N

N

Compactification Flavors
Ruifeng Leng

» To cite this version:

Ruifeng Leng. Compactification Flavors. High Energy Physics - Theory [hep-th]. Université Paris-
Saclay, 2022. English. NNT: 2022UPASP105 . tel-04368467

HAL Id: tel-04368467
https://theses.hal.science/tel-04368467v1

Submitted on 1 Jan 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-04368467v1
https://hal.archives-ouvertes.fr

s
O
=
U
O
(@]
]
(@]
T
2]
L
L
-

NNT : 2022UPASP105

universite
PARIS-SACLAY

Compactification Flavors

Saveurs de compactification

These de doctorat de I'université Paris-Saclay

Ecole doctorale n° 576, Particules, Hadrons, Energie et Noyau :
Instrumentation, Imagerie, Cosmos et Simulation (PHENIICS)
Spécialité de doctorat : physique des particules

Graduate School : Physique

Référent : Faculté des sciences d'Orsay

These préparée dans l'unité de recherche IJCLab (Université Paris-Saclay, CNRS),
sous la direction de Grégory MOREAU, Maitre de conférences.

These soutenue a Paris-Saclay, le 20 octobre 2022, par

Ruifeng LENG

Composition du Jury

Yann MAMBRINI
Directeur de recherche, CNRS, Président
Université Paris-Saclay

Giacomo CACCIAPAGLIA
Directeur de recherche, CNRS, Rapporteur & Examinateur
Université Claude Bernard Lyon 1

Emilian DUDAS
Directeur de recherche, CNRS, Rapporteur & Examinateur
Ecole Polytechnique

Grégory MOREAU
Maitre de conférences, Directeur de these
Université Paris-Saclay




ECOLE DOCTORALE

=]
universite
PARIS-SACLAY

Particules, hadrons, énergie et noyau:
instrumentation, imagerie, cosmos
et simulation (PHENIICS)

Titre : Saveurs de compactification

Mots clés : Physique théorique des hautes énergies, Au-dela du modele standard, Dimensions spatiales
supplémentaires, Univers branaires, Champ de Higgs, Fermions 5D

Résumé : Depuis a peu prés I'an 2000, des exten-
sions du Modéle Standard attractives basées sur des
dimensions spatiales supplémentaires ont émergé,
et en particulier, la classe de modeles avec dimen-
sion(s) courbe(s) et boson de Higgs branaire couplé
aux fermions (duale des modeles de Higgs compos-
ite).

Dans cette these, nous montrons que le traitement
approprié de tels scénarios ne se base pas sur la
régularisation d’'un champ de Higgs piqué, comme
pratiqué habituellement dans la littérature, mais re-
quiert a la place la présence de certains termes
bilinéaires au niveau d'une brane. Les termes
bilinéaires de brane pourraient également permet-
tre d’élaborer une origine dans l'ultra-violet a la na-
ture chirale du Modele Standard et aux différentes
chiralités des quarks/leptons. La nouvelle méthode
de calcul présentée, impliquant I'indépendance des
masses de fermions excités et des couplages de
Yukawa a 4D vis-a-vis des termes de Yukawa avec
la ‘mauvaise’ chiralité, a des impacts sur des résultats
phénoménologiques.

Puis nous étendons ces approches rigoureuses de la
configuration d’intervalle a celle duale de “l'orbifold”
S1/Z,, ce qui permet en particulier un traitement

propre des discontinuités des profils de fermions au
travers des branes caractéristiques, et nous pro-
posons une approche formelle basée sur la théorie
mathématique des distributions, qui permet de faire
apparaitre automatiquement les termes branaires
bilinéaires.

Nous avons réalisé que les termes de brane
bilinéaires, une fois localisés a des positions in-
termédiaires le long de lintervalle, fournissent une
opportunité d’expliquer I'existence des saveurs: les
trois familles dans ce contexte correspondent aux
trois différents états quantiques, d’un unique champ
5D, localisés respectivement entre plusieurs termes
branaires. Ce nouveau mécanisme de séparation des
générations, le long de la dimension supplémentaire,
génére de plus automatiquement les hiérarchies de
masses de fermions lorsque le profil du boson de
Higgs est exponentiellement localisé vers la “TeV-
brane”, afin de résoudre le probleme de hiérarchie de
jauge. Le mécanisme étudié offre aussi une nouvelle
méthode, en théorie des champs, pour localiser tous
les fermions sur une brane (épaisse), de maniére al-
ternative a I'approche standard du couplage a un soli-
ton.
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Abstract: Since around 2000, attractive extensions
of the Standard Model based on extra spatial di-
mensions have emerged, and in particular the class
of warped dimension models with a brane-localized
Higgs boson coupled to bulk fermions (dual to com-
posite Higgs models).

In this thesis, we show that the proper treatment of
such scenarios does not rely on any Higgs peak reg-
ularization, as usually done in the literature, but may
require the presence of specific bilinear brane terms
instead. The bilinear brane terms could allow elabo-
rating an ultra-violet origin of the chiral nature of the
Standard Model and its chirality distribution among
quarks/leptons. The new calculation methods pre-
sented, implying the independence of excited fermion
masses and 4D Yukawa couplings on the ‘wrong-
chirality’ Yukawa terms, have impacts on phenomeno-
logical results.

Then we extend those rigorous approaches from the
interval configuration to the dual S'/Z, “orbifold”,

which allows, in particular, a strict treatment of the
fermion profile discontinuities across the characteris-
tic branes, and we propose a formal approach based
on the mathematical theory of distributions, allow-
ing to make appear automatically the bilinear brane
terms.

We have realized that the bilinear brane terms, lo-
cated at intermediate positions along the interval, pro-
vide an opportunity to explain the existence of flavors:
the three families in this context correspond to three
different quantum states, of a unique 5D field, local-
ized respectively between such brane terms. This
new generation partition mechanism, along the ex-
tra dimension, further generates fermion mass hier-
archies automatically when the Higgs boson profile
is exponentially localized towards the so-called “TeV-
brane” to address the gauge hierarchy problem. The
studied mechanism also offers a new field theory
method to localize all fermions on a (thick) brane, al-
ternatively to the standard soliton coupling approach.
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Abstract

Since around 2000, the Standard Model extensions on extra spatial dimensions have
emerged as attractive alternatives to supersymmetric scenarios. In particular, the class
of warped dimension models with a brane-localized Higgs boson coupled to bulk fermions
(dual to composite Higgs models) can address both the flavor puzzle and the gauge hierarchy
problem. Nevertheless, a key question arises due to the possibility of fermion wave function
discontinuities at the Higgs boundary: how to rigorously build the Lagrangian and calculate
the fermion mass spectrum as well as the effective 4D Yukawa couplings?

In this thesis, we show that the proper treatment does not rely on any Higgs peak
regularization, as usually done in the literature, but may require the presence of specific
bilinear brane terms instead. This result is welcome as the Higgs regularization suffers
from mathematical discrepancies reflected in the amplitude paradox of non-commutativity
in some calculation steps, as debated in the literature. The bilinear brane terms could
allow elaborating an ultra-violet origin of the chiral nature of the Standard Model and
its chirality distribution among quarks/leptons. The introduction of bilinear brane terms
can be replaced by vanishing conditions for probability currents at the interval boundaries.
The current conditions are then implemented through essential boundary conditions to be
contrasted with the natural boundary conditions derived from the action variation. All these
theoretical conclusions are confirmed in particular by the exact converging results of the 4D
versus 5D approaches. The new calculation methods presented, implying the independence
of excited fermion masses and 4D Yukawa couplings on the ‘wrong-chirality’ Yukawa terms,
have impacts on phenomenological results like the relaxing of previously obtained strong
bounds on Kaluza-Klein masses induced by flavor-changing reactions generated by the tree-
level exchanges of the Higgs field.

Then we extend those rigorous approaches from the interval configuration to the dual
St /Zy orbifold, which allows, in particular, a strict treatment of the fermion profile discon-
tinuities across the characteristic branes (fixed points and Yukawa coupling brane). We also
show that the Zs parity transformations in the bulk do not affect the fermion chiralities,
masses, and couplings, in contrast with the EBC and the BBT, but when extended to the
fixed points, they can generate the chiral nature of the theory and even select the Standard
Model chirality setup while fixing as well the fermion masses and couplings.

We have realized that the bilinear brane terms, located at intermediate positions along
the interval, provide an opportunity to explain the existence of flavors (replicas of elementary
particles with identical quantum numbers): the three families in this context correspond
to three different quantum states, of a unique 5D field, localized respectively between such
brane terms. This new generation partition mechanism, along the extra dimension, further
generates fermion mass hierarchies automatically (from different wave function overlaps)
when the Higgs boson profile is exponentially localized towards the so-called TeV-brane to
address the gauge hierarchy problem. The two hierarchy problems are then solved through
the same exponential scalar profile. The partition mechanism also offers a new field theory
method to localize all fermions on a (thick) brane, alternatively to the standard soliton
coupling approach.
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Introduction

The Standard Model, its drawbacks and extensions

The Standard Model of particle physics [3-6], based on the Quantum Field Theory [7—
9], is undoubtedly today the most successful scenario describing the known elementary
particles and fundamental forces of nature. In July 2012, the historical discovery of a
125.5 GeV resonance at CERN-Geneva’s Large Hadron Collider by the ATLAS [10] and
CMS [11] Collaborations, most likely constituting the Higgs boson [12-14], brought the
last missing cornerstone of the SM ! by confirming the standard Higgs mechanism of Elec-
troWeak Symmetry Breaking. Thanks to an undeniable experimental success, its complete
elementary particle content has been discovered (see Figure 1), and the theoretical pre-
dictions of the SM have been experimentally confirmed with a good accuracy at the Large
Electron-Positron collider, Tevatron and LHC [15].
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everyday matter exotic matter force particles (mass giving)  standard model
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Figure 1 — Schematic view of the Standard Model of particle physics after the EW sym-
metry breaking [16].

Although the SM is a very successful theory that has offered us some striking agree-

1. All the abbreviations are presented explicitly in Appendix K.2.
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ments between experimental data and theoretical predictions, a variety of statements,
both theoretical and experimental, lead to the undoubted conclusion that the SM should
be only an effective theory of a more fundamental one, leaving several important questions
unanswered.

On the observational side, there is no confirmed interpretation of the dark matter of
the universe [17-19]. Cosmological measurements carried out by the Planck satellite [20]
indicate that approximately 27% of the total energy budget of the universe is made out
of dark matter, which could be constituted by the presence of one or several species of
massive particles permeating the cosmos at nonrelativistic speeds, if those neither carry
electrical charge nor participate in the strong interaction and, most importantly, are stable
on cosmological time scales. Among the rest of ~ 73%, only 5% is represented by the
ordinary, luminous matter. In contrast, the remaining 68% of the energy density appears
to be made out of the even more mysterious dark energy (Cosmological Constant) and
further raises deep questions about quantum gravity.

Another shortcoming of the SM regarding observations, in particle physics, concerns
the now well measured neutrino flavor oscillations, which imply that at least two of them
must be massive [21]. Nevertheless, in the SM, neutrinos are entirely massless, so that
they should not oscillate from one flavor to another. Thus, one needs to add new physics
to give them a mass. In the fermion sector of the SM, one observes a large mass hierarchy
between the neutrino mass scale and the top quark mass (see Figure 1) to be explained
as well.

Moreover, the absence of CP violation effects in strong interactions, described by
Quantum ChromoDynamics [22-26], constitutes also an open question since a CP violating
topological term is authorized by the symmetries of the SM.

The SM also suffers from several drawbacks of theoretical origin. First, while strong
(QCD) and electroweak interactions are included in the SM, the SM does not give a
description of gravity which consists of a back-reaction of matter and energy on the space-
time geometry within the Einstein’s theory of General Relativity [27]. Einstein’s theory is
classical and cannot describe the quantum fluctuations of spacetime, so our today’s under-
standing of the physical world lacks a comprehensive global theoretical description. The
inability to consistently incorporate a quantum theory of gravity — with gravitons coupled
to the SM sector — lies in the fact that gravity is then a non-renormalizable theory: at each
order in perturbation theory, new divergences appear, which mandate the introduction of
an infinity of counter-terms in the renormalized Lagrangian (describing gravity). Or, each
counter-term needs to be fixed by experimental measurements, meaning that one has to
perform an infinite number of measurements to give sense to gravity at the quantum level,
which is not consistent.

Therefore, several extensions of the SM have been developed. A major type of theories
underlying the SM are those based on the so-called SUperSYmmetry (SUSY), which relates
fermions to bosons, in the sense that for every known fermion, there is a bosonic partner
(so-called superpartner), which retains the same quantum numbers as the original particle
but whose spin differs by 1/2, and vice versa. SUSY benefits from strong motivations of
theoretical nature, like representing the first non-trivial extension of the Poincaré group
or relying on gravity in its local form (supergravity), as well as of phenomenological
nature, like allowing gauge coupling and group unification within a Grand Unified Theory
context — the extended SU(5) gauge group being probably the most famous one — or
providing possible Weakly Interacting Massive Particles being realistic candidates for the
dark matter of the universe: Lightest Supersymmetric Particles (LSP) being stable thanks
to the conserved R-parity.

14



Another major type of SM extension concerns the structure of spacetime itself. In QFT,
spacetime is a simple background where fields propagate. In general relativity, spacetime
is dynamic and the theory describes how classical sources back-react on the geometry. In
both theories, the number of spacetime dimensions is not determined by the first princi-
ples. On the one hand, compactified timelike extra dimensions seem to lead to physically
inconsistent theories because the KK excitations of the fields (propagating in the extra
dimensions) are tachyons, which imply violation of physically reasonable conditions like
causality and unitarity [28, 29]. On the other hand, spacelike extra dimensions have a long
history in fundamental physics since the pioneer works by G. Nordstrom [30], T. Kaluza
[31] and O. Klein [32, 33] who have built their first consistent EFTs. In the absence of
a particular UV completion of gravity, one is free to build models adding an arbitrary
number of spatial dimensions compactified on some geometries with a given topology.
The only criteria is that the higher-dimensional model should be consistent with all the
observations indicating that our universe appears to be quite flat and four-dimensional in
current low-energy experiments. These extra spatial dimensions are thus in general con-
strained to be typically microscopic (from several collider physics and gravitational tests)
— except in some specific gravity-localized scenarios (the RS2 model [34]). One further
needs a mechanism to stabilize the extra dimensions (see for instance Ref. [35, 36]). Since
around the year 2000, a new paradigm has arisen based on the existence of such compact
extra spatial dimensions. For instance, this framework has brought an alternative way to
unify the gauge couplings at a high scale within a Grand Unified Theory [37-41]. From
the cosmological point of view, it has lead to a viable new Weakly Interacting Massive
Particle candidate for dark matter — the Lightest KK Particle (LKP) being stable thanks
e.g. to a residual KK-parity [42-44]. The subclass of scenarios with an extra warped
dimension also appears to be approximately dual, through the AdS/CFT correspondence,
to the composite Higgs models which, in particular, shed light on the origin of the Higgs
potential form [45, 46]. A possible origin of the Higgs field itself was even proposed in
the gauge-Higgs unification scenarios: it could arise as a new component (like As) of an
higher-dimensional gauge boson (A (x™M)) [47].

Regarding the deep question of formulating a complete and consistent quantum the-
ory of gravitation, there exist serious candidates for addressing this puzzle like the (su-
per)string theories or the loop quantum gravity. Possibly, in a complete theory of gravity
that describes Planckian physics, the dimensionality of spacetime can be determined by
the dynamics or the consistency of the theory like string theories [48]. Interestingly, both
SUSY and extra dimensions appear as necessary ingredients of the superstring theories.
In the next two parts, independently of string theories, we discuss the two drawbacks of
the SM that we will study in this thesis (directly or indirectly).

The Hierarchy Problem in the Electro Weak Symmetry Breaking sector

Another profound question is the origin of the ElectroWeak symmetry breaking and the
precise Higgs potential in the SM. The ElectroWeak sector is described by the Glashow-
Salam-Weinberg (GSW) model [4, 5, 49], based on the spontaneous symmetry breaking
of the gauge theory. In this framework, one applies the Brout-Englert-Guralnik-Hagen-
Higgs-Kibble mechanism [50-55] where the SM Higgs field H (z#) is a complex scalar field
with a ‘Mexican hat’ form potential:

V(H) =m} H?> + M\ |H|*, with m% <0,Ag >0, (1)

which leads to a non-vanishing Vacuum Expectation Value v ~ 246 GeV for H(z*) trig-
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gering the spontaneous EW symmetry breaking, while the fluctuations of the field around
its VEV describe a spin-0 particle — the Higgs boson h(z#),
H(z") = 1 [v+ h(z")], with v = iy (2)
\/i 9 >\H 9
and the physical mass of 125.5 GeV was measured in 2012 [10, 11]. Thus, the free La-
grangian terms of h reads as,

1 1
L> §8Mh8“h - §m% h%, with m7 = -2 x m% . (3)

Next, a deep hierarchy problem remains unexplained in the SM: the vast discrepancy
between the EW scale A gy ~ 100 GeV and the Planck scale Ap ~ 10 GeV ?, constituting
the so-called gauge hierarchy problem of the SM. It’s not a problem to the SM itself but
an uncomfortable high sensitivity of the Higgs potential to the UV completion from New
Physics. More precisely, the hierarchy problem appears in the fact that m% is very sensitive
to the high-energy behavior of quantum corrections, induced by particles directly (or
indirectly) interacting with the Higgs boson. The hierarchy problem is thus related to the
radiative corrections Am% that the physical Higgs boson mass receives at the loop-level,

mi2z,phys = mz,(bare) + Am% . (4)
S
f '/’ \\
' !
L N W h o el f
f
(a) hff (b) h*SS

Figure 2 — One-loop corrections to the Higgs squared mass parameter miphzs, due to (a)

a Dirac fermion f [antiparticle f], and (b) a complex scalar S [antiparticle S].

For example, in Figure 2 (a), one has a correction to m,% coming from a loop via exchanging

a Dirac fermion f with mass my [antiparticle f]. If the Higgs field H couples to f via the
Lagrangian term,
SSB Af

APHFS 225 LS, (5)

then the Feynman diagram in the Figure 2 (a) yields a correction

2 AT o
Amj, ~ —@AU\M (6)

2. Gravity should become important at this scale.
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where Ay ~ Ap 2 is an ultra-violet cutoff for the New Physics regulating the loop integral.
Since the radiative corrections are quadratic in the cutoff, the (squared) Higgs mass is
quadratically sensitive to every new mass scale above Agy ~ 100 GeV [56-58]. Besides,
for a cutoff at the Planck scale, these corrections are roughly 34 orders of magnitude larger
than the value of m%’phys ~ (100GeV)? required by the EW symmetry breaking. Of course
the bare Higgs mass my, (pare) can be adjusted to just cancel the radiative corrections, but
such extreme fine-tuning seems technically unnatural as further different at each order of
the calculation perturbation.

The radiative corrections can also receive contributions from any heavy complex scalar
particle S with mass mg [antiparticle 5*] coupled to the Higgs boson via the Lagrangian
term,

~\sHHSS 255, —%Sh?Ss. (7)

Then the Feynman diagram in Figure 2 (b) yields a one-loop correction,

Am} ~ +%A?N : (8)
Thus, the fine-tuning still arises here to reproduce the much smaller measured Higgs mass.
Note that the quadratic divergences in Eq. (6)-(8) occur only for scalar particles, since
the masses of fermions and vector bosons are protected by chiral and gauge symmetries,
respectively. In the SM, the fermion and gauge boson physical masses indeed receive
corrections proportional to their bare masses, i.e. Mphys — Mbare X Mpare IN(Ayy/m),
which is a consequence of chiral (gauge) symmetry for fermions (gauge bosons).

The gauge hierarchy problem has received a lot of attention in the last decades, and in
particular some generic field theory (model-independent) ways out of this problem were
suggested, like absence of heavy particles interacting with the Higgs scalar field up to the
Planck scale,. .. This is because so far no new state has been found around the TeV corner
at the LHC, which could have provide a signature for some SM extension addressing the
gauge hierarchy problem.

Many attempts have been undertaken to provide solutions to the main gauge hierar-
chy problem. One of the most famous approaches to address the gauge hierarchy problem
is supersymmetry. Indeed, the SUSY provides a protection mechanism for the (Higgs)
scalar mass. Basically, if each of the quarks and leptons of the Standard Model is accom-
panied by a complex scalar with coupling A\g = 2 x /\i, then the A2UV quadratic divergence
contributions in Figure 2 (a) and (b) would neatly cancel each other by the extra supersym-
metry [59-64]. In this context, the Higgs boson gets paired with its spin-1/2 superpartner,
dubbed the Higgsino, of which the SM scalar ‘inherits’. The Higgsino receives protection
from the chiral symmetry. One particularly popular version is the Minimal Supersym-
metric Standard Model or MSSM [65]. So far, unfortunately, no superparticle has been
discovered, which means that SUSY is very badly broken.

Over the last two decades, appealing alternative solutions to the gauge hierarchy prob-
lem have been developed. In 1998, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali
(ADD) proposed in Ref. [66-68] to compactify ¢ € N* flat spacelike extra dimensions on
a g-dimensional compact space C, of volume V, with a factorizable spacetime geometry

M4 X Cq 9 (9)

3. Under the assumption that new physics enters at Ap.
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where My is the 4D Minkowski spacetime. The 4D Planck scale A%) is then just an
effective scale given by the relation

A7 = ] 0

involving the (4 + ¢)D Planck scale

1 1/(g+2)
A(;H*Q) _ [ ]
87rG§3+q>

(11)

where G%W) is the (4+q)D gravitational Newton constant. Consequently, while the Planck

Angq)

scale Agf) is just the 4D effective scale, is the real scale at which gravity becomes

strongly coupled. So, Ag—m) is the true cut-off of the QFT and if it is set at a few TeV, this

model solves the gauge hierarchy problem. Simultaneously, a large compactified volume
V, allows to recover the 4D effective weak gravitational coupling measured in experiments.
For this purpose, the SM fields must be localized on a 3-brane, in contrast to gravity which
is a physical property of the (4 + ¢)D spacetime (as usual in general relativity), so that
at large distances between two test masses on this 3-brane, gravity is realized as a feebly
coupled theory, because gravitational fluxes spread into the large volume V), of the whole
bulk. In the simplest version with toroidal compactification and with less than seven
LEDs motivated by superstring/M theory, the compactification radii are large compared
to the higher-dimensional Planck length: the gauge hierarchy disappears at the price of
introducing a geometrical hierarchy of lengths. The ADD proposition is thus a kind of
reformulation of the gauge hierarchy problem.

A way to overcome the ADD geometrical hierarchy question is to use a single warped
extra dimension as proposed concretely by Randall and Sundrum [69]: the RS1 model.
There, the SM fields are localized at the boundary of a slice of an AdSs (5D Anti-de Sit-
ter) spacetime where the warp factor redshifts the scale at which gravity becomes strongly
coupled (from the Planck scale Ap ~ 10" GeV to the TeV scale) thanks to an exponen-
tially suppressed scale. Strongly coupled gravity at the TeV scale may generate dangerous
brane-localized higher-dimensional operators inducing proton decay, large Majorana neu-
trino masses and Flavor Changing Neutral Currents [67]. The value of the Wilson operator
coefficients is indeed suppressed only by the TeV scale, so that one has to add new in-
gredients to the scenario to protect it, like gauging some global symmetries of the SM
as the baryon / lepton numbers [70], adding flavor symmetries [71-73] or spreading the
brane-localized SM fermion fields via a finite brane thickness [74]. Quickly, it was realized
anyway that only the Higgs field has to be localized (or highly peaked) at the boundary
where the effective cut-off is of the order of the TeV (if the EW scale is to be stabilized
by such a geometrical structure), while gauge bosons and fermions can propagate into the
bulk [75-80]. This bulk framework has additional motivations regarding flavor physics
as will be discussed in the following part. Notice finally that the dual composite Higgs
models further provide a protection against the little hierarchy problem imposed by the
various phenomenological constraints on the New Physics scale.

Flavor Physics

Still nowadays, the non-trivial structure of the SM suggests that its flavor sector and
gauge interactions may not be arbitrary but should have some underlying first-principle
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explanation. This outstanding theoretical open question represents one of the great mys-
teries in elementary particle physics. In particular in this community, one should admit
that there exists today no unanimously celebrated model reproducing the fermion patterns
of the flavor space, and, that one does not even know the energy scale at which the flavor
dynamics sets in.

The first enigma about the SM fermion field content is the origin of the existence of
flavors itself, namely the replication of each fermion in three copies with identical quan-
tum numbers (i.e. spin and charges). There have been of course several attempts in the
literature to interpret the presence of the SM fermion families. The first class of sce-
narios trying to explain the fermion replication relies on GUT, introducing new gauge
bosons and symmetry breaking mechanism. For instance, the SM gauge group could orig-
inate from the reduction pattern, Eg — Eg x SU(2)r x U(1)p followed by the subsequent
breaking Eg — [SU(3)]3, where [SU(3)]? is associated to the gauge trinification symmetry
and U(1)p x SU(2)p is a local group of the family symmetry whose respective singlet and
doublet components constitute the three SM fermion families [81-84]. These three SM
generations can emerge from other schemes of gauge symmetry group extensions [85-91].

Another main type of scenario, where the origin of SM fermion families has been ex-
plored, is based on string theories. First, within the 10D heterotic string theories, where
6 dimensions can be compactified on a Calabi-Yau manifold or on orbifolds, the flavor
properties are strictly related to the features of the compact space. In Calabi-Yau com-
pactifications, the number of chiral generations is proportional to the Euler characteristics
of the manifold. In orbifold compactifications, matter in the twisted sector is localized
around the fixed points, and, the Yukawa couplings — arising from world-sheet instan-
tons — have a natural geometrical interpretation [92-94]. Similarly, in the more recent
string realizations, where the light matter fields of the SM arise from intersecting branes
(in superstring theories, intersecting D-brane models are T-dual of magnetized D-brane
models), the flavor dynamics is controlled by topological properties of the geometrical
construction: the generation number is determined by the intersecting number in the
framework of intersecting D-branes (see for instance Ref. [95, 96] or rather Ref. [97, 98] for
non-supersymmetric string model versions of intersecting D5-branes). Finally, the idea of
a three-family configuration of the field content arising from GUT has also been investi-
gated within the framework of perturbative heterotic superstring models (see Ref. [99] for
a review).

The other mystery of the SM flavor sector lies in the origin of the mass scale hierarchies
among most SM fermions [from ~ 0.5 MeV for the electron to ~ 170 GeV for the top
quark], including the even more tiny neutrino mass scale. The most popular 4D model
generating those mass hierarchies is probably the Froggatt-Nielsen mechanism [100] based
on a flavor symmetry, while for producing small neutrino masses it is certainly the see-saw
mechanism. Moving to extra dimensions, the RS1 model with bulk SM fields provides a
totally new physical interpretation [101, 102] for the origin of the large mass hierarchy
prevailing among different flavors and types of SM fermions. The zero modes of the
fields are identified with the SM particles: the fermion zero modes can be localized near
one of the two boundaries thanks to 5D Dirac masses. The wave function of a heavy
(light) SM fermion can then have a significant (small) overlap with the boundary-localized
Higgs field. Therefore, without ad hoc hierarchies in these fundamental 5D masses and
Yukawa couplings, one can generate the flavor mass hierarchy observed in Nature (see for
instance Ref. [79, 103]). Such an interpretation of the whole SM fermion mass hierarchy is
attractive, as it does not rely on the presence of any new symmetry in the short-distance
theory, in contrast with the usual Froggatt-Nielsen mechanism. This interpretation is
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purely geometrical: it is based on the possibility of different localizations for SM fermions
along an extra dimension, depending on their flavor and type. In such a scenario, the
quark masses and CKM mixing angles can be effectively accommodated [104-106], as
well as the lepton masses and MNS mixing angles in both cases where neutrinos acquire
Majorana masses (via either dimension five operators [107, 108] or the specific see-saw
mechanism [109]) and Dirac masses (see Ref. [110-114] for order unity Yukawa couplings
leading to mass hierarchies essentially generated by the higher-dimensional mechanism).
This possibility of fermion localizations along extra dimension(s) was also considered in
the context of large flat extra dimension models, in order to generate quark [115] and
lepton [116] masses/mixings. In this flat case, the creation of small Dirac masses for the
neutrinos was implemented as well thanks to gauge singlet right-handed neutrinos (and
their KK modes) spreading into the whole spacetime [117-119].

The other puzzle in the SM flavor sector is the recent set of deviations from lep-
ton flavor universality measured through neutral/charged-current semi-leptonic B meson
decays. Among the various scenarios built in the literature, the most successful media-
tor addressing both sets of anomalies has turned out to be a TeV-scale U; vector lepto-
quark [120-126]. The couplings of such a U; particle, being necessarily stronger with the
third quark/lepton generation, as well as the needed multi-scale construction [127] find a
concrete realization in the following SM fermion distribution along a compactified warped
extra dimension: distinct up-type Right-handed fermion flavors localized on distinct 3-
branes *, one brane-localized down-type Right-handed fermion and their two other flavors
respectively in two complementary sub-intervals, the second family of Left-handed doublet
inside a sub-interval attached to the Infra-Red brane and their two other families spread
on the whole interval [128].

Main thesis schemes

First, in order to develop a clear understanding and study the phenomenology of
higher-dimensional models, it is crucial to have in particular a rigorous field theoretical
treatment of 5D fermions that can accommodate couplings to a brane-localized Higgs field
— a standard geometrical configuration arising in attractive models addressing the gauge
hierarchy problem as discussed above (in both the ADD and RS scenarios). This is the
first topics we propose to study in this Ph.D. thesis. A few words here on our general
methodology. An higher-dimensional field theory with compactified extra dimensions can
be rewritten as an effective 4D theory by a procedure called Kaluza-Klein dimensional
reduction. An higher-dimensional field gives then rise to an infinite tower of 4D fields:
the KK modes. Most of the authors use a perturbative approach [129, 130], which we
call the 4D approach (due to a KK mixing at the 4D field level), where the KK spectrum
and wave functions of the 5D fermion fields are worked out without including immediately
the brane-localized mass terms. An alternative equivalent method is to treat the brane-
localized terms directly when one solves the 5D equations and boundary conditions for the
fermion wave functions: the called 5D method. The exact matching between these 4D and
5D approaches will constitute a solid validation of several obtained analytical results, one
of which being in contrast with the literature on this topics: many authors were puzzled
by an apparent discontinuity in the KK wave functions at the Higgs field brane, and they
have thus introduced a kind of Higgs profile reqularization smoothing or shifting away from
the boundary the brane-localized Higgs boson [130-142]. We will present what we claim
to be the appropriate and consistent method to treat the bulk fermion couplings with a

4. With three spatial dimensions.
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brane-localized Higgs boson. There the non-trivial regularization procedure appears to be
useless. Then we will apply the new approaches developed in the simple interval model
to the case of the dual orbifold model. In particular, we will build a strict mathematical
method to treat properly possible profile jumps along an extra dimension. Those studies
will point out the necessity to introduce some new kinds of fermionic terms that we call
the bilinear brane terms. Based on this resulting statement, we will propose a surprisingly
convenient formalism for higher-dimensional models based on fields defined as distributions
rather than simple functions. The bilinear terms will also turn out to allow us to build
scenarios explaining the existence of SM fermion replicas, namely the flavors. Indeed,
in those scenarios, a replication of 4D fermions, with identical quantum numbers, arises.
The original reason being that the similar 4D fermions — only differing by their quantum
position states along a fifth dimension and hence their masses — originate from a common
higher-dimensional field. These scenarios realize the mixings among quarks/leptons via
different fermion partition mechanisms and further allow to reproduce the SM fermion
mass hierarchies for a standard exponential Higgs profile along the extra dimension, which
is interestingly yet required by the gauge hierarchy problem within a warped version of
the present type of model. This new type of flavor model further provides a theoretical
framework for addressing the phenomenological puzzle of deviations from lepton flavor
universality observed in semi-leptonic B meson decays. Finally, our partition mechanism
allows to build models strictly localizing fermions on thick branes with a controlled width
as small as wanted (independently of flavor considerations), representing thus an original
alternative to the usual mechanism based on the fermion interaction with a solitonic
background. This new localization mechanism allows the concrete realization of warped
(RS like) and flat (ADD) extra dimension models requiring all the SM fermions to be
confined on a 3-brane.

The manuscript of this Ph.D. thesis is organized as follows:

— Part I gives the scheme of holography beyond the Standard Model via extra spatial
dimensions whose purpose is to present regular treatments of 5D model building in
the literature:

— Chapter 1 is a short review of the SM of particle physics and the motivations
for BSM model buildings, insisting on the gauge hierarchy problem.

— Chapter 2 is an introduction to the models with the SM Higgs field localized
at the boundary of a slice of an AdS5 spacetime with bulk fermion and gauge
fields.

— Part II contains the main original research work made during this Ph.D. thesis:

— Chapter 3 describes the method to treat 5D fermions coupled to a boundary
localized Higgs field with a compactification on an interval.

— Chapter 4 contains a generalization of the method of Chapter 3 towards a
compactification on 5D orbifolds, including a Higgs field localized on a brane
away from a boundary and some other brane-localized terms.

— Chapter 5 contains a distribution formalism on the the S'/Zy orbifold, refor-
mulating Chapter 4.

— Chapter 6 describes our intermediate brane model to reveal a new mechanism
to split fermion generations and realize mass hierarchy simultaneously.

— Our notations & conventions are given in Appendix A.

— The acronyms used in this manuscript are listed on a Glossary page 212.
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Part 1

A holography beyond the
Standard Model
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Chapter 1

The Kaluza-Klein theory of bulk
fields

This chapter is to present a general treatment in a simplified model with a flat extra
dimension, which already possesses all the key ingredients to study the delicate brane-
Higgs aspects. Hence, our conclusions can be directly extended to the warped models.

1.1 A simple spacetime geometry

We consider a 5D toy model on the product spacetime geometry, £ = M* x T:

(i) M* represents the usual 4D Minkowski spacetime whose coordinates are denoted
by z# where pu € [[0,3] is the Lorentz index of the covariant formalism. The metric
conventions are given in Appendix A.

(ii) Z is a compact 1D flat interval of the extra spatial dimension, which is denoted by
y € [0, L], with a length, L € R*, and bounded by two flat 3-branes at y = 0 and
y=L.

(iii) A point of the 5D spacetime £° is labeled by the coordinates, ™ = (z#,y), M €
[0, 4] with the 5D metric is given by,

ds® = nMNddeJ:N,

where nyry with M, N € [0,4] is the 5D Minkowski metric in Eq. (A.2).

1.2 Bulk scalar fields

We recall the common approach of performing Hamilton’s principle in a holographic
context of 5D scalar fields of mass dimension 1 following Ref. [143]. We want to describe
a 5D real scalar field H (z#,y) with quadratic mass terms in a 5D bulk with the extra
dimension compactified on an interval [0, L].

The physical mass spectrum arises when the bulk fermions couple to a Higgs-like scalar
field. In a realistic extension of the SM, this scalar field should be a SU(2)y doublet. In
our toy model, it is enough to take a real scalar field H, with a Zs symmetry H — —H,
such as only powers of |H|? appear in the action, like in a realistic extension of the SM.
In contrast to the brane-localized field in Ref. [1], here we consider a bulk real scalar field
H (mass dimension 3/2) [144] such as the Yukawa interactions exist into the whole extra
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dimension Z. The 5D action of the field H is

Sﬂz/d%[(/ dy£H>— o(H) — Vi(H )] (1.1)

where L is the bulk scalar Lagrangian, and Vj,;, is the scalar potential on the brane at
y = 0/L. Motivated by models where the EWSB occurs only at the boundary of a warped
extra dimension (as in RS models with bulk Higgs in Ref. [144]), we will consider only a
non-quadratic potential on the brane at y = L, and we will comment after what we expect
by relaxing this hypothesis. For our purpose, it is enough to keep only the operator quartic
in H for the self-interaction term, since it is the dominant one. Therefore, we consider a
bulk scalar Lagrangian with no bulk self-interaction of H,

1 M?
Ly = 5aMfrlrantf - TH H?, (1.2)

and the boundary-localized potentials:

My

H? + == H*
5 +

Vo(H) = ;

ey vt = (e )

; (1.3)
L

where MIQ{, Moy, Ag > 0. My and My,;, have mass dimension 1, and Ay has mass
dimension —2.
We perform Hamilton’s principle by varying the field H, and we get

o= [ e oo om [ =0 (i) [

/d4 (o5 )|+ (75 ),

With generic field variations d H at every point of the 5D spacetime, the variations of the
action in the bulk and on the boundaries vanish separately. We get the Euler-Lagrange
equation of H in the bulk:

L

0

} . (1.4)

Val, Yy eT=10,L], (0md™+ME)H=0, (1.5)
and the natural BC on the branes:
A
(0 — Mo)H|, =0, (84— Myp)H|, = —3# H3 . (1.6)
: L

In analogy to the Higgs mechanism, the Mexican hat potential Vz,(H) (1.3) at the brane
y = L makes the scalar field H having a non-vanishing vacuum expectation value v(y) of
mass dimension 3/2 with respect to the spontaneous Zy symmetry breaking, such as

v(y) + h(z*,y)
5

From the Euler-Lagrange equation (1.5) of H in the bulk, and its BC (1.6), we get the
equation for the VEV in the bulk:

(03 = Mi;) v(w) =0, (1.8)

H(z",y) = (1.7)

and its BC: \
(04 — Mo)vly =0, (84— Mp)ov|, = ,g v (1.9)
L
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where we have imposed the z# independence of v(y) and the 4D asymptotic condition of
h(z*,y), which is explicitly presented in Appendix B. From the equation (1.8) of the VEV
in the bulk, and the BC for the VEV (1.9) at y = 0, we obtain:

My — M
— Mpy H 0 —Mpyy 1.10
oly) =N (M T ) (1.10)
where N, is a constant of mass dimension 3/2 fixed by the BC at y = L. It is natural to
take My ~ My ~ Mp. In this toy model, we choose My = My to simplify the profile of
the VEV (1.10), such as

v(y) = Ny My, (1.11)

In this case, the BC (1.9) for the VEV at y = L gives

N, = \/12 (M, — M) e ML, (1.12)

The VEV is thus peaked at y = L, as in the scenario of Ref. [145]. Note that in this
reference, the authors consider a more general flat extra-dimensional model where the
scalar field has a quartic self-interaction in the bulk and on both branes. The general
profile of the VEV is then more involved. However, as argued in the same article [145],
one can choose a natural regime of parameters where the VEV profile is well approximated
by an exponential function peaked on the brane at y = L. One may notice that the quartic
potential terms (1.3) only exist on the IR brane, the motivation of which would be discussed
in Chapter 2.2.

In the end of this section, we need to give a glance at the 5D scalar field h(z*,y). From
the Euler-Lagrange equation (1.5) of H in the bulk, and its BC (1.6), one also derives the
EOM for h(z",y) in the bulk by 4D dependence and localization comments:

vk, ¥y eZ=10,L], (9md™ +ME)h=0, (1.13)
and the NBC on the branes:

(01— Mo)hly =0, [(01 = My) o+ 222 7]

=0. (1.14)
L

which is explicitly derived in Appendix B.

1.3 Bulk fermion fields

We recall the common approach of performing Hamilton’s principle in a holographic
context of 5D fermion fields following Ref [143], to show disappointing results with the
lack of the BBT. A general bulk action of a 5D Fermion field is developed as:

L
Shulk = /d4$/0 dy Ly, (1.15)

where Ly includes the fermion kinetic and the mass terms of the Lagrangian density,
which is integrable over the entire region, Z = [0, L]. The 5D fermion fields, F(z*,y), —
of mass dimension 2 — have the following kinetic terms [entering Eq. (1.15)] which allow
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to recover canonical covariant kinetic terms for the associated fermions in the 4D effective
action (as imposed by the argument of decoupling limit !):

Liim = %FFME}F, (1.16)

using the standard notations %) = 87\/; - %, Oy = 0/0z™M | 2M = (2, y) with M € [0,4]
for the coordinates, ™ € £5 and T'M for the 5D Dirac matrices (cf. Appendix A). In the
used conventions, the 5D Dirac spinor of mass dimension 2 is an irreducible representation
of the Lorentz group as,

FZFL""FR with .FL: <FOL> :PLF7 fR: (;)):,PRF7 (117)
R

in terms of the two two-component Weyl spinors Fr,, Fr, L/R standing for the Left /Right
chirality after the chiral projection,

154°

2 )

>

Pr/r (1.18)
and F = FT40 as usual. Based on Eq. (1.17), we can rewrite the kinetic terms Ly, in the
bulk Lagrangian of Eq. (1.16) in the following form where the Left/Right chiralities are
obvious:

1 < Rd
Lin = 5 (iF}o" By Fr + iF} 5" 0, Fy, — F},0i Fy + F} 0, Fy)

1, — _ > PN
= 5 (Z']:R’y“g;]:}z —l—i]:L'y“EZfL — FrO4 Fp, +-7'_L84]:R) , (1.19)

using the matrices o, # defined in Appendix A and Fp, /g = ]:}E / R'yo.
Besides, we can add bulk mass terms to the bulk terms as additional physical ingredi-
ents,

Linass = —mpFF, (1.20)

where mp is the bulk mass of the fermion, F', which is a constant such that dympr = 0 on
the whole physical domain, y € Z. The mass terms, Lpass, can also be rewritten by the
chiral decomposition (1.17) as,

Lonass = =g (F}Fr+ FYFL) = =g (FLFr + FrFr) - (1.21)

In order to extract the equations of motion and the boundary conditions from the
relevant Lagrangian for the bulk fermions, we apply the least action principle — or Hamil-
ton’s variational principle — for each of them. The least action principle leads to two
relations of the kind, d7Spuk = 0, for the unknown 5D field F', and the corresponding
one, dpSpux = 0, involving the complex conjugate fields ?, since the elementary field vari-
ations 0F,, 6F, (see Appendix C.1) are generic and hence independent from each other.
Assuming, at a first level, the boundary fields F(z*,y = {0,L}) = F| ; to be initially
unknown (unfixed), they should be deduced from the action minimization with respect to

1. From the theoretical consistency and phenomenological points of view, the SM must be approximately
recovered at low-energies in the limit of infinitely heavy KK excitations.

2. The equations of motion and boundary conditions derived from the least action principle for the
fields and their conjugates are trivially related through Hermitian conjugation.
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them, considering thus non-vanishing generic?® variations §F |07 ; # 0% In other words,
F\Q 1, should be then obtained from the so-called Natural Boundary Conditions. Using

compact notations, like for example,

7 OLvulk . SF O Lyulk ’

Y P2 = < (1.22)
= OF, oF
we can write in particular ®,
L —&Cb 1k aﬁb 1k
&Su:/& /d %F ulk 5 (90 F “}
Fobulk T Y STl )88MF
_ /d4x /L {5F3£bu1k . { 8£bulk} 5Py 3ﬁbulk}
0 oF 88MF 86]\4
L _
_ / s / dy {5F [‘%blﬂk —ou aﬁbulk]} / s 5Fa£b““‘ (1.23)
0 or 88MF 884

Then, a generic 5D Fermion field can be decomposed by the following KK decomposition,

1 =X
Fr g (2", y) ZfL/R Y) Fr g (2"), (1.24)
where the 4D fields F}' /R Tepresent the KK states and satisfy the Dirac-Weyl equations,
io"0, FT (xH) —m

Fg(z*) = 0,

Vn eN, (1.25)

it 0, Fg () —my, F7 (2#) = 0,
involving the KK mass eigenvalues mZ. Besides, the two (for L/R) following ortho-
normalization conditions over the full domain for non-vanishing profiles,

nom €N, 1 [ dy 53700) 15 00) = S (1.26)

originating from the condition of a canonical form for the 4D effective kinetic terms. The
integer n is defined as being the level index of the fermion mode tower and is chosen to
be non-negative, i.e. n € N; the meaningful feature about the general KK decomposi-
tion (1.24) is rather the infinite summation (possibly also from —oo to +00) dictated by
field expressions as Fourier series on a finite interval.

3. A field variation reads as §F(z™) = en(z™) with a generic function n(z™) and an infinitesimal
parameter € — 0.

4. Then in the final step, once for instance the field F|, is found and fixed by the solution (not initially
fixed as an hypothesis in this considered case), its resulting determined form does not imply 6 F|, = 0 which
would be incompatible with the starting non-vanishing field variation: there are sometimes confusions in
articles about these chronological aspects of the variational calculus.

5. We omit the global 4-divergence which vanishes in the action integration due to vanishing fields at
the boundaries at infinities. Indeed, when minimising the action, the varied terms must vanish separately
at infinite boundaries, since the non-vanishing field variations at boundaries are independent from each
other and from the bulk ones (see also Ref. [7]). This is realized by the local physics statement which
induces vanishing fields at infinities due to the wave function normalization conditions (see also Ref. [146]).
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1.3.1 Bulk massless fermion fields

Let’s start from the bulk massless case where
Lyuk = Lxin - (1.27)

Based on the Lagrangian Ly, of Eq. (1.19), bulk terms and remaining brane terms can
5

be calculated:
L ~ B L
0 Shulkc = /d4x / dy [6F (z'FMaMFﬂ + OF [_71:]
0 2 0

_ / Az { /O - dy [5F (z'rMaMF)} + % [5F,§FL - 5F£FR}

L
} : (1.28)
0

where the bulk and the brane variations — respectively the volume and surface terms — must
vanish separately due to independent field variations (no reason to be linked). Besides, all
those field variations are not vanishing (unknown fields) so that we obtain the bulk EOM,

Vat, YyeTI=10,L], iTMoyF =0, (1.29)

with it’s chiral formula after the chiral projection (1.17),

i&“auFL—l-&;FR = 0,
(1.30)

’iU“a#FR—&;FL = 0,

and the corresponding NBC derived via non-vanishing boundary variations § F’ z / R’() . #0,

Fply= Frly = FL|, = Frl, =0. (1.31)

At this level, we can first solve Eq. (1.30) together with Eq. (1.31) to find out F
fields over the domain, Z = [0, L]. Inserting the KK decomposition (1.24) and the 4D
Dirac equations (1.25) into the 5D Euler-Lagrange equations in Eq. (1.30) and BC in
Eq. (1.31), one can directly extract the differential equations for KK wave functions [thanks
to the linear independence of 4D fields, which are mass eigenstates of the 4D Dirac-Weyl
equations in Eq. (1.25)],

Oaf(y) —my fR(y) = 0,
¥neN, . X (1.32)
Oafp(y) +my fE(y) = 0,
and the following Dirichlet boundary conditions for profiles of all KK modes,
VneN, fig| = fir|, =0. (1.33)

Then, we would argue for the profile vanishing. For the massless mode, the zero mass
mg = 0, combined with the coupled EOM (1.32), would induce the Neumann BC for KK

zero modes both in the left and the right chirality, i.e. 04 fg / R’() L= 0. For massive modes,

the Dirichlet BC for KK wave functions associated to one chirz’llity (1.33), combined with
the coupled EOM (1.32), would give the Neumann BC for KK wave functions of the other
chirality again.

Vn e N, duffp| = Ouftym| =0 (1.34)
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Hence, all KK wave functions have both the Dirichlet and the Neumann BC at each
boundary.

The two first order coupled EOM in Eq. (1.32) can be combined into two second order
decoupled equations,

Vn €N, {aﬁ + (mf)Q] fir(y) =0, (1.35)

which are the equations for independent harmonic oscillators whose solutions have the
general formalism in y € [0, L],

VneN, f/p(y) = A g cos(m) y) + Bj g sin(m}; ), (1.36)
where A7 R B} /R ATe complex coefficients, which are related by the coupled equations in
Eq. (1.32) as

An — _pn,
{ g f (1.37)

An = By,

for all non-zero modes with m% # 0, ¥n € N*. After considering the factor relations, we
obtain the general solutions (1.36) in a revised formalism,

fEy) = —Bj cos(myy) + By sin(my y),
VneN, (1.38)
fAy) = BY cos(ml'y) + B} sin(ml y).
The Dirichlet (1.33) and the Neumann BC (1.34) would provide additional constraints for
the coefficients in the general formalism (1.36)°, so that we obtain

Vn €N, fipy) =0, VyeI=10,L], (1.39)

which conflicts to the ortho-normalization condition in Eq.(1.24) and suspend all KK
modes on the whole Z region. Hence, we can conclude the solutions of 5D fields obtained
through this naive method are not physically consistent.

We can do a further mathematical analysis. This problem comes from the fact that
the system is over-constrained at the boundaries. Indeed, the equation set of KK wave
functions in Eq. (1.32) relates f7'(y) and f3(y) on-shell for massive modes: a boundary
condition for f7'(y) is also a constraint on fj(y) and vice versa. Therefore, for zero modes,
fg / r(y) depend on one complex coefficient B% /L respectively in Eq. (1.38). With respect to
massive KK wave functions, f;' / r(y) with mE # 0 depend on the same three parameters
in Eq. (1.38): the mass m’ and the two complex coefficients B} IR The variation of
the action at the boundaries in Eq. (1.28) involves the variations of both Fj, and Fg so
there are two NBC at each boundary. The system is thus over-constrained, it is why
KK wave functions vanish everywhere for all modes, which has been well analyzed in the
literature [1].

1.3.2 Bulk massive fermion fields

After the investigation of bulk massless fields in the last section, we turn to bulk
terms (1.27) including bulk mass terms (1.20),

Lbulk = Lkin + Lmass . (140)

6. The EOM of f7,z(y) Eq. (1.35) is a second order linear differential equation with constant coefficients

with respect to the extra dimension y for any particular KK mass mZ, whose solution can be fixed by
the value of the field and its derivative at one point. So, in fact, the existence of both Dirichlet and the
Neumann BC at one point is enough to force the field to vanish.
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The least action principle is applied by the similar process in Eq. (1.28) - leads to the bulk
EOM with the bulk mass mpg,

(iTM0u — g ) F =0, Va', VyeT=[0,1], (1.41)

and the NBC remain identical to Eq. (1.31). Then, inserting the KK decomposition (1.24)
and the 4D Dirac equations (1.25) into the 5D EOM (1.41) and NBC (1.31), one directly
obtains the EOM for the profiles on [0, L]:

{(04+ﬁw)f£(y)—m5f}%(y) = 0,
Vn eN,
(04 —mp) fR(y) +mf fE(y) = 0,

and the Dirichlet BC for profiles in Eq. (1.33) would be derived again.
The two first order coupled EOM in Eq. (1.42) can be combined into the decoupled
second order equations,

(1.42)

fT/r(y) =0, (1.43)

VneN, %f7rv) + [(mf)Z — (mrp)?

which are regular Sturm-Liouville equations on the interval Z = [0, L], and more com-

2
plicated than that in the bulk massless case of Eq. (1.35). For (mf) — (mrp)* < 0 in
Eq. (1.43), the solutions have the general form on y € [0, L],

1) = A%y exp (Amyy) + B g exp (Amy y) | (144)

where AmI = \/ ’(ﬁzp)2 — (mF )2’ and A} p, BJ p are complex coefficients, which are
related by the coupled EOM in Eq. (1.42) as,

{Ag = 0,
n=20, (1.45)
BY% = o0,
(AmE +mp) A7 = mE AR,
n#0, (1.46)
(—AmE +ip) B = mk Bj.

n

2
Then, for (mF ) — (mp)? > 0in Eq. (1.43), the solutions would have the general form as,

fr/r(y) = A7 /g cos (Amf y) + BY g sin (Amfj y) , (1.47)

where A7 IR B} /R Are complex coefficients, which satisfy the relationship generated from
the coupled EOM in Eq. (1.42) as,

AmE B +mp A} = mE Ap,
(1.48)

—~AmE A? + mp BY = mb Bp.

Following the exact same analysis as the bulk massless case, the Dirichlet BC (1.33),
combined with the coupled EOM (1.32), would lead to the Neumann BC(1.34) for all KK
modes both in the left and the right chirality. Hence, all KK wave functions must vanish via
the over-constrained BC — the Dirichlet and the Neumann BC at each boundary. Finally,
this naive bulk massive model can’t provide physical solutions, which is disappointing but
consistent with superficial predictions after the bulk massless case in Section 1.3.1.
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Chapter 2

The warped background

In this chapter, we continue our treatments of 5D bulk fermions but in a particularly
warped scenario — the Randall Sundrum Model, which is a direct extension of the flat
geometry in Chapter 1 but with more abundant physical ingredients.

2.1 The Randall-Sundrum metric

Consider a 5D spacetime ™ = (z#,7), M € [0,4] embedded in a warped geometry —

AdS5 space,
E=M*xT,

with an extra dimension compactified on an interval Z = [0, L], but now the two 3-branes
have opposite tensions. The gravitational back reaction of the brane tensions is balanced
by the introduction of a negative bulk cosmological constant, A5 < 0. A zero effective 4D
cosmological constant is preserved by a fine tuning between opposite tensions at 3-branes
and A; < 0. The 5D metric solution of Einstein’s equations reads,

ds? = e*%ynul,dx“dx” —dy? = gunda™da? (2.1)

where k is the AdS curvature scale and 7, with u, v € [0, 3] is the 4D Minkowski metric
in Eq. (A.1). The determinant of the AdS metric gasn is denoted as,

9= |det gyn| =¥ > 0. (2.2)

The vierbein e,/ , with A € [0,4] is defined via the relation with the 5D Minkowski
metric nap in Eq. (A.2),
— A, B
gMN = €[ eNTNAB (2.3)

with an explicit formalism,
exi* = (e7M5,°,1) (2.4)

and its inverse is denoted by eM A€ MB = 51]2’,

M, = (ekyd"a, 1) . (2.5)

For practical reasons, we also define a determinant as e = ‘det e MA‘, which satisfies the

relation, e = ,/g. In this framework, the UV-brane is located at y = 0 and the IR-
brane is at y = L, where the electroweak symmetry breaking occurs. In some cases, it
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is sometimes more convenient to work in a conformally flat framework by making the
coordinate transformation,

ky
e
= 2.6
z k? ? ( )
such that the conformally flat vierbein is
My =kz6M, and e = (k2)7°, (2.7)
S0
1 2
=|(— . 2.8
s = (52 ) may (28)

while, in this frame by z, the UV-brane is setup at z = 1/k and the IR-brane is at
z = el /k, where the electroweak symmetry breaking occurs. If M, is the 5D gravity
scale, one should have M, /k 2 O(10) such that we are in the classical regime where one
can use the Einstein equations: the AdSs background metric is well defined. The cut-off on
the UV-brane is usually taken Ay ~ M, and the one on the IR-brane is A;gr = e LAy,
due to the gravitational redshift induced by the exponential warp factor. If one stays at
Arr ~ O(1) TeV and manipulates an IR-brane localized (or peaked) Higgs field, one can
solve the gauge hierarchy problem of the Higgs sector in the SM.

2.2 Bulk scalar fields

Following the methodology in the flat geometry in Chapter 1, we start from the explo-
ration of a 5D bulk real scalar field, which contains quadratic mass terms and potential
terms at 3-branes. The 5D action of the field H should be modified by the AdS metric,

L
SH:/d4gj [(/0 dy \/§£H) — \/§|0XVO(H)—\/§‘LXVL(H) y (2.9)

while the 5D bulk scalar Lagrangian of H should also contain addition physical contribu-
tions from the warped curvature !,
1 M?
Ly = §gMNaMH8NH — 72H H? , (2'10)

and the boundary-localized potentials Vj ,(H) in Eq. (1.3) would still make sense.

The Hamilton’s principle by varying the field H should be performed as in Eq. (1.4),
but the bulk and the boundary terms should take into account of the contribution from
the volume element /g in Eq. (2.2),

La—=v9Lu, Vg —= V9Vl -

Thus, the independent bulk and the boundary variations should induce the Euler-Lagrange
equation of H in the bulk ?:

1
Vat, Wy eZ=1[0,L], (mo™ + ME)H + (\@ 84\/§> O*H =0, (2.11)

1. ¢M¥ is conventionally defined by ¢V gnp = 6M.
2 aNI ~ ]VINa
. =g 'N .
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which can be rewritten by /g in Eq. (2.2)°,
e 9,0,H — (0 — 4k 04) H + MEH =0, (2.12)

and the NBC (1.6) on the branes keep valid. Due to the quartic potential terms (1.3) on
the IR brane, a non-vanishing VEV, v(y) in Eq. (1.7) is still expected. The EOM of v(y)
should be abstracted from the EOM (2.11) of H in the bulk according to the 4D spacetime
dependence and asymptotic principle through a similar procedure in Appendix B,

(63 — 4k 01 — M) v(y) =0, (2.13)

and its BC keep consistent with Eq. (1.9). The bulk EOM of the VEV in Eq. (2.13) would
generate a general formalism of solutions,

\/4k? + M3
v(y) = N, kv (eaky + Be_o‘ky) , a= TH : (2.14)
where N, and B are constants to be determined by the BC for the VEV in Eq. (1.9),
(2k+0ék*M0)+B(2k‘*ak‘*Mo) = 0,
A

(2k + ak — M) Q® + B (2k — ak — Mp) Q™ + Tg (N,02)2 (o + BO—)® = 0,
(2.15)
so that one can derive,
B — _(2+a)k—MO
(2—a)k— My’
(2.16)
N o[- (24 a) k] Q2T+ B[My — (2— ) k] Q2@
! (Am/12) (Q2+o + BQ2—a)? ’

where Q = eFL is denoted as the warp factor. As the flat case in Eq. (1.10), we can select

My = 2k + \/4k? + M% to simplify the profile of the VEV (2.14), such that

v(y) = N, ePTky (2.17)

where

B = 0,

(2.18)

Ny = \/12 (Mo — (24 a) k] Q5%
An
and the VEV would be deformed to an exponential profile peaked at y = L again. Note
that the exponential VEV in Eq. (2.17) would exactly recover that in the flat geome-
try (1.11) if we take the limit £ — 0.

Here, we need to argue for the simplified quartic potential setup, which has been picked
up in Chapter 1.2. The choice of our simple potential is inspired by the case of models
with a warped extra dimension, which is discussed in Ref. [144]. Indeed, in a RS model,
the AdS geometry implies that scales are red-shifted by the warp factor relying on the
extra dimensional position. This effect is important for the quartic couplings of H* on
the 4D slides along the extra dimension, which are highly suppressed by powers of the

3. n*¥ is conventionally defined by n**n,, = d5.
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curvature related to the Plank scale ~ O (A}?amk) in the bulk and at the UV brane.

While A at IR brane is significantly warped down to the KK scale ~ O (m;{zK> which
would play a dominant role in the entire space, so authors always can neglect the other
ones for simplicity.

Besides, it is also interesting to comment on the effect of the warp factor on the
localization of the VEV, which has the typical behavior discussed in Ref.[144]. Compare
the VEV in RS model (2.17) and that in the flat scenario (1.11), we can clearly see that
the curvature k provides addition contributions to the exponential behavior and makes
the scalar profile focus on the IR brane more rapidly.

From the Euler-Lagrange equation (2.11) of H in the bulk, and its BC (1.6), one also
derives the EOM for h(z#,y) following a similar procedure in Chapter 1.2,

A 0,0,h — (0F = 4k 0a) h+ Mjh =0,  Va*, ¥y eI =[0,L], (2.19)

and the NBC on the branes is identical to Eq. (1.14).

2.3 Bulk fermion fields

A general bulk action of a 5D Fermion field in the AdS is developed as:

L
Sbulk = /d4$/0 dy /9 Louk » (2.20)
where Ly includes the fermion kinetic and the mass terms of the Lagrangian density,

which is integrable over the entire AdS. The 5D AdS spinor representation would be
constructed from a revised gamma matrices by the inverse vierbein e A

My, N pDBY = 2eM,) Ny ytB = 26"V (2.21)
One also needs the covariant derivative to develop kinetic terms,
Dy =0p + wr (2.22)
where wyy is the spin connection [derived precisely in Appendix D],
= (z g e_ky*y#fy‘r’, 0) s Ve =N (2.23)

Now we can replace common derivatives dys in Eq. (1.16) by covariant derivatives Dy in
Eq. (2.22) and obtain kinetic terms in the AdS,

Liin = %F'eM W TADMF, (2.24)

where

FeM,TAD, F = FeM, TADyF — Dy FeM, TAF
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using the standard notations Dy F = (Dy F )T*yo, and the Hermiticity of which can be
proved 4,

T = 1 T - 1 T
<2FeMAFADMF> :—§(DMF)T (eMy14) FT:—E(DMF)H%U (MaT4) A°F
= LDy FeM, (1TA10) F
T T oMEC A (7 ’7)
y
= —§DMF6MAFAF.

It’s interesting that in the RS metric (2.1), the contribution of the spin connection wys
cancels in the kinetic Lagraangian of Eq. (2.24),

_ _ _ YN
FeM, TADy F = Fe ,TAD,F + Fe* ,TA0, F

= Fe! \TAD,F — D,Fe" ,TAF + Fet ,TADF

= Felv 1 ((% +1i g eky’yufyg’) F— (@LF +1 g ekyfyuny’F) T AOeM A1
4Pt TAGF

= Fek YO F + i g F’y”’yu’y‘r’F — <8MF) MV A — g F’yf"yu’y“F
et  TADF

— FeM, TAGLF

and we can now safely return to the common derivative 0y,

Lign = © FeM, TAGF (2.25)

v
5
where

FeM, TAfy F = FeM, TA9y F — (9 F) eV, TAF .

Based on the chiral decomposition (1.17), we can rewrite the kinetic terms, Ly, of
Eq. (2.24) in the following form where the Left/Right chiralities (1.17) are obvious:

1 < < —
Lin =5 (iFhehot O Fr + iF} 6" 8, Fy — F04 Fy + F} 04 Fp)
1/ = N = < — —
= 3 (Z.FReky’yuaufR + Z]:Leky’y“aMfL — FrO4 Fr + Fp, 5'4fR) , (2.26)
using the matrices o#, o* defined in Appendix A. Then, we can still add bulk mass terms
Lumass of Eq. (1.20) [and its chiral form in Eq. (1.21)] to the bulk terms Ly (2;20).
The least action principle by varying the field F' (and the corresponding F') should

be performed as in Eq. (1.4), but the bulk terms should take account of the contribution
from the volume element /g in Eq. (2.2),

Liuk — /9 Loulk -

4. The conjugate equation has been inserted,

AT — ’VOFA’VO .
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Then, a generic 5D Fermion field can be decomposed by the following KK decomposition
in Eq. (1.24). However, the ortho-normalization conditions should be modeified by the
warp factor,

1 [L N
Vim e N, 1 [Tdy VG 1) FEn(6) = Sum (2.27)

originating from the condition of a canonical form for the 4D effective kinetic terms.

2.3.1 Bulk massless fermion fields

Following the guideline in Chapter 1.3, we still start from the bulk massless case where
»Cbulk = »Ckin- (2.28)

Based on the Lagrangian Ly, of Eq. (2.25), bulk terms and remaining brane terms can
be calculated:

L

L _ _ 5
0 Sulk = / d'x / dy 0F {iy/g [eMA T4 Dy P |} + / d'c 6F [_\/5724
0
0

} . (2.29)

L _ \/g L
_ / &y /0 dy 6F /g [i ¥y TADyF| + L2 [Py — 6F] F

0

where the independent vanishing of the volume terms would lead to the bulk EOM in the

covariant form,
Vat, YyeT=10,L], ie,T4DyF =0, (2.30)

and it’s explicit form with common derivatives djy,
i MNP O,F + 7 (04— 2k) F =0, (2.31)

with it’s chiral formula after the chiral projection,

ieky(}“@HFL + (04 —2k)Fr = 0,
(2.32)

iekyaﬂﬁuFR—(&;—%)FL = O,

and surface and the corresponding NBC is dentical to Eq. (1.31).

At this level, we can first solve Eq. (2.32) together with Eq. (1.31) to find out F' fields
over the domain, Z = [0, L]. Inserting the KK decomposition (1.24) and the 4D Dirac
equations (1.25) into the 5D Euler-Lagrange equations in Eq. (2.32) and BC in Eq. (1.31),
one can directly extract the differential equations for KK wave functions,

01 — 2k) fi(y) —mbE eV fi(y) = 0,
inen. { (04 — 2k) f7(y) — mf e fR(y) 2.3

(04— 2k) fR(y) +mE e fi(y) = 0,

and the Dirichlet boundary conditions for profiles of all KK modes in Eq. (1.33).

Here, we would argue for the profile vanishing again. Since the boundary conditions
keep identical to that in the flat case, the Dirichlet and the Neumann BC for the two
chiralities of all KK wave functions would exist at each boundary, through an exactly

same comment in Chapter 1.3.1.
For the zero mode with m{ = 0, the EOM (2.33) would be simplified as,

{<a4—2k>f2<y> = 0,

(04— 2k) fA(y) = 0, 230
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whose solutions have the general formalism in y € [0, L],
f2r(y) = A g e, (2.35)

where A% /R Are complex coeflicients, which would be clearly suspended to zero by the

Dirichlet (1.33) and the Neumann BC (1.34). For non-zero modes with mf # 0, n € N*,
the two first order coupled EOM in Eq. (2.33) can be combined into two second order
decoupled equations,

2
n e N*, 04 (e_5ky84fE/R) + [6k26_5ky + (mg) e_3ky] fir=0, (2.36)

which are regular Sturm-Liouville equations and we can solve the general formalism on
y € [0, L] [precise calculations are presented in Appendix E.1]°,

n Sky n mg ky n mg ky
fL/R(y) =e2 AL/R J—/J,_% 76 +BL/RY—/+% Te s (237)
where A} /R B} /R are complex coefficients, which are related by the coupled equations in
Eq. (2.33),
AT = A%,
(2.38)
B} = B},

which is precisely calculated in Appendix E.1. The Dirichlet (1.33) and the Neumann
BC (1.34) would provide additional constraints for the coefficients in the general formal-
ism (2.37),

AR Jy (O] +BRYL©O| = 0, -
AR 0Ty (O] +BROYL(©)] = 0,

F
with &= m—; ¥y while the linear independence of J 1 (&) and Y% (&) would induce the

non-zero Wronskian determinant © anywhere on y € [0, L],

J%(f) Y%(f))|#07 VyeT=10L, (2.40)

= OeJ1 (§) Y1 (€

which forces the set of equation (2.39) to generate zero solutions.

Combing the analysis of the zero and non-zero modes above, we obtain the vanishing
of all KK modes on the whole interval Z, which is presented explicitly in Eq. (1.39),
which conflicts to the ortho-normalization condition in Eq.(2.27). Hence, we can conclude
the solutions of 5D fermion fields obtained through this naive method are not physically
consistent.

5. J, and Y, are the Bessel functions of the first and the second kind respectively.
6. To be rigorous, the Wronskian determinant in Eq. (2.40) is originally developed for the variable

F 5
&= m—;eky satisfying the Eq. (E.5) [vg = %] with respect to the function e~ 2% f3.
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2.3.2 Bulk massive fermion fields

Based on the tricks and methodology developed for the bulk massless case in Chap-
ter 2.3.1, we turn to bulk terms (2.28) including bulk mass terms (1.20),

Ebulk = £kin + Emass . (241)

The least action principle is applied by the similar process in Eq. (2.29) - leads to the
covariant form of the bulk EOM with the bulk mass mp,

Yok, Yy eT =[0,L], (z’eMAFADM—ﬁzF>F:0, (2.42)
and its explict form with common derivatives dyy,
i eV, F +~° (04 — 2k) F —mp F =0, (2.43)
which generates the chiral formula after the chiral projection,
i MO, Fr + 04Fg — (c+2)kFr = 0,
{ i ka9, Fr — 0,F), — (c—2)kF, = 0, (24

with ¢=mp/k, while the corresponding NBC derived by the suface term vanishing are
dentical to Eq. (1.31). Then, inserting the KK decomposition (1.24) and the 4D Dirac
equations (1.25) into the 5D EOM (2.44) and NBC (1.31), one directly obtains the EOM
for the profiles on [0, L]:

04+ (c = 2) K] f7(y) = my fR(y) = 0,
Vn e N, h
04 = (c+2) K] fR(y) +my, fL(y) = 0,
and the Dirichlet BC for profiles in Eq. (1.33) would be derived again, combining the the
EOM (2.44), which would induce the Neumann BC for the two chiralities at each boundary

through the comment mentioned in Chapter 1.3.1.
For the zero mode with m{ = 0, the EOM (2.45) would be simplified as,

(2.45)

04+ (c—2)K] fo(y) = 0,
(2.46)
04 = (c+2) k] fr(y) = 0,
whose solutions have the general formalism in y € [0, L],
fg/R(y) - A%/R e(2=/+ky (2.47)

where A% /R are complex coefficients, which would be clearly suspended to zero by the
Dirichlet (1.33) and the Neumann BC (1.34). For non-zero modes with mf # 0,, the two

first order coupled EOM in Eq. (2.45) can be combined into two second order decoupled
equations,

04 (e_5ky34ff/3) + {(6 —/+c— 02) k2e=ky 4 (mf)Q 6_31“9} fir=0, (2.48)

which are regular Sturm-Liouville equations and we can solve the general formalism on
y € [0, L] [precise calculations are presented in Appendix E.2],

n Sky n mg ky n mﬁ ky
fL/R(y):e2 AL/RJc—/-i—% T ° +BL/RY::—/+% T ) (2.49)
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where A7 R B} /R Are complex coefficients, which are related by the coupled equations in
Eq. (2.45),

Ar = An,
{ t . (2.50)

B} = By,

which is precisely calculated in Appendix E.2. The Dirichlet (1.33) and the Neumann
BC (1.34) would provide additional constraints for the coefficients in the general formal-

ism (2.49),
A T (5)\y:0 + Bl Yoiy (5)’y=0 -0 (2.51)

Ay Oy 1 (5)\y:0 + B 0¥y (5)‘11:0 -0
my

with & =

non-zero Wronskian determinant ” anywhere on y € [0, L],

Tyt (§) Y1 () -
Ocdoy1 (§) OcY. i1 (g)| #0, VyeI=[0,1], (2.52)

", while the linear independence of .J, +1 (§) and Y, 1 (&) would induce the

W =

which forces the set of equation (2.51) to generate zero solutions.

Combing the analysis of the zero and non-zero modes above, we obtain the vanishing
of all KK modes on the whole interval Z, which is presented explicitly in Eq. (1.39),
which conflicts to the ortho-normalization condition in Eq.(2.27). Hence, we can conclude
the solutions of 5D fermion fields obtained through this naive method are not physically
consistent.

7. To be rigorous, the Wronskian determinant in Eq. (2.52) is originally developed for the variable
F
&= mT“eky satisfying the Eq. (E.5) [vr = ¢+ 3] with respect to the function efgkyfﬁ.
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Chapter 3

Beyond regularization of a
brane-localized Higgs field

This chapter is a personal adaptation of Ref. [1] written in collaboration with Andrei
ANGELESCU, Grégory MOREAU and Florian NORTIER.

3.1 Introduction & Motivation

In the present paper, we discuss the rigorous treatment of the other case of a boundary-
localized Higgs scalar field, interacting with bulk quark/leptons propagating on a finite
interval, which presents subtleties that deserve to be looked at more deeply. Such a field
configuration occurs in realistic warped models, potentially addressing the fermion mass
and gauge hierarchy simultaneously. The case of free bulk matter without interactions
will also be studied.

Let us recall some subtle aspects as our basic motivations. First, a question arises about
the correct treatment of the specific object that is the Dirac peak ("function") entering
each Lagrangian term which involves the brane-Higgs boson. Secondly, this Dirac peak
may induce an unusual discontinuity ! in the wave function along the extra dimension (at
the Higgs boundary where further conditions arise from the Lagrangian variations) for
some of the bulk fermions: the so-called jump problem [131, 135]. These 5D aspects have
motivated the introduction [131, 135] of a process of regularization of the Higgs Dirac
peak (smoothing the peak or shifting it from the boundary) in the calculation of Kaluza-
Klein fermion mass spectra and effective 4D Yukawa couplings. Although there is no
profound theoretical reason to apply such a regularization procedure (forcing interaction-
free boundary conditions for fermions), nowadays all the theoretical and phenomenological
studies of the warped models with brane-Higgs (see e.g. Ref. [129, 134, 136, 139-141]) are
relying on this Higgs peak regularization.

In this paper, we first present the mathematical inconsistencies of this regularization
procedure used in the literature. Then, instead of regularizing, we develop the rigorous
determination of the profiles — taking into account the mathematical nature of the Dirac
peak in the Higgs coupling — which leads to bulk fermion wave functions without disconti-
nuities on the considered extra space. We conclude from this whole approach that neither
profile jump nor particular problem arises when a proper mathematical framework is used
so that there is in fact no motivation to introduce a brane-Higgs regularization.

As a consequence, we can now interpret two non-commutativities of calculation steps

1. Field jumps may arise in other frameworks [147].
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for Higgs production and decay rates [136, 137, 139, 140] or for fermion masses and 4D
Yukawa couplings [130], previously studied in the literature, to be similar effects and con-
firmations of the mathematical inconsistencies in the Higgs peak regularization. Besides,
the debate in the literature about those two non-commutativities is thus closed by the
useless nature of this regularization.

The correct methods without regularization, together with their results, are illustrated
here in the derivation of the KK fermion mass spectrum — same ideas apply to the calcu-
lation of effective 4D Yukawa couplings. This spectrum calculation is done in a simplified
model with a flat extra dimension, the minimal field content (to write down a Yukawa
interaction) and without gauge symmetry. Nevertheless, this toy model already possesses
all the key ingredients to study the delicate brane-Higgs aspects. Hence, our conclusions
can be directly extended to realistic warped models with the bulk SM matter addressing
the fermion flavor and gauge hierarchy.

Several new methods of spectrum calculation are proposed, which further allow con-
firmation of the analytical results. These methods provide alternative implements like the
4D or the 5D approach (one extra dimension case), and the determination of fermion cur-
rents comes from the action variations — we generalize the Noether’s theorem to include
brane-localized terms like the Yukawa couplings — or by manipulating the equations of
motion. Besides, the correct derivation of the standard free fermion mass spectrum (in
the absence of Yukawa interactions) turns out to be a useful starting guide in particular for
the 4D approach or more generically for a solid comprehension of such higher-dimensional
scenarios.

From a historical point of view, the correct method established here arises naturally in
the theory of variational calculus as the Lagrangian boundary term (brane-Higgs coupling
to fermions) is included in a new boundary condition instead of entering the equations
of motion [148] (via a regularization). Furthermore, the present analysis follows the pre-
scription of considering the Dirac delta as a distribution. By the way, the Dirac peak
(distribution formalism) and distributions were formalized and validated mathematically
during the 1940s by L. Schwartz [149, 150] precisely to solve consistently physical prob-
lems. Hence, today it should not be avoided to respect the distribution formalism when
facing a physical problem involving an object like the Dirac delta, as it occurs in the
present higher-dimensional context.

The rigorous results obtained for the KK mass spectrum and effective 4D Yukawa cou-
plings are different from the ones derived in general through the Higgs peak regularization
(see Section 3.5). This difference is physical, affecting then phenomenological studies on
indirect searches of KK states at high-energy colliders (in particular via the Higgs pro-
duction and flavor changing neutral currents), and analytical (vanishing of the Yukawa
coupling with ‘wrong’ fermion chiralities relatively to the SM), which improves the precise
theoretical understanding of the higher-dimensional setup with a brane-localized Higgs
field.

Furthermore, the correct mass spectrum obtained here allows to point out the neces-
sity for bulk fermions (with or without coupling to a brane-localized scalar field) to have
specific bilinear brane terms at boundaries which are fermion mass-like terms from the
point of view of the spinorial structure but do not introduce new (bulk) mass parameters.
Indeed, such terms guarantee the existence of physical solutions (with correct profile nor-
malizations, Hermitian conjugate boundary conditions and satisfying the decoupling limit
argument) derived via the least action principle through the variation calculus. Their
necessary presence is confirmed by the non-trivial exact matching between the 5D and 4D
analytical calculations of the mass spectrum.
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At a brane without Yukawa coupling, instead of including such bilinear brane terms,
we find that one can alternatively impose essential boundary conditions (in contrast with
natural boundary conditions coming from the Lagrangian variations) induced from the
vanishing of fermion currents along the extra dimension at this brane — and exclusively
within the 4D approach in case of a brane with localized Yukawa interactions. Indeed,
the generic reason for the presence of bilinear brane terms is the consistent and complete
geometrical definition of models with a finite extra spatial interval in which the fermionic
matter is stuck. Notice that the choice between the presence of bilinear brane terms
and the vanishing condition of fermion currents relies on the Ultra-Violet completion of
the model. Indeed the vanishing condition of fermion currents permits the existence of
physical solutions alternatively.

Therefore, there are two possible cases for the UV completion:

1) The UV completion generates bilinear brane terms for the fermions on both bound-
aries (those with and without localized Yukawa coupling) of the interval. Then, the
geometrical interval definition (interval boundaries and vanishing 5D fermion cur-
rents at these boundaries) would be completely contained in the action expression
as boundary terms.

2) The UV completion would not induce bilinear brane terms on both boundaries.
Such essential boundary conditions should be imposed at the brane(s) (without
bilinear brane terms) in order to define well the geometrical configuration and to
have acceptable physical solutions.

We can thus conclude that whether the geometrical setup is defined exclusively through
the action expression [leading to the natural boundary conditions] or (also) via additional
essential boundary conditions, depends on the origin of the model at high energies.

In the case 1), at low-energies, the chiral nature of the SM as well as its field chirality
distribution (Left-handed SU(2)1, doublets and Right-handed singlets) are entirely induced
by the signs in front of these bilinear brane terms. This new relation shows how the
particular chiral properties of the SM could be explained by an underlying theory through
the bilinear brane term signs. We complete the analysis by a discussion, in this context,
on the appropriate treatment of the cut-off in energy due to the framework of higher-
dimensional models in a non-renormalizable theory.

This chapter is organized as follows. Firstly, we describe the minimal model in Sec-
tion 3.2, before presenting the free case and the 4D treatment of the coupled fermions
in Section 3.4. The 5D approaches are exposed as well, with (Section 3.5) and without
(Section 3.6) regularization. Finally, an overview is provided in Section 3.7, together with
a brief description of phenomenological impacts. We finalize this chapter with a discussion
of generic bilinear brane terms.

3.2 Minimal consistent model

3.2.1 Spacetime structure

We consider a simplified 5D toy model with a flat spacetime £ = M* x Z:

(i) M* is the usual 4D Minkowski spacetime manifold, which is characterized by 4-
vector coordinates x* where y = 0,1,2,3 is the Lorentz index. The metric and
conventions used are given in Appendix A.

(ii) Z is a compact 1D flat extra space. For our purpose, we consider the following simple
case: the interval Z =10, L], with a length L € R*, parametrized by the continuous
extra coordinate y and bounded by two flat 3-branes at y = 0, L.
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(iii) A point of the whole A point of the 5D spacetime £ is labeled by the coordinates,
oM = (2t y), M € [0,4] with the 5D metric is given by,

ds® = nMNd:UMd:UN,

where nyry with M, N € [0,4] is the 5D Minkowski metric in Eq. (A.2).

3.2.2 Bulk fermions

We consider the minimal spin-1/2 fermion field content allowing to write down the 4D
effective renormalizable SM Yukawa-like coupling between zero-mode fermions (of different
chiralities) and a scalar field (see Section 3.2.5): a pair of fermions — of mass dimension 2
— @ and D. Both are propagating along the extra dimension, as we have in mind a model
extension to a realistic scenario with bulk matter (cf. Section 3.2.6) where @, D will be
respectively SU(2);, doublet down-component and singlet quark fields in the decoupling
limit 2.

The bulk action Sy is developed via the bulk Lagrangian density Ly in Eq. (1.15).
The 5D fields Q(z#,y) and D(x*,y) have thus the following kinetic terms in the covariant
5D action, ’

Lin= 3 %FPM@F, (3.1)
F=Q,D
which have a similar form as generic kinetic terms in Eq. (1.16) but contain two fermion
fields @ and D. In this chapter, we only consider the bulk massless fermions, such that

Liulk = Lin - (3.2)

Let us rewrite the bulk action of Eq. (3.1) in a convenient form with the chiral decom-
position in Eq. (1.17) as in Eq. (1.19),

1 < <
Lan= > 5 (iFho" By Fr +iF}o" 0, Fy — FYOIFy + FJ0iFr) . (33)
F=Q.D

3.2.3 Bilinear Brane Terms

Interestingly, in the absence of vanishing fermion current condition at a boundary of
the considered interval [0, L], the presence at this 3-brane of some bilinear brane terms,
for bulk fermions being either free or coupled to a scalar field on this brane, turns out
to be necessary. Indeed, these bilinear terms ensure the existence of physical solutions
[see Section 3.4 for the 4D approach and Section 3.6 for the 5D one] deduced from the
least action principle. The theoretical reason for the presence of the BBT at the bound-
aries of the interval is the correct geometrical configuration definition for models where
fermions cannot propagate beyond the two boundaries, as will also be precisely described
in Section 3.4 and 3.6. These sections will also point out the 4D /5D approach matching
of the mass spectrum exact result, which constitutes in particular a confirmation for the
necessary presence and the explicit form (including coefficients) of the BBT ?. In summary,
the presence of the BBT has several following justifications:

(i) They allow to avoid physical consistency problems both in the free case (see Sec-
tions 3.3 and 3.3.3) and with Yukawa couplings (Sections 3.6.1 and 3.6.3).

2. From the theoretical consistency and phenomenological points of view, the SM must be approximately
recovered at low energies in the limit of infinitely heavy KK excitations.
3. Here, the opposite sign of BBT in Ref. [1] comes from the different conventions of I'* in Appendix A.
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(ii) They play the role of defining well the model compact at the two boundaries both in
the free case (see Sections 3.3.2 and 3.3.3) and with Yukawa couplings (Section 3.6.3).

(iii) They induce the expected matching of the analytical results on the spectrum derived
through the 4D and 5D approaches (see Sections 3.4 and 3.6.3).

To realize the SM configuration, the appropriate formula of the necessary BBT reads
45
as”®?,

Sp = /d4x(£B|L - £B|0) )
F( _
: y) o
with Lp = Z 5 FF = Z
F=Q,D F=Q,D

(
2

o y)

(FfFr+ FlFL) (3.4)

where we impose the chiral decomposition (1.17) and o' (y) are generic parameters for the
field F' (F =@, D) at y and
Q _ D _
ogr = —0or=—1, (3.5)
using compact notations
U({Lﬁ UF‘O,L : (3.6)
The BBT under the configuration (3.5) will indeed lead to the set of boundary conditions
in Eq. (3.28) for the wave functions ¢"(y),d"(y) of the 5D fields @, D, which then possess
a non-vanishing normalizable zero-mode (my,—q = 0) for only one chirality [L or R as
sin(mp,—g ¥) = 0]; hence at low-energies (below the first KK mass eigenvalue my), only
one chirality of a given 4D field arises in the KK decomposition (1.24) so that one recovers
the chiral nature of the SM.

Furthermore, within an extended realistic model (as described in Section 3.2.6) where
the Q(P) field would be the down-component of an SU(2)y, gauge doublet in the SM, the
unique existing chiralities of the zero-mode 4D fields Q(LD)O(JU“) and D% (z#) predicted
by Eq. (3.28) via Eq. (1.24) would well correspond to the SM chirality configuration°.
Notice that Eq. (1.24) [involving KK modes rather than mass eigenstates] and Eq. (3.28)
are valid within the relevant 4D treatment of the localized Yukawa interaction, where it
is explicit that the SM particles (whose mass mainly originates from the EW symmetry
breaking) are indeed mainly composed of the zero-modes (small mixings with the massive
KK states), as imposed by small experimental deviations generally observed with respect
to the theoretical SM predictions.

Therefore, it is remarkable that the BBT allow to make a step towards the UV expla-
nation of the well-known SM chiral properties (chiral nature and chirality configuration)
by directly linking these chiral aspects to explicit signs in front of Lagrangian terms (BBT
signs), as described right above. Then the last step would be to build a UV completion of

1 - _
4. Similar terms, leading in particular to Lp = §(DD — QPQP), would hold in a model version

extended to the EW symmetry of the SM, with the @ field promoted to an SU(2)1, doublet. In contrast,
terms of the kind QU D (or @D), QVQP or UD would obviously not belong to a gauge invariant form.

5. The BBT of Eq. (3.4) is based on natural units. If we return to the unit system of meter, kilogram,
and second (MKS), the BBT read as

1 a1 F &
SBBE/dxi(hc)ap FF|,, P=0,L,

and an explicit dimensional analysis is presented in Appendix I.
6. Taking the opposite sign for the bilinear terms in L£p (3.4) would lead to exchanged boundary
conditions between ¢"(y) and d"(y) relatively to Eq. (3.28) and in turn to another chirality configuration.
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the model to generate these BBT signs. In other words, the absolute control of the chiral
structure by the BBT signs is a new feature that shows how an underlying theory could
produce the SM chiral structure.

For completeness, we mention that the two other BBT sign configurations ’,
) ()
2 2

L
Sp= [ e (Ll — Lol . with £y = (FiFn+ Fhr) . 37)
0

where we impose the chiral decomposition (1.17) and
of = —ol' = +1, (3.8)

via compact notations defined in Eq. (3.6), for 5D fields of the form (1.24) lead to the
two sets (3.29) of boundary conditions and in turn to a vector-like field content, as for
the so-called custodian fermions in custodially protected warped models [151]. Indeed,
Eq. (3.29) leads to the absence of zero-modes (m[,—q # 0) and hence any KK state has
both Left and Right chiralities. Once again, the control of the vectorial structure by the
BBT signs is a novel characteristic that shows how a UV completion could produce a
vector-like field content. Such massive vector-like states® can be used to build custodially
protected warped models [151] and are then called custodians (see for instance Ref. [157]).

What is the direct effect of the BBT (3.4) on the final fermion mass eigenvalues? In the
4D approach and the case without Yukawa interaction (see Section 3.4), these BBT have
no effect on the 4D fermion mass matrix in Eq. (3.43): after injecting the profile solutions,
those BBT vanish due to the induced boundary conditions of Eq. (3.28) which impose
that one of the two wave functions (L or R)? entering the BBT 5D fields [cf. Eq. (1.24)] is
equal to zero, at y = 0 [sin(m,, 0) = 0] and y = L [sin(m,, L) = 0], systematically for each
one of the two Lagrangian BBT (3.4). In contrast, in the 5D approach, the BBT (3.4)
play a numerical and direct réle in the fermion mass spectrum [and guarantee the diagonal
formula of the 4D effective Lagrangian density], through the boundary conditions coming
from the action variations (see Section 3.6).

In history, this kind of bilinear fermion brane terms (3.4)-(3.7) was first introduced by
hand to derive the more specific AdS/CFT correspondence in the calculation of correlation
functions for spinors [158, 159] — the exact AdS/CFT duality being possibly realized in the
UV completion of warped models (from which the present simplified scenario is inspired).
Then, within this AdS/CFT paradigm, similar boundary terms have been added at the
UV-brane only (y = 0) to guarantee the minimization of the action in the holographic
version of the warped model with bulk fermions [143]. The least action principle was
also invoked in Ref. [160] to justify such bilinear fermion brane terms in the AdS/CFT
context and through the path integral formalism. Equivalently, still in the AdS/CFT
framework, these terms have been motivated in the Lagrangian density from an action
form involving explicitly the Hamiltonian (to obtain a consistent Hamiltonian formulation
when performing the Legendre transformation) [161]. Other boundary-localized terms
were also introduced in a field theory defined on a manifold with boundaries within the
context of gravity: the Gibbons-Hawking boundary terms [162-165]. Those terms are
needed to cancel the variation of the Ricci tensor at the boundaries of the manifold.

The finite geometry setup is defined via either the BBT inclusion or the vanishing
fermion current condition, depending on the considered UV completion of the model.

7. In contrast to the BBT of Eq. (3.4) containing complete fields of the minimal model, here, we just
take one 5D field F' as an example in Eq. (3.7).

8. Extensive phenomenology at colliders has been developed about such vector-like particles [152-156].

9. For instance, DD = DTLDR + DLDL.
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From the point of view of the effective field theory, it means that it can happen that
the underlying theory does not forbid (through a short-distance mechanism or a residual
symmetry) any possible non-renormalizable Lorentz-invariant operator involving the 5D
fields @, D (including covariant derivatives) up to dimension 5 — this dimension choice
being motivated in Section 3.2.5 — in the low-energy effective model described in this Sec-
tion 3.2. Then, the present fermionic operators would be those included in the considered
actions (3.3) (dimension 5 operators) and (3.4) (dimension 4 operators): the BBT part.

Notice that bulk mass terms, usually modifying the bulk fermion profiles [see Chap-
ter 1.3.2, 2.3.2 and 6.2.6], bring useless complications [at least for schematic purpose| so
we will not consider them in our present calculations, as the paper conclusions on fermion
couplings to a brane-field can be easily extended [166].

3.2.4 Brane-localized scalar field

In contrast to the bulk scalar field in Section 1.2, to be simplified, here we consider
a 4D real scalar field, H (mass dimension 1), confined on a boundary taken here to be
at y = L (as inspired by the warped scenario addressing the gauge hierarchy problem).
However, the subtle aspects would arise when the fermions couple to this brane-localized
scalar field. The action of this scalar field has the generic form,

1
Sy = /d% L, with Ly =3 0,HO"H — V(H), (3.9)

where the potential V' (H) possesses a minimum which generates a non-vanishing vacuum
expectation value for the field developed as
h(z*
H(zt) = T2 + hiat) : (3.10)
V2
in analogy with the SM Higgs boson. Note that the VEV v in Eq. (3.10) doesn’t depend
on the extra dimension, which is definitely different from that in Eq. (1.7).

3.2.5 Yukawa-like interactions

We focus on the following basic interaction in order to study the subtleties induced by
the brane-scalar field coupling to bulk fermions,

Sy = /d%« Ly|, , with Ly =—Y5 Qi HDr — Y QLHDy + H.c., (3.11)

which involves H, (Q and D, and is up to dimension 5. Note that the coupling constants Y5
and Y7 of Yukawa type, entering these two distinct terms, are independent [i.e. parameters
with possibly different values| as a well-defined 4D chirality holds for the fermion fields on
the 3-brane strictly at y = L (see for instance Ref. [1, 135]),

Y5(’)

Y = v with ay) €R. (3.12)

In order to avoid the introduction of a new energy scale, one could define the 5D
Yukawa coupling constants by giving their explicit dependence in L:

Ys=ysx L and Y =yj x L, (3.13)
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where y4,y) are dimensionless coupling constants of O(1). Then y4 can be identified with
the SM Yukawa coupling constant, as shown when applying the decoupling limit (infinitely
heavy KK masses and any new physics energy scale) ',

From now on, we restrict our considerations to the VEV of H as the aim is to calculate
the KK fermion mass spectrum, which is unaffected by the interactions of the h(xz*)
fluctuation field with fermions. Hence, we concentrate on the following action issued from
Eq. (3.11),

Sy = /d4x Lx|, , with Lx = -XQ}Dr— X'QLDy +H.e., (3.14)

with the compact notations

/
x=2 g x5
V2 V2

Based on Eq. (3.10), the complete action reads as, Sy = Sx + Spgp, with the localized
fermion-scalar interaction terms:

ShQD = /d433 £hQD|L , with EhQD = —

(3.15)

!
- hQl Dg . hQLDy +He., (3.16)

V2 V2

that allow to work out the 4D effective Yukawa coupling constants.

3.2.6 Model extension

The toy model considered is thus characterized by the Lagrangian

S5 = Sbulk + Sbranes » (3.17)
where Spranes represents action terms located at the branes,
Sbranes = SB + SH + SX + ShQD . (3.18)

Nevertheless, the conclusions of the present paper can be directly generalized to realistic
warped models with bulk SM matter solving the fermion mass and gauge hierarchies.
Indeed, working with a warped extra dimension instead of a flat one would not affect the
conceptual subtleties about coupling bulk fermions to a brane-localized scalar field [166].
The boundaries at y = 0 and y = L could then become the Planck and the TeV branes
respectively. Similarly, the scalar potential, V(H), can be extended to any potential [like
the SM Higgs potential breaking the EW symmetry] as long as it still generates a VEV
for the scalar field as here. In this context, the H singlet can be promoted to the Higgs
doublet under the SM SU(2);, gauge group, simply by inserting doublets in the kinetic
term of Eq. (3.9). The whole structure of the coupling of Eq. (3.14) between bulk fermions
and the localized VEV would still remain identical in the case of fermions promoted to SM
SU(2)r, doublets: after group contraction of the doublet (QY, Q)" with down/up-quark
singlets D, U, one would obtain two replica of the structure (3.14) with the forms Q?TDC/
and QCU TUC/ where C) = L, R denotes the chirality. Hence, the procedure described in
this chapter should just be applied to both terms separately ''. The same comment holds
for the SM color triplet contraction and the field content extension to the three flavors
of quarks and leptons of the SM. Notice that the flavor mixing would be combined with
the mixing among fermion modes of the KK towers, without any impact on the present
considerations about brane-localized couplings.

10. Note that in the decoupling limit where in particular L — 0, generally Y5 — 0 due to the dimension
of the 5D Yukawa coupling constants.

11. The fermion actions in Eq. (3.3) and (3.4) would be trivially generalized as well to a scenario with
a gauge symmetry.
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3.3 5D free bulk fermions on an interval

In this part, we calculate the free fermionic mass spectrum in the basic case without
Yukawa interactions in Eq. (3.11) (studied in various references [130-133, 143, 167-172]).
Let us also remark that in this case, there is no need for 4D/5D matching (pure 5D
calculation of the masses). The main interest of this section is to develop a rigorous
procedure for applying the boundary conditions.

3.3.1 Natural Boundary Condition only
We start by considering simply the bulk action part (1.15),

Shulk »

developed from the kinetic terms of Eq. (3.1)-(3.3). Thus, the equations of motion and
the natural boundary conditions for the bulk fermions would be obtained via the least
action principle for each of them (F' = @, D). The stationary action condition can be
split, without loss of generality (the functional variations are generic so that 6Q and D
are independent), into action variations with respect to each field Q and D

dpSbulk = 0,

via the treatment in Eq. (1.23) and (1.28) (F' = @, D). Then, the EOM (1.29)-(1.30) and
the NBC (1.31) would be respectively deduced for F' = @, D.

To develop a 4D effective picture, let us replace the 5D fields by their standard solu-
tions in the form of a KK decomposition in Eq. (1.24) satisfying the ortho-normalization
conditions (1.26), where f}' /R = qr /R OF dy /R are the dimensionless wave functions along
the extra dimension associated respectively to the 4D fields FE/ r=Q7 /R OF Dy /R of the

KK excitations tower '? with the KK masses mX ' labeled by the non-negative integer n.
Inserting the KK decomposition (1.24) into the 5D field EOM (1.30), one can directly
extract this set of differential equations for free profiles:

uqi(y) = mEqr(y),
Wuak(y) = —-mEql(y),
Vn e N, f b . (3.19)
O4di(y) = my dp(y),
Adp(y) = —mPdi(y),

which is a double replica (f = ¢,d) for the generic EOM of profiles in Eq. (1.32). The
set of the first order differential equations (3.19) has been solved via a generic treatment
in Section 1.3, so that the profiles ff/R(y) =0 (Vn € N, f = ¢,d) vanish again, which
can’t provide physical solutions and aren’t compatible with the two ortho-normalization
conditions in Eq. (1.26) for fE/R(y) (f =q,d) ™.

The theoretical inconsistency obtained here for the considered free model reveals a
problem in the treatment of a simple boundary without localized couplings to bulk matter
(which is the case of both boundaries here). The correct treatments, based on either
fermion current conditions at the boundaries or boundary-localized terms (the BBT), are
exposed respectively in the two following sections.

12. Not yet the mass eigenstates in the case of Yukawa interactions.
13. Also mass eigenvalues in the absence of Yukawa interactions.
14. The analysis of the over-constraints has been presented in the end of Section 1.3.
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3.3.2 Introducing the fermion current condition [EBC]

In fact, the free version of the model defined in Section 3.2 (and finite extra dimension
scenario in general) does impose conditions for the bulk fermions at the extra dimension
boundaries, which were not included in the above naive analysis in Section 3.3. These
conditions contribute to define the geometrical field configuration of the considered model,
which will constitute the so-called essential boundary conditions, as imposed by the model
definition, complementary to the NBC already defined in Eq. (1.29) via the least action
principle. Indeed, the NBC come from an integration by part of the initial action with
respect to the fifth dimension over the interval [0, L] and thus take into account the
spacetime structure itself.

Regarding the geometrical field configuration within the present free model, each
fermion field is defined only along the interval [0, L]. This model-building hypothesis,
that fermions neither propagate towards nor come from the outside of a finite range,
translates into the condition of vanishing probability currents at both boundaries for each
independent fermion species separately (without possible compensations).

Formally speaking, after having varied the bulk action constituted by kinetic terms (3.1)
[see Eq. (1.28)] and in turn derived the bulk EOM (1.30) as well as the brane terms in
Eq. (1.28), the application of the Noether’s theorem demonstrated in Appendix F would
suspend the boundary variations 6 F' z /R and modify the Dirichlet NBC in Eq. (1.31), which
provides a reasonable solution to avoid the disaster in the naive approach in Section 3.3.

The Noether’s theorem (by using the EOM) ' gives rise to the two probability cur-
rents (F.5) defined independently for the two bulk fermions '° represented by the 5D fields
F=Q,D:

iy = —aQr¥Q, jp =-o/DIVD | (3.20)

associated to the two global U(1)r (F' = @, D) symmetries of the bulk action (1.15)
Sbulk ;

inserted by kinetic terms (3.1)-(3.3) corresponding respectively to the distinct transfor-

mations, .
Q — €°Q, D — €YD,
_ _and § . (3.21)
Q — e'"Q, D — e ™D,
where a,a’ (€ R) are continuous parameters entering for instance the infinitesimal field
variations '”: B B
0Q =1aQ, 0Q = —iaQ). (3.22)
Now the four conditions of vanishing probability currents for F' = ), D are thus,
4 — o Frt — i (FIFn — FI — I
jF‘O’L o) FT F\M ial) (FjFr — F}Fy) IO’L 0, Va*, (3.23)

where we have used the chiral decomposition (1.17). The most general way out is to make
of Eq. (3.23) a trivial equality by having

FL|0 = 07 FL|L = 07
or and or [EBC] (3.24)
FR‘O - 07 FR’L - 07

15. Valid trivially in the absence of BBT as well.

16. See Ref. [167] for scalar field currents.

17. We use different notations for the infinitesimal field variations under specific transformations, §F,
and generic field variations in the variation calculus, 6 F'.
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corresponding to a vanishing coefficient in each term of the condition (3.23):

fily =0, fil, =0,
Vn e N, or and or (3.25)

f}%’o = 0, f]%‘L = 0,

which consider the linear independence of 4D mass eigenstates, as discussed below Eq. (3.19).

These necessary conditions (3.24) of vanishing fields at boundaries are the EBC and
correspond to some fields initially fixed at boundaries. Having such known fields at boun-
daries imposes [173] to have vanishing functional variations,

0Fply, = 0, SFL|l, = 0,
or and or (3.26)
d0Fg|, = O, dFg|, = 0.

which would the contribute to brane terms in Eq. (1.28), since no action minimization
with respect to a field FL/R‘OL (relying on 5FL/R‘OL # 0) is needed for such a known

fermion field at a boundary, in contrast to the naive treatment in Section 3.3.1 where
the boundary fields F' |07 ;, were assumed to be initially unknown and then found out the
NBC (1.31) (F = @, D) through the least action principle.

Some brane terms in Eq. (1.28) would vanish due to the absence of boundary varia-
tions (3.26) which read as,

(6FiFR)|, — (6FRFL)|, = (0FFr)|, - (6FkFL)| =0. (3.27)

In other words, when deriving the NBC, before knowing the EBC, one would consider
generically in the action variations (1.28) with all non-vanishing field variations at bound-
aries. However, once the EBC (3.24) are determined and selected (fixing some fields at
boundaries accordingly to Eq. (3.26)), one could keep only non-vanishing variations for
unknown boundary values (i.e. omit to vary the action with respect to known fields).
Then, the resulting NBC and EBC can be combined '®.

Now the general solutions (1.36) of the decoupled equations derived from the EOM (1.30),
once re-injected into the initial equations (3.19) on the profiles, become general solutions
in Eq. (1.38). These solutions are taken to be continuous at the boundaries in order to
have well-defined derivatives appearing in the consistent action (kinetic) (1.15)-(3.1), as
also described in detail in Section 3.5.2.1. Applying the four sets of EBC from Eq. (3.24)-
(3.25) to the solution forms (1.38), it appears that certain constant parameters must be
equal to zero and thus we obtain the following four possible sets of profiles and KK mass
spectrum equation (Vn € N),

1) (==): [fi(y)=Bisin(myy), (++): fily) = B} cos(m) y); sin(m;, L) =0,
2) (++): fi(y)=Bf cos(myy), (——): fR(y) = —Bg sin(m/; y); sin(m); L) =0,
(3.28)

fi(y) = B sin(m); y), (+=): fR(y) = BY cos(my, y); cos(m); L) =0,
4) (+-): fi(y) = B cos(m)y), (—+): fi(y) = =B sin(my, y); cos(m), L) = 0.
(3.29)

18. The brane condition in Eq. (3.27) is a special case where no NBC would be deduced. In a more
general situation, some residue NBC would be derived after inserting the EBC.

o1



Here, we have used the standard BC notations, i.e. — or + for example at y = 0
stands respectively for the Dirichlet or Neumann BC of wave functions: fZ/R(O) =0
or 9y f1!;(0) = 0. For instance, the symbolic notation (—+) denotes Dirichlet (Neumann)
BCaty=0(y=1L).

The SM-like profile d7 .(y) (¢} ,5(y)) taken from line 1 (2) of Eq. (3.28) assigned to
the (singlet /doublet component) quark fields give rise to the chiral nature of the SM and to
its correct chirality configuration, as described in Section 3.2.3. The other solutions (3.29)
lead to KK towers without zero-modes like custodian states [see also the discussion on
Eq. (3.29) in Section 3.2.3].

Notice that the used BC (3.25) must be injected into the equations (3.19) issued from
the EOM as those are valid for any point of the extra dimension including the boundaries
[see the original Eq. (1.29)]. This leads to a new set of BC that we call the complete BC.
These complete BC are well satisfied by the final solutions (3.28) and (3.29).

The constants BY = v/2¢!*L and B} = v/2¢®k (¥n € N*) [in the special case n = 0,
the v/2 factors must all be replaced by the unity] !, where af /R ATe real angles, are fixed
by the ortho-normalization condition (1.26). The relation sin(mf L) = 0 (F = Q, D) has
the following chosen solutions for the KK mass spectrum,

neN, (3.30)

m
‘mn‘ = L )
where we define the notation of the common mass spectrum m,, as

mp=m@ =mP. (3.31)

Similarly, the relation cos(m£f L) = 0 has the possible solutions:
rl_ @2n+1)m
’m" ’ Y3

For instance as the boundary condition 1) and 3) in Eq. (3.28)-(3.29), we would like to
know if the phase of B} is physical. For that purpose, we perform the transformations:

, neN. (3.32)

BY — 9B = (fPfR) = (0 R e fn)

which let the KK wave functions equations (3.19) and the ortho-normalization condi-
tions (1.26) invariant, thus the phase of B} is not physical and one can take B} = |B}|.
For the boundary conditions 2) and 4), the same method is applied to conclude that the
phase of B% is not physical. We can take B} = |B%|. The constants |B}| and |Bj|
are fixed by the ortho-normalization conditions (1.26). The boundary conditions 1) and
2) (3.28) have the non-negative solutions for the KK mass spectrum in Eq. (3.30), the
negative branch is also a reasonable mass spectrum. We will show that the sign of m,, is
not physical. One can perform the transformations:

{ O

F/fy v ~F/f% or F/fi~~F/f}.

so that the profiles before and after the transformation are linear dependent 2. Moreover,
the 4D Dirac equations (1.25), the KK wave functions equations (3.19) and the ortho-
normalization conditions (1.26) are invariant. By using the same method as above, for

19. For the solution 1), we find BY = eZ while B} = e*®% for the solution 2) [cf. Eq. (3.28)].
20. It implies that the profiles before and after the transformation can not be treated as two different
KK modes satisfying the ortho-normalization conditions in Eq. (1.26).
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the boundary conditions 3) and 4) (3.29), one can show that the sign of m? is not physical
and take mg > 0. For schematic purpose, in Figure 3.1, we give a plot of one possible set
of the KK wave functions along the extra dimension with the real solution Eq. (3.28).

2/ 12
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1/ 91 1 1
-~ qL(dR) - T T 4R dL
0/ 70
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() V2 ms- Ve @)
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Figure 3.1 — Zero-mode and KK dimensionless wave functions q(d)%(lj% (y), q(d)}%(L) (y),
along the interval domain, y € [0, L], free solutions of Eq. (3.28) in the simplified case,
Vn €N, o} = o} =0 with non-negative KK masses in Eq. (3.30). The two ending points
at y = 0, L, the BBT, and Dirichlet/Neumann BC, (—)/(+), are indicated on the graph.

We finalize this section with an additional remark on the probability current, which
plays a crucial role of the EBC. Alternatively, one can determine the explicit formula
of the probability current (3.20) directly (without applying the Noether’s theorem to
the Lagrangian density) from a rewriting?! of each free 5D Dirac equation (1.29)-(1.30)
(F' =@, D) in the bulk.

3.3.3 Introducing the Bilinear Brane Terms [NBC]

As announced at the end of Section 3.3.1, an alternative method?? with respect to
previous section for finding out the same consistent physical solutions, for the mass spec-
trum and the profiles, is to add the BBT (3.4) to the kinetic terms (3.3) so that the initial

21. Subtracting the Dirac equation to its Hermitian conjugate form, with the relevant 5D field and ~°
factors, and using the 5D Dirac matrix rules.

22. One could simultaneously impose the EBC (3.23) above and add the BBT to the action, but this
method would contain some redundancy.
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free fermionic action becomes,

Shulk + SB - (3.33)

Let us apply the least action principle using this action as the starting point. We add the
BBT piece (3.4) to the bulk kinetic action based on Eq. (3.3). Without loss of generality,
the stationary action condition

0 =10z (Sbuk + SB) ,

can be split into these two conditions with respect to the two field variations respectively,

L
b5 (St + Sp) = [ d'o { [ dy [$FL (16" 0,Fy + 01Fr) + 6F), (100, Fr — 0uFy)|
0

O'E-l—l
2

_05—#1
0 2

F F
o7 90

_l’_

—1
SF| Fr|, +

5 OF}Fy|

—1
5 OF] Fr| 5F;FL]0}, (3.34)

L_

using 05 ;. (F=@,D) (3.5) for the SM configuration. For generic field variations 5F£ IR

T
and 5FL/R}O7L

leading to the same equations as the EOM (1.30)2* and in turn via Eq. (1.25) to the
profile equations (3.19) with solutions (1.36). The general solutions (1.36), once injected
into the initial equations (3.19), take the specific forms (1.38). We are thus left with the
NBC:

, the sum of the first two terms, both in Eq. (3.34), must vanish separately,

of —1 of +1

0,

5F£FR‘L 5F;FL‘L -0,

and (3.35)

-1 F+1
lor] op + 5F};FL’0 —

5F2FR‘O -0,

Then, using the appropriate constants 05 . (FF=Q,D) (3.5) for each field and generic
variations (5Fg3% oL # 0, it appears clearly that those BC belong to the set of BC (3.24)-

(3.25) whose application on the solution forms (1.38) leads to the two respective sets of
profiles and KK mass spectrum (3.28), as already derived. The structure of the profile
solutions (3.28) corresponds to the chiral nature and configuration of the SM as already
explained in Section 3.2.3.

For completeness, beyond the SM configuration, we take the custodian BBT (3.7) in
the initial action for a given field F',

Shulk + S5 , (3.36)

and the explicit chiral formula reads,

L
Spui + Sp = / d'z { /0 dy [iF},0" 9, Fr + iF[ 6" 9, F — Fl0uFy + FJ0sFp|

F F
o' —1 o' —1

+[ 5 FzFR%-
0

2

o +1
2

o +1
2

FiFr+

FIEFL]

F;FL]

J:

(3.37)

23. We obtain the Hermitian conjugate EOM and NBC by integrating by part the bulk piece of the
relation 6FL,R (Sbuik + SB) = 0 (non-vanishing boundary terms appear due to the integration over the
extra dimension) in order to get rid of the field factors Oy FL R.
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The stationary action condition can be split into the two following conditions,

o —1

0= G (Shute +55) = / de { / dy [$F} i6"0,FL + 5} 04 Fr]
+

] } (3.38)

/ dia { / 5FT io*0,Fp — 6F] 84FL}

] } . (3.39)

Once more, the sum of the first two terms in Eq. (3.38) and (3.39), respectively, must
vanish, leading to the same profile equations as the ones deduced from Eq. (3.34) and
hence to the identical bulk solution forms (1.38). Nevertheless, we are now left with the
new NBC:

F_

+ SF Fp FTFR

0= 5F}; (Sbulk + SIB)

F

o o —1

1
SFLFy, 5

- SFLFy,

+
L

2

O'F

1 F
- ; 5F} Fr

o

+1
= — SFLFy,

ol —1
= — SFLFy,
L

g

1
SF) Fg

—0. (3.40)
0

L 0

Then, for generic variations 6 F I(’B?“‘O . = 0, it is clear that those BC belong to the set of

BC (3.24)-(3.25) whose application on the solution forms (1.38) leads for ot = +1, to
the set 4) of profiles and KK mass spectrum in Eq. (3.29), and, for o/ = —1, to the set 3)
of solutions in Eq. (3.29), as already derived. The control of the BBT sign factor o', in
Eq. (3.7), on the final solution structure appears here clearly. The profile solutions (3.29)
have a custodian chiral structure as already described in Section 3.2.3. Note that one
could as well combine the two approaches to define the model: add a BBT only on an
interval boundary for a given 5D field (as in this Section 3.3.3) and apply the current
vanishing condition only on the other boundary (as in Section 3.3.2).

In the end of this section, let us now discuss the probability currents. In the presence
of the BBT (3.4) or (3.7) [invariant under the transformations (3.21)], as demonstrated
in the beginning of Appendix F, the application of the Noether’s theorem based on the
bulk EOM (1.30) — derived from the variation of the bulk (kinetic) action (3.1)-(3.3)
invariant under the global U(1)r transformations (3.21) — leads to the same probability
currents (F.5) defined separately for the bulk fermions represented by the 5D fields F' =
Q,D, as in Eq. (3.20). Now the NBC (3.35) or (3.40) induced by the BBT, as both
satisfying the BC (3.24), lead to fours conditions of vanishing probability currents of the
exact form (3.23). In other words, the presence of the BBT guarantees (without imposing
any condition) the vanishing of the currents at both boundaries for each independent
fermion species. These BBT-induced conditions contribute to the consistent and complete
definition of the geometrical field configuration for the considered model with a finite extra
spatial interval in which fermionic matter is stuck.

Alternatively, we can derive directly (without the Noether’s theorem) the conservation
relations, dyj¥ = 0, for the probability currents (3.20) from a rewriting>* of each free
5D Dirac equation (1.30) in the bulk. The BBT (3.4) or (3.7) affect only the NBC derived
from variation of the action (3.1)-(3.3).

24. Subtracting the Dirac equation to its Hermitian conjugate form.
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3.4 Brane-localized Yukawa couplings: 4D approach

Once the free case is addressed, via the EBC (3.24) in Section 3.3.2 or the NBC (3.35)
[or Eq. (3.40) for custodians] induced by the BBT in Section 3.3.3, the free fermion mass
spectrum and profiles are known. Then, we take into account of the action part Sx (3.14)
[induced by the Yukawa interaction Sy (3.11)] in the mass spectrum. In this section, we
only describe the two steps of a first method [77, 79, 117, 129, 130, 174-181], that will
turn out to be a correct approach, for including the effects of the Yukawa terms (3.14) on
the final fermion spectrum. The considered action reads thus as,

Shulk + Sx (+SB), (3.41)

where Sp (existing if no EBC are applied) has no direct effect on the mass matrix (3.43)
as explained in Section 3.2.3. First, the free profiles and free spectrum are calculated
within a strict approach whose correct treatment was exposed in detail in Sections 3.3.2
and 3.3.3. Secondly, one can write a mass matrix for the 4D fermion fields involving the
pure KK masses [the free spectrum of the first step| as well as the masses induced by the
Higgs VEV in the Yukawa terms (3.14) [with free profiles of the first step], which mix the
KK modes. The bi-diagonalization of this matrix gives rise to an infinite set of eigenvalues
constituting the physical masses.

The action (3.41) leads — after insertion of the KK decomposition (1.24), use of free
EOM (3.19), the ortho-normalization condition (1.26) and integration over the fifth dimen-
sion — to the canonical kinetic terms for the 4D fermion fields as well as to the following
fermionic 4D effective mass terms in the Lagrangian density (and to independent 4D ef-
fective Higgs-fermion couplings not discussed here),

b Mot

in the combined basis for the left and right-hand (transposed) 4D fields:

{Xi(‘x”) = ( %thgaDitaQ%t7D%ta"')a (342>
Xg(2*) = (DR, Qx, Dy,Q%. D%, ) -

Notice that there exists only one chirality for the zero-modes as explained below Eq. (3.4).
The infinite mass matrix reads as,

agp 0 apr 0 ap2
alg m1 ain 0 aip
0 puu m1 Bz 0
M= agg 0 a1 mp g - |0

0 Bor 0 P22 mo

(3.43)

where m,, is the free spectrum (3.30) and the free wave function overlaps with the Higgs-
brane are defined by 2°,

V<Z7]) € N27 Qij = qu(L)di%(L)v
(3.44)
V(Z)]) €N 27 BZ] = de(L)qR(L)

25. To simplify, drop non-physical phases discussed in the end of Section 3.3.2, here we only consider
real wave functions.
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As the profiles are the free ones [profiles and KK mass spectrum solutions (3.28) with SM
chiral structure], only the a;; coefficients do not vanish.

The physical fermion mass spectrum is obtained by bi-diagonalizing the mass ma-
trix (3.43). This method is called the perturbation method in the sense that truncating
the mass matrix at a given KK level corresponds to keeping only the dominant contribu-
tions to the lightest mass eigenvalue being the measured fermion mass (higher KK modes
tend to mix less to the zero-mode due to larger mass differences).

Extracting the mass spectrum equation from the characteristic equation for the Hermi-
tian-squared mass matrix (3.43), in the case of infinite KK towers, is not trivial. This
useful exercise was addressed analytically in Ref. [130] for the present toy model but with
a bD Yukawa coupling constant Y5 (and in turn a X quantity) taken real, i.e. oy =0 in
Eq. (3.12). The resulting exact equation — without any approximation — was found to be:

Vn €N, tan?(/|M,|2L) = X? & tan(y/|M,|2L) = +X . (3.45)

in the case of a real X parameter and positive m,, branch from Eq. (3.30). Let us present
here the absolute values of the solutions (physical masses) of this equation:

X —1)™n
VneN, |M,| = arctan( )—2( ) n(n)mw ’ (3.46)
where the function n(n) is defined by
5 for n even,
n(n) = (3.47)
”T‘H for n odd,

so that the positive integer n labelling the mass eigenvalues remains as well the label of
the associated [as in the free case (1.25)] 4D mass eigenstates ™ (z*) [like in Eq. (1.24)].
Besides, we need to demonstrate that the two different classes +X in Eq. (3.45) generates
the unique mass spectrum (3.46):

tan (X
tan(\/| M 2L) = +X = |M}| =25 an(L> T e N (3.48)
arctan(X) + (=1)"n(n)7 ¢
= or n even
L Y Y
—arctan(X) +nw

tan(y/|Mi 2L) = -X = |M7|= ,Vn € N* (3.49)

™~

arctan(X) + (—1)"n(n)m
L

, for n odd |,

so that the two branches of solutions in Eq. (3.48) and (3.49) combine together into a
complete mass spectrum |M,| in Eq. (3.46), which is presented visually in Figure 3.2.

To check that the counting of states is correct, we observe that, in the realistic case
| X| < 1 (typically small SM masses compared to the KK scale), two consecutive absolute
masses |M,| (for one odd n and the following even n, with n € N*) of Eq. (3.46) are
equal at leading order to the corresponding [unique 7 value] absolute mass n7w/L as in
the free spectrum (3.30). Hence, in the vanishing mixing limit [see matrix (3.43)], the
two associated consecutive mass eigenstates ¥ (z#) tend well to the two free 4D field
components Q" (z*) and D"(z*) [of Eq. (1.25)].
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Figure 3.2 — The KK towers with [|[M,| (3.46), |M,F| (3.48), |M, | (3.49)] and without
[|mn| (3.30)] a brane-localized Yukawa coupling.

3.5 5D approach: the regularization doom

In this part, we work out the fermion mass spectrum in the defined model with the
extended 5D action (3.17) using the alternative 5D approach based on the brane-Higgs
regularization [130-136] and we point out non rigorous patterns of this method.

3.5.1 Mixed Kaluza-Klein decomposition

As we have just seen in Eq. (3.42)-(3.43), after the EW symmetry breaking, the infinite

7 and D} field towers mix together (as do the Q% and D%) to form 4D fields ¢} (and
Y%) representing mass eigenstates. In order to take into account this mixing within the
5D approach, these common 4D fields 1} are defined instead of the Q7 and D7 fields (and
similarly for the right-hand fields) in the whole KK decomposition, then called a mized
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KK decomposition [instead of the free one in Eq. (1.24)] [135], as follows,

_ | oo
QL (zt,y) = Z 41y
1 X
Qr (at,y) = Z ax(y) Vi (a4)
| oo (3.50)
Dy (at,y) = Zdn )L (2"),
1 =
DR (xﬂ) y) = Z dn
where the 4D fields 1} /R (Vn € N) must satisfy the Dirac-Weyl equations,
it 0T (ah) — My} (2#) = 0, (351)
it 0 (x#) — My Yf () = 0,

where the spectrum M,, includes the mass contribution whose origin is the Yukawa cou-
plings (3.14). Note that in contrast with the free case, there is a unique mass spectrum
M,, for a unique 4D field tower 1}, ,(x#). In order to guarantee the existence of diagonal
and canonical kinetic terms for those 4D fields ¥} IR the associated new profiles must now
obey the two following ortho-normalization conditions,

1 L * m Tk m
Vmme N, 7 [Tyl ) (0) + 4 0 W) = S (3.52)

for a chirality index C=L/R. These two conditions are different from the four ones of
Eq. (1.26) due to the new mixed KK decomposition (3.50).

3.5.2 Inconsistencies of the Higgs shift procedure

Here we highlight the formal problems of the 5D process of shifting the brane-Higgs
field [130, 131, 136] to get the fermion mass tower. Once more the considered fermion
terms of the extended 5D action (3.17) are Spux and Sx (without Sp which was missed in
the relevant literature and that will be taken into account in Section 3.6). The variations
of the studied action lead to the same free BC of Eq. (1.31) (F = @, D) and to the
following bulk EOM including the Yukawa coupling constants [instead of the free ones in
Eq. (1.30)],
i&“@MQL +04Qr—6(y— L) XDr =

0
i0t0,Qr — 04Qr —6(y— L) X'D;, = 0,
0

(3.53)
i&“@,LDL + 04D — (S(y — L) XIQR =

iU“@MDR—84DL—(5(y—L)XQL = 0.

where X and X' are taken real. Indeed, in view of regularizing the brane-Higgs field, the
Yukawa interactions must be included in the bulk EOM [130] — as done in the literature.
Inserting the mixed KK decomposition (3.50) in these 5D field EOM (3.53) allows to
factorize out the 4D fields, obeying the 4D Dirac equations (3.51), and obtain the profile
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equations for each excited mode [instead of the free ones in Eq. (3.19)]:

O1qi(y) + Mnqi(y) = 6(y— L) Xdp(y),

Inen. Oaqt(y) — My qh(y) = — d(y— L) X'd}(y), (354
Osdp(y) + My d}(y) = 0(y— L) X'qr(y),
O4d}(y) — Mpdp(y) = —6(y—L)Xqi(y).

Here we underline the first mathematical issue of this usual approach: introducing §(y— L)
Dirac peaks?® in these profile equations leads to relations between distributions?’ and
functions which are thus not mathematically consistent [149, 150].

The apparent “ambiguity” noticed in the literature (in the context of a warped extra
dimension) was that the Yukawa terms in Eq. (3.54) are present only at the y = L
boundary and might thus affect the fermion boundary conditions. In order to avoid this
potential problem (like a field vagueness), a regularization of the brane-Higgs coupling
was suggested forcing to maintain the free fermion boundary conditions in the presence of
Yukawa interactions.

3.5.2.1 Regularization I drawbacks

In the first type of regularization applied in the literature [130, 131, 134], called Regu-
larization I, the BC are considered at the first level of the procedure to be injected in the
EOM (3.54) [130]. The free BC impose d7(L) = ¢%(L) = 0% [see respectively the first
and fourth solutions in Eq. (3.28)] so that the EOM (3.54) is supposed to become

O1qw(y) + Mnqi(y) = 6(y— L) Xdp(y),

vnen, Ouq}(y) — My qh(y) = 0, (355)
O4d(y) + My dj(y) = 0,
O4d}(y) — My dip(y) = —6(y— L) Xqi(y).

At this level, we point out a second lack of strictness in this common “standard treatment”:
the two vanishing RHS of Eq. (3.55) originate from the assumption that 0 x 6(0) = 0
whereas the quantity 0 x §(0) is rigorously undefined ?° which should forbid to continue
this standard method ®’. In the next step of this method, the usual mathematical trick
is to shift the brane-Higgs coupling from the brane at y = L (TeV-brane in a warped

26. Strictly speaking, a Dirac peak is a distribution although its historical name is “Dirac delta function”,
which is rigorously treated in Chapter 5.

27. Also called “generalized functions” in mathematical analysis.

28. In the literature, the BC d7|, ; = qrly ;, = 0 are selected by hand from the NBC (1.33) to realize
the SM chiral configuration but without a clear argument based on the EBC (3.25) [see Section 3.3.2] or
the BBT (3.4)-(3.7) [see Section 3.3.3].

29. This quantity corresponds also to an undefined product, namely 0 X oo, within the original simplified
description [182] still used in physics textbooks (together with normalisation conditions):

0 if y#1L,
o if y=1L.

5(y—L)L{

30. Such 6(0) divergences are automatically regulated — by the exchange of infinite towers of KK scalar
modes — for a brane-Higgs coupled to bulk scalar fields within a minimal supersymmetric scenario [183].

60



framework) by an amount e:

Oaqp(y) + Mnqr(y) = 0y —[L —€]) Xdp(y)
Oaqr(y) — Mnqp(y) = 0,
¥neN, g f (3.56)
Oudp(y) + My dp(y) = 0,
Oadi (y) — Mndi(y) = —0(y—[L—e) Xqz(y).
Then the integration of the four relations of Eq. (3.56) over an infinitesimal range, tending

to zero and centered at y = L — ¢, leads to?!

GR([L =€) —qp([L—€7) = Xdip(L—e),
q([L =€) = qf([L—€7) = 0,
VneN, (3.57)
dp([L = ) —dR([L —€]7) = 0,
dp([L— ) —di([L—€7) = — Xqi(L—e).

Another inconsistency arising here in the regularization process is the following one. The
first and fourth relations in Eq. (3.57) show that the wave functions ¢%(y) and d7 (y) possess
a discontinuity at y = L —e. Hence the functions 04q}(y) and 04d7 (y) are not well-defined
at y = L—e. Two of the integrations performed on Eq (3.56) to get Eq. (3.57) are thus not
well defined. The fundamental theorem of analysis *? [184] cannot be applied for functions
undefined on the whole interval of integration. Let us express this problem in other terms;
the functions dsq}(y) and 04d} (y) being not defined at y = L (in the limit e — 0), the
last two terms of the 5D kinetic action (3.3) — defined along the interval Z =10, L] — are
not well defined *>. Another definition problem appears in this regularization: the brane-
localized Yukawa action (3.14) is ill-defined [149, 150] since the Dirac peak 6(y — L) enters
in particular as a factor of the profiles ¢} (y) and d} (y) being not continuous at y = L,
as deduced from Eq. (3.57) — in the limit ¢ — 0 — combined with the free BC imposing
d%(L) # 0, q}(L) # 0 [see respectively the first and fourth solutions in Eq. (3.28)]
Finally, the ¢}(y) and d}(y) jump at y = L, obtained when regularizing the brane-Higgs
coupling, which conflict to the field continuity axiom of the invoked theory of variation
calculus and hence to the Hamilton’s variational principle [148].

In the following steps of this Regularization I, one solves the shifted EOM (3.56) first
in the interval [0, L —¢] (bulk EOM without Yukawa couplings) and applies the free BC at
y = 0 on the obtained profiles. Then, one solves similarly on [L — €, L] before applying the
jump and continuity conditions (3.57) at y = L — € on the resulting profiles. The last step
is to apply the free BC at y = L on these profiles and take the limit ¢ — 0 (to recover the
studied brane-Higgs model) on the written BC. The obtained BC give rise to the equation
whose solutions constitute the fermion mass spectrum:

Vn €N, tan®(M,L)= X?, (3.58)

31. The integration of Eq. (3.56) could also be performed over the interval [L — €, L]; this variant of the
calculation, suggested in an Appendix of Ref. [131], represents in fact an equivalent regularization process
leading to the same physical results and with identical mathematical inconsistencies.

32. Let (a,b) € R? and g be a continuous function on [a, b], then g admits continuous primitives on [a, b].
Let G be one of them, then one has: fab dy g(y) = G(b) — G(a).

33. From the current point of view, the conservation condition (F.10) — involving in particular the 5D
probability current component (3.79) — cannot be properly written at any point along the fifth dimension
since ¢ (y) and d7 (y) have discontinuities at y = L so that derivatives in 94j* are not well defined there.

34. The profiles ¢7(y), di(y) are usually assumed to be continuous at y = L — e while ¢x(y), d}(y)
remain unknown exactly at this point.
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which induces the exactly identical mass spectrum in the 4D approach result of Eq. (3.45)-
(3.46).
3.5.2.2 Regularization II drawbacks

Within the Regularization II [130, 131, 135, 136], the Yukawa coupling is firstly shifted
into the bulk equations (3.54) which become

Ouqm(y) + Mnqi(y) = oy —I[L—¢]) Xdr(y),

inen. 0147 (y) — My qhly) = —d(y—[L—¢]) X'd}(y), (3.59)
Oadp(y) + My dp(y) = 0(y—[L—e]) X'gi(y),
O4d}(y) — Mndip(y) = — d(y—[L—¢]) Xqi(y)-

GR([L =€) = qp([L—€7) = Xdip(L—e),

—— qi(L =€) —qi([L—€7) = — X'd}(L—¢), (3.60)
dp([L =€) —di([L —€7) = X'qp(L—e),
di([L— ") —di([L—€7) = — Xqi(L—¢).

which show that the four wave functions undergo a jump at y = L—e so that their derivative
with respect to y are not well-defined at this point [especially for ¢} and d', in contrast
to that in Eq. (3.57)]. Hence, the four integrations performed on Eq. (3.59) to obtain
Eq. (3.60) are not well defined in this regularization, which is a repeated inconsistency in
the Regularization I. Since that, a regularization at y = L — € must be implied and one
can select a standard mean value weighted thanks to a real number, c,

n n — d™([L—e]™ dn ([L—el+
Gh(L—d%) — gL — ) = xEld)re diltdl)
G(L—dY) — (L —¢g) = —xlizd)te 2i(L=d")
¥neN, ) +:( o (3.61)
(L~ %) —dp(L— ) = x/hlmdDted=dD)
n T — "([L—e]™ c g™ ([L—elT
dL([L_5]+)—dL([L—e] ) = _XqL([ ] )1++ch([ 1) .

Scrutinizing the left-hand sides of those four equations, one observes that jumps may
arise at y = L (under the limit ¢ — 0) for the four profiles [for each excited n'® mode].
Determining which profiles are discontinuous requires to consider the free BC at y = L
(before applying the limit € — 0), the various ¢ values (including infinity) *> and the four
profiles simultaneously [as they are related through Eq. (3.61)].

The hypothesis that all of the four profiles are continuous at y = L — € (in the limit
e — 0) would lead to the EOM and the vanishing BC for all fields as in the absence of
Yukawa interactions®® and in turn force all fields to vanish on the interval Z = [0, L]
(see Section 1.3.1). This kind of solution was not considered in the literature since it

35. Different values of ¢ correspond to physically equivalent regularizations based on different input
values of the Yukawa coupling constants (different coupling definitions).

36. Free BC for continuous profiles and free version of the bulk equations (3.59) without the jump
conditions (3.61) at y = L — ¢ involving effectively the Yukawa couplings.
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does not provide a physical configuration. Therefore, there must exist at least one profile
discontinuous at y = L, which in turn cannot be derived at this point and leads to an
undefined kinetic term [in the last two terms of 5D kinetic Lagrangian density (3.3)].
Furthermore, the obtained discontinuous [at y = L] profile comes in factor of §(y — L)
in Eq. (3.14), spoiling the mathematical validity of this action. Besides, once more, this
jump obtained at y = L within the regularization process is not compatible with the field
continuity axiom implicitly used when applying the Hamilton’s variational principle.

In the next steps of Regularization II, the EOM (3.59) is first solved over the domain
[0, L — €] (free bulk EOM) and the free BC at y = 0 are applied on the resulting wave func-
tions. Eq. (3.59) is then solved over [L —¢, L] before the jump/continuity conditions (3.61)
at y = L — € are applied on the obtained profiles. Finally, the free BC at y = L are imple-
mented on those profiles and one applies the limit ¢ — 0 on the expressed BC. These BC
make appear the following fermion mass spectrum equation for ¢ = 1:

Vn €N, tan?(M,L) = _AX Y (3.62)
n , ta L =1xx) .
which can still be shown [130] to be the same as the result of regularization I in Eq. (3.58)
[with the redefined Yukawa couplings].

3.5.3 Inconsistencies of the softened brane-Higgs coupling

Another type of regularization used in the literature (for warped models) [130, 131, 135,
136, 139-141] consists in replacing the Dirac peak d(y — L) of Eq. (3.14) by a normalized
square function [a so-called nascent delta function (or delta sequence)],

17 Yy e [L_EaLL
6(y— L) = ¢ (3.63)

0, otherwise,

which has a vanishing width (e > 0) and an infinite value (1/¢) in the limit ¢ — 0 [which
is not a true function in the mathematical sense]®’ where one expects to recover the
considered model with a brane-Higgs coupling. Nevertheless, we point out here that the
Dirac peak §(y — L) at the Higgs brane, and in turn the original model, is not rigorously
recovered via a limit, 6(y — L) = 131(1) 0¢(y — L), which is only symbolic since a distribution
cannot be defined as the simple direct limit of a basic function®. Hence, this would-
be regularization is not satisfactory in the sense that it does not strictly reproduce the
studied brane-Higgs scenario. By the way, to give a well-definition to this regularization
procedure, §(y — L) in Eq. (3.54) should multiply only continuous wave functions.

In addition, the two schemes of Regularization I and II still hold in this framework of
a softened coupling and in the case of Regularization I a problem arises again: some terms
of the profile EOM are taken at zero based on the assumption that 0 x §(0) = 0 whereas
the quantity 0 x §(0) is undefined.

37. The rigorous treatment based on the Dirac distribution formalism is presented in Chapter 5.

38. Strictly speaking, it is the effect of the Dirac peak in the integration of a function f(y) over an
interval covering the point y = L, fé(y — L)f(y)dy = f(L), which can be reproduced via an integration
of the type, lin% f 0°(y — L) f(y)dy = f(L), but not the implementation in the present regularization.

€—r
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3.5.4 Two non-commutativities of calculation steps

The analytical differences of the mass spectra found in the Regularisations I and II,
as well as via the softened and shifted brane-Higgs peaks, could be compensated by the
different input values of the Yukawa coupling constant parameters (Y5 and Y7) to get
identical physical mass values.

Nevertheless, the Regularizations I and II are in fact physically different as inducing
the existence of measurable flavor violating effective 4D Yukawa couplings at leading order
in v2/|m1|?, which are generated by the Y7 couplings [135] presented exclusively within
Regularization II (as appears clearly in the 4D approach). This physical difference between
the two schemes of regularization raises the paradoxical question, of which one is the sole
correct analytical scheme to use, and represents thus as a confirmation of the inconsistency
of regularizing the Higgs peak.

These two schemes of regularization are obtained [130] by commuting in the 4D cal-
culation (of masses and couplings) the ordering of implementation of the two limits ¢ — 0
[the regularizing parameter € defined in Eq. (3.56)] and N — oo [the upper value N of the
KK level n in Eq. (1.24)]. Therefore, this physical non-commutativity of calculation steps
reflects the inconsistency of the Higgs peak regularization.

Another paradoxical non-commutativity of calculation steps arising in the context of
regularization of a brane-Higgs coupled to bulk fermions was discussed in Ref. [139, 140]:
different results of Higgs production/decay rates when taking ¢ — 0 and then Ngg —
o0 ? [136] or the inverse order [137] in their calculation. We can thus interpret now this
second non-commutativity of calculation steps as being another effect, and in turn another
confirmation, of the problematic Higgs regularization (also expected with a warped extra
dimension). Hence, the theoretical debate in the literature about the origins of those two
non-commutativities (involving €) finds its solution in the mathematically ill-defined (see
above) and unnecessary (see below) Higgs regularization (introducing e).

3.6 New 5D approach

In this part, we consider the presence of the Yukawa couplings (3.14) and present the
rigorous 5D method to calculate the fermionic mass spectrum — which does not require
any kind of regularization. We follow the main lines of the methodology developed for the
free case in Section 3.3.

3.6.1 The naive approach

For the fermion masses, the relevant part of the considered action (3.17) to start with
is

SEh = Sbuk + Sx + Sp, with Sy = —/d43’ Laly (3.64)

where the first term is based on kinetic terms (3.3) and Lp introduced by the BBT of
Eq. (3.4) is imposed only at the brane y = 0 where the Yukawa interaction is absent.
Regarding the free brane at y = 0, we could equivalently apply the EBC (3.23) instead of
including these BBT, as we have exposed in details in Section 3.3.2-3.3.3. Now without

39. Here Nk k stands for the number of excited fermion eigenstates exchanged at the loop-level.
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loss of generality, the least action principle leads to the four following conditions,
L
0=0y S8 = / 'z { / dy 6Q} [i5"9,Q1 + Qx|
L 0
1
+ |50} (~xDr - 3Qn)|| + (sQl@x)|,}.
2 L 0

0= 5%55[3) = /d4$ {/OL dy 0QY, [i0"0,Qr — 04Q1] + {5@% (‘X/DL + ;QLH

)
J

+ {51); (—X*QL + ;DLﬂ ‘L ~ (6D}Dr) ]0} . (3.65)

L 1
0=y S8 = [d% { /0 dy 6D}, [i5"9,Dy, + 01Dg) + {50} (X’*QR - 2DR)]

L
0=0p S5 = / d'z { /0 dy 8D}, [i0"0, D — 84Dy

Analogy to the studied free case, the non-vanishing field variations 5F£ IR 5F£ / R‘o | are

generic, so that the bulk terms in each of those four relations, must vanish separately,
which leads to the same equations as the 5D EOM (1.30) and hence — via the mixed KK
decomposition (3.50) and 4D Dirac-Weyl equations (3.51) — the profile equations,

Oaqi(y) — My ai(y) = 0,
Oaqr(y) + Mnag(y) = 0,
VneN, N X (3.66)
Oadi(y) — Mndi(y) = 0,
Oadf(y) + My d(y) = 0,
which are solved in Eq. (1.38) (f = ¢,d) but via (distinct) KK masses M,,
fty) = —Bp cos(Mny)+ By sin(My,y),
VneN, (3.67)
frly) = B cos(Myy) + By sin(Myy),
and the NBC resulting from Eq. (3.65) read as:
(Qr+2XDp)|, =0, (Dr+2X"Qr)|l,=0, Qrly=0, (3.68)
(Qr—2X'Dr)|, =0, (Dr—-2X*Qr)|,=0, Dgl,=0.

Note that Qr and Dy can’t vanish at y = L. Otherwise, one would obtain the free
mass spectrum independent of Yukawa couplings X *)[see Eq. (3.30)] via the solutions of
Eq. (3.67) as in Section (3.3.2). Then, the NBC (3.68) leads to the following consistency
conditions on the Lagrangian parameters,

AXX™ =4X*X' =1, (3.69)

and in turn to
4XX'|=1, and ay: =ay +2kr, ke Z. (3.70)

We should emphasize that the Yukawa coupling relation (3.69) prevents us from taking
the free limit where X — 0 and X’ — 0.
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The boundary conditions (3.68), combined with the bulk profile EOM (3.66) [with
solutions (3.67)] taken at y = L, constitute the complete BC. Referring to the dependence
on the quantity X), we denote (x) this new class of complete BC at the brane with
a Yukawa coupling (here at y = L) to distinguish them from the Dirichlet BC usually
noted (—) or the Neumann BC noted (+). The BC (3.68) on the 5D fields give rise to the
following conditions on the profiles, through the mixed KK decomposition (3.50),

qp(L) +2XdE(L) =0, dj(L)+2X"qi(L) =0, ¢%(0)=0,
VYn €N

(3.71)
qp(L) —2X'd} (L) =0, dj(L)—2X"q;(L)=0, d7(0)=0,

since the 4D fermion fields for the mass eigenstates cannot be linearly related — as discussed
below Eq. (3.19). Those profile conditions, once applied on the solutions (3.67), lead to
the form,

qr(y) = —=Cg cos(Mny), qp(y) = Ck sin(Myy),
Vn € N (3.72)
di(y) = D} sin(Myy), di(y) = D} cos(My,y),
together with the relations,
Dn * CIT}Z 2 2
tan(M,, L) = —2X C—?z =-2X Dy = tan“(M, L) =4|X|*,
! Dn 1% C]% 2 12
cot(M, L) = —2X =-2X"—= = cot*(M,L)=4X"]". (3.73)
C’R Dy

where the last two mass spectrum relations induced are strictly equivalent thanks to
Eq. (3.69). The obtained mass spectrum allows to further determine for instance the BC
(—x) of the profile d} (y): d}(0) =0 and d} (L) = D} sin(M,, L).

Let us check the validity of the obtained solutions by physical consistencies. In the
decoupling limit of high KK masses (compared to the typical SM energy scale) applied
to the present model, one expects to recover approximately the SM setup at low-energies.
This decoupling condition is necessary for the theoretical consistency of the model, and it
is generically imposed by the experimental constraints. Firstly, according to Eq. (3.73),
the lightest mode mass is,

|Mo| = larctaun(Q\X]) laurctan(\@\yzlLv\) ~  V2|yal, (3.74)
L [ma [> v

where we have imposed the relation of X, Y5 and y4 in Eq. (3.13)-(3.15) as well as the
first excited KK mass |m1| = n/L [cf. Eq. (3.30)]. This 4D effective fermion mass [cf.
Eq. (3.51)] is well proportional to the Higgs VEV as in the SM. Secondly, the effec-
tive 4D Yukawa coupling constants in the 4D action term involving the lightest modes,
— [d*z }f)ongTw%—i—H.c., is obtained by injecting the mixed KK decomposition (3.50) to
the Yukawa action (3.11) and then integrating over y by using the wave functions (3.72)
to take into account the mass mixings induced by the Yukawa couplings (5D method):

oo = j@L (D) (D) + S (1) (1)

X2 o (1) d3(D)

“ L
7 - } b () dy(D)
0, (3.75)
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where we have invoked the BC (3.71) and Eq. (3.69). So, yoo vanishes, which differs from
the SM framework and in turn breaks the decoupling condition,

The problematic vanishing of the effective 4D Yukawa coupling constant gy reveals a
problem in the present treatment of the studied model, which results from the invariance
of the action (3.64) under the exchange transformation, @ <+ D together with Y <> Y/
at y = L [symmetry also explicit in EOM (3.66) and the NBC (3.71) of profiles]; this
symmetry will be broken in the correct treatments presented below. A confirmation of
the failure of the present 5D treatment is the non-matching of the obtained spectrum
equation (3.73) with the 4D matrix method result (3.45). Therefore, the naive treatment
of the brane-Higgs coupling in this section should be reconsidered: we present the other
methods in the following two sections.

3.6.2 Introducing the fermion current condition [EBC]

Like in the free case treated in Section 3.3.2, we now try to define well the geomet-
rical field configuration of the considered scenario based on the action Sip, of Eq. (3.64)
where the boundary at y = 0 has been constrained by the BBT and additional bound-
ary conditions would be applied at y = L [EBC]“’. In this scenario, the two 5D fields
@, D propagate only inside the interval Z=[0, L]. This setup translates into a condition
of vanishing probability current at both boundaries. Here, the current is the sum of the
two individual currents of type (3.20) for the two species @, D since those fermions are
mixed through the Yukawa terms (3.14). To find out this current form rigorously, we first
vary the action as at the beginning of Section 3.6.1 and deduce the 5D EOM (1.30) whose
profile solutions were given in Eq. (3.67). Then using the obtained EOM (1.30), we apply
in Appendix F the Noether’s theorem to work out the probability current (F.10)*! which
reads as,

M= —q Z FTMFE | with the local conservation relation 95" =0, (3.76)
F=Q,D
as dictated by the global U(1) symmetry of the action (3.64) relying on the transforma-
tions,
Q— e“Q, DD,
Qe @Q, D—e @D, (3.77)
where o (€ R) is a continuous parameter [now forced by the invariant terms— Yukawa

couplings (3.14) — to be common for the two fields @, D] involved for example in the
infinitesimal field variations (F' = @, D),

OFy, = iaFy,, OF) = —iaF) . (3.78)

We thus find that the effect of the Yukawa interactions is not to modify the currents but
rather to force one to add them up for having a probability conservation relation (due
to the induced mixing among the @ and D fields). Finally, the condition of vanishing

probability current at the boundary where is located the Yukawa coupling reads as *?,

j4jL:—a S OFIF| =ia Y (F}FR—F;FL) - 0. (3.79)
F=Q.,D L F=Q,D I

40. The boundary conditions at y = 0 can be alternatively realized by EBC induced by the probability
currents instead of the BBT at y = 0 included in S5p, (3.64), which has been presented in Section 3.3.2-3.3.3.

41. This result holds as well in the case without BBT.

42. The current condition at the other boundary is taken into account through the BBT in the last term
of the action (3.64).
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For a non-trivial transformation with « # 0, the field variation of this relation is

> (6F) Fr+ FloFg — 6F},Fp — Fl6F.)| =0. (3.80)
F=Q,D L

The variation calculus chronology here is quite simple as no field is fixed by the EBC (3.79):
the fields [and their respective variations| are instead related via this Eq. (3.79) [and
Eq. (3.80)]. Now the brane part of the variation of the action St (3.64), containing the
boundary terms is written explicitly in Eq. (G.1) of the Appendix G. The complementary
variation of the bulk action vanishing separately was already used just above to derive the
5D EOM (1.30). Notice that this variation of the bulk action with respect to the non-
conjugate 5D fields in dp, ,S5p requires an integration by part to recover the Hermitian
conjugate form of the EOM (1.30) [visible in Eq. (3.65)] and the boundary terms in
dr, xS3p [visible in Eq. (G.1)]. One could think of obtaining NBC and their Hermitian

conjugate form respectively from ér, S5, and d.+ Sip) [as obtained in Eq. (3.68)], in
’ L,R

Eq. (G.1), but in fact all the field variations are connected via the relation of Eq. (3.80)
so that one can not get rid of those directly.

In order to get some set of boundary conditions, the most trivial way of combining the
NBC (G.1) with the EBC (3.80) is,

QL/R‘L = DL/R’L =0. (3.81)

However, in this case, the dependence of the Yukawa couplings disappears from the EOM,
the BC as well as the mass spectrum so that without going into the details, one can
conclude that we will not recover the SM in the decoupling limit. To satisfy the EBC (3.79),

we can also try another tricky mixed boundary condition %3,

X'=0, (Qp+XDg)|, = (D —X*Qpr)|, =0, (3.82)

which will also be induced by the BBT approach in Section 3.6.3. However, the remain-
ing NBC at y = L induced via the least action principle of SF, (3.64) [injecting the
EBC (3.82)],

Y

> dustho — [d' (sDLDk+oDLDL)
L

Fe=Qr/r:DrL/r

would lead to the vanishing of Dy, R‘L 4 and in turn to the boundary conditions (3.81)

again. So, this particular trick (3.82) can’t rescue the situation.

In conclusion, there is no consistent way of combining the NBC (G.1) [even by splitting
it into several vanishing expressions| with the EBC (3.80), except in the particular but
excluded case of Eq. (3.81). The current approach of the configuration with a Yukawa
coupling located at a boundary, based on the vanishing of the fermion current taken as
the EBC, is not yet the correct one. The origin of the problem is that the current (3.76)
does not contain an explicit term that involves the Yukawa coupling constants.

L/R

43.
i', =ia > (FlFr—FLF)| =ia (-Q|XDr+ X"D}Qu + D} Dr — DDL)]|,
F=Q,D I
=ia (=D},Dr+ D}Dy + D} Dr — D,D1)|, = 0.
44. 6DY ‘ # 0 for unknown fields DE/R‘
L
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3.6.3 Introducing the Bilinear Brane Terms [NBC]

In order to overcome the drawbacks discussed in Section 3.5, analogy to the free case
in Section 3.3.3, we try here to develop a consistent approach, based on the introduction
of the BBT (3.4) at y = 0, L. We consider the fermion part of the action (3.17):

Spurk +SB + Sx , (3.83)

based on the kinetic Lagrangian density (3.3), the BBT (3.4) and the Yukawa terms (3.14).
The boundary fields F|07 ;, are initially unknown so that their functional variations will
be taken non-vanishing: 6F |07 ; 7 0. Without loss of generality, the stationary action
condition

37 (Sbuik + S+ Sx) =0,

can be split into the two following conditions for each field F' = @Q, D [extending Eq. (3.34)
to include the Yukawa terms],

5o (Stut + Sx + Sg) = / iz { /0 " dy 60T 0,0 (3.84)
+ [-0QL (Qr + X Dr) = X'5Q4Dr ||, + (6Q1Qr)| }.

85 (Shu + Sx + Sp) = / s { /0 "4y $DiTMay, D (3.85)
+ [-X"6D}Qr + 6Dk (DL — X*Qu)]|, - (6D}DL)| }-

Once more, the non-vanishing field variations §F z IR OF 2 / R‘o . being generic, the bulk

terms (first line) in Eq. (3.84)-(3.85) must vanish separately, which brings in the 5D
EOM (1.30) and in turn — through the mixed KK decomposition (3.50) and 4D Dirac-
Weyl equations (3.51) — the wave function equations (3.66) with solutions as in Eq. (3.67):

qt(y) = —Bp cos(M,y)+ B} sin(Myy),
QE@/) = BE COS(Mn y) + BZE Sin(Mn ) )
Vn e N, (3.86)
di(y) = —D}% cos(M,y)+ D} sin(M,y),
di(y) = D} cos(Myy)+ D% sin(M,y),

using here new constant parameters B} /R Dy /R The NBC result from the vanishing of
boundary terms in Eq. (3.84)-(3.85) %%

{(QR"—XDR)’L_O’ X" Qrl, =0, Qrly=0, (3.87)
X'Dpl, =0, (DL —X*Qu)|,=0, Dg|l,=0,
which can be rewritten without loss of generality as,

{(Qr+XDg)l, =0, (Dr—X"Qr)l,=0, X'=0,} or {Qrl,=0, D[, =0,}
{ Qrly=0, Dily=0,

45. Integrating by part the bulk terms in the other relations

0, (Sbuik +SB + Sx) = 0y (Sbuk +SB +Sx) =0,

allows to recover the Hermitian conjugate form of the EOM (1.30) as well as the Hermitian conjugate form
of the NBC (3.87).
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and in turn as,

& XDR|L:07 X*QL|L:07 QR’L:Oa DL|L207 QR|0:Oa DL|0207
or
BC2: (Qr+XDg)l;=0, (DL—-X*Qr)|;=0, X'=0, Qr|ly=0, Dr|,=0.
(3.88)

The lightest fermionic state possesses a mass equal to the agg element of the 4D mass
matrix (3.43) in the decoupling limit m; — oo of the studied high-energy scenario, which
allows to reproduce well the SM mass expression at the low-energy scales. For this purpose,
one must have in particular a non-vanishing Yukawa coupling constant, i.e. X # 0 so that
the BC 1 read as,

M DR|L:07 QL‘L:()a QR|L207 DL|L:07 QR|0207 DL‘():O?

BC at y = L exactly similar to those in Eq. (3.81) which have been ruled out. Hence
we exclude the BC 1. Let us move to the BC 2 which can be expressed in terms of the
profiles, thanks to the relevant mixed KK decomposition (3.50), as follows (together with
the condition X’ = 0),

qp(L) + Xdj(L) =0, di(L)— X*q}(L) =0,
BC2: VYneN,
gn(0) =0, d7(0)=0.

So these BC 2 at y = 0 applied on the solutions (3.86) produce the following profiles,

{ (+x) = qi(y) = A7 cos(Mny), (=x): qhly) = —Ap sin(My,y),
Vn e N,

(3.89)
(—=x): di(y) = A sin(Mypy), (+x): di(y) = A} cos(Mpy),

with the redefined normalization factors AZ, 4 respect to Eq. (3.86),

A= — B, ARZDY.

n
q
One must be careful to avoid some of the mathematical inconsistencies also encoun-
tered in the regularization procedures of Section 3.5: in particular, the existence of any
profile jump at the interval boundaries which would induce an undefined derivative term
in the 5D kinetic action in Eq. (3.3) [last two terms|, an ill-defined term in the Yukawa
couplings (3.14) — where the Dirac peak 6(y — L) would come in factor of a profile dis-
continuous at y = L — and finally would conflict with the field continuity axiom of the
invoked theory of variation calculus. Therefore, we are taking all the profiles continuous at
both boundaries, which is the reason why we have applied the BC 2 at y = 0 on the bulk
profiles (3.86). The application of the BC 2 at y = L on the resulting bulk profiles (3.89)
gives rise to the relations [using M, B, D} # 0,¥n € N, to be checked a posterior],
n n
Ai _ e tan?(M, L) = | X|* , (3.90)

A Aj

Vn €N, tan(M, L) = X

which induces the mass spectrum as

arctan(| X|) + (=1)"n(n) 7

Vn € N, |Mn| = I 9

(3.91)
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using the n(n) function already defined in Eq. (3.47). Note that the boundary relation in
Eq. 3.90 shows |A}| = |A}}], which — combining with the ortho-normalization conditions
of Eq. (3.52) (n = m) — give the solutions:

L
Vn € N, / dy |Ag|2 {sin2(Mn y) + cos? (M, y)} =1L, (3.92)
0

so that . '
Ay = e and AT = €'

with 57, ag € R. Moreover, the boundary relations (3.90), together with the mass spec-
trum equation in Eq. (3.90), lead to the following two branches *°:

I ¢ tan(M,L)=|X| = Al=¢£00") Al =¢, (3.93)
II : tan(M,L)=—|X| = Al =clootorsmn — gn— g (3.94)

assuming that the generic phase ay of the 5D Yukawa coupling constant defined in
Eq. (3.12). Analogy to the free case in Section 3.3.2, when one changes the sign of M,
one goes from the spectrum of Eq. (3.93) to that of Eq. (3.94), which means to perform
the transformation

{ M, — —M,,
O/ = —=0/fg or Y/ff = —=v/ff, f=qd,

while the 4D Dirac equations (3.51), the KK wave functions equations (3.66), the ortho-
normalization conditions (3.52) and the NBC (3.87) are invariant. One can conclude that
the sign of M,, is not physical and consider only the positive branch spectrum of Eq. (3.91).
The phase af is not fixed yet. To see if it is physical, we perform the shift off — af+6,,, and
check that the KK wave function equations (3.66) and the ortho-normalization conditions
(3.52) are invariant, so one can take aff = 0 since it is not physical. What about ay? By
performing the shift ay +— ay + 0, we check also that the EOM (3.66) and the ortho-
normalization conditions (3.52) are invariant so we can fix vy = 0. For schematic purpose,
in Figure 3.3, we give a plot of one possible set of the KK wave functions along the extra
dimension with the real solution Eq. (3.89) (Vn € N,ay = af = 0)*".

(3.95)

Within the simplified case of a real 5D Yukawa coupling constant (| X| = X), we thus
find that the unique tower (3.91) of absolute values of the physical fermion masses is
matching the one obtained in the 4D approach of Eq. (3.46). This exact 4D-5D matching
confirms the overall consistency of our calculations — without regularizations — and is of
course expected to be reached as well for a complex 5D Yukawa coupling constant.

In particular, the insensitivity of the 4D fermion mass matrix (3.43) to the Y7 coupling
constant [described below Eq. (3.44)] matches interestingly the spectrum independence on
Y/ induced by the result Y7 = 0 obtained in the BC 2 [see Eq. (3.88)] used for the 5D
point of view.

Let us give an intuitive interpretation of the absence of role for the Y7 coupling (in-
volved in X’) in the final spectrum (3.91) which depends only on the X quantity. Starting
with the free action Sy +Sg, the profiles d} (y) and ¢%(y) [Vn € N|, defined by Eq. (1.24)

46. It’s just one pattern of splitting the whole mass spectrum.
1 1 1
47. Mo = I arctan | X| > 0, M, = I larctan | X| — 7] < 0, My = I [arctan | X | + 7] > 0.
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----- I d
---qdy) ---qj dj
—qldy)  ——qh d]

BBT BBT

Figure 3.3 — Zero-mode and KK dimensionless wave functions ¢, r), d} /R(y), with
n = 0,1,2, along the interval domain, y € [0, L], corresponding to the brane Yukawa
coupled solutions of Eq. (3.89) in the simplified case, Vn € N,ay = off = 0 in Eq. (3.93).
The two ending points at y = 0, L, the BBT, the (x) BC and Dirichlet/Neumann BC,
(—)/(+), are indicated on the graph.

and with solutions (3.28), vanish in particular at the boundary y = L. Hence the term
with a X’ coefficient in the brane-localized Yukawa action piece Sx of Eq. (3.14), once
added to Spuik + 5B, is expected to have a vanishing contribution. This argument is only
intuitive as it does not include the possible ‘back reaction’ effect of the X’ term on the
profiles via modified BC.

Then, let us review the condition for the fermion currents at the boundary y = L.
The BC 2 of Eq. (3.88) exactly recover the tricky BC of Eq. (3.82), which means that
the NBC (3.88) imply the EBC (3.79) [via the current vanishing condition| so that the
geometrical field setup of the present model with matter stuck on an interval is well defined.

Finally, let us calculate, still without any kind of Higgs field regularization, the 4D
effective Yukawa coupling constants between the mass eigenstates ¢7(z*) and ¢} (z#)
as generated by inserting the mixed KK decomposition (3.50) into the Higgs interac-
tion (3.16), based on the obtained profile solutions (3.89), (3.93)-(3.94):

+00
Shop = /d4m > (—ynm hp T 4 H.c.) , (3.96)

n,m=0
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thus

- Y5
= 2 L)dg (L
Ynm \/QL qr, ( ) R( )
— iﬂ ciag' —ag) cos(M,, L) cos(M,, L)
V2L

_ i(_nﬁ(n)—f—ﬁ(m) ei(aom—ag)

Y5

—ﬂL(l X)) (3.97)

where £ corresponds to the two branches in Eq. (3.93)-(3.94) respectively with respect to
g7 and we have used a trigonometric identity 48 to get the last equality. Note that the
modulus of the 4D effective Yukawa couplings reads

Y5

[Ynm| = m7 (3.98)

which is independent of the KK mixing indexes nm.

In the decoupling limit of extremely heavy KK modes, L — 0, we can then write the
modulus of the lightest mode coupling constant [which recovers the SM content], using
Eq. (3.13)-(3.15), as,

Y5 _ |y4l
— —— == 3.99
ool — NCTARRNG (3.99)
and the absolute mass eigenvalue of the lightest eigenstates [from Eq. (3.91)] via Eq. (3.15)

as,

| X| o]V
|M01L—_>(>) L~ VAL 0 v Yool , (3.100)

so that the SM fermion setup — for the assumed single family — is recovered as expected
from the decoupling condition.

In conclusion, adding the BBT at the brane with the Yukawa coupling to bulk fermions
permits a consistent treatment of the considered scenario and a correct calculation of the
mass spectrum.

3.7 Overview & Implications

3.7.1 The action content

In Table 3.1, we summarize the results for the obtained fermion BC at a single 3-
brane. We conclude from this table that for fermions on an interval and coupled or not
to a brane-localized Higgs field, either the BBT should be generated in the action or
conditions should arise on the fermion current (forcing then the 4D treatment in case
of a brane Yukawa coupling) depending on the origin of the model at high energies.
In the same spirit, notice that the UV completion will determine whether the selection
of fermion boundary conditions is imposed or deduced from the action form. The UV
completion should not bring simultaneously the EBC (imposing vanishing currents) and
the BBT (guaranteeing current vanishing) because it would be possible but redundant.
It is interesting to observe anyway that the necessary additional fermionic ingredient,
with respect to the kinetic terms, reveals that limiting the integration domain of the
action does not suffice to define consistently and completely the basic field configuration

1
VI+T?

48. For n € Z, one has, cos(6 + nmw) = (—1)" cos(d), and for T' € R, cos[arctan(T")] =
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along the interval (or, more generally, over a compactified space). Indeed, without having
a vanishing fermion current at a boundary, one could imagine a source of creation or
a mechanism of absorption for particles at the boundary. Therefore, the present status,
resulting from this analysis and its synthesis, is that the action expression may not contain
all the information (e.g. current conditions) needed to define a higher-dimensional model,
regarding the geometrical setup and field configurations.

No boundary | Vanishing current | Bilinear brane
characteristic | condition [EBC] terms [NBC]

4D approach | (Impossible) BC (&) BC (&)

5D approach | (Impossible) (Impossible) BC (x)

Table 3.1 — Bulk fermion BC (when a consistent determination exists) at a 3-brane where
the Higgs boson coupled to these fermions is located, for different boundary treatments:
presence of the BBT, vanishing of the probability current or nothing specific. The 4D line
holds as well for the 5D approach of the free brane. As usual, the Dirichlet BC is noted
(=), the Neumann BC (+), and we denote (x) the new BC depending on the Yukawa
coupling constant.

Based on the above results, now we describe the generic methodology to find out the
mass spectrum and KK wave functions (allowing to calculate the 4D effective couplings)
along the extra spatial dimension(s) of a given scenario. For this purpose, we present in
Figure 3.4 a schematic description of the main principles. The figure must be understood
as follows. A given extra-dimensional model must be first defined by its geometrical setup
[spacetime structure and field location configuration], its field content and its internal
(gauge groups,...) as well as other types (the Poincaré group here) of symmetries. These
three types of information determine entirely the action form *° whose minimization gives
rise to the 5D EOM and the NBC. Besides the geometrical hypotheses of the model,
concerning for instance, the space limits for field propagation may produce probability
current conditions translating into the EBC °” which must be combined with these NBC.
At this level, a choice of the combined BC obtained can be required (if not determined
automatically by the action structure itself). Then, the KK decomposition (together with
the EOM on the 4D fields) allows us to derive the EOM and the BC for the KK profiles
along the extra dimension(s). The last step is obviously to solve these profile EOM,
coupled to the complete BC, in order to work out the mass spectra.

49. Within a well-understood scenario, all terms of the Lagrangian density should be deduced from
the model definition exclusively: absence of couplings from symmetries, presence of the BBT from the
geometrical setup, etc.

50. The EBC could also originate from the definition of the symmetry of orbifold scenarios (see Sec-
tion 4.3.2).
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Higher-dimensional model definition

|
I 1

All symmetries Field content Geometrical set-up

N o

Action minimisation «— Current condition

N\ /

Natural BC & Essential BC

+ (with BC selection)

Equations of motion

4

Mass spectrum,
Profiles

Figure 3.4 — Inverse pyramidal picture illustrating the general principles for determining
the wave functions and masses of mixed KK modes within a given model based on extra
dimension(s). Same notations as in the main text are used.

3.7.2 Implementation of the cut-off on energy

We have to discuss the cut-off treatment as the framework of higher-dimensional models
is non-renormalizable theories that are valid in a limited domain of energy, up to a par-
ticular scale, set by perturbativity conditions on effective dimensionless couplings. If the
UV completion of such models affects the KK excitation towers and thus the fermion mass
spectrum in an unknown way, then its calculation must include the KK state masses only
up to the cut-off value typically (the UV corrections at low-energies can be parametrized
via higher-dimensional operators). In the case of the absence of (obvious) UV effects on
the specific mass spectrum sector, the whole KK towers should be considered at the mass
calculation level since even the smallest mass eigenvalues can be affected by the mixing
effects of the infinite towers. Now in both situations, only the eigenstates with masses up
to the cut-off scale should be considered for the phenomenological observables (reaction
amplitudes, rates,...) due to the non-renormalizable nature of the theory. Technically, the
implementation of an energy cut-off in the bulk fermion mass calculation and tree-level
Lagrangian construction forces the use of the 4D approach. Indeed, the mixed KK de-
composition (3.50), used in the 5D approach, includes the mixing of the whole tower: the
fields ¢} p(x#) are mass eigenstates.

3.7.3 Phenomenological impacts

In the appropriate treatment developed in the above sections, without regularization,
the obtained mass spectrum and effective 4D Yukawa couplings depend on Y5 but not on
the Y coupling constant. For instance, in Eq. (3.97), one should in fact apply the result
Y/ = 0 as dictated by the relevant BC 2 in Eq. (3.88). Applying an energy cut-off in the
process of mass calculation would not affect this independence on Y/, as is clear from the
point of view of the 4D approach.

The results for fermion masses and profiles are also correct when one invokes the Higgs
peak Regularization I, which cancels out the Y7 dependence. Hence, the phenomenological
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analyses of the literature based on such results are still valid: see for instance Ref. [103, 129,
134, 155, 181, 185-188]. Those studies apply to the geometrical background with warped
extra dimensions where the KK spectrum independence on Y7 is expected to occur as well.

Note that the results from Regularization I and the correct ones in the approach
without regularization at all, are precisely identical only by accident. Indeed in the Reg-
ularization I, considering first the 5D treatment, the mass spectrum calculation in the
presence of Yukawa couplings suffers from two errors that exactly cancel out each other:
there is no BBT, which affects the resulting spectrum equation by a factor 2 [as seen when
comparing the spectra with the BBT in Eq. (3.91) and without the BBT in Eq. (3.73)],
and a regularization is applied. Now starting from the 4D treatment of Regularization I
and adding the BBT (or the current vanishing conditions) would have no effect on the
4D mass matrix [as described in Section 3.2.3] like avoiding the regularization process [as
there is no analytical effect of Regularization I in which the limit ¢ — 0 is taken at the first
step [130]]: the results of Regularization I are thus the same as in the correct approach.

In contrast, if the Higgs peak Regularization II is used, the obtained fermion masses
and 4D Yukawa couplings depend on both Y5 and Y7 so that the results differ effectively
from the correct ones. Hence, the phenomenological studies based on these analytical
results (for example Ref. [135, 136, 139-141]) should be reconsidered or redone.

For example, the effective 4D Yukawa couplings to fermions and their KK excitations
affect the main Higgs production mechanism at the LHC: for instance, the gluon-gluon
fusion via triangular loops of (KK) fermions. Hence, the effect of the realistic limit [130]
of vanishing Y7 on the constraints on KK masses derived in the studies [136, 139-141],
within the warped background and based on the Regularization II, should be calculated
precisely.

Besides, the rotation matrices diagonalizing the 4D fermion mass matrix (3.43) do
not diagonalize the effective 4D Yukawa coupling matrix simultaneously since the latter
does not contain matrix elements made of the pure KK masses. Thus, Y7 would also
contribute to the fermion mass-Yukawa shift via mass insertion approximation as shown
diagrammatically in Figure 3.5 [135].

Figure 3.5 — Shift in masses and Yukawa couplings of SM fermions contributed by KK
modes.

Particularly, if we extend to the case of three generations °!, we can see that the induced
flavor violating 4D Yukawa couplings are contributed at leading order by Y7 contributions.
Hence, there exist significant FCNC effects in measured AF = 2 processes such as K — K,

B — B and D — D mixings, mainly produced by tree-level exchanges of the Higgs boson

51. Generalize the Lagrangian density to 3 replicas for 3 fermion generations.
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via Y7 couplings, which lead to considerable lower bounds on the KK boson mass scale
(in balance via opposite Yukawa coupling dependence with the ones from the tree-level
contribution of the KK gluon exchange) found to be around 6 —9 TeV in the analysis [135]
on warped extra dimensions using the Regularization II indeed. Hence, these bounds
should be significantly suppressed in the realistic situation where Y7 — 0; this limit
should undoubtedly be applied since the independence found in the above sections upon
Y? (extended via flavor indices) remains valid for the case of three flavors, as well as for
fermion bulk masses, as is clear in the 4D approach where the f3;;-elements (3.44) of the
mass matrix still vanish. The predictions in Ref [135], based on Regularization II, that
FCNC reactions involving Yukawa couplings, like the rare top quark decay ¢t — ch and
exotic Higgs boson decay to charged leptons h — ur observable at the LHC, deserve
reconsiderations as well when Y7 = 0.

3.8 Summary & Conclusions

For bulk fermions coupled to a brane-Higgs boson, we have shown that the proper
approach of the fermion masse spectrum and effective 4D Yukawa couplings does not rely
on Higgs peak regularizations. The justifications are the following ones:

(i) There are no fermion wave function jumps at the Higgs boundary so that there’s no
motivation to introduce an arbitrary regularization;

(ii) The regularizations suffer from several mathematical discrepancies confirmed by two
known non-commutativities of calculation steps;

(iii) The correct method without any regularization is validated in particular by the
converging results of the 4D versus the 5D treatments.

In the rigorous methods developed for both free and brane-coupled bulk fermions, we have
also pointed out the necessity to either include the BBT in the Lagrangian density, or al-
ternatively impose vanishing conditions for probability currents at the interval boundaries.
Here the arguments go as follows:

(i) The presence of the BBT guarantees the current vanishing conditions which define
the geometrical field configuration of the model;

(ii) The BBT (4D & 5D approaches) and the current conditions (4D approach) allow for
finding physically consistent fermion masses, bulk profiles, and effective 4D Yukawa
couplings (solutions fulfilling the ortho-normalization constraints, the Hermitian con-
jugate BC and the decoupling limit condition);

(iii) The BBT lead to an expected matching between the 4D and the 5D calculation
results.

The BBT represent a possible origin of the chiral nature of the SM as well as of its chirality
distribution among quark/lepton SU(2);, doublets and singlets. Those terms could thus
provide new clues about the UV completion of the SM.

Depending on the UV completion, the general methodology worked out reveals that
the information regarding the definition of a higher-dimensional model is not necessarily
fully contained in the action itself — through the deduced EOM and the NBC — but might
also be partly included in the EBC.

We have finished the analysis by the descriptions of the appropriate energy cut-off
procedure in the present framework and of the phenomenological impacts of the new
calculation method, which predicts the independence of the fermion masses and effective
4D Yukawa couplings on the Y/ parameter of the Lagrangian. This different coupling
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feature, with respect to the Regularization II usually applied in the literature, should
in particular suppress significantly the previously obtained severe bounds on KK masses
induced by FCNC processes generated via flavor violating couplings of the Higgs boson.

3.9 Unique BBT factors

This section is supplementary content to the published paper [1] in collab-
oration with Grégory MOREAU and Florian NORTIER.

In Section 3.2.3, we have considered a specific BBT form in Eq. (3.4) with a given
numerical factor, in this section, we will answer the question of the unicity of this BBT
form. For this propose, we introduce the BBT with generic factors that we call GBBT:

Sap = /d4$(£GB’L — LaBly)

F —_
with Lop= > ’u2(y)FF: v E
F=Q,D F=Q.D

(

2

)

(FzFR + F;FL) , (3.101)

where we impose the chiral decomposition (1.17) and pu*'(y) are generic parameters for the
field F' (F = @, D) at y and define compact notations

uh, = 'MF‘OL . (3.102)

Note that uf” € R (F = @, D) is guaranteed since the Lagrangian density must be Hermi-
tian.

3.9.1 5D free bulk fermions with the GBBT

In this part, we discuss the unicity of the BBT, using the GBBT to realize the profile
solutions (3.28) and the mass spectrum (3.30) presented in Section 3.3.3. We add the
GBBT (3.101) to the kinetic terms (3.3) so that the initial free fermionic action becomes,

Sbulk + SaB - (3.103)

Let us apply the least action principle using this action as the starting point. The sta-
tionary action condition dz (Spuik + Sgp) = 0 can be calculated,

L

0 }

L _ F 1 F 1
_ / d4m{ / dy 6F [iTM 0y F| + [5F;;” R O FR]
0

L B _ ’uF _ ,75
87 (Soulk + SgB) = / d*z / dy 6F [irMaMF} + 6F [24
0

2 2

L
|
(3.104)

where the bulk variation would recover the bulk EOM in Eq. (1.29)-(1.30) for F = @, D.
The brane terms of Eq. (3.104) would vanish,

prp +1
2

_ph +1
)

F
—1
= 7“02 SF} Fr
L

F
—1
SFLFY, SFLFL| = “LTaFgFR —0, (3.105)
0

0

L
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and the new NBC would be obtained via non-vanishing boundary variations 6 F; / R’ #0,

pp+1

2

Fy, =0, (3.106)

L

which would lead to the Dirichlet BC for F /g simultaneously at the brane where put #£ 41
and in turn to the vanishing of all fields on the whole interval Z = [0, L] as described in
Section 1.3.1.

Therefore, the GBBT different from the BBT are excluded by the wave function nor-
malization. So, ugL = +1 for the factor of the GBBT must be fixed to Sp in Eq. (3.4)

with pf" = pf [the SM configuration] or to S% in Eq. (3.7) with puf = —uf [custodians].
3.9.2 5D approach: introducing the GBBT

Analogy to the free case in Section 3.9.1, based on the introduction of the GBBT (3.101)
at y = 0, L, we consider the fermion part of the action (3.17):

Sbulk + SaB + Sx (3.107)

based on the kinetic Lagrangian density (3.3), the GBBT (3.101) and the Yukawa terms (3.14).
The least action principle 0z (Spuik + Sap + Sx) = 0 for each field F' = @, D,

L _
66 (Sbu + Sep + Sx) = /d41: {/ dy 6Q {ZTM8MQ}
0

Q Q
+ |0Qk (“L2+1QL—XDL>+5QL< QR—XDRN
L
Q —
54" 0r 6@“‘0 1@4 } (3.108)
0

L _
35 (Sbuik + Sep + Sx) = / d*z { / dy 6D [irMaMD}
0

D D
1 1
5D}, <”L2+DL — X*QL> +6D] (“LDR - X’*QRﬂ

* 2

L

D 1 D—l
- [51);“0 Dy + 6D} Dy,

} , (3.109)
0

would lead to the bulk EOM in Eq. (1.29)-(1.30) for F' = @, D and the vanishing of the
brane terms reads,

Q Q
1 1
5@%(“ LEq X’DL> = Q) (‘%QR—XDR> 0,
0 g 5 L (3.110)
+1 1
QR —Qu| = QL —Qr| =0,
0 0
t /LD+1 i 1
§Dh L2 D — X*Qy, = 6D 5 Dnr X*Qr|| =0,
. g : B (3.111)
1 1
5D 1 p 5D~ ppl =0,
2 0 2 0




which induce the NBC at y = 0,

Hg + 1

2

g

D
1

M0+D

2

QL

Qr

=0, (3.112)

0
where
p = —nf =1, (3.113)

must be fixed at y = 0 [the BBT (3.4) sign at y = 0] to realize the SM configuration via
as the boundary conditions at y = 0 of Eq. (3.88) and avoid the vanishing of fields [see
Section 3.9.1]. Note that the NBC at y = L including the Yukawa couplings X and X',

@_q Q41
(”L2 QR—XDR> =0, (“L+ QL—X/DL) =0,
5 L and 5 L
1 1
(o) o | (ratiin)| -
- SCRET)

must provide non-zero boundary conditions for Qg and Dy at y = L. Otherwise, com-
bining with the Dirichlet BC for Qg and Dy, at y = 0, it would lead to a fermion mass
spectrum independent of the Yukawa coupling Y5, which is non-realistic and incompatible
with the decoupling limit. Thus, the two determinants of the Eq. (3.114),

Q

pr —1
- — X @ _1uP -1
9 = 2 R o k) A 'S ')
X Hp — 1 2 2
. 2 (3.115)
pp +1 '
2 = D — - — Y,
Ly B 2 2
2
must be zero °?, which — combining with uf" = pf* — lead to
pP—1pp =1 _pf+1pp 41
2 2 2 2
so that the relation of ,uLQ and pP is fixed as,
up =—nt, (3.116)
which — inserting to Eq. (3.115) — provides an explicit constraint for X and X' as,
2
AXX* =1-— (uf) , (3.117)

and X, X’ have the same phase. Insert Eq. (3.115)-(3.116) to the NBC (3.114), one would
obtain the reduced NBC only including the effective Yukawa coupling X (3.119),

(QR + XDR) ’L =0

~ (3.118)
(0 -x01)], - o

52. It is necessary but not sufficient for Qr|; , Dr|; #0
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where

2 .2
— S 5X, V5= 5

L —pf 1 —pr
So far so good, the NBC in Eq. (3.112)-(3.118) induced by the GBBT (3.101) recover the
similar formula of that deduced by the BBT (3.4) in Eq. (3.88) [BC 2]. Here, we can

directly apply the formula of the mass spectrum in Eq. (3.90) with the effective Yukawa
coupling X (3.119),

X 2

Ys. (3.119)

12
tan? (M, L) = | X|", (3.120)
which induces the mass spectrum as

arctan(’f(‘) + (=) fi(n) T
L

vneN, |M,| = : (3.121)

using the 7(n) function already defined in Eq. (3.47). Then, we need to check the decou-
pling limit, i.e. the consistency to the SM mass-Yukawa relation in Eq. (3.100). The 4D
effective Yukawa couplings v, defined in Eq. (3.96) can be derived as *3,

Y5 Y/*

_ Tk

Ynm = EqL (L) dm( ) \[L dn*( )qR (L)

= [}L - jéL (Xﬂ (L) dR(L)

= (~u$) @ qp (L) d(L) | (3.122)

which leads to the modulus of the lightest mode coupling constant [which corresponds to
the SM particle content], using Eq. (3.15)-(3.119), as
‘ \Y5| ‘

X
—uf| x X1 (3.123)

\yoo\ ﬁ) ‘ "

and the absolute mass eigenvalue of the lightest eigenstates [from Eq. (3.121)] via Eq. (3.15)
as, B 3
X Y:

|Mo| — P ol L

L0 L 2L L—0 | p?|,

which is proportional to the the lightest mode coupling constant |ygo| with an additional

‘ (#Q‘L # 0). Only the BBT case with ,uQ‘L = —1 allows to the SM
L

X v ’y00| s (3124)

factor

proportionality between |yoo| and |My| as imposed by the decoupling criteria. Then,
this conclusion is concluded by the fact that for the GBBT (different from the BBT
MQ’L = —1), Eq. (3.117) prevents us to apply the simultaneous limit where X — 0 and
X" — 0. So, the decoupling criteria rules out the GBBT different from the BBT.
Another method to show the GBBT can’t be different from the BBT is to use the 4D

approach. Indeed, the 4D approach replies on the free profiles, which have no consistent
solutions in the GBBT different from the BBT.

53. If we set ,ug =uP =0aty=L and Eq. (3.113) at y = 0, we can recover the results through the
naive approach in Section 3.6.1 and the vanishing yoo in Eq. (3.75).
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Finally, we add a complementary remark regarding why X’ has no impact. In the case
of the GBBT, we find that Y7 has no impact, which is a generalization of what we found
in the BBT case. There are two demonstrations for that. First, the new BC in Eq. 3.118-
(3.119) doesn’t include X’. Neither do the bulk EOM. This is also confirmed by the X’
disappearing in the action. Inserting the NBC (3.118) to Sx + Sgp in Eq. (3.107) and
replace Qr|;, Dr|;, with Dg|;, Qr|; respectively, one can obtain the effective Yukawa
sector and the BBT (3.4),

Sx + Sap = /d%; { —XQTLDR‘L +He.} + 95, (3.125)

where

sz/d‘* {-XxQ|Dr —X’*D}QR+HC}
:/d4 { ( “LX X" X >QTLDR+HC}
:/d4 { ( MLX—1+2MLX>Q DR+H.C.}

:/d4x nXQLDg| +He},

Son = [ d'{Lasl, - Lal)
:/d4x %{,@Q}QR‘ + uP D} Dr| +He} —/d4x£310
:/d%l #§+1) QTLQR] + (;@—1) DTLDR‘L—|—H.C.}—|—SB

/d% 5 {= (n? +1) XQLDr| - (4 +1) XQDg| +He}+Sp

—/d4 (4 +1) XQLDg| +He}+Sp,

using the relations of Eq. (3.116)-(3.119).
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Chapter 4

Rigorous treatment of the S'/Z
orbifold and profile jumps

This chapter is a personal adaptation of Ref. [2] written in collaboration with Grégory
MOREAU and Florian NORTIER.

4.1 Introduction

An orbifold O being defined as an extra compact manifold C with so-called fixed points
where the introduced spatial transformation (element from a discrete group G) — letting
the Lagrangian invariant — is just equivalent to the identity. It is noted as O = C/G and
possesses thus singularities, not like a smooth manifold [189, 190]. One can for instance
wind an infinite [non-compact] 1D real axis R! around a compact S! circle and define
winding numbers, which indicates a spatial compactification of the Lagrangian density on
R! as

L(y+nx27R) = L(y),

with winding numbers n € Z. Note that one must distinguish a compactification of the
Lagrangian density on R! from a discrete symmetry on a compact space [e.g. the S 1
circle].

In this section, we will study the original version [69] of the warped dimension scenario
based on the S'/Zy orbifold [191, 192] where the extra space is compactified on a circle
respecting a spatial parity of the Lagrangian density. Focusing our attention on the subtle
bulk fermion interactions with the brane-Higgs field localized at a fixed point, we will
analyze the toy model with a flat extra dimension and minimal field content: the results
obtained on the fermion-Higgs coupling structure are directly applicable to the realistic
warped model.

We will clarify the treatment of the bulk fermion couplings to the brane-localized Higgs
boson, within the S!/Z, orbifold background, by building rigorously the four-dimensional *
effective Lagrangian of the minimal model, that is by calculating consistently the Kaluza-
Klein tower spectrum of fermion mass eigenvalues and the 4D effective Yukawa couplings
(via the fermion wave functions along the extra dimension).

In particular, following the same methodology of the finite interval scenario in Chap-
ter 3, we will demonstrate that no brane-Higgs regularization [like smoothing the Higgs
Dirac peak]| should be applied (not necessary and no theoretical argument for it) in contrast
with the usual regularization procedure of literature (see Ref. [1] and references therein)

1. Including time.
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and that, instead, one must introduce either Essential Boundary Conditions on 5D fields 2,
originating from the Zy symmetry, or equivalently some BBT in the fundamental 5D La-
grangian density. The exact matching of the fermion mass spectra derived respectively
through the 4D and the 5D treatments will be used in order to confirm our analytical
results. All those statements (except the 4D approach) hold as well for the free case i.e.
without the Yukawa interactions.

This necessity of the presence of the EBC or the BBT (terms with the same form
as in Chapter 3 [see Ref. [1]], in the 4D or the 5D approach, has been found as well in
Section 3.2.3 [see Ref. [1]] in the finite interval scenario (the higher-dimensional framework
of the other warped model version) with identical brane-Higgs couplings to bulk fermions:
this conclusion confirms that a specific treatment is required for point-like interactions
between bulk fermions and brane-Higgs bosons in higher-dimensional spaces.

Besides, we will strictly describe and work out the entire known duality: identical
physical quantities, namely the mass eigenvalues and 4D effective Yukawa couplings, are
obtained in the different S'/Zs orbifold scenario with the Higgs boson localized at a fixed
point and finite interval geometrical setup with the Higgs field stuck at a boundary.

The choice of The EBC and the BBT (forms including signs), which should originate
from the UV completion of the theory, turns out to induce the chiral nature of the low-
energy effective theory as well as realizing the specific SM fermion chiralities. Indeed, all
these chirality properties are in fact not selected by the remaining sign choices for the 5D
fields transformed via the spatial Zo group — as the solutions we find within this orbifold
configuration can exhibit twist transformations (sign modification here) of the 5D fields,
a la Scherk-Schwarz [193, 194], through the extra space reflection. We will even show
that the transformation sign choices are just mathematical conventions without physical
impact on the SM field chiralities, the fermion mass spectrum and the 4D effective Yukawa
couplings.

Nevertheless, in order to clarify the chirality aspects, we will also study a different
scenario — considered for example in Ref. [195] — where the Zy transformation definitions
on the fields cover as well the fixed points themselves. It turns out that the associated
transformation sign choices precisely at these fixed points constitute here additional EBC,
noted as EBC’, that have the capacity to select some of the previous EBC and hence to fix
the chirality setup. Once more, the role of these EBC’ can be played instead by certain of
the above BBT. Interestingly, such an inclusive Zs symmetry definition can induce by itself
the chiral nature of the theory as well as the SM chirality distribution over the various
fields. This origin for the whole chirality configuration is not offered within the simpler
interval model for instance. In the presence of brane-localized Yukawa couplings, such an
inclusive Zs scenario can only be treated through the 4D treatment. The fermion masses
and couplings are also affected by this inclusive Zo symmetry.

The action integral definition and integral domain end-points will be treated carefully.
In particular the decomposition of the action to introduce improper integrals will appear
to be required in the presence of orbifold fixed points or point-like fermion-boson interac-
tions (not located at the boundary of a finite extra space like an interval). Within this new
and appropriate approach of the specific points along the extra dimension of the orbifold,
we find in the free or Yukawa case that some of the obtained consistent solutions exhibit
certain field jumps at these fixed points and localized-interaction point. This interesting
result of the possible existence of consistent profile jumps stands against one’s first intu-
ition [131, 135], but those jumps are only induced by sign flipping and not by point-like

2. Directly imposed by the model definition, in contrast with the Natural Boundary Conditions deduced
from the least action principle.
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changes of the absolute value of the wave function amplitudes.

The analysis of the present orbifold background with brane-localized fermion-scalar
interactions, as well as the previous results on the interval background in Chapter 3,
show that generally speaking the action expression does not systematically contain all the
information allowing to fully define the model: in particular some EBC may be used (in
contrast to the BBT, which are terms in the action) depending on the brane treatment
adopted or on the UV completion of the theory (which could introduce the BBT).

4.2 Minimal S'/Z, consistent model

4.2.1 Geometry and symmetries: the proper action

We consider a 5D spacetime model with the factorizable geometry M* x S'/Zy de-
scribed just below:

— M* represents the usual 4D Minkowski spacetime manifold whose coordinates are
noted as x* where p € [0, 3] is the Lorentz index of the covariant formalism. The
metric conventions are given in Appendix A.

— 81/Zs stands for the extra space orbifold obtained from modding out the circle S*
by the discrete group® symmetry Zs.
This circle St is characterized by a radius R and its coordinate is y € (—m R, 7 R], not
double-counting the point y = mR since it is this point, by pure convention, which
is chosen to be the junction point geometrically identified with the point y = —7 R
(which we note: —mR = 7R) in order to implement the circle periodicity. The
circle could be constructed from the real axis by imposing a periodicity, that is by
identifying geometrically an infinite number of translated regions of size 2r R and
hence by limiting the 1D space to the fundamental domain (—7 R, 7 R] in Figure 4.1.

& R
—7mR 0 TR Y

Figure 4.1 — Translations (solid red arrows) as 1D space group generator. Fundamental
domain of the orbifold (thick gray line). Two end points (red and white diamond) are
identical. Orbifold fixed points (black dots).

The Zy symmetry on space, y — —y *, has a representation on a generic 5D field,
Yy € (—7R,0) U (0,7R), ®(z", —y) = T®(z*,y), withT?=1, (4.1)

which must let the Lagrangian density invariant, by the definition of a symmetry:
Yy € (—7R,0) U (0,7R), L[®(z#,—y)] = L[P(z",y)] . (4.2)

We mention that this equation can define an equivalence class with respect to a
given coordinate 1o, defined as [yo] = {y € S'|y ~ yo} with y ~ £y, as illustrated
schematically in Figure 4.2. Note that two fixed points arise: (y = 0) — (=0 = 0)

3. Factor element, HE = —1, and the identity element, 1.

4. The convention above, of having taken the coordinate origin at the strict middle of the circle domain
(or fundamental domain), renders the Z, parity with respect to the origin more explicit and convenient to
study.

85



and (y = 7R) — (—mR = wR). At these fixed points, the Lagrangian condition of
Eq. (4.2) is automatically satisfied:

L[@(z", -0(wR))] = L[®(=",0(nR))],

(4.3)
&(zH, —-0(rR)) = ®(z*,0(7R)),

since no transformation needs to apply on the fields there [two fixed points are
eliminated in the Zo symmetry representation of Eq. (4.1)]. In contrast, another
scenario will be analyzed in Section 4.6.

Figure 4.2 — S!'/Zs orbifold picture. The fixed points at y = 0 and y = 7R are indicated
by the two black points. The two examples of pairs of points with opposite coordinates,
respectively indicated by the double dashed arrows, correspond to an identical Lagrangian
density (for each pair).

In order to properly write down the initial action, we urge the importance of taking
care of possible field jumps along the extra dimension upon the reader. We are going to
show that the existence of a field jump in field theory can make sense mathematically if the
action integration domain is properly divided at the jump location. Different discontinuity
configurations must be considered. First, the hypothesis of a possible jump at any point
of the bulk would lead to an infinite number of cuts in the action integration region which
would obviously not be treatable leading to unpredictable observables: this assumption is
thus excluded. Secondly, assuming an arbitrary finite number of possible jumps and hence
of mathematical separations in the action domain, outside the fixed points, is not expected
to affect the unique physical results — like the fermion mass spectrum — since none of those
jump points exhibit some specific property: it is thus useless to explore this direction.
Thirdly, the case of possible profile jumps at the two specific points that are the fixed
points of the orbifold — one of those two, y = wR, corresponding as well to the Yukawa
coupling location (see Section 4.2.4) — remains to be studied. The effective presence of such
profile jumps in some of the obtained solutions (see Figures 4.3 and 4.4 respectively for the
free and coupled fermion situations) confirms this possibility. For example in the case of
a profile jump at y = 0 (an identical discussion holds for the other fixed point at y = 7R),
regarding a well-defined integral of the Lagrangian density involving 5D fields over the
whole action domain, we simply have to choose between the mathematical definitions of
the left or right continuity for a generic profile function along the extra dimension:

J(0) = f(07) = lim (0 —€), withe >0,
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or
f0) = f(0M) = lim f(0+¢€), withe>0.

This choice is conventional and hence cannot affect numerical results, so let us choose
conveniently

f0) = f(0%),

f(rR) = f(xR”),

throughout this chapter, in case of jumps at the fixed points. Then, the well-defined global
action of this model must be written as a sum of bulk terms and some brane terms,

(4.4)

S5D = Sbulk + Sbranes ; (45)

which keeps the same general formula as the interval scenarion in Eq. (3.17). In this
chapter, we only consider bulk massless fermions, so the bulk terms only consist of kinetic
terms as

0~ TR
Shulk = /d4£€ (/ dy Lyin + dy £kin> , (4.6)
—TRt 0

which contains an improper integral [in contrast to the simple interval case in Eq. (1.15)]

due to the discontinuity argument above,

0~ a 0—e

/ dy L= lim / dy Ly = lim / dy Lxn, withe >0, (4.7)
—mRt+ a—0—,b—>—7R*T Jp e—0 J_rRte

and a standard integration over different regions covering the whole physical domain of

the circle. Spranes represents action terms located at the orbifold fixed points, e.g. the

brane-localized BBT (4.18) and the Yukawa interactions (4.14) at the brane y = 7R.

Indeed, all the considered fields must be well-defined at the two fixed points via
Eq. (4.4). Besides, the Lagrangian density of kinetic terms Ly, (4.6) constructed by profile
derivatives f'(y), should be integrable over the entire region y € [0,7R] U [-7R*,07]°,
and profile derivatives f’(y) must be well-defined over the two regions [-7R™,07] and
[0, 7R] (see Sections 4.3.2 and 4.5.3 respectively for the free and coupled fermion situa-
tions), which is compatible with Eq. (4.4). For example, f(y) is derivable in the region
[0,7R] at y = 0 if and only if f(y) is right-derivable at y = 0, and the corresponding
right-derivative does not diverge thanks to the first equality of Eq. (4.4).

Notice that from the point of view of the integration by pieces of the action in Eq. (4.6)
precisely over the physical domain, the inclusion (or not) of the single points at y = 0 or
y = 7R = —7m R does not affect the integral results — given the continuous form of the even
Lyin over the two regions [see Eq.(4.2)] — so that only consistent action definition argues
were considered here.

Finally, the Lagrangian densities of the whole expression (4.5) will respect the Zo
symmetry since the bulk kinetic terms Ly, (4.6) will fulfill the condition (4.2) and the
brane action Spranes Will exclusively involve Lagrangian terms taken at fixed points.

5. To be clear, the integration domain [-mR™,0”] corresponds to the spatial region along the extra
dimension | — 7R,0[ < (—7R,0) — respectively the Francophone and Anglophone notations — which does
not include the fixed points at y =0 and y = —7R.
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4.2.2 Bulk fermion fields

Analogy to the interval case in Section 3.2.2, let us introduce the minimal spin-1/2
field content which allows to write down a SM Yukawa-like coupling between zero mode
fermions (of different chiralities) and a spin-0 field (see Section 4.2.4). It is constituted
by a pair of fermion fields called ) and D. Those particles propagate along the circle
S!, as we have in mind an extension of this toy model to a realistic scenario with bulk
matter (cf. Section 4.2.5) where @, D will represent respectively the SU(2)1, gauge doublet
down-component quark and the singlet down-quark.

The 5D spinor fields Q(z#,y) and D(z",y) — of mass dimension 2 — have the following
kinetic terms [entering Eq. (4.6)] which allow to recover canonical covariant kinetic terms
for the associated fermions in the 4D effective action (as imposed by the argument of
decoupling limit):

i
Lin= 3 §FI‘M%>F, (4.8)
F=Q.D

which keeps the identical formula as the interval case of Eq. (3.1) [chiral formula of Eq. (3.3)
via the chiral decomposition (1.17) (F' = @, D)| but with the discontinuity argument (see
Section 4.2.1) on the domain 2™ € M* x S!/Z,.

As stated at the start of Section 4.2.1, the bulk Lagrangian density Lij, must obey
the Zo symmetry condition (4.2). For this purpose, the Zs symmetry representation (4.1)
on the 5D Dirac spinor fields Q(z#,y) and D(z#,y) can take four different forms which
constitute Essential Conditions issued from the model definition:

Q (xﬂ7 _y) = _’75 Q (x,u’ y) g QL eveln, QR 0dd7
Type 1 (4.9)
D(a#,—y) = ~°D(a*,y) = Dy odd, Dp even,
Q (':Uua _y) = 75 Q (:CN’ y) Ed QL Odda QR even,
Type IT (4.10)
D(a#,—y) = —~°D(z*,y) = Dy, even, Dp odd,
Q (xua _y) = _75 Q ('rua y) — QL evel, QR Oddv
Type I11 (4.11)
D(z#,—y) = —°D(2*,y) = Dy, even, Dp odd,
(.,L.,u’ _y) = 75 Q (.,L.,u’ y) = QL Odd7 QR evel,
Type IV (4.12)
(z',—y) = ~°D(a*,y) = Dr odd, Dp even,

under which the kinetic Lagrangian density (4.8) is indeed invariant, as appears by using
the properties of the 5 Dirac matrix and the odd parity of the fifth partial derivative 9, °.
Based on the chiral formula of Eq. (3.3), it’s more convenient to see at a glance the even
parity of the kinetic Lagrangian density (4.8), simply by using the occurrence of fixed 5D
field parities, different for the Left/Right chiralities [cf. Eq. (4.9)-(4.12)], and the d4 odd
parity.

6. The parity of the derivative can be derived explicitly as,
_ 5
Fl, = +"F|_,
84F‘y = lim M — lim :t,y5 F(iy — 6) — F(fy) — :ny5 lim F(*y) - F(*y — 6)

e—0 € e—0 € e—0 €

= Ca) (#°F)|

= :F7534F‘7y = F7°0uF
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Notice that the Zg parity (second order cyclic group) does not allow for complex phase
factors in the transformations:

, , . N2
F|y — CZGF’}/SFlfy — €“9F’75€Z€F’75F|y — (é&@p) F|y7
which indicates eF = +1 as in Eq. (4.9)-(4.12).

4.2.3 Brane-localized scalar field

The questions about the mass calculation arise when the bulk fermions couple to a
single 4D real scalar field H (mass dimension 1) which is confined at a fixed point of the
orbifold, as in the studied interval model in Section 3.2.4 (inspired by the warped scenario
addressing the gauge hierarchy problem). We simply choose this fixed point to be at
y = wR, rather than y = 0, which is a purely mathematical convention since these two
points belong to a circle. The scalar field has an action of the generic form,

1
Sy = / d'v Ly, with Ly = 2 0,HOH —V(H), (4.13)

with a potential V' (H) possessing a minimum which generates a non-vanishing VEV for
the field H expanded as in Eq. (3.10). Note that it has an identical formula in Eq. (3.9)
but localizes at the fixed point y = 7R of the S'/Zy orbifold rather than that at the end
of an interval.

4.2.4 Yukawa interactions

We consider the following Yukawa interactions allowing to study the subtleties induced
by the coupling of the above brane-scalar field (at y = 7R) to the introduced bulk fermions,

Sy = / d'c Ly| p with Ly = —Ys HQ|Dg — Y! HQLDy + Hee., (4.14)

where the complex phases oy of the two independent Yukawa couplings Y5(/) at the 3-
brane y = wR are defined in Eq. (3.12). Notice that considering operators involving the
fields H, ), D up to dimension 5 allows to include such a Yukawa coupling as indicated
in Section 3.2.5 for the interval case. Let us recall here that in case of profile jumps at the
fixed point at y = 7R, the 5D fields Qp /r(2",7R), D r(z*, TR) are defined through the
profile convention (4.4), as already described. The studied model with a Yukawa coupling
at a fixed point will turn out to be dual to the interval model including a Yukawa coupling
at a boundary (see Section 4.8).

To avoid the introduction of a new energy scale, in the spirit of the warped model, we
can define the 5D Yukawa coupling constants as

Ys =ys x 2rR and Y} =y x 27R, (4.15)

where y4, yj are dimensionless coupling constants of O(1). Then, y4 can be approximately
identified with the SM Yukawa coupling constant within the decoupling limit [same moti-
vation of Eq. (3.13)], as will be described in Eq. (4.75)-(4.76).

When calculating the tower of excited fermion masses, we restrict our considerations
to the VEV of H via Eq. (3.10) and concentrate our attention on the following part of the
action (4.14),

Sx = /d4:c Lx|,p with Lx = -XQlDp - X'QLDy + Hec., (4.16)
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with the effective couplings X, X’ defined in Eq. (3.15). Based on Eq. (3.10), the complete
action reads as, Sy = Sx + Spgp, with the localized fermion-scalar interaction terms:

Y5 T )5, T
— hQ}Dp — == hQLDy +He., (4.17

that allow to work out the 4D effective Yukawa coupling constants.

Shop = /d4$ [’hQD’wR ,with Lpgp = —

4.2.5 Bilinear Brane Terms

Introducing all the covariant operators up to mass dimension 5 [like for the Yukawa
couplings (4.14)] in this model, one should consider as well the dimension 4 operators
given just below, that we call the BBT like in Ref. [1]. Furthermore, the presence of the
BBT has several justifications:

(i) They allow to avoid physical consistency problems both in the free case (see Sec-
tions 4.3.1 and 4.3.3) and with Yukawa couplings (Sections 4.5.1 and 4.5.3).

(ii) They play the role of defining well the model at the two orbifold fixed points [partic-
ularly to treat the (possible) discontinuity] both in the free case (see Sections 4.3.2
and 4.3.3) and with Yukawa couplings (Section 4.5.3).

(iii) They induce the expected matching of the analytical results on the spectrum derived
through the 4D and 5D approaches (see Sections 4.4 and 4.5.3).

The following BBT lead to the SM chirality configuration,
Sa = [ d'a (Lol Laly) .

with Lp= Y o (W) FF= 3 o () (FFr+ FLFL) (4.18)
F=Q,D F=Q,D

where we impose the chiral decomposition (1.17) and o' (y) are generic parameters for the
field F' (F =@, D) at y and

U(?,wR = —aé?ﬂR =1, (4.19)
using compact notations
d (4.20)

F A
UO,WR_ g onR

Indeed, without Yukawa couplings, these terms will induce only a non-vanishing profile
q% (y) [see line 2 of Eq. (4.41) and Table 4.2 in case of the zero-mode with mass mo = 0]
in the 5D field Qr(z#,y) so that only the Left-handed 4D field QY (z#) will exist. This
zero-mode Q%(x“), without KK mass contribution, constitutes the lightest mode of the
KK tower and also the SM state. Hence, we can well recover the SM configuration: a
chiral field content and a Left-handed 4D field potentially representing the SU(2);, quark
doublet in the direct extension to gauge symmetries (and three flavours). Given that,
similarly, the BBT (4.18) will exclusively lead to a Right-handed 4D field D% (z*) [line 1
of Eq. (4.41)] potentially representing the SM down quark type (gauge singlet). When
adding the Yukawa couplings (4.14), this SM chirality setup remains although it is no
more explicit due to the Q" (z#)-D™(z") mixing, via vector-like KK state mixings, which
induces some vector-like mass eigenstates @b% / g(a*) for the lightest modes of the tower
(see Sections 4.4 and 4.5.3). In the decoupling limit where heavy KK state mixings tend
to vanish, the SM chirality configuration is recovered as expected.

For completeness, let us underline that in the free case, the different BBT signs, agﬂ R
and U(?ﬂ r» would lead to a chiral setup for the zero-modes but different from the potential
SM chirality configuration, which are listed in Table 4.1.
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99xR | 90,nR Q D
1 1| Qx(a") | Dyp(at)
1 -1 | Qx(=") | D} (a#)
—1 1| Qy(a#) | Di(at)
-1 | -1 [ Q") | DY@*)

Table 4.1 — Chiral setups for the zero-modes of fields @ and D from various different BBT
signs 08;5% in Eq. (4.18).

Finally, analogy to the vector-like states of custodians introduced in Section 3.2.3,
such massive vector-like states can be realized by Uém = —af r = *1 (opposite sign for
0 and wR) of the BBT (4.18) [in contrast to that of the chiral solutions in Eq. (4.19)],
which would instead lead to the profile solutions (4.42) with two non-vanishing profiles
for the lightest modes (as mo # 0) in Sections 4.3.2 and 4.3.3. Of course there exist 8
remaining cases combining the above Lagrangian sign configurations: Jég(ﬂ R) = H1, 1,
of gy = T, and, 0@ g = +1, 08 o = 51,01

Therefore, it appears clearly that the BBT control the chiral configurations of the
model. The UV completion of the theory can be at the origin of the BBT and hence of
the chirality setup: chiral nature of the theory and specific chiralities of the various fields.

To end up this section, we note that the complete toy model studied in Eq. (4.5) will
respect the Zo symmetry and the brane action Spranes Will exclusively be characterized by
the action taken at fixed points as

Sbranes - SB + SH + SX + ShQD . (421)

The conclusions that will be derived in the present work can be directly extended to the
realistic warped model with SM bulk matter addressing the fermion mass and gauge hier-
archies, along the same lines as the flavor and gauge symmetry generalizations described
in details in Section 3.2.6 (also see Ref. [1]).

4.3 Free bulk fermions on the orbifold

Following the methodology in the interval scenario in Section 3.3, in this section, we
calculate the fermionic mass spectrum for the free case without the Yukawa action piece
Sy given by Eq. (4.14). It would provide us a main procedure and technical tools, which
is also suitable for the 5D approach in the Yukawa case in Section 4.5.

4.3.1 Applying the NBC
We start by considering the bulk action part of Eq. (4.6),

Shulk »

from the complete action Ssp (4.5). We apply the least action principle to it, which leads
to two relations of the kind,

0 Shuik = 0,
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one for each of the unknown 5D fields F' = @), D, and two corresponding ones, d pSpuik = 0,
involving the complex conjugate fields”, since the elementary field variations 6Qq, 0Qa,
6D, and 6D, (see Appendix C.1) are generic and hence independent from each other.
Using compact notations defined in Eq. (1.22), we can write in particular

0~ TR oL oL
i B 4 kin kin
5F5bu1k—/d x </_WR++/ ) {5F OF +5(8M )OQMF}
R ALy OLx 5o 0Lk
o[ o oo ) a2
/ x( —— ) Y oF M 9ouF Y90y F
- R _ (DL OLy;
e ([ o o -]
/ v ( 77r1~z+jL 0 ) Y oF MaaMF
TR
/ a6 O5kn P28 ) (4)
884 — 1R+ 884F

where we omit the global 4-divergence which vanishes in the action integration due to
vanishing fields at the boundaries at infinities via the same comments for Eq. (1.23).
Based on the Lagrangian Ly, of Eq. (4.8), these two bulk terms take the same form (the
first one being calculated explicitly in Eq. (C.6) to clarify the spinor component treatment)
and the two remaining brane terms can be calculated as well:
0~ TR _
8 Shulk :/d4x (/ +/ )dy {5F {iFMaMF”
—m R+ 0
5 TR
—VF] ) o (4.23)
where we have further invoked the Zs transformations (4.9)-(4.12) for the generic 5D field,

0+ 0

5
2

B
2

’75 TR~
d* ——F
+/ T ( l 5 1
Eq. (C.7) for its variation and v° properties:
F]

Pl e | ()]

Then, thanks to Eq. (4.4) ® and Eq. (C.4)-(C.5) respectively, the expression (4.23) simplifies
7 F]

to,
07Sbulk = /d4$ { (/_0_R+ _|_/07TR> dy {5[7 (’L'I‘MaMFﬂ +26F l— 5 }
- / ' { ( [ OR+ + /0 ﬂR) dy [oF (itM o F)| + [sFLFL — 0F] Fr| ]gR} . (4.24)

where the bulk and the brane variations — respectively the volume and surface terms — must
vanish separately due to independent field variations (no reason to be linked). Besides all
those field variations are not vanishing (unknown fields) so that we get the bulk EOM,

55 [_

:_(ﬂ_

0—,—nRt 0t,mR— 0t,mR—

5 TR

0

Val, Yy e [-mRT,07|U0,7R], iT™MoyF =0, (4.25)

7. The equations of motion and boundary conditions derived from the least action principle for the
fields and their conjugates are trivially related through Hermitian conjugation.

8. Those continuity relations lead to Flo = Flo+, i.e. Falo = Falo+ [cf. Eq. (C.2)], and in turn to
8F,|o = 6Fy g+ which can be written as §F|o = 6F|y+ via Eq. (C.3). Similarly we get 6F|.r = 6F| . p—-
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and it’s chiral formula after the chiral projection (1.17),
i&“@uFL+84FR = 0,
Vat Vy e [-rRT,07]U[0,7R] , (4.26)
Z'U”@HFR—84FL = 0,
with the corresponding NBC,
Frlo = Frlo = Frlrr = Frlrr =0. (4.27)

At this level, we can first solve Eq. (4.26) together with Eq. (4.27) to find out the F fields
over the domain, y € [0, 7R]. This is precisely what has been done in the interval scenario
where the two exactly identical Eq. (1.30) and (1.31) have been solved over the interval,
y € [0, L] [also cf. Ref. [1]]. Since the fields are continuous over y € [0, 7R] [cf. Eq. (4.4)]
like there over y € [0, L], we can thus apply here the results obtained in this reference: the
solutions found for Eq. (4.26)-(4.27) are expressed through the KK decomposition (with
a similar choice of global dimensional factor)

Fr/r (z",y \/ﬁz fL/R FL/R( "), (4.28)

where the 4D fields FE’/ r= Q7 R Dy /R represent the KK states and satisfy the Dirac-

Weyl equations in Eq. (1.25) with the KK masses mZ .

However, the only resulting profiles f} / ry) =4d} / r), d} / r(y), included respectively
into F' = @, D, are vanishing over y € [0, 7R]. Now let us study the profile solutions in
the complementary region, y € [-wmR",07]. Inserting the KK decomposition (4.28) into
the first type of Zo transformation (4.9), one obtains the Zs transformations directly on
the f7,p(y) profiles (Vn € N):

—+00

> {QE(R)(_y) (+) QZ(R)(y)] Qi (") =0 = ¢ p)(~y) = Hdim) ()
Type I =0

Z (42 (~9) 5 Ay )] Dy (0#) = 0 = diy(—y) = Dt} ()

(4.29)
where the implications come from the linear independence of mass eigenstates F}' /R (xH).

Similarly, for the three other types of Zg transformations (4.10)-(4.12), we have the fol-
lowing profile parities:

qn(R)(_y) = (f)CIZ(R) (y)

Type 11 (4.30)
2(3)(‘@/) = (J—r>d7£(3) (y)
41y (—Y) = Oz (W)

Type II1 (4.31)
d’i(R)(—y) = (—t>d7£(R) (y)
E(R)(_y) = (—f)QZ(R) (y)

Type IV (4.32)
d%(pg)(‘?J) = )dﬁ(R) (v)

Therefore, all the f}' / »(y) profiles are systematically vanishing on the whole S* /Zj orbifold

region, y € [—7R",07] U [0,7R]. Such profiles conflict with the two (for L/R) ortho-
normalization conditions over the full domain,

1 (Vi TR - m
Vn,m €N, R (/—WR+ +/0 ) dy f77rW) FL7r(Y) = Onm , (4.33)
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originating from the condition of a canonical form for the 4D effective kinetic terms. Hence
the solutions for the fields obtained through this first method are not physically consistent.

4.3.2 Introducing the EBC

In fact, one necessary ingredient was missing in the naive approach in Section 4.3.1.
In order to identify it, we have to study the conserved fermion probability currents cor-
responding, via the Noether’s theorem, to the global U(1)q and U(1)p symmetries of the
action,

Shulk »

involving the bulk kinetic Lagrangian Ly, (4.8). The two independent global U(1)q p
transformations of the fields, letting Ly, invariant, act respectively as,

Q — €°Q, D — €D,
_ ~_ and ~ L (4.34)
Q — e"Q, D — e ™D,
where a,a’ € R are continuous constants entering for instance the infinitesimal field
variations *:

Q =iaQ, Q= —iaQ.

Choosing instead to consider a unique symmetry (o« = ' for any field F') would cor-
respond to a particular case only, among the general Lagrangian symmetry possibilities.
Besides, this particular case would not provide the maximal information, since one symme-
try would be associated to only one conserved probability current. We thus will consider,
in this section, the transformations (4.34) with independent o and o/, leading to the two
independent U(1)qp symmetries. Based on these two symmetries, and the bulk EOM
whose standard structure appears in Eq. (4.22), the Noether’s theorem predicts the local
conservation relation,

i =0, (4.35)

for the two probability currents,
iy =-aQTQ, j} =-d/DTVD, (4.36)

as derived in details within the Appendix F. This relation holds over the whole S*/Zs orb-
ifold domain, y € [-7R",07]U[0, 7 R], since the sole bulk terms in the action infinitesimal
variation — under U(1)qp transformation — must vanish for any integration sub-region
included inside the entire integration domain of the action precisely defined for the model.
The mathematical consistency of the condition (4.35) imposes necessarily (left/right) con-
tinuous 5-current components over all the model spacetime and in particular a (left/right)
continuous j& along y € [-7R*,07] U [0, 7R] .

Notice that a jump of the form, jh|o- # j#lo, would not determine any field at the
fixed point and thus would not lead to any vanishing variation in Eq. (4.23). Thus, the
Dirichlet BC (4.27) would be preserved and in turn induce non-physical solutions. A
similar argue applies at the other fixed point, y = 7R = —7R.

9. Different clear notations are used here for the infinitesimal field variations under specific transfor-
mations, JF, and the above generic field variations in the variation calculus context of the least action
principle, 6 F [see typically Eq. (C.3)].

10. Notice that this condition is in agreement with Eq. (4.4) which guarantees continuous fields along
y € [-7RT,07]U0, 7R].
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Hence, one has to consider the remaining model possibility, j&|o- = jrlo and!!
Jb|_rr+ = jhlxr, so that this current component is continuous over all the range, y €
[-7R, 7R]. In particular, we can now write,

Jrlo- = drlo = ixlot
) : ! (4.37)
]F|7rR* = ]F‘TI'R = ]F|—TrR+ .

This obtained relation must be compared with the following one, coming directly from the
Zs transformations of type (4.9)-(4.12) and ~° properties,

ir 0-(xR-) —al) F F4F‘D—(7rR—) = —al <i75F)T70 {_2‘75} (i’YSF)

0+ (—7R+)

= a(')FT’yOfy5 [—i’y‘r’} (75F) ‘0+ =a) F F4F‘

= — j3 ‘
(=7 R+) 0+ (=7 R+) Flo+(—xg+) -

(4.38)

The combination of Eq. (4.37) and Eq. (4.38) gives rise to a vanishing current component
at the fixed point:

{ Jplo- = Jklo = jbler =0,
j;l?|7rR* = j%|7rR = j;l?‘—wRJr =0,
so that, using the generic chiral decomposition (C.5), we get the following current condi-
tions,
j}]o’m — ia (FzFR - F;FL) ‘OJR —0, (4.39)

leading to the minimal boundary conditions,

Frlo = 0, Frlr = 0,
or and or [EBC] (4.40)
Frlo = 0, Frlzr = 0.

These BC induce systematically the vanishing of all the brane terms in the varied action
obtained in Eq. (4.24). Indeed, for example, the fixed value Ff,|op = 0 implies Fz\o =0 and
in turn § F 2]0 = 0'? [considering more precisely their two respective components as is clear
from Appendix C.1]. Therefore the sole remaining BC are those of Eq. (4.40): there are
no more NBC generated from the brane terms of Eq. (4.24) and we name the BC (4.40) as
EBC since they are imposed by the Zo transformations (4.38) which contribute to define
the studied model. From the point of view of the methodology, notice interestingly that
it was necessary to consider the fermion probability currents to reveal the existence of the
EBC.

Now, solving the new EBC (4.40) together with the unchanged bulk EOM (4.26) over
the domain, y € [0,7R|, was precisely realized in the interval scenario y € [0, L] (see
Section 3.3.2). Once more, since the fields are continuous over y € [0, 7R] [see Eq. (4.4)]
like there over y € [0, L], we can apply here the results derived in this previous work:
the profile solutions — inserting the KK decomposition (4.28) to the EOM (4.26) and the

11. A change must occur at both fixed points to cure the problems of the solutions worked out in previous
subsection.

12. Rigorously speaking, the action should not be minimized with respect to the known fixed fields so
that the terms with vanishing field variations should not even appear. In fact, the brane terms of Eq. (4.24)
should originally be written as a generic sum over unfixed fields.
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EBC (4.40) — are given by the following four possible sets of profiles over y € [0, 7R)|
together with the associated KK mass spectrum equations (Vn € N),

1) (==): fL(y) = BE sin(m); y), (++): fh(y) = BE cos(m) y); sin(m); 7R) =0,
2) (++4): fi(y) = Bf cos(m)y), (——): fi(y) = —Bp sin(m}, y); sin(m,, 7R) =0,
(4.41)

3) (—+): fi(y) =B} sin(m)y), (+-): fily) = BY cos(m}, y); cos(my, 7R) =0,
4) (+-): fi(y) = Bj cos(m)y), (—+): fi(y) = =B sin(m}; y); cos(m), 7R) = 0.
(4.42)

where we use the standard BC notations — or + at y = 0, 7R defined below Eq. (3.29),
which make explicit the correspondence between the four EBC (4.40) and the four so-
lutions (4.41)-(4.42). The SM-like profile dz/R(y) (qg/R(y)) are taken from line 1 (2) of
Eq. (4.41) for the field D (Q), as described in Section 4.2.5.

The equation sin(m% mR) = 0 possesses the following solutions for the KK mass spec-
trum,

neN, (4.43)

n
Imn| =

R )
where we define the notation of the common mass spectrum m,, as

mp=m% =m?2. (4.44)

Similarly, the equation cos(m’ 7R) = 0 has the solutions:
2n+1
F| _
| = =
The remaining part of the general f} / r(y) solutions in the complementary domain y €

[-mRT,07], is now obtained via the four types of Zy transformations (4.29)-(4.32). There-
fore, the inclusion of the EBC based on the vanishing probability currents allows to obtain
consistent fermion profile and mass solutions.

necN. (4.45)

In Table 4.2, we present the explicit solutions over the whole orbifold domain for the
SM-like profiles d’LL/R(y) (qz/R(y)) taken from line 1 (2) of Eq. (4.41): see the discussion
on SM chirality configuration in Section 4.2.5. The mass spectrum for the 4D KK states is
defined by Eq. (1.25) and it is already determined by Eq. (4.43)-(4.45). Notice in Table 4.2
that the same m,, spectrum enters the profile solutions in both regions, y € [0, 7R], and,
y € [-mR",07]. In this table, we also give the general values of the B} /p complex

constants in Eq. (4.41), obtained from the ortho-normalization conditions (4.33) 2. We
observe in Table 4.2 that the choice of type of Zs transformation is just a convention since
it can modify the profile signs but it affects neither the mass spectrum nor the fermion
chirality configuration — as a certain chiral zero-mode profile vanishing on the region
[0,7R] is also systematically vanishing over y € [-7mR*,07]. In contrast, the chirality
configuration and mass spectrum are fixed by the choice of EBC (4.40) which can lead
either to the two kinds of chiral solutions in Eq. (4.41) or to the vector-like solutions (4.42).

13. Here, thanks to the parity symmetry of profiles, a change of variable, y — —y, could be applied to
recover exclusively the integration domain [0, TR].
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Fields
Continuity 7 QL R DL R
domains 2 ian ian n o " . n
qr(y)/e™e qr(y)/e"? di (y)/ep di(y)/e" P
[0, TR) Any | V2 cos(mpy) | —V2 sin(m, y) | V2 sin(m, y) V2 cos(my y)
I V2 cos(myn y) | —V2 sin(my, y) | V2 sin(my, y) V2 cos(my y)
—rR* 0] O | —vV2cos(myy) | V2 sin(m,y) | —v2 sin(m, y) | —v2 cos(my, y)
’ I | V2 cos(mny) | —V2 sin(my, y) | —v2 sin(my, y) | —v2 cos(my, y)
IV | =2 cos(my, y) | V2 sin(my, ) V2 sin(my, y) V2 cos(my, )
‘ KK Masses ‘ |mn| =n/R, n €N ‘

Table 4.2 — SM-like free fermionic f}' / r(y) profiles — normalized to the indicated complex
phases — on the two orbifold domains [-7R*, 0] and [0, 7 R], corresponding to the solution
of line 1 (2) in Eq. (4.41) for the field D (Q). The associated mass spectrum (4.43)
is included as well for completeness. The profiles are given for the four types of Zo
transformations (4.29)-(4.32). The phases ag/D belong to R. In the special case, n = 0,

the v/2 factors must all be replaced by the unity.

In Figure 4.3, we draw the first two excitation profiles for each free solution with non-
negative KK masses presented in Table 4.2 within the simple real case, ag, , = 0, and
for two different types of Zy transformations (4.29)-(4.32). We see clearly in Figure 4.3
that for example under the Type II Zs transformation, jumps appear for the profiles
q%l’z(y) and d%m(y) at the two fixed points at, y = 0, y = 1R = —7 R, in the scenario
without Yukawa couplings. The presence of profile discontinuities here already justifies
the treatment exposed in Section 4.2.1. The precise prescription (4.4) regarding the action
integration domain, described in this section, renders the jumps of Figure 4.3 consistent
mathematically: the difference, e.g. ¢}(07) # ¢i(0), is compatible with a well defined
Lagrangian integrand over the action integration domain, y € [-mR*,07]U[0, 7 R], where
the profiles are continuous.

4.3.3 Introducing the BBT

As suggested in Section 4.2.5, we can alternatively introduce the dimension 4 operators
of Eq. (4.18) to study their effects with respect to the inconsistencies raised in Section 4.3.1.
Hence, to the action Spyk from Eq. (4.6), we add now another part and consider:

Shulk + SB -

The variations of Sp with respect to the generic field F [using Eq. (C.4)],
5755 = /d% (or% 5F]T%FLLR +of, 5F£FR’7TR — ol 5F]§FL‘O — ol 6F£FR‘O) :
together with Eq. (4.24) allow to write down the variations of the free fermion action:
4 o mh B (;mM F t
55 (Sbue + Sp) = / iz /_ o+ /0 dy OF (irVoy F) + (ofp +1) 6FLFL|

+ (ofr —1) 5F£FR‘WR —(of +1) 5F;FL‘O Gt 6F£FR‘O} . (4.46)
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Figure 4.3 — Zero-mode and KK dimensionless wave functions ¢, r), d} /R(y), with
n = 0,1,2, along the S'/Z, orbifold domain, y € [-7R*,07] U [0, 7R], corresponding to
the free solutions of Table 4.2 in the simplified case, agp =0, my >0, and for the two
different types of Zy transformations, I, II from Eq. (4.29)-(4.32). The two fixed points at,
y =0,y =mR = —7R, and Dirichlet/Neumann BC, (—)/(+), are indicated on the graph.

The individual vanishing of those volume and surface terms lead to the EOM (4.26) to-
gether with the four following NBC, depending on the two O'(Z)T R choices,

Frlo

Frlo

0 (05 =+1),

0 (Ug _1)7

and

Frlzr

Frlzr

0 (

0 (

F
O'7rR = +1)7
INBC]  (4.47)

At this level, the EOM and NBC are effectively the same as the EOM (4.26) and EBC (4.40)
of previous subsection, in the domain y € [0, 7R], so that we find again the solutions (4.41)-

(4.42) together with the mass spectra (4.43)-(4.45).
= —1 of Eq. (4.18) leads via Eq. (4.47) to the solution of line 2 in Eq. (4.41). Then

UO,TrR)

For instance, the SM-like choice

the parts of the general profile solutions in the complementary region, y € [-7mR*,07],
are found out via the different types of Zy transformations (4.29)-(4.32) in the free case,
as in Section 4.3.2, so that the complete solutions are once more identical and can also be
illustrated by the Table 4.2 and Figure 4.3 both based on the ortho-normalization condi-
tions (4.33). In conclusion, introducing the BBT permits to rigorously work out profile
and mass solutions. A second conclusion in this approach is that the chirality setup — one
of the two chiral solutions (4.41) or of the vector-like ones (4.42) — and associated mass
spectrum are fixed by the choice of NBC (4.47) and in turn by the choices of aé’j ~r BBT
signs in Eq. (4.18). In simpler words, the BBT (like the EBC previously) control the chiral
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nature of the theory as well as each field chirality.

Let us now discuss the probability currents. The addition of the Sp part in Eq. (4.18)
to Spuik is not affecting the current equations (4.35)-(4.36) since the new brane terms so
induced in the infinitesimal action variation — under the U(1)q p transformations (4.34) —
vanish due to their U(1)q p invariant form. In contrast with previous subsection and with
the interval model in the free case with BBT (see Sections 3.3.2-3.3.3), there exists no
demonstration there of Eq. (4.39) from discrete symmetries. Nevertheless, we can check
that j#|orr is well vanishing by using the obtained solutions (4.41)-(4.42): the product
1 ()[R (y) systematically vanishes at y = 0,7R. Therefore, the BBT play the role of
making j&|o-r vanish (Zg transformation consequence) like the EBC were guaranteeing
it in Section 4.3.2. Note that we could simultaneously apply the EBC and introduce the
BBT but those two processes would be physically redundant to define the model.

4.4 Brane-localized Yukawa couplings on the orbifold: 4D
approach

Once the free case is addressed, via the EBC (4.40) in Section 4.3.2 or the NBC (4.47)
induced by the BBT in Section 4.3.3, the fermion mass spectrum and profiles are known.
Then how to take into account the effects of the action part Sx (4.16) in the mass spectrum,
induced by the Yukawa interaction between a brane-localized scalar field and bulk fermions
in Eq. (4.14)? The considered action reads thus as,

Spuk + Sx (+5B). (4.48)

A first method called the perturbation method, described in the present section, is per-
formed at the level of the 4D effective Lagrangian, that is by calculating the mass mixings
between the different levels of the KK towers. Considering the SM-like profile solutions
d’LL/R(y) (qz/R(y)) and associated free KK mass spectrum from line 1 (2) of Eq. (4.41), all
the initial 4D effective masses for the KK modes of Eq. (4.28) in the interaction basis can
be classified into two species: the pure KK masses (4.43) and the mass contributions from
the Yukawa interaction given by the overlap between the wave functions and Higgs-brane,
- gy (TR) dj(7R)
V(i,j) e N?, ;s = X ,
(:9) Y V2rR V27R (4.49)
, di(TR) qi(mR)
V2rR V27R

In particular, f;; = 0 as imply the respective SM solutions (4.41) so that the coupling
constant X' disappears from the mass dependences. Note that for similar reasons [cf.
Eq. (C.5)], in the case of the presence of the BBT (4.18), those do not generate 4D mass
terms. All the 4D mass terms enter the 4D effective Lagrangian through the following
mass matrix [similar to the interval case in Section 3.4],

V(Z7]) € N*27 ﬁzg =X

—XTL Mxr+ H.c.
within the field basis noted,
XtL(xu) = (Q%’ Q}u D}n Q%’ D%a T ) )
(4.50)
X%(xu) = (D(})%Q}%?D}zaQQRaD%{a) .
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The texture of this infinite mass matrix M involving the diagonal m,, (3.30), off-diagonal
a;j (4.49) and mixing the @, D fields together can be precisely taken from the interval
model context in Eq. (3.43), with two substitutions:

(i) L +» R, since the KK masses and bulk profile solutions are then identical (up to
extensions over [—-mR™,07] as seen in Section 4.3.2 here) like the Yukawa interactions
localized at y = wR [for any Zy transformation (4.58)-(4.32)].

(ii) X < X/2, since the two present profiles (even or odd) entering a;; (4.49) are
normalized via Eq. (4.33) over a domain of double size 2L < 27rR compared to
the interval case.

Now we can apply the results for the mass eigenvalues M, of the 4D eigenstates 1} / r(z")
obtained through the bi-diagonalization performed in Eq. (3.45), based on the calculations
in Ref. [130]. Then, the obtained exact mass eigenvalues are determined by the following
equation, coming from the characteristic equation,

X 2
Vn €N, tan?(\/|M,|27R) = (2) , (4.51)

in the case of a real X parameter, i.e. ay = 0 (3.12) and positive m,, branch from
Eq. (4.43). Hence, the physical absolute value of the mass spectrum reads as:

arctan (X) +(=1)"n(n)w

1
‘Mn| = 5 9

TR
using the n(n) function already defined in Eq. (3.47).

,neN, (4.52)

4.5 Brane-localized Yukawa couplings on the orbifold: 5D
approach

4.5.1 Applying the NBC

Let us now study the presence of Yukawa couplings at the fixed point, y = 7R, through
the action,

S5 = Spui + Sx + S%, with S} = —/d4x Lgly (4.53)

where the first bulk term is based on kinetic terms (4.8) and Lp introduced by the BBT
of Eq. (4.18) is imposed only at the brane y = 0 where the Yukawa interaction is absent.
Within the 5D approach, that is by considering the mixings among KK excitation states
at the level of the 5D fields. The BBT introduced here at the fixed point at y = 0
are the ones of Eq. (4.18)-(4.19) leading to SM-like chirality configurations: 082 = —1,
o = 1. Those guarantee a correct treatment of the free brane, like EBC, as analyzed
throughout Section 4.3. Using Eq. (4.46) and Eq. (4.16), one gets directly the following

action variations with respect to the fields () and D,

- for{ ([ ot

+ [0QL (=X Dr — Qr) +6Qf (~X'Dr +Qu)]|_,+2(6Q1Qr)| }-

)
0~ TR _
55 5m — /d4x {(/_ - +/0 ) dy 6D (iTM 0y D) +

(6D}, (- X"Qn — Dr) + 8D (-X*Qr + Dy)]|_ 2 (60kDL)| ). (454)
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The separate vanishings of these volume and surface terms, induced by the least action
principle, give rise respectively to the EOM (4.26) and the following NBC,

(Qr+ X DR)l,g =0, (Dr+X"Qr)l,rp=0, Qrly=0,
(QL_X/DL)‘WR:07 (DL—X*QLMﬂR:O’ DL‘OZO'

As usual, the 5D field solutions of the EOM (4.26) and NBC (4.55) have the form of the
following mixed KK decomposition [instead of Eq. (4.28)] [134, 135],

(4.55)

QL) = y) U (o)
QM%w=;ﬂZﬁ@%@

= (4.56)
DL(‘T'u?y) = \/ﬁz
i Dgr (xll,y) = \/ﬁz

with the 4D fields ¥} /R already mentioned in Section 4.4, satisfying the Dirac-Weyl equa-

tions in Eq. (3.51), where the the fermion mass eigenvalues M,, include the contributions
from the Yukawa terms and these 4D fields the mass eigenstates including the effects of
mixings among the @, D fields as well as (infinite) KK levels. Besides, the two (for L/R)
following ortho-normalization conditions over the full S! domain [replacing Eq. (4.33)],

1 0" TR n* m T * m
Vn,meN, R </_WR+ +/0 > dy {QL/R(?/) qL/R(?J) + L/R(y) L/R(?J)] = Opm -

(4.57)
Indeed, injecting the mixed KK decomposition (4.56) into the first type of Zy transforma-
tion (4.9), we get the Zo transformations directly on the profiles:

“+00

> a9 © i W)] Yim @) =0 = dium(-y) = Hakr©)
Type I =0
Z {dn ) &y (y )} Viry (") =0 = di (g (~y) = Dd} () (y)

(4.58)
In the same way, for the three other types of Zy transformations (4.10)-(4.12), one obtains
the same profile parities as in Eq. (4.32). The explicit profile solutions appearing in
Eq. (4.56) over the domain, y € [0, 7R], were found out for the interval model studied in
Section 3.6.1 where the exactly identical EOM (1.30) and the NBC (3.68), up to a sign
and a factor 2 in front of each X () parameter, have been solved over y € [0, L]. Because
the fields are continuous over y € [0, 7R] [cf. Eq. (4.4)] like there over y € [0, L], one can
apply here the conclusions obtained in this reference. Note that the ortho-normalization
conditions (4.57) can be recast into the integration of Eq. (3.52) over the region [0, 7R]
but with a global factor 2, thanks to the change of variable y' = —y, the fixed odd/even
parities of the profiles and Eq. (4.4), so that the demonstration about profile solutions
on the interval in Eq. (3.72) remains unchanged here, from this point of view as well.
Meanwhile, the relative factors 2, at the same places in the NBC (4.55), come from the

101



existence of surface terms both at y =0, 0~ and y = 7R, —7R™ as is clearly described in
Eq. (4.23)-(4.24). These factors turn out not to modify the relations between the different
profile solutions but to only change by a factor 4 in the final mass spectrum equation in
Eq. (3.73).

As a conclusion, the same result as in Section 3.6.1 holds here for the orbifold: the 4D
effective Yukawa coupling constant for the lightest modes (w%’ r), induced by the found
profiles, tends to zero within the decoupling limit which is not compatible with the SM
configuration expected. The problematic characteristics of the solutions obtained in this
naive approach are confirmed by the final mass spectrum equation (independent from the
profile normalization),

tan®(M, 7R) = | X |?,
which conflicts analytically with the one obtained through the 4D method in Eq. (4.51)
for a real X parameter. This failure motivates the alternative 5D methods of the next two
subsections.

4.5.2 Introducing the EBC

Following the same idea as for the free case in Section 4.3.2, we try now to find
consistent fermion mass solutions via considerations on their currents. The currents permit
a priority to fully define the geometrical field configuration like here for the S'/Zs orbifold
scenario. The complete relevant action including the brane-localized Yukawa terms (4.16),

Sbulk + Sx + S5, (4.59)

like in Eq. (4.53), is invariant under the unique U(1)p symmetry defined via Eq. (4.34)
only for,
a=da, (4.60)

since the fermions () and D are mixed on the brane at y = wR. Based on this symmetry
involving both @ and D as well as on the bulk EOM [whose standard structure appears
in the action variation (4.22)], the Noether’s theorem predicts (cf. Appendix F) the new
local probability conservation relation,

oui™ =0, with jM= > ji, (4.61)
F=Q,D

involving the individual currents given by Eq. (4.36)-(4.60) over the full orbifold domain,
y € [-7R*,07] U [0,7R]. The addition of the Sx part to Spux is not modifying the
conservation relation (4.61) as the new brane terms entering the infinitesimal action
variation — under the U(1)p transformations — vanish because of their invariant form.
The mathematical consistency of the relation (4.61) implies necessarily the (left/right)
continuity of 5-current components over the whole spacetime and in particular a (left-
/right) continuous j4 along y € [-7R*,07]U[0, 7R]. Besides, a discontinuity of the form,
i _xpt # 7 —wr = j*|xr, would not fix any field at this fixed point and in turn would not
induce vanishing variations in Eq. (4.54), which preserves the BC (4.55) and thus induce
the drawbacks already pointed out in Section 4.5.1. As a consequence, we must consider
the remaining model possibility:

j4|77rR+ = j4|—7TR = j4|7TR = j4|7TR_ ’ (462)

where Eq. (4.4) is also invoked. On the other side, the current j* is odd under any type
of Zy transformation (4.9)-(4.12) as can be shown in a similar way as in Eq. (4.38):

'4] — j4‘ (4.63)
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Combining Eq. (4.62) with Eq. (4.63) leads to,

j4|7rR* = j4‘7TR = j4|—71'R+ =0,

so that, using Eq. (4.39) and (4.60), we get the relation (inducing EBC),

i'| | =ia (QLQr — QRQL + DLDr — DEDL)| =0, (4.64)
and its variation (for a non-trivial transformation with a # 0),
(6QLQr + QL0QR — 6QKQL — Q}QL (4.65)

+6D} D + D} 6D — 6D}, Dy, — DE&DLN L =0

At this level, we can consider the search for field solutions of vanishing Eq. (4.54) and
Eq. (4.64)-(4.65) first on the domain, y € [0, 7R], which is equivalent to the search per-
formed for the interval model in Section 3.6.2, L <> mR. Thus, we can directly apply the
conclusion in Section 3.6.2 and claim that there exists no SM-like consistent solution for
the fields (over y € [0,7R]). As a conclusion, the introduction of EBC does not constitute
the correct approach towards the treatment of point-like Yukawa interactions at a fixed
point of the S'/Zs orbifold. Regarding the bulk fermion probability currents, both the
cases of a j4 jump and a j* continuity at the Yukawa coupling location y = 7R, lead to
inconsistent field solutions so that, at this stage of the study, there exists no theoretical
proof of the j* continuity — and via Eq. (4.63) of its vanishing — at this fixed point.

4.5.3 Introducing the BBT

In order to get meaningful field solutions in the presence of brane-localized Yukawa
couplings at the fixed point y = 7R, let us finally try the introduction of the SM-like
BBT (4.18) as in the free case described in Section 4.3.3 or as in the interval model in
Section 3.6.3. We thus consider here the same action as in Eq. (4.53)-(4.59) but adding
now the BBT at y = 7 R:

Spurk +Sx +SB.

Using Eq. (4.46) and Eq. (4.54), we find the following action variations with respect to Q
and D:

0~ TR _
66 (Sbuik + Sx + Sp) = /d4w {(/ o +/0 ) dy 6QiTM0,,Q +

[—2 5Qt (QR + ;(DR) — X’éQEDL]

+2 (5QTLQR) ‘0} ’

TR

0~ TR _
5 (Shulk + Sx + Sp) = /d% {(/ +/ ) dy 5D iTM D+
—TRt 0

—2 (5D;DL)]0}.

The individual vanishing of those volume and surface terms, due to the action minimisa-
tion, leads to the EOM (4.26) and the following NBC,

X*
[-X’*&D}QR +26D}, (DL -5 QL)]

TR

X
(@n+ % Dr)| =0, X" Qulp=0. Quly=0.
i . (4.66)
X,DL|7rR:07 (DL 2 QL> =0, DL‘OZO,
TR
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which differ from the NBC (4.55) obtained without the BBT. As before, given the continu-
ity region defined by Eq. (4.4), we can start by considering the search for profile solutions
of 5D EOM (4.26) and 5D NBC (4.66) on the domain y € [0, 7R], being equivalent to
the search performed for the interval scenario (with the BBT) in Section 3.6.3 after two
substitutions,

L+ 7R and X<—>§,

which have been proposed in Section 4.4. The 4D field solutions in the mixed KK de-
composition (4.56) obey the known Dirac-Weyl equations (1.25). Note that the factor
1/2 difference at the same places in NBC (4.66), compared to the interval NBC (3.87),
comes from the existence of double numbers of surface terms (at y =0, 0~ and y = 7R,
—mR"™) — like in Section 4.5.1 — and leads to the factor 1/2 in the final mass spectrum
relations (4.70)-(4.71) through a re-normalization of the X parameter as X/2. Besides,
the necessary ortho-normalization condition (4.57) can be rewritten on the domain [0, 7 R)
only, as [the subscript ¢ stands for 1 or g|,

]‘ ﬂ—R % m (sl m
S = =5 |y (@ 0)aB W) + 4 W) (4.67)

thanks to the change of variable, y' = —y, the fixed profile parities (4.58)-(4.32) and the
continuity relations (4.4):

0— TR~
|l e ) + dE aEw) = [ d @ ) )+ () )]
TR™

TR
= /. dy' (g (v)ad (V') + de (y))de (y')] = /0 dy g (v)adi (y) + d& (y)dE (y)]

recovering thus exactly and conveniently the interval condition, if L = wR. Nevertheless,
the dimensional wave functions [\/ﬁ JL/r(W)] (4.56) in the orbifold are identical with

that (3.50) in the interval framework only up to an additional normalization factor (1/v/2)
here, due to the double compact space size. Therefore, here we can finally apply the results
in Section 3.6.3 so that

X' =0,

leading to the new Yukawa coupling (X) dependent BC [denoted as (x) at the brane

located at y = 7R):
X
(QR t5 DR)

(DL — X7* QL>

Referring to the SM-like consistent profile solutions in the free case in Eq. (3.89) over
y € [0, 7R], we obtain the dimensionless profiles,

:0’ QR|0:Oa
TR

(4.68)

=0, Dg|,=0.
TR

(+X) : qz(y) - A(T]L COS(MH )7 (_X> : q?%(y) - _Ag Sin(M'ﬂ )a

Vn eN, _ (4.69)
(—x): di(y) = A sin(Mypy), (+x): di(y) = A} cos(Mpy),
for the two classes of real mass spectrum solutions (o € R),
X n i(ag+ay) n iog)
I : tan(M,L)= 5 = Ay =e"% , A =¢e% (4.70)
X L n n

II : tan(M,L)=— ’2‘ = Ag — ilagtay+m) . AT =€ (4.71)
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and for the absolute values of the fermion masses [based on Eq. (3.47)],

1
|Mn’ = 5

— (4.72)

arctan

3|+ 1)
Note that the sign of M,, is not physical as demonstrated in Section 3.6.3 via the transfor-
mation in Eq. (3.95). At this stage, the part of the profile solutions on the complementary
region, y € [-mR",07], is deduced through the four types of Zy transformations (4.58)-
(4.32). Hence, the M,, spectrum entering the profile solutions in both regions, [0, 7 R] and
[—mRT,07], is the same.

As a first conclusion, the introduction of the BBT allows to obtain realistic fermion
wave functions and consistent mass eigenvalues. The absolute mass spectrum obtained
within the 5D approach in Eq. (4.72) is analytically matching the one derived via the
4D method in Eq. (4.52) for a real Yukawa coupling constant: this feature represents
a non-trivial confirmation of the present exact results. In particular, the absence of X’
parameter in the fermion 4D mass matrix M, described below Eq. (4.49), is interestingly
recovered through the mass independence from X, issued from the 5D NBC (4.68).

Regarding the probability current, the component j*|;r at the Yukawa brane is still
given by Eq. (4.64) since the BBT do not affect it, as explained at the end of Section 4.3.3.
The relations found in the first line of the NBC (4.66), injected once into each term of this
current component expression, give rise to,

j4‘7rR =0.

The BBT are thus found to induce NBC leading to a vanishing current component along
the extra dimension at the fixed points of the orbifold, with (present section) or without
(cf. Section 4.3.3) a brane-localized Yukawa coupling, and in turn to a continuous current
component along the extra dimension at those points given the odd parities, demonstrated
in Eq. (4.63) or (4.38) respectively.

Fields
Continuity 7 QL R DL R

domains 2 i(an (an ion ian
a7 (y)/ (£ OST)) | g (y) /(£ OGT)) | dp (y) /e’ | dfy(y)/e s

[0,7R] Any cos(M,, y) —sin(M, y) sin(M,, y) cos(M,, y)

I cos(My, y) —sin(M,, y) sin(M,, y) cos(M, y)
—rR*0-] 11 —cos(My, y) sin(My, y) —sin(My, y) | —cos(M, y)
’ 111 cos(M,, y) —sin(M, y) —sin(M, y) | —cos(M, y)

v —cos(M, y) sin(M, y) sin(M,, y) cos(M,, y)

] KK Masses ‘ |M,,| = |arctan | X/2| + (=1)"7(n) 7| /7R, n € N

Table 4.3 — SM-like coupled fermion profiles on the two orbifold continuity domains
[-mR*,07] and [0, wR], corresponding to the solutions (4.69), (4.70)-(4.71), together with
the associated absolute mass spectrum (4.72) for completeness. The profiles are given for
the four types of Zy transformations (4.58)-(4.32).

In Table 4.3 are exhibited the explicit profile functions over the entire orbifold domain
for the SM-like solutions (4.69), (4.70)-(4.71), (4.72). We can see in this table that the
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choice of type of Zy transformation is purely a convention because it can modify the profile
signs but without any effect on the mass spectrum.

In Figure 4.4, we illustrate a set of excitation profiles, obeying the Zs transformations
of types I and IT in Eq. (4.58)-(4.32), for the found solutions, which are explicitly presented
in Table 4.3, within the simplified real case, ay = af = 0. We observe in this figure that
all the wave function values at the Yukawa-brane (at the fixed point, y = 7 R) are modified
due to the presence of this coupling. For example, under the Type I of Zs transformation,
the profile values d} (tR) = d}(wR™) are shifted from zero as well as from d}(—7R"),
in contrast to the free case shown in Figure 4.3. This shift creates profile jumps whose
amplitude is depending on the Yukawa coupling constant through the X parameter [BC
(x) in Eq. (4.68)]. The presence of new possible profile discontinuities justifies once
more mathematically the prescriptions about the field continuities and action integration
domains introduced in Section 4.2.1.

! Y5
er az d
i - = ‘I£ d}’z) - - ‘];z di
| — s —dh — &
— P T W] e 1%
! Lo - Seo - ~
. T Tn, td NS L
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! \/~’\ 2 .- - s Doy p. Lo < -
?_ - ~— o e e - ~4 (%)
i
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[}
]
I
I
R b2z =" = =
P <3 *) 1 D e ~~<. )
Phe S S~ >~ S Se
[ S~ S e S -3 (><)
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R e A o TRy R P )
i \“\_ b} ~ \\“_,— \\\ p -’_,—' S o o
- > 3 .- ~
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i
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Figure 4.4 — Zero-mode and excitation wave functions qz/R(y), d’Ll/R(y), with n = 0,1, 2,
along the 8! /Zy orbifold domain, y € [-7R*,07]U [0, 7R], corresponding to the Yukawa-
coupled solutions (4.70), presented in Table 4.3, for the simplified case, ay = af = 0, and
the two different types of Zg transformations, I, IT from Eq. (4.58)-(4.32). The two fixed
points at, y = 0, y = 7R = —nR, the BC, (—)/(+)/(x), the BBT and Yukawa coupling
brane-locations are indicated on the graph.

Finally, let us calculate, still without any kind of Higgs field regularisation, the 4D
effective Yukawa coupling constants [defined in Eq. (3.96)] between the mass eigenstates
Y} (x#) and ¢ (x#) as generated by the insertion of decompositions (4.56) into Eq. (4.17),
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based on the obtained profile expressions (4.69), (4.70)-(4.71), (4.72):

Y5
227 R
Y5
227 R

_ i(_l)ﬁ(n)—i-ﬁ(m) ei(cx{)”—ag)

A

qr" (wR) dg (T R)

Ynm

e'l@6'=%) cos(M,, wR) cos(M,, TR)

Y5
2v2rR(1 + | X/2|2)’

(4.73)

where we have used the trigonometric identity [inserted in Eq. (3.97)] to get the last
equality. Note that the modulus of the 4D effective Yukawa couplings reads
T —
T 2o R(1 4 |X/22)

(4.74)

which is independent of the KK mixing indexes nm. In the decoupling limit of extremely
heavy KK modes, R — 0, we can then write the modulus of the lightest mode coupling
constant, using Eq. (4.15)-(3.15), as,

Y5l _ [ual
N = 4.75
ool — NG (4.75)
and the absolute mass eigenvalue of the lightest eigenstates as [from Eq. (4.72)],
X v|Y;
g — Lo (4.76)

R—0 2TR  2\/2rR R—0

so that the SM fermion setup — for the assumed single family — is recovered as expected
from the decoupling condition. Besides, we can conclude that the choice of type of Zo
transformation among Eq. (4.58)-(4.32) affects neither the profile values taken at the
point y = mR — see Table 4.3 — nor their global ortho-normalization condition (4.57) — as
described right below Eq. (4.67) —so that the 4D effective Yukawa coupling constants (4.73)
are insensitive as well to this Zs representation choice.

4.6 The inclusive Z, parity

Let us study the alternative scenario whose definition is based on the Zo transformation
of 5D fields extended to include the two fixed points at y = 0 and y = 7 R:

Vy € (_WRa WR] ’ (I)(iL‘M, _y) = Tq)(xua y) ) (477)

in contrast with Eq. (4.1). This generic transformation still lets the Lagrangian density
invariant, exactly like in Eq. (4.2). At the two fixed points, this Lagrangian invariance
is once more automatically satisfied without the need for any specific 7 transformation.
Accordingly to the simple Eq. (4.77), the operator T for the fixed points is the same as
the non-trivial one which must let the Lagrangian invariant in the bulk. Let us consider
in particular the realistic Zo transformation leading to the SM chirality setup: it is the
bulk transformation in Eq. (4.9), defined now over the same range as in Eq. (4.77), which
keeps well Ly, invariant in the bulk according to Eq. (4.2):

v R R Q(xuv_y):_75Q(xuvy)7 478
vt D (a#,—y) =~° D (z",y) . T
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Focusing on the fixed points at y = 0 and y = 1R = —7 R, we obtain the four non-trivial
relations

Q(az",0) = —°Q(z",0) = Qrly=—Qrly=0,
0) = 4D (z",0) = Drly=-Drl,=0,
llu?ﬂ-R) = _75 Q (:UM’?TR) :> QR‘WR = - QRwa = 07

Q
[EBC'] (4.79)
{ D(z",7R) = +°D(a",7R) = Dil,p=— Drlp=0,
representing the new EBC that we denote EBC’ to distinguish them from those in Eq. (4.40).

In the free case, Section 4.3.1 has shown that the EBC(’) or the BBT must be con-
sidered. Starting with the EBC(’), in analogy to Section 4.3.2, the fixed Zo transforma-
tions (4.78) in the bulk lead to the EBC (4.40) while the Zg transformations (4.79) at the
fixed points lead to the EBC’. Those EBC’ select one general BC set among these four
EBC sets for the 5D field @, and same statement for D: the sets corresponding to the
chiral solution of line 1 (2) in Eq. (4.41) for the field D (@), namely the SM-like chirality
configuration. Finally, the complete profile solutions over the whole orbifold domain are
found out as before via the bulk Zy transformations (4.78).

Alternatively, the selected consistent BBT (4.18) can be included like in Section 4.3.3 to
obtain the same SM-like solutions. The corresponding EBC’ (4.79), part of the EBC (4.40)
and required by the model, are checked to be satisfied afterwards, as consequences.

Once the free profiles are worked out as described right above — either through the
EBC(’) or the BBT — we can apply the 4D method prescription in Section 4.4, based on
infinite matrix bi-diagonalization, in order to derive the mass spectrum in the presence
of brane-localized Yukawa couplings. Even the 4D effective Yukawa coupling constants
can be calculated in this way: the above EBC’ selection of a specific chirality setup and
mass spectrum for the free fields would affect as well these effective coupling constants,
for instance via the KK mass mixings.

In contrast, we need to emphasize that the analysis of point-like Yukawa interactions
cannot be achieved via the 5D approach within the present inclusive Zs symmetry model.

First, motivated by Section 4.5.1, the essential boundary conditions can be classified
into the EBC coming directly from the vanishing probability currents — indirectly from the
fixed Zs transformations (4.78) in the bulk — discussed in Section 4.5.2 and the EBC’ (4.79).
These EBC’ combined with the surface terms at y = 7R in Eq. (4.54), including the
Yukawa terms, give rise to the BC of type (4.55). Considering non-vanishing Yukawa
coupling constant X # 0, all the fields are forced to vanish at y = 0,7R. Hence, the
resulting mass spectrum looses its dependence on the Yukawa coupling constant '* which
conflicts with the decoupling limit argument [see Eq. (4.76)].

Secondly, the BBT (4.18) could be added like in Section 4.5.3 to try obtaining SM-
like solutions. However the EBC’ (4.79), expected to be recovered afterwards, are not
compatible with the resulting BC (4.69) together with the spectrum equations (4.70)-
(4.71).

4.7 Result analysis

14. Actually, the independence of the Yukawa coupling constants can be concluded from the EBC’ (4.79)
directly via Qr (or Dp) since both of its EOM and BC are Yukawa independent.
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4.7.1 The higher-dimensional method

The present study confirms the general methodology depicted in Figure 3.4 presented in
Section 3.7. Within the present model, the probability current condition on this schematic
description is the vanishing of fermion currents (4.39) at the two fixed points, issued from
Zs symmetry criteria and inducing the EBC (4.40). For the interval model, the vanishing
current condition is a direct implication of the existence of boundaries for the matter fields.
This current vanishing holds both in the presence and absence of brane-localized Yukawa
couplings.

In the framework of the orbifold version described in Section 4.6, the additional field
condition (4.79), coming from the Zs symmetry at the fixed points, accompanies the
definition of the Zg symmetry of the bulk action and leads to the new EBC’ (4.79).

4.7.2 Discussion of the action content

In addition to the information contained in the action (4.5)-(4.21), the present orbifold
model is defined in a complementary way by other elements like:

(i) The S! junction point at y = 1R = —7R.
(ii) The choices of Zg transformations for the fields in the bulk [see Eq. (4.9)-(4.12)] and
possibly at the fixed points [cf. Eq. (4.79)].

(iii) The EBC (4.40) imposed by the model definition when those are used instead of the
BBT. Table 4.4 summarizes the obtained cases where the EBC and the BBT can be

used. This table is identical to the one 3.1 obtained in the interval model study (see
Section 3.7).

No boundary | Vanishing current | Bilinear brane
characteristic | condition [EBC] terms [NBC]

4D approach | (Impossible) BC (£) BC (£)

5D approach | (Impossible) (Impossible) BC (x)

Table 4.4 — Types of boundary conditions for the bulk fermions at an orbifold fixed point
where their interactions with the Higgs boson locate, in different brane treatments: pres-
ence of BBT, vanishing of probability current or nothing specific. The 4D line holds as
well for the 5D approach of the free brane. As usually, the Dirichlet BC are noted (—),
the Neumann BC (4) and we denote (x) the new BC depending on the Yukawa coupling
constant [corresponding to Eq. (4.69) taken at y = 7R].

4.8 About the orbifold /interval duality

The present S'/Zs orbifold model and the [0, L] interval scenario studied in Chapter 3
are physically different in two crucial aspects:

(i) Geometrical setups;
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(ii) Lagrangian symmetries.

Nevertheless, the respective theoretical predictions for the observables like the (brane-
coupled) fermion mass spectra and 4D effective Yukawa coupling constants are identical
up to factors [2], which may be called a duality. Indeed, for a comparable dimension size
L = 7R, although the mass absolute values (4.72) involve a new factor 1/2 in front of
X, with respect to the interval analytical result (3.91), the measurable range of values
for |M,| is of the same order and the precise limits of this range rely on the approximate
perturbative limits of the 4D effective Yukawa coupling constants proportional to y4 (4.15)
[see Section 4.2.4 and Eq. (4.73)-(4.76)]. Besides, the dependence of the analytical mass
formula on the Lagrangian parameters is identical in the two models, up to this factor 1/2
entering the coupling constant definition, as can be seen from Eq. (4.72) and Section 4.2.4
— including the free limiting case X — 0. Similar comments hold for the 4D effective
Yukawa coupling constants (4.73) which have additional factors 1/2 in front of X and as
an overall factor (latter one induced by ortho-normalization considerations), with respect
to the interval case.

The orbifold version of Section 4.6 contains additional information at the fixed point
branes. It predicts thus a specific chirality configuration and mass spectrum [among
chiral or vector-like solutions respectively of type (4.41)-(4.42)] so that it is not dual to
the interval model.

Coming back to the case of duality, there exist similarities between the orbifold and
interval models, as it appeared throughout this work when solving the EOM and the
(N,E)BC to find out the fields. Let us now comment on the similarities at the Lagrangian
level. First, the BBT (4.18) have the same form as in the interval framework (3.4) and the
different factor 2 is related to the double size of the compactified space for the identification,
L =rmR.

In the global action (4.5), Spuk remains to be discussed, the other parts being identical
in the orbifold and interval models. Thanks to the orbifold property — Zs Lagrangian
symmetry (4.2), the change of variable ¢y = —y, allows the following rewriting of the bulk

action (4.6),
4 0~ TR
Shulk = /d x {/ dy Liin(y) +/ dy ['kin(y)}
—TRt 0

TR~ TR
— /d4x {/ dy' Lyin(y/) —|—/ dy Ekm(y)}
o+ 0
TR
= 2x [dt [ dy L), (4.80)
0

where the last step is based on the continuity condition in Eq. (4.4). Therefore, using the
relevant dimension identification L = mR, we can express the orbifold action (4.5)-(4.21)
in terms of the interval action pieces (3.17)-(3.18) (indicated by the L exponent):

Ssp = 2Skn + Sy + 5 + S, + 255

1
= 9 {S@ﬂk +5 8%+ Shap) + Sé} + 5t

L L L
= 2 {Shuc+ STk + Sidplvez + SE} + S (4.81)

This re-expression reveals an alternative method to derive the fermion masses and cou-
plings, which are independent from the pure scalar part, namely S}f). The idea is that,
within the orbifold model now described by the action (4.81) importantly together with
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the description of the Zs symmetry over S', we can first search for the field parts along
L)

the limited domain [0,7R]. This search is in fact based on the action [SE,. + Sg( /o T
S}(LIC})D|Y5/2 + SE], since the overall factor 2 in Eq. (4.81) affects neither the EOM (global
factor) nor the BC (same factor in front of the surface terms and pure brane terms com-
bined into BC) '°, and is in turn strictly equivalent to solving the interval model. Given
this action, the solutions can be obtained for the 4D masses in Eq. (3.91) (and 4D effective
Yukawa coupling constants from profile overlaps with the Higgs boson peak at y = 7R in
Eq. (3.97)), but involving a re-normalized coupling parameter X /2. The last stage of this
technique is the extension of the obtained profiles over the complete orbifold domain via
the Zo transformations, before applying the ortho-normalization condition. The 4D effec-
tive Yukawa coupling constants are then changed by an additional factor 1/2, as is clear
from the wave function normalization forms (4.57)-(4.67), which confirms the result (4.73).
On the other side, we see as well that the fermion masses so obtained (unchanged by the
spatial domain extension) involve only a new normalised parameter X /2, with respect to
Eq. (3.91), which confirms the found spectrum (4.72).

Beyond these action correspondences, there are other elegant similarities. For example,
as illustrated by Figure 3.4, both the interval and orbifold scenarios lead to the same
vanishing probability current conditions at the two branes (and hence to identical EBC);
those current conditions come, respectively, directly from the interval boundary criteria
and indirectly from Zo symmetry considerations. Besides, Table 4.4 shows that the same
treatments of the two branes, at the fixed points or interval boundaries, must be adopted
in identical situations and that the same BC are generated.

Finally, let us propose an intuitive description for understanding the orbifold versus
interval model duality. The obtained wave functions for the bulk fermions on the interval
are of the kind cos(M, y) o (eMn¥ + e=Mn¥) coming in factor (via the KK decompo-
sition) of the energy coefficients e*** in the 4D Dirac fields, which gives rise to wave
planes propagating in both y-directions of the interval with momenta +p, = +M,, — as
for oscillations left-moving and right-moving along opposite directions in the world-sheet
parameter space of strings. The associated particle, going in the direction L — 0 and then
coming back along 0 — L, reproduces the propagation along S', following consecutively
the two fundamental domains —mR — 0~ and 0" — 7R of the orbifold (effectively equiv-
alent orientations of the circle in the bulk so a unique propagation direction chosen along
it): exactly the same L [®(x*,y)] Lagrangian evolution is felt by this particle during those
dual travelings along the extra y-dimension, in the two different models, as is clear from
the Lagrangian Zo symmetry depicted in the drawing 4.2.

4.9 Conclusions

In the study of the S!'/Zs orbifold, the proper action definition through improper
integrals has allowed to obtain consistent bulk profile solutions with possible discontinuities
at the fixed points. In particular the point-like interaction of Yukawa creates a profile
jump.

These solutions have been obtained without brane-Higgs regularization, by relying on
the necessary EBC, coming from vanishing fermion probability currents, or alternatively
on the introduction of BBT in the action. The associated calculations have been confirmed
by the matching between the 4D and the 5D approaches of the analytical results for the

15. This search could also be constrained by vanishing currents at y = 0, 7R instead of the S& presence,
in the free case, as shown in Sections 4.3.2 and 4.5.2.
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fermion mass spectrum and 4D effective Yukawa coupling constants.

The orbifold version, with Zs transformations of the fields extended to the fixed points,
was shown to be able to generate the chiral nature of the theory and even to select the
expected SM chirality configuration for the 4D states.

The duality between the interval and orbifold scenarios has been deeply described. It
has also constituted the opportunity to point out an alternative method for calculating
the tower of excitation masses and 4D Yukawa couplings.
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Chapter 5

Distribution formalism for the
S1/7Z5 orbifold

This chapter is based on a work in progress in collaboration with Grégory MOREAU
and Florian NORTIER.

5.1 Introduction

The field treatments in the S'/Zy orbifold model, with a brane-localized Higgs field,
have been precisely described in Chapter 4 without any brane-Higgs regularization (see
Section 3.5.2). In particular, the focus was put on the treatment of possible field jumps
at fixed points, via the introduction of improper integrals, as well as on the necessity
of fermionic bilinear brane terms: the so-called BBT. We emphasize that the fields were
mathematically described there, as usual, as spacetime functions. In this chapter, we
attempt to find an alternative rigorous treatment of such an orbifold model, also motivated
by the presence of a Dirac peak localizing the Yukawa interactions.

Recall that the Dirac peak also appears frequently in quantum field theory. In the early
1950s, Arthur Wightman attempted to develop a mathematically rigorous formulation of
quantum field theory with one crucial mission to treat properly the Dirac peak [196]
(see Section 5.2). Motivated by Wightman’s prescription (without anymore brane-Higgs
regularization in this chapter), we reformulate the function formalism of Chapter 4 through
a new rigorous formalism based on fields as distributions ! (further distinguished from the
regularized Dirac peak function (3.63) of Section 3.5).

Moreover, this re-expression procedure towards the language of distributions allows
the automatic appearance of the BBT. Concretely, we define the Lagrangian density via
regular and Dirac distributions for an introduction to the theory of distributions, which
act on test functions whose supports are included in the compactified geometry S' [see
Appendix H]. We use the distribution theory to re-define the partial derivatives J, in the
bulk kinetic terms as weak derivatives for the discontinuous odd fields. Indeed, the fields
can be even (odd) with respect to each fixed point, and the branes at the fixed points
are not boundaries of the covering space S! so that we have to discuss if the fields are
continuous or discontinuous across the branes. Then, the BBT [identical to the ones from
the function formalism in Eq. (4.18)] turn out to originate spontaneously from these weak
partial derivatives of the odd discontinuous fields at the fixed points. It is important to

1. See Refs. [149, 150] for an introduction to the theory of distributions by L. Schwartz and an appli-
cation to quantum mechanics.
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understand here that the BBT are not added by hand to the orbifold S'/Zs description
but come from those weak partial derivatives.

The consistency of the distribution formalism will be confirmed by the exact recovering
of the Lagrangian density, expressed in terms of the fields as simple spacetime functions,
and hence then of the fermion profile solutions as well as the analytical results for the
fermion mass spectrum and 4D effective Yukawa coupling constants. Nevertheless, some
conventions about the orbifold parity differ: in contrast to the function formalism in
Chapter 4, it turns out that each Zs transformation of the fields will be shown to fix
the chirality configuration. Thus, the Zy symmetry can generate the chiral nature of the
theory and the SM chirality setup by itself, in the decoupling limit. This origin for the
chirality configuration is not generated within the function prescription. Mathematically,
we will have to build rigorously the five-dimensional models by introducing the Kurasov’s
distributions for the bulk fermions in order to handle boundary-localized interactions at
the fixed points possibly inducing profile jumps.

This chapter is organized as follows. After having briefly recalled the basics of the
Wightman’s distribution theory, we describe the minimal model in Section 5.3. Then, the
treatment of the free case is presented in Section 5.4.1 before a 4D and a 5D approach of the
Yukawa case is exposed. An overview is provided in Section 5.6 and a brief description of
the relationship with the well-described function treatment [in Chapter 4] is summarized in
Section 5.7. To discuss the comparison with the function formalism, the specific inclusive
Zo transformation studied in Section 4.6 is also used.

5.2 Wightman’s distribution theory

In order to improve the annoying treat the Dirac peak, Arthur Wightman promoted
the quantized free field to a so-called Wightman field {gg} — an operator-valued tempered

distribution, satisfying the Wightman Axioms [196]. The smeared field {qg} [f]?

vieS®Y, {o}if1= [ds b)), (5.1)

is a well-defined operator on a domain in Fock space and f € S(R*) is a test function. Thus,
any product of such {(]3} [f] would get an operator. Moreover, causality is guaranteed by

the commute condition {(Z)} [f] {(Z;} lg] = {qg} [9] {(ﬁ} [f] if supp f is space-like to supp g °.
Wightman also postulated {q@} [f] is symmetric on its dense domain D in the Hilbert
space of states, i.e.

vo, U e D, ({4} [f1®) = ({}f]W]®).

Based on the Schwartz’s nuclear theorem, the n-point Wightman distribution Wy €S (R*x
R*... xR*) [mapping n test functions to a complex number] is defined through the vacuum
expectation value for the Wightman vacuum (2 € D),

Walf (@122, za)] = (QU{S} A1 {8} 1] -+ {3} 12100, (52)

2. The space S(R*) consists of infinitely differentiable real functions of four variables, which go to zero
at infinite infinitely faster than any power of Euclidean distance, which is also furnished with furnished by
Schwartz [149, 150].

3. The support of function f is defined by supp f = {w“ € R4| flx) # O}.
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where f(z1,22,...,2,) € S(R* x R*- .. xR*) is defined by

f(xhx% ,l’n) = (fl & f2 Q- fn) ($17$27 7'%'”) = fl(xl)f2($2) e fn(xn) .

Then, invoking the canonical quantized n-point correlation function ania;l, X9y ..., Ty) Of

the standard quantum field theory, the Wightman distribution (5.2) (W, assumed to be
a regular distribution) can be rewritten as,

Wilf(z1, ... an)] = /d4x1 e d ey G, ) fL@1) - faln) . (5.3)

Even if Gy (z1,...,7y) is singular (like a Dirac peak), M[f(:vl, .., xy)] still has a rigor-
ous definition but W, would be instead a singular distribution. Eq. (5.3) can thus be
used as a new definition — via the unique correspondance between the f functions and
Whilf (21, ..., x,)] — of the Green function, a general rigorous definition: the interest of this
formalism.

Similarly, we will develop a distribution formalism to treat discontinuous fields on a
compact space. Compared with Wightman’s field in Eq. (5.1), the kinetic Lagrangian
Liin (z#) of Eq. (5.8) will be defined as a (not operator-valued) distribution acting on
certain test functions along S', as will be described precisely in Section 5.3.1.

5.3 Minimal S'/Z, consistent model

5.3.1 Geometry and the proper action via distribution formalism

We consider the 5D spacetime structure via the product geometry M* x S!/Zs ex-
plicitly described in Section 4.2.1, which is labeled by the coordinates, ™ = (z#,y),
M € [0,4] where the Lorentz index x*, u € [0,3] represents the usual 4D Minkowski
spacetime manifold whose coordinates and the circle S! is characterized by the coordinate
y € (—mR, mR] with a radius R in Figure 4.2.

As we urged in Chapter 4, possible field jumps at the points y = 0, 7R must be taken
into account. Thus, we maintain the left/right continuity of a generic profile at y = 0, 7R
conventionally defined in Eq. (4.4) and we consider a 5D field noted generically ®(x*,y)
being piece-wise smooth along the extra dimension. Hence the Kurasov’s distributions
must be introduced, instead of the Schwartz’s distribution theory whose regular distri-
butions rely exclusively on continuous functions. Along these lines, we also configure
test K-functions (H.57) rather than test S-functions (H.16) of the Schwartz’s distribution
theory (cf. Appendix H.2) which just manipulates smooth test functions. The math-
ematical properties of the function associated to a regular K-distribution or of a test
K-function (H.57) (cf. Appendix H.4) read as,

Vat e MY, ®(at,y) € C°([-7RT,07]U[0,7R],C) = K(S',C), (5.4)

where K(S!,C) is the test K-function space defined in Eq. (H.57). ® can be embedded
into a continuous linear functional ® € K’(S*,C) on the test K-function space K (S?,C),
i.e. a regular K-distribution on S! [see Eq. (H.58)], which will play a crucial role for the
Lagrangian building.

Then, in contrast to the function formalism in Section 4.2.1 where the bulk action is
decomposed via improper integrals over [—wR™,07] U [0, 7 R], here the well-defined global
action of this model should be written as a sum of bulk terms and some brane terms,

Ssp = SI,QDulk + Sli)jranes ) (55)

115



which has an identical generic formula as in the function formalism [see Eq. (4.5)]. How-
ever, the 4D effective Lagrangian density is constituted by a K-distribution acting on a
constant test K-function ¢(y) =1 € K(S',C),

SPae= [ @' Lo () 1], (56)

where the K-distribution Lpuic (z#) reads?,
Vat € MY, Louk (z*) + K(S',C) = C,
@ = Louk (") [¢].

so that the 4D Lagrangian density function Lpui () [1] on a* € M*? is the result of the
K-distribution Ly (z*) acting on the constant test K-function ¢(y) =1 € K(S*,C) on
the extra spatial dimension S!. In this chapter, we only consider bulk massless fermions,
so the bulk terms only consist of kinetic terms as

—~—

Liuk = Licin - (5.7)

Note that in contrast to the treatment in the function formalism in Chapter 4.2.1 where
we have to operate on the profile functions directly, here we focus on the K-distributions
where all fields considered are embedded, which would also provide additional information
at the brane,

—7Rt+

Lo (@) 1] = ( / - /0 WR) dy Lagn (29, y) + L5 (2 | (5.8)

where Ly, (z#,y) is the kinetic function induced by the K-distribution Loulk (#), which
will fulfill the Zs symmetry condition in Eq. (4.2). £5" will turn out to the brane terms
— BBT, derived from the weak derivative in Ly (z/), which would be described in Sec-
tion 5.3.2 precisely.

Sganes represents action terms located at the orbifold fixed points, which for instance
exclusively involves Lagrangians with the Dirac K-distribution 0rr[p] (H.72) (e.g. the
brane-localized Yukawa interactions (5.26) in Section 5.3.4) taken at the fixed point y =
TR.

Finally, the Lagrangian densities of the whole expression (5.5) will respect the Zy parity
symmetry in the sense of induced functions of the 5D Lagrangian density and 5D fields

[see Eq. (4.1)-(4.2)].

5.3.2 Bulk fermion fields

To keep consistent with the function formalism in Section 4.2.2 and write down a
SM Yukawa-like coupling, we introduce a pair of bulk 5D fermion fields Q(z*,y) and
D(z*,y) — of mass dimension 2 — as the minimal spin-1/2 field content, which will represent
respectively the SU(2);, gauge doublet down-component quark and the singlet down-quark
respectively. Note that

Vot e M*, Q(a*,y), D(zt,y) € K(S*,C),

4. Loune (") [¢] € L* (M4) = {LI : M = C| [d'z|L(a*)] < oo}, the Lebesgue integration on the
4D Minkowski spacetime.

5. Another part of the complete 4D effective Lagrangian density should be generated from S, in
Eq. (5.5).
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so that after the chiral decomposition in Eq. (1.17), we define the regular K-distributions

é?/; (xH) ,l/)?/; (z#) associated to the 5D fields Qp,/r(2",y) and Dy /r(z*,y) which have
the following kinetic terms with the weak derivatives (cf. Appendix H.4.2) in the distri-
bution formula [entering Eq. (5.6)]:

Lan ()= Y 2 LErMEIE (5.9)

FQD

using the same standard notations in the function formalism [see Eq. (1.16)] that 5\; =
87; - %, oy = 0/0xM | 2M = (2t y) with M € [0,4] for the coordinates 2 € M* x
S')Zy and T™ for the 5D Dirac matrices (cf. Appendix A). Notice that the kinetic
Lagrangian density Liin (z#) (5.9) has a similar formula as that in the function prescription
[see Eq. (4.8)] but contains definitely different building blocks via regular K-distributions
(H.58) combined with weak derivatives (H.77) as product K-distributions (H.65).
Inserting the chiral decomposition in Eq. (1.17), we can rewrite the kinetic terms

Lin (2#) (5.9) as
_ 1/ ~ = ~ TR~ T~
amwpveﬁwﬁm+ww$n—@§&+ﬁﬁm>
1 — — o ‘— — e =
=3 (iFR'y“gj}'R + i F 0y Fr — FrRO4FL +}—L84}—R) ; (5.10)

using the matrices o#, d* defined in Appendix A and the weak derivatives can be written
explicitly via Eq. (H.77),

OuF;, = {04FL} + (BxrlFr)Bxr — BolFr)Bo) + > BylFLldy,
yo=0,TR

O1Fr = {01Fr} + (BrrlFR|Brr — BolFRIBo) + Y. BuolFrldy,
yo=0,TR

(5.11)

where {84F 3 /R} are the regular K-distributions associated to the partial derivatives
O04Fp /g In contrast to the function formalism in Section 4.2.2 where the Z symmetry
represents on the Lagrangian density and 5D fields obviously, here the Zs parity should
be revealed by the 5D fields Q(z#,y) and D(z*,y) induced by the regular K-distributions
C/Q_L\/;(a:“) ,BL\//R (xH) respectively [see Eq. (H.58)] so that Q(x*,y) and D(z*,y) can still
take the four different forms in Eq. (4.9)-(4.12). Notice that one of Fy, and Fr (F = Q, D)
must be even and in turn leads to the associated vanishing jump at the branes (fixed
points). Thus, certain terms induced by the second term of Eq. (5.11)

Lin (#*) [1] 3 F bs (BrerlPr/r)Brr — BolFrylfo ) [1]
> 5 (BenlFL)6rnlFry] — BolFi/plfol Frysl) (5.12)
must vanish since [y rr[Fr] = 0 (Fr is even) or Borr[Fr] = 0 (Fg is even) where

Byole) € K'(S',C) is the Jump K-distribution [see Eq. (H.70)]. Moreover, the first term
of Eq. (5.11) leads to

A 1
Liin (") [1] F R/L {84FL/R} 1]
TR 1 ;
9 /—WR++/0 Ay 5Fpp bR, (5.13)

117



combining with kinetic terms of Eq. (5.10) along ordinary 4D coordinates,

— 7T T ey —~—
Lin (z) [1] 2 §F; 110" O Fry (1]

0~ i i >
T
= (/_KR++/0 >dy §FR/L0'M8MFR/L7 (514)

will recover the Zg symmetric kinetic terms Ly, (2#,y) of Eq. (4.8) built via function
formalism as expected in Eq. (5.8). The rest terms including d,, will potentially lead
to the SM configuration BBT (4.18)-(4.19) associated to each type of Zg parity (4.9)-
(4.12), which will be described precisely afterwards. Finally, we can conclude that the
kinetic Lagrangian Ly (z%) [1] (5.9) developed via distribution formalism satisfies the Zs
symmetry.

Then, let us deduce the brane-localized terms £5" (z#) (5.8) under each type of Zy
parity (4.9)-(4.12) respectively. In the Type I Zo transformation (4.9), Q1 and Dpg are
continuous at the two fixed points since they are even fields, i.e. By r[QL] = Bo.rr[DR).
Instead, Qr and Dy are odd fields so they can be discontinuous at the fixed points.
Thus, considering Va* € M*, Fr r(at,y) € K(S',C) (F = Q, D), we can calculate the

associated weak derivatives of F/’;/; (F =Q,D) via Eq. (5.11),
04Qr = {04QL},
01Qr = {04Qr} + (BrrlQRIBrr — BolQRIBo) + D Byl Qrldy

yo=0,TR
Type 1 .
Dy = {04Dr} + (BrrlDLlBrr — Bo[DLlBo) + D Byo[Drldy,
yo=0,TR
04D = {04DR},
N (5.15)
which lead to the brane terms in Ly, (z#) [1] as
R .
QLaQrl)> Y. 0,[Q1) Bul@r) = Q1| Qrli- + QL] . QrlE"
yo=0,TR
>2 (QTL QR’O - QL QRLR) ’
— —
DLoDL1]> > 0y[DRl BylDi) = DY| Dulf- + Df| . Dul 7"
yo=0,TR
52 ( Dy Di| - D DL| ), (5.16)

where the odd Zs parity of Qr, Dy, € K(S*,C) have been injected
{ QR‘O = QR|0+ = - QR|0* )

QR|7rR = QR|7er = - QR|_7rR+ )
{ Drly = Dilor == Drlo-,
DL”]TR = DL’wR* :_‘DL|77rR+ .

Inserting Lagrangian pieces (5.16) with its Hermitian conjugate and the other terms in
Eq. (5.12)-(5.14), we can reformulate the kinetic terms Ly, (z#) (5.9) into the function
formalism (5.8),

Lo (2#) [1] = (/_OWR+ +/07TR> dy Lyin (2", y) + ng (), (5.17)
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Lin (29, ) = % (z'F}ia“EZFR ViFG O Fy — FLOLFy + Fz<8_4>FR)
F=Q,D
= 3 LErMbF,
F=Q,D
£if @) = (P -QQ)| (PP -QQ)|, (518

Now we can clearly see that Ly, (2#,y) of Eq. (5.18) exactly recovers the 5D kinetic
Lagrangian density of Eq. (4.8) within the function formalism. Similarly

Spl = /d4x ng (") = /d4x [(DD N QQ) LR B (DD B QQ) ‘0} ’ (5:19)

is exactly identical to the BBT corresponding to the SM configuration in Eq. (4.18)-(4.19)
within the function formalism. Therefore, writing the initial Lagrangian as a distribu-
tion (5.9) is equivalent to express in a field function formalism.

Similarly, for the three other types of Zs transformations (4.10)-(4.12), we have the

following weak derivatives of I p (F' = @, D):

01Qr = {01QL} + (BxrlQLlBxr — BolQLIBo) + > Byol@rldy, .
yo=0,TR
Type 11 W@r = {01Qr} (5.20)
84DL = {84-DL}7
0:Dr = {04Dr} + (Brr[Dr)Brr — Bo[DrlBo) + > ByolDrldys ,
yo=0,TR
84@\2 = {84QL}>
4Qr = {04Qr} + (BxrlQr)Brr — FolQRIBO) + D ByolQrloy,
Type III . yo=0.mht 5.21
ype 005 = {0uD1}, (5:21)
0:Dr = {04Dr} + (Brr[DR]Bxr — Bo[DrBo) + > ByolDrldy,
yo=0,mTR
01Qr = {01Qr} + (BrrlQLlBxr — BolQLIB0) + D ByolQrldy,
yo=0,TR
Type IV 04Qr = {04QRr}, (5.22)

0D, = {04D1} + (BrrlDrlBrr — BolDrlBo) + > ByolDrldy, .
yo=0,mR

04D = {04Dg},

which would lead to the same function formalism of the 5D kinetic Lagrangian density
Lyin (x#,y) in Eq. (5.18) but different configurations of BBT:

Spir = /d4$ Lot (@) = /d% [(-PD+QQ)|, - (-DD+QQ)||.
Spir = /d4$ Loty (@) = /d% [(-PD-qQq)| - (-DD-QQ)| .

Sory = [ da Ly @) = [ [(DD+QQ)|_ - (DD+@Q)| .
(5.23)
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recovering the chiral setups for zero modes but different from the potential SM chirality
configuration, which are listed in Table 4.1. It is important to see here that the BBT
are not added by hand to the S!/Zy orbifold description (as in the function formalism in
Section 4.2.5) but originate from the weak partial derivative of the odd field, which are
discontinuous at the fixed points y = 0, 7R. Moreover, the BBT configuration is fixed by
the Zg parity form in Eq. (4.9)-(4.12) and only the Type I Zy parity symmetry (4.9) can
realize the BBT under the SM configuration in Eq. (4.18)-(4.19). Besides, the vector-like
BBT configuration [see Section 4.2.5] can’t be realized in the distribution prescription.

5.3.3 Brane-localized scalar field

To derive the mass spectrum by the bulk fermion coupling, we introduce the 4D real
scalar Higgs field H (mass dimension 1) confined at y = 7R, a fixed point of the S!/Zs
orbifold, as in the function description in Section 4.2.3. In contrast, the brane-localized
scalar field is developed via Dirac K-distribution at y = 7R,

Sy = / de Lo (z")[1], with L (2") = B OHOH — V(H)| 6p,  (5.24)

with a potential V(H) possessing a minimum which generates a non-vanishing VEV for
the field H expanded as in Eq. (3.10). The K-distribution formalism Lg (z*)[1] (5.24)
can be reformulated to the function form,

Li = Ly (2" 1] = B 0, HO"H — V(H)} 5opl] = %auHaﬂH _V(H),  (5.25)

which is identical to the 4D Higgs Lagrangian density directly built via functions in
Eq. (4.13).
5.3.4 Yukawa interactions

The brane-localized Yukawa interactions between the bulk fermions and the above
brane-scalar Higgs field (at y = wR) can be introduced via the Dirac K-distribution
drxrle] (H.72) as

Sy = / dz Ly (a")]1],

with Ly (a") = [-Ys H(z")Q] D — ¥ H(z")Q},Dy, + H.c.| -p, (5.26)
where the complex phases ay-() of the two independent Yukawa couplings Y5(I) at the
3-brane y = wR are defined in Eq. (3.12). Besides, the dimensionless Yukawa couplings
ys,yy ~ O(1) are defined in Eq. (4.15) and y4 can be approximately identified with the

SM Yukawa coupling constant within the decoupling limit. The K-distribution formalism
Ly (x#)[1] (5.24) can be reformulated to the function form,

Lyler= Ly (@) [1]
= H(2")dxn |~ Ys Q) D — Y{ H(2")Q} Dy + Hee
— —Ys H(="Q! Dr — Y{ Hx")QLDL + Hec., (5.27)

which is identical to the brane-localized Yukawa interactions built via functions in Eq. (4.14).
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When calculating the tower of excited fermion masses, we restrict our considerations
to the VEV of H. In analogy to the SM Higgs, after inserting the VEV generation (3.10)
relation to the Yukawa interactions (5.27), we should obtain °

Sy = Sx + Shobp ,

where Sy is the Yukawa mass sector in Eq. (4.16) with effective couplings X, X’ defined
in Eq. (3.15). Shop is the localized fermion-scalar interaction in Eq. (4.17), allowing to
work out the 4D effective Yukawa coupling constants.

We notice that the complete toy model originally developed in the distribution for-
malism of Eq. (5.5) can be reformulated into function formalism in Eq. (4.5)-(4.6), (4.21),
since

D
Spuik = Sbulk + SBT ,

Slganes =S+ Sx + ShQDa (5.28)

where Spu is the bulk action via the kinetic Lagrangian density Ly, (5.18) since we
consider bulk massless fermions (5.7),

0~ TR
Shulk = /d433 (/ +/ > dy Lyin (2", y) , (5.29)
—TRt 0

recovering Eq. (4.6) and Spz (Z = LILIII,IV) is the Zy parity dependent BBT in
Eq. (5.19)-(5.23), which recovers the SM configuration BBT (4.18)-(4.19) only under the
Type 1 Zy parity symmetry (4.9).

5.4 Function recovery

5.4.1 Free bulk fermions on the orbifold

In order to reproduce the profile solutions and mass spectra derived in Section 4.3 (free
case) and Section 4.4-4.5 (Yukawa case), we firstly investigate the free case via the bulk
action part of Ssp (5.5) built in distribution formalism,

SE o = Sbuik + Spr, with Z =T, ILIILIV,

which depends on the type of Zy parity in Eq. (4.9)-(4.12) due to Spz (Z = I, II,III,IV) in
Eq. (5.19)-(5.23) and Spyk is the bulk action via the kinetic Lagrangian density Ly, (5.18).
We apply the least action principle to it, which leads to two relations

07 (Sbuik + Spz) =0,

one for each of the generic independent unknown 5D fields F' = @), D, and two correspond-
ing ones, 0p (Spuk + Spz) = 0, involving the complex conjugate fields. This is exactly
what has been treated in Section 4.3.3, where identical bulk kinetic terms (4.8) and the
BBT (4.18) have been solved for piece-wise smooth fields over y € [-7R™,07]U[0, 7R]. We
can thus apply here the results obtained there. The EOM (4.25)-(4.26) and the NBC (4.47)
would be respectively deduced for F = Q, D.
Inserting the KK decomposition (4.28), we would obtain the profile solutions in Eq. (4.41)

in the domain y € [0, 7R], together with the mass spectra (4.43). Combining with the Zo

6. The linear decomposition is guaranteed by the Dirac K-distribution d-r (see Appendix H.4).
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parity of the profiles in Eq. (4.29)-(4.32), we can obtain profile solutions in the comple-
mentary region, y € [—-mRT,07]. Note that the configuration of the BBT can no longer be
added by hand freely but fixed by the type of Zy parity in Eq. (4.9)-(4.12) [see Eq. (5.19)-
(5.23)], which would extend the BBT-chirality configuration Table 4.1 to Table 5.1 includ-
ing the relation to the Zy parity type. We can see that the Type I Zy parity symmetry (4.9)
would realize the SM configuration and induce the profile solution in Table. 4.2 [only the
line of Type I Zy parity], which is constrained by the ortho-normalization conditions in
Eq. (4.33). In simpler words, the Zy parity would fix the BBT (chiral) configuration and
in turn controls the chiral nature of the theory as well as each field chirality.

ZQ O-(?WR O-O?ﬂ'R Q D
I\ 1 1 Q% (=) | D%(z#)
11 1 -1 | Q%(z*) | DY (at)
I —1 1 Q% (z#) | DY (xH)
mr | -1 -1 | Q%Y (z*) | DY (aH)

Table 5.1 — Chiral setups for the zero-modes of fields Q and D from various different BBT
signs 0'(?7’5% in Eq. (4.18), which is fixed by the type of Zy parity in Eq. (4.9)-(4.12) in the
distribution formalism via Eq. (5.19)-(5.23).

For completeness, let us now discuss the probability currents. Within the same sym-
metry analysis in Section 4.3.2, the two independent global U(1)qp transformations of
the fields in Eq. (4.34), would leave the kinetic Lagrangian density Ly, (5.18) invariant.
Based on these two symmetries, inserting the bulk EOM (4.25), the Noether’s theorem
predicts the local conservation relation in Eq. (4.35) with respect to two probability cur-
rents j¥ (F = Q, D) (4.36) respectively. The addition of the Spr (Z = I, I, III, IV) part in
Eq. (5.19)-(5.23) to Spulk is not affecting the current conservation equations (4.35)-(4.36),
which has been concluded in Section 4.3.3.

In contrast to the function formalism in Section 4.3.2, the weak derivatives of odd fields
induce the BBT automatically, associated to the Zs parity form so that there’s no need to
inject essential boundary conditions (4.40) via the (vanishing) probability currents (4.40)
[using the continuity at the fixed points y = 0,7R (4.37) and the odd parity (4.38)].
However, we can check that j#|o g is well vanishing due to the chiral NBC (4.47) [see
Table 5.1]. Therefore, the Zs parity leads to the associated BBT and in turn suppresses
the probability current j%“‘OJrR to vanish. The Zs parity configuration, chosen initially,
leads to a specific setup of BBT signs as presented in Table 5.1.

5.4.2 Brane-localized Yukawa couplings on the orbifold

In order to work out the fermion mass spectrum in the presence of Yukawa couplings
Sx (4.16), we would focus on the fermion terms of the complete toy model Ssp (5.5)
including brane-localized action terms Sganes (5.28) at the fixed points y = wR. The
considered action reads as,

Stk + Sx = Spui + Spp + Sx

which exactly recovers the considered action in Section 4.4 [4D perturbation approach]-4.5
[5D approach|. Thus, we can reproduce all the results: profiles in Table 4.3 [only the line
of Type I Zo parity], mass spectra (4.73), 4D effective Yukawa couplings (4.73), via the
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identical procedure in both of the 4D and the 5D approaches and realize the decoupling
limit in Eq. (4.76). Regarding the probability current, vanishing current component along
the extra dimension at the fixed points of the orbifold j*|, (4.64) is achieved by the NBC
induced by the BBT as described in Section 4.5. Then, the probability current turns to
be continuous along the entire extra dimension as demonstrated in Eq. (4.63) or (4.38)
respectively.

We need to emphasize that since we concentrate on the SM chiral configuration as
in Section 4.4-4.5, the Zo parity form must be fixed in the Type I (4.9) leading in to
Sp1 (5.19) [see Section 5.3.2], which has been indicated in Table 5.1.

5.5 The inclusive Z, parity

Let us study the inclusive Zy parity scenario (4.77) proposed in Section 4.6, which
would lead to the Dirichlet BC for the odd fields [see SM chirality setup in Eq. (4.79)].

In the free case, the EBC’ (4.79) and the chiral BBT Spr (Z = LILIILIV) in
Eq. (5.19)-(5.23) would induce the identical Dirichlet BC (4.47) for the odd fields and
in turn to the same chiral configuration with respect to the type of Zy parity in Eq. (4.9)-
(4.12) [see Table 5.1]. Thus, only the Type I Zy parity (4.9) can induce the SM chiral
configuration, which is consistent with the analysis in Section 4.6. We should also notice
that the EBC’ and the chiral BBT deduced from the distribution formalism are physi-
cally redundant to fix the chiral configuration. In the presence of Yukawa couplings, the
analysis of point-like Yukawa interactions cannot be achieved via the 5D approach within
the present inclusive Zo symmetry model due to the decoupling limit, which has been
mentioned in Section 4.6.

5.6 Result analysis

5.6.1 Distribution formalism

The present study indicates that the distribution formalism can provide additional
information for discontinuities. In particular, when we go from a distributional to a
functional treatment of the Lagrangian densities and fields, the BBT under a chiral con-
figuration would be deduced from the weak partial derivative of the discontinuous fields
automatically, which provides another motivation to introduce the BBT in Chapter 3-4
except for the UV complement. The vanishing probability current condition is thus pre-
served as dedicated in Section 5.4 both in the presence and absence of brane-localized
Yukawa couplings. Note that the jump has the possibility to happen at each brane at the
fixed points y = 0, 7R so that we don’t need to insert any EBC or additional BBT.

Moreover, in the framework of the inclusive Zy symmetry described in Section 5.5, the
Zo transformation form can fix the chiral configuration through the Dirichlet boundary
conditions from the odd parity at the fixed points [EBC’] (4.79), which performs equiva-
lently via the BBT originating from the weak derivatives of odd fields in the free case.

5.6.2 Distribution/function prescription

Although the weak derivative in the distribution formalism can introduce the BBT,
only the BBT under the chiral configuration (5.19)-(5.23) can be induced, associated to
the four Zy parity form in Eq. (4.9)-(4.12) [see Table 5.1] and only the Type I Z, parity
symmetry (4.9) can realize the BBT under the SM configuration in Eq. (4.18)-(4.19).
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However, it does not mean the other cases do not exist, which is just constrained by the
distribution formalism itself. In contrast, the configuration of BBT can be injected freely
and independent of the Zy parity form, which is one of the crucial results in Chapter 4.
Besides, the vector-like configuration BBT for custodians can only be constructed in the
function formalism [see Section 4.2.5].

5.7 Conclusions

In the study of the proposed distribution formalism for the S!/Zy orbifold, the chiral
BBT can be generated automatically by the weak derivative at the branes (fixed points y =
0, 7R) where the jump of a fermionic field can happen, so that one does not need anymore
to insert by hand any BBT or the equivalent essential boundary conditions. Through a
proper action definition [particularly for the kinetic terms], the chiral SM configuration of
fermions can be realized both in the free and the brane-localized Yukawa case, recovering
the results in the usual function prescription (without brane-Higgs regularization) [see
Chapter 4].

Instead of only deriving the action in terms of field-functions from the starting point
distributions, via the weak derivatives, we are now working on the attempt to keep a
distribution formalism up to ‘the end’, that is up to the full derivation and treatment of
the equations of motion and boundary conditions leading to the final results on the fermion
profiles and KK masses. The motivation being to develop in particular an alternative, and
maybe instructive, method.

Furthermore, we are working on providing the general role to the test functions (and
functions associated to the regular distributions) of implementing the model definition of
the considered compactified space [its infinite or finite size, the boundary locations,...],
for instance by choosing formal infinite extra spatial dimensions at the level of distribution
applications while taking test functions as ‘step’ functions equal to unity but vanishing
outside the finite physical regions. Such an achievement would also allow to treat the
interval model via a distribution framework.

Finally, we are trying to merge Wightman’s distribution theory with our extra-dimensional
distribution formalism, through a 5D action based on the ordinary 4D integration imple-
mented via the Wightman’s smeared field and the extra dimension integrated via the
K-distributions as we developed in this chapter.
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Chapter 6

An origin for flavors: the compact
space partition

This chapter is based on a study that we are now finalizing, in collaboration with
Grégory MOREAU and Florian NORTIER.

6.1 Introduction

The first flavor puzzle of the SM is the origin of the three observed fermion generations.
Several approaches to this question were proposed in the literature, as summarized in the
main introduction of the thesis.

There have also been several types of attempts for understanding the origin of fermion
families based on extra spatial dimensions, which has thus no counterpart in 4D field
theories. First, one could simply take advantage of the 8 components of the vector-like
spinor in flat 6D quantum field theories, in order to produce two 4-component 4D Dirac
spinors corresponding to two fermion families [197]. Nevertheless, it is not possible to
create more than these 2 flavors, even when systematically scrutinizing all the possible
boundary conditions on a 6D compactified flat spacetime [198] (like for supersymmetric
versions [199]). Then, another hope is to introduce a specific curved metric for a 6D
spacetime giving rise to a finite number of mass-degenerate 0-modes (without Kaluza-
Klein masses) identified as the three families of SM fermion fields (acquiring their mass
mainly through a brane-localized Higgs boson coupling): this can be realized by generating
three 5D fermion families in some 6D to 5D action reduction, and then recovering three
4D 0-modes being identical [up to masses] as in Ref. [200, 201]. In order to realize the
three SM flavors by forcing the existence of several 4D 0-mode fields, one could try to
build a model where those are contained in a higher-dimensional fermion field taking
possibly different position states in an extra (compact) space: each 4D 0-mode would
then correspond to a different state along extra dimensions. This can be achieved, via
a topological defect mechanism, by coupling a 6D fermion field to a non-trivial solitonic
object in a 2D (compact) space: a global vortex background [202-207], and the resulting
fermion wave functions along this space — for the different position states' — are then
overlapping with each other. Similarly, different angular momentum eigenstates [rotations
around a 143 brane| in a 2D extra space, with a warp metric (acting as a potential well
trapping fermions), can generate a 4D fermion 0-mode replication reproducing the SM

1. See Ref. [208] for a similar discussion with a unique extra dimension: a 5D fermion coupled to a
specific domain wall (the introduction of an auxiliary fermionic field together with a certain background
metric are then necessary).
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flavors [209-211]. The origin of families could be understood as well through a topological
property of a semi-finite extra dimension as the number of 4D massless surface modes
is directly related to the quantized coefficient of the Chern-Simons operator obtained by
integrating out the heavy bulk fermions [212].

Within the composite models, generally possibly related to the previous ones via the
AdS/CFT duality, the origin of the three quark/lepton generations should typically rely
on gauge dynamics. In this context, metacolor or hypercolor gauge forces [213] as well as
strongly coupled supersymmetric theories [214] have been studied. To be exhaustive, let
us mention at this level other kinds of approaches, to the interpretation of the presence of
three fermion families, which are connected to the cosmological constant problem [215] or
to the compactification with magnetic fluxes (see for example Ref. [216-219] and references
therein): there the number of 4D chiral 0-modes (with non-trivially quasi-localized profiles)
— corresponding to the generation number — is determined by the magnitude of magnetic
flux. The three fermion families of quarks and leptons could also come from three chiral
multiplets of a 6D supersymmetric gauge theory containing a specific vector multiplet and
compactified on a T?/Z3 orbifold [220, 221].

The second SM flavor puzzle is the set of discrepancies existing among the SM fermion
mass values, including the extremely small neutrino energy scale compared to the top
quark mass (around the electroweak symmetry breaking scale). Historically, several models
have been elaborated to create this global mass pattern, both within the 4D and higher-
dimensional contexts, as recalled in the main introduction of this thesis.

There is finally a recent open question: the test confrontation of theory with the set
of deviations from lepton flavor universality measured through neutral/charged-current
semi-leptonic B meson decays [see also our main thesis introduction].

In the present chapter, we propose a new simple geometrical mechanism, along a single
flat extra dimension, which generates the fermion replication needed to reproduce the three
SM flavors. Nevertheless, to be clear, our model does not predict why the number of SM
flavors is equal to three, as done for instance in Ref. [222, 223] (using conditions coming
from the not so trivial cancellation of 6D anomalies). However, the presented fermion
replication tool will be extended to custodian-like particles, which allows to realize as well
the promoted group multiplets invoked for the custodially-protected [151] warped extra
dimension scenario addressing the gauge hierarchy problem [69].

The central and original mechanism of this model is based on the presence in the
Lagrangian of bulk-fermion BBT at several intermediate points along the extra dimension,
which is natural in the sense that those terms exist generally if no specific symmetry is
applied on the dominant lowest-dimension operators. Furthermore, the BBT are needed ?
at the boundaries® of extra dimensions in order to well define the finite intervals (since
the BBT induce vanishing probability currents along the new dimension), as shown in
Chapter 3, so there is no obvious reason why BBT should not appear as well at several
intermediate locations. The BBT, when located at such intermediate positions, are then
called partition terms since, as we will demonstrate, they still induce a probability current
component vanishing at these positions — as a point-like infinite potential — and hence
can restrict the fermion field domain to the left or right side of those positions (the whole
discussion in this paragraph holds for the free bulk fermion case as well as in the presence
of brane or bulk Yukawa couplings for the fermions). As the fermion profiles may be

2. Or some equivalent essential boundary conditions as established in Chapter 3.

3. In fact, we will show in the present chapter that with BBT at intermediate positions (not boundaries),
it is not necessary to have BBT precisely at the boundaries of an interval: in other words, BBT at
two positions, at least, are needed to have non-vanishing normalizable wave functions in between those
positions.
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discontinuous at these BBT points, we will apply, in a clear way, the rigorous procedure
developed in Chapter 4 to treat jumps.

We will further clearly explain in this chapter the heart of the higher-dimensional
mechanism of fermion replication: how a unique fundamental 5D fermion field can generate
several massless 4D fields. At the two main steps of the explanation, an explicit quantum
interpretation will be provided. The first step relies on the summation of solutions, of the
differential linear homogeneous equations of motion, in order to obtain the generic higher-
dimensional field expression *. This summation runs over the various spatial states in the
compact space — states possibly lying on both sides of the BBT positions in the present
model or e.g. angular momentum states in the 6D model mentioned above — exactly like
it runs over the various momentum states along the extra dimensions in the usual Kaluza-
Klein decomposition. From the quantum point of view, all these states are represented by
ket elements defining a basis of the Hilbert space for the extra space and their formal sum
corresponds to the physical state superposition. The second step is to inject the higher-
dimensional field solutions into the initial action and then impose ortho-normalization
conditions on their wave functions along the extra space, in order to recover the canonical
kinetic terms for the associated 4D fermion fields in a possible 4D effective theory — as
imposed by the decoupling criteria. Those conditions correspond to the standard ortho-
normalizations of the quantum states constituting the Hilbert space basis. Finally, the
several massless 4D fields, associated to the wave functions of the various position states
along extra dimensions (in contrast with the heavy 4D KK modes), originate from the same
higher-dimensional field and possess in turn identical quantum numbers: they constitute
thus fermion copies which can realize the SM flavors (getting then different masses mainly
through Higgs couplings as required by experimental data: see discussion below). Then
the SM gauge interactions can be introduced to build a realistic model.

The intuition only of a higher-dimensional field written as a sum of individual flavor
fields, lying in distinct intervals connected by some point(s) in an extra space, was already
in the literature, but without explicit model-building realization and precise description ® —
as we have presented just above. First, an effective © approach of such a field configuration
was performed in Ref. [145, 227-229]. Secondly, a geometrical extension of this field con-
figuration, with the different flavor profiles possibly lying in distinct rose graph branches
(N loop-intervals that begin and end up at a common boundary), has been studied [230].
The alternative star graph (N intervals connected by a common boundary: an Ultra-Violet
brane) — representing a simple field theory limit of a “multi-throat” setup where one of
the warped extra dimensions in each throat is much larger than the other ones — has also
been analysed within the same flavor context [231]. In string theories, a generic type of
situation arising from flux compactifications leads to geometries with such multi-throats
hanging out from a “head”, which constitute a compact Calabi-Yau manifold.

The other enigma of the SM flavor sector lies in the origin of the mass scale hierarchies
among the three fermion families as well as between the quarks, charged leptons and
neutrinos. For a 4D world, the main approach to this question is probably to decipher

4. Keeping in mind the cut-off on the tower of massive 4D solution fields, which implements the energy
limit of the physical domain of validity of the non-renormalizable theory.

5. Such an effective flavor field sum, but with overlapped exponential fields shifted along some extra
dimension, is also mentioned in Ref. [224] (see also Ref. [225] for the dual composite Higgs approach, with
multiple flavor scales, of a similar field configuration).

6. In other words, a generic point-like interaction model was simulated: without such interactions, the
equality F = 0 at a given point yo, along some extra dimension, should come as the model hypothesis
of a known 5D fermion field F(z*,yo) at the calculation level of action variation, and cannot be deduced
from a final result on this field (see Ref. [226] for the chronological aspects of the variational calculus).

127



the observed mass hierarchies via spontaneously broken flavor symmetries [232] (and the
relatively tiny neutrino mass scale via the seesaw mechanism), which could be discrete or
continuous, global or local, as widely explored in the literature. In this context, a realistic
reproduction of the measured fermion masses and mixing angles typically requires either
a large number of parameters or a certain degree of complexity, so that today one is for
sure unable to select the best model of this kind. The paradigm on higher-dimensional
frameworks, appeared around the year 2000, has brought geometrical ideas for generating
both the gauge hierarchy and the fermion mass hierarchies — including the small neutrino
masses: the various 0-mode fermion wave functions (exponential or gaussian) along the
compactified space can overlap differently either between the two 4D chiralities [74, 233]
(see precise mass and phase reproductions respectively in Ref. [234, 235]) [see also e.g.
Ref. [77, 117, 236-239] for the neutrinos| or with the Higgs boson profile [79, 240, 241]
(see detailed mass reproductions e.g. in Ref. [103, 134, 157, 187, 242, 243]) [see e.g.
Ref. [186, 244] for neutrinos], in a way that creates strong hierarchies in the 4D effective
Yukawa couplings, and in turn in the 4D masses after electroweak symmetry breaking
— the benefit being that the fundamental fermion parameters (solitonic bulk masses and
sub-interval sizes) are all of the same order of magnitude.

Our present model with distinct flavor fermion wave functions separated by BBT
points, or possibly having different non-vanishing amplitudes on each BBT side, further
addresses, in a new way, the fermion mass hierarchy: for a 5D Higgs boson profile expo-
nential along the entire flat extra dimension — easily obtained from a bulk scalar mass —
its overlaps with the different flavor profiles, being maximal at various locations, are expo-
nentially different and hence generate the observed strongly hierarchical fermion masses
through hierarchical Yukawa couplings [similarly for generating the tiny neutrino mass
scale]. For instance, compared to the above mass models with light fermion profiles ex-
ponentially spread along a warped extra dimension and only peaked towards the so-called
Planck-brane, a warped version of the setup proposed here with light fermion profiles
possibly partitioned around the Planck-brane (hence strictly vanishing in the other TeV-
brane region) favors small light fermion couplings with the KK gauge bosons peaked at the
TeV-brane which tends to soften dangerously constrained flavor changing neutral current
effects. A warped version of the present model also possesses the attractive feature that
the exponential Higgs profile (induced by the warped metric and a bulk mass) peaked
towards the TeV-brane allows to address simultaneously the fermion mass hierarchies and
the gauge hierarchy puzzle [69], which represents theoretically a kind of economy: in other
words, the present model is connecting, via the curved Higgs profile, the flavor appear-
ance, the quark/lepton mass hierarchies and the gauge hierarchy. The phenomenological
study of the reproduction of SM fermion mass and mixing angle values, within the setup
of fermion flavors in distinct intervals, was performed for the effective approach men-
tioned above [145, 227-229]. A comparable setup — with exponential profiles for the two
bulk Higgs doublets, the first matter generation localized on an interval boundary, second
fermion generation in the bulk and third one on the other boundary — has also been studied
in the context of a supersymmetric 5D GUT based on a S1/(Z2 x Z5) orbifold [245].

In the present work, we find out in particular the configuration for a given flavor fermion
wave function with different amplitudes on each side of a BBT location (as exposed above)
which was not studied in this Ref. [145, 227-229]. This configuration permits the needed
mass mixings among different flavors thanks to non-vanishing wave function overlaps at
the Yukawa coupling level, in contrast with the setup of distinct flavor wave functions
partitioned respectively on the two sides of a BBT location which requires a shift of the
BBT locations between the Left and Right-handed 0-mode fields to create such a mixing
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effect [145, 227-229]. We perform a phenomenological analysis of this profile configuration
by working out examples of regions in the parameter space where SM fermion masses are
reproduced, in order to illustrate the result that realistic numerical values can be easily
reached.

The other puzzle in the SM fermion sector is the set of deviations from lepton flavor
universality observed experimentally through neutral-current and charged-current semi-
leptonic B meson decays. It turns out that our present partition mechanism allows to si-
multaneously induce the flavor replication and arrange them accordingly to the above (see
main thesis introduction) necessary field distribution along the extra dimension, represent-
ing thus a natural theoretical framework for interpreting the measured flavor anomalies.
In particular, for the up-type SM fermions, distinct flavors can indeed be strictly localized
in distinct 1D sub-domains separated by intermediate vanishing profile sub-intervals”,
thanks to the BBT, and those sub-domain widths could be reduced to produce (thick)
3-branes [see next paragraph|. Regarding the SM doublets of Ref. [128], two 5D fermion
doublets should be introduced with one of them splitting into two 4D fermion flavors.

An even more ambitious approach is to solve the B meson anomalies using the gauge
vector leptoquark — transforming as U; = (3,1,2/3) under the SM gauge group — of the
Pati-Salam (PS) scenario which is unifying quarks and leptons in a fundamental repre-
sentation of the SU(4) group. This attempt can be pursued within the context of a 4D
model [246] or a 5D warped model [247]. The PS® model relies on the discrete language
of three sites connected by nearest-neighbour interactions which implicitly admits the em-
bedding of the theory into a higher-dimensional spacetime: this can be realized along a
warped extra dimension [248] with, once more, the various SM doublet and singlet flavors
distributed in complementary sub-intervals and 3-branes. Now, again, our present theo-
retical partition mechanism, based on BBT, allows to create the three flavors and shape
those according exactly to the PS? model field configuration along the extra dimension.

Furthermore, we propose a new type of spin-1/2 fermion localization mechanism. Let
us first recall the general context of this topics. For example, the wave function shapes of
spin-1/2 fields can be modified along the extra dimensions by gravitational interactions but
cannot be totally localized on a brane in five or six dimensions only via these interactions
(see for instance Ref. [249, 250]). The idea of localizing fermions towards some wall in an
higher-dimensional space which relies on the index theorem in soliton background [251,
252] goes back to Ref. [253]. There the fermions couple to the spatially varying Vacuum
Expectation Value of an higher-dimensional scalar field. For instance, a kink function
(step function) for this VEV leads to a spread profile with an angular peak for the (chiral)
fermion 0-mode [254]. A more smooth domain wall with an hyperbolic tangent form
creates instead a fermion Gaussian profile [255]. The fermions can also couple to extended
functions of the scalars with varying VEVs [256, 257] (see also Ref. [258]), generically in
4+ d dimensions [259], and the additional effect of gravity on the wall may be included as
well [260).

Within the string theory framework, the hypothesis itself of matter localization on a
brane-world was studied, by restricting the matter Lagrangian to lie on a D3-brane thanks
to a simple delta distribution with support at the brane location: it was demonstrated that
in D3-brane scenarios, 4D fermion modes are not normalizable [261]. Nonetheless, when
domain wall generalizations for D-branes are considered, adding an interaction between
a fermion and the scalar field generating the domain wall, at least one chirality of the
effective 4D fermion could be localized. Chiral fermions can be localized, e.g. at a D3/D7
brane intersection world-volume via a stringy defect mechanism [262]. More generally,

7. As long as the profiles are globally ortho-normalizable.
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fermions can be localized thanks to a string-like defect [263-266].
In the present work, the field theory partition mechanism of spin-1/2 fermion localiza-
tion, along an extra dimension, is quite simple and possesses the following particularities:

(i) It has a point-like phenomena origin through the BBT — thus not relying on a fermion
coupling to a spatially varying scalar field VEV.

(ii) It localizes a (chiral or vectorial) fermion [any KK-level mode] to a strict interval
(i.e. exactly vanishing profile outside this interval).

(iii) The interval width, determined by the BBT points, can be chosen as small as wanted
down to a point, which represents nothing else but a brane-localization.

In particular, the localization mechanism we proposed, based on certain BBT positions,
also allows to have a compactified space domain where all fermion profiles are exactly
vanishing. Taking the limit of vanishing width (instead of keeping a strict thick wall)
for the complementary domain — where all the fermions spread — leads to the concrete
realization of the types of warped or flat extra dimension models where all SM fermions
are confined on a brane (instead of a strict thick brane), as proposed in the literature to
address the gauge hierarchy puzzle. Of course, by taking different BBT among fermions,
we can also build variants of such scenarios where only a sub-class of fermions is brane-
localized, like for tiny neutrino mass models with all SM fermions stuck on a brane and a
Right-handed neutrino field propagating in the bulk.

This chapter is organized as follows. First, we give the definition of the spacetime
geometry and the complete toy model in Section 6.2.1. Then, in Sections 6.2.2-6.2.6, we
study the free fermion profile through the least action principle, and give the detailed
description of the fermion generation splitting mechanism. In Section 6.3, we realize the
fermion mass hierarchy with the bulk Higgs VEV function on the extra dimension, via the
bulk Yukawa interactions. Finally, an overview and a brief conclusion would be given in
Section 6.4.

6.2 Flavor model

In this section, we search for a flavor model including a fermion generation splitting
mechanism in the basic free case without Yukawa interactions, deriving the associated
profiles and mass spectra to each generation. The main target of this section is to realize
the generation splitting in a rigorous procedure for revealing the SM mass hierarchy in
Section 6.3.

6.2.1 Partition model

6.2.1.1 Spacetime geometry

We consider a 5D toy model on the product spacetime geometry, £° = M* x Z;.

— M?* represents the usual 4D Minkowski spacetime whose coordinates are denoted
by z# where pu € [[0,3] is the Lorentz index of the covariant formalism. The metric
conventions are given in Appendix A.

— 7 is a compact 1D flat interval of the extra spatial dimension, which is denoted by
y € [0, L], with a length, L € R*, and bounded by two flat 3-branes at y = 0 and
y = L. The interesting thing is that the brane-localized interactions — the BBT —
play the role of extra intermediate branes between the two boundaries at y = 0, L
for the fermion, F', which may interrupt the continuity of the fermion profiles and
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force the fermion probability currents vanish at the intermediate branes at y = Lg
(cf. Section 6.2.2). Here, we firstly consider the toy model with one intermediate
brane ® to realize two fermion generations localizing in the first and the second regions
respectively, as illustrated symbolically in Figure 6.1.

— A point of the 5D spacetime £° is labeled by the coordinates, ™ = (

M € [0,4].

In order to write down the initial action, we urge the importance of taking care of possible
field jumps along the extra dimension at intermediate branes by the treatment of the
discontinuity precisely described in Chapter 4 [function formalism]|. The bulk Lagrangian
density will involve profile derivatives J,f(y), so that 9,f(y) must be well-defined on
[0,Lp] U (Lp, L], i.e. on [0,Lp] and (Lp, L] respectively. Analogy to the treatment of
jumps in Chapter 4 (also see Ref. [2]), the necessary (but not sufficient) condition for
this last feature is that the profiles f(y) have to be continuous on the three segments
respectively. For example, f(y) is derivable in the region [0, Lr] at y = 0 if and only
if f(y) is right-derivable at y = 0, and the corresponding right-derivative is convergent.
Then, the complete 1D interval is decomposed by Z; = [0, Lg] U (Lp, L] with respect to
the piece-wise smoothness. The lengths of the two segments are denoted respectively as,

xH,y), with

ALL=Lp—0, ALY =L Lp. (6.1)
® BBT
® & )
0 'Ly L

Figure 6.1 — A picture of the interval with one intermediate brane. Two 3-branes (two
solid lines) on two boundaries (two black points) at y = 0, L. Unique intermediate brane

(dashed line) at y = L;?L) are induced by the BBT (three gray points).

Then, the well-defined global action covering the whole physical domain of the interval
is developed including an improper integral:

F _ qF F
SSD - Sbulk + Sbranes ’

Lp L
with Slfljulk = /d4$ / +/ dy ["t};ulka (62)
0 Lt
where

— LI, includes the fermion kinetic (6.3) (cf. Section 6.2.1.2) and the mass terms (6.58)
(cf. Section 6.2.6) of the Lagrangian density , which is integrable over the entire
region, Z; = [0, Lr|U (Lp, L]. Here, we introduce a unique field content to achieve a
simplest 2-gen example. Fermionic particles propagate along Z; as we have in mind
that a direct extension of this toy model to a 3-gen scenario as the realistic SM.

8. It’s the reason why we impose ‘1’ as the subscript in Z;.
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— Sk Tepresents action terms localized at the two boundaries (y = 0, L) and inter-

mediate branes [y = LS;)] for the fermion field, e.g. the brane-localized BBT (cf.
Section 6.2.1.3).

Note that this two-generation toy model can be easily extended to the realistic SM scenario
with three generations, where two intermediate branes are induced by the BBT and profiles
will be piece-wise smooth with respect to three sub-regions. The bulk action will preserve
a similar formula to Eq. (6.2) but include a three-piece integration rather than two.

6.2.1.2 Bulk fermion fields

The 5D fermion field F'(z#,y) — of mass dimension 2 — has the following kinetic terms
[entering Eq. (6.2)] which allow to recover canonical covariant kinetic terms for the as-
sociated fermions in the 4D effective action (as imposed by the argument of decoupling
limit ?):

ch = %FFME}F, (6.3)

which keeps the identical formula as the interval case of Eq. (3.1) and its chiral formula
can be derived via the chiral decomposition (1.17) as

1 R erd < <
Ll = 5 (iFko" 0uFr+iFlo" 8, F, — Fhoi Fy + F| 01 F)
1/ = A ed L= R — —
=5 (ZfR’Y“ OuFr+ 1FLY" OuFr, — FRO4 FL + FLL 04 ]:R) , (6.4)

but with the discontinuity argument (see Section 6.2.1.1) at the intermediate branes at
y = Lp. Particularly, the bulk mass terms L£,,5s Will be treated in Section 6.2.6.

6.2.1.3 Partition terms

The BBT — of mass dimension 4 — introduced in Chapter 3 (also see Ref. [1]) turn out
to be necessary here again for several reasons:

— They allow to avoid physical consistency problems (e.g. recovering the SM fermion
chirality configuration).

— They play interestingly the role of intermediate branes at y = LJPC where the fermion
probability currents are forced to vanish and each fermion generation is embedded
into one segment individually (cf. Section 6.2.2).

— They define the compact model with the two boundaries at y = 0, L and constrain
all fermion fields on the physical domain, Z;.

The following BBT lead to the SM chirality configuration '’

st = e (28, - 28, 28], - £, )

" (y) FF — @

ith £f =
W1 2 2

(FzFR + F;FL) , (6.5)

9. From the theoretical consistency and phenomenological points of view, the SM must be approximately
recovered at low-energies in the limit of infinitely heavy KK excitations, which is also a crucial argument
in other scenarios in Chapter 3-4.

10. Onme can also setup the BBT at L}, instead of Lr but it wouldn’t change any physical results such
as mass spectra.
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where we impose the chiral decomposition (1.17) and o' (y) are generic parameters for the
field F' at y with compact notations

F A F
o s =0 ‘ . (6.6)
OyLFvavL O,LF,L;,L
The two choices of dimensionless BBT signs '
F. _F -
0-1 ) 0-07LF7L;7L B 1 ’
P (6.7)
%2 Oyperpr = T

would lead to a set of natural boundary conditions localized at intermediate branes and
boundaries in Eq. (6.12), which then induces two generations of normalizable profiles
[clarified in two series in Eq. (6.35)] associated to the 5D fermionic field F' (6.36) with the
non-vanishing zero modes [without KK mass contribution] for only one chirality [L or R]
respectively [see Eq. (6.44)-(6.51) with Table 6.1 for bulk massless case and Eq. (6.74)-
(6.75) with Table 6.2 for bulk massive case].

Considering all the aspects above, the complete toy model (6.2) studied for the free
fermions in Section 6.2 is characterized by the action,

S?D = Sk};Jlk + Slf;anes = Sgulk + Sﬁ? (68)

where the bulk action terms consist of the kinetic Lagrangian density of Eq. (6.3)-(6.4) in
the bulk massless case, while the bulk massive case would be studied in Section 6.2.6. The
conclusions that will be derived in the present work can be directly extended to the realistic
warped model with SM bulk matter addressing the fermion mass and gauge hierarchies,
along the same lines as the flavor and gauge symmetry generalizations described in details
in Section 3.2.6.

6.2.2 Mass spectra & Profiles

As a preparation for the presence of the Yukawa interactions, we firstly concentrate
on the free bulk massless fermions, i.e.

F _ pF
‘Cbulk - ‘Ckin )

to derive profiles, mass spectra and realize the fermion generation splitting in the free case.
The least action principle is applied to the free action (6.8) and leads to two associated
stationary equations,

Op (Slillk + 5§> =0,

11. The different BBT signs would lead to a different chirality configuration of the zero-modes from the
SM or custodian fermions (cf. Section 3.3.3).
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for the unknown 5D field F' are generic and independent field variations. In particular, we
can write the explicit variations of S{iﬂk + S 12,

5 (SE +8E) = [t YT 4y sEiTM oy P
F \Pbulk B x L]y (2 M
0 L
O'EF-i-l
2
Uf—i—l
2

054—1
2

F
og —1
5F;FL| -0

F
Lo =1 SFLFe| +
L, Lp 2

2 5F2FR’0 B

SFhFL|
F F
F o -1 g +1
op —1 i _ Ly T ospt _ Lk sp
T 5FRFL‘L 2 5FLFR‘L; 2 6FRFL’L} 7

5F2FR‘L +

(6.9)

where the the chiral decomposition (1.17) is inserted to brane terms. In this stationary
action condition, the bulk and brane variations must vanish individually, which would lead
to the bulk EOM,

Vat, ye Ty =[0,Lp]U (Lp, L], iTMoyF =0, (6.10)
and it’s chiral formula after the chiral projection (1.17),
i&“&uFLJr&;FR = 0,

Vat, yeZ; =[0,Lp]U (Lp, L], (6.11)
iU”@uFR—&;FL = 0,

with the corresponding NBC under the SM ag LeltL configuration mentioned before,
) [ 2k
F F F F
ot —1 of +1 oy, —1 oy, +1
02 Fgrly = 02 FL|0:FTFR|LF:FTFL’LF ; 612
6.12
F F
opr 1 opr 1 oF -1 oF +1
TFR‘L;: = TFL‘L;: Frl, = 9 Filp -
where O'(I;LF = +1 leading to the associated NBC %,
) [ Ak}
— F _
FL‘Q(L}:) = 0 (O—O(L;;) - +1)7 FL‘LF(L) = 0 (UEF(L) = +1),
or and or [INBC]
_ F o _ _ F _

(6.13)

Regarding the 5D EOM of Eq. (6.11), the 5D spinors F7 /g (z#,y) are the generic

solutions of Eq. (6.11), which is nothing else but the 5D Dirac equation (in its two-

component chiral form) for massless fermions, so that we can write them accordingly to
the following factorization,

L
VL

12. We omit the global 4-divergence by the remarks in Section 1.3.
13. In principle, different configurations on the two regions [0, Lr]and (L, L] can be achieved if of #
F F F

UL; or or, #Oor.

Ffi (a,y) = —= fi/r(y) FLjg (@), (6.14)
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with the convention of a dimensionless profile f7,/r(y) (still in the natural unit system)
and ',

for(y) = Cirr(y) 'y 4 C_r/r(Y) e~y ,
d L 1 s 3 S ip,,
Fijn @) = / (27)3 \/Fp 8221;2 {aP4DuL/R(p4D) "+ 0,01 r(Pap) e },

(6.15)
where C, 1, /r(y), C_1/r(y) are piece-wise normalization constants on [0, Lr]U(LF, L] due
to possible profile jumps at y = L,

Cornly) = Ciryra0(®)0(Le—y)+Cirrat (y—LF)0(L—y)

(6.16)
C_rry) = C_pr10W)0(Lr—y)+C_/r2b (Z/ - LJE) 0(L—-vy),
with the Heaviside step function,
R 0 » ¥ < Yo,
0(y — o) = (6.17)
L sy=wo.

Two opposite orientation momenta along the extra spatial dimension in f7,/g(y) (6.15) are
contributions from the reflection at the branes. ap, ~—and by = (s = 1,2) are coefficients
associated to the 4D momentum. usL/R(p@)e_ipH # and vi/R(p4D)eipM o (s = 1,2) are
(normalized) 4D spinor fields [7] satisfying the 4D Dirac-Weyl equations (1.25), corre-
sponding to particle and anti-particle respectively. p™ = (p#,p*) denote the relativistic

5-momentum which must obey the on-shell (massless) relation,

(p0)2 =y (pj)2 —pip + (p4)2 , and p' = Ep,. (6.18)

J=1

Notice that the Eq. (6.15)-(6.18) guarantee F*°" (z#,y) (6.14) to satisfy the free massless
5D Klein-Gordon equation
oM Fr g (2, y) =0, (6.19)

derived from the 5D EOM (Dirac equation) as required '°. Given the momentum operator
Pi=—i9; [j =1,..,4'% we can rewrite the wave functions and spinors of Eq. (6.15)
using (squared) momentum eigenstates:

fL/R(y) = <y‘pz21>L/R )

FL/R( ") :/

3

{ 5 e (Dap) (KIAD(0) + B 08 P x| — pan()},

'MA

5_7

(6.20)

14. The bold letter represents related spatial components.
1
15. 0 = —?TMINoyOnF = = {PM IV} OmONF = nMNouONF = 0m0™MF, using the Christoffel
algebra {FM FN} =2pMN in Appendlx A.

16. Notice the subtlety due to the compact spatial geometry that the extra momentum operator pt)?
is not Hermitian, even if its real eigenvalues and ortho-normalized eigenstates can still be defined [267].
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where

(P) 13), = () [08)
P7 psp(t)) = p’ |pap(t)) , with j=1,2,3, (6.21)

and the compact notations,

x) = |zt) ®2?) @ |23),
| 4 (6.22)
lpip(t)) = e Frlip,p) = e el pl) & |p?) @ [p?) .

Besides, Fé/DR (z*) (6.15) must constitute a 4D fermion field satisfying the 4D Dirac-
Weyl equation (1.25), involving a effective 4D mass m!’, leading to the 4D Klein-Gordon
equation,

-

Inserting the factorization (6.14)-(6.15) to the 5D Klein-Gordon equation (6.19) and com-
paring to the 4D Klein-Gordon equation (6.23), one can obtain the mass-momentum re-
lation,

FiJg (z) =0. (6.23)

mt = +pt. (6.24)

Hence, the factorization (6.14) allows to fulfill the decoupling limit criteria within a realistic
model at the field theory level [for theoretical and phenomenological reasons|: in the
heavy limit for the new particles of the extended scenario (that will turn out here to be
the Kaluza-Klein excitations), the SM Lagrangian involving 4D fermion fields F7, /R (M)
must be recovered at low energies (the profiles f7,r(y) being integrated out over y in
the 4D effective action, ending up in global factors). Moreover, since the profile solution
fr/r(y) (6.15) is even with respect to p* 17, it will turn out that one can fix the mass-
momentum relation (6.24) as,
mt =pt. (6.25)
If we insert the 5D factorization (6.14)-(1.25) into the 5D EOM (6.11), we would obtain
the EOM of profiles explicitly,

Oafr (y) —m* fr(y) = 0,

Vy € [0,Lr]U(LF, L], { Oufr (y) +mf frL(y) = 0,

which leads to general profile solutions

fo(y) = Br(y)cos(m™y) + Br(y) sin(my),
. (6.26)

fr(y) = Br(y)cos(m®y) — Br(y)sin(m’y),

where B (y), B'(y) are piece-wise normalization constants via the Heaviside step func-
tion (6.17) due to possible profile jumps at y = Lp,

Br(y) = Brif(y)0(Le—y)+Brat(y—LE)0(L—y), oo
6.27
Br(y) = Braf(y)0(Lr—y)+Bra0(y—Lf)0(L—y).

17. For any appreciate profile solution fr,,g(y) realized by p*, we can reproduce it with —p* and exchange
Cir/r(y) < Cor/r(Y)-
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with the two redefined constants, comparing with the momentum solution (6.15) and the
mass-momentum relation (6.25):

B, = i(Cyp—C-p), Cirp = iCyyp,
with (6.28)
Br = Cyp+Cp, C.p = —iC_p,
can be derived. Similarly, the reverse constant transformation can be derived,
Bgr —iBj,
Cip = — 5 C,; = iCypg,
. with (6.29)
c, = Br +1iBp, C_; = —iC_g.
_ —

Note that the solution (6.26)-(6.28) includes the massless case m! = p; = 0 via piece-wise
constant profiles fr (y) = Br(y), fr(y) = Br(y). On the contrary, (mf)? # p? would
induce vanishing profile solutions (i.e. f1 (y) = fr (y) = 0) and hence a vanishing 5D field
F(z*,y) = 0 [in the Lagrangian], which is ruled out because the field content of the SM
(and its present realistic extension) must include fermion spinors.

Then, let us derive all possible profile solutions fr/r (y) (6.15)-(6.26) related to the
NBC (6.13) explicitly. Since fr,g (y) are piece-wise smooth on [0, Lr] U (LF, L], we can
solve the profile on each region respectively. The solutions of the profile EOM (1.32) on
the piece-wise smooth domain y € [0, Lr] ((Lr, L]) [normalized via Eq. (1.26)] have been
precisely solved in Section 3.3.3 but we need to the modify the length as AL};@ (6.1).
Moreover, the lack of BBT at any (intermediate) brane would induce related vanishing
profiles and a trivial mass spectrum equation [see Section 3.3.1]. Non-trivial solutions
found with particular BBT configurations for Eq. (6.11)-(6.12) are factorized in Eq. (6.14)-
(6.26), following four possible sets of profiles over y € [0, Lr]| together with the associated
(KK) mass spectrum equations (Vn € N),

1) (==): [fi(y)=Biyisin(my y), (++): [R(y) = BEcos(my, y),
sin(mf ALL) =0;

2) (++): fL(y)=Bkicos(myy), (—=): [h(y)=—Bpysin(myy),
sin(mf ALL) =0; (6.30)

and,

3) (=+): fL(y)=BLysin(myy), (+-): fily)=BL,cos(my y),
cos(mf ALL) =0;
4) (+-): [fi(y)=Bfcos(myy), (—+): f(y) = —Bfysin(my y),
cos(ml ALL) =0; (6.31)
where we use the standard BC notations — or + at y = 0, 7R defined below Eq. (3.29),

which make explicit the correspondence between the correspondence between the four
NBC (6.12) with non-zero BBT and the four solutions (6.30)-(6.31). The equation

sin(m! ALL) =0,

possesses the following solutions for the KK mass spectrum,

‘mﬂ:&, neN. (6.32)
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Similarly, the equation
cos(mf ALL) =0,
has the solutions:

‘ F‘ ~ @n+ D
" 2ALL
We can clearly see that the mass spectrum (6.32)-(6.33) deduced by the piece-wise smooth
profile solutions of the EOM (1.32) and the BC (6.12) is parameterized by the length

of associated sub-region. So, let us firstly consider the non-zero KK modes [m% # 0.

The generic profile solution f7,/r(y) (6.15)-(6.26), defined on the entire domain Z; =
)

, neN. (6.33)

[0,Lr] U (Lp, L], must have the unique momentum p4 (mass m" ) on the entire extra
spatial dimension (both of two sub-regions), which corresponds to the unique effective
4D mass as discussed in the comparasion between the 5D (6.19) and the 4D-(6.23) Klein-
Gordon equation. Hence, the (non-vanishing) profile solutions of Eq. (6.30)-(6.31) (similar
profile solutions on the second sub-region (L, L] but with the interval length AL2%) must
only exist on one sub-region ([0, Lg] or (Lg, L]) and vanish on the other, since the two
sub-region lengths induce two different mass spectra. We denote two generations (families)
of fermion profile solutions as fgz_L/R(y) (Vn € N*, i =1,2), where n € N* is the KK mode
indices. G; (i = 1,2) is the generation label corresponding to the non-vanishing solutions
on the first and the second sub-region respectively. Furthermore, the associated (SM-like)
mass spectrum can be derived explicitly via the sub-interval length AL% (i = 1,2) (6.1)

in analogy to Eq. (6.32),
nm

F
’mglmn‘ = @, neN. (6.34)
Then, let us turn our focus to the zero mode [m’ = 0]. We can see from Eq. (6.30)-(6.31)
that the zero modes are piece-wise constants on the two sub-regions [0, Lr| and (Lp, L].
The zero mode is the unique mode whose mass is interval length independent (vanishing
on both of two sub-regions), which leads to a possible non-vanishing profile solution of
the EOM (1.32) and the BC (6.12), propagating on the whole extra spatial dimension.
Moreover, the two sub-regions will induce a two-dimensional Hilbert space for zero modes
[discussed later in Eq. (6.44)-(6.50)], so we denote the two 0-mode profiles (basis states)
as fgiL/R(y) (i=1,2).

We sum two kinds of flavors and corresponding KK modes, constituting all individual
solutions of both homogeneous differential equations [5D EOM (6.11)] and 5D homogeneous
NBC (6.12)-(6.13) (associated to a certain BBT configuration). From the quantum point
of view, it is based on the quantum superposition principle '*. We obtain

Fror (2 y) =Y Fgr/r (@), (6.35)
i=1.2

which consists of two flavor generations ' Fg, 1 /g (z#,y) (i = 1,2),

1 1 = .
ngL/R (zt,y) = ﬁ f&L/R\QF (y) ngL/R (=) + ﬁ Z fgiL/R(y) ngL/R (=), (6.36)
n=1

18. In the mathematical point of view, the generic solution Fi, g (z",y) (6.35) — the summation of all
possible solutions — is induced by the linearity and homogeneity of the EOM (6.11) and the BC (6.13)
[fixed BBT configuration]. It is similar to the integration over momentum 3D, the summation of spin
states, of particle and anti-particle (6.20). Besides, the ortho-normalized basis made of flavor states, KK
states, 4D momentum eigenstates, particle/anti-particle sates, up/down spin states are also all motivated
by the quantum point of view.

19. A further justification is presented above the ortho-normalization conditions (6.38).
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where zero mode profile fg-L/R‘Q (y) (i = 1,2) is labeled by a rotation angle Qp € [0, 27),
¢ F

which will be described later in the precise solutions (6.44)-(6.50). Each profile solution
f.r/r () (i = 1,2) is related to its 4D field Fg 5 (2) (i = 1,2, n € N) with the KK
mass mgm (i=1,2,n €N) (6.34).

In analogy to Eq. (6.20), each KK mode profile fg.m (y) (VneN,i=1,2) can still

be written by the squared momentum eigenstates ‘pingi>L/R (VneN,i=1,2),

fgoiL/R‘QF (y) = <y’pz21,0gi(QF)>L/R7 n=0,
(6.37)

fgiL/R (y) = <y’Pi,ngi>L/R , neN*

where n € N denoted the KK order corresponding to family G; (i = 1,2) with the KK
mass mgm (1 = 1,2) (6.32)-(6.33) and Qp € [0,27) is a rotation angle for the 0-mode
Hilbert space, which will be described later in the precise solutions (6.44)-(6.50).

In the decoupling limit, Fy, g (##,y) (6.35) must recover canonical 4D fields with in-
dependent (diagonal) kinetic terms, i.e. the effective 4D fields must be orthogonal [see
Eq. (6.40)-(6.42)], and one cannot build more than 2 (families of) orthogonal fields satis-
fying the ortho-normalization conditions,

Vn,meN, Vi, je{l,2},
1 b L n* m
L /0 +/L; dy fgiL/R(y) fgjL/R(y) = 5ij5nm- (6.38)

Indeed, this crucial physical condition can be justified by firstly injecting Fy,/r (z#,y) back
to the kinetic terms £f (6.4) 2,

z:/dyﬁkm_> Z Z/dyﬁgkmv

i=1,2 2
. L/ . s — —
with, L§u = 5 (iF, 10" O Fo,r + iFy, 16" Oy Four — Fl 04 Faup + F. 01 F, e
(6.39)

where 'Cgikin is the kinetic terms for the i*" (i = 1,2) generation. Note that non-diagonal
terms vanish by Vi # j € {1, 2},

e
/dy Gi L/RauaﬂngL/R

1+°°

S5 [y S5m0 B 0 5L [ n0) FLym ()] = 0,

nm02

/dy b,/ 08 Foy
1 +OO ” 97 m m
Z/dy fgrly giTL/R (z") O4 [fij/L(l/) Fg r/L (LU“)] =0,

nm02

Lp L
20. To be compact, Z/dyﬁ / _|_/ dy.
> 0 Lt
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with Vi # 5 € {1,2} ,n,m € N,y € [0, L] U (Lp, L] from the orthogonality relations in
Eq. (6.38),

> [ dy 13m0 53ism) =0,
2
Tk o7 m
S [ dy 130015 Ry l) = 0. (6.40)
2
where we use the equation from the EOM (6.11) [cf. Eq. (1.32)],

n* = m n* m T m
JG LR IG R/ = I3 L R [(_/+)mgjmfgjL/R] - [(‘F/_)mgmfg,-R/L} for/L
= (/) (MG f & m 8L r + MG fE Ry L TG L) (6.41)
Considering the absence of bulk mass terms, the kinetic splitting (6.39) confirms the initial

scheme that Fg, /g (##,y) (i = 1,2) contains two different 4D particles, such that the bulk
terms, £, (6.3), finally split into two generations,

> / dy Lo — > > / dy L&y, With LG = LGxin - (6.42)
2

=12 2

Then, let us integrate out the extra dimension and realize an effective 4D scenario.
Inserting the free KK decomposition Eq. (6.36), the orthonormalization conditions (6.38)
and the EOM of free profiles for each generation [cf. Eq. (1.32)], the bulk action terms,
SE . (6.2) leads to the canonical kinetic terms for each generation (Vi € {1,2}) of the 4D
fermion fields by the generation splitting (6.39)-(6.42),

1/, & . e > YRS
Z/dy Egikin = Z/dy 5 (ngTiRJM(?#ngR + ngiLU“B#FQiL — ngR Os Fg,1, + ngL ton ngR)
2 2

+oo . +oo .
1 _ 1 s
= E ingLo-“gl:ngL—’_ E §ng}%‘7”auF&R
F

n:nL n:nIF%
1 = L o
+3 [y 5 S0 (18000 R FG L FgR + He)
2 n,m=0

400 - 400 .
2 _ 2
= E §F5;TLO'HE>F&L+ E §F&RUH$F&-R
n:nlg n:ng
= i t
F
= MG (F&LF&R + F&RF&L) s (6.43)

n=1

with nﬂm = 0(1) or 1(0) through two SM-like BBT configurations (6.7) respectively [the
lowest non-vanishing KK mode] 2!,

{ ol nﬂR) =0(1),

ok nﬂR) = 1(0),

21. nf/R = 0 in the custodian configurations (6.31)-(6.33).
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using diagonal relations derived from the ortho-normalization conditions (6.38) and the
relation in Eq. (6.41),

T Ty 1 +OO m y
Z/dy Fg. im0 (o >8 Fg, (R /dy LRy TG LR gL Fg' iRy
n,m= 0

:ZFTf ngL

n= nL<R>

Z/dy oL Z 1 01 S8R PG i = — ng nFG L FG R
n,m=0 n=1

which contains a canonical formalism for the 4D effective kinetic terms and diagonal KK
mass terms as expected.

6.2.3 Quantum description of 0-modes

To end up the study of mass spectra and profiles, in this section, we study the explicit
0-mode profile solutions, satisfying the ortho-normalization conditions (6.38).

First, zero modes over the whole domain for the SM-like profile fgoi L R’QF (y) (i=1,2)

are taken from Eq. (() 30) via the Heaviside step function (6.17), leading to non-vanishing
zero modes in the of” BBT configuration (6.7),

L ilO
QF(y) = e(y)e(LF_y) mCOSQp‘eaF
L ;20
wo(y- 1} G(L—y)rsinﬂpe’aF,
( F> AL2

0
fglL

(6.44)
L Q10
fgozL Qp (y) = _e(y)e(LF_y)\/;SIHQF€( +6F)
L
+0 (y N LJI;) 0(L—y) \/; cos Qp ¢(aF+0r) 7
and that in the 02F BBT configuration (6.7),
L ’iOLlO
f81R‘QF (y) = 0 (y) 0 (LF - y) \/TL}; cos Qg e'F
L 90
+0(y — LE)O(L —y) | —5 sinQpe®F |
(6.45)

L ilo
fggR‘QF (y) = —H(y)H(LF—y)\/?&nQFe( F+6F)
L .
+0 (y - L;) 0 (L - y) 7% cos Qg el(O‘QFO'HSF) ,

with arbitrary phases a};@o, §r and the relative phase angle Qp € [0,27)??. The ortho-
normalizations (6.38) are basically guaranteed by two mathematical relations: cos Qp sin Qp

22. Note that Qp = 7/2,37w/2 will make generic solutions fguz)b

(y) (6.44)-(6.45) localized in the
Qp

second(first) sub-region. So, fg_L |Q (y) (2 = 1,2) will have wrong names according to their localization.
° F

However, in the realistic case, this weird phenomenon will not happen since we can realize all reasonable
configurations without Qp = 7/2,37/2 and Qr can be fixed by experimental quantities (see Section 6.3).
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—sinQpcosQp =0 and cos? Qp +sin?Qp =1.
From the ortho-normality (6.38) of above wave functions fg_L/R‘Q (y) (i =1,2) and
¢ F

the completeness relation
1
72 [ =1, (6.46)

we can show that (Vi,j € {1,2})
(Pog, ()| g, (2 L/R 7z/dy Vi ag, () |y ) o] g, (2 )>L/R

=13 f a0 ko, ) el @

= 6ij, (6.47)

implying that ‘piogi(Qp)>L/R (i = 1,2) are ortho-normalized via arbitrary angle Qp €

[0,27). So, we can consider |p? 0gi(0)>L/R (i = 1,2) as a set of ortho-normalized basis

states from the generic solutions (6.44)-(6.45),

L
Bowsely @) = (oloa ©), =000 (Lr =)\ 577
L
fg?L/R‘O(y) - <ypiog2(0)>L/R 9(y L+)0(L_y) TL%’

which span a two-dimensional 0-mode Hilbert space. Indeed, the first generation profile

(6.48)

<y’piog1 (0)>L/R vanishes on the second sub-region (L, L], while the second generation

profile <y‘ pi,ogg (0)>L/R vanishes on the first sub-region [0, Lr], as illustrated in Figure 6.3.

Then, Eq. (6.44)-(6.45) can re-written as developments on these basis elements (6.48),
thanks to Eq. (6.37),

<y’P42;,og1 (QF)>L/R = cos Qpel®F <y’p421,ogl (0)>

+ sin Qpe’F <y‘P421,ogz (0)>

L/R

L/R’

<3/’p421,0g2 (QF) >L/R = —sin QFei(ava0+5F) <y ‘PZ,Ogl (0) >L/R

+ cos Qpet (OF+0r) <y ’Piogz (0) > L/R’ (6.49)

which can be illustrated geometrically in the case of vanishing complex phases, i.e. oz},wo =

o) = §p = 0. This is what we perform in Figure 6.2, using ‘p4 0G1(2) (0)>L/R as two
ortho-normal basis vector representations with coordinates (1, 0) and (0, 1) respectively.
Then, the angle Q2 can be interpreted as the projection angle made by ‘piogl(Q) (QF)>L/R
with respect to these basis elements.

In the absence of complex phases, we can also see the decomposition equation (6.49)

as a basis rotation from the initial basis states ‘ pi}ogi(0)>L/R (1 = 1,2) into another pair
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72 06, (2))

L/RA
2 0 >
‘p4,0g2( ) L/R
Qp )
[)4’091(QF)>L/R
- ’
. -
=10
- — W - — . *
’PZ,OQL (O)>L/R

Figure 6.2 — Basis rotation (6.48) in the 0-mode Hilbert space with respect to a rotation
angle Qp (6.50).

of ortho-normal states ’piogi(QF)>L/R (1 = 1,2) with respect to the rotation angle Qp:

‘piogl(ﬁp)> cosQp sinQp ‘pi,0g1(0)>

192 06, ()

L/R

Lir| (6.50)

—sinQr cosQp ‘pi,0g2(0)>L/R

L/R
In Figure 6.3, we represent the fermion profiles corresponding to the quantum states
of the Hilbert space shown in Figure 6.2. Clearly, the angle 2 controls the location of
the two fermion profiles with respect to the intermediate BBT brane at y = Lp. In this
sense, the partition mechanism arranges the location of the various flavors along the extra
dimension. Similarly, we can directly extend our partition mechanism to the realistic case
of 3 flavors, by introducing two intermediate branes via certain BBT (see Section 6.2.1.1).
Then, a similar formalism will induce a 3-dimensional Hilbert space for the zero modes.

In particular, according to the localization, we can span the 0-mode Hilbert space by
two kinds of basis states,

0 A 2 _
ftanwr = <y‘p4,091(2) (0)>L/R, Qp =0,
i (6.51)

0 2 2 R
fa(b)L/R = <y‘p4’0a(b)>L/R , Qp # 5 (k eN),

which refers to existing definitions in Eq. (6.37)-(6.48). fgiL/R (y) [i = 1,2, Gio) = I({1)]
include two generations with the zero mode partitioned (localized) in the two regions
respectively with the corresponding 4D fields F&L/R (z#) [i = 1,2, Gy2y = I({I)]. In con-
trast, fQOiL/R (y) [i = 1,2, Gi(2) = a(b)] include two generations with the zero mode prop-
agating in the whole region [0, Lr| U (Lp, L] with the corresponding 4D fields ngL/R (M)

[i=1,2, Gi(2) = a(b)]. Then, we present explicit non-zero modes in Table 6.1.
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P00, (2 F)>
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L/R L/R

—-- | @) = [ ©n)

L/R

!
I
l
I
l
! /
| L/R

T T T = ® BBT

First Generation Second Generation

Figure 6.3 — Two pairs of profiles corresponding to <y‘piogi(0)>L/R (1 = 1,2) (6.48)

and <y’pZ,OQ¢(QF)>L/R (1 = 1,2) respectively, before and after a rotation of angle Qp in

Eq. (6.50), which exactly matches the rotation in the Hilbert space visualized in Figure 6.2
(same solid/dash-dot and color codes are used).

Finally, in Figure 6.4, we draw the two localized SM-like zero modes of F' = Q, D
ie. Qg =Qp =0 (6.51)] in two SM-like BBT configurations (6.7) respectively (o%2 and

od’) presented in in Eq. (6.44)-(6.45) with a shifted intermediate brane (Lg # Lp), in the

simple real case, a};o = a2F0 = dr = 0. In contrast, in Figure 6.5, we draw SM flavors with

k
a unique intermediate brane Ly = Lp and Qg p # % (k € N) (6.51). Therefore, both of

these two scenarios will allow to realize a flavor mixing in two different approaches as will
be discussed when we will introduce the bulk Yukawa couplings.

6.2.4 Introducing the fermion currents

Let us now discuss the probability currents. The global U(1)r symmetry of the field,
letting Efulk invariant, acts as,

F e “F, Frse ™F, (6.52)
where o € R is a continuous constant phase. Based on the global gauge symmetry and the
bulk EOM (6.11), the Noether’s theorem predicts the local conservation relation holding
over the the entire domain 7,

i =0, (6.53)

for the conserved probability current,

M= _aF TMF, (6.54)
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Generations
1 Fields " %
7 1 fg1L/R(y) FglL/R (x*) ,meN fSQL/R(y) ngL/R (x*) ,neN
P f8,.)/eF  n €N f8,1W)/F  n e N
oF 0 (y) 0 (Lr —1y)v2cos (mgm y) 0 (y - L}L,) 0 (L —y)v2cos [mgzn (y — LF)]
o Fn(w) /¥ m e N Fnlw) /¥ n € N
6 (y) 0 (Lr —y) V2sin (mf,,.y) | =0 (y— L}) 6 (L —y) V2sin [mf,, (y— Lr)]
. R/t ne N Fn /e n e N
oF 0 (y) 0 (Lr —y)v/2sin (mgln y) 0 (y—LJPC) 0 (L — y)v/2sin [mgw (y—LF)]
e | Ja)/eF e Faan) [ m € N
0 (y)0(Lr —1y)2cos (mgm y) 0 (y - L}) 0 (L —y)v2cos [mfg’;n (y — LF)}
KK ‘mgm ,n € N* ‘mgzn , neN*
Masses ;2}7 . neN* A"g% . meN

Table 6.1 — Two sets of SM-like BBT configurations (6.7) induce respectively two gener-
ations of SM-like free fermionic f&(z) /(W) (n € N) profiles — ortho-normalized (6.38)

up to the indicated complex phases — on the entire domain, Z; = [0, Lg| U (L, L], corre-
sponding to the solution in Eq. (6.30). The associated mass spectrum (6.32) is included
as well for completeness. The non-zero mode profiles are given for the two generations
localized in the first and the second region respectively.

as derived in details within the Appendix F. By the way, the addition of the Sp (6.5) part,

which is a U(1)p invariant form, to SE . is not affecting the current equations (6.53)-

(6.54). Nevertheless, we can check that j&|, ;1 ;+ ; is well vanishing due to the Dirichlet
IRl ARl nk]

BC for Fy /g (6.13) 23 which forces j# to be continuous on the entire domain Z; including
intermediate branes. Therefore, the BBT play the role of making the probability current

j% vanish at the associated intermediate branes.

6.2.5 Interpretation of the partition mechanism

Theoretically, the partition mechanism must be interpreted along the following words.
At low energies, the three flavors of particles of the SM (quarks and leptons) appear to
be three distinct particles. It is an illusion in the sense that at high energies — where
one can ‘feel’ and test the extra dimension — the three flavors represent in fact three
different position states along extra dimension(s) of a unique higher-dimensional field.
This mechanism thus provides an explanation for the identical quantum numbers of the
three flavor fields, or in other words, for the existence itself of flavors as coming from a
replication of fermions with the same origin.

The different masses of the three flavors of particles allow to distinguish them at low
energies and originate in this model from the various flavor wave function overlaps with
the Higgs boson profile. The SM fermion mass hierarchy is easily implemented from an
exponential Higgs profile.

=

23. The vanishing can be derived clearly from the chiral form of j3 (6.54) in Eq. (3.23).
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Figure 6.4 — Two ortho-normalized (6.38) generations of SM-like zero-mode wave func-
tions, f?(H)L/R (6.51) (f = q,d), obtained by two sets of SM-like BBT configurations

alQ, o (6.7) respectively along the entire domain, Z; = [0, Lr] U (Lp, L] (F = Q, D),
corresponding to localized free solutions of Eq. (6.44)-(6.45) (2g,p = 0) with a shifted
intermediate BBT brane Lp < Lg, in the simplified case, ald = a2 =6p = 0.

Now, the experimental signature of the present scenario would be to detect three KK
fermion towers — with three different KK spectra — associated to the three position states
(three flavors). There is also a possible kind of measurement distinguishing this scenario
with a model explaining the fermion mass hierarchies but not the three flavor appearance,
like the framework with a higher-dimensional field introduced for each generation together
with a bulk mass to control the fermion profile overlaps with a brane-localized Higgs boson
(as inspired by the now standard mechanism studied within the context of a warped extra
dimension): it is the gap of separation between two consecutive KK fermion masses.
Indeed, this gap is constant at any n*® (n € N) KK level:

T
ALp’
in our model [see the spectra (6.32)-(6.33) of both types of chirality], while it is not regular
when affected by a bulk fermion mass [see the spectrum in Eq. (6.64)]. In our model, the
three towers of KK fermion excitations, at different locations along the extra dimension,
also possess exponentially different 4D effective couplings with the Higgs boson being
located towards a boundary (or with the KK gauge bosons close to the TeV-brane in
the mentioned warped model), which might also help to discriminate with other higher-
dimensional mass models.

A ‘mﬂ = ‘mfﬂ‘ - ‘mﬂ = (6.55)

6.2.6 Introduce bulk masses

After the bulk massless fields investigation in the last section, we can add another bulk
mass terms to the bulk kinetic terms (6.3),

chno=ck o+t o owith £F = —mpFF, (6.56)
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Figure 6.5 — Two ortho-normalized (6.38) generations of SM-like zero-mode wave functions,
fg(b)L/R (6.51) (f = q,d), obtained by two sets of SM-like BBT configurations a?, ob (6.7)
respectively along the entire domain, Z; = [0, Lp] U (Lp, L] (F = @, D), corresponding

k
to non-localized free solutions of Eq. (6.44)-(6.45) [Qq,p # % (k € N)] with a unique

intermediate BBT brane Lg = Lp, in the simplified case, a}p = a%o =dp =0.

where mp is the bulk mass of the fermion F', which is a constant on each segment as
B mp , y€l0,Lr],
nr) =1 . (6.57)
mrp , Y E (LFa L] .

such that dymp = 0 on the whole physical domain, y € Z; = [0, Lr] U (Lp, L]. The mass

terms £F_ . (6.56), can also be rewritten via the chiral decomposition (1.17) as,
‘Cgass = _mF (F[T,FR + F]T{FL) - —ﬁlF (fL]:R + fRFL) . (658)

The least action principle is applied to
F F
Shulk T 5B

where S, is constituted of £{  (6.56) via Eq. (6.2), and - after the similar process in
Eq. (6.9) - leads to the bulk EOM with the piece-wise constant bulk mass mp (6.57),

Vah, y eI, = [0,L5 U (Lp, L], (irMaM - mp) F=0, (6.59)

and the NBC remain identical to Eq. (6.13). Then, following the same procedure in the
bulk massless case (see Section 6.2.2), inserting the 5D factorization (6.14) and the 4D
Dirac equations (1.25) into the 5D EOM (6.59) and NBC (6.13), one directly obtains the
EOM for the profiles on [0, Lp] U (Lp, L]:

inen { (01 + M) f1(y) —mE fay) = 0,

6.60
(04 —m%) fR(y) +mh fE(y) = 0, (660
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which can be combined into the decoupled second order equations,
~ g 2 2 n
Vi e N, 08stal) + |~ ()" + (mf)] 11m0) =0, (6.61)

which are the regular Sturm-Liouville equations on the two segments [0, Lg| U (Lp, L] for
1 = 1,2 independently. Firstly, the continuous SM-like profiles and the mass spectrum
on y € [0, Lr] can be derived via two SM-like BBT configurations (6.7) (cf. Appendix J)
as the following two possible sets of chiral profiles together with the associated KK mass

spectrum 24,
(+4): ) = N0, f() = M cos |\JmE) = @)y + 6| me
1)
(=) faly) = Qf%@)——ﬁf“%m[¢0MDQ—(m%fy ,n €N,
(6.62)
(=) 5) = 0. fp) = A sin [\l = k)] e
2)
(++) : fRly) = N?mé%%fﬁ@)=A€“%msbkm5f—«m%fy—c51,neNﬁ
) (6.63)
where the argument ¢! (n € N*) is defined as,
| . i} _V(mf)? — ()’
i (61) 2 o (1) = Lt )
and the associated mass spectrum reads,
0 , n=20,
2 (6.64)

+(mk)? , neN,

[mi| = Mm
ALL

which is parameterized by the bulk mass and the associated length and recovers the results
of profiles and the mass spectrum in Eq. (6.32) in the bulk massless limit (mp — 0).

In analogy to the bulk mass case in Section 6.2.2, based on the localization and the
quantum superposition principle, the complete 5D field Fy /g (z*,y) should still be written
as Eq. (6.35)-(6.36), including two generations Fg /g (z#,y) (i = 1,2). Note that the
EOM with bulk masses (6.59) remains the linearity as the bulk massless one in Eq. (6.11),
while homogeneous boundary conditions exactly remain identical to Eq. (6.13). Similarly,
zero mode profile fgiL/R‘QF (y) (1 = 1,2) is still labeled by a rotation angle Qp € [0, 27),

which will be described later in the precise solutions (6.74)-(6.75). In analogy to Eq. (6.64),
the KK mass spectra for two SM-like generations are explicitly determined by,

‘m§1(2)n‘ - $ nm
[AL%”

24. To be clear, normalization factors N and argument (I, i = 1,2 — region label, n € N - KK
mode, a = 1,2 — type of solutions.

0 , n=20,

RO e, (06
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Following the same comments in Section 6.2.2, one can not build more than 2 (families
of) orthogonal fields satisfying the ortho-normalization conditions of Eq. (6.38), which can
be justified by injecting firstly to the kinetic terms Efin (6.4). However, the kinetic terms
would no longer split as in Eq. (6.39) but with non-diagonal terms,

Z / dy cf — Z Z / dy Egikin + non-diagonal terms,
2

i=1,2 2
1

. 4 = N . -
with £, = 3 (ZngRU”‘?uFGiR - ngTiLU“EjFQiL — F} 04 Fg, + F}, 04 ngR) ;

(6.66)
while non-diagonal kinetic terms read as,

1/ , R -vs < o
>y / dy (iFf, 10" O Fo,n+ iy 640, Fg, 1 — Fl. 104 Fg 1 + F{ 01 Fg.)
i#je{1,2} 2

. —+o0
SR D by NN e A

i#£je{1,2} n,m=0 \ 2

. 4o
o1 2 (Z [ v 55 fé”) Fgl (o) 0, Fg, w)]

n,m=0 2

1 = n*<_> m nt m m W
£ Y o XX [y s 0lsge ) R ) R () + He,

i#£je{1,2} n,m=0 \ 2

M oo

1 n* <—> m mn m
- 5 | S (X ) 5L ) o) 4
i£je{1,2} [n,m=0 2

“+oo

= > > (; Z/dy mp 37, fg;R> FGY (2 Fg'p (x") + He,
2

i#je{1.2) [nm=0

= > X [y (F For+He) (6.67)

i#je{1,2} 2

where the orthogonal relation (6.38) is inserted and

2L%:/dy f&1011G R = L;/dy 180t R — M%:/dy O (fgiL fij)
= Lg/dy JG1 0afG R — oL (f L fij‘O + fér fij‘L;)
1 n* m
= fZ/dy fgiL 84fij
2
1 n* e m m
= ZZ/dy 185 (M f8n — mb f8)1)
2

1 ~ % m
= —mgm 0G,G; Onm + i3 Z/dy mr fg,r G R (6.68)
2

with the Dirichlet BC (6.13) for f§ ; or fg]?R inserted at y = 0, Lp, L}, L.
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The similar generation splitting procedure exists in the mass terms, £

/ dy £E . — Z Z / dy [,g mass T non-diagonal terms,
=12 2

With L8 ass = —7r (F, Four + Pl pFo) (6.69)

(6.58),

with non-diagonal mass terms,

> Z/dy —mp) FgLFgJR—l—HC). (6.70)

i#je{1,2} 2
Finally, the bulk terms, Ly (6.3), split into two generations again,
Z/dy Loutc = Y Z/dy L&
i=1,2 2
with ‘Cgibulk = ﬁgikm + [’Fimass ) (6.71)

since non-diagonal kinetic (6.67) and mass (6.70) terms cancel each other fortunately.

This cancellation is interestingly non-trivial especially for the generation splitting form

k
of Fg,1/r (2, y) and Fg,p/p (¢, y) whose Qp # i (k € N) [ie. Gy = a(b) (6.51)] in

Eq. (6.74)-(6.75) and in turn non-diagonal kinetic (6 67) and mass (6 70) terms do not
vanish to zero.

Analogy to the calculation in the bulk massless case (6.43), / dy L'g kin 18 modified

due to the additional bulk masses in the EOM (6.60) for each generatlon

1/ . _ — >
Z/dy Lin = Z/dy 3 (ZF&RU“%FQZR + ZF_C]:iLO-#EZFQiL — F§ g 03 Fg,r, + F(, 1 04 ng-R)
2

+oo .
= ZF; Pl Ol + Z FgRU“ngR
n:nL

1 +°° —
+Z / dy o= S (18500 G pFgh P+ He)
nm O
= Z SFGLo HOuFLL + Z ngjF&R

_ Z mgn (f‘ﬁgJr F&R +HC) + Z/dy mg (ngLngR +Hc> ,
2
with n§<R> :0< Y or 1(0) (6.72)

where the relation (6.68) is inserted. Combining with the mass terms in Eq. (6.69), one
can obtain the 4D Lagrangian,

Z/dy Egibulk = Z/dy (Egikin + EFimass)
2 2
+oo -
= Z 3 nT 0 ngL—i_ Z FSTRO"M?FQR
n:nf 2
+oo

=2 b (Fgl Fén + FglnFéL) (6.73)

n=1

150



which maintains the same formalism as the bulk massless case (6.42)-(6.43) with the bulk
masse mp involved in KK masses mgl n-

As the end of this section, we study explicit profile solutions, satisfying the ortho-
normalization conditions (6.38). First, zero modes over the whole domain for the SM-like
profile fgiL/R‘QF (y) (i = 1,2) are taken from Eq. (6.62)-(6.63) via the Heaviside step

function (6.17) with an additional ingredient from different bulk masses mp(y) (6.57)

depending on the region, leading to non-vanishing zero modes in the of BBT configura-
tion (6.7),

27:7\’7/%1[/ ;10 1

L cosQpe'*F e ™MFY
1 1
emeF ALL

2m2 L , ~
1 —e “"MFr=5F

foiLlg, W) = 00 (Lr—y)

ngL Q (y) = —0()0(Lr—y) \/1 _iﬁ;:%}fAL}v sin Qp e i(aif+0r) g~=mpy
+0 (y - LJFF> 0(L—y) \/1 iZiQfALQF cos Qp e (OF +0F) o=m% (y=Lr)
and that in the 05 BBT configuration (6.7), (6.74)
fglR‘QF (y) = 0(y)o0(Lr—vy) QmJZiL_ cos Qp e'F eMFY
+0 (y — L+) 0(L—vy) ZméTZ;L sin Qp eio¥ emi (v—Lr)
forl, W) = —0(y)0(Lr—y) 2m2FAL1L sin Qp ci(ai+or) gmby
+0 (y L+ 0(L—y) \/W cos Qp ¢ (OF+0r) o (y—Lr)
(6.75)

with arbitrary phases a F( ) r and the relative phase angle Qp € [0,27), which can

generate a rotation in zero mode Hilbert space as the bulk massless case in Eq. (6.50).
Moreover, fgiL/R (1 = 1,2) recovers the bulk massless results in Eq. (6.44)-(6.45) in the
zero bulk mass limit. Zero mode profiles in Eq. (6.44)-(6.45) would be tuned from piece-
wise constants to exponential curves by mp (6.57) to achieve one more step closer to our
final goal to realize the flavor mass hierarchy. In Table 6.2, we present the explicit non-zero
modes over the whole domain for the SM-like profile fg ; /p(y) (n € N*, 7 = 1,2) taken

from Eq. (6.62)-(6.63) analogy to Table 6.1, with arguments (% (n € N*, i = 1,2),

~1(2) mE 1P [m1(2)]
F12)] o~ Mp F12)] ~ \/{ 91<2>"] F
" [ ] mglmn - {Cn } mgl(Z)n ’

where G; (i = 1,2) is the generation label.

Finally, in Figure 6.6, we draw the two SM-like zero modes of F' = @, D in two SM-like
BBT conﬁgurations (6.7) respectively presented in Eq. (6.74)-(6.75) within the simple real

10
case, o) = a® = 6p = 0.
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Generations
o | Fields n n " * n n ’
IR W) Fg yp (@), neN Jer/rW) Fg,pp (@), ne N
ialn « n ia3n *
. Fnl)/e=, nen Faan)/e=F , meN
- \2 . - \2 - ’
of 0(y)0 (L} —y) V2 cos \/(mgln) - (m}_—)2 y+¢E o (y - L}) 0 (L —y)v/2cos \/(mgm) - (m%)2 (y— Lr) +¢?
iy lm * n 2n *
F fglR(y)/e“’F , neN fng(y)/e“”F , neN
2 ; 2 ;
~0(y)0 (L} - y) V2sin ¢ (m&,)" = (mh)*y —0(y— L) 0(L—y)V2sin ¢ (m,)" = @3)* (v - Lr)
F Bny)/e ¥, nen fBL®)/eF, nen
. 2 2 .
o 0(y)0 (L% —y) V2sin ¢(m51") — (MmL)*y 0 (y - LI) 0 (L —y)V2sin \/(mgw) —(@%)* (y—Lr)
iy f8r)/eF, n e frW)/€F  neN
2 SN2 .
0(y) 0 (L% — y) V2cos \/ (mf)" — k) — | | 0 (v~ LE) (L —y) VEcos \/ (mg,)" — @) (v~ Le) - I
F X I3 *
KK ‘mgln , neN ‘mg271 , neN
Masses 2 2
nm a2 . nm g2 .
(m> + (mky)”, neN (m) + (m%)°, neN

Table 6.2 — Two sets of SM-like BBT configurations (6.7) induce respectively two
generations of SM-like free fermionic f7 /R(y) (n € N* i = 1,2) profiles — ortho-
normalized (6.38) up to the indicated complex phases — on the entire domain, Z; =
[0, Lrp] U (LF, L], corresponding to the solution in Eq. (6.62)-(6.63). The associated mass
spectrum (6.32) is included as well for completeness. The non-zero mode profiles are given
for the two generations localized in the first and the second region respectively.

6.3 Mass hierarchy & Mixing model

Once the free flavor model is addressed via the BBT in Section 6.2.2, the fermion
generation splitting mechanism is revealed together with the associated profiles and mass
spectra. Then, let us now introduce the bulk Higgs scalar field H (mass dimension 3/2)
(cf. Section 1.2) to study the presence of the bulk Yukawa couplings, which would further
induce the fermion mass hierarchy.

6.3.1 SM-like fermion content

In analogy to the interval case in Section 3.2.2; let us introduce the minimal spin-3/2
fermion field content (cf. Section 6.2.1.2) which allows to write down a bulk SM Yukawa-
like coupling between zero mode fermions (of different chiralities) and the bulk Higgs
scalar — spin-0 — field (cf. Section 1.2). It is constituted by a pair of fermion fields called
Q@ and D, potentially splitting into two generations. Those particles propagate along the
interval Z; (see Section 6.2.1.1) but with individual intermediate branes at y = Lg, Lp
respectively, i.e.

I = [O,LQ] U (LQ,L] = [O,LD] U (LD,L] ,

as we have in mind an extension of this toy model to a realistic SM scenario with three gen-
erations where @, D will represent respectively the SU(2), gauge doublet down-component
quark and the singlet down-quark. The lengths of the two segments for () and D respec-
tively are denoted respectively as in Eq. (6.1) with F' = @, D.

To be simple, we consider the bulk massless 5D fermion fields with the bulk Lagrangian
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First Generation Second Generation

Figure 6.6 — Two ortho-normalized (6.38) generations of SM-like zero-mode wave func-
tions, fgol(z)L/R(y) [Gi2) = I(I1),a(b), f = q, d], obtained by two sets of SM-like BBT
configurations a?, o (6.7) respectively along the entire domain, Z; = [0, Lr] U (L, L]
(F =@, D), corresponding to the free solutions of Eq. (6.74)-(6.75) in the simplified case,

ald = a2 = §p = 0, bulk masses m% <0 (i = 1,2).

density,
‘Cgulk = ‘Clﬂn’ F=Q,D,
which constitute the bulk action via Eq. (6.2) as

Shulk = Z SE - (6.76)
F=Q.D

The individual kinetic Lagrangian density £, is presented in Eq. (6.3).
The BBT - inducing the intermediate branes at y = Lg, Lp (see Figure 6.7) would
also be a double replica for () and D respectively as

Sp= >_ Sk, (6.77)
F=Q,D

where Sg is the individual BBT for FF = @, D and the dimensionless BBT signs are

selected as the chiral SM configuration alQ and of in Eq. (6.7) such that only Q7 and D
would be non-vanishing for the zero mode (see Section 6.2.2).
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6.3.2 Yukawa interactions

We consider the following bulk Yukawa interactions up to dimension 11/2 allowing
to study the phenomenology induced by the coupling of the bulk Higgs scalar field (cf.
Section 1.2) and bulk fermions regarding to the distribution of intermediate branes at
y = Lo, Lp in Figure 6.7 (Lg # Lp) and Figure 6.8 (Lg = Lp) %,

sy = [ats Y [dy Ly(atsy).
D?Q
with Ly = —Y5 Q) HDr —Ys QL H Dy +Hec. . (6.78)

When calculating the fermion mass spectrum, we restrict our considerations to the VEV
function v(y) (1.11) of the bulk Higgs scalar field H. Based on the spontaneous Zg sym-
metry breaking in Eq. (1.7), the complete Yukawa sector reads as,

Sy = Sx + Swgp -

We concentrate our attention on Sx potentially generating mass terms,

Sx = /d4x Z/dy Lx(z",y),
D7Q
with Lx = -X Q) Dr— X Q}, D, + H.c., (6.79)
with the compact Yukawa coupling notations

X(y) = U(\y/)éyg’ .

The complete toy model studied for the fermion mass hierarchy is characterized by the
action

(6.80)

S5p = Sbuk + S + Sx , (6.81)

where the bulk action terms Spy (6.76) consist of the kinetic terms for both of the 5D
fields @ and D since we only consider the bulk massless case. Moreover, Sp involves the
BBT for F' = @, D, allowing to deduce the free profile solutions of () and D respectively
as in Section 6.2. Then, we take into account of the Yukawa action part Sx (6.79) and
present a perturbation method to obtain the physical mass including the effects of the
Yukawa terms for two generation fermions in Section 6.3.3.

6.3.3 Mass matrix & Hierarchy

In the 5D approach, the EOM is coupled to the bulk Yukawa coupling, which would
cause great difficulty for an analytical solution. On the other hand, we have in mind that
the interactions of the bulk Higgs scalar field with the bulk fermions can be treated in

Lp Lo L
[ [ [ Y tavso,
0 Lh Lg
du =
’ / +/ dy , Lo=1Lp.
0 LaD
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perturbation theory, as usual in the quantum field theory. Since the zero modes provide
the main contribution to the physical flavor basis, we approximately take the zero modes as
the SM flavor basis for the SU(2), gauge doublet down-component quark ¢ and the singlet
down-quark D respectively. Thus, the 4D effective kinetic Lagrangian for generation G;
(1 = 1,2) of the fermion field F' = @, D in Eq. (6.43) can be simplified as [via the chiral

SM configuration O'lQ and of in Eq. (6.7)],

i or
ngiLaﬂﬁ,ngiL L F=Q,
2 / Ay L6k ~ (6.82)

so all physical masses in the complete action Ssp (6.81) must come from the Yukawa
terms (6.79). We need to emphasize that the Sp (6.77) will not contribute to the mass
eigenvalues in the perturbation approach since it leads to the Dirichlet BC for free KK
wave functions in one chirality at intermediate branes at y = 0, L, LJI,C, L (F=Q,D,) [see
Eq. (6.13)], which can be seen clearly in its chiral form of Eq. (6.5) and has also been
highlighted in the simple interval scenario (see Section 3.2.3).

The Yukawa mass terms Sx (6.79) — inserting the generation splitting relation (6.35)
and the KK decomposition (6.36) — can be rewritten with zero modes as,

XW) o
Bfwe B o] 5, B et
i,j€{1,2}
DO
GiR
[leL QQQL} ng:R] +He., (6.83)

where the physical mass matrix M reads,

(6.84)

M = [Mll M121

Mo Moy
with M; (i, € {1,2}) defined as the overlap of ¢¢ ; (6.44), dij (6.45) and the Higgs

VEV wv(y) under the configuration presented in Figure 6.7 (Lg # Lp) and Figure 6.8
(Lg = Lp) schematically,

Mij = Z/d q@g dg,r, 4,7 €{1,2}. (6.85)

with explicit formalism of M;; (6.84) in Appendix K.

Finally, the mass eigenvalues can be determined by bidiagonalizing the mass matrix,
M (6.84) with the associated characteristic equation,

det (MIM —~ M3 T) =
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Figure 6.7 — Two generations of otho-normalized zero-mode wave functions, q(}( n (W),

dg( n r(y) (6.51), along the entire domain, corresponding to the free solutions in the sim-

plified real case and the BBT as well as the bulk Higgs VEV function, v(y) (1.11), are

indicated on the graph. The positions of the intermediate branes are chosen as Lp < L.

where Mg, (i = 1,2) is the physical mass eigenvalue for the i* (i = 1,2) fermion generation

with the analytic formula,

’Mgl‘ =

|MQ2| =

with

2
IMJ? — \/(’M11|2 + (Mo P — [Mya]* - |M22’2> +4[Mf Mg + M Moo

2

9

2
IM* + \/(’/\/111|2 +[Mar [P = M| — |M22’2> + 4 M Maz + M3 Mas|*

2

IM? = M1 > + Mo + [Mar > + [Maa]”
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Figure 6.8 — Two generations of otho-normalized zero-mode wave functions, qg(b) (W),

dg(b) r(y) (6.51), along the entire domain, corresponding to the free solutions in the sim-
plified real case and the BBT as well as the bulk Higgs VEV function, v(y) (1.11), are
indicated on the graph. The positions of the intermediate branes are chosen as Lp = L.

6.3.3.1 Partitioned SM flavors with Q-D (L-R) shift

For localized solutions of q?(H)L(y), d(}(H)R(y) (6.51) presented in Figure 6.7 (Lp <
Lg), elements of mass matrix M (6.84) can be derived as (cf. Appendix K),

M = Nu eilob—g) ;
M22 — ei(épféQ) N22 ei(a%)—ozz?% ’
(6.87)
Mg = e N elleB=ed)
M?l =0 ’

and the mass eigenvalues can be derived via Eq. (6.86),

2
!/\/11|2 + |N12* + |-/\/’22\2 — \/(\N11|2 - !/\/12|2 - |N22|2> + 4N |-/\/’12\2

|M91| = 9 )

2
IV 4 N2 + [Naof® + \/(\N11|2 — [N — |/\/22|2> + 4N P [ N2

(6.88)
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where we have used coefficients N;; defined in Eq. (K.2). To test the hierarchy in numer-
ical method, we choose parameters in Table 6.3, which produce physical masses of two
generations,

Mg, | = 98.80MeV, |Mg,|=4.19GeV, (6.89)

which recover the latest experimental values in Ref. [268] precisely, where the masses of
strange and bottom quarks are 90— 100 MeV and 4.15—4.21 GeV respectively. It’s possible
to make the hierarchy even better by the use of bulk masses and a warp factor in AdS
geometry where each generation profile would be localized at the corresponding brane.
We hope to make this upgrade in the future.

Another crucial phenomenological implement of the partition model is to realize the
lepton universality. Three (normalized) fermion profiles, associated to three lepton flavors,
are distributed in three sub-regions via the partition mechanism. The SM gauge boson
zero modes have flat profiles propagating on the extra dimension, which play a similar role
of the Higgs VEV to realize the fermion mass hierarchy in this section. Thus, three lepton
flavors would have the identical overlap with the gauge boson, leading to the universality
of the effective 4D couplings.

Vs
AL} AL% AL ALY My N,y ﬁeMHL
0.604- L | 0.396- L | 0.705- L | 0.295- L | 8.056- L~! | 12.718 GeV

Table 6.3 — Numerical parameters to realize SM Fermion mass hierarchy for localized
flavors.

6.3.3.2 Non-partitioned SM flavors

For non-partitioned solutions of qg(b)L(y), dg(b)R(y) (6.51) presented in Figure 6.8
(Lp = Lg), elements of mass matrix M (6.84) can be derived in the real case (i.e.
0pQ = ag{Q = a%)Q = 0) as (cf. Appendix K),

Myt = N cosQg cosQp + Nag sin Qg sinQp,
Moy = N1 sinQgq sinQp + Nag cos Qg cosQp,

(6.90)
My = —N1p cos flg sin€)p + Nag sin Qg cosQlp,
Mo = =N sinQg cosQp + Nag cos Qg sinQp ,
and the mass eigenvalues can be derived via Eq. (6.86),
|Mgl| = |N11| )
(6.91)
Mg,| = |Naof,

where we have used coefficients N;; defined in Eq. (K.2) (Lg = Lp). To recover the
numerical hierarchy in Eq. (6.89), we choose parameters in Table 6.4.
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Y5
ALy p | AL p My Ny EeMHL
05-L | 0.5-L | 7.497-L~1 | 16.096 GeV

Table 6.4 — Numerical parameters to realize SM Fermion mass hierarchy for non-localized
flavors.

6.3.4 Localization model

In the previous section, we have built a partition mechanism using the BBT. In this
section, we use the same BBT terms to build a universal (for all flavors) localization
mechanism, by introducing particularly a 5D field for each fermion flavor together with
certain BBT (for each flavor as well). Then, if all the BBT are located at the same point
along an extra dimension, it follows that all the fermion flavors can be localized in the
same interval (in the case of a model defined by the absence of BBT on the complementary
interval).

The space time geometry is similar to the partition scenario and defined as E5 =
M* x T;. Distinguishing from Z; in the partition model, the interval Z; = [0, L]U (Lp, L]
is constructed by the BBT only existing at y = 0, Ly for the fermion F, as illustrated
symbolically in Figure 6.9. This toy model is developed to localize a fermion field in a
certain region, with the possible limit of the brane-localization of a fermion field. For
example, if we take the limit of length (6.1): ALL — 0, the fermion field will be localized
at the brane y = 0 and vanish outside.

® BBT

. ® NO BBT

¢ © @

0 Ly L
AlISM |

Fermions:

Figure 6.9 — A picture of the interval with one intermediate brane. Two 3-branes (two
solid lines) on two boundaries (two black points) at y = 0, L. Unique intermediate brane
(dashed line) at y = L are induced by the BBT (two gray points).

The initial action preserves the identical formula as that (6.2)-(6.8) in the partition
model and fermionic particles propagate along Z;. Meanwhile, the BBT (6.5) will change
to new configurations with 0?_ ; =0, leading to a set of natural boundary conditions

o
localized at y = 0, Ly in Eq. (6.12). For example, the two sets of SM configurations in
Eq. (6.7) are replaced by

F. _F
o1 0y L, = -1,
g and of, =0. (6.92)
05 : O-(I)T,'LF = +1, "

Notice that the lack of BBT at y = L, L will lead to vanishing profiles on (Lp, L] via
the Dirichlet BC at y = LIJZ, L,

Frlpe = Frlpr, =0, (6.93)
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as demonstrated in Section 3.3.1. Finally, one can obtain normalizable profiles localized
on [0, Lp|, clarified as four series in Eq. (6.35) with two sets of KK mass spectra in
Eq. (6.32)-(6.33).

Note that such a localization mechanism could be extended to the limit of an infinites-
imal size for the sub-interval [0, Lr] (Lr — 0), by taking the BBT position as close as
appreciated to the brane at the origin, which could have the effect of localizing all the SM
fermions on the 3-brane at y = 0. This process could realize for instance the ADD [66-68]
configuration, by invoking other mechanisms to brane-localize as well all the bosons of the
SM.

6.4 Conclusions

Based on an extra spatial dimension scenario, we have proposed a new simple geomet-
rical mechanism, where a higher-dimensional field can be written as a sum of individual
flavor fields lying in distinct intervals connected by some intermediate branes, generat-
ing the fermion replications needed to realize the three SM families, without introducing
new fields. We have presented different versions of this scenario: different realizations of
quark/lepton mixing, possible intermediate region with vanishing profile,...

We have shown that distinct flavor fermion wave functions split by BBT points, would
possibly have different (non-vanishing) amplitudes on each BBT side, which in turn ad-
dresses the fermion mass hierarchy via a 5D Higgs boson profile exponential along the flat
extra dimension (obtained from a bulk scalar mass). Indeed, overlaps between different
families of profiles at their respective locations and the Higgs boson profile will then differ
exponentially, which generate the observed strong fermion mass hierarchy through hierar-
chical effective 4D Yukawa couplings. This mass hierarchy is realized without hierarchical
5D coupling configuration in the model. A numerical analysis has also been presented to
illustrate that the realistic numerical values can be easily reached for the fermion masses.

Hence, we have proposed a simple geometrical scenario addressing two puzzles of the
SM flavor sector — the origin of fermion families and the mass scale hierarchies. In addition,
a warped version of the present model would bring a common solution to relate the three
flavor appearance, the quark/lepton mass hierarchies and the gauge hierarchy, via the
curved Higgs profile peaked at the TeV-brane.

Some extensions of the present model are possible. First, some of the SM fermions
can be brane-localized in order to realize the models which have interpreted the flavor
anomalies in the B meson decays. Another possibility is to localize the Yukawa cou-
pling at the intermediate 3-branes connecting two flavor intervals in order to generate the
quark/lepton mixing differently (without relying on the overlap of different flavor profiles).
Furthermore, a bulk mass of 5D fermion fields would modify the shape of profiles and in
turn bring even more degrees of freedom in the parameter space.

We have also proposed a new type of spin-1/2 fermion localization mechanism along
an extra dimension which possesses the following features:

(i) Intermediate partitioning branes are induced by the BBT, and do not rely on some
bulk fermion interactions with other fields (like solitons) or a specific gravitational
background. Thus, this point-like mechanism is suitable for free fermion fields as
well.

(ii) The mechanism can localize a (chiral or vectorial) fermion [any KK mode] to a
sub-interval strictly, so that the profile exactly vanishes outside this interval.

(iii) This interval width, determined by the BBT points, can be easily controlled and
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selected as small as wanted down to the minimum limit of a point (representing then
a brane-localization).
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Summary & Outlook

In the modern theory of particle physics, the two hierarchy problems — gauge and
flavor hierarchies — motivate model building beyond the SM, introducing new fields to
stabilize radiative corrections (superpartners, KK modes, composite states) and generate
mass hierarchies (like scalar fields charged under flavor symmetries). The paradigm of
higher-dimensional models, that we have studied under some formal aspects, has allowed
us to follow an alternative geometrical approach — extendable to a warped version ad-
dressing the gauge hierarchy — reducing the fermionic field content of the SM by a factor 3
(corresponding to the flavor number: 12 + 4). This reduction can be seen as an ‘economy’
from the theoretical point of view. Let us summarise the Ph.D. thesis results and their
impacts, below, with more precisions.

In the RS1 model, spacetime is a slice of AdSs, and the warp factor redshifts the scale
at which gravity becomes strongly coupled, from the 4D Planck scale to the TeV scale, on
the IR-brane where the SM Higgs boson is localized, an appealing solution to the gauge
hierarchy problem. In the attractive picture with SM fields in the bulk, it is essential
to understand deeply the theoretical treatment of 5D fermion fields coupled to a Higgs
field localized on a 3-brane, which has been treated in the literature through a physically
unnecessary and mathematically incorrect brane regularization procedure. In the first
part of this thesis, we have explicitly derived [Chapter 3] the proper analytical treatment
for the flat interval, leading to new physical results at the Lagrangian level for the bulk
fermions (KK mass spectrum and 4D effective Yukawa couplings). This method relies on
additional bilinear fermion terms (BBT) in the action for the 5D fermions — or on certain
essential boundary conditions derived from geometrical model definitions through fermion
probability currents (if one accepts a UV philosophy where the model is not only defined
through the action itself) — allowing to deduce the natural boundary conditions without
over-constraining the system. The BBT can be used for both free and brane-coupled bulk
fermions, as confirmed by the exact converging results of the 4D and 5D approaches, and
show how elaborating a UV origin of the chiral nature of the SM as well as its chirality
distribution among quarks/leptons.

The new calculations presented, implying the independence of excited fermion masses
and 4D effective Yukawa couplings on the ‘wrong-chirality’ Yukawa terms, have impacts on
phenomenological results like the relaxing of previously obtained strong bounds on Kaluza-
Klein masses induced by flavor-changing reactions generated by the tree-level exchanges
of the Higgs field.
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In Chapter 4, based on the techniques developed for the interval scenario, we have
studied the famous S'/Zy orbifold, a circle equipped with an additional discrete Za-parity,
and shed a new light on the duality between the S!/Zs orbifold and the basic interval
scenario. The obtained fermion profiles along the extra dimension turn out to undergo
some discontinuities, particularly at the Higgs brane, which we have shown to be possibly
mathematically consistent, if the 5D action is well written with improper integrals. We
have also shown that the Zo parity transformations in the bulk do not affect the fermion
chiralities, masses and couplings, in contrast with the essential BC or BBT. Besides when
the parity is extended to the orbifold fixed points, it represents a UV interpretation for
the chiral nature of the low-energy theory and selects the SM chirality setup.

Besides, we have suggested a formalism which is appropriate to field theories in ex-
tra dimensions: it is based on an extension of fields as functions to fields as distribu-
tions (sometimes called generalised functions). The initial action, written as an applied
Lagrangian-distribution, possesses the interest that, after its explicit development, the
Lagrangian in terms of fields as functions is recovered including automatically the BBT
necessary to define the fermion behavior at the orbifold fixed points (dual to the inter-
val boundaries). More precisely, considering all the possible Zy symmetry configurations,
the so-called weak derivatives of the fermion field-distributions entering the kinetic terms
induce naturally the presence of the needed BBT (except, so far, for vector-like 0-mode
solutions associated for instance to custodians in custodially protected warped scenarios).
We are still working on the additional possibility to give the test functions, for the field-
distributions, the role to implement the definition information about the extra compact
space.

As a further application of the BBT prescription, we have built a geometrical spin-
1/2 fermion partition mechanism allowing to explain the origin of the three SM fermion
families: a higher-dimensional field can be written as a sum of individual flavor fields
lying in distinct intervals of a compact space connected by some intermediate BBT branes.
This construction is thus realizing the needed SM fermion replication: the reason why the
three families would have identical quantum numbers would be that they originate from
the same unique higher-dimensional field. This scenario with fermion flavors split along
an extra dimension, where the Higgs boson would have an exponential profile, further
permits to produce the huge fermion mass hierarchies of the SM. We propose different
buildings to create generically the quark/lepton mixings imposed by the experimental
results. Moreover, after introducing the SM gauge interactions, our construction allows
to realize the higher-dimensional models proposed recently in the literature to explain the
deviations from lepton flavour universality — observed through neutral/charged-current
semi-leptonic B meson decays.

In addition, the mechanism principle presented right above and based on BBT-like
terms can be applied, independently of the flavor puzzles, to strictly localize [vanishing wave
functions outside] all/some SM fermions on a (thick) 3-brane, or even on well-controlled
domains (squares, disks,...) of extra spaces with N = 2,3, ... dimensions. In other words,
we propose a new mechanism of fermion localization which represents an alternative to
the standard localization procedure based on a generic fermion coupling to a solitonic
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background (like a domain wall).

As a general opening remark ending up this global conclusion, we state that in this
manuscript, we have scrutinized fundamental aspects of bulk fermions undergoing some
brane-localized phenomenon (like from brane-localized interactions or BBT). Such an anal-
ysis could maybe have implications in other higher-dimensional contexts with similar geo-
metrical field configurations. We have in mind, for instance, the attractive warped version
of the Minimal Supersymmetric SM (MSSM) where supersymmetry is broken at an ex-
tra dimension boundary (TeV-brane) [269]. Such a scenario can push the supersymmetry
breaking scale Agygy around the electroweak symmetry breaking scale, Agw ~ 100 GeV,
as required by the gauge hierarchy. There, the gauge boson and graviton superfields prop-
agate in the bulk while the matter and Higgs superfields are assumed to be confined on
the Planck-brane, which sufficiently suppresses all higher-dimension operators associated
with dangerous proton decay and flavor changing neutral current processes. The hidden
sector of supersymmetry breaking would then lie at the TeV-brane where the graviton
and its superpartner — the gravitino — would feel different boundary conditions: Neumann
and Dirichlet BC respectively (as for the gauge bosons and their associated gauginos),
so that the gaugino zero mode would no longer be massless. On the other hand, scalars
at the Planck-brane would obtain a soft supersymmetry breaking mass generated at the
one-loop level from interactions with the bulk gauge vector multiplets (negligible gravita-
tional processes): this is how the satisfactory breaking scale, Agysy ~ 100 GeV, would
be associated to the Planck-brane superpartners (squarks and sleptons). It would thus
maybe be interesting to revisit for example the treatment of the brane-phenomenon giving
mass to bulk gauginos, through our approaches.
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Appendix A

Notations & Conventions

Throughout the manuscript, we use the natural units where we have the reduced Planck
constant 7 = 1 and the speed of light ¢ = 1 and the conventions of Ref. [146]. The 4D
Minkowski metric is,

N = diag(+1,-1,-1,-1), (A.1)

where p,v = 0,1,2,3. The 5D Minkowski metric is,
NMN :diag(+17_17_17_1a_1)7 <A2)

where M, N =0,1...4.
The 4D Dirac matrices are taken in the Weyl representation,

0 ot . ot = (ﬂgxg O'i)
- ) K
7 (5# 0) with { o = (laxe,—0") , (4-3)

where 1 =0,1,2,3 and o° (i = 1,2,3) are the three Pauli matrices:

ol = <(1) (1)> R (? _02> = <(1] _01> . (A.4)

One has also the 4D chirality operator,

. —1 0
P = in0n 2 — 2%2 _ (A.5)
0 Loxo

In our conventions, the 5D Dirac matrices ' (M = 0,1...4) obey {FA, FB} = 4B
(A,B =0,1...4) and read as,

= (fy“, —i'y5> . (A.6)
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Appendix B

5D EOM & BC splitting for the
VEV

In this section, we would present a splitting mechanism for the 5D EOM (1.5) and
BC (1.6) due to the existence of the VEV (1.7), which is induced from the spontaneous
Zo symmetry breaking as described in Section 1.2. Thus, we can obtain two sets of EOM
and BC for the VEV v(y) and the 5D scalar field h(z#,y) respectively. Insert the VEV
decomposition (1.7) into the EOM (1.5) and the BC (1.6), one would directly obtain,

(000™ + ME) [o(y) + h(a",y)] = 0
(=03 + ME) v(y) + (0m0™ + M) h(a”,y) =0, (B.1)
which should be valid for any 4D position x*, such that
(=0f+ Mp)vly) = C,
{ (om0 + ME) h(at,y) = —C,

where C' is a constant to be determined. Considering the 4D asymptotic condition for the
scalar field h(z*,y), it should vanish to zero at 4D infinity boundaries due to the local-
ization comments. Hence, we can split the EOM (1.5) for v(y) and h(z",y) respectively
as,

(=03 + M) v(y) = 0,
(B.2)
(8M8M + Mi,) h(z#,y) = 0.
Then, we can apply similar treatments to BC (1.6). For the BC at y = 0,
(04 = Mo) [v(y) + h(z",y)lly =0
(01 — Mo) v(y)|o + (s — Mo) h(z",y)|y =0, (B.3)

which can be split by the 4D x* independence as,
(01 — Mo)v(y)ly = Cu,
(84 - MO) h(‘rua y)‘o = _Cl ;
where C] is a constant, which is suspended by the 4D localization comments for h(x*,y)
again,
{ (01— Mo)v(y)l, = 0,
(

(B.4)
Oy — Mo) h(z#,y)l, = 0.
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Turn to the BC at y = L,

(@1 = M1) (o) + W )]l =~ [o(y) + e )|
(0 — My) v + AHS!/Q v3] - [— (0 — M) h — AHS!/Q (302h + 3uh + h3)] @3

where the right-handed should be independent of z#. Considering h(z*,y) must vanish at
x# — oo, we can finally obtain the BC for v(y) and h(z*,y) respectively at y = L,

A /2
[(84—ML)1)+ g'/ 1)3:| = 0,
' L (B.6)
AH/2 o o 2 13
(01— Mp) b+ Z2 e+ 3007 + 1) | = 0,
! L
which can be further simplified if we impose the hypothesis that v(y) > h(x*,y),
AH 5
(64—ML)U+§U = 0,
\ L (B.7)
[(84—ML)h+Hv2h} - 0.
4 L
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Appendix C

From spinor components to
compact notations

C.1 Spinor components and their variations

The generic spinor field F' (F = @, D) introduced via Eq. (1.17) can be written in
terms of its four explicit components F,, [a = 1,2,3,4]:

Fy
F = ?z , (C.1)
Fy
and similarly, F' can be expressed in terms of its own four components F,:
F= (Fl, B, R, F4>£FHO: (F3 Fy, Fr, FQ) : (C.2)

These 8 components constitute the fundamental variables of the bulk kinetic Lagrangian (4.8).
Hence, the variation of the associated action Sy [see Eq. (4.5)], involves the following

8 elementary variations, that we can group into new 4-component (transposed) vectorial
objects defined as:

0F)

SF= , 5F£(5F1, 5Fy, OF, 5F4), (C.3)

introducing the 8 components 6F,, and §F,. We then define,

7 B _ _
SF = (gﬁ;) , OF = (5F};, 5F£) , with for instance, (5F§£ (5F1, 5F2) 5 (C.4)

inspired by the following generic relations, based on Eq. (1.17),
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C.2 A typical compact calculation form

Using the Lagrangian Ly, of Eq. (4.8), let us work out explicitly the following quantity
entering Eq. (4.22) in a compact form (no explicit spinor index of type «),

*8£kin ! aEkln - (Z M >
gF SSkin o L FrMoy
oF az::l oF, Z:: 2 M
S A e iy
= Y 0Fape |5 > FslMMouFls 5F DMy F
az::l o | 2 2:: M Z M Fla
= %5FFM6MF, (C.6)

where the spinor components of Eq. (C.1) and (C.2) have appeared, as well as the variations
of Eq. (C.3).

C.3 Zs transformations of field variations

Finally, we can derive the Zy transformation for the compact form §F of Eq. (C.3).
Accordingly to the Zy transformations (4.9)-(4.12), we have,

_ t _
Floy = Fil-n° = (£9°F) ,7° = £F|,7%4° = $F1,1%9° = $F,7°,

due to the anti-commutator relation {’y5 ,7#} = 0. Then one must rewrite this relation by
making the spinor components of Eq. (C.2) appear explicitly:

4
FOC|—?/ =+ Z FB‘y’Y?}a )
B=1
in order to deduce the relation on the variations of these components:
— 4 -
0Fal—y=7F Z 5F6‘y72a :
B=1

Thanks to Eq. (C.3), this equation can be contracted back to the compact notation as,

OF |-y = :|:5F’y’75' (C.7)
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Appendix D

The spin connection on AdSs

Recall the original definition of the spin connection wp; in the covariant derivative

Dy (2.22) 1, .
1
WM = 5 WMAB T, (D.1)

where )
1
jAB = _Z [PA, FB} , WMAB = NAC eNC (8M €NB + 6SB FgM) N (D.Q)

and I‘g a are Christoffel symbols,
1
Ty = B 9" " (On gLy + Om gLn — O gun) (D.3)

containing non-vanishing components in the AdSs as,

1
vy o= I, = 3 erya4e—2ky5; = —kdy;,
(D.4)

Ff‘w = Fﬁu =5 nu,,&;e_%y = —knu e 2k

Insert I‘g v (D.A4) into warap (D.2), one would obtain non-vanishing components from,

c S N
wuAB =MNacey € plg,
C 4 C 4
= TAC €4 eV B FV/,L =+ naceé, ¢ p FZ/,L

= —ke ™ nanp, — ke " na, h,
which satisfy an anti-symmetric relation,
Wpdy = —Wua = k ety N - (D.5)
Combining with the commutator of I'™ matrices,

0%, T#] = 20T = 2049,

1. One can also use the RS index alternatively,

7
Wy = inPQJPQ,

7
where wyrpg :epAeQBwMAB and JF€° zepAeQBJPQ = ~1 [ePAFA, eQBFB]
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one can finally obtain the spin connection wys (D.1),

wy, = %quB [FA, FB}

1

— Z wu4,, |:F4, FV:|
. k —

- 5 e ky’Yu’Y5,

while the other components are zero.
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Appendix E

Profile solutions of bulk fermions

on AdSs

E.1 Bulk massless solutions

In this chapter, we would present general solutions of the second order differential
equation in Eq. (2.36) with m% # 0, which are regular Sturm-Liouville equations with a

weight function,
w(y) = e,

and it’s consistent with the ortho-normalization conditions in Eq. (2.27).
Rewrite the Sturm-Liouville equation of Eq. (2.36) in an explicit form,

02— 5kdn) [+ |6K2 + (mF) 2| =0 (E.1)
/ /

In order to obtain a specific form of particular equations, we do a variable transformation,

m¥

€= 7" ey (E.2)
such that
84 = kEag s
Of = k? (203 + €0k ) - (E.3)

Insert Eq. (E.2)-(E.3) to Eq. (E.1), we would obtain a better formula,
(6202 — 4¢0¢) 17/ + (6 +€%) f1/r =0. (B.4)

In order to realize a Bessel equation, we need to introduce an auxiliary function g(y) and
factors vy, g, such that

(€202 — 4¢0c) (951/r) + (€ = visn) 9F2/r = 0. (E-5)

which is a typical formula of the Bessel equation. The next step is to find out the auxiliary
function g(§) and factors vy /g, which must exist if the Bessel equation is truly suitable to
our case. Expand Eq. (E.5) and manage it to the following form !,

90 fiyr + (2529’ + 59) OcfT /R + [529” +&9' + (52 - V%/R) g} flr=0. (E6)

1. ¢ =09g and ¢" = 0Zg.
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Then, compare Eq. (E.6) with Eq. (E.4) multiplied by the function g,

€902 115 — 4€90e f1yr + (6 +€) aff /g =0, (E.7)
and now we can write the characteristic equation of the function g and factors vy g,
28%' +&g = —4&y,
9" +¢g + (€13 p)9 = (6+8)9,
which induces the appreciate formula of the function g and the factor vy g,
_5
g = &2,
2 _
VL/R = Z .
Since the function gf’g/R(y) satisfies the Bessel equation (E.5) with vy p = —/ + 3, we
can now recover the general solutions of Eq. (2.36),
n 3 ky n mg ky n mg ky
fL/R<y):€2 AL/RJ—/—&-% 76 +BL/RY—/+% 76 , (Eg)

where J, and Y}, are the Bessel functions of the first and the second kind respectively and
AT R B} /R ATe complex coefficients related by the coupled equations in Eq. (2.33). Here,

we choose vy /p = — ]+ % corresponding to the left /right chirality respectively as the set
of two independent fundamental solution bases. This assignment is configured to obtain
a compact relation among A7} /R B} /R

OuTE ) = SkFLW)

setinefap 750+ 5 50] + B 10+ 0@} @

where the Bessel function relations have been injected,
v

Z;(f) = val(g) - EZV(g)a Zy=Jy, Y2y, (E'll)
and consider another Bessel function relation,
2v

Zl/—l(g) + ZV—H(@ = ?Z,,(f) v Ly =y, Y2y, (E'12)

we can do a further step,
ufi(y) = e* { AL [—he Ty (€) + 2kT_y ()] + BE [—keY1(€) + 2kY_1(9)] } ,  (E13)
so that according to EOM in Eq. (2.36),

(91— 2k) f1(y) = —k€e3™ [ALT1 (&) + BEY1 (€)] | (E-14)
must be equal to
3 n n
—k¢ fRi(y) = —k€e3M [ARTL (&) + BRY1(€)] | (E.15)
which would finally derive the relation among A7} IR B} R
A’n — A’n ,
{ k f (E.16)
B} = B%.



E.2 Bulk massive solutions

In this chapter, we would present general solutions of the second order differential
equation in Eq. (2.48) with mf # 0, which are regular Sturm-Liouville equations with a
weight function,

w(y) =,

and it’s consistent with the ortho-normalization conditions in Eq. (2.27).
Rewrite the Sturm-Liouville equation of Eq. (2.48) in an explicit form,

(03 — 5k04) f1/5 + [(6 —/+e—c)K + (mf)2 e%y} fip=0. (E.17)

Then, a variable transformation of ¢ in Eq. (E.2) would be repeated, such that the differ-
ential equation (E.17) would become a better formula,

(6202 — 4¢0¢) fiyp+ (6 =/ + =) + €| fip = 0. (E.18)

A Bessel equation form in Eq. (E.5) would be expected again, following the treatment
in the bulk massless case in Section E.1, we need to introduce an auxiliary function g(y)
and factors vz p. The next step is to find out the auxiliary function g(§) and factors
v g, which must exist if the Bessel equation is truly suitable to our case. Then, compare
Eq. (E.6) with Eq. (E.18) multiplied by the function g,

€902 1 n —A€90cf1n+ |(6 =/ +c— ) + €] gff/n =0, (E.19)
and now we can write the characteristic equation of the function g and factors v /g,
2% +&9 = —4y,

{ 9" +¢9 + (-2 p)g = [6-/+c—cA)+&g,

which induces the appreciate formula of the function g and the factor v,

g = €3,
I/%/R = (c—/—i—%)z.

Since the function ng/R(y) satisfies the Bessel equation (E.5) with vy /p =c—/+ 3, we

(E.20)

can now recover the general solutions of Eq. (2.48),

n Sky n mﬁ ky n m'r}; ky
fL/R(y) = e2 AL/RJ07/+% 76 +BL/R}/07/+% 76 s (E21)

where J, and Y, are the Bessel functions of the first and the second kind respectively and
AY IR B} /R Are complex coefficients related by the coupled equations in Eq. (2.45). Here,

we choose vy, /p = c— /+ % corresponding to the left /right chirality respectively as the set
of two independent fundamental solution bases. This assignment is configured to obtain
a simple and compact relation among A7} R B} R

O1f1 () = ShIEW)
1

wetue [y |1_y(© + 3740 + B Y y(©) + 5e¥.

sl ©]}. ©@2)

1
2
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where the Bessel function relations in Eq. (E.11) have been injected. We can do a further
step with another Bessel function relation in Eq. (E.12),

Ouf(y) = 3™ {A} [~k€J., 1 (6) +2kT,_1(§)] + BE [~ke¥,, 1 () + 2kY,_1(9)] } .

(E.23)
so that according to EOM in Eq. (2.48),
(91— 2k) ff(y) = —k€es™ [ALT,, 1 (8) + BLY,,1(9)] (B.24)
must be equal to
k& fR(y) = —k&e3M [ART,,1(6) + BRY,,1(9)] (B-25)
which would finally derive the relation among A7} R B} R
{ A} = AR,
(E.26)
BY = BY.
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Appendix F

Noether’s Theorem including
brane-localized terms

Here we demonstrate the Noether’s theorem in the presence of boundary-localized
Yukawa couplings and the BBT. We first consider the free bulk action constituted via
kinetic terms (3.1) together with the BBT (3.4) [or the custodian BBT (3.7)] being invari-
ant under the transformations (3.21) affecting the fields but not the coordinates ™. The
infinitesimal action variation under such a transformation on the field F' reads generically

as’!,

8£kln ' aﬁkm 8£k1n n aﬁkln
5(Shutk + S :/d4d gpZ5kin o spOtkin 4 sy ) IRk (9 ) Ok
8{Sbuti + 55) ! y{ OF oF OO GG,y T O0u )a(aMF)}
0Lp _0Lp 0Lp _0Lp
d* {5F — F—— oF—— oF— } F.1
+/“’” T Ry R LT P T P L
Now we invoke the generic version of the EOM,
a‘ckin a‘ckzn
= F.2
OF aMa(aMF)’ (F-2)

make global derivatives appear, we find:
oF | OF |o OF |r, OF L}

as found in Eq. (1.30)?, which isn’t affected by the BBT or the EBC. Using these EOM
to rewrite the bulk terms of Eq. (F.1) and then grouping those with the last two terms to
oL _ 0L oL _ 0L
Q(Sbu1k+SB)=/d4x {—5FB Y ata IR § piend ) R ) s
+ [ d*z dy{ Oy |OF ——20 4 P ——2 F.3
/ ! y{ M [ d(omF) " ° a(aMF)] } (£-3)

where the four brane BBT terms vanish since the infinitesimal field variations (3.22) lead
for instance to,

oLp ~0Lp

—0QE —5Q%E

2Q o oQ

A similar cancellation, due to the symmetry of the model, arises for the last two terms at
y = L and the D field contributions [relying on the o’ parameter in Eq. (3.21)].

= %Q(m@) =0. (F.4)
0 0

+ 3 (-iaQ)Q
0

1. Using the compact notations defined in Appendix C.
2. Of course similar EOM hold for the complex conjugate fields.
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The infinitesimal variation of the bulk (kinetic) terms (3.1) and the BBT (3.4) vanishes
when integrated over the whole space [J(Spux + Sp) = 0] and even over any 5D domain
), since the Lagrangian density keeps invariant everywhere. Note that the brane terms of
Eq. (F.3) vanishes independently for any integration volume € with or without [absence
of Sp (3.4)] the boundaries y = 0, L.

Therefore, mathematically, Eq. (F.3) implies the vanishing of its bulk terms for any
integration region {2 and in turn the local conservation relation for the 5D probability
current of the field F',

6£km = aﬁk'm
+F — .
90uF) — A(OuF)

OuiM =0, VoM, with j¥ = §F (F.5)

Notice that an alternative reading, based on the global derivatives of the bulk terms
in Eq. (F.3), with integration over a generic 5D domain €2, is that the bulk terms lead to
the equality between the net fluxes® and the change of charge (time component of the 5D
currents). It’s nothing but an equivalent form of the local current conservation (F.5). As
a consistency check, let’s consider the entire 5D domain, i.e. €2 represents the whole 5D
bulk. The integration of fluxes at boundaries along the standard axes [4-coordinates z*]
jh(£o0,y) tend to zero — due to the vanishing of fields at 4D infinity boundaries, which
in turn suspend the difference of current components along the extra dimension,

[ dta [ib@ 1) = i@, 0)] = o.

It is compatible with the finite geometrical model, j#(z*, L) = j#(z#,0) = 0, V2#. By the
way, this global current continuity condition (F.6) could be realized as well in a periodic
setup like an orbifold scenario (identification of the boundary points y = 0, L and hence
of the currents there), which is precisely described in Chapter 4.

Let us now extend the demonstration of the Noether’s theorem to the presence of
the BBT and boundary-localized Yukawa couplings by considering the bulk (kinetic)
terms (3.1) together with the BBT (3.4) and the Yukawa terms (3.11). This whole action
Spulk + Sp + Sy is invariant under the transformation (3.77). The infinitesimal action
variation under this transformation reads as,

oL oL
O(Spulk + Sp + Sy) = > /d4$ {5F06FY +QFCT71; }
Fe=Qr/r:DL/R clL IF¢ L
OLp _OLp OLp _ILp
d* {—6F — F—Z SF—=| + F—= }
+Z/$ Fr Y ar l, T o |, Y R |,

F=Q,D

8£k'm - 8£km a['kzn - a['kzn
+ Y [dwdy {oF + OF =20 L 5O F) 4 §(Op F) ——2 %
F:QD/ o { oF  — OF 20 )3(8MF) 8(0m )5(3MF)}

(F.6)
Invoking once more the EOM (F.2), including neither the possible BBT contributions nor

the Yukawa terms (both rather entering the boundary conditions), we can rewrite the first
two terms in the bulk terms of Eq. (F.6) and then grouping those with the last two terms

3. The difference between the ingoing and the out going currents on spacial dimensions.
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to make global derivatives arise:

OLy +OLy
(Sbuk + 58+ Sy) = > /d‘*a: {5Fc + OF —=
OFc |, OFJ

JOLp _0Lp
OF—— OF——
0 o oF L+7 oF

Fe=Qr/r:DrL/R

|
oy fas {arte st |
F=Q,D F L

0 oF
8£kin = a'clczn
d*x dy {0y |6F OF & ) F.7
+F:ZQD/ vy { M[ d(onF) 2 a(aMF)H (F.7)

Here, the four terms of BBT cancel each other since for example the infinitesimal field
variations (3.78) lead to,

oLp ~0Lp
- éQ% . QQ%

and the Yukawa terms vanishes as for instance the infinitesimal field variations of type (3.78)
lead to,

_1_

= 5Q(iaQ)

~0, (F.8)
0 2

0

+ %(—ia@)@
0

[_ 5Fca(y5 QLHDR)| 5F§8(Y5 Qi HDR) ]
e e i
Fe=Qr/r.DrL/R Okc aFC L
= Y; QTLH(MDR)\L - Y5 (—iaQ}) HDR‘L —0. (F.9)

Therefore, the vanishing infinitesimal variation (F.7) over a generic 5D domain €2, similar
as in the free case, leads to the local conservation relation for the 5D probability current,
a['kzn - 8£k1n

oonF) " oonE)

o™ =0, vaM, with jM = Y oF
F=Q,D

(F.10)
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Appendix G

Boundary variations

In this Appendix, we write down explicitly the global boundary variations derived from
the initial variation of the action S¥p, in Eq. (3.64):

Z (6F£S|brane + 6F1T%S|brane + 5FLS’brane + 5FRS|brane> = 07

F=Q,D
where
m ~ 1 ]
Sy S8 2 dgy Shane = [ ' { |6} (~XDr—50n)|| + (5LQx)],}-
m N 1
S, S8 2 0y Sl = [ ' [50 ( X'Dy + QQL)] .
. 1
01y S3b 2 5DTS|bmne_/d4 D} ( X"Qr — 2DR> :

6DT SénD > 5DT S|brane£/d4l’ oD ( X" QL+ DL)

R R |

( x*Df, —QR) 5Q1 \ + (QL(SQL)\O},
L

ke
|
(~x"DL+ 501 ) 5x)|
(-
|

5QRSSI)I11) & 5QRS’brane£/d4

6DL‘S%I]1:) 2 5DLS|brane£/d4

)

XQRDT>5DL] ;

5B S 61 Slhrane = / de

{
|
|
{
0Q, 55D 2 0@y, Slbrane = / d%{
|
|
{

(XQL+ DT>5DR -
L

(D}éDR) ]0} . (Ga)
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Appendix H

Distribution theory on S!

H.1 Schwartz’s distribution theory on an interval

In this appendix, we adapt Schwartz’s distribution theory [149, 150] to the case of test
functions defined on the interval.

H.1.1 Basics

Test function on the interval — The vector space D(Z,C) of test S-functions on the
interval Z =y € [0, wR], is the set of all functions ¢ € C*(Z,C), i.e.
D(Z,C) = C(Z,C), (1.1)

such that the sequence of functions {85@0, k € N} is uniformly bounded on Z.

Convergence in D(Z,C) — A test S-function sequence {¢,}, .y [V € D(Z,C)] con-
verges to a test S-function ¢ € D(Z,C), i.e. convergent on D(Z,C), if and only if the

sequence {854,0”} o Converges uniformly to 85@ on Z for each k € N.
n

Continuity of a linear functional on D(Z,C) — A linear functional
T : D(Z,C)—C,
V1,92 € D(Z, C) , T[)\l 01+ A2 (pg] =\ T[@l] + A2 T[QOQ] , AL, A €C,

is continuous if and only if the sequence {T'[pn]},cn converges to T[p] € C, for any test
S-function sequence {¢y}, .y on D(Z,C).

S-distribution — A S-distribution ! 7 on Z is a continuous linear functional on D(Z,C),
T : D(Z,C) —C.
The set containing all the S-distributions,
D'(Z,C) = {T | T is an S-distribution on D(Z,C).} ,

forms a vector space over C by

(i) (T1 + T2)[e] = Thle] + T[]
(i) (AT)[p] = A(TT[e]), A€ C,
which are valid for VT3,T» € D'(Z,C), ¢ € D(Z,C).

1. "S" stands for Schwartz.
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Regular S-distribution — For any integrable function f € C°(Z,C)?, one can define a
regular S-distribution f € D'(Z,C) [Z =y € [0, 7R]] such that

_ TR
Yo € DIL.C), flel = | dy fw)ey), (H.2)
which clearly follows the commutative law,
VfgeC(Z.C), frg=g+]. (H.3)

Note that an S-distribution which is not regular is singular.

Product S-distribution — If 7' € D'(Z,C) and f € D(Z,C), one can define their
product as an S-distribution denoted as fT via

Ve e DZ,C), (fT)le] =T[f *el, (H.4)

satisfying the bi-linear conditions,
1) fMTL+XT2) =M (fT1) + A (fT2), A, 2 €C;
(i) MfH+Arg)T=M(fT)+ X (gT), M\, 22€C,

which are valid for VT, Ty, Ty € D'(Z,C), f,g € D(Z,C).
It can also be proved to preserve two following calculation laws:

(i) The associative composition law
Vfg€DI,C), f(gT)=(f+9T, (H.5)
can be proved as,

Ve D(Z,C), f(gT)p]l = (gT)[f * ]
=Tlg* f * ]
=TI[(f *9g) * ]
= (f*9)T[¢].

(ii) The commutative law

Vf,gED(I,(C), f(gT):g(fT)7 (HG)

can also be guaranteed as

f@T)=(f+9)T = (g T =9(fT),

where we inserted the associative composition law (H.5).

In particular, we can derive some specific results,
(i) T € D'(Z,C) is a regular S-distribution associated to 7 € C°(Z,C), we should have

FT=Ffxr, (H.7)
which should be demonstrated as

Vo e D(I,C), fTlp] =T[f x|
TR

=/, dy7(y) f(y) p(y)

TR

= | dylfe) 7o) oly) = 7 le].

2. D(Z,C) is a subset of C°(Z,C), i.e. D(Z,C) C C°(Z,C).
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(ii) T € D'(Z,C) is a regular S-distribution associated to 7 € D(Z,C), we should have
fT=1f=Ffx1, (H.8)
where the first equality should be demonstrated as
Ve e D(Z,C), fTle] =T[f *]

TR
— /0 dy(y) F(y) o (y)
_ 0”R dy F) 1) o)) = Flr * ol = () L],

and the second one could be obtained from Eq. (H.7).

If T € D'(Z,C) and f € D/(Z, C) is the regular S-distribution associated to f &
D(Z,C), the product S-distribution f7T" with respect to 7" and f is defined as

fT=fT, (H.9)

satisfying the bi-linear conditions,

() FOMTi+XAT) =M (fT1) + X2 (FT2), Ai,As € C;

(i) Mf+XeDT=M(FT)+X(FT), M reC,
which are valid for VT,Ty,Ty € D'(Z,C), f,g € D(Z,C) and we invoke the definition of
fT e D'(Z,C) in Eq. (H.4). It can also be proved to follow

(i) The associative composition law
f.9€D(L.C), f(gT) = (F9)T, (H.10)

can be proved as,
F@T) = fgT) = (fx )T = fxgT = (f§)T = (F )T,

where f,§ € D' (Z,C) are the regular S-distributions associated to f,g € D(Z,C)
respectively via Eq. (H.2) and we invoke the Eq. (H.8).

(i) The commutative law
Vf,g€D(Z,C), f(§T)=3g(fT), (H.11)
can also be derived as
F@T) = f(gT)=g(fT)=G(fT),

where f,§ € D'(Z,C) are the regular S-distributions associated to f,g € D(Z,C)
respectively via Eq. (H.2) and we inserted the commutative law (H.6).

In particular, if T € D'(Z,C) is the regular S-distribution associated to 7 € C%(Z, C),
we can rewrite Eq. (H.7) via Eq. (H.9) as

Fr=Fxr. (H.12)
In contrast, when 7 € D(Z,C), we can rewrite Eq. (H.8) via Eq. (H.9) as
FT=Tf=Ffx*1, (H.13)

which indicates the commutative law of the product of two regular S-distributions in
Eq. (H.~9). So, we can conclude that no matter T is a regular S-distribution or not, fT
and T f would not induce an ambiguity so that we would not distinguish them afterwards.
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Dirac S-distribution — The Dirac S-distribution d,, , yo € Z is a singular S-distribution,
which is defined as
V(p € D(Ia (C) ’ 590 [(10] = SO(ZJO) . (H14)

H.1.2 Weak derivative

In contrast to the derivative of a function, we expect to define a weak derivative for reg-
ular S-distributions. Following the methodology of its definition in Schwartz’s distribution
theory on R! (see Ref. [149, 150]), let us consider an integrable function

feckz, o),

whose first order derivative 9, f € C°(Z,C) is also integrable on Z. Thus, one can obtain
the regular S-distribution associated to f as f € D/(Z,C) and {8,f} € D'(Z,C)? is the
regular S-distribution induced by d,f via Eq. (H.2). The weak derivative 0, fof fis
defined as

8y.f£ {8yf} ’
so that we can rewrite it with the Dirac S-distribution ¢,, (H.14) as

Vo € D(Z,C), Oyflp] = ; dy 9y f(y) ()

- OWR dy f(y) Oye(y) + [F(W)eW)IT"

= —f10y¢] — dolfe] + Sxrlfel, (H.15)

where the first equality is just the definition of the regular S-distribution {9, f} in Eq. (H.2).
The boundary terms in the second equality are generated from the partial integration. Fi-
nally, the definition of f in Eq. (H.2) is invoked to obtain f[d,¢] in the last equality.

H.2 Schwartz’s distribution theory on S!

In this appendix, we adapt Schwartz’s distribution theory [149, 150] to the case of test
functions defined on the circle S* labeled by y € [-7RT,07]U[0,7R = —7R]*.
H.2.1 Basics

Test function on S' — The vector space D(S!,C) of test S-functions on S! is the set
of all smooth functions ¢ € C*°(St,C), i.e.

D(S1,C) £ ¢>(8h,0), (H.16)

such that the sequence of functions {85(,0, keN } is uniformly bounded on S*.

Convergence in D(S',C) — A test S-function sequence {¢n},cy [Von € D(S',C)]
converges to a test S-function ¢ € D(S',C), i.e. convergent on D(S',C), if and only if

the sequence {(%cgon} o Converges uniformly to 85(;3 on 8! for each k € N.
n

3. We want to emphasize the specific regular S-distribution induced from a function derivative 0, f so

that a new notation {9, f} is introduced instead of the usual one 5;? via Eq. (H.2).
4. We use the notation [-7R",07] & (—7R,0) defined in Section 4.2.1.
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Continuity of a linear functional on D(S!,C) — A linear functional
T : D(S',C) = C,
V1,00 € D(S',C), TAgr+Aawa] = M T[e1] + X Tlpa], A, he€C,

is continuous if and only if the sequence {T'[pn]}, cn converges to T[p] € C, for any test
S-function sequence {¢y},,cy on D(S',C).

S-distribution — A S-distribution 7" on S? is a continuous linear functional on D(S*, C),

T : D(SL,C)—C.
The set containing all the S-distributions,
D'(St,C) = {T | T is an S-distribution on D(Sl,(C).} ,

forms a vector space over C by
(i) (Ty + To)[¢] = Thle] + Talg] ;
(ii) (AT)[g] = A(T[e]), A€ C,
which are valid for V11, Ty € D'(S',C), ¢ € D(S,C).

Regular S-distribution — For any integrable piece-wise continuous function f € Co([-mR*, 07U
[0,7R],C) ", one can define a regular S-distribution f € D'(S',C) such that

~ 0~ TR
Vo e D(S'0), fle] = (/ - +/0 )dy F)ely), (H.17)
which clearly follows the commutative law,
Vg €C(=mR" 07 U[0,7R].C), frg=g*]. (H.18)

Note that an S-distribution which is not regular is singular.

Product S-distribution — If T € D'(S!,C) and f € D(S!,C), one can define their
product as an S-distribution denoted as fT via

Vo e D(S',C), (fT)l¢l = TIf x4, (H.19)

satisfying the bi-linear conditions,
1) fMTh+XTe) =X (fT1)+ X2 (fT2), Ai,AeC;
(i) Mf+r2gT=M{fT)+X(¢T), M\, eC,
which are valid for VT, Ty,T; € D'(S',C), f,g € D(S',C).
It also follows two other calculation laws:

(i) The associative composition law
Vf,g€D(S,,C), f(gT)=(f+9)T, (H.20)
can be proved as,

Vo e D(S',C), flgT)e] = (gT)[f *¢]
=Tlg* [ *¢]
=TI[(f *g) * ¢]
= (f*9)Tg].

5. D(S',C) is a subset of C°([-7R™,07] U [0,7R],C), i.e. D(S',C) C C°([-nR*",07]U[0,7R],C).
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(ii) The commutative law
Vf,9€D(S,,C), f(¢T)=g(fT), (H.21)
can also be guaranteed as
fgT)=(fx9)T = (g% )T =9(fT),
where we inserted the associative composition law (H.20).
In particular, we can derive some specific results,
(i) T € D'(S',C) is aregular S-distribution associated to 7 € C°([-wR™,07]U[0, 7R], C),

we should have o
fT=fxT, (H.22)

which should be demonstrated as

Vo € D(S',C), fTle] =T[f *¢]
0~ TR
- ( [+ ) dy (1) S (1) ¢ (0)
—m Rt 0

0~ TR e~
:(/ +/0 )dy[f(y)T(y)]so(y)Zf*T[so]-

—7TRt

(ii) T € D'(S',C) is a regular S-distribution associated to 7 € D(S', C), we should have

fT=1f=fxr, (H.23)
where the first equality should be demonstrated as

Vo e D(S',C), fTle] =TIf %]

0~ TR
— (/ +/ ) dy 7(y) f(y) ¢(y)
—7R+ 0

0~ TR B _
- </ +/ ) dy f) [r(v) eW)] = flr ol = (1) [¢],
—7Rt 0

and the second one could be obtained from Eq. (H.22).
If T € D'(S,C) and f € D'(S',C) is the regular S-distribution associated to f €

D(8',C), the product S-distribution fT with respect to T and f is defined by
fT=fT, (H.24)
satisfying the bi-linear conditions,
(i) J?()\1~T1 + A Ty) = )\1~(le) +X(fTy), M A eC;
(i) Mf+29)T=M{T)+X(GT), M\, eC,

which are valid for VT, Ty, T € D'(S',C), f,g € D(S',C) and we invoke the definition of
fT € D'(S',C) in Eq. (H.19). Besides, it respects two following laws as well,

(i) The associative composition law
VfgeD(SL0), fGT)=(fIT, (H.25)
can be proved as,
JGT)=J(gT)=(fx9)T=F*gT = (19T = ([T,
where f,§ € D'(S',C) are the regular S-distributions associated to f,g € D(S!,C)
respectively via Eq. (H.17) and we invoke the Eq. (H.23).
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(ii) The commutative law
Vf.9€D(SC), fgT) =g(fT), (H.26)
can also be derived as
f@T) = f(gT) = g(fT) = g(f 7).
where f,§ € D'(S',C) are the regular S-distributions associated to f,g € D(S!,C)

respectively via Eq. (H.17) and we inserted the commutative law (H.21).

In particular, if T € D'(S!, C) is the regular S-distribution associated to 7 € CY([-7R™, 07]U
[0, 7R],C), we can rewrite Eq. (H.22) via Eq. (H.24) as

FT=Ffxr. (H.27)
In contrast, when 7 € D(S?,C), we can rewrite Eq. (H.23) via Eq. (H.24) as
FT=Tf=Fxr, (H.28)

which indicates the commutative law of the product of two regular S-distributions in
Eq. (H.24). So, we can conclude that no matter 7' is a regular S-distribution or not, f T
and T f would not induce an ambiguity so that we would not distinguish them afterwards.

Dirac S-distribution — The Dirac S-distribution &, , yo € S! is a singular S-distribution,
which is defined as
Vi € D(S',C), dylie] = ¢(yo) - (H.29)

H.2.2 Weak derivative
Analogy to the interval case in Appendix H.1, we consider an integrable function

fec’st,c)ncY(-xRT,07]U[0,7R],C), (H.30)

which is continuous at y = 0,7R [forming a subset of D(S!,C)] and its corresponding
derivative 9, f € CO([-wRT,07] U [0,7R],C) is also integrable on S'. Let us introduce
the regular S-distribution f € D'(S!,C) associated to f (H.30) and {0y f} is the regular
S-distribution associated to 9, f. The weak derivative 9, f of f is thus defined as

Oyf = {0,f},

which can rewritten as

Vi € D(S'.C), 9,fl¢] = ( Jay “R> dy 9, (4) o)

- (/_im +/07TR> dy f(y) Oyp(y)

+ W) e pr + [F ) WG

__ (/Oﬂm +/OWR> dy f(y) dye(y)

+{IF W) eWllo- — [f () e@Wllo}
+{ &) eWNler = W) o)) }

- < [+ ”R) dy () 0,0(0)

— —flo,el. (H.31)
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where the first equality is just the definition of the regular S-distribution {0, f} in Eq. (H.17).
To go from the first to the second equality, we have performed integrations by parts. Note
that the two pairs of obtained boundary terms at y = 0,07, y = —7R", 7R cancel each
other respectively because f(y) and ¢(y) are continuous at y = 0, 7R. In the last step, we

have used the definition of f in Eq. (H.17).
Now, as in Schwartz’s distribution theory on R', in contrast to Eq. (H.30), we generalize
the weak derivative definition to any regular S-distribution f € D’(S', C) associated to

fec([-xRT,07]U[0,7R],C), (H.32)

which can be discontinuous at y = 0,7R and its derivative d,f € C([-wR*,07] U
[0, 7R], C) is integrable on S! so that

Yo e D(S',C), 9,flel = — floyel. (H.33)
Since f (H.32) can be discontinuous at y = 0, 7R, we define the jumps as

Bolf] = fW)lo- = £(0) = £(07),
Benlf] = FWIRT = f(=7R") — f(xR). (1.34)
In contrast to the Jump K-distribution defined in Eq. (H.70), note that 8y rr (H.34) isn’t

an S-distribution but a conventional notation. Using {9, f} € D'(S!,C) as the regular
S-distribution associated to 9, f € C°([-7R™,07] U [0,7R],C), we can have

>

= </OWR+ +/(:R> dy ¢(y) Oy f(y)

— @@ g — F@e@)5"

= (/_tm +/OWR> dy ¢(y) Oy f ()

+0(0) fW)IS- +e(nR) fy)| R
= {0y f} [¢] + Bolf] o] + Bxrlf] dxrle],

Ve € D(S',C), 9,fl] = - ( Jy ”R> ay £(9) yp(0)

where the first equality is just the definition of the weak derivative (H.33). Then, we have
performed integrations by parts. In turn, the continuity of ¢ at y = 0,7R is involed.
Finally, we use the definitions of {9, f} (H.17), dg/rr (H.29), and By/rgr[f] (H.34). We
have thus shown that

ayJ?: {0y f} + Z Buyol[10y, - (H.35)

yo=0,TR

This definition of the weak derivative on S! is similar to what we have on R!.

H.3 Kurasov’s distribution theory on an interval

In this appendix, we adapt Kurasov’s distribution theory [270] to the case of test
functions defined on the interval labeled by y € [0, L] U [L't, L] (L’ < L).
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H.3.1 Basics

Test function on the interval — The set K(Z;,C) of test K-functions on Z is the set
of all piece-wise smooth functions ¢ € C*([0, L] U [L'T, L], C), i.e.

K(Z,,C) = ¢>([0,L']U [L'", L],C), (H.36)
such that the sequence of functions {8;;90 , ke N} is uniformly bounded on [0, L'|U[L't, L].

In contrast to D(Z,C) in Eq. (H.16), we have following two remarks:

(i) Test K-functions in K(Z;,C) can be discontinuous at y = L’ (L' < L), but the
(left /right) limits of the functions 85@, k € N, on both sides of y = L' (L' < L) exist
and are finite.

(ii) The set of test S-functions D(Z, C) is a subspace of K (Z;,C), i.e. the test K-functions
are smooth at y = L' (L' < L) particularly.

Convergence in K(7;,C) — A test K-function sequence {¢y},cn [Von € K(Z1,C)]
converges to a test K-function ¢ € K(Z;,C), i.e. convergent on K (Z;,C), if and only if

the sequence {8§¢n}n€N converges uniformly to 8590 on [0,L']U[L'", L] for each k € N.

Continuity of a linear functional on K(Z;,C) — A linear functional
T : K(I;,C) = C,
Vr,02 € K(I1,C), T[Aior+Aepo] =M T[] + A Tla], A1, A2 €C,

is continuous if and only if the sequence {T'[py]}, oy converges to T[g] € C, for any test
K-function sequence {¢y,},n on K(Zy,C).

K-distribution — A K-distribution ® T on Z is a continuous linear functional on K (Z;, C),

T : K(7,,C) —» C.
The set containing all the K-distributions,
K'(Z;,C) = {T | T is a K-distribution on K(Z;,C).} ,

forms a vector space over C by

() (T + T2)[] = Tale] + T[] ;
(i) AT)[p] =A(TTe]), A€ C,
which are valid for VT, Ty € K'(Z;,C), ¢ € K(Z;,C).

Regular K-distribution — For any integrable piece-wise continuous function f €
CO([0, L']U[L'*,L],C)7, one can define a regular K-distribution f € K'(Z;,C) such that

- r L
Ve e K(1,,C), fle] = (/0 + )dy f)ely), (H.37)

L+
which clearly follows the commutative law,
Vf.9€C(0,L1U[LT, L),C), frg=gxf. (H.38)

Note that a K-distribution which is not regular is singular.

6. "K" stands for Kurasov.
7. K(Z1,C) is a subset of C°([0, '] U[L'T, L],C), i.e. D(Z,C) Cc K(Z:,C) c ¢°([0, '] U[L'T, L],C).
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Product K-distribution — If 7' € K'(Z;,C) and f € K(Z;,C), one can define their
product fT as
Vo e K(I,C), (fT)[e] =T[f *¢]. (H.39)

satisfying the bi-linear conditions,

i) fMTi+XT2) =M (fT1) + X2 (fT2), A, 2 €C;

(ii) ()\1f—i— /\QQ)T =\ (fT) + Ao (gT), A, A € C,
which are valid for VT, Ty, Ty € K'(Z;,C), f,g € K(Z,C).

It also follows two other calculation laws:

(i) The associative composition law
VfgeK(@,C), f(gT)=(f*g)T, (H.40)
can be proved as,
Ve e K(I,,C), f(gT)le] = (gT)If * #]
=T[g = f *¢]
=T[(f * g) * ]
= (f*9)Tg].
(ii) The commutative law
can also be guaranteed as
flgT) = (f+g)T = (g /)T =g(fT),
where we inserted the associative composition law (H.40).
In particular, we can derive some specific results,
(i) T € K'(Z1,C) is a regular K-distribution associated to 7 € C°([0, L'] U [L'*, L], C),

we should have o
fT=fxr, (H.42)

which should be demonstrated as

Ve K(I,C), fT[p] =T[f * ]
= (/OL + ! > dy 7(y) f(y) ¢(y)

L'+

L' L —~
:(/O + )dy[f(y)f(y)]cp(y)zf*ﬂw]-

Lt
(ii) T € K'(Z;,C) is a regular K-distribution associated to 7 € K (Z;, C), we should have
fT=1f=Ffxr, (H.43)

where the first equality should be demonstrated as

Vo€ K(11,C), fT[p] =TI[f *¢]

([ Yoo

= ([ 1) v et et = i+ 1 = e e

and the second one could be obtained from Eq. (H.42).
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If T € K'(I;,C) and f € K'(Z;,C) is the regular K-distribution associated to f €

K(Z;,C), the product K-distribution f T with respect to T and f is defined by
fT=fT, (H.44)

satisfying the bi-linear conditions,

) FOMTi+ 2 To) =M (FT1) + X2 (FTa), Ai,As €C;

(i) MF+X DT = \FT)+2@GT), M, eC,
which are valid for VT, Ty,T» € K'(Z1,C), f,g € K(Z;,C) and we invoke the definition of
fT e K'(7h1,C) in Eq. (H.39). Besides, it respects two following laws as well,

(i) The associative composition law

Vf.g€K(T.C), f(gT)=(fg)T, (H.45)

can be proved as,
F@T)=f(gT)=(fx9)T=f+gT=(f9)T = (T,

where f,§ € K'(Z;,C) are the regular K-distributions associated to f,g € K(Z;,C)
respectively via Eq. (H.37) and we invoke the Eq. (H.43).

(ii) The commutative law
Vf,9€ K(D,C), f(§T)=3(fT), (H.46)
can also be derived as
F@GT)=f(gT)=g(fT)=G(fT),

where f,§ € K'(I;,C) are the regular K-distributions associated to f,g € K(Z;,C)
respectively via Eq. (H.37) and we inserted the commutative law (H.41).

In particular, if ' € K'(Z;, C) is the regular K-distribution associated to 7 € C°([0, L']U
[L'*, L],C), we can rewrite Eq. (H.42) via Eq. (H.44) as
Fr=Fxr. (H.47)
In contrast, when 7 € K(Z;,C), we can rewrite Eq. (H.43) via Eq. (H.44) as
FT=Tf=Ffxr, (H.48)

which indicates the commutative law of the product of two regular K-distributions in
Eq. (H.44). So, we can conclude that no matter 7' is a regular K-distribution or not, f T
and T f would not induce an ambiguity so that we would not distinguish them afterwards.

Jump K-distribution — The Jump K-distribution ,,, yo € I is a singular K-distribution,
which is defined as

0 for yo# L',
Vi € K(I1,C), Bylyl = . (H.49)
oW =e@*) =) for yo=1,

so that By, [¢] gives the jump of the test K-function ¢(y) € K(Z;,C) at yo. Thus, we have
the following remark:

Byolp] # 0 if and only if yo = L' and ¢(y) € K(Z;,C) is discontinuous there.  (H.50)
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Dirac K-distribution — The Dirac K-distribution d,,, yo € Z is a singular K-distribution,
which is defined as

Vo e K(I1,C), dyle] = ¢(y0) - (H.51)

H.3.2 Weak derivative

We want to define a weak derivative for regular K-distributions. However, we will not
define it as the distributional derivative in Kurasov’s original article (see Ref. [270]) since
his definition is not appropriate for practical reason ®. Here, we follow the way of the weak
derivative defined in Schwartz’s distribution theory (see Appendix H.2).

First , let us consider an integrable function

fec’z,C) N K(1;,0), (H.52)

which is continuous at y = L' (L’ < L) [forming a subset of K(Z;,C)] and its corre-
sponding derivative d,f € K(Z;,C) is also integrable on Z. Then, introduce the regular
K-distribution f € K'(Zy, C) associated to f (H.52) and {, f} is the regular K-distribution
associated to 0, f. The weak derivative 0, f of f is thus defined as

ayfﬁ {ayf} ’
which can be rewritten via 3y, (H.49) and 6, (H.51),

Yo e K(T,,0), 8,7l = ( [+ L) 4y 0,1(4) #(v)

__ (/OL +/L/L+> dy f(y) dye(y)

+ [F @) Y + @) e[
([ 1) st

L'+

+{lf W) el — [f W) e@)lL+}
+ i[f(y) oWl — If W) W)}

= — 10y = 51 [f] Bule) + F (61 — b0) ], (H.53)

where we have used the continuity of f at y = L' (L' < L) in Eq. (H.52) and the definition
of f in Eq. (H.37). The non-vanishing boundary terms which defer from what we have for
a S-distribution on Z in Eq. (H.31), come from possible jumps at y = L' (L’ < L) of the
test K-functions.

Now, as in Schwartz’s distribution theory on Z in Appendix H.2, we generalize this
result to define the weak derivative of any regular K-distribution f € K'(7;,C) associated
to a test K-function

fe K(Il, (C) R (H.54)

which can be discontinuous at y = L' (L' < L) and its derivative 0, f € K(Z;,C) is also
integrable on 7 so that
Vo€ K(T1.C), 0,flel = ~ [0yl — ulf) Brlel + (6 —do)[¢]. (H.55)

8. Kurasov discusses in Ref. [270] that his distributional derivative does not match with the usual
derivative for differentiable functions, which is however essential for a weak derivative in physical applica-
tions [149].
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Using {0, f} € K'(Z1,C) as the regular K-distribution associated to dyf € K(Z;,C), we
can have

Vo € K(Z1,C), 9,fle]l = {0y f} ] + Bulf1{or ] + Bulal}

where we inserted

Floyel = ( [+ L) y 1(3) 0y0(0)

+ e + F@)e L

= - [(/OL +/LIL+> dy ¢(y) 9y f(y)
L L
+{ U@ Wl = [f@) eW]lp+}
+{lf W el — [f ) eWllo}

- K/ + ) dy o(y) 8y f(y)
0 L'+

@
= {0y}l = {Br(f1or (el + o [f1BL ]}y — Bulf1Brlel + f (0L — do) [#],

with

@) el — [f W) el = FL (L) — FIL)e(L™) 4+ f(L)p(L'F) — f(L™)p(L'™)
= —f(L")Brlp] — (L") B f]
= —{Bulflorle] + o flBrlel} — B f]1Br ] -

We have thus shown that

By f = {0y f} + Bulf) (6r + Brr) - (H.56)

H.4 Kurasov’s distribution theory on S*

In this appendix, we adapt Kurasov’s distribution theory [270] to the case of test
functions defined on S! labeled by y € [-7R*,07]U[0,7R = —7R)].

H.4.1 Basics

Test function on S!' — The set K(S!,C) of test K-functions on S' is the set of all
piece-wise smooth functions ¢ € C*°([-7RT,07]U[0,7R],C), i.e.

K(S,C) = C¢>®([-nR",07]U[0,7R],C), (H.57)

such that the sequence of functions {85(,0, ke N} is uniformly bounded on [-7R™,07] U
[0, 7R]. In contrast to D(S!,C) in Eq. (H.16), we have following two remarks:
(i) Test K-functions in K(S!,C) can be discontinuous at y = 0, 7R, but the (left/right)
limits of the functions 8’;% k € N, on both sides of y = 0, 7R exist and are finite.

(ii) The set of test S-functions D(S!,C) is a subspace of K(S!,C), i.e. the test K-
functions are smooth at y = 0, 7R particularly.

Convergence in K(S',C) — A test K-function sequence {¢,},cy Ve, € K(S',C)]
converges to a test K-function ¢ € K(S',C), i.e. convergent on K (S, C), if and only

if the sequence {ngcpn} o Converges uniformly to 9f¢ on [-7R*,07] U [0,7R] for each
n
k e N.
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Continuity of a linear functional on K(S!,C) — A linear functional
T : K(S',C)—=C,
V1,09 € K(Sl,(C) , T[)\l ©1 + A2 (pz] =\ T[(pl] + A2 T[(pg] , AL, A €C,

is continuous if and only if the sequence {T'[pn]},cn converges to Tp] € C, for any test
K-function sequence {¢n}, oy on K(S*,C).

K-distribution — A K-distribution 7" on S' is a continuous linear functional on K (S*, C),
T : K@S',C)—C.
The set containing all the K-distributions,
K'(8',€) = {T'| Tis a K-distribution on K(S,C).} ,

forms a vector space over C by
(1) (Th + T)[¢] = Tile] + Tale] ;
(i) (AT)[e] = A (T[e]), A €C,
which are valid for VT3, Ty € K'(S!,C), p € K(S!,C).

Regular K-distribution — For any integrable piece-wise continuous function f €
Co([-mR™,07] U [0,7R],C)?, one can define a regular K-distribution f € K'(S!,C) such
that

~ 0~ TR
Yo e K(S,0), figl = ( o+ ) dy 1) () (H.58)
which clearly follows the commutative law,
Vg€ (=mR",07JU[0,7R).C), frg=gx]. (H.59)

Note that a K-distribution which is not regular is singular.

Product K-distribution — If T € K'(S',C) and f € K(S',C), one can define their
product fT as
V€ K(S',C), (fT)e] = TIf x . (F.60)
satisfying the bi-linear conditions,
(i) fMTL+XTo) =M (fTh) + A2 (fT2), A1, A2 €C;
(i) M f+Xeg)T=MfT)+X2¢T), M, A eC,

which are valid for VT, Ty, Ty € K'(S*,C), f,g € K(S,C).
It also follows two other calculation laws:

(i) The associative composition law
can be proved as,

Vo e K(S',C), flgD)lgl = (gT)If = ¢
=Tlgx* f*¢]
=TI[(f*g)*¢]
= (f*9)T[¢].

9. K(S8',C) is a subset of C°([-7R™,07] U [0,7R],C), i.e. D(S',C) c K(S',C) c C°([-=R*,07]uU
[0, 7R],C).
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(ii) The commutative law
VfgeK(SHC), flgT)=g(fT), (H.62)
can also be guaranteed as

f@T)=(f+9)T =g+ T =9(fT),
where we inserted the associative composition law (H.61).
In particular, we can derive some specific results,
(i) T € K'(S',C) is a regular K-distribution associated to 7 € C°([-7R*,07]u[0, 7R], C),

we should have o
fT=FfxT, (H.63)

which should be demonstrated as

Vo e K(S',C), fT[g] =T[f ¢

0~ TR
— (/ +/ ) dy 7(y) f(y) ¢(y)
—TRTt 0
0~ TR e~
= (/ +/ )dy[f(y)f(y)]w(y)=f*T[<P]'
—TRT 0

(ii) T € K'(S',C) is a regular K-distribution associated to 7 € K(S!,C), we should
have o
fT=1f=fxT, (H.64)

where the first equality should be demonstrated as

Ve K(S',C), fTlp] =T[f *¢]

0~ TR
— (/ +/ ) dy 7(y) f(y) ¢(y)
—7R+ 0

0~ TR
B (/ +/ ) dy ) [r(v) eW)] = flr = ¢l = (1) [¢],
—mRt 0

and the second one could be obtained from Eq. (H.63).
If T € K'(S!,C) and f € K’(Sl,@) is the regular K-distribution associated to f €
K(S!,C), the product K-distribution f T with respect to 7' and f is defined by
fr=fT, (H.65)
satisfying the bi-linear conditions,
(i) f ()\1~T1 + X Th) = )\1~(f T+ X (fT2), Ai,A2 €C;
(i) M f+2g)T=M{T)+X2(@T), M, eC,

which are valid for VT,71,Ty € K'(S',C), f,g € K(S',C) and we invoke the definition
of fT € K'(§',C) in Eq. (H.60). Besides, it respects two following laws as well,

(i) The associative composition law
VfgeK(SC), fGT)=(f9T, (H.66)
can be proved as,
F@T)=fgT)=(fx9)T = f+gT =(f9)T = (F9T,
where f,§ € K'(S',C) are the regular K-distributions associated to f,g € K(S!,C)
respectively via Eq. (H.58) and we invoke the Eq. (H.64).
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(ii) The commutative law
VfgeK(S,C), fGT)=a(fT), (H.67)
can also be derived as
F@T)=fgT)=g(fT)=3(fT),

where f,§ € K'(S',C) are the regular K-distributions associated to f,g € K(S*,C)
respectively via Eq. (H.58) and we inserted the commutative law (H.62).

In particular, if T € K'(S?, C) is the regular K-distribution associated to T € CO([-7 R ™"
,07]U [0, 7R],C), we can rewrite Eq. (H.63) via Eq. (H.65) as

FT=Fxr. (H.68)
In contrast, when 7 € K(S!,C), we can rewrite Eq. (H.64) via Eq. (H.65) as
FT=Tf=Fxr, (H.69)

which indicates the commutative law of the product of two regular K-distributions in
Eq. (H.65). So, we can conclude that no matter 7' is a regular K-distribution or not, f T
and T f would not induce an ambiguity so that we would not distinguish them afterwards.

Jump K-distribution — The Jump K-distribution 3,,, yo € S !is a singular K-distribution,
which is defined as

eWI”2 = v(yo) — v(yy ) for yo #7R,
Vo e K(S',C), Byl = . (H.70)
oW RY =@(—mR*) = p(rR) for yo=nR,

so that By, [¢] gives the jump of the test K-function ¢(y) € K(S!,C) at yo. Thus, we have
the following remark:

Byole] # 0 if and only if yo = 0, 7R and ¢(y) € K(S',C) is discontinuous there. (H.71)

Dirac K-distribution — The Dirac K-distribution d,,, yo € S 1 is a singular K-distribution,
which is defined as
Vo€ K(S',C), dyle] = ¢(y0) - (H.72)

H.4.2 Weak derivative

We want to define a weak derivative for regular K-distributions. However, we will not
define it as the distributional derivative in Kurasov’s original article (see Ref. [270]) since
his definition is not appropriate for practical reason'’. Here, we follow the way of the
weak derivative defined in Schwartz’s distribution theory (see Appendix H.2).

First , let us consider an integrable function

fec'sh,c)n K(SH,0), (H.73)

10. Kurasov discusses in Ref. [270] that his distributional derivative does not match with the usual
derivative for differentiable functions, which is however essential for a weak derivative in physical applica-
tions [149].
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which is continuous at y = 0,7R [forming a subset of K(S!,C)] and its correspond-
ing derivative d,f € K(S',C) is also integrable on S*. Then, introduce the regular K-
distribution f € K’(S!,C) associated to f (H.73) and {0y f} is the regular K-distribution
associated to 0, f. The weak derivative O f of f is thus defined as

Oyf = {0,f},

which can be rewritten via 3, (H.70) and 6, (H.72),

Ve K(S',C), 0,f[¢] = — > Sylf] Byl (H.74)
yo=0,TR

where we perform the same calculation in Eq. (H.31) except the last step. We have used
the continuity of f at y = 0, 7R in Eq. (H.73) and the definition of f in Eq. (I.58). The
non-vanishing boundary terms which defer from what we have for a S-distribution on S*!
in Eq. (H.31), come from possible jumps at y = 0, 7R of the test K-functions.

Now, as in Schwartz’s distribution theory on S' in Appendix H.2, we generalize this
result to define the weak derivative of any regular K-distribution f € K'(S8!,C) associated
to a test K-function

fe KO, (H.75)

which can be discontinuous at y = 0,7R and its derivative 9, f € K(S!,C) is also inte-
grable on S! so that

V€ K(Sl,(C), ayﬂ‘P] = Z Syo [f] Byolep (H.76)
yo=0,TR

Using {9, f} € K'(S',C) as the regular K-distribution associated to d,f € K(S!,C), we
can have

Vo€ K(S',C), 0,fle) = {0y} o)+ {Brrlf1Brrle] — Bol1Bolel} + D Buolflduolel,

yo=0,TR

where we inserted

Floye] = ( /_ i_m - /0 WR) dy f(y) By (y)
([ [ et ase
Ay ew) uf(y
+{lf W) eWllo- — [f @) eW)llo}

0~ TR
= — K/—ﬂpﬁ +/0 ) dy »(y) Oy f(y)
+{1F@) e@lar - [f(y) @(y)]l_wm}

= - Wyf} [90] + {BO[f]BO[SD] - BWR[ 57rR } - Z {ﬁyo ] + 5y0 [f] Byo [SO]} )

yo=0,TR

+ F@eW wrr + F@eWIGT
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with

Lf (W) eWlo- — [f (W) e)llo = F(07)p(07) — £(07)(0) + f(07)p(0) — £(0)¢(0)
= —f(07)Bolw] — ¥(0)Bof]
= {Bolf] — do[f1} Bole] — dole]Bolf]
= —{Bolf10ol¢] + dolf1Bolel} + Bolf]Bole] s

W) eWlar — [f W) oW _rg+ = f(rR)p(nR) — f(mR)p(—7RT)
+ f(mR)p(=7RT) = f(~=7RT)p(—7R")

= —[(mR)Brrlp] — (=7 R")Brr[f]
= —{Bxr[f10xrl¢] + 6xr[f1BxrlP]} — Brrlf]Brrle] -

We have thus shown that

Oy f = {0yf} + (BrrlfBrr — BolflBo) + S Buolf1duo (H.77)

yo=0,TR

which keeps a similar formalism of the weak derivative for an S-distribution on S' in
Eq. (H.35).
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Appendix I

Dimensional analysis

The MKS unit system is recovered by the conventional formalism in Ref. [271].

I.1 4D analysis
The generic action is contructed by the 4D Lagrangian as,
1
S = f/d41: L0 gt = (ct,x) ,
c

[S] = [E] x [T] = [J] = [P] x [L]
(4P = [B] x [1]7°.

w

(L.1)

— 4D scalar field ¢

x [L]72 . (1.2)

— 4D spinor field

1.2 5D analysis

The generic action is contructed by the 5D bulk and brane-localized Lagrangian (4D)
as,

1
S:E/d4:v (/dy £5D+£4D> st = (et x,y)

(5P = [£*P] < (L7 = [B] x [2]7*. (L.4)
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— 5D bulk scalar field ®

— 5D bulk spinor field ¥

5“?:im@@FMaMm—(M&8)@w,
(0] =[1]72.

— BBT terms (3.4) as a brane-localized Lagrangian

1 4 1 U _
SBag/dx§UwaPmmb,PfQL,
[hid] = [E] x [L] .
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Appendix J

Bulk massive KK modes on an
interval

Here, we give an example demonstration on continuous solutions of the EOM (6.60)
with the NBC (6.12) on the first region, [0, Lr].

2
For (mf) - (ﬁz};)Q < 0in Eq. (6.61), the solutions have the general form on y € [0, Lr],

1/ m mF 1/ ml mF

where A7 p, B p are complex coefficients. For the Dirichlet BC for fg(y) (6.12),

fL/R L/R6

ie. fglo = [R Lp =0, we have the following set of equations to determine A’;, B%,

my)’—(mf)? ) ()P —(mE)?.
AV R =m0 g V(R =m0
ML) (mF)?. (N (mF)2 .
Ap eV (RN =m0 Be g = (M) =B

and the associated characteristic determinant,

A = N PR =0 0Ly 3/ (m}) = (mE)? - (Lp—0) 40

which leads to the absence of A%, Bj, i.e. A% = B = 0, such that,

fr(y) =0, (J.2)
which is valid on y € [0, Lp] and after injecting to Eq. (6.60), leads to,

@5+ ) fi() = 0, mE =0,

which means f7(y) has non-zero solutions in this case if and only if m%Z = 0, i.e. the zero
mode f?(y), and directly leads to the form of f?(y) with the normalization factor NF10,
derived from the ortho-normalisation conditions (6.38) !,

mh L 10

1 2
foly) =N Wemmey . N = wel%’ (73)

1. Here, we just consider the normalization on [0, Lr],

Lp
vnme N [ dy £27n) fino) = b
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where AL}, = Ly —0 is the length of the segment, [0, Lr], and eor (@} € R) is the global

phase.
For (mf) — (ﬁ@};)2 > 0in Eq. (6.61), the solutions have the general form on y € [0, Lz],

* n n ~ 2 n . ~ 2
Vn € N, f7/r(y) = A /R cos [\/(mﬁf — (mb) y] + By /psin [\/(mn)Q — (mL) yl ,
(J.4)
where A} R B} /R are complex coefficients. Then, the Dirichlet BC for ff(y) would
constrain solutions as the following form with the normalization factors N5 (n € N*),
¥n e N, fi(y) = NE " sin W (mE)? = (k) ?y| , NE'™ = V2elr (J.5)
which generates the mass spectrum,
J nr ]2
F| _ ~1\2 *
my | =\||—5| +(mE)", neN". (J.6)
ot = | 55| +

Combining with the zero mode, one can obtain the complete mass spectrum. Inserting
the solutions of fz(y) (J.5) into the coupled EOM (6.60), one can obtain the solutions of

fi(y),
Vi€ N £p) =N cos [\ mE)? — @)y + ¢
~1 F 2_ ~1 2
. Fln _ Fin ... (~F1\ ~ MF F1 L\/(mn) (mp)
with, N7 " =-Np™", s1n( . ) Sk cos( . ) = T . (J.7)

Note that the KK mass ‘mﬂ (J.6) can’t be equal to |m}|. Otherwise, both of the left and

the right profiles are suspended to vanish due to the coupled EOM (6.60).
The similar analysis can be applied on the Dirichlet BC for f7'(y) (6.12), i.e. f7|, =

ftlp, = 0, which would lead to the vanishing f2(y) on y € [0,Lp]. The normalized
non-vanishing zero mode f%(y) reads,

2 L il (7.8)

0 F10 _mLy F10
= e''F = —
fr(y) = Ng » N o2mL ALL _ |

and the higher order KK modes (n € N*),

1 )24 7 Ngm = /2 el 7
(J.9)

A sin [ flong)? = Gk

’Ngln :Nfln’

fily) =
Vn e N¥,
Faly) = N cos |\ = @)y =

which generates the identical mass spectrum of Eq. (J.6).
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Appendix K

Explicit formula of the mass
matrix

K.1 Generic elements of mass matrix

Using the explicit profile solution of qgi 1 (6.44) and dgj R (6.45) (4,5 = 1,2), let us work
out following explicit results of the mass matrix M;; in Eq. (6.85) and the bulk Yukawa
coupling X (y) (6.80),

LD X(
M = 0 d glL 1R+/ d qglL 1R+/ d quLdglR
= N1 cos Qg cosQp ez(o‘g)fam) + N1z cos Qg sinQp e’ (C'D —*Q

20 20)

+ N sinQg sinQp ci(ap—ad ,

Lp X(

Mo = A dy —=qg dy R+/ dy quL R+/ dy QQQLdQQR

10 20 10)

— ¢i(6p—dq) {Nn sin Qg sinQp €’ i(op~ Q) — Ni2 sin Qg cos Qp el(aD —%Q

+ Nag cos Qg cos Qp ei(QQDO_aQQO)} ,

Mg = A dy ( R+/ dy 7QQ1L R+/ dy I(J)QQlLdng

al0 20 10)

e!(0p=7) [Nll cos Qg stDe( p—og) — Nig cosQq cos Qp ot —ag

— Nag sin Qg cos Qp ei(o‘%)_o‘QQO)] ,

Lp (
M21: 0 d 75211 R+/ d 7Q2L R+/ d 792Ldg1R

20 10

— ¢i(m=dq) {Nn sin Qg cos Qp €’ i(of —og)) + N2 sin Qg sinQp cileB—ag)

20 20

— Nag cos Qg sin Qp eZ(O‘D _O‘Q)} , (K1)
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with,

N 2 A Ys 1.2 eMuLp _q B /\7 12 e—MHALQD _ e~MuL
HTTV BN\ ALLALL ML ALLALL, MgyL ’
Now 2 A Ys 12 eMilg _ Mulp i 12 o~ MuAL _ —MpAL3,
2T\ ALLALR, MgL - ALLALR, MgL ’
. Y- 1,2 eMuL _ (MuLg ~ 12 1— efMHALé
Naz = Ny =2 2ANT2 =N 2 AT2 ) (K.2)
V2 ALHALY, MyL ALHALE MyL

where

—~ Y5
N = N, —=eMul
v \/§

and N, denotes the Higgs VEV amplitude in Eq. (1.11)-(1.12).

K.2 Matrix elements of partitioned profiles

For the partitioned profile solutions of qg(b)L(y), dg(b)R(y) (6.51) presented in Figure 6.8
(Lp = Lq), elements of mass matrix M (6.84) can be derived in the real case (i.e.
0pQ = a%{Q = a%{Q = 0) as (cf. Appendix K),

Myt = N cosQg cosQp + Nag sin Qg sinQp,
Moy = NiisinQg sinQp + Nag cos Qg cosQp,

(K.3)
Mis = —Ni1 COSQQ sin Qp + Noo sinQQ cos{lp,

Mo = =M1 sinQg cosQp + Nag cos Qg sinQp ,
and in turn related crucial terms for mass eigenvalues of Eq. (6.86) can be written as,
IMPP = N+ N,
M |* + (Mo — [Mao]* = [Maa* = (N — N) cos(2Qp) (K.4)
MiMig + MiMas = (NG — NE) sinQpcosQp ,

so that

2
\/(\Mnlz + [ Ma[* = [ M| - !M22\2) + 4| M5y Mig + My Mool = NGy — VT
(K.5)
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Synthese en francais

Le Modele Standard de la physique des particules élémentaires, basé sur la Théorie
Quantique des Champs, est sans aucun doute aujourd’hui le scenario décrivant avec le
plus grand succes les forces fondamentales de la nature. En Juillet 2012, la découverte
historique d’une résonance a 125.5 GeV au LHC (Large Hadron Collider) — Collabora-
tions ATLAS et CMS — du CERN a Geneve, constituant trés certainement le boson de
Higgs, a ni plus ni moins apporté la pierre angulaire manquante du Modeéle Standard en
confirmant le mécanisme de brisure de symétrie électrofaible. Au travers des indéniables
succes expérimentaux du Modele Standard, son contenu en champ [voir Figure K.1] a été
complétement observé a ce jour et ses prédictions théoriques ont été confirmées avec une
extréme précision aux différents collisionneurs de haute énergie: LEP (Large Electron-
Positron collider), Tevatron et LHC.

(i] st r:) nd yrd electro-weak

W) generation symmetry breaking outside of
everyday matter exotic matter force particles (mass giving) standard model
I N ™\ AN 0 N N
7 N/ s N\ \ 7
g Ve — . ('®T
[2am O (1276 ( a A
0.0 <— charge g
«— color charge (rgorb)
mass (eV) H
To up A charm < wn g
g2 g
2 8
R g 2
%a 4.8M w 104M 8 colors R
) d ;
o
S g K
a 2
down strange gluon 1 g
/g
s — &
0511M ‘ 105.7M 17776 H
&
7
£
To electmnA muon tau photon 4 8
£ 3 5
= — - -2 [ ™
] <22 ‘ <0.17M <15.5M 804G 9126 3| o8
R 2| -
s |: -
& H - ]
'V V V S |: graviton : §
e M t g|: 2
e-neutr‘m:ﬂ H-neutrino t-neutrino A A ERE : g
/ ............... ®

Figure K.1 — Zoologie schématique de I’ensemble des particules élémentaires du Modele
Standard (et gravitation), apres brisure spontanée de la symétrie électrofaible.

Bien que le Modele Standard représente un modele validé par I'expérience, une variété
de constats, tant théoriques qu’expérimentaux, conduit inévitablement a la nécessité d’une
théorie sous-jacente (de plus haute énergie). En effet, en particulier, le Modéle Standard
ne génere pas de masse pour les neutrinos, n’explique pas les hiérarchies de masses entre
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fermions, ne fournit pas de candidat a la matiére noire ni a 1’énergie noire de 'univers, ni
n’inclut la théorie de la gravitation. De plus, le Modele Standard souffre d’un réglage fin
induit pas l'instabilité de la masse du boson de Higgs vis-a-vis de ses corrections radiatives
(quantiques): le probléme de hiérarchie de jauge.

Ce probleme de hiérarchie de jauge s’accompagne du mystere de 'origine de la brisure
de symétrie électrofaible ainsi que de la question de la forme précise du potentiel du Higgs.
Le secteur électrofaible est décrit par le modele de Glashow-Salam-Weinberg (GSW), basé
sur une brisure spontanée de symétrie de jauge. Dans ce cadre, on applique le mécanisme
de Brout-Englert-Guralnik-Hagen-Higgs-Kibble dans lequel le champ scalaire complexe du
Modele Standard H(x*) posséde un potentiel en forme de ‘chapeau mexicain’:

V(H) =mig H? + A [H[*, with mj; <0, Mg >0, (K.6)

qui conduit a une valeur moyenne dans le vide non nulle v ~ 246 GeV pour le champ H (z*)
acheminant la brisure spontanée de symétrie électrofaible, les fluctuations du champ autour
de cette valeur moyenne v décrivant une particule quantique de spin-0, a savoir le boson
de Higgs h(x*),

7 1 1 : —m
H(x):ﬁ[v—i—h(a: )], with v= o

avec la masse physique de 125.5 GeV mesurée en 2012 [10, 11]. Ainsi le Lagrangian libre
en termes de h s’écrit,

(K.7)

1 1
L3 50,h0"h — 5m,% h?, with m3 = —2 x m?% . (K.8)

A ce niveau, un probléme profond de hiérarchie apparait dans le Modele Standard:
I'importante différence d’échelle entre les valeurs de ’énergie typique de la brisure élec-
trofaible Agy ~ 100 GeV et la masse fondamentale de Planck Ap ~ 10 GeV (la gravité
doit devenir forte a cette échelle), constituant le probleme appelé hiérarchie de jauge du
Modele Standard. Il ne s’agit pas d’un probleme intrinseque au Modeéle Standard mais
plutot d’une sensibilité inconfortable du potentiel de Higgs a la complétude Ultra-Violet
constituée par la physique sous-jacente. Plus précisément, le probleme de hiérarchie de
jauge apparait dans le fait que m,% est tres sensible au comportement des corrections
quantiques a haute énergie, induit par les particules interagissant directement (ou méme
indirectement) avec le boson de Higgs. Le probleme de hiérarchie de jauge est ainsi relié
aux corrections radiatives Am}zl que la masse a I’arbre du boson de Higgs regoit au niveau
des boucles,

= mi,(bare) + Am% : (KQ)

Par exemple, sur la Figure K.2 (a), on observe le type de correction a m% provenant
de la boucle d’échange de fermion de Dirac f avec une masse my [anti-particule f]. Si le
champ de H couple & f via le terme de Lagrangian,

A

R SSB
SNHEF S5 -

hif, (K.10)
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Figure K.2 — Corrections a la masse du Higgs au carré m%’phys, dues aux (a) fermions de
Dirac f [anti-particule f], et (b) aux champs scalaires complexes S [anti-particule S].

alors le diagramme de Feynman de la Figure K.2 (a) apporte la correction

)\2

ou Ayy ~ Ap (sous 'hypothese de nouvelle physique pointant a 1’échelle d’énergie Ap)
représente le ‘cut-off” Ultra-Violet de la physique sous-jacente régulant l'intégrale de I’am-
plitude de la correction. Comme les termes de corrections radiatives sont quadratiques
dans ce cut-off, le carré de la masse du Higgs est quadratiquement sensible a toute nou-
velle échelle de masse au-dela du Modele Standard, c’est-a-dire au-delad de Agy ~ 100
GeV [56-58]. De plus, pour un cut-off a ’échelle de Planck, ces corrections sont typ-
iquement autour de 34 ordres de grandeur de plus que la valeur de m%jphys ~ (100GeV)?
induite par la brisure de symétrie électrofaible. Bien sir la masse a I'arbre my, (hare) Peut
étre ajustée finement afin d’annuler précisément les corrections radiatives, mais un tel
réglage-fin semble techniquement non naturel et doit étre re-fait a chaque ordre du calcul
perturbatif.

Les corrections radiatives peuvent aussi recevoir des contributions de champs scalaires
complexes lourds notés S avec des masses mg [anti-particule S] couplés au boson de Higgs
via le terme de Lagrangian,

—AsHHSS 225, —)\—;hZSS. (K.12)

Le diagramme de Feynman de la Figure K.2 (b) apporte alors une correction a une boucle,

Am} ~ +%A?}V. (K.13)
Ainsi, le réglage-fin apparait encore afin de retrouver la bien plus petite masse mesurée
du boson de Higgs. Notons que les divergences quadratiques de I'Eq. (K.11)-(K.13)
n’interviennent que pour des particules scalaires, puisque les masses des fermions et bosons
vecteurs sont protégées par les symétries chirale et de jauge, respectivement. Dans le Mod-
ele Standard en effet, les masses des fermions et bosons de jauge regoivent des corrections
proportionnelles & leur masse a ’arbre, i.e.

Mphys — Mbare X Mbare IH(AUv/m) 5

ce qui est une conséquence de la présence de la symétrie chirale (de jauge) pour les fermions
(bosons de jauge).
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Notons pour clore la description de ce probleme de hiérarchie de jauge que si le cut-off
n’est pas imposé pour ces digrammes divergents mais qu’une procédure de régularisation
puis de renormalisation leur est appliquée, alors la sensibilité de la masse du Higgs aux
grandes échelles d’énergie interviendra typiquement dans la dépendance des corrections
radiatives dans les masses de particules lourdes échangées dans les boucles. Le probléme
reste entier et c’est seulement sa description quantique qui differe ici.

Abordons a présent les extensions du Modele Standard et autres types de théories pro-
posées a ce jour pour combler les failles de ce modele. Des extensions supersymétriques
(symétrie fermion - boson) du Modele Standard fournissent des candidats & la matiere
noire (Weakly Interactive Massive Particles) si la symétrie de R-parité garantie la stabilité
des partenaires supersymétriques les plus légers. La supersymétrie permet aussi de mieux
réaliser 1'unification a haute énergie des trois forces fondamentales du Modele Standard:
les interactions électro-faibles et fortes. Des candidats importants prétendant & une théorie
quantique de la gravité (unifiant les quatre forces fondamentales de la nature) sont no-
tamment la gravitation quantique a boucles ou encore la théorie des supercordes — ayant
comme ingrédients de base la supersymétrie ainsi que 'existence de dimensions spatiales
supplémentaires.

Ces dernieres décennies, des extensions simples du Modele Standard basées sur I'exist-
ence de dimensions spatiales supplémentaires ont émergées offrant de nouvelles solutions
a plusieurs des problemes mentionnés ci-dessus, comme la matiére noire de 'univers par
exemple. En particulier deux modeles (ADD et RS), construits vers an 2000, ont pro-
posé des mécanismes simples pour protéger la masse du boson de Higgs de ses grandes
corrections quantiques, par abaissement de la valeur de 1’échelle de Planck dans la théorie
fondamentale — représentant ainsi une alternative a I'approche supersymétrique usuelle
(protégeant la masse du boson de Higgs par la nouvelle symétrie fermion - boson). Cette
nouvelle famille de modeéles représente approximativement, dans certains cas (RS), la de-
scription duale de modeéles de Higgs composite. La configuration géométrique des champs
dans ce nouveau paradigme repose sur un boson de Higgs localisé en un point (une 3-brane)
le long d’une dimension d’espace supplémentaire.

Dans cette these, nous développons une compréhension plus profonde, guidée par
de nouvelles approches mathématiques rigoureuses, des configurations géométriques de
champs apparaissant souvent dans ce type de modeles (parfois duaux de modeles de champ
de Higgs composite). Notamment un champ de Higgs localisé sur un bord de dimension
compactifiée couplé a des fermions se propageant dans toute I’extra-dimension. Nous mon-
trons que le traitement approprié de telles configurations géométriques ne se base pas sur
la régularisation d’un champ de Higgs piqué (largeur de fonction d’onde introduite puis
prise de limite nulle), comme pratiqué habituellement dans la littérature, mais requiert a
la place la présence de certains termes bilinéaires au niveau d’une brane. Ces termes per-
mettent une bonne définition de la géométrie du modele une fois que le calcul variationnel
(appliqué au principe de moindre action) est correctement conduit.

Une méthode alternative est d’imposer des conditions (on parle alors de conditions
aux bords “essentielles” par opposition a “naturelles” quand celles-ci découlent de la min-
imisation de l'action) d’annulation des courants de probabilité fermioniques aux bords de
I’extra-espace compactifié. Dans cette approche, I'expression de 'action n’est pas sufl-
isante pour contenir toute l'information définissant le modéle. Nous avons également
utilisé des méthodes équivalentes basées sur des calculs & 4 (incluant la coordonnée tem-
porelle) ou 5 (incluant une nouvelle coordonnée d’espace) dimensions afin de vérifier les
résultats analytiques exacts obtenus: les approches dites 4D versus 5D.

Les termes bilinéaires de brane pourraient également permettre d’élaborer une origine
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dans l'ultra-violet a la nature chirale du Modele Standard et aux différentes chiralités
des quarks/leptons. La nouvelle méthode de calcul présentée, impliquant I'indépendance
des masses de fermions excités et des couplages de Yukawa a 4D vis-a-vis des termes de
Yukawa avec la ‘mauvaise’ chiralité, a des impacts sur des résultats phénoménologiques:
disparition notamment de certaines contraintes fortes sur la masse des excitations de
Kaluza-Klein (particules se propageant le long de dimensions supplémentaires), issues
d’effets de changement de saveur via 1’échange du boson de Higgs.

Puis nous étendons ces approches rigoureuses de la configuration d’intervalle a celle
duale de T'orbifold S'/Zsy (cercle muni d'une parité du Lagrangien, avec apparition de
points dfixes), ce qui permet en particulier un traitement propre des discontinuités des
profils de fermions au travers des branes caractéristiques (points fixes et couplages de
Yukawa localisés), et nous proposons une approche formelle basée sur la théorie math-
ématique des distributions, qui permet de faire apparatre automatiquement les termes
branaires bilinéaires. Plus largement, nous ouvrons une direction vers un formalisme des
modeles avec dimensions d’espace compactifiées basé sur les distributions.

Nous avons réalisé que les termes de brane bilinéaires, une fois localisés a des positions
intermédiaires le long de 'intervalle, fournissent une opportunité d’expliquer ’existence des
saveurs: les trois familles dans ce contexte correspondent aux trois différents états quan-
tiques, d’un unique champ 5D, localisés respectivement entre plusieurs termes branaires. 1l
s’agit la d’un mécanisme de réplique des fermions du Modele Standard en trois générations.
Historiquement, d’autres approches avaient été développées pour expliquer ’existence de
ces fermions aux mémes nombres quantiques ne différant que par leur masse. En parti-
culier, des approches basées sur des groupes de jauge étendus (familles de fermions vues
comme plusieurs composantes de multiplets de représentation) ou des branes intersec-
tantes (a l'endroit de présence des différentes générations de fermions) au sein de théories
des cordes.

En effet de nos jours, la structure non-triviale du Modeéle Standard suggere que son
secteur de la saveur et de ses interactions de jauge ne soit pas arbitraire mais repose sur
quelques principes fondamentaux sous-jacents non encore découverts. Cette possibilité
théorique constitue aujourd’hui une question ouverte en physique des particules élémen-
taires. En particulier dans cette communauté, il faut bien admettre qu’il n’existe toujours
pas de modeéle unanime reproduisant les structures fermioniques dans ’espace des saveurs,
et, que l'on ne connait pas méme I’échelle d’énergie a laquelle la dynamique de saveur
intervient.

Or la premiere énigme concerne bien le contenu en champ du Modéle Standard, a savoir
l'origine de 'existence méme de la saveur, c’est-a-dire la réplique de chaque fermion en
trois copies avec des nombres quantiques identiques (spin et charges). Il y a évidement eu
de nombreuses tentatives dans la littérature pour interpréter la présence des trois familles
de quarks et leptons. La premiere classe de scénarios tentant d’expliquer les répliques de
fermions se base sur les théories de grande unification (GUT), introduisant de nouveaux
bosons de jauge et des mécanismes de brisure de symétrie étendue. Par exemple, le groupe
de jauge du Modele Standard pourrait émerger de la structure de réduction par brisures
successives, Eg — Eg x SU(2)r x U(1)p suivie de Eg — [SU(3)]3, ot [SU(3)]? est associé
a la symétrie de jauge dite de trinification et U(1)p x SU(2)r est un groupe local de
symétrie de saveur dont les composantes des singlet et doublet respectifs constituent les
trois familles de fermions du Modele Standard [81-84]. Ces trois générations du Modele
Standard peuvent provenir d’autres schémas d’extensions du groupe de jauge [85-91].

L’autre type de scénario, dans lequel ’origine des familles de fermions du Modele Stan-
dard a été explorée, est basé sur la théorie des cordes. D’abord, au sein des théories de
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cordes 10D hétérotiques, ou les 6 dimensions peuvent étre compactifiées sur une variété
(manifold) de Calabi-Yau ou bien des orbifolds, les propriétés de saveur sont strictement
reliées aux caractéristiques de l'espace compact. Dans les compactifications a la Calabi-
Yau, le nombre de générations chirales est proportionnel a la caractéristique d’Euler du
manifold. Dans les compactifications sur orbifold, la matiere du secteur ‘twisté’ est local-
isée autour des points fixes de I'orbifold, et, les couplages de Yukawa — venant d’instantons
de feuilles d’univers (world-sheet) — ont une interpretation géométrique naturalle [92-94].
De maniere similaire, dans les plus récentes réalisations de théories des cordes, ou les
champs de matiere légere du Modele Standard proviennent de branes intersectantes (dans
les théories de supercordes, les modeles de D-branes intersectantes sont T-duaux des mod-
¢les de D-branes magnétisées), la dynamique de saveur est controlée par des propriétés
topologiques de la construction géométrique: le nombre de génération est déterminé par
le nombre d’intersections dans le contexte des D-branes intersectantes (voir par exemple
la Ref. [95, 96] ou méme la Ref. [97, 98] pour les versions de modele de cordes non-
supersymétriques avec D5-branes intersectantes). Finalement, I’idée d’une configuration a
trois familles pour le contenu en champ, provenant de théories de type GUT, a également
été développée dans le cadre de modeles perturbatifs de supercordes hétérotiques (voir
Ref. [99] pour une revue sur le sujet).

Notre nouveau mécanisme de séparation des générations, le long de la dimension sup-
plémentaire, génere de plus automatiquement les hiérarchies de masses de fermions lorsque
le profil du boson de Higgs est exponentiellement localisé vers la “TeV- brane”, afin de
résoudre le probléme de hiérarchie de jauge. Les deux problémes, a priori différents, des
hiérarchies de masses de fermions et de hiérarchie de jauge s’en trouvent alors reliés. Le
principe sous-jacent est le recouvrement, entre les fonctions d’onde des fermions partition-
nés le long d’'une extra dimension et le profil exponentiel du boson de Higgs, qui implique
une hiérarchie dans les couplages de Yukawa. Ce phénomene induit alors une hiérarchie
également parmi les masses des fermions apres la brisure spontanée de la symétrie élec-
trofaible du Modele Standard. Dans la littérature habituelle & 4D, c’est en général le
mécanisme de Froggatt-Nielsen basé sur I'existence de symétries brisées de saveur (ou le
célebre mécanisme du ‘See-Saw’ pour le cas spécifique de la petitesse de 1’échelle de masse
des neutrinos) qui est invoqué pour générer les hiérarchies de masses fermioniques. Des
idées plus récentes utilisaient, comme ici, diverses configurations géométriques des champs
dans 'espace compact, induisant différents types de recouvrements entre les fonctions
d’onde respectives.

Enfin, le mécanisme étudié offre aussi une nouvelle méthode, en théorie des champs,
pour localiser tous les fermions sur une brane (épaisse), de maniére alternative a ’approche
standard des couplages fermioniques a un soliton. Effectivement, nous avons réalisé que
si les termes branaires bilinéaires étaient introduits pour chaque famille de fermion (cas
différent donc du modele de saveur ci-dessus), la localisation des champs pouvait étre
contrlée et ce de maniére stricte (annulation de fonction d’onde en dehors de la zone de
localisation).
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Glossary

ADD :

AdS :

BBN :

BBT .

BC:

BSM :

CDM :

CFT :

CMB :

DGP :

DLS :

EBC :

EFT :

EOM :

EWSB :

FCC pp:

FCNC :

GBBT :

GUT :

GSW :

IR :

KK :

LED :

Arkani-Hamed, Dimopoulos and Dvali
Anti-de Sitter

Big Bang Nucleosynthesis

Bilinear Boundary Terms

Boundary Conditions

Beyond the Standard Model

Cold Dark Matter

Conformal Field Theory

Cosmic Microwave Background
Dvali, Gabadadze and Porrati
Discrete Lagrangian and Symmetries
Essential Boundary Condition
Effective Field Theory

Equations Of Motion

ElectoWeak Symmetry Breaking
Future Circular Collider proton-proton
Flavor Changing Neutral Current
Generic Bilinear Boundary Terms
Grand Unified Theory
Glashow-Salam-Weinberg

InfraRed

Kaluza-Klein

Large Extra Dimension
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LHC :
LHS :
LKP :
LQG :
nD :
NBC :
NPGO :
PGO :
QBH :
QCD :
QFT :
RHS :
RS :

SM :

SUGRA :

SUSY :

UED :

| SAVAS

VEV :

Large Hadron Collider

Left-Hand Side

Lightest Kaluza-Klein Particle
Loop Quantum Gravity
n-Dimensional space

Natural Boundary Condition
Non-Perturbative Gravitationnal Object
Perturbative Gravitational Object
Quantum Black Hole

Quantum ChromoDynamics
Quantum Field Theory
Right-Hand Side

Randall and Sundrum

Standard Model

SUperGR Avity
SUperSYmmetry

Universal Extra Dimension
UltraViolet

Vacuum Expectation Value
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