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Résumé en fançais

La communication de terminal à terminal (D2D) est une technologie clé pour les

futurs réseaux sans fil. Elle permet aux appareils de communiquer directement, sans

avoir besoin d’une infrastructure cellulaire, ce qui présente de nombreux avantages,

tels que l’extension de la couverture, l’amélioration de la capacité et le délestage

du réseau. Cela fait de D2D une technologie prometteuse pour les communications

ultra-fiables à faible latence (URLLC). Cependant, elle doit surmonter les défis de

l’interférence co-canal et de la bande passante limitée.

Pour résoudre ces problèmes, l’utilisation des ondes millimétriques (mmWave)

s’avère efficace en raison de leur large bande passante. Néanmoins, les fréquences

mmWave présentent une atténuation élevée, ce qui requiert l’utilisation de multiples

antennes et la mise en place de la formation de faisceaux pour améliorer la force

et la qualité du signal. Toutefois, lors de ce processus de formation de faisceaux,

des erreurs de désalignement peuvent se produire, entrâınant une dégradation des

performances de transmission des données.

Pour relever ces défis, cette thèse porte sur l’analyse théorique des performances

de la communication mmWave D2D. Les méthodes proposées permettent une évaluation

rapide des performances des futurs réseaux avec communication mmWave D2D et

d’identifier les paramètres critiques qui ont un impact significatif sur les perfor-

mances, tels que la couverture, la latence et la fiabilité dans le contexte de l’URLLC.

Les sections suivantes traitent du contenu de chaque chapitre.

Chapitre 1: Introduction

Ce chapitre présente les motivations de la thèse et le contexte des études sur les

réseaux terminal-à-terminal en ondes millimétriques avec formation de faisceaux.

Ensuite, nous exposons la structure du manuscrit ainsi que les contributions de la

thèse. Le chapitre se conclut par la liste des publications liées à ces travaux.

xiii



Résumé

La géométrie stochastique est largement utilisée pour évaluer la couverture,

le débit et l’efficacité énergétique des réseaux sans fil en raison de sa flexibilité

mathématique. Les études classiques utilisant cette méthode se concentrent prin-

cipalement sur le calcul de la probabilité de couverture moyenne spatiale pour un

utilisateur type. Toutefois, dans le contexte de l’URLLC, il est essentiel de prendre

en compte la distribution des mesures de performance traditionnelles. Pour car-

actériser pleinement la distribution spatiale des performances de communication, il

est possible de tirer parti de la meta-distribution.

La dynamique temporelle du réseau est un autre aspect crucial à étudier. Les

approches traditionnelles pour étudier la dynamique des réseaux s’appuient sur la

théorie des files d’attente, mais ces études, principalement inspirées par les réseaux

câblés, modélisent le réseau avec de multiples serveurs dont les emplacements relatifs

n’ont aucune influence sur leur comportement. Pour remédier à cette limitation,

Sankararaman et Baccelli ont proposé en 2017 un modèle spatial de réseau sans fil

de naissances et morts, qui modélise le réseau stochastique en fonction du processus

ponctuel et prend en compte l’interaction entre les liens dans le temps en raison des

variations du trafic.

Nous utilisons la géométrie stochastique et la théorie des files d’attente pour

évaluer les variations spatiales et temporelles des performances de deux points de vue

différents : les propriétés moyennes instantanées du réseau aléatoire et les propriétés

d’ergodicité globale d’un réseau dynamique avec des demandes de service aléatoires.

Chapitr 2: Fondements mathématiques et réseaux

Ce chapitre donne un aperçu des outils mathématiques et des technologies de com-

munication sans fil explorés dans cette thèse. Le chapitre commence par une in-

troduction à la géométrie stochastique, abordant des sujets tels que le processus

ponctuel et la théorie de Palm. Nous examinons ensuite plusieurs applications de

la géométrie stochastique pour la modélisation des réseaux sans fil, notamment la

caractérisation de la couverture et l’analyse de la méta-distribution. De plus, nous

abordons le processus de naissance-mort spatial en tant que modèle de réseau dy-

namique. Dans une deuxième partie du chapitre consacrée aux fondements sur les

réseaux, nous introduisons le cadre des réseaux D2D, ainsi que les technologies des

ondes millimétriques et du beamforming. Un modèle analogique de formation de

faisceau fondé sur un réseau linéaire d’antennes (ULA) est présenté dans cette par-

xiv



Résumé

tie. Le diagramme de puissance de ce modèle de formation de faisceau est montré

en fonction de l’angle de rayonnement et du nombre d’antennes.

Chapitre 3: Réseau D2D spatio-temporel sans fil

avec formation de faisceaux

-5 0 5

x[m]

-4

-2

0

2

4

6

y
[
m
]

Receiver

Transmitter

Figure 1: Réseau de Poisson bipolaire.
2

Δ𝑡~𝐸𝑥𝑝(
1

𝜆 𝑆
)

𝑡𝑖𝑚𝑒

Figure 2: Le processus de naissance-mort

spatial.

Dans ce chapitre, nous étudions l’impact de la formation de faisceaux sur un

réseau de communication D2D dynamique, où les émetteurs et les récepteurs adoptent

la formation de faisceaux à l’aide de l’ULA. Le réseau est dynamique car il y a des

arrivées aléatoires de nouveaux dispositifs D2D. Les instants d’arrivée des paires

émetteur-récepteur sont modélisés comme un processus de Poisson stationnaire. Les

positions auxquelles les paires émetteur-récepteur arrivent suivent un processus de

Poisson illustré par la Figure 1, qui est un réseau de Poisson bipolaire. En outre, les

utilisateurs qui terminent leurs communications quittent immédiatement le réseau.

De cette manière, un modèle spatio-temporel continu pour le réseau sans fil est

établi, voir la Figure 2. Sankararaman et Baccelli analysent la condition de sta-

bilité spatiale d’un réseau sans fil à une seule antenne avec naissances et morts en

utilisant les outils des calculs de Palm et du principe de conversation des flux de

Miyazawa. Un taux d’arrivée critique, λc, est introduit dans leurs travaux pour ce

type de réseau sans tenir compte de la formation de faisceaux. Nous étendons leurs

résultats en introduisant des réseaux d’antennes directionnelles pour les utilisateurs

D2D. Une expression analytique du taux d’arrivée critique λBFc est donnée en fonc-
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tion du nombre d’antennes. Comme le montre la Figure 3, le nombre moyen de

dispositifs, appelé intensité β, converge vers une limite en fonction du temps lorsque

le taux d’arrivée est inférieur à λBFc . Lorsque le taux d’arrivée est supérieur à λBFc ,

le réseau n’admet pas de régime stationnaire et β augmente sans limite.
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Figure 3: Intensité β en fonction du temps. (a) taux d’arrivée inférieur à λBFc ; (b) taux

d’arrivée supérieur à λBFc , lorsque le nombre d’antennes est de 4.
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Figure 4: λBFc /λc pour un réseau avec un alignement parfait (courbe rouge) ; λ̂BFc /λc en

fonction de n pour un réseau avec différents niveaux d’erreur uniforme d’alignement du

faisceau (courbes avec marques circulaires) ; limites supérieures de λ̂BFc /λc pour différentes

régions d’erreur d’alignement ϵ (lignes en pointillés).

Comme les faisceaux sont étroits, leur désalignement peut réduire considérable-

ment les performances du réseau. L’évaluation de l’impact du désalignement est donc

réalisée en supposant une distribution statistique des erreurs d’alignement. Dans nos

études, nous proposons une expression analytique du taux d’arrivée critique, λ̂BFc
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dans l’hypothèse d’une erreur d’alignement uniforme ou gaussienne tronquée. Nos

résultats analytiques et numériques démontrent que dans le cas d’un alignement

parfait du faisceau, le taux d’arrivée critique, λBFc , peut crôıtre indéfiniment avec

un nombre croissant d’éléments d’antenne. Toutefois, lorsque l’alignement du fais-

ceau est imparfait, le taux d’arrivée critique, λ̂BFc , ne présente plus d’augmentation

illimitée. La Figure 4 montre le rapport entre le taux d’arrivée critique, λ̂BFc , avec

un défaut d’alignement uniforme et le taux d’arrivée critique sans la formation de

faisceaux, λc, en fonction du nombre d’antennes n. Des expressions closes des

limites supérieures des taux d’arrivée critiques sont données pour les modèles de

désalignement gaussien tronqué et uniforme.

Chapitre 4: Meta-distribution des débits pour le

réseau D2D à ondes millimétriques

Dans ce chapitre, nous nous concentrons sur l’étude des propriétés instantanées

de la communication D2D dans le spectre des ondes millimétriques, en mettant

particulièrement l’accent sur la diversité de la couverture et de la fiabilité entre les

différentes liaisons. Comme pour le modèle dynamique, le réseau est modélisé comme

un réseau bipolaire de Poisson. Les émetteurs et les récepteurs des utilisateurs

sont équipés d’antennes directionnelles et adoptent la formation de faisceaux. Nous

définissons la fiabilité comme la probabilité de transmission réussie d’un paquet de

données dans un délai donné, qui peut être quantifiée par la probabilité de couverture

du débit. Les premières études sur le D2D se concentrent sur la probabilité de

couverture moyenne parmi tous les utilisateurs. Or, les conditions de couverture et

de fiabilité varient d’un utilisateur à l’autre et d’un endroit à l’autre. La probabilité

de couverture conditionnelle est donc proposée pour caractériser spécifiquement la

distribution du taux de transmission pour un utilisateur type dans un réseau :

Ps(η)
∆
= P(R > η|ΦT ,ΦR) (1)

où R est le taux de transmission, η est le seuil de taux, ΦT et ΦR sont les processus

ponctuels par rapport aux positions des émetteurs et des récepteurs. Dans le con-

texte de l’URLLC, nous souhaitons également connâıtre la proportion d’utilisateurs

qui satisfont aux exigences de fiabilité. La meta-distribution est donc définie comme

la distribution spatiale de la probabilité de couverture conditionnelle comme suit :

F̄Ps(η)(ϵ)
∆
= P!(Ps(η) > ϵ), ϵ ∈ [0, 1], θ ∈ R+. (2)
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où ϵ est le seuil de fiabilité et P! fait référence à la probabilité de Palm pour

l’utilisateur type.

En considérant l’hypothèse d’un désalignement gaussien tronqué, nous dérivons

des expressions calculables des moments de la probabilité conditionnelle de cou-

verture du débit en fonction du nombre d’éléments d’antenne. L’approximation

bêta de la meta-distribution du débit est obtenue sur la base du premier et du

deuxième moment. Les simulations numériques confirment nos résultats analytiques.

Elles montrent que les performances de couverture peuvent se détériorer de manière

significative en raison d’un mauvais alignement. En outre, nous constatons que

l’augmentation du nombre d’antennes n’améliore pas nécessairement la couverture

ou la fiabilité. Les dispositifs dotés d’un plus grand nombre d’antennes sont plus

sensibles aux erreurs d’alignement. Nous mettons en évidence l’existence d’un nom-

bre optimal d’antennes qui maximise la probabilité de couverture du débit (moyen)

et qui dépend de l’ampleur de l’erreur, voir Figure 5.
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Figure 5: Moyenne de Ps(η) en fonction du nombre d’antennes n pour différents écarts

d’erreur d’alignement ϵ.

En outre, il existe un nombre optimal d’antennes qui maximise le nombre d’utilisa-

teurs satisfaisant aux contraintes de fiabilité. Cette valeur optimale est fonction du

seuil de fiabilité, voir Figure 6.
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Figure 6: Meta distribution avec désalignement.

Chapitre 5: Gestion des faisceaux pour les réseaux

mmWave URLLC D2D

Dans le chapitre précédent, nous avons étudié les effets du désalignement des fais-

ceaux sur la meta-distribution des débits dans les réseaux D2D à ondes millimétriques.

Nos résultats ont révélé une dégradation significative de la couverture en cas de

désalignement. Cependant, le désalignement n’a été modélisé que de manière statis-

tique, sans que ses sources spécifiques ne soient discutées. L’alignement des faisceaux

est une étape cruciale dans le réseau d’accès radio moderne pour l’accès initial et la

synchronisation. Pour réaliser la formation de faisceaux d’ondes millimétriques, le

balayage exhaustif des faisceaux est largement utilisé comme méthode de formation

de faisceaux basée sur un livre de codes dans divers systèmes de communication sans

fil. Dans ce chapitre, nous approfondissons cette question en examinant l’alignement

des faisceaux induit par le codebook d’apprentissage des faisceaux. Plus précisément,

nous étudions un réseau D2D sur ondes millimétriques dédié à l’URLLC, dans lequel

les utilisateurs emploient des antennes multiples pour réaliser la formation de fais-

ceaux. Le processus de transmission des paquets est divisé en deux phases : une

phase d’apprentissage du faisceau, au cours de laquelle un balayage exhaustif du

faisceau est adopté, et une phase de transmission des données, illustrées par la Fig-

ure 7.

Ce chapitre étudie la distribution de l’erreur de désalignement résultant d’une

phase d’apprentissage imparfaite, due à la résolution finie des livres de codes et
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Figure 7: L’intervalle de temps d’une durée de T comprend : (i) une phase d’apprentissage

du faisceau, qui consiste en N2
b mini-créneaux d’une durée de τ ; (ii) une phase de trans-

mission des données.

à la variation rapide du canal. Pour la phase d’apprentissage du faisceau, nous

proposons des formules closes pour la fonction de de distribution discrète conjointe

des gains d’antenne à l’émetteur et au récepteur résultant du processus de balayage

du faisceau, en supposant n’importe quelle distribution générique d’évanouissement

rapide, y compris Nakagami-M et n’importe quelle résolution de livre de codes. Pour

la phase de transmission des données, des expressions de forme close pour tous les

moments de la probabilité de couverture conditionnelle du débit sont dérivées, et la

meta-distribution est approximée à l’aide de l’approximation bêta. L’étude évalue les

performances globales du réseau par le biais de la meta-distribution du débit effectif

présentée ci-dessous, qui tient compte des ressources dédiées à l’apprentissage et des

erreurs de désalignement des faisceaux.

F̄P̃c(η̃)
(ϵ)

∆
= P!(P̃c(η̃) > ϵ), ϵ ∈ [0, 1], η̃ ∈ R+. (3)

où P̃c(η̃) est la probabilité de couverture conditionnelle du débit effectif présentée

comme suit:

P̃c(η̃) = P
(
R̃ > η̃|ΦT ,ΦR

)
(4)

où η̃ est le seuil de débit effectif et R̃ est le débit effectif réalisable défini comme

suit :

R̃ =

(
1− N2

b τ

T

)+

R (5)

où R est le débit de transmission, T est la durée de l’intervalle de temps et N2
b τ est

la durée de la phase d’apprentissage du faisceau. Cette meta-distribution se réfère à

la proportion d’utilisateurs qui peuvent terminer de manière fiable la transmission

dans le temps imparti. Elle nous permet d’obtenir des garanties statistiques de

latence pour les communications URLLC.
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Grâce à des expériences numériques, nous mettons en évidence les compromis

entre la quantité de ressources dédiées à l’apprentissage et celles dédiées à la trans-

missions de données d’une part et entre le nombre d’antennes et les erreurs de

désalignement d’autre part. Nous sommes en mesure d’optimiser la taille du livre

de codes et le nombre d’antennes. À notre connaissance, ces compromis n’ont pas été

étudiés dans la littérature en utilisant la meta-distribution tout en tenant compte de

la résolution du livre de codes. Il est préférable d’avoir moins d’antennes lorsqu’un

délai très court est nécessaire avec une grande fiabilité. En revanche, le gain po-

tentiel de nombreuses antennes peut être exploité lorsque la contrainte de délai est

relâchée, voir la Figure 8.
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Figure 8: Proportion de dispositifs ayant une probabilité de couverture du débit condi-

tionnel effectif supérieure au seuil de fiabilité 99.999% en fonction du nombre de faisceaux

pour T = 1 ms (a) et T = 5 ms (b).

Chapitre 6: Conclusion et travaux futurs

Ce chapitre conclut le travail et présente des extensions potentielles des travaux

réalisés dans cette thèse. Par exemple :

• Pour le cas stationnaire, la méthode actuelle de balayage des faisceaux prend

beaucoup de temps. Les travaux futurs pourront améliorer le modèle en envis-

ageant des méthodes de formation de faisceaux plus souples et plus générales,

telles que la recherche hiérarchique de faisceaux. La formation de faisceaux

dans nos travaux actuels est un cas analogique simple basé sur le réseau phasé,

qui n’est pas optimal lorsque la propagation n’est pas en ligne de vue. Nous

espérons étudier les performances au niveau du réseau avec des techniques
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de formation de faisceaux plus avancées, telles que la formation de faisceaux

hybrides. Des méthodes de formation de faisceaux plus adaptatives et plus effi-

caces doivent être examinées pour des techniques multi-antennes plus avancées.

• Pour le cas dynamique, on sait que la configuration de l’emplacement des ap-

pareils à un instant donné suit un processus ponctuel stationnaire si le taux

d’arrivée de nouveaux utilisateurs n’est pas trop élevé. Mais il ne s’agit pas

d’un processus ponctuel de Poisson puisqu’il existe des grappes dans ce proces-

sus ponctuel. L’idée initiale selon laquelle les appareils adoptent la formation

de faisceaux est qu’elle peut augmenter la puissance de chaque utilisateur.

L’impact de la formation de faisceaux sur la distribution des appareils reste

une question intéressante à laquelle il faut répondre. Les performances de cou-

verture de ce réseau dans un état stable devraient être étudiées. Idéalement,

nous espérons trouver la distribution spatiale du temps de séjour attendu dans

un état stable.

• Nous devrions tenir compte davantage du temps de cohérence dans nos études

futures. D’une part, le spectre élevé est confronté à un effet Doppler im-

portant et le temps de cohérence du canal est court. D’autre part, le temps

de cohérence du canal peut être réduit lorsque la formation de faisceaux est

utilisée. Pour tenir pleinement compte de cet effet, nous devons prendre en

considération la cohérence spatiale et le temps de cohérence du faisceau, qui

indiquent l’intervalle général ou le temps moyen pour conserver le même niveau

de gain de formation de faisceau. En tenant compte du temps de cohérence,

la formation de faisceau doit être ajustée comme le suivi de faisceau et l’effet

du désalignement doit être reconsidéré en conséquence.

À long terme, l’étude des effets de la mobilité des utilisateurs sur les performances

d’alignement et de couverture du réseau nécessiterait des études plus complexes.

Le réseau du futur sera un vaste système dynamique caractérisé par une mobilité

intense. Cependant, dans un scénario plus réaliste, le mouvement des utilisateurs

de D2D est limité par des contraintes physiques telles que les rues et l’architecture.

Le processus Poisson linéaire semble donc être un modèle idéal pour caractériser les

trajectoires des appareils. Il serait intéressant d’appliquer ce modèle dans d’autres

études.
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Chapter 1

Introduction

1.1 Context and motivation

Fifth Generation New Radio (5G NR) proposes three main prospects for the future

network: enhanced mobile broadband (eMBB), ultra-reliable low latency commu-

nications (URLLC), and massive machine-type communication (mMTC) [1]. It is

expected that mobile users can experience high data rates of up to 20 Gbits/s, low la-

tency of 1ms with 99.999% reliability, and up to one million connections per square

kilometer, especially for the applications such as the industrial internet of things

(IoT) and vehicles to everything (V2X) [2]. However, given the ever-increasing

growth of the cellular users and wide range of IoT devices, 5G may not meet the

future demands of high reliability and high density of communications, given that

the future network is foreseen to be an ultra large scale dynamic complex system.

In this context, device-to-device communication (D2D) is emerging as a promising

technology to address the explosion of demands for high data rate services. D2D

has garnered significant attention as a means of improving the quality of service

(QoS) for proximity services, offering potential improvements in latency, reliability,

throughput, and energy consumption. Moreover, D2D can help to reduce the load

on the network by extending cellular coverage [3].

D2D allows direct communication between nearby devices. Indeed, part of the

traffic is directly assigned to “devices” without requiring the use of the resources

of base stations. Moreover, a device can relay communication between a base sta-

tion and another device located outside its coverage area, which can play essential

roles in emergency situations where part of the infrastructure is destroyed. There-

fore, D2D communication can help to meet the stringent requirements of the future
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5G radio network. However, employing D2D communication suffers from high in-

terference and insufficient bandwidth. However, D2D communications suffer from

unpredictable interference as D2D transmitters can be active anywhere around ev-

ery receiver with little control from the network. A fundamental challenge of D2D

networks is thus the management of co-channel interference. Moreover, the demand

for higher data rates, lower latency and higher reliability requires more and more

bandwidth. Exploiting the millimeter wave (mmWave) bands seems to be a suitable

solution for these problems [4]–[7]. Millimeter wave D2D communication is a tech-

nology that uses high-frequency radio waves in the range 30 − 300 GHz for direct

communication between devices. Compared to sub-6 GHz bands usually adopted for

cellular communications, mmWaves offer very large bandwidths, allowing fast and

reliable transmissions [8]. High carrier frequencies are however characterized by a

very short coherence time and a predominant Line-of-Sight (LOS) propagation with

high attenuation [9]. In order to overcome these challenging propagation conditions,

it is necessary to equip devices with multiple antennas and to perform beamforming

to enhance the signal strength and quality [10].

The use of the multi-antenna technique for wireless communication has by now

been widely studied for many decades. The concept of “beamforming” refers to a

technique where the power gain of antenna arrays is focused in the desired direc-

tions. As a result, this technique can reduce interference and improve throughput

performance. The energy efficiency can also be improved since the power is focused.

In LOS propagation, classical beamforming has a well-defined beam shape, with

relatively narrow main lobe pointed into a desired physical direction, for example,

towards the objective user device. There are several papers in the literature showing

the great potential of beamforming for D2D communications for reducing interfer-

ence and improving network throughput, see e.g. [11], [12]. Among these works,

a classical antenna configuration, namely the uniform linear array (ULA)[13], is

widely adopted as a platform as an antenna array geometry to perform beamform-

ing. In this thesis, we also consider ULA to improve the network performance.

Those aforementioned technologies of 5G will be discussed in chapter 2 associated

with its general background on motivations and challenges.

In order to have a quick evaluation of the performance of future networks with

mmWave D2D communication, and to identify critical parameters that significantly

impact the performance, such as coverage, latency, and reliability in the context of

URLLC, it is is essential to have analytical methods for evaluating performance.
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Section 1.1. Context and motivation

Coverage for devices in the network is mainly determined by channel conditions

and network topology, which necessitate analytical or numerical approximations of

device positions. Regarding latency, it can be defined in various ways and at different

layers of communication protocols of the protocol stack. One simple definition of

latency is the delay experienced by a data packet from the point it enters a given

protocol layer at the transmitter to the point it exits the same layer at the receiver

[14]. The protocol design for resource utilization and transmission schemes, along

with the dynamic changes in coverage that take place for each link over time, can

both affect latency. In the context of URLLC, the definition of reliability is coupled

to the latency requirement. One way to define the reliability is to calculate the

probability that the latency does not exceed a given deadline [14]. We will see

that this definition is similar to that of the coverage probability. To analyze the

performance of these systems, it is necessary to consider both spatial and temporal

variations.

Stochastic geometry is widely used to evaluate the coverage, throughput, and

energy efficiency of wireless networks due to its mathematical flexibility [15], [16].

In this approach, devices or base stations are modeled as a point process, and

performance parameters such as the transmission rate can be regarded as the marks

of each point. Spatial averages of marks of a stationary planar point process can be

evaluated as expectations under the Palm probability. Classical studies using this

method mainly focus on calculating the average coverage probability for a typical

user using Palm calculus [17]. However, in the context of URLLC, it is essential

to consider the distribution of traditional performance metrics to understand, for

example, the proportion of users meeting reliability requirements as defined in [2].

To fully characterize the spatial distribution of communication reliability, the meta-

distribution can be leveraged [18]. In chapter 2, we provide a brief introduction to

stochastic geometry and to the concept of meta-distribution.

As previously mentioned, while studies focusing at a given time instant on spatial

averages are informative, it is important to also consider temporal dynamics. Tra-

ditional approaches to study network dynamics leverage queuing theory, but these

studies, primarily inspired by wired networks, model the network with multiple

servers whose relative locations have no influence on their behavior [19]. To address

this limitation, the spatial birth-death wireless network model has been proposed,

which models the stochastic network as a function of the point process and takes

into account the interaction between links across time due to traffic variations [20].
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This model is based on the spatial birth-death process [21], in which users arrive to

the plane as a homogeneous Poisson rain and are each marked with a random service

time. At any given time, the service rate of each user is related to the configuration

of the point process. Chapter 2 provides a presentation of the spatial birth-death

process.

1.2 Contribution of the thesis

In this thesis, we evaluate several performance indicators of D2D communication

in a radio network by considering the impact of beamforming. Generally speaking,

we try to tackle this problem through two different points of view: Instantaneous

average properties of the random network and the global ergodicity properties of a

dynamical network with random service requests.

We consider a dynamic D2D communication model where transmitters and re-

ceivers have multiple antennas and adopt beamforming for the dynamic case. The

network is dynamic since there are random arrivals of new D2D devices. Moreover,

the users who finish the communications leave the network immediately. In this way,

a continuous spatio-temporal model for the wireless network is established, which

combines a spatial stochastic point process and a dynamic birth-death process. The

application of this model to the D2D network was firstly studied by Sankararaman

and Baccelli in 2017 [20]. In this thesis, we extend the result of Sankararaman and

Baccelli on the stability condition to D2D networks where users are equipped with

directional antennas arrays. We use an analog beamforming model based on a ULA

[22]. By applying such a beamforming technique, the point process is no longer

isotropic but can still remain in a stationary state under certain constraints. Our

task is to study the impact of beamforming for the stability region of this dynamic

network. In addition, the shape of beam is related to the number of antennas in a

ULA. More antennas can bring stronger beams but reduce the beam width. Since

the beams are narrow, the beam misalignment can dramatically reduce the per-

formance of the network. Thus the evaluation of the impacts of misalignment is

performed. The works related to this part is presented in chapter 3.

For the instantaneous properties, we are interested in understanding the diver-

sity of link reliability across different links at a given time in the mmWave D2D

network, under the stationary state. Similar to the dynamic case, our study consid-

ers D2D transmitters and receivers with multiple antennas that adopt beamforming.
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Section 1.3. Structure of the thesis

We define reliability as the probability of successful transmission of a data packet

within a given time period, which can be quantified by the rate coverage probability.

We derive mathematical approximations for the meta-distribution of this reliability

metric. The impacts of beamforming are investigated by considering imperfect beam

alignment. Similar to the dynamic case, we evaluate the effects of misalignment by

assuming a statistical alignment error. Our results show that beam misalignment

can degrade the average coverage of the network and reduce the proportion of reliable

communication links. Additionally, we find that increasing the number of antennas

may not necessarily improve coverage or reliability. Links with more antennas are

more sensitive to alignment errors. We highlight the existence of an optimal number

of antennas that maximizes the (average) rate coverage probability which depends

on the error magnitude. We also show that there is an optimal number of antennas

maximizing the number of users satisfying a reliability requirement. This optimal

number is dependent on the required reliability. The work related to this part is

presented in chapter 4.

In addition to studying the statistical assumption of alignment errors, we are

also interested in the causes of beam misalignment. Beam alignment is a crucial

step in the modern radio access network for initial access and synchronization. To

achieve millimeter wave beamforming, exhaustive beam sweeping is widely used as

a beam training method in various wireless communication systems such as wireless

local area network (WLAN), 5G cellular network, and sidelink communication. Our

studies demonstrate that misalignment may occur during the beam sweeping pro-

cess, primarily due to the limited resolution of beamforming codebooks and channel

variations. Furthermore, our findings show that there is a trade-off between training

overhead and data transmission reliability. We derive the meta-distribution of the

effective rate as a statistical latency guarantee for URLLC communications, con-

sidering both the training overhead and misalignment. The results indicate that

there exist optimal numbers of antennas and beam sweeping schemes for URLLC

communications. Chapter 5 presents our studies on these topics.

1.3 Structure of the thesis

The remaining chapters of this thesis are structured as follows. Chapter 2 provides a

review of the mathematical foundations and wireless network backgrounds relevant

to the research. Chapter 3 investigates the stability of a spatio-temporal D2D net-
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work with imperfect beam alignment. Chapter 4 focuses on the meta-distribution

analysis of the D2D network with imperfect beam alignment. In chapter 5, we

extend the study to include misalignment induced during the beam sweeping pro-

cess. Finally, chapter 6 concludes the thesis and provides some insights into future

research directions.
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Chapter 2

Mathematical foundations and

network backgrounds

This chapter provides an overview of the mathematical tools and wireless commu-

nication technologies that are explored in this thesis. The chapter begins with an

introduction to stochastic geometry, covering topics such as the point process and the

Palm theory. We then examine several applications of stochastic geometry for wire-

less network modeling, including coverage characterization and meta-distribution

analysis. Additionally, we discuss the spatial birth-death process as a dynamic

network model. In a second part of the chapter dedicated to the background in

Networks, we introduce the framework of D2D networks, as well as millimeter wave

and beamforming technologies.
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Chapter 2. Mathematical foundations and network backgrounds

2.1 Short introduction to stochastic geometry

Stochastic geometry is a powerful tool to study the randomness properties of spatial

patterns. This method can help us explore the geometrical patterns of many things

in our natural world. Furthermore, it is widely used in academic domains like astron-

omy, life science, computer, network science, etc. [16], [23]. In wireless networking,

stochastic geometry is applied to study the geometrical topology of the network,

including the locations of transmitters, receivers, and sources of interference, which

play a crucial role in radio communication. Whether we need to make dimensioning

decisions or evaluate the quality of service, knowledge of the transmitter locations

is essential. One of the core objects of this domain is to construct the statistical

models for the random point processes and investigate their properties. This section

provides a brief review of the mathematical theory of stochastic geometry.

2.1.1 Point process

Basic definitions

A spatial point process (p.p.) Φ is a random, finite or countably-infinite collection

of points residing in some measurable space, usually the Euclidean space Rd, with-

out accumulation points [15]. Take the two dimensional Euclidean space R2 as an

example, we can define a configuration of R2 as follows:

Definition 1. (Configuration of R2) A configuration of R2 is a locally finite set of

points of E ⊂ R2.

For example N is a configuration of R2 but { 1
n

: n ∈ N∗} is not because it is not

locally finite at 0. Then we can denote a set of configurations of E ⊂ R2 as ΓE. A

configuration, denoted as ξ, is an element of ΓE. It can either be expressed as a set

ξ = {x1, x2, x3...}, or a measure ξ =
∑

x∈ξ δx, where δ is the Dirac measure. For any

function f : E → R, we can denote

f(ξ) =
∑
x∈ξ

f(x) =

∫
fdξ (2.1)

If A ⊂ E, ξ(A) is the number of point of ξ in A.

Definition 2. (Point process in R2) A point process Φ on E ⊂ R2 is a random

variable whose values are in space ΓE.
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In another word, a point process can be regarded as a random variable taking val-

ues from locally finite configurations of points, or equivalently, a counting measure.

Considering a more general notation of random measures, the following notations

and definitions concerning the point process theory are introduced in [24].

Definition 3. (Counting measure [24]) A counting measure µ is a locally finite

measure taking values in {0, 1, 2, ...,∞} on (G,B(G)), where (G, T ) is a topological

space which is locally compact, second countable (i.e.,its topology T has a countable

basis), and Hausdorff (i.e., distinct points have disjoint neighborhoods), abbreviated

by l.c.s.h. and B(G) is its associated Borel σ−algebra.

It is convenient to express Φ by using the Dirac measure Φ =
∑

i δxi , where δxi

is the Dirac measure at x.

Definition 4. (Point process in general space [24]) Let G be a l.c.s.h space. Let

M(G) be a set of counting measures on (G,B(G)). Let (Ω,F ,P) be a probability

space. A point process (p.p.) is a measurable mapping

Φ : (Ω,F ,P)→ (M(G),M(G)) (2.2)

The distribution of Φ is denoted as PΦ := P ◦ Φ−1.

For all B ∈ B(G), Φ(B) is a random variable whose value can be understood as

the number of points in B.

Characterizations of a point process

A random measure can be characterized by different ways. We introduce hereafter

three basic metrics for a point process: mean measure, the Laplace transform and

the void probability.

Definition 5. (Mean measure) The mean measure of a point process Φ defined in

G is a measure defined on (G,B(G)), such that

MΦ(B) = E[Φ(B)], B ∈ B(G) (2.3)

Definition 6. (Laplace functional) For all measurable functions f : G → R+, the

Laplace transform of f on a point process Φ is defined as follows:

LΦ(f) = E
[
exp

(
−
∫
G
fdΦ

)]
= E

[
exp

(
−
∑
x∈Φ

f(x)

)]
(2.4)
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It is important to study the Laplace transform of a point process because it can

characterize completely the distribution of the process.

Lemma 1. The probability distribution of a point process is fully characterized by

its Laplace transform:

LΦ(f) = LΦ′(f)←→ Φ
law
= Φ′ (2.5)

That is to say, once the Laplace transform of any measurable function are the

same for two point processes, these point processes should have the same law. Then,

we can define the probability generating functional for a point process as the Laplace

transform.

Definition 7. (Probability generating functional (PGFL) [24]) Let G be a l.s.c.h.

space, for any measurable function f : G → [0, 1]. The probability generating func-

tion G(Φ) of a point process Φ is defined as follows:

GΦ(f) = LΦ(− log f) = E
[
exp

(∫
G

log fdΦ

)]
(2.6)

Note that the right side of the formula is the expectation of the products of f :

E
[
exp

(∫
G

log fdΦ

)]
= E

[∏
x∈Φ

f(x)

]
(2.7)

Definition 8. (Void probability) The void probability for a point process Φ is defined

as:

v(B) = P(Φ(B) = 0), B ∈ B(G)

Properties of a point process

Definition 9. (Simple point process [23]) A point process is said to be simple if

all points are isolated. Mathematically, a counting measure is said to be simple if

µ({x}) ≤ 1,∀x ∈ G. A point process Φ is simple if

P(x ∈ G,Φ({x}) ≤ 1) = 1

Definition 10. (Stationary point process [23]) A point process on Rd is said to be

stationary when its distribution is invariant under translation, that is Φ =
∑

k∈Z δXk

and StΦ =
∑

k∈Z δXk−t have the same distribution for all t ∈ Rd.
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Definition 11. (Isotropic point process [23]) A point process on Rd is said to be

isotropic when its distribution is invariant under rotation, that is Φ =
∑

k∈Z δXk
and

rΦ =
∑

k∈Z δrXk
have the same distribution, where r is a rotation about the origin.

Corollary 1. A point process is said to be motion-invariant if it is both stationary

and isotropic [23].

Theorem 2. (Campbell’s averaging formula [24]) For a point process Φ on a l.c.s.h.

space G with mean measure MΦ, let f : G → C be a function that is either a non-

negative or integrable with respect to MΦ, that is in L
1
C(MΦ,G) space. Then

∫
G fdΦ

is a well defined variable and we have the following relation:

E[

∫
G
fdΦ] =

∫
G
fdMΦ (2.8)

If the intensity function exists for a point process Φ defined on Rd, the Campbell’s

formula is equivalent to [23]:

E[
∑
x∈Φ

f(x)] =

∫
Rd

f(x)λ(x)dx (2.9)

2.1.2 Poisson point process

Definition 12. (Poisson point process (PPP)[15]) Let Λ be a locally finite non-null

measure on Rd. A Poisson point process with intensity measure Λ defined on (Rd,B)

is a point process such that:

• For all compact set B ⊂ B, Φ(B) has a Poisson distribution with mean Λ(B).

If Λ admits a density λ, that is:

P(Φ(B) = k) = exp

(
−
∫
B

λ(x)dx

)
(
∫
B
λ(x)dx)k

k!
(2.10)

• For disjoint Borel sets B1, ..., Bk ∈ B, Φ(B1), ...,Φ(Bk) are independent ran-

dom variables.

The second condition is known as complete independence. We then characterize

the Poisson point process by the Laplace functional and the void function.

Proposition 3. (Poisson point process Laplace functional) Let Φ be a PPP on Rd

with intensity Λ.

L(Φ)(f) = exp

(
−
∫
Rd

(1− e−f )dΛ

)
(2.11)
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Corollary 2. The PGFL of a Poisson point process Φ can be expressed as:

GΦ(f) =
∏
x∈Φ

f(x) = exp

(
−
∫
Rd

(1− f)dΛ

)
(2.12)

Proposition 4. (Poisson point process void function) The void probability for a

Poisson point process with intensity Λ is as follows:

v(B) = e−Λ(B), ∀B ∈ B (2.13)

Definition 13. (Homogeneous Poisson point process) If Φ is a Poisson point process

with intensity measure Λ, and Λ(dx) = λ× dx where λ ∈ R+. Then Φ is said to be

a homogeneous Poisson point process with intensity λ.

The characteristic λ is clearly invariant under rotation and translation. Therefore

the homogeneous Poisson point process must be stationary and isotropic.

2.1.3 Superposition, thinning and marking

Definition 14. (Superposition [24]) Let Φ0,Φ1, ... be a sequence of point process

defined on Rd on the same probability space. The superposition of point process

refers to the sum of several point process Φ =
∑

k Φk.

Lemma 5. For a superposition Φ =
∑

k Φk defined on Rd, let B0, B1, ... be a se-

quence of relatively compact open sets whose union covers Rd. When Φ0,Φ1, ... are

independent and
∑

k E[Φk(·)] is locally finite on Rd, the superposition Φ is a point

process if and only if ∑
k

P(Φk(Bj) ̸= 0) <∞ (2.14)

Proposition 6. Let Φ0,Φ1, ... be a sequence of independent Poisson point process

with intensity measures Λ0,Λ1, ..., the superposition Φ =
∑

k Φk is a Poisson point

process with intensity Λ =
∑

k Λk if and only if the latter is locally finite.

Definition 15. (Thinning) The thinning of point process refers to erasing some

points within a point process randomly. The thinning of a point process Φ =
∑

k δXk

with a retention function p : Rd → [0, 1] is a point process given by:

Φp =
∑
k

1{Uk < p(Xk)}δXk
(2.15)

where U0, U1, .. is a sequence of Independent and identically distributed (i.i.d.) ran-

dom variables uniformly distributed in [0, 1].
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Proposition 7. The thinning of Poisson point process of intensity measure Λ with

retention probability p is a Poisson point process of intensity measure pΛ:

(pΛ)(A) =

∫
A

p(x)Λ(dx) (2.16)

Definition 16. (Marked point process) Marking a point process refers to the fact of

adding a specific characteristics, or marks belonging to a certain measurable space,

to each point in the point process. A marked point process is a point measure

Φ̃ =
∑
i

δ(xi,mi) (2.17)

where δ(x,m) is a Dirac measure on the Cartesian product Rd × Rl.

The space of their realizations is denoted as M̃ . Particularly, the marked point

process Φ̃(A× Rl) is finite for any bounded set A ⊂ Rd.

Definition 17. (Independently marked point process) A marked point process is

said to be independently marked if the marks are mutually independent and are only

conditionally to the points attached to in Φ:

P(mi ∈ ·|Φ) = P(mi ∈ ·|x) = Fx(dm) (2.18)

where F·(·) is a probability kernel. If F·(·) does not depend on x, it is called the mark

distribution and the point process is called an i.i.d. marked point process.

2.1.4 Palm theory

Palm’s probability or Palm’s measure in point process theory is the probability of an

event given that the point process contains a point at a place. It also formalizes the

notion of the “typical point” of the process. We can informally interpret a typical

point as the point randomly selected among the points with the same chance. Here

we present the definition based on the Radon–Nikodym theorem [15].

Definition 18. (Reduced Campbell measure) The reduced Campbell measure of Φ

is the measure

C !(B × Γ) = E
[∫

B

1(Φ− δx ∈ Γ)Φ(dx)

]
, ∀B ⊂ Rd (2.19)

on Rd ×M, where M is the set of point measures.
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The reduced Campbell measure is a complement of the mean measure MΦ. By

removing a particular point from Φ, the resulting configuration satisfies proper Γ.

To be more rigorous, C !(· × Γ) is absolute continuous with respect to MΦ(·) for

each Γ. Thus we can outline the relationship between C !(· × Γ) and MΦ(·) by the

Radon–Nikodym derivative.

Proposition 8. (Reduced Palm distribution)

C !(B × Γ) =

∫
B

P!
x(Γ)MΦ(dx), ∀B ⊂ Rd (2.20)

The function P!
x = P!

x(Γ) depends on the removed set Γ. The probability P!
x can be

regarded as a probability distribution on M for each given x, if MΦ(·) is locally finite.

And P!
x is called the reduced Palm distribution of Φ given that there is a point at x.

Theorem 9. (Reduced Campbell-Little-Mercke Formula) For all non-negative func-

tions defined on Rd ×M

E
[∫

Rd

f(x,Φ− ϵx)Φ(dx)

]
=

∫
Rd

∫
M
f(x, µ)P!

x(dµ)MΦ(dx) (2.21)

=

∫
Rd

E[f(Φ!
x, x)]MΦ(dx) (2.22)

=

∫
Rd

E!
x[f(Φ, x)]MΦ(dx) (2.23)

where Φ!
x := Φ − δx and E!

x is the expectation with respect to the reduced Palm

distribution P!
x

Remind that for the Poisson point process, the mean measure is denoted as the

intensity measure MΦ = Λ.

Theorem 10. (Slivnyak–Mecke Theorem) Let Φ be a Poisson point process with

intensity measure Λ, for Λ−almost all x ∈ Rd

P!
x = P (2.24)

That is to say, the reduced Palm distribution is identical to the original distribution

of a Poisson point process. Therefore, Φ!
x and Φ has the same Laplace transform

characteristic for Poisson point process.

The reduced Palm distribution P!
x can be easily extended to the Palm distribution

P!
x by considering Φx = Φ + δx. Then Φx, Φ!

x and Φ have the same distribution for

Poisson point process.
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2.2 SINR Coverage and meta-distribution

A classical application of stochastic geometry to the wireless network is to evaluate

the coverage of a communication. Mathematically, the coverage probability, or the

success probability over a typical link, is defined as the complementary cumulative

distribution function (CCDF) of the SINR [18], i.e.:

ps(η)
∆
= P(SINR > η) (2.25)

where η is a SINR threshold. Traditionally the value of this probability is calculated

by spatial averaging, which is valid for the ergodic point process. Take a Poisson

point process, for instance, we set a point at the origin, then, according to the

Mecke Theorem 10, the Palm distribution is the same as its original distribution.

Then we account for the frequency that the SINR of this typical point is larger

than η by changing the point configuration in each iteration. Of course, we can

also do the same operations for all the points, and then we calculate the average

value among different points. However, the calculated value of ps can only provide a

global information about the coverage, that is, the percentage of success transmission

devices we can find after each experiment. Nevertheless, if we take an individual

view on different links, the coverage performance can differ significantly. Thus the

meta distribution is proposed as a spatial distribution of the success probability

for different links. Before the definition of meta distribution, we introduce the

conditioned coverage probability.

Definition 19. (Conditional coverage probability) Let Φ be a given point process,

the conditional coverage probability for a typical link is defined as:

Ps(η)
∆
= P(SINR > η|Φ) (2.26)

Since Φ is a random point process, the probability Ps(η) which depends on Φ is also

a random variable, whose mean is the success probability ps(η).

Then the so-called meta-distribution is defined as the distribution of the condi-

tioned coverage probability Ps(η).

Definition 20. (SINR Meta-distribution) Given a point process Φ, the SINR meta-

distribution of a typical link is defined as the complementary CCDF of the condi-

tioned coverage probability Ps(η):

F̄Ps(ϵ, η)
∆
= P!(Ps(η) > ϵ), ϵ ∈ [0, 1], η ∈ R+. (2.27)

15



Chapter 2. Mathematical foundations and network backgrounds

Where P! denotes the Palm measure of Φ, given that there is an active transmitter

at the prescribed location. The classic success transmission probability ps is the

spatial average of the conditioned probability:

ps(η) = E![Ps(η)] =

∫ 1

0

F̄Ps(ϵ)dϵ (2.28)

And the b-th moment of Ps(η) is denoted as Mb(η), i.e.

Mb(η)
∆
= E![Ps(η)b] =

∫ 1

0

bϵb−1F̄Ps(ϵ)dϵ (2.29)

2.2.1 Calculation of meta-distribution

It is not easy to calculate the distribution of Ps directly. There are some alternative

approaches to establish the meta distribution from the moments that reveal the

high-order statistics properties of the conditional success probability. This type of

problems that tries to obtain the distribution of a random variable from its moments

can be called Hausdorff moment problem [25]. Here is a brief summary for the

recently developed approaches of the calculation of the meta distribution.

Gil-Pelaez theorem

The exact expression of meta-distribution can be obtained based on the Gil-Pelaez

theorem [18], [26].

Theorem 11. (Gil-Pelaez theorem) For a univariate random variable X

F̄X(x) = E[1{X≤x}] =
1

2
− 1

π

∫ ∞

0

Im(e−jtxφX(t))

t
dt (2.30)

where j2 = −1. Im(·) denotes the imaginary part. φX(t) is the characteristic

function of X.

Let X = lnPs(η), the characteristic function of X is expressed as follows:

φX(t) = E[ejtX ] = E[Ps(η)jt] = Mjt, t ∈ R.

Then the meta distribution F̄Ps(θ)(ϵ) has an expression has follows:

F̄Ps(η)(ϵ) = E[1{lnPs(η)≤ln(ϵ)}] =
1

2
− 1

π

∫ ∞

0

Im(e−jt ln(ϵ)Mjt)

t
dt (2.31)
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Beta approximation

In practice, the expression above based on the Gil-Pelaez theorem is hard to be im-

plemented by numerical method. Because this formula often involves the integration

of complex value functions with complete oscillations. The beta-distribution based

approximation is used in [18] to approximate the meta distribution by mapping the

first and second moments.

The PDF of a beta distributed random variable X with mean µ is:

fX(x) =
xα−1(1− x)β−1

B(α, β)
(2.32)

Where B(·, ·) is a Beta function. The CDF of a Beta-distribution is expressed

as the regularized incomplete beta function Ix(α, β):

Ix(α, β) =

∫ x
0
tα−1(1− t)β−1

B(α, β)
(2.33)

A Beta distribution can be fully characterized by its mean and variance, which are

expressed as follows:

E(X) =
α

α + β
(2.34)

E(X2) =
α + 1

α + β + 1
E(X) (2.35)

By matching the mean and variance of the Beta distribution with M1(η) and M2(η)

of the conditioned coverage probability, we can calculate the two parameters α and

β as follows:

α =
M1M2 −M2

1

M2
1 −M2

(2.36)

β =
(1−M1)(M2 −M1)

M2
1 −M2

(2.37)

Thus the approximation of F̄Ps(η)(ϵ) follows:

F̄Ps(η)(ϵ) ≃ 1− Ix(
M1M2 −M2

1

M2
1 −M2

,
(1−M1)(M2 −M1)

M2
1 −M2

) (2.38)

In most cases this beta approximation has very excellent accuracy and is widely

used in most studies about meta-distribution.
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Binomial mixtures approach

Reference [27] proposed an approach that utilizes binomial mixtures to obtain a

piecewise approximation of the meta-distribution based on the integer moments

Mj = E[Ps(η)j], where j ∈ N∗. The exact meta-distribution can be obtained by

taking the limit of this approximation as follows:

F̄Ps(η)(ϵ) = 1− lim
i→∞

⌊iη⌋∑
k=0

i∑
j=k

(
i
j

)(
j
k

)
(−1)j−kMj (2.39)

Reference [27] stated that based on this approach, the meta distribution can be

easily calculated by a simple linear transform of the integer moment vector (Mj)
i
j=0.

By adjusting the value of i on can get his aimed accuracy.

Fourier-Jacobi approach

Reference [28] introduced the use of Fourier-Jacobi expansion to express the meta-

distribution as an infinite sum of shifted Jacobi polynomials. This approach offers

improved accuracy compared to the simple beta approximation method, although

the convergence of the latter requires further investigation [27].

Euler sum approach

Reference [29] presents an efficient approach that utilizes the trapezoidal integration

rule and Euler sum method to approximate the meta distribution as a finite sum of

imaginary moments. With this approach, the meta distribution can be expressed as

follows:

F̄Ps(η)(ϵ) ≃
2−Q exp(A/2)

ln2(ϵ)

Q∑
q=0

(
Q
q

)N+q∑
n=0

(−1)n

βn
Re

[
M−sn/ ln(ϵ)

sn

]
(2.40)

where the triplet (A,N,Q) are positive integers which can be used to adjust the

estimation accuracy. The parameter β0 = 2 and β−n = 1 for n ∈ {1, 2, ..., N +Q}.
The value sn = A+j2πn

2
where j =

√
−1 and n ∈ {0, 1, 2..., N + Q}.The estimation

error can be controlled within e− 10 by well choosing the parameters (A,N,Q).

2.3 Spatial birth-death process

The classical birth-death process [30] is a particular case of continuous-time Markov

process, where the state is defined as the number of individuals alive, and the tran-

sitions are of only two types: “births” which increase the state by one and “deaths”
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which decrease the state by one. The transition rate depends on the number of

individuals alive. In a more general sense, the state space can be a point process

that we define at the beginning of this chapter, and the configuration of the point

process decides the birth rate or death rate. This kind of process is named as spatial

birth-death process by Preston in 1975 [21], [31].

Given a metric space S ⊂ Rd, we consider a point process Φ defined on (S,B(S)),

with underlying probability space (Ω,F ,P). Let (M(S),M(S)) be a set of counting

measures on S. The state space of our process is a subset of M(S). Note that

(Ω,F ,P) is a complete probability space for both the point process Φ and our birth-

death process. A spatial birth-and-death process is a continuous time Markov chain

with state space the set of all configurations of Φ. For n ≥ 0, let (M(S)n,M(S)n)

be the measurable space of all configurations of n points in S ⊂ Rd. Thus M(S) =

∪∞
n=0M(S)n is the set of all configurations with any number of points in S.

Consider now a continuous time homogeneous Markov chain {Φ(t)} with state

space M(S) defined as follows. If Φ(t) = φ ∈ M(S)n at time t, then after a period

of waiting time, Φ(t) can make a transition only to M(S)n−1 (if there is a death)

or to M(S)n+1 (if there is a birth). The intensity function of new arrivals in state

φ is denoted β(φ), where β : M(S) → R+ and the death rate is denoted δ(φ),

where δ : M(S)→ R+ (with δ(0) = 0). The intensity of the jumps for process Φ(t)

is α(φ) = β(φ) + δ(φ). Note that Φ(t) is a jump process in the sense that it is

constant by parts, right continuous and jumps from one state to another at every

transition.

The homogeneous Markov chain Φ(t) is characterized by the birth and death

rates and by a transition kernel K : M(S) ×M(S) → [0, 1], where K(φ, F ) is the

probability to transit to the Borel measurable set F ⊂ M(S) starting from state

φ ∈ M(S) at the next transition (or jump). When φ ∈ M(S)n we can decompose

the kernel in two functions K
(n)
β and K

(n)
δ defined as follows:

K
(n)
β (φ, F ) = P [Φ(t+ τ) ∈ F |Φ(t) = φ,Φ(t+ τ) ∈M(S)n+1] (2.41)

K
(n)
δ (φ, F ) = P [Φ(t+ τ) ∈ F |Φ(t) = φ,Φ(t+ τ) ∈M(S)n−1] (2.42)

so that:

K(φ, F ) =
β(φ)

α(φ)
K

(n)
β (φ, F ) +

δ(φ)

α(x)
K

(n)
δ (φ, F ) (2.43)

The process constructed in the previous section exists uniquely if and only if the

Kolmogorov backward equations have a unique solution. Let Qt(φ, F ) for φ ∈M(S)
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and F ∈ F be the transition function of the process Φ, i.e.,

Qt(φ, F ) = P [Φ(t) ∈ F |Φ(0) = φ]. (2.44)

i.e., the probability of being in F at t knowing that the initial configuration is φ.

Qt should be distinguished from K in the sense that Qt characterizes the transition

after t, while K is the transition kernel after a jump. Then Qt is the solution of

Kolmogorov’s backward equations:

∂

∂t
Qt(φ, F ) = −{β(φ) + δ(φ)}Qt(φ, F )

+ β(φ)

∫
Qt(y, F )K

(n)
β (x, dy) + δ(φ)

∫
Qt(y, F )K

(n)
δ (x, dy) (2.45)

Preston noted that the equation may not possess a unique solution, as the lack

of uniqueness arises from the potential occurrence of an infinite number of jumps

within a finite time with positive probability. However, a specific solution known

as the minimum solution exists, where transitions from one state to another are

achieved after an infinite number of jumps.
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Section 2.4. Device-to-device communication

2.4 Device-to-device communication

2.4.1 Framework and standard development

Device-to-device communication enables direct communication between devices with-

out relying on a central network node or base station. In other words, devices com-

municate with each other directly in a peer-to-peer fashion [32], [33]. This approach

is also known as sidelink communication, which differs from traditional downlink

and uplink communications.

D2D communication was initially introduced as part of Long-Term Evolution

(LTE) by the 3rd Generation Partnership Project (3GPP) in 3GPP Release 12,

and has since been developed as part of both the LTE and 5G standards. The

LTE standard includes a feature called Proximity Services (ProSe), which allows

D2D users to discover other devices in close proximity and communicate with them

directly within a cellular network [34]. ProSe has been enhanced in subsequent

releases to support features such as multicast and group communications.

In addition to ProSe, the 3GPP has developed a sidelink technology called LTE-

V2X in Release 14, which was further enhanced in Release 15 to support LTE

Vehicle-to-Everything (LTE-V2X). This technology uses the sidelink radio interface

to enable direct communication between vehicles and other devices [35]. With the

introduction of 5G New Radio, the 3GPP has developed a new D2D communication

technology called 5G NR V2X under Release 16. This technology uses the sidelink

to enable high-speed, low-latency communication between devices [36], and supports

various use cases such as road safety, traffic efficiency, and infotainment.

5G sidelink builds on the foundation of LTE sidelink and offers many improve-

ments, including lower latency, wider bandwidth, and higher reliability. 5G NR

supports Sidelink since Release 16, and enhanced sidelink capabilities were included

in Release 17 to provide superior resource allocation, improved power savings, and

extended coverage. In recent standard developments for sidelink, device relay has

played a key role in extending coverage and improving performance efficiency.

2.4.2 Classification of D2D communication

D2D communication can be implemented in different modes, as illustrated in Fig-

ure 2.1. In outband mode, D2D communication uses an unlicensed band outside

the cellular spectrum. This avoids interference from the cellular band and is more
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Chapter 2. Mathematical foundations and network backgrounds

Figure 2.1: Classification of D2D communication. (Figure is from [32]).

suitable for wireless applications in the unlicensed band, such as Internet of Things

(IoT). In inband mode, the D2D users and the cellular users share the same spec-

trum resource. The advantage of inband mode is that it can improve the spectrum

efficiency, though interference management remains a problem to be solved. Specif-

ically, one way to employ the inband D2D is the so-called “Overlay D2D”, where

the licensed spectrum is divided into non-overlapping portions allocated to the D2D

users or cellular users. Another method of inband D2D is to underlay the D2D

communication with cellular communication, where D2D users and cellular users

compete to utilize the same spectrum band. Thus a more robust resource orchestra-

tion is needed to guarantee the quality of service of both cellular and D2D users [32].

An important consideration for the application of D2D communication is mode selec-

tion, which involves deciding whether to use the traditional cellular mode involving

the base station or to operate in the D2D mode. Additionally, determining whether

to use D2D communication as inband or outband, and whether to employ under-

lay or overlay techniques, presents a challenge that requires further investigation.

D2D communication in different modes adds varying levels of complexity to network

management. In particular, interference management is a significant challenge that

must be addressed in such studies. The studies in this thesis focus on the outband

mode of D2D communication.

2.4.3 D2D use cases

D2D communication has several potential applications, especially in mobile net-

works, where it can be used for peer-to-peer direct communication or as a relay in

22



Section 2.4. Device-to-device communication

Figure 2.2: D2D applications (Figure is from [32]).

cellular, vehicular, or IoT networks. Below are some examples of D2D applications:

• Proximity-based services (cellular offloading): D2D communication can enable

proximity-based services, including location-based advertising, social network-

ing, and mobile gaming. In this scenario, devices are within the communication

range of the base station and are using the licensed spectrum for D2D com-

munication. This can help with traffic offloading for the cellular network [33].

• Provision of Emergency Services: This type of application scenario occurs

when a user is out of network coverage. D2D communication can provide

direct communication for emergency personnel, allowing for faster response

times and better coordination during emergencies. The device can establish a

D2D link with a device in proximity and relay its transmission to the cellular

network.

• Content sharing: D2D communication can facilitate efficient content sharing

between devices within a local area network, such as sharing photos, videos,

and music files. With D2D communication, users can receive content directly

from the base station and relay it to other nearby users, reducing the burden

on the cellular network and improving the speed of content sharing. This

direct communication between devices can help to reduce latency, resulting in

faster and more reliable content delivery.

• Vehicle-to-vehicle (V2V) communication: V2V communication is a critical

application of D2D communication in the context of 5G NR V2X communi-
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cation. It enables vehicles to communicate directly with each other, sharing

information and coordinating movements to avoid collisions. D2D commu-

nication allows vehicles to establish direct communication links, resulting in

faster communication, lower latency, and better reliability compared to com-

munication through the cellular network. This technology can help improve

road safety and traffic efficiency by enabling real-time communication between

vehicles [36].

2.5 Millimeter wave communication

Millimeter-wave is a portion of the electromagnetic spectrum with frequencies rang-

ing from 30 GHz to 300 GHz. It is a frequency band much higher than the traditional

cellular frequency bands, which typically operate in the sub-6 GHz frequency range.

MmWaves have unique characteristics that make them attractive for wireless com-

munication, such as their large bandwidth and ability to support very high data

rates. The international telecommunication union (ITU) has designated frequency

bands around 60 GHz in different parts of the world. Within the spectrum of mil-

limeter wave, there are several commonly used bands [37]:

• Ka band : 26.5− 40 Ghz

• Q band : 33− 50 Ghz

• V band : 50− 70 Ghz

• W band : 75− 110 Ghz

• D band : 110− 170 Ghz

These licensed spectrums support bandwidths of up to 400 MHz. In the case of

mmWave communication, certain fundamental characteristics arise due to signifi-

cantly shorter wavelengths compared to the sub-6 GHz band. For example, at 28

GHz, the wavelength measures 10.7 mm, at 60 GHz it is 5 mm, and at 300 GHz, it

is 1 mm. The short wavelengths of mmWave offer significant potential for adaptive

mmWave antenna arrays with high gain and compact dimensions, provided that

the distance between antenna elements exceeds half the wavelength. Typically, the

physical size of an antenna is proportional to the wavelength. It is thus possible to

use multiple antennas on the device.
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A frequently discussed challenge in mmWave communication is severe propaga-

tion attenuation caused by millimeter waves. Due to their small wavelength, they

are easily absorbed by rain and the atmosphere. It is crucial to study the mmWave

channel propagation characteristics for developing 5G wireless communication sys-

tems. Large-scale path loss is used to model communication systems across varying

distances and frequencies. One common path-loss model is the close-in (CI) free

space reference distance model [38], which is a log-distance path loss model shown

as follows:

PL(f, d)[dB] = FSPL(f, 1m)[dB] + 10α log10(d) + χσ (2.46)

where α denotes the path-loss exponent,f denotes the frequency, FSPL(f, 1m) =

20 log10(
4πf
c

)) denotes the free space path-loss in dB at a reference distance 1 m,

and c is the speed of light. The path-loss exponent at 28 GHz in urban microcell

environment is around 2.3 along the LOS path and is around 2.0 at 73 GHz [39].

Channel coherence time is another significant statistical parameter that describes

the time-varying nature of the channel. It represents the duration during which the

channel impulse response is considered to remain relatively unchanged [9]. According

to Clarke’s model power angular spectrum, the channel coherence time is inversely

proportional to the maximum Doppler frequency, denoted as fd, which is determined

by the frequency and the velocity of motion, given by fd = vf
c

. Consequently,

the Doppler effect is more pronounced in high-frequency spectrum, leading to a

considerably short coherence time. For example, assuming a speed of 10 km/h, the

channel coherence time at 28 GHz is about 0.482 ms [9]. When the frequency is

71 GHz, the coherence time drops to 0.19 ms. These values are much shorter than

a typical slot duration of 1 ms.

Overall, it is necessary to consider the specific characteristics of mmWave tech-

nology when studying the network performance of mmWave networks.

2.6 Beamforming

The basic idea of beamforming involves manipulating the phase and amplitude of the

signal transmitted by an array of antennas to create a beam or pattern of radiation

in a specific direction. This enables mmWave signals to be transmitted and received

with higher gain, signal-to-noise ratio, and resistance to interference and blockage.

The beam shape can be either static or dynamically varying. In cellular networks,
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Figure 2.3: Beamforming architectures: (a) Digital beamforming, (b) Analog beamform-

ing, (c) Hybrid beamforming. (Figure is from [41])

static beamforming is commonly used with a narrow main beam in the vertical

domain and a wide sector coverage in the horizontal domain to serve multiple users

simultaneously, known as multi-user beamforming. On the other hand, dynamic

beamforming provides more flexibility in tailoring the beam shape to suit different

scenarios, taking into account the mobility of objects and channel variations [13].

In analogue beamforming, several antenna elements are connected via phase

shifters to a single radio-frequency chain, in which only the phase of the signals

can be adjusted at each antenna element to form a single beam. The codebook

of beamformers, usually constructed based on digital Fourier transform, shapes a

beam whose main lobe points at the target user. Analogue beamforming is one of

the simplest methods to implement beamforming, and it can be implemented at

both transmitter and receiver sides with low cost and low complexity. In mmWave

propagation, the multipath scenario is less prominent compared to sub-6G spec-

trum communication, resulting in less diversity gain to exploit. Therefore, analogue

beamforming is well-suited for line-of-sight (LOS) scenarios in mmWave communi-

cation.

However, under the context of more complicated channel conditions with multiple

paths, analogue beamforming is no more optimal. Digital beamforming [40] has more

flexibility. The amplitude and phase variation is done in the baseband by digital

precoding and each antenna element of the array is equipped with an radio-frequency

chain that can multiply a weight to its signal. Therefore, multiple streams can be

sent simultaneously, and there is no more typical beam shape under this context. It

also involves the possibility to have different beams for different parts of a frequency

carrier [13]. In contrast to analogue beamforming, digital beamforming suffers from

a higher implementation complexity.
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Figure 2.4: Uniform linear array structure.

In order to combine the economic advantage of analogue beamforming and the

flexibility of digital beamforming, hybrid beamforming is proposed [42]. Such beam-

forming has fewer radio-frequency chains than digital beamforming, where a phase-

shifter connects different radio-frequency chains and antenna elements. To sum up,

hybrid beamforming aims at balancing the complexity vs. performance tradeoff

between digital beamforming and analogue beamforming.

2.6.1 Uniform linear array

A uniform linear array (ULA) is a type of antenna array where a number of indi-

vidual antennas are placed in a straight line with equal spacing between adjacent

elements. Each element of the array receives signals with slightly different phase

shifts, resulting in a focused radiation pattern in a particular direction. A ULA is

commonly used in applications such as radar systems, direction finding, and wire-

less communication systems, where high directional gain and spatial selectivity are

required. The performance of a ULA depends on the spacing between the antennas,

the frequency of operation, and the number of elements in the array. By adjusting

the phase and amplitude of the signals, a beam can be formed that is focused in a

specific direction, maximizing the signal strength in that direction while minimizing

it in other directions. Thus, a ULA is an ideal array geometry for beamforming due

to its inherent structure and the ability to manipulate the signals received by each

element in the array.

As shown in Figure 2.4, for each one-diemensional array, n antenna elements are

aligned along a straight line and are uniformly spaced with distance d. Considering

the arrays at the transmitter side first, in the direction θ with respect to the axis of

the ULA, the far-field pattern fTa of the array is the sum of n plane waves emitted
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Figure 2.5: Power pattern of ULA.

by each element:

fTa (θ) =
1√
n
fe(θ)

n∑
i=1

aie
j((i−1)kd cos θ) (2.47)

where fe(θ) is the field pattern at every antenna element; k = 2π/λ where λ is the

wavelength and ai is a phase offset applied at antenna element i. The term 1/
√
n is

a normalization factor to account for the power split among the n antenna elements.

Choosing ai = e−j((i−1)kd cos θT0 ) as a beam steering vector, where θT0 is the boresight

direction of the ULA. Then the power gain gTa (θ, θT0 ) = |fTa (θ)|2 is given by:

gTa (θ, θT0 ) =
1

n
ge(θ)

∣∣∣∣∣sin(nk d
2
(cos θ − cos θT0 ))

sin(k d
2
(cos θ − cos θT0 ))

∣∣∣∣∣
2

(2.48)

where ge(θ) is the power pattern of an antenna element. The maximum array factor

gain for the transmitter is achieved for θ = θT0 [43]. Thus, the maximum gain of the

transmitters antenna is gTa (θT0 , θ
T
0 ) = gen.

Now for the receiver antenna, there is no need to divide the power into n parts.

So the power of the received signal is given by:

gRa (θ, θR0 ) = ge(θ)

∣∣∣∣∣sin(nk d
2
(cos θ − cos θR0 ))

sin(k d
2
(cos θ − cos θR0 ))

∣∣∣∣∣
2

(2.49)

Similarly, the maximum array factor gain is achieved for θ = θR0 . Then, the maxi-

mum gain is gRa (θR0 , θ
R
0 ) = gen

2.

Figure 2.5 displays the power pattern of a transmitter, expressed by formula

(2.48), for varying numbers of antenna elements. In Figure 2.6, this pattern is

presented in polar coordinates. The figure demonstrates that as the number of

antennas increases, the maximum power of the ULA also increases, but the main
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Figure 2.6: Power pattern of ULA in polar coordinate.

beam becomes narrower. This change can lead to better signal quality and reduced

interference in wireless systems.
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Chapter 3

Spatio-temporal wireless D2D

network With beamforming

In this chapter, we investigate the beam misalignment impacts of a dynamic D2D

communication network, where both transmitters and receivers adopt beamforming

by using ULA. A time continuous dynamic model is adopted for this analysis. We use

tools of stochastic geometry and the Miyazawa rate conversation law to analyse the

stability condition of such a network. An analytical expression of the critical arrival

rate is given under a uniform or truncated Gaussian alignment error assumption.

Our analytical and numerical findings demonstrate that in the case of perfect beam

alignment, the critical arrival rate can grow indefinitely with an increasing number

of antenna elements. However, when the beam alignment is imperfect, the critical

arrival rate no longer exhibits an unbounded increase. Closed-form expressions of

the upper bounds for critical arrival rates are given for both the uniform and the

truncated Gaussian misalignment models.
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3.1 Introduction

Device-to-device communications emerge as a promising technology to improve the

spectral efficiency of next generation cellular networks. Since it allows direct com-

munication between nearby devices, this technique is the basis of new proximity

based services. As the number of D2D transmissions increases, it becomes more

and more difficult to meet stringent quality of service requirements, such as those

foreseen for URLLC in 5G.

A solution to improve the networks performance is beamforming. Several papers

in the literature show the great potential of beamforming for D2D communications

for reducing interference and improving network throughput, see e.g. [11][12]. It is

still an open issue to study the randomness of large scale networks with D2D commu-

nication, when there are massive access of random located users using beamforming

with various communication demands.

Since the main lobe of the beam usually is narrow, it is evident that the mis-

alignment error can cause significant impacts on the performance of the network.

However, due to the estimation errors of the directions and other hardware limi-

tations, the beam alignment error cannot be neglected. Paper [5] shows that for

a Poisson bipolar network, the beam alignment error can significantly impact the

throughput and the coverage. Similar works are done to evaluate the coverage and

rate performance of D2D or cellular networks in the presence of beam alignment

error [44], [45]. Besides the flat-top antenna power pattern model proposed in [46],

paper [5] also models the directional antenna pattern using a cosine function in order

to obtain a more accurate array power pattern. A uniform beam alignment error

model and a Gaussian beam alignment error model are studied in [5], [44].

Most existing works that study the QoS of D2D communication focus on the

analysis of rate and coverage [6], [47]. These works study the average performance

of the network, given a static configuration of device locations. The methods of

stochastic geometry are applied in these studies. Some works study more dynamic

cases [48] [49], where each device has a dynamic queue of packets to transmit.

In these works, networks are modeled as classical queue interacting problems [50],

where time is slotted and thus considered as discrete. A weakness of this model lies

in the constant number of users throughout time. In a more realistic network model,

users arrive at random locations, at random time instants, with a random amount

of data to be transmitted and leave the network when the transmission is over.
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Thus, a spatial birth-death wireless network [20] is proposed to model this network

as a continuous-time spatial birth-death process [21], which is briefly introduced in

chapter 2. The stability condition of a a spatial birth-death wireless network is given

in [20] without considering the application of beamforming.

3.2 Contributions

Here, we extend the results of [20] to D2D networks equipped with directional an-

tenna arrays and the impacts of imperfect beam alignment is considered. Our con-

tributions can be summarized as follows:

• We propose a beamforming model for D2D communications based on the ULA

model, which is tractable from a stochastic geometry point of view.

• We propose a uniform beam alignment model and a truncated Gaussian beam

alignment model for continuous-time spatial birth-death D2D networks.

• We derive new critical arrival rates for this D2D network as a function of the

number of antenna elements by considering the aforementioned beam align-

ment models. For each beam alignment error model, a closed-form expression

of the critical arrival rate’s upper bound is given.

• Our analytical and numerical results show that beamforming extends the sta-

bility region of D2D networks and the critical arrival rate is increasing with

the number of antennas.

• Our analytical and numerical results also show that the beam misalignment

reduces the stability region of D2D networks with beamforming. Although we

confirm that the critical rate is an increasing function of the number of anten-

nas, we highlight an upper bound which depends on the antenna alignment

error amplitude.

In the rest of this chapter, we introduce the system models in section 3.3. Section

3.4 presents the stability criteria. Section 3.5 derives upper bounds of the critical

arrival rate. The numerical results are shown in section 3.6. Section 3.7 concludes

the chapter.
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3.3 System Model

3.3.1 Spatial birth-death process

Chapter 2 has given a general introduction to the spatial birth-death process. Here,

we present its application to model a dynamic wireless network. The spatial birth-

death process is a generalized birth-death process that considers the spatial loca-

tions of the individuals. Specifically, the birth rate and the death rate of the process

depend on the spatial configuration of the individuals at each time instant. Con-

sider a 2-dimension Poisson bipolar network, as shown in Figure 3.1 [18], where the

transmitter-receiver D2D user pairs live in a two-dimensional Euclidean plane S,

S ⊂ R2. Each transmitter has a file of random size to transmit to its associated

receiver. This network is categorized as a birth-death process since the time instants

at which it appears and leaves the network are random for each pair. We use the

Poisson process with arrival rate λ|S| to model the ‘birth’ (or arrival) time instants

of the transmitter-receiver pairs, where λ ∈ R+ is the arrival rate per unit of area.

Once a pair appears in the network, it starts the file transmission. For all the

pairs, the file size is assumed to be an i.i.d. random variable following an exponential

law of mean L bits. The transmission rate of each pair is dynamic following the

Shannon rate, where the interference comes from other active pairs. When the

transmission is finished, the pair leaves the network immediately. The sojourn time,

denoted by Ws, is defined as the time interval from the ‘birth’ to the ‘death’ of each

D2D pair. Moreover, the appearing positions of the transmitter-receiver pairs also

form a homogeneous Poisson point process. We assume that the transmitter devices

are uniformly distributed on the disks centered around the receivers of radius r,

where r is supposed to be a constant in our studies.

The spatial birth-death process is known to be a continuous-time Markovain

chain (CTMC) [21], whose states are the position configurations of the pairs. At

each time instant t, the positions of pairs can be interpreted as a marked point

process Φt =
Nt∑
i=1

δ(xi, yi), where Nt = Φt(S) is the number of active pairs in the

plane at time t; xi denotes the position of the i-th active receiver; the mark yi

denotes the transmitter location of the i-th pair; δ(·) is the Dirac measure. Thus

the process Φt(S) is a classical birth-death process defined as a counting measure.
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3.3.2 Beamforming

We consider a point-to-point system in free-space with LOS propagation. Both the

transmitter and the receiver sides are equipped with 1-dimensional ULA. For each

array, n antenna elements are aligned along a straight line and are uniformly spaced

with distance d. The model of ULA has been presented in chapter 2. Here we

recall its power patterns. Considering the arrays at the transmitter side first, in the

direction θ with respect to the axis of ULA, the power gain gTa (θ, θT0 ) = |fTa (θ)|2 is

given by:

gTa (θ, θT0 ) =
1

n
ge(θ)

∣∣∣∣∣sin(nk d
2
(cos θ − cos θT0 ))

sin(k d
2
(cos θ − cos θT0 ))

∣∣∣∣∣
2

(3.1)

where ge(θ) is the antenna power pattern. If we assume a rectangular patch antenna,

the antenna radiation pattern is hemispheric and has a directivity of 2 [22]. Hence,

we now assume d = λ/2 and the power pattern of an antenna element ge is defined

as follows:

ge(θ) =

2, θ ∈ [0, π]

0, otherwise
(3.2)

The maximum array factor gain for the transmitter is achieved for θ = θT0 [43].

Thus, the maximum gain of the transmitters antenna is gTa (θT0 , θ
T
0 ) = 2n. For the

receiver antenna, the power of the received signal is given by:

gRa (θ, θR0 ) = ge(θ)

∣∣∣∣∣sin(nk d
2
(cos θ − cos θR0 ))

sin(k d
2
(cos θ − cos θR0 ))

∣∣∣∣∣
2

(3.3)

We use the same value of ge as in (3.2). Then, the maximum gain is gRa (θR0 , θ
R
0 ) = 2n2.

3.3.3 Beam alignment error distribution

We now align the direction of the array’s maximum radiation at the transmitter side

to the direction of its associated receiver by setting θT0 to be the angle of departure

(AoD) ξ with respect to the array’s axis. At the receiver side, we set θR0 = ψ to align

the main beam of the receiver towards its transmitter, where ψ is the angle of arrival

(AoA) with respect to the axis of ULA. To simplify the calculation, we suppose that

all the antenna arrays are set to be broadside array antennas, where θT0 = θR0 = π/2.

Devices then try to adjust their directions so that the axes of the corresponding

antenna arrays are parallel to each other and the main lobes are aligned with each
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other. However, due to potential errors in the estimation of AoD and AoA, the

main antenna lobes may not be perfectly aligned (see Figure 3.3, where the BAE is

denoted as e). Hence, we assume that ξ and ψ are two random variables with the

same mean of π/2. In other words, we suppose that there are estimation errors for

the exact directions of the devices. The center of the error regions is the main beam

directions of the concerned devices. Moreover, the alignment error distribution is

supposed to be identical not only for both transmitter and receiver sides but also

for all the device pairs. This assumption is reasonable since all the devices are i.i.d.

distributed with similar environmental conditions in the network.

xj

xi

ψij

e

yi

yje
ψ e

ξij

ξ

e

Figure 3.3: Two D2D transmitter-receiver pairs at [xi, yi] and [xj , yj ]. For each re-

ceiver/transmitter, ψ/ξ represents the AoA/AoD of the plane wave from/to the corre-

sponding transmitter/receiver, which has an error difference e with its maximum radia-

tion direction (broadside direction in the figure). ψij/ξij is the direction of interfering

transmitter/receiver.

Denote the probability density function (PDF) of ξ as fξ and the PDF of ψ as

fψ. Then the mean of transmitter’s antenna gain in the direction ξ is:

E[gTa (ξ, θT0 )] =

∫ π

−π
gTa (x, θT0 )fξ(x)dx (3.4)

The mean of the receiver’s antenna gain at the direction ψ is:

E[gRa (ψ, θR0 )] =

∫ π

−π
gRa (x, θR0 )fψ(x)dx (3.5)

Two beam alignment error distributions are studied in this paper, namely the

uniform distribution and the truncated Gaussian distribution.
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Uniform beam alignment error

We assume that the error occurs with the same likelihood in a certain error region.

This model is used where only some prior information about the error limits are

known. Thus we have ξ ∼ U(θT0 − ϵ, θT0 + ϵ) and ψ ∼ U(θR0 − ϵ, θR0 + ϵ), where ϵ is

the error limit.

Truncated Gaussian beam alignment error

According to the central limit theorem, the Gaussian distribution can properly es-

timate the beam errors induced by multiple independent sources. We assume that

the errors have a span from −π to π. The PDF of ξ can be expressed by using the

truncated Gaussian distribution [51]:

fξ(x) =
1√
2πσ

exp(−1
2
(
x−θT0
σ

)2)

erf( π√
2σ

)
, x ∈ [θT0 − π, θT0 + π] (3.6)

Similarly, we have fψ(x) of the same form:

fψ(x) =
1√
2πσ

exp(−1
2
(
x−θR0
σ

)2)

erf( π√
2σ

)
, x ∈ [θR0 − π, θR0 + π] (3.7)

where erf(·) is the Gaussian error function defined as erf(x) = 2√
π

∫ x
0
e−t

2
dt.

3.3.4 Transmission rate

Consider a Line-of-Sight propagation environment with no multi-path fading. We

denote the path-gain function as ℓ(·) : R → R. All the transmitter devices use

the same frequency and have the same transmission power P . Let GT
ij denote the

antenna gain of a transmitter located at yj, in the direction of a receiver located

at xi. The corresponding antenna gain of the receiver at xi for the same path is

denoted as GR
ij. As shown in Figure 3.3, for a plane wave departing from yj towards

xi, the AoD and the AoA with respect to the axis of ULA are denoted as ξij and

ψij, respectively. Hence we have GT
ij = gTa (ξij, θ

T
0 ) and GR

ij = gRa (ψij, θ
R
0 ). Thus the

interference at a receiver located at xi can be written:

IBF (xi,Φt) =
∑

[xj ,yj ]∈Φt,i ̸=j

GT
ijG

R
ijPℓ(∥xi − yj∥) (3.8)

Let B denotes the bandwidth and N0 denotes the noise power density. The expres-

sion of the transmission rate for a pair at [xi, yi] is:

RBF (xi,Φt) = W log2

(
1 + P

GR
iiG

T
iiℓ(r)

N0W + IBF (xi,Φt)

)
(3.9)
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Note that GT
ii = gTa (ξ, θT0 ) and GR

ii = gRa (ψ, θR0 ).

3.4 Stability criterion

Since a spatial birth-death process can be characterized as a Markov chain, it is

crucial to know whether it has a stationary regime. The critical arrival rate λc is

defined as the threshold of arrival rate such that the spatial birth-death process Φt

is stable if and only if λ < λc. In [20], a closed-form expression of the critical rate

is given for the network that we describe in section 3.3.1 without beamforming:

λc =
Wℓ(r)

ln(2)La
, (3.10)

where a =
∫
S
ℓ(∥x∥)dx. In other words, all the users in such a network can finish their

file transmissions within the limit time interval, if and only if λ < λc. Otherwise, the

system is unstable, and the number of active pairs tends to infinity. In this work,

we extend the stability criteria to the network under the beamforming paradigm

in section 3.3.2, and calculate the critical arrival rate for the case with or without

beam misalignment.

Proposition 12. The critical arrival rate under the beamforming paradigm in sec-

tion 3.3.2 for the case without beam misalignment is given as follows:

λBFc (n) =
GR
maxG

T
maxWℓ(r)

ln(2)LE[aBF ]
(3.11)

where GR
max = 2n2 and GT

max = 2n. E[aBF ] is the integral over S of the path-gain

function amplified with BF:

E[aBF ] =
a

4π2

∫ π

−π
gTa (θ, θT0 )dθ

∫ π

−π
gRa (η, θR0 )dη (3.12)

Proposition 13. For the network with the beam misalignment, the new critical

arrival rate can be expressed as follows:

λ̂BFc (n) =
E[gTa (ξ, θT0 )]E[gRa (ψ, θR0 )]Wℓ(r)

ln(2)LE[aBF ]
(3.13)

where E[gTa (ξ, θT0 )] and E[gRa (ψ, θR0 )] are given by (3.4) and (3.5), which are functions

of n.
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Chapter 3. Spatio-temporal wireless D2D network With beamforming

Theorem 14. Assuming the ULA model with n antenna elements, when there is no

beam alignment error, the spatial birth-death process Φt admits no stationary regime

if λ > λBFc (n). When there is beam alignment error, the spatial birth-death process

Φt admits no stationary regime if λ > λ̂BFc (n).

Proof: See Appendix A.

3.5 Performance analysis

According to formula (3.11), the critical arrival rate rises as a function of the number

of antenna elements n if there is no beam alignment error. For the extreme case,

λBFc can increase to infinity when n tends to infinity. In contrast to this result, we

will show that the critical arrival rate λ̂BFc can no longer increase without limit,

considering the imperfect beam alignment.

3.5.1 Uniform beam alignment error

When the error is limited in a region [−ϵ, ϵ] and θT0 = θR0 = π
2
, the critical arrival

rate can be expressed as follows:

λ̂BFc (n) =


π2λc
ϵ2


∫ π/2+ϵ
π/2−ϵ

∣∣∣ sin( 12nπ cos θ)

sin( 1
2
π cos θ)

∣∣∣2 dθ∫ π
0

∣∣∣ sin( 12nπ cos θ)

sin( 1
2
π cos θ)

∣∣∣2 dθ


2

, ϵ ≤ π/2

π2λc
ϵ2

, ϵ > π/2

(3.14)

Since the part in the brackets is less than 1, the critical arrival rate λBFc has an

upper bound:

λ̂BFc (n) ≤ π2λc
ϵ2

(3.15)

3.5.2 Truncated Gaussian beam alignment error

When the errors have distributions given by (3.7) and (3.8), the critical arrival rate

can be expressed as follows:

λ̂BFc (n) =
2πλc

σ2erf 2( π√
2σ

)
×

∫ π
0

∣∣∣ sin( 12nπ cos θ)

sin( 1
2
π cos θ)

∣∣∣2 exp(−1
2
(
θ−π

2

σ
)2)dθ∫ π

0

∣∣∣ sin( 12nπ cos θ)

sin( 1
2
π cos θ)

∣∣∣2 dθ


2

(3.16)
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Figure 3.4: β as a function of time when λ = 32λc (a), and when λ = 38λc (b), where

n = 4, λBFc = 35.35λc.
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Figure 3.5: Average of sojourn time Ws as a function of λ with n = 4.

Since the exponential coefficient in the brackets is non-negative and less than 1, λ̂BFc

has an upper bound as follows:

λ̂BFc (n) ≤ 2πλc
σ2erf 2( π√

2σ
)

(3.17)

3.6 Numerical results

In this section, we numerically illustrate our theoretical results. Our simulator works

on a square plane S = [−Q,Q]2, Q ∈ R+. As explained in section 3.3.1, there are

two types of events in a spatial birth-death process: arrivals of new device pairs and

departures of pairs that have finished their transmissions. The configuration of Φt

only changes when these two events arise, so do the transmission rates of the device

pairs. The ‘birth’ events follow a Poisson process of rate λ|S|, so the inter-arrival
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Chapter 3. Spatio-temporal wireless D2D network With beamforming

time ta follows the exponential law of mean 1
λ|S| in seconds. The time interval td from

time t to the next ’death’ is estimated as the minimum delay that any pair finishes

its file transmission using the transmission rate imposed by Φt. So the mechanism

of the simulator states that, after each ’birth’ event, we compare ta and td. Once

ta is less than td, we add a new device pair at a random position in S. Otherwise,

we delete the pair that finishes its transmission. We then update the transmission

rates, the remaining file sizes, and the time interval to the next ‘birth’ or ‘death’.

The total number of active pairs Φt(S) and the time t are recorded when these

events occur. For each pair, we adopt (3.10) to calculate the transmission rate. The

AoDs ξ and AoAs ψ are set to be random variables whose means are θT0 and θR0

(θT0 = θR0 = π/2).

We simulate the birth-death process Φt in forward time, based on the system

model described in section 3.3.1. In order to avoid border effects, the network area

is transformed in a torus. If Φt is stable then it admits a stationary regime Φ0.

We denote β the intensity of this spatial point process Φ0. The value of β can be

estimated by observing the value E[Φ
0(S)
∥S∥ ]. We can thus observe the sample path

of the intensity function β(t) = Φt(S)
∥S∥ , which is a time series. If the time average

value of β(t) converges to be a constant, the process Φt is ergodic and has a unique

stationary regime. This is known to be the first order property of the stationary

point process [52].

The form of the path-loss function ℓ(·) should be carefully chosen to keep the

value of a =
∫
x∈S ℓ(∥x∥)dx bounded. In our simulation we take a bounded path-loss

model ℓ(r) = (1 + r)−4. The network plane S is considered to be a square centered

at the origin. The length of S is 2Q and Q = 10 meters in our simulation. The

pair distance r is chosen as 1 meter. The average file size is L = 1 Mbits. Other

parameters are the bandwidth W = 1 MHz, the noise power WN0 = −100 dBm,

and the transmission power P = 20 dBm.

3.6.1 Impact of beamforming without misalignment

We first consider the D2D network with perfect aligned beamforming. In Figure 3.4,

we show a case where the number of antenna elements is n = 4. According to (3.11),

we get λBFc ≈ 35.35λc. In Figure 3.4 (a), we set λ = 32λc. The blue curve shows the

intensity function β(t), and the red curve is its time average trajectory expressed

as β̄(t) =
∫ t
0 β(t)

t
. It illustrates clearly that Φt admits a stationary regime, since β̄(t)
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Figure 3.6: Critical arrival rates λBFc (n), λc and λ
BF
c (n)/λc as a function of n.

reaches a limit. When the arrival rate exceeds λBFc (n), like in Figure 3.4 (b), where

λ = 38λc, the Markov chain is not time ergodic and β(t) grows indefinitely. This is

due to the fact that the increase of arrivals causes more interference in the network

which reduces the total network throughput, to such extent that the load exceeds

the network capacity.

Another approach to verify the stability of the process is to study the sojourn

time Ws. According to the little law, β = Wsλ when this system queue is stable.

This means that Ws should be bounded to keep β bounded. The average of Ws

taken among all the pairs in one realisation is shown in Figure 3.5. The average of

Ws goes to be infinity when the arrival rate gets close to λBFc (n), which verifies our

stability condition.

The impact of beamforming is significant in terms of the expansion of the stability

region. In Figure 3.6, we show λBFc (n) and λc as functions of the number of antenna

elements n, where λc is a constant. The value of λBFc (n) increases dramatically when

n increases, since (3.11) is an increasing function of n.

3.6.2 Impact of beam misalignment

In Figure 3.7, we show β(t) as a function of time (blue curves), and the moving

average of β(t) (red curves), where the uniform beam alignment error is taken into

account. It is shown in Figure 3.7(a) that β(t) doesn’t grow indefinitely to infinity

when λ is less than λ̂BFc , which illustrates that Φt is stable. Figure 3.7(b) shows that

the population of active pairs in the plane and β tends to infinity when λ > λ̂BFc .

Thus, we confirm the result of Theorem 14 and the expression of λ̂BFc in (3.14). In the

same way, we confirm the expression of the critical arrival rate λ̂BFc given in (3.16)
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Figure 3.7: System intensity β as a function of time for network with Uniform beam

alignment error. (a) λ = 0.9λ̂BFc ; (b) λ = 1.1λ̂BFc , where ϵ = 0.2π, n = 4, λ̂BFc = 1.8258

(λBFc = 12.9721 without misalignment).
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Figure 3.8: System intensity β as a function of time for network with truncated Gaussian

beam alignment error. (a) λ = 0.9λ̂BFc ; (b) λ = 1.1λ̂BFc , where σ = 0.3, n = 4, λ̂BFc =

3.7737 (λBFc = 12.9721 without misalignment).

by Figure 3.8, under the assumption of a truncated Gaussian beam alignment error.

Figures 3.9 and 3.10 show the ratio between the critical arrival rate with beam-

forming λ̂BFc and without beamforming λc for the uniform and truncated Gaussian

beam alignment error models, respectively. The solid red curve assumes a perfect

alignment of beams; it increases and tends to infinity as the number of antenna ele-

ments increases to infinity. This is because when n increases, the maximum antenna

array gain increases and, as the beam becomes thinner, interference is reduced.

When a beam alignment error is assumed, the ratio is still increasing, but it is also

upper bounded by and tends toward a value that depends on the magnitude of the

error. The larger the extent of the error, the lower the upper limit. Suppose the
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error is too high (typically when ϵ > π
2
), beamforming performance is close to the

performance with omnidirectional antennas. We observe that when n increases, even

a small misalignment error degrades the performance significantly. This is due to

the fact that beams are becoming thinner and thinner as n increases, and a small

angle variation implies a drop in the antenna gain. We conclude that the spatial

multiplexing gain of ULA is limited when the beam alignment is not perfect.

Figure 3.11 illustrates that under the context of uniform misalignment, λ̂BFc

decreases when we extend the size of the error region. When ϵ = π, the difference

between the broadside direction and the AoD/AoA of the associated device can be

any value between [0, 2π]. The arrival rate that the system can support is the same
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network with Gaussian beam alignment er-

ror.

as with a single antenna system in this case (λ̂BFc /λc tends to 1). For the Gaussian

misalignment, the impact of normal deviation σ is studied in Figure 3.12. When

σ is very large, the beamforming pattern can no longer aggregate the power to the

directions of devices. The critical arrival rate with ULA decreases towards λc with

a single antenna as a function of σ.

3.7 Conclusion

This chapter studies the impacts of misalignment for a spatial wireless D2D net-

work equipped with ULA. Both the uniform beam alignment error model and the

truncated Gaussian beam alignment error model are studied. The network is mod-

eled as a spatial birth-death process, which combines stochastic geometry ideas and

the queuing theory methods. Our main contribution is to establish the closed-form

expression for the network’s critical arrival rate as a function of the number of an-

tenna arrays, considering the earlier misalignment models. For each misalignment

model, we derive an upper bound of the critical arrival rate. The critical arrival rate

cannot exceed these upper bounds even though the number of antenna elements in-

creases. The numerical results show that these upper bounds match properly when

the number of antenna elements is large enough.
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Chapter 4

Rate meta-distribution for

mmWave D2D network

In chapter 3, we examined the dynamic D2D communication model with beamform-

ing. In this chapter, our focus shifts to investigating the instantaneous properties

of D2D communication in the mmWave spectrum, specifically emphasizing cover-

age and reliability diversity across various links. Similar to the dynamic model, the

transmitter and receiver sides of users are equipped with directional antennas and

adopt beamforming. By considering the truncated Gaussian misalignment assump-

tion introduced in chapter 3, we derive computationally tractable expressions of the

conditional rate coverage probability’s moments as a function of the number of an-

tenna elements. The beta approximation of the rate meta-distribution is obtained

based on the first and the second moment. The numerical simulations confirm our

analytical results. They show that the coverage performance can deteriorate signif-

icantly due to misalignment. Furthermore, an optimal number of antenna elements

must be chosen to get the best coverage. In addition, there exists an optimal num-

ber of antennas which maximizes the number of users who satisfy the reliability

constraints. This optimal value is a function of the reliability threshold.
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4.1 Introduction

Stochastic geometry is a widely used mathematical tool for evaluating the coverage

and rate performance of wireless networks, see e.g. [16]. While early studies on

D2D focus on the average coverage probability among all users [17], it is essential in

the context of URLLC to consider the distribution of the traditional performance

metrics, to know for example the proportion of users meeting reliability require-

ments, as defined for example in [2]. To fully characterize the spatial distribution of

communication reliability, The meta-distribution for D2D communication has thus

been proposed [18]. Initial results have been then extended in the literature. For

example, the meta-distribution of the underlay D2D communication in a cellular

network is studied in [47]. In [46] and [6], the meta-distribution for mmWave D2D

networks are derived, where only the D2D transmitters are equipped with multiple

antennas.

In the existing works that study the meta-distribution of the mmWave D2D

network, the beam alignment is however supposed to be ideal. The maximum array

gain is achieved by steering the main beam in the desired direction during the beam

training period. However, in practice, a small misalignment error may provoke severe

performance deterioration, which is confirmed by the existing works that study

the coverage performance of cellular network [53]. It has also been shown in D2D

networks [54], [55] in terms of coverage probability. Thus the beam alignment error

cannot be neglected and there is no existing work studying the meta-distribution in

conjunction with this type of error.

4.2 Contributions

The contribution of this chapter is summarized as follows:

• We provide a closed-form and computationally tractable formula for all the

moments of the conditional rate coverage probability in D2D networks with

perfect beamforming and antennas at both the transmitter and the receiver

(see Theorem 15). We extend this result to the case of imperfect beamforming

by considering a Gaussian misalignment model (see Theorem 16). The rate

meta-distribution is then approximated using the beta approximation.

• The simulations results show the accuracy of the analytical analysis and show

that the beta approximation provides a good estimate of the meta-distribution.
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They show that the coverage performance can deteriorate significantly due to

misalignment.

• We highlight the existence of an optimal number of antennas that maximizes

the (average) rate coverage probability which depends on the error magnitude.

We also show that there is an optimal number of antennas maximizing the

number of users satisfying a reliability requirement. This optimal number is

dependent on the required reliability.

In the rest of this chapter, we introduce the system model in section 4.3. Sec-

tion 4.4 presents the analytical study of the rate meta-distribution. The numerical

results are shown in section 4.5. Section 4.6 concludes the chapter.

4.3 System model

We study the mmWave D2D network by considering the classical bipolar network

model [18]. The transmitter-receiver pairs are randomly located in a 2-dimensional

space and perform point-to-point data transmissions. The D2D transmitters form a

homogeneous PPP ΦT with intensity λ. Without loss of generality, we assume that

each transmitter has a dedicated D2D receiver uniformly located on the circle around

the transmitter, with a constant radius r. We denote the point process associated

with the receivers by ΦR. A typical receiver is assumed to be at the origin and

attempts to receive the data from the corresponding transmitter. According to the

Slivnyak theorem, the statistical characteristics do not change for a PPP if we add

a point in a particular position [16].

4.3.1 Beamforming

To compensate for the visible mmWave propagation loss, ULA is used at both

transmitter and receiver ends. For each pair, the transmit and receive beams are

required to be aligned toward each other. For the sake of mathematical tractability,

we simplify the actual antenna pattern by the sectorized gain pattern based on

the realistic pattern of ULA introduced in chapter 2. The power pattern ge is the

same as in (3.2). This model consists of a main beam and a side beam as shown

in Figure 4.1. The main beam gain is precisely the real maximum gain of ULA.

The side beam gain is calculated without changing the average radiation intensity.
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Figure 4.1: ULA power pattern (solid line) and sectorized beamforming pattern (dotted

line).

Both transmitter and receiver antenna arrays have the same half power beamwidth

(HPBW) ω, which corresponds to the angular aperture of the main beam. For a

ULA with n antenna elements, the HPBW can be expressed as a function of n as

follows:

ω(n) = 2

(
π

2
− arccos

2.784

nπ

)
(4.1)

Let GT
max and GT

min represent the antenna gains of the main and side beams at

transmitter’s side. Respectively, we use GR
max and GR

min to denote the antenna gain

of the main and side beams at receiver’s side. Specifically, we have

GT
max = 2n

GT
min = ρ(n)

GR
max = 2n2

GR
min = nρ(n)

(4.2)

Here ρ is a function of n as shown in (4.3):

ρ(n) =

∫ π
0

2
n

∣∣∣ sin( 12nπ cos θ)

sin( 1
2
π cos θ)

∣∣∣2 dθ − 2nω(n)

π − ω(n)
(4.3)

To sum up, the array gain of a transmitter can be expressed as follows:

gTa (θ, θT0 ) =


GT
max, 0 ≤ |θ − θT0 | ≤ ω/2

GT
min, ω/2 ≤ |θ − θT0 | ≤ π/2

0, otherwise

(4.4)
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Figure 4.2: Two D2D transmitter-receiver pairs (blue and rose) with misalignment.

where θ is the AoD of the plane wave with respect to the linear array’s axis. We

denote θT0 as the boresight direction of the transmitter array (main lobe direction),

which is decided by the beamformer. Respectively, the array gain of a receiver

gRa (θ, θR0 ) has a main lobe of gain GR
max within the same HPBW around its boresight

direction θR0 , and a sidelobe of gain GR
min. The proof of (4.1)-(4.3) are presented in

Appendix C.

4.3.2 Misalignment model

Consider a typical receiver device at origin O. Then ψo is the AoA of the plane

wave from its corresponding transmitter regarding the receiver antenna array’s axis.

Moreover, ξo is the AoD to the transmitter array’s axis. We choose θT0 = θR0 = π/2

to ensure that the antenna arrays are broadside antennas (boresight direction is

perpendicular to the axis). Ideally, the transmitter and receiver should be face-to-

face to align their main lobes of beams to each other. That is to say ψo = ξo = π/2.

Nevertheless, the alignment is often not perfect in reality, so there is an alignment

error e as shown in Figure 4.2. Thus ψo and ξo can be modelled as random variables

whose means are θR0 and θT0 . According to the central limit theorem, the truncated

Gaussian distribution is a properly estimation of the alignment errors induced by

multiple independent sources. We assume that the errors have a span from −π to

π. The PDF of ξo or ψo can thus be expressed by using the truncated Gaussian
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distribution [51]:

fξ(x) =
1√
2πσ

exp(−1
2
(
x−θT0
σ

)2)

erf( π√
2σ

)
, x ∈ [θT0 − π, θT0 + π] (4.5)

4.3.3 Channel model

For a typical active receiver located at the origin O and its corresponding transmitter

at xo, the total antenna gain of this link is:

Go(ξo, ψo) = gRa (ψo, θ
R
0 )gTa (ξo, θ

T
0 ) (4.6)

Consider a link between a receiver located at origin O and an interfering transmitter

located at x. As shown in 4.2, ψx is the AoA with respect to receiver’s array axis,

and ξx is the AoD with respect to transmitter’s array axis. Then the antenna gain

of this link can be expressed as follows:

Gx(ξx, ψx) = gRa (ψx, θ
R
0 )gTa (ξx, θ

T
0 ) (4.7)

We are interested in the Shannon rate R:

R = W log2(1 +
PhxoGo(ξo, ψo)ℓ(r)∑

x∈Φ\xo PhxGx(ξx, ψx)ℓ(|x|) +N0W
) (4.8)

where ℓ(·) is the path gain function: ℓ(x) = x−α. The small-scale fading coefficient

associated with the link from the transmitter at x to the receiver at origin is denoted

by hx, which has an exponential distribution with unit mean (Rayleigh fading).

Moreover, all users transmit with the same power P . The noise power isN0W , where

N0 and W are the noise power spectral density and the bandwidth, respectively.

4.4 Meta distribution

The meta-distribution defined in [18] describes the spatial distribution of the devices’

communications’ reliability. Similar to the definition in [56], we define the rate meta-

distribution as a two-parameter distribution function as follows:

F̄Ps(η)(ϵ)
∆
= P!(Ps(η) > ϵ), ϵ ∈ [0, 1], η ∈ R+. (4.9)

where Ps(η) is the conditional rate coverage probability or the conditional success

probability:

Ps(η)
∆
= P(R > η|ΦT ,ΦR) (4.10)
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The classical coverage probability is its mean. The notation P! denotes the Palm

measure of {ΦT ,ΦR}, given that there is an active receiver at the prescribed loca-

tion. During a long period, users may experience different communication condi-

tions. Thus the conditional rate coverage probability describes the temporal success

probability of a certain user. We call the threshold ϵ as the reliability threshold of

the network. It is assumed that the communication is reliable if the probability of

the user getting a rate higher than η is larger than ϵ. Then the rate meta-distribution

F̄Ps(η)(ϵ) is designed to characterize the spatial distribution of reliability.

4.4.1 Moments of the conditional rate coverage probability

Theorem 15. Consider a D2D network with the BF model introduced in Section 4.3.

If the beam alignment is perfect, the b-th moment of the conditional rate coverage

probability Mb(η) has the following expression:

Mb(η) = exp

(
−bη′ N0W

PGo(ξo, ψo)

)
exp(−λQb(η)) (4.11)

where η′ = 2
η
W −1
ℓ(R)

, and Qb(η) is a function of b and η:

Qb(η) = lim
T→∞

T δδπ

4

∞∑
n=1

(
b
n

)
(−1)n+1B(δ, 1)

×
(
p22F1(n, δ, δ + 1,

−Go(ξo, ψo)T

G1η′
)

+ 2p(1− p)2F1(n, δ, δ + 1,
−Go(ξo, ψo)T

G2η′
)

+ (1− p)22F1(n, δ, δ + 1,
−Go(ξo, ψo)T

G3η′
)

)
(4.12)

where p = ω/π, δ = 2/α, G1 = 4n3, G2 = 2n2ρ and G3 = nρ2. Function B(·, ·) is

the Beta function and 2F1(·) is the hyper-geometric function.

Proof. The proof is a special case of the proof of Theorem 16.

4.4.2 Impact of misalignment

We define the matching probability as pma, which refers to the case where ξo (re-

spectively ψo) is within the HPBW around θT0 (respectively θR0 ):

pma =

∫ θT0 +ω
2

θT0 −ω
2

fξodξo (4.13)
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The effective probability pef specifies the probability that ξo or ψo is within [0, π]:

pef =

∫ θT0 +π
2

θT0 −π
2

fξodξo (4.14)

With these notations, we have the following result:

Theorem 16. With beam misalignment, the b-th moment of the conditional rate

coverage probability has the following expression:

Mb = p2ma exp

(
−bη′N0W

PG1

)
exp (−λQb(G1, η))

+2pma(pef − pma) exp

(
−bη′N0W

PG2

)
exp (−λQb(G2, η))

+(pef − pma)2 exp

(
−bη′N0W

PG3

)
exp (−λQb(G3, η)) (4.15)

where Qb(Go, η) has the same expression as the right hand side of the formula (4.12).

Proof. See Appendix D.

4.4.3 Beta approximation

The numerical computation of the exact rate meta-distribution by using Gil-Pélaez

theorem [18] is often difficult. An alternative solution is to approximate it with a

Beta-distribution [18] by matching the first and the second moment as follows:

F̄Ps(η)(ϵ) = 1− Iϵ(
M1M2 −M2

1

M2
1 −M2

,
(1−M1)(M2 −M1)

M2
1 −M2

) (4.16)

where Iϵ(·) is the regularized incomplete beta function [46].

4.5 Numerical results

At the beginning of the simulation, a specific configuration of the network is de-

cided by randomly choosing the locations of the devices, where the location for each

transmitter is uniformly chosen in the plane, and the position of its corresponding

receiver is uniformly chosen on a circle of radius R around it. Assuming such a fixed

spatial configuration, we draw the value of the random variable hx for every link.

The Shannon rate is calculated for each receiver, and we count the number of success

transmissions for each pair for a given rate threshold η. This process is repeated for

sufficient number of iterations in order to get the rate meta-distribution. Network
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Figure 4.3: Mean of Ps(η) as a function of n with misalignment.
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Figure 4.4: Variance of Ps(η) as a function of n with misalignment.

parameters are as follows: W = 1 MHz, α = 3.5, r = 30 m, λ = 0.01 m−2 and

η = 1 Mbps. The standard deviation in Figure 4.6 is σ = 0.05.

Figure 4.3 shows the mean of Ps(η) as a function of n, in presence of Gaussian

misalignment. The solid curves show the analytical results derived from (4.15). The

dotted curves are from the simulations results. The two sets of curves are very close.

When there is no misalignment, the average of Ps(η) is increasing with the number

of antennas. This can be explained by the thinner beams which increase the useful

received signal power while reducing interference. When there are misalignment

errors, the coverage probability is decreasing with the error amplitude. Moreover,

the average coverage probability is characterized by an optimal number of antennas.
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Figure 4.5: Variance of Ps(η) as a function of σ with misalignment.

Thinner beams are indeed more prone to misalignment errors leading to a loss of

coverage when the error is large. The optimal number of antennas is a decreasing

function of the error magnitude due to this effect.

Figures 4.4 and 4.5 show the variance of Ps as a function of the number of anten-

nas and of the error magnitude, respectively. The difference between the simulation

and the analytical results is again relatively small. When σ is small, the variance

is small because the coverage is good enough in most cases. On the contrary, most

users cannot be covered when the error is strong, so the variance is also small. There

is however an intermediate zone where sometimes users are connected, sometimes

not, and the variance is relatively strong. This explains the bell shapes of the curves.

The value of σ, which gives the maximum variance, gets smaller when the number

of antennas increases. This is because the beam is thinner and we thus enter the

intermediate interval with lower errors.

For a given value of the reliability threshold ϵ, we can interpret the meta distri-

bution as follows: There is a proportion 1−FPs(η)(ϵ) of users who meet the reliability

requirement. The function ϵ 7→ 1− FPs(η)(ϵ) is precisely the CCDF of Ps(η), which

is shown in Figure 4.6. The dotted curves are obtained by Monte Carlo simulations,

and the solid curves are the beta approximation results.

First, note that the beta approximation is a sufficiently good approximation to

analyze main performance trends. Curves are decreasing because, if the reliability

threshold increases, there are less and less users meeting the requirement (see (4.9)).

For a fixed threshold ϵ, if a curve is above another, this means that more users are
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Figure 4.6: Meta distribution with misalignment.

meeting the reliability requirement; as a consequence, the higher is the curve, the

more reliable is the network. Having this in mind, we see for example that n = 8

maximizes reliability for ϵ between 0 and 0.9 approximately, but then n = 16 is the

best option. There is thus an optimal number of antennas which depends on the

reliability threshold.

This also illustrates the fact that the best coverage does not always imply the

best reliability. When σ = 0.05, Figure 4.3 shows that 4 antennas leads to a better

average rate coverage than 32 antennas. However, according to Figure 4.6, we find

that 32 antennas can cover more users if the reliability threshold is high enough.

These two metrics can be combined together to evaluate the network performance

comprehensively.

4.6 Conclusion

In this chapter, we study the rate meta-distribution in a mmWave D2D network with

beamforming. Transmitters and receivers are both equipped with multiple antennas.

The impacts of beam misalignment under a truncated Gaussian alignment error

model are investigated. Our analytical and numerical results show a strong impact

of beam misalignment which cannot be neglected in the analysis of coverage and

when requiring a certain reliability. We show that there exists an optimal number

of antennas that maximizes the (average) rate coverage probability. This optimal

number depends on the error magnitude and the rate threshold. We also show
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that there is an optimal number of antennas which maximizes the number of users

satisfying a reliability requirement. Moreover, this optimal number is dependent on

the required reliability.

58



Chapter 5

Beam management for mmWave

URLLC D2D networks

In the previous chapter, we explored the effects of beam misalignment on the rate

meta-distribution in mmWave D2D networks. Our findings revealed a significant

degradation in coverage when misalignment is present. However, the misalignment

was modeled only statistically, without discussing its specific sources. In this chap-

ter, we will delve deeper into this issue by examining the beam alignment induced by

the codebook. Specifically, we study a mmWave D2D network dedicated to URLLC,

where users employ multiple antennas to perform beamforming. The packet trans-

mission process is divided into two phases: a beam training phase, during which

exhaustive beam sweeping is adopted, and a data transmission phase. The chapter

investigates the misalignment error distribution resulting from an imperfect training

phase, due to the finite codebooks resolution and the fast variation of the channel.

For the data transmission phase, closed-form expressions for all the moments of the

rate conditional coverage probability are derived, and the meta-distribution is ap-

proximated using the beta approximation. The study evaluates the overall network

performance through the effective rate meta-distribution, which accounts for the

training overhead and beam misalignment errors. The results show the detrimental

impact of misalignment errors when URLLC requirements are stringent and high-

light the trade-off between the training overhead and the gain brought by multiple

antennas.
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5.1 Introduction

To fully exploit the beamforming gain, the beam directions of D2D devices need to

be steered towards desired directions through a process called beam training. The

success of beam training depends on several factors, including the channel conditions,

the training procedure, or the codebook design. Misalignment errors may thus

occur, which can lead to a degradation of the data transmission performance [54],

[57]. To address these challenges, our study proposes a theoretical analysis of the

communication reliability in mmWave D2D networks in the context of URLLC. Our

approach is based on stochastic geometry. It takes into account beam misalignment

errors due to the beam training process when using mmWaves and the fundamental

trade-off between training overhead and data transmission reliability.

Some papers investigate the effects of beam misalignment, however in an in-

complete way. This is the case for example of [44], where the alignment errors

are modelled using Gaussian or Uniform distributions and where only the aver-

age coverage probability is derived. In the previous chapter, we approximate the

meta-distribution for the mmWave D2D network with imperfect beam alignment by

considering a Gaussian distributed alignment error while assuming Rayleigh fading

channels. These approaches need to be extended to Nakagami-M fading channels,

which are better suited to the prominent LOS propagation of mmWaves and include

both Rayleigh, Rician and more general fading distributions [58, Chap. 3]. They

also need to be extended to realistic misalignment error models derived from the

alignment procedure.

To better model a potential misalignment, several studies [59]–[63] investigate

the probability of misalignment induced during the beam training process. These

works assume an exhaustive search procedure, known as beam sweeping, to sequen-

tially compare all possible transmitter-receiver beam directions. Specifically, the

authors of [59], [60] study the impact of noise and derive upper and lower bounds

for the misalignment probability. These studies are performed for a point-to-point

transmission, while stochastic geometry allows for a system level analysis. Two pa-

pers are analysing beam misalignment in a cellular network context. Reference [62]

studies the impact of user mobility, while the authors of [63] consider the poten-

tial beam misalignment due to the reuse of pilot signals by BSs. However, none

of these works considers the effect of the codebook resolution, of the fast variation

of the channel at mmWave frequencies and none of them studies the effective rate
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meta-distribution, a useful metric for URLLC.

During the beam training process, there is a fundamental trade-off between train-

ing and data transmission: inadequate training may lead to poor channel estimation

and thus to reduced data rate, while excessive training can result in disproportion-

ate overhead. Several works have investigated the joint design of beam training

and data transmission using stochastic geometry. For instance, the authors of [61],

[63] show that narrowing the beam width can enhance throughput, but it can also

prolong beam sweeping time during the initial association process. These works pro-

pose the notion of effective achievable rate to capture the training overhead and a

Signal to Interference plus Noise Ratio (SINR) penalty for the training process. The

former paper focuses on misalignment induced by interference, while the latter ne-

glects misalignment. The reference [62] studies the overhead for beam handovers and

misalignment under a user mobility model, but assumes that beam alignment can

always be completed within a fixed amount of time, ignoring the different time con-

straints for beam sweeping with different beam widths and potential misalignment

due to inadequate training. Furthermore, these studies assume a perfect codebook,

where beams perfectly span the angular aperture without any hole or overlapping

between the beams. In practice, however, the codebook resolution plays an impor-

tant role in the magnitude of the misalignment error. Additionally, all these works

focus solely on the average coverage probability of the network, while the study of

the meta-distribution is required for understanding the network’s performance in a

URLLC context.

5.1.1 Contributions

We propose an analytical methodology based on stochastic geometry to study the

communication reliability of mmWave D2D networks. The main contributions of

the chapter are as follows.

• We propose closed-form formulas for the joint probability mass function of

the antenna gains at the transmitter and the receiver resulting from the beam

sweeping process, assuming any generic small-scale fading distribution, in-

cluding Nakagami-M and any codebook resolution. In the literature, papers

studying this problem ignore the effect of the varying small-scale fading and

the influence of the codebook resolution [59]–[63].

• We derive closed-form formulas for the moments of the meta-distribution of
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the effective rate from which we can derive the beta approximation. This

meta-distribution allows us to obtain statistical latency guarantees for URLLC

communications. In the literature, either authors ignore misalignment errors

or do not provide a closed-form formula for the meta-distribution [61]–[63].

• Via numerical experiments, we highlight the trade-offs between training and

data resources and between the number of antennas and misalignment errors.

We are able to optimize the codebook size and the number of antennas. To the

best of our knowledge, these trade-offs have not been studied in the literature

using the meta-distribution while taking into account the codebook resolution.

The rest of this chapter is structured as follows: In section 5.2, we describe

the system model for mmWave D2D networks with beamforming. In section 5.3,

we present the beam sweeping process and study the effects of misalignment. Sec-

tion 5.4 introduces several performance metrics, including the effective rate meta-

distribution. We then provide mathematical expressions for these metrics in sec-

tion 5.5. The numerical results are presented in section 5.6, followed by our conclu-

sions in section 5.7.

5.2 System model

In this section, we introduce the network model and the codebook-based beamform-

ing model.

5.2.1 Network model

Consider a mmWave D2D network as a classical bipolar network model, where

the D2D transmitters form a homogeneous PPP ΦT with intensity Λ(dx) = λ ×
dx in a 2-dimensional space R2 [16]. Each D2D transmitter is associated with

a dedicated receiver and performs point-to-point data transmissions. The point

process associated with the receivers is denoted by ΦR. We assume that the D2D

receivers are uniformly located on the circles around their dedicated transmitters,

with a constant radius r. Such a process can be interpreted as a marked point

process of ΦT with independent random marks. Hence ΦR is also a homogeneous

PPP [15]. According to the Slivnyak-Meck theorem, the statistical characteristics

do not change for a PPP if we add a typical point in a particular position, or more
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Figure 5.1: Time slot of duration T made of: (i) A beam training phase, which consists

of N2
b mini-slots of duration τ ; (ii) A data transmission phase.

formally, the reduced Palm distribution P!
x(·) of Φ is equal to the original distribution

P(Φ ∈ ·) [24]. For convenience, a typical receiver is assumed to be located at the

origin and attempts to receive the data from the corresponding transmitter. In

order to compensate for the propagation loss of mmWaves, we consider that D2D

transmitters and receivers are equipped with ULA with Na antenna elements, which

allow directional transmissions [22], [43], [64]. Every ULA can be configured with

a codebook, which is a finite set of Nb possible beams pointing in directions that

divide [0, 2π) into equal intervals. We assume that all users are synchronized and

that time is divided into slots of duration T , see Figure 5.1. Each slot consists of a

beam training phase and a data transmission phase. In the beam training phase, the

transmitter and the receiver jointly train the beams from the pre-designed codebook

to choose the best beam pair. The beam training phase is divided into N2
b mini-

slots of duration τ , during which every beam pair is measured before choosing the

optimal one. During the data transmission phase, users employ the beam pair that

provided the highest signal strength during the first phase to send a data file of size

L bits. In the context of URLLC, the time slot can be seen as a time budget for the

transmission of a small packet that should be shared between beam training and

data transmission.

5.2.2 Beamforming and channel model

The channel is modelled with a distance dependent path-loss and small-scale fading.

For a typical receiver located at a distance r from a transmitter, the path-loss is

modelled as ℓ(r) = Kr−α, where α is the path-loss exponent and K is a constant de-

pending on the path-loss reference distance and the carrier frequency [39]. The small

scale fading coefficient h is modelled as a Nakagami-M fading, i.e., h ∼ Γ(M, 1
M

)

where Γ is the Gamma distribution with shape parameter M and rate parameter
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1
M

[58]. The special case M = 1 corresponds to Rayleigh fading. We denote F (·) and

f(·) the Cumulative Distribution function (CDF) and the PDF of h, respectively.

The equivalent channel matrix H ∈ CNa×Na , including the ULA responses, can be

thus written as follows [13]:

H =
√
ℓ(r)hu(ψ)v∗(ξ) (5.1)

where u(ψ) ∈ CNa×1 and v(ξ) ∈ CNa×1 are the array response vectors at the receiver

side and the transmitter side, respectively, ψ is the Angle-of-Arrival (AoA) and ξ is

the Angle-of-Departure (AoD) of the plane wave with respect to the antenna arrays

axis. Taking the phase at the first antenna element as a reference, the array response

vectors can be expressed as follows [63]:

u(ψ) = [1, ej
2πdfc

c
cos(ψ), ej

2πdfc
c

2 cos(ψ), ..., ej
2πdfc

c
(Na−1) cos(ψ)]T (5.2)

v(ξ) = [1, ej
2πdfc

c
cos(ξ), ej

2πdfc
c

2 cos(ξ), ..., ej
2πdfc

c
(Na−1) cos(ξ)]T (5.3)

where d is the distance between the adjacent antenna elements, fc is the carrier

frequency and c is the speed of light. Each device can steer its antenna bore-sight

towards its desired direction. The receiver steers the beam in direction θR with

respect to the antenna arrays axis using a combining vector w(θR). The transmitter

steers the beam in direction θT with respect to the antenna arrays axis using a

beamforming vector f(θT ). We have [13], [43]:

w(θR) = [1, e−j
2πdfc

c
cos(θR), e−j

2πdfc
c

2 cos(θR), ..., e−j
2πdfc

c
(Na−1) cos(θR)]T (5.4)

f(θT ) =
1√
Na

[1, e−j
2πdfc

c
cos(θT ), e−j

2πdfc
c

2 cos(θT ), ..., e−j
2πdfc

c
(Na−1) cos(θT )]T (5.5)

where the 1√
Na

factor is to account for the power split among the Na antenna ele-

ments. Ignoring for now interference, the received signal can be expressed as follows:

y = w∗(θR)Hf(θT )s+ w∗(θR)z (5.6)

where s is the transmitted signal with average transmit power E[ss∗] = P . The noise

vector z follows a circularly-symmetric complex normal distribution z ∼ CN (0, σ2I)

with average power σ2 = N0W , where W is the signal bandwidth and N0 is the

Power Spectral Density (PSD) of thermal noise.

The beamforming vector codebook is defined as CT = {f(θTm)}m=1:Nb
, where

θTm = 2π(m−1)
Nb

and Nb is the size of the codebook, i.e., the number of possible

beam directions. Respectively, we denote the combining vector codebook as CR =
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{w(θRn )}n=1:Nb
, where θRn = 2π(n−1)

Nb
. Note that the sets {θTm}m=1:Nb

and {θRn }n=1:Nb

cover a full angle space of the transmitter and of the receiver respectively, with equal

resolution θu = 2π
Nb

. We denote l = (m,n) a generic beamforming and combining

vectors pair at transmitter and receiver sides, respectively. The small scale fading

coefficients h are supposed to be independent and identically distributed (i.i.d.) for

different beam pairs and between the training and the data transmission phases.

This assumption is supported by the very short coherence time at high carrier fre-

quencies. For example, assuming a speed of 10 km/h, the channel coherence time

at 28 GHz is about 0.482 ms [9]. When the frequency is 71 GHz, the coherence

time drops to 0.19 ms. These values are much shorter than a typical slot duration

of 1 ms.

Note that the equivalent antenna gains can be expressed as gT (ξ, θT ) = |v∗(ξ)f(θT )|2

and gR(ψ, θR) = |w∗(θR)u(ψ)|2 at the transmitter and at the receiver, respectively.

For tractability reasons, we approximate the actual antenna pattern by the widely

used “flat-top” model, particularly adapted to LoS propagation [46], [62], [63]. This

model consists of a main beam of angular aperture ω and a side beam of width

2π − ω. More precisely, the antenna gain of a transmitter can be expressed as:

gT (ξ, θT ) =

GT
max, 0 ≤ |ξ − θT | ≤ ω/2

GT
min, otherwise.

(5.7)

Accordingly, the antenna gain of a receiver gR(ψ, θR) has a main lobe of gain GR
max

within the same angular aperture ω around its boresight direction θR, and a sidelobe

of gain GR
min outside this range. The main beam lobe width ω can be interpreted

as the Half Power Beam Width (HPBW) of the antenna pattern. The main beam

gain is precisely the maximum gain of the ULA. The side beam gain is obtained by

normalizing the total radiation power.

Lemma 17. For a ULA with Na antenna elements, the HPBW can be expressed as

a function of Na as follows:

ω(Na) = 2

(
π

2
− arccos

2.784

Naπ

)
(5.8)

Furthermore, we have GT
max = Na, G

T
min = ρ(Na), G

R
max = N2

a and GR
min = Naρ(Na),

where

ρ(Na) =

∫ π
−π

1
Na

∣∣∣ sin( 12Naπ cos θ)

sin( 1
2
π cos θ)

∣∣∣2 dθ −Naω(Na)

2π − ω(Na)
(5.9)
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Proof: The proof is similar to the proof in Appendix C, with the modification of

replacing the power pattern ge as a constant 1.

5.3 Beam training and misalignment

We present here the beam training process and study the effects of beam misalign-

ment.

5.3.1 Beam sweeping

During the beam training phase, the devices adopt a beam sweeping strategy where

the transmitter and the receiver jointly steer the beams successively in a set of di-

rections by adopting the beamforming/combining vectors pair from the pre-defined

codebooks presented in section 5.2.2. At every mini-slot of the training phase, the

transmitter and its receiver choose a different beamforming and combining vectors

pair (f(θTm), w(θRn )) from the codebooks CT×CR, so that all pairs of vectors are mea-

sured. We denote GT
m = gT (ξ, θTm) and GR

n = gR(ψ, θRn ) the transmitter and receiver

antenna gains when the vectors pair l = (m,n) is employed. The corresponding

channel fading coefficient is denoted as hl. The useful received signal when using

the pair l is expressed as follows:

Sl = PhlG
T
mG

R
n ℓ(r) (5.10)

After sweeping over all the codebooks vectors pairs, the transmitter and its receiver

select the beamforming/combining vectors pair that maximizes Sl:

l∗ = arg max
l=(m,n)

m,n∈[1:Nb]

Sl (5.11)

The chosen vectors pair l∗ = (m∗, n∗) is then employed by users during the sub-

sequent data transmission phase. The pair l∗ is the best one during the training

phase. However, due to the variability of the channel, it is not necessary the best

one during the data transmission phase.

5.3.2 Beam misalignment model

Beam misalignment may result from various phenomena like the device mobility,

the resolution of the codebooks or the device phase errors [59], [60]. In this work,

66



Section 5.3. Beam training and misalignment

Figure 5.2: A D2D transmitter-receiver (‘TX’ and ‘RX’ in rose) at the origin o character-

ized by an AoD ψo and an AoA ξo. The alignment errors are denoted as eT and eR. An

interfering D2D transmitter-receiver pair (in blue) is located in x and is characterized by

an AoA ψx and an AoD ξx with respect to the rose D2D pair.

we consider the alignment errors induced during the training phase because of the

codebook resolution and the channel variability. We assume the model shown in

Figure 5.2. A link between a typical D2D transmitter-receiver pair (in rose) is

characterized by an AoA ψo and an AoD ξo. The transmitter and the receiver point

their beam in the directions θT and θR, respectively (θT = θR = π/2 in the figure).

The link between the typical receiver (‘RX’ in rose) and another interfering D2D

device (‘TX’ in blue) located in x has an AoA ψx and an AoD ξx. A misalignment

occurs when the transmitter beam direction is different from the AoD or when the

receiver beam direction is different from the AoA, i.e., when either eT = |ξo − θT |
or eR = |ψo − θR| are non zero. At the transmitter side for example, the maximum

antenna gain is achieved as long as eT < ω/2, see (5.7). The error eT may result from

the codebook resolution: as θT takes values in a finite set, it may not coincide with

the AoD ξo. The error may also result from channel variability: due to the random

variable hl, the beam pair chosen during the training phase may not correspond to

the best pair during the data transmission phase, see (5.10), (5.11). According to our

network model, the AoD ξo and AoA ψo are uniformly distributed in [0, 2π). Without

loss of generality, we assume that ξo ∈ [θT1 − θu
2
, θT1 + θu

2
) and ψo ∈ [θR1 − θu

2
, θR1 + θu

2
),

i.e., that the AoD and AoA correspond to the first value of the codebook.
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5.3.3 Probability mass function of antenna gains

During the beam sweeping phase, a transmitter and a receiver antenna gain GT
m

and GR
n are respectively observed when the beam pair l = (m,n) is measured.

These antenna gains are i.i.d. random variables across the mini-slots due to the

random AoA and AoD. The Probability Mass Function (PMF) of these antenna

gains depends on the codebook resolution θu, the codebook size Nb and the HPBW

ω. We provide the PMF in the following lemma.

Lemma 18. When ω ≤ θu, the PMF of GT
m can be expressed as follows:

P[GT
m = GT

max] =


ω
θu

if m = 1

0 if m ̸= 1
(5.12)

P[GT
m = GT

min] = 1− P[GT
m = GT

max] (5.13)

The PMF of GR
n have similar expressions as in (5.12) and (5.13), where index n

is replaced by m. When ω > θu, the PMF of GT
m and GR

n can be expressed as follows:

P[GT
m = GT

max] =



1 if 1 ≤ m ≤ ⌊ω−θu
2θu
⌋+ 1

mod(ω−θu
2

,θu)

θu
if m = ⌊ω−θu

2θu
⌋+ 2

0 if ⌊ω−θu
2θu
⌋+ 3 ≤ m ≤ Nb − ⌊ω−θu2θu

⌋ − 1

mod(ω−θu
2

,θu)

θu
if m = Nb − ⌊ω−θu2θu

⌋

1 if Nb + 1− ⌊ω−θu
2θu
⌋ ≤ m ≤ Nb

(5.14)

P[GT
m = GT

min] = 1− P [GT
m = GT

max] (5.15)

The PMF of GR
n have similar expressions as in (5.14) and (5.15), where index n is

replaced by m.

Proof: See Appendix E.

During the data transmission phase, the beam pair l∗ = (m∗, n∗) has been cho-

sen. The observed antenna gains GT
m∗ and GT

n∗ thus depend on the measurements

performed during the beam sweeping phase. The total antenna gain for a typical

link is their product. We provide hereafter their joint PMF.

Lemma 19. Let ν ∈ GT = {GT
max, G

T
min} and κ ∈ GR = {GR

max, G
R
min} two pos-

sible values for the transmitter and receiver antenna gain, respectively. The joint
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probability P [GT
m∗ = ν,GR

n∗ = κ] can be computed as follows:

P[GT
m∗ = ν,GR

n∗ = κ] =
∑

m∈[1:Nb]
n∈[1:Nb]

P[GT
m = ν,GR

n = κ, l∗ = (m,n)] (5.16)

where

P[GT
m = ν,GR

n = κ, l∗ = (m,n)]

=
∑

(νi,κj)∈GT×GR

i∈[1:Nb]\m, j∈[1:Nb]\n

Eh


∏

m̄∈[1:Nb],n̄∈[1:Nb]
(m̄,n̄)̸=(m,n)
νm=ν,κn=κ

F

(
hνκ

νm̄κn̄

)P[GT
m = ν]P[GR

n = κ]

∏
i∈[1:Nb]\m
j∈[1:Nb]\n

P[GT
i = νi]P[GR

j = κj]

 (5.17)

where h is the channel fading coefficient with CDF F (·) and where the terms P[GT
i =

νi] and P[GR
j = κj] can be computed thanks to Lemma 18.

Proof: See Appendix F.

If ω < θu, there is no overlap between adjacent beams. As per equation (5.12), if

θu approaches ω, it becomes more likely for GT
1 to reach its maximum value of GT

max.

On the other hand, when ω > θu, the antenna beam can cover multiple sectors of

width θu. A smaller θu allows for more sectors to be covered, all of which will have

maximum antenna gains. Considering these two facts, as θu decreases, the chosen

beam pairs are more likely to achieve their maximum antenna gain according to

Lemma 19.

5.4 Data transmission

We characterize in this section the data transmission performance in a URLLC

context.

5.4.1 Effective achievable rate and delay

The transmission rate for a transmitter-receiver pair during the data transmission

phase is approximated by the classical Shannon formula, where the interference is
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considered as noise [58]. For a typical receiver at origin o and its associated trans-

mitter as shown in figure 5.2, the Transmission Rate R during the data transmission

phase is expressed as follows:

R = W log2

(
1 +

PhxoG
T
m∗GR

n∗ℓ(r)∑
x∈Φ\xo Phxg

R(ψx, θRn∗)gT (ξx, θTx )ℓ(|x|) +N0W

)
(5.18)

where hxo and hx are independent fading coefficients for the transmission and the

interference link, respectively. The boresight direction of the interfering antenna is

denoted as θTx . The antenna gains GT
m∗ and GR

n∗ are random variables following the

PMF in Lemma 19. During the data transmission phase, a user sends a data file

using the beam pairs l∗ = (m∗, n∗) chosen during the beam training phase. In order

to account for the fraction of the slot dedicated to beam training, we define the

Effective Achievable Rate [62], [63]:

R̃ =

(
1− N2

b τ

T

)+

R (5.19)

The delay D to transfer a data packet of length L consists of both the beam

training delay and the data transmission delay:

D = N2
b τ +

L

R
(5.20)

5.4.2 Effective rate conditional coverage probability

The Rate Coverage Probability, pc(η), is defined as the probability that the trans-

mission rate for a typical transmitter-receiver link is greater than a threshold η in

bits/s.

pc(η) = P(R > η) (5.21)

This metric can only characterize the spatial average coverage performance among

different users. Users at different locations however perceive different channel con-

ditions, so that the coverage probability is itself random across the links. The

Conditional Rate Coverage Probability, Pc(η), has thus been introduced in [18] to

characterize the reliability for a typical user given a specific network topology real-

ization:

Pc(η)
∆
= P(R > η|ΦT ,ΦR) (5.22)

The rate coverage probability in (5.21) is nothing else than its expectation with

respect to the processes {ΦT ,ΦR}. In the same way, we define the Effective Rate
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Conditional Coverage Probability P̃c(η̃), which is related to the effective achievable

rate:

P̃c(η̃) = P
(
R̃ > η̃|ΦT ,ΦR

)
(5.23)

where η̃ is the effective rate threshold.

We define the Conditional Success Transmission Probability as the probability

that the delay D is smaller than the slot duration T for a typical D2D pair:

P(D < T |ΦT ,ΦR) = P
(
R >

L

T −N2
b τ
|ΦT ,ΦR

)
(5.24)

= P
(
R̃ >

L

T
|ΦT ,ΦR

)
(5.25)

Equation (5.25) shows that when η̃ = L
T

, the effective conditional rate coverage

probability is exactly the conditional success transmission probability to transfer

a file of size L within a slot duration T . This is also equal to the rate coverage

probability with η = L
T−N2

b τ
during the data transmission phase, where N2

b τ ≤ T .

5.4.3 Effective rate meta-distribution

The meta-distribution is defined as the CCDF of the conditional coverage proba-

bility [18]. This metric provides the proportion of users whose coverage probability

is above a certain threshold. It can thus be interpreted as a measure of the link

reliability across the network. Similar to the definition in [18], [56], we define the

Rate Meta-distribution to characterize the spatial distribution of the devices com-

munications reliability:

F̄Pc(η)(ϵ)
∆
= P!(Pc(η) > ϵ), ϵ ∈ [0, 1], η ∈ R+. (5.26)

where P! denotes the Palm measure of {ΦT ,ΦR}. Respectively, this idea can be

further extended to analysis the Effective Rate Meta-distribution as follows:

F̄P̃c(η̃)
(ϵ)

∆
= P!(P̃c(η̃) > ϵ), ϵ ∈ [0, 1], η̃ ∈ R+. (5.27)

Users can successfully complete transmission within the time slot T if the effective

achievable rate exceeds η̃ = L
T

. In such cases, the effective rate meta-distribution pro-

vides the proportion of users whose probability of successful transmission is greater

than ϵ. Communication is considered reliable when a typical user’s probability of

achieving a transmission rate higher than η̃ is greater than ϵ. We call ϵ the Reliability

Threshold of the network.
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5.5 Rate meta-distribution with misalignment

This section provides mathematically tractable expressions for the rate meta-distribution.

A common approach involves first the derivation of the moments of the conditional

coverage probability, and then the application of either the Gil-Pélaez theorem or

the beta approximation [18].

5.5.1 Moments of the conditional rate coverage probability

Theorem 20. Consider a D2D network with the BF model introduced in section 5.2.

The b-th moment of the conditional rate coverage probability Mb(η) = E[(Pc(η))b]

during the data transmission phase can be approximated as follows:

Mb ≃∑
k1+...+kM=b

(
b

k1...kM

)( M∏
m=1

((
M
m

)
(−1)m+1

)km)EGo

[
e−Mβη′

N0W
PGo

∑M
m=1mkme−λQ(m,η′,Go)

]
(5.28)

where η′ = 2
η
W −1
ℓ(r)

, β = [Γ(1 + M)]−1/M . The variable Go = GT
m∗GR

n∗ is the total

antenna gain of the typical transmitter-receiver link. The PMF of Go can be obtained

from Lemma 19. The function Q(m, η′, Go) is defined as follows:

Q(m, η′, Go)

=
1

2π
[ω2A(m, η′, Go, G

T
maxG

R
max) + ω(2π − ω)A(m, η′, Go, G

T
maxG

R
min)

+ω(2π − ω)A(m, η′, Go, G
T
minG

R
max) + (2π − ω)2A(m,Go, G

T
minG

R
min)] (5.29)

where

A(m, η′, Go, Gx) = lim
T→∞

T δδ

2

∫ 1

0

(
1−

M∏
m=1

(1 +
mβη′Gx

GoTt
)−Mkm

)
tδ−1dt (5.30)

and δ = 2/α.

Proof: See Appendix G.

Corollary 3. The first moment of the conditional coverage probability can be ex-

pressed as follows:

M1 ≃
M∑
m=1

(
M
m

)
(−1)m+1EGo

[
e−mMβη′

N0W
PGo e−λQ(m,η′,Go)

]
(5.31)
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where the expression of Q(m, η′, Go) is given by (5.29). The function A(m, η′, Go, Gx)

can be expressed as follows:

A(m, η′, Go, Gx) = lim
T→∞

T δδ

2
B(δ, 1)

M∑
n=1

(
M
n

)
(−1)n+1

2F1(n, δ, δ + 1;− GoT

mβη′Gx

)

(5.32)

where B(·) denotes the Beta function and 2F1(·) denotes the hypergeometric func-

tion [65].

Proof: See Appendix H.

Corollary 4. The second moment of the conditional coverage probability can be

expressed as follows:

M2 ≃
M∑
m=1

((
M
m

)
(−1)m+1

)2 EGo

[
e−2mMβη′

N0W
PGo e−λQ1(m,η′,Go)

]
+

M−1∑
i=1

M∑
j=i+1

2
(
M
i

)(
M
j

)
(−1)i+jEGo

[
e−(i+j)Mβη′

N0W
PGo e−λQ2(m,η′,Go)

]
(5.33)

Functions Q1(m, η
′, Go) and Q2(i, j, η

′, Go) have similar expressions as in (5.29),

where A(m, η′, Go, Gx) are replaced by A1(m, η
′, Go, Gx) and A2(i, j, η

′, Go, Gx) re-

spectively:

A1(m, η
′, Go, Gx) = lim

T→∞

T δδ

2
B(δ, 1)

2M∑
n=1

(
2M
n

)
(−1)n+1

2F1(n, δ, δ + 1;− GoT

mβη′Gx

)

(5.34)

A2(i, j, η
′, Go, Gx) = lim

T→∞

T δδ

2

∫ 1

0

(
1− (1 +

iβη′Gx

GoTt
)−M(1 +

jβη′Gx

GoTt
)−M

)
tδ−1dt

(5.35)

Proof: See appendix H.

Corollary 5. To calculate the b-th moment of the effective conditional rate coverage

probability P̃c(η̃) in (5.23), we only need to replace η in Theorem 20 by T η̃
T−N2

b τ
, where

N2
b τ < T .

5.5.2 Beta approximation

The numerical computation of the exact rate meta-distribution by using Gil-Pélaez

theorem is often difficult. An alternative solution is to approximate it with a beta
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distribution by matching the first and the second moment as follows:

F̄Pc(η)(ϵ) = 1− Iϵ
(
M1M2 −M2

1

M2
1 −M2

,
(1−M1)(M2 −M1)

M2
1 −M2

)
(5.36)

where Iϵ(·) is the regularized incomplete beta function [46]. Similarly the effective

rate meta-distribution F̄P̃c(η̃)
(ϵ) can be approximated by using the first and second

moment of P̃c(η̃).

5.6 Numerical results

This section aims at verifying the accuracy of our analytical approximation through

Monte Carlo simulations and providing insights for the design of mmWave URLLC

D2D networks.

5.6.1 Simulation settings

Our simulation settings are close to the synchronization and initial access process

parameters defined for 5G NR [66]. Our simulations assume a carrier frequency of

fc = 28 GHz and a transmission bandwidth of W = 400 MHz [67]. We assume a

mini-slot duration of τ = 4.46 µs, which is equivalent to one orthogonal frequency-

division multiplexing (OFDM) symbol time with cyclic prefix, given a sub-carrier

spacing of 240 kHz [67]. Inspired by URLLC requirements, we set T = 1 ms and

L = 32 bytes [68]. Path-loss parameters are derived from the micro-cell scenario

in [68]. The path-loss exponent is set to α = 2.3 [39]; the constant path-gain K

is calculated as the free space path loss (FSPL) at a reference distance of 1 meter,

which is equal to ( c
4πfc

)2, where c is the speed of light. The distance between a

receiver and its associated transmitter is set to r = 30 m, with a transmission power

of P = 28 dBm. The noise PSD isN0 = −174+NF dBm/Hz where the noise factor is

set to NF = 8 dB. We assume a transmitter-receiver pair intensity of λ = 0.001 m−2

by default, i.e., the average distance between neighboring transmitter-receiver pairs

is around 30 m. Parameters values are summarized in Tab. 5.1.

5.6.2 Impact of the number of antennas on the transmission

rate

We investigate here the impact of the number of antennas on the data transmission

rate while keeping the beam training codebook size fixed at Nb = 15. We set the

74



Section 5.6. Numerical results

Table 5.1: System Parameters

Symbol Description Default values

W Transmission bandwidth 400 MHz

P Transmit power 28 dBm

N0 Thermal noise PSD −166 dBm

r The link distance between D2D users 30 m

fc Carrier frequency 28 GHz

K FSPL at reference distance 1 m K = 7.2695e− 07

α Path-loss exponent α = 2.3

T Time slot duration 1 ms

τ Mini-slot time duration 4.46 µs

L File size 32 bytes

λ D2D transmitter-receiver pairs density 0.001 m−2

transmission rate threshold to η = L
T

.

Figure 5.3 (a) and (b) show the mean and the variance of the conditional rate

coverage probability Pc(η) as a function of the number of antennas Na. The green

curves show the analytical results, see (5.28), while the red curves depict the sim-

ulation results. Dashed curves assume a perfect alignment of the transmitter and

receiver beams, i.e., Go = GT
maxG

R
max always holds in equations. We first see that

analysis and simulation results match very well: this confirms the accuracy of our

approximation of the lower incomplete gamma function, see (G.3).

Figure 5.3 (a) shows that the mean of the rate conditional coverage probability is

a monotonically increasing function of Na when the beam alignment is perfect. This

was expected since an increase in the number of antennas results in a stronger main

lobe gain and a narrower beamwidth ω of the main lobe. These effects lead to a

higher received power and a weaker interference when there are no alignment errors.

However, when considering the beam misalignment due to the training phase, the

performance may degrade. In Figure 5.3 (a), we see that the mean of the rate condi-

tional coverage probability is first increasing and then decreasing with a maximum

achieved for Na = 4. Below this threshold, the amount of resources dedicated to

training is sufficient and increasing the number of antennas also increases the joint

antenna gain, leading in turn to better coverage. Beyond the optimal number of
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Figure 5.3: Mean (a) and variance (b) of the conditional rate coverage probability; Pro-

portion of links that have a conditional rate coverage probability greater than a reliability

threshold of 90% (c) or 99.999% (d), as a function of the number of antennas.

antennas however, the training phase is not sufficient for a good beam alignment:

beams are thinner and even a small misalignment error leads to a rapid degradation

of the coverage. This figure highlights the trade-off between the number of antennas

and the rate coverage in the presence of beam misalignment, a phenomenon that is

not captured by studies assuming perfect beam alignment.

Figure 5.3 (b) shows the variance of Pc(η) as a function of Na. When there

is no misalignment, the variance is monotonically decreasing with the number of

antennas. As Na is increasing, the transmit power is indeed more and more precisely

focused on the transmitter-receiver link, so that the interference created to other

D2D pairs decreases; D2D transmissions are more and more independent on each

other, so that the coverage performance is more homogeneous and the variance

decreases. When misalignment errors are taken into account, the same trend is

observed when the number of antennas is small because the training is sufficient

to achieve a good alignment. On the contrary, when Na grows, there are either

very good communication conditions if beams manage to be aligned despite the

poor training or very bad conditions when the error is significant. Thinner beams

increase these differences, so that the variance increases.

76



Section 5.6. Numerical results

For a given reliability threshold ϵ, we can interpret the meta distribution as the

proportion F̄Pc(η)(ϵ) of users who meet the reliability requirement. In Figure 5.3 (c)

and 5.3 (d), we compare the percentage of users who meet the reliability requirement

assuming two reliability thresholds, namely ϵ = 0.9 and ϵ = 0.99999. The green

curves in the figures depict the beta approximations for F̄Pc(η)(ϵ), while the red

curves are obtained through simulation. The dashed curves is obtained from the

beta approximation when the alignment is perfect. The figures demonstrate that

the beta approximation is an accurate technique for analyzing the meta-distribution.

The proportion of users meeting the reliability requirements follows the same trend

as the mean of the conditional rate coverage probability for the same reasons: in

absence of error, thinner beams provide enhanced signal strength, while in presence

of errors, thinner beams are beneficial as long as the training resources are sufficient.

There is thus an optimal number of antennas that maximizes the proportion of users

meeting the reliability requirements. At last, changing the reliability threshold does

not alter the performance trends, but it does impact the proportion of users that

can satisfy the reliability constraint. For example, with 8 antennas, about 99.5% of

the links can satisfy a reliability threshold of 90%, while only 97.5% of the links can

achieve a more stringent reliability threshold of 99.999%.

5.6.3 Impact of the codebook size on the transmission rate

In addition to the number of antennas, the size of the training codebook, repre-

sented by the variable Nb, is another critical constraint that affects the network’s

performance. The transmission rate threshold is set to η = L
T

. Figure 5.4 (a) and (b)

show the mean and the variance of the rate conditional coverage probability Pc(η)

as a function of Nb for different numbers of antennas. The solid curves represent

analytical results obtained from equation (5.28) while the dashed curves have been

obtained from simulations. The straight dotted lines have been obtained with a

perfect beam alignment. Here again, we see that analysis and simulations match

very well. This confirms the tightness of our approximation.

In both figures, we observe that the curves accounting for misalignment errors

converge to the curves assuming perfect alignment. As Nb increases, the codebook

resolution θu decreases, so that the transmitter and the receiver have a finer estima-

tion of the AoA and AoD. The probability of having an alignment error decreases

and the magnitude of this error is also decreasing. In a nutshell, the higher Nb is,
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Figure 5.4: Mean (a) and variance (b) of the conditional rate coverage probability; Pro-

portion of links that have a conditional rate coverage probability greater than a reliability

threshold of 99.999% (c), as a function of the number of beams.

the more accurate the training period is. After some threshold, however, increasing

Nb does not provide a significant gain on the performance since the beam resolution

is much lower than the beam width. The figure also demonstrates that if Na is large,

Pc(η) requires a larger Nb to approach its limit, as more antennas with thinner beam

lobes require codebooks with a more precise resolution to perform beam alignment.

At last, we see that the variance is decreasing with Nb and increasing with Na. This

can be explained by the fact that misalignment errors introduce variability in the

communication conditions across the links.

Figure 5.4 (c) illustrates the percentage of D2D users whose rate conditional

coverage probability Pc(η) is larger than the reliability threshold of ϵ = 99.999% as

a function of Nb. The dashed curves show simulation results, while the solid curves

are obtained using the beta approximation. Again, the close agreement between

the curves suggests that the beta approximation is an accurate tool for analyzing

the meta-distribution. These curves exhibit similar trends to the mean of Pc(η),

indicating that a longer training time can better align the beams and enable more

users to have reliable communications. Increasing the number of antennas can ul-

timately guarantee more users to meet the reliability requirement, but it requires

longer training time. For example, if we want to achieve a reliability of 99.999%

for more than 99% of the users, then a training period with Nb = 7, 11, and 21

is required for Na = 2, 4, and 8 antennas, respectively. However, it is impossible

to have more than 99.5% of the users meeting the reliability requirement with only

Na = 2 antennas as the performance is saturating to a lower value, whatever the

training period.
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Figure 5.5: Mean (a) and variance (b) of the effective rate conditional coverage probability

as a function of the number of beams.

5.6.4 Effective achievable rate analysis

The analysis presented so far focuses on the rate coverage probability during the data

transmission phase. However, when taking into account the overhead of the beam

training phase, the size of the beam training codebook is limited by the total time

budget, resulting in Nb ≤ ⌊
√

T
τ
⌋. In this section, we study the effective achievable

rate with an effective rate threshold of η̃ = L
T

.

Figure 5.5 (a) and (b) illustrate how the mean and the variance of the effective

conditional rate coverage probability P̃c(η̃) evolves with respect to Nb for different

numbers of antennas. The solid curves represent analytical results obtained using

the equations of Corollary 5, while the dashed curves depict simulation results.

The dotted lines indicate the conditional rate coverage probability when there is

no misalignment. We first observe that the mean is decreasing with Nb in the

absence of errors. This is due to the lack of data resources when the training

period becomes longer. Continuing with perfect alignment, the variance is increasing

because interference is playing an increasing role as the transmission rate decreases.

The various topological situations around every D2D pair create a certain variability

in the signal quality and thus on the coverage.

In Figure 5.5 (a), we see that, in the presence of misalignment errors, curves

are first increasing and then possibly decreasing. The reason lies in two conflicting

effects: when Nb increases, the misalignment errors decrease while the amount of

resources dedicated to data is reduced. If we look at Figure 5.4, we see that an

almost perfect alignment is achieved for Nb = 7 and 14 for Na = 2 and 4 antennas,

respectively. This means that no improvement can be expected from the training
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Figure 5.6: Proportion of links with an effective conditional rate coverage probability

greater than the reliability thresholds 99.999% as a function of the number of beams for

T = 1 ms (a) and T = 5 ms (b).

after these thresholds. This explains why the performance reaches its maximum at

these values in Figure 5.5 (a). On the contrary, for Na = 8 antennas, the training

is far from perfect when Nb = 14. The training is not able to compensate for the

lack of data resources. Overall, Na = 2 and Nb = 8, or Na = 4 and Nb = 14 offer

the best performance, while Na = 8 antennas are not able to recover from the errors

with reasonable overhead.

By fixing Nb to a low value, e.g. Nb = 4, Figure 5.5 (a) shows that P̃c(η̃) decreases

as the number of antennas increases. This is due to the imprecise resolution of the

codebook and a severe beam misalignment. With more antennas, the beam width

is thinner and misalignment worsens. When Nb = 14 on the contrary, P̃c(η̃) reaches

its maximum with 4 antennas, which offer the best trade-off between signal qual-

ity achieved with beamforming and misalignment errors induced by an incomplete

training.

The variance of P̃c(η̃), as shown in Figure 5.5 (b), exhibits an opposite trend to

the mean of P̃c(η̃). Misalignment errors are a source of high variability in the link

quality, especially when the beam is thin, because a small deviation with respect

to the right direction induces a rapid loss in the beam gain. This explains why

the variance decreases when the training becomes better. When the amount of

resources dedicated to data decreases, only links with very good quality can reach

the threshold. This quality is in turn very dependent on the interference situation

around the D2D pair. Depending on the topology, we can thus see a variety of

situations that is captured by an increasing variance.
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Figure 5.7: Feasibility of the URLLC requirement that 95% of the users communicate

with 99.999% reliability and 1 (a), 1.5 (b), and 2 ms (c) latency [2] (feasible combinations

in dark blue).

Figure 5.6 (a) shows the proportion of D2D users with an effective rate condi-

tional coverage probability P̃c above the threshold ϵ = 99.999% as a function of

Nb for the different number of antennas. The proportion F̄P̃c(η̃)
(ϵ) follows the same

trend as the mean effective rate coverage probability, increasing with Nb when Nb

is small and then dropping quickly when N2
b τ approaches T . For a reliable URLLC

network with low latency, a common requirement is that 95% of the users operate

with 99.999% reliability and 1 ms latency [2]. According to Figure 5.6 (a), Na = 2

always meets this strict constraint. When Na = 4, Nb needs to be larger than 5 to

ensure the reliability requirement. On the contrary, Na = 8 antennas cannot achieve

it.

However, increasing the number of antennas becomes a valid option if the delay

requirement is relaxed. In Figure 5.6 (b), the slot duration is set to T = 5 ms. This

lets more room for training and Nb can reach a higher value (here 33) on the x-axis.

We see here how the optimal number of antennas varies with Nb. If Nb is small, it

is better to use fewer antennas so that misalignment errors are less impactful. As

Nb is increasing, it is more and more interesting to increase the number of antennas

because we have enough time to train the beams, and consequently, the higher beam

gains outperform the loss due to misalignment. For our studied scenario, the possible

design choices in terms of the number of antennas and beams are summarized in

Figure 5.7.
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Figure 5.8: Proportion of links with an effective conditional rate coverage probability

greater than a reliability threshold of 99.999% for the user densities λ = 0.0005 m−2 and

λ = 0.001 m−2.

5.6.5 Impact of user density

We investigate the impact of the user density in Figure 5.8 by comparing meta-

distributions for λ = 0.001 m−2 and λ = 0.0005 m−2. The figure shows that the user

density does not influence the trends already observed for F̄P̃c(η̃)
(ϵ) as a function

of Nb or Na. It shows that higher reliability can be achieved in the network with

a lower user density thanks to the reduced interference. Our closed-form formulas

allow the network designer to calculate the maximum allowed density for specific

URLLC requirements.

5.7 Conclusion

In this chapter, we propose an analytical framework to investigate the impact of

beam misalignment on mmWave URLLC D2D networks. First, the misalignment

error distribution is evaluated based on the study of an imperfect exhaustive search

approach. The imperfection of the beam sweeping procedure comes from the fi-

nite codebooks, the finite amount of resources dedicated to training and the high

variability of the channel at high frequencies. We then derive mathematical expres-

sions for the moments of the effective rate conditional coverage probability assuming

Nakagami-M fading, and we approximate the effective rate meta-distribution using

a beta approximation. Our results show that misalignment errors can be highly
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detrimental if URLLC requirements are stringent. Misalignment errors not only

reduce the joint beam gain but also introduces variability in the link quality that

affects reliability. At last, our study highlights the trade-off between the training

overhead and the number of antennas. Having fewer antennas is preferable when a

very short delay is required with high reliability. In contrast, the potential gain of

many antennas can be exploited when the delay constraint is relaxed.
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Chapter 6

Conclusion and future works

This thesis explores the performance of mmWave D2D communication in future

wireless networks. The mmWave D2D communication offers advantages such as

abundant spectrum resources and expanded connectivity range. It can extend cov-

erage and improve performance for traditional cellular networks. This technique is

highly promising in the context of URLLC, as it provides fast and reliable trans-

missions. To overcome the high attenuation experienced in mmWave transmission,

devices require multiple antennas and employ beamforming techniques to enhance

signal strength and quality. This thesis proposes a tractable beamforming model for

D2D communications based on the ULA, which can be analyzed from a stochastic

geometry perspective. The success of beamforming requires beam training. Mis-

alignment errors can occur within the training process, leading to a degradation of

data transmission performance.

To address these challenges, our study primarily focuses on the theoretical anal-

ysis of mmWave D2D communication’s performance in terms of latency, reliability,

and coverage within the URLLC context. We employ stochastic geometry and queu-

ing theory to evaluate the spatial and temporal variations in performance from two

perspectives: the instantaneous average properties of the random network and the

stability properties of a dynamic network with random service requests.

We investigate a dynamic D2D communication model as a spatial wireless birth-

death network, where service requests are random in both time and space. Building

on the previous findings of Sankararaman and Baccelli [20] regarding the stability

condition of this network, we introduce directional antenna arrays for D2D users

and study the stability performance with beamforming, where beam alignment can

be imperfect. We evaluate the impacts of misalignment by assuming a statistical
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alignment error distribution. Our contribution is establishing the stability region

for the mmWave D2D network by considering both perfect and imperfect beam

alignment. Our analytical and numerical results demonstrate that beamforming

extends the stability region, and the critical arrival rate, also known as the stability

threshold, increases with the number of antennas. However, in the presence of beam

misalignment, the critical arrival rate can no longer increase without limit and has

upper bounds related to the alignment errors’ distributions.

For the instantaneous properties, we investigate the performance diversity among

links in the mmWave D2D network. Different users located in different positions

have distinct channel conditions and are subject to different interference. We analyze

the reliability of different links by studying the meta-distribution for a D2D commu-

nication network with beamforming. We first evaluate the impacts of misalignment

by assuming a statistical alignment error, similar to the dynamic case. We derive

computationally tractable expressions of the conditional rate coverage probability’s

moments as a function of the number of antenna elements. Then, we approximate

the meta-distribution using beta approximation methods. Our numerical simula-

tions confirm our analytical results, indicating that the coverage performance can

improve with an increase in the number of antenna elements. However, misalign-

ment can cause a significant deterioration in coverage performance. There exists

an optimal number of antenna elements that must be chosen to achieve the best

coverage. Additionally, there is an optimal number of antennas that maximizes

the number of users who satisfy the reliability constraints. This optimal value is a

function of the reliability threshold.

Finally, we investigate the beam misalignment induced by the beam training

method and the channel conditions. When considering an exhaustive beam sweep-

ing method, the misalignment arises from finite codebooks, the finite amount of

resources allocated to training, and the high variability of the channel at high fre-

quencies. We derive the PMF of the beamforming gain using the expected beams

chosen from the beam sweeping procedures. Furthermore, the alignment perfor-

mance can improve with larger training overhead, which may, in turn, occupy too

much time for data transmission. Our studies highlight the fundamental trade-

off between training overhead and data transmission reliability. We introduce the

effective rate conditional coverage probability by considering both overhead and

misalignment, and we approximate the effective rate meta-distribution using a beta

approximation. Our results demonstrate that misalignment errors not only reduce
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the joint beam gain but also introduce variability in link quality that affects relia-

bility. Having fewer antennas is preferable when a very short delay is required with

high reliability. In contrast, the potential gain of many antennas can be exploited

when the delay constraint is relaxed.

The future works involve many possibilities. In the short term, the following

points could be studied:

• For the stationary case, the current beam sweeping method is time consuming.

Future work can improve the model by considering more flexible and general

beam training methods, such as hierarchical beam search. The beamforming

in our current works is a simple analog case based on the phased array, which

is not optimal when the link is not in LOS. We hope to study the network

level performance with more advanced beamforming techniques, such as hybrid

beamforming. More adaptive and effecient beam training methods need to be

discussed for more advanced multi-antenna techniques.

• For the dynamic case, it is known that the configuration of devices’ location at

a time instant follows a stationary point process if the arrival rate of new users

is not too high. But this is not a Poisson point process since there are clusters

in this point process. The initial idea that devices adopt beamforming is that

this can increase the SINR of each user. The impact of beamforming on the

distribution of devices remains an interesting question to be answered. The

coverage performance of this network under a stable state is expected to be

investigated. Ideally we hope to find the spatial distribution of the expected

sojourn time under a stable state.

• We should have more considerations in our future studies for the coherence

time. On the one hand, higher spectrum faces sever Doppler effect and brings

short channel coherence time. On the other hand, the channel coherence time

can be reduced when beamforming is employed, see [69]. To fully account for

this effect, we need to consider the spatial coherence and the beam coherence

time, which indicate the general interval or average time to keep the same level

of beamforming gain [69]. By considering coherence time, the independence

among different links and different time slots is called into question, and the

coverage meta-distribution needs to be reevaluated accordingly.

In the long term, investigating the effects of user mobility on the alignment per-

formance and the coverage performance of the network would require more complex
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studies. The future network would be a vast dynamic system with intense mobility.

Recent works show that mobility can improve the network performance and reduce

the variety of different users’ quality of service in terms of the coverage [70], [71].

However, in a more realistic scenario, the D2D users’ movement is limited by phys-

ical constraints like streets and architecture. So the Poisson linear process seems to

be an ideal model to characterize the real world. It would be interesting to apply

this model in further studies.
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Appendix A

Proof of Theorem 14

This part is the proof of Theorem 14. To prove the theory, we apply the Miyazawa’s

rate conservative law (RCL) [72], which states that the average rates of increase

should be equal to the rates of decrease for a stationary stochastic process. By

applying RCL to the counting measure Φt(S), we get the relation:

λ|S| = λd. (A.1)

Where λd is the departure rate. Denote Φ0 as the process when Φt is stable. By

considering the total volume of data that visits the network, the RCL leads to:

λ|S|L = E
[∑

x∈Φ0
RBF (x,Φ0)

]
(A.2)

Next we apply the RCL to the sum interference in the network, which is denoted as

IBFt =
∑

x∈Φt
IBF (x,Φt). Let I = I0+− I0 denotes the additional interference arisen

by an arrival, and let D = I0 − I0+ denotes the decrease of the interference arisen

by a departure. Thus we get:

λ|S|E↑[I] = λdE↓[D] (A.3)

Where E↑ and E↓ are the palm probabilities at the time of arrival or departure.

Combing (A.3) with (A.1), we know that:

E↑[I] = E↓[D] (A.4)

By applying the Campbell’s theory, we get:

E↑[IBF ] =2E[
∑
x∈Φ0

GT
oxG

R
oxPℓ(∥x∥)] (A.5)
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=2P
E[Φ0(S)]

|S|
E[

∫
S

GT
oxG

R
oxℓ(∥x∥)dx] (A.6)

Where GT
ox and GR

ox are the antenna gains between the receiver at origin and the

interfering transmitter at x. Let aBF =
∫
S
GT
oxG

R
oxℓ(∥x∥). Since the position of

interfering devices are uniformly distributed in the plane, and the antenna gain GT
ox

and GR
ox are independent, we get the expression of E[âBF ] in (3.12). For a stationary

process, the departure rate λd follows the Papangelou’s theorem [73]:

λdE↓[D] = E[λd(0)D] (A.7)

Let RBF
0 =

∑
x∈Φ0

RBF (x,Φ0). We can then get the expression of E↓[D] as

follows:

E↓[D] = 2E

[
λd(0)

λd

∑
x∈Φ0

RBF (x,Φ0)

RBF
0

IBF (x,Φ0)

]
(A.8)

= 2
E[
∑

x∈Φ0
RBF (x,Φ0)I

BF (x,Φ0)]

E[RBF
0 ]

(A.9)

= 2
E0

Φ0
[RBF (0,Φ0)I

BF (0,Φ0)]

E[RBF
0 ]

E[Φ0(S)] (A.10)

Adapting (A.6) and (A.10) to (A.4), we get:

2P
E[Φ0(S)]

|S|
E[aBF ] = 2

E0
Φ0

[RBF (0,Φ0)I
BF (0,Φ0)]

E[RBF
0 ]

E[Φ0(S)] (A.11)

By applying (A.2) to (A.11), we obtain:

λ =
E0

Φ0
[RBF (0,Φ0)I

BF (0,Φ0)]

PLE[aBF ]
(A.12)

Given the definition of the transmission rate in (3.10), we have:

RBF (0,Φ0)I
BF (0,Φ0) ≤

PWgTa (ξ, θT0 )gTa (ψ, θR0 )ℓ(r)

ln(2)
(A.13)

Combing (A.12) and (A.13), we get the following inequality:

λ ≤ WE[gTa (ξ, θT0 )]E[gTa (ψ, θR0 )]ℓ(r)

ln(2)LE[aBF ]
. (A.14)
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Miyazawa rate conservation law

Theorem 21. (Miyazawa Conservation Principle [72]) Consider {X(t)}, t ∈ R as

a bounded stationary real-valued stochastic process on (R,B(R)). We assume that

the sample path of X(t) are continuous on the right and have limits on the left. This

stochastic process is defined on (Ω,F ,P).

Let N be a stationary point process with a finite intensity λN( E[N((0, 1])] = λN),

representing all the discontinuous epochs of X(t). N is compatible with θt. We fur-

ther assume that X(t) has a right hand derivative X ′(t) for all t, and N is a counting

process or simple point process (locally finite and positive ). All discontinuous epoch

of X(t) are included in N . X−(t) = X(t−) ≡ limϵ→0X(t− ϵ). Then an elementary

calculas leads, for all t > 0,

X(t) = X(0) +

∫ t

0

X ′(u)du+

∫ t

0

(X(u)−X(u−))N(du)

Assume either E(|X(0)|), E(|X ′(0)|) and EN(|X(0) − X(0−)|) are finite. By the

stationarity of X(t) and the Fubini’s theorem, we have the following formula after

taking the expectation w.r.t P of both sides. Due to the θt-invariance of P we have.∫ t

0

E[X ′(u)]du+ E
[∫ t

0

(X(u)−X(u−))Ndu

]
= 0

Where E[X ′(u)] = E[X ′(0)]. By the definition of Palm probability we have.

E[X ′(0)] + λNE0
N [X(0)−X(0−)] = 0

This formula is known as the rate conservative formula. It illustrates the facet that

the average increased volume of rate equals to be the average decreased volume for a

stationary process.
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Appendix C

Simplified beamforming model

In this section, we express the two parameters ρ, ω as functions of the number of

antenna elements n. The methods is based on [43]. A uniform linear array has n

antenna elements aligned along the x-axis and are equally spaced with distance d.

Consider a planar wave departing in (or arriving from) the direction θ with respect

to the x-axis. The field pattern at every antenna element is denoted by fe(θ), the

power pattern is denoted by ge(θ). Take the phase at the first antenna element as

a reference. Considering the antennas at the transmitters part firstly, the combined

far field pattern fa of the array is obtained as:

fa(θ) =
1√
n
fe(θ)

n∑
i=1

aie
j((i−1)kd cos θ) (C.1)

where k = 2π/λ where λ is the wavelength and ai is a phase offset applied at

antenna element i. The 1/
√
n factor is to account for the power split among the

n antenna elements at the transmission. Choosing ai = e−j((i−1)kd cos θ0), the power

gain ga(θ) = |fa(θ)|2 leads to:

ga(θ) =
1

n
ge(θ)

∣∣∣∣∣sin(nk d
2
(cos θ − cos θ0))

sin(k d
2
(cos θ − cos θ0))

∣∣∣∣∣
2

(C.2)

The maximum array factor gain for the transmitter is achieved for θ = θ0: the

maximum array factor is n. If we assume a rectangular patch antenna, the antenna

radiation pattern is hemispheric and has a directivity of 2 [43]. The power pattern is

expressed as in (3.2). Hence we now assume θ0 = π/2 (boreside), d = λ/2. Finally

the maximum gain of the transmitters antenna is ga(θ0) = ge(θ0)n. The HPBW of

the array factor is obtained by solving the equation:

ge
n

∣∣∣∣sin(1
2
nπ cos θ)

sin(1
2
π cos θ)

∣∣∣∣2 =
gen

2
(C.3)
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Using an approximation for the sine function for small arguments by approximating

the denominator by (1
2
nπ cos θ)2, we have to solve: | sin(x)/x|2 = 1/2. Numerically,

we find: x ≈ 1.392. So that the half power bandwidth width (HPBW) ω(n) of n

transmitter antennas is:

ω(n) = 2

(
π

2
− arccos

2.784

nπ

)
≈ 1.7723

n
(C.4)

Let ρ be the minimum gain in the complementary sector. We equalize the approxi-

mate and exact radiated powers.

genω(n) + ρ(π − ω(n)) = K(n) (C.5)

Then the transmitter antennas minimum gain is given by:

ρ =
K(n)− genω(n)

π − ω(n)
(C.6)

where K(n) is the total power gain of antennas half radiation region from θ = 0

to θ = π shown by (C.2). For the receiver antenna, there is no need to divide the

power to n parts. So the received signal is formed as follows:

fRxa (θ) = fe(θ)
n∑
i=1

aie
j((i−1)kd cos θ) (C.7)

Now the power gain ga(θ) = |fa(θ)|2 is:

gRxa (θ) = ge(θ)

∣∣∣∣∣sin(nk d
2
(cos θ − cos θ0))

sin(k d
2
(cos θ − cos θ0))

∣∣∣∣∣
2

(C.8)

Similarly, the maximum array factor gain is achieved for θ = θ0. We now assume

θ0 = π/2 (broadside). Then the maximum gain is gRxa (θ0) = gen
2. The HPBW for

the receivers is obtained by solving the equation:

ge

∣∣∣∣sin(1
2
nπ cos θ)

sin(1
2
π cos θ)

∣∣∣∣2 =
ge
2
n2 (C.9)

The solution to (C.9) is the same as to (C.3). Hence ω does not distinguish between

receiver and transmitter. But the minimum gain of the receiver is different because

the total power gain K(n) changes.

K(n) =

∫ π

−π
gRxa dθ (C.10)

gen
2ω(n) +GRx

min(π − ω(n)) = K(n) (C.11)

Thus the minimum gain of receiver’s antenna has the value GRx
min = nρ .
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Proof of Theorem 16

Consider only the randomness of hx0 . The conditional probability P(R > η|ΦT ,ΦR, hx)

is a constant for given configuration (ΦT ,ΦR) and given value of hx, for all x ∈
ΦT\xo. According to the definition of rate in (4.8), it follows:

P(R > η|ΦT ,ΦR, hx)

=P

(
hxo > η′

∑
x∈ΦT \xo PhxGx(ξx, ψx)ℓ(|x|) +N0W

Go(ξo, ψo)P

|ΦT ,ΦR, hx

)
(D.1)

= exp

(
−η′

∑
x∈ΦT \xo PhxGx(ξx, ψx)ℓ(|x|) +N0W

Go(ξo, ψo)P

)
(D.2)

where η′ = 2
η
W −1
ℓ(r)

and (D.3) comes from the fact that hx0 is exponentially distributed

with unit mean. The conditional rate coverage probability Ps(η) can be written as

follows:

Ps(η) = Ehx [P(R > η|ΦT ,ΦR, hx)]

=Ehx

exp

(
−η′ N0W

PGo(ξo, ψo)

) ∏
x∈ΦT \xo

exp

(
−η′Gx(ξx, ψx)

Go(ξo, ψo)
hxℓ(|x|)

) (D.3)

= exp

(
−η′ N0W

PGo(ξo, ψo)

) ∏
x∈ΦT \xo

Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(|x|) +Go(ξo, ψo)
(D.4)

We get (D.4) because the channels hx, x ∈ ΦT are supposed to be i.i.d.. Each

follows an exponential distribution with unit mean. The b’s moment of Ps(η) is the

expectation of Ps(η)b w.r.t. ΦT and ΦR:
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Mb(η) = EΦT

[
EΦR

[(
exp

(
−η′ N0W

PGo(ξo, ψo)

)
×

∏
x∈ΦT \xo

Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(|x|) +Go(ξo, ψo)

b

 (D.5)

= LN×

EΦT

 ∏
x∈ΦT \xo

Eξx

[(
Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(|x|) +Go(ξo, ψo)

)b] (D.6)

= LN exp (−λQb(η)) (D.7)

where LN = exp
(
−bη′ N0W

PGo(ξo,ψo)

)
and

Qb(η) =∫
R2

(
1− Eξx

[(
Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(|x|) +Go(ξo, ψo)

)b])
dx (D.8)

We get (D.6) because ψx and |x| are deterministic values once ΦR is fixed. The

relative directions ξo and ψo within the typical pair are independent on ΦT and ΦR.

The process ΦR is a conditional random measure that depends both on ΦT and {ξx},
x ∈ ΦT , where ξx for different x ∈ ΦT are independent. So the expectation with

respect to ΦR in (D.5) can be replaced by the expectation with respect to ξx in (D.6).

The equation (D.7) follows from the probability generation functional (PGFL) of a

Poisson point process [24]. We then transform the integral part Qb into polar form.

Since Gx(ξx, ψx) = 0 when −π < ψx < 0, we get:

Qb(η) =

∫ ∞

0

∫ π

0

(
1−

Eξx

[(
Go(ξo, ψo)

η′Gx(ξx, ψx)ℓ(v) +Go(ξo, ψo)

)b])
dψxvdv (D.9)

Remind that ξx is uniformly distributed in [0, 2π]. Given that Gx(ξx, ψx) = 0 when

π < ξx < 2π, the integral Qb has the following form:

Qb(η) =
1

2π

∫ ∞

0

∫ π

0

∫ π

0

(
1−(

1− η′Gx(ξx, ψx)ℓ(v)

η′Gx(ξx, ψx)ℓ(v) +Go(ξo, ψo)

)b)
vdξxdψxdv (D.10)
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=
1

2π

∫ ∞

0

∫ π

0

∫ π

0

[
1−

∞∑
k=0

(
b
n

)(
− η′Gx(ξx, ψx)ℓ(v)

η′Gx(ξx, ψx)ℓ(v) +Go(ξo, ψo)

)n]
vdξxdψxdv (D.11)

where (D.11) comes from the binomial series.

Qb(η) =
1

2π

∞∑
n=1

(
b
n

)
(−1)n+1×∫ ∞

0

∫ π

0

∫ π

0

(
η′Gx(ξx, ψx)ℓ(v)

η′Gx(ξx, ψx)ℓ(v) +Go(ξo, ψo)

)n
vdξxdψxdv (D.12)

Let u = vα and δ = 2/α. For b ∈ C we have :

Qb(η) = lim
T→∞

δ

4π

∞∑
n=1

(
b
n

)
(−1)n+1×∫ T

0

∫ π

0

∫ π

0

(
η′Gx(ξx, ψx)

η′Gx(ξx, ψx) +Go(ξo, ψo)u

)n
uδ−1dξxdψxdu (D.13)

By replacing u with t = u/T , we get:

Qb(η) = lim
T→∞

T δδ

4π

∞∑
n=1

(
b
n

)
(−1)n+1×∫ 1

0

∫ π

0

∫ π

0

(
η′Gx(ξx, ψx)

η′Gx(ξx, ψx) +Go(ξo, ψo)Tt

)n
rδ−1dξxdψxdt (D.14)

By adapting the definitions of gRa (ψx, θ
R
0 ) and gTa (ξx, θ

T
0 ), the gain Gx has three non-

negative values G1, G2 and G3 with probability p2, 2p(1 − p) and (1 − p)2. The

notation Qb can be then written as follows:

Qb = lim
T→∞

T δδπ

4

∞∑
n=1

(
b
n

)
(−1)n+1

∫ 1

0

(
p2

(1 + Go(ξo,ψo)tT
G1

)n
+

2(1− p)p
(1 + Go(ξo,ψo)tT

G2
)n

+
(1− p)2

(1 + Go(ξo,ψo)tT
G3

)n

)
tδ−1dt (D.15)

The final expression in (4.12) is derived by replacing the integral parts into hyper-

geometric functions.

When there is misalignment, the additional misalignment of ξo or ψo doesn’t

impact the distributions of ξx nor ψx. Because ξx and ψx are all uniformly distributed

with respect to independent transmitters at x. So the only factor that is impacted

in (4.11) and (4.12) is Go. We define Qb(Go, η) as a function of Go. It has the same

expression as the right hand side of (4.12). According to the definition of Go in (4.6)
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and the definition of gRa (ψo, θ
R
0 ), gTa (ξo, θ

T
0 ), it is straightforward to give the PMF of

Go as follows:

Go =



G1 p2ma

G2 2pma(pef − pma)

G3 (pef − pma)2

0 else

(D.16)

Therefore when there is misalignment, the b’s moment of Ps(η) is the expectation

of Ps(η)b with respect to ΦT , ΦR and also Go. The expression (4.15) is obtained by

calculating the expectation of formula (4.11) with respect to Go.
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Proof of Lemma 18

Receivers are uniformly distributed around their associated transmitters. The AoA

ψ and AoD ξ are thus also uniformly distributed across in [0, 2π). However, there

exists only one unique beam pair (m′, n′) that can ensure ξ ∈ [θTm′ − θu
2
, θTm′ + θu

2
)

and ψ ∈ [θRn′ − θu
2
, θRn′ + θu

2
), resulting in a uniform distribution of AoA and AoD

in these two sectors. When ω ≤ θu, the main lobe of the antennas can only cover

the transmitter-receiver link if the beam pair (m′, n′) is chosen. The probability of

covering the link is ω
θu

since the AoA/AoD is uniformly distributed in these sectors.

If ω > θu, the main lobes at each transmitter and receiver side fully cover 2⌊ω−θu
2θu
⌋

beam sectors of size θu. Therefore, the probability of the main lobes covering the

transmitter-receiver link is 1 once m′ and n′ are among these fully covered sectors.

There are two additional beam sectors that are only half-covered by the main lobe.

Assuming that m′ or n′ are among these half-covered sectors, the AoD/AoA is

uniformly distributed in beam sector m′ or n′. Then the probability of the main

lobe covering the transmitter-receiver link is
mod(ω−θu

2
,θu)

θu
.
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Appendix F

Proof of Lemma 19

The joint PMF of GT
m∗ and GR

n∗ are calculated considering different optimal beam

pairs, which leads to (5.16). The joint probability P[GT
m = ν,GR

n = κ, l∗ = (m,n)]

can be expanded into 22(Nb−1) parts according to the joint distribution of {GT
i }i ̸=m

and {GR
j }j ̸=n:

P[GT
m = ν,GR

n = κ, l∗ = (m,n)]

=
∑

(νi,κj)∈GT×GR

i∈[1:Nb]\m, j∈[1:Nb]\n

{
P[l∗ = (m,n)|GT

m = ν,GR
n = κ,GT

i = νi, G
R
j = κj]

P[GT
m = ν,GR

n = κ,GT
i = νi, G

R
j = κj]

}
(F.1)

Since the antenna gains GT
i and GR

j over different beam pairs are independent, the

joint distribution of {GT
i } and {GR

j } can be expressed as follows:

P[GT
m = ν,GR

n = κ, {GT
i = νi}, {GR

j = κj}]

= P[GT
m = ν]P [GR

n = κ]
∏

i∈[1:Nb]\m
j∈[1:Nb]\n

P[GT
i = νi]P[GR

j = κj] (F.2)

According to (5.11), the chosen beam pair is chosen by measuring the useful re-

ceived power with different beam pairs. The conditional probability in (F.1) is the

probability that the received signal gets the largest power over beam pair (m,n),

which can be expressed as follows:

P[l∗ = (m,n)|GT
m = ν,GR

n = κ, {GT
i = νi}, {GR

j = κj}]

= Eh
∏

m̄∈[1:Nb],n̄∈[1:Nb]
(m̄,n̄)̸=(m,n)
νm=ν,κn=κ

P[hνκ > h(m̄,n̄)νm̄κn̄|h] (F.3)
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= Eh
∏

m̄∈[1:Nb],n̄∈[1:Nb]
(m̄,n̄) ̸=(m,n)
νm=ν,κn=κ

F

(
hνκ

νm̄κn̄

)
(F.4)

The CDF of gamma distribution is expressed as F (x) = 1
Γ(M)

γ(M,Mx). In order

to reduce the calculation complexity, the lower incomplete gamma function γ(·) can

be approximated by γ(n, x) = (n− 1)!
(

1− e−x
∑n−1

k=0
xk

k!

)
[74].
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Appendix G

Proof of Theorem 20

Consider only the randomness of hx0 . The conditional probability P(R > η|ΦT ,ΦR, hx)

is a constant for a given configuration (ΦT ,ΦR) and a given value of hx, for all

x ∈ ΦT\xo. According to the definition of the rate in (5.18), we have:

P(R > η|ΦT ,ΦR, hxo)

= P

(
hxo > (2

η
W − 1)

∑
x∈ΦT \xo PhxGxℓ(|x|) +N0W

GoPℓ(r)
|ΦT ,ΦR, hx,

)
(G.1)

= 1− 1

Γ(M)
γ(M,Mη′

∑
x∈ΦT PGxhxℓ(|x|) +N0W

PGo

) (G.2)

≃ 1− (1− e−βMη′
∑

x∈ΦT PGxhxℓ(|x|)+N0W

PGo )M (G.3)

=
M∑
m=1

(
M
m

)
(−1)m+1e−

mMβη′N0W
PGo

∏
x∈ΦT

e−mβMη′ Gxhxℓ(|x|)
Go (G.4)

Where η′ = 2
η
W −1
ℓ(r)

and γ(·) refers to the lower incomplete gamma function. The

equation (G.2) comes from the fact that hxo is a gamma distributed variable. The

approximation (G.3) is obtained by adapting the following tight inequality [75]:

(1− e−βMx)M <
1

Γ(M)
γ(M,Mx) (G.5)

The rate conditional coverage can be obtained by averaging the probability P(R >

η|ΦT ,ΦR, hxo) with respect to hx, x ∈ Φ. The coefficients {hx}x∈Φ are i.i.d. with

Gamma distribution. Thus we have the following formulas:

Pc(η) =
M∑
m=1

(
M
m

)
(−1)m+1e−

mMβη′N0W
PGo

∏
x∈ΦT

Ehx
[
e−mβMη′ Gxℓ(|x|)

Go
hx
]

(G.6)

=
M∑
m=1

(
M
m

)
(−1)m+1e−

mMβη′N0W
PGo

∏
x∈ΦT

1

(1 + mβη′Gxℓ(|x|)
Go

)M
(G.7)
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The b’s moment of Pc(η) is the expectation of Pc(η)b w.r.t. ΦT , ΦR and the antenna

gain Go. By using the multinomial theorem[76], it can be expressed as follows:

Mb =
∑

k1+k2+...+kM=b

(
b

k1...kM

)
× E

M∏
m=1

((
M
m

)
(−1)m+1e−

mMβη′N0W
PGo

∏
x∈ΦT

1

(1 + mβη′Gxℓ(|x|)
Go

)M

)km

(G.8)

=
∑

k1+k2+...+kM=b

(
b

k1...kM

)( M∏
m=1

((
M
m

)
(−1)m+1

)km)EGo

[
e−Mβη′

N0W
PGo

∑M
m=1mkm

× EΦT

∏
x∈ΦT

EΦR

M∏
m=1

(1 +
mβη′Gxℓ(|x|)

Go

)−Mkm

]
(G.9)

The process ΦR is a conditional random measure that depends both on ΦT and {ξx},
x ∈ ΦT , where ξx for different x ∈ ΦT are independent. So the expectation with

respect to ΦR in (G.9) can be replaced by the expectation with respect to ξx shown

as follows:

EΦT

[∏
ΦT

EΦR

[
M∏
m=1

(1 +
mβη′Gxℓ(|x|)

Go

)−Mkm

]]

= exp

(
−λ
∫
R2

1− Eξx

[
M∏
m=1

(1 +
mβη′Gxℓ(|x|)

Go

)−Mkm

]
dx

)
(G.10)

The integral part in equation (G.10) follows from the probability generation func-

tional (PGFL) of a Poisson point process [24]. We then denote this integral part as

Q(m, η′, Go) and transform it into polar form. Since ψx is uniformly distributed in

[0, 2π), we get:

Q(m, η′, Go)

=

∫
R2

1− Eξx

[
M∏
m=1

(1 +
mβη′Gxℓ(|x|)

Go

)−Mkm

]
dx (G.11)

=

∫ ∞

0

∫ π

−π
1− 1

2π

∫ π

−π

M∏
m=1

(1 +
mβη′Gxℓ(|v|)

Go

)−Mkmdξxvdψxdv (G.12)

=
1

2π

∫ π

−π

∫ π

−π

∫ ∞

0

(
1−

M∏
m=1

(1 +
mβη′Gxℓ(|v|)

Go

)−Mkm

)
vdvdξxdψx (G.13)

We then let A(m, η′, Go, Gx) denote the following function:

A(m, η′, Go, Gx) =

∫ ∞

0

(
1−

M∏
m=1

(1 +
mβη′Gxℓ(|v|)

Go

)−Mkm

)
vdv (G.14)
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Because the angles ξx and ψx are all uniformly distributed in [0, 2π) and the antenna

gain Gx is the product of gT (ξx, θ
T
x ) and gR(ψx, θ

T
x ), where θTx and θRx are also

uniformly distributed, we get (5.29). Let u = vα and δ = 2/α we get:

A(m, η′, Go, Gx) = lim
T→∞

δ/2

∫ T

0

(
1−

M∏
m=1

(1 +
mβη′Gx

Gou
)−Mkm

)
uδ−1du (G.15)

By replacing u with t = u/T , we get:

A(m, η′, Go, Gx) = lim
T→∞

T δδ

2

∫ 1

0

(
1−

M∏
m=1

(1 +
mβη′Gx

GoTt
)−Mkm

)
tδ−1dt (G.16)
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Appendix H

Proof of Corollary 4 and 5

First Moment

According to (5.28) in Theorem 20, the first moment of the rate conditional coverage

probability can be expressed as (5.31) when b = 1. The function A(m, η′, Go, Gx)

can be then expressed as follows:

A(m, η′, Go, Gx) = lim
T→∞

T δδ

2

∫ 1

0

(
1− (1 +

mβη′Gx

GoTt
)−M

)
tδ−1dt (H.1)

= lim
T→∞

T δδ

2

∫ 1

0

(
1− (1− 1

1 + GoTt
mβη′Gx

)M

)
tδ−1dt (H.2)

By using the binomial theorem, it can be further expressed as:

A(m, η′, Go, Gx) = lim
T→∞

T δδ

2

M∑
n=1

(
M
n

)
(−1)n+1

∫ 1

0

(
1 +

GoTt

mβη′Gx

)−n

tδ−1dt (H.3)

The final (5.32) is derived by replacing the integral parts by hypergeometric functions

[65].

Second Moment

When b = 2, the set {k1, ..., kM} in (5.28) can either be {2, 0, ..., 0} or {1, 1, 0, ..., 0}.
According to (5.28), the second moment of the rate conditional coverage probability

can be expressed as in (5.33), where Q1 and Q2 can be expressed as follows:

Q1(m, η
′, Go)

=
1

2π
[ω2A1(m, η

′, Go, G
T
maxG

R
max) + ω(2π − ω)A1(m, η

′, Go, G
T
maxG

R
min) (H.4)

+ω(2π − ω)A1(m, η
′, Go, G

T
minG

R
max) + (2π − ω)2A1(m,Go, G

T
minG

R
min)]
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Q2(i, j, η
′, Go)

=
1

2π
[ω2A2(i, j, η

′, Go, G
T
maxG

R
max)+ω(2π − ω)A2(i, j, η

′, Go, G
T
maxG

R
min) (H.5)

+ω(2π − ω)A2(i, j, η
′, Go, G

T
minG

R
max) + (2π − ω)2A2(i, j, Go, G

T
minG

R
min)]

The functions A1(m, η
′, Go, Gx) can be derived as follows:

A1(m, η
′, Go, Gx) = lim

T→∞

T δδ

2

∫ 1

0

(
1− (1 +

mβη′Gx

GoTt
)−2M

)
tδ−1dt (H.6)

Equation (5.34) is derived by using hypergeometric functions. The expression of

A2(i, j, η
′, Go, Gx) in (5.35) is derived by setting ki = 1, kj = 1 and kn = 0 for all

n ̸= i and n ̸= j.
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Titre : Évaluation des performances et allocation des ressources dans les réseaux terminal à terminal à ondes
millimétriques avec formation de faisceaux

Mots clés : communications terminal à terminal, formation de faisceaux, géométrie stochastique, URLLC,
désalignement

Résumé : La communication de terminal à termi-
nal (D2D) est une technologie clé pour les futurs
réseaux sans fil. Elle permet aux appareils de com-
muniquer directement, sans avoir besoin d’une in-
frastructure cellulaire. La communication en ondes
millimétriques (mmWave) utilise des fréquences ra-
dio de haute fréquence. Elle offre des bandes pas-
santes très larges, ce qui permet des transmissions
rapides et fiables. Cependant, les fréquences mm-
Wave ont une atténuation élevée, ce qui nécessite
que les appareils aient plusieurs antennes et uti-
lisent la formation de faisceau. La formation de fais-
ceau nécessite un alignement précis des faisceaux,
et les erreurs d’alignement peuvent entraı̂ner une
dégradation des performances de transmission. Dans
notre étude, nous nous concentrons sur l’analyse
théorique des performances de la communication
D2D en mmW dans le contexte des communications
très fiables et à très faible latence, dites URLLC. Nous
utilisons la géométrie stochastique et la théorie des
files d’attente pour évaluer les variations spatiales et
temporelles des performances selon deux perspec-

tives différentes. D’une part, nous examinons les pro-
priétés moyennes instantanées du réseau aléatoire,
et d’autre part, nous étudions les conditions de stabi-
lité d’un réseau dynamique avec des demandes de
service aléatoires. Pour les propriétés dynamiques,
nous nous concentrons sur la condition de stabilité
du réseau D2D en introduisant des réseaux d’an-
tennes directionnelles pour les utilisateurs D2D. Le
réseau est modélisé sur la base d’un processus spa-
tial de naissance et de mort. Pour les propriétés
instantanées, nous nous soucions principalement de
la méta-distribution comme une métrique qui tient
compte de la distribution spatiale de la probabilité de
couverture. Nous dérivons une expression de la méta-
distribution du débit effectif comme une garantie de
latence statistique pour les communications URLLC,
en considérant à la fois les coûts d’apprentissage et
le désalignement pour un réseau D2D avec formation
de faisceaux. Enfin, nous proposons des méthodes
pour choisir le nombre optimal d’antennes et pour al-
louer des ressources pour la formation des faisceaux.

Title : Performance evaluation and resource allocation in millimeter waves device-to-device networks with
beamforming

Keywords : D2D communications, beamforming, stochastic geometry, URLLC, misalignement

Abstract : Device-to-Device (D2D) communication
is a key technology for future wireless networks, al-
lowing devices to communicate directly without re-
lying on a cellular infrastructure. Millimeter wave (mm-
Wave) communication utilizes high-frequency radio,
providing very large bandwidths for fast and reliable
D2D transmissions. However, mmWave frequencies
have high attenuation, requiring devices to have mul-
tiple antennas and perform beamforming. The suc-
cess of beamforming requires beam training. The
beam misalignment can impact the performance of
the network. To address these challenges, our study
focuses on the theoretical analysis of the perfor-
mance of mmWave D2D communications within the
context of Ultra-Reliable Low Latency Communica-
tions (URLLC). We use stochastic geometry and
queuing theory to evaluate both spatial and tempo-
ral variations in performance from two different pers-

pectives: the instantaneous average properties of the
random network and the global stability properties
of a dynamic network with random service requests.
For the dynamic properties, we focus on the stability
condition of D2D network by introducing directional
antennas arrays for the D2D users. The network is
modeled based on a spatial birth-death process. For
the instantaneous properties, we mainly care about
the meta-distribution of the network, which is a me-
tric that accounts for the spatial distribution of cove-
rage probability. We derive the meta-distribution of
the effective rate as a statistical latency guarantee for
URLLC communications, by considering both the trai-
ning overhead and misalignment for a D2D network
with beamforming. At last, we propose methods to
choose the optimal number of antennas and to allo-
cate resource for beam training.
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