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Nomenclature

For the sake of brevity, we only report here the notations used continuously in the manuscript (the
others will be presented as and when they are used).
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ARCHER Academic Research Code for Hydrodynamic Equations Resolution
CFD Computational Fluid Dynamics

CLSVOF Coupled level-set/volume-of-fluid method
CPU Central Processing Unit

DNS Direct Numerical Simulation

GFM Ghost-Fluid Method

HIT Homogeneous Isotropic Turbulence

JPDF Joint Probability Density Function

LEE’s Lagrangian Evolution Equations

LS Level-set

MCT’s Mean Conditional Trajectories

MPI Message Passing Interface

PDF Probability Density Function

RANS Reynolds Average Navier—Stokes Simulation
RMS Root Mean Square

SDR Scalar Dissipation Rate

TSI Turbulence-Scalar-Interaction

VGT Velocity Gradient Tensor

VOF Volume of fluid

W(ENO) Weighted (Essentially Non-Oscillatory)

Non-dimensional numbers

Re Reynolds number (inertia / viscosity)
We Weber number (inertia / surface tension)
Operators

Average in the sense of Reynolds
Average in the sense of Favre
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Symbol Definitions

Roman letters
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Velocity gradient tensor

Traceless velocity gradient tensor

Normalized (traceless) Reynolds stress anisotropy tensor
Forcing coefficient

Viscous deformation tensor

Mixture fraction molecular diffusivity

Eigenframe of the strain-rate tensor

Source term to induces linear forcing, f = Cu:.
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Mass enthalpy

Identity tensor

Integral space scale

Normal unit vector pointing towards the liquid phase, n = VG/|VG]|
Curvature evaluated from the level set function, k (G)
Scalar gradient vector, ng, = V¢ =¢ ;
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Second invariant of the rotational-rate tensor

Second invariant of the traceless rotational-rate tensor
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Fluid pressure
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Traceless strain-rate tensor
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Kurtosis coefficient

Physical time
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Normalized time for statistics with evaporation, t* =t — t{/r,
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« La semplicita e la sofisticatezza finale »
This famous quote from Leonardo Da Vinci denotes the spirit of this thesis.

1.1 State of the art

1.1.1 Brief review of fluid mechanics and combustion science

Fluid mechanics and combustion science have been played a central role in human
life since the oldest “river” civilizations like Mesopotamia, Egypt, China, just to
mention a few. In the one hand, fluid mechanics is the branch of physics concerned
to the study of how fluids behave in steady, transitional and fully unsteady motion.
Some of the most prominent scientists and philosophers from the ancient Greece
were the first to attempt to formally conceptualize certain fluids characteristics and
their motions (Tokaty [103]), so for example Aristotle used for the first time the
“continuity principle” and developed a distinction between natural and forced motion,
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Archimedes based the actual fluid statics, and Hero of Alexandria invented the
"Herons Reactive Motor”, which is considered the father of actual jet, rocket and
turbine engines. Some centuries after, one of the most prominent Italian scientist
of the renaissance period, Leonardo Da Vinci, gave the mathematical and physical
basis to the concept of continuity, and was the first to point out a distinction between
the physical and mathematical concept of point. Later, the Swiss mathematician
Leonhard Paul Euler introduced the basic concepts of the modern fluid mechanics
developing the concept of fluid particle, and deducing : i) the differential equation
of the streamline, ii) the law of mass conservation, and iii) the differential equations
of continuity and of fluid motion for potential (non-viscous) flows. Then, the first
attempt to mathematically describe the motion of viscous fluids was made by the
french engineer and physicist Claude-Louis Navier and the Anglo-Irish physicist and
mathematician George Gabriel Stokes. Together with the deduction of the Navier-
Stokes equations and the contributions of the Irish engineer and physicist Osborne
Reynolds, see Fig. 1.1 : i) the non-dimensional Reynolds number (Re), and ii) the
discovery of the laminar and turbulent modes of fluids flow ; the turbulence research
tield was formally created.

Figure 1.1. Sketch of Osborne Reynolds and his fluid turbulence experiment from 1883

On the other hand, in regards to combustion science, maybe the earliest scientific
attempt to define the concept of “combustion” was made by the Flemish physicist
and alchemist Johannes Baptista van Helmont, as he understood that there are gases
of different nature from atmospheric air while he studied the combustion process
of charcoal, and observing the interaction among the fuel, oxidizer (atmosphere)
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and flame/heat; so he stated that combustion involves the escape of a "wild spirit"
(spiritus silvestre), i.e., smoke/soot from the fuel-oxidizer interaction (Harris [46]).
With this experiment he discovered the carbon dioxide (CO;), and introduced the
word gas to the scientific language. Nevertheless, modern combustion science was
founded by the french chemist Antoine Laurent Lavoisier, so when he studied : i)
the phosphoric acid production, and ii) the calcination of sulfates; which at the end
of the process gain weight due to the absorption of carbon dioxide. This discovery
also gathered him the title of “father of modern Chemistry” (Kohler [56]). Even though
combustion science has had an important role in human civilizations, its research
and development was strongly encouraged during the 19" century owing to different
facts : i) the demand for power issued for the industrial revolution, ii) scientist started
to understand the key concepts upon which the internal combustion engine was built,
and iii) the fuel needed to power the engine was becoming available in large amounts.

In 1862 the Belgian inventor Jean-Joseph Etienne Lenoir invented the world first
automobile using an engine invented by himself. Then in 1876, the German engineer
Nicolaus August Otto, after several years of experimentation with the Lenoir motor,
invented the first "Otto" four-stroke engine which ran on petroleum gas and used a
timed spark plug-ignition. From the contributions of Otto, the next challenge was to
use liquid fuels, since then, spray and vaporization processes become central subjects
of study for engineers. At the end of the 19" century, three different processes were
invented to accomplish this task : i) carburetor, ii) hot bulb vaporization, and iii) diesel
engine, see Fig. 1.2; this last one was introduced in 1897 by the German engineer
Rudolf Christian Karl Diesel (Sass [86]).

Figure 1.2. Schematic of a Diesel engine performing combustion
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1.1.2 Direct numerical simulation (DNS) of turbulent flows

Since the contributions of Leonhard Paul Euler and until the second half of the
twentieth century, experimental and theoretical approaches were the only possible
approaches to tackle the problems posed by the fluid mechanics. The first calculation
of a practical turbulent flow was achieved by Prandtl (1925) [80], when the mixing
length concept was introduced, and with which the eddy viscosity was successfully
determined ; but the emergence in the 1960 of the Computational Fluid Dynamics
(CFD) supposed a game-changer in the field, see Fig. 1.3 . This relative-new third
approach to the study and development of fluid mechanics was made possible thanks
to the merge of the improvements in memory capacity and computational speed of
computers achieved in the 19505, together with the development of numerical me-
thods and algorithms, so CFD consist on taking advantage of the significant amount
of calculations that computers can perform in a relative short time, implementing
in them several numerical algorithms as programs, so together can tackle fluid flow
problems. The first proper CFD solvers were presented at the 1968 Stanford conference
on computation of turbulent boundary layers [20], and at the 1968 NASA symposium
on compressible turbulent boundary layers organized at Langley research center [68].
The solvers presented at those conferences worked by discretizing Reynolds stress
transport models, i.e., were based on the Reynolds-averaged Navier-Stokes (RANS)
modeling framework, but unfortunately (for research purposes), the solutions of
the ensemble-averaged equations provided by RANS approach were lacking of in-
formation on the unsteady features of the flow i.e., real transition and turbulence
phenomena cannot be studied in detail by this mean. Nevertheless, advanced CFD
modeling frameworks were developed to overcome the limitations that RANS frame-
work presents : i) large eddy simulation (LES), proposed by Smagorinsky (1963) [91],
and firstly explored by Deardorff (1970) [22]; where the large scale motions (large
eddies) of turbulent flow are computed directly and only the sub-grid scale (SGS)
motions are modeled, and ii) direct numerical simulations (DNS), which foundations
were laid by Douglas and Douglas (1972) [24] (researches at the National Center for
Atmospheric Research), where no turbulence model is taken into account, which
means that the whole range of spatial and temporal scales of the turbulence must be
resolved. LES and DNS have opened new opportunities to simulate fluid flows with
higher fidelity and to investigate physical insights of many complex flow systems
that are very difficult to obtain and/or to measure at the laboratory, such as : spray,

1. By Jitze Couperus-Flickr : Supercomputer-The Beginnings, CC BY 2.0, https://commons.
wikimedia.org/w/index.php?curid=19382150

2. By Penalva-Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=
47918630
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atomization, evaporation and combustion.

_ -— - )

Figure 1.3. On the left side the supercomputer CDC 6600 with its console, launched in
1964, and on the right side the supercomputer Occigen installed by GENCI at CINES, in
Montpellier ; with which the databases presented in this thesis where obtained.

In regards to combustion science, during the first half of the 20" century, by means
of theoretical and experimental advances, big progress on regards to improve the
Otto and Diesel engines were achieved, even the first jet engine was introduced in
1936 by the German physicist Joachim Pabst von Ohain, when he designed the first
operational jet aircraft, the Heinkel He 178, and only eight years after, by the end
of the 2"/ World War, the deutsche Luftwaffe put in operation the first jet-powered
tighter aircraft, the Messerschmitt Me 262. Even though the improvement and/or
creation of new-and-more efficient and reliable internal combustion engines have
strongly boosted the research field of combustion science, it is paramount to point
out that it was not possible to employ CFD-DNS tools to perform proper research in
the combustion field until the 1990;; this is due to the fact that in any combustion
process, several phenomena of : i) chemical kinetics, ii) thermochemistry, iii) transport
(molecular diffusion coefficients of species and diffusivity of heat), and iv) fluid
mechanics. All these phenomena take place simultaneously and interact between
them in complex ways, which —-numerically speaking- is very difficult to take into
account all together, therefore CFD codes that simulate combustion are pretty different

from those used to study internal and external non-reactive flows.

In this context, even laminar flame codes can easily become pretty complex, so
it is only necessary to recall that even for the most common fuel models like : me-
thane (CHy), octane (CgHig) and kerosene (CypHye); when burned in presence of air
(02 + 3.76N5), due to the high temperatures reached at the flame front (6 ~ 10e™* [m]) :
i) thousands of chemical reactions take place, and ii) hundreds of chemical species

are created (Westbrook et al. [111]).

On the other hand, turbulent flames happen more commonly in real life. In this
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respect, the first DNS research studies were devoted to :
e flamelets in premixed turbulent combustion by Girimaji and Pope (1992) [39]

e passive scalar mixing by Pumir (1994) [82], Jaberi et al. (1996) [50], Overholt and
Pope (1996) [76], and Juneja and Pope (1996) [53]

Nevertheless, for industrial applications, the confined turbulent flames become the
subject of study due to the necessity to recover heat and transform it into mechanical
work, which in turn not only turbulence add complexity to the physics of the system,
but also do : radiation, acoustics, heat transfer, fluid/structure interaction and the
coupling of multi-physics; among extra numerical and computational difficulties,
i.e., suited computational algorithms for complex domain discretization. The sum
of all this multi-physics requires the use of models in the industrial/engineering
CFD codes (i.e., RANS and some LES). Nonetheless, these models are obtained by
studying experimentally and numerically (i.e., some LES and DNS) specific aspects of
canonical flames.

1.1.3 Challenges in DNS of multi-phase turbulent mixing flows

At this point is important to remember that, in practice, the systems based on
non-premixed or partially-premixed combustion modes are strongly preferred due to
their transport and storage safety advantages, although they do offer lower efficiency
than premixed systems. This fact makes the micro-mixing processes, i.e., interaction
between turbulence and scalar field, a key ingredient to characterize and to model
properly the mixture fraction field (i.e., the composition of the fresh mixture). When
the fuel enters in liquid state in non-premixed and partially-premixed systems (i.e.,
internal combustion engine), the possible influence of mass transfer between the
two phases (i.e., evaporation) becomes also a key issue to study from both research
and technical viewpoints. However, atomization and evaporation processes such as
those which takes place in automotive, aeronautical and space engines are remarkably
difficult to study experimentally due to the complex multi-physics coupling that
happens in the combustion chamber (Faeth [31]), so here is where DNS of turbulent

multi-phase flows has become a powerful tool to tackle these problematic.

In regard to the DNS framework, is important to bear in mind that it has been
thought to resolve the turbulent length scales greater or equal to the Kolmogorov
length scale 77k, and this point poses a big deal when multi-phase turbulent mixing
flows are intended to be resolved with this framework. Firstly, when there exist defor-
mable droplets in movement with a length scale smaller than the Kolmogorov length
scale nx of the carrier fluid, then it is currently impossible to fully resolve the motion

6



State of the art

of the dispersed phase, so in order to overcome this limitation, phenomenological
models (like those used in the RANS and LES approaches), are used to compute the
deformation of the dispersed phase. Such phenomenological models are discussed
by e.g., Elghobashi (2019) [28].

Moreover, to resolve the deforming interfaces of the liquid clusters with a charac-
teristic length larger than the Kolmogorov length scale 77k of the carrier fluid, three
approaches has been developed and successfully implemented into DNS codes :

e Tracking points : consist in to treat the interface through marked points advected
by the flow, as in the front tracking method (FTM) developed by Unverdi and
Tryggvason (1992) [106]

e Tracking scalar functions : consist in to numerical methods that track a specific

scalar function, so there exist :

* The volume of fluid (VOF) method ; where the volume fraction of the local
phase of both sides of the interface is the relevant scalar function. The VOF
method foundations were posed by Noh and Woodward (1976) [69]. An
introductory-level review of this method have been written by Scardovelli
and Zaleski (1999) [87]

* The level-set method ; where the signed distance between any point of the
computational domain and the zero iso-contour. i.e., the interface, is the
relevant scalar function (Sussman et al. [98])

* The lattice Bolzmann method (LBM); where the probability density func-
tion, f/' (x,t), of finding a fluid particle of fluid phase n at position x, at
time t, and moving in one of the discretized i*" lattice velocity directions;

is the relevant scalar function (Shan and Chen [88])

* The phase-field model (PFM); where the scalar phase field, i.e., the order
parameter, 7y (x,t), is the relevant scalar function. Here <y represents a
physical property of the mixture. In contrast to the previous methods (VOF,
level-set & PFM), here a continuum model of f () replaced the surface
tension forces (Jacqmin [51]). The PEM foundations were posed in the work
of Cahn and Hilliard (1959) [10]

e Immersed boundary method (IBM) : consist in establish interaction equations,
by the Dirac delta function, among an Eulerian and Lagrangian set of variables,
so the numerical scheme of the method uses two different meshes, the first one
is a fixed Cartesian mesh (where the Eulerian variables are discretized), the
second is a curvilinear mesh (where the Lagrangian variables are discretized) ;

the movement of the curvilinear mesh is not constrained in any way to adapt
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to the fixed Cartesian mesh. This method was originally thought for the nu-
merical simulation of fluid—structure interaction. It was introduced by Peskin
(1972) [78], but an IBM with an interaction potential model (IPM) for fully resol-
ved deformable interfaces and membranes has been proposed by Spandan et al.
(2017) [93], and has been used to study ellipsoidal bubbles in Taylor-Couette
flow (Spandan et al. [94]).

1.1.3.1 Jet breakup and atomization

The process of jet breakup in internal combustion engines consist into injecting
a certain quantity of fuel (sometimes oxidizer in space applications) as a turbulent
liquid spray, mixed it with the carrier fluid (commonly the oxidizer) and then burn
the fresh mixture in gaseous form; in order to arrive at this gaseous state the liquid
jet must breakup (i.e., split) into multiple liquid clusters and through atomization
processes eventually become into droplets small enough so they will be able to
release vapor into the carrier stream fluid, which will allow the combustion process
to take place in the combustion chamber. At this point it is important to recall that
the droplet size and droplet distribution are essential to predict accurately spray
flames. The jet breakup phenomenon in spray combustion consist on four elementary
processes interacting between them in complex ways (Jenny et al. [52]), through which
combustion efficiency and combustion stability can be enhanced and maintained, and

also through which pollutant emissions can be minimized :
e atomization
e spray dispersion
e evaporation and mixing

e combustion
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Figure 1.4. Jet breakup phenomenon can be analyzed through three different viewpoints : in
function of the atomization level, in function of the spray dispersion and in function of the
liquid volume fraction (¢;)

Figure 1.4 also shows that the spray can be divided into three distinct regimes ba-
sed on the volume fraction occupied by the dispersed phase, i.e., ¢, (Bouali et al. [7]) :

o dense regime [¢y > 107
e dilute regime [1073 < ¢y > 107
e very dilute regime [¢, < 107

Each regime enclose characteristic physical phenomena.

Dense regime
This regime is dominated by atomization phenomenon, which means that droplet
collision and coalescence dominate the dynamics of the dispersed phase (Elghobashi
and Truesdell [29]). Here both primary and secondary atomization take place (Jenny
et al. [52]) :

e Primary atomization : consists on the disintegration of the liquid jet into large li-
quid clusters (i.e., droplets and strips called ligaments), due to Kelvin-Helmholtz
instabilities developed at the liquid-gas interface when the jet is injected into the
gaseous carrier stream, then eventually Rayleigh-Taylor instabilities develops.
The interested reader may find useful information about pioneering and recent
numerical works devoted to the spray region in the reviews of Gorokhovski and

Herrmann (2008) [42] and Junji (2018) [54], respectively.

e Secondary atomization : is dominated by aerodynamic forces originated by
the inter-facial velocity gradient, that provoke more instabilities and further
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disintegration of the liquid structures formed at the primary breakup, resulting
into even smaller droplets and ligaments. In this sense, Weber (1931) [110]
proposed a well accepted breakup criterion of the secondary liquid clusters
based on : i) the deformation time, and ii) the Weber number (We = fluid'’s
inertia / surface tension) ; which is a meaningful dimensionless quantity when the
characteristic length of the liquid bodies, i.e., diameter of the droplets, is larger
than the Kolmogorov length scale #x. Such number is briefly refereed below but
widely explained by Zeoli and Gu (2006) [114] :

* bag breakup [11 < We < 80]
* stripping breakup [80 < We < 350]
* catastrophic breakup [We > 850]

Dilute and very dilute regimes

The very first and at the same time distinctive driving phenomenon of both dilute and
very dilute regimes is dispersion. In this sense, and analogously to the dense regime
(i.e., We number), the capillary number (Ca = viscous forces / surface tension forces) is
the meaningful dimensionless quantity which is the base of the breakup criterion for
the dilute regime. For an accurate computation of the dilute regime, a two-way coupling
source term in the momentum equation must be taken into account, because the
turbulence-statistics of the carried gas phase is influenced by the droplet velocity,
and vice versa. In other words, turbulence modulation takes place, because the size
of the liquid clusters is larger than the Kolmogorov length scale, so they alter the
momentum and mass transport rates (Iliopoulos and Hanratty [49]), modifying the
turbulence spectrum of the carried fluid through different mechanisms (Balachandar
and Eaton [3]) such as :

e damping due to large liquid clusters (mostly droplets), which enhanced dissipa-
tion
e kinetic energy transfer from droplets to the carrier flow stream

e wakes and vortex generation behind the larger droplets

so the acceleration of the droplets attenuate the turbulence of the carrier fluid flow
due to the energy taken from it, but the wakes generated by the large droplets enhance
the turbulence of the continuous phase-flow (Zaichik and Pershukov [113]).

On the other hand, very far from the injector, the probability of liquid-liquid
interactions become negligible. In those regions, the droplet characteristic size is
very small, so the surface tension forces will become dominant and minimize the
surface to its maximum, which has the effect to make the droplets practically spherical.

Therefore, for accurately compute this regime, Lagrangian tracking methods must be

10
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used to follow the dispersed phase, because the whole domain can be considered as a
droplet-laden turbulent flow, as showed by Dodd and Jofre (2019) [23].

Vapor mixing
Now, for the dense, dilute, and very dilute regimes, there exist two phenomena that
happen in all these three which, in turn, have a big impact on spray dynamics and

combustion (Faeth [32]) :

e Droplet density : influence the local volume fraction occupied by the liquid
clusters, which agglomerate in vortex fields, where the droplets of the dispersed

phase change their inertial trajectory (Fessler et al. [34])

e Evaporation and micro-mixing : control the topology of the mixture-fraction field,
so is the very key ingredient to control ignition and combustion in non-premixed
and partially-premixed systems, because mixing happens at the molecular levels.

in this sense, Turbulence is such an enhanced mechanism to mixing, due to the
improvement action that has over stirring, i.e., turbulent convection. The role played
by stirring is to distort and increase the surface area of the scalar field interface
(produced by evaporation).

It is paramount to mention that in the framework of spray combustion, it is
common to assume that dense spray does not take place, but only isolated fuel
droplets, i.e., droplets in low-or-non vapor concentration zones, so each droplet
experience a rapid evaporation rate and the droplet-droplet interaction is negligible.
Notwithstanding, Reveillon and Demoulin (2007) [83] have described two successive
micro-mixing scenarios to this one (all three scenarios are naturally related to the
droplet evaporation rates). The second takes place when regions of high vapor
concentrations are formed, which happens because zones with the highest droplet
density reach quickly a vapor concentration close to the saturation value, therefore
the evaporation rate decrease dramatically fast almost up to zero. The third scenario
consider that the vaporization of droplets can continue only if transport phenomena
enter in to the game, either if turbulent mixing and diffusion translate vapor from
droplet-cluster regions with high vapor concentrations, i.e., if they dilute the vapor
concentration; or, by effect of turbulence, the droplets are transported to a lower

vapor concentration zone.

Mathematically, the mixture fraction ¢ (the mixture of the released fuel vapor with
the surrounding oxidizer), commonly is defined as a normalized mass fraction. This
quantity is a key ingredient to model combustion properly : in diffusion flames it
affects the reaction rate through the direct influence of the scalar dissipation rate
(SDR, Ng); whereas in premixed flames it affects the propagation speed of the flame

11
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through the direct influence of the local equivalence ratio.

At this point, it is important to specify that the consideration of dilute and very
dilute regimes are beyond the scope of this thesis work, but the secondary atomization
which takes place at the dense regime is the center of the study. The reader interes-
ted in numerical research on primary atomization may find further details in the
work of Chein and Chung (1987) [13], Kalyan and William (1992) [55], Umemura
(1994) [105], Sirignano (1999) [90], and Hasslberger et al. (2019) [47].

1.1.3.2 Recent numerical works

Nowadays, for the sake prioritizing safe storage and safe operating conditions,
most of the industrial devices that perform two-phase flow combustion processes
work under non-premixed or partially premixed conditions. In such cases, when
turbulent regimes must be taken into account, it may be require the consideration
of the mixture composition probability density function (PDF). However, for practi-
cality, the composition of the mixture may be characterized thanks to a reduced set
of scalar quantities including a mixture fraction variable, or fuel inlet tracer ¢, the
marginal PDF of which is presumed from the knowledge of its first two moments
by using a beta function. Thus, it seems necessary to consider specific additional
modeling of the transport equations for the variance, é}, = /CE — 5 2 = 5772, and the
mean, E of the mixture fraction, in order to obtain a more reliable turbulent com-
bustion closure for two-phase flow conditions. The quantity § = pg/p denotes the
Favre- or mass-averaged value of g, while 7 is its ensemble-averaged value. The scalar
variance transport equation that characterizes the energy of composition fluctuations
requires a specific closure to be proposed for the turbulent scalar dissipation rate
(SDR) contribution, whereas the closure of the transport equation for the averaged
mixture fraction value ¢ does not pose any specific modeling difficulty. The SDR
is defined by €z = pD(dg" /dx;) (9" /dx;) /p with D being the molecular diffusivity.
In standard gaseous conditions, this quantity is often represented with a simpli-

tied algebraic closure, which implies the linear relaxation of the scalar fluctuations
g = Efv/ (Cetr) with 77 a characteristic time scale of the turbulence and C; a mo-
deling constant (Gomet et al. [40]). Its relevance has been investigated for a wide
variety of gaseous flows including conditions associated to high-speed flows (Buttay
et al. [9]). The use of such a linear relaxation model (LRM) is quite appealing since it
avoids the consideration of an additional modeled transport equation for the mean
SDR (Gomet et al. [40]). However, it is rightful to question its validity for less standard

configurations, such as the two-phase flow conditions featuring mass transfer through

12
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vaporization considered herein. Such question is legitimate when attention is turned
to the behavior of the leading-order terms present in the SDR transport equation
including the turbulence-scalar interaction (TSI) term. The analysis of the TSI term
already concentrate much effort in incompressible turbulence conditions, e.g., Gibson
(1968) [38], Ashurst et al. (1987) [1], Ruetsch and Maxey (1991) [84], and Tsinober
(2009) [104]. It has been recently extended to compressible flows by Buttay et al.
(2016) [9] and Boukharfane et al. (2018) [8]; and it must also be emphasized that it
has received considerable attention for premixed combustion conditions over the last
ten years, e.g., Swaminathan and Chakraborty (2007) [99], Mura et al. (2008) [65],
and Chakraborty et al. (2011) [12]. This is in contrast with the case of two-phase flows
with mass transfer for which the SDR transport equation and associated TSI term
were more seldom analyzed by Bouali et al. (2016) [6] and Zhao et al. (2020) [116].

1.2 Motivation of the study

The aim of the present work is to provide new insights into the corresponding
small-scale physics of turbulent mixing in vaporizing two-phase flows. This work
gathers theoretical analyses and numerical computations conducted with the DNS
solver ARCHER. The scientific issue is placed on the influence of the liquid-gas interface
and the possible mass-transfer between them due to evaporation, over the structure of
the turbulent flow field and the scalar field properties. Considering its impact on the
resulting equivalence ratio distribution the subject is especially relevant for turbulent
combustion modeling in such conditions, since either ignition or flame propagation

phenomena display a first-order dependence to the corresponding quantity.

1.2.1 Research target

Bring a deeper understanding of the underlying physics of turbulent mixing in
vaporizing two-phase flows, its modeling and numerical simulation, so as to improve
combustion performance.

1.2.1.1 Specific objectives and research targets

The first target is to use the ARCHER solver to generate DNS databases for the study

of small-scale scalar and turbulence dynamics in turbulent flows with evaporation. The

13
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tirst data-set will be gathered for two-phase flow homogeneous isotropic turbulence
(HIT), resorting to a forcing approach as to maintain the turbulent kinetic energy at
a prescribed level and considering several values of the liquid volume fraction and
surface tension, thus allowing for (i) variations of the mass transfer rate between the
liquid and gaseous phases and (ii) associated variations of the corresponding effects
on the smallest scales of the turbulent two-phase flow. The liquid volume fraction
will be varied from 0% to 10%, while the range of surface tension variations will be
bounded between 0.8 and 1.4 (times) a reference value 0.

Along with the generation of the first data-set, the second target is the development
of the post-processing to perform the analysis of the small-scale structure of scalar
and turbulence. Special attention was payed to the study of the small-scale scalar
structure under the influence of liquid interface and evaporation, i.e., to the analysis
of micro-geometric properties of the scalar gradient for the different cases featuring
increasing values of the liquid volume fraction and varying levels of surface tension,
which allowed to quantify the influence of the liquid-gas interface and the possible
mass-transfer between them due to evaporation on the structure of the turbulent flow
at small scales, and the scalar field properties.

1.3 Organization of the thesis

This dissertation is made up of seven (7) chapters and three (3) appendices. It is
organized as follows :

§2«Presentation of ARCHER solver» this chapter briefly recalls the equations governing
incompressible, viscous and evaporative fluid-flows; as well as the presentation
of the numerical tools used by the ARCHER solver.

§3«Initialization and parameters of the DNS simulations» this chapter presents the
numerical set-up of the DNS HIT reference case and the DNS HIT two-phase
flow cases, following by the corresponding characterization of the turbulent and
mixture fraction fields.

§4«Velocity field analysis of evaporative two-phase flows in HIT» this chapter
presents the statistical characterization of the turbulent velocity field. Firstly are
addressed the results concerning the velocity fluctuations, e.g., turbulent kinetic
energy or associated Reynolds stress tensor, which characterize the energetic
scales. Then attention is turned to the velocity gradient tensor (VGT), which is
relevant to the dissipative scales. It is worth recalling that the velocity gradient
tensor A = V ® u contains key information about the rates of deformation of

14
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infinitesimal material lines, surfaces, and volumes [63]. The evolution of the
turbulence characteristics is scrutinized at various distances from the interface,
in such a manner that that the gas phase is divided into several sub-regions
according to the values of the level-set G, i.e., the distance from the liquid-gas
interface. The acquisition of the statistics proceed in this way because the liquid-
gas interface does not only alter the isotropy of velocity fluctuations but also the
dissipative (i.e., small-scale) structure of the turbulent flow-field. It should be
emphasized that, in the gaseous phase, the distance to the interface is defined
in such a manner that the level-set value, G, is negative.

§5«Scalar field analysis of evaporative two-phase flows in HIT» this chapter presents
the statistical characterization of the mixture fraction field of an evaporative
multi-phase DNS simulation database set featuring two distinct values of the
liquid volume fraction ¢,. On the first part, results concerning the mixing scalar
tield are reported. Then attention is turned to the geometrical properties and
alignment statistics of the scalar mixing and scalar dissipation. Such statistics
are gathered at various distances from the interface, in such a manner that that
the gas phase is divided into several sub-regions according to the values of the
level-set G, i.e., the distance from the liquid-gas interface.

§6«Lagrangian evolution equations analysis» this chapter enclosed the Lagrangian-
statistical characterization of the turbulent velocity field. First the mathematical
formalisms of the Lagrangian evolution equations (LEE) and conditional mean
trajectories (CMT) are presented. This is followed by a detailed description of
the methodology used to gather such CMT. This methodology includes a novel
consideration, which allows, for the first time, to scrutinize not only the direction,
but also the magnitude of the trajectories computed from the terms of the LEE.
Then a detailed inspection of the Lagrangian dynamics of the HIT reference case
is presented. Finally the analysis concerning to the multi-phase cases featuring
evaporation with different levels of volume of fluids, ¢, = 0.05 and ¢, = 0.10 is
reported. The acquisition of the statistics is gathered at various distances from
the interface, in such a manner that the gaseous phase is divided into several
sub-regions according to the values of the level-set G, i.e., the distance from the
liquid/gas interface.

§7«Conclusions and perspectives»
§A«Lagrangian evolution equations for the invariants of the VGT tensor»
§B«Lagrangian evolution equations for the traceless invariants of the VGT tensor»

§C«Résumé de la these de 1’école doctorale SIMME»

15






Presentation of ARCHER solver

Content of the chapter

21 Introduction . ............ ... . .. . i i 17
2.2 Numerical methods description . ... ................. 18
2.2.1  Coupled level-set/volume-of-fluid (CLSVOF) method . ... 18
2.2.2 Fifth order weighted essentially non-oscillatory (WENO) scheme 19
2.2.3 Third order Runge Kutta (RK3) scheme . . . . ... ... ... 20
2.2.4 Ghost fluid method . ... ... ... .. ... ... ... .. 20
23 Solvedequations . . ... ........ . . . . . 0 i i, 20
2.3.1  Navier-Stokes equations . . . . ... ..... ... .. .. ... 20
23.2 Poissonsolver . . ... ... ... .. ... . . .. 21
2.3.3 Interfacetracking . . . ... ... ... ... . o oL 22
2.3.4 Mixture fraction . . ... ... .. ... L L L 23
2.3.5 Turbulence forcing method . . ... .. ... ..... .. ... 25

2.1 Introduction

The massively parallel ARCHER solver * (which stands for Academic Research Code for
Hydrodynamic Equations Resolution), has been developed at CORIA laboratory with the
aim of investigating phenomena involved in two-phase flows that may be turbulent,
incompressible, and with phase changes. To conduct this research, ARCHER was used
to solve the three-dimensional incompressible form of the Navier-Stokes equations.
ARCHER makes use of a fifth-order precision WENO scheme for convective terms, a second-

order central finite difference scheme to evaluate viscous and diffusion contributions,

1. https://www.coria-cfd.fr/index.php/Archer
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18 2. Presentation of ARCHER solver

and a third-order precision Runge-Kutta scheme for temporal integration. A multi-grid
algorithm is employed for the preconditioning of the conjugate gradient method in
the Poisson equation. A ghost fluid (GF) method is used for discontinuous variables at
the liquid/gas interfaces and the coupled level-set/volume-of-fluid (CLSVOF) method is
retained to ensure mass conservation of the system. In this chapter the numerical tools
used to generate the vaporizing two-phase flow data-set are only briefly presented
since a detailed presentation of the methods and solved equations can be found in
the thesis works of Tanguy (2004) [100], Ménard (2007) [66] and Duret (2013) [25].

2.2 Numerical methods description

2.2.1  Coupled level-set/volume-of-fluid (CLSVOF) method

The most important aim of the volume of fluid (VOF) method, for the simulation of
two-phase flows, is to enforce the conservation of mass. This method discretizes a
given volume fraction (of gas or liquid) over the computational domain, in such a way
that the conservation of the volume fraction is guaranteed when it is transported by
the velocity field [57, 44, 81, 5]. However, within an Eulerian formalism (fixed mesh,
for example) the VOF describes poorly the topology of the interface, therefore it is not
the best suited to compute characteristic quantities of the surface such as : normal and
tangent directions, as well as curvature. In addition, physical effects that are critical

to be considered arise as factors that rest precision to the VOF method, such as :

e breakup and coalescence induce in some regions of the domain the formation of
droplets or ligaments with a thickness of the order of only a few times the typical

mesh size, so making the topological description of fine structures difficult, and

e steep jumps in some fields (like density or viscosity) may prevent the computa-

tion in the corresponding zone.

Moreover, for three-dimensional simulations, the formalism becomes more complex
and expensive, since it is necessary to perform a reconstruction of the interface from

the fraction function, a discontinuous scalar function used to follow the liquid phase.

On the contrary, the level-set method, developed by Osher and Sethian (1988) [75],
is based on continuous scalar function, G, that measures the distance to the interface
that we are trying to describe in the computational domain. Such function, by means
of the resolution of a convection equation, allows to track the deformation of the
interface in a given velocity field. Howbeit, the level-set method implementation for
the simulation of two-phase flows cannot be direct, because :

18
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e losses of mass arise from dissipative numerical errors in the resolution of the

transport equation, and

e remarkable changes of the physical properties are induced by the spreading or

tightening of the G-field iso-contours.

Considering the pros and cons offered by both the level-set method and the volume
of fluid (VOF) method, Sussman and Puckett (2000) [97] introduced the coupled level-
set/volume-of-fluid (CLSVOF) method, the main goal of which is to take advantage of
the precise geometrical description of the level-set method (accurate computation of the
normal direction and curvature) and, at the same time, benefit from the implicit mass
conservation offered by the volume of fluid (VOF) method. Such a coupling requires a
special procedure to recalculate the distance to the interface at each time step.

2.2.2 Fifth order weighted essentially non-oscillatory (WENO) scheme

As it has already been mentioned, the generation of small droplets and thin li-
gaments pose a computational discretization challenge, being that their description
must be optimal. Therefore, so as to guarantee that these regions will be well resol-
ved, a fifth-order precision weighted essentially non oscillatory (WENQO) method, proposed
by Guang-Shan and Chi-Wang (1996) [43], is used. The weighted ENO formulation
consists into taking into account a combination of the different possible ENO approxi-
mations, in such a way that if one of the ENO approximations is interpolated across
a discontinuity, its contribution will get a minimum weight, then minimizing the

resulting numerical errors.

In the various simulations reported in this thesis two kinds of error can happen
in the context of the resolution of small droplets and thin ligaments, the first one is
related to the level-set method, the second to the volume of fluid (VOF) method :

e the disappearance of the structure from where losses of mass become not be

negligible, and

e the artificial fragmentation of ligaments into several filaments, with, however,

good conservation of the mass.

In order to improve these mass losses with the level-set method, the smoothing and
weighting procedure are applied not on the derivatives but on the variable to be
discretized and then the smoothed solution is derived using a centered scheme.
This modified form of the fifth order WENO scheme has been proposed by Estiva-
lezes (2002) [30]. Such improvements are also documented in the thesis of Tanguy

(2004) [100].
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2.2.3 Third order Runge Kutta (RK3) scheme

The Runge-Kutta methods are a family of implicit and explicit iterative methods used
for temporal discretization to approximate solutions of ordinary differential equations.
They are widely used because of their good compromise between numerical stability
and precision. The order of the method gives the number of steps of the scheme with
which several intermediate values of the integrated variable within a time step will
be evaluated. By increasing the number of steps the precision is increased too, but it
goes together with an increased computational time of each time-step. ARCHER makes
use of a third-order precision Runge-Kutta scheme.

2.2.4 Ghost fluid method

For incompressible two-phase flows simulations, the surface of discontinuities,
i.e., liquid clusters, are introduced explicitly in the equations, so the displacement
of the liquid bodies interfaces is calculated by means of the level-set method, and the
jump conditions are explicitly imposed as additional constraints which depend on the
local characteristics of the interface. Thanks to this, the ghost fluid method, which was
developed by Fedkiw et al. (1999) [33], allows to extend the discontinuous variables
by continuity beyond the interface before proceeding with differentiation it, which
in turn allows to impose a very realistic jump condition. Then the derivation of the
extended variable does not pose a problem since it has been made differentiable
thanks to the extension by continuity.

2.3 Solved equations

2.3.1 Navier-Stokes equations

To resolve the Navier-Stokes equations (Eq. 2.1), the coupled level-set/volume-of-
fluid (CLSVOF) method is used in conjunction with an incompressible flow projection
algorithm

a—u+(u-V)u:—24—1V-(2,uD)+f+L7k5(G)n (2.1)
ot ep P
where u denotes the velocity vector, p is the density, p the dynamic component of
the pressure field, p = pv the dynamic viscosity (with v the molecular kinematic
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viscosity), D the viscous deformation tensor and finally f the source term associated
to the linear forcing used to counteract the decay of homogeneous isotropic turbulence
(HIT). At the liquid-gas interface, the influence of surface tension ¢ is taken into
account, n = VG/ || VG || denotes the normal unit vector pointing towards the
liquid phase, while k = V - n is the curvature of the interface, as evaluated from the

level-set function G, and ¢ is the Kronecker delta.

2.3.2 Poisson solver

The spatial derivatives for convective terms are evaluated using the fifth order
WENO scheme (Guang-Shan and Chi-Wang [43]), (Tanguy [100]), while the viscous
and molecular diffusion terms are computed using a second-order central finite difference
scheme. The temporal integration is performed using a third-order precision Runge-Kutta
(RK3) scheme. The resolution consider a (staggered) Cartesian mesh. Unlike scalar
variables (including pressure) which are defined at the center of cells, a first-order
multi-grid projection algorithm for the preconditioning of the conjugate gradient method
in the Poisson equation is used. It consists first in calculating an intermediate velocity

u* from the momentum equation, but without the pressure term.

u =u"+ At (— (u-V)u—+ %V -(2uD) + f + %0K|VG\(5(G)n> (2.2)

The zero-divergence of the velocity #* in Eq. 2.2 is not ensured. The obtainment of

a velocity u" 1 with zero divergence is seeked. Thus the gradient of pressure Vp"*1

is introduced in Eq. 2.3 as follows :

At (2.3)

Then the divergence operator is applied to Eq. 2.3. The continuity equation imposes
zero divergence for the speed u""!, therefore V - u""*1 = 0, which gives the following
Poisson equation as a constrain applied to u* :

Vanrl

V-u"=V- At (2.4)

Eq. 2.4 is solved using a conjugate-gradient solver with multi-grid preconditioning.
It is paramount to mention that dividing by the density (p) introduce a matrix with
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non-constant coefficients, scilicet, the resolution of the system become more difficult,
therefore the ghost fluid method is used, to impose a jump condition for the density
ratio is p;/pg at the liquid-gas interface (such ratio can be as large as one thousand).
Finally, the pressure obtained by the Poisson solver is used to obtain the speed at the
following instant, as is read in Eq. 2.3. This projection method gives a velocity field at

instant n + 1 with zero-divergence.

2.3.3 Interface tracking

The level-set method uses a continuous function to describe the interface, Eq. 2.5.
Such function is defined as the signed distance between any point of the computational
domain and the zero iso-contour (G =0), i.e,. the liquid-gas interface (Osher and
Fedkiw [74]). In ARCHER, the level-set method is used in conjunction with the VOF
method in the solver part of the code.

oG

§+(u~V)G:0 (2.5)

The level-set Eq. 2.5 is the hyperbolic type, therefore its discretization must
combine high convergence order with robustness. Thus, the fifth-order WENO scheme
is used to discretized the convective term. Unfortunately, the level-set G no longer
remains a distance function as Eq. 2.5 is solved numerically and a re-normalization
algorithm must be applied to keep it as the signed distance to the interface. The
coupled level-set and volume-of-fluid (CLSV OF) method has been proposed to address this
specific issue (Sussman and Puckett [97]) and has been successfully applied to the
numerical simulation of atomization processes by Ménard et al. (2007) [67] and Lebas
et al. (2009) [58]. The main concept behind the CLSVOF method is to take advantage
of both level-set and VOF strategies : mass loss is limited through the use of the
VOF method and a detailed description of interface is ensured within the level-set
tramework. Density and viscosity depend on the value (sign) of the level-set (liquid
and gas). Jump conditions across the interface are taken into account within the
ghost fluid (GF) method. In the GF method, ghost cells are defined on each side of the
interface (Liu et al. [59]), which prolongs the description of each phase beyond the
interface location so as to allow smooth derivative computations in the vicinity of the

interface.

The scalar used in the VOF method is the liquid volume fraction ¢, = V;/V, where
V) is the volume of liquid in the cell and V is the cell volume, i.e., V = dx® with dx [m]
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the characteristic mesh size. This scalar is governed by the transport equation read
in Eq. 2.6 :

%—i—(a-V)(p@:O (2.6)

The piecewise linear interface calculation (PLIC) reconstruction is used, which repre-
sents the interface by plans in each cell of the domain. The position of the interface in
each cell is slightly modified according to the volume given by the VOF method. The
geometric characteristics are determined by the level-set using the relationships detai-
led by the normal unit vector pointing towards the liquid phase n = VG/ || VG ||
and the curvature k =V - n.

Finally, discontinuities require special care. In general, the term "jump conditions"
is used when there is a sudden discontinuity in a variable. In the case of two-phase
flows of liquid and gas, there is a jump in the density ratio p;/pg, which can be
of the order of 1000 at the liquid-gas interface. These jump conditions are imposed
because a "single-fluid" formalism is solved, i.e., a single set of equations is solved for
the whole domain. Therefore, during the resolution of the equations it is necessary
to estimate derivatives near interface. If the computation of a derivative in the gas
domain requires points in the liquid, several jump conditions will come into play
so that the points used take into account the jump in density (p), pressure (p), and
dynamic viscosity (y); in our case. To take them into account, the ghost fluid (GF)
method is used. The principle consists in extrapolating the considered variable by
continuity, rather than submitting it to a sudden discontinuity, which would have
the effect of making the computational schemes unstable and/or oscillating. The
numerical scheme remains unchanged but the jump condition is directly integrated

into the Ghost cells of the studied variable (only applied close to the interface).

2.3.4 Mixture fraction

Assuming local thermodynamic equilibrium, the mass fraction of fuel evaporated
at the liquid-gas interface Yy ¢ can be determined from the Clausius-Clapeyron law.
The mixture fraction ¢ is herein defined as the normalized value of the fuel mass
fraction : { = Yp/Ygs. It is thus bounded between zero in the pure oxidizer and unity
at the liquid-gas interface for the sake of simplicity, and it evolves in the gaseous phase
due to convection and molecular diffusion. Based on previous investigations of Duret
et al. (2012) [26] and Bouali et al. (2016) [6], it is considered that the amount of mass
transferred from the liquid into the gas remains sufficiently small to be neglected.
This is relevant provided that the equilibrium is reached rapidly. Therefore, the mass
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of liquid present in the computational domain remains approximately constant, while
the evolution of the vapor concentrations is analyzed. This computational framework
allows to study scalar mixing induced by mass transfer between the two phases for
conditions associated to characteristic velocity fluctuations that remain larger than
the Stefan flow velocity. It should be emphasized that the consideration of the whole
vaporization process from a more general viewpoint still remains very challenging
and requires several additional equations, including energy and species budgets, as
well as additional jump conditions [37]. The mixture fraction evolution equation may

be written as follows :

aaif +V(oug) =V - (0DVE) + pag (2:7)

where w; denotes a mixture fraction source term resulting from the influence
of mass transfer induced by vaporization. The influence of the corresponding mass
transfer term requires to sustain a value of ¢ equal to unity at the liquid-gas interface
in Eq. 2.7. This boundary condition must be imposed at the interface location, thus
allowing for the resolution of Eq. 2.7 to analyze the vaporization processes. Further
details in regard to this special point have been previously provided by Duret et al.
(2012) [26] and Bouali et al. (2016) [6].

For the evolution equation of the mixture fraction field, Eq. 2.7, the same schemes
employed to solve momentum equation are used to compute the convective term,
while the molecular contribution is evaluated with the second-order central finite diffe-
rence scheme. The time integration is performed with a third-order precision Runge-Kutta
(RK3) scheme. At the vicinity of interface, the evaluation of the spatial derivatives are
based on ghost values deduced from the Aslam extension method [2]. This method is
used to obtain an extension of the normal derivative of the scalar field across the
interface, thus enhancing the numerical accuracy of the estimation of the convective
term close to the interface. The boundary conditions are enforced with the Aslam-Chiu
method [15], which consists in applying a Dirichlet condition, at the liquid-gas inter-
face Duret (2013) [25], compatible with the Aslam extension method, see appendix A
of Bouali et al. (2016) [6]. At the initial time of the simulation, the value of ¢ is set to
zero in the gas and to unity at the interface. The scalar equation is then solved only
in the gas phase. In the liquid, the values of { are given by the Aslam-Chiu method
and they are subsequently used as ghost values during the resolution of the scalar

transport equation.
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2.3.5 Turbulence forcing method

The turbulence is maintained by a linear forcing method with two different phases,
which is added to Eq. 2.1 as the source term f = Bu', where B is the forcing coefficient.
At this point is convenient to state that a standard Reynolds decomposition is applied
to both velocity and scalar field, e.g., u = u + u/, with # the mean flow velocity and u
the associated velocity fluctuation.

The evolution equation of the TKE « = %u’z can be written as follows :

% + V (ux) = Cc + 2B« (2.8)

Where C, groups the typical contributions to the TKE evolution, i.e., without
forcing, and # is the average speed in the domain. This term includes the liquid-gas
interface, so it is complex to estimate B directly from Eq. 2.8. Therefore, the following
procedure was employed :

1 Estimate of C”~! based on the value of the constant B"~1 :

K" — anl

Y

—2B" gt (2.9)

2 Calculation of the forcing coefficient B” based on C'~! :

Ko — K"

Tf

2B" — " = —crt (2.10)

Where « is the kinetic energy level chosen beforehand, 77 is a characteristic
relaxation time (7; = 3At), to avoid any abrupt change in the value of the forcing term.
Consequently, the forcing coefficient B is calculated at each time step to introduce
the term f in the Navier-Stokes equations 2.1. This method maintains a temporally
constant averaged kinetic energy.

However, this type of forcing has some drawbacks : energy is added to all tur-
bulence scales, unlike spectral forcing (frequently used in the case of single-phase)
where the forcing term is applied only to a chosen wave-number range. However,
the application of spectral forcing in two-phase flow DNS is complex because of the
discontinuities across the interface, it is also more expensive in computing time (use
of a fast Fourier transform algorithm). The choice of linear forcing was made for its
simplicity and because of the lack of extensive studies dedicated to two-phase flow
DNS forcing methods.
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3.1 Set-up of the direct numerical simulation

The studied configuration corresponds to two-phase flows in a three-dimensional
homogeneous isotropic turbulence (HIT) cube featuring periodic boundaries. Such
simulations of the flow were performed on regular meshes featuring a resolution of
256 x 256 x 256 computational points. The physical properties are almost the same as
those previously documented in the works of Duret et al. (2012) [26] and Bouali et al.
(2016) [6] : the value of the surface tension is ¢ = 0.0108kg - s~2 while the gas and
liquid viscosities are pig = 1.879 x 10 °kg-m 1 -s~!and jy =5.65 x 10~ *kg-m~1-s71,
respectively. The density ratio between the two phases p,/p, is set to 30, and the
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28 3. Initialization and parameters of the DNS simulations

liquid volume fraction is ¢y = V;/V, where V;, denotes the volume of liquid and
V =V, + V, is the total volume, ie., V = L3 with L = 1.5 x 10~%m the characteristic
length of the computational domain. In the present study, two different values of the

liquid volume fraction are considered : ¢, = 0.05 and ¢, = 0.10.

It is noteworthy that similar HIT and two-phase-HIT box configurations have been
already reported by Bouali et al. (2016) [6], but considering decaying turbulence. Here
the DNS databases correspond to forced turbulence with a value of the turbulent
kinetic energy (TKE, x) maintained at low constant level of x = 3.6 m?-s~2. The TKE
is defined in Eq. 3.3.

The current simulations were constructed in two successive steps. The first one
consists in generating the initial spray conditions based on statistically-converged HIT
numerical simulations conducted with the same level of resolution but without any
consideration of the mass transfer. These preliminary two-phase flow HIT simulations
are run until convergence of the second-order moments is reached based on the
values of the normalized turbulent kinetic energy AU, defined below in Eq. 3.1. This
is obtained once t* = (t —tg) /T, reaches t* = 12.0 for ¢, = 0.05 and t* = 9 for
¢¢ = 0.10. Evaporation is activated in a second step and the data are gathered from
t* = 0.0 to t* = 6.0 with t* = (t —t;) /1r,. In the above expression, the turbulent
time scales are evaluated from 77, = ko /€0 and Tr, = k1/¢1, respectively, with ¢ the
TKE dissipation rate. The subscripts zero and unity correspond to the initial and
tinal values of the preliminary convergence phase, which is conducted without any

consideration of the evaporation processes.

AU =100 x (%) (3.1)

where

U (2?1{)1/2 62

The convergence of the multi-phase cases is inspected through their normalized
RMS, AU, which are reported in Fig. 3.1 for ¢ = 0.05 (—), and ¢y = 0.10 (- --). Both
cases depict a tendency to converge to zero, no matter if breakup or coalescence

phenomenon predominates.
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— $=0.05

RMS(AU)

Figure 3.1. Evolution of the normalized RMS, AU, as a function of the non-dimensionalized
time, t, for the preliminary multi-phase HIT simulations with ¢, = 0.05 (—), and ¢, = 0.10
(—).

3.2 Characterization of the HIT configuration

Before characterizing the multi-phase cases featuring turbulence forcing and
evaporation, the firs step is to evaluate the standard HIT configuration but with

forced turbulence.

Instantaneous snapshots of the HIT reference case are displayed in Fig. 3.2. The
displayed contours corresponds to three different Q4 iso-values: Qa4 =3, Qa4 =15
and Q4 = —1.5, which are colored by the value of the normalized vorticity magnitude,
||w||. The Qa-criterion is used to identify turbulent structures in numerical data-sets.
It makes use of the second invariant of the velocity gradient tensor, A, i.e., Qa, since
the viscous stresses are functions of the strain rate only, T = p [ (9u;/9xj + ou;/0x;)].
The corresponding set of figures shows vortical structures (Q4 > 0), as well as strain-
dominated structures (Qa < 0).
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Figure 3.2. Instantaneous 3D-snapshots of the HIT reference case at the non-dimensional
time, t+ = 2.5. The displayed contours correspond to different Q p-criterion values : (a) and (b)
display iso-surfaces of vortex structures (Qa > 0), meanwhile (c) depict regions with higher
strain (Qa < 0). The three iso-surfaces are colored by the normalized vorticity magnitude,
el

3.2.1 Forcing and dissipation

The mean TKE, %, converges very quickly to the imposed value of ¥ = 3.6, and this
value is maintained without any large fluctuation, as can be seen in Fig. 3.3. At this
point it seems convenient to introduced also the definition of the TKE dissipation rate,
see Eq. 3.4. Its mean evolution, g, is presented in Fig. 3.4. These results confirms the
potential and stability of the 5 order WENO scheme implemented in the ARCHER solver
to accurately reproduce the balance between turbulence production, i.e., forcing, and

dissipation.

(3-3)
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Figure 3.3. Evolution of the mean turbulent kinetic energy, ¥ (—), as function of the
non-dimensionalized time, t*, for the HIT reference case.
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Figure 3.4. Evolution of the mean dissipation rate of the turbulent kinetic enerqy, € (—), as
function of the non-dimensionalized time, t*, for the HIT reference case.
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3.2.2 Turbulent and dissipative scales

Motions in a turbulent flow exist over a broad range of length and time scales
and observations indicate that eddies lost most of their energy after one or two
turnovers [89]. Therefore, the rate of energy transferred from the largest eddies is
proportional to their energy (times) their rotational frequency. Since, by definition,
the Reynolds number shows the relationship between inertial forces (here generated
by the turbulence production), and dissipative forces, it becomes interesting to take a
closer look at the evolution — over the non-dimensionalized time, T — of some length
scales and Reynolds numbers enlisted and defined below :

e turbulent or integral length scale, /;, defined in Eq. 3.5. This scale correspond to
the scale of the largest vortices. Its corresponding Reynolds number is defined
in Eq. 3.6.

b= — (3-5)

2 o -t
Rep = — = .6
ey Ve v (3.6)

e Kolmogorov micro-scale, 7k, defined in Eq. 3.7. This is relevant to the smallest
scale presented in any turbulent flow. At the Kolmogorov scale, viscosity domi-
nates over inertia and the turbulent kinetic energy is dissipated into heat. By
definition, the Kolmogorov Reynolds number is unity, Rex = 1.

3 1/4
Kk = (V—) (3.7)

s

o Taylor length scale, A, defined in Eq. 3.8. This scale correspond to an intermediate
scale between the macro-scale, ¢, and the micro-scale, 1k, of turbulence. The
Reynolds number based on the Taylor length scale, Re, defined in Eq. 3.9, is
widely used to characterize turbulent flow. In general, it is assumed that a flow
is turbulent when its Re) values becomes significantly larger than 10.

A= V1023073 (3.8)
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/

uA
Rey = — .
() y (39)

The evolution of the Taylor and integral length scales tend to stabilize, and their
corresponding Reynolds numbers keep an almost constant value, as depicted in

Fig. 3.5.
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Figure 3.5. Evolution of the integral, {; (—), and Taylor, A (—), length scales ; together
with their corresponding turbulent, Rey, (- --), and Taylor, Re, (- --), Reynolds numbers, as a
function of the non-dimensionalized time, t*, for the HIT reference case.

The values of Re) represents a weakly turbulent flow. However, in Table 3.1 are
gathered for the single-phase HIT reference case, some classical turbulence flow
parameters that correspond to the non-dimensionalized time t* = 2.5 : turbulent
velocity fluctuation (urys), the integral (¢;), Taylor (A), and Kolmogorov (77x) length
scales; as well as two Reynolds numbers, the integral (Re;), and the Taylor (Re) ).

Case upms (m/s) £y (um) A (um) #x (um) Re; (-) Ren (-) 71, (ps)
HIT 1.55 16.71 11.03 1.18 309.2 22.7 44.6

Table 3.1 — Turbulence flow parameters for the reference HIT case, at the non-dimensionalized
time t+ =2.5.
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3.3 Characterization of the multi-phase flows non-evaporative

cases

Instantaneous snapshots of the three-dimensional turbulent two-phase flow of the
case with ¢, = 0.10 are displayed in Fig. 3.6. The displayed contour corresponds to an
iso-value of the level-set, G, which is a signed distance from the liquid-gas interface
to any point of the domain. Such iso-contour value corresponds to the liquid-gas
interface, i.e., G = 0. The interface is colored by the value of the normalized vorticity
magnitude, ||w||, and it is plotted for two distinct values of non-dimensional times :
(a) tT = 0.0, which corresponds to the initialization of the domain, and (b) t:n 4=90,
the last time step before the activation of the evaporation module. The corresponding
set of figures shows different liquid structures such as drops but also ligaments, or
even larger liquid structures of any shape. This confirms that there exists very strong
interactions between liquid clusters. They will frequently collide and may eventually
coalesce, but in any situation the interface may display significant levels of curvature
and wrinkling.

lHw]] W]
00 1 2 3 4 5 6 7 890 00 1 2 3 4 5 6 7 8 910.

@)t =00 (b) t7 =9.0
Figure 3.6 — Instantaneous 3D-snapshots of the turbulent two-phase flow case with ¢y =
0.10 at two different non-dimensional times : (a) initialization of the domain (t* = 0.0), and
(b) last time step before the activation of the evaporation module (t+ = t;—to = 9.0). The
£

displayed contours correspond to the liquid-gas interface, i.e., the level-set value, G, equal to
zero; colored by the normalized vorticity magnitude, ||w]|.
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3.3.1 Interface behavior

From the CLSVOF method, the mean interface density, &, can be directly evaluated
and it is reported in Fig. 3.7 for ¢, = 0.05 (—), and ¢, = 0.10 (—). Its evolution over
the non-dimensionalized time ¢, is due to breakup and coalescence of the liquid
structures, that will "reduce" or "increase" the interface density, respectively. Although
the case with ¢, = 0.10 depicts large variations of the values taken by X, coalescence
phenomenon prevails if compared against the case with ¢, = 0.05, where conversely
breakup is the dominant process.
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Figure 3.7. Evolution of the mean liquid-gas interface, ¥, as a function of the non-
dimensionalized time, t, for the preliminary multi-phase HIT simulations with ¢y = 0.05
(—), and ¢y =0.10 (—).

The mass conservation of the liquid phase is a critical parameter in multi-phase
simulations. This is checked through the evolution of the ratio of the mass of liquid
over its initial value, m/m;y,;;, reported in Fig. 3.8. The corresponding values of the
initial mass of liquid for each case are m;,;; = 0.127 (ng) for ¢, = 0.05 (—), and
Mminir = 0.254 (ng) for ¢, = 0.10 (—). For both cases, the variation of the mass of liquid
over time is remains below 0.12%, which confirms the ability of the CLSVOF approach
to accurately simulate this kind of flows.
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Figure 3.8. Evolution of the mass of the liquid phase normalized by its initial value, my/ Minit,
as a function of the non-dimensionalized time, t*, for the preliminary multi-phase HIT
simulations with ¢y = 0.05 (—), and ¢, = 0.10 (—).

3.3.2 Turbulent fields

As previously mentioned in chapter 1, it is very difficult to assess the influence
of two-phase flow on turbulence. However, it remains possible to conduct "classical"

analysis developed for single-phase turbulence to such multi-phase databases.

In Fig. 3.9 the evolution of the mean TKE, ¥, is reported for ¢, = 0.05 (—), and
¢y = 0.10 (---). For both cases the TKE level is maintained at the constant value of
K = 3.6.
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Figure 3.9. Evolution of the mean turbulent kinetic energy, k, as a function of the non-
dimensionalized time, t*, for the preliminary multi-phase HIT simulations with ¢y = 0.05
(—), and ¢y =0.10 (---).

The mean dissipation rate of the TKE, &, is reported In Fig. 3.10 for ¢, = 0.05 (—),
and ¢, = 0.10 (—). Such evolution, in comparison to the HIT reference case, Fig. 3.4,
also display some oscillation, but does not tend to increase due to the presence of the
liquid phase. The case governed by breakup phenomenon, i.e., ¢y = 0.05, exhibit a
more fluctuating behavior than the case where coalescence prevails. The later indeed

shows a more stable development before the first turnover.
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Figure 3.10. Evolution of the mean dissipation rate of the turbulence kinetic energy, €, as a
function of the non-dimensionalized time, t*, for the preliminary multi-phase HIT simulations
with ¢, = 0.05 (—), and ¢y = 0.10 (—).

Figure 3.11 present the evolution of the Taylor (—) and integral (—) length scales
and their corresponding turbulent, Rey, (- - -), and Taylor, Re, (- --), Reynolds numbers,
tor both cases, ¢, = 0.05 (—), and ¢y = 0.10 (—). Such length scales display a more
fluctuating behavior in comparison to those evaluated in the HIT reference case.
This reflects the impact of the wrinkling, coalescence and breakup of the biggest
liquid clusters. Nonetheless, their corresponding Reynolds numbers, keep an almost

constant value.
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Figure 3.11. Evolution of the integral, ¢y (—), and Taylor, A (—), length scales; together
with their corresponding turbulent, Rey, (---), and Taylor, Re, (---), Reynolds numbers,
as a functions of the non-dimensionalized time, t*, for the preliminary multi-phase HIT
simulations with ¢, = 0.05 (—), and ¢, = 0.10 (—).

Table 3.2 reports the same turbulence flow parameters as Table 3.1, but for the
non-evaporative multi-phase cases ¢, = 0.05 and ¢, = 0.10 at the non-dimensionalized
time t* =12 and t* =9, respectively.

Case  upms (m/s) £ (um) A (um) g (um) Re; (-) Ren () g, (ps)
¢, = 0.05 1.51 17.53 11.86 1.22 300.4 23.0 21.4

¢, =0.10 1.52 20.17 12.67 1.26 309.3 24.8 30.8

Table 3.2 — Turbulence flow parameters for the two multi-phase non-evaporative cases with
¢y = 0.05 and ¢, = 0.10, at the non-dimensionalized time t* = 12.0 and t* =9, respectively.

3.4 Characterization of the multi-phase flows evapora-

tive cases

Instantaneous snapshots of the three-dimensional turbulent two-phase flow with
¢¢ = 0.10 are presented in Fig. 3.12. The displayed iso-contour value corresponds to
the liquid-gas interface, i.e., G = 0. The considered non-dimensional time (t* = 6.0),
correspond to a mean mixture fraction value of & = 0.56. On the left, the interface
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is colored by the normalized vorticity magnitude, ||w||. On the right, the mixture
fraction, ¢, is presented at the planes settled at the boundaries, the iso-contours are

set to a certain level of transparency so that the planes can be visualized.

1]
00 1 2 3 45 6 7 8 910.

(@) t* =6.0 (b) t* =6.0

Figure 3.12. Instantaneous 3D-snapshots of the turbulent two-phase flow case with ¢, =
0.10 at the non-dimensional time, t* = 6.0, when the value of the mean mixture fraction of
& = 0.56 is reached. The displayed contours corresponds to the liquid-gas interface, i.e., the
level-set value, G, equal to zero. On the left, the interface is colored by the normalized vorticity
magnitude, ||w||. On the right, the iso-contours are set to a certain level of transparency, so
the planes where the mixture fraction is displayed, ¢, can be visualized.

3.4.1 Mixture fraction evolution

Figure 3.13 shows the evolution of the mean mixture fraction, &, as a function
of the non-dimensionalized time, t*, for ¢, = 0.05 (—), and ¢, = 0.10 (---). As
can be expected, the case with a larger quantity of liquid presents higher levels of

evaporation.
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Figure 3.13. Evolution of the mean mixture fraction, &, as a function of the non-
dimensionalized time, t*, for the evaporative multi-phase HIT simulations with ¢, = 0.05
(—), and ¢, =0.10 (---).

3.4.2 Turbulent fields

Some classical turbulence flow parameters for both evaporative multi-phase cases
¢y = 0.05 and ¢, = 0.10 are gathered in Table 3.3.

Case  upms (m/s) £ (pm) A (pm) g (um) Re; (-) Rey () try (ps)
¢, = 0.05 1.54 18.57 11.82 1.21 306.9 23.9 17.5

¢ =0.10 1.47 23.30 14.26 1.33 293.0 26.1 19.9

Table 3.3 — Turbulence flow parameters for the reference HIT case, and the two multi-phase
evaporative cases with ¢, = 0.05 and ¢, = 0.10, at the non-dimensionalized time t* = 6.0.

Table 3.4 contains some important turbulent two-phase flow parameters for both
multi-phase simulated cases. The dimensionless numbers corresponding to this data-
set (extracted at the time +* = 6.0) are : mean evaporation (&), gaseous Weber number
(Weg = pgkL/0), liquid Weber number (We; = p/kL/c), Reynolds number based

on the liquid (Reg = %KL/ l/g), and the Ohnesorge number based on the liquid

(Ohg = v WEE/Reg) .
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Simulation & Weg (-) Wey (-) Re;(-) Ohy(-)
¢, =0.05 0.44 1.23 48.2 350 0.02
¢, =010 0.56 1.12 72.7 430 0.02

Table 3.4 — Multi-phase flow parameters at post-processed time t* = 6.0 for both cases,
¢¢ = 0.05 and ¢, = 0.10.

3.5 Summary and conclusions

In this chapter the technical details considered to set-up the numerical simulations
are presented, and followed by the inspection of the resolution capacity and stability
of the code ARCHER to tackle : HIT, non-evaporative and evaporative two-phase flow
simulations. The physical properties of the simulations, summarized in Table 3.5
and Table 3.6, are relevant to the secondary breakup regime of a jet, so interactions
between the turbulence and the liquid-gas interface such as collision, coalescence
and disintegration of large structures take place and are captured accurately with
these numerical solver. It is worthy to point out that such regime has a significant

engineering relevance for spray combustion devices.

Instantaneous snapshots of the three-dimensional turbulent two-phase flow with
¢y = 10 are displayed in Fig. 3.14. The displayed contour corresponds to a given
iso-value of the level-set (G), which is a signed distance from the liquid-gas interface
to any point of the domain. Such iso-contour value is G = —2Ax, i.e., a surface in the
gaseous phase but in the vicinity of the liquid-gas interface, which are colored by the
value of the normalized second invariant Q4 /Qq of the VGT. Three distinct values of
non-dimensional times are presented : (a) t* = 0.0, (b) * = 0.0, and (c) t* = 6.0. The
corresponding set of figures clearly confirms that the interface displays significant
levels of curvature and wrinkling, which may conversely alter the behavior of the
turbulence field, the mixture fraction and the scalar dissipation rate (SDR) in the
vicinity of the interface.
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Figure 3.14. Instantaneous 3D-snapshots of the turbulent two-phase flow case with ¢y =
0.10 at three different non-dimensional times : (a) initialization of the domain (t* = 0.0),
(b) activation of the evaporation module (+* =0.0), and (c) time-step with a mean vapor
concentration of & = 0.56 (+* = 6.0). The displayed contours correspond to the level-set value
of G = —2Ax, which are colored by the second invariant Q o normalized by the average value
of the second invariant of the rotation tensor, i.e., (Qqa) = (—%j(Yi/2).

Case urms (m/s) £ (um) A (pm) nx (um) Re; () Rey ()  Tr, (us) tr, (us)

HIT 1.55 16.71 11.03 1.18 309.2 22.7 44.6 -
¢, =0.05 1.54 18.57 11.82 1.21 306.9 23.9 21.4 17.5
¢, =0.10 1.47 23.30 14.26 1.33 293.0 26.1 30.8 19.9

Table 3.5 — Turbulence flow parameters for the reference HIT case at the non-dimensionalized
time tT = 2.5, and for the two multi-phase evaporative cases with ¢, = 0.05 and ¢, = 0.10,
at the non-dimensionalized time t* = 6.0.

Simulation ¢ Weg (-) Wey (-) Res(-) Ohy (5)
¢, =0.05 0.44 1.23 48.2 350 0.02
¢, =010 0.56 1.12 72.7 430 0.02

Table 3.6 — Multi-phase flow parameters at post-processed time t* = 6.0 for both cases,
4)g = 0.05 and (Pg = 0.10.
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The chapter presents the statistical characterization of the turbulent velocity
tield. Firstly are addressed the results concerning the velocity fluctuations, e.g.,
turbulent kinetic energy or associated Reynolds stress tensor, which characterize
the energetic scales. Then attention is turned to the velocity gradient tensor (VGT),
which is relevant to the dissipative scales. It is worth recalling that the velocity
gradient tensor A = V ® u contains key information about the rates of deformation of
infinitesimal material lines, surfaces, and volumes [63]. The evolution of the turbulence
characteristics is scrutinized at various distances from the interface, in such a manner
that that the gas phase is divided into several sub-regions according to the values of
the level-set G, i.e., the distance from the liquid-gas interface, as shown in Table 4.1.
The acquisition of the statistics proceed in this way because the liquid-gas interface
does not only alter the isotropy of velocity fluctuations but also the dissipative (i.e.,
small-scale) structure of the turbulent flow-field. It should be emphasized that, in
the gaseous phase, the distance to the interface is defined in such a manner that the

level-set value, G, is negative.
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46 4. Velocity field analysis of evaporative two-phase flows in HIT

gas phase region range of level-set values

far [¢] G < —20Ax
intermediate [m] —20Ax < G < —5Ax
near [@] —5Ax <G <00

Table 4.1 — Definition of three sub-regions in the gas phase based on the level-set value.

4.1 Theoretical background

Lumley triangles

This 2D-space, originally introduced by Lumley and Newman (1977) [61], provides
a geometrical proof where any tensor whose eigenvalues are invariably non-negative
should remain inside the triangle delineated by the limiting values of the second and
third invariants of the considered tensor. Its labels are two independent invariants
that can be determined at any point or for any time in the flow from the normalized
(traceless) Reynolds-stress anisotropy tensor b;;

o aij - Uil B 1 B
T2k w37

Originally these invariants are II = (—bijb]'i / 2), and III = (—bi]-bjkbki/ 3), the non-
linear behavior in the return to isotropy is not so easy to visualize, therefore a
modified presentation of the invariants i.e., a modified Lumley triangle [60], has been

introduced, based on the quantities #* and ¢*, such that :

0" = (bgbyi) " 68" = (bibdis)
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Figure 4.1. Modified Lumley triangle.
(R4, Qa)-phase plane
The components of the velocity gradient tensor, A, are given by
ou;
Ajj = a—x; =S+ Wi, (4.1)
with § its symmetric part
1 1 (0u; Ouj
Si==(Aij+A)==|—+=], :
=3 =3 (55 @
and W its anti-symmetric part
1 1 ( Jdu; au]
vw=50%—Am=§<———$;- (4-3)

ax]-

The eigen-values of the VGT, i.e., A1, Ay and A3 (in decreasing order A1 > Ay > A3)

are the roots of its characteristic equation

det[A — AT] = 0.0,

(4-4)

while the invariants P4, Qa, and R4 of the VGT are defined as the normalized
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48 4. Velocity field analysis of evaporative two-phase flows in HIT

coefficients of this characteristic equation
A%+ PAA? + QaA + Ry =0 (4.5)

They can be expressed as [17]

Py = —tr[A] = — Ay, (4.6a)
1 2 1 2
1 1

Ra=3 <—Pf; +3P4Q4 — tr[AAA]) =3 (—Pfl +3PaQa — AijAjkAki) (4.6¢)

In general the (P4,Qa,Ra)-phase space allows to classify the streamlines topo-
logy (Perry and Chong, Chong et al. [77, 17]) of turbulent flow-fields in terms of
elementary flow patterns. In other words, the (P4,Qa, Ra)-phase space reveals the
relationship between the turbulent topology and the vortex-stretching / compressing
mechanisms. The first invariant of the VGT, P4, represents the local volumetric dilata-
tion rate, i.e., the local change of an infinitesimal fluid volume, in such a way that the
fluid volume experiments compression in the region where P4 has positive values
(Pa > 0.0), meanwhile it may experiments expansion in the region where P4 has nega-
tive values, (P4 < 0.0). There exists a region in this invariant-space of singular interest
where zero dilatation takes place, which corresponds to the phase-plane where this firs
VGT invariant is zero, (P4 =0.0,Q4,R4). Such (Ra,Qa)-phase plane, depicted in Fi-
gure 4.2, displays four distinct non-degenerative regions delineated by considering the
vertical axis (R4 = 0.0) and two lines originating from the origin (Qa =0.0,R4 = 0.0)
that are often referred to as the Vieillefosse discriminant tails [107]. Such Vieille-
fosse discriminant curve gathers solutions to A* = (27/4)R% + Q3 = 0.0, i.e., zero
values of the discriminant of the VGT characteristic polynomial. The topologies above
the zero-discriminant lines (A* > 0.0), are spiraling in nature (governed by vortex
mechanisms), and are often referred to as focal topologies, whereas the topologies
below these lines (A* < 0.0), do not spiral about a focus, (governed by strain mecha-
nisms), and are therefore termed as non-focal topologies. The third VGT invariant,
Ry, defines two critical points in this phase-plane, the stable for R4 < 0.0 and the
unstable for R4 > 0.0. Now it is easy to describe the different mechanisms that are
shown in this (R4, Qa)-phase plane. In the vorticity-dominated regions (A* > 0.0),
enstrophy-production is associated to vortex-stretching mechanisms (R4 < 0.0), whe-
reas enstrophy-dissipation is related to vortex-compressing mechanisms (R4 < 0.0).
In the strain-dominated regions (A* < 0.0), bi-axial compression generates tube-
like structures (R4 < 0.0), albeit bi-axial stretching generates sheet-like structures
(Ra > 0.0). The four regions mentioned above, according to the terminology of Perry
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and Chong [77], correspond to : unstable-focus compressing (UF/C), stable-focus
stretching (SF/S), stable-node saddle-saddle (SN/S/S), and unstable-node saddle-
saddle (UN/S/S) from the top right-hand corner to the bottom right-hand corner

(counter clockwise). These four regions will also be hereafter denoted by quadrants

Q1, Q2, Q3, and Qy, respectively.

Qa
SF/S (Q2) UF/C(Q1)

SN/S/5(Qs) UN/S/5(Qu4)

Figure 4.2. Classification of streamline topology in the (Ra,Qa)-phase plane : unstable-
focus compressing (UF/C), stable-focus stretching (SF/S), stable-node saddle-saddle (SN/S/S),
and unstable-node saddle-saddle (LIN/S/S).

It is paramount to mention that is possible to work in this (R4, Qa)-phase plane
with zero dilatation, independently of the flow condition considered, e.g., multi-phase,
reactive, compressible, etc. To this purpose, the deviatoric counterparts of 4.6 may be
considered. Such deviatoric invariants are defined from the traceless part of the VGT

tensor A*

0

with J;; the Kronecker tensor and 0 = tr[A] = Ay, = —P the dilatation-rate, i.e., the
trace of A. Similarly, the symmetric and anti-symmetric parts of A* are denoted as S*

5ij » (47)

and W™, respectively, and the invariants of A* can be expressed as [79]

* 1 * *
Qa = —5 4545, (4.8b)
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Figure 4.3. Definitions of some lines corresponding to different ratios of principal strains

(A1:Az:A3) in (Rs,Qg)-phase plane : axi-symmetric expansion, i.e., axial stretching

(1:1:—=2); axi-symmetric contraction, i.e., axial contraction (2 : —1: —1); two-dimensional
flow (1:0: —1); and straining by bi-axial stretching (3:1: —4).

The JPDF of the normalized second and third invariants of the strain-rate tensor
S=(A+ AT)/2,ie, Qs and Rg, can be analyzed to get further insights into the
straining processes. Thus, different regions can be delineated in the (Rs,Qs)-plane,
see Fig. 4.3. In fact, Qg is negative-definite and the topology mainly depends on the
sign of Rg with sheet-like structures associated to Rg > 0.0 and tube-like structures
to Rg < 0.0. Further information can be obtained by dividing the (Rg, Qs)-phase
plane into various sub-regions, which are defined according the eigenvalue ratios
(A1:Az:A3). In this manner, the right branch of the Vieillefosse discriminant line
(1:1:—2) corresponds to axi-symmetric expansion, i.e., axial stretching, while the
left branch of the Vieillefosse discriminant line (2 : —1: —1) represents axi-symmetric
contraction, i.e., axial contraction. The two-dimensional straining limit can be asso-
ciated to the line Rg = 0, which corresponds to (1:0: —1). Finally, the fourth region
represents bi-axial stretching (3:1: —4), it is located between the line Rg = 0.0 and
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the right branch of the Vieillefosse discriminant tail.

Topology of dissipative and vortical regions

A—Qs

Irrotational
dissipation

Vortex tubes 0
—worms— Q2
P

Figure 4.4. Classification of streamline topology of the dissipative and vortical regions of the
(Qq, —Qs)-phase plane.

The (Qq, —Qs)-phase plane, Fig. 4.4, provide information on the topology of the
dissipative and vortical regions. Since the quantities Qo and —Qs are positive, the
topology information depends on the direction along which the JPDF contours are
aligned : the Qn-axis is relevant to vortex tubes, i.e., structures featuring high enstro-
phy levels and moderate dissipation rates (similar to solid-body rotation) whereas the
—Qgs-axis represents irrotational dissipation with high level of strain and negligible
vorticity. Finally, the zone of high correlation (i.e., the vicinity of the first bisecting
line) is relevant to vortex sheets, i.e., structures featuring both high strain and vorticity

levels.
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Dynamics of ‘'worms’ formation

A .
—(@g ~ strain
Vorticity Vorticity
contraction 0 stretching X

Figure 4.5. Classification of streamline topology related to the strain dynamics of the worms
formation in the (¥, —Qg)-phase plane.

A
Qq ~ enstrophy
Local Local
contraction stretching
of enstrophy 0 of enstrophy Z>

Figure 4.6. Classification of streamline topology related to the enstrophy dynamics of the
worms formation in the (¥, Qq )-phase plane.
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The dynamics of worms formation is analyzed in Figs. 4.5 and 4.6, in the light
of the joint statistics of the second invariant (either —Qg or Qq) together with the
normalized vorticity stretching-contracting rate X =w - S- w/Qq = (Rs — Ra)/Qq-
The corresponding JPDF of (¥, —Qg) and (%, Qq) are displayed for the three regions
in Fig. 4.5 and Fig. 4.6. Since the quantities —Qg and Qq are positive, the topology
information mostly depends upon the sign of X : its positiveness in the (£, —Qs)-
phase plane is relevant to vorticity-stretching whereas, in the (£, —Qq)-phase plane,
it is associated to local enstrophy-stretching. On the contrary, negative values of X
corresponds to either vorticity or enstrophy contraction. It is worthy to point out that
once the vorticity is stretched to a sufficiently high amplitude, it decouples from the

original strain field and looses its orientation relative to it.

Vorticity-eigenframe alignments
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Figure 4.7. Schematic of the different vortical structures. On the left is depicted the sheet-
like-strain-dominated structure, and on the right is the tube-like-strain-dominated structure.
Here, S* is the normalized enstrophy production term associated with the vortex-stretching
effects (S* =w-S-w/(v/n?)%).

The vortical structures gathered in isotropic homogeneous turbulence are pre-
sented in Fig.4.7. On the left is depicted the sheet-like-strain-dominated structure,
gathered when the vorticity vector w is aligned with the most compressive eigen-
vector (e3). Such alignment is relevant to enstrophy decrease (|| S* ||{). On the right is
depicted the tube-like-strain-dominated structure, gathered when the vorticity vector
(w) is aligned with the intermediate eigen-vector (e;). Such alignment is relevant to
enstrophy increase (|| S* ||1). Here, S* is the normalized enstrophy production term
associated with the vortex-stretching effects (S* =w-S-w/(v/ 172)3). In isotropic
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54 4. Velocity field analysis of evaporative two-phase flows in HIT

homogeneous turbulence, vorticity (w) displays high transversality with the most
extensive (e1) and the most compressing (e3) directions, and preferential alignment
with the intermediate (e;) eigenvector. Such alignment reflects the enhancement of

the energy transfer due to vortex-stretching mechanisms [104].

Vorticity-vorticity stretching vector alignment
. Twa} €2
€2 s~

w
W es

€3

el 'T‘Ww

Figure 4.8. On the left the eigen-space and the alignment between the vorticity (w) and its
corresponding vortex-stretching vector (W*). On the right the sketch of the corresponding
vortical structure gathered when high alignment between these two vectors happen. Here,
S* is the normalized enstrophy production term associated with the vortex-stretching effects
(S*=w-S-w/(v/n?)?).

The typical alignment between the vorticity (w) and its corresponding vortex-
stretching vector (W), is presented in Fig. 4.8. Such alignment is relevant to vortex-
stretching mechanisms, i.e., enstrophy production (|| $* ||1). It is noteworthy that
the self-amplification phenomena diminishes due to the fairly large curvature of the
vorticity lines, in such a way that these vortex-tubes become "passive structures", i.e.,
such vortex-worms does not interact back any more with the strain mechanisms. This
suggests that regions with concentrated vorticity are the result/consequence rather
than the dominating factor on the turbulence dynamics [104].

4.2 Large scale fluctuations

By the inspection of the modified Lumley triangle [61, 60, 16], a significant increase
of turbulence anisotropy (in the gas phase) is confirmed as the level-set G approaches
zero, i.e., in the vicinity of the liquid interface.
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Figure 4.9. Turbulence anisotropy as depicted in the modified Lumley triangle for ¢, =
0.05 (top) and ¢, = 0.10 (bottom). The symbols [¢, m, and @] correspond to the averaged

behaviors observed in the far, intermediate, and near field regions from the liquid-gas interface,
respectively. The symbol [+ ] corresponds to a reference HIT case in gaseous conditions. The

invariants are defined as follows : 6 (1*)* = bijbj; and 6 (&) = bijbjxbyi.
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56 4. Velocity field analysis of evaporative two-phase flows in HIT

Thus, in Fig. 4.9 are reported the corresponding results for ¢, = 0.05 at the top
and ¢, = 0.10 at the bottom (at t* = 6.0 for both databases), together with the three-
dimensional HIT reference case (symbol [%]). In the far region, the turbulent flow
remains almost three-dimensional and isotropic (¢* = #* = 0) for both cases ¢, = 0.05
and ¢, = 0.10. However, as the liquid-gas interface is approached, the couples of
invariants (¢*,77*) depart from the HIT region of the modified Lumley triangle and
evolves towards the one-component state (¢* =#* =1/3), which is associated to
axi-symmetric cigar-shaped turbulence, i.e., one-dimensional turbulence. Nonetheless,
it seems worth to point out that the case with ¢, = 0.10 display a larger departure
than the one observed for ¢, = 0.05. In regard to this, a similar behavior is reported
in other flow configurations where other kind of interfaces are studied, such as : in
the direct vicinity (downstream) of a shock wave in supersonic flow (Boukharfane
et al. [8]), or in premixed flame front of flame kernel growth in weak turbulence (Zhao
et al. [115]), in such a way that the standard HIT in the fresh reactants is modified
and evolves towards one-dimensional turbulence for increasing values of the progress
variable.

4.3 Small scale mixing and dissipation

4.3.1 Topology analysis

HIT Case
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Figure 4.10. [PDF of (R}, Q%) of the HIT reference case and their corresponding probability
of occurrence of each flow topology quadrant. The four thin lines correspond to iso-contours of
log,, (JPDF) equals to —3, —2, —1, and 0. Both invariants Qa and R s are normalized by
the averaged value of the second invariant of the rotation tensor, i.e., (Qqa) = (—%;i/2).
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Since the VGT is directly involved in the turbulence-scalar interaction (TSI), at-
tention is turned to the flow topology of the small-scales of the velocity field. For
this, the joint probability density function (JPDF) of the normalized second and
third invariants of the velocity gradient tensor (i.e., Q% and R7) is inspected. Firstly
the JPDF of the normalized second and third invariants of the VGT along with the
probabilities of occurrence of each flow topology quadrant for the HIT reference case
are scrutinized in Fig. 4.10. This JPDF shows a "pear-like” shape, where most data
points lie at the first, Q;, and second, Q», quadrants of the (R%, Q% )-phase plane. This
means that the flow have high probabilities to develop a local streamline topology that
may produce or dissipate enstrophy due to vortex-stretching or vortex compressing
mechanisms, respectively. It is also noteworthy that the probability of occurrence of
the first, Qj, and fourth, Q4, quadrant are almost the same. The statistics of this latter
quadrant have a remarkable tendency to embrace the right branch of the Vieillefosse
discriminant line. This ‘pear-like” shape is better known as the "universal tear-drop’
shape, simply because similar statistics have been already reported for a wide variety
of flow configurations, e.g., plane mixing layer (Soria et al. [92]), turbulent boundary
layer (Chong et al. [18]), etc. It has been also recovered far from different kind of inter-
faces or fronts, such as flames (Cifuentes et al., Wacks et al., Zhao et al. [19, 108, 115])
or shock waves (Ryu and Livescu, Boukharfane et al., Tian et al. [85, 8, 102]). Therefore
this can be thought as a kind of universality of turbulence in the joint invariant
(R%, Q% )-phase space.
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Figure 4.11. JPDF of (R}, Q7 ) in the far (left), intermediate (center), and near (right) field
regions together with the probability of occurrence of each streamline topology quadrant for
¢¢ = 0.05. The four thin lines correspond to iso-contours of log,, (JPDF) equals to —3 —2,
—1, and 0. Both invariants Q% and R’y are normalized by the averaged value of the second
invariant of the rotation tensot, i.e., (Qq) = (—Q - Q/2).
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Figure 4.12. JPDF of (R}, Q?) in the far (left), intermediate (center), and near (right) field
regions together with the probability of occurrence of each streamline topology quadrant for
¢¢ = 0.10. The four thin lines correspond to iso-contours of log,, (JPDF) equals to —3 —2,
—1, and 0. Both invariants Q% and R’y are normalized by the averaged value of the second
invariant of the rotation tensot, i.e., (Qq) = (—Q - Q/2).

Now, in order to shed light on the changes of the gaseous turbulence topology
due to the presence of the liquid phase, the JPDF of the normalized second and
third invariants of the VGT of the two-phase cases with ¢, = 0.05 and ¢, = 0.10 are
considered in Figs. 4.11 and 4.12, respectively. In the same figures are also reported the
probabilities of occurrence of each flow topology quadrant. In the far region, for both
multi-phase cases, a "tear-drop’ shape quite similar to the one reported in Fig. 4.10
for the incompressible HIT case is conserved. Such tear-drop shape shows that the
probability of occurrence, from the highest to the lowest, corresponds to the first, Q;,
second, Qy, fourth, Qq4, and third Q3 quadrants. There is a tendency, especially in
the case with ¢, = 0.10, to hug on the right branch of the Vieillefosse discriminant
line. This suggests that, for the region under consideration, the flow-field topology is

59



60 4. Velocity field analysis of evaporative two-phase flows in HIT

barely impacted by the presence of liquid clusters and droplets. Nonetheless, as the
liquid-gas interface is approached, the JPDF tend to become more symmetric with
respect to the ordinate-axis. The corresponding histograms from Figs. 4.11 and 4.12
put into evidence that the more significant probability levels are associated to the
SF/S topology region, which is relevant to enstrophy production via vortex-stretching
mechanism, i.e., the first, Q; quadrant. Then, the next contributions are those that
correspond to the first, Q;, second, Q, quadrants. Their corresponding probability
levels are significant and lie between 19.0% and 33.0%. The values of both quadrants
are almost the same in the far region but become quite different as the interface
is approached. Figures. 4.11 and 4.12 shows indeed that the volume fractions of
each topology contribution gathered in the intermediate region contrast with those
relevant to the far region. In particular, there is a significant increase of the probability
levels associated to the third Q3 quadrant, especially in the direct vicinity of the
negative Vieillefosse discriminant line. This denotes a relevant increase of tube-like
strain-dominated structures undergoing bi-axial compression. In the vicinity of the
interface, the inspection of the volume fractions of each topology contribution shows,
in comparison to the far region, a substantial increase of the probability levels of
the first, Q; quadrant, and a decrease of the contribution of the fourth, Q4 quadrant.
Such behavior is more pronounced as the liquid volume fraction is increased from
¢y = 0.05 to ¢, = 0.10. Finally, in the region under consideration, the two dominant
topologies correspond to the first, Q1, and second, Q» quadrants, i.e., production and
destruction of enstrophy due to vortex-stretching and vortex-compression mecha-
nisms, respectively. They almost balance each other. This evolution goes together with

an increased scatter of the corresponding data.

In order to analyze the straining processes, the JPDFs of (Rg, Qg) are reported
in Fig. 4.13 for the gaseous sub-regions. Far from the liquid-gas interface, for both
volume of liquid fractions, a right-skewed joint statistics (i.e., Rg > 0.0) relevant
to standard HIT is recovered [73]. This shape indicates that this region is mostly
strain-dominated with sheet-like structures associated to axi-symmetric expansion
(i.e., axial stretching). The JPDF gathered in the intermediate region presents a lower
level of skewness, so the probability associated to a negative third invariant (Rg < 0),
relevant to strain-dominated flows with tube-like structures, is increased. This trend is
enforced in near region : (i) for the case with ¢, = 0.05 (top), there is an increase of the
probability levels of bi-axial stretching, i.e., around the Vieillefosse discriminant-like
line (3:1:—4), and (ii) for the case with ¢, = 0.10 (bottom), the same behavior is
observed, together with a change of slope at Rg = 0.0 : the flow-field tends to become

two-dimensional in the vicinity of the interface.
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Figure 4.13. JPDF of (Rs,Qg) in the far (top row), intermediate (middle row), and near
(bottom row) field regions for ¢, = 0.05 (left column) and ¢, = 0.10 (right column). The
four thin lines correspond to iso-contours of log,, (JPDF) equals to —3 —2, —1, and 0. Both
invariants Rg and Qg are normalized by the averaged value of the second invariant of the
rotation tensor, i.e., (Qq) = (—Q - Q/2).
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The dissipative and vortical regions are studied in detail through the JPDFs of
(Qa,—Qs), reported in Fig. 4.14. Far from the liquid-gas interface, for both cases
¢y = 0.05 and ¢, = 0.10, the right-skewed behavior of the standard HIT is reco-
vered [73] (Qa > —Qs). The flow in this region resembles long-lived solid-body
rotation, such topology is associated to structures featuring high values of enstrophy
and little amounts of dissipation, i.e., vortex-tubes structures. The statistics gathered
in the intermediate region loose this right-skewed tendency, such that Qg and —Qs
reach almost the same maximum values : vortex-tubes structures and irrotational
dissipation display similar probability levels. Finally, in the vicinity of the interface,
there is a significant increase in the magnitude of the invariants, in such a manner
that enstrophy and dissipation rates increase as the interface is approached. Here, the
probability iso-lines tend to cluster around the first bisecting line (Qq = —Qs), which
is relevant to the prevalence of vortex-sheet structures. However, it is noteworthy that
the statistics is top-skewed, thus emphasizing the predominance of dissipation over

enstrophy in this region.

The dynamic of ‘'worms’ formation is studied in Fig. 4.15 and Fig. 4.16. For both
liquid volume fraction (¢, = 0.05 and ¢, = 0.10), and for the three gaseous sub-
regions, the joint statistics reported are associated to stretching processes, i.e., are
right-skewed (positive values of ¥). This is in accordance with the behavior of the
standard HIT [73]. Figures 4.15 and 4.16 also put into evidence that the largest values
of X are associated to the lowest values of the corresponding abscissa-axis (—Qgs and
Qaq), which is related to little evidence of self-stretching by structures in the flow field
which have large values of Qq and —Qg. For both statistics (—Qg,X) and (Qq,X), the
largest absolute values of X are associated to rather small or moderate values of —Qg
and Qq. Moreover, as the interface is approached, the distributions become narrower
and more symmetric, with a reduced range of variation of X and an increased range
of variation of both —Qg and Qq.
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Figure 4.14. Joint PDF (Qq,—Qs) in the far (top row), intermediate (middle row), and
near (bottom row) field regions for ¢, = 0.05 (left column) and ¢, = 0.10 (right column). The
four thin lines correspond to iso-contours of log,, (JPDF) equals to —3 —2, —1, and 0. Both
invariants Qg and —Qg are normalized by the averaged value of the second invariant of the
rotation tensor, i.e., (Qq) = (—Q - Q/2).
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Figure 4.15. Joint statistics of (X, —Qg) in the far (top row), intermediate (middle row), and
near (bottom row) field regions for ¢, = 0.05 (left column) and ¢, = 0.10 (right column). The
four thin lines correspond to iso-contours of log,, (JPDF) equals to —3 —2, —1, and 0. Both
invariants ¥ and —Qg are normalized by the averaged value of the second invariant of the
rotation tensor, i.e., (Qq) = (—Q - Q/2).
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Figure 4.16. Joint statistics of (X, Qq) in the far (top row), intermediate (middle row), and
near (bottom row) field regions for ¢, = 0.05 (left column) and ¢, = 0.10 (right column).
The four thin lines correspond to iso-contours of log,, (JPDF) equals to —3 —2, —1, and 0.
Both invariants ¥ and Qg are normalized by the averaged value of the second invariant of the
rotation tensot,i.e., (Qqa) = (—Q - Q/2).
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4.3.2 Geometrical analysis and alignment statistics

¢ = 0.10

ér = 0.05

G < —20‘ASC

“20Az < G < —5Ax

‘—5A‘x<C‘¥<O‘

5
4,
.
"
it
— 3 !
* s 1!
~ 1!
~— '
]
= S
i
S o p
-
- -1 I
L s S
! RN E
~ T '
~ r '
l\‘\ l': ‘\
47 ]
n
. L}
n l‘|
n ]
;_:3 1 [
1 1
~— LI ] 1
Qﬂ 1 &t
2 W ! ::l
2 iy |
-] it |
Sz =
> = 4
L - =1 -~ 3
1 S S
s 1 s £
R E o -
K - > [ st
0 2\ s ETILN A
5
4,
Ag
*
~
Q:’ .
"n
2 [
[ |
[}
[}
|
17 Q\"o" ' R
N - N
N ] [}
K) r Y K
0"“‘\ "I-" AJ o - ||l““‘\ ‘
-2 -15 -1 -05 0 05 1 15 2-2 -15 -1 -0.
*
Ai

Figure 4.17. PDF of the normalized eigenvalues : A] (—), A; (---) and A3 (---); far (top
row), intermediate (middle row), and near (bottom row) field regions for ¢, = 0.05 (left
column) and ¢y = 0.10 (right column,).
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68 4. Velocity field analysis of evaporative two-phase flows in HIT

The turbulence-scalar interaction (TSI) is a term that originates from the average
of the first terms of the right hand side (RHS) of the scalar dissipation rate (SDR)
equation, which is presented in chapter 5. In this section attention is focused on
the TSI. Such interaction can be studied in the eigen-frame of the symmetric part S
of the VGT A. Since S is a second-rank symmetric tensor, the eigenvalues are real
numbers that are defined in such a manner that A; > A, > A3. The eigenvalue A1 > 0
corresponds to the most extensive principal direction, A, denotes the intermediate
principal direction, and A3 is the most compressive principal direction. The incom-
pressibility condition leads to A1 4+ A2 4+ A3z = 0.0. These quantities are essential for
the analysis of the local structure and dynamics of the turbulent flow-field. The PDF
of the normalized strain-rate tensor eigenvalues A} are reported in Fig. 4.17. They are
non-dimensionalized by the Kolmogorov strain-rate v > with 7 the Kolmogorov
length scale. From these statistics, it is found that the ranges of variations of the
eigenvalues A increases as the liquid-gas interface is approached. The distribution
of A3, as expected, result in mostly negative values while the distribution of A] is
mostly positive. Furthermore, the distributions of A} and A3 are broader and flatter
than the one of A3. Finally, the distribution of AJ is positively skewed, which reflects
the turbulent energy transfer [104].
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Figure 4.18. The orientation between vorticity (w) and strain-rate tensor principal direc-
tions (e;) : extension (—), intermediate (- --), and compression (---); in the far (top row),
intermediate (middle row), and near (bottom row) field regions for ¢, = 0.05 (left column)
and ¢y = 0.10 (right column).
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70 4. Velocity field analysis of evaporative two-phase flows in HIT

It is known from previous analysis of incompressible HIT (see for instance Ham-
lington et al., Tsinober [45, 104]) that the PDF of the alignment between the vorticity
vector w and the eigen-frame of the symmetric part of the VGT, i.e., ¢;, exhibits a
preferential alignment with the eigenvector associated to the intermediate eigenvalue
of the strain tensor e;. No special alignment of w with the most extensive principal
direction given by e; is found, and the vorticity vector w tends to be misaligned to the
most compressive principal direction e3. Figure 4.18 confirms that these conclusions
hold in the far and intermediate regions. However, as the liquid-gas interface is
approached, there is a substantial increase in the probability levels associated with
the transversality of the vorticity vector w with both the most extensive (e1) and
most compressive (e3) principal directions. It is also noteworthy that the preferential
alignment of the vorticity vector w with the intermediate principal direction e; is
significantly amplified in the vicinity of the interface, which reflects the enhancement

of transfer and associated vortex-stretching processes.

The velocity evolution is now analyzed through the interaction between the
vorticity-stretching vector, W* = w - S and the vorticity vector. This very interaction
may be scrutinized through their product, i.e., W¥ - w =|| W¥ || || w || cos (W¥,w), in
such a manner that the sign of the cosine angle between these two vectors may indicate
either enstrophy production or destruction, such that negative values are associa-
ted to vortex-stretching mechanisms, whereas positive values to vortex-compression
mechanisms. Figure 4.19 puts into evidence the alignment between this two vectors,
which is relevant to vortex-stretching predominance. This tendency is confirmed
by the PDF of the normalized enstrophy production term displayed in Fig. 4.20,
which shows a net (positive) enstrophy production, i.e., w - S - w > 0 in all the analy-
zed gaseous sub-regions. The corresponding positively skewed PDF also shows that

there is a significant increase of the levels of fluctuations as the interface is approached.
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Figure 4.19. Orientation between vortex-stretching vector (W®) and vorticity (w) in the

far (—), intermediate (- --), and near (----) field regions from the liquid-gas interface for
¢y = 0.05 (top) and ¢, = 0.10 (bottom).
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b = 0.05

b1 =0.10

10

Figure g4.20. PDF of the normalized enstrophy production term associated with the vortex-
stretching effects (S* =w-S-w/(v/n?)3) in the far (—), intermediate (---), and near
(---) field regions from the liquid-gas interface for ¢, = 0.05 (top) and ¢, = 0.10 (bottom).

The strain-enstrophy orientation angle, i.e., I = tan"! ((S-§)/(Q - Q)) is now
considered to conclude this chapter. This provides information about the possible
predominance of strain (I' > 45° or rotation (I' < 45°). Values approaching 45° are
relevant to high levels of correlation between the two processes. Figure 4.21 shows that
the PDF obtained in the far (—) and intermediate (- - -) regions are skewed towards
values larger than 45°. As the liquid-gas interface is approached, a probability peak
does appear,which is relevant to the highly correlated region, i.e., in the vicinity
of I' = 45°. It is also noteworthy that the PDF in the near field region (--) still
exhibits a certain level of asymmetry at both tails, which puts into evidence that

strain-dominated regions still prevail the over the rotation-dominated regions.
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Figure 4.21. PDF of the strain-enstrophy angle T in the far (—), intermediate (- --), and
near (----) field regions for ¢y = 0.05 (top) and ¢, = 0.10 (bottom).

4.4 Summary and conclusions

From a general viewpoint, such investigations of small-scale topologies in flows
featuring fronts or interfaces remain rather uncommon in comparison to the amount of
analyzes conducted in more standard incompressible turbulent flow conditions. Some
analysis of this kind have been only very recently conducted for multi-species, variable-
density shock-turbulence interaction (Tian et al. [101]), and droplet-laden decaying
HIT configurations (Dodd and Jofre [23]). In this respect, it seems interesting to report
analysis devoted to the dynamics of the smallest scales in turbulent evaporating
two-phase flows. In this chapter attention is focused on the gaseous turbulent field,

which is subdivided into different sub-regions depending on the level-set (G) values.
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74 4. Velocity field analysis of evaporative two-phase flows in HIT

Firstly the evolution of the topology of the turbulent flow is inspected as the level-set
value, G, tends to zero. The normalized invariants ¢* and #* of the traceless Reynolds
stress anisotropy tensor b confirms that, as the liquid-gas interface is approached,
the turbulence anisotropy is significantly increased, such that a progressive evolution
takes place from the isotropic-turbulence state to the one-dimensional-turbulence
state. Then, it is shown that the small-scale topology of the turbulent flow is also
significantly altered in the vicinity of the liquid-gas interface, as is showed by the
iso-lines of the (R, Q% )-phase plane, where Q7 and R’ are, respectively, the second
and third invariants of the velocity gradient tensor ( VGT). In the far region, the
classical tear-drop shape — associated to significant probability levels of the first, Q1,
and second, Q», quadrants of the (R}, Q% )-phase plane - is recovered. However, as the
liquid-gas interface is approached, there is a significant increase of probability levels
associated to the third, Q3, quadrant, i.e., the SN/S/S topology. As a consequence,
the probability levels of the first, Q;, and second, Q;, quadrants tend to become
similar, and there is a decrease of the probability levels relevant to the fourth, Qu,
quadrant, which goes together with a larger scatter of the corresponding data. The
statistics of the strain-rate S tensor and rotation tensor ) are subsequently studied
to get further insights into the flow topology evolution as the liquid-gas interface is
approached. The corresponding analysis puts into evidence the dominance of vortex
sheet structures in the direct vicinity of the interface. This analysis is ended by a
detailed inspection of geometrical features and alignment statistics. It shows that
the preferential alignment of the vorticity vector with the intermediate principal
direction e, is significantly amplified in the vicinity of the interface, which reflects
the enhancement of transfer and associated vortex-stretching processes. Finally, since
the presence of the liquid may alter preferentially the component of the rotation
and strain stress tensors in direction normal to the liquid-gas interface, one may
expect an increase in the correlation between the two quantities, which is indeed
unambiguously confirmed by the inspection of the strain-enstrophy angle I as the

interface is approached.
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The chapter presents the statistical characterization of the mixture fraction field of
an evaporative multi-phase DNS simulation database set featuring two distinct values
of the liquid volume fraction ¢y. On the first part, results concerning the mixing
scalar field are reported. Then attention is turned to the geometrical properties and
alignment statistics of the scalar mixing and scalar dissipation. Such statistics are
gathered at various distances from the interface, in such a manner that that the gas
phase is divided into several sub-regions according to the values of the level-set G,
i.e., the distance from the liquid-gas interface, as shown in Table 4.1.

5.1 Theoretical background

Scalar dissipation rate transport in evaporating two-phase flows

Before embarking on the detailed study of the computational data, it seems to

be useful to provide a few words about the quantities that are central to the post-
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76 5. Scalar field analysis of evaporative two-phase flows in HIT

processing and analyses of the present chapter. Such quantities are the scalar gradient
and the scalar dissipation rate (SDR).

By taking the gradient of Eq. 2.7, the evolution of the scalar gradient g¢ = V& is
obtained :

Dg*

S - ~Vu-gt+ v (V(Dgf)) + Vi, (5.1)

which, once multiplied by 2Dg¢, leads to the SDR transport equation

DN;
5 _2Dob.
Dt g

Dgg
‘Dt
T
=-2D <g€> -S- g5+ V (DVN;) —2D*V gt Vgt +2Dg" Vg (5.2)

TSI

where S = (Vu + VuT) /2 denotes the symmetric part of the VGT, i.e., the strain-
rate tensor. Indeed, it can be readily shown that there is no contribution of the
anti-symmetric part Q = (Vu — VuT)/2 (i.e., rotation or vorticity) of the velocity
gradient tensor Vu = S 4 Q) to the SDR evolution [9]. The RHS of the SDR contains
four contributions. Two among them do involve the squared molecular diffusivity : (i)
the second term in the RHS, which is a conservative contribution associated to the
molecular fluxes of Ng, and (ii) the third term, which appears as a sink term : this is the
SDR dissipation term. The fourth term appears as a possible production/destruction
term associated to vaporization effects. Finally, the first term in the RHS of Eq. 5.2 is
related to the so-called turbulence-scalar interaction (TSI) term that will be further

analyzed below.

Provided that the turbulent Reynolds number is sufficiently large, the mean
SDR N¢ is approximately equal to the turbulent SDR & which, under the present
assumptions of constant density and constant diffusivity in the gaseous phase,
writes & = D(d¢’/dx;)(9¢’/9x;). The corresponding value of the mean SDR Ny =
D(0¢/0x;)(9¢/0x;) can be deduced from the averaging of the above Eq. 5.2. One of
the leading order terms of this transport equation is the TSI term, i.e., the average

of the first contribution present in the RHS of Eq. 5.2. This term does involve the
fluctuating velocity field, so the first step of the analysis of the corresponding scalar -
velocity couplings at the smallest scales of the flow, is to characterize the turbulent
velocity field. This has been done in detail in chapter 4. The second step is to characte-

rize the scalar gradient and then the TSI term. This is the subject of the present chapter.
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Figure 5.1. On the left the eigen-space and the alignment between the normalized scalar

(]

gradient (ng) and its corresponding scalar-stretching vector <W§> On the right the two-

dimensional sketch of the corresponding scalar structure gathered when high alignment
between these two vectors happen. Here, ny = V&/ || V¢ ||= g%/ || §° || denotes the
direction normal to the iso-contours of ¢, oriented towards the liquid.

The typical alignment between the normalized scalar gradient (nz) and its cor-
responding scalar-stretching vector (W‘:> is presented in Fig. 5.1. Such alignment
is relevant to the amplification of the scalar gradient (|| g° ||1), which in turn is

associated with predominance of compression [104], i.e., sheet-like structures.

Scalar-eigenframe alignments

The scalar structures gathered in isotropic homogeneous turbulence are presented
in Fig.5.2. On the left is presented the compression of the scalar structure, whilst
on the right the extension of the scalar structure. The normalized scalar gradient
(ng) presents the highest transversality with the intermediate direction (e;), and a
preferential alignment with the most compressive (e3) eigenvector. When the scalar
gradient is aligned with e3, the magnitude of the scalar gradient increases, otherwise
when it is aligned with e; or ey, the magnitude decreases. As both the most extensive
and the intermediate directions of the strain eigen-frame are positive (in average),
then the difference between the statistics presenting alignment with them relapse in

the curvature of the generated scalar structures.
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Figure 5.2. Schematic of the two-dimensional scenarios of the alignment between the nor-
malized scalar field (ng) and the eigen-plane drawn by the intermediate (ey) and most
compressive (e3) principal directions. The evolution in the diagrams is depicted from an
initial state (i