
HAL Id: tel-04368849
https://theses.hal.science/tel-04368849

Submitted on 2 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Time series classification with Shapelets: Application to
predictive maintenance on event logs
Antoine Guillaume, Christel Vrain, Wael Elloumi

To cite this version:
Antoine Guillaume, Christel Vrain, Wael Elloumi. Time series classification with Shapelets: Appli-
cation to predictive maintenance on event logs. Computer Science [cs]. Université d’Orléans (UO),
2023. English. �NNT : �. �tel-04368849�

https://theses.hal.science/tel-04368849
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

Université d’Orléans
École Doctorale Mathématiques, Informatique,
Physique Théorique et Ingénierie des Systèmes

Thèse présentée par :

Antoine Guillaume
soutenue le : 4 Janvier 2023

pour obtenir le grade de : Docteur de l’Université d’Orléans

Discipline/ Spécialité : Informatique

Time series classification with Shapelets:
Application to predictive maintenance on event logs

Thèse dirigée par :
Pr. VRAIN Christel Université d’Orléans
Dr. ELLOUMI Wael Ingénieur R&D, Worldline

RAPPORTEURS :
Pr. BAGNALL Anthony University of East Anglia
Pr. CORNUÉJOLS Antoine AgroParisTech

JURY :
Pr. FROMONT Elisa Université de Rennes, Présidente du jury
Pr. BAGNALL Anthony University of East Anglia
Pr. CORNUÉJOLS Antoine AgroParisTech
Dr. ELLOUMI Wael Ingénieur R&D, Worldline
Pr. FORESTIER Germain Université de Haute-Alsace
Pr. VRAIN Christel Université d’Orléans

Acknowledgements
I would like to express my deepest gratitude to Pr.Christel Vrain for her continuous
support and mentoring during my Ph.D., and for her patience and kindness, even though
I was sometime stubborn. I would also like to thank Dr.Wael Elloumi, which accepted to
represent Worldline for this thesis, without which this whole endeavour would not even
have happened.

My sincere thanks also goes to Pr.Anthony Bagnall and Pr.Antoine Cornuéjols who ac-
cepted to take the responsibility of reviewing this manuscript, and to Pr.Germin Forestier
and Pr.Elisa Fromont for accepting to participate in the jury.

Last but not the least, I would like to thank my companion Caroline for her uncon-
ditional love through the ups and lows of this thesis, and my family and friends for their
support, even though I was often caught up in my research.

i

ii

Contents

List of figures v

List of tables xi

1 Introduction 1
1.1 Contributions . 3
1.2 Thesis Organization . 4
1.3 Notations . 4
1.4 Comparison of classifiers . 5

1.4.1 Critical difference diagrams . 5
1.4.2 Pairwise accuracy plots . 6

2 Time Series Classification 7
2.1 Introduction . 7
2.2 Related Work . 9

2.2.1 Distance-based algorithms . 9
2.2.2 Interval-based algorithms . 11
2.2.3 Dictionary-based algorithms . 13
2.2.4 Convolutional Kernel algorithms . 15
2.2.5 Ensemble methods . 16
2.2.6 Deep Learning methods . 17

2.3 Shapelets . 18
2.3.1 Introduction . 18
2.3.2 Shapelet Transform . 19
2.3.3 Distance function . 20
2.3.4 Shapelet features . 20
2.3.5 Shapelet generation . 21
2.3.6 Speed up techniques . 22
2.3.7 Invariance properties and robustness 23

2.4 State-of-the-art evaluation . 25

3 Contributions to Time Series Classification 27
3.1 Introduction . 28
3.2 Dilated Shapelets . 28

3.2.1 Definition . 28
3.2.2 Why use dilated shapelets? . 30

3.3 Shapelet Occurrence feature . 31

iii

CONTENTS

3.3.1 Definition . 32
3.3.2 Why use Shapelet Occurrence? . 32

3.4 Random Dilated Shapelet Transform (RDST) 33
3.4.1 Definition . 34
3.4.2 Alternative strategies for the λ threshold 35

3.5 Reducing the number of candidate shapelets 37
3.5.1 Shapelet similarity . 37
3.5.2 Input subsampling . 39

3.6 Invariance properties and robustness for shapelets 39
3.6.1 Phase invariance . 40
3.6.2 Robustness to complexity . 41
3.6.3 Robustness to noise . 41

3.7 Generalization of RDST . 42
3.7.1 α-similarity for multivariate shapelets 43
3.7.2 Extension to variable length time series 43

3.8 Parallelization and optimization of RDST 44
3.8.1 Shapelet initialization . 45
3.8.2 Shapelet Transformation . 46
3.8.3 Distance computation and normalization 46

3.9 Experiments . 49
3.9.1 Sensitivity analysis . 50
3.9.2 Distance functions . 50
3.9.3 Impact of individual contributions 51
3.9.4 Shapelet sampling . 54
3.9.5 Invariance properties and robustness 58
3.9.6 Optimizing the λ threshold . 59
3.9.7 Time complexity . 60
3.9.8 Comparison to the state of the art 63

3.10 Conclusion . 66

4 Predictive Maintenance 69
4.1 Problem formulation . 70

4.1.1 Extracting a predictive maintenance dataset 70
4.1.2 Regression tasks . 71
4.1.3 Classification tasks . 72

4.2 Related work . 74
4.2.1 Pattern mining approaches . 74
4.2.2 Statistical model approaches . 75
4.2.3 Machine learning approaches . 75
4.2.4 Predictive maintenance for log data 76

4.3 Experimental protocol for predictive maintenance 77
4.3.1 Micro and Macro metrics . 77
4.3.2 Example with a classification model 78
4.3.3 Estimating the cost of a predictive maintenance system 79

4.4 Early classification . 81
4.4.1 Related work . 81

iv

CONTENTS

4.4.2 Early classification for predictive maintenance 82
4.5 Introduction to survival analysis . 83

4.5.1 Survival data . 83
4.5.2 Survival and Hazard Function . 84
4.5.3 Survival function estimators . 85

5 The ATM use case 87
5.1 Application context . 88
5.2 The ATM dataset . 89

5.2.1 Extracting life cycles . 90
5.2.2 Preprocessing . 93
5.2.3 ATM dataset characteristics . 94

5.3 Experiments with existing approaches . 97
5.4 Contributions . 100

5.4.1 Survival RoTation Forest (SRTF) 100
5.5 Experiments . 104

5.5.1 Experimental protocol for variable length methods 105
5.6 Experimental results . 106
5.7 Conclusion . 108

6 Conclusion and Future Works 109
6.1 Future Works . 111

A Additional results for RDST experiments 113

References 114

v

CONTENTS

vi

List of Figures

1.1 Example of critical difference diagram . 5
1.2 Example of pairwise accuracy plot . 6

2.1 An example split made by a proximity tree on two classes of the Trace
dataset. Image from the original paper of [53] 11

2.2 Overview of the approach taken by the Supervised Time series Forest. Im-
age from the original paper of [14]. AO, AF , AD are the spaces of possible
interval features for each representation. ĀO, ĀF , ĀD are the feature spaces
after a feature selection step. 12

2.3 Illustration of how BOSS transforms a time series into a histogram of SFA
Words. Image from the original paper of [68]. SFA words written in black
in (c) are those discarded by the numerosity reduction. 14

2.4 The WEASEL data transformation pipeline, from raw time series to the
feature vector given to the classifier. Image from the original paper of [66]. 15

2.5 The different steps of the ROCKET method: first, transformation of the
inputs using convolutional kernels, and then feature extraction from those
convolved inputs . 16

2.6 How the HIVE-COTE 2 ensemble predicts the class of a time series. Image
from the original paper of [58] . 17

2.7 Visual description of an Inception Module (with bottleneck layer of size
m = 1). Image from the original paper of [36] 18

2.8 Comparison of full distance computation (left) against of early distance
abandon (right), with S a shapelet and T a time series. Image from the
original paper of [86] . 23

2.9 An example case where, at the top, a simple-shaped (blue) and a complex-
shaped (red) time series result in a smaller Euclidean distance than, at
the bottom, two complex time series (of the same class). Image from the
original paper of [8] . 25

2.10 Mean accuracy rank (numbers next to the name of the algorithms) of state-
of-the-art classifiers for univariate time series classification, evaluated on 30
resamples on the univariate datasets of the UCR archive 26

3.1 Illustration of the convolution between a time series (in blue) and a kernel
(in yellow) . 29

3.2 Illustration of a dilated convolution between a time series (in blue) and a
kernel (in yellow), with d = 2 . 29

vii

LIST OF FIGURES

3.3 (a) Two time series of different classes from the PigCVP dataset, and (b)
a random shapelet of length 11 extracted from the blue time series. The
x-axis is the indexes, and the y-axis the values of the time series and the
shapelet. 30

3.4 Resulting distance vector between the samples and the shapelet of Figure
3.3 for different values of dilation. 31

3.5 Synthetic examples with their distance vector computed using a shapelet
S and a z-normalized Euclidean distance. The first row give the input time
series and the second give the resulting distance vectors. Each column
illustrates a different way for the same shapelet to discriminate the classes. 33

3.6 Count of the values of dilation obtained by using d = ⌊2x⌋ with x uniformly
drawn in [0, log2

m
l
] with l = 11 and m = 400 for 10000 draw. The number

of admissible candidate shapelets for one time series (in orange) is given
by m− (l − 1)× d . 35

3.7 Illustration of α-similarity with α = 1 (left), equivalent to self-similarity,
and α = 0.5 (right). The green part represents a sampled shapelet, the red
parts are candidates excluded by α-similarity (includes the green part), and
in orange are the closest admissible candidate to the shapelet. 38

3.8 Illustration of the Boolean mask used to know which points of a time series
are admissible sampling points for candidate shapelets, with an update to
the mask made for α = 0.6 and α = 1.0 . 38

3.9 Example of a cyclic signal with a different initial phase. The pattern of
interest can be split between the end and the start of the time series. . . . 40

3.10 An example from the StarLightCurves dataset, wrapped around a circle. . 41
3.11 Example of (a) time dependent shapelet and (b) time independent shapelet

in black, with the moving window positioned on the best match between
the shapelet and the time series illustrated in grey 42

3.12 Example of two multivariate shapelets (black and fuchsia) created by RDST,
with each shapelet affected to a specific subset of features 43

3.13 Implementation of the Euclidean distance using pure Python, Numpy and
Numba. 48

3.14 Implementation of a function extracting a subsequence from a vector and
normalizing it, one storing the sums to compute the normalization, the
other directly calling two functions to obtain the mean and standard deviation 49

3.15 Mean accuracy ranks for (a) different number of shapelets, and (b) different
shapelet lengths . 50

3.16 Mean accuracy ranks for (a) different percentiles bounds, and (b) propor-
tion of z-normalized shapelets . 50

3.17 Critical difference diagram of the accuracy rank for RDST using the squared
Euclidean, Euclidean and Manhattan distances. 51

3.18 Pairwise accuracy plot for RDST using the Euclidean distance against
RDST with the squared Euclidean and Manhattan distances, a margin
of +/- 1.25% of accuracy to count draws. Both figures share the y-axis. . . 52

3.19 How does the RST baseline perform against the state of the art for accuracy
on 10-fold resamples on the UCR archive. 53

3.20 Critical difference diagram for a version with dilation against both baselines 53

viii

LIST OF FIGURES

3.21 Pairwise accuracy plots for adding dilation against (a) RST baseline, which
doesn’t use dilation and (b) against RDST which use dilation and the
Shapelet Occurrence feature, with a margin of +/- 2.5% of accuracy to
count draws. Figure (b) share the y-axis of Figure (a). 53

3.22 Critical difference diagram for a version with the lambda threshold against
both baselines . 54

3.23 Pairwise accuracy plots for adding the lambda threshold to compute shapelet
occurrence compared to the two baselines, with a margin of +/- 2.5% of
accuracy to count draws. Both figures share the y-axis. 54

3.24 Critical difference diagram for RDST using shapelet sampling, with α = 0.5
and α = 1.0 . 55

3.25 Pairwise accuracy plots for adding shapelet sampling, occurrence compared
to the two baselines, with a margin of +/- 0.5% of accuracy to count draws. 55

3.26 Critical difference diagram for RDST using input subsampling, with α =
0.5 and α = 1.0 . 55

3.27 Pairwise accuracy plots for adding input subsampling, occurrence compared
to the two baselines, with a margin of +/- 0.5% of accuracy to count draws. 56

3.28 Total run-times (fit+predict) for one resample of all UCR datasets for each
sampling and subsampling variations. Dataset are grouped by bins depend-
ing on their number of samples times their number of timestamps. Each
bin contains the sum of all run-times for datasets in this bin. The number
in parentheses are the number of dataset in the bin. 57

3.29 Critical difference diagram for RDST with phase invariance and RDST
with complexity invariance against RDST. 58

3.30 Pairwise accuracy plot for both phase and complexity invariance against
RDST, with a margin of +/- 2.5% of accuracy to count draws. 59

3.31 Pairwise accuracy plot for RDST using Information gain to set the λ thresh-
old (RDST + IFG) against RDST, with a margin of +/- 2.5% of accuracy
to count draws. 60

3.32 Total time to slide a randomly sampled shapelet, for different shapelet sizes
(relative to the input length as ⌊m×l⌋), on 43 datasets of the UCR archive,
averaged over 10 runs for 100 different shapelets. The number next to each
point is its rank. 61

3.33 Result of the scalability study of the competing algorithms for current state-
of-the-art, for (a) number of time series and (b) time series of increasing
length. The Y-axis uses log-scale. 62

3.34 Mean accuracy ranks of each method for the 112 datasets of the UCR
archive, including RDST. 63

3.35 Pairwise accuracy plot for the 112 datasets, for HC2 and MultiRocket
against RDST, with a margin of +/- 1% of accuracy to count draws. . . . 63

3.36 Visual representation of RDST ensemble, and how it predicts the class ŷ
of a time series X. 64

3.37 Mean accuracy ranks of each method for the 112 datasets of the UCR
archive, including RDST Ensemble. 65

ix

LIST OF FIGURES

3.38 Pairwise accuracy plot for the 112 datasets, for HC2 and MultiRocket
against RDST Ensemble, with a margin of +/- 1.% of accuracy to count
draws. 65

3.39 Mean accuracy ranks of each method for the 26 multivariate datasets of
the UEA archive, including RDST Ensemble. 66

3.40 Pairwise accuracy plot for RDST Ensemble Against HC2 and Arsenal, for
the 26 multivariate dataset of the UEA archive. 66

4.1 How a time series is sliced into multiple windows to create a dataset for
a regression task. Each window has for target value the remaining time
before failure and is of size l. 72

4.2 Visualization of the three time intervals used by classification models for
predictive maintenance. The red bar represents a failure. 73

4.3 Illustration of the problem formulation commonly used in the literature for
classification tasks. Wi is the ith window of size l extracted from a life cycle,
rd is the time needed by the maintenance team to perform maintenance
and pp is the acceptable interval for maintenance alerts. 74

4.4 Despite a high accuracy, a unique early false positive will trigger an early
maintenance process, making the accuracy in a micro context not trust-
worthy for the application. 78

4.5 The difference between macro and micro metrics, illustrated with confusion
matrices on the labels associated with each increasing window of a life
cycle. Y contains the expected classes of each window and Ŷ contains the
predicted classes. 79

5.1 Inside view of an ATM with highlighted components. Modification of the
original image from Bjoertvedt, CC BY-SA 4.0, via Wikimedia Commons
(https://commons.wikimedia.org/wiki/File:ATM_inside_tenerife_IMG_8732.JPG) 89

5.2 Example of weekly withdrawal seasonality for two ATMs. Y-axis is the
probability of having at least one withdrawal in a period. Index 0 is Monday
from 00:00 to 00:59, index 1 from 01:00 to 01:59, . . . , and index 167 is
Sunday from 23:00 to 23:59 . 92

5.3 Example resulting anomaly score for an ATM using λ = 0.0005 and H = 8
hours. Red areas are those identified as possible failures. 92

5.4 Distribution of life cycle duration per failure cause. One unit of length is
8 hours. 95

5.5 Two (left and right plot) raw time series ending with a distribution failure
(colour legend is disabled due to the high number of features). 95

5.6 Two time series smoothed by a rolling mean, ending with a distribution
failure (colour legend is disabled due to the high number of features). . . . 96

5.7 Two life cycles with early anomalies that should not raise maintenance alerts. 96
5.8 How micro and macro metrics are computed for the ATM dataset given

two life cycle a, b, focusing on the distribution module failure only. 97
5.9 Global cost for all baselines with a varying error cost on the x-axis. 99
5.10 Example of a survival function split resulting from the maximization of

Equation 5.6 . 102

x

https://commons.wikimedia.org/wiki/File:ATM_inside_tenerife_IMG_8732.JPG

LIST OF FIGURES

5.11 Survival functions for all leaves of a non-pruned SCTree fitted on the ATM
dataset, with samples of class 1 in orange and of class 0 in blue. 102

5.12 The differences between the experimental protocol used for the baseline
results that are using moving window, and for our variable length time
series method. We use expanding windows to simulate the stream of data
emitted by the machine. 106

5.13 Global cost for all methods with a varying error cost on the x-axis. 107

A.1 Critical diagrams for the accuracy of RDST on the 112 UCR univariate
datasets. The left diagram is for the 40 datasets used in the sensitivity
analysis of RDST, the right diagram is for the 72 others. 113

A.2 Critical diagrams for the accuracy of RDST Ensemble on the 112 UCR
univariate datasets. The left diagram is for the 40 datasets used in the
sensitivity analysis of RDST, the right diagram is for the 72 others. 113

xi

LIST OF FIGURES

xii

List of Tables

3.1 Comparison of the mean performance of the Euclidean distance computa-
tion using pure Python, Numpy and Numba with the fastmath option, for
100000 repetitions. 47

3.2 Comparison of the mean performance of the normalization of a subsequence
of a vector using in loop sums and functions called after the loop, for 100000
repetitions. 48

3.3 What are the contributions used by each variation of RDST that are used
to study the impact of individual contributions 52

3.4 Mean accuracy results for 10 resamples for the 3 biggest (for n×m) datasets
of the UCR archive for all sampling and subsampling variations 57

3.5 Increase in time needed to fit and predict one resample for the 112 datasets
of the UCR archive, compared to the base formulation of RDST without
phase invariance or α-similarity, denoted RDSTBASE 60

4.1 Example of a survival dataset with right censoring, with subject 1 and 2
not yet having experienced the event. 84

5.1 An example of log data from the ATM dataset 90
5.2 Example of failure data used to generated life cycles 93
5.3 Example of time series data representing a life cycle. Each column repre-

sents the number of occurrences of an event code in a period of 8 hours,
starting at the timestamp and ending before the next timestamp. 94

5.4 Micro confusion matrices for each baseline on the ATM dataset. 99
5.5 Number of first alerts raised early, in the [m − (pp + rd),m − rd] interval

(Good), and alerts raised for life cycle with a failure other than the distri-
bution module. The total number of life cycles of class 0 (Other) is 1548,
and of class 1 is 159. 99

5.6 Characteristics used by each variation of SRTF for the ATM dataset ex-
periments. 105

5.7 Micro confusion matrices for all methods. 107
5.8 Number of maintenance operations that would have been performed by

each model, considering only the first alert raised for each life cycle. 108

xiii

LIST OF TABLES

xiv

Chapter 1

Introduction

Résumé du chapitre en français
Dans ce chapitre, nous introduisons le contexte de cette thèse ainsi que les deux domaines
sur lesquels nous apportons des contributions, à savoir, la classification des séries tem-
porelles et la maintenance prédictive. Dans un premier temps, nous présentons les notions
de classification, sur des données tabulaires et sur des séries temporelles, ainsi que la clas-
sification précoce. Ensuite, nous introduisons le cas de maintenance prédictive proposé
par notre partenaire industriel et les particularités de celui-ci. Enfin, nous définissons
informellement les shapelets, qui sont les composants sur lesquels se basent nos contri-
butions pour la classification des séries temporelles. Après un résumé des contributions
présentées dans cette thèse, nous définissons les notations utilisées dans ce manuscrit pour
les séries temporelles, et concluons ce chapitre sur une présentation des outils que nous
utiliserons pour comparer les différents algorithmes de classification que nous présenterons
dans nos expérimentations.

Chapter summary
In this chapter, we introduce the context of this thesis as well as the two fields on which we
make contributions, namely, time series classification and predictive maintenance. First,
we present the notions of classification, time series classification, and early classification.
Then, we introduce the industrial use case of predictive maintenance that motivated this
thesis and its particularities. Finally, we informally define shapelets, which are the compo-
nents on which are based our contributions for time series classification. After a summary
of our contributions, we define the notations that we will use in the thesis to denote time
series, and conclude this chapter with a presentation of the tools that we will use in our
experiments to compare the different classification algorithms.

In machine learning, statistics, and more generally, in data analysis, we often distin-
guish between two tasks, regression and classification. In regression tasks, given a set
of input variables, we want to estimate the value of a target variable. An example of
regression task is to estimate the housing prices based on the size of the houses and other
descriptors, such as the number of bedrooms. Classification tasks, while also considering
a set of input variables, aims at grouping samples into predefined groups. For example,
classifying species of flowers based on the length of their sepals and petal. In this thesis,

1

we focus on supervised tasks, where the target variable or group is known for all samples
and is used to fit a model. Semi-supervised and unsupervised tasks also exist, where the
target variable or the class is only known for some samples or simply unknown.

Those tasks can then be applied on different types of data such as tabular data, images,
videos, and time series. In this thesis, we focus on the task of supervised classification
for time series data. The goal of supervised time series classification is to build classifiers
able to discriminate classes of a given problem, when data depends on time. For example,
given a set of time series recorded by meteorological sensors, we want to be able to classify
these series into classes representing the weather (e.g. sunny, raining, . . .).

In some cases, it might be important to identify the class of a time series as soon as
possible, without having to observe it entirely. For example, for earthquake prediction,
we want to be able to issue an alert as soon as possible, based on early signals and not on
the measurement of the event itself. In such cases, a specific field, called early classifica-
tion, proposes solutions to adapt time series classification method to this context. More
formally, the objective of early classification is twofold, it aims at correctly identifying the
class of a time series, while maximizing the notion of earliness of the prediction, defined
as the proportion of the time series used to make the prediction, as predictions can be
made without having knowledge of the full data (i.e. up to the event we want to predict).

In the time series classification literature, early or not, most works [59, 69, 39, 84, 63]
make the assumption that the input time series have the same length. This is due, in
part, to the fact that the comparison between time series is less trivial when they are
not temporally aligned and/or of the same length. In practice, time series with variable
lengths are often converted to the same length via preprocessing operations [76], or by
using sliding windows to extract sub-sequences of the same length. The use case that
motivated this thesis, namely predictive maintenance on event logs, use time series of
variable length as inputs and has particular constraints, close to the ones that motivate
the use of early classification methods. One of our objectives is to see if using methods that
take into account the entire time series, whatever their length is, has benefits compared to
the existing approaches in the predictive maintenance literature which mostly use sliding
windows.

In this industrial use case, the aim is to predict the occurrence of soon-to-happen
failures on ATMs (Automatic Teller Machines), in order to perform preventive mainte-
nance and to increase machine availability. The particularity is that the data is made
up of event log streams, which are primarily designed for software analysis rather than
for hardware maintenance. The goal being to raise maintenance alerts, not as soon as
possible, as this would lead to unnecessary early maintenance, but within an acceptable
time interval before the machine breakdown.

In this thesis, we explore the use of shapelets [86] for the classification of time series,
where a shapelet is defined as a short sequence, often extracted directly from the data. In
a supervised classification context, the objective of shapelet methods is to find shapelets
(seen as patterns), which, by their absence or presence in the time series, make it possible
to discriminate the classes of the problems. Shapelets have been used in early classification
[39], due to their ability to identify a pattern regardless of its location in the series and
because of their interpretability. One problem is that shapelet methods suffer from a lack
of performance, both in terms of classification accuracy and speed, compared to the state
of the art [63].

2

1.1. CONTRIBUTIONS

Motivated by the need for performance in the predictive maintenance application, we
first propose a new shapelet method for the classification of time series. Then, we adapt
this new classification algorithm to the classification of multivariate and variable length
time series, and we propose a new multi-objective classification model, including business
constraints related to the maintenance process.

1.1 Contributions
Given the motivations behind this thesis, we propose novel algorithms supported by large
scale experimentations. The contributions of this thesis can be summarized as follows:

• Random Dilated Shapelet Transform[31] We present a new classification algo-
rithm based on the notion of shapelets with dilation. It relies on a random generation
of shapelets and integrates new descriptors, allowing not only to detect the pres-
ence of a pattern but also to measure its frequency. We conduct an experimental
study on the sensitivity of the parameters of our method and a comparative study
with state-of-the-art algorithms for time series. We also propose modifications of
our method by exploring new properties such as phase invariance, and the use of
material acceleration to reduce time complexity:

– Extension of the formulation of shapelets and introduction of new descriptors.
We present an extension of shapelets, introducing the notion of dilation, which
allows shapelets to identify non-contiguous patterns. We also introduce new
descriptors, allowing to measure the number of occurrences of a shapelet in the
series.

– Some invariance properties, such as scale invariance using a normalized dis-
tance, have already been established for shapelets. We explore other modifi-
cations to the shapelet formulation based on existing work in the time series
literature, such as phase invariance, and we measure the impact of these addi-
tions on the performance of our method.

– Many improvements have been proposed to reduce the time complexity of
shapelet algorithms, such as the early abandon of distance computation using
a lower bound. The performance of such methods has never been compared to
hardware acceleration (e.g. use of the "Single Instruction on Multiple Data"
architecture [27] of processors).

• Application on the ATM predictive maintenance use case

– A new event logs dataset, extracted from an industrial ATM fleet from World-
line company. Several preprocessing steps have been needed, notably for data
slicing and formatting. This dataset could be used to evaluate time series
classification algorithms, applied to multivariate and unequal length data.

– An experimental protocol specifically designed to evaluate predictive mainte-
nance models, using metrics based on the cost of the maintenance process, to
estimate the potential gains induced by the model over a baseline maintenance
system.

3

1.2. THESIS ORGANIZATION

– A time series classification model that uses features extracted by shapelets in
a tree based model, with a new splitting criterion using the notion of survival
probability to account for different causes of failures (e.g. sudden errors or
mechanical wear) based on the current lifetime of a machine. It also includes a
trigger system to try to optimize the time when maintenance alerts are raised,
regarding the constraints of the maintenance process.

1.2 Thesis Organization

The thesis is organized in six chapters, which contain the introduction and our con-
tributions to the field of time series classification and predictive maintenance, and the
conclusion with future works. Chapters 2 and 3 are focused on time series classification.
Chapter 2 contains an overview of the field, in which we present the different kinds of
algorithms existing in the literature, followed by a more detailed review of shapelet based
methods. We then present our contributions to time series classification in Chapter 3,
and we present the result of our experiments.

In Chapter 4, we present and formalize the predictive maintenance problem, and
present an overview of the different kinds of methods used in the literature to solve it
for both classification and regression tasks. We also define an experimental protocol for
predictive maintenance models, which allows evaluating the efficiency of such models from
a business point of view. To conclude, we introduce the field of early classification and
survival analysis, which will be used in our contributions. In Chapter 5, we present the
predictive maintenance use case of Worldline, our industrial partner. We introduce the
application context, the data collection and preprocessing steps, and conduct experiments
using baseline approaches from the literature. We then present our contribution for this
use case and perform experiments in order to study how it stands against the baseline
results we established.

1.3 Notations

Throughout the manuscript, we use the following notations:

• A univariate time series will be denoted by an uppercase letter Xi = {x1, ..., xm},
with xj a value and m the length of the time series. This notation extends to
the multivariate context with Xi = {(x1,1, . . . , x1,k), . . . , (xm,1, . . . , xm,k)} with k
the number of features. When an ensemble of time series contains time series of
variable lengths, the notation changes to Xi = {x1, ..., xmi

} for univariate and to
Xi = {(x1,1, . . . , x1,k), . . . , (xmi,1, . . . , xmi,k)} for multivariate time series, with mi

the length of time series Xi.

• An ensemble of time series will be denoted by a calligraphic letter X = {X1, . . . , Xn}
with Xi a time series and n the number of time series in the ensemble. If needed,
the classes of the time series will be denoted as Y = {y1, . . . yn}, with yi the class
of time series Xi.

4

1.4. COMPARISON OF CLASSIFIERS

The use of upper case and calligraphic letter is applied similarly for any kind of vector
or set of elements. Any change or addition to those notations will be introduced at the
beginning of each chapter or section.

1.4 Comparison of classifiers
In this section, we introduce tools that we will use multiple times throughout this thesis
to analyse experimental results, and we give details about how they are built and how to
read them.

1.4.1 Critical difference diagrams

As we will compare multiple classifiers across many datasets, we use critical difference
diagrams [24] to produce a robust interpretation of the results, based on statistical testing.
To introduce how those diagrams work, let us consider the example given by Figure 1.1.

Figure 1.1: Example of critical difference diagram

Each classifier is positioned on the axis by its mean accuracy rank on all the datasets
(e.g., classifier 3 has a mean rank of 2 in Figure 1.1), and a bar between a set of classifiers
indicates that, despite the differences in accuracy ranks, the difference in accuracy between
them is not statistically significant.

More formally, if we have D = {d1, . . . dr} a set of r datasets and C = {c1, . . . , cs} a
set of s classifiers, we can compute two matrices M and R of size (r, s), where Mi,j is the
accuracy of the classifier cj on the dataset di, and Ri,j is the rank of cj on the dataset di,
which is computed using the accuracy of all classifiers on the dataset di, contained in the
row Mi. The mean rank of cj is then the mean of the column j of the matrix R, which
we will denote as r̄j.

Given M and R, the first step is to test a null hypothesis, stating that the average
ranks of classifiers are the same. This hypothesis is then tested by using the Friedman
statistic, denoted as F , and approximated with a Chi-squared distribution X 2 with (r−1)
degrees of freedom as :

X 2 =
12r

s(s+ 1)
×

s∑
j=1

(
r̄2j −

s(s+ 1)2

4

)
(1.1)

Which, as proposed by [24], is then used to approximate F as

F =
(r − 1)X 2

r(s− 1)−X 2
(1.2)

5

1.4. COMPARISON OF CLASSIFIERS

If the null hypothesis is rejected, a pairwise Nemenyi tests can then be used to highlight
the differences between each pair of classifiers. Given two classifiers ci and cj, and the
critical value qα taken from the Studentized range statistic divided by

√
2, with α the

p-value (set to 0.05 by default), we can compute the critical difference CD as:

CD = qα

√
s(s+ 1)

6r
(1.3)

The performance of ci and cj is significantly different if their average ranks differ by at
least CD (i.e. they will not be linked by a black bar in the resulting figure).

1.4.2 Pairwise accuracy plots

Given two classifiers c1 and c2 and an ensemble of datasets D = {d1, . . . dr}, a pairwise
accuracy plot is a scatter plot which compares the accuracy of c1 against c2 for each
dataset. A point pi of this scatter plot is positioned to the coordinates (ac2,i, ac1,i), with
ac1,i the accuracy of the classifier c1 on the dataset i. Figure 1.2 shows an example of such
plot with 100 datasets.

Figure 1.2: Example of pairwise accuracy plot

A line f(x) = y is added to this plot, if a point is below this line, it means that for
this dataset, c2 was better than c1. If the point is above, c1 was better, and if it is close
to the line f(x) = y, it is considered as a draw. The distance threshold for a point to
f(x) = y to be considered as a draw is determined by the two dashed oranges lines in
Figure 1.2. In this example, they represent draws as differences in accuracy between c1
and c2 within +/-2.5%. The total count of wins, draws and losses for c1 is summarized
in the top left corner.

6

Chapter 2

Time Series Classification

Résumé du chapitre en français
Dans ce chapitre, nous présentons le domaine de la classification des séries temporelles
et les approches existantes qui ont été développées pour résoudre ce problème. Dans un
premier temps, nous définissons ce qu’est une série temporelle et les différentes propriétés
qu’elles peuvent avoir. Nous présentons ensuite les différents types d’approches utilisées
pour résoudre le problème de classification : les algorithmes se basant sur les plus K
proches voisins, sur des statistiques extraites d’intervalles de temps, la création de dictio-
nnaires contenant le nombre d’occurrences de sous séquences discrétisées dans les séries,
les approches utilisant des noyaux de convolution, les méthodes d’ensemble, et enfin, les
méthodes d’apprentissage profond. Nous présentons ensuite plus en détails les shapelets,
et comment elles sont extraites et utilisées par les algorithmes de la littérature. Pour
conclure, nous montrons la performance de ces différentes approches sur un ensemble de
112 jeux de données de classification de séries temporelles.

Chapter summary
In this chapter, we present the field of time series classification and the existing approaches
that have been developed to solve this problem. First, we define what are time series and
the different properties that they can have. We then present the different types of ap-
proaches used to solve the time series classification problem: algorithms based on the K
nearest neighbors, on statistics extracted from time intervals, the creation of dictionaries
counting the numbers occurrences of discretized subsequences in series, approaches using
convolutional kernels, ensemble methods, and finally, deep learning methods. We then
define shapelets, and how they are extracted and used by the algorithms of the litera-
ture. To conclude, we show the performance of these different approaches on a set of 112
datasets.

2.1 Introduction

Time series classification (TSC) algorithms take as input a set of time series X =
{X1, . . . , Xn} with Xi = {x1, . . . , xm} a (univariate in this example) time series, and
ti,j a timestamp associated with the measurement of xj in Xi. Each time series is also

7

2.1. INTRODUCTION

linked to a class yi, which represents the group it belongs to. A TSC algorithm aims at
learning a model on such data that correctly predicts the class yj to which a time series
Xj /∈ X belongs to.

The right types of algorithms to use for a time series classification task can vary
based on the characteristics of the input time series. Assessing those characteristics is
an important step to know what kind of preprocessing steps and classification models we
should consider for a given problem. These characteristics can be listed as follows:

• Are time series univariate, such as Xi = {x1, . . . , xm}, or multivariate, as Xi =
{(x1,1, . . . , x1,k), . . . , (xm,1, . . . , xm,k)} with k the number of features?

• Are the time series of the same length, such as, given mi the length of time series
Xi, we have mi = mj, ∀i, j ∈ {1, . . . , n}? Or is the length variable between series?

• Do the series have the same frequency of observations f , such as, given ti,j the
time associated with the measurement of xj ∈ Xi, we have ti,j+1 − ti,j = f, ∀i ∈
[1, n] ∧ ∀j ∈ [1,m]?

• Do the series contain missing values? Is there a trend or a seasonal component in
the data?

• Are the series temporally aligned? In other words, for two series i and a, do we
have ti,j = ta,j, such as the jth timestamp of both series represent the same time ?
If not, are they aligned with respect to a seasonal component (e.g. by weekdays,
independently of the week number)?

To simplify a TSC problem, it is desirable that the time series we use share the same
properties. Processing operations, such as sampling the series to a common frequency,
or removing a trend and seasonal component from the data, allow TSC models to focus
on finding information that can discriminate classes without being biased by differences
between the series caused by such properties.

Even after preprocessing steps, knowing the properties of the input time series is im-
portant, as algorithms often make assumptions on the data. For example, some algorithms
use distance or dissimilarity functions to compare time series, such as the Euclidean dis-
tance between two series X, Y , which performs a pointwise squared difference, and is
defined as :

d(X, Y) =

√√√√ m∑
i=1

(xi − yi)2 (2.1)

As the Euclidean distance performs a pointwise comparison, it would give misleading
results about the distance between X and Y if they are not temporally aligned or do not
have the same frequency of observation, as we do not compare the same information. In
those cases, a popular alternative is to use Dynamic Time Warping (DTW), which is a
dissimilarity function that calculates an optimal match between two series.

Given a set of constraints, such as that every point in X must be matched with at least
one point of Y (and vice versa), and a cost function, DTW finds an optimal “path” between
the two series that satisfies all constraints with the minimal cost. This cost function is
often defined as the sum of absolute differences for each matched pair of points, and the

8

2.2. RELATED WORK

minimal cost found by DTW is then returned as the result to indicate the dissimilarity
between X and Y . As a point of X can be matched with multiple points of Y , a difference
in length can be handled, but it is also useful for series of the same length which are not
temporally aligned.

In the next section, we present the different types of algorithms that are proposed in
the TSC literature and the methodologies they use to learn classification models from
time series data.

2.2 Related Work
In this section, we present an overview of the time series classification literature. We
focus on building intuition for each method and report the reader to the original papers
for further details on each individual method. We present the algorithms of the literature
by grouping them into families of methods:

• Distance-based algorithms, which classify time series by their nearest neighbours
given a distance or dissimilarity function.

• Interval-based algorithms, which extract summary statistics from the same time
interval for all time series and use those statistics to build a classifier.

• Dictionary-based algorithms, which extract words from discretized subsequences of
the series and build histograms of words. Series are then classified based on their
distance or similarity with the histograms of each class.

• Convolutional kernel algorithms, which transform the series by convolving them
with a set of kernels. Features are then extracted from those convolutions and used
to build a classifier.

• Ensemble methods, which group together approaches from one or more families and
combine their predictions with a voting scheme or a meta estimator.

• Deep Learning methods, which focus on recurrent or convolutional networks to
handle time series data.

2.2.1 Distance-based algorithms

Distance-based algorithms rely on the idea that series should be of the same class as their
neighbours. They compare two series by using a distance or a dissimilarity function. Most
methods use a K-Nearest Neighbors classifier in order to predict the class of time series
based on the classes of its neighbourhood. Distance-based algorithms differ by the choice
of the distance function and the use of ensemble methods. In the following, we present
the most widespread methods.

K-Nearest Neighbors (K-NN)

For time series, similarly to the non-temporal version, a K-NN does not learn a model,
but keeps the training set X = {X1, . . . , Xn} and uses it to classify new time series.

9

2.2. RELATED WORK

Given X a time series to be classified, a K-NN first computes D = {d(X,Xi) | ∀i ∈
[1, n]}, and extracts a subset K of size K, which contains the series that are the closest
to X given d. The predicted class ŷ, for a weighted K-NN, is then given by Equation 2.2
with v the possible output classes. We use the identity function I, which takes as input
a boolean and returns an integer, such as I(True) = 1 and I(False) = 0. Removing
1/d(X,Xi) in Equation 2.2 makes it an unweighted majority voting.

ŷ = argmax
v

∑
(Xi,yi)∈K

1

d(X,Xi)
× I(v ≡ yi) (2.2)

Any distance or dissimilarity function can be considered, but the most widespread
distances in the literature are the Euclidean distance and dynamic time warping (DTW)
[64]. Until recently (see [22]), a 1-NN DTW classifier was considered as the standard
baseline to compare against new classification algorithms.

If it makes sense for the current dataset and the distance function, a K-NN can be pre-
ceded by a data normalization step (e.g. min-max normalization) to remove the sensibility
to scale.

Elastic Ensemble (EE)

The Elastic Ensemble method [47] is an ensemble classifier composed of multiple 1-NN
classifiers, each using different distance or dissimilarity functions. Amongst those func-
tions, we can find the Euclidean distance, the Longest Common Subsequence distance,
as well as variants of the Edit distance and Dynamic Time Warping, which allow for
some realignment to compensate for time shifts between series. The voting scheme for
this ensemble classifier is a weighted majority voting, with the weight of each classifier
determined by its training accuracy in a leave-one-out cross validation.

Variations of this method have been developed, notably to reduce time complexity.
For example, FastEE [77] introduces multiple lower bounding techniques to perform early
abandon of distance computations, as well as a lazy algorithm to leverage those lower
bounds. Other approaches such as TS-QUAD [49] aim at reducing the size of the ensemble,
and thus its time complexity, by isolating the most important components of the ensemble.
The author shows that this can be achieved without a significative loss of accuracy.

Proximity Forest (PF)

A Proximity Forest [53] is an ensemble method composed of Proximity Trees, which
follows the logic of a decision tree, but rather than splitting the data based on the value
of a feature, it builds splits based on multiple 1-NN time series classifiers at each node of
the tree.

Given a set of distance functions D, such as those used in the Elastic Ensemble, a
Proximity Tree recursively builds nodes by sampling "exemplars", which are time series
sampled from the input data. Each node of a Proximity Tree contains a distance function,
which is chosen at random from D, and as many branches as there are classes in the input
data of the node, with each branch containing an exemplar sampled from the class affected
to this branch.

Time series in the parent node are then affected to the child node (i.e. branch) from
which they are the closest given the distance function of the parent node. Figure 2.1

10

2.2. RELATED WORK

gives a visual example of this process. To select the set of exemplars used in the branch,
multiple candidates splits (i.e. sets of one exemplar per class) are sampled, and the one
that maximize the information gain is selected.

Figure 2.1: An example split made by a proximity tree on two classes of the Trace dataset.
Image from the original paper of [53]

2.2.2 Interval-based algorithms

Interval-based algorithms focus on extracting features from time intervals. Their goal is to
find discriminative information between time series based on their behaviour (i.e. features)
in a specific time window. For example, given X = {X1, . . . , Xn} and Xi = {x1, . . . , xm},
time series could be compared based on the mean value of the interval [a, b] ⊂ [1,m] for
all Xi ∈ X .

11

2.2. RELATED WORK

Time Series Forest

A Time Series Forest (TSF) [25] applies the principle of random forests to time series
data. A time series tree will randomly sample √p starting positions and √p interval
lengths, leading to p intervals on which statistics like mean, standard deviation and slope
are computed, resulting in candidates features to be evaluated. The best candidate is the
one that maximizes the information gain, and the tree is recursively built until leaves are
pure.

Other works, such as Supervised Time series Forest [14], include new input represen-
tations to look for discriminative interval-features, for example in the frequency domain,
or using the first order difference. Then, they extract interval-features independently for
each representation, followed by a supervised feature selection step, independently per-
formed for each representation, before feeding the selected features to a decision tree.
Figure 2.2 gives an overview of this process. It was shown empirically that their strategy
significantly improves the accuracy and reduces the time complexity compared to Time
Series Forest.

Figure 2.2: Overview of the approach taken by the Supervised Time series Forest. Image
from the original paper of [14]. AO, AF , AD are the spaces of possible interval features for
each representation. ĀO, ĀF , ĀD are the feature spaces after a feature selection step.

Canonical Interval Forest Classifier (CIF)

In [52], the authors studied the performance of 7658 features from the time series lit-
erature, and through multiple filtering steps, including statistical testing based on their
individual performance on the datasets of UCR archive [19], extracted a subset of 22
features, which contains as the most discriminant feature subset.

Those 7658 features include results from most of the existing works on time series, such
as statistics of time-series values, linear correlations, measures of stationarity and entropy,
results from methods of the time series analysis literature, wavelet coefficients, parameters
from linear and nonlinear models such as autoregressive moving average (ARMA), etc. . .

The Canonical Interval Forest Classifier (CIF) [56] adds these 22 features to the 3 fea-
tures extracted by Time Series Forest (mean, standard deviation and slope), and randomly
samples 8 of those 25 features to be extracted for each tree of the ensemble. Similarly
to Time Series Forest, it then samples starting position and intervals lengths, on which
these 8 features are computed. An extension to the multivariate context was proposed by
[56], allowing tree based models to be applied to the multivariate context.

12

2.2. RELATED WORK

An extension of this work was proposed by [58], named Diverse Representations Canon-
ical Interval Forest Classifier (DrCIF), where CIF is applied to different input represen-
tation, similarly to the Supervised Time Series Forest.

Random Interval Spectral Ensemble (RISE)

Like the Time Series Forest algorithm, the Random Interval Spectral Ensemble (RISE)
[50] takes the approach of extracting features from random intervals in the data. The
main difference resides in the type of features extracted: while TSF extracts summary
statistics like the mean, RISE extracts spectral (i.e. frequency-domain) features such as
the power spectrum and the autocorrelation function. Another version of RISE, c-RISE
[29] was introduced to drastically reduce the run-time of the algorithm, as well as allowing
to be time contracted (i.e. impose a time limit for training), without a significative loss
of accuracy. Among other improvements, the random intervals are resized to the nearest
power of 2 to allow for faster computation of some spectral features.

2.2.3 Dictionary-based algorithms

Dictionary methods leverage text-mining research and adapt it to the field of time series
classification, notably through histograms of words or bigrams extracted from discretized
representations of the time series.

Bag of SFA Symbols (BOSS)

The Bag of Symbolic Fourier Approximation Symbols (BOSS) [68] uses a text mining
approach to solve a time series classification problem. It takes as inputs a time series X,
a word size l, an alphabet a and a window size w, and produces a histogram of Symbolic
Fourier Approximation (SFA) words extracted from X.

More precisely, X is divided into moving windows of size w, each window is then
approximated as a word of size l (l ≤ w) using SFA with alphabet a (i.e. a is the set of
discrete output values, inducing a+1 intervals bounds for discretization). The histogram
is then built with all the extracted words, after using a numerosity reduction technique,
which prunes successive occurrences of the same SFA word. This transformation process
is visually described in Figure 2.3.

To discriminate classes, the authors first proposed an ensemble method based on a 1-
NN classification, where each component of the ensemble uses different BOSS parameters.
Later, [65] changed the classification model, while still using the BOSS transformation: for
each class one histogram is computed by summing the histogram built from the samples
of this class, and tf-idf (term frequency inverse document frequency) vector is computed.
A new sample is predicted as the class leading to the highest cosine similarity between its
tf-idf vector and the tf-idf vectors of the sample to predict.

Word Extraction for Time Series Classification (WEASEL)

Similarly to BOSS, Word Extraction for Time Series Classification (WEASEL) [66] ex-
tracts words from moving windows of varying lengths using an approximation technique to
discretize the inputs. There are nonetheless major differences between the two approaches,

13

2.2. RELATED WORK

Figure 2.3: Illustration of how BOSS transforms a time series into a histogram of SFA
Words. Image from the original paper of [68]. SFA words written in black in (c) are those
discarded by the numerosity reduction.

first WEASEL uses z-normalized windows, and rather than using SFA, the Fourier Trans-
form is computed and an ANOVA F-test is performed on the Fourier Coefficients, keeping
only those that best separate the classes. Then, again in a supervised manner, the values
of these coefficients are discretized into bins, with the boundaries chosen to best separate
the classes.

After performing this transformation on multiple window lengths, all words (including
bigrams of multiple window lengths) are grouped into a single feature vector, where, once
again, a supervised test (Chi-squared) is performed to remove irrelevant features. This
feature vector, representing the frequencies of occurrences of each word for each time
series, is then given to a logistic regression classifier. This whole process is summarized
in Figure 2.4.

Temporal Dictionary Ensemble (TDE)

The Temporal Dictionary Ensemble (TDE) [57] is introduced as an ensemble of dictionary-
based classifiers such as BOSS. In addition to the transformation of a time series into a
histogram of SFA words, TDE also counts the frequency of bigrams from non-overlapping
windows. This process is done for the whole series, but also for increasingly smaller
subsequences, with each subsequence size producing a histogram by concatenating the

14

2.2. RELATED WORK

Figure 2.4: The WEASEL data transformation pipeline, from raw time series to the
feature vector given to the classifier. Image from the original paper of [66].

histograms of all subsequences of this size.
Each component of the ensemble computes the SFA bounds either in an unsupervised

way (i.e. as in BOSS using Multiple Coefficient Binning) or in a supervised way (i.e. as
in WEASEL using information gain). The choice to use normalized windows also differs
between components. To build the ensemble, a set of candidates component is produced,
and then filtered using leave one out cross-validation, with each candidate using 70% of
the data with sampling.

2.2.4 Convolutional Kernel algorithms

This family of methods uses a set of convolutional kernels to extract features from the data.
Given a kernel and a time series, they look at the resulting convolution of both inputs,
and extract features from it, similarly to pooling operations in neural networks. These
methods differ from neural network approaches as they do not perform any optimization
on any parameters of the kernels, and are rather used as a transformation step before a
classifier.

Random Convolutional Kernel Transform (ROCKET)

The Random Convolutional Kernel Transform (ROCKET) [22] randomly initializes a huge
number (10.000 by default) of convolutional kernels K, K = {l, {w1, ..., wl}, b, d, p}, with
l the length of the kernel, w its weights, b the bias, d the dilation and p the padding.
If N kernels are generated, ROCKET will output a 1-dimensional array containing 2N
features, since 2 features are extracted for each convolution of the input by a kernel. More
precisely, for a time series X = {x1, ..., xm} and a kernel K = {l, {w1, ..., wl}, b, d, p}, the
convolution will output a vector of size m− ((l − 1) ∗ d) + (2 ∗ p), with value at position
i defined by:

ci = b+
l∑

j=1

wj ×Xi+(j−1)×d (2.3)

When padding is used, zeros are added at the beginning and at the end of X so that
the middle of the kernel is centred on every point. The two features extracted from the
convolution between a kernel and a time series are: the maximum value, and the propor-
tion of positive values (PPV) generated by the convolution. This operation is repeated

15

2.2. RELATED WORK

for each kernel that was randomly initialized. Figure 2.5 gives a visual representation of
the feature extraction process.

Figure 2.5: The different steps of the ROCKET method: first, transformation of the inputs
using convolutional kernels, and then feature extraction from those convolved inputs

Extensions of this method were proposed, such as Mini-ROCKET [23], which, by using
only two discrete values for kernel weights and with computational optimizations, reduces
the time complexity without a significative loss of accuracy. ARSENAL [58] introduces
an ensemble scheme with ROCKET as base components, improving the accuracy of the
method. Finally, Multi-ROCKET [75] extracts more features from the distance vector,
and uses of the first order difference as an alternative representation of the inputs. It
then feeds both the original and the differentiated time series to the model, with each
representation having its own set of kernels.

2.2.5 Ensemble methods

Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE)

Following the success of ensemble methods for time series classification, [50] introduced
HIVE-COTE, a meta-ensemble method that uses the most successful time series classifica-
tion algorithms as components of the ensemble. Specifically, it uses the Elastic Ensemble
(EE) [47], the Binary Shapelet Transform [11], BOSS [65], Time Series Forest [25] and
Random Interval Features [50].

Those classifiers are combined under a hierarchical voting structure, where the class
probabilities obtained as output of each classifier are weighted by its performance on the
training data (i.e. by the training accuracy). The output of HIVE-COTE is then the
class which, when summing the weighted class probabilities of each component, has the
highest probability. This process is described in Figure 2.6.

An update to HIVE-COTE, HIVE-COTE 2 [58] has been proposed, where the base
components have been updated to the newest best performing classifier for each type of
algorithms (i.e. interval-based, dictionary-based, etc.). The voting scheme has also been
slightly modified to include a parameter influencing the importance of weights given to

16

2.2. RELATED WORK

each component, based on their training accuracy obtained from a leave-one-out valida-
tion.

Figure 2.6: How the HIVE-COTE 2 ensemble predicts the class of a time series. Image
from the original paper of [58]

Time Series Combination of Heterogeneous and Integrated Embedding Forest
(TS-CHIEF)

TS-CHIEF [72] is another ensemble, tree based algorithm. The authors define multiple
splitting methods at node level, based on popular algorithms used in TSC. To split a
node, those different methods are randomly initialized multiple times, and the one that
maximizes a splitting criterion is chosen as the splitting method for this node. The
algorithms that are re-defined as splitting methods in TS-CHIEF are: Proximity Forest,
BOSS and RISE. The methodology is close to the one used in HIVE-COTE, but with
fewer splitting methods and random initialization, which presents a huge gain in time
complexity without a significative loss in performance.

2.2.6 Deep Learning methods

While any recurrent (e.g. RNN, LSTM, etc.) or convolutional network can be applied to
time series, InceptionTime [36] is regarded as the most accurate for time series classifi-
cation. InceptionTime is an ensemble method that combines five residual networks using

17

2.3. SHAPELETS

inception modules [74] as base components. Each network is made up of two blocks of
three Inception modules, described in Figure 2.7, which maintain residual connections,
followed by a global average pooling and softmax layers. Each network in the ensemble
is initialized with random weights.

Figure 2.7: Visual description of an Inception Module (with bottleneck layer of size m =
1). Image from the original paper of [36]

2.3 Shapelets

In the following, given a time series X = {x1, . . . , xm}, we use the notation X i,l =
{xi, xi+1, . . . , xi+(l−1)} to denote the subsequence of size l starting at index i in X. We
also use X i,l

j to denote a subsequence of size l starting at index i in the time series
Xj ∈ X = {X1, . . . , Xn}.

2.3.1 Introduction

Shapelets [86] were originally defined as time series subsequences representative of class
membership, and they can be represented as a time series S = {s1, ..., sl} with l the length
parameter of the shapelet, and l << m. Given a shapelet S and a time series X, shapelet
algorithms compute a distance vector VS,X = {v1, ..., vm−(l−1)} using a sliding window
approach, where each subsequence of size l in X is compared to S:

vi = dist(S,X i,l) (2.4)

with d a distance function. The original formulation uses the Euclidean distance as a
distance function, giving the following formula for any vi:

vi = dist(S,X i,l) =

√√√√ l∑
j=1

(xi+(j−1) − sj)2 (2.5)

18

2.3. SHAPELETS

The minimum value of VS,X is then extracted as a feature, which can be interpreted as an
indicator of the presence of the pattern represented by S in X. The closer minVS,X is to
0, the higher the similarity between S and a subsequence of X. This formulation allows
shapelets to be translation invariant, as minVS,X does not depend on the localization of
the pattern matched by S in X.

Another interesting property that can be added to this formulation is scale invariance.
The goal of scale invariance is to ignore the scale of both S and X i,l when computing the
distance, which is equivalent to satisfying the following property :

dist(S,X i,l) = dist(αS, βX i,l) | ∀ (α, β) ∈ R∗ (2.6)

To achieve this property, the z-normalized Euclidean distance is used as the distance
function. Given µS and σS, the mean and the standard deviation of S (respectively for
X i,l), the z-normalized Euclidean distance is computed as :

vi = dist(Ŝ, X̂ i,l) =

√√√√ l∑
j=1

(x̂i,l
j − ŝj)2 (2.7)

Ŝ =
S − µS

σS

, X̂ i,l =
X i,l − µXi,l

σXi,l

(2.8)

In the original method of [86], shapelets were used to build a shapelet tree. In the brute
force approach, given X the samples at the root of a decision tree and L a set of possible
lengths for the shapelets, the set of all possible subsequences {X i,l

j | ∀j ∈ X , ∀ i ∈
[1, (m− (l − 1))], ∀ l ∈ L} is extracted as the shapelet candidates pool.

At the root node, all candidates X i,l
j are evaluated. Using all the series in X , the

minimum values are extracted from each distance vector and, using a dichotomy, each
possible threshold value is tested to find the one that maximize the information gain.
The pair of shapelet and threshold that maximizes the information gain is selected as
a splitting function for the node. This process is repeated using the input data of each
leaf instead of X , until all leaves are pure. Some speed-up techniques, which we detail in
Section 2.3.6, were also introduced to reduce the time complexity by multiple orders of
magnitude, such as entropy pruning, early distance abandon, or input sampling.

2.3.2 Shapelet Transform

This use of shapelets was replaced a few years later by the Shapelet Transform [48], which,
until now, remains the standard framework for shapelet based algorithms. The authors of
[48] demonstrated that shapelets can be used as a transformation step before using non-
temporal classifiers (e.g. decision trees) without loss of accuracy, instead of embedding
them in a classifier as [86].

Given a set of time series X = {X1, . . . , Xn} and a set of shapelets S = {S1, . . . , Sk},
the transformation outputs a matrix M of distance vector of size (n, k) such as:

M =

VS1,X1 . . . VSk,X1

...
VS1,Xn . . . VSk,Xn

 (2.9)

19

2.3. SHAPELETS

Then, features are extracted from each distance vector VSi,Xj
(only the minimum

in case of [48]), giving a feature matrix useable by any non-temporal classifier. The
enumeration of all possible candidates, along with existing and new speed-up techniques
such as shapelet self similarity (do not sample shapelets with overlapping indexes in
the input) or time contracting, is used to generate shapelets. We detail those speed-up
techniques in Section 2.3.6.

It is worth mentioning that applications to the unsupervised context, for example in
clustering tasks, have also been explored in the literature, starting with u-shapelets [87],
but are outside the scope of this manuscript.

2.3.3 Distance function

We can distinguish between two families of distance functions: the non-elastic distances
such as the Euclidean distance, and the elastic distances such as dynamic time warping
(DTW) [64], which allow for some realignment to compensate for time shifts between
series. Few papers in the literature explore alternatives to the Euclidean and z-normalized
Euclidean distances.

To the best of our knowledge, there has been no experiment on non-elastic distances
other than the Euclidean distance, with the use of normalization to induce scale invariance.
A few methods use DTW in place of the Euclidean distance such as [71], which follows the
methodology of Learning Shapelets [30], but replaces the Euclidean distance with DTW.
This induced minor gains on a few datasets, but it is hard to say from their experiments
if this change is worth the additional complexity.

We will nevertheless experiment three different non-elastic distance functions, we do
not expect significative differences in accuracy between them, but are more interested in
their impact on the run-time of the shapelet transform algorithm. These distances are :

• The Euclidean distance, as d(S,X i,l) =
√∑l

j=1(xi+j−1 − sj)2. This is the default
option for shapelet methods.

• The squared Euclidean distance, as d(S,X i,l) =
∑l

j=1(xi+j−1 − sj)
2, which will fur-

ther increase high pointwise differences (> 1) and reduce small pointwise differences
(< 1). This can have an influence depending on the type of classifier used.

• The Manhattan distance, or L1 norm, as d(S,X i,l) =
∑l

j=1 |xi+j−1 − sj|, which
requires fewer operations and should thus be faster than the Euclidean distance.

2.3.4 Shapelet features

Since the publication of Localized Random Shapelet (LRS) [32], which showed the benefit
of extracting argminVS,X to discriminate time series based on the location of the minimum
between S and X, it has been included in most recent approaches.

Outside the extraction of minVS,X and argminVS,X , to the best of our knowledge, there
have been no study of alternative feature sets, similarly to the work on the canonical time-
series characteristics (Catch22) [52]. One of the reasons behind this may be that most
heuristics or speed-up techniques proposed in the literature implicitly use has assumption
that only the minimum value of the distance vector is needed.

20

2.3. SHAPELETS

2.3.5 Shapelet generation

One of the most studied part of shapelet based algorithms is the generation of the
shapelets. Except for a few papers, most of the literature shares the common objec-
tive of building heuristics to be close to the classification accuracy of the brute force
method, which enumerates and assesses the quality of all possible candidates. Different
kinds of heuristics have been developed to extract a set of shapelets for a given dataset,
we regroup those approaches into three families that we detail below.

Random extraction

One of the simplest shapelet extraction scheme is the random extraction. Given a time
series dataset X = {X1, . . . , Xn} with Xi = {x1, ..., xm} a time series, and l the length of
the shapelet, a total of n× (m− (l − 1)) shapelets can be sampled from X .

Assuming a uniform probability distribution, the quality of shapelets extracted from
this space cannot be guaranteed, and hence a lot of shapelets have to be extracted to
compensate. This was the approach taken by Ultra-Fast Shapelets [82], which randomly
samples a percentage of all possible candidates. The Localized Random Shapelet [32] also
uses this approach to sample candidates.

Shapelet optimization

This type of approach allows generating shapelets that do not exist in the input space, as
their values are iteratively modified based on an optimization scheme.

Learning Time Series Shapelets (LTS) [30] was the first method to approach the prob-
lem of finding the best shapelets as an optimization problem. The initialization phase of
LTS uses a clustering method to sample the initial shapelet candidates. Given the input
time series and a shapelet length l, a K-means clustering is performed on all subsequences
of size l. Then, the centroids of each cluster are extracted as shapelet candidates, and
affected a random weight.

The first step of the method is to extract the soft minimum distance between the
shapelets and the input time series. These distances are then multiplied by the weight
associated with the shapelets they come from. A logistic regression classifier is then used
to predict the class of each time series, and regularized logistic loss is used to estimate
the error. Then, using a gradient descent optimization, it will change the values of the
shapelets as well as their weight. The method is then repeated until convergence.

Similarly, GENDIS [79] uses an optimization scheme based on a genetic algorithm.
The mutation and crossover operators are defined to either modify parts of the shapelets,
or to modify the set of candidates, notably by randomly sampling new ones from the
dataset. The initial population is created with a clustering step on random subsets of the
possible candidates in the input space, with the centroids selected as the initial candidates.

The issue with such methods is that, as they produce out-of-sample shapelets, the
interpretability is often loss as the resulting shapelets do not resemble the input data at
all. A correction for this issue was proposed by [81], by using an adversarial approach to
regularize shapelets to be similar to subsequences found in the data.

21

2.3. SHAPELETS

Heuristics for candidates enumeration

Outside the random and the optimization schemes, multiple heuristics were proposed to
speed up the enumeration and evaluation of the best shapelets.

A first family of heuristics uses approximation techniques such as SAX [46] to reduce
the search space by producing an approximation of the inputs (i.e. reducing the length
of the time series and/or discretizing the values). This is the case of Fast Shapelets [60],
which then establishes a quality measure for candidates based on their similarity with
each other in the approximated space. If a candidate often appears in a class but not in
the others, it will be considered for evaluation in the input space using information gain.
The ELIS++ [88] method also uses a similar approach, but rely on the TF-IDF score to
formalize the quality measure between discretized candidates. They also introduce mul-
tiple pruning techniques along with data augmentation and a Bayesian optimization of
the parameters of their method to try to find the best set of candidates in approximated
inputs.

Another family of heuristics takes an iterative approach to the problem, and reduces
the search space given the shapelets selected in previous iterations. An example of such
heuristics, is the Tabu search described in [10]. The Tabu search exploits the fact that
candidates, when sampled in the neighbourhood of shapelets found in previous iterations,
are likely to be redundant (e.g a shapelet of size l sampled at xi+1 will be very similar
to the shapelet sampled at xi). Given this observation, the method constraints a ran-
dom candidates search by not considering the neighbourhood of points used to sample a
shapelet in previous iterations.

It is also possible to “contract” a method by limiting its run-time. Such contracted
methods will search for the best shapelets until time is out, and return the best-so-far
found shapelets. An example of such a classifier is given in [12], using a random search.
A skipping search for a time contracted method was also defined in [10], where given the
size of the input data and the time constraint, an amount of neighbouring candidates will
be skipped. The goal is to maximize the diversity of shapelets evaluated in the given time
contract, based on the assumption of similarity between neighbouring candidates.

Lastly, subsampling the dataset, by considering only r% of the samples in the training
data, is also another way of reducing the size of the search space to (r

100
×n)×(m−(l−1)).

This assumes that sufficient discriminative information is still present in the fraction of
the dataset considered.

2.3.6 Speed up techniques

A number of techniques designed to speed up the distance computations or the shapelet
selection have also been proposed in the original approach of [86]. Most are targeted at
finding a lower-bound on either the distance to the shapelet or its estimated quality, to
be able to perform early abandon or pruning. The general idea is that, if a measure goes
above this lower bound, it will not be helpful for the problem, hence its evaluation can
be stopped even if it is not finished.

An example of this approach is the distance early abandon, displayed on Figure 2.8.
Given a shapelet S = {s1, . . . , sl} and a time series X = {x1, . . . , xm}, S is slided across X,

22

2.3. SHAPELETS

computing the Euclidean distance between S and all m−(l−1) subsequences of size l in X.
Let mini the best-so-far minimum value found before step i (i.e min1≤k<i dist(S,X

k,l)), if
at any step of the computation of

∑l
j=1(xi+(j−1)−sj)2 the current squared sum is superior

or equal to mini, we can ignore the remaining part of the sum, as it will not be inferior
to mini. The square root can then be applied at the end of the computations if we want
to use the Euclidean distance rather than the squared Euclidean distance.

A change to the evaluation order of the shapelet was proposed by [10] to further
increase the number of ignored operations with early abandon. The idea was that instead
of sliding a shapelet S on X from 1 to m− (l − 1), we could start at the point i where s
was sampled, and evaluate i+1, then i− 1, then i+2, etc. They show that this increases
the average number of operations ignored, as the global minimum has a better chance
of being found earlier by evaluating candidates that are increasingly further from each
other. It is also possible to use a random order.

Figure 2.8: Comparison of full distance computation (left) against of early distance aban-
don (right), with S a shapelet and T a time series. Image from the original paper of [86]

One issue with those lower bound techniques, is that they do not consider their impact
on material acceleration techniques, notably on vectorization (i.e. Single Instruction Mul-
tiple Data). For example, the cost of checking the value of the current sum against the
best-so-far minimum might not be worth, compared to a version using vectorization that
would compute the full distance. We evaluate this assumption during our experiments in
Section 3.9.7.

2.3.7 Invariance properties and robustness

Shapelets are known to be translation invariant, due to the sliding of the shapelet on
the series when computing the distance vector and the extraction of the minimum as a
feature. This means that minVS,X , which represents the best match between a series
X and a shapelet S, is not influenced by the position of this best match in minVS,X .
Shapelets can also be scale invariant, when a z-normalized distance function is used. This
makes the scale of the shapelet and of the subsequences being compared irrelevant when
computing the distance vector, as described by Equation 2.6. Hence, the minimum value
extracted from the distance vector is also scale invariant.

An invariance is a property that guarantee that a mathematical object is not modified
after some type operations or transformations are applied to it. In the context of shapelets,
such property target either the whole distance vector, such as scale invariance, or the
features extracted from it, such as the translation invariance for minVS,X . We also consider
additions which induce robustness to a phenomenon (e.g. noise, time warping), which,

23

2.3. SHAPELETS

while not guaranteeing an invariance, allow negating the effect of this phenomenon on the
distance vector or the features extracted by the shapelets.

In the literature, other properties have been defined, mostly between two time series.
We introduce those properties for the case of two time series X1 and X2, and show in our
contributions how we can adapt those properties to the case of shapelets.

Phase invariance: When recording a cyclic phenomenon (e.g. heartbeats, a sinusoidal
function, etc.), the moment when the recording starts, known as the initial phase of
the signal, can cause massive point-wise difference between time series. For example,
if we were to compare two similar signals with a different initial phase, the Euclidean
distance would give misleading results. To the best of our knowledge, the only way to
guarantee phase invariance between two series is to test all possible alignments of X1

while maintaining X2 fixed, and select the smallest resulting distance.

Robustness to time warping: In some cases, the data can be misaligned due to
natural shifts in the recorded phenomenon. Consider the case where we record the hand
movement of a person writing the same word multiple times. Even if the resulting time
series represent the same word, the hand movement will differ slightly from each recording,
as well as the time spent on each part of the word. In this case, the Euclidean distance
can give misleading results as the data is not aligned. In such cases, it is common to use
DTW to compare time-warped series.

In the case of Shapelets, DTW has been used as an alternative to the Euclidean
distance [71]. One downside of their formulation is that they do not change the sliding
window scheme used to compute the distance vectors. This does not allow DTW to find
the path between the shapelet S of size l and a theoretical “optimal” subsequence X i,l′

if l′ > l, as we only use DTW (S,X i,l). As the experiments of methods using DTW for
shapelets do not seem to justify the additional complexity by significant improvements of
the results, we do not pursue warping invariance for shapelets in this thesis. We think a
good first step towards this goal would be to modify the sliding window scheme, to allow
larger patterns to be matched as well.

Robustness to noise: When the time series are subject to noise, a simple Euclidean
distance might not be able to find similarities between the underlying signals. While
noise can affect the whole time series due to the recording process (e.g. background
sounds from an audio recording), its amplitude can vary in the signal itself. While not
strictly producing invariance, techniques based on the Fourier Transform can be used to
try to filter-out the noise, or to design methods that are robust to noisy data.

Robustness to complexity: The intuition behind the idea of a complex time series can
first be explained as a time series with a lot of peaks and/or higher variability between
successive data points. This variability can cause errors when trying to classify (e.g.
with a 1-NN with Euclidean distance) time series where one class is “complex” and the
other “simple”, as a complex time series might be closer to a simple one under Euclidean
distance, as illustrated by Figure 2.9.

A correction factor for any distance function was proposed by [8], which takes into
account the complexity of the time series being compared. Given d a distance function,

24

2.4. STATE-OF-THE-ART EVALUATION

Figure 2.9: An example case where, at the top, a simple-shaped (blue) and a complex-
shaped (red) time series result in a smaller Euclidean distance than, at the bottom, two
complex time series (of the same class). Image from the original paper of [8]

the complexity invariant distance (CID) can be computed as :

CID(X1, X2) = dist(X1, X2)× CF (X1, X2) (2.10)

with CF the complexity correction factor computed as :

CF (X1, X2) =
max(CE(X1), CE(X2))

min(CE(X1), CE(X2))
, CE(X) =

√√√√n−1∑
i=1

(xi − xi+1)2 (2.11)

The authors of [8] then empirically demonstrate that CID improves the accuracy of a 1-NN
classifier, with both Euclidean distance and DTW, while obeying the p-relaxed triangular
inequality and still being subject to lower-bounding techniques for early distance abandon.

2.4 State-of-the-art evaluation
Given the algorithms presented in Section 2.2, we consider the Shapelet Transform Clas-
sifier (STC) [12] as the state of the art for shapelet algorithm. It uses a time contract to
find the best set of candidate shapelets given their information gain and build a Rotation
Forest [4] classifier, using the minimum distance between the shapelets and the series as
features.

Figure 2.10 summarizes the latest published accuracy results from [5] on the UCR
archive [19] with a critical difference diagram. This archive contains 112 datasets for uni-
variate time series classification, from a variety of domains and applications. All datasets
are defined with a base training and testing set, which may reflect some particularity of
the application (e.g. a small training set and a bigger testing set). The standard evalua-
tion protocol of the archive is to use resamples, in order to have the same class repartition
than in original training and testing sets. The accuracy results are obtained with 30

25

2.4. STATE-OF-THE-ART EVALUATION

resamples. We see that shapelet methods have fallen behind in terms of classification
accuracy compared to the rest of the state of the art. In the next section, we present our
contributions, and show in our experimental section how they improve on the state of the
art for shapelet algorithms.

Figure 2.10: Mean accuracy rank (numbers next to the name of the algorithms) of state-
of-the-art classifiers for univariate time series classification, evaluated on 30 resamples on
the univariate datasets of the UCR archive

26

Chapter 3

Contributions to Time Series
Classification

Résumé du chapitre en français
Dans ce chapitre, nous présentons nos contributions au domaine de la classification des
séries temporelles. Dans un premier temps, nous proposons une nouvelle définition des
shapelets, intégrant la notion de dilatation et un nouveau descripteur, et présentons un
algorithme aléatoire de transformation par shapelets utilisant ces nouveaux composants.
Nous présentons ensuite des améliorations pouvant être ajoutées à cet algorithme, comme
la réduction de l’espace de recherche, et des modifications sur la méthode de calcul de
la distance entre une shapelet et une série. Nous définissons ensuite une version de cet
algorithme adaptée aux séries multivariées et de longueur différente, ainsi que les optimi-
sations apportées à l’algorithme, notamment pour permettre de paralléliser l’initialisation
des shapelets et les calculs de distance. Nous menons ensuite plusieurs expériences pour
étudier l’impact de chacune de nos contributions sur notre algorithme, à la fois en termes
de précision et de complexité temporelle. Pour conclure, nous comparons notre algo-
rithme aux autres méthodes de la littérature sur deux archives de données couramment
utilisées pour comparer les méthodes de classification des séries temporelles univariées et
multivariées.

Chapter summary
In this chapter, we present our contributions to the field of time series classification. First,
we define new components to add to the existing definition of shapelets, and present a
new shapelet transform algorithm using these new components. We then present other
modifications that can be added to this algorithm, such as reducing the number of can-
didate shapelets and changes to the computation of the distance between a shapelet and
a time series. We then define a version of this algorithm adapted to multivariate and
variable length time series, as well as optimizations made to the algorithm, notably to
allow to parallelize the initialization of the shapelets and the computation of distances.
We then conduct several experiments to study the impact of each contribution on our
algorithm, both in terms of accuracy and time complexity. To conclude, we compare our
algorithm to the other methods of the literature on two data archives, commonly used to
evaluate univariate and multivariate time series classification methods.

27

3.1. INTRODUCTION

3.1 Introduction

Before presenting our contributions to time series classification, let us remind the context
on which we build upon, which is shapelet-based classification. A shapelet S is defined as a
vector S = {s1, . . . , sl} with l its length. Given a time series X = {x1, . . . , xm}, we slide S
on X and compute the distance between S and a subsequence X i,l = {xi, . . . , xi+(l−1)} ∈ X
of size l, for all steps i of the sliding window. This operation generates a distance vector
VS,X from which two features are extracted, minVS,X and argminVS,X , giving respectively
how close the best match between S and X is, and where this best match is located.

More formally, we have VS,X = {v1, . . . , vm−(l−1)} the distance vector resulting from
the computation of the sliding distance between S and X. A point of this distance vector
is computed with the Euclidean distance as:

vi = d(S,X i,l) =

√√√√ l∑
j=1

(xi+(j−1) − sj)2 (3.1)

To build a time classification model with shapelets, we first have to generate a set of
shapelets S, using one of the methods we described in Section 2.3.5. This set of shapelets
is then applied to the set of time series X on which we want to learn a classifier. If we
extract minVSi,Xj

and argminVSi,Xj
, ∀ Xj ∈ X ,∀ Si ∈ S, we obtain a feature matrix M

of size (||X ||, 2× ||S||).
This feature matrix M can then be used along with the classes of the time series to

learn a tabular classifier such as a decision tree. To predict the class of new samples, S
is applied again on the unseen series to build another feature matrix, which is fed to the
classifier to predict the classes of the time series.

3.2 Dilated Shapelets

Dilation is often used in the context of kernel operations, and most famously in con-
volutional kernels. Let us first recall that, given a kernel K = {k1, . . . , kl} and a time
series X = {x1, . . . , xm}, the resulting convolution C = {c1, . . . , cm+l−1} is computed as
described by Figure 3.1.

The time series is usually padded with zeros at the beginning and the end of the
convolution, but it is also possible to start sliding operation with k1 aligned on x1. When
a dilation d is used, the kernel is “stretched”, such as the point xb to be multiplied by the
coefficient ki+1 is spaced by a value of d compared to the point xa (i.e. b = a + d) used
for ki. Figure 3.2 describes this process with d = 2. Our first contribution is to apply this
idea of dilation to the distance vector computation of shapelets.

3.2.1 Definition

We define a dilated shapelet S as S = {{s1, . . . , sl}, d} with l the length parameter and
d the dilation parameter. The dilation parameter is used in the distance function, with
the shapelet being compared to a dilated subsequence of the input time series. More
formally, consider a time series X = {x1, . . . , xm} and a dilated shapelet S, we now define

28

3.2. DILATED SHAPELETS

Figure 3.1: Illustration of the convolution between a time series (in blue) and a kernel (in
yellow)

Figure 3.2: Illustration of a dilated convolution between a time series (in blue) and a
kernel (in yellow), with d = 2

the distance vector between S and X as VS,X = {v1, . . . , vm−(l−1)×d}, where vi is equal to:

vi =

√√√√ l∑
j=1

(xi+(j−1)×d − sj)2 (3.2)

Note that the formulation with dilation is equivalent to the original shapelet formulation
when d = 1. From now on, we refer to a subsequence of size l starting at index i with a
dilation d as X i,l,d = {xi, xi+d, . . . , xi+(l−1)×d}. We can also use a z-normalized distance
with dilated shapelets, similarly to the definition given in Equation 2.6, as :

vi = dist(Ŝ, X̂ i,l,d) =

√√√√ l∑
j=1

(x̂i,l,d
j − ŝj)2 (3.3)

Ŝ =
S − µS

σS

, X̂ i,l,d =
X i,l,d − µXi,l,d

σXi,l,d

(3.4)

29

3.2. DILATED SHAPELETS

3.2.2 Why use dilated shapelets?

The interest of using dilation in shapelets is to make them non-contiguous subsequences.
It allows a shapelet with d > 1 to match non-contiguous discriminative patterns. It is
also possible to partially match contiguous discriminative patterns, by only considering
key points of the patterns. Focusing only on key points can make the pattern matching
less sensitive to noise during the distance vector computation. Contiguous patterns can
still be matched when d = 1.

Let us illustrate the influence of dilation with an example. Consider two samples from
two different classes in the PigCVP dataset, which records central venous pressure (CVP)
measurements of pigs under different conditions, and a random shapelet extracted from
the blue time series, shown by Figure 3.3.

Figure 3.3: (a) Two time series of different classes from the PigCVP dataset, and (b)
a random shapelet of length 11 extracted from the blue time series. The x-axis is the
indexes, and the y-axis the values of the time series and the shapelet.

The resulting distance vectors, using a normalized Euclidean distance between the
two samples and the shapelet, and computed with different values of dilation, are shown
by Figure 3.4. As the measure of CVP is directly influenced by the heart rate, it is
possible that some values of dilations allow a shapelet to “synchronize” with the heart
frequency, such that xi and xi+d are spaced by one period (i.e. the time between two
heart contractions). Given the shapelet of Figure 3.3, if such a dilation was applied, we
would have a low distance if measurements spaced by the period between two heart beats
successively increase for a number of heartbeats equal to the shapelet length.

Considering that the PigCVP dataset is collected at a frequency of 250Hz, giving
one measurement every 1

250
second, if we use the expected heart rate for young pigs

(the age of pigs is not specified in the original study), which is of 90 contractions per
minutes, or 90

60
contractions per second, this “synchronization” would happen around d =

(90/60)/(1/250) = 166.66, rounded to 167, as displayed in the last plot of Figure 3.4. If
we consider the minimum extracted from these distance vectors, we see that using d > 1
result in more discriminative feature than with d = 1.

30

3.3. SHAPELET OCCURRENCE FEATURE

Figure 3.4: Resulting distance vector between the samples and the shapelet of Figure 3.3
for different values of dilation.

Existing state-of-the-art approaches for time series classification, such as HIVE-COTE,
have shown the importance of diversifying the representation and methods to extract
features. The use of dilation for shapelets could then be considered, in addition to the
ability to match non-contiguous patterns, as a parameter which favour the diversity of
input representations.

3.3 Shapelet Occurrence feature

In the initial formulation of [86], given a shapelet S and a time series X, after computing
the distance vector VS,X , only minVS,X was extracted as a feature. Later [32] added
argminVS,X as feature during the extraction, notably to be able to discriminate cases
where only the location of the best match of a pattern is discriminative between classes.

Using only these two features still leave some type of possibly discriminative informa-
tion unused, such as the number of occurrences of a pattern, which cannot be captured by
statistics that give information about a single point of VS,X as minVS,X and argminVS,X

do. We propose a new feature computed from the distance vectors generated by shapelets.
This could also be compared to the use of a global pooling operator in neural networks.

31

3.3. SHAPELET OCCURRENCE FEATURE

3.3.1 Definition

The definition of the Shapelet Occurrence (SO) feature requires the introduction of a
second parameter in the definition of a shapelet S as S = {{s1, . . . , sl}, d, λ}, with λ a
threshold allowing us to compute SO, using the identity function I with I(True) = 1 and
I(False) = 0, as follows:

SO(S,X) =

m−(l−1)×d∑
i

I
(
dist(S,X i,l,d) ≤ λ

)
(3.5)

Given the threshold λ, the Shapelet Occurrence feature counts how many times the
shapelet was at least λ-close to the time series. Algorithm 1 gives the pseudocode cor-
responding to the distance vector computation with dilated shapelets and the feature
extraction. It takes as input a time series X and a shapelet S with its parameters,
l, d, λ along with a Boolean to indicate whether the distance computation should be z-
normalized.

Algorithm 1 extract_features(X,S, l, d, normalize, λ)
min =∞, argmin =∞, SO = 0
for i in [1,m− (l − 1)× d] do

X i,l,d ← {xi, xi+d, . . . , xi+(l−1)×d}
if normalize then

X i,l,d ← z-normalize(X i,l,d) ▷ S is z-normalized at extraction in this case
end if
vi ←

√∑l
j=1(x

i,l,d
j − sj)2 ▷ xj ∈ X i,l,d

if vi < min then
min← vi, argmin← i

end if
if vi < λ then

SO ← SO + 1
end if

end for
return min, argmin, SO

3.3.2 Why use Shapelet Occurrence?

If we consider a shapelet S and two time series X1 and X2, we can imagine multiple ways
of discriminating X1 and X2 using S.

1. S can be present in both series, but not at the same scale. In this case, a z-
normalized distance would not be able to discriminate the series. Deciding whether
scaling is important or not is highly dependent on the application, but without prior
knowledge, one cannot know which to choose.

2. S can be present in X1 but not in X2. This is captured by min VS,Xi
, with smaller

distances indicating better matches between the shapelet and the series.

32

3.4. RANDOM DILATED SHAPELET TRANSFORM (RDST)

3. S can be present in both series, but not at the same place. This is captured by the
argmin feature introduced in the Localized Random Shapelet [32] algorithm.

4. S can be present in both series, but occurs a different number of times in X1

compared to X2. This is captured by our feature, Shapelet Occurrence (SO).

Those points are illustrated in Figure 3.5 with synthetic examples and their distance
vector computed using the shapelet S, using a z-normalized Euclidean distance. Each
column of Figure 3.5 illustrates the corresponding points of the above list.

Figure 3.5: Synthetic examples with their distance vector computed using a shapelet S
and a z-normalized Euclidean distance. The first row give the input time series and the
second give the resulting distance vectors. Each column illustrates a different way for the
same shapelet to discriminate the classes.

3.4 Random Dilated Shapelet Transform (RDST)

Considering the notion of dilated shapelet and the Shapelet Occurrence feature that we
introduced, we propose a new shapelet algorithm. We choose to use a random approach
for the shapelet generation for multiple reasons:

• We wanted to produce a scalable algorithm, which could compete with methods
like ROCKET, which have shown that random methods can achieve state-of-the-art
accuracy.

• Adding the dilation parameter and the λ threshold would make the search for opti-
mal shapelets even slower, as the possible range of those two parameters makes the
search space much larger.

33

3.4. RANDOM DILATED SHAPELET TRANSFORM (RDST)

• The recent tendency of the machine learning community to consider accuracy (i.e.
improving state-of-the-art on a benchmark) as the most important factor of success
has led to a loss of interest in presenting, or even considering, the optimization of
the implementation of algorithms, as shown by [67]. In the following, we thus give
a particular focus on increasing efficiency, rather than solely focusing on accuracy.

3.4.1 Definition

For simplicity, we define our approach in the context of univariate and same length time
series, with X = {X1, . . . , Xn} a set of time series with Xi = {x1, . . . , xm}, and Y =
{y1, . . . , yn} their respective classes. We show in Section 3.7 how it extends to other
contexts. Our method takes as input four parameters that are:

• nshp : the number of shapelets to generate,

• L : a set of possible lengths for the shapelets,

• Pnorm : the proportion of shapelets that will be used with z-normalization,

• (pmin, pmax) : a pair used as percentile bounds for the sampling of the λ threshold.

As stated in Section 3.3.2, the choice of whether to use a normalized distance is mostly
based on prior knowledge of the data. Using the parameter Pnorm allows to either set
values that are known to be acceptable for a use case, or to search for it by trying
multiple values of the parameter.

Given the definition of a dilated shapelet with λ threshold S = {{s1, . . . , sl}, d, λ}, we
initialize each parameter as follows:

• the length l is uniformly drawn from L,

• the dilation d, in the same way as ROCKET [22], is set to d = ⌊2x⌋ with x uniformly
drawn in [0, log2

m
l
]. In addition to limiting the maximum dilation to reasonable val-

ues to avoid generating tiny distance vectors, sampling possible dilation uniformly
from [0, log2

m
l
] generates a distribution of dilations favouring smaller values of di-

lation due to log2. An example of the distribution of dilation obtained with this
method is shown by Figure 3.6, for 10000 generated shapelets.

The sensitivity analysis conducted by [22] on 40 datasets show that this is sig-
nificantly more accurate on average than using a uniform distribution of dilation.
This distribution of dilation also makes sense given how we sample shapelets, as
the larger the dilation, the smaller the number of candidate shapelets, as we have
n × (m − (l − 1) × d) admissible sampling points for candidate shapelets with a
dilation of d.

• choose if the shapelet will use a z-normalized distance with probability Pnorm,

• generate the values {s1, . . . , sl} of the shapelet, a sample X is uniformly drawn from
X , and an admissible start point i ∈ [1,m− (l − 1)× d] is randomly selected with
uniform probability. Then, the values are set as S = X i,l,d.

34

3.4. RANDOM DILATED SHAPELET TRANSFORM (RDST)

• finally, given a shapelet S, to fix the value of λ, we randomly choose a sample X
from the same class as the one used for extracting the shapelet value, and uniformly
draw a value between the two percentiles (pmin, pmax) of VS,X .

Figure 3.6: Count of the values of dilation obtained by using d = ⌊2x⌋ with x uniformly
drawn in [0, log2

m
l
] with l = 11 and m = 400 for 10000 draw. The number of admissible

candidate shapelets for one time series (in orange) is given by m− (l − 1)× d

Algorithm 2 gives the pseudocode for the initialization of the shapelets. After com-
puting the distance vector between all pairs of time series and shapelets, the output of our
method is a feature matrix of size (|X |, 3× nshp), with the three features extracted from
the distance vector VS,X being the min, argmin, SO(S,X). We choose to use a Ridge
Classifier after the transformation of X , as the L2 regularization used in Ridge is of crit-
ical importance due to the high number of features that are generated, while also being
interpretable and scalable even when the number of features is high. The pseudocode for
the whole RDST method is given in Algorithm 3.

3.4.2 Alternative strategies for the λ threshold

Multiple strategies can be employed to fix the λ threshold, which are subject to the
trade-off between time and accuracy. Consider a shapelet S = {{s1, . . . , sl}, d} and a
set of time series X = {X1, . . . , Xn} with Xi = {x1, . . . , xm} and Y = {y1, . . . , yn} their
respective classes. We can then compute a set of distance vectors V = {V1, . . . , Vn} with
Vi = {v1, . . . , vm−(l−1)×d}.

The first alternative is to use a random approach, where we set the λ threshold to a
random value in [min(V),max(V)]. Another option is to find the optimal value for the λ
threshold by computing the information gain of the Shapelet Occurrence feature for every
possible value of λ ∈ [min(V),max(V)]. At the expense of optimality, multiple speed-ups
techniques could be proposed, like subsampling or reducing the range of value for λ, either
by imposing a higher bound or by discretizing the interval [min(V),max(V)].

35

3.4. RANDOM DILATED SHAPELET TRANSFORM (RDST)

Algorithm 2 initialize_shapelets(X , Y, nshp, L, Pnorm, pmin, pmax)

n,m← shape(X)
S ← ∅
for ishp ∈ [1, nshp] do

l←random_uniform(L)
power ←random_uniform([0, log2(m/l)])
d← ⌊2power⌋
dist_len ← m− (l − 1)× d ▷ Number of admissible sampling points for a series
normalize ←random_uniform([0, 1]) ≤ Pnorm

location ← random_uniform([1, n×dist_len])
ix, it ← ⌊location/dist_len⌋, location % dist_len
S ← X it,l,d

ix
▷ The subsequence of size l starting at index it in sample ix with d

if normalize then
S ←z_normalize(S)

end if
iλ ←random_uniform(where(Y = yix)) ▷ Another sample of the same class as ix
dist ← distance_vector(Xiλ , S, l, d, normalize)
λS ←random_uniform([P (dist, pmin), P (dist, pmax)]) ▷ P as percentile function
S.add({S, l, d, λS, normalize})

end for
return S

Algorithm 3 RDST(X , Y, nshp, L, Pnorm, pmin, pmax)

n,m← shape(X)
S ← initialize_shapelets (X , Y, nshp, L, Pnorm, pmin, pmax)
M ← empty_array(size=(n, 3× nshp))
for ishp ∈ [1, nshp] do

for ix ∈ [1, n] do
min, argmin, SO ← extract_features(X [i_x], S[i_shp])
M [ix, (ishp× 3)]← min
M [ix, (ishp× 3) + 1]← argmin
M [ix, (ishp× 3) + 2]← SO

end for
end for
RidgeClf ← RidgeClassifier().fit(M, Y) ▷ Standardize each feature before fitting
return RidgeClf, S

In RDST, we choose to use a semi-random approach, in which, given the sample Xi

from which S was extracted, we select a sample Xj, of the same class as yi. Then, given its
associated distance vector Vj and two bounds pmin, pmax, we compute the possible range
for the values of λ, based on the pmin and pmax percentiles of Vj, and select a random
value in this range. The rationale behind this idea is that, given S a shapelet extracted
from class yi, we can distinguish two cases: S also “appears”, one or more times, in other
samples of the same class, or it is unique to Xi. If S only appears in Xi, it is irrelevant
to recognize members of class yi (e.g. noise). Hence, we can choose pmin and pmax such

36

3.5. REDUCING THE NUMBER OF CANDIDATE SHAPELETS

as the λ threshold value characterizes an expected number of λ-close occurrences of S in
another sample of class yi, based on the observed values of the distance vectors of this
sample. We show in our experimental section that this strategy is competitive with the
optimal solution.

3.5 Reducing the number of candidate shapelets
In this section, we present two techniques that we use to reduce the number of candidate
shapelets that our algorithm can select from. The goal of such methods is to try to remove
redundant shapelets, so that we have more chance of sampling useful shapelets for the
classification task.

3.5.1 Shapelet similarity

In order to reduce the search space and to improve the time complexity of the shapelet
generation, [48] defines the notion of shapelet self-similarity, which they define as follows:
“We define two shapelets as being self-similar if they are taken from the same series and
have any overlapping indices”. This means that, given a shapelet sampled from a point
i, no shapelet can be sampled in the range [i − (l − 1), i + (l − 1)]. While this allows
to greatly reduce the number of possible candidates, one could have the intuition that
it could possibly discard the "suffix" or "prefix" of discriminative candidates. We can
nevertheless adapt this idea to the case of dilation, and compare it against other baselines
in our experiments.

To adapt this notion of self-similarity to our new formulation, we need to take into ac-
count the dilation and the normalization parameters of the shapelet. As each combination
of those two parameters produces a different view of the input data, we propose to apply
self-similarity independently on each combination of dilation and normalization. Further-
more, to test whether this can impact the performance of our method in our experiments,
we propose to relax this definition to α-similarity (α ∈ [0, 1]).

Given L the possible shapelets lengths, a candidate shapelet S will be pruned by
α-similarity, if it has max(1, ⌊(1 − α)min(L)⌋) or more shared indexes with shapelets
previously sampled in the same time series. Figure 3.7 gives a visual comparison of α-
similarity with α = 0.5 and α = 1.0, which is equivalent to self-similarity, as all the
indexes of a shapelet must have never been used before.

In practice, for each possible values of dilation and normalization, we maintain a dis-
tinct Boolean mask during the generation of the shapelets, which indicates admissible
sampling points. This mask is shared by all shapelets with the same dilation and normal-
ization parameters, even if they have a different length parameter. The mask is
updated after the sampling of each shapelet, and takes into account the effect of dilation,
as neighbouring sampling points are not to be pruned when d > 1.

For example, given α = 1, d = 2 and l = 3 and a sample X, if the point i is
used to sample S = {xi, xi+2, xi+4}, {i − 4, i − 2, i, i + 2, i + 4} cannot be considered
as sampling points anymore, while {i − 3, i − 1, i + 1, i + 3} are still valid, as they do
not share any input indexes with X i,l,d. We thus need to set to false indexes i (+/-
) j × d | ∀j ∈ {0, 1, . . . , l −max(1, ⌊(1− α)min(L)⌋)}, if the corresponding indexes exist

37

3.5. REDUCING THE NUMBER OF CANDIDATE SHAPELETS

Figure 3.7: Illustration of α-similarity with α = 1 (left), equivalent to self-similarity, and
α = 0.5 (right). The green part represents a sampled shapelet, the red parts are candidates
excluded by α-similarity (includes the green part), and in orange are the closest admissible
candidate to the shapelet.

Figure 3.8: Illustration of the Boolean mask used to know which points of a time series
are admissible sampling points for candidate shapelets, with an update to the mask made
for α = 0.6 and α = 1.0

38

3.6. INVARIANCE PROPERTIES AND ROBUSTNESS FOR SHAPELETS

in the mask. Figure 3.8 gives a visual example of this process for a shapelet with l = 3
and d = 2.

More formally, consider S = {S1, . . . , Sp} a set of shapelets already sampled from
X = {X1, . . . Xn}, a set of time series of size m, and L the set of possible length for the
shapelets. To know which points are valid sampling points for new shapelets, we use a
boolean mask Bd,norm = {B1, . . . , Bn} for each pair of dilation d and normalization norm,
with Bi = {b1, . . . , bm−(min(L)−1)×d} the mask for possible sampling points in sample Xi.
Note that we use m − (min(L) − 1) × d as the size of the boolean mask, as the smaller
the length of the shapelet, the higher the number of possible candidates (i.e. the closer
to m the sampling point can be). Shapelets with length l > min(L) cannot be sampled
after point m− (l− 1)× d, but can still influence the sampling of the shapelets of length
l′ < l, based on the value of α.

Given i ∈ [1, n] the sample index, and j ∈ [1,m− (l−1)×d] the index of the sampling
point, we define this Xj,l

i as a valid sampling point if bj ∈ Bi is True. Then, to update the
mask, we apply Equation 3.6, which marks as False all points in Bi which would result in
shapelets pruned by α-similarity.

bj+q×d = False, ∀q ∈ {0, . . . , l −max(1, ⌊(1− α)min(L)⌋)} | Bi ∈ Bd,norm (3.6)

3.5.2 Input subsampling

Another method, which was already used in previous works, is to use subsampling to
reduce the search space. Given a set of time series X = {X1, . . . , Xn} used to sample
shapelets and then train a model, subsampling removes a proportion r ∈ [0, 1] of samples
from X before it is used to sample shapelets. It is often done in a stratified manner, so
that the proportion of each class in the subsampled set is the same as in X .

The rationale for subsampling is that, theoretically, a good candidate shapelet, one
that is unique to a class, can be found in any sample of the said class, and thus, using
fewer samples could help the algorithm by reducing the search space to find such shapelets.
While this strategy may work for a well-defined and clean dataset, the presence of outliers
or noisy samples could make outliers more frequent in the training data and thus reduce
the performance of the classifier. Another problematic case with subsampling arises when,
within the same class, we can distinguish subclasses. For example, in the Gunpoint dataset
of the UCR archive [19] two actors perform a hand movement with and without a gun,
the goal being to identify which time series are linked to a movement performed with,
or without a gun, independently of the actor. In the case where subsampling completely
removes one actor from the training data, the performance on the test set, where the two
actors are present, could be reduced.

3.6 Invariance properties and robustness for shapelets

In this section, we propose an adaptation of the properties presented in Section 2.3.7 to
the context of shapelets, except the robustness to time warping, as discussed in Section
2.3.7. We study the impact on accuracy and time complexity of these potential additions
to RDST in our experimental section.

39

3.6. INVARIANCE PROPERTIES AND ROBUSTNESS FOR SHAPELETS

3.6.1 Phase invariance

Given a time series X = {x1, . . . xm} and a shapelet S with parameters l, d, we compute a
distance vector VS,X of size m− (l−1)×d. When extracting minVS,X , the position of the
best match in the series do not influence the value, thus minVS,X is translation invariant.
This is also true for the Shapelet Occurrence feature.

In cases where the data represented by X is cyclic, the initial phase of the underlying
signal could cause the pattern matched by S to be split between the end and the start of
X, meaning that the starting index of the pattern would be in the interval [1 +m− (l−
1)× d,m], as shown in Figure 3.9

Figure 3.9: Example of a cyclic signal with a different initial phase. The pattern of interest
can be split between the end and the start of the time series.

We can add phase invariance for shapelets by modifying the distance computation.
The distance vector resulting of the operation between a shapelet S and time series
X = {x1, . . . xm} is now defined as VS,X = {v1, . . . vm}, with vi computed as :

vi =

√√√√ l∑
j=1

(x(i+(j−1)×d)%m − sj)2 (3.7)

To give a visual intuition, we can see this as wrapping the time series around a circle, as
represented in Figure 3.10, and sliding the shapelet (projected into this 2D space) around
the circle until it has used all points (i.e. from 1 to m) as starting points.

Another advantage of this operation is that all points of X will be used in the distance
computations exactly l times, whereas without phase invariance, indexes 1 from (l−1)×d
(respectively for m−(l−1)×d to m) are seen less often. The sampling process for shapelets
can also be adapted for phase invariance, by considering candidates starting at indexes
[1,m] rather than only in indexes [1,m− (l − 1)× d]. This also apply to α similarity, by
extending the size of the Boolean mask of each sample from m− (l − 1)× d to m.

While, due to lack of time, we do not explore this possibility in this thesis, interesting
optimization could be made with this property. When using phase invariance, the length
of the distance vector is a constant equal to the number of timestamp m, independently
of the length and dilation parameter of the shapelet. This could allow for significative
speed-up, by transitioning to large matrix operation computed on a GPU, if the cost of
transferring the data is worth it (i.e. for big datasets).

40

3.6. INVARIANCE PROPERTIES AND ROBUSTNESS FOR SHAPELETS

Figure 3.10: An example from the StarLightCurves dataset, wrapped around a circle.

3.6.2 Robustness to complexity

We can also apply the complexity invariance correction, simply by modifying the distance
function used to compute the value of each point of the distance vector between a shapelet
and a time series. As described by [8], this distance function becomes:

vi = CF (S,X i,l,d)×

√√√√ l∑
j=1

(x(i+(j−1)×d) − sj)2 (3.8)

with CF the complexity correction factor computed as described in Section 2.3.7. The
impact of this addition is presented in the experimental section.

3.6.3 Robustness to noise

To the best of our knowledge, dealing with noise on a local level (i.e. at each step of the
sliding window used by the shapelets) has not been studied. It is more common to apply
a filter on the whole time series as a preprocessing step, to try to filter out a noise process
(e.g., Gaussian noise) that has been applied to the data. The best kind of filter to be
used is entirely dependent on the data, and thus, on expert or domain knowledge.

A possible solution without prior knowledge, at the expense of time complexity, could
be to apply multiple filters on the training data, and select the one that maximize training
accuracy in a leave-one-out validation, or to perform a Discrete Fourier Transform and
select discriminative Fourier coefficients, for example with a one-way ANOVA test.

We can also use an ensemble of classifiers using different input representations, with
a weighted majority voting, based on classification accuracy on training data, using for
example a leave-one-out cross validation, in order to favour discriminative representations.
We explore the use of an ensemble classifier in our experimental section, using diverse
representations of the inputs, notably in the frequency domain, in an attempt to gain
robustness toward noise.

41

3.7. GENERALIZATION OF RDST

3.7 Generalization of RDST

Multiple extensions to the multivariate context have already been proposed by [12]. Due
to the modifications of the shapelet formulation and the new feature we extract, and
based on the previous results of [12], we focus on the time-dependent method, where a
multivariate shapelet is slided across the series, rather than a time-independent method,
where each feature is computed independently (i.e. the best match is found independently
for each feature rather than globally on all features). Both approaches are illustrated in
Figure 3.11

Figure 3.11: Example of (a) time dependent shapelet and (b) time independent shapelet
in black, with the moving window positioned on the best match between the shapelet and
the time series illustrated in grey

In the multivariate context, a time series with k features is defined as X =
{(x1,1, . . . , x1,k), . . . , (xm,1, . . . , xm,k)}, with xi,j the value at index i for feature j.
Similarly, a multivariate shapelet of length l with k features is defined as S =
{(s1,1, . . . , s1,k), . . . , (sl,1, . . . , sl,k)}.

To adapt RDST to the multivariate context, when creating a shapelet, we randomly
sample a subset of the input features, with the size of the subset randomly selected from
[1, k] (i.e., univariate up to all the features of the input series), we denote this subset as
F = {f1, . . .} and the associated shapelet as S = {(s1,1, . . . , s1,||F ||), . . . , (sl,1, . . . , sl,||F ||)}.
Figure 3.12 shows an example of such shapelets. For the multivariate context, the distance
vector VS,X = {v1, . . . , vm−(l−1)×d}, with fq the qth selected feature, is then computed as:

vi =

||F ||∑
q=1

√√√√ l∑
j=1

(xi+(j−1)×d,fq − sj,q)2 (3.9)

If S uses z-normalization, all subsequences of X are z-normalized independently of each
other and for each feature prior to the distance computation.

42

3.7. GENERALIZATION OF RDST

Figure 3.12: Example of two multivariate shapelets (black and fuchsia) created by RDST,
with each shapelet affected to a specific subset of features

3.7.1 α-similarity for multivariate shapelets

We also need to adapt the notion of α-similarity presented in Section 3.5 to the case of
multivariate data.

Consider S = {S1, . . . , Sp} a set of multivariate shapelets, with L the set of possible
lengths. We consider that S was already sampled from X = {X1, . . . Xn} with Xi =
{(x1,1, . . . , x1,k), . . . , (xm,1, . . . , xm,k)}, a set of multivariate time series of size m with k
features.

The Boolean mask Bd,norm = {B1, . . . , Bn} defined for each pair of dilation
d and normalization norm, is extended to the multivariate context as Bi =
{(b1,1, . . . , b1,k), . . . , (bm−(min(L)−1)×d,1, . . . , bm−(min(L)−1)×d,k)}. Similarly to the univariate
version, it is shared by all shapelets with parameters d and norm, independently of their
length or the subset of feature they use.

Given i ∈ [1, n] the sample index, j ∈ [1,m − (l − 1) × d] the timestamp index and
F the subset of input features used, the multidimensional sampling point is considered
as valid if the condition described by Equation 3.10 is true, with I the identity function
(I(True) = 1 and I(False) = 0).

max(1, ||F ||α) ≥
||F ||∑
q=1

I(bj,fq) | Bi ∈ Bd,norm (3.10)

In other words, a proportion of at least α (e.g. 0.5) of the ||F || selected points must
be True for this multidimensional sampling point to be valid. The mask is then updated
similarly to the univariate version for each fq ∈ F .

3.7.2 Extension to variable length time series

To adapt to variable length time series, given mi the length of the series Xi, we do not have
to modify the computation of the distance vector VS,Xi

. A shapelet can still be applied

43

3.8. PARALLELIZATION AND OPTIMIZATION OF RDST

by sliding it across Xi, independently of the length of the other series in the dataset. In
terms of adaptation for RDST, we need to perform some minor modifications:

• Take as input a parameter min_len, giving the minimum possible length of a time
series, to cover the case where such series of minimal length are not included in the
training data. If a series is smaller than min_len, it will be rejected, and we should
have l ≤ min_len, ∀ l ∈ L.

• When sampling the dilation parameter of a shapelet, we need to consider the new
parameter min_len as d = ⌊2x⌋ with x uniformly drawn in [0, log2

min_len

l
]. Sam-

pling dilation with the length of a series mi might lead to shapelets longer than
other series where mi >> mj, making the Euclidean distance impossible to apply.

• The length of the Boolean mask used for α-similarity is now variable between each
sample.

Additionally, considering a specific use case, if biases can be introduced based on the length
of the series (i.e. if the distribution of the length of the series is different between classes
but should not be considered as discriminative), we have to normalize argminVS,Xi

and
the Shapelet Occurrence feature by dividing them by mi, in order to remove the influence
of the length of the series in the features generated by the shapelets.

3.8 Parallelization and optimization of RDST

In this section, we detail the implementation of RDST and how it has been optimized. To
improve the overall efficiency of our method compared to a pure Python implementation,
we use Numba [43], a Python compiler, capable of generating optimized machine code
from Python-like code. Further improvements are made possible with the use of Numba,
notably, parallelism and vectorization with the Single Instruction Multiple Data (SIMD)
protocol.

The goal of parallel computing is to perform operations simultaneously on different
computing units, and to regroup the results once all operations are done. The idea behind
the use of parallelism is that large problems can often be divided into smaller, and ideally
independent ones, which can be solved on different computing units.

One constraint when implementing a parallel algorithm is to choose whether we need
to use processes or threads. The main difference between the two is that all threads use
the same memory space, while each process makes a copy of the data needed to per-
form the task. Processes are less prone to errors compared to threads as they have their
own memory space, and thus are unlikely to run into race conditions when modifying
the memory space, but they consume more resources due to the data copy. When using
Numba, threads are used as the default paradigm for parallelization. This is not a prob-
lem as RDST is easy to parallelize, as in some “for” loops, all iterations are completely
independent of each others.

Given n the number of samples, m the number of timestamps, L̄ the mean of the
possible shapelet lengths, and nshp the number of shapelets, we estimate the time com-
plexity using the O notation. For the shapelet initialization, described by Algorithm 2, as
O(L̄nshpm), and for the shapelet transform, described by Algorithm 3, as O(L̄nshpmn).

44

3.8. PARALLELIZATION AND OPTIMIZATION OF RDST

While the changes we present in the following sections do not change the O notation, they
influence the hidden factors affected to each variable, and parallelization divide it by the
number of cores available on the machine.

3.8.1 Shapelet initialization

In Algorithm 2, which describes how RDST initialize the shapelets, each shapelet initial-
ization is independent of the others, and only read operations are performed on the data
shared by the iterations of the loop (i.e. X and Y). This makes the loop iterating on
the number of shapelets an ideal candidate for parallelization, as it does not have any
synchronization issue or race conditions between threads.

A synchronization problem is although introduced when using α similarity, as shapelets
with similar parameters share the same Boolean mask, and the sampling location of one
shapelet depends on the locations of the previous ones. To bypass this problem, we
implement the parallelism on a loop iterating on the shapelet parameters, as described by
Algorithm 4, so that each thread manages one set of dilation and normalization parameter
and its associated Boolean mask.

Algorithm 4 initialize_shapelets parallel (X , Y, nshp, L, Pnorm, pmin, pmax, α)

n,m← shape(X)
Lengths← random_uniform(L, size← nshp)
powers← random_uniform([0, log2(n/Lengths)])
Dilations← ⌊2powers⌋
Normalize← random_uniform([0, 1], size← nshp) ≤ Pnorm

Thresholds← empty_array(size← nshp)
V alues← empty_array(size← (nshp,max(L)))

for (d, norm) ∈ Combinations(Dilations,Normalize) do ▷ Do this loop in parallel
mask ← array(True, size← (n,m− (min(L)− 1)× d))
Ishps ← where(Dilations = d ∧ Normalize = norm)
for ishp ∈ Ishps do ▷ If mask all false, break the loop

ix, it ← random_uniform(where(mask = True))
l← Lengths[ishp]
mask ← update_mask(mask, ix, it, l, d, α)
val← X it,l,d

ix

if norm then
val←z_normalize(val)

end if
iλ ←random_uniform(where(Y = yix))
λ← get_threshold(Xiλ , val, l, d, norm, pmin, pmax)
V alues[ishp, : l]← val
Thresholds[ishp]← λ

end for
end for
I ← where(Thresholds ̸= ∅) ▷ Index of shapelets not skipped due mask all False
return Lengths[I], Dilations[I], Normalize[I], Thresholds[I], V alues[I]

45

3.8. PARALLELIZATION AND OPTIMIZATION OF RDST

3.8.2 Shapelet Transformation

Similarly to the shapelet initialization, the computation of the distance vectors VS,X and
the extraction of the three features can be made in parallel. Additionally, we should
be careful of not computing the same operation multiple times. For example, if we use
an outer loop iterating through each shapelet and an inner loop iterating through the
time series, if a shapelet Si use normalization, we will normalize each time series in the
inner loop. If another shapelet Sj, with the same length and dilation parameter, also use
normalization, we will need to compute the normalization again. We could of course cache
the normalized dataset for each combination of parameters l, d, but this would massively
increase the memory usage.

To address both of these points, we implement parallelization on an outer loop iter-
ating through each sample, then an inner loop, which can also be parallelized, iterates
through the combinations of length l and dilation d in the set of shapelets. After extract-
ing the subsequences of size l, d from a sample X, we extract features for non-normalized
shapelets, and if some shapelets with (l, d) use normalization, we z-normalize each subse-
quence. Algorithm 5 describes our parallel implementation of the shapelet transformation.

3.8.3 Distance computation and normalization

In RDST, excluding operations on indexes and the random choices, we can distinguish
two kinds of mathematical operations that are repeated often, and thus are important to
optimize:

• the Euclidean distance between two vectors, which is used to compute the individual
points of each distance vector VS,X

• the z-normalization, which is used before the Euclidean distance for normalized
shapelets.

We can compare the efficiency of Numba against Numpy, a Python package dedicated
to efficient array operations and written in CPython, as well as against a pure Python
implementation. Numba and Numpy both make use of SIMD operations, and, for com-
puting a Euclidean distance, both theoretically have a similar time complexity. Figure
3.13 shows the implementation of the Euclidean distance for the three methods. The
python implementation uses the zip method, which takes a set of list as input, and give
an iterator. The ith element of this iterator is a set containing the ith elements of the lists
given as inputs.

In practice, the Numba function is faster compared to the Numpy function as it does
not have all the input checks and storage of some intermediate results that Numpy have,
hidden in the implementation of the functions it provides. This difference becomes less
noticeable the bigger the input arrays are (>10000).

Numba can push performance further by using the LLVM compiler [44] “fastmath”
option, which relaxes the IEEE standard for floating-point Arithmetic (IEEE 754) to
perform optimizations on sequences of arithmetic instructions, which under IEEE 754,
would lead to violations of the standard. The cost of this optimization is a small loss
of floating point precision in results, but the reduction in run-time is substantial. For
example, with the Euclidean distance, the mean difference from the true result was of

46

3.8. PARALLELIZATION AND OPTIMIZATION OF RDST

Algorithm 5 Transform parallel(Lengths,Dilations,Normalize, Thresholds, V alues)

n,m← shape(X)
nshp ← shape(Lengths)
Xnew ← empty_array(size← (n, 3× nshp))
param_combs← Combinations(Lengths,Dilations) ▷ Only existing combinations
ncomb ← shape(param_combs)[0]
param_indexes← empty_array(size← 2ncomb)
for i ∈ [1, ncomb] do

param_indexes[2i]← where (Dilations = d ∧ Lengths = l ∧ ¬Normalize)
param_indexes[2i+ 1]← where(Dilations = d ∧ Lengths = l ∧Normalize)

end for

for ix ∈ [1, n] do ▷ Do this in parallel
for i ∈ [1, ncomb] do ▷ Do this in parallel if more threads than samples

Subs← generate_subsequences(Xix , l, d) ▷ 2D array of size (m− (l − 1)× d, l)
for ishp ∈ param_indexes[2i] do

min, argmin, SO ← get_features(Subs, V alues[ishp, : l], Threshold[ishp])
iout ← 3× ishp
Xnew[ix, iout : (iout + 3)]← min, argmin, SO

end for
Ishps ← param_indexes[1 + 2i]
if Ishps ̸= ∅ then

Subs←z_normalize_2D(Subs) ▷ Each normalized independently
for ishp ∈ Ishps do

min, argmin, SO ← get_features(Subs, V alues[ishp, : l], Threshold[ishp])
iout ← 3× ishp
Xnew[ix, iout : (iout + 3)]← min, argmin, SO

end for
end if

end for
end for
return Xnew

1.06e−13 with arrays of size 10 to 10000, but was up to 5.3 times faster for larger arrays.
Table 3.1 gives a comparison of the mean performance of each approach with various
array size, for 100000 repetitions.

Table 3.1: Comparison of the mean performance of the Euclidean distance computation
using pure Python, Numpy and Numba with the fastmath option, for 100000 repetitions.

Array size Python Numpy Numba

10 4.66µs(+/- 148ns) 5.22µs(+/- 427ns) 303ns(+/- 10.2ns)
100 36.8µs(+/- 3.02µs) 5.06µs(+/- 186ns) 339ns(+/- 18.8ns)
1000 334.µs(+/- 1.54µs) 7.04µs(+/- 100ns) 408ns(+/- 10.6ns)
10000 3.56ms(+/- 238µs) 16.2µs(+/- 508ns) 2.08µs(+/- 36.3ns)

47

3.8. PARALLELIZATION AND OPTIMIZATION OF RDST

Figure 3.13: Implementation of the Euclidean distance using pure Python, Numpy and
Numba.

Concerning z-normalization, some gains can be obtained by reducing the number of
time the array is iterated through. Consider the case where, given a vector X, we want
to extract X i,l,d and z-normalize it. In a naïve implementation, we would extract the
subsequence, and then, call two functions on the subsequence to obtain the mean and
the standard deviation, which would lead to a total of 3 iterations over the array. We
can extract all those information in one iteration by storing the sum and the squared
sum of each point from the subsequence we extract, as the standard deviation σ can be
equivalently computed as :

σ =

√√√√ 1

n

n∑
i

(xi − µ)2 =

√∑n
i x

2
i

n
− µ2 (3.11)

Figure 3.14 gives the implementation of the two cases and Table 3.2 shows the difference
in performance for a loop of varying size.

Table 3.2: Comparison of the mean performance of the normalization of a subsequence of
a vector using in loop sums and functions called after the loop, for 100000 repetitions.

Array size with sums in loop with functions after loop

10 865ns(+/- 25ns) 904ns(+/- 62ns)
100 981ns(+/- 27ns) 1.01µs(+/- 12ns)
1000 2.18µs(+/- 35ns) 2.41µs(+/- 49ns)
10000 14.1µs(+/- 97ns) 17.6µs(+/- 99ns)

48

3.9. EXPERIMENTS

Figure 3.14: Implementation of a function extracting a subsequence from a vector and
normalizing it, one storing the sums to compute the normalization, the other directly
calling two functions to obtain the mean and standard deviation

3.9 Experiments

In this section, we perform an empirical validation of our contributions and provide an-
swers to the following questions:

• What is the sensitivity of the parameters of RDST, and how do they influence its
accuracy? (see Section 3.9.1)

• Is there any advantage to use a squared Euclidean distance or a Manhattan distance
compared to the Euclidean distance? (see Section 3.9.2)

• What is the individual impact of each contribution on the performance of RDST?
Which are worth keeping, and which one should we discard? (see Section 3.9.3)

• What is the time complexity of our method, and how the optimization we propose
perform against the speed-up techniques proposed in the literature? (see Section
3.9.7)

• How does our method perform in terms of accuracy compared to the existing state
of the art? Can we further improve the performance of our method by using an
ensemble scheme ? (see Section 3.9.8)

49

3.9. EXPERIMENTS

All experiments were run on a DELL PowerEdge R730 on Debian 9 with 2 XEON
E5-2630 Corei7 (92 cores) and 64 GB of RAM. To benchmark our results against other
state-of-the-art methods, we use the 112 univariate datasets of the UCR archive [19] and
the 26 multivariate datasets from the UEA archive [3]. Those datasets are defined by
an original training and testing set for each problem, sometime introducing additional
difficulties (e.g. a small training set and huge testing set). Hence, the standard validation
protocol for this archive is to make n resamples rather than n folds, in order to preserve
the distribution of the classes and the sizes of the original training and testing sets.

3.9.1 Sensitivity analysis

We conduct a sensitivity analysis on the four input parameters of our algorithm and
their effect on classification accuracy on 40 datasets selected randomly out of the 112
univariate datasets. For each parameter analysis, all other parameters remain fixed at
the following arbitrary default values: nshp = 10000, Pnorm = 0.9, L = {7, 9, 11}, pmin = 5
and pmax = 15. Figure 3.15 and Figure 3.16 give the mean accuracy ranks of each set of
parameters over the 40 datasets averaged over 10 resamples.

Given the tested set of values, the most impactful parameter is the number of shapelets,
with a noticeable increase in performance above 10000 shapelets. All other parameters,
for the tested ranges, only show minor gains and thus seem to be stable on those 40
datasets. Based on those results, for all further experiments we set as default parameters
nshp = 10000, Pnorm = 0.8, L = {11}, pmin = 5 and pmax = 10.

Figure 3.15: Mean accuracy ranks for (a) different number of shapelets, and (b) different
shapelet lengths

Figure 3.16: Mean accuracy ranks for (a) different percentiles bounds, and (b) proportion
of z-normalized shapelets

3.9.2 Distance functions

In this section, we study the impact of using different distance functions for RDST. We
performed a 10-resample validation for the 112 univariate datasets with the following
distances :

50

3.9. EXPERIMENTS

• The Euclidean distance, as d(S,X i,l) =
√∑l

j=1(xi+j−1 − sj)2. This is the default
option for shapelet methods.

• The squared Euclidean distance, as d(S,X i,l) =
∑l

j=1(xi+j−1 − sj)
2, which will fur-

ther increase high pointwise differences (> 1) and reduce small pointwise differences
(< 1). This will influence the distance vector computation and the value of the
minimum.

• The Manhattan distance, or L1 norm, as d(S,X i,l) =
∑l

j=1 |xi+j−1 − sj|, which
requires fewer operations and should thus be faster than the Euclidean distance.

Figure 3.17 gives the critical difference diagram for those three variations, and 3.18 the
pairwise accuracy plot. While there is no extreme difference in accuracy in any dataset,
a difference in run-time is noticeable. The Manhattan distance took on average 3081.43
seconds to evaluate a single resample of each of the 112 datasets, while the Euclidean
distance took 3604.77 seconds and the squared Euclidean distance 4036.11. While the
distance computation squared Euclidean distance by itself is faster than the Euclidean
distance, it makes the algorithm manage distance vectors with bigger numbers, which
slow down the following operations. This may be due to some optimization performed by
the LLVM compiler on small numbers (e.g. storing them with 8 bits rather than 64 bits).

On average for all datasets, the Manhattan distance was 38% faster than the squared
Euclidean distance, and 16% faster than the Euclidean distance. Considering those re-
sults, we choose to use the Manhattan distance as the distance function in the following
experiments.

Figure 3.17: Critical difference diagram of the accuracy rank for RDST using the squared
Euclidean, Euclidean and Manhattan distances.

3.9.3 Impact of individual contributions

We compare with critical diagrams the accuracy gain of each of our contributions by
implementing multiple variations of RDST, each using different contributions, as presented
by Table 3.3. Each variation, independently of the component it uses, follows the same
algorithm as RDST, which can be summarized in 4 steps as:

1. Generate the set of input shapelets S using a random selection, which for some
variations will be influenced by α similarity.

2. Compute all the distance vectors VS,X and extract features from it. The variations
not using the Shapelet Occurrence feature will only extract min and argmin.

3. Standardize each feature independently and train a Ridge classifier.

51

3.9. EXPERIMENTS

Figure 3.18: Pairwise accuracy plot for RDST using the Euclidean distance against RDST
with the squared Euclidean and Manhattan distances, a margin of +/- 1.25% of accuracy
to count draws. Both figures share the y-axis.

4. When predicting, standardize the features using the mean and standard deviation
used on the training data, and use the fitted Ridge classifier.

We define a baseline method, denoted RST baseline, which do not include our contri-
bution. It randomly samples shapelets from the input and extract the min and argmin
from each distance vectors, and uses a Ridge classifier. Figure 3.19 shows how the RST
baseline, compares to the state of the art. The critical diagrams we use in this section are
built on the result of a 10-resample validation on the 112 datasets of the UCR archive.
We also give pairwise accuracy plots to look at the performance on individual datasets
against RST baseline and RDST.

Table 3.3: What are the contributions used by each variation of RDST that are used to
study the impact of individual contributions

Name Dilation Shapelet α similarity input
Occurrence subsampling

RST baseline

RST + dilation ✓

RST + lambda ✓

RDST ✓ ✓

RDST + alpha=x ✓ ✓ ✓

RDST + sub=y + alpha=x ✓ ✓ ✓ ✓

52

3.9. EXPERIMENTS

Figure 3.19: How does the RST baseline perform against the state of the art for accuracy
on 10-fold resamples on the UCR archive.

Dilation

Adding the notion of dilation to the baseline already provides significative improvements
on most dataset types, as shown by Figure 3.20. The highest increase between the baseline
and the version with dilation is on the PigCVP dataset, with a mean gain of 36% accuracy,
other datasets with a difference of at least 25% accuracy are shown in Figure 3.21, with
the Win-Draw-Loss count in the top right made with a margin of 2.5% for draws.

Figure 3.20: Critical difference diagram for a version with dilation against both baselines

Figure 3.21: Pairwise accuracy plots for adding dilation against (a) RST baseline, which
doesn’t use dilation and (b) against RDST which use dilation and the Shapelet Occurrence
feature, with a margin of +/- 2.5% of accuracy to count draws. Figure (b) share the y-axis
of Figure (a).

53

3.9. EXPERIMENTS

Shapelet occurrence feature

The addition of the shapelet occurrence feature with the lambda threshold also represent
a significative improvement compared to the simple baseline, as shown by Figure 3.22.
Though, looking at the pairwise accuracy plot on Figure 3.23, we see that it has more
important losses against RDST compared to the addition of dilation. The highest increase
between the simple baseline and the version with lambda threshold is again on the PigCVP
dataset, this time with a gain of 16.9% accuracy.

Figure 3.22: Critical difference diagram for a version with the lambda threshold against
both baselines

Figure 3.23: Pairwise accuracy plots for adding the lambda threshold to compute shapelet
occurrence compared to the two baselines, with a margin of +/- 2.5% of accuracy to count
draws. Both figures share the y-axis.

3.9.4 Shapelet sampling

We compare the notion of α-similarity with α = 1, which is equivalent to the definition
of self-similarity, and with α = 0.5. Figure 3.24 shows that both variations give similar
results, with α = 1 and α = 0.5, having a lower mean rank than RDST. Looking at the
pairwise accuracy plot of Figure 3.25, built with a very small margin of 0.5% accuracy for
draws, we see that the higher mean rank for RDST is only due to gains below this 0.5%
threshold, confirming that both approaches are similar in terms of accuracy.

54

3.9. EXPERIMENTS

Figure 3.24: Critical difference diagram for RDST using shapelet sampling, with α = 0.5
and α = 1.0

Figure 3.25: Pairwise accuracy plots for adding shapelet sampling, occurrence compared
to the two baselines, with a margin of +/- 0.5% of accuracy to count draws.

Input subsampling

Similarly to shapelet sampling, we compare a stratified input subsampling (on the input
time series) of 50% with shapelet sampling with α = 1 and α = 0.5. Using subsampling
with α = 0.5 do not produce any significant changes over the accuracy of RDST, as shown
in Figure 3.26, but α = 1 appears to be worse. The lower mean rank for a subsampling of
50% with α = 0.5 is due to minor gains around 0.5% accuracy, as shown by the pairwise
accuracy plot in Figure 3.27.

Figure 3.26: Critical difference diagram for RDST using input subsampling, with α = 0.5
and α = 1.0

55

3.9. EXPERIMENTS

Figure 3.27: Pairwise accuracy plots for adding input subsampling, occurrence compared
to the two baselines, with a margin of +/- 0.5% of accuracy to count draws.

Impact on run-time

While the addition of shapelet sampling and input subsampling does not improve the
average accuracy, they have an impact on run-time. Figure 3.28 shows the sum of the
total time needed to evaluate one resample of all datasets, which are grouped in bins on
the total number of points (n×m).

For small datasets, using α-similarity makes the method faster, this is due to a
smaller number of shapelets being extracted compared to RDST. In small datasets,
the search space of some combination of dilation and normalization is small enough
for the whole Boolean mask used by α-similarity to be marked as False (i.e. no more
sampling points are available), thus leading to the total number of shapelets being
less than 10000. These advantages do not hold for bigger datasets, as the number of
shapelets sampled will come closer to RDST as the whole Boolean mask cannot be
False, and the added time complexity of the sampling techniques will not be compensated.

An intuition arising from those results might be that the sampling variations only
have an advantage of accuracy for bigger datasets, due to their higher chance of sampling
a more diversified set of shapelets. Table 3.4 gives accuracy results on the 3 biggest (for
n×m) datasets of the UCR archive for each sampling variation, and there is no difference
in accuracy. In conclusion, α-similarity is a parameter to be tuned depending on the
length of the data and on the number of shapelets to sample. Using input subsampling
could help to further reduce the number of candidates, in order to have a higher chance
of randomly sampling good shapelets, for big datasets without subclasses. While the
positive impact of those parameters cannot be felt on the UCR archive, it might be worth
considering other datasets.

Considering the above results, we use α = 0.5 without input subsampling by default
for RDST in the following. It does not significantly decrease the accuracy, but prevent

56

3.9. EXPERIMENTS

Figure 3.28: Total run-times (fit+predict) for one resample of all UCR datasets for each
sampling and subsampling variations. Dataset are grouped by bins depending on their
number of samples times their number of timestamps. Each bin contains the sum of all
run-times for datasets in this bin. The number in parentheses are the number of dataset
in the bin.

Table 3.4: Mean accuracy results for 10 resamples for the 3 biggest (for n×m) datasets
of the UCR archive for all sampling and subsampling variations

HandOutlines StarLightCurves UWaveGestureLibraryAll

RDST 0.955(+/-0.01) 0.980(+/-0.01) 0.981(+/-0.01)
RDSTsub=0.5 alpha=0.5 0.952(+/-0.01) 0.980(+/-0.01) 0.981(+/-0.01)
RDSTsub=0.5 alpha=1.0 0.952(+/-0.01) 0.980(+/-0.01) 0.981(+/-0.02)
RDSTalpha=1.0 0.952(+/-0.01) 0.980(+/-0.01) 0.981(+/-0.01)
RDSTalpha=0.5 0.952(+/-0.01) 0.980(+/-0.01) 0.981(+/-0.01)

the bad case scenarios of the fully random search of RDST, which could, considering the
worst outcome, even if it is unlikely, sample the same point for all shapelets.

57

3.9. EXPERIMENTS

3.9.5 Invariance properties and robustness

We now look at the impact of adding either phase invariance (Phase) or robustness to
complexity (CID) to our formulation. In terms of performance, Figure 3.29 does not show
any significative change in the global accuracy for both additions. Locally, Figure 3.30
shows that phase invariance has a mean accuracy at least 2.5% higher on 3 datasets,
which are Lightning7, BME and SemgHandMovementCh2.

BME is a synthetic data set with three classes: one class is characterized by a small
positive bell at the beginning, the other at the end, and one does not have any bell.
All series have a central plate, which may be positive or negative. Phase invariance
may allow to sample shapelets that ignore the shape of the central plate and only focus
on the start and the end of the signal. The other two datasets are power spectrums,
which give the amplitudes associated with the frequencies composing the time series. For
power spectrums, we suppose phase invariance helps by identifying discriminative patterns
composed of both high and low frequencies (i.e. a pattern “looping” from the end to the
beginning of the power spectrum).

Let us recall that the robustness to complexity multiplies the Euclidean distance be-
tween a shapelet and a subsequence by a correction factor, which for each vector computes
the length of the “flattened” first order difference, and then computes a ratio between those
two values, giving an estimate of the difference in complexity between the two vectors.

Adding this correction factor makes results worse by 4% on the SmoothSubspace
dataset, which is a simulated dataset where each class is distinguished by a pattern at
either the beginning, the middle, or the end, and the rest of the series are filled with
random values. The length of the time series of this dataset being of 15 with discriminant
patterns of size 5. As we use shapelets of size 11, the use of the correction factor may
give worse results when the discriminant pattern is less represented than noise inside the
shapelets. In the case of SmoothSubspace, the contribution of the noise (6 points) to the
correction factor can be greater than the discriminant pattern (5 points).

Figure 3.29: Critical difference diagram for RDST with phase invariance and RDST with
complexity invariance against RDST.

In terms of impact on the run-time, given the total time needed to evaluate one resam-
ple of the 112 univariate datasets of the UCR archive, using RDST with this correction
factor is 2.44 times slower than RDST, and phase invariance is 1.43 times slower. As
robustness to complexity does not give any significative improvement on accuracy and
adds noticeable time complexity, we choose not to include it.

Concerning phase invariance, it may be interesting when dealing with some types of
data. Even if it does not show significative improvement on accuracy on the UCR archive,
we think that increasing the diversity of cases that can be handled by the method is
important. Additionally, the fact that phase invariance makes all distance vector VS,X of

58

3.9. EXPERIMENTS

Figure 3.30: Pairwise accuracy plot for both phase and complexity invariance against
RDST, with a margin of +/- 2.5% of accuracy to count draws.

size m, independently of the parameter of S, could be exploited in future works to provide
further optimization of run-time.

In the following, we include phase invariance and α-similarity, with α = 0.5, as
default when using the term RDST.

3.9.6 Optimizing the λ threshold

To evaluate the performance of our heuristic to set the λ threshold, we compare it with a
version of RDST that sets the λ threshold using information gain computed with the Gini
impurity, testing all possible values and selecting the one that maximizes the information
gain. Figure 3.31 shows the pairwise accuracy plot for the version optimizing the λ
threshold (RDST + IFG) and RDST (both using phase invariance and α-similarity).

The use of information gain particularly increases the performance for one dataset
where RDST fails to perform correctly compared to the state of the art, which is PigAir-
wayPressure. Although it has a better mean rank over all the datasets, the difference in
accuracy is not statistically significative.

The impact on run-time, on the other hand, is extremely significant. Table 3.5 shows
the increase in time needed to fit and predict a single resample of all 112 datasets, com-
pared to the base formulation of RDST without phase invariance or α-similarity, denoted
RDSTBASE. Using RDST + IFG cause an increase of 2111% compared to RDSTBASE,
to only gain on the mean accuracy rank of the method, without significative differences.
Considering those results, we consider our heuristic for the λ threshold as satisfying, and
we keep it as the default option for RDST to preserve scalability.

59

3.9. EXPERIMENTS

Figure 3.31: Pairwise accuracy plot for RDST using Information gain to set the λ threshold
(RDST + IFG) against RDST, with a margin of +/- 2.5% of accuracy to count draws.

Table 3.5: Increase in time needed to fit and predict one resample for the 112 datasets of
the UCR archive, compared to the base formulation of RDST without phase invariance
or α-similarity, denoted RDSTBASE

Run-time Compared to RDSTBASE

RDSTBASE 3081.43 +0.00%
RDST 4412.57 +43.1%
RDSTIFG 65076.28 +2111%

3.9.7 Time complexity

In this section, we study the impact of material acceleration against early abandon meth-
ods, and compare the scalability of RDST (with phase invariance and α = 0.5), against
state-of-the-art algorithms.

Impact of material acceleration

We compare the impact of early abandon, which stops the evaluation of the distance for a
point vi ∈ VS,X if at any step of the sum of pointwise differences, vi > min{v1, . . . , vi−1},
against material acceleration, by using a vectorized sum as shown in Section 3.8.3. Figure
3.32 shows the total time needed to compute VS,X using a randomly sampled shapelet on
43 datasets of the UCR archive, averaged over 10 runs for 100 different shapelets and for
different shapelet sizes (relative to the input length).

This experiment was performed with multiple variations, which all are implemented
in pure Python, and with Numba [43], the Python compiler we introduced in Section 3.8.
The variations we compare are :

60

3.9. EXPERIMENTS

• “no speed-up” : VS,X is fully computed,

• “early abandon” : the evaluation of vi ∈ VS,X can be stopped if at any step of the
distance computation vi > min{v1, . . . , vi−1}

• “early abandon + random order”: Similar to early abandon, but the point of
VS,X are not computed in order as v1, . . . , vn, but in a random order, for exam-
ple {v9, vn, v3, . . . v2}.

The idea behind early abandon with random ordering is that if we have
vi+1 < vi ∀i ∈ [1, n[, we will never skip any distance computation without random
ordering. In other words, on average, it increases the number of operations skipped by
early abandon, as shown by [10]. Vectorization can only be used in “no speed-up Numba”,
as early abandon require a check on each step of the distance computation, which makes
it impossible to simultaneously compute part of the sum with vectorization as each step
depends on the previous ones.

Figure 3.32: Total time to slide a randomly sampled shapelet, for different shapelet sizes
(relative to the input length as ⌊m × l⌋), on 43 datasets of the UCR archive, averaged
over 10 runs for 100 different shapelets. The number next to each point is its rank.

We see that, for the Python implementation, the early abandon with random order is
always faster than the two other Python methods, but using any early abandon technique
does not seem to be faster than using vectorization, as the “no speed-up Numba” is always

61

3.9. EXPERIMENTS

faster for Numba methods. This is an important result, because the more diverse the set of
features extracted from the distance vector, the harder it becomes to apply early abandon
techniques. This result shows that we can ignore early abandon in our formulation without
loosing performance for our experiments on the UCR archive, as we rely on optimization
made at the compiler level.

Another trend in these results is that the early abandon with random order becomes
more efficient as the shapelet size grows. This does not affect the result of our experiments,
as we use a fixed length for all dataset.

Scalability of RDST

We perform a comparison of the scalability of RDST (with α = 0.5 and phase invariance)
against Hive-Cote 1.0 (HC1), Hive-Cote 2.0 (HC2), DrCIF, ROCKET, and the Shapelet
Transform Classifier (STC). Note that when used as a component in HC1 and HC2, STC is
by default subject to a time contract of two hours. Except from this default configuration
in HC1 and HC2, we are not setting any time contract in other algorithms. Both STC
and RDST are by default sampling 10000 shapelets, and ROCKET use 10000 kernels.

We are aware that the runtime of HC1, HC2 and STC could be reduced with time
contracts. But, as our goal in this section is to contextualize the gain in classification
accuracy against the time complexity of each method, we present these results with the
parameters used to generate the accuracy results of the next section.

We use the Crop Dataset and the Rock Dataset of the UCR archive for evaluating the
scalability respectively on the number of time series and their length. As all competing
algorithms implemented in the sktime package [54] can use parallel processing, we set each
algorithm to use 90 cores. Figure 3.33 reports the mean training time over 10 resamples,
showing the very competitive scalability of RDST, even with the added time complexity
of the α-similarity and phase invariance.

Figure 3.33: Result of the scalability study of the competing algorithms for current state-
of-the-art, for (a) number of time series and (b) time series of increasing length. The
Y-axis uses log-scale.

62

3.9. EXPERIMENTS

3.9.8 Comparison to the state of the art

Results for univariate datasets

We present the results of our comparative study using the mean accuracy over 30 resamples
for each of the 112 datasets, and compare our approach against the state of the art. Figure
3.34 gives the critical diagram resulting from this experiment, and Figure 3.35 gives a
pairwise accuracy plot for RDST against Hive Cote 2.0 (HC2) and MultiRocket. Figures
splitting the critical difference diagram in two, for datasets used in the sensitivity analysis
and the others, are given in Appendix A.

Figure 3.34: Mean accuracy ranks of each method for the 112 datasets of the UCR archive,
including RDST.

Figure 3.35: Pairwise accuracy plot for the 112 datasets, for HC2 and MultiRocket against
RDST, with a margin of +/- 1% of accuracy to count draws.

Given the scalability of RDST, having an accuracy comparable to the prior develop-
ments of HC2, ROCKET and deep learning approaches (InceptionTime) is a promising
result for a shapelet-based method. For reference, using RDST without any distance nor-
malization is equivalent to STC in terms of mean accuracy rank, with the same protocol
as above.

63

3.9. EXPERIMENTS

Ensemble scheme

Similarly to Supervised Time Series Forest [14], we can create a simple ensemble scheme
by using different representations of the inputs, in order to enhance the range of discrim-
inative features we can extract from the data. To adapt RDST as an ensemble scheme,
we apply RDST independently to the following representations:

• Base representation: to focus on patterns already existing in the original represen-
tation of the inputs.

• First order difference: the rate of changes between points can give additional in-
formation such as the slope of the series. It may also highlight some outliers or
patterns compared to the base representation.

• Periodogram: a periodogram is an estimate of the spectral density of a signal, which
by relying on Fourier analysis, quantify the relative strengths (i.e. power) of the
various frequencies composing the signal.

For the voting scheme, we use the weighted majority voting system described in HIVE
COTE 2.0 [58], which weights each classifier by its accuracy using a cross validation setting
on the training data. This accuracy score (between 0 and 1) is then raised to the power
4 to penalize classifiers with low accuracy. We denote this method by “RDST Ensemble”
in the following, and use a leave-one-out cross validation on the training data to estimate
the weight of each representation. Figure 3.36 gives a visual representation of how RDST
ensemble perform class prediction for a time series X

Figure 3.36: Visual representation of RDST ensemble, and how it predicts the class ŷ of
a time series X.

Figure 3.37 gives the critical diagram for the 112 univariate datasets of the UCR
archive, and 3.38 the pairwise accuracy plot for RDST Ensemble against MultiRocket
and HC2. They show that the ensemble scheme improves the performance of the method,
up to the point where it is considered to be equivalent to HC2 and MultiRocket by the
statistical test of the critical diagram.

In terms of impact on run-time, the non-ensemble version of RDST takes 4412 seconds
to fit and predict a single split of the 112 datasets, while RDST Ensemble takes 5470

64

3.9. EXPERIMENTS

seconds. This represents an increase of about 24% in runtime, which still keeps it amongst
the fastest algorithms in the state of the art. This low increase in runtime between the
two is due to the fact that we launch 3 independent processes each managing their own
thread pool, and that we re-use the results from the Ridge Classifier which internally uses
a leave-one-out validation to choose the strength of the L2 regularization.

Figure 3.37: Mean accuracy ranks of each method for the 112 datasets of the UCR archive,
including RDST Ensemble.

Figure 3.38: Pairwise accuracy plot for the 112 datasets, for HC2 and MultiRocket against
RDST Ensemble, with a margin of +/- 1.% of accuracy to count draws.

Results for multivariate datasets

The results of our comparative study for multivariate datasets, also using the mean ac-
curacy over 30 resamples for each of the 26 datasets, rank RDST ensemble similarly to
the univariate comparison. Figure 3.39 gives the critical diagram resulting from this ex-
periment, and Figure 3.40 gives a pairwise accuracy plot for RDST against Hive Cote 2.0
(HC2) and Arsenal.

65

3.10. CONCLUSION

Figure 3.39: Mean accuracy ranks of each method for the 26 multivariate datasets of the
UEA archive, including RDST Ensemble.

Figure 3.40: Pairwise accuracy plot for RDST Ensemble Against HC2 and Arsenal, for
the 26 multivariate dataset of the UEA archive.

3.10 Conclusion

In this chapter, we introduce a new shapelet based classification method, the Random
Dilated Shapelet Transform (RDST), as well as potential improvements for it through
the addition of phase invariance, input sampling techniques and an ensemble scheme,
leveraging different representations of the input, to further increase the performance of the
method. We showed, based on our experimental results, that this method is comparable
to state-of-the-art classifiers for time series classification, while also being amongst the
fastest. We also released our method as part of a Python package1 available to the public,
allowing all our experiments to be reproduced.

Many other improvements, notably on the scalability of the method, can be considered
for future works due to the addition of the phase invariance. As it makes all distance vector
VS,X of size m, independently of the parameters of S, additional optimization could be
explored in future works, such as transitioning to large matrix operations on GPUs for
extracting the features.

Other directions for increasing the accuracy of the method should focus on the shapelet

1https://github.com/baraline/convst

66

3.10. CONCLUSION

generation part. Exploring the search space for good candidate shapelets includes search-
ing for a combination of length, dilation, normalization, λ threshold, and the value of
the shapelet itself, which would result in an extremely slow method using an exhaustive
search. In future works, we want to focus on heuristics that would be able to estimate
the value of some of these parameters adaptively from the data.

More work is also needed on the adaptation to the multivariate context, particularly
on the shapelet generation and sampling, where solutions, rather than to be adapted
from the univariate context to more dimensions, must be specifically designed for the
multivariate context, which is more complex.

67

3.10. CONCLUSION

68

Chapter 4

Predictive Maintenance

Résumé du chapitre en français
Dans ce chapitre, nous introduisons le domaine de la maintenance prédictive, et montrons
comment on peut extraire un jeu de donnée adapté à une tâche de maintenance prédictive,
à partir des données émises par une machine. Ensuite, nous montrons comment la tâche
d’apprentissage est formulée pour ce type d’application, aussi bien pour les approches
de régression que de classification. Après cela, nous explorons les différentes approches
utilisées dans la littérature pour créer un modèle de maintenance prédictive, ainsi que
les différences entre les applications utilisant des données de capteurs et des journaux
d’événements. Nous définissions ensuite un protocole expérimental adapté aux probléma-
tiques de la maintenance prédictive, comprenant différents contextes d’évaluations pour
les modèles, ainsi qu’une méthode d’estimation du coût d’un système de maintenance pré-
dictive. Enfin, nous introduisons les domaines de la classification précoce et de l’analyse
de survie, qui seront utilisés dans nos contributions.

Chapter summary
In this chapter, we introduce the field of predictive maintenance and define a methodology
to extract datasets adapted to predictive maintenance tasks, from the data emitted by a
machine. We start with an introduction of the predictive maintenance problem and how
we can extract a predictive maintenance dataset from the data emitted by a machine.
We then give the formulation of the learning task related to the problem, for both
regression or classification methods. We then present the different approaches used in the
literature to create a predictive model for maintenance, as well as the differences between
applications using sensor data and event logs. We then define an experimental protocol
adapted to predictive maintenance applications, the different contexts of evaluation for
predictive models, as well as a method to estimate the cost of a predictive maintenance
system. We then introduce the fields of early classification and survival analysis, which
will be used in our contributions.

The main goal of predictive maintenance is to increase machine availability by mini-
mizing unplanned maintenance caused by machine failures. The knowledge of when and
why a machine is going to fail offers many benefits, such as a better maintenance plan-
ning, spare part management, and other cost optimizations related to the maintenance
process. Other benefits can be obtained depending on the use case: for example, in a

69

4.1. PROBLEM FORMULATION

factory predictive maintenance can lead to increased productivity, whereas in a hospital
it can reduce the downtime of medical equipments that may be critical to patient health.

The use case that motivated the thesis was a case of predictive maintenance for a
fleet of Automated Teller Machines (ATM). Given a set of machines from which we can
only collect software logs, we want to build a predictive maintenance model, capable of
predicting when and which module of the machine is going to fail. In this chapter, we
introduce the problem formulation and present the field of predictive maintenance, with
the different approaches used in the literature to solve predictive maintenance problems.
We then present the field of Early classification and Survival analysis, which both present
an interest for predictive maintenance applications and will be used in our contribution.

4.1 Problem formulation

In this section, we first introduce a problem formulation for predictive maintenance, which
tries to unify the formulations used across the literature. Although it may need to be
adapted for some specific tasks, we believe it is general enough to give the reader a good
comprehension of the problematics behind predictive maintenance applications.

Given a set of monitored machines, either with sensors to measure physical phe-
nomenons or by extracting software logs, the objective of a predictive maintenance model
is to raise an alert at a time t when a machine is going to fail at a time T > t. To make this
decision, the model uses the data emitted by a machine up to the time t. Ideally, the alert
should be given early enough for the maintenance team to perform maintenance before
the actual failure, but not too early, to avoid performing an unnecessary maintenance.

The ideal time for a maintenance alert to be raised depends on multiple factors, such
as the maintenance costs, the costs linked to the immobilization of the machine, etc. We
introduce a methodology to evaluate the cost of a maintenance alert in Section 4.3. This
cost can then be used to estimate the optimal time for a maintenance alert and to estimate
the cost of a predictive maintenance system during the evaluation of a model.

Note that in this chapter, we will consider time series X to be of the same length m
to simplify the notations. Due to the nature of the application, predictive maintenance
data will most often be of variable length. Every step of the data processing we present
can nevertheless be adapted to variable length time series without much difficulty.

4.1.1 Extracting a predictive maintenance dataset

Given the raw data emitted by a monitored machine, the first step toward building a
model to predict failures is to extract a dataset suited for this task. Let X a time series
X = {x1, . . . , xm}, representing the data emitted by a machine up to time m. If the
machine had at least one failure during the time interval [1,m], we can use X to extract
time series for a predictive maintenance dataset. Before extracting these series, we need
to answer some questions about the task we are trying to solve:

1. Should we predict which module will be responsible for the failure?

2. If X is multivariate, for example with a sensor measuring temperature and another
measuring pressure for multiple modules, are these features independent ?

70

4.1. PROBLEM FORMULATION

3. Do we have detailed maintenance logs allowing to know the cause of the failures and
the operations performed during the maintenances?

We call life cycles the subsequences extracted from X, that contain the data emitted by
a machine that is correctly functioning, starting after the end of the last failure, up to
the next failure. A life cycle is defined by a machine from which it is extracted, a time
interval, and if the cause of failure is known, a module. Depending on the characteristics
of the data, the process used to extract life cycle will vary. For example, if we have sensors
measuring temperature for neighbouring modules in a machine, it is likely that a rise of
temperature caused by one module will influence the value of the other sensors. In such
a case, isolating each module in independent life cycles only contain the data emitted by
each module could lead to false positives, due to changes in temperature possibly caused
by other modules.

Consider X = {x1, . . . , xm} the data emitted by a machine, that had two failures,
each defined by a start and end time (i.e. the moment of failure and the end of the
maintenance), as [t1, t2[for the first failure and [t3, t4[for the second, we can extract three
life cycles. The first one would be X1 = {x1, . . . , xt1−1}, the second X2 = {xt2 , . . . , xt3−1},
and the third X3 = {xt4 , . . . , xm}. In this case X3 does not end by a failure, and may not
be useable by some approaches due to the uncertainty of the failure time. An example
could be a regression model that would need to know the time remaining before failure
at each timestamp to use X3 during the training phase. Then, if the cause of failure is
known, we can affect it to its corresponding life cycles.

Finally, the formulation of the learning task will depend on the need to specify the
module responsible for the failure when raising maintenance alerts and of the type of model
used. For example, if we need to specify the cause of failure and we use a classification
model, we will need to formulate a multiclass problem or divide it into multiple binary
one versus all problems.

In the following, we show how the learning task can be formulated for both classifi-
cation and regression tasks, in the case where we do not need to predict the module
responsible for failure. We will show in Chapter 5 how the learning task can be adapted to
the case where the module causing the failure need to be identified. In the next sections, we
will use the notion of moving windows, which are subsequences extracted from a time se-
ries given a length parameter l. For example, given a time series X = {x1, . . . , xm}, we can
extract a set of moving windows W = {W1, . . . ,Wm−(l−1)}, with Wi = {xi, . . . , xi+(l−1)}.

4.1.2 Regression tasks

In a regression context, the goal is either to estimate the remaining time before the next
failure event, called the remaining useful life (RUL), or to estimate a health indicator,
which can be seen as a probability of failure. To raise predictive maintenance alerts, such
systems have to define thresholds on the predicted quantity below which the maintenance
process should be initiated.

For the case of RUL estimation, given a set of life cycles, the data used to learn the
estimator is most often extracted using a moving window scheme, with l the length of
each window Wi. A window Wi is then labelled by the remaining time before failure, as
shown by Figure 4.1.

71

4.1. PROBLEM FORMULATION

Figure 4.1: How a time series is sliced into multiple windows to create a dataset for a
regression task. Each window has for target value the remaining time before failure and
is of size l.

More formally, given a life cycle X = {x1, . . . , xm}, with the machine failing at time
tm+1, and a window size l, a set of moving windowsW = {W1, . . . ,Wm−(l−1)} is extracted,
with Wi = {xi, . . . , xi+(l−1)} one window and its target value yi = (m+ 1)− (i+ (l− 1)),
which represents the remaining time before failure. Multiple approaches exist to build
an estimator based on this data, one example could be to extract statistics from each
window and fit a linear regression. Once a regression model has been fitted, when new
data is received from a machine (either online or in batch), the most l recent data points
are used to extract the same features and to make a prediction.

4.1.3 Classification tasks

In a classification context, the goal is to estimate whether, at time t, a predictive main-
tenance alert should be raised. While a classification model for predictive maintenance
typically does not need to define thresholds as a regression model does, it must label data
in such a way that the model learns to identify data that is linked to a soon-to-happen
failure. Given a set of moving windows W = {W1, . . . ,Wm−(l−1)} extracted from a life
cycle X, the objective then becomes to choose how a window Wi should be labelled rel-
ative to its position to the end of X. This problem is usually solved by defining one or
multiple time intervals, which take into account the time needed to perform maintenance
once an alert is raised.

There does not seem to exist a consensus for the definition of those intervals in the
literature, we define those intervals based on the work of [73]. Let us consider a life
cycle X = {x1, . . . , xm} of length m, with a failure occurring at time tm+1. Similarly to
regression, a set of moving windows of size l, W = {W1, . . . ,Wm−(l−1)} is extracted. To
process W , let us first consider three time intervals related to the predictive maintenance
problem we are trying to solve:

• Responsive Duration (rd): a time interval reflecting the real-life time needed to
perform maintenance from the moment an alert is raised. This includes the time
needed to get on site and the time needed to perform maintenance.

• Predictive Padding (pp): a time interval reflecting how early, relative to the
occurrence of the failure, it is acceptable to raise a maintenance alert. An alert

72

4.1. PROBLEM FORMULATION

raised in this interval should give enough time to plan a maintenance operation at
an optimal time (e.g. when the machine is not used).

• Infected Interval (ii): a time interval that reflects the time needed to return to
normal behaviour after the end of the maintenance process. This interval is used to
remove potentially noisy data caused by a restart process.

Figure 4.2: Visualization of the three time intervals used by classification models for
predictive maintenance. The red bar represents a failure.

Figure 4.2 gives a visual representation of those intervals on an abstract timeline. The
Responsive Duration (rd) is placed right before the failure to illustrate that, if an alert
is raised in this interval, it is unlikely that we will be able to schedule a maintenance
operation before the failure happens.

Given those three intervals, we can now define how we process the set of moving
windows W = {W1, . . . ,Wm−(l−1)} extracted from a life cycle X with a failure occurring
at time tm+1. In a binary classification context, where we predict failure independently of
the cause, and where class 1 represents windows where we should raise an alert, the class
yi of window Wi = {xi, . . . , xi+(l−1)} is defined as:

yi =

{
1 if i+ (l − 1) ≥ (m+ 1)− (pp+ rd)

0 otherwise
(4.1)

Figure 4.3 illustrates this labelling process for one life cycle. Windows ending in the
interval [(m+1)−(pp+rd), (m+1)−rd] can be used to train the model if they may contain
failure patterns that could occur before (m + 1) − (pp + rd). But when evaluating the
model, an alert raised in this interval should not be considered successful, as it does not
give enough time to perform maintenance. Concerning the infected interval ii, windows
touching the interval [1, ii] should be discarded if the restart processes of the machine
produce noisy data.

As for regression, multiple approaches exists to train a classifier from this set of labelled
moving windows. A common practice in the literature is to extract features from each
window and use a tabular classifier, such as a random forest. Then, when new data is
received from a machine (either online or in batch), the most l recent data points are used
to extract the same features as those used to train the model, and make a prediction.

73

4.2. RELATED WORK

Figure 4.3: Illustration of the problem formulation commonly used in the literature for
classification tasks. Wi is the ith window of size l extracted from a life cycle, rd is the
time needed by the maintenance team to perform maintenance and pp is the acceptable
interval for maintenance alerts.

4.2 Related work

The field of predictive maintenance has been very active in the past decade. Multiple
recent surveys on predictive maintenance [42, 28, 61] show the diversity of solutions used
to solve predictive maintenance problems. The common point of those approaches is that
they consider temporal data, which are the most common inputs for predictive mainte-
nance problems.

The predictive maintenance literature being mainly composed of applied papers, most
proposed approaches are designed and fine-tuned specifically for the use case studied in the
papers. Those methods nevertheless share similarities within families of methods. Hence,
in the following, we do not aim at giving a review of all existing use-case specific models,
but we rather introduce the three main approaches used to solve predictive maintenance
use cases in the literature. As the use case we present in the next chapter relies on log data,
we also discuss the differences between sensor and log data for predictive maintenance.

4.2.1 Pattern mining approaches

Pattern mining methods for predictive maintenance aims at finding patterns that are
relevant to predict a soon-to-happen failure. This could be, for example, a particular
sequence of warning and error messages. Once good candidate patterns have been found,
if they are found again in recent data emitted by a machine, a predictive maintenance
alert can be raised.

In recent years, pattern-based predictive maintenance has switched from the sequential
pattern mining paradigm to chronicle mining, introduced by [26] and more recently, in a
generalized version by [20]. One of the main shortcomings of sequential patterns is that
they only inform about the occurrence of a series of events, but they do not take into
account the time between those events. Chronicle mining algorithms are able to search
for rules taking into account a set of time constraints, specified by time intervals, between

74

4.2. RELATED WORK

each event.
Many applications have been published using chronicles as a way of extracting features

or building statistical models to solve predictive maintenance problems. For example,
[70] defines the notion of failure chronicles as time-constrained sequences of events which
frequently appear before a failure. It then proposes an algorithm to find such patterns in
a dataset with labelled failures. Other approaches [16] combine chronicles with domain
ontologies, which provide insight on how the data is related to the degradation process of
the machine, and perform ontology reasoning (e.g. rules based on the nodes and links of
the ontology) to detect anomalies and predict failures. There also exist semi-supervised
approaches for anomaly detection, such as the one of [21], where using logs from data
centers, the authors propose a system to manage in real-time an evolving rule-based
system capable of identifying deviation from the normal behaviour of the machines.

To summarize, the main goal of pattern based methods is to identify a set of rules, pos-
sibly with temporal constraints, which are significative of either an abnormal behaviour,
or are known to happen before failures. Predictive alerts are then raised when a sequence
of events known to lead to a failure is detected, or with a system of thresholds based on
an anomaly score.

4.2.2 Statistical model approaches

The second family of methods focuses on building statistical models, either to estimate
a remaining time before failure, called Remaining Useful Life (RUL), or to estimate a
health indicator by modelling the degradation process of monitored machines. A popular
technique often seen in industrial applications is survival analysis, also known as hazard-
rate models [55], which, based on historical data on the duration of life cycles, is able to
estimate the survival probability or the RUL of a life cycle at a given time. The most
common approach used by such a system is to define a threshold on the RUL, below which
a maintenance process will be initiated. We present the field of survival analysis more in
depth in Section 4.5.

We also find in the literature the use of autoregressive models [7] which, in addition
to a set of statistics extracted from moving windows, use ARMA models to forecast the
evolution of those statistics in future windows. The extracted statistics and the forecasted
ones for each window are then used to build a regression model to estimate the RUL of
a machine in a regression context. Change point detection models [37] are also used for
predictive maintenance, based on the assumption that a change in the data distribution
emitted by a machine can be significative of a soon-to-happen failure.

In general, statistical approaches will try to model the behaviour of the monitored
machine to identify deviations from normal behaviour or to estimate the remaining useful
life (RUL) of a machine based on historical lifespans of machines. Those models may
also include the influence of physical factors (e.g. temperature, vibration, etc.) on the
expected RUL.

4.2.3 Machine learning approaches

In the last family of methods, we consider approaches which use machine learning algo-
rithms in a supervised context. A majority of methods, independently of using a regression

75

4.2. RELATED WORK

or a classification context, use sliding windows to extract features and then use machine
learning algorithms such as Random Forests, or to extract same length windows on which
time series classification or regression algorithms can be applied.

For example, [80] slices time series of event logs using a moving window, and then
extract statistics on the number of occurrences of events and the occurrences of error
patterns before using an ensemble of tree-based classifier to predict whether the current
window is close to a failure event. Similarly, [6] uses LSTM Auto-Encoders to predict the
current state of a machine, between an “initial”, an “intermediate” and an “bad” state,
which indicates a need for a maintenance operation.

The choice of the right approach, and more importantly the formulation of the prob-
lem, depend on multiple factors such as the knowledge of the degradation process of the
machines (e.g., linear, exponential, random, unknown), the properties of the time series,
the business constraints, and the quantity and quality of labelled data.

4.2.4 Predictive maintenance for log data

Log data are records of events, along with timestamps, which happen on a system or a
software application (i.e. a host). They are automatically produced by the host in order to
provide information for either maintenance or audit purposes, so that we can understand
the activity and actions taken by the host and diagnose problems.

When used in the context of predictive maintenance, logs are often designed around
severity levels, such as OK, Warning and Error, indicating respectively a normal or ex-
pected activity, a non-critical error, which does not directly impact the host activity, and
a critical error or an anomaly.

Compared to sensor data, which directly record physical phenomenon such as temper-
ature, the quality of log data is much lower, as it is not intended for physical maintenance,
but rather for software analysis. Using logs for predictive maintenance is often a question
of cost, as installing or acquiring the outputs from sensors can be costly, or depending on
the use case, simply impossible. When comparing the literature for log and sensor data,
we can find the following differences:

• Only a fraction of the predictive maintenance literature covers the case of predictive
maintenance on log data [34, 15, 51, 21, 73, 80, 41], and even less public datasets
are available, as data mostly comes from private companies.

• Predicting the remaining useful life or a health indicator using a regression context
is less frequent in the log data literature, which relies more heavily on classification
[51, 73, 80, 41].

Independently of using a classification or a regression context, most studies convert the
log data into a quantitative format, for example by counting the number of occurrences
of each event in a fixed time windows, performing a temporal sampling, or by feature
engineering with expert knowledge. Compared to sensor-based predictive maintenance,
a lot more efforts are being put into feature engineering to compensate for the quality
of the data. The type of features resulting from the feature engineering steps are often
very diverse (i.e. discrete, continuous, categorical), which might influence the choice of
classification over regression.

76

4.3. EXPERIMENTAL PROTOCOL FOR PREDICTIVE MAINTENANCE

4.3 Experimental protocol for predictive maintenance

Consider an application where we want to predict failures, independently of the module
that will fail. Consider a set of life cycles X = {X1, . . . , Xn} with Xi = {x1, . . . , xm}. We
extract a set of moving windows W = {W1, . . . ,Wn×(m−(l−1)} of size l, with the label of
each window as Y = {y1, . . . , yn×(m−(l−1)} obtained by the process described in Section
4.1.2 or Section 4.1.3.

The first point to rule out is that we should not use a f -fold cross validation on the
set of moving windows W . Consider two windows Wi = {xi, . . . , xi+(l−1)} and Wi+1 =
{xi+1, . . . , xi+1+(l−1)} extracted from a life cycle X. Using a f -fold cross validation without
any constraints might cause Wi to be in the training set, and Wi+1 in the testing set. As
they both uses the points {xi+1, . . . , xi+(l−1)}, a f -fold cross validation on W can cause
data leaks from the training set into the testing set.

Hence, the validation process must be made on the set of life cycles X . The life cycles
will then be sliced into moving windows independently for the training and testing sets,
before training the model and before predicting the classes.

4.3.1 Micro and Macro metrics

We have as input for our experimental protocol a set of life cycles X = {X1, . . . , Xn} with
Xi = {x1, . . . , xm} a life cycle of length m. In the context of cross validation, X is divided
into two disjoint ensembles, XTrain and XTest, for each validation fold.

A model is first learned on the moving windows extracted from XTrain. Then, for each
life cycle Xi ∈ XTest, the model is used to predict the class of each moving windows of
size l extracted from Xi. We obtain the vector Ŷi = {ŷ1, . . . , ŷm−(l−1)}, containing the
predicted class for each window. Given the vector of true classes Yi = {y1, . . . , ym−(l−1)},
the goal is to estimate the performance of the model, and of the predictive maintenance
system that will use it.

We can then define micro metrics as metrics between Yi and Ŷi, and macro metrics
as metrics between the first occurrence of ŷj = 1 ∈ Ŷi and yj ∈ Yi. This first occurrence
represents the first alert that would be raised for the life cycle Xi. Micro metric measure
the performance of the model on the learning task, while macro metric measure the
performance of the predictive maintenance system. When using a macro metric, we take
into consideration the fact that, when used in a real context, if an alert is raised, a
maintenance is always performed. This maintenance will also modify the behaviour of
the machine, and there is no guarantee that the data following the first occurrence of
ŷj = 1 would be seen by the model.

To give the intuition of why micro metrics alone would not be reliable to estimate the
performance of a predictive maintenance system, let us consider a classification model
with an accuracy of 99% in the micro context. While this score may seem satisfying,
it hides the fact that the missing 1% could be caused by a unique false positive, raised
at the beginning of all the tested life cycles. As a positive prediction means that a
maintenance operation will be scheduled, if the model is deployed, it may raise unwanted
early maintenance alerts at the beginning of new unseen life cycles. Figure 4.4 illustrates
this example for one life cycle.

77

4.3. EXPERIMENTAL PROTOCOL FOR PREDICTIVE MAINTENANCE

Figure 4.4: Despite a high accuracy, a unique early false positive will trigger an early
maintenance process, making the accuracy in a micro context not trustworthy for the
application.

4.3.2 Example with a classification model

As in chapter 5 we address a classification problem, let us detail now how the protocol is
applied to a case of classification. We have as input a life cycle dataset X = {X1, . . . , Xn}
with Xi a life cycle and a parameter f , which gives the number of cross validation folds.
We create f different folds of X , using n

f
life cycles in each testing set, such as each Xi

appears in only one testing set across the f folds.

For each validation fold, the life cycles in the training set are sliced into moving
windows, on which a classifier is fitted. The life cycles in the testing set are then also
sliced into moving windows, and evaluated using the fitted classifier. Any necessary
preprocessing steps needed by the model, such as slicing the life cycles into windows or
normalization, should be made independently for each life cycle to avoid any data leak.
Then, given the definition of predictive padding (pp) and reactive duration (rd) given
in Section 4.1.3, we define the macro and micro metrics that are used to evaluate the
classification model.

Let Xi = {x1, . . . , xm} ∈ X a life cycle used in the testing set of a cross-validation step
and Ŷi = {ŷ1, . . . , ŷm−(l−1)} the prediction made by the classifier for each window extracted
from Xi, with l the length of the moving windows. Given Yi = {y1, . . . , ym−(l−1)} the target
class for each window, the target class for {y(m−((l−1)+pp+rd)), . . . , ym−((l−1)+rd)} is set to 1,
all other cases are set to 0, as defined in Section 4.1.3.

We can then define micro metrics as classification metrics between Yi and Ŷi and
macro metrics as classification metrics between the first occurrence of ŷj = 1 ∈ Ŷi and
yj ∈ Yi. ŷj = 1 represents the first maintenance alert raised for Xi, which is the one we
should care about, as discussed in Section 4.3.1. In the macro context, we can also define
an error metric as errori = max(0,m− ((l− 1)+ pp+ rd)− j), giving the time separating
the first alert ŷj = 1 from the desired alert interval. Figure 4.5 illustrates how the metrics
and the error are computed for a life cycle.

78

4.3. EXPERIMENTAL PROTOCOL FOR PREDICTIVE MAINTENANCE

Figure 4.5: The difference between macro and micro metrics, illustrated with confusion
matrices on the labels associated with each increasing window of a life cycle. Y contains
the expected classes of each window and Ŷ contains the predicted classes.

4.3.3 Estimating the cost of a predictive maintenance system

While the use of micro and macro metrics allow for a better interpretation of the evaluation
results, they do not consider the costs linked to the maintenance process. To fill this gap,
we propose a metric to estimate the cost of an alert for a life cycle, which can then be
used to estimate if the predictive maintenance system is cost-efficient. In order to compute
this metric, we first define the costs associated to a maintenance operation for a life cycle,
using the following variable:

• tf : the time when the life cycle ends

• tm: the time when the predictive maintenance system raised an alert.

• Cfail(t): the cost associated with the machine not functioning at time t. This cost
depends on time in order to differentiate between times when the machine should,
for example, be producing goods, and times when it is not operated (e.g. a weekly
planning).

• Ctech: the cost of sending the technical team on site. We suppose this is a constant.

• Creplace(tf − tm): the cost of the early maintenance operation, which depends on
how early this replacement was performed compared to the time when the machine
would have failed. In the following, we assume that this cost cast be computed as
the difference tf − tm multiplied by a constant.

• ∆m: the time elapsed between the departure of the technical team, the arrival on
site, and the time needed for the maintenance process.

• ∆a: the time elapsed between the moment the machine fails, the failure is noticed,
an alert is raised and the departure of the technical team.

79

4.3. EXPERIMENTAL PROTOCOL FOR PREDICTIVE MAINTENANCE

For simplicity, we do not take into account variables measuring the impact of maintenance
team availability and spare part management, and we consider that both the team and
the necessary hardware are available at the time when the alert is raised. We can first
define a baseline cost, which corresponds to the sum of the cost of failures if a predictive
maintenance system was not used. The cost of an unexpected failure is defined by Cneg

as:

Cneg = Ctech +

∫ tf+∆m+∆a

tf

Cfail(dt) (4.2)

The cost of a predictive maintenance operation, justified or due to a faulty decision of the
model, is described by a cost Cpos:

Cpos = Ctech + Creplace(tf − tm) +

∫ tm+∆m

tm

Cfail(dt) (4.3)

Independently of the model, be it regression, classification, anomaly detection, etc. . . ,
the system will either perform a successful alert, where Cneg ≥ Cpos, or an unsuccessful
alert, where Cneg < Cpos. Looking at the difference between these two costs for all
life cycles, defined by Equation 4.4, we can then estimate if the predictive maintenance
system is worth using, independently of the type of model used to predict failures. Note
that the notion of cost is not necessarily linked to a monetary cost, and depends on the
application and the function of the machine. A negative value for Cglobal would indicate a
higher overall cost compared to the baseline, which is to not use a predictive model and
let failure happen.

Cglobal =

n_failures∑
i=1

(Cnegi − Cposi)

Cglobal =

n_failures∑
i=1

(∫ tfi+∆m+∆a

tfi

Cfail(dt)

)
−

(
Creplace(tfi − tmi

) +

∫ tmi+∆m

tmi

Cfail(dt)

)
(4.4)

As Ctech is considered constant for both unexpected and planned maintenance, it can
be simplified when developing the equation. If the exact costs are unknown, we can replace
each component of the equation by variables quantifying these costs relative to the cost
of an unexpected error. Considering

∫ tfi+∆m+∆a

tfi
Cfail(dt) as the cost of an unexpected

failure, if Cfail(t) is unknown, we can replace the integral by λneg = 1. If we estimate
that a planned maintenance is on average half the cost of an unexpected one, we then can
replace

∫ tmi+∆m

tmi
Cfail(dt) by λpos = 0.5.

Then, we use the error metric described in section 4.3.2 to estimate Creplace(tfi − tmi
)

as errori × λϵ. The λϵ will quantify the cost of early replacement per timestamp. For
example, λϵ = 0.01 would mean that each timestamp separating the alert from the ideal
maintenance interval cost one percent of the cost of an unexpected maintenance. We can
then produce an estimate Ĉglobal of the global cost Cglobal by using the error and a macro
confusion matrix, and the three λ values as :

Ĉglobal =
n∑

i=1

λneg −
n∑

i=1

{
λpos + errori × λϵ if max(Ŷi) = 1

λneg if max(Ŷi) = 0
(4.5)

80

4.4. EARLY CLASSIFICATION

Given the problem formulation we introduced for predictive maintenance use cases, an
interesting addition would be to impose constraints on the model when making prediction,
in order to avoid early maintenance alerts. This idea of constraining the prediction has
already been developed in the field of early classification, which we introduce in the
following section.

4.4 Early classification
Early classification of time series (ECTS) as a distinct field first appeared in [83]. It differs
from time series classification by considering the notion of earliness of the prediction as a
factor of success of a model.

While the training procedure between ECTS models can vary, the evaluation of such
models remains the same. First, given a time series X = {x1, . . . , xm} to evaluate, it is
transformed into increasing windows as Wt = {x1, . . . , xt+(l−1)} and the model then will
iteratively make predictions for each window from 1 to m− (l− 1) until some constraint,
defined by a trigger system, estimates that at a window Wt, the model has seen enough
data to make a good prediction. The output of the model for the series X will then be
the prediction made on Wt, with its earliness being quantified as t+(l−1)

m
.

The quality of an ECTS model is defined by how accurate its predictions are, but
also by how early they are made, with the goal being to balance the trade-off between
accuracy and earliness, based on the importance of both factors in the task to solve. The
idea motivating the field is that, for some task, the earliness of the prediction can be
highly valuable to, for example, be able to perform preventive actions before a problem
occurs.

4.4.1 Related work

Early works on ECTS proposed to solve the problem by using shapelets [85], with an
extension to the multivariate context by [35]. In their method, given a time series dataset
X = {X1, . . . , Xn} with Xi = {x1, . . . , xm} and a shapelet S = {s1, . . . , sl}, the quality
of S is not only evaluated by the information gain resulting from the minimum of the
distance vector (i.e. minVS,Xi

) for all Xi ∈ X , but also by its position (i.e. argminVS,Xi
)

in the series. A good shapelet candidate must then be discriminative toward the class of
the problem, but also be as close as possible to the start of the time series, in order to
maximize the notion of earliness when applied to unseen series. A selected candidate S
is then associated to the class of the series from which it is extracted and to a threshold
λ that maximizes the information gain of computed on minVS,Xi

∀Xi ∈ X .
The trigger system used by such an approach is implicitly defined by the criterion of

quality of the shapelets. When evaluating increasing windows of X, to know that Wt

should be the one used to give the prediction for X, a simple rule based system is used:
if for one of the extracted shapelet S we have minVS,Wt < λ, then the class associated
with S will be returned as a prediction for X. Note that more than one shapelet could
be associated with a class, the sensibility of the trigger system can then be tweaked by
choosing the proportion of shapelets of a class below their threshold that are necessary
for a class to be predicted. To optimize earliness, this method assumes that a shapelet
occurring early in the series of the training data, will also appear early in unseen data.

81

4.4. EARLY CLASSIFICATION

Other works in ECTS use ensemble of classification models, with each model affected
to a different timestamp t, and trained only on the increasing windows Wt = {x1, . . . , xt}
extracted from all time series X ∈ X , with the class of Wt equal to the class of the
series X from which it is extracted. The main differences between this kind of ECTS
algorithm reside in how they manage this ensemble of models, and how they design the
trigger system to decide that t is the time when the prediction should be made. When
the trigger system considers that t is the right time to make a prediction, the output of
the model trained on the increasing windows Wt is used.

Early work on trigger systems used heuristics, often based on the confidence of the
prediction at time t, which was expressed as the class probabilities output by the model
trained with subsequences up to t. If the certainty of the prediction was above a threshold,
the prediction was given as output. More recent approaches [18, 78, 1] formalized the
notion of earliness of prediction as an optimization problem, where two user-provided
cost functions are defined:

• Cm(ŷ|y) : The misclassification cost function, defining the cost of predicting ŷ when
y is the true class

• Cd(t) : The delay cost function, defined as a non-decreasing function of time, rep-
resenting the cost associated with delaying the prediction.

Given these two functions, the cost of making a prediction at timestamp t using Wt =
{x1, . . . , xt} and the classifier ht associated to timestamp t, with Y the possible classes of
the problem, is expressed as:

f(Wt) =
∑
y∈Y

Pt(y|Wt)
∑
ŷ∈Y

Pt(ŷ|y,Wt)Cm(ŷ|y) + Cd(t) (4.6)

Where Pt(ŷ|y,Wt) is the misclassification probability, estimated using a confusion matrix
obtained from the evaluation of the training data with the classifier ht, and Pt(y|Wt)
the posterior probability of class y given Wt. The ideal timestamp t to raise a decision
then becomes the one which minimize Equation 4.6, but, to known which timestamp
t is optimal, we need to observe the whole series. This is why ECTS models aims at
estimating this cost for future timestamps, modifying Equation 4.6 by adding a constant
τ to t.

Multiple methodologies have been proposed to estimate the cost of yet unseen data (i.e.
Pt+τ (ŷ|y,Wt+τ), but as we only use the idea behind trigger systems in our contribution,
we report the reader to the reviews of [33] and [9] for a more detailed view of the field. We
do not consider ECTS models as they rely on some assumptions that are not applicable
to our case. We discuss these assumptions in the next section, the proposed solutions
of the literature, and why they are not yet sufficient to directly apply ECTS models to
predictive maintenance.

4.4.2 Early classification for predictive maintenance

The first remark one could make is that, for predictive maintenance, we are not neces-
sarily interested in optimizing the earliness of the alerts, as early maintenances result in
additional cost due to the early replacement of a functioning piece. We believe that this

82

4.5. INTRODUCTION TO SURVIVAL ANALYSIS

issue can be tackled by changing the costs used in the function to be optimized by the
model. For example, the prediction delay cost could be changed to favour predictions
made in an interval near the failure, such as the one defined by the predictive padding
and reactive duration in Section 4.1.3.

While the formulation used by ECTS models, where a cost is estimated iteratively on
increasing subsequences to know if the prediction should be made, shares similarities with
the evaluation protocol we defined for predictive maintenance, the fact that it requires an
ensemble of models, each affected to a specific timestamp, is problematic. In the ATM use
case that we present in Chapter 5, we are dealing with time series of variable length with
a very skewed distribution, the later timestamps will have fewer windows to learn from,
possibly with only one class being represented. This also raises the question of how such
models deal with time series lengths that are superior to the ones seen in the training set.
The impact of time series which are not temporarily aligned (e.g. starting at the same
time), is also not clearly addressed.

Another incompatibility is introduced by our problem formulation for predictive main-
tenance in a classification context. A life cycle X = {x1, . . . , xm}, independently of its
class (i.e. the cause of failure), has two “subclasses” defined by the predictive padding
(pp) and the reactive duration (rd). The first one in [x1, xm−(pp+rd)[, which is the area
characterizing early alerts, and the second in [xm−(pp+rd), xm−rd], which gives the target
area for maintenance alerts. It is yet unclear to us how an ECTS model could deal with
these constraints.

4.5 Introduction to survival analysis

To include the idea of trigger systems developed in early classification into our contri-
bution, we use the field of survival analysis to provide an estimate of the probability of
survival of a given life cycle at time t, and build a trigger system around this probability.
In this section, we give an introduction to survival analysis and the components we use
in our contribution.

Survival analysis is an ensemble of statistical methods used to analyse the expected
time to event for an ensemble of test subjects, often called a population. It was tradi-
tionally used in clinical trials, where the survivals of groups under different treatments
(or against a control group) were compared in order to estimate the efficiency of these
treatments. Due to sharing a lot of common definitions and approaches with reliability
theory in engineering, it also has been used in predictive maintenance [80].

4.5.1 Survival data

In the simplest scenario, survival data consists of a table that, for each subject, records
if the event (e.g. a failure for a machine) has occurred, and at what time. Quite often in
survival analysis, not all the studied subjects will have experienced the event yet, some
data might be missing, or new subjects might enter the study after other subjects. All
those concepts are related to the notion of data censoring. Censored data are missing
information about the subject time to event data. We can distinguish three distinct case
of censoring:

83

4.5. INTRODUCTION TO SURVIVAL ANALYSIS

• Right censored data correspond to subjects that have not yet experienced the event
at time t, for example, machines that are still functioning at time t, t being the time
point where we wish to perform survival analysis.

• Left censored data correspond to missing data at the beginning of the observation
time. This could be machines for which we do not have the start time, meaning that
they were already functioning since an unknown time when we started collecting the
data.

• Interval censored data correspond to the case where an event is happening between
two observations. If we look at a machine state every hour, and that at observation
i + 1 the machine has failed, then the event occurred at an unknown time before i
and i+ 1.

An example of survival data with right censoring is given by Table 4.1.

Table 4.1: Example of a survival dataset with right censoring, with subject 1 and 2 not
yet having experienced the event.

Subject ID Observed lifetime Time of event

0 220 days day 220
1 310 days NA
2 330 days NA
3 250 days day 250

4.5.2 Survival and Hazard Function

An interesting feature of survival analysis is that it takes into account censored data
when modelling the chance of survival of a population. This notion of chance of survival
is formalized with the survival function S(t), which is one of the main components of
survival models. In an engineering context, the survival function is often referred to as
the reliability function.

Given T a random variable representing the time of occurrence of the event and t a
specific time, for example the last observed lifetime of a subject, we can define P (T >
t), the probability that the event has not occurred yet at time t, or equivalently, the
probability of surviving after time t. The survival function is then defined as:

S(t) = P (T > t) with S(t+ 1) ≤ S(t)

Another important aspect of survival analysis is the hazard function, or conditional
failure rate in engineering, often noted λ(t). It represents the chance of occurrence of the
event between time t and t+ dt, at the condition that event has not occurred before t. It
is often referred to as the instantaneous rate of event and is expressed as:

λ(t) = lim
dt→0

P (t ≤ T ≤ t+ dt | T > t)

dt

84

4.5. INTRODUCTION TO SURVIVAL ANALYSIS

When plotted over time, the shape of the hazard function gives hints about the event
occurrence mechanism. For example, an increasing hazard function could highlight the
influence of age for subjects in a cancer study. A decreasing one corresponds to subjects
having some kind of early setup conditions, an example of this could be disease that only
affect children.

In many applications, the effect of some variables linked to the subjects can also be
taken into account, such as the age and the sex. In this case, the effect of each variable X
is quantified by a coefficient β using survival regression, which computes the β coefficient
using the maximum likelihood method. The hazard of a subject at time t will then be
modelled as a function of βX and of a baseline hazard λ0(t). A popular model, called the
Proportional Hazards model, expresses this function as λ(t|X) = λ0(t)exp(βX).

4.5.3 Survival function estimators

As we usually only observe a sample of the population (e.g. a group of patients with
cancer is observed in a study, not all existing patients with cancer), we can rarely know
the true survival function of a population, and need to estimate the true survival function
using only a fraction of it. To do that, a multitude of estimators have been proposed in
the literature. Survival estimators are often grouped into three families [40]:

• Non-parametric estimators: These estimators are mainly used when there is no vari-
able associated with subjects, and that we only wish to estimate the survival function
based on the observed lifetime. A popular one is the Kaplan-Meier estimator [38],
which estimates S(t) at each time step t as:

S(t) =
∏
i:ti<t

(
1− di

ni

)
(4.7)

with ti a time when at least one event occurred, di the number of subjects that had
event at time ti and ni the number of subjects that did not experience event before
time ti.

• Parametric estimators: These estimators make an assumption on the distribution
of survival times or hazard of the population and use the available data to fit a
baseline hazard or survival function to this distribution. For example, an estimator
assuming a normal distribution will use the mean µ and the variance σ of the
observed lifetime of the population as parameters to estimate the baseline survival

function as, S0(t) = 1− Φ

[
t− µ

σ

]
with Φ the cumulative distribution function of

the standard normal distribution.

• Semi-parametric estimators: Semi-parametric estimators are used when the under-
lying distributions are unknown or difficult to estimate. They provide a way to
estimate the regression coefficients without the need of a specified baseline hazard
or survival function. The most popular being the Cox Proportional Hazards Model
[17].

Another interesting methodology developed in the literature are Survival trees. They
were developed to provide a non-linear approach to survival analysis, as other models,

85

4.5. INTRODUCTION TO SURVIVAL ANALYSIS

such as the Cox Proportional Hazards model are considered to be linear due to the fact
that they affect a weight to each variable. Similarly to decision trees, survival trees create
partitions of the input space, by iteratively choosing a variable and a threshold. Previous
works on survival trees [13] use the log-rank test as a splitting criterion to evaluate the
quality of a split.

The log rank test is a hypothesis test that, given two survival functions, S1, S2

(i.e. those of the child nodes) formulates the null hypothesis as S1(t) = S2(t) against
the alternative hypothesis that S1(t) ̸= S2(t), for any time t. If the null hypothesis is
rejected by at least one candidate split, the split that maximizes the statistical test is
selected. If the null hypothesis cannot be rejected, the current node is considered as
a leaf. Since the log-rank test compares survival probabilities, one of its drawback is
that it does not directly consider the size of the populations that were used to estimate
those probabilities. Although alternative tests were developed [45], for the predictive
maintenance use case we present in the next chapter, we will present in our contribution
a simple alternative, as we have no form of censoring in the training data.

Having introduced the predictive maintenance domain, and how we plan on evalu-
ating predictive models, we can now introduce the use case that motivated this thesis.
We will then use some ideas developed by the field of early classification and survival
analysis in our contribution, to propose a new classification model using a trigger system
based on survival probability of a life cycle.

86

Chapter 5

The ATM use case

Résumé du chapitre en français
Dans ce chapitre, nous présentons l’application industrielle de maintenance prédictive
pour ATMs proposée par l’entreprise Worldline. Dans un premier temps, nous présentons
le contexte entourant l’application et le processus de maintenance des ATMs, et détail-
lons la création du jeu de données ATM. Nous donnons une description des journaux
d’événements que nous avons extraits des ATMs, comment nous avons obtenu les données
de pannes et comment nous avons transformé ces journaux d’événements en cycle de vie.
Nous présentons ensuite les prétraitements appliqués aux cycles de vie et décrivons les
caractéristiques du jeu de donnée obtenu. Ensuite, en utilisant le protocole expérimental
introduit au chapitre précédent et des approches existantes, nous présentons les premiers
résultats expérimentaux, que nous utiliserons comme base de comparaison. Nous présen-
tons ensuite nos contributions pour cette application, comprenant un nouveau modèle de
classification utilisant l’analyse de survie pour créer un système de déclenchement, inspiré
des idées introduites par le domaine de la classification précoce. Nous comparons ensuite
les résultats de ce nouveau modèle avec les résultats de base que nous avons obtenus.

Chapter summary
In this chapter, we present the industrial use case of predictive maintenance for ATMs
proposed by Worldline. After presenting the ATM application context and the mainte-
nance process, we show how we created the ATM dataset. We give a description of the
event logs that we extracted from ATMs, how we obtained the failure data and how we
transformed these event logs into life cycles. We then present the preprocessing steps
applied to the life cycles to obtain the ATM dataset, and describe its characteristics. We
then conduct experiments on this dataset, based on the experimental protocol introduced
in the previous chapter, and using existing approaches in order to obtain baseline results.
We then present our contributions for this use case, including a new classification model
using survival analysis to create a trigger system, following the ideas introduced by the
field of early classification. We then compare the results of this new model with the
baselines results we obtained.

87

5.1. APPLICATION CONTEXT

5.1 Application context
Before presenting the context, we define some domain specific terms:

• Cash-In-Transit (CIT): Security companies, which are in charge of moving cash
and emptying or refilling ATMs when needed.

• ATM module: An ATM is an ensemble of connected modules, each composed of
several components directly interacting with each other. For example, the distribu-
tion module is composed of storage boxes for the banknotes, linked to an ensemble
of rolling or suction cup mechanisms to route banknotes to the exit slot.

• ATM life cycles: A time period in which an ATM is functioning properly, ended by
any kind of failure (i.e. mechanical or not). It starts after the end of a maintenance
process and ends when a failure occurs. This is similar to the definition of a life
cycle given in the previous chapter.

• Withdrawal: This term simply denotes the action, initiated by a user, of with-
drawing cash from an ATM. While a log is linked to this action due to the change in
the amount of cash in the safe, no transaction or user data is present in the dataset.

The inside of an ATM can be seen as an ensemble of connected objects, which are
managed by a computer using a specialized software. Figure 5.1 gives a view of the inside
of an ATM. When a user introduces its card, the card reader reads the information stored
in it and security checks are performed. Once the user has been authenticated by its PIN
code, it can choose the amount of cash to withdraw. After the choice of the amount,
the distribution module gathers the banknotes in their specific storage boxes and groups
them into a storage area. Once done, the user is prompted to remove his card from the
card reader to receive its cash.

If a failure occurs on a module of the ATM, the owner (generally a bank) initiates a
maintenance ticket. A technical maintainer will then be dispatched on site to evaluate
the problem. From there, we can distinguish three cases:

• If it is a hardware issue and if the necessary spare parts are available in the main-
tainer truck, the maintenance can be performed immediately.

• If the maintainer does not have all the required parts, they will be ordered and the
maintenance is delayed until the parts are received.

• If no hardware issue is found (i.e. possibly a software or network issue), an inspection
of the activity of the ATM is needed to find the cause of failure.

In all cases, the maintainer will send a report to the helpdesk that will change the ticket
information based on the maintainer report. Note that if a technical intervention requires
the opening of the cash safe, for example to access to the distribution module, the CIT
has to empty the ATM before the maintainer intervention for security reasons, which can
add even more delay before the ATM is fixed.

The interest of predictive maintenance for ATMs is two-folds: first it can allow for
spare parts planning in the maintainer truck if the cause of failure is known in advance,
and secondly, it can allow the synchronization of maintenance operations with regularly

88

5.2. THE ATM DATASET

planned interventions of CIT to refill the ATM, and considerably reduce ATM unavail-
ability. The objective for this project was to make a proof of concept on a subset of
the ATM fleet (more than 12000 ATMs across the world) managed by Worldline before
adapting the product for the whole fleet.

Figure 5.1: Inside view of an ATM with highlighted components. Modification
of the original image from Bjoertvedt, CC BY-SA 4.0, via Wikimedia Commons
(https://commons.wikimedia.org/wiki/File:ATM_inside_tenerife_IMG_8732.JPG)

5.2 The ATM dataset
The ATM dataset is composed of 1707 life cycles, gathered from 460 ATMs over a period
of two years, representing more than 14 millions logs. Due to the nature of the application,
life cycles have different lengths and are ended by different kinds of failure, such as the
distribution module, the card reader, a network problem, an empty cash-safe or external
damages.

Before being preprocessed and sliced into life cycles, the ATM dataset is a log file
composed of 4 columns, as presented in Table 5.1:

• ATM ID: identifier of the ATM that produced the log

• Timestamp: when the log was produced

89

https://commons.wikimedia.org/wiki/File:ATM_inside_tenerife_IMG_8732.JPG

5.2. THE ATM DATASET

• Event code: a logical event encoded by an integer

• Complement (optional): additional information about the event

Table 5.1: An example of log data from the ATM dataset

ATM ID Timestamp Event Code Complement

41 31/08/2019 12:33:57 40000 51400
75 31/08/2019 12:33:57 6000
53 31/08/2019 12:34:05 1001
41 31/08/2019 12:39:41 40000 51300

With a few exceptions, event codes follow a severity level for each hardware and
software component. Given a particular component we have three codes, namely OK,
warning and error. For example, a code 6000 indicates an “OK” event on the distribution
module, which can (not exclusively) happen during a restart process or when the ATM
recovers from a problem, whereas the code 6001 indicates an error event and the code 6002
a warning event. An error recovery might for example happen when a banknote is damaged
when manipulated by a mechanism. Normally, the ATM is able to reject such damaged
banknotes into a designated dedicated box to avoid further problems. The complement
field is optional, it provides additional information on the event, and is notably used to
indicate an estimation of the remaining amount of cash in the safe of the ATM when a
withdrawal code (40000) is generated. One of the main challenge of the data is that some
event codes can be triggered by multiple physical events, which makes the interpretation
of the data difficult.

5.2.1 Extracting life cycles

In this section, we detail how we extract ATM life cycles from the event logs. As input, we
have a log file containing all logs emitted by all the ATMs, with each log being identified
by a timestamp and an ATM identifier, which indicates which ATM generated the log.
To extract ATM life cycles from the logs, we must first know when (and why) an ATM
entered a failure state. Once we have the time intervals in which an ATM was in a failure
state, we can then extract the corresponding life cycles of this ATM.

Obtaining failure data

As we presented in Section 4.1.3, knowing when failures happen is essential to extract life
cycles. The first difficulty we encountered with the use case was that ATMs managed by
the company are not all under the same type of contracts with the clients. While we do
have event log data for all ATMs independently of the contract, we only have maintenance
information for some of them. When we do have some information about maintenance
operations, the quality is not ideal as the company is not directly responsible for main-
tenance, but rather serves as an intermediate between the client and the maintenance
companies.

90

5.2. THE ATM DATASET

As those companies also have commercial interests in building predictive maintenance
systems, we could not obtain any information from them. What we have at our disposal
are support tickets raised by the clients, which, for some, indicate a hardware issue. A
ticket contains a start and an end date, a subject, as well as the discussions between the
different parties involved in the ticket. We extract tickets related to failures, as well as
the identified cause of failure.

The second issue with early work on the project arose from the fact that the failure
indicated by the tickets did not always correspond to abnormal events in the log data,
withdrawal were still performed and there was no anomaly or spike of errors. The
timestamps indicated in the tickets were also sometimes inaccurate. This motivated the
creation of a tool to identify possible failures directly from the event logs in historical
data, which can also be used as an online anomaly detection tool to detect possible
ongoing failures.

The reasoning behind this tool is the following: if there is no withdrawal activity
during a time period where activity is normally seen, it may mean that the ATM is in
a failure state. Looking at the event codes happening in this interval of abnormal non-
activity then gives us hints about the possible cause of failure. ATMs are subject to a
very important daily and weekly seasonality for the number of withdrawals performed,
different for each ATM. For example, an ATM located in a night-life area will have most
of its withdrawals during the night, with a higher volume on Fridays and Saturdays.
Another example could be an ATM located in a mall closed during the night, which cause
withdrawals to be performed during the opening hours and days of the mall.

Definition of the ATM failure extraction tool

In the following, we consider a time series Ti = {t1, . . . , tm} with tj the timestamp where
ATM i generated an event log. Due to the high variability in seasonality and volumes
of withdrawal, the tool processes each ATM independently. Based on a time series Ti,
we aim at obtaining a set of triplets (tstart, tend, cause), each containing the start and end
time of the suspected failure, along with the identified cause.

The first step performed by this tool is to sample Ti given a frequency f , such as,
for each time interval of length f in a week, we compute the probability of at least one
withdrawal event log being made amongst all events in this time interval in Ti. For
example, with f = 1 hour, we have 7×24 intervals, with the first one being Monday from
00h00 to 01h00 (excluded) and the last being Sunday from 23h00 to 00h00 (excluded).
If we have 10 occurrences of the interval Monday from 00h00 to 01h00, with 8 out of 10
having one or more withdrawal events, the probability affected to this interval will be of
0.8. We denote pj the probability that at least one withdrawal occurs in the period j.
Figure 5.2 gives an example of the resulting probabilities for two ATMs with a frequency
of one hour.

Given these probabilities and the time series Ti = {t1, . . . , tm}, we sample a new time
series Ai, with frequency f , as follows: for each aj ∈ Ai, we affect aj = 1 if at least
one withdrawal was performed during the time interval designated by j, else, we affect
aj = 1 − pk, with pk the probability of having at least one withdrawal in the period k
related to j in the weekly seasonality (e.g. Monday 9:00 to 9:59).

To compute the anomaly score Qi, for each interval [jstart, jend] ∈ Ai where successive

91

5.2. THE ATM DATASET

Figure 5.2: Example of weekly withdrawal seasonality for two ATMs. Y-axis is the
probability of having at least one withdrawal in a period. Index 0 is Monday from 00:00
to 00:59, index 1 from 01:00 to 01:59, . . . , and index 167 is Sunday from 23:00 to 23:59

values of aj are inferior to 1, we compute a cumulative product, as defined by Equation
5.1. In the other cases, we affect qj = aj. In this context, the lower the value of qj, the
higher the risk of anomaly.

qj =

j∏
p=jstart

ap | ∀j ∈ [jstart, jend] (5.1)

Given a threshold λ and a number of hours H, an interval [jstart, jend] ∈ Ai is considered
as a failure interval if there exists aj ∈ [jstart, jend] ≤ λ with tend−tstart ≤ H. The supposed
cause of failure is then extracted by looking at the event logs generated by the ATM in the
period [tstart, tend]: if the ATM still has cash available in its safe, the cause of failure will
be determined by the type of error code which occurs the most, else it will be assumed
that the absence of withdrawal is due to an empty safe. Figure 5.3 gives a visualization of
the anomaly score. The [jstart, jend] interval kept to locate a failure is always the complete
interval where we have successive value of aj < 1.

Figure 5.3: Example resulting anomaly score for an ATM using λ = 0.0005 and H = 8
hours. Red areas are those identified as possible failures.

Running this process for all ATMs gives as output a set of time intervals as presented
in Table 5.2. The tool and its parameters were then validated with the existing main-

92

5.2. THE ATM DATASET

tenance tickets by manually inspecting results from the tool and comparing them to the
maintenance tickets and the log data.

Table 5.2: Example of failure data used to generated life cycles

ATM ID Start End Cause

40 21/04/2018 ... 28/04/2018 ... Distribution
76 04/05/2018 ... 07/05/2018 ... Card Reader
74 14/06/2018 ... 16/08/2018 ... Connection
40 24/08/2018 ... 25/08/2018 ... Empty Safe

Failure data for the ATM dataset

To obtain the failure data we use for the ATM dataset, we combined the information from
the maintenance tickets and the time intervals generated by the tool. Given a time interval
T tool = [ta, tb] found by the tool for an ATM i, and any time interval T ticket = [tc, td] from
the maintenance ticket of ATM i, we apply the following rules :

1. If an intersection exists between the two time intervals T tool and T ticket, then we
keep the interval [min(ta, tc),max(tb, td)] as the final value for the time interval.
Else, we discard T tool.

2. Then, if the causes of failure mentioned by T tool and T ticket are the same, we keep
this cause to be associated with the time interval [min(ta, tc),max(tb, td)]. If there
is a difference, we affect the value “Unknown” to the cause.

If there is no intersection between T tool and T ticket, it is possible that the ATM is un-
reachable by customers due to an exceptional event (e.g. road work), and although no
withdrawal would appear (hence triggering the tool) the ATM would not in reality be in
a failure state. The result of this operation is a table similar to the one represented by
Table 5.2, which we use to extract life cycles foo each ATM. A life cycle has as label the
cause of the failure happening at its end. We do not include in life cycles the data from
the period in which the ATM was in a failure state, as it is noisy and irrelevant to the
task of predicting failure before they happen.

5.2.2 Preprocessing

To avoid introducing a bias based on the number of total events in a day, we removed from
life cycles the complete day when a failure occurs (e.g., if failure occurs on 14/06/2018
08:00:00, the last data point of the resulting life cycle will be on 13/06/2018 23:59:59).
The notion of infected interval, that we present in Section 4.1.3 is also applied, and we
removed the first day of data (e.g., a life cycle starting on 01/05/2018 16:00:00 would now
start on 02/05/2018 00:00:00). We have then discarded life cycles with a lifespan inferior
to 7 days, to obtain the 1707 life cycles of our dataset. Those very short life cycles are
mainly due to human errors during previous maintenances (e.g., a failure happens a few
days after maintenance, on the same module that was supposed to be repaired).

93

5.2. THE ATM DATASET

We have chosen to transform the problem into a numeric representation, similarly to
the preprocessing employed by [51]. Thus, in next sections, we will focus on numerical
methods rather than on approaches such as chronicle mining [20] that may have handled
categorical series of event codes. Given a set of life cycles composed of logs as in Table
5.1, we perform the following operations for each life cycle:

1. Create a table, which uses the timestamps of the logs as index and create as many
columns as event codes. Fill each row of this table with a 1 for the event code
(i.e. column) that occurred at this timestamp, 0 for the others. This gives us 189
features.

2. Remove the event codes that only appear in less than 5% of samples of all classes and
that are purely made for software maintenance or audit purposes (i.e. no relation
with a physical event). This reduces the number of features to 54.

3. Given a resample frequency, resample the table to count the number of occurrences
of each code during the period. We use a frequency of 8 hours, counting event codes
occurrences from [0h00 to 08h00[, [08h00 to 16h00[, and [16h00 to 0h00[for each
day in the life cycle.

The result of this preprocessing is an uneven and multivariate time series dataset with
1707 samples and 54 variables, with each life cycle labelled with its cause of failure. In the
ATM dataset, a life cycle is then represented by a time series such as the one presented
in Table 5.3.

Table 5.3: Example of time series data representing a life cycle. Each column represents
the number of occurrences of an event code in a period of 8 hours, starting at the times-
tamp and ending before the next timestamp.

Timestamp 1000 1001 . . . 11001 51000

21/04/2018 00:00:00 0 1 . . . 1 0
21/04/2018 08:00:00 3 0 . . . 3 1
21/04/2018 16:00:00 0 0 . . . 0 5
22/04/2018 00:00:00 1 2 . . . 0 1

5.2.3 ATM dataset characteristics

The first particularity is the distribution of the length of the life cycles, which, as shown
by Figure 5.4 is very skewed. This is due to the fact that the data, as some failures are
not rare (e.g. empty safe or network problem), and can create a lot of life cycles for one
ATM. While, as discussed in Section 4.1.1, other ways to extract life cycles exists, the
quality of the data did not allow them to be applied. The total number of failures for
each failure type are: 551 for network issue, 505 for empty safe, 442 unknown (tool and
ticket do not indicate the same failure type), 159 for the distribution module and 50 for
the card reader.

Another important fact about the data is that it is sparse, with 58% of the values being
zeros. To smooth the values and reduce sparsity, we use a rolling mean of a week (the

94

5.2. THE ATM DATASET

Figure 5.4: Distribution of life cycle duration per failure cause. One unit of length is 8
hours.

minimal data length), which gives us a sparsity of 26% and a smooth signal. Figure 5.5
gives an example of two time series without smoothing, and Figure 5.6 with smoothing for
life cycles ending with a distribution module failure. These two examples also illustrate
another difficulty of the data, the absence of clearly defined patterns that are linked to
a type of failure. The high dimensionality of the dataset may also prevent us to identify
such patterns by visualization. There are also some anomalies happening in the data,
that should not be picked up by the model as reason to raise a predictive maintenance
alert. Figure 5.7 gives an example of such anomalies.

Figure 5.5: Two (left and right plot) raw time series ending with a distribution failure
(colour legend is disabled due to the high number of features).

In this case study, we are interested in failure of the distribution module, but as other
types of failures are also occurring on the same machines, we need to take them into
account when learning a predictive model, as the anomalies or patterns linked with these

95

5.2. THE ATM DATASET

Figure 5.6: Two time series smoothed by a rolling mean, ending with a distribution failure
(colour legend is disabled due to the high number of features).

Figure 5.7: Two life cycles with early anomalies that should not raise maintenance alerts.

other failures can have an influence on the event codes that are kept as features for the
ATM dataset.

In the following, we choose to focus on predicting the failures of the distribution
module, which is the first and most costly cause of hardware failures. We use a binary
context, where class 1 is a life cycle ending by a failure of the distribution module, and class
0 is a life cycle ending by any other kinds of failure (e.g., card reader, empty cash safe,
connexion problems, unknown causes . . .). The objective of the classification problem
then becomes to find patterns that are specific to life cycles ending with a distribution
module failure, or that only occurs in life cycles ending with other types of failures.

96

5.3. EXPERIMENTS WITH EXISTING APPROACHES

5.3 Experiments with existing approaches
In this section, we adapt the experimental protocol described in Section 4.3, which consid-
ers that prediction are made independently of the cause of failure, to the ATM use case.
We then compute baseline results using the most common approaches in the literature,
which is to slice time series into moving windows.

In these experiments, we are interested in predicting the failure of the distribution
module and must thus change how the class of each moving window is affected compared
to Section 4.1.3 where we predicted failure independently of the cause. Given a window
Wi, class 1 represents a window in the interval [m−(pp+rd),m−rd] (i.e. where we should
raise alerts) only for life cycles ending with a distribution module failure. All other cases
are given class 0, as illustrated by Figure 5.8. Using this formulation, we are interested
in how accurately a predictive model can raise alerts, not only at the right moment, but
also for the right cause.

Figure 5.8: How micro and macro metrics are computed for the ATM dataset given two
life cycle a, b, focusing on the distribution module failure only.

The estimation of the global cost Ĉglobal must then be defined in the context of a
predictive maintenance system that must only predict failures of the distribution module.

97

5.3. EXPERIMENTS WITH EXISTING APPROACHES

We redefine Ĉglobal in Equation 5.2, where zi represents the true class of life cycle Xi (zi = 1

for distribution module failure, else zi = 0) and Ŷi is the predicted class for each window
of Xi.

When max(Ŷi) = 0, it means that no alert was raised for all the windows of Xi, which
is the desired behaviour when zi = 0. Similarly, when max(Ŷi) = 1, it means that at least
one alert was raised in the windows of Xi, which is the desired behaviour when zi = 1. In
this last case, the location of the first alert will be used to estimate errori, as the number
of timestamps before the acceptable maintenance interval.

Ĉglobal =
n∑

i=1

{
λneg if zi = 1

0 if zi = 0
−

n∑
i=1

λpos + errori × λϵ if max(Ŷi) = 1

λneg if zi = 1 and max(Ŷi) = 0

0 if zi = 0 and max(Ŷi) = 0

(5.2)

To create baselines for the ATM dataset, we use the following approaches:

• Using a sliding window approach, we apply Catch22 [52], introduced in Section 2.2,
to extract features for each window. It will extract the set of 22 discriminative
features for each feature of the life cycles. Then we use a Ridge Classifier (Catch22
+ Ridge) and a Random Forest Classifier (Catch22 + RF) to experiment with linear
and non-linear classifiers.

• Similarly, we use the MultiRocket [75] classifier with a sliding window approach.

In terms of parameters, we use a predictive padding (pp) of 7 days and a responsible
duration (rd) of 1 day, with a window length of 7 days (giving windows of size 21 as we
have a frequency of 8 hours) and a step of 1 day between each window, which correspond
to the desired parameter of the ATM predictive maintenance application. Due to the
numerous constraints behind the maintenance process of the distribution module, we are
going to assume λpos = 0.25 and λneg = 1. We then present our experimental results with
different values of λϵ. We use a 10-fold validation and present the sum of Ĉglobal and of
the confusion matrices for both the micro and the macro context.

Experimental results

To fix the parameters of each baseline, we use an inner cross validation for each validation
split. This means that for each of the 10 validation split, we perform a 5-fold validation
using only the training data for each set of parameters, and keep the one that maximizes
the global cost. Once the best parameters have been found for a split, the model is trained
on the whole training set and evaluated on the testing set, which was never seen in the
parameter optimization step. The parameters subject to this optimization are:

• For Catch22 with a Random Forest classifier: the number of trees, the number of
features to evaluate per tree split, the number of samples per trees, the strength of
the cost complexity pruning, and whether to use balanced class weights.

98

5.3. EXPERIMENTS WITH EXISTING APPROACHES

• For MultiRocket and Catch22 with a Ridge classifier: the strength of the regular-
ization, and whether to use balanced class weights.

Figure 5.9 shows the global cost with varying error cost on the x-axis. The approaches
based on Catch22 perform better than MultiRocket, and both stays at a positive cost
for all tested values of the error cost, which means that a system using these methods is
likely to result in an overall cost-reduction for maintenance operations. Table 5.4 gives
the micro confusion matrices, and Table 5.5 gives the number of maintenance operations
(i.e. first alerts in the macro context) that would have been performed with the system,
distinguishing alerts raised early, in the [m− (pp+ rd),m− rd] interval, and for life cycles
with a failure cause other than the distribution module. Considering the mediocre results
of MultiRocket, we do not include it as a baseline.

Figure 5.9: Global cost for all baselines with a varying error cost on the x-axis.

Table 5.4: Micro confusion matrices for each baseline on the ATM dataset.

TN FP FN TP

Catch22 + Ridge 63121.0 92.0 1629.0 12.0
Catch22 + RF 63170.0 43.0 1629.0 12.0
MultiRocket 62488.0 725.0 1547.0 94.0

Table 5.5: Number of first alerts raised early, in the [m − (pp + rd),m − rd] interval
(Good), and alerts raised for life cycle with a failure other than the distribution module.
The total number of life cycles of class 0 (Other) is 1548, and of class 1 is 159.

Distribution Early Distribution Good Other

Catch22 + Ridge 2 4 9
Catch22 + RF 11 5 10
MultiRocket 33 26 215

99

5.4. CONTRIBUTIONS

5.4 Contributions
We propose a new ensemble classification model, which includes a trigger system based on
the survival probability of a given sample. Let us recall that we use as input a multivariate
and variable length time series dataset with k features X = {X1, ..., Xn}, with time series
Xi = {(x1,1, . . . , x1,k), ..., (xmi,1, ..., xmi,k)} and yi its associated class.

5.4.1 Survival RoTation Forest (SRTF)

In this section, we describe a new ensemble classification algorithm, the Survival RoTation
Forest (SRTF). First, we show how we use the Random Dilated Shapelet Transform
(RDST), introduced in Section 3.7, to transform the multivariate and variable length time
series into a tabular representation. Then, given this tabular data and the information
about the length of the time series from which features are extracted, we build a Rotation
Forest using a multi-objective criterion for choosing tree nodes. This criterion uses both
the notion of information gain and the survival probability of the life cycle in the parent
and child nodes to decide the best split, composed of a variable and a threshold, for the
current node.

Life cycles to features

Few time series classification models are adapted to the case of multivariate and variable
length time series, and while survival models can handle such data and predict a remaining
useful life, they are not designed to discriminate between different kinds of failures. To
the best of our knowledge and given our application constraints, no solution was available
in the time series classification literature without applying a moving window extraction.

We use the generalized version of the Random Dilated Shapelet Transform (RDST)
defined in Section 3.7 with the following modification to tune it to the characteristics of
the use case:

• Instead of extracting argmin from the distance vector between a shapelet and a time
series, we extract the maximum. The notion of dissimilarity with a pattern seems
more important and simpler to exploit than the location of the minimum given the
variable length context and the sparsity of the data. Thus, the three features we
extract are min, max and Shapelet Occurrences.

• We sample the dilation parameter of shapelets based on the minimum length of all
inputs.

Given a set of shapelets S = {S1, . . . , Sq} and a set of life cycles X = {X1, . . . , Xn},
RDST outputs a feature matrix of size (n, 3q), which is used as input for our classification
model. The model also takes as input a vector T = {T1, . . . , Tn} with Ti the length of the
life cycle Xi, that information will be used as survival data. In our experiments, we will
try two methods, one where we sample shapelets from the whole series, and one where we
only sample them in the target interval for maintenance alerts (i.e. in [m− (pp+ rd),m].

Note that the usage of a variable length time series classification method instead of
a moving window scheme necessitate an adaptation of the experimental protocol. We
show how the experimental protocol for the ATM dataset, described in Section 5.3, can
be adapted to the case of variable length time series in Section 5.5.1.

100

5.4. CONTRIBUTIONS

Survival Classification Tree (SCTree)

From now on, we denote survival functions as U to avoid a conflict of notations with
shapelets. Before introducing the ensemble method, we present its individual component,
the Survival Classification Tree. The idea behind its design is to have a splitting criterion
that favour features that are both discriminative for classification and that isolate subpop-
ulations based on their survival (e.g. life cycles with a duration inferior to a month and
the others). The goal is to be able to isolate short life cycles from long ones in the tree,
as we expect the cause of failure to be different (e.g., random problem for short life cycles
against wear of mechanical equipment for long ones). We view this as a multi-objective
problem where we aim at:

• maximizing the information gain using the Gini impurity criterion to select discrim-
inant features,

• maximizing the difference between the survival functions, which are estimated from
the duration of life cycles in the child nodes resulting from a split.

Given a node and the vector T of life cycle durations of the samples in this node, we
can estimate the survival function U of the node by using the Kaplan-Meier estimator,
presented in Section 4.5. By using T and a value ti, we set di as the number of life cycles
failing at time ti and ni as the number of life cycles of duration superior to ti to fit a
Kaplan-Meier estimator as:

U(t) =
∏
i:ti<t

(
1− di

ni

)
(5.3)

Then, for a node and a candidate split, we have a survival function U and the class
distribution Y of the node, along with the survival functions and the class distributions
of the child nodes (Ul, Yl for the left child, Ur, Yr for the right child). We evaluate the
quality of a candidate split as follows. First, the information gain IFGain, using Gini
impurity, is computed as usual as:

IFGain = Gini(Y)− ||Yl||
||Y ||

Gini(Yl)−
||Yr||
||Y ||

Gini(Yr) (5.4)

with Gini(Y) being equal to one minus the sum of each class probability squared.
Then, using the mean squared Euclidean distance d(U,U ′) = 1

max(T)

∑max(T)
i (ui − u′

i)
2,

between two survival functions, we compute the survival gain UGain as:

UGain =
1

2

(
||Yl||
||Y ||

d(U,Ul) +
||Yr||
||Y ||

d(U,Ur)

)
(5.5)

A squared Euclidean distance is used to favour larger differences between survival
curves. Note that when using sample weights (e.g. in an unbalanced class scenario), ||Y ||
becomes the sum of weights of all samples.

As all survival functions take theirs values in [0, 1], and we consider the mean of the
squared Euclidean distance, which for each point is also bounded between [0, 1], the UGain

is divided by two in Equation 5.5 to match the bounds of the IFGain, as d(U,U ′) ∈ [0, 1].
Both UGain and IFGain are then bounded between [0, 0.5] with a higher value meaning a

101

5.4. CONTRIBUTIONS

higher quality split. Our goal is then to find a split that maximizes the sum of those two
quality measures, weighted by µ. The quality of the node is then computed as a sum of
the UGain and IFGain weighted by a parameter µ ∈ [0, 1], which controls the importance
of the survival gain during training:

Quality(Node) = (1− µ)× IFGain + µ× UGain (5.6)

Figure 5.10 gives a visual example of the resulting split of a survival function. To build
a tree, we recursively select the best candidate split from the root node until we obtain
pure leaves. Then a cost complexity pruning is applied to control over-fitting.

Figure 5.10: Example of a survival function split resulting from the maximization of
Equation 5.6

Finally, in each leaf of the tree, a survival function is estimated using the samples of
this leaf. Figure 5.11 gives an example of the result of this process for a tree. When doing
prediction, the survival function of a leaf allows us to estimate the survival probability
given the current length of a life cycle, along with the predicted class.

Figure 5.11: Survival functions for all leaves of a non-pruned SCTree fitted on the ATM
dataset, with samples of class 1 in orange and of class 0 in blue.

102

5.4. CONTRIBUTIONS

Trigger system

Inspired by the strategy used in early classification, we want to add a trigger system to op-
timize the time when an alert is raised. The two intervals of interest for the trigger system
are the responsive duration rd, which gives the time necessary to perform maintenance
and the predictive padding pp, which indicates an acceptable maintenance time.

Given the survival function S of a leaf, the length of the sample at this leaf T =
{T1, ..., Tn} and the two intervals pp, rd, we propose to define a threshold for the survival
probability, below which it is acceptable to raise a predictive maintenance alert. For each
sample i of the leaf, Ti − (pp + rd) gives a lower bound for the acceptable maintenance
interval, which corresponds to the start of the green area shown in Figure 4.2. We define
the threshold λS as the mean of these lower bounds for all samples in the leaf:

λS(S, T) =
1

||n||

n∑
i

S(Ti − pp+ rd) (5.7)

For the ATM use case, an alert can of course only be raised if the majority class of the
leaf is the class 1 (i.e. the class characterizing failures of the distribution module). Then
for leaves where the majority class is 1, given an unseen sample of length T , if we have
S(T) <= λS, then class 1 will be returned, otherwise we return class 0 as prediction (i.e.
no alert) and wait for the next batch of data which will increase the value of T .

Ensemble method

To build the Survival RoTation Forest (SRTF), we extend the Rotation Forest classifier
[62] with the Survival Classification Trees (SCTree) we just defined. We choose to use a
Rotation Forest because, on average, for continuous variables such as the ones generated
by shapelet based algorithms, a Rotation Forest is a better classifier compared to other
approaches such as Random Forest, XGBoost or support vector machines [4].

A Rotation Tree takes as input a feature matrix X of size (n,m), a vector Y of
size n containing the labels for all samples, a parameter K for the number of random
feature subsets to generate, and a parameter P for the size of the subsamples affected
to each subset. For each feature subset (of size m/K), a random subset of the classes
is removed, and a random subsampling of P samples of the remaining class is made. A
PCA transformation is then fitted on this specific feature subset and samples, and then
applied to all samples in X, for all feature subsets. This transformed data is then used
to fit a decision tree, and the transformation is performed again on new samples when
predicting. In our case, the decision tree is simply replaced by the Survival classification
tree.

The Survival RoTation Forest (SRTF) method, described in Algorithm 6, takes as
inputs:

• a set of multivariate time series X = {X1, . . . , Xn} with their respective classes
Y = {Y1, . . . , Yn} and their lengths T = {T1, . . . , Tn}.

• the parameters for the shapelet algorithm (RDST): a set of possible lengths
(shp_len), the number of shapelets to initialize (n_shp), and the minimum length
of the series (min_len).

103

5.5. EXPERIMENTS

• the parameters of the rotation forest: the number of distinct PCA transformation
(K) and the proportion of samples used to fit each PCA(P) and the number of trees
to build (n_trees).

Given each component of the method, namely, RDST and a set of SCTrees with their
associated PCA transforms, we can then predict the state of a life cycle as follows:

1. Transform the input time series with all the shapelets previously initialized by
RDST, to extract features and remove the time component.

2. For each SCTree, transform the data using the fitted PCA transformations (recall
that one feature is linked to only one of the PCA transforms for each tree), and
predict the leaves on which the samples will end up.

3. For a sample, give as prediction the majority class out all predictions of the SCTrees.

Algorithm 6 Survival RoTation Forest (SRTF)
Require: X , Y, T, n_shp, shp_len, K, P, n_trees

RDST ← RDST(n_shp, shp_len).fit(X , Y)
X_shp ← RDST.transform(X)
Trees_PCAs ← empty_list()
Trees ← empty_list()
for i in range(n_trees) do

Trees_PCAs[i]← fit_PCAs_subsets(X_shp, Y, K, P)
X_tree ← Trees_PCAs[i].transform(X_shp)
Trees[i]← SCTree().fit(X_Tree, T, Y)

end for
return RDST, Trees_PCAs, Trees

5.5 Experiments

In this section, we use the same protocol as we used to establish the baseline results
in Section 4.3, with the difference that our approach uses increasing windows, rather
than sliding windows. By performing experiments with our proposed model, we aim at
answering the following questions:

• What is the impact of using the survival gain during the construction of the survival
trees?

• Is using a Rotation Forest worth it compared to a Random Forest?

• Does our contribution improve on the baseline results?

• Is sampling shapelets near the end of the life cycles a better approach than on the
whole length?

104

5.5. EXPERIMENTS

Similarly to the baseline experiments, we set the parameters of each method using an
inner cross validation for each validation split, with the addition of the parameters of the
Rotation Forest (i.e. proportion of samples for each PCA and number of PCA) and the
parameter µ, which controls the importance of the survival gain in SRTF. Table 5.6 names
and summarizes the characteristics of the algorithms we compare in this section. When
Survival gain is not used, µ is set to 0 in Equation 5.6. If Rotation Forest is not used, no
PCA transformations are applied on the features given to the forest, and if shapelets are
sampled at the end of the life cycles, we only give the data located in [mi− (pp+ rd),mi]
for all life cycles as input to fit RDST.

Name Survival gain Rotation Forest Shapelet sampled at the end

SRTF ✓ ✓

SRTF Gini ✓

SRF ✓

SRTF End ✓ ✓ ✓

SRTF Gini End ✓ ✓

SRF End ✓ ✓

Table 5.6: Characteristics used by each variation of SRTF for the ATM dataset experi-
ments.

5.5.1 Experimental protocol for variable length methods

The experimental protocol for variable length methods is very similar to the one used
for the baseline results. Consider a validation fold with XTrain the training set and XTest

the testing set, both composed of life cycles. The first change compared to the baseline
protocol is to use XTrain directly for training the model, as it can handle variable length
time series. We rely on the trigger system to avoid early alerts, and let the model focus
on discriminating the failure of the distribution module of the others.

The second change is on the use of the testing set. Using the whole life cycle would
not be fair compared to the moving window scheme, as we need to simulate the stream
of data that would be emitted by the machine in the real use case. To do this, we use
an expanding window scheme, such as for a life cycle Xi ∈ XTest of size m, we extract a
set of expanding windows Wi = {W1, . . . ,Wm− (l− 1)}, with l the starting length of the
expanding window. An expanding window Wj ∈ Wi is defined as Wj = {x1, . . . , xj+(l−1)}.

By using the same value for the l parameter for both moving and expanding window
create the same number of windows, which allow for a fair comparison between the baseline
results and the variable length method. The way we compute the cost and extract micro
and macro metrics does not change for expanding windows. Figure 5.12 illustrates the
difference between the two protocols.

105

5.6. EXPERIMENTAL RESULTS

Figure 5.12: The differences between the experimental protocol used for the baseline
results that are using moving window, and for our variable length time series method. We
use expanding windows to simulate the stream of data emitted by the machine.

5.6 Experimental results

The results for the global cost are given in Figure 5.13, the micro confusion matrices in
Table 5.7 and the maintenance operations caused by the first alert in all life cycles in
Table 5.8. We see that Catch22 with a Random Forest remains a very strong baseline,
with only SRTF End having a better global cost for all tested values of the error cost.
While methods based on shapelets raise significantly more true and false positive in the
micro context compared to Catch22, they do not perform significantly more maintenance
operations, meaning that they raise more alerts for each life cycle. With more early
alerts raised, shapelet methods are also less valuable the more the error cost grows, the
exception being SRTF End, which, compared to Catch22, balance its higher number of
early maintenance by a higher number of successful ones.

The use of the rotation forest clearly improves the results for shapelet methods, with
the worst global cost being SRF and SRF End, the two variations not using the PCA
transformations. Despite a higher number of alerts raised for life cycles with distribution
module failures, the two methods also raise a lot of alerts for other life cycles. In this
regard, the superior results of methods using the PCA transformations may be due to the
fact that the PCAs are fitted on a unique class, which highly reduces the number of alert

106

5.6. EXPERIMENTAL RESULTS

Figure 5.13: Global cost for all methods with a varying error cost on the x-axis.

raised for life cycles with other causes of failure as shown in Table 5.8.

TN FP FN TP

Catch22 + Ridge 63121 92 1629 12
Catch22 + RF 63170 43 1629 12
SRTF 62712 501 1522 119
SRTF Gini 62524 689 1514 127
SRF 62314 899 1520 121
SRTF End 62832 381 1540 101
SRTF Gini End 62682 531 1502 139
SRF End 62512 701 1522 119

Table 5.7: Micro confusion matrices for all methods.

Sampling shapelets at the end of the life cycles, in the target interval fixed by the
predictive padding and the responsive duration, also seems to have a positive effect on
the results, as the global cost of methods using the whole life cycles to sample shapelets is
always inferior to its counterpart. Considering the quality of the data, sampling shapelets
using only the end of life cycles may help to increase the quality of the extracted set of
shapelets, notably by avoiding sampling shapelets on early or irrelevant anomalies.

107

5.7. CONCLUSION

Distribution Early Distribution Good Other

Catch22 + Ridge 2 4 9
Catch22 + RF 11 5 10
SRTF 20 3 19
SRTF Gini 16 2 17
SRF 24 7 40
SRTF End 14 7 14
SRTF Gini End 17 4 15
SRF End 20 6 35

Table 5.8: Number of maintenance operations that would have been performed by each
model, considering only the first alert raised for each life cycle.

5.7 Conclusion
In this chapter, we presented the ATM predictive maintenance use case proposed by
Worldline. We showed how we obtained the log and failure data for a set of 460 ATMs
located in France over a period of two years, and how we create the ATM dataset from
these data sources. We then conducted experiments using existing approaches, based
on a moving window approach to deal with the variable length of the series. The first
results showed that a predictive maintenance model built using this approach could be
cost-effective under our proposed experimental protocol.

Then, we presented our contribution for this use case, including a new ensemble clas-
sification model using a trigger system inspired by the early classification field and based
on the estimated survival probability of life cycles. Another set of experiments show that
it is possible to improve on the baseline results using this new approach.

Despite our best effort, while some models achieve a cost reduction, we estimate that
the results obtained on the ATM dataset are not satisfying enough yet for a product
release. This is due to the quality of the data, which is clearly lacking in both the log and
maintenance data. An effort to change the data source is currently ongoing at Worldline,
which could drastically increase the quality of the log data, and thus, the performance
of the predictive models. While obtaining maintenance data is still a challenge due to
the commercial interest of maintainers, with higher quality log data, the tool that we
presented in Section 5.2.1 to extract failure data may give better results, without having
to rely on maintenance tickets for validation.

108

Chapter 6

Conclusion and Future Works

Initially, this thesis was motivated by a predictive maintenance use case, which, given
the temporal nature of the data, pushed us toward studying time series algorithms. Af-
ter experimenting with the state-of-the-art algorithms, we wanted to create an accurate
and scalable method, similarly to the results of ROCKET [22], while also being easily
interpretable.

We began by studying shapelets [86] due to their natural interpretability. The issue
was that the accuracy of shapelet methods was far behind recent time series methods,
such as ROCKET [22], InceptionTime [36] or HIVE-COTE [50, 58]. While some shapelet
algorithms achieved reasonable scalability, it was at the cost of accuracy, notably by using
random approaches for generating shapelets.

To solve those issues, our objective was first to enhance the discriminative power of
shapelets, in order to rely on the scalability of random approaches to achieve our goals. We
presented those improvements in Chapter 3, the first one being the addition of dilation
into the shapelet formulation. Dilation allows shapelets to match with non-contiguous
subsequences, which increase the diversity of patterns that can be represented. A very
intuitive example of the benefit of dilation can found on data influenced by the heart beats
of a subject (e.g. PigCVP dataset), where a dilated shapelet can “synchronize” with the
cardiac frequency and represent a sequence of points, each spaced by the duration of a
heart-beat. More generally, for any cyclic component in a time series and supposing that
the frequency does not change, dilated shapelets can represent relations between points
of successive cycles. For example, in the heart-beat case, it could represent a successive
decrease in the blood pressure for l successive heart-beats, with l the length of the shapelet.

The second major addition to the shapelet formulation was the Shapelet Occurrences
(SO) feature. To produce features, a shapelet computes a distance vector between itself
and a time series, and then extracts the minimum of this vector as a feature. Following
the work of [32], the argmin is also extracted to discriminate cases where the location
of a pattern is discriminant, rather than its presence or absence in the series. One case
that is not covered by extracting the minimum and argmin is the case where a pattern is
present in all classes, but occurs a different number of times in each. To solve this issue,
we added another feature, which given a threshold λ, count the number of points in the
distance vector that are below this threshold. The intuition being to count the number
of times a shapelet is λ-close to the time series.

To use these contributions, we presented the Random Dilated Shapelet Transform

109

(RDST), a time series classification algorithm that randomly extracts shapelets from
the input time series, given lengths and dilations parameters, also randomly initialized.
We introduced multiple optimizations to further increase the scalability of the method,
and some additional parameters to tune the shapelet sampling process, notably with
α-similarity, to reduce the number of similar shapelets sampled by the random algorithm.

As previous research in the field of time series classification [50, 14, 75] have shown,
considering multiple representations of the input is beneficial to find discriminative
properties between the classes of a problem. Following this observation, we introduced
the RDST Ensemble, which further improved the accuracy of RDST by applying it to
different input representations, and combining the predictions made on each representa-
tion using a weighted majority voting scheme defined by [58]. This allowed the method
to achieve comparable accuracy to the most accurate time series classification algorithms,
while keeping its scalability and interpretability.

After focusing on time series classification algorithms, we studied the field of predictive
maintenance. First, we looked at how the problem is formulated, for both classification
and regression tasks, with the common goal of predicting when a machine is going to fail.
Different kind of approaches can then be implemented to solve the problem: rule-based
systems, anomaly or change point detection, supervised models, etc. One common pitfall
in the machine learning literature is that, when dealing with predictive maintenance ap-
plications, models are evaluated using metrics such as accuracy or mean absolute error,
which fail to consider the costs related to the maintenance process, and the particularity
of the application. We defined a specific experimental protocol for predictive maintenance
applications, which, given a predictive maintenance model to evaluate and the costs as-
sociated with the maintenance process, estimate how worth it is compared to a baseline
maintenance system.

We then introduced the ATM predictive maintenance use case, and detailed how we
extracted the ATM dataset from the event log data generated by a fleet of ATM. To
extract life cycles from the event logs, we first presented a tool to identify failures based
on the seasonality of withdrawal operations for an ATM. If no withdrawal was performed
during a period, and that we expected withdrawal to happen during this period, based
on the known seasonality, an anomaly score proportional to the expected amount was
affected. For each successive period without withdrawals, a cumulative product was used
to compute the final anomaly score. Failure periods were then selected using a threshold
on the anomaly score.

Once the ATM dataset was extracted, we conducted some experiments to obtain
baseline results. To improve on these results, we proposed a classification model, the
Survival Rotation Forest (SRTF). It modifies a classification tree algorithm by adding
the notion of survival gain during candidate split evaluation, which quantify the ability
of a candidate split to isolate short and long life cycles. We also added a trigger system
based on a survival function estimated at each leaf of a tree. Given the constraints of the
maintenance process, we estimate a threshold on the survival probability of ongoing life
cycles to classify, above which the prediction would be delayed. Using this method, with
RDST as a feature extraction step, and by restricting the shapelet sampling to the end
of the life cycles, we slightly improved on the baseline results.

110

6.1. FUTURE WORKS

6.1 Future Works

Considering our contributions, multiple axis for future works can be considered :

• Additional optimization for dilated shapelets, notably on the distance vectors com-
putation. For example, consider a time series X = {x1, . . . , xm} and the set of
shapelets S l,d with parameters (l, d). Currently, we extract the subsequences X i,l,d

and compute the distance between each shapelet and subsequences in a loop. Exist-
ing methods to optimize distance matrix computations, such as the ones presented in
[2], could be adapted to this context, by replacing the loop with matrix operations,
which could be computed more efficiently.

• New approaches for multivariate shapelets. In our current formulation, the mul-
tivariate case is treated as the sum of the distance vectors obtained from a set of
univariate shapelets and time series. There is no explicit relation measured between
the features. A solution could be to modify the definition of a multivariate shapelet
by adding a vector F = {f1, . . . , fl} that indicates the feature targeted by the value
si, as well as a vector T = {t1, . . . , tl} that indicates the progression in time between
each point si. Then, by modifying the computation of a point i of the distance vector
as:

vi =
l∑

j=1

sj − xi+(tj×d),fj (6.1)

We could first compare a point xi,f1 and then a point xi,f2 of another feature, but
at the same timestamp, supposing we have t1 = 0.

• In our current formulation, the dilation parameter remains fixed between all values
of a shapelet. It may be interesting to make the dilation vary between each value to
represent more complex patterns. By adding another parameter D = {d1, . . . , dl},
the dilation applied at each step of the distance computation could vary. We hope
that it would allow matching a cyclic component which changes its frequency in the
series. For example, discriminating two classes composed of sinusoidal functions,
which changes their frequency after each cycle, but with the values of those changes
being specific to each class.

Other works could also be carried out on shapelet algorithm. Rather than being divided in
two steps: the shapelet candidates generation and the extraction of the features, multiple
agents could simultaneously conduct a search for the best candidates. They would then
orient their search based on the quality of the shapelets extracted by other agents. In other
words, adapting reinforcement learning techniques to the context of shapelets candidates
generation.

Concerning our works on predictive maintenance, we assumed a particular modeliza-
tion of the problem by using life cycles to slice the data. We would like to explore other
approaches, and see how they would influence the results and the experimental protocol
we defined. The cost estimation of a maintenance alert could also be further refined to be
as close as possible to the reality of a predictive maintenance system. Another interesting
idea would be to adapt the cost of an alert as a loss function to optimize during training,
similarly to the works of the field of early classification on trigger systems. Ideally, the

111

6.1. FUTURE WORKS

experimental protocol should be consolidated into a more formal framework, to allow for
the evaluation of any type of predictive maintenance model and problem modelization.
Obtaining comparable results across multiple kinds of approaches and models would be
a great start toward building a benchmark for predictive maintenance tasks, similarly to
the UCR and UEA archive for time series classification.

112

Appendix A

Additional results for RDST
experiments

All the results table, for all experiments, including the standard deviation for each dataset
are available online on the project repository at https://github.com/baraline/convst/.

Figure A.1: Critical diagrams for the accuracy of RDST on the 112 UCR univariate
datasets. The left diagram is for the 40 datasets used in the sensitivity analysis of RDST,
the right diagram is for the 72 others.

Figure A.2: Critical diagrams for the accuracy of RDST Ensemble on the 112 UCR
univariate datasets. The left diagram is for the 40 datasets used in the sensitivity analysis
of RDST, the right diagram is for the 72 others.

113

114

Bibliography

[1] Youssef Achenchabe, Alexis Bondu, Antoine Cornuéjols, and Asma Dachraoui. Early
classification of time series: Cost-based optimization criterion and algorithms. Mach.
Learn., 110(6):1481–1504, jun 2021.

[2] Mélodie Angeletti, Jean-Marie Bonny, and Jonas Koko. Parallel euclidean distance
matrix computation on big datasets. 2019.

[3] A. Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron George
Bostrom, Paul Southam, and Eamonn J. Keogh. The uea multivariate time series
classification archive, 2018. ArXiv, abs/1811.00075, 2018.

[4] A. Bagnall, M. Flynn, J. Large, J. Line, A. Bostrom, and G. Cawley. Is rotation
forest the best classifier for problems with continuous features? arXiv, 2020.

[5] Anthony Bagnall, Eamonn Keogh, Jason Lines, Aaron Bostrom, James Large, and
Matthew Middlehurst. The UEA & UCR Time Series Classification Repository.

[6] Xanthi Bampoula, Georgios Siaterlis, Nikolaos Nikolakis, and Kosmas Alexopoulos.
A deep learning model for predictive maintenance in cyber-physical production sys-
tems using lstm autoencoders. Sensors, 21(3), 2021.

[7] Márcia Baptista, Shankar Sankararaman, Ivo de Medeiros, Cairo Nascimento Jr, Hel-
mut Prendinger, and Elsa Henriques. Forecasting fault events for predictive main-
tenance using data-driven techniques and arma modeling. Computers & Industrial
Engineering, 115, 2017.

[8] Gustavo E.A.P.A. Batista, Eamonn J. Keogh, Oben Moses Tataw, and Vinícius
M.A. De Souza. Cid: An efficient complexity-invariant distance for time series. Data
Mining and Knowledge Discovery, 28:634–669, 5 2014.

[9] Alexis Bondu, Youssef Achenchabe, Albert Bifet, Fabrice Clérot, Antoine Cornuéjols,
Joao Gama, Georges Hébrail, Vincent Lemaire, and Pierre-François Marteau. Open
challenges for machine learning based early decision-making research, 2022.

[10] Aaron George Bostrom. Shapelet Transforms for Univariate andMultivariate Time
Series Classification. PhD thesis, University of East Anglia, 2018.

[11] Aaron George Bostrom and A. Bagnall. Binary shapelet transform for multiclass
time series classification. Trans. Large Scale Data Knowl. Centered Syst., 32:24–46,
2017.

115

BIBLIOGRAPHY

[12] Aaron George Bostrom and A. Bagnall. A shapelet transform for multivariate time
series classification. In Proceedings of the 3rd ECML/PKDD Workshop on Advanced
Analytics and Learning on Temporal Data, 2018.

[13] Imad Bou-Hamad, Denis Larocque, and Hatem Ben-Ameur. A review of survival
trees. Statistics Surveys, 5(none):44 – 71, 2011.

[14] Nestor Cabello, Elham Naghizade, Jianzhong Qi, and Lars Kulik. Fast and accurate
time series classification through supervised interval search. pages 948–953, 11 2020.

[15] Matteo Calabrese, Martin Cimmino, Francesca Fiume, Martina Manfrin, Luca
Romeo, Silvia Ceccacci, Marina Paolanti, Giuseppe Toscano, Giovanni Ciandrini,
Alberto Carrotta, Maura Mengoni, Emanuele Frontoni, and Dimos Kapetis. Sophia:
An event-based iot and machine learning architecture for predictive maintenance in
industry 4.0. Information, 11(4), 2020.

[16] Qiushi Cao, Cecilia Zanni-Merk, Ahmed Samet, Christoph Reich, François
de Bertrand de Beuvron, Arnold Beckmann, and Cinzia Giannetti. Kspmi: A
knowledge-based system for predictive maintenance in industry 4.0. Robotics and
Computer-Integrated Manufacturing, 74:102281, 2022.

[17] D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society.
Series B (Methodological), 34(2):187–220, 1972.

[18] Asma Dachraoui, Alexis Bondu, and Antoine Cornuéjols. Early classification of time
series as a non myopic sequential decision making problem. In Annalisa Appice,
Pedro Pereira Rodrigues, Vítor Santos Costa, Carlos Soares, João Gama, and Alípio
Jorge, editors, Machine Learning and Knowledge Discovery in Databases, pages 433–
447, Cham, 2015. Springer International Publishing.

[19] Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan
Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh.
The ucr time series archive. IEEE/CAA Journal of Automatica Sinica, 6(6):1293–
1305, 2019.

[20] Yann Dauxais and Thomas Guyet. Generalized chronicles for temporal sequence
classification. In AALTD 2020 - 5th ECML/PKDD Workshop on Advanced Analytics
and Learning on Temporal Data, pages 1–16, 2020.

[21] L. Decker, D. Leite, L. Giommi, and D. Bonacorsi. Real-time anomaly detection in
data centers for log-based predictive maintenance using an evolving fuzzy-rule-based
approach. In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pages 1–8, 2020.

[22] Angus Dempster, François Petitjean, and Geoffrey Webb. Rocket: exceptionally
fast and accurate time series classification using random convolutional kernels. Data
Mining and Knowledge Discovery, 34, 09 2020.

[23] Angus Dempster, Daniel F. Schmidt, and Geoffrey I. Webb. Minirocket: A very fast
(almost) deterministic transform for time series classification. In Proceedings of the

116

BIBLIOGRAPHY

27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21,
page 248–257, New York, NY, USA, 2021. Association for Computing Machinery.

[24] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7(1):1–30, 2006.

[25] Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir. A time series
forest for classification and feature extraction. Information Sciences, 239:142–153,
2013.

[26] Christophe Dousson and Thang Vu Duong. Discovering chronicles with numerical
time constraints from alarm logs for monitoring dynamic systems. In Proceedings
of the 16th International Joint Conference on Artifical Intelligence - Volume 1, IJ-
CAI’99, page 620–626, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc.

[27] Ralph Duncan. A survey of parallel computer architectures. Computer, 23:5–16,
1990.

[28] Aurora Esteban, Amelia Zafra, and Sebastián Ventura. Data mining in predictive
maintenance systems: A taxonomy and systematic review. WIREs Data Mining and
Knowledge Discovery, page e1471.

[29] Michael Flynn, James Large, and Tony Bagnall. The contract random interval spec-
tral ensemble (c-rise): The effect of contracting a classifier on accuracy. In Hy-
brid Artificial Intelligent Systems: 14th International Conference, HAIS 2019, León,
Spain, September 4–6, 2019, Proceedings, page 381–392, Berlin, Heidelberg, 2019.
Springer-Verlag.

[30] Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme. Learn-
ing time-series shapelets. pages 392–401. Association for Computing Machinery, 2014.

[31] Antoine Guillaume, Christel Vrain, and Wael Elloumi. Random dilated shapelet
transform: A new approach for time series shapelets. In Pattern Recognition and
Artificial Intelligence, pages 653–664, Cham, 2022. Springer International Publishing.

[32] Mael Guillemé, Simon Malinowski, Romain Tavenard, and Xavier Renard. Local-
ized random shapelets. In Vincent Lemaire, Simon Malinowski, Anthony Bagnall,
Alexis Bondu, Thomas Guyet, and Romain Tavenard, editors, Advanced Analytics
and Learning on Temporal Data, pages 85–97, Cham, 2020. Springer International
Publishing.

[33] Ashish Gupta, Hari Prabhat Gupta, Bhaskar Biswas, and Tanima Dutta. Approaches
and applications of early classification of time series: A review. IEEE Transactions
on Artificial Intelligence, 1(1):47–61, 2020.

[34] Clemens Gutschi, Nikolaus Furian, Josef Suschnigg, Dietmar Neubacher, and
Siegfried Voessner. Log-based predictive maintenance in discrete parts manufac-
turing. Procedia CIRP, 79:528–533, 2019. 12th CIRP Conference on Intelligent
Computation in Manufacturing Engineering, 18-20 July 2018, Gulf of Naples, Italy.

117

BIBLIOGRAPHY

[35] Guoliang He, Yong Duan, Rong Peng, Xiaoyuan Jing, Tieyun Qian, and Lingling
Wang. Early classification on multivariate time series. Neurocomputing, 149:777–
787, 2015.

[36] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,
Daniel F. Schmidt, Jonathan Weber, Geoffrey I. Webb, Lhassane Idoumghar, Pierre-
Alain Muller, and François Petitjean. Inceptiontime: Finding alexnet for time series
classification. Data Mining and Knowledge Discovery, 2020.

[37] Baihong Jin, Yuxin Chen, Dan Li, Kameshwar Poolla, and Alberto Sangiovanni-
Vincentelli. A one-class support vector machine calibration method for time series
change point detection. In 2019 IEEE International Conference on Prognostics and
Health Management (ICPHM), pages 1–5, 2019.

[38] E. L. Kaplan and Paul Meier. Nonparametric estimation from incomplete observa-
tions. Journal of the American Statistical Association, 53(282):457–481, 1958.

[39] Evgenios Kladis, Charilaos Akasiadis, Evangelos Michelioudakis, Elias Alevizos, and
Alexandros Artikis. An empirical evaluation of early time-series classification algo-
rithms. In EDBT/ICDT Workshops, 2021.

[40] John P. Klein and Melvin L. Moeschberger. Survival Analysis : Techniques for
Censored and Truncated Data. Statistics for biology and health. Springer New York
: Imprint: Springer, New York, NY, 1st ed. 1997. edition, 1997.

[41] Panagiotis Korvesis, Stephane Besseau, and Michalis Vazirgiannis. Predictive main-
tenance in aviation: Failure prediction from post-flight reports. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pages 1414–1422, 2018.

[42] Christian Krupitzer, Tim Wagenhals, Marwin Züfle, Veronika Lesch, Dominik
Schäfer, Amin Mozaffarin, Janick Edinger, Christian Becker, and Samuel Kounev. A
survey on predictive maintenance for industry 4.0, 2020.

[43] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python
jit compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infras-
tructure in HPC, pages 1–6, 2015.

[44] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis and transformation. In CGO, pages 75–88, San Jose, CA, USA, Mar
2004.

[45] Huimin Li, Dong Han, Yawen Hou, Huilin Chen, and Zheng Chen. Statistical in-
ference methods for two crossing survival curves: A comparison of methods. PLOS
ONE, 10(1):1–18, 01 2015.

[46] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax: A novel
symbolic representation of time series. Data Min. Knowl. Discov., 15:107–144, 08
2007.

[47] Jason Lines and Anthony Bagnall. Time series classification with ensembles of elastic
distance measures. Data Mining and Knowledge Discovery, 29, 2015.

118

BIBLIOGRAPHY

[48] Jason Lines, Luke M. Davis, Jon Hills, and Anthony Bagnall. A shapelet transform
for time series classification. pages 289–297, 2012.

[49] Jason Lines and George Oastler. Ts-quad: A smaller elastic ensemble for time series
classification with no reduction in accuracy. In Mounîm El Yacoubi, Eric Granger,
Pong Chi Yuen, Umapada Pal, and Nicole Vincent, editors, Pattern Recognition and
Artificial Intelligence, pages 221–232, Cham, 2022. Springer International Publishing.

[50] Jason Lines, Sarah Taylor, and Anthony Bagnall. Time series classification with
hive-cote: The hierarchical vote collective of transformation-based ensembles. ACM
Trans. Knowl. Discov. Data, 12(5), jul 2018.

[51] Myriam Lopez, Marie Beurton-Aimar, Gayo Diallo, and Sofian Maabout. Log data
preparation for predicting critical errors occurrences. In Álvaro Rocha, Hojjat Adeli,
Gintautas Dzemyda, Fernando Moreira, and Ana Maria Ramalho Correia, editors,
Trends and Applications in Information Systems and Technologies, pages 224–233,
Cham, 2021. Springer International Publishing.

[52] Carl Henning Lubba, Sarab Sethi, Philip Knaute, Simon Schultz, Ben Fulcher, and
Nick Jones. catch22: Canonical time-series characteristics: Selected through highly
comparative time-series analysis. Data Mining and Knowledge Discovery, 33, 08
2019.

[53] Benjamin Lucas, Ahmed Shifaz, Charlotte Pelletier, Lachlan O’Neill, Nayyar Zaidi,
Bart Goethals, François Petitjean, and Geoffrey Webb. Proximity forest: an effective
and scalable distance-based classifier for time series. Data Mining and Knowledge
Discovery, 33, 05 2019.

[54] Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines,
and Franz Király. sktime: A unified interface for machine learning with time series.
09 2019.

[55] Z. Ma and A. W. Krings. Survival analysis approach to reliability, survivability and
prognostics and health management (phm). In 2008 IEEE Aerospace Conference,
pages 1–20, 2008.

[56] Matthew Middlehurst, James Large, and Anthony Bagnall. The canonical interval
forest (cif) classifier for time series classification. pages 188–195, 12 2020.

[57] Matthew Middlehurst, James Large, Gavin Cawley, and Anthony Bagnall. The tem-
poral dictionary ensemble (tde) classifier for time series classification. In Frank Hut-
ter, Kristian Kersting, Jefrey Lijffijt, and Isabel Valera, editors, Machine Learning
and Knowledge Discovery in Databases, pages 660–676, Cham, 2021. Springer Inter-
national Publishing.

[58] Matthew Middlehurst, James Large, Michael Flynn, Jason Lines, Aaron Bostrom,
and Anthony Bagnall. Hive-cote 2.0: a new meta ensemble for time series classifica-
tion. Machine Learning, 110, 12 2021.

119

BIBLIOGRAPHY

[59] Usue Mori, Alexander Mendiburu, Sanjoy Dasgupta, and Jose Lozano. Early classifi-
cation of time series by simultaneously optimizing the accuracy and earliness. IEEE
Transactions on Neural Networks and Learning Systems, PP:1–10, 11 2017.

[60] Thanawin Rakthanmanon and Eamonn Keogh. Fast Shapelets: A Scalable Algorithm
for Discovering Time Series Shapelets, pages 668–676. 05 2013.

[61] Yongyi Ran, Xin Zhou, Pengfeng Lin, Yonggang Wen, and Ruilong Deng. A survey
of predictive maintenance: Systems, purposes and approaches, 2019.

[62] Juan Rodríguez, Ludmila Kuncheva, and Carlos Alonso. Rotation forest: A new
classifier ensemble method. IEEE transactions on pattern analysis and machine in-
telligence, 28:1619–30, 11 2006.

[63] Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew Middlehurst, and An-
thony Bagnall. The great multivariate time series classification bake off: A review and
experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov.,
35(2):401–449, mar 2021.

[64] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing,
26(1):43–49, 1978.

[65] Patrick Schäfer. Scalable time series classification. Data Min. Knowl. Discov.,
30(5):1273–1298, sep 2016.

[66] Patrick Schäfer and Ulf Leser. Fast and accurate time series classification with weasel.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement, CIKM ’17, page 637–646, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[67] Roy Schwartz, Jesse Dodge, Noah Smith, and Oren Etzioni. Green ai. Communica-
tions of the ACM, 63:54–63, 11 2020.

[68] Patrick Schäfer. The boss is concerned with time series classification in the presence
of noise. Data Mining and Knowledge Discovery, 29, 11 2015.

[69] Patrick Schäfer and Ulf Leser. Teaser: early and accurate time series classification.
Data Mining and Knowledge Discovery, 34, 09 2020.

[70] Chayma Sellami, Ahmed Samet, and Mohamed Anis Bach Tobji. Frequent chronicle
mining: Application on predictive maintenance. In 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 1388–1393, 2018.

[71] Mit Shah, Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-
Thieme. Learning dtw-shapelets for time-series classification. Association for Com-
puting Machinery, Inc, 3 2016.

[72] Ahmed Shifaz, Charlotte Pelletier, François Petitjean, and Geoffrey Webb. Ts-chief:
a scalable and accurate forest algorithm for time series classification. Data Mining
and Knowledge Discovery, 34, 05 2020.

120

BIBLIOGRAPHY

[73] Ruben Sipos, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang. Log-based
predictive maintenance. pages 1867–1876. Association for Computing Machinery,
2014.

[74] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9, 2015.

[75] Chang Wei Tan, Angus Dempster, Christoph Bergmeir, and Geoffrey I. Webb. Mul-
tirocket: Multiple pooling operators and transformations for fast and effective time
series classification, 2021.

[76] Chang Wei Tan, François Petitjean, Eamonn J. Keogh, and Geoffrey I. Webb. Time
series classification for varying length series. ArXiv, abs/1910.04341, 2019.

[77] Chang Wei Tan, François Petitjean, and Geoffrey I. Webb. Fastee: Fast ensembles of
elastic distances for time series classification. Data Mining and Knowledge Discovery,
34:231–272, 2019.

[78] Romain Tavenard and Simon Malinowski. Cost-aware early classification of time
series. In Paolo Frasconi, Niels Landwehr, Giuseppe Manco, and Jilles Vreeken,
editors, Machine Learning and Knowledge Discovery in Databases, pages 632–647,
Cham, 2016. Springer International Publishing.

[79] Gilles Vandewiele, Femke Ongenae, and Filip De Turck. Gendis: Genetic discovery
of shapelets. Sensors, 21(4), 2021.

[80] J. Wang, C. Li, S. Han, S. Sarkar, and X. Zhou. Predictive maintenance based on
event-log analysis: A case study. IBM J. Res. Dev., 61, 2017.

[81] Yichang Wang, Rémi Emonet, Élisa Fromont, Simon Malinowski, and Romain Tave-
nard. Adversarial regularization for explainable-by-design time series classification.
2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (IC-
TAI), pages 1079–1087, 2020.

[82] Martin Wistuba, Josif Grabocka, and Lars Schmidt-Thieme. Ultra-fast shapelets for
time series classification, 2015.

[83] Zheng zheng Xing, Jian Pei, and Philip Yu. Early prediction on time series: A nearest
neighbor approach. pages 1297–1302, 01 2009.

[84] Zheng zheng Xing, Jian Pei, Philip Yu, and Ke Wang. Extracting interpretable
features for early classification on time series. pages 247–258, 04 2011.

[85] Zheng zheng Xing, Jian Pei, Philip Yu, and Ke Wang. Extracting interpretable
features for early classification on time series. pages 247–258, 04 2011.

[86] Lexiang Ye and Eamonn Keogh. Time series shapelets: A new primitive for data min-
ing. In Proceedings of the 15th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’09, page 947–956, New York, NY, USA,
2009. Association for Computing Machinery.

121

BIBLIOGRAPHY

[87] Jesin Zakaria, Abdullah Mueen, and Eamonn Keogh. Clustering time series using
unsupervised-shapelets. In 2012 IEEE 12th International Conference on Data Min-
ing, pages 785–794, 2012.

[88] Hanbo Zhang, Peng Wang, Zicheng Fang, Zeyu Wang, and Wei Wang. Elis++: a
shapelet learning approach for accurate and efficient time series classification. World
Wide Web, 24, 03 2021.

122

Antoine GUILLAUME
Time series classification with Shapelets: Application

to predictive maintenance on event logs

Dans cette thèse, nous nous intéressons à l’apprentissage automatique, et plus par-
ticulièrement à la classification supervisée de séries temporelles et son application à
la maintenance prédictive. Notre premier objectif est d’utiliser les shapelets, motifs
extraits des séries temporelles, pour construire un algorithme de classification supervisée,
permettant de prédire la classe d’une série en fonction de la présence de ces motifs dans
la série. Nous proposons plusieurs contributions pour améliorer leurs performances,
telles que l’ajout de la notion de dilatation et l’ajout d’un nouveau descripteur qui, à
partir d’un seuil de distance, compte le nombre d’occurrences d’une shapelet dans une
série. Nous présentons ensuite un algorithme de classification intégrant ces contributions
et évaluons ses performances par rapport aux méthodes existantes sur les archives de
données de l’Université d’East Anglia (UEA) et de California Riverside (UCR). Nous
étudions ensuite les méthodes de classification des séries temporelles pouvant être utilisées
pour la maintenance prédictive. Nous formalisons d’abord la tâche d’apprentissage, puis
présentons les méthodes utilisées dans la littérature pour produire des modèles adaptés
à la maintenance prédictive. Ensuite, nous introduisons un cas d’utilisation industrielle
de maintenance prédictive sur des journaux d’événements, issus de distributeurs au-
tomatiques de billets. Enfin, nous présentons un protocole expérimental, incluant une
métrique pour estimer le coût du système de maintenance, et un nouveau modèle de
classification spécifiquement conçu pour cette tâche.

Mots clés : Classification des séries temporelles, Shapelets, Maintenance prédictive

Time series classification with Shapelets: Application to predictive
maintenance on event logs

In this thesis, we are interested in machine learning, and more specifically in supervised
classification of time series and its application to predictive maintenance. Our first
objective is to use shapelets, patterns extracted from time series, to build a supervised
classification algorithm, allowing to predict the class of a series based on the presence of
these patterns in the series. We propose several contributions to improve their perfor-
mance, such as the addition of the notion of dilation and a new descriptor which, given a
distance threshold, counts the number of occurrences of a shapelet in a series. We then
present a classification algorithm using these contributions and evaluate its performance
against existing methods on the University of East Anglia (UEA) and California Riverside
(UCR) data archives. Then, we study time series classification methods that can be
used for predictive maintenance. First, we formalize the learning task, then present the
methods used in the literature to learn models suitable for predictive maintenance. Then,
we introduce an industrial use case of predictive maintenance on event logs, from ATMs.
Finally, we present an experimental protocol, including a metric to estimate the cost of
the maintenance system, and a new classification model specifically designed for this task.

Keywords : Time series classification, Shapelets, Predictive mainetance

LIFO, 6 Rue Léonard de Vinci, 45067 Orléans

	List of figures
	List of tables
	Introduction
	Contributions
	Thesis Organization
	Notations
	Comparison of classifiers
	Critical difference diagrams
	Pairwise accuracy plots

	Time Series Classification
	Introduction
	Related Work
	Distance-based algorithms
	Interval-based algorithms
	Dictionary-based algorithms
	Convolutional Kernel algorithms
	Ensemble methods
	Deep Learning methods

	Shapelets
	Introduction
	Shapelet Transform
	Distance function
	Shapelet features
	Shapelet generation
	Speed up techniques
	Invariance properties and robustness

	State-of-the-art evaluation

	Contributions to Time Series Classification
	Introduction
	Dilated Shapelets
	Definition
	Why use dilated shapelets?

	Shapelet Occurrence feature
	Definition
	Why use Shapelet Occurrence?

	Random Dilated Shapelet Transform (RDST)
	Definition
	Alternative strategies for the threshold

	Reducing the number of candidate shapelets
	Shapelet similarity
	Input subsampling

	Invariance properties and robustness for shapelets
	Phase invariance
	Robustness to complexity
	Robustness to noise

	Generalization of RDST
	-similarity for multivariate shapelets
	Extension to variable length time series

	Parallelization and optimization of RDST
	Shapelet initialization
	Shapelet Transformation
	Distance computation and normalization

	Experiments
	Sensitivity analysis
	Distance functions
	Impact of individual contributions
	Shapelet sampling
	Invariance properties and robustness
	Optimizing the threshold
	Time complexity
	Comparison to the state of the art

	Conclusion

	Predictive Maintenance
	Problem formulation
	Extracting a predictive maintenance dataset
	Regression tasks
	Classification tasks

	Related work
	Pattern mining approaches
	Statistical model approaches
	Machine learning approaches
	Predictive maintenance for log data

	Experimental protocol for predictive maintenance
	Micro and Macro metrics
	Example with a classification model
	Estimating the cost of a predictive maintenance system

	Early classification
	Related work
	Early classification for predictive maintenance

	Introduction to survival analysis
	Survival data
	Survival and Hazard Function
	Survival function estimators

	The ATM use case
	Application context
	The ATM dataset
	Extracting life cycles
	Preprocessing
	ATM dataset characteristics

	Experiments with existing approaches
	Contributions
	Survival RoTation Forest (SRTF)

	Experiments
	Experimental protocol for variable length methods

	Experimental results
	Conclusion

	Conclusion and Future Works
	Future Works

	Additional results for RDST experiments

	References

