
HAL Id: tel-04363191
https://theses.hal.science/tel-04363191

Submitted on 23 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning for inverse problems and application to
omnidirectional imaging

Rita Fermanian

To cite this version:
Rita Fermanian. Deep learning for inverse problems and application to omnidirectional imaging.
Computer Science [cs]. INRIA Rennes - Bretagne Atlantique and University of Rennes 1, France;
SIROCCO, 2023. English. �NNT : �. �tel-04363191�

https://theses.hal.science/tel-04363191
https://hal.archives-ouvertes.fr

·
·

· ·

·

·

·

·
·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·
·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·
·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·
· ··

·
·

·

·

·

·

·
·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·
·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·
·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·
·

·

·

·

·

·

·

· ·

·

·

·
··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·
·

·

·

·

·

·

·

·

········

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

· ·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·
·

·

·

·

·

·
·

·

·

· ·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
· ·

·

·

··

·

·

·

·

·

· ·

·

··

·
·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Signal, Image, Vision

Par

Rita FERMANIAN
Deep learning for inverse problems and application to omnidirec-
tional imaging

Thèse présentée et soutenue à Rennes, le 6 Decembre 2023
Unité de recherche : INRIA Rennes - Bretagne Atlantique

Rapporteurs avant soutenance :

Andrés Almansa Directeur de Recherche, CNRS-Université Paris Cité
Said Moussaoui Professeur, École centrale de Nantes

Composition du Jury :
Président :
Examinateurs : Andrés Almansa Directeur de Recherche, CNRS - Université Paris Cité

Charles Kervrann Directeur de Recherche, INRIA Rennes - Bretagne Atlantique
Charles Yaacoub Professeur, Université catholique de Lille
Nicolas Papadakis Directeur de Recherche, CNRS - Institut de Mathématiques de Bordeaux
Said Moussaoui Professeur, École centrale de Nantes

Dir. de thèse : Christine Guillemot Directrice de Recherche, INRIA Rennes - Bretagne Atlantique
Enc. de thèse : Mikael Le Pendu Chercheur, Interdigital Rennes

TABLE OF CONTENTS

Résumé 1

1 Introduction 7
1.1 Context . 7
1.2 Motivation . 8
1.3 Contributions . 10
1.4 Outline . 11

I Inverse problems in perspective imagery 13

2 An overview of inverse problems in perspective imagery 15
2.1 Inverse Problems . 15

2.1.1 Introduction and problem statement 15
2.1.2 Inverse problems in imaging: examples and definitions 17
2.1.3 An ill-posed problem and need for regularization 21

2.2 Reconstruction approaches for solving inverse problems 22
2.2.1 Variational approach for solving inverse problems 22
2.2.2 Learning approach for solving inverse problems: Neural network

regression . 25
2.2.3 Bayesian approach for solving inverse problems 26

2.3 Optimization algorithms . 29
2.3.1 Derivative-based optimization algorithms: first-order methods . . . 29
2.3.2 Proximal algorithms . 31

2.4 Learning to Regularize inverse problems 34
2.4.1 Regularizing by using the implicit prior captured by a neural network 35
2.4.2 Regularizing by leveraging the power of denoisers 35
2.4.3 Regularizing through generative models 40
2.4.4 End-to-end learning of the regularization function via deep unrolling 41

i

TABLE OF CONTENTS

3 Regularization of the Deep Image Prior with a deep denoiser 45
3.1 Introduction . 45
3.2 Related work: regularized Deep Image Prior 46
3.3 Regularizing the Deep Image Prior with a learned denoiser 47
3.4 Experimental results . 49
3.5 Conclusion and discussion . 52

4 PnP-ReG: learned regularizing gradient for Plug-and-play gradient de-
scent 55
4.1 Introduction . 55
4.2 Notations and problem statement . 56
4.3 Training of the gradient of a regularizer . 58

4.3.1 Mathematical derivations . 58
4.3.2 Training framework for the regularizing gradient network G 59
4.3.3 Training details . 61

4.4 Experimental results . 62
4.4.1 Plug-and-play gradient descent . 62
4.4.2 Unrolled gradient descent with G 67
4.4.3 Analysis of the joint training . 72

4.5 Discussion . 75
4.6 Conclusion . 76

II Inverse problems in omnidirectional imagery 81

5 A Comprehensive Review of omnidirectional images: processing method-
ologies and inverse problems 83
5.1 Introduction to omnidirectional imaging 83
5.2 Acquisition of omnidirectional images . 85
5.3 Projecting spherical data to the Euclidean space 85

5.3.1 Equirectangular projection (ERP) 85
5.3.2 Cubemap projection (CMP) . 86

5.4 Convolution on omnidirectional images . 87
5.5 Inverse problems in omnidirectional images 89

5.5.1 Super-resolution . 89

ii

TABLE OF CONTENTS

5.5.2 Image denoising . 90

6 SphereDRUNet: A spherical denoiser for omnidirectional images 91
6.1 Introduction . 91
6.2 Related work . 92

6.2.1 HEALPix sampling . 92
6.2.2 On-the-Sphere Learning for Omnidirectional Images (OSLO) 93

6.3 Spherical image denoising . 94
6.3.1 Training details . 96
6.3.2 Comparison framework . 97

6.4 Experimental results . 98
6.5 Conclusion . 103

7 Conclusion 105

A Parameter settings of Chapter 4 109
A.1 Plug-and-play ADMM: formulation and parameter settings 109
A.2 Parameter settings for the other methods 111

Bibliography 113

iii

LIST OF FIGURES

2.1 Degradation of an image by different types of noise. 17
2.2 PDF of Gaussian noise. 18
2.3 Inverse problem of denoising. 19
2.4 Inverse problem of deblurring. 20
2.5 Inverse problem of super-resolution. 20
2.6 Inverse problem of pixel-wise inpainting. 21
2.7 Unrolled gradient descent framework. 42

3.1 Architecture of the Deep Image Prior. 46
3.2 Set of images used for experiments in Chapter 3. 49
3.3 Visual comparison of super-resolution results for the DIP regularization

methods . 53
3.4 Visual comparison of super-resolution results for the DIP regularization

methods . 53

4.1 Framework for joint training of D and G. 60
4.2 Architecture of G. 61
4.3 Visual comparison of super-resolution results for ReG. 66
4.4 Visual comparison of deblurring results for ReG. 70
4.5 Visual comparison of pixel-wise inpainting results for ReG. 71
4.6 Visual comparison of super-resolution results for ReG in unrolled-GD. . . 72
4.7 Visual comparison of deblurring results for ReG in unrolled-GD. 73
4.8 Comparison of ReG’s performance under different training strategies of ReG. 77
4.9 Comparison of the performances of the original and the updated denoisers

in PnP-ADMM. 78
4.10 Comparison of the convergence of PnP-ADMM, RED, GS-PnP and PnP-

ReG for super-resolution. 78
4.11 Comparison of the convergence of PnP-ADMM, RED, GS-PnP and PnP-

ReG for deblurring. 79

iv

LIST OF FIGURES

5.1 Image processing pipeline for 2D images 84
5.2 Image processing pipeline for omnidirectional imagery 84
5.3 Equirectangular projection . 86
5.4 Cubemap projection . 87
5.5 Visualization of a fish-eye image and its different planar projections 88

6.1 Visualization of HEALPix sampling over the sphere. 93
6.2 Spherical convolution in the pixel domain proposed by OSLO. 94
6.3 Architecture of the DRUNet network. 95
6.4 Architecture of the SphereDRUNet network. 96
6.5 Visual comparisons of denoising the sphere with SphereDRUNet and its

projection with a DRUNet that was re-trained on ERP images. 99
6.6 Visual comparisons of denoising the sphere with SphereDRUNet and its

projection with a DRUNet that was re-trained on ERP images. 100
6.7 Visual comparisons of denoising the sphere with SphereDRUNet and its

projection with a DRUNet that was re-trained on ERP images. 101
6.8 Illustration of the distortion caused by cubemap projection 102
6.9 Comparison between OSLO-based SphereDRUNet and graph-based Sphere-

DRUNet. 103

v

LIST OF TABLES

3.1 Parameters of the proposed DIP-denoiser-ADMM 50
3.2 Results of denoising for the DIP regularization methods 51
3.3 Results of super-resolution for the DIP regularization methods 52

4.1 Parameters used for our PnP-ReG method. 65
4.2 Quantitative results of super-resolution (x2) for the PnP approaches in

terms of PSNR. 67
4.3 Quantitative results of super-resolution (x3) for the PnP approaches in

terms of PSNR. 68
4.4 Quantitative results of deblurring for the PnP approaches in terms of PSNR. 69
4.5 Quantitative results of pixel-wise inpainting for the PnP approaches in

terms of PSNR. 72
4.6 Parameters used for unrolled gradient descent optimization. 74
4.7 Quantitative results of super-resolution for unrolled gradient descent in

terms of PSNR. 75
4.8 Quantitative results of deblurring for unrolled gradient descent in terms of

PSNR. 76

6.1 Quantitative results of denoising omnidirectional data (Spherical format,
ERP and CMP) in terms of WS-PSNR. 101

6.2 Quantitative results of denoising omnidirectional data (Spherical format,
ERP and CMP) in terms of S-PSNR. 102

6.3 Comparison of denoising equirectangular images in terms of WS-PSNR. . . 103

A.1 Parameters used for the PnP-ADMM in Chapter 4. 110
A.2 Parameters used for One-Net in Chapter 4. 111
A.3 Parameters used for RED in Chapter 4. 112

vi

RÉSUMÉ

Les images omnidirectionnelles, ou images sphériques, sont des données visuelles qui
couvrent un champ de vision à 360°, capturant le champ lumineux convergeant vers un
seul point depuis toutes les directions. Les images omnidirectionnelles ont fait l’objet
d’une attention particulière ces dernières années, notammant dans les domaines de réalité
augmentée (RA) et la robotique. Ces caméras souffrent souvent d’une distorsion en raison
de leur large champ de vision et de leurs caractéristiques optiques uniques. Par conséquent,
la qualité des images omnidirectionnelles capturées peut être degradée, ce qui nécessite le
développement de solutions aux problèmes inverses spécifiques pour ces données.

D’une manière générale, les problèmes inverses font référence à la tâche consistant à
trouver les entrées qui ont produit un ensemble d’observations. Plus particulièrement dans
le domaine de l’imagerie, les limitations des systèmes d’acquisition, de transmission, ou
encore de stockage peuvent conduire à des observations dégradées. Parfois, l’acquisition
peut être coûteuse ou même nocive (par exemple, exposer le corps humain à des rayon-
nements dans le cas d’un scanner), il est donc souhaité de mesurer le moins de données
possible. Ainsi, les problèmes inverses en imagerie concernent la récupération d’une image
à partir des mesures dégradées que nous observons.

Les problèmes inverses rencontrés sont souvent mal-posés, ce qui signifie qu’ils n’ont
pas de solution unique. Afin de résoudre le défi posé par la nature mal posée, des connais-
sances a priori supplémentaires sont utilisées pour restreindre l’ensemble des solutions
admissibles.

Cette thèse est dédiée à contribuer aux méthodes de régularisation basées sur l’appren-
tissage profond pour les problèmes inverses en imagerie perspective et omnidirectionnelle.

Motivation

Au cours des dernières décennies, des recherches approfondies ont été consacrées à
la résolution de problèmes inverses, aboutissant à diverses approches différentes pour
leur résolution. Par exemple, l’approche bayésienne consiste à considérer une perspective
probabiliste et à définir l’a priori et le terme d’attache aux données par des distributions

1

Résumé

de probabilité. La distribution a posteriori est exprimée à l’aide de la loi de Bayes :

p(x|y) = p(y|x)p(x)
p(y) , (1)

où p(y|x) et p(x) représentent respectivement la vraisemblance des observations et la
distribution a priori.

La distribution a posteriori représente toutes les solutions possibles au problème in-
verse en question, compte tenu des données mesurées. Elle peut être évaluée à l’aide de
différentes estimations, comme le MAP ou le MMSE.

Pour une bonne reconstruction, le choix du prior (la terme de régularisation) joue un
rôle important. Bien que les methodes de régularisation créées manuellement aient prouvé
leur efficacité, il n’est pas facile de représenter entièrement la nature complexe des images
naturelles à l’aide de telles distributions créées manuellement.

L’apprentissage profond a considérablement révolutionné les sciences de l’imagerie, et
le domaine des problèmes inverses n’est pas resté insensible à cette influence. Notre atten-
tion se porte sur les progrès en matière de régularisation apprise des problèmes inverses,
un domaine qui a récemment suscité beaucoup d’intérêt. Certaines de ces approches com-
prennent :

• Régularisation en utilisant le prior implicitement capturé par l’architec-
ture du réseau : Le Deep Image Prior (DIP) [1] est une approche unique, où les
auteurs montrent que l’architecture du réseau d’un modèle génératif peut elle-même
être utilisée pour régulariser les problèmes inverses. Le réseau générateur n’est pas
appris sur un ensemble de données. Il fonctionne en prenant un vecteur d’entrée
aléatoire et en ajustant itérativement ses poids initialisés de manière aléatoire pour
minimiser l’erreur quadratique moyenne entre sa sortie et l’observation dégradée.
Cela signifie que le réseau capture implicitement un prior au cours du processus
d’optimisation, régularisant efficacement les tâches de restauration d’image.

• Régularisation en utilisant la puissance des débruiteurs : L’idée d’exploiter
les débruiteurs pour régulariser différents problèmes inverses a été proposée pour
la première fois en 2013 par Venkatakrishnan et al. dans un framework appelé
Plug-and-play, où l’opérateur proximal d’un régulariseur est remplacé par un dé-
bruiteur. La méthode a été initialement proposée avec un débruiteur classique, mais
l’approche a rapidement évolué et est devenue un sous-domaine de recherche impor-
tant. Les approches Plug-and-play avec des débruiteurs appris sont des méthodes

2

Résumé

de pointe pour résoudre les problèmes inverses [2], [3]. Une autre catégorie de mé-
thodes exprime le gradient de la fonction de régularisation comme étant le résidu
du débruitage de l’image estimée [4]. Les débruiteurs ont également été utilisés
pour remplacer la fonction de score dans les approches d’échantillonnage de pos-
térieur [5]-[8]. Ainsi, les approches basées sur le débruiteur constituent sans aucun
doute une partie importante de la résolution des problèmes inverses d’une manière
générique. Un inconvénient commun à ces approches est que la régularisation est
implicitement ou explicitement définie par un débruiteur. Cela implique un hyper-
paramètre supplémentaire à affiner pour chaque application spécifique, alors qu’en
théorie, un régulariseur devrait représenter l’a priori indépendamment du problème
inverse spécifique en question.

• Algorithmes de déroulement profond : Les méthodes de déroulement profond
consistent à itérer un algorithme d’optimisation pour un nombre prédéterminé d’ité-
rations en remplaçant la fonction de régularisation par un réseau de neurones. Le
réseau est entraîné de bout en bout pour un problème inverse spécifique. Ces mé-
thodes donnent d’excellents résultats. Cependant, leur principal inconvénient est
qu’elles ne sont pas génériques.

D’autre part, un nombre limité de travaux ont abordé le thème des problèmes inverses
dans les images omnidirectionnelles, y compris la tâche de débruitage. Cela limite notre
capacité à étendre facilement les méthodes de pointe à la sphère.

De plus, les images omnidirectionnelles sont souvent projetées sur des représentations
planaires bidimensionnelles (par example en utilisant la projection équirectangulaire [9])
afin de profiter des outils et des méthodes développées pour les images en 2D. Cependant,
ces projections entraînent d’importantes distorsions et une résolution spatiale non uni-
forme. Par conséquent, l’utilisation d’algorithmes conçus pour les images 2D sans tenir
compte de la géométrie sphérique conduit à des résultats limités. Une autre approche
consiste à travailler directement sur la sphère. Cependant, définir des outils de traitement
sur la sphère n’est pas une tâche simple.

L’objectif de cette thèse est de contribuer aux méthodes de régularisation basées sur
l’apprentissage profond. Nous nous concentrons principalement sur les approches Plug-
and-play, motivées par leur caractère générique et leurs performances exceptionnelles.
Nous étudions également l’effet de la combinaison de différentes approches de régularisa-
tion. En ce qui concerne les images omnidirectionnelles, nous nous concentrons sur la tâche
spécifique du débruitage, étant donné que c’est l’élément clé des méthodes Plug-and-play.

3

Résumé

Contributions

Dans cette section, nous discutons des principales contributions de cette thèse et ré-
pertorions les publications associées.

Régularisation du Deep Image Prior avec un débruiteur profond

Nous proposons une méthode d’optimisation combinant un débruiteur appris avec le mo-
dèle génératif non entraîné, le Deep Image Prior (DIP), dans le cadre de la Alternating
Direction Method of Multipliers (ADMM). Nous comparons également différents régula-
risateurs de l’optimisation de DIP, pour des problèmes inverses en imagerie. L’objectif
est d’étudier l’effet de la combinaison du DIP non entraîné et d’un régulariseur générique
appris de manière supervisée à partir d’une grande collection d’images. Le débruiteur
est utilisé comme un opérateur proximal dans le cadre de l’ADMM et peut être appris
indépendamment du problème inverse considéré. La régularisation proposée basée sur le
débruiteur présente des avantages par rapport aux a priori fabriqués à la main et reste
générique, car elle peut être appliquée à différents problèmes inverses.

PnP-ReG : Gradient de régularisation appris pour la descente de
gradient Plug-and-play

Le cadre Plug-and-play (PnP) permet d’intégrer des priors avancés de débruitage d’images
dans des algorithmes d’optimisation afin de résoudre efficacement diverses tâches de
restauration d’images. Cependant, l’algorithme PnP original ne s’applique qu’aux algo-
rithmes proximaux. De plus, un hyperparamètre supplémentaire doit être ajusté pour
chaque application lorsque la régularisation est définie par un débruiteur. Nous nous
appuyons sur l’hypothèse qu’un débruiteur représente l’opérateur proximal d’un régula-
risateur différentiable, et nous établissons une relation entre le débruiteur et le gradient
du régularisateur correspondant. Nous utilisons cette relation pour entraîner un réseau
modélisant directement le gradient du régularisateur, tout en apprenant conjointement le
débruiteur correspondant. Nous utilisons ce réseau dans un algorithme de PnP avec la
descente de gradient et obtenons de meilleurs résultats par rapport à d’autres approches
génériques. Nous montrons également que le réseau de régularisation peut être utilisé
comme un réseau pré-entraîné pour la descente de gradient déroulée. Enfin, nous montrons
que le débruiteur résultant permet une meilleure convergence de l’ADMM Plug-and-play

4

Résumé

en pratique.

SphereDRUNet : un débruiteur sphérique pour les images omni-
directionnelles

Nous abordons le problème du débruitage d’images omnidirectionnelles et nous visons à
étudier l’avantage de débruiter directement l’image sphérique plutôt que sa projection.
Nous introduisons un nouveau réseau appelé SphereDRUNet pour débruiter des images
sphériques en utilisant des outils d’apprentissage profond sur un échantillonnage sphé-
rique. Nous montrons que le débruitage direct de la sphère à l’aide de notre réseau donne
de meilleures performances par rapport au débruitage des images équirectangulaires avec
un modèle appris de manière similaire. Nous comparons également notre SphereDRUNet à
un réseau de convolution basé sur des graphes et confirmons que l’approche de convolution
que nous utilisons est plus efficace.

Publications

• R. Fermanian, T. Maugey and C. Guillemot. SphereDRUNet : A Spherical Denoiser
for Omnidirectional Images. IEEE 22nd International symposium on mixed and
augmented reality adjunct (ISMAR-Adjunct), Sydney, Australia, 2023.

• R. Fermanian, M. Le Pendu and C. Guillemot. PnP-ReG : Learned Regularizing
Gradient for Plug-and-Play Gradient Descent. SIAM Journal on Imaging Sciences
16.2 (2023) : 585-613.

• R. Fermanian, M. Le Pendu and C. Guillemot. Regularizing the Deep Image Prior
with a Learned Denoiser for Linear Inverse Problems. IEEE 23rd International
Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 2021.

Contenu

La suite de cette thèse est divisé en 6 chapitres.
Dans le Chapitre 2, nous élaborons le contexte des problèmes inverses pour l’imagerie.

Nous commençons par introduire des problèmes inverses et illustrons plusieurs exemples.
Nous discutons ensuite de différentes méthodologies de reconstruction et approches de
régularisation.

5

Résumé

Dans le chapitre 3, nous proposons une méthode combinant un débruiteur appris et
le Deep Image Prior dans le cadre de l’ADMM. Nous discutons de différentes approches
existantes qui régularisent le DIP et montrons l’avantage de notre proposition de régula-
risation appris.

Dans le chapitre 4, nous proposons une nouvelle méthode pour entraîner un réseau
modélisant le gradient d’un régulariseur, conjointement avec un débruiteur. En partant
de l’hypothèse qu’un débruiteur représente l’opérateur proximal d’un régulariseur diffé-
rentiable (définissant l’image a priori), nous dérivons une fonction de perte qui relie le
débruiteur et le gradient du régulariseur correspondant. Nous utilisons ce réseau dans un
algorithme de Plug-and-play avec de la descente de gradient et obtenons de meilleures
performances par rapport à d’autres méthodes génériques. Nous utilisons ensuite notre
réseau comme stratégie de pré-entraînement dans un algorithme de descente de gradient
déroulé.

Dans le Chapitre 5, nous présentons les principaux concepts du traitement d’images
omnidirectionnelles. Nous discutons des défis liés à l’acquisition, à la représentation et
au traitement des images omnidirectionnelles, et présentons enfin la littérature sur les
problèmes inverses.

Dans le chapitre 6, nous proposons SphereDRUNET, un nouveau réseau de débruitage
d’images omnidirectionnel, en transférant le DRUNet [2] sur la sphère. Nous montrons que
le débruitage d’image donne de meilleures performances lorsqu’il est effectué directement
sur la sphère plutôt que via une projection.

Le chapitre 7 conclut cette thèse et propose des perspectives d’études ultérieures.

6

Chapter 1

INTRODUCTION

In this chapter, we present the main problem of interest of this thesis: inverse problems
in imaging, with particular attention to omnidirectional imaging. We elaborate on the
context and discuss the motivation behind our work. Then, we list our contributions and
publications, and outline the remaining of the manuscript.

1.1 Context

Omnidirectional images, also known as 360° images or spherical images, are high-
resolution visual data that cover a 360° field of view capturing the light field converging
to a single point from all directions. From Augmented Reality (AR) to robotics, omni-
directional images have gained a particular attention in the recent years. These cameras
often suffer from inherent distortion and increased noise due to their wide field of view
and unique optical characteristics. Consequently, the quality of the captured omnidirec-
tional images can be compromised, limiting the accuracy of subsequent computer vision
tasks in AR/MR and necessitating the development of solutions for inverse problems in
omnidirectional images.

In a general sense, inverse problems refer to the task of finding the input or underlying
factors that have produced a particular set of data or observations. More particularly in
the area of imaging, limitations in acquisition systems, transmission or even storage can
lead to degraded measurements. Sometimes, acquisition can be costly or even harmful
(i.e. exposing the human body to radiation in the case of CT scan), so it is desired
to measure as few data points as possible. Hence, inverse problems in imaging concern
recovering an image from its degraded measurements that we observe.

Unfortunately, solving inverse problems is not a straightforward task. In fact, the
presence of noise and the incomplete measurements lead to challenges in the reconstruc-
tion. Moreover, these problems are ill-posed, meaning that they do not have a unique
solution that is consistent with the observation. In order to address the ill-posed nature,

7

Introduction

additional prior knowledge (i.e. regularization) is used to restrict the set of admissible
solutions.

This thesis is dedicated to contribute to deep learning-based regularization methods
for inverse problems in perspective and omnidirectional imagery.

1.2 Motivation

Over the past few decades, extensive research has been dedicated to solve inverse
problems, resulting in various different approaches for their resolution. For instance, the
Bayesian approach consists in considering a probabilistic perspective and defining the
prior and the data term with probability distributions. The posterior distribution is the
probability distribution of the unknown parameters x we wish to recover, conditional on
the observed measurement y. It is expressed using Bayes’ theorem as:

p(x|y) = p(y|x)p(x)
p(y) , (1.1)

where p(y|x) and p(x) represent respectively the likelihood of the observations and the
prior. The posterior distribution represents all potential solutions to the inverse problem
in hand, given the measurement. It can be evaluated using different point estimates, such
as the MAP or the MMSE.

For a successful reconstruction, the choice of the prior plays a crucial role. Early
methods used hand-crafted priors incorporating desired properties of the solution such
as Total Variation (TV) [10] or wavelet decomposition [11]. Although these priors have
demonstrated significant efficiency, it is not trivial to fully represent the complex nature
of natural images using hand-crafted priors.

The breakthrough of deep learning has brought a remarkable shift in different areas
of imaging sciences, including the solution of inverse problems. Our focus lies in recent
advances on deep regularization of inverse problems, an area that has recently gained a
lot of attention. Some of these approaches include:

• Regularizing using the implicit prior captured by the network architec-
ture: The Deep Image Prior (DIP) [1] is a unique approach, where the authors show
that the network architecture of a generative model itself can be used to regularize
inverse problems. The generator network is not trained on a dataset. Instead, it
operates by taking a random input vector and iteratively adjusting its randomly

8

Introduction

initialized weights to minimize the mean square error between its output and the
degraded observation. This means that the network inherently captures an im-
plicit prior during the optimization process, effectively regularizing image restora-
tion tasks. In subsequent studies, researchers have aimed to improve the Deep
Image Prior’s performance in various ways, particularly by regularizing it using
hand-crafted regularizers.

• Regularizing using the power of denoising engines: The idea of leverag-
ing denoisers to regularize different inverse problems was first proposed in 2013 by
Venkatakrishnan et al. in a framework called Plug-and-play, where the proximal
operator of a regularizer is replaced by a denoiser. The method was initially pro-
posed with a classical denoiser, but the approach quickly evolved and became an
attractive sub-field of research. Deep denoiser-based Plug-and-play approaches are
state-of-the-art methods for solving inverse problems [2], [3]. Another category of
methods expresses the gradient of the regularization function to be the denoising
residual of the estimated image [4]. Denoisers have also been used to replace the
score function in posterior sampling approaches [5]–[8]. Thus, denoiser-based ap-
proaches are unarguably an important part of solving inverse problems in a generic
way. A drawback shared by these approaches is that the regularization is implicitly
or explicitly defined by a denoiser. This involves an additional hyper-parameter to
be fine-tuned for each specific application, whereas in theory, a regularizer should
represent the image prior independently of the specific inverse problem at hand.

• Deep unrolling: It consists in iterating an optimization algorithm for a pre-
determined number of iterations by replacing the regularization function by a neural
network. The network is trained end-to-end for a specific inverse problem. Deep
unrolling methods perform impressively well. However, their main drawback is that
they are not generic.

On the other hand, it is worth noting that a limited number of works have addressed
the topic of inverse problems in omnidirectional images, including the task of denoising.
This limits our capability to easily extend state-of-the-art methods to the sphere.

Moreover, omnidirectional images are often mapped to two-dimensional planar rep-
resentations (e.g. using equirectangular projection [9]) in order to take advantage of
computing tools and methods that have been developed for 2D images. However, these
mappings cause significant distortions and non-uniform spatial resolution. Hence, using
algorithms designed for 2D images without considering the spherical geometry leads to

9

Introduction

limited results. Another approach is to work directly on the sphere. However, defining
processing tools on the sphere is not a straightforward task, as it comes with the challenges
of spherical geometry.

The goal of this thesis is to contribute to deep learning-based regularization meth-
ods. We mainly focus on Plug-and-play approaches, motivated by their genericity and
outstanding performance. We also study the effect of combining different regularization
approaches. For omnidirectional images, we focus on the specific task of denoising, given
that it is the key element of Plug-and-play methods.

1.3 Contributions

In this section, we discuss the main contributions of this thesis and list the associated
publications.

Regularization of the Deep Image Prior with a deep denoiser

We propose an optimization method coupling a learned denoiser with the untrained gener-
ative model deep image prior (DIP) in the framework of the Alternating Direction Method
of Multipliers (ADMM). We also compare different regularizers of DIP optimization, for
inverse problems in imaging. The goal is to study the effect of combining the untrained
DIP and a generic regularizer learned in a supervised manner from a large collection of
images. When placed in the ADMM framework, the denoiser is used as a proximal oper-
ator and can be learned independently of the considered inverse problem. The proposed
denoiser-based regularization compares favourably with handcrafted priors and remains
generic, since it can be applied to different inverse problems.

PnP-ReG: learned regularizing gradient for Plug-and-play gradi-
ent descent

The Plug-and-play (PnP) framework makes it possible to integrate advanced image de-
noising priors into optimization algorithms, to efficiently solve a variety of image restora-
tion tasks. However, the original PnP algorithm only applies to proximal algorithms.
When working on the previous contribution, we observed that the parameter tuning of
the ADMM algorithm is not a straightforward task. Also, an additional hyper-parameter
must be tuned per application when the regularization is defined by a denoiser. We rely

10

Introduction

on the assumption that a denoiser represents the proximal operator of a differentiable
regularizer, and derive a relation between the denoiser and the corresponding regular-
izer’s gradient. We use this relation to train a network directly modeling the gradient of
the regularizer, while jointly training the corresponding denoiser. We use this network in
a PnP gradient descent algorithm and obtain better results comparing to other generic
approaches. We also show that the regularizer can be used as a pre-trained network for
unrolled gradient descent. Lastly, we show that the resulting denoiser allows for a better
convergence of the Plug-and-play ADMM.

SphereDRUNet: a spherical denoiser for omnidirectional images

We address the problem of omnidirectional image denoising and we aim to study the
advantage of denoising the spherical image directly rather than its mapping. We introduce
a novel network called SphereDRUNet to denoise spherical images using deep learning
tools on a spherical sampling. We show that denoising directly the sphere using our
network gives better performance, compared to denoising the projected equirectangular
images with a similarly learned model. We also compare our SphereDRUNet to a graph-
based convolution network and confirm that the convolution approach that we use is more
efficient.

List of publications

• R. Fermanian, T. Maugey and C. Guillemot. SphereDRUNet: A Spherical Denoiser
for Omnidirectional Images. IEEE 22nd International symposium on mixed and
augmented reality adjunct (ISMAR-Adjunct), Sydney, Australia, 2023.

• R. Fermanian, M. Le Pendu and C. Guillemot. PnP-ReG: Learned Regularizing
Gradient for Plug-and-Play Gradient Descent. SIAM Journal on Imaging Sciences
16.2 (2023): 585-613.

• R. Fermanian, M. Le Pendu and C. Guillemot. Regularizing the Deep Image Prior
with a Learned Denoiser for Linear Inverse Problems. IEEE 23rd International
Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 2021.

1.4 Outline

The remaining of this thesis is divided into 6 chapters.

11

Introduction

In Chapter 2, we elaborate on the background of inverse problems for perspective
imagery. We start by introducing inverse problems and illustrate several examples. We
then discuss different reconstruction methodologies and regularization approaches.

In Chapter 3, we propose a method coupling a learned denoiser with the Deep Image
Prior in the ADMM framework. We discuss different existing approaches that regularize
the DIP and show the advantage of our proposed deep regularization.

In Chapter 4, we propose a novel method to train a network modeling the gradient
of a regularizer, jointly with a deep denoiser. Based on the assumption that a denoiser
represents the proximal operator of an underlying differentiable regularizer (defining the
image prior), we derive a loss function that links the denoiser and the gradient of the
corresponding regularizer. We use this network in a Plug-and-play gradient descent algo-
rithm and obtain better performance comparing to other generic methods. We then use
our network as a pre-training strategy in an unrolled gradient descent algorithm.

In Chapter 5, we present the main concepts of omnidirectional image processing.
We discuss the acquisition, representation and processing challenges of omnidirectional
images, and finally present the literature of inverse problems.

In Chapter 6, we propose SphereDRUNET, a novel omnidirectional image denoising
network, by transferring the DRUNet [2] to the sphere. We show that image denoising
gives better performance when it is performed directly on the sphere rather than via a
mapping, even though it raises many challenges.

Chapter 7 concludes this thesis and proposes perspectives for further studies.

12

Part I

Inverse problems in perspective
imagery

13

Chapter 2

AN OVERVIEW OF INVERSE PROBLEMS IN

PERSPECTIVE IMAGERY

Picture a doctor seeking to understand the inner workings of the human body from a
limited set of diagnostic measurements or an astronomer striving to discover the charac-
teristics of celestial objects, relying only on the faint traces of light that reach its telescope:
these are scenarios illustrating instances that represent inverse problems. In most real-life
applications, we do not have direct measurements of the signal of interest, but only a
corrupted version of the original signal. Several phenomena may induce these distortions
in practice, such as the acquisition system that is used or the communication channel
through which the signal is transmitted. In such cases, we aim to reconstruct the original
unknown signal from the distorted observations that we have.

Inverse problems have been broadly studied in the last few decades and several different
sort of approaches have been proposed to solve them. This chapter aims, in a first place,
to introduce inverse problems in signal and image processing, and secondly, to present an
overview of the research and the methodologies that have been proposed to solve them in
the literature.

2.1 Inverse Problems

2.1.1 Introduction and problem statement

Inverse problems refer to the task of recovering an image x ∈ Rn from its degraded
measurements y ∈ Rm obtained by a certain degradation model:

y = H(Ax), (2.1)

15

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

where A ∈ Rm×n represents a linear degradation operator depending on the inverse prob-
lem and H is a non-linear model representing noise degradation.

Various different types of non-linear degradation may destroy the signal of interest.
For example, the signal may suffer from multiplicative noise [12]–[14], such as speckle noise
[15], [16]. The latter can be found in a wide range of systems, including synthetic aperture
radar (SAR) images, ultrasound imaging, and many more. Moreover, the statistical nature
of electromagnetic waves such as x-rays, visible lights and gamma rays causes shot noise.
These ray sources emit a number of photons per unit time and have a random fluctuation
of photons. The image has thus a spatial and temporal randomness. The resulting noise
is signal-dependent and non-additive and it can be modeled by a Poisson distribution
[17]–[20]. Furthermore, acquisition devices usually encounter internal fluctuations. This
causes an additive noise that can be represented by a Gaussian distribution [21], [22].
Another possibility is the combination of Poisson and Gaussian noise (called Poisson-
Gaussian noise) [23]–[26]. Figure 2.1 shows an image degraded with the aforementioned
noise types.

In this work, we consider the case where the noise is additive (independent from the
signal itself) and has a Gaussian distribution. Thus, the degraded signal can be obtained
by:

y = Ax + η, (2.2)

where η ∈ Rm represents Additive White Gaussian Noise (AWGN). The probability den-
sity function (PDF) of a Gaussian noise follows a normal distribution and is given by:

φ(η) = 1√
2πσ2

exp
(
−(η − µ)2

2σ2

)
(2.3)

where µ is the mean of the Gaussian distribution and σ is its standard deviation (i.e. σ2

is its variance). Figure 2.2 illustrates the PDF of a Gaussian noise.
The rationale behind commonly restricting the noise to Additive White Gaussian Noise

(AWGN) is as follows: one might argue that the Poisson distribution is more suited to
model imaging noise given that imaging sensors inherently quantify photons. Although
this argument is correct, it is worth noting that in situations of high photon counts, the
Poisson distribution becomes a Gaussian one [28]. As a result, when dealing with high
photon counts, the measurements can be converted into a form akin to Gaussian contam-
ination by using a variance-stabilizing transformation, such as the Anscombe transform
[29]. Finally, since the formulations become simpler when using the Gaussian distribution,

16

2.1. Inverse Problems

(a) (b) (c)

(d) (e)

Figure 2.1 – (a) Grayscale version of the pepper image from the Set14 dataset [27] (pixel
intensities are ranged from 0 to 255). The original image is degraded with (b) zero
mean Speckle noise of standard deviation 0.1, (c) Poisson noise with average intensity
of photons equal to 1, (d) additive zero mean Gaussian noise of standard deviation 25
and (e) Poisson-Gaussian noise (poisson noise with average intensity of photons of 1, and
additive zero mean Gaussian noise of standard deviation of 25).

researchers have considered the AWGN when designing solutions to inverse problems.

2.1.2 Inverse problems in imaging: examples and definitions

In the image restoration tasks that we consider, we aim to recover the original image x,
which is degraded by a certain operation that is represented by the degradation operator
A. The latter depends on the inverse problem in hand. In this section, we define some
inverse problems in imaging that we will solve in this work, such as denoising, super-
resolution, deblurring and pixel-wise inpainting. Solution methodologies will be discussed
in the upcoming sections.

17

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

Figure 2.2 – Probability Density Function of Gaussian noise of mean µ and standard
deviation σ.

2.1.2.1 Denoising

Image denoising is unarguably the most extensively studied among the inverse prob-
lems in imaging. The task of denoising refers to the process of removing unwanted noise
from an observed image to enhance its quality and improve visual clarity. The presence
of noise in images can be attributed to various factors such as sensor limitations, trans-
mission errors, or environmental conditions during image acquisition. The different types
of noise were discussed in the previous section.

In the case where the observed image is degraded with Additive White Gaussian noise
of variance σ2, Eq. 2.2 reduces to y = x + η, where y is the noisy observation, x is the
original image and η is an AWGN. Therefore, the degradation matrix A is simply the
identity matrix. Figure 2.3 illustrates the inverse problem of image denoising.

2.1.2.2 Deblurring

Image deblurring refers to the task of recovering a sharp, undistorted version of a
blurred image. Blur in images can occur due to various factors, such as camera movement,
defocusing, or atmospheric conditions. The objective of image deblurring is to estimate

18

2.1. Inverse Problems

(a) Original image (b) Noisy image (c) Denoised image

Figure 2.3 – Inverse problem of denoising an image corrupted by a White Gaussian noise
of variance σ2 = 30.

the original, sharp image that might have led to the blurry observation. Figure 2.4
illustrates the inverse problem of deblurring.

The degradation matrix A represents a blurring operator (i.e. convolution), typically
followed by the addition of Gaussian noise. The blurring filter used in image deblurring
is commonly known as the Point Spread Function (PSF). The PSF characterizes how
light from each point in the original scene is spread or blurred across adjacent pixels in
the resulting image due to factors like camera shake, defocus, or motion. The PSF is
usually represented by a rectangular or a square matrix, with its size increased by the
extent of blurring. For instance, in the case of motion blur caused by camera movement,
the PSF might be a horizontal line kernel indicating the motion direction. For defocus
blur, the PSF may have a circular shape. The PSF of the blurring process must be
known or estimated accurately in order to perform image deblurring. Blind deconvolution
techniques attempt to estimate the PSF simultaneously with the sharp image, making the
reconstruction more complex and challenging.

2.1.2.3 Super-resolution

Super-resolution is the process of enhancing the resolution and quality of a given
low-resolution image or video to obtain a higher-resolution version with more details and
clarity. The goal is to reconstruct missing high-frequency details, edges, and textures that
are lost during the downscaling process of a given image.

Generally, the low-resolution image is obtained after a blurring and a downsampling
operation of the high-resolution image. In practice, noise may also be present in the ac-
quired low-resolution. Hence, the degradation operator includes blurring, downsampling,

19

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

(a) Original image (b) Blurred image (c) Deblurred image

Figure 2.4 – Inverse problem of deblurring. The blurred image is generated using an
isotropic Gaussian kernel followed by adding Gaussian noise of standard deviation σ =

√
2.

and possibly noise. Figure 2.5 shows an example of super-resolution.

(a) Original image (b) Low-resolution image (c) Super-resolved image

Figure 2.5 – Inverse problem of super-resolution. The low-resolution image is obtained
by performing Gaussian blur over the original image and downscaling it with a factor 2.

2.1.2.4 Pixel-wise inpainting

Pixel-wise inpainting, also known as image completion, is a task in image processing
that aims to fill in missing pixels in an image. The goal is to generate a complete and
visually plausible image from the partially observed or degraded version.

The missing pixels are often represented by masked pixels, where the pixel values
are unknown or marked as invalid. The task is to estimate the missing pixel values and
complete the image in a way that blends seamlessly with the surrounding content. The

20

2.1. Inverse Problems

degraded image is typically obtained by multiplying the original image with a binary mask.
This binary mask is used to indicate the pixels that need to be inpainted or completed.
The mask is a matrix of the same size as the original image, with values of 0 or 1. A
value of 0 in the mask denotes a missing or corrupted pixel, while a value of 1 represents
a valid pixel that should be kept unchanged. Figure 2.6 shows an example of the inverse
problem of completion.

(a) Original image (b) Masked image (c) Inpainted image

Figure 2.6 – Inverse problem of pixel-wise inpainting. The degraded image has a known
pixel rate of p = 10%.

2.1.3 An ill-posed problem and need for regularization

The task of solving inverse problems defined by Eq. 2.2 is equivalent to finding an
optimal solution x̂ that best represents the original signal of interest x using the measure-
ment y. In practice, even in relatively simpler applications, obtaining a restored image
of good quality is not as easy as it seems. This is due to the ill-posed nature of inverse
problems, that we will elaborate in this section.

A problem is considered to be mathematically well-posed according to Hadamard [30]
if the solution x̂ satisfies all three conditions below:

• A solution exists

• The solution is unique

• The solution is stable (the solution depends continuously on the measurement)

The first condition requires the system to be consistent. The second condition restricts
the solution to be unique. It ensures that there is only one possible solution that can be

21

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

determined from the available data. In order to meet this condition, the system should
not be under-determined (e.g. the degradation matrix should not have m < n). Moreover,
the stability of the solution with respect to the input data ensures that minor changes
(i.e. noise) in the observed data do not drastically alter the solution. Stability is essential
to prevent the problem from becoming ill-posed, where small errors in the data could lead
to significant inaccuracies or even to the non-existence of the solution.

Inverse problems are ill-posed because they do not satisfy all of the aforementioned
conditions. To address this ill-posed nature, regularization techniques are employed. Reg-
ularization involves incorporating additional prior knowledge or constraints into the prob-
lem to guide the solution process. By imposing constraints, such as smoothness or sparsity
on the unknowns, regularization helps to narrow down the solution space, making it more
stable and robust. The topic of regularization will be further detailed in the following
sections.

2.2 Reconstruction approaches for solving inverse prob-
lems

To this end, we have discussed inverse problems without actually diving into the ac-
tual task of their reconstruction. So, how can we solve inverse problems? From classical
approaches such as simple interpolation and filtering to deep learning methods, the an-
swer to this question has evolved over time with the advancements in signal and image
processing. In this section, we elaborate the most common reconstruction approaches
that have been adopted in the literature.

2.2.1 Variational approach for solving inverse problems

A natural and naive approach to solve inverse problems is to apply a function enforc-
ing similarity between the observation and the searched solution (e.g. the least squares
method), as follows:

x̂ = argmin
x∈Rn

L(Ax, y), (2.4)

However, since inverse problems are ill-posed, we use a regularizing function as discussed
before. The variational approach for solving inverse problem amounts to solving an opti-

22

2.2. Reconstruction approaches for solving inverse problems

mization problem defined by:

x̂ ∈ argmin
x∈Rn

L(Ax, y) + λϕ(x), (2.5)

where L(Ax, y) represents the data-fidelity term, ϕ(x) is the regularization function and
λ > 0 balances the trade-off between the two terms. This parameter should be tuned in
order to compromise between the two terms.

Note that the most common choice for L(Ax, y) is the L2 distance form, thus we
generally get:

x̂ ∈ argmin
x∈Rn

∥y − Ax∥2
2 + λϕ(x). (2.6)

The problem in Eq. 2.5 usually does not have a closed-form solution except in some simple
cases, for instance when both the data-fidelity term and the regularization are quadratic.
Consequently, the variational approach involves solving an optimization problem by using
iterative schemes. Section 2.3 provides an overview of some iterative algorithms that are
commonly used to solve variational problems.

The choice of the regularization function plays a crucial role in the solution of in-
verse problems. The prior should balance between incorporating desired properties of the
solution and avoiding an excessive computational burden. In the following, we provide
a non exhaustive discussion about some of the traditional priors (often referred to as
"hand-crafted" priors) that have been designed throughout years.

• Tikhonov Regularization: Tikhonov regularization [31] is probably one of the
most commonly used classical regularization methods to solve inverse problems.
The regularization expression is given as ϕ(x) = ∥Γx∥2

2 , where Γ is the Tikhonov
operator promoting some desirable properties. For example, if the signal is believed
to be smooth, Γ can assume the role of a high-pass operator like a Laplacian filter
(i.e. ϕ(x) = ∥Lx∥2

2). A particular case of Tikhonov regularization is the energy
regularization (L2 regularization) when Γ = I. Thus ϕ reduces to ϕ(x) = ∥x∥2

2

encouraging solutions with smaller norms.

• Weighted Smoothness: Imposing a uniform constraint on the smoothness of
the solution may result in overly-smoothed regions in the image. To overcome
this, a weighted smoothing regularization can be considered, such as in [32], [33].
By assigning varying weights, the regularization process can effectively adapt to
the inherent structure of the data: a high weight is assigned to regions where the

23

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

assumption of smoothness is believed to be valid, while a lower weight is allocated
to textured regions or edges. Forming a diagonal weight matrix W containing the
assigned weights in the diagonal, and considering the Laplacian regularization, the
regularization function becomes ϕ(x) = ∥Lx∥2

W .
• Total-Variation: Total-Variation [10] is a regularization function quantifying the

intensity variation or discontinuity across neighboring pixels, hence promoting gra-
dient sparsity. In the anisotropic form, total variation computes the L1 norm of the
image gradient: TVaniso(u) = ∑n

i=1 |(Dhu)i| + |(Dvu)i|, while isotropic TV corre-
sponds to the L2 norm of the gradient vector: TViso(u) = ∑n

i=1

√
(Dhu)2

i + (Dvu)2
i .

The variables Dh and Dv denote the first order finite difference discrete operators
along the horizontal and vertical axes. Extensions of this line of research can be
found in [11], [34].

• Sparsity methods: A sparse signal refers to a type of signal in which most of the
values are either zero or very close to zero, while only a few values are non-zero and
carry a significant information. For example, wavelets provide a compact represen-
tation of data by using a minimal number of coefficients, thereby introducing the
concept of sparsity, which conveniently links to the regularization ϕ(x) = ∥Wx∥1

encouraging a reduction in the presence of non-zero Wavelet coefficients [35]. The
concept of sparsity gained further interest as subsequent research explored redun-
dant and learned representations. Ideal images are assumed to be linear combina-
tions of atoms from a pre-defined dictionary D, denoted as x = Dα. Sparsity can
hence be enforced through ϕ(x) = ∥α∥0. Different algorithms have been developed
along these lines considering global and patch-based dictionaries [36]–[40].

• Self-similarity: The concept of self-similarity in image processing is rooted in the
idea that small patches within an image often exhibit strong similarities to other
patches in the overall image content. Hence, treating these similar patches col-
lectively is believed to contribute to enhanced restoration. For example, ϕ(x) =∑

i

∑
j∈Λ(i) d{Rix, Rjx} promotes proximity between Rix and Rjx, where Rix de-

notes the patch extracted from the image at location i, Λ(i) refers to the set of
indices in the neighborhood of i and d denotes a dissimilarity score.

• Low-rank assumption: This approach is very similar to self-similarity regulariza-
tion, but rather than imposing proximity between a set of closely related patches,
a low-rank structure is forced on a matrix having these related patches as columns.
This infers that these patches are spanned by a few main directions. For instance,

24

2.2. Reconstruction approaches for solving inverse problems

let ZΛ(k) be a matrix denoting a group of similar patches extracted from the image,
where Λ(.) is the collection of related patches and k indicates the specific patch
group. Let ∥.∥∗ denote the nuclear norm, which is used as a measure of the rank of
the matrix. The low-rank assumption can be imposed by ϕ(x) = ∑

k ∥ZΛ(k)∥∗ [41],
[42].

It’s important to note that the landscape of regularization techniques is vast and con-
tinually evolving. Hand-crafted regularization approaches have historically demonstrated
significant efficiency in addressing specific challenges. However, in pursuit of enhanced
performance, current research has shifted its focus towards learning prior knowledge. We
detail the idea of leveraging deep learning tools to regularize inverse problems in Section
2.4.3.

2.2.2 Learning approach for solving inverse problems: Neural
network regression

With the advancement of deep learning and the success of convolutional neural net-
works in different computer vision tasks, researchers started to develop learning-based
solutions for inverse problems. The simplest approach is to train problem-specific neural
networks that approximate the mapping between the space of measurements (i.e. de-
graded images) and the corresponding solution space (i.e. ground-truth images), without
having knowledge of the degradation operator A (an agnostic learner). In fact, using a
large amount of training data, the network is able to learn the patterns and relation-
ships between the distorted inputs and the corresponding clean outputs. As a result,
the network can effectively reconstruct the high-quality outputs from given corrupted in-
puts. This approach yielded a significant performance improvement in the field of image
restoration.

A wide range of network architectures have been designed and trained for different
inverse problems, such as DnCNN [43], NLRN [44], FOCNet [45] and DRUNet [2] for
image denoising, SRCNN [46], SRGAN [47], ESRGAN [48] and RCAN [49] for Super-
Resolution and DCNN [50] for blind deconvolution.

However, the success of these networks highly depends on the complexity of the forward
operator A and the available amount of training data. For instance, in the medical imaging
field, obtaining large datasets can be particularly challenging due to privacy concerns and
ethical considerations. Another drawback of this end-to-end learning procedure is that

25

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

the network has to be re-trained again if a single parameter of the degradation process
changes. Therefore, these limitations highlight the necessity for more adaptable and
generalized methods in handling diverse degradation scenarios.

2.2.3 Bayesian approach for solving inverse problems

A common approach to solve inverse problems consists in considering a probabilistic
perspective. Rather than treating x and y as constant values, it is assumed that the
noise in the measured data causes some randomness, which further induces uncertainty in
the restoration. It can be inferred that x and y are random variables having probability
distributions. In this setting, the reconstructed image from the measurements can be
calculated through its posterior density px|y(x|y). For notation simplicity, we will denote
pu(u) as p(u) in the remainder of the manuscript. This approach is the core of this thesis.

Bayes’ theorem expresses the posterior density p(x|y) using the likelihood and the
prior density:

p(x|y) = p(y|x)p(x)
p(y) , (2.7)

where p(y|x) is the probability density of the measurement y given x, representing the
likelihood of the observations and p(x) represents the prior distribution. p(y) is the
distribution of y and can be considered as a normalization constant for p(x|y), as it is
independent of x.

In the assumption of an Additive White Gaussian Noise η with standard deviation σ,
the noise is assumed to be independent and identically distributed across pixels, which
means that each pixel yi follows a Gaussian distribution with mean Axi and standard
deviation σ. Since the noise in each pixel is independent, the joint probability density
function of all noisy pixels y given the true image x is the product of the PDFs of each
pixel. Therefore, the likelihood can be expressed as:

p(y|x) =
n∏

i=0

1√
2πσ2

e− (yi−Axi)2

2σ2

= 1
(2πσ2)n/2 e−

∑n

i=0(yi−Axi)2

2σ2

= 1
(2πσ2)n/2 e− 1

2σ2 ∥y−Ax∥2
2 .

(2.8)

It therefore follows that p(y|x) ∝ e− 1
2σ2 ∥y−Ax∥2

2 .

26

2.2. Reconstruction approaches for solving inverse problems

Once the likelihood is derived and the prior is chosen, the posterior density can be
evaluated using various point estimates, such as Maximum A Posteriori (MAP) and the
Minimum Mean Square Error (MMSE).

The bayesian estimator can be obtained by calculating the minimum expectation of a
certain cost function C(x̂− x), where the latter assesses the accuracy of the estimated x̂

in comparison to the unknown signal x with posterior distribution p(x|y):

x̂C ∈ argmin
x̂

Ex|y[C(x̂− x)],

x̂C ∈ argmin
x̂

∫
C(x̂− x)p(x|y) dx.

(2.9)

Minimum Mean Squared Error estimator (MMSE)

For the cost function C(x̂ − x) = ∥x̂− x∥2
2, solving Eq. 2.9 amounts to finding the

Minimum Mean Squared Error (MMSE) estimate. Having the following minimization
problem:

x̂MMSE = argmin
x̂

∫
∥x̂− x∥2

2 p(x|y)dx, (2.10)

Let us note Q(x̂) =
∫
∥x̂− x∥2

2 p(x|y)dx. We can thus state that finding the minimizer
in Eq. 2.10 amounts to solving ∂Q(x̂)

∂x̂
= 0.

∂Q(x̂)
∂x̂

=
∫ ∂∥x̂− x∥2

2
∂x̂

p(x|y)dx,

=
∫

2(x̂− x)p(x|y)dx,

= 2x̂− 2
∫

xp(x|y)dx = 0.

(2.11)

Therefore, the MMSE estimator is given by the posterior mean, namely:

x̂MMSE =
∫

xp(x|y)dx. (2.12)

While the formulation seems simple and clear, computing the MMSE estimate can be
challenging, as it consists in estimating high dimensional integrals. Sampling algorithms
are often used in order to perform numerical integration.

27

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

Maximum A Posteriori estimator (MAP)

Maximum A Posteriori estimator is derived from choosing the Hit-or-miss cost func-
tion:

C(x̂− x) =

0 if ∥x̂− x∥2 < δ

1 if ∥x̂− x∥2 ⩾ δ,
(2.13)

δ > 0 being a predefined threshold.
In this case, the estimation in Eq. 2.9 reduces to:

x̂MAP ∈ argmin
x̂

1−
∫

∥x̂−x∥2<δ
p(x|y)dx. (2.14)

As δ → 0 we can observe that this minimization is obtained when the posterior distribution
is maximized. Therefore, the estimation is computed by maximizing the probability
density of the posterior p(x|y):

argmax
x

p(x|y)

argmax
x

p(y|x)p(x)
p(y)

argmin
x
− log p(y|x)− log p(x)

(2.15)

As established in Eq. 2.8, p(y|x) ∝ e− 1
2σ2 ∥y−Ax∥2

2 in the case of AWGN. Eq. 2.15 is
therefore equivalent to:

argmin
x
− log(e− 1

2σ2 ∥y−Ax∥2
2) + ϕ(x) (2.16)

We finally get the MAP estimation:

x̂MAP ∈ argmin
x

1
2 ∥y − Ax∥2

2 + σ2ϕ(x). (2.17)

By combining the likelihood (i.e. data fidelity term) and the prior (i.e. regularization
term), the MAP estimate effectively balances the trade-off between fitting the data and
conforming to prior knowledge, leading to a reliable restoration despite the degraded
observation. One key point is that the term − log p(x) should assume a closed-form for-
mulation that facilitates feasible numerical optimization. Consequently, most attempts at
describing p(x) have opted for the Gibbs distribution representation [51], p(x) = c.e−ϕ(x),

28

2.3. Optimization algorithms

thereby redirecting our attention towards the energy function ϕ(x) rather than the prior
distribution p(x). It’s worth noting that within the research community, there’s a preva-
lent simplification where the term ’prior’ is sometimes used interchangeably to refer to the
regularization function (or even a denoiser which is also related to the prior distribution).

In most cases, Eq. 2.17 does not have a closed-form solution, therefore the estimation
is computed using iterative optimization methods, as in the variational case. In Section
2.3, we discuss some optimization methods that can be used to solve common variational
problems.

2.3 Optimization algorithms

This section aims to provide a brief overview of some of the optimization methods
used to solve common variational problems. While numerous categories of methods exist,
our focus here is primarily on commonly employed algorithms in the recent literature of
inverse problems, notably first-order optimization methods and proximal methods.

2.3.1 Derivative-based optimization algorithms: first-order meth-
ods

Let’s consider minimizing functions that are smooth and differentiable. In this case,
derivative-based algorithms, such as gradient descent, are effective tools for solving such
optimization problems.

2.3.1.1 Gradient Descent

Let us consider minimizing the following optimization problem:

x̂ = argmin
x∈Rn

f(x). (2.18)

If f is a convex differentiable function with a gradient that is β-Lipschitz, then we can
solve Eq. 2.18 by finding x̂ such that:

∇f(x̂) = 0. (2.19)

Thus, we can easily solve 2.18 in the case where ∇f is sufficiently straightforward to

29

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

derive a closed-form solution from Eq. 2.19 which is computationally tractable. However,
finding such a solution can become challenging when f has a more complex form and we
can no longer solve 2.19. In this case, the solution of the minimization can be defined as
the limit of a sequence constructed iteratively through some algorithm. One category of
methods to find an iterative solution of the minimization problem defined in Eq. 2.18 is
the gradient-based algorithms [52].

Gradient methods are based on the principle that for any x, the negative gradient
−∇f(x) points in the direction of the steepest decrease, making it a favorable choice for
finding the minimizer of f . Let γk be the step-size of the gradient descent at iteration k

and K ∈ N be the total number of iterations until convergence. Starting with an initial
point x0 ∈ Rn, we can derive x̂ by applying the Algorithm 1:

Algorithm 1 Gradient Descent
1: Initialize x0 ∈ Rn

2: for k ← 0 to K − 1 do
3: xk+1 ← xk − γk∇f(xk)
4: end for

2.3.1.2 Projected Gradient Descent

Let us now consider a constrained optimization problem, where the objective function
needs to be minimized while satisfying a certain constraint.

x̂ = argmin
x∈Rn

s.t. g(x)=0

f(x), (2.20)

where f is the original objective function to be minimized and g is a convex function
defining the constraint or the set of feasible solutions.

Projected gradient descent consists in projecting the current iterate onto the feasible
set at each iteration, to ensure that the constraints are satisfied.

Algorithm 2 Projected Gradient Descent
1: Initialize x0 ∈ Rn

2: for k ← 0 to K − 1 do
3: xk+ 1

2
← xk − γk∇f(xk)

4: xk+1 ← Projg(x)(xk+ 1
2
)

5: end for

30

2.3. Optimization algorithms

Algorithm 2 describes the method of projected gradient descent. The projection op-
erator is defined as

Projg(x)(xk) = argmin
x̂∈Rn

s.t. g(x̂)=0

∥x̂− xk∥2, (2.21)

where the feasible set is defined by the function g. The projection itself is an optimization
problem to be solved.

2.3.2 Proximal algorithms

Proximal Operator

Before diving into proximal algorithms, let us first define a proximal operator. Con-
sider V to be a real Hilbert space and Γ0(V) to represent the set of lower semi-continuous
convex functions from V to [−∞, +∞]. Let h ∈ Γ0(V) be a closed proper convex func-
tion. Jean Jacques Moreau [53] proposed that for each x ∈ V , the minimization on the
right-hand side of Eq. 2.22 has a unique solution and is denoted by proxλh(u).

proxλh(u) = argmin
x∈V

h(x) + 1
2λ
∥x− u∥2

2 . (2.22)

The term proxλh(u) is called the proximal operator of the scaled function λh, or the
proximal operator of h with parameter λ. Let us note that, in practice, if h is not convex,
there may be an abuse of notation, as Eq. 2.22 will have multiple solutions.

If h is differentiable and λ is small, the proximal operator of λh can also be evaluated
by doing a gradient step on h:

proxλh(u) ≈ u− λ∇h(u). (2.23)

Proximal algorithms are advantageous tools to solve non-smooth minimization prob-
lems. The base operation of a proximal algorithm is to compute the proximal operator of
a function, which reduces to solve a simple convex optimization sub-problem. The latter
often has a closed-form solution or can be easily solved with simple methods. Examples
of proximal algorithms are presented next.

31

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

2.3.2.1 Proximal Gradient Descent

Let’s consider a minimization optimization as follows:

x̂ = argmin
x∈Rn

f(x) + g(x), (2.24)

where f is a smooth and differentiable function whereas g is a non-smooth, possibly
non-differentiable function that enforces some constraint.

Proximal gradient descent (also called Forward-Backward Splitting algorithm) consists
in computing the gradient of the smooth part of the objective function at the current point
xk (i.e. ∇f(xk)) and updating the latter, then evaluating the proximal operator at the
updated point xk − γk∇f(xk). The proximal operator is used to handle the non-smooth
regularization term g. These 2 steps are performed repeatedly at each iteration until
reaching convergence. Algorithm 3 details the proximal gradient descent algorithm.

Algorithm 3 Proximal Gradient Descent
1: Initialize x0 ∈ Rn

2: for k ← 0 to K − 1 do
3: xk+ 1

2
← xk − γk∇f(xk)

4: xk+1 ← Proxγkg(xk+ 1
2
)

5: end for

2.3.2.2 Half-Quadratic Splitting

Half-Quadratic Splitting (HQS) [54] is a simple yet effective splitting method for solv-
ing optimization problems. The basic idea behind HQS is to split the original optimization
problem into two sub-problems, each of which addressing one part of the original problem.
The algorithm first reformulates the problem by introducing an auxiliary variable to the
Eq. 2.24, as follows:

argmin
x,z∈Rn

f(x) + g(z).

subject to x = z
(2.25)

The HQS iteration consists in alternatively applying the proximal operators of f and
g, as follows:

32

2.3. Optimization algorithms

xk+1 = argmin
x

f(x) + ρk

2 ∥x− zk∥2
2 = prox 1

ρk f (zk), (2.26)

zk+1 = argmin
z

g(z) + ρk

2 ∥z − xk+1∥2
2 = prox 1

ρk g(xk+1), (2.27)

where ρk is a positive penalty parameter for weighting the penalty terms. In order to
enforce the constraint x = z, it is necessary to progressively increase the penalty parameter
ρk towards infinity within the HQS iterations.

2.3.2.3 Alternating Direction Method of Multipliers

Given the optimization problem given in Eq. 2.24, the Alternating Direction Method
of Multipliers (ADMM) algorithm aims to solve the problem by first decoupling the data
term and the prior term by adding an auxiliary variable z just like the HQS, yielding a
constrained optimization problem which is equivalent to 2.25.

In order to deal with the constraint x = z, the ADMM introduces a Lagrange mul-
tiplier: the original problem is reformulated into an augmented Lagrangian form, which
includes the Lagrange multiplier (dual variable) associated with the constraints. The
augmented Lagrangian of the optimization problem with the equality constraint x = z is
given by:

L(x, z, l) = f(x) + g(z) + lT (x− z) + ρ

2∥x− z∥2
2,

= f(x) + g(z) + ρ

2∥x− z + l

ρ
∥2

2 −
1
2ρ
∥l∥2

2,
(2.28)

where l is the dual variable and ρ is a positive penalty parameter.
Each ADMM iteration then consists in an alternate minimization over x and z, as

follows:

xk+1 = arg min
x
L(x, zk, lk) = prox 1

ρk f (zk − lk

ρk
) (2.29)

zk+1 = arg min
z
L(xk+1, z, lk) = prox 1

ρk g(xk+1 + lk

ρk
) (2.30)

lk+1 = lk + ρk(xk+1 − zk+1), (2.31)

where the dual variable is typically zero-initialized. The penalty parameter ρk can be

33

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

adjusted during the iterations to balance between convergence speed and accuracy. In
Appendix A.1, we will take a closer look at the ADMM algorithm, providing detailed
insights and exploring parameter settings in the context of the Plug-and-play framework.

Closed-form solution of the data-fidelity optimization sub-problem

Both ADMM and HQS split the problem into two sub-problems. Hence, they can
be used to solve the MAP estimation for linear inverse problems in Eq. 2.17, by taking
f(x) = 1

2 ∥y − Ax∥2
2 and g(x) = σ2ϕ(x). Therefore, the data-fidelity term f and the

prior term g are handled as independent sub-problems that consist in evaluating the
corresponding proximal operator prox 1

ρk f (Eq. 2.26 and Eq. 2.29) and the regularization
term prox 1

ρk g (Eq. 2.27 and Eq. 2.30).
In particular, for the data fidelity term, the proximal operator is expressed as:

prox 1
ρk f (u) = argmin

x
Q(x, u) (2.32)

with Q(x, u) = 1
2 ∥y − Ax∥2

2 + ρk

2 ∥x− u∥2
2. (2.33)

One can thus derive a general closed-form solution by finding x that cancels out∇xQ(x, u).
This gives:

prox 1
ρk f (u) = (AT A + ρkI)−1(AT y + ρku). (2.34)

In general, calculating the inverse directly might be computationally expensive, espe-
cially for large matrices. However, for many specific problems such as super-resolution,
deblurring, and denoising, the matrix A can often be represented in a particular form (e.g.
diagonal matrix or block-diagonal matrix) which simplifies the computation and make the
closed-form solution in Eq. 2.34 feasible.

2.4 Learning to Regularize inverse problems

The choice of the regularization function plays a crucial role in the efficient recon-
struction of inverse problems. The advent of deep learning has remarkably transformed
various domains, including the field of inverse problems and its regularization. In the
last years, researchers have elaborated different ways to use learned priors, be it through
generative models, deep denoisers or other approaches. In this section, we elaborate some

34

2.4. Learning to Regularize inverse problems

of these methodologies.

2.4.1 Regularizing by using the implicit prior captured by a
neural network

A unique approach called the Deep Image Prior (DIP) was introduced by Ulyanov et
al. [1], where it was shown that the CNN structure itself can inherently regularize image
restoration without having to be trained on a specific dataset. DIP represents an untrained
generative model, that takes a random input vector (i.e. noise) and adjusts its randomly
initialized weights to minimize the mean square error (MSE) between its output and the
degraded observation. The regularization typically employed in conventional methods is
replaced by the implicit prior captured by the architecture of the generator network. The
DIP formulation can be expressed as follows:

Θ∗ ∈ argmin
Θ

E(fΘ(z); x0), s.t. x∗ = fΘ∗(z) (2.35)

where fΘ is the generator network with random input z and Θ its parameters to be opti-
mized. x0 is the degraded observation. The goal is to find the optimal set of parameters
Θ that minimize the task-dependent data term E(fΘ(z); x0).

To effectively control the regularization in DIP, early stopping is commonly employed
during the optimization process, which prevents the network from overfitting to the ob-
served degradation. In practice, this early stopping is hard to control.

Subsequent works have aimed to enhance the performance of the Deep Image Prior
by different methods. We will dedicate our next chapter to discuss these advancements
and to study the effect of combining the DIP regularization with a deep regularization.

2.4.2 Regularizing by leveraging the power of denoisers

Image denoising has garnered significant research attention in the literature. Clarivate
Web-Of-Science (WoS) identifies nearly 30,000 papers targeting image denoising published
in the last 25 years, with an important increase in the number of publications over time.
This growth in interest can be attributed not only to the crucial role of image denoising in
pre-processing, but also to the recent revelation that denoisers can be exploited for broader
applications, such as solving general inverse problems or synthesizing high-quality images.
In the following, we discuss the ability to deploy denoising engines for regularizing inverse

35

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

problems.

2.4.2.1 Plug-and-play (PnP) framework

The Plug-and-play framework revolutionized traditional inverse problem-solving by
seamlessly incorporating the capabilities of advanced denoisers. First, let’s recall the
equation of the proximal operator of a function h with parameter λ:

proxλh(u) = argmin
x∈Rn

1
2 ∥x− u∥2

2 + λh(x). (2.36)

Observing Eq. 2.17, we can state that the proximal operator in Eq. 2.36 can be seen
as a particular case of inverse problem where the degradation operator is the identity
matrix, and the degradation only consists in the addition of White Gaussian Noise of
standard deviation

√
λ.

Inspired by this perspective, and motivated by the significant advancements in the
field of image denoising, Venkatakrishnan el al. [55] introduced the Plug-and-play (PnP)
framework, which stimulated an important sub-field of research in image restoration.
The authors suggest to solve different types of inverse problems by replacing the proximal
operator of the regularization term by a powerful denoiser in an ADMM framework.

In the context of MAP estimation, the constrained optimization can be formulated as:

x̂ = argmin
x,z

1
2 ∥Ax− y∥2

2 + σ2ϕ(z),

subject to x = z.

(2.37)

Each ADMM iteration then consists in an alternate minimization over x and z with
the introduction of an additional variable l called dual variable as well as a penalty
parameter ρ, as follows:

xk+1 = argmin
x
∥Ax− y∥2

2 + ρk

∥∥∥∥∥x−
(

zk − lk

ρk

)∥∥∥∥∥
2

2
, (2.38)

zk+1 = argmin
z

1
2

∥∥∥∥∥z −
(

xk+1 + lk

ρk

)∥∥∥∥∥
2

2
+ σ2

ρk
ϕ(z) = prox σ2

ρk ϕ
(xk+1 + lk/ρ), (2.39)

lk+1 = lk + ρk(xk+1 − zk+1), (2.40)

36

2.4. Learning to Regularize inverse problems

where the dual variable is typically zero-initialized.
The Plug-and-play ADMM thus replaces the z-update in 2.39 by the following denois-

ing step:
zk+1 = Ds(xk+1 + lk/ρ), (2.41)

where D is a denoiser suitable for Gaussian noise of standard deviation s, with s =√
σ2/ρ = σ/

√
ρ.

While early works used traditional denoising methods such as BM3D [55], [56] or non-
local means [57], recent research extended the PnP framework to powerful deep CNNs
such as DnCNN [43] or DRUNet [2]. The latter leads to a State-Of-the-Art image restora-
tion technique. Also, the Plug-and-play framework was applied using different proximal
algorithms such as HQS [2], [3] and Proximal Gradient Descent [58].

An advantage of PnP methods is that, unlike agnostic learning approaches where the
training takes place for each inverse problem separately, integrating deep denoisers in PnP
frameworks decouples the learning phase from the inverse problem in hand, which makes
it generic.

However, a limitation of proximal PnP algorithms lies in the fact that the regularizer is
only defined implicitly via the denoiser, meaning that the objective function is not clearly
defined. This limits the interpretability of the algorithm, since it becomes challenging to
keep tractability of the optimization problem. Moreover, for most denoisers, there is no
theoretical guarantee that there exists a potential regularization function whose proximal
operator can be accurately represented by the denoiser [59]. This induces convergence
issues in proximal PnP algorithms.

Although still an open question, designing convergence proofs for the Plug-and-play
framework has become a major focus in the recent literature [3], [56], [58], [60]–[64].
The theoretical convergence analysis of these algorithms being outside the scope of this
thesis, we refer interested readers to the review papers [65], [66]. In summary, most of the
proposed solutions come with certain limitations, such as imposing strong assumptions on
the denoiser (often not suitable for deep CNNs) or necessitating performance compromises.

2.4.2.2 Regularization by Denoising (RED)

In order to overcome some limitations arising from the absence of a clear objective
function, Romano et al. [4] introduced an alternative approach for denosing-based priors
called Regularization by Denoising (RED). Unlike some other methods where the prior

37

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

is implicitly defined, RED takes a different approach by explicitly expressing the regular-
ization function ϕ. The latter is defined to be proportional to the inner product between
the estimated image and its denoising residual, which can be written as follows:

ϕ(x) = 1
2xT [x−D(x)]. (2.42)

where D is an off-the-shelf denoiser. This explicit formulation results in an image-adaptive
Laplacian-based regularization term, effectively promoting smoothness in the restored
image. Under the assumption that the denoiser D is locally homogeneous and its Jacobian
is symmetric, the gradient of the regularization term defined in Eq. 2.42 is computed as:

∇ϕ(x) = x−D(x). (2.43)

Using this formulation, RED proposes to solve Eq. 2.17 by using different optimization
algorithms such as gradient descent or ADMM. Unlike Plug-and-play methods, RED is
not restricted by the choice of the algorithm, making it adaptable to different optimization
strategies. Another key advantage of the RED algorithm is its explicit formulation of the
regularization function ϕ(x) as given in Eq. 2.42. This explicit expression allows for
better understanding of the overall Bayesian objective function.

However, Reehorst and Schniter [59] proved later that the gradient expression proposed
in RED is not justified with denoisers that lack Jacobian symmetry, which excludes most
practical denoisers such as block-matching and 3D filtering (BM3D) [67], Non-local means
(NLM) [68] or state-of-the-art deep neural networks.

Another extension to the RED algorithm proposed by Cohen et al. [69] explores a
projected RED via Fixed-Point Projection approach (RED-PRO). Rather than explicitly
defining the regularization term, the fixed-point set of a demi-contractive denoiser D {x ∈
Rn : x = D(x)} is considered as a prior for the image restoration. However, in practice,
verifying the assumption that the denoiser is demi-contractive is not straightforward [70].

2.4.2.3 The score function in the context of Plug-and-play MAP estimators

A different approach leading to the same formulation as RED uses Tweedie’s identity
to match the score function with an MMSE denoiser.

38

2.4. Learning to Regularize inverse problems

Starting from the MAP estimation for solving an inverse problem, we have:

x̂MAP = argmin
x

1
2 ∥y − Ax∥2

2 − σ2 log(p(x)). (2.44)

Solving Eq. 2.44 by Steepest Descent (SD) amounts to solving the iterative formula:

x̂k+1 = x̂k − γk[AT (Axk − y)− σ2∇x log(p(x))|x̂k
], (2.45)

where ∇x log(p(x)) is defined as the score function in statistical literature. Moreover, a
well-known mathematical finding commonly credited to Tweedie [71], [72], Stein [73] or
Miyasawa [74] outlines:

∇y log(pσ0(y)) = D(y, σ0)− y

σ2
0

, (2.46)

where y = x + v is a degraded version of x, corrupted with AWGN v ∼ N (0, σ2
0I), and

D(y, σ0) is the optimal MMSE denoiser for a Gaussian noise of standard deviation σ0.
The proof of this result is relatively straightforward and can be found in [7].

However, the relevant score function is that of the noisy observation density pσ0(y),
rather than the one corresponding to the prior density desired in Eq. 2.45. The noisy
observation density pσ0(y) is the result of a convolution between the prior density p(x)
and the noise distribution: pσ0(y) = p(x) ⊗ N (0, σ2

0I). It is assumed, that when σ0 is
sufficiently small, p(x) can be approximated by a slightly blurry PDF, and the update in
Eq. 2.45 becomes:

x̂k+1 = x̂k − γk[AT (Axk − y) + c(x̂k −D(x̂k, σ0)]. (2.47)

Here, c = σ2

σ2
0
, and this is equivalent to the RED algorithm when solved with Steepest

Descent.

In practice, we don’t know the real prior distribution of natural images, hence we
cannot obtain the MMSE denoiser. However, deep denoisers can often approximate the
MMSE denoisers very well, given that they are typically learned using an MSE loss on a
large set of natural images.

39

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

2.4.2.4 Posterior sampling: The score function in the context of MMSE es-
timators

Different from the aforementioned approaches, we elaborate here on the computation
of MMSE estimators. We recall that the MMSE estimator of the posterior mean is given
by:

x̂MMSE =
∫

xp(x|y)dx. (2.48)

This computation can be challenging, as it consists in estimating high dimensional
integrals. Therefore, sampling algorithms such as the Monte Carlo integration method
can be used in order to perform numerical integration. Posterior sampling has been
considered in [5]–[8].

When solving 2.48, sampling algorithms consist in taking different samples from the
posterior distribution. As the number of samples increases, the average of those samples
approaches the expected value of the random variable. In the context of integration, this
means that as we consider more samples, the average of the function values over those
samples converges to the true integral value.

Posterior sampling approaches are largely based on the annealed Langevin dynamics
algorithm [6], a Monte Carlo method with the subsequent transition rule:

xk+1 = xk + γ∇ log p(xk|y) +
√

2γzk

= xk + γ∇ log p(y|xk) + γ∇ log p(xk) +
√

2γzk,
(2.49)

where zk ∼ N (0, I) and γ > 0 is a step-size. The term ∇ log p(y|xk) reflects the data
fidelity and ∇ log p(xk) is the score function which can be approximated by an MMSE
denoiser as discussed in Section 2.4.2.3. Finally, Eq. 2.49 is an iterative algorithm that
converges towards a solution that reflects the posterior distribution.

2.4.3 Regularizing through generative models

Another category of methods define the image prior by generative models such as a
Generative Adversarial Network (GAN) [75] or a Variational Audoencoder (VAE) [76]. A
generative model G : Rk → Rn learns to take a low-dimenstional latent variable z ∈ Rk

and map it to a high dimensional sample space x ∈ Rn such that x = G(z). The idea is
to solve the MAP estimator on the latent variable z and restrict the output to be in the

40

2.4. Learning to Regularize inverse problems

range of the generator:

ẑ = argmin
z
− log p(y|G(z))− log p(z), (2.50)

The reconstructed image is obtained by x̂ = G(ẑ). This approach was first introduced by
Bora et al. [77], motivated by the fact that well-trained generative models approximate
the space of natural signals or images.

Subsequently, a lot of research has been done in this direction, resulting in using
generative models for regularizing inverse problems either implicitly by restricting the
solution in the range of a generative model, or explicitly by learning a CNN regularizer
using generative models.

Shah et al. [78] later proposed to solve the approach proposed by [77] with a projected
gradient descent algorithm and discussed convergence guarantees.

Furthermore, rather than restricting x̂ to fall within the range of the generator and
minimizing on the latent variable z, Gonzalez et al. [79] optimize the joint posterior
p(x, z|y) of the space variable x and the latent variable z, given the observation y. They
evaluate the joint MAPx,z estimator (JPMAP) using a VAE prior. The authors also
emphasize the importance of training the VAE with a denoising criterion (denoising VAE)
proposed by [80], which results in a more robust encoder that can generalize well for inputs
that do not lie in the manifold of the generator network. However, a limitation of JPMAP
lies in the fact that it is tailored for VAEs with a fixed Gaussian prior distribution over
the latent space, which confines its applicability to toy examples.

In a subsequent work [81], Prost et al. generalize the JPMAP framework to regularize
inverse problems with Hierarchical Variational Autoencoders (HVAE). In this context,
the regularization strength can be controlled using the temperature of the prior in the
latent space (the temperature refers to a hyper-parameter that controls the smoothness
of the generated samples). This approach also overcomes the limitation of the previous
JPMAP [79] to simple VAEs.

2.4.4 End-to-end learning of the regularization function via deep
unrolling

Introduced by Gregor et al. [82], the idea of deep unrolling quickly grabbed the interest
of researchers and made significant progress in subsequent works [83]–[88]. In the context
of deep unrolling, often referred to as algorithm unrolling, the regularizing function is

41

Part I, Chapter 2 – An overview of inverse problems in perspective imagery

learned end-to-end for a specific inverse problem. The idea is to iterate an optimization
algorithm for a pre-determined number of iterations, and to replace the regularization
function with a CNN to be learned specifically for a particular problem. The learned
network replaces the gradient of the regularizer in the case of a gradient-based algorithm,
or its proximal operator if the iterative algorithm is a proximal algorithm. These networks
are often referred to as Artifact Removal operators trained to remove artifacts specific to
the forward model.

For a more comprehensive understanding of deep unrolling, we illustrate the case of
the algorithm of unrolled gradient descent. Solving Eq. 2.17 with the gradient descent
algorithm amounts to the iterative process described by:

xk+1 = xk − γ[AT (Axk − y) +∇ϕ(xk)], (2.51)

where γ > 0 denotes the step size of the optimization algorithm. In the context of the
unrolled gradient descent, this process is carried out for a specified number of iterations
(referred to as blocks), which we will denote by B. The latter remains constant throughout
both the training and testing phases.

[
I − γAT A

]
(.)

+ γAT y

−γσ2∇ϕ(.)

x̂0

[
I − γAT A

]
(.)

+ γAT y

−γσ2∇ϕ(.)

x̂1 x̂2

[
I − γAT A

]
(.)

+ γAT y

−γσ2∇ϕ(.)

x̂B−1 x̂B...

Figure 2.7 – Unrolled gradient descent framework. Here, ∇ϕ is a trained neural network.
The resulting output x̂ is obtained after B iterations of gradient descent with a fixed step
size of γ.

Figure 2.7 provides an illustrative representation. Here, the neural network parame-
terizes the gradient of the regularizer∇ϕ, which is learned in conjunction with the forward
model A and training observations yi. The learning process involves minimizing a loss
function quantifying the discrepancy between the ground truth images xi and the output
of the full network x̂(yi). Therefore, this end-to-end learning approach tailors the learned
component specifically to the underlying forward model.

As a result of the prior being specifically learned for the inverse problem in hand,
deep unrolling methods yield significantly improved performance compared to Plug-and-
play methods where the prior is generic. However, these end-to-end approaches lose the
genericity of Plug-and-play algorithms. Furthermore, it is not clear what interpretation

42

2.4. Learning to Regularize inverse problems

can be given to the trained network which does not only learn prior knowledge on images,
but also task-specific features.

43

Chapter 3

REGULARIZATION OF THE DEEP IMAGE

PRIOR WITH A DEEP DENOISER

3.1 Introduction

As deep learning evolved in the past decade, the utilization of end-to-end training
methods brought about a significant breakthrough in solving inverse problems. Neural
networks are typically used to learn to reconstruct degraded images by using a large
amount of data, without any knowledge of the degradation operator.

As previously discussed in Section 2.4.1 , an exceptional work by Ulyanov et al. [1]
proposed to leverage the power of deep neural networks in a different way. The authors
present the Deep Image Prior (DIP), where they show that the architecture of a generator
network itself can be used as a regularization for inverse problems. DIP is an un-trained
generative model that fits its parameters for the degraded image. Therefore, the prior is
essentially hand-crafted, as no component of the model is learned beforehand from data.

Despite its simple formulation, the Deep Image Prior has demonstrated successful
performance in solving various problems, including denoising, super-resolution, and in-
painting. However, its results still lag behind those achieved by other state-of-the-art
methods. This motivates to enhance the DIP by integrating explicit regularization to
boost the implicit one.

Interestingly, prior research has explored the regularization of the DIP, yet these stud-
ies exclusively employed handcrafted regularization techniques, without exploiting the
potential of learned regularizers.

In this chapter, we delve into the regularization of the estimate produced by the
untrained generative DIP. We elaborate a method coupling a learned denoiser with the
Deep Image Prior in the ADMM framework. The goal is to couple advantages of the DIP
only optimized on the input image, with those of a generic prior learned from a large
collection of natural images.

45

Part I, Chapter 3 – Regularization of the Deep Image Prior with a deep denoiser

3.2 Related work: regularized Deep Image Prior

In this section, we elaborate details about the Deep Image Prior and discuss some
regularization methods that have been applied to boost its performance in the literature.
The deep generative model x = fΘ(z) is learned by mapping a random code vector z ∈ RN

to an image x, i.e., by solving

Θ∗ ∈ argmin
Θ

∥AfΘ(z)− y∥2
2 s.t. x∗ = fΘ∗(z) (3.1)

where Θ represents the network parameters. The generator is randomly initialized with
variables Θ, which are optimized iteratively in a way that the output of the network is
close to the target measurements. In most of the applications, a U-Net type architecture
with skip-connections is used, having over 2 million parameters (Figure 3.1). Details of
the network are adapted to the specific application.

Figure 3.1 – Architecture of the Deep Image Prior. An "hourglass" architecture is used.
nu[i], nd[i], ns[i] represent the number of feature maps at the ith layer for the upsampling,
downsampling and skip-connections respectively and ku[i], kd[i], ks[i] denote the kernel
sizes. Skip connections and parameters are defined depending on the application. The
figure is extracted from [1].

46

3.3. Regularizing the Deep Image Prior with a learned denoiser

TV-regularized Deep Image Prior

Liu et al. [89] propose to use a total-variation regularization to enhance the perfor-
mance of the Deep Image Prior. They consider the variational problem defined as:

Θ∗ ∈ argmin
Θ

∥AfΘ(z)− y∥2
2 + λTV (fΘ(z)) s.t. x∗ = fΘ∗(z), (3.2)

and define an l1-based anisotropic TV given by TVaniso(u) = ∑n
i=1 |(Dhu)i| + |(Dvu)i|,

Dhu and Dvu being the first order finite difference discrete operators respectively along
the horizontal and vertical axes. The objective function is minimized using a gradient
descent optimization method.

Subsequently, Cascarano et al. [90] propose to solve this objective function with the
ADMM. Later, the authors propose to add a weight on the TV regularization in [91].
Another difference between the DIP-TV proposed in [89] and the ADMM-DIP-TV [90],
[91] works is that in DIP-TV, anisotropic TV is used, decoupling the contribution of both
horizontal and vertical gradient components, whereas ADMM-DIP-TV uses isotropic TV,
jointly considering the gradient components.

Denoiser-based DIP regularization

Another approach to boost the performance of the DIP is proposed in [92], bringing-in
the concept of Regularization by Denoising (RED) [4], which uses existing denoisers for
regularizing inverse problems. By merging the DIP with the RED, the objective function
of the resulting DeepRED becomes:

argmin
Θ

1
2 ∥AfΘ(z)− y∥2

2 + λ

2 [fΘ(z)]T ([fΘ(z)]−D(fΘ(z))), (3.3)

where D is a denoiser applied on the output of the generative network, that they replace
with the BM3D [67]. Here, the optimization is solved using ADMM.

3.3 Regularizing the Deep Image Prior with a learned
denoiser

We propose to regularize the estimate produced by the DIP with a learned denoiser.
With this combination, we aim to combine the benefits of a generic prior learned on a

47

Part I, Chapter 3 – Regularization of the Deep Image Prior with a deep denoiser

large set of natural images and those of the Deep Image Prior optimized only on the input
image, where the network architecture itself plays the role of the regularization.

Let us consider the problem of regularizing the DIP optimization:

Θ∗ ∈ argmin
Θ

1
2 ∥AfΘ(z)− y∥2

2 + σ2ϕ(x)

s.t. x∗ = fΘ∗(z),
(3.4)

where we want to replace ϕ with a learned regularizer. For simplicity, we will replace
fΘ(z) by t wherever convenient. The augmented lagrangian form of the Eq. 3.4 can be
written as:

L(x, t, l) = 1
2 ∥At− y∥2

2 + σ2 ϕ(x) + ρ

2

∥∥∥∥∥x− t + l

ρ

∥∥∥∥∥
2

2
− 1

2ρ
∥l∥2

2, (3.5)

with ρ being a positive penalty parameter of the constraint, and l the dual variable.
This minimization problem is solved using the iterative ADMM method. By alternatively
optimizing x, t and l of the augmented Lagrangian L(x, t, l), the ADMM iterate reads as:

tk+1 = fΘk+1(z) with

Θk+1 = argmin
Θ

1
2 ∥AfΘ(z)− y∥2

2 + ρ

∥∥∥∥∥xk − fΘ(z) + lk

ρ

∥∥∥∥∥
2

2
, (3.6)

xk+1 = argmin
x

1
2

∥∥∥∥∥x− tk+1 + lk

ρ

∥∥∥∥∥
2

2
+ σ2

ρ
ϕ(x), (3.7)

lk+1 = lk + ρ(xk+1 − tk+1). (3.8)

As discussed in Section 2.4.2.1, the x-update can be rewritten as xk+1 = proxσ2
ρ

ϕ
(tk+1−

lk

ρ
) and can be replaced by a denoiser. Hence, inspired by [55], we propose to replace the

x-update by a learned denoiser [2]. We thus get:

xk+1 = Ds(tk+1 − lk

ρ
), (3.9)

with Ds being a learned denoiser and s = σ√
ρ
. We use the DRUNet [2], a state-of-the-art

deep denoiser, which takes as input the noisy image concatenated in the channel dimension
with a noise level map. It is worth noting that since ADMM separates the regularization

48

3.4. Experimental results

(a) Zebra (b) House (c) Lighthouse

(d) Cameraman (e) Butterfly (f) Hill

Figure 3.2 – The set of images used for the numerical experiments.

term ϕ from the degradation matrix A, the learned proximal operator can be used with
any linear operator.

In practice, Eq. 3.6 can’t be solved exactly due to the non-linearity of fΘ(z). Fur-
thermore, the DIP should not overfit the exact solution in order to provide an additional
regularization effect in complement to the denoiser. Therefore, we solve Eq. 3.6 inexactly
by performing a fixed number nDIP of gradient descent iterations within the ADMM it-
erations. For the initialization, we optimize the DIP using the original method [1] which
performs gradient descent to optimize Eq. 3.1. A number ninit of iterations is used for
this initialization, followed by nADMM iterations of the ADMM scheme.

We note that this approach can also be seen as a sort of a Plug-and-play ADMM,
where the data-term is given by the generative Deep Image Prior.

3.4 Experimental results

We have reproduced the results of DIP [1], DIPTV [89], ADMM-DIPTV [90] and
DeepRED [92] for the problems of denoising and super-resolution and we have compared
them with our proposed method. In order to evaluate the input of the DIP in the PnP-
ADMM algorithm, we have also compared the results with the PnP-ADMM with the
denoiser of [2] for super-resolution, and with the denoiser for the inverse problem of
denoising.

The test dataset (Figure 3.2) was formed by taking the 5 natural images from the

49

Part I, Chapter 3 – Regularization of the Deep Image Prior with a deep denoiser

ADMM-DIPTV paper [90], and the zebra image used in [1], which contains interesting
high frequency patterns.

In [90], the authors use isotropic TV and analyze the addition of ADMM by comparing
with anisotropic TV in [89]. For the sake of a fair comparison between [89] and [90], we
have reproduced the anisotropic version of both of the methods. For DeepRED, we have
used the code provided by the authors which applies the BM3D denoiser to regularize the
DIP optimization.

For fair comparisons, we have used the same network architecture for the DIP in all
the compared methods.

(i) Denoising (ii) Super-resolution
σ = 20 σ = 30 Factor 4 Factor 8

ninit 1750 1750 2500 4000
nADMM 100 100 100 100
nDIP 250 250 200 150
s 20 30 41 45
Step size 0.01 0.01 0.01 0.01

Table 3.1 – Parameters used for the proposed method for (i) Denoising with noise standard
deviations of (σ = 20 and σ = 30), (ii) Super-Resolution of factor 4 and 8. ninit: DIP
iterations at initialisation, nADMM : ADMM iterations, nDIP : number of iterations of Eq.
3.6 in each iteration of ADMM, s: noise level assumed by the learned denoiser in Eq. 3.9.
The same step size is used for all gradient descent steps.

Table 3.1 shows the parameters used for the proposed method for each of the cases of
denoising and super-resolution. Tables 3.2 and 3.3 show the PSNR [dB] results for each
of the compared methods for denoising and super-resolution respectively. The PSNR
measures presented in this thesis are computed on the RGB channels in the following
way:

PSNR = 10 · log10

(
MAX2

I

MSE

)
, (3.10)

where MAX2
I is the maximum possible pixel value in the image (i.e. 1 or 255 depending

whether the image is normalized or not), and MSE is the Mean Squared Error calculated
as:

MSE = 1
W.H

W −1∑
x=0

H−1∑
y=0

((Î(x, y)− Igt(x, y))2 (3.11)

50

3.4. Experimental results

DIP DIPTV ADMM-DIPTV denoiser DIP-denoiser-ADMM
(i)

σ
=

20

House 27.93 27.81 27.96 31.55 31.35
Zebra 29.98 29.63 29.5 31.21 31.1
Lighthouse 29.03 29.55 29.3 32.18 31.96
Hill 31.29 32.53 32.07 34.02 33.93
Butterfly 30.07 30.52 30.62 33.23 32.96
Cameraman 30.01 31.4 31.04 33.7 33.67
Average 29.72 30.24 30.08 32.64 32.49

(ii
)

σ
=

30

House 25.75 26.18 25.72 29.28 29.15
Zebra 27.34 27.52 27.58 28.93 28.87
Lighthouse 26.7 27.48 27.2 29.96 29.75
Hill 29.61 30.81 30.28 32.62 32.51
Butterfly 28.16 28.48 28.52 30.85 30.83
Cameraman 27.79 28.88 28.41 31.15 31.14
Average 27.55 28.23 27.95 30.46 30.37

Table 3.2 – PSNR [dB] of denoised images obtained with TV, DIP[1], DIPTV[89], ADMM-
DIPTV[90], the denoiser of [2] and our proposed method, for noise standard deviations
of (i) 20 and (ii) 30.

where H and W represent the number of rows and columns in the image respectively and
Î(x, y) and Igt(x, y) represent the pixel value of the reconstructed and original images at
position (x, y) respectively.

For denoising (Table 3.2), we can see that, our proposed method significantly improves
the result of the DIP. Hence, as expected, learned regularizers outperform handcrafted
regularizers when regularizing the DIP optimization. However, the learned denoiser itself
performs better alone, and the DIP does not have an added value in this case. This was
expected in the case of denoising, since the network is learned end-to-end for the denoising
task.

However, for the task of super resolution (Table 3.3), we have a different outcome. In
fact, we can see again that regularizing with a learned denoiser over the DIP optimization
gives a better performance than using handcrafted priors. But also, as opposed to what
we had for the denoising, combining the DIP with the denoiser improves the performance
of the learned regularizer alone. This means that combining a prior learned on a large set
of natural images with the untrained generative DIP is advantageous in this case.

The degradation filter we have used for the task of super resolution is a Gaussian filter
of standard deviation σf = 1 for both x4 and x8 super-resolution factors. Visual compar-
isons are shown in Figures 3.3 and 3.4 for super-resolution of factor 4. More visual results

51

Part I, Chapter 3 – Regularization of the Deep Image Prior with a deep denoiser

Bicubic DIP DIPTV ADMM-
DIPTV DeepRED Denoiser-

ADMM
DIP-denoiser

-ADMM

(i)
fa

ct
or

4

House 19.42 19.72 19.85 19.62 19.88 20.06 20.14
Zebra 23.00 24.13 24.31 23.84 24.69 24.71 24.9
Lighthouse 23.09 23.05 23.37 23.17 23.36 23.46 23.45
Hill 26.37 28.44 27.61 27.01 27.81 28.75 28.97
Butterfly 20.95 24.23 23.66 22.47 23.79 24.34 24.42
Cameraman 22.58 23.23 23.27 22.99 23.34 23.34 23.51
Average 22.58 23.80 23.67 23.18 23.81 24.11 24.23

(ii
)

fa
ct

or
8

House 16.25 17.16 17.32 17.11 17.22 16.83 17.21
Zebra 16.84 18.01 18.15 17.75 18.05 17.37 17.84
Lighthouse 19.87 20.6 20.65 20.45 20.65 20.47 20.57
Hill 20.75 22.45 22.1 22.01 22.43 23.46 23.58
Butterfly 15.38 17.04 16.62 16.63 16.80 17.11 17.4
Cameraman 18.94 20.2 20.1 19.95 20.15 19.88 20.19
Average 18.00 19.24 19.15 18.98 19.22 19.18 19.46

Table 3.3 – PSNR [dB] of upsampled images obtained with bicubic interpolation, DIP[1],
DIPTV[89], ADMM-DIPTV[90], DeepRED[92], PnP-ADMM with the denoiser of [2] and
our proposed method, for (i) SR factor 4 and (ii) SR factor 8.

can be found on the web page: http://clim.inria.fr/DeepCIM/Regul-DIP/index.html.

3.5 Conclusion and discussion

In this chapter, we studied different approaches of regularizing the generative Deep
Image Prior. We proposed to regularize the DIP with a learned denoiser, in order to
combine the benefits of a generic prior learned on a large set of natural images and the
regularization provided by the network architecture of the DIP. The proposed denoiser-
based regularization compares favourably with handcrafted priors and can be applied to
different inverse problems. Moreover, the use of DIP improves the performance of the
PnP-ADMM in the case of super-resolution.

However, several aspects were observed while we were working on this contribution.
The parameter tuning of the ADMM algorithm is not a straightforward task. Also, em-
ploying a denoiser adds the complexity of fine-tuning an extra hyper-parameter for each
application, while theoretically, a regularizer should be able to determine the image prior
regardless of the inverse problem in hand. Our experimental implementations led us to
the reflection that solving the DIP optimization could have been significantly simplified

52

http://clim.inria.fr/DeepCIM/Regul-DIP/index.html

3.5. Conclusion and discussion

(a) Ground-truth (b) Bicubic (c) DIP

(d) ADMM-
DIPTV (e) denoiser-

ADMM (f) DIP-denoiser
-ADMM

Figure 3.3 – Visual comparison of super-resolution results on the Butterfly image. Low
resolution image is generated with a Gaussian kernel of standard deviation σf = 1 followed
by a downsampling by a factor of 4.

(a) Ground-truth (b) Bicubic (c) DIP

(d) ADMM-
DIPTV (e) denoiser-

ADMM (f) DIP-denoiser
-ADMM

Figure 3.4 – Visual comparison of super-resolution results on the Cameraman image. Low
resolution image is generated with a Gaussian kernel of standard deviation σf = 1 followed
by a downsampling by a factor of 4.

53

Part I, Chapter 3 – Regularization of the Deep Image Prior with a deep denoiser

by employing a network that directly models the regularizer within a gradient descent
algorithm. In the upcoming chapter, we present a methodology to learn a network mod-
eling the gradient of a regularizer, by using a deep denoiser. Given that a denoiser can be
seen as an implicit prior, we aim to learn a network that models this prior. The resulting
network enables solving inverse problems using the prior embedded in a denoiser with a
simple gradient descent algorithm, avoiding the complexity of the parameter tuning in
proximal algorithms.

54

Chapter 4

PNP-REG: LEARNED REGULARIZING

GRADIENT FOR PLUG-AND-PLAY

GRADIENT DESCENT

4.1 Introduction

In this chapter, we present a novel approach to regularize inverse problems using deep
neural networks. We propose a framework to train a network that models the gradient of
a regularizer, which can be used in a Plug-and-play gradient descent algorithm to solve
any inverse problem.

The Plug-and-play (PnP) framework, introduced in [55], makes it possible to inte-
grate advanced image denoising priors into optimization algorithms, to efficiently solve a
variety of image restoration tasks generally formulated as Maximum A Posteriori (MAP)
estimation problems. However, as already discussed in Chapters 2 and 3, PnP methods
remain limited to proximal algorithms, which makes the task of parameter tuning quite
challenging. This introduces complexity and reduces the algorithm’s comprehensibility
and ease of interpretation. Subsequent work, such as RED [4] and PnP-SGD [64], used an
explicit regularization to circumvent this issue. These methods use the denoising residual
as the gradient of the regularization and are not always restricted to proximal algorithms.
A recent method called GS-PnP [3] plugs a denoiser trained to perform an exact gradient
step on a regularization function represented by a CNN, leading to convergence guaran-
tees. Another line of work considers score matching methods that solve inverse problems
in the MMSE framework. However, these methods approximate the true signal density
by using a MMSE denoiser’s residual which is proportional to the gradient of the log of
the noisy signal density.

A common issue shared by all these methods is that the regularization term is (im-
plicitly or explicitly) defined by a denoiser. This involves an additional noise level hyper-

55

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

parameter that must be tuned per-application. However, in theory, a regularizer (and
thus its gradient) should fully determine the image prior, regardless of the task to be
solved.

We propose a novel approach to train a network modeling the gradient of a regularizer.
Our method makes use of a second network pre-trained for the denoising task. Our goal is
to transfer the prior implicitly defined by a denoiser to a regularizing network. Hence, we
aim to use our network in a simple gradient descent algorithm, to avoid the challenging
parameter tuning of proximal PnP algorithms. Based on the assumption that the denoiser
represents the proximal operator of an underlying differentiable regularizer (defining the
image prior), we derive a loss function that links the denoiser and the regularizer’s gra-
dient. However, since there is no guarantee that this assumption is mathematically valid
for a denoising neural network, we propose an approach where the pre-trained denoiser is
modified jointly with the training of our regularizing network. This approach encourages
the denoiser to be consistent with the definition of a proximal operator of a differentiable
regularizer, and significantly improves our results in comparison to keeping the denoiser
fixed.

We use our network to solve different inverse problems such as super-resolution, de-
blurring and pixel-wise inpainting in a simple gradient-based algorithm, and obtain better
results when comparing to other generic methods. We also show that our training method
can advantageously serve as a pre-training strategy, later facilitating a per-application
tuning of the regularization network in the framework of unrolled gradient descent.

4.2 Notations and problem statement

In this section, we quickly revisit some previously established notations to ensure
reader clarity and precision, and we introduce the problem that we treat in this chapter.

In this thesis, we consider linear inverse problems of the form:

y = Ax + η, (4.1)

where A ∈ Rm×n represents the degradation operator depending on the inverse problem
and η ∼ N (0, σ2I) typically represents Additive White Gaussian Noise (AWGN) of stan-
dard deviation σ. The reconstruction can be treated using Bayesian estimation that uses
the posterior conditional probability p(x|y). Maximum a posteriori probability (MAP) is

56

4.2. Notations and problem statement

the most popular estimator in this scheme, where the estimation task is modeled as the
optimization problem:

x̂MAP = argmin
x

1
2 ∥y − Ax∥2

2 + σ2 ϕ(x), (4.2)

where f(x) = 1
2 ∥y − Ax∥2

2 is the data fidelity term whereas the ϕ(x) is the regularization
term. Details of this notation can be found in Section 2.2.3. The problem in Eq. 4.2
does not have a closed-form solution in general. Therefore, it must be solved using differ-
ent optimization algorithms. The Plug-and-play framework typically considers proximal
splitting algorithms which decompose the problem into two sub-problems (one for each
term in Eq. 4.2) and solve them alternately. In these algorithms, the regularization sub-
problem consists in evaluating the proximal operator of the regularization term defined
as:

proxσ2ϕ(z) = argmin
x
Fϕ(x, z, σ),

with Fϕ(x, z, σ) = 1
2 ∥x− z∥2

2 + σ2 ϕ(x).
(4.3)

This sub-problem can be replaced by a state-of-the-art Gaussian denoiser in a Plug-and-
play proximal algorithm, since the proximal operator in Eq. 4.3 can be seen as a particular
case of inverse problem where the degradation operator A is the identity matrix, and the
degradation only consists in the addition of White Gaussian Noise of standard deviation
σ.

However, this approach does not directly generalize to the gradient descent algorithm
where the update formula for the minimization in Eq. 4.2 is expressed as:

x̂k+1 = x̂k − µ
[
∇f(x̂k) + σ2∇ϕ(x̂k)

]
,

= x̂k − µ
[
AT (Ax̂k − y) + σ2∇ϕ(x̂k)

]
,

(4.4)

µ being the step size. Here, instead of the proximal operator of the regularizer ϕ, we need
its gradient ∇ϕ, which cannot be replaced by a denoiser. In this chapter, we propose
to train a network G that can serve as the gradient of the regularization term in the
Plug-and-play gradient descent (Algorithm 4).

57

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

Algorithm 4 Plug-and-play gradient descent
Input: y, σ, µ, N
Output: x

1: x0 ← y
2: for k ← 0 to N − 1 do
3: Apply GR ← G(xk)
4: xk+1 ← xk − µ[AT (A.xk − y) + σ2GR]
5: end for

4.3 Training of the gradient of a regularizer

4.3.1 Mathematical derivations

We show in the following that it is mathematically possible to train a network that
models the gradient of a regularizer by using a deep denoiser. Let us consider a denoiser
Dσ defined as the proximal operator in Eq. 4.3:

Dσ(z) = argmin
x
Fϕ(x, z, σ). (4.5)

Hence, for σ and z fixed, the denoised image x = Dσ(z) minimizes Fϕ(x, z, σ). Therefore,
we have:

∂Fϕ

∂x

∣∣∣∣
x=Dσ(z)

= 0, (4.6)

Furthermore, ∂Fϕ

∂x
can be computed as:

∂Fϕ

∂x
=

∂
[

1
2 ∥x− z∥2

2 + σ2 ϕ(x)
]

∂x
, (4.7)

= x− z + σ2.
∂ϕ(x)

∂x
. (4.8)

Evaluating at the denoised image x = Dσ(z) thus gives:

∂Fϕ

∂x

∣∣∣∣
x=Dσ(z)

= Dσ(z)− z + σ2.
∂ϕ(x)

∂x

∣∣∣∣
x=Dσ(z)

. (4.9)

58

4.3. Training of the gradient of a regularizer

Using Eq. 4.6 and Eq. 4.9, we obtain:

Dσ(z)− z + σ2.
∂ϕ(x)

∂x

∣∣∣∣
x=Dσ(z)

= 0, (4.10)

σ2.
∂ϕ(x)

∂x

∣∣∣∣
x=Dσ(z)

= z −Dσ(z), (4.11)

σ2.∇ϕ(Dσ(z)) = z −Dσ(z). (4.12)

Using Eq. 4.12, we can thus train a network G to model∇ϕ (i.e. gradient of the regularizer
with respect to its input image) using the loss function:

LG =

∥∥∥∥∥∥σ2
[
G(Dσ(z))

]
− (z −Dσ(z))

∥∥∥∥∥∥
2

2

. (4.13)

This requires the knowledge of the corresponding denoiser Dσ. Note that Eq. 4.12 is
valid for any value of σ regardless of the degradation in z. Hence, σ can be seen as a free
parameter of our loss LG. For small values of σ, the input Dσ(z) of the network G will be
close to the degraded image z. Hence G will be trained to fit the artifacts in the degraded
images (e.g. noise). On the other hand, for high values of σ, the input of G will be a
strongly denoised image, with reduced artifacts but less details. Hence, G will be trained
to recover the missing details. During the training, we vary the value of this parameter so
that our network can recover details while also removing artifacts (see details in Section
4.3.2).

Also note that in practice, since ϕ is meant to be used in gradient-based algorithms,
we only need the gradient ∇ϕ rather than an explicit definition of ϕ. Hence, we propose
in what follows a framework for training G jointly with the denoiser D, so that G can then
be used in place of ∇ϕ in Plug-and-play gradient descent. In the remainder of the paper,
we refer to G as the regularizing gradient network (ReG).

4.3.2 Training framework for the regularizing gradient network
G

The training framework is depicted in Figure 4.1. Let ν → N (0, σ0) be a white Gaus-
sian noise of standard deviation σ0 that we use to corrupt the ground truth images x0

of the training dataset to produce degraded images z = x0 + ν. Let σ be a standard
deviation value used as a parameter of our loss LG, as defined in Section 4.3.1. In order to

59

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

x0 + ν

σ

D G

LG =

∥∥∥∥∥∥σ2
[
G(Dσ(z))

]
− (z −Dσ(z))

∥∥∥∥∥∥
2

2

LDσ = ∥Dσ(z)− x0∥1

ν → N (0, σ0)
◦ concatenate

z

Dσ(z) G(Dσ(z))

Figure 4.1 – Framework for joint training of D and G.

handle different values of σ in Eq. 4.13, Dσ is modeled as a non-blind deep denoiser that
takes as input a noise level map (i.e. each pixel of the noise level map being equal to σ)
concatenated with the noisy image z. This approach has been previously suggested in [2],
[93], [94]. Note that if the denoiser Dσ does not satisfy the formal definition of a MAP
Gaussian denoiser for some differentiable prior, there may not exist a function ∇ϕ that
satisfies Eq. 4.12. We prevent this issue by starting from a pre-trained denoiser which
we jointly update along with the training of the ReG network G. In order to preserve the
denoising performance of Dσ during the training, we use an additional denoising loss LDσ

defined as:
LDσ = ∥Dσ(z)− x0∥1 . (4.14)

Note that Eq. 4.14 is a suitable loss for the denoiser only when σ = σ0 since the non-
blind denoiser must be parameterized with the true noise level σ0 of the noisy input.
The denoised output Dσ(z) is then inputted to the network modeling the gradient of the
regularizer in order to train it using the loss LG defined in Eq. 4.13.

Hence, our goal is to minimize the global loss defined as:

L = δ LDσ + λ LG, (4.15)

where λ > 0 and δ =

 1 if σ0 = σ

0 otherwise.

For training the deep denoiser network, we should set the noise level σ inputted to the
network equal to the actual noise level σ0 used for generating ν. However, as explained
in Section 4.3.1, for the loss LG, it is preferable to select σ independently of σ0. Hence,
the input Dσ(z) of the ReG network G can cover a wide range of alterations, including

60

4.3. Training of the gradient of a regularizer

Figure 4.2 – Architecture of G. The architecture is similar to the DRUNet architecture
[2], with the input channel set to 3 instead of 4 (the ReG network does not need a noise
level map as additional input as it does not depend on noise level).

images with remaining noise (i.e. σ < σ0) or with too strong denoising, and thus less
details (i.e. σ > σ0). We therefore choose to alternate during the training between either
selecting independently σ and σ0, or setting σ = σ0 in order to keep D faithful to the
data. Furthermore, since the denoiser loss LDσ is only valid when σ = σ0, we omit this
loss when σ ̸= σ0 by setting δ = 0.

Note that we only need to alternate between setting σ = σ0 and σ ̸= σ0 because we
choose to train the denoiser jointly with the ReG network. A simpler training strategy
would consist in first training the denoiser separately (only with the loss LDσ and with
σ = σ0), and then training the regularizer (only with the loss LG and with σ ̸= σ0).
However, our experimental results in Section 4.4.3 clearly show the advantage of our joint
training scheme, which confirms that the separately trained denoiser does not satisfy the
assumption of a Gaussian MAP denoiser for a differentiable prior.

4.3.3 Training details

For the training, we have used a state-of-the-art deep denoiser architecture in order to
train our ReG network. We have chosen to work with the DRUNet proposed in [2] which
is a combination of U-Net [95] and ResNet [96]. DRUNet additionally uses a bias-free
network architecture, which has been shown to allow for good generalization of denoisers
over various noise levels, even if they were not seen during training [97]. Given that it
takes as input the noisy image concatenated in the channel dimension with a noise level
map, it can suitably represent the non-blind denoiser Dσ.

61

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

The architecture of G is shown in Figure 4.2. It is the same architecture as the bias-
free DRUNet denoiser, with the only difference that it does not take a noise level map as
additional input.

We have initialized Dσ using the pre-trained DRUNet denoiser (which we have re-
produced based on the work in [2]). Then, we have trained G while jointly updating Dσ,
following the proposed framework in Section 4.3.2. The weight λ of the loss LG in Eq. 4.15
has been set equal to 0.004. The parameters σ and σ0 have been selected following the
alternating strategy described in Section 4.3.2: for half of the training iterations, we have
used σ = σ0 with a value chosen randomly with uniform distribution in [0, 50]; otherwise,
σ and σ0 have been chosen independently with the same uniform distribution.

The remaining training details are similar to the ones presented in [2] for the DRUNet
training: the same large dataset of 8694 images composed of images from the Waterloo
Exploration Database [98], the Berkeley Segmentation Database [99], the DIV2K dataset
[100] and the Flick2K dataset [101] has been used. 16 patches of 128x128 have been
randomly sampled from the training dataset for each iteration. We have used the ADAM
optimizer [102] to minimize the loss L defined in Eq. 4.15. The learning rate has been
initially set to 1e-4, and decreased by half every 100,000 iterations until reaching 5e-7,
where the training stops.

4.4 Experimental results

4.4.1 Plug-and-play gradient descent

In this section, we evaluate the performance of the Plug-and-play gradient descent
based on our ReG network. We refer to this approach as Plug-and-play Regularizing
Gradient (PnP-ReG). We perform the evaluation on several inverse problems: super-
resolution, deblurring and pixel-wise inpainting. Evaluations in this section are performed
over the Set5 [103] and the CBSD68 [104] test datasets.

As the main goal of this approach is to solve inverse problems using simple gradient-
based algorithms with a generic regularizer, we compare ourselves to algorithms that
are designed to solve different inverse problems using a single regularization network
in a Plug-and-play framework. Hence, we compare the performance of our PnP-ReG
method to the PnP-ADMM with the DRUNet denoiser from [2] (see Appendix A.1 for
the classical ADMM formulation and parameterization); the RED method [4] in gradient

62

4.4. Experimental results

descent with the same DRUNet denoiser; GS-PnP [3] where the network architecture used
in the denoising function is the DRUNet as well; and Chang’s projection operator (One-
Net) [105] used in an ADMM framework. We also include a comparison with the Implicit
Prior of [7] only for pixel-wise inpainting, since the method is based on the assumption
that the kernel matrix is semi-orthogonal, which is not the case for the super-resolution
and deblurring applications in our work.

For fair comparisons, we have reproduced all the results under the same conditions, i.e.
using the same initialization and the same degradation operator A for each application
as described in the following subsection. We have tuned the parameters of each method
on the Set5 dataset for each application to obtain the best results, and we have used the
same parameters for the CBSD68 dataset.

4.4.1.1 Parameters setting and implementation details

In this section, we give further implementation and parameterization details for our
method as well as for the reference methods.

For the experimental results, we have used the ADAM optimizer [102] instead of the
simple gradient step (i.e. line 4 in Algorithm 4) to solve Eq. 4.2 in the Plug-and-play
framework. Similarly to [2], we have applied a periodical geometric self-ensemble data-
augmentation method. This involves one transformation (e.g. flipping, rotation) on the
input of the network and the counterpart inverse transformation on the output. Table 4.1
shows the parameters used during testing for PnP-ReG. The number of iterations N is
set to 1500. In theory, the parameter σ in Eq. 4.2 should be equal to the true standard
deviation σn of the Gaussian noise added on the degraded image. However, when σn = 0
(e.g. noiseless super-resolution, pixel-wise inpainting), choosing σ = 0 would completely
remove the regularization term. For these cases, we choose a small non-zero value of σ

depending on the application.
To reproduce the results of [105] we have used the model trained by the authors,

which takes input images of size 64x64. Hence we have applied the network on quarter-
overlapping sample patches in order to enhance the results by avoiding block artifacts.
Table A.2 in Appendix A.2 lists the tuned hyper-parameters for the reproduction of [105].

We have implemented RED [4] with gradient descent using the DRUNet denoiser.
For fair comparisons with our method, we have used the ADAM optimizer to perform
the gradient update step. The number of iterations is set to 300 for the tasks of Super-
resolution and Deblurring, and 800 in the case of pixel-wise inpainting. Table A.3 in

63

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

Appendix A.2 shows the tuned parameters for the implementation of RED.
For GS-PnP [3], we have used the parameters described in the paper, except for the

standard deviation parameter of the denoiser in Super-resolution (noiseless or low-noise
cases) and pixel-wise inpainting. In general, for a noise standard deviation σn in the
degradation, the authors of [3] suggest to parameterize the denoiser with a standard
deviation of 2 ∗ σn. However, this is not suitable for the noiseless applications where
σn = 0 (e.g. noiseless super-resolution, pixel-wise inpainting). Therefore, we have tuned
this parameter and have set a denoiser standard deviation of 6/255 for Super-resolution
in our paper. For pixel-wise inpainting, we have set this parameter to 50/255 for the first
20 iterations and to 20/255 for subsequent iterations. The remaining parameters were
chosen as described in [3].

For the pixel-wise inpainting results of the Implicit Prior in [7], we have used the
parameters suggested by the authors in the paper. We have computed the results by
averaging 10 samples obtained with their stochastic method, as done in the original paper.

Finally, we have compared with the PnP-ADMM using DRUNet [2]. The PnP-ADMM
formulation and its parameterization is elaborated in Appendix A.1. Furthermore, we
have applied the periodical geometric self-ensemble data augmentation during the test
as done in [2]. Table A.1 in Appendix A.1 shows the parameters that yielded the best
results for the PnP-ADMM. We note that in the cases where we have added noise, fixing
the standard deviation parameter of the denoiser gave better results than decreasing it
throughout the iterations.

4.4.1.2 Super-resolution

First, we test our approach on the task of super-resolution. Low resolution images
have been generated by applying a convolution kernel followed by a downsampling by a
factor t. We have evaluated our method with bicubic and Gaussian convolutional kernels,
with both 2x and 3x downsampling scales and Gaussian noise with 3 different noise levels
σn = {0.0,

√
2, 2.55}/255. The Gaussian kernel has a standard deviation of σb = 0.5 · t

(i.e. σb = 1 for x2 and σb = 1.5 for x3). In all the cases, the gradient descent has
been initialized with a high resolution image obtained by the bicubic upsampling of the
degraded image.

Tables 4.2 and 4.3 give a numerical comparison of our method with the aforementioned
generic approaches for super-resolution of factor 2 and 3 respectively, for both bicubic and
Gaussian filters. Numerical comparison gives higher values for PnP-ReG compared to the

64

4.4. Experimental results

Table 4.1 – Parameters used for our PnP-ReG method. µ: gradient step size, σ: weight
of the regularization, σn: standard deviation of the AWGN added on the degraded image.

σn ∗ 255 µ σ ∗ 255

Super-resolution x2

Bicubic
0 0.008 1.2√
2 0.002

√
2

2.55 0.002 2.55

Gaussian
0 0.008 0.8√
2 0.002

√
2

2.55 0.002 2.55

Super-resolution x3

Bicubic
0 0.002 0.9√
2 0.002

√
2

2.55 0.002 2.55

Gaussian
0 0.004 0.4√
2 0.002

√
2

2.55 0.002 2.55

Deblurring

√
2 0.004

√
2

2.55 0.004 2.55
7.65 0.004 7.65
√

2 0.005
√

2
2.55 0.005 2.55
7.65 0.005 7.65

Pixel-wise inpainting 0.1 0 0.025 3.6/255
0.2 0 0.01 1/255

existing generic Plug-and-play approaches. Figure 4.3 shows a visual comparison of the
results for a noiseless degradation with a bicubic kernel and a downsampling by a factor
of 2. We observe sharper images with less aliasing artifacts produced by our approach.

4.4.1.3 Deblurring

We have degraded our images using two 25x25 isotropic Gaussian blur kernels of
standard deviations of 1.6 and 2.0, as well as two anisotropic kernels that have been used
in [106]. We have considered White Gaussian noise with 3 noise levels σn = {

√
2, 2.55,

7.65}/255. The blurred image is directly used as the initialization of the Plug-and-play
gradient descent.

Table 4.4 gives the PSNR results [dB] obtained with our method when deblurring

65

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

Ground Truth One-Net GS-PnP

32.50 dB 34.33 dB
RED PnP-ADMM PnP-ReG (Ours)

34.58 dB 34.34 dB 34.87 dB

Figure 4.3 – Visual comparison of super-resolution results obtained with the projection
operator (One-Net) [105], GS-PnP [3], RED [4], PnP-ADMM with the denoiser of [2] and
our PnP-ReG method. Low resolution images generated with a bicubic kernel followed
by a downsampling by a factor of 2.

images which have been degraded with isotropic and anisotropic kernels. We observe
higher PSNR values with respect to the other generic methods for most cases when the
added noise levels are σn = {

√
2, 2.55}/255. However, by increasing the noise level to

7.65/255, the best results have been obtained with GS-PnP. The visual comparison in
Figure 4.4 shows that our approach successfully recovers the details without increasing
the noise.

66

4.4. Experimental results

Table 4.2 – Super-resolution results (measured in PSNR [dB]) obtained with our PnP-
ReG method; the input images have been corrupted using bicubic and Gaussian kernels
followed by downsampling by a factor of 2 and adding Gaussian noise with 3 different
noise levels σn = {0.0,

√
2, 2.55}/255. Comparison with the projection operator (One-Net)

[105], GS-PnP [3], RED [4] and the PnP-ADMM with the denoiser of [2].

(i) Bicubic (ii) Gaussian
σn ∗ 255 0.0

√
2 2.55 0.0

√
2 2.55

Set5

OneNet 33.22 33.70 33.20 32.67 33.08 32.45
GS-PnP 34.58 34.49 34.31 33.98 33.88 33.59
RED 35.05 34.49 33.78 34.99 33.80 32.84
PnP-ADMM 35.20 34.42 33.80 35.14 33.69 32.74
PnP-ReG (Ours) 35.34 34.90 34.29 35.30 34.33 33.41

CBSD68

OneNet 29.48 29.80 29.56 29.08 29.48 29.06
GS-PnP 29.95 29.93 29.81 29.57 29.51 29.39
RED 30.45 30.14 29.73 30.39 29.61 28.99
PnP-ADMM 30.48 30.17 29.92 30.42 29.78 29.23
PnP-ReG (Ours) 30.55 30.34 30.06 30.50 30.01 29.44

4.4.1.4 Pixel-wise inpainting

The degradation in the pixel-wise inpainting task consists of multiplying the ground-
truth image by a binary mask. We have tested our approach with both 20% and 10% of
known pixels rates. For the initialization image x̂0, we have set the color of the unknown
pixels to grey.

Table 4.5 shows a numerical evaluation of our method for the application of pixel-
wise inpainting in terms of PSNR [dB]. We observe significant performance gains of the
PnP-ReG method compared to the other methods, especially in the most challenging case
where the known pixel rate is only 10%. Visual comparisons are given in Figure 4.5.

4.4.2 Unrolled gradient descent with G

Aside from the Plug-and-play gradient descent, our approach for training G can also
serve as a pre-training strategy for unrolled gradient descent. In unrolled optimization
methods, the regularization network is trained for each inverse problem such that applying
a fixed number of iterations of the algorithm (e.g. Eq. 4.4 for gradient descent) best
approximates the ground truth image. We describe the unrolled training approach in

67

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

Table 4.3 – Super-resolution results (measured in PSNR [dB]) obtained with our PnP-
ReG method; the input images have been corrupted using bicubic and Gaussian kernels
followed by downsampling by a factor of 3 and adding Gaussian noise with 3 different
noise levels σn = {0.0,

√
2, 2.55}/255. Comparison with the projection operator (One-Net)

[105], GS-PnP [3], RED [4] and the PnP-ADMM with the denoiser of [2].

(i) Bicubic (ii) Gaussian
σn ∗ 255 0.0

√
2 2.55 0.0

√
2 2.55

Set5

OneNet 29.65 30.18 29.79 29.52 29.71 29.05
GS-PnP 31.48 31.43 31.24 30.91 30.84 30.59
RED 31.47 31.22 30.78 31.44 30.77 30.05
PnP-ADMM 31.49 31.05 30.39 31.45 30.22 29.17
PnP-ReG (Ours) 31.75 31.46 31.13 31.60 31.09 30.39

CBSD68

OneNet 26.17 26.89 26.67 25.21 26.69 26.33
GS-PnP 27.11 27.08 26.99 26.80 26.73 26.64
RED 27.50 27.33 27.11 27.40 27.06 26.24
PnP-ADMM 27.51 27.33 26.97 27.47 26.83 26.20
PnP-ReG (Ours) 27.55 27.41 27.23 27.46 27.17 26.77

Algorithm 5 for a gradient descent optimization. While this end-to-end training strategy
loses the genericity of the Plug-and-play approach, it typically improves the performance.

However, to facilitate the training, it is generally required to initialize the network
weights with a generically pre-trained version. When unrolling proximal algorithms such
as ADMM, a pre-trained deep denoiser can be used since it can be interpreted as the
proximal operator of a generic regularization function. On the other hand, the gradient
descent requires instead the gradient of a regularizer. Hence, a denoiser cannot be directly
used as a pre-trained network. By transferring the image prior implicitly represented by
the denoiser D to our ReG network G, our method thus provides a satisfying pre-trained
network for unrolled gradient descent.

We have tested this approach for noiseless super-resolution of factor 2 and 3, as well as
for deblurring using 2 isotropic Gaussian kernels (with standard deviations of 1.6 and 2.0)
and additive Gaussian noise of standard deviation

√
2/255. We have compared our results

with those obtained when using a network learned end-to-end in an unrolled environment
without the pre-training (i.e. random weight initialization).

Both versions (pre-trained and not pre-trained) have been unrolled in the same con-
ditions. Table 4.6 gives the training parameters for each of the different tasks. For all 4

68

4.4. Experimental results

Table 4.4 – Deblurring results (measured in PSNR [dB]) obtained with our PnP-ReG
method. The input blurred images have been generated using two isotropic Gaussian
kernels of respective standard deviations 1.6 and 2.0, and two anisotropic Gaussian ker-
nels from [2] followed by adding Gaussian noise with 3 different noise levels σn = {

√
2,

2.55,7.65}/255. We compare with the projection operator (One-Net) [105], GS-PnP [3],
RED [4] and the PnP-ADMM with the denoiser of [2].

σn ∗ 255 √
2 2.55 7.65

√
2 2.55 7.65

Set5
OneNet 32.18 31.54 27.86 30.41 29.52 27.20
GS-PnP 32.84 32.31 30.93 31.04 29.98 29.76
RED 32.63 31.76 29.83 31.25 30.62 29.21
PnP-ADMM 32.83 32.06 30.43 31.55 30.88 29.30
PnP-ReG (Ours) 33.40 32.51 30.63 31.96 31.19 29.46

CBSD68
OneNet 28.47 28.27 25.86 26.91 26.97 25.29
GS-PnP 28.98 28.64 27.64 27.5 27.33 26.57
RED 29.02 28.16 26.91 27.63 27.24 26.20
PnP-ADMM 29.21 28.54 27.20 27.91 27.40 26.25
PnP-ReG (Ours) 29.38 28.62 27.07 27.99 27.41 26.21

σn ∗ 255 √
2 2.55 7.65

√
2 2.55 7.65

Set5
OneNet 29.26 28.90 26.71 28.93 28.18 26.76
GS-PnP 30.18 29.30 29.13 29.70 29.07 28.55
RED 30.53 29.98 28.67 29.91 29.53 28.24
PnP-ADMM 31.21 30.56 28.95 30.33 29.07 28.17
PnP-ReG (Ours) 31.26 30.57 28.84 30.67 29.95 28.31

CBSD68
OneNet 26.52 26.57 25.04 25.88 25.94 24.77
GS-PnP 27.02 27.04 26.32 26.27 26.41 25.72
RED 27.36 26.99 26.00 26.61 26.36 25.53
PnP-ADMM 27.83 27.32 26.16 26.9 26.46 25.46
PnP-ReG (Ours) 27.71 27.16 25.96 26.93 26.47 25.47

cases, we have trained the networks using the DIV2K dataset [100] of 800 images, over
600 epochs by randomly taking 48x48 patches from the dataset. In addition, we include a
comparison with Total Deep Variation (TDV) method [88]. TDV also performs unrolled

69

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

Degraded Image One-Net GS-PnP

32.50 dB 34.33 dB
RED PnP-ADMM PnP-ReG (Ours)

34.58 dB 34.34 dB 34.87 dB

Figure 4.4 – Visual comparison of deblurring results obtained with the projection operator
(One-Net) [105], GS-PnP [3], RED [4], PnP-ADMM with the denoiser of [2] and our PnP-
ReG method. The blurred images have been generated using an isotropic Gaussian kernel
of standard deviation σb = 1.6 followed by adding Gaussian noise of standard deviation
σn =

√
2/255.

optimization, where the network represents the gradient of the regularization function. In
[88], the network is not pre-trained. Instead, the training starts with a small number of
unrolled iterations N = 2, and N is incremented every 700 epochs. Note that the authors
originally trained the TDV network for N = 10 iterations of an unrolled proximal gradient
descent algorithm. However, for fair comparisons with our approach, we re-trained it with
N = 6 iterations.

Tables 4.7 and 4.8 show the PSNR results [dB] for both networks (pre-trained and not
pre-trained) as well as for the TDV, for super-resolution and deblurring respectively, using
Set5 [103], Set14 [27] and BSDS100[104]. As expected, using G for weight initialization
improves the results of the unrolled gradient descent for the 4 tested cases (with up to
0.9 dB).

Some visual comparisons of super-resolution results with magnifying factor of 3, and
of deblurring images corrupted by a Gaussian kernel of standard deviation 2.0 are respec-

70

4.4. Experimental results

Original image Degraded
image One-Net IP (avg)

25.06 dB 29.78 dB
GS-PnP RED PnP-ADMM PnP-ReG (Ours)

29.10 dB 28.11 dB 29.60 dB 29.82 dB

Original image Degraded
image One-Net IP (avg)

20.65 dB 24.41 dB
GS-PnP RED PnP-ADMM PnP-ReG (Ours)

24.84 dB 23.51 dB 24.99 dB 25.51 dB

Figure 4.5 – Visual comparison of pixel-wise inpainting results with known pixel rate of
p = 20%, obtained with the projection operator (One-Net) [105], the Implicit Prior (IP) of
[7], GS-PnP [3], RED [4], PnP-ADMM with the denoiser of [2] and our PnP-ReG method.

71

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

Table 4.5 – Pixel-wise inpainting results (measured in PSNR [dB]) obtained with our
PnP-ReG method; the corrupted images have been generated by keeping 20% and 10% of
the known pixels. Comparison with the projection operator (One-Net) [105], the Implicit
Prior (IP) of [7], GS-PnP [3], RED [4] and PnP-ADMM with the denoiser of [2].

Set5 CBSD68
(i) 10% (ii) 20% (i) 10% (ii) 20%

OneNet 17.20 24.06 14.72 20.46
IP (avg) 25.28 28.91 24.12 26.55
GS-PnP 25.08 28.70 23.58 25.91
RED 22.75 27.17 22.24 23.22
PnP-ADMM 26.20 30.20 24.06 26.75
PnP-ReG (Ours) 26.94 30.36 24.43 27.09

Ground Truth Bicubic
interpolation

Unrolled GD Unrolled GD TDV(pre-trained) (not pre-trained)

30.73 dB 35.10 dB 34.56 dB 34.03 dB

Figure 4.6 – Visual comparison of super-resolution results between unrolled gradient de-
scent with and without pre-training. Low resolution images have been generated with a
bicubic kernel followed by a downsampling by a factor of 3.

tively shown in Figures 4.6 and 4.7. The visual results confirm that better reconstruction
of the details is obtained when our pre-training is used. While the TDV results dis-
play even sharper edges, the PSNR remains lower because of exaggerated sharpness in
comparison to the ground truth.

4.4.3 Analysis of the joint training

In this section, we experimentally verify the advantages of updating the denoising
network within the training of our ReG network G, compared to letting the denoiser
fixed. In the latter case, δ is always set to 0 (i.e. L = λLG).

First, we compare the performance of our regularizing gradient network trained in

72

4.4. Experimental results

Algorithm 5 Unrolled gradient descent with G
1: initialize G, σn, µ, A, N
2: for each epoch do
3: for each batch do
4: η ← N (0, σn)
5: xgt ← ground-truth batch
6: y ← Axgt + η
7: x0 ← y
8: for k ← 0 to N − 1 do
9: xk+1 ← xk − µ[AT (Axk − y) + σ2G(xk)]

10: end for
11: loss ← ∥xN − xgt∥2

2
12: Update weights of G with back-propagation
13: end for
14: end for

Ground Truth Blurry image Unrolled GD Unrolled GD TDV(pre-trained) (not pre-trained)

33.83 dB 32.07 dB 32.48 dB

34.13 dB 33.31 dB 33.89 dB

Figure 4.7 – Visual comparison of deblurring results between unrolled gradient descent
with and without pre-training. The blurred images have been generated using an isotropic
Gaussian kernel of standard deviation 2.0.

73

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

Table 4.6 – Parameters used for unrolled gradient descent optimization for both the pre-
trained and not pre-trained versions (i) Super-resolution of factor 2 and 3 with input
images corrupted using a bicubic filter (ii) Deblurring images corrupted using an isotropic
Gaussian kernel of standard deviation σb of 1.6 and 2.0. σn: Standard deviation of the
White Gaussian noise added on the corrupted image, σ: weight of the regularization term,
µ: gradient step size , N : number of unrolled iterations. The training is performed over
the DIV2K dataset [100].

(i) Super-resolution (ii) Deblurring
x2 x3 σb = 1.6 σb = 2.0

σn ∗ 255 0 0
√

2
√

2
σ ∗ 255 1.2 1.6

√
2

√
2

µ 0.008 0.1 0.004 0.004
N 6 6 6 6

both scenarios. An example of deblurring results with the Plug-and-play gradient descent
is shown in Figure 4.8. It is clear that leaving the denoiser fixed to its pre-trained state
degrades the performance of G: the reconstructed image in Figure 4.8 (a) remains more
blurry than that in Figure 4.8 (b) and it also presents colored fringes artifacts. On the
other hand, when the denoiser is updated when training G, the convergence of the Plug-
and-play gradient descent is significantly improved as well as the visual result, as shown
in Figure 4.8 (b,c).

A possible explanation of the worse results when fixing the denoiser in our training is
that the pre-training of Dσ does not guarantee that there exists a differentiable regularizer
ϕ for which proxσ2ϕ = Dσ for every value of σ. In other words, the assumption that Dσ is a
MAP Gaussian denoiser for a differentiable prior may not be satisfied. However, by jointly
updating the denoiser with the ReG network, the modified denoiser better represents such
a MAP Gaussian denoiser for the corresponding regularizer.

In a second experiment, we compare the performances of the updated denoiser and the
original DRUNet when used in the Plug-and-play ADMM algorithm. Figure 4.9 shows
for each ADMM iteration the PSNR of the reconstructed images and the MSE of the
difference between two consecutive iterations for both versions of the denoiser. We can
observe that although the original DRUNet can obtain better PSNR performances when
stopping the ADMM after a few iterations (see subfigure (a)), the algorithm does not
converge, and may even strongly diverge after a sufficiently large number of iterations.

74

4.5. Discussion

Table 4.7 – Super-resolution results (measured in PSNR [dB]) obtained with unrolled
gradient descent (the input images have been corrupted using a bicubic kernel and a
downsampling factor of 2 and 3). The evaluation has been performed using the Set5,
Set14 and BSDS100 datasets. The restoration has been performed using unrolled gradient
descent initialized with our pre-trained network G and without weight initialization, as
well as TDV[88].

pre-trained
(ours)

not
pre-trained TDV

(i) x2
Set5 35.61 35.42 34.57
Set14 31.18 30.93 30.31
BSDS100 30.77 30.68 30.23

(i) x3
Set5 32.10 31.88 31.47
Set14 28.00 27.79 27.40
BSDS100 27.68 27.63 27.34

On the other hand our modified denoiser allows for a better convergence of the Plug-and-
play ADMM.

4.5 Discussion

In this section, we discuss the advantages and the limitations of our PnP-ReG method.
First, we point out that the proposed approach only requires the tuning of the gradient
step µ when the noise level is known, while the reference PnP methods heavily rely on the
tuning of several hyper-parameters, sometimes even including the number of iterations.
This makes our method easier to use since parameter tuning can take a lot of effort.

Furthermore, the comparison of the convergence of the different PnP algorithms in
Figures 4.10 and 4.11 show that although our method requires more iterations than PnP-
ADMM and GS-PnP to reach its highest PSNR result, it converges to a fixed point that
provides the best quality. On the other hand, PnP-ADMM reaches its highest PSNR
after a few iterations, but then diverges, which requires a careful tuning of the number of
iterations for each application in practice. The convergence of our PnP-ReG method is
more comparable to the RED-GD method (although significant PSNR gains are obtained
with our method). This may be explained by the fact that both RED-GD and PnP-ReG
are based on gradient descent while PnP-ADMM and GS-PnP use proximal algorithms.

Aside from the convergence analysis, one may notice that, even though we have de-

75

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

Table 4.8 – Deblurring results (measured in PSNR [dB]) obtained with unrolled gradi-
ent descent (the input images have been corrupted using isotropic Gaussian kernels with
standard deviation 1.6 and 2.0 and Gaussian noise of standard deviation

√
2/255). The

evaluation has been performed using the Set5, Set14 and BSDS100 datasets. The restora-
tion has been performed using unrolled gradient descent initialized with our pre-trained
network G and without weight initialization, as well as [88].

pre-trained
(ours)

not
pre-trained TDV

(i) σ0 = 1.6
Set5 33.51 32.57 32.32
Set14 30.14 29.33 29.17
BSDS100 29.80 29.12 29.01

(ii) σ0 = 2
Set5 31.63 30.94 30.52
Set14 28.29 27.70 27.46
BSDS100 28.08 27.52 27.51

signed our loss from Eq. 4.12 so that G models ∇ϕ, we did not enforce the network to have
a symmetric Jacobian matrix. As a result, our training framework does not guarantee that
G can be interpreted mathematically as a conservative vector field, and thus, as the gra-
dient of a scalar potential. However, using a non-conservative vector field for the gradient
update step may not necessarily degrade the gradient descent performance. For example,
advanced gradient-based algorithms typically alter the gradient (e.g. with momentum),
in a way that loses the conservativeness property of the original gradient, while improving
the algorithm’s performances (more robust to local minima, faster convergence...). Note
also that it would be possible to enforce the Jacobian symmetry property in our method
by using a network directly modeling ϕ and by explicitly computing its gradient, as done
in [3], [107]. However, the explicit gradient computation has the same complexity as the
network ϕ, hence doubling the computation cost. A possible direction for future work
would be to study whether such a constraint could improve the Plug-and-play gradient
descent without sacrificing the computational complexity.

4.6 Conclusion

In this chapter, we have proposed a novel framework for regularizing linear inverse
problems. Our approach makes it possible to solve Plug-and-play algorithms using gra-
dient descent, where the gradient of the regularizer is required rather than its proximal

76

4.6. Conclusion

(a) 33.72 dB (b) 35.46 dB

(c)

Figure 4.8 – Comparison of the performances of PnP-ReG, when the ReG network is
trained (a) with a fixed denoiser and (b) while jointly updating the denoiser. (c) PSNR
[dB] values over the gradient descent iterations. The results are shown for the deblurring
problem (the blurred images have been generated using isotropic Gaussian kernels of
standard deviation 1.6 followed by adding Gaussian noise of standard deviation

√
2/255).

operator. We have proved that it is mathematically possible to train a network that
models the gradient of a regularizer, jointly with a denoising neural network.

The results have demonstrated that the joint training of our network with a DRUNet
denoiser has several advantages. First, our network can be used to regularize the gra-
dients in a Plug-and-play gradient descent algorithm and can outperform other generic
approaches in different inverse problems such as super-resolution, deblurring and pixel-

77

Part I, Chapter 4 – PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent

(a) (b)

Figure 4.9 – Comparison of the performances of the original and the updated denoisers
in PnP-ADMM for deblurring, using the Set5 dataset (the blurred images have been
generated using an isotropic Gaussian kernel of standard deviation 1.6 followed by adding
Gaussian noise of standard deviation

√
2/255): (a) Average PSNR [dB] over the ADMM

iterations (b) MSE of the difference between two consecutive iterations (in log scale).

Figure 4.10 – Comparison of the convergence of PnP-ADMM with the denoiser of [2], RED
[4], GS-PnP [3] and PnP-ReG for Super-resolution. The input low resolution images have
been generated using bicubic downsampling with a factor 2. The results are averaged over
the images of the Set5 dataset. For PnP-ADMM, we have used the setting with variable
parameter sk until the 25th iteration for which the best results are obtained (see Table
A.1), and let sk fixed afterwards.

78

4.6. Conclusion

Figure 4.11 – Comparison of the convergence of PnP-ADMM with the denoiser of [2],
RED [4], GS-PnP [3] and PnP-ReG for Deblurring. The degraded images have been
generated using an isotropic Gaussian kernel of standard deviation 2.0 followed by adding
Gaussian noise of standard deviation σn = 0.01. The results are averaged over the images
of the Set5 dataset. For PnP-ADMM, we have used the setting with fixed parameter
sk = 30/255 for which the best results are obtained (see Table A.1).

wise inpainting. Second, our network can also serve as a pre-training strategy for unrolled
gradient descent and yield a significant improvement. Lastly, the joint training of the de-
noiser with the regularizing gradient network makes the former match better the definition
of a proximal operator compared to the original pre-trained DRUNet.

79

Part II

Inverse problems in omnidirectional
imagery

81

Chapter 5

A COMPREHENSIVE REVIEW OF

OMNIDIRECTIONAL IMAGES:
PROCESSING METHODOLOGIES AND

INVERSE PROBLEMS

The second part of this thesis is dedicated to advancing solutions for inverse problems
in omnidirectional images. In this chapter, we provide a comprehensive review on omni-
directional images, exploring their acquisition, representation, challenges and the existing
literature on inverse problems.

5.1 Introduction to omnidirectional imaging

Omnidirectional images, also known as spherical images or 360° images, are high-
resolution visual contents that cover a 360° field of view capturing the light field converging
to a single point. Thanks to their human-friendly nature, they have gained a particular
attention in the domains of Virtual Reality (VR), Augmented Reality (AR) and robotics.

Nevertheless, the acquisition and the display of omnidirectional images present com-
plex challenges. Also, traditional 2D processing tools can not be directly applied to
spherical data. In fact, when dealing with omnidirectional images, the geometry is fun-
damentally different. A sphere has a curved surface, and points on its surface are not
represented by simple x and y coordinates as in a 2D plane. Instead, spherical coordi-
nates (i.e. polar angle Θ ∈ [0, π] and azimuth angle ϕ ∈ [−π, π]) are used to indicate
locations on the surface of the sphere. Hence, processing omnidirectional images is not a
straightforward task.

Processing 2D images is relatively straightforward: we visualize and process the cap-
tured image after applying minor pre-processing steps (Figure 5.1). However, this sim-

83

Part II, Chapter 5 – A Comprehensive Review of omnidirectional images: processing
methodologies and inverse problems

Figure 5.1 – Image processing pipeline for 2D images. Figure extracted from [108].

Figure 5.2 – Image processing pipeline for omnidirectional imagery. Figure extracted from
[108].

plicity doesn’t extend to omnidirectional imaging, where we don’t directly process and
visualize the captured data. Figure 5.2 represents a typical processing pipeline for omni-
directional imagery. First, it is not feasible, using a single camera, to capture the light ray
coming from all directions effectively covering the entire sphere. Multiple captures should
be merged in order to build an omnidirectional image that covers the entire sphere surface.
Then, a mapping is typically used to process the spherical image. Finally, given the finite
field of view in human vision, only a portion of the spherical image becomes visible. This
necessitates projecting the relevant section onto a viewport. In other words, omnidirec-
tional image processing is not a straightforward task and demands specialized processing
tools and techniques. In the next section, we briefly discuss about the acquisition process
of 360° images, then elaborate different representation models in Section 5.3.

84

5.2. Acquisition of omnidirectional images

5.2 Acquisition of omnidirectional images

Capturing spherical data can be done in different ways. It is important to note, that
achieving a full 360° coverage using a single camera is not possible. Instead, several
captures are typically combined using stitching methods, in order to build one spherical
image. One approach involves the utilization of multiple perspective cameras, each cover-
ing a small angle of view. This approach is expensive, since it requires a lot of processing
and a significant amount of perspective cameras to obtain one spherical image.

Moreover, some cameras can cover a wider angle of view, hence a fewer number of
cameras are needed to cover the whole sphere. Two popular such devices are catadoptric
and fish-eye based cameras. The former employs a curved mirror in its optical setup,
which reflects incoming light rays from the scene onto the camera sensor. However,
due to the substantial space required for a second symmetric mirror, it is constrained
to capturing only one hemisphere. On the other hand, fish-eye cameras have gained
significant popularity in recent years. These cameras use a special fish-eye lens that
distorts the incoming light to cover a wide field of view. Fish-eye cameras equip nowadays
most budget-friendly cameras available on the public market.

For more details on omnidirectional image acquisition, we refer interested readers to
the Chapter 4 of Tzafestas’ book [109], as well as to [108], [110].

5.3 Projecting spherical data to the Euclidean space

Omnidirectional images rely on a spherical geometry, which is not an Euclidean space
where 2D processing tools are well defined. In order to take advantage of computing tools
and methods that have been developed for 2D images, spherical images are often mapped
to two-dimensional planar representations such as equirectangular projection (ERP) [9],
cubemap projection (CMP) [111] or rhombic dodecahedron projection [112]. While a vast
number of such mappings have been designed 1, in this section, we discuss two popular
mapping methods that have been commonly adopted in the literature.

5.3.1 Equirectangular projection (ERP)

Equirectangular projection, also known as panorama projection, is the most popu-
lar mapping used to represent spherical data. It projects the omnidirectional image to

1. https://map-projections.net

85

Part II, Chapter 5 – A Comprehensive Review of omnidirectional images: processing
methodologies and inverse problems

the Euclidean space by mapping each point on the sphere’s surface to a corresponding
point on the grid, using a linear relationship between longitude (azimuthal angle) and
x−coordinate, and a linear relationship between latitude (polar angle) and y−coordinate.
However, this sampling induces significant distortions as we move towards the poles. It
can be seen in Figure 5.3, the red and blue portions are mapped to two equal regions on
the projection, whereas in reality, their sizes on the sphere are very different. Moreover,
this mapping causes strong deformation of objects (Figure 5.5(b)).

Sphere Panorama

Figure 5.3 – Equirectangular projection. Figure extracted from [108].

5.3.2 Cubemap projection (CMP)

Cubemap projection is a mapping technique that projects the spherical image onto the
six faces of a cube (Figure 5.4). The projection on each of the faces imitates the capture of
a perspective camera with a π

2 xπ
2 field of view. An illustration of cubemap projection can

be seen in Figure 5.5(c). The cube faces have natural image statistics, however, several
discontinuities arise when using such mappings, which generates misleading artifacts (i.e.
fake corners, cut objects...).

Projecting the spherical image into a 2D plane induces significant distortions, that can
lead to misrepresentations and inaccuracies when processing the data. These distortions
arise due to the inherent differences in the geometry between the spherical surface and
the flat plane. As a consequence, researchers have proposed direct processing of the
sphere itself (Figure 5.5 (d)), bypassing the need for intermediary mapping techniques.
Nevertheless, as already mentioned, processing on the sphere is not a straightforward task
and requires a deep understanding of the underlying non-Euclidean geometry.

Moreover, even elementary processing operations, such as translation or convolution,
are not easily defined. In the following section, we briefly review different approaches that
have been used to perform convolution on omnidirectional images.

86

5.4. Convolution on omnidirectional images

Sphere Cube's faces on the panoramaCube

32
1 2 3 4

5

6
4 1 2

6 3 5

1 2 3 4 1

5

6

1 2
3

4

5

6

1 4
6

5

4

Figure 5.4 – Cubemap projection. Figure extracted from [108].

5.4 Convolution on omnidirectional images

The implementation of spherical convolutions comes with many challenges. First,
considering registered images, a convolution is desired to be rotation equivariant for any
rotation around the polar axis, meaning that the convolution operation should remain
consistent under rotations of the input signal around the north pole. Consequently, the
convolution filters of the CNN can be applied consistently all over the sphere. Second, the
filters should be able to increase their convolutional range and have anisotropic responses
to ensure expressiveness. Finally, computational efficiency in spherical convolutions is
very important for real-time processing and memory limitation.

A popular approach to process the spherical image is to map it on a 2D planar grid and
apply traditional 2D CNN tools. Primitive existing strategies consider a CNN trained on
perspective images and either (i) apply it directly to an equirectangular projection [113],
[114] or (ii) apply it to the tangent planes that they sample all over the sphere [115]–[118].
While the former is inaccurate because of the distortions induced by the perspective pro-
jection, the latter solution is exact but computationally inefficient. Another solution
proposed by Su et al. [119] is based on knowledge distillation where the network takes an
equirectangular image as input and for every image position, learns to mimic the output
result of applying the corresponding tangent plane to a CNN learned on perspective im-
ages. However, they learn kernels of different sizes for every row of the equirectangular
projection to ensure that the kernels cover the same surface as the spherical image. This
comes with a significant model size and memory footprint, which limits not only the train-
ing, but also the usage of the learned model on devices with constrained computational
resources. The authors later propose the KTN [120], [121] which solves the problem of
memory bloat while achieving high accuracy in object detection, yet still suffers from a
significant computational cost because the kernels are generated at run time.

A second category of methods involves directly implementing convolution on the
sphere. One approach withing this category involves using the spectral domain [122]–
[125]. Spherical harmonics form a complete orthonormal basis on the surface of the

87

Part II, Chapter 5 – A Comprehensive Review of omnidirectional images: processing
methodologies and inverse problems

(a) (b)

(c) (d)

Figure 5.5 – (a) Image acquired with double fish-eye camera and its corresponding (b)
equirectangular projection, (c) cubemap projection and (d) spherical representation. Fig-
ure extracted from [108].

sphere. Hence, in the spectral domain, spherical convolutions can be performed by the
simple product of the spherical harmonics coefficients of the spherical data and the ker-
nel function. While the convolution is consistent and expressive, these methods are very
complex and have significant memory overhead, thus are not suitable for real-world high-
resolution omnidirectional images.

Another approach is to model the sphere as a graph and to approximate the convolu-
tion using a Chebyshev polynomial representation [126], [127]. Although the convolution
is rotation equivariant and consistent over the sphere, the learned filters are not expres-
sive because a single coefficient by neighborhood can be learned, therefore they can only
be isotropic due to the missing directionality in a graph. To address this drawback of
graph-based methods, multi-graph learning was proposed by Khasanova et al. [128] where

88

5.5. Inverse problems in omnidirectional images

multiple directed graphs are used to represent different directions in order to maintain the
orientation data and ensure filter expressiveness. Nevertheless, a large storage is required
to construct all the graphs.

Finally, to overcome the limitations of existing methods, Bidgoli et al.[129] have pro-
posed a novel framework for spherical processing (OSLO) where they reach the same filter
expressiveness, consistency and complexity of 2D CNNs. For this purpose, they sample
the sphere using HEALPix [130] and define the convolution in the pixel domain. We
elaborate OSLO and HEALPix in the upcoming chapter, as they play a pivotal role in
shaping our contribution.

5.5 Inverse problems in omnidirectional images

In contrast to the extensive exploration of inverse problems in 2D imaging, the field
of inverse problems in omnidirectional images has received comparatively less attention.
Most of the existing work has focused on super-resolution, since omnidirectional images
must require very high resolution in order to ensure an acceptable quality of user experi-
ence. In this section, we summarize the different approaches that have been proposed to
solve omnidirectional inverse problems. In particular, we focus on super-resolution and
denoising.

5.5.1 Super-resolution

Early methods for super-resolving omnidirectional images used a sequence of low-
resolution images and assembled them to get high resolution outputs [131]–[133]. With
the rise of deep learning, Ozcinar et al. [134] designed a generative adversarial network to
super-resolve equirectangular projections. Along with the adversarial loss, they use a lati-
tude related loss function to deal with the distortion caused by the projection. Recently, a
significant number of end-to-end networks have been introduced to tackle omnidirectional
image super-resolution. Deng et al. [135] proposed a latitude adaptive super-resolution
network named LAU-Net+ for ERP images, where different upscaling factors can be used
for different latitude bands. Furthermore, among the emerging methods, we note TCCL-
Net [136], OSRT [137] and OPDN [138]. Finally, it is worth highlighting that prevailing
methodologies in super-resolution mainly center around the equirectangular projection.

89

Part II, Chapter 5 – A Comprehensive Review of omnidirectional images: processing
methodologies and inverse problems

5.5.2 Image denoising

Although omnidirectional images have gained a lot of attention in the past years, only
a few works have been dedicated to denoising them. Bigot et al. [139] adapt the Wiener
filter and Tikhonov regularization to spherical images for the denoising application. De-
monceaux et al. [140] denoise catadioptric inputs corrupted by White Gaussian noise
by proposing a new neighborhood for Markov random fields (MRF) adapted for omnidi-
rectional images. Furthermore, Alibouch et al. [141] adapt the Stein block thresholding
method to omnidirectional images to remove additive white Gaussian noise. Finally,
Phan et al. [142] solve poisson denoising by using a space-variant total-variation regular-
ization on catadioptric images. They adapt the fidelity and the regularization terms with
weighted functions based on the mean curvature of an image surface.

90

Chapter 6

SPHEREDRUNET: A SPHERICAL

DENOISER FOR OMNIDIRECTIONAL

IMAGES

6.1 Introduction

From wavelet thresholding to advanced deep-learning architectures, image denoising
is a classical yet still one of the most widely explored topics in image processing. Despite
the massive work that has been done to denoise traditional 2D images, very little effort
has been dedicated to omnidirectional image denoising.

Most of the existing methods use conventional techniques and are primarily tailored to
address the challenges presented by catadioptric inputs, thus they depend on the nature
of the acquisition.

We dedicate this chapter to omnidirectional image denoising, as denoisers play an
important role in today’s era of regularizing inverse problems. Furthermore, a commonly
adopted approach for processing spherical images involves applying two-dimensional pro-
cessing techniques to their corresponding mappings, typically using the equirectangular
projection. We propose an approach that is not sensitive to sampling distortion, by
working directly on the sphere, and we aim to show that image denoising gives better
performance when it is performed directly on the sphere rather than via a mapping, even
though it raises many challenges.

Moreover, we introduce a novel spherical CNN denoiser (SphereDRUNet) by trans-
forming the architecture of the DRUNet [2] using the elementary convolutional modules
proposed by OSLO [129]. Our network takes directly spherical inputs rather than equirect-
angular projections. We evaluate the performance of SphereDRUNet in comparison with
the initial DRUNet retrained and applied on equirectangular data. Since AWGN is a
noise per pixel degradation, one can think that denoising the ERP could yield satisfac-

91

Part II, Chapter 6 – SphereDRUNet: A spherical denoiser for omnidirectional images

tory results. However, our results show that working on the sphere leads to a significant
performance gain for the task of image denoising. This also confirms that the OSLO
solution can be successfully extended to inverse problems such as denoising. We further
compare our SphereDRUNet to a graph-based convolution network and confirm that the
convolution approach that we use is more efficient.

6.2 Related work

As previously covered in Chapter 5, traditional CNN operations such as convolution
and translation can not be straightforwardly extended to the spherical domain. Certain
requirements should be respected while constructing specific spherical CNN architectures:
the convolution filters should be rotation equivariant, highly expressive and computation-
ally efficient. Although different approaches for spherical convolutions have been proposed
such as spectral learning, 2D processing and graph-based representations, it hasn’t been
possible to assure these 3 key properties simultaneously to guarantee a proper spherical
convolution.

To overcome the drawbacks of prevailing methods, Bidgoli et al. [129] have proposed
a novel framework for spherical processing (OSLO) where all aforementioned properties
are successfully satisfied. For this purpose, they sample the sphere using HEALPix [130]
and define the convolution in the pixel domain. We choose to build our work using OSLO
because of its efficient ability to conduct spherical convolution. Next, we elaborate on
HEALPix and OSLO.

6.2.1 HEALPix sampling

Hierarchical Equal Area isoLatitude Pixelation (HEALPix) [130] is a sampling method
for spherical data that produces a configuration where the pixels are arranged in a
diamond-shaped pattern. HEALPix starts by forming the base resolution and divides
the surface of the sphere into 12 equal-area regions, each representing a specific area on
the sphere. Then, each of these regions is iteratively partitioned into 2x2 equal-area sub-
pixels, until reaching the target resolution. The HEALPix kth resolution is defined by a
parameter Nside=2k and has a total of Npix=12N2

side = 12 x 2k x 2k pixels (Figure 6.1).
Each pixel in the final arrangement has eight adjacent neighbors (only 24 pixels have seven
neighbors, which is far from having a significant effect taking into account the resolution

92

6.2. Related work

for an omnidirectional image). This ensures the regularity of the neighborhood, which
is a fundamental condition for an expressive and effective convolution. Furthermore, the
relative distance and orientation between neighboring pixels remains consistent through-
out the entire sphere. Thus, HEALPix offers a rigid structure that was further proved in
[129]. Both the regularity and the rigidity of the sampling method are essential properties
to ensure an expressive and effective convolution.

(a) Nside=1 (b) Nside=2 (c) Nside=8 (d) Nside=16

Figure 6.1 – Visualization of HEALPix sampling over the Sphere. (a) Base resolution.
(b) First resolution. (c) Third resolution. (d) Fourth resolution

6.2.2 On-the-Sphere Learning for Omnidirectional Images (OSLO)

On-the-sphere Learning for Omnidirectional Images (OSLO) proposes a new frame-
work that defines all necessary operators to build a CNN on the sphere. The method
samples the sphere using HEALPix and performs convolutions in the pixel domain. Pool-
ing, stride, skip-connections and patching are defined as well. The advantage of OSLO is
that the convolutions are rotation equivariant, expressive and efficient at the same time.

In fact, let Ni(k) be the index assigned to the kth neighbor for node i (k = 1, ..., 8
for a total of 8 adjacent neighbors of a vertex). Let Lin and Lout denote respectively the
number of input and output features in the convolution. The convolution operation for
an output feature l (1 ≤ l ≤ Lout) is defined as:

xl
i = ⟨θ0, xi⟩+

8∑
k=1
⟨θk, xNi(k)⟩ · wNi(k),i (6.1)

where θk represents the learnable filter weight at k and xi is the input data/feature at
point i. wNi(k),i is set to 0 when the neighbor Ni(k) is missing and to 1 otherwise, in order
to deal with the 24 exceptions of the pixels that have a missing adjacent neighbor.

The described convolution is anisotropic and consistent all over the sphere. The same

93

Part II, Chapter 6 – SphereDRUNet: A spherical denoiser for omnidirectional images

weights are applied to compute the convolution output regardless of the position of the
kernel on the sphere (Figure 6.2). Yet, it only supports 1-hop neighborhood. In order to
increase the potential size of kernels and extend the local support to n-hop neighborhood,
the authors propose an iterative computation of the 1-hop convolution with a proper
aggregation method such as concatenation, addition or max aggregation. This makes the
convolution highly expressive. Furthermore, the convolution being in the pixel domain,
it simply consists in translating the filter over the sphere, hence the complexity linearly
increases with the number of pixels.

Figure 6.2 – Spherical convolution in the pixel domain proposed by [129]. Each color
represents a weight corresponding to a certain orientation. Filter weights remain the
same, regardless of the position of the kernel on the sphere.

Moreover, the authors use this framework for the task of compression and confirm
that this on-the-sphere solution outperforms similarly learned models applied to equirect-
angular images.

For these reasons, we choose OSLO to work on the sphere for omnidirectional image
denosing. Further information about the other operations can be found in [129].

6.3 Spherical image denoising

Our main objective is to explore whether image denoising is more efficient when per-
formed directly on the sphere, compared to using a projection. We choose the DRUNet[2]
CNN denoiser which is a state-of-the-art Gaussian denoiser for perspective images, and
use OSLO to transfer its architecture to the sphere. Hence, a novel spherical denoiser

94

6.3. Spherical image denoising

Figure 6.3 – Architecture of the DRUNet network [2]. The network takes as input the
noisy image concatenated with a noise level map.

SphereDRUNet is obtained that can be used to denoise spherical images corrupted with
any noise level.

The network architecture of DRUNet is shown in Figure 6.3. DRUNet is a bias-free
model, which has been observed to be effective for generalization of denoisers over unseen
noise levels. The model takes as input a noise level map and integrates Residual blocks
(ResNet [96]) into U-Net [95]. It consists of four scales having 64, 128, 256 and 512
number of channels in each of the layers. Each scale in the downscaling consists of 4
residual blocks followed by a 2x2 strided convolution (SConv) whereas a 2x2 transposed
convolution (TConv) is followed by 4 residual blocks during the upscaling. Four skip
connections are set between strided convolution and transposed convolution blocks at
each of the four scales.

We transfer DRUNet to the sphere using the OSLO framework. The architecture of the
resulting SphereDRUNet is shown in Figure 6.4. We use 1-hop neighborhood convolution
for all the layers because all convolutions in DRUNet are of size 3x3. 2D stride operations
of size 2x2 amount to stride 4 on the sphere. For implementation purposes, we replace
the 2x2 transpose convolution by the sub-pixel convolution of size 4 (pixel-shuffle) since
both unpooling methods have equivalent performance.

95

Part II, Chapter 6 – SphereDRUNet: A spherical denoiser for omnidirectional images

Figure 6.4 – Architecture of the SphereDRUNet network with OSLO-based convolution.

6.3.1 Training details

For the purpose of a fair comparison between denoising a spherical image and its
projection, we adapt our training framework to that of the DRUNet. We use the SUN360
equirectangular image dataset [143] and consider 2105 images for training, 22 images for
validation and 43 images for testing. All images in the initial dataset have a spatial size
of 9104x4552. For each epoch of the training, we degrade the training ERP images by
AWGN with a random noise level σ chosen from [0,50], and concatenate a uniform map
filled with σ having the same size as the ERP image. We perform HEALPix sampling
of resolution 10 (i.e. 12,582,912 pixels) of the original image, the noisy image and the
concatenation. SphereDRUNet takes as input the concatenated data in the spherical
form, and learns to denoise the image by minimizing the L1 loss between the estimated
clean image and the ground-truth image using the ADAM optimization. The learning
rate is set to 5e-5 and decreased by half every 50,000 iterations. The gradient update is
performed once every 8 patches, patches being of resolution 8 (28 x 28 pixels). Finally,
we train our network for a total of 25 epochs. Note that most of the modifications to the
training framework compared to that of the DRUNet are essentially driven by the higher
resolution of spherical images in contrast to perspective images.

Furthermore, since our goal is to study denoising directly on the sphere compared to
denoising the equirectangular image, applying the DRUNet trained on perspective images
to ERP projections might not seem fair. Therefore, we re-train the DRUNet on ERP

96

6.3. Spherical image denoising

images in the same way as we trained the SphereDRUNet. In order to reduce the unfair
bias caused by the presence of ground-truth images in ERP format, we resize the ERP
images to 5056x2528 (12,781,568 pixels) so that both ERP and HEALPix have almost
the same number of pixels.

6.3.2 Comparison framework

As discussed earlier, we proposed SphereDRUNet, a novel spherical denoising CNN and
we re-trained the DRUNet with ERP images in order to apply it on spherical projections.
We want to compare the performance of these two approaches in order to study whether
spherical denoising is more efficient on the sphere or on a corresponding projection. We
also include a comparison with a cubemap projection: we map the equirectangular image
to the six faces of a cube and each face is denoised with the DRUNet. We then reconstruct
the ERP image by combining the six planes.

To avoid a biased comparison, for testing both spherical and mapping-based ap-
proaches, we first corrupt the high-resolution equirectangular input with a Gaussian noise.
Then, we downsample the corrupted image to get a HEALPix sampling of resolution 10
(12,582,912 pixels with Nside = 210) and resize the ERP image to 5056x2528 (12,781,568
pixels) in order to match the resolution of the HEALPix sampling. Thus, both test images
are generated from the same corrupted input.

For quantitative evaluation, we calculate the Spherical PSNR (S-PSNR) [dB] [144] and
the Weighted to Spherically uniform PSNR (WS-PSNR) [dB] [145]. The former maps the
output and the ground-truth images (ERP or sphere) to a sphere by uniformly sampling
655,362 points, and computes the mean error between them to simulate the PSNR on the
sphere. The sampling process for the S-PSNR calculation is different than the HEALPix
sampling, hence the metric is not biased. S-PSNR is seen to be an estimation of the
overall quality experienced by viewers across all potential views. On the other hand, in
the calculation of the WS-PSNR, the mean squared error is weighted by the size of each
pixel, as follows:

WS-PSNR = 10 · log10(
MAX2

I
W-MSE), (6.2)

where MAXI is the maximum pixel intensity in the image, and W-MSE is given as:

W-MSE =
∑W −1

x=0
∑H−1

y=0 ((Î(x, y)− Igt(x, y))2.w(y)∑W −1
x=0

∑H−1
y=0 w(y)

. (6.3)

97

Part II, Chapter 6 – SphereDRUNet: A spherical denoiser for omnidirectional images

W and H denote the width and height of the image, Î and Igt represent respectively
the reconstructed and the ground-truth images and w(y) represents the weight of the
corresponding pixel in the weight matrix. We also show mollweide projections of the
denoised images for some visual comparison.

6.4 Experimental results

We perform spherical denoising on images corrupted with an Additive White Gaussian
noise (AWGN) of noise level σ ∗ 255 ∈ [10, 20, 30, 40, 50]. Tables 6.1 and 6.2 show respec-
tively the WS-PSNR [dB] and the S-PSNR [dB] of denoised equirectangular, cubemap
and spherical images of the testing dataset. We can see that the on-the-sphere solution
with our SphereDRUNet significantly outperforms denoising the equirectangular and the
cubemap projections. This gain is even more important when the noise level is high. Fig-
ures 6.5, 6.6 and 6.7 show visual comparisons of the denoised ERP and spherical images
for degradations of noise level σ= 30/255 and σ= 50/255. We observe that the DRUNet
smoothes the equirectangular images and can not recover the high frequency details while
the images denoised using SphereDRUNet on the sphere have less distortion and do not
lose information (i.e. recover high frequency details such as texture). For instance, in
Figure 6.5, we observe that the denoised equirectangular image has lost high frequency
elements such as the details on the leaves or the stains on the train, whereas denoising the
sphere successfully removes noise while also recovering details. This is probably because
in order to recover an equirectangular image with spatial distortions, a network needs a
larger amount of weights to reconstruct high frequency components compared to recov-
ering the same high frequency element on the sphere. For instance, a line on the sphere
remains a line regardless of its position, whereas it can take different forms on the ERP
depending on where it lies, so a network needs more weights to recover the same high
frequency components on the ERP compared to the sphere.

While the pixel distribution in the CMP is more uniform than that in the ERP, the
mapping between the equirectangular projection and the cubemap projection induces a
distortion and a significant shift in the pixels, especially because of the border discontinu-
ities. We show this in Figure 6.8 where we map an ERP image into a CMP image (since
the SUN360 dataset is in ERP format) and simply convert it back to ERP. A degraded
image with an important shift is observed, with a WS-PSNR of 24.95 dB between the orig-
inal ERP image and the re-converted projection. This further underlines the advantage

98

6.4. Experimental results

of processing on the sphere rather than via a mapping into 2D ERP or CMP images.

Figure 6.5 – Mollweide projection of the (a) equirectangular image denoised by the
DRUNet that was re-trained on ERP images and the (b) spherical image denoised by our
SphereDRUNet. AWGN of σ = 30/255 was added on the original image. The zoomed
versions of the red and green rectangular regions are shown in the bottom rows.

Spherical convolution: OSLO-based vs. graph-based (DeepSphere)

Our hypothesis that omnidirectional image denoising is more efficient when performed
on the sphere is verified. One popular approach to operate directly on irregular topology
relies on graph signal processing. For the sake of completeness, we also want to prove that
the OSLO-based spherical convolution that we have chosen is the best approach. For this
purpose, we consider a graph-based baseline: the DeepSphere architecture [126]. Deep-
Sphere is also defined on the HEALPix sampling, but uses max-pooling and graph-based
convolutions approximated by Chebyshev polynomial formulation. We re-train the same

99

Part II, Chapter 6 – SphereDRUNet: A spherical denoiser for omnidirectional images

(a) DRUNet on ERP (b) SphereDRUNet on the sphere

Figure 6.6 – Mollweide projection of the (a) equirectangular image denoised by the
DRUNet that was re-trained on ERP images and the (b) spherical image denoised by our
SphereDRUNet. AWGN of σ = 30/255 was added on the original image. The zoomed
versions of the red and green rectangular regions are shown in the bottom rows.

SphereDRUNet architecture with graph-based convolutions in the same training frame-
work as our OSLO-based SphereDRUNet. For computational reasons, both networks are
trained and evaluated on HEALPix images of resolution 8 (786,432 pixels) in this case.

Figure 6.9 shows denoising results of spherical images restored with the OSLO-based
SphereDRUNet and the graph-based SphereDRUNet. We can see that the graph-based
convolution approach fails to recover the clean image from the noisy measurement. This
limitation arises from the inherent nature of the graph, where the lack of directional in-
formation restricts the learning process to a single weight per neighborhood. By contrast,
our OSLO-based approach demonstrates superior performance, successfully recovering the
clean image from the noisy measurement. This highlights the importance of anisotropic
filters and the effectiveness of the directional information embedded in the OSLO-based
convolution, leading to enhanced denoising capabilities.

100

6.4. Experimental results

(a) DRUNet on ERP (b) SphereDRUNet on the sphere

Figure 6.7 – Mollweide projection of the (a) equirectangular image denoised by the
DRUNet that was re-trained on ERP images and the (b) spherical image denoised by our
SphereDRUNet. AWGN of σ = 50/255 was added on the original image. The zoomed
versions of the green rectangular region is shown in the bottom row.

Ablation study: training a denoiser on the equirectangular pro-
jection

Mapping-based solutions are a widely adopted approach when it comes to spherical
image processing. The reason is simple: 2D processing tools can be easily applied to these
projections. However, traditional 2D operations (such as CNN tools) can not effectively
process omnidirectional images, because these mappings display a significant distortion.
In this section, we further demonstrate the limits of mapping-based learning. Table 6.3

Table 6.1 – Quantitative results of denoising equirectangular, cubemap and spherical data
in terms of WS-PSNR [dB].

Noise level σ*255
10 20 30 40 50

Sphere + SphereDRUNet 40.78 37.33 35.43 34.14 33.16
ERP + DRUNet (trained on ERP) 39.85 35.38 32.46 30.15 28.16
CMP + DRUNet (trained on ERP) 30.30 29.65 28.73 27.61 26.38

101

Part II, Chapter 6 – SphereDRUNet: A spherical denoiser for omnidirectional images

Table 6.2 – Quantitative results of denoising equirectangular, cubemap and spherical data
in terms of S-PSNR [dB].

Noise level σ*255
10 20 30 40 50

Sphere + SphereDRUNet 22.28 20.47 19.49 18.83 18.32
ERP + DRUNet (trained on ERP) 21.65 19.78 18.73 17.98 17.40
CMP + DRUNet (trained on ERP) 17.43 17.08 16.78 16.50 16.25

(a) Original projection (b) Converted projection

Figure 6.8 – Zoomed versions of (a) a portion of an equirectangular image and (b) it’s
corresponding re-conversion from cubemap projection (i.e. the ERP image is converted
to CMP, and re-converted back directly to ERP). Distortion and shifting are produced
by the simple conversion between the mappings.

shows the results (in terms of WS-PSNR [dB]) of denoising ERP images with the initial
DRUNet network trained to denoise 2D images and the DRUNet that we re-trained on
equirectangular projections. We observe that the performance of the DRUNet network
does not greatly enhance when we re-train it over spherical projections compared to the
initial DRUNet that was trained to denoise 2D images. For instance, the gain is only
0.09 dB for σ = 50/255, vs. a gain of 5.09 dB when we consider a processing on the
sphere. This comparison further confirms that two-dimensional convolutions are not able
to successfully learn spherical features. Due to their inherent flat nature, they cannot
capture the curvatures and non-planar characteristics of spherical surfaces. Thus, 2D
learning tools do not generalize well on 360 mappings in the task of denoising.

102

6.5. Conclusion

(a) (b)

Figure 6.9 – Denoising results of spherical images restored with the OSLO-based Sphere-
DRUNet (proposed network) and graph-based SphereDRUNet. Results are in terms of
(a) WS-PSNR and (b) S-PSNR [dB].
Table 6.3 – Quantitative results of denoising equirectangular images with the initial
DRUNet network trained to denoise perspective 2D images and the DRUNet that we
re-trained on ERP inputs. Results are in terms of WS-PSNR [dB].

Noise level σ*255
10 20 30 40 50

ERP + DRUNet (trained on ERP) 39.85 35.38 32.46 30.15 28.16
ERP + DRUNet (trained on 2D images) 39.53 35.19 32.33 30.03 28.07
Gain 0.32 0.19 0.13 0.12 0.09

6.5 Conclusion

In this last chapter, we have addressed the task of omnidirectional image denoising.
Our study investigates the effectiveness of performing denoising directly on the sphere, as
opposed to employing a projection. To address this, we have proposed a novel spherical
denoising CNN (SphereDRUNet), by transferring a state-of-the-art Gaussian denoiser to
the sphere, using the HEALPix spherical sampling and the OSLO-based convolution. Our
network has shown promising denoising results on the sphere for different noise levels.

Our research demonstrates that denoising the spherical image gives superior results
compared to denoising a corresponding mapping such as the equirectangular or the cube-
map projections. This can be explained by the fact that a network needs less weights to
recover the same high frequency components on the sphere compared to a projection.

103

Part II, Chapter 6 – SphereDRUNet: A spherical denoiser for omnidirectional images

Ultimately, this work does not only advance the field of omnidirectional image de-
noising, but also opens doors for solving other inverse problems. In fact, our proposed
spherical regularizer can be leveraged in a Plug-and-play algorithm in order to solve a
variety of inverse problems.

104

Chapter 7

CONCLUSION

The landscape of inverse problems solutions has undergone different transformations
over time, notably pivoting with the advent of deep learning. In particular, research in
regularization techniques has evolved to embrace more effective approaches to address
the ill-posed nature of inverse problems. In this thesis, we focused on contributing to the
research in inverse problem regularization through deep learning-based methodologies.

We began by giving a detailed review on inverse problems in imaging in Chapter 2.
We first introduced the problem of interest and illustrated different examples that we
have addressed in this thesis. Then, we elaborated on existing approaches that have been
developed to solve inverse problems, and concentrated on the literature of deep learning-
based regularization methods. In particular, regularizing inverse problems by leveraging
the power of denoisers in a Bayesian framework is the core of this thesis.

At the beginning of this thesis, the Deep Image Prior [1] was getting popular for
solving inverse problems. The DIP, distinguished by its untrained generative network
which only leverages its architecture along with the degraded image to tackle inverse
problems, ignited our curiosity. We were motivated to explore the potential advantages of
combining its strengths with those of a generic regularizer trained in a supervised manner
on a large image dataset.

Chapter 3 presented our first contribution, focusing on regularizing the estimate gen-
erated by the Deep Image Prior [1] using the DRUNet [2] within an ADMM framework.
Our method yielded improved results compared to DIP and other techniques employ-
ing hand-crafted regularizations with the DIP. The complexity of the parameter-tuning
caused by the ADMM and the additional hyper-parameter of the denoiser inspired us to
transfer the prior implicitly defined by a denoiser to a regularizing network, that can be
used in a simple gradient descent algorithm.

Chapter 4 exposed our second contribution on a novel approach to train a regularizer
that can be used in a Plug-and-play gradient descent algorithm. Based on the assumption
that a denoiser represents the proximal operator of an underlying differentiable regular-

105

izer, we proved that there exists a relation between the denoiser and the gradient of the
corresponding regularizer. We proposed to train a network modeling the gradient of a
regularizer by using a pre-trained deep denoiser. We jointly trained both networks by also
updating the denoiser, in order for it to be consistent with the definition of a proximal
operator. We tested the efficiency of our approach by using our network in a Plug-and-
play gradient descent algorithm, and observed that it outperforms state-of-the-art generic
approaches. We also showed that our regularizing network also serves as a pre-trained
network in unrolled gradient descent.

Chapter 5 marked the beginning of the second part of this thesis, which focused on
omnidirectional images. We gave a short review on processing tools and challenges for
omnidirectional images, and discussed the existing literature on inverse problems.

As we delved into this second part, we observed a lack of comprehensive research
on omnidirectional image denoising. Given the significant role denoisers play in modern
regularization strategies and the importance of image denoising in image processing, we
devoted Chapter 6 to omnidirectional image denoising. Our contribution in this chapter
was two-fold: we introduced a spherical denoiser network designed and trained specifically
for omnidirectional images, which gave promising denoising performance for different noise
levels. We also showed that image denoising gives better results when working directly
on the sphere rather than when processing their underlying projections.

The contributions presented in this thesis allow several improvements and open per-
spectives for future work. For inverse problems in perspective imagery, we suggest:

• It would be interesting to compare the behaviour of the Deep Image Prior regularized
by our regularizing network (ReG in chapter 4) in a gradient descent algorithm with
the denoiser-based regularization that we propose in Chapter 3.

• One limitation of our regularizing network presented in Chapter 4 is, that we do not
enforce the network to have a symmetric Jacobian matrix. Therefore, our training
strategy does not guarantee that the network can be interpreted as a conservative
vector field. One possible direction is to study whether such a constraint could
improve the Plug-and-play gradient descent without sacrificing the computational
complexity. This would be possible by using a network directly modeling the regu-
larizer and explicitly computing its gradient with back-propagation.

For solving inverse problems in omnidirectional imagery, the following directions are
possible:

106

• The spherical denoiser introduced in Chapter 6 is a first step towards an omnidi-
rectional Plug-and-play on the sphere. Although this can be easily done for some
applications such as pixel-wise inpainting, the tasks of super-resolution and deblur-
ring require further implementations as they require to perform convolution on the
sphere. In fact, the current implementation of convolution in OSLO supports 1-
hop neighborhood, and uses iterative computation of the 1-hop convolution with a
proper aggregation method in order to increase the size of kernels. This works well
for training, as the weights of the filters are learned and not pre-determined. One
initial step would involve re-implementing the convolution to access a pixel’s sec-
ondary neighbors, enabling the use of filters with higher dimensions. Then, we could
implement Plug-and-play ADMM on the sphere to solve different inverse problems
using our SphereDRUNet.

• We also suggest to extend the work presented in Chapter 4 to the sphere. A network
modeling the gradient of a regularizer can be trained using the spherical denoising
network introduced in Chapter 6, and then be used in a Plug-and-play gradient
descent algorithm on the sphere.

107

Appendix A

PARAMETER SETTINGS OF CHAPTER 4

A.1 Plug-and-play ADMM: formulation and param-
eter settings

While the Plug-and-play ADMM can provide high quality image reconstruction, the
parameter setting is not trivial and strongly influences the results. We detail in this section
how we have parameterized the Plug-and-play ADMM method for our comparisons. First,
let us remind the ADMM equations for solving linear inverse problems as detailed in
2.4.2.1:

xk+1 = argmin
x
∥Ax− y∥2

2 + ρk

∥∥∥∥∥x−
(

zk − lk

ρk

)∥∥∥∥∥
2

2
, (A.1)

zk+1 = Ds(xk+1 + lk/ρ), (A.2)

lk+1 = lk + ρ(xk+1 − zk+1), (A.3)

where l is the dual variable (typically zero-initialized), ρ is the penalty parameter and
s =

√
σ2/ρ = σ/

√
ρ.

Note that σ is a parameter of the problem to be solved and should not depend on
the algorithm. As discussed in 4.4.1.1, σ must be equal to the true noise level σn added
in the degradation. However, in the noiseless scenario, using σ = σn = 0 removes the
regularization term. Hence similarly to our method, we choose a very small non-zero value
in this case. For our experiments, we have used σ = max(σn, 0.001/255).

Note that the PnP-ADMM may thus parameterize the denoiser with a different stan-
dard deviation s than the noise level σ by setting the penalty parameter ρ ̸= 1. In
practice, the results of PnP-ADMM strongly depend on the setting of ρ. A common
strategy in ADMM is to increase the value of ρ at each iteration with an update of the
form ρk+1 = ρk · α for some fixed parameter α ≥ 1. Hence, this requires setting two pa-
rameters ρ0 and α. A more intuitive parameterization typically used in the Plug-and-play
context (e.g. [2], [146]) considers instead the denoising standard deviations s0 and sN

respectively at the first and last iterations. Knowing that s = σ/
√

ρk at each iteration,

109

ρ0 and α can be set accordingly as:

ρ0 =
(

σ

s0

)2
and α =

(
s0

sN

)2/N

(A.4)

Therefore, the main parameters that we need to set in PnP-ADMM are the number
of iterations N and the initial and final noise standard deviation of the denoiser (i.e. s0

and sN). For our experiments, we have tested two configurations: the first configuration
is similar to [2] and [146] with s varying between a sufficiently high value s0 and the
true noise standard deviation sN = σn (or a small value when σn = 0). In the second
configuration, s is kept constant (i.e. s0 = sN). For both configurations, we have tuned
the parameters to obtain the best results on the Set5 dataset, and we kept the best
configuration. The parameters are given in Table A.1.

Table A.1 – Parameters used for the PnP-ADMM with the denoiser of [2]. σn: standard
deviation of the AWGN added on the degraded image, s0 noise standard deviation of the
denoiser at the first iteration, sN : noise standard deviation of the denoiser at the last
iteration, N : number of iterations.

σn ∗ 255 s0 ∗ 255 sN ∗ 255 N

Super-Resolution x2
Bicubic

0 50 0.1 25√
2 20 20 30

2.55 30 30 30

Gaussian
0 50 0.1 25√
2 30 30 30

2.55 45 45 30

Super-Resolution x3
Bicubic

0 50 0.1 40√
2 60 60 30

2.55 100 100 30

Gaussian
0 50 0.1 25√
2 30 30 30

2.55 45 45 30

Deblurring

√
2 25 25 20

2.55 30 30 20
7.65 35 35 20
√

2 25 25 30
2.55 30 30 30
7.65 35 35 30

Pixel-wise inpainting 0.1 0 255 1 118
0.2 0 255 1 200

110

A.2 Parameter settings for the other methods

Table A.2 – Parameters used for the projection operator (One-Net) [105]. σn: standard de-
viation of the AWGN added on the degraded image, ρ: penalty parameter of the ADMM,
n: number of iterations

σn ∗ 255 ρ n

Super-Resolution x2
Bicubic

0 0.05 1√
2 0.06 12

2.55 0.06 12

Gaussian
0 0.02 1√
2 0.06 10

2.55 0.06 10

Super-Resolution x3
Bicubic

0 0.01 5√
2 0.06 10

2.55 0.05 12

Gaussian
0 0.01 5√
2 0.07 10

2.55 0.07 10

Deblurring

√
2 0.01 15

2.55 0.02 15
7.65 0.02 5

Pixel-wise inpainting 0.1 0 0.004 300
0.2 0 0.01 250

111

Table A.3 – Parameters used for the RED [4] in a Gradient Descent framework using
DRUNet. σn: standard deviation of the AWGN added on the degraded image, w: weight
of the regularization, σf : noise standard deviation of the denoiser, µ: gradient step size.

σn ∗ 255 w σf ∗ 255 µ

Super-Resolution x2
(Bicubic and Gaussian)

0 0.005 7 0.08√
2 0.03 7 0.08

2.55 0.07 7 0.08

Super-Resolution x3
(Bicubic and Gaussian)

0 0.005 10 0.08√
2 0.01 10 0.08

2.55 0.03 10 0.08

Deblurring

√
2 0.01 10 0.01

2.55 0.03 16 0.01
7.65 0.03 16 0.01
√

2 0.01 16 0.01
2.55 0.01 16 0.01
7.65 0.03 16 0.01

Pixel-wise inpainting 0.1 0 0.001 27 0.006
0.2 0 0.001 24 0.008

112

BIBLIOGRAPHY

[1] D. Ulyanov, A. Vedaldi, and V. Lempitsky, « Deep image prior », in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp. 9446–
9454. doi: 10.1109/CVPR.2018.00984.

[2] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, « Plug-and-
play image restoration with deep denoiser prior », IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, 10, pp. 6360–6376, 2021.

[3] S. Hurault, A. Leclaire, and N. Papadakis, « Gradient step denoiser for conver-
gent plug-and-play », in International Conference on Learning Representations
(ICLR’22), 2022.

[4] Y. Romano, M. Elad, and P. Milanfar, « The little engine that could: regularization
by denoising (red) », SIAM Journal on Imaging Sciences, vol. 10, 4, pp. 1804–1844,
2017. doi: 10.1137/16M1102884.

[5] B. Guo, Y. Han, and J. Wen, « Agem: solving linear inverse problems via deep
priors and sampling », Advances in Neural Information Processing Systems, vol. 32,
2019.

[6] Y. Song and S. Ermon, « Generative modeling by estimating gradients of the data
distribution », Advances in neural information processing systems, vol. 32, 2019.

[7] Z. Kadkhodaie and E. P. Simoncelli, « Solving linear inverse problems using the
prior implicit in a denoiser », arXiv preprint arXiv:2007.13640, 2020. doi: 10.
48550/ARXIV.2007.13640.

[8] B. Kawar, G. Vaksman, and M. Elad, « Stochastic image denoising by sampling
from the posterior distribution », in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 1866–1875.

[9] J. P. Snyder, Flattening the earth: two thousand years of map projections. Univer-
sity of Chicago Press, 1997.

113

https://doi.org/10.1109/CVPR.2018.00984
https://doi.org/10.1137/16M1102884
https://doi.org/10.48550/ARXIV.2007.13640
https://doi.org/10.48550/ARXIV.2007.13640

[10] L. I. Rudin, S. Osher, and E. Fatemi, « Nonlinear total variation based noise re-
moval algorithms », Physica D: nonlinear phenomena, vol. 60, 1-4, pp. 259–268,
1992.

[11] A. Beck and M. Teboulle, « Fast gradient-based algorithms for constrained total
variation image denoising and deblurring problems », IEEE transactions on image
processing, vol. 18, 11, pp. 2419–2434, 2009.

[12] B. Shi, L. Huang, and Z.-F. Pang, « Fast algorithm for multiplicative noise re-
moval », Journal of Visual Communication and Image Representation, vol. 23, 1,
pp. 126–133, 2012.

[13] X. Liu and T. Sun, « Hybrid non-convex regularizers model for removing multi-
plicative noise », Computers & Mathematics with Applications, vol. 126, pp. 182–
195, 2022.

[14] M. Lee and J. Park, « An optimized dynamic mode decomposition model robust
to multiplicative noise », SIAM Journal on Applied Dynamical Systems, vol. 22, 1,
pp. 235–268, 2023.

[15] S. Baraha and A. K. Sahoo, « Restoration of speckle noise corrupted sar images
using regularization by denoising », Journal of Visual Communication and Image
Representation, vol. 86, p. 103 546, 2022.

[16] A. K. Shukla, S. K. Dwivedi, G. Chandra, and R. Shree, « Deep learning-based
suppression of speckle-noise in synthetic aperture radar (sar) images: a compre-
hensive review », in Proceedings of the International Conference on Cognitive and
Intelligent Computing: ICCIC 2021, Volume 2, Springer, 2023, pp. 693–705.

[17] W. Cheng and K. Hirakawa, « Minimum risk wavelet shrinkage operator for poisson
image denoising », IEEE Transactions on Image Processing, vol. 24, 5, pp. 1660–
1671, 2015.

[18] W. Kumwilaisak, T. Piriyatharawet, P. Lasang, and N. Thatphithakkul, « Im-
age denoising with deep convolutional neural and multi-directional long short-
term memory networks under poisson noise environments », IEEE Access, vol. 8,
pp. 86 998–87 010, 2020.

[19] M. Rahman Chowdhury, J. Zhang, J. Qin, and Y. Lou, « Poisson image denoising
based on fractional-order total variation », Inverse Problems & Imaging, vol. 14,
1, 2020.

114

[20] V. Göreke, « A novel method based on wiener filter for denoising poisson noise
from medical x-ray images », Biomedical Signal Processing and Control, vol. 79,
p. 104 031, 2023.

[21] B. Hughes, « On the error probability of signals in additive white gaussian noise »,
IEEE Transactions on Information Theory, vol. 37, 1, pp. 151–155, 1991.

[22] I. W. Selesnick, « The estimation of laplace random vectors in additive white
gaussian noise », IEEE Transactions on Signal Processing, vol. 56, 8, pp. 3482–
3496, 2008.

[23] F. Luisier, T. Blu, and M. Unser, « Image denoising in mixed poisson–gaussian
noise », IEEE Transactions on image processing, vol. 20, 3, pp. 696–708, 2010.

[24] A. Jezierska, C. Chaux, J.-C. Pesquet, and H. Talbot, « An em approach for
poisson-gaussian noise modeling », in 2011 19th European Signal Processing Con-
ference, IEEE, 2011, pp. 2244–2248.

[25] N. Bähler, M. El Helou, É. Objois, K. Okumuş, and S. Süsstrunk, « Pogain: poisson-
gaussian image noise modeling from paired samples », IEEE Signal Processing
Letters, vol. 29, pp. 2602–2606, 2022.

[26] V. Mannam, Y. Zhang, Y. Zhu, et al., « Real-time image denoising of mixed
poisson–gaussian noise in fluorescence microscopy images using imagej », Optica,
vol. 9, 4, pp. 335–345, 2022.

[27] R. Zeyde, M. Elad, and M. Protter, « On single image scale-up using sparse-
representations », vol. 6920, Jun. 2010, pp. 711–730, isbn: 978-3-642-27412-1. doi:
10.1007/978-3-642-27413-8_47.

[28] C. Bouman and K. Sauer, « A generalized gaussian image model for edge-preserving
map estimation », IEEE Transactions on image processing, vol. 2, 3, pp. 296–310,
1993.

[29] F. J. Anscombe, « The transformation of poisson, binomial and negative-binomial
data », Biometrika, vol. 35, 3/4, pp. 246–254, 1948.

[30] J. Hadamard, « Sur les problèmes aux dérivés partielles et leur signification physique »,
Princeton University Bulletin, vol. 13, pp. 49–52, 1902.

[31] A. N. Tikhonov, « On the regularization of ill-posed problems », in Doklady Akademii
Nauk, Russian Academy of Sciences, vol. 153, 1963, pp. 49–52.

115

https://doi.org/10.1007/978-3-642-27413-8_47

[32] P. Saint-Marc, J.-S. Chen, and G. Medioni, « Adaptive smoothing: a general tool
for early vision », IEEE Transactions on Pattern Analysis & Machine Intelligence,
vol. 13, 06, pp. 514–529, 1991.

[33] C. Chu, I. Glad, F. Godtliebsen, and J. Marron, « Edge-preserving smoothers for
image processing », Journal of the American Statistical Association, vol. 93, 442,
pp. 526–541, 1998.

[34] H. K. Aggarwal and A. Majumdar, « Hyperspectral image denoising using spatio-
spectral total variation », IEEE Geoscience and Remote Sensing Letters, vol. 13,
3, pp. 442–446, 2016.

[35] D. L. Donoho and I. M. Johnstone, « Ideal spatial adaptation by wavelet shrink-
age », biometrika, vol. 81, 3, pp. 425–455, 1994.

[36] M. Elad and M. Aharon, « Image denoising via sparse and redundant representa-
tions over learned dictionaries », IEEE Transactions on Image processing, vol. 15,
12, pp. 3736–3745, 2006.

[37] F.-X. Dupé, J. M. Fadili, and J.-L. Starck, « A proximal iteration for deconvolving
poisson noisy images using sparse representations », IEEE Transactions on Image
Processing, vol. 18, 2, pp. 310–321, 2009.

[38] W. Dong, X. Li, L. Zhang, and G. Shi, « Sparsity-based image denoising via dic-
tionary learning and structural clustering », in CVPR 2011, IEEE, 2011, pp. 457–
464.

[39] G. Yu, G. Sapiro, and S. Mallat, « Solving inverse problems with piecewise linear
estimators: from gaussian mixture models to structured sparsity », IEEE Trans-
actions on Image Processing, vol. 21, 5, pp. 2481–2499, 2011.

[40] K. Egiazarian and V. Katkovnik, « Single image super-resolution via bm3d sparse
coding », in 2015 23rd European signal processing conference (EUSIPCO), IEEE,
2015, pp. 2849–2853.

[41] S. Gu, L. Zhang, W. Zuo, and X. Feng, « Weighted nuclear norm minimization
with application to image denoising », in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 2862–2869.

[42] N. Yair and T. Michaeli, « Multi-scale weighted nuclear norm image restoration »,
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 3165–3174.

116

[43] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, « Beyond a gaussian denoiser:
residual learning of deep cnn for image denoising », IEEE transactions on image
processing, vol. 26, 7, pp. 3142–3155, 2017.

[44] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang, « Non-local recurrent network
for image restoration », Advances in neural information processing systems, vol. 31,
2018.

[45] X. Jia, S. Liu, X. Feng, and L. Zhang, « Focnet: a fractional optimal control network
for image denoising », in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 6054–6063.

[46] C. Dong, C. C. Loy, K. He, and X. Tang, « Learning a deep convolutional network
for image super-resolution », in European conf. on computer vision, Springer, 2014,
pp. 184–199. doi: 10.1007/978-3-319-10593-2_13.

[47] C. Ledig, L. Theis, F. Huszar, et al., « Photo-realistic single image super-resolution
using a generative adversarial network », in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 4681–4690. doi: 10.1109/cvpr.2017.19.

[48] X. Wang, K. Yu, S. Wu, et al., « Esrgan: enhanced super-resolution generative
adversarial networks », in Proceedings of the European conference on computer
vision (ECCV) workshops, 2018.

[49] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, « Image super-resolution
using very deep residual channel attention networks », in Proceedings of the Euro-
pean conference on computer vision (ECCV), 2018, pp. 286–301.

[50] L. Xu, J. S. Ren, C. Liu, and J. Jia, « Deep convolutional neural network for
image deconvolution », Advances in neural information processing systems, vol. 27,
pp. 1790–1798, 2014. [Online]. Available: https://proceedings.neurips.cc/
paper/2014/file/1c1d4df596d01da60385f0bb17a4a9e0-Paper.pdf.

[51] E. T. Jaynes, Probability theory: The logic of science. Cambridge university press,
2003.

[52] D. P. Bertsekas, W. Hager, and O. Mangasarian, « Nonlinear programming. athena
scientific belmont », Massachusets, USA, 1999.

[53] J. J. Moreau, « Fonctions convexes duales et points proximaux dans un espace
hilbertien », Comptes rendus hebdomadaires des séances de l’Académie des sci-
ences, vol. 255, pp. 2897–2899, 1962.

117

https://doi.org/10.1007/978-3-319-10593-2_13
https://doi.org/10.1109/cvpr.2017.19
https://proceedings.neurips.cc/paper/2014/file/1c1d4df596d01da60385f0bb17a4a9e0-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/1c1d4df596d01da60385f0bb17a4a9e0-Paper.pdf

[54] D. Geman and C. Yang, « Nonlinear image recovery with half-quadratic regular-
ization », IEEE transactions on Image Processing, vol. 4, 7, pp. 932–946, 1995.

[55] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, « Plug-and-play pri-
ors for model based reconstruction », in 2013 IEEE Global Conference on Signal
and Information Processing, 2013, pp. 945–948. doi: 10.1109/GlobalSIP.2013.
6737048.

[56] S. H. Chan, X. Wang, and O. A. Elgendy, « Plug-and-play admm for image restora-
tion: fixed-point convergence and applications », IEEE Transactions on Computa-
tional Imaging, vol. 3, 1, pp. 84–98, 2016.

[57] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, et al., « Plug-and-play priors for
bright field electron tomography and sparse interpolation », IEEE Transactions on
Computational Imaging, vol. 2, 4, pp. 408–423, 2016.

[58] M. Terris, A. Repetti, J.-C. Pesquet, and Y. Wiaux, « Building firmly nonexpan-
sive convolutional neural networks », in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020,
pp. 8658–8662.

[59] E. T. Reehorst and P. Schniter, « Regularization by denoising: clarifications and
new interpretations », IEEE transactions on computational imaging, vol. 5, 1,
pp. 52–67, 2018. doi: 10.1109/TCI.2018.2880326.

[60] R. G. Gavaskar and K. N. Chaudhury, « Plug-and-play ista converges with kernel
denoisers », IEEE Signal Processing Letters, vol. 27, pp. 610–614, 2020.

[61] Y. Sun, B. Wohlberg, and U. S. Kamilov, « An online plug-and-play algorithm for
regularized image reconstruction », IEEE Transactions on Computational Imaging,
vol. 5, 3, pp. 395–408, 2019.

[62] Y. Sun, Z. Wu, X. Xu, B. Wohlberg, and U. S. Kamilov, « Scalable plug-and-
play admm with convergence guarantees », IEEE Transactions on Computational
Imaging, vol. 7, pp. 849–863, 2021.

[63] E. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, « Plug-and-play methods
provably converge with properly trained denoisers », in International Conference
on Machine Learning, PMLR, 2019, pp. 5546–5557.

118

https://doi.org/10.1109/GlobalSIP.2013.6737048
https://doi.org/10.1109/GlobalSIP.2013.6737048
https://doi.org/10.1109/TCI.2018.2880326

[64] R. Laumont, V. De Bortoli, A. Almansa, J. Delon, A. Durmus, and M. Pereyra,
« On maximum a posteriori estimation with plug & play priors and stochastic gra-
dient descent », Journal of Mathematical Imaging and Vision, vol. 65, 1, pp. 140–
163, 2023.

[65] U. S. Kamilov, C. A. Bouman, G. T. Buzzard, and B. Wohlberg, « Plug-and-play
methods for integrating physical and learned models in computational imaging:
theory, algorithms, and applications », IEEE Signal Processing Magazine, vol. 40,
1, pp. 85–97, 2023.

[66] S. Mukherjee, A. Hauptmann, O. Öktem, M. Pereyra, and C.-B. Schönlieb, « Learned
reconstruction methods with convergence guarantees: a survey of concepts and ap-
plications », IEEE Signal Processing Magazine, vol. 40, 1, pp. 164–182, 2023.

[67] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, « Image denoising by sparse
3-d transform-domain collaborative filtering », IEEE Transactions on image pro-
cessing, vol. 16, 8, pp. 2080–2095, 2007. doi: 10.1109/TIP.2007.901238.

[68] A. Buades, B. Coll, and J.-M. Morel, « A non-local algorithm for image denois-
ing », in 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05), Ieee, vol. 2, 2005, pp. 60–65.

[69] R. Cohen, M. Elad, and P. Milanfar, « Regularization by denoising via fixed-point
projection (red-pro) », SIAM Journal on Imaging Sciences, vol. 14, 3, pp. 1374–
1406, 2021.

[70] J.-C. Pesquet, A. Repetti, M. Terris, and Y. Wiaux, « Learning maximally mono-
tone operators for image recovery », SIAM Journal on Imaging Sciences, vol. 14,
3, pp. 1206–1237, 2021.

[71] T. STATISTICS and H. ROBBINS, « An empirical bayes approach », in Pro-
ceedings of the Berkeley Symposium on Mathematical Statistics and Probability,
University of California Press, vol. 1, 1956, p. 157.

[72] B. Efron, « Tweedie’s formula and selection bias », Journal of the American Sta-
tistical Association, vol. 106, 496, pp. 1602–1614, 2011.

[73] C. M. Stein, « Estimation of the mean of a multivariate normal distribution », The
annals of Statistics, pp. 1135–1151, 1981.

[74] K. Miyasawa et al., « An empirical bayes estimator of the mean of a normal pop-
ulation », Bull. Inst. Internat. Statist, vol. 38, 181-188, pp. 1–2, 1961.

119

https://doi.org/10.1109/TIP.2007.901238

[75] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., « Generative adversarial nets »,
Advances in neural information processing systems, vol. 27, 2014.

[76] D. P. Kingma and M. Welling, « Auto-encoding variational bayes », arXiv preprint
arXiv:1312.6114, 2013.

[77] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, « Compressed sensing using gen-
erative models », in International conference on machine learning, PMLR, 2017,
pp. 537–546.

[78] V. Shah and C. Hegde, « Solving linear inverse problems using gan priors: an
algorithm with provable guarantees », in 2018 IEEE international conference on
acoustics, speech and signal processing (ICASSP), IEEE, 2018, pp. 4609–4613.

[79] M. González, A. Almansa, and P. Tan, « Solving inverse problems by joint poste-
rior maximization with autoencoding prior », SIAM Journal on Imaging Sciences,
vol. 15, 2, pp. 822–859, 2022.

[80] D. Im Im, S. Ahn, R. Memisevic, and Y. Bengio, « Denoising criterion for varia-
tional auto-encoding framework », in Proceedings of the AAAI conference on arti-
ficial intelligence, vol. 31, 2017.

[81] J. Prost, A. Houdard, A. Almansa, and N. Papadakis, « Inverse problem regulariza-
tion with hierarchical variational autoencoders », arXiv preprint arXiv:2303.11217,
2023.

[82] K. Gregor and Y. LeCun, « Learning fast approximations of sparse coding », in
Proceedings of the 27th international conference on international conference on
machine learning, 2010, pp. 399–406. [Online]. Available: https://dl.acm.org/
doi/10.5555/3104322.3104374.

[83] J. Sun, H. Li, Z. Xu, et al., « Deep admm-net for compressive sensing mri », Ad-
vances in neural information processing systems, vol. 29, 2016. [Online]. Available:
https://proceedings.neurips.cc/paper/2016/file/1679091c5a880faf6fb5e6087eb1b2dc-
Paper.pdf.

[84] S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein, « Unrolled optimization
with deep priors », arXiv preprint arXiv:1705.08041, 2017. doi: 10.48550/ARXIV.
1705.08041.

120

https://dl.acm.org/doi/10.5555/3104322.3104374
https://dl.acm.org/doi/10.5555/3104322.3104374
https://proceedings.neurips.cc/paper/2016/file/1679091c5a880faf6fb5e6087eb1b2dc-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/1679091c5a880faf6fb5e6087eb1b2dc-Paper.pdf
https://doi.org/10.48550/ARXIV.1705.08041
https://doi.org/10.48550/ARXIV.1705.08041

[85] H. K. Aggarwal, M. P. Mani, and M. Jacob, « Modl: model-based deep learning
architecture for inverse problems », IEEE transactions on medical imaging, vol. 38,
2, pp. 394–405, 2018.

[86] C. Yang, R. Liu, L. Ma, X. Fan, H. Li, and M. Zhang, « Unrolled optimization with
deep priors for intrinsic image decomposition », in 2018 IEEE Fourth International
Conference on Multimedia Big Data (BigMM), IEEE, 2018, pp. 1–7. doi: 10.1109/
BigMM.2018.8499478.

[87] D. Gilton, G. Ongie, and R. Willett, « Neumann networks for linear inverse prob-
lems in imaging », IEEE Transactions on Computational Imaging, vol. 6, pp. 328–
343, 2019. doi: 10.1109/TCI.2019.2948732.

[88] E. Kobler, A. Effland, K. Kunisch, and T. Pock, « Total deep variation for linear
inverse problems », in Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 7546–7555. doi: 10.1109/cvpr42600.2020.00757.

[89] J. Liu, Y. Sun, X. Xu, and U. S. Kamilov, « Image restoration using total variation
regularized deep image prior », IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP) pages = 7715–7719, 2019.

[90] P. Cascarano, A. Sebastiani, and M. C. Comes, « Admm-diptv: combining total
variation and deep image prior image restoration », arXiv preprint arXiv:2009.11380,
2001.

[91] P. Cascarano, A. Sebastiani, M. C. Comes, G. Franchini, and F. Porta, « Combin-
ing weighted total variation and deep image prior for natural and medical image
restoration via admm », arXiv preprint arXiv:2009.11380, 2021.

[92] G. Mataev, M. Elady, and P. Milanfarz, « Deepred: deep image prior powered by
red », arXiv preprint arXiv:1903.10176, 2019.

[93] K. Zhang, W. Zuo, and L. Zhang, « Ffdnet: toward a fast and flexible solution for
cnn-based image denoising », IEEE Transactions on Image Processing, vol. 27, 9,
pp. 4608–4622, 2018. doi: 10.1109/TIP.2018.2839891.

[94] A. H. Al-Shabili, H. Mansour, and P. T. Boufounos, « Learning plug-and-play prox-
imal quasi-newton denoisers », in ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020, pp. 8896–
8900. doi: 10.1109/ICASSP40776.2020.9054537.

121

https://doi.org/10.1109/BigMM.2018.8499478
https://doi.org/10.1109/BigMM.2018.8499478
https://doi.org/10.1109/TCI.2019.2948732
https://doi.org/10.1109/cvpr42600.2020.00757
https://doi.org/10.1109/TIP.2018.2839891
https://doi.org/10.1109/ICASSP40776.2020.9054537

[95] O. Ronneberger, P. Fischer, and T. Brox, « U-net: convolutional networks for
biomedical image segmentation », in International Conference on Medical image
computing and computer-assisted intervention, Springer, 2015, pp. 234–241. doi:
10.1007/978-3-319-24574-4_28.

[96] K. He, X. Zhang, S. Ren, and J. Sun, « Deep residual learning for image recog-
nition », in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778. doi: 10.1109/cvpr.2016.90.

[97] S. Mohan, Z. Kadkhodaie, E. P. Simoncelli, and C. Fernandez-Granda, « Robust
and interpretable blind image denoising via bias-free convolutional neural net-
works », in International Conference on Learning Representations, 2020.

[98] K. Ma, Z. Duanmu, Q. Wu, et al., « Waterloo exploration database: new challenges
for image quality assessment models », IEEE Transactions on Image Processing,
vol. 26, 2, pp. 1004–1016, 2016. doi: 10.1109/TIP.2016.2631888.

[99] Y. Chen and T. Pock, « Trainable nonlinear reaction diffusion: a flexible framework
for fast and effective image restoration », IEEE transactions on pattern analysis
and machine intelligence, vol. 39, 6, pp. 1256–1272, 2016. doi: 10.1109/TPAMI.
2016.2596743.

[100] E. Agustsson and R. Timofte, « Ntire 2017 challenge on single image super-resolution:
dataset and study », in Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, 2017, pp. 126–135. doi: 10.1109/CVPRW.2017.150.

[101] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, « Enhanced deep residual net-
works for single image super-resolution », in Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, 2017, pp. 136–144. doi:
10.1109/CVPRW.2017.151.

[102] D. P. Kingma and J. Ba, « Adam: a method for stochastic optimization. », in
ICLR, 2015.

[103] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-l. A. Morel, « Low-complexity
single-image super-resolution based on nonnegative neighbor embedding », in Proc.
BMVC, 2012, pp. 135.1–135.10. doi: 10.5244/C.26.135.

122

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/TIP.2016.2631888
https://doi.org/10.1109/TPAMI.2016.2596743
https://doi.org/10.1109/TPAMI.2016.2596743
https://doi.org/10.1109/CVPRW.2017.150
https://doi.org/10.1109/CVPRW.2017.151
https://doi.org/10.5244/C.26.135

[104] D. Martin, C. Fowlkes, D. Tal, and J. Malik, « A database of human segmented
natural images and its application to evaluating segmentation algorithms and mea-
suring ecological statistics », in Proc. ICCV, vol. 2, 2001, pp. 416–423. doi: 10.
1109/ICCV.2001.937655.

[105] J. Rick Chang, C.-L. Li, B. Poczos, B. Vijaya Kumar, and A. C. Sankaranarayanan,
« One network to solve them all–solving linear inverse problems using deep projec-
tion models », in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 5888–5897. doi: 10.1109/iccv.2017.627.

[106] K. Zhang, L. V. Gool, and R. Timofte, « Deep unfolding network for image super-
resolution », in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 3217–3226. doi: 10.1109/CVPR42600.2020.00328.

[107] R. Cohen, Y. Blau, D. Freedman, and E. Rivlin, « It has potential: gradient-driven
denoisers for convergent solutions to inverse problems », in Advances in Neural
Information Processing Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., 2021.

[108] T. Maugey, « Acquisition, representation, and rendering of omnidirectional videos »,
in Immersive Video Technologies, Elsevier, 2023, pp. 27–48.

[109] S. G. Tzafestas, Introduction to mobile robot control. Elsevier, 2013.

[110] D. Scaramuzza, « Omnidirectional vision: from calibration to robot motion esti-
mation. eth zurich », Ph.D. dissertation, ETH Zurich, 2008.

[111] K.-T. Ng, S.-C. Chan, and H.-Y. Shum, « Data compression and transmission
aspects of panoramic videos », IEEE Transactions on Circuits and Systems for
Video Technology, vol. 15, 1, pp. 82–95, 2005.

[112] C.-W. Fu, L. Wan, T.-T. Wong, and C.-S. Leung, « The rhombic dodecahedron
map: an efficient scheme for encoding panoramic video », IEEE Transactions on
Multimedia, vol. 11, 4, pp. 634–644, 2009.

[113] H.-N. Hu, Y.-C. Lin, M.-Y. Liu, H.-T. Cheng, Y.-J. Chang, and M. Sun, « Deep
360 pilot: learning a deep agent for piloting through 360 sports videos », in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE,
2017, pp. 1396–1405.

123

https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1109/iccv.2017.627
https://doi.org/10.1109/CVPR42600.2020.00328

[114] W.-S. Lai, Y. Huang, N. Joshi, C. Buehler, M.-H. Yang, and S. B. Kang, « Semantic-
driven generation of hyperlapse from 360 degree video », IEEE transactions on
visualization and computer graphics, vol. 24, 9, pp. 2610–2621, 2017.

[115] Y.-C. Su, D. Jayaraman, and K. Grauman, « Pano2vid: automatic cinematography
for watching 360 videos », in Computer Vision–ACCV 2016: 13th Asian Confer-
ence on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected
Papers, Part IV, Springer, 2017, pp. 154–171.

[116] Y.-C. Su and K. Grauman, « Making 360 video watchable in 2d: learning videog-
raphy for click free viewing », in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, 2017, pp. 1368–1376.

[117] S.-H. Chou, Y.-C. Chen, K.-H. Zeng, H.-N. Hu, J. Fu, and M. Sun, « Self-view
grounding given a narrated 360 video », in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, 2018.

[118] Y. Yu, S. Lee, J. Na, J. Kang, and G. Kim, « A deep ranking model for spatio-
temporal highlight detection from a 360◦ video », in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, 2018.

[119] Y.-C. Su and K. Grauman, « Learning spherical convolution for fast features from
360 imagery », Advances in Neural Information Processing Systems, vol. 30, 2017.

[120] Y.-C. Su and K. Grauman, « Kernel transformer networks for compact spherical
convolution », in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019, pp. 9442–9451.

[121] Y.-C. Su and K. Grauman, « Learning spherical convolution for 360 recognition »,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, 11,
pp. 8371–8386, 2021.

[122] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, « Spherical cnns », arXiv
preprint arXiv:1801.10130, 2018.

[123] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis, « Learning so (3)
equivariant representations with spherical cnns », in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 52–68.

[124] C. Esteves, A. Makadia, and K. Daniilidis, « Spin-weighted spherical cnns », Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 8614–8625, 2020.

124

[125] P. J. Roddy and J. D. McEwen, « Sifting convolution on the sphere », IEEE Signal
Processing Letters, vol. 28, pp. 304–308, 2021.

[126] N. Perraudin, M. Defferrard, T. Kacprzak, and R. Sgier, « Deepsphere: efficient
spherical convolutional neural network with healpix sampling for cosmological ap-
plications », Astronomy and Computing, vol. 27, pp. 130–146, 2019.

[127] Q. Yang, C. Li, W. Dai, J. Zou, G.-J. Qi, and H. Xiong, « Rotation equivariant
graph convolutional network for spherical image classification », in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 4303–4312.

[128] R. Khasanova and P. Frossard, « Geometry aware convolutional filters for omnidi-
rectional images representation », in International Conference on Machine Learn-
ing, PMLR, 2019, pp. 3351–3359.

[129] N. M. Bidgoli, R. G. d. A. Azevedo, T. Maugey, A. Roumy, and P. Frossard,
« Oslo: on-the-sphere learning for omnidirectional images and its application to
360-degree image compression », IEEE Transactions on Image Processing, vol. 31,
pp. 5813–5827, 2022.

[130] K. M. Gorski, E. Hivon, A. J. Banday, et al., « Healpix: a framework for high-
resolution discretization and fast analysis of data distributed on the sphere », The
Astrophysical Journal, vol. 622, 2, p. 759, 2005.

[131] H. Nagahara, Y. Yagi, and M. Yachida, « Super-resolution from an omnidirectional
image sequence », in 2000 26th Annual Conference of the IEEE Industrial Elec-
tronics Society. IECON 2000. 2000 IEEE International Conference on Industrial
Electronics, Control and Instrumentation. 21st Century Technologies, IEEE, vol. 4,
2000, pp. 2559–2564.

[132] L. Bagnato, Y. Boursier, P. Frossard, and P. Vandergheynst, « Plenoptic based
super-resolution for omnidirectional image sequences », in 2010 IEEE Interna-
tional Conference on Image Processing, IEEE, 2010, pp. 2829–2832.

[133] Z. Arican and P. Frossard, « Joint registration and super-resolution with omnidi-
rectional images », IEEE Transactions on Image Processing, vol. 20, 11, pp. 3151–
3162, 2011.

125

[134] C. Ozcinar, A. Rana, and A. Smolic, « Super-resolution of omnidirectional im-
ages using adversarial learning », in 2019 IEEE 21st International Workshop on
Multimedia Signal Processing (MMSP), IEEE, 2019, pp. 1–6.

[135] X. Deng, H. Wang, M. Xu, L. Li, and Z. Wang, « Omnidirectional image super-
resolution via latitude adaptive network », IEEE Transactions on Multimedia,
2022.

[136] X. Chai, F. Shao, Q. Jiang, and H. Ying, « Tccl-net: transformer-convolution col-
laborative learning network for omnidirectional image super-resolution », Knowledge-
Based Systems, p. 110 625, 2023.

[137] F. Yu, X. Wang, M. Cao, G. Li, Y. Shan, and C. Dong, « Osrt: omnidirectional
image super-resolution with distortion-aware transformer », in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2023, pp. 13 283–13 292.

[138] X. Sun, W. Li, Z. Zhang, et al., « Opdn: omnidirectional position-aware deformable
network for omnidirectional image super-resolution », arXiv preprint arXiv:2304.13471,
2023.

[139] S. Bigot, D. Kachi, S. Durand, and E. M. Mouaddib, « Spherical image denoising
and its application to omnidirectional imaging. », in VISAPP (1), 2007, pp. 101–
108.

[140] C. Demonceaux and P. Vasseur, « Markov random fields for catadioptric image
processing », Pattern Recognition Letters, vol. 27, 16, pp. 1957–1967, 2006.

[141] A. Iazzi, A. Radgui, M. Rziza, et al., « An adapted block thresholding method
for omnidirectional image denoising », Research Journal of Applied Sciences, En-
gineering and Technology, vol. 8, 18, pp. 1966–1972, 2014.

[142] T. D. K. Phan and T. H. Y. Tran, « A space-variant nonlinear algorithm for denois-
ing omnidirectional images corrupted by poisson noise », IEEE Signal Processing
Letters, vol. 27, pp. 535–539, 2020.

[143] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba, « Recognizing scene viewpoint
using panoramic place representation », in 2012 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, 2012, pp. 2695–2702.

126

[144] M. Yu, H. Lakshman, and B. Girod, « A framework to evaluate omnidirectional
video coding schemes », in 2015 IEEE international symposium on mixed and
augmented reality, IEEE, 2015, pp. 31–36.

[145] Y. Sun, A. Lu, and L. Yu, « Weighted-to-spherically-uniform quality evaluation for
omnidirectional video », IEEE signal processing letters, vol. 24, 9, pp. 1408–1412,
2017.

[146] M. Le Pendu and C. Guillemot, « Preconditioned plug-and-play admm with locally
adjustable denoiser for image restoration », SIAM Journal on Imaging Sciences,
vol. 16, 1, pp. 393–422, 2023.

127

Titre : Apprentissage profond pour les problèmes inverses et application à l’imagerie omnidi-
rectionnelle

Mot clés : problèmes inverses, régularisation, deep learning, images omnidirectionnelles,

plug-and-play, débruitage

Résumé : Cette thèse est consacrée à contri-
buer à des solutions d’apprentissage pro-
fond pour régulariser des problèmes inverses
en imagerie perspective et omnidirectionnelle.
Dans la première partie, nous nous concen-
trons sur les images 2D et nous commençons
par proposer de régulariser le Deep Image
Prior avec le débruiteur DRUNet de pointe.
Cette combinaison améliore les performances
du DIP et se compare favorablement avec les
méthodes qui ont été proposées précédem-
ment pour le régulariser. Ensuite, nous pro-
posons une nouvelle approche pour entraîner
un réseau modélisant le gradient d’un régula-
riseur en utilisant un débruiteur appris. Nous

utilisons ce réseau dans un algorithme de
descente de gradient Plug-and-play et mon-
trons qu’il surpasse les méthodes génériques
existantes. Dans la deuxième partie de cette
thèse, nous nous concentrons sur les images
omnidirectionnelles et nous abordons le pro-
blème du débruitage, comme première étape
vers des méthodes de régularisation basées
sur le débruiteur. Nous introduisons un nou-
veau débruiteur sphérique, en transférant le
débruiteur DRUNet de pointe sur la sphère.
Nous montrons également que le débruitage
d’images omnidirectionnelles est plus efficace
lorsqu’il est effectué directement sur la sphère
plutôt que débruiter sa projection.

Title: Deep learning for inverse problems and application to omnidirectional imaging

Keywords: Inverse problems, regularization, deep learning, omnidirectional images, plug-and-

play, denoising

Abstract: This thesis is devoted to con-
tribute to deep learning solutions to regular-
ize inverse problems in perspective and om-
nidirectional imagery. In the first part of
this manuscript, we focus on perspective im-
agery and we begin by proposing to regu-
larize the Deep Image Prior with the state-
of-the-art DRUNet denoiser. This combina-
tion enhances the performance of the DIP and
compares favourably with the methods that
have been proposed previously to regularize
it. Then, we propose a novel approach to train
a network modeling the gradient of a regular-
izer by using a deep denoiser. We use this

network in a Plug-and-play gradient descent
algorithm and show that it outperforms exist-
ing generic methods. In the second part of this
thesis, we focus on omnidirectional images
and we address the problem of omnidirec-
tional image denoising, as a first step towards
denoiser-based regularization methods. We
introduce a novel spherical denoiser, by trans-
ferring the state-of-the-art DRUNet denoiser
into the sphere. We also show that omnidirec-
tional image denoising is more efficient when
performed directly on the sphere rather than a
corresponding mapping.

	Résumé
	Introduction
	Context
	Motivation
	Contributions
	Outline

	I Inverse problems in perspective imagery
	An overview of inverse problems in perspective imagery
	Inverse Problems
	Introduction and problem statement
	Inverse problems in imaging: examples and definitions
	An ill-posed problem and need for regularization

	Reconstruction approaches for solving inverse problems
	Variational approach for solving inverse problems
	Learning approach for solving inverse problems: Neural network regression
	Bayesian approach for solving inverse problems

	Optimization algorithms
	Derivative-based optimization algorithms: first-order methods
	Proximal algorithms

	Learning to Regularize inverse problems
	Regularizing by using the implicit prior captured by a neural network
	Regularizing by leveraging the power of denoisers
	Regularizing through generative models
	End-to-end learning of the regularization function via deep unrolling

	Regularization of the Deep Image Prior with a deep denoiser
	Introduction
	Related work: regularized Deep Image Prior
	Regularizing the Deep Image Prior with a learned denoiser
	Experimental results
	Conclusion and discussion

	PnP-ReG: learned regularizing gradient for Plug-and-play gradient descent
	Introduction
	Notations and problem statement
	Training of the gradient of a regularizer
	Mathematical derivations
	Training framework for the regularizing gradient network G
	Training details

	Experimental results
	Plug-and-play gradient descent
	Unrolled gradient descent with G
	Analysis of the joint training

	Discussion
	Conclusion

	II Inverse problems in omnidirectional imagery
	A Comprehensive Review of omnidirectional images: processing methodologies and inverse problems
	Introduction to omnidirectional imaging
	Acquisition of omnidirectional images
	Projecting spherical data to the Euclidean space
	Equirectangular projection (ERP)
	Cubemap projection (CMP)

	Convolution on omnidirectional images
	Inverse problems in omnidirectional images
	Super-resolution
	Image denoising

	SphereDRUNet: A spherical denoiser for omnidirectional images
	Introduction
	Related work
	HEALPix sampling
	On-the-Sphere Learning for Omnidirectional Images (OSLO)

	Spherical image denoising
	Training details
	Comparison framework

	Experimental results
	Conclusion

	Conclusion
	Parameter settings of Chapter 4
	Plug-and-play ADMM: formulation and parameter settings
	Parameter settings for the other methods

	Bibliography

