Je Souhaite Remercier 
  
Les Professeurs 
  
Karine Beauchard 
  
Oana Ivanovici 
  
Matthieu Léautaud 
  
Zhiqiang Wang D' 
  
Meriem Bouguezzi 
  
Nicolas Camps 
  
Zhangchi Chen 
  
Hugo Federico 
  
Louisse Gassot 
  
Ning Guo 
  
Jiao He 
  
Thibault Lefeuvre 
  
Long Meng 
  
Changzhen Sun 
  
Yisheng Tian 
  
Mingchen Xia 
  
Shengquan Xiang 
  
Songchaohao, Zhu Xu Yuan 
  
etc. En Jiandi Zou 
  
  
  
  
  
  

Cette thèse n'aurait pas été possible sans toute l'aide et les encouragements que j'ai reçus de tant de gens à qui je dois ma plus sincère reconnaissance.

Tout d'abord, je tiens à remercier mes directeurs de thèse, Nicolas Burq et Pierre Lissy. C'est un honneur d'être votre doctorant. En travaillant avec vous au cours des dernières anneés, j'ai appris de belles mathématiques et acquis une attitude optimiste envers la recherche et la vie. Vous me permettez de prendre tout le crédit de mes travaux, même s'ils sont largement basés sur vos méthodes et vos tchniques. Pendant la période spéciale du covid, vous m'avez donné le plus d'encouragement. Je suis plus que chanceux de vous avoir comme directeurs de thèse et je chérirai vos conseils et vos amitiés.

Résumé

Dans cette thèse, nous étudions les théories étroitement liées du contrôle et les propriétés de la continuation unique, pour des équations et systèmes des ondes linéaires. Les résultats principaux proviennent des travaux de l'auteur:

1. Jingrui Niu. Simultaneous Control of Wave Systems. SIAM J. Control Optim., 59(3):2381-2409, 2021

2. Pierre Lissy and Jingrui Niu. Controllability of a coupled wave system with a single control and different speeds. preprint, 2021

Dans [START_REF] Abraham | Transversality in manifolds of mappings[END_REF], nous avons étudié la contrôlabilité simultanée des systèmes des ondes dans un domaine ouvert de R d . Nous obtenons un résultat de contrôlabilité partielle sur un espace co-dimensionnel fini pour des équations d'onde couplées par une seule fonction de contrôle. Pour la propriété de continuation unique des fonctions propres, nous avons donné un contre-exemple pour montrer que dans certaines métriques, la propriété de continuation unique n'est pas vraie. De plus, nous avons étudié différentes conditions pour garantir la propriété de continuation unique. Nous avons étudié également notre résultat au cas de coefficients constants et éventuellement de fonctions de contrôle multiples. Dans ce contexte, nous avons prouvé que la propriété de contrôlabilité est équivalente à une condition de rang de Kalman appropriée.

Dans [START_REF] Alabau-Boussouira | A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems[END_REF], nous avons étudié un problème de contrôlabilité exact dans un domaine ouvert Ω de R d , pour un système des ondes couplées, avec des vitesses différentes et une seule commande agissant sur une sous-ensemble ouvert ω satisfaisant la condition de contrôle géométrique et sur une seule vitesse. Les actions pour les équations des ondes avec la deuxième vitesse sont obtenues par un terme de couplage. Tout d'abord, nous construisons des espaces d'états appropriés avec des conditions de compatibilité associées à la structure de couplage. Deuxièmement, dans ces espaces bien préparés, nous prouvons que le système des ondes couplées est exactement contrôlable si et seulement si la structure de couplage satisfait à une condition de rang de Kalman de l'opérateur.

Chapter 1 Introduction(français)

Motivation

La contrôlabilité des équations d'onde est un sujet de recherche classique dans la théorie du contrôle et dans l'analyse des équations aux dérivées partielles. Il existe une grande littérature sur la contrôlabilité des équations des ondes linéaires. L'un des meilleurs résultats sur ce sujet a été obtenu par Bardos, Lebeau et Rauch dans leur article [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF], où ils ont introduit la condition de contrôle géométrique et présenté l'application de l'analyse microlocale au sujet. On peut aussi se référer à l'article [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF] de Burq et Gérard et à l'article [START_REF] Burq | Contrôlabilité exacte des ondes dans des ouverts peu réguliers[END_REF] de Burq pour des améliorations ou des démonstrations plus simples. Ces résultats forment un contexte de base et fournissent également la stratégie principale pour nous d'étudier la contrôlabilité des équations des ondes.

Comme nous pouvons le voir, pour une équation des ondes scalaire, la contrôlabilité exacte est bien connue. Il existe une large littérature sur la contrôlabilité d'une équation des ondes scalaire à travers différentes approches telles que [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] en utilisant l'analyse microlocale comme nous l'avons mentionné précédemment, [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systemes distribués[END_REF][START_REF] Lagnese | Control of wave processes with distributed controls supported on a subregion[END_REF] en utilisant des multiplicateurs, [START_REF] Haraux | On a completion problem in the theory of distributed control of wave equations[END_REF][START_REF] Baudouin | Global Carleman estimates for waves and applications[END_REF] en utilisant des estimations de Carleman, ou une preuve complètement constructive [START_REF] Laurent | Uniform observability estimates for linear waves[END_REF], etc.

Bien que nous ayons maintenant une meilleure compréhension de la contrôlabilité d'une équation des ondes scalaire, la contrôlabilité des systèmes des ondes n'est toujours pas totalement comprise. A notre connaissance, la plupart des références concernent le cas de systèmes avec le même symbole principal. Alabau-Boussouira et Léautaud [START_REF] Alabau | Indirect controllability of locally coupled wave-type systems and applications[END_REF] ont étudié la contrôlabilité indirecte de deux équations des ondes couplées, dans lesquelles leur résultat de contrôlabilité a été établi en utilisant une méthode d'énergie multi-niveaux introduite dans [START_REF] Alabau-Boussouira | A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems[END_REF], et également utilisé dans [START_REF] Alabau-Boussouira | A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls[END_REF][START_REF] Alabau-Boussouira | Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control[END_REF]. Liard et Lissy [START_REF] Liard | A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups[END_REF], Lissy et Zuazua [START_REF] Lissy | Internal observability for coupled systems of linear partial differential equations[END_REF] ont étudié l'observabilité et la contrôlabilité des systèmes des ondes couplées sous la condition de rang de type 1.2. GÉNÉRALITÉS Kalman. De plus, nous pouvons trouver d'autres résultats de contrôlabilité pour les systèmes des ondes couplées, par exemple, Cui, Laurent et Wang [START_REF] Cui | On the observability inequality of coupled wave equations: the case without boundary[END_REF] ont étudié l'observabilité des équations d'onde couplées par des termes d'ordre zéro ou du premier ordre sur une variété compacte. Cependant, lorsque l'on considère la contrôlabilité du système des ondes couplée à des vitesses différentes, il y a très peu de résultats.

Par contre, compte tenu de la contrôlabilité d'un système parabolique, nous constatons qu'il n'y a pas de différences entre le couplage avec la même vitesse et des vitesses différentes (par exemple, voir [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]). Cela nous motive également à étudier les résultats sur la contrôlabilité du système des ondes à différentes vitesses.

Dans cette thèse, le principal modal étudié est l'équation d'onde sous la forme suivante. Soit Ω ⊂ R d , d ∈ N * , un domaine borné et lisse. Pour les constantes positives α et β, soit k ij (x) : Ω → R, 1 ≤ i, j ≤ d des fonctions lisses qui satisfont:

k ij (x) = k ji (x), α|ξ| 2 ≤ 1≤i,j≤d k ij (x)ξ i ξ j ≤ β|ξ| 2 , ∀x ∈ Ω, ∀ξ ∈ R d .
(1.1.1)

Supposons K(x) est la matrice symétrique définie positive des coefficients k ij (x).

De plus, nous définissons la fonction de densité κ(x)

= 1 √ det(K(x))
. On définit également le Laplacien par

∆ K = 1 κ(x) div(κ(x)K∇•) sur Ω et l'opérateur d'Alembert K = ∂ 2 t -∆ K sur R t × Ω.
Nous considérons une équation d'onde non homogène avec un terme source f :

K u = f, (1.1.2)
avec conditions initiales:

u| t=0 = u 0 , ∂ t u| t=0 = u 1 .
(1.1.3)

Généralités

Dans cette section, nous présenterons quelques aspects de base du problème de contrôle des équations d'onde. Nous supposons que ω est un sous-ensemble ouvert de Ω. Nous considérons le problème de contrôlabilité intérieure pour l'équation des ondes suivante:

   K u = f 1 ω dans ]0, T [×Ω, u = 0 sur ]0, T [×∂Ω, u| t=0 = u 0 (x), ∂ t u| t=0 = u 1 (x),
(1.2.1) òu f est une fonction de contrôle avec son support localisée dans le sous-domaine ω.
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Il est bien connu que l'équation d'onde modélise de nombreux phénomènes physiques tels que les petites vibrations des corps élastiques et la propagation du son. Par exemple, (1.2.1) fournit une bonne approximation pour les vibrations de faible amplitude d'une corde élastique ou d'une membrane flexible occupant la région Ω au repos. La commande f représente alors une force localisée agissant sur la structure vibrante.

De plus, puisque l'équation d'onde est l'équation hyperbolique la plus pertinente. Par l'étude de l'équation d'onde, il nous aide à comprendre comment les propriétés des équations hyperboliques agissent sur les problèmes de contrôle.

Il est donc intéressant et important d'étudier la contrôlabilité de l'équation d'onde comme l'un des modèles fondamentaux de la mécanique du continuum et, en même temps, comme l'une des équations les plus représentatives de la théorie du contrôle des équations aux dérivées partielles.

Contrôlabilité

Dans cette section, nous présenterons plusieurs types différents de contrôlabilité pour l'équation d'onde (1.2.1). Définition 1.2.1 (Contrôlabilité). Let T > 0.

1. (Contrôlabilité exacte) On dit que l'équation d'onde (1.2.1) est exactement contrôlable dans H 1 0 ×L 2 au temps T si pour toutes données initiales (u 0 , u 1 ) ∈ H 1 0 × L 2 et toutes données cibles (ũ 0 , ũ1 ) ∈ H 1 0 × L 2 , il existe un contrôle f ∈ L 2 (]0, T [×ω) tel que la solution de (1.2.1) avec les données initiales (u| t=0 , ∂ t u| t=0 ) = (u 0 , u 1 ), satisfait (u| t=T , ∂ t u| t=T ) = (ũ 0 , ũ1 ).

(Contrôlabilité à zéro)

On dit que l'équation d'onde (1.2.1) est contrôlable à zéro dans H 1 0 ×L 2 au temps T si pour toutes données initiales (u 0 , u 1 ) ∈ H 1 0 × L 2 , il existe un contrôle f ∈ L 2 (]0, T [×ω) tel que la solution de (1.2.1) avec les données initiales (u| t=0 , ∂ t u| t=0 ) = (u 0 , u 1 ), satisfait (u| t=T , ∂ t u| t=T ) = (0, 0).

(Contrôlabilité à partir de zéro)

On dit que l'équation d'onde (1.2.1) est contrôlable à partir de zéro dans H 1 0 × L 2 au temps T si pour toutes données cibles (ũ 0 , ũ1 ) ∈ H 1 0 × L 2 , il existe un contrôle f ∈ L 2 (]0, T [×ω) tel que la solution de (1.2.1) avec les données initiales (u| t=0 , ∂ t u| t=0 ) = (0, 0), satisfait (u| t=T , ∂ t u| t=T ) = (ũ 0 , ũ1 ).

(Contrôlabilité partielle)

Soit Π un opérateur de projection défini dans H 1 0 × L 2 . On dit que l'équation d'onde (1.2.1) est Π-exactement contrôlable dans H 1 0 × L 2 au temps T si pour toutes données initiales (u 0 , u 1 ) ∈ H 1 0 × L 2 et 1.2. GÉNÉRALITÉS toutes données cibles (ũ 0 , ũ1 ) ∈ H 1 0 ×L 2 , il existe un contrôle f ∈ L 2 (]0, T [×ω) tel que la solution de (1.2.1) avec les données initiales (u| t=0 , ∂ t u| t=0 ) = (u 0 , u 1 ), satisfait Π(u| t=T , ∂ t u| t=T ) = Π(ũ 0 , ũ1 ). Remarque 1.2.2. En particulier, parce que l'équation d'onde est linéaire et réversible, la contrôlabilité exacte, la contrôlabilité à zéro et la contrôlabilité à partir de zéro sont équivalent (voir [START_REF] Coron | Control and nonlinearity[END_REF]Theorem 2.41]).

Condition de Kalman

Dans cette section, nous rappelons quelques conditions de rang de Kalman introduites dans la littérature des systèmes paraboliques couplés. Tout d'abord, nous rappelons la condition de rang de Kalman pour la contrôlabilité des équations différentielles ordinaires autonomes linéaires (voir par exemple [START_REF] Kalman | Controllability of linear dynamical systems[END_REF]). Définition 1.2.3 (Condition de rang de Kalman). Soit m, n deux entiers positifs. Supposons A ∈ M n (R) et B ∈ M n,m (R). Nous introduisons la matrice de Kalman associée à A et B définie par

[A|B] = [A n-1 B| • • • |AB|B] ∈ M n,nm ( 
R). On dit que (A, B) satisfait la condition de rang de Kalman si [A|B] est une matrice de plein rang.

Cette condition de Kalman pour la contrôlabilité est introduite dans [START_REF] Kalman | Controllability of linear dynamical systems[END_REF], qui est un critère pour un système linéaire autonome ẋ = Ax + Bu avec un contrôle u ∈ L ∞ (]T 0 , T 1 [, R m ). De plus, nous remarquons que la condition de rang de Kalman est une condition équivalente pour la contrôlabilité du système linéaire autonome ẋ = Ax + Bu (on peut se référer à [16, Remarque 1.17]). Définition 1.2.4 (Opérateur de Kalman). Supposons que X ∈ R n×n and Y ∈ R n×m . De plus, soit D ∈ R n×n une matrice diagonale. Alors, l'opérateur de Kalman associée à (-D∆+X, Y ) est une opérateur K = [-D∆+X|Y ] : D(K ) ⊂ (L 2 ) nm → (L 2 ) n ), avec le domaine de l'opérateur D(K ) = {u ∈ (L 2 ) nm : K u ∈ (L 2 ) n }. Définition 1.2.5 (Condition de rang de l'opérateur de Kalman). On dit que l'opérateur de Kalman K satisfait la condition de rang de l'opérateur de Kalman si Ker(K * ) = {0}.

La condition de rang de l'opérateur Kalman peut être reformulée comme suit. Proposition 1.2.6. [6, Proposition 2.2] La condition de rang de l'opérateur Kalman est equivalent à la condition de rang de Kalman spectral suivante: rang[(λD + X)|Y ] = n, ∀λ ∈ σ(-∆).

En particulier, soit C > 0 une constante et D = CId n . Alors, La condition de rang de l'opérateur Kalman est equivalent à la condition de rang de Kalman donnée par Définition 1.2.3 (voir [6, Remark 1.2]).

Méthode d'unicité de Hilbert

Pour l'équation (1.2.1), nous introduisons l'équation adjointe comme suit:

   K v = 0 dans ]0, T [×Ω, v = 0 sur ]0, T [×∂Ω, v| t=0 = v 0 (x), ∂ t v| t=0 = v 1 (x),
(1.2.2) Définition 1.2.7. On dit qu'une équation d'onde homogène (1.2.2) est observable dans [0, T ] × ω s'il existe une constante C > 0 telle que chaque solution v ∈ C 0 (0, T, L 2 ) ∩ C 1 (0, T, H -1 ) de l'équation d'onde homogène (1.2.2) satisfait à

C T 0 ω |κv| 2 dxdt ≥ ||v 0 || 2 L 2 + ||v 1 || 2 H -1 . (1.2.3)
Ici, l'inégalité (1.2.3) est appelée l'inégalité d'observabilité pour l'équation adjointe.

Selon la méthode de l'unicité de Hilbert de J.-L. Lions [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], la propriété de contrôlabilité est équivalente à une inégalité d'observabilité pour le système adjoint. Théorème 1.2.8. L'équation d'onde (1.2.1) est contrôlable à zéro si et seulement si l'équation adjointe (1.2.2) est observable dans [0, T ] × ω.

L'idée de preuve de ce théorème est la méthode d'unicité de Hilbert, qui établit la dualité entre la contrôlabilité à zéro et l'observabilité. Nous définissons l'opérateur R par

R : f ∈ L 2 (]0, T [×ω) → (u 0 , u 1 ) ∈ H 1 0 × L 2 , (1.2.4) 
où u est la solution de (1.2.1) avec (u| t=T , ∂ t u| t=T ) = (0, 0). D'autre part, nous définissons l'opérateur S par

S : (v 0 , v 1 ) ∈ L 2 × H -1 → v1 ]0,T [ (t)1 ω (x) ∈ L 2 (]0, T [×ω), (1.2.5) 
où v résout l'équation adjointe (1.2.2). Par conséquent, la contrôlabilité à zéro est la surjectivité de l'opérateur R et l'observabilité est la coercitivité de l'opérateur S. Le Théorème 1.2.8 implique la dualité R * = S.

Remarque 1.2.9. La coercivité de S implique son injectivité, c'est-à-dire, un résultat de la continuation unique de (1.2.2) : si v résout (1.2.2) et s'annule dans [0, T ] × ω, alors v ≡ 0.

GÉNÉRALITÉS

Condition du contrôle géométrique

Afin d'étudier l'inégalité d'observabilité, une méthode classique consiste à suivre le processus abstrait en trois étapes initialisé par Rauch et Taylor : [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF](voir également [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]). Il peut être détaillé comme suit :

• Premièrement, obtenir l'information microlocale sur la région observable. Montrer par contradiction et on obtient différents types de convergence dans le sous-domaine ]0, T [×ω et le domaine ]0, T [×Ω.

• Deuxièmement, utilisez la mesure de défaut microlocale (qui est due à Gérard [START_REF] Gérard | Microlocal defect measures[END_REF] et Tartar [START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF]), ou le théorème de propagation des singulaties (voir [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]Section 18.1] ) pour prouver une estimation d'observabilité faible :

||v 0 || 2 L 2 + ||v 1 || 2 H -1 ≤ C( T 0 ω |κv| 2 dxdt + ||v 0 || 2 H -1 + ||v 1 || 2 H -2 ).
• Troisièmement, utilisez les propriétés de continuation unique des fonctions propres pour obtenir l'inégalité d'observabilité originale (1.2.3).

Pour les estimations à haute fréquence, une condition très naturelle consiste à supposer que l'ensemble de contrôle satisfait à la condition de contrôle géométrique (CCG).

Définition 1.2.10. Pour un sous-ensemble ω et T > 0, nous dirons que la paire (ω, T, p K ) satisfait la condition de contrôle géométrique (CCG) si tout rayon bicharactéristique générale de p K rencontre ω en un temps t < T , où p K est le symbole principal de K .

Nous donnerons la définition des bicharactéristiques dans la 1.3.1. Cette condition a été soulevée par Bardos, Lebeau et Rauch [START_REF] Bardos | Contrôle et stabilisation dans les problemes hyperboliques[END_REF] lorsqu'ils ont considéré la contrôlabilité d'une équation scalaire à ondes et est maintenant devenue une hypothèse de base pour la contrôlabilité des équations à ondes. Dans [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF], les auteurs montrent que la condition de contrôle géométrique est une condition nécessaire et suffisante pour la contrôlabilité exacte de l'équation d'onde avec conditions de Dirichlet et des contrôles aux limites continues.

Propriété de la continuation unique

Comme nous le savions, la propriété de la continuation unique n'implique pas la contrôlabilité en dimension infinie. En effet, par exemple, sur une variété riemannienne compacte, les valeurs propres du laplacien étant discrètes, le régime des basses fréquences est engendré par un nombre fini de fonctions propres du laplacien. C'est essentiellement l'idée de l'argument unicité-compacité dans l'article de CHAPTER 1. INTRODUCTION(FRANÇAIS) Bardos,Lebeau,et Rauch [31]. Cet argument ramène l'observabilité du régime des basses fréquences à la propriété de la continuation unique des fonctions propres du laplacien. C'est-à-dire, si u satisfait l'équation, -∆u = λu, λ ∈ C (1.2.6) et si u| ω = 0, a-t-on u ≡ 0 dans Ω? Lorsque ∆ est un opérateur différentiel à coefficients analytiques, Holmgren a montré l'unicité de solution parmi les distributions. Le premier effort pour supprimer l'analyticité est dû à Carleman [START_REF] Carleman | Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes[END_REF], qui a montré l'unicité en supposant que les caratéristiques de l'équation sont simples. Il y a beaucoup de litterature sur l'inégalité de Craleman, par exemple, voir [?, ?].

1.3 Mesure de défaut pour l'équation des ondes On supposera que la fonction homogène de degré 2 en η, r(x, y, η) vérifie ∂r ∂η

= 0 pour (x, y) ∈ [0, 1[×B et η = 0.

Soitent également Q 0 (x, y, D y ) et Q 1 (x, y, D y ) des opérateurs pseudo-différentiels tangentiels classiques définis au voisinage de de [0, 1] × B, de degrés respectifs 0 et 1, de symboles principaux q 0 et q 1 . On note P l'opérateur de degré 2:

P = (∂ 2 x + R) + Q 0 ∂ x + Q 1
Le symbole principal p de P est scalaire et vaut p = -ξ 2 + r(x, y, η). Donc, on décompose T * ∂M en l'union disjointe E ∪ G ∪ H, où

E = {r 0 < 0}, G = {r 0 = 0}, H = {r 0 > 0}.

CHAPTER 1. INTRODUCTION(FRANÇAIS)

l'équation de Helmoltz et Burq [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF] pour l'équation d'onde. L'autre suit l'idée de l'article [START_REF] Lebeau | Équation des ondes amorties[END_REF] de Lebeau et nous nous appuyons sur l'article [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] de Burq et Lebeau pour la mise en place des systèmes d'onde. Pour la première, on considère

(u k ) k∈N ⊂ L 2 loc (R + ; L 2 (Ω)) n une suite bornée d'élements de L 2 loc (R + ; L 2 (Ω)) n , qui satisfait P u k = o(1) H -1 , u k | ∂M = 0. (1.3.1)
On suppose que la suite (u k ) converge faiblement vers 0 et on note

u k ⊂ L 2 loc (R + ; L 2 (R d ))
n le prolongement par 0 de u k à l'extérieur de l'ouvert M . Suivant la [12, Section 1], nous avons l'existence de la mesure de défaut microlocale comme suit :

Proposition 1.3.4. On peut donc, quitte à extraire une sous-suite lui associer une mesure positive sur S * ((R • La support de la mesure µ est inclus dans l'intersection de la variété caractéristique de l'équation des ondes avec R + × Ω:

+ × R d )) µ, vérifiant pour tout A ∈ A lim k→∞ (Au k , u k ) L 2 = µ, σ(A) , (1.3 
supp(µ) ⊂ Char(P ) = {(t, x, τ, ξ); x ∈ M , τ 2 = |ξ| 2 x }. (1.3.3) 
• La mesure µ ne charge pas l'ensemble hyperbolique dans ∂M :

µ(H) = 0.
• En particulier, si n = 1, la mesure scalaire µ est invariante le long du flot bicaractéristique généralisé.

D'autre part, on note A une espace des matrices n × n d'opérateurs A de la forme A = A i + A t où A i est un opérateur pseudo-différentiel classique d'ordre 0, à support compact dans M (i.e, vérifiant A i = ϕA i ϕ pour un ϕ ∈ C ∞ 0 (M )) et où A t est un opérateur pseudo-différentiel tangentiel classique d'ordre 0, à support compact dans M (i.e, vérifiant A t = ϕA t ϕ pour un ϕ ∈ C ∞ (M )).

MESURE DE DÉFAUT POUR L'ÉQUATION DES ONDES

Remarque 1.3.6. On note le fibre de cotangente compressée de Melrose par b T * M et l'appication canonique j:T * M → b T * M , défini par j(x, y, ξ, η) = (x, y, xξ, η).

On pose

Z = j(Char(P )), Ẑ = Z ∪ j(T * M | x=0 ), et S Ẑ = ( Ẑ\M )/R * + , SZ = (Z\M )/R * + .
Remarque 1.3.7. S Ẑ et SZ sont les espaces quotients sphérique et des espaces métriques localement compacts.

Pour A ∈ A, avec le symbole principal a = σ(A), on définit κ(a)(ρ) = a(j -1 (ρ)), ∀ρ ∈ b T * M . Donc, on obtient l'ensemble K = {κ(a) : a = σ(A), A ∈ A} ⊂ C 0 (S Ẑ; End(C n )).
On notera M + l'espace des mesures boréliennes µ sur S Ẑ, à valeurs hermitiennes positives sur C n . Une mesure µ de M + est donc un élément du dual de l'espace

C 0 0 (S Ẑ; End(C n )) qui vérifie µ, a ≥ 0, ∀a ∈ C 0 (S Ẑ; End + (C n )), ∀µ ∈ M + ,
où End + (C n ) désigne l'ensemble des matrices n × n hermitiennes positives.

Proposition 1.3.8. Quitte à extraire une sous-suite de la suite (u k ), il existe une mesure µ ∈ M + telle que

∀A ∈ A, lim k→∞ (Au k , u k ) L 2 = µ, κ(σ(A)) . (1.3.4)
Pour plus de détails, voir [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF]. On considére S une hypersurface transverse à le flot Melrose-Sjöstrand sur SZ. Alors localement, SZ = R s × S où s est le paramètre bien choisi le long de le flot.

Lemme 1.3.9. La mesure µ vérifie les propriétés suivantes: La support de la mesure µ est inclus dans SZ et il existe une fonction 

(s, z) ∈ R s × S → M (s, z) ∈ C n qui est continue µ-presque partout telle que la mesure P * µ = M * µM défini pour a ∈ C 0 (SZ) par M * µM, a = µ, M aM
   K u = f 1 ω dans ]0, T [×Ω, u = 0 sur ]0, T [×∂Ω, u| t=0 = u 0 (x), ∂ t u| t=0 = u 1 (x), (1.4.1) où nous supposons que f ∈ L 2 (]0, T [×ω) et les données initiales (u 0 , u 1 ) ∈ H 1 0 (Ω)× L 2 (Ω).
Nous considérons la contrôlabilité à zéro. La preuve est basée sur les trois étapes suivantes :

1. (Observabilité) En appliquant la méthode d'unicité de Hilbert, la propriété de contrôlabilité est équivalente à une inégalité d'observabilité pour le système adjoint. Ici, nous devons seulement prouver : ∃C > 0 tel que pour toutes solutions de l'équation adjointe :

   K v = 0 dans ]0, T [×Ω, v = 0 sur ]0, T [×∂Ω, v| t=0 = v 0 (x), ∂ t v| t=0 = v 1 (x), (1.4.2) on a ||v 0 || 2 L 2 + ||v 1 || 2 H -1 ≤ C T 0 ω |v| 2 dxdt. (1.4.3)
2. (Estimations à haute fréquence) Nous établissons d'abord une inégalité d'observabilité faible comme suit : 

||v 0 || 2 L 2 + ||v 1 || 2 H -1 ≤ C T 0 ω |v| 2 dxdt + ||v 0 || 2 H -1 + ||v 1 || 2 H -2 . (1.4.4)
(v k,0 , v k,1 ) k∈N dans L 2 × H -1 telle que ||v k,0 || 2 L 2 + ||v k,1 || 2 H -1 = 1, (1.4.5) ||v k,0 || 2 H -1 + ||v k,1 || 2 H -2 → 0, k → ∞ (1.4.6) T 0 ω |v k | 2 dxdt → 0, k → ∞ (1.4.7) où v k est la solution de (1.4.2) avec les données initiales (v k,0 , v k,1
(v k,0 , v k,1 ) k∈N dans L 2 × H -1 telle que ||v k,0 || 2 L 2 + ||v k,1 || 2 H -1 = 1, (1.4.8) T 0 ω |v k | 2 dxdt → 0, k → ∞ (1.4.9)
où v k est la solution de (1.4.2) avec les données initiales (v k,0 , v k,1 ). D'après l'inégalité d'observabilité faible, on a

1 = ||v k,0 || 2 L 2 + ||v k,1 || 2 H -1 ≤ C T 0 ω |v k | 2 dxdt + ||v k,0 || 2 H -1 + ||v k,1 || 2 H -2 . (1.4.10) Supposons que (v k,0 , v k,1 ) (v 0 , v 1 ) in L 2 × H -1 et v est la solution de l'équation adjointe (1.4.2) avec les données initiales (v 0 , v 1 ). Puisque L 2 × H -1 → H -1 × H -2 est compact, nous savons que ||v k,0 || 2 H -1 + ||v k,1 || 2 H -2 → ||v 0 || 2 H -1 + ||v 1 || 2 H -2 . En conséquence, si k tend vers l'infini, on obtient 1 ≤ C ||v 0 || 2 H -1 + ||v 1 || 2 H -2 . (1.4.11)
On note

N (T ) = {(w 0 , w 1 ) ∈ L 2 × H -1 : w(t, x) = 0, pour t ∈]0, T [, x ∈ ω}. (1.4.12)
Ici w est une solution de l'équation adjointe (1.4.2) avec les données initiales (w 0 , w 1 ). Par conséquent, (v 0 , v 1 ) ∈ N (T ). Ensuite, nous prouvons que N (T ) = {0}. D'après (1.4.4), nous savons que N (T ) a une dimension finie.

On note A = 0 1 -∆ K 0

. Alors N (T ) est stable sous l'application de

A . Par conséquent, N (T ) contient un vecteur propre de A , c'est-à-dire que ∃λ ∈ C et (φ 0 , φ 1 ) ∈ H 1 0 × L 2 tel que    A φ 0 φ 1 = λ φ 0 φ 1 , dans Ω, φ 0 = 0, dans ω. (1.4.13) Ceci est équivalent à : pour λ ∈ C et φ 0 ∈ H 1 0 -∆φ 0 = λ 2 φ 0 , dans Ω, φ 0 = 0, dans ω. (1.4.14)
Il s'agit d'un problème classique de continuation unique. En utilisant les estimations de Carleman (voir [START_REF] Carleman | Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes[END_REF]), nous obtenons que φ 0 ≡ 0. Par conséquent, nous savons que N (T ) = {0}. Par conséquent, nous avons (v 0 , v 1 ) = (0, 0), ce qui est une contradiction avec l'hypothèse (1.4.11). Par conséquent, nous prouvons l'inégalité d'observabilité (1.4.3).

Les systèmes des ondes couplées

Couplé à la fonction de contrôle

Dans cette section, on considére le problème de contrôlabilité simultanée d'un système d'onde avec différentes vitesses. On peut trouver ce résultat dans [START_REF] Niu | Simultaneous Control of Wave Systems[END_REF].

Un modèle simple

Nous présentons d'abord un exemple simple comme suit :

       (∂ 2 t -∆)u 1 = f 1 ]0,T [ (t)1 ω (x) (∂ 2 t -2∆)u 2 = f 1 ]0,T [ (t)1 ω (x) u j = 0 sur ]0, T [×∂Ω, j = 1, 2, u j (0, x) = u 0 j (x) ∈ H 1 0 , ∂ t u j (0, x) = u 1 j (x) ∈ L 2 , j = 1, 2.
(1.5. 

(||v 0 i || 2 L 2 + ||v 1 i || 2 H -1 ) ≤ C T 0 ω |v 1 + v 2 | 2 dxdt (1.5.2)
pour les solutions (v 1 , v 2 ) du système adjoint avec les données initiales (v 0 i , v 1 i ) :

(∂ 2 t -∆)v 1 = 0 (∂ 2 t -2∆)v 2 = 0 (1.5.3)
Pour prouver l'inégalité (1.5.3), nous estimons d'abord le régime à haute fréquence. Puisque les deux équations d'onde ont des vitesses différentes, alors les manifolds caractéristiques sont disjoints, ce qui implique que

||v 1 + v 2 || 2 L 2 ≈ ||v 1 || 2 L 2 + ||v 2 || 2 L 2
dans le régime haute fréquence. Avec l'application de la mesure de défaut, nous savons que pour les hautes fréquences, observer la somme v 1 +v 2 est presque équivalent à observer v 1 et v 2 . Ensuite, on s'intéresse au régime des basses fréquences. Il est équivalent de considérer un problème de continuation unique pour les fonctions propres comme suit : seules les solutions nulles satisfont

   -∆φ 1 = λφ 1 dans Ω, -2∆φ 2 = λφ 2 dans Ω, φ 1 + φ 2 = 0 dans ω. (1.5.4) 
Dans cet exemple, cette propriété est facile à prouver. Comme les fonctions propres du laplacien sont analytiques, nous savons que φ 1 +φ 2 ≡ 0 dans tout le domaine Ω. Ensuite, en additionnant deux équations, on obtient que ∆φ 2 = 0. En combinant avec la condition de Dirichlet, nous savons que φ 2 ≡ 0, ce qui implique que φ 1 = -φ 2 ≡ 0. Par conséquent, on peut prouver ce problème de contrôle simultané. Par conséquent, nous concluons trois caractéristiques de ce type de problème :

1. Les équations d'onde ont des vitesses différentes alors que nous utilisons la même fonction de contrôle pour contrôler toutes ces équations en même temps.

Contrôle simultané des systèmes d'ondes

Dans mon article [START_REF] Niu | Simultaneous Control of Wave Systems[END_REF], on considère la contrôlabilité exacte sur un domaine ouvert Ω de systèmes des ondes avec des vitesses différentes, couplés par une seule fonction de contrôle agissant sur un sous-ensemble ouvert ω. Pour être plus précis, on considère la contrôlabilité intérieure simultanée pour le système des ondes suivant :

                 K 1 u 1 = b 1 f 1 ]0,T [ (t)1 ω (x) dans ]0, T [×Ω, K 2 u 2 = b 2 f 1 ]0,T [ (t)1 ω (x) dans ]0, T [×Ω, . . . Kn u n = b n f 1 ]0,T [ (t)1 ω (x) dans ]0, T [×Ω, u j = 0 sur ]0, T [×∂Ω, 1 ≤ j ≤ n, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), 1 ≤ j ≤ n.
(1.5.5) 

Ici, nous choisissons K i (1 ≤ i ≤ n) pour
1. (ω, T, p K i ) satisfait CCG, i = 1, 2, • • • , n, 2. K 1 > K 2 > • • • > K n dans ω, 3 
. Ω n'a pas de contact d'ordre infini avec ses tangentes.

Alors, il existe un sous-espace de dimension finie E ⊂ (H 1 0 (Ω) × L 2 (Ω)) n tel que le système (1.5.5) est P-exactement contrôlable, où P est le projecteur orthogonal sur E ⊥ .

Comme nous l'avons présenté précédemment, afin d'étudier les basses fréquences, nous devons introduire la notion de continuation unique des fonctions propres. Définition 1.5.2. On dit que le système (1.5.5) satisfait à la propriété de continuation unique des fonctions propres si la propriété suivante est vérifiée : ∀λ ∈ C, la seule solution

(φ 1 , • • • , φ n ) ∈ (H 1 0 (Ω)) n de            -∆ K 1 φ 1 = λ 2 φ 1 dans Ω, -∆ K 2 φ 2 = λ 2 φ 2 dans Ω, • • • -∆ Kn φ n = λ 2 φ n dans Ω, b 1 κ 1 φ 1 + • • • + b n κ n φ n = 0 dans ω, 21 1.5. LES SYSTÈMES DES ONDES COUPLÉES est la solution zéro (φ 1 , • • • , φ n ) ≡ 0.
Donc, on a la contrôlabilité exacte comme suit Théorème 1.5.3. PourT > 0, supposons que :

1. (ω, T, p K i ) satisfait CCG, i = 1, 2, • • • , n, 2. K 1 > K 2 > • • • > K n dans ω,

3

. Ω n'a pas de contact d'ordre infini avec ses tangentes, 4. The system (1.5.5) satisfait à la propriété de continuation unique des fonctions propres.

Alors, le système (1.5.5) est exactement contrôlable dans (H 1 0 (Ω) × L 2 (Ω)) n . Comme nous l'avons présenté dans la section précédente, nous prouvons ce théorème par une procédure similaire. D'abord, nous appliquons la méthode d'unicité de Hilbert, et obtiendrons l'inégalité d'observabilité : ∃C > 0 telle que pour toute solution du système adjoint :

                 K 1 v 1 = 0 dans ]0, T [×Ω, K 2 v 2 = 0 dans ]0, T [×Ω, . . . Kn v n = 0 dans ]0, T [×Ω, v j = 0 sur ]0, T [×∂Ω, 1 ≤ j ≤ n, (v 1 (0, x), ∂ t v 1 (0, x), • • • , v n (0, x)∂ t v n (0, x)) = V 0 , (1.5.6) où V 0 ∈ (L 2 × H -1
) n , nous avons :

C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ ||V 0 || 2 (L 2 ×H -1 ) n . (1.5.7)
Il nous suffit alors de prouver cette inégalité d'observabilité (1.5.7). En regardant la haute fréquence, nous prouvons une estimation d'observabilité faible :

||V 0 || 2 (L 2 ×H -1 ) n ≤ C T 0 ω | n j=1 b j κ j v j | 2 dxdt + ||V 0 || 2 (H -1 ×H -2 ) n . (1.5.8)
En supposant que l'inégalité ci-dessus soit fausse, nous pourrions obtenir une séquence (V 0,k ) k∈N telle que:

||V 0,k || 2 (L 2 ×H -1 ) n = 1, (1.5.9) T 0 ω |b 1 κ 1 v k 1 + • • • + b n κ n v k n | 2 dxdt → 0, k → ∞, (1.5.10) and ||V 0,k || 2 (H -1 ×H -2 ) n → 0, k → ∞. (1.5.11) Nous utilisons ici v k i (1 ≤ i ≤ n)
pour désigner la solution du système (1.5.6) avec les données initiales V 0,k . Puisque nous avons l'hypothèse 2, nous savons que les variétés caractéristiques de chaque équation d'onde sont disjointes, ce qui implique que

T 0 ω |b 1 κ 1 v k 1 + • • • + b n κ n v k n | 2 dxdt ≈ n i=1 T 0 ω |b i κ i v k i | 2 dxdt (1.5.12)
Par conséquent, nous savons que chaque mesure de défaut µ i associée à v k i est nulle par l'application de la propagation des mesures de défaut et CCG. Ceci fournit une contradiction avec ||V 0,k || 2 (L 2 ×H -1 ) n = 1. Ensuite, nous combinons l'hypothèse (4), nous savons que l'inégalité d'observabilité est vraie. Cela nous donne le résultat de la contrôlabilité exacte du système (1.5.5).

Quelques résultats sur les propriétés de continuation unique

Comme nous pouvons le voir dans l'exemple simple, les propriétés de continuation unique définies dans la Définition 1.5.2 sont vraies pour les métriques à coefficient constant. Mais nous pouvons aussi construire un contre-exemple tel que cette propriété de continuation unique ne tienne pas. En dimension 1, nous supposons que la métrique g = c(x)dx 2 . Alors,

∆ g = 1 c d 2 dx 2 -c 2c 2 d dx . Fixons l'intervalle ouvert ]0, π[ et le sous-intervalle ]a, b[⊂]0, π[, (a > π
2 ). Nous considérons maintenant le problème de la continuation unique :

       u 1 = -λ 2 u 1 , ∆ g u 2 = -λ 2 u 2 , u 1 + u 2 = 0 in ]a, b[, u 1 , u 2 ∈ H 1 0 (]0, π[).
(1.5.13)

Nous avons le résultat suivant :

Théorème 1.5.4. Il existe une métrique riemannienne lisse g = c(x)dx 2 , et deux fonctions propres u 1 , u 2 de ∆ g et d 2 dx 2 sur ]0, π[ associée à la valeur propre 1 telle que u 1 + u 2 = 0, dans ]a, b[⊂]0, π[ et u 1 + u 2 ≡ 0 dans ]0, π[.
Les lecteurs peuvent trouver la construction détaillée de ce contre-exemple dans la section 3.5. En regardant le système 1.5.13, nous considérons l'intersection du 1.5. LES SYSTÈMES DES ONDES COUPLÉES spectre de deux Laplaciens avec des métriques différentes. Définissons l'espace de toutes les métriques lisses sur l'intervalle ouvert ]0, π[ par M 1 . Nous prouvons la proposition suivante : Proposition 1.5.5. En dimension 1, supposons que nous fixions le laplacien ∆ =

d 2 dx 2 dans ]0, π[ avec son spectre σ(∆). Alors l'ensemble G uc = {g ∈ M 1 : σ(∆ g ) ∩ σ(∆) = ∅} est comaigre dans M 1 .
Alors, nous obtenons immédiatement le corollaire suivant: Corollaire 1.5.6. Fixez ∆ = d 2 dx 2 , pour toute métrique g ∈ G uc , le système (1.5.13) a une solution unique u 1 = u 2 = 0.

En dimension 2, nous avons le résultat similaire: Proposition 1.5.7. En dimension 2, supposons que nous fixions une métrique g 0 et le laplacien ∆ g 0 avec son spectre σ(∆ g 0 ). Alors l'ensemble

G uc = {g ∈ M 2 : σ(∆ g ) ∩ σ(∆ g 0 ) = ∅} est comaigre dans M 2 .
Et pour les détails de la preuve, nous nous référons à la section 3.5.4.

Couplées via des termes d'ordre zéro «en cascade»

Dans cette section, nous considérons principalement le Laplacien à coefficients constants. Il s'agit d'un travail conjoint avec Pierre Lissy. Dans cet article, nous avons prouvé la contrôlabilité d'un système des ondes couplées avec un seul contrôle et différentes vitesses.

Un modèle simple D'adord, nous présentons un exemple simple comme suit: 

   (∂ 2 t -∆)u 1 + u 2 = 0 dans ]0, T [×Ω, (∂ 2 t -2∆)u 2 + u 3 = 0 dans ]0, T [×Ω, (∂ 2 t -2∆)u 3 = f 1 ω dans ]0, T [×Ω, (1.5 
u 3 ∈ C 1 ([0, T ], H 1 0 ) ∩ C 0 ([0, T ], L 2 ). Puisque u 2 satisfait une équation d'onde CHAPTER 1. INTRODUCTION(FRANÇAIS) avec un terme source -u 3 , alors u 2 ∈ C 1 ([0, T ], H 2 ) ∩ C 0 ([0, T ], H 1 0 ). Pour u 1 , de même, on obtient que u 1 ∈ C 1 ([0, T ], H 3 ) ∩ C 0 ([0, T ], H 2 )
. Maintenant, nous avons besoin d'énoncer une propriété de régularité supplémentaire pour u 1 . En appliquant l'opérateur de d'Alembert 2 = ∂ 2 t -2∆ des deux côtés de l'équation de 1 u 1 = (∂ 2 t -∆)u 1 = -u 2 , on obtient que

2 1 u 1 = -2 u 2 .
Puisque 2 u 2 = -u 3 , on obtient alors que 2 1 u 1 = u 3 . Nous considérons que 2 u 1 satisfait une équation d'onde avec un terme source u 3 . Par conséquent, nous savons que

2 u 1 ∈ C 1 ([0, T ], H 2 ) ∩ C 0 ([0, T ], H 1 0 ). Puisque 1 u 1 = -u 2 ∈ C 1 ([0, T ], H 2 )∩C 0 ([0, T ], H 1 0 ), nous savons que ∆u 1 = 1 u 1 -2 u 1 ∈ C 1 ([0, T ], H 2 )∩ C 0 ([0, T ], H 1 0 ). Donc, nous savons que u 1 ∈ C 1 ([0, T ], H 4 ) ∩ C 0 ([0, T ], H 3 ).
Alors, nous remarquons un résultat de régularité (u 1 , u 2 , u 3 ) ∈ H 4 × H 2 × H 1 . On peut se référer à [START_REF] Dehman | Controllability of two coupled wave equations on a compact manifold[END_REF] pour une preuve différente.

De plus, avec des conditions initiales nulles, nous remarquons également qu'il existe une condition de compatibilité pour ce problème de contrôle, c'est-à-dire (-∆) 2 u 1 + ∆u 2 ∈ H 1 0 . En fait, faisons d'abord une reformulation pour le système.

   v 1 = D 3 t u 1 , v 2 = D t u 2 , v 3 = u 3 . (1.5.15) Et (v 1 , v 2 , v 3 ) satisfait au système suivant:    1 v 1 + D 2 t v 2 = 0 dans ]0, T [×Ω, 2 v 2 + D t v 3 = 0 dans ]0, T [×Ω, 2 v 3 = f dans ]0, T [×Ω. (1.5.16) Comme -D 2 t = 2 1 -2 , (1.5.17) on a D 2 t v 2 = -(2 1 -2 )v 2 .
(1.5.18) Donc,

1 (v 1 -2v 2 ) -D t v 3 = 0. (1.5.19) On peut poser y = D t v 1 -2D t v 2 .
(1.5.20)

Alors, on a une équation pour y 1 (y + 2v 3 ) = f.

(1.5.21)

LES SYSTÈMES DES ONDES COUPLÉES

Pour y, en utilisant les équations, on a

y = D t v 1 -2D t v 2 = D 4 t u 1 -2D 2 t u 2 = D 2 t (-∆u 1 + u 2 -2u 2 ) = D 2 t (-∆u 1 -u 2 ) = (-∆) 2 u 1 + ∆u 2 -u 3 . Donc, on obtient 1 ((-∆) 2 u 1 + ∆u 2 + u 3 ) = f. De plus, on a (-∆) 2 u 1 + ∆u 2 + u 3 ∈ H 1 0 , c'est-à-dire, (-∆) 2 u 1 + ∆u 2 ∈ H 1 0 . En considérant la régularité de u 1 et u 2 , nous savons que (u 1 , u 2 ) ∈ H 4 × H 2 .
Par conséquent, nous pouvons seulement obtenir (-∆) 2 u 1 + ∆u 2 ∈ L 2 . Nous devons considérer non seulement la régularité des solutions mais aussi les conditions de compatibilité associées à la structure de couplage. Ceci est très différent du système sans couplage, et même différent du système d'onde couplé par la même vitesse ou des systèmes paraboliques couplés. A notre connaissance, il s'agit d'une caractéristique unique pour ce type de systèmes d'ondes couplés. Cela nous motive à considérer un système plus général avec le même type de structure de couplage.

la contrôlabilité d'un système d'équations d'ondes à vitesses différentes

On considère le système suivant:

   (∂ 2 t -D∆)U + AU = bf 1 ω dans ]0, T [×Ω, U = 0 sur ]0, T [×∂Ω, (U, ∂ t U )| t=0 = (U 0 , U 1 ) dans Ω, (1.5.22) avec D = d 1 Id n 1 0 0 d 2 Id n 2 n×n , A = 0 A 1 0 A 2 n×n
, and b = 0 b n×1 , (1.5.23)

où n = n 1 + n 2 et d 1 = d 2 . A 1 ∈ M n 1 ,n 2 (R) et A 2 ∈ M n 2 (R) sont deux matrices de couplage données et b ∈ R n 2 .
Nous avons les propriétés importantes et cruciales du système (1.5.22) : tous les coefficients sont constants, le couplage est en structure de cascade (notamment, la commande f n'agit directement que sur U 2 , qui elle-même agit sur U 1 par la matrice A 1 ), et nous nous limitons au cas d'une commande scalaire (i.e. f ∈ L 2 (]0, T [, R m ) avec m = 1).

Dans la proposition suivante, nous donnons une condition équivalente de la condition de rang de l'opérateur Kalman associée au système (1.5.22), qui est très spécifique à notre structure de couplage particulière et au fait que nous avons un seul contrôle. 

Supposons que

A 1 = α = (α 1 , • • • , α n 2 ). Alors ∀λ ∈ σ(-∆), α satisfait α n 2 -2 k=0 (d 1 -d 2 ) k λ k n 2 j=k+1 a j A j-1-k 2 + (d 1 -d 2 ) n 2 -1 λ n 2 -1 Id n 2 b = 0,
(1.5.24) où (a j ) 0≤j≤n 2 sont les coefficients du polynôme caractéristique de la matrice

A 2 , c'est-à-dire χ(X) = X n 2 + n 2 -1
j=0 a j X j , avec la convention que a n 2 = 1. Avec cette condition équivalente, nous pouvons simplifier le système:

                         1 u 1 1 + s j=1 α s u 2 j = 0 dans ]0, T [×Ω, 2 u 2 1 + u 2 2 = 0 dans ]0, T [×Ω, . . . 2 u 2 n 2 -1 + u 2 n 2 = 0 dans ]0, T [×Ω, 2 u 2 n 2 -n 2 j=1 a n 2 +1-j u 2 j = f 1 ω dans ]0, T [×Ω, u 1 1 = 0, u 2 j = 0 sur ]0, T [×∂Ω, 1 ≤ j ≤ n 2 , (u 1 1 , u 2 1 , • • • , u 2 n 2 )| t=0 = (u 1,0 1 , u 2,0 1 , • • • , u 2,0 n 2 ) dans Ω, (∂ t u 1 1 , ∂ t u 2 1 , • • • , ∂ t u 2 n 2 )| t=0 = (u 1,1 1 , u 2,1 1 , • • • , u 2,1 n 2 ) dans Ω.
(1.5.25)

Ici

n 1 = 1, A 1 = (α 1 , • • • , α s , 0, • • • , 0) et A 2 =      0 1 0 0 0 0 . . . 0 . . . . . . . . . 1 -a n • • • -a 2 -a 1      , and b =      0 . . . 0 1      .
Puisque nous considérons le problème de contrôle dans un domaine Ω avec frontière, il est naturel pour nous d'introduire les espaces de Hilbert suivants H s Ω (∆). Définition 1.5.9. Nous désignons par (β 2 j ) j∈N * la séquence non décroissante de valeurs propres (positives) de l'opérateur de Laplace -∆ avec condition de Dirichlet, répétée avec multiplicité, et (e j ) j∈N * une base orthonormée de L 2 (Ω) constituée de fonctions propres associées à (β 2 j ) j∈N * :

-∆e j = β 2 j e j , ||e j || L 2 = 1.

LES SYSTÈMES DES ONDES COUPLÉES

Pour tout s ∈ R, nous désignons par H s Ω (∆) l'espace de Hilbert défini par

H s Ω (∆) = {u = j∈N * a j e j ; j∈N * (1 + β 2 j ) s |a j | 2 < ∞}. (1.5.26)
Sous cette structure particulière de couplage, nous introduisons des conditions de compatibilité appropriées pour le système (1.5.25). Désignons par H r l'espace suivant

H r = {(u, v 1 , • • • , v n 2 ) ∈ H n 2 -s+2+r Ω (∆) × H n 2 -1+r Ω (∆) × • • • × H r Ω (∆) t.q. (-d 1 ∆) n 2 -s+1 u + n 2 -s-1 k=0 α s d n 2 -s+1-k 1 (d 1 -d 2 ) n 2 -s+1-k (-d 1 ∆) k v n 2 -k ∈ H r Ω (∆)}.
(1.5.27) Définition 1.5.10. L'espace d'état du système (1.5.25) est défini par

H 1 × H 0 .
Les deux conditions

(-d 1 ∆) n 2 -s+1 u 1,0 1 + n 2 -s k=0 α s d n 2 -s+1-k 1 (d 1 -d 2 ) n 2 -s+1-k (-d 1 ∆) k u 2,0 n 2 -k ∈ H 1 Ω (∆), (-d 1 ∆) n 2 -s+1 u 1,1 1 + n 2 -s k=0 α s d n 2 -s+1-k 1 (d 1 -d 2 ) n 2 -s+1-k (-d 1 ∆) k u 2,1 n 2 -k ∈ H 0 Ω (∆).
sont appelées les conditions de compatibilité pour la contrôlabilité du système (1.5.25).

Avec ces espaces bien préparés, nous obtenons le résultat suivant :

Théorème 1.5.11. Pour T > 0, supposons que:

1. (ω, T, p d i ) satisfait CCG, i = 1, 2.
2. Ω n'a pas de contact d'ordre infini avec ses tangentes.

3. L'opérateur de Kalman K = [-D∆ + A| B] satisfait à la condition de rang de l'opérateur de Kalman, c'est-à-dire que Ker(K * ) = {0}.

Alors le système (1.5.22) est exactement contrôlable.

Nous prouvons le théorème ci-dessus en trois étapes. Chapter 2

Introduction (English)

Motivations

The controllability of the wave equations is a classic research topic in both the control theory and the analysis of partial differential equations. There is a large literature on the controllability of linear wave equations. One of the best results on this subject has been obtained by Bardos, Lebeau and Rauch in their article [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF], where they introduced the famous geometric control condition and presented the application of the microlocal analysis in the subject. We can also refer to the paper [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF] by Burq and Gérard and the paper [START_REF] Burq | Contrôlabilité exacte des ondes dans des ouverts peu réguliers[END_REF] by Burq for the improvements or a simpler proof. These results form a basic backgrounds and also provide the main strategy for us to study the controllability of the wave equations.

As we can see, for a single wave equation, the exact controllability is by now well-known. There is a large literature on the controllability of a scalar wave equation through different approaches such as [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] by using microlocal analysis as we mentioned before, [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systemes distribués[END_REF][START_REF] Lagnese | Control of wave processes with distributed controls supported on a subregion[END_REF] by using multipliers, [START_REF] Haraux | On a completion problem in the theory of distributed control of wave equations[END_REF][START_REF] Baudouin | Global Carleman estimates for waves and applications[END_REF] by using Carleman estimates, or a completely constructive proof [START_REF] Laurent | Uniform observability estimates for linear waves[END_REF], etc.

Although we now have a better picture on the controllabilty of a single wave equation, the controllability of systems of wave equations is still not totally understood. To our knowledge, most of the references concern the case of systems with the same principal symbol. Alabau-Boussouira and Léautaud [START_REF] Alabau | Indirect controllability of locally coupled wave-type systems and applications[END_REF] studied the indirect controllability of two coupled wave equations, in which their controllability result was established using a multi-level energy method introduced in [START_REF] Alabau-Boussouira | A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems[END_REF], and also used in [START_REF] Alabau-Boussouira | A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls[END_REF][START_REF] Alabau-Boussouira | Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control[END_REF]. Liard and Lissy [START_REF] Liard | A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups[END_REF], Lissy and Zuazua [START_REF] Lissy | Internal observability for coupled systems of linear partial differential equations[END_REF] studied the observability and controllability of the coupled wave systems under the Kalman type rank condition. Moreover, we can find other controllability results for coupled wave systems, for example, Cui, Laurent, and Wang [START_REF] Cui | On the observability inequality of coupled wave equations: the case without boundary[END_REF] studied the observability of wave equations coupled by first or zero order terms on a compact manifold.

PRELIMINARIES

However, when we consider the controllability of the wave system coupled with different speeds, there are very few results.

On the other hand, considering the controllability of a parabolic system, we find that there are no differences between the coupling with same speed and different speeds (for instance, see [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]). This also motivates us to investigate the results on the controllability of the wave system with different speeds.

In this thesis, the main model under study is the wave equation in the following form. Let Ω ⊂ R d , d ∈ N * , be a bounded, and smooth domain. For positive constants α and β, let k ij (x) : Ω → R, 1 ≤ i, j ≤ d be smooth functions which satisfy:

k ij (x) = k ji (x), α|ξ| 2 ≤ 1≤i,j≤d k ij (x)ξ i ξ j ≤ β|ξ| 2 , ∀x ∈ Ω, ∀ξ ∈ R d .
(2.1.1)

Define K(x) to be the symmetric positive definite matrix of coefficients k ij (x). Moreover, we define the density function κ

(x) = 1 √ det(K(x))
. We also define the Laplacian by

∆ K = 1 κ(x) div(κ(x)K∇•) on Ω and the d'Alembert operator K = ∂ 2 t -∆ K on R t × Ω.
we consider a nonhomogeneous wave equation with a source term f :

K u = f, (2.1.2) 
with initial conditions:

u| t=0 = u 0 , ∂ t u| t=0 = u 1 . (2.1.3)

Preliminaries

In this section, we shall introduce some basic aspects in the control problem of wave equations. We assume that ω is a nonempty open subset of Ω. We consider the interior controllability problem for the following wave equation:

   K u = f 1 ω in (0, T ) × Ω, u = 0 on (0, T ) × ∂Ω, u| t=0 = u 0 (x), ∂ t u| t=0 = u 1 (x), (2.2.1)
where f is a control function with support only localized in the subdomain ω.

It is well known that the wave equation models many physical phenomena such as small vibrations of elastic bodies and the propagation of sound. For instance (2.2.1) provides a good approximation for the small amplitude vibrations of an elastic string or a flexible membrane occupying the region Ω at rest. The control f represents then a localized force acting on the vibrating structure.
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In addition, since the wave equation is the most relevant hyperbolic equations. Through the study of the wave equation, it helps us to understand how the properties of the hyperbolic equations act on the control problems.

Therefore it is interesting and important to study the controllability of the wave equation as one of the fundamental models of continuum mechanics and, at the same time, as one of the most representative equations in the theory of control of partial differential equations.

Controllability

In this section, we shall introduce several different types of the controllability for the wave equation (2.2.1). Definition 2.2.1 (Controllability). Let T > 0.

1. (Exact controllability) We say that the wave equation (2.2.1) is exactly controllable in H 1 0 ×L 2 in time T if for any initial data (u 0 , u 1 ) ∈ H 1 0 ×L 2 and target data (ũ 0 , ũ1 ) ∈ H 1 0 × L 2 , there exists a control function f ∈ L 2 ((0, T ) × ω) such that the solution of (2.2.1) issued from (u| t=0 , ∂ t u| t=0 ) = (u 0 , u 1 ), satisfies (u| t=T , ∂ t u| t=T ) = (ũ 0 , ũ1 ).

(Null controllability)

We say that the wave equation (2.2.1) is null controllable in H 1 0 × L 2 in time T if for any initial data (u 0 , u 1 ) ∈ H 1 0 × L 2 , there exists a control function f ∈ L 2 ((0, T ) × ω) such that the solution of (2.2.1) issued from (u| t=0 , ∂ t u| t=0 ) = (u 0 , u 1 ), satisfies (u| t=T , ∂ t u| t=T ) = (0, 0).

(Controllability from zero)

We say that the wave equation (2.2.1) is controllable from zero in H 1 0 ×L 2 in time T if for target data (ũ 0 , ũ1 ) ∈ H 1 0 ×L 2 , there exists a control function f ∈ L 2 ((0, T ) × ω) such that the solution of (2.2.1) issued from (u| t=0 , ∂ t u| t=0 ) = (0, 0), satisfies (u| t=T , ∂ t u| t=T ) = (ũ 0 , ũ1 ).

(Partial controllability)

Let Π be a projection operator defined in H 1 0 × L 2 .We say that the wave equation (2.2.1) is Π-exactly controllable in H 1 0 ×L 2 in time T if for any initial data (u 0 , u 1 ) ∈ H 1 0 ×L 2 and target data (ũ 0 , ũ1 ) ∈ H 1 0 ×L 2 , there exists a control function f ∈ L 2 ((0, T ) × ω) such that the solution of (2.2.1) issued from (u| t=0 , ∂ t u| t=0 ) = (u 0 , u 1 ), satisfies Π(u| t=T , ∂ t u| t=T ) = Π(ũ 0 , ũ1 ). Remark 2.2.2. Since the wave equation we consider is linear and reversible in time, the exact controllability, null controllability and the controllability from zero are all equivalent (one can refer to [START_REF] Coron | Control and nonlinearity[END_REF]Theorem 2.41]).

Kalman conditions

In this section, we recall some Kalman rank conditions introduced in the literature of coupled parabolic systems and the link between them. First of all, we recall the usual Kalman rank condition for the controllability of linear autonomous ordinary differential equations (see e.g. [START_REF] Kalman | Controllability of linear dynamical systems[END_REF]). Definition 2.2.3 (Usual algebraic Kalman rank condition). Let m, n be two positive integers. Assume A ∈ M n (R) and B ∈ M n,m (R). We introduce the Kalman matrix associated to A and B given by

[A|B] = [A n-1 B| • • • |AB|B] ∈ M n,nm (R).
We say that (A, B) satisfies the Kalman rank condition if [A|B] is of full rank. This Kalman's type conditions for controllability are introduced in [START_REF] Kalman | Controllability of linear dynamical systems[END_REF], which is a criterion for the time invariant linear control system ẋ = Ax + Bu with a control u ∈ L ∞ (]T 0 , T 1 [, R m ). Moreover, we notice that the Kalman rank condition is an equivalent condition for the controllability of the time invariant linear control system ẋ = Ax + Bu (one can refer to [16, Remark 1.17]). Definition 2.2.4 (Kalman operator). Assume that X ∈ R n×n and Y ∈ R n×m . Moreover, let D ∈ R n×n be a diagonal matrix. Then, the Kalman operator associated with

(-D∆ + X, Y ) is the matrix operator K = [-D∆ + X|Y ] : D(K ) ⊂ (L 2 ) nm → (L 2 ) n ), where the domain of the Kalman operator D(K ) = {u ∈ (L 2 ) nm : K u ∈ (L 2 ) n }.
Definition 2.2.5 (Operator Kalman rank condition). We say that the Kalman operator K satisfies the operator Kalman rank condition if Ker(K * ) = {0}.

The operator Kalman rank condition can be reformulated as follows.

Proposition 2.2.6. [6, Proposition 2.2] The operator Kalman rank condition is equivalent to the following spectral Kalman rank condition:

rank[(λD + X)|Y ] = n, ∀λ ∈ σ(-∆).
In particular, let C > 0 be a constant and D = CId n . Then, the operator Kalman rank condition is equivalent to the usual algebraic Kalman rank condition given in Definition 2.2.3 (see [6, Remark 1.2]).

Hilbert uniqueness method

For the wave equation (2.2.1), we introduce the adjoint equation as follows:

   K v = 0 in (0, T ) × Ω, v = 0 on (0, T ) × ∂Ω, v| t=0 = v 0 (x), ∂ t v| t=0 = v 1 (x), (2.2.2) Definition 2.2.7. We say a homogeneous wave equation (2.2.2) is observable in [0, T ]×ω if there exists a constant C > 0 such that every solution v ∈ C 0 (0, T, L 2 )∩ C 1 (0, T, H -1 ) of the homogeneous wave equation (2.2.2) satisfies C T 0 ω |κv| 2 dxdt ≥ ||v 0 || 2 L 2 + ||v 1 || 2 H -1 . (2.2.3)
Here the inequality (2.2.3) is called the observability inequality for the adjoint equation ( 2

.2.2).

According to the Hilbert Uniqueness Method of J.-L. Lions [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], the controllability property is equivalent to an observability inequality for the adjoint system. 

(2.2.2) is observable in [0, T ] × ω.
The proof idea of this theorem is the so-called Hilbert uniqueness method (HUM), which establishes the duality between the null controllability and the obsevability. We define the operator R by

R : f ∈ L 2 ((0, T ) × ω) → (u 0 , u 1 ) ∈ H 1 0 × L 2 , (2.2.4)
where u is the solution of (2.2.1) with (u| t=T , ∂ t u| t=T ) = (0, 0). On the other hand, we define the operator S by

S : (v 0 , v 1 ) ∈ L 2 × H -1 → bv1 (0,T ) (t)1 ω (x) ∈ L 2 ((0, T ) × ω), (2.2.5) 
where v solves the adjoint equation (2.2.2). Therefore, the null controllability is just the surjectivity of the operator R and the observability is just the coercivity of the operator S. The Theorem 2.2.8 implies the duality R * = S.

Geometric control condition

In order to study the observability inequality, a classical method is to follow the abstract three-step process initialized by Rauch and Taylor [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF](see also [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]). It can be detailed as follows:

• Firstly, get the microlocal information on the observable region. Argue by contradiction to obtain different kinds of convergence in subdomain (0, T )×ω and the whole domain (0, T ) × Ω.

• Secondly, use microlocal defect measure (which is due to Gérard [START_REF] Gérard | Microlocal defect measures[END_REF] and Tartar [START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF]), or propagation of singulaties theorem (see [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]Section 18.1] ) to prove a weak observability estimate:

||v 0 || 2 L 2 + ||v 1 || 2 H -1 ≤ C( T 0 ω |bκv| 2 dxdt + ||v 0 || 2 H -1 + ||v 1 || 2 H -2 ).
• Thirdly, use unique continuation properties of eigenfunctions to obtain the original observability inequality Equation (2.2.3).

For the high frequency estimates, a very natural condition is to assume that the control set satisfies the Geometric Control Condition(GCC).

Definition 2.2.9. For ω ⊂ Ω and T > 0, we shall say that the pair (ω, T, p K ) satisfies GCC if every general bicharacteristic of p K meets ω in a time t < T , where p K is the principal symbol of K .

We will give the definition of bicharacteristics in Subsection 2.3.1. This condition was raised by Bardos, Lebeau, and Rauch [START_REF] Bardos | Contrôle et stabilisation dans les problemes hyperboliques[END_REF] when they considered the controllability of a scalar wave equation and has now become a basic assumption for the controllability of wave equations. In [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF], the authors show that the geometric control condition is a necessary and sufficient condition for the exact controllability of the wave equation with Dirichlet boundary conditions and continuous boundary control functions.

Unique continuation properties

For the low frequencies of the observability inequality, this reduces to prove a unique continuation property of the eigenfunctions of the Laplacian. That is to say, if φ satisfies the equation

-∆ K φ = λφ, λ ∈ C, (2.2.6) 
and φ| ω = 0, can we obtain that φ ≡ 0 in Ω.

Microlocal defect measures for wave equations

Geometric Preliminaries

Let B = {y ∈ R d : |y| < 1} be the unit ball in R d . In a tubular neighbourhood of the boundary, we can identify

M = Ω × R t locally as [0, 1[×B. More precisely, for z ∈ M = Ω × R t , we note that z = (x, y), where x ∈ [0, 1[ and y ∈ B and z ∈ ∂M = ∂Ω × R t if and only if z = (0, y). Now we consider R = R(x, y, D y )
which is a second order scalar, self-adjoint, classical, tangential and smooth pseudodifferential operator, defined in a neighbourhood of [0, 1] × B with a real principal symbol r(x, y, η), such that

∂r ∂η = 0 for (x, y) ∈ [0, 1[×B and η = 0. (2.3.1)
Let Q 0 (x, y, D y ), Q 1 (x, y, D y ) be smooth classical tangential pseudo-differential operators defined in a neighbourhood of [0, 1] × B, of order 0 and 1, and principal symbols q 0 (x, y, η), q 1 (x, y, η), respectively. Denote

P = (∂ 2 x + R)Id + Q 0 ∂ x + Q 1 . The principal symbol of P is p = -ξ 2 + r(x, y, η). (2.3.2)
We use the usual notations T M and T * M to denote the tangent bundle and cotangent bundle corresponding to M , with the canonical projection π π : T M ( or

T * M ) → M.
Denote r 0 (y, η) = r(0, y, η). Then we can decompose T * ∂M into the disjoint union E ∪ G ∪ H, where

E = {r 0 < 0}, G = {r 0 = 0}, H = {r 0 > 0}. (2.3.3)
The sets E, G, H are called elliptic, glancing, and hyperbolic set, respectively. Define Char(P) = {(x, y, ξ, η) ∈ T * R d+1 | M : ξ 2 = r(x, y, ξ, η)} to be the characteristic manifold of P . For more details, see [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] and [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF].

Generalised bicharacteristic flow

We begin with the definition of the Hamiltonian vector field. For a symplectic manifold S with local coordinates (z, ζ), a Hamiltonian vector field associated with a real valued smooth function f is defined by the expression:

H f = ∂f ∂ζ ∂ ∂z - ∂f ∂z ∂ ∂ζ .
Considering the principal symbol p, we can also consider the associated Hamiltonian vector field H p . The integral curve of this Hamiltonian H p , denoted by γ, is called a bicharacteristic of p. Our next goal is to study the behavior of the bicharacteristic near the boundary. To describe the different phenomena when a bicharacteristic approaches the boundary, we need a more accurate decomposition of the glancing set G. Let r 1 = ∂ x r| x=0 . Then we can define the decomposition

G = ∞ j=2 G j , with G 2 = {(y, η) : r 0 (y, η) = 0, r 1 (y, η) = 0}, G 3 = {(y, η) : r 0 (y, η) = 0, r 1 (y, η) = 0, H r 0 (r 1 ) = 0}, . . . G k+3 = {(y, η) : r 0 (y, η) = 0, H j r 0 (r 1 ) = 0, ∀j ≤ k, H k+1 r 0 (r 1 ) = 0}, . . . G ∞ = {(y, η) : r 0 (y, η) = 0, H j r 0 (r 1 ) = 0, ∀j}.
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Here H j r 0 is just the vector field H r 0 composed j times. Moreover, for G 2 , we can define G 2,± = {(y, η) : r 0 (y, η) = 0, ±r 1 (y, η) > 0}. Thus G 2 = G 2,+ ∪ G 2,-. For ρ ∈ G 2,+ , we say that ρ is a gliding point and for ρ ∈ G 2,-, we say that ρ is a diffractive point. For ρ ∈ G j , j ≥ 2, we say that a bicharacterisric of p tangentially contact the boundary {x = 0} × B with order j at the point ρ.

Consider a bicharacteristic γ(s) with π(γ(0)) ∈ M and π(γ(s 0 )) ∈ ∂M be the first point which touches the boundary. Then if γ(s 0 ) ∈ H, we can define ξ ± (γ(s 0 )) = ± r 0 (γ(s 0 )), which are the two different roots of ξ 2 = r 0 at the point γ(s 0 ). Notice that the bicharacteristic with the direction ξ -will leave the domain M while the bicharacteristic with the other direction ξ + will enter into the interior of M . This leads to a definition of the broken bicharacteristics(See [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] Section 24.2 for more details):

Definition 2.3.1. A broken bicharacteristic of p is a map: s ∈ I\D → γ(s) ∈ T * M \{0}
where I is an interval on R and D is a discrete subset, such that

1. If J is an interval contained in I\D, then for s ∈ J → γ(s) is a bicharac- teristic of p in M .
2. If s ∈ D, then the limits γ(s + ) and γ(s -) exist and belongs to T * z M \{0} for some z ∈ ∂M , and the projections in T * z ∂M \{0} are the same hyperbolic point.

If γ(s 0 ) ∈ G, we have different situations. If γ(s 0 ) ∈ G 2,+ , then γ(s), locally near s 0 , passes transversally and enters into T * M immediately. If γ(s 0 ) ∈ G 2,- or γ(s 0 ) ∈ G k for some k ≥ 3, then γ(s) will continue inside T * ∂M and follow the Hamiltonian flow of H -r 0 . To be more precise, we have the definition of the generalized bicharacteristics(See [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] Section 24.3 for more details):

Definition 2.3.2. A generalized bicharacteristic of p is a map: s ∈ I\D → γ(s) ∈ T * M ∪ G
where I is an interval on R and D is a discrete subset I such that p • γ = 0 and the following properties hold:

1. γ(s) is differentiable and dγ ds = H p (γ(s)) if γ(s) ∈ T * M or γ(s) ∈ G 2,+ .
2. Every t ∈ D is isolated i.e. there exists > 0 such that γ(s) ∈ T * M \T * ∂M if 0 < |s -t| < , and the limits γ(s ± ) are different points in the same hyperbolic fiber of T * ∂M .

3. γ(s) is differentiable and dγ ds = H -r 0 (γ(s)) if γ(s) ∈ G\G 2,+ . Remark 2.3.3. We denote the Melrose cotangent compressed bundle by b T * M and the associated canonical map by j : T * M → b T * M . j is defined by j(x, y, ξ, η) = (x, y, xξ, η).

Under this map j, one could see γ(s) as a continuous flow on the compressed cotangent bundle b T * M . This is the so-called Melrose-Sjöstrand flow.

From now on we always assume that there is no infinite tangential contact between the bicharacteristic of p and the boundary. This is in the meaning of the following definition: Definition 2.3.4. We say that there is no infinite contact between the bicharacteristics of p and the boundary if there exists N ∈ N such that the gliding set G satisfies

G = N j=2 G j .
It is well-known that under this hypothesis there exists a unique generalized bicharacteristic passing through any point. This means that the Melrose-Sjöstrand flow is globally well-defined. One can refer to [START_REF] Burt | Singularities of boundary value problems[END_REF] and [START_REF] Burt | Singularities of boundary value problems[END_REF] for the proof.

Microlocal defect measure

In this section, we will give two approaches to construct the microlocal defect measures. The first one is based on the article by Gérard and Leichtnam [START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF] for Helmoltz equation and Burq [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF] for wave equations. The other one follows the idea in the article [START_REF] Lebeau | Équation des ondes amorties[END_REF] by Lebeau and we rely on the article [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] by Burq and Lebeau for the setting of wave systems. In the first approach, we can compare two different measures, especially the supports of two different measures. Let (u k ) k∈N be a bounded sequence in L 2 loc (R + ; L 2 (Ω)) n , converging weakly to 0 and such that

P u k = o(1) H -1 , u k | ∂M = 0. (2.3.4)
Let u k be the extension by 0 across the boundary of Ω. Then the sequence

u k is bounded in L 2 loc (R t ; L 2 (R d )) n . Let A be the space of n × n matrices of classical polyhomogeneous pseudo-differential operators of order 0 with compact support in R + × R d (i.e, A = ϕAϕ for some ϕ ∈ C ∞ 0 (R + × R d )).
Let us denote by M + the set of nonnegative Radon measures on T * (R + × R d ). Following [12, Section 1], we have the existence of the microlocal defect measure as follows:

MICROLOCAL DEFECT MEASURES FOR WAVE EQUATIONS

Proposition 2.3.5 (Existence of the microlocal defect measure-1). There exists a subsequence of (u k ) (still noted by (u k )) and µ ∈ M + such that

∀A ∈ A, lim k→∞ (Au k , u k ) L 2 = µ, σ(A) , (2.3.5) 
where σ(A) is the principal symbol of the operator A (which is a matrix of smooth functions, homogeneous of order 0 in the variable ξ, i.e. a function on S * ((R

+ × R d )).
From [12, Théorème 15], we have the following proposition.

Proposition 2.3.6. For the microlocal defect measure µ defined above, we have the following properties.

• The measure µ is supported on the intersection of the characteristic manifold with R + × Ω:

supp(µ) ⊂ Char(P) = {(t, x, τ, ξ); x ∈ M , τ 2 = |ξ| 2 x }. (2.3.6)
• The measure µ does not charge the hyperbolic points in ∂M :

µ(H) = 0.
• In particular, if n = 1, the scalar measure µ is invariant along the generalized bicharacteristic flow.

Remark 2.3.7. Notice first that in [12, Section 3], the author considered the case of solutions to the wave equation at the energy level (bounded in H 1 loc , and hence was considering second order operators. However, it is easy to pass from H 1 to L 2 solutions by applying the operator ∂ t and conversely from L 2 to H 1 by applying the operator

∂ -1 t , i.e. if v is an L 2 solution, considering the solution u associated to (-∆ D ) -1 (∂ t v | t=0 ), v | t=0 , which of course satisfies ∂ t u = v.
This procedure amounts to replacing the test operators of order 0 A by the test operator of order 2, B = -∂ t • A • ∂ t , but since τ 2 does not vanish on the characteristic manifold, it is an elliptic factor which changes nothing.

Remark 2.3.8. Notice also that due to discontinuity of the generalised bicharacteristics when they reflect on the boundary at hyperbolic points (the points corresponding to the left and right limits at s ∈ D), in Definition 2.3.1, the generalised bicharacteristic flow is not well defined (there are two points above any points corresponding to s ∈ D). However, since the measure µ does not charge these hyperbolic points, this flow is well defined µ almost surely and the invariance property makes sense. Notice also that in [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF]Appendice], weaker property than invariance (namely that the support is a union of generalised bicahracteristics) is proved. The general result follows from this weaker result by applying the strategy in [START_REF] Lebeau | Équation des ondes amorties[END_REF]. In any case, for the purpose of the present article, the invariance of the support would suffice.

On the other hand, let A be the space of n × n matrices of pseudo-differential operators of order 0, in the form of

A = A i +A t with A i classical pseudo-differential operator with compact support in M (i.e, A i = ϕA i ϕ for some ϕ ∈ C ∞ 0 (M )) and A t a classical tangential pseudo-differential operator in M (i.e, A t = ϕA t ϕ for some ϕ ∈ C ∞ (M )). Then denote Z = j(Char(P)), Ẑ = Z ∪ j(T * M | x=0 ),
where j is defined in (4.2.12) and

S Ẑ = ( Ẑ\M )/R * + , SZ = (Z\M )/R * + .
Remark 2.3.9. S Ẑ and SZ are the quotient spherical spaces of Ẑ and Z and they are locally compact metric spaces.

For A ∈ A, with principal symbol a = σ(A), define κ(a)(ρ) = a(j -1 (ρ)), ∀ρ ∈ b T * M . Now, we have that K = {κ(a) : a = σ(A), A ∈ A} ⊂ C 0 (S Ẑ; End(C n )).
Define M + to be the space of all positive Borel measures on S Ẑ. By duality, we know that M + is the dual space of C 0 0 (S Ẑ; End(C n )), which verifies the property:

µ, a ≥ 0, ∀a ∈ C 0 (S Ẑ; End + (C n )), ∀µ ∈ M + ,
where End + (C n ) denotes the space of n × n positive hermitian matrices. Following the article [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] by Burq and Lebeau, we obtain the existence of the microlocal defect measure and some properties as follows:

Proposition 2.3.10 (Existence of the microlocal defect measure-2). There exists a subsequence of (u k ) (still noted by (u k )) and µ ∈ M + such that

∀A ∈ A, lim k→∞ (Au k , u k ) L 2 = µ, κ(σ(A)) . (2.3.7)
Lemma 2.3.11. The microlocal defect measure µ defined in Proposition 2.3.10 satisfies that µ1 H∪E = 0 where H is the set of hyperbolic points and E is the set of elliptic points as defined in Subsection 2.3.1.

Remark 2.3.12. From Proposition 2.3.6, we know that supp(µ) ⊂ Char(P). Notice that in the interior of M , the two definitions coincide, i.e., µ| Char(P) = µ in the interior of M . At the boundary, since both measures µ and µ do not not charge the hyperbolic points in ∂M , we know that µ| S Ẑ = µ holds µ almost surely and µ almost surely. Under this sense, we can identify the two measures.

In the following, suppose that there is no infinite contact between the bicharacteristic of p and the boundary. This hypothesis implies the existence and uniqueness of the generalized bicharacteristic passing through any point, which ensures that the Melrose-Sjöstrand flow is globally well-defined. By a suitable change of parameter along this flow, we obtain a flow on SZ. Consider S a hypersurface tranverse to the flow. Then locally, SZ = R s × S where s is the well-chosen parameter along the flow. We have the following propagation lemma for the microlocal defect measure.

Lemma 2.3.13. Assume that the microlocal defect measure µ is defined in Proposition 4.2.9. Then µ is supported in SZ and there exists a function We say that the measure µ is invariant along the flow associated to M . Furthermore, the function M is continuous and along any generalized bicharacteristic the matrix M is solution to a differential equation whose coefficients can be explicitly computed in terms of the geometry and the different terms in the operator P .

(s, z) ∈ R s × S → M (s, z) ∈ C n
For the differential equation which M satisfies, one can refer to [14, Section 3.2] for more details.

Remark 2.3.14. For a scalar wave equation, we know that the defect measure is invariant along the general bicharacteristic flow.

Remark 2.3.15. Roughly speaking, in the result above, the norm of M describes the damping of the measure µ, whereas the rotation component of M describes the way the polarization of the measure (asymptotic polarization of the sequence (u k )) is turning.

The controllability of a scalar wave equation

In this section, we provide a sketch proof for the controllability of a scalar wave equation as we introduced in (2.2.1):

   K u = f 1 ω in (0, T ) × Ω, u = 0 on (0, T ) × ∂Ω, u| t=0 = u 0 (x), ∂ t u| t=0 = u 1 (x), (2.4.1)
where we assume that f ∈ L 2 ((0, T ) × ω) and the initial data (u 0 , u 1 ) ∈ H 1 0 (Ω) × L 2 (Ω). We consider the null controllability of this equation. The proof is based on three steps as follows:

1. (HUM and observability) Applying the Hilbert uniqueness method, the controllability property is equivalent to an observability inequality for the adjoint system. To be more precise here, we only need to prove: ∃C > 0 such that for any solutions of the adjoint equation:

   K v = 0 in (0, T ) × Ω, v = 0 on (0, T ) × ∂Ω, v| t=0 = v 0 (x), ∂ t v| t=0 = v 1 (x), (2.4.2)
we have

||v 0 || 2 L 2 + ||v 1 || 2 H -1 ≤ C T 0 ω |v| 2 dxdt. (2.4.3)
2. (High-frequency estimates) We first establish a weak observability inequality as follows:

||v 0 || 2 L 2 + ||v 1 || 2 H -1 ≤ C T 0 ω |v| 2 dxdt + ||v 0 || 2 H -1 + ||v 1 || 2 H -2 . (2.4.4)
We prove this inequality by the argument of contradiction. Suppose the inequality (2.4.4) is false, there exists a sequence

(v k,0 , v k,1 ) k∈N in L 2 × H -1 such that ||v k,0 || 2 L 2 + ||v k,1 || 2 H -1 = 1, (2.4.5) ||v k,0 || 2 H -1 + ||v k,1 || 2 H -2 → 0, k → ∞ (2.4.6) T 0 ω |v k | 2 dxdt → 0, k → ∞ (2.4.7)
where v k is the solution of (2.4.2) with initial data (v k,0 , v k,1 ). Hence, there exists a microlocal defect measure µ associated with the bounded sequence
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v k . According to the previous section, we know that µ is invariant along the general bichacteristic flow. In addition, we know that µ| (0,T )×ω = 0 by (2.4.7). Hence, we obtain µ ≡ 0. Combining with the energy conservation law of the homogenerous wave equation (2.4.2), there is a controdiction with the hypothesis (2.4.5). Therefore, we prove the weak observability inequality (2.4.4).

(Low-frequency estimates)

We use the weak observability inequality (2.4.4) to prove the original observability (2.4.3). We also argue by contradiction. Suppose that (2.4.3) is false, then, there exists a sequence

(v k,0 , v k,1 ) k∈N in L 2 × H -1 such that ||v k,0 || 2 L 2 + ||v k,1 || 2 H -1 = 1, (2.4.8) T 0 ω |v k | 2 dxdt → 0, k → ∞ (2.4.9)
where v k is the solution of (2.4.2) with initial data (v k,0 , v k,1 ). Since we proved the weak observability inequality, we know that

1 = ||v k,0 || 2 L 2 + ||v k,1 || 2 H -1 ≤ C T 0 ω |v k | 2 dxdt + ||v k,0 || 2 H -1 + ||v k,1 || 2 H -2 .
(2.4.10) Let (v 0 , v 1 ) be the weak limit of (v k,0 , v k,1 ), i.e.(v k,0 , v k,1 ) (v 0 , v 1 ) in L 2 × H -1 and v be the solution of the adjoint equation (2.4.2) with initial data

(v 0 , v 1 ). Since L 2 ×H -1 → H -1 ×H -2 is compact, we know that ||v k,0 || 2 H -1 + ||v k,1 || 2 H -2 → ||v 0 || 2 H -1 + ||v 1 || 2 H -2 .
As a consequence, let k tends to infinity, we obtain that

1 ≤ C ||v 0 || 2 H -1 + ||v 1 || 2 H -2 .
(2.4.11)

Then we analyze the space of the invisible solutions defined by

N (T ) = {(w 0 , w 1 ) ∈ L 2 × H -1 : w(t, x) = 0, for t ∈ (0, T ), x ∈ ω}. (2.4.12)
Here w is a solution of the adjoint equation (2.4.2) with initial data (w 0 , w 1 ).

Hence, (v 0 , v 1 ) ∈ N (T ). Next, we prove that N (T ) = {0}. According to (2.4.4), we know that N (T ) has finite dimension. Define A = 0 1 -∆ K 0 .

Then N (T ) is stable under the application of A . Therefore, N (T ) contains an eigenvector of A , i.e. ∃λ ∈ C and

(φ 0 , φ 1 ) ∈ H 1 0 × L 2 such that    A φ 0 φ 1 = λ φ 0 φ 1 , in Ω, φ 0 = 0, in ω.
(2.4.13)
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This is equivalent to: for λ ∈ C and

φ 0 ∈ H 1 0 -∆φ 0 = λ 2 φ 0 , in Ω, φ 0 = 0, in ω. (2.4.14)
This is a classic unique continuation problem. Using Carleman estimates (see [START_REF] Carleman | Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes[END_REF]), we obtain that φ 0 ≡ 0. Consequently, we know that N (T ) = {0}. Therefore, we have (v 0 , v 1 ) = (0, 0), which is a contradiction with the hypothesis (2.4.11). Hence, we prove the observability inequality (2.4.3).

In summary, we first apply Hilbert uniqueness method to obtain the observability inequality. Then for high-frequency regime, we prove a weak observability inequality by the microlocal analysis. At last, for low-frequency regime, it is equivalent to proving a unique continuation property for some eigenfucntions. This is the basic strategy for us to deal with the controllability of the wave equations.

Coupled wave systems

Coupled by the control function

In this section, we consider the interior simultaneous controllability problem of a wave system with different speeds. One could find this result in my article [START_REF] Niu | Simultaneous Control of Wave Systems[END_REF].

A simple model

First we introduce a simple example as follows:

       (∂ 2 t -∆)u 1 = f 1 (0,T ) (t)1 ω (x) (∂ 2 t -2∆)u 2 = f 1 (0,T ) (t)1 ω (x) u j = 0 on (0, T ) × ∂Ω, j = 1, 2, u j (0, x) = u 0 j (x) ∈ H 1 0 , ∂ t u j (0, x) = u 1 j (x) ∈ L 2 , j = 1, 2.
(2.5.1)

Notice that these two wave equations are of different speeds and we use the same control function f ∈ L 2 ((0, T ) × ω) to control both equations at the same time.

For our example (2.5.1), applying Hilbert uniqueness method, we only need to prove an observability inequality

2 i=1 (||v 0 i || 2 L 2 + ||v 1 i || 2 H -1 ) ≤ C T 0 ω |v 1 + v 2 | 2 dxdt (2.5.2)
for solutions (v 1 , v 2 ) of the adjoint system with initial data

(v 0 i , v 1 i ): (∂ 2 t -∆)v 1 = 0 (∂ 2 t -2∆)v 2 = 0 (2.5.3)
To prove the inequality (2.5.2), we first look at the high-frequency regime. Since the two wave equations are of different speeds, then characteristic manifolds are disjoint, which implies that

||v 1 + v 2 || 2 L 2 ≈ ||v 1 || 2 L 2 + ||v 2 || 2
L 2 in the high-frequency regime. With the application of the microlocal defect measures, we know that for high frequencies, observe the sum v 1 + v 2 is almost equivalent to observing each of them. Then, we look at the low-frequency regime. It is equivalent to considering a unique continuation problem for eigenfunctions as follows: only zero solutions satisfy that

   -∆φ 1 = λφ 1 in Ω, -2∆φ 2 = λφ 2 in Ω, φ 1 + φ 2 = 0 in ω.
(2.5.4)

In this example, this property is easy to prove. Since the eigenfunctions of the laplacian are analytic, we know that φ 1 + φ 2 ≡ 0 in the whole domain Ω. Then, by adding two equations together, we obtain that ∆φ 2 = 0. Combining with the Dirichlet boundary condition, we know that φ 2 ≡ 0, which implies that φ 1 = -φ 2 ≡ 0. Hence, we are able to prove this simultaneous control problem. Therefore, we conclude three features of this kind of problem:

1. Wave equations are of different speeds while we use the same control function to control all these equations at the same time.

2. Considering the observability inequality, we use the localized norm (restricted in subdomain ω) of the sum of solutions to control the full energy norm of the initial data.

3. We need a unique continuation property for the eigenfunctions associated with the wave system.

This motivates us to consider the generalisation of this example.

Simultaneous control of wave systems

In my article [START_REF] Niu | Simultaneous Control of Wave Systems[END_REF], we consider the exact controllability on an open domain Ω of wave systems with space varying and different speeds coupled by a single control function acting on a open subset ω. To be more precise, we consider the simultaneous interior controlllability for the following wave system:

                 K 1 u 1 = b 1 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, K 2 u 2 = b 2 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, . . . Kn u n = b n f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, u j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), 1 ≤ j ≤ n.
(2.5.5) Here, we choose K i (1 ≤ i ≤ n) to be n different symmetric positive definite matrices, which is a generalization of n different wave speeds of different constant metrics. In addition, it is also important that we apply the same control function f on each equation. b i are n nonzero constant coefficients. We could see this example as a special case where the coupling only appears in the control function.

For this system, we are able to prove the partial controllability result as follows:

Theorem 2.5.1. Given T > 0, suppose that:

1. (ω, T, p K i ) satisfies GCC, i = 1, 2, • • • , n, 2. K 1 > K 2 > • • • > K n in ω,
3. Ω has no infinite order of tangential contact on the boundary.

Then, there exists a finite dimensional subspace E ⊂ (H 1 0 (Ω) × L 2 (Ω)) n such that the system (2.5.5) is P-exactly controllable, where P is the orthogonal projector on E ⊥ .

As we have presented before, in order to study the low frequencies, we need to introduce the notion of unique continuation of eigenfunctions. Definition 2.5.2. We say the system Equation (3.1.2) satisfies the unique continuation of eigenfunctions if the following property holds: ∀λ ∈ C, the only solution

(φ 1 , • • • , φ n ) ∈ (H 1 0 (Ω)) n of            -∆ K 1 φ 1 = λ 2 φ 1 in Ω, -∆ K 2 φ 2 = λ 2 φ 2 in Ω, • • • -∆ Kn φ n = λ 2 φ n in Ω, b 1 κ 1 φ 1 + • • • + b n κ n φ n = 0 in ω, is the zero solution (φ 1 , • • • , φ n ) ≡ 0.
Remark 2.5.3. As we present in the section 3.5.4, the unique continuation property does not hold true in some cases.

Hence, we are able to obtain the exact/null controllability as follows:

Theorem 2.5.4. Given T > 0, suppose that:

1. (ω, T, p K i ) satisfies GCC, i = 1, 2, • • • , n, 2. K 1 > K 2 > • • • > K n in ω, 3 
. Ω has no infinite order of tangential contact on the boundary,
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4. The system (2.5.5) satisfies the unique continuation property of eigenfunctions.

Then the system (2.5.5) is exactly controllable in (H 1 0 (Ω) × L 2 (Ω)) n . As we present in the previous section, we prove this theorem by similar procedure. First, we apply the Hilbert Uniqueness Method, and obtian the observability inequality: ∃C > 0 such that for any solution of the adjoint system:

                 K 1 v 1 = 0 in (0, T ) × Ω, K 2 v 2 = 0 in (0, T ) × Ω, . . . Kn v n = 0 in (0, T ) × Ω, v j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, (v 1 (0, x), ∂ t v 1 (0, x), • • • , v n (0, x)∂ t v n (0, x)) = V 0 , (2.5.6) where V 0 ∈ (L 2 × H -1 ) n , we have C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ ||V 0 || 2 (L 2 ×H -1 ) n . (2.5.7)
Then we only need to prove this observability inequality (2.5.7). Looking at the high-frequency, we prove a weak observability estimate:

||V 0 || 2 (L 2 ×H -1 ) n ≤ C T 0 ω | n j=1 b j κ j v j | 2 dxdt + ||V 0 || 2 (H -1 ×H -2 ) n . (2.5.8)
Using the argument by contradiction, we assume that the above inequality was false, we could obtain a sequence (V 0,k ) k∈N such that

||V 0,k || 2 (L 2 ×H -1 ) n = 1, (2.5.9) 
T 0 ω |b 1 κ 1 v k 1 + • • • + b n κ n v k n | 2 dxdt → 0, k → ∞, (2.5.10) 
and

||V 0,k || 2 (H -1 ×H -2 ) n → 0, k → ∞. (2.5.11)
Here we use v k i (1 ≤ i ≤ n) to denote the corresponding solution of the system Equation (2.5.6) with the initial data V 0,k . Since we have the assumption 2, we know that the characteristic manifolds of each wave equation are disjoint, which implies that

T 0 ω |b 1 κ 1 v k 1 + • • • + b n κ n v k n | 2 dxdt ≈ n i=1 T 0 ω |b i κ i v k i | 2 dxdt (2.5.12)
Hence, we know that each defect measure µ i associated with v k i is zero through the application of the propagation of the defect measures and the Geometric control condition. This provides a contradiction with the normalized norm of initial data, i.e. ||V 0,k || 2 (L 2 ×H -1 ) n = 1. Then we combine the assumption (4), we know that the observability inequality is true. This gives us the result of the exact/null controllability of the system (2.5.5).

Some results on unique continuation properties

As we can see in the simple example, the unique continuation properties defined in Definition 2.5.2 hold for constant coefficient metrics. But we could also construct a counter-example such that this unique continuation property does not hold. In dimension 1, we assume that the metric g = c(x)dx 2 . Then

∆ g = 1 c d 2 dx 2 -c 2c 2 d dx .
Fix the open interval (0, π) and the subinterval (a, b) ⊂ (0, π)(a > π 2 ). Now we consider the unique continuation problem:

       u 1 = -λ 2 u 1 , ∆ g u 2 = -λ 2 u 2 , u 1 + u 2 = 0 in (a, b), u 1 , u 2 ∈ H 1 0 ((0, π)).
(2.5.13)

We have the following result:

Theorem 2.5.5. There exists a smooth Riemannian metric g = c(x)dx 2 , and two eigenfunctions u 1 , u 2 of ∆ g and d 2 dx 2 on (0, π) associated with eigenvalue 1 such that u 1 + u 2 = 0, in (a, b) ⊂ (0, π) and u 1 + u 2 ≡ 0 in (0, π).

The readers can find the detailed construction of this counter-example in the section 3.5. Looking at the system 2.5.13, we consider the intersection of the spectrum of two Laplacians with different metrics. Let us define the space of all smooth metrics on the open interval (0, π) by M 1 . We are able to prove the following proposition: Proposition 2.5.6. In dimension 1, suppose that we fix the Laplacian ∆ = d 2 dx 2 in (0, π) with its spectrum σ(∆). Then the set

G uc = {g ∈ M 1 : σ(∆ g ) ∩ σ(∆) = ∅} is residual in M 1 .
Roughly speaking, we are able to find "many" metrics in the sense of generic properties such that the spectrum of two Laplacians with different metrics are disjoint. Therefore, we obtain the following corollary immediately:

Corollary 2.5.7. Fix ∆ = d 2
dx 2 , for every metric g ∈ G uc , the system (2.5.13) has a unique solution u 1 = u 2 = 0.

That is to say, the unique continuation property is true "genericly". In addition, in dimension 2, we can also obtain the similar result: Proposition 2.5.8. In dimension 2, suppose that we fix one metric g 0 and the associated Laplacian ∆ g 0 with its spectrum σ(∆ g 0 ). Then the set

G uc = {g ∈ M 2 : σ(∆ g ) ∩ σ(∆ g 0 ) = ∅} is residual in M 2 .
Here M 2 is the space of all smooth metrics on the open domain Ω ⊂ R 2 . And for proof details, we refer to the section 3.5.4.

Comments

There are two crucial parts in this proof. We need to get the microlocal information of each solution through the constraints on the sum of solutions. The other one is to prove the unique continuation property. In the first part, we mainly rely on the facts that the characteristic manifolds with different speeds are disjoint. Hence, in the high-frequency regime, we could distinguish every solution among the sum of them. For the second part, the main difficulty is that we have n(n ≥ 1) equations but with only one constraint to solve the unique continuation problem. In the constant coefficient case, the laplacians commute with each other. So we could apply the ∆ for n -1 times to obtain n -

1 constraints i ∆ k φ i = 0(1 ≤ k ≤ n) in ω.
Then we could reduce this problem into a unique continuation problem for a single equation. However, for general metrics, the laplacians do not commute with each other. Then this method does not work.

Coupled by a block-cascade structure

In this section, we mainly consider the Laplacian with constant coefficients. This is a joint work with Pierre Lissy. In this article, we proved the controllability of a coupled wave system with a single control and different speeds.

Motivations

To begin with, we introduce a simple example as follows:

   (∂ 2 t -∆)u 1 + u 2 = 0 in (0, T ) × Ω, (∂ 2 t -2∆)u 2 + u 3 = 0 in (0, T ) × Ω, (∂ 2 t -2∆)u 3 = f 1 ω in (0, T ) × Ω, (2.5.14) 
with the Dirichlet boundary condition and some initial data, where f is a L 2 function supported in (0, T ) × ω. Compared with (2.5.1), we consider a blockcascade coupling structure for the solutions. Notably, the control f is only acting directly on u 3 , which itself acts on u 2 while u 1 is controlled through u 2 .

For this example system, the controllability from zero is equivalent to the null controllability. Therefore, we begin with zero initial conditions. We first observe a regularity gap among the solutions, i.e. (u 1 , u 2 , u 3 ) ∈ H 4 × H2 × H1 . In fact, since u 3 satisfies a wave equation with a source term f ∈ L 1 ((0, T ), L 2 ), it is classical that there exists a unique solution

u 3 ∈ C 1 ([0, T ], H 1 0 ) ∩ C 0 ([0, T ], L 2
). Since u 2 satisfies a wave equation with a source term -u 3 , then

u 2 ∈ C 1 ([0, T ], H 2 ) ∩ C 0 ([0, T ], H 1 0 ). For u 1 , similarly, we obtain that u 1 ∈ C 1 ([0, T ], H 3 )∩C 0 ([0, T ], H 2 )
. Now, we need to state an extra regularity property for u 1 . Applying the d'Alembert operator

2 = ∂ 2 t -2∆ on both sides of the equation of 1 u 1 = (∂ 2 t -∆)u 1 = -u 2 , we obtain that 2 1 u 1 = -2 u 2 .
Since 2 u 2 = -u 3 , then we obtain that 2 1 u 1 = u 3 . We consider that 2 u 1 satisfies a wave equation with a source term u 3 . Therefore, we know that

2 u 1 ∈ C 1 ([0, T ], H 2 )∩C 0 ([0, T ], H 1 0 ). Since 1 u 1 = -u 2 ∈ C 1 ([0, T ], H 2 )∩C 0 ([0, T ], H 1 0 ), we know that ∆u 1 = 1 u 1 -2 u 1 ∈ C 1 ([0, T ], H 2 ) ∩ C 0 ([0, T ], H 1 0 ). As a conse- quence, we know u 1 ∈ C 1 ([0, T ], H 4 )∩C 0 ([0, T ], H 3 ). Hence, we notice a regularity gap (u 1 , u 2 , u 3 ) ∈ H 4 × H 2 × H 1 .
One can refer to [START_REF] Dehman | Controllability of two coupled wave equations on a compact manifold[END_REF] for a different proof.

In addition, with zero initial conditions, we also notice that there is a compatibility condition for this control problem, i.e. (-∆) 2 u 1 + ∆u 2 ∈ H 1 0 . In fact, let us first do some reformulation for the system. Define the transform S by

S   u 1 u 2 u 3   =   v 1 v 2 v 3   , where    v 1 = D 3 t u 1 , v 2 = D t u 2 , v 3 = u 3 .
(2.5.15) Moreover, (v 1 , v 2 , v 3 ) satisfies the following system:

   1 v 1 + D 2 t v 2 = 0 in (0, T ) × Ω, 2 v 2 + D t v 3 = 0 in (0, T ) × Ω, 2 v 3 = f in (0, T ) × Ω. (2.5.16) Using the identity -D 2 t = 2 1 -2 , (2.5.17) 
we obtain that We also remark that by using (2.5.17),

D 2 t v 2 = -(2 1 -2 )v 2 . ( 2 
-D 2 t v 3 = (2 1 -2 )v 3 . (2.5.22)
Hence, we deduce that

1 (y + 2v 3 ) = f. (2.5.23)
Let us now express y with respect to the original variables u 1 , u 2 , u 3 . From (2.5.20), (2.5.15) and the first equation of (2.5.14), we obtain that

y = D t v 1 -2D t v 2 = D 4 t u 1 -2D 2 t u 2 = D 2 t (D 2 t u 1 -2u 2 ) = D 2 t (-∆u 1 + u 2 -2u 2 ) = D 2 t (-∆u 1 -u 2 ).
Combining with the second equation of (2.5.14), we obtain

y = (-∆) 2 u 1 + ∆u 2 -u 3 .
Now, we define ỹ = y + 2u 3 .

Then, ỹ satisfies

1 ỹ = f. (2.5.24)
With zero initial conditions, we obtain that ỹ ∈ H 1 0 , i,e, (-∆) 2 u 1 + ∆u 2 ∈ H 1 0 . Considering the regularity of u 1 and u 2 , we know that (u 1 , u 2 ) ∈ H 4 × H 2 . Hence, we can only obtain (-∆) 2 u 1 + ∆u 2 ∈ L 2 . Therefore, we notice a regularity gap between these two conditions. This gap implies that when we choose the appropriate state spaces, we need to consider not only the regularity of the solutions but also the compatibility conditions associated with the coupling structure. This is quite different from the system without coupling, and even different from the wave system coupled by the same speed or coupled parabolic systems. To our knowledge, this is one feature for such kind of coupled wave systems. This motivates us to consider a more general system with the same type of coupling structure.

The controllability for a wave system coupled with different speeds

We aim to deal with some controllability properties of the following type of coupled wave systems:

   (∂ 2 t -D∆)U + AU = bf 1 ω in (0, T ) × Ω, U = 0 on (0, T ) × ∂Ω, (U, ∂ t U )| t=0 = (U 0 , U 1 ) in Ω, (2.5.25) 
with here

D = d 1 Id n 1 0 0 d 2 Id n 2 n×n , A = 0 A 1 0 A 2 n×n , and b = 0 b n×1 , (2.5.26) 
where n = n 1 + n 2 and

d 1 = d 2 . A 1 ∈ M n 1 ,n 2 (R) and A 2 ∈ M n 2 (R) are two given coupling matrices and b ∈ R n 2 .
For j = 1, 2, we use

U j =    u j 1 . . . u j n j  
 to denote the solutions corresponding to the speed d j respectively. Let us emphasize the following important and crucial properties of System (2.5.25): all coefficients are constant, the coupling is in a block-cascade structure (notably, the control f is only acting directly on U 2 , which itself acts on U 1 through the matrix A 1 ), and we restrict to the case of a scalar control (i.e. f ∈ L 2 ((0, T ), R m ) with m = 1).

Equivalent operator Kalman rank condition

In the following proposition, we give an equivalent statement of the operator Kalman rank condition associated with System (2.5.25), which is very specific to our particular coupling structure and the fact that we have a single control.

Proposition 2.5.9. We use the same notations as in Definition 2.5.26. We denote by K = [-D∆ + A| B] the Kalman operator associated with System (2.5.25). Then, Ker(K * ) = {0} is equivalent to satisfying all the following conditions:

1. n 1 = 1;
2. (A 2 , B) satisfies the usual Kalman rank condition (See Definition 2.2.3);

Assume that

A 1 = α = (α 1 , • • • , α n 2 ). Then ∀λ ∈ σ(-∆), α satisfies α n 2 -2 k=0 (d 1 -d 2 ) k λ k n 2 j=k+1 a j A j-1-k 2 + (d 1 -d 2 ) n 2 -1 λ n 2 -1 Id n 2 b = 0, (2.5.27)
where (a j ) 0≤j≤n 2 are the coefficients of the the characteristic polynomial of the matrix A 2 , i.e. χ(X) = X n 2 + n 2 -1 j=0 a j X j , with the convention that a n 2 = 1.

With this equivalent condition, we are able to simplify the system into

                         1 u 1 1 + s j=1 α s u 2 j = 0 in (0, T ) × Ω, 2 u 2 1 + u 2 2 = 0 in (0, T ) × Ω, . . . 2 u 2 n 2 -1 + u 2 n 2 = 0 in (0, T ) × Ω, 2 u 2 n 2 -n 2 j=1 a n 2 +1-j u 2 j = f 1 ω in (0, T ) × Ω, u 1 1 = 0, u 2 j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n 2 , (u 1 1 , u 2 1 , • • • , u 2 n 2 )| t=0 = (u 1,0 1 , u 2,0 1 , • • • , u 2,0 n 2 ) in Ω, (∂ t u 1 1 , ∂ t u 2 1 , • • • , ∂ t u 2 n 2 )| t=0 = (u 1,1 1 , u 2,1 1 , • • • , u 2,1 n 2 ) in Ω.
(2.5.28)

Here we take

n 1 = 1, A 1 = (α 1 , • • • , α s , 0, • • • , 0) and A 2 =      0 1 0 0 0 0 . . . 0 . . . . . . . . . 1 -a n • • • -a 2 -a 1      , and b =      0 . . . 0 1     

Appropriate state spaces

Since we consider the control problem in a domain Ω with boundary, it is natural for us to introduce the following Hilbert spaces H s Ω (∆).

Definition 2.5.10. We denote by (β 2 j ) j∈N * the non-decreasing sequence of (positive) eigenvalues of the Laplace operator -∆ with Dirichlet boundary condition, repeated with multiplicity, and (e j ) j∈N * an orthonormal basis of L 2 (Ω) made of eigenfunctions associated with (β 2 j ) j∈N * :

-∆e j = β 2 j e j , ||e j || L 2 = 1.
For any s ∈ R, we denote by H s (Ω) the usual Sobolev space and by H s Ω (∆) the Hilbert space defined by

H s Ω (∆) = {u = j∈N * a j e j ; j∈N * (1 + β 2 j ) s |a j | 2 < ∞}. (2.5.29)
Under this particular structure of coupling, we introduce appropriate compatibility conditions for System (4.1.7). Let us denote by H r the following space:

H r = {(u, v 1 , • • • , v n 2 ) ∈ H n 2 -s+2+r Ω (∆) × H n 2 -1+r Ω (∆) × • • • × H r Ω (∆) s.t. (-d 1 ∆) n 2 -s+1 u + n 2 -s-1 k=0 α s d n 2 -s+1-k 1 (d 1 -d 2 ) n 2 -s+1-k (-d 1 ∆) k v n 2 -k ∈ H r Ω (∆)}.
(2.5.30)

Definition 2.5.11 (State space). The state space for System (4.4.1) is defined by

H 1 × H 0 .
The two conditions

(-d 1 ∆) n 2 -s+1 u 1,0 1 + n 2 -s k=0 α s d n 2 -s+1-k 1 (d 1 -d 2 ) n 2 -s+1-k (-d 1 ∆) k u 2,0 n 2 -k ∈ H 1 Ω (∆), (-d 1 ∆) n 2 -s+1 u 1,1 1 + n 2 -s k=0 α s d n 2 -s+1-k 1 (d 1 -d 2 ) n 2 -s+1-k (-d 1 ∆) k u 2,1 n 2 -k ∈ H 0 Ω (∆).
are called the compatibility conditions for the controllability of System (4.4.1).

With these well-prepared spaces, we obtain the following result:

Theorem 2.5.12. Given T > 0, suppose that:

1. (ω, T, p d i ) satisfies GCC, i = 1, 2.

2. Ω has no infinite order of tangential contact with the boundary.

3. The Kalman operator K = [-D∆ + A| B] associated with System (4.1.1) satisfies the operator Kalman rank condition, i.e. Ker(K * ) = {0}.

Then the system (4.1.1) is exactly controllable.

We prove the above theorem within three steps.

1. At the first, we simplify the system (2.5.25), using the Brunovský normal form. This is based on the Proposition 2.5.9 and we only need to prove the exact/null controllability for the simplified system (2.5.28).

2. At the second step, we use the iteration schemes to obtain the compatibility conditions associated with the coupling structure in the system (2.5.25). Therefore, we prepare the appropriate state spaces for the controllability of the system (2.5.28).
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3. In the final step, we use Hilbert uniqueness method to derive the observability inequality and then we follow the similar procedure as we did in the previous section 2.5.1. We establish a weak observability inequality and prove this weak observability inequality by the argument of contradiction and the propagation of the defect measures for systems. At last, the unique continuation property is given by the Kalman rank condition.

Comments

The main difficulty here is that the block-cascade coupling increases the difficulty for us to describe the proper Hilbert spaces for the states. As we presented in the example, only describing the regularity of each solution is not enough to construct the state spaces. The crucial part in the proof of the main result is to obtain the compatibility conditions associated with the coupling structure. The coupling with different speeds play a very important role in this problem.

Some comments on further developments

Based on the previous results, we already solved two special cases of the interior controllability for the coupled wave systems. Then, we could think about some more general coupling structures. For example, in the system (2.5.25) with

D = d 1 Id n 1 0 0 d 2 Id n 2 n×n , A = A 11 A 12 A 21 A 22 n×n , and b = b 1 b 2 n×m ,
(2.5.31) In this case, the coupling is in a very general form and moreover, we consider some multi-control functions (i.e. f ∈ L 2 ((0, T ), R m ) with m > 1). In such example, there are two types of difficulties. The first one is to find a algebraic equivalent condition for the abstract operator Kalman rank condition to simplify the coupling structure. The second one is to construct the appropriate state spaces, especially find the compatibility conditions under this setting.

Chapter 3

Simultaneous Control of Wave Systems

Introduction

Let Ω ⊂ R d , d ∈ N * , be a bounded, and smooth domain. For positive constants α and β, let k ij (x) : Ω → R, 1 ≤ i, j ≤ d be smooth functions which satisfy:

k ij (x) = k ji (x), α|ξ| 2 ≤ 1≤i,j≤d k ij (x)ξ i ξ j ≤ β|ξ| 2 , ∀x ∈ Ω, ∀ξ ∈ R d . (3.1.1) 
Define K(x) to be the symmetric positive definite matrix of coefficients k ij (x). Moreover, we define the density function κ

(x) = 1 √ det(K(x))
. We also define the Laplacian by

∆ K = 1 κ(x) div(κ(x)K∇•) on Ω and the d'Alembert operator K = ∂ 2 t -∆ K on R t × Ω.
We assume that ω is a nonempty open subset of Ω. We consider the interior simultaneous controllability problem for the following wave system:

                 K 1 u 1 = b 1 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, K 2 u 2 = b 2 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, . . . Kn u n = b n f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, u j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), 1 ≤ j ≤ n. (3.1.2)
Here, we choose K i (1 ≤ i ≤ n) to be n different symmetric positive definite matrices. The state of the system is (u

1 , ∂ t u 1 , • • • , u n , ∂ t u n )
and f is our control function. b i are n nonzero constant coefficients. In this chapter, we mainly consider the exact controllability for the system Equation (3.1.2) given by the following definition.
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Definition 3.1.1 (Exact Controllability). We say that the system Equation (3.1.2) is exactly controllable if for any initial data

(u 0 1 , u 1 1 , • • • , u 0 n , u 1 n ) ∈ (H 1 0 (Ω)×L 2 (Ω)) n and any target data (U 0 1 , U 1 1 , • • • , U 0 n , U 1 n ) ∈ (H 1 0 (Ω) × L 2 (Ω)) n
, there exists a control function f ∈ L 2 ((0, T ) × ω) such that the solution of the system Equation (3.1.2) with initial data

(u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=0 = (u 0 1 , • • • , u 1 n ) satisfies (u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=T = (U 0 1 , • • • , U 1 n )
. Moreover, we also consider the partial exact controllability for the system Equation (3.1.2) given by the following definition. Definition 3.1.2. Let Π be a projection operator of (H 1 0 (Ω) × L 2 (Ω)) n . We say that the system Equation (3.1.2) is Π-exactly controllable if for any initial data

(u 0 1 , u 1 1 , • • • , u 0 n , u 1 n ) ∈ (H 1 0 (Ω)×L 2 (Ω)
) n and any target data Proof. We follow closely the proof of [START_REF] Coron | Control and nonlinearity[END_REF]Theorem 2.41]. It is clear that (Π-exact controllability) =⇒ (Π-null controllability). So we focus on the proof of the converse. We define the operator

(U 0 1 , U 1 1 , • • • , U 0 n , U 1 n ) ∈ (H 1 0 (Ω) × L 2 (Ω)) n , there exists a control function f ∈ L 2 ((0, T ) × ω) such that the solution of Equation (3.1.2) with initial data (u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=0 = (u 0 1 , u 1 1 , • • • , u 0 n , u 1 n ) satisfies Π(u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=T = Π(U 0 1 , U 1 1 , • • • , U 0 n , U 1 n ). If we only impose that Π(u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=T = 0, we say that the system Equation (3.1.2) is Π-null controllable.
A =      0 -1 • • • 0 -∆ K 1 0 • • • 0 . . . . . . 0 -1 0 0 -∆ Kn 0      . (3.1.3)
The system Equation (3.1.2) is equivalent to

∂ t y = -A y + Bf 1 (0,T ) (t)1 ω (x), y| t=0 = y(0), (3.1.4) 
where

y =        u 1 ∂ t u 1 . . . u n ∂ t u n        , y(0) =        u 0 1 u 1 1 . . . u 0 n u 1 n        and B =        0 b 1 . . . 0 b n        .
Let us consider S(t) the semi-group generated by A . Let y 0 ∈ (H 1 0 (Ω) × L 2 (Ω)) n and y 1 ∈ (H 1 0 (Ω) × L 2 (Ω)) n . Since the system Equation (3.1.2) is Π-null controllable, we obtain that there exists f such that the solution ỹ of the Cauchy problem

∂ t ỹ = -A ỹ + Bf 1 (0,T ) (t)1 ω (x), y| t=0 = y 0 -S(-T )y 1 (3.1.5)
satisfies Πỹ(T ) = 0. For the Cauchy problem

∂ t y = -A y + Bf 1 (0,T ) (t)1 ω (x), y| t=0 = y 0 , (3.1.6)
the solution y is given by

y(t) = ỹ(t) + S(t -T )y 1 , ∀t ∈ [0, T ]. (3.1.7)
Hence, we obtain that y(T ) = ỹ(T )+y 1 . In particular, we know that Πy(T ) = Πy 1 since Πỹ(T ) = 0. We now obtain the Π-exact controllability for the system Equation (3.1.2).

According to the Hilbert Uniqueness Method of J.-L. Lions [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], the controllability property is equivalent to an observability inequality for the adjoint system. In particular, when we focus on our system Equation (3.1.2), the exact controllability is equivalent to proving the following observability inequality: ∃C > 0 such that for any solution of the adjoint system:

                 K 1 v 1 = 0 in (0, T ) × Ω, K 2 v 2 = 0 in (0, T ) × Ω, . . . Kn v n = 0 in (0, T ) × Ω, v j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, v j (0, x) = v 0 j (x), ∂ t v j (0, x) = v 1 j (x), 1 ≤ j ≤ n, (3.1.8) 
we have

C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ n i=1 (||v 0 i || 2 L 2 + ||v 1 i || 2 H -1 ). (3.1.9)
For the partial controllability, we have a similar result. The Π-exact controllability of the system Equation (3.1.2) is equivalent to proving the following observability inequality: ∃C > 0 such that for any solution of the adjoint system:

                 K 1 v 1 = 0 in (0, T ) × Ω, K 2 v 2 = 0 in (0, T ) × Ω, . . . Kn v n = 0 in (0, T ) × Ω, v j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, (v 1 (0, x), ∂ t v 1 (0, x), • • • , v n (0, x)∂ t v n (0, x)) = Π * V 0 , (3.1.10) 3.1. INTRODUCTION where V 0 ∈ (L 2 × H -1
) n and Π * is the adjoint operator of the projector Π, we have In order to study the observability inequality, a classical method is to follow the abstract three-step process initialized by Rauch and Taylor [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF](see also [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]). It can be detailed as follows:

C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ ||Π * V 0 || 2 (L 2 ×H -1 ) n . ( 3 
• Firstly, get the microlocal information on the observable region. Argue by contradiction to obtain different kinds of convergence in subdomain (0, T )×ω and the whole domain (0, T ) × Ω.

• Secondly, use microlocal defect measure (which is due to Gérard [START_REF] Gérard | Microlocal defect measures[END_REF] and Tartar [START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF]), or propagation of singulaties theorem (see [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] Section 18.1) to prove a weak observability estimate:

n i=1 (||v 0 i || 2 L 2 + ||v 1 i || 2 H -1 ) ≤ C( T 0 ω | n j=1 b j κ j v j | 2 dxdt + n i=1 (||v 0 i || 2 H -1 + ||v 1 i || 2 H -2 )).
• Thirdly, use unique continuation properties of eigenfunctions to obtain the original observability inequality Equation (3.1.9).

For the high frequency estimates, a very natural condition is to assume that the control set satisfies the Geometric Control Condition(GCC).

Definition 3.1.4. For ω ⊂ Ω and T > 0, we shall say that the pair (ω, T, p K ) satisfies GCC if every general bicharacteristic of p K meets ω in a time t < T , where p K is the principal symbol of K .

We will give the definition of bicharacteristics in Section 3.3. This condition was raised by Bardos, Lebeau, and Rauch [START_REF] Bardos | Contrôle et stabilisation dans les problemes hyperboliques[END_REF] when they considered the controllability of a scalar wave equation and has now become a basic assumption for the controllability of wave equations. In [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF], the authors show that the geometric control condition is a necessary and sufficient condition for the exact controllability of the wave equation with Dirichlet boundary conditions and continuous boundary control functions. In order to study the low frequencies, we need to introduce the notion of unique continuation of eigenfunctions. Definition 3.1.5. We say the system Equation (3.1.2) satisfies the unique continuation of eigenfunctions if the following property holds: ∀λ ∈ C, the only solution

(φ 1 , • • • , φ n ) ∈ (H 1 0 (Ω)) n of            -∆ K 1 φ 1 = λ 2 φ 1 in Ω, -∆ K 2 φ 2 = λ 2 φ 2 in Ω, • • • -∆ Kn φ n = λ 2 φ n in Ω, b 1 κ 1 φ 1 + • • • + b n κ n φ n = 0 in ω, is the zero solution (φ 1 , • • • , φ n ) ≡ 0.
There is a large literature on the controllability and observability of the wave equations. Several techniques have been applied to derive observability inequalities in various situations. This chapter is mainly devoted to multi-speed wave systems coupled by the control functions only. For other interesting situations, we list some of the existing results and references:

• For single wave equation, it is by now well-known that Bardos, Lebeau, and Rauch [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] use microlocal analysis to prove the Equation (3.1.9)-type observability inequality for a scalar wave equation. Other approaches for proving it can also be found in the literature, for example, using multipliers [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systemes distribués[END_REF][START_REF] Lagnese | Control of wave processes with distributed controls supported on a subregion[END_REF], using Carleman estimates [START_REF] Haraux | On a completion problem in the theory of distributed control of wave equations[END_REF][START_REF] Baudouin | Global Carleman estimates for waves and applications[END_REF], or completely constructive proof [START_REF] Laurent | Uniform observability estimates for linear waves[END_REF], etc.

• Although we now have a better picture on the controllabilty of a single wave equation, the controllability of systems of wave equations is still not totally understood. To our knowledge, most of the references concern the case of systems with the same principal symbol. Alabau-Boussouira and Léautaud [START_REF] Alabau | Indirect controllability of locally coupled wave-type systems and applications[END_REF] studied the indirect controllability of two coupled wave equations, in which their controllability result was established using a multi-level energy method introduced in [START_REF] Alabau-Boussouira | A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems[END_REF], and also used in [START_REF] Alabau-Boussouira | A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls[END_REF][START_REF] Alabau-Boussouira | Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control[END_REF]. Liard and Lissy [START_REF] Liard | A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups[END_REF], Lissy and Zuazua [START_REF] Lissy | Internal observability for coupled systems of linear partial differential equations[END_REF] studied the observability and controllability of the coupled wave systems under the Kalman type rank condition. Moreover, we can find other controllability results for coupled wave systems, for example, Cui, Laurent, and Wang [START_REF] Cui | On the observability inequality of coupled wave equations: the case without boundary[END_REF] studied the observability of wave equations coupled by first or zero order terms on a compact manifold. The microlocal defect measure when dealing with the single wave equation can also be extended to a system case. One can refer to Burq and Lebeau for the microlocal defect measure for systems [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF].

• As for multi-speed case, Dehman, Le Roussau, and Léautaud considered two coupled wave equations with multi-speeds in [START_REF] Dehman | Controllability of two coupled wave equations on a compact manifold[END_REF]. More related work
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is given by Tebou [START_REF] Tebou | Simultaneous observability and stabilization of some uncoupled wave equations[END_REF], in which the author considered the simultaneous controllability of constant multi-speed wave system and derived some result in a semilinear setting in [START_REF] Tebou | Simultaneous controllability of some uncoupled semilinear wave equations[END_REF].

Plan of the chapter

The chapter is organized as follows. Our main results are in Section 3.2 and Section 3.3 is devoted to introducing some geometric preliminaries. We include the descriptions of the boundary points, and give the precise definition of general bicharacteristics and the order of tangential contact with the boundary. In Section 3.4, we focus on the high frequency estimates. Subsection 3.4.1 is devoted to introducing the microlocal defect measure and its basic properties, which is also the main tool for our proof. Subsection 3.4.2 deals with the partial controllability, and Subsection 3.4.3 is aimed to recover the exact controllability result in the whole energy space of initial conditions with the help of the unique continuation properties of eigenfunctions. In these two sections, we prove the Theorem 3.2.1, and Theorem 3.2.5 respectively.

In Section 3.5, we plan to deal with low frequency estimates, mainly discussing about the unique continuation properties of eigenfunctions. Subsection 3.5.1 provides a counterexample to show that only assuming the hypotheses in Theorem 3.2.1 cannot ensure the unique continuation properties of eigenfunctions. Then, we add some stronger assumptions to obtain the unique continuation property. The first attempt is to require an analyticity condition, which is the example in Proposition 3.5.3. The other attempt is to require constant coefficients in Subsection 3.5.2 and Subsection 3.5.3, which is stated in Theorem 3.2.8. Subsection 3.5.4 is about generic properties of metrics which ensure the unique continuation in dimension 1 and 2.

In Section 3.6, we deal with the constant coefficient case with multiple control functions. We also discuss the corresponding Kalman rank condition in this setting.

In Section 3.7, we include the proof of the equivalent condition of the Kalman rank condition in the case of multiple control functions.

Ideas of the proof

In our chapter, we prove the controllability result by applying the Hilbert uniqueness method to prove the observability inequality of the adjoint system. In order to study the observability inequality, we always use an argument by contradiction. First, we try to prove a weak observability inequality by adding some low frequency part. To obtain the original observability inequality, we need to analyse the invisible solutions in the subdomain ω × (0, T ) by proving the unique continuation properties of eigenfunctions. In section 4, we discuss some generic properties.

We follow the ideas given by Uhlenbeck [START_REF] Uhlenbeck | Generic properties of eigenfunctions[END_REF], using the transversality theorem to obtain generic properties.

Main results

In this chapter, we mainly study the exact controllability for the system Equation (3.1.2) and discuss the optimality of the given conditions. On the other hand, when we consider the constant coefficient case, we associate the controllability with the Kalman rank condition. Instead of considering the exact controllability, we can only consider the high frequency estimates to obtain a partial result. One can also see similar finite codimensional controllability results, for instance, in [START_REF] Cui | On the observability inequality of coupled wave equations: the case without boundary[END_REF] and [START_REF] Liu | Finite codimensional controllability and optimal control problems with endpoint state constraints[END_REF]. Theorem 3.2.1. Given T > 0, suppose that:

1. (ω, T, p K i ) satisfies GCC, i = 1, 2, • • • , n, 2. K 1 > K 2 > • • • > K n in ω,
3. Ω has no infinite order of tangential contact on the boundary.

Then, there exists a finite dimensional subspace E ⊂ (H 1 0 (Ω) × L 2 (Ω)) n such that the system Equation (3.1.2) is P-exactly controllable, where P is the orthogonal projector on E ⊥ .

We will explain the concept of the order of contact in the Section 3.3. Remark 3.2.2. We say that K 1 > K 2 in ω if and only if ∀x ∈ ω, ∀ξ ∈ R d and ξ = 0, (ξ, K 1 (x)ξ) > (ξ, K 2 (x)ξ), where (•, •) denotes the inner product of R d . Remark 3.2.3. The Assumption (2) can be generalized as follows: let σ be a permutation of {1, 2,

• • • , n}, K σ(1) > K σ(2) > • • • > K σ(n) in ω.
Remark 3.2.4. The same result holds for the laplacian operator

∆ K,κ = 1 κ(x) div(κ(x)K(x)∇•),
where we only assume that κ ∈ C ∞ (Ω) without the restriction κ

(x) = 1 √ det(K(x))
.

To obtain the exact controllability, we need more assumptions on the low frequency part. Theorem 3.2.5. Given T > 0, suppose that:
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(ω, T, p

K i ) satisfies GCC, i = 1, 2, • • • , n, 2. K 1 > K 2 > • • • > K n in ω,
3. Ω has no infinite order of tangential contact on the boundary, 4. The system Equation (3.1.2) satisfies the unique continuation property of eigenfunctions.

Then the system Equation (3.1.2) is exactly controllable in (H 1 0 (Ω) × L 2 (Ω)) n . Now, we consider the particular case of constant coefficients. Define the diag-

onal matrix D =    d 1 . . . d n    and B =    b 1 . . . b n    .
We use ∆ to denote the canonical Laplace operator. Now we consider the simultaneous control problem for the system:

∂ 2 t U -D∆U = Bf 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, (3.2.1) 
where

U =    u 1 . . . u n    .
This system can be written as

             (∂ 2 t -d 1 ∆)u 1 = b 1 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, . . . (∂ 2 t -d n ∆)u n = b n f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, u j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), 1 ≤ j ≤ n.
First, we introduce the Kalman rank condition for the system Equation (3.2.1). 

j = 0, 1 ≤ j ≤ n(See [6, Remark 1.1]).
Theorem 3.2.8. Given T > 0, suppose that:

1. (ω, T, p d i ) satisfies GCC, i = 1, • • • , n.
2. Ω has no infinite order of tangential contact on the boundary.

Then the system Equation (3.2.1) is exactly controllable in (H 1 0 (Ω) × L 2 (Ω)) n if and only if (D, B) satisfies the Kalman rank condition. Remark 3.2.9. Let T 0 be the controllability time corresponding to the wave equation with unit speed of propagation. Then the controllability time in the Theorem 3.2.8 satisfies T > T 0 max{ 1 √

d j ; j = 1, 2, • • • , n}.
In advance, we consider the case with multiple control functions

f 1 , f 2 , • • • , f m (1 ≤ m ≤ n).
To be more specific, we consider the system:

   ∂ 2 t U -D∆U = BF 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, U | ∂Ω = 0, (U, ∂ t U )| t=0 = (U 0 , U 1 ). (3.2.2)
where

D = diag(d 1 , d 2 , • • • , d n ), F =    f 1 . . . f m    , and B =    b 11 • • • b 1m . . . . . . . . . b n1 • • • b nm    .
We can also define the Kalman rank condition rank[D|B] = n. Here we recall that

[D|B] = (D n-1 B|D n-2 B| • • • |DB|B).
We have the following theorem:

Theorem 3.2.10. Given T > 0, suppose that:

1. (ω, T, p d i ) satisfies GCC, i = 1, • • • , n.
2. Ω has no infinite order of contact on the boundary.

Then the system Equation (3.2.2) is exactly controllable if and only if (D, B) satisfies the Kalman rank condition.

Remark 3.2.11. Since all coefficients and geometries are smooth, the use of the microlocal defect measures could have been replaced by propagation of singularities arguments.

Geometric Preliminaries

This part has many repeated contents as we have already presented in Section 2. Let Q 0 (x, y, D y ), Q 1 (x, y, D y ) be smooth classical tangential pseudo-differential operators defined in a neighbourhood of [0, 1] × B, of order 0 and 1, and principal symbols q 0 (x, y, η), q 1 (x, y, η), respectively. Denote

P = (∂ 2 x + R)Id + Q 0 ∂ x + Q 1 . The principal symbol of P is p = -ξ 2 + r(x, y, η). (3.3.2)
We use the usual notations T M and T * M to denote the tangent bundle and cotangent bundle corresponding to M , with the canonical projection π π : T M ( or T * M ) → M.

Denote r 0 (y, η) = r(0, y, η). Then we can decompose T * ∂M into the disjoint union E ∪ G ∪ H, where

E = {r 0 < 0}, G = {r 0 = 0}, H = {r 0 > 0}. (3.3.3) 
The sets E, G, H are called elliptic, glancing, and hyperbolic set, respectively. Define Char(P) = {(x, y, ξ, η) ∈ T * R d+1 | M : ξ 2 = r(x, y, ξ, η)} to be the characteristic manifold of P . For more details, see [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] and [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF].

Generalised bicharacteristic flow

We begin with the definition of the Hamiltonian vector field. For a symplectic manifold S with local coordinates (z, ζ), a Hamiltonian vector field associated with a real valued smooth function f is defined by the expression:

H f = ∂f ∂ζ ∂ ∂z - ∂f ∂z ∂ ∂ζ .
Considering the principal symbol p, we can also consider the associated Hamiltonian vector field H p . The integral curve of this Hamiltonian H p , denoted by γ, is called a bicharacteristic of p. Our next goal is to study the behavior of the bicharacteristic near the boundary. To describe the different phenomena when a bicharacteristic approaches the boundary, we need a more accurate decomposition of the glancing set G. Let r 1 = ∂ x r| x=0 . Then we can define the decomposition G = ∞ j=2 G j , with G 2 = {(y, η) : r 0 (y, η) = 0, r 1 (y, η) = 0}, G 3 = {(y, η) : r 0 (y, η) = 0, r 1 (y, η) = 0, H r 0 (r 1 ) = 0}, . . .

G k+3 = {(y, η) : r 0 (y, η) = 0, H j r 0 (r 1 ) = 0, ∀j ≤ k, H k+1 r 0 (r 1 ) = 0}, . . . G ∞ = {(y, η) : r 0 (y, η) = 0, H j r 0 (r 1 ) = 0, ∀j}.
Here H j r 0 is just the vector field H r 0 composed j times. Moreover, for G 2 , we can define G 2,± = {(y, η) : r 0 (y, η) = 0, ±r 1 (y, η) > 0}. Thus G 2 = G 2,+ ∪ G 2,-. For ρ ∈ G 2,+ , we say that ρ is a gliding point and for ρ ∈ G 2,-, we say that ρ is a diffractive point. For ρ ∈ G j , j ≥ 2, we say that a bicharacterisric of p tangentially contact the boundary {x = 0} × B with order j at the point ρ.

Consider a bicharacteristic γ(s) with π(γ(0)) ∈ M and π(γ(s 0 )) ∈ ∂M be the first point which touches the boundary. Then if γ(s 0 ) ∈ H, we can define ξ ± (γ(s 0 )) = ± r 0 (γ(s 0 )), which are the two different roots of ξ 2 = r 0 at the point γ(s 0 ). Notice that the bicharacteristic with the direction ξ -will leave the domain M while the bicharacteristic with the other direction ξ + will enter into the interior of M . This leads to a definition of the broken bicharacteristics(See [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] Section 24.2 for more details): Definition 3.3.1. A broken bicharacteristic of p is a map:

s ∈ I\D → γ(s) ∈ T * M \{0}
where I is an interval on R and D is a discrete subset, such that 1. If J is an interval contained in I\D, then for s ∈ J → γ(s) is a bicharacteristic of p in M .

2. If s ∈ D, then the limits γ(s + ) and γ(s -) exist and belongs to T * z M \{0} for some z ∈ ∂M , and the projections in T * z ∂M \{0} are the same hyperbolic point.

If γ(s 0 ) ∈ G, we have different situations. If γ(s 0 ) ∈ G 2,+ , then γ(s), locally near s 0 , passes transversally and enters into T * M immediately. If γ(s 0 ) ∈ G 2,- or γ(s 0 ) ∈ G k for some k ≥ 3, then γ(s) will continue inside T * ∂M and follow the Hamiltonian flow of H -r 0 . To be more precise, we have the definition of the generalized bicharacteristics(See [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] Section 24.3 for more details):
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Definition 3.3.2. A generalized bicharacteristic of p is a map:

s ∈ I\D → γ(s) ∈ T * M ∪ G
where I is an interval on R and D is a discrete subset I such that p • γ = 0 and the following properties hold:

1. γ(s) is differentiable and dγ ds = H p (γ(s)) if γ(s) ∈ T * M or γ(s) ∈ G 2,+ .
2. Every t ∈ D is isolated i.e. there exists > 0 such that γ(s) ∈ T * M \T * ∂M if 0 < |s -t| < , and the limits γ(s ± ) are different points in the same hyperbolic fiber of T * ∂M .

3. γ(s) is differentiable and dγ ds = H -r 0 (γ(s)) if γ(s) ∈ G\G 2,+ .

Remark 3.3.3. We denote the Melrose cotangent compressed bundle by b T * M and the associated canonical map by j : T * M → b T * M . j is defined by j(x, y, ξ, η) = (x, y, xξ, η).

Under this map j, one could see γ(s) as a continuous flow on the compressed cotangent bundle b T * M . This is the so-called Melrose-Sjöstrand flow.

From now on we always assume that there is no infinite tangential contact between the bicharacteristic of p and the boundary. This is in the meaning of the following definition: Definition 3.3.4. We say that there is no infinite contact between the bicharacteristics of p and the boundary if there exists N ∈ N such that the gliding set G satisfies

G = N j=2 G j .
It is well-known that under this hypothesis there exists a unique generalized bicharacteristic passing through any point. This means that the Melrose-Sjöstrand flow is globally well-defined. One can refer to [START_REF] Burt | Singularities of boundary value problems[END_REF] and [START_REF] Burt | Singularities of boundary value problems[END_REF] for the proof.

High Frequency Estimates

Microlocal defect measure

In this section, we introduce the microlocal defect measures based on the article by Gérard and Leichtnam [START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF] for Helmoltz equation and Burq [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF] for wave equations.

Let (u k ) k∈N ∈ L 2 loc (R t ; L 2 (Ω)) be a bounded sequence, converging weakly to 0 and such that

P u k = o(1) H -1 , u k | ∂M = 0. (3.4.1)
Let u k be the extension by 0 across the boundary of Ω. Then the sequence u k is bounded in L 2 loc (R t ; L 2 (R d )). Let A be the space of classical polyhomogeneous pseudo-differential operators of order 0 with compact support in

R t × R d (i.e, A = ϕAϕ for some ϕ ∈ C ∞ 0 (R t × R d )).
Let us denote by M + the set of non negative Radon measures on S * (R t × R d ). From [12, Section 1], we have the existence of the microlocal defect measure as follows: Proposition 3.4.1 (Existence of the microlocal defect measure). There exists a subsequence of (u k ) (still noted by (u k )) and µ ∈ M + such that

∀A ∈ A, lim k→∞ (Au k , u k ) L 2 = µ, σ(A) , (3.4.2)
where σ(A) is the principal symbol of the operator A (which is a smooth function homogeneous of order 2 in the variable ξ, i.e. a function on S * ((R t × R d )).

Remark 3.4.2. In general, the existence of the microlocal defect measure does not rely on the system Equation (3.4.1). For any bounded sequence u k in L 2 , which is weakly convergent to 0, one is able to construct the microlocal defect measure associated with the sequence (see [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF] for more details).

Remark 3.4.3. In the article [START_REF] Lebeau | Équation des ondes amorties[END_REF], Lebeau constructed the microlocal defect measure in another approach (see [START_REF] Lebeau | Équation des ondes amorties[END_REF]Appendice] for more details). In the article [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF], Burq and Lebeau proved the similar existence result [14, Proposition 2.5] in a setting of systems, which can be seen as an extension of Proposition 3.4.1

From [12, Théorème 15], we have the following proposition.

Proposition 3.4.4. For the microlocal defect measure µ defined above associated with the system Equation (3.4.1), we have the following properties.

• The measure µ is supported on the intersection of the characteristic manifold with R t × Ω,

supp(µ) ⊂ {(t, x, τ, ξ); x ∈ M , τ 2 = t ξK(x)ξ}. (3.4.3)
• The measure µ does not charge the hyperbolic points in ∂M ,

µ = 0 on π -1 b (H),
where π b : T * (R d+1 ) → b T * M (the Melrose cotangent compressed bundle).

• The measure µ is invariant by the generalised bicharacteristic flow.

Remark 3.4.5. Notice first that in [12, Section 3], the author considered the case of solutions to the wave equation at the energy level (bounded in H 1 loc , and hence was considering second order operators. However, it is easy to pass from H 1 to L 2 solutions by applying the operator ∂ t and conversely from L 2 to H 1 by applying the operator ∂ -1 t , i.e. if v is an L 2 solution, considering the solution u associated to

(-∆ D ) -1 (∂ t v | t=0 ), v | t=0 , which of course satisfies ∂ t u = v.
This procedure amounts to replacing the test operators of order 0 A by the test operator of order 2, B = -∂ t • A • ∂ t , but since τ 2 does not vanish on the characteristic manifold, it is an elliptic factor which changes nothing. Remark 3.4.6. Notice also that due to discontinuity of the generalised bicharacteristics when they reflect on the boundary at hyperbolic points (the points corresponding to the left and right limits at s ∈ D), in Definition 3.3.1, the generalised bicharacteristic flow is not well defined (there are two points above any points corresponding to s ∈ D). However, since the measure µ does not charge these hyperbolic points, this flow is well defined µ almost surely and the invariance property makes sense. Notice also that in [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF]Appendice], weaker property than invariance (namely that the support is a union of generalised bicahracteristics) is proved. The general result follows from this weaker result by applying the strategy in [START_REF] Lebeau | Équation des ondes amorties[END_REF]. In any case, for the purpose of the present chapter, the invariance of the support would suffice.

Proof of the Theorem 3.2.1

Let V = (v 0 1 , v 1 1 , • • • , v 0 n , v 1 n ).
We introduce the following spaces:

• We define K 1 = (H 1 0 (Ω) × L 2 (Ω)) n endowed with the norm ||V || 2 K 1 = n j=1 Ω (K j ∇v 0 j • ∇v 0 j + |v 1 i | 2 )κ i dx. • We define K 0 = (L 2 (Ω) × H -1 (Ω)) n endowed with the norm ||V || 2 K 0 = n i=1 Ω |v 0 i | 2 κ i dx+ < v 1 i , T K i v 1 i > H -1 ,H 1 0 ,
where

T K i : H -1 (Ω) → H 1 0 (Ω) f → w is defined as the unique solution w ∈ H 1 0 (Ω) to -1 κ i div(κ i K i ∇T K i w) = f . • We define K -1 = (H -1 (Ω) × D(-∆) ) n endowed with the norm ||V || 2 K -1 = n i=1 < v 0 i , T K i v 0 i > H -1 ,H 1 0 + < v 1 i , TK i v 1 i > D(-∆ K i ) * ,D(-∆ K i ) ,
where D(-∆) is the domain of the Laplacian operator with zero Dirichlet boundary condition and D(-∆) is its dual space, and

TK i : D(-∆) → D(-∆) f → w is defined as the unique solution w ∈ D(-∆) to (-∆ K i ) 2 TK i w = f . Remark 3.4.7. For any j ∈ {1, 2, • • • , n}, D(-∆ K j ) = D(-∆).
Recall the considered control system:

                 K 1 u 1 = b 1 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, K 2 u 2 = b 2 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, . . . Kn u n = b n f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, u j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, (u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=0 = U (0). (3.4.4)
Consider the homogeneous system:

                 K 1 v h 1 = 0 in (0, T ) × Ω, K 2 v h 2 = 0 in (0, T ) × Ω, . . . Kn v h n = 0 in (0, T ) × Ω, v h j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, (v h 1 , ∂ t v h 1 , • • • , v h n , ∂ t v h n )| t=0 = V h (0) ∈ K 1 .
(3.4.5)

Now, let us define

E = {V h (0) ∈ K 1 : (b 1 κ 1 v h 1 + • • • + b n κ n v h n )(t, x) = 0, for any t ∈ (0, T ), x ∈ ω}, (3.4.6) where (v h 1 , • • • , v h n )
is the solution to the homogeneous system Equation (3.4.5). Hence, E is a closed subspace in K 1 . Denote the orthogonal projector operator P : K 1 → E ⊥ . And the adjoint system of System Equation (3.4.4) is the following 3.4. HIGH FREQUENCY ESTIMATES system:

                 K 1 v 1 = 0 in (0, T ) × Ω, K 2 v 2 = 0 in (0, T ) × Ω, . . . Kn v n = 0 in (0, T ) × Ω, v j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, (v 1 , ∂ t v 1 , • • • , v n , ∂ t v n )| t=0 = P * V (0) ∈ K 0 . (3.4.7)
Using inequality Equation (3.1.11), the P-exactly controllability of the system Equation (3.4.4) is equivalent to proving the following observability inequality:

C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ ||P * V (0)|| 2 K 0 , (3.4.8)
where

(v 1 , • • • , v n )
is the solution to the adjoint system Equation (3.4.7).

Step 1: Establish a weak observability inequality

First we want to prove a weak inequality:

||P * V (0)|| 2 K 0 ≤ C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt + ||P * V (0)|| 2 K -1 , (3.4.9)
If the above inequality was false, we could get a sequence (P * V k 0 ) k∈N such that

||P * V k 0 || 2 K 0 = 1, (3.4.10) T 0 ω |b 1 κ 1 v k 1 + • • • + b n κ n v k n | 2 dxdt → 0, k → ∞, (3.4.11) 
and

||P * V k 0 || 2 K -1 → 0, k → ∞. (3.4.12)
Here we use v k i (1 ≤ i ≤ n) to denote the corresponding solution of the system Equation (3.4.7) with the initial data P * V k 0 . Hence, we obtain n bounded sequences

{v k i } k∈N (1 ≤ i ≤ n).
Let µ i be the defect measure associated to the sequence {v k i } k∈N , by the construction in Subsection 3.4.1. Notice that in these constructions, each sequence {v k i } k∈N is solution to a particular wave equation

K i v k i = 0, v k i | ∂Ω = 0
and in Section 3.3 this corresponds to different principal symbols p i , different sets G i , H i , E i and different generalised bicharacteristic γ i .
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For the first term ((1 -Op(β i ))ϕAϕv k i , φv k l ) L 2 , by the Cauchy-Schwarz inequality, therefore we obtain that

|((1 -Op(β i ))ϕAϕv k i , φv k l ) L 2 | ≤ ||(1 -Op(β i ))ϕAϕv k i || L 2 || φv k l || L 2
As we know that {v

k l } is bounded in L 2 loc (R t × R d ), there exists a constant C such that || φv k l || 2 L 2 = ( φv k l , φv k l ) L 2 ≤ C.
From the definition of the measure µ i , we obtain

lim k→∞ ||(1 -Op(β i ))ϕAϕv k i || 2 L 2 = lim k→∞ ((1 -Op(β i ))ϕAϕv k i , (1 -Op(β i ))ϕAϕv k i ) L 2 = µ i , (1 -β i ) 2 ϕ 4 |σ(A)| 2 .
From Lemma 4.2.10, we have that supp (µ i ) ⊂ Char(p i ). In addition, by the choice of β i , we know that 1 -β i ≡ 0 on supp (µ i ), which implies that µ i , (1 -

β i ) 2 ϕ 4 |σ(A)| 2 = 0. Hence, we obtain lim sup k→∞ |((1 -Op(β i ))ϕAϕv k i , φv k l ) L 2 | = 0. (3.4.14)
The other term (Op

(β i )ϕAϕv k i , φv k l ) L 2 = (v k i , ϕA * ϕOp(β i ) * φv k l ) L 2 is
dealt with similarly by exchanging i and l. Now let us come back to the proof of the weak observability inequality Equation (3.4.9). By the assumption Equation (3.4.11), We know that

T 0 ω |b 1 κ 1 v k 1 + • • • + b n κ n v k n | 2 dxdt → 0, for χ ∈ C ∞ 0 (ω × (0, T ))
, and we would like to obtain:

1≤i,l≤n

χb i κ i v k i , χb l κ l v k l → 0, as k → ∞.
According to Lemma 3.4.11, we know that for i = l,

lim sup k→∞ | χb i κ i v k i , χb l κ l v k l | = 0. (3.4.15)
As a consequence, we know that

lim sup k→∞ Σ n i=1 χb i κ i v k i , χb i κ i v k i = 0. (3.4.16)
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Using again the definition of the measure µ i , we obtain the following:

0 ≤ µ i , (χb i κ i ) 2 = lim k→∞ χb i κ i v k i , χb i κ i v k i ≤ lim sup k→∞ Σ n i=1 χb i κ i v k i , χb i κ i v k i = 0.
(3.4.17) Thus, we know that

µ i | ω×(0,T ) = 0.
Since µ i is invariant along the general bicharacteristics of p K i (by Lemma 3.4.8), combining with GCC, we know that µ i ≡ 0. Since µ i = 0, we have

v k i → 0 strongly in L 2 loc ((0, T ) × Ω). Now we have to estimate ||∂ t v k 1 (0)|| H -1 . Let χ ∈ C ∞ 0 ((0, T )).

Multiply the equation

K 1 v 1 = 0 by T K 1 (χ 2 v k 1 )
and then integrate on (0, T ) × Ω. We obtain that

0 = T 0 Ω K 1 v k 1 • T K 1 (χ 2 v k 1 ) dx dt = T 0 Ω v k 1 • (-∆ K 1 )T K 1 (χ 2 v k 1 ) dx dt - T 0 Ω ∂ t v 1 • T K 1 (∂ t (χ 2 )v k 1 ) dx dt - T 0 ||χ∂ t v k 1 || 2 H -1 = ||χv k 1 || 2 L 2 - T 0 ||χ∂ t v k 1 || 2 H -1 + T 0 Ω v k 1 • T K 1 (∂ 2 t (χ 2 )v k 1 + ∂ t (χ 2 )∂ t v k 1 ) dx dt (3.4.18) For the term T 0 Ω v k 1 • T K 1 (∂ 2 t (χ 2 )v k 1 + ∂ t (χ 2 )∂ t v k 1 ) dx dt, we know that v k 1 → 0 strongly in L 2 loc ((0, T ) × Ω) and T K 1 (∂ 2 t (χ 2 )v k 1 + ∂ t (χ 2 )∂ t v k 1 )
is bounded in L 2 . Thus, up to a subsequence, it tends to 0 as k → ∞. Hence, we obtain that:

T 0 ||χ∂ t v k 1 || 2 H -1 → 0, as k → ∞.
So for all 0 < t 1 < t 2 < T ,

t 2 t 1 ||∂ t v k 1 (t)|| 2 H -1 dt → 0. So for almost every t ∈]t 1 , t 2 [, ||∂ t v k 1 (t)|| 2 H -1 +||v k 1 (t)|| 2 L 2 → 0.
Then by the backward well-posedness, we can conclude:

||∂ t v k 1 (0)|| 2 H -1 + ||v k 1 (0)|| 2 L 2 → 0.
The same reasoning holds for v k j , 2 ≤ j ≤ n. This gives a contradiction with Equation (3.4.10), which proves the weak observability inequality Equation (3.4.9).

HIGH FREQUENCY ESTIMATES

Remark 3.4.12. Let us denote the energy

E(v k j )(t) by E(v k j )(t) = ||∂ t v k j (t)|| 2 H -1 + ||v k j (t)|| 2 L 2 .
In fact, each v k j satisfies a conservative system. Hence, we obtain

E(v k j )(0) = E(v k j )(t) → 0
by the conservation law.

Step 2: Descriptions of the space E

Define Proof. According to the weak observability inequality Equation (3.4.9), for P * V (0) ∈ N (T ), we obtain that

N (T ) = {P * V (0) ∈ K 0 : (b 1 κ 1 v 1 + • • • + b n κ n v n )(t, x) = 0, for t ∈ (0, T ), x ∈ ω}. ( 3 
||P * V (0)|| 2 K 0 ≤ C||P * V (0)|| 2 K -1 . (3.4.20)
We know that N (T ) is a closed subspace of K 0 . By the compact embedding K 0 → K -1 , we know that N (T ) has a finite dimension. By definition, we know that E ⊂ N (T ). Hence, we obtain that E has a finite dimension. Then we want to show that E = N (T ). Define

A =      0 -1 • • • 0 -∆ K 1 0 • • • 0 . . . . . . 0 -1 0 0 -∆ Kn 0      . Thus, the solution (v 1 , ∂ t v 1 , • • • , v n , ∂ t v n ) t can be written as        v 1 ∂ t v 1 . . . v n ∂ t v n        = e -tA P * V (0).
Since N (T ) is of finite dimension, it is complete for any norm. Setting δ > 0( see Remark 3 For α large enough, as → 0 + ,

(α + A ) -1 1 (Id -e -A )P * V (0) → A (α + A ) -1 P * V (0), as (α + A ) -1 P * V (0) ∈ D(A ). Hence, we know that { 1 (Id -e -A )P * V (0)} >0 is a Cauchy sequence in N (T -δ), endowed with the norm ||(α + A ) -1 • || K 1 .
Since all norms are equivalent, we obtain a Cauchy sequence

{ 1 (Id -e -A )P * V (0)} >0 in N (T -δ), endowed with the norm || • || K 1 , which yields A P * V (0) ∈ K 1 . As a consequence, we obtain N (T ) ⊂ D(A ) ⊂ K 1 .
Hence, we obtain that E = N (T ) and has a finite dimension. One can see [START_REF] Dehman | Controllability of two coupled wave equations on a compact manifold[END_REF] for more details.

Remark 3.4.14. One has to take δ small enough. Actually, if T 0 is the constant such that (ω, T 0 ) satisfies GCC, and T > T 0 , one is able to choose, for example,

δ = T -T 0 2 .
Step 3: Proof of the observability inequality Equation (3.4.8)

If Equation (3.4.8) was false, we could find a sequence

{P * V k (0)} k∈N ⊂ K 0 such that ||P * V k (0)|| K 0 = 1, T 0 ||b 1 κ 1 v k 1 + • • • + b n κ n v k n || 2 L 2 (ω) dt → 0. (3.4.21) First, we know that {P * V k (0) k } k∈N is bounded in K 0 = (L 2 × H -1 ) n .
Hence, there exists a subsequence (also denoted by P * V k (0)) weakly converging in K 0 = (L 2 × H -1 ) n , to a limit which we denote with P * V (0). We also know that )), we know that P * V (0) ∈ N (T ) = E, which implies that P * V (0) = 0. Since the embedding K 0 → K -1 is compact, we obtain that

P * V (0) leads to a solution (v 1 , • • • , v n ) of
||P * V (0) k || 2 K -1 → ||P * V (0)|| 2 K -1 .
From the weak observability inequality Equation (3.4.9), we obtain:

1 ≤ C||P * V (0)|| 2 K -1
, which contradicts to the fact that P * V (0) = 0. Then observability inequality Equation (3.4.8) follows. This concludes the proof of the P-exact controllability of the system Equation (3.4.4).

The Proof of Theorem 3.2.5

According to the proof above, we only need to show that E ⊥ = {0}, which is equivalent to P * = Id. If we denote by Ṽ (t) the solution of

∂ t Ṽ + A Ṽ = 0, Ṽ | t=0 = V (0), 3.5. UNIQUE CONTINUATION OF EIGENFUNCTIONS then, A V (0) = -∂ t Ṽ | t=0 ∈ N (T ) provided that V (0) ∈ N (

T ). This implies that

A N (T ) ⊂ N (T ). Since N (T ) is a finite dimensional closed subspace of D(A ), and stable by the action of the operator A , it contains an eigenfunction of A . To be specific, there exists (e 1 , e 2 , • • • , e n ) ∈ N (T ) and λ ∈ C such that

     0 -1 • • • 0 -∆ K 1 0 • • • 0 . . . . . . 0 -1 0 0 -∆ Kn 0             e 0 1 e 1 1 .
. .

e 0 n e 1 n        = λ        e 0 1 e 1 1 .
. .

e 0 n e 1 n       
.

It is equivalent to the following system:

               -e 1 1 = λe 0 1 in Ω, -∆ K 1 e 0 1 = λe 1 1 in Ω, • • • -e 1 n = λe 0 n in Ω, -∆ Kn e 0 n = λe 1 n in Ω, b 1 κ 1 e 0 1 + • • • + b n κ n e 0 n = 0, in ω. (3.4.22)
We can simplify this into 

           ∆ K 1 e 0 1 = λ 2 e 0 1 in Ω, ∆ K 2 e 0 2 = λ 2 e 0 2 in Ω, • • • ∆ Kn e 0 n = λ 2 e 0 n in Ω, b 1 κ 1 e 0 1 + • • • + b n κ n e 0 n =
C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ ||V (0)|| 2 K 0 .
This concludes the proof of Theorem 3.2.5.

Unique continuation of eigenfunctions

A counterexample

First, we construct an example to show that the conditions in Theorem 3.2.1 are not sufficient to ensure the unique continuation of eigenfunctions. Now, let us focus on the unique continuation problem in dimension 1. We consider a smooth metric in dimension 1, g = c(x)dx 2 . Then we can define the Laplace-Beltrami operator in the sense:

∆ g = 1 det(g) d dx ( det(g)g -1 d dx ) = 1 c d 2 dx 2 - c 2c 2 d dx (3.5.1) 
Fix the open interval (0, π) and the subinterval (a, b) ⊂ (0, π)(a > π 2 ). Now we consider the unique continuation problem:

       u 1 = -λ 2 u 1 , ∆ g u 2 = -λ 2 u 2 , u 1 + u 2 = 0 in (a, b), u 1 , u 2 ∈ H 1 0 ((0, π)). (3.5.2) 
In general, the unique continuation of eigenfunctions does not hold.

Theorem 3.5.1. There exists a smooth Riemannian metric g = c(x)dx 2 , and two eigenfunctions u 1 , u 2 of ∆ g and d 2 dx 2 on (0, π) associated with eigenvalue

1 such that u 1 + u 2 = 0, in (a, b) ⊂ (0, π) and u 1 + u 2 ≡ 0 in (0, π).
Proof. Let χ ∈ C ∞ (R) satisfying the following conditions:

1. χ(0) = χ(π) = 0; 2. 0 < χ ≤ K on (0, π) and χ( π 2 ) = K > 1; 3. χ(x) = 1, ∀x ∈ (a, b); 4. χ (x) > 0 for x ∈ [0, π 2 [, χ (x) < 0 for x ∈]b, π] and χ (x) < 0 for x ∈] π 2 , a[ Define u 2 (x) = -χ(x) sin x. Hence, we obtain u 2 (x) = -sin x on (a, b) and u 2 (x) = -χ (x) sin x -χ(x) cos x. Then we define c(x) by c(x) = (χ (x) sin x + χ(x) cos x) 2 K 2 -χ 2 sin 2 x , (3.5.3) 
with a constant K > 1. It is easy to check that c ≥ 0. Since we want g to be a Riemannian metric, we need c > 0. Let us discuss in different cases,

1. if x ∈]0, π 2 [, we know that χ (x) > 0, χ(x) > 0. Hence, we have χ (x) sin x + χ(x) cos x > 0; 3.5. UNIQUE CONTINUATION OF EIGENFUNCTIONS 2. if x ∈ [a, b], χ (x) = 0, χ(x) = 1, we obtain χ (x) sin x+χ(x) cos x = cos x < 0 since a > π 2 ; 3. if x ∈]b, π[, we know that χ (x) < 0, χ(x) > 0. Hence, we have χ (x) sin x + χ(x) cos x < 0; 4. if x ∈] π 2
, a[, we know that χ (x) < 0, χ(x) > 0. Hence, we have χ (x) sin x + χ(x) cos x < 0;

5. if x = π 2 , χ ( π 2 ) = 0, c( π 2 ) = 1 - χ ( π 2 ) K ≥ 1.
So we can conclude that c > 0 and g is a Riemannian metric.

We want to show that c is

C ∞ near π 2 . Let f (x) = (χ (x) sin x + χ(x) cos x) 2 and g(x) = K 2 -χ 2 sin 2 x, then we obtain c(x) = f g . We claim that there exist f , g ∈ C ∞ and f ( π 2 ) = 0, g( π 2 ) = 0 such that f (x) = (x -π 2 ) 2 f (x) and g(x) = (x -π 2 ) 2 g(x)
. We just use the Taylor expansion of χ, χ , sin and cos:

χ(x) = K + 1 2 χ ( π 2 )(x - π 2 ) 2 + R 1 (x), χ (x) = χ ( π 2 )(x - π 2 ) + 1 2 χ ( π 2 )(x - π 2 ) 2 + R 2 (x), sin(x) = 1 - 1 2 (x - π 2 ) 2 + R 3 (x), cos(x) = -(x - π 2 ) + R 4 (x), (3.5.4) 
where

lim x→ π 2 R j (x-π
2 ) 2 = 0, for j = 1, 2, 3, 4. Then we obtain:

f (x) = ((χ ( π 2 ) -K) 2 + R1 )(x - π 2 ) 2 ; g(x) = (-K(χ ( π 2 ) -K) + R2 )(x - π 2 ) 2 . (3.5.5) 
Here lim x→ π 2 Rj = 0 for j = 1, 2. Now if we choose a small neighbourhood of π 2 , then f = (χ ( π 2 ) -K) 2 + R1 and g = -K(χ ( π 2 ) -K) + R2 satisfy the property. So we know c is C ∞ and c > 0, which means that g is a smooth Riemannian metric. In addition, c < 1 in (a, b) and ∆ g and ∆ admit the same eigenfunction in this interval (a, b). Remark 3.5.2. In fact, we can construct a counterexample in any dimension d ≥ 1. For example, we define M = (0, π) × Π d-1 y where Π d-1 y is the torus of dimension d-1. Then consider two metric g 1 = dx 2 + d-1 j=0 dy 2 j and g 2 = c(x) dx 2 + d-1 j=0 dy 2 j where c(x) dx 2 is the metric we constructed in the dimension 1. Take the same u 1 (x) and u 2 (x) in the proof of Theorem 3.5.1. Let V be the eigenfunction of

d-1 j=1 d 2 dy 2 j associated with eigenvalue α in Π d-1 y . Then        -∆ g 1 (u 1 (x)V (y)) = (α + 1)u 1 (x)V (y), -∆ g 2 (u 2 (x)V (y)) = (α + 1)u 2 (x)V (y), u 1 (x)V (y) + u 2 (x)V (y) = 0, in (a, b) × Π d-1 y , u 1 (x)V (y), u 2 (x)V (y) ∈ H 1 0 (M ). But we know u 1 (x)V (y) + u 2 (x)V (y) ≡ 0 in M .
As we have seen, not every smooth metric can give us the unique continuation of eigenfunctions. Here, we will give a positive result under a strong condition of analyticity. In particular, let us consider the example of two equations:

       K 1 u 1 = b 1 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω K 2 u 2 = b 2 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω u j = 0 on (0, T ) × ∂Ω, j = 1, 2, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), j = 1, 2. (3.5.6) 
Proposition 3.5.3. Given T > 0, suppose that:

1. (ω, T, p K i ) satisfies GCC, i = 1, 2.
2. K 1 > K 2 in Ω with analytic coefficients.

3. There exists a constant c such that density functions κ 1 , κ 2 are analytic and

κ 1 = cκ 2 .
4. Ω has no infinite order of contact on the boundary.

Then the system Equation (3.5.6) is exactly controllable.

Proof. According to Theorem 3.2.1, we only need to show the unique continuation of eigenfunctions of system Equation (3.5.6):

   -∆ K 1 u 1 = λ 2 u 1 in Ω, -∆ K 2 u 2 = λ 2 u 2 in Ω, cu 1 + u 2 = 0 in ω. (3.5.7) 
Since K 1 and K 2 have analytic coefficients, we know u 1 and u 2 are analytic functions. Then cu 1 +u 2 is also analytic. By unique continuation for analytic functions,
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cu 1 + u 2 = 0 in the whole domain Ω. By the relations of two density functions κ 1 = cκ 2 , we have:

∆ K 1 u 1 = 1 κ 1 (x) div(κ 1 (x)K 1 ∇u 1 ) = 1 cκ 2 (x) div(cκ 2 (x)K 1 ∇u 1 ) = 1 κ 2 (x) div(κ 2 (x)K 1 ∇u 1 ). (3.5.8) 
Then

-c∆ K 1 u 1 -∆ K 2 u 2 = - c κ 2 (x) div(κ 2 (x)K 1 ∇u 1 ) - 1 κ 2 (x) div(κ 2 (x)K 2 ∇u 2 ) = - c κ 2 (x) div(κ 2 (x)K 1 ∇u 1 ) + c κ 2 (x) div(κ 2 (x)K 2 ∇u 1 ) = - c κ 2 (x) div(κ 2 (x)(K 1 -K 2 )∇u 2 ).
On the other hand, we know -c∆

K 1 u 1 -∆ K 2 u 2 = λ 2 (cu 1 + u 2 ) = 0. Hence, we have: - 1 κ 2 (x) div(κ 2 (x)(K 1 -K 2 )∇u 1 ) = 0. We recall that -1 κ 2 (x) div(κ 2 (x)(K 1 -K 2 )∇•
) is an elliptic operator. Hence, with u 1 | ∂Ω = 0 on the boundary, we know that u 1 = 0. Hence, we deduce u 2 = -cu 1 = 0 in Ω, which gives N (T ) = 0.

Constant Coefficient Case

In this section, we consider the simultaneous control problem for the system:

∂ 2 t U -D∆U = Bf 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, (3.5.9) 
where

U =    u 1 . . . u n    , B =    b 1 . . . b n    and D = diag(d 1 , • • • , d n ).
Then the system can be written as

             (∂ 2 t -d 1 ∆)u 1 = b 1 f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, . . . (∂ 2 t -d n ∆)u n = b n f 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, u j = 0 on (0, T ) × ∂Ω, 1 ≤ j ≤ n, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), 1 ≤ j ≤ n.
Recall that the Kalman rank condition for this case is rank[D|B] = n if and only if all d j are distinct and b j = 0, 1 ≤ j ≤ n(See [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]). Without loss of generality, we may assume that

d 1 < d 2 < • • • < d n .
We want to prove the exact controllability for this case(Theorem 3.2.8).

Proof of Theorem 3.2.8

By Theorem 3.2.1, we only need to prove the unique continuation properties for eigenfunctions. Here we only state some facts without repeating the same trick as before. Define

N (T ) = {V ∈ (L 2 ×H -1 ) n : (b 1 v 1 +b 2 v 2 +• • •+b n v n )(x, t) = 0, ∀(x, t) ∈ (0, T )×ω}.
Then, N (T ) is a finite dimensional closed subspace of D(A ), and stable by the action of the operator A , it contains an eigenfunction of A , where A = 0 -Id -D∆ 0

. Thus there exist β ∈ C and

V β = (V 1 , V 2 ) such that A V β = βV β , i .e. 
-∆V

1 = -β 2 D -1 V 1 (3.5.10) 
If β = 0, (-β 2 ) -k (-∆) k V 1 = D -k V 1 and (-∆) k B t V 1 = (-β 2 ) k B t D -k V 1 . Since V 1 solves the Laplace eigenvalue problem, we know that V 1 is analytic in Ω which ensures that B t V 1 = b 1 v 1 1 + • • • + b n v n 1 = 0 in the whole domain Ω. Thus 0 = [B t V 1 |(-β 2 ) -1 (-∆)B t V 1 | • • • |(-β 2 ) -n (-∆) n B t V 1 ] = [D|B] t D 1-n V 1 (3.5.11) Since rank[D|B] = n, it is invertible. This gives that V 1 = 0.
If β = 0, we immediately obtian that V 1 = 0 by the boundary condition. Now we assume that the matrix (D, B) does not satisfy the Kalman rank condition. Then we know that either there exist d j 1 and d j 2 such that d j 1 = d j 2 , or there exists some b j = 0. We want to show the unique continuation property fails in both cases. One can refer to [START_REF] Fattorini | Some remarks on complete controllability[END_REF] for more details.

For the first case b j = 0, we know that

(∂ 2 t -d j ∆)u j = 0 in (0, T ) × Ω,
by the conservation of energy, the solution u j cannot be zero at any time if the initial data is not zero. For the second case, we consider the unique continuation property of the eigen-
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functions as follows:

                         -d 1 ∆φ 1 = λ 2 φ 1 in Ω, . . . -d j 1 ∆φ j 1 = λ 2 φ j 1 in Ω, -d j 2 ∆φ j 2 = λ 2 φ j 2 in Ω, . . . -d n ∆φ n = λ 2 φ n in Ω, φ j = 0 on ∂Ω, 1 ≤ j ≤ n, b 1 φ 1 + • • • + b n φ n = 0 in ω,
Since we have the relation d j 1 = d j 2 , we know that there exists a non-zero solution

(0, • • • , 0, φ, - b j 1 b j 2 φ, 0, • • • , 0)
, where φ is an eigenfunction for -d j 1 ∆ of eigenvalue λ 2 . Hence, we cannot obtain the exact controllability in this case.

To conclude, we have obtained that the Kalman rank condition is a sufficient and necessary condition for the exact controllabilty.

Two Generic Properties

If we define ∆ K 1 = ∆ = d 2
dx 2 and n = 2, we have shown that not every smooth metric can give us a unique continuation result in dimension 1 (see Subsection 3.5.1). Then we want to prove a generic property for the metrics which can give the unique continuation result in dimension 1. We introduce the following space of smooth metrics to be sections of a bundle endowed with C ∞ -topology

M = {g ∈ C ∞ (Ω, T * Ω ⊗ T * Ω) : g(x)(v x , v x ) > 0, for 0 = v x ∈ T x Ω}.
Let Ω = (0, π). Proposition 3.5.4. In dimension 1, suppose that we fix the Laplacian ∆ = d 2 dx 2 in (0, π) with its spectrum σ(∆). Then the set

G uc = {g ∈ M : σ(∆ g ) ∩ σ(∆) = ∅} is residual in M.
Proof. First, we notice that any connected one dimensional Riemannian manifold is diffeomorphic either to R or to S 1 . We already know that σ(∆) = {k 2 } k∈N . In our setting, we have g = c(x)dx 2 . Then by change of variables, y = x 0 c(s)ds.

Then d dy = dx dy d dx = 1 √ c(x) d dx . Hence, we obtain d 2 dy 2 = 1 √ c(x) d dx 1 √ c(x) d dx = ∆ g . Define L = π 0 c(s)ds. Hence, σ(∆ g ) = σ( d 2 dy 2 ) = { k 2 π 2 L 2 } k∈N . If σ(∆ g ) ∩ σ(∆) = ∅
, we obtain that for some k and l, L = kπ l ∈ πQ, i.e. π 0 c(x) dx ∈ πQ.

Corollary 3.5.5. Fix ∆ = d 2 dx 2 , for every metric g ∈ G uc , the system Equation (3.5.2) has a unique solution u 1 = u 2 = 0.

Proof. By the definition of

G uc , we know σ(∆ g ) ∩ σ(∆) = ∅. Consider a solution u 1 , u 2 of        u 1 = -λ 2 u 1 , ∆ g u 2 = -λ 2 u 2 , u 1 + u 2 = 0 in (a, b), u 1 , u 2 ∈ H 1 0 ((0, π))
. Now, assume that u 1 = 0. Then u 2 = 0 in (a, b). Hence, by the unique continuation property for the eigenfunctions, we know that u 2 = 0. This means that the system has only trivial solution in this case. It is the same for u 2 = 0.

Assume that u 1 = 0 then u 1 = 0 in (a, b)(otherwise u 1 = 0 everywhere by the unique continuation property) and therefore u 2 = 0. Then u 1 and u 2 are both eigenfunctions. Hence λ 2 ∈ σ(∆ g ) ∩ σ(∆) = ∅, which is a contradiction. So for every g ∈ G uc , the system has only the trivial solution (0, 0).

From now on and until the end of the section, we restrict to the 2 dimensional case d = 2. For any smooth metric g, we can define a Laplace-Beltrami operator -∆ g . Definition 3.5.6. Define the map:

E α : H 2 (Ω) ∩ H 1 0 (Ω) × M → L 2 by E α (u, g) = (∆ g + α)u.
Remark 3.5.7. -∆ g is a Fredholm operator of index 0, and E α g = E α (•, g) is also a Fredholm map of index 0(see [START_REF] Uhlenbeck | Generic properties of eigenfunctions[END_REF]). Here α is just a parameter. In the later proof, we will let α take all possible values in the spectrum of the given Laplacian.

From now on, we fix one metric g 0 and the associted operator -∆ g 0 . Lemma 3.5.8. For any λ fixed and any element f ∈ L 2 , λ / ∈ σ(∆ g ) if and only if f is a regular value (i.e. the tangential map at this point is surjective) of

E λ g : H 2 (Ω) ∩ H 1 0 (Ω) → H -1 . Proof. Let E λ g (u) = E λ (u, g) = f . At this point u, the tangential map DE λ g : T u (H k (Ω) ∩ H 1 0 (Ω)) → H -1 (Ω) is given by DE λ g (v) = (∆ g + λ)v, since ∆ g + λ is a linear operator. λ / ∈ σ(∆ g ) is equivalent to that ∆ g + λ is bijective, which means f is a regular value of E λ g .
Our proof mainly relies on the following theorem: Theorem 3.5.9 (Transversality theorem). Let ϕ : H × B → E be a C k map, H, B, and E Banach manifolds with H and E separable. If f is a regular value of ϕ and

ϕ b = ϕ(•, b) is a Fredholm map of index < k, then the set {b ∈ B : f is a regular value of ϕ b } is residual in B.
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One can find a proof in [START_REF] Abraham | Transversality in manifolds of mappings[END_REF].

Lemma 3.5.10. If λ ∈ σ(∆ g 0 ) is a regular value of E λ , then the set {g ∈ M : λ / ∈ σ(∆ g )} is residual in M.
Proof. Just apply Theorem 3.5.9, combining with Lemma 3.5.8. Now we have to check with the hypothesis, that is to verify that λ ∈ σ(-∆ g 0 ) is a regular value for E λ . In the following, we will use D 1 to denote the differential in the direction of H 2 (Ω)∩H 1 0 (Ω) and D 2 to denote the differential in the direction of M. Now let us check that the image of D 2 E λ is dense in dimension 2. We will use the conformal variations of the metric g. Here we choose r ∈ C ∞ 0 (Ω)

D 2 E λ (rg) = lim s→0 (∆ g+srg -∆ g )u s = lim s→0 1 s 1 |(1 + sr)g| 1 2 ∂ i |(1 + sr)g| 1 2 (1 + sr) -1 g ij ∂ j u -∆ g u = lim s→0 1 s 2 -2 2 (1 + sr) -2 ∂ i rg ij ∂ j u + 1 1 + sr ∆ g u -∆ g u = -r∆ g u (3.5.12) 
Let us assume that v is orthogonal to D 2 E λ (rg) for all r, then:

0 = Ω vD 2 E λ (rg)dµ g = Ω v(-r∆ g u)dµ g = Ω r(λu -λ)vdµ g . (3.5.13) 
Since Equation (3.5.13) holds for any r ∈ C ∞ 0 (Ω) we obtain that:

(λu -λ)v = 0. (3.5.14) 
Now, we can check that λ is a regular value of E λ .

Lemma 3.5.11.

In dimension 2, λ ∈ σ(∆ g 0 ) is a regular value of E λ . Proof. Let (u, g) satisfy E λ (u, g) = (∆ g + λ)u = λ, then at the point (u, g), we have DE λ (v, h) = (∆ g + λ)v + D 2 E λ (h).
Now we need to verify the surjectivity of this map. If y ∈ Im(∆ g + λ) ⊥ , then y is a weak solution of (∆ g + λ)y = 0, and y is smooth. Let us assume that y is orthogonal to D 2 E λ (rg). Then according to Equation (3.5.14), we obtain that:

(λu -λ)y = 0.

First, we claim that u cannot be a constant. Assume that u is a constant function, ∆ g u = 0 and (∆ g + λ)u = λ gives that u = 1. But this does not satisfy the boundary condition. Hence, u cannot be a constant. In particular, u ≡ 1. Now we obtain that λu -λ ≡ 0. If λu -λ = 0 at x 0 , there exists a open neighbourhood N such that λu -λ = 0 in N . Then y ≡ 0 in N . Hence, we know that y vanishes in a subdomain of Ω. Then by the unique continuation property, we know y = 0 in Ω. This leads to the surjectivity of the map DE λ , which means that λ ∈ σ(-∆ g 0 ) is a regular value of E λ . Now we can deduce that the set

G λ = {g ∈ M : λ / ∈ σ(∆ g )} is residual in M.
Proposition 3.5.12. In dimension 2, suppose that we fix one metric g 0 and the associated Laplacian ∆ g 0 with its spectrum σ(∆ g 0 ). Then the set

G uc = {g ∈ M : σ(∆ g ) ∩ σ(∆ g 0 ) = ∅} is residual in M.
Proof. Define:

G uc = ∩ λ∈σ(∆g 0 ) G λ .
G is a intersection of countably many residual sets, so it is still residual in M. And for any metric

g ∈ G uc , σ(∆ g ) ∩ σ(∆ g 0 ) = ∅. Assume that λ 0 ∈ σ(∆ g ) ∩ σ(∆ g 0 ),
which gives that g / ∈ G λ 0 . That contradicts to the fact that g ∈ G uc = ∩ λ∈σ(∆) G λ . Hence, for fixed Laplacian ∆ with its spectrum σ(∆ g 0 ), the set {g ∈ M : σ(∆ g ) ∩ σ(∆ g 0 ) = ∅} is residual in M. Corollary 3.5.13. In dimension 2, fix the canonical Laplace operator ∆, for every metric g ∈ G uc , the system

       ∆u 1 = -λ 2 u 1 , ∆ g u 2 = -λ 2 u 2 , u 1 + u 2 = 0 in ω ⊂ Ω, u 1 , u 2 ∈ H 1 0 (Ω), has only trivial solution u 1 = u 2 = 0.

Constant Coefficient Case with Multiple Control Functions

In this section, we prove Theorem 3.2.10. First we study the information given by the Kalman rank condition. Without loss of generality, we assume that the 

       (∂ 2 t -d 1 ∆)U 1 = B 1 F 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω, . . . (∂ 2 t -d s ∆)U s = B s F 1 (0,T ) (t)1 ω (x) in (0, T ) × Ω,
for every 1 ≤ i ≤ s, where The proof of Proposition 3.6.1 is given in the Appendix. Now we can prove Theorem 3.2.10.

U i =    u i 1 . . . u i n i    and B i =    b i 11 • • • b i 1m . . . . . . . . . b i n i 1 • • • b i n i m    is a matrix of size n i × m.
Proof of Theorem 3.2.10. We follow the same procedure. Applying Hilbert uniqueness method, we can estabish the observability inequality:

||V (0)|| 2 (L 2 ×H -1 ) n ≤ C T 0 ω |B * V | 2 dxdt, (3.6.1) 
where B * is the adjoint form of the matrix B, and

V = (V 1 , • • • , V s ) t ∈ R n 1 × • • • × R ns = R n .
Then we can estabilsh a similar weak observability inequality:

||V (0)|| 2 (L 2 ×H -1 ) n ≤ C T 0 ω |B * V | 2 dxdt + C||V (0)|| 2 (H -1 ×H -2 ) n . (3.6.2)
Then argue by contradiction. Suppose that the weak observability inequality is false, then there exists a sequence (V k (0)) k∈N such that

||V k (0)|| 2 (L 2 ×H -1 ) n = 1, (3.6.3) 
T 0 ω |B * V k | 2 dxdt → 0, (3.6.4 
)

||V k (0)|| 2 (H -1 ×H -2 ) n → 0. (3.6.5)
Hence, there are s microlocal defect measures

(µ i ) s i=1 corresponding to V i . T 0 ω |B * V k | 2 dxdt = T 0 ω | s i=1 B * i V k i | 2 dxdt. (3.6.6)
Since µ i and µ j are singular from each other, for i = j, we know by Cauchy-Schwarz inequality,

s i=1 T 0 ω |B * i V k i | 2 dxdt → 0, (3.6.7) 
which gives that

B i B * i µ i | ω×(0,T ) = 0. Since rank(B i B * i ) = rank(B i ) = n i , we know B i B *
i is invertible. Hence we know µ i | ω×(0,T ) = 0. The rest of the proof is similar to the single control case.

3.7 Appendix I: Proof of Proposition 3.6.1

Proof of Proposition 3.6.1. First, we calculate the form of [D|B]:

[D|B] =[D n-1 B| • • • |DB|B] =    d n-1 1 B 1 • • • B 1 . . . . . . . . . d n-1 s B s • • • B s   
Now we define r i = rank(B i ). Thus, for each i, we can find invertible matrices P i of size n i × n i and Q i of size m × m such that

P i B i Q i = Id r i 0 0 0 def = E i . Then define P = diag(P 1 , • • • , P s ) and Q = diag(Q 1 , • • • , Q s ).
We know that P and Q are invertible. Hence, we obtain rank[D|B] = rank(P [D|B]Q). Now we rewrite 3.7. APPENDIX I: PROOF OF PROPOSITION 3.6.1

that

P [D|B]Q =    d n-1 1 P 1 B 1 Q 1 • • • P 1 B 1 Q s . . . . . . . . . d n-1 s P s B s Q 1 • • • P s B s Q s    =    d n-1 1 E 1 • • • P 1 B 1 Q s . . . . . . . . . d n-1 s P s B s Q 1 • • • E s   
Now, consider the general term P i B i Q j :

P i B i Q j = P i B i Q i Q -1 i Q j = E i Q -1 i Q j . Hence, P [D|B]Q =    d n-1 1 E 1 • • • E 1 Q -1 1 Q s . . . . . . . . . d n-1 s E s Q -1 s Q 1 • • • E s   
Now we define the column transform T 1 :

T 1 =      Id n 1 -1 d 1 Q -1 1 Q 2 • • • -1 d n-1 1 Q -1 1 Q s 0 Id n 2 • • • 0 . . . . . . . . . . . . 0 0 • • • Id ns     
It is easy to see that T 1 is invertible and rank(P [D|B]Q) = rank(P [D|B]QT 1 ).

P [D|B]QT 1 =       d n-1 1 E 1 0 • • • 0 d n-1 2 E 2 Q -1 2 Q 1 ( d n-1 2 d 2 - d n-1 2 d 1 )E 2 • • • ( d n-1 2 d n-1 2 - d n-1 2 d n-1 1 )E 2 Q -1 2 Q s . . . . . . . . . . . . d n-1 s E s Q -1 s Q 1 • • • • • • ( d n-1 s d n-1 s -d n-1 s d n-1 1 )E s       .
Step by step, we can do the Gaussian elimination and find an invertible matrix T such that:

P [D|B]QT =      d n-1 1 E 1 0 • • • 0 * d n-1 2 ( 1 d 2 -1 d 1 )E 2 • • • 0 . . . . . . . . . . . . * * • • • d n-1 s s-1 i=1 ( 1 ds -1 d i )E s      . Then rank[D|B] = rank(P [D|B]Q) = rank(P [D|B]Q) = s i=1 r i ≤ s i=1 n i . Hence, n = rank[D|B] = s i=1 r i ≤ s i=1 n i = n. This implies that rank[D|B] = n ⇐⇒ ∀i, r i = n i .

Appendix II: Extension of Proposition 3.5.12

This section is based on the proof given by Romain Joly. The author would express the sincere gratitude to him for his valuable advice and detailed suggestions. In this section, we would like to remove the dimension restrictions in the Proposition 3.5.12. Proposition 3.8.1. Suppose that we fix one metric g 0 and the associated Laplacian ∆ g 0 with its spectrum σ(∆ g 0 ). Then the set

G uc = {g ∈ M : σ(∆ g ) ∩ σ(∆ g 0 ) = ∅} is residual in M.
Proof. As usual, we apply the Theorem 3.5.9. We identify the metric space G with the space of all symmetric positive definite matrices. As we present in section 3.5.4, we define the map E λ : H 2 (Ω) ∩ H 1 0 (Ω)\{0} × M → L 2 . Now we only need to check that 0 is a regular value for E λ . In the following, we will use D 1 to denote the differential in the direction of H 2 (Ω) ∩ H 1 0 (Ω) and D 2 to denote the differential in the direction of M. Now let us check that the image of D 2 E λ is dense in dimension 2. We will use the conformal variations of the metric g. Here we choose r ∈ C ∞ 0 (Ω)(similarly sa we presented in section 3.5.4)

D 2 E λ (rg) = -dr∆ g u + (d -2)div(r∇ g u).
(

Since we have ∆u = -λu, we obtain that D 2 E λ (rg) = drλu + (d -2)div(r∇ g u).

Let us assume that v is orthogonal to D 2 E λ (rg) for all r, then:

0 = Ω vD 2 E λ (rg)dµ g = Ω v(-drλu + (d -2)div(r∇ g u))dµ g = - Ω r(dλuv + (d -2)∇ g v • ∇ g u)dµ g . (3.8.2)
Therefore, we obtain that dλuv + (d -2)∇ g v • ∇ g u = 0. Since u = 0, we obtain that the normal derivative of u cannot be identically 0 on the entire boundary. Suppose that at x 0 ∈ ∂Ω, ∇ g u| Ω (x 0 ) = 0. Let α(t) be the integral curve for the field ∇ g u passing through x 0 . Then the equation becomes the ODE(d>2):

dλu(α(t))v(α(t)) + (d -2) d(v(α(t))) dt = 0.
Combining with the Dirichlet boundary condition for v, we obatin that v ≡ 0, which implies that 0 is a regular value of E λ .

Chapter 4

Controllability of a coupled wave system with a single control and different speeds

Introduction and Main Results

General setting

Let Ω ⊂ R d , d ∈ N * , be a bounded and smooth domain. We use ∆ to denote the canonical Laplace operator on Ω with Dirichlet boundary condition on ∂Ω. Let

1 = ∂ 2 t -d 1 ∆ and 2 = ∂ 2 t -d 2 ∆ be two d'Alembert operators with different constant speeds d 1 = d 2 .
Let n 1 , n 2 be two integers and n = n 1 + n 2 . We assume that ω is a nonempty open subset of Ω and T > 0. In this chapter, we aim to deal with some controllability properties of the following type of coupled wave systems:

           1 U 1 + A 1 U 2 = 0 in (0, T ) × Ω, 2 U 2 + A 2 U 2 = bf 1 ω in (0, T ) × Ω, U 1 = U 2 = 0 on (0, T ) × ∂Ω, (U 1 , U 2 )| t=0 = (U 0 1 , U 0 2 ) in Ω, (∂ t U 1 , ∂ t U 2 )| t=0 = (U 1 1 , U 1 
2 ) in Ω. 

   (∂ 2 t -D∆)U + AU = bf 1 ω in (0, T ) × Ω, U = 0 on (0, T ) × ∂Ω, (U, ∂ t U )| t=0 = (U 0 , U 1 ) in Ω, (4.1.2) 
with here

D = d 1 Id n 1 0 0 d 2 Id n 2 n×n , A = 0 A 1 0 A 2 n×n , and b = 0 b n×1 , (4.1.3) 
where n = n 1 +n 2 . Let us emphasize the following important and crucial properties of System (4.1.1): all coefficients are constant, the coupling is in a block-cascade structure (notably, the control f is only acting directly on U 2 , which itself acts on U 1 through the matrix A 1 ), and we restrict to the case of a scalar control (i.e. f ∈ L 2 ((0, T ), R m ) with m = 1). We will explain in conclusion the difficulties to treat more general cases.

Geometric assumptions

For our concerned domain Ω, we assume that Ω has no infinite order of tangential contact with the boundary. This assumption will be made more precise in Subsection 4.2.3. Furthermore, for the control set ω, we assume the Geometric Control Condition(GCC).

Definition 4.1.1. For ω ⊂ Ω and T > 0, we shall say that the pair (ω, T, p) satisfies GCC if every general bicharacteristic of p meets ω in a time t < T , where p is the principal symbol of .

We shall give a precise definition of the bicharacteristics in Subsection 4.2.3. This condition was raised by Bardos, Lebeau, and Rauch in [START_REF] Bardos | Contrôle et stabilisation dans les problemes hyperboliques[END_REF], where the authors studied the controllability of a scalar wave equation and is essentially a necessary and sufficient condition for the controllability of the scalar wave equation (see [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF]).

Kalman conditions

In this part, we recall some Kalman rank conditions introduced in the literature of coupled parabolic systems and the link between them. First of all, we recall the usual Kalman rank condition for the controllability of linear autonomous ordinary differential equations (see e.g. [START_REF] Kalman | Controllability of linear dynamical systems[END_REF]). 

X|Y ] = [X n-1 Y | • • • |XY |Y ] ∈ M n,nm (R).
We say that (X, Y ) satisfies the Kalman rank condition if [X|Y ] is of full rank. In particular, let C > 0 be a constant and D = CId n . Then, the operator Kalman rank condition is equivalent to the usual algebraic Kalman rank condition given in Definition 4.1.2 (see [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]Remark 1.2]).

In the following proposition, we give an equivalent statement of the operator Kalman rank condition associated with System (4.1.1), which is very specific to our particular coupling structure and the fact that we have a single control. 

Assume that

A 1 = α = (α 1 , • • • , α n 2 ). Then ∀λ ∈ σ(-∆), α satisfies α n 2 -2 k=0 (d 1 -d 2 ) k λ k n 2 j=k+1 a j A j-1-k 2 + (d 1 -d 2 ) n 2 -1 λ n 2 -1 Id n 2 b = 0, (4.1.4)
where (a j ) 0≤j≤n 2 are the coefficients of the the characteristic polynomial of the matrix A 2 , i.e. χ(X) = X n 2 + n 2 -1 j=0 a j X j , with the convention that a n 2 = 1.

We shall give the proof in the Appendix 4.6. Since we consider the control problem in a domain Ω with boundary, it is natural for us to introduce the following Hilbert spaces H s Ω (∆).

INTRODUCTION AND MAIN RESULTS

Definition 4.1.7. We denote by (β 2 j ) j∈N * the non-decreasing sequence of (positive) eigenvalues of the Laplace operator -∆ with Dirichlet boundary condition, repeated with multiplicity, and (e j ) j∈N * an orthonormal basis of L 2 (Ω) made of eigenfunctions associated with (β 2 j ) j∈N * :

-∆e j = β 2 j e j , ||e j || L 2 = 1.

For any s ∈ R, we denote by H s (Ω) the usual Sobolev space and by H s Ω (∆) the Hilbert space defined by Here we take

H s Ω (∆) = {u = j∈N * a j e j ; j∈N * (1 + β 2 j ) s |a j | 2 < ∞}. ( 4 
n 1 = 1, A 1 = (α 1 , • • • , α s , 0, • • • , 0) and A 2 =      0 1 0 0 0 0 . . . 0 . . . . . . . . . 1 -a n • • • -a 2 -a 1      , and b =      0 . . . 0 1     
The control is g ∈ L 2 ((0, T )×ω). For this simpler system (4.1.7), taking zero initial conditions together with a forcing term f ∈ L 2 ((0, T ) × ω), which kind of target spaces will the solutions of System (4.1.7) arrive in? That is the first question we need to answer. Under this particular structure of coupling, we introduce appropriate compatibility conditions for System (4.1.7).Let us denote by H r the following space; 

H r = {(u, v 1 , • • • , v n 2 ) ∈ H n 2 -s+2+r Ω (∆) × H n 2 -1+r Ω (∆) × • • • × H r Ω (∆) s.t. (-d 1 ∆) n 2 -s+1 u + n 2 -s-1 k=0 α s d n 2 -s+1-k 1 (d 1 -d 2 ) n 2 -s+1-k (-d 1 ∆) k v n 2 -k ∈ H r Ω (∆)}. ( 4 
H 1 × H 0 .
The two conditions

(-d 1 ∆) n 2 -s+1 u 1,0 1 + n 2 -s k=0 α s d n 2 -s+1-k 1 (d 1 -d 2 ) n 2 -s+1-k (-d 1 ∆) k u 2,0 n 2 -k ∈ H 1 Ω (∆), (-d 1 ∆) n 2 -s+1 u 1,1 1 + n 2 -s k=0 α s d n 2 -s+1-k 1 (d 1 -d 2 ) n 2 -s+1-k (-d 1 ∆) k u 2,1 n 2 -k ∈ H 0 Ω (∆).
are called the compatibility conditions for the controllability of System (4.4.1).

Remark 4.1.11. If s = n 2 , the compatibility conditions reduce to

(-d 1 ∆)u 1,0 1 H 1 Ω (∆), (-d 1 ∆)u 1,1
1 ∈ H 0 Ω (∆), which is an empty condition since we already know that (u 1 0 , u 1 1 ) ∈ H 3 Ω (∆)×H 2 Ω (∆). Remark 4.1.12. As we will see later on, the solutions of System (4.1.7) will stay in H 1 × H 0 if the initial condition is in this space. Because of the linearity and the time reversibility of the system , exact controllability is equivalent to null controllability or reachability from 0 for System (4.1.7). Since the equilibrium 0 is of course in the spaces H 1 × H 0 , this is the appropriate state space.

INTRODUCTION AND MAIN RESULTS

Remark 4.1.13. Since we consider a system with a cascade coupling structure, it is natural that there is a gain of regularity for the uncontrolled states u 2 j (2 ≤ j ≤ n 2 ) (this phenomena has already been observed notably in [START_REF] Dehman | Controllability of two coupled wave equations on a compact manifold[END_REF]Theorem 1.4]). We shall explain the gain of two derivatives of regularity for the state u 1 1 in Subsection 4.2.2. We could call it "additional regularity". Now we give the definition of the exact controllability of System (4.1.1). Definition 4.1.14. We say that System (4.1.1) is exactly controllable in time T > 0 if there exists T ∈ GL n (R) such that for any initial data We shall see later that the transform T is just the transform associated with the Brunovský normal form defined in (4.3.1). Here we can give an example of the transform T under a simple setting. If we set System (4.1.1) as the following: 

(U 0 , U 1 ) ∈ T -1 (H 1 ) × T -1 (H 0 ) and any target ( Ũ0 , Ũ1 ) ∈ T -1 (H 1 ) × T -1 (H 0 ),
               1 u 1 1 + u 2 1 + 2u 2 2 = 0 in (0, T ) × Ω, 2 u 2 1 -5 2 u 2 1 + 3 2 u 2 2 = 2f in (0, T ) × Ω, 2 u 2 2 + 7 2 u 2 1 + 5 2 u 2 2 = 4f in (0, T ) × Ω, u 1 1 = 0, u 2 j = 0 on (0, T ) × ∂Ω, j = 1, 2, (u 1 1 , u 2 1 , u 2 2 )| t=0 = (u 1,0 1 , u 2,0 1 , u 2,0 2 ) in Ω, (∂ t u 1 1 , ∂ t u 2 1 , ∂ t u 2 2 )| t=0 = (u 1,1 1 , u 2,1 1 , u 2,1 2 ) in Ω, We have that D =   1 0 0 0 2 0 0 0 2   A =   0 1 2 0 -5
=   1 0 0 0 -2 1 0 3 2 -1 2   .
There is a large literature on the controllability and observability of the wave equations. This chapter is mainly devoted to multi-speed coupled wave systems. For other interesting situations, we list some of the existing results and references:

• For single wave equation, it is by now well-known that Bardos, Lebeau, and Rauch [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] use microlocal analysis to prove the observability inequality for a scalar wave equation. We have two approaches to define the microlocal defect measures. We can introduce the microlocal defect measures based on the article by Gérard and Leichtnam [START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF] for Helmoltz equation and Burq [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF] for wave equation, using the extension by 0 across the boundary. On the other hand, we can also use the the Melrose cotangent compressed bundle to construct the measure, based on the article by Lebeau [START_REF] Lebeau | Équation des ondes amorties[END_REF] and Burq-Lebeau [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] in the setting of systems.

• Although we now have a better picture on the controllabilty of a single wave equation, the controllability of systems of wave equations is still not totally understood. To our knowledge, most of the references concern the case of systems with the same principal symbol. Alabau-Boussouira and Léautaud [START_REF] Alabau | Indirect controllability of locally coupled wave-type systems and applications[END_REF] studied the indirect controllability of two coupled wave equations, in which their controllability result was established using a multi-level energy method introduced in [START_REF] Alabau-Boussouira | A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems[END_REF], and also used in [START_REF] Alabau-Boussouira | A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls[END_REF][START_REF] Alabau-Boussouira | Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control[END_REF]. Liard and Lissy [START_REF] Liard | A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups[END_REF], Lissy and Zuazua [START_REF] Lissy | Internal observability for coupled systems of linear partial differential equations[END_REF] studied the observability and controllability of the coupled wave systems under the Kalman type rank condition. Moreover, we can find other controllability results for coupled wave systems, for example, Cui, Laurent, and Wang [START_REF] Cui | On the observability inequality of coupled wave equations: the case without boundary[END_REF] studied the observability of wave equations coupled by first or zero order terms on a compact manifold.

• As for multi-speed case, Dehman, Le Roussau, and Léautaud considered two coupled wave equations with multi-speeds in [START_REF] Dehman | Controllability of two coupled wave equations on a compact manifold[END_REF], which inspires us to consider the a more general system coupled by different speeds. In our previous work, we also considered multi-speed wave systems coupled by the control functions only. And there is a link between the controllability and the Kalman rank condition.

Main result

Our main result is the following one:

Theorem 4.1.17. Given T > 0, suppose that:

1. (ω, T, p d i ) satisfies GCC, i = 1, 2.
2. Ω has no infinite order of tangential contact with the boundary. . Then, we are able to rewrite System (4.2.1) into a first-order system:

dz dt = Ã * z in (0, T ) z| t=0 = t (y 0 , y 1 ), (4.2.2) 
where

à = 0 A Id n 0 2n×2n . Let b = b 0 2n×1 . It is easy to compute that Ã2k = A k 0 0 A k and Ã2k+1 = 0 A k+1 A k 0 for k = 0, 1, • • • .
Therefore, we obtain

[ Ã| b] = ( Ã2n-1 b| • • • | Ãb | b) = 0 A n-1 b • • • 0 b A n-1 b 0 • • • b 0 .
As a consequence, we know that rank Let Q 0 (x, y, D y ), Q 1 (x, y, D y ) be smooth classical tangential pseudo-differential operators defined in a neighbourhood of [0, 1] × B, of order 0 and 1, and principal symbols q 0 (x, y, η), q 1 (x, y, η), respectively. Denote

P = (∂ 2 x + R)Id + Q 0 ∂ x + Q 1 . The principal symbol of P is p = -ξ 2 + r(x, y, η). ( 4 

.2.10)

We use the usual notations T M and T * M to denote the tangent bundle and cotangent bundle corresponding to M , with the canonical projection π π : T M ( or T * M ) → M.

Denote r 0 (y, η) = r(0, y, η). Then, we can decompose T * ∂M into the disjoint union E ∪ G ∪ H, where

E = {r 0 < 0}, G = {r 0 = 0}, H = {r 0 > 0}. (4.2.11) 
The sets E, G, H are called elliptic, glancing, and hyperbolic set, respectively. Define Char(P) = {(x, y, ξ, η) ∈ T * R d+1 | M : ξ 2 = r(x, y, ξ, η)} to be the characteristic manifold of P . For more details, one can refer to [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] and [START_REF] Niu | Simultaneous Control of Wave Systems[END_REF]. Notice that in [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF], one can see another characterization for these sets E, G, and H.

To describe the different phenomena when a bicharacteristic approaches the boundary, we need a more accurate decomposition of the glancing set G. Let r 1 = ∂ x r| x=0 . Then, we can define the decomposition G = ∞ j=2 G j , with

G 2 = {(y, η) : r 0 (y, η) = 0, r 1 (y, η) = 0}, G 3 = {(y, η) : r 0 (y, η) = 0, r 1 (y, η) = 0, H r 0 (r 1 ) = 0}, . . . G k+3 = {(y, η) : r 0 (y, η) = 0, H j r 0 (r 1 ) = 0, ∀j ≤ k, H k+1 r 0 (r 1 ) = 0}, . . . G ∞ = {(y, η) : r 0 (y, η) = 0, H j r 0 (r 1 ) = 0, ∀j}.
Here H j r 0 is just the vector field H r 0 composed j times. Moreover, for G 2 , we can define G 2,± = {(y, η) : r 0 (y, η) = 0, ±r 1 (y, η) > 0}. Thus G 2 = G 2,+ ∪ G 2,-. For ρ ∈ G 2,+ , we say that ρ is a gliding point and for ρ ∈ G 2,-, we say that ρ is a diffractive point. For ρ ∈ G j , j ≥ 2, we say that a bicharacterisric of p tangentially contact the boundary {x = 0} × B with order j at the point ρ.

We have the definition of the generalized bicharacteristics (See [24, Section 24.3] for more details): Definition 4.2.3. A generalized bicharacteristic of p is a map:

s ∈ I\D → γ(s) ∈ T * M ∪ G
where I is an interval on R and D is a discrete subset I such that p • γ = 0 and the following properties hold:

1. γ(s) is differentiable and dγ ds = H p (γ(s)) if γ(s) ∈ T * M \T * ∂M or γ(s) ∈ G 2,+ .
2. Every s ∈ D is isolated i.e. there exists > 0 such that γ(s) ∈ T * M \T * ∂M if 0 < |s -t| < , and the limits γ(s ± ) are different points in the same fiber of T * ∂M . Under this map j, one can see γ(s) as a continuous flow on the compressed cotangent bundle b T * M . This is the so-called Melrose-Sjöstrand flow (see [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] for more details).

γ(s) is differentiable and dγ

ds = H -r 0 (γ(s)) if γ(s) ∈ G\G 2,+ .
From now on we always assume that there is no infinite tangential contact between the bicharacteristic of p and the boundary. This is in the meaning of the following definition: Definition 4.2.5. We say that there is no infinite contact between the bicharacteristics of p and the boundary if there exists N ∈ N such that the gliding set G satisfies

G = N j=2 G j .
It is well-known that under this hypothesis there exists a unique generalized bicharacteristic passing through any point. This means that the Melrose-Sjöstrand flow is globally well-defined. One can refer to [START_REF] Burt | Singularities of boundary value problems[END_REF] and [START_REF] Burt | Singularities of boundary value problems[END_REF] for the proof.

• In particular, if n = 1, the scalar measure µ is invariant along the generalized bicharacteristic flow.

On the other hand, let A be the space of n × n matrices of pseudo-differential operators of order 0, in the form of A = A i +A t with A i classical pseudo-differential operator with compact support in M (i.e, A i = ϕA i ϕ for some ϕ ∈ C ∞ 0 (M )) and A t a classical tangential pseudo-differential operator in M (i.e, A t = ϕA t ϕ for some ϕ ∈ C ∞ (M )). Then denote

Z = j(Char(P)), Ẑ = Z ∪ j(T * M | x=0 ),
where j is defined in (4.2.12) and

S Ẑ = ( Ẑ\M )/R * + , SZ = (Z\M )/R * + .
Remark 4.2.8. S Ẑ and SZ are the quotient spherical spaces of Ẑ and Z and they are locally compact metric spaces.

For A ∈ A, with principal symbol a = σ(A), define κ(a)(ρ) = a(j -1 (ρ)), ∀ρ ∈ b T * M . Now, we have that K = {κ(a) : a = σ(A), A ∈ A} ⊂ C 0 (S Ẑ; End(C n ))
. Define M + to be the space of all positive Borel measures on S Ẑ. By duality, we know that M + is the dual space of C 0 0 (S Ẑ; End(C n )), which verifies the property:

µ, a ≥ 0, ∀a ∈ C 0 (S Ẑ; End + (C n )), ∀µ ∈ M + ,
where End + (C n ) denotes the space of n × n positive hermitian matrices. Following the article [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] by Burq and Lebeau, we obtain the existence of the microlocal defect measure and some properties as follows:

Proposition 4.2.9 (Existence of the microlocal defect measure-2). There exists a subsequence of (u k ) (still noted by (u k )) and µ ∈ M + such that In the following, suppose that there is no infinite contact between the bicharacteristic of p and the boundary. This hypothesis implies the existence and uniqueness of the generalized bicharacteristic passing through any point, which ensures 4.2. PRELIMINARIES that the Melrose-Sjöstrand flow is globally well-defined. By a suitable change of parameter along this flow, we obtain a flow on SZ. Consider S a hypersurface tranverse to the flow. Then locally, SZ = R s × S where s is the well-chosen parameter along the flow. We have the following propagation lemma for the microlocal defect measure.

∀A ∈ A, lim k→∞ (Au k , u k ) L 2 = µ, κ(σ(A)) . ( 4 
Lemma 4.2.11. Assume that the microlocal defect measure µ is defined in Proposition 4.2.9. Then µ is supported in SZ and there exists a function We say that the measure µ is invariant along the flow associated to M . Furthermore, the function M is continuous and along any generalized bicharacteristic the matrix M is solution to a differential equation whose coefficients can be explicitly computed in terms of the geometry and the different terms in the operator P .

(s, z) ∈ R s × S → M (s, z) ∈ C n
For the differential equation which M satisfies, one can refer to [14, Section 3.2] for more details. Remark 4.2.12. Roughly speaking, in the result above, the norm of M describes the damping of the measure µ, whereas the rotation component of M describes the way the polarization of the measure (asymptotic polarization of the sequence (u k )) is turning. Remark 4.2.13. Notice that in [12, Section 3], the author considered the case of solutions to the wave equation at the energy level (bounded in H 1 loc , and hence was considering second order operators. However, it is easy to change the energy level into L 2 (One can see [START_REF] Niu | Simultaneous Control of Wave Systems[END_REF]Remark 4.4] for more details). Remark 4.2.14. From Proposition 4.2.7, we know that supp(µ) ⊂ Char(P). Notice that in the interior of M , the two definitions coincide, i.e., µ| Char(P) = µ in the interior of M . At the boundary, since both measures µ and µ do not not charge the hyperbolic points in ∂M , we know that µ| S Ẑ = µ holds µ almost surely and µ almost surely. Under this sense, we can identify the two measures.

4.3 Proof of the sufficient part of Theorem 4.1.17 in the case n 2 = 2

In this section, we shall present the sufficient part of the proof of Theorem 4.1.17 in the case n 2 = 2 (and of course n 1 = 1). We divide the proof into three steps. Firstly, we give a reformulation of system (4.3.1). Then we study a simpler problem and obtain a compatibility condition for it. At last, we present the proof for the general case.

Reformulation of the the system in symmetric spaces

In the case n 2 = 2, we write System (4.1.1) as follows:

.

       ∂ 2 t u 1 1 -d 1 ∆u 1 1 + α 1 u 2 1 + α 2 u 2 2 = 0 in (0, T ) × Ω, ∂ 2 t u 2 1 -d 2 ∆u 2 1 + a 11 u 2 1 + a 12 u 2 2 = b 1 f 1 ω (x) in (0, T ) × Ω, ∂ 2 t u 2 2 -d 2 ∆u 2 2 + a 21 u 2 1 + a 22 u 2 2 = b 2 f 1 ω (x) in (0, T ) × Ω, u 1 1 = 0, u 2 j = 0 on (0, T ) × ∂Ω, j = 1, 2, (4.3.1) 
with initial conditions (u

1 1 (0, x), u 2 1 (0, x), u 2 2 (0, x), ∂ t u 1 1 (0, x), ∂ t u 2 1 (0, x), ∂ t u 2 2 (0, x)
). Before we reformulate the system, we introduce the Brunovský normal form. Theorem 4.3.1 (Brunovský Normal Form). Assume that A is a square matrix of size n × n, B is a matrix of size n × 1 and (A, B) satisfies the Kalman rank condition. Then, there exists an invertible matrix P such that A = P -1 JP and B = P -1 e n where

J =      0 1 0 0 0 0 . . . 0 . . . . . . . . . 1 -a n • • • -a 2 -a 1      , and e n =      0 . . . 0 1      (4.3.2)
And the coefficients (a j ) 1≤j≤n are defined by the characteristic polynomial of A

, i.e. χ A (X) = X n + a 1 X n-1 + • • • + a n-1 X + a n .
One can find for instance the proof in [43, Théorème 2. 

C T 0 ω α 1 d 2 1 (d 2 -d 1 ) 2 w 1 1 + w 2 2 2 dxdt ≥ ||W (0)|| 2 L 3 0 ×L 3 -1 , (4.3.26) 
where W = (w 1 1 , w 2 1 , w 2 2 ). We divide the proof of the observability inequality (4.3.26) into two steps.

Step 1: establish a relaxed observability inequality.

Firstly, we establish the following relaxed observability inequality for the adjoint System (4.3.25). 

||W (0)|| 2 L 3 0 ×L 3 -1 ≤ C T 0 ω α 1 d 2 1 (d 2 -d 1 ) 2 w 1 1 + w 2 2 2 dxdt + ||W (0)|| 2 L 3 -1 ×L 3 -2 . (4.3.27)
Proof of Proposition 4.3.5. We argue by contradiction. Suppose that the observability inequality (4.3.27) is not satisfied. Thus, there exists a sequence (W k ) k∈N of solutions of System (4.3.25) such that

||W k (0)|| 2 L 3 0 ×L 3 -1 = 1, (4.3.28) 
T 0 ω α 1 d 2 1 (d 2 -d 1 ) 2 w 1,k 1 + w 2,k 2 2 dxdt → 0 as k → ∞, (4.3.29) ||W k (0)|| 2 L 3 -1 ×L 3 -2 → 0 as k → ∞. (4.3.30)
By the continuity of the solution with respect to the initial data of System (4.3.25), we know that the sequence (W k ) k∈N is bounded in (L 2 ((0, T ) × Ω)) 3 and moreover, W k 0 in (L 2 ((0, T ) × Ω)) 3 . W k satisfies the following system:

     w 1,k 1 = o(1) H -1 Ω (∆) in (0, T ) × Ω, k → ∞ w 2,k 1 = o(1) H -1 Ω (∆) in (0, T ) × Ω, k → ∞ w 2,k 2 + D t w 2,k 1 = o(1) H -1 Ω (∆) in (0, T ) × Ω, k → ∞, (4.3.31) 
where the first equation is decoupled from the two last equations. Hence, we obtain two microlocal defect measures µ 1 and µ 2 associated with (w 1,k 1 ) k∈N and (W 2,k ) k∈N = (w 2,k 1 , w 2,k 2 ) k∈N respectively. From the definition in Proposition 4.2.6, we know that

∀A ∈ A, µ 1 , σ(A) = lim k→∞ (Aw 1,k 1 , w 1,k 1 ) L 2 , µ 2 (i, j), σ(A) = lim k→∞ (Aw 2,k i , w 2,k j ) L 2 , 1 ≤ i, j ≤ 2.
Lemma 4.3.7. Assume that µ 2 is the corresponding microlocal defect measure defined by (4.3.34) for the sequence (w 2,k 1 , w 2,k 2 ) k∈N which satisfies the following system: Here we denote by E(τ ) the matrix 0 τ 0 0 .

w 2,k 1 = o(1) H -1 Ω (∆) in (0, T ) × Ω, k → ∞ w 2,k 2 + D t w 2,k 1 = o(1) H -1 Ω (∆) in (0, T ) × Ω, k → ∞.
Remark 4.3.8. For the differential equation which M satisfies and the explicit form of the matrix E which we use here, one can refer to [14, Section 3.2] for more details.

Remark 4.3.9. In our setting, we can compute explicitly the form of the matrix

M (s) = 1 iτ s 0 1
and τ is a constant along the generalized bicharacteristic. Now we use this Lemma 4.3.7 to prove that µ 2 = 0. First, we would like to show that supp(µ 2 ) ∩ π -1 ((0, T ) × ω) = ∅. Let us fix some point ρ 0 ∈ π -1 ((0, T ) × ω). Then, there exists a unique bicharacteristic s → γ 0 (s) such that γ 0 (0) = ρ 0 . And moreover, there exists > 0, which is sufficiently small, such that γ 0 (] -2 , 2 [) ⊂ π -1 ((0, T ) × ω). Since µ 2 is invariant along the flow associated to M , we obtain Noticing that supp(µ 2 (2, 2)) ∩ π -1 ((0, T ) × ω) = ∅ (which means that µ 2 ( )e 2 = 0), we obtain µ 2 (0)e 2 = -iτ µ(0)e 1 . But by the choice of ρ 0 , we know that µ 2 (0)e 2 also vanishes, which gives that -iτ µ 2 (0)e 1 = 0, i.e. µ 2 (0)e 1 = 0. Hence, µ 2 (0) = 0 0 0 0 . Since ρ 0 is arbitrary, we deduce that supp(µ 2 ) ∩ π -1 ((0, T ) × ω) = ∅. Now let us go back to prove that µ 2 = 0. For any point ρ 1 ∈ supp(µ 2 ), there exists a unique bicharacteristic s → γ 1 (s) such that γ 1 (0) = ρ 1 . Using the GCC(see Definition Definition 4.1.1), we know that there exists a time t 0 such that γ 1 (t 0 ) ∈ π -1 ((0, T ) × ω). Since µ 2 is invariant along the flow associated to M , we obtain µ 2 (0) = M (t 0 ) * µ 2 (t 0 )M (t 0 ). We already know that supp(µ 2 )∩π -1 ((0, T )×ω) = ∅, which means that µ 2 (t 0 ) = 0. So µ 2 (0) = 0. Due to the arbitrary choice of ρ 1 , we prove that supp(µ 2 ) = ∅, i.e. µ 2 ≡ 0, which leads to a contradiction with (4.3.28) (See [START_REF] Niu | Simultaneous Control of Wave Systems[END_REF]Section 4.2] for more details). We conclude that the relaxed observability inequality (4.3.27) holds for all the solutions of System (4.3.25).

Step 2: analysis on the invisible solutions With the relaxed observability inequality (4.3.27) in Proposition 4.3.5, we are now able to handle the low-frequencies and conclude the proof of the observability (4.3.26). The main point here is a unique continuation result for solutions of the elliptic problem associated with System (4.3.25). The idea of reducing the observability for the low frequencies to an elliptic unique continuation result and associated technology are due to [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]. First, let us write for the sake of simplicity the initial conditions as W = (w 1,0 1 , w 2,0 1 , w 2,0 2 , w 1,1 1 , w 2,1 1 , w 2,1 2 ) t (∈ L 3 0 × L 3 -1 ), (4.3.37) and define for any T > 0 the set of invisible solutions (see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]) from (0, T ) × ω (d 2 -d 1 ) 2 w 1 1 (x, t) + w 2 2 (x, t) = 0, ∀(x, t) ∈ (0, T ) × ω}.

We have the following key lemma, which is proved at the end of this section. By the well-posedness, we know that (W k ) k∈N is bounded in L 2 ((0, T ) × Ω). Hence there exists a subsequence (also denoted by W k ) weakly converging in L 2 , towards W ∈ L 2 , which is also the solution of System (4.3.25) and satisfies that

α 1 d 2 1
(d 2 -d 1 ) 2 w 1 1 + w 2 2 = 0 in (0, T ) × ω. Thus, we know that W (0) ∈ N (T ) = {0}, which implies that W (0) = 0. Since the embedding

L 2 × H -1 Ω (∆) → H -1 Ω (∆) × H -2 Ω (∆) is compact, we obtain that ||W k (0)|| 2 L 3 -1 ×L 3 -2 → ||W (0)|| 2 L 3 -1 ×L 3 -2
. From the relaxed observability inequality (4.3.27), we know: We know that N (T ) is a closed subspace of L 3 0 ×L 3 -1 . By the compact embedding L 2 (Ω) × H -1 (Ω) → H -1 (Ω) × H -2 (Ω), we know that N (T ) has a finite dimension. Then, we define the operator A by

1 ≤ C||W (0)|| 2
A =           0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 -d 1 ∆ 0 0 0 0 0 0 -d 2 ∆ 0 - α 1 a 1 d 2 1 (-∆) -1 d 2 (d 2 -d 1 ) 2 0 - a 1 (-∆) -1 d 2 α 1 a 1 d 2 1 (-∆) -1 d 2 (d 2 -d 1 ) 2 - α 1 a 2 d 2 1 (d 2 -d 1 ) 2 0 -d 2 ∆ -a 2 + a 1 (-∆) -1 d 2 0 1 0          
Thus, y1 j satisfies the following equation

1 y 1 j = D t 1 y 1 j-1 + α s d 2 d j 1 (d 1 -d 2 ) j+1 1 v 2 s+j = - α s d j 1 (d 1 -d 2 ) j D 2 t v 2 s+j + α s d 2 d j 1 (d 1 -d 2 ) j+1 (d 2 -d 1 )∆v 2 s+j + α s d 2 d j 1 (d 1 -d 2 ) j+1 2 v 2 s+j = - α s d j 1 (d 1 -d 2 ) j (D 2 t + d 2 ∆)v 2 s+j + α s d 2 d j 1 (d 1 -d 2 ) j+1 2 v 2 s+j = α s d j 1 (d 1 -d 2 ) j (-1 + d 1 d 1 -d 2 ) 2 v 2 s+j .
Using the equation 2 v 2 s+j = -D t v 2 s+1+j , we obtain

1 y 1 j = - α s d 2 d j 1 (d 1 -d 2 ) j+1 D t v 2 s+1+j .
By induction, this implies that y 1 j (1 ≤ j ≤ n 2 -s -1) satisfies the equation

1 y 1 j + α s d j+1 1 (d 1 -d 2 ) j+1 D t v 2 s+j+1 = 0. (4.4.7) 
Following the same procedure, we obtain

1 y = α s d n 2 -s 1 (d 1 -d 2 ) j D 2 t v 2 n 2 + α s d 2 d n 2 -s 1 (d 1 -d 2 ) n 2 -s+1 2 v 2 n 2 + α s d 2 d n 2 -s 1 (d 1 -d 2 ) n 2 -s+1 (d 2 -d 1 )∆v 2 n 2 = α s d n 2 -s 1 (d 1 -d 2 ) n 2 -s (-1 + d 1 d 1 -d 2 ) 2 v 2 n 2 .
Using the equation 2 v 2 n 2 = n 2 k=1 a n 2 +1-k u 2 k + f , we obtain 

1 y = n 2 k=1 a n 2 +1-k α s d n 2 +1-s 1 (d 1 -d 2 ) n 2 +1-s u 2 k + α s d n 2 +1-s 1 (d 1 -d 2 ) n 2 +1-s f.
y 1 0 = v 1 1 + α s d 2 d 1 -d 2 v 2 s = D n 2 -s+2 t u 1 1 + α s d 2 d 1 -d 2 D n 2 -s t u 2 s = D n 2 -s t D 2 t u 1 1 + α s d 2 d 1 -d 2 u 2 s = D n 2 -s t -d 1 ∆u 1 1 + α s u 2 s + α s d 2 d 1 -d 2 u 2 s = D n 2 -s t -d 1 ∆u 1 1 + α s d 1 d 1 -d 2 u 2 s .
Let us reason by induction and assume that

y 1 l = D n 2 -s-l t (-d 1 ∆) l+1 u 1 1 + l k=0 α s d l+1-k 1 (d 1 -d 2 ) l+1-k (-d 1 ∆) k u 2 s+l-k
, for l < j.

Then, for the term y 1 j , we have Using the definition of v 2 s+j = D n 2 -s-j t u 2 s+j , we obtain

y 1 j = D n 2 -s-j t (-d 1 ∆) j D 2 t u 1 1 + j-1 k=0 α s d j-k 1 (d 1 -d 2 ) j-k (-d 1 ∆) k D 2 t u 2 s+j-k-1 + α s d 2 d j 1 (d 1 -d 2 ) j+1 u 2 s+j
Using the equations

D 2 t u 1 1 = -d 1 ∆u 1 1 + α s u 2 s D 2 t u 2 s+j-k-2 = -d 2 ∆u 2 s+j-k-1 + u 2 s+j-k ,
we obtain

y 1 j = D n 2 -s-j t (-d 1 ∆) j+1 u 1 1 + j-1 k=0 α s d j-k 1 (d 1 -d 2 ) j-k (-d 1 ∆) k (-d 2 ∆)u 2 s+j-k-1 + α s (-d 1 ∆) j u 2 s + j-1 k=0 α s d j-k 1 (d 1 -d 2 ) j-k (-d 1 ∆) k u 2 s+j-k + α s d 2 d j 1 (d 1 -d 2 ) j+1 u 2 s+j = D n 2 -s-j t (-d 1 ∆) j+1 u 1 1 + α s (-d 1 ∆) j u 2 s + α s d 2 d 1 -d 2 (-d 1 ∆) j u 2 s + j-1 k=0 α s d j-k 1 (d 1 -d 2 ) j-k (1 + d 2 d 1 -d 2 )(-d 1 ∆) k u 2 s+j-k = D n 2 -s-j t (-d 1 ∆) j+1 u 1 1 + α s d 1 d 1 -d 2 (-d 1 ∆) j u 2 s + j-1 k=0 α s d j+1-k 1 (d 1 -d 2 ) j+1-k (-d 1 ∆) k u 2 s+j-k = D n 2 -s-j t (-d 1 ∆) j+1 u 1 1 + j k=0 α s d j+1-k 1 (d 1 -d 2 ) j+1-k (-d 1 ∆) k u 2 s+j-k .
Hence, by induction, we conclude .

In particular, we perform the same calculation for y and obtain

y = (-d 1 ∆) n 2 -s+1 u 1 1 + n 2 -s k=0 α s d j+1-k 1 (d 1 -d 2 ) j+1-k (-d 1 ∆) k u 2 s+j-k .
We also have the similar theorem as we show in the previous section:

Theorem 4.4.5. Given T > 0, suppose that:

1. (ω, T, p d i ) satisfies GCC, i = 1, 2.

2. Ω has no infinite order of tangential contact with the boundary.

Then the system (4.4.1) is exactly controllable in H 1 × H 0 .

(0, ), and we obtain the following equations:

            
µ 2 (0)M (-t 0 )e n 2 = 0, µ 2 (0)M (-t 1 )M (-t 0 )e n 2 = 0, µ 2 (0)M (-t 1 ) 2 M (-t 0 )e n 2 = 0, . . . µ 2 (0)M (-t 1 ) n 2 -1 M (-t 0 )e n 2 = 0. Since M (-t 0 )e n 2 is not an eigenvector, {M (-t 1 ) k M (-t 0 )e n 2 } 0≤k≤n 2 -1 forms a basis for R n 2 , which implies that µ 2 (0) = 0. According to the arbitrary choice of ρ 0 ∈ supp(µ 2 ), we are able to conclude that supp(µ 2 ) = ∅, i.e. µ 2 ≡ 0. Then, we conclude that the relaxed observability inequality (4.4.16) holds for all the solutions of System (4.4.15).

Step 2: analysis on the invisible solutions

We first define for any T > 0 the set of invisible solutions from ]0, T [×ω . By the compact embedding L 2 (Ω)×H -1 (Ω) → H -1 (Ω)×H -2 (Ω), we know that N n 2 (T ) has a finite dimension. Then, we define the operator A n 2 to be the generator associated with System (4.4.15). We know that the solution (w 1 1 , w 

N n 2 (T ) = {W = (w 1,0 1 , w 2,0 1 , • • • , w 2,0 n 2 , w 1,1 1 , w 2,1 1 , • • • , w 2,1 n 2 ) t ∈ L n 2 +1 0 × L n 2 +1
α j D n 2 -s+2 t u 2 j - α s d 2 d 1 -d 2 D t v 2 s+1 -α s D t v 2 s+1 = - s-1 j=1 α j D n 2 -s+2 t u 2 j -α s ( d 2 d 1 -d 2 + 1)D t v 2 s+1 = - s-1 j=1 α j D n 2 -s+2 t u 2 j - α s d 1 d 1 -d 2 D t v 2 s+1 .
we have seen, for instance, in (4.1.8)). However, when we deal with the case with more than one control functions, we usually rely on the Brunovský Normal Form to put the coupling matrix into the standard form and then, deal with the problem block by block. This means that we first need to establish the result with only one block, i.e. with only one control function. In the system (4.1.2), we choose that b only acts on the second part of the system. The reason is that if we give both parts the effective control function, we cannot observe the influence of the coupling term because of the regularity.

The second part we considered is the coupling with the same speed, which corresponds to A 11 and A 22 , and on the other hand, the third part is the coupling effects of the different speeds, which corresponds to A 12 and A 21 . As we can see in the proof of the Theorem 4.1.17, coupling with same speed, we are able to observe a phenomena of regularity increase by one with successive solutions. While we can prove that the regularity gap between two coupled solutions with different speeds is two (one can see in Subsection 4.2.2). This difference gives us the motivation to consider that the simplest example of coupled wave system containing the two different coupling effects, i.e. the system (4.1.2). We try to use this example to analyse the different influence of these two types of coupling terms. When one introduces the fully coupling matrix A = A 11 A 12 A 21 A 22 n×n , it is complicated to analyse the two different types of coupling. Because they are combined too closely, it is difficult to separate them. In the technical view, it is very hard to derive a simple Brunovský form to obtain the compatibility conditions and the appropriate state space.

Appendix: On the operator Kalman rank condition

Proof of Proposition 4.1.6. Let λ ∈ σ(-∆) and K(λ) = [(λD + A)|b] ∈ M n (R) (remind that b ∈ R n ). Firstly, we compute the form of the matrix K(λ) by induction.

K(λ) = S n-1 (λ) • • • S j (λ) • • • A 1 b 0 (d 2 λ + A 2 ) n-1 b • • • (d 2 λ + A 2 ) j-1 b • • • (d 2 λ + A 2 )b b . (4.6.1)
The general term S j (λ), 1 ≤ j ≤ n -1 is defined by Abstract: We study the simultaneous controllability of wave systems in an open domain of ℝ 𝑑𝑑 . We obtain a partial controllability result on a finite codimensional space for wave equations coupled by a single control function. For the unique continuation property of eigenfunctions, we construct a counterexample to show that in some metrics, the unique continuation property does not hold. Moreover, we study different conditions to ensure the unique continuation property. We also extend our result to the case of constant coefficients and possibly multiple control functions. In this context, we prove the controllability property is equivalent to an appropriate Kalman rank condition.

We also consider an exact controllability problem in a smooth bounded domain Ω of ℝ 𝑑𝑑 , for a coupled wave system, with different speeds and a single control acting on an open subset 𝜔𝜔 satisfying the Geometric Control Condition and on one speed only. Actions for the wave equations with the second speed are obtained through a coupling term. Firstly, we construct appropriate state spaces with compatibility conditions associated with the coupling structure. Secondly, in these well-prepared spaces, we prove that the coupled wave system is exactly controllable if and only if the coupling structure satisfies an operator Kalman rank condition.

1. 3 . 1

 31 Préliminaires géométriquesSoit B = {y ∈ R d : |y| < 1} la boule unité de R d et localement on identifie M = Ω × R t avec [0, 1[×B. Pour z ∈ M = Ω × R t , on note z = (x, y),où x ∈ [0, 1[ et y ∈ B. De plus, z ∈ ∂M = ∂Ω × R t si et seulement si z = (0, y). Soit R = R(x,y, D y ) un opérateur pseudo-différentiel scalaire (C ∞ ) tangentiel classique de degré 2, auto-joint, défini au voisinage de [0, 1] × B, de symbole principal réel r(x, y, η), on définit les fonctions r 0 et r 1 par r(x, y, η) = r 0 (y, η) + xr 1 (y, η) + O(x 2 ).

. 2 )Proposition 1 . 3 . 5 .

 2135 où A est une espace des matrices n × n d'opérateurs pseudo-différentiels classiques d'ordre 0, à support compact dans R + × R d et σ(A) est le symbole principal d'opérateur A, qui est une matrice de fonctions lisses, homogènes d'ordre 0 dans la variable ξ, c'est-à-dire une fonction sur S * ((R + × R d )).D'après[START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF] Théorème 15], nous avons la proposition suivante. La mesure de défaut µ vérifie les propriétés suivantes:

CHAPTER 1 .

 1 INTRODUCTION(FRANÇAIS) Proposition 1.5.8. Nous désignons par K = [-D∆+A| B] l'opérateur de Kalman associé au système (1.5.22). Alors, Ker(K * ) = {0} est équivalent à la satisfaction de toutes les conditions suivantes 1. n 1 = 1; 2. (A 2 , B) satisfait la condition algébrique de rang de Kalman (voir Définition 1.2.3);

  µ-almost everywhere continuous such that the pull back of the measure µ by M (i.e., the measure P * µ = M * µM defined for a ∈ C 0 (SZ)) by M * µM, a = µ, M aM * satisfies d ds P * µ = 0.

Proposition 3 . 1 . 3 .

 313 For System Equation (3.1.2), the Π-null controllability is equivalent to the Π-exact controllability.

.1. 11 )

 11 This is an easy consequence of Proposition 3.1.3, the conservation of energy for system Equation (3.1.2) and [7, Chapter 4, Proposition 2.1].

3 of Chapter 1 .

 1 Let B = {y ∈ R d : |y| < 1} be the unit ball in R d . In a tubular neighbourhood of the boundary, we can identify M = Ω × R t locally as [0, 1[×B. More precisely, for z ∈ M = Ω × R t , we note that z = (x, y), where x ∈ [0, 1[ and y ∈ B and z ∈ ∂M = ∂Ω × R t if and only if z = (0, y). Now we consider R = R(x, y, D y ) 3.3. GEOMETRIC PRELIMINARIES which is a second order scalar, self-adjoint, classical, tangential and smooth pseudodifferential operator, defined in a neighbourhood of [0, 1] × B with a real principal symbol r(x, y, η), such that ∂r ∂η = 0 for (x, y) ∈ [0, 1[×B and η = 0. (3.3.1)

  .4.14), we know that Equation (3.4.20) is still true for P * V (0) ∈ N (T -δ). Taking P * V (0) ∈ N (T ), for ∈]0, δ[, we have e -A P * V (0) ∈ N (T -δ).

  the system Equation (3.4.7) and satisfies that b 1 κ 1 v 1 + • • • + b n κ n v n = 0 in (0, T ) × ω. Thus, by the definition of N (T ) (see Equation (3.4.19

  0 in ω, Since the system satisfies the unique continuation of eigenfunctions, we know that e 0 1 = • • • = e 0 n = 0 in Ω, which implies that E = N (T ) = {0}. Hence, from Equation (3.4.8) with P * = Id, we obtain the observability inequality

Proposition 3 . 6 . 1 .Remark 3 . 6 . 2 .

 361362 (D, B) satisfies the Kalman rank condition if and only if rank(B i ) = n i ≤ m. If m = 1, we know that rank(B i ) = n i ≤ 1. Thus, we obtain n i = 1 and B i = b i = 0. This implies that every entry of control matrix B is nonzero and all speeds d i are distinct. We recover the result of Remark 1.1 in[START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]. If m ≥ 2, we can allow some blockd i Id n i is of size n i × n i , with n i ≥ 2.For example, take D = diag(1, 1, 2) and B = , we know that rank[D|B] = 3 which means that the matrix [D|B] has full rank.

( 4 . 1 . 1 )For j = 1 , 2 ,

 41112 we use U j = the solutions corresponding to the speed d j respectively. f ∈ L 2 ((0, T ) × ω) is the control function, which is a scalar control and acts on (0, T ) × ω. A 1 ∈ M n 1 ,n 2 (R) and A 2 ∈ M n 2 (R) are two given coupling matrices and b ∈ R n 2 . Note that System (4.1.1) is a particular case of 4.1. INTRODUCTION AND MAIN RESULTS systems of the form

Definition 4 . 1 . 2 (

 412 Usual algebraic Kalman rank condition). Let m, n be two positive integers. Assume X ∈ M n (R) and Y ∈ M n,m (R). We introduce the Kalman matrix associated to X and Y given by [

Definition 4 . 1 . 3 (

 413 Kalman operator). Assume that X ∈ R n×n and Y ∈ R n×m . Moreover, let D ∈ R n×n be a diagonal matrix. Then, the Kalman operator associated with (-D∆ + X, Y ) is the matrix operatorK = [-D∆ + X|Y ] : D(K ) ⊂ (L 2 ) nm → (L 2 ) n ),where the domain of the Kalman operatorD(K ) = {u ∈ (L 2 ) nm : K u ∈ (L 2 ) n }.Definition 4.1.4 (Operator Kalman rank condition). We say that the Kalman operator K satisfies the operator Kalman rank condition if Ker(K * ) = {0}. The operator Kalman rank condition can be reformulated as follows. Proposition 4.1.5. [6, Proposition 2.2] The operator Kalman rank condition is equivalent to the following spectral Kalman rank condition: rank[(λD + X)|Y ] = n, ∀λ ∈ σ(-∆).

Proposition 4 . 1 . 6 .

 416 We use the same notations as in Definition 4.1.3. We denote by K = [-D∆ + A| B] the Kalman operator associated with System (4.1.2). Then, Ker(K * ) = {0} is equivalent to satisfying all the following conditions: 1. n 1 = 1; 2. (A 2 , B) satisfies the usual Kalman rank condition (See Definition 4.1.2);
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  there exists a control function f ∈ L 2 ((0, T ) × ω) such that the solution U of (4.1.1) satisfying (U, ∂ t U )| t=0 = (T U 0 , T U 1 ) and (U, ∂ t U )| t=T = T ( Ũ0 , Ũ1 ) and T (U ) is a solution of the associated System (4.1.7) for an appropriate control function g.

Remark 4 . 1 . 15 .

 4115 By the definition above, in order to prove the controllability of System (4.1.1), we first look for an invertible transform to change the system into the simpler but equivalent System (4.1.7). Then, we prove the result for the simpler System (4.1.7) to conclude the exact controllability of the general System (4.1.1). Remark 4.1.16.

  Then the transform is given by T

3 .Proposition 4 . 2 . 1 .( 4 . 2 . 1 )

 3421421 The Kalman operator K = [-D∆ + A| b] associated with System (4.1.1) satisfies the operator Kalman rank condition, i.e. Ker(K * ) = {0}. Then the system (4.1.1) is exactly controllable in the sense of Definition 4.1.14. If (A, b) does not satisfy the usual algebraic Kalman rank condition (see Definition 4.1.2), for any non zero initial data (y 0 , y 1 ) = (0, 0), the ordinary differential system d 2 y dt 2 = A * y in (0, T ), (y, dy dt )| t=0 = (y 0 , y 1 ), has a non zero solution satisfying b * y(t) = 0 for every t ∈ (0, T ). Proof. Define z = y dy dt

[ 8 .

 8 Ã| b] = 2rank[A|b]. Since (A, b) does not satisfy the usual algebraic Kalman rank condition, i.e., rank[A|b] < n, we know that rank[ Ã| b] < 2n, which implies that ( Ã, b) does not satisfy the usual algebraic Kalman rank condition. Thanks to Kalman rank condition applied to the ordinary differential system u = Ãu+ bf , we infer that this system is not controllable. Thus, there exists a non zero solutionζ(t) = ζ 1 (t) ζ 2 (t)∈ R 2n to the associated adjoint system dz dt = Ã * z satisfying that b * ζ(t) = 0 for every t ∈ (0, T ). Then, provided with y(t) = ζ 1 (t), we derive a non zero solution y(t) for the second-order systemd 2 y dt 2 = A * y satisfying that b * y(t) = b * ζ 1 (t) = b * ζ(t) = 0 for every t ∈ (0, T ).Now we go back to the proof of Proposition 4.1.Proof of Proposition 4.1.8. According to Proposition 4.1.5, since K = [-D∆+A| b] does not satisfy the operator Kalman rank condition, there exists λ 0 ∈ σ(-∆) such that rank[(λ 0 D -A)| b] * < n. As a consequence of Proposition 4.2.1, there exists a non zero solution χ λ 0 (t) ∈ R n to the following ordinary differential system: d 2 χ dt 2 = (λ 0 D -A * )χ in (0, T ), (χ, dχ dt )| t=0 = (χ 0 , χ 1 ) = (0, 0), 4.2. PRELIMINARIES self-adjoint, classical, tangential and smooth pseudo-differential operator, defined in a neighbourhood of [0, 1] × B with a real principal symbol r(x, y, η), such that ∂r ∂η = 0 for (x, y) ∈ [0, 1[×B and η = 0. (4.2.9)

Remark 4 . 2 . 4 .

 424 We denote the Melrose cotangent compressed bundle by b T * M and the associated canonical map by j : T * M → b T * M . j is defined by j(x, y, ξ, η) = (x, y, xξ, η).(4.2.12)

  µ-almost everywhere continuous such that the pull back of the measure µ by M (i.e., the measure P * µ = M * µM defined for a ∈ C 0 (SZ)) by M * µM, a = µ, M aM * satisfies d ds P * µ = 0.

= a 11 a 12 a 21 a 22 , B = b 1 b 2 ,

 2 2.7] for this theorem. Now we set Ã, B, and α by à and α = (α 1 , α 2 ). Then, we obtain A(3) = 0 α 0 à , B(3) = 0 B . As a consequence of (4.1.6), we know that ( Ã, B) satisfies the Kalman rank condition. Hence, by the Brunovský we have the the following observability inequality:

Proposition 4 . 3 . 5 .

 435 For solutions of System (4.3.25), there exists a constant C > 0 such that

( 4 . 3 . 35 )

 4335 If we denote the general bicharacteristic by s → γ(s), then along γ(s) there exists a continuous function s → M (s) such that M satisfies the differential equation: d ds (M (s)) = iE(τ )M (s), M (0) = Id and µ 2 is invariant along the flow associated to M , which means that d ds (M * µ 2 M ) = 0.

µ 2 , and e 2 = 0 1 .

 21 (0) = M ( ) * µ 2 ( )M ( ). Let e 1 = 1 0 By a straightforward computation using the special form of M , we have M ( )e 2 = iτ M ( )e 1 + e 2 , Hence, we obtain, µ 2 (0)e 2 = M ( ) * µ 2 ( )M ( )e 2 = M ( ) * µ 2 ( )(iτ M ( )e 1 + e 2 ) = iτ µ 2 (0)e 1 + M ( ) * µ 2 ( )e 2 .

N 3 (satisfies α 1 d 2 1

 31 T ) = {W ∈ L 3 0 × L 3-1 such that the associated solution of System(4.3.25) 

Lemma 4 . 3 . 10 . 2 Systemα 1 d 2 1 (d 2 -d 1 ) 2 w 1,k 1 + w 2,k 2 2 dxdt → 0

 43102121120 N 3 (T ) = {0}. Assume for the moment that Lemma 4.3.10 holds. As for the proof of the observability inequality (4.3.26), we proceed by contradiction. If the observability inequality (4.3.26) were false, we could find a sequence (W k ) k∈N of solutions to 4.3. PROOF OF THE SUFFICIENT PART OF THEOREM 4.1.17 IN THE CASE N 2 = as k → ∞. (4.3.39)

L 3 - 1 ×L 3 - 2 ,

 3132 which contradicts to the fact that W (0) = 0. Then we can conclude the observability inequality(4.3.26).It only remains to prove Lemma 4.3.10.Proof of Lemma 4.3.10. According to the relaxed observability inequality (4.3.27), for W ∈ N (T ), we obtain that ||W (0)|| 2

  As a consequence, by the definition of F , y satisfies the equation 4.4. PROOF OF THE SUFFICIENT PART OF THEOREM 4.1.17 Proof of Lemma 4.4.4. Using the definitions of v 1 1 and v 2 s and the equation D 2 t u 1 1 + d 1 ∆ = α s v 2 s , we obtain

y 1 j = D t y 1 j- 1 + α s d 2 d j 1 (d 1 -d 2 ) j+1 v 2 s+j= D n 2 -α s d j-k 1 (d 1 - 2 s+j-k- 1 + α s d 2 d j 1 (d 1 -d 2 )

 11112221121112 d 2 ) j-k (-d 1 ∆) k u j+1 v 2 s+j .

y 1 j = D n 2 -α s d j+1-k 1 (d 1 -d 2 )

 2112 j+1-k (-d 1 ∆) k u 2 s+j-k

- 1 such 1 (d 1 - 2 L 25 )×L n 2

 1112252 that the associated solution of System(4.4.15) satisfiesα s d n 2 +1-s d 2 ) n 2 +1-s w 1 1 (x, t) + w 2 n 2 (x, t) = 0, ∀(x, t) ∈ (0, T ) × ω}.With the relaxed observability inequality of (4.4.16), we only need to prove the following key lemma: Lemma 4.4.10. N n 2 (T ) = {0}. Proof of Lemma 4.4.10. According to the relaxed observability inequality (4.4.16), for W ∈ N n 2 (T ), we obtain that ||W (0)|| We know that N n 2 (T ) is a closed subspace of L n 2 +1 0 +1 -1

S j (λ) = A 1 j-1 k=0 d k 1 λ

 11 k (d 2 λ + A 2 ) j-1-k b. (4.6.2) Titre : Contrôlabilité de systèmes des ondes couplées Mots clés : contrôlabilité, systèmes couplés, équation d'onde Résumé : Dans cette thèse, nous étudions les théories étroitement liées du contrôle et les propriétés de la continuation unique, pour des équations et systèmes des ondes linéaires. Nous avons étudié la contrôlabilité simultanée des systèmes des ondes dans un domaine ouvert de ℝ 𝑑𝑑 . Nous obtenons un résultat de contrôlabilité partielle sur un espace co-dimensionnel fini pour des équations d'onde couplées par une seule fonction de contrôle. Pour la propriété de continuation unique des fonctions propres, nous avons donné un contreexemple pour montrer que dans certaines métriques, la propriété de continuation unique n'est pas vraie. De plus, nous avons étudié différentes conditions pour garantir la propriété de continuation unique. Nous avons étudié également notre résultat au cas de coefficients constants et éventuellement de fonctions de contrôle multiples. Dans ce contexte, nous avons prouvé que la propriété de contrôlabilité est équivalente à une condition de rang de Kalman appropriée. Nous avons étudié un problème de contrôlabilité exact dans un domaine ouvert Ω de ℝ 𝑑𝑑 , pour un système des ondes couplées, avec des vitesses différentes et une seule commande agissant sur une sous-ensemble ouvert 𝜔𝜔 satisfaisant la condition de contrôle géométrique et sur une seule vitesse. Les actions pour les équations des ondes avec la deuxième vitesse sont obtenues par un terme decouplage. Tout d'abord, nous construisons des espaces d'états appropriés avec desconditions de compatibilité associées à la structure de couplage. Deuxièmement, dans ces espaces bien préparés, nous prouvons que le système des ondes couplées est exactement contrôlable si et seulement si la structure de couplage satisfait à une condition de rang de Kalman de l'opérateur. Title: The Controllability of the Coupled Wave Systems Keywords: Controllability, Coupled systems, Wave equations

  On dit que la mesure µ est invariante le long du flot associé à M . De plus, la fonction M est continue et le long de toute bicaractéristique généralisée la matrice M est solution d'une équation différentielle dont les coefficients peuvent être explicitement calculés en termes de géométrie et des différents termes de l'opérateur P .

	Pour l'équation différentielle de M , on peut voir [14, Section 3.2].
	1.4 La contrôlabilité d'une équation d'onde scalaire

* CHAPTER 1. INTRODUCTION(FRANÇAIS) vérifie d ds P * µ = 0. Dans cette section, nous donnons une preuve schématique de la contrôlabilité d'une équation d'onde scalaire telle que nous l'avons introduite en (1.2.1):

  ). Par conséquent, il existe une mesure de défaut microlocale µ associée à la suite bornée v k . D'après la section précédente, nous savons que µ est invariant le long du flot bicaractéristique généralisé. De plus, nous savons que µ|

]0,T [×ω = 0 par (1.4.7). Par conséquent, on obtient µ ≡ 0. En combinant avec la loi de conservation de l'énergie de l'équation d'onde homogène (1.4.2), il y a une contradiction avec l'hypothèse (1.4.5). Par conséquent, nous prouvons l'inégalité d'observabilité faible (1.4.4). 3. (Estimations à basse fréquence) Nous utilisons l'inégalité d'observabilité faible (1.4.4) pour montrer l'observabilité originale (1.4.3). Nous argumentons également par contradiction. Supposons que (1.4.3) soit fausse, alors, il existe une séquence

  Theorem 2.2.8. The wave equation (2.2.1) is null controllable if and only if the adjoint equation

  , where 1≤i≤s n i = n and d i (1 ≤ i ≤ s) are all distinct. And we can always rearrange the lines of the system Equation (3.2.2) to ensure that this property is verified:

	3.6. CONSTANT COEFFICIENT CASE WITH MULTIPLE CONTROL
		FUNCTIONS	
	diagonal matrix D has the form D =	  	d 1 Id n 1	. . .	  
				d s Id ns	

  .1.8) Definition 4.1.10 (State space). The state space for System (4.4.1) is defined by

  .2.16) Lemma 4.2.10. The microlocal defect measure µ defined in Proposition 4.2.9 satisfies that µ1 H∪E = 0 where H is the set of hyperbolic points and E is the set of elliptic points as defined in Subsection 4.2.3.

  2 1 , • • • , w 2 n 2 , D t w 1 1 , D t w 2 1 , • • • , D t w n 2 2 ) t

			α s d 2 d 1 -d 2	1 v 2 s			
	= -	s j=1	α j D n 2 -s+2 t	u 2 j +	α s d 2 d 1 -d 2	2 v 2 s +	α s d 2 d 1 -d 2	(d 2 -d 1 )∆v 2 s
	= -	s j=1	α j D n 2 -s+2 t	u 2 j -	α s d 2 d 1 -d 2	D t v 2 s+1 -α s d 2 ∆v 2 s .
	By the definition of v 2 s , we obtain that		
	-α s D n 2 -s+2 t	u 2 s -α s d 2 ∆v 2 s = -α s (D 2 t v 2 s + d 2 ∆)v 2 s
						= α s 2 v 2 s	
						= -α s D t v 2 s+1 .
	This implies that							
			s-1					
	1 y 1 0 = -					
			j=1					

En considérant l'inégalité d'observabilité, nous utilisons la norme localisée (restreinte dans le sous-domaine ω) de la somme des solutions pour contrôler la norme d'énergie totale des données initiales.

Nous avons besoin d'une propriété de continuation unique pour les fonctions propres associées au système d'onde.

Étape 3: Nous utilisons la méthode d'unicité de Hilbert pour dériver l'inégalité d'observabilité, puis nous suivons la même procédure que dans la section précédente. Nous établissons une inégalité d'observabilité faible et prouvons cette inégalité d'observabilité faible par l'argument de contradiction et la propagation des mesures de défaut pour les systèmes. Enfin, la propriété de continuation unique est donnée par la condition de rang de Kalman.

(v 1 -2v

) -D t v

= 0. (2.5.19)

y = F. (4.4.8)

Remerciements

From the definition of the measures, we obtain

where v k i is the extension by 0 across the boundary of Ω. From Proposition 3.4.4 we have Lemma 3.4.8. Each measure µ i is supported on the characteristic manifold

and is invariant along the generalised bicharacteristic flow associated to the symbol p i = t ξK i (x)ξ -τ 2 Lemma 3.4.9. The measures µ i and µ l are mutually singular in (0, T ) × ω, for i = l. Remark 3.4.10. We recall that two measures µ and ν are singular if there exists a measurable set A such that µ(A) = 0 and ν(A c ) = 0.

Proof. This follows easily from Lemma 3.4.8 and the assumption 2 in Theorem 3.2.5, which implies that over ω, the two characteristic manifolds Char(p i ) and Char(p l ) are disjoint. Proof. For ∀(t, x) ∈ (0, T ) × ω, we have that Char(p i ) ∩ Char(p l ) = {0}, i = l.

Then we choose a cut-off function β i ∈ C ∞ (T * R × R d ) homogeneous of degree 0 for |(τ, ξ)| ≥ 1, with compact support in (0, T ) × ω such that

Since A ∈ A with the compact support in (0, T ) × ω, for some ϕ ∈ C ∞ 0 ((0, T ) × ω), we have that A = ϕAϕ. We choose φ ∈ C ∞ 0 ((0, T ) × ω) such that φ| supp(ϕ) = 1 i.e, φϕ = ϕ. Now let us consider the (Av k i , v k l ) L 2 . First, we have that

For convenience, we also denote We shall give the proof later in the Subsection 4.2.1.

Remark 4.1.9. From Proposition 4.1.6 and Proposition 4.1.8, we deduce that if n 1 > 1, System (4.1.1) is not null controllable.

From now on, we always assume that K = [-D∆ + A| b] satisfies the operator Kalman rank condition. Before we give a precise definition of the exact controllablity of System (4.1.1), we first look at a simpler system. Recall that f ∈ L 2 ((0, T ) × ω). For a fixed 1 ≤ s ≤ n 2 , we consider the following system with a nonzero α s

(4.1.7)

Outline of the chapter

The outline of this chapter is the following. Section 4.2 is devoted to introducing some preliminaries. In Subsection 4.2.1, we present the necessity of the operator Kalman rank condition by giving the proof of Proposition 4.1.8. Then Subsection 4.2.2 is devoted to the "additional regularity" property for coupled wave equations. Subsection 4.2.3 includes the description of the boundary points, and give the precise definition of general bicharacteristics and the order of tangential contact with the boundary. Subsection 4.2.4 introduces the microlocal defect measures, which are the basic tool for our proof.

In Section 4.3, we focus on the the special case n 2 = 2 to show the whole procedure of the proof of the controllability of the coupled wave system. Subsection 4.3.1 is devoted to reformulatiing the system with the help of the Brunovský normal form. Then in Subsection 4.3.2 we introduce the simpler system with one of the parameters being 0. We demonstrate the proof under this simple setting. In the following Subsection 4.3.3, we present the result of the general systems in the very similar way of the simpler case.

In Section 4.4, we plan to deal with any number of equations. Subsection 4.4.1 provides the corresponding simpler system in analogue with the Subsection 4.3.2 and give the clear meaning of the compatibility conditions under the general setting. Then provided with the compatibility conditions, we are able to present the proof of the controllability result of Theorem 4.4.5. In the Subsection 4.4.2, we give the reformulation procedure of the general system.

In the concluding Section 4.5, we give some open problems related to our work, and explanations on the difficulties to solve them.

In the Appendix, we include the proof details of Proposition 4.1.6.

Preliminaries

We divide this section into three parts. The first part is devoted to considering the regularities of the solutions of two coupled wave equations with different speeds.

The second part aims to introduce the geometric preliminaries including the conceptions of general bicharacteristics and order of contact. The third part mainly contains the definition and some properties of the microlocal defect measure.

On necessity of the operator Kalman rank condition

In this section, we are going to give the proof of Proposition 4.1.8. At first, we introduce the following proposition for the ordinary differential systems of second order.

PRELIMINARIES

satisfying b * χ λ 0 (t) = 0 for every t ∈ (0, T ). Then, let Φ(t, x) = χ λ 0 (t)ϕ λ 0 (x), where ϕ λ 0 is the normalized eigenfunction of -∆ associated with λ 0 , i.e.,||ϕ λ 0 || L 2 = 1. Therefore, Φ satisfies the following system:

Now we choose an initial state (U 0 , U 1 ) = (χ 1 ϕ λ 0 , -χ 0 ϕ λ 0 ) = (0, 0). Then we consider System (4.1.2) with initial state (U 0 , U 1 ). Suppose that we could arrive at a target state (U,

, by integrating by parts, we obtain that

On the regularity of coupled wave equations

We consider the system:

Our next result gives a property of regularity for the solution of (4.2.4). Such kind of extra regularity result was also observed in [START_REF] Dehman | Controllability of two coupled wave equations on a compact manifold[END_REF]Theorem 1.4], in which the authors stated the corresponding result in the case of a compact manifold without boundary. Here we will present a different proof.

Lemma 4.2.2. Assume that the initial conditions satisfy

Then, there exists a unique solution to System (4.2.4) satisfying

Proof. Since u 2 satisfies a wave equation with a source term f ∈ L 1 ((0, T ), H σ Ω (∆)), it is classical that there exists a unique solution

). Now let us consider the first equation

as a wave equation with a source term u 2 ∈ L 1 ((0, T ), H σ+1 Ω (∆)). Thus, we know that there exists a unique solution

. Now, se need to state an extra regularity property for u 1 . Applying the d'Alembert operator 2 on both sides of (4.2.7), we obtain that

Now, we remark that the initial condition for 2 u 1 is the following:

In addition, we also know that -

. Hence, we obtain that

We conclude that

Generalized bicharacteristics

This part has many repeated contents as we have already presented in Section 2. 

Microlocal defect measure

In this section, we will give two approaches to construct the microlocal defect measures. The first one is based on the article by Gérard and Leichtnam [START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF] for Helmoltz equation and Burq [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF] for wave equations. The other one follows the idea in the article [START_REF] Lebeau | Équation des ondes amorties[END_REF] by Lebeau and we rely on the article [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] by Burq and Lebeau for the setting of wave systems. In the first approach, we can compare two different measures, especially the supports of two different measures. In the later proof, it is crucial to distinguish the measures with different speeds based on this idea. On the other hand, we use the second approach to describe the way the polarization of one measure is turning.

n , converging weakly to 0 and such that

Let u k be the extension by 0 across the boundary of Ω. Then the sequence

Let us denote by M + the set of nonnegative Radon measures on T * (R + × R d ). Following [12, Section 1], we have the existence of the microlocal defect measure as follows: Proposition 4.2.6 (Existence of the microlocal defect measure-1). There exists a subsequence of (u k ) (still noted by (u k )) and µ ∈ M + such that

.14)

where σ(A) is the principal symbol of the operator A (which is a matrix of smooth functions, homogeneous of order 0 in the variable ξ, i.e. a function on S * ((R + × R d )).

From [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF]Théorème 15], we have the following proposition.

Proposition 4.2.7. For the microlocal defect measure µ defined above, we have the following properties.

• The measure µ is supported on the intersection of the characteristic manifold with R + × Ω: 

, and α = (α 1 , α2 ) = α P -1 .

Furthermore, according to the third statement of Proposition 4.1.6, we know that

Using change of variables

we obtain a simplified system

Therefore, the exact controllability of System (4.3.1) is equivalent to the exact controllability of System (4.3.5). Classically, given the initial conditions

the solutions ũ2 1 and ũ2 2 satisfy

As for the regularity of the solution ũ1 1 , it depends on the coupling term α1 ũ2 1 + α2 ũ2 2 . Thus, it is natural to discuss in two different cases, i.e. α2 = 0 and α2 = 0.

The case α2 = 0

In what follow, we will present in details the proof of Theorem 4.1.17 firstly in the case n 2 = 2 (and n 1 = 1 by Proposition 4.1.6), and A 1 = (1, 0). Here, for the sake of simplicity we remove the˜in our notations and we investigate the system

in Ω, (4.3.6) where f is supported in (0, T ) × ω. For this system, we have the following wellposedness property. Proposition 4.3.2. Assume that the initial conditions satisfy

Additionally, assume that

) Then, the solutions u 1 1 , u 2 1 and u 2 2 satisfy

Proof of Proposition 4.3.2. Classically, given the initial conditions

the solutions u 2 1 and u 2 2 satisfy

According to Lemma 4.2.2, given the initial condition

Let us first do some reformulation for the system. Define the transform S by

(4.3.10)

We need to invert the previous relations by expressing

We use the equations (4.3.6). Firstly, for the term u 2 2 = v 2 2 , there is nothing to do. Then, we look at the term u 2 1 . We need to "invert" in some sense the operator D t . We use the equation 2 u 2 1 +u 2 2 = 0. We apply D t on the equation v 2 1 = D t u 2 1 , and we obtain

Hence, we obtain that

For the last term u 1 1 , we apply D t on the equation v 1 1 = D 3 t u 1 1 and we obtain

Therefore, from the above computations, (4.3.10), and (4.3.11), an inverse transform is the following:

(4.3.12)
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From the regularity results given in (4.3.8), (4.3.9) and the relations (4.3.12), we obtain that

Moreover, from (4.3.6) and (4.3.12), (v

2 ) satisfies the following system:

Using the identity

we obtain that

Using (4.3.16) in the first equation of (4.3.14), we also deduce that

Now, let us define

Then, by (4.3.18) and (4.3.17), we obtain that

We also remark that by using (4.3.15),

Using the last equation of (4.3.14) together with (4.3.19) and (4.3.20), we deduce that

Let us now express y with respect to the original variables u 1 1 , u 2 1 , u 2 2 . From (4.3.18), (4.3.10) and the first equation of (4.3.6), we obtain that

Combining with the second equation of (4.3.6), we obtain

Hence, we obtain

Now, we define

Then, ỹ satisfies

CONTROL OF COUPLED WAVE SYSTEMS

The initial condition associated to ỹ is given by

Hence, from our Hypothesis (4.3.7) together with (4.3.8) and (4.3.9), we deduce that

. By (4.3.22) and (4.3.13), ỹ satisfies a wave equation with a source term in L 1 (R, H 0 Ω (∆)). We deduce that

Taking into account the last line of (4.3.8), this implies that

Now we consider the exact controllability of System (4.3.6) in the space H 1 ×H 0 , according to Proposition 4.3.2.

We have the following result:

2. Ω has no infinite order of tangential contact with the boundary.

Then System (4.3.23) is exactly controllable in H 1 × H 0 (as defined in (4.1.8)).

Remark 4.3.4. Recall that here the state space H 1 × H 0 is given by

Proof of Theorem 4.3.3. By (4.3.12), proving Theorem 4.3.3 is equivalent to proving the exact controllability of the following system:

.24) with initial conditions

Recall that we defined L k s = (H s Ω (∆)) k in (4.1.6). According to the Hilbert Uniqueness Method of J.-L. Lions [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], the exact controllability of System (4.3.24) is equivalent to proving the following observability inequality: there exists C > 0 such that for any solution of the adjoint system:

Here µ 2 = (µ 2 (i, j)) 1≤i,j≤2 is the matrix measure associated with the sequence

2 ) k∈N and w j,k i is the extension by 0 across the boundary of Ω(1 ≤ i, j ≤ 2). Moreover, since the two characteristic manifolds Char(p d 1 ) and Char(p d 2 ) are disjoint, µ 1 and µ 2 are mutually singular in (0, T ) × Ω, from the first point of Proposition 4.2.7. Therefore, we obtain the following property: Lemma 4.3.6. For A ∈ A with compact support in (0, T ) × Ω and for 

First, we have that

For the first term

, by the Cauchy-Schwarz inequality, therefore we obtain that

From the definition of the measure µ 1 , we obtain

From Proposition 4.2.7, we have that supp (µ 1 ) ⊂ Char(p d 1 ). In addition, by the choice of β, we know that 1 -β ≡ 0 on supp (µ 1 ), which implies that µ

Other terms are dealt with similarly. One can refer to [START_REF] Niu | Simultaneous Control of Wave Systems[END_REF]Lemma 4.10] for more details.

Let us go back to the proof of Proposition 4.3.5. We know that

By Lemma 4.3.6, we know that

As a consequence, we know that

Thus, we know that µ 1 | (0,T )×ω = 0, and µ 2 (2, 2)| (0,T )×ω = 0.

For µ 1 , since µ 1 is invariant along the along the general bicharacteristics of p d 1 , combining with GCC, we obtain as usual that µ 1 ≡ 0. For µ 2 , we consider another definition of the microlocal defect measure. From definition in Proposition 4.2.9, we know that there exists a measure µ 2 such that

Here

surely, we obtain that µ 2 (2, 2)| (0,T )×ω = 0. In the following part, we aim to prove that µ 2 = 0. The basic idea is to utilise Lemma 4.2.11. Here we recall this lemma under our setting of this adjoint system.

where W is defined in (4.3.37). Since N (T ) is of finite dimension, it is complete for any norm. Setting δ > 0, we know that (4.3.40) is still true for W ∈ N (T -δ).

Taking W ∈ N (T ), for ∈]0, δ[, we have e -A V ∈ N (T -δ). For α large enough, as → 0 + ,

As a consequence, we obtain N (T ) ⊂ D(A ). If we denote by W (t) the solution of

and stable by the action of the operator A , it contains an eigenfunction of A . Let us take

Let us define a change of variables:

Similarly, by the equation

) is the solution of the elliptic System (4.3.41) verifying ϕ| ω = 0, by usual unique continuation, we obtain that ϕ ≡ 0 on Ω. According to Lemma 4.2.2, given the initial condition

the solution ũ1 1 to the first line of (4.3.5) satisfies

For technical reasons, we would like to work in symmetric spaces. We introduce a change of variables

with the inverse transform defined by

The exact controllability of System (4.3.5) is equivalent to the exact controllability of the system:

42) It is equivalent to proving the following observability inequality: ∃C > 0 such that for any solutions of the adjoint system 

We follow the same procedure to prove the inequality (4.3.44) as we presented in Subsection 4.3.2. The proof is totally similar for the high frequency part. For the low frequency part, the same computations lead to consider a unique continuation property of the form

which can be treated exactly in the same way as 4.3.41.

4.4 Proof of the sufficient part of Theorem 4.1.17

We organize this section a little bit differently fro the previous section. We start by a model problem to introduce the compatibility condition in this setting. We follow by a reformulation procedure to put System (4.1.2). At last, we finish the proof of our main Theorem 4.1.17.

The model case

Let f ∈ L 2 ((0, T ), L 2 (Ω)). For a fixed 1 ≤ s < n 2 , we consider the following system as a model problem 

Then, the solution

Furthermore, we have

Proof. As we have shown in the proof of Proposition 4.3.2, it is classical to obtain the regularity of the solutions following Lemma 4.2.2. Now we focus on the proof of the compatibility conditions. We perform the similar reformulation for the solutions to (4.4.1):

The transform above is invertible, and there are four different cases for the form of the inverse, that is, n 2 and n 2 -s are both even or odd, n 2 is even while n 2 -s is odd and the converse, that we do not detail here. We perform the same strategy as we have already shown in the proof of the Proposition 4.3.2. Thus, we obtain a system for v 

We focus on the first equation. Let

As a consequence, we know that y 1 0 satisfies the equation

We have the following lemmas, which are proved afterwards. Lemma 4.4.2. y 1 j (1 ≤ j ≤ n 2 -s -1) satisfies the equation

y satisfies the equation In general, y 1 j is in the following form

In particular, for y, we have

Assume for the moment that these Lemmas or true and let us complete the proof of Proposition 4.4.1. Define

). Now we check the initial conditions of the solution y Proof of Lemma 4.4.2 and Lemma 4.4.3. We prove these lemmas by induction. For y 1 0 , according to (4.4.4), we know y 1 0 satisfies (4.4.5) for j = 1. Assume that for l < j, y 1 l satisfies the equation

It is equivalent to proving the exact controllability of the following system:

(4.4.9) Here we use the transform S by

(4.4.10)

And we use S -1 to denote the inverse transform formally by

(4.4.11)

Then, we treat exactly the same way as we did in the proof of Proposition 4.3.2 to obtain the form of the inverse transform of S. There are two different cases. For n 2 = 2k + 1, which is an odd integer, we are able to obtain that

It is similar for the even integer n 2 = 2k: According to the Hilbert Uniqueness Method, we only need to prove the observability inequality

for any solution of the adjoint system:

with initial conditions

, where the operators (Λ j ) 1≤j≤n 2 and ( Λj ) 1≤j≤n 2 are uniquely determined by the transform 4.4.10 and additionally are bounded operators in L 2 (Ω). As usual, we divide the proof of the observability inequality (4.4.14) into two steps.

Step 1: establish a relaxed observability inequality.

First, we can establish a relaxed observability inequality for the adjoint System (4.4.15).

Proposition 4.4.6. For solutions of System (4.4.15), there exists a constant C > 0 such that 

By the continuity of the solution with respect to the initial data of System (4.3.25), we know that the sequence

. We have W k satisfying the following system

Hence, we obtain two microlocal defect measures µ 1 and µ 2 associated with (w 1,k 1 ) k∈N and (W 2,k ) k∈N respectively. From the definition in Proposition 4.2.6, we know that

Here µ 2 = (µ 2 (i, j)) 1≤i,j≤n 2 is the matrix measure associated with the sequence

k∈N and moreover, w 1,k 1 and w 2,k i is the extension by 0 across the boundary of Ω(1 ≤ i ≤ n 2 ). As we already presented in the Subsection 4.3.2, the two measures are mutually singular in (0, T ) × Ω. Then provided with

CHAPTER 4. CONTROL OF COUPLED WAVE SYSTEMS

Thus, we know that µ 1 | (0,T )×ω = 0, and µ 2 (n 2 , n 2 )| (0,T )×ω = 0.

For µ 1 , since µ 1 is invariant along the along the general bicharacteristics of p d 1 , combining with GCC, we know that µ 1 ≡ 0. For µ 2 , we consider another definition of the microlocal defect measure. From definition in Proposition 4.2.9, we know that there exists a measure µ 2 such that

Here 

for the sequence

k∈N which satisfies the following system:

If we denote the general bicharacteristic by s → γ(s), then along γ(s) there exists a continuous function s → M (s) such that M satisfies the differential equation:

and µ 2 is invariant along the flow associated to M , which means that

Here we denote by E(τ ) the matrix

Remark 4.4.8. For the differential equation satisfied by M and the form of the matrix E, one can refer to [14, Section 3.2] for more details.

Remark 4.4.9. Here under our setting, the matrix M has the following properties:

1. M has the form of

, where τ is a nonzero constant along the generalized bicharacteristic.

2. For s = 0, the minimal polynomial for M is its characteristic polynomial, i.e. (X -1) n 2 .

Let e

, we know that e 1 is the only eigenvector for M (s), s = 0.

For any point ρ 0 ∈ supp(µ 2 ), by the geometric control condition (GCC), we know that there exists t 0 > 0 and a unique general bicharacteristic s → γ 0 (s) such that γ(0) = ρ 0 and γ(t 0 ) ∈ π -1 ((0, T ) × ω). Since µ 2 is invariant along the flow associated to M , i.e. d ds (M * µ 2 M ) = 0, we obtain that

And moreover, there exists > 0, which is sufficiently small, such that γ 0 ((t 0 -

Hence, µ 2 (0)M (-t 0 )e n 2 = 0. Here we notice that M (-t 0 )e n 2 cannot be an eigenvector for the matrix M (s) for s = 0. Therefore, we are able to choose t 1 ∈ (0, n 2 ) such that M (-t 1 -t 0 ) * µ 2 (0)M (-t 1 -t 0 )e n 2 = µ 2 (t 0 +t 1 )e n 2 = 0 and M (-t 0 )e n 2 and M (-t 1 -t 0 )e n 2 are linearly independent. In fact, suppose that for all s ∈ (0, n 2 ), M (-t 0 )e n 2 and M (-s-t 0 )e n 2 are always linearly dependent. Hence, we know that M (-t 0 )e n 2 ∈ Span{e 1 }, which contradicts to the fact that M (-t 0 )e n 2 cannot be an eigenvector. Then, we choose the parameters

It suffices to prove a unique continuation property for eigenfunctions of the operator

whose study is totally similar to the one of (4.3.41).

Reformulation of the system in the general case

According to Proposition 4.1.8, we already know that the operator Kalman rank condition is necessary for the exact controllability of System (4.1.1). In this section, provided with the operator Kalman rank condition Ker(K * ) = {0}, we plan to give a reformulation of System (4.1.1). As a consequence of Proposition 4.1.6, we know that (A 2 , B) satisfies Kalman rank condition. Therefore, applying Theorem 4.3.1, there exists an invertible matrix P such that we reformulate System (4.1.1) into the following system

where

. Define s = min{j : αj = 0}. Classically, given the initial conditions

According to Lemma 4.2.2, given the initial condition

For the technical view of the problem, we would like to work in symmetric spaces. So we reformulate the system by

). If we assume that n 2 = 2k +1, we can calculate by induction and using the equations in (4.4.27):

It is similar for the even integer n 2 = 2k: 

Compatibility conditions

In this section, we present the approach to obtain the compatiblility conditions for the general system (4.4.27). We perform the similar reformulation for the solutions

As in the case n 2 = 3, this transform is invertible, and there are four different cases for the form of the inverse, that is, n 2 and n 2 -s are both even or odd, n 2 is even while n 2 -s is odd and the converse. We perform the same strategy as we have already shown in the proof of the Proposition 4.3.2. Thus, we obtain a system for v

(4.4.30)

with initial conditions We focus on the first equation. Let

Then, we obtain

As a consequence, using the definition v 2 s-1 = D n 2 -s+1 t u 2 s-1 , we know that y 1 0 satisfies the equation

We have the following lemmas.

Lemma 4.4.11. y 1 j (1 ≤ j ≤ n 2 -s -1) satisfies the equation

Lemma 4.4.13. y comp satisfies the equation

Proof of Lemma 4.4.11 and 4.4.13. We prove the lemma by induction. For y 1 0 , according to (4.4.32), we know y 1 0 satisfies the lemma. Assume that for l < j, y 1 l satisfies the equation Thus, y 1 j satisfies the following equation

We deal with the terms one by one. For I 1 , using the definition v 2 s-1-j = D n 2 -s+j+1 t u 2 s-1-j , we have

For I 2 , we use the equation 2 v 2 s+j-2k = -D t v 2 s+1+j-2k to obtain
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In summary, we know

By induction, this implies that y 1 j (1 ≤ j ≤ n 2 -s -1) satisfies the equation

Following the same procedure, we obtain

= Ĩ1 + Ĩ2 + Ĩ3 .

SOME COMMENTS

The calculation for Ĩ1 and Ĩ3 remains the same. However, for Ĩ2 , the calculation remains the same except the term 2 v 2 n 2 . Using the equation

As a consequence, by the definition of F , y comp satisfies the equation 

Some comments

As we can see, the system (4.1.2) is only an example of a more general system as follows: 

In this very general system (4.5.1), there are three different kinds of effective parts acting on the controllability problem, that is, control functions and two different types of coupling. The first part is obviously the control functions. The more control functions we have, the more sophisticated structure we demand for the coupled matrix to obtain the controllability. It is very related to the Brunovský Normal Form and when we consider more than one control function, the standard Brunovský Normal Form has more than one block in the coupling matrix, which increases the complicity of the calculation to obtain an explicit formula of the compatibility conditions (as 4.6. APPENDIX: ON THE OPERATOR KALMAN RANK CONDITION Since the rank of a matrix is invariant under elementary operations on the columns (that we will shorten in column transformation in what follows), it is easy to see that rank(K(λ)) = rank( K(λ)), where Let us first prove the necessity of the conditions. Suppose that n 1 > 1 and let us prove that the Kalman matrix K(λ) is not of full rank. We know there are at least two terms Sj for j > n 2 . We take the n 1 -th column of the matrix K(λ), i.e.

Let χ(X) = X n 2 + n 2 -1 j=0 a j X j be the characteristic polynomial of the matrix A 2 . By the Cayley-Hamilton Theorem, A n 2 2 = -n 2 -1 j=0 a j A j 2 . By using an adequate column transformation, we can put the n 1 -th column into the form:

where T n 2 (λ) satisfies

Here and hereafter, we use the notation a n 2 = 1 in order to obtain a clean from. Now, we take the (n 1 -1)-th column of the matrix K(λ), i.e.

Sn 2 +1 (λ)

Again using the characteristic polynomial of the matrix A 2 , we obtain that (a j a n 2 -1 -a j-1 )A j 2 + a n 2 -1 a 0 .

By applying an adequate column transformation, we can put the (n 1 -1)-th column into the form:

T n 2 +1 (λ) 0

where T n 2 +1 (λ) satisfies (a j a n 2 -1 -a j-1 )A 1 j-1 k=0

Now consider the sum

4.6. APPENDIX: ON THE OPERATOR KALMAN RANK CONDITION Therefore, we obtain

Then we aim to find the connections between the terms T n 2 +1 (λ) and T n 2 (λ). By calculation, we obtain

Hence, we know that T n 2 +1 (λ) = ((d 1 -d 2 )λ -a n 2 -1 ) T n 2 (λ), which means that the two columns are linearly dependent. This is a contradiction to the fact that K(λ) is of full rank. So we deduce that n 1 = 1. The fact that (A 2 , B) satisfies the usual Kalman rank condition and that (4.1.4) is satisfied comes from (4.6.3) and (4.6.4) (remark that here, n -2 = n 2 -2 + 1 = n 2 -1). The sufficiency of these conditions is also straightforward, using (4.6.3) and (4.6.4).