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Résumé 
 
Le temps est une dimension universelle traitée par les 
systèmes sensoriels, qui est essentielle pour attribuer un sens 
à des stimuli comme la parole ou la musique pour l'audition. 
Cependant, les mécanismes requis pour le traitement temporel 
restent en grande part méconnus. Dans cette thèse, nous 
avons examiné un type de mécanisme faisant sans doute 
partie intégrante de tout traitement temporel: la formation de 
nouvelles traces mnésiques pour l’information temporelle. 
Nous avons étudié principalement la modalité auditive, mais 
aussi d'autres modalités sensorielles, comme le toucher, la 
vision, et la stimulation électrique directe du système auditif 
périphérique avec un implant cochléaire. Toutes les 
expériences ont utilisé un nouveau paradigme expérimental, 
adapté de précédentes études conçues pour étudier la 
mémoire auditive (Agus, Thorpe, & Pressnitzer, 2010). Au lieu 
d'utiliser du bruit comme stimulus, nous avons utilisé des 
séquences d’intervalles de temps irréguliers délimités par de 
brèves impulsions d'énergie, adaptées à la modalité étudiée. 
Dans une première série d'expériences, nous avons étudié la 
modalité auditive chez des auditeurs normo-entendants, en 
utilisant des trains de clics audio comme stimuli. Nous avons 
démontré, pour la première fois, un apprentissage rapide de 
sons contenant uniquement des informations temporelles. 
Dans une seconde série d'expériences, nous avons appliqué le 
même paradigme à trois modalités sensorielles (audition, 
toucher et vision), en utilisant des clics audio, des impulsions 
de mouvement au bout des doigts, et des flashs de lumière 
pour délimiter les intervalles de temps dans les différences 
modalités. Nous avons observé des formes qualitativement 
similaires d'apprentissage perceptif pour les trois modalités, 
avec un apprentissage rapide dans tous les cas, ainsi qu'un 
transfert d'apprentissage au toucher ou à la vision pour des 
séquences initialement apprises de façon auditive. Dans une 
troisième série d'expériences, nous avons testé des 
malentendants stimulés électriquement par leur implant 
cochléaire avec des séquences d'impulsions irrégulières. Nous 
avons trouvé des indications d’une plasticité préservée pour 
l'apprentissage rapide des informations temporelles chez ces 
auditeurs. Enfin, nous présentons des résultats préliminaires 
en utilisant une nouvelle technique susceptible de révéler 
certains des mécanismes neuronaux sous-jacents à 
l'apprentissage perceptuel rapide. Nous avons mesuré la 
dilatation pupillaire pendant que les auditeurs effectuaient la 
tâche de mémoire auditive et observé des changements 
systématiques de la taille de la pupille avec l'apprentissage. En 
conclusion, la thèse montre une capacité remarquable des 
systèmes perceptifs à apprendre des séquences temporelles 
complexes lorsqu'elles apparaissent plusieurs fois dans 
l'environnement, et suggère de nouvelles méthodes 
expérimentales pour étudier plus avant les mécanismes 
neuronaux sous-jacents. 
 

Mots Clés 
audition, apprentissage perceptif, traitement temporelle, vision, 
toucher, activité neuronal 
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Abstract 
 
Time is a universal feature of all information processed by 
sensory systems, and temporal patterning is often essential for 
attributing meaning to external stimuli such as speech or music 
in audition. However, many of the mechanisms needed for 
temporal processing are still unclear. In this thesis, we 
investigated one type of mechanism arguably integral to any 
kind of temporal processing: the formation of novel memories 
for temporal patterns. We studied mainly the auditory modality, 
but also other sensory modalities such touch, vision, and 
electric hearing with a cochlear implant. All experiments used a 
novel experimental paradigm, adapted from a previous study 
designed to explore auditory memory of random noise (Agus, 
Thorpe, & Pressnitzer, 2010). Instead of using noise as the 
complex stimulus to learn, we used irregular time patterns 
made of random time intervals delineated by modality-adapted 
brief energy pulses. In a first series of experiments, we 
investigated the auditory modality in normal hearing listeners, 
using click trains as stimuli. We demonstrated for the first time 
a rapid learning of stimuli containing solely temporal cues. In a 
second series of experiments, we applied the same paradigm 
to multiple sensory modalities (audition, touch, and vision), 
using audio clicks, motion pulses to the fingertips, and light to 
delineate time intervals. We found a qualitatively similar forms 
of perceptual learning for all three modalities, with rapid 
learning in all cases, as well as a transfer of learning to touch 
or vision for patterns learnt initially learnt in audition. In a third 
series of experiments, we tested hearing impaired listeners 
stimulated through their cochlear implant with sequences of 
electrical pulses. We found evidence for preserved plasticity for 
the rapid learning of time patterns in those listeners. Finally, we 
present preliminary data using a novel technique for studying 
the underlying neural mechanisms of rapid perceptual learning. 
We measured pupil dilation while listeners performed the 
memory task and observed systematic changes in pupil size 
with perceptual learning. In conclusion, the thesis shows a 
remarkable ability of perceptual systems to learn complex time 
patterns as they re-occur in the environment, and suggests new 
experimental methods to further study the underlying neural 
mechanisms.  
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Abstract 

 

Time is a universal feature of all information processed by sensory systems, and temporal 

patterning is often essential for attributing meaning to external stimuli such as speech or 

music in audition. However, many of the mechanisms needed for temporal processing are 

still unclear. In this thesis, we investigated one type of mechanism arguably integral to 

any kind of temporal processing: the formation of novel memories for temporal patterns. 

We studied mainly the auditory modality, but also other sensory modalities such touch, 

vision, and electric hearing with a cochlear implant. All experiments used a novel 

experimental paradigm, adapted from a previous study designed to explore auditory 

memory of random noise (Agus, Thorpe, & Pressnitzer, 2010). Instead of using noise as 

the complex stimulus to learn, we used irregular time patterns made of random time 

intervals delineated by modality-adapted brief energy pulses. In a first series of 

experiments, we investigated the auditory modality in normal hearing listeners, using 

click trains as stimuli. We demonstrated, for the first time, a rapid learning of stimuli 

containing solely temporal cues. In a second series of experiments, we applied the same 

paradigm to multiple sensory modalities (audition, touch, and vision), using audio clicks, 

motion pulses to the fingertips, and light to delineate time intervals. We found a 

qualitatively similar forms of perceptual learning for all three modalities, with rapid 

learning in all cases, as well as a transfer of learning to touch or vision for patterns learnt 

initially learnt in audition. In a third series of experiments, we tested hearing impaired 

listeners stimulated through their cochlear implant with sequences of electrical pulses. 

We found evidence for preserved plasticity for the rapid learning of time patterns in those 

listeners. Finally, we present preliminary data using a novel technique for studying the 

underlying neural mechanisms of rapid perceptual learning. We measured pupil dilation 

while listeners performed the memory task and observed systematic changes in pupil size 

with perceptual learning. In conclusion, the thesis shows a remarkable ability of 

perceptual systems to learn complex time patterns as they re-occur in the environment, 

and suggests new experimental methods to further study the underlying neural 

mechanisms.  
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Resumé 

 

Le temps est une dimension universelle traitée par les systèmes sensoriels, qui est 

essentielle pour attribuer un sens à des stimuli comme la parole ou la musique pour 

l'audition. Cependant, les mécanismes requis pour le traitement temporel restent en 

grande part méconnus. Dans cette thèse, nous avons examiné un type de mécanisme 

faisant sans doute partie intégrante de tout traitement temporel: la formation de nouvelles 

traces mnésiques pour l’information temporelle. Nous avons étudié principalement la 

modalité auditive, mais aussi d'autres modalités sensorielles, comme le toucher, la vision, 

et la stimulation électrique directe du système auditif périphérique avec un implant 

cochléaire. Toutes les expériences ont utilisé un nouveau paradigme expérimental, adapté 

de précédentes études conçues pour étudier la mémoire auditive (Agus, Thorpe, & 

Pressnitzer, 2010). Au lieu d'utiliser du bruit comme stimulus, nous avons utilisé des 

séquences d’intervalles de temps irréguliers délimités par de brèves impulsions d'énergie, 

adaptées à la modalité étudiée. Dans une première série d'expériences, nous avons étudié 

la modalité auditive chez des auditeurs normo-entendants, en utilisant des trains de clics 

audio comme stimuli. Nous avons démontré, pour la première fois, un apprentissage 

rapide de sons contenant uniquement des informations temporelles. Dans une seconde 

série d'expériences, nous avons appliqué le même paradigme à trois modalités 

sensorielles (audition, toucher et vision), en utilisant des clics audio, des impulsions de 

mouvement au bout des doigts, et des flashs de lumière pour délimiter les intervalles de 

temps dans les différences modalités. Nous avons observé des formes qualitativement 

similaires d'apprentissage perceptif pour les trois modalités, avec un apprentissage rapide 

dans tous les cas, ainsi qu'un transfert d'apprentissage au toucher ou à la vision pour des 

séquences initialement apprises de façon auditive. Dans une troisième série d'expériences, 

nous avons testé des malentendants stimulés électriquement par leur implant cochléaire 

avec des séquences d'impulsions irrégulières. Nous avons trouvé des indications d’une 

plasticité préservée pour l'apprentissage rapide des informations temporelles chez ces 

auditeurs. Enfin, nous présentons des résultats préliminaires en utilisant une nouvelle 

technique susceptible de révéler certains des mécanismes neuronaux sous-jacents à 

l'apprentissage perceptuel rapide. Nous avons mesuré la dilatation pupillaire pendant que 

les auditeurs effectuaient la tâche de mémoire auditive et observé des changements 

systématiques de la taille de la pupille avec l'apprentissage. En conclusion, la thèse 

montre une capacité remarquable des systèmes perceptifs à apprendre des séquences 
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temporelles complexes lorsqu'elles apparaissent plusieurs fois dans l'environnement, et 

suggère de nouvelles méthodes expérimentales pour étudier plus avant les mécanismes 

neuronaux sous-jacents. 
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Chapter 1  
Introduction 
 

 

 

1.1 Memory for auditory information 
 

To make sense of the world, we must be able to recognise and identify patterns as they 

unfold in our environment. In most cases, we receive a mixture of multiple sensory 

signals that evolve over time and are concurrently presented. However, we are able to 

focus on specific sources that contain relevant information. In hearing, for instance, the 

ability to follow a conversation in a noisy environment is a well-known example, referred 

to as the "cocktail party" phenomenon (Cherry, 1953). How people segregate or "stream" 

acoustic signals to acquire necessary information over time has been studied extensively 

(Moore & Gockel, 2012). The focus so far has been mostly to map how distinct acoustic 

features of each stream participate in the auditory stream segregation. Effects have been 

found for frequency range, spatial location, temporal coherences, and timing cues among 

others (Bregman, 1994; Grimault, Micheyl, Carlyon, Arthaud, & Collet, 2000; Jones, 

Alford, Bridges, Tremblay, & Macken, 1999; Schnupp, 2006; Shamma, Elhilali, & 

Micheyl, 2011). Combining information available in these spectro-temporal cues enables 

listeners to identify each auditory stream and process information effectively. However, 

one necessary factor that supports this ability but often overlooked is memory (Demany 

& Semal, 2007). Memory processes have been studied in the scene analysis with what has 

been termed "schema-based" mechanisms, where listeners have learnt what to listen for in 

a mixture (Bey & McAdams, 2002). But, if those memory processes were available on a 

shorter time scale, they could also help to identify re-occurring patterns as they unfold 

over time (Andreou, Kashino, & Chait, 2011; McDermott, Wrobleski, & Oxenham, 2011; 

Sohoglu & Chait, 2016).  

 Recently, a series of studies have reported the possibility of rapid learning for 

newly presented sounds. In the study of Agus, Thorpe, and Pressnitzer (2010), an 
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experimental task was introduced where listeners had to report whether stimuli contained 

a repetitive pattern or not. Patterns were either random Gaussian noise samples, or two 

abutting identical half-duration noise samples (Figure 1-1).  

 

 

 
Figure 1-1. Schematic of a repetition detection task. Noise sequences were either random 
(N) or repeated within a trial (RN). Both N and RN were generated afresh for each trial. 
One specific RN re-occurred identically across several trials (RefRN). Subjects were only 
asked to report whether they heard a within-sequence repetition or not. Yes and no 
responses in a bracket refer to the correct answers for each trial. From Agus et al., (2010).  
 

 

 In more details, in their first experiment, noise samples were either random 

Gaussian noise for 1 s (simple noise: N) or a 0.5 s random noise token presented twice in 

a row to create a repetitive pattern within the sequence (repeated noise: RN). Both types 

of stimuli were generated afresh for each trial and listeners were simply asked to detect a 

within-sequence repetition, the difference between N and RN. One additional stimulus 
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type was however also introduced: a specific RN sequence (reference repeated noise: 

RefRN), which would re-appear identically several times within a test block, 

unbeknownst to the listeners. The authors measured d' from the signal detection theory 

(Tanner, Patton, & Atkinson, 1965) as a performance index to compare how well subjects 

correctly detected the within-trials repetition. If memory of RefRN could be formed from 

its reoccurrences, subjects should be able to show a better repetition detection 

performance for RefRN, compared to new RNs.  

 

 

 
Figure 1-2. Results of the repetition detection task. (A) Higher sensitivity, d', for RefRN 
compared to RN indicates that listeners were able to better detect within-trial repetitions 
for RefRN than RN. (B) Hit-rate of each trial order for RN and RefRN shows that the 
performance for RefRN increased with its re-occurrences. From Agus et al. (2010). 
 

 

 The results supported this assumption, by showing greater performance for RefRN 

compared to RN. Importantly, this performance difference did not appear from the first 

occurrence of RefRN. Rather, performance for both RN and RefRN for their first 

presentation was about at chance level. The performance for RefRN showed a rapid 

improvement with its re-occurrences (Figure 1-2). In this experiment, the performance for 

RN, on the other hand, decreased with number of trials. This was attributed to a criterion 

effect: more "yes" responses to RefRN, as it became easier to report, induced a bias to 

provide more "no" responses to RN.  

 Random noise sequences were chosen in this experiments as a means to investigate 

primarily auditory perceptual memory, since listeners cannot easily associate particular 

examples of noise with any extra-auditory information, like semantic labels for instance. 

These findings thus suggested the existence of fast and robust auditory memory processes 

for arbitrarily complex auditory signals.  
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 Neural correlates for this form of rapid perceptual learning were subsequently 

reported by two studies using non-invasive human neuro-imaging tools. The study of 

Luo, Tian, Song, Zhou, and Poeppel (2013) and the study of Andrillon, Kouider, Agus, 

and Pressnitzer (2015) used the repetition detection task of noise sequences, following the 

test paradigm of Agus et al. (2010) as we just described, while recording brain signals 

using magnetoencephalography (MEG) or electroencephalography (EEG), respectively. 

The MEG study of Luo et al. did not find any differences in evoked responses between 

the two stimulus types. Instead, they observed an increase in the phase coherence of 

responses across trials between 3 – 8 Hz for RefRN when compared to RN. This cross-

trial phase coherence found during the presentation of RefRN was more apparent towards 

later trial orders, suggesting that the difference was due to the learning of RefRN, and 

possibly mediated by oscillatory brain responses. The EEG study of Andrillon et al. 

(2015) reported similar findings to those of the MEG study when they presented a 

"classical" format of noise sequences, observing higher across-trial coherences in 1 – 4 

Hz for RefRN, when compared to N. However, they additionally introduced a new format 

of noise sequences. This new format contained 0.2 s of noise snippets to be repeated 5 

times, but, importantly, separated by 0.3 s of random noise which could not be learnt 

across trials. The motivation for such format was to restrict the time period in the 

stimulus over which learning and its associated neural correlates could occur. In this 

condition, they observed evoked potentials, in the form of larger negative responses 

evoked by RefRN and RN when compared to responses evoked by N. This difference was 

also observed for the very first snippet of learnt noise in RefRN, implying that the snippet 

was actually learnt rather than recognised by within-sequence repetitions. The early 

repeats of the noise snippets in RefRN produced a larger evoked response than in RN, but 

this difference disappeared at the 5th occurrence of the snippet within RN, suggesting that 

such a small number of presentations was sufficient to achieve learning. The evoked 

responses were attributed to plastic changes in secondary areas. Another brain imaging 

study, this time using functional magnetic resonance imaging (fMRI), suggested that such 

changes involved secondary auditory region (Planum temporale) as well as hippocampus 

(Kumar et al., 2014). In summary, these results show that the rapid perceptual learning 

observed during behaviour has rapid correlates in sensory regions (probably secondary 

auditory cortex), with a contribution of hippocampus.  

 Behavioural and neural data thus revealed an impressive characteristic of auditory 

memory: the ability to learn arbitrarily complex sounds, rapidly and in a long-lasting way 



 

MEMORY!FOR!AUDITORY!INFORMATION!

 13 

(Agus et al. 2010; Viswanathan, 2016), which would be highly desirable features to learn 

everyday sounds. However, it is unclear what feature(s) of the auditory stimuli 

contributed to this type of memory. From additional experiments, it was suggested that 

spectral information was the main cue used by listeners to achieve perceptual learning 

(Agus et al., 2010; Agus, Jeannou, & Pressnitzer, 2013; Viswanathan, 2016; 

Viswanathan, Rémy, Bacon-Macé, & Thorpe, 2016). For example, Agus et al. (2010) 

presented time-reversed versions of the RefRN stimuli to listeners, after they had learnt 

the original RefRN. They found that listeners could perform the repetition-detection task 

as well on these transformed versions as on the original RefRN, suggesting that the cues 

to learning were robust to time reversal. Spectral cues, such as the brief occurence of a 

random salient frequency or spectral pattern, would be resistant to time-reversal. 

Furthermore, Agus et al. (2013) asked musicians to annotate RefRN into musical 

notation, and musicians spontaneously transcribed the stimuli to short melodies, in a 

consistent manner for each musician and noise stimulus. Finally, Viswanathan, Rémy, 

Bacon-Macé, and Thorpe (2016) divided RefRN snippets after learning into smaller 

segments and shuffled the order of these segments. Interestingly, listeners still showed 

robust performance to detect repetitions on the shuffled RefRN, suggesting again the use 

of brief spectral cues. In summary, the current evidence strongly suggest that listeners 

isolated brief random spectral cues to achieve rapid perceptual learning of random noise 

stimuli.  

 This led to the first main question for the thesis: can auditory temporal information, 

instead of spectral, be learnt by similarly rapid memory processes? Temporal information 

is central to the auditory modality, as sound waves evolve by necessity over time. The 

auditory modality is also thought to hold the greatest temporal sensitivity among the 

senses (e.g., Goodfellow, 1934). It would thus be important to know whether the rapid 

memory processes observed for noise so far would generalise to other types of sounds, in 

particular sounds containing the important class of temporal auditory cues. In addition, it 

can also be remarked that temporal information is ubiquitous in sensory systems. Sensory 

information is always presented over time, with information often available in its 

temporal patterning, even for touch such as feeling a texture or for vision such as 

observing a dynamic visual scene. This opens a second question: would rapid learning of 

temporal information be unique to audition, or also observed for different sensory 

modalities? 

 The present thesis aimed to investigate the memory of purely timing information 
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mainly in the auditory modality but also in other sensory modalities such as touch, vision, 

and electrical hearing with a cochlear implant. In the remaining parts of the Introduction, 

we will briefly survey the literature on temporal processing in audition and in the other 

modalities tested in the experiments. Note that two main experimental chapters are 

organised in journal publication format, so they all also include a brief literature review. 

In the first chapter, we will focus on studies not discussed in details in the experimental 

chapters.  

 

1.2 Temporal sensitivity  
 

Basic understanding of temporal processing starts from how sensitive we are on simple 

time judgment tasks. Estimating the duration of a sensory input or an interval marked by 

two sensory inputs is the simplest form of time judgment that has been extensively 

studied in the literature. Temporal sensitivity is then often described by the minimum 

threshold value that enables to correctly discriminate two stimuli of different duration. In 

this section, we first address temporal sensitivity across sensory modalities, starting from 

audition (1.2.1), then touch and vision (1.2.2), and a relevant model to explain the time 

interval judgments (1.2.3).   

 

1.2.1 Single time interval discrimination and learning in audition 
 

The first question regarding auditory time perception concerns the minimum duration 

change required for detecting the difference between two durations. Such a difference 

limen (DL), which can also be referred as a just noticeable difference (JND), is a key 

notion to quantify temporal acuity. The DL is generally measured by using a comparison 

task between two different intervals, with either a fixed or roving standard time interval 

that has be compared to a second interval with different duration. The intervals can be of 

two types: either filled intervals or empty intervals (Figure 1-3).  
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Figure 1-3. Example stimuli used in time interval discrimination tasks. The temporal 
information to compare is either the duration of sustained sensory stimuli (filled intervals, 
top), or the duration of silent gaps marked by two brief stimuli (empty intervals, bottom). 
 
 

 Filled intervals are continuous signals presented for certain duration. Empty 

intervals are marked by brief sensory onset and offset signals determining the duration of 

silence between them. Usually, a pair of either filled or empty intervals with different 

durations is presented, which can vary based on a number of features.  

 One of the early studies, for example, designed a duration discrimination task by 

presenting one standard filled interval (T) and another filled interval of either the same 

length (T) or the length increased by an additional quantity ΔT (T + ΔT) (Creelman, 

1962). The study reported that listeners could accurately detect duration differences 

between the two filled intervals over the range tested consisting of base durations from 20 

ms to 320 ms, with a performance decrease for longer Ts when ΔTs was fixed at 10 ms. 

The study also reported that the performance improved with bigger ΔTs for the fixed T.  

 Abel (1972) used a pair of empty intervals marked by two noise bursts, to measure 

JNDs on a range of base durations. A standard interval T that varied from 0.63 ms to 640 

ms was compared with another interval increased by ΔT and the JND was determined per 

each standard time gap. Abel found that listeners showed better discrimination abilities 

when markers were shorter and had higher amplitude values. The ratio of ΔT/T remained 

similar across standard intervals, of about 10%, with an exception of T below 5 ms where 

performance was worse with a greater variability. The finding of a non-monotonic Weber 

fraction across different T could imply different strategies for different based durations. 

Abel concluded that the Weber fraction was constant at least for the interval duration 

between 5 and 640 ms.  

T T+ΔT

T T+ΔT
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 The perceptual duration of empty intervals and filled intervals has also been found 

to differ. Some studies observed that the perceived duration of filled intervals was longer 

than the perceived duration of empty intervals, for equal physical duration (Allan, 1979; 

Goldstone & Goldfarb, 1963). Furthermore, temporal judgments on filled intervals tend 

to be more accurate than on empty intervals (Abel, 1972; Craig, 1973; Rammsayer & 

Lima, 1991). Perception of timing information could also differ based on the task, e.g., 

between a reminder task (a standard interval is always presented first then followed by a 

comparison interval) compared to a 2-alternative-forced-choice (2AFC) task with roving 

(Lapid, Ulrich, & Rammsayer, 2008; Rammsayer, 2014). Therefore, there is no single 

estimate of temporal acuity even within a modality. 

 Another type of task involving time interval discrimination is perceptual learning. 

Several experimental have trained listeners to discriminate a certain base duration 

interval, and then tested for the generalisation of temporal learning across different 

stimulus parameters. Wright, Buonomano, Mahncke, and Merzenich (1997) found that 

the learning was specific to a given time interval, but generalised to changes on spectral 

cues used to delineate the time interval. In their study, listeners were asked to do the 

interval discrimination task between a standard time interval and comparison intervals 

with varying duration. Listeners were trained on one specific standard interval presented 

with a fixed frequency tone. After a training session, listeners showed similar 

performance in the discrimination task with the same standard interval but with tones at a 

different frequency. However, they did not show as good performance on other time 

intervals. This indicated that the learning of time information was specific to the absolute 

value but could be generalised for different spectral cues. Karmarkar and Buonomano 

(2003) also found a generalisation of learned timing information over frequency cues. In 

their study, listeners received training on the interval discrimination for short intervals 

with lower frequency and long intervals with higher frequency, which would have 

associated each interval with a certain frequency. Regardless, listeners showed a 

performance improvement when the association was reversed, i.e. for short intervals with 

high frequency and long intervals with low frequency. These results further suggest that 

spectral and temporal information processing are independent from each other as far as 

perceptual learning is concerned, which is relevant to our question of learning with 

spectral versus temporal cues.  
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1.2.2 Single time interval discrimination and learning in touch and vision 
  

In other sensory modalities, such as touch and vision, fewer studies have been conducted 

regarding time interval perception. Studies in each modality have different focuses. In 

touch, studies largely focus on a perceptual variability based on the "shape" of stimuli. 

For example, temporal gap detection in either sinusoids or noise bursts has been found to 

differ. Van Doren, Gescheider, and Verrillo (1990) reported that gap detection thresholds 

were higher when tactile stimuli were noises compared to sinusoids, especially when the 

gaps was short, below 100 ms.  

 In vision, one of the early studies reported that the minimum interval duration 

required for a clear perception of the gap between two visual stimuli at a behavioural 

level could go up to 80 ms (Nilsson, 1979). As we have seen in audition, perceptual 

differences between durations marked by filled and empty intervals are also found in 

vision. Based on Grondin (1993), discrimination of time duration for empty intervals was 

superior to filled intervals, regardless of standard duration length, either 50 ms or 250 ms. 

Temporal perception in different visual fields further show different abilities to perceive 

timing intervals. Temporal processing in the periphery, for instance, is known to be faster 

than at the fovea, (i.e., better at detecting smaller gaps between two flashes: Allen, Hees, 

& Nordby, 1998; Seiple, Greenstein, Holopigian, & Carr, 1988). This difference between 

areas of the visual field could be due to the larger size of peripheral photoreceptors 

compared to foveal receptors (Tyler, 1985). In both touch and vision, the temporal 

sensitivity seems to largely vary based on features of stimuli and test settings.   

 The difference of the temporal sensitivity across modalities can be compared 

when the same kind of discrimination tasks was used. Generally, the auditory modality 

has been found to be the most sensitive for temporal gap discrimination, as well as 

reproduction of timing information, when compared to vision and touch (Gault & 

Goodfellow, 1938; Goodfellow, 1934; Lechelt, 1975). One of the earliest studies by 

Goodfellow (1934) compared humans' abilities to discriminate the lengths of temporal 

gaps delineated by auditory clicks, visual light flashes, or tactile stimulation. Each trial 

contained 3 brief sensory stimuli in one of the modalities, with one standard interval of 1 

s and the other interval varying from 1 s to 1.3 s. Three tasks were tested, with subjects 

having to either respond whether the second interval was longer than first one, respond 

whether the lengths of the two intervals was different, or reproduce intervals. In all cases, 
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the differential thresholds were the lowest for audition (average 70 ms), the highest for 

vision (average 115 ms), and intermediary for touch (average 95 ms). Overall, the 

quantitative difference on the sensitivity seems to exist and this difference raises a 

question on the mechanisms of temporal processing, whether they are centralised or 

modality-dependent. Studies regarding this issue will be further reviewed in section 1.4. 

 Finally, there are also experiments involving perceptual learning of a single 

interval in modalities other than audition, with similar questions of transfer of learning to 

various stimulus parameters (Nagarajan, Blake, Wright, Byl, & Merzenich, 1998; Sathian 

& Zangaladze, 1997; Spengler et al., 1997). In the study of Nagarajan et al. (1998), an 

interval discrimination task was used by presenting two pairs of tactile pulses, one with a 

fixed duration (referred as the "base interval") and the other with a duration that was 

longer than the base interval (the "target interval"). Tactile pulses were presented either to 

the palm of the hand or the fingertip. Participants performed a pre-test session, followed 

by 10 – 19 days of training, and a post-session. Thresholds for discriminating the base 

interval and the target interval decreased along the training, showing perceptual learning 

of the time interval presented in the tactile modality. The learning generalised to the 

contralateral skin location in subjects who received pulses on the palm and to adjacent 

fingers for subjects who were trained on the finger, also showing some independence of 

the learning over stimulus parameters.  

 

1.2.3 Single time interval discrimination in electrical hearing 
 

Cochlear implant (CI) is the only successful sensory prosthesis that connects external 

sensory inputs to nerve fibres to rehabilitate the sensory process at present, for people 

with sensorineural hearing loss to restore their hearing abilities. The placement of 

electrodes from apex to basal area of the basilar membrane in the cochlea covers the 

frequency range and enables place coding of frequency information. Through electrodes, 

electrical signals stimulating nerve fibres are delivered, forming the electrical hearing 

mechanisms. Due to a limited number of electrodes, CI listeners' hearing ability for pitch 

perception is poor compared to NH listeners. To subsidise limitations in the spectral 

domain due to a relatively small number of electrodes, this electrical hearing system 

heavily rely on timing information of electrical signals. Unlike a degraded ability for 

frequency-related hearing activities for CI listeners (e.g., Kong, Cruz, Jones, & Zeng, 
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2004) studies have found comparable performance for time interval perception between 

CI and NH listeners. For example, Shannon (1989) used a 2AFC gap detection task, 

marked by either sinusoidal or biphasic pulsatile electrical waveforms, to investigate the 

thresholds of CI listeners. In general, Shannon found the gap detection thresholds as 20 – 

50 ms for markers with low-level (quiet) and 1 – 5 ms for markers with high-level (loud), 

which were similar to the thresholds found in NH listeners (e.g., Penner, 1977). Thus, the 

temporal sensitivity between NH and CI listeners seems to be similar. Studies regarding 

temporal processing that could aid listening behaviours of CI listeners when receiving a 

series of pulses will further be addressed in section 1.3.3.  

 

1.2.4 Model for single time interval perception  

 

The scalar expectancy theory (SET) is the most common model explaining the processes 

of time interval perception. It is described by a clock process (Figure 1-4), more 

specifically, a pacemaker generating clock ticks and a switch emitting the clock ticks 

toward an accumulator in memory (Gibbon, 1977; Gibbon, Church, & Meck, 1984; 

Rammsayer & Ulrich, 2001; Treisman, 1963).  
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Figure 1-4. Schematic to explain the SET process. From Gibbon, Church, & Meck 
(1984). 
 

 

 Gibbon et al. (1984) investigated this model to explain the variance of timing 

judgments. They reported that the variability of temporal estimates is generated by 

different sources, which are defined as scalar. This scalar variability would generally 

follow the Weber law, proportional to the mean subjective time. Then, a distribution of 

the timing judgment would remain similar for a wide range of time durations. This theory 

can be applied to a temporal generalisation (Church & Gibbon, 1982): After a training 

with a reinforcement for a given time duration T, animals' responses would peak at T and 

gradually decrease for both shorter and longer duration to T. The distribution of 

responses, which can be referred as the scalar variability, would be similar across 

different Ts, confirmed by its superposition when computed in relative time.  

 This theory, originally developed for understanding animal data, can be applied to 

investigations of human data (Allan, 1998; Malapani & Fairhurst, 2002; Penney, Gibbon, 

& Meck, 2000; Wearden, 2003). For example, Wearden (1992) conducted a temporal 

generalisation study in humans. After exposure to a "standard" tone sequence with each 

tone of fixed duration, human listeners were asked to respond whether individual target 

tones lasted for the same duration as the standard or not. Standard durations varied from 
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400 ms to 700 ms. Also, target durations were linearly or logarithmically scaled with the 

corresponding standard durations. The authors found an asymmetry of "yes" responses, 

i.e. there were more positive responses for target that were longer than the standard 

duration compared to targets that were shorter, and they found decreasing performance 

for longer standard durations. Nevertheless, overall performance across different standard 

durations remained qualitatively similar. Performance showed a peak of "yes" responses 

for the standard duration and decreased for longer and shorter durations, which shaped a 

similar distribution having the same relative ratio based to the standard duration. The 

findings confirmed the time judgements followed the Weber law. Similar variability for 

time judgment performance across different standard stimulus durations could further 

imply that the similar scalar property was applied. The SET theory has thus been useful 

for understanding how single time interval information is treated and processed.  

 

1.3 Temporal patterns 
 

Studies introduced in the previous section dealt with understanding the simplest type of 

information in the time domain, a single time interval. However, in the general case we 

rather encounter sensory information containing a series of time intervals, and the 

relevant information is in the temporal patterning as well as in the estimation of single 

durations. In this section, we will review studies of temporal pattern processing in 

audition (1.3.1), in touch and vision (1.3.2), and a relevant model to explain pattern 

processing (1.3.3).  

 

1.3.1 Temporal pattern processing in audition  
 

Music and speech, two of the most common types of natural auditory stimuli, contain 

meaningful information in the temporal patterning of sounds, such as the timing of each 

phoneme or note, and their respective duration. Various aspects of temporal information 

processing have been studied for sound sequences.  

 How humans treat intervals of different lengths or deviants within a series of 

temporal patterns has been one focus of previous temporal processing studies. 

Performance in the discrimination task can differ based on the duration of intervals in the 
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sequence or even where a time deviant occurs. Hirsh et al. (1990) introduced a time 

pattern comparison task where participants were instructed to indicate which one of two 

comparison tone sequences contained a deviant interval at a certain position, compared to 

a regular standard tone sequence (Figure 1-5). 

 

 

Figure 1-5. Schematic of a tone sequence comparison task. After listening to the standard 
tone sequence (top), listeners were asked to respond which of a first or second 
comparison tone sequence contained a deviant interval (middle or bottom). The position 
of the deviant within the sequence was indicated to listeners before each run. From Hirsh 
et al. (1990). 
 

 

Figure 1-6.  Relative DLs in the sequence comparison task. Temporal sequences 
contained either 6 tones, with 5 intervals (left, A) or 10 tones with 9 intervals (middle, B). 
For sequences with longer intervals (100, 200 ms), no reliable effect of deviant position 
on DL was found. For the fast sequence with shorter intervals (50 ms), an early position 
of the deviant worsened the performance. In the other experiment, temporal sequences 
had a tone frequency change at the position of the deviant (right, C). This frequency 
change worsened the performance only when the deviant was presented at a late position 
in the sequence. From Hirsh et al. (1990).    
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 The main results were that the sequence structure affected the time judgment task 

of the single deviant interval. More specifically, the task performance remained similar 

regardless of the deviant position for tone sequences with 100 or 200 ms of inter-onset 

intervals, whereas the performance was poorer when the deviant was presented at an early 

position within the sequence with 50 ms intervals (Figure 1-6, left and middle). Temporal 

sequences with longer intervals produced relatively consistent temporal processing 

performance compared to faster sequences. Furthermore, when there was a pitch change 

of the tone creating the deviant interval at a later position within the patterns, the 

performance was disrupted, implying that temporal processing could be affected by 

spectral cues in the context of temporal patterns (Figure 1-6, right). 

 More structured temporal patterns can create rhythmic information, that is, 

subjected accents on parts of the sequences that depend among other things on the 

predictability of the sequence (Povel & Essens, 1985). Rhythm has been shown to be a 

crucial factor for efficient discrimination of timing patterns compared to irregular timing 

patterns (Bouwer, Van Zuijen, & Honing, 2014; Large & Jones, 1999). For instance, 

Drake and Botte (1993) reported that JNDs were lower for sequences with regular 

intervals compared to irregular intervals. They also found that musicians were better at 

detecting tempo change, and musicians also showed lower JNDs for interval 

discriminations compared to nonmusicians. This may suggest an effect of familiarity on 

temporal pattern discrimination, with distinct neural mechanisms for familiar rhythmic 

patterns. For instance, according to the study of Sakai et al. (1999), temporal patterns 

regarded as "metrical" rhythms activated left premotor, parietal areas, and the right 

cerebellar anterior lobe. Patterns containing "non-metrical" intervals created with non-

integer values of the interval ratio induced brain activations in right prefrontal, premotor, 

parietal areas, and bilateral cerebellar posterior lobe.  

 

1.3.2 Temporal pattern processing in touch and vision 
 

Time pattern processing in touch in human has been quantified mostly by measuring the 

ability to discriminate different rates of tactile patterns. In such studies, it has been shown 

that human tactile perception can distinguish tactile rates in the range of 2 pulse-per-

second (pps) to 300 pps (Sherrick, 1985). Stimulus parameter may influence the estimate 
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of rate discrimination acuity. Above a rate of 40 Hz, the rate detection threshold 

decreased when a size of a contactor area increased (Verrillo, 1965; 1985). 

 

 

 
 

 
Figure 1-7. Results of a tactile pattern discrimination task. (Top) After a set of training, 
both humans and mice were able to correctly identify the target pattern with similar 
performance levels. (Bottom) Plots of the difference in lick rate between trials with the 
target pattern and trials with non-target patterns (sequence with target pattern segments 
scrambled in the hundreds of milliseconds range, solid grey line). The dashed grey line 
represents differences in average lick rates from 50 randomly drawn trials and the dashed 
black horizontal line is the 95% confidence interval of lick rate values from the 50 
repeats. An asterisk indicates where the meaningful change occurs between the actual 
difference in the lick rate and the difference of randomly drawn trials. The top thick grey 
horizontal bar indicates the sequence presentation period and the top thick fuchsia bar 
indicates the response period when the water was actually available. From Bale et al. 
(2017). 
 

 

 Perceptual learning of sequences has also recently been investigated with tactile 

stimuli, in a setting inspired by the study of Agus et al. (2010). Bale et al. (2017) 
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presented tactile patterns consisting of different amplitude modulations, regarded as 

"syllables", on whiskers for mice and fingertips for humans. In all cases, participants were 

trained to distinguish a reference sequence from other sequences that were created by 

scrambling the amplitude syllables. The result showed that both mice and humans could 

learn to discriminate reference temporal patterns from other patterns with shuffled 

syllables (Figure 1-7, top). Responses of mice were made as soon as changes in a 

sequential order were detected, even before the response period (Figure 1-7, bottom), 

suggesting an immediate detection of the reference sequence for its presentation and an 

efficient form of learning.  

 Furthermore, studies regarding a transfer of learning have been performed with 

temporal sequences in addition to the single time interval studies reviewed in previous 

sections. Harris, Harris, and Diamond (2001) presented a set of stimuli differing in either 

vibration speed (fast or slow), punctuate pressure (hard or soft), or roughness (rough or 

smooth). 

 

 

 
Figure 1-8. An example of tested fingers in the tactile discrimination task. After training 
on one finger (T), neighbouring fingers in an ipsilateral position as well as parallel fingers 
in a contralateral location were also tested on the same discrimination task to investigate 
generalisation of tactile learning. From Harris et al. (2001).  
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 Participants were trained on a designated finger that was different for each task, 

and were tested after the training on different fingers: the trained finger, adjacent fingers, 

and fingers on the opposite hand (Figure 1-8). The transfer was stronger for the first next 

finger as well as for the topographically matched finger on the opposite hand, for the 

roughness and pressure tasks. Harris and colleagues suggest that the strong transfer would 

only be found when the trained area and the test area were topographically matched. They 

did not observe a transfer of vibration speed learning but the test frequency (between 9 

Hz and 10 Hz) differed from the training frequency (between 8 Hz and 10 Hz), which 

could have limited the effect inducing the transfer. As we have seen in single time 

interval transfer studies in audition as well as touch, these findings suggest that the 

transfer is not limited to a single interval, but also can be found for a more complex form 

of time intervals: multiple time intervals presented as a group.  

 

 

 
Figure 1-9. Examples of 1D (top) and 2D (bottom) visual contrast noise sequences, either 
random for all eight squares (N) or first four random squares repeatedly presented (RN). 
Unlike N and RN that change contrast levels of square for each trial, FixRN, which has 
the same format as RN, re-occurs for several trials with identical features of its squares. 
From Gold et al., (2014). 
 
 
 Studies of temporal pattern processing in vision are less common and time-related 

processing in the visual domain is generally known to be poor. The study of Gold, 

Aizenman, Bond, and Sekuler (2014) explored a memory formation of random spatio-

temporal visual sequences, by adapting the paradigm of Agus et al. (2010). Gold et al. 
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produced contrast noises as visual stimuli. Each sequence consisted of eight 128 x 128 

pixel squares either with eight different contrast levels for each square (1D), or different 

contrast samples to each pixel within each square that are again different for each square 

(2D). Each square was presented for about 133 ms, followed by subsequent square 

presentations in a time series, for each visual sequence to last around 1 s. The same 

within-sequence repetition detection task from the study of Agus et al. (2010) was used, 

by presenting random noise sequence (N), repeated noise sequence (RN), and one 

specific RN that re-occurs for several trials with the same features (FixRN, Figure 1-9). 

They observed a gradual performance improvement for FixRN, the sequence that re-

occurred for several trials, compared to relatively constant performance for RN, although 

the gain of learning was smaller and less rapid, when compared to the result of auditory 

noise learning that Agus et al. observed (Figure 1-10).  

 

 

 
Figure 1-10. Performance of each trial for RN (filled circles and solid line) and FixRN 
(empty circles and dashed lines), for 1D noise (left) and 2D noise (right). Error bars 
indicate ±1 SD. From Gold et al. (2014). 
 

  

 Furthermore, Gold et al. introduced a new type of FixRN, by presenting the 

second half of FixRN in a reversed order. They did not observe any learning effect for the 

reversed FixRN. These findings suggest that incidental learning of random noise 

sequences was poor in vision compared to that in audition, and was susceptible to 

temporal information.  

 Barakat, Seitz, and Shams (2015) also studied perceptual learning of visual 

temporal patterns. They introduced a set of two series of visual stimuli, and asked 

participants to respond whether two stimuli were the same or different. The task 
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contained a pre-test training, post-test 1, another set of training, and a final post-test to 

study if participants could improve their task performance throughout the training 

sessions. Participants who received the training session with visual stimuli did not show 

any performance improvement. Interestingly, on the other hand, participants who 

received the training session with auditory stimuli or audio-visual stimuli (temporal 

patterns presented in both auditory and visual modalities) showed significant performance 

improvements, which is an indication of perceptual learning. Although only a few, the 

studies in vision so far suggest that temporal processing in vision is relatively poor, 

especially when compared to audition. However, it is unclear whether this difference 

indicates that there are distinct temporal processing mechanisms for individual modality 

or not. More detailed review on different performance across modalities on tasks 

regarding will be introduced in section 1.4.  

 

1.3.3 Temporal pattern processing in electrical hearing 
 

As we have reviewed earlier in section 1.2.3, the sensitivity for timing information of CI 

listeners is comparable to that of NH listeners. In fact, CI listeners actively rely on 

temporal processing to acquire pitch information, referred as rate coding. The ability of 

temporal processing for CI listeners has been studied by using a rate discrimination task. 

For example, Zeng (2002) delivered pulse trains of different frequencies ranging from 50 

Hz to 500 Hz to either the most apical or the most basal electrode. CI listeners received a 

3-AFC task for rate discrimination as well as an absolute magnitude estimation to match 

given pulse rates to the numerical pitch value. The average frequency DL for the standard 

frequency of 50 Hz was 12 Hz, and the DL gradually increased with the increase of the 

standard frequency (Figure 1-11, left). Also, an increase of pitch estimation along with 

faster rates was found up to 300 Hz then saturated for rates above 300 Hz (Figure 1-11, 

right). The performance did not highly depend on which electrode the pulses were 

presented. The result indicated the independence of rate coding from the place coding, 

and a perceptual limitation of pitch discrimination from the rate coding at 300 Hz.  
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Figure 1-11. Results of a rate discrimination task (left) and a pitch estimation (right) of 
four CI listeners, from 50 Hz and 500 Hz presented at either the most apical electrode 
(circles) or the most basal electrode (triangles). From Zeng (2002). 
 

 

 
Figure 1-12. Average performance for a jitter detection task (left) and a rate 
discrimination task (right), at the rate of 100 Hz (red) and the rate of 300 Hz (blue), for CI 
listeners (top) and NH listeners (bottom). Solid lines indicate pulses sent to the apical 
electrode for CI or "high" frequency region (3900 – 5400 Hz) for NH listeners, and 
dashes lines indicate pulses sent to the basal electrode for CI or "very high" frequency 
region (7800 – 10,800 Hz). From Gaudrain et al. (2017).  



!

INTRODUCTION!

 30 

 Gaudrain, Deeks, and Carylon (2017) used a jitter detection task in addition to the 

rate discrimination task, to study if the limitation of pitch perception for CI listeners was 

due to inaccurate coding of time intervals within pulse trains through the electrical 

hearing mechanisms. They used three-interval, 2AFC task, by presenting a standard 

stimulus first, followed by another standard stimulus and test stimulus in a random order, 

and asking participants to choose one that is different from the standard stimulus between 

the second and the third stimuli, with 100 Hz and 300 Hz as standard frequencies. They 

then compared the task performance of CI listeners to that of NH listeners. Although the 

rate discrimination performance of CI listeners had some differences between 100 Hz and 

300 Hz, overall results showed that the performance of CI listeners and NH listeners was 

highly comparable, for both the jitter detection and the rate discrimination tasks (Figure 

1-12). Overall, regardless of perceptual limitation on temporal pitch perception in certain 

circumstances, the findings suggest that the electrical hearing mechanisms persevere 

efficient temporal processing.  

 

1.3.4 Model for temporal pattern perception 
 

Whilst SET, introduced in section 1.2.3, focused on a single time interval, the dynamic 

attending theory (DAT) has been developed for temporal sequences, hypothesising an 

attentional entrainment to a temporal structure. Suggested by Jones and Boltz  (1989), 

DAT emphasises the role of expectancy, expressed by "self-sustaining" oscillators. 

According to the theory, external rhythms induce attentional rhythms that follow the 

regularities of timing events. Once the regularity is entrained, the expectancy of 

forthcoming events can be developed. Internal oscillators are created by the entrainment 

and adaptation to the dominant period of temporal information in the environment, 

manipulated in experiments through what is called the "adaptation phase". The oscillators 

adjust their period to the external stimulus rhythm.  
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Figure 1-13. Schematic of the attending dynamic model. A self-sustained oscillator and 
attentional energy pulse compose an attending rhythm. From Large and Jones (1999).  
 

 

 Experimental findings and model predictions further developed by Large and 

Jones (1999) tested this theory (Figure 1-13). They found better discrimination of time 

intervals when targets were preceded by the presentation of a stationary rate pattern. 

Their model predicted this finding by the coupling of attentional and external rhythms.  

 

 

 
Figure 1-14. Illustration of the timing interval discrimination task. From Barnes and Jones 
(2000). 
 

 

 Further predictions are that more exposures to standard time information would 

improve judgments of target timing (McAuley & Kidd, 1998; Vos, van Assen, & Fraňek, 

1997) and discrepancies between context time events and attending time would reduce 

the performance (Barnes & Jones, 2000). The study of Barnes and Jones presented 
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context sequences with 600 ms of inter-onset-intervals (IOIs) followed by a varying 

standard interval to be compared with a target interval (Figure 1-14). They found that 

standard intervals that were deviant from the context sequence were detrimental to the 

interval judgment, compared to when the standard interval remained the same as the IOI 

of the context sequence.  

 DAT requires preceding contexts to entrain one's attention. This theory is thus 

directly applicable for a temporal information that introduces "rhythmic" patterns, which 

may not necessarily the general case for environmental stimuli. There are nevertheless 

studies showing neural evidence in support of DAT, in particular neural entrainment 

generated by a series of events with rhythms and conventional musical metric frequencies 

that could support the role of timing inputs for time perception (Besle et al., 2011; 

Nozaradan, 2014). 

 

1.4 Temporal processing for multi-sensory information 
 

So far, we have reviewed the temporal sensitivity data from single interval comparison 

tasks as well as some studies investigating a series of time intervals, but always in an 

individual modality. However, daily scenes often consist of concurrent multi-sensory 

events, rather than one sensory input at a time. Thus, how we process combined 

information efficiently is another key issue in timing research. A related debate is 

whether temporal processing is due to centralised or distributed mechanisms (e.g., Ivry & 

Schlerf, 2008; van Wassenhove, 2009; Grondin, 2014). A centralised processing could be 

applicable to all modalities and induce strong interactions, whereas differences across 

modalities would be predicted from distributed processing. In this section, we will review 

studies of multi-sensory temporal processing that suggest either modality-dependent 

mechanisms (1.4.1) or general mechanisms across modalities (1.4.2).   

 

1.4.1 Modality dependent mechanisms from cross-modal studies 
 

We will first review evidence for modality specific temporal processing, such as how one 

modality can affect the other. Asymmetries in the potential of one modality to bias are 

another supports distinct temporal processing across modalities. As we will see, a range 
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of findings report auditory dominance for multi-modal sensory information in the time 

domain.  

 

1.4.1.1 Audition and Vision 

An auditory dominance over vision in the time domain is generally reported, 

hypothesised to be caused by greater temporal sensitivity in audition. This dominance is 

for instance observed when conflicting information is provided in the two modalities 

(Recanzone, 2003; Repp & Penel, 2002; 2004). The phenomenon, often referred to as 

"temporal ventriloquism", has been reported from various types of tasks. For example, the 

reproduction of temporal stimuli by a button press is known to be superior in audition 

than vision, as less variability is observed for auditory stimuli (Glenberg & Jona, 1991; 

Glenberg, Mann, Altman, Forman, & Procise, 1989). The auditory superiority can also be 

seen on temporal order judgment tasks (Morein-Zamir, Soto-Faraco, & Kingstone, 2003), 

as well as temporal localisation task: to judge whether a second sensory signal was 

presented closer to a first signal or a third signal, for a group of three sensory signals 

(Burr, Banks, & Morrone, 2009). Burr, Banks, and Morrone (2009) found a better 

temporal localisation ability for audio-visual stimuli than for unimodal stimuli, which can 

be explained by the theory of "optimal cue combination": if timing information is more 

accurate in audition, auditory cues would dominate timing-related tasks.  

 Timing perception can be disrupted by this modality difference. A series of studies 

found modality effects on time related tasks. Burr et al. (2009) reported that temporal 

asynchronies were more difficult to detect for cross-modal stimuli compared to unimodal 

stimuli. This suggests the existence of mechanisms in individual modality that may not 

necessarily integrate fully for temporal judgments.  
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Figure 1-15. Results of a temporal discrimination task in the visual domain in the 
presence of task-irrelevant information. Visual performance level was mildly disrupted by 
the presentation of an incongruent visual time pattern (black bars vs. grey bars). The 
presentation of an incongruent auditory time pattern showed much greater disruption on 
the discrimination task performance (left black and grey bars vs. right black and grey 
bars). From Guttman et al. (2005).  
 

 

 Guttman, Gilroy, and Blake (2005) also found that the comparison of two visual 

streams could be disrupted when an incongruent, task irrelevant auditory stream was 

presented. Guttman et al. presented auditory and visual stimuli either with consistent or 

inconsistent during a temporal sequence discrimination task and asked participants to 

focus on only one modality. Performance was better in the congruent multisensory 

condition compared to the condition with only visual stimuli. Furthermore, a presentation 

of task-irrelevant auditory stimuli (incongruent auditory temporal patterns) highly 

disrupted performance in the visual temporal discrimination task, more so that the 

presentation of task irrelevant visual information (Figure 1-15). Based on these findings, 

they suggested that temporal sequences processing recruited some form of auditory 

encoding regardless of the modality of entry. In the example they studied, they argued 

that visual temporal patterns were coded in an auditory format for the sequence 

discrimination task.  
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1.4.1.2 Audition and Touch 

A close inter-connection between audition and touch for temporal processing has been 

frequently reported (Mahar, Mackenzie, & McNicol, 1994; Yau, Olenczak, Dammann, & 

Bensmaia, 2009). Mahar and colleagues (1994) suggested that both the auditory and 

tactile modalities were designed to efficiently process temporally distributed information 

for threshold tasks, whereas visual modality was more adapted to information processing 

with spatial (or spatio-temporal) information.  

 The study of Ley, Haggard, and Yarrow (2009) examined whether more accurate 

temporal judgments could be performed when timing information was introduced in 

multiple modalities or not. They used a temporal order judgment task asking participants 

to judge the order of two stimuli when stimuli were presented one on the left and the 

other on the right side (auditory stimuli over different loudspeakers and tactile stimuli 

over different fingers). Stimuli were presented either unimodally or bimodally. They 

reported better performance in the temporal order judgment task when auditory and 

tactile stimuli were presented bimodally, compared to when information was presented in 

a single-modality. This indicates that participants were able to integrate stimuli, rather 

than relying one modality, to distinguish temporal events. 

 There is also evidence of auditory dominance in audio-tactile task, comparable to 

what we have seen previously for vision. The study of Roy, Dalla Bella, and Jagarde 

(2017) asked participants to flex their index finger as soon as a stimulus was presented. 

First, they showed that the response time to tactile only stimulus was slower than to 

auditory or to synchronised audio-tactile stimuli. Subjects were further asked to 

synchronise to audio-tactile stimuli presented with different stimulus-onset-asynchronies 

(SOAs) by focusing on either modality. The best synchronisation was observed when 

tactile stimuli preceded auditory modality by 40 and 80 ms. When subjects were asked to 

focus on auditory stimuli, the synchronisation performance was not different compared to 

performance with audio-only patterns. However, bigger variances to the synchronisation 

and coordination were found when subjects were asked to focus on tactile stimuli for 

audio-tactile patterns with SOAs, again compared to performance for tactile only patterns 

(Figure 1-16). The results indicate a strong auditory dominance for processing multi-

modal temporal patterns over the tactile modality.  
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Figure 1-16. Results of a synchronised tapping task to audio-tactile stimuli. Average 
standard deviation (SD) on bimanual coordination between two hands (left) and 
asynchrony (right) with a focus on one modality when two modalities were presented 
with different SOAs. Variance on the auditory tapping task did not differ between audio-
only temporal pattern and audio-tactile with SOAs. On the other hand, variance on the 
tactile tapping task increased when tactile stimuli were simultaneously presented with 
auditory stimuli with SOAs. From Roy et al. (2017). 
 

 

1.4.1.3 Further studies across modalities  

Some studies, although relatively few, have reported distinct temporal processing 

mechanisms across sensory modalities by comparing behavioural differences between 

vision and touch, or between audition, vision, and touch together. Grondin & Rousseau 

(1991) used an interval judgment task with empty intervals in all three sensory 

modalities, using a single-stimulus method where subjects were asked to determine 

whether an interval was short or long. Interval markers were either intermodal, across 

audition-vision-touch, or intramodal. For some trials, participants were not informed 

about the modality of the interval. Performance was better for the intra-modal 

presentation compared to inter-modal presentation, but no difference was observed 

between certainty and uncertainty condition. They suggested that the better performance 

for the intra-modal stimuli than the inter-modal stimuli was due to the asymmetry on 

temporal processing of each modality rather than the certainty of attention to the stimuli.  

 

 



 

TEMPORAL!PROCESSING!FOR!MULTI4SENSORY!INFORMATION!

 37 

 
Figure 1-17. Results of a simultaneity judgment task between two temporal patterns, in 
different modalities. After 7 days of practice and test session, the performance gain (test 
performance - practice performance) on the 8th day (grey) and the gain from a re-test 
session after about 7 months (white) are plotted. The gain was always smaller when two 
patterns were presented in different modalities. From Virsu et al. (2008).  
 

 

 Additionally, Virsu, Oksanen-Hennah, Vedenpää, Jaatinen, and Lahti-Nuuttila 

(2008) used a simultaneity task asking whether two series of pulses were simultaneous or 

not, with series presented either inter- or intra-modally. For the intra-modal presentation 

for each modality, they used different strategies to present stimuli. In the auditory 

modality (A), authors asked participants whether there were two stimuli (simultaneous) or 

three (non-simultaneous) stimuli, presented from the loudspeaker. In the visual modality 

(V), there were two LEDs that would either emit three flashes either in a simultaneous or 

non-simultaneous manner. Lastly in the tactile modality (T), a series of tactile stimuli 

would be presented to two fingers (index and middle) for the simultaneity judgement. For 

the inter-modal presentation, the stimuli were presented in two chosen modalities, either 

as audio (via the speaker)-visual (via one LED; AV), audio-tactile (on one fingertip; AT), 

or visuo-tactile (VT) combination. They trained their participants on the task and 

measured a performance gain after training. The gain was the smallest for AV 

combination, followed by VT, and AT. The learning of AT was also not as high as for the 

intramodal (T) condition (Figure 1-17). Significant differences on the task performance 

between inter- and intra-modal conditions as well as across modalities indicate that 

temporal processing could highly vary based on the modality.  

 Overall, distinct abilities for temporal processing across modalities are most 

frequently suggested by the auditory dominance over other two sensory modalities and 
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disrupted performance for the multi-modal presentation of temporal information, 

compared to the uni-modal presentation.  

 

1.4.2 Centralised mechanisms from cross-modal studies 
 

So far, we have seen modality differences in temporal processing that can affect temporal 

perception of other modalities when presented together, generally with auditory 

dominance found. However, to decode multi-sensory input in an ecological and efficient 

way, sensory systems could also share common mechanisms. This has also been 

investigated in the context of temporal processing.  

 As we have seen, temporal resolution differs across sensory modalities. However, 

it could be that similarities appear across modalities after these differences in acuity are 

taken into account. The study of Marks (1987) explored this idea by comparing three 

modalities for temporal pattern perception above the limit of acuity. Temporal patterns 

were composed of three successive pulses (of pulse duration either 100 ms or 200 ms) 

which thus produced two intervals, one long (either 450 ms or 650 ms) and one short 

(either 150 ms or 250 ms). Relatively big intervals used even for the short interval 

category helped minimising a modality effect from differences in temporal acuity. He 

introduced a pair of two temporal patterns, and asked subjects to judge the subjective 

similarity between two patterns. The pair of patterns was presented either in the same 

modality or in different modalities. The result showed that the cross-modal temporal 

pattern comparison was less sensitive to interval durations than the unimodal temporal 

pattern comparison. However, subjects' judgements were generally consistent for all 

unimodal and cross-modal presentations. This suggests similar perceptual dimensions for 

timing judgments in all three modalities when temporal acuity is not a limiting factor.  

 Rammsayer (2014) also pointed out that the contradictory results on temporal 

processing across modalities may be due to the wide variability of tasks and stimulus 

structure across studies. He used various structural combinations to test discrimination 

abilities between standard and comparison intervals, as a function of the type of interval 

(filled or empty), task (reminder task or 2AFC task), the sensory modality, and the base 

duration for standard stimuli.  
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Figure 1-18. Results of interval discrimination task indicated by Weber fraction ratios as 
a function of interval type (filled vs. empty), task type (2AFC vs. Reminder), modality 
(auditory vs. visual) and the base duration (100 ms to 1000 ms). The reliable effect of 
modality task type, and base duration on values of the Weber fraction was found. From 
Rammsyer (2014).  
 

 

 Rammsayer found differences in performance depending on all experimental 

parameters. Generally, performance on the interval discrimination task was better in 

audition compared to vision. Also, performance was worse when the base duration was 

relatively short (100 – 200 ms) compared to longer durations, regardless of the task and 

modality. The modality effect started to diminish for base duration longer than 600 ms 

(Figure 1-18). The results indicate a possibility of observing similar performance of time-

related behavioural tasks, potentially using the same strategies of temporal information 

processing, when the task and stimuli are carefully controlled.   

 

1.5 The aims of the thesis 
 

This introduction has only surveyed a small fraction of the abundant literature on timing 

perception. Even so, it already appears that there are important gaps in our knowledge of 

temporal information processing.  The present thesis focuses on one of those gaps: are 

there mechanisms in audition and other modalities to rapidly learn temporal patterns, with 
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patterns more complex than single intervals and without the special case of rhythmic 

information. We will use a novel variant of the experimental paradigm of Agus et al. 

(2010), using random time patterns as stimuli. The first main experimental chapter 

describes this novel paradigm and applies it to auditory time patterns (Chapter 2). 

Because time patterns are relevant for all modalities tested, in the second main 

experimental chapter we then transpose the paradigm to touch and vision, being careful to 

use intervals beyond the temporal acuity in all modalities for a fair comparison (Chapter 

3). Two additional chapters, with more preliminary data and analyses, will introduce 

further findings regarding the learning of auditory time patterns in electric hearing with a 

cochlear implant, as well as the use of pupillometry to track the learning process. An 

appendix will finally be presented illustrating ongoing experiments using 

electrophysiological recordings. 

 The thesis will be concluded with a final chapter (Chapter 6) summarising all of the 

presented projects with discussions on future perspectives for understanding temporal 

perception, and its applications in the field. 
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Chapter 2  
Auditory memory for random time patterns 
 

 

 

This chapter has been published as: 

Kang, H., Agus, T. R., & Pressnitzer, D. (2017). Auditory memory for random time 
patterns. The Journal of the Acoustical Society of America, 142, 2219-2232.  

 

Parts of this work have been presented as: 

Kang, H., Agus, T. R., & Pressnitzer, D. (2015). Auditory Memory for Time-Domain 
Information. 38th MidWinter Meeting of the Association for Research in 
Otolaryngology, Baltimore, USA (Talk). 

 

2.1 Abstract 
 

We investigated the acquisition of auditory memory for temporal patterns. The temporal 

patterns were random sequences of irregularly spaced clicks. Participants performed a 

task previously used to study auditory memory for noise (Agus et al., 2010). The memory 

for temporal patterns displayed strong similarities with the memory for noise: temporal 

patterns were learnt rapidly, in an unsupervised manner, and could be distinguished from 

statistically matched patterns after learning. There was, however, a qualitative difference 

with the memory for noise. For temporal patterns, no memory transfer was observed after 

time reversals, showing that both the time intervals and their order were represented in 

memory. Remarkably, learning was observed over a broad range of time scales, which 

encompassed rhythm-like and buzz-like temporal patterns. Temporal patterns present 

specific challenges to the neural mechanisms of plasticity, because the information to be 

learnt is distributed over time. Nevertheless, the present data show that the acquisition of 

novel auditory memories can be as efficient for temporal patterns as for sounds 

containing additional spectral and spectro-temporal cues, such as noise. This suggests that 

the rapid formation of memory traces may be a general by-product of repeated auditory 

exposure.    
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2.2 Introduction 
 

Listening often requires matching current sensory evidence with stored memory traces, 

such as when associating a series of artificial tones to one’s new phone (Roye et al., 

2010), or recognizing natural sounds like voices and musical instruments (Agus, Suied, 

Thorpe, & Pressnitzer, 2012; Norman-Haignere et al., 2015). In fact, as auditory 

information develops over time, most aspects of auditory perception are likely to be 

shaped by memory processes on different time scales (Demany & Semal, 2007). How 

such memories are acquired through experience is not well understood. Here, we 

investigated auditory memory for temporal patterns, using random sequences of 

irregularly spaced clicks, over a broad range of time scales regarding the time-intervals 

forming the patterns. 

In previous studies probing the acquisition of novel auditory memories, another 

type of random stimulus has been extensively used—white noise, obtained by drawing 

successive audio samples from a Gaussian distribution (Agus et al., 2010; Viswanathan et 

al., 2016). Studies of the memory for noise differed from each other in many 

experimental details, but, essentially, an exemplar of noise selected at random was 

presented to listeners more than once during an experiment. Putative memory traces were 

then probed by tracking psychophysical or physiological measures for the re-occurring 

noise exemplar, as exposure increased, either within a trial or across trials. These studies 

have demonstrated remarkable features of auditory memory. Immediate auditory memory 

for noise, often probed by asking participants to detect ongoing repetitions of a “frozen” 

noise exemplar, can extend up to noise durations of several seconds (Guttman & Julesz, 

1963; Kaernbach, 2004; Warren et al., 2001). Longer-term memory traces can be 

measured by presenting the same exemplar over different trials or experimental blocks, 

and in this case memory be established within tens of seconds and persist for minutes or 

even weeks (Agus et al., 2010; Viswanathan et al., 2016). Real-time physiological 

correlates of the memory traces can be observed in electroencephalography or 

magnetoencephalography, with a response timing and topography suggesting an origin 

within auditory cortex (Andrillon et al., 2015; Luo et al., 2013). Finally, these 

physiological correlates can be formed incidentally, even with a task diverting attention 

away from the noises to be remembered (Andrillon et al., 2015), or during REM sleep 

(Andrillon et al., 2017). 



 

INTRODUCTION!

 43 

A puzzling question has been raised by most of these studies: what had been learnt 

by listeners when they displayed evidence of a memory for noise? Answering this 

question has implications for whether the memory for noise is representative of the 

memory for sounds in general. It is implausible that listeners learnt the exact time series 

of the thousands of audio samples comprising the noise waveform, first because of the 

sheer amount of information involved, and second because audio waveforms are 

transformed as they ascend the auditory system so the central nervous system does not 

have access to the audio samples themselves. Rather, a memory for noise should rely on a 

subset of auditory cues emerging after processing along the auditory pathways. Such cues 

can belong to two broad classes: spectral cues, like the random distribution of frequencies 

over a short time frame, or temporal cues, like the occurrence of salient “events” at 

random times during the stimulus. Even though the opposition between spectral and 

temporal cues is somewhat arbitrary at the audio signal level, being essentially imposed 

by the time frame of analysis, the distinction is meaningful and important from an 

auditory perspective—and even more so from an auditory memory perspective. To 

simplify, spectral cues may be encoded by the place pattern of spiking rates in frequency-

tuned populations of auditory neurons, whereas temporal cues may be encoded by the 

timing between spikes within a neuron or across neurons in a population. Even though the 

mapping between acoustic cues and their underlying neural representation is not well-

established (Lim, Lagoy, Shinn-Cunningham, & Gardner, 2016), both place (Rothschild 

et al., 2010) and temporal (Lu, Liang, & Wang, 2001) cues are abundant along the 

auditory pathways, from the auditory periphery up to at least the auditory cortex. 

However, the two types of cue require qualitatively different mechanisms when learning 

and neural plasticity are considered. Spectral cues in a place code are available as 

simultaneously active neurons, so the classic “fire together, wire together” principle of 

neural plasticity can apply (Masquelier, Guyonneau, & Thorpe, 2008). For temporal cues, 

however, such a mechanism does not apply directly because what needs to be learnt 

develops over time. So, neurons would need somehow to encode past and present 

information simultaneously to learn temporal patterns (Lim, Lagoy, Shinn-Cunningham, 

& Gardner, 2016). 

For noise, the evidence available so far points strongly towards a memory 

representation based on brief spectral cues. In their original report, Guttmann and Julesz 

(1963) showed that listeners could detect repeating copies of a noise segment even for 

periodicities outside of the pitch range. They went on to describe the perceptual cues used 
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to detect repetitions with noise: a series of brief events, such as “rasps” and “clangs”, 

which led them to the following statement: “It appears to us that the basis of pitchless 

periodicity detection must lie in the detection of short-term power-spectrum recurrence.” 

(Guttman & Julesz, 1963). This conjecture, based on introspection, was confirmed 

experimentally by Kaernbach (1993), who used a technique based on participants tapping 

to a repeated noise exemplar. The replacement of various portions of the memorized 

noise exemplar with fresh noise showed that repetition-detection was based on short 

segments, lasting less than 100 ms. Further experiments using behavioral reverse-

correlation suggested that, while some of those short features could be described as 

spectro-temporal, most were spectral edges (Kaernbach, 1999; 2000; and pers. comm.). 

More recently, when studying longer-term memory for noise, Agus et al. (2010) showed 

that the memory representation was robust to the time reversal of the noise segment. 

Time-reversal would leave short-term power spectra unaffected, but would disrupt most 

cues based on timing. Viswanathan et al. (2016) reported similar conclusions using time 

shuffling instead of time reversal. Finally, Andrillon et al. (2015) observed sizeable EEG 

event-related potentials after learning. As event-related potentials require a precisely 

time-locked neural response, this finding was accounted for by positing neural responses 

locked to brief spectral features within the noises after learning.  

Considering all of these pieces of indirect but converging evidence, together with 

the well-established availability of neural mechanisms to learn spectral cues, it is 

legitimate to ask whether the remarkable characteristics of auditory memory observed 

with noise are restricted to sounds containing spectral cues. Here we aimed to answer this 

question directly by using random time patterns devoid of spectral cues.  

The perception of auditory time patterns has been studied extensively, mostly using 

discrimination experiments. The simplest possible temporal pattern is a single time 

interval of variable duration. The discrimination between two such intervals yields 

thresholds corresponding to a Weber fraction, of about 10% for intervals in the range of 

about 200 ms to 2 s—although this range may vary with experimental details (Grondin, 

2010). When the time interval to be discriminated was embedded within longer, 

isochronic patterns, or relatively simple patterns containing only two different interval 

durations, the Weber law held (Hirsh et al., 1990). However, when the embedding 

patterns were more complex, other listening strategies appeared. Using a discrimination 

task between two fully random temporal patterns, Sorkin (1990) showed that behavioural 

results could be accounted for by a model based on the cross-correlation between time 
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intervals, each interval being corrupted by additive noise (which would be inconsistent 

with a Weber fraction). When the embedding pseudo-random patterns were manipulated 

to induce a musical meter of varying strength (Povel & Essens, 1985), the detailed 

structure of the sequence influenced discrimination performance, demonstrating that not 

all intervals had the same perceptual weight (Ross & Houtsma, 1994; Teki & Griffiths, 

2014). Finally, in yet another departure from the Weber law, when the interval to be 

discriminated was preceded by another, random time interval, this systematically 

distorted the perceived duration of the target interval (Karmarkar & Buonomano, 2007).  

A comprehensive theory accounting for all of these findings about temporal pattern 

discrimination is still lacking, but, as outlined by Ross and Houtsma (1994), it may be 

useful to consider at least three types of strategy to discriminate complex time patterns: 

an analytic strategy, focusing on each interval independently (Hirsh et al., 1990); a 

holistic strategy, considering the whole pattern (Sorkin, 1990); and an emphasis on a 

small subset of pattern motifs (sometimes termed “runs” as they occur in time), which 

may stand out because of meter (Povel & Essens, 1985), perceptual organization (Royer 

& Garner, 1966), or informational content (Pollack, 1968a). Similar strategies could be 

relevant for the memory representation of time patterns, but this has not been investigated 

yet. 

In the present set of experiments, we used irregularly spaced click trains in a 

memory paradigm similar to what has been used previously for noise (Agus et al., 2010). 

The intervals between clicks were randomly derived from a uniform (Experiment 1) or 

Poisson distribution (Experiment 2), to evaluate the influence of interval statistics on 

performance. A minimum gap between clicks was always imposed, as well as high-pass 

filtering, to prevent any overlap in the internal representation of successive clicks and 

thus restrict auditory cues to purely timing cues (Methods, see also Figure 2-1). One 

condition consisted of a random series of clicks, lasting 2 s in total, which we termed C 

(Figure 2-1, top). A second condition, termed repeated clicks or RC, consisted of a 

random series of clicks lasting 1s, immediately repeated for another 1s (Figure 2-1, 

bottom). The task assigned to participants for all experiments was to report whether a trial 

contained a repetition or not. There was a third condition, not mentioned to participants 

during the instruction phase: a Reference RC, or RefRC, which was an RC that re-

occurred over several trials throughout an experimental block. As we showed previously, 

longer-term memory can be probed by comparing performance on RCs, heard in one and 

only one trial, to performance on RefRCs, heard identically over several trials (Agus et 
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al., 2010). Improved performance for RefRCs compared to RCs can be taken as an 

indication of longer-term memory traces. In Experiment 3, we tested if time-reversal 

would affect performance after learning, as a memory representation based on local cues 

such as extreme values of the inter-click intervals could be resilient to time-reversal. 

Finally, we used Sorkin’s cross-correlation model (Sorkin, 1990) to see if it could help 

interpret some characteristics of repetition-detection (RC performance) for our click 

trains. 

Unlike previous studies of auditory temporal patterns, we probed both the 

immediate memory processes needed for discrimination, reflected by the performance on 

RC trials, and longer-term memory processes over the course of minutes reflected by a 

possible advantage of RefRC trials over RC trials. The experimental design precisely 

controlled for the amount of exposure to RefRC, as participants would not have heard the 

exact same random time pattern before, so we could characterize the time-course of 

memory acquisition for temporal patterns. Finally, we could use the same psychophysical 

task to test a broad range of time scales (inter-click intervals), covering sequences 

sounding either like a succession of isolated clicks or sequences sounding like continuous 

buzzing sounds.  

 

2.3 Experiment 1: uniformly distributed time patterns  
 

A. Method 

1. Participants 

Fourteen participants were tested (age in year M = 25, SD = 4; 6 female). All had 

normal hearing, as established by an audiogram administered before the experiment 

(20 dB Hearing Level (HL) or less for all tested frequencies of 125, 250, 500, 1000, 

2000, 4000, and 8000 Hz). Participants gave informed consent and were paid 10 euros 

per hour. The study was approved by the ethical committee of U. Paris Descartes, 

France (CERES, IRB: 20154000001072). 
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Figure 2-1. Illustration of the random auditory time patterns used in all experiments. 
Stimuli were 2 kHz high-pass filtered click trains, combined with low-pass noise, with a 
minimum time gap of 10 ms imposed between clicks. The condition illustrated 
corresponds to a uniform distribution between intervals and a 18-Hz average click rate, 
with the low-pass noise omitted for clarity. The output of a single auditory filter 
(gammatone) centred at 4 kHz is represented. The vertical dashed lines indicate the 
midpoint of the stimulus. On the top panel, a random pattern is shown (condition C, see 
text). On the bottom panel, the first and second halves of the stimulus are the same 
random pattern (conditions RC or RefRC). The inset on the top panel illustrates that the 
minimum gap between clicks ensured that there was no overlap between clicks, even after 
auditory filtering.  
 

 

2. Stimuli 

Click trains were generated in the digital domain at a sampling rate of 44.1 kHz. Each 

click was a rectangular pulse of two samples (about 50 µs). Inter-click intervals (ICIs) 

were drawn from a uniform distribution, whose lower boundary was maintained 

constant at 10 ms for all experiments. The upper boundary of the ICI distribution was 

an experimental parameter. Five logarithmically spaced values were tested: 25, 50, 

100, 200, and 400 ms. When taking account of the upper and lower boundaries, the 

five experimental conditions corresponded to average click rates of 57 Hz, 33 Hz, 

18 Hz, 10 Hz, and 5 Hz. For consistency with Experiment 2, average click rate is used 

to identify conditions. 

Auditory filter ringing may introduce overlap in the excitation caused by 

successive clicks, and thus spectral cues that can be potentially be used to discriminate 

stochastic click trains (Pollack, 1968b). To prevent the appearance of any such cues, 
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all click trains were high-pass filtered using an 8th order Butterworth filter with a 

2 kHz filter cut-off. The cut-off value was chosen as the 20th potential “harmonic” of 

the minimum ICI of 10 ms.  

The nominal duration of each click train was 2 s. To form the first half of the 

stimulus, a first click was set at time 0 and successive ICIs were randomly drawn from 

a uniform distribution until the nominal duration of 1s was surpassed, and then the 

stimulus was truncated to 1 s minus the minimum gap of 10 ms. In the C condition, 

the procedure was repeated for the second half of the stimulus, with a fresh random 

draw so as to obtain a fully random click train lasting 2s (Figure 2-1, top). In the RC 

condition, the first half of the stimulus was repeated identically to obtain a repeated 

click train lasting 2 s (Figure 2-1, bottom). For C and RC, the random ICIs were 

generated anew for each trial. For RefRC, the same generation procedure as RC was 

adopted, but, additionally, ICIs were fixed for all trials within an experimental block. 

Note that the truncation at 1s caused a slight difference in the long-term distribution of 

the last ICI of the first half of the stimulus compared to all other ICIs. However, such 

a difference was only apparent on the long-term average of ICIs (each individual draw 

was compatible with the target distribution) and, in any case, it was present for all 

conditions. 

Low-pass pink noise was finally added to the stimuli, to mask any possible 

distortion and to obtain stimuli lasting exactly the same duration. The noise pedestal 

was generated in the spectral domain with components between 50 Hz and 2 kHz. It 

started 200 ms before the click train and finished 200 ms after its nominal ending, 

including 50 ms raised cosine fade in and fade out. The root-mean square (rms) level 

of the pink noise was set at  -20 dB relative to the click train rms. The full stimuli 

were presented at an overall level of 65 dB sound pressure level (SPL), A-weighted. 

As overall level was maintained constant, this means that peak level varied across (but 

not within) average rate conditions. 

 

3. Apparatus and procedure 

Participants were tested individually in a double-walled sound-insulated booth 

(Industrial Acoustics). Stimuli were played diotically through an RME Fireface UC 

soundcard, at a sampling rate of 44.1 kHz and 16-bit resolution. They were presented 

over Sennheiser HD 600 headphones. Participants were instructed to report within-

trial repetitions. They responded through a computer keyboard in a self-paced manner.  
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Prior to data collection, a training period was included. Training was intended 

to help participants discover the types of perceptual cues elicited by repeated click 

trains. We modelled this training period on what had been previously used for 

repeated noise experiments (Agus, Carrión-Castillo, Pressnitzer, & Ramus, 2014). 

Training started with 10 repeats of 1-s long random click trains, a task in which 

informal listening indicated that repetition detection should be easy. The click trains 

were generated as Cs and RCs in the main experiment, with an average click rate of 

12 Hz. This rate was chosen to be approximately in the middle of the experimental 

parameter range, but different from any subsequent experimental parameter. 

Participants received visual feedback on the repetition detection task during training. 

The first training block presented 10 trials, half of them C and the other half RC. 

Then, training blocks were run with 4, then 3, then 2 repeats only, for 40 trials in each 

training block. Note that there were no RefRCs in any of these training blocks. 

When data collection began, no feedback was further provided. The instructions to 

participants remained the same. In particular, at no time were they instructed about the 

possible re-occurrence of a sound (RefRC) during the block, nor about our aim to test 

memory. In each experimental block, the experimental parameter (average click rate) was 

fixed and there were 40 C, 20 RC and 20 RefRC trials in pseudo-random order. The only 

constraint on order was that RefRCs could not appear on successive trials (Agus et al., 

2010). Participants completed 4 blocks for each of the 5 click-rate conditions. Blocks for 

a given parameter were run in succession, but the order of parameters was random and 

counterbalanced across subjects. Training and testing was completed over two 

experimental sessions, each lasting about 2 hours and run on consecutive days.  

 

4. Data analysis 

The pattern of “yes” and “no” responses was first converted to hit rate (proportion of 

“yes” responses for RC or RefRC) and false alarms (“yes” response for C). The 

sensitivity index d' from signal detection theory was then computed for each 

participant and RC or RefRC conditions (sharing false alarms for a given 

experimental block). Statistical testing was performed on d' with repeated-measures 

ANOVAs, with trial type (RefRC or RC) and average click rate (5, 10, 18, 33, 57 Hz) 

as within-subject factors and participants as random factors. We verified that the data 

conformed to the assumptions required for ANOVA and applied Greenhouse-Geisser 

corrections when necessary. Along with the F statistics and p-values, with a 
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significant level set at p < 0.05, we also report effect size with the generalized eta-

squared measure, η2
g (Lakens, 2013). Post-hoc t-tests were conducted, corrected for 

multiple comparisons by using the Holm-Bonferroni method as necessary.  

When analyzing the time course of performance, responses were converted to 

hit rate and aggregated in trial bins over all blocks and participants. The first bin 

represents the first time participants heard e.g. a RefRC during a block, but not 

necessarily the first trial of the block and not necessarily the same trial number for all 

participants. These average values were then fitted with either a flat line 

corresponding to the average performance (1 parameter) or exponential functions (3 

parameters) using a least-squared method. The goodness of fit was estimated by 

penalizing models with extra parameters (Motulsky and Christopoulos, 2004). The 

choice of model then led us to conclude whether the performance of RC and RefRC 

evolved over time, perhaps because of learning, or stayed statistically constant over 

the duration of the blocks (Agus et al., 2010).  
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Figure 2-2. Results for Experiment 1, Uniform distribution. Top panel: The sensitivity 
index d' is shown for each stimulus type and average click rate conditions, averaged 
across listeners. Error bars are 95% confidence intervals about the mean. Middle panel: 
Histogram of the proportion of hit rates for the last 10 trials of each block in the RefRC 
condition, over all blocks for all listeners. Here, only the condition with 18 Hz average 
rate is shown, but all conditions displayed similar results. Lower panel: The time course 
of hit-rate for all blocks with 90% or more hit-rate over the last ten trials of a block. Data 
points are average values over blocks and listeners for each trial order. The solid lines are 
best-fit exponentials for each stimulus condition, with dashed lines indicating 95% 
confidence interval. Again, only the 18 Hz condition is illustrated1. 
 

 

B. Results 

The top panel of Figure 2-2 displays the average performance across participants as 

the sensitivity index d', for RC and RefRC trials, and over the five values of click 

                                                

 
1 see supplementary information for the time course of hit rates for all rate conditions.  
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rates tested. A first feature of the results is that performance generally decreased with 

increasing click rate, from d' values around 2 at the lowest rate of 5 Hz, to d' values 

below 1 at the fastest rate of 57 Hz. Stimulus duration was kept constant, so increasing 

rates also corresponded to more clicks and thus more time intervals in the patterns. A 

second feature is that performance was generally higher for RefRC than RC, with an 

advantage of about 0.5 d' units for all rates.  

A repeated-measures ANOVA on d' (see Methods) confirmed that both trial 

type (F(1, 13) = 41.56, p < 0.001, η2
g = 0.05) and click rate (F(4, 52) = 25.29, p < 

0.001, η 2
g = 0.27) had a reliable effect on performance. No interaction reached our 

significance criterion (all p > 0.05). Post-hoc comparisons confirmed that the 

advantage of RefRC over RC was present for all rates (5 Hz: t(13) = -3.10, p < 0.01, 

10 Hz: t(13) = -3.86, p < 0.01, 18 Hz: t(13) = -2.22, p < 0.05, 33 Hz: t(13) = -3.45, p < 

0.01, 57 Hz: t(13) = -2.84, p < 0.01; reported p-values are uncorrected but all p < 0.05 

after Holm-Bonferroni correction). 

A superior performance for RefRC over RC could indicate learning of RefRC 

thanks to increasing exposure to the reference click train as the block progressed. But 

it could also simply be the chance result of the particular set of randomly chosen 

RefRCs being easier to detect from the outset. To test for this possibility, we 

examined the changes in performance over trials throughout the block. Previous 

experiments with white noise showed that not all blocks produced learning (Agus et 

al., 2010). Moreover, RefRC performance was associated to higher variance than RC 

in Figure 2-2, which would also suggest an additional source of variability for this 

condition. Therefore, we first tested for the presence of “good” blocks and “bad” 

blocks in the present data. “Good” blocks were defined as blocks for which 

performance was high for RefRCs at the end of the block The middle panel of Figure 

2-2 shows the histogram of hit rates for RefRCs over the last 10 presentations of 

RefRC during the blocks, illustrated here for the 18 Hz rate condition. A one-sample 

Kolmogorov-Smirnov test confirmed that hit rates did not follow a normal distribution 

(D(56) = 0.55, p < 0.001). This suggests that two types of blocks contributed to the 

histogram: “bad” blocks, with hits around 50%, and “good” blocks, with hits above 

90%. We then selected those “good” blocks (41% of blocks in the 18 Hz rate 

condition) and computed performance for RC and RefRC for each trial position within 

a block. The result is shown in the lower panel of Figure 2-2. Performance was not 
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constant for RefRC: from the beginning to the end of the block, performance 

increased. In contrast, for RC there was a no change in performance.  

 The same qualitative description of the data was verified in all other 

conditions, and tested statistically. We first tested for the presence of good and bad 

blocks: all distributions deviated from normal (one-sample Kolmogorov-Smirnov test, 

5 Hz: D(56) = 0.95; 10 Hz: D(56) = 0.55; 18 Hz: D(56) = 0.55; 33 Hz: D(56) = 0.58; 

57 Hz: D(56) = 1, all p < 0.001). When applying the criterion of selecting blocks with 

hit rates above 90% for the last 10 presentations of RefRC, the proportion of good 

blocks was 64%, 55%, 41%, 39%, and 23% for rate conditions of 5, 10, 18, 33, and 57 

Hz, respectively. We next tested whether performance changed over the course of an 

experimental block, for RC and RefRC trials, by fitting exponential functions testing 

whether this explained the data better than a flat line at the mean hit rate (see 

Methods). This test confirmed that performance increased over the course of a block 

for RefRC, for all click rate conditions except 10 Hz (5 Hz: F(2, 17) = 12.70, p < 

0.001, 10 Hz: F(2, 17) = 2.18, p = 0.143, 18 Hz: F(2, 17) = 4.73, p < 0.05, 33 Hz: F(2, 

17) = 11.85, p < 0.001, 57 Hz: F(2, 17) = 8.19, p < 0.01). The same test suggested that 

performance for RC did not change over the course of a block for any of the click 

rates (all p > 0.05). RefRCs regarded as “bad blocks” also showed no performance 

change of the course of a block in any of the click rate conditions (all p > 0.05). 

 

C. Interim discussion 

The results obtained so far are similar to what had been observed using white noise in 

the same experimental paradigm (Agus et al., 2010). Across-trial re-occurrence of a 

stochastic time pattern, defined by a series of clicks with random ICIs, led to 

improved performance on a within-trial repetition detection task.  

This was not observed for all experimental blocks, but only on between 23% 

and 64% of all blocks, depending on the baseline difficulty of the within-trial 

repetition detection task. These numbers bracket what was observed with naïve 

listeners and 0.5s-long white noise, where the proportion of good blocks was about a 

third. It is possible that the actual click train characteristics systematically differed 

between good and bad blocks, even though their generative parameters were the same. 

To test for this possibility, we compared between good and bad blocks the average 

ICIs, the standard deviation of ICIs, and the presence of exceptionally long or short 

ICIs. The analysis is detailed in the Appendix. Overall, we did not find any systematic 
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difference between good and bad blocks for these acoustic characteristics. As each 

RefRC was unique to a block and a participant, it is not possible to ascertain whether 

good blocks were caused by intrinsically easier RefRC patterns, with acoustic 

characteristics remaining to be elucidated, or if good and bad blocks rather resulted 

from an idiosyncratic interaction between pattern and participant.  

The rapid time-course of learning was also similar with Agus et al. (2010), as 

90% performance or better was reached after only 10 presentations of the RefRC 

sequence. Looking at the time course of the good blocks, we could rule out chance 

selection of easier stimuli for RefRC, but rather attribute the RefRC advantage to true 

learning. Thus, stochastic time patterns can rapidly form memory traces with 

increasing exposure.  

The observed effect of click rate, a parameter that could not be tested with 

white noise, was perhaps in part predictable: slower rates, associated with clicks that 

could easily be heard out individually, produced better performance compared to 

faster rates. However, the advantage of longer-term learning in the case of RefRC was 

always of about 0.5 of a d' unit, with no interaction between this RefRC advantage 

and click rate. This suggests that even though faster rates led to poorer baseline 

performance and also less good blocks, the benefit of longer-term learning for RefRC 

remained about the same. 

It is possible that the other aspects of the ICI patterns besides mean rate could 

have impacted performance. For instance, as we kept stimulus duration constant, 

faster rates led to more clicks and thus to more time intervals to be learnt. Even 

though it is intuitively appealing that more intervals should induce poorer 

performance, this has not always been observed in discrimination tasks. When the 

variance of ICIs is low, for instance, performance actually improves with number of 

intervals (Pollack, 1968a). We therefore repeated the experiment with a different 

random distribution of ICIs to test for the influence of additional ICI statistics besides 

the average click rate.   
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2.4 Experiment 2: poisson-distributed time patterns  
 

A. Method 

1. Participants 

Participants were 14 normal-hearing listeners, who had not participated in Experiment 

1 (age in year M = 24, SD = 3; 11 female). They were recruited as in Experiment 1, 

and their audiogram was confirmed as normal using the same procedure.   

 

2. Stimuli 

Stimuli were click trains generated as for Experiment 1, with a single difference: the 

ICIs were now drawn from a Poisson distribution, instead of a uniform distribution. 

We imposed a refractory time of 10 ms on the Poisson distribution, and adjusted its 

rate parameter to have the same average click rate conditions as for Experiment 1. To 

obtain average click rates of 5, 10, 18, 33, and 57 Hz, we used Poisson rate parameters 

of 5, 10, 22, 50, and 133 Hz, respectively. Stimuli were then high-pass filtered at 2 

kHz and noise was added, exactly as described for Experiment 1. We again used 

conditions C, RC, and RefRC. 

 

3. Apparatus, procedure, and data analysis 

Apparatus, procedure, and data analysis were identical to Experiment 1. 
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Figure 2-3. Results for Experiment 2, Poisson distribution. Same format as Figure 2-2. 
 

 

B. Results 

The top panel of Figure 2-3 displays the average performance across participants, for RC 

and RefRC trials, and for the five values of click rates tested. Results were broadly 

similar to those of Experiment 1: performance decreased with average click rates, and 

RefRC produced generally better performance than RC. However, the overall 

performance was higher here than for Experiment 1, with d' values between 2 and 3 for 

the slowest rates, and d' values above 1 for the fastest rates. The difference between 

RefRC and RC was in the same range or larger as what was observed for Experiment 1, 

between 0.5 d' units (5 Hz, 18 Hz, 57 Hz) and 1 d' unit (10 Hz, 33 Hz).  

 A repeated measures ANOVA was used to test those observations (see 

Methods, degrees of freedom corrected as appropriate). Both average click rate 

(F(2.46, 31.93) = 25.25, p < 0.001, η2
g = 0.38) and trial type (F(1, 13) = 82.40, p < 

0.001, η2
g = 0.14) had a reliable effect on performance. An interaction with small 
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effect size was found between average click rate and trial type (F(4, 52) = 3.02, p < 

0.05, η2
g = 0.02). Post-hoc t-test confirmed that RefRCs produced higher performance 

than RCs for all average click rates (5 Hz: t(13) = -2.42, p < 0.05, 10 Hz: t(13) = -

4.20, p < 0.01, 18 Hz: t(13) = -2.59, p < 0.05, 33 Hz: t(13) = -6.92, p < 0.001, t(13) = -

4.39, p < 0.001; all p < 0.05 after the Holm-Bonferroni correction). The interaction 

may thus have been caused by an especially large performance advantage of RefRC 

over RC for 10 Hz and 33 Hz. Given the small effect size of the interaction, we did 

not explore it any further.  

 The middle panel of Figure 2-3 illustrates performance for RefRCs for 

different blocks in the 18 Hz average click rate condition. As for Experiment 1, the 

distribution of hit rate over the last 10 trials for RefRC was not normally distributed. 

This was confirmed by one-sample Kolmogorov-Smirnov tests for all rate conditions 

(5 Hz: D(56) = 0.64, p < 0.001, 10 Hz: D(56) = 0.73, p < 0.001, 18 Hz: D(56) = 0.58, 

p < 0.001, 33 Hz: D(56) = 0.57, p < 0.001, 57 Hz: D(56) = 0.50, p < 0.001). When 

applying the criterion of hit rate above 90% for the last 10 trials, we observed 79, 91, 

63, 57, 38% of good blocks for rate conditions of 5 Hz, 10 Hz, 18 Hz, 33 Hz, and 57 

Hz. The lower panel of Figure 2-3 illustrates performance for RC and RefRC during 

the course of good blocks. As for Experiment 1, performance increased for RefRCs 

while there was a small trend for a decrease for RC. Statistical analyses of the 

exponential fits showed that performance increased for RefRC during a block (5 Hz: 

F(2, 17) = 20.80, p < 0.001, 10 Hz: F(2, 17) = 14.25, p < 0.001, 18 Hz: F(2, 17) = 

11.21, p < 0.001, 33 Hz: F(2, 17) = 7.95, p < 0.01, 57 Hz: F(2, 17) = 13.64, p < 

0.001). For RC, performance decreased for 10 Hz (F(2, 17) = 4.99, p < 0.05) but was 

constant for all other rates (all p > 0.05).   

 

 

C. Interim discussion 

Experiments 1 and 2 used the same psychophysical paradigm and average stimulus 

characteristics, but with uniformly distributed (Experiment 1) or Poisson-distributed 

(Experiment 2) stochastic time intervals. The average performance and proportion of 

good blocks differed between the two experiments, with a general advantage to the 

Poisson distribution. We thus decided to compare formally the results of these two 

experiments.  
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Figure 2-4. Comparison between Experiments 1 and 2. The sensitivity index d’ is plotted 
for individual participants (squares: Experiment 1, crosses: Experiment 2) for RC and 
RefRC conditions. In all but one cases, the points are above the diagonal, indicating a 
performance advantage for RefRC.  
 

 

 Figure 2-4 shows the individual data obtained by all participants of 

Experiments 1 and 2, averaged across all blocks (good and bad) and averaged over all 

average click rates for each participant. A first observation, consistent with all 

analyses presented so far, is that in all cases but one (out of 28 participants), 

performance for RefRC was better than performance for RC.  

It also appears that, in spite of individual variability, performance was 

generally better for Experiment 2. This was tested statistically with a mixed-design 

ANOVA on d' averaged across rates, with factors of experiment (1 or 2) and trial type 

(RC or RefRC). Both experiment (F(1,26) = 12.37, p < 0.01, η2
g = 0.09) and trial type 

(F(1,26) = 121.42, p < 0.001, η2
g = 0.23) had sizeable effects. A small interaction was 

also found (F(1,26) = 4.52, p < 0.05, η2
g = 0.004). 

Both experiments therefore clearly showed an advantage of RefRC over RC, 

but performance was generally higher for Poisson-distributed intervals compared to 

uniformly distributed intervals. The means of both distributions were matched across 

experiments, but distributions still differed in terms of higher order statistics. In 

particular, the Poisson distribution had higher variance. Using 1000 simulated click 

trains per condition, we estimated that the variance between successive time intervals 

was between 18% and 70% higher for Poisson-distributed stimuli, depending on 

average rate. As suggested before, higher variance may facilitate the discrimination 

between temporal patterns (Sorkin, 1990) and thus explain the difference between 
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Experiments 1 and 2. We evaluate this interpretation quantitatively in the modeling 

section below.  

Another difference between Experiments 1 and 2 could have been in the local 

distribution of clicks. It is possible that salient “motifs” or “runs” were used by 

participants to perform the task (Pollack, 1968a; Ross & Houtsma, 1994). For 

instance, a chance succession of very short or very long ICIs could have been 

sufficiently salient to support the repetition detection task, even if the whole time 

pattern had not been learnt. Such runs may have occurred more often for Poisson 

distributions because of its higher variance. These runs are still temporal cues, but 

highly local.  

To test for the importance of local cues on the results presented so far, we 

quantified the possibility of transferring the learning of one sequence to its time-

reversed counterpart. If the whole time pattern was learnt, time reversal should 

dramatically impair performance. In contrast, if only local runs were learnt, such as 

distinctively long or short ICIs, or repetitions of identical ICIs, memory should 

transfer almost perfectly to time-reversed sequences. The same reasoning was 

followed by Agus et al. (2010) for white noise. They showed an almost-perfect 

memory transfer after time reversal for noise stimuli, suggesting local spectral cues 

for the memory representation of noise. In Experiment 3, we tested whether the same 

would hold for click trains. 

 

2.5 Experiment 3: memory transfer after time reversal 
 

A. Method 

1. Participants 

Twelve participants who had previously participated in psychophysical experiments in 

our laboratory were invited back as “experienced” participants (age in year M = 25, 

SD = 3; 5 female). We chose experienced participants because the experiment tested 

memory transfer, so for efficiency we wanted to ensure that as many blocks as 

possible would display initial learning. Participants’ audiograms were again verified 

as normal. All other details are as in Experiments 1 and 2.  
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2. Stimuli 

The stimulus generation method of Experiment 2 was used, with Poisson-distributed ICIs. 

Here we only tested the average rate conditions of 5, 18, and 57 Hz. In addition to the C, 

RC, and RefRC trial types, a new “reversed-RefRC” trial type was introduced. This was 

simply achieved by reversing the order of ICIs of the RefRC trials (effectively, reversing 

the time axis of the stimulus before high-pass filtering was applied). 

We used two minor variants of the stimulus generation procedure. In the method 

of Experiment 2, there was always a click at the beginning of the stimulus. As a 

consequence, all reversed-RefRCs would have displayed a click at the very end of the 

sequence, and thus a slightly different time-course relative to the noise pedestal compared 

to all other trial types. In a first variant of the stimuli, we shifted the reversed-RefRCs in 

time so that they would include a click at time 0s like all other conditions. In a second 

variant, we omitted the first click of the sequence for all trial types before reversal (C, 

RC, RefRC). This led to more variability overall in the start and end time of the stimuli 

relative to the noise pedestal, as well as a small change in average rate compared to 

Experiment 2, but here all conditions received the same treatment. Participants were 

randomly assigned to one or the other variant (6 participants for each).  

 

3. Apparatus and procedure 

The procedure was the same as Experiment 2, with minor differences. We used 

BeyerDynamics DT 770 Pro headphones. Also, as participants were experienced, no 

training session was provided. 

The first half of each block contained 30 C, 15 RC, and 15 RefRC trials in 

pseudo-random order. The second half of the block seamlessly followed the first half 

without any interruption, and introduced the reversed-RefRCs. It contained another 30 C, 

15 RC, and 15 reversed-RefRC trials. Four blocks were run in succession for each 

average rate. The order of presentation of the rates was random and counterbalanced 

across participants. Each experimental session lasted about 2 hours.  

 

4. Data analysis 

To test for the possible influence of the two possible variants in the stimulus generation 

procedure, the sensitivity index d' from signal detection theory was used to evaluate 

performance for RefRC and RC on the first half of the blocks. We then performed a 

repeated measures ANOVA on d' with factors of stimulus type, rate condition, and 
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stimulus generation procedure variant. To test for memory transfer, we estimated 

performance at various time points during the block by computing d' for subsets of trials. 

We first selected “good” blocks to ensure that the initial RefRCs had been learnt, using 

the criterion of 90% or more hit rate for the last 5 trials over which this stimulus was 

presented (which, for 5 trials, amounts to 100% hit rate). Then, for such good blocks, we 

computed d' for the RefRCs for the first 5 trials (i.e., before learning) and last 5 trials (i.e., 

after learning) of the first half of the block, estimating false alarms from the 

corresponding C trials. The same analysis was then carried out for reversed-RefRCs, for 

the second half of the selected blocks (i.e., when reversed-RefRCs replaced the original 

RefRCs). A perfect memory transfer from RefRC to reversed-RefRC would be reflected 

the same performance for the last 5 trials of RefRC and the first 5 trials of reversed-

RefRC, before any re-learning could occur. To test for this, we used paired t-tests 

comparing d' on the last 5 trials for RefRC and first 5 trials for reversed-RefRC, for each 

rate condition. On some rates, one subject did not show any good blocks and was 

excluded from this particular analysis, hence the reduced degrees of freedom. All 

differences reported as statistically significant are at p < 0.05 after Holm-Bonferroni 

correction. 

 

B. Results 

We first confirmed that there was no effect of the stimulus generation variant on general 

task performance (F(1,8) = 3.31, p > 0. 05) nor any interaction with other factors (all p > 

0.05). All further analyses thus used aggregated data for the 12 participants, irrespective 

of stimulus generation variant. 

A one-sample Kolmogorov-Smirnov test confirmed that hit rate for the last 5 trials 

of each block did not follow a normal distribution (5 Hz: D(48) = 0.6423, p < 0.001, 18 

Hz: D(48) = 0.5721, p < 0.001, 57 Hz: D(48) = 0.5929, p < 0.001). We thus selected 

“good” blocks with hit rate of 100% for the last 5 trials, which led to selecting 67%, 70%, 

and 52% of blocks for 5, 18, and 57 Hz, respectively. For these blocks, the RefRC has 

been learnt, so we could meaningfully test for memory transfer to the reversed-RefRC.  
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Figure 2-5. Results for Experiment 3, the effect of time-reversal. For each average click 
rate condition tested, performance is plotted at the beginning of the block (trials 1-5, 
white), just before the introduction of time reversals (trials 11-15, white), just after the 
introduction of time reversal (trials 1-5, black) and at the end of the block (trials 11-15, 
black). The effect of time reversal can be assessed by comparing the last white bar to the 
first black bar. Only blocks with 90% or more hit rate for the original RefRC are 
included. Results are averaged across listeners. Error bars are 95% confidence intervals 
about the mean. 

 

 

Figure 2-5 displays the sensitivity to RefRCs and reversed-RefRCs over the 

course of a block. The important feature is what happened immediately after the 

introduction of time reversal (last white bar compared to first black bar). In all cases, 

performance dropped for reversed-RefRC, down to levels similar of those observed with 

initial exposure to a novel RefRC (first white bar). Paired t-test confirmed reliable 

performance drops after time reversal for rates of 18 Hz (t(1,10) = 3.37, p < 0.001) and 57 
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Hz (t(1,10) = 6.96, p < 0.001). The 5 Hz rate condition did not meet our significance 

criterion (5 Hz: t(1,11) = 1.87, p = 0.11).  

 

B. Interim discussion 

The pattern of results showed a drop in performance when a RefRC was replaced by its 

time-reversed version, with performance reverting to levels observed with novel RefRCs. 

The one condition that failed the significance test, 5 Hz average rate, did nevertheless 

exhibit the same pattern. In addition, this condition displayed equal initial performance 

for reversed-RefRC and RefRC, so the effect of time reversal was basically as large as it 

could have been. The lack of a statistically significant difference can thus be attributed to 

a ceiling effect, as d' values were high (above 4) at this slow rate with our group of 

experienced listeners.  

Performance for the reversed-RefRCs followed a pattern compatible with the 

learning of a novel stimulus, with an increase in performance between the beginning and 

end of the second half of the block. The end performance for reversed RefRCs was 

generally not as high as that observed for the RefRC presented on the first half of the 

block, but that is likely because “good” blocks were selected based on performance for 

the initial RefRC only. 

Overall, the data is consistent with little or no memory transfer from a learnt 

temporal pattern to its time-reversed version, which has to be re-learnt from scratch. This 

lack of memory transfer suggests that participants learnt extended temporal features, and 

not local runs of salient ICIs. This finding is perhaps especially intriguing for the high 

rate condition, 57 Hz. Such a high average rate is above the lower limit of pitch for 

isochronous click trains (Krumbholz et al., 2000; Pressnitzer et al., 2001). Accordingly, 

our stochastic sequences generally sounded like buzzes at this rate, with individual clicks 

difficult to hear out. However, even in this case, the memory representation appeared to 

retain an extended series of time intervals and their order of appearance.   

 

2.6 Cross-correlation model 
 

A. Rationale and model description 

We adapted a model of sequence discrimination (Sorkin, 1990) to interpret the effect of 

ICI distributions on the repetition-detection task. The behavioural task that was assigned 
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to participants was to decide whether each trial contained a repetition or not. For 

modelling purposes, this can be construed as a discrimination task between the two 

halves, A and B, of the click train presented on any given trial. If A were judged 

sufficiently similar to B, the participant would respond “Yes” to the repetition detection 

task. For repeating trials, A and B were identical, so errors (misses) would be caused by 

internal noise. For non-repeating trials, A and B were different, so errors (false alarms) 

would occur if noisy representations of A and B were by chance as similar as noisy 

representations of identical stimuli.  

This formalization of the task can be implemented using cross-correlation as a 

similarity measure between series of time intervals, corrupted by internal noise (Sorkin, 

1990). The first half of the stimulus can be notated as A = {tA1, tA2, tA3, …, tAm} + 

N(0,σ2), with tAi the time interval corresponding to the ith ICI and N(0,σ) an additive noise 

term, following a normal distribution with mean 0 and variance σ2, added independently 

to each tAi. Similarly, the second half of the stimulus can be expressed as B = {tB1, tB2, tB3, 

…, tBn} + N(0,σ). To estimate the similarity between A and B, a cross-correlation was 

computed between the series {tA1, tA2, tA3, …, tAk}+ N(0,σ2) and {tB1, tB2, tB3, …, tBk}+ 

N(0,σ2), with k = min(m,n).  

To compute d' values simulating our behavioural dataset, we ran the correlation 

model on ICIs derived from the experimental stimuli generation procedure, for the RC 

and C conditions. For each simulated trial, we selected a “Yes” response if the cross-

correlation between A and B was above a fixed criterion, Crit. If the cross-correlation 

was below the criterion, a “No” response was selected. This provided a proportion of hits 

and false alarms for each trial type from which we could compute d'. 

 

B. Results 

After an initial exploration of the parameter range, the two free model parameters σ and 

Crit were systematically varied and the resulting goodness of fit of the model evaluated, 

using the squared error between behavioural data and model predictions. We computed d' 

values on 100 simulated C and RC trials, for all rate conditions and uniform or Poisson 

distributions, and for all tested σ and Crit values. The search space for σ was from 0 ms to 

100 ms, in 5 ms steps, while for Crit it was from -0.9 to 0.9, in 0.1 steps.  
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Figure 2-6. Prediction of a correlation model. Top panel: mean quadratic error relative to 
the behavioural data. The black cross indicates the best fit. Lower panel: the data for the 
RC condition are replotted from Experiment 1 (U) and 2 (P), along with the model 
predictions. See text for details.  
 

 

A broad range of parameters led to a satisfactory fit to the data (Figure 2-6, top). 

The best fit was obtained for σ = 50 ms and Crit = -0.2. This estimate is different from the 

value of σ = 15 ms suggested in the original model (Sorkin, 1990). However, we verified 

that running the model with σ = 15 ms produced the same trends in the predictions, so the 

interpretations outlined below would hold with either value of σ. 

For the fitted model parameters, 10000 simulated trials were computed to estimate 

d'. The model predictions are represented in Figure 2-6, bottom, along the corresponding 

behavioural data. The model correctly captured the two main trends in the data: first, 

lower click rates led to better performance; second, Poisson distribution led to better 

performance. However, there were still discrepancies between the model and data. In 

particular, performance decreased in the model for the lowest rates, whereas it kept 

Criterion (corr. units)
σ

 

 

−0.5 0 0.5
0

0.05

0.1

0.5

1

1.5

5 10 18 33 57
0

0.5

1

1.5

2

2.5

3

Average rate (Hz)

Se
ns

iti
vi

ty
 (d

 ′ )

 

 
Mod. U
Mod. P
RC U
RC P



!

AUDITORY!MEMORY!FOR!RANDOM!TIME!PATTERNS!

 66 

increasing in the data. Also, performance was generally underestimated for the highest 

rates, especially for the Poisson distribution. 

 

B. Interim discussion 

A model of temporal pattern discrimination based on cross-correlation (Sorkin, 1990) was 

able to capture two important trends of the within-trial repetition-detection performance 

observed in our dataset: the better performance for long ICIs, and the better performance 

for Poisson-distributed compared to uniformly distributed ICIs. We interpret the model 

behaviour by considering the ratio between stimulus-related variance and internal-noise 

variance. Stimulus-related variance was beneficial to model performance, as it made 

patterns more distinguishable from each other for the cross-correlation operation. In 

contrast, internal noise reduced performance by corrupting the internal representation of 

the patterns. The important characteristic of the model here is that internal noise had 

constant variance. As interval durations decreased for high click rates, their representation 

in the model was proportionally more affected by internal noise, and the model 

performance decreased. As the intervals had higher stimulus-related variance for the 

Poisson distribution compared to the uniform distribution, their representation in the 

model was more robust to internal noise, and the model performance was higher for the 

Poisson distribution compared to the uniform distribution.  

The main aim of the model was to gain an intuition about the effect of ICI 

distributions, so we kept its structure as simple as possible, but this implied some 

important limitations. In particular, this “toy” model had perfect memory. The only 

limiting factor for performance was the additive noise added to each interval, irrespective 

of interval duration or total number of intervals. An extension of the original model has 

been proposed including both additive and multiplicative noise (Sorkin, 1990). We tried 

including this multiplicative noise parameter, but it only provided an overall gain for the 

model predictions and did not change the qualitative differences between model and data. 

Another simplification is that the model assumed that participants could compare exactly 

the first and second halves of each stimulus, even though stimuli were presented 

continuously. As all trials had equal duration, it is not unlikely that participants learnt the 

approximate halfway position of the stimuli, and cross-correlation should be reasonably 

robust to imperfect estimates of the halfway point. Finally, we made no attempt at 

modelling the added benefit of repeated exposure for RefRC: this advantage was about 
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the same for all conditions, so this did not provide any useful constraint to add a 

parameter to the model.  

The resulting fit was qualitatively correct, but still imperfect. The underestimation 

of performance at the lowest click rates could be due to issues with computing a 

meaningful correlation with a small number of intervals. The underestimation of 

performance at high click rates suggests that participants may have used other strategies 

(Ross & Houtsma, 1994) than the “holistic” comparison of all intervals implied by the 

correlation operation. For these high rates, it is plausible that some intervals, for instance 

the longest ones, were weighted more than others. 

Finally, even if the model succeeded in predicting trends in the data, we do not 

wish to imply that the neural bases of click-train repetition detection literally involve 

computing cross-correlations over a broad range of time intervals. Auditory models based 

on auto-correlation could be used to detect repetitions using a similar strategy, but the 

long duration of our stimuli would place heavy demands on the required delays, and the 

applicability of such models to random click trains with purely temporal regularities has 

been challenged (Kaernbach & Demany, 1998). Rather, the present functional model 

served to identify a general limiting factor for the repetition-detection task, the balance 

between stimulus variability and internal noise. The underlying neural mechanisms 

remain as yet unspecified and some possibilities will be discussed in the following 

section.  

 

2.7 Discussion 
 

The effect of repeated exposure to random auditory temporal patterns was investigated in 

adult listeners, using an experimental paradigm that had previously been used to 

demonstrate learning for random spectro-temporal patterns (Agus et al., 2010). In three 

behavioural experiments, we showed that random auditory time patterns could be learnt 

rapidly, after only a few exposures. Moreover, the memory for temporal patterns was 

observed over a surprisingly broad range of inter-click intervals: from sparse click trains, 

containing about 5 clicks per seconds, to dense click trains, containing more than 50 

clicks per second. Such a range encompasses the subjective transition between clicks 

being heard out individually, like in a rhythm, to clicks being fused together, like in a 

buzzing sound (Bendor & Wang, 2007; Pressnitzer et al., 2001). Immediate repetition 
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detection was easier for the rhythm-like patterns, but, surprisingly, this did not appear to 

affect the longer-term memory processes operating across trials, as the gain from 

increased exposure was comparable for all rates.  

There were strong similarities between the characteristics of memory for noise 

(Agus et al., 2010) and clicks trains (present experiments). In both cases, learning could 

be achieved in an unsupervised and implicit manner, with the patterns to be learnt 

interspersed amongst other statistically matched sounds. The ancillary task used in our 

paradigm (within-trial repetition detection) was initially challenging. However, as the 

patterns were heard more than once over the course of a block, performance sometimes 

improved to reach almost-perfect performance in about 10 trials. This change in 

performance was interpreted as learning, as learnt patterns became perceptually easily 

distinguishable from novel ones (Agus & Pressnitzer, 2013).  

There was, however, an important difference between the memory for noise and 

click trains. For noise, when a white noise exemplar was time-reversed after having been 

learnt, an almost-perfect transfer of memory was observed (Agus et al., 2010). Together 

with other converging evidence reviewed in the Introduction, this suggested that noise 

was learnt thanks to brief spectral cues. In contrast, here we observed that, when a time 

pattern was time-reversed after learning, there was no evidence of memory transfer. 

Rather, the time-reversed pattern had to be learnt afresh. Thus, for click trains, it was the 

extended series of time intervals and their precise ordering that was learnt.  

This leads to an apparent puzzle: auditory memory for noise and click trains relied 

on qualitatively different cues, but still displayed similar characteristics. One 

parsimonious interpretation to resolve that puzzle is that both types of cues were recoded 

into a common neural code before being learnt. Let us first consider the case of noise. 

Noise contains spectral cues, which are encoded in the auditory system as spatial patterns 

of activity across frequency-tuned neurons: across auditory nerve fibres in the periphery, 

or across other neural populations in subsequent tonotopic maps at least up to primary 

auditory cortex (Bidelman et al., 2014). To form memory traces for such spatial patterns, 

standard Hebbian models of neural plasticity apply. Indeed, computational models have 

shown that neurons receiving inputs across a range of afferents, and equipped with well-

established plasticity rules such as spike-time dependent plasticity, can develop 

selectivity to random patterns of near-simultaneously active afferents (Masquelier et al., 

2008). If the afferents were frequency-selective neurons, then the scheme could apply to 

the learning of auditory noise (Viswanathan, 2016).  
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For auditory time patterns, the learning was dependent on details of successive 

time intervals and their order, and thus required the integration of non-simultaneous 

information. In the auditory periphery, at the level of the auditory nerve, time intervals 

are not encoded as a spatial map, but rather transmitted explicitly as inter-spike intervals 

(Cariani & Delgutte, 1996). Neural spikes synchronized to clicks have been observed up 

to at least primary auditory cortex for time-jittered click trains resembling our stimuli (Lu 

et al., 2001). However, there is also evidence that inter-spike intervals are recoded into a 

rate-place code: a “synchronised” neural population co-exists with “non-synchronised” 

populations, which encode click-rate through neural discharge rate in primary (Lu et al., 

2001) and non-primary auditory cortex (Bendor & Wang, 2007) depending on the click-

rates (Petkov & Bendor, 2016).  

A rate-place code for click rate should be able to produce neural spatial maps 

distinguishing click trains with different rates. However, it has not been tested whether 

such a representation would support the learning of a specific pattern amongst other 

patterns with identical average rate, as was the case in our experiments. To do so, a 

generic class of computational models have been put forward: state-dependent networks, 

which, thanks to the complex temporal dynamics imposed by individual neurons and by 

the network topography, can produce a large number of unique network states depending 

on the exact temporal succession of input spikes (Lim, Lagoy, Shinn-Cunningham, & 

Gardner, 2016). Intuitively, such a network state is simply a place pattern of neural 

activity that depends on the past and present input, with the potential to distinguish 

between temporal patterns even when they share the same average rate. Such a model has 

been used to account for behavioural context effects in auditory temporal pattern 

perception in human listeners (Karmarkar & Buonomano, 2007). Moreover, recent 

physiological and behavioural evidence for a conversion from time patterns to place 

patterns have been found in the avian auditory system. Using random click trains with 

time intervals between 11 ms and 40 ms—intended to mimic the timing characteristics of 

bird sounds, but not unlike our own stimuli—Lim et al. (2016) recorded neural activity in 

primary and secondary auditory regions of the anaesthetized zebra finch forebrain. They 

observed distinctive neural place patterns of activity in secondary regions only, which 

could support the behavioural discrimination between acoustic temporal patterns. They 

also tested for memory transfer after time-reversal of the click trains: there was no 

transfer in a behavioural task, consistent with observed changes in neural place maps after 

time-reversal.  
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In summary, such a general scheme would in principle be consistent with all 

aspects of the present results. Somewhere along the auditory pathways, time patterns 

could be converted to neural place patterns, unique to each input sequence and sensitive 

to time-reversal. Once recoded as place patterns, unsupervised learning of acoustic 

temporal patterns could be achieved through standard neural plasticity processes 

(Masquelier et al., 2008). As the spectral cues present in noise or tone clouds (Agus et al., 

2010) could also be coded as neural place patterns, the same plasticity processes apply, 

hence explaining the similarities observed for the learning of all types of auditory stimuli. 

There are of course many aspects of our findings that would need to be tested more 

thoroughly against this speculative account. In particular, we observed learning over a 

broad range of time scales, straddling the divide between “synchronized” and “non-

synchronized” neural populations (Lu et al., 2001). The time scales involved in the state-

dependent models (Lim, Lagoy, Shinn-Cunningham, & Gardner, 2016) are broadly 

consistent with the stimulus range we tested, but differences between stimuli and species 

prevent a more detailed comparison. The locus, or loci, of this putative recoding and 

subsequent learning remain to be ascertained in humans. Interestingly, the available fMRI 

(Kumar et al., 2014) and EEG (Andrillon et al., 2015) data for the learning of noise 

suggest neural correlates in secondary auditory areas, which would be consistent with the 

animal data (Lim, Lagoy, Shinn-Cunningham, & Gardner, 2016; Lu et al., 2001).  

 

2.8 Conclusions 
 

Using random click trains in an auditory memory paradigm (Agus et al., 2010), we 

showed that auditory temporal patterns could be learnt by adult human listeners. We 

tested average click rates from about 5 clicks per seconds up to about 50 clicks per 

second. Even though this range covered patterns sounding like rhythms for low rates or 

irregular buzzing sounds for high rates, learning was observed in all cases. We also varied 

the higher-order statistics of the random distribution of time intervals. A higher variance 

led to better within-trial repetition detection, but did not affect much the across-trial 

longer term memory effect. In all cases, learning was fast and occurred in an 

unsupervised fashion, with the patterns to be learnt interspersed among statistically 

matched patterns. The learning depended on the precise time-series of interval and their 

presentation order, as time-reversal disrupted performance. We suggest that auditory 
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temporal patterns may be recoded as neural spatial patterns along the auditory hierarchy, 

which are then amenable to standard neural plasticity mechanisms. Overall, the 

experimental evidence now shows that audition benefits from remarkably fast and 

efficient unsupervised learning processes for noises (Agus et al., 2010), other random 

spectro-temporal patterns like tone clouds (Kumar et al., 2014), and also purely temporal 

patterns such as click trains (present data). This is likely to cover any sort of acoustic cues 

present in natural sounds, e.g., the timbre of a novel sound source (Pressnitzer et al., 

2015). More generally, such an almost-inevitable emergence of memory traces after 

repeated exposure, for different kinds of auditory cues and several time scales, would be 

consistent with views suggesting that memory may be viewed as an integral part of 

sensory processing (Hasson et al., 2015). 
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Chapter 2 Appendix 

In all experiments, we distinguished good blocks, where learning of RefRC was 

observed, from bad blocks, where no learning of RefRC was observed. Here, we further 

analyze the temporal patterns that comprised the RefRCs, to test whether there were 

systematic acoustic differences between the two kinds of blocks.  

Even though generative parameters were the same for all blocks, it is possible that 

by chance good blocks were associated with fewer time intervals to learn, or perhaps 

more distinctive ones. For each stimulus used in the experiments, we computed the mean 

ICI, M, inversely related to the number of intervals in the pattern as duration was kept 

constant. We also computed the standard deviation of ICIs, SD. In the main results, 

higher Ms and SDs were associated with better performance. Finally, we computed the 

maximum of the absolute value of z-scored ICIs (using an estimation of standard 

deviation of all RefRC intervals within a condition). This later index should be sensitive 

to exceptionally long or exceptionally short ICIs within a pattern, which could provide 

distinctive cues.  

All indices were then averaged within rate conditions for Experiments 1 and 2. To 

assess the reliability of the differences between good and bad blocks, we used Welch's 

two sample t-tests, as samples had unequal sizes. We report both exploratory, non-

corrected p-values with a significance criterion set at p < 0.05, and p-values corrected for 

multiple comparisons using the Bonferroni method, with the same significance criterion. 
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Results are shown in Table I. Most comparisons did not reach our lenient 

uncorrected significance criterion. For Experiment 1, only the contrast between mean 

ICIs at rates 5 Hz (t(39.64) = 2.2, p < 0.05) and 10 Hz (t(41.67) = 2.28, p < 0.05) reached 

significance. For Experiment 2, only the contrasts between mean ICIs at 5 Hz (t(14.47) = 

3.93, p < 0.01) and between Max(|z|) at 10 Hz (t(6.85) = 3.48, p < 0.05) and 33 Hz 

(t(51.03) = -2.04, p < 0.05) reached significance. When applying the correction for 

multiple comparisons, only the contrast between mean ICIs at 5 Hz in Experiment 2 

remained significant (p < 0.05/15). 

The only significant difference that survived the multiple comparisons correction 

was found for low click rates. This may have been expected, as low rates correspond to 

small numbers of intervals, and hence a greater likelihood to obtain discrepancies 

between generative and observed characteristics for a given random draw. In this case, 

good blocks were actually associated with higher observed rates. This is in apparent 

contradiction with the general pattern of results, where lower rates led to better 

performance. It is possible that for the lowest rate here, the limiting factor was that 

patterns became too sparse to be distinguishable.  

In any case, we interpret Table 1 as suggesting that, over all experimental 

conditions, good and bad blocks were not systematically different in terms of mean ICIs, 

standard deviation of ICIs, and unusually short or long ICIs. 
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Supplementary information 

 

 

 
2S-1. Learning of good blocks across all rates for Experiment 1 (top) and Experiment 2 
(bottom). The solid lines are best-fit exponentials for each stimulus condition (grey 
triangles: RC, black circles: RefRC), with dashed lines indicating 95% confidence 
interval.  
 

 

 

 

 
2S-2. Learning of bad blocks across all rates for Experiment 1 (top) and Experiment 2 
(bottom). The solid lines are best-fit exponentials for each stimulus condition (grey 
triangles: RC, black circles: RefRC), with dashed lines indicating 95% confidence 
interval.   
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Chapter 3  
Memory for random time patterns in 

audition, touch, and vision 
 

 

 

This chapter has been submitted as: 

Kang, H., Lancelin, D., & Pressnitezer, D. (submitted). Memory for random time patterns 
in audition, touch, and vision. Neuroscience. 
 

Parts of this work have been presented as: 

Kang, H., Lancelin, D., & Pressnitzer, D. (2017). A Memory Process of Temporal 
Information in Sensory Modalities: Audition, Vision, and Touch. 40th MidWinter 
Meeting of the Association for Research in Otolaryngology, Baltimore, USA (Poster). 
 

Kang, H., & Pressnitzer, D. (2016). Memory of Temporal Patterns in Different Sensory 
Modalities: Audition, Vision, and Touch. Basic Auditory Science Meeting, Cambridge, 
UK (Poster). 
 

 

3.1 Abstract 
 

Perception deals with temporal sequences of events, like series of phonemes for audition, 

dynamic changes in pressure for touch textures, or moving objects for vision. Memory 

processes are thus needed to make sense of the temporal patterning of sensory 

information. Recently, we have shown that auditory temporal patterns could be learnt 

rapidly and incidentally with repeated exposure [Kang, Agus, & Pressnitzer, J. Acoust 

Soc. Am. 2017]. Here, we tested whether rapid incidental learning of temporal patterns 

was specific to audition, or if it was a more general property of sensory systems. We used 

a same behavioral task in three modalities: audition, touch, and vision, for stimuli having 

identical temporal statistics. Participants were presented with sequences of acoustic 

pulses for audition, motion pulses to the fingertips for touch, or light pulses for vision. 
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Pulses were randomly and irregularly spaced, with all inter-pulse intervals in the sub-

second range and all constrained to be longer than the temporal acuity in any modality. 

This led to pulse sequences with an average inter-pulse interval of 166 ms, a minimum 

inter-pulse interval of 60 ms, and a total duration of 1.2 s. Results showed that, if a 

random temporal pattern re-occurred at random times during an experimental block, it 

was rapidly learnt, whatever the sensory modality. Moreover, patterns first learnt in the 

auditory modality displayed transfer of learning to either touch or vision. This suggests 

that sensory systems may be exquisitely tuned to incidentally learn re-occurring temporal 

patterns, with possible cross-talk between the senses.  
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3.2 Introduction 
 

Audition, touch, and vision sense different parts of the physical world, such as acoustic 

pressure waves, surface textures, or light patterns. Peripheral sensory receptors in each 

modality are adapted to best transduce their respective physical input (e.g. Lewicki, 

2002), and, from subsequent neural processes, qualitatively distinct perceptual qualities 

emerge, such as auditory timbre, tactile texture, or visual color. However, at a more 

general level of description, all sensory modalities are embedded in time: they all must 

deal with sequences that contain possibly crucial information in their temporal patterning 

(O'Regan, 2011). Thus, memory processes applying to temporal sequences would seem 

beneficial in any sensory modality, and may also have to address similar computational 

constraints across modalities (Hardy & Buonomano, 2016).  

 Recently, we documented a rapid form of incidental learning for temporal 

sequences in the auditory modality (Kang et al., 2017). Adapting a paradigm previously 

used in audition (Agus et al., 2010) or vision (Gold et al., 2014), we observed fast 

incidental learning of time patterns made of irregularly spaced audio clicks, with inter-

click intervals in the range of tens to hundreds of milliseconds. Learning occurred, in an 

unsupervised manner, as long as these patterns re-occurred over the course of an 

experiment. In this recent study, we ensured that the only cues available to learn patterns 

were in the precise sequence of time interval durations, and not in any other auditory-

specific cue. So, the same experimental paradigm may be transposed to other sensory 

modalities, simply by conveying time intervals not through audio clicks, but rather 

through modality-adapted events. This is what was done in the present study. Our aim 

was to investigate whether rapid incidental learning of random time patterns was specific 

to audition, or if it could be a more general feature of perceptual systems.  

 On a neural level, for stimuli consisting of time intervals delimited by brief energy 

pulses, the input time patterns will be reflected in neural spike time patterns in peripheral 

receptors and also at higher stages of processing, at least for moderate rates of up to a 

few pulses per second. Temporal patterning of spike trains has been observed in sensory 

cortices for audition (Lu et al., 2001), touch (Saal et al., 2016), and vision (Gur & 

Snodderly, 1997). Of course, there are differences in temporal resolution between these 

modalities. Also, it is a matter of controversy whether spike time patterning is an 

epiphenomenon of peripheral encoding (Gur & Snodderly, 1997; Salinas et al., 2000) or a 
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true information-bearing code (Cariani, 2001; VanRullen et al., 2005). But at a minimum, 

the possibility exists to learn temporal patterns of spikes at the cortical level in all of the 

three modalities considered here, audition, touch, and vision. Probing the behavioral 

learning of purely temporal patterns in these modalities would be a first step in 

investigating the underlying neural mechanisms.  

 An obvious question then arises: if learning of time patterns were to be observed in 

all modalities, would it be the result of canonical computational principles, or rather 

reflect mechanisms specific to each modality of entry? The question overlaps with 

broader issues in time research, such as whether the psychological and neural 

representations of time are modal or amodal (Ivry & Schlerf, 2008; van Wassenhove, 

2009; Grondin, 2014). Several studies have approached the issue by inducing perceptual 

learning for a time interval in one modality, and then test for transfer of learning in 

another modality. A variety of results have been found, often with asymmetric transfer 

characteristics across modalities (e.g. Nagarajan et al., 1998; Lapid et al., 2009; Bratzke 

et al., 2012; Pasinski et al., 2015). As summarised by Pasinski et al. (2015), these results 

may reflect differences in task demands. Using a variant of the time-interval 

discrimination task, they found a behavioral advantage of the auditory modality over the 

visual modality, but similar expectancy-related and memory-related EEG responses 

across the two modalities (Pasinski et al., 2015), consistent with a combination of 

modality-specific mechanisms for the encoding of time intervals followed by modality-

general memory processes (see also Merchant et al., 2008).  

 It is yet unclear whether such a conclusion would hold beyond interval 

discrimination tasks, for instance for the learning of more complex temporal patterns. 

There are behavioral demonstrations of rapid learning for complex sequences in audition, 

touch, and vision separately (Gold et al., 2014; e.g. Bale et al., 2017; Kang et al., 2017), 

but not all stimuli in these studies were purely temporal patterns. Sequence learning has 

been compared across modalities (Handel & Buffardi, 1968; Manning et al., 1975; 

Conway & Christiansen, 2006), but again combining timing-cues with a variety of 

modality-specific cues such as sound frequency or spatial location, which may impact 

results in unsuspected ways (e.g. Grahn, 2012). Perceptual learning of purely-temporal 

rhythmic sequences has been compared between audition and vision (Patel et al., 2005; 

Grahn, 2012; Barakat et al., 2015), but rhythmic sequences may recruit additional, beat-

based mechanism for sequence learning (e.g. Pasinski et al., 2015). In one example using 

comparable stimuli across modalities, which were aperiodic and differing only by timing 
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characteristic, Nazzarro & Nazzarro (1970) had participants learn auditory or visual 

Morse code “words”. They found faster learning in the auditory modality. This finding 

echoed early suggestions of an advantage of audition over vision for the motor 

reproduction of temporal rhythms (Fraisse, 1948), and also classic findings of a greater 

temporal acuity for audition compared to touch or vision for single-interval 

discrimination (Goodfellow, 1934). Interestingly however, when the discriminability 

between elements was equated for auditory and visual Morse, the auditory advantage 

vanished (Hansen & Cottrell, 2013). Note also that the Morse code task involved explicit 

learning, which could recruit different mechanisms than incidental learning (e.g. Chen & 

Zhou, 2014). In summary, while there is ample evidence for behavioral sequence learning 

in audition, vision, and touch, less is known about the learning of purely temporal 

complex patterns. In particular, a detailed comparison of the learning of aperiodic 

temporal patterns in all three modalities, with the same participants and procedure, is 

lacking.  

 

 
Figure 3-1. Schematic illustration of the sequences used in Experiments 1 and 2. For 
random pulse sequences (P), pulses delineated time intervals drawn from a Poisson 
distribution with a 7 Hz rate and a 60 ms refractory period, for a total sequence duration 
of 2.4 s. For the repeated pulse sequence (RP), a 1.2 s sequence was generated as for P, 
but seamlessy repeated to obtain a 2.4 s sequence. The green square indicates the 
midpoint of the sequences. Participants had to discriminate P from RP. In addition, a third 
stimulus type was included (Reference repeated pulse sequence, RefRP), generated as RP 
but re-occurring over several trials at random times during an experimental block. Pulses 
were audio clicks in audition, tangential motion pulses to the fingertips for touch, and 
light flashes for vision. 
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 In the present set of experiments, we adapted the auditory paradigm of Kang et al. 

(2017) to the tactile and visual domain. Briefly, we used random temporal patterns made 

of irregular time intervals delineated by brief energy bursts. The energy bursts were audio 

clicks for audition, tangential motion pulses applied to the fingertips for touch, and light 

flashes for vision. The task as explained to participants was to discriminate two types of 

stimuli: either a fully random pulse sequence lasting 2.4 s (pulses, P), or a 2.4 s pulse 

sequence made from the seamless repeat of two identical 1.2 s sequences (repeated 

pulses, RP). The two conditions are illustrated in Figure 3-1. In addition, without 

instructing participants, we also introduced a third type of stimulus: reference repeated 

pulses (RefRP), which were constructed exactly as RPs but re-occurred identically over 

randomly selected trials throughout the course of an experimental block. Thus, 

participants were exposed to the exact same inter-pulse interval (IPI) pattern for several 

trials for RefRP, whereas the IPI patterns comprising P or RP stimuli were unique to one 

trial. An advantage in performance for RefRP over RP, that is, for re-occurring patterns 

over novel patterns, can be interpreted as perceptual learning (Agus et al., 2010; Agus and 

Pressnitzer, 2013; Luo et al., 2013; Gold et al., 2014; Andrillon et al., 2015; Kang et al., 

2017). 

 Importantly, here we ensured that the encoding of temporal patterns was not limited 

by temporal acuity in any of the three modalities tested (Goodfellow, 1934). A pre-test 

served to adjust the minimum IPI required for all modalities. The IPI distribution 

statistics was then fixed across modalities. A similar approach had been taken by Marks 

(1987), who collected perceptual similarity judgments for temporal sequences in audition, 

touch, and vision, with identical supra-thresholds IPIs. He concluded that, in such a 

setting, the perceptual dimensions underling similarity judgments were common to all 

three modalities (Marks, 1987). Here, we followed the same logic to probe perceptual 

learning rather than perceptual similarity. Our stimuli had identical statistical properties 

in all modalities and performance was compared across modalities using the same task 

and participants. 

 We also tested for transfer of learning across modalities, to further address the issue 

of modality-specific or modality-general mechanisms of perceptual learning. Participants 

performed the same task as for the first experiment, but switched modality of presentation 

of the time patterns mid-block. In contrast to previous transfer studies, here participants 

were tested on incidental and not explicit learning, using complex and aperiodic 

sequences. We limited the modality pairings to initial learning in audition, before transfer 
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to either touch or vision, as audition provided the most robust learning effects in the first 

experiment. The experimental hypothesis was that, if participants retained a high 

performance on learnt RefRP patterns just after the modality switch, this could indicate 

transfer of learning. 

 

3.3 Experimental procedures 
 

3.3.1 General information common to all experiments 
Participants  

A total of 53 volunteers took part in the Pre-test, Experiment 1, and Experiment 2. They 

were typical adult participants (age in years M = 25.0, s.d. = 2.8). All participants had 

normal hearing, with measured pure-tone thresholds lower than 20 dB HL at frequencies 

of 125, 250, 500, 1000, 2000, 4000, and 8000 Hz. All participants reported normal or 

corrected to normal vision and no history of mental disorder or epilepsy. None had 

previous experience with similar experiments and they were all naïve to the goal of the 

study. Participants gave informed written consent on their participation and they were 

compensated 10 euros per hour at the end of the experiment. The study was approved by 

the ethical committee of U. Paris Descartes, France (CERES, IRB: 20154000001072).  

 

Apparatus  

The stimuli were generated in Matlab 2014b (Mathworks) on a MacBook Pro. They were 

generated at a 44.1 kHz sampling rate and 16 bit resolution, then converted to analog 

signals with an RME Fireface UC soundcard.  

 For the Audition conditions, the analog signals were played as sounds over 

Sennheiser HD 215 headphones, diotically.  

 For the Touch conditions, the same signal generation method was applied, but the 

output of the soundcard was split into two channels. The main stimulus channel was sent 

to a custom-made tactile stimulation box. The box contained a vibrotactile transducer 

(TL-002-14R, Haptuator Redesign, Tactile Labs) attached to a mobile 3D-printed plastic 

plate, resting on ball bearings covered by elastic bands. Inside the box was a custom 

amplifier (Tactile Labs Haptu amp) driving the Haptuator. The overall box dimensions 

were 12 cm width by 12 cm height by 3.5 cm depth. It was fixed on a mouse pad with a 
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gel wrist rest. Participants could comfortably rest their hand and put their fingertips on the 

plate, which moved tangentially to their fingertips when the Haptuator was driven. The 

second audio channel was used to play noise through headphones, in order to mask any 

sound produced by the tactile stimulation box (see Pre-test, Stimuli).  

 For the Vision conditions, the output of the sound card was again split into two 

channels and the main stimulus channel sent to a custom-made visual presentation device. 

The device consisted of a 3D-printed opaque box, of dimensions 11.3 cm width by 11.3 

cm height by 5.3 cm depth, with a circular central aperture of diameter 5 cm in the center. 

The aperture was covered by a translucent panel. Behind the panel, 4 green LEDs (Osram 

LT W5AM) were positioned in a cross pattern, each at a distance of 1.27 cm to the 

aperture center. This provided homogenous lighting of the translucent panel. With the 

experimental configuration, the panel covered about 5° of visual angle in the center of the 

participants visual field. The output of the soundcard was amplified through a custom-

made circuit to control the LEDs in a binary fashion (on or off) with high timing 

accuracy. The second channel of the audio card was again used to play the masking noise 

over headphones, for consistency across conditions. 

 All experiments took place in a soundproof booth (IAC 400-A series, single-walled) 

with moderate lighting (10 cd/m2) provided by DC-lamps to avoid visual flicker due to 

the mains. Participants were seated at 57 cm of the screen or visual stimulation box, 

depending on the condition. They used a chin-rest for all conditions and provided their 

responses by mean of a computer keyboard located to their right. During the Touch 

conditions, they rested their left hand on the tactile box. Participants wore headphones in 

all conditions.  

 

Stimuli  

 Stimuli consisted of irregular pulse trains with random IPIs. The IPIs were drawn 

from a Poisson distribution with refractory period, with the parameters of the distribution 

adjusted during the pre-tests and subsequently kept fixed for all modalities and for 

Experiments 1 and 2. 

 For Audition, the pulses were audio clicks of duration 0.2 ms. Pulse trains were 

high-pass filtered at 2 kHz to prevent the appearance of spectral cues after peripheral 

auditory filtering (Kang et al., 2017). Pink noise was added to the filtered click trains, to 

mask any potential distortion product but also for consistency with other conditions (see 

Pre-test, Results). The pink noise was generated in the frequency domain between 50 Hz 
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and 2 kHz. It started 0.2 s before the pulse sequence stimulus and ended 0.2 s after the 

pulse sequence.  

 For Touch, the pulses where tangential motion pulses driven by rectangular voltage 

steps of duration 0.2 ms. To make the best use of the dynamic range of the soundcard 

with respect to the characteristics of the Haptuator, the driving step trains were low-pass 

filtered at 400 Hz. Audio pink noise was presented over headphones, with the same level 

and characteristics as in the Auditory condition, to mask the sound produced by the tactile 

stimulation box. 

 For Vision, the pulses were light flashes driven by rectangular voltage steps of 

duration 0.2 ms. Here, the driving steps were unfiltered. Audio noise with the same 

characteristics as in the other two conditions was simultaneously presented over 

headphones.  

 

3.3.2 Pre-test part I: Setting the masking noise level 
Participants  

There were N = 6 participants (2 male, age in years M = 26.0, SD = 3.08).  

 

Stimuli  

The level of acoustic noise needed to mask the sound produced by the tactile box was 

measured. A tactile pulse train, presented over the tactile box, was presented 

simultaneously with an audio pink noise, presented over headphones. Based on pilot data 

and several iterations of the pre-tests, a rate parameter of 7 Hz and refractory period of 

60 ms was selected for the Poisson distribution of IPIs of the tactile pulse train. This 

resulted in an average IPI rate of 6 Hz. A signal-to-noise ratio (SNR) was defined as the 

ratio of the root-mean square (rms) value of the signal driving the tactile box, which 

remained fixed, over the rms value of the signal driving the headphones, which was 

varied. The SNR tested were [-2, 0, 4, 12, 28] dB, which corresponded to a level of the 

acoustic noise of [56, 54, 50, 46, 42, 29] dB SPL, A-weighted.  

 

Procedure  

 Participants were sat in the sound booth, in the experimental setting for all 

experiments with their head on the chinrest and headphones on. The experimenter sat 

next to the participant and put one hand on the tactile box, to reproduce the pressure of 
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the hand of the participant on the box during the actual experiments. For each SNR, 40 

trials were presented (20 audio only, 20 audio and tactile box), for a total of 200 trials 

presented in random order. The participant’s task was to respond whether a tactile 

stimulus was played or not, a task which could only be achieved with auditory detection 

of the tactile stimulus.   

 

3.3.3 Pre-test part II: Setting the minimum IPI 

Participants  

There were N = 5 participants (2 male, age M = 26.7, SD = 2.50). One participant was re-

invited from the Pre-test part I, the others were new participants. 

 

Stimuli  

The minimum IPI of pulse trains was varied for touch and vision, in order to measure the 

shortest IPI for which time intervals could be perceived in all modalities. It is known that 

audition has a much better temporal resolution that vision or touch (e.g. Gescheider, 

1966) so this modality was not included in the pre-test. Each trial consisted of a target 

stimulus, containing two pulses, and a comparison stimulus containing one pulse. The 

target stimuli consisted of two successive 0.2 ms pulses, separated by an IPI that was 

varied across trials. The IPIs tested were [25, 27, 31, 39, 55, 87] ms. The comparison 

stimulus consisted of a single 0.4 ms pulse, which correspond to twice the duration of a 

single target pulse. Target and comparison stimuli were separated by a time gap of 

500 ms and presented in random order. Masking noise with the level set in the pre-test 

part I was simultaneously presented over headphones.  

 

Procedure 

 Participants were sat in the sound booth, using the chinrest. For touch, their hand rested 

on the tactile box. For vision, they fixated the visual stimulation box. Their task was to 

report which presentation interval contained the target, two-pulses stimulus. There were 

26 trials per IPI condition, for a total of 156 trials, presented in random order. Blocks for 

each modality were run separately in random order. 
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3.3.4 Experiment 1 
Participants 

For Experiment 1, there were N = 18 participants (7 male, age M = 25.2, SD = 3.4). All 

participants were tested on all modalities.  

 

Stimuli 

For Audition, the pulse trains plus masking pink noise were presented over headphones as 

described above. Based on the results of the pre-tests, we set the rate parameter of the 

Poisson distribution of IPIs at 7 Hz, with a refractory period of 60 ms, corresponding to a 

nominal rate of 6 Hz. Stimuli (clicks plus noise) were presented at an average level of 65 

dB SPL, A-weighted, as calibrated with a Bruel & Kjaer Type 2250 sound-level meter set 

on “slow integration” connected to a Bruel & Kjaer Type 4153 artificial ear.  

 For Touch, pulse trains were presented to the fingertips through the vibrotactile 

box, with the same IPI parameters as for the audition condition. This resulted in a 

maximum measured acceleration value per pulse of 0.045g on average (measured with a 

GY-61 accelerometer connected to a Nucleo STM32 acquisition board). Masking noise 

was delivered through headphones at a level of 56 dB SPL, consistent with the level set 

with the Pre-test part I and identical to the noise used in the Audition condition. 

 For Vision, pulse trains were presented in the center of the visual field, again with 

the same IPI parameters as for the Audition and Touch conditions. The luminance of a 

single visual pulse was on average of 16 cd/m2, as calibrated with a Konica Minolta C-

100A Luminance and Color meter. The same masking noise as in the two preceding 

conditions was delivered through headphones.    

 

Procedure 

The procedure was the same in all modalities. It replicates a previous study in the 

auditory modality (Kang et al., 2017). A qualitative description of the task is also 

provided in the Introduction and only specific details are provided here.  

 There were 80 trials per block (40 P trials, 20 RP trials, 20 RefRP trials) presented 

in pseudo-random order, with the only constraint that no consecutive trials should present 

RefRPs. No feedback was given. For each modality, four blocks were run, corresponding 

to 4 different RefRPs (different across listeners). Each modality was run in successive 

blocks, with an order counterbalanced across participants. The whole experiment was 
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completed in two 2-hours sessions, over successive days.  

 

Training and inclusion criterion 

For each modality, a training session was provided before data collection began (Agus et 

al., 2014) to familiarize participants with the within-trial repetition detection task. A first 

training block used sequences containing 8 seamless repetitions of a 1.2 s pulse train, to 

be discriminated from sequences of the same overall duration but containing no repeat. 

This was intended as an easy condition, to illustrate the repetition detection task. Only 10 

trials were run for this easy condition. Then, the number of within-trial repetitions was 

reduced for further training blocks, first to 4 repeats, then to 2 repeats. Each of these 

training blocks had 40 trials (20 RP, 20 P). Note that the RefRP stimulus type was never 

introduced during training. Auditory feedback on response correctness was provided after 

each trial.  

 Participants who scored below chance in any of these blocks were told that the 

experiment would be terminated. This only happened for 2 participants, both in visual 

blocks.  

 

3.3.5 Experiment 2 
Participants  

There were N = 24 participants (6 male, age M = 24.5, SD = 3.40). They were randomly 

assigned to one of two experimental conditions, auditory-touch or auditory-vision. 

 

Stimuli 

Experiment 2 examined transfer of learning, so each block consisted of a first half in one 

modality (Audition) and a second half in another modality (Touch or Vision depending 

on the experimental group). The stimuli within each modality were identical to 

Experiment 1. 

 

Procedure 

Each block started identically to the audition condition of Experiment 1, with 80 trials (40 

P, 20 RP, 20 RefRP). At the end of the 80 trials, an auditory beep signaled to participants 

that they had to switch modality. They pressed a keyboard key to indicate their readiness, 

and presentation continued in the assigned modality (touch or vision). In four blocks, the 
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RefRP of the second modality had identical IPIs as the RefRP in the first auditory 

modality (Transfer condition). In four different blocks, the RefRP of the second modality 

had different IPIs from the RefRP of the first auditory modality (Control condition). 

Transfer and Control blocks were run in random order.  

 A training session on each modality (either Audition and Vision, or Audition and 

Touch) was provided before data collection began, as in Experiment 1. All participants 

met the inclusion criterion. The experiment took about 2 hours and was run in a single 

session. 

 

3.3.6 Statistical analyses 
Pre-test 

For the Pre-test part I, which was a yes/no task, we computed the sensitivity index d' of 

signal detection theory (Macmillan & Creelman, 2004) for each block. The index d' was 

then averaged for each participant and SNR value, and the resulting distributions over 

participants compared to the chance value of 0 using t-tests. For part II, which was a 

2AFC task, we computed the percentage correct for each IPI condition, averaged the 

value for each participant, and compared the resulting distributions with the chance value 

of 50% using t-tests.  

 

Experiment 1 

Performance was summarized using d' (Macmillan & Creelman, 2004) for each block and 

stimulus type (RP or RefRP). To do so, hits were defined as “repeated” responses for RP 

or RefRP, and false alarms were defined as “repeated” responses for P. Then, d' was 

averaged over all blocks for each participant, stimulus type, and modality. A repeated-

measures analysis of variance (ANOVA) was performed on the dependent variable d', 

with within-subject factors of stimulus type (RP or RefRP) and modality (Audition, 

Vision, or Touch), and with random factor of participants. Mauchly's test for sphericity 

confirmed that the data met the assumptions required for ANOVA (all p > 0.05). The 

level of statistical significance was set at p < 0.05 and the generalized eta-squared 

measure η2
g of effect size was also computed. Post-hoc paired t-tests were performed to 

compare the RP and RefRP conditions within each modality. Holm-Bonferroni correction 

was applied for multiple comparisons when appropriate (specified in the text).  

 The time course performance on different conditions was also evaluated, to test 
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whether any advantage of RefRP over RP could be attributed to improved performance 

with exposure, or to a chance selection of particularly easy RefRP exemplars from the 

outset. To do so, we adapted the method described in Agus et al. (2010) and Kang et al. 

(2017). Responses were converted to hit rate for RP and RefRP and aggregated in trial 

bins over all blocks and participants, for each modality. The first bin represents the first 

time participants heard e.g. a RefRP during a block. These average values were fitted 

either with a flat line corresponding to the average performance (1-parameter model) or 

an exponential function (3-parameters model) using a least-squares method. The 

goodness of fit was estimated by the least-squared error and a penalization for extra 

parameters (Motulsky & Christopoulos, 2004). If the exponential model was selected, we 

concluded that performance evolved over time.    

  

Experiment 2 

The analysis of Experiment 2 focused on performance just after the switch across 

modalities, to evaluate performance in the new modality before any new learning could 

have taken place. The time course of performance was summarized as in Experiment 1, 

by computing hit rate for the different stimulus types according to their trial order. We 

then computed the average hit rate for the first 5 trials for RefRP in the second modality 

(either Touch or Vision), just after the switch. In the Transfer condition, the IPIs 

comprising the RefRP had been previously heard in Audition. An advantage of RefRP for 

the Transfer over the Control condition for those initial first 5 trials was thus taken as a 

measure of transfer of learning. A mixed-design ANOVA Type III (because the number 

of subjects became unbalanced after selecting blocks with initial learning before the 

modality switch) was performed on the RefRP hit rate, with a within-subject factor 

consisting of condition  (Transfer or Control), a between-subject factor consisting of 

modality (Touch or Vision), and a random factor consisting of participant. Post-hoc 

paired t-tests were further applied to compare performance between Transfer and Control 

conditions. Finally, a similar ANOVA was run for the first 5 trials of the first part of the 

block, in Audition, to check that the random distribution of RefRPs across Transfer and 

Control condition produced balanced results in audition.   
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3.4 Results 
 

3.4.1 Pre-test 
 

The pre-tests were designed to determine the level of auditory masking noise required to 

mask any sound produced by the tactile stimulation box (part I) and to measure the 

minimum IPI ensuring that all time intervals in the patterns would be above the 

perceptual fusion threshold in all modalities (part II). 

 

 
Figure 3-2. Results for the Pre-Test. Left: The auditory detectability of tactile stimuli, in 
d' units, is shown as a function of the signal-to-noise ratio between the signal driving the 
tactile stimulation box (fixed) and the signal driving headphones to play simultaneous 
auditory masking noise (variable). The main experiments were run with a SNR of -2  dB, 
corresponding to a masking noise at 56 dB SPL, A-weighted. Right: The percent correct 
for a one versus two pulses discrimination task is shown as a function of the time gap 
between pulses. The main experiments were run with a minimum inter-pulse interval of 
60 ms. 
 

 

 For part I, we measured the ability of participants to detect the sound produced by 

the presentation of the tactile stimulus, in presence of varying levels of simultaneously-

presented acoustic noise. Figure 3-2, left, illustrates detection performance a function of 

SNR. The SNR was defined as the ratio of the rms value of the electrical signal driving 

the tactile stimulator, over the rms value of the electrical signal driving the headphones. 
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As expected, the auditory detection of the tactile stimulus became more difficult with 

increasing levels of auditory noise, that is, for decreasing SNRs. Performance was almost 

perfect for high SNRs, then decreased with notable variability across participants for 

medium SNRs, and then consistently converged toward chance for low SNRs. At the 

lowest SNR, the mean d' value was 0.076, which was not different from the chance value 

of 0 (one-sided t-test, t(4) = 1, p = 0.187). We conservatively selected this SNR of -2 dB 

for subsequent experiments, as the noise level was still considered comfortable. 

 For part II, participants had to distinguish a target stimulus made of two 0.2 ms 

pulses with a variable IPI, from a comparison stimulus made of a single 0.4 ms pulse. 

This task has been used in vision to measure “two-flash thresholds” (e.g. Lewis, 1967), 

and is based on the idea that energy should be summed up over time for IPIs shorter than 

the temporal resolution, a rule known as Bloch’s law (Gorea, 2015). For touch and 

audition, a similar click-resolution task had also been previously used (Gescheider, 1966). 

Figure 2, right, displays percent correct on the task as a function of IPI. Performance 

increased with increasing IPI for Vision. The first IPI that was above chance for Vision 

was 55 ms (t(4) = 20.8, p < 0.001). For Touch, all values were close to ceiling and well 

above chance (e.g. for 55 ms, t(4) = 51.44, p < 0.001). Even though we did not test 

Audition, its temporal resolution is known to be an order of magnitude lower than for 

Vision, as for instance measured with a similar task click-discrimination task 

(Gescheider, 1966). Based on the pre-test results, a minimum IPI of 60 ms was selected 

for time patterns used in subsequent experiments.  

 To summarize, the pre-test served to rule out a potential confound for the Touch 

condition, by setting the level of an auditory masking noise that prevented the auditory 

detection of tactile stimuli. This noise was used in the main experiments with the same 

level for all modalities, even when no masking was required, to equate for its potentially 

distracting effect. The pre-test also served to select a minimum IPI ensuring that all IPIs 

of the temporal patterns of the main experiments would be perceptually resolved. We 

used a two-pulse discrimination thresholds method, which produced results broadly in 

line with previous studies (Gescheider, 1966; Lewis, 1967). Note that in the main 

experiments, the value of 60 ms was the enforced minimum IPI, which in effect occurred 

very rarely in the stochastic patterns. The mean time interval was longer, at 166 ms, 

which was comfortably above the resolution thresholds estimated here.  
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3.4.2 Experiment 1 
 

 

 
Figure 3-3. Average results for Experiment 1. The discriminability of RP against P and 
RefRP against P is shown, in d' units, for all three modalities. Results were averaged 
across participants and error bars represent 95% confidence intervals.  
 

 

The task required from participants was a within-trial repetition-detection task that has 

been commonly used to study sensory memory in audition (Guttman & Julesz, 1963; 

Kaernbach, 2004). Here, the task was applied to three sensory modalities: Audition, 

Touch, and Vision. In addition, some so-called reference patterns (RefRP stimulus type) 

re-occurred 20 times throughout an experimental block. Based on results in the auditory 

modality, we hypothesised that perceptual learning across trials may be observed for such 

patterns and revealed by an improved performance for RefRP over RP (Agus et al., 2010; 

Agus & Pressnitzer, 2013; Gold et al., 2014; Kang et al., 2017).  

 Figure 3-3 displays the average performance, in d' units, for each stimulus type 

and modality. For Audition, we replicated previous findings, with a relatively high 

performance on the baseline repetition-detection task for the RP stimulus type. 

Importantly, performance was better for the RefRP stimulus type, suggestive of 

perceptual learning. For Touch and Vision, the same effects were observed, with a lower 

RP baseline performance but always an advantage of RefRP over RP.  

 A repeated measures ANOVA confirmed that both stimulus type (F(1,17) = 

35.38, p < 0.001, η2
g = 0.11) and sensory modality (F(2,34) = 74.28, p < 0.001, η2
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0.52) had a significant effect on performance. An interaction between stimulus type and 

sensory modality was observed (F(2,34) = 4.57, p < 0.05, η2
g = 0.03). Post-hoc tests were 

conducted to compare RP and RefRP in each modality. Paired t-tests on d' for each 

modality confirmed the RefRP advantage (Audition: t(17) = -6.37, p < 0.001, Vision: 

t(17) = -2.15, p < 0.05, Touch: t(17) = -2.68, p < 0.05; all p values uncorrected values but 

remain significant after Holm-Bonferroni correction). Finally, we tested for the difference 

between baseline performance on the repetition-detection task across modalities, by 

performing another repeated-measures ANOVA on d' for the RP stimulus type only. 

Modality had a significant effect on performance (F(2,34) = 64.02, p < 0.001, η2
g = 0.57). 

 

 

 
Figure 3-4. The time course of performance for Experiment 1. Top: Histograms of the 
averaged performance over the last 10 presentations of RefRPs, for all experimental 
blocks and in all three modalities. Good blocks were defined as blocks with 80% or more 
hit rate over the last 10 presentations. Bottom: Hit rate as a function of trial order within 
the blocks, averaged across participants for good blocks only. The solid lines represent 
the best fit to the data (see text for details). 
 

 

 Based on previous results in the auditory modality (Agus et al., 2010; Kang et al., 

2017), we tested for the presence of “good” and “bad” blocks in the data, defined by the 

performance on RefRP at the end of a block after learning could have occurred. We 

computed the average hit rate for the last ten presentations of RefRP, in each test block 

(Figure 3-4, top). As for previous experiments in the auditory modality, a cluster of 
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blocks with very high performance (hit rate higher than 80%) was apparent. A one-

sample Kolmogorov-Smirnov test confirmed that the distribution of hit-rate over blocks 

did not match normal distributions (Audition: D(72) = 0.67, p < 0.001, Touch: D(72) = 

0.54, p < 0.001, Vision: D(72) = 0.57, p < 0.001). We defined blocks with final hit rates 

above 80% as good blocks, and the remaining blocks as bad blocks. With such a 

definition, the bad blocks had an average hit rate at the end of the block of 54% for 

Audition, 43% for Touch, and 48% for Vision, not different from chance in all cases (all 

p > 0.05 from one-sample t-tests). Good blocks all had a high level of performance, by 

construction, but they were not evenly distributed across sensory modalities: 86% of all 

blocks for Audition, 54 % for Touch, and 48% for Vision. 

 There were two possibilities to explain the high performance in good blocks. It 

could be that performance gradually improved with exposure to a RefRP pattern, as 

would be expected if perceptual learning was involved. Or, good blocks could have been 

the result of a chance selection of temporal patterns producing high performance on the 

within-trial task even without learning. To distinguish between the two possibilities, we 

examined performance over time within a block, by averaging all presentations of RP or 

RefRP in trial bins corresponding to their order of appearance (Figure 3-4, bottom). Two 

models contrasting either constant performance throughout the block or an exponential 

change in performance were fit to the data, and their goodness of fit was compared taking 

into account the number of free parameters (Methods and Agus et al., 2010; Kang et al., 

2017). Performance for RefRP increased over time in all modalities  (Audition: F(2, 17) = 

28.33, p < 0.001); Touch: F(2,17) = 6.47, p < 0.01; Vision F(2,17) = 6.85, p < 0.01). 

Performance for RP remained constant for Audition (F(2,17) = 2.77, p = 0.09) but 

decreased slightly for Touch (F(2,17) = 4.88, p < 0.05) and Vision (F(2,17) = 3.59, p = 

0.05). Such a decrease in performance over time for RP has been observed in previous 

auditory experiments and attributed to a criterion effect: as RefRP becomes easier to 

detect, participants respond less to RP to keep their balance between “yes” and “no” 

responses (Agus et al., 2010).   
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Figure 3-5. Individual data for Experiment 1. Each square represents an individual 
participant, identified across modalities with the shade of the square. The averaged 
performance for RefRP is shown as a function of the averaged performance for RP (good 
and bad blocks averaged together). The diagonal indicates equal performance for both 
stimulus types. Points above the diagonal are participants with a pattern results consistent 
with perceptual learning. 
 

 

 Finally, we examined the individual data for each participant, averaged across good 

and bad blocks. Figure 3-5 displays individual data averaged across blocks, in each 

modality, with participants identified with marker’s shades. For all modalities, there were 

cases of participants exhibiting a clear advantage of RefRP over RP, with perhaps a 

higher prevalence for Audition and Touch compared to Vision. This parallels the number 

of good blocks in each modality. 

 

 

Table 3-1. Correlation (Pearson correlatin coefficients) for individual d' values across 
sensory modalities, for stimulus types RefRP, RP, and for the difference in d' between 
RefRP and RP. Values in bold and italics indicate strong to moderate correlations 
between a set of modalities (Italics: correlation coefficients (r) above 0.4 with borderline 
significance p = 0.06, bold: p < 0.05, p-values all uncorrected).  
 

 Audition - Touch  Audition - Vision  Touch - Vision 

RefRP 0.53  0.45  0.45 

RP 0.47  0.53  0.50 

RefRP - RP 0.10  0.14  -0.04 
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performance in another modality. Table 3-1 presents the cross-sensory correlations 

computed across individuals for d'. Correlations across modalities were moderate for RP 

and RefRP, with uncorrected p-values below or around our significance threshold of p < 

0.05. We also computed correlations for differences in d' between RefRP and RP, which 

was one measure of the added benefit of repeated exposure related to perceptual learning. 

There was no correlation across modalities for the RefRP minus RP d' difference.  

  

3.4.3 Experiment 2 
 

For Experiment 2, the aim was to test whether the learning of a temporal pattern in one 

sensory modality would transfer to another modality. Because such a test depends on the 

pattern being learnt in the first place, we chose to present the patterns first in the auditory 

modality, as this was where most good blocks were observed for Experiment 1. 

Participants thus started each experimental block by performing the task of the Audition 

condition of Experiment 1, with P, RP, and RefRP stimulus types and the same number of 

trials. Then, they switched to the Touch or Vision modality, again with the same task as 

for Experiment 1. Without informing participants, we contrasted two conditions: a 

“Transfer” condition where the RefRP in the second sensory modality was the exact same 

pattern of IPIs as presented in the beginning of the block in the auditory modality; a 

“Control” condition, for which the RefRPs in the first and second sensory modalities 

were different patterns of IPIs.   
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Figure 3-6. Results for Experiment 2. The time course of performance is shown for the 
Transfer condition (same RefRP patterns before and after the switch) and Control 
condition (different RefRP patterns before and after the switch). The switch from auditory 
to either touch or visual presentation is indicated by the vertical dashed line. Only good 
blocks with evidence of initial learning in the auditory modality were included. The insets 
show the average performance across participants for the 5 first presentations in each 
modality. Error bars represent 95% confidence intervals.  
 

 

 Figure 3-6 displays the hit rate for RefRPs in the Transfer and Control conditions 

according to their trial order in the block (same analysis as Figure 5). For the figure and 

subsequent analyses, we selected blocks for which there was evidence of learning in the 

first presentation modality, as else, there would be no point in asking about transfer of 

learning. This was done by selecting good auditory blocks, defined according to the 

criterion of Experiment 1. No criterion was applied to the performance in the second 

modality. In the participant’s group that was tested on Audition/Touch, this selected 81% 

of blocks in the Transfer condition and 73% of blocks in the Control condition. In the 

group that was tested on Audition/Vision, this selected 81% of blocks in the Transfer 
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condition and 62% of blocks in the Control condition. One participant did not have any 

good auditory block in one experimental condition (Transfer Audition/Vision) and was 

excluded from the analysis.  

 If there were no transfer of learning across modalities, the performance for RefRPs 

initially learnt in audition should drop right after the switch to a different sensory 

modality, to performance levels equivalent to those obtained with novel patterns. 

Conversely, if there were transfer of learning, performance for RefRPs initially learnt in 

audition should remain high after the switch, even before any re-learning could happen in 

the new modality. The pattern of results was consistent with transfer of learning. For 

Touch, performance right after the switch was essentially the same as performance in the 

auditory modality after initial learning. For Vision, performance decreased after the 

switch, but, like for Touch, it remained above what was observed for the novel patterns of 

the Control condition.  

 To quantify these observations, we averaged hit rate for the first 5 trials right after 

the modality switch and performed a mixed-design ANOVA with main factors of 

condition (Transfer or Control) and modality (Touch or Vision). Condition had a 

significant effect on performance (F(1,21) = 37.50, p < 0.001, η2
g = 0.31). No effect of 

modality was observed, nor any interaction between condition and modality. Post-hoc t-

test were further used to compare performance between Transfer and control, and 

confirmed an advantage of Transfer for both Touch (t(11) = -4.89, p < 0.001) and Vision 

(t(10) = -3.78, p < 0.01).  

 We finally controlled that the advantage of the Transfer condition after the switch 

did not result because of a random selection of especially easy RefRP patterns, 

irrespective of learning (remember that all RefRPs were from good blocks, so with a level 

of performance matched after possible learning but not before). The same mixed ANOVA 

was applied to the first 5 trials of auditory presentation in each block. There was no main 

effect of conditions or modality groups (p > 0.05), confirming that all selected RefRPs 

induced an initially balanced level performance on the repetition-detection task, at least 

for auditory presentation. 
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3.5 Discussion 
 

Using a paradigm previously used in audition (Kang et al., 2017), we investigated 

whether repeated exposure to temporal patterns in audition, touch, or vision would result 

in similar forms of perceptual learning. We used random sequences of sub-second time 

intervals, each interval being constrained to be above the temporal resolution limit in all 

modalities. There were strong similarities in the results in all three modalities. First, the 

within-trial repetition-detection task that was used, which is a common and powerful tool 

to probe sensory memory in audition (Guttman & Julesz, 1963; Warren et al., 2001; 

Kaernbach, 2004), could be performed in touch or vision, as indicated by almost all 

participants meeting our inclusion criterion during the training period. Second, when 

some reference patterns re-occurred over several trials in the main experiments, they 

produced higher performance on the repetition-detection task compared to novel patterns.  

 This is indicative of rapid perceptual learning, as previously observed in audition 

(Agus et al., 2010; Kang et al., 2017), but now generalized to three sensory modalities. 

Importantly, learning was non-supervised. It was also incidental, as participants were not 

told about the existence of reference patterns, nor did they know that learning some trials 

could benefit subsequent performance. Moreover, the reference patterns occurred at 

unpredictable times during the experiment and were presented amongst statistically 

matched patterns. Finally, whenever learning happened, it was complete in about only ten 

trials. These are all desirable characteristics for real-life learning of time patterns. There 

were recent demonstrations of sequence learning for sequences of tactile stimuli 

consisting of temporal amplitude patterns to the fingertips for human observers or 

whisker deflections for mice (Bale et al., 2017), also with characteristics similar to 

auditory incidental memory (Agus et al., 2010). Converging results have been found 

using the same repetition-detection paradigm for sequences of visual contrast (Gold et al., 

2014). Here, we extended these findings with stimuli containing purely temporal 

information, and the qualitative similarities between modalities became perhaps even 

more salient.  

 There were also quantitative differences between modalities, however. In 

particular, the baseline performance on the within-trial repetition detection task was best 

in audition, followed by touch and then vision. The amount of learning was also different 

across modalities, as indicated by a statistical interaction in our analyses. Fewer blocks 
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led to learning for vision than for audition, which in fact matched the introspective reports 

of our participants on the difficulty of the task. This suggests an advantage for the 

learning of time patterns in the auditory modality, followed by touch and then vision. 

Such a hierarchy would be consistent with a “temporal advantage” for audition, as 

reported in a broad variety of studies. For instance, audition has an advantage over vision 

for time interval discrimination (Pasinski et al., 2015) or sequence learning (Nazzaro & 

Nazzaro, 1970), and touch has an advantage over vision for sequence learning (Manning 

et al., 1975). Some of these results have been interpreted by positing additional strategies 

for audition, such beat-based rhythmic encoding (Povel & Essens, 1985; Patel et al., 

2005; Pasinski et al., 2015). However, using moving bars instead of light flashes to 

delineate time intervals, some evidence has been found for rhythmic processing in vision 

(Grahn, 2012), without cancelling the overall advantage for audition. Our sequences were 

not regular, so the present advantage for audition may not be accounted for by rhythmic 

processing, but rather by more general factors such as different time-constants for sensory 

memory across modalities (Collier & Logan, 2000).  

 However, there are also alternative interpretations to consider. Even if our aim 

was to present purely temporal patterns, there were by necessity choices to be made for 

the modality-adapted stimuli used to delineate time intervals. These choices were guided 

by the aim to obtain the most temporally accurate stimulation in all modalities. For 

instance, a green LED was presented in central vision with moderate background lighting, 

to preferentially recruit cones and enhance visual temporal acuity (Kalloniatis & Luu, 

1995). But it could be that our largely arbitrary choices were not equally effective in all 

modalities, and that a different outcome could have been obtained with other modality-

specific stimuli to delineate time intervals (Grahn, 2012). One possibility to extend the 

present results would be to forego the constraint of matching sequence statistics across 

modalities (Marks, 1987), but rather to scale the IPI distributions by e.g. discrimination 

thresholds in each modality (Hansen & Cottrell, 2013). For now, while all the trends in 

our data would seem highly consistent with the many reports of an auditory advantage for 

temporal pattern processing, the main result still has to be that incidental learning of 

complex time patterns was possible and qualitatively similar for audition, touch, and 

vision. 

 Such behavioural findings present interesting challenges for current models of 

neural plasticity. To learn time-localized information, such as quasi-instantaneous 

frequency profiles in audition, static textures in touch, or still images in vision, there are 
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many plausible underlying plasticity processes based on the well-established principle of 

“fire together, wire together” (e.g. Masquelier et al., 2008). In contrast, the time patterns 

used here contained information that unfolded over more than a second, and they could 

not be distinguished by summary measures such as average rate. Which other neural 

strategies could there be to learn such time patterns? Several computational possibilities 

have been put forward (Hardy & Buonomano, 2016). When neurophysiological evidence 

is considered, past stimulation has been shown to be reflected in current firing patterns of 

single neurons in primary auditory cortex (Klampfl et al., 2012). At the population level, 

evidence from the avian brain show a recoding of sequence-like temporal patterns into a 

rate-place code within secondary auditory cortical areas (Lim et al., 2016). Similar 

mechanisms for time to place recoding have been proposed for touch (Rossi-Pool et al., 

2016) or vision (Nikolić et al., 2009). Importantly, the resulting place code would contain 

“instantaneous” information and would thus be amenable to well-established neural 

plasticity processes, applicable to any modality. So, after a modality-specific recoding of 

the temporal sequences, the similarities across modalities may thus be indicative of 

common memory mechanisms, consistent with previous suggestions (Pasinski et al., 

2015).  

 A second finding of the present study is the immediate transfer of learning for 

patterns first presented in the auditory modality to patterns subsequently experienced in 

the tactile or visual modality. In the data, this was not a subtle effect: the level of 

performance was maintained almost perfectly when switching from audition to touch. For 

a switch from audition to vision, performance dropped after the switch, but it still 

remained above performance for control patterns that had not been learnt in audition. 

Note that the drop in overall performance may be due to task difficulty associated with 

the visual presentation, independently of the issue of transfer of learning. Indeed, 

statistical analyses did not uncover any interaction between modalities and our measure 

of transfer of learning.  

 Such a large and symmetrical transfer from audition to either touch or vision has 

not been reported yet, to the best of our knowledge. Transfer from audition to vision has 

been observed for time interval discrimination (Bratzke et al., 2012) or rhythm learning 

(Barakat et al., 2015), although negative evidence also exist (Lapid et al., 2009). There 

are also examples of transfer from touch to audition (Nagarajan et al., 1998). We will 

now consider three possible interpretations for the transfer: a recoding of time-interval 

information into the auditory modality, voluntary or mandatory; the existence of an 
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amodal representation common to all three modalities; strong and early interactions 

across modalities.   

 The first possibility, of a recoding of touch or visual temporal information into an 

auditory representation, could apply to the transfer data but also to our paradigm in 

general. Such a recoding could be voluntary and explicit. Imagine that participants knew 

or guessed that the auditory modality was most appropriate for the repetition-detection 

task, they may have tried to “auralise” the sequences presented through touch or vision, 

by imagining a sound for each pulse. The transfer would then not have been across 

modalities, but across actual and imagined auditory sequences. We considered this 

possibility when designing the experiments, and the masking noise presented in all 

modalities was to some extent intended to disrupt an explicit auditory recoding strategy. 

However, even the presence of noise cannot rule out the imagining of brief sound events. 

Nevertheless, several elements make an explicit recoding strategy unlikely. First, no 

participant spontaneously reported such a strategy in post-experiment debriefs. Second, 

there were differences in overall performance between touch and vision, even though 

both modalities should present an equal opportunity for an explicit recoding strategy. 

Third, sequences were fast and unpredictable, making intentional recoding more difficult. 

Finally, for Experiment 1, we performed an additional analysis comparing the 

performance of participants who started with auditory presentation, to the performance of 

those who started with either touch or vision, as starting with the easier auditory modality 

may have favored an explicit recoding strategy in later blocks. To do so, we added a 

factor of “audition first (yes/no)” to the ANOVA used to analyze the results of 

Experiment 1. The main effect for this factor was not significant (F(1,16) = 0.32, p > 

0.05). So, even if this cannot be formally ruled out, we would argue that an explicit 

recoding strategy was unlikely to explain the transfer results and general similarity of 

results across modalities.  

 A more interesting possibility is that recoding may have occurred involuntarily, 

perhaps as the default mode for processing timing sequences irrespective of the modality 

of entry. There is behavioral support for such an idea (Guttman et al., 2005). In this study, 

a temporal sequence discrimination task was performed in the visual modality, in the 

presence of task-irrelevant information in the auditory or visual modality. Only 

distractors in the auditory modality had a negative impact on visual performance, which 

was interpreted as a mandatory recoding of visual temporal patterns into an auditory code 

to perform the sequence discrimination task (see however Grahn, 2012). 



!

MEMORY!FOR!RANDOM!TIME!PATTERNS!IN!AUDITION,!TOUCH,!AND!VISION!

 104 

Neurophysiological evidence along the same lines showed a decrease in performance for 

either auditory or visual time interval discrimination after TMS inactivation of auditory 

regions (Kanai et al., 2011). The transfer and similarities observed across modalities in 

our behavioral tasks could thus be consistent with a mandatory recoding of visual or 

tactile information into an auditory-like representation.    

 A second possible kind of interpretation would posit a common representation for 

time sequences as well, but an amodal rather than auditory representation. Such a 

representation could be closely related to motor networks. Plastic changes associated with 

perceptual learning of visual time intervals have been observed in motor parts of the 

cortex (Bueti et al., 2012). Priming effects between auditory and visual rhythms may also 

be mediated by motor networks (Grahn et al., 2011). While it is beyond the scope of 

present paper to review the plausibility of an amodal representation of time (Ivry & 

Schlerf, 2008; van Wassenhove, 2009; Grondin, 2014), we note that such a representation 

would certainly be sufficient to explain the transfer effects we observed. However, it may 

not be easily able to explain the differences in absolute level of performance between the 

touch and visual modalities observed in the transfer experiment, nor the quantitative 

advantage of audition in the first experiment.  

 Finally, a third possible interpretation is that the encoding of time sequences was 

modality-specific, but that there were strong interactions between modalities before or at 

the level where the neural learning of time sequences occurred. Based on the evidence 

reviewed in the Introduction, timing information may be recoded into a place code in 

secondary sensory areas (Lim et al., 2016; Rossi-Pool et al., 2016). Anatomical evidence 

for earlier cross-modal connections exist for audition, touch, and vision (Cappe & 

Barone, 2005), with perhaps especially strong links between audition and touch (Occelli 

et al., 2011). About this later point, it has been shown behaviorally that tactile stimulation 

could be masked by auditory stimulation in a frequency-specific way (Yau et al., 2009), 

suggesting interactions at levels where frequency channels exist, such as sensory cortex. 

An especially strong connection between audition and touch (Occelli et al., 2011; Saal et 

al., 2016) would be consistent with the pattern of results we observed. Speculatively, the 

temporal patterning of multisensory events is often correlated across modalities, so it may 

indeed make functional sense to have cross-talk between modalities at several stages of 

processing to facilitate the learning of time sequences.  

 

 



 

DISCUSSION!

 105 

Conclusion and Perspectives 

In a series of behavioral experiments, we have shown rapid perceptual learning for time 

patterns in audition, touch, or vision. This extends previous results in the auditory 

modality (Kang et al., 2017) and complement recent evidence highlighting the importance 

of sequence processing in all three modalities (Gold et al., 2014; Bale et al., 2017). We 

have also shown that learning a time pattern in audition transferred immediately to touch 

or vision. This was interpreted by either a mandatory recoding of temporal information 

into an auditory representation (Guttman et al., 2005), by an amodal representation for 

temporal sequence (Ivry & Schlerf, 2008), or by a distributed encoding of time combined 

with early interactions between modalities and common memory mechanisms (Cappe & 

Barone, 2005; Pasinski et al., 2015).  

 Learning was described as incidental, because it was unsupervised and occurred 

during the performance of an ancillary task. We did not test whether participants became 

aware of their learning, but previous studies in audition showed that the present paradigm 

led to EEG correlates of memory traces even when attention was diverted from the 

sounds to be learnt (Andrillon et al., 2015), and to behavioral and EEG correlates of 

learning for sounds that were heard during light sleep (Andrillon et al., 2017). 

Extrapolating from these findings, it is thus possible that re-occurring time patterns 

always leave a sensory memory trace, whatever the modality. What would be the 

functional benefit of such traces? Their use to encode and recognize temporal patterns 

obvious, but they could also be involved in more general sensory prediction processes, as 

suggested by neural evidence in visual cortex (Gavornik & Bear, 2014). In any case, the 

present behavioral data raises the intriguing possibility that a rapid incidental learning of 

time patterns is a general feature of sensory systems. 
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Chapter 4  
Memory for random time patterns of 

electrical pulses presented through cochlear 

implant 
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Learning in the Time Domain for Cochlear Implant Users. Congrès Francais 
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Kang, H., Macherey, O., & Pressnitzer, D. (2016). Auditory Learning of Temporal 
Information for Normal-Hearing Listeners and Cochlear Implant Users. 39th MidWinter 
Meeting of the Association for Research in Otolaryngology, San Diego, USA (Poster). 
 

4.1 Abstract 
 

Cochlear implants (CIs) are neuroprosthetic devices used to electrically stimulate the 

cochlea of patients with severe hearing loss. In a current typical device, a limited number 

of electrodes stimulate different parts of the cochlea corresponding to different frequency 

regions, with an electrical signal shaped to convey the temporal amplitude envelope of 

the external signal in the corresponding frequency band. Because of the limited number 

of electrodes and even more limited number of independent frequency channels, CI users 

have to rely heavily on temporal information to perform everyday auditory tasks such as 

speech intelligibility. Accordingly, several studies have shown that temporal processing 

as measured by discrimination tasks is broadly preserved in CI users, at least compared to 

the sharp degradation observed in spectral discrimination tasks (Moore & Carlyon, 2005). 

In the present chapter, we investigated another aspect of temporal processing beyond 

immediate discrimination: the ability to learn complex temporal patterns. We adapted the 



!

MEMORY!FOR!RANDOM!TIME!PATTERNS!OF!ELECTRICAL!PULSES!PRESENTED!THROUGH!

COCHLEAR!IMPLANT!

 108 

paradigm of Kang et al. (2017), presented in Chapter 2. Based on our previous results, we 

first chose 2 representative average pulse rates where learning was observed for normal 

hearing (NH) listeners, 10 Hz and 40 Hz. We compared performance for a NH control 

group, stimulated acoustically, and a CI group, using direct electrical stimulation of the 

cochlea through the research interface of the implant to convey the complex time 

patterns. Furthermore, for CI listeners we added a 300 Hz pulse train rate that would not 

easily be restricted to purely temporal cues across the whole cochlea for NH listeners. We 

observed qualitatively similar results for the CI and NH groups on rates that were 

presented in both groups, with rapid learning of electrical time patterns in CI listeners. 

Evidence of learning was also found in the CI group for the fastest rate. These results 

have clinical relevance, as they show that the plasticity processes involved in rapid 

perceptual learning may be largely preserved in CI listeners. Moreover, on a fundamental 

level, the results confirm that pure timing cues are amenable to perceptual learning, even 

in a timing range that is not normally encountered by the healthy auditory system. 
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4.2 Introduction  
 

The ability to understand complex acoustic scenes depends in a large part on memory 

processes, which enable listeners to recognise the sound sources in their environment 

thanks to past experience. For normal-hearing listeners, these processes are likely to 

occur throughout development as well as in adulthood, such as when for instance learning 

to recognize the voice of a new acquaintance. As we have repeatedly mentioned during 

this thesis, there is now evidence for the availability of remarkably fast and efficient 

learning processes that could subserve this ability even in adulthood (Agus et al., 2010; 

Kang, Agus, & Pressnitzer, 2017).  

 Learning novel sounds is perhaps an even more acute problem for CI users. 

Indeed, for post-lingually implanted adults, the switch from acoustic hearing to electric 

hearing involves a complete re-learning of the meaning of all sounds in their 

environment, because the cues available with a cochlear implants are drastically different 

from those available acoustically. Moreover, the learning of temporal information is also 

crucial for CI listeners. Because of limits in the current CI devices, both in the number of 

physical electrodes (up to 22 in modern implants) and even more acutely by the difficulty 

to achieve focal electrical stimulation in the conductive cochlear fluids, spectral 

resolution of CIs is limited (Macherey & Carlyon, 2014). Instead, CI users have to rely on 

temporal cues to achieve good performance on tasks such as speech intelligibility  

(Shannon et al., 1995). Here, we tested the characteristics of perceptual learning of 

temporal patterns for CI listeners, as this would be a process useful to them in the re-

learning of their acoustic environment through temporal cues.  

 Previous studies have shown that temporal processing is generally preserved for 

CI listeners, at least when measured with discrimination tasks. Experiments measuring 

detection thresholds at different temporal rates (Shannon, 1985), pitch tasks (Zeng, 2002; 

see Moore & Carlyon, 2005 for a review), rate discrimination thresholds (Gaudrain, 

Deeks, & Carlyon, 2017) showed that pulse rate perception was preserved up to about 

300 Hz. Only few studies studied temporal perception in CI implants with irregular time 

patterns, such as the ones we used in the present work. Kong et al. (2004) measured the 

musical abilities of CI users evaluated by pitch and rhythmic tasks. While CI users 

showed large deficits on the pitch tasks, their performance was comparable to NH 

listeners on the rhythmic tasks. Gaudrain, Deeks, and Carylon (2017) studied fully 
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random sequences, even within a rhythmic structure, in a jitter-detection task in addition 

to the more classic rate discrimination task. They found similar performance between CI 

and NH listeners on the jitter detection task for average pulse rates of 100 Hz, and slightly 

degraded performance for the CI users for average pulse rates of 300 pulse-per-second 

(pps). Interestingly, no correlation was observed between performance on rate 

discrimination and jitter detection, implying that the classic measures of rate 

discrimination may only give a partial view of all of the processes involved in temporal 

perception with a CI.    

 Given that CI users may have a perceptual representation of random temporal 

patterns sufficient to support immediate discrimination, here we asked whether the neural 

processes required for learning such patterns was preserved. From previous studies 

(Andrillon et al., 2015; Luo et al., 2013; Kumar et al., 2014), it has been hypothesised that 

the rapid learning of complex sounds recruited at least secondary auditory areas. These 

areas are known to undergo plastic processes during the sound-deprivation period that 

accompanies deafness (Ponton, Moore, & Eggermont, 1999). It is therefore unknown 

whether CI users will have retained the neural bases required for rapid perceptual 

learning. Answering such a question has obvious clinical relevance.  

 Furthermore, CI users present a unique opportunity to study temporal processing 

in the auditory system. By using the research interface of CIs, it is possible to bypass the 

standard sound processing algorithms designed to mimic typical auditory function. 

Instead, it is possible to deliver electric pulses at precise time in the whole electrode 

array, limiting to purely temporal cues the information available to further stages of 

auditory processing. And, because the timing information sent to electrodes is not limited 

by acoustic constraints or biophysical processes in the cochlea, it is also possible to study 

temporal perception for patterns that would not be normally available in NH listeners. For 

instance, here we decided in some conditions to stimulate the electrode array with fast 

temporal information, at an average rate of 300 pps. Such fast rates, if presented 

acoustically, would be converted to spectral information in apical regions the healthy 

cochlea (Shackleton & Carlyon, 1994). If those temporal patterns could still be learnt, this 

would suggest that the rapid learning of temporal patterns recruits fundamental and 

ubiquitous principles of neural plasticity.  

 To measure the learning of electrical time patterns, we adapted the repetition 

detection paradigm used in previous chapters (Agus et al., 2010; Kang et al., 2017). 
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Instead of using audio clicks to delineate time intervals, we used electrical pulses 

transmitted quasi-simultaneously to 4 electrodes of the CI, covering all of the useful 

frequency range of the device. A control group using NH listeners was also tested with 

the usual acoustic stimulation, but using the temporal patterns parameters used in the CI 

group. Based on our previous results, we chose 2 representative average pulse rates, 10 

Hz and 40 Hz, to test both CI and NH listeners. For the CI listeners only, we added a 

300 Hz pulse train rate that would not easily be restricted to purely temporal cues as for 

NH listeners.  

 

4.3 Experiment 
 

Methods 

Participants 

Ten CI listeners (age range: 37 – 77, M = 55, SD = 15.6, 4 male) took part in the 

experiment. CI listeners were recruited in the Marseille area from a database of CI 

patients regularly tested in the laboratory of O. Macherey (Laboratoire de Mécanique et 

d'Acoustique, UPR 7051). All CI listeners were recipients of a Med-El CI. Seven CI 

listeners participated in two test sessions, using different pulse rates (both slow and fast), 

and three CI listeners participated in only a single test session, two of them for slow-rate 

pulses and one of them for fast-rate pulses. In total, nine CI listeners participated to the 

test with slow-rate pulse trains and eight CI listeners participated to the test with fast-rate 

pulse trains.  

 Nine NH listeners were recruited in Parisian area as in our previous experiments. 

There was no attempt to match the CI and NH group in age. The age for the NH group 

was between 18 – 35 (M = 22.5, SD = 0.7, 2 male). All NH listeners passed an 

audiometry test measuring thresholds at 125, 250, 500, 1000, 2000, 4000, and 8000 Hz. 

All participants had threshold smaller or equal to 20 dB HL. All participants provided 

written consent and were remunerated for their participation (NH listeners) and travel (CI 

listeners). The experiment with CI listeners was ethically approved by the local research 

ethics committee (Eudract 2012-A00438-35) and the experiment with NH listeners was 

ethically approved by the ethical committee of U. Paris Descartes, France (CERES, IRB: 

20154000001072). 
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Stimuli and Task  

Stimuli consisted of sequences of pulses with random inter-pulse-intervals (IPIs) drawn 

from a Poisson distribution with a refractory period of 10 ms for 10 Hz and 40 Hz, and 

0.3 ms for 300 Hz. Three conditions were tested. Rates of 10 Hz and 40 Hz were used for 

CI and NH listeners, and an additional rate at 300 Hz for the CI group. 

 For CI listeners, these pulses were conveyed as electrical pulses through the 

research interface of the implant. Biphasic pulses were used with phase duration of 45µs 

in monopolar mode of stimulation (MPI -2 negative, amplitude range: 2, Imp type: 

Pulsar, pulse type: B). Each pulse sequence lasted for 2 s. For the 10 Hz rate, a pulse train 

with IPIs drawn from a Poisson distribution with refractory period was first computed. 

Then, the same pulse train was transmitted to 4 different electrodes covering the whole 

frequency range, with approximately regular spacing between electrodes. Electrode 1, 4, 

7, and 10 were chosen for all participants except three, for whom some of these electrodes 

were switched off. For these participants, electrodes 2, 4, 7, and 10 or 1, 4, 6, and 8 or 1, 

4, 7, and 9 were chosen. The sequences were played quasi-simultaneously on all 

electrodes, with only a 100-µs delay between electrodes to avoid direct electrical field 

summation. For the second condition, with an overall average rate of 40 Hz, four different 

pulse trains with an average rate of 10 Hz were created and then aggregated into one 

single pulse train. This pulse train was then transmitted to the same 4 electrodes quasi 

simultaneously with a 100-µs delay across electrodes. This generation method was 

motivated by another set of conditions where we interleaved different 10 Hz sequences on 

the 4 electrodes. However, the data analysis being incomplete on those conditions, they 

will not be reported in the present document. For the 300 Hz rate, the same generation 

procedure as in the 10 Hz rate condition was adopted, with a different rate parameter for 

the Poisson distribution. 

 For the NH group, only 10 Hz and 40 Hz were used. Sequences with IPIs 

corresponding to pulse trains of 10 Hz and 40 Hz were created in the same way as for the 

CI group. Pulses were presented acoustically. Each pulse duration was 50 µs. Pulse trains 

were high-pass filtered using an 8th Butterworth filter with a 1 kHz filter cut-off. No 

masking noise was used in this experiment. The sound level was kept at overall average 

65 dB SPL A-weighted, for both rates.  

 As in all previous experiments, there were 3 stimulus types. For the first stimulus 

type, the pulse trains consisted of fully random IPIs for a total duration of 2 s (random 
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pulse trains, P). In the second stimulus type, a random sequence of duration 1 s was 

immediately repeated identically, to create a within-sequence repetition (repeated pulse 

trains, RP). In the third stimulus type, we kept the same RP sequence of random IPIs for 

several trials within an experimental block (reference repeated pulse trains, RefRP). 

Different types of stimuli were presented randomly during an experimental block, with 

the only constraint that no two successive trials should contain RefRPs. The task as 

explained to listeners was to report within-trial repetitions. 

 

Procedure and Apparatus 

CI listeners were tested in a quiet room. They received direct stimulation through the 

Med-El device and the RIB2 interface. The experiment was programmed in Matlab. 

Slow-rate pulse trains (10 Hz and 40 Hz) and fast-rate pulse trains (300 Hz) were tested 

in different sessions. First, for the test with the slow-rate pulse trains, the presentation 

level of the sequences was determined by measuring the most comfortable sound level 

(MCL) of pulse trains at the rate of 40 Hz. MCLs were determined by asking participants 

to indicate the sound level of stimuli with varying electrical amplitude on an 11-point 

clinical loudness scale with 7 as the MCL. Once the MCL for individual electrodes were 

collected, stimuli using quasi-simultaneously presentation on the four selected electrodes 

were presented to find the MCL. We finally checked that pulse trains at the rate of 10 Hz 

were well audible and the same levels were used in all conditions.  

 After the MCL adjustment, the experiment proceeded with a training session aiming 

at providing listeners with examples of the stimuli and task. The training session 

contained 4 blocks, starting with easy conditions with 10 within-trials repetitions down to 

4, 3, and 2 repetitions of 1 s pulse train sequences (Kang et al., 2017). Note that no RefRP 

was included in the training session. Listeners received visual feedback during the 

training session. Then, the main experiment was run. It included 4 blocks for each rate 

condition, without feedback. The order of conditions was randomised across listeners, 

and 2 test blocks were presented after the full training session for each condition. Another 

2 blocks for each condition were run after one additional 2-repetitions training block, in 

the reverse order for each listener to minimise ordering effects.  

 For NH listeners, the procedure was the same except that this group did not require 

the MCL adjustment. Rather, they received the stimuli at a fixed level for all participants. 

NH listeners were tested in a sound-shielded booth (Industrial Acoustics). The 

experiment for CI listeners lasted about 2.5 – 3 hrs and for NH listeners the experiment 
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lasted about 2 hrs. 

 A separate experimental session with 300 Hz pulse trains was run for CI listeners. 

Invited participants went through the same procedure of adjusting the sound level with 

300 Hz pulse trains. They then received a training session with 10, 4, and 3 repetitions, 

and five blocks of test with 3 repetitions followed. No test with 2 repetitions was done for 

300 Hz pulse trains due to the level of task difficulty with the high-rate pulse trains.  

 

Statistical analyses 

Responses “yes” in the repetition-detection task for RP and RefRP were considered as 

hits responses while “yes” for P were considered false alarms. Hits and false alarms were 

then used to compute the sensitivity index d’ from signal detection theory. A repeated-

measures analysis of variance (ANOVA) was applied to the d' values, with stimulus type 

(RP and RefRP) and rate condition (10 Hz and 40 Hz) as within subject factors and 

participants as random factors, for each group (CI and NH) separately. Mauchly’s test for 

sphericity confirmed that the data meet the assumptions required for ANOVA. F values 

and p-values meeting the level of p < 0.05 were considered as significant differences. For 

the repeated measure ANOVA, generalised eta squared (η2
g) was also reported to indicate 

effect sizes. Post-hoc paired t-tests were conducted with multiple comparison corrections 

using the Holm-Bonferroni method. The Pearson correlation coefficient between age and 

performance was also computed to test whether the group differences may be explained 

by age. Lastly, a paired t-test was applied to d' values for the 300 Hz test session 

performed by CI listeners only. 
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4.4 Results  
 

 

 
 

 
Figure 4-1. Performance on the within-trial repetition detection task measured with the 
sensitivity index d'. Performance is shown for the different stimulus types (RP, white, and 
RefRP, black) and displayed separately for CI listeners (top) and NH listeners (bottom). 
Error bars represent 95% confidence intervals. 
 

 

 The results for both stimulus types and participants group are shown in Figure 4-1. 

As can be seen from the overall trend, qualitatively similar results were observed in all 

cases: RefRP produced better performance than RP, suggestive of perceptual learning 

(Kang et al., 2017). The statistical analyses confirmed this observation. For CI listeners in 

the slow-rate session (10 Hz and 40 Hz), the repeated measures ANOVA confirmed that 

listeners showed better repetition detection for RefRP compared to RP (F(1,8) = 44.76, p 

< 0.001, η2
g = 0.37). Performance also differed across rate conditions (F(2,16) = 4.45, p < 

0.05 η2
g = 0.12), with poorer performance for the 40 Hz condition. No interaction 

between stimulus type and condition was found. Further post-hoc t-tests showed 

significant differences between RP and RefRP stimulus types for each rate condition (10 
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Hz: t(8) = -4.59, p < 0.01, 40 Hz: t(8) = -3.80, p < 0.01).  

 The results of NH listeners were similar. The ANOVA showed an effect of stimulus 

type (F(1,8) = 54.08, p < 0.001, η2
g = 0.18) and an effect of rate condition (F(2,16) = 

6.23, p < 0.01, η2
g = 0.06) with no interaction between stimulus type and conditions. Post-

hoc paired t-tests further confirmed the effect of stimulus type for each rate condition (10 

Hz: t(8) = -6.16, p < 0.001, 40 Hz: t(8) = -5.08, p < 0.001).  

 Another set of a mixed-design ANOVA combining both groups of listeners was 

performed. In this analysis, a significant effect of group on performance was observed 

(F(1,16) = 23.97, p < 0.001). However, there was no interaction between group with 

either stimulus type or rate condition. This indicates that, even if the baseline 

performance was better in NH listeners compared to CI listeners, there were similar 

effects of perceptual learning as titrated by the difference between RefRP and RP. 

 Finally, because our groups were not matched in age, we computed the correlation 

coefficient between age and d' for each condition. It was -0.43 and -0.47 respectively for 

rates of 10 Hz and 40 Hz.  

 Lastly, for the CI listeners who performed the task in the fast-rate condition we used 

a simple paired t- test to compare performance on RP and RefRP. This confirmed that 

RefRP produced highed performance than RP (300 Hz: t(7) = -2.9, p < 0.05).  

 

 

 
Figure 4-2. Average hit rate of "good blocks" based on each trial order for RP (grey 
triangles) and RefRP (black circles) in each condition for CI listeners.  
 

 

 As was done in Chapters 2 and 3, we further examined whether the superior 

performance for RefRP was due to a performance change during the block, indicative of 
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computing the hit rates over trials in each condition (see Chapter 2, section 2.3, 4. Data 

analysis). We first computed the average hit rates in the RefRP stimulus type condition 

over the last 10 trials of a block. For CI listeners, the average hit rates during the last 10 

trials for RefRPs were not normally distributed, as shown by a one-sample Kolmogorov-

Smirnov test (10 Hz: D(36) = 0.62, p < 0.001, 40 Hz: D(36) = 0.60, p < 0.001, 300 Hz: 

D(40) = 0.57, p < 0.001). As before, we set a criterion of hit rate at or above 80% to 

identify "good blocks" where learning may have occurred (Kang et al., 2017). This 

procedure led to 83, 75, and 55% good blocks in the 10 Hz, 40 Hz, and 300 Hz 

conditions, respectively. Figure 4-2 shows the time-course of hit rate for RP and RefRP 

stimulus types over trial order. Again as before, we compared fitted models with either 

flat performance or exponential change in performance over trials (Kang et al., 2017). 

This showed that only the RefRP hit rates for 40 Hz gradually increased (40 Hz: F(2,17) 

= 5.95, p < 0.05) whereas the hit rates of RP stayed relatively constant (all p > 0.05). We 

did not observe an increase in hit-rate increase for RefRP in the 10Hz and 300 Hz 

conditions, possibly due to a ceiling effect. For 300 Hz, the hit rate showed a trend of for 

an increase although this did not meet our significance level (F(2,17) = 3.11, p = 0.071).  

 

 

 
Figure 4-3. Average hit rate of "good blocks" based on each trial order for RP (grey 
triangles) and RefRP (black circles) in each condition for NH listeners.  
 

 

 The same analysis of performance over time in the NH group is shown in Figure 4-

3, with a similar pattern. A one-sample Kolmogorov-Smirnov test showed that average 
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D(36) = 0.76, p < 0.001, 40 Hz: D(36) = 0.76, p < 0.001). Almost all blocks, regardless of 

conditions, showed high hit-rates. The criterion for good blocks was maintained at hit-

rate at or above 80% over the last 10 trials. This produced 92% and 97% good blocks in 

the 10 Hz and 40 Hz conditions, respectively. With the model fit, we only found a 

significant improvement over trials for RefRP in the 40Hz condition (F(2,17) = 3.96, p < 

0.05). No such improvement was seen for the 10Hz condition, probably again due to a 

ceiling effect. Performance for RP did not show evidence for a gradual change either (all 

p > 0.05). 

 

4.5 Discussion 
 

The present study explored the possibility of rapid perceptual learning of time patterns in 

CI listeners, and compared their performance to a NH group with matched stimulus 

characteristics, but different average age (the NH group was younger on average). We 

found evidence for rapid perceptual learning in CI listeners: the performance for the 

RefRP condition was always above that of RP, for all rate conditions including the fast 

one, which would include cues unlikely to occur with acoustically-presented sounds and 

normal hearing. Remarkably, the benefit of re-occurring RefRPs over novel RPs was 

similar for the CI and the NH group, even if baseline performance on the RP stimulus 

type varied. This would suggest largely preserved abilities to learn temporal information 

in CI listeners, and even an ability to learn temporal patterns with cues specific to electric 

hearing. These findings would thus extend previous studies demonstrating accurate 

perception of time-related information for CI listeners (Gfeller & Lansing, 1991; Gfeller, 

Woodworth, Robin, Witt, & Knutson, 1997; Kong, Cruz, Jones, & Zeng, 2004; Shannon, 

1985).  

 There are some caveats to this interpretation. For CI listeners, 2 rate conditions out 

of 3 failed to show a significant increase in RefRP performance over time, which is 

another one of our criterion to ascertain rapid perceptual learning (Agus et al., 2010; 

Kang et al., 2017). So, in a conservative perspective, we have only fully demonstrated 

that perceptual learning occurs with electrical pulse rates at a 40 Hz average rate. 

However, several aspects of the data suggest that our failure to demonstrate changes in 

performance over time was due to methodological issues and not alternate interpretations. 
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First, and much to our surprise, performance on the task was quite high even for the CI 

group. It is noticeable that we failed to find evidence for changes in performance also in 

the NH group in this condition, whereas previous experiments showed such an increase 

for similar stimuli (Kang et al., 2017). It would thus be useful to increase the number of 

participants in future extensions of the study to get a better estimate of the evolution of 

performance over time. Furthermore, a follow-up study with only an apical stimulation 

with high-rate pulse trains, the range where no equivalent acoustic stimulation in NH 

listeners is available, would also be useful to explore the effect that is specific to electric 

hearing.  
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Chapter 5  
Pupil dynamics as an indicator for auditory 

memory 
 

 

 

Parts of the present work will be presented as: 

Kang, H., & Pressnitzer, D. (2018). Pupil Dynamics during Auditory Incidental Learning. 
41th MidWinter Meeting of the Association for research in Otolaryngology (ARO), San 
Diego, USA (Poster). 
 

5.1 Abstract 
 

Throughout this thesis, we have argued that auditory memory may be a general by-

product of auditory processing, as suggested by a series of studies showing rapid 

incidental learning for tokens of white noise after a few repeated presentations (Agus et 

al., 2010) or by rapid incidental learning of time patterns in the same experimental 

conditions (Kang et al., 2017). Correlates of the phenomenon have been found using 

standard brain imaging techniques such as EEG (Andrillon et al., 2015), MEG (Luo et al., 

2013), or fMRI (Kumar et al., 2014). However, the behavioural studies require time-

consuming lab experiments, and the imaging studies additionally involve costly 

equipment requiring further experimental efforts to set-up. In this chapter, we explore a 

new tool that may prove a useful complement to existing techniques for future 

investigations of the behavioural characteristics and neural bases of auditory learning. We 

tracked pupil size during the incidental learning of noise tokens, to test for another 

physiological index that had been previously shown to be modulated during auditory 

learning (Goldinger & Papesh, 2012).  

 Unlike in previous chapters, here we used a standard memory for noise paradigm, 

with Gaussian noise stimuli. Noise sequences lasting 1.5 s were presented to adult 

participants. Each sequence was either 1.5 s of purely random noise (Noise, N), or 
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consisted of 3 seamless repeats of the same, 0.5 s random noise token, generated afresh 

for each trial (Repeated Noise, RN). A last condition was like RN, but with the same 

noise token used in all trials of an experimental block (Reference RN, RefRN). 

Participants were instructed to report within-trials repeats. While they performed the task, 

we used a low-cost eye tracker (Eyetribe, acquisition at 60 Hz sampling rate) to record 

pupil size. Pupil diameter was recorded and baseline-corrected for each trial, with 5s of 

inter-trial silence to allow pupil size to return to baseline. 

 Behavioural results replicated previous findings. A large advantage for RefRNs 

compared to RN was found at the end of each block, indicating perceptual learning of 

RefRN tokens that had been heard multiple times during a block. The novel result was 

that pupil dilation was strongly modulated by stimulus condition. Pupil dilation was 

equivalent for all conditions at the beginning of a block, but was markedly reduced at the 

end of a block for RefRN only. Thus, sounds that had been learnt induced less pupil 

dilation than acoustically similar but novel sounds. 

 The effect of auditory learning on pupil dilation was opposite to what was 

previously observed during intentional learning (Papesh, Goldinger, & Hout, 2012). A 

possible interpretation is that pupil dilation here reflected listening effort (e.g. Koelewijn 

et al., 2015), as RefRNs were associated to near-perfect task performance after incidental 

learning. Future experiments could disentangle memory effects from listening effort using 

a similar paradigm, but without a task (e.g. Andrillon et al., 2015).  
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5.2 Introduction 
 

There are many further experimental manipulations that could be tested to investigate the 

detailed behavioural characteristics underlying the rapid and incidental learning of 

complex sounds observed in previous chapters, for instance to map the decay 

characteristics of the memory traces in addition to the time course of their emergence. As 

we reviewed in the general Introduction to the thesis, there are also studies that reported 

correlates of such auditory memories, using EEG, MEG, and fMRI (Andrillon et al., 

2015; Kumar et al., 2014; Luo et al., 2013), but clearly further correlates to specify the 

neural mechanisms involved would be useful. However, both the behavioural and 

imaging techniques are costly and require time-consuming experiments. For future 

studies on incidental auditory memory, it may be useful to have a correlate of learning 

that is easily collected and that may appear even without asking an explicit response from 

the participant, to speed up data collection. To explore such a possible correlate, we used 

a simple and cheap (100 USD) eye tracker to measure pupil size during rapid incidental 

learning of complex sounds.  

 The idea stems from previous reports relating pupil dilation and memory, both in 

the auditory and in the visual modality. In the visual modality, Kafkas and Montaldis 

(2011) used a "remember/know memory paradigm" to measure the effect on pupil size 

changes of different levels of memory encoding. Participants were first asked to simply 

look at a set of man-made or natural visual items without knowing the following task. 

After a break, another set of visual items was presented, which included some of the 

previously-seen items. Participants were asked to respond about the familiarity of the 

item: did they recognise it from the first part of the experiment, or were they familiar with 

the item from past experience. The range of response choices included three different 

familiarity levels (weakly familiar to very familiar), as well as new and recollected. The 

aim was to disentangle the effect of memory and familiarity on pupil size. The authors 

observed a decrease of the peak of pupil size with stronger familiarity and better 

recollection of the visual stimuli. Furthermore, recollected stimuli produced smaller pupil 

dilation than familiar stimuli.  

 Again in the visual modality, Naber, Frassle, Rutishauer, and Einhauser (2013) 

studied pupil size as an index for memory retrieval as well as memory formation for 

natural images. The encoding phase of their experiment was either explicit, by instructing 
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participants to memorise a set of images, or implicit, by simply asking participants to 

examine a set of images. In the retrieval phase, participants were asked to respond the 

level of the familiarity as well as the confidence level for their responses for a set of 

images containing some of the previously-shown images. Pupil size was measured during 

both the encoding and retrieval phases. In the memorisation phase, smaller pupil size was 

found for visual stimuli that were subsequently correctly identified as familiar in the 

retrieval phase. Similarly, in the implicit encoding phase, smaller pupil size was observed 

for novel stimuli compared to familiar stimuli, although the difference of pupil size 

between two conditions was marginal. In the retrieval phase, large pupil size was 

observed for items judged to be familiar compared to items judged to be novel. These 

findings indicated that memory processes could induce either dilation or contraction of 

the pupil, based with opposite effects of on memory encoding (contraction) and retrieval 

(dilation).  

 In the auditory modality, Papesh, Goldinger, and Hout (2012) used a similar 

experimental paradigm to study the relationship between pupil size and auditory 

recognition. They used a mixture of nonwords and words, spoken by either male or 

female speakers. During the encoding phase, participants simply listened to a set of items, 

to study presented items for the following test phase. During the test phase, participants 

heard another set of half new and half old words and nonwords from either the same 

voice that they heard during the encoding phase or a different voice, to respond whether 

each word item was "new" or "old", with three different confidence levels. During the 

encoding phase, greater pupil dilation was found for nonwords compared to words, and 

for items that led to correct responses in the subsequent test phase. During the test phase, 

greater pupil dilation was found for correct responses, the highest confidence level, and 

items that were spoken by the same voice from the encoding phase, suggesting an effect 

on pupil size of both memory strength, confidence, and familiarity in the response.  

 The neural basis of the links between memory and pupil size has been extensively 

discussed (for a review, see Sara, 2009). Pupil size is of course modulated by exposure, 

through an interaction of the parasympathetic and sympathetic pathways (Steinhauer, 

Siegle, Condray, & Pless, 2004). However, at constant light exposure, brain activations 

related to pupil size changes overlap with regions implicated in memory related 

behaviours. For example, the locus coeruleus (LC) in the brainstem is one of the principal 

areas for synthesising norepinephrine that modulates pupil size (Joshi, Li, Kalwani, & 

Gold, 2016). Concurrently, LC activation is also known to be related to memory encoding 
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(Lemon et al., 2009; Takeuchi et al., 2016). Furthermore, in the study of Joshi et al. 

(2016), the inferior colliculus, superior colliculus, anterior and posterior cingulate cortex, 

which are neural circuits connected to LC, were emphasised as involved pupil size 

changes. Again, the cingulate cortex is widely known for its involvement in memory 

processes (Bird et al., 2015; Sutherland, Whishaw, & Kolb, 1988). Thus, there are 

plausible neural bases for linking pupil dilation and contraction and memory, justifying 

the use of pupillometry both as a practical index of memory formation but also relating 

specific neural circuits to memory processes.  

 One common feature of the previous studies mentioned above was they mostly 

focused involved explicit and active memory retrieval. Here, we used our auditory 

paradigm that measures incidental learning using a task that is not an explicit memory 

retrieval. We used a very similar paradigm to Agus et al. (2010), with a within-trial 

repetition detection task using random noise sequences. Here, we modified slightly the 

stimuli (3 within-trials repeats instead of 1) to ensure high behavioural performance on 

the memory task and tracked pupil dynamics as listeners performed the task.  

 

5.3 Experiment 
 

Methods  

Participants 

Fourteen volunteers (age = 19 – 36, M = 25.15, SD = 4.86, 6 male) who had normal or 

corrected-to-normal vision took part in the experiment. All participants passed an 

audiometry test showing pure-tone thresholds lower than 20 dB HL for 125, 250, 500, 

1000, 2000, 4000, and 8000 Hz. No participants had prior experience on similar 

experiments. They gave written consents to their participation, and they were paid 10 

euros per hour at the end of the experiment. The study was approved by the ethical 

committee of U. Paris Descartes, France (CERES, IRB: 20154000001072). 

 

Stimuli 

Each noise sequence lasted 1.5 s, either of fully random noise (N), or 3 repetitions of a 

0.5 s noise segment (repeated noise, RN). Both types of sequences were regenerated 

afresh on each trial. For each experimental block, one specific RN re-occurred identically 

over several trials (reference repeated noise, RefRN).  
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 Each of these sequences was embedded in additional noise segments before and 

after the sequence, to ensure random start and end time of the stimuli and reduce temporal 

expectations on the pupil signal. The pre-sequence noise had a randomly chosen duration 

between 0.8 and 1.2 s and the post- sequence noise also lasted between 1.2 s and 0.8 s, 

with its duration selected such that the whole stimulus duration was always 3.5 s. 

 After each trial, there was 5 s of silence to let the pupil size return to baseline. 

 

Apparatus 

We used the EyeTribe version 1 eyetracker to record eye movements and pupil size 

during the task. The acquisition sampling frequency was 60 Hz. The audio stimuli were 

generated and presented with Matlab on a Windows-based laptop, and played through an 

RME Fireface UC soundcard and Beyer Dynamic DT 770 Pro headphones. Experiments 

took place in a single-walled sound-attenuated booth (IAC acoustics 400-A). The 

luminance in the testing booth was kept at 27 cd/m2 using DC lamps. Subjects fixated a 

white fixation cross presented in the middle of a grey background screen (51 cd/m2).   

 

Procedure 

Before each block, the eyetracker was calibrated using the Eyetribe calibration procedure. 

Participants were asked to look at a circle on the screen that moved to five different 

positions (four corners and the centre of the screen).  

 Participants then completed 4 test blocks. They were asked to fixate their eyes at a 

white cross in the middle of the grey screen and minimise blinks especially during the 

sequence presentation. After each stimulus, they were allowed to provide their response, 

"yes" or "no" to the task question whether they heard the repetition or not, by means of a 

computer keyboard. Responses of yes and no were further divided into two different 

confidence levels. Thus, participants were asked to make responses among 4 choices: "no, 

very sure", "no", "yes", and "yes, very sure", to consider both a task performance and a 

confidence level on their responses. After their response, a 5 s silent pause was enforced 

before next trial to allow the pupil size to return to baseline. 

 Before the main experiment, participants received a practice session just as in the 

previous chapters (Agus et al., 2014). It consisted of N and RN stimuli with a high 

number of within-trial repeats for N, to familiarize participants with the repetition 

detection task and stimuli. The practice session consisted of three blocks. The first block 

had 5 s of noise sequences, corresponding to 10 repeats of 0.5 s noise segments for RN. 
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Subsequent blocks were presented with 4 or 3 repetitions of RN. Auditory feedback was 

provided during this practice session only. 

 

Data analyses 

Due to a relatively low task difficulty, a number of trials between two confidence levels 

(very sure or not) for "yes" and "no" responses was unbalanced. Therefore, we did not 

consider conducting an analysis to compare pupil dynamics between confidence levels 

this time. Responses of different confidence levels were therefore merged into only two 

categories: "yes" and "no" responses. 

 

Behavioural data 

We transformed the "yes" and "no" responses of participants to the sensitivity index d' of 

signal detection theory. A paired t-test was conducted to compare the d' values between 

RN and RefRN stimulus types. We also analysed the time course of performance for 

RefRN and RN, as in previous experiments, to whether performance was constant or 

changed during a block (Agus et al., 2010; Kang et al., 2017). Hit rates for each trial for 

both stimulus types were fitted with either a flat line indicating no change on performance 

(1-parameter model) or an exponential line indicating performance change across trials 

(3-parameters model), using a least-squared method and penalizing models with extra 

parameters (Agus et al., 2010; Motulsky & Christopoulos, 2004).  

 

Pupil data 

The pupil diameter data were first pre-processed to remove blinks, artefacts, and periods 

of incorrect fixation. To do so, we took the raw pupil traces recorded during each trial and 

calculated the mean and standard deviation (SD) of pupil size across trials for each block. 

We marked missing values outside the range of ± 2 SD about the mean as eye blinks or 

artefacts. We also marked values where the gaze direction was further than 2 degrees 

away from the fixation point as incorrect fixation. Marked values were then removed and 

replaced by a linear interpolation between values immediately before and after the 

marked values.  

 We then verified whether all subjects showed the expected pupil dynamics to sound 

onset from silence. To do so, we first calculated the baseline pupil size by averaging the 

pupil size in the 5 s preceding the presentation of each stimulus. We then calculated z-

scores of the pupil size during 5 s of before and after each sound onset. All but one of the 
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subjects showed a clear pupil dilation accompanying the transition from silence to sound. 

One subject showed the opposite effect of pupil contraction after sound onset and was 

excluded from further analyses.  

 A three-point moving average smoothing filter was applied to pre-processed data to 

remove any high-frequency artefacts. The baseline pupil size was calculated by averaging 

the pupil size in the 1 s preceding the presentation of each sequence. Baseline was then 

subtracted to the pupil traces during the sequence presentation. To observe the effects of 

learning, we compared both peak pupil dilation values and pupil traces between the first 5 

and last 5 presentation of each stimulus type. We computed a peak of pupil dilation by 

choosing a time point of the maximum pupil value and averaging pupil values before and 

after 0.5 s of that time point for each trial and stimulus type. A repeated-measures 

ANOVA was conducted to compare peak pupil values between stimulus types (RN and 

RefRN) and trial number (first 5 and last 5). For pupil traces, we averaged the data for 

each participant for the first 5 presentation of each stimulus type on the one hand, and for 

the last 5 presentations of each stimulus type on the other hand. A cluster permutation test 

(Maris & Oostenveld, 2007) was applied to test for the statistical significance of the 

effects across the group of participants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

RESULTS!

 129 

5.4 Results  
 

Behavioural results 

 

 

 
Figure 5-1. Average performance measured by the sensitivity index d' for RN (red) and 
RefRN (green). Error bars are 95% of confidence intervals.  
 

 

Figure 5-1 displays the average d' observed for the behavioural task across the group of 

participants. As expected, performance was relatively high because of the larger number 

of within-trial repeats, and most importantly performance was higher for RefRN than RN. 

A paired t-test confirmed the effect of stimulus type on d' (t(13) = -6.55, p < 0.001). Most 

of the experimental blocks showed high performance. In particular, testing for the 

criterion used to defined “good blocks” in previous chapters, we observed that only 10 

blocks showed hit rates lower than 90% for the last 10 trials of the block. We therefore 

included all blocks in the subsequent analyses, without distinguishing between good and 

bad blocks.  
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Figure 5-2. Hit rate along trial orders for RN (red crosses) and RefRN (green circles). 
Dashed lines indicate 95% confidence intervals. 
 

 

Figure 5-2 displays the performance for each stimulus type according to the trial order 

during the block. Consistent with the average d' data, performance was generally high 

even from the first trial for each stimulus type. Nevertheless, we observed a significant 

performance increase for RefRN (F(2,17) = 22.26, p < 0.001). A gradual decrease of 

performance for RN was also observed (F(2,17) = 6.60, p < 0.01), likely due to the 

criterion effect (Agus et al., 2010). Even if RefRNs were at ceiling for most of the block, 

it is still possible that they became easier and easier to detect, causing the gradual shift in 

criterion.  

 

Pupil dynamics 

Figure 5-3 displays the pupil size traces during each stimulus sequence, averaged for the 

first 5 trials or the last 5 trials of each stimulus type. For the first 5 trials, a similar gradual 

pupil dilation was observed for all stimulus types, with peak dilation obtained at 3 – 4 s 

after the onset of the sequence. For the last 5 trials, there was no visible change in pupil 

size compared to the first 5 trials in the RN condition, a small decrease in the N condition, 

and a larger decrease in the RefRN condition.  

 A repeated-measures ANOVA showed that the peak of pupil size did not overall 

differ across stimulus type (F(2,24) = 1.60, p > 0.05). The effect of position during the 

block (first 5 trial or last 5 trials) had a marginal overall effect on pupil dynamics (F(1,23) 
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= 4.51, p = 0.055). No significant interaction between the stimulus type and the effect of 

trial number was observed (p > 0.05). 

 

 

 
Figure 5-3. Pupil dynamics on average of first 5 trials (dashed lines) and last 5 trials 
(solid lines) for each condition (N: blue, RN: red, and RefRN: green). A bar panel at the 
top of each graph indicates the time bin of pre- and post-noise (grey), stimuli (cobalt 
blue), and silence (white). Response time was always around 6 s after the stimulus onset 
(marked as colour-coded short horizontal lines for each condition and trial order). A dark 
grey horizontal line at the bottom of the RefRN graph indicates the time period where p < 
0.05, based on the cluster permutation test. Error shades indicate 95% confidence 
intervals. 
 

 

 To focus on the possible effect of learning on pupil size, we directly compared pupil 

size between the first 5 trials and the last 5 trials, for each stimulus type separately. To do 

so, we ran a cluster permutation. For RefRN, the permutation test showed that the pupil 

size was significantly decreased at the end of the experiment, and this difference appeared 

between 2.95 s and 4.18 s after sequence onset (p < 0.05; between 3.32 – 3.9 s: p < 0.01). 

No such differences were observed at any time for the N and RN stimulus types.  

 

5.5 Discussion 
 

The present study recorded pupil size changes during the memory for noise experimental 

paradigm. The behavioural results confirmed yet again a rapid formation of auditory 

memory traces, as found in previous studies found (e.g., Agus et al., 20210; Andrillon et 
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al., 2015). Here we used a relatively easy task with 3 within-trial repeats, to ensure that 

most participants (naïve) would display learning on most blocks, as the main interest was 

the pupil measurement. Even so, all hallmarks of perceptual learning were observed: an 

advantage in performance for RefRN over RN, and changes in performance along the 

block consistent with learning.  

 The pupil results demonstrated a significant decrease of pupil size only for RefRN 

between the beginning and the end of an experimental block. Interestingly, only RefRN 

could be learnt over a block, as it re-occurred several times and saw an increase in 

performance. For N and RN trials, the nature of the task did not change over a block as 

these sound sequences were novel on each trial. Consistent with this observation, there 

was no significant change in pupil size for these stimulus conditions, even though a trend 

for a decrease in pupil dilation may have been present for N sequences. These findings 

suggest that the pupil signal may be correlated to task performance in the memory for 

noise paradigm. Here, we did not test for quantitative correlations on a participant per 

participant basis, as performance was high overall. 

 The interpretation of these pupil findings, still preliminary, could be as follow. 

The pupil dilation at the beginning of a block probably simply reflected the salient change 

from silence to sound presentation and the accompanying need to provide a perceptual 

decision for participants (de Gee, Knapen, & Donner, 2014).  

 The specific effect on RefRN after learning of RefRN may be related to memory 

processes. We observed a smaller pupil dilation for RefRN compared to N and RN, which 

is similar to the findings of Kafkas and Montaldi (2011) who reported a gradual decrease 

of pupil dilation for visual stimuli that were recognised with the greater familiarity level. 

However, the effect seems opposite to that of Papesh et al (2012). The encoding phase for 

the study of Papesh et al. involved intentional memorisation, unlike the study of Kafkas 

and Montaldi as well as the present study that more focused on incidental learning. Thus, 

this difference could have been caused by the different encoding phase used in the study 

of Kafkas and Montaldi. A novel finding here is that the effect on pupil size was observed 

even without asking participants for an explicit memory retrieval task. Participants were 

not told of re-occurring RefRN, and the task did not involve explicitly recognising 

RefRN, simply within-trial repetition detection just as in the RN trials.  

 There is however an alternative explanation to the pupil results. The performance 

for RefRN improved after learning. Also, the task may become very different before 

learning, where within-trial comparisons are needed, compared to after learning, where 
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recognition of a single learnt segment is sufficient to provide an answer (Agus & 

Pressnitzer, 2013). Reaction times are also known to shorten after learning (Andrillon et 

al., 2015). It could thus be that the task became easier and required less attention or effort 

for RefRN after learning. There are several reports linking listening effort or confidence 

in the response to pupil size (Kafkas & Montaldi, 2011; Koelewijn et al., 2015; Lempert, 

Chen, & Fleming, 2015; van Rijn, Dalenberg, Borst, & Sprenger, 2012). As less effort 

and more confidence are generally related to smaller pupil dilation, these factors could 

either fully or partly explain the pupil results observed here.  

 In future experiments that have already been initiated, we will record pupil 

dynamics using similar stimuli but without an explicit task. A similar approach was used 

in Andrillon et al., 2015 (supplementary experiment), who observed EEG correlates of 

learning even as participant’s attention was focused away from the experimental stimuli 

of interests. Moreover, behavioural and EEG evidence of learning can be observed during 

sleep (Andrillon et al., 2017). Using these new conditions without a memory-related task, 

we should be able to parcel out task-related and memory-related influences on pupil 

dilation.  
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Chapter 6  
Conclusions 

 

 

 

The thesis presented a series of experimental studies aimed at exploring memory 

processes for temporal information in sensory systems. We tested for the possibility of 

rapid learning of temporal patterns in audition with normal hearing listeners, in touch and 

in vision with matched experimental paradigms, and in cochlear implant users. The novel 

findings provided the first evidence of rapid learning of temporal patterns in audition, and 

suggested the existence of common mechanisms of rapid incidental learning across 

modalities. We also explored a new experimental tool, pupillometry, for the study of 

rapid memory formation in audition. This Conclusion chapter will first summarise the 

main findings of each study and then present perspectives for future extensions of the 

present work.  

 

6.1 Main findings  
 

Study 1. Psychoacoustics in NH listeners:  

Can NH listeners show fast and robust auditory learning for sounds containing only 

temporal information?  

 

We first studied NH listeners' and tested their ability to learn sounds that contained only 

timing information. To devise such sounds, we used click trains with random inter-click 

intervals (ICIs) drawn from either uniform or Poisson distributions. Following the 

paradigm we used throughout the thesis, the click trains contained either a 2-s long 

sequence of random intervals (random click trains, C) or a 1-s long sequence of random 

intervals that was immediately repeated within a trial (repeated click trains, RC). Random 

time intervals were generated afresh for both stimulus types for each trial. For a last type 

of trial, one “frozen” RC re-occurred in multiple, randomly positioned trials within a 
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session (reference repeated click trains, RefRC). Without being told about the existence 

of RefRCs, listeners were asked to report the presence or absence of a within-trial 

repetition for each click train. Listeners showed superior performance for RefRC 

compared to RC overall, and we observed a performance improvement along trials for 

RefRC. This performance difference between RefRC and RC combined to the 

improvement for RefRC over time were regarded as evidence that listeners learnt the time 

pattern that re-occurred (RefRC). Learning was observed only after a few appearances of 

RefRC, and the improved performance was robust throughout the session once it had 

been learned. The general task performance was better when click trains were produced 

with ICIs drawn from the Poisson distribution, which was associated to larger variance 

across ICIs compared to uniformly distributed ICIs.  

 We also demonstrated that the memory for RefRC was sensitive to the sequential 

order of intervals. When the order of the time intervals of the learned temporal pattern 

was reversed (reversed RefRC), listeners did not retain their performance on the within-

trial repetition detection task, unlike what was observed for Gaussian white noise in the 

study of Agus et al. (2010). Rather, results were as if listeners treated the reversed RefRC 

as a new random time pattern. This suggests that recognition and learning of RefRC did 

not rely on local cues, such as time intervals especially long or short that may have been 

especially salient and easier to memorize. Rather, the information encoded in memory 

included the sequential order of time intervals.  

 

Study 2. Multimodality comparisons for memory of time patterns: 

Can sensory modalities benefit from similar mechanisms to memorise temporal 

information? If so, can learning in one modality transfer to another?  

 

Meaningful temporal information exists in all sensory systems, but whether the 

processing of such information follows common mechanisms or independent mechanisms 

across modalities is still a subject of investigation. Based on our findings of rapid learning 

of time patterns in audition in the first study, we examined the learning of time patterns in 

two other sensory modalities: touch and vision.  

 Experiment 1 in the second study (Chapter 3) investigated temporal pattern 

processing within each modality of audition, touch, and vision. We carefully designed the 

stimuli and procedure to determine a set of common parameters for time patterns in all 

modalities, with the constraints that individual time intervals should be perceived in all 
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three modalities. We then examined the process of temporal pattern learning in each 

modality using the same procedure across modalities, again the repetition detection task. 

General performance was best in audition, intermediate in touch and worst in vision. This 

parallels the quantitative difference in temporal sensitivity across modalities previously 

reported in several types of discrimination tasks. However, regardless of such difference, 

we observed a similar effect of learning in all three modalities, in the form of an 

advantage of the reference time patterns and a rapid improvement in performance over re-

occurrences. This suggests similar mechanisms for learning of temporal information in 

different sensory modalities.  

 We then performed another experiment to examine a possible carry-over of memory 

between modalities. Keeping the same experimental parameters, we chose audition as the 

initial learning modality since it showed the strongest learning effects. After using the 

standard repetition-detection task to trigger the learning of RefRPs in the auditory 

modality, we switched the presentation mode to either touch or vision, and continued the 

same repetition-detection task either with the same RefRP (Transfer condition) or a new 

RefRP (Control condition). Initial performance for RefRP in the Transfer condition was 

significantly better than in the Control condition, in both touch and vision. Again, general 

performance in vision was slightly worse than in touch but the transfer effect was as 

strong for both modalities such that there was no interaction between modality and 

condition. The transfer effect found for both touch and vision from audition suggests that 

either the learning of temporal information recruits common mechanisms across 

modalities, or that there are strong and relatively early interactions across modalities for 

such mechanisms.  

 

Study 3. Psychoacoustics with CI listeners: 

Can temporal patterns of electrical pulses in a cochlear implant be learnt by CI listeners 

as efficiently as similar patterns presented acoustically to NH listeners? 

 

We expanded our investigation of rapid learning of time patterns to CI listeners, as such 

listeners are known to have access to peripheral cues representing temporal information, 

but have not been probed yet on their ability to learn such cues. We applied the same 

experimental paradigm to test for rapid learning, this time using a series of pulses directly 

transmitted to the electrodes of the CI device. First, to study the learning of low-rate 

temporal patterns, we used pulse trains with average pulse rate of 10 Hz, 40 Hz, 
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simultaneously transmitted on 4 equally spaced electrodes. Furthermore, in CI listeners 

only, we presented a fast-rate sequence at 300 Hz, which would have been difficult to 

present without introducing spectral cues with acoustical stimulation. CI listeners showed 

fast and clear learning of RefRP in all rate conditions, despite a trend of decreasing 

performance with increasing rates. General performance of CI listeners was slightly lower 

than for NH listeners. This could have resulted from mean age differences between two 

groups, as a correlation between performance and age was observed (NH mean age: 22.5, 

CI mean age: 55). Regardless of this difference, the performance improvement resulting 

from the learning was similar between the two listening groups, indicating the preserved 

ability of CI listeners to rapidly learn auditory information in the time domain.  

 

Study 4. Pupil size change during auditory learning: 

Can changes in pupil size be used as an index of auditory memory formation? If so, what 

is the link between pupil size and memory? 

 

Pupillometry is a physiological measurement increasingly used to study perceptual 

processing, which is also technically simpler compared to other neuro-imaging tools such 

as EEG, MEG, of fMRI. As a final experimental study of the thesis, we measured pupil 

size during the repetition detection task for random noise, to test whether changes in pupil 

size would be indicative of auditory memory. We used Gaussian noise (denoted as N, 

RN, and RefRN which correspond to C, RC, and RefRC respectively), instead of click 

trains, as there are past investigations of neural correlates of such noise stimuli. The 

amount of pupil dilation in response to the noise sequences for early trials did not differ 

across stimulus types. However, the pupil size became significantly smaller during the 

last few presentations for RefRN while no change in pupil size was observed for either 

RN or N. The large effect of the task on pupil size could be a correlate of memory 

processes, but they could also at least partly be due to the attentional load required during 

performing the task, as the task for RefRN trials becomes easier after learning, compared 

to a constant difficulty for RN or N trials. Overall, the result suggests that pupillometry 

can be used to index auditory memory formation during an active task, and further 

experiments are required to determine the cause of the pupil effect. 
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6.2 Perspectives  
 

The results of experimental studies in the thesis, in my opinion, have been successful to  

provide new insights on temporal processing in sensory systems. The task paradigm we 

used can be effectively applied in both psychophysics for different modality and for 

neuro-physiological investigations of sensory memory. Further investigations on the topic 

would be useful to further clarify and understand the stimulus characteristics impacting 

performance on our task and the underlying neural mechanisms.  

 From the findings of Chapter 2, we proposed that the sequential order of temporal 

patterns was important for time pattern recognition. To support this claim, a complete 

time reversal was applied to a time pattern after it had been learnt. Future experiments 

could test whether listeners would be tolerant of more subtle perturbations of the learned 

time pattern. Temporal changes such as introducing a jitter only to one (or a few) of the 

intervals could be imposed to the learned patterns, and we could observe listeners' ability 

to recognise the sequences with jitter. This investigation would enable us to track down 

how sensitive we would be to time changes for temporal pattern recognition and how 

resistant we would be to these time changes.  

 For the study of temporal learning in different sensory modalities in Chapter 3, we 

chose to use the exact same stimulus and task parameters across all modalities, to produce 

time intervals above the thresholds for perceptual fusion across modalities. This was to 

allow for a fair comparison across modalities, considering the quantitative differences in 

temporal sensitivity that are known to exist across modalities. However, difference in 

baseline performance was still observed across modalities. The best performance was 

observed when temporal patterns were presented in the auditory modality, followed by 

tactile and visual modalities, which follows the same order as the temporal acuity in those 

modalities. Another way to design the experiments would be to match task difficulty 

across modalities, for instance by adjusting the mean ICIs to have the same performance 

on the within-trial repetition detection task. In this case, the amount of learning could be 

compared across modalities by simply considering performance for the reference patterns. 

 A follow-up study on the relationship between pupil dynamics and auditory 

information processing is finally needed. To disentangle the effects of memory and task 

demands, pupil size changes should be recorded in a passive listening condition where it 

can still be reasonably hypothesised that incidental learning occurs. The comparison of 
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results with and without an explicit task would help parcel out the role of memory 

formation and task demands on changes in pupil size.  

 

 In conclusion, the experimental work presented in my thesis attempted to focus on 

mechanisms of memory in the time domain across sensory systems, by adapting a 

paradigm previously used to study the learning of auditory information. The thesis 

revealed a remarkable ability to learning time patterns for audition in normal hearing 

listeners, but also for touch, vision, and electric hearing in cochlear implant listeners. The 

first results concerning pupil dynamics further suggest new tools to investigate the 

underlying mechanism of such learning. In an appendix to the thesis, I also present a short 

report of ongoing investigations using electrophysiological recordings in an animal 

model. The past results and ongoing investigations should help us understand how we 

seem to be able to memorise complex sensory information without much effort, rapidly, 

which is surely useful to analyse complex sensory scenes. 
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Appendix 
 

Neural correlates for time pattern recognition (preliminary results) 

 

This is a short report of an ongoing study investigating neural correlates of auditory 

memory for random time patterns. The study is in close collaboration with Jennifer 

Lawlor, Célian Bimbard, PhD students in the team, and Yves Boubenec, in charge of the 

Neuro platform in the laboratory. 

 We presented click trains to an awake ferret in a passive listening condition while 

recording neuronal activity. The click trains were adapted from the study of Kang et al. 

(2017) as described in Chapter 2. We used click trains with time intervals randomly 

drawn from a Poisson distribution, either lasting for 3 s (random click trains, C), or 1 s of 

random click trains immediately repeated 3 times (repeated click trains, RC). One RC 

with frozen time intervals re-occurred for several trials within a session (reference RC, 

RefRC). Click rates were either 5 Hz or 12 Hz, with 10 ms of a refractory period, 

corresponding to a nominal rate of either 5 Hz or 10 Hz. Single-unit recordings were 

conducted either in the primary auditory cortex (A1) or in the secondary auditory cortex 

(posterior ectosylvian gyrus, PEG) of the awake but passive ferret. Here we will present 

preliminary analyses composed of mean spike rates and a decoding analysis applied to 

local field potentials (LFP) traces.  

 

 

 

 

 

 



 

APPENDIX!

 159 

      
Figure A-1. (Left) Average firing rates across all recorded cells in A1 (n = 70, right) for 
each stimulus type. Bottom x-axis indicates trial order of C (blue) while top x-axis 
indicates trial order of RC (red) and RefRC (green). Error shades indicate standard error 
of the mean. (Right) Decoding accuracy at discriminating different stimulus types for 
each comparison pair using A1 mean spike responses. See text for details. Horizontal 
dashed lines indicate chance level. Error bars indicate 95% confidence intervals. 
 

 

 In our behavioural study (Kang et al., 2017), we observed an increase in 

performance with the number of presentations only for RefRC against constant 

performance for RC. We therefore compared average firing rates for each stimulus type 

per trial in order to see whether neural responses would show similar divergence across 

stimulus type or not. We did not find any significant differences between stimulus types 

across trials (n = 96, Figure A-1, left).  

 Whether neural activities for each condition can be differentiated by more detailed 

descriptions than simple average rate was further examined by trying to decode the 

response using linear classification (Fisher, 1936). Population vector arrays of mean 

firing rates or LFP envelopes for each trial were created to compare different stimulus 

types: either C vs. RC, RC vs. RefRC, or C vs. RefRC. Half of the trials were used for 

training the decoder and the rest of the trials were used for testing and computing the 

decoding accuracy. This cross-validation procedure was repeated 30 times. We used 

mean firing rates and LFP envelopes in A1 to examine how each stimulus type (C, RC, 

and RefRC) could be decoded from one another. The obtained accuracy was compared to 

random permutation results from 100 iterations, to assess statistical significance of the 

decoding accuracy.  

 Statistical one-tail z-test confirmed that decoding accuracies for each comparison 

pair were significantly higher than the accuracy obtained from 100 iterations of the 
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random permutation results obtained by shuffling the category labels (C - RC: z = 2.28, p 

< 0.05, C - RefRC: z = 1.74, p < 0.05, RC - RefRC: z = 3.11, p < 0.001, p-values are 

uncorrected, Figure A-1, right). Since the first appearance of click trains is always new 

and fresh regardless of the stimulus type, the discriminability between RefRC to RC or to 

C should initially be at chance level. The discriminability between stimulus types should 

then evolve along trials, discriminating RefRC from other sequences. To ascertain 

whether the distance between stimulus types diverge along the course of re-occurring 

trials, we projected A1 spike responses on to the decoding classifiers. However, no 

statistical evidence was found to support this hypothesis. 

 

  

   
Figure A-2. (Left) RMS envelopes of LFP traces for each stimulus type in alpha 
frequency band (6-13 Hz, blue: C, red: RC, green: RefRC). Vertical dashed lines indicate 
the onset and the offset of the click trains. Error shades indicate standard error of the 
mean. (Right) Decoding accuracy of each time point for the stimulus type comparisons in 
alpha frequency band. Coloured thick solid lines indicate the time course of the decoding 
accuracy for each comparison (black: C vs. RefRC, green: RC vs. RefRC, red: C vs. RC). 
Coloured horizontal solid lines indicate the time periods where the significant accuracy (p 
< 0.05, one-tail) was observed for each comparison. Dashed vertical lines indicate the 
onset and the offset of the click train (grey) and repeated segment onsets within the click 
train (blue). Dashed horizontal line at the bottom indicates p-value criterion at 0.05. 
Coloured curved lines at the bottom around the p-value criterion (0.05) indicate time 
periods where p < 0.1.  
 

 

 We then applied the decoding analysis with to LFP traces (Figure A-2, left). We 

focused on the recordings in A1 since no discriminability was observed in PEG. For LFP 

traces, the decoding accuracy across different types of stimuli using the LFP rms 

envelopes of each frequency range along the sequence duration was analysed first. From 

the theta band (4-6 Hz), RefRC against RC and C was discriminable towards the end of 
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the sequence. In the alpha frequency band (6-13 Hz), better decoding accuracy for RefRC 

against other stimulus types was observed especially during the third presentation of the 

segment within the sequence (Figure A-2, right). Furthermore, a high decoding accuracy 

was found for RefRC against C even from the first presentation of the segment. A 

significant discriminability between RC and C was also found during the last presentation 

of the segment, only in the alpha band. We decided to focus on alpha frequency range so 

that comparisons across all three stimulus types could be further analysed. We wanted to 

investigate the time-dependent discriminability between stimulus type across trials. We 

took the time window where all three comparison groups showed significant decoding 

accuracy to obtain mean weights during that time period (3.3 s to 3.6 s). The LFP 

envelope values were diverged on the last 300 ms of the third click train in each trial 

when projected these vectors onto the average decoder in the same epoch, for each 

comparison pair. This process was repeated trial after trial.  

 

 

 
Figure A-3. Mean projected values for early trials (trial 1-10, filled) and last trials (trial 
11-24, hatched) per each stimulus type (red: RC, green: RefRC, blue: C) for each 
comparison pair. For the RC - RefRC comparison, only late trials show statistically 
significant difference on averaged values between RC and RefRC while averagd values 
for early trials do not differ. A constant difference was observed for C - RefRC and C - 
RC comparisons for both early and late trials. Error bars indicate 95% confidence 
intervals. 
 

 

 For the RC - RefRC comparison, trials were divided into early trials (trial 1-10) 
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projection values during early trials did not differ between stimulus types (t(9) = 1.39, p > 

0.05) but late trials showed significant differences between stimulus types (t(13) = 5.85, p 

< 0.001). Weaker but similar trends were observed for the C - RefRC comparison, 

although both early and last trials showed significant differences on the projected values 

between C and RefRC (early trials: t(9) = 3.70, p < 0.01, last trials: t(13) = 4.94, p < 

0.001). Lastly, for the C - RC comparison, the weight projected values were significantly 

different for early trials and late trials (early trials: t(9) = 3.06, p < 0.05, late trials: t(13) = 

2.58, p < 0.05). The result indicates repeated sounds were always discriminated againsted 

non-repeated sounds. In addition, neural responses for later trials allowed to discriminate 

RC and RefRC, supporting an additional processing encoding a longer-term memory 

process. 

 The present finding suggests distinct neuronal activities for the re-occurring time 

pattern, within the primary cortex in the population response indexed by the LFP. More 

analyses as well as more recordings with multiple RefRCs within a test session are in 

progress for further investigation of neural correlates regarding the time pattern 

recognition.  


