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INTRODUCTION

1 Context of this thesis

In 2017, the ambition of gathering the universities of the metropolitan area of Nantes has
emerged, as a way of promoting the quality of the research, teaching and engineering of the
region. As such, the Université de Nantes, the École Centrale Nantes, the Centre Hopi-
talier Universitaire (CHU) of Nantes, the Institut National de la Santé et de la Recherche
Médicale (INSERM), the École des Beaux-Arts de Nantes Saint-Nazaire (EBANSN), the
École Nationale Supérieure d’Architecture de Nantes (ENSA Nantes) and the Institut de
Recherche Technologique (IRT) Jules Verne have united themselves to create Nantes Uni-
versité in 2022. This new entity gathers 43000 students, 7800 employees and 42 research
laboratories.

In order to reinforce the strategy of Nantes Université, the i-site NExT1 (Nantes Excel-
lence Trajectory) was created in 2019. It is an initiative in research, teaching and industry,
which aims at developing the excellence of Nantes Université through two fields: the health
of the future and the industry of the future. NExT yielded the increase of the scientific
production of Nantes Université by 2.5, while 5.5 times more research contracts and 9
times more industrial pulpits have been created compared to 10 years ago. In addition,
collaborations within Nantes Université have been made easier thanks to this initiative,
which contributed to the funding of intern projects, among them METCIN2 (Mechani-
cal Exploration for Tackling Cellular Interactions of Nanoparticles at the Nanoscale), to
which this thesis belongs. The former is presented in the following section.

2 Presentation of the METCIN research project

The METCIN project involves a consortium of researchers in mechanics, biology and
chemistry from three distinct laboratories which are part of Nantes Université: the In-
stitut de Recherche en Génie Civil et Mécanique UMR CNRS 6183 (GeM), the Cen-

1. More information available at https://next-isite.fr.
2. More information available at https://next-isite.fr/metcin.

1

https://next-isite.fr
https://next-isite.fr/metcin
https://next-isite.fr
https://next-isite.fr/metcin


Introduction

tre de Recherche en Cancérologie et Immunologie de Nantes-Angers Unité Inserm U1232
(CRCI2NA) and the Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation UMR
CNRS 6230 (CEISAM) laboratory. Their contributions to the METCIN project are illus-
trated in Figure 1.

Figure 1: Scientific corsortium involved in the METCIN project.

The objective of this project is to provide a multidisciplinary understanding of the
effect of the mechanical properties of nanoparticles (NPs) on the mechanisms relative
to their cellular internalization, along with the consequences of the entry of such NPs
on the cellular phenotype. As such, this project is divided into three work packages, to
be achieved within 4 years. One of them involves the development of a multiscale and
multiphysics model of the entry of NPs into cells (endocytosis), which is the subject of
this thesis. Indeed, in this work, we develop a model for the cellular uptake of rigid
elliptic NPs, which are used to investigate the influence of the aspect ratio of the NPs on
their internalization by cells with different phenotypes. As such, we developed a model
able to account for the differences between the mechanical properties of healthy and
cancer cells. This thesis was conducted at the GeM laboratory, where the mechanics of
materials, dynamics of structure, durability of composite materials and biomechanics, via
both experimental and numerical approaches, are some of the main research domains. This
project contributes to the development of the newly created research group, Biomechanics

2
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and Health of the Future1 in the laboratory, and was therefore presented to the HCÉRES
(Haut Conseil de l’Évaluation de la Recherche et de l’Enseignement Supérieur) evaluation
committee in 2021.

3 Presentation of this thesis

In France, two out of three women and one out of two men are affected by cancer before the
age of 85. Among them, 40 % do not heal [1]. Furthermore, the existing treatments have
the drawback of causing side effects, mostly due to poor accuracy in the targeting of cancer
cells [2]. This targeting is based on heterogeneous chemical properties between these
cells. However, recent advances from literature highlight the existence of discrepancies
also between their mechanical behavior. The focus is thus put on the possibility to
mechanically target cancer cells, which would lead to a more efficient delivery of drugs
with a reduction of the side effects for the patients.

This thesis, entitled "Influence des propriétés mécaniques et géométriques des nanopar-
ticules sur leur ingestion par les cellules cancéreuses" (Influence of the mechanical and
geometrical properties of nanoparticles on their uptake by cancer cells), focuses on the
use of NPs as vectors to deliver anti cancer agents to cancer cells that would be engulfed
by the latter through endocytosis. Previous studies, both experimental and numerical,
have investigated the influence of the mechanical and geometrical properties of the NPs
on their cellular uptake. However, experimental studies have limitations. Indeed, they do
not enable to easily isolate a parameter from others and the observation of the phenom-
ena at such scale requires sophisticated experimental facilities and may be impaired by a
poor reproducibility. For this reason, numerical investigations have emerged as a suitable
alternative to study the cellular uptake of NPs. The objective of the present work is to
build a model for the cellular uptake of NPs that will enable to determine the optimal
mechanical and geometrical properties of NPs so that they would enter cancer cells, while
avoiding healthy counterparts.

For this purpose, an existing model of the wrapping of NPs by a cell membrane, based
on an energetic approach, is used. This approach consists in investigating the variation of
the total potential energy of the system, composed of an elliptical rigid NP and a portion
of membrane, during the wrapping of the NP. The model is henceforth enriched by the
description of the membrane mechano-adaptation during the interaction with the NP,

1. More information available at https://gem.ec-nantes.fr/en/utr-biomec-2-2.
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which is introduced mathematically based on the behavior described in the literature.
The influence of this novelty on the outcome of the model is subsequently investigated
and compared to the influence of the aspect ratio of the NP and along with the initial
membrane properties, via sensitivity analyses. Limitations due to the computational cost
of such methods are overcome using surrogate models.

4 Outline of the manuscript

This manuscript is organized as follows: Chapter 1 provides an overview of the context
of this study, along with a presentation of the materials that are investigated, e.g. the
cell, its membrane and the NPs. The existing experimental and numerical investigations
of the cellular uptake of NPs are briefly presented. Then, Chapter 2 justifies the choice
of the preferred approach for this study and presents it in details. After, Chapter 3 aims
at comparing the influence of the adhesion between the NP and the membrane, the mem-
brane tension and the aspect ratio of the NP on the predictions of cellular uptake. This is
performed through a sensitivity analysis applied on surrogate models, whose implemen-
tation is presented in details. Then, the modeling of the mechanical adaptation of the
membrane is justified by literature review in Chapter 4, in which the influence of this
enrichment of the model is studied via sensitivity analysis, for the case of the uptake of
a circular NP. The similar study is conducted for an elliptical NP in Chapter 5. Last, an
application of the model to breast cancer, based on real experimental data, is presented
in Chapter 6. Indeed, an extensive literature study is conducted in order to identify a
range of values for the mathematical parameters introduced in this new model in order to
differentiate healthy from cancerous mammary cells. By computing the model with the
measured cell properties, the aspect ratios of the NP that enable it to enter preferably in
cancer cells were found. Finally, the results are summarized and discussed at the end of
the document.

The outline of this thesis is illustrated in Figure 2.
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Figure 2: Graphical outline of the thesis.





Chapter 1

LITERATURE REVIEW

1 Introduction

The aim of this first chapter is to introduce the context of this thesis, to provide a
description of the elements involved in this study and to present the current state of art
on the modeling of the cellular uptake of NPs. Hence, an overview of the existing cancer
treatments is given in Section 2, which introduces the interest of using NPs in the field
of medicine, while emphasizing the ways to enhance their effectiveness. To do so, it is
necessary to study the process through which these NPs enter the cell. This process, called
endocytosis and presented in Section 3, involves the cell membrane, which is subsequently
introduced in Section 4, along with generalities on the cell itself and the main differences
between healthy and cancer cells that can lead to disparities in their ability of endocytosis.
Last, the investigations that have already been conducted on the cellular uptake of NPs
are summarized in Section 5.

2 Cancer treatments

2.1 Overview

Cancer is a disease whose occurrence has been increasing since the beginning of the
20th century [3]. The treatments have evolved since then, from the improvement of the
diagnosis methods to the development of innovative remedies [4, 5]. The former differ
depending on the location and the stage of cancer. Indeed, when the tumorous cells are
easily reachable and have not spread to the rest of the organism, it is possible to remove
them surgically or with local treatments such as radiotherapy [6]. Otherwise, non-local
(also called systemic) treatments are used alone or as a complement to local treatments.
Among the most commonly used, chemotherapy, hormonotherapy, immunotherapy and
the most recent targeted therapy are briefly presented hereinafter.
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Chemotherapy treatments have been introduced for the first time in the 1940s [7] and
consist in inhibiting the division of rapidly growing cells by destroying their DNA during
replication. However, side effects are caused in healthy tissues such as bone marrow,
hairs or the reproductive system [8], which are also rapidly growing and therefore hit
by the treatment. In addition, some chemotherapeutic agents can induce an increased
risk of secondary malignancies like leukemia (blood cancer) or peripherical neuropathy
(nerves damaging). Hormonotherapy is used for hormone-related cancer, such as breast
or prostate cancer, which are among the most frequent cancer types [3]. These treatments
consist in reducing the hormone levels in the organism by injecting hormone agonists [9].
They cause side effects such as osteoporosis or arthralgia [10]. Immunotherapy consists in
generating a response of the host’s immune system against the tumor by introducing anti-
bodies into the organism [11]. A more recent approach for cancer treatment is the targeted
therapy, which has been developed for the past 20 years [12]. It consists in targeting spe-
cific molecules that contribute to the growth of tumors and to block their action. Thus,
cancer cells are more efficiently targeted than with conventional chemotherapy agents
that usually affect indifferently both cancer and healthy cells based on the condition to
be rapidly growing cells. Still, some of the targeted molecules are also present in other
healthy cells. The interference of the treatment with these may subsequently block their
reproduction and hence lead to unwanted side effects.

Chemotherapy and targeted therapy have in common that they reach out to specific
cells through targeting. This targeting can be used on Drug Delivery Systems (DDS),
which can take the form of NPs, as presented in Section 2.2.

2.2 Nanoparticles for cancer treatments

Some cancer treatments consist in delivering molecules that cannot directly be injected
to the patient. In this particular case, these molecules need to be encapsulated [13]. The
system subsequently obtained is called a nanovector. After avoiding clearance mecha-
nisms, the nanovector can reach the desired cells, thanks to a targeting similar to those
described in Section 2.1. Thus, the drug is eventually released to the cell of interest.
Nanovectors of several types exist, e.g. NPs and virus-like particles or nanovesicles. In
the scope of the present work, only NPs will be considered. They are used as an emerging
cancer treatment tool as DDS but also for photothermal and radiotherapy [14]. In the
case of photothermal therapy, metallic (e.g. gold) NPs are used to kill the cell they are
into once an electromagnetic radiation is applied. In radiotherapy, metal NPs are used
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to detect the position of cancer cells via X-ray in order to identify the location where the
radiotherapy should be applied.

NPs are of two types: organic or inorganic. Organic NPs can be lipid-based or are
formed of a combination of lipids and macromolecules such as proteins [13]. Inorganic
NPs [15] are for instance made of metals, silica or carbon. They are usually easier to
manufacture and more stable than their organic counterpart. Still, they tend to have a
stronger toxicity for the organism [16] and to be less biodegradable [13].

Recalling that the objective of the METCIN project is to identify the influence of
the mechanical properties of NPs of various nature, and mostly those manufactured by
the CEISAM laboratory, which are fluorescent and photo-cross-linkable. Details on these
NPs and their fabrication are provided in [17]. However, the modeling of such NPs with a
purely mechanical approach is challenging due to their complex behavior. As such, since
the objective of the present thesis is to provide a mechanical modeling of the uptake of
NPs in order to identify the influential mechanical parameters, only the inorganic NPs
will be investigated here. The adaptation of the model to NPs with complex behaviors is
a perspective of future work, once we are able to investigate the uptake of rigid NPs.

The mechanical properties of inorganic NPs vary according to their composition, size
and shape. For instance, the elastic modulus of NPs range from a few MPa up to a few
GPa, while their size can vary from around 10 nm to 1µm [18]. Furthermore, a variety of
shapes exist and NPs can, for instance, be circular, elliptical, disc-like or tubular [15, 19].
They enter the cell through a phenomenon called endocytosis, that will be introduced in
Section 3.

3 Endocytosis

3.1 Overview

In order to feed itself and to satisfy some of its functions, the cell exchanges elements such
as gases, ions, hormones, liquids or solids with the extra-cellular medium (ECM) [20].
The transport of small penetrants e.g. gases, ions and simple molecules, takes place via
diffusion between the intra- and extra-cellular media, while large penetrants like NPs
enter the cell via a mechanism called endocytosis [16]. The phenomenon of endocytosis
was observed for the first time in 1883 [21] and has been widely investigated since then [22].
The endocytosis of an object takes place in three steps: (i) the cell determines, based on

9
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the presence of opsonins (proteins that belong to the bloodstream that aim at tagging
objects to make them visible by the cells), whether the former can be internalized and
adhesion between the cell membrane and the surface of the object takes place. If so, (ii)
the cell membrane deforms around the object and last, (iii) the membrane forms a vesicle
around the object that is further uptaken by the cell. These phases are schematically
illustrated in Figure 1.1. Nonetheless, after its entry into the host cell, several steps may
remain for the object to reach its destination inside the cell [23]. Furthermore, the object
may also spontaneously be expelled from the cell via a phenomenon called exocytosis.

Figure 1.1: Steps of endocytosis: (i) initiation of the contact between the object and the
membrane through the interaction of specific molecules, (ii) deformation of the membrane
around the object to wrap it and (iii) formation of a vesicle after the fusion of the two
sides of the membrane.

As introduced above, endocytosis takes place with several kinds of objects. For this
reason, several types of endocytosis do exist to adapt to the variety of the objects involved.
For large solid elements, the process is called phagocytosis, while one calls pinocytosis the
cellular uptake of liquid and small solid objects [24]. Phagocytosis is often performed by
cells that are part of the immune system, such as macrophages, for instance [25]. In the
specific case of the present study, the NPs are not supposed to enter such cells, as they
may lead to their death, and consequently to a weakening of the patient immune system.
For this reason, phagocytosis will not be detailed in this thesis.

3.2 Endocytosis of nanoparticles

The endocytosis of NPs is the subject of several studies for their application to DDS. The
objective of these studies is to investigate the influence of the physico-chemical properties
of both the NP and the cell membrane on the likelihood for the NP to be uptaken by
the cell. The results of these studies are synthesized in Table 1.1. Some of the notions,
introduced in this table, refer to the composition of the cell membrane, which is described
in Section 4.
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4 Cells and cell membrane

To better understand the objects that are involved in this study, the microstructure of
the cell wall is presented in Section 4.1 and an overview of the main differences between
healthy and cancer cells is provided in Section 4.2.

Animal bodies are organized in several levels, among them: (i) the organs, (ii) the
tissues, and (iii) the cells. Indeed, organs e.g. the liver or the brain, are composed of
tissues e.g. muscles, glands, themselves composed of cells [53]. Two kinds of cells exist: the
prokaryote and the eukaryote [20]. Prokaryotes, often bacteria, are organisms composed
of a single cell, that have no nucleus. The remaining of the existing cells are eukaryotes.
Their diameter is between 10 and 100 µm and differs according to the type of the cell.
Around 200 types of cells exist in the human body, which belong to 5 main tissues: the
epithelial, connective, nervous, muscle tissue and blood. Cells from epithelial, connective
and muscle tissues are organized in leaflets while blood and nervous cells are separated
from each other and evolve in the ECM. These tissues are illustrated in Figure 1.2.

(a) connective (b) epithelial

(c) muscle (d) nervous

Figure 1.2: Illustration of common tissues in the human body, reproduced from [54].

Cells contain organelles, which are substructures that ensure specific functions of the
cell. These cells are also composed of a cytoskeleton, which is a network of proteins
filaments that enables cell movement. An illustration of the structure of an eukaryote cell
is provided in Figure 1.3, where several organelles are represented. For details on their
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4. Cells and cell membrane

role, the reader is referred to [20, 53, 55]. The inner components of the cell are separated
from the ECM thanks to the cell membrane.

Figure 1.3: Illustration of the composition of a an eukaryote cell, reproduced from [56].

Since this study aims at understanding the first steps of endocytosis (described in
Figure 1.1), a particular attention is given to the cell membrane, whose structure is
presented in Section 4.1.

4.1 The cell membrane

This section is mainly based on Cooper et al. [20] and Anthony [53]. The cell membrane,
also called plasma membrane, is the protective layer of the cell, as it ensures a waterproof
separation between the inner and outer sides of the cell. The membrane also plays the
role of an interface, since elements transit to and from the cell through it. A simplified
illustration of the structure of the cell membrane is provided in Figure 1.4. The cell
membrane is mainly composed of phospholipids, proteins, cholesterol and sugar [57, 58].
These elements are respectively presented in Sections 4.1.1, 4.1.2, 4.1.3 and 4.1.4.
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Figure 1.4: Illustration of the structure of the cell membrane.

4.1.1 Phospholipids

As illustrated in Figure 1.4, the cell membrane is formed of a bilayer of lipids that are
all composed of a head and a tail [20]. The head can contain amino acids, alcohol,
phosphate, glycerol or sphingosine. These lipids are called phospholipids and depending
on their composition, a suffix is added, e.g. glycerophospholipids or sphyngophospholipids.
The electric charge of the head of the lipids depends on the amino acid of which it is
constituted. The charge can hence either be negative, neutral or positive. The tail contains
two chains of fatty acids with between 14 and 24 carbon atoms each. The fatty acids can
be saturated or unsaturated, depending on the presence of simple and double bonds. The
head of a phospholipid is hydrophilic (polar), while its two tails are hydrophobic (apolar).
For this reason, they spontaneously arrange themselves as bilayers. Indeed, hydrophilic
heads are gathered together, as well as hydrophobic tails, as illustrated in Figure 1.5.

Figure 1.5: Arrangement of lipids in a bilayer, tails in the middle and heads on the
opposite sides.

Furthermore, the two layers face each other. As such, the polar heads at the outer
side of the membrane, i.e. in contact with the aqueous intra and extracellular media,
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4. Cells and cell membrane

while the fatty acid chains are inside the membrane. The adhesion between the phos-
pholipids is ensured by van der Waals and hydrophobic interactions. Both leaflets are
not symmetric in composition and differ by the kind of phospholipids they are composed
of. The phospholipid layers have a fluid-like behavior. Indeed, the presence of unsatu-
rated fatty acids causes alignment flaws in the bilayer and hence induces a mobility in
the membrane. In addition, phospholipids have several degrees of freedom. They can, for
instance, switch their position with their neighbor, rotate, bend their tail or even move
to the other layer [59]. Some of these degrees of freedom are schematically illustrated in
Figure 1.6.

(a) (b) (c)

Figure 1.6: Illustration of some of the degrees of freedom of phospholipids, such as (a) an
exchange of position, (b) the rotation of a phospholipid or (c) the random movement of
the tails of a phospholipid. The horizontal line represents the boundary of the membrane.

4.1.2 Proteins

Proteins have several functions [20]. They contribute to the passive transport of small
elements through the membrane. They also play a major role in the adhesion to the ECM.
Last, they enable the reception of external signals and stimuli. The proteins are either
located on the outer side of the membrane (peripheral proteins) or through the bilayer
(integral proteins), as illustrated in Figure 1.4. The polar side of such proteins is located
on the outside of the membrane, as shown in Figure 1.7.

Figure 1.7: Peripheral (left) and integral (right) proteins. The polar side of the proteins
is located outside of the bilayer.
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4.1.3 Cholesterol

Like phospholipids, cholesterol is a kind of lipid [20]. Between 20 % and 30 % of the
membrane lipids are cholesterol. These molecules are mainly hydrophobic and thus located
inside the membrane, as illustrated in Figure 1.4. Cholesterol contributes to the stiffness
of the membrane by influencing the organization of the phospholipids, as illustrated in
Figure 1.8.

(a) (b)

Figure 1.8: Organization of the phospholipids (a) without and (b) with cholesterol, rep-
resented in yellow.

4.1.4 Sugar

As illustrated in Figure 1.4, sugars are located on the outer side of the membrane, at the
interface with the ECM [20]. These molecules are hydrophilic and associated to lipids
or proteins, leading to the formation of complexes, respectively called glycolipids and
glycoproteins. These sugars form a fibrous coat called glycocalix, also known as cell coat
or fuzzy coat. Glycocalix provides an anti adhesive barrier, in order to protect the cell
from possible aggressions from the ECM. The thickness of this coat varies between cells
from similar and different kinds [60, 61]. Figure 1.9 shows a microscopic observation of
glycocalix on intestinal cells.

Figure 1.9: Observation of glycocalix on intestine rat cells, reproduced from [60].
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4.2 Differences between cancer and healthy cells

4.2.1 Definition of a cancer cell

More than 100 types of cancer have already been described in anatomical pathology.
Despite this variety, cancer cells share common features. Indeed, Hanahan and Weinberg
[62] highlighted six common functional capabilities in cancer cells. Hence, such cells are
insensitive to anti-growth signal and they are self sufficient in growth signals. In addition,
they present a limitless replicative potential and are able to spread to other tissues. They
are also able to sustain themselves thanks to the development of their own vascularities,
also called as angiogenesis. Last, most of the processes that cause the death of the cell,
also called as apoptosis, do not apply to cancer cells. These properties are summarized
in Figure 1.10.

Figure 1.10: Common properties of cancer cells, reproduced from [62].

Observations of healthy and cancer mammalian cells in in vitro cultures, represented
in Figure 1.11, illustrate the fact that cancer cells do not regulate their reproduction,
which takes place until there is no space left in the medium, while healthy cells are not
as aggregated. Furthermore, healthy cells form flat monolayers with well defined borders,
while cancer cells borders are fuzzier, with a more abundant cytoskeleton, as illustrated
in Figure 1.12.
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(a) (b)

Figure 1.11: in vitro culture of (a) healthy and (b) cancer mammalian cells. The black
line represents a scale of 15µm. Adapted from [63].

(a) (b)

Figure 1.12: Scanning electron microscopy of (a) healthy and (b) cancer mammalian
cells. The arrows in (a) show the cell borders. The black line represents a scale of 1µm.
Adapted from [63].

In addition to the functional capabilities that differ between cancer and healthy cells,
differences in their mechanical properties have also been observed. These heterogeneities
play a key role in the context of this thesis, as they will be used in order determine
the aspect ratio of NPs so that they are internalized by cancer cells preferably. These
differences are described in Section 4.2.2 below.

4.2.2 Mechanical differences

Differences in the mechanical properties have been observed between healthy and cancer
cells. For instance, the progression of cancer induces a reorganization of the cytoskeleton,
which often leads to a reduction of the stiffness of the cell [64–67]. Mechanical measure-
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ments, such as Atomic Force Microscope (AFM) [68–70], bio-Micro-Electro-Mechanical
Systems (MEMS) [71, 72] or tweezers [73, 74], performed on bladder, colon, breast and
prostate cancer and healthy cells show lower Young moduli for cancer cells. Furthermore,
the glycocalix coat tends to be thicker on cancer cells compared to healthy ones [61,
75–77]. As introduced in Section 4.1.4, the thicker the glycocalix, the smaller the adhe-
sion between the cell and extra-cellular objects. Hence, one can infer that the adhesion
of cancer cells is lower than that of healthy cells. These differences are summarized in
Figure 1.13.

Figure 1.13: Illustration of the main mechanical discrepancies between healthy and cancer
cells.

In order to investigate the entry of NPs into cells and to account for the mechanical
differences between healthy and cancer cells on the corresponding process, experimental
and numerical studies have been conducted. They are presented in Section 5.

5 Previous works on the understanding of the cellu-
lar uptake of NPs

5.1 Experimental investigations

In order to observe tendencies on the cellular uptake of NPs, this phenomenon has widely
been investigated experimentally [22, 78, 79]. Still, the use of such methods has limitations
regarding the investigation of the influence of the mechanical and geometrical properties of
the NP on its cellular uptake. First, many of these studies are focused on phagocytosis [19,
30], as it is easier to observe. Second, it is complicated to identify the individual influence
of a given property because of the difficulty to alter one of them without changing the
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others. For instance, it is known that a cell with a high concentration in cholesterol
is stiffer. Moreover, increasing the amount of cholesterol also alters the charge at the
surface of the cell and consequently the adhesion with extracellular objects. In addition,
it is challenging to accurately control the mechanical properties of a cell. It is especially
the case for the bending rigidity of the cell and the adhesion [64, 80–83], which are of
main interest in the study of the cellular uptake of NPs. Furthermore, as introduced in
Section 4, the cells evolve in a fluid medium in which they move due to the activity of
their cytoskeleton. The observation of the cellular uptake of a single NP is henceforth
limited, due to the cell movement, as it is experimentally challenging to develop such
an observation facility. In addition, experimental settings usually consist in introducing
several NPs in a cell culture, often with several cells, and then compare the rate of engulfed
NPs, without prioritizing a region in the cell membrane. Last, discoveries made on in vitro
observations in artificial environment are not easy to translate to in vivo behaviors [67].
For this reason, even though experimental observations may seem more representative of
the actual behaviors of the investigated systems, they are still limited. In addition, the
application of external perturbations, e.g. temperature or change in the composition or
pH of the ECM, is challenging. These parameters influence the endocytosis process, as
previously presented in Table 1.1.

Because of the aforementioned reasons, models have been developed to provide a
complementary tool to experimental studies in order to overcome the challenges mentioned
in this section. These models may focus on the scale of the elements of the membrane
(Section 5.2) or on the scale of the NP (Section 5.3).

5.2 Models at the scale of the membrane constituents

The endocytosis of NPs is a complicated process which is induced by several phenomena
happening at the molecular scale. For this reason, molecular approaches [84] have been
used to numerically investigate the cellular uptake of NPs [30, 85–89]. In such approaches,
the microscopic elements of the NP-membrane system can be modeled with several de-
grees of precision. For instance, possible representations of membrane phospholipids are
displayed in Figure 1.14. In addition, molecular dynamics approaches enable to follow
processes with a time scale [90]. Previous molecular dynamics models of the cellular
uptake of NPs investigated the influence of the shape of the NP and aspect ratio on endo-
cytosis [91] and showed that elliptic NPs are more likely to be engulfed by the cell if they
enter in contact with it from their sharpest side (by the tip of the NP). Otherwise, they
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tend to rotate to enter the cell in this position [85, 88, 92]. An example of the modeling
of the cellular uptake of a NP is provided in Figure 1.15.

Figure 1.14: Illustration of the possible representation of phospholipids: (i): representa-
tion of all the atoms; (ii): representation of all the atoms except hydrogens; (iii) and (iv):
example of coarse grained models. Reproduced from [93].

Figure 1.15: Example of a molecular dynamics simulation of the cellular uptake of a NP
with a coarse grained model, reproduced from [94].

Such models are, due to their level of discretization, highly computationally expensive.
Furthermore, their implementation is based on the knowledge about small scale interac-
tions, such as the interactions between the atoms of each molecule, for instance. They are
consequently highly dependent on the accuracy of the composition of the membrane, i.e.
the distribution of the kind of lipids in each layer or their mobility. For this reason, they
are not well suited for parametric studies, as they yield non affordable total computation
times because of the required accuracy of their input parameters. Last, to the best of
our knowledge, the existing molecular dynamics models only account for rigid NPs [30].
Indeed, modeling the deformation of the NP, even with a simple linear elastic constitutive
law, would lead to highly complex models.

For these reasons, molecular dynamics approaches do not suit well to purely mechanical
investigations of the cellular uptake of NPs, especially when parametric studies are aimed
to be conducted. In this case, models at the scale of the NP are preferred. Such models
are presented in Section 5.3.
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5.3 Models at the scale of the NP

Models of the cellular uptake at the scale of the NP have first been introduced by Yi et
al. in 2011 [40]. These models are built based on a simple energetic approach, that will
be detailed in Chapter 2, while the present section only aims at introducing the main
principles of such an approach.

Models at the scale of the NP consist in modeling the cell membrane as a homogeneous
line, based on the scale ratio between the radius of the NP and the membrane thickness.
Hence, the constituents of the membrane, as well as the molecular-scale interactions be-
tween them, are not modeled. This system is illustrated in Figure 1.16, in which three
regions are defined: the inner free region (1), that is the part of the NP which is not
yet wrapped by the membrane, the outer free region (2), part of the membrane that is
not (yet) in contact with the NP, and the adhesion region (3), that corresponds to the
contact region between the NP and the membrane. The ensemble is described by several
variables, as well as a coordinate system (r, z), in order to follow the curvature of the
membrane (through the angle ψ) depending on the arclength, denoted as s in regions (1)
and (3) or by t in region (2).

Figure 1.16: Representation of the wrapping of a NP by the cellular membrane, as defined
in [40].

In this approach, the variation of potential energy of the system is described by the
Canham-Helfrich Halmitonian [59, 95–98] and is minimized with the Euler Lagrange equa-
tions in order to determine the equilibrium state of the system. A parametric study, in
order to investigate the influence of the mechanical and geometrical properties of the
system on the equilibrium state, can hence be conducted. Such approaches have been
utilized in other studies of the cellular uptake of NPs or the adhesion of vesicles to sub-
strate or between two vesicles (whose results can be generalized to the uptake of NPs),
such as in [99–107], and even more recently in [108, 109]. Last, despite their advantages,
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it is worth noting that such simplified models involve the use of strong hypotheses which
may not apply properly to all real cases. Hence, even though these approaches enable
to perform complex investigations with a reasonable computational cost, one needs to be
careful in their interpretation.

6 Summary of Chapter 1

This chapter provided the context needed for this thesis. As such, the systems to be
investigated as well as an overview of the state of the art have been presented, while
considering the inherent complexity involved when dealing with living systems. Hence,
from each section of this chapter, conclusions are drawn to specify the scope of the study,
and are summarized as follows:

• Cancer treatments are evolving and new cancer therapies have been recently de-
veloped. Part of them consist in using NPs that are able to target cancer cells
in order to avoid healthy cells and consequently to reduce the side effects of the
currently commonly used cancer treatments. These NPs use mostly chemical differ-
entiation to target cancer cells, which has not proven to be an accurate method for
the moment, often also being responsible for the undesired destruction of healthy
cells. In the meantime, mechanical differentiation has been emerging in the past few
years as a promising alternative to target unhealthy cells more accurately than with
chemical differentiation only. As such, this thesis focuses on studying the param-
eters involved in the mechanical differentiation in order to identify the mechanical
and geometrical properties of a NP that optimize its efficiency on targeting cancer
cells only.

• Endocytosis is then presented since it is the process through which NPs enter the
cells. An overview of the main observations of the endocytosis of NPs is given and
the mechanical and geometrical influential parameters are emphasized, showing that
the curvature of the NP at the contact region with the membrane plays a crucial role
on their engulfment, along with the electrical charge of the membrane, for instance.

• The variety of cells was then highlighted, showing that it is difficult to generalize
the results to all types of cells, given the fundamental discrepancies involved. In ad-
dition, significant variations in the cell composition are observed between two cells
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from the same type. Hence, accounting for this variability is important for under-
standing the cellular uptake of NPs, especially given that experimental observations
performed on few cells may not generalize well.

• The cell membrane has a fluid structure and is composed of lipids, proteins and
sugars. The local composition of the membrane changes along the circumference of
the cell, which leads to a variation of the mechanical properties with respect to the
location along the membrane.

• Investigations on the cellular uptake of NPs have mostly been conducted
experimentally. However, such studies present limitations such as the generalization
of the observations, due to the variety of the properties that can be observed even
between two cells of the same type, and also within the cell itself. It is also difficult
to determine the influence of a single parameter of the cell on the uptake of NPs
as these parameters are likely to change during the process, since the cell is a
living system. Furthermore, the measurement of such mechanical properties is also
challenging, due to the accuracy needed to reach such scale.

• Numerical investigations thus appear as an alternative to experiments as they
enable to easily perform parametric studies on the models that have been devel-
oped. Models at the scale of either the constituents of the membrane or the NP
are commonly used to investigate the cellular uptake of NPs. However, models at
the molecular scale apply better to chemical investigations and have large computa-
tional costs due to the amount of degrees of freedom that are modeled, depending on
the discretization applied. On the contrary, models at the scale of the NP offer the
possibility to conduct investigations, while focusing on a mechanical approach, with
a limited computation time. Details and justifications on the preferred approach
are provided in Chapter 2.

The literature review, presented in this chapter, is non exhaustive and aimed at pro-
viding an overview of the main topics related to this thesis. The goal was to offer a
succinct presentation, while remaining intelligible for readers who do not possess a back-
ground in cell biology. Moreover, complementary information are provided throughout
the document, when needed.
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Chapter 2

PRESENTATION OF THE MECHANICAL

MODEL OF ENDOCYTOSIS

1 Introduction

This chapter aims at presenting which of the approaches introduced in Chapter 1 was
preferred to model the cellular uptake of a NP in this work. This choice is justified by the
scale of the phenomena that will be represented, as introduced in Section 1.1. The post-
processing applied to this model, in order to identify the influence of the input parameters,
is presented in Section 1.2.

1.1 Scale of the model

In order to perform a purely mechanical-based approach in the developed model, the
study focuses on NPs whose diameter is around 100 nm, while that of the cell is around
10 µm. An illustration of the difference of scale between the NP and the cell is provided in
Figure 2.1. These dimensions were set based on the literature [18, 20], in order to represent
a range of NPs effectively used for medical applications while limiting the complexity
of our approach. Indeed, with smaller NPs, (i.e. whose size is in the same order of
magnitude as some constituents of the membrane), the model would need to account
for those constituents and consequently for the chemical phenomena that can take place
between them, which is out of the scope of the present study. With NPs of size around
100 nm, the membrane, whose thickness is in the order of 10 nm, will be represented as a
horizontal line in 2D or a horizontal plane in 3D, as in [40, 95, 102, 110]. Last, modeling
at the scale of the NP also allows to neglect the curvature of the cell compared to that of
the NP.
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Figure 2.1: Schematic illustration of the scale ratio between the NP and the cell.

1.2 Investigation steps

Following [40, 95, 102, 110], the system is investigated via the evaluation of its total
potential energy, in order to identify the equilibrium state. Then, parametric studies are
performed in order to understand the influence of the input parameters on the equilibrium.
The analytical evaluation of the potential energy of the system is presented in Section 2.
Different approaches to determine the equilibrium state are subsequently compared in
Section 3.

2 Evaluation of the total potential energy of the sys-
tem

2.1 Presentation of the system

The system, composed of an elliptic NP and a portion of the cell membrane, is illustrated
in Figure 2.2. It is divided into four regions: region 1, in blue, is the free part of the
NP, regions 2r and 2l, in black, are the free parts of the membrane, respectively on the
right and left side of the NP, and region 3, in red, is the part of the membrane in contact
with the NP. The spatial coordinates are denoted with (r, z), wherein the origin O is
located at the intersection between the regions 1, 2l and 3. Each region i ∈ {1, 2l, 2r, 3}
is parametrized by its arclength si ∈ [0; li], where li is the length of the region i, along
with the angle ϕi, used to calculate the curvature and subsequently the bending energy.
This angle is defined as the angle between the tangent to the region and the horizontal
(colinear to the r axis), as illustrated in Figure 2.2. The system is symmetric, therefore
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the length of the two free parts of the membrane are considered equal and will henceforth
be denoted as l2, where l2l = l2r = l2.

Figure 2.2: Illustration of the parametrization of the NP-membrane interaction.

The lengths l1 and l3 are defined in terms of the wrapping degree f , which corresponds
to the fraction of the circumference p of the NP wrapped by the membrane. Hence,
l3 = pf , l1 = p(1 − f) and the wrapping degree reads:

f = l3
l1 + l3

. (2.1)

Due to the size of the NP compared to that of the cell, the membrane is supposed to be
flat far from the contact region. This implies that

lim
s2r→∞

ϕ2r(s2r) = 0 and lim
s2l→∞

ϕ2l(s2l) = 2π.

2.2 Analytical form of the total potential energy of the system

The objective of this section is to provide the analytical form of the potential energy of
the system. For this purpose, the hypotheses are presented in Section 2.2.1. Then, the
variation of the potential energy of the system, in terms of the wrapping degree f , is
described in Section 2.2.2.

2.2.1 Hypotheses

Rigid NP In this work, the focus is put on rigid NPs as they lead to a model with
reasonable complexity, enabling us to subsequently carry out post-processing with a sus-
tainable computational cost, thanks to a moderate number of influencing parameters.
Nonetheless, given that the rigidity of the NP is typically at least 2 orders of magnitude
greater than that of the cell membrane [88, 111, 112], the assumption of a rigid NP is
convenient in most cases.
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Elastic membrane The assumption that the behavior of cell membranes is elastic was
made in the 1970s by Helfrich [59] and his work is the foundation of all energy-based
approaches for modeling endocytosis [40, 97–99, 109].

2D model Most of the existing NPs being symmetric [19], a 2D model of the system is
used for the sake of simplicity and to decrease the computational costs. Furthermore, this
model has already been investigated with a 2D approach by Yi et al. in a more recent
paper [105], which allow us to use the results as a basis for our study. In such case, the
energy per unit length in the out-of-plane direction (see Figure 2.3) is investigated.

Symmetry The system, presented in Figure 2.2, being symmetric, only half of it is used
to calculate the energy and the reduced system is illustrated in Figure 2.3.

Figure 2.3: Illustration of the reduced system because of the symmetry.

For this reduced system, the origin of the coordinates system (r, z) is located in region
3, where s3 = 0. The total arclength of region j ∈ {1, 3} is denoted by ŝj and equals
lj/2. At the intersection between the regions 1, 2r and 3 (red circle), s3 = ŝ3 and one has
s1 = 0 and s2r = 0 (origin of the arclength for the regions 1 and 2r). Due to symmetry,
r(s1 = ŝ1) = 0 (blue circle). One can also note that the length of the region 2r is
asymptotically larger than the circumference of the NP, i.e. l2 ≫ p.

2.2.2 Description of the variation of the potential energy

The variation of the total potential energy of the system per unit length in the out-of-plane
direction, that will further be referred to as potential energy for brevity, investigated in
this section, corresponds to the variation of the potential energy between a given state
and the initial state. The latter is defined as the instant at which the contact between
the cell and the NP initiates. As such, initially, ŝ3 is near to zero.
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The variation of the potential energy between the initial and a given state at which
the wrapping degree of the NP equals f can be decomposed to the following three con-
tributions: (i) the bending energy of the membrane ∆Eb(f), (ii) the energy due to the
adhesion between the NP and the membrane ∆Eγ(f) and (iii) the membrane tension
energy ∆Eσ(f), due to the stretching of the membrane [40, 59]. Hence, the former reads:

∆E(f) = ∆Eb(f) + ∆Eγ(f) + ∆Eσ(f). (2.2)

For the sake of clarity, the dependence on f is henceforth omitted. The variation of the
bending energy of the membrane ∆Eb is the following functional [59]:

∆Eb = 1
2

∫ ∞

0
κ2r(s2r)[ϕ̇2r(s2r) − c̃2r(s2r)]2ds2r︸ ︷︷ ︸

region 2r

+ 1
2

∫ ŝ3

0
κ3(s3)[ϕ̇3(s3) − c̃3(s3)]2ds3︸ ︷︷ ︸

region 3

, (2.3)

where the overdot denotes the derivative with respect to the arclength. In Equation 2.3,
the bending rigidity and the initial curvature of the region i ∈ {2r, 3} are denoted by
κi and c̃i, respectively. The heterogeneity in mechanical and geometrical properties, as
introduced in Chapter 1, implies a dependence of the latter to the arclength si. However,
in order to simplify further calculations, we assume that the membrane is homogeneous,
which means that the bending rigidity of the regions 2r and 3 (membrane) are equal
and will be denoted as κ in the following. In addition, since the membrane is considered
initially flat, its initial curvature equals zero regardless of the arclength, yielding c̃2r =
c̃3 = 0. Finally, ∆Eb reads:

∆Eb = 1
2κ

(∫ ∞

0
ϕ̇2

2rds2r +
∫ ŝ3

0
ϕ̇2

3ds3

)
. (2.4)

The adhesion energy ∆Eγ is defined as:

∆Eγ = −
∫ ŝ3

0
γ(s3)ds3, (2.5)

where γ, also assumed constant, i.e. γ(s3) := γ, is the linear adhesion energy.
Finally, the tension energy ∆Eσ reads:

∆Eσ = σ∆l, (2.6)

where ∆l is the change of the length of the membrane, defined as the difference between
the deformed and the initial states and σ is the linear membrane tension. The membrane
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being initially flat, its initial length is equal to the projection of the deformed state over
the r axis. Hence, Equation 2.6 can be written as:

∆Eσ = σ

(∫ ∞

0
(ds2r − dr2r) +

∫ ŝ3

0
(ds3 − dr3)

)
. (2.7)

Equation 2.7 can be simplified by applying the geometrical relation between dsi and dri,
i.e. dri = cos (ϕi)dsi, illustrated in Figure 2.4.

Figure 2.4: Relation between the infinitesimal lengths ds, dr, dz and α, which is the angle
between ds and dr.

Hence:
∆Eσ = σ

(∫ ∞

0
[1 − cosϕ2r]ds2r +

∫ ŝ3

0
[1 − cosϕ3]ds3

)
. (2.8)

The variation of the potential energy ∆E of the system thus reads:

∆E(s2r, ϕ2r, ϕ̇2r, s3, ϕ3, ϕ̇3) =
∫ ∞

0

(
κ

2 ϕ̇
2
2r + σ[1 − cosϕ2r]

)
ds2r

+
∫ ŝ3

0

(
κ

2 ϕ̇
2
3 + σ[1 − cosϕ3] − γ

)
ds3. (2.9)

3 Determination of the equilibrium state

∆E in Equation 2.9 represents the variation of the potential energy between a given state
(wrapping degree f) and the initial state (wrapping degree f −→ 0). In order to analytically
determine the equilibrium state of the system, i.e. the wrapping degree f at which the
system is at equilibrium, denoted by f̃ , ∆E should be minimized. For this purpose,
an analytical minimization is first performed using the Euler-Lagrange (EL) formalism,
presented in Section 3.1. Numerical difficulties related to the solution of the obtained
system, that will be presented in the following, did not enable us to determine f̃ using
this approach. The strategies tested to overcome these issues are then fully described
in Section 3.1.4. We consequently opted for a numerical determination of f̃ based on
assumptions made in the literature, which consists in computing ∆E(f) for values of f
ranging between 0 and 1 and to identify the local minima and hence determine f̃ . Details
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3. Determination of the equilibrium state

on this approach are provided in Section 3.2.

3.1 Determination of the equilibrium state based on Euler La-
grange equations

The minimization of the potential energyDEbar is equivalent to solving the corresponding
EL equations. This analytical minimization leads to the equilibrium state equations
that involve ϕi, ri and zi in each region i ∈ {2r, 3}. Solving these equations enables to
determine the value of f̃ using Equation 2.1, as f is related to ŝ3. First, the constraint
and boundary conditions of the problem are introduced in Section 3.1.1. Then, the theory
involving EL equations is fully described in Section 3.1.2 and used in Section 3.1.3. Last,
the procedure to solve the subsequently obtained equations is presented in Section 3.1.4.

3.1.1 Constraints and boundary conditions

Constraints The minimization of ∆E is performed under constraints. These con-
straints are relative to the relation between r, z and ϕ, illustrated in Figure 2.4, as
follows:

ṙi − cosϕi = 0, i ∈ {2r, 3} (2.10a)
żi − sinϕi = 0, i ∈ {2r, 3} (2.10b)

Boundary conditions The boundary conditions, partially presented in Section 2.2.1,
are reminded in Table 2.1.

Table 2.1: Boundary conditions for ϕi, ϕ̇i, ri and zi for i ∈ {2r, 3}. The empty cells
correspond to unknown boundary conditions.

ϕ ϕ̇ r z

ϕ2r(s2r −→ ∞) = 0 ϕ̇2r(s2r −→ ∞) = 0
ϕ3(0) = 0 r3(0) = 0 z3(0) = 0

Furthermore, the geometrical continuity at the intersection of the regions 2r and 3
leads to:

r2r(0) = r3(ŝ3); (2.11a)
z2r(0) = z3(ŝ3). (2.11b)
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The EL formalism, that will be applied using the boundary conditions presented in
this section, will be introduced below.

3.1.2 Euler-Lagrange theoritical approach

Let J be a definite integral over the interval [x1, x2] (where x1 and x2 can be unknown)
as J [y] =

∫ x2
x1

F(x, y, ẏ)dx. J is a functional that takes the function y as an input and
returns a scalar J [y] ∈ R.

According to the EL approach, minimizing J under the equality constraint G, defined
as G(x, y, ẏ) = 0, is equivalent to solving the unconstrained minimization of the functional
K =

∫ x2
x1

L(x, y, ẏ)dx, in which L(x, y, ẏ) is the so called Lagrangian, that reads:

L(x, y, ẏ) = F(x, y, ẏ) + λ(x)G(x, y, ẏ), (2.12)

wherein the function λ(x) is called the Lagrange multiplier and is to be determined.
Minimizing K is equivalent to solving the differential Equation 2.13 with the boundary
conditions given in Equations 2.14 and 2.15.

∂L(x, y, ẏ)
∂y

− ∂

∂ẋ

∂L(x, y, ẏ)
∂ẏ

= 0, (2.13)

∂L(x, y, ẏ)
∂ẏ

δy

∣∣∣∣∣
x2

x1

= 0, (2.14)(
L(x, y, ẏ) − ∂L(x, y, ẏ)

∂ẏ
ẏ

)
δx

∣∣∣∣∣
x2

x1

= 0, (2.15)

in which the delta operator δX(x̂) of a dependent or independent variable X, evaluated
at x̂, yields zero if the value of X(x̂) or that of x̂ is known, and is strictly different from zero
otherwise [113]. As a result, if the bounds of integration in J are known, the boundary
condition in Equation 2.15 can be disregarded.

3.1.3 Application of the EL approach

Equation 2.9 can be written as follows:

∆E =
∫ ∞

0
F2r(s2r, ϕ2r, ϕ̇2r)ds2r +

∫ ŝ3

0
F3(s3, ϕ3, ϕ̇3)ds3, (2.16)
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where:

F2r(s2r, ϕ2r, ϕ̇2r) = κ

2 ϕ̇
2
2r + σ(1 − cosϕ2r), (2.17)

F3(s3, ϕ3, ϕ̇3) = κ

2 ϕ̇
2
3 + σ(1 − cosϕ3) − γ. (2.18)

The integrands F2r and F3 depend on different variables and functions, that are inde-
pendent of each other. As such, ∆E is minimized when F2r and F3 are individually
minimized. Hence, two modified functionals K2r and K3, defined in Equation 2.19, are to
be minimized to account for the constraints that have been introduced in Equations 2.10:

K2r =
∫ ŝ2r

0

(
F2r(s2r, ϕ2r, ϕ̇2r) + λ2r(ṙ2r − cosϕ2r) + µ2r(ż2r − sinϕ2r)

)
︸ ︷︷ ︸

L2r(s2r,ϕ2r,ϕ̇2r)

ds2r, (2.19a)

K3 =
∫ ŝ3

0

(
F3(s3, ϕ3, ϕ̇3) + λ3(ṙ3 − cosϕ3) + µ3(ż3 − sinϕ3)

)
︸ ︷︷ ︸

L3(s3,ϕ3,ϕ̇3)

ds3, (2.19b)

in which λi and µi, i ∈ {2r, 3} are Lagrange multiplier functions of si. The depen-
dencies on the arclengths are dropped for the sake of clarity in the equations above
and in the following. The application of the EL Equations 2.13 to the Lagrangians
Li(si, yi, ẏi), i ∈ {2r, 3}, where yi and ẏi are respectively defined as yi = (ϕi, ri, zi)⊤

and ẏi = (ϕ̇i, ṙi, żi)⊤, yields:

∂Li(si, yi, ẏi)
∂ϕi

− ∂

∂si

∂Li(si, yi, ẏi)
∂ϕ̇i

= 0, (2.20a)

∂Li(si, yi, ẏi)
∂ri

− ∂

∂si

∂Li(si, yi, ẏi)
∂ṙi

= 0, (2.20b)

∂Li(si, yi, ẏi)
∂zi

− ∂

∂si

∂Li(si, yi, ẏi)
∂żi

= 0. (2.20c)

First, the boundary conditions based on Equation 2.14 read:
∂L2r(s2r, y2r, ẏ2r)

∂ϕ̇2r

δϕ2r

∣∣∣∣∣
∞

0
= 0, (2.21a)

∂L2r(s2r, y2r, ẏ2r)
∂ṙ2r

δr2r

∣∣∣∣∣
∞

0
= 0, (2.21b)

∂L2r(s2r, y2r, ẏ2r)
∂ż2r

δz2r

∣∣∣∣∣
∞

0
= 0, (2.21c)
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and

∂L3(s3, y3, ẏ3)
∂ϕ̇3

δϕ3

∣∣∣∣∣
ŝ3

0
= 0, (2.22a)

∂L3(s3, y3, ẏ3)
∂ṙ3

δr3

∣∣∣∣∣
ŝ3

0
= 0, (2.22b)

∂L3(s3, y3, ẏ3)
∂ż3

δz3

∣∣∣∣∣
ŝ3

0
= 0. (2.22c)

Second, the boundary conditions, introduced in Equation 2.15, are considered in the
following expressions:(

L2r(s2r, y2r, ẏ2r) − ∂L2r(s2r, y2r, ẏ2r)
∂ϕ̇2r

ϕ̇2r

)
δs2r

∣∣∣∣∣
∞

0
= 0, (2.23a)(

L2r(s2r, y2r, ẏ2r) − ∂L2r(s2r, y2r, ẏ2r)
∂ṙ2r

ṙ2r

)
δs2r

∣∣∣∣∣
∞

0
= 0, (2.23b)(

L2r(s2r, y2r, ẏ2r) − ∂L2r(s2r, y2r, ẏ2r)
∂ż2r

ż2r

)
δs2r

∣∣∣∣∣
∞

0
= 0, (2.23c)

and (
L3(s3, y3, ẏ3) − ∂L3(s3, y3, ẏ3)

∂ϕ̇3
ϕ̇3

)
δs3

∣∣∣∣∣
ŝ3

0
= 0, (2.24a)

(
L3(s3, y3, ẏ3) − ∂L3(s3, y3, ẏ3)

∂ṙ3
ṙ3

)
δs3

∣∣∣∣∣
ŝ3

0
= 0, (2.24b)

(
L3(s3, y3, ẏ3) − ∂L3(s3, y3, ẏ3)

∂ż3
ż3

)
δs3

∣∣∣∣∣
ŝ3

0
= 0. (2.24c)

According to Equations 2.9 and 2.16, the Lagrangians can be written as:

L2r(s2r, y2r, ẏ2r) = κ

2 ϕ̇
2
2r + σ(1 − cosϕ2r) + λ2r(ṙ2r − cosϕ2r) + µ2r(ż2r − sinϕ2r),

(2.25a)

L3(s3, y3, ẏ3) = κ

2 ϕ̇
2
3 + σ(1 − cosϕ3) + λ3(ṙ3 − cosϕ3) + µ3(ż3 − sinϕ3) − γ. (2.25b)

Inserting these Lagrangians into the EL equations leads to the following set of equations:
(σ + λ2r) sinϕ2r − µ2r cosϕ2r − κϕ̈2r = 0, (2.26a)
λ̇2r = 0, (2.26b)
µ̇2r = 0, (2.26c)
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and

(σ + λ3) sinϕ3 − µ3 cosϕ3 − κϕ̈3 = 0, (2.27a)
λ̇3 = 0, (2.27b)
µ̇3 = 0. (2.27c)

Based on Equations 2.26 and 2.27, the Lagrange multipliers are constant functions.
Analogously, inserting the Lagrangians in the boundary conditions defined in Equa-

tions 2.21 and 2.22 leads to:

κϕ̇2rδϕ2r

∣∣∣∞
0

= 0, (2.28a)

λ2rδr2r|∞0 = 0, (2.28b)
µ2rδz2r|∞0 = 0, (2.28c)

and

κϕ̇3δϕ3

∣∣∣ŝ3

0
= 0, (2.29a)

λ3δr3|ŝ3
0 = 0, (2.29b)

µ3δz3|ŝ3
0 = 0. (2.29c)

The boundaries of the region 2r being known, the Equations 2.28 yield trivial equa-
tions. On the contrary, ŝ3 is unknown, leading to the following relations:

δs3(ŝ3) ̸= 0 δϕ3(ŝ3) ̸= 0 δr3(ŝ3) ̸= 0 δz3(ŝ3) ̸= 0 (2.30a)

Hence, the boundary conditions for the region 3 yield:

κϕ̇3(ŝ3)δϕ3(ŝ3) = 0 ⇒ ϕ̇3(ŝ3) = 0, (2.31a)
λ3δr3(ŝ3) = 0 ⇒ λ3 = 0, (2.31b)
µ3δz3(ŝ3) = 0 ⇒ µ3 = 0. (2.31c)

Then, the Lagrangians in the boundary conditions presented in Equations 2.23 and 2.24
lead to the following equations:
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[
−κ

2 ϕ̇
2
2r + σ(1 − cosϕ2r) + λ2r(ṙ2r − cosϕ2r) + µ2r(ż2r − sinϕ2r)

]
δs2r

∣∣∣∣∞
0

= 0, (2.32a)[
κ

2 ϕ̇
2
2r + σ(1 − cosϕ2r) − λ2r cosϕ2r + µ2r(ż2r − sinϕ2r)

]
δs2r

∣∣∣∣∞
0

= 0, (2.32b)[
κ

2 ϕ̇
2
2r + σ(1 − cosϕ2r) + λ2r(ṙ2r − cosϕ2r) − µ2r sinϕ2r

]
δs2r

∣∣∣∣∞
0

= 0, (2.32c)

and[
−κ

2 ϕ̇
2
3 + σ(1 − cosϕ3) − γ + λ3(ṙ3 − cosϕ3) + µ3(ż3 − sinϕ3)

]
δs3

∣∣∣∣ŝ3

0
= 0, (2.33a)[

κ

2 ϕ̇
2
3 + σ(1 − cosϕ3) − γ + λ3(ṙ3 − cosϕ3) − µ3 sinϕ3

]
δs3

∣∣∣∣ŝ3

0
= 0, (2.33b)[

κ

2 ϕ̇
2
3 + σ(1 − cosϕ3) − γ − λ3 cosϕ3 + µ3(ż3 − sinϕ3)

]
δs3

∣∣∣∣ŝ3

0
= 0. (2.33c)

Equations 2.32 for the region 2r lead to trivial equations, and Equations 2.33 for the
region 3 yield:[

−κ

2 ϕ̇
2
3 + σ(1 − cosϕ3) − γ

]
δs3(ŝ3) = 0 ⇒ σ(1 − cosϕ3(ŝ3)) − γ = 0 (2.34)

Finally, the EL shape equations, along with the boundary conditions, obtained with the
previous system of equations, are summarized below:

ϕ̈2r(s2r) = σ

κ
sinϕ2r(s2r), (2.35)

ϕ̈3(s3) = σ

κ
sinϕ3(s3), (2.36)

ϕ2r(s2r −→ ∞) = 0, (2.37)
ϕ̇2r(s2r −→ ∞) = 0, (2.38)
ϕ3(0) = 0, (2.39)

ϕ3(ŝ3) = cos−1
(

1 − γ

σ

)
, (2.40)

ϕ̇3(ŝ3) = 0. (2.41)

Note that the boundary condition presented in Equation 2.40 is the well-known Young-
Dupré equation [114, 115]. The value of ŝ3 can be calculated by solving the Equation 2.36
and then determining the value of s3 at which ϕ(s3) = ϕ(ŝ3), so that it satisfies the
boundary condition presented in Equation 2.40. The numerical procedure to solve the
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Equation 2.36 is detailed in the following section.

3.1.4 Solution of the equilibrium equation

Equation 2.36 is a second order nonlinear differential equation for which there is no ana-
lytical solution [116]. However, it is possible to solve it numerically using finite differences
approximation for instance [117].

These techniques require the knowledge of initial conditions ϕ3(s3 = 0) and ϕ3(s3 =
δs3) for a forward integration scheme or that of the final conditions ϕ3(s3 = ŝ3) and
ϕ3(s3 = ŝ3 − δs3) for a backward integration scheme [117], where δs3 is an infinitesimal
variation of s3. Based on our own conditions, i.e. ϕ3(s3 = 0) and ϕ3(s3 = ŝ3), a boundary
value problem needs to be solved. The numerical integration of the second order Equation
2.36 is thus impossible in our case.

Still, it is possible to reduce the order of the Equation 2.36 by multiplying both sides
with ϕ̇3 and integrating. This gives:

ϕ̈3(s3) = σ

κ
sinϕ3(s3) ⇒ ϕ̈3(s3)ϕ̇3(s3) = σ

κ
sinϕ3(s3)ϕ̇3(s3)

⇒
∫ ŝ3

0
ϕ̈3(s3)ϕ̇3(s3)ds3 = σ

κ

∫ ŝ3

0
sinϕ3(s3)ϕ̇3(s3)ds3

⇒ ϕ̇2
3(s3) = −2σ

κ
cosϕ3(s3) + C, (2.42)

in which C is an integration constant, that is determined by evaluating the above ex-
pression at s3 = ŝ3. Recalling that ϕ̇3(ŝ3) = 0 and that ϕ3(ŝ3) = cos−1

(
1 − γ

σ

)
(Equation

2.40), one obtains:
C = 2

κ
(σ − γ). (2.43)

Equation 2.36 thus becomes:

ϕ̇2
3(s3) = 2

κ

(
σ [1 − cosϕ3(s3)] − γ

)
. (2.44)

This first order ODE is still nonlinear and an analytical solution is hard to find. Still, it
is possible to numerically determine the values of ϕ3 by approximating ϕ̇3 using a finite
difference scheme [118]. Indeed, for a given function y(x), discretized with a small step
in x, ∆x, a first order finite difference approximation (backward Euler) for ẏ at x = x0

reads:
ẏ(x0) = y(x0) − y(x0 − ∆x)

∆x . (2.45)
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This method requires the knowledge of y(x0 −∆x). In our case, ϕ3(0) is known and equals
zero, meaning that the finite differences method can be applied to numerically solve the
Equation 2.44, as follows:(

ϕ3(s3) − ϕ3(s3 − ∆s3)
∆s3

)2
= 2
κ

(
σ [1 − cosϕ3(s3)] − γ

)

⇒ ϕ3(s3) = ±∆s3

√
2
κ

(
σ [1 − cosϕ3(s3)] − γ

)
+ ϕ3(s3 − ∆s3) (2.46)

The convergence of the approximation of ϕ3(s3) depends on the discretization of the
domain of definition of s3 [118]. Using this method, it is possible to compute ϕ3 for a
range of values of s3 and to subsequently determine ŝ3 as being the arclength s3 for which
ϕ3 equals cos−1

(
1 − γ

σ

)
. Finally, the value of f̃ is related to ŝ3 and to the circumference

p of the ellipse as f = 2ŝ3p
−1.

3.1.5 Conclusion on the EL equations based approach

The method to determine the equilibrium state of the system, presented in this section,
enables to numerically determine the wrapping degree at equilibrium with a reasonable
computational cost. Nonetheless, the analytical developments that have been introduced
make the hypothesis that γ and σ remain constant during the wrapping of the NP. How-
ever, this hypothesis will be challenged in this thesis so that these mechanical parameters
will further be modeled as functions of the wrapping degree, i.e. a function of ŝ3, in
Chapter 4. The aforementioned technique, used to determine the value of ŝ3 based on the
evolution of ϕ3, does consequently not apply as ϕ3(s3) would therefore be a function of the
unknown ŝ3. Thus, a different approach, which consists in computing the variation of the
total potential energy ∆E of the system, for a range of values of the wrapping degree, and
subsequently infer the equilibrium state according to the evolution of ∆E with respect to
f , is then preferred. More details on this approach are provided in the following.

3.2 Definition of the equilibrium state

In this section, the potential energy of the system, ∆E(f), is computed for a range of
values of the wrapping degree f between 0 and 1. The approach used to compute ∆E
is presented in Section 3.2.1. Observations of ∆E(f) are provided in Section 3.2.2. The
hypotheses to define the equilibrium state of our system are subsequently introduced and
applied in Section 3.2.3.
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The model, presented in this section, applies to rigid elliptic NPs. For the same
reasons as those presented in the previous section, the membrane is supposed elastic and
the system is studied in two dimensions only.

3.2.1 Computation of the potential energy

The variation of the potential energy of the system is defined in Equation 2.9. In order to
numerically evaluate ∆E, minor changes are applied to this equation. For instance, the
value of ∆l, the change in the length of the membrane, is computed as follows:

∆l = 2l2 + l3 − (r2r(l2) − r2l(l2)), (2.47)

in which ri, i ∈ {2r, 2l} is the r-coordinate in region i. Hence, Equation 2.9 can be
rewritten as:

∆E =

∆Eb2r︷ ︸︸ ︷
κ

2

∫ l2

0
ϕ̇2

2rds2r +

∆Eb2l︷ ︸︸ ︷
κ

2

∫ l2

0
ϕ̇2

2lds2l +

∆Eb3︷ ︸︸ ︷
κ

2

∫ l3

0
ϕ̇2

3ds3︸ ︷︷ ︸
∆Eb

−γl3︸ ︷︷ ︸
∆Eγ

+σ(2l2 + l3 − r2r(l2) + r2l(l2))︸ ︷︷ ︸
∆Eσ

.

(2.48)
Note that this equation does not account for the symmetry and represents the variation
of energy of the entire system, i.e. the one initially presented in Figure 2.2. Furthermore,
we have ϕ2l = 2π − ϕ2r. As such, Equation 2.48 becomes:

∆E =

∆Eb2︷ ︸︸ ︷
κ
∫ l2

0
ϕ̇2

2rds2r +

∆Eb3︷ ︸︸ ︷
κ

2

∫ l3

0
ϕ̇2

3ds3︸ ︷︷ ︸
∆Eb

−γl3︸ ︷︷ ︸
∆Eγ

+σ(2l2 + l3 − r2r(l2) + r2l(l2))︸ ︷︷ ︸
∆Eσ

. (2.49)

Then, in order to compute the bending energy of the free part of the membrane ∆Eb2 , it
is necessary to know the evolution of ϕ2r(s2). As such, the order of the shape equation
ϕ̈2r(s2r) = σ

κ
sinϕ2r(s2r) is reduced, similar to what we did for ϕ3. Using the boundary

conditions ϕ̇2r(s2r −→ ∞) = 0 and ϕ2r(s2r −→ ∞) = 0 yields the first order shape equation:

ϕ̇2
2r(s2r) = 2σ

κ

(
1 − cosϕ2r(s2r)

)
. (2.50)

This equation was solved by Muller et al. [119], yielding:

ϕ2r(s2r) = 4 arctan
[
t exp

(
−s2r

σ

κ

)]
, (2.51)

39



Chapter 2: Presentation of the mechanical model of endocytosis

where t = tan
(

ϕ2r(0)
4

)
. This equation is simplified introducing the adimensional variable

σ = σ 2a2

κ
, where a is the relative radius of the ellipse, defined as the ratio between the

circumference of the NP p and 2π. Hence, Equation 2.51 becomes:

ϕ2r(s2r) = 4 arctan
t exp

−s2r

a

√
σ̄

2

 . (2.52)

The spatial coordinates (r, z) of the region 2r are then evaluated using the relations
dri = cosϕi(si)dsi and dzi = sinϕi(si)dsi, i ∈ {2r, 2l}, as follows [105]:

r2r(s2r) = r2r(0) + s2r −
√
σ̄

2
1 − cos (ϕ2r(0))

coth
(√

σ̄
2s2r

)
+ cos

(
ϕ2r(0)

2

) , (2.53a)

z2r(s2r) = z2r(0) +
√

8
σ̄

sin
(
ϕ2r(0)

2

)1 −
csch

(√
σ̄
2s2

)
coth

(√
σ̄
2s2

)
+ cos

(
ϕ2r(0)

2

)
 . (2.53b)

Based on the symmetry, the coordinates relative to the region 2l can be calculated as
r2l(s2l) = r2r(s2l) − r2r(s2l) and z2l(s2l) = z2r(s2l). In the equations that have been
introduced above, ϕ2(0) is the value of ϕ2 at the intersection between the regions 3 and
2r, where the points (s2r = 0) and (s3 = l3) are coincident. Consequently, ϕ2r(s2 = 0)
can be calculated from ϕ3(s3 = l3), which is well known from the definition of the ellipse
(as well as ϕ1, r1, z1, r3 and z3). Then, ∆Eb2 can be readily computed.

Finally, in order to ease further comparisons, the adimensional energy variation ∆E is
introduced as ∆E = ∆E 2a

κ2
. Thus, Equation 2.49 is reformulated in terms of adimensional

variables γ̄, defined as γ̄ = γ 2a2

κ2
and σ̄:

∆E =

∆Eb3︷ ︸︸ ︷
a

4

∫ l3

0
ϕ̇2

3ds3 +

∆Eb2︷ ︸︸ ︷
a

2

∫ l2

0
ϕ̇2

2rds2r︸ ︷︷ ︸
∆Eb

− 1
4aγ̄l3︸ ︷︷ ︸
∆Eγ̄

+ 1
4aσ̄ (2l2 + l3 − r2r(l2) + r2l(l2))︸ ︷︷ ︸

∆Eσ̄

. (2.54)

The adimensional bending energy of the free part of the membrane ∆Eb2 can be calculated
by integrating ϕ̇2

2r over s2r, leading to:

∆Eb2 = −
√

2σt2
(

1
t2 + exp

√
2σ l2

a

− 1
t2 + 1

)
. (2.55)

A convergence study was conducted on ϕ2r(s2r) to verify that setting l2 = 20a satisfies
the hypothesis of membrane flatness at both extremities (see [105] for more details). Inte-
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grating ϕ̇2
3 yields the bending energy of the region 3, ∆Eb3 . This integration is performed

using the Simpson integration rule implemented in the Scipy library of Python. Further-
more, the discretization of the region 3 was determined after a convergence study in order
to limit the computation time, while keeping accurate results. The result of this study
led to a discretization with 300 points to describe the entire circular NP (regions 1 and
3) and consequently 300p(2πar)−1 points for describing an elliptic NP, where ar is the
semi-minor axis of the NP. Like its circumference, the number of points to discretize the
region 3 is proportional to the wrapping degree. As such, 300f points are used.

The model presented in this section involves parameters whose values are set based
on experimental results from the literature: κ2 ≈ 10−18 N.m, γ ≈ 10−3 N.m−1 and
σ ≈ 10−5 N.m−1 [30, 59, 104, 110, 120]. The units commonly used for these variables
are kBT or erg for κ2, kBT.nm−2 or erg.cm−2 for γ and dyne.cm−1 for σ [30, 110, 121]
but it was chosen to convert them to the SI units to simplify the understanding by an
unfamiliar audience.

3.2.2 Observation of the evolution of the energy of the system

An example of the contributions of ∆Eb, ∆Eγ and ∆Eσ̄ on the total energy variation
∆E for a circular NP is presented in Figure 2.5. With the particular set of parameters
used to generate this figure, it appears that the energy due to the NP-membrane adhesion
contributes more to the total potential energy than the energies of the bending and tension
of the membrane, whose contributions are close. Nonetheless, it is worth noting that the
membrane tension σ contributes to both ∆Eσ and ∆Eb2 . The influence of γ and σ on
the shape of the membrane are illustrated in Figure 2.6 for a circular NP.
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Figure 2.5: Contribution of the bending ∆Eb, tension ∆Eσ and adhesion ∆Eγ on the
total energy ∆E, for a circular NP with γ = 10 and σ = 2.

(a) (b)

Figure 2.6: Effect of (a) adhesion γ̄ with σ̄ = 2 and (b) membrane tension σ̄ with γ̄ = 10
on the wrapping for f = 0.8. The r axis is truncated to [−10; 10]. For a same wrapping
degree f , the NP is fully wrapped by the cell only for σ̄ = 0.5.

This figure shows that γ does not influence the shape of the membrane, contrary to
σ. Indeed, for a same wrapping degree f , a variation in σ leads to different shapes for the
membrane. Thus, a membrane with a low tension σ is more likely to close on top of the
NP and hence to trap the NP in the cell, consequently leading to the internalization of
the NP by the cell. This matches the analytical formulation of ψ2r introduced previously,
which is independent of γ. Still, as illustrated in Figure 2.7, the adhesion γ influences the
evolution of ∆E(f) and hence the value of the wrapping degree at equilibrium f̃ . The
membrane tension σ also influences f̃ . In this particular case, a large value of γ combined
with a small value of σ yields values of f̃ close to 1, i.e. full wrapping. Nonetheless,
as illustrated in Figure 2.6, the value of f̃ does not necessarily determine the wrapping
state. More details on the definition of the full wrapping are provided in Section 4.
The aforementioned observations match the results from similar models published in the
literature [40, 99].
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(a) (b)

Figure 2.7: Influence of (a) γ with σ = 2 and (b) σ with γ = 10 on ∆E(f) for a circular
NP. The markers correspond to the equilibrium positions (f = f̃).

3.2.3 Practical computation of the equilibrium state

The equilibrium state of a system is attained when its potential energy reaches a min-
imum value. For circular NPs, ∆E(f) only presents a single minimum, meaning that
the equilibrium is reached for this position. On the contrary, in the case of elliptic NPs,
∆E(f) may present several local minima. Examples of evolutions of ∆E with respect to
f are provided in Chapter 3. In this case, it is necessary to provide a clear definition of
the equilibrium. According to Deserno et al. [97, 98], there is no mechanism that could
contribute to overcome the energy barriers following a local minimum, except the energy
due to thermal fluctuations, which are too weak to overcome the energy barriers we meet
in this study. Consequently, the equilibrium is defined as the first local minimum, since
the system is not able to leave this state.

To evaluate the location of the local minima, ∆E is computed for a range of values of f
and the Scipy built-in function argrelmin is used to get the local minima of ∆E. The first
local minimum is subsequently extracted. The discretization of f was determined after
a convergence study on the value of the minimum provided by the argrelmin function,
yielding a discretization step of 0.003125, which leads to convergence regardless of the
range of aspect ratios of the NP that have been investigated in this thesis. Note that ∆E
is calculated for f ∈ [0.03, 0.97], in order to avoid the limit cases f = 0 and f = 1 since
the wrapping is not initiated for f = 0 and the case f = 1 is never reached in practice as
it requires an extreme bending of the membrane.
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4 Accounting for the mechanical properties

The observations of ∆E, provided in Section 3.2.2, enable to find f̃ for a given set of
mechanical properties (σ, γ). However, the challenge of the present work is to set a range
of values for the mechanical properties of such a system due to the lack of experimental
data [122]. Furthermore, these parameters should have wide ranges of values in practice,
due to the variety of cell types and the diversity of their membrane composition [25, 57].
Section 4.1 introduces the strategy, that we suggest, to cope with the lack of experimental
data, while it is detailed and applied in Sections 4.2 and 4.3.

4.1 Investigations using parametric studies

In order to overcome the lack of experimental data, f̃ is calculated for a range of values
of mechanical parameters. Trends are subsequently observed using the phase diagrams,
which are presented in Section 4.2. Based on the literature [40, 43, 99, 105, 110, 123] and
considering a relative radius of the NP a = 100 nm, the ranges of mechanical parameters
considered are σ̄ ∈ [0.5, 5.5] and γ̄ ∈ [1, 8]. For each pair of σ and γ, the final state of the
system is determined (configuration at equilibrium). The possible states are presented in
Section 4.2.

4.2 Wrapping phases and phase diagrams

The use of phases to differentiate the final state of the system is introduced in [98, 124].
Three phases, with their corresponding final configuration, are schematically depicted in
Figure 2.8.

Figure 2.8: Illustration of the three wrapping phases: (left) no wrapping (phase 1), (mid-
dle) partial wrapping (phase 2) and (right) full wrapping (phase 3).

The first phase (no wrapping) gathers the configurations in which the endocytosis
aborts soon after the NP touches the cell. As such, it corresponds to equilibrium wrapping
degree close to 0. For numerical reasons and as introduced earlier, our model always
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initiate when the NP is in contact with the membrane and therefore the wrapping degree
f is slightly higher than zero. For this reason, an arbitrary small value of f̃ , equal to 0.2,
is set as the threshold below which the system is deemed to end in phase 1. The phase 3 is
defined as the scenarios where a full wrapping happens, which we define as the cases where
the two sides of the free membrane cross, trapping the NP, i.e. max r2l(s2l) ≥ min r2r(s2r).
The phase 2 is composed of all the intermediate configurations, which lead to partial
wrapping.

To browse the ranges of mechanical parameters defined in Section 4.1, a phase diagram
is plotted. For this purpose, the final phase is computed for each combination of σ and
γ and the results are displayed in a plot whose axes are γ and σ, similar to the work
presented in [40, 99] for instance. The phase diagram, obtained for a circular NP, is
presented in Figure 2.9. The trends, observed in this phase diagram, clearly corroborate
the preliminary observations made in Section 3.2.2. Indeed, only large values of γ and
small values of σ lead to a full wrapping of the NP. The phase diagram, presented in
Figure 2.9, which was obtained with our model, matches the one provided in [40], allowing
us to validate the code we have implemented.

Figure 2.9: Phase diagram for a circular NP.

4.3 Phase proportion

Phase diagrams enable to observe the influence of the mechanical properties of the system
on the final wrapping state of a NP. Nonetheless, to investigate the influence of the shape of
the NP, i.e. to understand whether the effect of the mechanical properties on the NP varies
depending on its aspect ratio, it is necessary to compute a phase diagram for each NP. To
compare these diagrams, the proportion of each phase, denoted by ψi for i ∈ {1, 2, 3}, is
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computed. The value of ψi is calculated as the number of points in phase i divided by the
total number of points. Thus, the phase proportions are compared for different shapes
of NP. An example of a phase proportion plot is given in Figure 3.10 of Chapter 3. The
number of points of the phase diagram was determined after a convergence study on the
phase proportion and it was concluded that 280 points, being 14 and 20 to discretize σ
and γ respectively, are sufficient to reach the convergence of the phase proportions1. It
takes around 5 minutes, using an Intel core i7-9850H processor with 32 Gb of RAM, for
the model to generate a phase diagram and thus a phase proportion for a circular NP.
Applications of these tools are presented in the next chapters.

5 Discussion

The model presented in this chapter is based on several hypotheses that are worth to be
discussed, such as:

• A rigid NP is investigated in this model in order to ease the approach compared
to a deformable NP, since solely the deformation of the membrane is considered.
As explained in the hypotheses section, it appears to be a reasonable hypothesis for
many of the existing NPs. However, NPs whose bending rigidity is of the same order
of magnitude as the membrane exist as well [88]. Moreover, studies have demon-
strated that the rigidity of the NP is a prominent parameter of endocytosis [40, 105].
Consequently, additional investigations should be conducted by accounting for the
rigidity of the NP, to provide results adapted to a larger range of NPs.

• This model does not apply to phagocytes. Indeed, the latter have a physiology
that is specific to engulf objects from the extra-cellular medium [16]. As such, several
assumptions, e.g. the hypothesis of an elastic membrane that passively uptakes the
extracellular objects that touch it, may not hold for this kind of cells whose function
is to actively internalize them as part of the immune system.

• The membrane is considered homogeneous since the investigated NPs are
about 100 times smaller than the cell and the system is set at the scale of the NP
(around 100 nm). However, the membrane contains trans-membrane proteins, which
can reach 16 nm [125] and could consequently play a role in this process by directly

1. Figure 2.9 contains more points for the quality of the illustration.
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interacting with the NP. Moreover, the membrane is highly heterogeneous and is
composed of various constituents, mainly carbohydrates, proteins and lipids [57, 58].
The outer part of the membrane is also covered by a sugar layer called glycocalix
(see Chapter 1), which alters the interaction with the extra-cellular medium by re-
ducing the adhesion. The presence of glycocalix is usually more significant in cancer
cells than in healthy ones [126], meaning that it is a parameter to take into account
to differentiate the adhesion of such cells. In addition, the composition of the cell
membrane may change alongside its circumference. For instance, the presence of
lipid rafts (regions with higher concentrations in cholesterol) locally increases the
bending rigidity κ of the membrane [25, 127]. These observations about the struc-
ture of the cell membrane challenge the modeling of the region 3 as homogeneous.
However, since the study is performed for a range of γ̄ and σ̄, the results remain
valid as they account for the variability of the properties of the membrane. Last,
due to the heterogeneity of the latter, the implementation of mechanical properties
that depend on the arclength may provide more accurate predictions. A recent ar-
ticle [128] presents a model with a membrane whose bending rigidity varies along
its arclength. Still, this variation is actually not well characterized and requires the
implementation of stochastic behavior laws.

• The model investigates the entry of a NP in a cell. However, NPs are
used for many other medical purposes. Indeed, they can be used as markers for
radiotherapy or even for imaging to diagnose cancers [129, 130]. They may also be
used to deliver drugs as in chemotherapy for instance [131]. For the NPs to achieve
their goal, they first need to reach the target cell. However, depending on their
physico-chemical properties, these NPs may be cleared by defense mechanisms, e.g.
immunity cells, the liver or the kidneys [132]. Supposing that the NPs avoid these
clearance processes, they still have to be internalized by the target cell. However,
the cellular wrapping of the NP is actually the very first step of endocytosis [23].
Indeed, it is not sure that the NP will not be rejected (via exocytosis) before reaching
its target inside the cell [25]. Finally, the NP being a foreign object in the body, it
remains essential to consider the potential hazards and toxicity it could cause [133].

• The model considers constant mechanical properties during endocytosis,
while they could actually vary with respect to f , as explained in [32, 106, 112, 134–
140]. Indeed, the cell tends to adapt to the phenomenon by increasing the amount
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of interactions at the contact region (and consequently increasing the adhesion)
and the presence of membrane reservoirs may contribute in helping the membrane
deformation (consequently reducing the tension). Accounting for the mechanical
adaptation of the membrane is the subject of Chapter 4.

6 Conclusions of Chapter 2

This chapter presented and justified the modeling approach selected in this study. In
order to remain on a purely mechanical-based approach, the system is modeled at the
scale of the NP and depends on the adhesion between the NP and the membrane and on
the membrane tension. The analytical approach was presented and its usefulness will be
challenged in Chapter 4 after the introduction of additional parameters to the model. As
such, the method to determine the equilibrium state of the system consists in defining
it as the first local minimum of energy as the energy barrier cannot be overcome. The
implementation of this method is detailed and several results are presented:

• A preliminary observation of the variation of the total potential energy
illustrates some of the system behaviors and enables to conclude from qualitative
observations that a large adhesion combined with a small tension yield wrapping
degree close to 1 at equilibrium. Still, the adhesion does not influence the shape
of the free membrane, while a small membrane tension makes the membrane more
likely to trap the NP.

• Phase diagrams can be used to draw quantitative conclusions on the influence of
the mechanical properties of the NP on its faculty to be engulfed by the cell.

• Phase proportions are presented as a mean of condensing the information into a
single scalar, which will make easier comparing the effect of the mechanical proper-
ties of the systems among NPs of different shapes.

• Comparison of the model with the literature shows that our implementation
matches the results from previous studies. Indeed, the evolution of the total po-
tential energy, the shape of the membrane, as well as the phase diagrams obtained
for a circular NP, are comparable with the results from the literature for similar
configurations, allowing us to validate our numerical tool. This enables to further
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enrich the model with more realistic characteristics such as elliptical NPs (in Chap-
ter 3) or mechanical properties that evolve as a function of the wrapping degree (in
Chapter 4).
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Chapter 3

INFLUENCE OF THE GEOMETRICAL AND

MECHANICAL PARAMETERS ON THE

ENDOCYTOSIS OF AN ELLIPTIC

NANOPARTICLE

1 Introduction

This chapter investigates the influence of the aspect ratio of the NP and of the mechanical
properties of the NP-membrane interface on the wrapping of the NP by the membrane.
This is achieved by performing sensitivity analyses on the model introduced in Chapter 2.
Sensitivity analyses are methods that consist in determining the influence of inputs of a
system on the variability of its output(s) using a large amount of data. However, due
to computational costs, it is often necessary to use surrogate models in order to faster
estimate these outputs. This chapter is therefore organized as follows: an overview of the
sensitivity analysis techniques is provided in Section 2, then some of the most commonly
used surrogate models are introduced in Section 3. The process to perform sensitivity
analysis on a surrogate model of the cellular uptake of a NP is presented in details in
Section 4, where the influence of the aspect ratio r of the NP on the wrapping degree
at equilibrium f̃ is compared to that of the membrane tension σ and the NP-membrane
adhesion γ. The content of the present chapter is a fully detailed version of the article
that was published in the International Journal for Numerical Methods in Biomedical
Engineering [141].
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2 Sensitivity analysis

2.1 Overview

Sensitivity analysis is a field of computational mathematics that aims at determining the
model input parameters that influence the most a quantity of interest (QoI) [142, 143].
It can be performed to achieve many objectives, among which the simplification of the
model or to guide the research efforts as their results can be used to optimize the resources
necessary for experimental investigations, for instance. Applications of sensitivity analyses
particularly in biomechanics can be found in [144, 145].

Three distinct types of sensitivity analysis exist: the screening methods, the local sen-
sitivity analysis and the variance-decomposition-based methods [146, 147]. Screening and
variance-decomposition-based methods are branches of global sensitivity analysis [142].
Screening methods consists in screening out unimportant input parameters with a limited
number of calls to the model. The local sensitivity analysis techniques consist in evaluat-
ing the influence of small variations of an input around a given point on the output of the
model. This method provides quick results with few data points, but does not work well in
case of a nonlinear or nonmonotonic model, for instance. Variance-decomposition-based
sensitivity analyses study the influence of the variability of an input on the output, by
investigating the contribution of each input on the variance of the output, by sweeping the
entire domains of definition of the input parameters. Due to the nonlinearities and likely
nonmonotonicities of the response of the model, global sensitivity analyses have been
preferred over local techniques in this work. The principles of global sensitivity analysis
will be introduced in Section 2.2, where variance-decomposition-based techniques will be
detailed. For an in depth review of these methods, refer to [142, 148, 149] and references
therein.

2.2 Global sensitivity analysis

2.2.1 Overview

Contrary to the local approaches, global sensitivity analysis aims at investigating the
sensitivity of the model over its entire domain of definition [150]. The amount of data
necessary to perform these analyses is thus substantial and depends on the dimension
of the model M , i.e. the number of input parameters. Thus, screening methods are
usually performed as a first step in order to classify the input parameters as important or
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unimportant. This enables to set constant values for less important variables so that the
dimensionality of the model is reduced, which is usually needed when several variables
are present. Figure 3.1 illustrates the variety of the screening and variance-decomposition
methods according to the complexity and regularity of the model. This graph also provides
an order of magnitude of the number of model evaluations required for each method, which
is proportional to the dimension of the problem [142]. This further justifies the application
of a preliminary screening method before having recourse to the variance-decomposition-
based analyses, as it enables to reduce the dimension of the problem with only 10 × M

evaluations of the model. However, the dimension of our problem being already small
(three input parameters, namely σ, γ and r), it is not crucial to perform screening method
to further reduce the dimension. Thus, only the variance-based methods will be used in
this work. In complement to Figure 3.1, the reader can follow the decision tree provided
by Rocquigny et al. [151], for further heuristics on when to use each method.

Figure 3.1: Graphical synthesis of global sensitivity analysis methods, adapted from [142].
M is the number of input parameters of the model.

2.2.2 Variance-decomposition-based sensitivity analysis

According to Figure 3.1, several variance-decomposition-based sensitivity analysis tech-
niques can be used in the case of nonmonotonic models. Still, only two of them provide
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information on the effects at all orders, i.e. related to the effect of a variable only (first
order) along with its interactions with one (second order) or all the other parameters
(total). These are the Sobol indices, estimated using either Monte Carlo or quasi Monte
Carlo sampling techniques. Both of which are presented in details in Section 3.4. The
estimation of the Sobol indices is also referred to as ANOVA (ANalysis Of VAriance) in
the literature. Sobol indices apply well to studies with independent parameters solely. For
dependent ones, other approaches can be used to evaluate the sensitivity of the model,
such as the ANalysis of COVAriance (ANCOVA) [152]. Since the variables involved in
our work are independent (as fully introduced in Chapter 2), only the Sobol indices will
be presented in this manuscript.

General definition of the Sobol indices The Sobol sensitivity indices [153] are used
to estimate the contribution of an input random variable on the variance of the output.
The first order and total Sobol indices for a variable Xi are defined in Equations 3.1, in
which Xi, i ∈ {1, 2, ...,M} is the set of M input variables and Y is an output QoI. The
first order index Si estimates the part of the variance of Y due to Xi only. Moreover, the
total index STi also accounts for the effect of the interactions with other variables Xj,j ̸=i.

Si = Var[E[Y |Xi]]
Var[Y ] , (3.1a)

STi = 1 − Var[E[Y |X1, ..., Xi−1, Xi+1, ...XM ]]
Var[Y ] , (3.1b)

in which E and Var respectively denote the expectation and the variance of a random
variable. It is also possible to calculate the second order Sobol indices, which estimate
the contribution of the interaction between two input variables Xi and Xj on the variance
of Y . This index is denoted as Si,j and reads:

Si,j = Var[E[Y |Xi, Xj] − E[Y |Xi] − E[Y |Xj]]
Var[Y ] . (3.2)
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Practical computation of the Sobol indices Several approaches exist to numeri-
cally compute the Sobol indices, i.e. to estimate different terms involving the evaluation of
the variance [152]. For instance, Saltelli [154], Mauntz-Kucherenko [155], Martinez [156]
and Jansen [157] have developed techniques to estimate these terms. Those are imple-
mented in tools such as the open-source Python library OpenTURNS [158], UQlab [152]
and SALib [159, 160]. In depth explanations on the existing techniques to compute the
Sobol indices are presented in Appendix A. In this thesis, the Sobol indices are computed
using OpenTURNS, developed for Python, which is the programing language used to
implement our numerical models. In addition, OpenTURNS has an active community
and a detailed documentation for different features of the library. Furthermore, it is also
possible to determine the Sobol indices using the Polynomial Chaos Expansion (PCE)
metamodel [161], as presented in Section 3.2.2.

Convergence of the Sobol indices The computation of the Sobol indices depends on
the number of samples that are used to estimate the variance. It is henceforth necessary
to ensure that enough samples are used. In this specific case, where the QoI (i.e. the
Sobol indices) can be very close to zero (case of a non influential parameter), the usual
convergence techniques based on the study of an absolute normalized gradient of the QoI
cannot be applied. The latter, for a function y depending on a variable x, is defined
as |y(x + 1) − y(x)|/|y(x)|. Alternative criteria for the convergence of sensitivity indices
have therefore been proposed in the literature, such as that of Vanrolleghem et. al [162]
which consists in the evaluation of the variability of the sum of the sensitivity indices
generated with two samples of different size. An inconvenience of this criterion is that
the convergence of each sensitivity index is not investigated separately. In addition,
Herman et al. [163] considered a threshold for the percentage of the sensitivity index
of the most influential input parameter, which does not investigate the convergence of
each indices either. Then, Sarrazin et al. [164] proposed a convergence study based on
the range of the 95 % confidence intervals (CIs) of the indices, and concluded that the
convergence is reached when the latter is smaller than 0.05. This criterion needs to be
fulfilled for all the indices. In this work, we will therefore use the latter criterion to study
the convergence of the Sobol indices.
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3 Surrogate modeling

3.1 Overview

Surrogate models, or metamodels, can be regarded as mathematical approximations of a
model. They are built using samples of input data, with their corresponding outputs and
can be used to evaluate the model for any input value within its domain of definition with
a near-to-zero computation time [165]. Thus, metamodels enable to perform sensitivity
analyses – which often require large input datasets – thanks to affordable computation
times [166]. Nonetheless, the estimations made by these surrogates leads to errors that
need to be considered. This point will be discussed later in this chapter. Most of the
surrogate models are distinguished based on the functions they use to approximate an
output QoI: e.g. polynomial or Gaussian. An alternative to these models is for instance
neural networks [167]. In this work, only two popular surrogate models will be presented:
Gaussian process regression, also referred to as Kriging [168–174] and Polynomial Chaos
Expansion (PCE) [175–178]. A comparative study [179], involving 14 test problems,
with different shapes of non linearity and number of inputs, showed that the choice of the
metamodel should be influenced by the behavior of the model that is being approximated.
This is why preliminary observations are always necessary, as also highlighted in [180].
The conclusions of the comparative study were that Kriging performs well for nonlinear
problems with the drawback of having a higher computational cost, due to its complex
optimization process, while polynomial-based methods are easier to construct but also
less accurate, in this case. The mathematical definition of both metamodels is presented
in Section 3.2. The implementation and validation methods are subsequently detailed in
Section 3.3. Last, the importance of the design of the input dataset in the elaboration of
the metamodel is highlighted in Section 3.4, along with a brief presentation of commonly
used sampling techniques.

3.2 Mathematical definition

3.2.1 Kriging

Kriging [168–174] is an interpolation model based on the decomposition of a random
variable Y into a deterministic mean (trend) and a residual Gaussian process, which
reads:

ΞKri(x) = µ(x) +W (x). (3.3)
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In this equation, x is one of theN realizations of the random input vector X = (x1, ..., xN )⊤

of dimension M and µ is a function defined as:

µ(x) =
n∑

j=1
ajgj(x), (3.4)

where g(x) = (g1(x), ..., gn(x))⊤ are the n trend functions and a = {a1, ..., an}⊤ the
trend coefficients. The trend functions can be of different types, e.g. constant, linear or
quadratic. W (x) is a standard Gaussian field with zero mean. The covariance function
C of W is defined as C = Cℓ,σ, where ℓ and σ are the lengthscale and signal variance
parameters. An example of covariance function is the squared exponential (Gaussian)
function, defined as:

Cℓ,σ(x1,x2) = σ2 exp
(

− 1
2ℓ2 ∥x1 − x2∥2

2

)
. (3.5)

Once the type of the trend and covariance functions defined, the coefficients a = {a1, ..., an}⊤

are estimated via maximum likelihood optimization so that the metamodel interpolates
the data contained in a training dataset Y, as a = (G⊤ C−1 G)−1 G⊤ C−1 Y in which
the N × n matrix G is defined as Gij = gj(xi), i ∈ {1, ..., N}, j ∈ {1, ..., n} and C is the
N ×N correlation matrix, whose components are Cij = Cℓ,σ(xi,xj), i, j ∈ {1, ..., N}.

As such, the first step for the implementation of Kriging consists in choosing the n
trend functions g. Then, a model for the covariance function is selected and its parameters
are identified. After, using the experimental design X and the corresponding responses
Y, a maximum likelihood optimization problem is solved to estimate the coefficients a of
the trend. Refer to [158, 181] for more details and application examples.

3.2.2 Polynomial Chaos Expansion

PCE is a functional representation of the random QoI, wherein the latter is written as an
infinite linear combination of some orthogonal polynomials, with respect to the Probability
Density Functions (PDFs) of input parameters [182–184]. The exact infinite expansion is
then truncated up to some degree p as:

ΞP CE
p (x) =

P −1∑
i=0

aiΨi(ζ) = a⊤Ψ(ζ), (3.6)

in which x is a realization of the random input vector X = (x1, ..., xN )⊤ of dimension
M , P =

(
p+M

M

)
polynomial basis functions Ψ and deterministic coefficients a are used.

An isoprobabilistic transformation T links the standard random vector ζ = (ζ1, ..., ζM)
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to the random input vector x, i.e. x = T (ζ). The type of polynomials is determined
based on the PDFs of the input random parameters. For instance, Legendre, Hermite and
Jacobi polynomials, defined over [−1, 1], are used for uniform, Gaussian and beta random
variables. The basis functions are then constructed by multiplying the one-dimensional
bases. After, the expansion coefficients are calculated using a least squares approach
via a = (G⊤ G)−1 G⊤ Y, wherein the N × P information matrix G is defined as
Gij = Ψj(ζi). A rule of thumb to avoid the singularity of the matrix G⊤ G is that the
dataset used to build the metamodel should contain more than (M − 1)P samples [178],
leading to:

N > (M − 1)
(
p+M

M

)
, (3.7)

in which N is the number of samples. The mean and variance of the estimations of the
output variable Y can be subsequently calculated in terms of the expansion coefficients
via E[ΞP CE

p ] = a0 and Var[ΞP CE
p ] = ∑P −1

i=1 a2
i , respectively. Note that PCE also enables

to analytically evaluate the Sobol sensitivity indices directly from the expansion coeffi-
cients. Details on the calculation of the Sobol indices with these coefficients are provided
in [152, 161, 185]. OpenTURNS built-in methods make it possible to compute the Sobol
indices [158] with this approach.

3.3 Validation of the metamodel

The hyperparameters of the metamodels, i.e. the coefficients of the trend functions along
with the parameters of the correlation function (ℓ and σ for the squared exponential
model) of Kriging and the expansion coefficients of PCE, are optimized in order to max-
imize the accuracy of their predictions, which is quantified using the predictivity factor,
denoted by Q2. The latter can be estimated using validation techniques. Among them,
one can mention the holdout validation, the cross validation and the Leave-One-Out val-
idation [186]. These techniques are presented in the following.

3.3.1 Optimization of the hyperparameters

Holdout validation techniques consist in dividing the dataset into a training and
testing subsets. The training set is used to train the model and the remaining testing
dataset is used to validate the model. As such, the predictions of the model, made with
the test dataset, are compared with the true values, which are the values contained in the
testing dataset. The training of the metamodel consists in optimizing its hyperparameters
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introduced in Section 3. The true and predicted values can be compared in a true vs
predicted plot. If the distribution of the points is close to the line y = x, the model
is accurate, as the predictions are close to the true values. The predictivity factor Q2

enables to quantify the accuracy of the metamodel by comparing the least squared error
between the predicted and true values, normalized by the variance of the predicted values,
to 1. Hence, the closer Q2 gets to 1, the closer the predictions are to the true values. The
predictivity factor is defined as:

Q2 = 1 −
∑N

i=1(Yi − Ŷi)2

NVar(Ŷ )
(3.8)

In this equation, Yi is the ith true value of the test subset and Ŷi is the corresponding
prediction. To be accurate, this method requires the test subset to be representative of
the dataset, meaning that it has to contain enough samples to depict the behavior of
the whole dataset. A rule of thumb is to consider that the size of the test subset should
represent 30 % of the size of the dataset [187]. The holdout validation may thus require
large datasets to provide accurate results. The split of the test and train subdatasets for
the holdout validation is schematically illustrated in Figure 3.2a.

Cross validation (CV) consists in applying the holdout validation several times to
the dataset. It is split in k subsets, called folds, and the holdout validation is performed
by using one fold for testing and the rest of the dataset (the remaining k − 1 folds)
for training. CV is henceforth also referred to as k-fold validation. The metamodel is
therefore evaluated k times, and the predictions versus true values are stored. Thus,
Nj predictions Ŷ j

i (i ∈ {1, ..., Nj}, j ∈ {1, ...k}) and their associate true values Y j
i are

compared, in which Nj is the number of samples in the jth fold. This technique is used
as an alternative to the holdout validation when the size of the dataset is not sufficient
to train the metamodel with a representative dataset. Training using CV techniques
provides more accurate predictions than those obtained with the holdout validation [186].
Nonetheless, the computational cost of such a method is larger, as the optimization process
needs to be repeated k times.

The true versus predicted plot is generated with the predictions and true values of the
k folds. The predictivity factor Q2 is subsequently computed using Equation 3.9, which
evaluates the mean of the predictivity factors obtained for each fold.

QCV
2 = 1

k

k∑
j=1

Qj
2, (3.9)
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in which Qj
2 is the predictivity factor of the jth fold, itself computed as:

Qj
2 = 1 −

∑Nj

i=1(Y
j

i − Ŷ j
i )2

N jVar(Ŷ j)
, (3.10)

where Y j is the jth testing subdataset, while Ŷ j
i is the prediction of the ith sample and Y j

i

is the associate true value. An example of a possible split of the test and train subdataset
for an 8-fold validation is illustrated in Figure 3.2b. The division of the folds can be
defined in various ways. Numerical experiments revealed that setting k = 10 generally
provides accurate estimations of the model, while limiting overfitting [188]. This value
can be used as a rule of thumb but the value of k can be adapted accordingly to the
behavior of the model being approximated by the metamodel [189].

Leave-One-Out (LOO) cross validation method is preferred over the k-fold in the case
of a very small dataset [190]. Indeed, this method is equivalent to a k-fold cross validation
in which the amount of folds k is equal to the size of the dataset N . In this case, each
fold only contains one sample in the test set, in order to use for training the largest subset
available. This technique is therefore more computationally expensive than the classical
k-fold method, as it requires more rounds of training to be computed [188]. The split of
the train and test subdataset for the LOO cross validation is shown in Figure 3.2c.

Synthesis on the validation methods The validation methods, that have been in-
troduced, are compared in Figures 3.2, in which the separation of the training and testing
subdataset is presented. Regardless of the validation technique used, the objective is al-
ways to find the parameters of the metamodel for which the predictivity factor Q2 is as
close as possible to 1.

In this thesis, the optimization of the hyperparameters using OpenTURNS is carried
out using the LOO validation for both Kriging and PCE techniques. Indeed, although it
may not be the most efficient in terms of the computation time, it remains reasonable,
as the maximum CPU time for the optimization of the hyperparameters a metamodel
encountered in this thesis is around 10 minutes. As such, this validation technique is used
to take better advantage of the samples that are available.

3.3.2 Final validation

After optimization of the hyperparameters, the accuracy of the metamodel is calculated
with an additional dataset, that is used only for this purpose [186]. This is consequently
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unseen data that has not been used to train the metamodel. The predictivity factor,
obtained for this dataset, is then used to quantify the accuracy of the metamodel after
optimization.

(a) Holdout

(b) 8-fold CV

(c) LOO

Figure 3.2: Illustration of the division between the training and testing subdatasets for the
holdout (a), cross-validation (b) and LOO (c) validations, where k is the number of folds
and N is the size of the dataset. Light green regions stand for the training subdatasets,
while the colored ones are the testing ones.
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3.4 Sample definition

3.4.1 Importance of sampling on surrogate modeling and sensitivity analysis

Metamodels require observations of the model to be able to emulate it and, in general,
the more complex the model is, the more resources it requires to generate the observation
samples. However, the generation of these samples may be computationally expensive,
depending on the computational cost of the model. This is why their size needs to be
minimized while being representative of the behavior of the model [180]. The number of
samples necessary to create a metamodel depends on the number of input parameters,
their distributions and the nonlinearity of the model. Some of the well-known sampling
techniques will be succinctly presented in Section 3.4.2 and compared in Section 3.4.3, in
order to identify the one that will be the most suitable for our upcoming investigations.
The reader can refer to [191] for detailed information on the existing sampling techniques.

3.4.2 Common sampling techniques

Regular sampling, also called as grid sampling, consists in sampling each input pa-
rameter in a regular manner [192]. This method suits well for variables that require only
a few points to be described, since the total number of tuples of the M input variables
can be calculated as the product of the amount of points used to describe each variable.

Monte Carlo (MC), also known as simple random sample, consists in an experimental
design in which each sample (i.e. tuple of the M input variables) is generated indepen-
dently of the others [166, 191].

Stratified sampling consists in splitting the domain of definition of the input variables
into equal-size subdomains (also called strates) and to generate random samples for each
one of them. This kind of sampling ensures that every chunk of the domain is sampled [192]
and they may thus require a lot of samples, depending on the discretization.

Latin Hypercubes Sampling (LHS) derives from stratified sampling, with the at-
tempt to reduce the amount of data. In this technique, the domains of the M input
parameters are divided in the number of the expected samples, say 5 × 103 here. Then,
5 × 103 strates will be created. Among these, only one value is randomly taken for each
variable, constituting thus one tuple which is the first sample. To generate the next tuple,
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the same process is repeated, but none of the previously used values of the parameters
can be reused. Thus, LHS is called a memory approach, since the samples are generated
by taking into account the ones that have already been set. Regular sampling, MC and
LHS for two independent and uniformly distributed variables over [0, 1] are compared in
Figure 3.3.

(a) Regular (b) Monte Carlo (c) Latin Hypercube

Figure 3.3: Example of (a) regular sampling with 121 points, (b) Monte Carlo and (c)
Latin Hypercube sampling with 27 = 128 points, computed using OpenTURNS. The red
dots correspond to the first 10 points, the grey diamonds represent the following 11 to
100 points, and the black triangles stand for the remaining points.

Quasi Monte Carlo (qMC), also known as quasi-random or low-discrepancy [193]
sampling method is similar to MC, as the tuples are generated independently from
each other. However, they are not generated randomly but using a low discrepancy
sequence [191, 194–197]. The latter is deterministic and well distributed across the do-
main of definition. The discrepancy of a sequence is the distance between its values and
those of a uniformly distributed sequence. Examples of such sequences are Halton’s [198],
Sobol’s [199, 200] or Faure’s [201]. The samples obtained using these sequences for the
same independent uniform variables over [0, 1] are compared in Figure 3.4. This approach
enables to generate samples that cover the domain of definition of the variables, contrary
to MC, which might let some parts of the domain uncovered if the number of sample is
not large enough [195].
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(a) Sobol’s sequence (b) Faure’s sequence (c) Halton’s sequence

Figure 3.4: Example of low discrepancy sequences with 27 = 128 points, computed with
OpenTURNS. The red dots correspond to the first 10 points, the grey diamonds represent
the following 11 to 100 points, and the black triangles stand for the remaining points.

3.4.3 Sampling technique used in this study

Preliminary observations on the behavior of our model showed that its response is non-
linear. Consequently, the samples need to fairly cover the domains of definition of the
input parameters. Hence, the regular sampling method is discarded from the potential
candidates, as well as the stratified sampling, which would require a very large number
of samples. In our case, the computation time is about 1 second to compute f̃ , i.e. one
single point of a phase diagram. The aforementioned methods are hence not suitable to
create metamodels or to perform parametric studies or any sensitivity analysis that de-
pend on the number of samples. Thus, the choice needs to be made among MC, LHS and
qMC methods. Comparative studies [195, 202] showed that qMC requires less samples
to converge to the actual behavior of the data and to minimize the error in the integral
quadrature compared to LHS, while MC requires the most. Consequently, the metamodel
and the sensitivity analyses presented in this thesis will be performed using qMC-based
samples. None of the three low discrepancy sequences that have been introduced in the
previous section seems more adapted to our study than the others. Thus, our samples
will be built using Sobol’s sequences1, as they are implemented in the most commonly
used numerical open-source tools for the design of experiments, such as OpenTURNS or
UQlab, among others.

1. Note the difference between the Sobol indices and the Sobol sequences, which are different quantities.
The Sobol indices are calculated for sensitivity analyses, while Sobol’s sequences are used to create
samples.
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4 Influence of the aspect ratio of a rigid elliptic NP
on its cellular uptake

In this section, the influence of the mechanical properties of the NP-membrane interface
(i.e. the adhesion γ between the membrane and the NP and the membrane tension σ),
as well as the aspect ratio r of the NP, on the wrapping degree at equilibrium f̃ , are com-
pared. This investigation aims at providing guidelines to NP manufacturers regarding the
characteristics they need to accurately reproduce. For instance, the control on the shape
of the NP is currently a challenging task [111], because of the manufacturing limitations
relative to the production of objects at such scales. Another objective of this chapter is to
provide a quantitative comprehension of the influence of the aforementioned properties on
the cellular uptake of the NP, which has already been investigated qualitatively, as intro-
duced in Chapter 1. To fulfil this objective, we need to identify which of the investigated
parameters is dominant on the prediction of the cellular uptake of the NPs.

4.1 Preliminary observations

In order to get a grasp of the influence of r on the wrapping degree at equilibrium f̃ , the
behavior of the variation of the total potential energy ∆E(f) is observed in Figure 3.5
for several values of r and a cell with the following properties: (γ, σ) = (10, 2).

Figure 3.5: Influence of the aspect ratio r on the variation of the total potential energy
in terms of the wrapping degree f for (γ, σ) = (10, 2). The dots correspond to the
equilibrium position.

Note that although γ = 10 is out of the interval of definition considered in this study,
this value is taken to inflate the effect of γ in energy plots. This choice was also made
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in a similar study [40]. Figure 3.5 shows that except for the cases of circular (r = 1)
and slightly vertical NPs (r̄ ∈ [1/2, 1]), an energy barrier occurs for low values of f for
vertical NPs and around f ≈ 0.5 for horizontal ones. The geometry of the membrane with
r = 1/5 for the wrapping degrees close to the energy barrier is displayed in Figure 3.6.

(a) f = 0.05 (b) f = 0.10 (c) f = 0.15

Figure 3.6: Geometry of the membrane during the wrapping of a vertical NP (r = 1/5)
for f close to the energy barrier and a cell with (γ, σ) = (10, 2).

The same plot for r = 5 are also presented in Figure 3.7. The values of f , at which
the geometry is represented, are chosen to display the evolution of the geometry, before
and after the energy barriers, that can be observed in Figure 3.8.

(a) f = 0.40 (b) f = 0.45 (c) f = 0.50

Figure 3.7: Geometry of the membrane during the wrapping of a horizontal NP (r = 5)
for f close to the energy barrier and a cell with (γ, σ) = (10, 2).

Figure 3.7 shows that the shape of the membrane remains nearly untouched for a
wrapping degree smaller than f = 0.45, and then an abrupt change happens between
f = 0.45 and f = 0.5. The energy barrier, observed in the dotted dark blue line in
Figure 3.8 for this range of f , is indeed due to the sharp change in curvature of the
membrane, necessary to reach f = 0.5. The abrupt change in the curvature generates an
increase the bending energy of the membrane ∆Eb in Equation 2.54. The phenomenon
at the origin of the energy barrier of vertical NP is similar, even though less significant.
Indeed, vertical NPs have a small contact radius with the membrane, since the contact
occurs at the tip of the ellipse. The energy barrier takes place for small wrapping degrees,
as the steepest change in the bending of the membrane takes place during the wrapping
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of the tip of the NP. Once the latter is wrapped, the total energy keeps decreasing with f ,
as illustrated in Figure 3.5. These conclusions, from the evolution of ∆E with respect to
r, show that the aspect ratio of the NP influences the bending energy ∆Eb and therefore
the total potential energy ∆E.

However, this understanding, for fixed values of σ and γ, might be misleading. Indeed,
Figure 2.7 highlighted the effect of the mechanical parameters (γ, σ) on ∆E, in the case
of a circular NP (r = 1). In order to determine if this effect remains notable for elliptic
NPs, ∆E(f) is plotted for a range of values of γ and σ in the case of NPs with r = 5 and
r = 1/5 in Figure 3.8.

(a) (b)

Figure 3.8: Influence of (a) γ with σ = 2 and (b) σ with γ = 10 on ∆E(f) for vertical
(r = 1/5, blue dashed lines) and horizontal (r = 5, solid red lines) NPs. The equilibrium
positions are shown by the markers.

The latter shows that the energy barrier for vertical ellipses is reduced for lower σ̄
and higher γ̄, while the one for horizontal ellipses is only slightly reduced by lowering σ̄.
Hence, the adhesion between the NP and the membrane, as well as the membrane tension,
compensate the effect of the bending of the membrane on the total variation of potential
energy ∆E.

Both of these observations lead to the conclusion that r, γ and σ influence f̃ in different
ways. For a better understanding of the influence of r and to generalize these observations
to a large range of values of γ̄ and σ̄, i.e. a range of cells, phase diagrams are generated
for all aspect ratios. Only the phase diagrams obtained for r = 1/4, r = 1 and r = 4 are
presented in Figure 3.9. The reader can refer to Appendix B for more phase diagrams for
r ∈ [1/5, 5].
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(a) vertical NP (b) circular NP (c) horizontal NP

Figure 3.9: Phase diagrams for (a) r = 1/4, (b) r = 1 and (c) r = 4.

These phase diagrams show that the influence of γ and σ is not the same depending on
the value of r. Indeed, for very elongated NPs, i.e. r ≫ 1 or r ≪ 1, the phase diagrams do
not change with r, meaning that γ and σ do not influence the phase as they are not able
to compensate the energy barrier due to the bending of the membrane. On the contrary,
this is not the case for slightly elongated NPs. These observations are summarized in
Figure 3.10, which presents the proportion of phases 1, 2 and 3 (denoted as ψ1, ψ2 and
ψ3), on the phase diagrams, in terms of r.

Figure 3.10: Phase proportions with respect to the aspect ratio of the NP. The dark (resp.
light) lines correspond to vertical (resp. horizontal) NPs.

From this figure, one can observe that horizontal particles with r > 2 barely surpass
phase 2, while the vertical ones tend to remain in the the phase 1 for r < 1/3. For highly
elongated NPs (r ≫ 1), neither the vertical nor the horizontal particles reach phase 3,
i.e. ψ3(r > 2) = 0 and ψ3(r < 1/3) = 0. Thus, the particles that are more likely to be
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engulfed by the cell are the ones that are slightly elongated, and especially the circular
NPs, as ψ3 is maximized for r ≈ 1.

The preliminary observations, presented in this section, qualitatively show that r, γ
and σ influence the outcome of the endocytosis of the NPs. The next section focuses on
the quantitative evaluation of these influences.

4.2 Quantification of the influence of the aspect ratio on the
uptake of the NPs

4.2.1 Preliminary considerations

The results of the preliminary observations presented in Section 4.1 do not enable to draw
any striking conclusion, as all the parameters appear to play a role on the wrapping degree
at equilibrium f̃ . Furthermore, the behavior of the model does neither look monotonic nor
linear. Thus, according to the introduction to sensitivity analysis provided in Section 2,
the influence of each one of the input parameters γ, σ and r and of their potential
interactions on f̃ , will be quantified by evaluating the Sobol indices. The description of
the domains of definition of the input parameters is presented in Section 4.2.2. Then,
the evaluation of the representativeness of the dataset will be discussed in Section 4.2.3.
Thus, PCE and Kriging metamodels will be compared in Section 4.2.4. Once validated,
they will be used to generate estimations of the model, which in turn will be used to
compute the Sobol indices in Section 4.2.5. Note that the Python script used to build the
metamodels and to conduct the sensitivity analyses is available in the Github repository1

associated to this thesis.

4.2.2 Domains of definition of the variables

The variables related to the mechanical behavior of the system, γ and σ, are set following
the domains of definition presented in Section 2.1 from Chapter 2. Having recourse to
the maximum entropy principle [203], since the only available information about these
variables are their lower and upper bounds, the best candidate for their PDF is the
uniform distribution. It is worth noting that this non-parametric approach to model the
probabilistic content of a random variable is used since parametric approaches, based on
real data, cannot be used in this work because of the lack of experimental data. However,

1. https://github.com/SarahIaquinta/PhDthesis
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recalling that the aspect ratio r of the NP ranges from 1/6 to 6, blindly applying a uniform
distribution for r would result in realizations that are skewed towards more horizontal NPs,
as they span over a larger interval than the vertical samples. To overcome this issue, we
used a piecewise-uniform distribution, i.e. a distribution that is uniform over two disjoint
intervals. In our case, the distribution is uniform between 1/6 and 1, and again between
1 and 6. Hence, the PDF of the random variable R̄ is defined as:

fR̄(x) =



1
2

1
1− 1

6
= 3

5 for x ∈ [1
6 , 1[

1
2

1
6−1 = 1

10 for x ∈ ]1, 6]

0 otherwise,

in which the weight 1/2 is added to each one of the two distributions to ensure that
r = 1 is the median of the distribution, i.e. P(R̄ < 1) = P(R̄ > 1) = 1/2. This distribution
will be denoted as UP (1/6, 1; 1, 6). As such, the input parameters are modeled as three
independent random variables Γ̄ ∼ U(1, 8), Σ̄ ∼ U(0.5, 5.5) and R̄ ∼ UP (1/6, 1; 1, 6),
where the intervals of definition have been described in Section 4.2 from Chapter 2.
Figure 3.11 shows the histograms of the input variables based on a dataset of 103 random
samples.

(a) Distribution of Γ. (b) Distribution of Σ. (c) Distribution of R.

Figure 3.11: Histogram of the input variables (a) Γ, (b) Σ and (c) R, for 103 samples.

4.2.3 Data representativeness

The variables Γ, Σ and R are sampled using the qMC technique based on the Sobol’s
sequence. To observe the behavior of the random variable F̃ and determine the number
of samples needed to form a representative dataset, 212 = 4096 realizations have initially
been built. In case of low representativeness, more samples could have been generated.
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The corresponding values of F̃ for each realization are then calculated in about 2 hours,
by executing the code in parallel using the aforementioned machine. Still, even if this
computation time is relatively small, especially compared to those that are necessary to
generate values of Ψ3, it is not possible to know in advance the number of samples needed
for the Sobol indices to converge. For this reason, the surrogate model is built even in
this case, in order to ensure that the convergence will be reached. Figure 3.12 illustrates
the distribution of F̃ in the dataset. This distribution is bimodal, i.e. it has two modes,
being f̃ = 0.03 and f̃ = 0.37.

Figure 3.12: Histogram of the distribution of F̃ , along with a kernel density estimation
of its PDF.

Figure 3.13 depicts the convergence of the average and the standard deviation of the
random wrapping degree at equilibrium F̃ , in terms of the number of samples, along
with their respective standard deviation (shaded gray zones) via bootstrapping with a
resampling size of 200 in order to remove noise coming from the random nature of the
problem. To determine the convergence, which is not trivial from the values of the mean
and standard deviation of F̃ , the absolute value of the normalized gradient is computed.
It is worth recalling that this error estimator is not suitable when the QoI converge to
small (in absolute value) values, as introduced in Section 2.2.2, which is not the case for
F̃ . Figure 3.14 shows the absolute normalized gradients of the average and the standard
deviation of F̃ , in terms of the number of samples. The red dashed lines are used to
highlight the threshold defining the convergence, which was set to 10−2, i.e. a variation
smaller than 1 %, when adding a single sample to the set.
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(a) (b)

Figure 3.13: Convergence of the (a) mean and (b) standard deviation of the random
wrapping degree at equilibrium F̃ , in terms of the number of samples (thick solid lines),
along with their respective standard deviation, denoted by the gray regions.

(a) (b)

Figure 3.14: Normalized gradient of the (a) mean and (b) standard deviation of F̃ , with
respect to the number of samples. The dashed lines correspond to the threshold of 1 %.
Only one out of four points have been represented for the clarity of the plots.

According to this plot, the dataset needs to contain at least 217 estimations of F̃ to
be representative of its mean. Similarly, 382 evaluations of the QoI are necessary for its
standard deviation to converge. To ensure convergence of both of these first and second-
order statistics, the size of the dataset necessary for it to be statistically representative of
the behavior of F̃ is 382, which represents 9 % of the size of the dataset.

4.2.4 Surrogate modeling

In this section, Kriging and PCE surrogate models are employed to model the random
wrapping degree at equilibrium F̃ using OpenTURNS. To proceed the final validation of
the metamodels, 10 % of the dataset, i.e. 410 samples, will be taken in order to have
enough data to properly calculate the value of the predictivity factor Q2, while making
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sure that the validation dataset is representative of the data by containing more than 324
samples. Hence, the remaining 90 %, i.e. 3686 samples, is used to train the metamodels.

Kriging First, a Kriging metamodel is implemented using OpenTURNS default trend
and correlation functions that may be modified in case of poor performance. As such, the
trend function is constant and the correlation function is defined with a squared expo-
nential (Gaussian) model. This choice will be discussed in Section 5. After optimization,
a predictivity factor QKRI

2 = 0.97 was obtained. The true vs predicted plot, depicted in
Figure 3.15, shows that most of the predictions are close to the true values.

Figure 3.15: Comparison of the Kriging predictions of F̃ with the true values from the
dataset.

In addition, the kernel density estimation for the PDF of F̃ , based on the response
of the metamodel to an input dataset containing 105 samples, generated using the MC
sampling method, is compared to that of the original dataset in Figure 3.18 and shows that
the distribution of the predictions (dashed purple line) is similar to that of the original
data.

PCE Based on the mathematical definition of the PCE provided in Section 3.2.2, the
following steps need to be performed to build the metamodel:

1. Normalization of the input variables to reduce their domain of definition to [−1, 1]
in order to apply common orthogonal polynomials;

2. Definition of the family of orthogonal polynomials with respect to the distribution
of the input parameters;
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3. Determination of a truncation degree p for the orthogonal basis;

4. Estimation of the vector of expansion coefficients a.

The implementation of these steps is presented in the following. Figure 3.16 shows
the distribution of the input variables after mapping into the interval [−1, 1]. The stan-
dardized input parameters are thus three independent random variables Γ̄∗ ∼ U(−1, 1),
Σ̄∗ ∼ U(−1, 1) and R̄∗ ∼ UP (−1,−0.7; −0.7, 1).

(a) (b) (c)

Figure 3.16: Histograms of the standardized random input variables (a) Γ∗ , (b) Σ∗ and
(c) R∗ for 103 samples.

The orthogonal polynomial associated to the uniform distribution is Legendre’s. For
the piecewise uniform distribution, there is no existing associated family of orthogonal
polynomial. We henceforth used a built-in function of OpenTURNS to approximate
the distribution of R̄ based on the input dataset, and thus to infer the corresponding
polynomial for the orthogonal basis using the adaptive Stieltjes algorithm [204].

Then, the polynomial degree p is chosen such that the predictivity factor Q2 is the
closest to 1. For this purpose, the latter is calculated for different values of p ranging
from 1 to 20, which is the maximum degree, according to the rule of thumb introduced in
Section 3.2.2 (Equation 3.7). Figure 3.17a shows that the predictivity factor is maximized
for a degree p = 17 (QP CE

2 = 0.79). Furthermore, Figure 3.18 compares the PDF of
the predictions of F̃ to that based on the original dataset.

The bimodal distribution of the data is not well represented by the estimations of
PCE, which shows a peak at f̃ ≈ 0.4, but a small peak lies at f̃ ≈ 0.03. The errors in
the predictions of PCE are also observable in Figure 3.17b, which shows that most of the
mispredictions are concentrated around f̃ = 0.03.
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(a) (b)

Figure 3.17: (a) Predictivity factor Q2 in terms of the degree p of the PCE and (b)
validation plot of the estimations of the model with the PCE truncated at a degree
p = 17.

Comparison of the performances of Kriging and PCE metamodels Kriging and
PCE metamodels provided the predictivity factors QKRI

2 = 0.97 and QP CE
2 = 0.79. The

predictions from PCE are consequently less accurate than those of Kriging when compar-
ing them to the original dataset with 324 samples, that have been used for the validation
of the metamodels. In addition, the PDF of F̃ , estimated based on the metamodels,
are compared to that of the model (estimated with 3686 samples). The kernel density
estimation of these PDFs, represented in Figure 3.18, revealed that the distribution of
the predictions of Kriging is more similar to that of the dataset than according to PCE,
which does present a slight bimodal distribution.

Figure 3.18: Comparison of the PDFs of F̃ from the metamodels’ predictions and from
the model.
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However, despite the good predictivity factors of these metamodels, one can still ob-
serve absurd predictions, as they are not included within the domain of definition of the
QoI, being [0.03, 0.97]. As such, applying a clip to those predictions would reduce their
distance to the expected estimations. This postprocessing could be a way to artificially
increase the accuracy of the metamodels by restraining the domain of definition of the
estimations. An example for the formulation of this postprocessing function is:

Ŷ =


0.97 if Ŷ > 0.97

0.03 if Ŷ < 0.03

Ŷ otherwise.

4.2.5 Sensitivity analysis: Sobol indices

Since estimations of Kriging properly depict the behavior of the original model, with
QKRI

2 = 0.97 and almost the same PDF estimation, this metamodel will be used to
approximate the Sobol sensitivity indices. First, the sampling of the input parameters
is discussed. Then, results from different algorithms used to compute the indices are
compared.

Sampling of the input parameters

Distribution The distributions used to sample the input parameters γ, σ and r are
the same as those used to build the metamodels. Hence, Γ̄ ∼ U(1, 8), Σ̄ ∼ U(0.5, 5.5) and
R̄ ∼ UP (1/6, 1; 1, 6).

Size of the dataset The influence of the number of realizations used to compute the
Sobol indices is investigated. For this purpose, the first and total Sobol indices, computed
with the Mauntz-Kucherenko algorithm, are represented in Figure 3.19, with respect to
the number of samples, along with their 95 % CIs. The latter are computed using the
bootstrap method [164], with a resampling size of 100, implemented in OpenTURNS.
Then, the evolution of the normalized absolute gradient, in terms of the number of sam-
ples, is provided in Figure 3.20, where the dashed lines represent the same threshold as
that used for the data representativeness, i.e. 1 %.
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(a) (b)

Figure 3.19: Convergence of the (a) first and (b) total Sobol indices, computed with the
Mauntz-Kucherenko algorithm. The shaded regions correspond to the 95 % confidence
intervals.

(a) (b)

Figure 3.20: Normalized absolute gradient of the (a) first and (b) total Sobol indices
depending on the number of estimations of the metamodel, computed with the Mauntz-
Kucherenko algorithm. The black dashed lines correspond to the threshold of 1 %.

According to this figure, the convergence of Si is not reached, even for 105 samples.
This conclusion does not match observations from Figure 3.19, where the mean curves of
Si seem stabilized for 103 samples. This contradiction shows that the use of the normalized
gradient does not suit for investigating the convergence of Sobol indices because of small
converged values. This observation validates the necessity of using another convergence
criterion based on the range of the CIs, as mentioned in Section 2. Then, following the
criterion proposed by Sarrazin et. al [164], Si and STi converge when the range of the
CIs is smaller than 0.05 (dashed lines in Figure 3.21). Hence, both first and total indices
converge for 2 × 104 samples.
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(a) (b)

Figure 3.21: Ranges of the 95 % confidence intervals (CI) of the (a) first and (b) total
Sobol indices in terms of the number of estimations of the metamodel, computed using
the Mauntz-Kucherenko algorithm. The black dashed lines correspond to a threshold of
0.05.

Influence of the algorithm The convergence study presented in the previous para-
graph was conducted using the Sobol indices computed with the Mauntz-Kucherenko
algorithm. The aim of the present paragraph is therefore to compare the results obtained
using different algorithms (Saltelli, Jansen and Martinez). The number of samples neces-
sary for the convergence of Si and STi, following the criterion relative to the range of the
CIs, is compared for these algorithms in Table 3.1.

Table 3.1: Number of samples necessary for the convergence of the Sobol indices following
the criterion on the range of the confidence intervals of Si and STi estimated using different
algorithms.

Index Mauntz-Kucherenko Saltelli Jansen Martinez
Si 2 × 104 2 × 104 3 × 104 2 × 104

STi 2 × 104 3 × 104 104 4 × 104

The plots representing the variation of the Sobol indices, their normalized absolute
gradient, along with the range of their 95 % CIs, for these algorithms, are contained in
Section 2 of Appendix D. Disparities in the convergence of the indices depending on
the algorithm are highlighted in Table 3.1. Indeed, indices computed with Martinez
require the most samples to converge (4 × 104 for STi) and Mauntz-Kucherenko enables
convergence with less samples (2 × 104 for both Si and STi). The indices obtained after
convergence (calculated with 105 samples), are compared with those analytically evaluated
from the coefficients of PCE in Table 3.2.

78



4. Influence of the aspect ratio of a rigid elliptic NP on its cellular uptake

Table 3.2: Comparison of the first and total Sobol indices, calculated analytically based
on the coefficients of PCE, with those computed using 105 estimations of the Kriging
metamodel.

Index Parameter PCE Kriging
γ 0.26 0.21
σ 0.11 0.09Si

r 0.38 0.32
γ 0.42 0.51
σ 0.21 0.28STi

r 0.60 0.67

Once the convergence is ensured (105 samples), there is no notable difference between
the indices computed with different algorithms using estimations from Kriging. Nonethe-
less, despite similar trends, one can note differences between the Sobol values, computed
using Kriging and PCE metamodels. It is not surprising, since the PCE model does not
represent the true values as reliably as Kriging. Therefore, we are going to use the values
obtained for Kriging to draw our conclusions.

Interpretation of the Sobol indices The first order indices are the following: 0.21
for the adhesion Γ̄, 0.09 for the membrane tension Σ̄ and 0.32 for the aspect ratio R̄

of the NP, which reveals that if we consider the individual effects of these variables on
the random wrapping degree at equilibrium F̃ , the aspect ratio of the NP is the most
influential. Then the adhesion Γ̄ contributes twice as much as the membrane tension Σ̄.
The total sensitivity indices for Γ̄, Σ̄ and R̄ are 0.51, 0.28 and 0.67, respectively. The
difference STi−Si shows the influence of the interactions of different orders on the variance
of F̃ for a given variable i. These interactions contribute by 59 %, 68 % and 52 % to the
total indices of Γ̄, Σ̄ and R̄ respectively, showing that the interactions have a significant
influence on F̃ .
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5 Discussion

The results presented in this chapter match previous conclusions from the literature, to
some extent, as it is covered in detail in the next paragraphs. Then, the hypotheses and
the methods that have been implemented to obtain these results are also challenged.

Comparison with previous results from the literature

The conclusions, presented in this chapter, regarding the influence of r on the uptake
of the NP, agree with the results from experimental and numerical studies. Indeed, our
results showed that highly elongated NPs are less likely to be uptaken by a cell than
circular ones. These results match those obtained experimentally by Champion et al. [19,
29], who manufactured and tested NPs with various aspect ratios and shapes and observed
that the circular and vertical NPs are engulfed faster by macrophages than those with
other shapes. Their results also show that highly elongated vertical NPs could not be
engulfed. An experimental study made on the uptake of gold NPs by macrophages led
to similar results [205]. Additional experimental studies conducted on NPs with various
shapes, such as disks [206, 207] or cubes [208], tend to demonstrate that the shape of the
particle is a prominent factor on its uptake [16].

To the best of our knowledge, no experimental investigation was performed to com-
pare the influence of the mechanical properties of the NP-cell interaction (adhesion and
membrane tension) and of the roundness of the NP. This is due to several reasons, such as
the lack of focus of medical and biological experimenters on the mechanical aspect of the
interaction. Furthermore, experimental techniques to measure the mechanical properties
of cells, without damaging it, are not well developed and require expertise that may not
be shared in medical or biological research fields. Last, these mechanical properties vary
along the cell membrane [20, 57, 209, 210] and may not be the same close and far from the
contact region with the membrane, leading to actual difficulties to evaluate them locally.
Finally, the lack of comparative experimental investigations on the influence of both geo-
metrical and mechanical properties does not enable to directly compare the results from
the sensitivity analyses with experimental results available in the literature. Nonetheless,
all the aforementioned references tend to highlight the role of the aspect ratio of the NP,
even though their conclusions derive from observations performed on several cell types.
Hence, the aspect ratio of the NP is an important parameter regardless of the cell itself
and all its intrinsic mechanical properties. This result actually matches the conclusion of
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the sensitivity analysis conducted in this chapter, which is that the aspect ratio of the NP
is the most important parameter among those investigated, given that it has the highest
Sobol indices.

It was also found experimentally [211] and numerically [105, 212, 213] that if an
elliptic particle touches the membrane by its flat side, it will tend to rotate in order to
be engulfed by its tip. However, this phenomenon appears to depend on the membrane
tension, as demonstrated in [85]: the NP is wrapped in its vertical configuration if the
tension is lower than a threshold value of σ̄ and in its horizontal configuration otherwise.
This phenomenon could not be considered in this approach, but is a perspective of future
work.

Furthermore, this chapter only considers constant values of σ̄ and γ̄ during endocytosis,
while they could be variable with respect to f , as explained in [32, 106, 112, 134–140].
Indeed, the cell tends to adapt to the contact with the NP by simultaneously increasing the
amount of interactions at the contact region (and consequently increasing the adhesion)
and reorganizing its actin network, limiting the increase in the membrane tension. It may
explain why the in vivo observations [19, 29] concluded that vertical elliptic NPs are more
likely to enter the cell than horizontal ones in almost all cases, while our model did not
show differences in the wrapping of horizontal and vertical highly elongated NPs, since
both do not reach full wrapping. Indeed, the variation of the mechanical properties leads
the energy barrier to vanish in most cases. The rearrangement in the microstructure of
the cell membrane and its influence on the model predictions is the subject of Chapter 4.

Quantity of interest

The sensitivity analysis, conducted in this chapter, aimed at quantifying the influence
of the input parameters γ, σ and r on the wrapping degree at equilibrium f̃ . However,
as shown in the previous chapters, knowing f̃ does not directly provide information on
the uptake of the NP. Indeed, the NP is considered to be engulfed by the cell when the
membrane trapped it by merging after the wrapping of the NP. Conducting a study whose
QoI is the distance between the two sides of the free membrane (max r2l(s2l)−min r2r(s2r))
could therefore enable to investigate the entry of the NP into the cell more accurately.
Furthermore, this fusion of the membrane depends on the membrane tension σ. Hence,
it is even more important to evaluate σ more accurately, as this parameter plays a role in
both f̃ , and in determining if the NP will remain in the cell.
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Approaches for the post-processing of the model

In order to post-process the results of the model, surrogates have been constructed to fur-
ther conduct global sensitivity analyses. The techniques that have been implemented are
among the most commonly used in the literature, which also enables easier comparison
based on similar works. Furthermore, the Kriging metamodel was built based on common
initial settings for the trend and the covariance functions, which are necessary for the op-
timization of the algorithm. Still, the performance of the subsequent metamodel are very
satisfying (QKRI

2 = 0.97). Nonetheless, providing appropriate settings could enable the
algorithm to compute faster. However, the metamodel was constructed in approximately
2 minutes with a machine with the same configuration as that presented previously in this
chapter. This computation time is reasonable and do not justify to spend efforts for its
reduction by providing the lengthscale parameter of the correlation function, determined
after prior investigations, for instance.

In addition, the predictions of the metamodels included values out of the domain of
definition of the QoI. The application of a clip to the predictions would consequently
reduce the distance between the final predictions and the true values.

Distribution of the input parameters

The distributions used to model the input parameters have been set based on the max-
imum entropy principle, which led to the implementation of uniform distributions for
γ and σ. Still, the same could not be made with the aspect ratio r of the NP, de-
fined in [1/6, 6], since a uniform distribution for its entire domain of definition would
lead to an under representation of the vertical NPs (r < 1). As such, a piecewise
distribution was used, being a linear combination (with weight coefficients being 1/2)
of two uniform distribution in [1/6, 1[ and in ]1, 6]. The probability of having a hor-
izontal NP is therefore the same as that of having a vertical one. However, this dis-
tribution does not provide an equivalent probability of having highly elongated ver-
tical NPs as that of having slightly elongated ones. Indeed, with this distribution,
P(1/6 < R < 1/5) < P(1/5 < R < 1/4) < P(1/4 < R < 1/3) < P(1/2 < R < 1). In
order to have equality between these probabilities, the distribution of R for R < 1 should
be the inverse of the uniform distribution for the horizontal NPs, leading to the following
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The distribution used to build the random input parameters has an influence on the
outcome of the sensitivity analyses [214]. In this case, since the very elongated vertical NPs
are less represented in the dataset that we have used, and considering that for these values
the full wrapping is impossible, one can suppose that a sensitivity analysis, conducted with
a more accurate distribution of R, would emphasize the influence of this parameter, which
has been underestimated in this chapter. As such, building a more accurate knowledge on
the domain of definition of the input parameters, thanks to experimental measurements
for instance, is consequently an interesting perspective for future works. It is nonetheless
worth noting that such information is complex to collect, because of the challenges related
to the characterization of living cells, as introduced in Chapter 1. It should also be noted
that we investigated the sensitivity of the results of the screening methods (Morris indices)
to the bounds of the domain of definition of γ in a proceeding presented at the French
Colloquium on Structure Modeling (CSMA) in 2022 [215].

6 Conclusions of Chapter 3

The current chapter presented an investigation of the influence of the aspect ratio of the
NP on its wrapping degree at equilibrium. For this purpose, the wrapping of an elliptic
NP was modeled and a sensitivity analysis was conducted to compare the influence of
the mechanical and geometrical parameters of the system on the final wrapping degree.
Preliminary observations of the model predictions have first been presented. The following
conclusions have been drawn:

• Preliminary observations of the model enabled to observe the effect of the
aspect ratio of the NP on the evolution of the variation of the total potential energy,
with respect to the wrapping degree of the NP. The difference of curvature of elliptic
NPs alongside their circumference causes barriers in the bending energy and thus
in the total energy. Large adhesion and low membrane tension tend to reduce the
amplitude of these barriers, but it is usually not sufficient for the barrier to vanish,
leading to an equilibrium position often placed slightly before it. Circular to slightly
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elongated NPs (aspect ratios between 1/3 and 2) are consequently the most likely
to be fully wrapped by the cell.

• Surrogate models have been presented and compared. Kriging metamodel was
preferred over PCE based on to accuracy of the predictions, with QKRI

2 = 0.97 and
QP CE

2 = 0.79.

• A sensitivity analysis was conducted to quantitatively compare the influence of
the mechanical and geometrical properties of the system formed by the cell mem-
brane and the NP. For this purpose, Sobol indices were computed as they account
for the individual effect of each variable as well as their interactions with the others.
The Sobol indices have been estimated using several algorithms and a comparison
of these algorithms, along with a convergence study on the size of the dataset used
to compute them, led to estimate them using the Mauntz-Kucherenko algorithm,
applied to a dataset containing 105 samples. The aspect ratio of the NP is the most
influential parameter on its cellular uptake, followed by the adhesion between the
NP and the membrane and then by the membrane tension. The adhesion influences
the variability of the model predictions twice as much as the membrane tension,
and the aspect ratio of the NP influences them three times as much as the mem-
brane tension. The difference between the first and total Sobol indices yielded non
negligible interactions between the parameters, as they account for more than 50 %
of the effect of each variable.

• Comparisons with the literature, although difficult to interpret accurately, tend
to confirm the conclusions from our sensitivity analysis as most related papers also
showed the importance of the aspect ratio of the NPs on their cellular uptake,
regardless of the mechanical properties. However, as mentioned in the discussion,
the model used in this chapter does not reproduce faithfully the behavior of a living
cell, since it does not represent most of its faculties, such as mechano-adaptation
of the membrane during wrapping. The objective of the next chapter is thus to
address this issue by proposing a model for this phenomenon.
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Chapter 4

MECHANICAL ADAPTATION OF THE

MEMBRANE DURING ENDOCYTOSIS

1 Introduction

This chapter presents the enrichment of the model introduced in Chapter 2 and used
to conduct investigations on the influence of the aspect ratio of the NP in Chapter 3.
The model is indeed enriched by accounting for the mechanical adaptation (or mechano-
adaptation) of the cell membrane during the wrapping of the NP. This phenomenon is
introduced in Section 2. The parameters, used to model the evolution of the membrane
properties, are presented and justified in Section 3. The effects of this new approach
on the predictions of wrapping of a circular NP are investigated in Section 4, in which
preliminary observations of the contribution of these parameters on the variation of the
total potential energy and the phase diagrams are made. Then, these influences are
quantified thanks to sensitivity analyses. Last, in Section 4.3, the contributions of the
new parameters are compared to those of the initial properties of the system, in order to
understand the contribution of the mechano-adaptation on the predictions of uptake of
the NP. The same investigation will be extended to the case of elliptic NPs in Chapter 5,
to understand the role of their aspect ratio when the mechano-adaptation is taken into
account. The content of this chapter is the exhaustive version of an article that will
soon be submitted to the International Journal for Numerical Methods in Biomedical
Engineering [216]. Part of this work was also presented at the 18th European Mechanics
of Materials Conference (EMMC18) in 2022 [217] and to the Western French Congress on
Cancer (Journées du Cancéropôle Grand Ouest) in 2021 [218].
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2 Membrane mechano-adaptation

This section aims at presenting the observations, reported in the literature, that led us
to face the need for taking into account the mechanical adaptation of the membrane in
our model. Hence, the way the membrane tension and the adhesion between the NP and
the membrane change, as a response to the wrapping of the NP, are presented in the
following.

2.1 Membrane tension

During the wrapping process, a tension occurs along the membrane, since the wrapping
of the NP requires to stretch the former. However, mechanisms take place in the cell
membrane in order to reduce the variations of the membrane tension. Indeed, the cell
is not a flat contour, even though in our numerical model it is considered as smooth. It
is instead constituted of several invaginations and protuberances, that form membrane
reservoirs, as illustrated in Figure 4.1 [120, 134, 138, 219, 220]. These membrane reservoirs
are additional membrane material that can be unfolded, in order to prevent the membrane
tension from increasing too much. Furthermore, actin filaments also contribute to the
unfolding of the membrane reservoirs, as a response to membrane tension. In light of
these elements, the membrane tension is considered constant during the wrapping process,
leading to σ(f) := σ0, that will hereinafter simply be denoted as σ.

(a) (b)

Figure 4.1: (a) Simplified illustration of the nonsmooth shape of a cell. (b) Observation
of a reservoir on a stretched membrane, (top) during and (bottom) after unfolding, re-
produced from [138].
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2.2 NP-membrane adhesion

The forces of adhesion between the NP and the membrane can be classified into two
kinds: the non-specific and the specific ones. The latter are related to bonds between
a receptor and a ligand, while the non-specific ones are due to attraction or repulsion
between molecules from the NP and the membrane, caused by interactions such as van der
Waals, electrostatic bonds or hydrophobic interactions [30, 221]. Regarding the specific
adhesion, the movement of membrane receptors has been observed and studied in the
case of the interaction with a NP [106, 135] and also for the adhesion of a cell to a
substrate [135, 139, 222]. A schematic illustration of this phenomenon is provided in
Figure 4.2. Furthermore, the constituents of the membrane are able to reorganize laterally.
Thus, the proteins and lipids, that are susceptible to contribute to non-specific adhesion,
may reach the contact zone during wrapping and increase the adhesion with the NP, as
the wrapping degree increases [20, 222–224]. Consequently, γ needs to be modeled as a
function of the wrapping degree. The nature of this function is discussed in Section 3.

Figure 4.2: Illustration of the lateral reorganization of receptors to the contact region
during the wrapping of the NP.

3 Modeling of the mechanical adaptation of the mem-
brane during endocytosis

From now on, the NP-membrane adhesion, denoted as γ, is considered as a function
of the wrapping degree f , leading to γ := γ(f). The nature of the function, that will
be proposed in this work, is determined according to conclusions from the experimental
studies, reported in the literature, that have been presented in Section 2.2. Based on that
information, one can infer that the adhesion tends to increase during the wrapping process
until reaching a final value, which corresponds to the stage when all the possible bonds
between constituents from the NP and the membrane are formed [135, 139, 225]. It is
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however unclear if the constituents responsible for adhesion (specific receptors or ligands,
proteins and lipids) start moving to the contact region as soon as the NP approaches the
membrane, or if there is a delay, that would correspond to the information transmission
to the rest of the membrane. We assume that this process contributes to an increase in
adhesion and therefore we expect the adhesion to monotonically increase with respect
to the wrapping degree f , starting from an initial minimum value and reaching to a
maximum final value.

Among possible candidate functions to model γ(f) that respect the desired characteris-
tics, e.g. hyperbolic tangent, logistic or smoothstep function, a three parameter sigmoidal
evolution was chosen. Indeed, these functions depict variations from one plateau to an-
other and enable to tune when the inflection point takes place, which represents different
delays before the values of the function start changing significantly. Moreover, sigmoids
have already been used in biology for the modeling of measures of nerve activity in terms
of the arterial pressure [226–228]. They are also commonly used in other fields of me-
chanics to model the diffusion phenomenon [229], which may be similar to the behavior
of the constituents of the membrane along its circumference. The function γ(f), used to
model the evolution of adhesion during the wrapping process, reads:

γ(f) = γ0(γA − 1)
1 + exp [−2γS(f − finf)]

+ γ0, (4.1)

where finf is the inflection point, defined in terms of the delay γD as finf = 0.5+γD, while
γ̄A represents the amplitude of the transition and γ̄S is the curvature parameter, which
is independent of the aforementioned parameters and is used to control the slope of γ at
the inflection point. The initial value of adhesion, i.e. γ(f −→ 0), is denoted by γ0. These
parameters are detailed in Table 4.1 and their contributions to γ(f) are schematically
illustrated in Figure 4.3.

Table 4.1: Parameters of the sigmoid functions

Parameter Definition Range
γA Ratio between γ(f = 1) and γ0 [1 , 6]
γD Delay of the transition, compared to f = 0.5 [−0.2 , 0.2]
γS Curvature parameter [10 , 100]
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(a) γA (b) γD (c) γS

Figure 4.3: Illustration of the effect of the parameters of an increasing sigmoid function:
(a) evolution of γ(f) for (a) γA ∈ {1, 2, 3, 4}, (b) γD ∈ {−0.2,−0.1, 0, 0.1, 0.2} and (c)
γS ∈ [0, 500]. The parameters γA, γD and γS, γ0 and σ were set to 2, 0, 50, 1 and 2
respectively for all cases, except when stated otherwise in the graphs. Note that for the
particular case, where γS = 0, γ is independent of f and equals γ0(γA + 1)/2 = 1.5.

It is worth noting that the particular configuration where γA = 1 corresponds to a
passive membrane, in which case the parameters γD and γS have no influence, since the
first term of the right-hand side of Equation 4.1 vanishes, yielding γ(f) = γ0. The domain
of definition of γD is determined using mathematical constraints. Indeed, as the mid value
of the transition from γ0 to γ(f −→ 1) is reached at finf = 0.5 + γD, γD should vary in
[−0.5, 0.5]. To avoid numerical singularities and a too early or late transition, we chose to
set a smaller interval, i.e. γD ∈ [−0.2, 0.2]. Then, the domain of γS was set to represent
a reasonable range of values of curvatures, while ensuring that the boundary conditions
γ(0) = γ0 and γ(1) = γ0γA are respected. Note that the curvature parameter γS is used
to evaluate the slope of γ(f) at the inflection point finf that is a function of γS, γ0 and
γA, as described by the expression of the derivative of γ(f), with respect to f , denoted
as γ̇, in Equation 4.2.

γ̇(f) = 2γ0(γA − 1)γS exp [−2γS(f − finf)]
(1 + exp [−2γS(f − finf)])2 , (4.2)

which implies that the slope at the inflection point (f = finf) is γ0(γA − 1)γS/4. Further-
more, one can also check that the derivative tends to 0 when f −→ 0+ and f −→ 1−, if γS

is large enough. The expressions for the derivative at these boundary points are given in
the following:
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γ̇(0) = γ0(γA − 1)γS exp [γS(2γD + 1)]
(1 + exp [γS(2γD + 1)])2 , (4.3a)

γ̇(1) = γ0(γA − 1)γS exp [γS(2γD − 1)]
(1 + exp [γS(2γD − 1)])2 . (4.3b)

Based on the domain of definition of γD, we have 2γD + 1 > 0 and that 2γD − 1 < 0.
Thus, since lim

γS→∞
eγS(2γD+1) = lim

γS→∞
eγS(2γD−1) = 0,

one can show that lim
γS→∞

γ̇(0) = lim
γS→∞

γ̇(1) = 0.

When γ0 and γA are fixed, γS alone enables to control the slope of γ at f = finf . Indeed,
a positive (resp. negative) value of γS corresponds to an increasing (resp. decreasing)
function. The smaller γS, the smoother the transition, until the transition degenerates
to no transition at all as γS approaches zero. This asymptotic case corresponds to the
constant evolution γ(f) = γ0(1 + γA)/2, that does not respect the boundary conditions.
On the contrary, a large γS, in absolute value, leads to a sharp transition, as illustrated
in Figure 4.3c. It is possible to show that γ(f) tends to a step function for large values of
γS. In addition, this figure also shows, that the boundary conditions, i.e. γ(0) = γ0 and
γ(1) = γ0γA, are not reached for small values of γS. Thus, the boundaries of the domain
of definition of γS are defined so that the boundary conditions are fulfilled even for the
extreme values of γD. The variation of γ(f) for several values of γS with γD = −0.2 and
γD = 0.2 is represented in Figure 4.4.

(a) γD = −0.2 (b) γD = 0.2

Figure 4.4: Illustration of the effect of γD for (a) γD = −0.2 and (b) γD = 0.2, both with
(γA, γ0, σ) = (2, 1, 2).

Based on this figure, the boundary conditions tend to be respected for γS ≥ 10, which
thereby defines the lower bound of the domain of definition of γS. Still, because of the
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asymptotic behavior of the sigmoid function, it only tends to the target bounds, i.e.
(γ0, γ0γA), without reaching them. The upper bound of γS is set to 100, since there is no
notable change in γ(f) when increasing γS above this value. Furthermore, for γS > 100,
numerical issues are encountered because γ(f) gets close to a step function, which implies
discretization problems around the transition point finf .

Last, the domain of definition of γA is more complicated to determine. The lower
bound of γA is equal to 1 as γ is an increasing function of f . The upper bound of γA

could not be set based on mathematical considerations and was thus arbitrarily set to 6,
as it is close to the ratio between the upper and lower bounds of the domain of definition
of γ0, which has been defined in Section 4 of Chapter 2, as the interval [1, 8]. However,
since the sampling is a crucial step in sensitivity analyses [230], this hypothesis will be
discussed later in Section 6.

4 Influence of the mechanical adaptation of the mem-
brane on the predictions of endocytosis of a circu-
lar nanoparticle

It is not known yet whether accounting for the mechanical adaptation of the membrane has
an effect on the model predictions. To determine if it is the case, a sensitivity analysis will
be conducted in order to evaluate the influence of the newly introduced parameters on the
model outputs. Hence, preliminary observations of the model will be made in Section 4.1.
This enables us to have a general picture of the effect of the mechano-adaptation on the
model. A sensitivity analysis will then be conducted afterwards, in Section 4.2, in order to
rank the parameters based on their respective influence. Last, another sensitivity analysis
will be performed in Section 4.3, in order to compare the influence of the parameters used
to describe the initial properties of the system with those used to model the membrane
mechanical adaptation. The Python script developed to build the metamodels and to
conduct the sensitivity analyses is available in the Github repository1 associated to this
thesis.

1. https://github.com/SarahIaquinta/PhDthesis
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4.1 Preliminary observations

To get an insight into the effect of the membrane mechano-adaptation on the predictions
of endocytosis, some results obtained from the model can be compared between the cases
of an active (i.e. adaptive) and a passive membrane. As explained in Chapter 2, the first
step of the model is to compute the evolution of the variation of the potential energy
∆E(f). Figure 4.5 illustrates the influence of γA, γD and γS on ∆E(f) and thus on f̃ for
two values for the tuple (γ0, σ), in order to compare the cases where ∆E increases and
decreases.

(a) γA (b) γD (c) γS

Figure 4.5: Illustration of the effect of the parameters of the sigmoid for (γ0, σ) = (1, 1)
(dashed blue lines) and (γ0, σ) = (10, 2) (solid orange lines) on ∆E(f). The position of
the equilibrium is showed by a circular marker for increasing ∆E(f) and by a diamond
otherwise. The parameter values are (γA, γD, γS) = (3, 0, 10) for all cases, except when
stated otherwise in the graphs.

These results show that for (γ0, σ) = (1, 1), i.e. increasing ∆E, f̃ is not altered when
the parameters of the sigmoid are modified. When ∆E decreases, i.e. when (γ0, σ) =
(10, 2), the location of the first local minimum is altered when γA and γS vary, while γD

does not influence f̃ in this case. Furthermore, the initial properties (γ0, σ) also have an
influence on the way f̃ is altered by the parameters of the sigmoid. Hence, one can already
conclude that most likely all parameters are influential on the values of f̃ , and that they
have coupled effects. To generalize the inferences resulting from these observations of
∆E for a given tuple of (γ0, σ) to their entire domain of definition, phase diagrams are
compared for different values of γA, γD and γS in Figures 4.6, 4.7 and 4.8, where the
dotted lines in the background correspond to the contours of the phase diagram in the
case of a passive membrane, which was already depicted in Figure 3.10.
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(a) γA = 2 (b) γA = 3 (c) γA = 4

Figure 4.6: Effect of γA on the phase diagram, when γD = 0 and γS = 50. The dotted
lines in the background correspond to the contours of the phase diagram in the case of a
passive membrane, which was already depicted in Figure 3.10.

(a) γD = −0.2 (b) γD = 0 (c) γD = 0.2

Figure 4.7: Effect of γD on the phase diagram, when γA = 2 and γS = 50. The dotted
lines in the background correspond to the contours of the phase diagram in the case of a
passive membrane, which was already depicted in Figure 3.10.

(a) γS = 10 (b) γS = 50 (c) γS = 100

Figure 4.8: Effect of γS on the phase diagram, when γA = 2 and γD = 0. The dotted
lines in the background correspond to the contours of the phase diagram in the case of a
passive membrane, which was already depicted in Figure 3.10.
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These diagrams enable us to generalize the previous observations, since the distri-
bution of the regions corresponding to partial and full wrapping is noticeably different
between the diagrams. In addition, Figure 4.6 shows that the value of γA, as long as it
is different from 1 (passive membrane), does not significantly change the phase diagram.
Also, increasing γD leads to a reduction of the proportion of full wrapping (green dots in
the phase diagrams). The same observation, in a smaller scale for this range of values,
is made for γS. Nonetheless, the proportion of no wrapping does not seem to be altered
by the mechanical adaptation of the membrane, as it remains the same, regardless of the
values taken by γA, γD and γS.

From these observations, one can already conclude that accounting for the mechanical
adaptation of the membrane in the model leads to different predictions. However, these
first results only yield qualitative interpretations and do not provide accurate information
on the influence of the parameters of the sigmoid function used to describe the variation
of the adhesion during the wrapping of the NP (Equation 4.1). Sensitivity analyses
will consequently be conducted in Section 4.2 in order to quantify the influence of the
mechanical adaptation of the membrane on the full wrapping predictions based on the
model.

4.2 Quantification of the influence of the parameters of the sig-
moid

The model, presented in Equation 4.1, has three input parameters: γA, γD and γS. The
output is the proportion of cases which led to a full wrapping state at equilibrium, denoted
by ψ3. Similar to the approach used in Chapter 3 to perform the sensitivity analysis on f̃ ,
a surrogate model will first be built in Section 4.2.1, in order to generate the estimations
necessary to evaluate the Sobol indices. The results of the subsequent sensitivity analysis
are presented in Section 4.2.2.

4.2.1 Surrogate model

Sampling A dataset containing 210 = 1024 realizations, built using qMC sampling
method, is generated for the three independent random variables ΓA, ΓD and ΓS. As
introduced above, only the bounds of the domain of definition of these variables are
known. Thus, following the maximum entropy principle [203], a uniform distribution is
used to model them. Hence, ΓA ∼ U(1, 6), ΓD ∼ U(−0.2, 0.2) and ΓS ∼ U(10, 100).
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The corresponding values of the proportion of phase 3, Ψ3, are then calculated for each
realization. The histogram of Ψ3, based on the dataset, along with a kernel density
estimation of its PDF, are depicted in Figure 4.9.

Figure 4.9: Histogram of Ψ3 based on the dataset, along with its PDF.

Figure 4.10 depicts the convergence of the mean and the standard deviation of the ran-
dom variable describing the proportion of phase 3, Ψ3, in terms of the number of samples
along with the corresponding standard deviation (shaded gray zones). To determine the
convergence, the absolute normalized gradient is computed, similar to the study presented
in Chapter 3.

(a) (b)

Figure 4.10: (a) Mean and (b) standard deviation of Ψ3, with respect to the number of
simulations, along with their respective standard deviation denoted by the gray regions.

Figure 4.11 shows the absolute normalized gradients of the average and the standard
deviation of Ψ3, in terms of the number of samples. According to these graphs, the
dataset needs to contain respectively at least 117 and 144 estimations of the QoI for its
mean and standard deviation to converge. Hence, to ensure the convergence of both of
these statistics, at least 144 model estimations are needed.
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(a) (b)

Figure 4.11: Absolute normalized gradient of the (a) mean and (b) standard deviation
of Ψ3, with respect to the number of simulations. The dashed lines correspond to the
threshold of 1 %. Only one out of two points have been represented for the clarity of the
plots.

Implementation of the metamodels As in the previous chapter, a surrogate model
was built to generate approximations of the model using OpenTURNS. According to the
study on the data representativeness above, 144 samples are necessary to properly capture
the behavior of the model. This is thus the minimal size of the test dataset. The whole
dataset being of size 1024, the portion of the dataset used for final validation is therefore
set to 20 %, which corresponds to 204 samples. The remaining 820 samples are used for the
training of the metamodels. Both Kriging and PCE metamodels have been constructed.
The former has been implemented using the same configuration as in Chapter 3. The
truncation degree of the PCE has been determined by comparing the predictivity factor
Q2 obtained with different degrees. It is worth noting that the maximum truncation
degree for which singularities are avoided, when using a dataset of 820 samples with three
input parameters, should respect the following rule of thumb: 2

(
p+3

3

)
< 820, leading to

is p ≤ 11 (see Section 3.2.2). Figure 4.12 represents the accuracy of the PCE predictions
in terms of the truncation degree, and shows that Q2 is the closest to 1 for a truncation
degree of 10, with QP CE

2 = 0.98.
Figure 4.13 compares the predictions obtained using Kriging and PCE models with

the predicted vs true plots along with their PDFs, estimated with 105 MC responses of the
metamodels. Both metamodels yield satisfying results, with predictivity factors almost
equal to 1, being QKRI

2 = 0.99 and QP CE
2 = 0.98. In conclusion, both metamodels can be

used to perform the sensitivity analysis, that will be presented in the following section.
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Figure 4.12: Accuracy of PCE predictions in terms of the truncation degree.

(a) Kriging (b) PCE (c) PDFs

Figure 4.13: Predicted vs true values obtained with (a) Kriging and (b) PCE metamodels
after optimization of their hyperparameters, along with a comparison of the PDFs ob-
tained for these metamodels.

4.2.2 Variance based sensitivity analysis: Sobol indices

Similar to the metamodel construction, sensitivity indices are also computed using the
OpenTURNS library and the associated script is available in the aforementioned Github
repository. As introduced in Chapter 3, the Sobol sensitivity indices can be analytically
calculated directly from the coefficients of the PCE metamodel [178], or they can be
approximated based on evaluations of the different terms related to the variance of the
output. In this case, based on the rule of thumb introduced in Section 2 of Chapter 3,
which estimates the amount of data points necessary to compute the Sobol indices, ac-
cording to the behavior of the model and to the number of input parameters, we assume
that 104 samples are necessary to estimate the influence of the inputs on the output of
our model, which is a function of three inputs and is nonlinear and nonmonotonous.

In order to generate these samples, both Kriging and PCE metamodels, constructed
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in the previous section, can be used. However, recalling that the Sobol indices can be
calculated analytically from the coefficients of PCE, it is not necessary to generate 104

estimations of the model to approximate the Sobol indices with this metamodel. As such,
these estimations will be generated only for Kriging, and the indices calculated with both
methods will be compared.

Sampling of the input parameters

Distribution The only available information regarding the input parameters, is
their lower and upper bounds, as introduced in Table 4.1. Thus, based on a non-
parametric probabilistic approach, a uniform distribution is the only candidate that
maximizes the entropy measure [203]. As such, the input parameters are modeled as
independent random variables following uniform PDFs, similar to the construction of the
metamodels.

Number of estimations The influence of the number of realizations used to com-
pute the Sobol indices based on the Kriging metamodel was investigated. The first and
total Sobol indices, computed with the Mauntz-Kucherenko algorithm, are represented in
Figure 4.14, with respect to the number of samples that have been used to estimate them.

(a) (b)

Figure 4.14: Convergence of the (a) first and (b) total Sobol indices, computed with the
Mauntz-Kucherenko algorithm. The shaded regions correspond to the 95 % confidence
intervals.

Their 95 % CIs are depicted in Figure 4.15. Adopting the convergence criterion in-
troduced in Chapter 3, the Sobol indices converge when the range of the CIs is smaller
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than 0.05. Hence, first and total indices converge with 1.2 × 104 and 8 × 103 samples,
respectively.

(a) (b)

Figure 4.15: Ranges of the 95 % confidence intervals for the (a) first and (b) total Sobol
indices, in terms of the number of estimations of the metamodel, computed using the
Mauntz-Kucherenko algorithm. The black dashed lines correspond to a threshold of 0.05.

Influence of the algorithm The investigation of the convergence of the Sobol indices,
with respect to the number of samples, conducted for the Mauntz-Kucherenko, Saltelli,
Jansen, and Martinez algorithms, did not reveal differences in the mean values nor in the
CIs, when more than 3 × 104 samples are used. The number of samples necessary for the
Sobol indices to converge with these algorithms are compared in Table 4.2. More details
are provided in Section 3.1 of Appendix D.

Table 4.2: Number of samples necessary for the convergence of the Sobol indices following
the criterion on the range of the 95 % confidence intervals of Si and STi, estimated with
several algorithms.

Index Mauntz-Kucherenko Saltelli Jansen Martinez
Si 2 × 104 104 104 104

STi 9 × 104 3 × 104 9 × 104 3 × 104

The Sobol indices obtained with the entire dataset, i.e. 105 samples, are presented
in Table 4.3, where they are compared to those obtained directly from the coefficients of
PCE. The indices computed with estimations from the Kriging metamodel yielded equal
indices for all the algorithms. They are also equal to those computed with PCE. In this
case study, the algorithm used to compute the Sobol indices has no influence on the
results.
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Table 4.3: Comparison of the first and total Sobol indices, calculated analytically, based
on the coefficients of PCE, with those computed using 105 estimations of the Kriging
metamodel.

Index Parameter PCE Kriging
γA 0.20 0.20
γD 0.56 0.56Si

γS 0.09 0.09
γA 0.35 0.35
γD 0.68 0.68STi

γS 0.13 0.13

Interpretation of the Sobol indices According to the Sobol indices, the curvature
parameter, γS, is the least significant variable, with a total index of 0.13. Its first order
index SγS

is close to the total one, meaning that the interactions of γS with the other
parameters are negligible. The most important variable is the delay of the transition,
γD, with a total index of 0.68. Its first order index is 0.56, implying that the Sobol index
relative to the interactions of γD with γA and γS are 0.68−0.56 = 0.12. Furthermore, since
the interactions of γS are negligible, γD solely interacts with γA, hence SγA,γD

≈ 0.12.
The amplitude of the transition, γA, is the second most influential parameter on the
variance of Ψ3 (STγA

= 0.35) and the interactions of γD with γA contribute by 100 ×
0.12/0.35 = 34 % to the effect of γA on Ψ3.

These results lead to the conclusion that γD is the most important parameter, followed
by γA, which contributes to the output almost twice as little as γD. The interactions
between these two variables also contribute to the variance of the output. Last, STγS

=
0.13, which, even if it is small, is not negligible compared to the order of magnitude of
the contribution of the other parameters.

This section helped to observe first qualitatively and then quantitatively the influ-
ence of different parameters used to model the membrane mechano-adaptation during
the wrapping of a circular NP. However, it was also shown that the initial properties of
the system, γ0 and σ, remain influential on the predictions of the model, since the phase
diagrams still present different regions depending on the values of these parameters (see
Section 4.1). Hence, Section 4.3 aims at comparing the influence of the initial parameters
with those relative to the membrane mechano-adaptation.
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4.3 Comparison of the effects of the mechanical adaptation with
respect to the initial parameters

The results presented in the previous section showed that the mechanical adaptation of
the membrane, as well as the initial parameters (γ0, σ), have an effect on the predictions
of the model. For instance, Figure 4.6a shows that the phases are indeed altered, when
accounting for the mechanical adaptation. In addition, this diagram shows that the
predictions also depend on both γ0 and σ, otherwise the diagram would be filled with a
single phase only. The objective of this section is consequently to determine how each
parameter, among the initial ones and those relative to the mechanical adaptation, i.e. γ0,
σ, γA, γD and γS, influences the model predictions of the cellular uptake of a circular NP.
For this purpose, a sensitivity analysis will be performed in Section 4.3.2 once a surrogate
model is built, as presented in Section 4.3.1. Contrary to the previous sensitivity analyses,
no additional result will be displayed for preliminary observations, since the effect of the
involved parameters was already discussed in the introduction of this section, based on
the graphs presented in Section 4.1.

In this case, the study does not involve ψ3, since the influence of the initial parameters
γ0 and σ is also investigated. Hence, the QoI, i.e. the output of the model, is the wrapping
degree at equilibrium F̃ and the inputs variable are Γ0, Σ, ΓA, ΓD and ΓS, whose domains
of definitions have been introduced earlier in Section 3.

4.3.1 Surrogate model

Data representativeness Analogously to the construction of the previous surrogate
models, the data representativeness is first investigated. Since the QoI is F̃ , the compu-
tation time, necessary to obtain each point, is only around 1 second. Hence, a dataset of
size 212 = 4096 realizations of input parameters and the corresponding values of F̃ , has
been generated in about 2 hours, with our available computational resources. Still, even
if this computation time is reasonable, especially compared to those necessary to generate
the values of Ψ3, one does not a priori know the number of samples that will be necessary
for the Sobol indices to converge. For this reason, a surrogate model is constructed even
in this case, in order to ensure that enough samples are available to verify the convergence
of the Sobol indices. The histogram of the random variable of the wrapping degree at
equilibrium, F̃ , based on the dataset, along with a kernel density estimation of its PDF,
are depicted in Figure 4.16.
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Figure 4.16: Histogram of F̃ , based on the dataset, along with an estimation for its PDF.

The data representativeness is investigated in order to determine the minimum number
of samples the dataset needs to contain to be representative of the behavior of the model.
For this purpose, the cumulative mean and standard deviation of F̃ , along with their
absolute gradient, in terms of the number of samples, are displayed in Figures 4.17 and
4.18.

(a) (b)

Figure 4.17: (a) Mean and (b) standard deviation of F̃ , with respect to the number of
simulations.

According to these figures, one can deduce that 91 and 73 samples are necessary for
the mean and standard deviation to converge, respectively. The minimum number of
samples for both to converge is thus 91. This number is very small compared to the size
of the dataset as it only represents 2 % of it.

Implementation of the metamodels To proceed to the final validation of the meta-
models, 20 % of the dataset, i.e. 820 samples, will be taken in order to have enough data
to calculate properly the value of the predictivity factor Q2. Hence, the remaining 80 %
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(a) (b)

Figure 4.18: Absolute normalized gradient of the (a) mean and (b) standard deviation
of F̃ , with respect to the number of simulations. The dashed lines correspond to the
threshold of 1 %. Only one out of four points have been represented for the clarity of the
plots.

of the data, i.e. 3276 samples, is used to build the metamodels.
PCE and Kriging metamodels have been constructed. The latter was built using the

same settings as in the previous investigations conducted in this thesis. Concerning the
former, the truncation degree p, that provided the most accurate predictions, has been
determined by comparing the accuracy of the predictions for truncation degrees between
1 and 7, which is the maximum degree that prevents singularities issues for a model with
five input parameters and a dataset containing 3276 samples, following the rule of thumb
introduced in Chapter 3. The performance of PCE in terms of the truncation degree is
illustrated in Figure 4.19, showing that Q2 is the closest to 1 for p = 7, with QP CE

2 = 0.80.

Figure 4.19: Accuracy of PCE predictions in terms of the truncation degree.
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Figure 4.20 compares the predictions obtained via Kriging and PCE algorithms with
the predicted vs true plots as well as the kernel density estimation of their PDFs using an
input dataset of 105 samples generated using the MC technique. Both metamodels yield
mediocre results, with a predictive square correlation coefficient equal to QKRI

2 = 0.86
and QP CE

2 = 0.80.

(a) Kriging (b) PCE (c) PDFs

Figure 4.20: Predicted vs true values obtained with (a) Kriging and (b) PCE algorithms,
after optimization of the hyperparameters, along with a comparison of the PDFs obtained
for these metamodels and the histogram of the data from the model.

In addition, one can observe that the accuracy of the metamodels is lower in this
case, compared to the previous one, which involved ψ3. This can be explained by the
distribution of the data, represented in Figure 4.16. Indeed, from the data, it seems that
the variable F̃ has a bimodal distribution, as the data is mostly clustered in two regions:
on the interval f̃ ∈ [0, 0.4] and around f̃ = 0.97. In Figure 4.20, one can distinguish a
large amount of points corresponding to true values close to f̃ = 0.97. These points, that
gather vertically, are due to misapproximations of the metamodel for such values, which
corresponds to the maximal wrapping degree at equilibrium. As such, there is a bound
effect which causes a large amount of input data that yield a response equal to that bound.
Furthermore, the bound effect tends to mislead the metamodel. Indeed, when the first
local minimum of the total potential energy is outside the interval domain [0.03, 0.97], the
wrapping degree is clipped to the extreme values of the interval (f̃ = 0.03 or f̃ = 0.97),
which the metamodel struggles to reproduce. The application of a clip to the predictions
of the metamodels, as introduced in the previous studies, would consequently lead to the
improvement of the accuracy of the estimations.

In this case, the approximation of the model using PCE yielded a value of Q2 similar
to that obtained for Kriging, mostly due to the difficulty to properly predict the data
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around f̃ = 0.97, as showed by the dispersion of the associated predictions. Based on
the approximation of the PDFs of the metamodels estimations, one can see that Kriging
represents a bimodal distribution of F̃ , with the same location for the peaks (modes) as
that of the model, even though the value of the peaks of the PDFs at the modes are not
equal to those of the model. In contrast, PCE yields a close-to-uniform distribution, with
a weak peak around f̃ = 0.4.

4.3.2 Sensitivty analysis

Sampling of the input parameters

Distribution Similar to the previous studies, because of the lack of experimental
data, the input parameters γ0, σ, γA, γD and γS are modeled as independent random
variables following uniform PDFs, in order to maximize the entropy measure [203].

Number of estimations The first and total Sobol indices, along with their respec-
tive 95 % CIs, in terms of the number of samples, estimated with the Mauntz-Kucherenko
algorithm, are depicted in Figure 4.21. The range of their CIs are represented in Fig-
ure 4.22.

(a) (b)

Figure 4.21: Convergence of the (a) first and (b) total Sobol indices, computed with the
Mauntz-Kucherenko algorithm. The shaded regions correspond to the 95 % confidence
intervals.

The range of the CIs of the first (resp. total) Sobol indices is smaller than 0.05 when
using more than 5 × 103 (resp. 9 × 103) samples. As such, to ensure convergence with
respect to all Sobol indices, at least 9 × 103 samples need to be used.
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(a) (b)

Figure 4.22: Range of the 95 % confidence interval of the (a) first and (b) total Sobol
indices in terms of the number of samples, computed with the Mauntz-Kucherenko algo-
rithm. Dashed lines correspond to the numerical convergence threshold of 0.05.

Influence of the algorithm The four algorithms reach convergence, considering the
criterion of the range of the CIs, with 9 × 104 samples for the Mauntz-Kucherenko and
Saltelli algorithms, while 104 and 2×104 samples are necessary for the Jansen and Matinez
algorithms, respectively, as summarized in Table 4.4. Hence, at least 9 × 104 samples are
necessary to ensure the convergence of the four algorithms. The convergence plots for the
remaining algorithms are provided in Section 3.2 of Appendix D.

Table 4.4: Number of samples necessary for the convergence of the Sobol indices following
the criterion on the range of the 95 % confidence intervals of Si and STi, estimated with
several algorithms.

Index Mauntz-Kucherenko Saltelli Jansen Martinez
Si 104 9 × 104 104 104

STi 9 × 104 2 × 104 104 2 × 104

Regardless of the algorithm, the convergence criterion is fulfilled when using 105 sam-
ples. These indices will then be used to compare their converged values with those ob-
tained using PCE in Table 4.5.
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Table 4.5: Comparison of the first and total Sobol indices, calculated analytically based
on the coefficient of PCE, with those computed using 105 estimations of the Kriging
metamodel.

Index Parameter PCE Kriging
γ0 0.63 0.54
σ 0.25 0.20
γA 0.01 0.01
γD 0.07 0.05

Si

γS 0.02 0.01
γ0 0.66 0.71
σ 0.25 0.34
γA 0.02 0.06
γD 0.09 0.15

STi

γS 0.02 0.03

Different algorithms, used to compute the Sobol indices, based on Kriging estimations,
provided similar results. However, these results differ from those obtained via PCE. This
is likely due to the poor accuracy of the metamodels. Indeed, they yielded QKRI

2 = 0.86
and QP CE

2 = 0.80 and did not lead to similar predictions, as illustrated in Figure 4.20
and also in the comparison of the PDFs of their predictions. However, despite these
differences, it is still possible to draw, at least qualitatively, conclusions on the influence
of the input parameters on the model, as the ranking of the indices is not altered. Their
interpretation is provided below.

Interpration of the Sobol indices The numerical values used for the interpretation
of the Sobol indices come from those computed using Kriging metamodel, since its ac-
curacy is higher than that of PCE. Furthermore, noting that the four Sobol algorithms,
applied to the estimations from Kriging, provided similar results, only those obtained
with Mauntz-Kucherenko will be used here. It should also be noted that the predictions
of the metamodel do not always match the original model (QKRI

2 = 0.86) and therefore
all the estimations are to be taken as if they had as main goal to quantify the order
of magnitude of importance between the different parameters. Their values have been
presented in Table 4.5.

The most influential parameter on the model is the initial adhesion, γ0, since its total
Sobol index is the largest, with STγ0 = 0.71. Second is the membrane tension, σ, with
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STσ = 0.34, being 2.1 times smaller than STγ0 . The third most important parameter is the
delay of the transition, γD, whose total Sobol index is 0.15. The remaining parameters,
the amplitude and curvature parameter, γA and γS, do not have significant influence,
with respective total Sobol indices of 0.06 and 0.03. The difference between the total
and first order Sobol indices of γ0, i.e. the influence of the interactions of γ0 with the
other parameters, is 0.17, which corresponds to 24 % of its total effect. Analogously, the
interactions represent 41 % and 67 % of the total influence of σ and γD, respectively.

These results match the other results that have been obtained in this thesis. Indeed,
the sensitivity analyses conducted in Chapter 3 and whose Sobol indices are displayed in
Table 3.2 also showed that γ0 has more influence on f̃ than σ. Furthermore, the ranking
of the Sobol indices, regarding the parameters related to the membrane mechanical adap-
tation, i.e. γA, γD and γS, is the same as the one calculated in Section 4.2. The total
Sobol indices obtained in these two studies are compared in Figure 4.23, which shows that
the influence of γ0 is approximately twice as large as that of σ in both cases.

(a) (b)

Figure 4.23: Distribution of the total Sobol indices obtained in (a) Chapter 3, concerning
the investigation of the influence of γ0, σ and r in the case of a passive membrane on f̃
and (b) in this chapter.

The Sobol indices computed in this section aim at quantifying the influence of γ0, σ,
γA, γD and γS on the variability of the wrapping degree at equilibrium f̃ . It was shown
that the initial parameters, i.e. γ0 and σ, are the most influential, while the influence of
the parameters used to model the membrane mechanical adaptation are less important.
Effectively, the amplitude of the transition, as well as its curvature parameter, respectively
denoted as γA and γS, have low Sobol indices and therefore have a negligible influence on
f̃ . Lastly, the delay of the transition, γD, influences f̃ . This leads to the conclusion that
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5. Discussion

accounting for the delay of the transition alters the predictions of the model, even if it is
not the most important factor.

5 Discussion

Several elements can be highlighted in order to discuss the methods and results presented
in this thesis. They are presented in the following.

• Two studies have been presented in this chapter, one involving the proportion
of full wrapping ψ3 and another involving the wrapping degree at equilibrium f̃ .
Similar to the previous chapter, it is worth recalling that f̃ alone does not provide
sufficient information to characterize the uptake of the NP, which requires the fusion
of the two sides of free membrane. As such, using the distance between them as a
QoI instead of f̃ would enable to overcome this issue.

• Some of the sensitivity indices have been calculated using inaccurate pre-
dictions. Indeed, in the study of the influence of the five input parameters on f̃ , the
predictions of both metamodels were not precise (QKRI

2 = 0.86 and QP CE
2 = 0.80),

which yielded important uncertainties in the estimations of the samples necessary
to compute the Sobol indices and also to the analytical calculation of the Sobol
indices based on the coefficients of PCE, which could not be possible either. The
consequence of these uncertainties on the CIs of the Sobol indices was not investi-
gated, but techniques to account for them, when estimating the uncertainty of the
Sobol indices, have been presented in the literature [231].

• Additional surrogate modeling approaches, among which those that have been
introduced in Chapter 3 (e.g. PCE-Kriging and machine learning), may provide
different and potentially better predictions. Hence, it would be of great interest to
investigate these methods in order to improve the accuracy of the Sobol indices.
Furthermore, the probabilistic content of the dataset used to construct the meta-
model for the approximation of f̃ shows a concentration of samples for f̃ = 0.97.
It thus tends to create a bias in the metamodel, which can yield inaccurate con-
clusions. That also means that less information on the behavior is provided to the
metamodel for certain values that are less represented in the dataset. As such, it
increases the difficulty for the metamodel to accurately predict such values of which
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not enough samples are contained in the dataset. For these reasons, using a dataset
from which the distribution of the output is close to a uniform distribution could
help avoiding such effect. In addition, the metamodels could be post processed in
order to clip the predictions within the domain of definition of the QoI. As such,
each estimation larger (resp. smaller) than the upper (resp. lower) bound would be
replaced by the bound that has not been respected, which would compensate the
over- (resp. under-) estimations.

• Few information is known about the input parameters, especially those of
the sigmoid used to describe the variation of the adhesion between the NP and
the cell membrane during the wrapping process. Hence, the domain of definition
of these parameters were set following inferences based on observations reported in
the literature, along with mathematical considerations. Given that the domain of
definition of a variable has an effect on the sensitivity analyses [214], conducting
a study in which the bounds vary could consequently enable us to quantify the
dependence of the results of the sensitivity analyses on the domains of definition
of the parameters. A similar remark can be made concerning the influence of the
statistical distribution of these parameters on the sensitivity analysis, as it is also
likely to alter their results.

• The results presented in this section were obtained after investigating the
cellular uptake of a circular NP. Indeed, although we demonstrated previously
in Chapter 3 that the aspect ratio of the NP plays an important role in the predic-
tions of the model, the present chapter focused on isolating the contributions of the
other parameters. The reason for such approach is to enrich the model step-by-step
and keep track of the contribution of each individual parameter. As such, Chapter 5
will aim at studying the model with all the parameters together, by investigating
the influence of the mechano-adaptation on the uptake of an elliptic NP.
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6 Conclusions of Chapter 4

In this chapter, we introduced some further interactions that happen alongside the mem-
brane during the wrapping of the NP and we proposed a way to account for them in our
numerical model, by describing the adhesion between the NP and the membrane as a func-
tion of the wrapping degree of the NP. Then, sensitivity analyses have been conducted on
the enriched model in order to quantify the influence of the newly introduced parameters
on the predictions of the model. Metamodels have been built in order to provide enough
data for the sensitivity analyses in affordable time. The following conclusions have been
drawn:

• The phenomenon of membrane mechano-adaptation as a response to the
wrapping of the NP has been observed based on the literature. A wrapping-degree-
dependant adhesion has consequently been introduced in order to depict this phe-
nomenon. The evolution of γ is modeled with a sigmoid, in order to represent a
variation between two finite values with tunable parameters. As such, the adhesion
γ is depicted as a function of the initial adhesion γ0, the amplitude of the transition
between the initial and the final adhesion, γA, the wrapping degree at which the
transition begins, γD, and the curvature parameter γS.

• Preliminary observations of the model, especially the evolution of ∆E(f) and
the phase diagrams, revealed that accounting for the evolution of γ with respect to
f yields different predictions than when the adhesion is considered constant (passive
membrane).

• Metamodels have been built for the sensitivity analyses to be performed.
Kriging and PCE metamodels have been used for the analyses on ψ3 and f̃ . For
the first analysis, both metamodels, built using a dataset of 210 samples, provided
very accurate predictions of ψ3 (QKRI

2 = 0.99 and QP CE
2 = 0.98), that have been

used to calculate the Sobol indices. In the second analysis, the metamodels, built
with a dataset of size 212, provided less accurate predictions of f̃ (QKRI

2 = 0.86
and QP CE

2 = 0.80), yielding slightly different Sobol indices. Nonetheless, the same
qualitative conclusions on the influence of the input parameters could be drawn
regardless of the type of the metamodel. The convergence of the Sobol indices was
verified by evaluating the variation of the range of their 95 % CIs.
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• Sensitivity analyses enabled to confirm the preliminary observations. First,
the roles of the three parameters used to describe γ(f) have been quantified by
performing a sensitivity analysis of their influence on ψ3. From the Sobol indices
being different from zero, this study showed that all the parameters are influential,
and the delay of the transition γD is the most important parameter, followed by the
amplitude γA and the curvature parameter γS. That is to say that among the 280
cells (i.e. tuples of (σ, γ0)) that are investigated, the proportion of cells that would
internalize the circular NP depends on the way the cell membrane adapts during
the wrapping. Second, when considering a single cell with random properties, it was
shown that the effects of the amplitude of the transition and the curvature parameter
on the wrapping degree at equilibrium are negligible, compared to those of the initial
properties of the cell σ and γ0. When considering the mechano-adaptation of the
membrane, the influence of γ0 remains around 2 times larger than that of σ, similar
to the results from Chapter 3.

• Investigations on the cellular uptake of a circular NP require the knowledge
of several input parameters. In this chapter, we showed that, even accounting for
the mechanical adaptation of the membrane, efforts for the characterization of the
cells need to be focused on γ0, then on σ and finally on γD, by order of influence on
the model.
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Chapter 5

EFFECT OF THE MECHANO-ADAPTATION

OF THE MEMBRANE ON THE CELLULAR

UPTAKE OF ELLIPTIC NPS

1 Introduction

The results presented in the previous chapter showed that accounting for the mechano-
adaptation of the membrane during the wrapping of the NP alters the engulfment predic-
tions. The investigations were carried out for the case of circular NPs. In Chapter 3, we
showed that the aspect ratio of the NP also affects these predictions, and even more than
the mechanical properties, in the case of a passive membrane. Hence, it is interesting to
explore whether it is still the case while accounting for the mechano-adaptation of the
membrane. A sensitivity analysis will thus be conducted, in order determine the influence
of the shape parameters describing the evolution of γ during wrapping and to compare it
with that of the aspect ratio of the NP. For this purpose, a first observation of the model
is made, then a metamodel is built and the Sobol sensitivity indices are finally calculated.
The code used to build the metamodels and to conduct the sensitivity analyses is available
in the Github repository1 associated to this thesis.

2 Preliminary observations

In order to build the intuition on the influence of the parameters characterizing an adaptive
membrane, i.e. γA, γD and γS, on the uptake of an elliptic NP, the variation of the
potential energy ∆E is compared, similar to Figure 3.8, for different values of these
parameters, in Figures 5.1, 5.2 and 5.3.

1. https://github.com/SarahIaquinta/PhDthesis
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(a) γA = 2 (b) γA = 3 (c) γA = 4

Figure 5.1: Effect of γA on the influence of r on ∆E(f), for γD = 0 (inflection point at
f = 0.5) and γS = 50 (sharp transition). The dotted lines correspond to the passive case
(γA = 1). The dots (resp. diamonds) represent the equilibrium position (f = f̃) in the
adaptive (resp. passive) case.

(a) γD = −0.2 (b) γD = 0 (c) γD = 0.2

Figure 5.2: Effect of γD on the influence of r on ∆E(f), for γA = 2 (i.e. γ(f −→ 1−) = 2γ0)
and γS = 50 (sharp transition). The dotted lines correspond to the passive case (γA = 1).
The dots (resp. diamonds) represent the equilibrium position (f = f̃) in the adaptive
(resp. passive) case.

(a) γS = 10 (b) γS = 50 (c) γS = 100

Figure 5.3: Effect of γS on the influence of r on ∆E(f), for γA = 2 (i.e. γ(f −→ 1−) = 2γ0)
and γD = 0 (inflection point at f = 0.5). The dotted lines correspond to the passive case
(γA = 1). The dots (resp. diamonds) represent the equilibrium position (f = f̃) in the
adaptive (resp. passive) case.

114



2. Preliminary observations

From Figure 5.1, one can see that γA influences the evolution of ∆E, but it does not
alter the position of the first local minimum of energy. Indeed, it is located before the
wrapping degree at which the mechano-adaptation starts, that does not change with γA (f̃
is the same in Figures (a), (b) and (c)). Then, Figure 5.2 shows that the position of f̃ , i.e.
the x-coordinate of the first local minimum of the potential energy, is altered by γD. This
is similar to what was observed in Figure 4.5 for a circular NP. Furthermore, Figure 5.3
shows that the energy barrier, that appears after the first local minimum, created due to
the variation of γ, vanishes if the transition is sufficiently smooth (i.e. small values of γS).
One can also note the presence of energy barriers in the passive case (dotted lines), which
is due to r. This first observation consequently highlighted that the transition delay γD

seems to have a concurrent effect to that of r on ∆E, since both influence f̃ in this case.
Observing how these parameters influence ∆E provides qualitative information on

how f̃ may be affected by them. However, as highlighted in the previous chapters, we are
more interested in the phase at equilibrium than in f̃ . For this reason, the proportion of
phases at equilibrium is plotted with a model where the mechano-adaptation is considered.
Figure 5.4 shows the evolution of the proportion of each phase, as a function of r, with
(γA, γD, γS) = (2, 0, 50).

Figure 5.4: Phase proportions in terms of the aspect ratio r of the NP, accounting for the
mechano-adaptation of the membrane for (γA, γD, γS) = (2, 0, 50). The dark (resp. light)
lines stand for vertical (resp. horizontal) NPs. The dotted lines correspond to the passive
case (Figure 3.10 of Chapter 3).

By comparing the solid and dotted lines, i.e. the phase proportions in the case of
adaptive and passive membranes, one can deduce that the way the phase proportion
evolves with r can be highly altered by the introduction of the adaptive model. Note that
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the point r = 1 corresponds to the particular case of a circular NP, and reproduces the
proportions from the phase diagram in Figure 4.6a. The latter showed an increase in the
proportion of phase 3 and a decrease in that of phase 2, while the proportion of phase 1
did not change, when accounting for the membrane mechano-adaptation. This conclusion
can be extended to the entire domain of definition of r, as illustrated in Figure 5.4.
The fact that the phase 1 (purple curves) is not affected by the membrane mechano-
adaptation is due to the definition of the phases. Indeed, the minimal inflection point
finf = 0.5 + γD is 0.3, meaning that γ changes for f̃ > 0.2, which is the threshold
wrapping degree after which the phase is defined to be 2. The phase diagrams obtained
for r ∈ [1/3, 3] for adaptive and passive cells, with the aforementioned properties, are
compared in Appendix C.

Moreover, some of the NPs that could not reach the phase 3 with a passive membrane
(ψ3 = 0) are able to do so when the mechano-adaptation of the membrane is modeled. For
instance, NPs whose aspect ratio is in the interval [2, 3] are able to be fully wrapped by an
adaptive membrane, while they are not by a passive membrane. In addition, the values
of ψ3 are larger than in the passive case, meaning that more cells, represented by tuples
of initial cellular properties (γ0, σ), are able to engulf them than in the case of passive
membranes. These results show the obvious effect of the membrane mechanical adaptation
on the model predictions, but only for the specific configuration where the parameters
are set as (γA, γD, γS) = (2, 0, 50). To clarify the influence of these parameters on the
model, sensitivity analyses are conducted in Section 3.

3 Quantification of the influence of the parameters
related to the mechano-adaptation

The model presented in this study has four input parameters: γA, γD, γS and r, while
the output parameter is ψ3. Following an analogous approach to that used in Chapters 3
and 4 to perform the sensitivity analysis, a surrogate model will first be built in Section 3.1
in order to generate the estimations necessary to evaluate the Sobol indices. The results
of the subsequent sensitivity analysis are presented in Section 3.2.
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3.1 Surrogate model

Sampling A dataset containing 210 realizations of the input random variables along with
the estimations of the random variable Ψ3 is generated. The input parameters follow the
same distributions as those presented in the previous chapters, i.e. ΓA ∼ U(1, 6), ΓD ∼
U(−0.2, 0.2), ΓS ∼ U(10, 100) and R̄ ∼ UP (1/6, 1; 1, 6). The probability distribution of
Ψ3, based on these values, is represented in Figure 5.5.

Figure 5.5: Histogram of Ψ3, along with a kernel density estimation of its PDF.

In order to determine the minimum size of the dataset for it to be representative of
the behavior of the data, the cumulative mean and standard deviation of Ψ3, along with
their gradient, are plotted in Figures 5.6 and 5.7.

(a) (b)

Figure 5.6: (a) Mean and (b) standard deviation of Ψ3, with respect to the number of
samples.

According to these figures, 365 samples are necessary for the gradients of both statistics
to converge. Hence, 365 samples, which represents about 35 % of the dataset, will be used
for the validation of the metamodels, and the remaining 659 samples will be used for its
training. The results of the metamodels are presented afterwards.
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(a) (b)

Figure 5.7: Absolute normalized gradient of the (a) mean and (b) standard deviation
of Ψ3, with respect to the number of samples. Only one out of two points have been
represented for the clarity of the plots.

Implementation of the metamodels In order to avoid singularities, the truncation
degree p of the PCE has to verify 3

(
p+4

4

)
< 659 (rule of thumb introduced in Equation 3.7),

yielding p ≤ 6. The predictivity factor Q2 of the metamodels for p ∈ {1, 2, 3, 4, 5, 6}
is represented in Figure 5.8, from which one can conclude that Q2 is maximized for
p = 5, with QP CE

2 = 0.68. Kriging metamodel has been build using the same initial
configurations as in the previous chapters and yielded QKRI

2 = 0.92.

Figure 5.8: Accuracy of PCE predictions in terms of the truncation degree.

Figure 5.9 compares the predictions of the metamodels with the data from the model,
using the validation dataset of size 365, along with estimations of the PDF of Ψ3 obtained
by evaluating each metamodel with 105 samples of input parameters generated by the MC
method.
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(a) Kriging (b) PCE (c) PDFs

Figure 5.9: Predicted vs true values obtained with (a) Kriging and (b) PCE algorithms,
along with a comparison of the PDFs, estimated via these metamodels.

The true vs predicted plots highlight the presence of predictions out of the domain
of definition of Ψ3, i.e. the interval [0, 1]. As such, a clip, as introduced previously in
Chapter 3 for the study of F̃ , could be applied to the metamodel to ensure that the
predictions belong to the interval of definition of the QoI. The estimation of the PDFs
based on Kriging predictions shows a closer distribution to that of the original data than
that of PCE. This difference is due to the fact that PCE is based on fitting polynomial
functions of a small degree (p = 6), which is not large enough to represent the behavior
of the model, based on the dataset.

3.2 Sensitivity analysis

3.2.1 Computation of the Sobol indices

Number of samples The influence of the parameters used to model the mechano-
adaptation of the membrane, i.e. γA, γD and γS, along with the aspect ratio r of the NP,
is investigated in order to determine if the way the former parameters influence ψ3 differs
depending on r. These results will be compared with those obtained in Section 4.2 of
Chapter 4, in which their influence was investigated in the case of the uptake of a circular
NP, i.e. r = 1. The Sobol sensitivity indices will be computed using the estimations of the
Kriging metamodel. Recalling that no additional computational cost is necessary, they
will also be calculated based on the PCE coefficients. First, the convergence of the Sobol
indices, with respect to the number of samples used to estimate them, is investigated using
the four aforementioned algorithms available in OpenTURNS. Solely the results obtained
with the Mauntz-Kucherenko algorithm will be shown in this section. The convergence
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studies using Saltelli, Jansen and Martinez algorithms are provided in Section 4.1 of
Appendix A. The evolution of the first and total Sobol indices, in terms of the number of
samples, is depicted in Figure 5.10, along with their 95 % CIs, for which the variation of
the range is represented in Figure 5.11.

(a) (b)

Figure 5.10: Convergence of the (a) first and (b) total Sobol indices, computed with the
Mauntz-Kucherenko algorithm. The shaded regions correspond to the 95 % confidence
intervals.

(a) (b)

Figure 5.11: Range of the 95 % confidence intervals of the (a) first and (b) total Sobol
indices, in terms of the number of estimations of the metamodel, computed with the
Mauntz-Kucherenko algorithm. The dashed lines correspond to the threshold of 0.05.

According to Figure 5.11, at least 1.5 × 104 samples are necessary for the CIs of the
Si and STi to be smaller than 0.05, ensuring the convergence of the Sobol indices. The
absolute gradients of the indices are given in appendix.

Influence of the algorithm Differences in the convergence of the indices depend-
ing on the algorithm are highlighted in Table 5.1. Indeed, indices computed using the
Martinez algorithm require the most samples to converge (5×104 for STi), while Mauntz-
Kucherenko enables convergence with less samples (1.5 × 104 for both indices). The plots
representing the variation of the Sobol indices, their normalized absolute gradient, along
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with the range of their 95 % CIs, for the aforementioned algorithms, are contained in
appendix.

Table 5.1: Number of samples necessary for the convergence of the Sobol indices following
the criterion on the range of the 95 % confidence intervals of Si and STi, estimated with
several algorithms.

Index Mauntz-Kucherenko Saltelli Jansen Martinez
Si 1.5 × 104 104 2 × 104 104

STi 1.5 × 104 4 × 104 1.5 × 104 5 × 104

The estimations, based on these four algorithms, using 105 samples, are compared to
those obtained from the PCE coefficients in Table 5.2.
Table 5.2: Comparison of the first and total Sobol indices, calculated analytically using
PCE, with those computed using 105 estimations of the Kriging metamodel.

Index Parameter PCE Kriging
γA 0.14 0.09
γD 0.17 0.11
γS 0.04 0.02

Si

r 0.65 0.49
γA 0.14 0.23
γD 0.17 0.33
γS 0.04 0.07

STi

r 0.65 0.72

PCE and Kriging yielded different indices, which is due to the accuracy of their re-
spective predictions. Indeed, the indices evaluated with PCE (QP CE

2 = 0.68) cannot be
used for the sensitivity analysis since the inaccuracy of the PCE coefficients would yield
inaccurate sensitivity indices. As such, only the indices estimated via Kriging will be used
to proceed to the sensitivity analysis, since QKRI

2 = 0.92 is closer to 1.

3.2.2 Intrepretation of the Sobol indices

This study highlights that r is the most influential parameter, with the largest total Sobol
index, STr = 0.72, while the curvature parameter γS is the less influential parameter with
the lowest total Sobol index: STγS

= 0.07. Its first order index is almost zero (SγS
= 0.02),
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meaning that its influence on Ψ3, is primarily due to interactions with other parameters
γA, γD and r. A similar observation is made for the amplitude of the transition, γA,
whose first order Sobol index is small (SγA

= 0.09). The parameter with the largest total
Sobol index, after r, is the transition delay γD, with STγD

= 0.33. It is thus the second
most influential parameter. Still, its first order index (SγD

= 0.11) is small compared to
the total index, meaning that the effect of γD is mainly due to its interactions with the
remaining parameters. The curvature parameter and the amplitude of the transition, γS

and γA being of small importance, one can infer that the influence of γD on Ψ3 is mostly
due to interactions with the aspect ratio r of the NP. One can also note that the ranking
of importance between the parameters γA, γD and γS is the same as the one obtained for
circular NPs (r = 1), as illustrated in Figure 5.12.

(a) (b)

Figure 5.12: Distribution of the total Sobol indices obtained in (a) Chapter 4, concerning
the investigation of the influence of γA, γD and γS on the uptake of a circular NP and in
(b) in this chapter, which compares the influence of γA, γD and γS to that of the aspect
ratio r of an elliptic NP.

Furthermore, the fact that the aspect ratio of the NP influences more ψ3 than the
mechanical properties matches the results from Chapter 3, where we concluded that r is
a prominent parameter, as it influenced the most the proportion of full wrapping of an
elliptic NP by a passive membrane.
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4 Comparison of the effects of the initial and mechano-
adaptation-related parameters on the uptake of an
elliptical NP

As in Section 4.3 of Chapter 4, the influence of the mechano-adaptation, investigated with
the shape parameters γA, γD and γS, is compared to that of the initial cell parameters γ0

and σ. In this chapter, we conduct the same study in the case of the uptake of an elliptic
NP, meaning that r is an input parameter instead of being set to 1 (circular NP). To do
so, we create a metamodel in Section 4.1 and compute the Sobol indices in Section 4.2,
using the metamodel predictions.

4.1 Surrogate model

Sampling Both PCE and Kriging metamodels are built and compared in this section.
Similar to the previous cases, the representativeness of the dataset is first observed, in
order to determine the minimum number of samples necessary to be representative of
the behavior of the dataset, which, similar to the previous studies where the QoI was F̃ ,
contains 212 = 4096 samples. The histogram of the random variable F̃ , based on this
dataset, is represented in Figure 5.13.

Figure 5.13: Histogram of F̃ , based on the dataset along with a kernel density estimation
of its PDF.

To investigate the representativeness of the dataset, the mean and standard deviation
of F̃ , along with their gradient, in terms of the number of samples, are depicted in
Figures 5.14 and 5.15, respectively.

123



Chapter 5: Effect of the mechano-adaptation of the membrane on the cellular uptake of elliptic
NPs

(a) (b)

Figure 5.14: (a) Mean and (b) standard deviation of F̃ , with respect to the number of
simulations. The shaded regions correspond to the standard deviation, obtained with 200
shuffled samples.

(a) (b)

Figure 5.15: Absolute normalized gradient of the (a) mean and (b) standard deviation of
F̃ , with respect to the number of simulations. The dashed lines correspond to the 1 %
threshold. Only one out of four points have been represented for the clarity of the plots.

They show that in order for F̃ to have convergent first and second order statistics,
datasets of size 134 and 127 should be used, respectively. Based on this result, 10 % of the
dataset, which represents 409 samples, will be used for the validation of the metamodels,
and the remaining 90 %, i.e. 3687 samples, will be employed for their training.

Implementation of the metamodels In order to avoid singularities, the truncation
degree p of the PCE has to verify 5

(
p+6

6

)
< 3687 that yields p ≤ 5. The predictivity factor

Q2 of the metamodels for p ∈ {1, 2, 3, 4, 5} is represented in Figure 5.16, from which one
can conclude that Q2 is maximized for p = 5, with QP CE

2 = 0.55.
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Figure 5.16: Accuracy of PCE predictions in terms of the truncation degree.

The predicted vs true values plots obtained with PCE and Kriging, which have been
built with settings that are similar to those used in the previous studies, are depicted
in Figures 5.17a and 5.17b. The predictivity factor associated to Kriging estimations is
QKRI

2 = 0.42. Estimations for the PDF of F̃ , using a MC dataset of size 105, with Kriging
and PCE along with the one based on the original data, are shown in Figure 5.17c.

(a) Kriging (b) PCE (c) PDFs

Figure 5.17: Predicted vs true values obtained using (a) Kriging and (b) PCE surrogate
models, along with (c) a comparison of the kernel density estimations of the PDFs esti-
mated via these metamodels with 105 MC-based samples, and the histogram of the initial
data.

The comparison of the estimation of the PDFs based on the metamodels predictions
to that of the initial data shows that the surrogate models were not able to reproduce a
distribution similar to that of the data. Indeed, while the data has a multimodal distri-
bution represented by three peaks at f̃ ≈ 0.03, f̃ ≈ 0.4 and f̃ ≈ 0.97, PCE predictions
have a unimodal distribution with a large peak of low value at f̃ ≈ 0.4. Kriging yields a
bimodal distribution whose peaks are located at f̃ ≈ 0.03 and f̃ ≈ 0.25. Furthermore, the
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predictivity factors obtained for these metamodels are not satisfying either. The former
are QKRI

2 = 0.42 and QP CE
2 = 0.55, which are too far from 1 to consider the predictions

accurate. This result shows that none of these metamodels is able to provide accurate
predictions of the model. In this case, we can suppose that Kriging was not able to build
accurate estimations based on the interpolation of the points of the dataset because of
the dispersion of the data, combined to a large amount of input parameters that yielded
equal values of F̃ in the training dataset.

4.2 Sensitivity analysis

Number of samples Analogously to the previous section, the influence of the initial
parameters γ0 and σ, as well as those used to model the membrane mechano-adaptation,
i.e. γA, γD and γS, along with the aspect ratio r of the NP, are investigated. The objective
is to determine whether the way the influence of the former parameters F̃ differs depending
on the value of r. These results will be compared with those obtained in Section 4.3.2 of
Chapter 4, where their influence was investigated in the case of the uptake of a circular NP.
The sensitivity indices will be computed using the estimations of the Kriging metamodel
and also based on the PCE coefficients, even though their predictions were poor, as we do
not possess any alternative in this study. This point will be discussed at the end of this
chapter. First, the convergence of the Sobol indices, in terms of the number of samples
used to estimate them, is investigated using all aforementioned algorithms. However,
only the results obtained with the Mauntz-Kucherenko algorithm will be displayed in this
section. The estimations based on Saltelli, Jansen and Martinez algorithms are provided
in Section 4.2 of Appendix D. The evolution of the first and total Sobol indices in terms of
the number of sample along with their 95 % CIs are depicted in Figure 5.18. The variation
of their range, shown in Figure 5.19, implies that at least 1.5 × 104 and 2 × 104 samples
are necessary for the range of the CIs of Si and STi to be smaller than 0.05. Based on
this criterion, one can conclude that more than 2×104 samples are required to ensure the
convergence of the Sobol indices.
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(a) (b)

Figure 5.18: Convergence of the (a) first and (b) total Sobol indices, computed with the
Mauntz-Kucherenko algorithm. The shaded regions correspond to the 95 % confidence
intervals.

(a) (b)

Figure 5.19: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices in terms of estimations of the metamodel, computed with the Mauntz-Kucherenko
algorithm. The black dashed lines correspond to the threshold of 0.05.

Influence of the algorithm Discrepancies in the convergence of the indices depending
on the algorithm are highlighted in Table 5.3.

Table 5.3: Number of samples necessary for the convergence of the Sobol indices following
the criterion of the range of the 95 % confidence intervals of Si and STi evaluated with
several algorithms.

Index Mauntz-Kucherenko Saltelli Jansen Martinez
Si 1.5 × 104 1.5 × 104 1.5 × 104 104

STi 2 × 104 5 × 104 2 × 104 4 × 104

Indeed, indices computed with Saltelli require the largest number of samples to con-
verge (5×104 for STi) while Mauntz-Kucherenko and Jansen enable convergence with less
samples (1.5×104 and 2×104 for Si and STi). The plots representing the variation of the
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Sobol indices, their normalized absolute gradient, along with the range of their 95 % CIs,
in terms of the number of samples, are contained in appendix. The indices obtained after
convergence (calculated with 105 samples) are compared with those analytically evaluated
from the PCE coefficients in Table 5.4, that shows notable difference in the Sobol indices
computed using both methods.

Table 5.4: Comparison of the first and total Sobol indices, calculated analytically using
PCE, with those computed using 105 estimations of the Kriging metamodel.

Index Parameter PCE Kriging
γ0 0.25 0.26
σ 0.07 0.08
γA 0.03 0.01
γD 0.09 0.03
γS 0.02 0.01

Si

r 0.17 0.16
γ0 0.48 0.61
σ 0.17 0.31
γA 0.05 0.15
γD 0.17 0.11
γS 0.04 0.03

STi

r 0.45 0.52

Indeed, Sobol indices computed using Kriging estimations are organized as follows:

STγ0 > STr > STσ > STγA
> STγD

> STγS
,

Sγ0 > Sr > Sσ > SγD
> SγA

= SγS
.

On the other hand, those computed using PCE give the following ordering:

STγ0 > STr > STγD
= STσ > STγA

≈ STγS
,

Sγ0 > Sr > SγD
> Sσ = SγA

.

The ordering of the total indices obtained with Kriging and PCE are compared in a
pie-chart in Figure 5.20.
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(a) (b)

Figure 5.20: Distribution of the total Sobol indices obtained with (a) Kriging and (b)
PCE.

Consequently, both approaches lead to different conclusions on the influence of the
input parameters on F̃ . However, results from PCE show tendencies similar to those
that have been observed in Chapter 4. Indeed, the analogous analysis, performed on
a circular NP, provided the same ranking of the first and total Sobol indices as that
obtained with PCE. Nonetheless, the results from Chapter 3 showed that STr > STγ0

and Sr > Sγ0 , when the membrane mechano-adaptation is not considered. None of the
methods provided here shows similar results concerning these variables. Supposing that
PCE-estimated Sobol indices are correct, that would mean that the influence of the aspect
ratio of the NP on F̃ is inhibited by the initial parameters for an adaptive membrane.
However, recalling that the accuracy of the metamodels prediction is poor (QKRI

2 = 0.42
and QP CE

2 = 0.55), the precision of the Sobol indices obtained using such models is non
ensured. For this reason, no conclusion could be drawn from this study.

5 Discussion

The methods and results presented in this chapter are similar to those introduced in
Chapter 4. As such, most of the discussion points have already been addressed previ-
ously. Nonetheless, the investigations conducted in this chapter on elliptic NPs involved
additional challenges that yielded difficulties in the construction of the metamodels. These
elements are discussed in the following.

Difficulties in the predictions of the dataset have been encountered, especially in the
comparative study between the passive and active cases, where the predictivity factors of
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the metamodels were QKRI
2 = 0.42 and QP CE

2 = 0.55. These predictions are less accurate
compared to those in the previous chapter (QKRI

2 = 0.99 and QP CE
2 = 0.98 for the study

on Ψ3 and QKRI
2 = 0.86 and QP CE

2 = 0.80 for the study on F̃ ), which highlights the
limitations of both Kriging and PCE when having r as an input parameter. Indeed,
both Chapters 4 and 5 aimed at investigating the role of the mechano-adaptation of
the membrane, with the only difference being the consideration of r as input parameter.
Thus, one can infer that r has possibly a nonlinear effect on the model, with interactions
with other input parameters. Furthermore, one can note that the effect of r on ∆E, and
consequently on the predictions, changes drastically when r > 1 or r < 1. As such, using
different types of metamodels for these two cases could lead to better predictions, since
each of them would be in charge of approximating two distinct behaviors separately.

Furthermore, the predictions of the model could also be improved by increasing the size
of the training dataset, which was set to 212 = 4096 in this study. However, considering
that the objective of building a metamodel is to simulate the initial model in order to avoid
time-consuming model calculations, it does not seem appropriate to increase the number
of samples in this case. Another possibility is to explore other meta-modeling approaches,
like those that have been introduced in Chapter 3, e.g. PCE-Kriging and artificial neural
networks, or to use training dataset with a similar-to-uniform distribution in order to
avoid the limitations due to multi modal distributions. Last, the application of a clip
to the metamodel predictions, as introduced in the previous chapters, could improve the
accuracy of the samples used for the estimations of the Sobol indices.

These errors in the predictions of the metamodels yielded inaccurate Sobol indices,
from which no conclusion regarding the sensitivity analysis could be drawn for the study of
F̃ . Moreover, even if the predictivity factors of the metamodels constructed for the study
of Ψ3 are closer to 1 (QKRI

2 = 0.92 and QP CE
2 = 0.68), they were not satisfying either,

especially PCE, as they are not close to 1. As such, the recommendations for improving
the predictions of metamodels, that have been presented in the previous paragraphs,
should be applied to this study as well.

6 Conclusions of Chapter 5

In this chapter, the cellular uptake of an elliptic NP was investigated when considering
the mechanical adaptation of the membrane during the wrapping of the NP. The steps
that have been followed, along with the results, are presented below.
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• The influence of the aspect ratio of the NP has first been highlighted in the
case of a passive membrane (constant mechanical properties) in Chapter 3. The
study conducted in the present chapter confirmed that its influence on the model is
maintained when accounting for the mechanical adaptation of the membrane.

• The proportion of full wrapping is indeed mostly influenced by the aspect ratio
of the NP, then by the delay in the membrane mechanical response, for the range
of values adopted in this study. The amplitude and curvature parameter of the
transition have less significant influences. This conclusion was drawn based on a
sensitivity analysis conducted using predictions from Kriging and PCE metamodels,
generated with a dataset of size 210. The convergence of the Sobol indices was
verified, as well as the accuracy of the metamodel predictions (QKRI

2 = 0.92).

• The influence of the aspect ratio of a NP on its uptake by a cell with
random properties was also investigated. Indeed, a dataset of size 212 of the six
input parameters was built and the corresponding values of the wrapping degree
at equilibrium have been computed. Then, metamodels have been constructed in
order to have estimations of the model based on this dataset, to finally compute the
sensitivity indices. However, the metamodels, used to generate these predictions,
did not provide satisfying accuracies, with predictivity factors QKRI

2 = 0.42 and
QP CE

2 = 0.55. As a consequence, the sensitivity indices, that have been obtained
using these metamodels, are not exploitable. It was thus impossible to conclude on
the influence of the investigated parameters. One can note that this study is the one
conducted with most input parameters, among which two of them have been shown
to influence significantly the outputs of the model, when involved in the studies that
have been presented previously in this thesis. These difficulties for predicting the
data may be due to the domain of definition and/or the PDF of the QoI. Indeed,
this investigation aimed at determining the influence of the input parameters on the
wrapping degree at equilibrium, F̃ . Studies that have been conducted in previous
chapters, which also involved F̃ , showed that this variable is more difficult to be
estimated by the metamodels, as they often struggle to estimate the extreme values
of its domain of definition, i.e. f̃ → 0.03 and f̃ → 0.97.
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Chapter 6

APPLICATION OF THE MODEL TO A GIVEN

CANCER BASED ON REAL DATA

1 Introduction

The ultimate objective of the present thesis is to provide a model able to determine the
optimal mechanical and geometrical properties of a NP, in order to maximize its uptake
by cancer cells, while avoiding healthy ones. In this context, this chapter aims at applying
our model to a concrete case. Hence, a literature review is conducted in order to identify
the mechanical properties of both healthy and cancer cells. Then, the model is used, with
these input mechanical parameters, in order to estimate the aspect ratios of the NPs that
would enable them to be internalized solely by cancer cells. Among the wide variety of
existing cancers, this application will focus on breast cancer (which touches mammary
cells), being the most frequent (see Table 6.1) and documented cancer [3, 232, 233], as
illustrated in Figure 6.1.

Table 6.1: Seven most frequent cancer types worldwide, based on data from 2020, adapted
from [233].

Rank Cancer New cases in 2020 % of all cancers
All cancers 18 094 716

1 Breast 2 261 419 12.5
2 Lung 2 206 771 12.2
3 Colon 1 931 590 10.7
4 Prostate 1 414 259 7.8
5 Stomach 1 089 103 6
6 Liver 905 677 5
7 Cervix uteri 604 127 3.3
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Figure 6.1: Number of existing research articles on different types of cancers, obtained
using the Scopus1 data basis with the keywords "[type of cancer]" + "cancer".

Section 2 presents the data from the literature that have been used to provide numeri-
cal values for the mechanical parameters of our model, while Section 3 details and applies
the methodology to determine the optimal aspect ratio for the NP. Last, the results are
discussed in Section 4.

2 Mechanical properties of healthy and cancer breast
cells

2.1 Bending rigidity

The bending rigidity κ of the membrane, introduced in Chapter 2, is used to calculate the
values of adimensional variables γ and σ. As such, this section aims at providing a review
of the studies that have been conducted in order to measure κ or to approximate the ratio
between the bending rigidity of healthy and cancer cells. Händel et al. [234] computed κ

based on a Fourier decomposition of the variation of the cell membrane shape, determined
with mass spectroscopy, as a response to thermal fluctuations. Using this technique, the
bending rigidity of healthy and cancer cells were estimated as κH = 4.5 × 10−19 Nm and
κC = 1.3 × 10−19 Nm, respectively. This notation will be used in the sequel.

To the best of our knowledge, this is the only experimental study on the bending
1Scopus is a data basis that gathers the research articles published by the scientific editor Elsevier.

Available at https://scopus.com.
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rigidity of healthy and cancer breast cells conducted so far. Nonetheless, more data could
be found about the Young modulus E since it is an easier parameter to be characterized,
and which is currently being investigated as a tool for cancer diagnosis [235–238]. The
Young modulus does not belong to the set of parameters required to feed the numerical
model introduced in this thesis. However, it is related to the bending stiffness via κ =
Eh3(1−ν2)−1/12 [40], where h is the thickness of the membrane and ν its Poisson’s ratio.
In this chapter, even though discrepancies in the structure of the cell membrane of healthy
and cancer cells suggest the contrary, we suppose that h and ν are the same for all the
cells that are investigated. This hypothesis, that will be discussed in Section 4, enables
us to use the studies conducted on the Young modulus E in order to estimate the ratio
between κC and κH . The following sections introduce different methods that have been
used to determine the Young modulus of breast cancer cells, along with their possible
limitations. The results that have been obtained with such methods are also presented.

2.1.1 AFM measurements of the Young modulus

Overview Atomic Force Microscopy (AFM) consists in sweeping a sharp tip, attached
to a flexible cantilever, over the surface of a sample. Variations in depth consequently lead
to changes in the bending of the cantilever, which is detected by an optical device [239].
This technique aims at reproducing the vertical profile of the sample. In addition, AFM
also reproduces the principle of indentation as it is possible to apply a vertical force,
usually between 100 and 1000 pN, to the cantilever. The vertical displacement, induced
by this force, can be measured following techniques similar to those used in indentation.
Then, the evolution of the loading force, in terms of the vertical displacement, enables to
determine the stiffness of the sample at the location of the indent [70, 240].

Limitations and important considerations It is worth noting that the AFM mea-
surements highly depend on several parameters: (i) the substrate in which the cell is
placed alters the measurements. For this reason, it is not possible to compare results
from different AFM studies. As such, only the ratios between values of EH and EC , mea-
sured in the same study, will be used in this chapter. (ii) Furthermore, the indentation
depth of the AFM measurements plays a key role in the result. Indeed, when applying
a small indentation depth, only a measure of the local rigidity of the actin filaments is
obtained, while only a larger indentation depth enables to measure the Young modulus
of the cell. It is consequently of great interest to ensure that the indentation depth is in
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the same order of magnitude, and large enough, in two studies used to compare values
of E. (iii) Then, the load velocity of the AFM measurement also alters significantly the
measurements (up to 173 % for healthy bladder cells [64]). Note that this highlights a
viscoelastic behavior of the cell. (iv) Moreover, a long load duration may lead to a reor-
ganization of the actin filaments and hence to a different measure of the Young modulus.
For all the aforementioned reasons, it is indispensable to make sure that the AFM mea-
surements have been performed in similar conditions before comparing the Young moduli.
Last, AFM measurements are not trivial to perform, as they require complex electronics
and optics, which do not work properly in opaque liquids [72].

Evaluation Young modulus of breast cancer cells Lekka et al. [64, 241] conducted
AFM measurements on breast healthy and cancer cells and obtained EH = 2.5 kPa and
EC = 1.25 kPa, leading to EC = 0.5EH . These are averaged values obtained with 20
cells. Lin et al. [65] compared the Young modulus of breast cancer cells with that of
healthy breast cells and showed that EC ∈ [0.2, 0.4] × EH , while Li et al. [69] measured
EC ∈ [0.56, 0.71]×EH . Note that the intervals obtained in these different studies have no
intersection, which illustrates the variability of the measures and enforces the conclusion
that no direct comparison between the results obtained from different articles is possible.

2.1.2 Optical deformability

Overview The optical deformability technique enables to observe the deformation of
an isolated cell, i.e. independent of a tissue or a substrate, after the application of
a stretching to deduce the cell stiffness. An illustration of optically deformed cells is
provided in Figure 6.2.

As presented in [67, 73], the cell stiffness is approximated by the optical deformability
index OD, defined as:

OD =
(
ab0

a0b
− 1

)
F 0

a

F 0
b

Fb

Fa

, (6.1)

in which exponent 0 refers to the initial configuration, Fa and Fb refer to the stretching
forces along the semi major and minor axes of the elliptic cell, while a and b refer to their
length.
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(a) (b)

Figure 6.2: Illustration of the stretching of breast (a) healthy and (b) cancer cells, applied
to deduce their optical deformability and hence their stiffness. The black lines represent
a scale of 10µm. Adapted from [73].

Limitations and important considerations If the strain level that is applied to the
cells is important, a reorganization of the actin filaments may take place, which could
alter the measure of stiffness. Furthermore, the force that is applied to the cells by the
optical tweezers may not be large enough to trigger and observe all the phenomena that
can happen in the cell. In addition, the cells are exposed to laser during this experiment,
which may alter their mechanical properties. Hence, like in the previous measurement
techniques, it is necessary to use results that have been obtained in similar experimental
conditions, in order to have accurate ratios of EH/EC . Moreover, this model approximates
the shape of the cell as elliptic, which can be discussed since the cells have mostly not
perfectly elliptic shapes, as illustrated in Figure 6.2b.

Measurements Investigations of the optical deformability of healthy and cancer breast
cells, conducted by Guck et al. [73], determined that healthy cells are, in average, twice
as stiff as cancer cells.

2.2 Membrane tension

No article comparing the membrane tension in healthy and cancer mammary cells was
found. For this reason, the remaining is dedicated to non-comparative studies of the
membrane tension. On the one hand, Händel et al. [234] assessed both the membrane
tension σ and the bending rigidity κ of cancer mammary cells, obtaining σC = 8.69 ±
1.76 × 10−2 mN/m. On the other hand, Zhang et al. [30] introduced σ = 0.05 mN/m
regardless of the cell type or healthiness. Based on such findings, it will be difficult to
compare σC and σH .
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2.3 Cellular adhesion

The adhesion does not solely depend on the cell, it is rather a measure which considers
two objects, e.g. the cell membrane and a NP. For this reason, it is necessary to consider
the two bodies that are involved, when characterizing adhesion. In this thesis, we are
interested in retrieving data relative to the adhesion between the membrane of a breast
cell and a NP. Unfortunately, such data could not be found, as the studies on cellular
adhesion are often rather focused on the cell-cell adhesion, or on the adhesion between the
cell and the extra-cellular medium (ECM), as it enables to investigate the propagation
behavior of cancer cells, that takes place during the metastasis for instance. To obtain
an estimation of the order of magnitude of the ratios of the adhesion between healthy or
cancer cells and a NP, we will suppose that this ratio is the same as the ratio between
the cell-cell adhesion of healthy and cancer cells, or as that of cell-ECM adhesion.

Measurements The cell-cell adhesion can be assessed by micro-pipette aspiration [67],
which consists in coating two cells with a substrate (often dextran), that is used as a glue,
and then to put the two coated cells in contact, as illustrated in Figure 6.3.

(a) (b)

Figure 6.3: Illustration of the micro-pipette aspiration experiment used to measure the
adhesion energy between two murine sarcoma cells. The cells are (a) first maintained in
position thanks to the pipettes, before (b) being brought into contact, and then separated
again (not represented). Adapted from [67, 82].

Then, the force necessary to separate the cells is measured and used to evaluate the
adhesion energy with the Johnson-Kendall-Roberts theory [242]. It is worth noting that
the adhesion energy obtained with this experimental technique depends on the dextran
volume fraction [67, 82, 243]. Therefore, the values of adhesion need to be determined in
experiments involving the same dextran volume fraction. Unfortunately, no comparative
studies on the adhesion of healthy and cancer cells could be found, neither any measure
of the adhesion of breast cells.

Nonetheless, measurements of adhesion between objects different from those intro-
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duced above could help to find at least an order of magnitude for the adhesion be-
tween healthy and cancer breast cells. For instance, Evans et al. [243] reported a mea-
sure of the adhesion energy between two artificial lipid vesicles, being the interval γ ∈
[0.01, 0.1] mN/m. Chu et al. [82] measured γ ∈ [0.1, 1] mN/m for the adhesion between
two murine sarcoma cells. Furthermore, Colbert [244] performed a micro-pipette aspi-
ration experiment to measure the adhesion between a lipid vesicle and a gold substrate
and found γ ∈ [0.03, 0.07]mN/m. In addition, Dietrich et al. [110], in their analytical
investigation of the adhesion of a latex sphere to a giant phospholipid vesicle, used the
range of values of adhesion γ ∈ [0.1, 5] mN/m. Last, a review on the endocytosis of NPs
introduced γ = 0.1 mN/m [30].

Limitations and important considerations The cellular adhesion is actually mostly
due to the glycocalix (see Chapter 1 for more details). However, these micro-pipette as-
piration measurements are conducted on single cells and therefore it is possible that part
of the cell coat was lost before the measurement. For this reason, the adhesion that is
measured with such technique may underestimate the real adhesion between the cells, and
more importantly, they do not account for the influence of the glycocalix on the cellular
adhesion. In addition, several studies [76, 245] showed discrepancies in the composition of
glycocalix in healthy and cancer cells, and more specifically in the distribution of adhesion
molecules [246, 247]. Thus, even though micro-pipette aspiration experiments provided
similar adhesion in the case of healthy and cancer cells, their adhesion may actually differ
because of the glycocalix difference. Jones et al. [248] explain that the proportion of dif-
ferent types of adhesion molecules varies between healthy and cancer cells. A review on
the adhesion molecules in breast healthy and cancer cells highlighted the fact that the gly-
cocalix of breast cancer cells contains less integrins than their healthy counterparts [246].
Integrins is the major protein family present in glycocalix [249]. The other protein fami-
lies in glycocalix are cadherins, integrins, selectins or immunoglobulins [250]. The cell-cell
and cell-ECM adhesion is mostly due to integrins. Unfortunately, the variations in the
protein composition of the glycocalix are too biology-oriented for us to understand them
properly. Thus, we will assume that integrins compose 3/4 of the proteins and that their
amount is reduced by 50 % in cancer cells. Hence,

γC =
(1

2
3
4 + 1

4

)
γH = 0.625γH (6.2)
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Furthermore, some studies showed that the thickness of the glycocalix of cancer cells
is smaller than that of healthy cells [61, 75, 251, 252]. However, no relevant measure of
the difference in these thicknesses could be found and thus it is not taken into account in
this chapter.

2.4 Evolution of the adhesion

The adaptation of the adhesion is a complex phenomenon that has been observed but not
characterized experimentally, i.e. to the best of our knowledge, there is no measure of the
variation of adhesion during the wrapping of a NP, which we defined in Chapter 4 in terms
of an amplitude γA, a delay γD and a curvature parameter γS. Still, based on studies on
the kinetic segregation of receptors in the glycocalix [76, 253], which is the dynamics that
take place in the glycocalix in order to ease the formation of receptor-ligand bonds, one
can conclude that there is an increase of the proportion of integrin close to the region in
contact with an extra-cellular penetrant. This phenomenon seems to be more important
in cancer cells. However, no precise data could be used to quantify the discrepancies of
the adhesive properties between healthy and cancer cells.

2.5 Synthesis of the measured data

The values that have been found in literature for the bending rigidity κ, the membrane
tension σ, and the cellular adhesion γ, presented in the previous sections, are summarized
in Table 6.2.
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Table 6.2: Synthesis of the measured values of the input parameters of the model for
healthy and cancer breast cells, according to the literature.

Parameter Technique Value Reference

κ

Mass spectroscopy to observe
the response of healthy

and cancer breast cells to thermal
fluctuation

κH = 4.5 × 10−19 Nm
κC = 1.3 × 10−19 Nm

Händel et al. [234]

E

AFM of healthy and
cancer breast cell

EC = 0.5EH Lekka et al. [64, 241]
EC ∈ [0.2, 0.4] × EH Lin et al. [65]
EC ∈ [0.56, 0.71] × EH Li et al. [69]

Optical deformability EC = 0.5EH Guck et al. [73]

σ

Mass spectroscopy to observe
the response of healthy

and cancer breast cells to thermal
fluctuation

σC = (8.69 ± 1.76) × 10−2 mN/m Händel et al. [234]

Review on the endocytosis
of NPs

σ = 0.05 mN/m Zhang et al. [30]

γ0

Micro-pipette aspiration
between two artificial

lipid vesicles
γ ∈ [0.01, 0.1] mN/m Evans et al. [243]

Micro-pipette aspiration
between two

murine sarcoma cells
γ ∈ [0.1, 1] mN/m Chu et al. [82]

Micro-pipette aspiration
between a lipid vesicle
and a gold substrate

γ ∈ [0.03, 0.07] mN/m Colbert [244]

Analytical investigation of
the adhesion of a latex
sphere to a giant vesicle

γ ∈ [0.1, 5] mN/m Dietrich et al. [110]

Review on the endocytosis of NPs γ = 0.1 mN/m Zhang et al. [30]
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3 Optimization of the aspect ratio of the NP

The objective of this section is to apply the model developed in this thesis to a concrete
case of breast cancer. To do so, the mechanical properties that are necessary to describe
the behavior of healthy and cancer breast cells have been investigated in the previous
section. These values will be used in order to determine the aspect ratio of a NP enabling
it to be engulfed only by cancer cells, while being unable to enter healthy cells. An
illustration of the application of the model is provided in Figure 6.4. The values, used as
input parameters for the model, are introduced in Section 3.1 and the aspect ratios that
enable the NPs to enter cancer cells only are presented afterwards in Section 3.2.

Figure 6.4: Illustration of the application of the model.

3.1 Input parameters

First, we used the values for bending stiffness estimated in [234], i.e. κH = 4.5×10−19 N/m
and κC = 4.5 × 10−19 N/m. Second, we took an intermediate value for the membrane
tension of both healthy and cancer cells, being σH = σC = 0.01 mN/m. This value is equal
for both cell types as we could not find precise quantitative information to distinguish
them. Then, the adhesion of healthy breast cells was set to γH = 0.1 mN/m, as it is an
average value between those that have been gathered from the literature. Since no data
could be found for γC , we use Equation 6.2, based on the reduction of the proportion
of integrins in the glycocalix, leading to γC = 0.0625 mN/m. Thus, the values of the
adimensional parameters σ and γ can be determined via σ = 2σa2/κ and γ = 2γa2/κ, in
which a is the relative radius of the NP, set to 100 nm. Hence, σH = 0.44, σC = 1.54,
γH = 4.44 and γC = 9.62. Last, we could not find any data describing the membrane
adaptation. However, we will suppose that the reactivity of the cancer cell membrane
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is more important than that of the healthy cell, since the former has in general a more
adaptive behavior to ensure their proliferation for instance. In order to emphasize this,
extreme values of the domains of definition of γA, γD and γS are chosen. As such, γH

A = 1.5,
γC

A = 4, γH
D = 0.2, γC

D = −0.2 and γS is set equal to 50 for both cases, as we showed in the
previous chapters that this parameter has no influence on the cellular uptake predictions.
The values taken for these input parameters are summarized in Table 6.3.

Table 6.3: Synthesis of the values used as input parameters for the model.

Parameter Healthy cell Cancer cell

a 100 nm
κ 4.5 × 10−19 Nm 1.3 × 10−19 Nm
σ 0.01 mN/m
γ 0.1 mN/m 0.0625 mN/m
σ 0.44 1.54
γ 4.44 9.62
γA 1.5 4
γD 0.2 -0.2
γS 50

3.2 Results

In order to determine if the NP is fully wrapped, depending on its aspect ratio, the
wrapping phase is evaluated in terms of r. The results, concerning the uptake of the
NP by cancer and healthy breast cells, are provided in Figure 6.5. It is possible to
distinguish several regions in this graph. For r < 0.32, there is no distinction between
healthy and cancer cells, both do not wrap the NP (phase 1). For r ∈ [0.32, 0.48], the
NP stays in phase 1 with the healthy cell and is fully wrapped by the cancer cell (phase
3). Then, for r ∈ [0.48, 1.47], the NP is fully wrapped regardless of the cell state. Next,
for r ∈ [1.47, 4.96], NPs are fully wrapped by cancer cells and partially wrapped by
healthy cells. Last, for r ∈ [4.96, 6], the NPs are partially wrapped by both healthy and
cancer cells. The variation of the total potential energy during the wrapping of NPs for
r ∈ {0.25, 0.4, 4} by healthy and cancer cells is illustrated in Figure 6.6.
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Figure 6.5: Evolution of the wrapping phase of the NP in terms of its aspect ratio r, for
both healthy (solid blue line) and cancer (dotted orange line) breast cells.

(a) r = 0.25 (b) r = 0.4 (c) r = 4

Figure 6.6: Variation of ∆E during the wrapping of NPs with (a) r = 0.25 (the NP
is wrapped nor by healthy neither cancer cells), (b) r = 0.4 (the NP is fully wrapped
by the cancer cell and not wrapped by the healthy cell) and (c) r = 4 (the NP is fully
wrapped by the cancer cell and only partially wrapped by the healthy cell). Solid blue
(resp. dotted orange) lines represent healthy (resp. cancer) breast cells. The colored
markers correspond the equilibrium positions.

One can then conclude from these results that using NPs with r ∈ [0.32, 0.48] enhances
the chances for them to be internalized only by cancer cells.
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4 Discussion

As already introduced earlier in this chapter, this application is based on the evaluation
of the mechanical properties of the cell. The method, used to set them for our model,
along with the conclusions that could be drawn from the model output, are discussed in
the following.

• Few studies have been used to evaluate the input parameters, and the
ones we found were conducted in different conditions, making difficult the compar-
isons between the values that have been measured in these different studies. In
addition, some of these studies, especially the AFM, which is the most commonly
used characterization technique in this context, usually investigate the mechanical
behavior of tumors, i.e. an ensemble of cancer cells that compose a cancerous tis-
sue, and not that of a single cell. It is consequently crucial to verify the settings of
the experiments and only data obtained during a same study should be compared.
Furthermore, in order to be able to use the interpretations from the measurements
of the Young modulus E in this study, we consider that it was proportional to the
bending rigidity κ. Although, the relation between E and κ also involves the thick-
ness and the Poisson’s ratio of the membrane, that was supposed to be the same
between healthy and cancer breast cells, even if the differences in the composition
of the lipid membrane and in the glycocalix of these cells challenge this hypothesis.
As such, the ratios between EC and EH can be used to infer that of κC and κH

only if those involving the thickness of the membrane h and its Poisson’s ratio ν are
known as well. Note that we actually used the values of κ, instead of E, since they
were available for breast cells.

• Some variables could not be determined, such as the parameters relative to the
evolution of the adhesion during wrapping. Indeed, to determine them accurately,
it would have been necessary to have a better understanding of the mechanics that
involve the adhesion molecules in the glycocalix. Unfortunately, these phenomena
are complex and could not be interpreted with our background, as they require a
wide knowledge in histology and chemistry.

• The results are highly sensitive to the input parameters, which are not
known with precision. Hence, a study of the propagation of uncertainties would
provide more accurate results and would enable us to define a smaller interval of
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values of r that ensure the uptake of the NP by cancer cells only, with the smallest
uncertainty possible.

5 Conclusions of Chapter 6

In this chapter, we applied our numerical model to the concrete case of breast cancer,
which aimed at optimizing the aspect ratio of NPs so that they will only enter cancer
cells. The steps and the results of this application are summarized in the following.

• The values for the input parameters of the model have been determined,
based on an extensive literature review focused on experimental studies. Different
techniques have been introduced, e.g. AFM for assessing the Young modulus of the
cell or micro-pipette aspirations for the cellular adhesion. Still, only little data were
available for that particular cancer, even though we chose it for being the most docu-
mented according to Scopus statistics. Indeed, such measurements are not common
in the literature, given that knowing the mechanical properties of the cell does not
present much interest for physicians or biologists. Furthermore, these measurements
are usually difficult to conduct due to the scale of the objects, and consequently the
precision of the instruments that are necessary. AFM measurements of the Young
modulus are more frequent, since E is a promising indicator for cancer diagnosis, for
being relatively easy to perform with standardized methods. Thus, the values that
have been chosen for determining the input parameters of the model come from few
studies, which only enable us to collect information about the order of magnitude of
the variables. Nonetheless, it is worth noting that the results, obtained in different
studies, are close, which suggests the relevance of the data we used.

• According to the model, we could find a range of aspect ratios of the NP, being
[0.32, 0.48], for which the NPs are fully wrapped by cancer cells, while they are not
wrapped by healthy cells. These are therefore the aspect ratios that need to be
used to deliver cancer treatments so that they cannot be internalized by the healthy
cells. On the contrary, NPs with r ∈ [0.48, 1.47] should be avoided, as they can be
engulfed by both healthy and cancer cells, with no discrimination.

• These results are promising, as they show that it is possible to control and
optimize the internalization of NPs by breast cancer cells, based on the aspect ratio
of the former.
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1 Summary of the thesis

The work presented in this thesis is part of the METCIN project, which aims at identifying
the influence of the mechanical properties of NPs on their internalization by cells of
different biological phenotypes. In order to achieve this goal, we focused here on the
development of a mechanical model of the cellular uptake of rigid NPs with variable
aspect ratio. The objective was to provide a better understanding of the phenomenon by
identifying the most influential parameters on the wrapping of a NP.

Hence, a general presentation of the investigated objects, i.e. the NPs and the cell
membranes, as well as the existing methods developed to study the cellular uptake of
NPs, has been provided in Chapter 1. The comparison of such methods enabled us to
identify the most suitable approach in the context of this thesis.

Thus, an energetic investigation of the phenomenon at the scale of the NP, considered
rigid and elliptical in this study, was preferred for being a good compromise between
representativeness and computational costs. The henceforth developed model is presented
in details, along with the different hypotheses, in Chapter 2.

This approach was then used to identify the influence of the input parameters, i.e. the
membrane tension, the NP-cell adhesion and the aspect ratio of the NP, on the cellular
internalization of a NP. For this purpose, sensitivity analyses have been conducted. In
order to overcome the limitations relative to an extensive computation time, necessary
to generate the samples needed for the sensitivity analyses, surrogate models have been
developed. The aforementioned techniques, along with their application to the model,
have been presented in Chapter 3.

Furthermore, in order to enforce the ability of the model to depict the phenomena
that take place in the cell membrane, a law describing the evolution of the NP-membrane
adhesion in terms of the cellular wrapping of the NP as a mechanical response of the
membrane to the interaction with an extra-cellular object, has been proposed. The influ-
ence of this new feature of the model has then been investigated in Chapter 4, in the case
of the wrapping of a circular NP. A similar study, conducted on elliptical NPs, has been
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presented in Chapter 5. These studies enabled to identify the aspect ratio of the NP and
the initial NP-membrane adhesion as the two most important parameters.

Finally, in Chapter 6, the model has been applied to mammary healthy and cancer
cells, in order to identify the aspect ratios of the NP that would enable it to enter only
the cancer cells, while being unable to penetrate healthy cells, which would limit the
side effects of the treatment and improve its efficiency. For this purpose, the mechanical
properties of such cells have been identified based on existing characterization results
from the literature. This study demonstrated the existence of aspect ratios (between
1/3 and 1/2) that fulfill this criterion. Still, the conclusions of this application remain
questionable, based on several hypotheses and uncertainties that exist concerning the
identification of the input parameters. Nonetheless, they can be used as an guidance for
the NP manufacturers to drive their efforts on NPs with such ratios in order to ensure
that the contact with the membrane takes place by the tip of the ellipse (vertical NP).
In the meantime, oncologists can use these results to focus their experimental studies
on breast cancer as it seems to display more noticeable differences between healthy and
cancer cells for the NP internalization to be differentiated.

Our contribution

In this thesis, we used an existing model from the literature to investigate the cellular
uptake of elliptic NPs. As a novelty, we conducted sensitivity analyses in order to quantify
the influence of the input parameters of this model, which had solely been investigated
qualitatively in the previous studies. Then, based on the literature, we enriched this
model by accounting for the mechano-adaptation of the membrane. The interest of this
new feature of the model was demonstrated through a sensitivity analysis. Last, an
incremental technique, enabling to apply such model to a concrete case of cancer has
been introduced for the first time in this thesis.

2 Perspective for future work

Some of the hypotheses that have been considered can be discussed and hence be in-
vestigated deeper in future work, in order to contribute to resolve the challenges of the
METCIN project. As such, perspectives at short, mid and long term are presented in the
following.
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2.1 Short-term perspectives

Multiphysics approach

In this study, the bending stiffness of the membrane is considered constant during the
wrapping of the NP. However, based on the phenomena that have been introduced in
this thesis, it would be interesting to discuss the hypothesis of a constant bending rigid-
ity in future work in order to strengthen our approach by implementing this biological
phenomenon more accurately. However, similar to the variation of adhesion, the lack
of existing data relative to the variation of κ would challenge the implementation of a
variable bending stiffness.

Multiscale approach

Furthermore, a strong hypothesis was made on the homogeneity of the membrane com-
position. This supposes that the bending rigidity of the membrane does not vary with
respect to the position on the membrane. Thus, the model could be enriched by account-
ing for a bending stiffness that is a function of the arclength, such as κ2 = κ2(s2) and
κ3 = κ3(s3), as introduced by Zhang [108], in a recent study.

Moreover, we considered the NPs as homogeneous, while their mechanical properties
(more especially their surface properties) vary along their circumference. The variation of
the distribution of ligands on rigid elliptic NPs has for instance been investigated in [254].
As such, we could implement this non uniform distribution in a non uniform adhesion γ

to our model as a perspective of short-term future work. This would enable to account
for the challenges related to the manufacturing of NPs, which is one of the objective of
the METCIN project.

Post-processing

Quantities of interest In addition, part of the studies conducted in this thesis focused
on the influence of input parameters on the wrapping degree at equilibrium, f̃ . However,
despite being a good indicator, this quantity is not sufficient by itself to define the full
wrapping of the NP. Indeed, it is also necessary to make sure that the two sides of free
membrane merge above the NP, so that a vesicle can be formed inside the cell and its
spontaneous releasing to the extra cellular medium (exocytosis) is made more difficult.
For this reason, it would be pertinent to evaluate the influence of the different parameters
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of the model on the distance between the two sides of the membrane, the objective being
to have it minimized.

Surrogate modeling The surrogate models, that have been constructed in this thesis,
provide different accuracies depending both on the dimensionality of the problem and
on the distribution of the QoI. The metamodels provided some predictions out of the
domain of definition of the QoIs. As such, applying a clip to these predictions would
reduce their distance to the expected estimations. This post-processing could be a way to
artificially increase the accuracy of the metamodels by restraining the domain of definition
of the estimations. Furthermore, the accuracy of the Kriging predictions could also be
improved with different settings for the optimization algorithm (e.g. trend and covariance
functions), as the influence of which has not been investigated in this thesis.

Sensitivity analysis As introduced above, there is little knowledge on the actual sta-
tistical distribution and domains of definition of the input parameters of the model. How-
ever, the sampling of the input parameters being of most importance in the evaluation of
the sensitivity indices [214], it should be investigated in more details in future work, as
it is possible that using different bounds of the input parameters would lead to different
results. Furthermore, the identification of more accurate domains of definition than those
used in this study is introduced as a long-term perspective.

2.2 Mid-term perspectives

Post-processing

Part of the analyses conducted in this work were focused on the proportion of phase 3 i.e.
of full wrapping. Indeed, it was the quantity that represented most interest in the scope
of this study, as we aimed at predicting the engulfment of the NP. In this case, knowing
in details the evolution of the amount of NPs that remained in phases 1 and 2 would not
directly contribute to our objective. Nonetheless, the study of the proportion of cases
that yielded no and partial wrapping may be of great interest to investigate the initial
steps of wrapping, and more especially the initiation of adhesion, which would therefore
contribute to the objectives of the METCIN project.
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Experimental validation

In order to validate the results presented in this work, a study on the correlation between
the model and experiments should be performed. Nonetheless, we introduced in this
work some of the limitations to conduct this validation. For instance, it is challenging
to control or to measure the mechanical properties of cells into which the internalization
of NPs is investigated, which induces barriers for the comparison between experiments
and numerical models. However, the use of artificial vesicles could help to overcome
these difficulties. Indeed, they are artificial cellular membranes, for which the mechanical
properties are known, reproducible and constant along the circumference [255]. As such,
they are a more stable tool for experimental validation than living cells, which could be
used for validation as a long-term perspective.

2.3 Long-term perspectives

Hypotheses on the mechanical behavior of the membrane

Another simplification that was used in this model concerns the elastic behavior of the
cell membrane. Indeed, even though this hypothesis is commonly made in the study of
membrane deformation (following the Helfrich [59] model), viscoelastic and hyperelastic
behaviors of the membrane have been highlighted through several studies [256]. The
influence of the constitutive law of the membrane could consequently be investigated in
future work. However, this requires experimental validation. It is therefore necessary to
design an experimental setting in order to observe the membrane deformation during the
wrapping of the NP, to compare it to the kinetics that are modeled. Therefore, this study
needs to be performed in collaboration with an interdisciplinary research team.

Identification of the model input parameters

Moreover, the bounds of the mechanical parameters used in this model, especially γA, γD

and γS, were not set based on accurate values from the literature, since they are math-
ematical parameters that have been introduced for the first time in this work. However,
since the bounds of the variables are of great importance in sensitivity analyses, the re-
sults may be altered. For this reason, an accurate study on the influence of the bounds
of the domain of definition of these variables on the results of the sensitivity analyses is
necessary to have a critical vision of the results that have been provided in this thesis.
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This point was already mentioned as a short-term perspective. Once the influence of the
uncertainty on the domains of definition are quantified and if they change the conclusions
of the sensitivity analyses conducted in this thesis, it will be necessary to determine them
with more accuracy. This can be done by performing experimental studies in order to
measure the parameters relative to the adaptation of the cell membrane introduced in
this thesis. Still, since such techniques have not been developed yet, their application is
a perspective for long-term.

Alteration of the mechanical properties of the cell

Then, Lam et al. [257] showed that chemotherapy agents (daunorubicin, applied to
leukemia) may have an effect on the architecture of the cytoskeleton, that can lead to
an alteration of their mechanical properties, such as an increase by up to 30 % of their
Young modulus, for instance. Hence, a model accounting for the cell mechanical properties
during the treatment of the patients could improve the accuracy of the predictions. This
is a relevant perspective in the scope of the METCIN project, whose objectives include
the identification of the effect of the NPs on the cellular phenotype. However, little is
known on this topic, meaning that an extensive literature review, along with experimental
investigations, should be conducted before implementing this feature to the model.

Hypotheses on the modeling of endocytosis

In addition, the model presented in this work is able to account for discrepancies in the
mechanical properties of healthy and cancer cells for a NP entering a cell through a similar
endocytic process. However, these cells tend to prefer different endocytic pathways. This
point was addressed by Sahay et al. [258]. Thus, perspective for future work could be
to account for these different possibilities, by, for instance, considering a probability for
healthy and cancer cells to engulf NPs through a given endocyctic pathway. Furthermore,
even though this work is focused on the wrapping of a NP, it is important not to neglect
the steps of the NP following its engulfment by the cell [23, 86], as it is not certain that the
NP will be able to reach its final intracellular target. For instance, Vácha et. al [90] have
modeled the steps in which the NP escapes from the endosome (i.e. the coat composed
of the part of the membrane through which the NP entered the cell, see Figure 1.15).
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Cellular tissue

Furthermore, this study investigated the entry of a NP in a cell, that was supposed free,
such as blood cells. However, 90 % of cancers are located in epithelial tissues [65]. Hence,
it would be interesting to identify if the model still applies in this case. However, the
perspective of modeling a group of cells requires to account for additional mechanical
constaints, such as contacts. It is consequently possible that the model developed in
this thesis does not apply. As such, a long-term perspective would consist is conducting a
literature review on the existing model of epithelial tissues and their dynamics, identifying
the approach for the model and the key parameters, implementing the model and finally
proceed to an experimental validation.
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Appendix A

COMPUTATION OF THE SOBOL INDICES

In this thesis, several sensitivity analyses have been conducted, using the open-source
Python library OpenTURNS, which provides useful tools for computing the Sobol sensi-
tivity indices using different algorithms. The objective of this appendix is to present these
algorithms (Section 2), along with additional methods implemented in other tools, such
as UQlab or SALib, which are introduced in Section 3. Before presenting the computation
method, general information on the Sobol indices are reminded in Section 1.

1 Reminder on the Sobol indices

The Sobol indices are used in order to quantify the influence of a model input on the
variability of its output. A complete definition of the Sobol indices is provided in Sec-
tion 2.2.2 from Chapter 3. Still, here we remind the main equations for the first and total
Sobol indices, denoted as Si and STi:

Si = Var[E[Y |Xi]]
Var[Y ] , (A.1a)

STi = 1 − Var[E[Y |X1, ..., Xi, Xi+1, ...XM ]]
Var[Y ] , (A.1b)

wherein, Xi, i ∈ {1, 2, ...,M} is the set of M input variables and Y is an output
quantity of interest. The first order index Si estimates the part of the variance of Y due
to Xi only. Moreover, the total index STi also accounts for the effect of the interactions
with other variables Xj,j ̸=i. These equations can also be written as a function of Vi and
V∼i, in which Vi = Var[E[Y |Xi]] and V∼i = Var[E[Y |X1, ..., Xi, Xi+1, ...XM ]].
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Hence, Equations A.1 become:
Si = Vi

Var[Y ] , (A.2a)

STi = 1 − V∼i

Var[Y ] . (A.2b)

Thus, in order to compute the Sobol indices, it is necessary to evaluate different compo-
nents of these equations that are relative to the conditional variance of Y , i.e. Vi and V∼i.
Solutions have been developed in the literature, e.g. by Saltelli et al. [149], Jansen [157],
Sobol et al. [155] (Mauntz-Kucherenko algorithm) and Martinez [156], which are the most
commonly used approaches [259]. These methods are implemented in OpenTURNS and
have been used in this thesis to compute the Sobol indices. They are presented in details
in the following section.

2 Built-in algorithms in OpenTURNS

The information provided in this section is based on the documentation of OpenTURNS,
available in [158]. OpenTURNS is a tool that also enables to build surrogate models
and perform sensitivity analysis in a user-friendly manner, thanks to several built-in
methods. In this section, four of the most commonly used algorithms to compute the
Sobol sensitivity indices, implemented in OpenTURNS, are presented. These approaches
consist in generating two independent input datasets, containing N samples, using on
a Monte Carlo (i.e. random) sampling. Based on these datasets, two matrices of size
N ×M , denoted as A and B are created as follows:

A =


a1,1 a1,2 · · · a1,M

a2,1 a2,2 · · · a2,M

... ... . . . ...
aN,1 aN,2 · · · aN,M

 ,B =


b1,1 b1,2 · · · b1,M

b2,1 b2,2 · · · b2,M

... ... . . . ...
bN,1 bN,2 · · · bN,M

 .

In these matrices, each line corresponds to a set of realizations of the input parameters
according to their PDF. Based on these matrices, two additional matrices, denoted as Ei

and Ci are defined. The matrix Ei (resp. Ci) is the matrix A (resp. B) in with the ith

column in replaced by the ith column of the matrix B (resp. A).
Then, g is introduced such as Y = g(X). The empirically centered function, denoted

as g̃, is defined for any x ∈ RM as g̃(x) = g(x) − g, where g is the mean of g(A). The
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total variance of Y is thus computed as the variance of g̃(A).
The Sobol indices relative to the influence of the interactions between two variables Xi

and Xj, denoted as Vi,j can henceforth be estimated by V̂i,j using the following formula,
regardless of the algorithm:

V̂i,j = 1
N − 1

N∑
k=1

g̃(Ei
k)g̃(Cj

k) − 1
N

N∑
k=1

g̃(Ak)g̃(Bk) − V̂i − V̂j. (A.3)

The estimation of Vi, denoted as V̂i, along with that of V∼i, differ between the algo-
rithms and the formulas used to approximate them are presented in the following.

2.1 Saltelli

The Saltelli method was developed in 2004 by Saltelli et al. [149]. It consists in estimating
the values of Vi and V∼i as:

V̂i = 1
N − 1

N∑
k=1

g̃(Bk)g̃(Ei
k) −

(
1
N

N∑
k=1

g̃(Ak)
)(

1
N

N∑
k=1

g̃(Bk)
)
, (A.4a)

V̂∼i = 1
N − 1

N∑
k=1

g̃(Ak)g̃(Ei
k) −

(
1
N

N∑
k=1

g̃(Ak)
)(

1
N

N∑
k=1

g̃(Bk)
)
. (A.4b)

2.2 Jansen

In the Jansen method, published in 1999 by Jansen [157], Vi and V Ti are approximated.
The variable V Ti, which was not introduced before, is defined as Var[Y ] − V∼i and can
be used to calculate the total Sobol indices as STi = V Ti/Var[Y ]. Jansen provides the
following estimators for Vi and V Ti:

V̂i = 1
N − 1

N∑
k=1

g̃(Ak)2 − 1
2N − 1

N∑
k=1

(g̃(Ei
k) − g̃(Bk))2, (A.5a)

ˆV T i = 1
2N − 1

N∑
k=1

(g̃(Ei
k) − g̃(Ak))2. (A.5b)

2.3 Mauntz-Kucherenko

The Mauntz-Kucherenko approach, developed in 2007 by Sobol et. al.[155], consists in
estimating Vi and V Ti as:
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V̂i = 1
N − 1

N∑
k=1

g̃(Bk)(g̃(Ei
k) − g̃(Ak)), (A.6a)

ˆV T i = 1
N − 1

N∑
k=1

g̃(Ak)(g̃(Ak) − g̃(Ei
k)). (A.6b)

2.4 Martinez

The Martinez technique, presented in 2011 by Martinez [156], provides a method to
directly estimate the first and total Sobol indices, without using intermediate variables
such as Vi for instance. This approximation involves the empirical correlation ρn between
two vectors of size N , say Z and Z′, defined as:

ρn(Z,Z′) =
∑N

k=1 ZkZ′
k√∑N

k=1 Z2
k

√∑N
k=1 Z′2

k

. (A.7)

The Sobol indices are then estimated as:
Ŝi = ρn(g̃(B), g̃(Ei)), (A.8a)

ŜT i = 1 − ρn(g̃(A), g̃(Ei)). (A.8b)

This section aimed at introducing the built-in algorithms frequently used in the litera-
ture and implemented in OpenTURNS that have been used in this thesis to compute the
Sobol indices. The convergence of these indices with respect to the algorithm is discussed
in the different chapters of the thesis, as well as in the following appendix. Still, other
numerical tools could have been used to investigate the sensitivity of the model. They
are briefly introduced in Section 3 below.

3 Other tools

UQlab [260] is an open-source toolbox on Matlab, that can be used for general stochastic
approaches on models, such as surrogate modeling, sensitivity analyses or uncertainty
quantification. As such, this library enables to compute the Sobol sensitivity indices with
the Saltelli estimator, but also with the Janon estimator [261], which leads to:

V̂i = 1
N

N∑
k=1

g(Ak)g(Ei
k) − 1

N2

N∑
k=1

g(Ak)
N∑

k=1
g(Ei

k). (A.9)

Jansen, Mauntz-Kucherenko and Martinez estimators are not implemented in UQlab [152].
A cloud version of this tool, available with Python, called UQ[py]lab [262], is currently in
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development.
Other libraries are available in Python, such as SALib [159], which is an open-source

library for Python that only provides tools for sensitivity analyses. Alternative options
also exist for different programing languages, such as the sensitivity library in R, developed
in 2020 by Iooss et. al. [263], or the one developed for Julia [264]. Additional information
on the existing packages for performing sensitivity analyses are provided in [265].
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Appendix B

PHASE DIAGRAMS FOR A PASSIVE CELL,
DEPENDING ON THE ASPECT RATIO OF

THE NP

The following presents the phase diagrams, obtained in the case of passive cells, for various
aspect ratios. These diagrams refer to the study presented in Chapter 3.
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r ≤ 1/3 r = 1/2.4 r = 1/2.2

r = 1/1.8 r = 1/1.4 r = 1

r = 1.4 r = 1.8 r ≥ 2.2
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Appendix C

PHASE DIAGRAMS FOR AN ADAPTIVE

CELL, DEPENDING ON THE ASPECT

RATIO OF THE NP

The following compares the phase diagrams obtained in the case of adaptive cells (γA, γD, γS) =
(2, 0, 50) to those obtained for passive cells, for various aspect ratios. These diagrams refer
to the study presented in Chapter 5.
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r ≤ 1/3 r = 1/2.4 r = 1/2.2

r = 1/1.8 r = 1/1.4 r = 1

r = 1.4 r = 1.8 r = 2.2

r = 2.6 r = 3 r ≥ 3.4
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Appendix D

CONVERGENCE OF THE SOBOL

SENSITIVITY INDICES

1 Introduction

Chapters 3, 4 and 5 investigated the influence of the models input parameters on the
uptake of a NP under different conditions. Chapter 3 aimed at determining the influence
of γ0, σ and r, which respectively stand for the (initial) NP-membrane adhesion, the
membrane tension, and the aspect ratio of the NPs. In this Chapter, the behavior of the
membrane is supposed passive, i.e. there is no variation of the properties of the membrane
in response to the wrapping of the NP. Then, in Chapter 4 we presented a model of the
membrane mechano-adaptation of the membrane, in which the NP-membrane adhesion
variates with the degree of wrapping of the NP. As such, three additional parameters are
introduced: γA, γD and γS, which stand for the amplitude, the delay and the curvature
parameter of the variation of γ, respectively. The initial adhesion is then denoted by γ0.
The study conducted in Chapter 4 aimed at determining the influence of this variation on
the uptake of a circular NP (r = 1) which was then extended on an elliptical NP (variable
r) in Chapter 5. These studies involve sensitivity analyses, and more especially the
evaluation of the Sobol indices, in order to quantify the influence of different parameters
on the uptake of the NPs. The accuracy of the approximation of the Sobol indices depends
on the number of estimations that have been used. As such, a convergence study has been
carried out in order to ensure that enough estimations of the model have been used for
the calculation of these indices.

As such, this appendix is organized in three sections, one for each Chapter (Chapter 3,
Chapter 4 and Chapter 5). Then, for each study, the convergence of the Sobol indices is
depicted for the four algorithms (Mauntz-Kucherenko, Saltelli, Jansen, Martinez). Then,
a conclusion is drawn on the main aspect of the convergence studies conducted for the
Sobol indices in this work.
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2 Uptake of an elliptic NP by a passive membrane
(Chapter 3)

This section presents the results of the convergence study conducted in Chapter 3 in
the case of the sensitivity analysis conducted on the influence of γ0, σ and r on the
wrapping degree at equilibrium f̃ . Each subsection contains figures which depict the
variation, in terms of the number of samples, of (i) the first and total Sobol indices (Si

and STi), (ii) the range of the 95 % confidence intervals (CIs) and (iii) the normalized
absolute gradients. Note that the caption of the figures mentions γ instead of γ0, since
the mechano-adaptation of the membrane had not yet been introduced in Chapter 3.

(a) (b)

Figure D.1: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Mauntz-Kucherenko algorithm. The shaded regions
correspond to the 95 % confidence intervals.

(a) (b)

Figure D.2: Range of the 95 % confidence intervals the (a) first and (b) total Sobol indices
depending on the number of estimations of the metamodel, computed with the Mauntz-
Kucherenko algorithm. The black dashed lines correspond to the threshold of 0.05.
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(a) (b)

Figure D.3: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Mauntz-Kucherenko
algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.4: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Saltelli algorithm. The shaded regions correspond
to the 95 % confidence intervals.

(a) (b)

Figure D.5: Range of the 95 % confidence intervals the (a) first and (b) total Sobol indices
depending on the number of estimations of the metamodel, computed with the Saltelli
algorithm. The black dashed lines correspond to the threshold of 0.05.
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(a) (b)

Figure D.6: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Saltelli algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.7: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Jansen algorithm. The shaded regions correspond
to the 95 % confidence intervals.

(a) (b)

Figure D.8: Range of the 95 % confidence intervals the (a) first and (b) total Sobol indices
depending on the number of estimations of the metamodel, computed with the Jansen
algorithm. The black dashed lines correspond to the threshold of 0.05.
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(a) (b)

Figure D.9: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Jansen algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.10: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Martinez algorithm. The shaded regions correspond
to the 95 % confidence intervals.

(a) (b)

Figure D.11: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Martinez algorithm. The black dashed lines correspond to the threshold of 0.05.
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(a) (b)

Figure D.12: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Martinez algorithm. The
black dashed lines correspond to the threshold of 0.05.
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3 Uptake of a circular NP by an adaptive membrane
(Chapter 4)

3.1 Influence of the mechano-adaptation-related parameters on
the proportion of full wrapping

This section presents the results of the convergence study conducted in Chapter 4 in
the case of the sensitivity analysis conducted on the influence of γA, γD and γS on the
wrapping degree at equilibrium f̃ . Each subsection contains figures which depict the
variation, in terms of the number of samples, of (i) the first and total Sobol indices (Si

and STi), (ii) the range of the 95 % confidence intervals (CIs) and (iii) the normalized
absolute gradients.

(a) (b)

Figure D.13: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Mauntz-Kucherenko algorithm. The shaded regions
correspond to the 95 % confidence intervals.

171



Chapter D: Convergence of the Sobol sensitivity indices

(a) (b)

Figure D.14: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Mauntz-Kucherenko algorithm. The black dashed lines correspond to the threshold of
0.05.

(a) (b)

Figure D.15: Absolute gradient of the (a) first and (b) total Sobol indices depending
on the number of estimations of the metamodel, computed with the Mauntz-Kucherenko
algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.16: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Saltelli algorithm. The shaded regions correspond
to the 95 % confidence intervals.
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(a) (b)

Figure D.17: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Saltelli algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.18: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Saltelli algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.19: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Jansen algorithm. The shaded regions correspond
to the 95 % confidence intervals.
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(a) (b)

Figure D.20: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Jansen algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.21: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Jansen algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.22: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Martinez algorithm. The shaded regions correspond
to the 95 % confidence intervals.
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(a) (b)

Figure D.23: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Martinez algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.24: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Martinez algorithm. The
black dashed lines correspond to the threshold of 0.05.
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3.2 Comparison of the effect of the initial and mechano-adaptation-
related parameters on the wrapping degree at equilibrium

This section presents the results of the convergence study conducted in Chapter 4 in the
case of the sensitivity analysis conducted on the influence of γ0, σ, γA, γD and γS on
the proportion of full wrapping ψ3. Each subsection contains figures which depict the
variation, in terms of the number of samples, of (i) the first and total Sobol indices (Si

and STi), (ii) the range of the 95 % confidence intervals (CIs) and (iii) the normalized
absolute gradients.

(a) (b)

Figure D.25: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Mauntz-Kucherenko algorithm. The shaded regions
correspond to the 95 % confidence intervals.

(a) (b)

Figure D.26: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Mauntz-Kucherenko algorithm. The black dashed lines correspond to the threshold of
0.05.
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(a) (b)

Figure D.27: Absolute gradient of the (a) first and (b) total Sobol indices depending
on the number of estimations of the metamodel, computed with the Mauntz-Kucherenko
algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.28: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Saltelli algorithm. The shaded regions correspond
to the 95 % confidence intervals.

(a) (b)

Figure D.29: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Saltelli algorithm. The black dashed lines correspond to the threshold of 0.05.
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(a) (b)

Figure D.30: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Saltelli algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.31: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Jansen algorithm. The shaded regions correspond
to the 95 % confidence intervals.

(a) (b)

Figure D.32: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Jansen algorithm. The black dashed lines correspond to the threshold of 0.05.
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(a) (b)

Figure D.33: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Jansen algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.34: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Martinez algorithm. The shaded regions correspond
to the 95 % confidence intervals.

(a) (b)

Figure D.35: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Martinez algorithm. The black dashed lines correspond to the threshold of 0.05.
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(a) (b)

Figure D.36: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Martinez algorithm. The
black dashed lines correspond to the threshold of 0.05.
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4 Uptake of an elliptic NP by an adaptive membrane
(Chapter 5)

4.1 Influence of the mechano-adaptation-related parameters on
the proportion of full wrapping

This section presents the results of the convergence study conducted in Chapter 5 in
the case of the sensitivity analysis conducted on the influence of γA, γD, γS and r on
the wrapping degree at equilibrium f̃ . Each subsection contains figures which depict the
variation, in terms of the number of samples, of (i) the first and total Sobol indices (Si

and STi), (ii) the range of the 95 % confidence intervals (CIs) and (iii) the normalized
absolute gradients.

(a) (b)

Figure D.37: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Mauntz-Kucherenko algorithm. The shaded regions
correspond to the 95 % confidence intervals.
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(a) (b)

Figure D.38: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Mauntz-Kucherenko algorithm. The black dashed lines correspond to the threshold of
0.05.

(a) (b)

Figure D.39: Absolute gradient of the (a) first and (b) total Sobol indices depending
on the number of estimations of the metamodel, computed with the Mauntz-Kucherenko
algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.40: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Saltelli algorithm. The shaded regions correspond
to the 95 % confidence intervals.
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(a) (b)

Figure D.41: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Saltelli algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.42: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Saltelli algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.43: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Jansen algorithm. The shaded regions correspond
to the 95 % confidence intervals.
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(a) (b)

Figure D.44: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Jansen algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.45: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Jansen algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.46: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Martinez algorithm. The shaded regions correspond
to the 95 % confidence intervals.
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(a) (b)

Figure D.47: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Martinez algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.48: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Martinez algorithm. The
black dashed lines correspond to the threshold of 0.05.
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4.2 Comparison of the effect of the initial and mechano-adaptation-
related parameters on the initial ones on the wrapping de-
gree at equilibrium

This section presents the results of the convergence study conducted in Chapter 5 in the
case of the sensitivity analysis conducted on the influence of γ0, σ, γA, γD and γS on
the proportion of full wrapping ψ3. Each subsection contains figures which depict the
variation, in terms of the number of samples, of (i) the first and total Sobol indices (Si

and STi), (ii) the range of the 95 % confidence intervals (CIs) and (iii) the normalized
absolute gradients.

(a) (b)

Figure D.49: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Mauntz-Kucherenko algorithm. The shaded regions
correspond to the 95 % confidence intervals.

(a) (b)

Figure D.50: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Mauntz-Kucherenko algorithm. The black dashed lines correspond to the threshold of
0.05.
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(a) (b)

Figure D.51: Absolute gradient of the (a) first and (b) total Sobol indices depending
on the number of estimations of the metamodel, computed with the Mauntz-Kucherenko
algorithm. The black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.52: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Saltelli algorithm. The shaded regions correspond
to the 95 % confidence intervals.

(a) (b)

Figure D.53: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Saltelli algorithm. The black dashed lines correspond to the threshold of 0.05.

187



Chapter D: Convergence of the Sobol sensitivity indices

(a) (b)

Figure D.54: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Saltelli algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.55: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Jansen algorithm. The shaded regions correspond
to the 95 % confidence intervals.

(a) (b)

Figure D.56: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Jansen algorithm. The black dashed lines correspond to the threshold of 0.05.
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(a) (b)

Figure D.57: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Jansen algorithm. The
black dashed lines correspond to the threshold of 0.05.

(a) (b)

Figure D.58: (a) First and (b) total Sobol indices depending on the number of estimations
of the metamodel, computed with the Martinez algorithm. The shaded regions correspond
to the 95 % confidence intervals.

(a) (b)

Figure D.59: Range of the 95 % confidence intervals the (a) first and (b) total Sobol
indices depending on the number of estimations of the metamodel, computed with the
Martinez algorithm. The black dashed lines correspond to the threshold of 0.05.
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(a) (b)

Figure D.60: Absolute gradient of the (a) first and (b) total Sobol indices depending on
the number of estimations of the metamodel, computed with the Martinez algorithm. The
black dashed lines correspond to the threshold of 0.05.

5 Conclusions

The results presented in this appendix show that:

• Investigating the convergence of the Sobol indices is of great importance.
Indeed, the indices, regardless of the algorithm used to approximate them, present
a large variation in term of the number of estimations.

• The normalized gradient is not relevant to establish convergence. Indeed,
as already introduced and demonstrated in Chapter 3, the use of the normalized
absolute gradient does not apply to the convergence of the Sobol indices, of which
the values can be close to 0, in the case of a non-influential parameter, which is for
instance the case with Sσ for a passive membrane. For this variable, the convergence
criterion of 1 % is not reached, even using 105 estimations. This result do not match
direct observations of the variation of the sobol indices in terms of the number of
estimations, which are stabilized much faster.

• The CIs need to be investigated since they require most estimations to vanish
than the number that is necessary for the indices to stabilize. In addition, their
range is important, as it can be larger than 1, which is the upper bound of the
Sobol indices, when little estimations are used. This element has been pointed out
by Sarrazin et. al [164], who determined that the Sobol indices converge when the
range of their CIs is smaller than 0.05.

• The number of parameters does not alter the convergence, which in our
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5. Conclusions

study is always reached for a number of samples between 104 and 5×104 (that varies
depending on the algorithm, as explained in the next point). Indeed, the number of
variables does not appear in the approximation of the indices (see Appendix A for
more details). It does nonetheless influence the computational cost. However, con-
sidering the negligible computation times that have been measured (≈ 5 seconds),
the latter have not been represented in the graphs of this appendix and the change
due to the number of variables is not relevant to be discussed.

• Independently of the algorithm used to compute the Sobol indices, convergence
is reached for 105 samples, which is the maximum number of samples that was tested.
Note that the computation time is small. As such, it is irrelevant to minimize the
number of estimations needed for convergence. Hence, the indices obtained for 105

estimations are used for the sensitivity analysis. Consequently, no algorithm suits
better than the others for the approximation of the Sobol indices in this study.

191





Appendix E

FRENCH ABSTRACT

1 Introduction

1.1 Contexte

Les travaux présentés dans ce manuscrit s’inscrivent au sein du projet METCIN1 (Mechan-
ical Exploration for Tackling Cellular Interactions of Nanoparticules at the Nanoscale),
impliquant trois laboratoires : L’Institut de Recherche en Génie Civil et Mécanique UMR
CNRS 6183 (GeM), le Centre de Recherche en Cancérologie et Immunologie de Nantes-
Angers Unité Inserm U1232 (CRCI2NA) et le laboratoire Chimie Et Interdisciplinarité,
Synthèse, Analyse, Modélisation UMR CNRS 6230 (CEISAM). Leurs contributions re-
spectives au projet METCIN sont illustrées Figure 1. Ce projet a été financé par l’initiative
NExT2 (Nantes Excellence Trajectory), portée par Nantes Université.

1.2 Présentation du sujet de thèse

En France, deux femmes sur trois et un homme sur deux sont atteints d’un cancer avant
l’âge de 85 ans et 40 % d’entre eux ne se rétablissent pas [1] Les traitements existants
causent des effets secondaires qui sont principalement dûs à des erreurs de ciblage des
cellules cancéreuses par les principes actifs des médicaments [2]. Ce ciblage est basé
sur les hétérogénéités de propriétés biochimiques entre les cellules saines et cancéreuses.
Par ailleurs, des études ont récemment mis en lumière l’existence de différences d’ordre
mécanique entre ces cellules. L’objectif de ce travail est donc d’explorer la possibilité
d’améliorer la précision du ciblage des traitements anti-cancer basés sur l’utilisation de
NanoParticules (NPs), en tenant compte des hétérogénéités de comportement mécanique
entre les cellules saines et cancéreuses. Pour cela, un modèle numérique (présenté en
Section 2) de l’ingestion de NPs a été développé. Ensuite, des analyses de sensiblité ont

1. Pour plus d’informations, consulter https://next-isite.fr/metcin.
2. Pour plus d’informations, consulter https://next-isite.fr.
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été conduites à partir du modèle afin de quantifier l’influence des paramètres d’entrée
qui ont été introduits dans le modèle afin de représenter le comportement mécanique
des cellules saines et cancéreuses. Cette étude est présentée en Section 3. Enfin, une
revue de la littérature portant sur les méthodes de caractérisation des cellules touchées
par le cancer du sein a été menée afin d’identifier les valeurs numériques des paramètres
d’entrée du modèle, dans le but final d’optimiser la forme des NPs pour faciliter leur
internalisation par les cellules cancéreuses uniquement. Cette application du modèle est
réalisée en Section 4.

2 Modèle de l’internalisation de nanoparticules

2.1 Présentation du modèle de l’enveloppement membranaire
de la NP

Dans le cadre de cette thèse, l’étude du phénomène d’internalisaton de NPs sera re-
streint à l’étape préliminaire qui consiste en l’enveloppement de la NP par la membrane
cellulaire. Plusieurs approches numérique du phénomène d’enveloppement d’objets du
milieu extra-cellulaire par la membrane sont utilisées dans la littérature, en fonction de
l’échelle préférée pour étudier le phénomène. Par exemple, les modèles utilisant la dy-
namique moléculaire [30, 84–89] consistent à représenter l’ensemble des éléments de la
micro-structure de la membrane cellulaire et de la NP, avec un niveau de discrétisation
pouvant aller jusqu’au niveau de l’atome. Ces méthodes consistent à modéliser les in-
teractions chimiques entre ces différents constituants. Un exemple de modélisation de
l’enveloppement d’une NP par une membrane cellulaire, réalisé en dynamique molécu-
laire, est représenté Figure E.1.

Figure E.1: Exemple de modèle en dynamique moléculaire de l’enveloppement cellulaire
d’une NP avec un modèle à gros grains, reproduit à partir de [94].

Un autre type d’approche consiste à étudier le phénomène à l’échelle de la NP, en
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faisant l’hypothèse que l’épaisseur de la membrane (de l’ordre de quelques nanomètres [20])
est négligeable devant le diamètre de la NP. Lorsque cette hypothèse est vérifiée, la mem-
brane est modélisée comme une ligne homogène. Cette approche a été utilisée pour la
première fois en 2011 par Yi et al. [40]. L’étude du phénomène est réalisée à partir d’un
suivi de la variation d’énergie potentielle au cours de l’enveloppement de la NP, afin d’en
identifier l’état d’équilibre à partir de la minimisation de l’énergie. Cette variation est
décrite par le Halmitonien de Canham-Helfrich [59, 95–98]. Le système NP-membrane
étudié est représenté sur la Figure E.2, où la région 3 représente la partie de la NP en
contact avec la membrane, les régions 2r et 2l les parties droite et gauche de la membrane
libre et la région 1 représente la partie libre de la NP. La longueur d’arc de ces régions est
suivie par la variable si ∈ [0, ŝi], où ŝi est la longueur de chaque région i. L’angle ψi(si)
est l’angle entre la tangente et l’horizontale au point si. Le taux d’enveloppement de la
NP, noté f est défini tel que f = ŝ3/p, où p est le périmètre de la NP. Ainsi, p = ŝ1 + ŝ3.

Figure E.2: Illustration de la paramétrisation de l’interaction NP-membrane.

La variation d’énergie potentielle, entre l’état initial et un taux d’enveloppement f
donné, est notée ∆E(f), et est due à (i) la flexion membranaire ∆Eb(f), (ii) à l’adhésion
entre la NP et la membrane ∆Eγ(f) et (iii) à la tension de la membrane ∆Eσ(f). Ainsi :

∆E(f) = ∆Eb(f) + ∆Eγ(f) + ∆Eσ(f).

Afin d’alléger les prochaines équations, la dépendance à la variable f sera omise.
L’énergie de flexion ∆Eb est définie ci-dessous [59]:

∆Eb = 1
2

∫ ∞

0
κ2r(s2r)[ϕ̇2r(s2r) − c̃2r(s2r)]2ds2r︸ ︷︷ ︸

région 2r

+ 1
2

∫ ŝ3

0
κ3(s3)[ϕ̇3(s3) − c̃3(s3)]2ds3︸ ︷︷ ︸

région 3

,

où la notation˙représente la dérivée par rapport à la longueur d’arc si. Dans l’équation
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précédente, la rigidité de flexion et la courbure initiale des régions i ∈ {2r, 3} sont notées
κi et c̃i, respectivement. L’énergie d’adhésion ∆Eγ est définie telle que :

∆Eγ = −
∫ ŝ3

0
γ(s3)ds3,

où l’adhésion γ est supposée constante, i.e. γ(s3) := γ. Enfin, l’énergie liée à la tension
membranaire ∆Eσ s’écrit :

∆Eσ = σ∆l,

Après la prise en compte de simplifications liées à des hypothèses de membrane ho-
mogène et symétrique : κ2r = κ2l, simplifiée en κ. Par ailleurs, l’étude est restreinte aux
NPs indéformables. Ainsi, ∆E devient :

∆E(s2r, ϕ2r, ϕ̇2r, s3, ϕ3, ϕ̇3) =
∫ ∞

0

(
κ

2 ϕ̇
2
2r + σ[1 − cosϕ2r]

)
ds2r

+
∫ ŝ3

0

(
κ

2 ϕ̇
2
3 + σ[1 − cosϕ3] − γ

)
ds3.

Afin de comparer nos résultats avec ceux présentés dans la littérature, ∆E, γ et σ
sont adimensionnalisés en ∆E, γ, et σ: ∆E = ∆E 2a

κ
, γ̄ = γ 2a2

κ
et σ̄ = σ 2a2

κ
, où a est le

rayon relatif de la NP, défini en fonction de son périmètre tel que a = p/(2π).

2.2 Post-traitement du modèle

Des études paramétriques sont conduites afin d’identifier, de manière qualitative puis
quantitative, l’effet des différents paramètres d’entrée du modèle. Ces études seront
détaillés en Section 3. Deux quantités d’intérêts (QoIs) ont été utilisées : le taux
d’enveloppement à l’équilibre f̃ et la proportion d’enveloppement complet ψ3. Le taux
d’enveloppement à l’équilibre f̃ est le taux d’enveloppement pour lequel le système est à
l’équilibre (minimisation de l’énergie). Une fois l’état d’équilibre déterminé, on considère
que la NP est complètement enveloppée si les deux parties libres de la membrane se re-
joignent au dessus de la NP, l’empêchant ainsi de s’échapper. Ainsi, f̃ est calculé et l’état
final du système est déterminé pour un ensemble de valeurs de paramètres d’entrée γ et σ
et la proportion de cas ayant mené à un enveloppement complet de la NP ψ3 est calculée.

196



2. Modèle de l’internalisation de nanoparticules

2.3 Réaction de la membrane

Afin de faciliter l’ingestion des objets extérieurs qui entrent en contact avec la membrane,
les récepteurs présents dans celle-ci tendent à se déplacer vers la zone d’interaction [135,
139, 222]. Ce phénomène de réponse de la membrane n’est pas pris en compte dans
les modèles qui étudient l’enveloppement à l’échelle de la NP. Dans cette thèse, une
modélisation de l’adaptation des propriétés mécaniques au cours de l’enveloppement de la
NP a été proposée. Ainsi, la variation de l’adhésion γ en fonction du taux d’enveloppement
f est décrite par la fonction sigmoïdale suivante :

γ(f) = γ0(γA − 1)
1 + exp [−2γS(f − finf)]

+ γ0,

où finf est le point d’inflexion, défini en fonction du délai de la transition γD tel que
finf = 0.5 + γD, alors que γ̄A représente l’amplitude de la transition et γ̄S le paramètre
de courbure, qui est indépendant des paramètres précédents et qui permet de controler la
pente de γ au point d’inflexion. L’adhésion initiale, i.e. γ(f −→ 0), est notée γ0. L’effet
de ces différents paramètres sur γ(f) est illustré Figure E.3.

(a) γA (b) γD (c) γS

Figure E.3: Illustration de l’effet des paramètres d’une fonction sigmoïdale croissante :
évolution de γ(f) pour (a) γA ∈ {1, 2, 3, 4}, (b) γD ∈ {−0.2,−0.1, 0, 0.1, 0.2} et (c)
γS ∈ [0, 500]. Les paramètres γA, γD, γS, γ0 et σ sont fixés à 2, 0, 50, 1 et 2 respectivement
pour tous les cas, sauf si spécifié différemment dans la légende des graphes. Notons que
dans le cas particulier où γS = 0, γ est de f et vaut γ0(γA + 1)/2 = 1.5.

Avec la prise en compte de la réaction de la membrane, le modèle contient 6 paramètres
d’entrée : γ0, σ, γA, γD, γS, r.
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3 Analyse de sensibilité

3.1 Introduction

Afin de quantifier l’effet d’un paramètre d’entrée sur un paramètre de sortie Y d’un
modèle, des analyses de sensibilité peuvent être conduites [142]. Parmi ces méthodes,
le calcul des indices de Sobol du premier ordre Si permet de quantifier les effets d’un
paramètres d’entrée Xi seul et les indices totaux STi permettent de quantifier l’effet des
différentes interactions de Xi avec les autres paramètres Xj ̸=i. Le calcul de ces indices est
détaillé ci-dessous.

Si = Var[E[Y |Xi]]
Var[Y ] ,

STi = 1 − Var[E[Y |X1, ..., Xi−1, Xi+1, ...XM ]]
Var[Y ] ,

où E et Var représentent respectivement l’espérance et la variance d’une variable aléatoire.
Le calcul des indices de Sobol pouvant nécessiter un grand nombre de données du

modèle, c’est à dire de réalisations de Y , leur calcul à partir d’appels directs au modèle
représenterait un coût de calcul trop important, pouvant aller jusqu’à plusieurs semaines.
Des métamodèles de Kriging et Chaos Polynomial (PCE) ont donc été développés afin
de parer à cette problématique. Ces métamodèles sont parvenus à plus ou moins bien à
approcher le comportement du modèle original, en fonction du cas d’étude choisi. Les
différents résultats ainsi obtenus sont présentés en Section 3.2.

3.2 Résultats

Afin de simplifier le développement des métamodèles à partir d’une progression par étape,
des cas d’études simplifiés ont été utilisés. Ces cas sont décrits dans le Tableau E.1 et les
valeurs des coefficients de prédictibilité Q2 obtenus pour chacun de ces cas sont présentés
dans le Tableau E.2. Les métamodèles sont parvenus à reproduire le comportement du
modèle avec justesse dans les cas 1, 2a, 2b et 3a, mais pas pour le cas 3b. Dans ce
dernier cas, les approximations du métamodèle ne peuvent pas être utilisées pour réaliser
les estimations nécessaires au calcul des indices de Sobol. Dans les autres cas, les indices
obtenus, dont les valeurs numériques sont données dans le manuscrit, ont mis en évidence
l’importance du rapport de forme de la NP r, de l’adhésion initiale γ0, de la tension
membranaire σ et du délai de la transition γD.
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Table E.1: Cas d’étude utilisés pour le développement des métamodèles et les analyses
de sensibilité.

Description Paramètres d’entrée Paramètre de sortie
1 - NP elliptique et membrane passive γ0, σ, r f̃

2a - NP circulaire et membrane adaptative γA, γD, γS ψ3

2b - NP circulaire, comparaison entre les
membrane passive et adaptative

γ0, σ, γA, γD, γS f̃

3a - NP elliptique et membrane adaptative γA, γD, γS, r ψ3

3b - NP elliptique, comparaison entre les
membrane passive et adaptative

γ0, σ, γA, γD, γS, r f̃

Table E.2: Valeurs des facteurs de prédictibilité Q2 obtenus avec Kriging et PCE dans les
différents cas.

Cas QKRI
2 QP CE

2

1 0.97 0.79
2a 0.99 0.98
2b 0.86 0.80
3a 0.92 0.68
3b 0.42 0.55

4 Application du modèle au cancer du sein

Les résultats présentés dans la section précédente ont mis en évidence l’influence des
propriétés mécaniques des cellules sur le taux d’enveloppement à l’équilibre et donc
sur l’internalisation des NPs. Ainsi, il pourrait être possible de prendre en compte les
hétérogénéités de propriétés mécaniques entre les cellules saines et cancéreuses. Afin de
vérifier la possibilité de différencier l’internalisation de NPs par les cellules saines et can-
céreuses, une étude appliquée au cancer du sein a été réalisée. Pour cela, une revue de la
littérature portant sur la caractérisation mécanique des cellules mammaires saines et can-
céreuse a d’abord été menée afin d’identifier les valeurs des paramètres d’entrée du modèle
γ0, σ, γA, γD, γS. Ensuite, les différents rapports de forme r des NPs ont été testés pour
les cellules saines et cancéreuses et une gamme de valeurs de r pour lesquelles celles-ci ne
sont internalisées uniquement par les cellules cancéreuses a pu être identifiée. La méthode
retenue pour l’application du modèle est illustrée en Figure E.4. Ces résultats permettent
d’envisager la possibilité d’améliorer le ciblage des traitements anti-cancer pour le cancer
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du sein à partir d’une différenciation mécanique.

Figure E.4: Illustration de la méthode d’application du modèle.

5 Conclusions

L’objectif de cette thèse est de caractériser l’influence des propriétés mécaniques des cel-
lules et des NPs sur l’internalisation de NPs dans le but d’améliorer le ciblage des cellules
cancéreuses par les nanovecteurs d’agents anti-cancer. Pour cela, un modèle de l’ingestion
cellulaire de NPs a été développé puis des analyses de sensbilité ont été conduites afin de
quantifier l’effet des paramètres d’entrée du modèle (adhésion initiale entre la NP et la
membrane, amplitude, délai, paramètre de courbure de la variation de l’adhésion, tension
membranaire et rapport de forme de la NP). Enfin, une revue de la littérature a été réal-
isée afin d’identifier les valeurs numériques des paramètres d’entrée du modèle dans le cas
du cancer du sein ainsi que les rapports de forme permettant d’optimiser le ciblage des
traitements anti-cancer.
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SUPPLEMENTARY MATERIAL

The Python script, used to conduct the investigations presented in this manuscript,
is available in the following Github repository (https://github.com/SarahIaquinta/
PhDthesis).
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Titre : Influence des propriétés mécaniques et géométriques de nanoparticules sur leur inges-
tion par les cellules cancéreuses

Mot clés : modélisation ; nanoparticule ; cancer ; mécano-adaptation ; métamodèle ; analyse

de sensibilité

Résumé : Des différences de propriétés mé-
caniques entre les cellules saines et les cel-
lules cancéreuses ont été récemment obser-
vées. Les performances des nanoparticules
(NP), couramment utilisées pour délivrer des
agents anticancéreux, pourraient donc être
améliorées en prenant ce facteur en compte.
L’objectif de cette thèse est d’identifier l’in-
fluence des propriétés mécaniques et géomé-
triques de la NP et de la membrane cellulaire
sur l’absorption cellulaire des NPs. Pour cela,
un modèle, basé sur une approche énergé-
tique de l’ingestion cellulaire des NPs, a été
utilisé et enrichi en tenant compte de l’adap-
tation mécanique de la membrane lors de

l’enveloppement des NP. Cette nouvelle fonc-
tionnalité permet d’affiner les prédictions du
modèle et de différencier les cellules saines
et cancéreuses par la manière dont elles
s’adaptent mécaniquement à leur enveloppe-
ment. Des analyses de sensibilité, conduites à
partir de métamodèles, ont donc été menées,
afin de quantifier l’influence des paramètres
introduits, montrant que le rapport de forme
de la NP et le délai d’adaptation mécanique
ont le plus d’influence. Enfin, le modèle a été
appliqué à un type de cancer spécifique, pour
lequel les propriétés mécaniques du modèle
ont été déterminées suite à une étude de la
bibliographie.

Title: Influence of the mechanical and geometrical properties of nanoparticles on their uptake
by cancer cells

Keywords: model; nanoparticle; cancer; mechano-adaptation; surrogate modeling; sensitivity

analysis

Abstract: Differences in mechanical proper-
ties between healthy and cancerous cells have
been recently observed. The performance of
nanoparticles (NPs), commonly used to de-
liver anticancer agents, could therefore be im-
proved by taking this factor into account. The
objective of this thesis is to identify the influ-
ence of the mechanical and geometrical prop-
erties of the NP and the cell membrane on the
cellular uptake of NPs. For this purpose, an
energetic model of NPs cellular ingestion has
been used and enriched by taking into account
the mechanical adaptation of the membrane
during the NPs wrapping. This new feature al-

lows to refine the model predictions and to dif-
ferentiate between healthy and cancer cells by
the way they mechanically adapt to their wrap-
ping. Sensitivity analyses, conducted from
metamodels, were therefore carried out, in or-
der to quantify the influence of the introduced
parameters, showing that the aspect ratio of
the NP and the mechanical adaptation delay
have the most influence. Finally, the model
was applied to a specific type of cancer, for
which the mechanical properties of the model
were determined as a result of a literature re-
view.
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