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Résumé —

Les variations spatio-temporelles du cycle de lŠeau restent aujourdŠhui sujettes à de nom-
breuses incertitudes. Pourtant, la ressource en eau est dŠune importance capitale pour la vie
sur Terre et les populations humaines, sur les plans sanitaire, de lŠindustrie et de lŠagriculture.
Les écosystèmes naturels dépendent aussi de la disponibilité de lŠeau, et les interactions en-
tre les cycles énergétique, hydrologique et biogéochimiques ont des répercussions directes et
importantes sur le climat. Dans le cadre de lŠadaptation au changement climatique, de nom-
breuses politiques publiques et actions environnementales ont besoin dŠestimations Ąables des
stocks dŠeau et de leur évolution dans le temps. Cela nécessite la connaissance des niveaux
dŠeau et de lŠétendue des zones inondées, qui est actuellement très mal contrainte. En partic-
ulier, dans les grands bassins tropicaux de lŠAmazone et du Congo, la plupart des techniques
de télédétection sont limitées par les denses forêts tropicales. Les seules cartes globales avec
des longues séries temporelles ont été dérivées de capteurs micro-ondes passifs (par exemple
GIEMS), et leur résolution spatiale de 0,25° est trop faible pour de nombreuses applications
hydrologiques. Cette équation en apparence insoluble peut bénéĄcier de lŠapport de la réĆec-
tométrie GNSS, ou GNSS-R. Il sŠagit dŠune technique de télédétection consistant à capter
les signaux GNSS en bande L dŠordinaire utilisés pour le positionnement, pénétrant mieux
la végétation que les mesures micro-ondes à plus hautes fréquences, après quŠils aient été
réĆéchis par la surface terrestre. Les signaux réĆéchis sont notamment sensibles à la présence
dŠobjets dŠeau. Les applications hydrologiques incluent à la fois le suivi de niveaux dŠeau
à lŠéchelle locale, et la détection de grandes zones inondées dans les forêts tropicales. Ce
dernier point a été rendu possible par le lancement en 2016 dŠune mission GNSS-R spatiale
collectant de nombreuses observations sur la bande intertropicale, nommée CYGNSS. Les
diférentes applications hydrologiques et échelles spatiales ont été au cœur de mon travail
de thèse. Tout dŠabord, jŠai étudié la problématique locale du suivi des niveaux dŠeau sur
les rivières par GNSS-R in-situ. Les méthodes existantes étaient développées pour des cas
dŠétude océaniques, et limitées sur les rivières du fait de mesures plus bruitées, dŠun nombre
de satellites GNSS visibles plus faible, ainsi que de variations plus rapides des niveaux dŠeau.
Tout cela engendrait un bruit important que jŠai pu Ąltrer grâce à lŠajout de méthodes itéra-
tives aux techniques existantes. Le résultat permet de calculer les niveaux dŠeau des rivières
pour des variations de hauteurs dŠeau allant jusquŠà 1 mm/s. Cela ouvre des perspectives
intéressantes pour le suivi des crues à lŠaide dŠune instrumentation à bas coût. Le second axe
de mon travail a consisté à étudier la dynamique des inondations avec CYGNSS, sur toute
la bande intertropicale. Une première étude a permis de constater que les variables dérivées
des observations CYGNSS peuvent détecter les eaux de surface, malgré lŠinĆuence dŠautres
paramètres géophysiques: humidité des sols, biomasse, rugosité de la surface réĆéchissante
(eau ou sol), entre autres. Une classiĄcation dynamique de ces variables a permis dŠextraire
une cartographie à 0,1° de résolution spatiale des zones inondées. Une seconde étude visait
ensuite à extraire, à partir des variables CYGNSS, la fraction dŠeau contenue dans chaque
pixel de manière hebdomadaire. Pour cela, jŠai implémenté une régression linéaire dont les
paramètres dépendent de la densité de la biomasse qui atténue le signal GNSS. Les résultats
montrent des dynamiques spatiales et temporelles très similaires à plusieurs cartes régionales
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et à GIEMS, tout en pointant certains biais de ce dernier. Les fractions dŠeau CYGNSS
permettent une détection presque exhaustive des grandes zones inondées dans la bande in-
tertropicale, et lŠétude de leur dynamique saisonnière.

Mots clés : GNSS-R, CYGNSS, hydrologie, inondations, hauteurs d’eau,
in-situ
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Abstract —

Spatial and temporal variations of the water cycle are still subject to large uncertainties.
Yet, freshwater is essential for life on Earth and human populations, for health, industry
and agriculture. Natural ecosystems also depend on freshwater availability. The interactions
between the energy, water and biogeochemical cycles directly impact the climate. Within the
frame of climate change mitigation, public and environmental policies need reliable estimates
of water stocks and their dynamics. The knowledge of water levels and Ćooded extent are
required, and the latter is currently poorly constrained. It is particularly the case for the
large Amazon and Congo basins, where most remote sensing techniques are limited by dense
tropical forests. The only global maps of surface water extent (e.g. GIEMS) were derived
from passive microwave sensors, and their spatial resolution of 0.25° is too low for many
hydrological applications. For this, the contribution of GNSS reĆectometry (GNSS-R) can
be very useful. GNSS-R is a remote sensing technique that uses L-band GNSS signals after
their reĆection on the EarthŠs surface. These signals dedicated to positioning penetrate well
the vegetation layers. The reĆected signals are particularly sensitive to the presence of water
bodies. Hydrological applications include both the monitoring of water levels at local scale,
and the detection of large Ćooded areas in tropical forests. The latter was made possible
by the launch of a spaceborne GNSS-R mission named CYGNSS in 2016, which collects nu-
merous observations over the intertropical band. The diferent hydrological applications and
spatial scales have been the focus of my thesis work. First, I studied water level on rivers
monitored by in-situ GNSS-R. Existing methods were developed for oceanic case studies, and
they are limited over rivers due to noisier measurements, a smaller number of GNSS satellites
in visibility, as well as faster water level variations. All this generated a lot of noise that I was
able to Ąlter out by adding iterative methods to the existing techniques. The result allows to
compute river water levels with variations of the reĆecting surface up to 1 mm/s. The perspec-
tives are interesting for monitoring Ćash Ćoods using low cost instrumentation. The second
axis of my work consisted in studying Ćood dynamics over the whole intertropical band with
CYGNSS. A Ąrst study showed that the CYGNSS-derived parameters detect surface water,
despite the inĆuence of other geophysical parameters: soil moisture, biomass, soil or water
roughness, among others. A dynamic classiĄcation of these variables was performed to ex-
tract a 0.1° spatial resolution static map of Ćooded areas. A second study aimed at extracting
weekly water fractions in each pixel from CYGNSS parameters. For this, I implemented a
linear regression whose parameters depend on the biomass density (which attenuates GNSS
signals). The results show spatial and temporal dynamics very similar to regional reference
maps and GIEMS, while pointing out some biases of the latter. CYGNSS water fractions
allow an almost exhaustive detection of large Ćooded areas in the intertropical band, and the
study of their seasonal dynamics.

Keywords: GNSS-R, CYGNSS, hydrology, floods, water heights, in-situ
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Introduction générale

La ressource en eau est essentielle à la vie sur Terre ainsi quŠau développement des écosystèmes
naturels et des activités humaines. Elle dŠune importance capitale pour la consommation di-
recte des ménages, les usages industriels et lŠagriculture (Abbott et al., 2019). Les stocks
dŠeaux de surface et les aquifères conditionnent la croissance de la végétation et la distribu-
tion des espèces de faune et de Ćore sur les surfaces terrestres (Junk et al., 2006). Surtout,
lŠinĆuence du cycle de lŠeau sur le climat est énorme (Chahine, 1992). Les intéractions con-
stantes entre les grands cycles énergétique, hydrologique et biogéochimiques sont essentielles
pour mieux comprendre le changement climatique. En particulier, les zones humides jouent
un rôle essentiel dans les émissions mondiales de gaz à efet de serre

La végétation et les sols captent du dioxyde de carbone (CO2) de lŠatmosphère, notam-
ment via la photosynthèse, ce que lŠon appelle le puits de carbone continental. Cette pompe à
carbone a jusquŠà présent suivi lŠaugmentation des émissions et concentrations de CO2, perme-
ttant de réguler en partie leur hausse exponentielle (Friedlingstein et al., 2020; Walker et al.,
2021). En revanche, son eicacité pourrait être réduite dans le futur sous lŠefet dŠun stress
hydrique plus important (Humphrey et al., 2018). De plus, les zones humides et inondées
sont la première source dŠémissions de méthane (CH4), qui est un gaz à efet de serre beau-
coup plus puissant que le CO2 (Saunois et al., 2020). LŠassèchement des tourbières, les feux
de forêt, la mortalité plus importante de la végétation et le dégel du pergélisol sont autant
de conséquences potentielles du réchaufement climatique, qui augmenteraient les émissions
naturelles de CH4 et de CO2. Ces mécanismes cont couramment appelés des boucles de

rétroaction positives, et diminuent de fait le budget carbone de lŠhumanité Ąxé par exemple
par les Accords de Paris en 2015 (Hoegh-Guldberg et al., 2018).

Les projections climatiques indiquent une augmentation future des précipitations, et surtout
des extrêmes, à lŠéchelle mondiale (Douville et al., 2021). Cependant, de nombreuses régions
devraient au contraire subir une diminution des précipitations qui, couplées à la hausse des
températures, diminuera les ressources en eau disponibles (Polade et al., 2015; Douville et al.,
2021). Ces régions incluent le bassin méditérranéen, lŠAmérique Centrale, plus globalement
la plupart des tropiques, et même le bassin de lŠAmazone (Almazroui et al., 2020a,b, 2021).
Elles rejoignent des régions dont lŠaccès à lŠeau se voit menacé par la fonte des glaciers, comme
les régions andines de Bolivie et du Pérou. Une meilleure connaissance du cycle de lŠeau, de
ses composantes régionales et de ses interactions avec les cycles biogéochimiques est donc
essentielle pour sŠadapter face au risque dŠaridiĄcation.

Le changement climatique devrait également causer une augmentation de la fréquence et
de lŠintensité des crues extrêmes (Hirabayashi et al., 2013, 2021). Ces évènements font des
dégats humains et matériels très importants, surtout dans les pays du Sud dont le niveau de
vie est plus faible, et qui sont plus exposés aux aléas climatiques. Ces catastrophes deviennent
également de plus en plus fréquentes dans les pays développés. Une adaptation pour créer
des sociétés plus résilientes passe notamment par la connaissance plus approfondie des risques
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climatiques, et par une meilleure prédiction et surveillance des évènements extrêmes (Kreibich
et al., 2022). Dans le domaine de lŠhydrologie, cela passe par un meilleur suivi des variations
du cycle de lŠeau, à des échelles spatiales et temporelles de plus en plus Ąnes.

LŠétude de lŠétendue des inondations, des niveaux et volumes dŠeau, des débits des rivières
et autres variables hydrologiques sŠest longtemps basée sur des réseaux dŠobservations in-
situ. Cependant de nombreux désavantages sont à noter, parmi lesquels un très mauvais
échantillonnage spatial, particulièrement hors des zones développées. De plus, le nombre
de stations de mesure actives a fortement diminué depuis plusieurs décennies (Shiklomanov
et al., 2002). La surveillance du cycle de lŠeau repose donc essentiellement sur lŠutilisation
de la télédétection. Les images et mesures prises par les satellites dŠobservation de la Terre
permettent de détecter et de quantiĄer la présence dŠeau. On peut généralement opposer
deux types de signaux utilisés par ces satellites, selon leur fréquence et donc leur utilité pour
étudier les surfaces terrestres.

Tout dŠabord, il y a les signaux dans les domaines du visible et de lŠinfrarouge (proche
et moyen). Plusieurs satellites permettent dŠobtenir des images optiques avec une résolution
allant de quelques mètres à quelques centaines de mètres, notamment Landsat et MODIS
(Moderate Resolution Imaging Spectroradiometer). Leur avantage principal, outre la résolu-
tion spatiale assez élevée, est la disponibilité de longues séries temporelles pour étudier à la fois
les tendances et la variabilité du cycle de lŠeau (Woodcock et al., 2008; Wulder et al., 2016).
Les satellites Landsat opèrent ainsi depuis 1975, AVHRR (Advanced Very High Resolution

Radiometer) depuis 1981, MODIS depuis 2000, et Sentinel-2 depuis 2015. Leur inconvénient
est la longueur dŠonde du signal étudié, de lŠordre de quelques micromètres maximum, qui est
bloqué par le couvert nuageux ainsi que la végétation, et ne fonctionne pas de nuit. Plusieurs
études récentes ont fourni des détections des eaux de surface à lŠéchelle globale en se basant
sur MODIS (Carroll et al., 2009), ou Landsat (Verpoorter et al., 2014; Yamazaki et al., 2015;
Feng et al., 2016). Le produit de référence fournit des estimations mensuelles depuis 1984,
en se basant sur les archives Landsat (Pekel et al., 2016). Récemment, la nouvelle mission
européenne Sentinel-2 a montré son potentiel pour la cartographie des eaux de surface (Mar-
tinis et al., 2022). Cependant, la limitation intrinsèque de ces produits reste lŠobstruction des
signaux par la végétation qui ne leur permet pas de détecter de nombreuses zone humides, en
particulier dans les grands bassins équatoriaux du Congo et de lŠAmazone.

Pour cela, les signaux micro-ondes (ou ondes radar) sont parfaitement adaptés. Ils perme-
ttent de traverser le couvert nuageux, fonctionnent de nuit, et pénètrent en partie le couvert
végétal. Plusieurs types de données sont disponibles : les mesures passives, captant le signal
émis par la surface de la Terre avec une résolution spatiale très basse (de 25 à 50 km), et les
mesures actives, dont lŠinstrument émet un signal qui sera ensuite réĆéchi par la surface de
la Terre puis capté par le récepteur. Les systèmes actifs permettent dŠavoir une résolution
spatiale très élevée, de lŠordre de quelques mètres pour les Radars à Synthèse dŠOuverture
(RSO, ou SAR pour lŠacronyme anglais). Ils ont donc été très utilisés pour étudier les surfaces
continentales. En hydrologie, les SAR permettent dŠobtenir de lŠinformation sur les inonda-
tions indépendamment des conditions climatiques et presque en temps réel (Pierdicca et al.,
2013; Westerhof et al., 2013; Martinis et al., 2015a; Twele et al., 2016; Chini et al., 2017). La



Introduction générale 3

pénétration des couverts végétaux les plus denses est cependant mauvaise pour la plupart des
capteurs, sauf ceux fonctionnant en bande L, assez rares. Ce manque de données ainsi que la
variabilité de la rétrodifusion SAR font que ces données ont été utilisées pour cartographier
les inondations à lŠéchelle locale ou régionale, et très peu en global. Quelques études utilisent
la complémentarité entre le SAR et les images optiques Martinis et al. (2022), mais restent
limitées dans les zones de végétation dense. De plus, le SAR nŠa jamais permis de produire
de longues séries temporelles pour dépasser la variabilité interannuelle du cycle hydrologique.

Finalement, les radiomètres dans les micro-ondes représentent les systèmes les mieux
à même de cartographier les variations spatiotemporelles des inondations. Ils ont permis
dŠestimer des produits globaux, comme le Global Inundation Extent from Multi-Satellite
(GIEMS, Prigent et al. (2007, 2020)) fournissant des estimations mensuelles de fractions dŠeau
depuis 1992. Sa résolution spatiale est très basse (0.25°), car limitée par celle des capteurs
passifs utilisés dans le produit. Il y a donc un vrai manque, à lŠheure actuelle, de connaissance
sur la dynamique des inondations dans les grands bassins tropicaux, notamment le Congo et
lŠAmazone. LŠenjeu est de proposer des estimation dŠétendue des eaux de surface avec une
résolution spatiale plus élevée que GIEMS, permettant dŠétudier les variations interannuelles
du cycle hydrologique, et fournissant de lŠinformation sur les forêts tropicales inondées.

Dans le cadre de cette thèse, mon approche a consisté à développer le potentiel pour
lŠhydrologie dŠune nouvelle technique de télédétection, la RéĆectométrie GNSS (GNSS-R). Le
principe du GNSS-R repose sur lŠutilisation des signaux émis par les satellites GNSS (Global

Navigation Satellite System), qui servent au positionnement des utilisateurs sur Terre. Ces
signaux sont également réĆéchis par la surface de la Terre, et peuvent être acquis par un
récepteur pour étudier les propriétés géophysiques de la surface réĆechissante (Martin-Neira
et al., 1993; Zavorotny et al., 2014). De plus en plus de satellites GNSS sont disponibles, grâce
au développement des constellations chinoise BeiDou, européenne Galileo, et russe GLONASS,
qui sŠajoutent à ceux de la constellation américaine initiale GPS (Global Positioning System).
Le GNSS-R possède de multiples applications. Sur les océans, il est possible dŠestimer la
hauteur dŠeau (Martin-Neira et al., 1993; Larson et al., 2013a; Roussel et al., 2015) et la
hauteur signiĄcative des vagues, permettant de calculer la vitesse du vent (Foti et al., 2015;
Clarizia and Ruf, 2016). Sur les continents, les applications majeures sont lŠhumidité des
sols (Larson et al., 2008a; Rodriguez-Alvarez et al., 2009; Chew et al., 2016), la mesure des
épaisseurs de neige (Larson et al., 2009b; Rodriguez-Alvarez et al., 2012), ou encore lŠétude
de la biomasse (Carreno-Luengo et al., 2020) et la hauteur de la végétation (Munoz-Martin
et al., 2022). Le cas de lŠhydrologie est traité à part ci-dessous.

LŠune des caractéristiques intéressantes du GNSS-R pour lŠhydrologie, cŠest la possibilité
de réaliser des acquisitions in-situ à lŠaide dŠune antenna géodésique simple (Kavak et al.,
1998; Larson et al., 2008a), ou alors des applications à lŠéchelle régionale et globale avec des
récepteurs embarqués respectivement sur un avion (Cardellach et al., 2011) ou un satellite
(Ruf et al., 2016). A lŠéchelle locale, les signaux GNSS réĆéchis peuvent être utilisés pour
calculer les niveaux dŠeau. Ceci a particulièrement été étudié en milieu côtier sur les cycles
de marée, avec des techniques plus (Roussel et al., 2015) ou moins (Larson et al., 2013a)
sophistiquées. Les applications sur les eaux continentales ont été beaucoup plus réduites, car
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plus complexes. CŠest lŠobjet de la première partie de ma thèse, avec un cas dŠétude sur les
marées asymmétriques et le mascaret dans la Garonne. Les résultats montrent la possibilité
dŠétudier des changements soudains et de grande amplitude du niveau dŠeau par GNSS-R, et
ont été publiés dans le journal Remote Sensing (voir le Chapitre 3).

A lŠéchelle globale, la visibilité du GNSS-R a bénéĄcié du lancement dŠune mission spatiale
par la NASA Ąn 2016. Cyclone GNSS (CYGNSS) représente une constellation de 8 micro-
satellites dédiés, comme son nom lŠindique, à lŠétude des cyclones tropicaux (Ruf et al., 2016).
Cependant, cette mission fournit une grande quantité de données en milieu continental, dans
la bande inter-tropicale (±38° de latitude). La combinaison de 8 satellites permet également
de réaliser un grand nombre de mesures. Il est donc logique que ces données aient été utilisées
pour estimer lŠhumidité des sols (Chew et al., 2018; Al-Khaldi et al., 2019; Clarizia et al., 2019;
Chew and Small, 2020a), la végétation (Carreno-Luengo et al., 2020), et bien sur pour chercher
à détecter la présence dŠeau.

Comme je lŠai expliqué précédemment, lŠestimation de lŠétendue des inondations dans
les grands bassins tropicaux est actuellement très mal contrainte. Il se trouve que CYGNSS
possède la capacité de détecter les eaux de surface (Chew et al., 2018; Wan et al., 2019; Gerlein-
Safdi et al., 2021; Al-Khaldi et al., 2021a), grâce aux propriété de cohérence et à la réĆexion
quasi-spéculaire du signal sur les surfaces dŠeau lisses (Voronovich and Zavorotny, 2018; Loria
et al., 2020). La résolution spatiale de ces observations permet de détecter des objets dŠeau de
lŠordre de quelques centaines de mètres (Camps, 2019; Camps and Munoz-Martin, 2020), voire
inférieurs à 100 m en utilisant les (rares) données complexes disponibles (Li et al., 2021, 2022).
Cependant, la rugosité des sols et des surface dŠeau, la végétation, ou encore lŠhumidité des
sols contribuent à des variations du signal GNSS réĆéchi. Les études régionales permettent
de sŠafranchir des diférences entre les régimes climatiques et les paramètres géophysiques au
niveau global, où les travaux sont bien moins nombreux.

Le coeur de mon travail de thèse représente le développement dŠune chaîne de traitement
des données CYGNSS, permettant la détection des surfaces inondées sur toute la couverture
spatiale de la mission. Ce travail a fait lŠobjet dŠune publication récente dans Remote Sensing

of Environment (Chapitre 4). Il y est montré que malgré lŠinĆuence de tous les parame-
tres géophysiques, et notamment lŠatténuation des signaux réĆéchis par le couvert végétal,
CYGNSS peut détecter des inondations sur tous les types de climats rencontrés dans la zone
inter-tropicale. Le compromis trouvé entre la résolution spatiale (0.1°) et la résolution tem-
porelle (7 jours) de nos estimations est très intéressant en comparaison avec les produits
existants tels GIEMS. Ce travail se poursuit toujours, avec pour objectif de fournir une es-
timation des fractions dŠeau dans chaque pixel de 0.1°, et donc une estimation de lŠétendue
et des dynamiques saisonnières des inondations. Cela donnera bientôt lieu a une troisième
publication, dont les principaux résultats sont présentés dans le Chapitre 5. A terme, ces
estimations pourront être étendues sur toute la période dŠacquisitions de CYGNSS, courant
depuis 2017. Elles pourraient avoir un intérêt majeur pour la communauté scientiĄque, et
notamment permettre:

• La comparaison avec GIEMS, qui ne dispose actuellement dŠaucune base de validation
globale, aĄn de montrer les améliorations à fournir sur les deux produits.
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• La mise à disposition dŠestimation plus précises de fractions dŠeau depuis 2017, pour
étudier les mécanismes hydrologiques des bassins tropicaux, et notamment leur saison-
nalité et leur variabilité interannuelle (quand une période de temps suisamment longue
sera disponible).

• La constitution dŠun jeu de données complémentaire des produits optiques et de GIEMS,
utilisable comme base de validation pour les futures missions spatiales dédiées à lŠhydrologie.

Le structure de ce manuscrit est organisée de la manière suivante. Le Chapitre 1 présente
un état de lŠart sur le cycle de lŠeau et les cycles biogéochimiques, pour fournir au lecteur
les clés de la compréhension de ce travail. Sont ensuite présentées les diférentes techniques
de télédétection permettant dŠétudier les eaux de surface. Le Chapitre 2 introduit les no-
tions de base sur le GNSS, la réĆectométrie GNSS, ainsi que les techniques de mesure, les
instruments et les applications de cette dernière. Le Chapitre 3 présente les résultats obtenus
sur la détermination des niveaux dŠeau lors de marées asymmétriques dans la Garonne, au
moyen dŠune station GNSS géodésique installée sur la berge, qui ont été publiés dans Remote

Sensing. Le Chapitre 4 présente lŠétude des observations CYGNSS appliquées à lŠhydrologie,
pour détecter les zones afectées par des inondations, qui a fait lŠobjet dŠune publication dans
Remote Sensing of Environment. Le Chapitre 5 prolonge ces résultats en montrant la pos-
sibilité dŠestimer, sur une base spatio-temporelle de 0,1° et 7 jours, des fractions dŠeau dans
chaque pixel grâce à CYGNSS. Cela fera lŠobjet dŠune troisième publication prochainement.
EnĄn, la conclusion et les perspectives de mon travail de thèse clôtureront ce manuscrit.





General introduction

Freshwater is essential to life on Earth, to the development of natural ecosystems and human
activities. It is used for household consumption, industry and agriculture (Abbott et al., 2019).
Surface water and groundwater determine the vegetation growth and the distribution of fauna
and Ćora species on land (Junk et al., 2006). Furthermore, the water cycle has a huge inĆuence
on climate (Chahine, 1992), and constantly interacts with the energy and biogeochemical
cycles. In particular, wetlands play a key role in global greenhouse gas emissions.

Vegetation and soils capture carbon dioxide (CO2) from the atmosphere, particularly
through photosynthesis. This mechanism is called the land carbon sink and partially mit-
igates the exponential growth of CO2 emissions and concentrations. Its efectiveness could
be reduced in the future due to water stress (Humphrey et al., 2018). In addition, wetlands
and Ćooded areas are the primary source of methane (CH4) emissions, which is a much more
powerful greenhouse gas than CO2 (Saunois et al., 2020). Drying peatland, Ąres, increased
vegetation mortality and thawing permafrost are all potential consequences of climate change,
that would increase in return natural CH4 and CO2 emissions. These mechanisms are com-
monly referred to as positive feedbacks. Their combined efect decreases the remaining carbon
budget set by the Paris Agreement in 2015 for example.

Climate projections indicate a future increase in global precipitation, and especially in
extremes (Douville et al., 2021). However, many regions are expected to experience drying
due to decreasing regional precipitation coupled with increasing temperatures (Polade et al.,
2015; Douville et al., 2021). These regions include the Mediterranean Basin, Central America,
most of the subtropics, and even the Amazon Basin (Almazroui et al., 2020a,b, 2021). In
other regions such as the Altiplano, the access to freshwater is threatened by melting glaciers.
A better monitoring of the water cycle, its regional components and its interactions with
biogeochemical cycles is therefore essential to mitigate the expected aridiĄcation.

Climate change is also expected to increase the frequency and intensity of extreme Ćoods
(Hirabayashi et al., 2013, 2021). They cause very important human and material damages,
especially in the Southern countries which are more exposed to climatic hazards. These
disasters now become more and more frequent in Northern developed countries. Adaptation
to create more resilient societies requires a better prediction and monitoring of extreme events
(Kreibich et al., 2022). The variations of the water cycle should be monitored accurately at
Ąne spatial and temporal scales.

The study of inundation extent, water levels and volumes, river Ćows and other hydrolog-
ical variables has long been based on ground station networks. There are many disadvantages
including a very poor spatial sampling, especially in remote regions. In addition, the num-
ber of active stations has strongly decreased for decades (Shiklomanov et al., 2002). The
monitoring of the water cycle therefore relies on the use of remote sensing. The images and
measurements taken by Earth observation satellites make it possible to detect and quan-
tify the presence of water. These satellites use two major types of signals to monitor land

7
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and ocean surfaces, which are further distinguished depending on their frequency and their
usefulness for land remote sensing.

There are Ąrst signals in the visible and infrared domains. Several satellites produce optical
images of the Earth surface with a resolution ranging from a few meters to a few hundred
meters, including Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer). In
addition to the high spatial resolution, their main advantage is the availability of long time
series to study both the climatic trends and the variability of the water cycle (Woodcock
et al., 2008; Wulder et al., 2016). Landsat satellites have been operating since 1975, AVHRR
(Advanced Very High Resolution Radiometer) since 1981, MODIS since 2000, and Sentinel-
2 since 2015. Their drawback is the wavelength of the signal of a few micrometers at the
most. They do not penetrate neither the cloud cover nor the vegetation, and do not operate
by night. Several studies estimated global surface water distribution and extent based on
MODIS (Carroll et al., 2009) or Landsat (Verpoorter et al., 2014; Yamazaki et al., 2015; Feng
et al., 2016). The reference product provides monthly estimates at 30 m spatial resolution
since 1984, based on the Landsat archive (Pekel et al., 2016). However, these estimations
are inherently limited over tropical wetlands as the vegetation obscures Ćoods for visible and
infrared signals.

For this, microwave signals are well suited. They penetrate cloud cover, operate by night,
and partially penetrate the vegetation. The passive and active measurements are distin-
guished. Passive observations captures the signal emitted by the EarthŠs surface with a very
low spatial resolution (25 to 50 km), while active sensors emit a signal that is further reĆected
by the EarthŠs surface and captured by the receiver. Active systems have a very high spatial
resolution, down to one meter for some Synthetic Aperture Radars (SAR). For hydrology,
SAR can detect Ćoods under all weather conditions and in near real time (Pierdicca et al.,
2013; Westerhof et al., 2013; Martinis et al., 2015a; Twele et al., 2016; Chini et al., 2017).
However, the penetration of the densest canopies is poor for most sensors, except for the
few L-band SAR. This lack of data as well as the variability of the backscatter made SAR
images mostly used to map inundations at the local or regional scale. Few studies used the
complementary SAR and optical images (Martinis et al., 2022), and they remain limited in
densely forested areas. Furthermore, SAR has never been able to produce long time series of
surface water extent to overcome the interannual variability of the hydrological cycle.

Finally, microwave radiometers represent the best systems for mapping spatio-temporal
Ćood dynamics. They have been used in global estimations such as the Global Inundation
Extent from Multi-Satellite (GIEMS, Prigent et al. (2007, 2020)) providing monthly water
fraction estimates since 1992. Its spatial resolution is very low (0.25°), as it is limited by
the passive sensors used in the product. The dynamics of Ćoods are thus poorly monitored
for now in large tropical basins, including the Congo and the Amazon. The challenge is to
propose surface water extent estimates with a higher spatial resolution than GIEMS, to study
interannual variations of the hydrological cycle in Ćooded tropical forests.

During my PhD, I studied the potential of GNSS-ReĆectometry (GNSS-R) for hydrology.
GNSS-R is a new remote sensing technique based on the use of GNSS (Global Navigation

Satellite System) signals, primarily dedicated to positioning on Earth. These signals are
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also reĆected by the EarthŠs surface, and can then be acquired by a receiver to study the
geophysical properties of the reĆecting surface (Martin-Neira et al., 1993; Zavorotny et al.,
2014). An increasing number of GNSS satellites are available, due to the development of
the Chinese BeiDou, European Galileo, and Russian GLONASS constellations, in addition to
the original US GPS (Global Positioning System). GNSS-R has multiple applications. Over
the ocean, it is possible to estimate the water level (Martin-Neira et al., 1993; Larson et al.,
2013a; Roussel et al., 2015) and the signiĄcant wave height, related to wind speed (Foti et al.,
2015; Clarizia and Ruf, 2016). Over land, the major applications are soil moisture (Larson
et al., 2008a; Rodriguez-Alvarez et al., 2009; Chew et al., 2016), snow depth (Larson et al.,
2009b; Rodriguez-Alvarez et al., 2012), biomass (Carreno-Luengo et al., 2020) and vegetation
height (Munoz-Martin et al., 2022). Other hydrological applications are presented below.

GNSS-R is possible at local scale with in-situ acquisitions using a geodetic antenna (Lar-
son et al., 2008b), or support regional and global studies with receivers onboard aircrafts
(Cardellach et al., 2011) or satellites (Ruf et al., 2016), respectively. Both spatial scales are
particularly interesting for hydrology. At the local scale, the reĆected GNSS signals can be
used to calculate water levels. It was particularly studied in coastal environments, with more
(Roussel et al., 2015) or less (Larson et al., 2013a) accurate techniques. Applications over
inland water include lake level (Holden and Larson, 2021), but the monitoring of rivers was
very limited up to now due to the more complex data acquisition and processing techniques.
During the Ąrst part of my PhD, I studied asymmetric tides and tidal bores in the Garonne
River using GNSS-R in-situ measurements. The results demonstrated the possibility to re-
trieve sudden and large amplitude changes in the water levels, and were published in Remote

Sensing (see Chapter 3).

At global scale, GNSS-R beneĄted from the launch of a space mission by NASA in De-
cember 2016. The Cyclone GNSS (CYGNSS) is a constellation of 8 micro-satellites dedicated
to study tropical cyclones (Ruf et al., 2016). This mission still provides a large amount of
data over land and in the inter-tropical band (±38° latitude), due to the combination of 8
satellites. These observations were logically used to estimate soil moisture (Chew et al., 2018;
Al-Khaldi et al., 2019; Clarizia et al., 2019; Chew and Small, 2020a), vegetation (Carreno-
Luengo et al., 2020), and of course to detect the presence of water. This speciĄc application
is further introduced in the next paragraph as it constitutes the main state-of-the-art of my
thesis work.

As it was already stated, the estimation of inundation extent in large tropical basins is
currently poorly constrained. CYGNSS observations can detect surface water (Chew et al.,
2018; Wan et al., 2019; Gerlein-Safdi et al., 2021; Al-Khaldi et al., 2021a), due to the quasi-
specular reĆection of GNSS signals on smooth water surfaces (Voronovich and Zavorotny,
2018; Loria et al., 2020). The spatial resolution of these observations permits to detect water
bodies of a few hundred meters (Camps, 2019; Camps and Munoz-Martin, 2020), and below
100 m using the sparse complex data available (Li et al., 2021, 2022). However, the coherence
and the power of reĆected GNSS signals show variations depending on geophysical parameters
of the reĆecting surface (soil and water surface roughness, vegetation, and soil moisture). For
this reason, few global studies exist on surface water detection using CYGNSS.



10 General introduction

The core of my PhD work was the development of a CYGNSS data processing chain, to
detect Ćooded areas in the entire spatial coverage of the mission. This work has been recently
published in Remote Sensing of Environment (Chapter 4). It demonstrates that CYGNSS can
detect Ćoods over all the inter-tropical band despite the inĆuence of geophysical parameters,
and in particular the attenuation of the reĆected signals by the vegetation. The compromise
between the spatial (0.1°) and the temporal (7 days) resolutions of our estimations is very
interesting compared to existing products such as GIEMS. This work is still in progress, with
the objective of estimating the fraction of water contained in each 0.1° pixel with a weekly
time sampling. This will soon lead to a third publication, with the main results presented in
Chapter 5. Eventually, these estimates will be extended over the entire CYGNSS acquisition
period, since 2017. They could be of great interest for the hydrological community for several
reasons:

• Intercomparison with GIEMS in order to correct its biases and Ąnally improve both
products.

• Provision of more accurate water fraction estimations since 2017 to study tropical wet-
land hydrology, in particular its spatial distribution, seasonality and interannual vari-
ability (with a suiciently long time series).

• Constitution of a dataset complementary to optical products and GIEMS, to compare
with the future space missions dedicated to hydrology (i.e. SWOT, NISAR and Hy-
droGNSS).

This manuscript is organized as follows. Chapter 1 presents a state-of-the-art on the water
biogeochemical cycles, to provide the keys to understand this work. The diferent remote
sensing techniques used to study surface water are then presented and discussed. Chapter 2
introduces the concepts of GNSS, GNSS reĆectometry, as well as the measurement techniques,
instruments and applications of the latter. Chapter 3 presents the results obtained on the
determination of water levels during asymmetric tides in the Garonne River using a geodetic
GNSS station, which were published in Remote Sensing. Chapter 4 presents the analysis of
CYGNSS observations for detecting inundated areas, which was published in Remote Sensing

of Environment. Chapter 5 extends these results by presenting a 0.1°, 7-day spatio-temporal
estimation of the fraction of water based on CYGNSS. This will feed a third publication soon.
Finally, I will present the general conclusions and the perspectives of my work.
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1.1 The water cycle

The water or hydrological cycle is essential to life and is also closely linked to the climate
system and its changes (Chahine, 1992). It encompasses all the water stored in the oceans,
atmosphere, land and ice sheets, as well as their interactions. This section introduces the
basis of land hydrology, to assess its requirements and pave the way to further analysis. It
describes in particular the interactions between freshwater on land, and water vapour in the
atmosphere. For the purpose of this manuscript, the ocean and cryosphere components of
the water cycle are left aside and only their principal interactions with land hydrology are
mentioned.

1.1.1 Components of the water cycle

Freshwater is one of the most essential natural resources. It represents less than 2% of all the
water on Earth, and 96% of freshwater reserves are stored in ice sheets, glaciers and snow.
The remaining 4% represent a total volume of 835,000 km3, which are accessible for essential
needs of human societies and ecosystems functioning (Abbott et al., 2019). The surface reser-
voirs (lakes, rivers and wetlands) store only a quarter of this volume, the rest being contained
in groundwater. Freshwater supports human development, water consumption, cropland irri-
gation, industrial use, among other anthropogenic processes. The use of freshwater resources
by humans comports direct surface water withdrawals (called blue water), soil moisture use by
livestock, agriculture and forestry (green water), and water polluted by industrial processes
(grey water). Together, these three categories represent an anthropogenic water consumption
of ∼24,000 km3 yr−1, being half of yearly river discharge or double of yearly groundwater
recharge (Abbott et al., 2019).

Freshwater is also essential to the functioning of many natural ecosystems, in particular
wetlands, which are impacted in several ways by the deĄcit in moisture or standing water:
destruction of natural habitats and loss of biodiversity (Junk et al., 2006), feedbacks to
regional and global biogeochemical cycles (Jung et al., 2017; Humphrey et al., 2018), and
emergence and propagation of infectious diseases (Kouadio et al., 2012; Suk et al., 2020),
among others. An overview of the water cycle is presented in Figure 1.1, with both the major
water pools on Earth (a) and the major Ćuxes between all components of the water cycle (b).

The water evaporated over the oceanic and land surfaces supply atmospheric moisture,
which is redistributed as precipitation on the Earth surface. In Figure 1.1, a strong atmo-
spheric moisture transport from the oceans to land is highlighted, contributing in a large
fraction (∼ 40%) of land precipitation. This moisture redistribution compensates the water
Ćuxes from land to ocean, primarily supplied by river discharge. Another important source of
moisture for land precipitation is terrestrial evapotranspiration (ET). It is the sum of three
components: the evaporation from soil and open water (E), the transpiration of the vegetation
(T), and the vaporization of rainfall intercepted by the vegetation (I):

ET = E + T + I (1.1)
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Figure 1.1: Overview of the global hydrological cycle, from Abbott et al. (2019). (a) major
water pools on Earth (expressed in 103 km3 yr−1), and (b) major water Ćuxes between the
diferent components of the water cycle. The uncertainties are given in percentage of the
water pool or Ćux considered.

Evapotranspiration therefore represents the total transfer of moisture from land to the at-
mosphere, through the interfaces of soils and vegetation. Precipitation is the response to
atmospheric moisture, and supply soil moisture, groundwater recharge and river streamĆow.
They drive the seasonality and amount of permanent or temporary surface water storage in
lakes and Ćoodplains. The variations in precipitation therefore induce a large range of re-
sponses from the water cycle over land, with water scarcity as an extreme response to severe
droughts or water deĄcits (Schewe et al., 2014).

Precipitation at the global and regional scales are constrained by the Earth energy bal-
ance, and moisture Ćuxes in the atmosphere and at the surface. At global scale, thermody-
namic efects drive the mean annual precipitation, through the impacts of radiative forcing
by greenhouse gases (GHGs) and anthropogenic aerosols on the Earth energy balance. This
is described by the Clausius-Clapeyron relationship applied to the saturation water vapor
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pressure (es), which is written as follow:

d es
dT

=
Lv es
R T 2

(1.2)

where T is the temperature in kelvins (K), Lv is the speciĄc latent heat of evaporation of
water in J·mol−1, and R is the gas constant in J·mol−1·K−1. According to this relation, the
atmospheric moisture can increase by ∼7% per 1°C of warming. The radiative forcing and the
resulting climate warming has several impacts according to the Clausius-Clapeyron relation.
First, there is an increase of atmospheric evaporative demand, leading to water stress for soils
and vegetation in case of limited soil moisture. Then, mean annual precipitation is likely
to increase at the rate of 1-3% per 1°C according to the IPCC AR6 report (Douville et al.,
2021). This include fast atmospheric adjustments to radiative forcing by GHGs and aerosols,
and a slower but more robust response to surface temperature warming and vegetation only
estimated to 2-3% ◦C−1 (Andrews et al., 2010; Cao et al., 2012). As the mean increase
of precipitation is largely lower than 7% ◦C−1, the excess of atmospheric water vapour is
likely to increase the intensity of extreme rainfall events close to the rate predicted by the
Clausius-Clapeyron relation (Douville et al., 2021).

At the regional scale, the global increase in precipitation amounts due to thermodynamic
efect is most of the times strengthened and sometimes tempered by atmospheric moisture
transport. It was shown that at a spatial scale of more than 3000-4000 km, the precipitation
trends follow the global mean, whereas for lower spatial scales, they digress from it (Dagan
et al., 2019; Dagan and Stier, 2020). These regional patterns mostly depend on water supplied
by dynamic moisture transport in the atmosphere (Dagan et al., 2019). The regional moisture
transport is one of the drivers of the intensiĄcation of wet events under global warming. On
the contrary, the atmospheric evaporative demand is stronger in a warmer climate due to the
increase in vapour pressure deĄcit (VPD) (Schef and Frierson, 2014; Vicente-Serrano et al.,
2018), and is one of the drivers of land aridiĄcation along with the precipitation (Schef and
Frierson, 2015). The intensiĄcation of wet and dry events in a warming climate will likely
exacerbate regional droughts and heavy rainfalls, therefore increasing both the contrasting
risks of aridiĄcation and Ćoods at regional scale (Hirabayashi et al., 2013, 2021). The next
section deeper analyzes the observed changes in the water cycle in the Anthropocene, and the
future expected trends.

1.1.2 Projected water cycle changes

The IPCC AR5 and AR6 reports, modeling results from the phases 5 and 6 of Coupled Model
Intercomparison Project (CMIP5 and CMIP6, respectively), as well as numerous studies,
show that an intensiĄcation of the water cycle is expected as response to climate change. The
total precipitation (P), evaporation (E), runof, and water availability (P-E) are expected
to increase regardless of the Shared Socioeconomic Pathway (SSP) considered. The CMIP6
simulations predict an average increase of precipitation for 2081-2100 relative to 1995-2014, by
2.4% in the SSP1-1.9 which is the low-emission scenario, and 8.3% in the SSP5-8.5 which is the
high-emission scenario (Douville et al., 2021). The projected increase in atmospheric moisture
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is close to the rate predicted by the Clausius-Clapeyron relation (7% ◦C−1 of warming).

Regionally, CMIP6 models predict an increase of precipitation in the tropics and high
latitudes, and lower precipitation in the subtropical drylands (see Figure 1.2). According
to global simulations and regional studies (Almazroui et al., 2020a,b, 2021; Douville et al.,
2021), annual mean rainfall is likely to increase in Southeast and East Asia, boreal high
latitudes, most of North America, Central and East Africa, and Southeast South America.
The risk of Ćoods in these areas is likely to increase according to CMIP5 and CMIP6 models
(Hirabayashi et al., 2013, 2021). On the contrary, annual mean rainfall is expected to decrease
in South, North and West Africa, Amazon and Central America, Southwest Australia and the
Mediterranean region, with a high risk of aridiĄcation in semi-arid regions. In most of the
drying areas, all hydrological variables will also exhibit a seasonal cycle of larger amplitude.
Extreme precipitations are expected to strengthen worldwide at a rate close to 7% ◦C−1

of warming discussed in Section 1.1.1. This is constant regardless of the emission scenarios
(Pendergrass et al., 2015), as shown in the right panel of Figure 1.3. However, the frequency
of rainfall is likely to experience heterogeneous regional changes, with more (respectively
fewer) dry days in regions where the mean precipitation is expected to decrease (respectively

Figure 1.2: Projection of relative changes in mean seasonal precipitation, for 2081-2100 rela-
tive to 1995-2014, from Douville et al. (2021). The precipitation prediction is the average of
the CMIP6 models predictions forced in the SSP2-4.5 scenario. The overlay used to assess
uncertainties indicates whether ≥80% of the predictions agree on the sign of change.
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increase, see left panel in Figure 1.3). A larger number of dry days is expected to dominate
the negative trend and the interannual variability of annual precipitation totals over most of
the subtropics shown in Figure 1.2 (Polade et al., 2015).

In response to the intensiĄcation of short-duration extreme rainfall, Ćash-Ćoods are likely

Figure 1.3: Projection of relative changes in daily precipitation statistics, for 2081-2100 rel-
ative to 1995-2014, from Douville et al. (2021). (a,c,e) Changes in the number of dry days
per year, deĄned as days with less than 1 mm of rain. (b,d,f) Changes in daily precipitation
intensity, deĄned as the average total rainfall on wet days. The projections are averaged from
the predictions of CMIP6 models, forced with three SSP scenarios: (a,b) SSP1-2.6, (c,d)
SSP2-4.5, and (e,f) SSP5-8.5. The overlay used to assess uncertainties indicates whether
≥80% of the predictions agree on the sign of change.
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to become more frequent and severe (Hirabayashi et al., 2013; Chan et al., 2016a; Sandvik
et al., 2018; Hirabayashi et al., 2021). Observations are required to validate these model
predictions which are not well constrained at sub-hourly time scale (Chan et al., 2016a). The
persistence of heavier rainfall during the wet season and the increase in total precipitation
are expected to have contrasting impacts, from local to regional scales. More intense rainfall
increase the proportion of water dedicated to runof and surface storage (blue water), at
the expense of a lower inĄltration in soils and water use by the vegetation (green water),
impacting the vegetation productivity and the agriculture (Eekhout et al., 2018). When the
soils are saturated, larger runof and Ćooding risks occur (Yin et al., 2018). The landslide
risk is also expected to grow due to changing precipitation patterns (Gariano and Guzzetti,
2016). Changes are also expected in the groundwater recharge rate, as it highly relies on
nonlinear relationships with the intensity of rainfall (Taylor et al., 2013a). Higher recharge
rate were observed for extreme precipitation (Taylor et al., 2013a,b; Cuthbert et al., 2019),
which are then essential to ofset groundwater depletion in the context of a global groundwater
crisis (Famiglietti, 2014). Indeed, the groundwater use exceeds their recharge in many regions
of the world, mainly due to the extraction of non-renewable water for farming in productive
dryland agricultural areas (Döll et al., 2014; Bierkens and Wada, 2019). Extreme precipitation
could thus help in ensuring water security within the frame of climate change. Nevertheless,
they will especially strengthen natural hazards worldwide and afect the eiciency of risk
management policies (Kreibich et al., 2022).

The cryospheric component of the water cycle is also extremely sensitive to climate change.
As warming is higher in high mountains, the snow cover (Marty et al., 2017) and glacier mass
(Zemp et al., 2019) losses have been important since the 1950s, and even accelerated over
the last two decades (Hugonnet et al., 2021). Both snow cover and glacier mass losses are
consistently attributable to climate change, and will very likely continue in the twenty-Ąrst
century regardless of any emission scenario (Fox-Kemper et al., 2021). This considerably
impacts the regional water cycles in high mountains and at high latitudes. StreamĆows
increase as large glaciers melt, and then decrease when the water stock has lowered due to
glacier mass loss and retreat (Bolch et al., 2010; Huss and Hock, 2018). Climate change also
causes a lower fraction of precipitation falling as snow (except over the colder regions), which
shifts and reduces streamĆow in snowmelt-dependant catchments (Berghuijs et al., 2014).
Permafrost thaw was already observed in the northern and high mountain regions, and is
expected to strengthen in a warming climate, although the uncertainties are high. Thawing
permafrost is likely to modify the regional hydrological processes (Walvoord and Kurylyk,
2016), and to release important CO2 and CH4 stocks through linear and non-linear processes
(Turetsky et al., 2020). As a consequence to scarcer and more extreme precipitation, and to
glacier and permafrost retreats, the river streamĆows are expected to increase in winter and
decrease in summer by 2100, with a global decreasing trend on annual mean (Douville et al.,
2021). An earlier snowmelt due to global warming will also shift in time the peak runof in
snow-dominated river basins (Kang et al., 2016; Dudley et al., 2017).

The soil moisture (SM) projections show a general stronger decline in surface SM (top 10
cm) than in the total SM column (Berg et al., 2017). This is consistent with an increase in
atmospheric evaporative demand, which dries the top-surface layer Ąrst. According to CMIP6
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ensemble simulation results, regions that will experience drying of both surface and total SM
column are mainly located in the subtropical regions (Central America, Mediterranean region,
southern Africa, Southwest Australia), and the Amazonian basin (Cook et al., 2020; Douville
et al., 2021). This corresponds roughly to areas with decreasing precipitation totals by 2100
in Figure 1.2. Other areas including northern high latitudes will experience a drying of the
surface layer only. Overall, more than 40% of land areas are likely to experience enhanced
drying by 2100, even under low emission scenarios (Cook et al., 2020). Drying is a consequence
of lower precipitation, but also provoke a lower evapotranspiration and atmospheric moisture,
contributing as a positive feedback to land aridiĄcation (Berg et al., 2016). Drought duration
will signiĄcantly increase over drying subtropical areas (Ukkola et al., 2020), with a magnitude
emissions-pathway dependent. In these regions, the likelihood of the most extreme droughts
rises by 100% under SSP1-2.6 (low-emission scenario), up to 300% under the high-emission
scenario (SSP5-8.5) (Cook et al., 2020). An increase in drought intensity is also projected in
the tropics, despite the positive trend on annual mean precipitation except over the Amazon.
This is due to the intensiĄcation of the water cycle, with an increasing number of dry days
following more intense rainfall events (Figure 1.3).

The impact of land-use on the entire water cycle needs also to be considered. Deforestation
at large scale causes lower precipitation (Boysen et al., 2020) and higher average runof (Guzha
et al., 2018; Levy et al., 2018), reducing the amount of water stored in the soils, the vegetation
or at the surface. A direct water extraction in rivers reduced streamĆow and caused the
transformation of 139,000 km2 of inland water areas to land from 1985 to 2005 (Donchyts
et al., 2016). It is partially compensated by 95,000 km2 of new artiĄcial reservoirs created for
irrigation or hydropower exploitation. The use of non-renewable water resources and climate
change are expected to reduce groundwater recharge (Wada and Bierkens, 2014), especially
in regions with intense irrigation such as northern India, (Asoka et al., 2017). It is altering
the aquifers that store the largest freshwater resources on Earth, as for example the North
African aquifer (Ramillien et al., 2014).

Due to the increased anthropogenic pressure and climate change, the magnitude and sea-
sonality of surface water storage, runof, and other hydrological-related variables will experi-
ence signiĄcant changes. As human populations grow and migrate, the access to freshwater in
the world could be reduced for many people, exacerbating water scarcity and food insecurity
(Schewe et al., 2014; Hoegh-Guldberg et al., 2018). The industrial, energy and agriculture
sectors are all high consumers of water resources. There is therefore an emerging competition
between food and energy security, called the Şfood-energy-water nexusŤ (DŠOdorico et al.,
2018). In this context, water scarcity already impacts up to 4-billion people (two-thirds of
the current global population) at least one month a year, and half a billion people all year
round (Mekonnen and Hoekstra, 2016). It is essential to predict, in order to mitigate, the
consequences of climate change on the water cycle. Some uncertainties reduce the conĄdence
in long-term predictions of CMIP6 and other Earth System Models (ESMs). It is the case
for the interactions between water cycle and vegetation, which impact the evapotranspiration
and precipitation patterns.
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1.1.3 Interactions of the vegetation with the water cycle in a changing
climate

In the previous section, the divergent regional predictions were highlighted, from drying in
the subtropics and the Amazon, to wetting in the high latitudes and most of the tropics.
Overall, an increased aridiĄcation is expected due to changes in precipitation, streamĆow,
and evapotranspiration patterns. The ambivalent inĆuence of vegetation layers was not fully
described up to now. It is especially essential to better understand the interactions between
vegetation and the water cycle components, within the frame of climate change, in order to
better constrain the Earth System and hydrological models, and to improve the conĄdence in
their predictions. The vegetation is a key obstacle to aridiĄcation, as it favours water uptake
by the soils, and exchanges moisture with the atmosphere through plant respiration, acting
as a positive feedback to land precipitation.

The increase in atmospheric GHGs concentrations and climate change inĆuence the inter-
actions between water cycle and vegetation on several ways. At the leaf level, higher atmo-
spheric CO2 leads to enhanced photosynthesis, so to a higher Water-Use Eiciency (WUE)
(De Kauwe et al., 2013; HatĄeld and Dold, 2019; Lian et al., 2021). WUE is deĄned as
the ratio between the plant, crop or biomass unit carbon uptake (through photosynthesis),
and its water losses through transpiration or evapotranspiration when considering the re-
sponse from the soils (HatĄeld and Dold, 2019). Higher WUE due to rising atmospheric
CO2 concentrations have feedbacks on both the water cycle, and the biogeochemical cycles
(see Section 1.2.1). It could contribute to save water in arid regions afected by precipitation
losses. However, this efect may be ofset by other processes.

Another physiological efect of rising CO2 is the growth of plants and the expansion of
leaves, leading to an increase in plant transpiration (De Kauwe et al., 2013; Ukkola et al.,
2016). While a better WUE saves water, plant growth and leaf expansion increase the wa-
ter use in vegetation layers, therefore decreasing runof and soil moisture. The lengthening
of the growing season is a direct efect of global warming, which increases the yearly evap-
otranspiration of vegetated land surfaces. There is low conĄdence in how these opposite
processes balance each-other, and in what is the net hydrological response to higher atmo-
spheric CO2, although some studies suggest a reduced availability of water. In semi-arid
regions, an increase in plant water use and reduced streamĆows were observed, favoring arid-
iĄcation (Ukkola et al., 2016). In Europe, an increase in WUE from 14% (broadleaf forests)
to 22% (coniferous forests) was found associated with a 5% increase in forest transpiration,
due to the combined efects of larger greenness, evaporative demand and lengthened growing
season (Frank et al., 2015).

Overall, evapotranspiration over land surfaces has consistently been increasing since the
1980s (Zhang et al., 2015, 2016; Zeng et al., 2018). This positive trend has been mainly
attributed to anthropogenic forcing (Dong and Dai, 2017) and comprises interannual and
decadal variability due to climatic events such as El-Niĳo/ Southern Oscillation (ENSO)
(Miralles et al., 2014). At the same time, an increase in the Leaf Area Index (LAI) was found
in most of the world (Zhang et al., 2016; Zhu et al., 2016). The positive trend in greening
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was mainly attributed to CO2 fertilization efect (enhanced photosynthesis with higher CO2

concentrations) in the tropics, and climate change in the high latitudes (Zhu et al., 2016). The
increasing vegetation greenness and transpiration is considered as one of the major factors
of increasing land evapotranspiration, with the rise of atmospheric moisture demand (Zhang
et al., 2015; Wei et al., 2017; Zeng et al., 2018).

The rising atmospheric CO2 concentrations and climate change strongly impact the water
cycle, through an increase of global atmospheric moisture demand, precipitation and evapo-
transpiration. Contrasting trends at the regional scale increase the risks of aridiĄcation and
Ćooding, impact the magnitude and seasonality of river streamĆows, the rate of groundwater
recharge, agriculture and industrial activities. However, changes in the water cycle also inter-
act with the biogeochemical cycles at regional and global scales, through positive or negative
feedbacks to climate change. These interactions are an essential object of study in the frame
of climate change mitigation.

1.2 The biogeochemical cycles

The IPCC AR6 report (Masson-Delmotte et al., 2021) has stated unequivocally that hu-
man activity is responsible for the rise of well-mixed atmospheric greenhouse gases (GHGs)
concentrations since the pre-industrial era, and the resulting climate change. The well-mixed
GHGs - carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - are relatively evenly
distributed at global scale, because their molecules have a quite long steady-state lifetime, at
least several years. The residence times in the atmosphere are on average 9.1 years for CH4

(Section 6.3 in Szopa et al. (2021)), 116 years for N2O (Prather et al., 2015) and from one to
hundred thousands of years for CO2 which has multiple lifetimes, depending on the timescales
of several removal processes (Ciais et al., 2013). Their lifetimes inĆuence the global accumula-
tion and distribution of these GHGs, and the radiative forcing associated. The Global Carbon
Project, established in 2001, publishes reports to assess the budgets of C02 (Friedlingstein
et al., 2020, 2022), CH4 (Saunois et al., 2020) and N2O (Tian et al., 2020). The trends of
natural and anthropogenic sources, sinks and feedbacks related to GHGs accumulation in the
atmosphere are described, and deeply linked to evolutions in the water cycle and wetland
ecosystems.

The cycles of the two GHGs responsible for the major radiative forcing, namely carbon
dioxide and methane, are described in the two following subsections. The current state of
the art is further used to deĄne the CO2 and CH4 budgets, sources and sinks (Friedlingstein
et al., 2020; Saunois et al., 2020; Canadell et al., 2021). In particular, for the purpose of this
manuscript, two interesting processes are described. For the CO2 budget, the importance of
the land sink is highlighted, as well as the dependence of climate-carbon feedback mechanisms
on the water cycle evolution. For the CH4 budget, the large estimated emissions from wetlands
and inland waters with their uncertainties are shown, to highlight the need for a better
understanding of tropical wetland dynamics.
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1.2.1 Carbon dioxide budget and feedbacks

The global CO2 budget (Friedlingstein et al., 2020, 2022) provides yearly estimations of the
Ąve major sources and sinks of CO2, namely the fossil CO2 emissions (EFOS), emissions from
land-use change (ELUC), the growth rate of atmospheric CO2 concentrations (GATM ), and the
ocean and land sinks (SOCEAN and SLAND, respectively). All the terms being independently
estimated, either from observations or modeling processes, the positive and negative CO2

Ćuxes do not balance perfectly. The budget imbalance (BIM) corresponds to the diference
between estimated sources and sinks, and the Ąnal CO2 budget is estimated as:

EFOS + ELUC = SOCEAN + SLAND + GATM + BIM (1.3)

The yearly and cumulative evolution of the carbon budget, with its six terms, is represented
in Figure 1.4. The diference between the red, dashed lines and the total negative Ćuxes
represents the budget imbalance. The atmospheric growth rate in blue is still increasing, up
to the value of 5.1 ± 0.02 GtC·yr−1 on average for the decade 2010-2019 (Friedlingstein et al.,
2020). When combined, the carbon uptake from land (SLAND = 3.4 ± 0.9 GtC·yr−1, ∼31%
of total emissions) and ocean (SOCEAN = 2.5 ± 0.6 GtC·yr−1, ∼23% of total emissions) sinks
barely exceed a half of the combined emissions from anthropogenic activity (EFOS + ELUC =
10.9 ± 0.9 GtC·yr−1). The remaining part is stored in the atmosphere (GATM ), with a small
budget imbalance. All the terms in Equation (1.3) have signiĄcantly increased since the pre-

Figure 1.4: Historical records since 1850 of the carbon sources and sinks described in Equa-
tion (1.3), from Friedlingstein et al. (2022). (a) annual CO2 Ćuxes, (b) cumulative CO2

Ćuxes. The red dashed lines are symmetric to the red lines, which represent the total of
positive Ćuxes (CO2 sources). The diference between the dashed lines and the total negative
Ćuxes (sinks and atmospheric growth) represents the budget imbalance (BIM), which balances
Equation (1.3).
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industrial era except ELUC . Fossil energies are now responsible for 86% of the anthropogenic
CO2 emissions and are still growing at the rate of 3.0% in the 2000s, and 1.2% in the 2010s.
ELUC includes both gross emissions and gross removals (as carbon uptake by the growing new
vegetation as an example) from land-use change, and contributes to the remaining fraction
of anthropogenic CO2 emissions.

The airborne fraction represents the fraction of anthropogenic CO2 emissions which is
stored in the atmosphere every year. It has been quite stable since 1960 around an average
value of 44% (Friedlingstein et al., 2020), with a strong interannual variability due to climatic
events such as ENSO (see Figure 1.4a). Every year CO2 accumulates in the atmosphere,
which is obvious looking at Figure 1.4b. The rate of accumulation depends on the contri-
butions of land and ocean sinks, and the mechanisms of climate-carbon feedbacks. These
feedbacks decrease (positive feedback) or increase (negative feedback) the fraction of emitted
CO2 which is captured by carbon sinks, and therefore directly afect the carbon budget. The
rise of atmospheric CO2 concentration acts as a negative feedback, while the rise of surface
temperatures acts as a positive feedback (Williams et al., 2019). Overall, the stability of
airborne fraction over the last decades implies a growth of both land and ocean CO2 sinks, to
compensate larger emissions (Friedlingstein et al., 2020). Two major contributions of increas-
ing ocean and land uptakes are the bufering capacity of the ocean, and the CO2 fertilization
efect which enhances photosynthesis.

The relationship between cumulative CO2 emissions and the level of warming can be
studied through the Transient Climate Response to cumulative CO2 Emissions (TCRE) (Mac-
Dougall, 2016). TCRE shows a near-constant warming response to cumulative CO2 emissions
on decadal to centennial time scales (Goodwin et al., 2015; MacDougall and Friedlingstein,
2015; Williams et al., 2016; MacDougall et al., 2017). This property is due to the equilibrium
of the radiative forcing per unit mass of CO2, and the carbon and heat uptake by the ocean
(MacDougall and Friedlingstein, 2015; Williams et al., 2016). At interannual time scale, the
strong variations of the land carbon sink (see Figure 1.4a) and feedbacks also cause variations
in TCRE, with low efect on longer climate responses (MacDougall and Friedlingstein, 2015;
Goodwin et al., 2015). At decadal time scales, the climate warming response to cumulative
CO2 emissions remains linear due to the ocean carbon uptake. TCRE has been very useful
to estimate the remaining carbon budget to exceed a certain warming limit - such as the ob-
jective of maximum 1.5 ◦C of global warming in the Paris agreement (Hoegh-Guldberg et al.,
2018; Jones and Friedlingstein, 2020), although its uncertainties remain high (MacDougall
et al., 2017).

The land CO2 sink is deeply linked to carbon uptake from the vegetation through photo-
synthesis. Photosynthesis has increased over the past decades, which is mainly attributed to
a fertilization efect due to the rise of atmospheric CO2 concentrations (Walker et al., 2021).
The increase of atmospheric CO2 therefore clearly represents a negative climate-carbon feed-
back as shown in Figure 1.5a. On the contrary, the sign and magnitude of the feedback
from a warming climate alone are divergent across model outputs, spatially heterogeneous
(Figure 1.5b), and represent a large cause of uncertainty. The high interannual variability
of land sink is mainly responsible for the Ćuctuations of atmospheric CO2 growth rate (see
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Figure 1.4a and Friedlingstein et al. (2020)). This variability is dominated by the response
of climate-sensitive tropical and semi-arid ecosystems to climate variations (Cox et al., 2013;
Piao et al., 2020).

Two key parameters were intensively studied to explain climate-driven variations: the
temperature (Cox et al., 2013; Fang et al., 2017; Jung et al., 2017) and the water availability

Figure 1.5: Attribution of the CO2 Ćuxes between land, ocean and atmosphere to increasing
atmospheric CO2 concentrations and climate efect, from Friedlingstein et al. (2022). The
efect of CO2 only exceeds the contrasting efect of climate only, in particular due to the large
contribution of tropical and boreal forests to the land sink. The climate efect shows high
climate-carbon positive feedback (in red) in regions where negative precipitation trends and
drying are found (see Section 1.1.2 and Figure 1.3).
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(Fang et al., 2017; Jung et al., 2017; Humphrey et al., 2018). The responses to heat and
moisture have a strong interannual variability, due to shifts in climate indexes such as El
Niĳo Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and the Southern Annular
Mode (SAM). For the case of ENSO, El Niĳo events are both warmer and drier, and La Niĳa
cooler and moister. Overall, the contributions of heat and moisture are hard to dissociate
but both are admitted. Jung et al. (2017) used modeling approaches to conclude that the
temporal variability of land - atmosphere CO2 Ćuxes is mostly driven by the Ćuctuations in
temperature, while the availability of water accounts for spatial anomalies. On the contrary,
Humphrey et al. (2018) showed a relationship between the observed changes in terrestrial
water storage (TWS) derived from the GRACE space mission and CO2 growth rate, higher
on drier years. They also concluded that this relationship is independent from the observed
temperatures. The droughts reduce water availability and certainly weaken CO2 uptake by
the vegetation through lower photosynthesis. They also increase forest mortality and wildĄres,
all contributing to a weakening of the land CO2 sink (Phillips et al., 2009; da Silva et al.,
2018; Bennett et al., 2021). During strong El-Niĳo events, the land sink shows a large negative
anomaly, and the airborne fraction consequently increases. Although a decrease of ∼20% on
global burnt areas was observed over the last two decades, CO2 emissions from Ąres will likely
increase in the future in response to global warming (Canadell et al., 2021).

As it was previously discussed in Section 1.1.3, higher atmospheric CO2 and climate
change increase the plant water-use eiciency, leaf expansion and plant growth, and lengthen
the growing season of the vegetation (De Kauwe et al., 2013; Ukkola et al., 2016; Lian et al.,
2021). Although it is not totally understood and comprises large uncertainties, this may
increase the water used by the vegetation in the future (Frank et al., 2015; Ukkola et al.,
2016). With larger droughts and a reduced availability of water, there is a risk of a lower
eiciency of the land CO2 sink at the end of the twenty-Ąrst century due to an increasing
water stress afecting the vegetation productivity (Green et al., 2019). Such an efect would
provoke a rise of the airborne fraction, and higher CO2 accumulation in the atmosphere. This
could afect the linearity of TCRE, reduce the remaining carbon budget to be emitted before
exceeding the 1.5 ◦C or 2 ◦global warming objective, and Ąnally lower the eiciency of climate
change mitigation processes being conducted.

Finally, permafrost (as peatlands) will likely exert positive climate-carbon feedbacks, as
it has already been converted from carbon sink to net source of CO2 (Canadell et al., 2021).
It also represents a large source of CH4 (see Section 1.2.2). The magnitude of the phenomena
is highly uncertain, even within the path of one emission scenario. In particular, there is
low conĄdence on the linearity of permafrost carbon feedbacks due to warming. Abrupt
permafrost thaw could provoke collapsing ground, erosion and landslides, and release as much
CO2 within these processes as projected for gradual thaw emissions (Turetsky et al., 2020).
Overall, the linearity of TCRE and remaining carbon budgets will be afected by permafrost
CO2 feedbacks (MacDougall et al., 2015).

To conclude, the land carbon sink shows variations and impacts the CO2 budget at in-
terannual time scale, and has been stable at longer time scales. Terrestrial climate-carbon
feedbacks will afect either positively or negatively the future climate. The land CO2 sink
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was shown to be strongly dependent on the vegetation productivity, which is driven by water
availability and temperatures. It could be weakened in case of prolonged droughts leading to
water stress, and warming climate. Such parameters also directly afect the methane emissions
from wetlands, which are explored on the following subsection.

1.2.2 Methane budget

Methane (CH4) is a much more powerful GHG than CO2, and is responsible for the second
highest radiative forcing in the atmosphere (Etminan et al., 2016). The CH4 emissions come
from both human activity - mainly fossil energies, agriculture and waste, and biomass burning
- and natural sources like wetlands, inland waters, geological sources, oceans, animals and
wildĄres (Saunois et al., 2020). The major sinks are chemical: 90% of the atmospheric CH4

is removed in the troposphere while reacting with hydroxyl radical (OH), and 5% is removed
in the stratosphere through several reactions. The resulting 5% sink is from land uptake
by microbial activity (Saunois et al., 2020). The CH4 emissions have nearly doubled since
the pre-industrial era and this rise is mostly driven by anthropogenic emissions, resulting in
a continuously positive growing rate of atmospheric CH4. Still, large uncertainties exist in
the partition of the emissions, mainly from natural sources, due to discrepancies between the
top-down estimates based on atmospheric inversion, and the bottom-up estimates based on
the upscaling of measurements and inventories. For now, bottom-up estimates are always
larger than top-down estimates, the latter being constrained by consistent measurements of
atmospheric CH4 concentrations. There is particularly a consequent lack of quantiĄcation
and partition between the various natural sources of methane (Canadell et al., 2021).

Figure 1.6 represents the global methane budget for 2008-2017, as published in the IPCC
AR6 report (Canadell et al., 2021) close to the budget from Saunois et al. (2020). The values in
Figure 1.6 are the minimum-maximum ranges in bottom-up model estimates, to decompose
the several natural and anthropogenic sources. Both top-down estimates and bottom-up
average estimates are given in the IPCC AR6 report (Table 5.2 in Canadell et al. (2021)).
The anthropogenic part of total CH4 emissions vary between 49% (bottom-up) and 62% (top-
down), the former likely overestimating the natural CH4 sources (Saunois et al., 2020). They
are dominated by agriculture and waste management, of which livestock production form a
large part due to enteric fermentation and manure. It represented on average 109·Tg yr−1

in the 2008-2017 decade (∼30% of anthropogenic emissions), in a rising trend inferred to the
augmentation of total animal number. LandĄll and waste (18% of anthropogenic emissions),
rice cultivation and biomass burning / biofuels (5% each) also contribute to the growing
atmospheric CH4. Finally, the fossil fuels represent ∼32% of all anthropogenic CH4 emissions
and are on an rising trend.

Wetland ecosystems represent the single largest source of methane, from 149 Tg·yr−1 to
180 Tg·yr−1 and from 20% to ∼30% of total CH4 emissions, depending on bottom-up or
top-down estimates, respectively (Saunois et al., 2020; Canadell et al., 2021). Furthermore,
bottom-up approaches count separately the freshwater emissions from lakes and rivers (159
Tg·yr−1), while top-down atmospheric inversions does not diferentiate freshwater and wetland
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emissions. This causes a large discrepancy between the total natural CH4 emissions estimated
with both methods: 371 Tg·yr−1 against 215 Tg·yr−1, respectively. While bottom-up esti-
mates of freshwater and wetland emissions represent 42% of total CH4 sources, it is likely
that a double-counting occurs which partially explains the gap with top-down approaches
(Canadell et al., 2021). The inland water are furthermore the largest source of uncertainty
in the methane budget (Saunois et al., 2020).

The changes in inundated areas, air temperature and microbial activity cause large in-
terannual variations of wetlands CH4 emissions (Bridgham et al., 2013). Trees in Ćoodplains
play a key role in transporting methane from the soils to the atmosphere in tropical rainforests
(Pangala et al., 2017). This increases bottom-up estimates of methane emissions and widens
the gap with top-down estimates, although a good agreement was found for the Amazon CH4

budget in Pangala et al. (2017). It highlights the need for a better understanding and mod-
eling of the CH4 Ćuxes. In particular, it is essential to better constrain the CH4 emissions
in the tropics, which are negatively impacted by a poor deĄnition and mapping of wetland
dynamics (Bridgham et al., 2013; Pangala et al., 2017; Covey and Megonigal, 2019). This is
a key point to help closing the methane budget which is dominated by tropical emissions of

Figure 1.6: Global methane budget representing the average Ćuxes per year over 2008-2017,
from Canadell et al. (2021). The Ćuxes are representing bottom-up estimates with the sepa-
ration of many anthropogenic (in red) and natural (in green) CH4 sources. Each Ćux is given
as the range between minimum and maximum model estimates. The data are from the global
methane budget in Saunois et al. (2020) and updated with several sources.
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up to 65% (Saunois et al., 2020).

To conclude, the methane budget presents high uncertainties related to the partitions of
natural and anthropogenic sources. First, no agreement is found between bottom-up and
top-down estimates at global scale, which highlights the need for better constraining the CH4

dynamics and Ćuxes through improved observations and modeling processes. Then, large
interannual variations of the natural emissions are found in response to climatic events and
microbial activity, in a Ćurry of processes that require further investigations to be fully un-
derstood. Finally, it is essential to disentangle the relative contributions of freshwater in
lakes and rivers, and wetlands to the global CH4 budget from bottom-up estimates. Compre-
hensive modeling of the inland-water emission processes and their spatial extent is required.
Also, a better mapping of wetland dynamics, in particular to monitor the temporal vari-
ations of freshwater storage in Ćoodplains, should reduce uncertainties in the upscaling of
methane Ćuxes based on observations (Pangala et al., 2017; Saunois et al., 2020). A Ąner rep-
resentation of whether positive trends in atmospheric CH4 growth is due to human activity
of natural processes, is required to implement adapted mitigation strategies in response to
climate change.

1.3 Remote sensing of the surface water dynamics

It was shown in Section 1.1 and Section 1.2 that freshwater terrestrial water storage (TWS)
and its dynamics are essential to understand the regional and global changes in water and
biogeochemical cycles. The diferent terrestrial water components are the surface water stor-
age (SWS), water stored in soil layers, ice and snow packs, and groundwater. Since 2002, the
Gravity Recovery and Climate Experiment mission (GRACE, Tapley et al. (2004)) and its
successor GRACE Follow-On were able to monitor changes in TWS (∆TWS), from basin to
global spatial scales (Tapley et al., 2019). ∆TWS in a basin is deĄned using the terrestrial
water balance equation (Peixoto and Oort, 1992):

P − ET −G = Q + ∆TWS (1.4)

where P and ET are the precipitation and evapotranspiration in the area, respectively, G
represents the groundwater Ćuxes, and Q is the total discharge across the basin boundaries.
Although ∆TWS is computed from GRACE, the partition of precipitated water into the dif-
ferent TWS components sufers from high uncertainties. Satellite observations, in particular
active and passive microwave remote sensing, were used to derive snow water equivalent, soil
moisture (SM) and SWS, while groundwater (GDW) is inferred using TWS from GRACE
and all other estimations. However, snow water equivalent is derived from passive microwave
instruments with a coarse spatial resolution, and is not correctly estimated on mountains
(Foster et al., 2005). The surface SM is also derived from passive microwave sensors at low
spatial resolution (Chan et al., 2016b, 2018; Wigneron et al., 2021), but Root Zone Soil Mois-
ture (RZSM) and the total SM column are very complicated to estimate. Finally, the spatial
and temporal variations of SWS are poorly determined, although the upcoming Surface Water
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and Ocean Topography (SWOT) mission should provide reliable estimations (Biancamaria
et al., 2016). The uncertainties propagate into global hydrological and biogeochemical mod-
els, and cause a large dispersion in the estimates of land CO2 sink and natural CH4 emissions
from wetlands (see Section 1.2).

The use of in-situ gauges is an eicient way to monitor the water levels, Ćows and temporal
variations of river discharges. However, they are not able to monitor the spatial extent and
water storage in most of the Ćoodplains due to inherent limitations. They cover a very few
portion of the major rivers and wetlands, are mainly located in industrialized regions, and
the number of data available has consistently declined over the past decades (Shiklomanov
et al., 2002; Alsdorf and Lettenmaier, 2003). So, surface water extent (SWE) and SWS
monitoring could strongly beneĄt from global and consistent estimates derived from remote
sensing. Although SWE and SWS were derived from several remote sensing instruments and
techniques, improvements are still required to provide a consistent knowledge of the evolution
and partitioning of freshwater stocks. In this section, a critical review of current surface water
products with their limitations is provided. The recent advances and future developments
are also highlighted. Within the frame of this manuscript, the poor monitoring of tropical
wetlands is emphasized to pave the way to new insights provided by GNSS-ReĆectometry.

Section 1.3.1, Section 1.3.2 and Section 1.3.3.2 introduce respectively the early global
SWE determinations, the estimations based on visible and infrared imagery and those based
on both passive and active microwave datasets. These sensors, their characteristics, the
main advantages and the limitations of all products are highlighted. Then, Section 1.3.4
presents and discusses the methods for retrieving SWS based on SWE. Finally, Section 1.4
and Section 1.5 discuss the current limitations and future advances of hydrological sciences.

1.3.1 Early Surface Water Extent estimations

The determination of the total extent, size and geographical distributions of lakes and other
inland water bodies is a key issue for a better understanding of the global water cycle. It
has long been conduced using inventories at the local, regional, national or continental scales.
With the rising concerns about global water and biogeochemical cycles, the monitoring of
SWE in land surfaces is crucial. The availability of a global, high-resolution water mask is also
very important for many land applications where the water bodies should be masked out: Ąre
disturbances, surface reĆectance and temperatures, soil moisture, cloudiness, etc. The early
global maps of water bodies, including wetlands, were generated through the combination
of several vector datasets at diferent spatial scales, such as the Global Lakes and Wetlands
Database (GLWD, Lehner and Döll (2004)). They sufered from a low spatial resolution, and
concerns with the vectorization or the information represented.

Global estimates of the lake sizes and total surface water area Ąrst relied on statistical
extrapolations to include small reservoirs (Downing et al., 2006). These methods concluded
that small lakes and pounds were of extreme importance and contributed to about half of the
total inland water area (Downing et al., 2006; Downing, 2010). Further studies also found
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that the very small reservoirs emit around twice more CO2 and Ąve times more CH4 than
other inland water bodies (Holgerson and Raymond, 2016). A precise quantiĄcation of the
global size distribution and the total surface of inland water bodies is therefore essential, to
better constrain freshwater stocks in both hydrological and biogeochemical models.

A Ąrst high-resolution water mask was created using data from the Shuttle Radar To-
pography Mission (SRTM) launched by the National Aeronautics and Space Administration
(NASA). During 11 days in February 2000, the SRTM performed Interferometric Synthetic
Aperture Radar (InSAR, see Section 1.3.4.3) measurements of the EarthŠs topography at C
and X bands, with 1 arcsec spatial resolution (∼30 m at the equator). It supplied a near
global high-resolution Digital Elevation Model (DEM) at 90 m (30 m now), covering land
surfaces from 56°S to 60°N. The SRTM Water Body Data (SWBD) was further derived at
30 m spatial resolution, but does not cover the high latitudes. Moreover, some issues were
highlighted as the connectivity of channels was not guaranteed. Still, it was used as input for
further water body masks based on remote sensing data (Carroll et al., 2009).

In the following sections, two distinct types of water masks and SWE estimations are
presented. First, the products based on visible and infrared imagery have high-to-moderate
spatial resolutions, but are limited over tropical wetlands and other vegetated areas. They are
mainly based on two sensors: the Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard Terra and Aqua, and the Landsat program, all being NASA satellites. Secondly, the
microwave-based surface water products, which are either active or passive. Some of these
sensors are able to monitor Ćooded vegetation, but they have distinct characteristics and
limitations which are described in Section 1.3.3.1.

1.3.2 SWE mapping from visible and infrared imagery

A Ąrst global, moderate resolution (250 m) and reliable water mask was produced by Carroll
et al. (2009), using the NASA SWBD product and MODIS reĆectances at 250 m as inputs.
In this product, MODIS complements SWBD to Ąll the gaps in the spatial coverage and
correct the wrong channel connectivities. It was produced as the remote sensing community
needed a precise, moderate resolution (250 m) water mask for a Ćurry of applications over
land surfaces. However, with the increasing computational and storage capacities and the
need for a global, high-resolution surface water dataset, its spatial resolution was too low. In
particular, it was not able to connect small river streams with lakes and ponds, and shoreline
pixels had insuicient level of detail.

The detection of inundated areas in wetlands using MODIS was assessed in Chen et al.
(2013) against Landsat images. Both the daily MODIS observations and the 8-day composite
product showed good results in detecting water. The seasonal and interannual changes in
wetland extent were also observed from MODIS at 500 m spatial resolution, over the Sudd
wetlands in Sudan (Di Vittorio and Georgakakos, 2018). Similar results were obtained over
other river basins, as the Mekong and the Mackenzie (Sakamoto et al., 2007; Normandin
et al., 2018). Although they are consistent at the regional scale, a global retrieval is unlikely
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due to limitations of the MODIS sensors over densely vegetated areas. Moreover, the spatial
resolution at 250 or 500 m is also too low for many applications.

The European Space AgencyŠs (ESA) Sentinel-2 satellites are also in orbit since 2015
(Sentinel-2A) and 2017 (Sentinel-2B). They provide high-resolution data (10 or 20 m for
most of the spectral bands) useful for mapping Ćoods. Sentinel-2 was already used in several
regional studies (Caballero et al., 2019; Goi et al., 2020), and it is incorporated in Copernicus
Ćood monitoring services. The combination or radar and optical Sentinel-1 and Sentinel-2
datasets is particularly interesting for Ćood mapping, both at the regional (Huang and Jin,
2020; Bai et al., 2021; Tarpanelli et al., 2022) and global (Martinis et al., 2022) scales. More
information on Sentinel-1 and combined products can be found in Section 1.3.3.2. However,
Sentinel-2, having been launched recently, is not able to provide insights into interannual and
decadal variability of the water cycle.

The high-resolution and long-term requirement can be solved using Landsat. The opening
of Landsat archives since 2008 (Woodcock et al., 2008), and their further consolidation at
United State Geological Survey (USGS) (Wulder et al., 2016), have make available millions
of images from the 1970s up to now in a common database. The spatial resolution is 30
m since Landsat 4, launched in 1982, and 15 m for the panchromatic band in Landsat 7-9
starting from 1999. They were used in several studies to map either water masks or seasonal
and interannual changes in SWE at the global scale (Verpoorter et al., 2014; Yamazaki et al.,
2015; Pekel et al., 2016; Feng et al., 2016). The Ąrst global dataset was provided by Verpoorter
et al. (2014), where the abundance and size distribution of lakes is described using a set of
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) from 2000. They found ∼117 millions
of lakes greater than 0.002 km2 covering about 3.7% of the land non-glaciated areas (5.0 ×

106 km2), which represent a lower number of lakes but a larger surface covered than early
estimates based on statistical extrapolation (Downing et al., 2006).

Further eforts were made to map all components of surface water. Feng et al. (2016)
also considered a snapshot of year 2000 to produce a Landsat-based inland water mask at
∼30 m spatial resolution. They found ∼3.65 × 106 km2 of inland water area at global scale,
dominated by wetlands and lakes in boreal high latitudes. However, these static estimates
of water vs land miss the temporal changes of SWE, with large seasonal and interannual
variations of inland water area. Yamazaki et al. (2015) used four sets of Landsat images from
1990, 2000, 2005 and 2010, to map surface water with its evolution at 3" spatial resolution
(∼90 m). This allowed it to deĄne a probability of water and to produce a mask of both
permanent and temporal water, covering ∼3.25 and ∼0.49 × 106 km2, respectively.

The reference inland water dataset was provided by Pekel et al. (2016), with an example
shown in Figure 1.7. Using 3 millions of Landsat images, the Global Surface Water (GSW)
product from the Joint Research Center (JRC) permits a mapping of surface water occurrence,
recurrence and seasonality at 30 m spatial resolution since 1984. The long time series and the
precision of this dataset allowed to map changes in both permanent and seasonal water at high-
resolution, and interannual to decadal time scales. This is essential for climate applications
to overcome the interannual variability of the water cycle. It provides a very useful tool to
observe changes in regional and global hydrology over the past four decades, and evaluate the
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contribution of anthropogenic pressure and climate change to these evolutions.

The inland water mapping using optical and infrared imagery sufers from several lim-
itations. MisclassiĄcations occur due to the confusion of water with shadow or snow and
ice, but great eforts have been made to overcome this thresholding problem in the retrieval
algorithms. More problematic, the signals are not able to penetrate either cloud cover or
vegetation layers. This inherent limitation of the sensors highly afects the surface water de-
tection in tropical wetlands, where both clouds and dense canopies are regularly found. As a
consequence, the global SWE estimations using optical sensors are dominated by northern bo-
real lakes and wetlands, and with a clear underestimation of inundation extent in the tropics
(see Figure 1.7 compared to the estimate based on passive microwave sensors in Figure 1.13).

In compliance with this limitation, the validation of the GSW product sufers from a high
rate of omissions afecting seasonal water. According to the Extended Data Table 1 in Pekel
et al. (2016), it omits ∼25% of the seasonal water pixels, but only 1-2% of the permanent water
pixels. It has therefore proven to be extremely useful to map permanent water globally, and
seasonal water regionally only when the vegetation is sparse or below water. The mapping
of tropical wetlands, where Ćooded forests are commonly found, therefore highly relies on
passive or active microwave sensors.

Figure 1.7: Global distribution of permanent and seasonal water in the GSW dataset from
October 2014 to October 2015, from Pekel et al. (2016). The latitudinal and longitudinal
proĄles corresponding to the map are shown with the seasonal, permanent and maximum
water extent. A dominant contribution from the northern boreal regions is highlighted.



32 Chapter 1. Monitoring of surface water dynamics

1.3.3 SWE mapping from passive and active microwave remote sensing

1.3.3.1 Microwave sensors

Microwave signals are operating in almost all weather conditions during both day and night,
and are able to partially penetrate the vegetated layers. These are the main advantages that
make them suitable to remotely sense information from land surfaces, especially over the
tropics where both cloud cover and vegetation obstruct the visible and infrared wavelengths.
Microwave sensors are crucial for monitoring tropical wetland hydrology, where MODIS and
Landsat-based products perform the worse. Several wavelengths are used by microwave sen-
sors to observe the Earth surface. As illustrated in Figure 1.8, a lower frequency (higher
wavelength) permits a better penetration of the signal in vegetation layers, especially trees.
The P and L-band sensors are therefore optimal for monitoring water under forests and crops
canopies.

Two diferent types of sensors are found: passive systems that measure the brightness
temperature related to the emissivity of soil and vegetation layers at a given wavelength,
and active systems carrying onboard a transmitter emitting the radar signal, and a receiver

Figure 1.8: Top: spectrum of the microwave frequency bands used in remote sensing sensors
and their penetration in vegetation layers. Down: a higher frequency (lower wavelength)
reduces the penetration of microwave signals, as illustrated with X, C and L bands. Adapted
from Frappart et al. (2020).
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collecting the reĆections of this signal on the EarthŠs surface. Radar altimeters are one type of
active sensor, with nadir-pointing antennas emitting one beam and recording the waveform of
the reĆected signal. Other type of active sensors are Synthetic Aperture Radars (SAR), which
emit successive beams while the satellite is moving. They use side-looking antennas with large
swath widths and the motion of the spacecraft to reconstruct 2D images from the reĆected
signals. The motion of the satellite platform makes it possible to obtain high-resolution
images (< 1m) from relatively small physical antennas, a process named synthetic aperture.
Overall, many types of passive radiometers, SAR and radar altimeters were launched and
used to study surface water dynamics. They are respectively listed in Table 1.1, Table 1.2
and Table 1.3.

Microwave radiometers

For passive microwave sensors listed in Table 1.1, the lower is the frequency of the sig-
nal, the lower is the spatial resolution of observed brightness temperatures. The radiometers
have been widely used since the 1970s, with the launch of the Scanning Multichannel Mi-
crowave Radiometer (SMMR) in 1978, and its successors which are the Special Sensor Mi-
crowave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS). Together,
they create a long time series of brightness temperatures at several frequencies and polariza-
tions, which is very useful for the mapping of long-term inundation dynamics. The presence
of freshwater indeed causes a decrease in observed brightness temperatures, more pronounced
for the horizontal than for the vertical polarization (Sippel et al., 1994; Prigent et al., 2001).

Other microwave sensors were dedicated mainly or partially to hydrology researches. The
Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-EOS) and
its successor AMSR2 cover a wide range of frequencies and, therefore, spatial resolutions.
Similarly, the Tropical Rainfall Measuring Mission (TRMM) and its successor Global Pre-
cipitation Measurement (GPM) use several instruments including a microwave radiometer
operating from 10.7 GHz to 183 GHz, to monitor precipitation amounts. The Soil Moisture

Table 1.1: Summary of the main microwave radiometers used for remote sensing of the water
cycle in the last decades, with their principal features. The data are organized by date of
launch.

Platform/ Sensor Band/ Frequency Resolution Revisit Acquisition period
SSM/I Ku-Ka (19.35-85.5 GHz) 13-69 km <daily 1987-

TRMM/ TMI X-Ka (10.7-85.5 GHz) 6-72 km <daily 1997-2015
AMSR-E X-Ka (6.9-89 GHz) 5-74 km 1-2 days 2002-2016
SSMIS Ku-Ka (19.35-183 GHz) 13-73 km <daily 2003-
SMOS L (1.4 GHz) 35-50 km 2-3 days 2009-

SAC-D/ Aquarius L (1.4 GHz) ∼100 km 7 days 2011-2015
AMSR2 X-Ka (6.9-89 GHz) 5-10 km 2 days 2012-

GPM/ GMI X-Ka (10.7-183 GHz) 4-32 km <daily 2014-
SMAP L (1.4 GHz) 40 km 2-3 days 2015-
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and Ocean Salinity (SMOS, Kerr et al. (2001)) and Soil Moisture Active Passive (SMAP,
Entekhabi et al. (2010)) missions are notably dedicated to studying soil moisture (SM) dy-
namics. They provide L-band brightness temperatures at 35-50 km spatial resolution and
2-3 days temporal resolution. They were also used to produce consistent estimations of the
Vegetation Optical Depth (VOD) at L-band (L-VOD; Konings et al. (2017); Wigneron et al.
(2021)) through radiative transfers.

The main limitations of passive microwave measurements are their very coarse spatial
resolution, as the emissivities of the Earth components have a low power and must be ag-
gregated over large areas in order to be monitored by spaceborne instruments. Most of the
microwave radiometers have a spatial resolution lower than 25 km, except at the highest fre-
quencies. For SMOS and SMAP, this behavior is particularly critical as the 35-50 km pixels
cover a large and often heterogeneous ground terrain, over which a unique of SM and L-VOD
is performed. The brightness temperatures are also contaminated by water bodies inside the
pixel. For surface water monitoring, only the largest Ćoodplains and rivers (as the Amazon)
can be partially monitored using passive microwave sensors.

Side-looking Synthetic Aperture Radars

SAR systems are particularly interesting for hydrological researches. As listed in Table 1.2,
they have a spatial resolution ranging from <1 m to a hundred of meters, depending on the
acquisition mode. Most of the sensors are able to shift between several modes, to produce
either images with very high resolution focused on a local area, or images with lower resolution
and a larger spatial coverage. All SAR instruments were widely used to detect Ćood signatures,
as a low backscatter is obtained over smooth open water surfaces, and a high backscatter
over Ćooded vegetation where the tree trunks produce a so-called double-bounce efect (see
Figure 1.9 and Richards et al. (1987)).

Table 1.2: Summary of the main SAR missions used for surface water remote sensing in the
last decades, with their principal features. The data are organized by frequency band and
date of launch.

Platform/ Sensor Frequency band Resolution Repeat cycle Acquisition period
JERS-1 L (1.275 GHz) 18 m 44 days 1992-1998

ALOS/ PALSAR L (1.27 GHz) 10 m 46 days 2006-2011
ALOS-2/ PALSAR-2 L (1.27 GHz) 3-10 m 14 days 2014-

NISAR L (1.25 GHz) + S 3-10 m 12 days 2024 (planned)
RADARSAT-1 C (5.3 GHz) 10-100 m 24 days 1995-2013

ENVISAT/ ASAR C (5.3 GHz) 30-1000 m 35 days 2002-2012
RADARSAT-2 C (5.3 GHz) 3-100 m 24 days 2007-
Sentinel-1A/1B C (5.405 GHz) 5-20 m 12 days each 2014-

RISAT-1 C (5.35 GHz) 3-50 m 25 days 2012-2016
TerraSAR-X X (9.6 GHz) 1-16 m 11 days 2007-
TanDEM-X X (9.6 GHz) 1-16 m 11 days 2010-

COSMO SkyMed 1-4 X (9.6 GHz) 1-100 m 16 days each 2007-
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Figure 1.9: Mechanism of backscattering from nadir-looking radar altimeters and side-looking
SAR, over open water and Ćooded forests. Both produce a specular reĆection over water sur-
faces, but the signals can be attenuated, obstructed or reĆected by the vegetation. SAR
produce low backscattering over open water and high backscattering over the inundated veg-
etation, due to the side-looking antennas and double bounce efect.

Most of the SARs were limited for hydrological applications due Ąrst to a low temporal
resolution, with revisit times ranging from two weeks to over a month for the oldest ones
(Table 1.2). This is insuicient to sense the rapid changes in SWE following heavy precipi-
tation. It was solved by designing constellations of satellites like the twins TerraSAR-X and
TanDEM-X, the four COSMO-SkyMed, or the twins Sentinel-1A and Sentinel-1B. The last
ones provide C-band SAR observations with a 6-day combined revisit time and global cover-
age. Secondly, SAR do not provide long time series of hydrological variables, because they
were only active over short periods of time. So, the study of the interannual and decadal
variability of the water cycle is based on optical imagery and passive microwave observations.
Thirdly, it may be complex to identify water with the SAR backscatter at global scale, as
the signatures of geophysical parameters vary across diferent environments, incidence angles
and polarization modes (Musa et al., 2015). And lastly, few data are available at L-band,
although it penetrates better the dense forests. The Advanced Land Observing Satellite 2
(ALOS-2) is currently the only platform carrying onboard a L-band SAR, namely Phased
Array L-band SAR 2 (PALSAR-2).

Nadir-looking radar altimeters

The radar altimeters emit a signal in the direction of nadir (mostly at Ku band, see
Table 1.3), which is strongly reĆected by water surfaces. A high backscatter is therefore
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observed over surface water (Fatras et al., 2015; Frappart et al., 2021a; Abdalla et al., 2021),
while the backscatter of side-looking SAR is low, except over Ćooded vegetation due to the
double bounce efect on natural corner reĆectors (see Figure 1.9 and Richards et al. (1987)).
Radar altimeters only acquire one waveform for each beam pulse, making these observations
sampled along the ground tracks of the platform. The distribution of the observations on the
Earth surface depends on the design of the sensor. The less distance there is between two
ground tracks, the longer is the revisit time of the satellite. Depending on the missions, the
compromise between spatial and temporal samplings results in altimetry tracks spaced from
tens to hundreds of kilometers at the equator, with revisit times ranging from 10 to 35 days
(Table 1.3).

Due to their poor spatial coverage, the radar altimeters are not operational for moni-
toring SWE, although they are capable of detecting both open water and Ćoodplains below
the canopy (Frappart et al., 2021b). On land, they are mostly used for monitoring time se-
ries of water levels over rivers, lakes and recently Ćoodplains (Crétaux et al., 2011; Cretaux
et al., 2017). Combined to SWE, these water levels are then used to retrieve the volume
of freshwater stocks (or surface water storage) in river basins. They represent therefore a
very useful complementary information for deriving SWS using multi-mission information
(see Section 1.3.4.1).

1.3.3.2 Microwave-based surface water detection

Mapping SWE with SAR

Table 1.3: Summary of the main radar altimeters used for remote sensing of the water cycle
in the last decades, with their principal features. The data are organized by date of launch.

Platform/ Sensor Frequency band
Ground track
separation

Time sampling
Acquisition
period

ERS-1/ RA Ku (13.8 GHz) 80 km 35 days 1991-2000

TOPEX/Poseidon, SSALT Ku (13.65 GHz) 315 km 9.9156 days 1992-2006

ERS-2/ RA Ku (13.8 GHz) 80 km 35 days 1995-2011

Jason-1/ Poseidon-2 Ku+C (13.6/ 5.3 GHz) 315 km 9.9156 days 2001-2013

ENVISAT/ RA-2 Ku+S (13.6/ 3.2 GHz) 80 km 35 days 2002-2012

Jason-2/ Poseidon-2 Ku+C (13.6/ 5.3 GHz) 315 km 9.9156 days 2008-2019

HY-2A+B+C+D Ku+C (13.6/ 5.3 GHz) - 10-14 days 2011-

SARAL/ AltiKa Ka (35.75 GHz) 80 km 35 days 2013-2016

Jason-3/ Poseidon-2 Ku+C (13.6/ 5.3 GHz) 315 km 9.9156 days 2016-

Sentinel-3A+3B/ SRAL Ku+C (13.6/ 5.4 GHz) 104 km 27 days 2016-

Jason-CS/ Sentinel-6 Ku+C (13.6/ 5.3 GHz) 315 km 9.9156 days 2020-

SWOT
Ka (inSAR),
Ku, C (nadir)

Two 50 km swaths
10 km separation

21 days 2022 (planned)
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The SAR missions listed in Table 1.2 support a wide range of high-resolution operational
Ćood detection methods, in particular using automated image segmentation and classiĄcation
techniques. First, the twin satellites TerraSAR-X and TanDEM-X were used to produce maps
of surface water. During the generation of the high-resolution (12 m) and high-precision (∼2
m) Digital Elevation Model WorldDEM, data from the TanDEM-X mission (encompassing
both satellites) were used to produce a reference water mask (Martinis et al., 2015b). More
interesting, the Ąeld of near real time (NRT) Ćood monitoring has been widely investigated
to support mitigation policies and decision-making. It has shown good capabilities using
TerraSAR-X data resulting in operational Ćood detection services available online (Martinis
et al., 2009, 2015a).

The Canadian C-band SAR RADARSAT and RADARSAT-2 were also used to monitor
large inundations (Bolanos et al., 2016; Nakmuenwai et al., 2017). Additionally, some inter-
esting results for the mapping of rapid Ćood events were obtained using the X-band COSMO
SkyMed (COnstellation of small Satellites for the Mediterranean basin Observation) satellites
(Pulvirenti et al., 2011; ReĄce et al., 2014). The constellation Ćights four satellites allowing
a short revisit time over speciĄc scenes (up to 12 hours) and a very high-resolution (1 m in
spotlight mode), which makes it suitable for NRT Ćood detection (Pierdicca et al., 2013). The
Advanced SAR (ASAR) onboard ENVISAT was also used to produce a mask of permanent
water bodies using multi-year data from 2005 to 2012 (Santoro et al., 2015), and in a NRT
automatic extraction of water surfaces (Westerhof et al., 2013).

A Ąrst drawback of these SAR systems is revealed when considering the literature. Al-
though most of the SAR perfectly Ąt the needs of NRT inundation mapping, they are unable
to provide an operational mapping of global or large regional areas over long timescales, as
data are not available with suicient temporal resolution. Some sensors also need to be acti-
vated or programmed to acquire several scenes on a speciĄc target.The Ąrst continuous, global
and high-resolution capability for mapping Ćoods with SAR data and high time sampling is
provided by the European Space AgencyŠs (ESA) Sentinel-1 program. The two C-band SARs
onboard Sentinel-1A & 1B satellites permit a complete overview of land surfaces within 6
days, and data are freely available. The characteristics of Sentinel-1 data perfectly Ąt the
NRT inundation detection (Twele et al., 2016). They were used in numerous regional stud-
ies for mapping the spatial and temporal variations of Ćoods (Bioresita et al., 2018; Uddin
et al., 2019; Singha et al., 2020; DeVries et al., 2020). More interestingly, global SAR-based
Ćood products are now possible. The Copernicus Emergency Management Service (CEMS)
recently implemented in its Global Flood Awareness System (GloFAS) a NRT Global Flood
Monitoring (GFM) product, that is directly updated through the analysis of new incoming
Sentinel-1 images (Salamon et al., 2021). Three diferent and independent algorithms are
used (Twele et al., 2016; Chini et al., 2017; Bauer-Marschallinger et al., 2022), to produce
three independent water masks on the same scene. The decision to classify a pixel as land or
water is performed at the majority of the ensemble algorithms (at least two agreeing). This
combines the advantages of each algorithm for the detection of water, while adding robustness
to avoid omission/commission errors in complex terrains where individual estimates can be
wrong (arid soils, snow and ice, shadows).
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Although C-band and X-band SAR data have shown signiĄcant performances in mapping
SWE, and despite a growing capability for global analysis, some problematic features remain.
A major issue is the attenuation of the signals by vegetation layers afecting particularly the
possibility of mapping Ćooded vegetation in the tropical wetlands. L-band signals penetrate
better the dense forests than other microwave frequency bands (Figure 1.8). As a conse-
quence, hydrological sciences need L-band sensors to map Ćooded areas below the canopy,
mainly in large tropical basins as the Amazon and Congo. Passive microwave observations can
be used to map surface water (Prigent et al., 2007, 2020; Parrens et al., 2017) but they have
a coarse spatial resolution. On the contrary, L-band SAR achieves high-resolution require-
ment and penetrates well the vegetation, but very few data are available for analysis. The
only corresponding missions were JERS-1 (Japanese Earth Resources Satellite, from 1992 to
1998), ALOS/PALSAR (2006-2011) and ALOS/PALSAR-2 (from 2014), all from the Japan
Aerospace Exploration Agency (JAXA).

Large data gaps therefore exist for L-band SAR observations. Still, they were used to
produce several maps of permanent and seasonal water in tropical river basins with consis-
tent results. In the Amazon, JERS-1 mosaics acquired for the Global Rain Forest Mapping
(GRFM) project were used to classify wetlands according to the vegetation type and inunda-
tion state (Hess et al., 2003, 2015). More interestingly, two maps were produce: one at low
water stage in October-November 1995, and the second at high water stage in May-June 1996.
They are shown in Figure 1.10a and Figure 1.10b, respectively. The Ćooded forests appear
in white and are mainly located along the streams of the Amazon and its tributaries, and
in the Ćoodplains close to the Rio Negro in the north of the basin. The Ćooded herbaceous

Figure 1.10: Dual-season classiĄcation of inundations in the Amazon basin based on JERS-1
L-band SAR mosaics, adapted from Hess et al. (2015). (a) Low water stage in October-
November 1995, and (b) high water stage in May-June 1996.
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appear in magenta, and are mainly located in the Llanos de Mojos in Bolivia (south of the
Amazon basin). Both Ćooded forests and herbaceous show much more inundated areas at
high water stage (right panel in Figure 1.10). These maps are distributed and due to their
high-resolution and quality, still represent reference Ćood products for the Amazon basin. In
the Cuvette Centrale of Congo, ALOS/PALSAR data were combined with MODIS-derived
vegetation indexes to map the permanent and seasonal extent of water surfaces for diferent
vegetation types (Betbeder et al., 2014). These studies prove the interest of L-band sensors
for mapping Ćooded vegetation, but are not extended globally or on long timescales.

Although numerous studies have been recorded on mapping Ćooded vegetation (Tsygan-
skaya et al., 2018), consistent estimations based on SAR data exclusively are highly uncertain
for now. The solutions were found in multi-mission products, merging active radar datasets
together, with passive microwave observations, or with optical datasets.

Multi-mission SWE products

The combination of SAR and optical datasets allows to map Ćoods at high spatial reso-
lution, while improving temporal coverage and overall accuracy of the products (Tong et al.,
2018). In particular, Martinis et al. (2022) combined Sentinel-1 and Sentinel-2 Ćood map-
ping approaches to produce over two consecutive years (2019 and 2020) a map of permanent
water, and monthly seasonal water layers. This work is based on Sentinel-2 Ćood detection,
with the input of Sentinel-1 SAR data to complement when the optical sensor have issues. It
shows that during months with cloud cover, SAR data regularly take over optical data, with
similar performances in detecting surface water. The extraction of permanent and seasonal
water is also important, despite most of the masks being static or presenting a binary water
against land classiĄcation approach. The seasonal layers compare well with the 32-year GSW
monthly surface water based on Landsat, from Pekel et al. (2016). While this study addresses
the need of high-resolution mapping systems for monitoring future Ćood disasters, it does not
implement methods for retrieving Ćooded vegetation in the tropics. Moreover, it does not
provide insights into interannual variations of SWE and SWS required for hydrological and
biogeochemical models (Section 1.1 and Section 1.2).

The need for long time series of SWE was partially Ąlled by combining passive and active
microwave products, i.e. the Global Inundation Extent from Multiple Satellites (GIEMS,
Prigent et al. (2007, 2020) and the Surface WAter Microwave Product Series (SWAMPS,
Schroeder et al. (2015); Jensen and Mcdonald (2019)). Both supply water fraction estima-
tions at 0.25° spatial resolution and use mostly the same inputs. These include the brightness
temperatures from SSM/I and SSMIS at several wavelengths/ polarizations, the backscatter-
ing coeicients from ERS (and other scatterometers for SWAMPS), Normalized Diference
Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR,
plus MODIS for SWAMPS), meteorological data describing atmospheric variables, and a
snow cover Ćag. The main diferences come from two distinct retrieval strategies. GIEMS
and its most recent version, GIEMS-2 (Prigent et al., 2020) are 3-step algorithms. First, the
brightness temperatures at 19 and 37 GHz from the radiometers are calibrated into surface
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emissivities. This was Ąrst performed by radiative transfer (GIEMS-1), and now GIEMS-2
uses a neural network trained against previous emissivity estimations from GIEMS-1. Then,
the monthly climatology of the emissivities and ERS backscatter time series are computed
and clustered to identify the water pixels. Finally, the water fraction in these pixels are com-
puted using end-members. In a simple framework with two end-members (dry and water),
the fraction of water (WF ) can be estimated as (Sippel et al., 1994; Fily et al., 2003):

WF =
Ep − Edry

Ewater − Edry
(1.5)

where Ep is the emissivity at polarization p, Edry is the emissivity of dry land, and Ewater
is the emissivity of water. For GIEMS-2, a linear relation is directly established between
the top 20% and the bottom 20% emissivities, corresponding respectively to a 50% and a
1% Water Fraction (Prigent et al., 2020). The ERS backscatter and NDVI time series are
also used in a multi-linear regression to correct the vegetation efect on microwave emissiv-
ities. The retrieval methodology of SWAMPS difers as it uses the Microwave Polarization
Diference Index (MPDI) of SSM/I and SSMIS brightness temperatures at 19 GHz, instead
of the emissivities calculated through radiative transfer. The fractions of water are directly
estimated from the MPDI using vegetation and water-dependent end-members to calibrate
the retrieval.

The Ąrst version of SWAMPS was subject to numerous issues, as listed in Pham-Duc
et al. (2017). A strong contamination by the oceans and large erroneous estimations over
arid regions were noted, and both corrected in the latest version of SWAMPS (Jensen and
Mcdonald, 2019). However, signiĄcant problems still remain unsolved. SWAMPS presents

Figure 1.11: Maximum water fraction per pixel in the 1992-2015 records of GIEMS-2 (Prigent
et al., 2020). The latitudinal and longitudinal proĄles of SWE in km2 are added at the right
and below the world map, respectively. For the latitudinal proĄle, the percentage of total
SWE contained in latitude bins are shown in red. The zonal separation are made with latitude
thresholds of 20°S, 20°N and 45°N.
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a very lower seasonal amplitude than GIEMS and other regional products. Small water
fractions are observed over regions with no surface water, whereas the large Ćoodplains show
a lower signal than GIEMS, due to a wrong calibration of the retrieval algorithm. GIEMS-2
estimates are better in seasonality than SWAMPS and compare well with several regional
estimations of SWE, including the JERS-1 classiĄcation over the Amazon basin from Hess
et al. (2003), presented in Figure 1.10). It was also validated against other hydrological
products like precipitation, river discharges and water levels. It can therefore be considered
as the reference dataset for interannual and decadal estimations of surface water extent over
the globe, including consistent SWE retrieval in the tropics.

Figure 1.11 presents a map of the maximum water fraction (in percentage) contained in
the 1992-2015 GIEMS-2 records, as well as the latitudinal and longitudinal proĄles of the
corresponding area in km2. It highlights a strong contribution of tropical and subtropical
wetlands to the maximum water extent, dominated by large wetlands in South America,
seasonal Ćoods from the Sahel and irrigated croplands in Southeast Asia. It can be compared
to Figure 1.7 for the maximum SWE in Landsat-based 1984-2020 GSW records, where the
tropical component is almost absent. Both datasets describe the northern boreal contribution
to the total water extent, which corresponds to the immense majority of SWE in GSW
product. The large Ćood signal from tropical and subtropical wetlands in GIEMS-2 (∼69% of
total SWE between 20°S and 45°N) highlights the detection of water below forest canopies,
in Ćooded savannas and paddy Ąelds, which lack in optical-based estimations.

Still, GIEMS-2 owns several limitations. First, SSM/I and SSMIS Ku-band brightness
temperatures are impacted by the vegetation. It is unclear whether the methodology based on
NDVI and ERS backscatter to correct the vegetation efect on SSM/I and SSMIS brightness
temperatures produces exact results. Few validation datasets exist over tropical wetlands,
but GIEMS was validated in the Amazon against the JERS-1 classiĄcation from Hess et al.
(2003) (see Figure 1.10) and showed consistent values for both amplitude and seasonality
(Prigent et al., 2007). Then, an overestimation of Ćooded areas was noted under wet regimes,
due to a confusion between SM and surface water (see Section 1.4.2). Finally, the very
coarse spatial resolution at 0.25° is not suicient to describe hydrological regimes with enough
precision, which propagates into wetland methane emissions (Section 1.2.2) and land carbon
sink (Section 1.2.1) uncertainties. Still, GIEMS-2 represents the most reliable dataset to
study long-term SWE dynamics and derive SWS changes over time.

1.3.4 Determination of Surface Water Storage

The monitoring of SWS generally relies on independent estimations of SWE and water levels.
Several approaches were used to retrieve the water volume anomalies. The most direct trans-
forms SWE maps from GIEMS or other references to water level maps with the same spatial
coverage and resolution, using radar altimetry observations. A more sophisticated way is
the hypsographic approach, which uses a high-resolution DEM to derive time series of water
volumes in every pixel. SAR (in particular at L-band) were also used to monitor directly the
water levels, through the Interferometric SAR (InSAR) technique. An exhaustive review of
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techniques for monitoring SWS over wetlands can be found in Papa and Frappart (2021).

1.3.4.1 Using radar altimetry and SWE

High-precision radar altimeters have been available for the last three decades, since the 1990s
and the launch of Topex/Poseidon (T/P). These missions and their characteristics are listed in
Table 1.3. Although they were Ąrst designed to monitor the sea surface height, they have also
provided altimetry data over the continents. These data have been used to derive water levels
on lakes, rivers and Ćoodplains. These water levels are estimated at the intersection between
altimetry ground tracks and water bodies, called virtual stations (VS). Several databases such
as Hydroweb (Crétaux et al., 2011; Hydroweb) or DAHITI (Schwatke et al., 2015; DAHITI)
now provide mono- and multi-mission (up to 30 years) altimetry-based time series of water
levels. The spatial and temporal behavior of altimetry tracks vary, with revisit times ranging
from ∼10 days (T/P and Jason 1/2/3/CS, on the same orbit) to 35 days (ERS, ENVISAT
and SARAL on the same orbit too), and ground track separated by 80 km (ENVISAT orbit)
to 315 km (Jason orbit) at the equator (Table 1.3). The larger is the ground track separation
at the equator, the better is the time sampling.

In the 2000s, radar altimetry data were combined to wetland maps to estimate the volume
of water stocked in rivers and Ćoodplains. The Ąrst study used T/P and the dual-season Ćood
extent maps in the Amazon derived from JERS-1, to retrieve the maximum and minimum
water stocks in the Rio Negro sub-basin during year 1995-1996 (Frappart et al., 2005). A
map of water levels is there computed over the Ćood extent by interpolating the water heights
at VS, and is further used to derive water volumes over one hydrological year. A similar
methodology was then applied to SWS retrieval in the Mekong basin for 1998-2003 (Frappart
et al., 2006), using a combination of radar altimeters (T/P, ERS-2 and ENVISAT) and Ćood
extent derived from the Satellite pour lŠObservation de la TerreŰVégétation (SPOT-VGT). It
improved our regional understanding of the seasonal and interannual variations of SWS, but
relied on visible and infrared observations.

This methodology is well-suited for retrieving SWS at the regional scale, but long-term
determination of SWS changes relies on the availability of input datasets. Multi-mission radar
altimetry time series can now be estimated for the last 30 years (Kitambo et al., 2022a). Also,
GIEMS-2 provides monthly SWE estimations from 1992 to 2015, and up to now upon request.
The combination of these two datasets was therefore logical, and was tested successfully in
several distinct environments: the Rio Negro in the Amazon basin (Frappart et al., 2008,
2011), the entire Amazon basin itself (Frappart et al., 2012; Tourian et al., 2018), the Ob
basin in boreal regions (Frappart et al., 2011), the Orinoco basin (Frappart et al., 2014), the
Ganges-Brahmaputra basin (Papa et al., 2015) and the Congo basin (Becker et al., 2018).
These studies cover both Ćooded vegetation in the major tropical wetlands, and large irrigated
croplands in Southeast Asia. This methodology is however limited by it low level of detail,
due to the coarse spatial resolution of GIEMS SWE estimations.

SWE estimations at higher spatial resolution were obtained using vegetation and water
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indexes from the 8-day composite product of MODIS (Sakamoto et al., 2007). It provides
data from 2000, which can be combined with radar altimetry to derive SWS in regions with
low or sparse vegetation. Monthly maps of SWS were therefore generated over the Tonle Sap
in Cambodia (Frappart et al., 2018)) and the whole Lower Mekong Basin (LMB; Pham-Duc
et al. (2019)). Similar maps were generated over a totally diferent environment, the Macken-
zie Delta in northern Canada (Normandin et al., 2018). This approach also permitted to
quantify the SWS variations over two decades (2000-2019) in the Lake Chad and surrounding
Ćoodplains (Pham-Duc et al., 2020). This approach is limited to low vegetated areas because
of MODIS spectral properties, and is therefore not applicable to tropical wetland hydrology.

1.3.4.2 Hypsographic curves

The idea of the hypsographic curve approach is to allocate the fraction of water estimated
in a 0.25° pixel by GIEMS (or SWAMPS) into high-resolution sub-pixels extracted from a
DEM. Figure 1.12 helps to understand the hypsographic relation. The plots in the Ąrst line
(Figure 1.12a-c) present a GIEMS pixel over a river stream with high topography around,
while the plots in the second line (Figure 1.12d-f) present a pixel with low elevation changes,
undergoing large Ćoods at high water stage. For each 0.25° pixel, the cumulative distribution
of the elevation (i.e. the hypsographic curve, Figure 1.12b,e) is extracted from the DEM sub-
pixels. It can be further expressed as a curve of the elevation depending on the cumulative

Figure 1.12: Hypsometric curve approach described for two GIEMS pixels in the Cuvette
Centrale of Congo (d,e,f) and in mountainous areas in the south of the Cuvette Centrale
(a,b,c). (a,d) GIEMS pixels Ąlled with the 90 m MERIT DEM, (b,e) cumulative distribution
of the DEM elevation, and (c,f) same with the distribution transformed as cumulative area
in the pixels. This explains the relation between the water fraction in every GIEMS pixel
and the water levels, further derived as water volumes. The blue and red vertical lines show
the minimum and maximum water fractions in GIEMS-2 records, respectively. Adapted from
Kitambo et al. (2022b).
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area (Figure 1.12c-f). Now for each GIEMS water fraction (with the long-term minimum
and maximum shown in blue and red, respectively), the corresponding elevation of the water
surface can be estimated. All the DEM sub-pixels with en elevation lower than this threshold
are considered as Ćooded, and the water volume is further derived. This area-elevation-volume
relation was assessed to retrieve the variations of both lake area and volume, based on satellite
altimetry data (Tortini et al., 2020).

Over rivers and wetlands, the hypsographic curve approach was used to retrieve long-term
SWS variations in the Amazon and Ganges-Brahmaputra basins, based on GIEMS and high-
resolution DEMs (Papa et al., 2015; Salameh et al., 2017). A 25 years time series of SWS in
the Congo basin was recently derived from GIEMS and several high-resolution DEMs, and
compared to the traditional estimates based on GIEMS and radar altimetry (Kitambo et al.,
2022b). The hypsometric curve approach shows a similar amplitude in the seasonal SWS
signal. Its main advantages are: i) it is not based on the interpolation of water levels time
series from altimetry VS which are poorly sampled, and ii) it provides a Ąner representation
of the Ćood dynamics inside the large GIEMS pixels, due to the allocation of surface water
to the lowest elevation areas.

The main uncertainties of the hypsometric approach are linked to the input products of
SWE and elevation. While the SWE estimates need further improvements (see Section 1.3.3),
high-resolution (30 m to 90 m) DEMs also present biases and uncertainties, in particular in
densely vegetated areas. The MERIT DEM (Multi Error-Removed Improved-Terrain) at 90
m, derived from the Shuttle Radar Topography Mission (SRTM), and the ALOS World 3D at
30 m (AW3D30) recently released, have improved the performances of DEMs for hydrological
applications. They are particularly needed for resolving channel connectivity and Ćoodplain
discharge / recharge in hydrological models (Yamazaki et al., 2011), and can be used eiciently
for SWS retrieval (Kitambo et al., 2022b).

Finally, the hypsometric curve approach could be extended worldwide, as it only relies
on a static DEM and SWE estimates available from 1992 to now with GIEMS-2. It would
provide long-term time series of SWS for the needs of the hydrological and biogeochemical
communities, whose performances and limitations should be further evaluated.

1.3.4.3 InSAR water level monitoring

The SAR Interferometry (InSAR) is a technique for determining the phase diference between
two or more SAR images, acquired with diferent positions or at diferent times (Bamler and
Hartl, 1998). It is commonly used to retrieve the topography with high accuracy, and therefore
to produce DEMs. The surface height changes can also be derived from the interferometric
phase diference. For water surfaces, it is used to compute changes in water level between
two acquisition times (Alsdorf et al., 2001b). It is particularly useful in vegetated wetlands
(Wdowinski et al., 2008) due to the double-bounce efect (Figure 1.9). However, it requires a
frequent revisit especially at C-band, as the changes in phase are related to the wavelength
of the electromagnetic wave. It is also not suitable over open water due to both the low
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backscatter, and the loss of coherence (or decorrelation) between two consecutive SAR images
(Gallant, 2015).

Based on the SAR sensors listed in Table 1.2, InSAR performances over wetlands have
been widely investigated (Alsdorf et al., 2000, 2001a,b; Hong et al., 2010). Low coherence was
observed over open water and higher over Ćooded vegetation, particularly for L-band SAR
observations. InSAR-based monitoring of water levels and water stocks in tropical wetlands
provides interesting although limited results. Several L-band JERS-1 SAR images were used
to map the surface water changes and Ćood waves in a subset of the Amazon basin in the
1990s, and compared well with results from in-situ gauges (Alsdorf et al., 2007). A similar
approach was used with ALOS/PALSAR and ALOS-2/PALSAR-2 data acquisitions from
2010 to 2015 to derive water levels, still in the Amazon, and presented good agreement with
radar altimetry time series (Cao et al., 2018). The Congo basin also presents Ćooded forests
adapted for InSAR water level retrieval. Water levels from PALSAR in the Cuvette Centrale
of Congo were validated using ENVISAT time series (Lee et al., 2015). InSAR with PALSAR
and ENVISAT were then used to retrieve SWS time series from 2002 to 2011 in the Cuvette
Centrale (Yuan et al., 2017).

Finally, the KaRin instrument (Fjørtoft et al., 2013) onboard the future Surface Water and
Ocean Topography (SWOT) mission will perform InSAR measurements to provide a global-
scale monitoring of SWS with 21 days revisit (Biancamaria et al., 2016). Unlike current inSAR
applications relying on the repeat pass interferometric conĄguration, KaRin will perform
simultaneous measurements with two antennas separated by 10 m. It expected to show a
∼10 dB radiometric contrast between land and water, and a high interferometric coherence
on water.

1.4 Limitations of the state of the art

Several techniques to retrieve SWE and SWS, two essential hydrological variables, were pre-
sented in Section 1.3.1, Section 1.3.2, Section 1.3.3.2 and Section 1.3.4. In this section, we
discuss the general limitations of these sensors, techniques and products. The future advances
expected in hydrological sciences due to new remote sensing tools and datasets are discussed
in a following section.

1.4.1 Effect of the vegetation

1.4.1.1 Problems with optical datasets

Visible and infrared signals are reĆected by the canopy and are not able to sense the water
surface below vegetation layers. Moreover, they are not able to penetrate cloud cover which is
frequent over tropical and polar regions. This has two consequences for surface water datasets
from Landsat, MODIS and other optical sensors: i) they are frequently aggregated by time
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Figure 1.13: Maximum surface water extent from optical and microwave datasets. (a) SWE
at high water stage in spring 1996 from Hess et al. (2003) based on JERS-1 L-band SAR,
and (b) maximum SWE in the 1984-2020 GSW records (Pekel et al., 2016). Both datasets
are gridded at 0.1◦ and the colorbar corresponds to the water fraction in every pixel. The
maximum inundated surfaces in km2 are shown in the bottom left corner of both Ągures.

to overcome weather issues, and ii) they do not detect water below the canopy in Ćooded
forests. This largely limits their interest for studying tropical wetland hydrology.

Figure 1.13 shows the surface water extent in the Amazon basin from two datasets: the
classiĄcation at high water stage of JERS-1 data in 1996 (Hess et al., 2003), and the 1984-2020
maximum extent in the Landsat-based GSW product (Pekel et al., 2016). The JERS-1 map
is obtained only for year 1996 and shows very large inundated areas in Llanos de Mojos and
Rio Branco Ćoodplains, and along the stream of the Amazon and its main tributaries. On the
contrary, the GSW product poorly detects these large inundated areas although it represents
the maximum estimate for the entire 1984-2020 period. This example highlights the biases
afecting optical-based Ćood products in tropical regions.

In Figure 1.13, the maximum inundated area is printed in red for both datasets. The total
Ćooded surface reaches ∼632461 km2 for the JERS-1 dataset from Hess et al. (2003), almost
Ąve times greater than the value from the GSW product. At global scale, the total inundated
area reaches ∼6 millions km2 for GIEMS, which is nearly twice more than optical datasets.
There is a large diference in the zonal distribution of surface water between GIEMS (high
fraction over the tropics, Figure 1.11) and GSW (low fraction over the tropics and boreal
regions dominate, Figure 1.7). GIEMS estimates are not fully trustful, but both amplitude
and seasonality were validated in the Amazon against the dual-season JERS-1 classiĄcation
from Hess et al. (2003). Therefore, there are evidences that GSW and other optical-based
Ćood products underestimate the global Ćooded areas, due to large underestimations of SWE
in tropical wetlands and Ćoodplains.
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1.4.1.2 Influence of the vegetation on the microwave signals

The microwave signals are very useful to overcome the limitations of optical sensors in the
tropics, as they work with cloud cover and by night. They are also able to penetrate the
canopies, although the signals are partially attenuated by vegetation layers. This attenuation
is lower at L-band, when compared to the lower wavelengths/higher frequencies X and C
bands (see Figure 1.8). It is represented by the transmissivity of the vegetation (γ):

γ = exp


−τ

cos(θ)



(1.6)

where θ is the incidence angle of the signal, and τ is the Vegetation Optical Depth (VOD)
at speciĄc microwave frequency. L-band VOD (L-VOD) has been evaluated globally using
SMOS (Wigneron et al., 2021) and SMAP (Konings et al., 2017) records. The transmissivity
of the vegetation and therefore the VOD are used in models, for calibrating both passive
microwave emissivities and active backscattering from soil and vegetation layers (Frappart
et al., 2020). As it is an exponential term, a very low γ is found in dense forests (high τ)
or at high incidence angles (because the signal propagates into a much larger distance in the
vegetation layers). For active radar signals, the backscattering is described using the water
cloud model (Attema and Ulaby, 1978):

σ0 = γ2σ0
soil + σ0

vege + σ0
soil+vege (1.7)

where σ0
soil+vege is the backscattering due to the interactions between the soil and the vege-

tation and is generally neglected. σ0
vege corresponds to the volume scattering into the vegeta-

tion, while σ0
soil corresponds to the backscattering from the soil, with the wave crossing twice

vegetation layers and therefore attenuated by a factor γ2. Similarly, microwave emissivities
encompass a component from the soil and a component from the vegetation (esoil and evege,
respectively).

The attenuation of microwave signals by the vegetation has two consequences. First, L-
band signals propagate better through the canopy and should be used for monitoring soil
properties in forested areas. Secondly, the backscattering from dense forests must be cor-
rected from an attenuation factor, i.e. the transmissivity of the vegetation. A complete
parameterization of the vegetation in physical models for both passive and active microwave
observations can be found in Frappart et al. (2020).

1.4.2 Confusion between soil moisture and surface water

Soil moisture (SM) is another disturbing geophysical parameter for surface water monitor-
ing. SM enhances the reĆection of microwave signals on land surfaces and decreases their
emissivity, so the brightness temperatures observed by radiometers. A near-saturated soil
can comport approximately like surface water for both passive and active radars. As a con-
sequence, SM is a pitfall for Ćood detection algorithms.
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Figure 1.14: Comparison of SWE extracted from GIEMS (a,c) and MODIS (b,d) at max-
imum Ćood extent in 2018-2019, in: (a,b) the Parana basin and (c,d) the Lower Mekong
Basin (LMB). MODIS dataset was gridded at 0.1◦ and the colorbar indicates the percentage
of water in each pixel. The maximum inundated surfaces in km2 are shown down each Ągure.

The confusion between surface water and near-saturated soils during wet seasons in global
multi-satellite Ćood products is highlighted in Figure 1.14. The maximum water fraction in
2018-2019 in the Parana and Lower Mekong Basin (LMB) are shown for both GIEMS (Fig-
ure 1.14a,c) and MODIS (Figure 1.14b,d) SWE estimates. The MODIS dataset is obtained as
in Frappart et al. (2018) and Normandin et al. (2018). The spatial patterns between GIEMS
and MODIS SWE estimations over the Parana (Figure 1.14a-b) and LMB (Figure 1.14c-d)
are very consistent. However, GIEMS presents two limitations based on these plots: i) a
much lower level of detail than MODIS SWE due to lower spatial resolution (∼25 km against
500 m), and ii) twice more estimated Ćooded area than MODIS.

It is to be noted than although MODIS SWE is considered as the reference in Figure 1.14,
it may underestimate Ćoods in savannas and forests due to the spectral properties of the
sensor. Still, it is clear that GIEMS overestimates Ćoods at the higher water stage: almost
all the pixels in the LMB contain a fraction of water (Figure 1.14c). Most of these regions
likely present near-saturated soils but not surface water during rainfall events. These issues in
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GIEMS have been also noted in other monsoon regimes, in the Ganges-Brahmaputra plains
and the Sahel region. Finally, all low-resolution microwave sensors are subjected to a confusion
between SM and surface water. In particular, this is a common issue in spaceborne GNSS-
ReĆectometry (see Chapter 2), and L-band radiometers (SMAP and SMOS) have troubles in
disentangling the relative contributions of both variables in the large 35-50 km pixels.

1.4.3 Spatial and temporal sampling of microwave sensors

The global SWE products, i.e. GIEMS and SWAMPS, are based on SSM/I and SSMIS
brightness temperatures and have a coarse spatial resolution of ∼25 km at the equator.
Many other passive microwave sensors are available with a spatial resolution lower than
∼25 km, including L-band SMAP and SMOS with a resolution of 35-50 km (Table 1.1).
Overall, microwave radiometers are very sensitive to soil moisture and surface water, even
in the tropics, but are not able to sense small-scale spatial features, Ćoodplain connectivity
to rivers, tight streams, etc. Figure 1.14 highlights the poor level of detail in GIEMS SWE
estimations.

High-resolution (<30 m) observations are available with optical and radar imagery. Be-
cause visible and infrared wavelengths are limited in the tropics, SAR are the only operational
systems capable of sensing high-resolution surface water dynamics in vegetated areas. How-
ever, for many years, the revisit time of SAR was quite low (>20 days, see Table 1.2). This is
problematic for detecting Ćash Ćoods and accurately specifying inundation dynamics. Recent
SAR missions with two (TanDEM-X) or four (COSMO SkyMed) satellites were designed to
improve the spatial (∼1 m) and temporal (down to one day) resolutions of derived prod-
ucts. This advances the capability of NRT Ćood detection to support policymaking (see
Section 1.3.3.2), but was limited at the local or regional scales. The Ąrst SAR-based oper-
ational global-scale Ćood product was supplied by the New ESAŠs twin satellites Sentinel-
1A/1B. Multi-mission SAR and optical imagery datasets are capable of mapping Ćoods at
high spatio-temporal resolution and global scale by complementing each-other (Martinis et al.,
2022).

1.4.4 L-band SAR data availability

Most of the SAR sensors are operating at C and X band (see Table 1.2), because it permits
a higher resolution, better coherence and precision. However, C and especially X bands
barely penetrate the dense forests. L-band SAR have lower spatial resolution but better
penetration in the vegetation. It makes them suitable for monitoring Ćooded forests and for
the characterization of biomass properties.

One of the major gaps in the knowledge of the water cycle is the functioning and dy-
namics of tropical wetlands and Ćoodplains, and their interactions with the biogeochemical
cycles (see Section 1.2 and Section 1.1). For this, the availability of L-band data is essen-
tial. Unfortunately, very few missions have been launched carrying L-band SAR instruments.
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The JERS-1, ALOS/PALSAR-1 and ALOS/PALSAR-2 missions provide 30 years of discrete
records. Two main data gaps exist between the launch of the satellites, from 1998 to 2006
and from 2011 to 2014. Furthermore, the acquisition was limited in terms of revisit time, and
data acquisition was performed upon demand with no continuous records available.

Despite the limitations of the sensors, L-band SAR provided precious reference maps of
surface water in the Amazon (Hess et al., 2003) and Congo (Betbeder et al., 2014) basins. The
future L-band missions NISAR and ALOS-4/ PALSAR-3 will hopefully provide large-scale
monitoring of the surface water with a >bi-monthly revisit to help Ąlling current gaps.

1.5 Future advances expected

Two satellite missions will hopefully provide breakouts in tropical wetland hydrology in the
next years: the Surface Water and Ocean Topography (SWOT) from NASA/CNES (Centre
National dŠEtudes Spatiales), to be launched by the end of 2022, and the NASA/ISRO (Indian
Space Research Organization) SAR (NISAR), planned for 2024. They will complement to
provide a full coverage of the Earth surface for both SWE and SWS monitoring.

NISAR will be the Ąrst SAR mission to perform bi-frequency measurements at both L
and X bands. It will have a 12-day repeat cycle, sampling the Earth surface every 6 days
on average with high resolution (3-10 m, see Table 1.2). It will provide for the Ąrst time,
a continuous, L-band and high resolution monitoring of the inundation dynamics in tropical
forests, which is essential to understand the regional water cycles and their contributions to
regional and global biogeochemical processes. ALOS-2/ PALSAR-2 and its successor ALOS-
4/ PALSAR-3 from JAXA will be continuing the historical Japanese L-band SAR missions
at the same time. Both NISAR and PALSAR-3 will largely contribute to Ąlling the gap in
L-band SAR data.

The SWOT mission will provide unprecedented features for land hydrology (Biancamaria
et al., 2016). Although it is described as a radar altimetry mission, its technology is pioneer-
ing. The main instrument is the Ka-band Radar Interferometer (KaRIn) which will measure
surface water in a 120-km wide swath, with a 20 km gap across nadir. It will monitor rivers
as small as 100 m wide, and water bodies of 250 × 250 m. Early experimental results show
that Ka-band InSAR imagery have strong coherence on water bodies and separates well water
and land surfaces (Fjørtoft et al., 2013). SWOT will provide the Ąrst global and consistent
monitoring of SWS changes, with a complete inland water mask and the corresponding InSAR
water levels at 100 m spatial resolution evaluated once every repeat cycle (21 days). It will
make available water height, discharge, storage and extent of lakes, rivers and Ćoodplains.

However, the SWOT mission does not include requirements over vegetated wetlands. It is
up to now uncertain on what extent the Ka signal of KaRIn will be afected by the vegetation
(Fjørtoft et al., 2013; Biancamaria et al., 2016). The capabilities of SWOT for monitoring the
several hydrological variables enunciated above in Ćooded forests will have to be evaluated
on further studies (Papa and Frappart, 2021). For SWS monitoring, its combination with
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other data sources is still promising. NISAR will likely complement data gaps to understand
tropical wetland hydrology. Spaceborne GNSS-R constellations can also map Ćooded areas
below the canopy with high temporal sampling. In particular, the current NASA Cyclone
GNSS (CYGNSS) and future ESA HydroGNSS missions are of high interest in the Ąeld of
hydrology (see Chapter 2).
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2.1 Introduction

In this chapter, the Global Navigation Satellite System (GNSS) and the monitoring of GNSS
reĆected signals, called GNSS-ReĆectometry (GNSS-R), are introduced. Note that another
PhD thesis was previously conducted on GNSS-ReĆectometry at the University of Toulouse -
Paul Sabatier, in 2015 (Roussel, 2015). It widely described the GNSS systems, the reĆectom-
etry principles and techniques, and its applications. Consequently, only the fundamentals of
both GNSS and GNSS-R required for the understanding of my PhD work are described in
this manuscript. For additional theoretical notions, the readers are invited to dive into either
the PhD thesis from Rodríguez-Álvarez (2011) and Roussel (2015), or other references like
Zavorotny et al. (2014) and Darrozes et al. (2016).

2.2 The Global Navigation Satellite System

GNSS satellites are dedicated to the positioning on Earth and in space. It has been developed
since the beginning of the US Global Positioning System (GPS) in the 1970s and supports both
military and civil usages. GPS has long been the only working GNSS system (Kaplan and
Hegarty, 1996), but other global constellations are now fully operational (Section 2.2.2). In
particular, the Russian GLONASS, the European Galileo and the Chinese COMPASS/Beidou
largely contribute to the amount (>100) of GNSS satellites on orbit. Recently, the regional
constellations IRNSS and QZSS have also been set up to monitor speciĄcally the Asian area.
A large interest is observed worldwide for the services provided by GNSS beyond positioning,
and contributes to other scientiĄc applications such as radio-occultation and GNSS-R.

2.2.1 GNSS positioning

GNSS signals are emitted at L-band and Right Hand Circular Polarization (RHCP, see Fig-
ure 2.1). They comprise a carrier wave which is the basic signal at the fundamental frequency
(f = 1575.42 MHz for GPS L1), modulated to carry both a navigation message and the Pseudo
Random Noise (PRN) code (Enge, 1994; Kaplan and Hegarty, 1996). The navigation mes-
sage contains the satellite ephemerides and the precise clock time, ionospheric corrections,
and informations on the satellite status. The PRN code is speciĄc to each GNSS spacecraft
and permits its identiĄcation. It is also the basis of the GNSS positioning principle.

2.2.1.1 Code measurement

The GNSS code measurement consists in determining the distances between one receiver, and
several GNSS transmitters. It is a multi-frequency system, as the combination of observables
at two frequencies permits to compensate the ionospheric delays due to the interactions of the
waves with ionised particles. The PRN code from each GNSS spacecraft is locally replicated
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by the receiver, and correlated with the received signal. The delay between the emission
and the reception of the signal (∆tsi ) is there calculated, and gives the distance between the
transmitter and the receiver. As the synchronization of the receiver and transmitter clocks is
not perfect, the determination of ∆tsi sufers from small biases. The distance measured with
the code is thus called a pseudorange (Rp), and is computed as:

R∗

p = c∆tsi = c (tR − tE) + c (dts − dti) = ρsi + c (dts − dti) (2.1)

Rp = ρsi + c (dts − dti) + diono,f + dtropo +Mp + ϵp (2.2)

where c is the celerity of the wave, ∆tsi is the measured code delay, tR and tE are the times
of the wave emission and reception, and dts and dti are respectively the transmitter (GNSS
satellite) and receiver clock biases; ρsi is the geometric distance between the transmitter and
the receiver that would have been measured without any clock bias; dtropo and diono,f represent
the atmospheric corrections for the propagation of the signal into the troposphere and the
ionosphere; Mp represents the efect of the multipath (see Section 2.3.1), and Ąnally ϵp is the
receiver noise.

The geometric distance ρsi has three unknowns, which are the coordinates of the receiver.
The clock biases represent a fourth unknown in Equation (2.2), thus at least four satellites
are required to determine the 3D position of the receiver (Kaplan and Hegarty, 2017). The
positioning through code measurement is used by navigation systems onboard vehicles or
smartphones. However, its precision is not optimal, on the order of several meters minimum.
To enable precise applications, carrier phase measurements must be performed.

2.2.1.2 Carrier phase measurement

The phase measurement is based on the determination of the phase diference between the
GNSS carrier, and the local replica generated by the receiver. This phase diference can be
determined very precisely (Kaplan and Hegarty, 2017). However, the number of whole wave
cycles on the path from the GNSS satellite to the receiver is unknown, and is called the integer

ambiguity (N s
i ).

The integer ambiguity can be determined in a double phase difference conĄguration, with
two receivers observing the same two satellites. The unknowns coordinates and the integer
ambiguities are Ąrst determined through a least square method. These floating ambiguities
are Ąxed into integer values, and the coordinates of the receiver are estimated in a second
iteration (Mervart, 1995; Teunissen, 1996). Once the integer ambiguity has been determined,
it is known until the lock on the signal is lost by the receiver. During this period known as
the phase tracking, the distance between the satellite and the receiver (Lsi ) is modeled as:

Lsi = ρsi + c (dts − dti) + λN s
i − diono,f + dtropo +ML + ϵL (2.3)

where ML and ϵL correspond to the carrier phase multipath and noise, respectively. Equa-
tion (2.3) is used in most scientiĄc applications requiring high precision. The position of
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the receiver is determined in post-processing approaches. The Differential GNSS (DGNSS)
method uses a reference station to determine the coordinates of a mobile/rover, reaching sub-
centimetric precision. On the contrary, the Precise Point Positioning (PPP) does not require
a reference and reaches a quite similar level of precision than the DGNSS when resolving the
ambiguities (Ge et al., 2008).

2.2.2 GNSS constellations

GNSS is a set of constellations developed by diferent countries or continents. It started with
the development of the GPS constellation by the US army, whose Ąrst Block 1 satellites were
launched in 1978 (see Section 2.2.2.1). Since it was declared fully operational in 1994, GPS
has long been the only GNSS constellation permitting a global positioning on Earth (Enge,
1994; Kaplan and Hegarty, 1996). Other current global GNSS systems are the Russian Glob-

alnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS, Section 2.2.2.2), the European
Galileo (Section 2.2.2.3) and the Chinese Beidou/COMPASS (Section 2.2.2.4). These four
constellations are now operational for global positioning on Earth with about 25-30 satellites
in orbit each, and are used in GNSS-R applications. Other regional constellations dedicated
to the Asian area exist, which are not described here: the Japanese Quasi-Zenith Satellite
System (QZSS) and the Indian Regional Navigational Satellite System (IRNSS).

2.2.2.1 GPS

The GPS is currently composed of 31 satellites Ćying in Medium Earth Orbit (MEO), at an
altitude of ∼20,200 km and with a 11h58 min revisit time. They are arranged in six equally-
spaced orbital planes with 55° inclination, ensuring at least four visible satellites from any
point on Earth (Kaplan and Hegarty, 2017). The space segment is composed of several blocks

of satellites following the main evolutions of the system in time:

• Block I: it comprises the Ąrst 11 satellites, launched from 1978 to 1985 for validating
the GPS concepts. They are not anymore active.

• Block II: it comprises the Ąrst nine operational satellites, launched in 1989 and 1990.
They are not anymore active.

• Block IIA (Advanced): it comprises 19 satellites, launched from 1990 to 1997. The
last active spacecraft from Block IIA stopped functioning in 2016.

• Block IIR (Replenishment): it comprises 21 satellites launched from 1997 to 2009. The
last 8 are a sub-group named Block IIR-M (Modernized), as they emit a new civilian
code (L2C) on L2 frequency. Seven Block II-R and seven Block IIR-M satellites are still
operational.

• Block IIF (Follow-on): it comprises twelve satellites launched from 2010 to 2016, all
operational now. They emit a new civilian signal on the GPS L5 frequency.

• Block III: among ten satellites, the Ąrst Ąve were launched since 2018 and are now
operational. They emit a new civilian signal on GPS L1 frequency (L1C).
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Table 2.1: Current operational GPS satellites in orbit, with their civilian frequencies.

GPS block N° satellites Date of launch L1 C/A code L1/L2 P(Y) L2C L5 L1C
Block IIR 7 1997-2004 yes yes no no no

Block IIR-M 7 2005-2009 yes yes yes no no
Block IIF 12 2010-2016 yes yes yes yes no
Block III 5 2018- yes yes yes yes yes

The current active GPS satellites and their civilian frequencies are listed in Table 2.1.
The GPS signal is composed of three carrier frequencies (two for the oldest satellites without
L5), respectively the GPS L1 (f = 1575.42 MHz, λ = 19.05 cm), L2 (f = 1227.60 MHz, λ =
24.42 cm) and L5 (f = 1176.45 MHz, λ = 25.48 cm). They are modulated by:

• The civilian code C/A (Coarse Acquisition) is a short sequence modulating the GPS
L1.

• The military code P encrypted with the code W, forms the code P(Y) for military
usages. It modulates both the GPS L1 and L2.

• A new code M modulating both L1 and L2 for military usages.
• New civilian codes L1(C) and L2(C) modulating the GPS L1 and L2, respectively.
• The navigation message as a binary signal transmitted every 30 minutes.

For the most recent satellites, and provided that the receiver is able to track all the
frequencies, four GPS civilian codes are available on three carrier frequencies: the L1 C/A,
L1(C), L2(C) and L5. Multi-frequency data are interesting for remote sensing applications,
especially GNSS-R (see Chapter 3).

2.2.2.2 GLONASS

The GLONASS constellation has been developed during the same period than GPS, with a
Ąrst satellite launched in 1982 and the system declared fully operational in 1993 (Langley,
1997). However, it sufered from low maintenance after the fall of the Soviet Union. Fol-
lowing the launch of new satellites, it only became efective again for global positioning in
2011 (Springer and Dach, 2010). GLONASS nominal conĄguration includes 24 + 3 spares
satellites at an altitude of ∼19,140 km, arranged on three orbital planes with an inclination
of 64.8° and a revolution period of 11h15 min. As of September 2022, 26 satellites were
in orbit with 22 operating and the others in maintenance (GLONASS constellation status,
https://www.glonass-iac.ru/en/sostavOG/). There are several generations:

• Glonass (Ąrst generation): they were launched from 1985 to 1990 and composed the
Ąrst operational GLONASS constellation. They are now out of service.

• Glonass-M: they were launched from 2003 to 2016 and constituted the global opera-
tional positioning system from 2011.

• Glonass-K: they were launched from 2011 to 2018 and included for the Ąrst time the
CDMA (see below).

• Glonass-K2: they are deployed since 2017 and are still in development.
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Table 2.2: Current operational GLONASS satellites in orbit and their civilian signals. The
acronym of each signal must be red as follow: the two Ąrst letters correspond to the carrier
frequency (L1, L2 and L3), the third letter to the availability of the signal (O stands for Open
access and S for restricted access signals, not shown here), and the last letter indicates the
signal type (F is for FDMA, C is for CDMA).

Generation Date of launch Signal type L1 signals L2 signals L3 signals
Glonass 1982-2005 FDMA L1OF - -

Glonass-M 2003-2016 FDMA L1OF L2OF -
Glonass-K 2011-2018 FDMA, CDMA L1OF L2OF L3OC

Glonass-K2 2017- FDMA, CDMA L1OF, L1OC L2OF, L2OC L3OC

The structure of the historic GLONASS signals difers from GPS, BeiDou/COMPASS
and Galileo. In a Code Division Multiple Access (CDMA) strategy, each GPS (or GNSS)
satellite emits a signal at a fundamental frequency, and the modulation by the PRN code
allows its identiĄcation. On the contrary, GLONASS uses a Frequency Division Multiple
Access (FDMA) strategy where each spacecraft emits its own, distinct frequency (Langley,
1997). For the GLONASS L1, L2 and L3, these frequencies are:

fL1 = 1602 + k × 0.5625 MHz (2.4)

fL2 = 1246 + k × 0.4375 MHz (2.5)

fL3 = 1201 + k × 0.4375 MHz (2.6)

where the channel of the satellite k is an integer number between -7 and 6 (two spacecrafts on
opposite sides of the Earth can share the same channel). A code C/A is modulated on the L1
carrier and a code P is modulated on both L1 and L2, but unlike GPS, these two codes are
freely available for civilian usage. Since 2011 and Glonass-K, a CDMA transmission has also
been implemented in addition to the FDMA strategy (Urlichich et al., 2011). It concerned
Ąrst the new L3 signals, and now all carrier frequencies in Glonass-K2 generation. Table 2.2
summarizes these characteristics and the caption explains in detail the acronyms used.

2.2.2.3 Galileo

Galileo comprises 30 satellites at an altitude of ∼23,222 km, arranged on three orbital planes
with 56° inclination and 14h21 min of revolution period. It ensures higher coverage of the
polar regions than the GPS. The Ąrst four operational satellites were launched in 2011 and
2012, with following batches making the constellation operational. Galileo provides an open
navigation service (OS) for all users, a commercial service (CS) with higher positioning pre-
cision, two security services (Safety Of Life and Search And Rescue), and a public regulated
service (PRS) which is encrypted.

Galileo satellites are identiĄed using the CDMA strategy just as GPS. The signal is com-
posed of four carriers which are listed in Table 2.3, and modulated for the diferent services
listed above (Hein et al., 2006). The commercial service and the public regulated service have
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Table 2.3: Overview of the Galileo carrier frequencies and the services available. Os stands
for Open Service, CS for Commercial Service, and PRS for Public Regulated Service

Carrier Frequency Wavelength OS CS PRS
E1 1,575.42 MHz 19.03 cm yes no yes
E6 1,278.75 MHz 23.44 cm no yes yes

E5a 1,176.45 MHz 25.48 cm yes no no
E5b 1,207.14 MHz 24.83 cm yes no no

their own signals. Note that the E1 and E5a carriers have the same fundamental frequency
than the GPS L1 and L5, respectively. This enhances the interoperability of both systems,
and increase the amount of L5/E5 data to be collected for scientiĄc applications.

2.2.2.4 BeiDou/COMPASS

The BEIDOU/COMPASS constellation is certainly the most original as it combines both
a global and a regional system. BeiDou originally covered only China with the BeiDou-1
geostationary satellites. To extend and replace this regional system, China launched the 35
BeiDou-2 and BeiDou-3 (also named COMPASS) satellites, designed for global positioning.
Five satellites are on a geostationary orbit over China, three on an Inclined Geosynchronous
Orbit (IGSO), and the last 27 are on a usual MEO like other GNSS spacecrafts (Yang et al.,
2019). Since 2020 the constellation is now completed, and provides operational GNSS solu-
tions.

As for GPS and Galileo, the BeiDou signals use the CDMA approach. Each carrier is
modulated by the navigation message and a ranging code used for positioning. The carrier
frequencies and wavelengths are summarized in Table 2.4. The BeiDou B1C frequency is the
same that GPS L1 and Galileo E1, which enhances the GNSS interoperability with about 90
satellites emitting a carrier at 1575.42 GHz. Interestingly, BeiDou B2a has the same frequency
than the Galileo E5a and the GPS L5. Finally, the BeiDou B3 is close to Galileo E6.

Table 2.4: Overview of the civilian signals for the COMPASS/BeiDou constellation

Carrier Frequency Wavelength BDS-2 (15 satellites) BDS-3 (18)
B1I 1,561.10 MHz 19.20 cm yes yes
B1C 1,575.42 MHz 19.03 cm no yes
B2a 1,176.45 MHz 24.83 cm no yes
B3 1,268.52 MHz 23.63 cm yes yes

2.3 Principle of GNSS-R

The principle of GNSS-ReĆectometry (GNSS-R) was presented theoretically by Hall and
Cordey (1988), and developed for ocean altimetry applications in Martin-Neira et al. (1993).
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Another technical report introduced the Ąrst scatterometry analysis (Katzberg and Garrison,
1996), and Ąnally Garrison and Katzberg (1997) presented the Ąrst GNSS-R experiment using
data acquired by an airborne system. For early studies, GNSS-R was in fact only based on
the GPS constellation. It remained fairly conĄdential until the early 2000s, mainly due to
a lack of precision. New GNSS constellations and an improved accuracy of the retrieval
methods have increased the interest for GNSS-R techniques and applications. Also, GNSS-R
instrumentation is very low-cost when compared to other remote sensing instruments, as it
only requires a receiver to collect the GNSS reĆected signals. Furthermore, it is based on
GNSS constellations which are essential for both civil and military uses. It is thus viable for
long-term uses permitting to improve the technique over the years.

The early GNSS-R experiments were concentrated over the ocean, for both sea level (An-
derson, 2000; Ruini et al., 2004; Larson et al., 2009a) and sea state/wind speed determination
(Garrison and Katzberg, 2000; Garrison et al., 2002; Cardellach et al., 2003). The applications
are now diversiĄed, especially over land: soil moisture (Larson et al., 2008b; Camps et al.,
2016), river and lake altimetry (Beckheinrich et al., 2014; Li et al., 2018), snow depth (Larson
et al., 2009b; Rodriguez-Alvarez et al., 2012; Nievinski and Larson, 2014), sea ice detection
and thickness (Alonso-Arroyo et al., 2017; Schiavulli et al., 2017), biomass (Carreno-Luengo
et al., 2020) and vegetation height retrieval (Zhang et al., 2017; Munoz-Martin et al., 2022).
Near global applications are made possible by the launch of space GNSS-R missions like
CYGNSS over the last decade. GNSS-R techniques beneĄt from a very high temporal reso-
lution compared to other remote sensing systems, with sub-second measurements for in-situ
receivers and sub-daily revisit for spaceborne observations.

In this section, the properties of the GNSS signals reĆected on the EarthŠs surface are pre-
sented. The GNSS-R techniques, sensors and applications are further described in Section 2.4
and Section 2.5. The determination of water levels using geodetic receivers (Section 2.4.2.3)
and the detection of surface water using spaceborne GNSS-R observations (Section 2.5.2.3)
are particularly highlighted, to pave the way to the next chapters presenting my thesis work.

2.3.1 GNSS multipath

The multipaths represent the fraction of a GNSS signal reĆected by the Earth surface (land,
ocean and ice sheets), vegetation or human constructions, contributing in the signal recorded
by the receiver. Multipath degrades the precision of GNSS positioning, for both the code and
phase measurements. They extend the wave travel and produce errors up to tens of meters
in the code pseudo-range. They also produce an additional phase shift in the more precise
phase measurements, and provoke errors on the order of 1-2 wave cycles (∼20-40 cm) or more
(McGraw and Braasch, 1999).

For these reasons, the Ąltering of multipaths for GNSS positioning is important. The
geodetic antennas are designed to favour the direct signals with a strong antenna gain at
Right Hand Circular Polarization (RHCP) on the higher hemisphere, and an antenna gain
at nadir as low as possible. For the high-precision positioning requirements, the use of choke
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rings antennas is recommended as they eradicate the low elevation signals. Post-processing
strategies with a large amount of observations is used to detect and Ąlter observations with
high residues. On the contrary, the kinematic (instantaneous positioning) modes are very
sensitive to multipaths because they use few observations to determine the position of the
receiver.

The limitation of positioning is an opportunity for GNSS-R methods, exactly based on
the exploitation of the multipaths. GNSS-R is sometimes described as a technique using the
Signals of Opportunity (SoP), that is to say the unwanted signals considered as noise in GNSS
positioning. Hence, the properties of these reĆected signals are very interesting for remote
sensing applications.

2.3.2 Polarization of the reflected signals

The polarization of an electromagnetic wave describes the evolution of the electric Ąeld E⃗ in a
plane perpendicular to the direction of propagation. It can be either linear, elliptic or circular
- the latter being a particular case of the elliptic polarization. For the linear polarization,
the vector E⃗ has a constant direction in time in the perpendicular plane. For the elliptic and
circular polarizations, E⃗ describes an ellipse or a circle in the plane during the propagation of
the wave. Looking at the direction of propagation, the polarization is right handed when the
ellipse is travelled with clockwise rotation, and is left handed otherwise. Figure 2.1 supplies
a graphical representation of the RHCP and LHCP signal propagation.

A linearly polarized wave can systematically be written as the sum of a LHCP and a
RHCP waves of similar amplitude (Cheng, 1993), which is essential afterwards. For the
GNSS multipaths, the power of the incident/direct RHCP signal is always greater or equal
(for a perfect ńmirrorż) to the power of the reĆected signal. This one is composed of both
a RHCP and a LHCP components. The Fresnel reĆection coeicients ΓRHCP and ΓLHCP
indicate the fraction of the incident signal amplitude that is returned into the RHCP and
LHCP components, and are expressed as (Ulaby et al., 2014):

ΓRHCP =
ΓH + ΓV

2
(2.7)

Figure 2.1: Right Hand Circular Polarization (RHCP) and Left Hand Circular Polarization
(LHCP) of an electromagnetic wave. Adapted with images from https://en.wikipedia.org/
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ΓLHCP =
ΓH − ΓV

2
(2.8)

ΓH =
sin(θe) −

√

ϵ− cos2(θe)
sin(θe) +

√

ϵ− cos2(θe)
(2.9)

ΓV =
ϵ sin(θe) −

√

ϵ− cos2(θe)
ϵ sin(θe) +

√

ϵ− cos2(θe)
(2.10)

where θe (degree) is the GNSS satellite elevation angle and ϵ (without units) is the complex
dielectric constant of the reĆecting surface, related in particular to the soil moisture. ΓH and
ΓV are the Fresnel coeicients for the horizontal and vertical components of an electric Ąeld
linearly polarized, respectively. In Equation (2.7) and Equation (2.8), ΓRHCP and ΓLHCP are
called the co-polarization component (RHCP), and the cross-polarization component (LHCP)
of an electromagnetic wave.

There is a particular elevation angle value where the RHCP and LHCP components of
the reĆected signal are equal (ΓRHCP = ΓLHCP ), because the reĆection coeicient at vertical
polarization vanishes. It is called the Brewster’s angle (θb), and its value depends on the
dielectric properties of the reĆecting surface. The reĆected signal at θb is therefore linearly
polarized. For θe < θb, the RHCP component dominates the reĆected signal such as ΓRHCP >
ΓLHCP . The polarization of the reĆected signal is therefore elliptic and right handed, tending
towards a circular RHCP polarization for θe = 0° (because ΓLHCP = 0). On the contrary,
the LHCP component dominates the reĆected signal for θe > θb, which is completely circular
at θe = 90° because ΓRHCP = 0.

The polarization of the direct and reĆected signals are important for the design of GNSS-R
receivers. Single geodetic antennas acquire both RHCP and LHCP signals (see Section 2.4.2),
with antenna gain patterns permitting an optimized Ąltering or the multipaths and enhanc-
ing the RHCP direct signal component. On the contrary, dual-antenna conĄgurations (Sec-
tion 2.4.1) have one zenith looking antenna for acquiring direct RHCP signals, and nadir-
looking antennas for recording the multipath components.

2.3.3 Coherence of the reflections

The coherence of a reĆection depends on the reĆecting surface properties, like the root-mean-
square (RMS) roughness. It is an important parameter of GNSS-R signals that modulates
the waveform of an acquisition. It is used to study geophysical properties, in particular to
detect the presence of water (Section 2.5.2.3).

2.3.3.1 Coherent and diffuse scattering regimes

Once emitted by the satellite, a GNSS signal propagates to the EarthŠs surface which acts
like a reĆecting mirror. The shortest path of a reĆected signal from the transmitter to the
receiver intersects the Earth surface at a particular location, the specular point. The receiver
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Figure 2.2: Specular (or coherent) reĆection over a smooth reĆecting surface, and difuse (or
incoherent) scattering over a rough reĆecting surface.

Ąrst records the contribution from the specular point, which forms the leading edge of the delay
waveform. It further records the contributions from the surrounding areas with increasing
delay shifts. For a smooth reĆecting surface, the reĆected signal contains only contributions
from areas near the specular point. When it is rough (such as ocean and most of the non-
Ćooded land areas), the reĆected signal comprises the contributions from all the surface facets
that are favourably oriented, as illustrated in Figure 2.2. It represents therefore a much wider
contributing area.

In a bistatic radar conĄguration like GNSS-R, the forward-scattered signals are composed
of both a coherent and an incoherent components, as opposed to the classical monostatic
radars where the backscattering is dominantly incoherent (Munoz-Martin et al., 2020c). The
coherent component of GNSS-R signals represents the contribution from areas near the spec-
ular point, while the incoherent component is due to the difuse scattering mechanism. The
power of the reĆected signal Y (t0, τ, fd) can be written as the sum of the power from both
components, respectively Ycoh(t0, τ, fd) and Yinc(t0, τ, fd) (Voronovich and Zavorotny, 2018):

Y (t0, τ, fd) = Ycoh(t0, τ, fd) + Yinc(t0, τ, fd) (2.11)

where t0 is the time of the acquisition, τ the delay between the direct and reĆected signals,
and fd the Doppler frequency shift of the reĆected signal (see Equation (2.17)). The coherent
and the incoherent components can both dominate the signal, depending on the surface
geophysical properties and particularly the roughness (relative to the wavelength). The power
of a specular reĆection is higher than the power of a reĆection dominated by difuse scattering,
because it does not spread along multiple directions.

2.3.3.2 Contribution of the Fresnel zones

Although a simple specular reĆection model is easier to understand, the reĆection over a
smooth surface is better described using wave optics. According to the principle of Huygens-
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Fresnel, each point at the intersection of the wavefront and the reĆecting surface is itself the
source of secondary spherical wavelets (as illustrated in Camps and Munoz-Martin (2020)).
These wavelets are scattered along multiple directions and their sum form a new wavefront,
which is further called the reĆected signal.

The multiple Fresnel zones are used to characterize the GNSS-R scattering regime. Inside a
Fresnel zone, the reĆections in two points show a path diference of less than half a wavelength,
i.e. a phase shift of less than 180°. The First Fresnel Zone (FFZ) is thus an ellipse centered
on the specular point (whose phase is 0°), extending up to a phase equal to 180°. It is mostly
used to describe the spatial resolution of GNSS-R coherent observations as over smooth water
surfaces (Camps, 2019). Its semi-minor (rb) and semi-major (ra) axes are, for a ground-based
GNSS-R receiver (Hristov, 2000; Larson and Nievinski, 2013):

rb,gound =

√

√

√

√nλ



h

sin(θe)
+


nλ

2 sin(θe)

2


(2.12)

ra,ground =
rb,gound
sin(θe)

(2.13)

where n = 1 for the FFZ, λ is the signal wavelength, h is the receiver antenna height, and θe
is the satellite elevation angle. The expression of the Fresnel zones changes for a spaceborne
GNSS receiver and is given as (Camps, 2019):

rb,space = Rn,space =

√

nλ
Rt ×Rr
Rt +Rr

(2.14)

ra,space =
rb,space
cos(θi)

(2.15)

whereRt andRr are the transmitter and receiver ranges, i.e. the distance from the transmitter
and the receiver to the specular point, and θi is the incidence angle at the specular pint.
Overall, the higher is the incidence, the larger is the FFZ ellipse and the lower is the peak of
the received power. The other Fresnel zones are represented by rings that add around each
other, while the path diference increases by half a wavelength and the phase shift increases
by 180°.

When the reĆected signal comes from a wider area than the FFZ, as over rougher surfaces,
the integration of signal samples that are in opposition of phase causes Ćuctuations in the
received power (Camps, 2019). This is especially the case when transitioning from water
to land, where ripple efects are observed (Camps and Munoz-Martin, 2020). The modeling
results in Loria et al. (2020) suggest that it could also be the case over inland water (see
Figure 3 and Figure 4 of this article). The heterogeneity of land surfaces can cause a strong
scattering from targets away from the specular point, and therefore induce these Ćuctuations
of the received power.
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2.3.3.3 Rayleigh parameter

The spreading of GNSS-R difuse waves around the theoretical specular direction, or the
phase variations of these scattered waves, can be characterized using the Rayleigh roughness
parameter (Beckmann and Spizzichino, 1987). It is expressed as a function of the surface RMS
(Root Mean Square) height σh, i.e. the RMS deviation of the reĆecting surface according to
its average height:

Ra = 2π σh
cos(θi)
λ

(2.16)

with θi and λ the incidence angle and GNSS wavelength, respectively. Ra is proportional to
the surface roughness, so high values typically represent a regime of completely incoherent
scattering. A weaker or moderate difuse scattering is conversely associated with Ra ≤ 1
(Alonso-Arroyo et al., 2015; Voronovich and Zavorotny, 2017). This happens with low wind
speed over water surfaces, which is more frequent for inland water bodies than for the oceans.
The coherent component of the signal coexists with the incoherent scattering under such
conditions, and is attenuated or extincted for higher surface roughness.

2.4 GNSS-R techniques

The theoretical concept of GNSS (or GPS, at the time) reĆectometry was introduced by
Hall and Cordey (1988) and then demonstrated accidentally in Aubert et al. (1994). The
Ąrst remote sensing study based on the reĆection of GPS signals was conducted by ESA,
to prove the feasibility of GNSS-R ocean altimetry (Martin-Neira et al., 1993). The early
GNSS-R systems used two antennas, one for monitoring the direct GPS signals, and another
for monitoring the multipaths. The gain of each antennas is optimized for its purpose, and
the two signals are analyzed separately. Later, advances included the possibility of using a
single antenna to record both the direct and reĆected signals (Kavak et al., 1998). Even if
the information of each signal is lost, these receivers can be very low-cost and are therefore
useful to be deployed elsewhere on ground stations. However, single-antenna techniques are
not suitable for airborne or spaceborne applications (see Equation (2.23) and Section 2.4.2
for more informations).

Up to now, both the single and double antenna conĄgurations have seen an increasing
number of scientiĄc contributions, new techniques and applications, and a rapid development
from the experimental to the operational phases. Both systems are described in the next
subsections and in Figure 2.3. The aim is particularly to introduce ground-based acquisitions
using a geodetic antenna, which led to the results presented in Chapter 3, and spaceborne
GNSS-R systems using two (or three) antennas as the Cyclone GNSS (CYGNSS) constella-
tion, which led to the results presented in Chapter 4 and Chapter 5.
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2.4.1 GNSS-R with two antennas

2.4.1.1 Configuration of the acquisition

As it is shown in Figure 2.3, the double-antenna GNSS-R conĄguration is composed of one
zenith-looking RHCP antenna AR to record the direct signals, and one nadir-looking antenna
AL to record the multipaths. The LHCP component mostly dominates the reĆected signal
except for a satellite elevation angle lower than the BrewsterŠs angle (see Section 2.3.2), so
AL is usually a LHCP antenna. The receivers are able to process separately the waveforms
of both signals.

With evidence regarding the geometry of the acquisition (Figure 2.3), the reĆected signal
travels additional distance when compared to the direct signal. The distance traveled by one
wave can be estimated either through the code (Section 2.2.1.1) or phase (Section 2.2.1.2)
measurements, the second technique being much more precise. In a GNSS-R conventional

conĄguration (cGNSS-R), the direct and the reĆected signals are correlated with a local replica
of the PRN code, to estimate the distances traveled by both waves (Zavorotny et al., 2014).
The additional delay of the reĆected signal is extracted and is used to derive the additional
distance traveled ∆δ. The receiver height h can then be computed from ∆δ, the distance
between the center of phase of the two antennas d, and the elevation angle θe.

Another conĄguration is possible, where the direct and the reĆected signal are correlated
between each-other directly. This is called the interferometric GNSS-R, or iGNSS-R. This
type of receivers does not require the knowledge of the PRN code to correlate the two waves
and compute ∆δ (Zavorotny et al., 2014). However, iGNSS-R is noisier than cGNSS-R as the
correlation is based on the direct signal which may have a low Signal-to-Noise Ratio (SNR).
Also, the reĆected signals need to be Ąltered in the iGNSS-R method to match the direct
signals, using the antenna beam and the diferent delay and Doppler.

Figure 2.3: Geometry of a bistatic conĄguration between a GNSS transmitter and a GNSS-R
receiver, with a single or two antennas.
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Figure 2.4: Explanation of the Delay and Doppler shifts used to produce Delay Doppler Maps
(DDM), with iso-Delay and iso-Doppler lines around the specular point for a bistatic GNSS-R
acquisition with both the transmitter and the receiver in motion.

2.4.1.2 Iso-delay, iso-Doppler and Delay Doppler Maps

As the multipaths travel a longer total distance, they are delayed when compared to the
direct signal. This delay is minimum at the specular point, and increases as the scattering
from surrounding areas arrives at the receiver. Because the emitting GNSS satellite is in
motion (and also the GNSS-R receiver for airplanes or spacecrafts), the Doppler efect causes
a frequency shift in the received signals. The changes in delay and Doppler when moving
away from the specular point are illustrated in Figure 2.4.

The Delay Doppler Maps (DDM) observables represent the received power in two dimen-
sions, along the bins of delay and Doppler shifts. Figure 2.5 presents four DDM from the

Figure 2.5: Examples of CYGNSS Delay Doppler Maps (DDM) over a rough ocean (PaciĄc),
smooth water during Ćoods in the Orinoco, smooth desert in the Sahara, and mountainous
region in the Himalayas. The power in each DDM was normalized between 0 and 1 for the
purpose of visualization. The coordinates and the maximum power are printed in blue.
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Cyclone GNSS (CYGNSS, see Section 2.5.2) mission. The reĆections along an iso-delay ellipse
are mapped in the corresponding delay bin (Figure 2.5). Similarly, a Doppler bin corresponds
to the reĆections along the corresponding iso-Doppler line. The rougher is the reĆecting sur-
face, the more regions away from the specular point contribute to the reĆected signal, with
consequent delay and Doppler shifts. The peak amplitude and the power spread in a DDM
are thus good indicators of the surfaceŠs geophysical properties. The Ąrst DDM in Figure 2.5
was acquired over the PaciĄc, and looks like a horseshoe with a large spread of the reĆecting
power typical of rough surfaces. The second DDM was acquired over the Ćooded Llanos de
Orinoco, and is highly coherent with a low power spread. The peak power is there higher than
for any other case. The third DDM presents a coherent reĆection acquired over the Sahara,
due to a low surface roughness. However, the peak power is lower than over calm inland
water bodies. And lastly, the fourth DDM was acquired over the Himalayas, highlighting the
limitation of CYGNSS in mountainous regions. The several peaks and the low received power
are due to the topography, and indicate that the DDM does not contain the specular point.

2.4.1.3 Signal processing

The correlation of the reĆected signal Sr(t) with a local replica of the PRN code a∗ for
cGNSS-R acquisitions takes the same form that the correlation of the direct signal with such
replica. The received power is integrated coherently over a short period of time Tc (Tc =1
ms for CYGNSS receivers). At time t0, with a delay shift τ and a Doppler shift fd, the
reĆected power Y (t0, τ, fd) is computed as (Zavorotny and Voronovich, 2000; Voronovich and
Zavorotny, 2018):

Y (t0, τ, fd) =
1
Tc

∫ t0+Tc

t=t0
Sr(t) a∗ (t− τ) e−j2π(f+fd) t dt (2.17)

For iGNSS-R acquisitions, Equation (2.17) is rewritten by replacing the local PRN replica
a with the direct signal Sd(t − τ). The thermal and speckle noises are important after
this coherent integration. The received power is therefore averaged over a period of time,
corresponding to Ni samples. This incoherent average was set to 1 s for CYGNSS data
acquired before July, 2019, and to 0.5 s after. The corresponding averaged power takes the
form:

⟨♣Y (τ, fd)♣2⟩ =
1
Ni

Ni
∑

n=1

♣Y (tn, τ, fd)♣ (2.18)

For spaceborne GNSS-R missions, two data products can be distinguished: the Level 1 DDM
obtained after the incoherent averaging following Equation (2.18), and the Level 0 raw Inter-
mediate Frequency (IF) obtained with coherent integration (Equation (2.17)), but before the
averaging. The raw IF are rare (Li et al., 2022), because they require high computational and
storage capabilities due to their 1 ms sampling. They are primarily downlinked to ground
stations to support mission quality controls. They also have large interest for the scientiĄc
community. They contain the phase information that is further lost during the incoherent
averaging of the signal. The complex information from coherent raw IF tracks permits to
reach a spatial resolution as high as 100 m (Li et al., 2021, 2022), while the DDM products
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are limited at hundreds to thousands of meters. Moreover, a precise phase-delay altimetry can
be performed using raw tracks as proposed in Cardellach et al. (2004). Spaceborne GNSS-R
phase altimetry was further used to retrieve sea ice thickness (Li et al., 2017) and water level
variations in a lake (Li et al., 2018). Still, DDMs are the main product of all the past and
current spaceborne GNSS-R missions due to a very lower data volume.

2.4.1.4 Modelling of the coherent reflections

As it was previously explained, the GNSS reĆected signals over smooth water surfaces are
largely dominated by the coherent component of the signal. Moreover, a high received power
is observed over water bodies when compared to surrounding areas, facilitating their delimi-
tation Figure 2.5. The modelling of the coherent component of the reĆected signal is therefore
essential for studying surface water with GNSS-R. From Equation (2.11) and according to
the literature (De Roo and Ulaby, 1994; Ulaby et al., 2014; Voronovich and Zavorotny, 2018),
the coherent power can be expressed as follows:

⟨♣Ycoh(t0, τ, fd)♣2⟩ =


λ

4π

2 PtGtGr

(Rt +Rr)
2 ♣χ(τ, fd)♣2 Γ(θi) (2.19)

where PtGt is the GNSS Equivalent Isotropically Radiated Power (EIRP) obtained from the
transmitted power Pt and the transmitter antenna gain Gt, Gr is the receiver antenna gain,
Rt and Rr are the distances from the specular point to the transmitter and from the specular
point to the receiver (ranges), χ(τ, fd) is the Woodward Ambiguity Function (WAF), and
Γ(θi) is the specular reĆectivity of the surface which depends on the incidence angle θi. From
Equation (2.19), the peak of the coherent power and the surface reĆectivity can be expressed
as:

Pcoh =


λ

4π

2 PtGtGr

(Rt +Rr)
2 Γ(θi) (2.20)

Γ(θi) = ♣ΓLHCP ♣2 γ2 Ψ (2.21)

where Ψ = exp(−4R2
a) depends on the Rayleigh coeicient (Equation (2.16)) and accounts

for the attenuation of the coherent component by surface roughness, ΓLHCP is the Fresnel
reĆection coeicient for the reĆected signal (mostly LHCP, Equation (2.8)), and γ is the trans-
missivity of the vegetation computed following Equation (1.6), using the Vegetation Optical
Depth at L-band (τL or L-VOD). The reĆectivity is thus a function of several geophysical
parameters of the reĆecting surface. With the hypothesis of a fully coherent reĆection, Pcoh is
the peak power in the reĆected DDM (Clarizia et al., 2019; Eroglu et al., 2019). So, the sur-
face reĆectivity Γ(θi) can be inverted from GNSS-R observations to study either SM, biomass,
surface roughness, or the presence of surface water which causes a high coherent power, as I
did in Chapter 4 and Chapter 5.
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2.4.2 GNSS-R with a single antenna

Some methods have been developed to analyze the direct and reĆected signals collected by a
single antenna. Figure 2.3 presents the geometry of this acquisition. This method is simpler
in terms of installation and processing chain compare than the two-antenna conĄguration. In
this case, the direct and reĆected signals are correlated with each-other in order to extract
the observables of GNSS-R acquisitions. The single antenna GNSS-R acquisition can be
conĄgured in two manners: using a conventional geodetic antenna (also named the Signal-to-

Noise Ratio or SNR technique), and using the Interference Pattern Technique (IPT). Their
principles and applications are described in the following subsections, in particular the SNR-
based altimetry measurements (Section 2.4.2.3). Note that the path diference ∆δ between
the direct and the reĆected signals is equivalent to:

∆δ = 2 h× sin(θe) (2.22)

where h is the relative antenna height above the reĆecting surface, and θe is the satellite
elevation angle. ∆δ must be lower than the length of one PRN code chip to guarantee the
correct correlation of the direct and reĆected signals to produce coherent interferences (see
Section 2.4.2.1 and Section 2.4.2.2). As the GPS PRN code is composed of 1023 chips and has
a length of 1 ms, the maximum path diference ∆δmax between the direct and the reĆected
signals is:

∆δmax =
10−3

1023
× c = 293m (2.23)

where c is the wave celerity (c = 3×108 m·s−1). The single antenna acquisitions are only
suitable if ∆δ < ∆δmax, i.e. whatever the incidence angle for h < 145.5m. For h = 300m,
only the reĆected signals with θe < 30° can be monitored. So, the SNR and IPT techniques
are generally limited to antenna heights of 300 m at the most. This excludes airborne and
spaceborne platforms that are conversely equipped with double-antenna conĄgurations.

2.4.2.1 Interference Pattern Technique

The geometry of the acquisition in the IPT technique is slightly modiĄed when compared to
the conventional SNR method (see Section 2.4.2.2). Both the direct and reĆected signals are
recorded and coherently added by the receiver. The received power Ćuctuates, with construc-
tive and destructive interferences depending on the satellite elevation angle (see Figure 2 in
Rodriguez-Alvarez et al. (2009) and Figure 6 in Rodriguez-Alvarez et al. (2010) for examples).
These oscillations have a minimum of amplitude called notch, which occurs at the BrewsterŠs
angle (Rodriguez-Alvarez et al., 2009).

The antenna used for the IPT is not a conventional geodetic receiver. It is oriented towards
the horizon, making the antenna gain patterns symmetric for the direct and reĆected signals.
It is also linearly polarized for two reasons:

• The linear Fresnel reĆection coeicients Γv and Γh (see Equation (2.9) and Equa-



72 Chapter 2. Global Navigation Satellite System Reflectometry (GNSS-R)

tion (2.10)) show higher variations with the incidence angle than the circular ΓRHCP
and ΓLHCP . It provides additional information about the reĆecting surface.

• The antenna is able to record simultaneously the direct and the reĆected signals, instead
of a RHCP antenna which recording only the direct signal and the RHCP component
of the multipaths.

2.4.2.2 Signal-to-Noise Ratio

The more conventional SNR (Signal-to-Noise Ratio) method uses zenith-looking geodetic
antennas. The advantage when compared to the IPT method is the potential use of GNSS
stations from national and international geodetic networks, with free access to a large existing
database. However, the processing of the signal is a bit trickier which lead to a higher noise
in the observations. The asymmetry of the antenna gains from the direct and reĆected
signals needs to be compensated. Also, these antennas are designed to Ąlter the multipaths
because they decrease the precision of the positioning (Section 2.2.1). Still, the interferences
of the direct and reĆected waves create the same oscillations of the received power, which are
transposed into the SNR.

In the Rinex Ąles, the SNR is a common observable used to evaluate the quality of a GNSS
acquisition. The SNR is extracted from the I (in-phase) and Q (quadrature) components of
the signal recorded by the receiver (Georgiadou and Kleusberg, 1988). It is computed with
the same time sampling than GNSS observations. Lets consider the direct signal of amplitude
Ad and phase ϕd, and the reĆected signal of amplitude Am with a phase diference ψ to the
direct signal. The receiver records a composite signal of amplitude Ac and phase ϕc, which
is the vectorial combination of the direct signal with all the multipaths. The SNR is thus
expressed as follows (Bilich et al., 2008; Larson et al., 2008a):

SNR2 = A2
c = A2

d + A2
m + 2AdAm cos(ψ) ≃ A2

d + 2AdAm cos(ψ) (2.24)

Equation (2.24) is simpliĄed as we assume Ad ≫ Am, as the multipath component is atten-
uated due to the reĆection and a lower antenna gain. In the SNR time series, the direct
signal has therefore a high amplitude and low frequency. Its contribution was modeled using
a second order polynomial Ąt depending on the satellite elevation angle (Larson et al., 2013a;
Roussel, 2015). The multipaths then add a low amplitude and high frequency signal. Fig-
ure 2.6 presents the example of a raw SNR time series (a), with the decomposition for the
descending pass of the contributions from the direct (b, red curve) and reĆected (c) signals.
It highlights that the amplitude of the multipath oscillations depends on the elevation angle.

2.4.2.3 GNSS-R altimetry using the SNR

The multipath component of the SNR depends on the receiver antenna height h over the
reĆecting surface. As can be seen in Figure 2.3, h directly impact the distance travelled by
the reĆected wave, and consequently modiĄes the interference patterns between the direct
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and reĆected signals. The phase diference ψ is directly linked to the diference of distance
travelled ∆δ (Georgiadou and Kleusberg, 1988):

ψ =
2π
λ

∆δ =
4πh
λ

sin(θe) (2.25)

with θe the satellite elevation angle and λ the GNSS signal wavelength. In Equation (2.25),
the reĆection surface is supposed to be planar. Figure 2.6 shows that once the direct signal
is removed (Larson et al., 2013a; Roussel et al., 2015), the multipath component presents
high frequency oscillations whose amplitude depends on the satellite elevation angle. The
frequency of these oscillations fψ is estimated as the derivative of the phase diference:

fψ =
1

2π
dψ

dt
=

2ḣ
λ

sin(θe) +
2h
λ

cos(θe)θ̇e (2.26)

where ḣ = dh
dt

is the vertical velocity of the reĆecting surface, and θ̇e = dθe

dt
is the elevation

angular velocity. Equation (2.26) can be simpliĄed by making a change of variable x = sin(θe)
(Larson et al., 2008a):

f̃ =
1

2π
dψ

dx
=

2
λ



ḣ
tan(θe)
θ̇e

+ h



(2.27)

The frequency of the multipath oscillations is there expressed as a function of sin(θe). It is
composed of two components: the relative antenna height above the reĆecting surface (h),
and the vertical velocity (ḣ). For static surfaces, i.e. when ḣ < 1e−6 (Larson et al., 2013a;

Figure 2.6: Multipath contribution in the SNR time series, for a GPS track from satellite
G07 in Podensac, the 17th of October, 2016. (a) Complete time series of SNR, (b) SNR vs
elevation angle for the descending pass with the 2nd order polynomial Ąt corresponding to
the direct signal, and (c) detrended SNR showing the multipath oscillations.
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Roussel, 2015), it can be simpliĄed as:

f̃ =
2h
λ

(2.28)

Starting from the detrended signal in Figure 2.6c, a Lomb-Scargle Periodogram (LSP) is
usually employed to extract the dominant frequency in the spectrum analyzed (Larson et al.,
2009b, 2013b,a; Roussel et al., 2015). The relative antenna height is then directly inverted
for SNR altimetry.

Equation (2.28) and the SNR technique have been widely used to retrieve sea surface
height (SSH) from coastal geodetic receivers, that are available worldwide (Anderson, 2000;
Larson et al., 2013a,b; Löfgren and Haas, 2014; Strandberg et al., 2016; Vu et al., 2019;
Purnell et al., 2020; Tabibi et al., 2020; Geremia-Nievinski et al., 2020). All these studies
show great accuracy in retrieving SSH, with RMS error of few centimeters. However, the
constant height assumption (ḣ < 1e−6) is obviously not valid for most ocean environments
and introduces large errors in the SSH retrieval (see Figure 2.7). Diferent contributions
dealt with this limitation by using tide models in the retrieval process (Larson et al., 2013a;
Geremia-Nievinski et al., 2020), by modelling the SSH variations using B-spline functions
(Strandberg et al., 2016; Geremia-Nievinski et al., 2020), and also by correcting a posteriori

SSH estimates for the error introduced by the rate of change (Larson et al., 2013b). Still,
most of the studies were limited to places with a low tidal range and low signiĄcant wave
height (SWH).

Because the SNR method has the potential for monitoring macro-tidal environments,
water level variations in rivers and SSH variations during storms, a new technique was needed
for these applications. The dynamic SNR method was proposed by Roussel (2015) based on
Equation (2.27). It directly estimates both h and ḣ using multi-GNSS satellite data, by
resolving a system of n equations with two unknowns using the least square method. It
showed good results in coastal environment (see Figure 2.7 with a tidal range of ∼4 m), but
not in monitoring inland water level variations extreme events like Ćash Ćoods and storms.
Another study used a similar technique with the addition of a third unknown in the system of
equations representing the acceleration ḧ (Tabibi and Francis, 2020). It allowed the detection
of abrupt water level changes (∼10 m) in a reservoir.

These methods were reproduced and improved in my thesis work to extend GNSS-R
water level monitoring to complicated inland water environments, with elevation and azimuth
masks, narrow rivers, high vertical velocity ḣ, and a low number of GNSS satellites visible.
The corresponding results are presented in Chapter 3.

2.4.2.4 Other applications

Both the IPT and the SNR methods can be used to estimate various geophysical parame-
ters, especially over land surfaces. Soil moisture (SM) has been widely studied as the signals
are very sensitive to changes in the dielectric properties of the reĆecting surface caused by
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Figure 2.7: Comparison of the SNR-based SSH time series with the tide gauge in Cordouan
(blue curve), for a classic retrieval with constant heigh assumption (black curve), and for the
dynamic estimation of both h and ḣ (red curve). The Ągure and results are from Roussel
et al. (2015).

variations of the soil moisture content, through the Fresnel reĆection coeicients (see Equa-
tion (2.10) to Equation (2.7)). The multipath SNR (SNRm) is extracted after the removal of
the direct signal component (see the previous section and Figure 2.6), and is further modelled
as:

SNRm = Am cos


4πh
λ

sin(θe) + ϕm



(2.29)

where Am and ϕm are the amplitude and the phase of the multipath component, respectively.
These two parameters have shown sensitivity to the SM content, especially for the phase
which was used by further studies to retrieve SM variations (Larson et al., 2008a, 2009a;
Chew et al., 2013; Roussel et al., 2016; Zhang et al., 2018). Empirical relations have been
developed to calibrate SM estimates based on SNRm. The antenna height h needs to be
previously determined using Equation (2.28), as the vertical velocity is usually negligible.
Small variations of h in time are also recorded as the penetration of the radar signal in the
ground changes with the SM content.

The IPT also permitted to successfully sense SM variations, over a bare soil (Rodriguez-
Alvarez et al., 2009) and a more complex terrain (Rodriguez-Alvarez et al., 2010). For this,
both the amplitude and the position of the notch can be used. The latter is advantageous,
as it is independent from the surface roughness and only varies depending on the dielectric
properties of the soil, i.e. SM in a speciĄc place (Rodriguez-Alvarez et al., 2009). The
possibility of using both the vertical and horizontal polarizations also makes the IPT power
independent from the soil roughness, and improves the SM estimates (Alonso-Arroyo et al.,
2014a).
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Rodriguez-Alvarez et al. (2010) modelled the air, vegetation and soil structures and their
interactions with the electromagnetic wave to retrieve SM in vegetated crops, with typical
errors of 2-5%. They also derived the plant height with a few centimeters accuracy, and
the topography around the receiver with a few tens of centimeters accuracy. The combined
study of vegetation growth and SM has also been performed using the SNR method (Zhang
et al., 2017). However, the possibility of retrieving topography is speciĄc to the IPT, as the
conventional SNR method assumes a planar reĆector.

Another application of the IPT is the retrieval of signiĄcant wave height (SWH) over the
oceans, exploiting the loss of coherency of GNSS signals measured by the Rayleigh parameter
(Alonso-Arroyo et al., 2014b). Finally, the snow depth was estimated using both the IPT
(Rodriguez-Alvarez et al., 2012) and the SNR (Larson et al., 2009b) methods. The latter
ofers the possibility to continuously monitor snow depth (as well as other variables), with
the use of national or international geodetic networks (Wan et al., 2022).

2.5 GNSS-Reflectometry from space

GNSS-R has three distinct spatial scales for studying geophysical parameters: the local scale
with in-situ receivers, the regional scale using receivers onboard airplanes, and at the global
scale using satellite platforms. The applications of local GNSS-R datasets have been de-
scribed in the previous section. Airborne GNSS-R is also of great interest to study essential
environmental variables at the regional scale. As stated in Section 2.4.2, they can only be
performed using double-antenna receivers. Besides the Ąrst GNSS-R demonstrators onboard
aircrafts (Martin-Neira et al., 1993; Aubert et al., 1994), several campaigns were programmed
since the early 2000s, especially by ESA. The applications include ocean altimetry (Ruini
et al., 2004; Cardellach et al., 2011) and wind speed (Cardellach et al., 2011) retrieval. Over
land, the sensing of soil moisture and biomass was assessed (Cardellach et al., 2011; Egido
et al., 2014). For the cryosphere, airborne GNSS-R can be applied to sea-ice, snow and ice
sensing (Cardellach et al., 2011).

Despite their interest, this manuscript does not provide more insights into the airborne
GNSS-R techniques and applications, as I did not use such data during my PhD work. The
in-situ, single antenna SNR method used in Chapter 3 was described in Section 2.4.2. Now,
this section introduces the principal spaceborne GNSS-R missions and their applications over
land. It is based on the waveform acquisition using two antennas and the signal processing
techniques described in Section 2.4.1.3. It is a state-of-the-art for the second part of my PhD
work presenting surface water detection based on CYGNSS data.

2.5.1 Early missions

The Ąrst spaceborne GNSS-R experiment was performed by a satellite from the British Disas-
ter Monitoring Constellation (UK-DMC), launched in 2003. A second nadir-pointing antenna
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was added to the GPS receiver, which was modiĄed to downlink the Ąrst spaceborne GNSS-R
observations (Gleason et al., 2005). A further analysis of the DDM from UK-DMC helped in
demonstrating the feasibility of spaceborne GNSS-R sensing of the sea state (Clarizia et al.,
2009).

The UK TechDemoSat-1 (TDS-1) was launched in 2014 to demonstrate the accurate mon-
itoring of wind speed around the globe with GNSS-R. The Space GNSS Receiver - Remote
Sensing Instrument (SGR-ReSI) acquiring GNSS reĆections onboard TDS-1 was a prelimi-
nary version of the Delay Doppler Mapping Instrument (DDMI) carried onboard the next
CYGNSS mission (Section 2.5.2). It was the Ąrst instrument to provide an amount of DDM
large enough to analyze spaceborne GNSS-R observations over various land and ocean sur-
faces. Furthermore, it downlinked several short raw Intermediate Frequency (IF) tracks (see
Section 2.4.1.3). The raw IF contain phase information and allow high-resolution spaceborne
GNSS-R applications (Li et al., 2021). They are an object of investigation, prior to the
launch of the future HydroGNSS mission (see Unwin et al. (2021) and Section 2.5.3), with a
particularly interesting contribution from TDS-1 data (Li et al., 2022).

TDS-1 DDM were used for ocean altimetry (Clarizia et al., 2016) and wind speed retrieval
(Foti et al., 2015), paving the way to the next CYGNSS mission. Interestingly, TDS-1 has
a Sun-synchronous orbit at an altitude of 635 km and with 98.8° elevation, permitting data
acquisitions over the high latitudes. This led to applications over the cryosphere as, for exam-
ple, sea ice detection (Yan and Huang, 2016; Alonso-Arroyo et al., 2017), sea ice concentration
(Yan et al., 2017) and thickness (Yan and Huang, 2020). Using the raw IF samples, a precise
phase altimetry over sea ice was also demonstrated (Li et al., 2017).

Over land, the calibrated surface reĆectivity showed high sensitivity to SM (Chew et al.,
2016), with variations of several decibels between tracks during the dry and the wet season over
the same region. Camps et al. (2016) also highlighted the sensitivity of TDS-1 observations
to SM, especially over low vegetated areas with a NDVI value below 0.1. The sensitivity
to SM was found to decrease with an increasing NDVI, except for dense vegetation in wet
regions. However, the Spearman correlation coeicients were low: 0.63 in the best case with
few vegetation, and below 0.35 otherwise. To conclude, TDS-1 showed sensitivity to several
land geophysical parameters, but the amount of data was not suicient for large scale or
continuous monitoring.

2.5.2 CYGNSS

2.5.2.1 Technical aspect

TDS-1 was followed by the launch of the NASA Cyclone GNSS (CYGNSS) mission in De-
cember 2016. It was the Ąrst operational GNSS-R mission, for monitoring the formation
and the evolution of tropical cyclones through wind speed retrieval (Ruf et al., 2016). It has
provided 25 km resolution sub-daily wind speed estimations since its early days (Clarizia and
Ruf, 2016). CYGNSS has a very high revisit due to the association of 8 spacecrafts in a
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constellation of Low Earth Orbit (LEO) micro-satellites. The DDMI instruments are able to
record DDM sampled every 1 s (0.5 s after July 2019), and also to downlink raw IF data.
Each DDMI has four channels, thus the entire constellation can make up to 32 observations
per second (up to 64 after July, 2019). Over a 25 km pixel, the mean and median revisit times
are 3 and 7 hours, respectively (Ruf et al., 2016). CYGNSS made a large amount of Level 1
DDM freely available for land and ocean applications in the inter-tropical band, between -38°
and +38° latitude as highlighted in Figure 2.8.

The spatial resolution of CYGNSS has to be speciĄed. Over a rough ocean where the
difuse scattering dominates, it is estimated to a coarse 25 km. This gives the spatial sampling
of CYGNSS ocean products (Clarizia and Ruf, 2016). The incoherent scattering regime is
also found over many land surfaces. However, over calm water bodies, very wet soils with low
roughness and Ćat arid surfaces, the coherent component of the reĆected signal can dominate
with a low Rayleigh coeicient. The spatial resolution of a coherent observation corresponds
roughly to the FFZ, so about 0.5-1 km depending on the elevation angle (see Camps (2019)
and Section 2.3.3.2). For a 1 s incoherent averaging of the received power (Section 2.4.1.3), it
is elongated in the along-track direction up to 6.6 km. Still, the strong power observed over
rivers with few hundred meters width highlights the sensitivity of CYGNSS observations to
a small fraction of water inside this large footprint.

The more topography there is, the weaker are the coherence and the amplitude of the
reĆected signal. Mountainous regions represent thus an inherent limitation of GNSS-R mea-
surements. Moreover, early CYGNSS DDM (in 2017) were of poor quality above a 600 m
threshold, because the estimation of the specular point location was based on a mean sea
surface model (Gleason et al., 2019). This led several authors to apply to Ąlter out data
above 600 m (Eroglu et al., 2019; Rodriguez-Alvarez et al., 2019; Yan et al., 2020). The Level
1 DDM calibration procedure was further improved with a DEM to account for the elevation
and topography efects (Gleason et al., 2020). High quality DDM are now collected up to
2500-3000 m high, with lower quality over the Tibetan plateau and the Altiplano. CYGNSS
observations are thus unavailable at high latitudes and high altitude, so the cryosphere and
permafrost components cannot be studied.

Figure 2.8: Number of CYGNSS observations per 0.1° pixel over land during one month
(August 2018).
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2.5.2.2 Land applications

Over land surfaces, the main application of CYGNSS data has been soil moisture estimates
(see Figure 2.9). Several studies have retrieved SM with accuracy ranging from 0.04 to 0.07
cm3/cm3 (Chew and Small, 2018; Kim and Lakshmi, 2018; Al-Khaldi et al., 2019; Carreno-
Luengo et al., 2019; Clarizia et al., 2019; Eroglu et al., 2019; Senyurek et al., 2020; Yan et al.,
2020). Most of them assumed a coherent reĆection over wet soils, which is certainly wrong for
SM values under 0.4-0.5 cm3/cm3 (Collett et al., 2022). Only Al-Khaldi et al. (2019) supposed
an incoherent scattering regime that Ąts better the soils with low moisture (see Figure 2.9).
The large amount of CYGNSS bistatic observations make it possible to improve either the
spatial (Yan et al., 2020), or the temporal resolution of SMAP and SMOS SM estimates. So,
the University Corporation for Atmospheric Research (UCAR) product provides sub-daily
SM estimates in the SMAP 36 km EASE-grid, to sense very rapid variations of this essential
climate variable with low spatial resolution (Chew and Small, 2020a).

Many other applications have emerged to take advantage of this huge dataset over land.
The speciĄc case of inland water detection will be discussed in the following section. The
vegetation properties were also studied, as the GNSS-R coherent component is gradually
attenuated with a factor equal to the square transmissivity of the vegetation according to
Equation (2.21). This even causes the extinction of the coherent signal for very dense vegeta-
tion, from the model point of vue (Loria et al., 2020). However, Carreno-Luengo et al. (2020)
have shown that CYGNSS-derived parameters - the trailing edge (TE) and the reĆectivity
(Γ) - are sensitive to variations of Above Ground Biomass (AGB) up to the range of 250-350
Mg/ha in the Amazon and Congo basins. The robust regressions found in this study with no
saturation of the signal (see Figure 9 and Figure 10 in (Carreno-Luengo et al., 2020)) suggest
the possibility of AGB retrieval using CYGNSS. Also, Pierdicca et al. (2021) retrieved L-VOD
from CYGNSS and TDS-1 data, using neural networks (NN) and the SMAP VOD as input
for training the NN and validation. Finally, CYGNSS reĆectivity shows spatial variations
but is very stable temporally over the deserts. This was used to retrieve surface roughness
parameters in a 0.03° grid (Stilla et al., 2020). It ofers the possibility to calibrate CYGNSS
reĆectivity through the known dielectric constant of deserts, and further derive SM from the
physical model in Equation (2.21).

2.5.2.3 Detection of surface water

After the retrieval of SM, the detection of surface water has emerged as one of the top land
applications of CYGNSS dataset. It takes advantage of the very coherent signal over smooth
inland water bodies (Loria et al., 2020; Collett et al., 2022), where surface roughness is lower
than over the ocean. The coherent component of the received signal was thus logically used
in several studies to derive the surface reĆectivity Γ and map inundation extent. The earlier
ones presented a separation of Ćooded and non-Ćooded areas, before and after the passing of
hurricanes, typhoons or other extreme rainfall events (Chew et al., 2018; Morris et al., 2019;
Wan et al., 2019; Ghasemigoudarzi et al., 2020; Rajabi et al., 2020). Although the changes in
reĆectivity were largely related to the presence of water, these studies were mostly conducted
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Figure 2.9: Example of SM retrieval using CYGNSS, from Al-Khaldi et al. (2019). (a) SM
from CYGNSS, (b) SM from SMAP.

over speciĄc targets, using a threshold to extract inundated areas. These methodologies are
evidently not applicable at larger spatial scales, where the changes in land cover, surface
roughness and biomass density contribute in the GNSS reĆections.

The inĆuence of the vegetation on Ćood detection was studied in a small subset of the
Amazon basin (Jensen et al., 2018). These results were used in Rodriguez-Alvarez et al.
(2019) for classifying open water and Ćooded vegetation over the same study area, based
on a machine learning approach and a training/ validation dataset derived from PALSAR-
2. It demonstrated the ability of CYGNSS to detect Ćoods below the canopy, although the
accuracy of Ćooded forest detection was lower than the accuracy of open water detection.

Instead of focusing on inundation dynamics, other studies tried to detect long-lasting sur-
face water with a low time sampling. Gerlein-Safdi and Ruf (2019) used CYGNSS reĆectivity
to produce annual water masks at 0.1° over small test regions. Their method estimates the
mean value of reĆectivity in one pixel, and compares it with the average and the standard
deviation (std or σ) of reĆectivity in a very large box of size 150 × 150 pixels. A threshold
on σ helps in separating water and non-Ćooded pixels, and the map is then reĄned using a
random walker segmentation. It was slightly improved in a further study to perform the same
analysis temporally, i.e. by comparing the monthly mean value of a pixel with the average
and std of its time series (Gerlein-Safdi et al., 2021). This allowed to create a monthly map
of water bodies over the Pantanal and Sudd wetlands with a spatial resolution of 0.01° (∼1
km), quite high for an approach based on CYGNSS. The detection of inundations with this
method is weakened by changes in the geophysical properties (i.e. roughness, SM, biomass)
and the Ćood estate from one pixel to another. Moreover, it also relies on spatial interpolation
to Ąll large data gaps. It was only applied over small test regions, while Ątting the algorithm
parameters for an optimal surface water detection.

Recent improvements in the detection of surface water have been achieved using the
coherence of CYGNSS observations over land instead of the surface reĆectivity. In particular,
Al-Khaldi et al. (2021b) have proposed an estimation of the coherence based on the shape of
CYGNSS Level 1 DDM. The DDM Power Spread Detector (DPSD) method is based on the
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Power Ratio (PR), deĄned as:

PR =
Cin
Cout

(2.30)

Cin =
1
∑

i=−1

2
∑

j=−2

DDM (τM + i, fM + j) (2.31)

Cout =
Nτ
∑

i=1

Nf
∑

j=1

DDM(i, j) − Cin (2.32)

where Cin and Cout are the integrated power received inside and outside a 3 delay × 5 Doppler
region centered on the specular point, respectively (see Figure 2.10a,c). Also, τM and fM are
the delay and Doppler indices of the specular point, and Nτ and Nf are the number of delay
and Doppler bins. A noise exclusion threshold is also applied in the computation of Cout, and

Figure 2.10: Use of CYGNSS coherence to study surface water, with incoherent (a,b) and
coherent (c,d) DDM examples taken from Figure 2.5 (normalized, no units). (a,c) Compu-
tation of the PR following the DPSD method in Al-Khaldi et al. (2021b,a): Cin is computed
inside the (3 × 5) delay-Doppler blue box, and Cout outside this box. (b,d) Computation
of the PHPR according to Wang et al. (2022): Cpeak is computed inside the (5 × 3) delay-
Doppler blue box, and Chorseshoe inside the (6 × 7) delay-Doppler green box. (e) Annual
1-km water mask extracted with the DPSD method, adapted from Al-Khaldi et al. (2021a).
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the PR Ąnally represents an estimate of the power spread in the DDM, related to the geophys-
ical properties of the reĆecting surface. A PR above 2 was found to be associated to surface
water (Al-Khaldi et al., 2021b). The DPSD was used to map water bodies in the full coverage
of CYGNSS mission (Al-Khaldi et al. (2021a) and Figure 2.10), using either a 1 year/1 km,
a 3 months/3 km or a 2 weeks/6 km grid. A large amount of false alarms were recorded over
the vegetated areas due to the choice of the reference dataset (GSW product from Pekel et al.
(2016)), which makes diicult to assess the performances in monitoring Ćooded vegetation.
Another similar metric was proposed to (slightly) increase the performances of the algorithm
(Wang et al., 2022). It is named the Peak to Horseshoe Power Ratio (PHPR) and deĄned as
PHPR = Cpeak/Chorseshoe, with:

Cpeak =

∑2
i=−2

∑1
j=−1DDM (τM + i, fM + j)

5 × 3
(2.33)

Chorseshoe =

∑Nτ

i=3

∑3
j=−3DDM (τM + i, fM + j)

6 × 7
(2.34)

where Cpeak is the integrated power received inside a 5 × 3 delay-Doppler region centered on
the specular point, and and Chorseshoe represents the power received in the 6 × 7 delay-Doppler
region behind the peak value (see Figure 2.10b,d). Both the DPSD and the PHPR methods
have shown to be efective for mapping surface water. The two methods are illustrated in
Figure 2.10, with the yearly DPSD water mask from Al-Khaldi et al. (2021a). Still, no
estimation of the temporal variations of wetland and inundation extent has been performed
using CYGNSS, although the data have the potential for it. It is the core of my thesis work,
that is presented in Chapter 4 and Chapter 5.

Lastly, some studies showed the detection of open water and Ćooded vegetation using
CYGNSS raw IF tracks (Li et al., 2021, 2022; Collett et al., 2022; Russo et al., 2022; Chapman
et al., 2022). The main advantage is to obtain information at very higher spatial resolution
than the Level 1 DDM product, using the phase just after 1 ms coherent integration (see
Section 2.4.1.3). Also, the coherence derived from raw IF tracks shows lower sensitivity
to the vegetation cover and other disturbing variables than the reĆectivity. The complex
waveform observations permit to detect water bodies down to a hundred meters, with a 1000
Hz sampling rate (Li et al., 2022). The coherence is found over vegetated areas with an
AGB up to 300 Mg/ha (Li et al., 2021). If there is no surface water, higher coherence is
found over saturated soils with SM ≥ 0.45 cm3/cm3 (Collett et al., 2022). Overall, the raw
IF tracks permit a high resolution mapping of inundation dynamics when compared to the
coarse resolution of the parameters derived from L1 DDM (Chapman et al., 2022). However,
few raw IF samples exist as they are downlinked to investigate speciĄc targets and to perform
quality controls of the CYGNSS products. Thus, they cannot be used for operational surface
water mapping. A large dataset with complex phase information will be provided for the Ąrst
time by the future ESA HydroGNSS mission, to be launched in 2024 (Unwin et al., 2021).
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2.5.3 Other systems and perspectives

Other GNSS-R spaceborne sensors were already launched. They include the Passive ReĆec-
tometry and Interferometry System - In orbit Demonstrator (PARIS-IoD), which demon-
strated ocean altimetry with a precision of about 5 cm (Camps et al., 2014). It is named as
the pioneer GNSS-R system proposed by ESA in 1993 (PARIS; Martin-Neira et al. (1993)),
and helped in planning the next high precision GNSS-R altimetry missions. In particular, the
GNSS REĆectometry, radio occultation, and scatterometry onboard the International Space
Station (GEROS-ISS) was, as indicated by its name, a GNSS-R experiment onboard the ISS
in the framework of ESA programs. It was primarily dedicated to the monitoring of both sea
surface height (SSH) dynamics using GNSS-R altimetry, and ocean mean square slope related
to surface roughness, wind speed and direction (Wickert et al., 2016).

Another recent space GNSS-R mission is the 3CAT-2 nano-satellite designed by the Uni-
versitat Polytècnica de Cataluĳa (UPC). Its payload is the P(Y) and C/A ReĆectOmeter
(PYCARO), able to track multi-GNSS, bi-frequency (L1 + L2) and bi-polarization signals
to provide measurements of ocean and ice altimetry, wind speed, soil moisture and biomass
(Carreno-Luengo et al., 2016). Further evolutions of this instrument include the PYCARO-2
receiver tested on the ground for determining snow and ice thickness (Munoz-Martin et al.,
2020d), the Flexible Microwave Payload 1 (FMPL-1) onboard 3Cat-4 (Munoz-Martin et al.,
2018), and the FMPL-2 onboard the new Federated Satellite Systems/3Cat-5 (FSSCat) mis-
sion developed at UPC (Camps et al., 2018). FFSCat won the 2017 ESA Sentinel Small
Satellite (S3) Challenge and the Copernicus Masters competition. The FMPL-2 payload in-
cludes a cGNSS-R receiver and a L-band microwave radiometer to provide low resolution soil
moisture, ice thickness and sea ice detection/coverage measurements over the polar regions
(Munoz-Martin et al., 2020a). The mission was successfully launched on September 2020
(Munoz-Martin et al., 2020b), and the early GNSS-R and radiometric data from FMPL-2
were evaluated using NN approaches for several applications: soil moisture (Munoz-Martin
et al., 2021), wind speed and sea surface salinity (Munoz-Martin and Camps, 2021), and sea
ice concentration and extent (Llaveria et al., 2021).

The experience gained from CYGNSS and other missions highlights good performances for
retrieving both land and ocean geophysical parameters, but also pointed out the limitations
of current GNSS-R observations. Future spaceborne missions can help in overcoming these
limitations. The next ESA HydroGNSS mission (Unwin et al., 2021) will be the Ąrst dedicated
to study the entire water cycle, including inland water. Unlike CYGNSS, HydroGNSS will
also be able to collect information near the poles, with lower revisit time than elsewhere. Both
the hydrosphere and cryosphere will beneĄt from the launch of HydroGNSS, planned for 2024.
HydroGNSS targets four essential climate variables (ECVs) as its primary objectives: SM,
inundation/wetlands, AGB and permafrost with soil freeze/thaw.

HydroGNSS coverage will depend on the number of satellites in orbit. For one satellite
and with a 0.25° spatial resolution, a global coverage is expected in 30 days with a mean
revisit time of ∼4 days (Unwin et al., 2021). The two-satellite conĄguration is required for
optimizing the performances of the mission, as it provides a 15-day global coverage and a
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below 3-day mean revisit. Future scenarios including more satellites will enhance the interest
of HydroGNSS for studying rapid variations of the water cycle. Whatever the number of
satellites, the interesting new features of HydroGNSS will be:

• Acquisition of Level 1 DDM for both GPS L1 and Galileo E1, ofering a double coverage.
• L1 DDM acquired at both RHCP and LHCP polarizations. The two polarizations

and the ratio RHCP/LHCP can help in disentangling the efects of several geophysical
parameters, e.g. soil roughness, moisture and biomass.

• It is planned to experiment the acquisition on a second frequency, e.g. the GPS L5/
Galileo E5 signals. These reĆected signals may be weaker but can provide a higher
resolution due to higher wavelength.

• A new channel allowing to capture coherent amplitude and phase information before the
Level 1 incoherent averaging. This provides information with higher spatial resolution
(∼100 m in Li et al. (2022)) and should allow precise phase altimetry. These observations
will be scheduled but are to represent a much larger dataset than TDS-1 and CYGNSS
raw IF tracks. Furthermore, they will include dual frequency and dual polarization
samples to investigate reĆections over speciĄc targets.
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3.1 Introduction

This section presents the results of the Ąrst part of my PhD published in Remote Sensing in
May 2021 (Zeiger et al., 2021). Although the main topic of this thesis was the monitoring
of land geophysical parameters using CYGNSS, we decided to begin with an in-situ GNSS
Interferometric ReĆectometry (GNSS-IR) case study. This permitted to experience the SNR
GNSS-R technique additionally to CYGNSS waveform data. It is also interesting to link the
use of GNSS-R datasets for hydrological studies at local, regional and global scales.

The data used in the following article were acquired in 2016 in Podensac by a team
composed of scientists from CNES, Environnements et Paléoenvironnements Océaniques et
Continentaux (EPOC) and Observatoire Midi-Pyrénées (OMP). The objective of this study
was to evaluate the possible retrieval of extreme water height variations using GNSS-R, during
the passage of the tidal bores in the Garonne River. Tidal bores are very high-frequency
waves propagating upstream the estuaries and rivers under appropriate conditions. For more
informations about the spatial structure and the formation of tidal bores, see Bonneton et al.
(2015) and Martins et al. (2017). In the Garonne River, this phenomena had a period of
approximately 3 seconds and an amplitude of 1.5 - 2 m (see Figure 3.1). The datasets
included GNSS positioning with a reference station on the riverbanks and a mobile onboard a
buoy on the river. The buoy acquisition permitted to retrieve surface level variations during
the propagation of the waves, as in a previous GNSS acquisition campaign in 2015 (Frappart
et al., 2016). Pressure and acoustic measurements were also used as reference water heights
for this study. For GNSS-R investigations, the GNSS reference station acquired during ∼12
hours multi-frequency (L1, L2 and L5) SNR time series for GPS and GLONASS satellites
tracked.

After some investigations, I concluded that the idea of retrieving water height variations
during the propagation of tidal bores was a pipe dream. The frequency of the multipath SNR
oscillations permits in theory to retrieve h, following Equation (2.28) (Larson et al., 2013a)
or Equation (2.27)) (Roussel et al., 2015). As this frequency is usually quite low, at least ∼30
minutes to 1 hour of SNR time series are required for its accurate determination. This, with

Figure 3.1: Evolution of the water heights during the propagation of the tidal bore in Poden-
sac, from DGNSS processing of the mobile buoy position on the river. The large amplitude
(∼1.5 m) and small period (2.5 − 3s) of the tidal bore waves are illustrated.
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the water level rising and dropping at a rate of ∼1 m/s during the tidal bore propagation (see
Figure 3.1). For evident physical reasons, the SNR data and current retrieval methodologies
cannot be used to estimate water level variations during such high-frequency phenomena.
Alternately, we then focused on retrieving water heights during one asymmetric tide cycle in
the Garonne River, showing a large amplitude but a lower frequency than tidal bores. For this,
the dynamic SNR method proposed by Roussel et al. (2015) was adapted to the particularities
of inland water environments. Asymmetric tides showed higher vertical velocities than what
was already observed using GNSS-IR (Larson et al., 2013b,a; Roussel et al., 2015). Moreover,
fewer satellites are visible on the river due to elevation and azimuth masks. Indeed, the width
of the Garonne in Podensac is approximately 150 m, and the riverbanks are largely vegetated
including trees up to 20-30 m high.

The methods, results and discussion about this work are presented in the following pub-
lication. I will then comment these Ąndings and my implication in this work. I also added
to this chapter some unpublished results on how the tidal bore propagation afects the SNR
time series (Section 3.4). Finally, the perspectives for the monitoring of inland water using
the SNR technique are discussed.

3.2 Publication in Remote Sensing
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Abstract: Signal-to-noise ratio (SNR) time series acquired by a geodetic antenna were analyzed to

retrieve water heights during asymmetric tides on a narrow river using the Interference Pattern

Technique (IPT) from Global Navigation Satellite System Reflectometry (GNSS-R). The dynamic

SNR method was selected because the elevation rate of the reflecting surface during rising tides is

high in the Garonne River with macro tidal conditions. A new process was developed to filter out the

noise introduced by the environmental conditions on the reflected signal due to the narrowness of

the river compared to the size of the Fresnel areas, the presence of vegetation on the river banks, and

the presence of boats causing multiple reflections. This process involved the removal of multipeaks

in the Lomb-Scargle Periodogram (LSP) output and an iterative least square estimation (LSE) of the

output heights. Evaluation of the results was performed against pressure-derived water heights.

The best results were obtained using all GNSS bands (L1, L2, and L5) simultaneously: R = 0.99,

ubRMSD = 0.31 m. We showed that the quality of the retrieved heights was consistent, whatever

the vertical velocity of the reflecting surface, and was highly dependent on the number of satellites

visible. The sampling period of our solution was 1 min with a 5-min moving window, and no tide

models or fit were used in the inversion process. This highlights the potential of the dynamic SNR

method to detect and monitor extreme events with GNSS-R, including those affecting inland waters

such as flash floods.

Keywords: GNSS-R; reflectometry; dynamic SNR; asymmetric tides; water height

1. Introduction

The Global Navigation Satellite System (GNSS) has been used for decades for posi-
tioning and navigation purposes. Developments of GNSS constellations, more than twenty
years ago, led to other remote sensing applications such as GNSS meteorology [1] and
radio-occultation [2]. The L2 civilian (L2C) and L5 frequencies offer new tools for sensing
atmospheric and Earth surface conditions; specifically, the L5 band improves altimetric
performances of GNSS and Global Navigation Satellite System Reflectometry (GNSS-R)
retrievals [3].

Recent developments include the improvements and use of GNSS-R as a consistent
technique for retrieval of various land and ocean parameters. The operating principle
for the use of these opportunistic signals was first proposed in 1988 [4], then exper-
imented in 1993 for GPS constellation with an ocean altimetry case study [5]. These
early experiments used a dual-antenna device, one up-looking to acquire the direct
signal, and one down-looking to acquire the multipath reflected on the Earth’s surface.
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The use of a single geodetic antenna to combine both direct and reflected signals was
introduced later [6]. The constructive and destructive interferences due to the coherent
superposition of direct and reflected paths are transcribed in Signal-to-Noise Ratio (SNR)
oscillations. This allowed successful retrieval of various environmental parameters such
as soil moisture [7–11], snow depth [12,13], vegetation height [8,14,15] and, of course,
ocean altimetry [16–21]. The technique is known as the Interference Pattern Technique
(IPT), or GNSS Interferometric Reflectometry (GNSS-IR).

Nowadays, the ability and the interest of GNSS-IR to monitor sea level (SL) changes
as a tide gauge is being assessed, especially in coastal areas where the capability of radar
altimeters is limited, due to insufficient spatial and temporal sampling, and performance is
degraded due to the presence of land contamination in the radar echo [22]. Nevertheless,
some limitations of IPT were identified, mostly coming from the retrieval algorithms,
especially when the tidal range was high. Most of the methods use a constant height as-
sumption to retrieve the relative antenna height h, related to the frequency of the multipath
oscillations [23]. As a consequence, water stages can be estimated only when the elevation

rate (
.
h) is small, i.e., in micro to meso tidal conditions. The complete time series has to

be reconstructed using a representation/interpolation of SL as a B-spline, tide models, or
fitting a cubic spline on raw heights derived from SNR data [22]; a correction for the rate of
change in SL is also necessary [17].

Few studies have been performed, to our knowledge, for retrieving water levels from
GNSS-IR over rivers [24]. The major reason is the narrow width of rivers compared to
the coastal ocean cases, which drastically limits the number of available reflections over
the water surface. The majority of the SNR retrieval approaches only use low-elevation
tracks to estimate the dominant frequencies [22], which are mainly masked or flagged in
rivers. Some other reasons depend on the location of the study area along the river stream,
presence of asymmetric tides in the downstream part of the rivers, occurrence of tidal bores
at low tides and, for low-flow conditions over the same areas, occurrence of flash floods,
which rapidly modify the river stage in the upstream part of the rivers. The constant height
assumption [23] is not adapted to retrieve water levels during such complex and rapid
phenomena. First the rate of elevation is higher, and asymmetry in tides prevents us from
using models to estimate a correction based on the rate of change [17,25]. Pressure and
acoustic measurements from the bottom of the river are commonly used to estimate water
heights [26,27], and provide a consistent determination of tides. The case of tidal bores
is more complicated, as they are highly nonhydrostatic phenomena, and pressure water
levels are reconstructed under the hydrostatic assumption. Other instrumentation can help
in better understanding the evolution of water levels and the spatial structure of tidal bores,
i.e., GNSS measurements using a mobile antenna onboard a buoy [28], and LiDAR [27].

The dynamic SNR method was proposed to increase the range of applications of the
IPT technique to all tidal environments, considering the vertical velocity of the reflecting

surface (or elevation rate,
.
h) that is simultaneously estimated with the relative antenna

height h using a Least Square Estimation (LSE) [29]. This allowed it to retrieve the temporal
variations of the SL in macro-tidal environments (i.e., with a tidal range higher than
4 m) [19,29,30]. Furthermore, this method introduces a moving window to estimate
dominant frequencies along the satellite tracks, while previous approaches estimate only
one frequency per track at low elevations [22]. The use of the dynamic SNR method can
provide more information when few GNSS satellite tracks are available, and integrates
reflections from satellites with high elevation.

In this study, we analyzed SNR data acquired using a GNSS geodetic receiver on
a platform over the Garonne River (France), 130 km upstream of its mouth, during one
semidiurnal tide. The dynamic method was first used to retrieve the water levels. Due to
the asymmetry of the tides and the complexity of the study area (small river, few GNSS
satellites visible, vegetation on the riverbanks), it was adapted by introducing two processes
for filtering the frequencies estimated with LSP before height inversion. Validation was
performed using pressure water levels in the Garonne River.
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2. Study Area and Datasets

2.1. Study Area

The study area is located along the Garonne River in Podensac, southwest France (see
Figure 1a,b). The confluence between the Garonne and Dordogne rivers forms the Gironde
estuary in the Bay of Biscay. Tidal waves propagate in both rivers up to 160 km from the
mouth of the estuary, with a tidal range exceeding 6m in Podensac [26,27]. Podensac is
about 120 km upstream the mouth of the estuary and is the place where both the tidal
range and the asymmetry of the tides are maximal due to a narrow river configuration.

Figure 1. Location of the study area. (a) Location of Podensac on the Garonne River; (b) the Gironde/Garonne/Dordogne
estuary in southwest France; (c) drone image of the Garonne River taken by V. Marie (EPOC), showing the first waves of the
tidal bore, its direction of propagation, and the platform location; (d) photo of the Garonne River from the platform with the
GNSS antenna installed. The narrowness of the river and the vegetation on riverbanks are visible in both images.

Tides in alluvial estuaries, such as the Gironde/Garonne/Dordogne estuary, are highly
asymmetric [27,31], unlike coastal areas where GNSS-R classical retrieval methods compare
well to tide gauges [22]. While symmetrical patterns are found in most studies, asymmetric
tides in Podensac compose a challenging dataset to explore the ability to retrieve high
amplitude water level variations using GNSS-R. Rising tides last around three hours, while
falling tides are slower, around nine hours, to complete a semidiurnal cycle. During faster

rising tides, elevation changes materialized by the vertical velocity
.
h reach 0.5 mm · s−1 to

1 mm · s−1. Moreover, the Garonne River is affected by tidal bores, whose intensities are
particularly high during spring tides combined with low discharge [26]. Extremely rapid
variations of water height during this phenomenon (>1 m · s−1 [27]) affect the performances
of GNSS-R retrieval methods onsite. The structure of tidal bores is shown in Figure 1c.
More information about the tides and the formation and dynamics of tidal bores in the
Garonne and the Dordogne Rivers can be found in the literature [26,27,31].

The Garonne River in Podensac forms a straight line oriented from south-southeast
(azimuth = 160◦, upstream) to north-northwest (azimuth = 340◦, downstream). The platform
we used for SNR acquisition was on the left side of the river, whose width is around 150 m.
We removed data in a 10◦ buffer corresponding to the potential interactions of reflected sig-
nals with the riverbank and the vegetation (including trees up to 20 m high: see Figure 1c,d).
As no reflection was acquired on the north due to GPS orbits, the final azimuthal range was
10–150◦. We also masked the data when elevation was below 5◦ (reflected signals affected
by the vegetation on the opposite riverbank) or above 70◦ (reflections on the platform).
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These constraints drastically reduce the number of satellites tracked, and particularly the
number of low-elevation tracks available for analysis.

2.2. GNSS-IR Data

A GNSS station composed of a conventional Leica AR10 antenna and GR25 receiver
was installed on a platform above the river, ~4 m to 10 m above, depending on the tides
(Figure 1d). It was used as a reference station to process the data acquired by a mobile
GNSS receiver onboard a buoy using Differential GNSS (D-GNSS) technique, to retrieve
water heights during tidal bore occurrence [28]. This reference station was also employed
to collect SNR information at L1 (1575.42 MHz for GPS and 1602 MHz for GLONASS with
a 562.5 kHz frequency shift between each carrier), L2 (1227.60 MHz for GPS and 1246 MHz
for GLONASS with a 437.5 kHz frequency shift between each carrier), and L5 (1176.45 MHz
for GPS) GNSS bands from GPS and GLONASS satellites reflected over the river.

The SNR acquisition was performed during a time span of 15 h, starting on October
17, 2016, at 2:35 p.m. UTC and ending on October 18, 2016, at 5:50 a.m. UTC. The nominal
sampling rate was set to 20 Hz to further evaluate the ability of SNR-based retrieval
methods to detect tidal bore propagation. A first tidal bore occurred on October 17th at
05:03 p.m., and a second on October 18th at 05:30 a.m. UTC (see Figure 2). In this study,
we only focused on tide retrieval. Thus, 1 Hz resampled SNR data were used as inputs
over the entire time span to retrieve the evolution of water heights during asymmetric
tides. The output of our method produced a regularly spaced antenna height time series.
Sampling was set to one minute for this case study.

Figure 2. 1-Hz resampled pressure water level time series of the Garonne River at Podensac. (a) During the GNSS-R
SNR acquisition with red rectangle indicating tidal bores; (b) during four consecutive tide periods. These figures are
representative of the entire pressure water level time series and do not show the tidal oscillations over a longer period, as
the acquisition was performed during spring tides only when both the tidal range is maximum and tidal bores can form.

2.3. Validation: Pressure Data

Several instruments were installed on the riverbed from 12 October to 20 October
2016, to monitor tidal bore occurrences during spring tides, including an Acoustic Doppler
Current Profiler (ADCP, Nortek Signature 1000) and a pressure sensor (Ocean Sensor
Systems). Water heights estimated with pressure measurements using the hydrostatic
assumption were used for comparison with the GNSS-R SNR height estimation (Figure 2).
The specifications from the constructor indicated an accuracy of 0.05% on the pressure
measurements, corresponding to an accuracy of about 0.005 m on the water height deter-
mination at high tides in Podensac. Nonetheless, the maximum error could reach up to
0.10 m in extreme conditions. The nominal sampling rate of pressure measurements was
10 Hz. For validation purposes, we smoothed the pressure water height while averaging
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values over a one minute interval to conform to the output sampling of GNSS-R height
time series.

The whole anchorage containing the pressure and ADCP sensors was only referenced
in longitude, latitude. No ellipsoidal height was provided, as it was installed to study
temporal evolution of relative water height. For this reason, absolute comparisons between
GNSS-R antenna heights and relative pressure water heights were impossible. Only relative
comparisons, neglecting potential bias, were performed in this study.

3. Methods

3.1. Preprocessing

The SNR values represent the addition of the interferences of direct and reflected
(multipath) signals components, which is written following [7]:

SNR2 = A2
d + A2

m + 2Ad Amcos(ψ), (1)

where Ad and Am are the amplitudes of the direct and multipath signals respectively,
and ψ is the phase different between both signals. The term Ad

2 can be neglected since
Am ≪ Ad due to the attenuation upon reflection and the design of GNSS antennas. The
direct component was modelled using a low-order polynomial function of elevation [23]
then removed from the raw SNR time series. Here, as in most of the previous studies
mentioned above, we used a 2nd order polynomial function. The remaining detrended
SNR time series represents the multipath component corresponding to the reflected signals.
Only specular points over the river were selected.

Due to the river characteristics in the study area (orientation and width, see Section 2.1),
an azimuthal mask was applied to only select the tracks with an azimuth angle ranging
from 10◦ to 150◦. All elevation angles between 5◦ and 70◦ were retained, and higher values
were masked by the platform on the top of which the antenna was installed. A small sample
of reflected signals from low elevation could be affected by the presence of vegetation on
the opposite riverbank. Nevertheless, we decided not to apply a more constraining mask on
low elevations to maximize the number of available tracks for the inversion process.

Classical SNR-based retrieval methods use a limited elevation range (1–15◦) to maxi-
mize the area of the first Fresnel zone [22]. This allows a more accurate height retrieval, as
reflected signals are related to the crests of sea waves approximating a homogeneous sur-
face. One frequency and height determination are performed for each single low-elevation
track. In contrast, we used the dynamic SNR method [29] with a multisatellite approach,
and no elevation mask was necessitated. This is a key point as very low-elevation tracks
were not available due to vegetation masks and as we had a lesser number of satellites
visible with constraining azimuthal configuration. We also performed a multifrequency
analysis to improve the accuracy of the time series.

3.2. Dynamic SNR Inversion

According to [32], the multipath relative phase ψ of the detrended SNR time series is:

ψ =
2π

λ
δ =

4πh

λ
sin(ε) (2)

with δ the path delay, λ the signal wavelength, ε the satellite elevation and h the receiver
height. The frequency of the multipath oscillations can be obtained deriving Equation (2)
against time [29]:

f =
dψ

dt
=

4π
.
h

λ
sin(θ) +

4πh

λ
cos(θ)θ. (3)

By making a change of variable x = sin(θ), we obtain:

f̃ =
dψ

dx
=

4π

λ

(
.
h

tan(θ)

θ
+ h

)
. (4)
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The term with
.
h can be neglected when

.
h < 1 × 10−6 m · s−1 [23]. Equation (4) is

then simplified and the dominant frequency f̃ is directly related to the antenna height h.
This static case simplifies the computation assuming a very low elevation rate. In our case

study, vertical velocities were much larger and the influence of the
.
h component had to

be considered.
Due to the characteristics of the study area, similar algorithms as the ones used for SL

inversion (see [22] for a recent review) could not be used. Two main reasons constrained
the retrieval of water heights with GNSS-R SNR in Podensac. First, the diurnal amplitude
of the tides, which can reach up to 6 m, and the asymmetric tidal pattern, are responsible

for high
.
h especially during rising tides (see Figure 2), which is a major issue for most

algorithms. Static SNR approaches applied to estimate SL use tide modelling to correct the
.
h component or to reconstruct a complete time series from peaks and troughs (low

.
h). This

is reliable when tides are symmetric, but not with asymmetric patterns. Second, the shape
of the river in Podensac introduces a major constraint as reflections out of a 10–150◦ range
fall out of the river (see Section 3.1). In most of the studies, the azimuthal range was near
360◦ and only observations with low elevations (<15◦) were considered to maximize the
extent of the first Fresnel zone and the accuracy of GNSS-R height retrieval. By contrast,
in our study case it was mandatory to use a multisatellite, multielevation and multiGNSS
frequency approach due to the lower number of available tracks.

The dynamic SNR method [29] offers an alternative technique which fits well
with the problems we faced. A flowchart showing the initial method in blue, with our
specific improvements in red, is presented in Figure 3. The basic idea was to estimate
the dominant frequencies in a regularly spaced interval of time/elevation for all satellite
tracks using a Lomb-Scargle Periodogram (LSP). These frequencies gathered into a
moving window, filled an overdetermined system of equations following Equation (4),

then h and
.
h were jointly estimated using a Least Square Estimation (LSE, see Figure 3a).

The parameter ∆t, set by users, sampled the output time series of antenna heights by
shifting the moving window in time. This approach was multisatellite because, from
experience, the system of equations could only be solved if estimations from at least
two distinct satellites were involved.

3.3. Improvements on the Dynamic SNR Approach

If we consider the dynamic approach as proposed by [29], the computed antenna
heights exhibited very rough results (see Section 4.1). This was mainly due to the presence
of noise in the dominant frequencies estimated using the LSP. As we considered the influ-

ence of
.
h in the determination of f̃ , a larger range of frequencies were analyzed. This may

affect the quality of retrieved f̃ in several ways: low-frequencies due to the contribution
of upper reflecting surfaces to the multipath signals (riverbanks, vegetation, the platform,
boat stationed on the river) and high-frequency phenomena affecting the reflecting surface
(tidal bores, boat wake: See Figure 1c). While the theoretical LSP outputs would present
one single peak with high power, these aim to produce multi-peaks with equivalent power
outputs, and a clear determination of the dominant frequencies is impossible. Illustrations
of both a single peak and multipeaks outputs from LSP for the same satellite track are
given in Figures 3b and 3c respectively.

Enough tracks are needed to perform a dynamic SNR inversion, so the application of
more constraining elevation masks is impossible, as this would remove a major part of the
data. Instead, we propose a method to filter out the noisy dominant frequencies in two
steps (see red charts in Figure 3a). First, we look to filter out all frequencies associated with
multipeaks considered as not reliable. Let f̃a be the main peak in LSP with power Pa. We
consider f̃a being a multipeaks output if a frequency f̃b 6= f̃a is found with peak power Pb

that verifies:
Pb ≥ k × Pa, (5)
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with 0 ≤ k ≤ 1. The value of parameter k is set empirically (see the results section). If k is
low, a less noisy result is expected, but this may lead to gaps in the height determination.
A 99% prediction interval (PI) is calculated based on single peak frequencies. This helps to
extract the expected values in multipeaks LSP outputs and to fill the gaps resulting from
filtering. If only one frequency is found in the PI, it is considered as the correct dominant
frequency and extracted. In other cases, the multi-peaks are removed and a NA value is set
at time index.

Figure 3. Flowchart of the dynamic SNR method with our improvements adapted from [29]. (a) Processing chain with
the addition of a two-step filtering of the dominant frequencies (in orange); (b,c) respective examples of a single-peak
output and a multipeak output from LSP for the same satellite track (G01). Red line materializes the level of filtering which
depends on parameter k (here k = 0.6), and f̃ ~100 Hz.
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The second step consists of the implementation of an iterative least square approach
to estimate h instead of the former single LSE estimation. It is necessary because of the
persistence of noise after filtering out the multipeaks. For each iteration, approximated val-

ues of h and
.
h are computed with LSE [29]. Corresponding approximate frequencies faprox

are calculated following Equation (4), and the standard deviation σf = std
(

f̃ − faprox

)
is

deduced from initial and estimated frequencies. Absolute errors between f̃ and faprox are

calculated and f̃ is removed when:
∣∣∣ f̃ − faprox

∣∣∣ > 3σf . (6)

This corresponds to the filtering of the 1% worst values according to the Gaussian
distribution. The standard deviation σf decreases while iterating, and a convergence criterion
is set on its value. This allows removal of most of the outliers, with successive estimations of
the approximated values of h,

.
h and f̃ .

3.4. Validation

Pressure-derived water heights were used to validate the GNSS-R antenna heights.
The absolute ellipsoidal height of the pressure sensor was not available which was the
major issue in the validation procedure. Only a relative comparison between the dynamic
SNR output and the pressure dataset was possible.

We further assumed that bias was zero, so the means of both datasets were adjusted
for validation. Two metrics were then estimated: unbiased Root Mean Square Deviation
(ubRMSD), adapted because of the no-bias assumption, and Pearson’s correlation coefficient
(R). We compute ubRMSD and R for the entire water height time series, and we also
calculated metrics on subsampled times series to study the influence of both the vertical
velocity and the number of satellites visible on the SNR heights.

Following the adapted dynamic SNR algorithm, we retrieved 1-min regularly spaced
time series of antenna heights using a 5-min moving window. To set the empirical pa-
rameter k, several determinations were performed ranging from k = 0.5 (high filtering
of multipeaks) to k = 1 (no filtering case). Qualitative and quantitative conclusions are
highlighted in the following section. Results for separate L1, L2, L5 and combination of
GNSS bands are also presented.

4. Results

4.1. Preliminary Filtering of the Dominant Frequencies

The estimation and filtering of dominant frequencies is a key point of our method to
reduce noise and achieve a convincing height inversion. A good estimation of parameter
k is necessary to first reject massive multi-peak outputs in LSP, then the iterative LSE
approach filters out remaining noise in the dominant frequencies. With k too low, the loss
of information leads to gaps in the output or to a miscalculation of h. With k too high, the
filtering of the noise would be insufficient and cause variability in the output time series.
The optimal value of k was empirically determined. It depended on the environment,
particularly on the variations of the reflecting surface, the width of the river and the high-
frequency phenomena affecting the SNR time series. In our case, the combination of these
factors required strong filtering.

Figure 4 presents the frequencies estimated before and after these two filtering opera-
tions for a L1-only retrieval. As the occurrence of tidal bores (here at ~5:03 p.m.) affects
the frequency estimation in the moving window, we decided to remove estimations using
a one hour buffer around the phenomena. The second gap from 9:00 to 10:00 p.m. was
due to a stop in the acquisition recording. Table 1 presents the statistical results obtained
between each configuration of the adapted dynamic SNR algorithm (user-determined
value of parameter k, GNSS bands used and minimal number of satellites for the inversion
process) and the validation dataset. The values for R, ubRMSD, the maximum error and
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the number of points calculated with LSE using the configuration (Nh) are shown. Further
analysis based on statistical values refer to this table.

Figure 4. Dominant frequencies extracted from GPS (green) and GLONASS (orange) satellites using the LSP, and river
heights inverted with the dynamic SNR method (blue) compared to pressure water levels (red). (a,b) f̃ and h from raw
LSP output respectively; (c) frequencies filtered out after multipeak rejection with parameter k = 0.6 and iterative LSE;
(d) concordant time series of water levels estimated with iterative LSE. Grey areas are masks due to tidal bore occurrence
(17 h) and data gaps (21–22 h).

The raw frequencies extracted with LSP (Figure 4a, with k = 1 and no iterative LSE
process) show very noisy results particularly for the GLONASS constellation. The concor-
dant estimation of h using LSE is fickle and highly affected by noise, as this is shown both
graphically (Figure 4b) and statistically: R = 0.69, ubRMSD = 1.56 m, and the maximum
error is 8.37 m. This presents the case of the nonadapted dynamic SNR method as proposed
by [29] for SL retrieval. It confirms that the specific environment on rivers introduces
noise in the SNR acquisition which has to be filtered. On the contrary, a much better result



Remote Sens. 2021, 13, 1856 10 of 18

was observed with our adapted solution (Figure 4c), considering k = 0.6 and iterative
LSE process with at least four satellites visible. The heights inverted using these filtered
frequencies compared well to the reference (Figure 4d), with R = 0.98, ubRMSD = 0.33 m,
with a maximum error of 1.59 m. All maximum errors listed in Table 1 are high but this
was mainly due to a poor satellite configuration as we will discuss in Sections 4.3 and 5.2.

Table 1. Performances of the adapted dynamic SNR inversion of h depending on the filtering level k, the minimal number
of satellites, and the bands of frequency used. The best statistical results for each GNSS band/k parameter configuration
were obtained with at least four satellites and new iterative LSE, while the worst results were obtained without the
implementation of iterative LSE. Bold values highlight the best results for L1-only, L2-only and L1/L2/L5 height retrievals.

GNSS Bands Used k Iterative LSE
Min Number
of Satellites

Nh—Number of
deTerminations of h

Maximum
Error (m)

R (Pearson) ubRMSD (m)

L1 1

No / 738 8.37 0.69 1.57

Yes
2 735 10.45 0.73 1.64
4 620 10.60 0.91 0.91

L1 0.90

No / 733 3.82 0.90 0.85

Yes
2 730 3.34 0.96 0.54
4 643 3.32 0.97 0.47

L1 0.75

No / 723 8.64 0.85 1.09

Yes
2 720 8.46 0.88 0.96
4 606 2.93 0.97 0.44

L1 0.60

No / 715 20.64 0.83 1.19

Yes
2 688 8.57 0.93 0.76
4 529 1.59 0.98 0.33

L1 0.50

No / 688 4.56 0.91 0.83

Yes
2 660 5.28 0.93 0.72
4 465 2.81 0.98 0.35

L2 0.60

No / 702 21.60 0.77 1.48

Yes
2 686 12.05 0.84 1.21
4 476 1.59 0.99 0.32

L1, L2, L5 0.60

No / 742 2.38 0.95 0.62

Yes
2 741 2.16 0.98 0.44
4 662 2.08 0.99 0.31

The optimal k for the Podensac study case is 0.6 (Table 1). This value seems adapted to
Podensac, but rivers with larger width, SL determinations and antenna configurations with a
large azimuthal range should accommodate with a higher value of k tending towards 1 (no
filtering case). Several determinations were made using the L1 GNSS band, while varying its
value from 0.5 to 1 and with or without an iterative LSE approach. When k < 0.5 too many
frequencies were filtered out so height inversion was affected. Results without iterative LSE
implementation were systematically worse whatever the value of k. The influence of the
minimal number of satellites will be presented and discussed later. Finally, when considering
an iterative LSE approach to filter out noise, a high correlation and low ubRMSD were found
for k = 0.9, k = 0.75, k = 0.6 and k = 0.5, with the best values obtained for k = 0.6. The maximum
error also helped us in analyzing the results: the lower value was found for k = 0.6 (maximum
error = 1.59 m), with much larger values for all other outputs (maximum error ≥ 2.81 m).

The two-step filtering method drastically improved the quality of the height retrieval.
One last parameter should be considered too: the number of determinations of h (Nh),
i.e., the number of systems of equations successfully resolved using LSE while shifting
time (with the same sampling parameters for every time series). This informs the potential
loss of data when the level of filtering is high. When compared to the no-filtering case
(738 points), the best results using L1 for k = 0.9, k = 0.75, k = 0.6 and k = 0.5 had Nh = 643
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(87.1% of the total), Nh = 606 (82.1%), Nh = 529 (71.7%) and Nh = 465 (63.0%), respectively.
This highlights the cost of the filtering approaches, with only ~70% of the time series being
calculated with the best parameters.

4.2. Comparison Between L1, L2 and L5 GNSS Frequencies

The first results were obtained using the GPS and GLONASS L1 frequency only. To
ensure the stability of the solution, the L1 band was first chosen because few satellites
during the acquisition (2016) also operated at the L5 frequency. The quality of SNR mea-
surements from L2C is good [33,34], but few GPS satellites (from Block IIR-M, 2005) are
equipped with it, and the L2 P(Y) code is more sensitive to noise due to weaker power.
Furthermore, penetration of the L1 signal (λ = 0.1903 m) compared to L2 (λ = 0.2445 m)
and L5 (λ = 0.2540 m) signals in the vegetated riverbanks may change due to the wave-
length difference. To prevent effects on studying reflections from heterogeneous surfaces,
we first did a band-by-band inversion then compared results to the multiband analysis.
The respective performances of L1 and L2 bands for GNSS-R altimetry are a subject of
discussion [34].

The interest of the technique was assessed using the L1 band only (Figure 4d). Figure 5

presents final results using all bands: joint estimation of h (Figure 5a) and
.
h (Figure 5b),

and number of distinct GPS and GLONASS to solve the system of equations (Figure 5c).
Figure 5a also superimposes the L1 only, L2 only and L1 + L2 + L5 height retrieval with the
reference time series. Extended statistical results are found in Table 1. A qualitative analysis
highlights the consistency of all the solutions calculated. Single band time series (L1 in
orange, L2 in green) look noisy, especially when few satellites were visible: at ~9:00 p.m.
(L1), ~11:00p.m. (L2) or ~0:30 a.m. (L1). On the contrary, they correlated well to each
other and to the all-band solution (in blue) when optimal conditions were found, i.e., a

high number of satellites and a low
.
h: before 4:30 p.m., and from 0:30 a.m. to 2:30 a.m.

Looking globally, the three-time series were comparable with a bias below 0.03 m, and the
wavelength gap from L1 to L2 and L5 bands did not affect the height retrieval.

Figure 5. Final results using the adapted dynamic SNR inversion. (a) Comparison of h calculated using L1 only (orange),
L2 only (green), and L1 + L2 + L5 (blue) frequencies for GPS and GLONASS satellites with pressure water levels (red);
(b) output

.
h with L1 + L2 + L5 bands; (c) number of GPS and GLONASS satellites for the calculation of h and

.
h. The

value of
.
h was derived from the relative antenna height h, thus it was negative during rising tides as the relative antenna

height decreased.
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Statistical results led to comparable conclusions. The correlation coefficients R were
greater than 0.98 for every time series, and ubRMSD ranges from 0.31 m to 0.35 m, the
best performance being obtained using all bands. The maximum errors were comparable
for L1 and L2 (1.59 m), and surprisingly larger for the all-bands solution (maximum
error = 2.08 m). This corresponds in reality to individual noisy points when few satellites
were visible, e.g., between 6:00 p.m. and 7:00 p.m. (see Section 5.2 for details). Using
the L1 band only, we obtained Nh = 535. Although presenting excellent statistical results,
Nh = 484 for the L2-only case, confirmed that the absence of the L2 civilian frequency for
some GPS satellites led to data gaps, especially when few satellites were visible. Finally,
when combining all the L1, L2 and L5 bands in a unique system of equations, Nh = 664 was
obtained. Compared to this result, the output time series of antenna height contained 19.4%
fewer points for the L1-only case and 27.1% less for the L2, for quasi-identical statistical
results. This loss of information was particularly accentuated when the configuration of
the study area provided a restricted number of available satellite tracks for SNR based
inversion, as in the Podensac case.

4.3. Influence of the Number of Satellites and Elevation Rate in the LSE Inversion

The number of GNSS satellites used to solve the system of equations with LSE (nsat)
appears to be a key point for the quality of the height retrieval. Following Equation (4),
.
h also impacted the estimated frequencies and heights, as high

.
h limits the application of

static SNR retrieval methods [23]. In Figure 5c, the number of GPS (ngps) and GLONASS
(nglo) satellites used for height inversion through the windowing of the dominant frequen-

cies is presented. In Figure 5b, the vertical velocities
.
h jointly estimated with h using LSE

are shown.
Figure 5 is not sufficient to help us in separating the effects of

.
h and nsat on height

retrieval. The best qualitative results for all bands configurations were obtained from
2:30 p.m. to 4:30 p.m., and after 11:00 p.m. This corresponds to both relatively low vertical

velocities (
.
h < 2 × 10−4 m · s−1) and high number of satellites: nsat = ngps + nglo ≥ 4. On

the contrary, the worst results were obtained from 5:30 p.m. to 7:00 p.m., and correspond to

high
.
h combined with a poor satellites configuration. Due to the study area characteristics

(see Section 2.1), the number of satellites visible was frequently lower than three, and
.
h

reached 4 × 10−4 m · s−1. It was then necessary to dissociate both influences by studying
each separately.

Figure 6 shows the R and ubRMSD values as a function either of the number of

satellites (nsat, Figure 6a) or the vertical velocity of the reflecting surface (
.
h, Figure 6b)

in the case of a L1 + L2 + L5 combined SNR inversion. The deterioration of the height
retrieval was clear for nsat < 4. For nsat = 2 and nsat = 3, the correlations were 0.89
and 0.97 respectively, and the ubRMSD values were 0.97 m and 0.54 m. For nsat ≥ 4,
the statistical results were homogeneous with R ≥ 0.96 and ubRMSD ≤ 0.32 m. We also
notice that ubRMSD values fall to 0.12 m and 0.06 m respectively when nsat is equivalent
to 7 and 8 (on a very small sample). Following the same methodology, we calculated
maximum errors of 0.39 m and 0.14 m for nsat = 7 and nsat = 8 respectively. Although
the maximum errors values listed in Table 1 are high, a very coherent result was observed
when a sufficient number of satellites was observed to ensure the stability of the solution.
The major influence of the number of satellites in the dynamic SNR height retrieval was

assessed. On the contrary, the variations of
.
h from ~0 to 4 × 10−4m · s−1 did not affect

indisputably the quality of the height retrieval. For every
.
h class extracted, ubRMSD values

ranged from 0.35 m to 0.44 m and R from 0.87 to 0.99. A lower correlation was found for

high
.
h but ubRMSD was good, and the sample size is small. We conclude that using the

dynamic SNR method, the influence of
.
h (in the studied range) on the results was low.
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Figure 6. Statistical results depending on the number of satellites and the vertical velocity. (a) R and ubRMSD computed
according to the number of satellites for the inversion of h and

.
h; (b) Idem according to the vertical velocity class (intervals

computed with range 1 × 10−4 m.s−1).

5. Discussion

5.1. Retrieving Water Heights in Rivers with GNSS-R

When compared to previous studies on GNSS-IR SL or water height retrieval, our
work distinguishes itself by the complexity of the study area: constraining azimuthal
masks, narrow river, vegetation and complex phenomena affecting the river surface. This
led to two main difficulties. First, a fewer number of available satellite tracks than for SL
studies, which employ only elevations lower than 15◦ [22], or use a receiver installed on
top of a lighthouse for dynamic SNR inversion [29], with a near-360◦ azimuthal range and
a multielevation analysis. Second, a deterioration of the quality of frequency analysis with
LSP highly affected by noise, leading to wrong estimations of the heights whatever the
retrieval algorithm.

The visibility of the maximal number of satellites is a key point for all GNSS-IR height
retrievals, and is limited for all-case studies on the rivers. Ideally, the receiver should
be installed in a meander with land on the north, to maximize the azimuthal range with
reflections on the river. The configuration in Podensac is not ideal for GNSS-R acquisition
regarding this criterion: the Garonne River forms a straight line and the platform on which
the GNSS antenna is installed is on the southwest riverbank. On the other hand, the shape
of the river makes it a perfect case study for the spatial structure of tidal bores [26,27,31] by
conventional means including the pressure sensor that was used as a reference. Anyway,
while working on rivers a reduction of the number of available satellite tracks is inevitable.

The second point, with much noise in the raw LSP frequency output (Figure 4a), may
be considered as the particularity of the Podensac site. First, the occurrence of tidal bores
during spring tides introduces high-frequency perturbations unrelated to the water height in
the SNR time series and had to be removed from the analysis. Then, the narrow width of the
river combined with the presence of vegetation on the riverbanks masks the low-elevation
tracks, which are the most adapted for altimetry [22]. With a river cross-section of about 180 m
only, riverbanks plus trees up 30 m on the opposite side, potentially affect reflections up to a
10–15◦ elevation. Furthermore, a small sample of the low-elevation tracks may be affected by
the vegetation as a secondary reflecting surface, and low-frequency perturbations are then
introduced in the signal. This affects only one or all GNSS bands, as L1 can slightly penetrate
the canopy deeper due to the wavelength difference between L2 and L5.
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5.2. Influence of the GNSS Band, the Number of Satellites Visible and the Vertical Velocity

We computed SNR heights using multiple configurations of our adapted dynamic
method (see the Results section). Characterizing the differences introduced by a change in
several parameters, i.e., the GNSS bands used, the number of satellites visible, nsat and the

vertical velocity
.
h, may lead to improvements in the quality of SNR-based height retrievals

on rivers.
First, the use of the GNSS L1 or L2 band only did not show a specific deviation

when compared to the multiband estimation (Figure 5a). Best results correlation ranged
from 0.98 to 0.99 and ubRMSD ranged from 0.33 m to 0.31 m (Table 1). The single-band
estimations contained some speckle noise in the output results, mainly due to a low number
of distinct satellites visible, which was smoothed by the addition of L2 and L5 bands in
the multifrequency analysis. Theoretically, the L2 P(Y) code is noisier and not appropriate
for altimetry, while only GPS satellites from Block IIR-M (2005) and later blocks emit at
L2C. Our results show that the noise in L2 SNR time series was removed from dominant
frequency’s estimation, with consequently a lesser number of retrieved heights for L2 than
for L1. The stability of the results was guaranteed whatever GNSS band combination we
used: the bias between L1 and L2 estimations was 0.04 m.

When considering the maximum errors between SNR based heights and pressure
water levels, we noticed that the values for a single band output (maximum error = 1.59 m
for both L1 and L2) were lower than the value for the all-bands output. These values
were high but if we look more in detail, they correspond to bad determinations when
few satellites were visible, e.g., from 5:30 p.m. to 7:00 p.m. (see Figure 5a). At this
time the L1 heights seemed correct but there was mostly no L2-only output due to poor
satellite configuration and the filtering operations on noisy frequencies. We think that
the addition of speckle L2 (and eventually L5) frequencies in the L1-only system of
equations reduced, in this particular case, the stability of the solution. However, looking
both qualitatively (see Figure 5a) and quantitatively (ubRMSD = 0.31 m), the solution
with all GNSS bands performed slightly better on the entire time series. The combination
of distinct GNSS frequencies reduced the variability of the output, especially when a
sufficient number of distinct tracks was available. Moreover, when compared to the time
series inverted with all GNSS bands, the L1-only and L2-only solutions contained 19.4%
and 27.1% less determinations, respectively. We, therefore, recommend a multifrequency
analysis, which should be combined with an increasing number of distinct tracks in the
SNR data, to maximize the number of independent observations in height inversion. A
perspective for further studies is the potential of the L5 band for altimetry [3]. The low
amount of GPS/Galileo satellites equipped with L5 emitters in 2016 prevented us from
retrieving a L5-only height estimation, but it would be interesting for further work.

Results depending on the elevation rate looked very stable. In Figure 6b, results were

separated in four classes depending on the value of
.
h ranging from 0 to 4 × 10−4 m · s−1.

Analyzing these small, subsampled time series, we observed that the deterioration of

statistical indicators (R and ubRMSD) did not seem related to the increase of
.
h value as

expected. Correlations were great and ubRMSD ranged from 0.35 m to 0.44 m with lower

values for high
.
h during the rising tide. Our method offers the possibility to cover rapid

events up to at least 5 × 10−4 m · s−1 using GNSS-IR data.
With the major problem of GNSS-R retrievals on rivers being the azimuthal and

elevation masks (see Section 5.1), a key point is the influence of the number of available
tracks for SNR inversion (nsat) on the final results. Figure 6a permits the analysis of
statistical indicators for subsampled time series depending on nsat, ranging from 2 to 8 in
the Podensac case. Both R and ubRMSD showed an important deterioration for nsat < 4
and stable results in other cases: R ≥ 0.96 and ubRMSD ≤ 0.32 m for nsat ≥ 4. We also note
that when nsat exceeded 6, the height comparison became excellent: ubRMSD = 0.12 m and
maximum error = 0.39 m for nsat = 7, and ubRMSD = 0.06 and maximum error = 0.14 m for
nsat = 8. Although definitive conclusions cannot be drawn due to the small sample size,
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this result looks very promising for further work with better environmental conditions.
An increasing number of satellites systematically improved all the statistical indicators we
used in this study.

We are optimistic about the potential of the SNR height inversion as a survey method
for rapid water height evolution, in tides or flash floods as an example, for two reasons.
First, in most cases, a receiver configuration with less constraining azimuthal and elevation
masks can be installed to increase the number of satellites visible and the accuracy of heights
inverted with the dynamic SNR method. Second, a true multiconstellations approach
including Galileo and Beidou satellites (limited interest in 2016) could now be performed,
including a L5-only height retrieval based on GPS and Galileo.

5.3. The Dynamic SNR Method

Following the specificities of the study area and the velocity of the rising tides, we
chose to employ the dynamic SNR method (see Sections 2.1 and 3.1). Would it be possible

to retrieve equivalent or better results using a method that assumes a negligible
.
h [23]?

No dedicated study has been published, to our knowledge, on asymmetric phenomena
with such a high amplitude as the tides in Podensac. Logical considerations make us
think that these methods are not appropriate for a case study like Podensac. They are
mostly employed on symmetric and predictable tides, and produce better results when
amplitude is low [22]. The dominant frequencies are extracted with LSP, then heights are

inverted assuming a quasi-static case (
.
h < 1 × 10−6 m · s−1). Following this hypothesis

only points in peaks and troughs of the tides can be correctly estimated. Various strategies
help to reconstruct the complete time series: using tide models or functions (cubic splines)
to fit the output SNR heights, and calculating a correction for the rate of change based
on expected values. Furthermore, frequencies are extracted for each entire low-elevation
subsampled satellite track, compromising the detection of rapid and unpredictable changes
in the surface state with SNR time series.

On the contrary, the dynamic SNR method has arguments to deal with the problems
enunciated above. First, the integration of the rate of change into a system of equations

where h and
.
h are jointly estimated with LSE being important: true values are directly

extracted and no modelling or a priori knowledge of the phenomena is necessary. Second,
the use of all-elevation SNR data (when not masked) as input, and the windowing of time
series in the frequency estimations, produce finer detection of rapid changes in surface
state. This is limited, as the influence of tidal bores, as an example, contaminated the
results around 5:00 p.m. and had to be removed from the analysis (see Figure 4b,d and
Figure 5a). However, this is an extreme case, being a highly nonlinear and extremely

rapid (
.
h ∼ 1 m · s−1) phenomenon which occurs a few times a year. Third, the number

of satellite tracks available can be a major issue while working on rivers, due to more
constraining azimuthal and elevation masks, as in seas (see Section 4.3). The dynamic
SNR method combines windowing with a multisatellite, multi-constellations and multi-
frequency analysis, and provides good results with few satellites visible (Figure 5). This is
of major interest as we look to extend the applications of GNSS-IR altimetry.

Following the idea in [25], we tried to add a new term to Equation (4) with the

acceleration of the reflecting surface
..
h. The LSE estimation then provides all h,

.
h and

..
h

values along with the dominant frequencies as inputs. The results for h and
.
h looked like

the without-acceleration case, with a small influence from acceleration. However, we noted
an addition of speckle noise in the output h time series, so we finally rejected the idea.

In [25],
..
h was calculated from true values or models. In our case, estimation was made

from noisy frequencies based on the SNR time series (see Figure 4a). The derivative of

h already adds noise in Equation (4). When deriving a second time for
..
h the noise level

becomes prominent for a low gain, so including the acceleration has no advantage.
The noisy SNR time series in Podensac composed a challenging dataset. We were

able to clean up the extracted dominant frequencies to retrieve h and
.
h using two levels
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of filtering noise: first removal of the multipeaks in the LSP output that materialize other
reflection surfaces or high frequency perturbations, then filtering of frequencies up to 3σ
(99%) with an iterative approach of LSE. These additions to the initial method [29] were
mandatory to work with GNSS-IR on very constraining river environments, of which
Podensac is a perfect example.

A key last point is the sampling of output SNR height time series: the results presented
in this study had a 1-min sampling period with the size of the moving window for the

LSE of h and
.
h being 5 min. The choice of a tiny window was made in opposition to the

literature, where the lowest window size found was 2 h [25], applied to detect abrupt water-
level changes in a reservoir with a 10-min sampling time series of heights. We thus showed
that the use of the dynamic SNR approach provided a very high temporal resolution
when compared to other methods. We could smooth the results over a longer time span
but our thoughts are that this approach offers a distinct and complementary solution to
other SNR retrieval algorithms, and can be used to extend the potential applications of
GNSS-IR altimetry. Combining the high temporal resolution, its independence with any

tide model or fitting function, and the ability to detect surface changes with high
.
h (at least

5 × 10−4 m · s−1), it opens the field to detection and monitoring of extreme events such as
flash floods, marine surges in estuaries or coastal areas, tsunamis and storms.

6. Conclusions

In this study, SNR time series acquired over a narrow river were analyzed to retrieve
the evolution of water height during asymmetric tides. The characteristics of the study
area in Podensac made it a complicate environment for GNSS-R studies: the river shape
forms a constraining azimuthal mask and disrupt low elevation signals, the tidal range is
high (~6 m) and other high-frequency phenomena (i.e., tidal bores) affect the water surface
and, thereby, the SNR time series during the acquisition.

The dynamic SNR method was chosen because it considers the dynamics of the
reflecting surface during the height inversion [29], which is a key point for studying asym-
metric and nonpredictable water level variations. The rising tide vertical velocity reached
5 × 10−4 m · s−1, which is far more than the limit set for a static case (1 × 10−6 m · s−1 [23]).
As the dominant frequencies estimated with LSP suffered noise, introduced in SNR time
series by the river environment, we added a two-step filtering method to the dynamic
inversion. First, the multipeaks were eliminated in the LSP output, then we iterated over

the least square estimation (LSE) of h and
.
h to remove the frequency values showing the

greatest error when compared to estimation. This improved the results considerably when
compared to the no-filtering inversion.

The best results obtained versus reference pressure water heights were consistent
whatever the GNSS band we used: ubRMSD = 0.33 m for L1, ubRMSD = 0.32 m for L2,
ubRMSD = 0.31 m for L1, L2 and L5 combined, with a correlation value higher than 0.98.
The raw output without filtering the dominant frequencies showed ubRMSD = 1.56 m for
L1. When combining all GNSS bands, a more robust estimation was found when enough
satellites were visible; therefore it increased the number of samples in the output time series.
Other factors are discussed including the influence of the vertical velocity of the reflecting
surface and the number of distinct satellite tracks used in the LSE inversion. The influence
of

.
h on both R and ubRMSD values was low in the analyzed 0 − 5 × 10−4 m · s−1 span.

The dynamic SNR method fitted the reference data well, whatever the elevation rate of the
reflecting surface. On the contrary, the number of tracks available had a major impact on
the results. R and ubRMSD were consistent when nsat ≥ 4 with values greater than 0.96
and lower than 0.33 m, respectively. A clear degradation was observed for nsat = 2 (R = 0.89,
ubRMSD = 0.97 m) or nsat = 3 (R = 0.97, ubRMSD = 0.54 m). Finally, we obtained a great result
for a small subsample when nsat = 7 (ubRMSD = 0.12 m) and nsat = 8 (ubRMSD = 0.06 m).
This latest point would have to be confirmed with longer time series analysis, but it is very
promising for further work. Studies on rivers wider than the Garonne (~150 m), with more
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GNSS constellations (including Galileo, Beidou) and frequencies (recent developments of
L5 band) would provide more available satellite tracks.

The windowing of the dynamic SNR method allows us to perform analyses with good
temporal resolution when compared to previous methods. To take advantage of this point
the sampling of our output time series of antenna heights is 1 min, and the size of the
moving window is 5 min. The results exhibited good variations due to the rapid rising
tide. It was also more subject to noise, because for tide modelling, at least a 2-h window
is employed, which smooths the output time series. By contrast, this highlights the value
of the dynamic SNR method to retrieve unpredictable water levels during extreme events
with high elevation rates.
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3.3 Comments on the article published in Remote Sensing

Several points were noted by the reviewers that require further explanations. This will be
treated here as the article has been published for almost two years. In particular, the short
duration of the SNR time series (∼13 hours) was a huge constraint for us, as the acquisition
was Ąrst designed to study tidal bores - i.e. a very high-frequency phenomena lasting only
few minutes. We were lucky enough to have a full tidal cycle recorded to study water level
variations during asymmetric tides in the Garonne River. However, we are aware of the lim-
itations of our study. The method was developed to Ąt this limited dataset, but it should be
evaluated on longer time series and possibly in other study areas. This was Ąrst intended in
a coastal environment with the GNSS station from the french permanent geodetic network
located in the fort of Socoa, in Saint-Jean-De-Luz. Early results have shown a slightly better
performance from our adapted method than the former dynamic SNR method from Roussel
et al. (2015), in the retrieval of water height variations with a rough sea during the storm
season. For this reason, we installed a receiver in the port of Bilbao to further try to decom-
pose the sea level and sea state components in the SNR time series (see Section 3.5. Over
inland water, longer time series over rivers could validate the technique before diving into the
detection of Ćash Ćoods.

Further comments were required on the methodology, in particular on the iterative least
square estimation (LSE) employed to Ąlter noisy frequencies and estimate the correct antenna
height (h). As for the initial dynamic SNR method (Roussel et al., 2015), the time series of h

are inverted from the dominant frequencies using a moving window whose length was set to
5 minutes. The exact same moving window was then used to estimate faprox from the output
h and ḣ. In a perfect case study with no noise, faprox should systematically be equal to f̃

and σf = std(f̃ − faprox) should be equal to zero. As it was not the case, we Ąltered out the
samples where |f̃ −faprox| ≥ 3σf . This was performed in a while loop, with a convergence
criterion ϵ set on the variations of σf to stop the iterations. Several values were tested for this
convergence criterion, and it was Ąnally set to 10−2 Hz. This ensures a stable Ąnal solution
and the iteration were not very time-consuming (regarding to our short time series). The
Table 1 our published article (Section 3.2) highlights the very large errors obtained on the
output water levels when the two-step Ąltering method was not implemented, and also when
only the multi-peaks removal was performed but not the iterative LSE. On the contrary,
results are correct using the two-step Ąltering method and with at least four satellites in
visibility (maximum error ∼1.5 m and ubRMSD ∼30 cm). Note that the results should be
smoother using a large window size, what was usually done in the literature. However, we
aimed at proving that the SNR techniques can be adapted to the monitoring of abrupt and
large amplitude water level changes, and high frequency phenomena such as Ćash Ćoods.

Finally, we showed that the number of GNSS satellites in visibility mostly explains the
variability of the results. The conĄguration of the acquisition in Podensac was not optimal
at all: the river width is about 150 m and 20 m tall trees cover the riverbanks. Moreover,
the platform where the antenna was set up is located on the southern side of the Garonne,
with no GNSS satellite in visibility at North (between 350° and 10° azimuth). Hence, only
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reĆections on a ∼140° azimuth range and above 15° of elevation were monitored in this study.
Moreover, we processed only the GPS and GLONASS data. Now, with the Galileo and
BeiDou constellations fully operational, and with attention paid to the conĄguration of the
acquisition, the number of satellites in visibility could be increased to improve the results.

3.4 Perturbation of the water surface during tidal bores

The early objective of this publication was to evaluate whether SNR time series are sensitive
to the propagation of tidal bores, and whether they can be used to retrieve the simultaneous
evolution of water height. For this, I had the ∼12 hrs multi-frequency and multi-constellation
20 Hz SNR time series, acquired the 17/10/2016 over the Garonne River in Podensac. Multiple
analysis were conducted on this dataset, with no success for estimating water levels with
suicient accuracy during tidal bores. The SNR techniques are limited to the monitoring of
surface water variations with a much lower vertical velocity. However, I found high-frequency
perturbations of the SNR time series occurring exactly when the tidal bore propagates. Here,
I show some unpublished results about this early work.

First, the Lomb-Scargle periodogram (LSP) used in both the static (Larson et al., 2013a;
Alonso-Arroyo et al., 2014b) and dynamic (Roussel et al., 2015) SNR methods is inherently
limited. As the frequency of SNR oscillations related to the antenna height is generally low,
a wide frequency spectrum should be analyzed with the LSP so long time series are required.
For an antenna height between 4 and 12 meters, as in Podensac, the shortest time series
analyzed lasted about 30 minutes. However, the SNR acquisition was sampled at 20 Hz and
the tidal bore wave trains lasted 1-3 minutes (Figure 3.1). Short-duration high frequencies
are thus smoothed in the LSP. To overcome this limitation, I used the wavelet transforms and
the cross-wavelet analysis techniques (Torrence and Compo, 1998).

The continuous wavelet transform of a time series xn analyzes the convolution of xn with
the wavelet function, that is scaled in the frequency domain, and translated in the time series.
This convolution results in the output wavelet power that is mapped in two dimensions: time
and frequency/period. We used the conventional Morlet wavelet because it comprises both a
real and an imaginary parts, and thus provides the phase along with the output wavelet power.
The main advantage of this method is that it windows the time series with a small wavelet used
for high-frequency/short period phenomena, and larger wavelets used for lower frequencies.
So, it permits to accurately detect high amplitude and high frequency perturbations of the
multipath SNR time series.

Figure 3.2a presents the wavelet transform power of the multipath SNR for satellite G03,
with tidal bore perturbations occurring after 17h. The large peak power obtained for a
period varying between ∼250 s and ∼100 s (depending on the satellite elevation, not shown)
corresponds to the oscillations related to the receiver antenna height. This dominant frequency
was also extracted using the usual LSP analysis (Larson et al., 2013a; Roussel et al., 2015).
A 10-minute zoom presenting the wavelet power before, during and after the propagation of
the tidal bore waves is shown in Figure 3.2b. Figure 3.2c presents the cross-wavelet analysis
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Figure 3.2: Use of the wavelet and cross-wavelet analysis to extract frequencies in SNR time
series: example from the satellite G03 in Podensac, the 17/10/2016. (a) Wavelet transform
power extracted from the multipath SNR, highlighting the dominant low-frequencies (high
period) and the tidal bore starting around 17h. (b) Same plot between 17h and 17h10 to
show the tidal bore high frequencies, and average power per wavelet period (right panel).
(c) Cross-wavelet analysis with the time series of water heights during tidal bore passage
(Figure 3.1), and average cross-wavelet power per period (right panel). (d) High frequency
(period <8 s) anomalies in the multipath SNR, computed with the reconstructed time series
using periods greater than 8 seconds in the wavelet transform. The circles and squares
highlight the inĆuence of tidal bores on the multipath signal.
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of the same time series against DGNSS water heights computed from the buoy at the surface
(Figure 3.1). The wavelet and cross-wavelet maps clearly show a high power with a period
of ∼2.5 - 3 s just when the tidal bore propagates in the river (starting at ∼17h03m20s).
Furthermore, this corresponds exactly to the period of the waves as illustrated in Figure 3.1.
Finally, Figure 3.2d presents a reconstruction of the SNR multipath time series using only
periods greater than 8 s. It shows a continuous noise before the occurrence of the waves, and
high amplitude SNR anomalies related to the tidal bore propagation. To conclude with these
results, here are several interesting points for future studies:

• The cross-wavelet analysis highlights a clear inĆuence of the surface water height vari-
ations on the high frequency and high amplitude oscillations of multipath SNR time
series, during the propagation of tidal bores.

• The wavelet tools can help in detecting high frequency signals in the SNR time series.
It also shows how all frequencies change in time. Furthermore, the computation of a
wavelet transform was found to be much faster than a usual LSP analysis.

• The high frequency perturbations of multipath SNR (abrupt increase in the SNR vari-
ability) correspond to the period of tidal bore waves. However, the multipath oscillations
related to the antenna height over a stable water surface have a period of ∼100 s for
this satellite around 17h. So, the water levels cannot be extracted directly following
Equation (2.28) or Equation (2.27).

The last point represents an inherent limitation of the SNR method, due to the absence
of complex I/Q information. I tried to extract the multipath phase with a least square
estimation using Equation (2.29), in order to estimate the water level variations through
phase unwrapping. In theory this could work, as the observations sampled at 20 Hz avoid a
phase jump even with a vertical velocity of ∼1 m/s. However, this method was not successful
mainly due to discontinuities in the tidal bore frequencies. Further investigations could also
determine whether a high frequency waveform GNSS-R acquisition can be used to retrieve
extreme variations of water level.

3.5 Contribution to this work and perspectives

The data acquisition was performed in 2016, way before the beginning of my PhD. It was
thus a latent project just waiting for someone to process and analyze the data, as I Ąnally
did during my Ąrst year. This was my primary contribution to the work presented above.
When diving deeper into the subject, I found that although the water height retrieval during
the propagation of tidal bores was very complicated, it was possible to monitor the water
heights during high amplitude asymmetric tides in the Garonne River. The direction of the
study then shifted, and I modiĄed the algorithm from Nicolas Roussel to accommodate for
the monitoring of inland water level variations. Finally, I performed the analysis and the
writing of the publication in Remote Sensing, as it is presented above.

Following this work, we also installed several conventional receivers for further studies.
The modiĄed dynamic SNR method, as presented in this work, can be very useful to analyze
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the resulting datasets. The receivers are dedicated to study both inland water and coastal
environments. For inland water, one is located in Salsigne (Aude, France) with consequent
topography around. The GNSS-R conĄguration is thus particularly complicated, with impor-
tant elevation and azimuth masks (see Figure 3.3). The methods I implemented in Section 3.2
to Ąlter out noisy observations can be very useful in this case study. The receiver is dedicated
to study abrupt water level rises in small rivers of the Orbiel catchment, as it occurred dur-
ing devastating Ćash Ćoods in 2018. The water surface suddenly rose from about 8 meters,
causing numerous deaths, destruction of goods, and a large pollution in the river basin due
to the washing of former arsenic mines.

We also installed an antenna in the port of Bilbao (Spain), complementing other receivers
available in Saint-Jean-De-Luz, Biarritz and Cordouan (France) in the Bay of Biscay. These
datasets were already used to monitor SSH, following the methods presented in Section 2.4.2.3.
Further studies will be dedicated to sea state (Roussel et al., 2015), particularly during storms.
The receiver in Bilbao is there particularly interesting. It was installed at the extremity of the
pier constructed to protect the port from swell and large waves during storms (Figure 3.4).
The pier is 2 km long and is located at about 7 km from the city of Bilbao. The receiver
height is above 20 m, providing an optimal case study with very few azimuth and elevation
masks (see Figure 3.4). It should allow to retrieve separately SSH inside and outside the area
protected by the pier. The SSH inside the port should be reliable with smaller inĆuence from
the sea state, while we expect the reĆections outside the port to provide information about
the signiĄcant wave height (SWH) and the frequency of waves. Two data acquisitions have
been conĄgured: one with a 30 s time sampling to retrieve SSH, the second one with a higher
1 s sampling to study sea state.

The stations in Salsigne and Bilbao now record observations that will be further processed.
I started this Ąrst part of my PhD with data from a former acquisition, and as the method
went well, I participated in acquiring data for further studies. The observations collected by
the receiver in Salsigne particularly need a very intense Ćooding event to be evaluated. Thus
ended my work on the SNR techniques and applications, and I started the second part of my
PhD on analyzing CYGNSS data at global scale to study the inundation dynamics.
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Figure 3.3: ConĄguration of the GNSS-R acquisition in Salsigne. (a) Google Earth view
of the acquisition site at the conĆuence between the Orbiel and Grésillou streams, with the
antenna location (red star) highlighted. (b) Image of the Orbiel stream with the antenna at
the North, and (c) view of the antenna setup. At high Ćoods, the water can pass over the
road and the Orbiel meander is inundated.
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Figure 3.4: ConĄguration of the GNSS-R acquisition in Bilbao. (a) Google Earth view of
the port of Bilbao with the receiver installed at the end of the pier, (b) antenna setup, (c)
connection of the receiver to the antenna, (d) view of the large area protected by the pier,
and (e) GNSS satellites tracked after the setup was completed.
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4.1 Introduction

This chapter presents the results obtained for the evaluation of the potential of CYGNSS
observations for the determination of the global Ćood dynamics. It was the core of the PhD
project on studying land geophysical parameters with GNSS-R. Multiple initial objectives
were thought before starting this work. In particular, we thought about studying the de-
pendence of the GNSS reĆected signals on the SM, the presence of surface water and the
vegetation cover. The idea was further to disentangle the efects of these variables to obtain
joint estimations of SM and L-VOD. Another objective was to study the transition between
soil moisture and surface water, for improving the SMAP and SMOS-based SM estimates
over the tropics.

The development of a processing chain to compute CYGNSS reĆectivity from the Level
1 DDM observations was time-consuming. When plotting my Ąrst reĆectivity maps in the
full coverage of CYGNSS, people working on hydrology were very excited about its potential,
showing a strong signal over most of the Ćoodplains. The surface water dynamics then
became the principal object of study, for two main reasons. First, before a Ćurry of article
were recently published on surface water detection using CYGNSS (Al-Khaldi et al., 2021b,a;
Li et al., 2021, 2022; Collett et al., 2022; Chapman et al., 2022), this Ąeld was not much
investigated. The initial contributions used very simple methods, mostly based on empirical
thresholds, to map either spatial or temporal changes in the Ćooded areas at regional scale
(Chew et al., 2018; Wan et al., 2019; Morris et al., 2019; Gerlein-Safdi and Ruf, 2019; Rajabi
et al., 2020; Ghasemigoudarzi et al., 2020). Then, the state-of-the-art highlighted a lack
of knowledge in tropical wetlands hydrology. In particular, the monitoring of inundation
dynamics in tropical forests is very poor, and relies only on sparse SAR studies and global,
0.25° GIEMS estimates (see Chapter 1). This is speciĄcally the contribution that should
be expected from CYGNSS. It ofers a higher temporal resolution than most of the SAR
and a higher spatial resolution than radiometers, combined to an optimal penetration of the
vegetation layers due to the large wavelength of GNSS L-band signals.

The state-of-the-art and the early results shifted this study toward the characterization
of inundation dynamics with an interesting temporal resolution (weekly time sampling), and
a quite low spatial resolution of 0.1°. The study was conducted on 1-year CYGNSS data,
as the algorithms are very long to run for both the pre-processing and the processing. The
methods and results are presented below, in a publication that has just been accepted in
Remote Sensing of Environment. Section 4.3 then gives the conclusions and perspectives to
this work.

4.2 Publication in Remote Sensing of Environment
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A B S T R A C T   

The monitoring of lood and wetland dynamics at global scale is hampered by several limitations, including a 
reduced data availability in tropical areas due to the presence of clouds affecting visible and infrared imagery, or 
low spatial and/or temporal resolutions affecting passive and active microwave Earth Observation (EO) data. As 
a consequence, surface water extent estimates and their temporal variations remain challenging especially in 
equatorial river basins. Global Navigation Satellite System Relectometry (GNSS-R) L-band signals recorded 
onboard Cyclone GNSS (CYGNSS) mission, composed of 8 Low Elevation Orbit (LEO) satellites, provide infor-
mation on surface properties at high temporal resolution from 2017 up to now. CYGNSS bistatic observations 
were analyzed for detecting permanent water and seasonal loodplains over the full coverage of the mission, from 
40◦S to 40◦N. We computed CYGNSS relectivity associated to the coherent component of the received power, 
that was gridded at 0.1◦ spatial resolution with a 7-day time sampling afterwards. Several statistical metrics were 
derived from CYGNSS relectivity, including the weighted mean and standard deviation, the median and the 90th 

percentile (respectively Γmean, Γstd, Γmedian and Γ90%) in each pixel. These parameters were clustered using the K- 
means algorithm with an implementation of the Dynamic Time Warping (DTW) similarity measure. They were 
compared to static inundation maps, and to dynamic estimations of surface water extent both at the global and 
regional scales, using the Global Inundation Extent from Multi-Satellites (GIEMS) and MODIS-based products. 
The difference between Γ90% and Γmedian shows the best sensitivity to the presence of water. The river streams and 
lakes are correctly detected, and a strong seasonality is identiied in CYGNSS relectivity over the largest 
loodplains, with the exception of the Cuvette Centrale of Congo which is covered by dense vegetation. This 
seasonal relectivity signal correlates well with inundation maps: Pearson’s correlation coeficient between 
Γmedian and surface water extent from both GIEMS and MODIS is over 0.8 in the largest loodplains. The spatial 
patterns of relectivity are consistent with static inundation maps: at the time of maximum looding extent, a 
spatial correlation coeficient around 0.75 with Γmedian is obtained for several basins. We also evaluated the 
dependence of CYGNSS-derived clusters and relectivity on the dominant land cover type and on the density of 
Above Groud Biomass (AGB) in the pixel. On the one hand, misclassiications of looded pixels were observed 
over vegetated regions, probably due to uncertainties related to the attenuation by the vegetation in both 
CYGNSS and reference datasets. On the other hand, looded pixels with a mean AGB up to ∼300 Mg/ha were 
correctly detected with the clustering. High relectivity values are also observed over rocky soils in arid regions 
and create false alarms. Finally, strong winds on large lakes cause surface roughness, and lower relectivity 
values are observed in this case which weaken the detection of open water. While these constraints are to be 
taken in account and corrected in a future model, a pan-tropical mapping of surface water extent dynamics using 
CYGNSS can be envisaged.   
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1. Introduction 

Wetland ecosystems and loodplains play a key role for the man-
agement of water and natural resources and for climate change, 
although they cover only 8% of the land surfaces (Davidson et al., 2018). 
They temper the water cycles through the regulation of river discharges 
and the mitigation of loods (Bullock and Acreman, 2003; Acreman and 
Holden, 2013). They are particularly sensitive to climate change, while 
contributing a lot to the world’s greenhouse gases emissions through the 
global biogeochemical cycles. According to estimations in the literature, 
wetlands are the source of 20–25% of the world’s methane emissions 
(Bartlett and Harriss, 1993; Whalen, 2005; Bergamaschi et al., 2007; 
Bloom et al., 2010; Ringeval et al., 2010; Melton et al., 2013; Nisbet 
et al., 2014; Saunois et al., 2020), and they store 16 to 33% of the soil 
carbon pool (Maltby and Immirzi, 1993; Page et al., 2011; Mitsch et al., 
2013). Beyond the natural biogeochemical cycles, the anthropogenic 
activity strongly impacts wetlands, and exerts feedback loops along with 
climate change through the variations of the carbon stocks and methane 
emissions. Moreover, wetlands are known to be major reserves of 
biodiversity (Mitra et al., 2005; Junk et al., 2006; Webb et al., 2010). 
The temporal and spatial variations in inundation extent also affect the 
propagation of infectious diseases (Kouadio et al., 2012; Suk et al., 
2020). All these effects affect the millions of people living worldwide in 
wetlands and relying on a healthy wetland ecosystem (Maltby and 
Acreman, 2011). Besides, unprecented loods and droughts increase the 
vulnerability in many regions of the world in spite of the improvement of 
risk management policies (Kreibich et al., 2022). For these aforemen-
tioned factors, a better monitoring from regional to global scales of the 
lood extent and dynamics is needed. 

Inundation mapping usually depends on remote sensing due to the 
lack of in situ data and the dificulties to perform measurements in 
remote regions. Long time-series of inundation extent at 30 m spatial 
resolution were obtained with the processing of Landsat multispectral 
images (Pekel et al., 2016), but at the expense of a low temporal reso-
lution. The Moderate Resolution Imaging Spectroradiometer (MODIS) 
instrument was also used to produce a delineation of looded area with a 
8-day temporal resolution, but with a lower spatial resolution from 250 
m to 1 km (Chen et al., 2013; Di Vittorio and Georgakakos, 2018). 
Nevertheless, while these products provide reliable information on open 
water bodies, they suffer from limitations due to the presence of clouds 
in equatorial areas, and are unable to detect water under dense canopies 
such as the inundated forests present in the Amazon and the Congo 
basins. 

Microwave remote sensing is less affected by these limitations in 
both passive and active domains. The presence of freshwater is 
responsible for: i) a decrease in the brightness temperature, in passive 
mode, affecting more sensibly the horizontal than the vertical polari-
zation (Choudhury, 1991; Sippel et al., 1994; Prigent et al., 2001), ii) in 
active mode, low backscattering over open water and high backscat-
tering in presence of water under vegetation owing to the double-bounce 
effect for side-looking radar such as Synthetic Aperture Radar (SAR) 
(Richards et al., 1987), and iii) also in active mode, high backscattering 
over open water and wetlands for nadir-looking radar altimeters 
(Frappart et al., 2021), except over large lakes where surface roughness 
(e.g. waves on windy days) can cause a strong scattering. L-band in 
particular is able to penetrate deeper the vegetation cover than the 
higher frequency microwave bands. It allows the detection of water 
under the vegetation even in equatorial basins, in both passive (Parrens 
et al., 2017) and active (Hess et al., 2003; Betbeder et al., 2014) do-
mains. Nevertheless, major drawbacks limit the use of microwave ob-
servations for lood monitoring. First, passive microwave observations 
have a coarse spatial resolution, generally lower than 25 km, which 
limits their use for lood monitoring in spite of their quasi-daily temporal 
repeat. For example, the Soil Moisture and Ocean Salinity (SMOS, Kerr 
et al., 2001) and the Soil Moisture Active Passive (SMAP, Entekhabi 
et al., 2010) missions measure the brightness temperatures at L-band, 

with a nominal spatial resolution of several tens of kilometers and a 
revisit period of 2–3 days. Then, the use of Synthetic Aperture Radar 
(SAR) active microwave images was also limited by a low temporal 
sampling before the launch of Sentinel-1, the dificulty to identify the 
signature of water in complex environments, and the limited availability 
of L-band images at global scale. Finally, the use of radar altimetry for 
lood mapping is limited by its acquisition mode along the satellite 
tracks that does not offer a global coverage of land surfaces and by its 
low temporal resolutions ranging from 10 to 35 days. As a consequence, 
most of the studies were limited to regional mapping of the lood dy-
namics (Hamilton et al., 2004; Kuenzer et al., 2013; Parrens et al., 
2017). The combination of multi-satellite information allows to over-
come some of these limitations. The Global Inundation Extent Multi- 
Satellite (GIEMS) product combines information from passive micro-
wave, radar scatterometers, and visible/ near-infrared images to ac-
count for vegetation effect in the lood detection. It has been providing a 
continuous monitoring of the wetland dynamics globally, at monthly 
time scale and ∼0.25◦ spatial resolution since 1992 (Prigent et al., 2007; 
Prigent et al., 2020). 

Global Navigation Satellite System (GNSS) Relectometry (GNSS-R) 
onboard satellite platforms can be a great help to improve the spatial 
and temporal resolutions of wetlands dynamics mapping. It uses the L- 
band (f  = 1.575 GHz for L1) GNSS signals scattered by the Earth’s 
surface, and collected by a receiver as a multistatic measurement tech-
nique (Martin-Neira, 1993; Zavorotny et al., 2014). In-situ and airborne 
GNSS-R measurements have shown sensitivity to various oceanic and 
land geophysical parameters (Rufini et al., 2004; Cardellach et al., 
2011; Egido et al., 2014). Over the last years, satellite missions carrying 
GNSS-R receivers have been launched and emerge as new tools for 
global applications. 

The UK TechDemoSat-1 (TDS-1) mission was a proof of concept of 
spaceborne GNSS-R measurements. It successfully allowed it to retrieve 
either oceanic parameters such as sea level and wind speed (Foti et al., 
2015; Clarizia et al., 2016), or land geophysical parameters such as soil 
moisture and vegetation (Camps et al., 2016; Chew et al., 2016). It was 
followed by the launch of the NASA Cyclone GNSS (CYGNSS) mission, 
whose 8 Low Earth Orbit (LEO) micro-satellites are designed to monitor 
the formation of tropical cyclones through wind speed retrieval (Ruf 
et al., 2016). CYGNSS observations are also collected over land over the 
pan-tropical area (±38◦ latitude). The design of the mission suits the 
study of land parameters with a ine spatiotemporal resolution, as each 
of the 8 satellites records simultaneously 4 observations at a sampling 
rate of 1 Hz (2 Hz after July 2019). CYGNSS observations are sensitive to 
the properties of the relecting surface, including surface roughness, soil 
moisture (SM), vegetation water content (VWC) and biomass density 
(Carreno-Luengo et al., 2019). One of the major applications over land 
of this dataset is soil moisture retrieval with a good accuracy (Root Mean 
Square Error ranging from 0.04 to 0.07 cm3/cm3) (Chew and Small, 
2018; Kim and Lakshmi, 2018; Al-Khaldi et al., 2019; Clarizia et al., 
2019; Eroglu et al., 2019; Senyurek et al., 2020). It has also been 
demonstrated that CYGNSS can be used to increase both the spatial and 
temporal sampling of existing SM products derived from passive mi-
crowave sensors (e.g., SMAP, SMOS), that suffer from a lower spatio-
temporal resolution (Yan et al., 2020). 

CYGNSS relectivity, based on the Delay Doppler Map (DDM) Peak 
power and metadata used for the calibration of the signal, was also used 
for identifying lood signatures in the spaceborne GNSS-R observations. 
In particular, the relectivity maps show the changes in inundation 
extent following hurricanes, typhoons or extreme rain events (Chew 
et al., 2018; Morris et al., 2019; Wan et al., 2019; Ghasemigoudarzi 
et al., 2020; Rajabi et al., 2020). The methodologies mostly consist in an 
empirical thresholding of the CYGNSS relectivity or Signal-to-Noise 
Ratio (SNR), except Ghasemigoudarzi et al. (2020) which used the 
Random Under-Sampling Boosted (RUSBoost) classiication algorithm 
to identify looded and non-looded CYGNSS data. Gerlein-Safdi and Ruf 
(2019) used CYGNSS to produce annual water masks in the Congo basin, 
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with a 0.1◦ spatial resolution, using a spatial comparison of one pixel’s 
value with its neighbors and the random walker segmentation method. 
Then, Gerlein-Safdi et al. (2021) used the same approach temporally, for 
comparing the monthly mean of a pixel with the average value of its 
time series. They produced monthly water masks at 0.01◦ spatial reso-
lution over the Pantanal and Sudd wetlands. Finally, Jensen et al. (2018) 
studied the relationship between CYGNSS relectivity, loods and vege-
tation in tropical wetlands in the hydrographic basin of the Amazon. 
Based on this analysis, Rodriguez-Alvarez et al. (2019) classiied the 
open water and looded vegetation over the same study area. Note that 
all these studies were performed at the regional scale. At larger scale, 
CYGNSS relectivity and coherence over looded areas vary temporally 
and spatially due to vegetation cover, due to the changes in roughness 
affecting soil and water surfaces (Chew and Small, 2020), and to the 
bistatic geometry of the acquisition Loria et al. (2020). 

Recent improvements have been made in the detection of surface 
water using several indicators of the coherence of CYGNSS observations. 
In particular, the raw Intermediate Frequency (IF) data occasionally 
collected were analyzed in several studies (Li et al., 2021; Li et al., 
2022a; Collett et al., 2022). They are unprocessed signal samples which 
contain phase information at a high sampling rate, before the incoherent 
averaging at 1–2 Hz used to derive Level-1 DDM products. Li et al. 
(2021) calculated the complex DDM and derived a coherent coeficient 
(CoC) for BeiDou-3 raw IF. They found that a high CoC is highly linked 
with the presence of water bodies. Li et al. (2022a) proposed a multi- 
GNSS complex waveform product with a high sampling rate (1000 
Hz), that enables the detection of surface water at ∼100 m spatial res-
olution along the relection track. And Collett et al. (2022) showed that 
the coherence of CYGNSS raw IF samples highly relies on the standing 
surface water, and if no water body is found in the footprint, coherence 
is found for saturated soils (SM⩾0.45cm3/cm3) with low large-scale 
roughness. An entropy-based metric was also proposed by Russo et al. 
(2022) to characterize the coherence of CYGNSS raw IF. It was very 
sensitive to open water and loods in forested areas along Yucatan Lake 
and the Mississippi River (Chapman et al., 2022). An operational and 
continuous generation of raw IF data at different frequencies and po-
larizations is planned for the future European Space Agency (ESA) 
GNSS-R mission, HydroGNSS, of which the detection of surface water is 
one of the main science objectives (Unwin et al., 2021). But currently, 
the availability of raw IF data is low compared to CYGNSS Level-1 data, 
and they are more an object of investigation rather than an operational 
solution for the monitoring of lood dynamics. For this reason, Al-Khaldi 
et al. (2021b) gave an estimation of the coherence based on the shape of 
CYGNSS Level-1 DDM. Some pan-tropical water masks were further 
proposed in Al-Khaldi et al. (2021a) using the aggregation of CYGNSS 
observations with varying spatio-temporal resolution: 1 km/1 year, 3 
km/3 months, and 6 km/2 weeks. At 1-km spatial resolution, the mask is 
annual at best but the permanent water bodies are well delineated, 
including small tributaries of the Amazon and Congo rivers. On the 
contrary, lower spatial resolution allows a much higher temporal sam-
pling and the detection of lood events. 

In this study, we focus on CYGNSS relectivity to map lood dynamics 
with a 0.1◦ spatial resolution and a 7-day temporal resolution. The 
CYGNSS relectivity time series are classiied using a K-means clustering 
technique with Dynamic Time Warping (DTW) similarity measurement 
(Müller, 2007), to delineate the looded areas. Results are compared to 
reference static and dynamic maps of inundations at global and regional 
scales, among other ancillary datasets. Section 2 presents the datasets, 
Section 3 the methodology of this study, while Sections 4 and 5 show the 
results and a discussion about the main conclusions of this paper. 

2. CYGNSS and reference datasets 

2.1. CYGNSS 

The CYGNSS mission is composed of 8 LEO micro-satellites covering 
the pan-tropical area (±38◦ latitude). Each satellite carries onboard a 
Delay Doppler Mapping Instrument (DDMI), which is composed of a GPS 
receiver, nadir-looking antennas for collecting GNSS signals, and a 
zenith-looking antenna for geolocation purpose. The DDMI records 
simultaneously 4 relected signals integrated over a second (0.5 s after 
July, 2019), so the CYGNSS mission provides 32 (64, respectively) ob-
servations per second in the area of coverage.The temporal sampling is 
high, with a median and mean revisit time over a 25 km pixel of 3 h and 
7 h, respectively (Ruf et al., 2016). With higher spatial resolution, the 
revisit time increases. Still, substantial improvements in terms of tem-
poral resolution are expected using CYGNSS when compared to mono-
static radars. 

Due to the bistatic coniguration of the measurements between an 
emitting Global Positioning System (GPS) satellite and a receiving 
CYGNSS observatory, the sampling of CYGNSS observations over the 
Earth’s surface is pseudo-random. The L-band signals (f = 1.575 GHz for 
GPS L1) are emitted by GNSS satellites and received by each of the 8 
CYGNSS micro-satellites, with an incidence angle ranging from 0◦ to 
∼70◦ and following a Gaussian distribution centered on ∼30◦. Over the 
ocean, the relected GPS signals are dominated by the incoherent 
component due to an important surface roughness. The spatial resolu-
tion is there degraded and wind speed can be estimated with a 25 km 
spatial resolution and a sub-daily mean revisit time (Clarizia and Ruf, 
2016). However, the relected signals over land can be dominated by the 
coherent component, in case of the presence of water bodies or areas 
characterized by a high surface moisture content in the glistening zone, 
with low surface roughness at the scale of the GPS L1 wavelength (19.03 
cm). The spatial resolution depends, in that case, on the size of the irst 
Fresnel zone which is larger than ∼0.6 km  × 0.6 km (the minimum area 
in the case of a 0◦ incidence angle) (Eroglu et al., 2019; Rodriguez- 
Alvarez et al., 2019). The inest theoretical spatial resolution for a 
CYGNSS observation over looded regions is therefore ∼0.6 km × 6.6 
km, with an elongation effect due to the integration of the relected 
signals over 1 s (0.5 s, respectively) for observations before (after) July, 
2019. Yet, CYGNSS observations are sensitive to the presence of a small 
fraction of water in the glistening zone, whose contribution dominates 
the total response of the relecting surface. The maps of relectivity over 
river basins, such as the Amazon, show a strong scattering over small 
tributaries, down to a few hundred meters. 

The CYGNSS observables used in this study come from CYGNSS Level 
1 science data record iles (CYGNSS, 2020). They contain the 17x11 
Delay Doppler Maps (DDMs) of raw bins and analog scattered power, 
along with all the parameters used for data processing, i.e. the geometry 
of the acquisition and data lags. We used the version 3.0 of L1 data over 
one year, from August 1st , 2018 to July 31st , 2019. The observations 
before July, 2019 are sampled at 1 Hz (2 Hz after), so we assume a ∼0.6 
km × 6.6 km spatial resolution although the along-track resolution is 
twice higher for the last month of data. The daily iles (one for each 
CYGNSS satellite) are distributed in the Physical Oceanography 
Distributed Active Archive Center (PODAAC: https://podaac-opendap. 
jpl.nasa.gov/opendap/hyrax/allData/cygnss/L1/v3.0/). The CYGNSS 
DDM of scattered analog power are used in this study, along with quality 
lags and metadata from the L1 iles. The description of the pre-
processing and analysis of CYGNSS dataset can be found in Section 3 
(methodology). 
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2.2. Other sources of data 

Other data sources were used to analyze and validate the results 
presented below. They consist in static and dynamic inundation maps 
available at regional and global scales, land cover thematic map and 
Above Ground Biomass (AGB). 

2.2.1. Static inundation maps 
Two different datasets were considered for a delineation of looded 

areas: the Level 3 Global Lakes and Wetlands Database (GLWD-3) at 30” 

resolution (Lehner and Döll, 2004), and the wetlands maps at 15” (500 
m at the Equator) from Tootchi et al. (2019). Note that these two 
datasets do not provide any temporal variations and are thus static. After 
some analyzes, the latter was selected because it provides maps of both 
the Regularly Flooded Wetlands (RFWs, overlapping open water with 
several inundation datasets) and the Composite Water (CWs) which 
associates RFWs with Groundwater modelling (GDWs). It is of interest to 
compare RFWs to CWs maps, because CYGNSS may be sensitive to the 
groundwater-driven wetlands that represent a considerable source of 
loods. The CW-WTD product is used as it provides both RFWs areas, and 
a groundwater wetlands map derived from a direct water table depth 
(WTD) modeling (Fan et al., 2013). 

The RFWs in Tootchi et al. (2019) were derived merging 3 inunda-
tion datasets, namely the open water and looded areas extracted from 
the ESA-CCI Land Cover (see Section 2.2.3), the mean annual maximum 
water extent from GIEMS-D15 (Fluet-Chouinard et al., 2015), and the 
maximum surface water from the Joint Research Center (JRC) product 
(Pekel et al., 2016). It assumes that every single product has observation 
gaps and should be complemented by the use of other ones. It is 
particularly the case between the high-resolution JRC maps based on 
Landsat, and GIEMS-D15 which downscales the coarse 0.25◦ estimations 
from GIEMS at 15” resolution. The JRC product is unable to detect water 
under dense vegetation cover, while GIEMS-D15 is able to detect the 
loods in tropical or boreal forests. However, GIEMS-D15 is dominant 
when compared to other products. It represents 55% of the total RFWs 
areas, and only 10% of its extent is conirmed by either CCI land cover or 
JRC surface water. As a consequence, the uncertainties of GIEMS are 
directly propagated in the RFWs dataset. In particular, a recurrent 
overestimation of Surface Water Extent (SWE) in GIEMS has been found 
in the Ganges irrigated paddy ields, in the Sahel wetlands, and in 
coastal areas, due to a confusion between the signals from surface water 
and wet soils. Also, as the original spatial resolution of GIEMS is 0.25◦, 
the sensitivity to small river streams in several regions, including the 
Amazon and Congo basins, is found to be low in both GIEMS-D15 and 
Tootchi’s RFWs dataset. 

2.2.2. Dynamic inundation maps 
Few global products exist that provide temporal variations of inun-

dation extent at the global scale. To compare with CYGNSS data, we 
used the Global Inundation Extent from Multi-Satellite version 2 
(GIEMS-2) dataset (Prigent et al., 2020). It contains a global estimation 
of monthly looded area in a 0.25◦ grid since 1992. In this study, we have 
used the new global maps for years 2018 and 2019, matching the times 
of our CYGNSS dataset. 

A more precise comparison is performed regionally between CYGNSS 
observables and multispectral-based lood maps derived from the grid-
ded atmospherically corrected surface relectances from MODIS, ac-
quired in seven spectral bands from visible/ near infrared (NIR) to 
shortwave infrared (SWIR). The surface relectances contained in the 
MOD09A1 product (8-day binned level 3, version 6) have a spatial 
resolution of 500 m and a temporal resolution of 8 days. Flood extent 
maps were generated using the threshold method proposed in Frappart 
et al. (2018) and Normandin et al. (2018). It is a simpliied version of the 
multi-threshold approach developed by Sakamoto et al. (2007). In this 
approach, a MODIS pixel is considered fully or partially covered with 
water if: i) the value of its Enhanced Vegetation Index (EVI) (Huete 

et al., 1997) is lower or equal to 0.05 and the value of its land surface 
water index (LSWI) (Xiao et al., 2005) is negative or equal to zero, or ii) 
its EVI value is lower than 0.3 and the difference between EVI and LSWI 
is lower than 0.05. This method was used to produce inundation maps in 
the Lower Mekong Basin (LMB) in Asia, the Inner Niger Delta (IND) in 
Africa, and La Plata basin in South America during the study period. 

2.2.3. CCI Land Cover 
The characteristics of CYGNSS relectivity highly rely on the type of 

Land Cover (LC) present in the glistening zone (Carreno-Luengo et al., 
2019; Chew and Small, 2020). To analyze the capability of CYGNSS to 
provide reliable information on the presence of water over land 
depending on the LC type, we used global LC maps from the European 
Space Agency’s (ESA) Climate Change Initiative (CCI) at 300 m reso-
lution (ESA, 2017, available at https://www.esa-landcover-cci.org/). 
These maps are obtained from 1992 to 2015 using various imagery data, 
including the Medium Resolution Imaging Spectrometer (MERIS) and 
Project for On-Board Autonomy – Vegetation (PROBA-V), and applying 
the GlobCover unsupervised classiier (Defourny et al., 2007). More 
recent maps have been produced and validated by the Copernicus 
Climate Change Service (C3S), so we used the 2019 map which corre-
sponds the best to our CYGNSS time series. Additionally, we aggregated 
the initial 38 LC types deined following the United Nations Land Cover 
Classiication System (UN-LCCS) (Di Gregorio, 2016) into 10 general 
land cover classes, which is summarized in Table 1. Croplands, forests 
and herbaceous are separated into dry and looded regions to study the 
changes in CYGNSS relectivity associated to the presence of water. 

2.2.4. Above Ground Biomass 
Dense vegetation layers can attenuate and even extinct the coherent 

component of GNSS-R signals (Loria et al., 2020), and the corresponding 
decrease of CYGNSS relectivity was also modeled with respect to the 
Above Ground Biomass (AGB) of the relecting surface (Carreno-Luengo 
et al., 2020). We therefore analysed the distribution of areas detected as 
looded and non-looded using CYGNSS relectivity, depending on the 
mean Above Ground Biomass (AGB) in the pixel. We used the global 
GlobBiomass AGB maps (Santoro, 2018) which are given at 1 ha 
(approximately 3.2 arcsec) spatial resolution for the reference year 
2010. It was derived from a set of observations including the L-band 
backscatter from ALOS-PALSAR and multiple C-band observations from 
Advanced Synthetic Aperture Radar (ASAR) onboard Envisat, with lidar- 
based metrics from Ice Cloud and Land Elevation Satellite (ICESat), and 
Landsat relectances at several bands (Santoro et al., 2021). The study 
independently estimated the Growing Stock Volume (GSV) for the 
backscatters of ALOS-PALSAR and ASAR, which are combined to obtain 
a more robust dataset and then invert AGB. The AGB maps reproduced 
well the known spatial patterns with high level of detail. Over the tro-
pics, the comparison with a database of ield measurements highlighted 

Table 1 
List of the 10 aggregated land cover classes, and the associated class numbers in 
the CCI LC classiication system.  

Class 
numbering 

Class name CCI Land Cover classes 
associated 

LC1 Open water 210 
LC2 Cropland non irrigated 10, 11, 12, 30 
LC3 Cropland irrigated 20 
LC4 Non looded forest 50, 60, 61, 62, 70, 71, 72, 80, 81, 

82, 90 
LC5 Flooded forest 160, 170 
LC6 Dry shrubs, herbaceous 40, 100, 110, 120, 121, 122, 130 
LC7 Flooded shrubs, 

herbaceous 
180 

LC8 Bare soils 140, 150, 151, 152, 153, 200, 201, 
202 

LC9 Snow, ice 220 
LC10 Urban 190  
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a systematic underestimation of AGB in the densest forests. This is due to 
the low dynamic range of backscatter observations over regions with 
AGB higher than 250 Mg/ha, and to the unavailability of ASAR GSV 
estimates which causes the AGB inversion to only rely on ALOS-PALSAR 
backscatter. 

2.2.5. Resampling of the ancillary datasets 
All the ancillary datasets have higher spatial resolutions than our 

0.1◦ CYGNSS grid, ranging from ∼5100 m to 1 km at the equator. To 
compare with CYGNSS observables, these data were upscaled into a 
matching 0.1◦ grid. For CCI LC, the percentage of each LC class in every 
pixel was computed. The mean AGB was extracted from GlobBiomass 1 
ha spatial resolution dataset. For static and dynamic inundation maps, 
we calculated the open water and lood extent as a percentage of the 
pixel surface. A notable exception is GIEMS-2, whose spatial resolution 
is 0.25◦. To compare at the global scale GIEMS vs CYGNSS, we also 
computed CYGNSS-derived parameters at 0.25◦ spatial resolution. 

2.2.6. Water levels in 2018–2019 
We have used water levels derived from radar altimetry as a proxy to 

estimate the severity of loods in the different river basins further 
analyzed, during the time span of our study (August 2018 - July 2019). 
We downloaded the time series of water levels from the Hydroweb 
database (Crétaux et al., 2011; Hydroweb, 2022) at several speciic lo-
cations which are described in the caption of Table 2. We extracted the 
yearly maximal water heights since 2016 (launch of Sentinel-3A). We 
then computed the anomaly of 2018–2019 peak water height compared 
to the average annual maximum, which are listed in Table 2. The rela-
tive anomaly represents the anomaly normalized by the average 
amplitude of seasonal variations, and is also shown. We notice high 
water levels in the Mekong River (2.96 m over the average, with a 
relative anomaly of 36.5%), and in South America: 0.76–0.77 m for the 
Orinoco and Madeira rivers, with a relative anomaly of 11.1–11.5%. 
This could be due to a weak El Niño in 2018–2019 that may also have 
affected the Yangtze basin (not shown here). The Parana has a relative 
anomaly of 42.2% mainly due to a strong decrease of water heights and 
inundation extent after the severe droughts of the summer 2019, pos-
terior to the time span of our study. For the other basins, the Congo, 
Ganges and Brahmaputra rivers show low negative anomalies of 0.19 m 
to 0.39 m (-2.3% to −14.3%), while the Niger shows a positive anomaly 
of 0.54 m (+7.2%), likely linked to high loods in the Inner Niger Delta. 
We can also mention the very long-lasting 2019 spring loods along the 
Mississippi River, that have already been analyzed in several CYGNSS- 
related studies (Li et al., 2021; Chapman et al., 2022). 

3. Methods 

3.1. Preprocessing of the CYGNSS dataset 

An overview of the processing chain of CYGNSS data developed in 
this study is presented in Fig. 1. First, the peak of each CYGNSS DDM in 
the daily L1 iles (see Section 2.1) is extracted and the entire 17x11 L1 
DDM is removed, as a further processing would be very time-consuming. 
The CYGNSS overland lag is used to remove all relections over the 
oceans, and some other quality lags are applied: S-band powered up, 
Large spacecraft attitude error, Black-body DDM, DDM is test pattern, Low 

conidence GPS EIRP estimate. This set of lags was used in previous 
studies to ensure a correct iltering with the removal of the least samples 
possible (Chew and Small, 2018; Eroglu et al., 2019). We also tried to 
apply more constraining masks using all the lags combined in the 
CYGNSS overall quality lag with the logical exception of the overland 
lag (Clarizia et al., 2019; Rodriguez-Alvarez et al., 2019). However, this 
latter approach removed a major part of CYGNSS observations over land 
(Eroglu et al., 2019), and decreased the performance of land geophysical 
parameter retrieval with a high spatiotemporal resolution. 

The CYGNSS L1 algorithms performed an estimation of the specular 
point location based on a mean sea surface model, which is close to the 
geoid (Gleason et al., 2019). This can affect the DDMs over land as 
topography is not taken into account. Before the end of 2017, data 
collected over 600 m were of poor quality, which lead several authors to 
apply an elevation cutoff (Eroglu et al., 2019; Rodriguez-Alvarez et al., 
2019; Yan et al., 2020). Further versions of the L1 calibration procedures 
for land relections include the topography to estimate more accurately 
the specular point location (Gleason et al., 2020). For the time span of 
our study, CYGNSS DDM are of good quality over a large variety of 
terrains and elevation ranges, including almost all the wetlands and 
water bodies in CYGNSS coverage. Notable exceptions are the Tibetan 
plateau in the Himalayas, and the Altiplano in South America (Gleason 
et al., 2020). Still, the position of the peak power in CYGNSS DDMs is 
sometimes shifted due to several factors, including the topography 
around the specular point. In this study, we iltered the observations 
when the peak of the 17x11 DDM is located in the three irst and last 
delay rows as previously reported (Yan et al., 2020). This corresponds to 
a quality control affecting a small part (∼4%) of the full dataset. 

3.2. CYGNSS relectivity 

The computation of the relectivity is mostly preferred to the use of 
the Signal-to-Noise Ratio (SNR) when analyzing CYGNSS data, as it 
combines information on the DDM peak power along with other 
CYGNSS metadata useful for the calibration of the signal. The GNSS 
signals scattered by open water, loodplains and in general smooth land 
and ice surfaces are considered to be dominated by the coherent 
component (Carreno-Luengo et al., 2019; Li et al., 2017; Rodriguez- 
Alvarez et al., 2019). The power ratio (PR) deined in Al-Khaldi et al. 
(2021a); Al-Khaldi et al., 2021b also highlights high coherent returns 
with a low diffuse scattering over inland water bodies. In our study, 
CYGNSS relectivity is hence determined using the coherent scattering 
equation (De Roo and Ulaby, 1994; Gleason et al., 2020): 

Γ(θ) =

(

4π

λ

)2
PDDM(Rr + Rt)

2

GrGtPt

(1)  

where PDDM is the peak of the DDM analog power, Rr and Rt are the 
receiver and the transmitter ranges (distance from the receiver and the 
transmitter to the specular point), Gr is the receiver antenna gain, PtGt is 
the GPS Equivalent Isotopically Radiated Power (EIRP), and λ is the GPS 
L1 signal wavelength (i.e. λ = λL1 = 0.1903 m). PDDM is computed using 
the 17 delay  × 11 Doppler DDMs, while the other variables come from 
CYGNSS Level 1 metadata. In Eq. (1), the relectivity depends on the 
incidence angle (θ) of CYGNSS observations. In Fig. 2, the curves of the 
mean relectivity vs. θ are shown without correction (red curve), with a 

Table 2 
Anomalies of the 2018–2019 peak water height compare to the average yearly maximum, at the locations listed hereafter. The Orinoco River, downstream the Llanos 
de Orinoco; the Amazon River close to its estuary, and the Madeira River (one of the biggest tributaries of the Amazon), downstream the conluence between the Beni, 
Madre de Dios and Mamore rivers; the Parana River, after its conluence with Rio Salado; the Congo River, after its conluence with the Ubangui; the Niger River, 
downstream the Inner Niger Delta (IND); the Ganges and Brahmaputra rivers just before their conluence; and inally, the Mekong River at the outlet of Tonle Sap.  

River Orinoco Amazon Madeira Parana Congo Niger Ganges Brahm. Mekong 
Peak anomaly (m) 0.77 −0.03 0.76 1.24 −0.39 0.54 −0.19 −0.3 2.96 
Rel. anomaly (%) 11.5 −0.4 11.1 42.2 −14.3 7.2 −2.3 −5.6 36.5  
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correction based on cos(θ) (in blue), and with a correction based on 
cos2(θ) (in green). With no correction, the relectivity decreases while 
increasing the incidence angle. With the cos(θ) correction, the relec-
tivity is ∼constant in all the incidence range, except for θ > 68◦ (these 
values are inally iltered out). With the latter correction in cos2(θ), the 
relectivity increases exponentially with an increasing θ. These correc-
tions based on cos(θ) or cos2(θ) are commonly used in correcting the 
inluence of the incidence angle on SAR backscatter (Ulaby et al., 1982; 
Kellndorfer et al., 1998). As a consequence, the relectivity corrected 
from the incidence angle Γ is: 

Γ = Γ(θ = 0
◦) =

Γ(θ)

cos(θ)
(2) 

Once CYGNSS relectivity was computed, these unevenly distributed 
values were gridded at 0.1◦ spatial resolution (∼11 km at the equator). 
Several tests were performed to evaluate the best compromise between 
spatial and temporal resolutions. For the mapping of variables exhibit-
ing a high temporal variability, such as SM, a daily time step is prefer-
able and the best spatial resolution associated is 0.25◦. For studying 
lood dynamics, we prefered to ensure a higher spatial resolution to 
reduce the confusion between looded and non-looded areas. With a 
0.1◦ grid, a 7-day time sampling can be reached. This observation is 
consistent with Al-Khaldi et al. (2021a), who mapped CYGNSS PR at 2 
weeks/6 km, 3 months/3 km or 1 year/1 km. Moreover, our grid is based 
on a maximum of 32 observations per second (1 Hz sampling of each 

CYGNSS track). For data after July 2019 the sampling is 2 Hz, so the 
spatial resolution at weekly time scale could be improved. Finally, an 
alternative 0.25◦ grid was also computed to compare CYGNSS relec-
tivity with the looded extent from GIEMS-2. 

Due to the pseudo-random coniguration of CYGNSS bistatic obser-
vations, some missing values were present in most of the pixels at spe-
ciic time steps. A 30-day moving window was applied during the 
gridding step to ill these gaps. Fig. 3 shows that this process increased 
the average number of samples per pixel, while the orbits of CYGNSS 
satellites ensure more observations at the extreme latitudes, and fewer 
ones in the equatorial regions. A 30-day Gaussian window with a stan-
dard deviation σ = 7 days was used to weight the observations. The 
weighted mean and standard deviation values of relectivity per pixel 
were calculated, which are further expressed as Γmean and Γstd in linear 
units. Other statistical parameters were used to describe the distribution 
of CYGNSS relectivity values in each pixel: the median (Γmedian), the 90th 

percentile (Γ90%), the median absolute deviation (MAD, ΓMAD), and the 
difference between Γ90% and Γmedian (Γ90%−50% = Γ90% −Γmedian). They 
were extracted at each time step of the 0.1◦ grid. 

A subset of these variables is shown in Fig. 4 over western and central 
Africa, including a major part of the Congo, Chad and Niger basins, for 
the irst week of September when the Sahel region is affected by loods. 
The relectivity derived from CYGNSS observations is usually high over 

Fig. 1. Overview of the processing chain for the analysis and the clustering of CYGNSS observations.  

Fig. 2. Mean relectivity vs. the incidence angle for CYGNSS observations 
without correction for θ, with a correction based on cos(θ), and with a 
correction based on cos2(θ). 

Fig. 3. Number of observations per pixel in 7 days, from 2019–01-02 to 
2019–01-08. (a) Count without the moving window, (b) count with a moving 
window and 1-month Gaussian weighting. 
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looded regions and rivers, which are smooth relecting surfaces. All the 
observables show high values over large wetlands, such as the Inner 
Niger Delta (IND) and the loodplains around Lake Chad. Over smaller 
water bodies, the 0.1◦ pixels are composed of a fraction of water with 
non-inundated areas dominating around. As a consequence, Γmedian is 
low as it comes from an observation over soils non-covered with water, 
while Γ90% corresponds to the highest relectivity values associated to 
water bodies. For this reason, the detection of rivers is lower using 

Γmedian and ΓMAD than with other variables, as it is observed along the 
streams of the Congo and Niger rivers and their tributaries. The interest 
of Γmedian and ΓMAD is their robustness to noise, when compared to Γmean 
and Γstd, respectively. Finally, the Γ90%−50% parameter is relevant, 
because it discriminates well the river streams (high Γ90% and low 
Γmedian), the large water bodies and loodplains (high Γ90% and high 
Γmedian), and the non-looded areas (low Γ90% and low Γmedian). 

The maps of Γ90% and Γ90%−50% in the full coverage of CYGNSS 

Fig. 4. Parameters derived from CYGNSS relectivity over western and central Africa, with the Congo, Niger and Chad hydrographic basins, at time step 2018–09-05. 
(a)Γmean, (b)Γstd, (c)ΓMAD, (d)Γmedian, (e)Γ90%, (f)Γ90%−50%. 

Fig. 5. Values at time step 2018–09-05 of CYGNSS-derived parameters: (a)Γ90%, (b)Γ90%−50%.  

P. Zeiger et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 282 (2022) 113278

8

mission are shown in Fig. 5. The Amazon, Parana, Congo and Niger 
Rivers and their tributaries, as well as other smaller streams in the pan- 
tropical area, are clearly delineated for both parameters. High relec-
tivity values are also obtained over the major loodplains in South 
America, Africa or Southeast Asia. Finally, a strong specular scattering is 
observed in the arid regions over bare soils, such as in the Sahara, the 
Arabian Peninsula, and Australia (see Section 5.4, discussion). Due to 
the homogeneity of the land cover in these areas, high values are ob-
tained for both Γ90% and Γmedian. As a consequence, the difference 
Γ90%−50% is low, which improves the separation between water bodies, 
loodplains and bare soils. For all the aforementioned factors, Γ90%−50% 
and Γ90% were used along with Γmedian for further analysis in this paper. 

3.3. Clustering 

We clustered the CYGNSS-derived parameters Γmean,Γstd,Γmedian,
ΓMAD,Γ90% and Γ90%−50% using the unsupervised K-means technique 
(Macqueen, 1967). Starting from an initial set of centroids, it assigns all 
the points to the closest cluster center and then calculates the mean 
value of each cluster. This deines a new set of centroids, and the algo-
rithm iterates until convergence. The K-means++ method is used to 
select the initial cluster centers, as it performs better and provides a good 
stability of the inal solutions (Arthur and Vassilvitskii, 2007). The irst 
centroïd is chosen randomly at this step. Then, the other centroids are 
iteratively determined between all the dataset points, with a probability 
equal to the inverse distance between a point and the closest centroïd, 
the weights being adjusted every iteration. This ensures a stable distri-
bution of the cluster centers that is representative of the dataset. 

In this study, we aim to detect inundated areas whatever their sea-
sonality, with a time-series based approach. This is not possible using the 
K-means clustering with Euclidean distance, which makes the algorithm 
extremely sensitive to shifting and distortion in time. To overcome this 
limitation of the default K-means algorithm, we used the Dynamic Time 
Warping (DTW) similarity measure (Berndt and Clifford, 1994; Müller, 
2007) which is implemented in the python package tslearn (Tavenard 
et al., 2020). 

Given two time series X = (x1, x2,…, xN),N ∈ N and Y = (y1,y2,…,

yM), M ∈ N, the optimization problem associated with DTW is formu-
lated as follow: 

DTW(X,Y) = minπ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

(i,j)∈π

d(xi, yj)

√

(3)  

where π = [π0, π1,…, πK] with πk = (ik, jk) is called a warping path, and 
d(⋅, ⋅) is a distance metric (by default the Euclidean distance is used). The 
warping path must satisfy the following conditions: 

(i)Boundary condition: π0 = (1, 1) and πK = (N,M)

(ii)Monotonicity condition: ik⩽ik+1 and jk⩽jk+1,∀k ∈ [1,K−1]
(iii)Step size condition: ik+1 −ik⩽1 and jk+1 −jk⩽1,∀k ∈ [1,K−1]

The minimization of all the potential warping paths according to the 
distance metric d(⋅, ⋅) results in the optimal warping path, which is here 
expressed as DTW(X,Y). The optimal warping path is computed between 
the K-means cluster centers and every pixel at each iteration of the al-
gorithm, and permits a shift and a distortion in time between the time 
series. This makes the DTW similarity measure well suited for our study. 
When applied to the detection of inundations, it allows to identify 
similarities in lood patterns from distinct regions of the world, with 
differences in phase and intensity. One limitation in our case is the 
boundary condition (i), because we only use one year of CYGNSS data to 
detect loods with a yearly seasonal cycle. Thus, we implemented in our 
methodology a padding of the CYGNSS dataset over 3 consecutive years 
to limit the boundary effects. The evaluation of a 3 to 5-year dataset of 
CYGNSS observations would be optimal. However, the choice of a 
padding was driven by constraints on our computation capacities. It 

assumes a constant seasonality, which seems reasonable. The method-
ology could still be extended to the full 5-year dataset of CYGNSS in the 
future. 

The choice of an optimal number of centroids in the K-means algo-
rithm can be discussed. Due to the important computational resources 
needed by the DTW similarity measure, we were not able to calculate 
any metric as the Calinski-Harabasz score (Calinski and Harabasz, 1974) 
and the Silhouette score (Rousseeuw, 1987) with this version of the 
algorithm. We inally adopted an empirical approach for the determi-
nation of the optimal number of clusters, and we tested our methodology 
with a number of classes ranging from 2 to 8. The results are evaluated 
graphically with the maps and time series of labelled pixels, and 
numerically with confusion matrices between CYGNSS clusters and 
lood reference classes based on Tootchi et al. (2019). We also evaluated 
the capability of each of the 6 CYGNSS-based parameters presented in 
Fig. 4 to detect loods and water bodies, either individually or associated 
to each-other. The most interesting results are obtained using Γ90%−50%, 
which associates the information of Γmedian and Γ90% into a unique var-
iable. We therefore only present the results based on this parameter, 
although all the conigurations were evaluated. 

3.4. Sensitivity to the choice of initial centroids 

Although the use of K-means++ algorithm produced stabler results 
than a pure random selection of the initial centroids, some differences 
were observed between successive versions of the clustering. We 
computed 30 times the K-means++/ DTW algorithm with 4 clusters and 
the Γ90%−50% parameter (the best coniguration, see Section 4), to 
perform a sensitivity analysis. We extracted the inertia (sum of distances 
of samples to their closest cluster centers) at each iteration. We also 
calculated the percentage of correspondence between the labelled pixels 
from every pair of distinct clustering results. If the correspondence 
reaches 100%, the two versions are exactly the same. Table 3 presents 
some statistical parameters for both the inertia and the correspondence, 
which are the mean, median, min, max and std values. As can be seen, 
the inertia covers a very low dynamic range from 0.1005 to 0.1055 with 
a standard deviation of 10−3, indicating that the algorithm converges 
toward similar solutions, whatever the choice of the initial centroids by 
the K-means++ method. The dynamic range of the correspondence is 
higher (∼ 80−99%), with a median value of 94.57% and a standard 
deviation of 4.07%, respectively. The results are usually quite stable, in 
the range of 92%-99%, with the exception of few ones. Graphically, the 
different solutions found in 30 iterations also look very consistent. 

We inally achieved a second round of the K-means/ DTW clustering, 
which was based on the results of the sensitivity analysis. There, the 4 
initial centroids were obtained by averaging the cluster centers of the 30 
outputs obtained with K-means++ initialization. This step permits to 
obtain a robust classiication that does not vary through the random 
choice of the initial centroïds, but is still based on unsupervised tech-
niques. All the clustering results presented in the following section are 
computed that way. 

Table 3 
Sensitivity of the clustering result to the choice of initial centroids by the K- 
means++ algorithm. We calculated the inertia of each clustering, and the cor-
respondence between every pair of distinct clustering results. We present here 
the mean, median, minimum, maximum and standard deviation values of both 
parameters.  

Result mean median min max std 
Inertia 0.1027 0.1026 0.1005 0.1055 0.0010 
Correspondence (%) 93.76 94.64 80.26 98.78 4.01  
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4. Results 

4.1. Clustering of CYGNSS relectivity 

We clustered the CYGNSS Γ90%−50% parameter with a number of 
classes k ranging from 2 to 8, in order to empirically determine the 
optimal number of clusters. For all the conigurations, we plotted the 
maps of labelled pixels and we calculated a confusion matrix between 
the CYGNSS clusters and a reference set of water and inundation classes 
derived from RFWs maps (Tootchi et al., 2019). The deinition of the 
reference classes is detailed in Table 4. Open water is grouped into a 
single class with a threshold at 10% corresponding to the empirical 
breaking point of permanent water (class A) vs. dry land (class E). Other 
classes, i.e. high loods (class B, maximum surface water extent SWE ⩾ 

80%), medium loods (class C, 40% ⩽ SW < 80%) and low loods (class 
D, 5% ⩽ SW < 40%), correspond to different levels of maximum inun-
dation extent per pixel. 

For a low number of clusters (i.e., k = 2 or k = 3), the clustering 
problem was highly simpliied as the separation of looded vs. dry areas, 
according to the average values of Γ90%−50% related to the intensity of 
inundation. The results with k = 4 are more interesting, as the addi-
tional cluster represents the pixels in loodplains with a strong seasonal 
cycle during the year. Finally, the results with k⩾5 show an increasing 
confusion between one or several clusters associated to both seasonal 
lood patterns and permanent water. The choice of k = 4 as the optimal 
coniguration was based on both statistical outputs (confusion matrices), 
and graphical interpretation of the clustering results. 

We present the confusion matrix and the results of the clustering with 
Γ90%−50% and k = 4 in Table 5 and Fig. 6, respectively. The output 
clusters are referred as C1, C2, C3 and C4 from the lowest to the highest 
average Γ90%−50% values. The map of labelled pixels is shown in Fig. 6.a, 
while Fig. 6.b–j represent the average time series of Γ90%−50% and Γ90% 
for the pixels classiied in C3 and C4, over 9 large river basins. The 
cluster C4 (in blue in Fig. 6) exhibits high values for both Γ90%−50% and 
Γ90% over the entire time series, associated to a seasonality in phase with 
variations of inundation extent. The pixels in C4 are located on lakes, 
river streams such as the Amazon, Parana, Niger and Congo Rivers, and 
also some large loodplains with permanent water or high SM 
throughout the year. This cluster represents only 4.4% of the total 
labelled pixels, but includes 58.8% of the reference class A (open water), 
32.7% of class B (high loods) and 19.0% of class C (medium loods), 
according to the results in Table 5 (percentage values in red). 

Then, the cluster C3 in dark green shows variations from low to high 
values of Γ90%−50% and Γ90%, with a seasonal trend particularly visible in 
Γ90%. The pixels in C3 are located on the major loodplains in the pan- 
tropical area: the Llanos de Orinoco, Llanos de Mojos, Rio Branco, 
Pantanal and Parana loodplains in South America, the Inner Niger Delta 
(IND), Lake Chad and along the Nile in Africa, the Ganges–Brahmaputra, 
Indus, Irrawaddy, Yangtze and Mekong basins in Asia. The seasonality in 
C3 exhibits maximum values of Γ90%−50% and Γ90% during summer in the 
Orinoco (Fig. 6.b), Niger (Fig. 6.e), Lake Chad (Fig. 6.f) and Gang-
es–Brahmaputra (Fig. 6.h) basins, all located in the northern hemi-
sphere. On the contrary, in the Amazon (Fig. 6.c, across the equator) and 
Parana (Fig. 6.d, in the southern hemisphere) basins, the maximum 
values in C3 for Γ90%−50% and Γ90% are obtained during spring. This 

validates the use of the DTW similarity measurement to cluster Γ90%−50% 
time series, for the extraction of looded areas with distinct temporal 
cycles. For statistical results, C3 represents 8.3% of the total labelled 
pixels, and includes 23.8% of the reference class A, 40.6% of class B, 
30.3% of class C, and 17.8% of class D (low loods) according to Table 5 
(values in red). If we merge the two clusters C3 and C4, their combi-
nation represent only 12.7% of the world pixels, but 82.6% and 73.3% of 
the reference classes A and B, respectively. Thus, the identiication of 
open water and lood signatures in CYGNSS relectivity is highly 
reliable. 

The cluster C2 has medium values of Γ90%−50% (not shown) corre-
sponding to either water bodies and pixels with a fraction of water but 
not totally looded (28.9% and 30.2% of classes C and D, respectively), 
or non-looded regions from the reference class E. In Fig. 6.a, it is 
possible to locate C2 mainly over bare soils in arid regions such as the 
Sahara, the Arabian Peninsula and Australia. Finally, the cluster C1 is 
dominant (66.6% of the labelled pixels), and is interpreted as non- 
looded areas although it includes about 9.5% of the pixels from both 
reference classes A and B. 

In fact, some confusions are identiied in the clustering despite a 
strong sensitivity to the presence of water. First, the pixels from refer-
ence class E which are theoretically non-inundated, represent 13.2% and 
35.0% respectively (values in blue in Table 5) of the clusters C4 and C3, 
exhibiting the highest Γ90%−50% values. Then, the cluster C2 is a mix of 
pixels located over looded and non-looded regions. This is mainly due 
to a strong specular scattering over rocky bare soils (see the Section 5.4, 
discussion for more details). And lastly, while the open water and high 
loods (classes A and B) are well detected, it is not the case for the me-
dium and low loods (classes C and D). They are associated to a mixing of 
wetlands and dry areas, and are quite equally divided into the 4 CYGNSS 
clusters. All these misclassiications can be related to: i) the inluence of 
other factors such as the vegetation, SM, elevation, topography and 
small-scale roughness in the GNSS-R signals over land, ii) the hetero-
geneity of land cover and lood occurrence inside a CYGNSS pixel at 0.1◦

spatial resolution, and iii) errors in the deinition of the reference clas-
ses, either due to the choice of our thresholds or to the high uncertainties 
associated to the RFWs product from Tootchi et al. (2019) itself (see 
Section 2.2.1 for more details). 

4.2. Comparison with ancillary datasets 

We have used CCI Land Cover maps and Tootchi’s RFWs dataset 
described in Section 2 to investigate how the land cover changes and the 
occurrence of water inluence CYGNSS-derived clusters. In Fig. 7, these 
parameters are analyzed over three complementary study areas: the 
northern part of South America, between 20◦S and 10◦N, encompassing 
the Amazon, Orinoco, Tocantins and São Francisco river basins, as well 
as the Pantanal loodplains, the Titicaca and Poopó lakes (Fig. 7.a1–5); 
Western and Central Africa around the gulf of Guinea, between 5◦S and 
20◦N, including the Niger River Basin, Lake Chad and the Cuvette 
Centrale of Congo (Fig. 7.b1–5); the Indian subcontinent including the 
Ganges–Brahmaputra and the Irrawaddy basins (Fig. 7.c1–5). These 
regions include all types of land cover present in the pan-tropical area, e. 
g. equatorial forests, loodplains under canopy layers or with herbaceous 
covers, croplands irrigated or not, savannas, bare soils, high mountain 
ranges. 

There is a good correspondence between the DTW clusters C3 and C4 
in Fig. 7.a1–c1 corresponding to areas with high values of Γ90% and 
Γ90%−50%, and the reference map of water extent derived from Tootchi 
et al. (2019) in Fig. 7.a2–c2. The delineation of permanent water bodies 
and in particular the streams of the Amazon, Congo and Niger Rivers as 
well as their tributaries is clear, mainly in cluster C4. The most extensive 
loodplains are also detected in C3 and C4. In South America, we identify 
the Llanos in the Northeast Orinoco Basin (around 7◦N and 70◦W), 
Llanos de Mojos in the Southwest Amazon Basin (15◦S and 65◦W), the 
Rio Branco loodplain in the northern Amazon Basin (0◦ and 63◦W), and 

Table 4 
Deinition of the reference classes of open water and loods with the RFWs 
dataset (Tootchi et al., 2019).  

Reference class Name/ 
interpretation 

Open water % Seasonal water % 

A Permanent water ⩾10% – 

B High loods < 10% ⩾80% 
C Medium loods < 10% ⩾40% and < 80% 
D Low loods < 10% ⩾5% and < 40% 
E Non looded areas < 10% < 5%  
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Table 5 
Confusion matrix between reference classes A to E deined in Table 4 and CYGNSS clusters C1-4 shown in Fig. 6. 
For each cell in the table, the proportion of pixels in this cell vs. the total number of pixels from the reference class 
(column Total) is shown in red, and the proportion vs. the total number of pixels from the CYGNSS cluster (line 
All) is shown in blue. As an example, the box A/ C1 contains 9.6% of the total pixels in reference class A, and 0.2% 
of all the pixels in CYGNSS cluster C1.  

Fig. 6. Clustering of ΔΓ = Γ90%−50% with 4 clusters. (a) Map of the labelled CYGNSS pixels using the K-means/ DTW algorithm with k = 4. (b-j) Average time series 
of Γ90%−50% and Γ90% for clusters C3 and C4 in 9 large river basins: (b) Orinoco, (c) Amazon, (d) Parana/ La Plata, (e) Niger, (f) Lake Chad, (g) Congo, (h) 
Ganges–Brahmaputra, (i) Mekong, and (j) Yangtze. The boundaries of all the 9 basins are superposed with the map of labelled clusters in (a), with the two irst letters 
of the basin name allowing its identiication. 
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the Pantanal loodplains (18◦S and 58◦W). In Africa, the IND (15◦N and 
5◦W) and the loodplains around Lake Chad (10◦N and 15◦E) are well 
detected, but the Cuvette Centrale of Congo (0◦ and 17◦E) is not. In the 
Indian subcontinent, a strong seasonal signal is obtained and mainly 
associated to C3 over the irrigated croplands (land cover class LC3 in 
cyan) along the Ganges plain. The Ganges–Brahmaputra delta, the 
Irrawaddy River and their tributaries are also well delineated. The 
interesting point is that CYGNSS relectivity maps show a good ability 
for monitoring heavy seasonal loods, almost regardless of the LC types. 
Yet, the densest canopies cause a strong attenuation or a diffusion of the 
L-band signal. Over the Cuvette Centrale of Congo (bottom right in 
Fig. 7.b1–3), we notice that CYGNSS likely underestimates the presence 
of loods nearby the streams of the Congo and Ubangi Rivers, if we refer 
to the RFWs dataset. Also, several lakes and wet areas in the Tibetan 
plateau in the upper right corner of Fig. 7.c1–3 are not even detected 
using CYGNSS. The estimation of the specular point location is of poor 
conidence over the Tibetan plateau, which is about 5000 m high 
(Gleason et al., 2020), thus CYGNSS DDMs are not centered on the 
specular point and likely contain only thermal noise and diffuse scat-
tering from surrounding areas. 

The same datasets are analyzed in Fig. 8 but on smaller regions, with 
a focus on some signiicant water bodies. Fig. 8.a1–5 is centered on Lake 
Titicaca (3812 m high), Fig. 8.b1–5 on Lake Victoria (1133 m high), 
Fig. 8.c1–5 on the Lower Mekong Basin including Tonle Sap, the largest 
lake of south east Asia, and Fig. 8.d1–5 on Lake Chad (both at low 
elevation). Several indications must be highlighted in Fig. 8. First, all 
water bodies are detected using CYGNSS, and mostly classiied in C3 or 
C4 by the DTW clustering. These classes include a part of Lake Titicaca, 
Lake Poopó and the Salar de Uyuni located on the Altiplano at high 
elevation. Although the estimation of specular point location in this 
region has low conidence, a strong returned power is often observed 
with coherent relection conditions. Then, it appears that the Tonle Sap 

and Lake Chad are classiied in C4, while the surrounding loodplains are 
mostly classiied in C3. This shows an example of the separation of 
permanent water vs. seasonal loods using CYGNSS. The Delta of 
Mekong mainly belongs to C4, likely due to continuous looding or wet 
conditions in the paddy ields (Kuenzer et al., 2013). Thirdly, in Lake 
Victoria and Lake Titicaca, a spatial heterogeneity is observed with 
higher relectivity (associated to C3 and C4) observed closer to the 
banks. This is attributed to the effect of the winds on large lakes and was 
previously reported in the literature, especially over Lake Victoria (Al- 
Khaldi et al., 2021b). The roughness of water surfaces due to the wind 
waves can nullify the coherent scattering assumption, and lead to a 
decrease of surface relectivity (Chew and Small, 2020). 

The CYGNSS relectivity also depends on the dominant type of land 
cover inside a pixel. Fig. 9 presents the distribution of CYGNSS clusters 
into the aggregated LC classes deined in Table 1, either as the total 
number of pixels (Fig. 9.a) or the percentage (Fig. 9.b) in each class. 
Only pixels with a dominant type of LC covering at least 80% of the pixel 
are considered to avoid an inluence of LC mixing. First, we notice a 
strong dominance at the global scale of non-looded LC types (bare soils, 
dry shrubs and herbaceous, non-looded forests, croplands non irri-
gated), with fewer pixels affected by permanent or seasonal water. These 
dry classes are composed quasi-exclusively of the CYGNSS clusters C1 
and C2, with the lowest relectivity values, and include also a part of C3, 
with high seasonal variations of Γ90% and other CYGNSS-derived pa-
rameters. Then, we make several assessments over looded areas. The 
looded forests are mostly composed of C1 and C2, while the looded 
shrubs and herbaceous are mainly composed of C3 and C4, with higher 
Γ90% and Γ90%−50% values and seasonality (Fig. 6). In densely forested 
areas, the L-band relected signals recorded by CYGNSS can be either 
strongly attenuated on their way to or from the relecting surface, or 
scattered by the top of the canopy. In both cases, the ability of CYGNSS 
to detect inundations below the canopy is affected. The irrigated 

Fig. 7. Comparison of CYGNSS-derived parameters with ancillary datasets over the northern part of South America (a1-3), Western and Central Africa with the Gulf 
of Guinea (b1-3), and the Indian subcontinent (c1–3). (a1, b1, c1) CYGNSS clusters, (a2, b2, c2) Percentage of water from Tootchi’s RFWs maps (Tootchi et al., 
2019), (a3, b3, c3) CCI Land Cover with the 10 aggregated classes deined in Table 1. 
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croplands, mainly located in the paddy ields in Southeast Asia, are 
dominated by the pixels with a strong seasonal signal in C3. On the other 
hand, the croplands non-irrigated are dominated by the dry pixels in C1. 
Both also contribute in the cluster C2, highlighting a mixing between 
these two classes and some misclassiications in Table 5. Non-looded 
croplands and herbaceous covers affected by large seasonal rainfall 
present high SM values, responsible for a high CYGNSS relectivity. 
Finally, open water bodies are divided between low and high relectivity 

clusters. This should be linked to: i) the attenuation or scattering of the 
signals in equatorial forests and the non-detection of small streams, and 
ii) lower returned signal power on large windy lakes as shown in Fig. 8. 

4.3. Comparison against lood products at regional and global scales 

In this subsection, we analyze the correlations between CYGNSS- 
derived parameters and lood reference products. Because the spatial 

Fig. 8. Comparison of CYGNSS-derived parameters with ancillary datasets over small subsets centered on water bodies. (a1-3) Portion of the Andes centered on Lake 
Titicaca, (b1-3) Lake Victoria, (c1–3) Delta of Mekong with the Tonle Sap, and (d1–3) Lake Chad and a portion of Sahel. The same datasets are used than in Fig. 7. 

Fig. 9. Repartition of the CYGNSS clusters into the main Land Cover types (see Table 1 for the aggregation of CCI LC classes). (a) Number of pixels from each cluster, 
(b) Percentage of pixels from each cluster. 
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resolution of GIEMS is 0.25◦, CYGNSS has also been gridded and clus-
tered into an equivalent 0.25◦ grid for further analysis. We only present 
the results for Γmedian which show the best correlations, as Γ90% is 
sometimes saturated with a fraction of water inside the pixel. The 
relationship between CYGNSS relectivity and the fraction of water in 

the footprint is not linear (Chew and Small, 2020). Thus, we evaluated 
both Pearson’s linear and Spearman’s rank correlations. The latter 
evaluates whether the two variables are linked with a monotonic func-
tion, and should perform better for non-linear relationships. In fact, the 
results are slightly better using Spearman’s R, in particular for the 

Fig. 10. Spearman correlations between CYGNSS Γmedian at 0.25◦ spatial resolution and GIEMS-2 from August 2018 to July 2019. (a) Map of correlations over the 
looded areas in GIEMS (maximal SWE  > 20%), (b) Barplot of average correlations for CYGNSS clusters C3, C4 and all clusters in 9 river basins. 

Fig. 11. Correlation between CYGNSS Γmedian and SWE derived from MODIS over 3 looded regions. (a1–2) show the maximum water extent in the year and the 
pixel-by-pixel correlations between water extent and Γmedian over La Plata basin, (b1–2) are the equivalent plots over the Inner Niger Delta (IND), and (c1–2)are the 
equivalent plots over the southern Mekong basin (including the Delta of Mekong and Tonle Sap). 
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regional comparisons against MODIS dataset (Section 4.3.2). Spear-
man’s temporal correlations between Γmedian and the dynamic inunda-
tion maps at global and regional scales are therefore presented in 
Sections 4.3.1 and 4.3.2, and in Figs. 10 and 11. Finally, the spatial 
correlations against RFWs static inundation maps are presented in Sec-
tion 4.3.3. 

4.3.1. Global comparison of CYGNSS and GIEMS 
Fig. 10 presents the Spearman’s correlation coeficients in every 

pixel between CYGNSS Γmedian and GIEMS Surface Water Extent (SWE) at 
0.25◦ (Fig. 10.a). A strong correlation (R  > 0.8) is obtained in most of 
the major loodplains located in CYGNSS’s spatial coverage, where the 
seasonality drives both signals due to the high temporal variations of 
SWE. It is the case in Southeast Asia and India, characterized by the 
annual monsoon events and irrigated paddy ields in the Gang-
es–Brahmaputra, Irrawaddy, Mekong and Yangtze basins. In South 
America also, the seasonal rainfalls cause large loods in Llanos de 
Orinoco, in the Amazon basin (including Llanos de Mojos and the Branco 
River), or in La Plata basin (including the Pantanal wetlands). On the 
contrary, poor results are obtained along some of the Amazon and Congo 
tributaries, in the upstream parts of these basins. This can be attributed 
to either the vegetation effect on Γmedian, or to a lower seasonality in both 
signals due to a continuous, high SWE, leading mechanically to a lower 
correlation. Low or even sometimes negative correlations are also 
observed in some coastal areas. The surface water estimations from 
GIEMS can be contaminated by the ocean contribution, although it is 
expected to be iltered out. Finally, negative correlations are also 
observed over some land areas (Fig. 10). We had a closer look at two 
speciic targets in East Asia. These regions mostly comprise non irrigated 
croplands and herbaceous land cover, and they showed both a seasonal 
SWE cycle with low amplitude in GIEMS, and a low signal in CYGNSS 
with episodic variations. GIEMS likely overestimates SWE in these areas 
during the wet season, while CYGNSS peaks may be a response to SM or 
short duration loods following intense precipitation. 

Fig. 10.b presents the average of CYGNSS vs. GIEMS Spearman cor-
relations over the same river basins than in Fig. 6, for C3, C4 and all 
CYGNSS clusters. Cluster C3 in orange and C4 in red show an average 
correlation over 0.6 for most of the basins. The results in the Orinoco, 
Ganges, Niger, Lake Chad, Amazon and Parana basins are globally 
consistent because the water cycle is driven by seasonal loods and 
irrigation. Two main exceptions are the Congo and Mekong basins 
where the seasonal variations of relectivity are very weak (below 0.1). 
The low correlations observed can be due to either a constant or random 
signal in both GIEMS and CYGNSS observables. In the Congo basin, the 
vegetation attenuates CYGNSS signals and provokes a lower detection of 
inundations below the canopy, and alternating rainfalls in the northern 
and southern hemispheres produce bimodal variations of inundation 
extent. In the Mekong basin, a continuous looding or irrigation in paddy 
ields, including several parts of the Delta of Mekong (Kuenzer et al., 
2013), certainly reduces the seasonality of the signals. 

4.3.2. Regional comparison 
The comparison with GIEMS SWE gives an indication of the corre-

lation between CYGNSS relectivity and lood dynamics at the global 
scale, but at the regional scale GIEMS is less adequate. First, it is gridded 
at 0.25◦ of spatial resolution, thus the information can be degraded 
when compared to CYGNSS 0.1◦ grid. Also, we gridded CYGNSS into at 
0.25◦ for comparing against GIEMS, which is not the optimal spatial 
resolution of this product. Moreover, CYGNSS at 0.1◦ provides infor-
mation about the lood dynamics up to a 7-day temporal resolution, and 
up to a daily time-scale at 0.25◦, while GIEMS has a monthly time 
sampling. It also has uncertainties, especially in densely forested re-
gions, where it is unclear whether lood signatures can be fully identiied 
in the brightness temperatures at K-band from SSM/I. Finally, the large 
estimations of seasonal SWE in GIEMS, particularly in the Sahel region 
and the Indian subcontinent, may be overestimated due to the confusion 

between standing water and saturated soils during rainfall periods. For 
all these reasons, we also performed a regional comparison between 
CYGNSS Γmedian and the SWE derived from MODIS-based regional dy-
namic lood maps at 500 m spatial and 8-day temporal resolutions (see 
Section 2.2). 

Fig. 11 presents the results of this comparison over 3 regions: La 
Plata basin including the Parana, Uruguay and Paraguay rivers (Fig. 11. 
a1–2), the Inner Niger Delta (IND) (Fig. 11.b1–2), and the Lower 
Mekong Basin (LMB) including Tonle Sap and the Delta of Mekong 
(Fig. 11.c1–2). Table 2 show that these regions have experienced above- 
average water level peaks during the study period, which are usually 
correlated with larger inundated areas. For every region, both maps of 
maximum looded extent (as the percentage of water inside the pixel) 
and Spearman’s correlation coeficients between the time series of SWE 
and Γmedian are shown. Only the correlations on pixels with a maximum 
looded extent above 20% are presented. Over La Plata basin, we obtain 
medium (R  > 0.4) to high (R  > 0.8) values in the major looded areas 
along the streams of the Parana and Paraguay rivers. In particular, the 
correlations are high in the Pantanal wetlands (∼58◦W, 20◦S), in the 
Paraguay River and its conluence with the Parana River, and in wet-
lands close the Salado River in the region of Santa Fé (∼61◦W, 29◦S). 
The values are lower (R ∼ 0.5) in the major part of the Parana looded 
savannas. This could be due to continuous high relectivity in this region 
affected by permanent loods or very high SM content. Low correlation 
values are obtained along the streams of the Uruguay and the upper 
Parana rivers, as well as in mountainous regions along the Andes. 

The correlations over the LMB are heterogeneous, with high values 
over the loodplains and irrigated croplands near the Tonle Sap and 
along the stream of the Mekong River. On the contrary, low and even 
negative correlations are obtained over the Tonle Sap itself, in some 
parts of the Delta and in isolated pixels. Fig. 12 present the time series of 
SWE and Γmedian in 4 neighboring pixels located near the Tonle Sap. The 
two left panel pixels (Fig. 12.a and.c) show a very high seasonality for 
both parameters, with a water extent varying from 0 to 100% during the 
year. It likely corresponds to seasonal loodplains, and the correlations 
calculated between the time series are around 0.9. On the contrary, the 
pixels plotted in Fig. 12.b and.d show limited variations in water extent 
throughout the year, with values systematically over 90% and 50%, 
respectively. They are mainly covered by permanent water from Tonle 
Sap. There, the variations of Γmedian are not correlated with variations in 
the inundation extent. Moreover, in all the pixels, we observe high 

Fig. 12. Time series of CYGNSS Γmedian (in red) and SWE from MODIS (in blue) 
with their correlation, for four pixels near the Tonle Sap in the Mekong basin. 
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luctuations of Γmedian with an amplitude reaching ∼ 0.4 and a period of 
one to several months. These luctuations mostly occur when a large 
fraction of water is present inside the pixel. It could be linked to varia-
tions of water roughness over Tonle Sap, the greatest lake in southeast 
Asia. Moreover, similar time series of Γmedian with high amplitude luc-
tuations were found to be located close to the banks of Lake Victoria, 
where the direction and speed of winds can cause an alternation be-
tween coherent and incoherent scattering regimes. Unfortunately, we 
were not able to ind wind speed data close enough to Tonle Sap to 
compare with Γmedian time series. The understanding of this phenomena 
could help further work on retrieving SWE using CYGNSS relectivity or 
coherency. Other pixels in the Delta of Mekong show low correlation 
values, but large parts of this area are looded or wet throughout the year 
(Kuenzer et al., 2013). 

Finally, the results over the IND show a very good consistency be-
tween the time series of SWE and Γmedian. The correlations are greater 
than 0.8 in most of the pixels. It indicates a strong correspondence be-
tween the dynamics of loods and CYGNSS relectivity in this region. It is 
certainly due to two reasons: i) the low vegetation cover cause lower 
uncertainties in both CYGNSS observations and the reference inundation 
maps, and ii) a strong seasonality is observed in the precipitation and 
looding events, so Γmedian is low during the dry season unlike other 
loodplains in the LMB and the Parana. 

4.3.3. Spatial correlations at the regional scale 
Spatial correlation coeficients were also calculated between Γmedian 

and the SWE derived from static RFWs maps (Tootchi et al., 2019), at the 
time of the maximum looded extent during the year. They are estimated 
for the 9 river basins presented in Figs. 6 and 10, and values are reported 
in Table 6. The spatial correlations in the Orinoco, Amazon, Parana, 
Ganges–Brahmaputra and Yangtze basins are high, ranging between 
0.74 and 0.77, showing a good correspondence between the reference 
maps and CYGNSS relectivity at the lood maximum extent. On the 
contrary, spatial correlations are lower in the other basins and especially 
in the Sahel region (0.52 for Niger, 0.51 for Lake Chad). This highlights 
the contribution of multiple factors in the scattering of GNSS signals 
over these areas, and maybe uncertainties in the RFWs dataset. While 
the temporal correlations indicate whether the variations of SWE are 
linked with an increase in CYGNSS relectivity, the spatial correlations 
are particularly sensitive to a saturation of both the reference and 
CYGNSS signals during the wet season. High SM can provoke high 
CYGNSS relectivity, and also an overestimation of the fraction of water 
estimated in GIEMS, whose uncertainty is further propagated in the 
RFWs dataset (see Section 2.2.1 for more details). 

5. Discussion 

The objective of this study was to assess the potential of CYGNSS 
relectivity for a pan-tropical mapping of lood dynamics. Based on the 
results presented in Section 4, we discuss several points to pave the way 
to a CYGNSS-based inundation product. To begin with, we take a 
broader view on the interests and limitations of our methodology, as 
well as the uncertainties in the reference datasets considered. We then 
discuss the attenuation of GNSS-R signals by the vegetation, especially 
over tropical forests, and the feasibility of lood detection under dense 
canopies using CYGNSS relectivity. We also point out the misleading 
role of high forward scattering in the specular direction in arid areas, 
due to changes in morphology, i.e. roughness for CYGNSS, but also li-
thology (sand vs. rock, see Section 5.4). 

5.1. Results of the K-means clustering 

We have used the K-means clustering algorithm with a Dynamic 
Time Warping similarity measure to perform the clustering of CYGNSS 
relectivity time series. Other common unsupervised classiication al-
gorithms were tested such as Agglomerative Clustering or Birch, but the 
best results were obtained with K-means. The implementation of a DTW 
similarity measure instead of a simple Euclidean distance makes it more 
robust to shifts in phase and distortion in time between time series of 
relectivity. Promising results were obtained and analyzed in this study, 
but the empirical approach led us to discuss our choices in the imple-
mentation of the methodology. 

First, the optimal number of clusters needed to be determined. We 
were not able to calculate any criteria like the Calinski-Harabasz and the 
Silhouette scores with the implementation of the DTW similarity mea-
sure. We also tested our methodology with a common Euclidean dis-
tance in the K-means approach, which gave us an optimal number of 2 
clusters with both the Calinski-Harabasz and the Silhouette scores. This 
is a highly simpliied version of the phenomena as dry land vs. looded 
areas, and does not give information on the seasonality of loodplains. 
Thus, we empirically determined the optimal number of clusters, which 
was found to be k  = 4 (Fig. 6 and Table 5). The two clusters with highest 
relectivity are mostly associated to the occurrence of water, one with 
permanent or long-lasting loods, the second with high seasonal varia-
tions. A third cluster is composed of a mix of wetlands and bare soils 
with medium relectivity, and can be especially sensitive to an increase 
of CYGNSS relectivity over non-looded areas due to high SM content. 
The last cluster is mainly associated to dry soils, never looded 
throughout the year. We also tried the clustering with several combi-
nations of parameters from Fig. 4: 1) Γmean only, 2) Γmedian only, 3) Γ90% 
only, 4) Γ90%−50% only, 5) Γmedian and Γ90%, 6) Γmean and Γstd, 7) Γmean,
Γstd,Γ90% and Γmedian. All the confusion matrices and the plots (similar to 
Table 5 and Fig. 6, respectively) were evaluated for each version of the 
clustering, leading to the determination of the best scenario. 

To ensure the stability of our clustering, we performed a sensitivity 
analysis on 30 iterations of the K-means++/ DTW clustering. It was 
shown that the 30 results are quite stables, especially in terms of inertia 
(see Table 3). However, the random (although weighted) choice of the 
initial 4 centroids by the K-means++ algorithm leads to differences in 
the inal results. In 25 results out of 30, very small differences are 
observed in the output labels, especially for clusters C3 and C4 associ-
ated to water bodies (see Fig. 6). The last 5 versions show lower 
agreement with each-other. The correspondence (i.e. percentage of 
pixels similarly labelled between two versions of the clustering) has a 
minimum of 80.26%, and a median of 94.64% (Table 3). As a conse-
quence, we adapted our methodology to guarantee the reproducibility of 
the clustering. The mean time series of cluster centers C1 to C4 were 
computed from the 30 random DTW outputs, and selected as user- 
deined centroids for a new K-means/ DTW clustering. This inal 
version was analyzed in Section 4. 

Finally, the DTW was implemented to manage shifts in time between 
the looding events in different regions of the world. However, it has a 
limitation due to the boundary condition. The DTW algorithm starts 
with the irst index and inishes with the last index of each time series 
that are compared. As a consequence, the values of Γ90%−50% and other 
CYGNSS parameters at the boundaries of the time series play a deter-
minant role for the clustering. We use only one year of CYGNSS obser-
vations because of the high computational capacities required to process 
and analyze this dataset, and due to the experimental nature of our 

Table 6 
Spatial correlations between CYGNSS Γmedian and the percentage of water derived from RFWs static inundation maps (Tootchi et al., 2019), in 9 river basins inside the 
area of coverage. The values of Γmedian are extracted at the time of the maximum looded extent.  

River basin Orinoco Amazon Parana Niger Chad Congo Ganges Mekong Yangtze 
Spatial R 0.76 0.77 0.75 0.52 0.51 0.58 0.75 0.66 0.74  
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methodology whose interest needed to be proven before a global 
application to the 5-year CYGNSS dataset. To avoid the boundary effect, 
we implemented a padding of the 1-year time series of our parameters to 
create artiicially a 3-year dataset. The results prove that this technique 
does not affect the ability of the K-means/ DTW clustering to extract a 
seasonal lood signal from both the wetlands in the northern (e.g. Ori-
noco, Rio Branco, Ganges, Yangtze, Mekong) and southern (e.g. Llanos 
de Mojos, Pantanal, Parana) hemispheres. 

5.2. Reference inundation maps 

The reference datasets used in this study are also sources of un-
certainties. The static inundation maps from Tootchi et al. (2019) were 
used as a delineation of permanent water bodies and regularly looded 
areas. We irst tried to use the composite wetlands (CWs) maps as it 
contains both the regularly looded wetlands (RFWs) and the 
groundwater-driven wetlands (GDWs). It seemed logical to us that 
GDWs also play a role in the scattering of GNSS signals, as they are an 
important source of SM in saturated soils. However, we noticed a strong 
saturation of the CWs maps in several river basins. As an example, the 
entire Amazon basin and a great part of Sahel were listed as partially or 
totally affected by loods, which is largely exaggerated. Also, spatial 
correlation coeficients calculated with CYGNSS Γmedian show higher 
values with RFWs maps both at the global and regional scales. For the 
Amazon basin, the spatial correlation is 0.77 between Γmean and the SWE 
from RFWs maps (Table 6), and is 0.48 with CWs maps. As a conse-
quence, we decided to use the RFWs maps for comparison with CYGNSS 
datasets. Additionally, the thresholding of RFWs variables into the 5 
reference classes deined in (Table 4) is debatable. The open water class 
(A) corresponds to pixels covered with, at least, 10% of open water. 
When plotting Γmean as a function of open water extent, the Γmean values 
are saturated above this threshold. On the contrary, the function of Γmean 
vs. inundation extent is linear, with no saturation of the signal when 
increasing the fraction of looded areas in the pixel. The separation of 
reference classes B, C and D is then arbitrary, with thresholds corre-
sponding to high, medium or low inundation extent in the pixel. 

The uncertainties of GIEMS are mainly associated to its low spatial 
resolution (0.25◦), leading to a low sensitivity to small water bodies. It is 
also inluenced by dense vegetation covers, and high seasonal SM con-
tent confounded with surface water in several regions (Sahel, Indian 
subcontinent). These are sources of uncertainty for our analysis because 
even Tootchi’s RFWs dataset is based on GIEMS-D15 (Fluet-Chouinard 
et al., 2015), derived from GIEMS itself. Still, the comparison of CYGNSS 
vs. GIEMS and MODIS estimated SWE looks consistent at the regional 
scale, although the spatial resolutions are different (0.25◦ for the irst, 
0.1◦ for the latter). 

5.3. Relectivity over vegetated areas 

The detection of loods under equatorial forests remains dificult 
even with the use of microwave signals. It is a limitation of GIEMS 
(Prigent et al., 2020) for example. The use of CYGNSS data is promising 
because: i) L-band GNSS signals penetrate deeper the canopy than 
shorter wavelengths/higher frequencies in the microwave domain, ii) it 
provides information at a higher spatiotemporal resolution than the 
passive microwave sensors. Several studies took advantage of these 
characteristics. Rodriguez-Alvarez et al. (2019) classiied CYGNSS cor-
rected Signal-to-Noise Ratio (SNR) as looded vegetation (FV), open 
water and dry land. This study was performed in a small subset of the 
Amazon basin and showed a detection of FV around 70%. Then, Car-
reno-Luengo et al. (2020) studied the relationship between CYGNSS 
observables, including the relectivity Γ, and AGB over subsets of the 
Congo and Amazon basins. A polynomial it was used to characterize the 
vegetation attenuation at several incidence angles, and to further derive 
CYGNSS-based maps of AGB over equatorial forests. These maps were 
consistent with reference datasets up to ∼ 350 Mg/ha. Also, Li et al. 

(2021) derived the coherency of Beidou-3 raw IF tracks over looded 
areas along the Mississippi River, in densely vegetated areas. High co-
herency, which is linked to the presence of water below the canopy, was 
obtained for AGB up to 200–300 Mg/ha. And inally, the PR deined in 
Al-Khaldi et al. (2021a); Al-Khaldi et al., 2021b as a coherency proxy has 
shown low sensitivity to vegetation, allowing the detection of small river 
streams obscured by trees. 

In Figs. 6.a and 7, the streams of the Congo and Amazon rivers and 
their tributaries are well delineated. We can still question whether 
CYGNSS is able to monitor nearby loodplains under vegetation cover. 
Fig. 13 presents the distribution of AGB in CYGNSS clusters C1 to C4, for 
both looded and non-looded pixels. All pixels with an occurrence of 
water greater than 0% in the 0.1◦ regridded RFWs dataset are considered 
as looded, which likely overestimates the inundated areas. Only pixels 
in South America are considered in this igure, to obtain a balance be-
tween looded and dry pixels, and between high and low AGB values. 
The dynamic range of AGB is approximately 0–300 Mg/ha and shows 
two peaks for all clusters. The irst one, between 0 and 50 Mg/ha, cor-
responds both to dry pixels with few vegetation, and to large loodplains 
with herbaceous-type land cover, as in the Llanos de Orinoco, Llanos de 
Mojos, and the Pantanal wetlands (see Fig. 7 for dominant land cover 
types in South America). The second one, between 200 and 300 Mg/ha, 
corresponds to dense forests mainly located in the Amazon basin. These 
forests are either dry (cluster C1), wet or looded (clusters C2 to C4). In 
particular, looded pixels in C3 and C4 mostly represent the large 
loodplains and open water (see Figs. 6, 7 and Table 5), with low AGB. 
However, the fourth decile (i.e. the top 25% of AGB values) in looded 
pixels from C3 and C4 ranges from ∼150 Mg/ha to ∼300 Mg/ha. The 
results in Fig. 13 show that the K-means/ DTW clustering based on 
CYGNSS relectivity is able to detect either looded areas below the 
canopy or narrow river streams surrounded by vegetation, in pixels with 
dense forests and average AGB as high as 250–300 Mg/ha. Some sources 
of uncertainties can be related to: i) signals from wet, saturated soils 
without standing water, ii) errors in the deinition of looded areas using 
RFWs dataset, and iii) the attenuation of GNSS-R signals by the vege-
tation, especially at high incidence angle, leading to a potential 
extinction of the coherent component on which we base our analysis (Al- 
Khaldi et al., 2021a; Loria et al., 2020). The results presented in Fig. 9 
show a lower detection of the inundations under forest land cover types, 
when compared to an herbaceous cover. 

5.4. Relectivity over bare soils 

In Figs. 5 and 6.a, we notice the heterogeneity of Γ90%,Γ90%−50% and 
CYGNSS clusters over arid regions, where bare soils is the dominant land 
cover type. In particular, relections over deserts in the Sahara and the 
Arabica Peninsula have a high dynamic range, with Γ90% values ranging 

Fig. 13. Distribution of the AGB for looded and non-looded pixels over South 
America in the 4 CYGNSS clusters. The dashed lines represent the quartiles of 
the distributions. Flooded pixels are deined with a fraction of water greater 
than 0% in the 0.1◦ regridded RFWs dataset. 
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from 0 to ∼0.4. As the time series of Γ90% and Γ90%−50% are almost 
constant in the year due to a very low moisture, these areas can be 
interpreted as open water bodies, in particular when the relected sig-
nals over the latter are attenuated as for wind conditions over lakes (see 
Fig. 8). An important forward scattering of GNSS-R signals has already 
been observed in the literature, and mainly linked to areas of low small- 
scale roughness. In particular, the water mask given by Al-Khaldi et al. 
(2021a) also had false alarms over desert regions characterized by 
(almost) lat surfaces, based on their PR coherency metric. They handled 
the problem with a iltering of the locations showing a recurrent 
coherence, and a 0% occurrence of water in the mask from Pekel et al. 
(2016). This type of iltering could be easily applied to our relectivity 
dataset, and is a requirement for a further inversion of a fractional water 
extent product. 

The state of the art beyond the scope of CYGNSS-related studies 
shows that anomalies in the radar signals over arid regions are well 
known for several active and passive sensors, and can be related to the 
geological and lithologic properties. Prigent et al. (2015) analyzed the 
multiangle backscattering at Ku-band from Tropical Rainfall Measure-
ment Mission/ Precipitation Radar (TRMM/ PR) and QuikSCAT in the 
inter-tropical zone covered by CYGNSS. They showed that sand dunes 
have lower backscattering coeficients when compared to rock deserts, 
because of an important volume scattering in dry sand and a relatively 
low large-scale roughness. Similar effects were also observed at C-band 
using ASCAT (Fatras et al., 2015). This phenomenon increases with an 
increasing incidence angle. Similarly, the microwave emissivities over 
arid regions show higher values for sand dunes due to the contribution of 
both the surface and deeper soils to microwave emissions (Jiménez 
et al., 2010). GNSS-R forward scattering is likely subjected to the same 
phenomena, as the spatial agreement between Γ90% and Γ90%−50% maps 
and TRMM/ PR-based maps of backscattering coeficients in Prigent 
et al. (2015) is good. 

5.5. Guidelines for a CYGNSS-based dynamic product of SWE 

This study shows that both permanent water and seasonal lood-
plains can be monitored using CYGNSS relectivity. In particular, the 
0.1◦ spatial resolution and 7-day temporal resolution grid merges by 
time and location the bistatic observations, and offers the possibility to 
compute time series of several statistical parameters (see Section 3). In 
particular, Γ90% is very sensitive to the presence of a fraction of water, 
and Γ90%−50% can be used to extract pixels with recurrence or occurrence 
of water. Also, the comparison of Γmean with the fraction of water in the 
pixel, either from static or dynamic estimations, shows an interesting 
linear trend. This linearity could be further exploited to produce a 
CYGNSS-based SWE product, covering the pan-tropical area. 

For this, the confounding effects of several geophysical parameters 
need to be removed. False alarms over deserts can be avoided with a 
simple iltering as in Al-Khaldi et al. (2021a). Then, a correction of 
relectivity for the vegetation attenuation must be implemented, which 
is usually performed using the incidence angle and ancillary L-band 
Vegetation Optical Depth (L-VOD) data provided by radiometers such as 
SMOS (Wigneron et al., 2021) or SMAP (Konings et al., 2017; Li et al., 
2022b). Also, GIEMS-2 (Prigent et al., 2020), assumes the linearity of 
SWE retrieval under given vegetation conditions, and the dataset is 
therefore binned depending on the values of vegetation parameters. 
Based on this idea, CYGNSS dataset could be binned with either NDVI, 
AGB or VOD to improve the linearity of Γmean vs. SWE relations. The 
effect of small-scale and large scale roughness on the performances of 
future SWE product could be important to study. Water roughness over 
large lakes is a limitation due to a dominant incoherent scattering 
regime, so it must also be taken in account. As we focus on dynamic 
estimations of SWE in loodplains, recurrent open water bodies could be 
iltered out as they are well delineated using other remote sensing sen-
sors. Finally, the confounding effect of SM can lead to an overestimation 
of looded areas in regions affected by large seasonal rainfall. Further 

investigations could use the coherence proxy deined in Al-Khaldi et al. 
(2021a); Al-Khaldi et al., 2021b, in helping to ilter out the pixels with 
strong relectivity that is associated to very wet soils with no surface 
water. 

6. Conclusion 

We have analyzed CYGNSS land surface relectivity to evaluate its 
potential for a global mapping of lood dynamics. A 0.1◦ spatial reso-
lution and weekly time sampling of CYGNSS relectivity was found to be 
the most suitable compromise between high spatial and temporal reso-
lutions. We have used a K-means clustering technique with DTW simi-
larity measure to separate: i) the low, constant relectivity signals from 
dry land, ii) the high signals from open water and long-lasting in-
undations, and iii) the seasonal signals associated to large loodplains. 
Static and dynamic inundation maps along with other ancillary datasets 
were used to analyze the clustering results. The largest water bodies, 
loodplains and irrigated croplands areas are detected. Various sources 
of misclassiication are identiied. The looded areas are mostly detected 
in absence of vegetation or under herbaceous cover, but less accurately 
under forests. The concordance between CYGNSS parameters and the 
static inundation maps is not good in the Cuvette Centrale of Congo in 
particular. The detection of water bodies is also weakened under windy 
conditions over large lakes, as it was already reported by several studies. 
In the deserts, a low relectivity is observed on sand dunes where the 
penetration of microwave signals is high, and a high relectivity is 
observed on lat, rocky regions where a specular scattering was found to 
create false alarms. However, CYGNSS clusters and parameters make 
possible to identify the main loodplains and open water areas, including 
samples in areas with AGB as high as ∼300 Mg/ha along the streams of 
Amazon and Congo rivers. The spatial correlations between Γmedian and 
static inundation maps were calculated at the time of the maximum 
SWE. They show high values (R ranging from 0.74 to 0.77) in 5 large 
river basins and lower values in Congo, Lake Chad and Niger, high-
lighting the contribution of multiple known factors (vegetation, soil 
moisture, small and large scales roughness, type of soil, SWE) in the 
GNSS-R forward-scattered signals. Temporal correlations were also 
calculated between Γmedian and SWE from either GIEMS or regional 
MODIS-based inundation maps. Regional comparisons over the IND, 
Parana and Mekong basins perform well and are consistent with global 
comparison using GIEMS. High values (R  > 0.8) are obtained on the 
principal loodplains in the CYGNSS coverage, with once again the 
exception of the Cuvette Centrale of Congo. Lower correlations are ob-
tained in the Amazon and Congo tributaries, either due to an attenuation 
of GNSS-R signals by vegetation canopies, or to the uncertainties of 
reference datasets in these areas. 

Finally, our results show that a global mapping of inundation dy-
namics using CYGNSS relectivity is possible, as some open water and 
lood patterns were clearly identiied in the K-means/ DTW clustering 
results. We tried to list the several sources of misclassiication to identify 
contributing factors in CYGNSS relectivity either at the global or 
regional scale. We look forward to producing a dynamic mapping of 
loods using CYGNSS, with ancillary and reference datasets helping to 
characterize the relation between CYGNSS relectivity and SWE. 
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Li, W., Cardellach, E., Ribó, S., Oliveras, S., Rius, A., 2022a. Exploration of multi-mission 
spaceborne gnss-r raw if data sets: Processing, data products and potential 
applications. Remote Sens. 14 https://doi.org/10.3390/rs14061344. 
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Ringeval, B., de Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Prigent, C., Papa, F., 
Rossow, W.B., 2010. An attempt to quantify the impact of changes in wetland extent 
on methane emissions on the seasonal and interannual time scales. Global 
Biogeochem. Cycles 24. https://doi.org/10.1029/2008GB003354. 

Rodriguez-Alvarez, N., Podest, E., Jensen, K., McDonald, K.C., 2019. Classifying 
Inundation in a Tropical Wetlands Complex with GNSS-R. Remote Sens. 11, 1053. 
https://doi.org/10.3390/rs11091053. 

Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of 
cluster analysis. J. Comput. Appl. Math. 20, 53–65. https://doi.org/10.1016/0377- 
0427(87)90125-7. 

Ruf, C.S., Atlas, R., Chang, P.S., Clarizia, M.P., Garrison, J.L., Gleason, S., Katzberg, S.J., 
Jelenak, Z., Johnson, J.T., Majumdar, S.J., O’Brien, A., Posselt, D.J., Ridley, A.J., 
Rose, R.J., Zavorotny, V.U., 2016. New ocean winds satellite mission to probe 
hurricanes and tropical convection. Bull. Am. Meteorol. Soc. 97, 385–395. https:// 
doi.org/10.1175/BAMS-D-14-00218.1. 

Rufini, G., Soulat, F., Caparrini, M., Germain, O., Martín-Neira, M., 2004. The Eddy 
Experiment: Accurate GNSS-R ocean altimetry from low altitude aircraft. Geophys. 
Res. Lett. 31 https://doi.org/10.1029/2004GL019994. 

Russo, I.M., Bisceglie, M.d., Galdi, C., Lavalle, M., Zuffada, C., 2022. Entropy-based 
coherence metric for land applications of gnss-r. IEEE Trans. Geosci. Remote Sens. 
60, 1–13. https://doi.org/10.1109/TGRS.2021.3125858. 

Sakamoto, T., Van Nguyen, N., Kotera, A., Ohno, H., Ishitsuka, N., Yokozawa, M., 2007. 
Detecting temporal changes in the extent of annual looding within the Cambodia 

P. Zeiger et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 282 (2022) 113278

20

and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. 
Environ. 109, 295–313. https://doi.org/10.1016/j.rse.2007.01.011. 

Santoro, M., 2018. GlobBiomass - global datasets of forest biomass. doi:10.1594/ 
PANGAEA.894711. 

Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D.M.A., Avitabile, V., Araza, A., de 
Bruin, S., Herold, M., Quegan, S., Rodríguez-Veiga, P., Balzter, H., Carreiras, J., 
Schepaschenko, D., Korets, M., Shimada, M., Itoh, T., Moreno Martínez, A., 
Cavlovic, J., Cazzolla Gatti, R., da Conceição Bispo, P., Dewnath, N., Labrière, N., 
Liang, J., Lindsell, J., Mitchard, E.T.A., Morel, A., Pacheco Pascagaza, A.M., Ryan, C. 
M., Slik, F., Vaglio Laurin, G., Verbeeck, H., Wijaya, A., Willcock, S., 2021. The 
global forest above-ground biomass pool for 2010 estimated from high-resolution 
satellite observations. Earth Syst. Sci. Data 13, 3927–3950. https://doi.org/ 
10.5194/essd-13-3927-2021. 

Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., 
Raymond, P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., et al., 2020. The 
global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623. https://doi. 
org/10.5194/essd-12-1561-2020. 

Senyurek, V., Lei, F., Boyd, D., Kurum, M., Gurbuz, A.C., Moorhead, R., 2020. Machine 
learning-based CYGNSS soil moisture estimates over ISMN sites in CONUS. Remote 
Sens. 12, 1–24. https://doi.org/10.3390/rs12071168. 

Sippel, S.J., Hamilton, S.K., Melack, J.M., Choudhury, B.J., 1994. Determination of 
inundation area in the Amazon River loodplain using the SMMR 37 GHz 
polarization difference. Remote Sens. Environ. 48, 70–76. https://doi.org/10.1016/ 
0034-4257(94)90115-5. 

Suk, J.E., Vaughan, E.C., Cook, R.G., Semenza, J.C., 2020. Natural disasters and 
infectious disease in Europe: a literature review to identify cascading risk pathways. 
Eur. J. Pub. Health 30, 928–935. https://doi.org/10.1093/eurpub/ckz111. 

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., 
Yurchak, R., Rußwurm, M., Kolar, K., Woods, E., 2020. Tslearn, A Machine Learning 
Toolkit for Time Series Data. J. Mach. Learn. Res. 21, 1–6. 

Tootchi, A., Jost, A., Ducharne, A., 2019. Multi-source global wetland maps combining 
surface water imagery and groundwater constraints. Earth Syst. Sci. Data 11, 
189–220. 

Ulaby, F., Moore, R., Fung, A., 1982. Microwave remote sensing: Active and passive. 
volume 2-radar remote sensing and surface scattering and emission theory. 

Unwin, M.J., Pierdicca, N., Cardellach, E., Rautiainen, K., Foti, G., Blunt, P., 
Guerriero, L., Santi, E., Tossaint, M., 2021. An introduction to the hydrognss gnss 
relectometry remote sensing mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote 
Sens. 14, 6987–6999. https://doi.org/10.1109/JSTARS.2021.3089550. 

Wan, W., Liu, B., Zeng, Z., Chen, X., Wu, G., Xu, L., Chen, X., Hong, Y., 2019. Using 
CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme 
Precipitation Events in 2017. Remote Sens. 11, 854. https://doi.org/10.3390/ 
rs11070854. 

Webb, E.B., Smith, L.M., Vrtiska, M.P., Lagrange, T.G., 2010. Effects of Local and 
Landscape Variables on Wetland Bird Habitat Use During Migration Through the 
Rainwater Basin. J. Wildlife Manage. 74, 109–119. https://doi.org/10.2193/2008- 
577. 

Whalen, S., 2005. Biogeochemistry of Methane Exchange between Natural Wetlands and 
the Atmosphere. Environ. Eng. Sci. 22, 73–94. https://doi.org/10.1089/ 
ees.2005.22.73. 

Wigneron, J.-P., Li, X., Frappart, F., Fan, L., Al-Yaari, A., De Lannoy, G., Liu, X., 
Wang, M., Le Masson, E., Moisy, C., 2021. SMOS-IC data record of soil moisture and 
L-VOD: historical development, applications and perspectives. Remote Sens. 
Environ. 20. 

Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., Moore, B., 2005. 
Mapping paddy rice agriculture in southern China using multi-temporal MODIS 
images. Remote Sens. Environ. 95, 480–492. https://doi.org/10.1016/j. 
rse.2004.12.009. 

Yan, Q., Huang, W., Jin, S., Jia, Y., 2020. Pan-tropical soil moisture mapping based on a 
three-layer model from CYGNSS GNSS-R data. Remote Sens. Environ. 247, 111944 
https://doi.org/10.1016/j.rse.2020.111944. 

Zavorotny, V.U., Gleason, S., Cardellach, E., Camps, A., 2014. Tutorial on remote sensing 
using GNSS bistatic radar of opportunity. IEEE Geosci. Remote Sens. Mag. 2, 8–45. 
https://doi.org/10.1109/MGRS.2014.2374220. Publisher: IEEE.  

P. Zeiger et al.                                                                                                                                                                                                                                   



4.3. Contribution to this work and perspectives 135

4.3 Contribution to this work and perspectives

This study highlighted the great potential of GNSS-R and CYGNSS for studying inundation
dynamics in the entire pan-tropical area. All the methods and results presented are the
fruit of my work on developing the algorithms, process and analyze CYGNSS data. I still
beneĄted from very constructive interactions with my supervisors and also with other people,
in particular Catherine Prigent who has shown a great interest in the potential of CYGNSS
for mapping Ćood dynamics and also in further comparisons with GIEMS-2 dataset. Most of
the conclusions and perspectives to this work are already discussed in the article. Here, I will
just add some new insights on the evolution of my investigations after this work, to introduce
the next (and last) chapter.

The output of our methodology using the K-means / DTW clustering was basically a
static map showing, for each 0.1° (∼11 km at the equator) CYGNSS pixel, whether it was
subjected to Ćoods. The output clusters were related to the reĆectivity maps and time se-
ries to show the evolution of the signal in space and time. It highlighted that all around
the world, a high reĆectivity and clusters C3 and C4 are linked with the presence of sur-
face water (see Figure 6 on the paper above). These results were a step on exploiting the
potential of spaceborne GNSS-R for hydrology, but not our destination at all. The hydro-
logical community requires pan-tropical estimations of inundation extent and dynamics, with
high spatiotemporal mapping capability. CYGNSS has now the potential for providing these
estimations.

The objective of our last study, consecutive to this work, was to estimate the fraction
of water (or Water Fraction) contained in each CYGNSS pixel, at every time step of the
0.1° and 7-day spatiotemporal grid. In the article presented in Section 4.2, we computed
several statistical parameters derived from CYGNSS reĆectivity with a coherent reĆection
assumption: Γmean, Γstd, Γmedian, Γ90% and their diference Γ90%−50%, among others. Γ90%

or Γ90%−50% were found to be the best for detecting the presence of water, even a small
fraction in the pixel (Section 4.2). For the next part, we used Γmean which is the weighted
average of observations from a 1-month moving window. Interestingly, it shows a (rough)
linear increase while the Water Fraction increases in the pixel (see Section 5.3.2). The results
obtained through this idea are quite promising, and are presented in the next chapter.

Finally, the spatial resolution constraints and its possible improvement need to be as-
sessed. The 0.1° resolution of our estimations seems coarse, but it was selected to ensure a
high number of observations per pixel with the bistatic conĄguration of the acquisition. The
resolution of a CYGNSS coherent observation over surface water is higher (Camps (2019) and
Section 2.5.2.1), so pixels with a non negligible Water Fraction also contain some observations
with high power. Hence, the main river streams and Ćoodplains are visible in the reĆectivity
maps from Section 4.2, and the Water Fraction maps in Chapter 5. Only small water bodies
cannot be monitored using CYGNSS Level 1 DDM, but raw IF tracks with complex informa-
tion have this capability down to a hundred of meters. Furthermore, the spatial resolution of
our estimations could be improved in diferent manners:
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• CYGNSS incoherent average time was set to 1 s before July, 2019 and 0.5 s after.
Observations after the 1-year study period we chose are thus twice more sampled.

• The use of a 1-month Gaussian moving average in our grid gives an average number
of observations per time step around 20. This is optimal for deriving robust statistical
parameters as it was performed (Section 4.2), but could be reduced while improving the
spatial resolution.

• Finally, other publications chose to perform moderate-resolution estimations at 1 km
or 3 km. This is made either at the expense of the temporal variations (Al-Khaldi
et al., 2021a), or using spatial interpolations (Gerlein-Safdi et al., 2021; Chew, 2021).
The spatial interpolation techniques Ąll numerous gaps where no information exist, and
were only applied over selected target areas. There is no evidence of their reliability at
global scale in a bistatic acquisition conĄguration with a large lack of information.

Due to these reasons, we estimate that our estimations could be further performed at ∼5
km. For now, we focused on developing the methodology presented in Chapter 5. These
ideas are pointed out for future versions, as they require large time and energy-consuming
computations to be produced and evaluated.
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5.1 Introduction

In this section, I present the methodology developed to estimate the fraction of water con-
tained in every 0.1° CYGNSS pixel. It is a natural extension of the work presented in Chap-
ter 4. The results shown here largely highlight the capability of CYGNSS to estimate these
Water Fractions, and also the robustness of the estimations when compared to ancillary
datasets.

Some minor adjustments should be implemented soon to properly Ąnish this work (see
Section 5.6). These modiĄcations will concern mostly Section 5.5, with visual and statistical
comparisons to be performed against some new and independent MODIS-based SWE maps.
The ideas for Ąne-tuning this work to be published soon are presented in the conclusion
(Section 5.6). Also, this chapter do not include for now a discussion section. It will be
written once all the results are included, before submitting this work. The conclusions and
perspectives (both short and long-term prospects) are discussed in Section 5.6 and in the
general conclusion and perspectives.

5.2 Data

5.2.1 CYGNSS Level 1 DDM

CYGNSS is a constellation dedicated to study the formation of tropical cyclones, through the
retrieval of ocean wind speed (Ruf et al., 2016). It is composed of 8 Low Earth Orbit (LEO)
micro-satellites, with a high revisit in the pan-tropical region (coverage at ±38° of latitude).
The Delay Doppler Mapping Instrument (DDMI) onboard CYGNSS satellites comprises 4
channels to record simultaneously 4 reĆected signals. Each signal was incoherently averaged
over a second before July 2019 (1 Hz sampling), and over 0.5 s afterwards (2 Hz sampling).
So, the entire constellation records up to 32 (64) observations per second. Over a pixel with
25 km resolution, as for the CYGNSS-derived wind speed product (Clarizia and Ruf, 2016),
the mean and median revisit times are estimated to 7 hours and 3 hours, respectively (Ruf
et al., 2016).

The spatial resolution of an observation is quite low over the ocean, due to the difuse
scattering induced by surface roughness (waves). However, it is much higher when the co-
herent component of the reĆected signal dominates, mostly over calm water surfaces, near
saturated soils (very high SM content), and Ćat deserts. The spatial resolution of a coherent
reĆection is approximately the size of the First Fresnel Zone (FFZ), with a large returned
power coming from an even smaller surface (Camps, 2019). The FFZ is at least 0.6 km × 0.6
km for an incidence angle θ = 0°, and increases with θ. Furthermore, the spatial resolution
is degraded along-track up to 6.6 km for a 1 Hz sampling, due to the motion of CYGNSS
satellites during the incoherent average of the received power. A small fraction of water inside
the footprint still contributes to most of the reĆected power. So, river streams and lakes down
to few hundred meters are detectable using CYGNSS Level 1 DDM, according to both models
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(Loria et al., 2020) and observations (Al-Khaldi et al., 2021a).

In this study, we used the DDM and metadata from CYGNSS Level 1 Science Data
Records, v3.0 (CYGNSS, 2020). The daily Ąles are distributed in the Physical Oceanography
Distributed Active Archive Center (PODAAC). As for a previous study (Zeiger et al., 2022),
a 1-year period of time was chosen to evaluate the methodology and results, from August
2018 to July 2019. Except for the last month, CYGNSS observations during the study period
have a 1 Hz sampling. Twice more observations are available each month for the next years.

5.2.2 GIEMS Surface Water Extent

For comparison with CYGNSS Water Fraction estimations, external surface water extent
(SWE) datasets are required. The Global Inundation Extent from Multi-Satellite version 2
(GIEMS-2, Prigent et al. (2020)) and the Surface Water Microwave Product Series (SWAMPS,
Schroeder et al. (2015)) are the two global, long-term products of SWE, derived from passive
and active microwave observations. They are based on multi-frequency (mostly Ku-band)
brightness temperatures from Special Sensor Microwave/Imager (SSM/I) and Special Sensor
Microwave Imager / Sounder (SSMIS) at 0.25° spatial resolution. We used GIEMS as the
comparison of both datasets highlighted numerous issues with SWAMPS (Pham-Duc et al.,
2017), some of which were further corrected in next releases (Jensen and Mcdonald, 2019).
Still, seasonal cycles in SWAMPS have low amplitude and were sometimes found to be in
opposition of phase with GIEMS, other SWE products and river discharges in the Niger basin.
We Ąnally used the new GIEMS global SWE maps for years 2018 and 2019, as part of the
GIEMS-2 release (Prigent et al., 2020). They were not employed in the retrieval methodology.
The Water Fractions derived from CYGNSS and GIEMS-2 are thus totally independent, and
feed a comprehensive comparison of the inundation dynamics in both datasets (Section 5.5).

5.2.3 Regional dynamic flood maps

The main issue with GIEMS is its low spatial resolution (0.25°). CYGNSS was found to be
much more sensitive to small river streams and water bodies than GIEMS (Zeiger et al., 2022).
We therefore employed high resolution surface water maps in our CYGNSS Water Fraction
retrieval methodology (see Section 5.3). No global information exists at high resolution unless
optical datasets like Pekel et al. (2016), which are unable to detect water below the canopy.
Our approach thus used regional SWE maps representing distinct climate regions.

First, we used MODIS-based Ćood maps at 500 m spatial resolution. They are derived
from the surface reĆectances contained in the MOD09A1 product (8-day binned level 3,
version 6), acquired at seven spectral bands from visible/ near infrared (NIR) to shortwave
infrared (SWIR). The Ćood maps are derived from a multi-threshold approach as in Frappart
et al. (2018); Normandin et al. (2018), based on the values of Enhanced Vegetation Index
(EVI, Huete et al. (1997)) and land surface water index (LSWI, Xiao et al. (2005)). It is a
simpliĄcation of the method proposed by Sakamoto et al. (2007). The MODIS-based Ćood
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maps were generated for 2018-2019 over three complementary test regions: the Inner Niger
Delta (IND) with low vegetation/ bare soils, the Lower Mekong Basin (LMB) with seasonal
Ćoods around the Tonle Sap and paddy Ąelds, and the Parana/ La Plata basin with Ćooded
savannas and higher vegetation in the north.

As MODIS cannot be used to detect Ćoods below the canopy, we need other reference
SWE maps to evaluate Ćood dynamics in dense tropical forests. Very few high-resolution
SWE maps are available in equatorial areas, and they are mainly based on L-band SAR
images. In the Amazon basin, a wetland extent and vegetation classiĄcation was achieved
based on a L-band JERS-1 SAR double-mosaic at 100 m spatial resolution (Hess et al., 2003,
2015). Although the reference year is 1995-1996, it provides wetland masks at both low
(October-November 1995) and high (May-June 1996) water stages. We used the results of
this wetland classiĄcation that are distributed (Hess et al., 2015), as no other precise and
recent Ćood map exists over the Amazon. The delineated Ćooded areas at high and low water
stages are used similarly than MODIS maps, both in the Water Fraction retrieval methodology
(Section 5.3) and to compare with CYGNSS SWE (Section 5.5).

5.2.4 GlobBiomass AGB

The vegetation attenuates or even extinct the coherent component of GNSS-R signals (Loria
et al., 2020), causing a decrease in CYGNSS reĆectivity especially in dense vegetation cover
areas (Carreno-Luengo et al., 2020). Previous investigations have shown that water signatures
can still be identiĄed using CYGNSS reĆectivity in areas where the Above Ground Biomass
(AGB) is in the range of 200-300 Mg/ha, in the Congo and Amazon basins (Zeiger et al., 2022).
To consider the vegetation attenuation in our Water Fraction retrieval methodology, we thus
employed the GlobBiomass AGB map (Santoro, 2018; Santoro et al., 2021). It has a spatial
resolution of 3.2Ť (∼100 m at the equator) and is given for reference year 2010. The AGB was
essentially derived from ALOS-PALSAR L-band and ENVISAT Advanced Synthetic Aperture
Radar (ASAR) C-band SAR backscatters. The full methodology is described in Santoro et al.
(2021). The AGB map presents a high level of detail, reproduces well the spatial patterns of
AGB, and shows a bias over regions with very dense vegetation, where the dynamic range of
the observations is not well calibrated and ASAR data are not available.

5.2.5 Resampling of the datasets

To match the spatial resolution of our CYGNSS estimates (0.1°, see Section 5.3.1), the an-
cillary datasets were resampled. The mean and standard deviation of GlobBiomass AGB
were computed in every pixel. Also, the regional reference Ćood maps at 500 m (MODIS,
Normandin et al. (2018)) and 100 m (JERS-1, Hess et al. (2015)) were upscaled into the 0.1°
grid. The reference Water Fractions were derived as the number of Ćooded sub-pixels in the
reference datasets, divided by the total number of sub-pixels.
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5.3 Methods

The preprocessing of CYGNSS dataset was fully described in (Zeiger et al., 2022). The most
important steps are the extraction of the peak power in CYGNSS DDM, and the application
of a set of Ćags to mask out observations of low quality or located over the ocean. We also
Ąltered out the observations when the peak power is not correctly centered in the DDM (i.e.

located in the Ąrst or last three delay rows), as it is an indicator of topography efects which
may induce low-quality observations.

5.3.1 CYGNSS reflectivity computation

The GNSS reĆected signals are composed of a coherent component, associated to specular
scattering inside the FFZ, and an incoherent component, associated to difuse scattering
from surrounding areas. The bistatic scattering models have studied both the coherent and
the incoherent returned power (De Roo and Ulaby, 1994; Zavorotny and Voronovich, 2000;
Voronovich and Zavorotny, 2018). In this study, the surface reĆectivity was computed while
supposing a coherent reĆection model, mostly found over inland water with low roughness
(Chew and Small, 2020a; Loria et al., 2020). Let PDDM be the peak of a CYGNSS Level
1 DDM. Considering that PDDM corresponds to the coherent received power, the surface
reĆectivity Γ was computed as (De Roo and Ulaby, 1994; Gleason et al., 2020):

Γ = Γ(θi = 0◦) =
Γ(θi)
cos(θi)

=


4π
λ

2 PDDM (Rr +Rt)2

GrGtPt
×

1
cos(θi)

(5.1)

where Rr and Rt are the receiver and the transmitter distances to the specular point (ranges),
Gr is the receiver antenna gain, PtGt is the GPS Equivalent Isotropically Radiated Power
(EIRP), λ is the GPS L1 signal wavelength (λL1 = 0.1903 m), and θi is the incidence angle
of the wave at the specular point. To account for the inĆuence of the incidence angle, the
reĆectivity was normalized at a 0° incidence using the factor 1

cos(θi)
(Zeiger et al., 2022).

CYGNSS reĆectivity were then gridded at 7-day, 0.1° spatiotemporal resolution. A 30-day
moving window was employed in each pixel, to Ąll gaps induced by the pseudo-random distri-
bution of CYGNSS observations. This windowing was weighted using a Gaussian distribution
with σ = 7 days, such as the central observations (if exist) mostly determined the values of
the further parameters. The mean and standard deviation of the observations (Γmean and
Γstd, respectively) along with the nineteenth percentile (Γ90%) were computed for each pixel
and at every time step. Γmean was particularly important for the retrieval methodology (see
Section 5.3.2).

5.3.2 Linearity between Γmean and the Water Fraction

The retrieval of the fractions of water (hereafter named Water Fractions or WF) takes ad-
vantage of the linearity observed between Γmean and the reference WF. This is highlighted in
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Figure 5.1a, where the average Γmean per 1% WF bin is plotted for diferent AGB intervals.
Two distinct patterns can be observed:

• A quasi-linear relationship over the entire WF range for pixels with moderate to high
vegetation cover (AGB ≥ 50 Mg/ha). For low AGB pixels (i.e. AGB ≤ 50 Mg/ha), it
is only observed up to a 50% WF in the sample. The greater is the AGB, the higher
are the slope and intercept of this linear relation.

• In low AGB intervals, Γmean remains constant for a Water Fraction greater than 50%,
and even decreases in the pixels with the lowest AGB values (AGB ≤ 10 Mg/ha). How-
ever, very few samples are concerned as highlighted by the density plot in Figure 5.1b.
These pixels with a high WF and a low AGB may be exposed to a higher surface
roughness caused by wind speed, to explain the lower Γmean values observed.

Figure 5.1b also highlights the large deviation of Γmean around its average value for each 1%
WF bin. This is the consequence of a global approach. The deviation is lower when plotting
the same relationships at regional scale, due to a lower inĆuence of changes in geophysical
properties on the GNSS-R signal. We used reference datasets from the Amazon, Niger,
Mekong and Parana basins to retrieve pan-tropical Water Fractions with the highest quality
at global scale, while regional deviations should be further explored.

5.3.3 Inversion of the Water Fractions

The retrieval methodology is based on the linear relationships between Γmean and the WF
illustrated in Figure 5.1a, although Figure 5.1b highlighted the large deviation around the
theoretical Ąt. To establish a linear model, the choice of the training and validation datasets
is crucial. A Ćowchart summarizing the diferent steps for estimating CYGNSS WFs is pre-

Figure 5.1: Relationships between Γmean and the Water Fraction. (a) Average Γmean per
1% WF value, for diferent AGB intervals. The curves are smoothed with a running mean of
size 5% to better visualize the linear relations between the two variables. (b) Density plot of
WF and Γmean, for the AGB interval [20-50]. The reference WF values are from MODIS and
JERS-1 Ćood maps deĄned in Section 5.2.
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Figure 5.2: Flowchart of the retrieval methodology for estimating CYGNSS Water Fractions
at 0.1° spatial and 7 days temporal resolutions.

sented in Figure 5.2. Also, speciĄc points are illustrated in Figure 5.3 to add some graphical
explanations.

First, we selected the pixels likely to contain surface water at least a part of the year.
For this, we used the clustering results from Zeiger et al. (2022), as pixels in clusters C3
and C4 were shown to correspond to Ćood or permanent water classes (see Figure 6 in this
publication). We also Ąltered out the deserts prior to the inversion of Water Fractions, as
high reĆectivity values were found over Ćat arid regions. The desert mask was determined
considering pixels containing more than 90% of bare soils, and where the Ćood occurrence is
null (Figure 5.3a). We used for this the land cover map from European Space AgencyŠs (ESA)
Climate Change Initiative (CCI) (ESA, 2017), and the Regularly Flooded Wetland (RFW)
dataset from (Tootchi et al., 2019). Furthermore, a low Γmean was regularly found over large
lakes such as Lake Victoria and Tonle Sap (Zeiger et al., 2022), because the roughness (waves)
caused by wind attenuates the coherent reĆected signal (Chew and Small, 2020b; Loria et al.,
2020; Al-Khaldi et al., 2021a). So, pixels covered by at least 80% of open water (from the
RFW dataset) were Ąltered out. As they are already monitored using various remote sensing
instruments, there is few interest in including this confounding class into our WF retrieval
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algorithm.

The reference Water Fractions come from regional SWE datasets over the Amazon, Parana,
Niger and Mekong basins. The dataset from Hess et al. (2015) over the Amazon only provides
water extent at high and low water stages during the 1995-1996 hydrological cycle. So, we
extracted similar maps from the MODIS 8-day WF estimates over the Parana, LMB and

Figure 5.3: Illustration of the Water Fraction retrieval methodology. (a) Mask of non-Ćooded
bare soils, (b) Distribution of the AGB for samples associated to MODIS or JERS-1 reference
WF, (c-d) similar histograms for the WF and Γmean, respectively. (e-j) Scatterplots of the
average Γmean computed in 2% WF bins. To remove the inĆuence of the vegetation, a distinct
linear relation was calculated in AGB intervals of length 5 Mg/ha. Six examples are shown
here for an AGB ranging from 0 to 275 Mg/ha.



5.3. Methods 145

IND. The values of Γmean are similarly extracted for both high and low water stages in every
basin (Figure 5.2). As the relation between Γmean and the WF depends on the vegetation
cover, each sample used for training and validation also comprised the AGB derived from
GlobBiomass (Santoro, 2018). The distribution of AGB is shown in Figure 5.3b, for samples
with a reference WF derived from either MODIS or JERS-1. Although the latter owns less
samples (11,878 vs 19,228), it complements the lack of observations from MODIS over pixels
with moderate to high biomass. Merging both data sources created a consistent reference
WFs dataset for AGB up to 270-280 Mg/ha. Similar histograms for the reference WF and
Γmean samples are shown in Figure 5.3c-d.

For the regression, the input Γmean, reference WF and AGB (see Figure 5.2, box in the
middle) were Ąrst separated into 50% training and 50% validation datasets (∼15,500 samples
each). The training dataset was binned according to both the AGB and the WF of the
samples, using 5 Mg/ha AGB and 2% WF intervals. The average Γmean in every bin was
then computed. The inĆuence of the vegetation on GNSS-R signals was supposed to be
constant inside a single AGB interval. Furthermore, the binning along the Water Fraction
dimension permits to extract pairs of Γmean and WF values equally sampled. This was
preferred to the use of all samples, as low values dominate the distributions of both variables
(Figure 5.3c-d) and would have induced biases in high WF estimations. For every AGB
interval, a linear regression was performed between Γmean and the WF using these pairs of
variables, as illustrated in Figure 5.3e-j. These representative plots highlight:

• The linearity between Γmean and the WF, for both low and high AGB intervals. In a
few bins, lower correlations were found as in Figure 5.3g.

• The slopes and intercepts of the linear relations vary depending on the AGB interval.
In particular, the slopes are the lower for a low AGB and then increase exponentially
from medium to high AGB. Conversely, the intercepts are large (always negative) for a
low biomass, and increase toward zero for an increasing AGB.

According to these observations, the CYGNSS Water Fractions (WFCY GNSS) can be com-
puted as:

WFCY GNSS = aAGB × Γmean + bAGB (5.2)

where the slope aAGB and the intercept bAGB depend on the average AGB in the pixel. The
relationships between aAGB, bAGB and the AGB were evaluated using Ąrst, second and third
order polynomial Ąts. We found the latter to better represent the large increase in the slope
observed for AGB values above 150 - 200 Mg/ha. So, aAGB and bAGB are computed as:

aAGB = a3 ×AGB3 + a2 ×AGB2 + a1 ×AGB + a0 (5.3)

bAGB = b3 ×AGB3 + b2 ×AGB2 + b1 ×AGB + b0 (5.4)

where ai and bi, i ∈ [0, 3] are the coeicients of the third order polynomial regressions between
the AGB and aAGB or bAGB, respectively. These coeicients were averaged across the results
of 100 random selections of the training and validation datasets, to guarantee the robustness
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of the regression (see Section 5.4 and Table 5.1). WFCY GNSS is Ąnally estimated as:

WFCY GNSS = AGB3 (a3Γmean + b3) +AGB2 (a2Γmean + b2)

+AGB (a1Γmean + b1) + a0Γmean + b0

(5.5)

5.4 Validation of the methodology

We computed the coeicients ai and bi, i ∈ [0, 3] from a random 50% training dataset. Using
Equation (5.5), CYGNSS Water Fractions can then be estimated and compared to the ref-
erence WF. Figure 5.4 presents the density plots of WFCY GNSS and WFreference, for both
the training and the validation datasets. Both show similar performances, and highlight the
large deviation between predicted and reference Water Fractions, as expected looking at Fig-
ure 5.1b. The Root Mean Square Error (RMSE) and the PearsonŠs correlation coeicient
were computed for the validation dataset, and present consistent values (RMSE = 0.21 and R
= 0.63). Figure 5.4 also highlights the large range of WFCY GNSS values obtained for pixels
with a very high WFreference. The variations of GNSS-R returned power in ∼100% Ćooded
pixels are certainly linked with changes in water roughness (Chew and Small, 2020b).

The robustness of the regression against AGB was assessed by running 100 iterations
of the methodology previously described, starting with the random selection of the training
and validation datasets. The results are presented in Table 5.1. The correlation coeicient
ranged from 0.60 to 0.63, and the RMSE ranged from 21% (0.21) to 23% (0.23), respectively.

Figure 5.4: Density plots of the estimated CYGNSS Water Fractions (WFCY GNSS) against
the reference WFtarget, for both the training dataset (left) and the validation dataset (right).
The correlations are shown in red, with the RMSE which is computed for the validation
dataset only.
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Table 5.1: Output of 100 iterations on estimating and validating CYGNSS Water Fractions
following a random selection of the training and validation datasets. The correlation (R) and
the RMSE are indicated, along with the parameters ai and bi, i ∈ [0, 3] from Equation (5.5).
The minimum, maximum and average values of each parameter are indicated in the Ąrst three
rows of the table. Finally, the relative standard deviation (rel. std) in the fourth row is the
std of the variable divided by its average value, expressed in percentage. It is a good and
readable indicator of whether a parameter is stable or not across the 100 iterations.

R RMSE a0 a1 a2 a3 b0 b1 b2 b3

min 0.60 0.21 1.48 -1.8e−3 -18.8e−5 0.7e−7 -0.43 4.7e−3 -4.2e−5 2.6e−8

max 0.63 0.23 1.90 14.8e−3 0.2e−5 6.2e−7 -0.31 6.8e−3 -2.2e−5 8.9e−8

mean 0.62 0.22 1.70 5.8 e−3 -8.3e−5 3.2e−7 -0.37 5.8e−3 -3.0e−5 4.9e−8

rel. std 0.8 % 1.1 % 5.4 % 63.0 % 52.1 % 40.4 % 6.9 % 7.9 % 14.9 % 26.1 %

The relative standard deviations (i.e. the std divided by the average) are shown for each
parameter. It is very low (∼1 %) for both the correlation and the RMSE. Conversely, the
relative std of the coeicients ai, i ∈ [0, 3] (slope of the linear regression, see Equation (5.5))
range from 5.4% to 63.0%. The deviation is lower for the coeicients of the intercept (bi, i ∈

[0, 3]) with relative std ranging from 6.9% to 26.1%.

The average value of ai and bi, i ∈ [0, 3] across 100 iterations were found to be robust, and
were Ąnally Ąxed as the best Ąt parameters for the regression. Note that although Figure 5.4
highlights the deviation of WFCY GNSS compared to WFreference, both the RMSE and R
are stable across 100 iterations whatever the choice of the training and validation samples.
Figure 5.5 shows the evolution of aAGB (slope) and bAGB (intercept) as a function of the
AGB. For low vegetation covers, the slope is ∼constant and the intercept increases rapidly
while increasing the AGB. But for high vegetation covers, the intercept is near 0 and the slope
increases exponentially while increasing the AGB. These relations were used along with global
AGB estimates from Santoro (2018) to compute the Water Fractions in the full coverage of
CYGNSS.

Figure 5.5: Slope and intercept of the linear relation between Γmean and the Water Fraction,
as a function of the AGB (aAGB and bAGB in Equation (5.2), respectively).
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5.5 Evaluation of the pan-tropical CYGNSS Water Fraction

Now, weekly Water Fractions were estimated in the full coverage of CYGNSS using all the
average coeicients listed in Table 5.1. The results are compared to the regional and global
Water Fraction datasets presented in Section 5.2, including GIEMS-2. While ∼31,000 samples
from the regional reference SWE datasets were used in the retrieval methodology, GIEMS
and CYGNSS Water Fractions are fully independent and their comparison is particularly
interesting.

5.5.1 Global comparison with GIEMS

We Ąrst compared our results against GIEMS-2 Water Fractions (hereafter WFGIEMS) in
the full coverage of CYGNSS (±38° latitude). The WFCY GNSS estimations are gridded at
0.1° and 7 days spatiotemporal resolution, while GIEMS provides its estimations on a 0.25°,
monthly basis. The version of GIEMS we used was upsampled at ∼10 days to provide thrice-
monthly information, still at 0.25° spatial resolution.

Figure 5.6 presents monthly averaged WF from both CYGNSS and GIEMS. The two top
panels show WFCY GNSS and WFGIEMS for August 2018, with large Ćoods in the Orinoco
and northern Amazon, and irrigated crops in Southeast Asia. The two middle panels show
WFCY GNSS and WFGIEMS for December 2018, with Ćoods especially in the Congo basin.
Finally, the two bottom panels show WFCY GNSS and WFGIEMS for April 2019, during high
water stage in the southern Amazon and the Parana. The large areas covered by seasonal
water are detected using both datasets. The spatial correspondence is good, with WFCY GNSS
more disseminated and WFGIEMS more concentrated in the large Ćooded areas. This is due
to the spatial resolution of the sensors used to derive both products: 25 km for SSM/I and
SSMIS, against ∼1 × 6 km for a coherent CYGNSS observation. Also, the Water Fractions in
coastal regions are larger in CYGNSS than GIEMS. This may be due to a contamination of
coastal pixels by GNSS-R observations over the ocean, but also to the presence of mangroves.
A further comparison with global high-resolution mangrove maps like the one from Hamilton
and Casey (2016) will help in disentangling these two efects.

5.5.2 Regional comparisons

We compared CYGNSS, GIEMS and the regional reference WF at the scale of the river basin
to better evaluate their respective performances. First, Figure 5.7 shows a comparison of
WFCY GNSS and WFGIEMS with the estimated Ćood extent from JERS-1 over the Amazon
(WFJERS), at both low and high water stages in October-November 1995 and May-June
1996, respectively (Hess et al., 2015). These plots highlight three interesting points:

• Spatially, WFCY GNSS detects water over most of the Ćoodplains and along the streams
of the Amazon and its main tributaries. It corresponds well to the Ćooded areas detected
by JERS-1 two decades before.
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Figure 5.6: Monthly averaged Water Fractions estimates from CYGNSS and GIEMS: (a)
CYGNSS in August 2018, (b) GIEMS in August 2018, (c) CYGNSS in December 2018, (d)
GIEMS in December 2018, (e) CYGNSS in April 2019, and (f) GIEMS in April 2019.
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• The amplitude of the signal at high water stage is lower inWFCY GNSS than inWFJERS .
In particular, JERS-1 detects areas with 100% Ćoods in the Llanos de Mojos in Bolivia
(South of the basin, around 65°W and 15°S), while WFCY GNSS estimations are mostly
lower, around 50%. Some pixels along the main stream of the Amazon also show a lower
Water Fraction with CYGNSS.

• CYGNSS and GIEMS agree for the amplitude and the seasonality of the signal (see also
Figure 5.9b). However, WFCY GNSS shows a much higher level of detail than WFGIEMS ,
which sufers from the low spatial resolution of SSM/I and SSMIS.

Figure 5.7: Maximum Water Fraction at high water stage (May/ June) and low water stage
(October/ November) in the Amazon basin, from JERS-1 (in 1995-1996), CYGNSS and
GIEMS (both in 2018-2019). (a) JERS-1 high water, (b) JERS-1 low water, (c) CYGNSS
high water, (d) CYGNSS low water, (e) GIEMS high water, and (f) GIEMS low water.
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These visual inspections were also conducted over the Parana, Niger and Mekong basins
against MODIS WF estimations (WFMODIS), at the time of maximum Ćood extent (Fig-
ure 5.8). WFCY GNSS and WFMODIS look similar spatially, especially over the IND and
the LMB (including the Tonle Sap and the Delta of Mekong). GIEMS is coarser but also
detects the major Ćoodplains, although the large spread in WFGIEMS may be related to an
overestimation of Ćooded areas during the Sahelian and Southeast Asian monsoons. Finally,
over the Parana / La Plata basin, WFGIEMS and WFCY GNSS are very close spatially and
in amplitude (see also Figure 5.9c). On the contrary, WFMODIS in the Parana shows fewer
Ćooded pixels with a lower average Water Fraction.

To evaluate the capability of each dataset to retrieve the dynamics of surface water, we
computed and compared the average SWE per time step at the scale of the river basin.

Figure 5.8: Water Fraction at high water stage in the Parana, Inner Niger Delta (IND) and
Lower Mekong Basin (LMB), derived from MODIS, CYGNSS and GIEMS in 2018-2019. (a)
MODIS in the Parana, (b) CYGNSS in the Parana, (c) GIEMS in the Parana, (d) MODIS
in the IND, (e) CYGNSS in the IND, (f) GIEMS in the IND, (g) MODIS in the LMB, (h)
CYGNSS in the LMB, and (i) GIEMS in the LMB.
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The WF were simply multiplied by the size of each pixel (around 100 km2, depending on the
latitude), and the results in the boundaries of each watershed were added up. Figure 5.9 shows
the results in the Orinoco, Amazon and Parana/ La Plata basins in South America, the IND,
Chad and Congo basins in Africa, and the Ganges-Brahmaputra, LMB and Yangtze basins in
Asia. When comparing CYGNSS (SWECY GNSS) to GIEMS (SWEGIEMS), their estimates
are consistent and show an identical seasonality. Moreover, the amplitude of the signal is
near the same in the Orinoco, Amazon, Parana, Chad and Congo basins (5 out of 9). On
the contrary, the peak SWE is higher in GIEMS in the IND, Ganges-Brahmaputra, Mekong
and Yangtze basins. In these regions, intense seasonal rainfall occur due to the monsoon
regimes. GIEMS likely overestimated the presence of surface water, due to a confusion with
soil moisture.

Figure 5.9: Time series of Surface Water Extent (SWE) estimated from CYGNSS and GIEMS
averaged for 9 River basins: (a) Orinoco, (b) Amazon, (c) Parana/ La Plata, (d) IND, (e)
Chad (f), Congo, (g) Ganges-Brahmaputra, (h) LMB, and (i) Yangtze. Also shown, the
MODIS SWE time series for the Parana, IND and LMB, and the SWE at high and low water
stages in the Amazon from Hess et al. (2015).
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The comparison with the regional datasets highlights contrasting tendencies. Over the
IND and the LMB, both the seasonality and the amplitude of SWECY GNSS match well the
MODIS-based estimations (SWEMODIS). For these two regions, the similar spatial (see Fig-
ure 5.8) and temporal evolutions of SWE estimated with MODIS and CYGNSS puts high
conĄdence in the estimations from the latter, while GIEMS likely overestimates seasonal
Ćoods. On the contrary, a very high agreement between CYGNSS and GIEMS was found
over the Parana, where MODIS estimations are quite low. This can be due to: i) an overes-
timation of surface water in both CYGNSS and GIEMS due to the inĆuence of SM, or ii) an
underestimation of SWEMODIS due to a higher vegetation cover in the Parana basin than
over the LMB and the IND. Small seasonal variations and a low amplitude of the peak SWE
are found in the time series of SWEMODIS in the Parana. Moreover, the Water Fractions at
maximum Ćood extent are relatively low in MODIS over both the Ćooded pampas (around
58°W, 38°S), and the Pantanal wetlands (around 58°W, 18°S), as illustrated in Figure 5.8.

Finally, SWECY GNSS and SWEGIEMS in the Amazon are twice lower than the SWE
estimated from JERS-1 (SWEJERS), at both high and low water stages. This could indicate
a limitation of both products in the densely forested regions. The vegetation can be the cause
of either a loss of the GNSS-R coherent component or its attenuation (Loria et al., 2020),
causing lower received power. Nevertheless, these conclusions should be treated cautiously,
as the wetland maps over the Amazon date back to 1995-1996. All the long-term trends,
interannual and decadal variability could have caused changes in the water storage in the
Amazon basin.

5.6 Conclusion and perspectives on CYGNSS Water Fractions

The methods and results presented in this chapter demonstrated the correct retrieval of Water
Fractions in 0.1° pixels using CYGNSS. Although a deviation between the estimated and
reference WF was noted, the method is robust and the comparisons with ancillary datasets
are consistent for both the spatial and temporal dynamics. These results should be submitted
soon, with some minor adjustments:

• Presentation of more detailed statistical performances of the regression.
• Statistical comparison of WFCY GNSS with the ancillary datasets (from GIEMS, MODIS

and JERS-1), at several spatial scales.
• Comparisons with MODIS-based SWE maps in other river basins, in particular over

the Lake Chad (environment similar to the IND) and Yangtze (environment similar to
the LMB) basins. These estimations will be fully independent from WFCY GNSS .

• Use of the NDVI (dynamic estimations, unlike AGB maps) to study whether the vege-
tation explains the deviation between WFCY GNSS and WFMODIS .

• Eventual comparison of the coastal WFCY GNSS with global mangrove inventories.

Beyond this imminent publication, some trails now emerge for further studies. With the
conclusive proof of concept of CYGNSS-based Water Fraction estimations, the main devel-
opments should be: i) mitigating the observed biases and limitations, and ii) extending this
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dataset for the use of the hydrological community. Here are the main pathways to be dis-
cussed:

• Does the deviation between the estimated and reference Water Fraction come from the
changing geophysical properties of the reĆecting surface? Beyond the use of AGB to
correct the vegetation attenuation, the role of surface roughness and SM and so the
performances of the algorithm when considering their inĆuence should be explored.

• Can CYGNSS WF estimations be performed at higher spatial resolution, while not
afecting the robustness of the methodology?

• Does other space GNSS-R missions provide complementary data to improve the spa-
tiotemporal resolution or the coverage of the estimated WF?

• Extending WFCY GNSS estimations to the full ∼6-year record of CYGNSS.

These trails are further discussed in the general conclusion and perspectives.
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Conclusion

My thesis work focused on GNSS reĆectometry techniques (GNSS-R) applied to hydrology.
Two diferent applications were investigated, corresponding to two diferent spatial scales.
First, I worked on water level retrieval in rivers using data acquired by a geodetic receiver.
It is a very localized application, as the receiver records GNSS reĆected signals from an area
of a few tens to hundreds of meters around the antenna. Then, I worked on the detection
of Ćoods using spaceborne GNSS-R data from the NASA Cyclone CNSS (CYGNSS) mission
(Ruf et al., 2016). This is oriented towards large spatial scales due to the relatively low
resolution of coherent observations over smooth water (∼1 × 6 km, Camps (2019)). Of
particular interest is the potential of CYGNSS to map inundations in the densely forested
tropical Amazon and Congo basins, because the GNSS L-band signals penetrate better dense
forests than other microwave frequencies.

The Ąrst application on river water levels was based on a GNSS-R acquisition on the
Garonne River in Podensac, using a geodetic receiver recording the signal-to-noise ratio
(SNR). The frequency of the SNR oscillations is used to calculate the water heights. The
initial objective was to study a very high-frequency phenomena, i.e. the tidal bore. Early
results faced inherent limitations of the technique but the wave frequency was extracted from
the SNR time series (Chapter 3). Finally, we studied the water level variations of the Garonne
River during an asymmetric tidal cycle. The amplitude of these very powerful tides in Po-
densac (at ∼120 km from the estuary) sometimes exceeds six meters and they present a large
asymmetry, as the rising tide lasts ∼3 hours and the falling tide ∼9 hours. The water surface
varies rapidly (vertical velocity or ḣ ∼10−3 m/s). This is the main limitation of SNR tech-
niques developed for coastal applications, and applied to low-amplitude tides (Larson et al.,
2013a; Geremia-Nievinski et al., 2020). The dynamic SNR method of Roussel et al. (2015)
allows to measure large water level variations. However, it has shown limitations in our case
study for two reasons:

• Fewer GNSS satellites in visibility over the river as compared to the ocean. We had a
180° azimuth mask and elevation angles below 10-15° were masked by either the banks
or trees. Low elevation tracks are generally used because the SNR oscillations are larger,
and thus less subject to noise (Larson et al., 2013a).

• We found multiple frequencies in the SNR oscillations, likely due to the signal being
afected by the riverbanks and the vegetation.

I Ąnally modiĄed the dynamic SNR method to adapt it to these noisy measurements. The
noise Ąltering is performed in two steps. The Ąrst step consists in removing the multipeaks in
the frequency spectrum from the Lomb-Scargle Periodogram (LSP). A prediction interval is
used in case of multipeaks to decide which frequency should be extracted. Then, the addition
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of an iterative method in the least squares estimation eliminates low-quality observations to
compute the Ąnal values of h and ḣ.

The results demonstrate the determination of water levels in the Garonne River, for ver-
tical velocities up to 0.1 - 1 mm/s. In particular, we highlighted that the number of GNSS
satellites visible from the receiver mainly explains the variability of the output water heights
(h), which presents good results with at least 4 satellites in visibility (R = 0.99, ubRMSD
≤ 32 cm), and an increased accuracy for 7 or more satellites (ubRMSD ≤ 12 cm). The use
of multi-frequency (L1 and L2) and multi-constellation (GPS and GLONASS) data was also
successfully tested. This opens the way to land applications such as monitoring Ćash Ćoods,
with geodetic receivers. The acquisition must be carefully conĄgured to minimize azimuth
and elevation masks. The results of this study were published in Remote Sensing and are
presented in Chapter 3.

During the second part of my PhD, I analyzed CYGNSS data to study the spatiotemporal
dynamics of inundations. CYGNSS covers the intertropical band (±38° latitude) and pro-
vides a large number of GNSS-R observations. Despite its potential for global or large-scale
applications, CYGNSS was mainly used at the regional scale. The objective of my work is
two-fold: Ąrst, to map Ćoods over the entire CYGNSS spatial coverage, and second, to study
their temporal dynamics. To do so, I aggregated CYGNSS observations with a spatial reso-
lution of 0.1° and a temporal resolution of 7 days, in order to extract statistical parameters
describing the distribution of the coherent reĆectivity in each pixel. This served all subse-
quent work. The study was decomposed in two parts, with an article already published in
Remote Sensing of Environment.

This publication highlights the capability of CYGNSS to detect the presence of Ćoods
over its entire coverage. I used an unsupervised classiĄcation method (K-means) applied dy-
namically to the time series of CYGNSS statistical parameters, thanks to the implementation
of the Dynamic Time Warping (DTW) distance metric. The same output cluster represented
pixels showing very diferent Ćood dynamics, even in opposition of phase between wetlands in
the Northern and Southern hemispheres. The result is a static map at 0.1° spatial resolution,
whose 4 classes are associated with the presence or absence of water. An important focus
was also made on studying how CYGNSS parameters and the output clusters depend on the
geophysical properties of the reĆecting surface. Several sources of error were identiĄed in
accordance with the state of the art: the presence of wind and waves on large lakes (Chew
and Small, 2020b), specular reĆection on deserts (Al-Khaldi et al., 2021a), or attenuation of
the GNSS signal by vegetation (Loria et al., 2020; Carreno-Luengo et al., 2020). Still, surface
water was detected in pixels with an average Above ground Biomass (AGB) of up to 300
Mg/ha, corresponding to dense tropical forests in the Amazon and Congo basins.

The second part of my CYGNSS study follows from a direct perspective of the Ąrst. We
wanted to estimate for each time step (every 7 days) the Ćood extent or the fraction of water
in CYGNSS pixels. To do so, I found a linearity between the fraction of water and the
average reĆectivity value in each pixel (Γmean). Of course, a large deviation of the estimates
was observed due to the inĆuence of other geophysical parameters. In particular, a dense
vegetation strongly attenuates the GNSS signals. To correct for this efect, the slope and
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intercept of the linear relationship between Γmean and the Water Fraction were determined as
a function of AGB, using a third order polynomial Ąt. The reference water fractions used for
both learning and validation were taken from several regional maps of surface water extent
with higher spatial resolution.

The regional comparisons between CYGNSS estimated Water Fractions, reference SWE
maps and GIEMS are very interesting. CYGNSS provides in most cases a clear representa-
tion of the maximum Ćood extent and of its temporal evolution. The comparison between
CYGNSS and GIEMS Water Fractions highlights a much higher level of detail in CYGNSS
and some biases of GIEMS. Still, GIEMS is highly valuable as it provides 30 years of global
SWE estimations. CYGNSS can be useful in evaluating the biases of these long time series,
and in understanding the spatial structure of large Ćoods at higher spatial resolution. Finally,
CYGNSS Water Fractions can be extended over the ∼6 years of observations, which feeds
some of the perspectives discussed below.

Perspectives for in-situ water level measurement

Water level in rivers

The use of SNR measured by a geodetic receiver for coastal sea level measurements has been
widely documented (Larson et al., 2013a,b; Löfgren and Haas, 2014; Roussel et al., 2015;
Geremia-Nievinski et al., 2020; Tabibi et al., 2020). The fact that as little studies were
conducted on river case studies is quite surprising. The dynamic SNR method (Roussel et al.,
2015) adapted to noisy observations in Podensac allowed to Ąlter out most of the multipeaks
(mainly high frequencies). This considerably reduced the noise on the output water levels.
However, an accurate measurement requires at least 4 GNSS satellites in visibility (see Figure
6 in Zeiger et al. (2021) or Chapter 3).

The most interesting prospect for this work is the application of SNR-based water level
determinations to extreme hydrological events, especially Ćash Ćoods. A receiver was already
installed in Salsigne (Aude, France) to acquire GNSS-R data on the Orbiel river and its
tributaries. The water level rose from ∼8 m on this river during the extreme Ćoods of 2018,
generating signiĄcant pollution, human and material damage. It is a complex study area with
large topography, and therefore elevation masks (see Figure 3.3). It will indicate whether
the improved dynamic SNR method can be applied to a very small river with topography
around, i.e. an extremely unfavourable conĄguration. The wider the river, the simpler the
conĄguration of the acquisition with many reĆections on the water surface. Therefore, an
application to large rivers is also of particular interest. The main advantages of the SNR
technique are the low cost of the instrumentation, and real time measurements possible if the
receiver is connected to internet.



158 Conclusion and perspectives

Coastal water levels and sea state

The Ąltering of multipeaks and the use of the wavelets to analyze multiple frequencies in the
SNR time series are also of major interest in the coastal domain. First, the developed method
could reduce the noise observed on SSH estimations with a rough sea (Roussel et al., 2015).
Then, the study of the sea state itself is interesting to provide information on signiĄcant wave
height (SWH) and wind speed. For this, further analysis will be necessary. A receiver was
installed in the port of Bilbao, at the extremity of the pier protecting the inner port from the
rough sea. It will gather SNR data to complement the existing stations in Biarritz and Saint-
Jean-De-Luz, for conducting coastal GNSS-R altimetry and possibly sea state monitoring in
the Bay of Biscay. The idea is to separate the low frequency component of the signal related
to tides from the higher frequencies related to sea state. The comparison with reference data
will determine whether a relation with SWH can be established.

Perspectives on monitoring flood dynamics with spaceborne GNSS-R

Uncertainties of CYGNSS Water Fractions

At this time, we did not evaluate the uncertainties of CYGNSS Water Fraction estimates
presented in Chapter 5. The linear model validation reports a root mean square error (RMSE)
of ∼20% between the estimated and reference Water Fractions. However, these references are
also subject to biases, as are the biomass dataset used in the retrieval methodology (Santoro
et al., 2021). It is thus not obvious how to quantify the error related to both the propagation of
these uncertainties, and the GNSS-R signal itself. The current Water Fraction estimations (a
ńversion 0ż) show a signiĄcant deviation around the expected reference values (see Figure 5.1
and Figure 5.4). Many pixels with a theoretical Water Fraction of 0 actually have non-zero
estimates. These pixels could be used to quantify the noise Ćoor - or uncertainty -, in the
same way as was done for GIEMS for example (Prigent et al., 2020). This noise Ćoor could
then be used as an indicator of the conĄdence to give to water fraction estimates.

Influence of other geophysical parameters on the Water Fractions

A signiĄcant part of the deviation between estimated and reference Water Fractions probably
comes from the reĆection of the GNSS signal by the EarthŠs surface. As a reminder, it was
shown that the coherent signal can be strongly attenuated by high soil and water roughness
(Chew and Small, 2020b; Loria et al., 2020) and by vegetation (Carreno-Luengo et al., 2020;
Loria et al., 2020). On the contrary, high soil moisture (SM ≥ 40 - 50%) may reĆect the GNSS
signal in the same way as surface water (Chew and Small, 2020b; Collett et al., 2022). The
inĆuence of all these variables is considered in the coherent bistatic reĆection models (De Roo
and Ulaby, 1994; Voronovich and Zavorotny, 2018), which were used to compute CYGNSS
reĆectivity. However, the methodology presented in Chapter 5 only takes into account the
vegetation attenuation. Some issues were related to changes in the roughness of the reĆecting
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surface, and as a consequence large lakes (with more wind-related roughness) as well as deserts
(not Ćooded but producing specular reĆection) were Ąltered out before the computation of
the Water Fractions. These Ąndings were observed in Chapter 4 and conĄrm previous results
(Al-Khaldi et al., 2021a). As for soil moisture, its role was so far neglected in the proposed
method. Future versions of the Water Fraction estimates could implement SM products from
SMAP (Chan et al., 2016b, 2018) or SMOS (Wigneron et al., 2021) in the processing chain,
as well as proxies for soil roughness such as the SMAP h-parameter. It will then determine
whether the addition of this information improves the linear regression or not.

Time series of CYGNSS Water Fractions since 2017

As of now, only one year of data was used for both the K-means / DTW classiĄcation of
CYGNSS observations (Chapter 4), and for the estimation of Water Fractions (Chapter 5).
This is related to the large volume of data analyzed and stored as well as the time required
for their processing. As long as the processing chain is not Ąnalized, we prefer to study
only a relatively short period of data (August 2018 to July 2019) presenting a complete
hydrological cycle. For later works, CYGNSS data are available from 2017 up to now and
give the possibility to analyze a 5-year dataset, or even more thanks to the continuity of the
mission. With a 5-year Water Fraction dataset, we could remove the seasonality of the signal
in order to obtain its anomalies, for studying the interannual variability of the inundation
extent. This would be a valuable source of information for hydrology with a greater level of
detail than GIEMS.

Spatial resolution

Some factors make the 0.1° spatial resolution of our estimates amenable to improvement (see
the conclusion in Chapter 4):

• Twice as many observations after July 2019 as during our study period.
• High number of observations per pixel (∼20 each time step on average) to compute

robust statistical parameters.

It should be possible to estimate CYGNSS Water Fractions with a spatial resolution of 0.05°
(∼5.5 km at the equator) for the period after July 2019. This would perhaps cost a larger
number of data gaps. Nevertheless, it is interesting to evaluate this CYGNSS potential at
higher resolution. Maps at 0.1° already show a much higher level of detail than GIEMS
at 0.25°, thanks in particular to the aggregation of coherent GNSS-R observations with a
higher resolution (Camps, 2019). With a reduction of the pixelŠs area by a factor 4, a better
representation of the spatial heterogeneity of Ćoods is likely. Finally, it is worth noting the
subsequent possibility to downscale the estimations, i.e. to improve their spatial resolution
using ancillary high resolution datasets. This is typically based on Digital Elevation Models
(DEM): within a neighborhood, lower elevation areas have a higher probability of being
Ćooded. These Ćood probability maps combined with GIEMS allowed for example to compute
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the GIEMS-D15 (Fluet-Chouinard et al., 2015) and GIEMS-D3 (Aires et al., 2017) products
downscaled at ∼500 m and ∼90 m spatial resolution, respectively.

Surface water volume

As stated in Chapter 1, surface water volumes are commonly derived using radar altimetry
time series and GIEMS SWE (Frappart et al., 2008, 2011, 2012; Becker et al., 2018; Tourian
et al., 2018). The main limitation is the low spatial resolution of GIEMS. The same methods
were applied to SWE maps at higher resolution from optical imagery (Frappart et al., 2018;
Pham-Duc et al., 2020), which obviously do not detect Ćoods in forested areas. CYGNSS
water fractions will therefore be useful to infer the surface water volumes stored in tropical
wetlands. This will initially be focused on seasonal dynamics, and later be extended to
interannual variability once longer CYGNSS Water Fraction time series will be computed.

Additionally to this perspective on CYGNSS, we also worked on improving the water level
estimates based on radar altimetry. The virtual stations (VS) represent the intersections of
altimetry tracks with water bodies. The radar altimeters overpass the same tracks with a
revisit time ranging from 10 to 35 days, to monitor time series of water levels. Few VS
existed over Ćoodplains, and most were manually identiĄed. We developed an approach to
automatically detect the water bodies along altimetry tracks based on the radar backscatter
(other parameters were considered). The results were published in Remote Sensing and are
presented in Section 5.6. It largely increase the number of altimetry VS, especially over
Ćoodplains. It contributes in improving the spatial sampling of VS that are interpolated to
derive a water level map, and further compute the water volumes stored in wetlands.

Hydrological models and methane emissions

The impact of tropical wetlands on hydrological and biogeochemical cycles is very important,
as illustrated by the state of the art in Chapter 1. Their hydrological function regulates river
discharges (Junk et al., 2013), as their storage capacity attenuates Ćood peaks and contributes
to maintain the Ćow in low water periods (Fossey et al., 2016). Hydrodynamic models also
highlight the importance of representing stream connectivity with Ćoodplains to evaluate Ćood
dynamics (Fleischmann et al., 2018; Neal et al., 2012). Currently, the unavailability of reliable
Ćood estimates in the Congo and Amazon basins, in particular, hinders the understanding of
hydrological dynamics in tropical wetlands. Although CYGNSS water fractions do not have
a high spatial resolution, they are much more accurate than the estimates currently provided
by GIEMS or SWAMPS at 0.25°.

Wetlands also represent the largest natural source of methane emissions. However, the
intercomparison of models show large disagreements in the spatial and temporal distribution
of methane emissions from wetlands (Melton et al., 2013). A large part of the uncertainty
comes from the SWE estimations provided by GIEMS or SWAMPS (Poulter et al., 2017). In
particular, the computation of methane emissions from wetlands is based on models mostly
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forced by SWAMPS (Poulter et al., 2017; Saunois et al., 2017). For reminder, a comparison
showed that SWAMPS is in opposition of phase with other Ćood products and also with
river discharges in the Niger basin (Pham-Duc et al., 2017). Thus, wetland methane emission
models are very poorly constrained. This is reĆected in the large diference in the methane
budget between atmospheric inversions (top-down), and inventory-based estimates (bottom-

up; see Saunois et al. (2020) and Chapter 1). CYGNSS Water Fractions at 0.1° or 0.05° could
help in better constraining the inventories in tropical wetlands.

HydroGNSS, SWOT and NISAR

The conclusion of Chapter 1 mentions the future space missions dedicated to hydrology:
SWOT (Biancamaria et al., 2016), NISAR and HydroGNSS (Unwin et al., 2021). The hydro-
logical products supplied by these missions will require validation. In particular, the imminent
launch of SWOT (end of 2022) will allow a global monitoring of Ćooded areas and their water
levels thanks to the Ka-band swath altimeter, KaRin (Fjørtoft et al., 2013). A comparison of
CYGNSS Water Fractions with SWOT estimated inundation extent will be of great interest,
especially in the presence of vegetation to evaluate SWOT performance for tropical wetland
hydrology. Both the Ćood extent and surface water volumes will be better monitored, starting
in 2023.

Finally, the future ESA spaceborne GNSS-R mission dedicated to hydrology, HydroGNSS,
should be mentioned. It will provide averaged DDMs allowing the detection of large water
objects, in a similar way than CYGNSS. It will also include multi-constellation and multi-
frequency observations (Unwin et al., 2021), as well as a large number of complex measure-
ments obtained before the incoherent averaging of the signal (see Chapter 2). This will not
only allow the continuity with current CYGNSS observations, but also the detection of much
smaller water bodies (∼100 m) due to the higher spatial resolution of complex observations
(Li et al., 2021, 2022). HydroGNSS will also enable much more accurate phase-delay altime-
try (Cardellach et al., 2004), including over inland water (Li et al., 2018). In this context,
the development of HydroGNSS products can beneĄt from the experience gained in the pro-
cessing of CYGNSS data. Their respective performances could even be compared in case of
a common acquisition period for both GNSS-R missions.
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Conclusion

Mon travail de thèse sŠest principalement focalisé sur lŠutilisation des techniques de réĆec-
tométrie GNSS (GNSS-R) appliquées à lŠhydrologie. Deux applications diférentes, corre-
spondant à deux échelles spatiales distinctes, ont été au cœur de mes recherches. JŠai tout
dŠabord travaillé sur la problématique des niveaux dŠeau dans les rivières à lŠaide de données
acquises par un récepteur géodésique conventionnel. Cette application est très localisée, car
le récepteur enregistre les signaux GNSS réĆéchis provenant dŠune zone de quelques dizaines
à quelques centaines de mètres autour de lŠantenne. Dans un second temps, jŠai travaillé sur
la détection des inondations par réĆectométrie GNSS spatiale, à lŠaide des données fournies
par la mission Cyclone CNSS (CYGNSS) de la NASA (Ruf et al., 2016). Cette probléma-
tique est tournée vers les grandes échelles spatiales du fait de la résolution relativement faible
des observations cohérentes sur lŠeau (∼1 × 6 km, Camps (2019)). Il est particulièrement
intéressant dŠévaluer le potentiel de CYGNSS pour cartographier les inondations dans les
grands bassins tropicaux de lŠAmazone et du Congo, présentant des forêts très denses, que
les signaux GNSS en bande L pénètrent mieux que les autres fréquences radar.

La première application sur le niveau dŠeau des rivières sŠest basée sur une acquisition
GNSS-R sur la Garonne, à Podensac. Le récepteur géodésique fournit des mesure du rapport
signal-sur-bruit (Signal-to-Noise Ratio, SNR), dont les oscillations permettent de calculer la
hauteur dŠeau. Comme nous lŠavons vu dans le Chapitre 3, lŠobjectif initial était de travailler
sur un évènement ultra-rapide : le mascaret. Les premiers résultats ont montré que cela
nŠétait pas réaliste, mais que la fréquence des vagues du mascaret pouvait être extraite des
séries temporelles de SNR. Nous avons donc cherché à étudier les variations de niveaux dŠeau
de la Garonne lors dŠun cycle de marée asymétrique. Ces marées, très puissantes à Podensac
(∼120 km de lŠembouchure), ont une amplitude dépassant parfois six mètres et une asymétrie
marquée : la marée montante dure environ 3 heures, contre 9 heures pour la marée descen-
dante. La surface dŠeau peut varier avec une vitesse importante (ḣ ou vitesse verticale), de
lŠordre de 10−3 m/s. Cela constitue la principale limitation des méthodes existantes, qui ont
été développées pour le milieu côtier, et appliquées à des marées de faible amplitude (Larson
et al., 2013a; Geremia-Nievinski et al., 2020). La méthode SNR dynamique de Roussel et al.
(2015) permet de mesurer dŠimportantes variations du niveau dŠeau. Elle a cependant montré
ses limites dans notre cas dŠétude, pour deux raisons:

• Moins de satellites GNSS visibles sur la rivière par rapport au cas océanique, avec un
masque de 180° en azimut, et les angles dŠélévation de moins de 10° masqués par les
berges. Or, les basses élévations sont généralement utilisées car les oscillations du SNR
sont plus importantes, et donc moins sujettes au bruit (Larson et al., 2013a).

• De multiples fréquences dŠoscillations dans les séries temporelles de SNR, sans doute du
fait des interactions avec les berges et la végétation, ou des perturbations de la surface
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du Ćeuve (e.g. passages de bateaux).

JŠai Ąnalement modiĄé la méthode dynamique initiale pour lŠadapter à ces mesures fortement
bruitées. Le Ąltrage du bruit est réalisé en deux étapes. La première consiste à éliminer les
multifréquences dans le spectre fréquentiel issu du périodogramme de Lomb-Scargle (LSP). Un
intervalle de prédiction est utilisé dans ce cas pour décider quelle fréquence doit être extraite,
et quelle fréquence est issue de perturbations du signal et doit être éliminée. Les fréquences
sélectionnées dépendent des variations de la surface dŠeau et de lŠélévation du satellite GNSS.
Ensuite, lŠajout dŠune méthode itérative lors de lŠestimation par les moindres carrés fournit
les valeurs Ąnales de h et ḣ, en éliminant les observations de moins bonne qualité.

Le résultat Ąnal montre la possibilité de déterminer les niveaux dŠeau de la Garonne, pour
des vitesses verticales de lŠordre de 0,1 - 1 mm/s. En particulier, jŠai mis en évidence que
le principal facteur inĆuançant la variabilité des résultats est le nombre de satellites GNSS
visibles depuis le récepteur. La hauteur dŠeau calculée est de bonne qualité à partir de 4
satellites en visibilité (R = 0.99, ubRMSD ≤ 32 cm), et la précision de la méthode augmente
pour 7 satellites ou plus (ubRMSD ≤ 12 cm). LŠutilisation de données multifréquences (L1 et
L2) et multi-constellations (GPS et GLONASS) a également été testée avec succès. Cela ouvre
la voie à des applications continentales comme le suivi de crues rapides et de grande amplitude,
grâce à la technique dŠacquisition SNR à bas coût. LŠacquisition doit être conĄgurée avec soin,
aĄn de limiter au maximum les masques en azimut et en élévation. Cette méthode altimétrique
permet dŠétudier de nombreux phénomènes géophysiques présentant une vitesse verticale de
lŠordre de 1 mm/s ou moins, en milieu continental comme océanique. Les résultats Ąnaux ont
été publiés dans la revue Remote Sensing et sont présentés dans le Capitre 3.

Dans la seconde partie de ma thèse, jŠai analysé les données CYGNSS pour étudier les
dynamiques spatiotemporelles des eaux de surface, et plus particulièrement celle des inon-
dations. Cette mission couvre la bande intertropicale (±38° latitude) et fournit un grand
nombre dŠobservations GNSS-R. Malgré son potentiel pour les applications globales ou à
large échelle, CYGNSS a surtout été utilisé à lŠéchelle régionale. LŠobjectif de mon étude est
double : dŠabord cartographier les inondations sur toute la couverture spatiale de CYGNSS,
puis en étudier la dynamique temporelle, qui est mal connue dans la plupart des grands bassins
versants tropicaux. Pour cela, jŠai agrégé les observations CYGNSS avec une résolution spa-
tiale de 0,1° et une résolution temporelle de 7 jours, aĄn dŠen dériver dans chaque pixel des
paramètres statistiques sur la distribution de la réĆectivité cohérente. Cela a servi de base à
tout travail postérieur. Cette étude a été décomposé en deux parties qui ont été ou sont en
cours de valorisation, avec un article déjà publié dans Remote Sensing of Environment.

Dans cette première partie de lŠétude, jŠai montré que les variables dérivées de CYGNSS
permettent de détecter la présence dŠeau sur toute sa couverture spatiale. Pour cela, jŠai utilisé
une méthode de classiĄcation non-supervisée (K-means) appliquée de manière dynamique aux
séries temporelles de variables CYGNSS, grâce à lŠimplémentation du Dynamic Time Warping

(DTW) comme mesure de distance entre deux classes. Une même classe représente alors des
pixels montrant des dynamiques dŠinondations très diférentes, voire en opposition de phase
entre les zones humides de lŠhémisphère Nord et celles de lŠhémisphère Sud. Le résultat
produit est une carte statique à 0,1° de résolution spatiale, présentant 4 classes associées à
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la présence ou non dŠinondations. Un axe important a aussi consisté à étudier lŠinĆuence
quŠont le type de sols et le couvert végétal sur les variables CYGNSS, et sur le résultat de
la classiĄcation. Plusieurs sources dŠerreur ont été identiĄées, conformément à lŠétat de lŠart
: la présence de vent et de vagues sur les grands lacs (Chew and Small, 2020b), la réĆexion
spéculaire sur les déserts (Al-Khaldi et al., 2021a), ou encore lŠatténuation du signal GNSS
par la végétation (Loria et al., 2020; Carreno-Luengo et al., 2020). Les eaux de surface sont
toutefois détectées dans des pixels présentant un Above ground Biomass (AGB) moyen allant
jusquŠà 300 Mg/ha, correspondant aux forêts tropicales denses des bassins de lŠAmazone et
du Congo.

La seconde partie de mon étude sur CYGNSS découle dŠune perspective directe de la
première. AĄn de ne pas se restreindre à une cartographie statique des zones inondées, nous
voulions estimer pour chaque pas de temps (tous les 7 jours) la présence dŠinondations. Il sŠest
également avéré que le pourcentage (ou fraction) dŠeau dans chaque pixel pouvait être estimé
approximativement grâce à CYGNSS. Pour cela, jŠai tiré parti de la linéarité observée entre
la fraction dŠeau du pixel, et la valeur moyenne de réĆectivité dans chaque pixel (Γmean), qui
est lŠune des variables extraites des observations CYGNSS. Bien entendu, cette linéarité nŠest
pas parfaite, et on observe une large dispersion des estimations du fait de lŠinĆuence dŠautres
variables géophysiques sur le signal. En particulier, la végétation dense atténue fortement le
signal GNSS. Pour corriger cet efet, la pente et lŠordonnée à lŠorigine de la relation linéaire
entre Γmean et la fraction dŠeau ont été Ąxées en fonction de lŠAGB. Les fractions dŠeau de
référence, utilisées à la fois pour lŠapprentissage et la validation, proviennent de diférentes
cartographies régionales dont la résolution spatiale est plus élevée.

Les comparaisons menées à lŠéchelle du bassin versant entre la fraction dŠeau estimée par
CYGNSS, les références régionales et GIEMS sont très positives. CYGNSS permet dans la
plupart des cas dŠobtenir clairement une représentation spatiale de lŠétendue des inondations,
mais aussi leur évolution temporelle. La comparaison entre CYGNSS et GIEMS montre aussi
un niveau de détail largement supérieur avec CYGNSS, et met en lumière certains biais de
GIEMS. Ce dernier garde cependant une valeur inestimable, car il fournit 30 ans dŠestimations
globales de lŠétendue des inondations, avec un signal dont la saisonnalité est correcte mais
dont lŠamplitude est discutable. CYGNSS peut justement être utile pour évaluer les biais de
ces longues séries temporelles, et pour améliorer la compréhension de la structure spatiale des
grandes inondations grâce à une meilleure résolution spatiale. EnĄn, il sera également possible
dŠétendre les estimations CYGNSS sur plusieurs années dŠobservations, ce qui alimente les
perspectives discutées ci-dessous.

Perspectives pour la mesure de niveaux d’eau in-situ

Niveaux d’eau des rivières

LŠutilisation du SNR mesuré par un récepteur géodésique pour des applications altimétriques
en milieu côtier a été largement documenté (Larson et al., 2013a,b; Löfgren and Haas, 2014;
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Roussel et al., 2015; Geremia-Nievinski et al., 2020; Tabibi et al., 2020). Il est presque étrange
quŠaussi peu de travaux existent sur des cas dŠétude en rivière. LŠadaptation de la méthode
SNR dynamique de Roussel et al. (2015) à des données bruitées, pour le site de Podensac, a
permis de considérablement Ąltrer les multipics en fréquence, et de réduire le bruit Ąnal sur
la détermination de la hauteur dŠeau. Une mesure précise requiert cependant suisamment
de satellites GNSS visibles (voir la Figure 6 dans Zeiger et al. (2021) ou le Chapitre 3).

La perspective la plus intéressante pour ce travail est lŠapplication des méthodes de mesure
du SNR et de calcul de la hauteur dŠeau à des évènements hydrologiques extrêmes, en partic-
ulier les crues éclairs. Un récepteur a déjà été installé à Salsigne, dans lŠAude, pour acquérir
des données GNSS-R sur lŠOrbiel et ses aluents lorsque le niveau dŠeau monte. Lors des
crues extrêmes de 2018, la montée des eaux avait atteint 8 m sur cette rivière, générant
dŠimportantes pollutions, des dégâts humains et matériels. Ce site est complexe avec une
topographie importante, et donc de forts masques en élévation (voir Figure 3.3). LŠétude
des séries temporelles de SNR à Salsigne permettra dŠavoir dŠavantage dŠinformations sur
lŠapplicabilité de la méthode dynamique améliorée à des sites dŠétude variés. Il faut égale-
ment noter que plus la rivière est large, plus la conĄguration de lŠacquisition est simple avec
de nombreuses réĆexions sur la surface dŠeau. Aussi, une application aux grands Ćeuves revêt
un intérêt tout particulier. Les gros avantages de la technique SNR sont le faible coût de
lŠinstrumentation, et la possibilité de réaliser des relevés en temps réels si le récepteur est
connecté au réseau.

Niveaux d’eau côtier et état de la mer

Le Ąltrage des fréquences doubles et lŠutilisation des analyses en ondelettes du signal ont égale-
ment un intérêt majeur en domaine côtier. Tout dŠabord, la méthode développée pourrait
permettre de réduire le bruit conséquent sur la mesure de hauteur dŠeau lorsque lŠétat de la
mer est mauvais (Roussel et al., 2015), avec une forte hauteur signiĄcative des vagues (Signif-

icant Wave Height, SWH). Ensuite, lŠétude de lŠétat de la mer lui-même est une application
intéressante, à même de fournir des relevés sur la hauteur des vagues ou encore la vitesse
des vents. Pour cela, des analyses ultérieures seront nécessaires. Un récepteur a été installé
dans le port de Bilbao, où la mer agitée est séparée du port interne plus calme, car protégé
par une grande jetée. Ces données sŠajouteront à des stations disponibles côté français, à
Biarritz et Saint-Jean-De-Luz, pour fournir des relevés dŠaltimétrie GNSS-R côtière et pos-
siblement dŠétat de la mer dans le Golfe de Gascogne. LŠidée est de séparer la composante
basse fréquence du signal liée aux marées des plus hautes fréquences liées à lŠétat de la mer,
pour analyser celles-ci. La comparaison avec des données de référence permettra de savoir si
une relation avec le SWH peut être établie.
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Perspectives sur les dynamiques d’inondations par GNSS-R
spatial

Incertitudes sur les fractions d’eau CYGNSS

Pour lŠinstant, aucune incertitude nŠest fournie sur les estimations de fractions dŠeau CYGNSS
présentées dans le Chapitre 5. La validation du modèle linéaire fait état dŠune erreur moyenne
quadratique (Root Mean Squared Error, RMSE) de ∼20% entre les valeurs estimées et les
valeurs de référence. Cependant, ces références sont également sujettes à des biais, de même
que les données de biomasse utilisées dans le calcul des fractions dŠeau (Santoro et al., 2021).
Il nŠest ainsi pas évident de quantiĄer lŠerreur liée à la fois à la propagation de ces incertitudes,
et au signal GNSS-R lui-même. LŠestimation actuelle de fractions dŠeau, que lŠon pourrait
qualiĄer de ńversion 0ż, montre une dispersion importante autour des valeurs de référence
attendues (voir les Figure 1 et Figure 5 du Chapitre 5). De ce fait, de nombreux pixels dont
la fraction dŠeau théorique est de 0 ont en réalité des estimations non nulles. Ces pixels
pourraient servir à quantiĄer le bruit - ou lŠincertitude - observé sur les fractions dŠeau, de
la même manière que cela fut réalisée pour GIEMS par exemple (Prigent et al., 2020). Ce
niveau de bruit plancher pourrait alors être utilisé comme indicateur de la conĄance à donner
à des estimations de fractions dŠeau.

Influence d’autres paramètres géophysiques sur les fractions d’eau

Une part non négligeable des incertitudes provient sans doute de la réĆexion du signal GNSS
par la surface de la Terre, et de son lien avec diférents paramètres géophysiques. Pour rappel,
il a été montré auparavant que le signal cohérent peut être fortement atténué par une rugosité
importante des sols ainsi que de lŠeau (Chew and Small, 2020b; Loria et al., 2020), et par
la végétation (Carreno-Luengo et al., 2020; Loria et al., 2020). Au contraire, une humidité
des sols élevée (SM ≥ 40 - 50%) peut réĆéchir le signal GNSS de la même manière que les
eaux de surface (Chew and Small, 2020b; Collett et al., 2022). LŠinĆuence de toutes ces
variables se retrouve de plus dans les modèles de réĆexion bistatique cohérente (De Roo and
Ulaby, 1994; Voronovich and Zavorotny, 2018), que jŠai utilisé pour calculer la réĆectivité
CYGNSS. Cependant, la méthodologie présentée dans le Chapitre 5 prend uniquement en
compte lŠatténuation du signal par la végétation, qui est modélisée pour ensuite calculer la
fraction dŠeau dans chaque pixel. AĄn de régler certains problèmes liés à des changements de
rugosité de la surface réĆéchissante, les grands lacs (présentant plus de rugosité liée au vent)
ainsi que les déserts (non inondés mais produisant une réĆexion spéculaire) ont été Ąltrés en
amont du calcul des fractions dŠeau. Ces constats proviennent dŠobservations efectuées dans
lŠarticle présenté au Chapitre 4, et conĄrmant dŠautres résultats antérieurs (Al-Khaldi et al.,
2021a). Quant à lŠhumidité des sols, son rôle a jusquŠà présent été négligé dans la méthode
proposée. De futures versions des estimations de fractions dŠeau pourront implémenter dans
la chaîne de traitement des produits dŠhumidité des sols de SMAP (Chan et al., 2016b, 2018)
ou SMOS (Wigneron et al., 2021), ainsi que des proxy de la rugosité des sols comme le h-
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parameter de SMAP. Il sera alors possible de savoir si lŠajout de ces informations améliore la
régression linéaire, comme la prise en compte de lŠatténuation par la végétation a pu le faire.

Séries temporelles de fractions d’eau CYGNSS depuis 2017

Pour lŠinstant, seule une année de données a été utilisée à la fois pour la classiĄcation K-
means / DTW des observations CYGNSS (Chapitre 4), et pour lŠestimation des fractions
dŠeau (Chapitre 5). Cela est lié au grand volume de données analysées, à lŠespace de stockage
ainsi quŠau temps de calcul nécessaires pour leur traitement. Tant que la chaîne de traite-
ment nŠest pas Ąnalisée, notamment via lŠajout des idées listées précédemment, nous avons
préféré nous restreindre à une période de données certes relativement courte (Août 2018 à
Juillet 2019), mais suisante pour étudier la dynamique saisonnière des inondations sur un
cycle hydrologique. Cependant, les données CYGNSS disponibles depuis début 2017 donnent
la possibilité dŠétendre prochainement notre analyse sur 5 ans minimum, voire plus grâce
à la continuité de la mission. Cela permettrait de supprimer la saisonnalité du signal aĄn
dŠobtenir ses anomalies, pour comparer celles-ci avec des jeux de données existants (notam-
ment GIEMS). LŠétude des dynamiques spatiotemporelles et de la variabilité interannuelle
des fractions dŠeau CYGNSS peut être une source dŠinformation précieuse pour lŠhydrologie,
avec un niveau de détail supérieur aux étendues dŠinondations fournies par GIEMS.

Résolution spatiale des estimations

Comme je lŠai déjà mentionné (voir la conclusion du Chapitre 4), certains facteurs font que
la résolution spatiale de 0,1° de nos estimations pourrait être améliorée, tout en gardant un
échantillonnage de 7 jours:

• Deux fois plus dŠobservations après Juillet 2019 que durant notre période dŠétude;
• Un nombre élevé dŠobservations par pixel (∼20 à chaque pas de temps) permettant

dŠextraire des paramètres statistiques robustes.

Il devrait être possible dŠestimer les fractions dŠeau CYGNSS avec une résolution spatiale de
0.05° (∼5,5 km à lŠéquateur) pour la période postérieure à Juillet 2019. Cela se ferait peut
être au prix dŠun nombre de trous plus importants dans les données. Néanmoins, il appa-
raît intéressant dŠévaluer ce potentiel de CYGNSS à plus haute résolution. Les cartes à 0,1°
montrent déjà un niveau de détail bien plus important que GIEMS à 0,25°, grâce notamment
à lŠagrégation dŠobservations GNSS-R cohérentes dont la résolution est supérieure (Camps,
2019). La diminution dŠun facteur 4 de la surface de chaque pixel permettra sans doute de
rendre encore mieux compte de lŠhétérogénéité spatiale des dynamiques dŠinondation. EnĄn,
il faut noter la possibilité ultérieure de downscaler les estimations, cŠest à dire dŠaméliorer
leur résolution spatiale par la combinaison avec dŠautres jeux de données haute résolution.
Cela est typiquement réalisé en utilisant des modèles numériques de terrain (Digital Elevation

Model, DEM) : dans un même voisinage, les zones de plus faible altitude ont une probabil-
ité plus élevée dŠêtre inondées. La combinaison de ces cartes de probabilités dŠinondations
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avec GIEMS a par exemple permis de calculer les produits GIEMS-D15 (Fluet-Chouinard
et al., 2015) et GIEMS-D3 (Aires et al., 2017) à ∼500 m and ∼90 m de résolution spatiale,
respectivement.

Calcul des volumes d’eau stockés

Comme je lŠai précisé dans le Chapitre 1, le calcul des stocks dŠeau est couramment réalisé en
utilisant la combinaison de longues séries temporelles dŠaltimétrie radar avec GIEMS (Frap-
part et al., 2008, 2011, 2012; Becker et al., 2018; Tourian et al., 2018). La limitation principale
vient de la faible résolution spatiale de GIEMS, malgré lŠutilisation alternative des courbes
hypsographiques basées sur un DEM (Papa et al., 2015; Kitambo et al., 2022b). Les mêmes
méthodes ont été appliquées à des étendues dŠinondations estimées à plus haute résolution
à partir dŠimagerie optique (Frappart et al., 2018; Pham-Duc et al., 2020), qui ne peuvent
évidemment pas fournir dŠinformation sur la végétation inondée. Pour les grands bassins
tropicaux, en présence de végétation ou de cultures inondées, les fractions dŠeau CYGNSS
seront donc utile pour étudier la dynamique des stocks dŠeau dans les plaines dŠinondation.
Cette étude pourra porter dans un premier temps sur la dynamique saisonnière, avant dŠêtre
ultérieurement étendue à la variabilité interannuelle lorsque les séries temporelles de fractions
dŠeau CYGNSS auront été calculées depuis 2017.

Modèles hydrologiques et émissions de méthane

LŠimpact des zones humides tropicales sur les cycles hydrologiques et biogéochimiques est
très important, comme lŠillustre lŠétat de lŠart dans le chapitre 1. Leur rôle hydrologique
permet de réguler les débits des rivières (Junk et al., 2013), car leur capacité de stockage
atténue les pics de crue, et contribue à maintenir le débit en période de basses eaux (Fossey
et al., 2016). Les modèles hydrodynamiques montrent également lŠimportance de représenter
la connectivité des cours dŠeau avec les plaines dŠinondations pour représenter de manière
réaliste les dynamiques de crues (Fleischmann et al., 2018; Neal et al., 2012). Actuelle-
ment, lŠindisponibilité dŠestimations Ąables des inondations dans les bassins du Congo et de
lŠAmazone, notamment, est un frein à la compréhension de la dynamique hydrologique des
zones tropicales. Bien que les fractions dŠeau CYGNSS nŠaient pas une résolution spatiale
élevée, elles sont bien plus précises que les estimations fournies actuellement par GIEMS ou
SWAMPS à 0,25°.

Les zones humides représentent également la première source naturelle dŠémissions de
méthane (Saunois et al., 2020). Toutefois, les comparaisons entre modèles montrent de larges
désaccords dans la distribution spatiale et temporelle des émissions de méthane des zones
humides (Melton et al., 2013). Une large part des incertitudes provient des estimations
dŠinondations fournies par GIEMS ou SWAMPS (Poulter et al., 2017). En particulier, le
calcul des émissions de méthane des zones humides est basée sur des modèles qui sont, pour la
plupart, forcés par SWAMPS (Poulter et al., 2017; Saunois et al., 2017). Or, une comparaison
sur le bassin du Niger a montré que SWAMPS pouvait être en opposition de phase avec
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dŠautres produits dŠinondation, mais également avec les débits des rivières (Pham-Duc et al.,
2017). Les modélisations dŠémissions de méthane dans les zones humides sont donc très mal
contraintes. Cela se retrouve dans la grande diférence existant dans le budget du méthane
entre les inversions atmosphériques (top-down), et les estimations basées sur des inventaires
(bottom-up; voir (Saunois et al., 2020) et le Chapitre 1). Les fractions dŠeau CYGNSS à
0,1° ou 0,05° pourraient constituer une information intéressante pour mieux contraindre ces
inventaires dans les zones humides tropicales.

HydroGNSS, SWOT et NISAR

Dans la conclusion du Chapitre 1, jŠai évoqué les futures missions spatiales à même dŠaméliorer
la connaissance des étendues et des volumes dŠeau: SWOT (Biancamaria et al., 2016), NISAR
et HydroGNSS (Unwin et al., 2021). Une évaluation des produits hydrologiques de ces mis-
sions qui font, pour la première fois, partie des objectifs scientiĄques principaux, sera logique-
ment nécessaire. En particulier, le lancement imminent de SWOT (Ąn 2022) permettra un
suivi global des zones inondées et de leurs niveaux dŠeau grâce à lŠaltimètre à fauchée en
bande Ka, KaRin (Fjørtoft et al., 2013). La comparaison des fractions dŠeau CYGNSS avec
lŠextension des inondations SWOT sur les zones humides sera très intéressante, en partic-
ulier en présence de végétation pour déterminer les performances de SWOT sur lŠhydrologie
des zones humides tropicales. Cela permettra de combiner une connaissance plus précise de
lŠétendue des inondations et des stocks dŠeau, à partir de 2023.

Pour Ąnir, il faut mentionner la future mission GNSS-R spatiale de lŠESA dédiée à
lŠhydrologie, HydroGNSS. Elle fournira de la même manière que CYGNSS des DDM moyen-
nées permettant la détection de grands objets dŠeau. Surtout, elle incluera comme innova-
tions des observations multi-constellations et multifréquences (Unwin et al., 2021), ainsi quŠun
grand nombre de raw IF, soit les mesures complexes obtenues avant la moyenne incohérente
du signal (voir le Chapitre 2). Cela permettra non seulement la continuité avec les observa-
tions CYGNSS actuelles, mais également de détecter des objets dŠeau bien plus petits (∼100
m), grâce à la résolution spatiale plus élevée des observations complexes (Li et al., 2021,
2022). HydroGNSS permettra aussi de réaliser des applications altimétriques basées sur la
phase bien plus précises (Cardellach et al., 2004), y compris sur lŠhydrologie continentale (Li
et al., 2018). Dans ce cadre, le développement de produits HydroGNSS peut bénéĄcier de
lŠexpérience acquise dans le traitement des données CYGNSS. Une comparaison directe de
leurs performances respectives pourrait même être menée, en cas de période dŠacquisition
commune aux deux missions GNSS-R.
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Abstract: Surface water storage in floodplains and wetlands is poorly known from regional to global

scales, in spite of its importance in the hydrological and the carbon balances, as the wet areas are an

important water compartment which delays water transfer, modifies the sediment transport through

sedimentation and erosion processes, and are a source for greenhouse gases. Remote sensing is a

powerful tool for monitoring temporal variations in both the extent, level, and volume, of water using

the synergy between satellite images and radar altimetry. Estimating water levels over flooded area

using radar altimetry observation is difficult. In this study, an unsupervised classification approach

is applied on the radar altimetry backscattering coefficients to discriminate between flooded and

non-flooded areas in the Cuvette Centrale of Congo. Good detection of water (open water, permanent

and seasonal inundation) is above 0.9 using radar altimetry backscattering from ENVISAT and

Jason-2. Based on these results, the time series of water levels were automatically produced. They

exhibit temporal variations in good agreement with the hydrological regime of the Cuvette Centrale.

Comparisons against a manually generated time series of water levels from the same missions at

the same locations show a very good agreement between the two processes (i.e., RMSE ≤ 0.25 m in

more than 80%/90% of the cases and R ≥ 0.95 in more than 95%/75% of the cases for ENVISAT and

Jason-2, respectively). The use of the time series of water levels over rivers and wetlands improves

the spatial pattern of the annual amplitude of water storage in the Cuvette Centrale. It also leads to a

decrease by a factor of four for the surface water estimates in this area, compared with a case where

only time series over rivers are considered.

Keywords: radar altimetry; wetlands; surface water storage; Congo

1. Introduction

Floodplains and wetlands cover at least 12.1 × 106 km2 (~8%) of the land surfaces
of the Earth [1,2]. They play a major role in the water cycle through river flow variability,
flood mitigation, groundwater recharge and water quality improvement [2–4]. They were
identified as one of the most productive ecosystems as well as a major contributor of
biodiversity within a landscape [5–10]. They also have an important role in the global
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carbon cycle as 16 to 33% of the soil carbon pool is stored in the wetlands [11,12] and as 20
to 25% of the methane emissions originated from the wetlands [13–16].

In spite of their importance, the water stored in floodplains and wetlands and its
temporal variations are poorly known from regional to global scales. Before the launch of
NASA/CNES Surface Water and Ocean Topography (SWOT) in 2022, which will provide
surface water elevation over inland water bodies at a spatial resolution of 100 m [17],
anomalies of surface water storage are currently derived by: (i) estimating water level
changes using an interferometric synthetic aperture radar (SAR) (InSAR) [18,19], (ii) filling
a digital elevation model (DEM) with surface water extent estimates from remotely sensed
observations through a hypsometric curve [20,21], (iii) combining surface extent products
derived from satellite images with radar altimetry based water levels [22,23], or (iv) solving
the water balance equation combining various remotely sensed observations (i.e., anoma-
lies of terrestrial water storage (TWS) from the Gravity Recovery And Climate Experiment
(GRACE), water levels from radar altimetry, rainfall from Global Precipitation Climatology
Project (GPCP), shuttle radar terrain model (RTM), digital elevation model (DEM), syn-
thetic aperture radar (SAR) from Japanese Earth Resources -1 (JERS-1) and multi-spectral
from MODerate resolution imaging spectroradiometer (MODIS) images) [24,25]. The latter
approach needs the creation of a network of altimetry-based stations of water levels or
virtual stations (VSs). Currently, these VSs are mostly obtained through a manual process
using dedicated softwares such as the Virtual ALtimetric Stations (VALS) software [26],
the Multi-mission Altimetry Processing Software (MAPS) [27,28], or the Altimetry Time
Series (AlTiS) software [29], except for large rivers and lakes. This processing is time
consuming and does not allow a complete coverage of extensive areas such as the wetlands
present in the large river basins, especially when considering a large number of satellite
missions. Automatic processing to produce RA-based water levels relies on the identifi-
cation of the cross-section between a permanent waterbody and the RA ground-tracks
(e.g., [30,31]). Therefore, these processes are applied to cross-sections located on rivers,
lakes and reservoirs.

Yet, several studies already shown that radar altimetry (RA) can be used for the
monitoring of land surface properties. Spatio-temporal changes in radar altimetry backscat-
tering coefficients (σ0) were related to land cover types (ice, arid and semi-arid areas,
wetlands, forests, . . . ) and hydrological changes (floods, soil moisture, . . . ) from regional
to global scales [32–37]. Over West Africa, signature of floods under the dense vegetation
canopy of the Congo River Basin was observed at S, C, Ku and Ka bands through an
increase in the backscattering coefficient of various altimetry missions (i.e., ENVISAT,
Jason-2 and SARAL) [36]. These results are very encouraging for using the backscattering
coefficient to automatically identify radar altimetry measurements over water under dense
vegetation cover.

The objectives of this study are to (i) demonstrate the possibility to identify water
under the altimeter ground-tracks using the backscattering coefficient, important but
poorly used information derived from the RA echo [38], (ii) automatically create time
series of water levels over inland waterbodies, including floodplains and wetlands which
are not monitored, (iii) to measure the impact of the densification of the networks of
altimetry-based water levels on the surface water estimates currently performed combining
nadir RA and satellite images. This assessment was achieved on the Cuvette Centrale of
Congo, applying an unsupervised classification technique (k-means) to radar altimetry
backscattering coefficients acquired at Ku-band (ENVISAT and Jason-2) to automatically
discriminate acquisitions made over water bodies (e.g., open water such as rivers, ponds,
oxbow lakes, and lakes and water under vegetation as forested floodplains and wetlands) in
the extensive floodplain area of the Cuvette Centrale in the Congo River basin. The optimal
selection of the cluster numbers was performed using the Calinski–Harabasz criterion [39].
The results of the clustering technique were validated against an unsupervised classification
of the Cuvette Centrale validated using several data sources [40]. Based on the results of
the clustering technique, the time series of water levels were generated at the cross-sections
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with the river network and over the floodplains to construct a network of VSs. Over rivers,
the resulting time series of water level were compared, due to the lack of in situ data in this
area, this study used the altimetry-based water stages from the Hydroweb database [41].
Then, water level maps were obtained combining surface water extent from PALSAR-1
images (see [40] for details about the processing of the SAR images) and altimetry-based
water levels over rivers and floodplains.

2. Study Area

The Congo River Basin (Figure 1a) is the largest drainage basin in Africa. Its shape is
almost circular, covering an area of ~4 million km2 [42]. It is the second river in the world,
after the Amazon River, in terms of discharge (~40,000 m3·s−1) [43]. Its main waterway
is the Congo River, with a length of ~6650 km from its source in the southeast of the
Democratic Republic of Congo to the Atlantic Ocean [44]. The Congo River Basin is mainly
located in the equatorial and tropical savanna climate area according to the Köppen–Geiger
climate classification [45], but also in the humid subtropical climate in its southern part,
and, marginally, in the semi-arid and desert climates in the east (Figure 1a).

The Cuvette Centrale is a vast floodplain located in the center of the Congo River Basin
which extends from 3◦ S to 3◦ N in latitude and from 16◦ E to 22◦ E in longitude (Figure 1b).
It covers an area of 1,176,000 km2 with a wetland extent of 360,000 km2 (32% of its area) [46].
It is the remnant of a lake which occupied the area during the Tertiary geological period
that is now surrounded by mountains and plateaus [47]. As this area is difficult to access,
the vegetation has been poorly studied [48]. It is mostly covered with tropical evergreen
forests, and vegetation adapted to soils saturated with water (e.g., flooded forests and
inundated grasslands) [40,46,49,50]. In the Cuvette Centrale are located the confluences
between the Congo River and two of its major northern tributaries, the Ubangi River, and
downstream, the Sangha River. The annual rainfall in the Cuvette Centrale ranges from
1400 to 1800 mm·year−1 and the potential evapotranspiration reaches 1280 mm·year−1 [51].
The topography is flat with an average slope lower than 7 cm·km−1 between Kisangani
and Kinshasa [42], on the 50 km upstream is the outlet of the Kasai River [52] and on
the 450 km upstream, is the downstream part of the Ubangi River [53]. The Cuvette
Centrale is covered with sandy lacustrine Quaternary sediments where are located the
forested wetlands [54,55]. These forested wetlands are subject to the flood pulse of the
Congo River [56]. Water levels of the Congo River are characterized by a bimodal flooding
pattern, with a main peak of high water in November–December, and a secondary one
in April–May, a more pronounced low water stage in August and one of lower intensity
occurring in February–March in the Cuvette Centrale. The hydrological regime of the
Ubangi (main tributary in the north of the Cuvette Centrale) is characterized by a high
water period peaking in November and low water levels in March [57]. Permanently
inundated areas are located alongside the rivers. Other areas are inundated either during
both flood events (discontinuously during a long time period of 6–7 months) or only during
the maximum of the largest inundation event occurring in November–December (during a
shorter time period of 2–3 months). More details about the Cuvette Centrale, its vegetation
and hydrological regime can be found in [40].
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Figure 1. (a) The Congo River Basin and its location in the climate zones of Africa from the updated Köppen–Geiger
classification [43], the red rectangle encompasses the Cuvette Centrale; (b) locations of the radar altimetry ground-tracks
(Envisat in red, Jason-2 in blue) inside the Cuvette Centrale. Land types come from [38].
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3. Datasets

3.1. Radar Altimetry Data

Data acquired by two altimetry missions (ENVISAT and Jason-2) were considered
in this study. These two missions were operating on their nominal orbits from March
2002 to October 2010 and from June 2008 to September 2016 respectively. These two
missions were chosen because they were operating when PALSAR-1 onboard ALOS-1 was
in operation (see Section 3.2). A complete description of these two altimetry missions can
be found in [58] and in [59]. In this study, the following parameters, available at high
frequency (i.e., at 18 Hz for ENVISAT and 20 Hz for Jason-2, that is to say ~350 m along the
altimetry ground-tracks), were used: the time and geographical locations of acquisition,
the distance between the satellite and the surface or range, the orbit of the satellite, the
corrections applied to the range to account for the delays caused by the path through
the atmosphere (ionosphere, dry and wet atmosphere corrections) and some geophysical
effects (solid earth and pole tides), the geoid model and the backscattering coefficient (σ0)
at Ku-band. Radar altimeter ranges and backscattering coefficients at Ku-band are derived
from the offset center of gravity (OCOG) retracking algorithm [60], found to be well-suited
for land surface studies in several previous studies (e.g., [26,61]). All these parameters,
contained in the geophysical data records (GDR) of each mission, are made available by
Centre de Topographie des Océans et de l’Hydrosphère (CTOH) [62], as well as indexes
of the normalized tracks [63,64] that were used to compute statistics along the tracks (see
Section 4.2). The location of the ground-tracks in the Cuvette Centrale is presented in
Figure 1b.

3.2. Land Cover Map of the Cuvette Centrale

It results from the merging of two unsupervised classifications obtained using the
k-means clustering technique:

(i) From the enhanced vegetation index (EVI) [65] from the L3 Global 500 m 16-Day
moderate resolution imaging spectroradiometer (MODIS) onboard the NASA Terra
satellite product (MOD13A1) from 2001 to 2009;

(ii) From a series of six PALSAR-1 images at 100 m of spatial resolution acquired at
L-band, in HH polarization and at various viewing angles (from 18◦ to 43◦), in
ScanSAR mode by the phased array type synthetic aperture radar (PALSAR) sensors
onboard the Advanced Land Observing Satellite (ALOS) on 7 September 2007, 25
October 2008, 25 January 2009, 27 April 2009, 13 December 2009, and 15 March 2010.

Four classes of forest types and four classes of hydrological status were obtained from
the Thorndike index [66]. Through cross-comparisons with several external datasets, the
topographic map of northern Congo, ICESat lidar data of elevation and canopy height and
aerial photographs, five classes were identified attributed to:

(i) Open water;
(ii) Permanently flooded forests;
(iii) Seasonally flooded forests during the two Congo River flood pulses and located

alongside the river;
(iv) Seasonally flooded forests during a short time corresponding to the maximum of the

largest flood pulse, farther from the river;
(v) Non-flooded forests.

More details about the classification results can be found in [40].

3.3. Altimetry-Based Time Series of Water Levels

As no in situ data of water stage are available in the study area during the altimetry
period, time series of water levels derived from ENVISAT and Jason-2 data over rivers
in the Cuvette Centrale were used to validate the automatic estimates of river heights
derived from the unsupervised classification applied to the radar altimetry backscattering
coefficients. They were obtained from the Hydroweb database [41]. In this study, 24 and
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32 time series from ENVISAT (35-day repeat period) and Jason-2 (10-day repeat period),
respectively, were used. The length of the cross-sections between the river and the altimetry
tracks range from 100 to 150 m in the upstream parts of the Cuvette Centrale to 10 km in its
downstream part.

4. Methods

4.1. Radar Altimetry Data Pre-Processing

Radar altimetry data were preprocessed in order to:

(i) Derive the altimeter height (h) from the parameters contained in the GDR using the
following equation (e.g., [67]):

h = H − R − Σ(∆Rpropagation + ∆Rgeophysical) + N, (1)

where H is the height of the center of mass of the satellite above the ellipsoid estimated using
the Precise Orbit Determination (POD) technique, R is the altimeter range (i.e., the distance
from the center of mass of the satellite to the surface taking into account instrumental
corrections equals to c∆t/2 where c is the velocity of light in the vacuum and ∆t is the
two-way travel time of the electromagnetic wave emitted by the radar), ∆Rpropagation and
∆Rgeophysical are the sum of the geophysical and environmental corrections applied to the
range, respectively, and N is the geoid.

The corrections to apply to the range for the propagation are the following:

∆Rpropagation = ∆Rion + ∆Rdry + ∆Rwet, (2)

where ∆Rion is the atmospheric refraction range delay due to the free electron content asso-
ciated with the dielectric properties of the ionosphere, ∆Rdry is the atmospheric refraction
range delay due to the dry gas component of the troposphere, ∆Rwet is the atmospheric
refraction range delay due to the water vapor and the cloud liquid water content of
the troposphere.

And for the geophysical effects:

∆Rgeophysical = ∆Rsolid·Earth + ∆Rpole, (3)

where ∆Rsolid·Earth and ∆Rpole are the corrections accounting for crustal vertical motions
due to the solid Earth and pole tides, respectively.

(ii) Obtain along-track time series of backscattering coefficient presenting no missing
data in entry of the clustering method. To do so, monthly climatologies (i.e., the
average of all data from each month averaged over the whole study period) of
backscattering at Ku-band for every normalized index along the altimetry ground-
tracks were computed.

4.2. Radar Altimetry Data Clustering

K-means clustering is a statistical technique designed to assign objects to a fixed
number of groups or clusters based on the analysis of a set of specified variables so that the
within-cluster sum of squares is minimum [68]. The initial cluster centers K are selected
and then iteratively refined:

(i) Each object is assigned to its closest cluster in terms of distance to the center of
the cluster;

(ii) At every iteration, each cluster center or centroid is updated to be the average of the
member of the cluster.

This process is repeated until convergence.
K-means++ algorithm, which improves the quality of the final solution in terms of

intra-cluster distances [69] was used. It benefits from repeated new initial cluster centroid
positions. The number of times to repeat clustering using the new initial cluster centroid
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positions was set to 5 and the maximum number of iterations before convergence to 100.
The distance used for the k-means approach is the Euclidean distance (Ed).

In this study, the k-means approach is used to perform an unsupervised classification
of the radar altimetry data using the seasonality of the backscattering at Ku-band. Data used
as an input of the k-means clustering are climatological monthly variations in the backscat-
tering at Ku-band for every normalized index along the altimetry ground-tracks [37]. The
average (¯) and standard deviation (std) of the radar altimetry backscattering coefficients
(σ0) are computed on every along-track grid-point as follows [36,37]:

σ0 (dB) = 10 log10

(
10 σ0/10

)
, (4)

std(σ0) (dB) = 10 log10


1 +

std
(

10 σ0/10
)

10 σ0/10


, (5)

The optimal number of clusters was determined using the Calinski–Harabasz criterion
(ICH) and the silhouette coefficient (6 and 7, respectively). ICH or variance ratio criterion
was defined as the between-cluster variance and the overall within-cluster variance [39]:

ICH =
NS − C

C − 1
∑

C
i=1 d(ui, U)

∑
C
i=1 ∑xj∈CLi

Ed
(

xj, ui

) , (6)

where NS is the number of samples, C the number of clusters, Ed the Euclidian distance
between two elements, ui the ith centroid, U the center of gravity of the whole dataset, CLi

the ith cluster, xj is the jth element of the dataset. ICH is the maximum value obtained for
a given maximum number of clusters C. Time series of water levels were then obtained
computing the median of the consecutive acquisitions from river and wetland classes. In
the case of long continuous classes, time series were computed on a maximum distance
of 5 km.

The silhouette coefficient provides an assessment of partitioning validity and can be
used for determining the optimal number of classes [70].

The validity of the clustering is measured by computing the similarity or cohesion of
each cluster member and its separation to the other clusters. The silhouette coefficient for
the ith cluster member is defined as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (7)

where a(i) is the average Ed between the ith member in cluster A and the other members of
this cluster; b(i) is the average Ed between member i and the members in its second closest
cluster B.

The silhouette ranges between −1 and 1. If s(i) close to 1, the member i is well-assigned
to cluster A. If s(i) is close to 0, the object can be in-between of A and B. If s(i) is close to −1,
the object is badly assigned to its cluster and on average closer to members of B [70].

4.3. Automatic Generation of Time Series of Water Levels

Based on the results of the unsupervised classification, time series of water levels are
generated from RA data over the classes corresponding to open water and inundated areas.
A time series is generated if there are at least five non-flagged altimetry heights within a
distance of 3 km non-separated between each other by more than 1 km. The minimum
distance between two different VSs is 3 km.

4.4. Validation

Two types of evaluation of the classification of altimetry data are performed. Global
validation is performed against the land cover map of the Cuvette Centrale from [40]
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considered as the reference. The confusion matrix is estimated when comparing the classes
derived from the k-means clustering technique to the classes of land types.

Local validation parameters (bias, RMSE, R) were also performed comparing the time
series of water level automatically produced using the results from the unsupervised to
time series of water levels from Hydroweb.

4.5. Surface Water Volume Estimates

Maps of surface water levels were obtained combining inundation extent derived from
the land cover map of the Cuvette Centrale [40] with radar altimetry-based water levels
from ENVISAT and Jason-2. The methodology defined in [22,23] and applied to different
types of satellite images, such as SAR [22], multispectral [71] and passive microwaves [72],
was used in this study. It consists in interpolating altimetry-based water stages over the
inundated areas using an inverse distance weighting (IDW) technique. The wetlands
inundation map was used to simulate the inundation extent over 2006–2010 as the PALSAR
images used to achieve this inundation map do not allow to reach a monthly temporal
resolution. During a low water period (February to April and July–August), water extent is
limited to open water and permanent inundation classes (numbered 1 and 2 in Section 3.2).
For the first high water period and the rising and decline of the second and larger high
water period (May–June and September–October), seasonally flooded areas during the
two flood pulses (class 3) are also considered, and for the peak of high water period
(November–January), all classes related to water (i.e., the previously mentioned and the
seasonally flooded areas during a short time corresponding to the maximum of the largest
flood pulse, class 4) are merged. A map of minimum water levels recorded during the
whole common observation period between SAR and altimetry was computed using a
hypsometric approach to take into account the difference of altitude between the river and
the floodplain (see [23] for more details on the method).

5. Results

5.1. Automatic Generation of Time Series of Water Levels

The optimal number of classes of backscattering coefficients was chosen by analyzing
the Calinski–Harabasz criterion and the silhouette index from the number of classes ranging
from 2 to 10 for both ENVISAT and Jason-2 data. The evolution of these indices as a function
of the number of class is presented in Figure 2 for ENVISAT and Jason-2 backscattering.
As silhouette coefficients are far from 1 for both ENVISAT (maximum value of 0.58) and
Jason-2 (maximum of 0.51) backscattering coefficients, they cannot be used for determining
the optimal number of classes from altimetry backscattering coefficients. On the contrary,
ICH presents a clear peak for both ENVISAT and Jason-2 for 4 and 3 classes respectively
(Figure 2). Nevertheless, very similar values of ICH (varying from less than 5% from the
maximum value) can be observed for a number of classes ranging from 3 to 5 for both
altimeters. In the following, all the results are be presented using the number of classes
varying from 3 to 5.

5.2. Unsupervised Classification Results

K-means unsupervised classification was applied to ENVISAT and Jason-2 backscatter-
ing at Ku-band considering 3 to 5 classes. Figures 3 and 4 present the seasonal distribution
of backscattering at Ku-band from ENVISAT and Jason-2 respectively for class numbers
ranging from 3 to 5. The different classes obtained from the k-means approach exhibit
a quite similar temporal behavior with a maximum occurring in December, a minimum
in August, a secondary maximum in May and a secondary minimum in March. This
seasonal change is in phase with the temporal variations in the water levels and discharge
of the Congo River (e.g., [38,65]) but in opposite phase with the backscattering at L-band
from PALSAR-1 images [38]. Larger seasonal amplitudes are observed for the classes
characterized by a higher backscattering. Better separability is observed for 3 and 4 than
for 5 classes (i.e., less overlap of the std). In this latter case, the distances between the center
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of the consecutive classes can be lower than the sum of the standard deviations of these
two classes. This lower separability affects more the classes with the lower backscattering
coefficients and more the Jason-2 data than the ENVISAT data.

Figure 2. Evolution of the Calinski–Harabasz criterion (ICH in blue) and the silhouette (in red) criterion as a function of the
number of classes for ENVISAT (upper panel); Jason-2 (lower panel) backscattering coefficients.

The following classes are present in the classification of the Cuvette Centrale used in
this study:

(i) Open water;
(ii) Permanently flooded forests;
(iii) Seasonally flooded forests during the two Congo River flood pulses and located

alongside the river;
(iv) Seasonally flooded forests during a short time corresponding to the maximum of the

largest flood pulse, farther from the river;
(v) Non-flooded forests.

From the results obtained in Section 5.1, confusion matrices were obtained using 3 to
5 classes from the radar altimetry backscattering datasets. They are presented in Table A1
(3 classes), Table A2 (4 classes) and Table 1 (5 classes) for ENVISAT and Table A3 (3 classes),
Table A4 (4 classes) and Table 2 (5 classes) for Jason-2.

Table 1. Confusion matrix between 5 classes of RA backscattering coefficients from ENVISAT and
the 5 land type classes identified on the study sites.

ENVISAT
Class

Open Water Flood. Perm.
Flood. Seas.

Long
Flood. Seas.

Short
Non-Flood.

1 0.42 0.29 0.21 0.07 0.01
2 0.19 0.26 0.36 0.17 0.02
3 0.05 0.09 0.43 0.34 0.09
4 0.00 0.03 0.34 0.49 0.14
5 0.01 0.01 0.15 0.57 0.26
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Figure 3. Seasonal variations in the mean backscattering coefficient and its associated deviation at
Ku-band from ENVISAT (2003–2010) for each class when considering (a) 3, (b) 4, (c) 5 classes.
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Figure 4. Seasonal variations in the mean backscattering coefficient and its associated deviation at
Ku-band from Jason-2 (2008–2016) for each class when considering (a) 3, (b) 4, (c) 5 classes.

Table 2. Confusion matrix between 5 classes of RA backscattering coefficients from Jason-2 and the
5 land type classes identified on the study sites.

Jason-2
Class

Open Water Flood. Perm.
Flood. Seas.

Long
Flood. Seas.

Short
Non-Flood.

1 0.60 0.21 0.17 0.01 0.01
2 0.21 0.29 0.31 0.17 0.02
3 0.01 0.10 0.47 0.33 0.09
4 0.00 0.01 0.38 0.45 0.16
5 0.00 0.00 0.10 0.64 0.26
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Radar altimetry backscattering classes do not have the same distribution as land
type classes. Maximum values range between 0.6 and 0.65, e.g., Jason-2 class 1 data
are distributed at 0.6 and 0.62 in the open water class when considering 4 and 5 classes,
respectively, at 0.62 and 0.64 for short duration flooded forests (Table 2 and Table A4
respectively). These results can appear low compared with those obtained for images
classification. However, as the footprint of the radar altimeter has a radius of several
kilometers, it encompasses very heterogenous surfaces in terms of roughness, soil and
vegetation types, moisture content and presence or not of surface water.

Previous studies analyzing radar altimetry backscattering coefficients over land sur-
faces showed that high values of backscattering are observed over rivers and floodplains
and low values over vegetation [32,35,36,64,73].

When merging results from predominantly water and vegetation, we obtain:

- The results 0.89, 0.91 and 0.92 for ENVISAT 0.89, 0.93, 0.98 for Jason-2 when consider-
ing the sum of the backscattering values in class 1 over open water, permanently and
long duration flooded forests;

- The results 0.72, 0.89, 0.93 for ENVISAT and 0.85, 0.79, 0.90 for Jason-2 when consider-
ing the sum of the backscattering values in the last class over short duration flooded
and non-flooded forests.

The spatial distribution of the backscattering classes is presented for ENVISAT and
Jason-2 over the whole Cuvette Centrale in Figure 5 and a smaller area in Figure 6 to
illustrate the good agreement between the unsupervised classification and the land types.

Figure 5. Spatial distribution of the backscattering classes (Ku band) from (a) ENVISAT and (b) Jason-
2 in the Cuvette Centrale of Congo.
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Figure 6. Same as Figure 5 for a smaller area.

5.3. Time Series of Water Levels and Volumes

A total of 250 and 358 time series of water levels were automatically generated over
the Cuvette Centrale of Congo using Jason-2 and ENVISAT data respectively for five
classes of backscattering (Figure 7). Comparisons were performed between them and the
closest location (below 5 km) of a Hydroweb VS. Bias, RMSE and R were estimated for
24 Jason-2 and 32 ENVISAT VSs (Figure 8). Very good agreement was found between the
automatically generated time series and the Hydroweb ones with R generally higher than
0.95 (18 out of 24 for Jason-2 and 31 out of 32 for ENVISAT), RMSE lower than 0.25 m
(15 out of 24 for Jason-2 VS, 22 out 32 for ENVISAT VSs) and bias lower than 0.25 m (22 out
of 24 for Jason-2 VS, 26 out of 32 for ENVISAT VSs).
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Figure 7. Locations of the VSs automatically created on the Jason-2 (blue triangles) and ENVISAT
(light blue squares) ground-tracks and of the VSs from Hydroweb (Jason-2, green triangles; and
ENVISAT, red circles) used for comparison.

Figure 8. Comparison between altimetry-based of water levels from Hydroweb and automatically generated (this study) in
terms of (a) bias, (b) RMSE and (c) r. VS locations are represented using either a dot (Jason-2) or a triangle (ENVISAT).
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5.4. Surface Water Storage

Monthly maps of surface water levels and associated water volume variations were
derived interpolating altimetry-based water levels on the wetland extent at a monthly
temporal resolution. To avoid differences caused by intermission biases, these maps were
obtained only using ENVISAT VSs. The VSs used were the ones automatically derived
over either the rivers or the rivers and the floodplains. The associated surface water
volume variations were computed in both cases. The annual amplitude for the largest
flood period (November–December) is around four times higher (above 800 km3) and the
flood peak occurs 1 to 2 months later (December–January) only using VSs on rivers then
using VSs on both the rivers and the floodplains (Figure 9). These differences of volume are
caused by differences in spatial patterns of the water stage. Maps of the minimum height
were obtained from ENVISAT. The minimum height is either the minimum of the water
level during the observation period over rivers and permanently flooded pixels, or the
bottom topography of floodplains over non-permanently inundated areas. In Figure 10 are
presented maps based on the VSs automatically created over the rivers and the floodplains
(a), or based on VSs manually created over the rivers and made available by Hydroweb
(b). As it can be seen from their difference (c), the minimum height is quite similar on
the center of the Cuvette Centrale, and increases up to ~30 m on the edges of the study
area. Considering the mean annual amplitude, either automatically created over rivers and
floodplains (d) or manually created over rivers only (e), differences up to ~10 m, positive
in the north and negative in the south can be observed (f).

Figure 9. Time series of surface water storage of the Cuvette Centrale of Congo obtained combining the surface water extent
and the time series of water levels from the ENVISAT VSs on the rivers (black), on the rivers and floodplains (blue). Their
difference is presented in dashed green.
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Figure 10. Maps of minimum of height from ENVISAT based on the VSs (a) automatically created over the rivers and the
floodplains or (b) manually created over the rivers and made available by Hydroweb, and (c) their difference. Maps of
mean annual amplitude using the VSs (d) over the rivers and floodplains, (e) only over the rivers, and (f) their difference.

6. Discussion

6.1. Identification of Open Water on RA Ground-Tracks

The results of the classification of the RA backscattering coefficients show that this
parameter can be used to efficiently discriminate between water and vegetation under
both ENVISAT and Jason-2 ground-tracks. Contrary to SAR or multi-spectral images,
this type of sensor seems to be unable to discriminate between open water and water
under vegetations in the floodplains (see the results of the confusion matrices presented in
Tables 1, 2 and A1–A4). This is most likely due to:

(i) The size of the illuminated area at Ku-band (several km of diameter in low resolution
mode (LRM)), the scene present in the altimeter footprint is very heterogenous and
encompasses both rivers and the surrounding floodplains;

(ii) The RA sensor is acquiring data at nadir. As a consequence, the power backscattered
by the water dominates the radar echo. RA backscattering are much stronger over
rivers and floodplains than over any other types of land cover (e.g., [32,36,37]). Even
under forest canopy, water levels can be retrieved (e.g., [22] and this study).

All the classes exhibit a similar temporal behavior even for the classes corresponding
to non-inundated areas. The smaller seasonal cycle observed for these classes can be
attributed to an increase in soil moisture during the wet periods, which a change in the
dielectrical properties of the soil, and hence a rise in σ0 which can be detected even under
a dense vegetation cover [35–37,74].

This good ability allowed to automatically generate time series of water levels on the
RA ground-tracks; 358/250 VSs were generated on the ENVISAT/Jason-2 ground-tracks,
respectively. The ones on the river were validated against manually created time series
of water levels from Hydroweb due to the lack of in-situ data for validation. Very similar
results were obtained when using the approach presented in this study versus the manual
creation of VSs (RMSE ≤ 0.25 m in more than 80%/90% of the 32/24 cases and R ≥ 0.95 in
more than 95%/75% of the same cases for ENVISAT and Jason-2, respectively). The time
series of the anomaly of water levels from ENVISAT and Jason-2, averaged over all the sta-
tions located on the river and the permanently inundated areas, and over non-permanently
inundated areas are presented on Figure 11. The temporal variations are consistent with
the hydrological regimes of the area: a first maximum in April–May, a secondary larger one



Remote Sens. 2021, 13, 3804 17 of 22

in November–December, as well as the annual amplitude around 3–4 m (e.g., [65,67,68])
and lower over the floodplains [47], as it can be seen when considering the average ± 1 std.
The lower mean annual amplitude is observed on time series from ENVISAT (Figure 11a,c)
than Jason-2 (Figure 11b,d). This is most likely due to the longer temporal revisit period of
ENVISAT (35 days) than Jason-2 (10 days) and the higher number of VSs on the ENVISAT
ground-tracks (358) than Jason-2 (250).

Figure 11. Time series of anomaly of water levels averaged over all the stations located on the
river and the permanently inundated areas from (a) ENVISAT and (b) Jason-2, and over the non-
permanently inundated areas from (c) ENVISAT and (d) Jason-2.

6.2. Impact on Anomaly of Surface Water Storage

The densification of the network of VSs with the definition of new VSs over the
floodplains and wetlands offer a unique opportunity to better understand the dynamics of
this hydrological reservoir. Two parameters are used to characterize the surface reservoir:
the discharge and the storage. The combination of surface extent with water level variations
provides access to the surface water storage changes (e.g., [22,71]). In most of the river
basins, time series of water level from RA are only recorded at VSs over rivers. This study
offers an opportunity to measure the impact of the inclusion of VSs over floodplains on
the estimates of surface water storage variations. Even if the real time series of inundation
extent is not considered here, realistic monthly variations in this parameter were used.
Note that a recent study showed that the use of a climatology of surface water extent was
sufficient to retrieve accurate variations in surface water storage [75]. Our study showed
that the differences in bottom topography of the floodplains (Figure 10a–c) and in the
patterns of the annual amplitude of water level (Figure 10d–f) have large consequences on
the amplitude of the variations in surface water storage in the Cuvette Centrale of Congo.
The lack of VSs on rivers for the upstream parts in the northwest of the study area leads
to an underestimate of the bottom topography from 10 to 30 m, and an overestimate of
the annual amplitude above 5 m, causing an overestimate of the storage by a factor of
four. Besides, spatial patterns of the annual amplitude are more consistent with the spatial
distribution of the wetlands in the Cuvette Centrale. For instance, if we consider the region
centered on 18◦ E and from 0 to 2◦ N, high annual amplitude is observed in the Ngiri and
Eulonga basins (below 1◦ N), a close to zero annual amplitude above, in the Upper Ubangi
basin when using the VSs on the floodplains in the interpolation (Figure 10d), in good
agreement with the map of the probability of wetlands [46]. On the contrary, high annual
amplitude is found on the whole area when only using the VSs on the rivers (Figure 10e).
These differences account for the change in amplitude and temporality (Figure 9) between
the study cases (VSs only over the rivers or on the rivers and the floodplains). The influence
of the larger changes in water levels observed over the rivers is limited when increasing
the number of VSs in the IDW both on the storage and its seasonality (e.g., the signal is
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dominated by the largest floodplains and the time-lag of the seasonal cycle of the Congo
River tributaries).

7. Conclusions

Radar altimetry is a unique tool for measuring water levels over inland waterbodies,
and especially over the non-gauged wetlands and floodplains. Identifying the presence of
water in wetlands and floodplains (where and when) makes difficult the construction of
VSs over these environments. In this study, applying a k-means unsupervised classification
approach to RA backscattering coefficients allows to accurately identify the flooded (good
detection over 90%) and non-flooded areas over a complex equatorial area, the Cuvette
Centrale of Congo, where floodplains are mostly covered with vegetation. Contrary to
other types of satellite products, RA, due to the size of its footprint (several kilometers of
diameter at Ku-band), seems unable to discriminate between open water and permanently
flooded areas or to provide information on the type of vegetation covering the non-flooded
area. Using the classification results, time series of water levels were automatically created
over the rivers and the floodplains of the Cuvette Centrale of Congo (358/250 on the
ENVISAT and Jason-2 ground-tracks, respectively). The resulting time series exhibit
temporal variations in good agreement with the hydrological regime of the study area in
terms of temporal variations and annual amplitude. Very similar results to the manually
created time series of water levels were obtained: (RMSE ≤ 0.25 m in more than 80%/90%
of the 32/24 cases and R ≥ 0.95 in more than 95%/75% of the same cases for ENVISAT and
Jason-2, respectively). The densification of the VSs network by including the floodplains
has a strong implication on the water volume estimate.

Owing to the larger number of VSs used when considering the VSs on the floodplains,
the interpolation of the water level maps is more constrained, and the spatial patterns
of annual amplitudes are more consistent with the information on the wetland extent.
With the availability of data from recent RA missions operating in SAR mode such as
SENTINEL-3A and B, better discrimination based on the backscattering can be expected,
allowing to continue the monitoring with a better accuracy of the time series of water levels
over the floodplains. This approach is likely to be applied to any other extensive wetlands
or floodplains and will contribute to a better estimate, in combination with satellite images,
to the changes in surface water storage over land. As the high precision altimetry era
started in the early/mid 1990s with the launch of Topex/Poseidon (1992) and ERS-1/2
(1991 and 1995, respectively), a long-term record of almost 30 years of surface water storage
variations can soon be available. All this information will have a large importance for better
understanding the hydrological processes in the floodplains and wetlands and for the
comparison with data acquired by the future NASA/CNES SWOT mission, to be launched
in 2022, which will the first to estimate water levels in a swath.
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Appendix A

Table A1. Confusion matrix between 3 classes of RA backscattering coefficients from ENVISAT and
the 5 land type classes identified on the study sites.

ENVISAT
Class

Open Water Flood. Perm.
Flood. Seas.

Long
Flood. Seas.

Short
Non-Flood.

1 0.33 0.30 0.26 0.10 0.01
2 0.06 0.10 0.41 0.34 0.09
3 0.01 0.02 0.25 0.53 0.19

Table A2. Confusion matrix between 4 classes of RA backscattering coefficients from ENVISAT and
the 5 land type classes identified on the study sites.

ENVISAT
Class

Open Water Flood. Perm.
Flood. Seas.

Long
Flood. Seas.

Short
Non-Flood.

1 0.40 0.29 0.22 0.08 0.01
2 0.08 0.17 0.43 0.26 0.06
3 0.00 0.04 0.42 0.41 0.13
4 0.00 0.00 0.11 0.64 0.25

Table A3. Confusion matrix between 3 classes of RA backscattering coefficients from Jason-2 and the
5 land type classes identified on the study sites.

Jason-2
Class

Open Water Flood. Perm.
Flood. Seas.

Long
Flood. Seas.

Short
Non-Flood.

1 0.41 0.25 0.24 0.09 0.01
2 0.01 0.07 0.47 0.35 0.10
3 0.00 0.00 0.15 0.62 0.23

Table A4. Confusion matrix between 4 classes of RA backscattering coefficients from Jason-2 and the
5 land type classes identified on the study sites.

Jason-2
Class

Open Water Flood. Perm.
Flood. Seas.

Long
Flood. Seas.

Short
Non-Flood.

1 0.48 0.26 0.19 0.06 0.01
2 0.15 0.21 0.39 0.21 0.04
3 0.01 0.05 0.40 0.42 0.12
4 0.01 0.02 0.18 0.57 0.22
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