al. (2020) with α = 1. Similarly, we also test our {2, 4, 8}-bits
regularizations in the same hybrid settings.

Scheduler choice. We also assess the effectiveness of the schedule functions on
generalization and quantization convergence by comparing scenarios with and without a
schedule for each regularization choice.

Model configuration

Hybrid quantization. We evaluate the effects of quantization on various layer
combinations: convolution, GRU, both, or both, and the output layer, which we refer to
as “all layers”. The remaining layers are quantized to 8-bits, as described in Section 4.2.4,
enabling hybrid quantization. The hybrid configuration is annotated as {N, 8}-bits. To
minimize the number of combinations, we decided to regularize the two weight matrices
of the GRU layer at the same bit precision, even if regularization allows for weight-wise
quantization granularity. We also limit the hybrid configuration to two different bit
precisions for each model, even though our method allows models to be quantized to any
mix of bit precision, e.g., {1,4,8}-bit model.

Activation choice. In addition, we test the ReLU versus PReLU performance as the
convolutional activation as stated in Section 4.3.2.

Layer size choice. Finally, for 1-bit quantization and each hybrid quantization
configuration listed above, we sample 4 to 7 model configurations that have a smaller
memory footprint compared to the 8-bit baseline, but a larger GRU or CNN size than
the baseline configuration. E.g., a binary-only 1D CNN model with 11 filters, kernel size
of five, ReLU activation, and a two-unit GRU is smaller in memory than the baseline
but has more CNN channels, so it might be able to compensate for having 1-bit weights.
Note that, we choose to only perform this experiment on the BTS dataset as it is smaller.
Model configuration details can be found in Appendix 4.3.1.

4.3.4 Deployment and evaluation

The neural networks are deployed and evaluated by accuracy on low-power embedded
sensors for real-time inference using Arm Cortex-M0+ and M4 MCU (Unlu, 2020) for the
BTS and GSCv2-12 datasets, respectively. The accuracy of the model was evaluated by
selecting the best model on the validation set from five independent training repetitions
for all experiments.
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4.4 Results

We present our results and findings in the following sections, in the same order as
presented above in Section 4.3.

4.4.1 Regularization configuration

Regularization choice
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Fig. 4.4.1 Hybrid {1, 8}-bits quantization test accuracy results on the BTS (left) and
GSCv2-12 dataset (right), without schedule (blue) or with schedule (green) (Section
4.2.3). The baseline is trained normally without regularization and quantized to 8-bits.
For BTS, we exclude training with schedulers for CNN1D+GRU. For GSCv2-12, we
exclude training with CNN1D+GRU.

1-bit. In Figure 4.4.1, our regularization consistently surpasses other alternatives in the
majority of scenarios, except when considering CNN1D with PReLU activation, where
R1 achieves the best results. However, our solution still delivers competitive results
in that scenario. R2

1 frequently displays the weakest performance across all scenarios.
It may be attributed to R2

1 having the shallowest curve angle, leading to more lenient
regularization for quantization convergence, and consequently suffering from greater
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Fig. 4.4.2 Hybrid {2, 4, 8}-bit quantization test accuracy results on the BTS (left) and
GSCv2-12 dataset (right), without schedule (blue) or with schedule (green). The baseline
is trained without regularization and quantized to 8-bits.

PTQ performance degradation. In contrast, all steeper-angled regularization functions
outperform R2

1 in nearly all scenarios, addressing Q1. Overall, we observe that utilizing
a scheduler contributes to slightly improved results compared to its absence, as observed
in both datasets, shedding light on Q4.

N-bit. Figure 4.4.2 demonstrates the effectiveness of our N -bits regularization approach
for model quantization on {4,8}-bits, especially in the CNN1D case, addressing Q2. In
particular, the 4-bit and 8-bit with scheduling outperform other configurations across
all scenarios. However, in most cases, 2-bit performance falls behind that of 4-bits and
8-bits, except for CNN1D with scheduling, offering some insights for Q2 and Q4.

Scheduler choice

To schedule or not to schedule? As discussed in Section 4.4.1, incorporating
scheduling with regularization improves the quantization outcomes compared to not
using scheduling in most cases, particularly in the most demanding scenario where all
layers are quantized, and with higher bit precision like {4,8}-bits, across both datasets.
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This indicates that progressive quantization does foster a more favorable environment for
optimization, addressing Q4.
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Fig. 4.4.3 Scheduler comparison of our 1-bit quantization results using our 1-bit (top) and
{2, 4, 8}-bits (bottom) regularization, on the BTS (left) and GSCv2-12 (right) dataset,
across all scenarios. Schedulers are ordered from fastest to slowest at mid-training time
(as shown in Figure 4.2.4). The baseline is trained without regularization and quantized
to 8-bits. For {2, 4, 8}-bits, inverse polynomial and step-based bounded are omitted
from experiments.

Finding the right pace. In Figure 4.4.3, when considering median and mean accuracy,
for 1-bit quantization, faster or linear-paced schedules are generally more effective than
slower schedules on both datasets. Notably, the case without a schedule is the fastest, as it
entirely omits progressive regularization. In contrast, slower-paced schedules demonstrate
better performance for {2, 4, 8}-bits quantization. This implies that higher bit precision
requires lower regularization penalties over time for effective PTQ.

These insights respond to Q4 and emphasize the importance of selecting a suitable
scheduler for different quantization settings and highlight the need for further investigation
into customizing scheduling approaches based on the dataset and model characteristics
to achieve optimal results.

4.4.2 Model configuration

Hybrid quantization

In relation to Q2, quantizing the CNN1D layer is robust in all cases, even as low as
1-bit. However, the GRU layer is more sensitive to quantization as it is larger. 1-bit
quantization yields a minor loss on BTS but is damaging on GSCv2-12. Scheduled
quantization on the GRU layer at {2, 4, 8}-bits provides acceptable results on BTS.
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However, only {4, 8}-bits is suitable for GSCv2-12 and a 2-bit quantization without a
scheduler is overly detrimental in all cases.

Applying quantization to both CNN1D and GRU layers at 1-bit yields less favorable
results, although {4, 8}-bits with a schedule provide acceptable performance. Quantizing
all layers to 1-bit leads to a slight decline in performance on BTS but a more severe
impact on GSCv2-12, while applying {4, 8}-bits quantization with a schedule yields less
than a 1% loss for both datasets.

Activation choice: ReLU vs PReLU

In response to Q3, we observe that in the {2, 4, 8}-bit range, PReLU generally performs
better than ReLU (Figure 4.4.2), while ReLU still achieves close results under the best
regularization scenarios. In contrast, at 1-bit, the performance of PReLU is comparable
to ReLU in our regularization.

Layer size choice

Figure 4.4.4 demonstrates that it is consistently possible to compensate for the performance
loss of 1-bit quantization by training a larger model with a smaller byte size than the 8-bit
baseline (6 CNN channels, 5 cells), except when quantizing GRU with ReLU, responding
to Q5.

Specifically, adding both more CNN channels and GRU cells (i.e., the diagonal cell
relative to the baseline) generally yields better results than increasing only CNN channels
or GRU cells. However, when quantizing both CNN1D and GRU layers, adding more
GRU cells is slightly more advantageous. Furthermore, having minimum GRU cells and
maximum CNN filters result in poor performance. Lastly, increasing GRU cells is more
beneficial than adding more CNN filters when quantizing all layers.

4.4.3 Key results

Our findings reveal that employing 4-bit quantization in conjunction with an appropriate
scheduler results in the most advantageous size-performance tradeoff across all cases
(Q2, Q3). In particular, the PReLU activation emerges as a superior option when
considering {2, 4, 8}-bit precision (Q3). Additionally, by increasing the size of critical
layers collectively, we can quantize models with reduced byte size without sacrificing
performance (Q5).

Our method achieves substantial byte size reductions in baseline models (Table 4.3.1)
when all layers are quantized to 4-bits: approximately 25.8% reduction with ReLU on
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Fig. 4.4.4 Hybrid {1, 8}-bits weight quantization accuracy versus the number of CNN
channels and GRU cells for various combinations of quantized layers, with ReLU or
PReLU as CNN activation on the BTS dataset. 1st row: All layers, 2nd: CNN1D layer
only, 3rd: CNN1D and GRU layers, and 4th: GRU layer. For reference, we also added the
baseline model architecture at 6 channels and 5 cells with hybrid quantized layers. Darker
colors are better. Each model here is trained using our 1-bit regularization (Section 4.2.1)
without a schedule.

BTS, with a 0.3% performance loss, and 47.5% reduction on GSCv2-12, with less than a
0.8% accuracy loss. Moreover, employing 1-bit with ReLU and schedule on BTS yields
a 45.2% size gain for less than a 1.2% accuracy loss. Furthermore, 2-bit quantization
of CNN and GRU on BTS yields a reduction in 37.3% byte size at the cost of a 1.5%
performance loss.

For CNN1D, we determined that 1-bit quantization is feasible with a faster schedule,
and a steeper minima curve (Q1, Q2, Q4), while still maintaining accuracy. In this
scenario, we achieved a byte size gain of approximately 15% on BTS for less than
0.2% performance loss, corresponding to a CNN1D with a weight size of merely 11.25
bytes (compared to the original 90 bytes), which is smaller in memory than the word
“quantization”. On GSCv2-12, we obtained a byte size gain of 6.6% on GSCv2-12 with a
0.5% accuracy decrease.
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For GRU layer with 1-bit schedule and ReLU on BTS, we attain a size gain of about
28% for less than 0.8% accuracy loss.

In the case of CNN and GRU with ReLU, 2-bit quantization on BTS yields a 37.28%
byte size reduction at the cost of a 1.5% performance loss.

However, our method presents certain limitations. For instance, {1,2}-bit quantization
may underperform, particularly without schedulers, in large layers like GRU, and on the
GSCv2-12 dataset, as illustrated in Figure 4.4.2. Moreover, despite the expectation, 8-bit
regularized quantization does not surpass the 8-bit baseline. Additionally, our method
requires the consideration of extra hyperparameters.

In summary, our study emphasizes the importance of carefully selecting model
hyper-parameters such as activation, regularization, scheduler choice, and layer sizes, on
quantization performance. We provide evidence supporting the effectiveness of functional
hybrid quantization techniques, especially with 4-bits, both with or without schedulers,
in reducing the model size without compromising performance.

4.5 Conclusion

In this work, we introduced a novel regularized quantization method for deep neural
networks, enabling uniform hybrid quantization at the weight matrix level across various
bit precisions ({1, 2, 4, 8}-bits) in a model-agnostic manner. Our approach introduces
alternative 1-bit regularization functions that extend beyond previous studies and presents
novel regularization functions for generalizations to {2, 4, 8}-bits. We also proposed
a scheduled regularization scheme for quantization, addressing the aspect of time in
regularization. Our approach demonstrated the ability to reduce the model byte size
by nearly half while maintaining minimal accuracy loss. We showed that our method
retains the flexibility benefits of PTQ and seamlessly integrates into any existing training
pipelines with minimal computational overhead for resource-constrained devices, providing
a uniform hybrid quantization scheme that reduces the model inference power footprint
of neural networks. Overall, this work contributes to the expanding field of tinyML,
enabling the efficient deployment of deep learning models on ultra-low power MCUs for
tinyML applications.

Future work can encompass further exploration of different regularization functions
and hybrid combinations to {1, 2, 4, 8}-bits, and extending the method to other deep
learning architectures beyond CNNs and GRUs. Investigating methods for reducing
activation size from 32-bit integers represents another essential direction for achieving
substantial improvements in power efficiency and performance of tinyML systems.





Appendix

4.A Hybrid {1,8}-bit model byte size reference on
the BTS dataset

We reference the byte size with regard to different model configuration size (baseline
in Table 4.3.1) when quantizing different set of weights to 1-bit and keeping the rest in
8-bit integers. Activations are in 32-bit integers.

The following reference table uses kernel size k=5 by default.
For each following tables, green cells refers to all the models that have a smaller

memory size than the baseline or bigger (red cells) and a larger configuration in CNN or
GRU size than the baseline (orange cells). We select the yellow cells in this configuration
space for sampling.
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4.A.1 CNN1D only
Table 4.A.1 Bytes size of the BTS baseline ReLU model with CNN1D weights quantized
to 1-bit.

Filters
GRU cells

1 2 3 4 5 6 7 8 9

1 61.9 97.9 139.9 187.9 241.9 301.9 367.9 439.9 517.9
2 86.8 127.8 172.8 223.8 280.8 343.8 412.8 487.8 568.8
3 111.6 157.6 205.6 259.6 319.6 385.6 457.6 535.6 619.6
4 136.5 187.5 238.5 295.5 358.5 427.5 502.5 583.5 670.5
5 161.4 217.4 271.4 331.4 397.4 469.4 547.4 631.4 721.4
6 186.3 247.3 304.3 367.3 436.3 511.3 592.3 679.3 772.3
7 211.1 277.1 337.1 403.1 475.1 553.1 637.1 727.1 823.1
8 236.0 307.0 370.0 439.0 514.0 595.0 682.0 775.0 874.0
9 260.9 336.9 402.9 474.9 552.9 636.9 726.9 822.9 924.9
10 285.8 366.8 435.8 510.8 591.8 678.8 771.8 870.8 975.8
11 310.6 396.6 468.6 546.6 630.6 720.6 816.6 918.6 1026.6
12 335.5 426.5 501.5 582.5 669.5 762.5 861.5 966.5 1077.5
13 360.4 456.4 534.4 618.4 708.4 804.4 906.4 1014.4 1128.4
14 385.3 486.3 567.3 654.3 747.3 846.3 951.3 1062.3 1179.3
15 410.1 516.1 600.1 690.1 786.1 888.1 996.1 1110.1 1230.1
16 435.0 546.0 633.0 726.0 825.0 930.0 1041.0 1158.0 1281.0
17 459.9 575.9 665.9 761.9 863.9 971.9 1085.9 1205.9 1331.9
18 484.8 605.8 698.8 797.8 902.8 1013.8 1130.8 1253.8 1382.8
19 509.6 635.6 731.6 833.6 941.6 1055.6 1175.6 1301.6 1433.6
20 534.5 665.5 764.5 869.5 980.5 1097.5 1220.5 1349.5 1484.5
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Table 4.A.2 Bytes size of the BTS baseline PReLU model with CNN1D weights quantized
to 1-bit.

Filters
GRU cells

1 2 3 4 5 6 7 8 9

1 65.9 103.9 147.9 197.9 253.9 315.9 383.9 457.9 537.9
2 94.8 135.8 182.8 235.8 294.8 359.8 430.8 507.8 590.8
3 123.6 167.6 217.6 273.6 335.6 403.6 477.6 557.6 643.6
4 152.5 199.5 252.5 311.5 376.5 447.5 524.5 607.5 696.5
5 181.4 231.4 287.4 349.4 417.4 491.4 571.4 657.4 749.4
6 210.3 263.3 322.3 387.3 458.3 535.3 618.3 707.3 802.3
7 239.1 295.1 357.1 425.1 499.1 579.1 665.1 757.1 855.1
8 268.0 327.0 392.0 463.0 540.0 623.0 712.0 807.0 908.0
9 296.9 358.9 426.9 500.9 580.9 666.9 758.9 856.9 960.9
10 325.8 390.8 461.8 538.8 621.8 710.8 805.8 906.8 1013.8
11 354.6 422.6 496.6 576.6 662.6 754.6 852.6 956.6 1066.6
12 383.5 454.5 531.5 614.5 703.5 798.5 899.5 1006.5 1119.5
13 412.4 486.4 566.4 652.4 744.4 842.4 946.4 1056.4 1172.4
14 441.3 518.3 601.3 690.3 785.3 886.3 993.3 1106.3 1225.3
15 470.1 550.1 636.1 728.1 826.1 930.1 1040.1 1156.1 1278.1
16 499.0 582.0 671.0 766.0 867.0 974.0 1087.0 1206.0 1331.0
17 527.9 613.9 705.9 803.9 907.9 1017.9 1133.9 1255.9 1383.9
18 556.8 645.8 740.8 841.8 948.8 1061.8 1180.8 1305.8 1436.8
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4.A.2 GRU only
Table 4.A.3 Bytes size of the BTS baseline ReLU model with GRU weights quantized to
1-bit.

Filters
GRU cells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 69.8 97.3 125.5 154.5 184.3 214.8 246.0 278.0 310.8 344.3 378.5 413.5 449.3 485.8 523.0
2 105.1 133.0 161.6 191.0 221.1 252.0 283.6 316.0 349.1 383.0 417.6 453.0 489.1 526.0 563.6
3 140.5 168.8 197.8 227.5 258.0 289.3 321.3 354.0 387.5 421.8 456.8 492.5 529.0 566.3 604.3
4 175.9 204.5 233.9 264.0 294.9 326.5 358.9 392.0 425.9 460.5 495.9 532.0 568.9 606.5 644.9
5 211.3 240.3 270.0 300.5 331.8 363.8 396.5 430.0 464.3 499.3 535.0 571.5 608.8 646.8 685.5
6 246.6 276.0 306.1 337.0 368.6 401.0 434.1 468.0 502.6 538.0 574.1 611.0 648.6 687.0 726.1
7 282.0 311.8 342.3 373.5 405.5 438.3 471.8 506.0 541.0 576.8 613.3 650.5 688.5 727.3 766.8
8 317.4 347.5 378.4 410.0 442.4 475.5 509.4 544.0 579.4 615.5 652.4 690.0 728.4 767.5 807.4
9 352.8 383.3 414.5 446.5 479.3 512.8 547.0 582.0 617.8 654.3 691.5 729.5 768.3 807.8 848.0
10 388.1 419.0 450.6 483.0 516.1 550.0 584.6 620.0 656.1 693.0 730.6 769.0 808.1 848.0 888.6
11 423.5 454.8 486.8 519.5 553.0 587.3 622.3 658.0 694.5 731.8 769.8 808.5 848.0 888.3 929.3
12 458.9 490.5 522.9 556.0 589.9 624.5 659.9 696.0 732.9 770.5 808.9 848.0 887.9 928.5 969.9
13 494.3 526.3 559.0 592.5 626.8 661.8 697.5 734.0 771.3 809.3 848.0 887.5 927.8 968.8 1010.5
14 529.6 562.0 595.1 629.0 663.6 699.0 735.1 772.0 809.6 848.0 887.1 927.0 967.6 1009.0 1051.1

Table 4.A.4 Bytes size of the BTS baseline PReLU model with GRU weights quantized
to 1-bit.

Filters
GRU cells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 73.8 101.3 129.5 158.5 188.3 218.8 250.0 282.0 314.8 348.3 382.5 417.5 453.3 489.8 527.0 565.0
2 113.1 141.0 169.6 199.0 229.1 260.0 291.6 324.0 357.1 391.0 425.6 461.0 497.1 534.0 571.6 610.0
3 152.5 180.8 209.8 239.5 270.0 301.3 333.3 366.0 399.5 433.8 468.8 504.5 541.0 578.3 616.3 655.0
4 191.9 220.5 249.9 280.0 310.9 342.5 374.9 408.0 441.9 476.5 511.9 548.0 584.9 622.5 660.9 700.0
5 231.3 260.3 290.0 320.5 351.8 383.8 416.5 450.0 484.3 519.3 555.0 591.5 628.8 666.8 705.5 745.0
6 270.6 300.0 330.1 361.0 392.6 425.0 458.1 492.0 526.6 562.0 598.1 635.0 672.6 711.0 750.1 790.0
7 310.0 339.8 370.3 401.5 433.5 466.3 499.8 534.0 569.0 604.8 641.3 678.5 716.5 755.3 794.8 835.0
8 349.4 379.5 410.4 442.0 474.4 507.5 541.4 576.0 611.4 647.5 684.4 722.0 760.4 799.5 839.4 880.0
9 388.8 419.3 450.5 482.5 515.3 548.8 583.0 618.0 653.8 690.3 727.5 765.5 804.3 843.8 884.0 925.0
10 428.1 459.0 490.6 523.0 556.1 590.0 624.6 660.0 696.1 733.0 770.6 809.0 848.1 888.0 928.6 970.0
11 467.5 498.8 530.8 563.5 597.0 631.3 666.3 702.0 738.5 775.8 813.8 852.5 892.0 932.3 973.3 1015.0
12 506.9 538.5 570.9 604.0 637.9 672.5 707.9 744.0 780.9 818.5 856.9 896.0 935.9 976.5 1017.9 1060.0
13 546.3 578.3 611.0 644.5 678.8 713.8 749.5 786.0 823.3 861.3 900.0 939.5 979.8 1020.8 1062.5 1105.0



4.A Hybrid {1,8}-bit model byte size reference on the BTS dataset 99

4.A.3 CNN1D+GRU only
Table 4.A.5 Bytes size of the BTS baseline ReLU model with CNN1D+GRU weights
quantized to 1-bit.

Filters
GRU cells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 56.6 84.1 112.4 141.4 171.1 201.6 232.9 264.9 297.6 331.1 365.4 400.4 436.1 472.6 509.9 547.9
2 78.9 106.8 135.4 164.8 194.9 225.8 257.4 289.8 322.9 356.8 391.4 426.8 462.9 499.8 537.4 575.8
3 101.1 129.4 158.4 188.1 218.6 249.9 281.9 314.6 348.1 382.4 417.4 453.1 489.6 526.9 564.9 603.6
4 123.4 152.0 181.4 211.5 242.4 274.0 306.4 339.5 373.4 408.0 443.4 479.5 516.4 554.0 592.4 631.5
5 145.6 174.6 204.4 234.9 266.1 298.1 330.9 364.4 398.6 433.6 469.4 505.9 543.1 581.1 619.9 659.4
6 167.9 197.3 227.4 258.3 289.9 322.3 355.4 389.3 423.9 459.3 495.4 532.3 569.9 608.3 647.4 687.3
7 190.1 219.9 250.4 281.6 313.6 346.4 379.9 414.1 449.1 484.9 521.4 558.6 596.6 635.4 674.9 715.1
8 212.4 242.5 273.4 305.0 337.4 370.5 404.4 439.0 474.4 510.5 547.4 585.0 623.4 662.5 702.4 743.0
9 234.6 265.1 296.4 328.4 361.1 394.6 428.9 463.9 499.6 536.1 573.4 611.4 650.1 689.6 729.9 770.9
10 256.9 287.8 319.4 351.8 384.9 418.8 453.4 488.8 524.9 561.8 599.4 637.8 676.9 716.8 757.4 798.8
11 279.1 310.4 342.4 375.1 408.6 442.9 477.9 513.6 550.1 587.4 625.4 664.1 703.6 743.9 784.9 826.6
12 301.4 333.0 365.4 398.5 432.4 467.0 502.4 538.5 575.4 613.0 651.4 690.5 730.4 771.0 812.4 854.5
13 323.6 355.6 388.4 421.9 456.1 491.1 526.9 563.4 600.6 638.6 677.4 716.9 757.1 798.1 839.9 882.4
14 345.9 378.3 411.4 445.3 479.9 515.3 551.4 588.3 625.9 664.3 703.4 743.3 783.9 825.3 867.4 910.3
15 368.1 400.9 434.4 468.6 503.6 539.4 575.9 613.1 651.1 689.9 729.4 769.6 810.6 852.4 894.9 938.1
16 390.4 423.5 457.4 492.0 527.4 563.5 600.4 638.0 676.4 715.5 755.4 796.0 837.4 879.5 922.4 966.0
17 412.6 446.1 480.4 515.4 551.1 587.6 624.9 662.9 701.6 741.1 781.4 822.4 864.1 906.6 949.9 993.9
18 434.9 468.8 503.4 538.8 574.9 611.8 649.4 687.8 726.9 766.8 807.4 848.8 890.9 933.8 977.4 1021.8
19 457.1 491.4 526.4 562.1 598.6 635.9 673.9 712.6 752.1 792.4 833.4 875.1 917.6 960.9 1004.9 1049.6
20 479.4 514.0 549.4 585.5 622.4 660.0 698.4 737.5 777.4 818.0 859.4 901.5 944.4 988.0 1032.4 1077.5
21 501.6 536.6 572.4 608.9 646.1 684.1 722.9 762.4 802.6 843.6 885.4 927.9 971.1 1015.1 1059.9 1105.4
22 523.9 559.3 595.4 632.3 669.9 708.3 747.4 787.3 827.9 869.3 911.4 954.3 997.9 1042.3 1087.4 1133.3
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Table 4.A.6 Bytes size of the BTS baseline PReLU model with CNN1D+GRU weights
quantized to 1-bit.

Filters
GRU cells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 60.6 88.1 116.4 145.4 175.1 205.6 236.9 268.9 301.6 335.1 369.4 404.4 440.1 476.6 513.9 551.9
2 86.9 114.8 143.4 172.8 202.9 233.8 265.4 297.8 330.9 364.8 399.4 434.8 470.9 507.8 545.4 583.8
3 113.1 141.4 170.4 200.1 230.6 261.9 293.9 326.6 360.1 394.4 429.4 465.1 501.6 538.9 576.9 615.6
4 139.4 168.0 197.4 227.5 258.4 290.0 322.4 355.5 389.4 424.0 459.4 495.5 532.4 570.0 608.4 647.5
5 165.6 194.6 224.4 254.9 286.1 318.1 350.9 384.4 418.6 453.6 489.4 525.9 563.1 601.1 639.9 679.4
6 191.9 221.3 251.4 282.3 313.9 346.3 379.4 413.3 447.9 483.3 519.4 556.3 593.9 632.3 671.4 711.3
7 218.1 247.9 278.4 309.6 341.6 374.4 407.9 442.1 477.1 512.9 549.4 586.6 624.6 663.4 702.9 743.1
8 244.4 274.5 305.4 337.0 369.4 402.5 436.4 471.0 506.4 542.5 579.4 617.0 655.4 694.5 734.4 775.0
9 270.6 301.1 332.4 364.4 397.1 430.6 464.9 499.9 535.6 572.1 609.4 647.4 686.1 725.6 765.9 806.9
10 296.9 327.8 359.4 391.8 424.9 458.8 493.4 528.8 564.9 601.8 639.4 677.8 716.9 756.8 797.4 838.8
11 323.1 354.4 386.4 419.1 452.6 486.9 521.9 557.6 594.1 631.4 669.4 708.1 747.6 787.9 828.9 870.6
12 349.4 381.0 413.4 446.5 480.4 515.0 550.4 586.5 623.4 661.0 699.4 738.5 778.4 819.0 860.4 902.5
13 375.6 407.6 440.4 473.9 508.1 543.1 578.9 615.4 652.6 690.6 729.4 768.9 809.1 850.1 891.9 934.4
14 401.9 434.3 467.4 501.3 535.9 571.3 607.4 644.3 681.9 720.3 759.4 799.3 839.9 881.3 923.4 966.3
15 428.1 460.9 494.4 528.6 563.6 599.4 635.9 673.1 711.1 749.9 789.4 829.6 870.6 912.4 954.9 998.1
16 454.4 487.5 521.4 556.0 591.4 627.5 664.4 702.0 740.4 779.5 819.4 860.0 901.4 943.5 986.4 1030.0
17 480.6 514.1 548.4 583.4 619.1 655.6 692.9 730.9 769.6 809.1 849.4 890.4 932.1 974.6 1017.9 1061.9
18 506.9 540.8 575.4 610.8 646.9 683.8 721.4 759.8 798.9 838.8 879.4 920.8 962.9 1005.8 1049.4 1093.8
19 533.1 567.4 602.4 638.1 674.6 711.9 749.9 788.6 828.1 868.4 909.4 951.1 993.6 1036.9 1080.9 1125.6
20 559.4 594.0 629.4 665.5 702.4 740.0 778.4 817.5 857.4 898.0 939.4 981.5 1024.4 1068.0 1112.4 1157.5
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4.A.4 All layers
Table 4.A.7 Bytes size of the BTS baseline ReLU model with all weights quantized to
1-bit.

Filters
GRU cells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 54.9 80.6 107.1 134.4 162.4 191.1 220.6 250.9 281.9 313.6 346.1 379.4 413.4 448.1 483.6 519.9
2 77.1 103.3 130.1 157.8 186.1 215.3 245.1 275.8 307.1 339.3 372.1 405.8 440.1 475.3 511.1 547.8
3 99.4 125.9 153.1 181.1 209.9 239.4 269.6 300.6 332.4 364.9 398.1 432.1 466.9 502.4 538.6 575.6
4 121.6 148.5 176.1 204.5 233.6 263.5 294.1 325.5 357.6 390.5 424.1 458.5 493.6 529.5 566.1 603.5
5 143.9 171.1 199.1 227.9 257.4 287.6 318.6 350.4 382.9 416.1 450.1 484.9 520.4 556.6 593.6 631.4
6 166.1 193.8 222.1 251.3 281.1 311.8 343.1 375.3 408.1 441.8 476.1 511.3 547.1 583.8 621.1 659.3
7 188.4 216.4 245.1 274.6 304.9 335.9 367.6 400.1 433.4 467.4 502.1 537.6 573.9 610.9 648.6 687.1
8 210.6 239.0 268.1 298.0 328.6 360.0 392.1 425.0 458.6 493.0 528.1 564.0 600.6 638.0 676.1 715.0
9 232.9 261.6 291.1 321.4 352.4 384.1 416.6 449.9 483.9 518.6 554.1 590.4 627.4 665.1 703.6 742.9
10 255.1 284.3 314.1 344.8 376.1 408.3 441.1 474.8 509.1 544.3 580.1 616.8 654.1 692.3 731.1 770.8
11 277.4 306.9 337.1 368.1 399.9 432.4 465.6 499.6 534.4 569.9 606.1 643.1 680.9 719.4 758.6 798.6
12 299.6 329.5 360.1 391.5 423.6 456.5 490.1 524.5 559.6 595.5 632.1 669.5 707.6 746.5 786.1 826.5
13 321.9 352.1 383.1 414.9 447.4 480.6 514.6 549.4 584.9 621.1 658.1 695.9 734.4 773.6 813.6 854.4
14 344.1 374.8 406.1 438.3 471.1 504.8 539.1 574.3 610.1 646.8 684.1 722.3 761.1 800.8 841.1 882.3
15 366.4 397.4 429.1 461.6 494.9 528.9 563.6 599.1 635.4 672.4 710.1 748.6 787.9 827.9 868.6 910.1
16 388.6 420.0 452.1 485.0 518.6 553.0 588.1 624.0 660.6 698.0 736.1 775.0 814.6 855.0 896.1 938.0
17 410.9 442.6 475.1 508.4 542.4 577.1 612.6 648.9 685.9 723.6 762.1 801.4 841.4 882.1 923.6 965.9
18 433.1 465.3 498.1 531.8 566.1 601.3 637.1 673.8 711.1 749.3 788.1 827.8 868.1 909.3 951.1 993.8
19 455.4 487.9 521.1 555.1 589.9 625.4 661.6 698.6 736.4 774.9 814.1 854.1 894.9 936.4 978.6 1021.6
20 477.6 510.5 544.1 578.5 613.6 649.5 686.1 723.5 761.6 800.5 840.1 880.5 921.6 963.5 1006.1 1049.5
21 499.9 533.1 567.1 601.9 637.4 673.6 710.6 748.4 786.9 826.1 866.1 906.9 948.4 990.6 1033.6 1077.4
22 522.1 555.8 590.1 625.3 661.1 697.8 735.1 773.3 812.1 851.8 892.1 933.3 975.1 1017.8 1061.1 1105.3

Table 4.A.8 Bytes size of the BTS baseline PReLU model with all weights quantized to
1-bit.

Filters
GRU cells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 58.9 84.6 111.1 138.4 166.4 195.1 224.6 254.9 285.9 317.6 350.1 383.4 417.4 452.1 487.6 523.9 560.9
2 85.1 111.3 138.1 165.8 194.1 223.3 253.1 283.8 315.1 347.3 380.1 413.8 448.1 483.3 519.1 555.8 593.1
3 111.4 137.9 165.1 193.1 221.9 251.4 281.6 312.6 344.4 376.9 410.1 444.1 478.9 514.4 550.6 587.6 625.4
4 137.6 164.5 192.1 220.5 249.6 279.5 310.1 341.5 373.6 406.5 440.1 474.5 509.6 545.5 582.1 619.5 657.6
5 163.9 191.1 219.1 247.9 277.4 307.6 338.6 370.4 402.9 436.1 470.1 504.9 540.4 576.6 613.6 651.4 689.9
6 190.1 217.8 246.1 275.3 305.1 335.8 367.1 399.3 432.1 465.8 500.1 535.3 571.1 607.8 645.1 683.3 722.1
7 216.4 244.4 273.1 302.6 332.9 363.9 395.6 428.1 461.4 495.4 530.1 565.6 601.9 638.9 676.6 715.1 754.4
8 242.6 271.0 300.1 330.0 360.6 392.0 424.1 457.0 490.6 525.0 560.1 596.0 632.6 670.0 708.1 747.0 786.6
9 268.9 297.6 327.1 357.4 388.4 420.1 452.6 485.9 519.9 554.6 590.1 626.4 663.4 701.1 739.6 778.9 818.9
10 295.1 324.3 354.1 384.8 416.1 448.3 481.1 514.8 549.1 584.3 620.1 656.8 694.1 732.3 771.1 810.8 851.1
11 321.4 350.9 381.1 412.1 443.9 476.4 509.6 543.6 578.4 613.9 650.1 687.1 724.9 763.4 802.6 842.6 883.4
12 347.6 377.5 408.1 439.5 471.6 504.5 538.1 572.5 607.6 643.5 680.1 717.5 755.6 794.5 834.1 874.5 915.6
13 373.9 404.1 435.1 466.9 499.4 532.6 566.6 601.4 636.9 673.1 710.1 747.9 786.4 825.6 865.6 906.4 947.9
14 400.1 430.8 462.1 494.3 527.1 560.8 595.1 630.3 666.1 702.8 740.1 778.3 817.1 856.8 897.1 938.3 980.1
15 426.4 457.4 489.1 521.6 554.9 588.9 623.6 659.1 695.4 732.4 770.1 808.6 847.9 887.9 928.6 970.1 1012.4
16 452.6 484.0 516.1 549.0 582.6 617.0 652.1 688.0 724.6 762.0 800.1 839.0 878.6 919.0 960.1 1002.0 1044.6
17 478.9 510.6 543.1 576.4 610.4 645.1 680.6 716.9 753.9 791.6 830.1 869.4 909.4 950.1 991.6 1033.9 1076.9
18 505.1 537.3 570.1 603.8 638.1 673.3 709.1 745.8 783.1 821.3 860.1 899.8 940.1 981.3 1023.1 1065.8 1109.1
19 531.4 563.9 597.1 631.1 665.9 701.4 737.6 774.6 812.4 850.9 890.1 930.1 970.9 1012.4 1054.6 1097.6 1141.4
20 557.6 590.5 624.1 658.5 693.6 729.5 766.1 803.5 841.6 880.5 920.1 960.5 1001.6 1043.5 1086.1 1129.5 1173.6





Chapter 5

Discussion

5.1 Conclusion

Neural networks are popular and powerful algorithms that have strong theoretical
and practical advantages covering a wide range of applications using a uniform design
approach, from labeled data to state-of-the-art algorithm performance. Their complex
and computationally expensive nature makes them challenging to deploy and leverage,
especially on resource-constrained platforms. Fostering new directions in efficient neural
networks has significant potential for the research and industry community, as there is
a great opportunity to reduce costs related to power consumption, and production for
consumer markets, and to broaden the scope of the applicability of deep learning models.

MEMS and microcontrollers are small hardware components integrated on a scale
of billions annually in various consumer products such as cars, wearables, or home
appliances. Their capacity to serve as a sensing interface from the real-world to the
digital world by collecting, processing, and interacting with their immediate surroundings,
in a continuous and real-time manner at a very low-cost, makes them highly attractive
hardware platforms. This inherently makes them operate in very constrained settings.

This thesis focused on the emerging field of tinyML, and particularly the intersection
of deep learning with microcontrollers for MEMS-based applications. The convergence
of these technologies has the potential to revolutionize various industries by enabling
embedded hardware to process local data and interact with their environment in an
automated and intelligent way. However, tinyML on microcontrollers comes with high
theoretical and practical challenges and opportunities in a wide range of applications
and products. We emphasized that succeeding to deliver ultra-low power inference can
result in billion-scale production and consumer savings in costs, annually. Consequently,
we argue that this research is particularly significant in the context of deep learning
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applications on resource-constrained devices, where the deployment of deep learning
methods is challenging due to power constraints and hardware limitations. We aim to
provide and open new opportunities for theoretical and deep learning applications, as
well as respond to the strong industrial and consumer incentives to design and deliver
smart sensing applications in ultra-low power settings. Additionnally, we seek to fill the
promises of deep learning to provide non-practitioners with a uniform design process to
create algorithm at their will for MEMS-based applications.

In Chapter 1, we first reviewed neural networks and motivated our interest to apply
them to MEMS-based applications on ultra-low power devices, reinforcing the unique
challenges and opportunities of this work. In particular, our use case targets the most
constrained hardware microcontrollers found in the state-of-the-art to deploy neural
networks on. Our review of the literature helped us identify key methods and tools for
designing efficient neural networks that fit our low-power constraints.

In particular, in Chapter 2, we explored efficient RNNs called MGUs, pruning, and
knowledge distillation. We obtained positive results in CNNs or MLP-based models with
pruning and knowledge distillation. In other scenarios, we found contrasting results when
involving RNN-based architectures in large pruned models, as well as no significant gain
with knowledge distillation and MGUs. This highlights the need to explore and research
more specialized methods for RNN-based models.

In Chapter 3, we provided a comprehensive overview of tinyMLOps and proposed our
own automated tinyMLOps solution to collect and create robust datasets for MEMS-based
applications, train models, quantize them to 8-bit integers, export them using lightweight
C code. We successfully deployed neural networks requiring as low as 1 kB of memory
with 6 MHz clock frequency with motion-based applications, reaching a new extreme-low
power level of inference, not previously achieved in the state-of-the-art. The main other
achievements of our framework are to offer a platform to facilitate the automated creation
of algorithm design, through a uniform approach, accessible by non-practitioners. The
incentive is to allow customers to manipulate and create sensor applications at their will.

Building upon this foundation work, we propose a novel generalized method to
quantize deep learning models to N -bits and extend to extreme quantization levels as
low as 1-bit in Chapter 4. We achieved the best size-performance tradeoff by quantizing
all weight parameters to 4-bits, with less than 1% of accuracy.

The results of this work contribute to the advance of tinyML and enable the broader
adoption of intelligent and efficient sensing devices in various real-world applications.
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5.2 Future directions

Methods for efficient neural networks (Chapter 2). Future work will involve
specialized knowledge distillation techniques for RNN-based models, including multi-
teacher approaches (Liu et al., 2020b), or combine it with quantization (Qu et al., 2020).
Moreover, finding new structured or unstructured pruning strategies that hardware
can leverage to accelerate on-device inference is paramount. Furthermore, investigating
alternative model compression techniques such as weight sharing or tensor decomposition
may also prove valuable for tinyML.

TinyML for 8-bit neural networks on ultra-low power MCUs (Chapter 3).
Several key future directions include extending the portfolio of MEMS-based applications
to refine the deployment pipeline for efficient neural networks on MCUs. Moreover,
exploring novel data augmentation strategies to enhance the quality of datasets, the
design of more compact architectures, and the reduction of manual data collection and
labeling efforts are key aspects for further study.

Regularized N-bit Quantization for Ultra-Low Power Microcontrollers (Chapter
4). An interesting perspective encompasses finding new regularization functions and
hybrid combinations to {1, 2, 4, 8}-bits. Additionally, reducing the activation size from
32-bit integers is a critical area for future research.
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Memisevic, R., van Merriënboer, B., Michalski, V., Mirza, M., Orlandi, A., Pal, C. J.,
Pascanu, R., Pezeshki, M., Raffel, C., Renshaw, D., Rocklin, M., Romero, A., Roth,
M., Sadowski, P., Salvatier, J., Savard, F., Schlüter, J., Schulman, J., Schwartz, G.,
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