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Abstract

Quantum dots are an attractive model system for basic studies and applications in ther-

moelectricity, owing to their tunable electronic transmission and electron-hole asymmetry.

In the weak coupling regime, the discreteness of the quantum dot energy spectrum makes

electronic transport processes strongly selective in energy. The net heat flow is zero in

such a device since electrons tunnel back and forth exactly using the same energy level.

Therefore, a weakly coupled quantum dot is in principle a good thermal insulator as heat

conductance is zero regardless of the position of the quantum dot level with respect to the

energy.

We investigate heat flow in two different quantum dot devices. First, in a metallic

single quantum dot junction, fabricated using the electromigration technique, we experi-

mentally measured heat conductance in the presence of strong co-tunneling effects using a

sensitive superconductor-normal metal-superconductor (S-N-S) junctions as a local tem-

perature probe of the leads. We demonstrate the gate control of the electronic heat flow,

in agreement with the numerical calculations. Electron temperature maps taken in the

immediate vicinity of the junction, as a function of the gate and bias voltages applied to

the device, reveal clearly defined Coulomb diamond structures. In addition, we combine

charge and heat conductances which demonstrate a violation of the Wiedemann-Franz law

in the intermediate coupling regime.

Then, we move to InAs nanowire based-devices, as they have attracted considerable

attention due to their remarkable tunability on the coupling of the quantum dot and

their stability in time for thermoelectric applications. We report on a simultaneous mea-

surements of heat and charge transport using a sensitive superconductor-insulator-normal

metal (S-I-N) electron thermometer integrated inside the device. We demonstrated an ad-

justable and strongly energy-selective heat conduction significantly below the Wiedemann-

Franz prediction. Moreover, the observed phenomena in both experiments agree well with

the theoretical calculations.
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Résumé

Les boîtes quantiques constituent un système attrayant pour les études fondamentales et

les applications en thermoélectricité, en raison de leur transmission électronique ajustable

et de leur asymétrie électron-trou naturelle. Dans le régime de couplage faible, la dis-

crétisation du spectre d’énergie d’une boîte quantique rend les processus de transport

électronique fortement sélectifs en énergie. Le flux net de chaleur est nul dans un tel dis-

positif puisque les électrons se déplacent par effet tunnel en utilisant exactement le même

niveau d’énergie. Par conséquent, la conductance thermique est nulle quelle que soit la

position du niveau de la boîte quantique par rapport à l’énergie. Une boîte quantique

faiblement couplée est aussi un bon isolant thermique.

Nous étudions le flux de chaleur dans deux dispositifs à boîtes quantiques différents.

Premièrement, dans une jonction métallique à boîte quantique unique, fabriquée à l’aide

de la technique d’électromigration, nous avons mesuré expérimentalement la conductance

thermique en présence de forts effets de co-tunneling en utilisant une jonction sensible

supraconducteur-métal normal-supraconducteur (S-N-S) comme sonde de température lo-

cale. Nous démontrons le contrôle par la grille du flux de chaleur électronique, en ac-

cord avec les calculs numériques. Les cartes de température des électrons prises dans le

voisinage immédiat de la jonction, en fonction de la grille et des tensions de polarisation

appliquées au dispositif, révèlent des structures en losange de Coulomb clairement définies.

En outre, nous combinons les conductances de charge et de chaleur à travers une jonction

de boîtes quantiques réalisée par cette méthode, ce qui démontre une violation de la loi

de Wiedemann-Franz dans le régime de couplage intermédiaire.

Ensuite, nous passons aux dispositifs à base de nanofils d’InAs, car ils ont attiré une

attention considérable en raison de leur remarquable ajustabilité sur le couplage de la boîte

quantique a ses contact et de leur stabilité dans le temps. Nous rapportons des mesures

simultanées du transport de chaleur et de charge unique en utilisant un thermomètre

électronique sensible de type supraconducteur-isolant-métal normal (S-I-N) intégré dans
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le dispositif. Nous montrons une conduction thermique ajustable et fortement sélective

en énergie, significativement inférieure à la prédiction de Wiedemann-Franz. En outre, les

phénomènes observés dans les deux expériences concordent bien avec les calculs théoriques.
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Outline

In this fast-paced world, people are often tangled up with their own lives. This leads people

to follow a common notion, ’the faster, the better’, ‘the more compact, the better’, ‘the

more durable, the better’. Rapid progress in high-speed and densely-packed electronic

devices has imported outstanding advantages to our society. However, this technology

trend has in reverse led to a substantial increase in heat dissipation, which degrades

device performance and lifetime [1]. Therefore, heat flow plays a significant role because

it is either a parasitic effect and is therefore undesired, as is the case in thermoelectrics,

or because high heat flow is critically required for thermal management [2, 3, 4, 5, 6].

When the size of a material is reduced into a nano-scale, the material properties change

significantly and the new variable length scale, i.e. electron wavelength, impacts their

charge and heat transport properties. As depicted in Fig. 1, this size-dependent change

in the density of states is commonly referred to as quantum confinement . As the system

size approaches nanometer length scales, there are dramatic differences in the electronic

density of states (DOS) of the system. The density of states is varying roughly speaking

from the square root dependence E1/2 in a bulk, through a step-like dependence E0 in

quantum wells and an inverse square root dependence E−1/2 in quantum wires to discrete

delta function in a quantum dot [7]. In the case of bulk structures, the carried charge and

heat by the electrons in the system is in the order of kBT , whereas this picture can be

significantly modified in the presence of interactions and correlations in 1D and 0D devices

[7]. For instance, the discrete nature of the energy states causes a unique energy selective

transport property of quantum dots, which can not be observed with higher dimensionality

systems.

The study of charge transport in the quantum dot device has already allowed the

exploration of a large palette of physical effects at play, heat transport and thermoelectric

properties have been investigated in a limited number of cases, e.g. in quantum dots formed

in a two-dimensional electron gas (2DEG) [8, 9, 10] and in semiconducting nanowires

1
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[3, 11, 5]. As opposed to charge transport processes, the understanding of electronic heat

transport and generation across a nano-scale object is, experimentally, still in its infancy

[12, 13, 14].

Quantum dots can generate a large electric current from a temperature gradient but

with a minimal heat flow which is the cornerstone of thermoelectric applications [15, 16,

17, 18, 19]. Therefore, they became the "best thermoelectric" as theorised by Mahan and

Sofo [20], because carriers can be tuned so that they carry the same amount of charge

but more or less heat current depending on where the quantum dot level happens to be.

This idea of having such an ideal high energy electron filtration was further explored by

Humphrey et al [16, 21] and Dutta et al [22] in recent years.

Fig. 1: Schematic illustration of the density of states (DOS) as a function of energy for a 3D, 2D, 1D

and 0D electronic systems.

An important ingredient in all thermoelectric experiments is to have a local electronic

thermometer, as measuring a temperature or gradient temperature is a significant problem

in such studies. Local thermometry has been achieved only in a very limited number of

quantum devices. The temperature dependence of the critical current of a superconduct-

ing weak link was used in scanning probe experiments to reveal for instance the scattering

sites in high-mobility graphene [23, 24]. Yet, to date, these experiments are limited to tem-

peratures above 1 K. At milliKelvin temperatures, local thermometry can be performed in

quantum devices formed in a 2DEG by a variety of methods [25, 26] that have recently been

pushed to quantitative accuracy [6, 27, 28]. Noise thermometry was applied to thermo-
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electric measurements in InAs nanowires [29]. In metallic devices, electronic thermometry

is usually based on the temperature dependence of charge transport in superconducting

hybrids, either in the tunnelling regime for Normal metal-Insulator-Superconductor (NIS)

junctions [30, 31] or at higher transparencies allowing for superconducting correlations

[32, 33]. This has recently allowed the realization of a photonic heat valve with a su-

perconducting qubit coupled to heat reservoirs (probed by NIS probes) through coplanar

waveguide resonators [34].

Combining single electron transistor (SET) with the NIS thermometry technique, en-

ables the measurement of the thermal conductance of a metallic SET [22]. Despite the

continuous density of states in the metallic island, electron interactions readily lead to

striking deviations from the Wiedemann-Franz law [35]. Going beyond this simple case,

two questions arise: (i) how does such a SET behave thermally beyond equilibrium, that

is, at finite voltage bias and/or at large temperature difference where both Joule heat and

heat transport are to be taken into account, and (ii), if the central island is replaced by a

quantum dot (QD), how would the discrete nature of its energy spectrum manifest in the

thermal properties of the device? In the weak coupling regime, the discreteness of the QD

energy spectrum makes electronic transport processes strongly selective in energy. At zero

net particle current, whatever the gate voltage, the heat flow is zero since electrons tunnel

back and forth exactly at the energy level defined by the QD. The heat conductance is

thus zero at all gate voltages. Heat transfer is predicted only at non-zero particle current,

when the QD energy level is positioned just above or below the Fermi level of the hot lead,

so that high-energy electrons can escape through the dot, or low-energy electrons can be

injected there [36, 26].

In conductors, a higher electrical conductance G is generally associated to a correspond-

ingly higher heat conductance κ. The Wiedemann-Franz (WF) law indeed stipulates that

at a given temperature T , the ratio defined as L = κ/GT is constant and equal to the

Lorenz number L0 = (π2/3)(kB/e)2. Deviations indicate departures from Fermi liquid

physics [37] such as those found in superconductors [38], correlated electron systems [39],

Majorana modes [40] or viscous electron flow [41]. In quantum nanodevices, Coulomb

interaction and charge quantization in metallic nanoislands were also shown to lead to

departures from the WF law [35, 22, 27].

In semiconductors, the WF law is notoriously well obeyed for the electronic contribution

to heat conductance, including semiconducting nanostructures displaying transport in
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Fig. 2: Abstract graphic of different chapters discussed in this thesis. (a) theoretical background chapter

1. (b) Superconducting hybrid thermometery in chapter 3. (c) Heat valve effect in chapter 4. (d) Heat

conductance of an InAs nanowire in chapter 5.

the quantum Hall state [6, 28]. This property imposes severe limitations for instance

in thermoelectrics, for which it is desirable to maximize the charge flow while minimizing

that of heat. The most common figure of merit for thermoelectric conversion, ZT , is

indeed directly proportional to L−1. Nevertheless, semiconducting nanostructures can

display adjustable and strongly energy-selective transport processes, which could also lead

to breaking the WF law, even in the absence of interaction effects. This can be provided

for instance by the quantization of the energy levels in a single-quantum-dot junction,

allowing for an adjustable narrow transmission window in energy. Although the theory has

predicted a vanishing L/L0 for weakly tunnel-coupled quantum dots at low temperatures

[42, 43, 44, 18, 45, 46], it was experimentally shown that higher-order effects restore a

significant electronic heat leakage [47]. The validity of the WF law in a single-quantum-

dot device has however not yet been quantitatively investigated because of the difficulty

in measuring the extremely small heat currents.

I have been involved in many projects since the beginning of my PhD at Néel institute

and had the opportunity to establish the following fruitful collaborations.
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- Direct probe of the Seebeck coefficient in a Kondo-correlated single-quantum-

dot transistor.

B. Dutta, D. Majidi, A. García-Corral, P. Erdman, S. Florens, T. A. Costi, H. Courtois, C. B.

Winkelmann. Nano Lett., 19(1), (2018), pp. 506-511

I carried out the literature study, took part in device fabrication, had significant role

in the measurements and participated to the writing.

- A Single-Quantum-Dot Heat Valve.

B. Dutta, D. Majidi, N. W. Talarico, N. Lo Gullo, H. Courtois, C. B. Winkelmann. Phy. Rev.

Lett., 125(23), (2020), p.237701

I fabricated the device together with B. Dutta, performed the characterization of the

device and carried out a part of the measurement. I built sample holders used in cryostat. I

also did numerical calculation to answer referee’s questions. All the six co-author including

me co-wrote the manuscript.

- Quantum confinement suppressing electronic heat flow below the Wiedemann-

Franz law

D. Majidi, M. Josefsson, M. Kumar, M. Leijnse, L. Samuelson, H. Courtois, C. Winkelmann,

V. F. Maisi. Nano Lett. 22(2), (2022), pp. 630–635

I was involved in the design of the sample, I had main responsibility of the data

analysis, prepared all the figures, wrote the major part of supplementary information and

contributed to the writing of the main paper.

- The effect of co-tunneling on heat transport of a single quantum dot.

D. Majidi, T. Arjmand, V.F. Maisi, C. B. Winkelmann, H. Courtois.

Under preparation

I fabricated the sample, performed all of the experiments, result analysis and wrote

the majority of the manuscript.

- Probing quasiparticle excitation in a hybrid Single Electron Transistor

(SET).

D. Majidi, M. Marín-Suárez, C. B. Winkelmann, H. Courtois, J. Peltonen, J. Pekola.

Under analysis - Ongoing

I worked basically on 3 projects in parallel: improving quasiparticle relaxation, mea-

suring electron-phonon coupling constant of thin AlMn films and fabricating Coulomb
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blockade thermometers (CBTs) for high temperature thermometry during my secondment

in Aalto University. I fabricated different SETs, I measured some of them there. I have

been analyzing data together with M. Marín-Suárez.

- Targeted modifications of monolithic multiterminal superconducting weak-

links.

S. Collienne, D. Majidi, H. Courtois, C. B. Winkelmann, A. V. Silhanek.

In press, Nanoscale, (2022).

I fabricated the single and multiterminal superconducting weak-links, and SQUIDs on

Silicon and Sapphire substrates. In addition, I participated in the measurements done in

Grenoble.

- Calorimetry of a quantum phase slip

E. Gümüs, D. Majidi, D. Nikolić, P. Raif, B. Karimi, J. T. Peltonen, E. Scheer, J. P. Pekola,

H. Courtois, W. Belzig, C. Winkelmann. arXiv:2202.08726

I designed the sample, I optimized the recipe for two generation of the samples and

carried out a significant part of fabrication. I also participated in the data interpretation

and writing the manuscript.

Unfortunately, Not all of these projects can be fitted to the scope of this thesis. A

large part of the two main chapters are taken from my two publications that have been

accomplished in collaboration with my colleagues. During the first year of my PhD,

with my predecessor Bivas Dutta, we fabricated a QD device and measured the Seebeck

coefficient in a tunnel-contacted and gate-tunable individual single quantum dot junction

in the Kondo regime which can be found here [48]. In addition, in cooperation with Bivas,

we measured some of the temperature maps that I will present in chapter 4. However

the sample that we fabricated with Bivas was not stable enough and it passed away

during the measurement. When Bivas left, I continued fabricating other samples and

eventually, I was able to conduct thermal transport measurements in a QD device realized

with the electromigration technique (the second part of chapter 4). After demonstrating

that a single QD device can act as a heat-valve controlled by a gate voltage and showing

preliminary results on thermal conductance of a single quantum dot, we moved on a

different realization of quantum dot based on InAs/InP nanowires in close collaboration

with Dr. Ville Maisi. We began to use heterostructured nanowires provided by NanoLund

and integrating them with proximized SNS local thermometers at Néel Institute, and at
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the same time Dr. Maisi was fabricating hybrid devices with NIS thermometers using bare

InAs nanowires. The device fabrication and the experiment we present in chapter 5 were

conducted by Dr. Maisi at Lund University and I took over of the data analysis.

During both works, collaborations with the theory groups in Finland (Dr. N. W.

Talarico and Dr. N. Lo Gullo), and in Lund (Dr. M. Josefsson, Prof. M. Leijnse) were

lead and benefit the overall thesis project.

A brief description of the content of my work here follows as, this thesis presents

heat transport in 0D structures, i.e. metallic and semiconductor nanowire quantum dots

as shown in Fig. 2. The physical concepts presented in chapter 1 will extensively be

considered for the investigation of thermal transport through quantum dot devices in

chapter 4 and 5. The nanofabrication techniques to have single quantum dot devices

coupled to local electronic thermometers are discussed in chapter 2 and the optimization

of thermometers operation together with their theory described in chapter 3. These three

chapters will be important ingredients to report on the operation of a single metallic

quantum-dot heat valve in chapter 4, where we measure heat flow thanks to strong co-

tunneling effects. Eventually, we report on the violation of Wiedemann-Franz law in a

metallic quantum dot in the second part of chapter 4. We demonstrate a tunable ratio of

heat to charge conduction in an InAs nanowire in chapter 5.





Chapter 1

Thermoelectric transport coefficients

In this chapter, we discuss the physics of thermoelectricity using a quite simple mathe-

matical argument to develop the basic equations for thermoelectric coefficients. First, our

discussion assumes a 1D conductor and diffusive transport. Once we get the mathematical

description of thermoelectricity coefficient, then, we extend everything to describe thermo-

electricity in 0D, 2D or 3D and under ballistic or quasi-ballistic conditions.

Contents
1.1 Thermoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 Mathematical expression for thermoelectric coefficients . . . . . 12

1.1.3 Transport in a 0D device . . . . . . . . . . . . . . . . . . . . . . 24

9
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1.1 Thermoelectricity

Thermoelectric devices are able to convert heat into electricity or electric power into

cooling or more trivially heating power. Naively speaking, thermoelectricity is about heat

and charge current flow due to temperature and bias differences. The underlying physical

concept of thermoelectricity is quite easy to appreciate. The goal of this chapter is to

translate these physical concepts to simple mathematical expressions for thermoelectric

coefficients using Landauer approach that will be utilized to analyze real devices in chapter

4 and 5 of this thesis. Eventually, we discuss the relation of all the four thermoelectric

coefficients together to understand the fundamental physical properties of nano-devices

and give some experimental examples to show how one can measure all these quantities

in real life.

1.1.1 The experiment

In general, when it comes to current flow, usually one starts from a macroscopic set of

equations. The basic experiment that we are going to discuss is illustrated in Fig. 1.1.

It assumes a slab of conductor (e.g. a resistor), many mean-free-paths long, i.e. in the

regime of diffusive transport L ≫ λ, (L is the length of our conductor and λ is the mean-

free-path). Later on, we will talk about quantum dots but for the moment we start with

bulk thermoelectrics. The experiment consists of doing the following: (i) An electrical

current Ix is forced through the resistor, (ii) We impose a temperature gradient, (iii) A

voltage, V2 − V1 or electric field Ex = (V2 − V1)/L = dV/dx is measured across the device.

(iiii) We also measure the heat current through this resistor.

The electrons carry heat as they go from one end to the other end of the device. The

atomic lattice also carries heat but its discussion is beyond the scope of our studies [49].

Electron flows in such a conductor are a well-known and well-documented fact [50, 51, 52].

The current flowing in our conductor shown in Fig. 1.1 is written in the limit of zero

temperature bias as,

Jx = σ.Ex (A/m2) (1.1)

which can also be written as

Ex = ρJx
(1.2)
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Fig. 1.1: An illustration of a nanoscale electronic device. The voltage, V2, lowers the Fermi level of

contact 2 by an amount, qV . T1 and T2 are the temperature of the left and right contacts, respectively.

The electric field (Ex) is thus related to the current density (Jx) multiplied by resistivity

(ρ). When it comes to thermoelectricity, one would add an extra term which would be

related to temperature gradient and rewrite the Eq. (1.1) as:

Ex = ρJx + S dT
dx

(1.3)

where S is the thermopower (i.e Seebeck coefficient) in V/K and dT
dx

= (T2 − T1)/L is

the temperature gradient across the device. This effect was introduced for the first time

in 1821 by Thomas Johann Seebeck. He observed that a temperature difference across a

junction of two different metals produce a voltage, or an electric current if one closes the

circuit [53].

In addition to the equation for the charge current, we need an equation for the heat

current too. Electrons going from the left contact to the right contact, carry heat from

one side to the other side. As this heat follows Fourier’s law the temperature gradient,

one would expect an equation in the form of,

JQx = −κdT
dx

(W/m2) (1.4)

The above Eq. (1.4) is completed in the presence of an electric field as,

JQx = πJx − κe
dT
dx

(1.5)

there

π = T · S (1.6)
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is the Peltier coefficient which was introduced a few years after the Seebeck effect in 1834

by Jean Charles Athanase Peltier. He demonstrated that the Seebeck effect can also work

in reverse. He showed that an electric current could be used to produce a temperature

difference. These phenomena were later known as thermoelectric effect [54]. In addition,

in Eq. (1.5), κe is the electronic thermal conductance for an open-circuit condition (zero

current flow).

The Eq. (1.3) and (1.5) are known as coupled flows’ equations . A temperature gradient

produces an electrical current, and an electrical current produces a flow of heat. In other

words, both the electric field and the heat current are related to the charge current that

is forced and the temperature gradient that is imposed to the device. The Seebeck and

Peltier coefficients are fundamentally related quantities through the Kelvin relation. This

is a specific example of Onsager relation, which relates the coupling terms in the coupled

flows’ equations [52].

1.1.2 Mathematical expression for thermoelectric coefficients

Let us start by introducing a conceptual picture which is a small nano-device with a length

L as illustrated in Fig. 1.2. We have two electrical contacts to the device which are very

large regions compared to the device with lots of inelastic scattering that maintain the

thermal equilibrium constantly. Each contact has a well-defined Fermi level. However, the

Fermi functions might differ, i.e. each contact may have different temperatures or different

bias voltages.

Fig. 1.2: A conceptual thermoelectric device in an imbalance situation. L is the length of the device

channel that in our work is in the order of few hundreds nanometers. Electrons in each reservoir are

non-interacting and obeying Fermi-Dirac statistics. fl(E) and fr(E) are Fermi distribution functions at

left and right contacts, respectively.
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1.1.2.1 Electrical and heat current

The current passing through the mentioned device in Fig. 1.2 can be calculated using the

general Landauer transport theory [55, 50, 51, 56] as,

I = −Ix = 2e

h

� ∞

−∞
T (E) · M(E) · ∆f dE, (1.7)

where

∆f = fr − fl, fn =
(

exp
(

E − µn

kBTn

)
+ 1

)−1
, (1.8)

where kB is the Boltzmann constant. Here Tn and µn are the temperature and chemical

potential of the left or right contacts, respectively. In addition, e and h are the charge of

electron and Planck’s constant, respectively. Eventually, T (E) is the transmission of the

system and M(E) is the number of channels for electrons to flow at energy E from the

left to the right contact.

One can write an expression for the heat current in the same way according to the

Landauer formalism [51, 56] by keeping in mind that electrons are particles that can carry

both charge and heat. The only thing that we should do is to bring the e and replace it

with E − µn in Eq. (1.7) inside the integral, because now the energy with which electrons

are being transferred is considered. Consequently, the heat is,

Q̇l = 2
h

� ∞

−∞
(E − µl)T (E) · M(E) · ∆f dE, (1.9)

Q̇r = 2
h

� ∞

−∞
(E − µr)T (E) · M(E) · ∆f dE, (1.10)

where Q̇l and Q̇r correspond to the extracted heating from the left contact and deposit it

to the right contact, respectively. Assuming no heat drained to phonons, one can write

Q̇l − Q̇r = I∆V (1.11)

where ∆V is the voltage difference between left and right contacts, respectively.

Let’s consider each quantity used in Eq. (1.7) and Eq. (1.10) before moving forward

with thermoelectric coefficients.

Transmission (T (E)): Transmission simply tells us if we inject electrons from one con-

tact, these electrons experience a stochastic process while going from the left contact to

the right contact of the device and eventually, only a fraction of them exit from the other
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end of the device. In a ballistic regime where a conductor is short enough so that elec-

trons can travel straightforward from one electrode to the other one like a bullet (without

changing momentum), the transmission is T (E) = 1. However, not all of conductors

are short enough for electrons to behave the like bullets. In particular, when the sample

length is much longer than the mean-free-path (L ≫ λ), but still in the elastic regime,

the transport process is called diffusive. The energy-dependent mean-free-path λ(E) is

the average distance at which an electron can travel before getting scattered and L is the

length of channel. In the latter regime, which is particularly interesting for us, T (E) is a

number between 0 and 1 and reads as [57]

T (E) = λ(E)
λ(E) + L

. (1.12)

Eq. (1.7) can be applied for calculating the current in smaller devices (0D, i.e. a quantum

dot), however, one should be careful and define the T (E) correctly. In single level devices,

the connection of the contacts to the channel is described by a characteristic time τ , which

explains how long it takes electrons to get in and out of the quantum dot’s level and it is

controlled by the contacts. If we assume a single level quantum dot or a single molecule

in the channel, then a tunnel coupling can be expressed in the unit of energy according to

Γ = ℏ/τ . This quantity has a clear physical interpretation which indicates the broadening

of the quantum dot level due to the finite lifetime of the electrons in the level [55, 56]. A

conventional approximation for T (E) in Coulomb blockaded regime of a quantum dot is

a Lorentz approximation which is an approximation for T (E) near a resonance [58], i.e.

at charge degeneracy point given by,

T (E) = 4ℏ2γlγr

Γ2

(
Γ
2

)2

(E − (ε − eαVg))2 +
(

Γ
2

)2 , (1.13)

where Γ = ℏ(γl + γr).

Number of modes M(E): The number of channels is proportional to the density of

states D(E), i.e. the more states a system has, the more channels it has. But electrons need

to have a velocity in order to move in these states. So, M(E) is defined as [55, 50, 51, 56],

M(E) = h

4 ⟨vx⟩D(E) (1.14)

where ⟨vx⟩ is the average velocity in the direction that the current is flowing (1D, only x

direction), and D(E) is the density of states.
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1D 2D 3D

⟨vx⟩ v(E) 2
π
v(E) 1

2v(E)

D(E) L
πℏ

√
2m∗

E−Ec
Θ(E − Ec) W m∗

πℏ2 Θ(E − Ec) Ωm∗
√

2m∗(E−Ec)
π2ℏ3 Θ(E − Ec)

M(E) Θ(E − Ec) W

√
2m∗(E−Ec)

πℏ Θ(E − Ec) Ω m∗

2πℏ2 (E − Ec)Θ(E − Ec)

Tab. 1.1: Expressions for velocity (v), density of states (D) and number of modes for 1D, 2D and 3D

conductor with single parabolic band model defined as E(k) = Ec +ℏ2k2/2m∗ where k is the wave vector.

Ec is the bottom of the conduction band, m∗ is the electron effective mass, Θ is the unit step function,

W and Ω are the width and the area of the 2D and 3D conductors, respectively.

We now assume a parabolic dispersion relation with energy bands of,

1
2m∗v2(E) = E − Ec → v(E) =

√
2(E − Ec)/m∗ (1.15)

where m∗ is the effective mass and Ec is the bottom of the conduction band. We consider

the average of velocity in the direction of the current flow. In a 1D conductor, there is

only one direction, therefore, the average velocity is equal to just velocity as shown in Eq.

(1.15). For a 1D conductor the density of state goes one over square root of energy, as the

following,

D(E) = L

πℏ

√
2m∗

E − Ec

Θ(E − Ec) (1.16)

where Θ is the unit step function. By multiplying Eq. (1.15) with Eq. (1.16), one can get

the number of modes as,

M(E) = Θ(E − Ec). (1.17)

As it can be seen from Eq. (1.17), M(E) is independent of energy above the bottom of

the conduction band Ec as energy terms in v(E) and D(E) cancel out together.

A 2D or 3D case is relatively a straightforward extension of the above discussion. The

corresponding density of states and velocity [57, 51, 56] are summarized in table 1.1 and

plotted in Fig. 1.3.

The difference between Fermi levels ∆f : An important key concept to understand

the current flow in Eq. (1.7) is the Fermi function. Essentially, whatever makes the right

fr and the left fl Fermi function go out of equilibrium with respect to the other one can
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Fig. 1.3: Illustrations of (a-c) the density of states D(E) and (d-f) number of modes M(E) for 1D, 2D

and 3D conductors with the assumption of single parabolic band. Adapted from [57]. The density of

states for (a) 1D conductor goes as one over square root of energy, (b) for 2D, is independent of energy as

long as we are above the bottom of conduction band. (c) for 3D, it evolves with a square root of energy.

lead to a non-zero ∆f . In other words, applying a bias voltage across the device or any

temperature difference in each contact, results in having different fl from fr.

First, let us consider the case in which we have a uniform temperature as depicted in

Fig. 1.4.

Fig. 1.4 plots the Fermi function of the left contact fl(E) in Eq. (1.8) at a finite

temperature in green solid line. Now, if we apply a small positive bias voltage, eV , on the

right contact, it shifts the Fermi level of the right contact fr(E) to the right by µ = eV

as shown in red dashed-line. One can see that there is a region of energy E over which

the difference between two Fermi functions fl(E) − fr(E) is positive, therefore, a current

will flow. This region where we have current flow is called Fermi window. In the linear

response regime, which refers to extremely low bias voltage where fl(E) ≈ fr(E) ≈ f(E),

the difference between two Fermi functions fl(E) − fr(E) can be expanded in a Taylor

series as the following,
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Fig. 1.4: Fermi functions of the left and right electrodes for: (a) temperatures of two contacts are identical

Tl = Tr but a small bias voltage µr = Ef −eV is applied on the right contact and (b) the two voltages are

identical µl = µr = 0 but temperatures are different in the right and the left contact Tr > Tl. (c) Fermi

function of the left electrode in green and the normalized (dimensionless) thermal broadening function

(− ∂f
∂E ) in red dashed-line. In a metal, the bottom of conduction band, Ec, is way below the Fermi energy,

EF (see blue dashed-line). In contrary, Ec is way above the EF in a non-degenerate semiconductor shown

in magenta dashed-line

fl(E, µl) − fr(E, µr) =
(

− ∂f

∂E

)
eV (1.18)

Eq. (1.18) is mostly concerned in charge conductance problems in the linear response

regime and it shows that the fl(E) − fr(E) is proportional to the small voltage that we

applied on the right contact of the device.

Another approach which could lead the current to flow is to have the same voltage in

both contacts but different temperatures, i.e. a small temperature difference as shown in

Fig. 1.4b. Assuming that the right contact has a slightly higher temperature, then the

transition from zero to one is smeared out in energy (see the red dashed-line in Fig. 1.4)

and one can have a difference between Fermi functions. It is worth mentioning that the

fl − fr > 0 is positive below the Fermi energy and fl − fr < 0 is negative for energies

above, therefore, this may lead to changing the sign of thermoelectric coefficients for n-

type or p-type semiconductors [59, 4, 2]. When the temperature is small, we can use again

the Taylor series expansion. This time, the expansion reads for the small temperature

difference and the identical chemical potentials µl = µr = µ as,
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fl(E, Tl) − fr(E, Tr) =
(

− ∂f

∂E

)
E − µ

T
∆T (1.19)

Moreover, the derivative of the Fermi function with respect to energy
(
− ∂f

∂E

)
is plotted

in Fig. 1.4c. We can see that the only place in which the Fermi function (green solid

line) has a non-zero derivative is few kBT around the Fermi energy EF . Therefore, the

derivative of this function
(
− ∂f

∂E

)
is sharply peaked at Fermi energy EF , as illustrated in

Fig. 1.4c with red dashed-line. In a metal, everything happens few kBT around EF . On

the contrary, in a non-degenerate semiconductor shown in magenta dashed-line, the flow

of charge and heat currents exist thanks to the tail of Fermi function. In chapter 5 of this

thesis, it is shown experimentally that by having a gate electrode to move the chemical

potential plus a device with a sharp density of state i.e. a delta function density of states

(a quantum dot), one can control the charge and heat currents separately as predicted by

theory [20].

In general, both quantities can be different in the left and right contacts of the device

at the same time ( ∆T = Tr − Tl and ∆µ = µr − µl). As a consequence, one can write the

fl − fr as,

fl(E, µl, Tl) − fr(E, µr, Tr) =
(

− ∂f

∂E

)
·
(

e∆V + E − µ0

T
∆T

)
(1.20)

where µ0 is the average value between the left and right chemical potential. Eq. (1.18)-

(1.20) is valid in the linear response regime, i.e. assuming small voltage and temperature

biases.

1.1.2.2 Charge conductance

Measuring electrical conductance (G) in a material provides information about how easily

a material allows electric current to flow through it. For the device introduced in Fig. 1.2,

by inserting the right parameters in Eq. (1.7) one obtains,

I = 2e

h

� ∞

−∞
T (E) · M(E) ·

(
− ∂f

∂E

)
eV dE, (1.21)

there ∆f is replaced by Eq. (1.18) for a constant temperature in a linear response regime

assumption. The conductance expression thus reads as,

I = GV → G = 2e2

h

� ∞

−∞
T (E) · M(E) ·

(
− ∂f

∂E

)
dE, (1.22)
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where M(E) can be written according to Tab. 1.1 for a 1D, 2D or 3D conductor. In

addition, the transmission T (E) =1 for a ballistic conductor and is given by Eq. (1.12)

for a diffusive limit.

1.1.2.3 Seebeck effect

Now we deal with a situation in which there is in addition a temperature difference between

the left and right contacts. A thermoelectric voltage (Vth) can appear in response to

this gradient temperature across the device (open-circuit) which is called thermopower or

known as Seebeck effect [53]. In order to develop an expression for thermopower in a linear

response, one can begin again with Eq. (1.7), and plug in Eq. (1.20) instead of fl − fr as,

I = 2e

h

� ∞

−∞
T (E) · M(E) ·

(
− ∂f

∂E

)
· (e∆V + E − µ0

T
∆T ) dE, (1.23)

Eq. (1.23) looks pretty much similar to Eq. (1.22) with an additional term which belongs

to the temperature bias in the device. We can rewrite Eq. (1.23) as the following,

I = G∆V + GS∆T (1.24)

where S is the Seebeck coefficient and reads as,

S = − 1
eT

� ∞
−∞ T (E) · M(E) ·

(
− ∂f

∂E

)
(E − µ0) dE� ∞

−∞ T (E) · M(E) ·
(
− ∂f

∂E

)
dE

, (1.25)

Seebeck coffecient has been already measured in a variety of structures such as metallic

atomic size contacts [60, 61], nanowires [2, 4, 5] and quantum dots [62, 63, 59, 64, 8, 65].

One gets zero Seebeck coefficient if M(E) and T (E) are symmetric in E at µ0.

Turek and Matveev have introduced S as a powerful experimental spectroscopic tool

which contains important information about the energy-dependent transmission of the

system by writing S as [62],

S = − ⟨E⟩
kBT

(1.26)

This equation evidently implies that Seebeck coefficient is simply related to the average

energy of charge carriers ⟨E⟩ at which the current flows with respect to the Fermi level

in the contacts. The sign of S gives some direct information whether the channel of the

device has an n-type or p-type characteristic. Correspondingly, one may use the terms
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electron-like or hole-like thermopower if the average energy of charge carriers is far above

the Fermi energy ⟨E⟩ > EF or below the Fermi energy ⟨E⟩ < EF , respectively.

Another interpretation of S is provided by the famous Mott’s law,

S = −π2

3 · kB
2T

e

∂ ln G(E)
∂E

|E=Ef
(1.27)

Eq. (1.27) plainly shows that the Seebeck coefficient is sensitive to the slope of the

energy-dependent charge conductance G(E) at the Fermi energy,. It is noteworthy that

the foundation of Mott’s law assumes the transmission function to have small changes

with energy and in addition, it neglects the electron-electron interaction terms. One

might expect that Mott’s law would definitely fail to give insight in most low dimensional

devices as these assumptions are not valid. However, many experiments have shown a

strikingly good agreement [8, 10, 66]. Particularly, it was found to be valid more recently

by H. Linke’s group in the presence of a Kondo-correlated system [65].

Measuring the thermopower of a device requires in principle to address the open-circuit

voltage of a high-impedance device. This is experimentally challenging, first because the

voltmeter itself may shunt the divergent impedance of the device and, second, because

the equilibration time to reach the true zero-current state (as required by the definition

of the Seebeck coefficient S) at such high impedances can be extremely long. For this

reason, several experiments have preferred focusing on the thermocurrent at zero applied

bias rather than on the thermovoltage, and thus the Seebeck coefficient, although only the

latter has a direct physical interpretation as a fundamental transport coefficient [5].

In the beginning of my thesis, together with my predecessor, we measured thermovolt-

age for a quantum dot device in the Kondo regime in our group [48] by measuring the

current map in the presence of temperature bias as shown in Fig. 1.5. We defined −Vth

as the bias voltage at which the current goes through zero, thus realizing a perfect open-

circuit condition [67]. As this result was already discussed in B. Dutta’s thesis, therefore,

all the the information can be found elsewhere [48]

1.1.2.4 Peltier effect

Here we explain that if we just run a current through a device which has a particular

density of states, one can naturally cool one side and heat the other side as high energy

electrons are going from one side to the other side. Let’s start from heat current Eq. (1.9),

which essentially tells us how much heat current is being produced by a charge current
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Fig. 1.5: The current map of a quantum dot device fabricated using electromigration technique taken in

the presence of Kondo correlation for a small temperature gradient. Adapted from Dutta, Majidi et al.

[48]. The black line follows the points of vanishing current; it is thus equal to −Vth. the thermovoltage

changes sign at consecutive integer charge states, resulting in a 2e-periodicity of the thermopower response,

that directly follows from the presence of Kondo anomalies in odd charge diamonds. The thermoresponse

at about Vg = 0.7 V associated to the second, weakly coupled quantum dot, is greyed out for better

readability. Adapted from Dutta, Majidi et al. [48].

in the device. We should note that temperatures in both contacts are identical, ∆T = 0.

Using a linear response assumption, one can plug Eq. (1.19) into Eq. (1.9), leading to

Q̇ = 2
h

� ∞

−∞
(E − µn)T (E) · M(E) ·

(
− ∂f

∂E

)
e∆V dE, (1.28)

and ∆V can be replaced by imposing ∆T = 0 in Eq. (1.23) as ∆V = 1
G

I. Therefore, the

final expression reads,

Q̇ = ΠI, (1.29)

where Π is

Π = −1
e

� ∞
−∞ T (E) · M(E) ·

(
− ∂f

∂E

)
(E − µ0) dE� ∞

−∞ T (E) · M(E) ·
(
− ∂f

∂E

)
dE

, (1.30)
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From comparing Eq. (1.25) and Eq. (1.30), it turns out that there is only a temperature

coefficient (T ) different between the two equations, hence, one can simply write Π = TS.

This relation holds in the linear response regime. In addition, time reversal symmetry

should not be broken in the system [37].

Peltier coolers were demonstrated in 1834 by Peltier [68] and plenty of progress has

been made in large scale electronics as well as nano scale devices in normal metal-insulator-

superconductor (NIS) [31], single electron transistors [69], quantum dots [26] and super-

conducting qubits [70, 71]. In particular, Pekola’s group showed experimentally that an

efficient Peltier refrigerator can be achieved by paring two NIS junctions together. They

demonstrated the capability of SINIS tunnel junctions to cool the electrons in a normal

metal island to a temperature of about 100 mK starting from 300 mK [72].

1.1.2.5 Heat conductance

The last thermoelectric coefficient that we discuss in this section is the electronic heat

conductance. The electronic heat conductance is related to the heat current in an open-

circuit condition as we showed in Eq. (1.5). In other words, if one would impose open-

circuit in the problem so that the electrical current reaches zero, then the heat current

would be entirely determined by the temperature difference between the left and the

right contacts of the device. Theoretically, it is much easier to derive the short-circuit

heat conductance and following that the open-circuit electronic heat conductance can be

deduced by imposing I = 0 in the final equation. In a pretty similar way to the discussion

of the other coefficients, we can plug Eq. (1.18) into Eq. (1.9) and evaluate the heat

current for a short-circuited device,

Q̇ =
− 2

h

� ∞

−∞

(E − µ)2

T
T (E) · M(E) ·

(
− ∂f

∂E

)
dE

 ∆T, (∆V = 0) (1.31)

we can see from Eq. (1.31) that the heat current is proportional to the difference in

temperature and the content of the bracket can be written in a short form as,

Q̇ = κ0∆T, (1.32)

where κ0 is the short-circuit heat conductance. Now, by making the sum of the two

contributions related to ∆T and ∆V in Eq. (1.29) and (1.32), respectively, one can get a

new expression for the heat current,

Q̇ = ΠI + κ0∆T, (1.33)
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However, this equation does not have the electronic heat conductance κe. There is a

relatively easy way to get that by applying the short circuit condition ∆V = 0 to Eq.

(1.23),

I = −GS∆T, (∆V = 0) (1.34)

using the above short-circuit current we obtain,

Q̇ = −ΠSG∆T + κ0∆T → Q̇ = (κ0 − ΠSG)∆T (1.35)

where the electronic heat conductance is defined as:

κe = κ0 − ΠSG (1.36)

κe is known as the electronic thermal conductance for zero charge flow condition.

We can summarize all these four thermoelectric quantities with a little bit of rearrange-

ment in the form of a matrix as,∆V

Q̇

 =


1
G

S

Π κe


 I

∆T

 (1.37)

All the thermoelectric coefficients can now be calculated as long as we know how the

channels are distributed in energy, the transmission, and what the mean-free path for

scattering is.

1.1.2.6 Wiedemann-Franz Law

The secondary diagonal elements of matrix (1.37), i.e. the electronic charge and heat

conductances are intimately related in the limit of linear response regime through a law

known as Wiedemann-Franz (WF). In order to make this relation more clear-cut, at least

for our parabolic-band assumption, we can start from Eq. (1.36). Based on Eq. (1.31),

and Eq. (1.34) , κ0 and S can be written as:

κ0 = T ·
(

kB

e

)2
〈(

E − µ0

kBT

)2
〉

· G (1.38)

and

S =
(

kB

e

)2
〈(

E − µ0

kBT

)〉
(1.39)

Eq. (1.38) simply tells us that the average value of the square of energy matters for

κ0, whereas only the average energy of charge transport is important for the Seebeck
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coefficient. Now, by plugging this into the electronic heat conductance κe (Eq. (1.36)),

we obtain,

κe = T · G
(

kB

e

)2

〈(

E − µ0

kBT

)2
〉

−
〈(

E − µ0

kBT

)〉2 (1.40)

The part inside the curly brackets is constant and can be hidden in Lorenz number L, in

the following from,

κe = TGL (1.41)

where L relies upon the degree of degeneracy and the shape of the band. It is assumed

to be related to the density of states so that it is verified in most of cases to be equal to

L0 = π2/3(kB/e)2. Although, the ratio of the electronic heat conductance to the charge

conductance can take other values [73]. Eq. (1.41) implies that the ratio of electronic heat

conductance κe to charge conductance G and temperature T is constant and it is given by

Lorenz ratio L. It plainly has a physical interpretation that whenever an electron flows

from the right contact to the left contact it carries a charge of e and a heat in the order

of kBT . Therefore, in most cases, it is expected that the higher the charge conductance,

the higher the heat conductance as these two quantities are dependent.

The fact that the heat conductance is proportional to the temperature of the device

contacts, implies a quadratic relation between electronic heat flow Q̇e and the temperature

difference in the system as shown by Eq. (1.42).

κe = ∂Q̇e

∂T
=⇒ Q̇e =

� Te

Tb

G L T dT = GL

2 (Te
2 − Tb

2) (1.42)

It is noteworthy that, as marked by Mahan and Bartkowial [74], we should regard the

Wiedemann-Franz law to be a ’rule of thumb’ and not a law of nature, because is not as

fundamental as other relations, i.e. the Kelvin relation. The WF law is remarkably valid

in many devices, however, it has turned out that it highly depends on material details,

scattering, dimensionality, interactions and so on [75, 76, 38, 39, 41, 77, 22, 27, 6, 6, 43]. In

chapters 4 and 5, we will experimentally demonstrate the breakdown of the WF law and

a linear power law for heat flow Q̇e with the temperature in metallic and semiconductor

quantum dots.

1.1.3 Transport in a 0D device

Up to now we have not considered the effect of electron-electron interactions because it

plays a minor role for 1D, 2D and 3D dimensional systems. This section considers charge
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and heat transport using a pretty similar approach as we discussed earlier, but now we

extend our discussion for very small puddles of electrons, i.e. 0D structures, which are

known as quantum dots.

1.1.3.1 Charge transport

In quantum dot devices, Coulomb interaction can play a significant role in comparison

with other energy scales. Another difference between other nanostructures and quantum

dots is that quantum dots can be weakly coupled to their environment, because they

are coupled to lattice vibrations and thermal radiations at low enough temperature. We

generally consider the schematic drawing in Fig. 1.6 for intuitively describing the Coulomb

blockade effect in such a system. Fig. 1.6a depicts a quantum dot which is electrically

connected to electron reservoirs (the source and the drain) via tunnel barriers [78, 79].

In addition, it has a gate electrode, which is capacitively coupled to the system. One

can move the discrete electrochemical potentials for the given number of electrons of the

quantum dot µ(N) by changing the voltage of the gate electrode. These discrete level of

the chemical potentials in the dot are equidistant in energy as shown in Fig. 1.6.

The linear conductance G (the measured current divided by the applied voltage), ex-

hibits a Coulomb peak, i.e. a sharp resonance, if the chemical potential of the dot µ(N)

is aligned with the chemical potential of the source and drain electrodes (see Fig. 1.6c).

If one keeps changing the position of the level in the dot, the electrostatic blockade gives

rise to regions of suppressed current, i.e. Coulomb blockade (see 1.6b) [58].

Fig. 1.7-left exemplifies the process shown in Fig. 1.6 by measuring a conductance

through a nanowire-based quantum dot. A very small bias voltage (Vb) in the order of

0.1 µV is applied between the source and the drain electrodes of the device. Then the

linear conductance of the device was measured at the bath temperature Tb = 100 mK as

a function of back gate voltage (Vg). A such small bias voltage Vb, the linear conductance

in Fig. 1.7-left can be obtained by G = I/Vb as the current through the quantum dot has

a linear relation with the applied bias voltage between the source-drain electrodes.

Coulomb blockade can also be seen in the measurement of current as a function of

bias voltage I(Vb). Fig. 1.7-right plots two I(Vb) curves, one of them was measured at the

back gate voltage of conductance peak, which is called on-resonance (at degeneracy point)

current and is shown in solid green line. The other one, off-resonance, was measured in

a valley between two conductance resonances (degeneracy points). One can see that the
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Fig. 1.6: (a) Schematic representation of energy diagram of a quantum dot with the drain, source and

gate electrode. (b) The quantum dot is represented by discrete energy levels and positioned for the

Coulomb blockade regime. eV is a small bias voltage. The chemical potential of the quantum dot µ(N)

is shown here. The difference between two levels is given by Eadd = 2Ec + δE. (c) Particular position of

energy levels shows the situation in which the conductance is maximum as the energy level of the dot is

situated in the energy range between µs and µd, therefore, it allows a current to flow between the source

and drain electrodes.

traced current for the on-resonance case increases linearly with the bias voltage (Vb) in

the region of |Vb| < kBTb/10 and then, shows current steps due to the contribution of

additional energy levels. On the contrary, the measured current between Coulomb peaks

rising only at very large bias voltages and is extremely small for values of |Vb| < kBTb/10.

In principle, in the latter case, it is the charging energy that gives the threshold.

Another appealing feature that can be shown experimentally is the asymmetry in

currents both in "on" and "off" resonance cases. According to Fig. 1.7-right, the measured

current is higher for negative bias voltages compared to the positive ones, this characteristic

can be related to the asymmetry between the coupling of the source Γs and drain Γd
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Fig. 1.7: Linear conductance and traced current of two different InAs quantum dots. Left-hand side:

Quantum dot linear conductance as a function of the back gate voltage. Green and black arrows are

pointing to Coulomb oscillations and Coulomb blockades, receptively. Right-hand side: Measured I(Vb)

trace through a quantum dot at a given gate voltage (Vg). The current on a conductance resonance (solid

green line) and off resonance (dashed line).

electrodes to the dot. In the limit of very different tunnel barriers, the bottleneck for

charge transport is the thicker barrier [80]. This effect is also more pronounced in the

stability diagrams in Fig. 1.8.

1.1.3.2 Quantum dot characterization

Mapping a quantum dot device’s conductance as a function of gate and bias voltages

(stability diagram) can reveal a great amount of information about the parameters of

the quantum dots. It is known that a stability diagram can be used as a spectroscopic

tool to reveal possible excitations. It gives access to some important information such as

charging energy, lever arm and the source-drain capacitive coupling in the system [81, 82].

The excited states appear as conductance lines running parallel to the Coulomb diamond

edges as can be seen in Fig. 1.8. These excitations can be due to some phonon and

vibrational modes [83], or the density of states of the leads as the contact electrodes are

being nanostructured [84]. For instance, C. Winkelmann et al., were able to probe the

electron transport through a single molecule using a superconductor as contacting leads

[85]. Not only did their data strikingly show the excitation modes of a C60 molecule in

agreement with previous studies [83], but they also demonstrated the effect of interactions,

correlations and superconductivity in C60 molecules over a broad range of tunnel coupling

strength as shown in Fig. 1.9.
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Fig. 1.8: Left: Schematic of a differential conductance map for a quantum dot device. Orange lines show

that higher order tunneling process enter the bias window and tunneling electrons through the quantum

dot via excited states are shown with yellow lines running parallel to the Coulomb diamond edges. The

gray color shows the tunneling regime and the white represents the Coulomb blockaded regime. Right:

Conductance map of an InAs nanowire quantum dot, studied in this thesis, showing clear Coulomb

diamond structures.

In this thesis, our focus is on the low bias (linear) regime where we have assumed that

only a single level contributes to the transport through the dot. This is not completely

true in the high bias regime.

Source, drain and gate-capacitive couplings

By looking at the stability diagrams, one can immediately determine the asymmetry in the

capacitive coupling of the source and drain electrodes, gate coupling, i.e. as lever arm, and

charging energy as the following. The positive slope of the Coulomb diamonds in Fig. 1.8

is characterized by β = Cg

(Cd+Cg) and the negative one is given by β′ = Cg

Cs
. The Cs, Cd, Cg

are the capacitances between the dot and the source, the drain and the gate, respectively.

The asymmetry in the capacitive coupling of the source and drain can be expressed by the

ratio of the source and drain capacitance Cd

Cs
. Eventually, the total capacitance of the dot

to the outside world is the sum of all the capacitances as CΣ = Cs + Cd + Cg.

Lever arm α

The lever arm can be directly obtained from the two slope of diamond and is defined by

the ratio α = Cg

CΣ
. This value basically tells us the effective change in the dot (island)

potential per unit volt applied to the gate electrode. The value of α is always positive

and in an experiment can be considered a constant in the vicinity of one charge state but

it typically varies with large changes in the gate voltage. For metallic gates this value
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Fig. 1.9: Superconducting C60 transistor in a weak-coupling regime. Adapted from [85]. (a) SEM image

of an aluminium nanogap obtained by electromigration. The scale bar is 300 nm. (b) The differential

conductance map (dI/dV ) of the device as a function of gate and bias voltages shows excited states of

C60 transistor. Ω is a spectroscopic source–drain voltage gap, which is estimated to be of about 680 µV

near the degeneracy point. This gap, reflecting the quasiparticle spectrum of the contacting electrodes, is

a typical feature of a nanostructure weakly coupled to superconducting electrodes [85].

is small and the lever arm is well defined. However, in quantum dots where regions of a

2DEG are used as so-called in-plane gates, or with nanowire quantum dots, the lever arm

might change slowly as a function of the voltage applied due to the change in the electron

density of the semiconductor.

Charging energy Ec

The energy scale associated with discreteness of the electron charge is expressed by:

Eadd = eα∆VBG = δE + 2Ec; Ec = e2

2CΣ
(1.43)

where CΣ is the total capacitance of the device as explained earlier. This expression tells

us how much energy is needed to charge the island with an additional electron assuming

that there are already N electrons on the island (see Fig. 1.6b,c for more details). This

difference between the total energies for N + 1 and N electrons is often referred to as the

addition energy Eadd, where δE is the level spacing. Higher energy levels of the dot do

not contribute to the transport if the temperature is small compared to the level spacing

of the quantum dot, i.e. kBT < δE.

Tunnel coupling Γ

By tuning the gate voltage, it is possible to position a level between the electrochemical
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Fig. 1.10: Top: Schematic of the device. Bottom: Conductance quantization in a quantum dot as a

function of the gate voltage for the different tunnel coupling strength Γ to the source and drain electrodes.

Adapted from [86]. The tunnel coupling strength is increasing from (a) to (f). The bottom-right point

contact Vc − Vr2 is completely pinched-off by applying a large negative voltage. Therefore, electrons enter

or leave through a channel defined by the upper right point contact Vc − Vr1 for QD1. In these situations,

no current flows through the QD1, but the charge can be capacitively induced on the QD1 by applying a

voltage on Vg1.

potentials in the source and the drain, allowing electrons to tunnel on and off the dot

one at a time. To observed quantized number of electrons in a quantum dot, the tunnel

coupling should be smaller compared to the charging energy (ℏΓ < e2

2C
), plus the fact that

conductance should also be much less than conductance quantum (G < 2e2

h
).

This fact is illustrated in the experiment in Fig. 1.10, adapted from [86]. Fig. 1.10-top

shows a schematic diagram of the device containing a quantum dot, QD1, and a quantum

dot charge detector, QD2. The detector is tuned to the steep slope of its conductance res-

onance using the side gate voltage Vg2. The number of electrons in QD1 to be measured is

varied with the right side gate Vg1. Figs 1.10a-f plot the conductance of QD2 as a function

of Vg1 for different values of QD1 tunnel conductance between the Vc − Vr1 from 0.16e2/h

(weak coupling regime) to 2.08e2/h (strong coupling regime) [86]. For the weakest cou-
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Fig. 1.11: Measured stability diagram of a quantum dot at the bath temperature of 15 mK . Dotted

lines have been superimposed to highlight the onset of inelastic cotunneling. The dot-dashed lines indicate

the onset of first-order tunneling via an excited state. Inset: scanning electron micrograph of the device.

Adapted from [87].

pling of QD1 to its leads in Fig. 1.10a, the conductance shows a series of very sharp steps

demonstrating the charge quantization in QD1. All the steps wash out gradually as the

coupling increases. Eventually, they disappear completely once the coupling to the leads

has reached a value of about the conductance quantum 2e2/h. This result intuitively illus-

trates that charge quantization for a quantum dot happens if the tunneling conductance

G of the quantum dot to its surroundings far less than the quantum conductance 2e2/h

[86, 58, 51, 56].

Temperature is another important parameter to observe the level quantizations. The

temperature should be relatively small compared to the main energy scale of the system,

i.e. kBT ≪ Ec. To accomplish this condition in the real experiment, one needs to fabricate

the island sufficiently small so that it results in having a small capacitance. In chapter 4 of

this thesis, we will use the electromigration technique to connect a metallic nanoparticle

of about 5-10 nm. We can easily get a charging energy at least of the order of 100 mV

[85, 48, 83]. One can tune the size of island much easier by moving to InAs nanowire-based

transistors [88]. The reader is referred to chapter 2, 4, and chapter 5 for further details

about both techniques.
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By comparison of temperature scale and tunnel coupling Γ of the dot, one is able to

distinguish two regimes: The conductance smearing is dominated by (i) the temperature,

i.e. kBT ≫ Γ or (ii) by the tunnel coupling of the leads, i.e. kBT ≪ Γ, which is of

particular interest of us.

Co-tunneling

When first-order single electron transport is banned by Coulomb blockade at low tem-

perature, virtual tunneling processes dominate the transport away from charge degeneracy

and lead to the tunneling of two or more electrons coherently. These second-order trans-

port processes are called co-tunneling [87]. When the quantum dot is left in an excited

state, the co-tunneling is classified as inelastic tunneling, otherwise, it is called elastic.

The co-tunneling becomes significant when the tunnel conductance of the quantum dot

is comparable to the conductance quantum, i.e. strong tunnel coupling. De Franceschi

et al. measured both elastic and inelastic co-tunneling on a semiconductor quantum dot

embedded in an InGaAs layer [87]. They evidently discriminated between these two con-

tributions and showed that inelastic events can occur only if the applied bias exceeds the

lowest excitation energy. The differential conductance of the quantum dot [87] of Fig. 1.11

shows that elastic co-tunneling is dominant in Coulomb blockade regime at low bias volt-

ages and gives rise to non-vanishing conductance shown as light gray region (this non-zero

current inside Coulomb diamond can also be seen in our experiments in Fig. 1.7 and Fig.

1.8). The inelastic process contributes to the transport when the applied bias voltage is

larger than the level spacing, i.e. |eVb| > δE. As a result, inelastic co-tunneling turns on

along the vertical (dotted) lines in Fig. 1.11. At the edge of the Coulomb diamond, the

condition for the onset of inelastic co-tunneling connects to that of the onset of first-order

tunneling via an excited state (dot-dashed lines).

1.1.3.3 Heat transport

As we have already seen in the previous sections, charge transport in quantum dot devices

has reached a great level of understanding since last 30 years. Recent developments on heat

transport on metallic single-electron transistors have shown that by employing Coulomb

charging energy, only high energy electrons act as the carriers favoring a higher heat

flow than expected by the WF law [77, 22, 27, 6, 43]. This was shown theoretically by

Kubala et al. in 2008 and has been experimentally verified by Dutta et al. in 2017 in

a single electron transistor (SET) [22]. In the latter work, the thermal conductance of
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Fig. 1.12: (a) Schematic of the device, with the different elements shown in colors. (b) Measured

differential conductance map as a function of drain-source and gate voltages. (c) Top: Normalized thermal

(blue dots) and charge (green dots) conductances of the SET at a bath temperature of 152 mK. Bottom:

Lorenz ratio (purple dots) together with theoritical calculation in solid red line. Adapted from [22].

a metallic SET was measured using on-chip NIS thermometres and heaters. Fig. 1.12a

shows the circuit diagram of the device in which different elements of the circuit have

different colors. They measured both charge and heat conductances at the same time

as a function of the gate voltage. A strong deviation from the Wiedemann-Franz law is

observed when the transport through the SET is directed to the Coulomb blockade regime,

as the electrons face energy filtration due to Coulomb blockade [89]. Notably, in an SET

the heat conductance is better than predicted by WF law, that is L/L0 > 1.

This electron energy selection is even stronger in quantum dots and makes these quan-

tum devices in principle almost a perfect energy filter. Mahan and Sofo [20] theorized

that the "best thermoelectric" is a device with a Dirac delta function density of states

in 1996. In such a device, electron transport happens only at a certain energy while the

transport at all other energies is forbidden. Quantum dot junctions potentially possess

this feature as they have a very well-defined electronic structure similar to that shown

in Fig. 1.7. After Mahan and Sofo, this idea of having such an ideal high energy elec-
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Fig. 1.13: Left: A false-colored SEM images together with charge and heat circuit diagram of a typical

nanowire quantum dot. Adapted from [3]. The nanowire is shown in green and ohmic contacts to the

nanowire in yellow. Top heating technique is used to make a temperature gradient between the source

and the drain electrodes of the device. Right: device operation at maximum power (markers) compared

with the theoretical prediction. Adapted from [3].

tron filtration was further explored by Humphrey et al. [16, 21]. In the same group (H.

Linke’s group), recently, Josefsson et al. tested experimentally a quantum dot heat engine

with a performance near the thermodynamic efficiency limit with a remarkable agreement

with theoretical prediction [3, 65, 90]. They utilized a quantum dot embedded in an InAs

nanowire as a thermal insulator and were able to keep a temperature gradient across the

device by a novel top heating technique. Eventually, by forcing the produced thermal

current through a load resistor and by making a load matching technique, they were able

to achieve thermoelectric conversion efficiency for different powers [3, 65] as shown in Fig.

1.13. Moreover, they found that second order tunneling processes can significantly reduce

the electronic efficiency [3, 90]

Another measurement conducted by Roddaro’s group shown in Fig. 1.14 has also

presented thermoelectric conversion in InAs/InP nanowire quantum dots at higher tem-

peratures (30 K) limit but still in the linear response regime [5]. First, in this experiment

the charge conductance G and the thermopower S were measured and showed a quanti-

tative agreement with a four-level theoretical model. Then, they calculated the electronic

heat conductance κ using the fitting parameters obtained from the experimental G(Vg)

and S(Vg). Eventually, using experimental G and S together with theoretical κ, they



1.1. THERMOELECTRICITY 35

Fig. 1.14: Experimental charge conductance (a) and thermopower (b) are compared with two-level and

four-level theoretical model to extract the quantum dot coupling. (c) Electronic thermal conductance κ

obtained theoretically based on the extracted the quantum dot parameters using charge conductance and

thermovoltage measurement. Adapted from [5].

showed an amazingly high electronic figure of merit ZT ≈ 35 at 30 K, utilizing nanowire

quantum dots.

The above experiments have demonstrated that thermoelectric experiments in quan-

tum dots require a great control on thermal bias over a nanometer distance, as well as a

reliable temperature measurement. In addition, the measurement of heat flow through a

single level quantum dot has so far been limited and always needed some degree of model-

ing [90]. Furthermore, these experiments also very well highlighted the need for measuring

electronic heat conductance as this quantity enters directly in the thermoelectric efficien-

cies. The electronic heat conductance of such devices has in general not been measured

independently as these experiments have only focused on measuring short-circuit thermal

current or open-circuit thermovoltage instead. However, in both of the above cases, they

strikingly achieved an excellent quantitative agreement for electronic efficiency estimation

by accurately measuring and understanding the experimental charge conductance and
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thermocurrent/thermopower. Therefore, extracting all the parameters of quantum dots

based on the charge transport and the thermal current leads only to an estimation of the

electronic thermal conductance κe.

It is worth mentioning that the electronic heat conductance remarkably has been ex-

perimentally measured to the scale of a single atom and molecule contacts [75, 76], in

superconductors [38], in correlated electron systems [39] and more recently in graphene-

based devices [41]. Nevertheless, the electronic heat conductance and the validity of the

WF law of metallic and semiconductor quantum dots have not been experimentally and

quantitatively investigated, to date. This is the object of this work as it will be explained

in more detail in chapter 4 and 5 of this thesis.



Chapter 2

Fabrication of quantum dot devices

This chapter discusses two different methods for fabricating quantum dot devices, which

were used for conducting the main experiments in this thesis. We first explain briefly the

fabrication of a metallic single quantum dot junction using electromigration technique for

showing the effect of higher-order tunneling processes in heat transport (chapter 4). In

the following section, we consider the fabrication of a typical quantum dot device based

on semiconductor nanowires that will be discussed in chapter 5. We particularly discuss

integrating different local electronic thermometers with the nanowire quantum dot devices

in detail. The device design and the processes involved in sample preparation prior to

nanowire metallization are also discussed thoroughly.
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2.1 Fabrication of single-quantum-dot junctions

Our quantum dot junctions are realized using the electromigration technique, which has

been successfully applied for studying a variety of single quantum dot systems, such as

single molecules and metallic nanoparticles [91, 92, 93]. Using electron-beam lithography

and a three-angle shadow evaporation, we fabricate devices as pictured in Fig. 2.1, on top

of a local back gate. A detailed overview of the fabrication recipes and electromigration

technique can be found in the thesis of former PhD students in our group [84, 94, 95].

However, a brief discussion regarding the fabrication the devices studied in chapter 4 is

presented in the following.

2.1.1 Sample fabrication

We fabricate samples on a 2 inch Si <100> wafer with a 500 nm thermal oxide. The

first step of the fabrication process is the gate layer (see Fig. 2.1a). We use a metallic

plane covered with an oxide layer as the gate of the quantum dot device. The reason for

choosing this local back-gate is that, using this gate configuration, we can easily achieve a

very small distance (< 10 nm) between the gate and the gold nano-particles and thereby

achieve a strong gate coupling. We use laser lithography to pattern the gate structures

on top of a cleaned Si wafer coated with a double layer of photo resist LOR3A/S1805.

After development of the exposed area, we evaporate 3 nm of titanium (Ti), 30 nm of

gold (Au) and again 3 nm of Ti. Both Ti layers act as an adhesive for the following

layers. After liftoff and cleaning, the wafer with metallic gate structures is coated with an

approximately 8 nm layer of Al2O3 using the atomic layer deposition (ALD) technique.

We designed the main parts of the quantum dot device on top of this gate using

electron-beam lithography (Fig. 2.1e,f). The source, constriction, drain and the four

probes of the device are patterned on the processed wafer coated with a double layer of e-

beam resists P(MMA-MAA) 9% and PMMA 4 %. After development of the exposed area,

we load the sample in an e-beam evaporator with a rotatable sample stage to evaporate

metals. First, we deposit 11 nm of platinum (Pt) at an angle of −42o w.r.t. the source of

the evaporator, this forms the bow-tie shaped constriction of the device, as shown in Fig.

2.1f. Then we rotate the sample stage and deposit 25 nm of Au at an angle of −22o, which

forms the source and drain of the device (orange and green color in Fig. 2.1e,f), on top of

the Pt constriction. At the same angle, a 3 nm of Ti is then deposited to protect the Au
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layer from intermixing with the following aluminum (Al) layer. After that we rotate the

sample to +20o and deposit 80 nm thick Al contacts, which form the four Al probes on

top of the Au source with a clean interface (cyan color in Fig. 2.1e,f), making four S − N

junctions. After liftoff with acetone, IPA and cleaning with O2 plasma, the device is ready

for the nano-particle (NP) deposition.

Fig. 2.1: Optical images of the Gate (a) and contact pads (b) made by laser lithography, (c-d) e-

beam lithography made mask prepared for three- angle evaporation. (e-f) False-color scanning electron

micrograph of the sample made by three angle shadow evaporation technique. The colors in the images

below correspond to the drain (green), source (orange), thermometer and heater (blue). The bow-tie

shaped Pt constriction is shown in green-orange, the Au/Ti-made drain and source, connected through

the constriction, are shown in green and orange, respectively. The four Al probes, connected to the source

via transparent contact are shown in cyan color. The nano-gap created using electromigration inside the

cryostat at 4 K under cryogenic vacuum.

2.1.2 Nano-particle deposition

There has been a lot of research revealing the use of several methods for deposition of

nano-particles and eventually trapping them into the electromigrated junction as:

drop-casting [84, 95, 91, 85], self-assembling [96, 97, 98], di-electrophoresis trapping [99,

100, 101, 102] and sub-monolayer of Au evaporation [103, 48, 47]. Fig 2.1f and Fig. 2.2a-d

show the SEM images of samples made using different methods for NP deposition.
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Fig. 2.2: SEM images of devices after NP deposition. (Adapted from [94]). a) drop-cast method, b)

self-assembling, c) agglomeration in di-electrophoresis trapping, and d) 50 nm NP deposition using di-

electrophoresis trapping

Table 2.1 compares the mentioned methods regarding four selected issues that one

may consider in the process of connecting a particle to electromigrated junctions. Overall,

It can be seen that the density of NP, which can increase the chance to get a working

device, is high in sub-monolayer of Au deposition compared to other methods (see Fig

2.1). NPs using self-assembling method can be obtained by being dispersed in citric acid

solution which can be corrosive for the aluminum leads [94] and destroy or remove them

completely from our sample, the damage is shown in Fig. 2.1b by a red arrow. Therefore,

we are not able to use this method as we utilize Al leads for electronic thermometery in

our devices. The di-electrophoresis is suitable for NPs bigger than 50 nm below which

the agglomeration of particles can be seen in Fig. 2.1c. Having a metallic particle bigger

than 50 nm is pretty much similar to nano-islands in a single electron transistor (SET)

which results in having very small charging energy in the order of hundreds of µV . Hence,

forming a single level quantum dot is not possible (see Fig. 2.1d). That is why this method

is also discarded from our fabrication process. At the beginning of my PhD, I used the

drop-casting method, but the yield of getting a successful working device was very low due

the low density of particles. Furthermore, given the statistic nature of electromigration

and having some technical constraints, using a technique which gives us the highest yield
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issues drop-casting self-assembling di-electrophoresis sub-monolayer of Au

Density of NP low low very low high

Easy to use ✓ ✓ ✓ ✓

Contamination – ✓ – –

Size of NP 5-12 nm 5-12 nm > 50 nm 5-10 nm

Tab. 2.1: Comparison between different NP deposition method.

of quantum dot fabrication is demanded. Therefore, we eventually used the sub-monolayer

of Au deposition (see Fig. 2.1f). Due to extreme thinness and to surface tension forces, the

evaporated Au forms a self-assembled layer nano-particles on top of the sample [103]. The

size of the gold nano-particles lies in the range of 5-10 nm, which serves as the quantum

dot in our device. On the one hand, the size of the particles produced in this method is not

under our precise control, on the other hand, the advantage of employing this technique

is that the yield of a successful single-quantum dot device is rather high (about 70 %).

Based on this NP deposition method, I have successfully fabricated several devices [48, 47]

some of which will be discussed in chapter 4 of this thesis.

2.1.3 Electromigration

The bow-tie shaped Pt electromigration junction forms the central part of the device on

which 5–10 nm diameter Au nanoparticles are deposited, forming a dense layer of quantum

dots, see Fig. 2.1(f).

To complete the fabrication process and place a quantum dot in between the source

and drain leads, we electromigrate the constriction, by passing a current through it in a

controlled manner [104, 105, 106]. As a result, a nano-gap is created between the source

and drain leads, bridged by one or sometimes several of the previously deposited gold nano-

particles. In order to achieve a strong tunnel coupling between the leads and quantum dot,

we perform the electromigration inside the cryostat at 4 K and under cryogenic vacuum.

After cooling the device down to a temperature of 4 K, the nanometer-sized gap was

created within the Pt constriction by means of electromigration [107, 48]. Here we have

chosen Pt as the electromigrated material in order to ensure the source local density of
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states at the QD contact to be free of superconducting correlations induced by the nearest

Al contact [108]. Devices showing conductance oscillations were further cooled in situ

down at the cryostat base temperature of about 70 mK to investigate in detail. In chapter

4 of this thesis, we will conduct two experiments to measure heat conductance of the

devices realized by this technique.

2.2 Fabrication of InAs nanowire QD devices

I have also worked on the preparation of devices based on InAs/InP nanowires in close

collaboration with Dr. Ville Maisi from the University of Lund. This approach can have

several advantages as:

First, nanowire quantum dots are pretty much stable in terms of electrostatic switches at

low temperature and in different cool-down process. In addition, the stability of the devices

is maintained over time, so that one can keep a fabricated device for a long time before or

after using them in the cryostat. Furthermore, the nanowire growth technique that we will

briefly explain in the following sections, provides a possibility to control the tunnel barrier

while growing nanowires [109, 110]. These features can open doors to study quantum dots

in different regimes from sequential tunneling regime [3] to very strong tunneling regime in

which Kondo effect manifests itself [65]. However, there are some difficulties to integrate

and contact nanowires that will be explained in the following sections in detail.

2.2.1 Nanowire growth

A nanowire is an elongated rod-shaped structure that normally has a diameter of less than

200 nm and a length of a few µm [111]. The high aspect ratio of nanowires ideally allows

the confinement of electrons in two of the three dimensions, implying that they are 1D

objects [112]. However, it is preferable to consider nanowires as quasi-1D systems with

respect to electron transport as they have a certain cross-sectional area. The choice of

InAs as the base material for making nanowire devices is natural because of its physical

properties: First of all, the bandgap is small, only 0.35 eV, consequently, problems with

electrical contacting of wires should be minimal. Secondly, the low electron effective

mass of InAs (m∗ = 0.023m0), which is three times lower than for GaAs, provides strong

quantum confinement effects and a large energy level separation in the wires. The mobility

is expected to be high due to the low effective mass.
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Fig. 2.3: llustration of InAs/InP nanowire growth process. (a) Nucleation: a gold seed particle is

deposited on the growth substrate. TMIn and TBAs are supplied in the growth chamber providing In

and As atoms that alloy with the gold seed particle. The growth of the InAs nanowire starts when the

gold particle is supersaturated with In and As atoms. Then the InAs crystal precipitates at the interface

between the seed particle and the growth substrate. (b) InAs growth: Continued supply of TMIn and

TBAs in the growth chamber provides In and As atoms for continued growth of InAs. (c) When the

length of the first InAs segment is sufficient, the group-V precursor is switched from TBAs to TBP and

InP is grown instead. (d) Once an InP barrier of the appropriate length has been grown, the precursor is

switched back to InAs growth: The TBP supply is cut and TBAs is supplied in the chamber again. The

InAs growth follows the description in (b) and (c).

Another important feature for us, is that the Fermi level of InAs is known to pin in

the conduction band at the surface, at least for the bulk material. Because of this, there

is an accumulation of carriers at the surface. In principle any metal should thus provides

a good Ohmic contact to InAs. However, a disadvantage with a strong pinning in the

conduction band could be that it prevents realization of p-type InAs nanowires [113, 114].

One of the most interesting characteristics of nanowires is their capability to accom-

modate strain [115]. Materials with different lattice constants, such as InAs (6.058 Å at

300 K) and InP (5.869 Å at 300 K), can therefore be grown on top of each other without

disturbing the crystallinity of the nanowire. Combining layers of material in a nanowire

in this manner is referred to as axial heterostructure growth, and it can be used to create

quantum dots in nanowires. This possibility of making heterostucture nanowires using

a technique called chemical beam epitaxy (CBE) opens up incorporating the intermedi-

ate bandgap material (InP) within nanowires of the low bandgap material (InAs). This

provides nearly atomically sharp interfaces that yield excellent experimental system for

testing quantum effects.

The heterostructured InAs and InAs/InP nanowires, which are used in this thesis,

have been grown by our colleagues at Lund University Dr. Ville Maisi and Prof. Lars
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Fig. 2.4: (a-c) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)

image of an InAs nanowire (bright contrast) with InP barriers (darker contrast) forming an InAs quantum

dot. Adapted from [110]. (a) The gold seed particle is visible on top of the nanowire. (b) Short InP

segments delimiting the quantum dot. (c) A HAADF-STEM image showing that it is possible to switch

back and forth between InAs and InP many times once the right growth conditions have been established.

Samuelson. CBE has been used as an ultra-high vacuum approach where the precursors

are fed to the growing wires as a beam rather than as a vapor. The growth species in CBE

are metal-organics, where Trimethyl indium (TMIn) is used as a source of In atoms and

the As and P sources are tertiarybutylarsine and tertiarybutylphosphine, respectively. In

atoms can diffuse on the surface of the substrate and the nanowire side facets, reaching

the gold particles whereas only the As atoms released from the TBAs molecules incident

to the gold particle contribute to the growth.

Fig. 2.3 illustrates the growth process of InAs/InP nanowires and a quantum dot can

be defined in a nanowire by changing the growth precursors for short periods of time,

alternating between materials with a smaller and a larger bandgap [116]. It is important

that the InAs segment be sufficiently long to accommodate an electrical contact, and these

parts of the nanowire are referred to as leads, as shown in Figure 2.3f. A more detailed

description of nanowire growth with CBE can be found in Ref. [109, 117, 118].

Figure 2.4(a) - (c) show transmission electron microscopy (TEM) images of an InAs

quantum dot defined by InP barriers in an InAs nanowire. The gold seed particle is visible
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on top of the nanowire. Figure 2.4b shows a zoomed image of the short InP segments

focusing on the quantum dot. Fig. 2.4c, HAAD-FSTEM image shows the possibility to

switch back and forth between InAs and InP many times to make series of quantum dots

once the right growth conditions have been established.

2.2.2 Fabrication of a nanowire device

In order to use a nanowire for electrical and thermal measurement, several steps of fabri-

cations are required, including: gold contact pads fabrication, coordinate grid deposition,

nanowires dispersion and integrating it with local electronic thermometers. The first two

steps are required to connect the smallest structure and reliably finding the position of

a nanowire respectively. We have frequently used the well known laser lithography and

electro-beam lithography techniques, the details of the technique can be found elsewhere

[119, 120]. We give here a brief overview of the various stages of the sample fabrication

process. It is worth nothing that the exact process parameters varied between sample

fabrication runs. The figures given below represent typical values.

2.2.2.1 Gate and Contact pads

Our fabrication begins with the fabrication of the contact pads and the gate electrode.

Gate electrodes can have different shapes in different mesoscopic experiment depending

on the sample requirements or constraints in nanofabrication. For nanowire-based devices

it is known to use either planar back-gate or lateral gate. In the first one, a 200-300nm

SiO2 capped highly degenerate silicon wafer is used. The oxide isolates the substrate from

the fabricated structures on top, allowing it to be used as a global back gate. The latter

is patterned by lithography techniques after transferring the nanowires.

First then the wafer is cleaned with (0) plasma oxygen reactive ion etching (RIE) for 1

min and (1) bake it at 200oC for 4 min. After that (2) a first layer of photo-resist LOR3A

is spun for 30 s at 4000 rpm and (3) baked at 200oC for 2 min. (4) Immediately after, the

second layer S1805 resist is spun on top for 30 s at 4000 rpm and (5) baked 115oC for 1

min. One might use a single layer resist for such a simple lithography, but there is a high

chance to have upstanding edges after lift-off which can cause discontinuity for connecting

nanowire bonding pads in the following steps of the fabrication [84]. Therefore, to have a

high quality and clean bonding pads without any defect and discontinuity, we use a bilayer

laser lithography technique, which was developed at Institut Néel by former PhD students
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# Description Equipment Comments

0 cleaning RIE oxygen plasma 1 min

1 preback hotplate 200oC, 4min

2 spin coat LOR3A spincoater 30 s, 4000 rpm

3 bake LOR3A hotplate 2 min, 180oC

4 spin coat S1805 spincoater 30 s, 4000 rpm

5 bake S1805 hotplate 1 min, 115oC

6 laser exposure Laser Heidelberg —–

7 development MF26A 1min sec

8 rinse & dry DI water, N2 1 min

9 metal deposition Plassys e-gun evaporator 3 nm Ti (0.08 Å/s), 35 nm Au (0.1 Å/s)

10 lift-off (1) acetone 1 h

11 lift-off (2) hot NMP 2 h 80oC

12 rinse & dry acetone, IPA, N2 ——

Tab. 2.2: The detailed recipe to fabricate high quality local bonding pads by using a bilayer resist

technique laser lithography

in our group [84, 95]. The fabrication is followed after exposure by (8-9) developing the

wafer in MF26A for 1 min, after which the wafer is rinsed in DI water and dried with N2.

we proceed with (9) the deposition of metals and eventually (10-12) lift-off and rinsing

in Acetone and IPA. Fig 2.5 shows bright and dark-field optical images of bonding pads

geometry after development and dicing the wafer into 5 × 10 mm chips.

2.2.2.2 Coordinate grid

After fabricating the bonding pads, a layer of e-beam resist is spun onto the wafer using

the parameters indicated in Tab. 2.3. A pattern of (150 nm × 150 nm) small crosses

is thereafter exposed on the wafer and the fabrication is followed by development, metal
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Fig. 2.5: (a) Bright-field optical image of a Si/SiO2 chip used to make contacts to nanowires, showing

the pre-defined markers and bonding pads. The typical size of the chip is 10 × 10 mm, here it is diced

in two 5 × 10 pieces. A blank chip with 6 device fields arranged in a 2 × 3 array is used for dispersing

nanowires. (b) A dark-field optical image focused on one of the device-field, each device field features 12

contact pads to contact one or more nanowires. (c) Scanning electron microscope (SEM) images of the

contact pads towards a write-field showing coordinate grid done by e-beam lithography. (d) SEM image

of the center of coordinate grid.

evaporation and lift-off. Figure 2.5c-d shows a closer example of one of the write field.

These small crosses make a coordinate grid that we use to map nanowire’s positions once

they are deposited onto the substrate. The markers are separated by 5 µm from each

other and cover a 150 by 150 µm area that is surrounded by the tips of the contact

pad extensions. The coordinate grid also contains four unique corner markers in ±20 µm



48 2. Fabrication of quantum dot devices

# Description Equipment Comments

0 cleaning RIE oxygen plasma 1 min

1 spincoat PMMA 4% spincoater 30 s, 4500 rpm

3 bake PMMA 4% hotplate 5 min, 200oC

4 ebeam exposure NanoBeam nB5 1 —–

5 development MIBK:IPA 1min sec

6 rinse & dry DI water, N2 1 min

7 metal deposition Plassys e-gun evaporator 3 nm Ti (0.08 Å/s), 30 nm Au (0.1 Å/s)

8 lift-off (2) hot NMP 2 h 80oC

9 rinse & dry acetone, IPA, N2 ——

Tab. 2.3: The detailed recipe to fabricate 200 nm markers to map nanowires.

coordinate points from the center (0,0) that allow easier mapping of the nanowire positions

(see Fig. 2.5d).

2.2.2.3 Contacting a nanowire and fabricating thermometers

In our device fabrication process, wires are mechanically transferred onto our pre-patterned

5×10 mm chip. Individual nanowires are then located with a scanning electron microscope

and electrodes are patterned to selected wires again using electron beam lithography. Fig.

2.6 shows SEM image of dispersed nanowires within the write-filed and coordinate grid.

A significant corner mark is shown in Fig. 2.6, which is located in the position of x =20

µm and y =-20 µm from the center. Typically we need two SEM images, one including

only four small cross markers (inset Fig. 2.6) and the other one including a corner marker.

The first one is used to correct the angle of the images using the four points and the latter

one is used to calculate precisely the distance of the wire from the center.

After extracting the nanowire coordinates, we need two rounds of electron beam lithog-

raphy and subsequent passivation/etching the intrinsic oxide of nanowire, metal deposi-
1NanoBeam Limited manufactures advanced Electron Beam Lithography systems.
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Fig. 2.6: Scanning electron microscope (SEM) image of a nanowire deposited on a substrate within the

write field. A significant corner mark, is used to determine the exact position of the nanowire within the

write field. Inset: a close-up SEM image of the same nanowire.

tions in order to arrive to a final device. All the processes are illustrated briefly in Fig.

2.7.

The main challenge for those who work with NWs is to remove the intrinsic oxide

layer using hydrofluoric acid (HF), (NH4)2Sx or ion milling prior to the evaporation of

any metal, then run to the evaporator and introduce the NW device into the evaporation

chamber, pump the chamber quickly to prevent the re-oxidation of the NWs. Regardless

of what approach it is used, one needs to find an optimized and proper etching time. The

initial plan was to make all the contact pads at the same evaporation to the NWs in one

step, i.e. contacting NWs as well as thermometer and heater junctions coupled to the wire

without breaking the vacuum using the shadow evaporation technique. This turned out

to be very tough mainly due to self-blocking of the shadow mask due to the first deposited

thick film to cover the nanowire, and need to increase other thickness at other angles.

Therefore, we defined the fabrication into two steps as schematized in Fig. 2.7 , i.e. first

contacting only the nanowire using Ar milling or hydrofluoric acid (HF) passivation after

the first lithography (Fig. 2.7c) and then making the second lithography for connecting

the source electrode together with the SNS or NIS thermometer and heater to the NW

using a shadow evaporation (see Fig. 2.7g). In the first lithography round, a bulky drain

(shown in green in Fig. 2.8, 2.9 and 2.7a-e) and a part of the source (visible as a rectangle
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in Fig. 2.8b or a circle in 2.9 on the right hand side of the nanowire) is patterned. After

development, the nanowire oxide is etched with an in-situ Ar milling and followed by the

metal evaporation as a stack of Ti (30 nm)/ Au (80 nm) for the device in 2.8. For making

the same ohmic contact of the device in Fig. 2.9, a HF passivation is used instead of Ar

milling and is followed by a fast rinsing in deionized water and immediately loaded to an

evaporator chamber for making the stack of Ni (30 nm)/ Au (60 nm) on the nanowire.

The Ti or Ni layers help with adhesion to the SiO2 substrate and prevent having Schottky

contact to the nanowire. The process of this step is identical to the one of the marker

exposure (which is described in detail in table 2.3), except that now we have an oxide etch

step prior to the evaporation.

Fig. 2.7: Illustration of different steps for making electrical contacts to a single nanowire together with

NIS or SNS thermometers and heaters.

Following a standard lift-off, P(MMA-MAA) copolymer is spincoated to form a rela-

tively thick sacrificial resist with an increased sensitivity to electrons. Next, PMMA 4%

is spincoated to form a much thinner resist and normal sensitivity to electrons (see Fig.

2.7f-g). The difference in electron sensitivity between the two resists leads to a large un-

dercut which enables us to deposit different metals at different angles without breaking the

vacuum. This technique is explained in detail in [84] and was also used in the proceeding
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section with electromigration samples. This EBL step defines the SNS and NIS junction

for devices in Fig. 2.8 and 2.9, respectively.

After e-beam lithography, the mask is cleaned by oxygen plasma, then again is loaded

into an evaporator equipped with a tiltable sample holder. This allows fabricating both

the normal-metal (red) and the superconducting probes (blue) using the same mask in a

single vacuum cycle.

In Grenoble, we fabricated devices with transparent (SNS) and semi-transparent (ZBA)

junctions as thermometers (see Fig. 2.7i and 2.8), whereas in Lund, the fabricated device

(will be studied in chapter 5) is based on NIS thermometers (see Fig. 2.7h and Fig. 2.9).

The exact details of each fabrication are given in the following:

Fig. 2.8: Sample images of a finished device. (a) Optical microscope image of the contact pads and their

extensions towards a device area with a finished device. Yellow shining pads (7,8) were done in first step

ebeam lithography and black wires coming in from almost the top where connect the bonding pads 1-4

and 9-12 to the nanowire were done during the second step lithography. (b) Scanning electron microscope

(SEM) image of the same contacted device. The device leads going out to the contact pad extensions

and make contact to them. From the right to the left, ZBA thermometer, SNS thermometers (closely

spaced pair ≈ 800 nm), SNS heater (widely-spaced pair ≈ 3 µm), side-gate and the the drain can be seen

respectively.

Forming SNS and ZBA thermometers

1. First, we deposit 25 nm of Aluminum (Al) at an angle of −25o with respect to the

rotation angle. This creates the right most Al lead in Fig. 2.8b and it is followed by in-situ

static oxidation for very short time (1 mbar for 5 sec) immediately after the deposition

is completed. Short oxidation provides us a semi-transparent contact (We usually target
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resistances around 5-10 kΩ for a good zero-bias peak) which will be used as a zero-bias

anomaly (ZBA) thermometer [121].

2. Then the sample holder is rotated to the opposite angle and we deposit 40 nm of

copper (Cu) as our source island. The island goes over the nanowire at one end, and

from the other end we have a connection to ZBA thermometer. We designed our source

island so that it is thermally decoupled from its environment as it is only connected to the

bonding pads through Al leads i.e. only Al leads touch the island not any normal metal.

3. Then we rotate again the sample holder to the same direction of the first deposition

but slightly higher angle and bring a 100 nm thick Al down in clean contact (resistances

around 5-10 Ω) to the source island forming SN junctions. In this step we create the four

Al leads shown in Fig 2.8b in the center.

With the mentioned three-angle evaporation through the PMMA mask and the same

lithography, we are able to have both transparent (SNS) and semitransparent (NIS) in the

same device.

Fig. 2.9: Scanning electron micrograph of a single InAs nanowire device realized with two steps fabrication

and shadow-evaporated Al-proximity junctions.

Forming NIS thermometers and heaters

1. First, a 35 nm thick film of Al is deposited at +16o with respect to the evaporation

source to form 5 superconducting electrodes, they are indicated Fig. 2.9 in blue color. In

order to form the AlOx tunnel barriers for NIS probe tunnel junctions, the deposited Al

layer is subjected to in-situ static oxidation immediately after the deposition is completed.
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This was accomplished by venting the chamber at air followed by an immediate pumping

of the system.

2. To complete the fabrication, a 60 nm Cu is evaporated with the sample now tilted

−16o in the opposite direction compared to the Al deposition as the final film to be

deposited. This upwards-shifted copy of the mask pattern forms the source island colored

in red in Fig. 2.9. The purpose of this Cu layer is to form the main part of the source

electrode, connecting to the small source lead which was deposited in the first step

It is worth mentioning that the oxidation time here is much longer than the previous

fabrication, the reason is because we are making an opaque junction for NIS thermometery

i.e one reads a resistance of a order ≈ 200 kΩ where as in the semi-transparent one

targets ≈ 5-10 kΩ. As a result of the two-angle evaporation through the same mask, two

projections of the complete mask pattern will be formed on the substrate. The irrelevant,

partially overlapping shadow copies of the various structures, evident in Fig. 2.9 are shown

uncolored.

The evaporated metal is then lifted off for both case by putting the sample in NMP

for 30 min at 80o C or Acetone and followed by rinsing in Acetone, cleaning properly in

IPA and drying by N2. SEM images of samples after liftoff are shown in Figs 2.8b and

2.9. The irrelevant, partially overlapping shadow copies of the various structures is also

evident for both structures.



Chapter 3

Local thermometers coupled to

nano-devices

In the design of any low-temperature thermal experiment, local electron thermometery

technique and thermal insulation are central topics. In this chapter, first, we discuss

two mesoscopic thermometers based on superconducting hybrid junctions that can be used

at cryogenic temperatures. Then, the possibility of using such junctions as a heater to

provide a temperature gradient is explained. Eventually, an experiment in order to show the

bolometric operation and our thermometers’ ability to detect a minute change in electronic

temperature is conducted.
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3.1 Bolometer Vs Calorimeter

Measuring a temperature or temperature gradient is a significant problem in every ther-

moelectric experiment. Therefore, having a reliable local thermometer plays an important

role in such studies. A thermometer usually includes (i) a temperature sensor which allows

any small temperature changes in the system to be detected. (ii) a reliable strategy to

convert this change into numerical values. When it comes to the temperature sensing at

nanoscale, this is a real challenge [122, 22, 123, 121]. To this end, we present the working

principle of two bolometers in the following sections which will be used in chapter 4 and

5 for measuring thermal conductance of quantum devices.

A bolometer measures an incident power via the heating of a material which is attached

to absorber at Tb through a thermal conductance Gth [124]. The temperature change

can be detected with a thermometer, usually made of a temperature-dependent electrical

resistance or the resistance of the absorptive metal can itself be used as a thermometer

[124, 125]. As depicted in Fig. 3.1a, the absorber carriers a heat capacity of Ce, such as a

thin layer of metal, which converts the absorbing incoming packets of energy to heat. We

consider that a constant heating power Q̇H and/or an instant energy packet in the form

of ∆Eδ(t − t0) is applied to the absorber. Both forms of power increase the temperature

of the absorber from Tb to Te.

Fig. 3.1: An equivalent thermal model of (a) a device with a finite-size reservoir thermalized at Tb and

elevated electronic temperature Te. Ce is the heat capacity coupled to phonon reservoir at Tb. Q̇H is a

constant heating power and ∆Eδ(t − t0) is an instantaneous heat applied to the absorber. (b) A device

with two finite-size reservoirs with a tunable heat current Q̇H showing how the injected heat from the

heater is equilibrated via electron-phonon coupling.
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However, in the experiments that we present in the next chapters, we have two elec-

tronic baths. The geometry illustrated in Fig. 3.1b consist of a bulky electrode that is

assumed to be thermalized at cryostat temperature and it is fixed to Tb. While on the

other side of the device, we are able to change the temperature of the second absorber.

This allows us to apply a gradient temperature across our devices and determine the heat

flow from the hot to the cold electrode.

In Fig. 3.1, Te is the electronic temperature of the system that can be different from

the phonon temperature, because at low enough temperatures, the electrons in a metal

are weakly coupled to the phonons. Therefore, the incoming power drives the electronic

system out of equilibrium in comparison with phonons’ temperature. Consequently, it

creates hot electrons [126]. Usually the phonons in a metallic system are well-coupled

to substrate phonons and as a result, they play the role of a thermal reservoir that is

thermalized at the lowest temperature Tb.

In the case of constant heating power Q̇H as depicted in Fig. 3.2, the temperature of

the absorber in the linear regime approaches the limiting value of:

Te − Tb = Q̇H

Gth

, (3.1)

which depends on the thermal conductance Gth between the absorber and the phonon

reservoir. We should emphasize here that the temperature of the system does not change

with time and the system is in a steady-state regime.

On the contrary, when an instantaneous heat like ∆Eδ(t−t0) is applied to the absorber,

it induces a temperature peak at t0 which results in increasing the temperature of the

absorbing element sharply. This rise in temperature highly depends on the heat capacity

of the absorber as illustrated in Fig. 3.2 and its relaxation reads as:

Ce · d∆T

dt
= −Gth∆T (3.2)

When the radiation is switched off, the temperature relaxes back with a thermal time

constant of τ = Ce/Gth to Tb. This time-resolved response is important, because the

temperature changes with time and the device works in a dynamic regime.

Since the goal of this thesis is to use a bolometer for measuring the temperature of

the devices, more details about calorimeters can be found elsewhere [127, 128, 129, 130].

However, I have designed, optimized and fabricated some devices for another PhD student
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Fig. 3.2: The temperature measurement of the absorber in Fig. 3.1a shows the working regime of a

calorimeter and bolometer in response to external heating powers.

in our group (Efe Gümüs), for calorimetery purposes where it will be found in Annex B.3

in detail.

Local thermometry has been achieved so far only in specific types of quantum devices.

The temperature dependence of the critical current of a superconducting weak link was

used in scanning probe experiments to reveal for instance the scattering sites in high-

mobility graphene [23, 24]. Yet, to date, these experiments are limited to temperatures

above 1 K. At milliKelvin temperatures, local thermometry can be performed in quantum

devices formed in a 2DEG with a variety of methods [25, 26] that have recently been pushed

to quantitative accuracy [6, 27, 28]. Noise thermometry was applied to thermoelectric

measurements in InAs nanowires [29, 131]. In metallic devices, electronic thermometry

is usually based on the temperature dependence of charge transport in superconducting

hybrids, either in the tunneling regime for Normal metal-Insulator-Superconductor (NIS)

junctions [30, 31] or at higher transparencies allowing for superconducting correlations

[32, 33, 132].

In chapter 4 of this thesis, we develop a highly sensitive proximity SNS thermome-

ter whose switching current is used to probe the temperature of the source island of our

metallic quantum dot. We opt for transparent contacts in that experiment mainly be-

cause one needs a negligible access resistance to perform electromigration. As we move

to nanowire devices in chapter 5, we choose our thermometer in the tunneling regime, i.e.

NIS, essentially because these thermometers do not modify the density of states (DOS)
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of the normal metal and a simple measurement gives access to electronic temperature. In

both techniques, there are some drawbacks and advantages that will be discussed in the

following.

3.2 Proximity Josephson junction thermometry

As the first on-chip bolometer, we explain a proximity Josephson junction which is com-

posed of Superconductor-Normal metal-Superconductor (SNS) junction. For applications

that demand very low-impedance thermometers at nanoscale, e.g. integrating a local ther-

mometer with electromigration junctions, SNS thermometry technique may be a desirable

candidate compared to tunnel contact thermometers. A dissipation-less current Is flows

once two supercondutor electrodes are (weakly) coupled, i.e. supercondutors interrupted

by a thin barrier layer. This barrier can either be an insulating tunnel junction as pre-

dicted by Josephson in 1962 [133], a constriction [134], a normal metal [135, 136, 137, 138]

or other exotic nanostructures as nanoparticles (a QD) [84], graphene [139], a semiconduc-

tor nanowire [140], a carbon nanotube [141] and so on. In the limit of weak coupling, the

amplitude of Is is simply related to the difference between the phases ϕ of superconductors

order parameters [142, 143] as:

Is = Icsinϕ (3.3)

Eq. (3.3) is the 1st Josephson equation, where Ic is the maximum current (critical

current) of the junction, a value above which a non-zero voltage (higher that noise floor)

can be read across a Josephson junction. In addition, the 2nd Josephson equation describes

the time-evolution of phase difference across the junction:

∂ϕ(t)
∂t

= 2eV

ℏ
(3.4)

It it worth emphasizing that the SNS configuration that we are interested in has a more

complicated behavior and it is not fully sinusoidal [142] compared to Eq. (3.3). Moreover,

the junction dynamics can be described by the resistively and capacitively shunted junction

(RCSJ) model [144].
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Fig. 3.3: (a) The schematic of the Andreev reflection process. (b) The relevant length scales with their

schematic respective amplitude in a metallic thin film. (c) The density of states vs energy schematic of a

S-N-S junction showing multiple Andreev reflection across the junction.

3.2.0.1 The Andreev Reflection

Naturally, one may wonder how the transition of the supercurrent by Cooper pairs in S

and dissipative current by single electrons in N, may happen at the interface between a

normal metal (N) and a superconductor (S). For small voltages (V) and below Tc, which

is the superconducting transition temperature of S, all the relevant energy scales such as

thermal energy kBT and the electrostatic energy eV are much smaller than the energy

gap ∆ of S. A single electron with an energy of ϵ > 0 compared to the Fermi level of the

normal metal can not enter the supercondutor, because there is not any available state at

ϵ < ∆. As a consequence, the electrons arriving from N will be Andreev-reflected (AR) at

the interface of N-S [145, 146, 147] as depicted in Fig. 3.3. Let us consider that an incident

electron with the energy of E = EF +ϵ slightly above Fermi energy EF , impinges on the N-

S interface with the electron wave-vector larger than Fermi wave-vector as ke = kF + δk/2

and spin S = σ, is reflected as a hole which has a different wave-vector kh = kF − δk/2

and spin S = −σ (see Fig. 3.3a,b). i.e., a Cooper pair with the charge of 2e is created in

the superconductor and a vacancy in an electron state below the Fermi level in the metal.
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Now if another superconductor electrode is placed in clean contact to this normal metal,

an SNS junction is formed. The reflected hole with the energy of E = EF − ϵ travels

through the normal metal hits again the interface of the new NS junction. Therefore, it

is reflected as a phase-coherent electron but with an opposite wave-vector into the normal

metal as pictured in Fig. 3.3c. This process results in transporting a Cooper pair from one

S through N to the other S via a so-called phase-coherent (multiple) Andreev reflection

[148, 145]. This results in a supercurrent in the SNS junction.

The critical current of SNS junctions is determined by the length and energy scales as

the following. It is worth mentioning that different possible regimes might be achieved

by choosing different length scales. (i) electron pairs arriving at the normal metal may

loose their coherence at an average scale determined by the thermal coherence length

LT , which is roughly speaking LT ≈ 100 nm and LT ≈ 300 nm at 1K and 100 mK,

respectively [137, 142]. (ii) The actual coherence length Lϵ of Andreev pair varies from

about the thermal coherence length LT at high energy ϵ ≈ kBT and it is limited by the

phase-breaking length Lφ at low energy (Fermi level ϵ ≈ 0). The value of Lφ is associated

with both elastic and inelastic scattering on impurities and phonons [137, 142]. (iii) The

critical current of the junctions scales exponentially with the length of the normal metal

island Ic ∝ exp (−L/LT ) as indicated in Fig. 3.3b, where L is the length of the normal

metal. Four S − N junctions are embedded in the experiment of chapter 4. In two of

them, the normal metal length L is larger than the thermal length LT and smaller than

phase-breaking length Lφ, LT ≪ L ≪ Lφ. Consequently, a diffusive and phase-coherent

transport is expected. (iiii) The typical energy scale of a diffusive SNS junction is Thouless

energy ET h = ℏD/L2 [137, 138, 145], where D = vf le/3 is the diffusion constant of the

normal metal and vf is the Fermi velocity in the normal metal.

3.2.0.2 Temperature dependence of critical current

The interplay of the superconducting energy gap ∆ and the Thouless energy ET h on SNS

junctions might result in two different regimes. The first one is short-junction limit, where

the superconducting energy gap ∆ is much smaller than Thouless energy ET h (ET h ≫ ∆).

The second one, which is of a particular interest for us, is the long-junction limit, where

the superconducting energy gap ∆ is much bigger than Thouless energy ET h, (ET h ≪

∆). Therefore, only electrons within an energy window centered the Fermi level and of

width the Thouless energy participate in transporting a supercurrent by phase-coherent
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Andreev reflections at the N − S interface. The zero-temperature critical current of such

a junction varies linearly with Thouless energy ET h, hence, the production of the normal

state resistance RN and critical current Ic reads as [137]:

eRNIc(T = 0) = 10.82ET h (3.5)

where RN is the normal state resistance. In our experiment, the junction length L is much

larger than
√
ℏD/∆, that corresponds to ∆ ≫ ET h. which sets our condition to be in the

long junction limit [137, 135].

In the high temperature limit, i.e. kBT ≫ ET h or equivalently L ≫ LT with LT =√
ℏD/2πkBT , the critical current can be written by neglecting the mutual influence of the

two superconducting electrodes as the sum of different contributions associated with each

Matsubara frequency wn = (2n + 1)πkBT from the Usadel equations [137, 149]:

eRNIc(T ) = 64πkBT
+∞∑
n=0

L

Lwn

∆2 exp(−L/Lwn)
[wn + Ωn +

√
2(Ω2

n + wnΩn)]2
(3.6)

where Ωn =
√

∆2 + w2
n and Lwn =

√
ℏD/2wn. For kBT > 5ET h, the contribution

associated with high Matsubara frequencies becomes trivial and only the first term w0 =

πkBT with Lw0 = LT remains influential. Therefore, the expression for the critical current

of SNS junctions in Eq. (3.6) can be estimated in the limit of ∆/ET h → ∞, i.e. long

junction limit, as:

eRNIc(T ) = 32
3 + 2

√
2

ET h

(
L

LT

)3
e−L/LT (3.7)

In low temperature limit (T is low but not zero), i.e. kBT ≤ ET h ≡ L ≤ LT , the

assessment of the critical current Ic includes the solution of the complete Usadel equation

for all energies, i.e. for the whole range of Matsubara frequencies. However, in ∆/ET h →

∞ limit, a good analytical estimation is given by:

eRNIc(T ) = aET h

[
1 − b exp

(
− a

3.2
ET h

kBT

)]
(3.8)

here a = 10.82 and b = 1.30. It should be noted that Eq. (3.8) converges to Eq. (3.5)

for T → 0.

The temperature dependence of eRNIc product is calculated using Eq. (3.5) -(3.8) and

shown in Fig. 3.4. As one can see in Fig. 3.4, the critical current of an SNS junction

is a monotonous function of the temperature. Consequently, the temperature dependent
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Fig. 3.4: The calculated normalized eRN Ic/ET h product as a function of temperature. Solid lines

are calculated with Eq. (3.6) for ∆/Eth = 200, 50 ratio. The red and the blue dashed lines show the

calculation in high and low temperature limits, respectively.

feature of the SNS junction can be used as a secondary thermometer in order to measure

the local electronic temperature of the normal metal. We should emphasize here that if we

increase the distance L to about 5 µm between two superconducting electrodes, then one

might not be able to measure any critical current. Therefore, very long junctions (L > 5

µm) can be served as a local heater. A detailed discussion will be given in thermal bias

section.

3.2.0.3 DC measurement of critical current

One of the typical measurements that is performed at low temperature in order to check

the critical current of SNS jucntions is shown together with its DC measurement circuit

in Fig. 3.5. For small current-bias ISNS values, the junction shows a zero-resistance and

one reads zero voltage (within noise) across the junction. As ISNS is increased above a

certain value, the junction switches to a resistive state with almost linear IV characteristics.

The switching current is identified as the critical current Ic. In the backward sweep at

which the junction switches back from its resistive state to the superconducting state, a

retrapping current Ir is defined. The retrapping current is often lower than the junction’s
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Fig. 3.5: (a) Scanning electron micrograph of the device used in chapter 4 with the DC measurement

circuit. two transparent superconducting Al contacts are used for SNS thermometry. (b) IV curve of a

typical SNS junction shows hysteresis at Tb = 70 mK. (c) The temperature dependence of the critical

current of the SNS thermometer was measured from Tb = 70 mK (dark blue) to Tb = 350 mK (dark red)

by the DC setup.

critical current. In the case where Ir < Ic, the junction shows a significant hysteresis as

illustrated in Fig. 3.5b. DC IV characteristics of a SNS thermometer junction at different

bath temperatures are shown in Fig. 3.5c.

In 2008, Courtois et al. investigated the origin of hysteresis in such an SNS junction

[138]. They utilized two NIS tunnel probes in series forming SINIS structure. The SINIS

probes acted as a thermometer for metallic island. So, they were able to measure the

temperature of the normal metal while measuring the IV through SNS junction as shown

in Fig. 3.6. In this experiment, according the SINIS thermometer probe, the electronic

temperature is at the bath temperature Te ∼ Tb when the junction is in non-dissipative

supercurrent state. While the junction is switched in the resistive state with linear IV

characteristics, an overheating is observed due to Joule dissipation. This Joule dissipation

results in an abrupt jump in electronic temperature of the normal metal from Te = 50
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Fig. 3.6: Adapted from [138]. (a) The SEM image of the device showing an S-N-S junction of 1.5 µm

length with a sketch of the measurement circuit. Two tunnel probes in series form SINIS structure in the

middle are connected to the normal metal embedded between two superconducting banks (on the left and

right sides of the image). (b) The current-voltage characteristics of the S-N-S junction device (bottom

panel) shown on the same current scale with the S-I-N-I-S thermometer voltage response (top panel) was

measured simultaneously at a 50 mK cryostat temperature. In the top panel, the right vertical axis gives

the corresponding electron temperature .

mK to Te ≈ 500 mK as demonstrated in Fig. 3.6b. Strikingly, when the current is

swept back below the critical current Ic, the temperature remains at the same elevated

temperature until reaching accurately the retrapping current Ir, then, it drops immediately

to Te = 50 mK (see Fig. 3.6b for more details). This demonstration assuredly shows that

the hysteresis in IV characteristics of our experiment in Fig. 3.5b has a thermal origin
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and results from the increase in the normal-metal electron temperature once the junction

switches to the resistive state [138].

3.2.0.4 Statistical measurement of the critical current

As it is difficult to keep the junction environment unchanged during critical current mea-

surement, any thermal fluctuation can act as an additional bias. This results in making

the junction switch at Isw before the actual critical current of the device sets in [150].

Ideally, the critical current Ic of an SNS junction can be measured by simply measuring

the switching current of the junction in a single sweep of the biasing current as explained

in the previous section for other applications rather than thermometery. However, for

thermometery purposes, the measurement of such a single event can be of limited use,

as the switching of the junction is a stochastic process [135] and one needs to impose a

statistical measurement to determine the critical current Ic accurately.

To this end, the statistics of the switching current is probed using an oscilloscope

by biasing the junction through a bias resistor with an AC signal [151, 152, 33]. The

Rbias = 100 kΩ is much larger than the junction’s resistance, therefore, it meets the

condition for a current bias. Moreover, the AC signal in our experiment has a triangular

shape with a frequency of 300 Hz, and an amplitude of Vp = 250 mV. Fig. 3.7a shows

the output signal, which is measured by a Femto voltage amplifier, and the applied signal

(input current bias) in pink and yellow, respectively.

According to Fig. 3.7a, the measured output voltage is almost zero within the noise

level (1) and an abrupt jump (2) can be seen as soon as the input current exceeds the

critical current of the junction. (3) A trigger voltage is set above the noise level (zero-

based line) indicated by a white arrow to Vtrigger = 44 mV. Consequently, the oscilloscope

can probe the value of the input signal at which the junction’s current Isw is switched

for each period of the triangle signal form the superconducting to the resistive state. Fig.

3.7b illustrates a distribution of the switching current which is the outcome of measuring

approximately more than 3000 switching events that are recorded in 10 seconds by the

oscilloscope. It is intriguing to see a long tail for the distribution of the switching cur-

rent with this measurement technique. It is worth mentioning that an asymmetry in the

histogram is expected at low temperature anyway. The large tail could be the signature

of an environmental noise going to the junction [150]. Therefore, one would see a more

pronounced behavior at higher bath temperatures [47].
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Fig. 3.7: Statistical measurement of critical current. (a) The oscilloscope screen displays the applied

triangle signal in channel one (yellow) and the measured voltage across the SNS junction in channel 2

(pink). A trigger of 44 mV (above noise level) sets for channel two for detecting the switching current.

(b) Histogram of the stochastic switching event recorded by the oscilloscope at Tb = 80 mK, with a fitted

Gaussian envelope in black. The critical current is shown by a light yellow arrow pointing downward. (c)

The critical current Ic as a function of the bath temperature (calibration) for device B in chapter 4. The

axis being normalized with normal state resistance and the Thouless energy. The orange solid line is a fit

with the theory explained in section 3.1.0.2 Eq. (3.6).

We defined the actual critical current Ic as the most probable Isw, which is the maxi-

mum of the distribution, shown by a yellowish arrow in Fig. 3.7b. The extracted critical

current from the distribution at different bath temperatures is plotted in yellow in Fig.

3.7c together with its theory prediction in gray according to Eq. (3.6). The low Thouless

energy ET h ∼ 8 µeV was deduced from the theoretical fit (gray line) in Fig. 3.7c. We

used this calibration curve of the thermometer that is employed in device B in chapter

4. This low Thouless energy prevents from having a saturation of Ic at low temperatures

and therefore, the thermometer remains sensitive where the thermal transport through
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Fig. 3.8: (a) Top: A SEM image of a typical NIS junction fabricated by shadow evaporation. Bottom:

Density of states of normal metal (N) - insulator (I) - superconductor (S) vs energy on the vertical axis.

A bias voltage increases the chemical potentials of normal metal by eV which allows quasiparticles with

energy E > 2∆ tunnel across the barrier.

the quantum dot gains importance in comparison with other heat relaxation processes in

chapter 4.

3.3 Hybrid tunnel junction thermometry

Another thermometer that we utilize in chapter 5 of this thesis as a bolometer is based on

normal metal–insulator–superconductor (NIS) junction. In this section, first, we briefly

introduce the principle of electric transport through an NIS junction [153, 154]. We find

expressions for the electric and heat currents. Then, we discuss a detailed estimation of

the NIS probe parameters from independent electrical measurements by comparing with

the established theory. In addition, a typical calibration curve of an NIS junction will be

presented.
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3.3.1 NIS Thermometer and cooler characterization

A tunnel junction is composed of an insulating barrier between two metallic electrodes.

As it has already been explained in chapter 2, we fabricate a tunnel junction between

Aluminum (Al) and Copper (Cu) by oxidizing the Al layer just after its evaporation and

therefore, an Aluminum tunnel junction (AlOx) is formed. An SEM image of such Al-

AlOx-Cu together with the energy diagram of an NIS tunnel junction at a finite bias

eV is shown in Fig. 3.8a. The distribution function of the normal-metal N at a finite

temperature that is governed by the Fermi distribution is drawn with respect to energy

(vertical axis) on the left-hand side. The insulating layer shown in gray is in the middle

and eventually, the density of states (DOS) of the superconductor is plotted in the right-

hand side. At equilibrium, when there is no voltage or temperature bias, the Fermi level

in the normal metal island is aligned with the Fermi level of the superconductor electrode

and tunneling is forbidden at low temperature by the strong superconducting gap ∆.

By applying a small voltage bias across the junction, one can raise (lower) the chemical

potential of the normal metal (superconductor) and tunneling of quasiparticles across the

barrier is possible. The I-V characteristics through a single NIS junction reads as [30],

I = 1
2eRT

� +∞
−∞ ns(E, ∆) × [fS(E − eV ) − fN(E + eV )] dE (3.9)

where nS(E) is the normalized BCS density of states [143], and fS(E) and fN(E) are

the quasi-particle occupation factors for the superconductor and normal metal. We as-

sume that the quasi-particles in the normal and superconducting electrodes are in quasi-

equilibrium, i.e. they follow a Fermi-Dirac distribution at some temperatures TN and TS,

respectively.

At a finite temperature T and bias voltage eV , two main parameters describe the

electric transport through the junction: (i) the tunneling resistance RT , (II) the gap

parameter ∆ of the superconducting lead. In spite of the fact that the model is apparently

simple, it can produce quantitatively correct predictions in many experimentally relevant

cases [22, 123, 155].

Using Eq. (3.9), the IV curves of an NIS junction for different temperatures of the

normal metal are plotted in Fig. 3.8b. The first eye-catching point is that, the sub-gap

current varies strongly with the temperature of the normal island. This is because at

higher temperatures, there are more electrons above Fermi level which can pass through
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the barrier. In this regime where the ∆ ≫ kBT and 0 ≪ eV < ∆, one can re-write the

Eq. (3.9) with a good estimation [156] as:

I(V ) = ∆
eRT

√
πkBT

2∆ exp eV − ∆
kBT

. (3.10)

For the bias voltages much greater than the superconducting gap eV ≫ ∆, the currents

at different temperatures merge together to a single branch and show a resistive state.

We used Eq. (3.9) to fit the experimental IV of NIS junctions. The low-temperature

experimental characteristics of the NIS junction of our device is shown in Fig. 5.5, both

on linear and logarithmic scales, together with the theoretical I − V characteristic using

Eq. (3.9) at Tb = 100 mK. Approximately at voltage ±∆/e, which will be refer to as the

gap voltage, one finds an onset of current which becomes sharper as the temperature is

decreased.
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Fig. 3.9: Current–voltage curve of one NIS junction using linear (left) and logarithmic (right) scale. Fit

to Eq. (3.9) is shown as red lines: ∆ = 209 µeV , RT = 85.6 kΩ and Tb= 100 mK.

3.3.1.1 Heat transfer in an NIS junction

For many applications, it is important to consider the heat carried by the quasi-particles

as well. A single quasi-particle of energy E deposited to (extracted from) an electrode
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Fig. 3.10: (Left) Tunnelling current of a SINIS (pair of NIS) junction with respect to the applied

heater/cooler voltage at different bath temperatures Tb. (Right) Measured voltage across a floating

current (5 pA) biased SINIS junction as a function of the bath temperature at Tb and Vg = 0 V gives the

calibration of the thermometer.

adds (removes) an amount E − EF of heat. Consequently similar to Eq. (3.9), we obtain

the following integral forms for the average heat power incident on electrode N:

Q̇(E) = 1
e2RT

� +∞
−∞ (E − eV ) ns(E, ∆) × [fN(E − eV ) − fS(E)] dE (3.11)

Fig. 3.8c shows a calculated power through NIS junction using Eq. (3.11). A peculiar

property of the NIS junctions is that for bias voltages slightly less than the gap voltage

∆/e, one finds a region where Q̇(V ) is negative, i.e. the normal electrode is cooled.

Considering the preceding discussion on the heat carried by tunneling quasiparticles, it

is evident that cooling can be brought upon by extracting quasiparticles from above the

Fermi level or depositing them below it, which has been extensively studied in [31, 72, 30].

Equations (3.9)-(3.11) allow the electric and heat currents through an NIS junction to be

evaluated for different bias voltages V and electrode temperatures TS and TN .
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3.3.1.2 Calibration of NIS thermometers

After extracting basic parameters (RT , ∆) of our NIS junctions using the mentioned

theory to fit the experiment, we calibrate the NIS thermometer with respect to our known

cryostat temperature. Calibration is done at equilibrium, so that the cryostat temperature

(equal to the phonon temperature) can be attributed to the electronic temperature of the

normal metal. A pair of NIS junctions is biased with a constant current of few pA (here

5 pA) and the voltage drop across the junction is measured as a function of the bath

temperature [30]. The measured voltage of the SINIS (a pair of NIS) junction for the full

VNIS range is shown in Fig. 5.6 left. This measured voltage across the SINIS junction as a

function of bath temperature gives us the calibration of the thermometer. Therefore, one

can access to electronics temperature of the normal metal (source island) with the aid of

the calibration curve shown in Fig. 5.6 on the right hand side.

3.4 Thermal bias

In addition to having a working mesoscopic device and sensitive thermometers, another

important ingredient for conducting the heat conductance experiments is the ability to

heat up the device, i.e. establish a temperature gradient ∆T while maintaining the low

temperature to be able to probe the quantum dot physics. The thermal bias in nano-

structures is traditionally applied through Joule dissipation. Unlike electronic cooling

(refrigeration), a heating is simply obtained by passing an electric current through a

resistor or in general by a resistive element on one side of a device while the other side

is kept at the lowest possible temperature. Different means of providing a temperature

gradient across a nano-object in particular in quantum dots have been developed and

showed that heaters as well as thermometers have to be local at these small length scales

[157, 158, 47, 159].

There are several approaches known perceptibly that have been so far utilized in ther-

moelectric experiments, mostly thermopower measurement [65, 110, 157, 158, 160, 66,

131, 161, 5, 162, 163, 164, 165, 166, 167, 168], or recently shown for noise thermometery

[161, 131, 160], and only few of them allowed evaluating the heat conductance of quantum

devices at sub-Kelvin temperatures [89, 27, 47].
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Fig. 3.11: The cartoon illustrates different QD thermal biasing approaches. (a) Contact heating (b) Side

heating (c) Top heating. SEM images of a-c extracted from [162, 163, 3] (d) Superconducting hybrids’

heater. The gray rectangle in the center represents a quantum dot between two contact leads. The contact

lead that is indicated in red is warmer than the one indicated by green.

This section aims for comparing the techniques that are used in the later chapters of

this thesis and giving some example of commonly used techniques for having a thermal

bias in a quantum device.
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3.4.0.1 Contact heating

One of the most widely-known heating techniques is contact heating which is schematized

in Fig. 3.11a. In this method, one of the device’s leads, e.g. the source electrode of

a quantum dot, is heated as shown in red in Fig. 3.11a by applying a current directly

through the source electrode. Therefore, this current can induce heating power in one

side of the device. This approach was historically used to measure the thermopower of a

quantum dot [66, 65, 110].

Providing local heating in the device is the first advantage of this technique, and the

second one is that, as the heater and the contact to the device share the same electrode,

no additional fabrication step is needed. However, there are two significant disadvantages,

(i) Measuring a thermovoltage or thermocurrent is somewhat difficult [162, 163, 65, 110].

Significantly, there is a potential variation along the length of the heater electrode induced

by the heater current. This potential should be carefully fine-tuned, otherwise it makes

an unwanted overall biasing in the device which is difficult to compensate for from an ex-

perimental point of view. (ii) A big portion of applied heating power goes to the substrate

which results in heating up the substrate together with heating the contact of the device.

Therefore, it activates other heat leak channels and it is extremely tough to disentangle

electronic heat flow from the rest of heat escape mechanisms.

Roddaro et al, have significantly improved the efficiency of this kind of heaters and

they have been able to measure the thermopower of an InAs nanowire [160, 131, 161].

Nevertheless, it is still not the best technique for evaluating electronic heat conductance

for our devices at sub-Kelvin temperatures.

3.4.0.2 Side heater

Another approach to obtain a temperature difference in the system is to introduce a

dedicated side heater into the device so that a strip is placed in the vicinity of the source

or drain electrode in the same fabrication step [163] as shown in Fig. 3.11b. The immediate

advantage of this kind of arrangement is that the heating power can be tuned independently

of the measurement setup as the heater strip is separated from the actual contact (the

source or drain) of the device. Therefore, the thermovoltage can be measured using a

simpler measurement circuit which has much less experimental uncertainties [166, 167,

168, 65, 110]. A considerable disadvantage of this method is that, the heat delivery from

the strip to the actual contact should be done by thermal conduction via the substrate
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as the heater is electrically disconnected from the device circuit. Hence, a fraction of

the heating power is going to the actual contact of the device and the remaining heating

power increases the surrounding temperature significantly i.e. the cryostat temperature.

Therefore, this method brings lots of unwanted dissipation and is rather incompetent for

measuring an electronic heat conductance of a device at low enough temperature.

3.4.0.3 Top heater

An alternative strategy is to utilize a top-heating technique developed by H. Linke’s group

at Lund University as depicted in Fig. 3.11c. They conducted extensive thermoelectric

transport experiments that showed thermodynamic efficiency limits and thermovoltage

measurement from weak-coupling to Kondo regime using a quantum dot above 1 K [3,

65, 162, 65, 110]. The top-heating technique somehow combines two previously mentioned

methods. This time a heater strip is placed using a second fabrication run on top of the

contact lead. Then, it is separated electrically by a thin layer of oxide following the first

fabrication step. Similar to the side-heating technique, the advantage of this new design

is that, there is a separate circuit for the top heater and therefore, one needs a simpler

measurement setup. In addition, as the heater is much closer to the central part of the

device i.e. the quantum dot compared to the side heating technique, it is easier to tune

the heating power and minimize the substrate heating.

The biggest disadvantage of such method is that the heating of the contact is still via

the oxide layer. Therefore, the heat can leak to the other side of the device as one needs to

increase the heating power for having a desirable temperature difference. Moreover, two

fabrication steps are needed to pattern this design.

3.4.0.4 Superconducting hybrids’ heater

Figure. 3.11d highlights an approach that endeavors to combine the advantages of the

previously described methods while minimizing by far the disadvantages of the other tech-

niques. Making a temperature difference using superconducting hybrids approach provides

an adequate heating power while the other part (the drain side) of the device remains at

cryostat temperature. In this approach, the heater electrode is placed in direct contact

(SNS) or tunnel contact (NIS) to the contact lead of the device (source electrode). Super-

conducting electrodes using shadow evaporation technique as explained in chapter 2 are

utilized to form SNS or NIS junctions. For instance, in the case of clean contact heater,
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a small heating power of Q̇H = 100 aW yields a gradient temperature of about ∆T = 3

mK, which is significantly a more efficient way to create a temperature gradient compared

to the preceding techniques at low temperature. Not only can an efficient heating be

obtained but also on-chip cooling can be achieved using NIS junction (tunnel contact).

The main advantage of this approach is that supercondutors are thermal insulators,

therefore, the source electrode of the device remains thermally decoupled from its envi-

ronment below 300 mK. In addition, there is a negligible heat transfer between the source

electrode and the substrate (Si + SiO2) phonons as the volume of the source electrode

(normal metal island) is chosen to be very small and narrow. Moreover, in terms of easy

integration, the fabrication can be done in the same step with the same lithography mask

as fabricating the device (for more details see chapter 2).

The noticeable disadvantage of this technique is that, the electronic heat conductance

of nano devices can not be evaluated above ≈ 350 mK because the superconducting leads

start to leak. Nevertheless, at this high temperature (Tb > 350 mK) heat conductance in

the normal metal island is dominant by phonons and it is not the interest of this thesis.

The devices presented in chapter 4 and 5 utilize on-chip heaters. This allows us to heat

up the electrons of source electrode locally with a constant heating power and measure

the steady state response without having any significant heating effect on the other parts

of the device, i.e. the drain electrode is thermalized at the cryostate temperature (Tb).

3.5 Performance of an SNS junction as a bolometer

In order to measure the heat flow through a QD junction, one needs to be able to ac-

cess a very small change in electronic temperature. Moreover, one needs an operating

temperature down to 100 mK or below, where the quantum dot heat flow dominates the

other paths of heat relaxation such as electron-phonon coupling. These two necessities

lead us to consider SNS proximity junction in chapter 4 and NIS hybrids in chapter 5 as

heaters and thermometers that can fulfill both of these requirements. We have optimized

the sensitivity of the SNS thermometer with several fabrication repetitions of the junc-

tions parameters such as the length and thickness of the normal metal. In this way, we

reduced the Thouless energy (Eth) of the SNS junction, which basically determines the

lowest saturation temperature of the thermometer [137].
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Fig. 3.12: (a) Colored scanning electron micrograph of one of our sample. The source side is separated

from the drain by electromigration and there is no quantum dot placed on the junction. Therefore it can

be considered as a small metallic island with a heater junction (two Al leads on the left) and a thermometer

junction (two Al leads on the right).

Here we exemplify an experiment using SNS junctions, where we determine the sensi-

tivity of our optimized SNS thermometer and test its operation as a bolometric detector.

The SEM image of the device under test is shown in Fig. 3.12(a), where the normal metal

Au is shown in red and the superconducting Al leads in light blue. The basic structure

of the device is similar to that of the QD device described in chapter 4, with the only

difference that there is no quantum dot placed in between the source and the drain after

the electromigration. Therefore, the device can be essentially considered as a ∼ 5 µm long

and ∼ 100 nm wide rectangular normal metallic island. Like the samples in chapter 4, we

have here a very long SNS junction as the superconducting hybrids’ heater to inject Joule

heat into it and a short SNS junction to measure the electronic temperature.

We heat up the island by applying a constant but variable DC power through the

heater junction, using a 1.3 V isolated DC power supply. The SNS thermometer is cali-

brated against the known bath temperature, by measuring the histograms of its stochastic

switching current, as described in the previous sections. In this experiment, the bath

temperature is at Tb = 90 mK and the heater junction is current-biased through a 200

MΩ biasing resistor which leads to a heating power of Q̇H = 100 aW. We continuously

monitor the electronic temperature of the island by measuring a histogram of 500 switch-
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Fig. 3.13: A real-time measurement of the electronic temperature of the source island. Each point is a

Gaussian maximum of the histogram of 500 measurements of stochastic switching current, taken in 1 sec.

One can easily notice a change of the electron temperature by a few mK compared to the background

temperature of 93 mK, whenever we turn on (off) the heater, set to an input heating power of 100 aW.

ing currents in about 1 second. The real time temperature trace of the island is shown

in Fig. 3.13. One can easily identify the change of the electronic temperature by a few

mK with respect to the background temperature of about 92 mK whenever the heater

is turned on (off). Therefore the thermometer clearly detects an input heat as low as

100 aW, thus performing as a bolometric detector of a minute heating power. The noise

equivalent power is about 100 aW/
√

Hz.

This observation of the island’s electronic temperature can be determined by a heat-

balance equation, as shown by a heat-balance model in the Fig. 3.2(a). The famous

relation for describing energy flow rate from electrons to phonons in normal metal islands

was developed by Wellstood et al [126]. They simplify the problem by considering a

metal film with the thickness of t larger than the dominant thermal phonon wavelength

λph = hv/kBT , where h is the Plank constant and v is the sound velocity of the dominant

phonons. Under this assumption, the phonon distribution becomes three-dimensional (3D)

in the metal. In addition, they only take into account longitudinal phonons which results

in:

Q̇e−ph = ΣΩ(Te
n − Tb

n) (3.12)

where the constant n = 5, Ω is the metal volume and the e-ph coupling constant Σ is

evaluated for a clean 3D metal as:

Σ = 8ζ(n)k5EF
2D(EF )

3πℏ4ρvF vl
4 (3.13)
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where ζ(n) is the Riemann zeta function, kB is Boltzmann constant and ϵF is the Fermi

enrgy, D(EF ) is the electronic density of state (DOS) per unit volume, ρ is the mass

density and vl is the longitudinal speed of sound. It is worth emphasizing once again that

Eq. (3.13) was evaluated for a clean 3D metal, where as several studies have reported

a deviation for the exponent from n = 5 to n = 4 − 7 [169, 170, 171, 172, 173, 174] in

dirty-limit (l/λph ≪ 1), mainly due to the presence of different kinds of disorder in the

system. Here l is electron mean free path and λph is phonon wavelength.

Here we use n = 5 according to the reported e−ph law for Au and Cu in the literature

[33, 30] and the heat-balance is written as:

Q̇H − ΣV(T 5
e − T 5

b ) = 0, (3.14)

where Te and Tb are the electron and the bath (phonon) temperatures, respectively. Any

parasitic heat source (sink) such as heat losses through the superconducting leads due to

imperfect thermal insulation [175] or parasitic heating by the electromagnetic environment

are taken into account within the injected heating power Q̇H.

The electronic temperature of the island can be extracted by solving the above heat-

balance equation (3.14). If we use an injected heating power Q̇H = 100 aW, the material

constant for Au Σ = 2.4 × 109 Wm−3K−5 [30], the volume of the island V = 2 × 10−20 m3

and the bath temperature Tb = 90 mK, we get an increase in the electronic temperature

∆Te ∼ 3 mK, which is consistent with the measured value. This justifies the analysis of

the heat relaxation mechanism in the island as discussed above.

3.6 Conclusion

In the first part this chapter, we presented proximity Josephson junction (SNS junction)

as a thermometer. In addition, a technique to measure electron temperature of a normal

metal island [33, 47] was explained experimentally. In the second part, we introduced

the hybrid tunnel junction (NIS) thermometery technique plus its theoretical background.

Moreover, we compared the conventional heating technique for creating a temperature

difference ∆T at sub-micrometer-sized devices with the superconducting hybrids’ heater.

Finally, we showed a bolometric detection of a minute power (100 aW) with our optimized

SNS thermometery technique.



Chapter 4

The effect of co-tunneling on heat

transport of a single quantum dot

In this chapter, we report on the operation of a single-quantum-dot heat valve, using a sen-

sitive electron thermometer integrated inside the device. At charge degeneracy, the observed

electronic cooling is the result of energy quantization in the dot, combined with strong tun-

nel coupling to the leads. When charge current flows through the device, Joule dissipation

results in a temperature increase following the usual Coulomb diamonds’ picture.
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4.1 Heat transport in a metallic quantum dot junc-

tion

By using the electromigration technique and a custom-fabricated device, we form a single

quantum dot (QD) junction and we report in this chapter on two investigated devices

with an identical geometry but fabricated in two different runs. We demonstrate in device

A the gate control of the electronic heat flow in a thermally-biased single-quantum-dot

junction. A temperature map is measured and the effect of higher order tunneling in

a single quantum level is shown and reveals clearly defined Coulomb diamond patterns.

We also show that our result is in good agreement with NEGF theory. For device B,

we perform a simultaneous measurement of charge and heat conductance and we deduce

the heat conductance from the measured temperature map. In addition, a quantitative

measurement evaluating the ratio of these two conductances is obtained.

4.1.1 Device preparation

The fabrication of the device is based on e-beam lithography, three-angle Au thin film

evaporation and lift-off (see chapter 2 for further details). The electromigration junction

is connected on the one side to a bulky drain electrode made of Cu, in fairly good contact to

the thermal bath at a temperature Tb, and on the other side to a narrow source electrode,

again made of Cu. Four Al leads provide contacts to the source through a transparent

interface. At temperatures well below the superconducting critical temperature of Al, these

leads are thermally insulating. The source is therefore fairly thermally decoupled from its

environment. The closely spaced pair of Al leads to the source forms an SNS junction with

a temperature-dependent critical current that will be used as an electronic thermometer.

Conversely, the widely-spaced pair of Al leads forms instead a junction with a vanishing

critical current, which allows it to be used as an ohmic heater. In contrast to prior work

[22], we have chosen here transparent rather than tunnel contacts to the source, mainly

because electromigration requires low access resistances, which is inherently incompatible

with tunnel contacts which we will employ in the next chapter.
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Fig. 4.1: a) False-colored SEM image of a typical device. The source is colored in red, the drain in green

and the superconducting leads in blue. The circuit diagram shows the heat transport set-up. The longer

(2.5 µm) SNS junction is used as a heater driven by a constant d.c. battery and the shorter (700 nm)

SNS junction is used as a thermometer. (b) Zoomed-in view of the nano-gap between the source and

drain created by electromigration and the nano-particles made by Au evaporation.

4.1.2 Charge transport

Figure 4.2 shows a differential conductance map of the QD junction as a function of bias

(Vb) and gate voltages (Vg) for device A and B. It is important to emphasize that the

conductances were measured with no additional heating in the source island. From the

observed Coulomb diamonds, one can immediately access the charging energy EC of the

device which is about ≈ 4 and 6 meV for sample A and B, respectively. These values are

estimated based on extrapolating the bias at the top of a diamond, which is actually twice

the charging energy (more details in chapter 1). We did not measure these devices above

bias voltages of about ± 3 mV, due to the rather large tunnel couplings, this voltage leads

to currents of about 100 nA, beyond which there is a risk of burning the device. Therefore,

a full spectroscopic characterization revealing several successive levels was not observed
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Fig. 4.2: a Differential conductance map of the device measured at 70 mK of device A in (a) and device B

in (b) against the drain-source bias voltage Vb and the gate voltage Vg with no additional heating applied.

within this bias voltage range in device A, although we still can clearly see an excited state

for device B in Fig. 4.2b.

The detailed shape of the Coulomb diamond pattern can also be used to determine

the different capacitive couplings of the QD to its environment and a detailed discussion

is given in the theory chapter of this thesis. In particular, the sum of the inverse of the

diamond (positive and negative) slopes is equal to the ratio of the total capacitance to its

leads over the capacitance to the gate α−1 [80]. The so-called coupling parameter or gate

coupling α translates the effect of the gate voltage in terms of shift in chemical potential

of the QD. Here α ≈ 0.157 for sample A and 0.11 for sample B were deduced (see Tab.

4.1).

One can notice that one edge of Coulomb diamond in both experiments is brighter

than the others. It essentially tells us that the tunnel coupling of the quantum dot is

strongly asymmetric. Hence, the coupling can directly be obtained from the full width

at half maximum (FWHM) of the conductance peak of the brighter Coulomb edge. It is

noted that, by this method we can extract the effective tunneling rate as it is assumed

that the weak couple lead is the bottle-neck of the transport and the total coupling is

determined by the stronger one.

We found a tunnel coupling ℏΓ value in the range 0.09 - 1.4 meV , depending on the

considered degeneracy point or quantum dots, for a single energy level involved in low-bias

electron transport. In a weakly coupled QD device, high-conductance lines running parallel

to the Coulomb diamond edges are expected, in correspondence to single electron levels.

presumably this washed out due to the large tunnel coupling ℏΓ ≫ kBT . Nevertheless,
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Device α Γ (mV) EC (meV)

A 0.157 0.2-1.4 4

B 0.11 0.09-0.3 6

Tab. 4.1: Extracted gate coupling, tunnel couplings and the charging energy from conductance maps for

device A and B.

the coupling is not strong enough to induce Kondo effect. Here these features are absent

for device A whereas in device B, one can easily resolve level excitation at least in one of

diamond edges. The conductance map for device B displays a large coupling asymmetry

that is also evidenced by the conductance asymmetry displayed by the on-state line in

Coulomb diamond edge in Fig. 4.2b. All the values are listed in Tab. 4.1.

The formation of a nano-gap by electromigration depends sensitively on the structural

details (precise width and thickness) of the constriction, therefore, the size of the gap

(between the leads and dot) and its structural details vary from one electromigration to

another one. As a result, the strength of tunnel coupling also varies. In both cases, Pt was

used as the electromigration material, as it suppresses the superconducting proximity effect

extremely efficiently, much more than Au. The charging energy of the dot depends on the

actual size of the Au nano-island and the total effective capacitance with its environment,

that is determined by both the precise nature of the evaporated Au droplets and the

detailed structure of the nano-gap created by electromigration. Therefore, it is expected

to have a different charging energy for two similar samples. Such metallic quantum dots

were investigated in the 90s. In Ref. [176], an energy level separation of 0.7 meV and a

charging energy of 6 meV were deduced from the measured energy spectra in 10 nm Al

nanoparticles. The nanoparticles used in our work can be seen from SEM images to be

about 5 nm in size and we expect an energy level separation of the order of a few meV. In

the previous work [95] from our group, the weak coupling to leads enabled us to observe

sharp resonances in the differential conductance map corresponding to an energy level

separation of about 5 meV.
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Fig. 4.3: (a) d.c. IV characteristics of the SNS thermometer junction at different bath temperature Tb,

the current bias value at which the voltage exceeds a threshold V0 ≃ 1 µV defining the switching current.

(b) The critical current Ic as a function of the bath temperature, the axes being normalized. It is defined

as the most probable switching current extracted from the histograms. The calibration curve (red solid

line) is a fit with the theory [137]. (c) Histogram of the stochastic switching current of the SNS junction

at different bath temperatures, with a fitted gaussian envelope for each. (Adapted from Dutta, Majidi et

al. [47])

4.1.3 SNS characterization

We employed superconductor-normal metal- superconductor hybrid (SNS) junction as a

local electronic thermometer. The principle of such a junction has already been discussed

in the thermometery chapter in more detail. In the following, thermometer characteristics

of device A will be presented and for device B, the same information can be found in

chapter 3.

The critical current Ic of an SNS junction is highly sensitive to the electronic temper-

ature Te in normal metal (N). The relevant energy scale is the Thouless energy ET h =

ℏD/L2, where D is the diffusion constant in N and L is the junction length [137]. For

Te > Eth/kB, Ic decreases rapidly with increasing temperature, allowing it to be used as a

secondary electron thermometer [32, 33]. In a single IV characteristic, the switching cur-

rent is defined as the value of the current at which the voltage is larger than a threshold
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Fig. 4.4: (c) Schematic of the device, with the different heat flows to/from the source.

voltage chosen slightly above the measurement noise level. Figure 4.3(a) shows a series

of such characteristics at different bath temperatures. Switching current histograms, to-

gether with a gaussian fit of their envelope, are shown in Fig. 4.3(c) for a series of bath

temperature values. The histogram width increases with the temperature, consistently

with a thermal energy fluctuating by 2kBT . In Fig. 4.3(b), the variation of the critical

current with the bath temperature fits nicely the theoretical expectation [137], the latter

being used as the thermometer calibration. The low Thouless energy Eth ∼ 5 µeV was

chosen in order to avoid a saturation of Ic. The thermometer thus remains sensitive at

low temperature, where thermal transport through the QD gains importance compared

to other heat relaxation processes.

4.1.4 Thermal balance and electron-phonon coupling

To investigate the power flow in the present device, our strategy is to study the thermal

balance while modulating the conductance of the device. The normal metal island in our

device was Joule-heated (Q̇H) by a floating homemade current source through the long

pair of SNS junction, as depicted in Fig. 4.1. The electron temperature of the island

was measured by the shorter SNS junction on the rightmost side of the island. The

measurement circuit is completely depicted in Fig. 4.1. However, the applicability of the

measurement scheme is based on the following facts:

(i) Heat leaks through the SN junctions are much smaller than the heat flow from

electrons to phonons in the normal metal. Clean SN junctions provide an excellent elec-

trical, but poor thermal conductivity at low enough temperature, i.e. it is known that

superconductors make a perfect thermal insulator. In addition, the resistance of an SN
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junction was found to be much lower than that of the normal metal island used in the

measurements.

(ii) The density of states around the Fermi level in the normal electrode is suppressed

by the proximity effect of the superconductor electrodes resulting in a decreased electron–

phonon coupling. The relative energy scale here is the Thouless energy ET h, i.e. ET h/kB

≈ 60 mK below which the phonon thermal conductance is decreased and other relaxation

mechanisms such as photonic ones become a dominant relaxation channel.

(iii) The electron-electron (e-e) scattering length is much smaller than the length of

a normal metal wire. Hence, we have a fast electron–electron internal relaxation and

electrons in the wire have a well-defined Fermi distribution [177, 178]. Therefore, the

electron–phonon relaxation time is much slower compared to the electron–electron one and

this lets us assume that the electronic system is always at internal thermal equilibrium

[130].

(iv) Energy transfer thanks to photon emission [179] is a possible channel, but it is

also insignificant on the one hand due to the "large" volume of the normal metal island

and on the other hand because the photon wavelength varies with 1/T, where T is the

working temperature. Therefore, one needs a much lower temperature to observe heat

conductivity contribution through photons [180].

Based on the arguments (i)-(iv), it is nice and informative to check the thermometer and

heater before starting the thermal transport through the quantum dot. A first experiment

can be reading the electronic temperature and varying Q̇H while the quantum dot is not at

resonance, and analyze its value with a simple thermal model. This measurement brings us

some important information about all the relevant escape heat mechanisms i.e. electron-

phonon (e − ph) constant in the source island of the device. To this end, we assume that

there is no heat flow through the QD i.e., Q̇QD = 0 deep inside the Coulomb blockaded

region and at Vb = 0. Therefore, the injected heat Q̇H from the heater makes a balance

via e − ph coupling Q̇e−ph = ΣV (Te
5 − Tb

5), which is considered as the main heat escape

mechanism from the source island of the device. Consequently, the equilibrium thermal

equation deep inside the diamond and zero bias voltage is given by,

Q̇H − Q̇e−ph = 0. (4.1)

We can obtain the e − ph constant (Σ) by solving the Eq. (4.1) using the measured

steady state temperature in each device. For device B, the temperature was measured by
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Fig. 4.5: Left: Histogram of critical current of SNS junction for different constant heating powers applied

to the source island. Right: measured source electron temperature Te in off QD resonance state for device

B at Tb = 80 mK as a function of heating power Q̇H applied to the source. The red curve is a fit to T 5

power law.

the statistical measurement of critical current as it was explained chapter 3 and eventually,

the calibration curve for device B was used to convert the Ic of the SNS junction to

temperature for different heating powers as it is shown in Fig. 4.5. This measurement

first gives us data and allows us to fit the Te(Q̇H) with a T 5 law over a wide range of

input powers and hence get access to more accurate parameters. We get (ΣV) and we

can estimate V from the geometry of the device i.e. Σ = 2.6 × 109 Wm−3K−5 and

V = 2.8 × 10−20 m3. Whereas for Device A, we only have one single power data point

which heats up the island from Tb = 80 mK to Te = 164 mK. We deduced the e − ph

coupling parameter Σ = 2.4 × 109 Wm−3K−5, close to the expected value for Au [30] for

the estimated volume of the source island V = 2.8×10−20 m3. However, we should mention

that the Σ value for device B is not far from the one in device A and it is consistent with

the literature [30].

4.2 A single-quantum-dot heat valve

In this experiment we investigate device A and show that a quantum dot can act as a

heat valve. The source is heated by applying a constant heating power Q̇H = 6 fW to the

heater junction. The drain is biased at a potential Vb, the source side being grounded via

one of the SNS thermometer contacts. Figure 4.6(a) shows a map of the source electronic

temperature as a function of Vb and Vg. Its resemblance to the charge conductance map of

Fig. 5.8(d) is striking. The source temperature Te increases rapidly with increasing charge
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Fig. 4.6: (a) Experimental map of the source electronic temperature in the Vb −Vg plane. (Adapted from

Dutta, Majidi et al. [47]) (b) Individual gate traces of the source temperature at two different bias values.

(c) Schematic energy diagram of the heat flows in/out the source in various conditions as indicated by

labels in (b): (1) away from charge degeneracy and at zero bias (left), (2) at a charge degeneracy point

Vg = V 0
g but still at zero bias (middle) or (3) at non-zero bias (right). The gray profile depicts the

quantum level spectral density. The ratio between the level broadening ℏΓ, the bias Vb and the thermal

energy kBT is in correspondence with panel (b) conditions. The arrows indicate the applied heating power

Q̇H, the Joule power Q̇J, the electron-phonon coupling power Q̇e−ph and the power flow through the QD

Q̇D.

current due to the related Joule power. Right at the charge degeneracy point, the source

temperature is lower than in the rest of the map. The higher resolution temperature map

of Fig. 4.7(a) shows a clear cooling region of ellipsoidal shape, with slightly canted axes.

Figure 4.6(c) shows energy diagrams for three different cases indicated by circles in the

temperature Te(Vg) profiles at two different bias value of Fig. 4.6(b). At zero bias and far

away from charge degeneracy (case 1), there is neither Joule power nor heat flow through
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the QD. The source is overheated up to Te = 163.5 mK due to the balance between the

applied power Q̇H and the main thermal leakage channel, namely the electron-phonon

coupling Q̇e−ph. Still at zero bias, but near a charge degeneracy point (case 2), there is

a heat flow Q̇D through the QD, but still no DC electrical current. This shows up (blue

curve in Fig. 4.6(b)) as a temperature Te drop by several mK at the charge degeneracy

point. The gate-controlled QD junction thus acts as a heat valve. At higher bias (case

3), this cooling contribution is overcome by the Joule heat Q̇J. A temperature maximum

is thus observed at values of the gate potential close to the charge degeneracy point (red

curve in Fig. 4.6(b)).

4.2.1 Comparison with NEGF simulations

The mere observation of cooling at the charge degeneracy point is in clear contradiction

with the theoretical prediction in the weak coupling, sequential tunneling regime. It is

noteworthy to say that the word ’cooling’ is referred to heat conductance not refrigeration.

Indeed the present experiment deals with a strong tunnel coupling between the QD and

the leads, with a ratio ℏΓ/kBTe ≈ 20, rendering the weak coupling picture inapplicable.

We now go beyond the sequential tunneling approximation. In the vicinity of a charge

degeneracy point, we can model our device as a non-interacting single energy level. As soon

as we move away from the charge degeneracy point, the model would not be applicable

anymore. We are interested in exploring the properties of the leads at stationarity and in

particular their electronic temperature; in the NEGFs framework this is possible via the

so-called inbedding technique [181, 182]. It is worth to mentioning that it is not based on a

full heat balance model accounting for the heat flow via phonons and the superconducting

leads. We instead assume that the electron-phonon coupling strength itself does not change

appreciably within the temperature range of the map, which is equivalent to assuming that

the main particle and energy redistribution processes in the lead are dominated by electron-

electron interactions. By including in the theory the measured temperature (163.5 mK)

of the source when decoupled from the QD, we effectively take into account its thermal

coupling to the bath.

The theoretical temperature map around a charge degeneracy point is shown in Fig. 4.7(b)

and reveals a nice agreement with the experimental data in Fig. 4.7(a). Here, the temper-

ature of the drain Td is set to 85 mK and the coupling of the QD to the drain is asymmetric

with a coupling ratio ΓL/ΓR = 3/17 between left and right leads and Γ = 0.25µV . These
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Fig. 4.7: (a) A highly-resolved map of the source electronic temperature at the same experimental

condition as in Fig. 4.6 and around a charge degeneracy point defined by Vg = V 0
g . (Adapted from

Dutta, Majidi et al. [47]) (b) Calculated temperature map obtained with the inbedding technique with

Γ = 0.25µV , ΓL/ΓR = 3/17 and Td = 85 mK. (c) Experimental and (d) theoretical variation of the

temperature in the region where crossing from cooling to heating is observed; each curve refers to a

given applied bias Vb: (blue) 20µV , (orange) 22µV , (red) 24 µv. (e) Schematics describing the crossover

between the heat flow Q̇D and the Joule heat Q̇J as a function of the gate at a fixed bias, resulting in

temperature decrease at Vg − V 0
g = - 0.12 mV (case 1, left) or increase at 0.46 mV (3, right). At 0.16 mV

(2, middle), the two flows are equilibrated. The electron-phonon heat Q̇e−ph as well as the injected heat

Q̇H are omitted for clarity. The widths of the arrows indicate their relative strengths.

best fit values allow us to reproduce semi-quantitatively the temperature profiles of the

crossing region, see Fig. 4.7(c,d). The width in gate potential of the cooling region is

independent of the bath temperature and increases with the coupling Γ. Conversely its

extension in bias depends weakly on Γ and increases with the temperature difference across

the junction.
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The present case actually has some similarities with the regime of a metallic Single

Electron Transistor where cooling at the charge degeneracy point was also found [77, 22].

Nevertheless, an asymmetry in gate voltage is clearly observed in the experimental and

theoretical temperature map. For a bias voltage Vb around 22 µV , the source temperature

can be tuned either below or above the reference temperature of 163.5 mK by acting

on the gate voltage, see Fig. 4.7(c). This behavior is not to be expected in the case of

a metallic island where electron-hole symmetry in the density of states makes transport

properties symmetric across the charge degeneracy point. Therefore it is an unambiguous

signature of the QD discrete energy spectrum. At a given bias, the value of the gate

potential determines the position of the broadened energy level in the QD (see the grey

profile in Fig. 4.7(e)) and thus the mean energy of the tunneling electrons. This in turn

affects the heat balance in the source and modifies the boundary of the cooling region in

the temperature map. The extension in bias of this crossover zone, where one can switch

from cooling to heating by adjusting with the gate, depends on both the coupling Γ and

the temperature difference across the QD.

For the set of parameters considered above, the calculated particle and heat currents

for the source are shown in Fig. 4.8a,b. It is interesting to notice the resemblance between

the heat current map and the temperature map shown In Fig. 4.7. It confirms that in

the regime we explored the temperature changes in the source lead correspond indeed to a

heat current to/from the source (panel (a) in Fig. 4.8). At large bias the source heats up;

the system behaves as a heater, namely the energy of the bias is transformed into internal

energy. At low bias we observe instead heat flow from the hot to the cold lead; the system

behaves as a valve, meaning that it enables the natural flow of heat from the hot to the

cold lead. It is also interesting to observe that there is a whole region in which heat and

particle currents have opposite signs.

It is worth mentioning that this effect is not due to the onset of a thermovoltage which

would make particles flow against the applied bias voltage without necessarily causing an

inversion of heat current. The thermovoltage, although present, is very small compared

to the extension in bias voltage. This is shown in Fig. 4.8 panel (c) where we plot the

thermovoltage Vth(Vg), together with the corresponding thermopower, defined as the bias

voltage at which the particle current vanishes.
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Fig. 4.8: Maps of the a) particle and b) heat current for the source lead. (Adapted from Dutta, Majidi

et al. [47]) c) Thermovoltage Vth and corresponding thermopower S = Vth/(∆T ) as a function of the

gate voltage Vg. The parameters for device A: coupling is Γ = 0.25 meV, and temperature of the drain

at closed bias is Td = 85 mK. (d) Lorentz ratio L/L0 as a function of Γ/kBT for a single level quantum

dot. The right dashed lines shows the ratio for the device A Γ/kBT ≈ 20 and the left shaded area shows

the possible range of coupling for device B. In both cases the dot is at the degeneracy point Vg = V 0
g .

4.2.2 Co-tunneling effect on thermal transport

The observed significant thermal conductance constitute a signature of the strong cou-

pling of the QD to the leads. We computed the Lorentz ratio L = κ/(Tσ) where

κ = ∂Q̇s/∂∆T |Is=0 and σ = ∂Is/∂Vb|∆T =0 are the thermal and electrical conductiv-

ities respectively. In panel (d) of Fig. 4.8 we plot the Lorentz number L/L0 with

L0 = (π2/3)(kB/e)2 at the degeneracy point Vg = 0. The dashed line corresponds to

the ratio Γ/kBT ≈ 20 considered in the sample A. It is clear that the deviation from the

WF law is small because of the strong coupling to the leads.

Figure 4.9 shows the map of the calculated electronic temperature for couplings (panels

(a) and (c)) Γ/kBT ≈ 5 and (panels (b) and (d)) Γ/kBT ≈ 50 and for the same drain

temperature at closed gate voltage Td = 85 mK similarly to Fig. 4.6. A change in the
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a) b)

c) d)

Fig. 4.9: Zoomed temperature map: Calculated temperature map of the source lead obtained with the

inbedding technique with (a) Γ = 0.05 meV and (b) Γ = 0.5 meV. (Adapted from Dutta, Majidi et al. [47])

(c) and (d) variation of the temperature in the region where crossing from cooling to heating is observed;

each curve refers to a given applied bias Vb: (blue) 20µV, (cyan) 22µV, (red) 24µV.

coupling changes the extension of the cooling region in the gate voltage but it does not

affect dramatically the extension of the cooling region in the bias voltage nor the position

of the transition from cooling to heating.

To give a more quantitative analysis we computed the extension of the cooling region

in the bias voltage Ab at Vb = 0 and its width Ag in gate voltage for different couplings

and temperatures of the drain at closed gate. The results are plotted in Fig. 4.10 in

panels (a) and (b) where it can be appreciated that the coupling constant does not change

significantly the extension in bias which instead strongly depends upon the difference in

the equilibrium temperatures between the drain and source. Indeed as the temperature

of the drain increases towards the temperature of the source the extension in Vb shrinks.

Nevertheless the extension in the gate voltage is only determined by the coupling and does

not present any significant dependence upon the closed gate temperature of the drain.

The transition region, namely the region where at fixed bias it is possible to obtain

both heating and cooling by changing the gate potential, has a strong dependence on both
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Fig. 4.10: Cooling region characterization: (a) and (b) show the width in gate potential and the extension

in bias voltage of the cooling region as a function of the coupling Γ for different values of the temperature

of the source lead at closed gate. (Adapted from Dutta, Majidi et al. [47]) (c) and (d) show the width

in gate potential and the extension in bias voltage of the region in which cooling and heating can be

observed at fixed bias by tuning the gate voltage as a function of the coupling Γ for different values of the

temperature of the source at closed gate.

the coupling and the temperature difference at closed gate. This is shown in Fig. 4.10

panels (c) and (d) where we plot the width ∆g and extension ∆b of the transition region;

they have been determined by finding the curve Vb(Vg) such that Te =163.5 mK and then

taking ∆b = max(Vb(Vg)) − min(Vb(Vg)) whereas ∆g is the difference between the voltage

gates at which Vb is larger than its values at closed gate plus 0.1∆b on both sides. It

can be observed that this region becomes smaller as the coupling is increased whereas its

width increases with the coupling. The width also decreases steadily as the temperature

of the drain increases whereas the behavior of its width with temperature is less trivial.

It decreases at large couplings whereas it increases as the temperature increases at small

couplings.
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4.3 Heat conductance of an electromigrated single

QD junction

Probing simultaneously the charge and heat conductances in a quantum dot under temper-

ature gradients has been a great experimental challenge. The main central thermoelectric

quantity which has not been quantitatively measured so far in a QD is the electronic

thermal conductance [5, 3]. This relates respectively to the heat current and the voltage

resulting from a thermal imbalance in reservoirs tunnel-coupled through a nano-object

under the condition of zero net electrical current. This quantity has been investigated at

the nanoscale in metallic tunnel contacts [22, 27] and and in single molecules probed by an

STM tip [17, 61]. Gate-tunable thermoelectric experiments, allowing to assess and control

the electronic structure of individual quantum dots, have been conducted so far using

semiconducting structures [5, 3] essentially without experimentally evaluating the elec-

tronic heat conductance. Conversely, only very few studies in a molecular or nanoparticle

transistor geometry have been performed [12, 183].

In this part, we will study a complete thermal balance measurement together with

a charge transport through a single metallic quantum dot junction (in device B). We

measure temperature maps for different constant heating powers. In addition, we exper-

imentally measure the heat conductance of an electromigrated single QD junction and

show a violation of a Wiedemann-Franz law in such a transistor at the charge degeneracy

point.

Fig. 4.11: (a) Experimental map of the source electronic temperature in the Vb − Vg plane at Vg
0=

- 0.76 V without applying heating power to the source island. (b) Individual gate trace of the source

temperature at zero bias voltage.
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4.3.1 Temperature map at an equilibrium

Let us remind that the charge transport properties of device B are determined by mea-

suring the junction conductance G as a function of the bias voltage Vb and a gate voltage

Vg, applied from a local back gate is shown at the beginning of this chapter in Fig. 4.2b.

In addition, the tunnel coupling Γ ≈ 0.09 mV of the device is determined from the width

of the Coulomb diamond edge. As opposed to most experiments based on semiconducting

systems, neither the quantum dot nor the tunnel barriers are electrostatically defined here.

Thus, Γ is essentially independent of the gate voltage.

Figure 4.11 shows the measured temperature map in the absence of any applied heating

power. As we explained in the thermal balance section, at zero-bias voltage and off-

resonance, the electron temperature measured is equal to the phonon temperature, which

we ascribe to the lowest measured cryostat temperature Tb = 75 mK in this experiment.

Unexpectedly, we observe that Te(Vg) shows an increase whenever the gate voltage is on

the charge degeneracy point in the absence of thermal gradient or a DC electrical current.

This corresponds to an increase in the bath temperature of about 8 mK compared to its

equilibrium temperature visible in the right hand-side of Fig. 4.11.

We thus propose that this increase in temperature is due to the effect of the bias

noise from the electromagnetic environment. This appears as an effective oscillating bias,

leading to an AC current noise when the level of the device is aligned with the source

and the drain chemical potentials. This can result in a rise in the temperature by Joule

dissipation in the source island. In our previous experiments we also observed that a

very small bias noise in the order of few µV can induce a Joule dissipation of few Femto

Watt which is roughly consistent with the temperature rise which was observed in our

experiment with sample B.

4.3.1.1 Correcting for spurious heating at charge degeneracy point

In order to quantify this bias noise of amplitude Vb
noise(t) = V0

noise sin(ωt), a full heat

balance equation is formulated assuming all the possible in-coming and out-going heat

flows for an arbitrary gate voltage along the zero bias-line as the following:

Q̇H + Q̇noise − Q̇e−ph − Q̇Dot = 0 (4.2)
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Fig. 4.12: (a) Conductance of device B at Vb = 0. (b) Estimated electronic temperature of the source

island using Eq. 4.2 in blue and measured value of Te in red.

Where Q̇H is the heating power applied to the source island which is set to zero here

and Q̇noise = (Vb
noise2

/2) × G(Vg)Vb=0 is the conductance-dependent heating. For Q̇Dot,

we assume that WF law holds qualitatively and the heat flow through the QD is given

by Q̇Dot = 0.5 × L0 × G × (Te
2 − Tb

2). Here L0 is the Lorenz number and G is the linear

conductance of the device shown for the full range of gate voltages in Fig. 4.12a. The result

of solving Eq. 4.2 for Te is plotted in solid-gray in Fig. 4.12b. A V noise
0 ≈ 10 µV is used

as a fitting parameter to calculate the Q̇noise. In other words, at the charge degeneracy

point, this V noise
0 ≈ 10 µV makes the temperature rise by approximately ≈ 8 mK, which

corresponds to a heating power of Q̇noise = 0.3 fW. The measured temperature rise is

superimposed with the estimated one in Fig. 4.12b. The good agreement suggests the

validity of our interpretation. The V noise
0 = 10 µV noise level is also in line with previous

measurements conducted in our group [95]. In the heat valve section, the coupling of the

device was stronger so that even in the charge degeneracy point the heat conductance was

taking over of the heating produced by the noise. Unfortunately, we should accept that

we have this Vb
noise = 10 µV noise. Finally, it turned out to have a is very significant

contribution to heat balance.

4.3.1.2 Noise heating correction at finite bias

We applied the above analysis to the entire temperature map in Fig. 4.11a using a protocol

presented in Fig. 4.13. Let us emphasize that the noise level is bias independent, however

the heating produced is not bias-independent, and the instantaneous power can be written

as,
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Fig. 4.14: (a), (b) Top, highly resolved temperature maps for two heating powers, Q̇H = 5 fW or

Q̇H = 6.5 fW of device B after after correction for spurious heating, respectively. (a),(b Bottom: individual

gate traces at two different bias voltage.

Q̇J
total = (Vb + V0

noise sin(ωt))2 · G(Vb, Vg) (4.3)

and can be extended as

Q̇J
total = V 2

b + V0
noise2sin2(ωt) + 2 · Vb · V0

noise sin(ωt)) · G(Vb, Vg) (4.4)

where in average the total Joule heating can be written as:

Q̇J
total = (V 2

b + V0
noise2

2 ) · G(Vb, Vg) (4.5)

the first term of the total Joule heating is the DC bias and the second term V0noise2

2

is related to bias noise. As the bias noise level is bias independent, therefore, we can use

pretty much similar procedure as before in the following:

Briefly speaking, Q̇noise(Vb, Vg) is obtained by multiplying the G(Vb, Vg) by V0
noise2, and

according to Fig. 4.1b, Q̇noise can be converted to a corresponding noise in temperature

(∆Te
noise) or vice versa. Eventually, after subtracting ∆Te

noise from the raw temperature

map shown in Fig. 4.11, one is thus left with a corrected temperature map which is

presented in the bottom-right of Fig. 4.13. At zero bias, it can be seen from Fig. 4.13

bottom-right that there is no temperature rise anymore due to the noise as the gate voltage

is swept through the charge degeneracy point.
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4.3.2 Heat conduction and violation of Wiedemann-Franz law

Having established the origin of noise and the protocol to correct it in the next step, the

source island is heated by a constant heating power Q̇H = 5 fW or Q̇H = 6.5 fW and

the corresponding electronic temperature is measured. In the top panels of Fig. 4.14,

the corrected electronic temperature of the source island in the Vb − Vg plane is plotted

and in the bottom panel two individual gate traces of the electronic temperature at a

fixed bias are shown. Cooling is observed at low bias at the charge degeneracy point for

device B. This experiment is confirming the results obtained in sample A. Here we are

able to measure charge conductance of the same device which enables us to deduce heat

conductance and therefore provides a first test of the WF law in a quantum junction.

While these measurements suffer from some uncertainties due to the above discussion,

this will be overcome in the next chapter.

We now focus on the analysis of heat conductance to systematically study the validity

of the WF law in device B. For this purpose, this time we solve the thermal balance Eq.

(4.2) for Q̇QD using the relation between the applied Joule power Q̇H to the source and its

electronic temperature Te, at a given gate voltage Vg. We assume that in the off-resonance

state (Vg = 0 V), no electronic heat can flow through the quantum dot as we explained

in section 1.1.4 and Fig. 4.5. Therefore, we take Q̇H(Vg = 0) = Q̇e−ph as a reference,

which comprises all heat leakage out of the source, other than the one originating from

the quantum dot electronic contribution itself. After subtracting the e-ph contribution

and the G(Vb, Vg) dependent noise power from the main heat flow (see Eq. (4.2)), one is

left with the quantity of interest, the electronic heat flow through the single level quantum

dot, i.e. Q̇QD(Vb, Vg), where I is set to zero as the WF law can be evaluated for open

circuit condition.

In most situations, the heat exchange between two reservoirs at temperatures T1 and

T2 is described by Q̇ = Σ (T n
1 − T n

2 ), introducing a system-dependent coupling constant

Σ (often the interaction volume is explicitly factorized out of Σ) and exponent n. For

electronic heat exchange along a conductor with conductance G, the WF law stipulates

that n = 2 and Σ = L0G/2. In the limit of a small ∆T = T1 − T2, this can equivalently be

linearized to define the heat conductance κe = Q̇/∆T = L0GTavg, with Tavg = (T1 +T2)/2.

Our main concern of here is to recurrently investigate the validity of this relation in quan-

titative detail in a quantum dot junction. Fig. 4.15 plots the linear charge conductance

G together with the electronic heat conductance κe and corresponding Tavg of device B



4.3. HEAT CONDUCTANCE OF AN ELECTROMIGRATED SINGLE QD JUNCTION 101

Fig. 4.15: (a),(b) top: charge (blue dots) thermal (red crosses) conductance of a single quantum dot at

a bath temperature of Tb = 75 mK as a function of Vg for Q̇H = 5 fW and Q̇H = 6.5 fW, are shown

respectively. (a), (b) bottom: present the corresponding average temperature (Tavg) across the device.

for two heating powers Q̇H = 5fW and Q̇H = 6.5fW in the left and right hand side,

respectively.

Figure 4.16 shows the resulting L/L0 as a function of gate voltage Vg. Due to un-

certainty in the conductance and temperature measurement deep inside the Coulomb

blockaded region, the following protocol for determining L/L0, including error bars, is

defined: First, the standard deviation STD of the heat conductance κ shown in Fig. 4.15

is calculated at small gate voltages (Vg < −10 mV). Then, the value of L/L0 is calcu-

lated when all heat conductance data are shifted by ±STD. These set the error bars on

L/L0. According to this which, far from degeneracy, the uncertainty is huge. Therefore,

we are not able to be conclusive about the value of L/L0 deep inside the blockaded regime,

whereas, at the charge degeneracy point L/L0 < 1 is robust wrt the standard deviation

offset of κ. Based on the extracted tunnel coupling of device B, we would expect a value

for L/L0 between 0.5−0.7 which is in line with the experimental observation in Fig. 4.16.

Further theoretical modeling is required to get the precise tunnel coupling and determine

the exact value of L/L0 for device B.

As was already presented in Fig. 4.8d, L/L0 changes with tunnel coupling of the

device. According to the theory prediction, this value goes to zero in a very weak coupling

regime. It is not surprising, because this basically tells us that if no current is flowing for

a temperature difference, there will be no heat carried as particles tunnel back and forth

using the same energy level. In contrast, the WF law is being recovered in the presence

of a very large tunnel coupling (strong coupling regime), i.e, the tunnel coupling of the

device is roughly bigger than the other relevant energy scales in the system Γ ≈ 100kBT .
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Fig. 4.16: Lorenz ration defined as L/L0 as a function of Vg is plotted for (a) Q̇H = 5 fW and (b)

Q̇H = 6.5 fW

The physical origin of this violation comes from energy selectivity of the device. As a

consequence of this, a single-level device can cut the contribution of high energy electron

which stems from the tail of Fermi function and therefore, it conducts less heat compared

to charge.

4.3.3 Conclusions

We showed in this chapter that electronic heat transport through a QD junction can be

modulated by a gate potential, making it act as a gate-tunable heat valve. The Coulomb

diamond patterns in the temperature maps reveal the intimate relation between charge

and heat transport on one hand and dissipation on the other hand. This behavior can

have important consequences in the thermo-electric efficiency application of such a single

quantum-dot junction [23].

We have also presented the violation of the celebrated Wiedemann-Franz law at the charge

degeneracy point of the quantum dot. Unfortunately, the presence of a residual bias voltage

noise obliged us to subtract a Vb, Vg dependent spurious Joule power from our measure-

ment. Further experiments in the next chapter will allow us to make a full quantitative

comparison between heat and charge transport properties, in a wide range of tunnel cou-

plings in a nanowire-based quantum dot.



Chapter 5

Heat transport in an InAs nanowire

In this chapter, we demonstrate a highly tuneable ratio of heat to charge conduction in

a gated semiconductor nanowire. At low carrier density and temperature, the formation

of quantum dot states provides highly energy selective conduction channels in which, the

device conducts significantly less heat compared to charge with respect to the value expected

from the Wiedemann-Franz (WF) law. The WF law value can be recovered by tuning the

transmission properties of the device.
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5.1 Heat flow through a single quantum level

Quantum dots formed in an InAs nanowire grown by chemical beam epitaxy [184] allowed

experimentally testing the Curzon-Ahlborn limit of thermoelectric conversion efficiency

at maximum power [3] and thermoelectric conversion at high temperature[5]. Although

entering directly in the thermoelectric efficiencies, the electronic heat conductance of such

devices is in general not measured independently for two significant reasons:

(i) At temperatures above a few degrees Kelvin, the thermal transport properties of InAs

nanowires are known to be strongly dominated by phonons [185]. Therefore, the electronic

heat conductance of InAs can be experimentally probed only at milliKelvin temperatures.

(ii) Measuring heat conductance is not as easy as measuring charge conductance with a

simple device such as an ammeter.

We have devised an experiment utilizing superconductor hybrids as a local electronic ther-

mometer in contact with a single InAs nanowire. This provides simultaneous measurement

of heat and charge conductances in such semiconducting devices for the first time.

5.1.1 Device specifications

The device was fabricated with two rounds of electron beam lithography (EBL) as we have

already discussed in chapter 2 in detail. The leftmost Al electrode in Fig. 5.1 overlaps with

the circular part of the source electrode made in the first lithography round. It therefore

connects with a transparent contact to the source island without the oxidation, whereas

the others connect via the oxide tunnel barrier through the Cu part of the source and

hence display a large tunnel resistance. The leftmost lead allows for probing the charge

transport of the nanowire. We do not observe any sign of a superconducting proximity

effect on the nanowire caused by this electrode. This is most likely due to the fact that, in

the absence of special care in cleaning the Au-Al interface in vacuo, residual contaminants

such as a monolayer of water on the gold surface strongly reduce the interface transparency

and thereby inhibit Andreev reflection. Further, the aluminum contact is much thinner

(35 nm) than the nickel/gold island (90 nm) connecting the nanowire, which will further

inhibit inducing superconducting correlations.
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Fig. 5.1: Scanning electron micrograph of a single InAs nanowire device realized with two steps fabrication

and shadow-evaporated Al-proximity junctions. In the first lithography round, a bulky drain (in green)

and part of the source (visible as a circle on the right hand side of the nanowire) are patterned. In the

second round , both the normal-metal island (red) and the superconducting leads (blue) using the same

mask in a single vacuum cycle were made.

5.1.2 Charge transport

We start our measurement with the characterization of the nanowire device by checking

the gate response of the wire at a very small bias. The direct ohmic contact allows for

measuring directly the nanowire electrical conductance G(Vg), as shown in Fig. 5.2 over

a full range of gate voltage. The conductance measurement is in agreement with previous

reports on similar structures [186]. The nanowire conduction is pinched off below Vg ∼ 2.9

V. Fig. 5.2 is a composite of several sequential measurement, showing the depletion Vg <

2.9 V, followed by Coulomb oscillations at intermediate Vg and conductance oscillations

at higher gate voltages.

Near pinch off, the conductance displays sharp resonances, which indicates that the

nanowire conduction bottleneck at vanishing charge carrier densities will be provided by a

quantum dot forming, owing to unavoidable charge disorder. Notably, even when reaching

∼ 2e2/h at higher gate voltages, the charge conductance still displays strong, yet per-

fectly reproducible fluctuations, which point to disordered multi-channel transport in the

nanowire.

Close to depletion the Coulomb peaks are somewhat irregularly spaced, which is com-

monly observed in few-electron QDs [187] and also in similar nanowires [188, 189].
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Fig. 5.2: Composite of sequential conductance measurement as a function of back gate voltage (Vg),

distinguished by different colors from depletion of the wire (Vg < 2.9 V) to clear Coulomb oscillations

(Vg > 4 V) and high conductance.

Vg = 2.933 V Vg = 4.095 V Vg = 4.117 V

αl = 0.095 αl = 0.06 αl = 0.06

αm = 0.105 αm = 0.08 αm = 0.08

αu = 0.115 αu = 0.1 αu = 0.1

Tab. 5.1: Extracted lower (αl) and upper (αu) bounds of gate couplings for the Coulomb peaks, and

their mean value (αm) at the resonances considered in the main article.

5.1.2.1 Quantum dot and Coulomb blockade analysis

We focus now on lower gate voltage regime Vg < 4.7 V, where we are able to see some

nicely spaced Coulomb peaks in particular at around Vg = 2.9V and Vg = 4V . The

conductance map of Fig. 5.3 displays the measured current map on the left-hand side and

the differential conductance maps, obtained by numerical differentiation, as a function of

both the bias and gate voltages VNW and Vg. Coulomb diamonds can be seen clearly and

the charging energy of Ec ∼ 1.5 − 2 meV is estimated from extrapolating the bias level to

the top of a diamond.

A conductance map provides all information needed to determine the parameters of

the quantum dot as already explained in chapter 1, the positive slope of the Coulomb
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Fig. 5.3: Color map of current and conductance measurement for Vg = 2.9V and Vg = 4V showing clear

Coulomb diamond structure. Additional slanted lines indicated by yellow colors in conductance map (b)

and (d) outside the Coulomb diamonds display quantum dot levels excitations.

diamonds in Fig. 5.3 is given by β = Cg

Cd+Cg
and the negative one is given by β′ = Cg

Cs
. Here

Cs, Cd, Cg are the capacitances between the dot and source, drain and gate respectively.

The total capacitance of the dot to the outside world is the sum of all capacitances as

CΣ = Cs + Cd + Cg. An important parameter in the latter calculations is the lever arm

defined by the ratio α = Cg

CΣ
as it translates changes in gate voltage to changes in the

chemical potential of quantum dot, ∆ε = −eα∆Vg. From the conductance maps close to

Vg ∼ 4.1 V and Vg ∼ 3 V we extract a local lever arm αm from the slopes of conductance

lines. We observe that the level arm value varies slightly with the gate voltage, see Tab. 5.1.

In order to account for uncertainties in the determination of gate coupling, we performed

the full theoretical analysis at αm ± 0.01 for Vg ∼ 3 V and αm ± 0.02 for Vg ∼ 4.1 V.

Next we extract a pair of tunnel couplings (γ1, γ2) for each Coulomb peak by fitting

the calculated zero-bias conductance as a function of the gate voltage to the measured

counterpart. The parameter values for the two tunnel couplings are obtained unambigu-
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Fig. 5.4: Measured (blue markers) and calculated (solid line) charge conductance of the device around

the charge degeneracy points close to 4.1 V. The full transmission function used for the theory prediction

is obtained by adding and having one T (E) for each peak, determined by fitting the calculated G to the

measured data in the vicinity of a single peak.

ously from the height ∝ γ1γ2
γ1+γ2

and the width γ1 + γ2 of the transmission function, which

corresponds roughly to the height and width of the Coulomb peak. Since we have already

determined the appropriate α, this fitting process involves no additional fitting parame-

ters. When performing these fits, we restrict the G data to only cover a single Coulomb

peak and use Tb = Ts = Td = 100 mK, which was the temperature of the device during

the measurement of G. The resulting best fits obtained using αm are shown in Fig. 5.12

for Vg ∼ 3 V and in Fig. 5.4 for the resonances at Vg ∼ 4.1 V corresponding to the data

presented in Fig. 5.13. The extracted values are shown in Tab. 5.2.

It is worth mentioning that around 4.1 V (Fig. 5.4), the total transmission function

T (E) of the device is taken to be the sum of the four individual Lorentzian transmission

functions for each Coulomb peak, centered around the Vg values listed in Tab. 5.2.

5.1.3 NIS thermometer and heater

The low-temperature experimental characteristic of the heater NIS junction of our device

at Tb = 100 mK is shown in Fig. 5.5, both on linear and logarithmic scale, together with

the theoretical I − V characteristic using Eq. 3.9 (chapter3). We see that the theory line
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Vg (V) α γ1 (µeV) γ2 (µeV)

2.938 αm = 0.105 55.5 2.1

4.077 αm = 0.08 137.5 15.5

4.095 αm = 0.08 105.9 12.4

4.117 αm = 0.08 104.8 15.9

4.13 αm = 0.08 122.9 17.5

Tab. 5.2: Extracted tunnel couplings for the Coulomb peaks in two regimes Vg ∼ 2.9 V, and Vg ∼ 4.1 V.

catches all features except at the lowest currents where the noise of the current preamplifier

contributes to the scatter and saturation of the data points see chapter 3 for more detail.

The heating of the source island was made by applying a voltage VH to the heater as

shown in Fig. 5.8a. The ensuing power Q̇H can be calculated Eq. (3.11) (chapter 3).

Thermometry is performed by using two NIS junctions in series (SINIS). Such superconductor-

insulator-normal metal (NIS) junctions are well-known to provide excellent electron heaters

and thermometers in low temperature experiments [30] as discussed in chapter 3 in detail.

We bias the pair of NIS junctions with a constant current of INIS = 5 pA and measure

the voltage drop VNIS across the junctions to determine the electron temperature of the

source island [30]. The thermometer is calibrated by varying the bath temperature Tb of

the cryostat. The calibration is done at equilibrium without heating the source island, so

that the electronic temperature of the source follows the cryostat temperature (equal to

the substrate phonon temperature) and results in the response presented in Fig. 5.6.

The voltage bias VNIS changes as a result of thermal excitations on the normal metal

lowering the voltage from the low temperature threshold value corresponding to approxi-

mately the superconductor gap ∆/e ≈ 200 µV per junction. At low Tb < 50 mK, we indeed

see a saturation at VNIS ≈ 400 µV (see Fig. 5.6). All our measurements are performed

at Te ≥ 100 mK (the vertical dashed line in Fig. 5.6), making sure that the thermometer

operates well above the low temperature saturation.
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Fig. 5.5: Current–voltage curve of the heater NIS junction using linear (left) and logarithmic (right)

scale. Fit is shown as red lines: ∆ = 209 µev , RT = 85.6 kΩ and Tb= 100 mK.

5.1.4 Gate modulated heat flow at a constant heating power

As we have all the ingredients for our thermal transport measurement, it is worth checking

the device response for a fixed heating power in heating and cooling regime of SINIS

junction. This measurement allows us to observe the effect of gating on the nanowire

by measuring only the temperature without the charge current being measured in a way

similar as in [89].

Fig. 5.7 demonstrates the temperature variations of the heater/cooler NIS junction. As

we explained earlier, while a pair of NIS junctions in contact with the source is utilized for

measuring the temperature, the other part of junctions plays the role of the cooler/heater,

as depicted by the circuit diagram in Fig. 5.8a,b. By applying a proper range of VH/C

(low VH/C), cooling is achieved below the phonon temperature Tb shown as a horizontal

dashed line. We get the maximum cooling at VH/C =195 µeV, with a temperature drop in

the order of ≈ 10 mK close to the Al superconducting gap. A larger temperature drop is

obtained in the Coulomb blockaded regime (the difference between dots and circles in Fig.

5.7 in cooling regime) as can be seen in Fig. 5.7 bottom-right. Thanks to the physical

properties of the SINIS heater, not only can such a junction be used as a cooler, but also

it can be employed as a heater, as which we utilize it mainly in this work. By applying
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Fig. 5.6: Measured voltage across the thermometer junctions with a floating current of INIS = 5 pA as a

function of the bath temperature Tb. The dashed line presents the bath temperature Tb = 100 mK used

in the heat flow measurements. The red line shows the expected response of Eq. (3.9) with ∆ = 209 µeV

and RT 1 = RT 2 ∼ 96.2 kΩ obtained from a similar fit as in Fig. 5.5.

higher voltage to the SINIS junction, for instance, VH/C =300 µeV (VH/C > ∆) we are

overheating the electrons so that Te > Tb. Fig.5.7 top-right shows the electron temperature

increase in the Coulomb blockaded regime.

5.1.5 Simultaneous measurement of charge and heat flow

So far, we have demonstrated and measured charge and heat flow through the NW sep-

arately. A drawback of a separate measurement is that there is always some uncertainty

about hitting the same degeneracy point, for instance due to electrostatic drift in the gate

voltage. Therefore, it is absolutely fruitful to measure the two quantities simultaneously,

i.e. one can be sure that the heat and charge flows are probed for the same charge de-

generacy point. For performing this combined measurement of charge and heat flows, the

nanowire conductance dI/dVNW is measured through the leftmost Al lead (direct contact)

using a voltage division scheme as pictured in Fig. 5.8a, involving a 10 MΩ bias resistor.

At the same time, the other four aluminum leads to the source are in contact via tunnel

barriers (heater and thermometer).

Because at mK temperatures both the electron-phonon coupling in metals and the heat

conductance of superconductors are very low, the source island electrons are thermally well
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Fig. 5.7: Left: Electron temperature measurement at Tb=100 mK with the gate voltage tuned at the

resonance (dots) and off the resonance (circles) as a function of heater (cooler) VH (VC). Right: temper-

ature oscillations as a function of the gate voltage, with an opposite sign for over-heating (top-right) and

the electron cooling regime (bottom-right).

insulated, such that the heat flow through the nanowire significantly contributes to the

source island’s heat balance. This is seen in Fig. 5.8d, in which a constant heating power

Q̇H = 16 fW is provided to the source island via a voltage VH applied on one tunnel lead.

As the gate potential is swept, the variations of the source island electron temperature

Te are strikingly anticorrelated to variations of G. The heat balance of our device is

schematized in Fig. 5.8b. Because the source island is overheated with respect to its

environment, the gradual opening of electronic conduction channels in the InAs nanowire

leads to increased heat flow out of the source island, and thus a lowering of Te.
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Fig. 5.8: Heat transport experiment through an InAs nanowire device. (Adapted from Majidi

et al. [159]) (a) False-colored scanning electron micrograph of the device. The drain electrode, the source

island and the nanowire are colored in green, red and orange, respectively. Five superconducting aluminum

leads (light blue) are connected to the source island for heating the source side and measuring its electronic

temperature. Thermometry is performed by measuring the voltage VNIS at a fixed floating current bias

INIS. (b) Heat balance diagram, which includes the applied power to the source island, Q̇H ; the heat

escaping due to electron-phonon coupling, Q̇e−ph; and the electronic heat flow along the nanowire, Q̇e.

(c) Electrical conductance at thermal equilibrium and (d) temperature response Te of the source island

with heating power of Q̇H = 16 fW as a function of the back gate voltage Vg. The dashed ellipses highlight

resonances that will be studied in more detail. All measurement are taken at a bath temperature Tb = 100

mK.

5.1.5.1 Determining e-ph coupling of Cu island

An important issue in the determination of electronic heat flow is the proper identification

of the parasitic heat escape via other channels, such as electron-phonon coupling [30].

Unless the latter can be neglected [6], the comparison to a reference, at which the electronic

heat conductance is either assumed to be known [22], or negligible, is required.
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Fig. 5.9: Heating power Q̇H applied to the source island as a function of the measured source electron

temperature Te at Vg = 0 V and Tb = 100 mK. The red curve is a fit, see text.

A widely utilized technique to measure e − ph coupling at low temperature is heating

up the normal metal island directly and measuring the temperature change. In order to

understand the heat escape mechanism due to the presence of phonon in our device, we

formulated Q̇e−ph = Q̇H in the insulating regime of the device. The relation Q̇H(Te, Vg =

0) between the applied heating power and the source island electronic temperature at

Vg = 0 (deep in the insulating regime) is measured and shown in Fig. 5.9. The good

quantitative agreement with an electron-phonon type thermal law following Eq. 3.13 and

[30] shows that electron-phonon coupling must be the dominant thermal leakage channel

out of the source island, in the absence of electronic heat conduction through the nanowire.

The red curve is a fit with Q̇H = ΣΩ(Te
5 − Tb

5). By using the geometrically estimated

total volume Ω = 4.26 ± 0.2 × 10−20 m3 of the source island, we obtain the fitted value

Σ = 2.5 ± 0.1 × 109 Wm−3K−5 of the average electron-phonon coupling coefficient in the

metallic source island, in good agreement with the expected coupling coefficients of Cu

and Au [30]. We stress that the gate-dependent part of the heat balance is considered and

defined as Q̇(Te, Vg) = Q̇H(Te, Vg) − Q̇H(Te, 0).
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Fig. 5.10: Top : Charge conductance G peak around the resonance at Vg
0 = 2.938 V. Bottom : heat

flow Q̇ as a function of the temperature difference at several values of the gate potential indicated by color

symbols in the bottom panel. The dashed line is the best ∝ (T 6
e − T 6

b ) fit obtained from the data in the

leftmost sub-panel, and displayed identically in all sub-panels for reference.

5.1.5.2 Electron-phonon coupling in the InAs NW

During the analysis of Q̇(Te, Vg), a slight gate dependence of Q̇(Te, Vg) was surprisingly

observed even before the conducting state of NW sets on. This is readily visible as a

slightly negative slope of the Te(Vg) baseline in Fig. 5.8d. Thus, we conclude on a minute

yet measurable and smoothly gate-dependent contribution to the source electron-phonon

coupling, which calls for defining in addition a local reference. However, it is worth

checking few items in detail.

In the source reservoir, which is shown in Fig. 5.8b, there is one piece of semiconductor

that is in direct contact to the source island and that is at the elevated temperature (Te),

on the other side we have the other part of the semiconductor, which is at base temperature

(Tb) and eventually we have the orange part in the middle at an intermediate temperature.

Therefore, this red part of the semiconductor heats up together with the metallic source

electrode and from this we get the e-ph background. If the semiconductor NW were
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Fig. 5.11: Gate dependence of the electron-phonon coupling: β is extracted by fitting Q̇(Te, Vg) at each

Vg (excluding conduction resonances) with a β(T 6
e − T 6

b ) power law.

completely a quantum dot, we would not have this background. We conducted different

tests to determine if this picture is correct or not as listed below:

- Constant background over a narrow range: We observed that low electrical con-

ductance data points, deep inside Coulomb blockade, yield the exactly same Q̇(Te) curve

within the measurement noise over a narrow range of Vg. Hence, the e-ph contribution

(i.e. background) is more or less constant or varies slowly with the gate.

- Heat flow independent of G: The e-ph background should be independent of

electrical conduction (G). To verify this point, the G dependence of the Q̇(Te) curve is

checked in the vicinity of our charge degeneracy point, i.e. the heat flow at the lowest

electrical conductance point is compared with its value when the conductance is one or-

der of magnitude higher. It turned out that Q̇(Te) remains the same. This test would

give us another indication that we have a rather slowly varying e-ph background. At a

given resonance peak, the electronic heat conductance is experimentally determined by

subtracting a local reference of heat Q̇ measured close to the resonance at a point where

the electronic contribution is negligible. Fig. 5.10 shows that the heat flow is constant

within noise at low electrical conductance G far enough away from the main peak although

G changes by one order of magnitude. Only close to the resonance peak, we observe an

extra contribution identified as the electronic part. On both sides of the peak, Q̇ has the

same background level when G is small enough.
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In order to understand this background contribution, we have analyzed the Q̇(Te, Vg)

curves in the entire non-conducting regime of the nanowire. For this purpose, we have

first focused on the regime between Vg = 0 . . . 4.5 V, excluding conduction resonances,

that is, data sets at values of Vg at which G > 0.5 µS. In the second part of analysis

we try to understand the underlying mechanism of e-ph coupling in high transparency

regime. The background part of the heat flow increases steeply at ∆T ≳ Tb and is related

to electron-phonon coupling in the nanowire. A (T 6
e − T 6

b ) law provided by far the best

agreement. Because on the microscopic level the e-ph coupling can be quite different in

InAs and the metallic island, it is not surprising that we observe a different exponent for

the e-ph coupling of both systems [30].

The prefactor β is plotted in Fig. 5.11. As expected, β increases smoothly with Vg,

supporting the hypothesis of a dependence on the carrier concentration in a segment of

the nanowire not belonging to the quantum dot. This could be for example the portion

of the nanowire underneath the source island, of volume V = 7.7 × 10−22 m3. Making

this assumption, the e-ph heat conductance per unit volume in the metallic source is on

the same order of magnitude as that of the nanowire. Note that our method is probably

underestimating β by a constant shift, since we assumed its value to be 0 at Vg = 0 V.

Moving to yet larger gate voltages and thus electronic transmissions, the charge con-

ductance no longer vanishes in between conduction resonances, limiting the identification

and subtraction of a clear-cut local reference Q̇e(Te). This prevents a quantitative sepa-

ration of the electronic heat flow from other heat escape mechanisms that could depend

on Vg without being directly connected to G. Indeed, in InAs nanowires, a surprisingly

strong e-ph coupling was found above 1 Kelvin [185], possibly due to piezoelectricity [190]

and/or a lateral-confinement-enhanced peaked density of states [191].

In the following, we will experimentally show the breakdown of the WF law and a

linear power law for heat flow Q̇e with the temperature.

5.1.5.3 Violation of heat flow below Wiedemann -Franz limit

To obtain the quantity of interest at low transparency regime (Vg < 4.5V ), i.e. the

electronic heat flow through the nanowire at resonance, we need to differentiate the e-ph

heat flow from the total heat flow on and off resonance (Fig. 5.12c) as: Q̇e(Te, V 0
g ) =

Q̇(Te, V 0
g ) − Q̇(Te, V 0

g + ∆Vg). We stress that this additional background subtraction does

not rely on any modeling of the heat balance, such as electron-phonon coupling. As
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seen in Fig. 5.12d and already visible in the inset of Fig. 5.12c, Q̇e at V 0
g displays a

strikingly linear dependence on ∆T . We see that the heat conductance κe = ∂Q̇e/∂T ,

that is the initial slope in Fig. 5.12d, differs quantitatively from the WF prediction by a

factor L/L0 ≈ 0.65 ± 0.1. Further, beyond linear response, the temperature dependence

qualitatively deviates from the parabolic law expected from WF according to 1.42 (dashed

line).

For a theoretical description beyond the WF law, we use a Landauer-Büttiker non-

interacting model, with an energy-dependent transmission T (E). We write the associated

charge and heat currents, respectively as

I = 2e

h

� ∞

−∞
T (E) ∆f dE (5.1)

and

Q̇e = 2
h

� ∞

−∞
(E − µs) T (E) ∆f dE, (5.2)

with ∆f the difference in the source and drain energy distributions, and µs the source

island chemical potential [55, 56]. The linear charge and heat conductances are then

obtained as G = ∂I/∂VNW and κe = ∂Q̇e/∂(∆T ), respectively, with ∆T = Te − Tb. We

model each resonance as a discrete energy level coupled to the source and drain reservoirs.

We then deduce the transmission function T (E) by fitting the calculated gate-dependent

charge conductance G(Vg) to the data. The accurate determination of T (E) requires

accurately estimating independently the tunnel couplings and the gate lever arm, as both

affect similarly the resonance widths. This is described in detail in chapter 1. On a

technical note, we stress that the above theoretical expression of κe assumes open-circuit

conditions, that is, no net particle current. For all heat conductance experiments the

nanowire was biased in series with a 10 MΩ resistor at room temperature. Because we only

consider data at gate voltages at which G is significantly larger than (10 MΩ)−1 = 0.1 µS,

applying Vb = 0 is then equivalent to imposing open circuit conditions.

With the above analysis, the Landauer-Büttiker theoretical Q̇e(Te, Vg) follows directly.

As seen in Fig. 5.12d (solid black line), the agreement with the experimental data is

very good, with no adjustable parameters, reproducing the observed approximately linear

dependence on ∆T . The grey shaded region accounts for the uncertainties in the deter-

mination of T (E). The violation of the WF law observed here is therefore accurately

described by a non-interacting scattering transport picture.

Intuitively, the deviation from WF at resonance can be understood as stemming from

the energy selectivity of the device transmission, so that tunneling electrons carry an en-
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Fig. 5.12: Heat transport near an isolated conductance resonance. (Adapted from Majidi et

al. [159]) (a) Linear charge conductance around V 0
g = 2.938 V. The black line is a fit using scattering

theory. (b) Source temperature Te as a function of Vg, with a constant applied power Q̇H = 16 fW. (c)

Full heat balance curve Q̇(Te, Vg) on (green squares) and off (orange bullets) the transport resonance,

as indicated by the arrows in (a). The green line presents a fit using Q̇ = β(T 6
e − T 6

b ) with β = 35 ± 5

pW/K6. The inset highlights the electronic contribution, dominating at small temperature difference at

the resonance. (d) Difference of the two data sets in c, displaying the purely electronic heat transport

contribution Q̇e. The dashed and the full lines are the predictions from the WF law and scattering

transport theory, respectively. The grey shaded area indicates the uncertainty of the scattering theory

calculation, due to the determination of the gate coupling lever arm.

ergy bound by ∼ γs + γd, thus suppressing heat exchange at zero net charge current.

Together with a large Seebeck coefficient [2, 192], this reduction of heat conductance with-

out suppressing particle conductance makes the quantum dot junction potentially the "best

thermoelectric" as theorised by Mahan and Sofo [20]. With increasing tunnel couplings,

the transmission function T (E) is broadened and the energy selectivity is gradually lost.

5.1.5.4 Recovering WFL for intermediate coupling regime

We show a gradual recovery of the WF law by studying the heat flow close to the con-

ductance resonances observed at a larger gate voltage Vg. While at Vg ≈ 2.9 V, a ratio

(γs + γd)/kBTb ≈ 7 placed the device in the intermediate coupling regime, still display-
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Fig. 5.13: Heat versus charge transport at higher transmissions. (Adapted from Majidi et al.

[159]) (a) Heat (red crosses, right vertical scale) and charge (blue bullets, left vertical scale) conductance

resonances at higher transmissions. The ratio of both vertical scales is set to TbL0, such that superimposed

curves are indicative of the WF law being valid. The red line is the calculated κe from scattering transport

theory. The L/L0 for the four peaks are 0.99, 0.97, 0.87 and 0.90 (±0.05) from left to right. (b) Q̇e(Te)

curve taken at the conduction resonance at Vg = 4.095 V (arrow in (a)). The dashed and the full lines

are the predictions from the WF law and scattering transport theory, respectively. The grey shaded

area indicates the uncertainty of the scattering theory calculation, due to the determination of the gate

coupling lever arm.

ing sizable energy selectivity (Fig. 5.12), at Vg ≈ 4.1 V the tunnel couplings are about

a factor 2.5 larger (Fig. 5.13a). We therefore expect a gradual transition to a WF-like

heat conductance. This is seen in Fig. 5.13a, where we superimpose the experimentally

determined G and κe on a vertical scale connecting both quantities via the WF law, that
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is, κe = GTbL0. At the charge degeneracy points (conduction resonances) we observe that

the dimensionless reduced heat conductance L/L0 is now very close to, or barely below

1. Moving away from the conductance peak, G and κe also superimpose nearly exactly,

within noise, as also expected from a scattering transport calculation with a now broader

T (E) (line). Observing a sizable deviation from WF requires going beyond linear response

(Fig. 5.13b) [193], where the experimental data and the scattering transport calculation

remain nevertheless now much closer to the WF law. The main conclusion we draw here is

that for increasing tunnel couplings, the scattering theory still describes the experimental

data very accurately and over a large temperature difference range. In the linear response

regime (small ∆T ), the WF law and scattering theory yield convergent predictions.

5.1.6 Departure of WFL with the properties of transmission

function: theory vs experiment

In addition to modelling the device at the operating conditions of the experiment, the

theory also allows us to investigate how the Wiedemann-Franz law violations scale with

system parameters. Focusing on the resonant condition, i.e. gating the device to the

middle of a conductance peak, we calculate how L/L0 scales with the width (γ1 + γ2) and

amplitude ( γ1γ2
γ1+γ2

) of T (E). The result is shown in Fig. 5.14, where the theory predictions

for the five resonances analyzed in this work are also highlighted. From the figure it is

evident that there are two paths for decreasing the L/L0 ratio: lowering γ1+γ2 or increasing

kBT . It is known that tunnel coupling asymmetry plays a significant role in the transport

properties [84], Fig. 5.14 shows an intriguing result similarly for the transport of heat

too. It can be seen that the bottle neck for the transport of heat is the larger γ, whereas

smaller γ is a limiting factor for the transport of charge. This predicts that if we somehow

manage to optimally make two coupling as close as possible, so that we still have a large

signal for the transport of charge, we therefore will be able to observe a larger breaking

of WFL in a symmetric quantum dots device. However, lowering the tunnel couplings or

even making them similar are non-trivial in our preset device as the quantum dot forms

spontaneously at low carrier concentrations and there is little experimental control over

the coupling strength.

In addition, an effect of overall lower values of γ1 and γ2 is a reduced heat flow, which

can be hard to detect experimentally since the signal is more easily swallowed by the noise-

floor. The other approach, to increase kBT , also has its limitations as the NIS thermometer
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Fig. 5.14: Calculated L/L0 on resonance as a function of the width (γ1 + γ2) and amplitude ( γ1γ2
γ1+γ2

) of

T (E). Markers show the theoretical predictions for the resonances studied in this chapter, as indicated by

the legend.

requires the Al leads to be well below the critical temperature of the superconductor and

the e-ph coupling of the source island to be small [30]. One can thus conclude that the

present device is very well suited for studying violations of the Wiedemann-Franz law due

to quantum confinement given the constraints of the state-of-art technologies used in the

study.

5.1.7 Conclusions

In summary, our study reveals large conjunct evolution in the thermal and charge con-

ductances of an InAs nanowire near pinch off. Around conductance resonances in the

quantum dot regime of the nanowire, the heat conductance is significantly lower than

expected from the WF law, with κe/(GTL0) reaching 0.65 in the intermediate coupling

regime, in good agreement with a scattering transport calculation. As anticipated by the-

ory [20], this establishes experimentally the huge potential of semiconductor nanowires and

more generally quantum dot transistors, as promising high-figure-of-merit thermoelectrics.



Summary and perspectives

Quantum dots are an attractive model system for basic studies and applications in ther-

moelectricity, owing to their tunable electronic transmission and electron-hole asymmetry

[194]. Further, as electronic devices’ dimensions shrink towards the nano-scale, quantum

effects associated to electron interactions [89, 6, 3] and correlation [48, 65] gain increasing

importance. In this thesis, we reported on measurements of charge and heat transport in

metallic and semiconductor quantum dot devices.

We first dealt with the nanofabrication of metallic quantum dots by employing the

in-situ electromigration and depositing a thin layer of metal (Au). This method increased

the success rate of fabrication of such devices compared to the already discussed methods.

As we explained in detail, because of having more stability and enhanced ability to tune

the tunnel coupling of quantum dot devices, we moved to utilize nanowires in order to

perform thermal transport measurement in quantum-dot devices. Therefore, in the second

part of fabrication chapter, we established the fabrication process of a single quantum dot

based on InAs nanowires coupled to NIS junctions.

Then, we presented that electronic heat transport through a QD junction can be mod-

ulated by a gate potential, making it act as a gate-tunable heat valve. This behavior can

have important consequences in the practical thermo-electric efficiency of such a single

quantum-dot junction [195]. The Coulomb diamond patterns in the temperature maps

reveal the intimate relation between charge conductance on one hand and heat transport

and dissipation on the other hand. Further experiments have allowed us a quantitative

comparison of thermal effects to the charge transport properties in an electromigrated

quantum dot junction.

Eventually, we investigated an InAs nanowire device. Our study revealed large con-

junct evolution in the thermal and charge conductances of an InAs nanowire near pinch-off.

Around conductance resonances in the quantum dot regime of the nanowire, the heat con-

ductance was significantly lower than that of expected from the WF law, with κe/(GTL0)
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reaching 0.65 in the intermediate coupling regime, in good agreement with a scattering

transport calculation. As anticipated by theory [20], this experimentally established the

huge potential of semiconductor nanowires and more generally quantum dot transistors,

as promising high-figure-of-merit thermoelectrics.

Two fascinating open questions reside after reading this thesis, (i), the first one is in the

role played by electron interactions [89] that may lead to deviations from the here-employed

scattering transport picture away from resonances in quantum dot devices. (ii) the InAs

based quantum dot devices can be used as a refrigerator. The initial measurements of

quantum dot refrigerator were shown few years ago in 2DEG and three quantum dots.

However, there are still some rooms left to utilize a single quantum dot device by choosing

a proper coupling strength to give more insight into the underlying physics behind.



Appendices

A Landauer-Büttiker formalism for a quantum dot

We ascribed at the beginning of chapter 1 that the current flows due to an alignment

between electrochemical potential in the source, the quantum dot and the drain contact. In

the following, we consider the electron transport quantitatively using Landauer’s scattering

theory, also known as Landauer-Büttiker approach. This approach is capable of expressing

and qualitatively describing charge and heat transport of non-interacting electrons through

a quantum dot in a simple and elegant way. However, if one wants to investigate the effect

of electron interaction on the system, then Landauer-Büttiker is not applicable anymore.

In this situation, one needs to utilize Master-equation which determines the possibilities

of a quantum dot being in various configurations [37, 158]. If the coupling of the quantum

dot to the reservoirs is weak, i.e. the tunnel coupling is by far the smallest energy scale in

the system, everything can be modeled by rate equation approach where Fermi golden rule

approximation can be applied and the interaction of electrons in the dot can be introduced

smoothly [81, 80]. A more accurate way to model quantum dots is to extend the Master

equation approach to include the effect of higher order tunneling processes [196, 197,

198]. However, in the extreme case of very strong coupling regime, a more sophisticated

and time consuming treatment is to use combined density functional theory (DFT) and

non-rquilibrium greens function (NEGF), which treats interaction effects through a local

density approximation (LDA) [37], or utilize numerical renormalization group (NRG) in

the presence of Kondo effect [199]. We recommend a number of comprehensive references

on the topic, for example Refs. [196, 58, 51], to which the reader is referred for further

details.

Let us consider a quantum dot regime where the charging energy is the largest energy

scale as EC ≫ ℏΓ > kBT , our approach is to assume that the quantum dot can be

somewhat qualitatively modeled by a non-interacting case close to the charge-degeneracy
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points (Coulomb peaks), as long as Vb remains small. In this case, the currents through

a single quantum dot energy level can be calculated exactly using Landauer-Büttiker

transport theory.

The Hamiltonian for a single level QD with spin-degeneracy is

H = HR + HQD + HT , (3)

HR =
∑

r=1,2

∑
k,σ,r

ϵk,σ,rc
†
k,σ,rck,σ,r, (4)

HQD =
∑

σ

εσd†
σdσ, (5)

HT =
∑
r,σ

tr,σd†
σcr,σ + H.c, (6)

where d† (d) creates (annihilates) an electron on the QD, and c† (c) are the reservoir

counterparts. We define the tunneling rate between the QD and a reservoir as Γr,σ =
2π|tr,σ |2νr

ℏ , where from hereon we assume that tunneling is spin independent, that the density

of states in a reservoir νr is constant over the relevant energy range, and that the QD spin

states are degenerate, ε↑ = ε↓.

Within the Landauer-Büttiker theory the charge and heat currents through the quan-

tum dot are then calculated using similar expressions as Eq. (1.7) and Eq. (??), that we

introduced in previous sections for calculating thermoelectric coefficients of 1D, 2D and

3D devices. The only difference is that the transmission of the system should be defined

differently. The simplest phenomenological model of nonlinear situations is to take the

transmission function for the linear response problem and allow its parameters to depend

on the bias and temperature of the reservoirs and gates. For instance, one can assume that

the three parameters Γl, Γr and µ(N) in Fig. 1.6 depend on the bias and temperatures

of reservoirs and gates. In principle, a system could have almost any dependence of these

parameters on the bias and temperatures of the reservoirs and gates. Thus, a uniform

shift of the bias on all reservoirs and gates by eV should simply shift the transmission.

By plugging Eq. (1.13) as the transmission of the quantum dot, one can evaluate all

the thermoelectric coefficients as we developed in the previous section in linear response

regime. It is noteworthy that for going beyond the linear response regime, first, the charge

and hear current should be calculated using Eqs. (??)-(1.7), then the relevant physical
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quantities for this study are electrical and thermal conductances which can be obtained

by sticking to the general definition for charge and heat conductances as, G = dI
dV

and

κ = dQ
d(∆T )

∣∣∣∣
I=0

.
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B Works that not explained in the present thesis

As mentioned in the outline of this thesis, I had a great opportunity to be involved in

many projects since the beginning of my PhD at Institut Néel and could establish fruitful

collaborations. Unfortunately, Not all of these projects could be fitted to the scope of this

thesis. Therefore, I append some outcomes of my joint projects in the following.
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ABSTRACT: We report on the first measurement of the Seebeck
coefficient in a tunnel-contacted and gate-tunable individual single-
quantum dot junction in the Kondo regime, fabricated using the
electromigration technique. This fundamental thermoelectric
parameter is obtained by directly monitoring the magnitude of
the voltage induced in response to a temperature difference across
the junction, while keeping a zero net tunneling current through
the device. In contrast to bulk materials and single molecules
probed in a scanning tunneling microscopy (STM) configuration,
investigating the thermopower in nanoscale electronic transistors
benefits from the electric tunability to showcase prominent quantum effects. Here, striking sign changes of the Seebeck
coefficient are induced by varying the temperature, depending on the spin configuration in the quantum dot. The comparison
with numerical renormalization group (NRG) calculations demonstrates that the tunneling density of states is generically
asymmetric around the Fermi level in the leads, both in the cotunneling and Kondo regimes.
KEYWORDS: Thermoelectricity, quantum transport, Kondo effect

Exploring charge and heat transport at the level of single
atoms or molecules in contact with voltage and temper-

ature biased reservoirs constitutes the most fundamental probe
of energy transfer at the nanoscale.1,2 While purely electrical
conductance measurements in various quantum dot junctions
are by now well established, both experimentally and
theoretically,3−5 probing electrical and thermal current in
fully controlled nanostructures under temperature gradients
still constitutes a great experimental challenge. The two central
thermoelectric quantities are the thermal conductance and the
thermopower (also known as the Seebeck coefficient). These
relate respectively to the heat current and the voltage resulting
from a thermal imbalance in reservoirs tunnel-coupled through
a nano-object under the condition of zero net electrical
current. Both quantities have been investigated at the
nanoscale in metallic tunnel contacts6−9 and in single
molecules probed by an STM tip.10−13 Gate-tunable thermo-
electric experiments, allowing to assess and control the
electronic structure of individual quantum dots, have been
conducted so far essentially using semiconducting struc-
tures.14−17 Conversely, only very few studies in a molecular
or nanoparticle transistor geometry have been performed18,19

and only with limited gate coupling.
The rise in nanofabrication techniques has allowed

connecting single quantum dots, small enough to display
experimentally reachable level quantization, such as provided

by electrostatically defined regions in two-dimensional (2D)
electron gases, carbon nanotubes, single molecules and
nanoparticles. This progress has led in recent years to
quantitative understanding of electronic correlations at the
nanoscale.20−28 Because of the universal and robust nature of
Coulomb blockade and Kondo effects in single quantum dot
electronic junctions, the full characterization of thermoelectric
properties of quantum dots still constitutes a milestone in the
field of nanoscale charge and heat transfer, which delineates
the central investigation in this Letter. In particular, the Kondo
effect is a paradigmatic many-body effect of electrons in bulk
metals with magnetic dopants,29 also taking place in
nanostructures in the regime of Coulomb blockade of the
charge with an unpaired magnetic moment. Driven by the
magnetic exchange interaction between the localized electronic
orbital and the conduction electrons near the Fermi level EF, a
hybrid tunneling resonance of width kBTK develops at low
temperature in the spectral function near EF due to the
entanglement of conduction electrons to the quantum dot
electronic degrees of freedom below a characteristic Kondo
temperature TK.
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B.1 Direct probe of the Seebeck coefficient



Local electrical gating can shift in energy the localized orbital
and thus break particle-hole symmetry. This drives strong
thermoelectric effects in the tunneling current, associated with
spectral asymmetries in the tunneling spectrum. However, in
the standard picture of the Kondo resonance, it is schemati-
cally assumed that the Kondo peak is pinned exactly at the
Fermi level, independently on the depth ε0 of the localized
state. While this picture is approximately true and amply
sufficient to understand roughly the temperature dependence
of the linear conductance in the Kondo regime, it is in fact
totally inadequate for describing the thermopower of quantum
dots.30 For gate voltages close to the middle of odd charge
Coulomb diamonds, the Kondo resonance peak energy differs
very little from EF (by much less than kBTK) due to nearly
complete realization of particle-hole symmetry. In this regime,
thermal transport also nearly vanishes due to compensating
contributions from electron and hole states. However, this
energy shift of the Kondo resonance increases to reach as
much as about kBTK for gate voltages approaching the mixed
valence regime in which the charge on the dot can freely
fluctuate and where one can also anticipate enhanced
thermoelectric effects (Figure 1d).31

This asymmetry of the Kondo resonance about the Fermi
level, along with its strong temperature dependence, are crucial
for understanding the low-temperature thermopower of
Kondo-correlated quantum dots.30,32 Although well established
in theory,33 these properties have not been directly observed
by experiments to date. This is mainly because parasitic voltage
offsets are unavoidable in low-temperature transport experi-

ments, due to the signal amplification chain or thermo-
electricity in the wiring, rendering the precise determination of
the Fermi level EF, and thus the relative position of the Kondo
peak with respect to EF, difficult. The situation is different
when, in addition to a voltage bias, a temperature bias ΔT can
be applied across a junction hosting the Kondo resonance,
leading to thermoelectric effects. Experimentally, the Seebeck
coefficient (or thermopower) is defined as S = −VTh/ΔT in the
linear regime with VTh the thermovoltage established at zero
direct current (dc) flowing. While the low-temperature linear
conductance probes the amplitude of the junction spectral
function A(E) at EF, the low-temperature thermopower is
related to the spectral function derivative, S ∝ dA/dE|EF. More
generally, a nonzero Seebeck coefficient in the Kondo state
implies that the Kondo resonance must be asymmetric about
the Fermi level within a temperature window ±kBT. Yet,
thermoelectric measurements in the presence of Kondo
correlations have remained rare to date34 and have either
focused on the mixed valence regime15 or on measurements of
the thermocurrent rather than Seebeck coefficient.35

Here, we report on a direct measurement of the Seebeck
coefficient from the Coulomb blockade to the Kondo regimes,
using combined transport and thermopower measurements in
a single quantum dot junction. From the variations of the
thermopower with level depth at different temperatures, we
experimentally verify two hallmarks of Kondo correlations in
thermal transport. First, we report on a Seebeck signal that is
breaking the 1e-periodicity with respect to the quantum dot
charge state, which gives strong indication for single-spin
induced effects on thermoelectric properties. Second, we find
sign changes in the thermopower upon increasing temperature
for fixed gate voltages in the Kondo-dominated odd-charge
diamonds, while no such sign change is observed in the non-
Kondo even-charge Coulomb diamonds (for fixed gate
voltage). The former reflects the intricate spectral weight
rearrangement of the asymmetric Kondo resonance from low
to high energies as the Kondo peak is destroyed upon
increasing temperature (see Figure 1, as well as Figure S6 in
the Supporting Information). These observations are found in
good agreement with predictions from NRG calculations on
the Anderson model described in ref 30 and further developed
in this work.
Our junctions are realized using the electromigration

technique, which has been successfully applied for studying
the Kondo effect in a variety of single quantum dot systems,
such as single molecules and metallic nanoparticles.26,36,37

Using electron-beam lithography and a three-angle shadow
evaporation we fabricate devices such as pictured in Figure 1a
on top of a local back gate. After lift-off, inspection, and thus
exposure to air, we again evaporate a 1−1.5 nm gold layer over
the entire sample surface. Because of its extreme thinness, this
layer segregates into a discontinuous film of Au nano-
particles.38 After cooling to 4.2 K, we form a nanometer-
scale gap in the platinum constriction visible in Figure 1b by
controlled electromigration. Devices displaying reproducible
gate-dependent conductance features are then investigated at
temperatures down to 60 mK in a thoroughly filtered dilution
cryostat. The transport properties are determined by
measuring the junction current IQD as a function of the bias
voltage Vb and a gate voltage Vg, applied from a local back gate.
One lead of the quantum dot junction, defined as the drain in
what follows, rapidly widens away from the electromigration

Figure 1. (a) False color scanning electron micrograph of the device,
displaying the drain (green) and source (red) contacts to the
quantum dot. Four superconducting aluminum leads (cyan) are
connected to the source, for heating and biasing the junction. (b)
Zoom-in of an electromigrated quantum dot junction between the
source and the drain. (c) Sketch of the spectral function of the
quantum dot (right) induced by the coupling to the lead (left), both
at high (red) and low (blue) temperatures. The Kondo effect arises as
a sharp resonance near yet not exactly at the Fermi level EF at low
temperatures. (d) Numerical renormalization group (NRG) calcu-
lation on the single level Anderson model with on-site Coulomb
interaction U and level position ε0. Here is shown the junction
spectral function A(E) at different temperatures T/TK = 0.01, 2.8, 5,
10, 20 (from blue to red), for an asymmetric impurity level and a fixed
Kondo temperature TK, showing the spectral offset and asymmetry of
the Kondo resonance.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b04398
Nano Lett. 2019, 19, 506−511

507

130 Appendices



constriction, allowing for efficient heat draining on that side. In
order to allow the application of a controlled temperature
gradient, a normal metallic wire of length 5 μm provides the
other contact to the quantum dot junction, called the source.
The source side of the junction lead displays four high-
transparency superconducting aluminum contacts. These allow
for electrically connecting while thermally isolating the source
at low enough temperatures. Further, we can heat the source
electrons by applying a current between two such leads. In
principle, the superconducting transport properties between
two nearby leads across the source can also be used for local
electron thermometry but due to one missing contact this was
not available in this experiment.
Figure 2a,b shows the differential conductance G = dIQD/

dVb map of the device, as a function of bias and gate voltage.

Four Coulomb diamonds, separated by the degeneracy points
of the quantum dot charge states, can be seen and point to a
dot charging energy U ≈ 58 meV (in notation of the Anderson
impurity model introduced below). In the device studied here,
a second quantum dot appears as a faint conductance feature
near Vg = 0.8 V seen in the global transport map of Figure 2a.
It has very different transport characteristics and is discussed in
more detail in Section III of the Supporting Information.
Notably, the thermopower signal associated with the latter
appeared only in a very small gate voltage window, well
separated from that of the more strongly coupled quantum dot.
The gate voltage region above Vg = 3 V was subject to

electrostatic switches, which did not allow accessing
quantitatively the full amplitude of the device response in
this region. In two nonadjacent Coulomb diamonds of the
main device (Vg < −4.0 V and 3.5 V > Vg > −0.9 V), a
transport resonance near zero bias is observed near the
degeneracy points. This points to a Kondo resonance based on
the degeneracy of the electronic spin −1/2 doublet in oddly
occupied charge states. From the temperature dependence of
the resonance amplitude (Figure 2c) we can estimate the value
of TK, which decreases with ε0 moving toward − U/2, that is,
for Vg approaching the center of the odd Coulomb diamond.21

In the differential conductance data, we observe a finite
background Gc, which is constant both with Vb and T. We
attribute this to parallel direct tunneling between the contacts,
owing to the narrowness of the crack separating electro-
migrated leads, as is frequently observed in single QD
junctions. Because this background conductance is ohmic, it
does not contribute to the thermopower.
The peak conductance of the Kondo resonance saturates at

values <0.012 × (2e2/h) in the low temperature limit, from
which we can infer that the quantum dot is rather
asymmetrically tunnel coupled.39 This asymmetry simplifies
the theoretical description, as Kondo correlations can be
considered as occurring in equilibrium with the more strongly
coupled lead, the other lead acting only as weak probe. In this
study, this strongly coupled lead will thus also serve as the only
reference for the Fermi level, near which the Kondo resonance
develops. The tunnel coupling on the strongly coupled side, Γ
≈ 2.6 meV, can be determined from the widths of the
Coulomb diamond edges (see ref 40 for details pertaining to
effects related to the charge parity on the quantum dot that we
have taken into account). As opposed to most experiments
based on semiconducting systems, neither the quantum dot
nor the tunnel barriers are electrostatically defined here. Thus,
Γ is essentially independent of the gate voltage here, which
simplifies the theoretical comparison.
We now move to the thermoelectric response of the device.

We have performed thermoelectric experiments by providing a
constant heating power to the source island, leading to three
device temperatures, labeled Tlow < Tmid < Thigh. The lowest
temperature Tlow is in the range of a 300 mK, whereas Thigh is
close to 4.4 K, and Tmid is around 1.5 K. Details of the
estimation of these temperatures is given in Section III of the
Supporting Information. Measuring the thermopower of a
quantum dot junction requires in principle to address the
open-circuit voltage of a high-impedance device. This is
experimentally challenging, first because the voltmeter itself
may shunt the divergent impedance of the device and, second,
because the equilibration time to reach the true zero-current
state (as required by the definition of the Seebeck coefficient
S) at such high impedances can be extremely long. For this
reason, several experiments have preferred focusing on the
thermocurrent at zero applied bias rather than on the Seebeck
coefficient, although only the latter has a direct physical
interpretation as a fundamental transport coefficient. In our
measurements, we sweep for each gate voltage value the bias
voltage and measure the full IQD(Vb) characteristic (Figure 3).
From thereon, we can define −VTh as the bias voltage at which
the current goes through zero, realizing thus perfect open-
circuit conditions.41 An overall constant offset of the bias of
order 100 μV can be caused by amplifier offsets, thermo-
electricity in the cabling, and a potential drop inside the source
island due to the heating current. This offset is subtracted from

Figure 2. (a) Differential conductance map of the device, measured at
base temperature and without applying a thermal gradient. Three high
conductance degeneracy points separate Coulomb blockaded regions.
Every other Coulomb diamond displays a zero-bias resonance with
decreasing intensity when moving away from the degeneracy point.
From this, the parity of the electron occupation number can be
deduced. Note that the conductance map displays the signature of
another quantum dot connected in parallel to the main device, visible
near Vg = 0.7 V (see discussion in Section III of the Supporting
Information). (b) Zoom-in of the Kondo ridge near Vg = −4.2 V. (c)
Temperature dependence of the linear conductance G (minus a
constant background value Gc ≃ 0.004(2e2/h)) on the Kondo ridge at
Vg = −0.295 V. The line is a fit using a frequently used
phenomenological expression,21 matching well NRG calculations. At
this gate voltage, TK = 820 mK is defined as the temperature at which
the conductance peak height is equal to half its zero-temperature
value.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b04398
Nano Lett. 2019, 19, 506−511

508

B. WORKS THAT NOT EXPLAINED IN THE PRESENT THESIS 131



Vb such that VTh = 0 in the center of the evenly occupied
diamond. The result is shown as the black line on the same
figure. Strikingly, the thermovoltage changes sign at consec-
utive integer charge states, resulting in a 2e-periodicity of the
thermopower response, that directly follows from the presence
of Kondo anomalies in odd charge diamonds. In more detail,
the 2e-periodicity reflects the fact that the junction spectral
function has its maximal weight alternating above and below
the Fermi level depending on if the level depth ε0 of the
doublet spin state is either approaching EF from below (in
which case the dot transits from single to zero occupancy in
the active orbital), or EF − U from above (in which case the
highest occupied electronic orbital starts to become singly
occupied and develops the next Kondo ridge).
While this 2e-periodic response of thermopower with the

quantum dot charge state is in good agreement with what is
expected for the Kondo effect, it is not by itself a proof thereof.
Indeed, in a quantum description of the level hybridization, the
inclusion of the electron spin degree of freedom leads to a
doubling of the spectral function width when the charge states
changes parity,40 breaking thus the 1e periodicity naively
expected from a sequential or cotunneling description
neglecting the spin.42,43

A much more characteristic signature of the singlet nature of
the Kondo state resides in multiple sign changes of the
thermopower as a function of gate voltage, occurring both in
the center of Coulomb-blockaded even and odd charge states,
but also at the onset of the Kondo regime within the odd
charge diamond. This Kondo-related sign change takes place as
temperature is increased from below to above a characteristic
temperature T1, which is a weak function of gate voltage in the
Kondo regime (see Figure S5 of the Supporting Information
and ref 30). The other Coulomb-related sign changes are
temperature independent and occur when the bare quantum
dot energy level is such that ε0 + U/2 = 0 (for a single orbital
model). In Figure 4a, we show the gate traces of the Seebeck
coefficient of the same device at different temperatures. At the
lowest temperature Tlow (such that kBTlow/Γ < 0.015), the
thermopower inside the Kondo-correlated Coulomb diamonds
(for Vg < −4.1 V and Vg > −0.9 V) has a markedly different
behavior with respect to the higher temperature data,
confirming this sign change.

Our data can be compared with NRG predictions30 of the
Seebeck coefficient of a quantum dot with the parameter value
U/Γ ≃ 22 taken from the experiment. The simulations are
performed within a two-leads single orbital Anderson impurity
model with Hamiltonian

H d d Ud d d d c c t c d H c( . . )
k

k k k
k

k0∑ ∑ ∑ε= + + ϵ + +
σ

σ σ
ασ

σ ασ ασ
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α ασ σ
†

↑
†

↑ ↓
†

↓
† †
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The first term describes the quantum dot level energy ε0
(measured relative to the Fermi level EF, which is set to zero in
our calculations). The dot level is controlled in the experiment
with the gate voltage Vg. The second term with charging
energy U is the local Coulomb repulsion on the dot. The third
term describes the Fermi sea in the reservoirs, where α = L,R
labels the two contacts, and ϵkσ is the kinetic energy of the lead
electrons. The last term describes the tunneling of electrons
from the leads onto and off the dot with tunneling amplitudes
tα. By using even and odd combinations of lead electron states,
the odd channel decouples, resulting in a single-channel
Anderson model with an effective tunnel matrix element t
given by t2 = tL

2 + tR
2 . The hybridization is then characterized by

Figure 3. Current map for small applied biases in the presence of a
temperature gradient at intermediate temperature Tmid ≃ 1.5 K. The
black line follows the points of vanishing current; it is thus equal to −
VTh. The thermoresponse at about Vg = 0.7 V, associated with the
second, weakly coupled quantum dot, is grayed out for better
readability.

Figure 4. (a) Experimental thermopower S = −VTh/ΔT at the three
experimental device temperatures Tlow = 300 mK = 0.01Γ (blue), Tmid
= 1.5 K = 0.05Γ (orange), and Thigh = 4.4 K = 0.14Γ (red). The
arrows highlight the level depths in the Kondo regime near which the
thermopower changes sign at a temperature T1 ≈ Γ/(10kB). (b,c)
Corresponding NRG calculation using experimental parameters U =
58 meV, Γ = 2.6 meV and for the same set of temperatures T/Γ (with
the same color code). The calculation assumes a single orbital level,
predicting therefore correctly S = 0 in the center of an oddly occupied
Coulomb diamond (ϵ0 + U/2 = 0). For the sake of comparison with
the experimental data, the calculations at negative ϵ0 + U/2 are placed
to the right-hand panel. Neglecting higher orbital levels in the NRG
calculation does not allow to map the complete transition region in
the center of the even diamond so that the theoretical comparison is
done using two disjointed panels.
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the lead-dot tunneling rate Γ = 2πNFt
2 with NF the lead

electron density of states at the Fermi level.
The conductance G(T) and thermopower S(T) of the

Anderson model (1) can be written in terms of the zeroth,
I0(T), and first, I1(T), moments of the NRG impurity spectral
function A(E,T) within the Fermi temperature window
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where G0 is the zero temperature conductance at midvalley and
f(E,T) is the Fermi distribution of the leads at temperature T.
In this formalism, the spectral function defined above plays an
analogue role to the energy-dependent transmission E( ) in
the Landauer picture. The latter is an appropriate tool for
describing quantum transport in the absence of interactions,
whereas the spectral function picture is better adapted to
accounting for interactions.
The above expression for S(T) implies that a sign change in

the thermopower occurs due to a crossover between the
negative (electron-like) and positive (hole-like) energy
contributions of the first moment of the spectral function in
the Fermi temperature window −kBT < E < +kBT. At particle-
hole symmetric points, such as for perfect integer fillings, for
example, exactly in the middle of even or odd Coulomb
diamonds, the spectral function A(E,T) is symmetric about EF,
so that S(T) vanishes identically. The calculated thermopower
is plotted in Figure 4b,c as a function of the dimensionless gate
voltage (ϵ0 + U/2)/Γ, so that the center of the odd charge
Coulomb diamond at ϵ0 = −U/2 is clearly identified by a
trivially vanishing Seebeck coefficient at that point for any
temperature (due to exact particle-hole symmetry). Strikingly,
the thermopower anomaly seen near the mixed valence regime
presents two distinct regimes: at low temperature, a small
thermoelectric signal occurs with a fixed sign, whereas at high
temperature a larger signal displays a clear sign change as a
function of gate voltage, defining a crossover temperature T1.
These predictions compare favorably with the experimental
data in Figure 4a, where the gate-dependent signal shows the
same sign inversion at temperatures kBT1/Γ ≈ 0.1, depending
slightly on the gate voltage (see Figure S5 of Supporting
Information). If the experimental values of ΔT are assumed to
be 0.14, 1.0, and 0.4 K, respectively (from blue to red) in the
thermopower measurements, the arbitrary units (a.u.) scale of
the experimental Y-axis are to be read in units of kB/e, leading
to quantitative agreement with theory. One can note here that
the two data sets at Tlow and Tmid are then not quite in the
linear response regime ΔT ≪ T, which however does not
qualitatively affect the thermopower as long as ΔT is not much
larger than TK. We note that, ultimately, the sign change of the
Seebeck coefficient S upon increasing temperature from T < T1
to T > T1 > TK reflects the spectral weight rearrangement of
the asymmetrically located Kondo resonance about EF (see
Figure 1d, and Section IV−C of the Supporting Information
for details).
In conclusion, this work provides a direct measurement of

the Seebeck coefficient for a Kondo-correlated single quantum
dot tunnel coupled to purely thermal-biased reservoirs. In
particular, our measurements bring compelling experimental

evidence for a frequently overseen property of the Kondo
effect occurring between a spin-degenerate local level and an
electron reservoir. By measuring the temperature and gate
dependence of the Seebeck coefficient in a single quantum dot
junction, we find that it exhibits characteristic sign changes in
the Kondo regime upon increasing temperature, which reflect
the strong temperature dependence of the Kondo peak that is
not exactly pinned at the reservoir Fermi level, as predicted by
theory. This work finally demonstrates that electromigrated
single quantum dot junctions can now be integrated into more
complex circuits, including local electronic heaters and
thermometers. This development paves the way for precisely
accessing the thermoelectric figure of merit of individual
molecules, which requires measuring simultaneously the charge
and heat conductance as well as the thermopower, for a large
spectrum of molecular devices.
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Targeted modi�cations of monolithic multiterminal su-

perconducting weak-links†

Simon Collienne,a Danial Majidi,b Joris Van de Vondel,c Clemens B. Winkelmann,b and Ale-

jandro V. Silhanek a

In a multi-branch metallic interconnect we demonstrate the possibility to induce targeted modi-

�cations of the material properties by properly selecting the intensity and polarity of the applied

current. We illustrate this e�ect in Y-shape multiterminal devices made of Nb on sapphire for

which we show that superconducting critical current can be lowered in a controlled manner in a

preselected junction. We further observe the gradual appearance of Fraunhofer-like critical current

oscillations with magnetic �eld which indicates the gradual modi�cation of a superconducting weak

link. This method permits progressive modi�cations of a hand-picked junction without a�ecting

the neighboring terminals. The proposed approach has the bene�t of being inexpensive and requir-

ing conventional electronics. This technique represents a major step toward all-electric control of

multiterminal Josephson junctions.

1 Introduction

Nanoscale metallic multiterminal interconnects represent an
ubiquitous layout in low dimensional electronic devices. On the
technological side, for instance, on-chip power distribution net-
works and interconnects in clock grids normally involve multi-
branched metal segments1,2. The conventional and widely im-
plemented four-probe and Hall electrical transport measurement
configuration is yet another example where several voltage and
current probes branch out from a transport bridge. Arguably, the
most fervent interest on multiterminal devices can be found in
superconducting electronics. In this context, a three-terminal de-
vice, so-called yTron, has been proposed as a sensor and readout
of current-flow in a superconductor3 whereas tunable supercon-
ducting weak links have been realized by injecting a normal cur-
rent into the junction4–14.

More recently, substantial theoretical15–18 and experimen-
tal19–23 efforts have been devoted to the investigation of mul-
titerminal Josephson junctions, in part fueled by the possibility
of developing topological Andreev bands in systems composed by
multiple superconducting leads coupled through a central nor-
mal scattering region. Typically these devices require involved
fabrication procedures (overlay lithography, shadow evaporation,

a Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, Université de
Liège, B-4000 Sart Tilman, Belgium
b Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
a Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven,
Celestijnenlaan 200D, B-3001 Leuven, Belgium
† Electronic Supplementary Information (ESI) available. See DOI:
00.0000/00000000.

multilayers, etc.) and although tunability of the junction prop-
erties has been demonstrated via gating, it would require signifi-
cant further effort to control each individual junction separately.
Therefore, developing new approaches with high efficiency and
accurate tunability of individual junctions have a promising po-
tential in superconductor science and technology.

In this work, we report on a simple and yet powerful elec-
troannealing (EA) technique to induce selective modification of
conducting and superconducting multiterminal junctions by ap-
plying high electrical current density. A scanning electron mi-
croscopy (SEM) image of a representative device is shown in
Fig. 1(a,b) (see ESI† for fabrication details). The voltage con-
tacts are placed at about 1.2 µm away from the constrictions.
In the electroannealing process, a bias voltage across the device
is slowly swept up while simultaneously monitoring the increase
of resistance until reaching a pre-established value. Sudden in-
creases of resistance leading to thermal runaway and eventually
sample destruction are avoided by a reactive feedback loop24.
Unlike electromigration25, EA is mainly driven (but not only) by
the Joule heating produced by high current densities only achiev-
able in refractory materials such as Nb. We have recently reported
the successful implementation of this approach26 for producing
targeted modifications of the superconducting properties in bow-
tie Nb nanoconstrictions. In this work, this procedure is extended
to three constrictions following the protocol described in Ref.24.
Fig. 1(c) shows a typical evolution of the resistance measured be-
tween voltage pads 1-3 during the EA process. This curve exhibits
an initial parabolic shape at low currents corresponding to Joule
heating, followed by a sharp irreversible increase of resistance
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Fig. 1 SEM image of the pristine Nb three-terminal device (a,b). The white scale bar corresponds to 200 nm. As an example, the electrical connections

to performed controlled EA of junction 3 is shown in panel (a) along with the star-shape equivalent lump circuit represented in yellow color. The

resistances Ri are a�ected during the EA whereas the resistance RLi of the leads remains una�ected. Panel (b) shows the con�guration to measure

the electrical response of junction formed by the terminals 1 and 2. The inset in panel (b) is a zoom in at the center of the device where the width

of the junctions are given in nm. A representative resistance evolution during an EA process at 10 K is shown in panel (c). The inset in panel (c)

shows the temperature distribution simulation for an intermediate current value 13 mA whose applied polarities lead to a localized temperature peak

in the junction traversed by the highest current density. Panel (d) shows the actual measured temperature dependence of the resistance between two

voltage contacts and panel (e) shows the calculated resistance of each junction.

at high currents. After the bias voltage is set off, the addressed
contact exhibits a resistance higher than the initial state. In three-
terminal device we demonstrate the possibility to increase locally
the resistance while simultaneously decreasing the critical current
of a predefined junction without affecting the neighboring termi-
nals. In this way, we are able to induce Fraunhofer-like critical
current oscillation as a function of magnetic field in the selected
junction. In other words, this technique permits to transform su-
perconducting contacts in an otherwise monolithic sample into
Josephson junctions by creating weak-links27,28 without the need
to invoke complex multi-step fabrication processing. A somewhat
similar method coined electroburning has been implemented to
generate nano-gaps in a graphene three-terminal single-electron
transistor29.

2 Results

A unique advantage of multiterminal junctions with respect to
a single junction26 is the possibility to deduce the resistance of
each individual junction to the central node. Indeed, the total re-
sistance Ri j between two voltage contacts i and j, with i, j = 1,2,3
and i ̸= j, can be considered as resulting from the resistance Ri

associated to the zone between voltage contact i and the cen-
tral point where the three terminals converge, plus the resistance
R j corresponding to the segment between the central point and
voltage contact j. The equivalent lump circuit is illustrated in
Fig. 1(a). The relation Ri j = Ri +R j represents a linear system
of three equations with three unknowns which can be inverted

to isolate each individual Ri. Note that the EA process does not
modify the entire branch between the corresponding voltage con-
tact and the central point, but rather a small region next to the
central point where the current crowding leads to a high local
temperature as confirmed by finite elements modelling (inset of
Fig. 1(c), see ESI†). As a first approximation, one can assume
that the individual resistance Ri is inversely proportional to the
width of the junction i. This approximation is more accurate if
the opening angle of each branch is large. Fig. 1(d) shows the
measured resistances Ri j as a function of temperature around the
superconducting transition Tc = 6.4 K. Note that R13 = R23 > R12

which is consistent with a mirror symmetric structure with a nar-
rower junction 3, as shown in the scanning microscopy image of
Fig. 1(b). In Fig. 1(e) we show the calculated resistances Ri cor-
responding to each junction confirming that R1 = R2 < R3. More-
over, R3/R1 ∼ 1.42 which is close to the ratio of constriction widths
w1/w3 ∼ 1.47.

Let us now explore the possibility to modify via EA process a
predefined constriction, without affecting the other two neigh-
boring terminals. In order to target junction i we ground the
corresponding junction and feed the current from the remain-
ing two. It is worth mentioning here that the polarity of the
bias current plays a crucial role since it determines on which
side of the constriction the material modification will take place
(see atomic force microscopy experiment in the ESI†). Subse-
quently we measure Ri j(T ) and calculate the individual junction
resistances Ri(T ). A selected set of these measurements are sum-
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Fig. 2 Temperature dependence of the resistance associated to junction

1 (left column), junction 2 (middle column) and junction 3 (left column)

before and after EA. In the upper, middle and lower rows, junctions 2,

1 and 3 have been respectively targeted using the circuits shown in the

corresponding insets. In the upper row, the blue lines correspond to the

pristine sample response. These curves have been measured with a bias

current of 1 µA RMS at zero magnetic �eld.

marized in Fig. 2. The electric circuit used to electroanneal each
of the three junctions is shown as inset in the rightmost column
whereas each column shows the computed junction resistance
Ri(T ) before and after modification by EA. We proceed chrono-
logically, first modifying constriction 2 (upper row) up to more
than doubling its resistance while junctions 1 and 3 remain in-
tact. Then, in a next step, we aim to junction 1 on the same
device (middle row). Finally, junction 3 is targeted (lower row)
to achieve a final state in which the three junctions exhibit similar
resistance values.

As we mentioned above, it is the opening angle of each branch
which determines the spatial extent to the electroannealed re-
gion. In this particular study, we have purposely designed each
branch with angles larger than 30◦ in such a way to guarantee
modifications of the structure in a narrow region thus permitting
phase coherent transport through the so created weak link27,28.
This effect is unambiguously demonstrated by measuring the crit-
ical current Ii j

c between two neighboring voltage probes as a func-
tion of the magnetic field B applied normal to the plane of the de-
vice. In Fig. 3 we show the resulting Ii j

c (B) curves, obtained with
a 10 µV criterion at 1.8 K, for the same states described in Fig. 2.
The blue datapoints in the upper row correspond to the pristine
sample. Note that the zero-field critical current is larger for the
I12 connection suggesting that the narrowest junction 3 limits the
maximum critical current compared to the other two junctions.

Interestingly, all three curves show oscillations with a period
∆B ∼ 190 mT which could be associated to one flux quantum in
a junction area of 0.0109 µm2 which is more than double the
area of the central isosceles triangle formed by the converging
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Fig. 3 Field-dependent critical currents obtained at 1.8 K through the

junctions 1-2 (leftmost column), junctions 1-3 (central column) and junc-

tions 2-3 (rightmost column) before and after EA. In the upper row, the

blue dots correspond to the pristine sample and the red dots to the re-

sponse after junction 2 has been modi�ed by EA. In the middle row,

junction 1 is addressed whereas in the lower row it is the junction 3

which is modi�ed.

terminals. This discrepancy is not surprising as already discussed
in Ref.26. After modifying junction 2 (red data points), I13

c re-
mains invariant as expected, whereas both I12

c and I23
c decrease

in amplitude. More importantly, the oscillation period in I23
c (B) is

substantially reduced which could be associated to an increase of
the effective junction area after EA. The fact that a modification
of R2 affects differently I12

c and I23
c is puzzling.

The middle row in Fig. 3 shows the evolution of the critical
current when junction 1 is modified. In this case, I23

c remains un-
changed, whereas I12

c and I13
c decrease in amplitude and develop

Fraunhofer-like oscillations30. In the lower row of Fig. 3, the EA
of junction 3 does not lead to discernable changes in any of the
critical currents thus indicating that the critical current remains
dominated by the weaker links of junctions 1 and 2.

As we pointed out above, for the sake of clarity in Fig. 2 and 3
we have presented a selected set of three EA processes out of an
ensemble of eight EA steps. The upper row of Fig. 4 shows the
normal state resistance RN = R(10 K > Tc) and the superconduct-
ing critical temperature Tc of each of the junctions as a function
of the EA step (EA#). The RN (blue symbols) shown in the upper
row demonstrate full control of the targeted junction following
the order EA1-EA2 junction 2 → EA3-EA4 junction 1 → EA5 junc-
tion 3 → EA6 junction 1 → EA7 junction 2 → EA8 junction 3.
Local increase of Ri during EA tends to decrease the Tc of the
targeted junction (red symbols, upper row).

The middle row of Fig. 4 shows the maximum critical current
obtained at B = 0 and the period of the Fraunhofer-like pattern
∆B measured through a pair of terminals as a function of the EA
step. The critical current Ii j

c is determined by the largest value

Journal Name, [year], [vol.],1�5 | 3

Page 5 of 15 Nanoscale

B. WORKS THAT NOT EXPLAINED IN THE PRESENT THESIS 137



EA#
2 4 860

0

2

4

6

R1 R2 R3

IC
12 IC

13 IC
23

0

2

4

6

0

2

4
IC
12 IC

13 IC
23

EA#
2 4 860

EA#
2 4 860

I C
			
			
		[
µA
]

m
ax

102

103

100
150

200
250

R
N
		[
Ω
]

2
3
4
5
6
7

ΔB
		[
m
T
]

T C
		[
K
]

I C
			
			
		[
m
A
]

m
ax

I C
			
			
		[
m
A
]

m
ax

1/max(R1,R2)		[Ω
-1]

0.5 1 1.50
1/max(R2,R3)	[Ω

-1]
10 0.5

1/max(R1,R3)		[Ω
-1]
10 0.5

Fig. 4 Upper row: Computed normal state resistance RN (blue sym-
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between Ri and R j. This is demonstrated by the linear correlation
between Ii j

c and 1/max(Ri,R j) in the bottom row of Fig. 4 which
could be used to extract the individual critical currents Ii

c as long
as Ri ̸= R j. Although all the data presented in this work has been
acquired in one single device, the all-electrical control of the junc-
tion properties has been confirmed in one another similar sample
and also at ambient temperature with atomic force microscopy
imaging (see ESI†).

3 Conclusion

In brief, we have presented a technique particularly adapted to
control individually the junction properties of each branch in a
multiterminal device. The primary advantage of the proposed ap-
proach lies on its simplicity, offering full control of the material
modifications and unprecedented high degree of selectivity. Al-
though in the present study we focus on three terminal devices,
the method can be extended to N-terminal devices or even several
N-terminal devices interconnected. Two important parameters to
consider are the terminal geometry and the polarity of the EA cur-
rent. The exact nature of the Josephson junction created by EA
is still uncertain, and may be either of the SNS type where N is
a non-intrinsic superconductor or of the SS’S type where S’ de-
notes a superconductor of lower critical temperature, is another
motivation for future work.
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Calorimetry of a Quantum Phase Slip
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In a Josephson junction, which is the central element in superconducting quantum technology,
irreversibility arises from abrupt slips of the gauge-invariant quantum phase difference across the
contact. A quantum phase slip (QPS) is often visualized as the tunneling of a flux quantum in
the transverse direction to the superconducting weak link, which produces dissipation. Here, we
detect the instantaneous heat release caused by a QPS in a Josephson junction using time-resolved
electron thermometry on a nanocalorimeter, signaled by an abrupt increase of the local electronic
temperature in the weak link and subsequent relaxation back to equilibrium. Beyond providing
a cornerstone in experimental quantum thermodynamics in form of observation of heat in an ele-
mentary quantum process, this result sets the ground for experimentally addressing the ubiquity of
dissipation, including that in superconducting quantum sensors and qubits.

The magnetic flux threading a superconducting loop is
quantized in units of the flux quantum Φ0 = h/2e. The
tunneling of a flux quantum in or out of such a loop is
associated to a change of 2π in the winding of the phase
of the quantum wave function along the loop. The ma-
nipulation of individual flux quanta is at the core of su-
perconducting circuit logics, both in the classical and in
the quantum information regime [1–3]. Rapid single-flux-
quantum (RSFQ) logic can operate up to 100 GHz fre-
quencies and is considered as promising classical control
electronics of qubits [4–6]. In the quantum regime, the
coherent superposition and manipulation of flux states is
at the basis of flux qubits [7, 8] and the fluxonium [9, 10].

Slips of the quantum phase occur when the gauge-
invariant phase difference across a weak link, that is,
a Josephson junction, in the superconducting loop sud-
denly relaxes (Fig. 1). Quantum phase slips (QPSs)
are ubiquitous in superconducting electronics and can be
seen as the dual process to Cooper pair tunneling. Fur-
thermore, coherent QPSs have been proposed as a build-
ing block for phase-slip qubit devices [1, 2, 11]. On the
other hand, their proliferation is responsible for the de-
struction of superconductivity in one dimension [12] and
can lead to thermal avalanches in current-biased Joseph-
son junctions [13]. In essence, a QPS can be considered
the quantum of dissipation in superconducting electron-
ics.

In this work, we investigate the thermal signature of
incoherent individual quantum phase slips in a supercon-
ducting Josephson junction. Applying a MHz-bandwidth
electron thermometry technique to a Josephson junction,
we measure the heat generated by a single QPS as well as
the subsequent thermal relaxation. The data are in good
agreement with a theoretical model that we developed
for describing the superconducting properties of the de-
vice. Our work therefore demonstrates the possibility to
quantitatively account for dissipative effects in quantum
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Figure 1. Quantum phase slip in a Josephson junc-
tion. (a) Real-space sketch of the QPS mechanism: at the
instability point of the Φx(ϕ) relation, the phase drop ϕ and
the screening current Is relax abruptly to smaller values, as a
quantum of flux tunnels perpendicular to the Josephson junc-
tion (dark grey), releasing heat. (b) Phase drop ϕ across the
SNS junction versus applied flux to the SQUIPT, following
Eq. (1) with β = 10. The dashed part of the curve cannot be
accessed. In a quantum phase slip (blue arrows), ϕ changes
by slightly less than 2π. (c) Potential energy of the SQUIPT
as a function of ϕ. A local energy minimum can become
unstable as the externally applied flux is changed. By macro-
scopic quantum tunneling of the phase, a lower energy valley
is reached, releasing an energy ∆U .

nanoelectronics, with evident applications to quantum
computing.

The experimental core element is a superconducting
quantum interference device (SQUID), that is, a super-
conducting loop containing one (as is the case here) or
more Josephson junctions, and to which a magnetic flux
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Φx is applied. The difference between the applied and
the physical flux is absorbed by screening supercurrents,
leading to a gradient in the phase of the quantum wave
function along the loop, and, to a large extent, across
the Josephson weak link. The relation between Φx and
the phase drop ϕ across the Josephson junction can be
written as

2π(Φx/Φ0) = ϕ+ β sin(ϕ), (1)

with the screening parameter β = 2πLIc/Φ0, where L is
the loop inductance and Ic the Josephson junction’s crit-
ical current [14]. Irreversibility arises when the SQUID’s
magnetic screening parameter β exceeds 1 and Eq. (1)
is no longer single-valued, as illustrated in Fig. 1b,c. In
this situation, the penetration of an additional flux quan-
tum into the SQUID loop does not occur smoothly and
reversibly, but via a sudden tunneling of the phase, that
is, a quantum phase slip.

The above concepts are the basis of extensive appli-
cations in superconducting electronics, such as SQUID
magnetometry and superconducting flux qubits [7, 15,
16]. Notably, the Josephson weak links used in such
SQUIDs can be provided by a variety of junction types,
including tunnel junctions, micro-bridges, and prox-
imity weak links [17]. In the latter, a short, non-
intrinsically-superconducting element, such as a nor-
mal metallic wire allows for superconducting correla-
tions to propagate between both superconducting reser-
voirs. Due to the wire’s usually low normal state resis-
tance, following the resistively and capacitively shunted
Josephson junction model, the quantum phase dynam-
ics in such superconductor-normal metal-superconductor
(SNS) Josephson junctions are inherently overdamped
[14]. This ensures that upon a QPS, the quantum phase
only evolves towards the nearest neighboring potential
valley (Fig. 1c). This releases an energy

∆U =
Φ0

2πL

∫
Φx dϕ, (2)

which depends on the magnitude of the quantum phase
slip. In the large β limit, the phase jumps by about 2π,
and ∆U ≈ IcΦ0.

Our device consists of a SQUID with a single Joseph-
son junction, provided by an SNS weak link of length 520
nm (Fig. 2a). Here, the superconducting circuit parts
are made of aluminum, while the metal N is made of
copper. While the loop is grounded, the center of N
is further contacted by another superconducting finger
through a tunnel junction (Fig. 2a), with normal state
resistance RT ≈ 7 kΩ. This SQUID variant was named
SQUIPT [18], where PT stands for proximity transistor.
Our SQUIPT was designed to be in the hysteretic regime.
For this, we took into account the geometric and kinetic
inductance contributions, leading here to L ≈ 630 ± 50
pH. The SNS junction critical current Ic cannot be deter-
mined independently in this device, but is expected from

similar SNS devices in a current-biased geometry to be
of a few µA [19–21]. From this, values of the screening
parameter β ∼ 10 can be anticipated, in good agreement
with experiments, as discussed below.

Applying a dc voltage Vb to the tunnel junction, we
can perform tunnel spectroscopy by measuring its differ-
ential conductance G(Vb). Here, G is not read out, as
usual, by a low-frequency transport measurement, but
by a radio-frequency (RF) technique, using a supercon-
ducting LC resonator with resonant frequency 575 MHz
[22–24]. By embedding the tunnel junction in parallel
to the resonator, and for a fixed incident RF power Pin,
changes in G can be read out by their effect on the trans-
mitted power at resonance Pout, which we record after
cryogenic amplification (details in Supp. Info. file). This
has the paramount advantage of allowing for extremely
rapid measurements, limited by the resonator bandwidth,
of about 10 MHz here.

Figure 2b shows measurements of Pout(Vb) at two tem-
peratures. Several characteristic spectroscopic features
stand out, in particular (i) a spectroscopic gap of to-
tal width 480 µV, (ii) subgap resonances near ±190µV
visible only at 400 mK, and (iii) three low-energy reso-
nances at 0 and ±15µV, respectively. Keeping in mind
that the tunnel junction connects an intrinsic super-
conductor with gap ∆ and a proximized metal with a
(smaller) induced gap Eg, we can evaluate the total spec-
troscopic gap as 2(∆ +Eg)/e. At intermediate tempera-
tures, thermally activated conductance resonances occur
at ±|∆ − Eg|/e, which we identify as feature (ii). From
the two above relations we find a gap ∆ = 210±5µeV in
the superconducting probe electrode at 400 mK (225 µeV
at 50 mK), a typical value in nanostructured aluminum.
We further extract Eg = 29µeV, in good agreement
with theoretical estimates (details in the Supp. Info. file).
Eventually, the conductance resonance at Vb = 0 (feature
(iii)) is a signature of the Josephson coupling across the
tunnel junction, which was purposely designed to have
an intermediate transparency [24]. The satellite peaks
at ±15µV are probably the signature of inelastic Cooper
pair tunneling [24] and are not of central relevance to this
work.

As visible in Fig. 2b,c and already discussed in detail in
[24–26], the zero-bias conductance of the tunnel junction,
and therefore Pout(Vb = 0), is a sensitive probe of the
electron temperature T in N. Accordingly, we set Vb = 0
in the remainder of this work and use Pout for both static
and dynamic electron thermometry, after initial calibra-
tion under equilibrium conditions (Fig. 2c). However,
and in contrast to previous work [24–26] in which N was
not subject to a phase drop, in the present device the tun-
nel junction conductance and thus Pout are clearly also
a function of the phase ϕ across the SNS junction. This
is seen in Fig. 2d, where sweeping the applied flux trans-
lates into a phase variation via Eq. (1). As ϕ→ π/2, the
decrease of Eg [27, 28] entails a rapidly shrinking Joseph-
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Figure 2. Hysteretic RF-SQUIPT. (a) Device schematics, including a false-color scanning electron micrograph (scale bar 5
µm) of the SQUIPT loop (yellow area) and the rapid flux line (pink). The zoom highlights the SNS junction (Al = blue, Cu =
grey), connected laterally by the tunnel contact (cyan) (scale bar 200 nm), connected to the resonator. (b) Bias spectroscopy
Pout(Vb) at cryostat temperatures 50 mK (blue) and 400 mK (red). (c) Calibration of Pout(Vb = 0) versus cryostat temperature
at equilibrium, under two different phase drops. The grey shaded region thus covers all possible values of Pout(T, ϕ). (d)
Resonator response at Vb = 0 as a function of increasing applied magnetic flux, at three cryostat temperatures (50 mK, blue;
200 mK, black; 400 mK, red). The dark red line exemplifies the response to a downward sweep of the flux. The dashed line is
a calculation (see text). (e) Temperature dependence of the screening parameter β, extracted from (d), and theoretical fit (red
line, see text).

son energy EJ of the tunnel junction, and thus a decrease
of G(0), that is, an increase of Pout. When the switch-
ing point in the Φx(ϕ) relation is reached, ϕ suddenly
relaxes to a smaller value (modulo 2π), restoring EJ and
thus leading to an abrupt drop in Pout. As expected, the
same pattern is repeated with period Φ0 in the applied
flux and mirror symmetric under inversion of the sweep
direction [29]. At higher temperatures, β ∝ Ic decreases
and the modulation amplitude of Pout(Φx) shrinks, while
the Φ0-periodicity of the signal is preserved.

For a quantitative understanding of the RF-SQUIPT,
we use the quasi-classical Usadel equations [27, 30–32],
with a single consistent set of microscopic parameters,
described in detail in the Supp. Info. file. The density
of states in N is known to display a minigap, which de-
pends approximately on ϕ like Eg(ϕ) = Eg(0) | cos(ϕ/2)|
[27]. The tunnel junction connecting the condensate in
N to the superconducting probe electrode has a Joseph-
son energy EJ(ϕ, T ) and thus a zero-bias conductance

G(ϕ, T ), which can be drawn back analytically to Eg(ϕ)
and the critical current Ic of the SNS junction. In com-
bination with Eq. (1) and the relation between G and
Pout, the calculation provides an accurate description of
the applied-flux dependence of the RF signal (Fig. 2d),
the only adjustable parameter being the magnitude of β.

The temperature dependence of β extracted from the
data in Fig. 2d is plotted in Fig. 2e, following the trend
expected for Ic(T ) in an SNS junction. The solid line
shows the calculation from the same model as above,
yielding a 5.9µA zero-temperature critical current in the
SNS junction. The parameters entering the calculation,
and in particular the minigap, are determined indepen-
dently using the tunnel spectra (Fig. 2b). We attribute
the slight underestimation of β by theory above 300 mK
to the temperature dependence of the kinetic inductance,
which was not accounted for.

The data discussed so far, and summarized in Fig. 2,
provide a consistent physical understanding of the RF-
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Figure 3. Heat relaxation dynamics after a QPS. (a) Time-resolved electron temperature in the absorber, at different
starting temperatures set by the cryostat bath, following a 70-ns flux pulse at t = 0. The data sampling rate is 2 MHz, the
data shown are the result of averaging over 105 pulses, at a repetition rate of 2 kHz. (b) Return to equilibrium ∆T (t) at 100
mK, following a flux pulse. Same data as the black curve in (a), but in a semi-log-scale representation and over a wider time
window. The red line is a calculation based on the model discussed in the text. The dashed line is an exponential fit (with
time constant τ ≈ 140µs) to the long-term relaxation, evidencing the presence of a second slowly relaxing bath. (c) Magnitude
of the initial temperature rise ∆T0 at t = 0, determined by the fit as shown in (b) (bullets). The solid line is a calculation (see
text).

SQUIPT under time-averaged, and thus isothermal con-
ditions. We now move to the time-resolved response
Pout(t), which displays the calorimetric signature of the
heat deposited by individual QPS events. In addi-
tion to the static flux bias, we apply a time-dependent
(square-wave or pulsed) flux, by passing a current IRFL(t)
through the superconducting rapid flux line (RFL), vis-
ible on the left side of the SQUIPT in Fig. 2a. The
instantaneous flux bias is Φx(t) = M IRFL(t), with a mu-
tual inductance M = 12.1 pH further discussed in the
Supp. Info. file. In order to increase the signal-to-noise
ratio, we average the resonator response over a large num-
ber of periodically generated identical 70 ns flux pulses.

As long as the amplitude of the flux pulses does not ex-
ceed the threshold leading to a QPS, Pout follows changes
in Φx(t) instantaneously (not shown, see Supp. Info. file
for details). However, as soon as the threshold to insta-
bility of the flux state is overcome, Pout(t) displays in ad-
dition a slower relaxation to its novel equilibrium, which
is indicative of thermalization. As evidenced from Fig.
3a, the relaxation dynamics after a flux pulse are strongly
temperature dependent, as expected for instance from a
dominantly electron-phonon (e-ph) coupling-driven ther-
malization after an initial heating event [23]. Above 300
mK, the relaxation times become too short (< 1µs) to
be measured.

The thermal dynamics can be described by a heat bal-
ance equation, basing on the standard assumption that
variations of the absorber’s internal energy U are evac-
uated to a heat bath via electron-phonon coupling. In

metallic nanostructures at low temperatures, this power
is usually written Q̇e−ph = ΣV(T 5 − T 5

0 ), where Σ =
2× 109 W K−5 m−3 is the electron-phonon coupling con-
stant in copper [33, 34], and V ≈ 8× 10−21 m−3 the geo-
metrically estimated absorber volume. Given the rather
small Eg in the SNS junction, our calculations indicate
that the proximity effect should only lead to negligibly
small departures from the normal-state electron-phonon
coupling and heat capacity C, at the experimental tem-
peratures. Therefore we write U = γT 2/2, using a re-
ported γ = 71 J m−3 K−2 in nanostructured Cu [34]. As
seen in Fig. 3a, the temperature increase after the initial
heat pulse can be large compared to the starting temper-
ature. The dynamical heat balance differential equation
thus cannot be linearized in ∆T = T − Tb, and must be
solved numerically. The result at Tb = 100 mK is shown
in Fig. 3b (red line), where the only free parameter is the
initial temperature increase ∆T0. The calculation follows
closely the data during the first period of the thermal re-
laxation. Interestingly, the initial fast decay is rapidly
taken over by a much slower process, which was already
reported for nanoscale Cu absorbers [34, 35]. This might
be due to another heat reservoir, for instance in surface
states of the Cu absorber.

The initial temperature increase ∆T0 after a flux pulse
is plotted as a function of the starting temperature in
Fig. 3c. Naturally, the temperature rise is highest when
starting from the lowest base temperature, because at
higher temperature both C increases and ∆U ∼ IcΦ0

decreases. For a quantitative modeling, one must bear in
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mind that a flux pulse induces necessarily two QPSs: one
while ramping up the flux bias, and the second when re-
turning to the initial state. We account for the fact that
the return QPS occurs at a higher electronic temperature
and thus produces less dissipation. The sudden tempera-
ture rise after the first QPS could also lead the sinusoidal
potential energy landscape modulation (see Fig. 1c) to
collapse to the point that the reached valley also becomes
unstable and the phase eventually jumps by 4π, or more.
This was actually observed in another device, which we
describe in the Supp. Info. file, but does not apply in the
sample described here. Finally, the quasi-classical Usadel
formalism with the same set of microscopic parameters as
previously, in combination with Eqs. (1,2) and the known
values of γ and V, describes very accurately (red line in
Fig. 3c) the initial temperature rise ∆T0.

Our findings of microsecond-scale thermal relaxation
following a QPS tracked in real time highlight both the
paramount effect dissipation can produce in quantum cir-
cuits, and the potential of large-bandwidth electron ther-
mometry for quantum thermodynamics in nanoelectronic
circuits. The detection of a quantum of dissipation in a
Josephson junction opens promising perspectives for fu-
ture experiments. These would aim, for instance, at de-
tecting the minute dissipation arising from a projective
qubit measurement with emission of a single microwave
photon [36], or the detection of the elusive axion with
even smaller energy [37]. On the other hand, the proper
measurement and control of dissipation in QPS-based cir-
cuits will allow for overcoming self-heating-limited device
performances.
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