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ABSTRACT

English

This thesis focuses on understanding the Bay of Bengal (BoB) Sea Surface Salinity
(SSS) variability, because of its impact on regional rainfall, tropical cyclones, and bio-
geochemical productivity. L-band radiometry has been used to estimate BoB SSS since
2010, but BoB SSS was not well constrained by in situ data before. In the first part, I
reconstruct BoB SSS using AMSR-E satellite data, yielding eight additional years of data.
I demonstrate the necessity of carefully screening land contamination and applying em-
pirical corrections on ascending and descending passes separately. The resulting dataset
has some issues but captures non-seasonal variations along the east coast of India during
several multi-year periods. The second part aims to resolve inconsistent results about
BoB interannual SSS variability obtained from observational satellite datasets and mod-
elling analyses over longer periods. Using Ocean General Circulation Model experiments,
I test the hypothesis that internal oceanic variability associated with stirring by oceanic
eddies blurs and modulates wind-forced signals associated with the Indian Ocean Dipole
climatic mode. The focus is on the “river in the sea,” a post-monsoon low salinity band
along the east coast of India. Eddies strongly modulate the “river in the sea” offshore
extension, but not its length, and forced variability dominates near the coast. The “river
in the sea” length modulation during IOD-neutral years needs to be explained by another
phenomenon, and I hypothesize that intraseasonal wind variations may be responsible.
Overall, the thesis provides insight into BoB SSS variability and the associated processes,
using satellite data and modelling analyses.
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Abstract

Français

L’objet de cette thèse est d’approfondir notre compréhension de la variation de la
salinité en surface de la Baie du Bengale (BoB) en raison de son impact sur les précipi-
tations régionales, les cyclones tropicaux et la productivité biogéochimique. Avant 2010,
l’estimation de la SSS de la BoB était basée sur un nombre limité de données in situ, ce
qui créait une estimation spatialement restreinte. Depuis l’introduction de la radiométrie
de bande L en 2010, il est désormais possible d’estimer la SSS de la BoB de manière plus
étendue spatialement.

La radiométrie L-band a été utilisée pour estimer la SSS de la BoB depuis 2010, mais
la SSS de la BoB n’était pas bien contrainte par des données in situ auparavant. Dans
la première partie, je reconstitue la SSS de la BoB en utilisant des données satellitaires
d’AMSR-E, ce qui permet d’obtenir huit années supplémentaires de données. Je démontre
la nécessité de bien filtrer les contaminations terrestres et d’appliquer des corrections
empiriques aux orbitres ascendants et descendants séparément. Le jeu de données obtenu
présente quelques problèmes mais permet de capturer les variations non saisonnières le
long de la côte Est de l’Inde pendant plusieurs périodes pluriannuelles.

La deuxième partie vise à résoudre les résultats incohérents obtenus à propos de la
variabilité de la SSS interannuelle de la baie du Bengale à partir de données satellites
d’observation et d’analyses de modélisation sur de plus longues périodes. En utilisant des
expériences de modélisation de la circulation générale océanique, je teste l’hypothèse selon
laquelle la variabilité océanique interne associée à l’agitation par les tourbillons océaniques
brouille et module les signaux forcés par le vent associés au mode climatique de Dipôle de
l’Océan Indien (IOD). L’accent est mis sur la "rivière dans la mer", une bande de basse
salinité post-mousson le long de la côte Est de l’Inde. Les tourbillons modulent fortement
l’extension au large de la "rivière dans la mer", c’est-à-dire jusqu’à où cette longue d’eau
douce peut s’étaler le long de la côte Est Indienne, mais pas sa longueur, et la variabilité
forcée domine près de la côte. La modulation de la longueur de la "rivière dans la mer"
pendant les années neutres du IOD-neutres doit être expliquée par un autre phénomène,
et j’emets l’hypothèse que les variations éoliennes intrasaisonnières pourraient en être
responsables. De manière génerale, la thèse fournit des informations sur la variabilité de
la SSS de la baie du Bengale et les processus associés, en utilisant des données satellites
et des analyses de modélisation.
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RESUMÉ FRANÇAIS

L’étude de la salinité de surface océanique (SSS) est un domaine de recherche critique
dans le domaine de l’océanographie et de la science du climat. La SSS joue un rôle crucial
dans de nombreux processus océanographiques (par exemple, la circulation océanique, la
densité et la thermodynamique de l’eau de mer, la chimie), les écosystèmes marins et
le cycle de l’eau mondial. Elle contribue également à la surveillance des changements
à long terme du cycle hydrologique, tels que ceux attendus en raison de l’augmentation
de l’humidité spécifique de l’atmosphère en réponse au réchauffement climatique. Par
conséquent, il s’agit d’un paramètre essentiel pour comprendre les interactions complexes
entre l’océan et le système climatique de la Terre.

La Baie du Bengale (BoB) est une zone d’étude particulièrement importante pour
la SSS. C’est un bassin dans lequel la SSS est supposée influencer les interactions air-
mer associées aux moussons ou aux cyclones tropicaux, la productivité océanique et où
la SSS est à la fois contrastée et variable. La BoB est un bassin semi-fermé situé dans
la partie nord-est de l’océan Indien, bordé par l’Inde, le Bangladesh, le Myanmar et la
Thaïlande. Il reçoit d’importants apports d’eau douce de plusieurs grands fleuves, dont
le Gange, le Brahmapoutre et l’Irrawaddy, ainsi que des précipitations de la mousson.
Cette particularité en fait un "bassin de dilution" où la SSS est, en moyenne, plus basse
que dans les autres océans tropicaux. De multiples études ont montré que la SSS dans
la BoB varie considérablement à des échelles de temps saisonnières et interannuelles,
l’influence de plusieurs facteurs tels que la circulation océanique, les apports fluviaux, les
précipitations et l’évaporation. Par exemple, pendant la saison des moussons d’été, la
BoB reçoit de grandes quantités d’eau douce des fleuves Gange et Brahmapoutre, ce qui
entraîne une baisse de la SSS dans la partie nord du golfe. En revanche, pendant la saison
des moussons d’hiver, la SSS augmente en raison de la réduction des apports d’eau douce
et de l’augmentation de l’évaporation.

Les variations de la salinité dans la Bob peuvent avoir des conséquences importantes
sur la circulation océanique et la variabilité de la mousson. En effet, les changements de
salinité peuvent impacter la densité de l’eau, ce qui peut à son tour affecter les modèles
de circulation océanique, la répartition de la chaleur et des nutriments dans l’océan, en
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Resumé français

influençant les gradients de pression horizontaux et le mélange vertical. La SSS joue égale-
ment un rôle dans le système de mousson, car des variations dans cette dernière peuvent
influencer l’intensité et la période de précipitations de mousson. De plus, l’introduction
d’eau douce, qui est très flottante et se situe donc près de la surface, peut renforcer la
stabilité de la couche superficielle en augmentant sa résistance au mélange vertical, entraî-
nant ainsi une diminution de sa profondeur. Une faible profondeur de la couche mélangée
et une éventuelle présence de couche barrière peuvent contribuer à maintenir les cyclones
tropicaux les plus forts à travers le monde.

Ainsi, une étude minutieuse de la variabilité de la SSS dans la BoB est nécessaire. Bien
que la SSS ait été mesurée pendant de nombreuses années, les méthodes et technologies
utilisées ont évolué avec le temps. À l’origine, la salinité était mesurée en collectant des
échantillons d’eau et en analysant leur teneur en sel en laboratoire. Au fil des décennies,
de nouvelles technologies ont émergé permettant des mesures plus exhaustives et continues
de la SSS. Parmi ces technologies, les flotteurs ARGO sont en mesure de mesurer avec
grande précision et exactitude la salinité à diverses profondeurs de l’océan.

Cependant, la distribution spatiale des mesures in situ dans la BoB, en particulier
près des côtes, n’est pas suffisamment complète pour contraindre les anomalies de salinité
non saisonnières sur l’ensemble de la baie. Ce problème a été résolu avec le lancement de
radiomètres L-band à partir de 2010 (SMOS, Aquarius et SMAP), qui ont grandement
amélioré notre compréhension de la distribution mondiale de la SSS et de sa variabilité.
Toutefois, la période de seulement 13 ans reste insuffisante pour étudier la variabilité
interannuelle de la SSS. De plus, les mécanismes sous-jacents qui entraînent la variabilité
non saisonnière/interannuelle de la SSS dans la partie ouest de la BoB restent mal compris.
Ces défis scientifiques seront l’objet de ma thèse de doctorat.

Le développement d’un algorithme innovant par Nicolas Reul en 2009 permet de
récupérer les données de SSS au-dessus du panache de l’Amazone à partir de mesures
provenant de radiomètres à bande C et X (AMSR-E), mis en orbite en 2002. Cependant,
le lancement de SMOS (2010) peu après cette étude innovante a fourni des mesures dix fois
plus sensibles que celles des bandes C/X, mettant ainsi le projet quelque peu en attente.

Mon premier objectif de cette thèse consistera à obtenir une série temporelle plus
étendue de la SSS afin d’établir des liens plus solides avec d’autres facteurs. Pour ce faire,
je vais utiliser l’approche proposée par Reul et al. (2009) pour estimer la SSS à partir
des données satellitaires AMSR-E et ainsi prolonger la série temporelle jusqu’en 2002.
Les questions scientifiques qui se poseront dans cette partie de ma thèse en télédétection
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seront les suivantes:

— L’approche de Reul et al. (2009) peut-elle être appliquée avec succès dans la région
de la BoB ?

— Quelles adaptations, le cas échéant, sont nécessaires pour que l’approche soit efficace
dans la région de la BoB ?

— À quel niveau de précision peut-on parvenir en utilisant l’approche de Reul et al.
(2009) dans la région de la BoB ?

— Les données de SSS obtenues sont-elles suffisantes et utiles pour les études interan-
nuelles dans la région de la BoB?

— Les liens interannuels entre la SSS et d’autres facteurs changent-ils lorsqu’on utilise
une série temporelle plus longue ?

Après une analyse minutieuse des données, il a été constaté une forte différence de la
température de brillance entre les passages ascendants et descendants, en particulier près
de la côte, révélant ainsi une contamination résiduelle des terres. Afin d’éliminer cette
contamination des points océaniques en aval des passages sur les terres, des masques
terre-mer distincts sont appliqués aux passages ascendants et descendants. Les passages
sont ensuite traités indépendamment, avec des corrections empiriques distinctes. Les
corrections empiriques pour le vent en surface, la température de surface océanique (SST)
et la teneur en eau atmosphérique sont effectuées dans cet ordre en utilisant les données
de la Climate Change Initiative (CCI) de la SSS et les données de vent, de la SST et de
l’eau atmosphérique colocalisées de AMSR-E sur la période commune SMOS/Aquarius-
AMSR-E. En outre, un filtrage supplémentaire des données pour éliminer les valeurs
aberrantes et un lissage médian de 0,75° x 0,75° ont également été trouvés pour influencer
considérablement les performances finales de la récupération des données.

Malgré la présence de quelques biais de fraîcheur près des côtes, notre produit final
est en mesure de se comparer favorablement à la climatologie observée du CCI. En effet,
il présente une corrélation de 0,66 et une différence de racine carrée moyenne de pss de
1,09 lorsqu’il est comparé à la salinité de surface in situ colocalisée des flotteurs ARGO.
Bien que notre produit ne soit peut-être pas aussi précis que les radiomètres en bande L,
il semble tout de même posséder un certain niveau de capacité.

Nous avons également évalué la capacité de notre produit à reconstruire les variations
interannuelles de la SSS avant 2010 en comparant les variations interannuelles de la SSS
avec celles des réanalyses océaniques dans deux points chauds pour la variabilité inter-
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annuelle de la SSS: le nord de la BoB et la côte est de l’Inde. Les résultats suggèrent
que notre produit présente peu de compétences sur le nord de la baie du Bengale, mais
est plus favorable le long de la côte est de l’Inde. Bien que notre produit soit parfois
capable de reproduire les variations interannuelles générales du CCI dans les réanalyses
sur de longues périodes (3-5 ans), une amélioration du traitement des données peut être
nécessaire.

Des études antérieures, telles que Akhil et al. (2014), ont identifié des variations de la
SSS à l’échelle du bassin associées à l’oscillation interdécennale de l’océan Indien (IOD)
dans la BoB, ainsi que des variations localisées près de l’estuaire du Gange-Brahmapoutre
associées aux débits fluviaux. Cependant, les analyses récentes du jeu de données SMOS
par Akhil et al. (2020) (et des analyses similaires utilisant CCI et incluant une année
supplémentaire de données dans cette thèse) suggèrent que l’influence de l’IOD sur la SSS
dans la BoB, en particulier sur le "fleuve dans la mer" le long de la côte est de l’Inde,
n’est pas systématique. De plus, il est difficile d’identifier clairement l’impact des débits
fluviaux à partir des ensembles de données existants. Étant donné le rôle important
des tourbillons dans l’influence de la distribution de la SSS dans la BoB (Fournier et
al., 2017), cette étude visait à estimer la variabilité intrinsèque (tourbillons) par rapport
à la variabilité forcée (par exemple, IOD et débits fluviaux) de la SSS dans la BoB afin
d’investiguer si la modulation par les tourbillons pouvait expliquer la relation pas tellement
systématique entre l’IOD et le fleuve dans la mer.

En conclusion, bien que AMSR-E contienne des informations utiles sur la variabilité
interannuelle de la SSS de la BoB, une amélioration supplémentaire du traitement des
données est encore nécessaire pour exploiter pleinement cette information.

La deuxième partie de ma thèse doctorale se concentre sur l’océanographie physique
de la BoB, plus précisément sur les processus qui régissent les variations non saisonnières
de la SSS. Des études antérieures ont suggéré que la relation entre le Indian Ocean Dipole
(IOD) et la variabilité de la SSS dans la BoB n’est pas systématique. Mon objectif est
d’examiner la possibilité que la variabilité des tourbillons puisse contribuer à l’apparition
de signaux de SSS qui altèrent ou obscurcissent la variabilité induite par l’IOD.

— Quelles sont les contributions relatives de la variabilité de la SSS non saisonnière,
forcée (vent, eau douce) et intrinsèque (tourbillons mésoéchelle) dans la région de
la BoB?

— Comment la distribution de ces contributions varie-t-elle dans le temps (saisons) et
dans l’espace dans la région de la BoB?
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— Quels sont les origines et les mécanismes possibles des contributions identifiées à la
variabilité de la SSS dans la région de la BoB?

Afin de répondre à la question scientifique sur la variabilité intrinsèque du SSS dans
la baie du Bengale, j’utilise les sorties de simulation en ensemble (décrites dans la Sec-
tion 2.4).

L’approche en ensemble est couramment utilisée depuis les années 1990 pour l’atmosphère
(e.g., Rowell, 1998). Cette technique permet de traiter les instabilités de turbulence qui
créent des anticyclones et des dépressions d’environ 1000/2000 km de taille, qui peuvent
être résolus par la capacité numérique des modèles atmosphériques ayant des résolutions
typiques d’environ 200 km. En sciences océaniques, cependant, les simulations en ensem-
ble sont une approche assez récente et innovante, car les tourbillons de mésoéchelle ont
des tailles typiques de 100/200 km.

Avec l’augmentation de la variabilité synoptique dans les modèles atmosphériques
à haute résolution, ces modes de variabilité supplémentaires dans l’océan rendent les
simulations en ensemble nécessaires pour étudier les relations de cause à effet dans le
climat de la Terre."

Le projet IMHOTEP adopte une telle approche en ensemble, ce qui donne un bon
cadre pour quantifier la contribution de la variabilité intrinsèque de l’océan (c’est-à-dire
les tourbillons) à la variabilité non saisonnière totale du SSS dans le BOB.

Comme IMHOTEP n’a jamais été validé pour la région BoB, il était inévitable de
procéder d’abord à la validation. Cela a permis de constater la nécessité de supprimer une
dérive parasite à long terme dans l’ensemble de données. Cette suppression de la dérive
semble fonctionner relativement bien en comparaison avec d’autres ensembles de données
(CCI, réanalyse Glorys). Néanmoins, IMHOTEP sous-estime la variabilité des tourbillons
de la région BoB (probablement en raison de sa résolution horizontale permettant les
tourbillons), sous-estime légèrement la réponse de la circulation à l’IOD et ne reproduit
la réponse de la SSS à l’IOD que le long de la côte est de l’Inde (bien qu’elle soit sous-
estimée).

D’après l’analyse, la variabilité interne liée aux tourbillons de mésoéchelle est prédom-
inante pour la variabilité de l’anomalie du niveau de la mer (SLA) et de la SSS au large
de la côte est de l’Inde. Toutefois, les signaux forcés sont plus importants près de la côte
et dans la moitié est de la BoB, en raison de l’influence du guide d’ondes côtières et de la
radiation vers l’ouest des ondes de Rossby depuis la bordure orientale de la BoB. La seule
région où la variabilité totale et la variabilité interne sont fortes (la variabilité interne
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représentant plus de 50% de la variabilité totale) se trouve à la bordure maritime de la
zone de la "rivière dans la mer", où les tourbillons modulent l’extension de l’eau de faible
salinité vers le large, et non pas sur sa longueur, comme le démontrent des études de cas
menées sur plusieurs années.

Perspectives

En entamant ma recherche de thèse de doctorat, j’ai pris conscience des difficultés
liées à la faible sensibilité de la bande C à la salinité de la surface de la mer (SSS)
ainsi qu’aux risques de contamination terrestre et d’interférences radiofréquences dans
la Baie du Bengale. Malgré ces obstacles, les données que j’ai recueillies constituent
la première tentative de récupération de la SSS à partir des données d’AMSR-E dans
la Baie du Bengale et semblent prometteuses dans la capture de signaux de SSS non
saisonniers, comme en témoigne la reproduction réussie de certains signaux interannuels
observés le long de la côte ouest de l’Inde. Cependant, des améliorations supplémentaires
sont nécessaires pour améliorer la précision et la fiabilité de l’algorithme. Il convient de
noter que la récupération de la SSS à partir de SMOS, lorsqu’elle a été analysée pour la
première fois, était presque inutilisable pour la Baie du Bengale et ses performances étaient
inférieures à celles de SSSAMSR−E (Akhil et al., 2016b). Des améliorations substantielles
des méthodes de prétraitement, notamment une correction de biais meilleure, saisonnière
et dépendante de la latitude, ainsi qu’un contrôle plus strict des données près des terres
pour éliminer les interférences radiofréquences restantes, ont été nécessaires pour réduire
considérablement les erreurs et transformer l’ensemble de données de SMOS en la ressource
précieuse qu’elle est aujourd’hui pour la Baie du Bengale.

En poursuivant mes recherches, je constate que les produits de SSS d’AMSR-E pour la
baie du Bengale pourraient être améliorés. Bien que j’utilise actuellement deux masques
stationnaires pour exclure les données en aval des terres sur les passes ascendantes et
descendantes, il existe des techniques de masquage plus avancées et des méthodes de
filtrage dynamique qui pourraient augmenter la précision des mesures de SSSAMSR−E.
Par exemple, l’utilisation d’un masque dynamique permettrait de comparer les pixels
voisins pour éliminer les valeurs aberrantes locales et temporelles qui affectent le filtrage
spatial, réduisant ainsi les signaux erronés dans la série chronologique.

Ainsi, j’ai l’intention d’explorer ces méthodes pour améliorer la fiabilité et l’exactitude
de la récupération de SSSAMSR−E. En appliquant ces approches plus rigoureuses, nous
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pourrons avancer considérablement dans notre compréhension de cet élément océanographique
essentiel et contribuer à une analyse plus détaillée et précise de l’océanographie de la baie
du Bengale.

En outre, l’exploration d’approches alternatives aux corrections empiriques actuelle-
ment utilisées dans mon étude pourrait être bénéfique pour améliorer la précision des
récupérations de SSS. Bien que j’aie appliqué des corrections pour le vent, la SST et
la vapeur d’eau en trois étapes séquentielles, l’utilisation de réseaux de neurones pour-
rait nous permettre d’effectuer toutes les corrections en une seule étape et de prendre
en compte de manière plus efficace le couplage non linéaire entre les variables. Cette
approche permettrait également l’inclusion de paramètres supplémentaires tels que la dis-
tance à la côte ou la direction du vent, qui pourraient être pondérés en conséquence pour
améliorer la récupération finale de SSS. En explorant ces approches alternatives, nous
pourrions être en mesure d’améliorer encore la précision et la fiabilité des récupérations
de SSS à partir des données d’AMSR-E dans la baie du Bengale.

Enfin, étant donné que le but de cette étude utilise principalement les anomalies de
la SSS, une procédure possible pourrait être la création d’un algorithme de récupération
de l’anomalie de la SSS. Cette approche impliquerait d’analyser les différences entre les
valeurs observées de la SSS et les valeurs climatologiques, puis de déduire l’anomalie de la
SSS à partir de ces différences. Cette technique pourrait réduire l’impact des erreurs et des
biais dans les valeurs absolues de la SSS et permettre de se concentrer plus précisément sur
la variabilité océanique. Par conséquent, la mise en œuvre d’un algorithme de récupération
de l’anomalie de la SSS pourrait être une voie prometteuse pour améliorer davantage ma
recherche et augmenter la compréhension de la variabilité de la SSS dans la BoB.

En regardant plus loin dans le futur, le lancement prévu du satellite Copernicus
Imaging Microwave Radiometer (CIMR) devrait apporter une contribution significative
à l’étude de la SSS. CIMR est une mission satellite de haute priorité dans le programme
d’expansion Copernicus de la Commission européenne et comportera un imageur ra-
diomètre fonctionnant sur cinq bandes spectrales, correspondant à des fréquences de
1.4, 6.9, 10.65, 18.7 et 36.5 GHz. Par conséquent, l’analyse des données radiométriques
obtenues à partir du même instrument dans les canaux L-, C- et X pourrait aider à affiner
davantage l’algorithme actuel à l’avenir.

IMHOTEP semble présenter plusieurs limitations pour capturer avec précision les
caractéristiques clés de la variabilité de la SSS dans la région. Il sous-estime les tourbillons,
qui sont une force motrice importante de la variabilité interne de la SSS, de manière
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significative (50%). De plus, il ne reproduit pas correctement les signaux de SSS induits
par l’IOD qui ont été observés dans d’autres études (Akhil et al., 2016a; Akhil et al., 2020)
utilisant différentes sources de données, telles que SMOS et CCI. En outre, IMHOTEP
présente des gradients de SSS excessivement forts près des côtes, ce qui peut affecter sa
capacité à capturer avec précision la variabilité de la SSS dans ces régions.

Compte tenu de ces limitations, il est difficile de déterminer si l’estimation de la
contribution intrinsèque à la variabilité totale de la Sea Surface Salinity (SSS) est trop
faible ou trop élevée. Cependant, la découverte d’une forte contribution des tourbillons à
l’extension offshore du fleuve de la mer confirme des études précédentes qui ont souligné
l’importance de l’agitation des tourbillons ou du transport offshore dans cette région
(Benshila et al., 2014; Chaitanya et al., 2021; Fournier & Lee, 2021; Hareesh Kumar
et al., 2013).

Bien qu’une simulation d’ensemble à résolution plus élevée dans la BoB serait idéale,
elle n’est actuellement pas disponible. Par conséquent, un processus de correction et
de validation de dérive plus approfondi est nécessaire pour assurer la robustesse de nos
résultats. À l’heure actuelle, j’utilise une technique rudimentaire pour corriger les étapes
en calculant une tendance temporelle de base et en la soustrayant de chaque point de
données. Néanmoins, une correction plus sophistiquée qui prend en compte à la fois les
étapes et les biais résiduels pourrait être explorée et utilisée pour améliorer la précision
des résultats. En outre, une quantification plus approfondie de l’impact de l’amplitude
du champ de tourbillons et des gradients de SSS climatologiques sur la variabilité interne
est nécessaire. Cela peut être réalisé en estimant des valeurs dérivées de l’observation
pour la variabilité de SSS induite par les tourbillons, qui peuvent ensuite être comparées
avec les valeurs du modèle. De telles analyses nous permettraient de mieux comprendre
et modéliser la dynamique complexe de la Baie du Bengal, ce qui conduirait finalement à
des prévisions améliorées des changements futurs dans la région.

L’analyse des simulations avec un écoulement de la rivière climatologique dans la BoB
(IMHOTEP expérience ES) en plus des simulations existantes pourrait être bénéfique.
Ces simulations pourraient fournir de nouvelles informations sur les sources potentielles
de biais et le rôle de l’écoulement de la rivière dans la variabilité de la BoB. En comparant
ces simulations avec celles utilisées dans cette étude (IMHOTEP expérience EGAI), une
meilleure compréhension de la contribution de l’écoulement de la rivière à la variabilité
forcée de BoB peut être obtenue.

Finalement, mon étude suggère que bien que les années positives de l’IOD tendent à
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être associées à une courte "rivière dans la mer" et que les années négatives de l’IOD soient
associées à une longue rivière, il y a des années d’IOD neutres qui semblent également avoir
une rivière anormalement courte ou longue. Les résultats de cette étude indiquent que
les tourbillons n’expliquent pas entièrement cette modulation de la longueur de la "rivière
dans la mer". En fait, ils suggèrent même que les signaux de circulation forcée dominent
près de la côte est de l’Inde. Bien que l’IOD induise une réponse océanique (Akhil et al.,
2016a; Suresh et al., 2018), ce n’est pas le seul phénomène qui peut induire une réponse
de la circulation dans le guide d’onde côtier de la BoB. Plusieurs études indiquent que les
variations de vent équatorial intrasaisonnières associées à l’oscillation de Madden Julian
en hiver boréal (Zhang, 2005) et aux phases actives de la mousson en été boréal (Goswami
& Xavier, 2005) peuvent induire de fortes réponses de la circulation dans le guide d’onde
côtier de l’océan Indien nord (Suresh et al., 2013; Vialard et al., 2009). Les variations
de niveau de la mer résultantes ont généralement une période d’environ 90 jours, ce qui
est suffisant pour générer des variations significatives dans le courant côtier équatorial est
indien (EICC), et par conséquent, dans le débit de la rivière dans la mer, à condition que
la phase soit appropriée. À l’avenir, je prévois d’étudier si ces variations entraînées par le
vent pourraient jouer un rôle dans la variabilité non saisonnière de la salinité de surface
de la mer (SSS) le long de la côte est de l’Inde, en conjonction avec l’IOD.
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PREAMBLE

The study of the Sea Surface Salinity (SSS) is a critical area of research in the field
of oceanography and climate science. SSS plays a crucial role in many oceanographic
processes (e.g., ocean circulation, seawater density and thermodynamic, chemistry), in
marine ecosystems, and the global water cycle. It also contributes to monitoring long-
term changes of that hydrological cycle, such as those expected due to the increase in
atmospheric specific humidity in response to global warming. As a result, it is an essential
parameter for understanding the complex interactions between the ocean and the Earth’s
climate system.

The Bay of Bengal (BoB) is a particularly important area of study when it comes to
SSS. It is a basin where SSS is thought to influence air-sea interactions associated with the
monsoons or Tropical Cyclones, oceanic productivity, and where SSS is both contrasted
and variable. The Bay of Bengal is a semi-enclosed basin located in the northeastern part
of the Indian Ocean, bordered by India, Bangladesh, Myanmar, and Thailand. It receives
significant freshwater inputs from several large rivers, including the Ganges, Brahmapu-
tra, and Irrawaddy, as well as from monsoon rainfall. That makes the BoB what we call
a "dilution basin", receiving a great excess of fresh water over a year, and exhibiting an
average low SSS compared to other tropical oceans. Multiple studies have shown that SSS
in the Bay of Bengal varies significantly on seasonal and interannual timescales due to a
number of factors, including ocean circulation, river runoff, and precipitation, evapora-
tion. For example, during the summer monsoon season, the Bay of Bengal receives large
amounts of freshwater from the Ganges and Brahmaputra rivers, leading to a decrease in
SSS in the northern part of the bay. In contrast, during the winter monsoon season, SSS
increases due to reduced freshwater inputs and increased evaporation.

These Bay of Bengal variations can have significant impacts on ocean circulation and
monsoon variability. Indeed, changes in SSS can affect the density of seawater, which
can in turn impact ocean circulation patterns and the distribution of heat and nutrients
in the ocean, through its influence on horizontal pressure gradients and vertical mixing.
SSS also plays a role in the monsoon system, as changes in SSS can affect the strength
and timing of monsoon rainfall. Moreover, the shallowness of the mixed layer and the
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presence of a barrier layer participate in sustaining some of the strongest tropical cyclones
earth-wide. Given that a significant portion of the population resides in coastal areas, the
potential casualties resulting from such events, including both human lives and material
losses, are always a concern.

Thus a close study of the SSS variability in the BoB is necessary. SSS has been mea-
sured for many years, but the methods and technologies used to measure it have evolved
over time. Historically, measurements of the sea surface salinity were done by collecting
water samples and analyzing their salt content in a laboratory. In recent decades, new
technologies have emerged that allow for more comprehensive and continuous measure-
ments of the sea surface salinity. One such technology is the use of ARGO floats profilers,
which can measure salinity at various depths in the ocean with high precision and ac-
curacy. However, the spatial distribution of in situ measurements in the BoB, especially
near the coasts, is not sufficient for constraining non-seasonal SSS anomalies over the
entire bay. This issue was remedied with the launch of L-band radiometers starting in
2010 (SMOS, Aquarius, and SMAP) which have greatly improved our understanding of
the global distribution of sea surface salinity and its variability. Unfortunately, the period
of only 13 years remains very short to study SSS interannual variability.

An innovative algorithm, created by Nicolas Reul in 2009, now allows the retrieval
of SSS over the Amazon Plume by using measurements coming from C- and X band
radiometers, starting as early as year 2002. However, SMOS was launched shortly after
this innovative study, providing measurements ten times more sensitive than the SSS
from C/X bands, hence putting this project somehow on standby. With the idea of
resurrecting the project and applying the algorithm to the BoB by taking advantage of
the additional 8 years to study the variability within it, I started my PhD thesis in 2019 at
the Laboratoire d’Océanographie Physique et Spatiale (LOPS) in Brest, France. Since an
innovative modelling approach (ocean ensemble simulations from the IMHOTEP project)
was meant to emerge during my PhD, the idea of comparing the results of the variability
study between the remotely sensed data and the model output was put forward.

Under the supervision of Jean Tournadre and Nicolas Reul, I created an algorithm
based on the aforementioned amazon case study for the BoB. With the additional su-
pervision of Jérôme Vialard and Clément de Boyer Montégut I was able to carry out
my study by validating the reconstructed SSS and analyzing the limits of the approach.
Under their guidance I was then able to take my study a step further by analyzing the
variability of the SSS in the BoB using simulation outputs from IMHOTEP project.
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To provide a better understanding, the dissertation starts with a detailed introduction
to ocean salinity, radiometric remote sensing, the Bay of Bengal, and presents its plan
and objectives. The different steps of the algorithm’s creation, validation, and limitations
are then presented along with the characteristics of the produced SSS dataset. The thesis
then deals with the first results of the IMHOTEP project in the BoB and its applications
for studying the variability of SSS.
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Chapter 1

GENERAL INTRODUCTION

"The Blue Planet" - this nickname has been attributed to our planet because of the
impressive extent of the oceans on it. Indeed, over 70% of our planet’s surface is covered
with water, connecting each part of the planet. This one big ocean is estimated to possess
97% of the water on Earth, creating an important impact on the atmosphere and thus,
on the climate.
While the influence of the temperature on the dynamics of the ocean and on its inter-
actions with the atmosphere is a generally well-known fact, the importance of salinity is
not as well known. However, salinity is a critical parameter in oceanography, providing
crucial information on the water’s density and circulation, or for freshwater budget and
overall health of the oceans.

In this introductory chapter I first start with an examination of salinity, including its
global distribution and general impacts on the ocean physics, ecosystems, and eventually
on the Earth’s climate system. The use of remote sensing technology to measure salinity is
then thoroughly analyzed in a second time, including a discussion of the various methods
currently in use. Then I focus on my study area, the Bay of Bengal (BoB), by highlighting
its unique oceanic and climatic conditions and the challenges associated with salinity in
this area. Finally, the chapter outlines the objectives and key scientific questions addressed
in my PhD research.

1.1 From Sea Surface Salinity (SSS)...

1.1.1 What is Salinity?

Ocean salinity refers to the total mass of dissolved materials present in one kilogram
of seawater, typically expressed in grams per kilogram of seawater (g/kg) or parts per
thousand (ppt). These dissolved materials primarily consist of salts, which are ionic com-
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pounds made up of an assembly of cations and anions with no net electric charge. Unlike
molecular compounds, salts are highly soluble in water, forming a solution composed of
their anionic and cationic components. The two most abundant dissolved ions in seawater
are sodium (Na+) and chloride (Cl-), which combine to form table salt (NaCl), a famil-
iar compound in our everyday lives (Figure 1.1). These elements are not very reactive
with marine particles and minerals and are mainly brought into the ocean through fresh
water runoff and groundwater from the land, typically containing about 1g/kg or less of
dissolved matter. However, many of the ions also originate from the internal chemistry
of the ocean, the dissolving of biological matter, or sediments from the ocean floor. This
dissolved matter contributes to the ocean’s salinity, which averages around 34.7 g/kg (or
roughly 35g/kg, Figure 1.1). This value remains relatively stable over time as the inputs
and departures (e.g., sedimentation and marine evaporates in various arid coastal regions
and underwater weathering) of salts are balanced.

A remarkable and important property of seawater is that the ionic ratios of the major
elements of marine salinity (Cl−, Na+, SO2−

4 , Mg2+, Ca2+, K+) remain constant in
time and space if away enough from large river estuaries, and even if locally, evaporation,
precipitation or runoffs can concentrate or dilute the water from the sea. This is the
evidence that a constant highly effective mixing takes place on geological times scales in
the world’s oceans (Beer, 2017). Those major elements, being less reactive in the marine
environment, have indeed a very long residence time in the ocean, typically from one to a
hundred million years, compared to the mixing time of the ocean by deep currents (1,500
years, 14C dating) and the time of renewal of sea water by rivers (about 40,000 years).
As discussed hereunder, this property of seawater is used by oceanographers to measure
salinity by recognizing the equivalence of chlorinity (chlorine content) and salinity (total
salt content).

Salinity in rivers, lakes, and the ocean is conceptually simple and a basic property of
those waters, but it is technically challenging to define and measure precisely. Measure-
ment and definition difficulties arise because natural waters contain a complex mixture of
many different elements from different sources (not all from dissolved salts) in different
molecular forms.
Hence, several definitions and measurements of salinity were used over time so as to
approximate the absolute salinity of seawater. Salinities were largely measured using
titration-based techniques before the 1980s, giving chlorinity. The latter was then multi-
plied by a factor to account for all other constituents. The resulting "Knudsen salinities"
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Figure 1.1 – Major constituents of seawater. Light blue represents the mass of pure water
(H2O) in 1 kilogram of seawater. The brown square – 35 grams – represents the salt (i.e.,
ions, mostly sodium and chloride, but there are other dissolved matters, as well). Note
that the proportions of each ion in seawater to the total salt component is also given as
those are mostly constant over the global ocean. (from Hannes Grobe, Alfred Wegener
Institute for Polar and Marine Research, Bremerhaven, Germany, via Wikipedia)

are expressed in units of parts per thousand (ppt or ‰). A bottled seawater product
known as International Association for the Physical Sciences of the Oceans (IAPSO)
Standard Seawater, especially certified in chlorinity, is used by oceanographers to stan-
dardize their measurements with enough precision. In the past thirty to forty years,
however, the chlorinity titration has been replaced by the measurement of electrical con-
ductivity for salinity determination and this has led to the development of the scale called
the "practical salinity scale 1978" (pss-1978 or pss, Unesco, 1981b), including revisions
of the definition of salinity (Lewis, 1980; Unesco, 1981a). The latest revision in Unesco
(1985) defines the pss as the ratio of the electrical conductivity of the sea water at the
temperature of 15°C and the pressure of the standard atmosphere, to that of a potassium
chloride (KCL) solution (with mass fraction of KCl being 32.4359 x 10−3) at the same
temperature and pressure. If that ratio equals to 1 then salinity is 35 pss.
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In 2010 a new standard for the properties of seawater called the Thermodynamic
Equation Of Seawater 2010 (TEOS-10) was introduced. It advocates absolute salinity
as a replacement for practical salinity, hence officially allowing mass fraction units for
salinity (g/kg of solution) and making oceanographic papers more readable for the wider
scientific community (IOC et al., 2010; McDougall et al., 2012; Wright et al., 2011). This
standard includes a new scale called the reference composition salinity scale. Salinities on
this scale are determined by combining electrical conductivity measurements with other
information that can account for regional changes in the composition of seawater.

In the main parts of this PhD thesis, I focus on the salinity at the surface of the
ocean, also called SSS for Sea Surface Salinity. To express SSS values, I use the pss, as
quite all in situ salinity measurements are made through conductivity and given in pss
(e.g., Argo floats data, see Chapter 2). Note that, thanks to the TEOS10 packages, exact
conversion of salinity from pss to mass fraction (g/kg) and reverse can be done easily
when needed, and that the pss and the g/kg unit are practically nearly equivalent (e.g.
35 pss ≈ 35g/kg).

1.1.2 Sea Surface Salinity (SSS) Global Distribution

SSS has been identified by the World Meteorological Organization as an Essential
Climate Variable (ECV). An ECV is a physical, chemical or biological variable that can
be observed reliably and that critically contributes to the characterization of the Earth’s
climate system.
At the surface, the averaged SSS value over the global ocean is about 35 pss, varying
mostly between 32 and 38 pss (Figure 1.2b), depending on freshwater fluxes. Lowest
values of SSS (brackish waters below 30 pss) can be reached locally in closed seas (e.g., 8
pss in Baltic Sea) and at the mouth of the rivers (about 15 pss), while highest values are
encountered in the Mediterranean Sea (∼38 pss) and in the Red Sea (∼40 pss). The SSS
global distribution is largely controlled by addition (precipitation and ice melting) and
removal (evaporation and sea-ice formation) of freshwater (Beer, 2017; Knauss, 1997; Lee
et al., 2006).

As we can see on Figure 1.2b, SSS is highest in tropical and subtropical regions.
Subsiding air of the subtropical high-pressure centers feeds the trade winds that induce
strong evaporation which exceeds precipitation and river runoff (see Figure 1.2a), leading
to an increase in salt concentration (Yu et al., 2020).
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Figure 1.2 – a) The mean evaporation-minus-precipitation (E-P) flux from OAFlux2 and
GPCP. b) Mean sea surface salinity observed from SMAP. The period of 2016–2018 was
used in constructing both mean fields. (After Yu et al., 2020)
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In contrast, SSS is lower in temperate and polar regions due to high precipitation and
river runoff that dilute the salt content. The same goes for the deep tropics, which belong
to the wettest regions on the planet with trade-wind convergence which forces the water-
laden air to rise in altitude. This leads to a formation of clouds and an intense rain fall in
the Intertropical Convergence Zone (ITCZ) near the equator in all the ocean basins, and
the South Pacific Convergence Zone (SPCZ) in the western South Pacific (Figure 1.2a;
Dessier & Donguy, 1994; Yu et al., 2020).

Another, much smaller but nevertheless important, controller of the SSS distribution
is the creation and melting of ice. As we can also see in Figure 1.2b, the Pacific Ocean
possesses, between 40°N and 60°N, low SSS which is caused by freshening induced by
icebergs in North Pacific. The same goes for the coast of Greenland in the Atlantic
Ocean, which is due to glacier melting in the case of Greenland and due to inflow from
tje Artic (Garcia-Eidell et al., 2017; Supply et al., 2022). In the other hand, the seasonal
creation of sea ice will influence the SSS distribution along the perimeter of Antarctica.
During the growth of sea ice, the salt contained in the sea water will be locked in the ice,
creating a highly concentrated solution of salt in water known as brine. When brine is
exposed to lower temperatures or lower pressures, or when additional water is added to
the solution, the excess salt cannot remain dissolved and begins to precipitate out of the
solution, forming crystals or solid deposits, which are injected in the underlying waters.
This is known as salt release or salt precipitation (Broecker, 1997).

There is also a significant variation in sea surface salinity between different ocean
basins, with the Pacific Ocean having generally lower salinity levels compared to the
Atlantic and Indian Oceans. Especially in the Pacific and Atlantic Ocean the SSS distri-
bution could not be more different, with differences in the SSS going up to 2 pss (Craig
et al., 2017). According to Broecker (1997) and Schmitt (2008) this is mostly due to the
narrowness of the Atlantic: the evaporation induced by a dry, continental air outweighs
the freshwater input. Furthermore, only little moisture transports arrive at the Atlantic
Ocean from the Indian Ocean whereas it is easily transported to the Pacific across the
Central American isthmus (Schmitt, 2008).

Additionally, salinity levels can vary greatly within a single ocean basin, as observed
in the Indian Ocean with the Arabian Sea in the west and the Bay of Bengal in the
east. These semi-closed basins exhibit distinct salinity patterns, with the Arabian Sea
dominated by evaporation and the Bay of Bengal influenced by freshwater input from river
discharges and monsoon rains (Akhil et al., 2014; de Boyer Montégut, 2005; Nyadjro &
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Subrahmanyam, 2016). The impact of river runoff on ocean salinity can also be observed
in Figure 1.2b, where low salinity patterns are evident around the mouths of major world
rivers such as the Amazon and the Congo.

1.1.3 Fundamental Role and Impacts of the Salinity on Ocean
and Climate

Salinity is a thermodynamic state variable that, along with temperature and pressure
governs the physical characteristics of the water, like its density and heat capacity. It is
also an important factor for determining many aspects of the chemistry of natural waters,
or of the biological processes within it. The global sea surface salinity distribution plays
a crucial role in the Earth’s climate system. In the following section, I further delve into
some of these impacts which influence the climate system.

Impact on Water Masses

This concept of "water masses" borrows from the concept of "air masses" in meteorology
and refers to distinct water bodies with different characteristics in terms of temperature
and salinity. These characteristics are acquired at the ocean surface in a formation region
(Dinnat, 2003; Emery, 2001). This concept is particularly valuable for studying deep
ocean circulation since the properties of water masses change slowly along their Lagrangian
paths below the highly turbulent surface mixing zone.

Water masses can originate from various source regions and possess different prop-
erties, such as temperature, salinity, nutrients, and sediments, which can influence the
watercolor (S Chen & Hu, 2017). When two water masses with highly contrasting prop-
erties (e.g., temperature and salinity) meet, they can form a boundary layer without
directly mixing together, as shown in Figure 1.3 where each water mass possess a dif-
ferent color. Similarly, the influence of riverine inputs can be observed as low salinity
patterns around river mouths, in a similar way as shown in Figure 1.4, where the riverine
inputs can be seen with the bare eye thanks to the different watercolor.

As salinity is one of the characteristics of the water mass, it is also possible to use it to
track the water masses (e.g., frontal features and eddies), their origins, and analyze their
transformations when exchanging with the surrounding water masses (Chaitanya et al.,
2014b; Shen et al., 2005; Supply et al., 2022, to mention some).
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Figure 1.3 – Boundary zone where two ocean water masses are colliding (Oregon Marine
Reserves)

Impact on the Density-Driven Global Ocean Circulation and Deep Convection

The circulation between the oceans is an important component of the Earth’s climate
system. By transporting heat, carbon, nutriments, and freshwater around the world, the
circulation has strong impacts on climate, weather, and marine ecosystems. There are
essentially two main components: the fast and energetic wind-driven circulation, and the
slow (migrates in decades or centuries) and large density-driven circulation which domi-
nates the deep sea. The latter is thus affected by salinity, temperature and the depth of
the water (Dinnat, 2003; Wunsch, 2002).

One of these deep-ocean circulation is the thermohaline circulation: circulation caused
by the joint effect of thermohaline forcing and turbulent mixing. Positive net heat flux
causes the surface of the ocean to change the density, becoming lighter and more buoyant,
creating a stable layer. The cooling of water and the accumulation of salt in salt formation
regions lead to an increase in water density, which in turn decreases its stability. Aiming
to establish equilibrium with other water masses it sinks into the ocean’s interior, gener-
ating circulation (e.g., deep-water currents like the North Atlantic Deep Water (NADW),
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Figure 1.4 – The Mackenzie River in Canada seen from space. (NASA)

or the Antarctic Bottom Water (AABW)) beneath the wind-driven ones (Dijkstra, 2008;
Rahmstorf, 2003, 2006). As water sinks, it transports heat and nutrients to the deep
ocean, impacting global climate and oceanic ecosystems (Emery, 2001). The sinking of
dense water also drives the global thermohaline circulation, which connects different ocean
basins and regulates heat transport on a global scale (see Figure 1.5, AL Gordon, 1986;
Rahmstorf, 2006). This downward movement is closely associated with convection and
induces mostly diffusion, advection, and double diffusion (Beer, 2017).

The SSS is therefore a key factor because freshwater creates a shallow thermohaline
structure. The presence of buoyant freshwater near the ocean’s surface will increase the
stability of the surface layer, rendering it less prone to mixing downwards and isolates
the deeper ocean from communicating with the atmosphere (Weller et al., 2016). This
makes the formation of deep waters impossible e.g., in the North-Pacific where sea ice
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Figure 1.5 – Schematic representation of the global thermohaline circulation. Surface
currents are shown in red, deep waters in light blue and bottom waters in dark blue. The
main deep-water formation sites are shown in orange. (After Rahmstorf, 2006)

melting injects huge quantities of freshwater (Dijkstra, 2008). Thus, the deep-water for-
mation only takes place in a few localized areas (see Figure 1.5 yellow points): in the
Greenland-Norwegian Sea, the Labrador Sea, the Mediterranean Sea, the Weddell Sea,
an in the Ross Sea (Lascaratos et al., 1999; Rahmstorf, 2006; Weaver et al., 1999).

Impact on the Stratification of the Ocean Surface Layer

As mentioned in the section above, in the deep Ocean heat and freshwater are se-
questered and released on longer time and global scales, creating a quiescent and deep
layer. Opposed to it is the surface layer, which undergoes constantly forcing from winds,
heat, and freshwater. The classic surface layer is divided in (see Figure 1.6): (i) an upper
mixed layer, vertically homogeneous in temperature and salinity, which is directly affected
by the atmosphere, (ii) an eventual barrier layer, confined between the top of the halocline
and of the thermocline, (iii) the pycnocline, a highly density stratified zone below where
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vertical property gradients are maximum (e.g., de Boyer Montégut et al., 2007).

Figure 1.6 – Examples of vertical profiles of temperature (black), salinity (blue), and
density (red, actually = σT = seawater density - 1000 kg/m3) in the first 100 to 200 m
depth of the ocean. (a) the case of the rather usual configuration for profiles in the surface
layer, with the warm mixed layer in contact with the cold deeper ocean (halocline and
thermocline at the same depth). (b) the so-called "Barrier Layer" (BL) case, where the
mixed layer is "isolated" from the colder deep ocean by an intermediate layer (BL) with
the same (or possibly slightly higher) temperature (fresher waters on top with the first
shallowest halocline being above the thermocline). (Adapted from de Boyer Montégut
et al. (2007)

Shown in Figure 1.6a, the mixing generally occurs within the first tens of meters. By
creating a layer within which salinity, temperature, and density are almost uniform, this
layer directly interacts with the atmosphere and has fast variations (de Boyer Montégut
et al., 2004; Kantha & Clayson, 2003; Sprintall & Cronin, 2001).

The pycnocline is in some sort an envelope of maximum depths reached by the active
vertical mixing. During a daily cycle, the mixed layer usually alternates between a well-
mixed state during night-time convection, and a weakly stratified state during the day
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(Brainerd & Gregg, 1995). Apart from this recurrent daily cycle, the mixed layer also
displays lower-frequency variability, such as at intraseasonal, seasonal and interannual
timescales (de Boyer Montégut et al., 2004).

Buoyant low salinity (or even fresh) water near the surface can increase the stability of
the surface layer by increasing the resistance to the vertical mixing leading to a reduction
of the surface layer depth (Weller et al., 2016). The depth of the mixed layer in its turn
controls the input of nutriments from different depths into the upper layers. When the
depth of the mixed layer is too shallow, fewer nutriments will be admitted in the surface
layer, inducing a decline in the biological productivity (e.g., chlorophyll; Prasanna Kumar
et al., 2002).

Studies have investigated how changes in oceanic stratification, specifically modifi-
cations to thermocline depth, can influence the expansion of Tropical Cyclones (TCs),
which derive energy from the heat of the oceans. As TCs move, they generate strong
winds that cause evaporation and vertical mixing. If the thermocline is shallow, the TC
rapidly deepens it and introduces colder water at the ocean surface, which reduces the
energy supply to the TC and creates negative feedback on its intensity. However, if the
thermocline is deep, the TC may not expand its depth, and cooling may not be induced,
allowing the TC to continue to intensify (Reul et al., 2020; Sengupta et al., 2008; Vincent
et al., 2014).

When there is a substantial inflow of freshwater (through precipitation, river runoff, or
advection like the southward subduction of high-salinity water from the subtropical North
Atlantic) into the ocean’s surface layer, a shallow salinity stratification can arise within a
deeper isothermal layer. As a result, the top of the halocline becomes shallower than that
of the thermocline, resulting in the creation of a barrier layer (see Figure 1.6b). Although
quasi-permanent in most of the equatorial and deep tropical basins (within roughly 10°
of the equator), such features are typically seasonal in the northern subpolar regions, the
Labrador Sea, and parts of the Arctic and Southern Ocean (Mignot et al., 2007). This
layer has important consequences on the air-sea interactions and important potential cli-
matic impact. When they occur, the energy transferred from the atmosphere via wind
and buoyancy forcing will be trapped in the upper mixed layer. Moreover, a thick barrier
layer has an isolating characteristic obstructing the heat exchanges between the surface
layer and the thermocline and thus obstructing the surface cooling (de Boyer Montégut

40



Part 1.1. From Sea Surface Salinity (SSS)...

et al., 2007; Foltz & McPhaden, 2009; Mignot et al., 2007).

Various studies (Balaguru et al., 2012; Balaguru et al., 2020; Sengupta et al., 2008)
stipulates that the presence of a thick (> 10 m) barrier layer can strongly influence TC. Not
only does the increased stability and stratification of the ocean reduce TC-induced vertical
mixing (thus hinder the decease of the cyclone) but in case of a temperature inversion it
may even increase its intensity. When a temperature inversion (the temperature of the
surface layer is less than in the barrier layer, e.g., on Figure 1.6b) occurs in the same time
as a cyclone, the resulting mixing can actually increase the surface temperature, thus
increasing the energy the cyclone has at disposal.

Influence on the Hydrological Cycle and Climate Change

The oceans are known for their role in the stocking and the transfer of thermal energy
(with a heat capacity 1,100 times greater than the atmosphere) which the sun adds to
the atmosphere-ocean system. Being in a constant interaction, the atmosphere and the
ocean constantly exchange momentum, heat, water, and radiation (Dinnat, 2003; Reul
et al., 2014; Weller et al., 2016).

The total amount of available water on Earth is about some 1.4 x109 km3, distributed
as shown in Figure 1.7a in oceans, land ice and glaciers, groundwater, and in the at-
mosphere in the form of water vapor. The continuous exchange of water between those
various reservoirs is called the hydrological cycle and is shown in Figure 1.7b (Bengtsson,
2010; Chahine, 1992; Dorigo et al., 2021).

The hydrological cycle has a significant impact on the climate, as it involves the
exchange of moisture and heat between the Earth’s surface and the atmosphere. This
exchange plays a fundamental role in the dynamics and thermodynamics of the climate
system. During phase transitions water has opposing effects on the environment by ei-
ther heating or cooling, e.g., the evaporation is approximately responsible for 50% of the
surface cooling. Moreover, water vapor in the atmosphere is a potent greenhouse gas that
amplifies the effects of greenhouse warming caused by carbon dioxide, methane, and other
similar gases, almost doubling their impact (Myhre et al., 2013). Last but not least, clouds
play a crucial role in controlling the climate by affecting the Earth’s radiation budget.
The release of latent heat during cloud condensation contributes to approximately 30%
of the thermal energy that drives the atmospheric circulation of the Earth (Chahine, 1992).
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(a) (b)

Figure 1.7 – a) Observed estimates of global water cycle storage (in 103 km3) and their
uncertainties. b) Observed estimates of annual global water cycle fluxes (in 103 km3) and
their trends. Both figures after Dorigo et al. (2021)

There are five main components which drives the hydrological cycle: clouds and radia-
tion, atmospheric moisture, precipitation, ocean fluxes and land surface processes. Even if
salinity does not have a direct impact on the hydrological cycle, it influences strongly the
ocean fluxes. The cycling of freshwater between evaporation E and precipitation P (E - P
can be seen in Figure 1.2a) acts in concert with the runoff R impacting ocean circulation
and mixing, which are closely linked to the salinity distribution (see Figure 1.2b). Salinity
can thus be seen as a proxy of the cycle (Chahine, 1992; Dorigo et al., 2021; Reul et al.,
2014; Schmitt, 2008; Yu et al., 2020).

As the climate warms, the atmosphere’s water holding capacity increases due to the
Clausius-Clapeyron relationship, resulting in an ocean-atmosphere imbalance that leads
to a roughly 7% increase in atmospheric water vapor per Kelvin of warming. Even in
the absence of circulation changes, the lower-tropospheric moisture convergence leads
to changes in precipitation minus evaporation (P-E) patterns, a phenomenon commonly
referred to as the "dry-gets-drier and wet-gets-wetter" concept (Held & Soden, 2006). Ob-
servations spanning several decades indicate that mean salinity patterns have intensified,
causing the subtropical ocean to become more saline and the tropical and high-latitude
regions to become fresher (Durack & Wijffels, 2010; Durack et al., 2012), in line with the
"dry-gets-drier and wet-gets-wetter" concept. This underscores the oceans’ critical role in
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understanding long-term changes in the water cycle and the impacts of climate change
(Dorigo et al., 2021; Yu et al., 2020).

However, ocean warming increases near-surface stratification, which can prolong ex-
isting salinity differences and further amplify surface salinity patterns. Changes in atmo-
spheric circulation patterns can also alter the locations of wet and dry areas, potentially
reducing the signal of water cycle changes passed on to the ocean. Therefore, salinity
should be used with caution as a climate change indicator, as other processes may also
contribute to changes in ocean salinity (Allan et al., 2020).

1.2 ... to Space-Born Microwave Remote Sensing

Remote sensing is a powerful tool for monitoring and understanding the physical
properties of the ocean. In recent years, passive microwave radiometry has emerged as a
promising technique for measuring Sea Surface Salinity (SSS) from space. In particular,
L-band radiometry promises high accuracy and spatial resolutions. This technique takes
advantage of the natural emission of microwave radiation by seawater, which is directly
related to its salinity.

In this section, I first provide an overview of passive microwave remote sensing for
SSS retrieval, describing the principles of the Radiative Transfert Model (RTM). Then, I
review the history and development of L-band radiometers, discussing the strengths and
limitations of the different missions. I provide a review of the different remote sensing
researches on SSS carried out in the BoB using L-band radiometers. Finally, I close this
section by presenting two studies where SSS was retrieved from combined C- and X-band
radiometers.

1.2.1 Physical Principles of Salinity Remote Sensing

The realization of the importance to measure globally and follow SSS is dated, but
measuring techniques have been only found recently. In situ measurements, i.e., direct
measurements at given locations, have been collected via different ways (Reul et al., 2020,
Figure 11):

— Argo float profilers which can normally measure SSS between 1 m and 10 m depth,

— Thermo-SalinoGraph (TSG) sensors installed onboard ships of opportunity (Alory
et al., 2015), research vessels (Gaillard et al., 2015), or sailing ships (Reynaud et al.,

43



Chapter 1 – General Introduction

2022),

— upper-level data from salinity equipped moorings (McPhaden et al., 2010),

— surface drifters measuring the upper 50 cm (Morisset et al., 2012), and

— marine mammals (Treasure et al., 2017) equipped with Conductivity-Temperature-
Depth (CTD) sensors (principally in polar regions).

However, the temporal distribution of in situ measurements in the BoB is sparse (see
Figure 1.8a). As can be seen in Figure 1.8b in the early 2000s in situ measurements are
not covering the BoB and are not located near the estuaries. In 2008, the number of in situ
deployments per month starts reaching an asymptotic behavior in the BoB (around ∼400
Argo profiles per month). However, even at its maximum the SSS coverage of the BoB
remains patchy. By using in situ measurements, it is thus possible to identify variations
associated with the seasonal cycle (Sengupta et al., 2016). However, it is not possible to
detect interannual variations or the impact of river runoffs on SSS (Akhil et al., 2020)
and short temporal scale (<1 month) variability.

Using remote sensing techniques, it is possible to retrieve a synoptic monthly SSS map
over the complete BoB (see for example Figure 1.25). This allows a detailed investigation
of the spatial distribution of SSS over this region. The usual revisit time of polar-satellite
sensors is around three days (see Section 1.2.2.1), permitting an in-depth study of the
interannual SSS variability. With a spatial resolution around 50 km (see Section 1.2.2.1)
satellite sensors allows even a follow-up of the impacts of mesoscale eddies (radius larger
than 50 km and lifespan longer than 30 days, Dandapat and Chakraborty (2016)).

Receiving radiation from the Sun and sky, the ocean will in turn emit electromagnetic
waves which are typical for its energy, with power frequently described as oceans brightness
temperature (TB). It is defined as the temperature of a theoretical black body that would
emit the same amount of thermal radiation as the observed surface at a given frequency
(f). It depends on the emissivity (e) and the absolute temperature of the sea surface (T)
(Lagerloef et al., 2008):

TB = e(f) ∗ SST [K] (1.1)

Salinity remote sensing is only possible because the emissivity at a given frequency
depends on the dielectric constant, which itself depends on temperature and salinity of
sea water (Klein & Swift, 1977; Meissner & Wentz, 2012).

For a perfectly flat (or specular) ocean surface, the emissivity depends on salinity and
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Figure 1.8 – a) monthly number of ARGO in situ measurements between 2002 and 2022
in the BoB, extracted from the SMOS-Pimep site; Snapshot of mean SSS Insitu measure-
ments in the BoB, extracted from the World Ocean Data (WOD), for b) the year 2003
and c) the year 2008.

temperature, as well as the look direction (incidence angle) and polarization. But this
is hardly the case, the sea surface often becoming rough under constant drills received
locally by winds or from distance by swell waves and thus modify the surface emissivity
and absorption. Moreover, strong winds can tear off droplets from the ocean surface
and create foam that increases the emissivity. Once emitted by the ocean surface, the
electromagnetic radiation has to cross the atmosphere in which different components such

45



Chapter 1 – General Introduction

as oxygen or water in different states are present and modify the radiation. Finally, the
antenna and the sky will also emit a radiometric radiation, that alter the received signal
(Dinnat, 2003; Supply, 2020).

At a state of thermodynamic equilibrium, the emissivity is equivalent to the absorptiv-
ity (a), which reflects the proportion of power received by the sea surface that is absorbed,
giving:

e = a

= (1 − R)
(1.2)

where R is the reflectivity of the sea surface.

A challenge when estimating SSS from radiometer data is to estimate oceans brightness
temperature (TB) from the brightness temperature measured at antenna level (TA). After
obtaining an estimate of the TB, the next step involves converting it into SSS. To achieve
this in calm sea conditions, a simple model is employed, which assumes that the sea
surface is flat and has an infinite extent as compared to the instrument’s wavelength
λ0. Under this assumption, the reflection at the surface is specular, and the reflection
coefficient is referred to as the Fresnel reflection coefficient (RF r). The RF r is dependent
on the angle of incidence θ (with no azimuthal dependence as the sea surface is isotropic
in this simplified model) and the permittivity εr of seawater. Thus, we have:

TBsea(θ, SST, SSS) ≃ TBspec = SST · (1 − RF r(θ, εr (SST, SSS)) (1.3)

where TBspec is the brightness temperature of a specular sea surface. The Fresnel coef-
ficients provide the reflection coefficients for vertical (Rv) and horizontal (Rh) polarization
(Peake, 1959):

Rv = RF r,v

=
∣∣∣∣∣εr cos θ −

√
εr − sin θ2

εr cos θ +
√

εr − sin θ2

∣∣∣∣∣
2 (1.4)
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and

Rh = RF r,h

=
∣∣∣∣∣cos θ −

√
εr − sin θ2

cos θ +
√

εr − sin θ2

∣∣∣∣∣
2 (1.5)

The seawater’s relative permittivity, also known as the dielectric constant (εr), is a
complex function that depends on temperature and salinity. Dielectric constant can be
estimated by Debye (1929)’s function of the electromagnetic frequency f = 2π

ω
, which has

been determined empirically through laboratory experiments:

ε = ε∞ + (εs − εinf)
1 − iωτ

− i
σ

ωε0
(1.6)

in which i is the imaginary unit, ε∞ is the electrical permittivity at very high frequen-
cies. εs, τ , and σ are functions of temperature and salinity and represent respectively the
static dielectric constant, the relaxation time and the ionic conductivity. Finally, ε0 is the
permittivity of free space.

The transmission of electromagnetic waves in seawater will vary as a function of its
frequency (Somaraju & Trumpf, 2006).

Historically, the functions related to salinity had been evaluated by Ellison et al.
(1998), Klein and Swift (1977), A Stogryn (1971), and AP Stogryn et al. (1995) before
the development of the first salinity mission.

Following prelaunch comparisons and analyses of the Soil Moisture and Ocean Salinity
(SMOS) mission (Blanch & Aguasca, 2004; Camps et al., 2004; Wilson et al., 2004), the
Klein and Swift (KS) model was selected in the Level 2 Ocean Salinity (OS) processor for
the SMOS mission in the first phases of post-launch (Argans, 2016). An alternative model
function, denoted MW and developed by Meissner and Wentz (2004), fits the seawater
dielectric data to a double Debye relaxation polynomial that performs best at higher
frequencies. The MW model is used in the Aquarius and SMAP SSS retrieval algorithms
(Meissner et al., 2018).

The MW model function was recently updated by providing small adjustments to
the Debye parameters based on including results for the C-band and X-band channels of
WindSat and AMSR (Meissner & Wentz, 2012; Meissner et al., 2014).

Direct laboratory measurements of the εr at 1.413 GHz and SSS=30, 33, 35, and 38
(Lang et al., 2016) were used to develop a new model (Zhou et al., 2017) by fitting the
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measurements with a third-order polynomial. This new L-band model has been compared
with KS and MW. The authors claimed that this new model function gives more accurate
SSS at high (25°C to 30°C) and low (0.5°C to 7°C) Sea Surface Temperature (SST) than
other existing model functions. However, the model showed inconsistent behavior between
partitioned salinities.

To overcome these problems, two new parameterizations were recently developed. One
is based on SMOS satellite multi-angular brightness temperature measurements by Boutin
et al. (2021b), hereafter BV, and the other is based on new George Washington laboratory
measurements by Zhou et al. (2021) (hereafter denoted GW2020). These two approaches
are fully independent. The brightness temperatures TB simulated through the BV and
GW2020 parameterizations agree particularly well for most SSS and SST conditions com-
monly observed over the open ocean, and better than with earlier parameterizations
previously used in the SMOS, SMAP and Aquarius SSS retrievals. Nevertheless, uncer-
tainty remains below 10°C where a ∼0.1 K relative difference between the two models is
observed.

1.2.2 SSS Retrieval From Radiometers Operated From L-Band

The TB of the ocean surface depends on the measured electromagnetic frequency. The
TB’s at different frequencies have differing sensitivities to geophysical parameters such
as SST, SSS, and wind speed, as well as other contributions such as atmospheric and
galactic emissions. The sensitivity of TB to these parameters thus varies with frequency
(Figure 1.9). For f > 1 GHz, the sensitivity of TB to SSS is highest at a frequency of ∼1
GHz (L-band, see Table 1.1).

The frequency of 1.4 GHz is commonly used for SSS remote sensing as it provides a
good balance between sensitivity to sea surface salinity and because it is a protected fre-
quency for Radio-Astronomy. The brightness temperature measured by satellite sensors
is significantly influenced by others geophysical factors such as SST, roughness, atmo-
spheric and galactic emissions (see Figure 1.10). With respect to SSS impacts, these
factors need to be corrected. Therefore, it is important to incorporate these contribu-
tions into the correction process to ensure the accurate retrieval of SSS from L-band
radiometer measurements (Reul et al., 2020). The fact that the frequency is protected for
Radio-Astronomy reduces human-caused Radio Frequency Interferences (RFI).

As mentioned by Reul et al. (2020), the sensitivity to SSS of the oceans brightness
temperature from the sea surface at 1.4 GHz and in vertical (VV) polarization (see Fig-
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Figure 1.9 – Illustration of the sensitivities of the low passive microwave brightness tem-
perature at the top-of-the-atmosphere, in terms of Sea Surface Temperature (SST), Sea
Surface Salinity (SSS), Ocean Wind Speed (OWS) and Sea Ice Concentration (SIC) as
a function of frequency from 1 GHz to 40 GHz. The Copernicus Imaging Microwave
Radiometer (CIMR) channels are indicated at the top of the figure. Three different geo-
physical conditions are considered: arctic, midlatitude and tropical. For each parameter
the sensitivity is normalized by the maximum of sensitivity between the three considered
environments, for the full-frequency range from 1 to 40 GHz (after Kilic et al., 2020).

ure 1.11), varies only between ∂TB/∂SSS ∼ -0.5 to -1 K/pss for incidence angles from 0° to
60° at characteristic ocean conditions (SSS = 35 pss and SST = 15 °C). Compared to the
noise characteristics of currently operating radiometers (∼0.3 to 2 K) and the restricted
range of the natural SSS variability in the open ocean (32 to 38 pss), this TB sensitivity
is relatively small. Additionally, as illustrated in Figure 1.11, the ∂TB/∂SSS is strongly
varying with the SST and decreases with a decreasing SST (from ∼ -0.7 K/pss at 30 °C
to ∼-0.2 K/pss at 0 °C). This strongly complicates the estimation of SSS at the high
latitudes.

As mentioned in the previous section, the dielectric model function varies depending
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Band designator Frequency f
(GHz)

Wavelength in free space λ
(cm)

L 1-2 30-15
S 2-4 15-7.5
C 4-8 7.5-3.8
X 8-12 3.8-2.5

Ku 12-18 2.5-1.7
K 18-27 1.7-1.1
Ka 27-40 1.1-0.75
V 40-75 0.75-0.40
W 72-110 0.40-0.27

Table 1.1 – Standard microwave frequencies and nomenclature

.

Figure 1.10 – schematic representation of the various signals received by an L-band ra-
diometer (after Reul et al., 2020)

on the frequency used to measure the oceans brightness temperature. Especially the
accurate retrieval of SSS from L-band oceans brightness temperature is highly reliant on
having a good understanding of εr variations with respect to temperature and salinity
(Lang et al., 2016).
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Figure 1.11 – (a) sensitivity of the ocean surface microwave brightness temperature to
salinity (First Stokes parameter) in VV-polarization as a function of electromagnetic
frequency and incidence angle (blue curve = 0°, black curve = 60°) and for a water body
with salinity of 35 pss and temperature of 15 °C. (b) Brightness temperature changes at
1.4 GHz and nadir as a function of salinity (x-axis) and temperature (colors). The gray
domain indicates the range of SSS values mostly encountered in the open ocean. (After
Reul et al., 2020)

1.2.2.1 History of L-Band radiometers

To be able to measure SSS at 1.4 GHz, the antenna size required by the radiometer
sensors must be quite large (according to Dinnat (2003) between 3 and 8 m in diameter)
to meet a useful spatial resolution on the ground. As Reul et al. (2020) points out, this
antenna technology was just not available before the late 1990s.

In Figure 1.12 is shown the timeline of satellites carrying L-band radiometers (SMOS,
Aquarius, and SMAP), which is further detailed in the section below. The timeline of
Advanced Microwave Scanning Radiometer for Earth observing system (AMSR-E) which
Reul et al. (2009) used for SSS retrieval and which is the subject of this thesis is also
shown.

SMOS The spaceborne L-band microwave radiometer era started with the SMOS mis-
sion, launched at the end of 2009 by the European Space Agency (ESA). It carries a
single payload, L-Band 2-D interferometric radiometer (Microwave Imaging Radiometer
with Aperture Synthesis (MIRAS)) operating in the 1400-1427-MHz protected band. The
SMOS mission follows a helio-synchronous orbit and crosses the equator at 6 A.M./6 P.M.
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Figure 1.12 – Schematic representation of the timeline of L-band satellites and C-/X-band
satellite AMSR-E. The flag represents the county/union owning the satellite.

in ascending/descending direction with a mean altitude of 758 km and an inclination of
98.44°. It is described in detail in Kerr et al. (2010) and Mecklenburg et al. (2012), and
Reul et al. (2020). MIRAS determines "visibilities" that are complex cross-correlations of
signals collected by pairs of antennas within a 69-receiver array on a deployable Y-shaped
structure (see Figure 1.13 left) (Kerr et al., 2010; Supply, 2020). The approximate revisit
time is in the order of 18 days and a spatial resolution varying from thirty-five to sixty
kilometers, which is further detailed in Lagerloef and Font (2010) and Reul et al. (2020)
(Figure 1.13 right).

In 2023, SMOS is still in good shape and operating, although it was supposed to be
a five-year only mission and it gives thus access to the longest (13 years) time series of
satellite SSS.

Aquarius In 2011, the Argentinean Comision Nacional de Actividades Espaciales (CONAE)
launched the Satelite de Aplicaciones Cientificas-D (SAC-D) with onboard National Aero-
nautics and Space Administration’s (NASA) instrument Aquarius (see Figure 1.14 left).
It is a combined L-band radiometer (1.413 GHz) and scatterometer (1.26 GHz) (Bindlish
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Figure 1.13 – (Left) Artistic view of SMOS sensors (Right) shape of a snapshot brightness
temperature image as reconstructed from SMOS observations, the color indicates the
varying Earth incidence angle, the thick-dash line and large arrow indicate the sub-satellite
track and satellite propagation direction, respectively. The widths of the extended Field
Of View (FOV) and alias free FOV are indicated by the pink and black hexagonal shapes,
respectively. White ellipses give an indication of the varying footprint sizes from about
35 km at boresight to ∼60 km at the FOV borders. (After Reul et al., 2020)

et al., 2015). The mission ended in 2015 when an essential part of the power and alti-
tude control system for the spacecraft stopped operating. As can be seen on the right of
Figure 1.14, the antenna is an offset parabolic reflector. It possesses a diameter of 2.5
m and is equipped with three feed horns. Combined, the three beams measured by the
feed horns form a swath of about 390 km in width. The maximal spatial resolution of
Aquarius was only 150 km (see Figure 1.14 right), the SSS accuracy was 0.2 psu, and the
revisit was every 7 days (Lagerloef et al., 2008; Le Vine et al., 2010; Reul et al., 2020).

SMAP Just before Aquarius ceased to function, the NASA launched Soil Moisture
Active-Passive (SMAP) in early 2015, which has on board a combined active–passive
microwave instrument. It possesses a unique 6 m long, rotating reflector (see Figure 1.15
top left), shared between a radiometer and a Synthetic Aperture Radar (SAR) which
ceased transmissions in July 2015 but is still in a receive-only configuration (Peng et al.,
2017; Piepmeier et al., 2017), both in L-band frequency. Due to the rotation of the antenna
(see Figure 1.15 top right), measurements in aft- and for-views of the earth stargate are
provided during the azimuthal scan of the satellite. This permits a decrease of the impact
coming from RFI’s but adds complexity to the calibration as the self-emissivity of the
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Figure 1.14 – (Left) Artistic view of Aquarius mission, (Right) schematic indicating the
390 km wide swath formed by the three radiometer and scatterometer beams of Aquarius.
(After Reul et al., 2020)

antenna has to be corrected (Supply, 2020). SMAP is on a sun-synchronous orbit and
crosses the equator at 6 A.M./6 P.M. in descending/ascending direction (which is the
inverse to SMOS). A quasi-global spatial coverage is performed in three days, with a
maximal spatial resolution of 40 km (see Figure 1.15 bottom, Piepmeier et al., 2017).
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Figure 1.15 – (Top Left) Artistic view of NASA/SMAP mission, (Top Right) schematic
indicating the ∼1000 km wide swath formed by the scanning radiometer and radar beams
of SMAP. (Bottom) Radiometer Extended FOV spacing. The sub-satellite point is moving
in the direction of the red dashed arrow. The blue curves indicate the azimuthal scanning
directions and the black ellipses illustrate the successive 3-dB footprint of the radiometer
in that direction. (After Reul et al., 2020)

1.2.3 Attempts to retrieve SSS with C- and X-band radiometer
data

Before the launch of the first L-band satellite (see Section 1.2.2.1), Reul et al. (2009)
developed an algorithm to retrieve SSS from the AMSR-E C- and X-band (6.9 GHz and
10.7 GHz) radiometer channel data.

As can be seen in Figure 1.16, for an SST of 15 ◦C and SSS of 35 pss, the sensitivity
of oceans brightness temperature to SSS is significantly lower for the C-band than that
at the L-band (by a factor of 10), whereas for the X-band, it is nearly zero.
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Figure 1.16 – Sensitivity of oceanic brightness temperature to SSS, ∂TB/∂SSS in function of
the electromagnetic frequency, calculated from Klein and Swift, 1977 for a given salinity
(S = 35 pss) and temperature (T = 15 ◦C) and an incidence angle of 53° (similar to
AMSR-E), in vertical and horizontal polarization

Furthermore, a warmer SST will increase the TB sensitivity to SSS: In v-polarization,
for the C-band (respectively X-band) from ∂TB/∂SSS ≈ -0.024 K/pss (resp. 0.003 K/pss)
at an SST = 20 ◦C to ∂TB/∂SSS ≈-0.053 K/pss (resp. -0.0069 K/pss) at SST = 30 ◦C (see
Figure 1.17a, b).

For the same polarization, the sensitivity of oceans brightness temperature to the SST,
∂TB/∂SST , is at these frequencies significantly higher than ∂TB/∂SSS, with ∂TB/∂SST ≈ 0.65
K/°C (0.69 K/°C) for C-band and ≈ 0.61 K/°C (0.63 K/°C) for the X-band at SSS =
35 pss (respectively SSS = 20 pss) (see Figure 1.18).The signal is more sensitive to SST
than to SSS by a factor of more than 10. The h polarization (respectively c and d on
Figure 1.17 and Figure 1.18) shows a loss of sensibility for the two channels by a factor
of ≈2.

Additionally, Reul et al. (2009) pointed out that surface waves roughness can cause sig-
nificant changes in the observed brightness temperature that may mask the weak salinity
signatures (see Figure 1.19). Meissner and Wentz (2012) showed that the wind-induced
emissivity in H-polarization (Figure 1.19b) for wind speeds at 1 m/s already contributes
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1 K, which increases strongly after for increasing speed. For wind-speeds smaller than
10 m/s the emissivity induced by the wind is up to 6 K. Contrarily, the wind induces
emissivity in v-polarization (Figure 1.19a) is close to zero for wind speed < 2m/s, and do
not exceed ±1K until the wind speed exceeds 10 m/s. In addition, TB sensitivity to SSS
(∂TB/∂SSS) is higher in vertical polarization (V-pol) than in horizontal polarization (H-pol)
(see Figure 1.17, Figure 1.18). Therefore, for the present work, only v-polarization data
is considered.
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Reul et al. (2009) proposed to minimize these SST and surface wind impacts by using
the oceans brightness temperature difference quantity:

∆TB
ν = Tv

6.9 − Tv
10.7 (1.7)

where Tv
6.9 and Tv

10.7 are the oceans brightness temperature at the ocean surface in V-pol
retrieved from C- and X-channels, respectively.

As illustrated in Figure 1.20 and Figure 1.21, taking the difference between X- and
C-band allows to:

(i) strongly minimize the SST impact on the oceans brightness temperature while only
weakly impacting its sensitivity to SSS (∂∆TB/∂SSS ∼= 0.0046 K/pss (SST = 30°C)
and ∂∆TB/∂SST ∼= -0.04 K/°C, see Figure 1.21a and b, and

(ii) reduce in average the dependence to the sea surface roughness: Tv
6.9 and Tv

10.7

reacts similarly to the changes in the surface wind speed from about 0 to 10 m s−1

(see Figure 1.19a).

Reul et al. (2009) used this method over the Amazon plume region in the Northwestern
Tropical Atlantic. The authors showed that monthly and bimonthly surface salinity could
be retrieved with a relative accuracy (∼0.5 pss). AMSR-E SSS clearly helps monitoring
the large-scale spatial structures of the freshwater Amazon plume that extends about 600
km offshore.

After this study, Song and Wang (2017) created a similar algorithm based on Reul
et al. (2009), in order to retrieve SSS from satellite HY-2A radiometer. Both algorithmn
are based on the following Radiative Transfert Model (RTM):

TB = TBU + τ [eTS + TBΩ] (1.8)

where TB is the brightness temperature of the radiometer, TBU is the upwelling atmo-
spheric brightness temperature, TBΩ is the sky radiation scattered upward by the Earth
surface, TS is the SST, τ is the atmospheric transitivity. TBΩ can generally be expressed as
TBΩ = R · M , with M a function of the downwelling atmospheric radiation, atmospheric
transmissivity, corrections to the sea surface scattering, and cosmological background
radiation, and R the sea surface reflectance. By using the Kirchhoff thermal law the
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Figure 1.19 – Isotropic wind induced emissivity at C- and X-band for (a) V-polarization
and (b) H-polarization. The GMF from Meissner and Wentz (2012) are given a nominal
incidence angle of 55.2°

following equation for the sea surface reflectance is given:

R = (TB − TBU)/τ − TS

M − TS

. (1.9)

By combining the RTM model and a sea water dielectric constant model, the SSS can
thus be retrieved (RHY −2A). Song and Wang (2017) then uses the SST products from the
radiometer and SSS from the World Ocean Atlas 09 (WOA09) to train the reflectance
model RKS with the Klein and Swift dielectric constant model, at both channels. Finally,
RHY −2A issued from the HY-2A satellite is then calibrated with the modeled RKS before
retrieving the SSS.
The retrieved SSS presents reasonable features of the freshwater runoff near the Yangtze
Delta compared to WOA09 climatology. Also, for the Northwest Pacific it is possible to
see mesoscale features in the SSS in the South China Sea. Song and Wang (2017) specifies
that the root-mean square error for the one-year data is about 0.56 on a monthly time
scale. It significantly reduces to 0.35 after the data has been bilinear interpolated to the
grid spacing (0.5° x 0.5°).
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(a) Tv
6.9 (b) Tv

10.7 (c) ∆TB
v

Figure 1.20 – V-polarized oceans brightness temperature as a function of SSS and SST
at an incidence angle of 55° for a) C-band (Tv

6.9), b) X-band Tv
10.7 and c) the oceans

brightness temperature difference between X- and C-band (∆TB
v).
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1.3 Bay of Bengal (BoB): A Singular Tropical Ocean
Basin

The BoB is situated in the northeast of the Indian Ocean and is a peculiar zone
because of its unique geography and climate characteristics. Bounded by India to the
west, Bangladesh to the north, and Myanmar to the east, it forms a semi-closed basin
(see Figure 1.22). During boreal summer large differential heating is thus created between
the Asian subcontinent and the ocean. This drives the most dramatic monsoonal wind
system in the world (Schott & McCreary, 2001).

Figure 1.22 – Map of the Bay of Bengal (contour in yellow). The different blue tones
represent the bathymetry. Image taken from https://worldinmaps.com

The BoB covers an area of approximately 2.2 million square kilometers and has an
average depth of 2,600 meters (Figure 1.22).

Five of the world’s 50 largest rivers, including the Brahmaputra, the Ganga, the
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Part 1.3. Bay of Bengal (BoB): A Singular Tropical Ocean Basin

Irrawaddy, the Godavari, and the Mahanadi, empty into the Bay of Bengal north of
15°N, contributing a total annual continental runoff (R) of approximately 2950 km3.
When combined with annual rainfall (P) of 4500 km3, the total freshwater input exceeds
annual evaporation (E) of 3500 km3, resulting in a net annual freshwater supply of about
1.6 m to the Bay of Bengal. As a result, the Bay of Bengal acts as a dilution basin
(E - P - R < 0), and its circulation must export the excess freshwater it receives from
rainfall and rivers (Schott & McCreary, 2001; Sengupta et al., 2006).

1.3.1 Impacts of salinity

The intense freshwater flux in a small and semi-closed basin as the BoB results in
an intense dilution of the salt contained in seawater, letting the BoB stand out with a
mean SSS below 33 pss in the Tropics (Chaitanya et al., 2014b). The surface freshwater
flux induces a contrast between the surface- (top 40 m) and the deep-layer, creating a
sharp near-surface haline stratification (Chaitanya et al., 2014b). This stratification has
important impacts on the near-surface ocean stability and is believed to be a part of a
positive feedback loop that maintains high SST and rainfall over the BoB (Shenoi et al.,
2002). As explained in the section above, the haline stratification creates a barrier layer
and prevent the mixing of the surface layer with the deeper layer (de Boyer Montégut
et al., 2007). This contributes in maintaining the SST above the ∼28.5°C threshold for
deep atmospheric convection causing intense rainfall above the BoB (Gadgil et al., 1984).
However, Krishnamohan et al. (2019), using a coupled model simulation, did not find any
evidence of salinity influencing the climatological SST and rainfall in the BoB.

The Bay of Bengal (BoB) has one of the highest numbers of casualties due to tropical
cyclones (TCs) globally. According to Alam et al. (2003), between 1974 and 1999, TCs
accounted for approximately 5% of the global TC casualties. The TCs that develop
in the BoB are among the most lethal globally, with 14 out of 20 of the deadliest TCs,
mainly due to the densely populated and vulnerable coastal areas and inadequate disaster
management strategies (Neetu et al., 2012). These TCs usually occur before or after the
Indian summer monsoon, between April to May for the pre-monsoon and October to
December for the post-monsoon (Neetu et al., 2019). Sengupta et al. (2008) proposed
that the stratification of the sea surface salinity was responsible for hindering mixing
below the TCs in the Bay of Bengal, resulting in stronger cyclones than in the Arabian
Sea. Neetu et al. (2012) confirmed that the salinity stratification played a significant
role in the cooling below cyclones. However, Neetu et al. (2019) questioned the potential
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role of the salinity distribution on the strongest TCs in the BoB, and found that air-sea
interactions below tropical cyclones influenced the characteristics of strong TCs.

Another important role salinity can have in the BoB is its ability to trace water masses.
The strong seasonal reversals of wind-stress forcing in the Bay of Bengal give rise to an
intense oceanic dynamic, which is influenced not only by local forcing but also by remote
forcing such as Kelvin and Rossby waves. The East Indian Coastal Current (EICC) is
one important example of this dynamic. It undergoes a reversal twice a year, carrying
freshwater generated by river runoff and summer rains from the north to the south during
winter and creating a freshwater tongue. This tongue has a width of approximately 200
km and will expand itself for 2.000 km, all along the Eastern Indian coast, as far as Sri
Lanka, creating a "River in the Sea" shortly after the winter monsoon (Akhil et al., 2014;
Chaitanya et al., 2014b; Fournier et al., 2017).

1.3.2 Seasonal Cycle

During four months (June-September, Figure 1.23b), south-westerly winds flush over
the surface of the ocean (see e.g., Fig. 1 from Schott and McCreary, 2001), collecting water
vapor, before releasing it over India and the BoB. The rain over India feeds large rivers
that flow into the BoB as can be seen in Figure 1.23a. Together with the monsoon rains
(in summer and autumn), they create shallow freshwater pools in the northeast BoB. As
a result, SSS mirrors the seasonal evolution of the Ganga-Brahmaputra (or Irrawaddy)
and rainfall, as can be seen on Figure 1.25c (Chaitanya et al., 2014b; Fournier & Lee,
2021).

The SST in the BoB displays a seasonal behavior along the year: the freshwater coming
from the rivers contributes to a lower SST in the northeastern BoB (see Figure 1.24b), es-
pecially During December to February. During April and May, the averaged SST reaches
its peak. Soon after the onset of the monsoon in June, the winds strengthen, and SST
decreases. In contrast, the neighboring Arabian Sea cools rapidly during the monsoon
season, whereas SST in the BoB remains higher than 28 ◦C (see Figure 1.24a) (the thresh-
old for deep convection in the atmosphere over tropical oceans mentioned in the section
above). Shenoi et al. (2002) supposes that the increase in stratification creates a shallow
mixed layer, leading to SST higher than 28 ◦C, as the heat influx from the atmosphere is
trapped in a smaller mixed layer depth.

The SSS in the BoB displays a distinct seasonal cycle, resulting in a strong SSS gradient
across the entire bay. During summer monsoon, the SSS in the BoB decreases due to
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Figure 1.23 – (a) Average climatological rainfall from Jul to Sep (mm day-1) from Tropical
Rainfall Measuring Mission (TRMM) 3B42 data. The major rivers in the northern BoB
are drawn on the map and their average river discharge during Jul–Sep (104 m3s−1) is
indicated. (b) Average fresh water flux into the BoB (104 m3s−1) north of 14°N from
rainfall over the ocean (blue curve) and the major rivers (red curve) indicated in (a)
(Chaitanya et al., 2014b).

monsoon rainfall and runoff. This deposit of fresh water at the surface forms a barrier
layer (see details hereafter) and the vertical mixing with higher salinity waters partly
counteracts this decrease in salinity at the surface during end of summer and autumn
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Figure 1.24 – a) SST in the Arabian Sea (solid) and Bay of Bengal (dashed). The tem-
peratures were averaged over the region between 6° and 25°N in both basins (after Shenoi
et al. (2002)). b) annual SST in the BoB using the CCI dataset.

(Benshila et al., 2014; de Boyer Montégut, 2005). From winter, SSS increases again as
precipitations are weak and evaporation dominates due to northeasterly monsoonal winds
from the land. It is important to note that the contribution of horizontal advection can
be locally strong, as for example along the coasts of eastern India (see details hereafter).

The thickness of the barrier layer in the BoB shows a seasonal cycle induced by fresh-
water inputs and surface circulation patterns (Mignot et al., 2007). In June to September,
the barrier layer thickness increases along the eastern boundary, while a band of low thick-
ness is recorded between the Indo-Sri Lanka region and the eastern boundary south of
12°N. This is due to high salinity water transport from the Arabian Sea causing stratifi-
cation and greater mixing. In November to December, increased river discharges lead to
a pattern of thick barrier layer extending all along the boundary of the BoB and farther
northeast (Kumari et al., 2018; Mignot et al., 2007).

Another seasonal cycle which occurs in the BoB is the EICC, a major current along the
western boundary of the BoB. It is responsible for most of the surface and thermocline
water transport in this basin and connects the BoB with the equatorial Indian Ocean
and the Arabian Sea (Akhil et al., 2014; Schott & McCreary, 2001). Before and during

68



Part 1.3. Bay of Bengal (BoB): A Singular Tropical Ocean Basin

Figure 1.25 – In the background is the seasonal mean climatology of SSS and in the
foreground the surface currents between June 2010 and December 2016 in the BoB using
Climate Change Initiative (CCI) (Boutin et al., 2021a) and Globe Current datasets (Reyes
et al., 2022). a) represents the mean of March-April-May, b) the mean of June-July-
August, c) the mean of September-October-November and d) the mean of December-
January-February.

summer monsoon (February until September) the EICC flows northeastward, forced by
southwesterly winds (Figure 1.25a). After the monsoon (October to January) it reverses
itself, flowing southwestward forced by northeasterly winds (see Figure 1.25c). Only dur-
ing November–December and March–April when the EICC reaches a peak, a continuous
flow between the northern BoB and the southeastern coast of Sri Lanka is reached (Akhil
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et al., 2014; Schott & McCreary, 2001).

The reversal occurs about one month before the wind reversal in the Bay of Bengal.
This is because of the remote wind forcing from the equatorial Indian Ocean and eastern
rim of the Bay of Bengal, which travels to the east coast of India in the form of coastal
Kelvin waves (coastally trapped waves that travel counterclockwise around the BoB at a
speed of approximately 2.5 – 3 m s−1). In addition to coastal Kelvin waves, Rossby waves
forced by wind stress curl in the BoB interior also propagate westward towards the east
coast of India. Together with the remote equatorial wind variations, these waves play an
important role in the current reversal. It is worth noting that local alongshore forcing
only becomes dominant at a later stage of the process.(Akhil et al., 2014; Chaitanya et al.,
2014b; Durand et al., 2009; McCreary et al., 1996).

1.3.3 Interannual Variability

The interannual variability of SSS refers to anomalies relative to the seasonal cycle
that last more than a season. In the BoB, this variability is primarily associated with
climate variability from either the El Niño-Southern Oscillation (ENSO) in the Pacific or
the Indian Ocean Dipole (IOD) in the Indian Ocean (see Figure 1.26 (Schott et al., 2009).

At interannual timescales, ENSO is the leading mode of climate variability. It develops
through air-sea interaction in the Pacific but influences the Indian Ocean through changes
in the Walker Circulation. While the Indian Ocean experiences warming during an ENSO
event primarily due to subsidence over the basin, circulation changes in the Northern
Indian Ocean appear to be more strongly linked with another local mode: the IOD (Currie
et al., 2013; Rao & Behera, 2005).

The IOD is associated with air-sea interactions over the Indian Ocean equatorial sector
(Saji et al., 1999; Webster et al., 1999). A positive IOD is characterized by warming in the
western Indian Ocean and cooling in the eastern equatorial Indian Ocean, and a negative
IOD by the opposite polarity. It develops in June, with a peak in October, suggesting an
influence of ocean dynamics (Reverdin et al., 1986; Saji et al., 1999; Schott et al., 2009;
Webster et al., 1999).
Recent studies have highlighted the possible influence of the IOD on the extension of
the "river in the sea" mentioned before. A positive IOD event can lead to the formation
of easterly wind anomalies in the equatorial region. These conditions drive equatorial
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Figure 1.26 – IOD pattern during September–November. (a) Regression of 20°C isotherm
depth (Z20; shades in m) and surface wind velocity (m/s) upon the first principal com-
ponent of Z20 and (b) correlation of precipitation (shades) and SST (contoured at 0.3,
0.6, and 0.9 with zero omitted and negative dashed) with the first principal component
of Z20 (After Saji et al., 2006)

upwelling Kelvin waves, which travel into the BoB as coastal upwelling Kelvin waves,
moving anticlockwise around the rim of the Bay of Bengal. As a result, negative sea-level
anomalies develop along the east coast of India, which weakens the East India Coastal
Current (EICC) and reduces the southward flow of freshwater from the northern part of
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the Bay of Bengal during the season (Akhil et al., 2016a). Furthermore, Kumari et al.
(2018) demonstrated that these Kelvin waves generate upwelling and downwelling phases
of Rossby waves, impacting the barrier layer thickness. The thickness of the barrier layer,
like the EICC, is stronger during negative IOD years compared to positive ones.

In their study, Akhil et al. (2016a) investigated the possible processes controlling the
BoB SSS interannual variability using Empirical Orthogonal Function (EOF)s. The first
EOF mode, which accounted for 37% of the total variance, was strongly linked with
the IOD with a correlation of 0.88. The second EOF mode, which accounted for 16%
of the total variance, was associated with local SSS anomalies in the northern BoB in
response to variations in Ganga-Brahmaputra River discharge, with a correlation of 0.76.
Confirming these findings, Chaitanya et al. (2021) showed that oceanic rainfall and Ganga-
Brahmaputra freshwater equally contribute to the post-monsoon freshening of the west
coast of India. Furthermore, they found that Irrawady-Salween waters remain trapped
in the northern half of the Andaman basin due to the more sluggish circulation in this
region.

However, Akhil et al. (2020) demonstrated that although satellite data seems to con-
firm the influence of the IOD, albeit less pronounced than using the model, the impact of
runoff is not detected. Higher-order EOFs of the SMOS data or a regression to Ganges
Brahmaputra runoff data do not reveal any consistent signal with those discussed by
Akhil et al. (2016a). The authors suspect that this is caused by the relatively short
SMOS satellite record, which prevents the extraction of weaker-amplitude variability.
Additional studies (Benshila et al., 2014; Chaitanya et al., 2021; Fournier et al., 2017;
Hareesh Kumar et al., 2013) suggest a stronger role of eddies induced "erasing" of the
runoff influence.

To summarize, the individual contributions of different forcing factors such as wind,
runoff, and eddies on the SSS variability in the BoB remain unclear. Specifically, the less
robust correlation between the IOD and SSS in satellite observations compared to models
raises the question of whether eddies play a role in the weaker relationship in observations
and/or if the short duration of the satellite data is responsible for the discrepancy.
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1.3.4 Review of SSS remote sensing (L-band radiometer) in the
BoB

Since the launch of SMOS, numerous studies have been done in the BoB with L-band
radiometric data. The following section summarizes these studies.

Seasonal Variability In Sharma et al. (2010), a 15-year simulation of SSS in the tropi-
cal Indian Ocean was conducted using an ocean general circulation model (OGCM) forced
by the NCEP-NCAR daily reanalysis product. The study aimed to evaluate the model’s
ability to provide realistic SSS simulations and characterize SSS variability to prepare
for upcoming satellite salinity missions. Model fields were evaluated in terms of mean,
standard deviation, and characteristic temporal scales of SSS variability. The standard
deviations ranged from 0.2 to 1.5 psu, with larger values in regions with strong seasonal
transitions of surface currents and along the coast in the BoB. In Nyadjro et al. (2011), the
seasonal variability of salinity transport in the Indian Ocean was investigated using the
high-resolution global HYbrid Coordinate Ocean Model (HYCOM). The study identified
freshwater forcing and zonal advection as the dominant mechanisms of SSS variability,
with zonal SSS transport being higher than meridional SSS transport. D’Addezio et al.
(2015) analyzed the seasonal variability of salinity in the northern Indian Ocean using
observational datasets (Aquarius and Argo) and model simulations. The study revealed
different salinity processes in the northern Indian Ocean that are dominantly related
to the semiannual monsoons. In Pant et al. (2015), an in situ gridded data of salin-
ity comprising Argo and CTD profiles were used to study the interannual variability of
near-surface salinity in the Bay of Bengal during the years 2005-2013. The study found
that the Level-3 SSS data derived from Aquarius satellite showed good agreement with
the in situ data. Akhil et al. (2016a) used an ocean general circulation model to study
BoB interannual SSS variability, which is largest in boreal fall in three regions. In the
northern BoB, summer-fall Ganga-Brahmaputra runoff interannual variations drive the
largest variations, while wind-driven interannual current anomalies are responsible for a
large fraction of SSS interannual variability in most of the basin.

Data Validation The BoB has varying SSS, making it challenging to apply satellite-
derived SSS measurements due to potential RFI and land-induced contamination. Akhil
et al. (2016a) validated SMOS and Aquarius level-3 monthly gridded SSS products to
in situ SSS data for the BoB. SMOS SSS retrievals do not perform better than existing
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climatologies, while Aquarius outperforms both SMOS and available SSS climatologies
everywhere in the BoB, accurately capturing the seasonal signal in the entire basin and
non-seasonal anomalies. However, Akhil et al. (2020) show that due to enhanced cor-
rection of systematic errors and an improved quality control procedure, SMOS data now
offers data quality comparable to that of SMAP. Aquarius can be used to monitor large-
scale year-to-year SSS variations in the BoB.

IOD Mishra et al. (2015) used a high-resolution ocean general circulation model to
investigate salinity in the Northern Indian Ocean and found that the model is able to
capture the contrasting distributions of SSS in the Arabian Sea and the BoB, and the
strong seasonality of the SSS in the changing climate. The interannual SSS variability is
2-4 times smaller than seasonal variability in the region of study, and the regions of great
interannual variability are located near river mouths in the Bay of Bengal. The relative
role of wind and solar radiation on the sea surface salinity was also investigated.

Estimations of Subsurface Properties The strong salinity stratification in the BoB
affects the ocean’s response to surface heat fluxes. Mahadevan et al. (2016) found that
freshwater adds stability, trapping heat within subsurface layers, causing delayed sur-
face temperature rises and heat loss. Scientists use Aquarius along-track surface salinity
and satellite-derived surface velocities to trace freshwater’s evolution with the mesoscale
circulation. This provides an interpolation of monthly salinity fields and estimates the
salinification rate of water leaving the northern bay, likely related to submesoscale mixing
processes observed during field campaigns.

Mesoscale features A Gordon et al. (2016) reported that the BoB and the Arabian
Sea differ in their salinity stratification due to the Asian monsoon injecting freshwater
into the BoB and removing it via evaporation from the Arabian Sea. Mesoscale features
and an intrathermocline eddie were observed within the BoB during the R/V Revelle
November and December 2013 Air-Sea Interactions Regional Initiative cruises, which
obscure the regional surface water and thermohaline stratification patterns. Sengupta
et al. (2016) showed that a thin layer of fresh water from summer monsoon rain and
river runoff in the north BoB persists due to large-scale flow and eddies, as well as O(1-
10) km submesoscale salinity fronts. Fournier et al. (2017) demonstrated that the EICC
transports these freshwaters southward after the monsoon as an approximately 200 km
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wide, 2,000 km long "river in the sea" along the East Indian coast. SSS from the SMAP
satellite provides unprecedented views of this feature, with a very favorable signal-to-noise
ratio in coastal areas, and is consistent with previous modeling results that suggested a
modulation of the EICC/GB plume southward extent by the IOD.

Primary Production A study by Singh et al. (2015) suggests that cyclonic eddies
play a role in enhancing primary production in the northern BoB potentially contribut-
ing to nutrient cycling and transfer of production to deeper waters. Meanwhile, seasonal
reversals in boundary currents in the Indian Ocean can have significant impacts on pro-
ductivity and trophic interactions, as observed in various regions such as the West Indian
coast, East Indian shelf, and coast of Java (Hood et al., 2017).

1.4 Objectives and Plan

Despite multiple studies using in situ and remote measurements of Sea Surface Salinity
in the BoB, investigating interannual variability in this region remains a challenge due
to the short period of remote SSS measurements and the limited deployment of in situ
instruments. Furthermore, the underlying mechanisms driving non-seasonal/interannual
variability of SSS in the western part of the BoB remain poorly understood. These
scientific challenges will be the focus of my PhD thesis work.

In an attempt to estimate more robust links between SSS and other factors, my first
objective will be to have a longer time-series of SSS. For this I will use the Reul et al.
(2009) approach so as to be able to estimate SSS from AMSR-E satellite and expand the
time-series back to 2002. Scientific questions raised in this remote sensing part of this
PhD will be:

— Can the Reul et al. (2009) approach be successfully applied in the BoB region?
— What adaptations, if any, are required for the approach to be effective in the BoB

region?
— What level of precision can be achieved using the Reul et al. (2009) approach in the

BoB region?
— Is the resulting SSS data sufficient and useful for interannual studies in the BoB

region?
— Do the interannual links between SSS and other factors change when using a longer

time series?
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The second part of my PhD is articulated around the BoB physical oceanography,
and more specifically the processes that control SSS non-seasonal variations. Previous
studies suggest that the relation between the IOD and SSS variability in the BoB is
not systematic. My goal is to investigate the possibility that the variability of eddies
could contribute to the appearance of SSS signals that obscure or alter the IOD-induced
variability.

— What are the relative contributions of non-seasonal, forced (wind, freshwater), and
intrinsic (mesoscale eddies) SSS variability in the BoB region?

— How does the distribution of these contributions vary over time (seasons) and spa-
tially in the BoB region?

— What are the possible origins and mechanisms of the identified contributions to SSS
variability in the BoB region?

The following dissertation is composed of five chapters. While the current chapter
serves as the general introduction, Chapter 2 will provide a detailed description of all the
data utilized in this PhD thesis. Chapter 3 and Chapter 4 represent the core of this work
and can be structured into two parts: a radiometric part and a physical oceanography
part.

The radiometric part, presented in Chapter 3, focuses on the creation of an algorithm
and methodology for retrieving SSS from AMSR-E data in the BoB. This chapter takes
the form of a submitted paper 1, including the validation of the newly created SSS dataset
and an assessment of the impact of corrections applied throughout the study on accurate
reconstruction.

The physical oceanography part, which constitutes Chapter 4, investigates the impact
of internal ocean SSS variability. This chapter will present an innovative approach that
uses Ocean General Circulation Model (OGCM) ensemble simulations to quantify intrinsic
and forced variability.

Finally, the last Chapter 5 concludes this dissertation by summarizing the findings
and offering suggestions and perspectives for future studies in this field.

1. As I have chosen to base this chapter on my submitted article, Section 3.2.3 about data repeats
some of the content mentioned in the sections before. This is a deliberate choice, as I wanted to go further
into detail and group all data I used during this PhD thesis in the same Chapter.
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DATA

Throughout this study, various Sea Surface Salinity (SSS) measurements are used,
obtained from different instruments and retrieval methods. In this chapter, an in-depth
analysis of each measurement is provided, starting with remote measurements, followed
by in-situ measurements, forced model-generated SSS and ocean reanalysis models.

2.1 Satellite observations

2.1.1 AMSR-E

The radiometer Advanced Microwave Scanning Radiometer for Earth observing system
(AMSR-E) was launched into a 705 km orbit on NASA’s Aqua satellite and operated from
May 2002 to October 2011. Aqua follows a near-polar orbit with a sun-synchronous early
afternoon crossing (1.30 A.M./1.30 P.M. for descending/ascending). The following section
presents the characteristics of AMSR-E as given in Kawanishi et al. (2003), Martin (2014),
Oreopoulos et al. (2023), and Wentz and Meissner (2000), and Robinson (2004).

The AMSR-E is a twelve-channel, six-frequency, total power passive-microwave ra-
diometer system. It measures antenna brightness temperatures TBA at the following fre-
quencies: 6.925 (C-band), 10.65 (X-band), 18.7 (K-band), 23.8 (K-band), 36.5 (Ka-band),
and 89.0 GHz (W-band), at both vertical and horizontal polarization in all channels. The
Earth’s microwave radiation is captured by a 1.6-meter diameter parabolic reflector that
scans the Earth in a conical pattern at a rate of 40 r/min. This reflector maintains a
constant Earth incidence angle of 55° ±0.3°, the slight variation due to the slight eccen-
tricity of the orbit and the oblateness of the earth. This is resulting in a swath width of
1445 kilometers, and the observation angle over a range of ± 61° (see Figure 2.1a). The
mean spatial resolution of the individual measurements varies from 5.4 km at 89.0 GHz
to 56 km at 6.9 GHz with an accuracy going from 0.3K for C-band to 1.1K for W-band
measurements (for more details see Table 2.1).
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Band Frequency
(GHz)

Polarization 3-dB Footprintsize
(km x km)

Spatial resolution
(km)

Sensitivity
(K)

C 6.925 V, H 75 x 43 56 0.3
X 10.65 V, H 51 x 29 38 0.6
K 18.7 V, H 28 x 16 21 0.6
K 23.8 V, H 32 x 18 24 0.6
Ka 36.5 V, H 14 x 8 12 0.6
W 89.0 V, H 6 x 4 5.4 1.1

Table 2.1 – Polarization and spatial resolution for the 3-dB footprintsize for each frequency.
The 3-dB footprinsize represents the domain where 50% of the energy is emitted.

Figure 2.1 – a) The scan geometry of the AMSR-E. The ellipses schematically illustrate
the AMSR-E footprint. In b) is the representation of the one of the footprints obtained
by averaging the across-track footprints. Both pictures are taken from Boussidi et al.,
2019. The white cross represents the size of the 3-dB Footprint which are detailed in 2.1

In this study, two different AMSR-E datasets were used and are further described
below.
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L2A Global Swath Spatially-Resampled Brightness Temperatures, Version 4
(AE_L2A)

This product contains daily 50-minute half-orbit swath brightness temperatures for all
channels ranging from 6.9 GHz to 89 GHz. The characteristics are given in Ashcroft and
Wentz (2018) and are distributed by the National Snow and Ice Data Center (NSIDC).
In this version the data are resampled at varying spatial resolutions ranging from 5.4 km
at 86 GHz to 56 km at the lowest frequency. By using the low resolution (∼56 km) data
associated with the 6.9 GHz (C-band) and 10.7 GHz (X-band) channel data is used, as it
contains most of the SSS signal.

The radiometer noise value for a 6.9 GHz observation is 0.3 K. However, during the
conical scanning of the instrument, 6.9 GHz observations are greatly over-sampled: during
the scan period of 1.5 seconds, the spacecraft sub-satellite point travels only 10 km (see
Figure 2.1a), signifying that Earth observations are recorded at equal intervals of 10 km
along the scan, even if the footprint is 56 km. During the Level-2A processing, these
adjacent observations are averaged together along scans in such a way as to reduce the
Noise Equivalent Temperature Difference (NEDT) to 0.1 K (Boussidi et al., 2019). In
doing this averaging, the spatial resolution is smoothed (see Figure 2.1b) and will be
slightly degraded by a maximum of 2%. The resampling method is given in Wentz and
Meissner (2000).

L2B Global Swath Ocean Products derived from Wentz Algorithm, Version 2

During this study the Aqua L2B Global Swath Ocean Products, Version 2 distributed
by the National Snow and Ice Data Center (NSIDC) is also used. This daily data set
includes the Sea Surface Temperature (SST), 10 m height near-surface wind speed (U10),
atmospheric columnar water vapor (V ) and atmospheric columnar cloud liquid Water (L)
retrieved from the L2A brightness temperatures based on the method given in Wentz and
Meissner (2004). It uses the RTM as described in Wentz and Meissner (2000) that in-
corporates an atmospheric absorption model for water vapor, oxygen, liquid cloud water,
and a sea surface emissivity model. The atmospheric columnar water vapor and cloud
liquid water algorithms only use the 19, 23, and 37 GHz channels, the SST algorithm all
channels, and the wind algorithm all but the 6.9 GHz channel.
This emissivity model is a function of the SST, salinity, wind speed, and direction. Some
parts of the RTM have been updated in recent versions of the algorithm, such as the
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dielectric constant of sea and cloud water Meissner and Wentz (2004), the isotropic wind
induced sea surface emissivity Meissner and Wentz (2006), and the wind directional signal
of the sea surface emissivity (Meissner & Wentz, 2002; Meissner & Wentz, 2006).

Note that the range of valid values for the AMSR-E L2B atmospheric columnar cloud
liquid Water (L) is -0.05 to 2.45 mm. The small unrealistic negative values are used by
REMote Sensing System (REMSS) to consider the random noise in the data. Note that a
SSS monthly climatology (World Ocean Atlas, Boyer et al. (2018)) is used to correct for
the average SSS impact on the AMSR-E oceans brightness temperature used in the SST
retrieval.

2.1.2 Climate Change Initiative (CCI)

SSS measurements from the first three dedicated L-band satellite sensors SMOS,
Aquarius/SAC-D, and SMAP (see Figure 1.12), have been merged by the ESA’s Cli-
mate Change Initiative (CCI) project (CCI + SSS, Boutin et al., 2021a). The goal is to
produce the CCI L4 SSS time series over the global ocean from January 2010 to present.
This study uses the daily data from the last product release (version 3.21, https://
catalogue.ceda.ac.uk/uuid/4ce685bff631459fb2a30faa699f3fc5), available at a spatial res-
olution of 1/4° x 1/4° (∼50km x 50 km). These daily products are derived using a 7-day
running mean temporal window. The common period between AMSR-E operation and
CCI SSS product spans from January 2010 – to September 2011.
Note that during the first 18 months of this period, the CCI SSS products were generated
from SMOS data alone, while the last 1.2 months are based on both SMOS and Aquarius
data. The first 5 months also correspond to the SMOS mission commissioning phase dur-
ing which the data quality was degraded (Kerr et al., 2010). To develop the AMSR-E SSS
retrieval algorithm, therefore only the 16 month-long period from June 2010 to September
2011 were used. Akhil et al., 2020 have specifically assessed this product for the BoB, and
have underlined its very good performance, even during the period where only SMOS data
is used, with a ∼0.85 correlation, -0.02 pss bias and 0.55 pss rms-difference to co-located
in situ data (their Fig. 16).
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2.2 In situ observations

To have an independent validation of the AMSR-E SSS estimates in the BoB, in situ
observations of salinity are used. They are composed out of a fusion from two different
datasets: the ARGO floats measurements and ship-born measurements.

2.2.1 ARGO profiler floats

The Array for Real-time Geostrophic Oceanography (ARGO) profilers data used in
this study were collected from the Ifremer Argo GDAC in November 2021 (Argo, 2022).
They are autonomous drifters that provide every 5 to 10 days temperature and salinity
profiles from 2000 m depth to the surface. Only the data that passed delayed mode
quality controls, a quality control flag value of 1 or 2 (good or probably good data), have
been selected. As a proxy of the observed SSS, the shallowest measurement of salinity
(Ssurf) made on each profile between 1 and 6 m depth is taken. The majority of those
measurements are between 4 and 5 meters. Akhil et al. (2016a) examined the differences
between salinity at 10 m depth (S10) and salinity at 1m depth, based on mooring daily
data in the BoB and found a tendency for saltier S10 at low SSS, as expected, but this
effect is small (rms-difference of 0.2 pss) and should minor compared to the Ssurf estimates
being shallower than 10 m depth. Finally, a binning of the Ssurf values on the same grid
as AMSR-E data (1/4° x 1/4°) and on a monthly basis is applied, by taking the median of
all values if two or more observations are present in the grid cells.

2.2.2 Ships of opportunity: bucket and XCTD’s

This dataset is used in Chaitanya et al. (2014a, 2014b) and Chaitanya et al. (2015)
and belongs to the Indian Ships of Opportunity Program. The Council of Scientific and
Industrial Research’s National Institute of Oceanography (CSIR-NIO, Goa, India) de-
ploys expendable bathythermographs (XBTs) or eXpandable Conductivity-Temperature-
Depth’s (XCTD) along several shipping lanes in the seas around India. Especially two
merchant ship tracks are repeatedly used: the track between Chennai and Port Blair and
the track between Kolkata and Port-Blair.

During each cruise, a scientific observer onboard collects surface seawater samples with
bucket samples and XCTD’s profiles every 50 km - 100 km. The spatial and temporal
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resolution of the bucket samples and XCTD casts along both routes varies, but stays near
1° and 2 months. The samples are subsequently brought back to CSIR-NIO headquarters
in Goa, where the salinity will be measured using an 8400 Autosal salinometer from
Guild Line, with the accuracy of ±0.002 pss. The measurement accuracy is high, but an
automatic quality control is still performed in order to remove possible human induced
outliers (e.g., labeling the samples) or geophysical noise (e.g., extreme rainfall event).
In order to increase the XCTD accuracy, only the 5 m record was used as SSS. The upper
4 m XCTD salinity records were discarded to account for the delay in the conductivity
sensor response.

Note that an error in the SSS estimation can be introduced because the data originates
at different depths in the upper 10 m of the water column. Thus, the spatial patterns
of SSS variability does not alter between measurements derived from 8 m depth and 5
m depth. As this is not the case, it is therefore unlikely that the varying depth of data
collection induces a significant error when creating a dataset which spans from September
2006 to January 2013 at a typically monthly frequency.

2.3 Merged Satellite and in situ observations
- GlobeCurrent

The GlobCurrent data repository incorporates a diverse range of currents, including
the surface geostrophic current, the Ekman current at the surface and 15 meters depth,
as well as the combined geostrophic and Ekman currents. These datasets are interpolated
and collocated onto a standardized grid with a spatial resolution of 25 kilometers. The
geostrophic current data has a temporal resolution of 1 day, while the Ekman currents
and combined currents have a temporal resolution of three hours. Spanning a significant
period of 23 years, from January 1993 to May 2016, this data provides valuable insights
into ocean currents. Additionally, a specialized regional product for the Mediterranean Sea
is available, which has been interpolated to a finer spatial resolution of 1/8° and a temporal
resolution of three hours. Further information can be found at http://globcurrent.ifremer.
fr/products-data/data-catalogue.

Ocean Surface Currents (OSC) encompass the coherent movement of surface ocean
water, exhibiting both horizontal and vertical components within a specific depth range.
These currents possess a consistent velocity and are confined by the upper boundary
where the ocean interacts with the atmosphere. They persist over defined geographical
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regions and time periods. The measurement and estimation of OSC, including related
quantities like frontal boundaries, involve the utilization of various satellite sensors and
complementary in-situ measurements.

Satellite sensors, such as altimetry (both Low Resolution Mode and Synthetic Aper-
ture Radar Mode), gravimetry, Synthetic Aperture Radar (SAR), scatterometry, optical
sensors (visible and thermal infrared), and passive microwave sensors, offer both direct
and indirect estimates of OSC and derived quantities. Despite limitations like resolu-
tion, coverage, accuracy, depth integration, cloud interference, and reliance on empirical
retrieval methods, these sensors enable the observation of OSC characteristics.

Moreover, in situ observations from drifting and moored buoys, coastal High-Frequency
(HF) radar installations, Argo floats, gliders, and ship-based observations provide valuable
sparse measurements of ocean currents, supplementing the satellite data. These in situ
measurements contribute additional insights into OSC dynamics. Each measurement
technique, whether satellite-based or in situ, possesses specific strengths and limitations.

To optimize the utilization of available data, systematic data merging, and sensor
synergy techniques are employed, along with advanced processing tools and simulation
models. By integrating the strengths of different sensing techniques, it becomes possible
to alleviate deficiencies associated with individual methods, such as resolution constraints,
limited coverage, and empirical retrieval methods. This approach facilitates the genera-
tion of more consistent, regular, and reliable estimates of OSC and higher-level derived
products, including frontal boundaries. Consequently, the improved accuracy and consis-
tency of satellite-based OSC products enhance their utilization and adoption in relevant
applications and research fields.

2.4 Ocean General Circulation Model
- Project IMHOTEP

IMHOTEP is an Ocean Surface Topography Science Team (OST/ST) joined research
EUMETSAT/CNES-NASA project led by Thierry Penduff (IGE, Grenoble) and William
Llovel (Ifremer, LOPS, Brest), in which I was involved as a collaborator. This project
spans a 4-year period between 2021 and 2024. IMHOTEP stands for IMpacts of fresh-
water discHarge interannual variability on Ocean heaT-salt contents and rEgional sea
level change over the altimetry Period. This initiative is aimed at exploring the effect of
varying freshwater discharges on regional sea level, ocean heat, freshwater content, water
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mass properties, and regional/basin-scale circulation, with a specific focus on the inter-
annual to long-term trend signals in the north/tropical Atlantic ocean and Indian oceans,
which receive significant amounts of continental freshwater. For this IMHOTEP will take
advantage of synergies between satellite/in situ observations and simulations from the
Nucleus for European Modelling of the Ocean (NEMO) ocean model.

NEMO is an Ocean General Circulation Model (OGCM, see Madec et al., 2022)
adapted to regional and global ocean circulation problems. The intention of this code
is to be a flexible tool for studying the ocean and its interactions with the other com-
ponents of the earth climate system over a wide range of space and time scales. For
the IMpacts of freshwater discHarge interannual variability on Ocean heaT-salt contents
and rEgional sea level change over the altimetry Period (IMHOTEP) project, NEMO
is used in its 4.0.6 version. The model solves the primitive equations on a curvilinear
orthogonal grid (Arakawa C-type grid), with a second-order finite difference scheme. It
assumes the Boussinesq and hydrostatic approximations, the incompressibility hypothesis,
and uses a free-surface formulation. The density is computed from conservative temper-
ature, absolute salinity, and pressure using the TEOS10 equation of state (IOC et al.,
2010). IMHOTEP uses the global configuration from NEMO at a 1/4° eddy-permitting
horizontal resolution (27 km at the equator, decreasing poleward), with 75 vertical levels.
This configuration is extended to the south (eORCA025) in order to better represent the
continental freshwater flows from Antarctica.

NEMO allows to take into account the Cumulative surface FreshWater Forcing (CFWF)
of various origins (river discharges, melting of ice shelves, iceberg calving and drift) and
the CFWF from the Greenland that considers the previous sources by including the in-
fluences of fjords (shape of the fjords, communication between the fjords and the open
ocean downstream of a topographic sill that prevents deep fjord water and large icebergs
from passing, and melting of icebergs in the inside of the fjord). The river discharge is
distributed over a 10m thickness along the coastline (NEMO RNF modulus). The daily
runoff (1979-2018) comes from outputs of the ISBA-CTRIP global land surface modeling
system (Decharme et al., 2019).

The simulations are all surface-forced with JRA-55 (Kobayashi et al., 2015) and differ
in the interannual or climatic character of the runoffs on its land boundaries. Three runoff
areas are highlighted:

(i) the subtropical Atlantic (Amazon, Orinoco, Niger, Congo)
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(ii) the North Indian (Ganges, Brahmaputra, Irrawaddy)

(iii) Greenland liquid and solid runoffs

A spin-up run (used for spinning up the model to some equilibrium state) and the five
simulations with a specific set of freshwater discharge forcing were carried out, creating
the first set of experiments (WP1) :

— IMHOTEP02: period 1958-2019, Spinup run with all freshwater sources set as
climatological (and SSS restoring)

— S: 60-year simulation with climatological runoffs, and SSS restoring to derive fresh-
water air-sea flux corrections for the next runs. The next runs will be initialized
from this run on January 1st, 1980;

— GAI: 39-year (1980-2018) reference run with interannual runoffs (all rivers + Green-
land),

— AI: same as GAI with climatological runoffs for Greenland melt,

— GI: same as GAI with climatological runoffs for equatorial Atlantic rivers,

— GA: same as GAI with climatological runoffs for North Indian rivers.

These simulations permits to identify the zones where the freshwater variability is the
highest. However, Penduff et al. (2011) show that in a NEMO-based 1⁄4° global ocean/sea-
ice model a strong low-frequency chaotic intrinsic variability spontaneously emerges from
the ocean. Mesoscale eddies are resulting from it, which can in turn induce chaotic
fluctuations at longer time and space scales, leaving random imprints on decadal regional
sea level trends. After Llovel et al. (2018) these chaotic trends remains substantial in
an ocean driven by the full range of atmospheric timescales but they can partially mask
the regional sea level trends due to the atmospheric forcing and constitute a source of
uncertainty.

In order to identify and separate this chaotic part, the IMHOTEP project performs, for
each experiment, a 10-member ensemble simulation: the WP2 experiments ES, EGAI, and
EAI. To create the members, a simulation will start the 1974/12/31 from a single restart
file of IMHOTEP02. As can be seen on Figure 2.2, for one year (1975), a stochastic
parameterization derived from the OceaniC Chaos: ImPacts, strUcture, predicTability
(OCCIPUT) project (Bessières et al., 2017; Carret et al., 2021; Penduff et al., 2019;
Penduff et al., 2018) for the Equation of state (EOS) is used, thus creating the different
members, before being switched off. After five years (1979/12/31) a restart file for each
member will be used for each simulation (see blue boxes on Figure 2.2). Until today, only
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ES, and EGAI are available, the other simulations will follow soon. During my PhD
work, the daily and monthly outputs from the EGAI simulations are used.

Figure 2.2 – Schematic representation and timeline of the member creation. Only repre-
sented is the creation of ES and EGAI (yellow writing and lines) simulations. The EGAI
simulations restart from the 1980 Es simulations (blue boxed). The right description in
the black boxes recalls the specific freshwater discharge forcing used for the specific sim-
ulation. Figure issued from a personal communication with Stephanie Leroux, Datlas,
Grenoble, France.

2.5 Ocean Reanalysis

Global ocean reanalysis is an homogeneous 3D gridded description of the physical state
of the ocean covering several decades, produced with a numerical ocean model constrained
with data assimilation of satellite and in situ observations. The goal is to produce a com-
prehensive record of how ocean properties are changing over time, which is as close as
possible to the observations (i.e., realistic) and in agreement with the model physics. The
multi-model ensemble approach allows uncertainties or error bars in the ocean state to be
estimated. Usually, plots are made with the average of all these products ± 1 std of the
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inter-model spread as an indication of the level of agreement (or disagreement) between
the following 5 reanalyses.

2.5.1 GLORYS2V4

GLORYS2V4 from Mercator Ocean (Fr), ORAS5 from ECMWeF, GloSea5 from Met
Office (UK), and C-GLORSv7 from CMCC (It) are four reanalyses that are used to create
the ensemble Service (2019) that covers the post January 1st 1993 “altimetric era”.
Each provides an independent time series of global ocean simulations 3D monthly esti-
mates. This ensemble is the CMEMS Global Ocean Ensemble Reanalysis product per-
formed with NEMOv3.1 ocean model in configuration ORCA025_LIMat 1/4° degree reso-
lution. No satellite retrievals of SSS were assimilated in those reanalyses, so they provide
an independent estimate of SSS with respect to either the CCI or the AMSR-E derived
products. For this study the monthly SSS from the CMEMS Global Ocean Ensemble
Reanalysis product is used.

2.5.2 GLORYS12V1

The fith reanalysis is the monthly SSS from the higher resolution (1/12°) GLO-
RYS12V1 reanalysis.
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RETRIEVING SEA SURFACE SALINITY

FROM C-/X-BAND RADIOMETERS

The BoB has a very strong spatial and temporal variability in its SSS, which can reach
up to 10 pss range.

Before 2010, the in situ data coverage in the BoB was insufficient to describe the
basin-scale SSS variations. With the advent of L-band satellite SSS remote sensing,
the interannual SSS variations in the basin have been measured since 2010. AMSR-E
comprises channels in the C- and X-band, which are much less sensitive to SSS than the
L-band. However, previous studies by Reul et al. (2009) and Song and Wang (2017) have
shown that with a careful data processing, SSS signals can still be captured in regions
with strong SSS contrasts and high SST such as the BoB. This chapter outlines the
methodology used in the study in the form of an article, along with additional results
obtained since the initial article submission. It also discusses the different versions of the
algorithm, leading up to the final published version and their impact. In the final section
of this chapter, the newly created dataset is used to conduct a case study on the influence
of IOD.

3.1 Article Summary

In the present study, we aim at reconstructing the pre-2010 BoB SSS based on AMSR-
E data. The X- and C- bands have similar sensitivities to wind and SST signals, allowing
us to reduce the impact of these parameters by considering X- minus C- brightness tem-
perature contrasts. As the X- minus C- brightnes temperature sensitivity to SSS is low,
∼0.05 K/pss, a careful elimination of other residual signals is imperative.

A thorough analysis of the date showed strong TB difference between ascending and
descending passes - especially near the coast - revealing a residual land contamination.
To eliminate this contamination (of ocean points) downstream of passages over land, sep-
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arate land-sea masks are applied to ascending and descending passes. The ascending and
descending passes are then processed independently, with distinct empirical corrections.
Empirical corrections for surface wind, SST, and atmospheric water content are performed
in that order based on CCI SSS and AMSR-E collocated wind, SST, and atmospheric wa-
ter data over the SMOS/Aquarius-AMSR-E common period. An additional screening of
the data to eliminate outliers and a 0.75° x 0.75° median smoothing are also found to
strongly influence the final data retrieval performance.

Although our final product exhibits some fresh biases near the coasts, it is still able
to compare favorably with the observed CCI climatology, displaying a correlation of 0.66
and a pss root mean square difference of 1.09 when compared to the co-located in situ
surface salinity from ARGO floats. While our product may not be as accurate as L-
band radiometers, the comparison still suggests that it possesses some level of capability.
To evaluate the ability of our product to reconstruct interannual SSS variations prior to
2010, we compared the SSS interannual variations with those from ocean re-analyses in
two hotspots for SSS interannual variability: the northern BoB and the east coast of India.
The comparison with oceanic re-analyses suggests that our product has little skill over the
Northern Bay of Bengal but is more favorable along the east coast of India. Our product
is sometimes able to reproduce the broad CCI interannual variations in re-analyses over
long periods (3-5 years), but an improved data processing may be required.

In conclusion, our findings suggest that AMSR-E contains useful information about
BoB SSS interannual variability, but further improvement in data processing is still needed
to fully utilize this information.

The article has been submitted at the IEEE Transactions on Geoscience and Remote
Sensing Journal on the 21st of December 2022, and accepted with minor reviews on the
10th of June 2023.

90



Part 3.2. SSS estimates from AMSR-E radiometer in the BoB

3.2 Article: SSS estimates from AMSR-E radiometer
in the Bay of Bengal: algorithm principles and
limits

Transactions on Geoscience and Remote Sensing, Manuscript ID: TGRS-2022-04859

Marie Montero1, Nicolas Reul1, Clément de Boyer Montégut1, Jérôme Vialard2, Sidonie
Brachet3, Sébastien Guimbard4, Doug Vandemark5, and Jean. Tournadre1

1 Laboratoire d’Océanographie physique et spatiale, Univ Brest, Ifremer, CNRS, IRD,
LOPS, F-29280 Plouzané, France

2 Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques–
Institut Pierre Simon Laplace (LOCEAN/IPSL), Sorbonne Université, CNRS, IRD, MNHN,
Paris, France

3 Oceanium, F-29200 Brest, France
4 OceanScope: F-29280 Plouzané, France
5 University of New Hampshire, OPAL, Durham, NH, 03824, USA

3.2.1 Abstract

The monsoon freshwater and wind forcing drive high Sea Surface Salinity (SSS) con-
trasts and variability (up to 10 pss range) in the Bay of Bengal (BoB), with important
consequences for upper ocean mixing and air-sea interactions. Synoptic SSS maps did
only become available with the advent of L-band radiometers in 2010, due to insufficient
prior in situ data coverage. Here, we build tools aiming at reconstructing the monthly
BoB SSS at 1⁄4° resolution since 2002 from Advanced Microwave Scanning Radiometer
for Earth observing system (AMSR-E) radiometer data. The C-band low sensitivity to
SSS requires a very careful processing. Taking the X- minus C- bands signals reduce the
impact of Sea Surface Temperature (SST) and wind on brightness temperatures. It was
however further necessary to train the algorithm with SSS data from L-Band radiometers
to remove residual surface winds, SST, and atmospheric water contents signals. We also
found that a separate treatment of the ascending and descending passes was necessary, as
well as a proper data screening to minimize contamination by land signals. The resulting
SSS product reproduces the broad BoB climatological SSS, and has a 0.66 correlation,
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1.08 pss rms-difference to co-located in situ surface salinity from Argo floats. Compar-
isons with ocean re-analyses in two SSS interannual variability hotspots indicate poor
performance in the Northern BoB, but some skill along the East Coast of India. Our
results provide a proof of concept for reconstructing the BoB SSS from AMSR-E data,
and we discuss possible future improvements of the data processing to further reduce the
impact of spurious signals.

Index terms - AMSR-E, Bay of Bengal, ESA Climate Change Initiative program,
Reconstruction, Sea Surface Salinity, Radiometers

3.2.2 Introduction

Salinity influences seawater density and hence the ocean vertical stability, horizontal
pressure gradients and ocean currents. Sea Surface Salinity (SSS), in particular, is con-
sidered a key ocean and climate variable due to its influence on the global thermohaline
circulation and climate variability, and its usefulness to monitor changes in the hydrolog-
ical cycle (Boutin et al., 2021a). The Bay of Bengal (BoB) is one of the tropical hotspots
where SSS is both highly variable spatially and temporally (seasonal cycle of up to 6
pss amplitude in the Northern BoB, e.g. Chaitanya et al., 2014b). The monsoon indeed
results in a strong river runoff (most notably the Ganga and Brahmaputra (Papa et al.,
2012), Irrawaddy in the Northern BoB) and a strong rainfall seasonal cycle, as well as a
complete annual reversal of the Northern Indian Ocean circulation (Schott & McCreary,
2001). These two effects combine in creating strong salinity contrasts after southwest
monsoon, with Northern BoB SSS up to 10 pss fresher than that in the southern BoB
Akhil et al. (2020). The East Indian Coastal Current (EICC) carries northern BoB fresh-
water southward, creating a low-salinity tongue along the coast of India in Boreal Fall and
Winter (Akhil et al., 2014; Chaitanya et al., 2014b; Chaitanya et al., 2021). The Indian
Ocean Dipole (IOD), an ocean-atmosphere climate mode similar to El Niño that develops
in the Indian Ocean, further generates a large SSS interannual variability in the equato-
rial Indian Ocean (Durand et al., 2013) and Bay of Bengal (Akhil et al., 2016b; Akhil
et al., 2020; Fournier et al., 2017), in particular along the East coast of India. Finally,
energetic eddies (Chelton et al., 2011) also modulate the BoB SSS at shorter timescales
(Fournier et al., 2017). There are thus large SSS contrasts and variability in the BoB at
sub-seasonal, seasonal, and interannual timescales.
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This SSS variability is thought to have strong consequences, because low SSS is associ-
ated with a strong density stratification (de Boyer Montégut et al., 2007), which limits the
wind-induced vertical mixing in the upper ocean. For instance, low SSS reduces vertical
mixing of heat below BoB Tropical Cyclone (TC), therefore reducing the oceanic cooling
they induce (Neetu et al., 2012) and hence the negative feedback of this cooling on the
cyclones (Neetu et al., 2019). TCs can hence reach larger intensities when they develop
over low SSS; this is particularly important when knowing that BoB TCs (only 5% of
global TC count) represent 80% of the worldwide TC-induced fatalities. The effect of
SSS on vertical heat exchanges is also thought to influence the BoB climatological rainfall
through its effect on climatological Sea Surface Temperature (SST) de Boyer Montégut
et al. (2007) and Shenoi et al. (2002, e.g.), although coupled model experiments suggest
this effect is weak (Krishnamohan et al., 2019; Seo et al., 2009). Finally, low SSS in the
BoB are also believed to limit biological productivity by reducing the upward vertical flux
of nutrients to the mixed layer (Prasanna Kumar et al., 2002). BoB SSS is thus not only
very contrasted and variable, but it is thought to have significant impacts on climate and
productivity, making the observability of basin-scale SSS a must in this basin.

Before 2010, in situ measurements were the only source of SSS estimates in the BoB.
Argo profiler floats data (Riser et al., 2016) is now the main source of basin-scale salinity
data, and Argo data were extremely sparse in the BoB before 2002 Beal et al. (2020).
The accumulation of Argo and previous hydrological data over time allows depicting the
seasonal variations of SSS in the BoB quite well. On the other hand, the Argo network
coverage was insufficient to produce basin-scale seasonal SSS maps for the 2009 and 2010
years (Fig. 5 of Akhil et al., 2016b), and hence unable to describe the SSS interannual
variations before the advent of SSS remote sensing. Satellite SSS observation only started
with ESA’s SMOS (2010-now), followed by NASA’s Aquarius (2011-2015) and SMAP
(2015-now) missions. These three satellites are all equipped with microwave radiometers
operated at L-band (central frequency ∼1.4 GHz), a frequency for which the sensitiv-
ity of the sea surface emissivity to SSS is highest Song and Wang (2017). The SMOS
SSS retrievals in the BoB were initially highly contaminated by radio-frequency interfer-
ences from illegal transmitters and biased because of land contamination (Akhil et al.,
2016b). Improved quality control and bias corrections later allowed similar performances
to Aquarius and SMAP, with correlations and rms-differences to co-located in situ data
of 0.8 and 0.6 pss, respectively (Akhil et al., 2020). Data from the SMOS, Aquarius, and
SMAP radiometers then allowed to describe the interannual SSS signals associated with
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the remote influence of the IOD in the BoB, including clear SSS variations along the east
coast of India (Akhil et al., 2020; Fournier et al., 2017; Priyanka et al., 2022), as well as
sub-seasonal SSS signals associated with meso-scale eddies (Fournier et al., 2017). Yet,
the SSS satellite record (13 years, 2010-2022) is too short to confidently describe interan-
nual SSS signals (Akhil et al., 2020), or SSS variability at longer timescales, such as the
expected long-term BoB freshening in response to the hydrological cycle intensification
due to anthropogenic forcing (e.g.Durack et al. (2012)). This is mainly because of the
sparsity of in situ observations prior the full deployment of the Argo float network and
the relatively recent L-band satellite radiometer era.

Advanced Microwave Scanning Radiometer for Earth observing system (AMSR-E)
onboard Aqua satellite (Kawanishi et al., 2003) has microwave channels spanning the
6.9 - 89.0 GHz range (including the 6.9 (C- band) and 10.7 GHz (X-band) frequencies).
AMSR-E was initially designed for monitoring atmospheric water, SST, and surface winds
over the ocean. However, the C- and X-band channels also display some sensitivity to SSS
at high SST, although much weaker than that for the L-band. At the AMSR-E incidence
angle of 55° and an SST of 30°C, the perfectly flat sea surface brightness temperature
sensitivity to SSS in vertical polarization is ∼0.05 K/pss for the C-band and less than
0.01 K/pss for the X- band, against 0.9 K/pss for the L-Band (Reul et al., 2009). Reul
et al. (2009) noted that C- and X- bands have a roughly similar sensitivity to SST and
surface roughness. As a result, the X- minus C-band emissivity contrast is much less
affected by SST and surface roughness, while conserving the C-band sensitivity to SSS
(∼0.05 K/pss). They used that approach to estimate SSS in the Amazon River plume
region. This is possible in areas with high SST (which maximize the sensitivity to SSS)
and strong salinity contrasts (because the low sensitivity results in a poor accuracy). Such
a principle has recently been applied to retrieve SSS from HY-2A data for the freshwater
runoff near the Yangtze Delta (Song & Wang, 2017). The BoB also displays high SST
(with an average SST over 26.5°C all year long Shenoi et al. (2002)) and very strong
salinity contrasts. In this paper, we investigate whether the concept of Reul et al. (2009)
can be applied to AMSR-E C/X bands data to reconstruct BoB SSS over the 2002-2011
period. Combined with the SSS time series from L-band radiometers, this would yield an
almost 20-year-long satellite SSS record in the BoB. The WindSat radiometer performed
C- and X-band brightness temperature measurements since 2003 Gaiser et al. (2004) but
they are not publicly available. HY-2A was only launched in 2011, a period for which more
accurate L-band retrievals are available. These two datasets were hence not considered
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in the present study.
Herein we discuss the development of a new algorithm based on Reul et al. (2009) to

retrieve SSS from AMSR-E data over the BoB. This is to our knowledge the first attempt
to apply such a strategy over this region. Our goal is to explore the applicability of this
algorithm to the BoB and potential limitations induced by land contamination in the
large land-enclosed BoB basin. In section II, we describe the datasets used in this study,
especially the input data used by the algorithm , and the L-band-derived SSS data used
for its training. The algorithm based on the Radiative Transfert Model (RTM) of Meissner
and Wentz (2012) (hereafter MW12) is described in detail in section III. This section also
describes the necessary empirical adjustments to the RTM and the empirical inversion
model linking the X- minus C-band emissivity contrast to SSS. Those were specifically
determined for the BoB conditions using co-located oceans brightness temperature (TB),
surface wind, SST, water vapor and cloud liquid water data from AMSR-E, as well as
SSS data from SMOS and Aquarius/SAC-D, all collected during the common period of
operation of these satellites (June 2010-September 2011). This algorithm is then used to
produce monthly-averaged SSS fields for the BoB, at a spatial resolution of 1/4° x 1/4° from
May 2002 to Sep 2011. Key features of the retrieved SSS fields, along with a validation
against in situ co-located observations and ocean re-analyses are presented in section IV.
A synthesis of the AMSR-E SSS data quality in the BoB, and a discussion of future
algorithm improvements are provided in a section V.

3.2.3 Data

3.2.3.1 AMSR-E data

The Aqua satellite operated from May 2002 to October 2011 and carried AMSR-E, a
twelve-channel, six-frequency, total power passive-microwave radiometer system. AMSR-
E measures brightness temperature measured at antenna level (TA) at the following fre-
quencies: 6.925 (C-band), 10.65 (X-band), 18.7 (K-band), 23.8 (K-band), 36.5 (Ka-band),
and 89.0 GHz (W-band). Vertically- and horizontally polarized measurements are col-
lected for all channels. The Earth-emitted microwave radiation is collected by an offset
1.6 m diameter parabolic reflector that scans across the Earth along an imaginary conical
surface, maintaining a constant Earth incidence angle of 55°. The spatial resolution of the
individual measurements varies from 5.4 km at 89.0 GHz to 56 km at 6.9 GHz. Below,
we describe the AMSR-E datasets used in our algorithm.
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(i) We use the AMSR-E Version 4 Level-2A Global Swath Spatially Resampled Bright-
ness Temperatures product (AE_L2A) (Ashcroft & Wentz, 2018) distributed by the
National Snow and Ice Data Center (NSIDC) (https://nsidc.org/data/AE_L2A).
It contains daily 50-minute half-orbit swath brightness temperatures for all chan-
nels ranging from 6.9 GHz through 89 GHz. Data are re-sampled at varying spatial
resolutions ranging from 5.4 km at 86 GHz to 56 km at the lowest frequency. We
use the low resolution ( 56 km) data associated with the 6.9 GHz (C-band) and 10.7
GHz (X-band) channel data, which contain most of the SSS signal. The radiome-
ter noise value for one 6.9 GHz observation is 0.3 K. However, during the conical
scanning of the instrument, 6.9 GHz observations are greatly over-sampled: during
the scan period of 1.5 seconds, the spacecraft sub-satellite point travels only 10 km,
signifying that Earth observations are recorded at equal intervals of 10 km along the
scan, even if the footprint is 56 km. During the Level-2A processing, these adjacent
observations are averaged together along scans in such a way as to reduce the Noise
Equivalent Temperature Difference (NEDT) to 0.1 K. In doing this averaging, the
spatial resolution is smoothed and will be slightly degraded by a maximum of 2%.
The re-sampling method is given in Wentz and Meissner (2000).

(ii) The study also uses the AMSR-E/Aqua L2B Global Swath Ocean Products, Version
2 distributed by the National Snow and Ice Data Center (NSIDC) at https://nsidc.
org/data/ae_ocean/versions/2 (wentz__frank_amsr-eaqua_2004). This daily
data set includes the Sea Surface Temperature (SST), 10 m height 10 m height near-
surface wind speed (U10), atmospheric columnar water vapor (V ) and atmospheric
columnar cloud liquid Water (L) retrieved from the L2A brightness temperatures
based on the method given in wentz__frank_amsr-eaqua_2004empty citation.
The atmospheric columnar water vapor and cloud liquid water algorithms only use
the 19, 23, and 37 GHz channels, the SST algorithm all channels, and the wind
algorithm all but the 6.9 GHz channel. Note that the range of valid values for the
AMSR-E L2B atmospheric columnar cloud liquid Water L is -0.05 to 2.45 mm. The
small negative value is used by REMote Sensing System (REMSS) to consider the
random noise in the data. Note that an SSS monthly climatology (World Ocean
Atlas, Boyer et al. (2018)) is used to correct for the average SSS impact on the
AMSR-E brightness temperature used in the SST retrieval.
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3.2.3.2 Sea Surface Salinity European Space Agency (ESA) Climate Change
Initiative (CCI) Product

SSS measurements from the first three dedicated L-band satellite sensors SMOS,
Aquarius SAC/D, and SMAP, have been merged by the Climate Change Initiative Salin-
ity project (CCI + SSS, Boutin et al., 2021a) to produce the Climate Change Initiative
(CCI) L4 SSS time series over the global ocean from January 2010 to end of 2020. We
used the daily data from the last product release (version 3.21, https://catalogue.ceda.ac.
uk/uuid/7da8723b16e94771be1a2717d8a6e2fe), available at a spatial resolution of 1/4° x
1/4°. These daily products are derived using a 7-day running mean temporal window. The
common period between AMSR-E operation and CCI SSS product spans from January
2010 – to September 2011. Note that during the first 18 months of this period, the CCI
SSS products are generated from SMOS data alone, while the last 3 months are based on
both SMOS and Aquarius data. The first 5 months also correspond to the SMOS mission
commissioning phase during which the data quality was degraded (Kerr et al., 2010). To
develop the AMSR-E SSSretrieval algorithm, we therefore only used the 16 month-long
period from June 2010 to September 2011. Akhil et al. (2020) have specifically assessed
this product for the BoB, and have underlined its very good performance, even during
the period where only SMOS data is used, with a ∼0.85 correlation, -0.02 pss bias and
0.55 pss rms-difference to co-located in situ data (their Fig. 16).

3.2.3.3 In Situ Sea Surface Salinity data

To have an independent validation of our AMSR-E SSS estimates in the BoB, we
use in situ observations of salinity based on ARGO profiling floats measurements. The
ARGO data used in this study were collected from the Ifremer Argo GDAC in November
2021 (Argo, 2022). We selected only the data that have passed the delayed mode quality
controls, with quality control flag value of 1 or 2 (good or probably good data). As a
proxy of the observed SSS, we took the shallowest measurement of salinity (Ssurf) made
on each profile between 1m and 6m depth. The majority of those measurements are
between 4 and 5 meters. Akhil et al. (2016a) examined the differences between salinity
at 10m depth (S10) and salinity at 1m depth, based on mooring daily data in the BoB
and found a tendency for saltier S10 at low SSS, as expected, but this effect is small (rms
difference of 0.2 pss) and should be minored by our Ssurf estimates being shallower than
10 m depth. Finally, a binning of the Ssurf values on the same grid as AMSR-E data
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(1/4° x 1/4°) and on a monthly basis is applied, by taking the median of all values if two
or more observations are present in the grid cells.

3.2.3.4 Ocean re-analyses

Global ocean reanalysis are homogeneous 3D gridded descriptions of the physical state
of the ocean covering several decades, produced with a numerical ocean model constrained
with data assimilation of satellite and in situ observations. These reanalysis are built to
be as close as possible to the observations (i.e. realistic) and in agreement with the model
physics. The multi-model ensemble approach allows uncertainties or error bars in the
ocean state to be estimated.

i) GLORYS2V4 from Mercator Ocean (Fr), ORAS5 from ECMWF, GloSea5 from Met
Office (UK), and C-GLORSv7 from CMCC (It) are four reanalysis that are used to
create the ensemble Service (2019) that covers the post January 1st 1993 “altimet-
ric era”. Each provides an independent time series of global ocean simulations 3D
monthly estimates. This ensemble is the CMEMS Global Ocean Ensemble Reanal-
ysis product at 1/4 degree resolution. No satellite retrievals of SSS were assimilated
in those re-analyses, so they provide an independent estimate of SSS with respect
to either the CCI or our AMSR-E derived products. We use monthly SSS from the
CMEMS Global Ocean Ensemble Reanalysis product.

ii) We also use monthly SSS from the higher-resolution (1/12°) GLORYS12V1 reanaly-
sis.
We will usually plot the average of all these products ±1 std of the inter-model
spread as an indication of the level of agreement (or disagreement) between those 5
re-analyses.

3.2.4 AMSR-E SSS Retrieval Algorithm

3.2.4.1 Algorithm Principles

As described in Reul et al. (2009), the SSS retrieval algorithm consists in first es-
timating the V-polarized surface emissivity at both C- and X-band frequency from the
Top Of Atmosphere (TOA) AMSR-E Level-2A oceans brightness temperature product
(AE_L2A) and from the retrieved AMSR-E Level-2B Sea Surface Temperature (SST),
10 m height near-surface wind speed (U10), atmospheric columnar water vapor (V ), and
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atmospheric columnar cloud liquid Water (L) data. As described further, we use the
MW12’s RTM model for that purpose. Then, we estimate the perfectly flat sea surface
emissivity contrast (∆e) between both frequencies. Given a Geophysical Model Function
that relates SSS, SST and perfectly flat sea surface emissivity contrast, one can finally
retrieve SSS using

SSS = GMF (∆e, SST ). (3.1)

As shown in Reul et al. (2009), one can express the total sea surface emissivity as
observed by AMSR-E in vertical polarization and frequency f as:

EAMSR−E
V,f = eflat

surf,v(θ, SSS, SST, f) + erough
surf,v(θ, φ, U10, f)

= 1 − TB, V, f − TBU, f − τfSST

τf (1 + ΩV (τ, U10, f)) (1 − τf ) (TBD, f − Tcold) + Tcold − SST

(3.2)

where:

• eflat
surf,v is the perfectly flat sea surface emissivity,

• erough
surf,v is the roughness-induced emissivity,

• θ is the radiometer earth incidence angle,

• SSS is the sea surface salinity,

• SST is the sea surface temperature,

• φ is the relative azimuth between the radiometer look direction and the wind direc-
tion,

• U10 is the 10-meter height surface wind speed,

• TB,V,f is the Top Of Atmosphere (TOA) AMSR-E Level-2A oceans brightness tem-
perature (TB) product (AE_L2A),

• TBU,f is the upwelling brightness temperature,

• τf is the atmospheric opacity,

• ΩV (τ, U10, f) is a term to evaluate the atmospheric and cosmic radiation scattered
by the sea surface,

• τ is the atmospheric transmittance,

• TBD,f is the downwelling brightness temperature,
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• Tcold =2.7 K is the cosmic microwave background temperature.

The terms TBU,f , TBD,f , τf , and ΩV , can all be estimated using the RTM of MW12 ap-
plied to AMSR-E Level-2B Sea Surface Temperature,10 m height near-surface wind speed
(U10), atmospheric columnar water vapor (V ), and atmospheric columnar cloud liquid Wa-
ter (L) data. Given a model for the roughness-induced emissivity (erough

surf,v (θ, φ, U10, f)),
one can further estimate the emissivity of the perfectly flat sea surface, which in theory
shall only depends on SSS and SST for a given frequency and incidence angle:

eflat
surf,p (θ, f, SSS, SST ) = 1

− TB,V,f − TBU,f − τfSST

τf (1 + ΩV (τ, U10, f)) (1 − τf ) (TBD,f − Tcold) + Tcold − SST

− erough
surf,v (θ, φ, U10, f)

(3.3)

At an incidence angle θ, polarization p (horizontal or vertical), and electromagnetic
frequency (f), it is also given by Peake (1959):

eflat
surf,p (θ, f, SSS, SST ) =

[
1 −

∣∣∣rflat
surf,p (θ, f, SSS, SST )

∣∣∣2]
(3.4)

where eflat
surf,p and rflat

surf,p are the flat sea surface emissivity and Fresnel reflection co-
efficient at polarization p, respectively. The flat sea surface emissivity depends on SSS
and SST through the dielectric constant of seawater (εs). While MW12’s model for di-
electric constant of seawater has been developed for frequencies between 6 and 90 GHz,
it is also applicable and widely used to evaluate dielectric constant of seawater for a
frequency of 1.4 GHz (L-band, Meissner et al., 2018). According to MW12’s model for
dielectric constant of seawater, and for SST ≈ 29 °C and SSS ≈ 34 pss (the aver-
age conditions encountered at the surface of the BoB, see Figure 3.1), the sensitivity of
Tv = SST · eflat

surf,p (θ, f, SSS, SST ) to SSS in vertical polarization and at θ=55° drops
from ∂Tv/∂SSS ∼0.9 K/pss at 1.4 GHz (L-band) to ∼ 0.056 K/pss at 6.9 GHz (C-band).
Tv at 10.7 GHz (X-band) is almost insensitive to salinity SSS, with maximum sensitivity
∂Tv/∂SSS ∼ 0.01 K/pss.

The sensitivity of the sea surface brightness temperature to SSS (∂Th
∂/SSS) in horizon-

tal polarization and at θ=55° is about twice smaller than that at vertical polarization for
the two lowest AMSR-E frequencies: we therefore only consider the v-polarized AMSR-E
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Figure 3.1 – Perfectly Flat Ocean surface vertically polarized brightness temperature
contrast ∆TB = T10.7 − T6.9 between frequencies of 10.7 (X-band) GHz and 6.9 (C-band)
GHz, as predicted by MW12’s seawater dielectric constant model and at an incidence
angle θ=55° (left y-axes). ∆TB is shown as a function of SSS for three selected SST
values (a), and as a function of SST for three typical SSS values (b). The probability
distribution function (right y-axes) of SSS (a) and SST (b) within the BoB from CCI
products are shown as gray-filled histograms in both panels.

brightness temperature data as inputs to the SSS retrieval algorithm. In addition, the
sensitivity of Tv to SST changes (∂∆Tv/∂SST) increases from 0.1 K/°C at 1.4 GHz to ∼ 0.7
K/°C, and 0.6 K/°C, at both 6.9 GHz and 10.7 GHz, respectively. Retrieving SSS from
C-band radiometer data is therefore very challenging and demands (i) extremely accurate
corrections for the different contributions to the signal measured by the radiometer at
the top of the atmosphere, and (ii) precise and representative estimation of SST within
theAMSR-E low spatial resolution (∼ 56 km) footprint.

Capitalizing on the fact that C- and X-band have very similar sensitivity to SST
(as demonstrated in Reul et al. (2009) and illustrated in Figure 3.1), the effect of SST
can be strongly reduced by considering the surface Tv contrast between the X- and C-
band channels, namely: ∆Tv = T10.7 − T6.9. For average conditions within the BoB,
the sensitivity of ∆Tv to SST (linear approximation) drops to ∂∆Tv/∂SSS ∼= −0.04 K/°C
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(Figure 3.1b), while the sensitivity to SSS remains ∂∆Tv/∂SSS ∼= +0.05 K/pss (Figure 3.1a).
Using ∆Tv hence strongly minimizes the impact of SST variation on the signal down to
a level comparable with SSS impacts.

Given these considerations, the main steps of the present AMSR-E SSS retrieval al-
gorithm is summarized as follows (Figure 3.2):

(i) AMSR-E Level-2A swath data are extracted within the Bay of Bengal domain [77°E-
100°E; 5°N-25°N]. The TOA brightness temperature can reach much higher value
than normally expected over the ocean in some specific environmental conditions.
These environmental factors include brightness temperature contamination near the
land-sea transition, as well as impacts of rain, high wind speeds, sun glint, and
Radio Frequency Interference (RFI). Some of these factors are quasi-stable (land),
or at least somewhat consistent (rain, winds). Sun glint effects can vary with solar
activity, especially solar flare events, and with sea surface roughness. RFI is a
continuously evolving source of errors. These specific conditions can be best filtered
by applying an advanced quality check according to the AMSR-E L2A and L2B
quality flags. We filter out the L2A data if the angle between the spacecraft-viewing
vector and the sun specular reflection vector is smaller than 20° to remove data that
can be contaminated by sunglint. We only keep data for which the fraction of
land in the Field Of View (FOV) is less than 0.2%. In addition, we only select
the best quality data using Level-2A and Level-2B summary quality flags: (i.e.
Channel_Quality_Flag_6_to_52_bit0=0, rain_flag==0),

(ii) each AMSR-E Level-2A Top Of Atmosphere brightness temperature data is then
corrected for atmospheric and extraterrestrial contributions. These corrections are
estimated using MW12’s RTM as described in Wentz and Meissner (2000)and the
AMSR-E Level-2B atmospheric columnar water vapor V , atmospheric columnar
cloud liquid Water L, 10 m height near-surface wind speed U10 and SST to find the
atmospheric and extraterrestrial parameters of the RTM terms.

(iii) After applying these corrections, we estimate the v-polarized total sea surface emis-
sivity etotal, AMSR−E

surf, v for the C- and X-band frequencies using (Eq. 3.2),

(iv) the swath ∆eAMSR−E
v data are separated into ascending and descending passes and

gridded daily on a1/4° x 1/4° regular grid. The data were then filtered for remain-
ing outliers using a temporal median absolute deviation filter (Leys et al., 2013)
determined for each node of the grid within the BoB (see section 3.2.4.3),
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Figure 3.2 – Caption on the next page
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(v) the isotropic roughness impacts are then subtracted to estimate the flat surface
emission at each frequency, eflat

surf,v using (Eq. 3.3). This roughness correction is
based on an empirical model specifically derived for the BoB (see section 3.2.4.4.1)
as a function of AMSR-E Level-2B U10 data.

(vi) Additional empirical corrections to the MW12 RTM model were determined specifi-
cally for the BoB based on the AMSR-E and CCI SSS data common period (see sec-
tion 3.2.4.4.2 and 3.2.4.4.3). These additional corrections are applied to the eflat

surf,v

first as a function of SST, and then as a function of AMSR-E L2B atmospheric
columnar cloud liquid Water L, and atmospheric columnar water vapor V .

(vii) After applying these additional empirical data corrections, we compute the difference
between the X- and C- band perfectly flat sea surface emissivity:

∆eAMSR−E
v (SSS, SST ) = eflat

surf,v,X(SSS, SST ) − eflat
surf,v,C(SSS, SST ) (3.5)

(viii) Additional temporal and spatial filtering of ∆eAMSR−E
v (SSS, SST ) based on the

full AMSR-E archive time series (see section 3.2.4.5).

(ix) AMSR-E Level-2A brightness temperature data NEDT is 0.1 K and the sensitivity
of T AMSR−E

V to SSS is only reaching 0.05 K/pss: large uncertainties (order of
several pss) are therefore expected in the instantaneous SSS retrievals from AMSR-
E swath data. Thanks to the quasi-linear dependencies of ∆eAMSR−E

v to both SSS
and SST in the BoB conditions (Figure 3.1a), the noise level prior SSS retrieval
can significantly reduce by monthly averaging ∆eAMSR−E

v and the SST swath data.
The monthly averaged SSS are then retrieved on a 1/4° x 1/4° resolution regular
lat/lon grid from the monthly averaged SST and ∆eAMSR−E

v quantities merged for
ascending and descending passes. An empirical Geophysical Model Function (GMF)
SSS = GMF

(
SSTCCI , ∆eAMSR−E

v

)
is used for the retrieval (see Section 3.2.4.6).

Figure 3.2 Schematic flow diagram of the AMSR-E Sea Surface Salinity retrieval algorithm developed
for the Bay of Bengal. The (i, ii, iii. . . ) labels on each box make reference to the corresponding subsection
headings in section3.2.4. The dashed line split the algorithm into MW12 processing (upper part) and the
present paper developments (lower part). The ancillary Median Absolute Deviation inputs (pale yellow
panels) are evaluated over 2002-2011 for the variables at each processing level.
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3.2.4.2 Algorithm Refinements for the BoB Case

The basis of MW12’s wind-induced emissivity model is brightness temperature mea-
surements from the spaceborne microwave radiometer WindSat, and SSM/I, which were
collocated with independent measurements of surface wind speeds and directions at global
scale (Meissner & Wentz, 2012). To refine the previously described AMSR-E SSS retrieval
algorithm for the specific BoB conditions, we used a 16 month-long common period (June
2010 to September 2011) between AMSR-E and the CCI (L-band based) SSS data to esti-
mate empirical adjustments to the MW12’s RTM. Note that these additional adjustments
are specific to the BoB region, the period chosen (2010-2011) but also to the auxiliary data
we used to characterize the thermohaline conditions at the sea surface within AMSR-E
footprint (here the CCI-SSS and AMSR-E SST products). These additional adjustments
includes: land contamination filtering, empirical roughness correction, SST bias correction
and atmospheric columnar water vapor/cloud liquid water correction adjustments.

3.2.4.2.1 Choice for an SST product: diurnal cycle impact

An SSS monthly climatology (World Ocean Atlas, Boyer et al., 2018) is used to correct
for the average SSS impact on the AMSR-E brightness temperature used in the SST
retrieval. We hence initially wanted to use a SST product that does not use SSS as an
input, and turn to the CCI Infrared based daily composite SST products (Merchant et al.,
2014). This however yield degraded SSS products. AMSR-E ascending (∼01:30 pm local
time) and descending (at ∼01:30 am) tracks are indeed 12 hours apart, implying that
there can be significant differences in the SST due to the diurnal cycle. Neglecting the
diurnal SST cycle in the BoB induced large errors on the retrieved SSS (not shown) and
we therefore use here the collocated AMSR-E SST data for our algorithm.

3.2.4.3 Brightness temperature contamination by land

The BoB is a semi-enclosed basin, and we can expect strong contamination by land
signals: we thus designed a specific approach to eliminate heavily contaminated data with
respect the amplitude of the signal we aim to detect. As shown in Figure 3.3, the tempo-
ral Median Absolute Deviation (MAD) of the differences between ∆eAMSR−E

v for A and
D passes over the full AMSR-E archive (2002-2011) are high up to ∼140 km away from
the nearest coasts, before converging to similar values further offshore. The differences
larger than 0.1 K between A and D tracks near the coast would correspond to signals >
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2 pss, which are way larger than those induced by a potential diurnal SSS cycle in this
region (Drushka et al., 2014) and thus very likely linked to land contamination. MAD
maps for A and D passes (Figure 3.4 a and b, respectively) database reveal that A and
D brightness temperatures display extreme situated downstream of the coast when fol-
lowing the satellite track. These outliers in brightness temperature are thus most likely
associated with contamination by land signals. This is attributed to a differing geometry
of observation by the sensor of the land-sea transition in between both type of passes.
To filter this land-sea contamination, we apply a mask based on the temporal MAD of
the ascending data minus that of the descending data (Figure 3.4c). Ascending data are
excluded where this field +0.06 K (equivalent of 1.2 pss) and descending data where it is
less than -0.06 K. After applying such filter, the variations of the MAD decreases consis-
tently (Figure 3.3 orange curve), indicating a clear attenuation of the land impact on the
brightness temperature.

Figure 3.3 – Absolute value of the Median Absolute Difference (MAD) between successive
ascending (A) and descending (D) brightness temperature as a function of the distance
to the coast in km (K). Raw data in blue. Data once a separate masking of the A and D
passes has been performed based on Figure 3.4c (see text for details in orange). Finally,
the green curve shows the same statistics once outliers (further than 3 MAD from the
median) have been removed at each point.
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Figure 3.4 – Median absolute deviation of the brightness temperature difference between
X- and C-band (K) from all AMSR-E data for a) ascending (A) and b) descending (D)
satellite passes and c) their difference.

Once the land contamination masks have been applied, we scan the remaining ∆T AMSR−E
v

corrected time series at each location to exclude potential outliers, such as those related
to Radio Frequency Interference. The temporal MAD of ∆T AMSR−E

v is estimated in 1/4°
x 1/4° cell grids, separately for the A and D passes. Outliers (more than 3 MAD away
from the median) are then excluded from the dataset. After these two filtering steps, the
MAD difference between the A and D passes decreases to less than to 0.02 K (≈0.4 pss)
(Figure 3.3, green curve).

3.2.4.4 Algorithm empirical adjustments

The local wind and surface roughness conditions in the BoB might induce different
roughness contribution erough

surf, v (θ, φ, U10, f) than the MW12 model derived from global
observations. In addition, the specific atmospheric columnar water vapor and atmospheric
columnar cloud liquid water conditions of the BoB also differ from the global mean con-
ditions, which were analyzed to produce MW12’s RTM model. To refine the previously
described AMSR-E SSS retrieval algorithm for the specific BoB conditions, we used the
16 month-long common period (June 2010 to September 2011) between the AMSR-E and
CCI (L-band based) SSS and SST data.

First, the L2A AMSR-E top of the atmosphere C- and X-band swath brightness tem-
perature data were corrected using the MW12 RTM algorithm for all contributions except
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the surface roughness one to estimate the total sea surface emission EAMSR−E
v, f (Eq. 3.2)

at each frequency. This step of the algorithm uses the L2B AMSR-E U10, SST AMSR−E,
V , and L as input data.

For each data point within the AMSR-E swath, the local SSS was estimated from
the daily (7-day running mean average) CCI-SSS products using the nearest neighbor
interpolation in space and time (denoted SSSCCI hereafter). The expected perfectly flat
surface emission at v-polarization, namely eflat, CCI

v,f (SSSCCI , SSTAMSR−E) was then
estimated at both f=6.8 GHz and f=10.7 GHz, for the AMSR-E local incidence angle,
and using the dielectric constant model of MW12 (Meissner & Wentz, 2004).

3.2.4.4.1 Empirical surface roughness correction

The residual wind-induced emissivity contrasts ξf (U10) at each frequency were then
estimated from the difference between the estimated AMSR-E total sea surface emissivity
and the expected perfectly flat surface emission, following:

ξf (U10) = EAMSR−E
v, f − eflat, CCI

v,f (SSSCCI , SST AMSR−E) (3.6)

The bin-averaged residual wind-induced emissivity ξf (U10) was estimated at each fre-
quency for ascending and descending passes as function of U10 (bin width ∼1 m/s) and
from all AMSR-E swath data collected in the BoB from June 2010 to October 2011.
Assuming that there is no wind-direction dependency in the brightness temperature fre-
quency contrast, the roughness-induced emission of the emissivity contrast between the X-
and C-band frequency was then estimated following ∆erough (U10) = ξX (U10) − ξC (U10)
and bin averaged as a function of the co-located AMSR-E surface wind speed U10.

As shown in Figure 3.5a) and b), the resulting empirical correction ∆erough (U10) differs
from MW12’s model (particularly at high wind speed) and is not similar for Ascending
and Descending passes. For the ascending satellite passes (Figure 3.5a) and for low-to
moderate wind speeds, the empirical residual curve is similar to MW12 but is significantly
different for U10 > 10 m/s. The small number of high wind speed samples (histogram
in red) is likely to explain this high wind difference. For descending data, the roughness
induced residual found in the BoB is near 0 as long as U10 < 9 m/s (Figure 3.5b) and
slightly increases for the higher speeds.
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Figure 3.5 – Differences in wind-induced empirical residuals ξf (U10) between X- and
C- bands from MW12’s model (black filled diamonds) and from AMSR-E and CCI data
(blue filled diamonds) for a) ascending and b) descending satellite passes multiplied by the
averaged BoB SST. The pink curve represents the empirical residual curve approximation:
the difference between C- and X-band polynomial fits. The wind speed distribution is in
red in the background, with the dashed line represents the median and the dotted line
±1 standard deviation

The exact reasons for the wind-induced emissivity contrast differences between as-
cending and descending passes are not fully determined yet. Potential sources for the
differences are (i) diurnal wind and/or SST impacts (ii) remaining land and RFI con-
tamination. To best account for these A/D differences, the total sea surface emissivity
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Figure 3.6 – Differences in the SSTAMSR−E induced empirical residuals χf (SSTAMSR−E),
between X- and C- bands, multiplied by the corresponding bin SST (blue filled diamonds)
for a) ascending and b) descending satellite passes. The pink curve represents the dif-
ference between C- and X-band polynomial fits. The SST distribution is plotted in red
in the background, with the dashed line represents the median and the dotted line ±1
standard deviation.

EAMSR−E
v,f is therefore corrected for the excess wind-induced emission ξf (U10), deter-

mined for each passes and each frequency, using fifth order polynomial fits to the AMSR-E
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median residuals ξf = erough,f,v (U10) as function of wind speed (pink curve in Figure 3.6):

ξf (U10) = erough,f,v (U10) =
5∑

i=1
a0,i,f · U i

10 (3.7)

where the a0,i,v coefficients are provided in Appendix A.I for the ascending and de-
scending satellite passes, respectively. The perfectly flat sea surface emission eflat,AMSR−E

v,f

can then be estimated for the C- and X- bands using (Eq. 3.7) and subtracted it to the
total sea surface emissivity.
Note that the MW12’s model predicts that the differences between the X-and C-band for
the 1st, and, 2nd azimuthal harmonic terms of the roughness-induced emissivity (which
contain the wind-direction dependence of the surface emissivity) are smaller than 0.05 K
in amplitude for the low to moderate wind speed conditions. Although wind direction
impacts could clearly affect the SSS retrieval quality (0.05 K ∼1 pss), as a first step, we
chose to neglect the wind/wave directional effects on emissivity.

3.2.4.4.2 Empirical SST-dependent correction

After correcting for the wind-induced emissivity, the remaining resid-
ual difference with the expected flat surface emissivity at each frequency
χf = eflat,AMSR−E

v,f − e
flat, CCI

v,f
(SSSCCI , SST AMSR−E) were further bin-averaged as

a function of SST AMSR−E. We found significant residual thermal biases as function of
SST for both frequencies. As illustrated in Figure 3.6, the bin-averaged residual χf varies
as a function of SST, with an amplitude ranging from -0.2 to -0.4 K (equivalent of 4 to 8
pss) for the usual range of BoB SST (26-30 °C). For the coldest water within the BoB (<
26°C , usually found north of 18 °N in winter) the amplitude of χf increase even more
to reach ∼-0.9 K for the ascending satellite passes. For the warmer waters with SST >
30°C, the amplitude of χf is practically similar for descending passes than for ascending
passes. To correct for these remaining apparent ‘thermal’ effects, we estimated the mean
of χf (SST AMSR−E) in each SST bins (width of 0.25 °C) for each type of pass, and for
each frequency and approximate them using 6th order polynomial corrections, following:

χf (SST AMSR−E) =
6∑

i=1
ti,f · SST i

AMSR−E (3.8)

where the tf
i coefficients are provided in Appendix A.II.
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The flat surface emission is then estimated at each frequency after successive corrections
for the wind and residual temperature impacts:

eflat,AMSR−E′

v,f = Ev,f − erough,f,v (U10) − χf (SST AMSR−E) . (3.9)

3.2.4.4.3 Empirical water vapor and liquid water dependent correction

The third and final empirical adjustment aims at correcting for residual atmospheric
impacts. To this end, we averaged the remaining biases ϵf = eflat,AMSR−E′

v,f −
eflat,CCI

v,f (SSSCCI , SST AMSR−E) as a function of the AMSR-E Level2B atmospheric
columnar cloud liquid Water L (bin width 0.0025 mm) and atmospheric columnar water
vapor V (bin width 1 mm). As illustrated by Figure 3.7 and Figure 3.8, we found resid-
ual biases ϵf as function of both atmospheric columnar water vapor V and atmospheric
columnar cloud liquid Water L. ϵf is particularly large for high water vapor values (>50
mm) and small cloud liquid water content (|L| < 0.05 mm), particularly for descending
passes (Figure 3.8a, c). Median estimates of ϵf (V, L) in each V and L bins and for each
frequency was approximated by 5th order bivariate polynomial corrections (Figure 3.7b,
Figure 3.8b), following:

ϵf (V, L) =
5∑

i=o

5−i∑
j=o

di,j,fV iLj (3.10)

where V and L are the atmospheric columnar water vapor (in [mm]) and the atmospheric
columnar cloud liquid water content (in mm), respectively. The 28 polynomial coefficients
di,j,f are given in Appendix A.III for each frequency.

Overall, prior to evaluating the frequency contrast between the C- and X- band per-
fectly flat sea surface emission ∆eAMSR−E

v (Eq. 3.3), the specular sea surface emissivity
is therefore determined at each frequency using the following suite of corrections:

eflat,AMSR−E′′

surf,f = Ev,f − erough,f,v (U10) − χf (SST AMSR−E) − ϵf (V, L) (3.11)

where EV,f , erough,f,V (U10), χf (SST AMSR−E) and ϵf (V, L), are determined from (Eq. 3.2),
(3.7), (3.8), and (3.10), respectively.
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Figure 3.7 – Residual biases ϵf for ascending passes, between the estimated AMSR-E
flat surface emissivity data and the flat surface emissivity model prediction (using CCI
SSS and SST data) as a function of both atmospheric columnar water vapor (V ) and
atmospheric columnar cloud liquid Water (L), for a) C-band and b) X-band. The right
column displays the polynomial fit to these residual biases.
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Figure 3.8 – Residual biases ϵf for descending passes, between the estimated AMSR-E
flat surface emissivity data and the flat surface emissivity model prediction (using CCI
SSS and SST data) as a function of both atmospheric columnar water vapor (V ) and
atmospheric columnar cloud liquid Water (L), for a) C-band and b) X-band. The right
column displays the polynomial fit to these residual biases.

3.2.4.5 Additional spatial and temporal filtering

Once these empirical corrections have been applied, we use (Eq. 3.5) to calculate the X-
minus C- bands flat surface emissivity difference ∆eflat,AMSR−E′′

surf,f on a daily basis for both
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the A and D passes. We then apply a second screening of the data, by removing values
which are further away than 3 MAD from the median at each location, independently for
the A and D passes. The MAD is evaluated over the full archive period from May 2002
- September 2011 period. An additional spatial smoothing is performed, based on the
median over a sliding 0.75° x 0.75° window. Hereafter we note the resulting emissivity
∆eflat,AMSR−E

surf,f .

3.2.4.6 Specific SSS inversion algorithm for the BoB

Using the collocated SSSCCI , SSTAMSR−E and ∆eflat,AMSR−E
surf,f the common period

(2010-2011) we finally determined a geophysical model function used to retrieve SSS
in the previous period. We computed the theoretical flat surface emissivity as a func-
tion of the AMSR-E SST and CCI SST ∆eflat,CCI

v,f (SSSCCI , SSTAMSR−E) using equation
(Eq. 3.4). The median of the co-located SSSCCI was then computed as a function of
∆eflat,CCI

v,f (SSSCCI , SSTAMSR−E) (1 x10−4 wide bins) and SST AMSR−E (0.25 °C wide
bins), to empirically determine a bivariate GMF relating the three variables, namely:

SSS = GMF
(
SSTAMSR−E, ∆eCCI

v

)
. (3.12)

This empirical relation between SSS and the flat surface emissivity contrasts between
the C and X bands, and SST and SSS for the Bay of Bengal can be approximated using
a 2nd-order polynomial fit (Figure 3.9):

SSS =
2∑

i=o

2∑
j=o

si,j

(
∆eCCI

v

)i
SST j

AMSR−E (3.13)

where the si,j coefficients are provided in Appendix A.IV. SSS over the May 2002 to Oc-
tober 2011 period can then be obtained by plugging the corrected, quality-controlled
and spatio-temporally filtered daily emissivity contrast ∆eflat,AMSR−E

surf,f and co-located
SST AMSR−E into (Eq. 3.13).
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Figure 3.9 – a) Bin-averaged observation of SSSCCI (color) as a function of the frequency
differential emissivity contrasts ∆eCCI

B (x-axis) and the co-located SSTCCI (y-axis) in
the BoB. b) Third order polynomial fit to the data shown in a) with in dotted lines the
contour of the existing data.

3.2.5 AMSR-E SSS retrieval and validation

3.2.5.1 Consistency check: comparison with CCI data

Prior to the validation of the new SSSAMSR−E dataset, we first check the consistency
between the seasonal cycles of the CCI and AMSR-E SSS data, derived for the full
period of each product (CCI: 2010-2019; AMSR-E: 2002-2011). As can be seen from
Figure 3.10, SSSAMSR−E generally captures the broad spatial patterns and seasonal
cycle of SSSCCI . Both datasets indeed display saltiest water (SSS around 33 or above)
to the southwest, in regions which are closest to the Arabian Sea, while the northeast of
the basin is generally fresher. This gradient is strongest during and after the southwest
monsoon, i.e. in June-July-August (JJA) and September-October-November (SON)
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(Figure 3.10 c, g and Figure 3.10 d, h), where SSS drops below 28 pss in the vicinity
of the Ganges-Brahmaputra (north of 20°N) and Irrawaddy (around 15°N, 95°E) estuaries.

Despite this broad agreement, the SSSAMSR−E dataset displays several clear biases
relative to SSSCCI . It displays a clear fresh bias, of 2 pss or more, all along the coastal
rim of the Bay, from boreal spring (March-April-May (MAM)) to fall (SON), while the
Central BoB tends to display a weaker salty bias (Figure 3.10 jkl). During December-
January-February (DJF), the SSSAMSR−E dataset displays a salty bias of 1 pss or more
throughout the interior Bay of Bengal, while the east coast of India and Andaman sea
tend to remain slightly too fresh. Overall, this comparison with CCI (which was used as
a training dataset over the common period) indicates that it is possible to reconstruct
the broad features of the basin-scale SSS seasonal cycle from AMSR-E data, but that
significant biases remain, the clearest one being a fresh bias along the east coast of India
and in the coastal Andaman Sea.
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3.2.5.2 Validation with in-situ data

The previous figure was not a validation to independent data, since CCI data has been
used as a training dataset to build our SSSAMSR−E dataset. To validate the retrieved
SSSAMSR−E we now use the co-located in situ salinity from the Array for Real-time
Geostrophic Oceanography (ARGO) dataset at its shallowest depth (see section 3.2.3.3).
We remind that this dataset was reduced to a 1/4°x1/4° x monthly grid, by taking the
averages of grid cells with at least 2 observations (Figure 3.11b). Figure 3.11a displays
a histogram of the amount of in situ data per salinity bin, and of the AMSR-Eversus
in situ SSS. As seen on the histogram, there are very few data at low SSS (below 31
pss) in the in situ dataset, while such fresh water span large areas of the Northeast BoB
in JJA, SON and DJF (Figure 3.10a,c,d), indicating that it will be difficult to validate
satellite products for low SSS. The red curve displays the median of the AMSR-E SSS
per in situ salinity bin. This curve indicates that, despite a relatively large random error
around the median estimate, the retrieved SSSAMSR−E is unbiased at SSS <= 34 pss
but has an up to 1 pss fresh bias at SSS >= 34.5 (associated with the Southwest BoB
in JJA to SON, see Figure 3.10). Overall, the correlation between SSSAMSR−E and the
collocated ARGO data is 0.66. and the rms-difference between both datasets is 1.09 pss,
against, respectively, around 0.85 and 0.6 pss for the CCI SSS in this region Akhil et al.
(2016b). The better performance of the CCI SSS was to be expected, given the much
higher sensitivity of brightness temperature to SSS in the L- than in the X- minus C-
band. But the overall picture is that the AMSR-E method is able to capture the broad
SSS variations in the Bay of Bengal.

3.2.5.3 Comparing AMSR-E and ocean re-analyses SSS interannual variabil-
ity

As discussed in the introduction, our main objective in this study is to be able to
reconstruct SSS interannual variations prior to the L-Band SSS retrievals era: that
are insufficiently constrained by in situ satellite data. In this section, we hence aim
at evaluating the capacity of SSSAMSR−E to reproduce SSS interannual variations in
the BoB. Given that in situ data coverage is not sufficient to describe BoB interannual
SSS variations before 2010, we use 5 oceanic reanalyzes to estimate the consensus SSS
interannual variability (the ensemble mean) and uncertainties (spread around that mean).
We focus on two regions in which strong interannual variability has been underlined in
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Figure 3.11 – a) Scatterplot of SSS from AMSR-E versus co-located SSS from ARGO
floats with their kernel density distribution in color contours (see bottom legend). The
blue line represents the linear regression with the 95% confidence interval in translucent
blue. The red curve is the mean value with its standard deviation for each bin (0.5 pss)
with more than 3 observations. The barplot in red is the distribution of the number of
collocated measurements in each bin. b) Spatial distribution of ARGO measurements
used in the scatter plot (a). The black box shows the northern BoB zone [19°N-22.75°N;
85°E-93.25°E] and the East Coastal Indian (EIC) [16°N-19°N; 82°E-86°E] is displayed in
red: both are used in Figure 3.12.

the past (e.g. Akhil et al., 2014; Chaitanya et al., 2014b): the northern BoB around the
Ganga-Brahmaputra (GB) estuary, and the East Coast of India (ECI) (see Figure ??b).
As can be seen on Figure 3.12, the oceanic re-analyses compare reasonably well with
the CCI interannual SSS variability over both regions (correlation of 0.79 with a rms
difference of 0.52 pss for the GB area, and 0.74 / 0.51 pss over the ECI). This relatively
good agreement of the reanalyzes with the CCI dataset over the 2010-2020 period
suggests that the re-analyses can be used as a reference over the anterior 2002-2010
period (we note however, that there are less direct in situ salinity measurements over
this period, and that the re-analyzed SSS is only constrained through the model forcing,
physics and the assimilation of other data such as altimetry and sea surface temperature).

120



Part 3.2. SSS estimates from AMSR-E radiometer in the BoB

(a)

(b)

Figure 3.12 – a) SSS anomalies from AMSR-E (green) and CCI (blue), and the averaged
SSS anomalies from the models Glorys 1/12, ORAS, Glorys2v4, UKMO, and CMMC (red)
with the shading indicating the inter-model spread (±1 std, averaged for a) the northern
BoB and b) the East Coast of India (see those geographical boxes in Figure 3.11). On
the top of each figure is the correlation between the reanalysis and AMSR-E (blue) and
CCI (green) on the left and on the right their Root-mean-square difference.

Near the GB estuary, the re-analyses & AMSR-E SSS do not match well (Figure 3.12a),
with correlation of 0.43 and a rms-difference of 0.98 pss. These are worse scores than
those of the CCI vs re-analyzed SSS comparison over the more recent period. More
specifically, the AMSR-E SSS has little in common with the year-to-year variations from
the re-analysis, except maybe during the common CCI & AMSR-E period. Although
the re-analyses are weakly constrained by salinity observations over this period, this is an
indication that our current SSS reconstruction has little skill for SSS interannual variations
in the Northern BoB. The picture is more favorable along ECI (Figure 3.12b).

Although the correlation with re-analysis data remains low (0.58), the rms-difference
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is lower (0.65 pss) and there is a relatively long period where the low frequency SSS
variations in the AMSR-E and re-analyzed datasets match qualitatively well (2005 to the
end of the record). The relatively low correlation and high rms are due to a couple of
strong “spikes” in the reconstructed SSSAMSR−E interannual anomalies, for instance in
2003, 2004, late 2008 and 2009. More generally, the stronger prevalence of “spikes” in the
reconstructed SSS ′

AMSR−E than in SSS ′
CCI suggests that the AMSR-E reconstructions

contain intermittent spurious signals, that could either be related to radio frequency
interferences, or improperly filtered land contamination and remaining uncorrected effects
caused by the wind or low SST (not shown). Overall, the comparison with SSS anomalies
from ocean re-analyses suggests little skill in the Northern BoB, but limited skill along
the east coast of India, giving some hope than an improved reprocessing will allow to
reconstruct pre-2010 SSS interannual variations from AMSR-E in the Bay of Bengal. We
will come back to this in the discussion.

3.2.6 Summary and Discussion

3.2.6.1 Summary

SSS has a very strong spatial and temporal variability in the Bay of Bengal (up to 10
pss range). The very strong haline stratification in the BoB is thought to influence air-sea
interactions below tropical cyclones, primary productivity, and possibly climatological
rainfall. However, the basin-scale interannual SSS variations are only measured since
2010 in this basin, with the advent of L-band satellite SSS remote sensing. Before that
date, the in situ data coverage in the BoB was not really sufficient to describe basin-scale
SSS variations. In the present study, we therefore aim at reconstructing pre-2010 BoB
SSS based on AMSR-E data. The AMSR-E radiometer indeed comprises a channel in the
C-band. Although this channel is much less sensitive to SSS than in the L-band, previous
studies have illustrated that a careful data processing can allow to capture SSS signals in
regions with strong SSS contrasts, and high SST such as the Bay of Bengal. The similar
sensitivity of the X- and C- bands to wind and SST signals allows to reduce the impact
of those parameters, by considering X- minus C- brightness temperature contrasts. The
X- minus C- sensitivity to SSS is still low (0.05 K/pss), implying that a very careful
elimination of other residual signals is necessary. We find strong brightness temperatures
differences between ascending and descending passes, especially close to land masses.
(i) Separate land-sea masks are hence applied to ascending and descending passes to
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eliminate contamination of ocean points downstream of passages over land. (ii) The
ascending and descending passes are processed independently, with distinct empirical
corrections. We indeed further obtain (iii) empirical corrections of surface wind, SST, and
atmospheric water contents (performed in that order) based on CCI SSS and AMSR-E
collocated wind, SST, and atmospheric water data over the SMOS/Aquarius-AMSR-E
common period. An additional screening of the data, to eliminate outliers (> 3 MAD
from the median) over the entire time-series and 0.75° x 0.75° median smoothing is also
found to strongly influence the final data performance.

Comparing the retrieved SSS climatology with that of CCI indicates that our
product broadly reproduces the observed climatology, despite fresh biases near coasts.
SSSAMSR−E has a 0.66 correlation, 1.09 pss rms-difference to co-located in situ surface
salinity from ARGO floats, which is not as good as L-band radiometers but indicates
some skill. Since the main interest of such product is to reconstruct interannual SSS vari-
ations prior 2010, we did compare the SSS interannual variations with those from ocean
re-analyses in two hotspots for SSS interannual variability: the northern BoB and east
coast of India. Oceanic re-analyses compare reasonably well with L-band radiometry over
the recent period, suggesting that they also have some skill for SSS variations before 2010.
The comparisons with those re-analyses suggest that our current product has little skill
over the Northern Bay of Bengal. The comparison along the east coast of India is however
more favorable. While our product sometimes displays some spurious SSS spikes, it is
also able to reproduce the broad SSS interannual variations in re-analyses over quite long
periods (3-5 years). This confirms that AMSR-E contains some useful information about
BoB SSS interannual variability, but that an improved data processing may be required.
We discuss this in the following section.

3.2.6.2 Discussion

Following a first demonstration of SSS retrieval capability from AMSR-E low
frequency channel data in the highly contrasted region of the Amazon river plume (Reul
et al., 2009), the current paper establishes the basis for an SSS reconstruction algorithm
from AMSR-E data in the Bay of Bengal. As could be expected from the relatively
low C-band sensitivity to SSS, and the risk of land contamination and radio-frequency
interferences in the land-encircled BoB, this is a tricky task, and our current dataset still
has issues. We however think that the skill for reproducing some observed interannual
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signals along the west coast of India is promising and suggest some possible avenues for
improving this algorithm in the future.

We found a large impact of the data screening to exclude land-sea contaminated points
(not shown). The fact that there is a residual fresh bias along all the coasts (Figure 3.10
ijkl) or that there are spurious “spikes” in the reconstructed SSS interannual time series
(Figure 3.12) suggest that land contamination has not entirely been eliminated. The
elimination of points contaminated by land signals is currently very simple and based
on two separate static masks that eliminate points downstream of land on ascending
and descending passes, respectively. Applying a more stringent mask or applying a
more dynamical screening (based on differences between successive A and D passes for
instance) are probably the main avenues that will allow to improve the SSS retrieval.

Wind, SST, and water vapor empirical corrections are currently applied in three
consecutive steps. Although we did investigate the effect of the order of these corrections,
and found little sensitivity (not shown), methods based on neural networks would allow
to perform all these corrections in a single step and more optimal fashion. The advantage
of a neural-network-based method is that additional parameters can also be introduced,
such as the distance to the coast or the direction of the wind (we currently take only
the norm of the wind into account in our empirical correction, while WM12’s model
indicate the wind direction-dependent component of the correction can be non-negligible).

The fact that the AMSR-E derived SSS interannual anomalies better match the
ensemble model re-analyses along the East Coast of India than in the Northern part
of the BoB (Figure 3.12), where the SSS contrasts and variability are higher, is a bit
counterintuitive. It can be nevertheless partially understood given the differing Sea
Surface Temperature conditions in the two regions. Climatological SST is colder in
winter (DJF) near the Ganga and Brahmaputra estuaries ( 25.5 °C) than along the East
Coast of India (27°C or more). As shown in Figure 3.1, the sensitivity of the X-minus
C-band emissivity contrasts to SSS drops significantly with decreasing SST (from 0.05
K/pss at 29°C to 0.03 K/pss at SST=25°C). In addition, the sensitivity to SST increases
with decreasing SSS (from -0.05 K/°C at SSS=35 pss to -0.075 K/°C at SSS=20 pss).
These two effects probably act together to decrease the signal to noise ratio and therefore
to increase the uncertainty in the AMSR-E SSS retrievals for the Northern part of the
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BoB. The better results obtained by Reul et al. (2009) for the case of the Amazon river
plume waters are probably also associated with the warmer SST in that region.

Furthermore, the common period between AMSR-E and CCI, from which the empir-
ical corrections are estimated, is short and known for a suboptimal SMOS data. Further
constraining the correction estimate by also using in situ data over a longer period
should be explored. Since our objective is to reconstruct SSS interannual variations (the
SSS climatology is otherwise well constrained by in situ and L-band altimetry data), a
methodology that works with brightness temperature interannual anomalies (and hence
eliminates the mean state error) may also need to be tested.

The first release of the SMOS SSS retrievals were hardly usable for the Bay of Ben-
gal, displaying a worse performance than that described here for SSSAMSR−E (Akhil et
al., 2016b). Later, an improved reprocessing with an improved bias correction and data
screening near land allowed to strongly reduce those errors, turning the SMOS dataset
into a useful one for the BoB (Akhil et al., 2020; Boutin et al., 2018). While we recognize
that the current SSS retrieval still has significant issues and may not be usable for oceano-
graphic studies in its current state, we think that the promising interannual SSS signals
it captures in some regions of the BoB are sufficiently encouraging for pushing more work
on an improved data processing to obtain 8 more years of interannual SSS estimates over
that region.
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3.3 Corrective Measures for Developing Accurate Al-
gorithms

In this section, I provide additional elaboration of the corrections implemented to
derive the final algorithm described in Section 3.2.4.2.

Note that all the early versions used the auxiliary SST issued from the Operational Sea
Surface Temperature and Ice Analysis (OSTIA) (a infrared based daily composite from
the CCI). The CCI SST is a "night-time" foundation SST, representative of the diurnal
cycle free SST. AMSR-E SST retrieval, on the other hand, uses a monthly climatology
of SSS to correct its impact on the brightness temperature. Because of this, we preferred
to rely on the SST first. However, after comparing the ascending and descending pass
AMSR-E SST, we discovered that the diurnal warming impact on the SSS retrieval was
significant. This finding will be detailed further in a subsequent section. Note that all
versions include a basic outlier filtering (removing (∆e − Median) ≥ 3 ∗ MAD).

As mentioned in Section 3.2.4.4, the empirical corrections have been applied in the
following order: surface wind, SST, and atmospheric water contents. The choice to remove
first the wind impacts comes directly as the surface winds have the strongest impacts
on the brightness temperature (Reul et al., 2009). The relative impacts of SST and
atmospheric water content are quite similar, thus thanks to their non-correlated behavior
their order should not matter. In practice, it has been verified that their relative order
does not influence the out-coming algorithm.

3.3.1 The Impact of the Empirical GMF

Initially, the empirical GMF was supposed to be customized with the AMSR-E dataset
by calculating which SSS was obtained for a given SST and a given ∆eB. As can be seen
in Figure 3.13a the reconstruction creates a strong overestimation for SSS < 33 psu
and an underestimation for a SSS > 32 psu. By using the empirical GMF, calculated
with the theoretical flat surface δTB using SSSCCI based on MW12’s dielectric constant
model, as explained in Section 3.2.4.6, I can obtain a more accurate reconstruction (see
Figure 3.13b). There is still an over- and under-estimation for SSS below and above 33
psu respectively, but the regression line aligns much better with the x=y line. However,
the distribution around the regression line spread, the correlation slightly decreases (from
0.61 to 0.52) and the rms-difference strongly increases (from 0.89 pss to 1.37 pss).
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Figure 3.13 – Scatterplot of SSS from AMSR-E versus co-located ARGO data with their
kernel distribution in color contours. The blue line represents the linear regression with
the 95% confidence interval in translucent blue. The red curve is the mean value with
its standard deviation for each bin (0.5 pss) with more than three observations. The
barplot in red is the distribution of the number of collocated measurements in each bin.
To calculate the SSSAMSR−E I use in a) the GMF created by AMSR-E ∆eCCI

B and in b)
the theoretical GMF ∆eCCI

B .

Note also that the use of the empirical GMF based on MW12 increases the quantity of
correlated measurements between in situ and AMSR-E SSS (see the barplot distributions
in Figure 3.13). This is caused by the lack of similar ∆eAMSR−E

B , that has been sorted
out during the creation of the GMF (a minimum amount of 10 values is required in order
to be counted). Thus not accounted ∆eAMSR−E

B will leave a gap. As the GMF is based
on MW12’s model over the full range, no gaps occurs, increasing the co-located spots.
However, using MW12 for the GMF is also the source for data scattering. Aberrant values
occurring less than ten times will not be removed and thus will affect the monthly results.

3.3.2 The Impact of the Learning Period

In order to increase the correlation and decrease the rms-difference between AMSR-E
and in situ SSS, I try to find improvements which will lead to less dispersion around the
regressions line. In the early versions, I used a refinement period which was divided in
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two. One period was to be used for the algorithm development, the second one for the
validation. As the common period is already really short, the lack of data can induce an
error. Using in situ data for validation, I was thus able to increase the learning period to
the common integral period (June 2010 - September 2011).

Figure 3.14 – Same as Figure 3.13 for the GMF based on MW12 and the full period were
used to calculate the empirical corrections on surface wind, SST, and atmospheric water
components.

As shown in Figure 3.14, the correlation has indeed slightly increased (0.6). But there
was still outliers (rms-difference: 1.28 pss) that I try to further remove.

3.3.3 The Impact of the AMSR-E Swath Directionality

By analyzing the results as a function of the satellite flight direction, i.e., separating
ascending and descending passes, I discovered the existence of strong differences, princi-
pally along the coast (see Figure 3.15). This is mainly caused by the relative direction
of the viewing angle of the instrument during its orbital motion. As the BoB is a re-
gion surrounded by land masses, their effect on instrument passes varies depending on
the direction of the pass - whether it is pointed towards the region (ascending) or away
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from it (descending)(see Figure 3.15). This impact the brightness temperature (and thus
emissivity). I have thus proceeded separately ascending and descending data, calculat-
ing the empirical corrections, filtering and SSS inversion independently. Only when the
SSSAMSR−E has been determined, I merged the data and calculated the monthly mean.

Figure 3.15 – Temporal median of the raw emissivity difference ∆e in the Bay of Bengal
(before empirical refinement are applied) for a) ascending and b) descending satellite
passes.

As shown in Figure 3.16, the specific processing for each type of pass indeed increases
the accuracy of the SSS retrieval: the correlation slightly increases (0.63) and the rms-
difference decreases (1.18 pss). However, separating the data per satellite pass-type seems
also to increase slightly the overestimation for the lower SSS (SSS < 30 pss).
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Figure 3.16 – Same as Figure 3.14, applied separately on ascending and descending data.

3.3.4 The Impact of Additional Filtering

In order to increase the accuracy of the retrieved SSS, I attempted to improve the
filtering as there were still large differences between the temporal median of ascending
and descending data (shown in Figure 3.4c). This is particularly true in the offshore region,
where large spreads of land-sea contaminated signals can be found and they should not
be used in the algorithm. The detailed filtering was explained Section 3.2.4.3. The spatial
impact of the filtering can be seen in Figure 3.20b, that shows in blue the boundary used
before the filtering and in black the boundary used once the land-contamination filter
applied.

This filtering indeed increases the correlation (0.68), and the dispersal around the
regression line seems to lessen as the rms-difference drops to 1.06 pss. But the overesti-
mation of lower SSS does not seem to improve. As can be seen in Figure 3.17 outliers
exist for low SSS (SSS ≈ 24 pss).
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Figure 3.17 – Same as Figure 3.14 with additional filtering.

3.3.5 The Impact of the Diurnal Cycle

As discussed in Section 3.2.4.2.1, we initially planned to use the auxiliary SST product
from CCI for the retrieval algorithm. However, as we conducted our study, we recognized
the significance of the diurnal cycle, which prompted us to switch to AMSR-E data.

This change resulted in the final algorithm, given the scatterplot in Figure 3.11a.
While the correlation slightly decreased from 0.68 to 0.66, we observed a minor increase
in the rms-difference by 0.05 pss.

3.3.6 Influences of IOD

As a reminder, the Indian Ocean Dipole (IOD) is an irregular oscillation of sea surface
temperatures in the Indian Ocean. It is characterized by anomalous cooling or warm-
ing of sea surface temperatures in the eastern and western parts of the Indian Ocean,
respectively.

In their study, Akhil et al. (2016a) conducted a modeling study to examine the
relationship between the IOD and the interannual variability in the BoB. To do this,
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the authors calculated the Empirical Orthogonal Function (EOF) of the seasonal (SON)
anomaly of the SSS in an attempt to identify the dominant modes of variability in the
BoB. With a correlation of 0.88, between the first Principal Components (PC) of the
EOF and the Dipole Mode Index (DMI) (measure of the strength and polarity of the
IOD) of 0.88 they found a strong link between the River in the sea and the IOD. The
second PC in its turn shows a strong (0.76) correlation with interannual variability of
the river runoff in the north of the bay.

However, during recent studies Akhil et al. (2020) shows a far less obvious impact
(correlation of 0.66) between the first PC and the DMI when using Soil Moisture and
Ocean Salinity (SMOS) data. Moreover, the first EOF shows both signals linked to the
river in the sea and the runoff.

In order to better understand this variation of the patterns, I use the reconstructed
AMSR-E data to calculate its EOF. Even if the EOF done in Akhil et al. (2020) is only
based on 9 years, which is statistically not accurate, I decided to redo the analysis with
the SSSAMSR−E for comparison. Note also that I decided to replace the DMI with the
Sea level Dipole Index (SDI) to represent the variation of the IOD. The SDI is a Sea level
anomaly based Dipole Mode Index.

Unlike previous studies (Akhil et al., 2016a; Akhil et al., 2020), the first two modes
of the reconstructed AMSR-E EOF data exhibit distinct characteristics. The first mode
(Figures 3.18a and b) appears to be mainly negative and only weakly correlated with
the IOD (correlation of 0.15). However, the signal in the Andaman Sea is moderately
correlated with the Irrawaddy discharges (correlation of 0.44), while the strong negative
anomaly does not correspond to the Ganga-Brahmaputra runoff.

The second mode exhibits similarities with the second mode of the EOF of model SSS
(Akhil et al., 2016a), with a negative signal in the northern part of the bay and a positive
anomaly along the East Indian Coast extending to Sri Lanka. The correlation with the
IOD has also improved to 0.59.

These results may be due to the underestimation of SSS for low SST, which is par-
ticularly pronounced near the northern coast. As a result, accurate reconstruction is
challenging, and the dominant negative SSS anomaly will always be detected first by the
EOF analysis. However, the second mode suggests an impact of the IOD on the EICC,
as previously hypothesized (Akhil et al., 2016a; Akhil et al., 2020). Further analysis is
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Figure 3.18 – a) and c) Time series of the normalized principal component of the first and
second modes (PC1 and PC2) from an empirical orthogonal function (EOF) analysis of
SON AMSR-E SSS interannual anomalies (blue), normalized SON Sea Level Anomaly-
based Dipole Mode Index (SDI) (green), normalized JJA River Runoff from Ganges-
Brahmaputra (yellow) and Irrawaddy (pink) from Jason-2 altimetry (Papa et al., 2012).
The correlation of PC1 with the three different indices are indicated at the top and bottom
of the panel. b) and d) Regression of SON AMSR-E SSS interannual anomalies (SSS’,
colour) to PC1 and PC2 over the 2002–2010 period. Top figures corresponds to first and
the bottom figures to the second mode.

needed to investigate the potential influence of the IOD on the extension of the "river in
the sea".

Figure 3.19 depicts the extension of the freshwater tongue averaged within 200 km
from the East Indian coast and the average anomaly of the SON. It is observed that
in 2006, when the IOD had a strong positive anomaly, the extension of the freshwater

133



Chapter 3 – Retrieving SSS from C-/X-band radiometers

Figure 3.19 – Hovmöller diagram for the "River in the sea" for the entire AMSR-E period.
Top panel is the geographical situation of the studies area (distance to the coast less than
200 km). Middle panel represents the longitude SSS mean of the highlighted section from
the top panel. Bottom panel is the SDI anomaly mean for SON which is closely linked
to the IOD. Note that the x-axis of the middle and bottom panel represents the time
between 2002 and 2011 and that the ticks are set on the October Period, when the IOD
is reaching its peak, for each year.

seemed to be shorter than usual, whereas in 2010, which had a strong negative anomaly,
there was a significant extension of the tongue. These findings are consistent with those
of Akhil et al. (2020), who found that positive IOD events tend to lead to a negative SSS
anomaly and negative IOD to a positive anomaly along the west coast of the BoB.

However this relation is not systematically verified with AMSR-E SSS. For instance,
in 2005, the SDI negative anomaly was stronger than in 2004, but the freshwater tongue

134



Part 3.4. Additional results since submission

seemed to be stronger and longer in 2004. The same holds for 2002, where the freshwater
was strongly present despite a positive SDI anomaly.

3.4 Additional results since submission

In Figure 3.11, I showed the validation of the AMSR-E SSS using ARGO data only.
Since the submission of the paper, I was able to use a combined (Argo profilers and
measurements from ships of opportunity, described in Section 2.2) in situ dataset to carry
out a more advanced validation.

Figure 3.20 – a) Scatterplot of SSS from AMSR-E versus co-located SSS from in situ data
with their kernel density distribution in color contours (see bottom legend). The blue line
represents the linear regression with the 95% confidence interval in translucent blue. The
red curve is the mean value with its standard deviation for each bin (0.5 pss) with more
than 3 observations. The barplot in red is the distribution of the number of collocated
measurements in each bin. b) Spatial distribution of ARGO and ship measurements used
in the scatter plot (a). The dotted contour line in blue shows the coastal boundary before
applying additional filtering, the black one is the coastal boundary once the filter applied
(used in Section 3.3.4).

Comparing Figure 3.20 to Figure 3.11, it is possible to see the impact of the added data.
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Data in the low SSS regions (SSS < 27 pss) can be identified and validated. Indeed, the
regression line does moves away from the x=y line, and the rms-difference does increase
(from 1.09 pss to 1.15 pss), but this is mostly due to local points in the really low SSS
zones. As explained in Section 3.2.4.1, the sensitivity of ∆Tv to SST in the BoB is
∼0.04 K/°C. For low SSS (see Figure 3.1b), δ∆Tv/δSST increases, reaching -0.065 K/°C
at SSS = 20 pss. Thus due to SST larger errors are expected in the SSS retrieval from
AMSR-E for low SSS. Thus distancing from the x=y line is expected for these SSS values.
However, for the SSS values between 28 pss and 31 pss the accuracy seems to increase as
error bars decrease. The correlation however is not impacted and remains at 0.66.
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INTRINSIC AND EXTERNALLY-DRIVEN

SSS VARIABILITY IN THE BOB

As previously mentioned in Section 1.3.3, several phenomena can influence the salinity
non-seasonal variability in the BoB. In this chapter, the influence of these phenomena
(in particular the IOD and oceanic eddies) on SSS will be briefly introduced, prior to
validating numerical experiments from the IMpacts of freshwater discHarge interannual
variability on Ocean heaT-salt contents and rEgional sea level change over the altimetry
Period (IMHOTEP) dataset, and using them to assess BoB salinity variability.

4.1 Influences ...

4.1.1 ... of the IOD

In Section 3.3.6, it was shown that - despite some encouraging results - the AMSR-E
data does not always resolve the BoB SSS interannual variability well, and hence cannot
be used to describe the IOD SSS signature in the BoB. Acknowledging this limitation,
I use the reference data from the CCI dataset and follow the EOF approach outlined in
(Akhil et al., 2016a) to describe the IOD SSS signature in the BoB, but adding one more
year (2019) to the dataset used in this study (2010 to 2018 period).

Figure 4.1b displays a pattern similar to the EOF based on the Sea Surface Salinity
Anomaly (SSS ′) of SMOS presented by Akhil et al. (2020). The first modes exhibits
a strong negative signal in the northern and eastern parts of the BoB. There is also a
positive anomaly in the southwestern part of the BoB, which is strongest along the east
Indian coast.
This mode was earlier attributed to the effect of the IOD, through changes in the
basin-scale circulation (Akhil et al., 2016a). The correlation between the first PC and
the runoffs of the GB and Irrawaddy are indeed low (0.17) excluding them as a possible
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Figure 4.1 – a) and c) Time series of the normalized principal component of the first
and second modes (PC1 and PC2) from an empirical orthogonal function (EOF) analysis
of SON CCI SSS interannual anomalies (blue), normalized SON Sea Level Anomaly-
based Dipole Mode Index (SDI) (green), normalized JJA River Runoff from Ganges-
Brahmaputra (yellow) and Irrawaddy (pink) from Jason-2 altimetry (Papa et al., 2012).
The correlation of PC1 with the three different indices are indicated at the top and bottom
of the panel. b) and d) Regression of SON AMSR-E SSS interannual anomalies (SSS’,
colour) to PC1 and PC2 over the 2002–2010 period. Top figures corresponds to first and
the bottom figures to the second mode.

source. The correlation with the dipole mode index, that we use (the SDI) is higher
but only 0.54. This is lower than the correlation obtained in the longer (1993 to 2012)
modeling study of (Akhil et al., 2016a) (who found a correlation of 0.76), indicating that
the relation with the IOD is either weaker other that period, or intermittent, as already
pointed out by (Akhil et al., 2020).
The second mode displays a negative pattern along the river estuaries, much more

138



Part 4.1. Influences ...

localized than for the first mode, suggesting that it corresponds to the effect of rivers.
The associated PC is both correlated with the SDI (0.66) and anti-correlated with
theGB river runoff (-0.57), suggesting that this mode does not separate clearly those two
contributions, as was the case in (Akhil et al., 2016a)

Figure 4.2 – Hovmöller diagram for the "River in the sea" for the entire CCI period. Top
panel is the geographical situation of the studies area (distance to the coast less than 200
km). Middle panel represents the longitude SSS mean of the highlighted section from the
top panel. Bottom panel is the SDI anomaly mean for SON which is closely linked to the
IOD. Note that the x-axis of the middle and bottom panel represents the time between
2002 and 2011 and that the ticks are set on the October, when the IOD is reaching its
peak, for each year.

The Hovmöller diagram shown in Figure 4.1 suggests some anti-correlation between
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the river in the sea and the SDI, as noted by Akhil et al. (2020), with for instance low
salinity all the way to 5°N in 2010 and 2016 (both negative IOD years), and a river in the
sea that does not expand southward of 12°N in 2019, 2015 or 2011 (positive IOD years).
However, similar to the Hovmöller diagram for AMSR-E (Figure 3.19), the intensity of
the IOD and the extension of the river in the sea do not always match. For example,
the IOD has a similar negative intensities in 2013 and 2014, but the river extends more
southward in 2013. Similarly, the river extends quite far south in 2017 and 2018, while
those are not strong negative IOD years. This indicates that other mechanisms than the
IOD probably drive the river in the sea extension or interfere with it.

4.1.2 ... of Eddies

Mesoscale eddies are numerous and energetic in the BoB (Chelton et al., 2011; G
Chen et al., 2012; Cui et al., 2016; Lin et al., 2019). They have a horizontal scale of the
order of 100 km to 150 km in the Bay of Bengal (Chelton et al., 2011), a characteristic
size which is similar to the width of the EICC, and previous studies have shown their
ability to modulate and even divert the course of the river in the sea (Benshila et al.,
2014; Fournier et al., 2017; Hareesh Kumar et al., 2013) (see Figure 4.3) and to transport
freshwater horizontally (Chaitanya et al., 2021; Cui et al., 2022).

The EOF and the Hovmöller diagram raise several questions. The modeling study of
(Akhil et al., 2016a) identified two clear modes of interannual variability in the BoB, one
clearly associated with changes in circulation driven by the IOD wind anomalies, and a
second one associated with the GB runoff interannual anomalies. The modeling study of
Nyadjro (2021) also highlighted a strong positive anomaly caused by the IOD that creates
anomalies in SON resembling the 1st EOF from (Akhil et al., 2016a) (see their Figure 4).
The observational analysis above yields different results. First, it does not successfully
disentangle the IOD and GB-induced SSS variations, and the link between the IOD and
the river in the sea extension does not seem as robust as in the modeling studies.

There are several possible explanations for these findings. The remote sensing dataset
covers a shorter period than the modeling study of (Akhil et al., 2016a) (2010 to 2019
against, 1993 to 2012, i.e., 10 vs 20 years, as AMSR-E oceans brightness temperature
data has not shown enough sensitivity), that may not allow to properly disentangle the
effects of the IOD from those of river runoffs. Another possible explanation for the differ-
ences between the model and the observed data is the failure to consider the localization
and intensity of eddies. The Figure 4 of Nyadjro (2021) for instance displays a strong
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Figure 4.3 – (a), (c), and (e) SMAP SSS for September, October, and November in 2015
and (b), (d), and (f) 2016. Monthly AVISO currents are represented on top, only one
vector in three is represented and currents below 10 cm s−1 are not displayed (after
Fournier et al. (2017)). The good agreement between the SSS and current structures
associated with both the EICC and eddies indicate that advection plays a strong role in
controlling the SSS structure along the west coast of India, with a strong stirring of the
SSS field by meso-scale eddies.

modulation of the SSS spatial patterns by mesoscale eddies (Akhil et al., 2016a).
Contrary to the IOD, for which the BoB SSS anomalies are largely due to the wind-

driven BoB circulation anomalies (Akhil et al., 2016a), eddies are not directly driven
by surface fluxes. Instead, they grow by extracting energy from the background flow
through the barotropic and/or baroclinic instability mechanisms (e.g., G Chen et al.,
2012). They are generated internally through oceanic instabilities, rather than forced
by an external momentum or buoyancy forcing. This has important consequences. For
instance, an oceanic simulation that is not constrained by ocean data will be able to
reproduce the signals that are externally forced, such as the response to the IOD. While
a general circulation model experiment will spontaneously produce eddies through the
aforementioned instability processes, it will only reproduce the statistics of these eddies,
but not the location of individual eddies, due to strong sensitivity of the eddy field to
initial conditions, e.g., its chaotic nature. This means a forced ocean model can reproduce
the observed SSS signals associated with the IOD, but not that associated with individual
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eddies, which has strong consequences for how to validate it to observations.
Some of the studies mentioned above (Benshila et al., 2014; Fournier et al., 2017;

Hareesh Kumar et al., 2013) suggest that the signals associated with eddies are not
negligible, and that they can for instance modulate the river in the sea (see Figure 4.3).
The main question that is explored in the current chapter is thus to work out the relative
contributions of externally forced and internally-generated oceanic signals to SSS non-
seasonal variations in the BoB. More specifically, can the eddy-induced transport divert
the "river in the sea" some years or blur it significantly?

4.2 Methodology of the variability determination

In order to answer the scientific question regarding the intrinsic variability of SSS in
the Bay of Bengal, I use the ensemble simulation outputs described in Section 2.4.

This ensemble approach has been used since the 1990’s for the atmosphere (e.g., Row-
ell, 1998). In the latter, turbulence instabilities give rise to anticyclones and depressions
(sizes of about 1000/2000 km) that could already be resolved by the numerical capacity
of atmospheric models (typical resolutions of about 200 km). In ocean sciences however,
ensemble simulations are a quite recent and innovative approach, as turbulent mesoscale
eddies have typical sizes of 100/200 km. Following a workshop of the CLIVAR Ocean
Model Development Panel in 2014, one can quote the Treguier et al. (2014) CLIVAR
exchanges publication : "Eddying ocean simulations pose a new challenge because of the
emergence of intrinsic variability caused by oceanic instabilities (Penduff et al., 2014;
Penduff et al., 2011). Together with the increased synoptic variability in high resolu-
tion atmospheric models, these extra modes of variability in the ocean make ensemble
simulations necessary to study cause and effect relationships in the Earth’s climate."

As presented in Section 2.4, the IMHOTEP project adopts such an ensemble approach,
which gives a good framework to quantify the contribution of ocean intrinsic variability
(i.e., eddies) to the total non-seasonal variability of SSS in the BoB. The method to
compute each component of the variability from ensemble simulations is well established
(e.g., Bessières et al., 2017; Carret et al., 2021; Leroux et al., 2018) and is recalled
hereunder.

Definition of the forced and intrinsic components In the present work, the main
signal I consider is the SSS anomaly relative to the seasonal cycle (i.e., non seasonal SSS
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anomaly), which is first computed for each member of the dataset. Hereunder this original
signal at time index t, and for member index j will be noted xj(t).

The forced component of the signal, X(t), is estimated as the mean of all ensemble
members at every time step :

X(t) =
〈
xj(t)

〉
= 1

M

M∑
j=1

xj(t)

where
〈

.
〉

is the ensemble mean operator, and M is the total number of ensemble mem-
bers. This yields a single time series at each spatial point, which is called the "ensemble
mean" signal.

The intrinsic components of the signal is then defined as the difference between the
original signal of each member and the ensemble mean:

x′
j(t) = xj(t) − X(t)

In our case, this yields 10 time series at each spatial point for each of the 10 members
of the ensemble. By construction, the average of the intrinsic signal is thus zero both at
each time step and also over the total population.

Forced Variability Forced Variability refers to changes in a system or phenomenon
that result from external factors or forces. In the case of climate simulations, these
external factors can include natural factors such as changes in solar radiation or volcanic
eruptions, as well as human-caused factors such as greenhouse gas emissions and land-
use changes. For the case of this study (oceanic simulations), those external factors are
atmospheric forcings (i.e., winds, heat fluxes, precipitations or runoffs).

The amplitude of the forced variability σforced is given by the temporal standard
deviation of the ensemble mean at each grid point:

σforced =
√

V artime[X(t)] =

√√√√ 1
T − 1

T∑
t=1

(
X(t) − X(t)

)2

where V artime[ . ] is the time variance operator, . is the time mean operator, and T is
the total number of time-steps (in days, months, years...).
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Intrinsic Variability Intrinsic Variability refers to variations in a system or phe-
nomenon that arise from within the system itself, without the influence of external forces
or factors. The dynamical response of the nonlinear ocean to the atmospheric variability
is complex: dynamical system approaches and diagnostics of potential vorticity balances
have demonstrated that in presence of stochastic, seasonal, or constant atmospheric forc-
ing, oceanic non-linearity can intrinsically generate and sustain variability of the horizon-
tal circulation at interannual time scales (Penduff et al., 2011). Global ocean simulations
indeed show that resolving mesoscale turbulence (i.e., eddies, even partly) promotes the
emergence of low-frequency chaotic intrinsic variability which causes substantial random
fluctuations of the ocean state variables (e.g., sea level) up to multiple decades in eddy-
active regions of the world ocean. This random low-frequency chaotic intrinsic variability
is superimposed on the atmospherically forced (or simply “forced”) fluctuations, which are
directly controlled by the atmospheric variability (Penduff et al., 2019). It is important
to note that intrinsic variability is much weaker in non-turbulent ocean models, and that
for the case of the BoB study, the latter is generated by the numerous eddies present in
that basin.

The estimation of the amplitude of intrinsic variability involves the computation of
the "ensemble spread", ϵ2(t). This spread is the unbiased ensemble variance (represented
as V arens[ . ]) of the intrinsic components of all members:

ϵ2(t) = V arens[x′
j(t)] = 1

M − 1

M∑
j=1

x′
j(t) −

〈
x′

j(t)
〉

︸ ︷︷ ︸
=0


2

= 1
M − 1

M∑
j=1

x′
j(t)2

That ensemble spread indicates how dispersed or concentrated the data is around
the ensemble mean at each time-step. The amplitude of the intrinsic variability is then
obtained by the square root of the time average of the spread :

σintrinsic =
√

ϵ2(t)

Total Variability Total variability refers to the sum of all sources of variability in the
system. The amplitude of the total variability in each member j and at each grid point
is:

σ2
tot,j = V artime[xj(t)] = 1

T − 1

T∑
t=1

(
xj(t) − xj(t)

)2

The amplitude of the total variability can be obtained by calculating the ensemble
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mean of the above expression:
σtot =

√〈
σ2

tot,j

〉
As shown in Leroux et al. (2018), the amplitudes of the three variabilities defined above
are linked by the sum of their squared values:

σ2
tot = σ2

forced + σ2
intrinsic

4.3 Validation of the IMHOTEP dataset

In this section, my objective is to investigate whether the intrinsic variability of the
oceans, including the role of eddies, contributes to the SSS interannual variability in the
BoB. More specifically, I will investigate the potential role of eddies in modulating the
influence of the IOD on the "river in the Sea" length. To achieve this goal, ensemble
simulations produced with the NEMO Ocean General Circulation model (Madec et al.,
2022), referred to as IMHOTEP hereafter (see Section 2.4). The study employs the refer-
ence experiment from the IMOTHEP dataset, specifically the "EGAI" experiment. This
experiment consists of 10 ensemble members and spans a period of 39 years (1980-2018).
Interannual surface boundary conditions include a careful prescription of interannually-
varying runoffs. Since this dataset is new, its reliability is first assessed in the next
subsection, in particular the representation of the SSS, IOD and eddies.

4.3.1 Removal of a spurious SSS signal in the IMHOTEP
dataset

To begin with, the time series of the bay-averaged SSS in IMHOTEP is compared with
CCI validation dataset, and the Glorys 1⁄12° (hereafter Glorys) reanalysis. Figure 4.4a
shows that the temporal behavior of the Glorys dataset is similar to that of the CCI
dataset during their common period (correlation of 0.73), which suggests that Glorys can
be considered a reliable extension of the CCI dataset (note that the CCI data was not
assimilated into Glorys).

The IMHOTEP time-series of the SSS anomaly has a positive bias of ∼ 0.3 pss be-
fore 2000, ∼-0.2 pss bias from 2000 to 2010, and ∼-0.5 bias after 2013, with significant
"steps" between those periods, as shown in Figure 4.4a. These steps are also visible in
Appendix B.I, where the difference maps between these periods are displayed. The origin
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(a)

(b)

Figure 4.4 – Time series of monthly averaged SSS anomalies in the BoB between 1980
and 2020 for a) raw IMHOTEP data and b) detrended IMHOTEP data. In blue is the
average anomaly of IMHOTEP, the light-blue shade behind is the standard deviation
between the different members. Yellow represents the Ocean reanalysis Glorys 1⁄12° and
green represents the CCI dataset.

146



Part 4.3. Validation of the IMHOTEP dataset

of this behavior will have to be clarified, but it may be due to a drift in either the runoff
or precipitation forcing. Thus, it was decided to remove this artificial trend, through a
nonlinear detrending.

The detrending is calculated at each IMHOTEP gridpoint, by fitting a fourth-order
polynomial to the annual mean ensemble mean SSS. Figure 4.4b shows that this
detrending successfully removes the "steps" in the anomalies (see Appendix B.I). While
this strongly reduce the offset with the CCI reference dataset over the common period,
there are still some important offsets with Glorys SSS during several years, such as 1997
or 2004. This suggest that, while our detrending strategy was successful in removing
most of the spurious basin-average drift, there are probably some spurious SSS signals
remaining for the basin-average SSS.

To investigate the behavior in specific regions of interest in the bay, the analysis is
further carried out in two boxes as shown in Figure B.1 and B.2: those regions are selected
because they encompass the GB river mouth, and the east coast of India, hence regions
where SSS signals associated with river runoff and the IOD, respectively, can be large.
While the spurious SSS drifts was very visible on the BoB average SSS, its is much less
visible for the northern BoB (see Figure 4.5a). The correlation between IMHOTEP and
Glorys has for instance not changed with the detrend (0.73 before and after, and the
rms-difference between drops only by 0.02 pss, from 0.79 to 0.77 pss.

The second region of interest is situated in the western boundary zone of the BoB. In
this region, the effect of the spurious drift is more pronounced and appears as a negative
drift in the IMHOTEP time-series (see Figure 4.6a). Applying the detrending largely
removed this spurious signal, although some notable differences sometimes appear between
the Glorys reanalysis and IMHOTEP such as in 1995 and 2005. But overall, the detrending
has removed most of the spurious signals in the two regions of interest, and there is
in general a good phase relation between the IMHOTEP ensemble mean and Glorys
reanalysis. The strong decrease of the rms-difference between IMHOTEP and Glorys from
0.70 pss to 0.58 pss and the bias from IMHOTEP from 0.44 to 0.31 and the improvement
of the correlation from 0.41 to 0.51 suggest that this corrected dataset can be used to
estimate the internally generated and externally forced SSS variability in the BoB. Thus,
the detrended IMHOTEP dataset is always used in the rest of the chapter.
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Chapter 4 – SSS variability in the BoB

4.3.2 Seasonal Cycle Validation

The seasonal SSS cycle in the IMHOTEP run is now to be validated against those in
the CCI and Glorys datasets. Figure 4.7 shows that both IMHOTEP and Glorys display
similar patterns of SSS climatology, with low SSS close to the Ganga-Brahmaputra and
Irrawaddy estuaries during and after the monsoon, and a southward expansion of this
fresh water along the west coast of India in SON. Although the coastal values are not
available in the CCI dataset, values a bit more offshore suggest that IMHOTEP and
Glorys tend to have too low SSS close to the estuaries, especially in SON and DJF. The
southward expansion of the river in the sea in the two modelling datasets in DJF is not
very clear in the CCI dataset. IMHOTEP exhibits overestimated of SSS relative to CCI
around and east of Sri Lanka. Overall, the climatological SSS is hence reasonable in
IMHOTEP, despite too low SSS near estuaries.

4.3.3 Validation of non-seasonal signals

To validate IMHOTEP, a detailed comparison of Sea Surface Salinity (SSS) and Sea
Level Anomaly (SLA) is performed, between an IMHOTEP member and the Glorys (for
Sea Level Anomaly (SLA)) and CCI (for SSS) datasets for the SON season (see Figure 4.9
and Figure 4.8, respectively). For each variable, I compute the standard deviation of
IMHOTEP and the reference dataset, their correlation and rms-difference. I focus my
comparisons on the SON season because it is the season where the "river in the sea" is
most developed (Figure 4.7, Akhil et al., 2014 ) and where the IOD-induced variability
is strongest (Akhil et al., 2016a; Akhil et al., 2020). I will also show later that it is the
season when the intrinsic SSS variability is strongest.

I start by SLA, because it is both a proxy for the coastal circulation anomalies associ-
ated with the IOD and for eddies. Glorys (which assimilates altimetry data) has a strong
variability in the western half of the BoB, with maxima of up to 10-12 cm west of Sri
Lanka and the west coast of India between 13 and 19°N. Those correspond to regions of
strong eddy activity (Cui et al., 2016), which are severely underestimated in IMHOTEP
(the sea level std is rather 6-8 cm in those regions). This underestimated variability, and
the fact that the eddies in a free simulation can not be in phase with those in observations,
as demonstrated by the weak correlations in the western half of the BoB, result in a root
mean square error of over 12 cm. The correlations between IMHOTEP and Glorys are
on the other hand high at the BoB periphery, i.e., along the coastal waveguide. This sug-
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Part 4.3. Validation of the IMHOTEP dataset

gests that wind-forced wave signals that travel around the BoB as coastal Kelvin waves
are well reproduced by IMHOTEP. Overall, IMHOTEP strongly underestimates the eddy
variability in the BoB (which may be an issue for our study, as will be discussed later).
This may be due to the fact that its horizontal resolution of 1/4° is only eddy-permitting
but not eddy-resolving (Lellouche et al., 2021)

In summary, the IMHOTEP correctly reproduces the SLA variations along the coast
where the forced variability is strongest, but its accuracy decreases in areas where intrinsic
variability becomes stronger. Similar results were obtained for the remaining seasons,
which are presented in Appendix B.III.

Let us now discuss the SSS non-seasonal variations validation. The SSS variability is
strong near the GB and Irrawaddy estuaries in CCI, and along the west coast of India.
IMHOTEP displays a similar pattern, but with a much larger variability. Therefore, it
can be concluded that the IMHOTEP overestimates the SSS non-seasonal variability. The
correlation with CCI SSS anomalies tends to be lower than that for sea level, and much
more patchy. There are areas in the BoB periphery where this correlation reaches 0.8, but
the correlation in most of the BoB central part is quite low, between 0 and 0.4. This can
either suggest that the forced SSS salinity signals are not well reproduced by the model,
for instance because of a deficient rain or wind forcing. But it may also as well indicate
a strong contribution for intrinsic SSS variations in the BoB central part.
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(a)

(b)

Figure 4.5 – Time series of monthly averaged SSS ′ in the Northern BoB ([19°N-22.75°N;
85°E-93.25°E], black box in Figure B.2) between 1980 and 2020 for a) raw IMHOTEP
data and b) detrended IMHOTEP data. In blue is the average anomaly of IMHOTEP, the
light-blue shade behind is the standard deviation between the different members. Yellow
represents the Ocean reanalysis Glorys 1⁄12° and green represents the CCI dataset.
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Part 4.3. Validation of the IMHOTEP dataset

(a)

(b)

Figure 4.6 – Time series of monthly averaged SSS ′ in the Western BoB ([12.5°N-16°N;
79°E-82°E], red box in Figure B.2) between 1980 and 2020 for a) raw IMHOTEP data
and b) detrended IMHOTEP data. In blue is the average anomaly of IMHOTEP, the
light-blue shade behind is the standard deviation between the different members. Yellow
represents the Ocean reanalysis Glorys 1⁄12° and green represents the CCI dataset.
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Part 4.3. Validation of the IMHOTEP dataset

Figure 4.8 – SON averaged SLA anomaly from one member of IMHOTEP and CCI
data using the common period between the two datasets (1993-01 to 2018-12): a) is their
correlation, and b) their root mean square difference. The bottom panels are the standard
deviation for each dataset.
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Figure 4.9 – SON averaged SSS ′ from one member of IMHOTEP and GLORYS data,
using the common period between the two datasets (2010-06 to 2018-12): a) is their
correlation, b) their root mean square difference. The bottom panels are the standard
deviation for each dataset.
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Part 4.3. Validation of the IMHOTEP dataset

After this generic validation of the IMHOTEP non-seasonal variability, a more specific
comparison of the SSS signals associated with the IOD to those in observations is made.
The structure associated with the IOD are obtained by regressing the SON average sea-
level, currents and SSS anomalies to the SON average IOD index.

The sea level anomaly (Figure 4.10 d, e) indicates negative sea level anomalies in the
periphery of the BoB. As already described by Akhil et al. (2016a), Akhil et al. (2020), the
signature of positive IOD events is associated with a weakening of the EICC, and more
generally an anticyclonic circulation in the BoB, due to upwelling Kelvin waves generated
by the equatorial easterlies, that travel along the equatorial and coastal waveguide. Akhil
et al. (2016a) attributed the resulting SSS anomalies largely to the effect of advection,
with fresh anomalies in the northeast BoB (and more specifically close to the GB and
Irrawaddy estuaries), and salty anomalies along the est coast of India. The large-scale
SLA pattern in IMHOTEP is qualitatively similar to that in Glorys, consistent with
downwelling coastal Kelvin waves radiated from the equatorial region. The coastal sea
level anomalies are however weaker in IMHOTEP as in Glorys, as well as the alongshore
current anomalies.

Figure 4.10b is similar to the analysis in Akhil et al. (2020), with one additional year
and the CCI dataset instead of SMOS. The resulting pattern is thus very close to that
obtained in that study, and also similar to the modeling study of Akhil et al. (2016a).
There are negative SSS anomalies in the Northeast BoB, and positive anomalies along
the east coast of India. Those can be explained as follow: the weaker than usual EICC
exports less freshwater southward along the east Indian coast, resulting in fresher water
to the northeast, and saltier water along the coast of India (Akhil et al., 2016a). The
IMHOTEP simulation completely misses the freshening of the northeast BoB in response
to the IOD, and underestimates the salty signal along the East Coast of India during
positive IOD events. I come back to the consequences of these biases in the discussion.

To further investigate the impact of the IOD, a Hovmöller diagram was created along
the East Indian Coast for the IMHOTEP dataset. Figure 4.11 shows a varying extension
of the river in the sea. Large positive IOD events (1994, 1997, 2006, 2011, 2015) are always
associated with a river in the sea that does not extend southward of 14°N. Negative IOD
events (1996, 1998, 2005, 2010, 2016) are on the other hand associated with a river in
the sea that extends quite far south. However, the extension does not seem to be solely
related to the IOD, with for instance a "short" river in the sea for the 2002 and 2004
neutral years, and a long one for the 2007 and 2001 near-neutral years. The Hovmöller
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diagram confirms the findings from the CCI dataset and the interference of additional
forces that impact the river in the sea.
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Part 4.3. Validation of the IMHOTEP dataset

Figure 4.10 – a) Normalized IOD SDI index between 1993 and 2020. The bottom panels
show regressions of the anomalies to that index for the entire common period SON, for: b)
the CCI SSS ′ (2010-2019), c) IMHOTEP SSS ′ (member 07, 1993-2018), and d) Glorys
SLA anomaly (1993-2018), and e) IMHOTEP SLA anomaly (member 07, 1993-2018) with
the IOD in each point. Above is the regressed current anomaly from GlobeCurrent dataset
(b and d) and IMHOTEP model (c and e). The dotted line in b, c, d) represents coastal
limit of the CCI data.
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Figure 4.11 – Hovmöller diagram for the "River in the sea" for the entire IMHOTEP
period. Top panel is the geographical situation of the studies area (distance to the coast
less than 200 km). Middle panel represents the longitude SSS mean of the highlighted
section from the top panel. Bottom panel is the SDI anomaly mean for SON which is
closely linked to the IOD. Note that the x-axis of the middle and bottom panel represents
the time between 1993 and 2018 and that the ticks are set on the October, when the IOD
is reaching its peak, for each year. The arrows represents the years used for the snapshots.
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In summary, in the sections above, it has been shown that the corrected IMHOTEP
experiments tend to reasonably represent the SSS seasonal climatology, to underestimate
the eddy variability. The circulation anomalies associated with the IOD are reasonably
reproduced. The IMHOTEP dataset does not reproduce the right sign of the response to
the IOD in the Northeastern BoB. On the other hand, the SSS response along the east
coast of India is reasonably reproduced, albeit underestimated.

4.4 Intrinsic Variability: qualitative analysis

Despite the shortcomings mentioned above, the big advantage of the IMHOTEP
simulations is that they provide an ensemble, from which the forced and intrinsic
variability can be estimated. Below, the impact of the intrinsic variability is illustrated
first by showing snapshot of the SSS and surface current fields in different members,
before working out the amplitude of the intrinsic sea level (proxy for eddies) and resulting
SSS variability, and its contribution to the total variability using the method described
just in Section 4.2.
Illustrations of the impacts of the intrinsic (eddies) signals on the SSS and currents fields
can be seen through example snapshots (Figure 4.12, 4.13, 4.14).
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Figure 4.12 – Snapshots of SSS (in the background) and current, averaged over October
1997. a) is the snapshot of IMHOTEP run 05 and b) run 09.

The first snapshot corresponds to 1997, a positive IOD year. Figure 4.12a illustrates
the role of the surface currents in shaping the SSS field, as fronts in SSS and major
current structures clearly coincide. While the major features of the SSS field are
similar in those two experiments (which for instance display freshwater pattern near
the estuaries), differences in the location of individual eddies result in strong localized
differences in SSS. For instance, the presence of an eddy around 16°N clearly induces
a freshwater (SSS ≤ 28 pss) circulation toward the Bay interior in panel a), while the
eddy is smaller in panel b), which leads to the creation of a freshwater tongue, albeit short.

The second snapshot corresponds to 2010, a negative, IOD year. Figure 4.13 also
illustrates the role of the surface currents in shaping the SSS field, as fronts in SSS and
major current structures clearly coincide. Compared to the positive IOD (Figure 4.12),
the currents along the coast are much stronger, creating a pronounced "river in the Sea",
which expands all the way southward to Sri Lanka. However, the two experiments display
differences in the location of individual eddies, which results in strong localized differences
in SSS. For instance, the presence of an eddy around 17.5°N clearly induces a freshwater
(SSS ≤ 26 pss) circulation toward the Bay interior in panel b). Also the presence of many
eddies in the center of the bay around 5°N and 7.5°N in panel a) prevent strong currents

160



Part 4.4. Intrinsic Variability: qualitative analysis

Figure 4.13 – Snapshots of SSS (in the background) and current, averaged over October
2010. a) is the snapshot of IMHOTEP run 04 and b) run 10.

like in panel b) to develop, stopping the extension of waters around 28 pss around 10°N.
However, the width of the tongue is bigger for run 04. These eddies does not exist for the
run 10, permitting a strong current along the coast of Sri Lanka, providing fresher water
(30 pss) down to 7°N.

The last snapshot (Figure 4.14) corresponds to a IOD neutral year (2001), but which
has a quite developed river in the sea on Figure 4.11. Again, the mesoscale distribution
of SSS is strongly influenced by the eddy field. In this snapshot it becomes clear that the
influence of the eddies in neutral years is significant. In panel a), the presence of the eddy
around 20°N completely obstructs the extension of the freshwater southwards. Whereas
in panel b) the eddy is not present, letting the river in the sea extend itself until 15°N.
However, water with an SSS of 31 pss has been transported until Sri Lanka for both runs.
This again seems to indicate that the effect of eddies is mostly local, and does not really
influence the overall extension of the river in the Sea.

It thus seems that "atypical" years in terms of the SSS response to the IOD compared
to the pattern obtained by Akhil et al. (2016a), Akhil et al. (2020) cannot really be
explained by intrinsic SSS variability, which seems to influence more the offshore extent
of freshwater rather than its expansion along the coast. I come back to this point later in
the conclusion section.
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Figure 4.14 – Snapshots of SSS (in the background) and current, averaged over October
2001. a) is the snapshot of IMHOTEP run 04 and b) run 06.

4.5 Intrinsic Variability: quantitative analysis

The impact of eddies on intrinsic variability has been examined qualitatively in the
previous section, and in order to further explore this relationship, the connection between
intrinsic variability of SSS and SLA is shown in Figure 4.15.

The intrinsic variability of the SLA is highest during spring (MAM), which is consistent
with the eddy seasonality of Figure 4.11 in Cui et al. (2016). The patterns reveal an
increase of the intrinsic variability when moving westwards, with the strongest signal in
the offshore region East of India. During summer, the variability decreases, reaching its
minimum in autumn (SON). However, it is likely that IMHOTEP underestimates the
intrinsic SLA signal during fall, since Cui et al. (2016) only find a 30% weaker value in
fall than in summer in observations against a > 50% reduction in this case.

In contrast, the intrinsic variability of the SSS exhibits a different seasonality pattern,
peaking mostly during fall (SON) and winter (DJF) along the river in the sea. This is
consistent with the regions of strong SSS gradients and large (eddy) internal variability,
which are probably caused by the horizontal stirring of SSS gradients by the mesoscale
eddy velocity field.

The seasonally varying intrinsic and forced variability of SLA and SSS in the BoB can
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Figure 4.15 – Amplitude of SSS (shading) and SLA (contours) intrinsic variability esti-
mated from the IMHOTEP ensemble.

be observed in Figure 4.16 and 4.17. These figures show the ratio between the intrinsic
variability and the total variability, which is averaged for each season.

Figure 4.16 illustrates the dominance of forced SLA variability along the entire coast
due to forced wave signals in the coastal waveguide. This dominance of forced variability
expands westward in the eastern half of the BoB, mostly due to the westward radiation
of Rossby waves from the coastal waveguide. However, the influence of eddies becomes
progressively larger in the western half of the BoB (see Figure 4.15), resulting in a decrease
of the forced variability contribution.

To summarize, while the forced SLA variability dominates near the east Indian coast
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due to the coastal trapping of signals, the sea level and ocean circulation signals are
strongly influenced by intrinsic variability further offshore in the western half of the Bay
of Bengal.

Figure 4.16 – Seasonal averaged intrinsic to total standard deviation ratio for SLA in the
BoB using IMHOTEP data.

Figure 4.17 reveals similar patterns for the SSS internal variability contribution as for
that of the SLA, suggesting a strong control of the SSS gradient by circulation features
in the BoB. This finding is consistent with the snapshots presented in the previous sec-
tion and is supported by the sensitivity experiments conducted by Akhil et al. (2016b),
which showed that wind-driven SSS anomalies are the main driver of forced variability in
the BoB (rather than rain or freshwater fluxes). Specifically, in response to the current
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anomalies, wind-forced signals travel as coastal and Rossby waves, and the forced vari-
ability dominates near coasts or offshore of the BoB eastern boundary. However, most of
the SSS variability in the Bay interior, especially in the western half of the BoB, is due
to stirring by mesoscale eddies and is thus intrinsic.

Figure 4.17 – Seasonal averaged intrinsic to total standard deviation ratio for SSS in the
BoB using IMHOTEP data.

However, Figures 4.16 and 4.17 only display the ratio of intrinsic variability to total
variability. Therefore, it is possible that regions highlighted by the dominance of intrinsic
or forced variability possess only weak variability and are of no concern. To contextualize
intrinsic variability, Figure 4.18 also shows the total SSS variability in the bay, highlighting
when the intrinsic variability is responsible for over 50% (dots) and 70% (stars) of the total
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standart deviation. This enables the identification of regions where the total variability
is not only large but also controlled by eddies.

Figure 4.18 – Background represents the total non-seasonal standard deviation of SSS for
each season. The dots (stars) represents the zones where the ratio of intrinsic variability
to total variability exceeds 50% (70%) respectively.

Figure 4.18 demonstrates that regions where intrinsic variability dominates the total
variability, such as in the middle of the basin, tend to have relatively weak non-seasonal
SSS variability. This is because the climatological SSS gradients in these regions are
relatively weak, making mesoscale eddy stirring less efficient in generating strong SSS
variability.
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On the other hand, the offshore flank of the river in the sea is an exception. This
region is characterized by not only large total SSS variability, but also a significant con-
tribution from eddies, accounting for more than 50% (and more than 70% in DJF) of
its variability. This is due to the strong climatological SSS gradient and the presence
of eddies, particularly in SON and DJF. Therefore, in this region alone, the strong SSS
variability is a result of a strong contribution from intrinsic variability.

Along the coast, however, the eddy amplitude strongly diminishes (see Figure 4.15)
while there is a dominant forced circulation response within one Rossby radius of the coast.
This can be, associated with coastal Kelvin waves traveling in the coastal waveguide. As
a result, forced SSS variability dominates very close to the coast and eddies mostly control
the offshore extension of the river in the sea rather not its southward expansion.
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Chapter 5

CONCLUSION AND PERSPECTIVES

Conclusion

The general aim of this dissertation was to study the seasonal to interannual variability
of the sea surface salinity in the Bay of Bengal (BoB). This study in the BoB is all the more
necessary as SSS there is believed to influence regional rainfall through air-sea interactions
(Shenoi et al., 1999), tropical cyclones (Neetu et al., 2019; Neetu et al., 2012), and the
biogeochemical productivity in the BoB (e.g., Prasanna Kumar et al., 2002). Prior to
2010, the only available source of SSS data in the BoB were in situ observations, albeit
sparse and not sufficient to describe basin-scale variations. Only with the beginning of
the L-band radiometer era in 2009, a better SSS monitoring was possible, enabling the
long-term study of the bay. However, the processes that control SSS variability in the
BoB, especially at interannual timescales remain poorly understood. While the merged
CCI dataset has a good quality in the BoB, it only spans 13 years, which is not really
sufficient to really constrain interannual SSS variability.

Reul et al. (2009) and Song and Wang (2017) have demonstrated the possibility of
using C- and X-band radiometers, launched before SMOS, to reconstruct SSS for the
Amazon plume and in the South China Sea. This opens potential for reconstructing BoB
SSS for 9 additional years over the 2002-2011 period. Although the C-band channel is
much less sensitive to SSS than the L-band, a careful data processing can allow capturing
SSS signals in regions with strong SSS contrasts and high SST, such as in the BoB.
Considering the similar sensitivity of the X- and C-bands to wind and SST signals (while
differing for SSS), it is possible to reduce the impact of those parameters by utilizing
X-minus-C brightness temperature contrasts. However, it should be noted that the
X-minus-C sensitivity to SSS is still low (0.05 K/pss, to compare with 0.6 K/pss for
L-band), which highlights the importance of eliminating other residual signals with great
care. Through my research, I used this method to reconstruct the SSS in the BoB, where
its unique geographical structure makes an accurate reconstruction very challenging.
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Thus, the first main hypothesis I tested in this research was: Can the Reul et al. (2009)
method be used to reconstruct SSS in the BoB, by applying specific empirical corrections
for this basin? And can the new SSS become accurate enough to study its variability at
seasonal to interannual timescales?

During this dissertation, I have shown the impacts of different types of corrections on
the C/X band emissivity contrast signal, that I discovered during my research. A perti-
nent finding was the significant differences in brightness temperatures between ascending
and descending passes, particularly in the vicinity of land masses. To address this issue, I
applied separate land-sea masks for ascending and descending passes to eliminate contam-
ination of ocean points downstream of passages over land. Furthermore, I processed the
ascending and descending passes independently, utilizing distinct empirical corrections.
Additionally, I developed BoB-specific empirical corrections for surface wind, SST, and
atmospheric water content, in that order, based on CCI SSS and AMSR-E collocated
wind, SST, and atmospheric water data over the SMOS/Aquarius-AMSR-E common pe-
riod. I also implemented an additional data screening step, which involved eliminating
outliers (>3 median absolute deviations from the median) over the entire time series and
applying a 0.75° x 0.75° median smoothing filter. All these steps greatly enhanced the
final data performance.

The comparison between the retrieved SSS climatology of the SSSAMSR−E product
and that of CCI indicates similarities, although the former generally underestimates SSS
values less than 30 pss and exhibits strong fresh biases near the coasts. However, clima-
tologies largely extrapolate off-shore data in these regions due to the very poor in situ
data density within 100 km of the coasts (Chaitanya et al., 2014b), and the ocean simula-
tions and re-analyses described in this PhD suggest lower SSS values than those measured
by L-band radiometers (Akhil et al., 2020). So, despite its limitations, the SSSAMSR−E

product may capture some aspects of the seasonal climatology near coasts.
It is worth noting that the study of the impact of the IOD on SSS shows an important

gap in the accuracy of the SSSAMSR−E product, as no coherent pattern can be detected
on the EOF. Also, the extension of the river in the sea can only be suspected, as a
persistent underestimation is falsifying the signal. Thus it is impossible to analyze if the
positive/negative IOD impacts the river in the sea by shortening/extending it.

While the focus of this study was on reconstructing interannual SSS variations prior
to 2010, the comparison with ocean reanalyses in two hotspots for SSS interannual vari-
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ability, the northern Bay of Bengal and the east coast of India, reveals some limitations
of our current product. The product shows little skill in reproducing the SSS interannual
variations over the northern Bay of Bengal. However, along the east coast of India, the
product is able to reproduce the broad SSS interannual variations in reanalyses over quite
long periods (3-5 years), despite some spurious SSS spikes during some other periods.

Overall, despite the limitations of the AMSR-E product, there are indications that it
is sometimes able to capture interannual signals observed by the models along the Indian
coast. This suggests that better filtering of the data could potentially extract more signal.
Possible improvements of the filtering process are discussed in the Perspective section
below.

The initial objective of the PhD study was to use the consolidated AMSR-E and CCI
datasets to study the different controls of the SSS variability in the BoB. But given the
relatively low performance of the SSSAMSR−E product for the interannauel variability, we
decided to use a modeling strategy (project IMHOTEP) in the second part of the PhD.

Previous studies, such as Akhil et al. (2014), have identified basin-scale SSS variations
associated with the IOD in the BoB, as well as localized variations near the Ganga-
Brahmaputra estuary associated with river runoffs. However, recent analyses of the SMOS
dataset by Akhil et al. (2020) (and similar analyses using CCI and including one more
year of data in this thesis) suggest that the IOD influence on SSS in the BoB, particularly
on the "river in the sea" along the east coast of India, is not systematic. Furthermore, it
is difficult to clearly identify the impact of river runoffs from existing datasets. Given the
significant role of eddies in influencing the SSS distribution of the BoB (Fournier et al.,
2017), this study aimed to estimate the intrinsic (eddies) versus the forced (e.g., IOD and
runoffs) SSS variability in the BoB to investigate whether eddy modulation could explain
the not-so-systematic relation between the IOD and river in the sea.

As IMHOTEP has never been validated for the BoB region, it was unavoidable to
first proceed with the validation. It permitted to see the necessity to remove a long-
term spurious drift in the dataset. This drift removal seems to work relatively well when
comparing with other datasets (CCI, Glorys re-analysis). Nevertheless, IMHOTEP un-
derestimates the BoB eddy variability (probably due to its eddy-permitting horizontal
resolution), slightly under-estimates the circulation response to the IOD, and only repro-
duces the SSS IOD response along the east coast of India (although it is underestimated).
The consequences of those features are discussed in the perspectives section.

The analysis suggests that internal variability associated with meso-scale eddies dom-
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inates both the SLA and SSS variability offshore of the east coast of India. However,
forced signals are dominant near the coast and in the eastern half of the BoB due to the
coastal waveguide influence and westward radiation of Rossby waves from the eastern rim
of the BoB. The only region where both internal and total variability are strong (internal
variability >50% of the total one) is on the seaward edge of the "river in the sea, where
eddies modulate the offshore extension of the river" low SSS water, not its length, as
supported by case studies conducted over several years.

Perspectives

As I embarked on my PhD dissertation research, I became aware of the challenges
posed by the low sensitivity of C-band to sea surface salinity (SSS) and the risks of land
contamination and radio-frequency interference in the BoB. Despite these hurdles, my
current dataset is the first attempt of SSS retrieval from AMSR-E data in the BoB and it
shows promise in capturing non-seasonal SSS signals, as evidenced by the successful re-
production of certain observed interannual signals along the west coast of India. However,
further improvements are necessary to enhance the algorithm’s accuracy and reliability.
It is worth noting that the SMOS SSS retrieval, when initially analyzed, was almost
unusable for the BoB, and its performance was inferior to that of SSSAMSR−E (Akhil
et al., 2016b). Substantial improvements in pre-processing methods, including better,
seasonally- and latitudinally-dependent bias correction and stricter data screening near
land to remove remaining RFI’s, were required to significantly reduce errors and transform
the SMOS dataset into the valuable resource it is today for the BoB.

As I continue my research, I believe there is room for improvement in the AMSR-
E SSS products for the BoB. While my current method includes two stationary masks
to exclude data points downstream of land on both ascending and descending passes,
there are more advanced masking techniques and dynamic screening methods that could
enhance the precision of the SSSAMSR−E measurements. For instance, a dynamic mask
could compare neighboring pixels to remove local and temporal outliers that influence the
spatial filtering, resulting in fewer spurious signals in the time-series.

Therefore, I plan to investigate these approaches to further enhance the accuracy and
reliability of the SSSAMSR−E retrieval. By implementing these more rigorous techniques,
we can make significant progress in understanding this vital oceanographic parameter and
contribute to a more precise and detailed understanding of the BoB’s oceanography.
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Furthermore, exploring alternative approaches to the current empirical corrections
used in my study could be beneficial in improving the accuracy of SSS retrievals. While I
applied wind, SST, and water vapor corrections in three sequential steps, utilizing neural
networks could enable us to perform all corrections in a single step and account for
nonlinear coupling between variables more effectively. This approach would also allow for
the inclusion of additional parameters such as the distance to the coast or wind direction,
which could be weighted accordingly to improve the final SSS retrieval. By exploring these
alternative approaches, we may be able to further improve the accuracy and reliability of
SSS retrievals from AMSR-E data in the BoB.

Finally, as the purpose of this study principally uses the SSS anomalies, a possible
procedure could be the creation of a Sea Surface Salinity Anomaly retrieval algorithm.
This approach would involve analyzing the differences between the observed SSS and
the climatology values, and then deriving the Sea Surface Salinity Anomaly from those
differences. This technique could reduce the impact of the errors and biases in the absolute
SSS values and enable to focus more precisely on the oceanic variability. Therefore,
implementing a Sea Surface Salinity Anomaly retrieval algorithm could be a promising
avenue for further enhancing my research and increasing the understanding of the SSS
variability in the BoB.

Looking far ahead, the planned launch of the Copernicus Imaging Microwave Radiome-
ter (CIMR) satellite is expected to make significant contributions to the study of SSS.
CIMR is a top-priority satellite mission within the European Commission’s Copernicus
Expansion program and will feature a radiometer imager operating across five spectral
bands, corresponding to frequencies of 1.4, 6.9, 10.65, 18.7, and 36.5 GHz. As a result,
analyzing radiometric data obtained from the same instrument in L-, C-, and X-channels
could help to further refine the present algorithm in the future.

IMHOTEP appears to have several limitations in accurately capturing key features of
SSS variability in the region. It underestimates eddies, which are an important driving
force of internal SSS variability, by a significant amount (50%). Additionally, it does not
reproduce well the IOD-induced SSS signals that have been observed in other studies
(Akhil et al., 2016a; Akhil et al., 2020) using different data sources, such as SMOS and
CCI. Furthermore, IMHOTEP appears to have overly strong SSS gradients near coasts,
which may impact its ability to accurately capture SSS variability in these regions.

Given these limitations, it is difficult to determine if the estimate of the intrinsic
variability contribution to the total SSS variability is too low or high. However, the
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finding of a strong contribution of eddies to the offshore extension of the river of the sea
confirms previous studies that have highlighted the importance of eddy stirring or offshore
transport in this region (Benshila et al., 2014; Chaitanya et al., 2021; Fournier & Lee,
2021; Hareesh Kumar et al., 2013).

While a higher resolution ensemble simulation in the BoB would be ideal, it is cur-
rently unavailable. Therefore, a more thorough drift correction and validation process is
necessary to ensure the robustness of our results. Presently, I use a rudimentary tech-
nique to correct for steps by calculating a basic temporal tendency and subtracting it
from each data point. Nonetheless, a more sophisticated correction that addresses both
the steps and any residual biases could be explored and employed to improve the precision
of the findings. Additionally, further quantification of the impact of eddy field amplitude
and climatological SSS gradients on internal variability is needed. This can be achieved
by estimating observationally-derived values for eddy-induced SSS variability, which can
then be compared with values from the model. Such analyses would enable us to better
understand and model the complex dynamics of the Bay of Bengal, ultimately leading to
improved predictions of future changes in the region.

Analyzing the simulations with a climatological river runoff in the BoB (IMHOTEP
experiment ES) in addition to the existing simulations could be beneficial. These sim-
ulations could provide further insights into the potential sources of bias and the role of
river runoff in driving variability in the BoB. By comparing these simulations with the
ones used in this study (IMHOTEP experiment EGAI), a better understanding of the
contribution of the river runoff to the forced BoB variability can be obtained.

Finally, my study suggests that while positive IOD years tends to be associated with a
short "river in the sea" and negative IOD years with a long one, there are IOD-neutral years
that also seem to have an unusually short or long river. The results of this study indicate
that the eddies do not fully explain this "river in the sea" length modulation. Actually,
they even suggest that the forced circulation signals dominate close to the east coast of
India. While the IOD does induce an oceanic response in the BoB (Akhil et al., 2016a;
Suresh et al., 2018), it is not the only phenomenon that can induce a circulation response
in the BoB coastal waveguide. Several studies indicate that intraseasonal equatorial wind
variations associated with the Madden Julian Oscillation in boreal winter (Zhang, 2005)
and monsoon active-break phases in boreal summer (Goswami & Xavier, 2005) can induce
strong circulation responses in the Northern Indian Ocean coastal waveguide (Suresh et
al., 2013; Vialard et al., 2009). The resulting sea level variations typically have a period
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of around 90 days, which is sufficient to generate significant variations in the EICC, and
consequently, the river’s flow into the sea, provided the phasing is appropriate. Moving
forward, I plan to investigate whether these wind-driven variations could play a role in
the non-seasonal variability of sea surface salinity (SSS) along the east coast of India, in
conjunction with the Indian Ocean Dipole (IOD).

175



Appendix A

APPENDIX FROM ARTICLE

A.I

Ascending Descending
a0i,f f = 6.8 GHz f = 10.7 GHZ f = 6.8 GHz f = 10.7 GHZ
i=0 4.55354515e-05 6.60023653e-05 -1.16515076e-05 -1.16515076e-05
i=1 2.09064870e-04 7.96206640e-05 -1.42885312e-04 -9.32922404e-05
i=2 -4.28674303e-04 -4.53987148e-04 -3.33529218e-04 -4.04319115e-04
i=3 9.49419176e-05 1.02998222e-04 7.66957067e-05 9.29831895e-05
i=4 -6.87032960e-06 -7.52672386e-06 -5.29721074e-06 -6.61128385e-06
i=5 1.67845991e-07 1.85598494e-07 6.60023653e-05 6.60023653e-05

5th order polynomial ascending and descending wind induced emissivity coefficients aoi,f

for the C- and X-band frequencies as given in Eq.3.7 and determined in the BoB
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A.II

Ascending Descending
ti,f f = 6.8 GHz f = 10.7 GHZ f = 6.8 GHz f = 10.7 GHZ
i=0 2.63499185e+02 2.20884312e+02 -1.04280657e+02 -4.86684706e+01
i=1 -6.00288418e+01 -5.03863321e+01 2.33347011e+01 1.08065068e+01
i=2 5.68558781e+00 4.77798176e+00 -2.16724658e+00 -9.96113782e-01
i=3 -2.86559315e-01 -2.41081816e-01 1.06959414e-01 4.88054091e-02
i=4 8.10563336e-03 6.82638595e-03 -2.95887723e-03 -1.34092631e-03
i=5 -1.21999626e-04 -1.02847830e-04 4.35085315e-05 1.95933863e-05
i=6 7.63328013e-07 6.44114917e-07 -2.65716251e-07 -1.18981906e-07

6th order polynomial coefficients tf
i of the thermal emissivity bias correction for the C-

and X-band frequencies as given in Eq.3.8 and determined in the BoB for ascending and
descending satellite passes

A.III

Ascending Descending
di,j,f f = 6.8 GHz f = 10.7 GHZ f = 6.8 GHz f = 10.7 GHZ

i=0, j=0 -3.50264332e-03 2.22884916e-03 2.32527351e-03 3.67007082e-03
i=0, j=1 -4.08847382e-03 -1.23501804e-02 2.15382596e-02 -4.45494257e-02
i=0, j=2 -3.31131723e-04 -4.49887910e-04 -1.26859538e-03 1.05529239e-03
i=0, j=3 -8.61949711e-06 -2.94679127e-05 1.05162124e-04 -1.70509590e-04
i=0, j=4 1.50643143e-06 2.74424721e-06 -6.21307755e-07 7.06122643e-06
i=0, j=5 2.52343397e-07 5.07044737e-07 -1.45497626e-07 1.08493874e-06
i=1, j=0 2.88007765e-04 -6.55557349e-04 -6.07893904e-04 -8.25076456e-04
i=1, j=1 3.24433230e-04 -9.56023842e-04 -2.06188487e-03 4.07079170e-03
i=1, j=2 -5.95877049e-03 -1.02646391e-02 -4.96649561e-03 -1.14132321e-02
i=1, j=3 -3.04249620e-05 -3.99784940e-04 2.18522673e-03 -2.83815099e-03

Table of the coefficients di,j,f for the bivariate empirical adjustment ∆eadj
atm,f (V, L) as given

in Eq.3.10 for ascending and descending satellite passes.
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A.IV

Si,j

i=0, j=0 -3.73785349e+02
i=0, j=1 1.30285040e+01
i=0, j=2 -1.16547677e-01
i=1, j=0 3.68732658e+04
i=1, j=1 -5.52420318e+02
i=2, j=0 -7.79784479e+05

Table of coefficents Si,j for the bivariate GMF as given in Eq. 3.13
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Appendix B

COMPLEMENTARY FIGURES

B.I Temporal differences of SSS in the BoB

Figure B.1 – Difference between five years averaged SSS from the mean IMHOTEP dataset
in the BoB. a) the difference between the 2002/2006 and 1985/1989 periods and b) for
the difference between 2014/2018 and 1985/1989. The black and red boxes represents the
regions of the Northern BoB and the western BoB used in Section 4.3.1.
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B.II Temporal differences of detrended SSS in the
BoB

Figure B.2 – Difference between periodical averaged and detrended SSS in the BoB. a)
the difference between the periods 2002/2006 and 1985/1989 and b) for the difference
between 2014/2018 and 1985/1989. The black and red boxes represents the regions of the
Northern BoB and the western BoB used in Section 4.3.1.
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B.III Seasonal Comparison between SLA from
IMHOTEP and Glorys

Figure B.3 – DJF averaged SLA anomaly from one member of IMHOTEP and CCI
data using the common period between the two datasets (1993-01 to 2018-12): a) is their
correlation, and b) their root mean square difference. The bottom panels are the standard
deviation for each dataset.
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Figure B.4 – Same legend as B.3 for MAM.
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Figure B.5 – Same legend as B.3 for JJA.
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B.IV Seasonal Comparison between SSS from
IMHOTEP and CCI

Figure B.6 – DJF averaged SSS ′ from one member of IMHOTEP and GLORYS data,
using the common period between the two datasets (2010-06 to 2018-12): a) is their
correlation, b) their root mean square difference. The bottom panels are the standard
deviation for each dataset.
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Figure B.7 – Same legend as B.6 for MAM.
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Figure B.8 – Same legend as B.6 for JJA.
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B.V Regression with the IOD for different datasets

Season DJF

Figure B.9 – Same legend as 4.10 for DJF.
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Season MAM

Figure B.10 – Same legend as 4.10 for MAM
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Season JJA

Figure B.11 – Same caption as in Figure 4.10 for JJA
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Résumé : La salinité de la surface de la mer
(SSS) est considérée comme ayant une in-
fluence sur les précipitations régionales (inter-
actions air-mer, cyclones tropicaux) et la pro-
ductivité biogéochimique dans la baie du Ben-
gale (BoB). Cependant, avant l’ère des radio-
mètres bande L, les données de SSS dans
la BoB étaient rares et insuffisantes pour dé-
crire les variations à l’échelle du bassin. Cette
thèse vise à reconstruire les variations de SSS
à l’échelle du bassin en utilisant de données
satellitaires radiométriques en bande C & X.
La comparaison de la climatologie de SSS ob-
tenue par AMSR-E et celle de l’Initiative sur
les changements climatiques indique des simi-
litudes, mais la première sous-estime généra-
lement les valeurs de SSS en dessous de 30
pss et présente de fortes erreurs de fraîcheur

près des côtes. Dans une seconde partie, cette
étude examine l’impact des tourbillons sur le
phénomène de la "rivière dans la mer" le long
de la côte Est de l’Inde. Les résultats indiquent
que la variabilité intrinsèque domine les anoma-
lies du niveau de la mer et de la SSS le long
de la côte Ouest, tandis que les signaux forcés
prédominent près des côtes et dans la moitié
Est de la BoB. Les tourbillons modulent forte-
ment l’extension offshore de la "rivière dans la
mer", mais moins son extention vers le Sud. La
validation de la méthodologie met en évidence
des limites de sous-estimation de la variabilité
des tourbillons et fournit des informations sur
les dynamiques complexes de la BoB et le rôle
des tourbillons dans la modulation de la variabi-
lité de la SSS.

Title: Study of the variability of surface salinity in the Bay of Bengal from C/X band radiometric
satellite data and an ocean model

Keywords: Sea Surface Salinity, Bay of Bengal, radiometers, intrinsic variability, ocean model

Abstract: The Sea Surface Salinity (SSS) is
believed to influence regional rainfall (air-sea
interactions, tropical cyclones), and the bio-
geochemical productivity in the Bay of Bengal
(BoB). However, prior to the L-band radiome-
ter era, SSS data in the BoB were scarce and
insufficient to describe basin-scale variations.
This thesis aims to rthe rare and inadequately
described SSS variations at the basin scale in
the BoB using C- & X-band radiometric satel-
lite data. Comparing the retrieved SSS clima-
tology of AMSR-E and that of Climate Change
Initiative indicates similarities, but the former
generally underestimates SSS values below 30
pss and exhibits strong fresh biases near the

coasts. In a second part, this study examines
the impact of eddies on the "river in the sea"
along the East Coast of India and reveals that
intrinsic variability dominates sea level anomaly
and SSS along the West Coast, while forced
signals dominate near the coast and in the east-
ern half of the BoB. Eddies strongly modulate
the offshore extension of the "river in the sea,"
but have a lesser influence on its southward
extension. The validation of the methodology
highlights limitations in underestimating eddy
variability and provides insights into the com-
plex dynamics of the BoB and the role of eddies
in modulating SSS variability.
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