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Titre: Optimisation Géométrique Neurodynamique avec des Contraintes en Probabilité
Mots clés: Optimisation géométrique, Contraintes en probabilité, Réseaux de neurones récur-rents, Théorie de Lyapunov, Equations différentielles ordinaires.
Résumé: Dans de nombreux problèmes réels,les décideurs sont confrontés à des incerti-tudes qui peuvent affecter les résultats deleurs décisions. Ces incertitudes découlentde diverses sources, telles que la variabilitéde la demande, les conditions fluctuantes dumarché ou des informations incomplètes surles paramètres du système. Les approches tra-ditionnelles d’optimisation déterministe sup-posent que tous les paramètres sont con-nus avec certitude, ce qui peut ne pas re-fléter avec précision la réalité du problème.L’optimisation sous contraintes de probabilitéoffre une approche plus réaliste et robuste entenant compte explicitement de l’incertitudedans la prise de décision. La programma-tion géométrique est souvent mal comprisecomme une technique exclusivement conçuepour les problèmes posynômes. Cependant,c’est une théorie mathématique polyvalentequi a une valeur significative pour résoudre unlarge éventail de problèmes. En fait, sa véri-table force réside dans sa capacité à résoudreefficacement des problèmes en apparence in-séparables en exploitant leur structure al-gébrique linéaire. Cette applicabilité généralede la programmation géométrique en fait unoutil précieux pour étudier et résoudre diversproblèmes d’optimisation, étendant ainsi sonutilité pratique au-delà de sa perception ini-tiale. Les réseaux de neurones récurrents of-frent un cadre de calcul inspiré de la biologieavec un grand potentiel d’optimisation. En im-itant la structure interconnectée des neuronesdu cerveau, les réseauxdeneurones récurrentsexcellent dans la modélisation de systèmescomplexes et dynamiques. Cette capacitéleur permet de capturer les dépendances tem-

porelles et les boucles de rétroaction, ce qui lesrend bien adaptés aux scénarios d’optimisationimpliquant des prises de décision séquen-tielles ou des processus itératifs. De plus,l’un des principaux avantages des approchesneurodynamiques est leur faisabilité de miseen œuvre matérielle. L’objectif principal decette thèse est de développer des algorithmesneurodynamiques efficaces et performantspour résoudre des problèmes d’optimisationgéométrique avec des contraintes de prob-abilité. La thèse commence par les pro-grammes géométriques avec des contraintesde probabilité impliquant des variables aléa-toires indépendantes. De plus, un typespécifique de programmes géométriques ap-pelés programmes rectangulaires est égale-ment examiné en détail. L’objectif est decomprendre les caractéristiques et les com-plexités associées à cette sous-classe de pro-grammes géométriques. Ensuite, la thèse ex-plore l’application de la théorie des copulespour aborder les programmes géométriquesavec des contraintes de probabilité impliquantdes variables aléatoires dépendantes. Lathéorie des copules fournit un cadre mathé-matique pour modéliser et analyser la struc-ture de dépendance entre les variables aléa-toires, améliorant ainsi la compréhension etl’optimisation de ces problèmes. Enfin, lathèse examine l’optimisation géométrique ro-buste, qui prend en compte les distributionsincertaines des variables aléatoires. Cetteapproche vise à développer des algorithmesd’optimisation résistant à l’incertitude dansles distributions de probabilité sous-jacentes,garantissant des solutions plus fiables et sta-bles.



Title: Neurodynamic Chance-Constrained Geometric Optimization
Keywords: Geometric optimization, Chance constraints, Recurrent neural networks, LyapunovTheory, Ordinary differential equations
Abstract: In many real-world scenarios,decision-makers face uncertainties that can af-fect the outcomes of their decisions. Theseuncertainties arise from various sources, suchas variability in demand, fluctuating marketconditions, or incomplete information aboutsystem parameters. Traditional deterministicoptimization approaches assume that all pa-rameters are known with certainty, which maynot accurately reflect the reality of the prob-lem. Chance-constrained optimization pro-vides a more realistic and robust approachby explicitly accounting for the uncertainty indecision-making. Geometric programming isoftenmisunderstood as a technique exclusivelydesigned for posynomial problems. However,it is a versatile mathematical theory with sig-nificant value in addressing a broad range ofseparable problems. In fact, its true strengthlies in its ability to effectively tackle seeminglyinseparable problems by leveraging their lin-ear algebraic structure. This general applica-bility of geometric programming makes it avaluable tool for studying and solving variousoptimization problems, extending its practicalusefulness beyond its initial perception. Recur-rent neural networks (RNNs) offer a biologicallyinspired computational framework with greatoptimization potential. By emulating the inter-connected structure of neurons in the brain,RNNs excel in modeling complex and dynamicsystems. This capability allows them to capturetemporal dependencies and feedback loops,

making them well-suited for optimization sce-narios that involve sequential decision-makingor iterative processes. Moreover, one of thekey advantages of neurodynamic approaches istheir hardware implementation feasibility. Theprimary objective of this thesis is to developneurodynamic algorithms that are efficient andeffective in solving chance-constrained geo-metric optimization problems. The thesis be-gins by focusing on chance-constrained geo-metric programs involving independent ran-dom variables. In addition, a specific type ofgeometric programs known as rectangular pro-grams is also examined in detail. The objec-tive is to understand the characteristics andcomplexities associated with this subclass ofgeometric programs. Subsequently, the the-sis explores applying copula theory to addresschance-constrained geometric programs withdependent random variables. Copula theoryprovides a mathematical framework for mod-eling and analyzing the dependence structurebetween random variables, thereby enhancingthe understanding and optimization of theseproblems. Lastly, the thesis investigates dis-tributionally robust geometric optimization,which considers uncertain distributions of ran-domvariables. This approach focuses on devel-oping optimization algorithms that are robustagainst uncertainty in the underlying proba-bility distributions, ensuring more reliable andstable solutions.
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Synthèse

Dans son exploration des techniques visant à minimiser les coûts dans les problèmes
de conception en ingénierie, Zener a initié les premières recherches dans ce qui est main-
tenant connu sous le nom de programmation géométrique. Le travail de Zener, ainsi
que les articles ultérieurs de Duffin et Peterson ont posé les bases fondamentales de ce
domaine. Le terme "programmation géométrique" a été adopté en raison du rôle sig-
nificatif joué par l’inégalité arithmético-géométrique dans son développement initial. Au
départ, la programmation géométrique se concentrait principalement sur la minimisa-
tion de fonctions posynomiales tout en respectant des contraintes d’inégalité. Ainsi, on
aurait pu l’appeler programmation posynomiale plutôt que programmation géométrique.
La programmation géométrique offre un moyen d’exprimer et d’analyser de nombreux
problèmes d’optimisation importants dans un format séparable, même lorsqu’ils sont
généralement considérés comme inséparables. L’aspect fondamental de cette approche
réside dans l’exploitation des propriétés linéaires inhérentes au problème en cours.

Traditionnellement, la programmation géométrique a été appliquée à des problèmes
avec des valeurs de paramètres connues et précises. Cependant, dans la vie réelle, les
valeurs observées de ces paramètres sont souvent imprécises. Ces données incertaines
peuvent prendre différentes formes, notamment des plages bornées, des intervalles, des
ensembles flous ou des variables aléatoires. Afin de gérer ces incertitudes, des exten-
sions et desmodifications de l’approche traditionnelle de la programmation géométrique
ont été développées. Ces variantes intègrent des techniques de l’analyse par intervalles,
de la programmation stochastique ou de l’optimisation robuste. En tenant compte de
la nature incertaine des paramètres, ces approches fournissent des solutions plus ro-
bustes et fiables aux problèmes de programmation géométrique de la vie réelle. Par
conséquent, avec l’incorporation de données incertaines ou imprécises, la programma-
tion géométrique devient un outil polyvalent et adaptable pour résoudre des problèmes
d’optimisation dans des applications pratiques.

Dans la programmation géométrique stochastique, il est admis que certains coeffi-
cients et/ou exposants dans le problème de programmation géométrique ne sont pas
connus précisément, et leur connaissance incomplète est représentée à l’aide de mod-
èles probabilistes ou aléatoires. L’incertitude associée à ces coefficients peut provenir
de diverses sources telles que des erreurs de mesure, de la variabilité des données ou
du caractère intrinsèquement aléatoire du système modélisé. Au lieu de supposer des
valeurs déterministes pour ces paramètres incertains, la programmation géométrique
stochastique intègre leur caractère aléatoire dans la formulation du problème.

Tout au long de la vie, les réseaux cérébraux sont constamment en effervescence
avec des ondes d’activité. D’innombrables signaux s’harmonisent et oscillent, formant
l’architecture fonctionnelle sous-jacente qui façonne chaque aspect de l’existence. Les
émotions, les niveaux de stress, les préférences musicales, les aspirations et les rêves
trouvent leur origine dans le comportement dynamique de ces réseaux, complété par
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des systèmes demémoire adaptative qui cherchent àmieux s’aligner sur l’environnement
en constante évolution de chacun. L’ampleur considérable et l’intégration complexe des
réseaux dans le cerveau humain posent des défis redoutables pour comprendre si des
formes traditionnelles de calcul s’y produisent et comment. Les preuves indiquent que le
traitement de l’information se déroule à divers niveaux, englobant des protéines mod-
ulatrices au sein des cellules individuelles, des microcircuits corticaux et des réseaux
fonctionnels étendus couvrant l’ensemble du cerveau. Cependant, la compréhension ex-
périmentale du fonctionnement du cerveau progresse lentement. Heureusement, des
ingénieurs ingénieux ont élaboré des algorithmes qui simulent partiellement certains as-
pects de ces réseaux. Bien qu’aucun modèle unique ne puisse pleinement encapsuler la
complexité pure et le comportement du cerveauhumain, ces outils offrent aux chercheurs
une précieuse fenêtre sur la manière dont l’information pourrait être calculée et finale-
ment représentée dans l’activité de réseaux distribués.

Une catégorie importante de problèmes logiques découlant de scénarios du monde
réel peut être formulée comme des problèmes d’optimisation, qui peuvent être compris
qualitativement comme une quête de la solution optimale. Ces problèmes sont courants
dans des domaines tels que l’ingénierie et le commerce, ainsi que dans des défis per-
ceptuels qui nécessitent une résolution rapide par les systèmes nerveux. Le concept fon-
damental derrière l’approche des réseaux neuronaux pour l’optimisation est de créer une
fonction d’énergie non négative et d’établir un système dynamique qui imite un réseau
neuronal artificiel. Ce système dynamique prend généralement la forme d’équations dif-
férentielles ordinaires du premier ordre. L’objectif est que le système dynamique con-
verge vers un état statique ou un point d’équilibre, qui correspond à la solution du prob-
lèmed’optimisation sous-jacent, à partir d’un point initial. Un avantagenotable de l’utilisation
de réseauxneuronauxpour résoudre des problèmesd’optimisation est leur implémentabil-
ité matérielle. En d’autres termes, ces réseaux neuronaux peuvent être mis en œuvre à
l’aide de circuits intégrés. De plus, les réseaux neuronaux conçus pour une mise en œu-
vre par circuit offrent des capacités de traitement en temps réel, renforçant ainsi leur
applicabilité pratique.

Cette thèse vise à explorer l’application des approches neurodynamiques dans le do-
maine de l’optimisation géométrique sous contraintes de probabilité. La thèse se con-
centre sur le développement d’algorithmes efficaces et de méthodes de solution pour
résoudre des problèmes d’optimisation complexes avec des contraintes géométriques
dans des conditions incertaines. La thèse se compose de sept chapitres, comprenant
une revue de littérature complète, un contexte théorique et diverses études de cas.

Le chapitre 2 propose une revue de littérature sur l’optimisation géométrique. Le
chapitre discute des approches de solution et des algorithmes pour résoudre des pro-
grammes géométriques, y compris les méthodes duales et primales. Divers algorithmes
et techniques ont été passés en revue, tels que la condensation, les méthodes à points
intérieurs et les algorithmes primaux-duaux. Le chapitre explore également l’application
de la programmation géométrique dans différents domaines, notamment l’ingénieriemé-
canique, l’ingénierie chimique, le contrôle de puissance et la finance. De plus, des exten-

5



sions de la programmation géométrique sont discutées, qui assouplissent la contrainte
posynomiale et élargissent la gamme de fonctions pouvant être optimisées. Le chapitre
se conclut par une introduction à l’optimisation sous contraintes de probabilité, égale-
ment connue sous le nom de programmation probabiliste ou stochastique, qui traite des
incertitudes et des risques dans la prise de décision. Il donne un aperçu des concepts de
programmation sous contraintes de probabilité, des résultats établis et des approches
computationnelles pour résoudre les problèmes d’optimisation sous contraintes de prob-
abilité. Les applications du monde réel de la programmation sous contraintes de prob-
abilité sont également examinées, mettant en évidence son utilité dans la gestion des
incertitudes et la prise de décisions robustes.

Le chapitre 3 fournit un contexte théorique sur les réseaux neuronaux dynamiques
et l’optimisation biconvexe. Le chapitre commence par mettre en avant la complexité
et l’adaptabilité des réseaux cérébraux, ce qui inspire l’utilisation de réseaux neuronaux
pour l’optimisation. Il met en évidence le potentiel des réseaux neuronaux pour imiter
des systèmes dynamiques et converger vers des solutions optimales. Le chapitre ex-
plore l’histoire des modèles de réseaux neuronaux pour l’optimisation, en commençant
par le modèle de Hopfield et Tank pour le Problème du Voyageur de Commerce. Il dis-
cute des extensions et des avancées réalisées dans les approches de réseaux neuronaux,
notamment l’incorporation de paramètres de pénalité et le développement de modèles
pour les problèmes d’optimisation contraints et non lisses. Plusieurs modèles de réseaux
neuronaux spécifiques sont présentés, chacun conçu pour aborder différents types de
problèmes d’optimisation. Cesmodèles comprennent des réseaux neuronaux récurrents
basés sur des pénalités pour les problèmes d’optimisation contraints, des approches neu-
rodynamiques pour les problèmesd’optimisation convexe avec des contraintes générales,
et des réseaux récurrents à une couche pour les problèmes d’optimisation convexe non
lisses. Les avantages de ces modèles de réseaux neuronaux sont mis en avant, tels que
leur efficacité computationnelle, leur simplicité, et leur capacité à traiter une large gamme
deproblèmesd’optimisation. Le chapitre présente également les applications des réseaux
neuronaux récurrents dans des problèmes du monde réel, tels que l’optimisation de
portefeuille dynamique, l’allocation de force de freinage électro-hydraulique, le pronostic
de la santé des éoliennes, et le fonctionnement optimal des microgrids électriques. Pour
offrir une compréhensionplus approfondie des réseauxneuronaux récurrents, deuxmod-
èles spécifiques sont présentés dans les sous-sections suivantes. Ces modèles démon-
trent l’application des réseaux neuronaux récurrents dans la résolution de problèmes
d’optimisation non linéaires convexes. Le chapitre passe ensuite à l’optimisation bicon-
vexe. Nous mettons en évidence plusieurs avancées et applications de l’optimisation bi-
convexe au cours des dernières années. Le chapitre souligne la nature complexe de la ré-
solution des problèmes de programmation biconvexe, nécessitant l’exploration de nou-
velles théories et méthodes de solution. Dans cette section, deux résultats théoriques
significatifs liés à l’optimum partiel de la programmation biconvexe sont présentés, en
utilisant la fonction de pénalité de l’objectif. Le premier résultat établit l’équivalence en-
tre la condition partielle de Karush-Kuhn-Tucker (KKT) et la propriété d’exactitude par-

6



tielle de la fonction de pénalité de l’objectif dans la programmation biconvexe. Cette
découverte fournit un aperçu précieux de la relation entre la condition KKT et le com-
portement de la fonction de pénalité de l’objectif, permettant une compréhension plus
approfondie du processus d’optimisation. Le deuxième résultat démontre l’équivalence
entre la condition de stabilité partielle et la propriété d’exactitude partielle de la fonc-
tion de pénalité de l’objectif dans la programmation biconvexe. Ce résultat met en lu-
mière l’importance de la condition de stabilité par rapport à la fonction de pénalité de
l’objectif, offrant des informations précieuses sur le comportement de convergence des
algorithmes visant à résoudre l’optimum partiel de la programmation biconvexe. Ces ré-
sultats théoriques offrent des garanties cruciales pour la convergence des algorithmes
conçus pour traiter l’optimum partiel des problèmes de programmation biconvexe. En
établissant l’équivalence entre les conditions clés et les propriétés de la fonction de pénal-
ité de l’objectif, cette thèse fournit une base solide pour le développement d’algorithmes
efficaces et performants capables de converger de manière fiable vers des solutions op-
timales pour la programmation biconvexe.

Le chapitre 4 se concentre sur les problèmes d’optimisation géométrique conjoints
sous contraintes de probabilité où les coefficients suivent une distribution normale et les
vecteurs de lignes de la matrice sont indépendants. Le chapitre commence par intro-
duire les programmes géométriques et leurs formulations équivalentes déterministes.
Ensuite, le chapitre explore le concept d’approximations convexes, qui sont des tech-
niques utilisées pour transformer des problèmes d’optimisation non convexes en prob-
lèmes convexes. En approximant le problème d’origine par une formulation convexe,
il devient possible d’appliquer des algorithmes d’optimisation convexes existants pour
trouver des solutions optimales. Cette approche améliore la traitabilité des problèmes
d’optimisation géométrique conjoints sous contraintes de probabilité. Contrairement aux
méthodes existantes qui reposent sur des approximations convexes, nous proposons
une approche de réseau neuronal dynamique récurrent pour résoudre le programme
géométrique stochastique. L’efficacité de cette approche est évaluée à travers des ex-
périences numériques, notamment un problème d’optimisation de forme tridimension-
nelle et un problème de transport multidimensionnel. Ces expériences démontrent la ca-
pacité de l’approche du réseau neuronal dynamique à traiter efficacement les problèmes
d’optimisation géométrique conjoints sous contraintes de probabilité. De plus, le chapitre
introduit une approche neurodynamique spécialement conçue pour résoudre des pro-
grammes rectangulaires, qui sont un cas particulier des programmes géométriques. Nous
transformons le problème stochastique en un problème déterministe et utilisons une
transformation logarithmique combinée avec l’inégalité arithmético-géométrique pour
le convertir en un problème biconvexe. L’approche proposée utilise des réseaux neu-
ronaux pour mettre à jour de manière itérative les variables du problème d’optimisation
et trouver des solutions optimales. En appliquant l’approcheneurodynamique, le chapitre
démontre la capacité à résoudre efficacement des programmes rectangulaires. Enfin,
le chapitre présente une étude de cas sur la maximisation du Rapport Signal sur Bruit
d’Interférence (SINR) pour les systèmes Massive Multiple Input Multiple Output (MIMO).
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Cette étude de cas met en évidence l’application pratique de l’optimisation géométrique
conjointe sous contraintes de probabilité dans les systèmes de communication sans fil.
L’objectif est d’optimiser l’allocation de ressources dans un système MIMO pour max-
imiser le SINR, améliorant ainsi les performances du système.

Le chapitre 5 se concentre sur les problèmesd’optimisation conjointe sous contraintes
de probabilité dépendantes. Il introduit la théorie des copules et les vecteurs aléatoires
elliptiquement symétriques comme fondements théoriques pour la modélisation et la
résolution de ces problèmes. Le chapitre présente une approche de réseau neuronal dy-
namique pour résoudre les programmes linéaires et les programmes géométriques, en
fournissant des formulations équivalentes déterministes pour les deux. Des expériences
numériques sont menées pour valider l’efficacité et l’efficience de l’approche proposée
dans la résolution de problèmes d’optimisation conjointe sous contraintes de probabilité
dépendantes dans des applications pratiques. Le chapitre commence par introduire la
théorie des copules et les vecteurs aléatoires elliptiquement symétriques comme base
théorique pour aborder de tels problèmes d’optimisation. Ces concepts fournissent la
fondation pour la modélisation et la résolution de problèmes impliquant des variables
aléatoires dépendantes. Le chapitre explore ensuite les programmes linéaires et leurs for-
mulations équivalentes déterministes dans le contexte des problèmes d’optimisation con-
jointe sous contraintes de probabilité dépendantes. En formulant le problèmedemanière
déterministe, il devient plus adaptable aux techniques de résolution. Nous proposons
ensuite une approche de réseau neuronal dynamique pour résoudre efficacement ces
programmes linéaires. Cette approche offre uneméthode novatrice pour traiter les prob-
lèmes d’optimisation conjointe sous contraintes de probabilité dépendantes sans recourir
aux algorithmes d’optimisation conventionnels. Pour valider l’efficacité de la méthode
proposée, le chapitre présente des expériences numériques. Ces expériences impliquent
la résolution de différents problèmes d’optimisation conjointe sous contraintes de prob-
abilité dépendantes en utilisant l’approche de réseau neuronal dynamique proposée. En
plus des programmes linéaires, le chapitre couvre également les programmes géométriques.
Le chapitre présente les formulations équivalentes déterministes pour les programmes
géométriques et étend l’approche du réseau neuronal dynamique pour résoudre ces
problèmes. Cette extension permet la résolution efficace de problèmes d’optimisation
géométrique conjointe sous contraintes de probabilité dépendantes. Tout comme dans
le chapitre précédent, des expériences numériques sont menées pour évaluer la perfor-
mance de la méthode proposée pour les programmes géométriques. Ces expériences
visent à évaluer l’exactitude et l’efficacité de la méthode dans la résolution de problèmes
d’optimisation géométrique conjointe sous contraintes de probabilité dépendantes dans
des scénarios pratiques.

Le chapitre 6 examine les problèmes d’optimisation géométrique robustes à la distri-
bution. Il introduit le sujet et se concentre sur les programmes linéaires, en proposant
une approche neurodynamique duplex pour résoudre ces problèmes. Le chapitre four-
nit une analyse de la convergence et mène des expériences numériques pour évaluer
les performances de la méthode proposée. De plus, le chapitre explore les programmes
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géométriques robustes à la distribution avec des ensembles d’incertitude définis par les
deux premiers moments d’ordre et présente une approche dynamique de réseau neu-
ronal récurrent pour les résoudre. Des expériences numériques sontmenées pour valider
l’efficacité de cette approche. Le chapitre commence par une introduction au sujet, en
donnant un aperçu des défis et des motivations derrière l’optimisation robuste à la distri-
bution. Le chapitre se concentre ensuite sur les programmes linéaires et présente une ap-
procheneurodynamiqueduplex pour résoudre les problèmesd’optimisation géométrique
robustes à la distribution dans ce contexte. L’approche proposée utilise des architectures
de réseaux neuronaux et des systèmes dynamiques pour mettre à jour de manière itéra-
tive les variables de décision et atteindre la convergence. Le chapitre fournit une analyse
détaillée de la convergence, démontrant la stabilité et les propriétés de convergence de
l’approche neurodynamique duplex. Pour évaluer les performances de la méthode pro-
posée, le chapitre mène des expériences numériques. Ces expériences résolvent divers
programmes linéaires robustes à la distribution en utilisant l’approche neurodynamique
duplex. Les résultats des expériences sont analysés pour évaluer l’exactitude, l’efficacité
et l’efficacité de la méthode proposée dans des scénarios pratiques. En plus des pro-
grammes linéaires, le chapitre explore les programmes géométriques robustes à la distri-
bution avec des ensembles d’incertitude définis par les deux premiers moments d’ordre.
Le chapitre présente une approche dynamique de réseau neuronal récurrent spéciale-
ment conçue pour résoudre ces programmes géométriques robustes à la distribution.
Cette approche tire parti de l’architecture de réseau neuronal récurrent pour capturer la
dynamique temporelle du processus d’optimisation. Des expériences numériques sont
menées pour valider l’efficacité de l’approcheproposéepour les programmes géométriques
robustes à la distribution. Ces expériences résolvent divers problèmes d’optimisation
avec des ensembles d’incertitude définis par les deux premiers moments d’ordre en util-
isant l’approche dynamique de réseau neuronal récurrent. Les résultats des expériences
fournissent des informations sur les performances et l’efficacité de la méthode proposée
pour résoudre les problèmes d’optimisation géométrique robustes à la distribution.

Le chapitre 7 sert de résumé complet des principales découvertes et contributions
présentées tout au long de la thèse. Il commence par revisiter les objectifs de recherche et
met en évidence l’importance des approches neurodynamiques proposées pour résoudre
les problèmes d’optimisation géométrique sous contraintes de probabilité. Le chapitre
résume ensuite les principales contributions de la recherche, en mettant l’accent sur les
méthodologies et techniques novatrices développées pour résoudre différents types de
problèmes d’optimisation géométrique. Il discute des avantages des approches neuro-
dynamiques proposées, tels que leur capacité à gérer la non-convexité, à traiter des con-
traintes probabilistes conjointes et à fournir des solutions robustes. De plus, le chapitre
explore les implications et les applications potentielles des approches neurodynamiques
proposées. Il discute de lamanière dont ces approches peuvent être appliquées dans des
scénarios réels dans différents domaines, tels que le transport, l’optimisation de forme,
le traitement du signal, et bien plus encore. Les avantages potentiels de l’intégration
de ces approches dans les processus de prise de décision sont mis en évidence, no-
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tamment l’amélioration de l’exactitude, de l’efficacité et de la robustesse des solutions
d’optimisation. Dans la section de conclusion du chapitre, des orientations futures possi-
bles pour la recherche dans le domaine de l’optimisation géométrique sont discutées. Ces
orientations peuvent inclure une investigation plus approfondie de types spécifiques de
programmes géométriques, l’exploration de l’intégration de contraintes ou objectifs sup-
plémentaires, l’extension des approches neurodynamiques pour traiter des problèmes
à plus grande échelle, ou l’adaptation des méthodologies à des domaines d’application
spécifiques.
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1 - Introduction

This thesis aims to explore the application of neurodynamic approaches in the field
of chance-constrained geometric optimization. The thesis focuses on developing efficient
algorithms and solution methods for solving complex optimization problems with geo-
metric constraints under uncertain conditions. The thesis consists of seven chapters,
including a comprehensive literature review, theoretical background, and various case
studies. This introduction provides an overview of the research plan and the key elements
discussed in each chapter.

Chapter 2 provides a literature review on geometric optimization. The chapter dis-
cusses solution approaches and algorithms for solving geometric programs, including
dual and primal methods. Various algorithms and techniques have been reviewed, such
as condensation, interior-point methods, and primal-dual algorithms. The chapter also
explores the application of geometric programming in different domains, including me-
chanical engineering, chemical engineering, power control, and finance. Furthermore, ex-
tensions to geometric programming are discussed, which relax the posynomial constraint
and expand the range of functions that can be optimized. The chapter concludes with an
introduction to chance-constrained optimization, also known as probabilistic or stochas-
tic programming, which addresses uncertainties and risks in decision-making. It provides
an overview of chance-constrained programming concepts, established results, and com-
putational approaches for solving chance-constrained optimization problems. Real-world
applications of chance-constrained programming are also surveyed, highlighting its use-
fulness in handling uncertainties and making robust decisions.

Chapter 3 provides a theoretical background on dynamical neural networks and bi-
convex optimization. The chapter begins by emphasizing the complexity and adaptability
of the brain’s networks, which inspire the use of neural networks for optimization. It high-
lights the potential of neural networks to mimic dynamic systems and converge to opti-
mal solutions. The chapter explores the history of neural network models for optimiza-
tion, starting with Hopfield and Tank’s model for the Traveling Salesman Problem. It dis-
cusses the extensions and advancements made in neural network approaches, including
the incorporation of penalty parameters and the development of models for constrained
and nonsmooth optimization problems. Several specific neural network models are pre-
sented, each designed to address different types of optimization problems. Thesemodels
include penalty-based recurrent neural networks for constrained optimization problems,
neurodynamic approaches for convex optimization problems with general constraints,
and one-layer recurrent networks for non-smooth convex optimization problems. The
advantages of these neural network models are highlighted, such as their computational
efficiency, simplicity, and ability to handle a broad range of optimization problems. The
chapter also showcases the applications of recurrent neural networks in real-world prob-
lems, such as dynamic portfolio optimization, electro-hydraulic braking force allocation,
wind turbine health prognosis, and optimal operation of electrical microgrids. To provide
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a deeper understanding of recurrent neural networks, two specific models are presented
in the subsequent subsections. These models demonstrate the application of recurrent
neural networks in solving convex nonlinear optimization problems. The chapter then
transitions to biconvex optimization. We highlight several advancements and applications
of biconvex optimization in recent years. The chapter emphasizes the challenging nature
of solving biconvex programming problems, necessitating the exploration of new theo-
ries and solutionmethods. In this section, two significant theoretical results related to the
partial optimum of biconvex programming are presented, utilizing the objective penalty
function. The first result establishes the equivalence between the partial Karush-Kuhn-
Tucker (KKT) condition and the partial exactness property of the objective penalty function
in biconvex programming. This finding provides a valuable insight into the relationship
between the KKT condition and the behavior of the objective penalty function, enabling a
deeper understanding of the optimization process. The second result demonstrates the
equivalence between the partial stability condition and the partial exactness property of
the objective penalty function in biconvex programming. This result sheds light on the
significance of the stability condition in relation to the objective penalty function, offering
valuable insights into the convergence behavior of algorithms aiming to solve the partial
optimum of biconvex programming. These theoretical results offer crucial guarantees
for the convergence of algorithms designed to tackle the partial optimum of biconvex
programming problems. By establishing the equivalence between key conditions and
properties of the objective penalty function, this thesis provides a solid foundation for
developing efficient and effective algorithms that can reliably converge towards optimal
solutions for biconvex programming.

Chapter 4 focuses on joint chance-constrained geometric optimization problemswhere
the coefficients are normally distributed, and the matrix row vectors are independent.
The chapter starts by introducing geometric programs and their deterministic equivalent
formulations. The chapter then explores the concept of convex approximations, which
are techniques used to transform non-convex optimization problems into convex ones.
By approximating the original problem with a convex formulation, it becomes possible to
apply existing convex optimization algorithms to find optimal solutions. This approach
enhances the tractability of joint chance-constrained geometric optimization problems.
Unlike existing methods that rely on convex approximations, we propose a recurrent dy-
namical neural network approach to solve the stochastic geometric program. The effec-
tiveness of this approach is evaluated through numerical experiments, including a three-
dimensional shape optimization problem and a multidimensional transportation prob-
lem. These experiments demonstrate the ability of the dynamical neural network ap-
proach to handle joint chance-constrained geometric optimization problems efficiently.
Furthermore, the chapter introduces a neurodynamic approach specifically designed to
solve rectangular programs, which are a special case of geometric programs. We trans-
form the stochastic problem into a deterministic one and utilize a logarithmic transforma-
tion combinedwith the arithmetic-geometricmean inequality to convert it into a biconvex
problem. The proposed approach utilizes neural networks to iteratively update the vari-
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ables of the optimization problem and find optimal solutions. By applying the neurody-
namic approach, the chapter demonstrates the capability to solve rectangular programs
effectively. Finally, the chapter presents a case study on maximizing the Signal to Inter-
ference Noise Ratio (SINR) for Massive Multiple Input Multiple Output (MIMO) systems.
This case study highlights the practical application of joint chance-constrained geometric
optimization in wireless communication systems. The goal is to optimize the allocation
of resources in a MIMO system to maximize the SINR, thereby improving the system’s
performance.

Chapter 5 focuses on dependent joint chance-constrained optimization problems. It
introduces copula theory and elliptically symmetric random vectors as the theoretical
foundations for modeling and solving these problems. The chapter presents a dynam-
ical neural network approach to solve linear programs and geometric programs, pro-
viding deterministic equivalent formulations for both. Numerical experiments are con-
ducted to validate the effectiveness and efficiency of the proposed approach in solving
dependent joint chance-constrained optimization problems in practical applications. The
chapter begins by introducing copula theory and elliptically symmetric random vectors
as the theoretical underpinnings for addressing such optimization problems. These con-
cepts provide the foundation for modeling and solving problems involving dependent
random variables. The chapter proceeds to explore linear programs and their deter-
ministic equivalent formulations in the context of dependent joint chance-constrained
optimization problems. By formulating the problem deterministically, it becomes more
amenable to solution techniques. We then propose a dynamical neural network approach
to solve these linear programs efficiently. This approach offers a novel method to handle
dependent joint chance-constrained optimization problems without resorting to conven-
tional optimization algorithms. To validate the effectiveness of the proposedmethod, the
chapter presents numerical experiments. These experiments involve solving various de-
pendent joint chance-constrained optimization problems using the proposed dynamical
neural network approach. In addition to linear programs, the chapter also covers ge-
ometric programs. The chapter presents the deterministic equivalent formulations for
geometric programs and extends the dynamical neural network approach to address
these problems. This extension allows for the efficient solution of dependent joint chance-
constrained geometric optimization problems. Similar to the previous Chapter, numerical
experiments are conducted to evaluate the performance of the proposed approach for
geometric programs. These experiments aim to assess the accuracy and efficiency of the
method in solving dependent joint chance-constrained geometric optimization problems
in practical scenarios.

Chapter 6 investigates distributionally robust geometric optimization problems. It in-
troduces the topic and focuses on linear programs, proposing a neurodynamic duplex
approach to solve these problems. The chapter provides a convergence analysis and
conducts numerical experiments to evaluate the performance of the proposed method.
Furthermore, the chapter explores distributionally robust geometric programs with un-
certainty sets defined by the first two ordermoments and presents a dynamical recurrent
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neural network approach to solve them. Numerical experiments are conducted to vali-
date the effectiveness of this approach. The chapter starts with an introduction to the
topic, providing an overview of the challenges and motivations behind distributionally
robust optimization. The chapter then focuses on linear programs and presents a neu-
rodynamic duplex approach to solve distributionally robust geometric optimization prob-
lems in this context. The proposed approach utilizes neural network architectures and dy-
namic systems to update the decision variables and achieve convergence iteratively. The
chapter provides a detailed convergence analysis, demonstrating the stability and conver-
gence properties of the neurodynamic duplex approach. To assess the performance of
the proposed method, the chapter conducts numerical experiments. These experiments
solve various distributionally robust linear programs using the neurodynamic duplex ap-
proach. The results of the experiments are analyzed to evaluate the accuracy, efficiency,
and effectiveness of the proposedmethod in practical scenarios. In addition to linear pro-
grams, the chapter explores distributionally robust geometric programs with uncertainty
sets defined by the first two order moments. The chapter presents a dynamical recur-
rent neural network approach specifically designed to solve these distributionally robust
geometric programs. This approach leverages the recurrent neural network architecture
to capture the temporal dynamics of the optimization process. Numerical experiments
are conducted to validate the effectiveness of the proposed approach for distribution-
ally robust geometric programs. These experiments solve various optimization problems
with uncertainty sets defined by the first two order moments using the dynamical recur-
rent neural network approach. The results of the experiments provide insights into the
performance and efficacy of the proposed method in addressing distributionally robust
geometric optimization problems.

Chapter 7 serves as a comprehensive summary of themain findings and contributions
presented throughout the thesis. It begins by revisiting the research objectives and high-
lighting the significance of the proposed neurodynamic approaches for solving chance-
constrained geometric optimization problems. The chapter then summarizes the key con-
tributions of the research, emphasizing the novel methodologies and techniques devel-
oped to address various types of geometric optimization problems. It discusses the ad-
vantages of the proposed neurodynamic approaches, such as their ability to handle non-
convexity, address joint probabilistic constraints, and provide robust solutions. Further-
more, the chapter explores the implications and potential applications of the proposed
neurodynamic approaches. It discusses how these approaches can be applied in real-
world scenarios across different domains, such as transportation, shape optimization, sig-
nal processing, and more. The potential benefits of incorporating these approaches into
decision-making processes are highlighted, including improved accuracy, efficiency, and
robustness of optimization solutions. In the concluding section of the chapter, possible
future directions for research in the field of geometric optimization are discussed. These
directions may include further investigation into specific types of geometric programs,
exploring the integration of additional constraints or objectives, extending the neurody-
namic approaches to handle larger-scale problems, or adapting the methodologies for
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specific application domains.
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2 - Literrature review

2.1 . Geometric Optimization

In his investigation of techniques to minimize costs in engineering design problems,
Zener [146, 147] sparked the initial research in what is now known as geometric program-
ming (GP). Zener’swork, alongwith subsequent papers byDuffinandPeterson [37, 38, 39],
as well as the book by Duffin, Peterson, and Zener [107], laid the foundational groundwork
for this field. The term "geometric programming" was adopted due to the significant role
played by the arithmetic-geometric mean inequality in its early development. Initially, the
focus of geometric programmingwas primarily onminimizing posynomial functions while
adhering to inequality constraints. Hence, it could have been named posynomial pro-
gramming instead of geometric programming. Geometric programming offers a means
to express and analyze numerous significant optimization problems in a separable for-
mat, even when they are typically considered inseparable. The fundamental aspect of
this approach lies in leveraging the linear properties inherent in the problem at hand.

2.1.1 . Geometric Optimization: Definition and Concepts
Let x1, x2, ..., xn denote n real positive variable, then a real-valued function f in the

form
f(x) = cxα1

1 xα2
2 ...xαn

n

where c > 0 and αi, i = 1, ..., n are real constants is called monomial function. The con-
stant c within the monomial is commonly known as the coefficient, while the constants
α1, ..., αn are referred to as the exponents, signifying the respective powers of the vari-
ables in the monomial. For instance, the monomial 4.3x51x−0.0005

2 of variables x1 and x2where the coefficient is 4.3 and the exponents are 5 and −0.0005.
A function f : Rn −→ Rn is called a posynomial, if it takes the form of a non-negative

sum of monomials. The term "posynomial" is coined by combining the words "positive"
and "polynomial," implying amathematical expression that possesses both the properties
of positivity and being a polynomial.

f(x) =

n∑
i=1

ci

M∏
j=1

x
αij

j

3.2x1x
0.4
2 + 1.5x21x

−2
2 and√

3x1 + x1x
−2
2 x−2

3 are posynmials.
Geometric programming is used to minimize functions that are formulated as posyn-

omials while satisfying constraints of the same posynomial form. A general form of a
geometric program can be then stated as follows

min
x∈RM

++

∑
i∈I0

ci

M∏
j=1

x
αij

j , subject to ∑
i∈Ik

ci

M∏
j=1

x
αij

j ≤ 1, k = 1, ....,K, (2.1)

19



where x is a strictly positive M -dimensional vector, the exponents αij are arbitrary realnumbers and the coefficients ci are positive.
Monomials and posynomials are typically non-convex functions. However, it is possi-

ble to transform them into convex functions by applying a simple variable transformation.
This transformation allows us to convert the original non-convex functions into equivalent
convex forms, which can then be effectively optimized using convex optimization tech-
niques. Program (2.1) has then an equivalent convex program given by taking ti = log(xi).

min
t

∑
i∈I0

ciexp
 M∑

j=1

αijtj

 , subject to ∑
i∈Ik

ciexp
 M∑

j=1

αijtj

 ≤ 1, k = 1, ....,K,

(2.2)
The equivalence between geometric programs and convex programs has significant

implications. One of the most crucial consequences is that the principles and techniques
of convex programming can be directly applied to geometric programs, particularly when
expressed in their equivalent logarithmic form. This enables the utilization of general the-
ories and algorithms from convex programming to solve geometric programs effectively.
Nevertheless, in certain real-world scenarios, it may be impractical to express the prob-
lem in its conventional geometric format, rendering it non-convex. Consequently, solving
such problems becomes notably challenging, evenwith approximatemethods. In such in-
stances, it becomes highly advantageous to employ straightforward approaches capable
of generating a favorable suboptimal solution, if not the optimal solution.

Geometric programming is named as such because it is founded on the principles
of the arithmetic-geometric mean inequality. This inequality plays a fundamental role in
formulating and solving geometric programming problems. By leveraging the arithmetic-
geometric inequality, geometric programming offers a powerful framework for optimiz-
ing and solving problems involving posynomials and monomials, ultimately leading to
efficient solutions in various domains. In [107], Duffin, Peterson, and Zener employ an
extension of the weighted arithmetic-geometric mean inequality to derive lower bounds
on the minimum value of a geometric program (2.1). The inequality states that for every
x > 0 and y > 0 vectors in Rn, we have

n∑
i=1

xλi ≥
n∏

i=1

(
xi
yi

)yi

λλ, (2.3)

where∑n
i=1 yi = λ.

We can apply the the arithmetic-geometric mean inequality to the objective function
of (2.1), we obtain

∑
i∈I0

ci

M∏
j=1

x
αij

j ≥
∏
i∈I0

(
ci
∏M

j=1 x
αij

j

δi

)δi

, (2.4)
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with ∑
i∈I0

δi = 1. The constraints can be expressed as

1 ≥

∑
i∈Ik

ci

M∏
j=1

x
αij

j

λk

≥
∏
i∈Ik

(
ci
∏M

j=1 x
αij

j

δi

)δi

λλk
k , k = 1, ...,K (2.5)

Those inequalities are crucial keys for the duality in geometric programming, more details
can be found in [41]. The primal problem (2.1) is often characterized by its complexity,
while the dual version of the problem is comparatively simpler to solve. In practice, it is
common to focus on solving the dual problem, as it provides valuable insights. The dual
problem of (2.1) consists on maximizing the following dual function

K∏
k=0

∏
i∈Ik

(
ci
δi

)δi K∏
k=1

λλk
k (2.6)

subject to the following normality and orthogonality conditions∑
i∈I0

δi = 1 (2.7)
K∑
k=0

∑
i∈Ik

aijλi = 0, j = 1, ...,M. (2.8)
where∑i∈Ik δi = λk.

2.1.2 . Solution Approaches and Algorithms
The solution of geometric programs using numerical methods is a highly interesting

topic, and researchers have developed various specialized algorithms for this purpose.
A fundamental question arises regarding whether to solve the primal or the dual pro-
gram. In the case of regular geometric programs, the dual program has a concave objec-
tive function and linear constraints, while the primal program typically contains nonlinear
constraints. Consequently, it may seem reasonable to solve regular geometric programs
through the dual approach. However, in practice, this approach is not always recom-
mended because if certain dual variables need to be zero in the optimal solution, the
objective function’s gradient becomes unbounded, leading to significant numerical chal-
lenges. Moreover, since programs more general than regular geometric programs either
lack a dual representation or do not provide apparent computational advantages through
the dual, several algorithms based on the primal approach have been developed. Many
of these algorithms employ condensation, a technique that combines a sum of positive
terms into a single term, enabling the approximation of a nonconvex programwith a con-
vex one. There exist several computational methods to solve geometric programs, those
methods can be divided into two families : dual methods that solve the dual program,
and subsequently, the duality relations are utilized to derive a solution for the primal ge-
ometric program and primal methods.
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The first work that proposed an algorithm for posynomial programming was the dual
method of Frank [50]. Rijckaert and Martens [115] propose a dual condensation algorithm
to come up with a solution to generalized geometric programs. Bricker and Rajgopal [16]
describe an algorithm for the geometric programming dual problem using an adaptation
of the generalized LP algorithm. Kortanek et al. [78] present an infeasible interior-point
algorithm for solving primal and dual geometric programs. By employing the Zadeh’s
extension principle and transforming the primal problem of fuzzy geometric program-
ming into its dual form, Saraj [119] facilitates the conversion of the dual form into a pair
of mathematical programs. To achieve this, he applies the α-cut on the objective function
and the r-cut on the constraints in the dual form of geometric programming. This pro-
cess allows us to obtain acceptable (α, r) optimal values, which represent solutions that
strike a balance between precision (α) and satisfaction of constraints (r) in the fuzzy ge-
ometric programming problem. Rosenberg [118] introduces a novel technique that aims
to generate an initial estimate of a primal solution for a posynomial geometric program
using a dual feasible point that satisfies amild condition. It is important to note that while
the dual feasible point may not be optimal, this technique provides a means to derive a
preliminary primal solution. By leveraging this approach, it becomes possible to obtain
a starting point for further optimization iterations, which can subsequently lead to the
discovery of improved primal solutions for the posynomial geometric program.

Even if during the initial phase greater emphasis was placed on the development of
dual methods, Numerous techniques have been developed to solve the primal posyn-
omial program directly. Dinkel et al. [36] apply four cutting plane algorithms to solve
posynomial geometric programs. Chun-Feng et al [30] present an efficient branch and
bound algorithm for globally solving the sum of geometric fractional functions under ge-
ometric constraints. Melissaratos and Souvaine [98] employ shortest path theory to deal
with a class of geometric optimization problems. Sassen et al. [120] use demonstrate the
benefits of using nonlinear rotation-invariant coordinates on a collection of geometric
optimization problems. Ojha and Ota [103] propose a method that addresses the con-
vexity issues associated with the weighted sum technique and known as the ϵ-constraint
method. This approach involves minimizing a primary objective while expressing the re-
maining objectives as inequality constraints. By treating the additional objectives as con-
straints, the -constraint method enables the exploration of the trade-offs between the
primary objective and the secondary objectives in a more flexible manner. This approach
allows for amore nuanced optimization process that considers both the primary objective
and the satisfaction of the specified constraints.

The degree of difficulty of GP is defined as the difference between the total number
of monomial terms in the objective and constraints, and one plus the number of vari-
ables. When the degree of difficulty is zero, solving a GP is equivalent to solving a system
of linear equations. Remarkably, modern numerical methods demonstrate good perfor-
mance regardless of the degree of difficulty. These methods can effectively handle GP
problems with varying levels of complexity, making them suitable for a wide range of ap-
plications. In this survey, we take an in-depth look at two algorithms that make use of
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modern convex optimization techniques, namely the interior-point method [17] and an
infeasible Primal-Dual algorithm [79].

• Barrier-based interior-point method. The standard barrier-based interior-point
method, commonly used for convex optimization, can be directly applied to GP
problems. This approach offers a worst-case polynomial-time complexity and ex-
hibits highly efficient performance that gracefully scales with the problem size in
practical scenarios. By leveraging the interior-point method, solving GP problems
becomesmore tractable and efficient, enabling the optimization of larger-scale prob-
lemswithin reasonable computational timeframes. Let us consider the followingGP
problem formulated in convex form

min
t
f0(x) =

∑
i∈I0

ciexp
 M∑

j=1

αijxj

 , subject to fk(x) =
∑
i∈Ik

ciexp
 M∑

j=1

αijxj

 ≤ 1, k = 1, ...,K, .

(2.9)
The fundamental concept behind the barrier method is to solve a sequence of un-
constrained problems by incorporating the constraints into a modified objective
function. This new objective function is a weighted combination of the original ob-
jective function and a barrier function ϕ that represents the constraints. As the
weight parameter t assigned to the original objective function increases, the uncon-
strained problem progressively approximates the original problem more closely.
This iterative process allows for the optimization of the problem while gradually
considering the constraints and finding solutions that satisfy them. We can describe
the barrier method algorithm as follows
Given a strictly feasible point x, and given initial values t0 > 0, µ > 1, and an error
tolerance ϵ > 0, the following steps are repeated:

– Compute x∗(t) by minimizing the function tf0(x) + ϕ(x), starting at x. This is
an unconstrained, smooth, convex minimization problem that can be solved
using iterative methods such as the gradient descent method or Newton’s
method.

– Set x to the newly obtained solution x∗(t).
– If the barrier parameter K

t is less than or equal to the specified error tolerance
ϵ, exit the loop.

– Update t, i.e., t = µt.

• The infeasible Primal-Dual algorithm. The infeasible primal-dual method is an
optimization approach that generates subfeasible solutions,meaning solutions that
do not satisfy all the constraints exactly. However, themethod ensures that the pri-
mal and dual objective function values of these subfeasible solutions converge to
the respective primal and dual optimal values.
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The method involves solving a sequence of optimization problems, starting from
an initial infeasible solution. The objective is to improve both the primal and dual
objective function values iteratively while gradually satisfying the constraints.
By iteratively adjusting the solution andupdating the Lagrangemultipliers, themethod
aims to converge towards a solution that is feasible and has optimal objective func-
tion values for both the primal and dual problems.
While the generated solutionsmay not be strictly feasible, the infeasible primal-dual
method provides a way to obtain increasingly better approximations to the primal
and dual optimal values as the iterations progress. The details of the algorithm are
given in [79].
2.1.3 . Stochastic geometric programming

Traditionally, geometric programming has been applied to problems with known and
precise parameter values. However, in real-life applications, the observed values of these
parameters are often imprecise or vague. Such uncertain data can take different forms,
including bounded ranges, intervals, fuzzy sets, or random variables.

In order to handle these uncertainties, extensions andmodifications to the traditional
geometric programming approach have been developed. These variations incorporate
techniques from interval analysis, fuzzy optimization, stochastic programming, or robust
optimization. By considering the uncertain nature of the parameters, these approaches
providemore robust and reliable solutions to real-life geometric programming problems.

Therefore, with the incorporation of uncertain or imprecise data, geometric program-
ming becomes a versatile and adaptable tool for solving optimization problems in practi-
cal applications. It enables decision-makers to make informed decisions and find optimal
solutions even in the presence of uncertainty.

In stochastic geometric programming, it is acknowledged that certain coefficientsciand/or exponents aij in the geometric programming problem are not known precisely,
and their incomplete knowledge is represented using probabilistic or random models.

The uncertainty associatedwith these coefficients can arise from various sources such
as measurement errors, variability in data, or inherent randomness in the system be-
ing modeled. Instead of assuming deterministic values for these uncertain parameters,
stochastic geometric programming incorporates their randomness into the problem for-
mulation.

The origins of stochastic geometric programming can be traced back to the work of
Avriela and Wilde [8], where the exponents aij in the geometric programming problem
are deterministic, while the coefficients ci are considered as positive random variables.
In the case of individual probabilistic constraints, the constraints of (2.1) can be replaced
by

P

∑
i∈Ik

ci

M∏
j=1

x
αij

j ≤ 1

 ≥ 1− ϵk, k = 1, ....,K (2.10)
where 1− ϵk are the tolerance levels.
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Jagannathan [65] considers the coefficients and the exponents as random variables
with known joint distribution functions. This allowed to model the uncertainty associated
with these parameters and analyze the properties of the problem under this stochas-
tic setting. The approach consists of a multiplicative recourse stochastic model. In this
model, the recourse variables are introduced to rectify or adjust the solution in a pro-
portional manner to account for the possible violations of the constraints due to the ran-
domness in the parameters. Dupačová [40] presents stochastic geometric programming
in the context of metal cutting optimization. Liu [92] introduces a procedure that allows
for the derivation of lower and upper bounds for the objective function in a posynomial
geometric programming problemwhen there is uncertainty in the cost and constraint pa-
rameters. To address this uncertainty, a transformation of the imprecise geometric pro-
gram into a collection of conventional geometric programs was proposed. Each program
within this collection corresponds to a specific combination of parameter values from the
provided ranges. By solving these conventional geometric programs, the objective value
can be computed. Liu [93] presents a procedure to determine the fuzzy objective value
in a fuzzy posynomial geometric programming problem. The fuzziness arises from the
exponents of decision variables in the objective function, the cost and constraint coeffi-
cients, and the right-hand sides, all of which are represented as fuzzy numbers. The ap-
proach is based on Zadeh’s extension principle, which allows for the transformation of the
fuzzy geometric programming problem into a pair of two-level mathematical programs.
By utilizing a duality algorithm and a simple algorithm, this pair of two-level mathematical
programs is further transformed into a pair of conventional geometric programs. Liu et
al. [88] focus is on geometric programs with joint probabilistic constraints. Specifically,
when the stochastic parameters follow independent normal distributions, an approxima-
tion approach is proposed. This approach involves approximating the original problem
using piecewise linear functions and transforming it into a convex geometric program.
Additionally, a sequential convex optimization algorithm is developed to find an upper
bound. Khanjani et al. [74] formulate three variants of chance-constrained GP based on
different perspectives: possibility, necessity, and credibility. Each variant represents a dif-
ferent way of handling uncertainty and capturing the level of confidence in achieving the
desired outcomes.

2.1.4 . Applications of geometric programming

Since its appearance, geometric optimization has found many successful applications
in various fields such asmechanical engineering [66, 46, 67, 85, 134], chemical engineering
[33, 139], heat exchanger systemoptimization [10], power control [83, 129], communication
network systems [29, 58] and Finance [71].

To showcase the versatility of geometric programming and highlight the formulation
of specific models, we will delve into three detailed applications. These applications serve
as examples that demonstrate the wide range of domains where geometric programming
finds utility.
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Design of a Two-bar Truss

To achieveminimumweight, we need to design the two-bar truss, as depicted in Figure 2.1,
for a vertical load of 2P . The truss members have a tubular section with a mean diameter
d and wall thickness t. The maximum allowable stress in each member is denoted as
σs. Using geometric programming, we aim to determine the values of h (height) and d
(diameter) considering the following data

• P is the vertical load (33000 lb)
• t is the wall thickness (0.1 in)
• b is the span (30 in)
• σs is the maximum permissible stress (60000 psi)
• ρ is the density (0.3 lb/in³)
The objective function for this problem is defined as

f(d, h) = 0.188d ∗ 900 + h2 (2.11)
subject to the following stress constraint

33000

0.1πd

√
900 + h2

h
≤ 60000. (2.12)

The stress constraint ensures that the maximum stress is within the permissible limit
of 60000. The goal of the geometric programming problem is to find the optimal values
of d and h that minimize the objective function while satisfying the stress constraint.

Figure 2.1: Two-bar truss under load [100]
The square root functions in equations (2.11) and (2.12) are not posynomials due to

the term √
900 + h2. However, we can transform these functions into posynomials by

introducing a new variable y, defined as y =
√
900 + h2.
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The optimization problem becomes
min 0.188yd

s.t. 1.75yh1d1 ≤ 1,

900y2 + y2h2 ≤ 1.

The corresponding dual problem can be formulated as follows
max

(
0.188

δ01

)δ01 (1.75

δ11

)δ11 (900

δ21

)δ21 ( 1

δ22

)δ22

(δ21 + δ22)
δ21+δ22

s.t. δ01 = 1, (2.13)
δ01 + δ11 − 2δ21 − 2δ22 = 0,

−δ11 + 2δ22 = 0,

δ01 − δ11 = 0.

The solutions of (2.13) are given by δ∗01 = 1, δ∗11 = 1,δ∗21 = 0.5 and δ∗22 = 0.5. The maximum
value of f is then given by f∗ =

(
0.188
1

)1 (1.75
1

)1 (900
0.5

)0.5 ( 1
0.5

)0.5
(0.5 + 0.5)0.5+0.5 = 19.8.

We finally find y∗ = 42.426, h∗ = 30 in and d∗ = 2.475 in.
Helical springs design

To determine the minimum volume design of the cone clutch depicted in Figure 2.2 while
ensuring the transmission of a specified minimum torque, we can employ the outer and
inner radii of the cone, denoted as R1 and R2, as design variables. The objective function

Figure 2.2: Schematic of a cone clutch [80]
can then be formulated as follows

f(R1, R2) = R3
1 −R3

2 (2.14)
subject to the following constraints

R2
1 +R1R2 +R2

2

R1 +R2
≥ 5, (2.15)
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R1

R2
≥ 2. (2.16)

The problem was addressed using an iterative approach known as complementary geo-
metric programming [9]. Consequently, the final solution is determined asR∗

1 = 4.2874,
R∗

2 = 2.1437 and f∗ = 68.916.

Production Model Under Risk

In our initial application, we focus on a straightforward profit-maximization model for a
single-product firm with predetermined input prices and output price. We then extend
the analysis to incorporate stochastic elements, introducing uncertainty into the input
prices and output prices, thereby considering the stochastic case. This extension enables
us to explore the implications of uncertainty on the firm’s profit-maximization strategy
within a geometric programming framework. The analysis begins with a simplified sce-
nario where the production of a single output involves the combination of three inputs:
labor x3, raw materials x2, and capital x3. The geometric programming formulation for
the profit-maximization model in the deterministic case can be represented as follows

min 0.14x1 + 0.04x2 + 0.06x3 (2.17)
s.t. 10x−1.6

1 x−0.5
2 x−0.7

3 ≤ 1, (2.18)
0.1x1x

−1
3 ≤ 1, (2.19)

5x−1
5 x3 ≤ 1. (2.20)

The dual program can be expressed as follows through

max

(
0.14

δ1

)δ1 (0.04

δ2

)δ2 (0.06

δ3

)δ3 (10

δ4

)δ4 (0.1

δ5

)δ5 ( 5

δ6

)δ6

s.t. δ1 + δ2 + δ3 = 1,

δ1 − 1.6δ4 + δ5 − δ6 = 0,

δ2 − 0.5δ4 = 0,

δ3 − 0.7δ4 − δ5 + δ6 = 0,

δ1, δ2, δ3 ≥ 0.

The optimal solution is 0.6516 and we get
x1 = 3.5213, x2 = 2.9089, x3 = 7043,
the dual optimal values are
δ1 = 0.75658, δ2 = 0.17857, δ3 = 0.06485 δ4 = 0.35714, δ5 = 8.427 × 10−8 and δ6 =

0.18515.

As a straightforward approach to incorporate stochastic elements, we can consider a
scenario where production needs to align with sales. In this context, sales are treated as
a random variable with a normal distribution, with a mean of 1000 units and a variance of
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100. With this assumption, our model becomes
min 0.14x1 + 0.04x2 + 0.06x3 (2.21)
s.t. P(y ≥ y∗) ≥ α, (2.22)

y = 100x1.61 x0.52 x0.73 , (2.23)
0.1x1x

−1
3 ≤ 1, (2.24)

5x−1
5 x3 ≤ 1. (2.25)

where y∗ denotes sales, a random variable with a normal distribution with a mean of
ȳ = 1000 and variance of σ2 = 100. The constraint (2.22) indicates that the firm aims to
implement a production policy that ensures a high probability of meeting sales targets.
The tolerance measure α represents the desired probability threshold.

2.1.5 . Extensions of Geometric Programming
A notable limitation in the effective application of geometric programming to optimize

engineering design has been the requirement that all functions involved in the problem
must be posynomials. As a result, extensive research efforts have been undertaken to
develop extensions and enhancements for geometric programming. These extensions
aim to relax the posynomial constraint and allow for a broader range of functions to be
incorporated into the optimization framework. These advancements have expanded the
applicability and versatility of geometric programming in engineering design optimization.
Sigmonial geometric programming

SGP, signomial geometric programming, represents a significant expansion of GP. Sev-
eral approaches have been proposed and numerous specialized algorithms have been
developed to tackle SGP. However, despite these valuable contributions, the challenge of
solving SGP problems remains an open issue. This difficulty primarily arises from the in-
herent non-convexity of SGP. Unlike GP problems, SGP problems retain their non-convex
nature in both the primal and dual forms, and there is no known transformation capable
of convexifying them. As a result, efficiently computing only a locally optimal solution for
an SGP problem is currently achievable.

SGP is similar to Posynomial GP, with the key distinction that the term coefficients ciare no longer required to be positive. In Posynomial GP, all coefficients must be positive,
whereas in SGP, the coefficients can have both positive and negative values. A general
form of a signomial program can be stated as follows

min
x∈RM

++

I0∑
i=1

σ0i c
0
i

M∏
j=1

x
a0ij
j , (2.26)

s.t
Ik∑
i=1

σki c
k
i

M∏
j=1

x
akij
j ≤ σk0, k = 1, ...,K,

cki > 0, σki , σk0 = +1 or − 1.
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The dual program is given by

max σ00

 K∏
k=0

∏
i∈Ik

(
ci
δi

)σk
i δi K∏

k=1

λλkσk0
k

 , (2.27)
s.t σk0

∑
i∈Ik

σki δi = λk, k = 1, ...,K,

K∑
k=0

∑
i∈Ik

aijδiσ
k
i = 0, j = 1, ...,M,

σ00
∑
i∈I0

σ0i δi = 1,

δi, λk ≥ 0,

where σ00 represents the sign of the primal objective at the optimum.
There exist a lot of approaches to solve SGP, we can state the following three major

techniques
• Branch and bound: The first approach involves employing standard branch and
bound techniques for general non-convex optimization. Gochet and Smeers [53]
propose a branch-and-boundmethod for solving SGP, ensuring convergence to the
global optimum. The subproblems involved in this method are convex and were
combined with a cutting plane technique to generate linear subproblems. Shen
and Jiao [122] propose an algorithm that successfully integrates the branch-and-
bound method with the pruning technique, leading to convergence to the global
minimum. This achievement is made possible by iteratively refining the linear re-
laxation of the feasible region of the objective function and solving a series of linear
relaxation problems. Through this process of successive refinement and solving re-
laxed problems, the algorithm progressively approaches the global minimum.

• Relaxations: Shen and Zhang [123] use an exponential variable transformation,
tangential hypersurfaces and convex envelope approximations to obtain a linear
relaxation of SGP. Consequently, the initial nonconvex nonlinear problem of SGP
is transformed into a sequence of linear programming problems via the successive
improvement of a linear relaxation of the objective function’s feasible region. By
iteratively solving this series of linear programming problems, the proposed algo-
rithm demonstrates convergence to the global minimum of SGP. Chandrasekaran
and Shah [18] use a hierarchy of convex relaxations to obtain progressively tighter
lower bounds on the optimal value of SGPs. These lower bounds are obtained by
solving increasingly larger relative entropy optimization problems, which are con-
vex programs formulated using linear and relative entropy functions. The key in-
sight behind this approach is the observation that the relative entropy function, due
to its joint convexity with respect to both arguments, offers a convex parameteri-
zation for specific sets of globally nonnegative signomials. This parameterization

30



allows for efficiently computable nonnegativity certificates using the arithmetic-
geometric-mean inequality.

• Reversed GP: The third approach involves converting an SGP problem into a Re-
versed GP problem and then applying iterative monomial approximation. Shen
et al. [124] minimize a SGP problem by converting it into a reversed GP problem,
which is then solved using standard GP solvers. Aliabadi et al. [6] consider a nonlin-
ear model that incorporates joint partial delayed payments, pricing, and marketing
strategies in a supply chain consisting of a retailer and multiple customers. The
problems are formulated using a constrained SGP with two levels of difficulty. To
solve the proposed models, the researchers transform them into a reversed con-
straint programming framework and obtain optimal solutions in closed forms for
each case.

As an example, we can take the problem of maximizing the total capacity of the wireless
network from [59], which can be stated as follows

max
p∈K

++

min
i∈U

log2

1 +
pi|gHi gi|2∑

j∈U ,j ̸=i

pj |gHi gj |2+|σi|2

 , (2.28)
s.t Pmin ≤ pi ≤ Pmax, ∀i ∈ U , (2.29)

By taking aij = |gHi gj |2 and bi = |σi|2, we obtain the following signomial programming
problem [4]

max
p,t∈2K

++

∏
i∈U

ti, (2.30)
s.t ti ≤ 1 +

aiipi∑
j∈U ,j ̸=i

aijpj + bi
,∀i ∈ U , (2.31)

Pmin ≤ pi ≤ Pmax, ∀i ∈ U . (2.32)
The search for the global optimal solution of problem (2.30)-(2.32) is challenging due

to its non-convexity. However, in an effort to find the global optimal solution, one can still
employ any of the aforementioned methods mentioned earlier to solve the problem.
Quasi geometric programming

Quasi geometric programming (QGP) is a special class of non-convex optimization that
can be transformed into geometric programming by holding certain variables constant.
The exploration of this specific type of optimization problem, which can be nonlinear and
possibly non-smooth, is motivated by the observation that numerous engineering prob-
lems can be effectively formulated or approximated asQGPs. Nevertheless, solving aQGP
remains challenging due to its inherent non-convex nature. This extended version of GP
was introduced in 2010 by Toscano and Lyonnet [133].
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A nonlinear optimization problem is referred to as a quasi-geometric programming
problem if it can be formulated in the following form

min
x∈p

++,ζ∈q
++

ϕ0(x, ζ)−Q0(ζ), (2.33)
s.t ϕk(x, ζ) ≤ Qk(ζ), k = 1, ...,K,

where the function ϕk(x, ζ), i = 0, 1, ...,K are posynomials. Problem (2.33) is called quasi
geometric programming in posynomial form ifQk(ζ), k = 0, 1, ...,K are ratios of posyno-
mial functions. Otherwise, ifQk(ζ), k = 0, 1, ...,K are just assumed to be positive problem
(2.33) is called quasi geometric programming in general form. It is crucial to note that in
both of these cases, problem (2.33) cannot be converted into a standard form GP, and
as a result, the problem is non-convex. Consequently, there is no approach available to
swiftly find even a suboptimal solution using existing convex solvers. However, specific
algorithms can be designed to discover suboptimal solutions for problem (2.33) in both
posynomial or general form.

We consider as example the following optimization problem from [113]
min 0.5x1x

1
2 − x1 − 5x12, (2.34)

s.t 0.01x2x
1
3 + 0.01x2 + 0.0005x1x3 ≤ 1,

70 ≤ x1 ≤ 150, 1 ≤ x2 ≤ 30, 0.5 ≤ x3 ≤ 21.

Problem 2.34 can be rewritten as a quasi geometric program (2.35) and can be solved
using a global optimization algorithm via Lagrangian relaxation.

min λ−1 (2.35)
s.t

λ+ 0.5x1x
1
2

x1 + 5x12
≤ 1,

0.01x2x
1
3 + 0.01x2 + 0.0005x1x3 ≤ 1,

70 ≤ x1 ≤ 150, 1 ≤ x2 ≤ 30, 0.5 ≤ x3 ≤ 21.

2.2 . Chance Constrained Optimization

In today’s complex and dynamic world, decision-makers face a multitude of uncer-
tainties and risks that can significantly impact the outcomes of their choices. Traditional
optimization techniques often assume deterministic inputs and fail to capture the inher-
ent variability and randomness present inmany real-world scenarios. Chance constrained
optimization, also known as probabilistic optimization or stochastic programming, offers
a principled approach to handle uncertainties and make decisions that are robust and
reliable. In this section, we provide an extensive survey on chance-constrained program-
ming, including its concepts, results, and applications. We start by delving into the funda-
mental concepts underlying chance-constrained programming, offering a comprehensive
discussion on the topic. Following that, we summarize the established results for various
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chance-constrained models. Subsequently, we shift our focus to conducting a survey of
real-world applications where chance-constrained programming has been employed.

Chance constrained optimizationwas introduced for the first time by Charnes, Cooper
and Symonds [22]. Since then, it has been applied to several real-world problems as air-
craft systems [32], machine learning [7, 2], water distribution networks [81, 82], radiation
therapy [95], power systems [116], critical infrastructure protection [125] and supply chain
finance [135].

A general form of a chance-constrained optimization problem is given below.
min
x∈X

f(x), subject to P (h(x, ζ) ≤ 0) ≥ p, (2.36)
where f is the objective function, h = (h1, h2, ..., hm) is anm-dimensional function,X ∈ Rn

is a deterministic set, x is the decision variable, ζ is a random variable and p ∈ [0, 1] is a
given probability level.

2.2.1 . Individual and joint chance constraints
The constraint in (2.36) is called a joint chance constraint since the constraintsh1(x, ζ) ≤

0, h2(x, ζ) ≤ 0,..., hm(x, ζ) ≤ 0, have to be satisfed simultaneously with probability p. Al-
ternatively, each of the followingm constraints can be referred to as an individual chance
constraint

P (h1(x, ζ) ≤ 0) ≥ p1,P (h2(x, ζ) ≤ 0) ≥ p2, ...,P (hm(x, ζ) ≤ 0) ≥ pm (2.37)
. Chance constraints were initially formulated as individual chance constraints [22], and
further advancements were made in [19, 20, 21]. The concept of Joint Chance Constraints
was first introduced byMiller andWagner [99] where they explore themathematical prop-
erties of chance constrained programming problems, specifically focusing on situations
where the constraint is on the joint probability of a multivariate random event. In the
early 1970s, Prékopa made significant contributions [109, 110], including the development
of comprehensive convexity results for the feasible set of (2.36).

Generally, joint chance constraints aremore adequate to use especially whenmultiple
inequalities are used to define a system they lead tomore robust solutions. Nevertheless,
they are generally more difficult to solve. There exist several methods enabling to convert
joint constraints to individual ones.

A joint chance constrained can be written as a set of individual constraints. Using
Boole’s inequality we have

P

(
m⋃
i=1

hi(x, ζ) ≤ 0

)
≤

m∑
i=1

P (hi(x, ζ) ≤ 0) . (2.38)

If m∑
i=1

pi ≤ p, then a feasible solution to (2.37) is also a feasible solution to the joint con-
straint in (2.36). However, the choice of parameters pi is generally a difficult exercise.
Insightful observations regarding the limitations of this approach can be found in [23].
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Tractable approaches for addressing joint chance constrained programming prob-
lems can be categorized into two groups : sampling-based approximations and analyt-
ical safe approximations. Luedtke and Ahmed [97] study sample approximations of opti-
mization problems with probabilistic constraints. Jeff Hong et al. [61] propose sequential
convex approximations to joint chance constraints based on a Monte Carlo approach.
Blackmore et al. [15] present a novel method for chance-constrained predictive stochas-
tic control of dynamic systems. The method approximates the distribution of the system
state using a finite number of particles. Li et al. [84] present a safe approximation to joint
chance-constrained programming, where the constraint functions are additively depen-
dent on a normally-distributed random vector.

2.2.2 . An overview of solutions to chance-constrained optimization
Chance-constrainedoptimizationmodels oftenpresent computational challenges,mak-

ing them difficult to solve efficiently. Various existing approaches have been developed
to address this issue, including decompositionmethods, sample average approximations,
and the formulation of deterministic equivalents.

Decomposition methods

Luedtke [96] introduces a novel approach for the exact solution of chance-constrained
mathematical programs that involve discrete distributionswith finite support and random
polyhedral constraints. The proposed approach combines decomposition techniques and
integer programming methods to handle the complexity of the problem. Bai et al. Adam
et al. [3] addresse the problem of stochastic programs with joint chance constraints that
involve discrete random distributions and propose a reformulation technique that intro-
duces auxiliary variables. By adding these variables, they transform the original problem
into a new formulation. The transformed problem, however, has a non-regular feasi-
ble set, which can pose challenges in finding optimal solutions. To address this issue,
the authors propose a regularization approach. This involves expanding the feasible set
by introducing additional constraints, which increases the solution space. To solve the
regularized problem, the authors employ an iterative approach. They solve a master
problem iteratively while incorporating Benders’ cuts from a slave problem. This itera-
tive process helps refine the solution and improve the convergence towards an optimal
solution. [11] present an augmented Lagrangian decomposition method that aims to find
high-quality feasible solutions for complex optimization problems, including nonconvex
chance-constrained problems. The proposed method differs from existing augmented
Lagrangian approaches by allowing randomness to appear in both the left-hand-side ma-
trix and the right-hand-side vector of the chance constraint. The method involves solv-
ing a convex subproblem and a 0-1 knapsack subproblem at each iteration. The special
structure of the chance constraint enables the efficient computation of the 0-1 knapsack
problem in quasi-linear time, which helps keep the computation for discrete optimization
subproblems at a relatively low level.
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Sample average approximations

The ample average approximation (SAA) method involves generating a set of scenario
samples from the underlying randomdistribution and computing the empirical average of
the objective function and constraints based on these samples. Chunlin and Liu [31] pro-
pose the use of Conditional Value at Risk (CVaR) to approximate the chance constraint in
stochastic programming problems. Specifically, the chance constraint is approximated by
its CVaR counterpart, which provides ameasure of the expected loss beyond a certain con-
fidence level. To solve the resulting chance-constrained stochastic programming prob-
lem, the authors employ the SAA method. Cheng et al. [28] introduce a novel sampling-
based method to solve chance constrained programs, which offers several advantages
over traditional approaches. The key innovation is that the proposed method formulates
an approximation problem that involves only continuous variables, as opposed to the
standard SAA formulation that includes binary variables. Kleywegt et al. [76] investigate a
Monte Carlo simulation-based approach for solving stochastic discrete optimization prob-
lems. The fundamental concept behind such methods is to generate a random sample
and approximate the expected value function using the corresponding sample average
function. By solving the resulting sample average optimization problem, the approach
aims to approximate the optimal solution of the original stochastic problem. This pro-
cess is iterated multiple times until a predefined stopping criterion is met.

Deterministic equivalent formulations

Nemirovski and Shapiro [102] address the problem of chance constrained optimization,
where the objective is tominimize a convex function subject to a set of convex constraints
that are randomly perturbed. The goal is to develop a computationally tractable ap-
proximation of this problem, specifically a deterministic optimization program that can
be efficiently solved and whose feasible set is contained within the original chance con-
strained problem. A class of convex conservative approximations was proposed for the
chance constrained problem. These approximations provide a computationally tractable
representation of the problem while ensuring that the feasible solutions remain within
the original chance constrained set. Xie and Ahmed [143] investigate deterministic re-
formulations for joint chance constraints and explores the conditions under which these
reformulations are convex. Gopalakrishnan et al. [55] present a novel algorithm that effi-
ciently solves a class of chance-constrained optimization problems under nonparametric
uncertainty. The algorithm leverages the concept of Reproducing Kernel Hilbert Space
(RKHS) to represent arbitrary distributions as functions allowing to formulate the chance-
constrained optimization problem as a minimization of the distance between a desired
distribution and the distribution of the constraint functions within the RKHS framework.

2.2.3 . Application : Chance Constrained Portfolio Problem Description
Portfolio optimization is awidely researched problem in the field of finance. It involves

selecting the optimal allocation of investments among a set ofK possible companies. The
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objective is to maximize the revenue generated from these investments.
In the literature, various formulations of the portfolio optimization problemhave been

studied. One common approach is the risk-averse formulation, where the goal is to mini-
mize the variance of the total return rate. Some recent applications and methods can be
found in [45, 42, 24, 130].

In our model, we make certain assumptions about the problem. These assumptions
will serve as the foundation for our analysis and optimization approach. We suppose
that we have exact knowledge of the return rate distributions. Additionally, there are
no extra costs associated with making investments, allowing for flexibility in allocating
funds among companies without incurring differential costs. We also include a risk-free
investment option with a return rate of 0. To address risk aversion, we formulate the
problem using chance constraints, ensuring that the potential loss does not fall below
a certain threshold. Our objective is to maximize the expected revenue. We consider a
system represented by a sequence of random variablesRi that represent the return ratesofK possible investments, and our aim is to find the optimal solution to this system.

max

K∑
i=1

E[Ri]xi, (2.39)

s.t P

(
K∑
i=1

Rixi ≤ −η

)
≤ ϵ (2.40)

K∑
i=1

xi ≤ 1, xi ≥ 0, i = 1, ...,K. (2.41)

Under the assumption that η > 0 and ϵ < 0.5, finding a solution to the aforementioned
problemallows us to establish an investment strategy thatmaximizes the expected return
rate while ensuring the probability of experiencing losses exceeding η remains below ϵ.
By optimizing the portfolio allocation based on these criteria, we aim to strike a balance
between maximizing potential returns and managing risk within the specified threshold.

We consider that the return rates of investments follow a normal distribution and we
have complete knowledge of the mean µi and standard deviation σi for all distributions,i.e., Ri ∼ N (µi, σi) for i = 1, ...,K. Additionally, we assume that the return rates of
different investments are independent of each other. We have then

K∑
i=1

Rixi ∼ N

 K∑
i=1

µixi,

√√√√ K∑
i=1

σ2i x
2
i

 . (2.42)

Wehave thenP
(

K∑
i=1

Rixi ≤ −η
)

= P

 K∑
i=1

µixi−
K∑
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Rixi√
K∑
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σ2
i x

2
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≥
η+

K∑
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Rixi√
K∑
i=1

σ2
i x

2
i

 = 1−ϕ

η+
K∑
i=1

µixi√
K∑
i=1

σ2
i x

2
i

,
where ϕ is the cumulative probability function of the standard normal distribution. Con-
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straint (2.40) can be written equivalently as

1− ϕ


η +

K∑
i=1

µixi√
K∑
i=1

σ2i x
2
i

 ≤ ϵ, (2.43)

which is finally equivalent to

ϕ−1(1− ϵ)

√√√√ K∑
i=1

σ2i x
2
i −

K∑
i=1

µixi ≤ η. (2.44)

Problem (2.39)-(2.41) becomes then
max

K∑
i=1

µixi, (2.45)

s.t ϕ−1(1− ϵ)

√√√√ K∑
i=1

σ2i x
2
i −

K∑
i=1

µixi ≤ η, (2.46)
K∑
i=1

xi ≤ 1, xi ≥ 0, i = 1, ...,K. (2.47)
Problem (2.45)-(2.47) being a convex second-order cone program implies that it can be
solved using existing methods developed for solving convex optimization problems.

In the upcoming Chapter, we will provide a comprehensive theoretical overview of
neurodynamic neural networks andbiconvex optimization. This detailed exploration aims
to enhance the understanding of the thesis by establishing a solid foundation in these key
areas of study.
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3 - NeurodynamicNeuralNetworks andBiconvexOp-
timization

3.1 . Dynamical Neural Networks

3.1.1 . Introduction
Throughout one’s lifetime, the brain’s networks are constantly abuzz with waves of ac-

tivity. Countless signals harmonize and oscillate, forming the underlying functional archi-
tecture that shapes every facet of existence. Emotions, stress levels, musical preferences,
aspirations, and dreams all stem from the dynamic behavior of these networks, comple-
mented by adaptive memory systems that strive to better align with one’s ever-changing
surroundings.

The vast scale and intricate integration of networks in thehumanbrain present formidable
challenges in understanding whether traditional forms of computation occur within them
and how. Evidence points to information processing taking place at various levels, encom-
passing modulatory proteins within individual cells, cortical microcircuits, and expansive
functional networks spanning the entire brain. However, the experimental grasp of the
brain’s workings advances slowly. Thankfully, resourceful engineers have devised algo-
rithms that partially simulate aspects of these networks. While no single model can fully
encapsulate the sheer complexity and behavior of the human brain, these tools offer re-
searchers a valuable window into how information might be computed and ultimately
represented within the activity of distributed networks.

A significant category of logical problems that stem from real-world scenarios can be
framed as optimization problems, which can be qualitatively understood as a quest for
the optimal solution. These problems are prevalent in fields such as engineering and
commerce, as well as in perceptual challenges that require swift resolution by nervous
systems.

The fundamental concept behind the neural network approach for optimization is to
create a nonnegative energy function and establish a dynamic system that mimics an arti-
ficial neural network. This dynamic system typically takes the form of first-order ordinary
differential equations. The objective is for the dynamic system to converge towards a
static state or equilibrium point, which corresponds to the solution of the underlying op-
timization problem, starting from an initial point. One notable advantage of using neural
networks for solving optimization problems is their hardware implementability. In other
words, these neural networks can be implemented using integrated circuits. Moreover,
neural networks designed for circuit implementation offer real-time processing capabili-
ties, further enhancing their practical applicability.

In 1985, Hopfield and Tank introduced the first neural network model for solving the
Traveling Salesman Problem [62]. Since then, numerous neural network models have
been proposed and utilized in both linear programming and nonlinear programming do-
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mains. Kennedy and Chua [72] extend the Tank-Hopfield network by incorporating a finite
penalty parameter into a neural network framework. This extension demonstrated the
versatility and adaptability of neural networks in addressing a broader range of optimiza-
tion problems beyond the initial applications of the Tank-Hopfield network. In the pursuit
of finding exact solutions, researchers have continued to develop additional neural net-
work models for optimization. These new neural network approaches build upon the
foundation established by earlier models and aim to improve the accuracy and efficiency
of optimization solutions.

Hosseini et al. [63] propose a penalty-based recurrent neural network designed to ad-
dress a specific class of constrained optimization problems featuring generalized convex
objective functions. The proposed model is characterized by a straightforward structure
represented through a differential inclusion. It is applicable to awide range of nonsmooth
optimization problems that incorporate affine equality and convex inequality constraints.
Notably, the objective function should be regular and pseudoconvex within the problem’s
feasible region for successful application. Qin and al. [112] present a neurodynamic ap-
proach that utilizes a recurrent neural network to solve convex optimization problems
with general constraints. The key contribution of the proposed approach is that for any
initial point, the state of the neural network reaches the constraint set within a finite time
and ultimately converges to an optimal solution of the convex optimization problem. Qin
and Xue [111] introduce a novel approach to tackle nonsmooth convex optimization prob-
lems with convex inequality and linear equality constraints using a two-layer recurrent
neural network. In contrast to existing neural network models, the proposed approach
offers several advantages. Firstly, it exhibits a low model complexity, making it compu-
tationally efficient and easier to implement. Additionally, the proposed neural network
does not rely on penalty parameters, eliminating the need for parameter tuning and im-
proving the overall simplicity of the optimization process. Liu and Zhou [94] present a
one-layer recurrent network designed specifically for solving non-smooth convex opti-
mization problems subject to linear inequality constraints. Liu and al. [90] introduce a
one-layer recurrent neural network as a solution for pseudoconvex optimization prob-
lems that involve linear equality and bound constraints. In comparison to existing neural
networks used for optimization, such as projection neural networks, the proposedmodel
exhibits enhanced capabilities in solving a broader range of pseudoconvex optimization
problems with equality and bound constraints. Furthermore, it can handle constrained
fractional programming problems as a special case.

Recurrent neural networks have proven to be highly effective in solving a wide range
of real-world problems. Liu et al. [90] propose a decision-making model based on a re-
current neural network for dynamic portfolio optimization. Yan et al. [144] use recurrent
neural networks to address the problem of electro-hydraulic braking (EHB) force alloca-
tion for electric vehicles. Kerboua and Kelaiaia [73] employ recurrent neural networks
for the health prognosis of wind turbine operations using vibration time series data. The
study explores variousmemory cell variations, including Long Short TimeMemory (LSTM),
Bilateral LSTM (BiLSTM), and Gated Recurrent Unit (GRU), integrated into different net-
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work architectures. Urias et al. [136] design a recurrent neural network for optimization
in the context of optimal operation of an electrical microgrid. The microgrid is connected
to the utility grid and includes various components such as batteries for energy storage
and supply, as well as an electric car. The main objective of the proposed neural network
is to determine the optimal power allocation over a one-week time horizon for wind, so-
lar, and battery systems, taking into account the electric car, with the goal of minimizing
the power obtained from the utility grid and maximizing the power generated from re-
newable energy sources.

The dynamical recurrent neural networks are based on ODE systems. We present in
the following subsection some necessary theoretical results to study the stability of ODE
systems.

3.1.2 . Stability in differential equations
Let consider the following differential equation

ẋ(t) = f(x(t)), x(t0) = x0 ∈ Rn. (3.1)
We present some classical results that establish the existence and uniqueness of a solu-
tion for (3.1) [114].
Theorem 1. Assuming that f is a continuous mapping from Rn to Rn, the following con-
clusions can be made regarding the existence and uniqueness of solutions to equation
(3.1).

• Existence: For any given t0 ≥ 0 and initial condition x0 ∈ Rn, there exists a local
solution x(t) defined on an interval [t0, s) for some s > t0. This means there is a
time interval where the solution exists and is well-defined.

• Uniqueness: If f is locally Lipschitz continuous at x0, then the solution to equation(3.1) is unique within the local interval [t0, s). This means there is only one possible
solution for a given initial condition in this interval.

• Maximal Interval of Existence: Themaximal interval of existence, denotedby [t0, s(x0)),is the largest time interval on which a local solution exists for a given initial condi-
tion x0. If a local solution cannot be extended to a larger interval [t0, s), then the
local interval [t0, s) is considered the maximal interval of existence.

Theorem2. Assuming that f is a continuousmapping fromRn toRn, if x(t), t ∈ [t0, s(x0)),is a maximal solution such s(x0) >∞, then it implies the following
lim

t−→s(x0)
||x(t)||= +∞. (3.2)

Definition 1. A point x∗ ∈ Rn is called an equilibrium point of (3.1) if f(x∗) = 0.
Definition 2. Let x(t) be a solution of equation (3.1). An isolated equilibrium point x∗ is
Lyapunov stable if, for any initial condition x0 = x(t0) and any scalar ϵ > 0, there exists a
δ > 0 such that if ||x(t0)− x ∗ ||≤ δ, then ||x(t)− x ∗ ||≤ ϵ for all t ≥ t0.
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In other words, if we can find a small enough neighborhood around the equilibrium
point such that any initial condition within that neighborhood will result in the solution
staying within another specified neighborhood around the equilibrium point for all future
time, then the equilibrium point is said to be Lyapunov stable. This stability condition en-
sures that the solution does not diverge too far from the equilibrium point for sufficiently
small perturbations in the initial condition.
Definition 3. An isolated equilibrium point x∗ is said to be asymptotically stable if in ad-
dition to being Lyapunov stable, it also has the property that if ||x(t0) − x ∗ ||≤ δ then
limt−→∞ x(t) = x∗.

In other words, if we can find a neighborhood around the equilibrium point such that
any initial condition within that neighborhood will result in the solution approaching the
equilibrium point as time goes to infinity, then the equilibrium point is said to be asymp-
totically stable. This stability property ensures that the system converges to a stable state
over time.
Definition 4. Let Ω ⊆ Rn be an open neighborhood of x̃. A continuously differentiable
function η : Rn −→ R is said to be a Lyapunov function at the state x̃ (over the set Ω) for
the differential equation (3.1) if the following conditions hold

• η(x̃) = 0, η(x) > 0 for x ∈ Ω, x ̸= x̃.
• dη(x(t))

dt ≤ 0, for all x ∈ Ω

Remark 1. The above conditions define the Lyapunov function and characterize it as an
energy function for the system described by the differential equation (3.1). The Lyapunov
function provides a measure of the system’s energy or potential, and its derivative de-
scribes the change in energy over time. By analyzing the behavior of the Lyapunov func-
tion and its derivative, we can determine the stability properties of the system and assess
whether the equilibrium point x* is stable or not.
Theorem 3. We have the following results

• An isolated equilibrium point x∗ is Lyapunov stable if there exists a Lyapunov func-
tion over some neighborhood Ω of x∗.

• An isolated equilibrium point x∗ is asymptotically stable if there exists a Lyapunov
function over some neighborhood Ω of x∗ satisfying dη(x(t))

dt < 0, for all x(t) ∈ Ω,
x(t) ̸= x∗.

The neurodynamic system approach is a powerful technique for tackling optimization
problems. It leverages artificial recurrent neural networks to convert these problems into
dynamic systems represented by first-order differential equations. By initializing the sys-
tem at a specific point, it is expected to converge towards a static state or equilibrium
point, which corresponds to the solution of the original optimization problem.
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One notable advantage of neural networks for optimization problems is their parallel
information processing capability. Neural networks can simultaneously evaluate multi-
ple inputs and compute corresponding outputs, thanks to their inherent parallel struc-
ture. This parallelism enables efficient and concurrent information processing, resulting
in faster optimization performance than sequential algorithms.

Furthermore, neural networks designed for optimization problems canbe implemented
in hardware using specialized technologies like integrated circuits or dedicated process-
ing units. This hardware implementation takes advantage of the parallel nature of neural
networks, further enhancing their computational speed and efficiency. By utilizing dedi-
cated hardware resources, neural networks can be deployed in real-time applications or
embedded systems, enabling efficient and rapid optimization across diverse domains.

To better comprehend the application of recurrent neural networks in optimization,
we present two recurrent neural networks from the literature in the coming subsections
to solve convex nonlinear optimization problems.

3.1.3 . A recurrent neural network for nonlinear convex optimization subject
to nonlinear inequality constraints

Consider the following nonlinear convex program.
min f(x), (NCP)
s.t c(x) ≤ 0, x ≥ 0.

where x ∈ Rn, f is convex and twice differentiable and c(x) = [c1(x), c2(x), ..., cm(x)]T

is an m-dimensional vector-valued continuous function, where each component is con-
vex and twice differentiable. A vector x is considered a feasible solution if it satisfies the
constraints of (NCP). In particular, a feasible solution is deemed a regular point if the gra-
dients of the objective function components, and the constraint functions, are linearly
independent.

if a feasible regular point x exists, the Karush-Kuhn-Tucker (KKT) conditions for (NCP)
can be expressed as follows
y ≥ 0, c(x) ≤ 0, x ≥ 0, (3.3)
∇f(x) +∇c(x)y = 0, yT c(x) = 0. (3.4)
By utilizing the optimization projection technique, we can establish a relationship between
the solution to (NCP) and the solution to a projection formulation given by
(x− α(∇f(x) +∇c(x)y))+ − x = 0, (3.5)
(y + αc(x))+ − y = 0. (3.6)
where (x)+ = [(x1)+, ..., (xn)+], (xi)+ = max(xi, 0) and α is a positive constant.
Theorem 4. [142] Let x be a feasible and regular point of (NCP). Then, x is an optimal
solution to (NCP) if and only if there exists a nonzero m-dimensional vector y such that
for any α ≥ 0 (3.5)-(3.6) holds for (x, y).
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Based on the projection formulation presented in equation (3.5)-(3.6), a recurrent neu-
ral network model for solving (NCP) is proposed. The following dynamical equation de-
scribes the model [142].
dx

dt
= −x+ (x− α(∇f(x) +∇c(x)y))+ , (3.7)

dy

dt
= −y + (y + αc(x))+. (3.8)

The dynamical equation represented by equations (3.7)-(3.8) can be implemented using
a one-layer recurrent neural network, as depicted in Figure 3.1.

Figure 3.1: Block diagram of neural network (3.7)-(3.8) [142]

Lemma 5. [142] For any initial point (x(t0), y(t0)), there exists a unique continuous solu-tion (x(t), y(t)) for the dynamical system (3.7)-(3.8). Moreover, this solution converges to
an equilibrium point that satisfies the projection formulation (3.5)-(3.6).
Theorem 6. [142] If∇2f(x) +

m∑
i=1

yi∇2c(x), then the neural network described by system
(3.7)-(3.8) is globally convergent to a KKT point (x∗, y∗) where x∗ corresponds to the opti-
mal solution of the (NCP).
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3.1.4 . A dynamic system model for solving convex nonlinear optimization
problems

Let us consider the following general CNLP (Convex Nonlinear Programming) prob-
lem.

min f(x), (CNLP)
s.t g(x) ≤ 0, h(x) = 0.

where x ∈ Rn, f : Rn −→ R, g(x) = [g1(x), g2(x), ..., gm(x)]T is an m-dimensional vector-
valued continuous function of n variables, and the functions f, g1, ..., gm are assumed to
be convex and twice differentiable. The constraint function h(x) = Ax − b, where A ∈
R(l×n) and b ∈ Rl, represents a linear equality constraint.

The Lagrange function of (CNLP) is given by [101]
L(x, u, v) = f(x) +

1

2

m∑
k=1

u2kgk(x) +
l∑

p=1

vphp(x). (3.9)
where u ∈ Rm and v ∈ Rl are the Lagrange multipliers. x ∈ Rn is an optimal solution of
(CNLP) if and only if there exist u ∈ Rm and v ∈ Rl such that the following Karush-Kuhn-
Tucker (KKT) system is verified.
u ≥ 0, g(x) ≤ 0, uT g(x) = 0, (3.10)
∇f(x) +∇g(x)Tu+∇h(x)T v = 0 (3.11)
h(x) = 0. (3.12)
Lemma 7. If f and gk, k = 1, ...,m are all convex, then x∗ is an optimal solution of (CNLP)
if and only if x∗ is KKT point of (CNLP).

Now, consider the time-dependent variables x(t), u(t), and v(t). Nazemi [101] designs
the following neural network that settles at the saddle point of the Lagrangian function
L(x, u, v).
dx

dt
= −∇xL(x, u, v), (3.13)

du

dt
= ∇uL(x, u, v), (3.14)

dv

dt
= ∇vL(x, u, v). (3.15)

For the sake of simplicity the dynamical neural network (3.13)-(3.15) can be written as fol-
lows
dy

dt
= ϕ(y), (3.16)

y(t0) = y0, u(t0) ̸= 0. (3.17)
where y = (x, u, v)T and y0 is a given initial points. Nazemi [101] proves the following
results.
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Theorem 8. Let y∗ = (x∗, u∗, v∗)T be the equilibrium of the neural network (3.16)-(3.17).
Then, x∗ is a KKT point of problem (CNLP).
Lemma 9. The equilibrium point of (3.16)-(3.17) is unique.
Lemma 10. For any initial point y(t0) = (x(t0), u(t0), v(t0))

T , there exists a unique contin-
uous solution y(t) = (x(t), u(t), v(t))T for the system described by equations (3.16)-(3.17).
Theorem 11. If∇f(x) is positive definite and∇gk(x), k = 1, ...,m is positive semi-definite,
or if ∇f(x) is positive semi-definite and ∇gk(x), k = 1, ...,m is positive definite, then
the neural network (3.16)-(3.17) is globally stable in the Lyapunov sense. Additionally, it
globally converges to a KKT point y = (x, u, v)T , where x is the optimal solution of problem
(CNLP), and u, v are the optimal solutions of its dual.

3.2 . Biconvex Optimization

3.2.1 . Introduction
Biconvex optimization refers to a class of optimization problems where the objective

function is convex in each of its variables while keeping the other variables fixed. This
type of optimization problem arises in various fields, including machine learning, signal
processing, and information processing. Biconvex optimization models have been ex-
tensively studied due to their practical applications and mathematical properties. One
popular approach for solving biconvex optimization problems is the alternating direction
method of multipliers (ADMM), which is an iterative optimization algorithm that handles
the separable structure of biconvex problems. ADMM has been widely used in biconvex
optimization due to its efficiency and convergence guarantees.

In recent years, there have been several advancements and applications of biconvex
optimization. In machine learning, biconvex optimization has been used for tasks such
as matrix completion, collaborative filtering, and multi-view learning. In signal and infor-
mation processing, biconvex optimization has been applied to problems like compressed
sensing, image reconstruction, and channel estimation. Research in biconvex optimiza-
tion has focused ondeveloping efficient algorithms, understanding theoretical properties,
and exploring applications in various domains. Different techniques, such as convex re-
laxation, non-convex relaxation, and convex-concave procedures, have been proposed to
solve biconvex optimization problems. Additionally, research has investigated the impact
of incorporating additional constraints, such as sparsity or low-rank structure, into bicon-
vex optimization models. These extensions have led to improved performance and more
accurate solutions in many practical scenarios.

3.2.2 . Definition and Properties
The study of convexity of functions is motivated by the property that if a function is

convex, then every local minimum is guaranteed to be a global minimum. However, it is
important to note that convexity is not a necessary condition for this local-global property.
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Unfortunately, biconvexity, as defined, does not imply the local-global property. While
biconvex functions possess certain desirable properties, they do not guarantee that all
localminimawill be globalminima. Therefore, the study andunderstanding of biconvexity
require additional considerations beyond the local-global property.
Definition 5. LetX ⊆ Rn and Y ⊆ Rm be two non-empty, convex sets and let B ⊆ X ×Y .
We define

Bx = {y ∈ Y|(x, y) ∈ B} (3.18)
and

By = {x ∈ X |(x, y) ∈ B}. (3.19)
The set B is said to be biconvex on X × Y , if Bx is biconvex for every x ∈ X and By isbiconvex for every y ∈ Y .
Definition 6. A function f : Rn × Rm −→ R is called a biconvex function on Rn × Rm, if

fx(.) := f(x, .) : Rm −→ R (3.20)
is convex on Rm for every fixed x ∈ Rn and

fy(.) := f(., y) : Rn −→ R (3.21)
is convex on Rn for every fixed y ∈ Rm.
Theorem 12. [54] Let X ⊆ Rn and Y ⊆ Rm, a function f(x, y) is biconvex on X × Y
if and only if for all quadruples (x1, y1), (x1, y2), (x2, y1), (x2, y2) ∈ X × Y and for every
λ, β ∈ [0, 1]

f ((1− λ)x1 + λx2, (1− β)y1 + βy2) ≤ (1−λ)(1−β)f(x1, y1)+β(1−λ)f(x1, y2)+λ(1−β)f(x2, y1)+λβf(x2, y2).

Theorem 13. [54] If f is biconvex, then its level sets
Lc = {(x, y) ∈ X × Y|f(x, y) ≤ c} (3.22)

are all convex for every c ∈ R.
Lemma 14. [57] Let f and g be two biconvex functions on X ×Y and let µ ∈ R+, then the
functions f + g and µf are biconvex.
Lemma 15. [57] Let f a biconvex function on X × Y and let ϕ : R −→ R a e a convex,
non-decreasing function. Then the function ϕ(f(., .)) is biconvex on X × Y .
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3.2.3 . Biconvex optimization problems
The existing research highlights the challenging nature of solving biconvex program-

ming problems, making it a highly valuable area of study that necessitates the exploration
of new theories and solutionmethods. In this section, we present two significant theoreti-
cal results related to the partial optimumof biconvex programming, utilizing the objective
penalty function.

The first result establishes the equivalence between the partial Karush-Kuhn-Tucker
(KKT) condition and the partial exactness property of the objective penalty function in
biconvex programming. This finding provides an important insight into the relationship
between the KKT condition and the behavior of the objective penalty function, enabling a
deeper understanding of the optimization process.

The second result demonstrates the equivalence between the partial stability condi-
tion and the partial exactness property of the objective penalty function in biconvex pro-
gramming. This result sheds light on the significance of the stability condition in relation
to the objective penalty function, offering valuable insights into the convergence behavior
of algorithms aiming to solve the partial optimum of biconvex programming.

These theoretical results offer crucial guarantees for the convergence of algorithms
designed to tackle the partial optimum of biconvex programming problems. By estab-
lishing the equivalence between key conditions and properties of the objective penalty
function, this research provides a solid foundation for developing efficient and effective
algorithms that can reliably converge towards optimal solutions for biconvex program-
ming.

We consider the following biconvex programming
min f(x, y), subject to gi(x, y) ≤ 0, i = 1, ...,K, (BP)

where f gi, i = 1, ...,K are biconvex functions on Rn × Rm. the feasible set for (BP) is
denoted by

B = {(x, y) ∈ Rn × Rm | gi(x, y) ≤ 0, i = 1, ...,m} .

We define
Bx = {y ∈ Rm | gi(x, y) ≤ 0, i = 1, ...,m} and By = {x ∈ Rn | gi(x, y) ≤ 0, i = 1, ...,m} .

We additionally define two suboptimal problems
min f(x, y), subject to x ∈ By, (BP1)

and
min f(x, y), subject to y ∈ Bx. (BP2)

Definition 7. Let (x∗, y∗) ∈ B, (x∗, y∗) is called a partial optimum of (BP) if
f(x∗, y∗) ≤ f(x, y∗), ∀x ∈ By and f(x∗, y∗) ≤ f(x∗, y), ∀y ∈ Bx.

.
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Remark 2. It is straightforward that an optimal solution for (BP) is a partial optimum of
(BP).
Remark 3. In biconvex optimization problems, there always exists a partial optimal solu-
tion [69].
Definition 8. Let (x∗, y∗) ∈ B, if there exist αi, i = 1, ...,K such that

∇f(x∗, y∗) +
K∑
i=1

αi∇gi(x∗, y∗) = 0,

αigi(x
∗, y∗) = 0, αi ≥ 0, i = 1, ...,K,

then (x∗, y∗) is called a KKT point of (BP).
Definition 9. Let (x∗, y∗) ∈ B, if there exist α1

i , α2
i , i = 1, ...,K such that

∇xf(x
∗, y∗) +

K∑
i=1

α1
i∇xgi(x

∗, y∗) = 0,

∇yf(x
∗, y∗) +

K∑
i=1

α2
i∇ygi(x

∗, y∗) = 0,

α1
i gi(x

∗, y∗) = 0, α2
i gi(x

∗, y∗) = 0, α1
i ≥ 0, α2

i ≥ 0, i = 1, ...,K,

then (x∗, y∗) is called a partial KKT point of (BP).
Definition 10. Let (x∗, y∗) ∈ B, if there exist (x̃, ỹ) such that

gi(x
∗, ỹ) < 0, gi(x̃, y

∗) < 0, i = 1, ...,K,

then (BP) is said to satisfy partial Slater constraint qualification at (x∗, y∗).
Theorem 16. [68] Let (x∗, y∗) ∈ B. If (BP) satisfies partial Slater constraint qualification at
(x∗, y∗), (x∗, y∗) is a partial optimum of (BP) if and only if (x∗, y∗) is a partial KKT point of
(BP).
Corollary 17. [68] Let (x∗, y∗) ∈ B be a partial optimum of (BP). If (BP) satisfies partial
Slater constraint qualification at (x∗, y∗), then (x∗, y∗) ∈ B is a KKT point of (BP) if and
only if α1

i = α2
i , i = 1, ...,K.

3.2.4 . Algorithms
In this subsection, we focus on various methods and algorithms specifically designed

to solve biconvex minimization problems represented by (BP). These methods take ad-
vantage of the inherent biconvex structure of the problem to achieve efficient solutions.
For each solution approach, we provide concise algorithmic descriptions and discuss their
convergence properties and limitations.
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Alternate convex search

Firstly, we explore the Alternate Convex Search (ACS) method, which is a special case of
Block-Relaxation Methods. This approach involves iteratively optimizing each block of
variables while keeping the other blocks fixed. By alternating between the blocks and
iteratively refining the solution, thismethod aims to converge to a biconvexminimizer. We
delve into the details of this algorithm, discuss its convergence properties, and highlight
any limitations or challenges associated with its implementation. The pseudocode of the
alternate convex search algorithm is given as follows.
Algorithm 1 The alternate convex search
1-Select an arbitrary starting point, denoted as z0 = (x0, y0) ∈ B.2-Initialize the iteration counter i = 0.3- For a fixed yi, solve the convex problem (BP1).
if There exists an optimal solution x∗ ∈ Byi for (BP1) thenSet xi+1 = x∗,
elseSTOP.
end if4- For a fixed xi, solve the convex problem (BP2).
if There exists an optimal solution y∗ ∈ Bxi

for (BP2) thenSet yi+1 = y∗,
elseSTOP.
end if5- Set zi+1 = (xi+1, yi+1).
if A stopping criterion is satisfied, i.e, ||zi+1 − zi||≤ ϵ thenSTOP.
else
i = i+ 1.

end if

Theorem 18. [57] Assuming that B ⊆ Rn × Rm, where f : B −→ R is bounded from
below, and the optimization problems (BP1) and (BP2) are solvable, we can conclude that
the sequence {f(zi)} generated Algorithm 1 converges monotonically.

The statement of Theorem 27 may appear weak because the boundedness of the ob-
jective function f guarantees the convergence of the sequence {f(zi)} generated by theACS algorithm, but it does not automatically guarantee the convergence of the sequence
{zi} itself. It is possible to encounter scenarios where the sequence {f(zi)} convergeswhile the sequence {zi} diverges, as shown in Example 4.3 in [57].

In other words, while the objective function values approach a limit as the ACS algo-
rithm iterates, the sequence of points {zi}may not converge to a specific point or region
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in the optimization space. This behavior can occur even for biconvex functions, where the
convergence of {f(zi)} does not imply the convergence of {zi}.The existence of such cases highlights the importance of considering additional con-
ditions or assumptions to ensure the convergence of the sequence {zi}. Simply relying
on the boundedness of f may not be sufficient to guarantee the convergence of the opti-
mization variables.

Therefore, it is crucial to carefully examine the specific properties of the optimization
problem, such as additional constraints or assumptions, to ascertain the convergence of
the sequence {zi}.
Definition 11. [57] Let B ⊆ Rn × Rm, let z1 = (x1, y1) and z2 = (x2, y2) in B. The map
A : B −→ P(B), where P(B) is the power set of (B) defined by z2 ∈ A(z1) if and only if

f(x2, y1) ≤ f(x, y1) ∀x ∈ By1 and f(x2, y2) ≤ f(x2, y) ∀y ∈ Bx2

is called the algorithmic map of the ACS algorithm.
In other words,A(z1) = z2 in Definition 21 implies that the ACS algorithm, based on the

algorithmic map A, identifies the point z2 as a candidate solution that satisfies the givenconditions. This map plays a crucial role in guiding the ACS algorithm by determining the
next point to explore in the optimization process.

By utilizing the algorithmic map A, the ACS algorithm dynamically selects points in B,
allowing for an iterative exploration of the optimization space and providing information
about the neighborhood regions where local minima are identified, helping to refine the
search and improve the convergence properties of the ACS algorithm.
Theorem 19. [57] Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X × Y −→ R be a
continuous function. If the sequence {zi} generated by the ACS algorithm converges to
z∗ ∈ X × Y , then z∗ is a partial optimum of (BP).

To sum up, to seek the global optimum of a biconvex minimization problem using the
ACS algorithm, a multistart version of ACS can be employed, as suggested by Goh et al.
[54]. However, it is important to note that even with the multistart approach, there is no
guarantee of finding the global optimum within a reasonable amount of time or being
certain that the identified best minimum is indeed the global minimum. The multistart
version of ACS involves running the ACS algorithm frommultiple different starting points
in order to explore different regions of the optimization space. By initiating the algorithm
from various initial points, it increases the chances of discovering better solutions and po-
tentially finding the global minimum. However, due to the inherent complexity of bicon-
vex optimization problems, it is challenging to ensure global optimality. The presence of
multiple local minima and the intricate interplay between the convex components make
it difficult to guarantee that the identified solution is indeed the global minimum. Addi-
tionally, the computational time required to exhaustively search the entire optimization
space can be prohibitive. Therefore, while themultistart version of ACS improves the like-
lihood of finding better solutions, it does not provide a foolproof guarantee of locating the
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global optimum within a reasonable timeframe. It is crucial to carefully analyze the prob-
lem characteristics, employ suitable search strategies, and evaluate the obtained results
to make informed decisions regarding the optimality of the solution and the trade-off be-
tween computational resources and solution quality. A detailed discussion with examples
can be found in [57].
The global optimization algorithm

In this subsection, we present a comprehensive review of the Global Optimization Algo-
rithm (GOP), developed by Floudas and Visweswaran [138], for solving constrained bi-
convex minimization problems. This algorithm leverages the convex substructure of the
problem through a primal-relaxed dual approach, building upon decomposition concepts
introduced by Benders [13] and Geoffrion [51].

The GOP algorithm follows a two-step process similar to the ACS method. In the first
step, the constrained problem is solved for a fixed value of the variable y, leading to an
upper bound on the solution of the biconvex problem. This initial problem is referred to
as the primal problem.

To obtain a lower bound for the solution, the algorithm utilizes duality theory and
applies linear relaxation. The resulting relaxed dual problem is solved for every possible
combination of bounds in a subset of the variables x.

By iteratively alternating between the primal and relaxed dual problems, the GOP al-
gorithm achieves finite ϵ-convergence to the global optimum. This means that as the iter-
ations progress, the algorithm converges towards the global optimum within a specified
tolerance ϵ.

The primal-relaxed dual approach of the GOP algorithm combines decomposition
techniques, duality theory, and linear relaxation to effectively explore the solution space
of constrained biconvex minimization problems. Through this iterative process, the algo-
rithm provides a robust framework for finding globally optimal solutions.

The finite ϵ-convergence guarantees that the algorithmwill eventually converge to the
global optimum, although the convergence rate and the number of iterations required
may vary depending on the specific problem instance and input parameters.
Theorem 20. [47] If the conditions of Theorem 4.11 [57] hold, then the GOP algorithm will
terminate at the global optimum of the biconvex minimization problem.
Advantages of the GOP algorithm

• Convexity of the primal problem: The fact that the primal problem in the first step of
each iteration is a convex problem is amajor advantage. Thismeans that every local
optimum is also the global minimum of the subproblem. This property simplifies
the optimization process and ensures that the obtained solution is globally optimal
within the subproblem.

• Simplification of constraints: The set of constraints for the convex subproblem of-
ten simplifies to linear or quadratic constraints in the x-variables. This simplification
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enables the use of conventional non-linear local optimization solvers to efficiently
solve the primal problem.

• Reduction of variables: The relaxed dual problem only needs to be solved for the
connected x-variables, reducing the number of variables involved. This reduction
in variables can lead to improved computational efficiency and reduced computa-
tional resources.

Drawbacks of the GOP algorithm

• Number of subproblems: In each iteration of the algorithm, a potentially large num-
ber of non-linear subproblems have to be solved to obtain a new lower bound for
the problem. This can be computationally expensive, especially when dealing with
a large number of connected x-variables.

• Total enumeration: The algorithm requires a total enumeration of all possible as-
signments of the connected x-variables to their lower and upper bounds in each
iteration. This exhaustive search can be time-consuming and computationally de-
manding, particularly for problems with a large search space.

• Potential complexity: Depending on the structure of the given biconvex problem,
the number of relaxed dual problemsmay still be significant evenwith the improve-
ments suggested in the literature. The complexity of solving these problems can
impact the overall efficiency and scalability of the algorithm.

For a detailed survey on biconvex sets and optimization, we refer the reader to the
work of Gorski, Pfeuffer and Klamroth [57].
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4 - Joint Chance ConstrainedGeometricOptimization
With Independent Row Vectors

In this chapter, we investigate a dynamical neural network approach to address non-
convex geometric programs with joint probabilistic constraints. These programs involve
coefficients that follow a normal distribution and independent matrix row vectors. We es-
tablish the stability and convergence of our neural network based on Lyapunov analysis.
Additionally, we demonstrate the equivalence between the optimal solution of the de-
terministic equivalent problem of geometric programs with joint probabilistic constraints
and the solution of the dynamical system. Finally, we present numerical experiments to
showcase the performance of our approach compared to state-of-the-art methods.

4.1 . Geometric programs

This section is published in Mathematics and Computers in Simulation Journal [132].
We consider the following general form of geometric programs with joint probabilistic
constraints

min
t∈RM

++

∑
i∈I0

ci

M∏
j=1

t
aij
j , (GPJC)

s.t P

∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ 1, k = 1, ....,K

 ≥ 1− ϵ,

where {ci}i∈Ik , k ∈ {1, ..,K} are pairwise independent normally distributed random vari-
ables i.e ci ∼ N (µi, σ

2
i ), i ∈ Ik where µi ≥ 0 is the mean value and σi is the standarddeviation of ci. The coefficients aij , i ∈ Ik, j = 1, ...,M are deterministic parameters, and

1− ϵ is a given probability level with ϵ ∈ (0, 0.5].
4.1.1 . Deterministic equivalent problem

Using the pairwise independence between {ci}i∈Ik , the joint constraint of (GPJC) canbe simplified to be equivalent to

K∏
k=1

P

∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ 1

 ≥ 1− ϵ (4.1)
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Consequently, problem (GPJC) can be reformulated as follows [88]
min
t∈RM

++

E

∑
i∈I0

ci

M∏
j=1

t
aij
j

 ,
s.t P

∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ 1

 ≥ yk, k = 1, ...,K, (4.2)
K∏
k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1 , k = 1, ...,K.

where yk, k = 1, ...,K , are nonnegative auxiliary variables.
A deterministic equivalent problem of (4.2) is given by [25]

min
t∈RM

++

∑
i∈I0

µi

M∏
j=1

t
aij
j ,

s.t ∑
i∈Ik

µi

M∏
j=1

t
aij
j + ϕ−1(yk)

√√√√∑
i∈Ik

σ2i

M∏
j=1

t
aij
j ≤ 1, k = 1, ...,K, (4.3)

K∏
k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1 , k = 1, ...,K,

where ϕ−1(.) is the quantile of the standard normal distribution and can be represented
using the inverse error function ϕ−1(yk) =

√
2erf−1(2yk − 1).

We apply the log-transformation rj = log(tj), j = 1, ...,M and xk = log(yk), k = 1, ...,K ,
to (4.3) which leads to the following biconvex optimization problem.

min
∑
i∈I0

µiexp


M∑
j=1

aijrj

 ,

s.t ∑
i∈Ik

µiexp


M∑
j=1

aijrj

 (4.4)

+

√√√√√∑
i∈Ik

σ2i exp


M∑
j=1

(2aijrj + log(ϕ−1(exk)2))

 ≤ 1, k = 1, ...,K,

K∑
k=1

xk ≥ log(1− ϵ), xk ≤ 0, k = 1, ...,K.

4.1.2 . Convex approximations
We introduce in this section two convex approximations proposed by Liu et al. [88] to

solve (4.4). Later, to evaluate the performance of our proposed neurodynamic method
we compare it with those approximations.
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The expression log(ϕ−1(exk)2) is approximated by the following piecewise linear func-
tion

F (xk) = max
s=1,...,S

Fs(xk), (4.5)
where Fs(xk) ≤ log(ϕ−1(exk)2), ∀xk ∈ [log(1 − ϵ), 0) and Fs(xk) = dsxk + bs, s = 1, ..., S.
One can choose the tangent lines of the expression log(ϕ−1(exk)2) at various points within
the interval [log(1− ϵ), 0), denoted as ζ1, ζ2, ..., ζS and define
ds =

2eζs(ϕ−1)
′
(eζs)

ϕ−1(eζs)
, (4.6)

bs = −dsζs + log(ϕ−1(eζs)2). (4.7)
We then obtain the following convex approximation of (4.4)

min
∑
i∈I0

µiexp


M∑
j=1

aijrj

 ,

s.t ∑
i∈Ik

µiexp


M∑
j=1

aijrj

 (4.8)

+

√√√√√∑
i∈Ik

σ2i exp


M∑
j=1

(2aijrj + dsxk + bs)

 ≤ 1, s = 1, ..., S, k = 1, ...,K,

K∑
k=1

xk ≥ log(1− ϵ), xk ≤ 0, k = 1, ...,K.

The optimal value of problem (4.8) represents a lower bound for problem (4.4). Addition-
ally, as the number of tangent lines S approaches infinity, (4.8) converges to an equivalent
reformulation of problem (4.4) [88].

To obtain an upper bound for the joint probabilistic constrained problem (GPJC), the
widely used technique of sequential convex approximation was applied. The underlying
principle of this approximation involves decomposing the original problem into subprob-
lems, where a subset of variables is fixed alternately. In our specific problem, we begin
by fixing y = yn and proceed to update t by solving the following subproblem

min
t∈RM

++

∑
i∈I0

µi

M∏
j=1

t
aij
j ,

s.t ∑
i∈Ik

µi

M∏
j=1

t
aij
j + ϕ−1(ynk )

√√√√∑
i∈Ik

σ2i

M∏
j=1

t
aij
j ≤ 1, k = 1, ...,K, (4.9)

and then fix t = tn, where tn is the optimal solution of (4.9) and update y by solving the
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subsequent subproblem
min
y∈RK

+

K∑
k=1

ψkyk,

s.t yk ≤ ϕ


1−

∑
i∈Ik

µi
M∏
j=1

(tnj )
aij√∑

i∈Ik
σ2i

M∏
j=1

(tnj )
aij

 , k = 1, ...,K, (4.10)

K∏
k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1 , k = 1, ...,K,

whereψk represents a selected searching direction, i.e,ψk = θnk (ϕ
−1)

′
(ynk )

√∑
i∈Ik

σ2i
M∏
j=1

(tnj )
aij

with tn and θn represent an optimal solution and an optimal solution of the Lagrangian
dual variable θ of problem (4.9), respectively.

4.1.3 . A dynamical neural network approach

Let f(r) =
∑
i∈I0

µiexp
{

M∑
j=1

aijrj

}
, h(r, x) = log(1 − ϵ) −

K∑
k=1

xk, gk(r, x) = xk and

lk(r, x) =
∑
i∈Ik

µiexp
{

M∑
j=1

aijrj

}
+

√√√√∑
i∈Ik

σ2i exp
{

M∑
j=1

(2aijrj + log(ϕ−1(exk)2))

}
− 1. We

can write problem (4.4) as follows:
min f(r),

s.t lk(r, x) ≤ 0, k = 1, ..,K,

h(r, x) ≤ 0, (4.11)
gk(r, x) ≤ 0, k = 1, ..,K.

The feasible set of (4.11) is given by
U =

{
(r, x) ∈ Rm × Rk | lk(r, x) ≤ 0, h(r, x) ≤ 0 and gk(r, x) ≤ 0, k = 1, ..,K

}
.

We define
U(r) = {x ∈ Rk | lk(r, x) ≤ 0, h(r, x) ≤ 0 and gk(r, x) ≤ 0, k = 1, ..,K,

}
and

U(x) = {r ∈ Rm | lk(r, x) ≤ 0, h(r, x) ≤ 0 and gk(r, x) ≤ 0, k = 1, ..,K}

.
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Let (r∗, x∗) ∈ Rm × RK a partial KKT point of (4.11), then there exists λ(r), λ(x), β(r)i , β
(x)
i ,

γ
(r)
i and γ(x)i , i = 1, ..,K such that

(4.12)∇f(r∗) +
K∑

i =1

β
(r)
i ∇rli(r

∗, x∗) + λ(r)∇rh(r
∗, x∗) +

K∑
i =1

γ
(r)
i ∇rgi(r

∗, x∗) = 0,

(4.13)K∑
i =1

β
(x)
i ∇xli(r

∗, x∗) + λ(x)∇xh(r
∗, x∗) +

K∑
i =1

γ
(x)
i ∇xgi(r

∗, x∗) = 0,

βi
(r) ≥ 0, β

(r)
i li(r

∗, x∗) = 0, λ(r) ≥ 0 λ(r)h(r∗, x∗) = 0, i = 1, ..,K, (4.14)
γ
(r)
i ≥ 0, γ

(r)
i gi(r

∗, x∗) = 0, β
(x)
i ≥ 0, β

(x)
i li(r

∗, x∗) = 0, i = 1, ..,K, (4.15)
λ(x) ≥ 0, λ(x)h(r∗, x∗) = 0, γ

(x)
i ≥ 0, γ

(x)
i gi(r

∗, x∗) = 0, i = 1, ..,K, (4.16)
Corollary 21. Let (r∗, x∗) ∈ RM ×RK be a partial solution of (4.11), with respect to partial
Slater constraints qualification at (r∗, x∗). Then (r∗, x∗) is a partial optimum of (4.11) if and
only if the partial KKT system (4.12)-(4.16) holds. Furthermore, if λ(r) = λ(x), β(r) = β(x)

and γ(r) = γ(x), then (r∗, x∗) is a KKT point of (4.11).
Let l(r, x) = (l1(r, x), .., lK(r, x))T and g(r, x) = (g1(r, x), .., gK(r, x))T , we propose a re-
current dynamical neural network model to solve problem (4.11). r(.), x(.), β(.), λ(.) and
γ(.) are time continuous variables. The dynamical neural network is driven by the follow-
ing system.

dr

dt
= −(∇f(r) +∇rl(r, x)

T (β + l(r, x))+ +∇rh(r, x)
T (λ+ h(r, x))+ +∇rg(r, x)

T (γ + g(r, x))+), (4.17)
dx

dt
= −(∇xl(r, x)

T (β + l(r, x))+ +∇xh(r, x)
T (λ+ h(r, x))+ +∇xg(r, x)

T (γ + g(r, x))+), (4.18)
dβ

dt
= (β + l(r, x))+ − β, (4.19)

dλ

dt
= (λ+ h(r, x))+ − λ, (4.20)

dγ

dt
= (γ + g(r, x))+ − γ. (4.21)

Let z = (r, x, β, λ, γ), we can write the dynamical system (4.17)-(4.21) as follows{
dz
dt = κΦ(z),
z(t0) = z0,

(4.22)
where z0 is the given initial point and κ is a scale parameter indicating the convergence
rate of the neural network (4.17)-(4.21). For the sake of simplicity, we set κ = 1. Figure 4.12
illustrates the interconnections between the various inputs of the neural network (4.17)-
(4.21).
In the following sections, we investigate the convergence and stability properties of the
proposed dynamical neural network.
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Figure 4.1: Feedback interconnection of neural network (4.17)-(4.21)

Theorem 22. Let (r∗, x∗, β∗, λ∗, γ∗) an equilibrium point of the neural network defined by
(4.17)-(4.21), then (r∗, x∗) is a KKT point of (4.11). On the other hand, if (r∗, x∗) ∈ RM×RK is
a KKT point of (4.4), then there exists β∗ ≥ 0, λ∗ ≥ 0 and γ∗ ≥ 0 such that (r∗, x∗, β∗, λ∗, γ∗)
is an equilibrium point of the Neural Network (4.17)-(4.21).
Proof. Let (r∗, x∗, β∗, λ∗, γ∗) an equilibrium point of the neural network defined by (4.17)-
(4.21). Then, dr∗dt = 0, dx∗

dt = 0, dβ∗

dt = 0, dλ∗

dt = 0 and dγ∗

dt = 0. We have
− (∇f(r∗) +∇rl(r

∗, x∗)T (β∗ + l(r∗, x∗))+ +∇rh(r
∗, x∗)T (λ∗ + h(r∗, x∗))+ +∇rg(r

∗, x∗)T (γ∗ + g(r∗, x∗))+) = 0,

− (∇xl(r
∗, x∗)T (β∗ + l(r∗, x∗))+ +∇xh(r

∗, x∗)T (λ∗ + h(r∗, x∗))+ +∇xg(r
∗, x∗)T (γ∗ + g(r∗, x∗))+) = 0,

(β∗ + l(r∗, x∗))+ − β∗ = 0, (λ∗ + h(r∗, x∗))+ − λ∗ = 0, (γ∗ + g(r∗, x∗))+ − γ∗ = 0.

Observe that (β∗+l(r∗, x∗))+−β∗ = 0 if and only if β∗ ≥ 0, l(r∗, x∗) ≤ 0 and β∗T l(r∗, x∗) =
0. Similarly, we have λ∗ ≥ 0, h(r∗, x∗) ≤ 0, λ∗Th(r∗, x∗) = 0, γ∗ ≥ 0, g(r∗, x∗) ≤ 0 and
γ∗T g(r∗, x∗) = 0.
By substitution in (4.17)-(4.21), we obtain the partial KKT system (4.12)-(4.16) with λ(r) =

λ(x) = λ, β(r) = β(x) = β and γ(r) = γ(x) = γ . The reverse implication of the theorem is
straightforward.
In order to establish the stability and convergence of the neural network, our first step is
to demonstrate that the Jacobian matrix∇Φ(z) is a negative semidefinite matrix.
Lemma 23. The Jacobian matrix∇Φ(z) is negative semidefinite matrix.
Proof. We assume the existence of 0 < p, q < K such that
(β + l)+ = (β1 + l1(r, x), β2 + l2(r, x), ....., βp + lp(r, x), 0, ...., 0︸ ︷︷ ︸

K−p

),
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(γ + g)+ = (γ1 + g1(r, x), γ2 + g2(r, x), ....., γq + gq(r, x), 0, ...., 0︸ ︷︷ ︸
K−q

).
Assuming without loss of generality that λ + h(r, x) ̸= 0, we represent the Jacobian

matrix∇Φ as follows

∇Φ(z) =


A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C1 C2 C3 C4 C5

D1 D2 D3 D4 D5

E1 E2 E3 E4 E5

 ,
where

A1 = −(∇2f(r) +

p∑
i=1

((βi + li)∇2
rl

p
i (r, x)) +∇rl

p(r, x)T∇rl
p(r, x)) + (λ+ h)∇2

rh(r, x)

+∇rh(r, x)
T∇rh(r, x)) +

q∑
i=1

((γi + gi)∇2
rg

q
i (r, x)) +∇rg

q(r, x)T∇rg
q(r, x)),

A2 = −(

p∑
i=1

((βi + li)∇x∇rl
p
i (r, x)) +∇rl

p(r, x)T∇xl
p(r, x)) + (λ+ h)∇x∇rh(r, x)

+∇xh(r, x)
T∇rh(r, x)) +

q∑
i=1

((γi + gi)∇x∇rg
q
i (r, x)) +∇rg

q(r, x)T∇xg
q(r, x)),

B1 = −(

p∑
i=1

((βi + li)∇r∇xl
p
i (r, x)) +∇rl

p(r, x)T∇xl
p(r, x)) + (λ+ h)∇r∇xh(r, x)

+∇xh(r, x)
T∇rh(r, x)) +

q∑
i=1

((γi + gi)∇r∇xg
q
i (r, x)) +∇xg

q(r, x)T∇rg
q(r, x)),

B2 = −(

p∑
i=1

(βi + li)∇2
xl

p
i (r, x) +∇xl

p(r, x)T∇xl
p(r, x)) + (λ+ h)∇2

xh(r, x)

+∇xh(r, x)
T∇xh(r, x) +

q∑
i=1

((γi + gi)∇2
xg

q
i (r, x)) +∇xg

q(r, x)T∇xg
q(r, x)),

A3 = −C1 = −∇rl
p(r, x)T , A4 = −D1 = −∇rh(r, x)

T , A5 = −E1 = −∇rg
q(r, x)T ,

B3 = −C2 = −∇xl
p(r, x)T , B4 = −D2 = −∇xh(r, x)

T , B5 = −E2 = −∇xg
q(r, x)T ,

C3 = −Sp =
[

Op×p Op×(K−p)

O(K−p)×p I(K−p)×(K−p)

]
, E5 = −Sq =

[
Oq×q Oq×(K−q)

O(K−q)×q I(K−q)×(K−q)

]
,

C4 = 0, C5 = 0,D3 = 0,D4 = 0,D5 = 0, E3 = 0 and E4 = 0.
Since g, h and l are twice differentiable, by Schwarz’s theorem, we have ∇r∇xg

q
i (x, y) =
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∇x∇rg
q
i (x, y), ∀i ∈ {1, .., q},∇r∇xl

p
i (x, y) = ∇x∇rl

p
i (x, y), ∀i ∈ {1, .., p} and∇r∇xh(x, y) =

∇x∇rh(x, y). It follows that A2 = BT
1 and∇Φ(z) becomes

∇Φ(z) =


A1 BT

1 A3 A4 A5

B1 B2 B3 B4 B5

−A3 −B3 −Sp 0 0
−A4 −B4 0 0 0
−A5 −B5 0 0 −Sq

 .
Demonstrating that−Sp and−Sq are negative semidefinite is straightforward. Hence, we
can conclude that S =

−Sp 0 0
0 0 0
0 0 −Sq

 is negative semidefinite.
Given that the function f is convex and twice differentiable, we can conclude that the
Hessian matrix ∇2f(x) is positive semidefinite. Furthermore, since g, h, and l are bicon-
vex and twice differentiable, it follows from [57] that the Hessian matrices ∇2

xg
q
i (x, y),

∇2
yg

q
i (x, y), ∇2

xh(x, y), ∇2
yh(x, y), ∇2

xl
p
i (x, y), and ∇2

yl
p
i (x, y) are positive semidefinite for

i = 1, . . . , q. Consequently, we can conclude that A1 and B2 are negative semidefinite
and then A =

[
A1 BT

1

B1 B2

]
is negative semidefinite.

Let B =

[
A3 A4 A5

B3 B4 B5

]
, ∇Φ(z) can be written as ∇Φ(z) =

[
A B

−BT S

]
. Since S and A

are negative semidefinite, the conclusion follows [48]. The proof when λ + h(r, x) = 0

follows along the same lines.
Before proving the stability of our neural network, we introduce the following defini-

tion and lemma.
Definition 12. [117] A mapping F : Rn −→ Rn is said to be monotonic if

(x− y)T (F (x)− F (y)) ≥ 0, ∀x, y ∈ Rn.

Lemma 24. [117]. A differentiable mapping F : Rn −→ Rn is monotonic, if and only if the
jacobian matrix∇F (x), ∀x ∈ Rn, is positive semidefinite.
Theorem 25. The neural network (4.17)-(4.21) is stable in the Lyapunov sense and con-
verges to (r∗, x∗, β∗, λ∗, γ∗), where (r∗, x∗) is a KKT point of problem (4.11).
Proof. The proof of this theorem follows a similar approach to that of Theorem 3 in [141].
Consider y∗ = (r∗, x∗, β∗, λ∗, γ∗) as an equilibrium point for the neural network described
by equations (4.17)-(4.21). We define the following Lyapunov function

V (y) = ||Φ(y)||2+1

2
||y − y∗||2. (4.23)

We have that dV (y(t))
dt = (dΦdt )

TΦ+ΦT dΦ
dt +(y−y∗)T dy

dt and since dΦ
dt = ∇Φ

∇y
dy
dt = ∇Φ(y)Φ(y),

then dV (y(t))
dt = ΦT (∇Φ(y)T+∇Φ(y))Φ+(y−y∗)TΦ(y).By Lemma23, wehaveΦT (∇Φ(y))Φ ≤
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0 and ΦT (∇Φ(y)T )Φ ≤ 0.
By Lemma 23 and Lemma 24, we observe that (y−y)T (Φ(y)) = (y−y)T (Φ(y)−Φ(y)) ≤ 0.
Hence, we can conclude that dV (y(t))

dt ≤ 0.
Consequently, the neural network defined by equations (4.17)-(4.21) is stable at the

equilibrium point y in the sense of Lyapunov. Since V (y) ≥ 1
2 ∥y − y∗∥2, there exists a

convergent subsequence (y(tk)k≥0) such that limk−→∞y(tk) = ŷ and dV (ŷ(t))
dt = 0. Let

M = {y(t)|dV (y(t))
dt = 0}, using LaSalle’s invariance principle [127] we can see that any

solution starting from a certain y0 converges to the largest invariant set contained inM .

Notice that



dr
dt = 0
dx
dt = 0
dβ
dt = 0
dλ
dt = 0
dγ
dt = 0

⇔ dV (y)
dt = 0. It follows that ŷ is an equilibrium point of the neural

network (4.17)-(4.21).
Nowwe consider a new Lyapunov function defined by V̂ (y) = ∥Φ(y)∥2+ 1

2 ∥y − ŷ∥2. Since
V̂ is continuously differentiable, V̂ (ŷ) = 0 and limk−→∞y(tk) = ŷ then limt−→∞V̂ (y(t)) =

V̂ (ŷ) = 0. Furthermore, since 1
2 ∥y − ŷ∥2 ≤ V̂ (y(t)) then limt−→∞ ∥y − ŷ∥ = 0 and

limt−→∞y(t) = ŷ. We conclude that the neural network (4.17)-(4.21) is convergent in the
sense of Lyupanov to an equilibrium point ŷ = (r̂, x̂, β̂, λ̂, γ̂) where (r̂, x̂) is a KKT point of
problem (4.11).

4.1.4 . Numerical experiments
To assess the performance of our approach, we investigate a transportation problem

that involves optimizing the shape of a transportation box while adhering to geometric
constraints. Initially, we focus on a three-dimensional scenario and subsequently extend
it to larger instances to showcase the effectiveness of our approach.
For implementation, we utilize Python to develop our dynamical neural network. We em-
ploy numpy.random to randomly generate problem instances and use solve_ivp from
the scipy.integrate package to solve the system of ordinary differential equations (ODEs).
The deterministic equivalent programs are solved using the gekko package, while auto-
grad.grad and autograd.jacobian are employed to compute gradients and partial deriva-
tives.
To evaluate the performance, we compare our neural network approach with a state-of-
the-art convex approximation method proposed by Liu et al. [88] presented in Section
4.1.2. Our assessment primarily focuses on the quality of the solution, and we do not
record the CPU time as the current ODE solvers tend to be time-consuming.
All experiments are conducted on an Intel(R) Core(TM) i7-10610U CPU @ 1.80 GHz.

4.1.5 . A three-dimension shape optimization problem
Wefirst consider a transportation problem involving the transfer of grain from aware-

house to a factory. The grain is transported using an open rectangular box with dimen-
sions of length x1 meters, width x2 meters, and height x3 meters, as illustrated in Figure
4.2. The primary objective is tomaximize the volume of the rectangular box, which is given
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by x1x2x3. There are two additional constraints imposed on the floor area Afloor and thewall area Awall of the box to ensure it conforms to the specified shape of a given truck.
To account for the stochastic nature of the problem, we assume that the wall area Awalland the floor area Afloor are independent random variables. The minimization problem

Figure 4.2: 3D-box shape [1]
can be formulated as follows

min
x∈R3

++

x−1
1 x−1

2 x−1
3 ,

s.t P
(

1

Awall
(2x3x2 + 2x1x3) ≤ 1,

1

Afloor
x1x2 ≤ 1

)
≥ 1− ϵ.

αx−1
1 x2 ≤ 1, (4.24)

βx−1
2 x2 ≤ 1,

γx−1
2 x3 ≤ 1,

δx−1
3 x2 ≤ 1,

The deterministic equivalent problem of (4.24) can be written as
minimize x∈R3

++
x−1
1 x−1

2 x−1
3 ,

s.t P
(

1

Awall
(2x3x2 + 2x1x3) ≤ 1

)
≥ y1,

P
(

1

Afloor
x1x2 ≤ 1

)
≥ y2,

αx−1
1 x2 ≤ 1,

βx−1
2 x2 ≤ 1,

γx−1
2 x3 ≤ 1, (4.25)

δx−1
3 x2 ≤ 1,

y1y2 ≥ 1− ϵ,

0 ≤ y1, y2 ≤ 1.
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Deterministic Approach Individual constraints Joint constraintsObj value VS Obj value VS Obj value VS
0.125 100 0.131 4 0.132 0

Table 4.1: Comparison of our neural network vs the deterministic formulation forthe 3D-transportation problem

Regarding the numerical experiments, we have set the values as follows: ϵ = 0.1, 1
Awall ∼

N (0.05, 0.01), 1
Afloor ∼ N (0.5, 0.01), α = β = γ = δ = 0.5.

In addition to solving the stochastic problem (4.24), we solve also the corresponding de-
terministic problem where the random variables 1

Awall and 1
Afloor are replaced by their

means. We compare the results of the individual and joint probabilistic constraints for-
mulations.
To evaluate the robustness of the deterministic formulation compared to the individual
and joint probabilistic formulations, we have randomly generated a set of 100 instances of
the stochastic variables 1

Awall and 1
Afloor according to thementionedmeans and variances.

Wehave checkedwhether the solutions of the three formulations are feasible for problem
(6.33) for each of the 100 scenarios. If the solutions are not feasible for a scenario, we label
it as a violated scenario (VS).
The numerical results are summarized in Table 4.1. The first column represents the objec-
tive value obtained by the deterministic approach. The second column shows the number
of violated scenarios out of the 100 scenarios. Columns three to six present the numeri-
cal results for the individual and joint chance-constrained formulations, respectively. The
table indicates that our neural network successfully solves both the individual and joint
chance-constrained 3D-transportation problems. It is worth noting that the joint formu-
lation exhibits the highest level of robustness, as none of the 100 scenarios are violated,
whereas the deterministic approach violates all 100 scenarios, as depicted in Figure 4.3.

In order to assess the performance of our approach, we compare our solution with
the sequential convex approximation algorithm presented in Section 4.1.2. The numerical
results are provided in Table 4.2. The first and second columns represent the objective
value and the number of violated scenarios obtained using our neural network, respec-
tively. The third and fourth columns display the objective value and the number of vio-
lated scenarios obtained using the sequential algorithm, respectively. The fifth column
presents the gap between the two objective values, denoted as GAP, which is calculated
as (Obj valueSA−Obj valueNN)Obj valueSA × 100, where Obj valueNN and Obj valueSA represent the
objective values obtained with the neural network and the sequential algorithm, respec-
tively.
Table 4.2 demonstrates that the upper bounds obtained by our neural network and the
sequential algorithm are identical. However, the sequential algorithm violates 4 scenar-
ios, while our neural network solution remains feasible for all scenarios, as depicted in
Figure 4.4.
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Figure 4.3: Number of VS for the deterministic formulation, the individual and joint chanceconstraints

Neural Network Sequential AlgorithmObj value VS Obj value VS GAP
0.132 0 0.132 4 0.0
Table 4.2: Comparison between our neural network and the sequential algorithm

Figure 4.4: Number of VS of our neural network and the sequential algorithm
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4.1.6 . Multidimensional transportation problem
In order to evaluate the performance of our approach on large-size instances, we ex-

tend the transportation problemstudied in theprevious subsection to higher-dimensional
problems. The problem formulation for them-dimensional case can bewritten as follows.

min
x∈RM

++

m∏
i=1

x−1
i ,

s.t P(
m−1∑
j=1

(
m− 1

Awallj
x1

m∏
i=1,i ̸=j

xi) ≤ 1,
1

Afloor

m∏
j=2

xj ≤ 1, (4.26)
1

γi,j
xix

−1
j ≤ 1, 1 ≤ i ̸= j ≤ m) ≥ 1− ϵ.

For the numerical experiments, we set the following parameters: ϵ = 0.05, 1
Afloor

fol-
lows a normal distribution with a mean of 1.0/20.0 and a standard deviation of 0.1, 1

Awalljis drawn from a normal distribution with a mean randomly selected from the interval
[1.0/60.0, 1.0/40.0] and a standard deviation randomly selected from the interval [0.3, 0.5],
and 1

γi,j
follows a normal distribution with a mean of 0.5 and a standard deviation of 0.1.

The results for different values ofm for problem (4.26) are given in Table 4.4where column
one gives the data of the problem, e.g., (2, 4) means the problem is composed of two vari-
ables and four constraints. Columns two and three show the optimal value obtained by
the deterministic approach and the number of VS over 100 generated scenarios, respec-
tively. Columns four to six give the objective value of the individual chance constrained
problem, the number of VS and the gap with the deterministic problem, respectively. We
note that the gap is computed compared to the deterministic approach. The last three
columns give the optimal value obtained by the joint chance-constrained problem, the
number of VS and the gap with the deterministic approach, respectively.
Our joint chance-constrainedneural network demonstrates greater robustness compared
to the individual chance constraint and the deterministic models. On average, our joint
chance constraint neural network has 10 violated scenarios (VS), while the average num-
bers of VS for the individual chance constraint and the deterministic approach are 40 and
92, respectively. Figure 4.5 illustrates the distributions of VS for the three formulations.
Please note that we have not recorded the CPU time as our neural network problems are
solved using standard ODE solvers, which are currently more time-consuming compared
to standard optimization methods.

In a similarway as for the previous subsection, we compare the results obtained by the
neural network for solving (4.26) with those obtained using the sequential algorithm. The
results are presented in Table 4.4, where column one indicates the number of variables,
column two indicates the number of constraints, column three shows the objective value
obtained using the neural network, column four shows the corresponding number of vi-
olated scenarios (VS), column five shows the objective value obtained by the sequential
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Data Deterministic Approach Individual chance constraints Joint chance constraintsObj value VS Obj value VS GAP Obj value VS GAP(2,4) 0.020 63 0.026 17 23 0.028 10 30(3,8) 0.062 88 0.080 24 29 0.088 11 41(4,14) 0.111 97 0.130 38 28 0.144 5 41(5,22) 0.209 100 0.254 54 21 0.273 4 30(6,32) 0.355 99 0.400 45 12 0.421 13 18(7,44) 0.520 100 0.607 59 16 0.648 12 24
Table 4.3: Comparison between the deterministic approach and the individualand joint chance constraint neural networks

Figure 4.5: Number of VS for the deterministic formulation, the individual and joint chanceconstraints for 6 variables and 32 constraints
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Var.Num Const.Num Neural Network VS Sequential Algorithm VS GAP2 4 0.028 4 0.033 7 15.53 8 0.060 5 0.073 5 17.84 14 0.144 3 0.162 5 11.15 22 0.243 2 0.267 3 8.96 32 0.582 4 0.684 3 14.9
Table 4.4: Neural network vs. the sequential algorithm

algorithm, column six shows the corresponding number of VS, and column seven shows
the gap between the two objective values. The gaps range from 8.9% up to 17.8%. Notice
that the number of VS is comparable for the two approaches.

4.2 . Rectangular geometric programs

In this Section, we study the following stochastic rectangular programming problem

min
t∈RM

++

E

∑
i∈I0

ci

M∏
j=1

t
aij
j

 , (4.27)

s.t. P

αk ≤
∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ βk, k = 1, ...,K

 ≥ 1− ϵ, (4.28)

where t = (tj)1≤j≤M is the decision variable, ci, i ∈ Ik, k = 0, 1, ...,K are uncorrelated
normally distributed random variables , i.e., ci ∼ N (c̄i, σ

2
i ), c̄i ≥ 0. The coefficients aij , i ∈

Ik, j = 1, ...,M are deterministic, 0 < αk < βk, and 1 − ϵ is a given probability level. Liu
et al.[87] propose convex approximations based on the variable transformation to solve
problem (4.27)-(4.28) with an elliptical distribution. They give upper and lower bounds for
the optimal solution.

4.2.1 . Deterministic biconvex equivalent problem
Problem (4.27)-(4.28) is a joint constrained program. To transform the joint constraints

into deterministic ones, we assume that the row vector constraints are mutually indepen-
dent. Then, we introduce auxiliary variables yk, k = 1, ...,K and we rewrite the constraint
(4.28) equivalently as

P

αk ≤
∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ βk

 ≥ yk, k = 1, ...,K, (4.29)
K∏
k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1, k = 1, ...,K. (4.30)
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The rectangular constraints (6.76) are equivalent to

P

∑
i∈Ik

ci

M∏
j=1

t
aij
j ≥ αk

+ P

∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ βk

− 1 ≥ yk, k = 1, ...,K. (4.31)

Then, we introduce two additional K-dimensional auxiliary variables z+, z− ∈ RK
+ [87]

such that (4.31) is equivalent to

P

∑
i∈Ik

ci

M∏
j=1

t
aij
j ≥ αk

 ≥ z+k , k = 1, ...,K, (4.32)

P

∑
i∈Ik

ci

M∏
j=1

t
aij
j ≤ βk

 ≥ z−k , k = 1, ...,K, (4.33)
z+k + z−k − 1 ≥ yk, 0 ≤ z−k ; z

+
k ≤ 1, k = 1, ...,K. (4.34)

Deterministic reformulations of constraints (4.32) and (4.33) are given as follows [25]

−
∑
i∈Ik

c̄i

M∏
j=1

t
aij
j + ϕ−1(z+k )

√√√√∑
i∈Ik

σ2i

M∏
j=1

t
2aij
j ≤ −αk, k = 1, ...,K, (4.35)

∑
i∈Ik

c̄i

M∏
j=1

t
aij
j + ϕ−1(z−k )

√√√√∑
i∈Ik

σ2i

M∏
j=1

t
2aij
j ≤ βk, k = 1, ...,K. (4.36)

A biconvex equivalent formulation of constraint (4.79) can be obtained using a simple
logarithmic transformation. Constraint (4.35) can be reformulated as follows

ϕ−1(z+k )
2
∑
i∈Ik

σ2i

M∏
j=1

t
2aij
j ≤

∑
i∈Ik

c̄i

M∏
j=1

t
aij
j − αk

2

, k = 1, ...,K. (4.37)

We write (4.37) equivalently for a given k as

2αk

∑
i∈Ik

c̄i

M∏
j=1

t
aij
j −

∑
i∈Ik

∑
p∈Ik

c̄ic̄p

M∏
j=1

t
(aij+apj)
j + ϕ−1(z+k )

2
∑
i∈Ik

σ2i

M∏
j=1

t
2aij
j ≤ α2

k,

which can be reformulated as
2αk

∑
i∈Ik

c̄i
M∏
j=1

t
aij
j + ϕ−1(z+k )

2
∑
i∈Ik

σ2i
M∏
j=1

t
2aij
j

∑
i∈Ik

∑
p∈Ik

c̄ic̄p
M∏
j=1

t
(aij+apj)
j + α2

k

≤ 1. (4.38)
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We approximate the denominator of constraint (4.38) with amonomial function by apply-
ing the arithmetic-geometric mean inequality [4].

∑
i∈Ik

∑
p∈Ik

c̄ic̄p

M∏
j=1

t
(aij+apj)
j + α2

k ≥
∏
i∈Ik

∏
p∈Ik


c̄ic̄p

M∏
j=1

t
(aij+apj)
j

δip


δip (

α2
k

δ0

)δ0

, (4.39)

where δ0 and δip are nonnegative parameter ∀i ∈ Ik and δ0 + ∑
i,p∈Ik

δip = 1.
Then, we approximate the denominator of constraint (4.38) with
∏
i∈Ik

∏
p∈Ik

 c̄ic̄p
M∏
j=1

t
(aij+apj)

j

δip


δip (

α2
k

δ0

)δ0 . We write consequently problem (2.1)-(2.36) as

min
t∈RM

++,y,z+,z−

∑
i∈I0

c̄i

M∏
j=1

t
aij
j , (4.40)

s.t.

2αk

∑
i∈Ik

c̄i

M∏
j=1

t
aij
j + ϕ−1(z+k )

2
∑
i∈Ik

σ2i

M∏
j=1

t
2aij
j

×

∏
i∈Ik

∏
p∈Ik


c̄ic̄p

M∏
j=1

t
(aij+apj)
j

δip


−δip (

α2
k

δ0

)−δ0

≤ 1, k = 1, ...,K, (4.41)

∑
i∈Ik

c̄i

M∏
j=1

t
aij
j + ϕ−1(z−k )

√√√√∑
i∈Ik

σ2i

M∑
j=1

t
2aij
j − βk ≤ 0, k = 1, ...,K,

z+k + z−k − 1 ≥ yk, 0 ≤ z−k ; z
+
k ≤ 1, k = 1, ...,K, (4.42)

K∏
k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1, k = 1, ...,K. (4.43)

We apply a logarithmic transformation of the problem by introducing rj = log(tj), j =
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1, ...,M , xk = log(yk), k = 1, ...,K. We obtain the following biconvex equivalent problem

min
r,x,z+,z−

∑
i∈I0

c̄iexp


M∑
j=1

aijrj

 , (4.44)

s.t.
∏
i∈Ik

∏
p∈Ik

(
c̄ic̄p

δip

)−δip
(
α2
k

δ0

)−δ0

×

2αk

∑
i∈Ik

c̄iexp


M∑
j=1

aijrj

+ ϕ−1(z+k )2
∑
i∈Ik

σ2
i exp


M∑
j=1

2aijrj




exp
∑

i∈Ik

∑
p∈Ik

−δip

M∑
j=1

(aij + apj)rj

 ≤ 1, k = 1, ...,K, (4.45)
∑
i∈Ik

c̄iexp


M∑
j=1

aijrj

+

ϕ−1(z−k )

√√√√√∑
i∈Ik

σ2
i exp


M∑
j=1

2aijrj

− βk ≤ 0, k = 1, ...,K, (4.46)

log(1− ϵ)−
K∑

k=1

xk ≤ 0, xk ≤ 0, k = 1, ...,K, (4.47)
exp(xk)− z+k − z−k + 1 ≤ 0, k = 1, ...,K, (4.48)
z+k − 1 ≤ 0, k = 1, ...,K, (4.49)
z−k − 1 ≤ 0, k = 1, ...,K, (4.50)
−z+k ≤ 0, k = 1, ...,K, (4.51)
−z−k ≤ 0, k = 1, ...,K. (4.52)

Let z = (z+, z−)T , f(r) = ∑
i∈I0

c̄iexp
{

M∑
j=1

aijrj

}
, h(x) =

(
log(1− ϵ)−

K∑
k=1

xk, x1, . . . , xK

)T ,
l(x, z) =

(exp(x1)− z+1 − z−1 + 1, ..., exp(xK)− z+K − z−K + 1
)T ,

w(z) = (z1
+ − 1, . . . , zK

+ − 1, z1
− − 1, . . . , zK

− − 1,−z1+, . . . ,−zK+,−z1−, . . . ,−zK−)
T

and
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g(r, z) =



∏
i∈I1

∏
p∈I1

(
c̄ic̄p
δip

)−δip (α2
1

δ0

)−δ0
(2α1

∑
i∈I1

c̄iexp
{

M∑
j=1

aijrj

}
+ ϕ−1(z+1 )

2×

∑
i∈I1

σ2i exp
{

M∑
j=1

2aijrj

}
)exp

{∑
i∈I1

∑
p∈I1

−δip
M∑
j=1

(aij + apj)rj

}
− 1

...∏
i∈IK

∏
p∈IK

(
c̄ic̄p
δip

)−δip (α2
K
δ0

)−δ0
(2αK

∑
i∈IK

c̄iexp
{

M∑
j=1

aijrj

}
+ ϕ−1(z+K)2×

∑
i∈IK

σ2i exp
{

M∑
j=1

2aijrj

}
)exp

{ ∑
i∈IK

∑
p∈IK

−δip
M∑
j=1

(aij + apj)rj

}
− 1

∑
i∈I1

c̄iexp
{

M∑
j=1

aijrj

}
+ ϕ−1(z−1 )

√√√√∑
i∈I1

σ2i exp
{

M∑
j=1

2aijrj

}
− β1

...∑
i∈IK

c̄iexp
{

M∑
j=1

aijrj

}
+ ϕ−1(z−K)

√√√√ ∑
i∈IK

σ2i exp
{

M∑
j=1

2aijrj

}
− βK



, we

write (4.44)-(4.52) as

min
r,x,z

f(r),

s.t. g(r, z) ≤ 0,

h(x) ≤ 0, (4.53)
l(x, z) ≤ 0,

w(z) ≤ 0.

4.2.2 . Optimality conditions
Now, we study the optimality conditions for problem (4.53). Since the problem is bi-

convex, we do not talk about a KKT system but rather a partial KKT system [69].
Definition 13. Let (r∗, z∗, x∗) ∈ RM × R2K × RK , if there exist µ(1), µ(2), λ(1), λ(2), γ and
ω such that
∇f(r∗) + µ(1)

T∇rg(r
∗, z∗) = 0, (4.54)

µ(1) ≥ 0, µ(1)
T
g(r∗, z∗) = 0, (4.55)

µ(2)
T∇zg(r

∗, z∗) + λ(1)
T∇zl(x

∗, z∗) + γT∇zw(z
∗) = 0, (4.56)

µ(2) ≥ 0, µ(2)
T
g(r∗, z∗) = 0, λ(1) ≥ 0, λ(1)

T
l(x∗, z∗), γ ≥ 0, γTw(z∗) = 0, (4.57)

λ(2)
T∇xl(x

∗, z∗) + ωT∇xh(x
∗) = 0, (4.58)

λ(2) ≥ 0, λ(2)
T
l(x∗, z∗) = 0, ω ≥ 0, ωTh(x∗) = 0 (4.59)

Then (r∗, z∗, x∗) is a partial KKT point of (4.53).
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The following theorem is driven by the equivalence between a partial optimum and a
partial KKT point of a biconvex program.
Theorem 26. Let (r∗, z∗, x∗) ∈ RM × R2K × RK be a partial optimum of (4.53), with
respect to partial Slater constraints qualification [69] at (r∗, x∗). Then (r∗, z∗, x∗) is a KKT
point of (4.53) if and only if the partial KKT system (4.54)-(4.59) holds with µ(1) = µ(2) and
λ(1) = λ(2). Furthermore, if µ(1) = µ(2) and λ(1) = λ(2) then (r∗, z∗, x∗) is a KKT point of
(4.53).

4.2.3 . A dynamical neural network approach
Based on the partial KKT system (4.54)-(4.59) obtained in the previous section, we

construct a dynamical neural network system that converges to a partial KKT point of
(4.53). The dynamical neural network is driven by the following system, where r, z, x, µ,
λ, γ, and ω are time-dependent variables

dr

dt
= −(∇f(r) +∇rg(r, z)

T (µ+ g(r, z))+), (4.60)
dz

dt
= −(∇zg(r, z)

T (µ+ g(r, z))+∇zl(x, z)
T (λ+ l(x, z))+ +∇zw(z)

T (γ + w(z))+), (4.61)
dx

dt
= −(∇xl(x, z)

T (λ+ l(x, z))+∇xh(x)
T (ω + h(x))+), (4.62)

dµ

dt
= (µ+ g(r, z))+ − µ, (4.63)

dλ

dt
= (λ+ l(x, z))+ − λ, (4.64)

dγ

dt
= (γ + w(z))+ − γ, (4.65)

dω

dt
= (ω + h(x))+ − ω. (4.66)

where (x)+ = max(x, 0). For the sake of simplicity, let y = (r, z, x, µ, λ, γ, ω) we rewrite
the dynamical system (4.60)-(4.66) equivalently as follows{

dy
dt = Φ(y)
y(t0) = y0

.
A generalized circuit implementation of the neural network (4.60)-(4.66) is provided in
Figure 4.6.

To study the stability and the convergence of the proposed neural network, we first
show the equivalence between a KKT point (4.54)-(4.59) and an equilibrium point of (4.60)-
(4.66).
Lemma 27. Let x and y two n-dimensional vectors, we have

(x+ y)+ = x⇔
(
x ≥ 0, y ≤ 0 and xT y = 0

)
.
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Proof. (x + y)+ = x means that x ≥ 0. Furthermore, (x + y)+ = x implies that (xTx +

xT y)+ = xTx which means that xT y = 0 since xTx ̸= 0. Remember that x and y are
n-dimensional vectors, then (x+ y)+ = xmeans that ∀ 1 ≤ i ≤ n (xi+ yi)+ = xi. If xi = 0

then (yi)+ = 0 which means yi ≤ 0, else if xi > 0 then yi = 0. In conclusion y ≤ 0. The
conclusion follows.
Theorem 28. Let y = (r, z, x, µ, λ, γ, ω) ∈ RM ×R2K ×RK ×R2K ×RK+1 ×RK ×R4K , y
is an equilibrium point of (4.60)-(4.66) if and only if (r, z, x) is a KKT point of (4.53).
Proof. Let (r, z, x, µ, λ, γ, ω) an equilibrium point of (4.60)-(4.66), then dr

dt = 0, dz
dt = 0,

dx
dt = 0, dµdt = 0, dλdt = 0, dγdt = 0 and dω

dt = 0.
By Lemma 27, dµ

dt = 0 ⇔ (µ+ g(r, z))+ = µ ⇔ µ ≥ 0 and g(r, z) ≤ 0 and µT g(r, z) = 0 ⇔
(4.56) . We use the same approach to obtain (4.57) and (4.59).
dr
dt = 0 ⇔ ∇f(r) + ∇rg(r, z)

T (µ + g(r, z))+ = 0 ⇔ ∇f(r) + ∇rg(r, z)
Tµ = 0 ⇔ (4.54) .

We obtain (4.56) and (4.58) following the same steps. We conclude that (r, z, x) is a partial
KKT system of (4.53). It is easy to check the converse part of the theorem.

Now, to show the stability and the convergence of our neural network, we need first
to prove the negative semidefiniteness of the Jacobian matrix∇Φ(y).
Theorem 29. The Jacobian matrix∇Φ(y) is negative semidefinite.
Proof. Let p, q, s, t ∈ N such that
(µ+ g)+ = (µ1 + g1(r, z), µ2 + g2(r, z), ....., µp + gp(r, z), 0, ...., 0︸ ︷︷ ︸

2K−p

),
(λ+ l)+ = (λ1 + l1(x, z), λ2 + l2(x, z), ....., λq + lq(x, z), 0, ...., 0︸ ︷︷ ︸

K−q

),
(γ + w)+ = (γ1 + w1(z), γ2 + w2(z), ....., γs + ws(z), 0, ...., 0︸ ︷︷ ︸

4K−s

),
(ω + h)+ = (ω1 + h1(x), ω2 + h2(x), ....., ωt + ht(x), 0, ...., 0︸ ︷︷ ︸

K+1−t

).

We write∇Φ(z) =



A1 A2 A3 A4 A5 A6 A7

B1 B2 B3 B4 B5 B6 B7

C1 C2 C3 C4 C5 C6 C7

D1 D2 D3 D4 D5 D6 D7

E1 E2 E3 E4 E5 E6 E7

F1 F2 F3 F4 F5 F6 F7

G1 G2 G3 G4 G5 G6 G7


,

where,

A1 = −(∇2f(r) +

p∑
i=1

((µi + gi)∇2
rg

p
i (r, z)) +∇rg

p(r, z)T∇rg
p(r, z)),

A2 = −(

p∑
i=1

((µi + gi)∇z∇rg
p
i (r, z)) +∇zg

p(r, z)T∇rg
p(r, z)),
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A4 = −∇rg
p(r, z)T , A3 = 0, A5 = 0, A6 = 0, A7 = 0,

B1 = −(

p∑
i=1

((µi + gi)∇r∇zl
p
i (r, z)) +∇zg

p(r, z)T∇rg
p(r, z)),

B2 = −(

p∑
i=1

((µi + gi)∇2
zg

p
i (r, z)) +∇rg

p(r, z)T∇zg
p(r, z) +

q∑
i=1

((λi + li)∇2
zl

q
i (x, z))

+∇zl
q(x, z)T∇zl

q(x, z) +
s∑

i=1

((γi + wi)∇2
zw

s
i (z)) +∇zw

s(z)T∇zw
s(z)),

B3 = −(

q∑
i=1

((λi + li)∇x∇zl
q
i (x, z)) +∇zl

q(x, z)T∇xl
q(x, z)),

B4 = −∇zg
p(r, z)T , B5 = −∇zl

q(x, z)T , B6 = −∇zw
s(z)T , B7 = 0, C1 = 0,

C2 = −(

q∑
i=1

((λi + li)∇z∇xl
q
i (x, z)) +∇xl

q(x, z)T∇zl
q(x, z)),

C3 = −(

q∑
i=1

((λi + li)∇2
xl

q
i (x, z)) +∇xl

q(x, z)T∇xl
q(x, z) +

t∑
i=1

((ωi + hi)∇2
xh

t
i(x))

+∇xh
t(x)

T∇xh
t(x)),

C4 = 0, C6 = 0, C5 = −∇xl
q(x, z)T , C7 = −∇xh

t(x)T ,

D1 = ∇rg
p(r, z)T , D2 = ∇zg

p(r, z)T , D3 = 0,

D4 = Sp = −
[

Op×p Op×(2K−p)

O(2K−p)×p I(2K−p)×(2K−p)

]
,D5 = 0,D6 = 0,D7 = 0,

E1 = 0,E2 = ∇zl
q(x, z)T ,E3 = ∇xl

q(x, z)T ,E4 = 0,E5 = Sq = −
[

Oq×q Oq×(K−q)

O(K−q)×q I(K−q)×(K−q),

]
,

E6 = 0, E7 = 0,
F1 = 0,F2 = ∇zw

s(z)T ,F3 = 0,F4 = 0,F5 = 0,F6 = Ss = −
[

Os×s Os×(4K−s)

O(4K−s)×s I(4K−s)×(4K−s),

]
,

F7 = 0,
G1 = 0,G2 = 0,G3 = ∇xh

t(x)T ,G4 = 0,G5 = 0,G6 = 0,G7 = St = −
[

Ot×t Ot×(K+1−t)

O(K+1−t)×t I(K+1−t)×(K+1−t),

]
.

We rewrite the Jacobianmatrix∇Φ as follows,∇Φ(z) =



A1 BT
1 0 A4 0 0 0

B1 B2 B3 B4 B5 B6 0
0 BT

3 C3 0 C5 0 C7

−A4 −B4 0 Sp 0 0 0
0 −B5 −C5 0 Sq 0 0
0 −B6 0 0 0 Ss 0
0 0 −C7 0 0 0 St


,
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Wecan represent∇Φ as∇Φ(z) =

[
A B

−BT C

]
,whereA =

A1 BT
1 0

B1 B2 B3

0 BT
3 C3

 , B =

A4 0 0 0
B4 B5 B6 0
0 C5 0 C7

 ,
and C =


Sp 0 0 0
0 Sq 0 0
0 0 Ss 0
0 0 0 St

 ,
Sincew and h are convex and twice differentiable, there follows that∇2

zw
s
i (z) and∇2

xh
t
i(x)are positive semidefinite. Furthermore, g and l are biconvex and twice differentiable,

then we have ∇2
zg

p
i (r, z), ∇2

zl
q
i (x, z) ∇2

xl
q
i (x, z) are positive semidefinite [56]. It is easy to

see that ∇rg
p(r, z)T∇zg

p(r, z), ∇zl
q(x, z)T∇zl

q(x, z) and ∇xl
q(x, z)T∇xl

q(x, z) are pos-
itive semidefinite. We conclude that B2 and C3 are negative semidefinite and hence[
B2 B3

BT
3 C3

]
is negative semidefinite [48]. Following the same steps, we show that A1 is

negative semidefinite, and we conclude that A is negative semidefinite. We can easily see
that C is negative semidefinite. We conclude that∇Φ is negative semidefinite.
Theorem30. Theneural network (4.60)-(4.66) is stable and converges to y∗ = (r∗, z∗, x∗, µ∗, λ∗, γ∗, ω∗)

where (r∗, z∗, x∗) is a KKT point of (4.53).
Before giving the proof of Theorem 30, we need to introduce the relationship between

the monotocity of mapping and the semidefiniteness of its Jacobian matrix.
Definition 14. [117] A mapping F : Rn −→ Rn is said to be monotonic if

(x− y)T (F (x)− F (y)) ≥ 0, ∀x, y ∈ Rn

Lemma 31. [117] A differentiable mapping F : Rn −→ Rn is monotonic, if and only if the
Jacobian matrix∇F (x), ∀x ∈ Rn, is positive semidefinite.
Proof. of Theorem 30.
Let y∗ = (r∗, z∗, x∗, µ∗, λ∗, γ∗, ω∗) an equilibrium point of (4.60)-(4.66) and consider the
Lyapunov function defined by V1(y) = ||Φ(y)||2+1

2 ||y − y∗||2. We have that dV1(y)
dt ≤ 0. In

fact, dV1(y)
dt = (dΦdt )

TΦ + ΦT dΦ
dt + (y − y∗)T dy

dt . Or since dΦ
dt = ∇Φ(y)Φ(y), then dV1(y)

dt =

ΦT (∇Φ(y)T +∇Φ(y))Φ+ (y− y∗)TΦ(y). We use Theorem 29 and Lemma 31 to conclude.
There follows that the neural network (6.47)-(4.66) is stable in the sense of Lyapunov.
Notice that V1(y) ≥ 1

2 ∥y − y∗∥2, consequently there exists a convergent subsequence
(y(tk)k≥0) such that limk−→∞y(tk) = ỹ and dV1(ỹ)

dt = 0.
Starting from a certain y0, we have by LaSalle’s invariance principle that the neural net-work converges to the largest invariant set contained in M which is defined by M =

{y(t)∥dV1(y)
dt = 0}.

Observe that dy
dt = 0 ⇔ dV1(y)

dt = 0, we have then ỹ is an equilibrium point of (4.60)-(4.66).
Let show now that the neural network converges to ỹ. For this, we consider the following
Lyapunov function V2(y) = ∥Φ(y)∥2 + 1

2 ∥y − ỹ∥2.
We have that V2 is continuously differentiable, V2(ỹ) = 0 and limk−→∞y(tk) = ỹ, then
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limt−→∞V2(y(t)) = V2(ỹ) = 0.
Additionally, since 1

2 ∥y − ỹ∥2 ≤ V2(y) then limt−→∞ ∥y − ỹ∥ = 0 and limt−→∞y(t) = ỹ.
There follows that the neural network converges to an equilibriumpoint ỹ = (r̃, z̃, x̃, µ̃, λ̃, γ̃, ω̃)

where (r̃, z̃, x̃) is a KKT point of (4.53).
4.2.4 . Numerical experiments

In order to test the performances of our proposed neural network, we first consider
a transportation problem. Then, in Subsection 4.2.6, we study a generalized shape op-
timization problem to analyze the behavior of the neural network for different size in-
stances and we compare it to a state-of-the-art alternate convex search. All the numerical
experiments are done using Python. To compute the partial derivatives and the Jaco-
bians, we use the package autograd. To generate the random instances, we use the pack-
age numpy.random. The ODEs of the recurrent dynamical neural networks are solved
using the function solve_ivp of scipy.integrate library. We run our algorithms on Intel(R)
Core(TM) i7-10610U CPU @ 1.80GHz.

4.2.5 . Minimizing transport cost problem
In order to shift V m3 grains from a warehouse to a factory, we can use an open rect-

angular box of length x1 meters, of width x2 meters, and of height x3 meters see Figure
4.7. We use the parameters c1, c2, c3 and c4 for the bottom costs, for each side costs and
each end costs, and for each round trip of the box costs, respectively. We aim to find the
minimum cost of transporting V m3 of grain.
We use a transporter to carry the box into the truck. The floor area of the box x1x2 must
be less than βfloorAfloor and larger than αfloorAfloor in order to avoid wasting in capacity,where Afloor is the floor area and αfloor and βfloor are the minimum and the maximum
occupancy rates, respectively. The same thing applies for the wall area 2x1x3 + 2x2x3which must be less than βwallAwall and larger then αwallAwall. We assume that the floor
and the wall areas of the transporter are random.

We reformulate then our minimization problem as
min

x∈R3
++

c1x1x2 + 2c2x1x3 + 2c3x2x3 + c4
V

x1x2x3
,

s.t. P(αwallAwall ≤ 2x1x3 + 2x2x3 ≤ βwallAwall, (4.67)
αfloorAfloor ≤ x1x2 ≤ βfloorAfloor) ≥ 1− ϵ.

To solve problem (4.67) using our proposed neural network, we set αwall = αfloor = 50%,
βwall = βfloor = 95%, c1 = 80, c2 = 20, c3 = 30, c4 = 1, V = 80m3, 1

Awall
∼ N (1.0/6.0, 0.01)

and 1
Afloor

∼ N (3.0, 0.01).
The neural network converges to a minimum of 260.81 at x1 = 0.68m, x2 = 0.46m and
x3 = 2.01m. We follow the convergence of x1, x2 and x3 in Figure 4.8.

4.2.6 . Stochastic shape optimization problem
In order to evaluate the performances of the proposed dynamical network on differ-

ent instances, we introduce the following shape optimization problem taken from [87].
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We remind that Awallj and Afloor are random and defined as in the previous Subsection.
The generalized problem is defined as follows.

min
x∈RM

++

m∏
i=1

x−1
i ,

s.t. P(αwall ≤
m−1∑
j=1

(
m− 1

Awallj
x1

m∏
i=2,i ̸=j

xi) ≤ βwall, (4.68)

αfloor ≤
1

Afloor

m∏
j=2

xj ≤ βfloor) ≥ 1− ϵ.

For the sake of comparison, we additionally solve the problem with individual con-
straints.

min
x∈RM

++

m∏
i=1

x−1
i ,

s.t. P

αwall ≤
m−1∑
j=1

(
m− 1

Awallj
x1

m∏
i=2,i ̸=j

xi) ≤ βwall

 ≥ 1− ϵ, (4.69)

P

αfloor ≤
1

Afloor

m∏
j=2

xj ≤ βfloor

 ≥ 1− ϵ.

For the numerical experiments, we set ϵ = 0.05, 1
Afloor

∼ N (1.0/20.0, 0.01), 1
Awallj

∼
N (1.0/60.0, 0.001), αwall = 0.5, βwall = 1.0, αfloor = 0.5 and βfloor = 1.0.
In order to check the robustness of our approach, we generate a set of 100 scenarios of
the stochastic constraints, and we visualize the number of violated scenarios (VS) for each
problem.
The numerical results are represented in Table 4.5. Column one gives the number of
variablesm. Columns two, three, and four give the objective value of problem (4.69), the
number of VS, and the corresponding CPU time in seconds, respectively. Columns five,
six, and seven give the objective value of problem (4.68), the number of VS, and the cor-
responding CPU time, respectively.
We observe that the objective values of the two problems are relatively close. Neverthe-
less, the problem (4.68) covers better the risk region. In fact, we remark that the number
of violated scenarios for m = 5 for problem (4.68) is equal to 3, whereas the number of
violated scenarios for problem (4.69) is equal to 6 as shown in Figures 4.9 and 4.10.

Finally, we test the impact of the confidence level 1− ϵ. We solve then problems (4.68)
and (4.69) for different value of ϵ and we fixm = 5. The obtained results are recapitulated
in Table 4.6. We observe that as the value of ϵ increases, the value of the objective function
decreases though the number of VS increases. In fact, a higher value of ϵmeans a larger
risk area and a less restrictive minimization problem. To the best of our knowledge,
the only work dealing with rectangular programs with joint probabilistic constraints is
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Table 4.5: Results of the generalized transportation problem for different valuesofm
m Individual constraints Joint constraintsObj value VS CPU Time Obj value VS CPU Time3 0.039 3 35.27 0.042 0 25.825 0.117 6 61.60 0.120 3 92.207 0.230 4 86.36 0.236 2 80.3210 0.440 3 203.84 0.456 1 169.5715 0.909 5 444.26 0.907 5 531.8320 1.384 4 1111.72 1.402 2 874.75

Table 4.6: Results of the generalized transportation problem for different valuesof ϵ
ϵ Individual constraints Joint constraintsObj value VS CPU Time Obj value VS CPU Time0.1 0.115 8 39.34 0.121 1 66.670.15 0.113 7 39.44 0.115 5 38.020.2 0.112 28 74.80 0.114 15 44.320.3 0.109 31 49.87 0.111 24 49.840.4 0.107 48 44.21 0.109 39 52.20
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[87]. They propose new convex approximations based on the variable transformation
and piecewise linear approximation methods to come up with lower and upper bounds
for the optimal solutions. Since in the worst case, our neural network converges to a
partial optimum of the minimization problem, we converge then at worst to an upper
bound of the optimal solution. The advantage of our approach is that we don’t use any
convex approximation to approximate the optimal solution though the neurodynamic
approach takes more time to solve the stochastic rectangular programs as the size of
the problem increases. Therefore, we must note that our approach doesn’t replace the
existing convex approximations but gives promising results and opens the way for a new
vision of the joint probabilistic problems.

In order to evaluate the quality of the upper bound obtained using the dynamical
neural network, we compare the solutions with the values given by the alternate convex
search method in [57]. We set ϵ = 0.05 and solve problem (4.68) for different values ofm.
The obtained results are presented in Figure 4.11. The orange and bleu curves represent
the optimal solution obtained by the dynamical neural network and the alternate convex
search method, respectively. We notice that the results of our approach are comparable
or even relatively better than the alternate convex search.

4.3 . A case study : Maximizing Signal to Interference Noise Ratio forMas-
sive MIMO

The content of this Chapter was accepted in The 19th International Conference on
Mobile Web and Intelligent Information Systems.

Massive Multiple Input Multiple Output (MaMIMO) is a promising technology that is
gaining attention in the field of communication systems and the Internet of Things (IoT).
It involves the utilization of a large number of antennas that can simultaneously transmit
and receive signals, resulting in increased capacity and improved performance. MaMIMO
is considered as a potential solution for 5G networks and is expected to succeed the ex-
isting 4G LTE and LTE-A technologies. The key advantage of MaMIMO lies in its ability to
handle interference among a large number of antennas. By leveraging spatial multiplex-
ing and beamforming techniques, MaMIMO enables higher connectivity and improved
network efficiency. It can adapt to high-density environments with a large number of de-
vices, making it suitable for scenarios such as crowded stadiums, urban areas, and IoT
deployments. Furthermore, MaMIMO offers reduced transmission latency, which is cru-
cial for real-time applications like augmented reality and virtual reality. It also addresses
energy efficiency concerns by optimizing the use of resources, thereby aligningwith green
communications guidelines. Additionally, MaMIMO provides better signal quality and en-
hanced security by exploiting multiple signal paths and employing advanced signal pro-
cessing algorithms. We propose in this section a stochastic geometric formulation to solve
a problem of maximizing signal to interference noise ratio for massive MIMO.

4.3.1 . Stochastic geometric formulation
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We consider a single cell area, as depicted in Figure 4.12, where there exists a group of
users denoted by U = 1, ...,K. Each user in this set employs a single antenna to receive
data from the base station. On the other hand, the base station is equipped with T an-
tennas. Our objective is to maximize the worst user’s Signal to Interference Noise Ratio
(SINR) while respecting some power constraints imposed on each user.
The SINR value for user i can be mathematically expressed as follows [5]

SINRi = pi|gHi gi|2∑
j∈U ,j ̸=i

pj |gHi gj |2+|σi|2
(4.70)

We formulate our optimization problem as follows
max
p∈K

++

min
i∈U

pi|gHi gi|2∑
j∈U ,j ̸=i

pj |gHi gj |2+|σi|2
, (4.71)

s.t Pmin ≤ pi ≤ Pmax, ∀i ∈ U , (4.72)
where pi represents the power assigned to user i from the base station. The terms
gi ∈ CT×1, gHi ∈ C1×T , and σ2i correspond to the beam domain channel vector associ-
ated with user i, its Hermitian transpose, and the Additive White Gaussian Noise (AWGN),
respectively. We assume that the AWGN follows an independent complex Gaussian dis-
tribution with zeromean and unit variance (σi ∼ CN (0, 1)). The channel vectors gi and gHirepresent the quasi-static independent and identically distributed Rayleigh fading chan-
nels, where each entry is a complex number. The variablesPmin andPmax define the lowerand upper bounds, respectively, for the power assigned to each user, ensuring that the
power remains within a certain range.
Let aij = |gHi gj |2|gHi gi|−2 and bi = |σi|2|gHi gi|−2 and by introducing an additional variable
w we rewrite (4.71)-(4.72) as

max
p∈K

++,w∈++

w, (4.73)
s.t ∑

j∈U ,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1, ∀i ∈ U , (4.74)

Pmin ≤ pi ≤ Pmax, ∀i ∈ U . (4.75)
An equivalent geometric minimization problem is given by

min
p∈K

++,w∈++

w−1, (4.76)
s.t ∑

j∈U ,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1,∀i ∈ U , (4.77)

Pmin ≤ pi ≤ Pmax, ∀i ∈ U . (4.78)
We consider the case where the coefficients aij and bi are not completely known and
follow independent normal distributions, i.e., aij ∼ N (µij , σ

2
ij) and bi ∼ N (µi, σ

2
i ). In this
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case, we replace the deterministic constraint (4.77) with the following chance constraint,
as proposed in [4].

P

 ∑
j∈U ,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1,∀i ∈ U

 ≥ 1− ϵ. (4.79)

with 1 − ϵ, 0 < ϵ ≤ 0.5, is a given confidence level. The joint chance constraint, as op-
posed to individual constraints, is used because it ensures that the constraint as a whole
is satisfied to a certain confidence level. While individual chance constraints are easier to
solve, they only guarantee that each constraint is satisfied to a certain confidence level
independently, without considering the overall satisfaction of the constraints.
Using the independence between the coefficients and by introducing auxiliary variables
yi ∈+, i ∈ U , we give the following deterministic equivalent for the joint constraint (4.79)
[132]

∑
j∈U ,j ̸=i

µijpjp
−1
i w + µip

−1
i w + ϕ−1(yi)


√ ∑

j∈U ,j ̸=i

σ2ijp
2
jp

−2
i w2 + σ2i p

−2
i w2

 ≤ 1, ∀i ∈ U ,

(4.80)∏
i∈U

yi ≥ 1− ϵ, (4.81)
0 ≤ yi ≤ 1,∀i ∈ U , (4.82)

We write then (6.76)-(6.78) equivalently as

min
p∈K

++,w∈++

w−1,

s.t ∑
j∈U ,j ̸=i

µijpjp
−1
i w + µip

−1
i w +

ϕ−1(yi)


√ ∑

j∈U ,j ̸=i

σ2ijp
2
jp

−2
i w2 + σ2i p

−2
i w2

 ≤ 1,∀i ∈ U ,

1− ϵ−
∏
i∈U

yi ≤ 0, (GP)
−yi ≤ 0, yi − 1 ≤ 0,∀i ∈ U ,
Pmin − pi ≤ 0, pi − Pmax ≤ 0,∀i ∈ U .

The obtained equivalent deterministic problem (GP) is nonconvex, we apply then the log-
arithmic transformation ri = log(pi), xi = log(yi), ∀i ∈ U and t = log(w) and obtain the
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following problem
min exp(−t), (4.83)
s.t ∑

j∈U ,j ̸=i

µijexp(rj − ri + t) + µiexp(t− ri) (4.84)

+ϕ−1(exi)


√ ∑

j∈U ,j ̸=i

σ2ijexp(2rj − 2ri + 2t) + σ2i exp(2t− 2ri)

 ≤ 1,∀i ∈ U ,

log(1− ϵ)−
∑
i∈U

xi ≤ 0, xi ≤ 0, i ∈ U , (4.85)
log(Pmin)− ri ≤ 0, ri − log(Pmax) ≤ 0, ∀i ∈ U . (4.86)

Let z = (r, t)T , for the sake of simplicity we write the optimization problem as
min f(z), (4.87)
s.t gi(z, x) ≤ 0,∀i ∈ U , (4.88)

l(x) ≤ 0, hi(x) ≤ 0, i ∈ U , (4.89)
vi(z) ≤ 0, wi(z) ≤ 0,∀i ∈ U . (4.90)

where f(z) = exp(−t),l(x) = log(1 − ϵ) −
∑
i∈U

xi, hi(x) = xi, vi(z) = log(Pmin) − ri,
wi(z) = ri − log(Pmax) and
gi(z, x) =

∑
j∈U ,j ̸=i

µijexp(rj − ri + t) + µiexp(t− ri) + ϕ−1(exi)×
√ ∑

j∈U ,j ̸=i

σ2ijexp(2rj − 2ri + 2t) + σ2i exp(2t− 2ri)

− 1

The dynamical neural network is given in this case by
dz

dt
= −(∇zf(z) +∇zg(z, x)

T (α+ g(z, x))+ +∇zv(z)
T (γ + v(z))+ +∇zw(z)

T (λ+ w(z))+),

(4.91)
dx

dt
= −(∇xl(x)

T (β + l(x))+ +∇xg(z, x)
T (α+ g(z, x))+ +∇xh(x)

T (ζ + h(x))+),

(4.92)
dα

dt
= (α+ g(z, x))+ − α, (4.93)

dγ

dt
= (γ + v(z))+ − γ, (4.94)

dλ

dt
= (λ+ w(z))+ − λ, (4.95)

dβ

dt
= (β + l(x))+ − β, (4.96)

dζ

dt
= (ζ + h(x))+ − ζ. (4.97)
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K Individual constraints VS Joint constraints VS2 5.45 16 5.99 63 6.87 21 7.43 95 35.57 39 36.99 87 48.98 53 50.43 1110 39.40 62 41.68 1015 82.30 84 85.21 1220 113.65 82 117.33 10
Table 4.7: Individual constraints vs. Joint constraints for different values ofK

where α(1) = (α
(1)
1 , ..., α

(1)
K )T , α(2) = (α

(2)
1 , ..., α

(2)
K )T , γ = (γ1, ..., γK)T , λ = (λ1, ..., λK)T ,

ζ = (ζ1, ..., ζK)T , g = (g1, ..., gK)T , v = (v1, ..., vK)T ,w = (w1, ..., wK)T andh = (h1, ..., hK)T

are time-continuous vectors.
4.3.2 . Numerical analysis

For the numerical experiments, we set Pmin = 0.1 and Pmax = 0.5. The confidence
level is ϵ = 0.1. We generate complex vectors gi ∈ CT×1 and gHi ∈ C1×T for each
i ∈ U from an independent complex Gaussian distribution with zero mean and unit vari-
ance. Each of these vectors is then multiplied by a factor randomly chosen from the set
3.0, 4.0, 5.0, 7.0. We also generate the parameter σi for each i ∈ U from an independent
complex Gaussian distribution with zero mean and unit variance. The variables aij and biare computed as explained in Section 4.3.1. We assume that µij = aij and µi = bi, and wevary the values of σij and σi within the set 0.1, 0.2, 0.3.

We first solve (GP) for K = 5 with different feasible initial points y0 and observe the
convergence process of the neural network for each case. As shown in Figure 4.13, we ob-
serve that the neural network converges to the same final value regardless of the starting
point.
In order to demonstrate the advantage of using joint constraints instead of individual con-
straints to handle the uncertainty in constraints (4.77), we solve (GP) for different num-
bers of users, ranging from K = 2 to K = 20, using both joint and individual chance
constraints. We generate 100 instances of the stochastic variables aij and bi and track thenumber of times the constraints (4.77) are violated. The results are summarized in Table
4.7.
Column one represents the number of users K , while columns two and three present
the optimal solution and the number of VS obtained using individual constraints, respec-
tively. Similarly, columns four and five display the optimal solution and the number of VS
obtained using joint constraints.
We observe that the number of VS when using individual constraints is consistently big-
ger than the number of VS when using joint constraints. This difference becomes more
significant as the value ofK increases. By employing joint chance constraints, we ensure
a better coverage of the risk area and achieve a more robust solution.
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K Sequential Algorithm VS Neural Network VS GAP2 5.40 12 5.10 6 5.883 25.77 10 25.61 8 0.625 28.97 11 28.88 9 0.317 68.79 10 68.56 8 0.3310 70.81 21 69.68 14 1.6215 84.43 7 84.39 6 0.0420 117.37 13 117.33 10 0.03
Table 4.8: Neural network vs. the sequential algorithm for different values ofK

For comparison purposes, we solve problem (GP) using both the neurodynamic ap-
proach and the sequential algorithm. The results obtained are summarized in Table 6.1.
Column one represents the number of usersK , while columns two and three provide the
optimal solution and the number of VS obtained using the sequential algorithm, respec-
tively. Similarly, columns four and five present the optimal solution and the number of VS
obtained using the neurodynamic approach. Finally, column six displays the gap between
the two solutions.
We observe that the neurodynamic approach yields better solutions compared to the
sequential algorithm. Additionally, the number of violated scenarios for the solutions
obtained using the neurodynamic approach is slightly lower than those obtained using
the sequential algorithm.

We consider the case where K = 5 and vary the value of ϵ in the range of [0.05, 0.4].
The results obtained are summarized in Table 4.9.
We observe that as ϵ increases, the problem becomes less conservative. This means that
the chance constraint becomes less strict, allowing for a higher probability of violating the
constraint. Additionally, we observe that the gap between the two approaches (neurody-
namic and sequential) increases as ϵ increases, as shown in Figure 4.14. This indicates
that the neurodynamic approach provides better solutions compared to the sequential
algorithm when dealing with larger values of ϵ.
Furthermore, we notice that the number of violated scenarios increases as ϵ increases,
as shown in Figure 4.15. The difference in the number of violated scenarios becomes
more significant as ϵ increases, indicating that the neurodynamic approach ensures better
robustness in handling uncertainties.
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ϵ Sequential Algorithm VS Neural Network VS GAP0.05 30.23 4 29.89 2 1.130.1 29.47 15 29.07 9 1.370.15 28.96 22 28.53 11 1.500.2 28.56 32 28.10 19 1.630.3 27.87 54 27.40 26 1.710.4 27.30 63 26.81 34 1.82
Table 4.9: Neural network vs. the sequential algorithm for different values of ϵ
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Figure 4.6: The architecture of the neural network (4.60)-(4.66)
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Figure 4.7: The shape of the box [1]

Figure 4.8: The convergence of the neural network of problem (4.67)

Figure 4.9: Out of 100 scenarios, the con-straints were violated 6 times.
Figure 4.10: Out of 100 scenarios, the con-straints were violated 3 times.
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Figure 4.11: The Dynamical Neural Network vs. The Alternate Convex Search

Transmitters Receivers

Signal from T1 received at R1

Interference from T2 to RK

Noise generated by receiver R1

Figure 4.12: Signal to Interference plus Noise Ratio, illustration.

88



Figure 4.13: Convergence of the neural network different starting points y0

Figure 4.14: Evolution of GAP function to
ϵ .

Figure 4.15: Evolution of VS function to ϵ.
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5 - Dependent Joint Chance Constrained Geometric
Optimization

In this chapter, we delve into the application of copula theory formodeling dependen-
cies in joint probabilistic constrained geometric programs with dependent rows. We also
study in the second Section linear programs as a particular case. We focus on scenarios
where the random variables are assumed to follow an elliptical distribution. To lay the
foundation, we introduce the fundamental concepts of copula theory and refresh our un-
derstanding of the key properties associatedwith elliptical distributions. This groundwork
will provide the necessary background for our subsequent analysis.

5.1 . Copula Theory

Theuse of copula theory in statisticalmodeling has gained significant interest in recent
years. Copulas provide a means to capture the dependencies between random variables
and derive joint distributions. The concept of copulas was introduced by Fisher in 1959
[126], and since then, it has found applications in various fields.
One of the key advantages of copulas is that they provide scale-freemeasures of statistical
dependence. Thismeans that themeasure of dependence is independent of themarginal
distributions of the variables involved. This property makes copulas useful in capturing
and analyzing the dependence structure between variables.
The application of copulas extends to fields such as finance and economics. Jouini and
Clemen [70] discuss the use of copulas in aggregating information from different sources
by consideringmultivariate distributions that are functions of theirmarginals. Patton [105]
provides a comprehensive review of the applications of copulas in finance and economics,
highlighting their usefulness in modeling dependencies and risks.
In the context of joint chance-constrained optimization, Houda and Lisser [64] use copu-
las to model the dependence between random variables. Copulas offer a flexible frame-
work to capture the joint distribution of uncertain variables and enable the formulation of
joint chance constraints. Furthermore, Liu et al. [91] propose a collective neurodynamic
approach using multiple interconnected recurrent neural networks for distributed con-
strained optimization. This approach leverages the power of neural networks to tackle
optimization problems with complex constraints.

In this section, we introduce the notion of a copula and the correspondent properties
we use in this paper.
Definition 15. A copula C : [0, 1]d −→ [0, 1] of dimension d is a joint cumulative distribu-
tion function with for which the marginals are uniformly distributed on the interval [0, 1].
Theorem 32. (Sklar’s Theorem 1959) Let F a d-dimensional cumulative distribution func-
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tion with marginals F1, F2, .., Fd, there exists a copula C such that
∀x ∈d F(x) = C(F1(x1), F2(x2), .., Fd(xd)).

If F1, F2, .., Fd are all continuous then C is unique and given by
C(u) = F(F1−1(u1), F2−1(u2), .., Fd−1(ud)),

otherwise C is uniquely determined on rang(F1)× rang(F2), .., rang(Fd).
Definition 16. If a copula C has a density, then it is expressed as follows

C(u1, u2, .., ud) = ∂dC(u1, u2, .., ud)
∂u1u2..ud

To capture the dependencies between stochastic parameters, we often rely on copu-
las. While many copulas lack explicit analytical expressions, such as the Gaussian copula,
there exists a class of copulas known as Archimedean copulas that offer explicit math-
ematical formulations. Archimedean copulas derive their name from the Greek mathe-
matician Archimedes and are defined based on specific generator functions. These gen-
erator functions characterize the underlying dependence structure of the copula.
Definition 17. A copula C is Archimedean if it is represented as follows

C(u1, u2, .., ud; θ) = ψ[−1](ψ(u1; θ), ψ(u2; θ), .., ψ(ud; θ); θ),

where ψ : [0, 1] × Θ −→ [0,∞) a strictly continuously declining function called genera-
tor of C, such that ψ(1; θ) = 0. ψ[−1] is a pseudo-inverse of ψ defined by ψ[−1](t; θ) ={
ψ−1(t; θ) if 0 ≤ t ≤ ψ(0; θ)

0 if t ≥ ψ(0; θ)
and θ is a dependency parameter.

Definition 18. If lim
u→+∞

ψ(u) = +∞, then C is called a strict Archimedean copula and ψ is
called a strict generator.
Theorem33. Letψ : [0, 1] −→ R+ a convex, strictly decreasing function such that lim

u→+∞
ψ(u) =

+∞ and
(−1)k

dk

dtk
ψ−1(t) ≥ 0, k = 0, 1, ..K. (5.1)

Then ψ is a strict copula generator.
Theorem 34. All copula generators are convex.

We give in Table 5.1 some examples of Archimedean copulas often used in the litera-
ture.
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Name of copula Parameter θ Generator ψθ(t)Frank θ > 0 −ln( e−θt−1

e−θ−1
)

Gumbel–Hougaard θ ≥ 1 e−t
1
θ

Joe θ > 1 −ln(1− (1− t)θ)

Table 5.1: Examples of some commonly used Archimedean copulas
5.2 . Elliptically symmetric random vectors

The concept of elliptically symmetric random vectors emerged in the field of probabil-
ity theory in the early 1970s as an extension of the class of multivariate normal distribu-
tions. Extensive research on elliptical distributions and their fundamental properties has
been conducted, and a comprehensive survey of these results can be found in the book
by Fang et al. [44]. This survey provides a comprehensive overview of the basic concepts,
key findings, and properties of elliptical distributions, making it an invaluable resource for
further exploration and study in this area. We consider in this chapter that the random
vectors are elliptically distributed. We then recall some definitions and properties of the
elliptical family.
Definition 19. An n-dimensional vector X follows an elliptical symmetric distribution if
there exists a function Ψ such that its characteristic function is given by

ϕ(z) = E[eiz
TX ] = eiz

TµΨ(zTΣz). (5.2)
where µ is the location parameter, and Σ is a positive-definite matrix. The function Ψ is
called a characteristic generator of the elliptical distribution. We noteX ∼ Ellip(µ,Σ, ϕ).
Definition 20. When the density function of an elliptical distribution exists, it must have
the structure

f(x) =
C√detΣg

(√
(x− µ)TΣ−1(x− µ)

)
. (5.3)

where g : R+ → R++ is a so-called radial density and c > 0 is a normalization factor
ensuring that f integrates to one.
Remark 4. Table 5.2 gives a selection of somemultivariate elliptical distributions, together
with their characteristic generators, radial densities, quantile functions of the standard
distribution, and the convexity conditions of the quantile function. The quantile functions
of the selected distributions are given in Figure 5.2.

5.3 . Geometric programs

5.3.1 . Deterministic equivalent formulation
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Law Characteristic generator Radial density Quantile Function Convexity Condition
Normal e−

1
2
t e−

1
2
t2

√
2erf−1(2α− 1) 1

2
≤ α ≤ 1

Laplace (1 + 1
2
t)−1 e−

√
2|t| ln(2α), if 0 ≤ α ≤ 1

2
1
2
≤ α ≤ 1

−ln(2(1− α)), if 1
2
≤ α ≤ 1

Cauchy e−
√
t (1 + t2)−

n+1
2 tan(π(α− 1

2
)) 1

2
≤ α ≤ 1

Logistic 2π
√
t

eπ
√
t−e−π

√
t

e−t2

(1+e−t2 )2
ln( α

1−α
) 1

2
≤ α ≤ 1

Table 5.2: Table of selected elliptical distributions

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

The qunatile function of standard normal distribution

α

qn
or

m

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2
The qunatile function of standard laplace distribution

α

ql
ap

la
ce

0.0 0.2 0.4 0.6 0.8 1.0

−
30

−
20

−
10

0
10

20
30

The qunatile function of standard cauchy distribution

α

qc
au

ch
y

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

The qunatile function of standard logistic distribution

α

ql
og

is

Figure 5.1: Quantile functions of selected standard elliptical distributions
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In this section, we study the following joint chance-constrained geometric program

min
t∈RM

++

E

 I0∑
i=1

ci

M∏
j=1

t
aij
j

 ,
s.t P

 Ik∑
i=1

ci

M∏
j=1

t
aij
j ≤ 1, k = 1, ....,K

 ≥ α, (5.4)

with α ∈ [0.5, 1).

Assumption35. Weassume that the rowvectors are dependent and elliptically distributed
and that the dependence is capturedby aGumbel-Hougaard copula, i.e.,C0 = (c1, ..., cI0) ∼Ellip(µ0,Σ0, ϕ) and Ck = (c1, ..., cIk) ∼ Ellip(µk,Σk, ϕ). Where µk is a mean vector and
Σk =

 σ11 σ12 . . . σ1Ik... ... . . .
...

σIk1 σIk2 . . . σIkIk

 is a positive definite matrix, k = 1, ...,K.

Assumption 36. In this research, we consider only the elliptical distributions present in
Table 5.2.

Using the theory of copula and Sklar’s properties, a deterministic equivalent of (5.4) is
given by [27]

min
t∈RM

++

I0∑
i=1

µi

M∏
j=1

t
aij
j ,

s.t
Ik∑
i=1

µi

M∏
j=1

t
aij
j + ϕ−1((αyk)

1
θ )

√√√√ Ik∑
i=1

Ik∑
l=1

σil

M∏
j=1

t
aij+alj
j ≤ 1, k = 1, ...,K, (5.5)

K∏
k=1

yk ≥ α, 0 < yk ≤ 1 , k = 1, ...,K,

where ϕ is one-dimensional standard elliptical distribution.
Problem (5.5) is not convex, so we apply a logarithmic transformation by setting tj =
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erj . This transformation allows us to reformulate problem (5.5) as follows

min I0∑
i=1

µiexp


M∑
j=1

aijrj

 ,

s.t
Ik∑
i=1

µiexp


M∑
j=1

aijrj

+ ϕ−1((αyk)
1
θ )

√√√√√∑
i∈Ik

∑
l∈Ik

σilexp


M∑
j=1

(aij + alj)rj

 ≤ 1, k = 1, ...,K,

K∑
k=1

−ln(yk) ≤ −ln(α), (5.6)
− yk < 0 , k = 1, ...,K,

yk ≤ 1 , k = 1, ...,K.

Theorem 37. The resulting problem (5.6) is biconvex.
Proof. The convexity on r is straightforward. We have for Gumbel-Hougaard copula that
θ ≥ 1, there follows that 0 < 1

θ ≤ 1. Since 0 < yk ≤ 1, we obtain 0 < yk
1
θ ≤ 1. We

have then, (αyk)
1
θ ≥ α ≥ 0.5. From Table 5.2, yk 7→ ϕ−1((αyk)

1
θ ) is convex. The conclusion

follows.
Theorem 38. Let (r∗, y∗) ∈ RM × RK and
gk(r, yk) = ϕ−1((αyk)

1
θ )
√∑

i∈Ik

∑
l∈Ik

σkilexp{∑M
j=1(akji + akjt)rj

}. If there exist γr, γy , β+,
β− and λ such that
∑

i∈I0 µiai1exp
{∑M

j=1 aijrj

}
...∑

i∈I0 µiaiMexp{∑M
j=1 aijrj

}
+

K∑
k=1

γrk


∑

i∈Ik ai1exp
{∑M

j=1 µiaijrj

}
+∇r1gk(r, yk)...∑

i∈Ik µiaiMexp{∑M
j=1 aijrj

}
+∇rM gk(r, y)

 = 0,

∑
i∈Ik

γyk∇ykgk(r, y) + β+k − β−k −
λ

yk
= 0, k = 1, ...,K (5.7)

γr ≥ 0,
∑
i∈Ik

γrk

∑
i∈Ik

µiexp


M∑
j=1

aijrj

+ gk(r, y)

 = 0, γy ≥ 0,
∑
i∈Ik

γyk

∑
i∈Ik

µiexp


M∑
j=1

aijrj

+ gk(r, y)

 = 0,

β+ ≥ 0, β+k(yk−1) = 0, β− ≥ 0, β−k(yk) = 0, λ ≥ 0, λ ≥ 0, λ(ln(α)− K∑
k=1

ln(yk)) = 0, k = 1, ...,K

then (r∗, y∗) is a partial KKT point of (5.5).
Let (r∗, y∗) ∈ RM ×RK . We recall that if (5.5) is satisfied with partial Slater constraint

qualification at (r∗, y∗), then (r∗, y∗) is a partial optimum of (5.5) if and only if (r∗, y∗) is a
partial KKT point of (5.5). Furthermore if γr = γy , then (r∗, y∗) is a KKT point of (5.5).
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5.3.2 . The dynamical neural network
We propose the following dynamical neural network to solve program (5.5)

drj
dt

= −

(∑
i∈I0

aijexp


M∑
j=1

aijrj

+
K∑
k=1

γk +
∑

i∈Ik

µiexp


M∑
j=1

aijrj

+ gk(r, y)




+

×

∑
i∈Ik

aijµiexp


M∑
j=1

aijrj

+∇rjgk(r, yk)

), j = 1, ...,M,

dyk
dt

= −

(∑
i∈Ik

∇ykgk(r, y)×

γk +
∑

i∈Ik

µiexp


M∑
j=1

aijrj

+ gk(r, y)




+

+ β+k(β+k + yk − 1)+ + β−k(β−k − yk)+ − λ

yk

(
λ+ ln(α)− K∑

k=1

ln(yk))
+

)
, k = 1, ...,K,

dγk
dt

=

γk +
∑

i∈Ik

µiexp


M∑
j=1

aijrj

+ gk(r, y)




+

− γk, k = 1, ...,K, (DNN)
dβ+k

dt
=
(
β+k + yk − 1

)
+
− β+k, k = 1, ...,K,

dβ−k

dt
=
(
β−k − yk

)
+
− β−k, k = 1, ...,K,

dλ

dt
=
(
λ+ ln(α)− K∑

k=1

ln(yk))
+
− λ.

Let r = (r1, ..., rM )T , y = (y1, ..., rK)T , γ = (γ1, ..., γK)T , β+ = (β+1, ..., β+K)T and β− =

(β−1, ..., β−K)T . For the sake of simplicity, we can write (DNN) as
dr

dt
= A(r, y, γ), (5.8)

dy

dt
= B(r, y, γ, β+, β−, λ), (5.9)

dγ

dt
= C(r, y, γ), (5.10)

dβ+
dt

= D(y, β+), (5.11)
dβ−
dt

= E(y, β−), (5.12)
dλ

dt
= F (y, λ). (5.13)

A simplified circuit implementation of (5.8)-(5.13) is given in Figure 5.2.
Theorem 39. Suppose that (r∗, y∗) is a partial optimum of (5.6) and γ∗, β∗+, β∗− and λ∗ the
corresponding Lagrange multipliers, then (r∗, y∗, γ∗, β∗+, β

∗
−, λ

∗) is a an equilibrium point
of (DNN). Additionally, every equilibrium point of (DNN) is a KKT point of (5.6).
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Figure 5.2: A simplified implementation of the neural network (5.8)-(5.13)

Proof. Let (r∗, y∗, γ∗, β∗+, β∗−, λ∗) is a an equilibrium point of (DNN), then all the left side
derivatives in (DNN) are equal to zero. Weuse the fact that ((a+ b)+ = a) ⇔

(
a ≥ 0, b ≤ 0 and aT b = 0

)
and we obtain the partial KKT system (5.7) with γr = γy = γ. Now if (r∗, y∗) is a partial
optimum of (5.5) and γ∗, β∗+, β∗− and λ∗ the corresponding Lagrange multipliers, then it is
straightforward that (r∗, y∗, γ∗, β∗+, β∗−, λ∗) is a an equilibrium point of (DNN).
Theorem 40. The neurodynamic model (DNN) is stable and globally convergent to a KKT
point (r∗, y∗, γ∗, β∗+, β∗−, λ∗) of (5.6).
Proof. Let µ = (r, y, γ, β+, β−, λ), we consider the following Lyapunov function

V (µ) = ||Φ(µ)||22+
1

2
||µ− µ∗||22,

where Φ(y) =



A(r, y, γ)
B(r, y, γ, β+, β−, λ)

C(r, y, γ)
D(y, β+)
E(y, β−)
F (y, λ)

. Similar to the analysis of Theorem 46, the Jacobian

matrix ∇Φ is negative semidefinite. We have dV (µ)
dt = (dΦdt )

TΦ + ΦT dΦ
dt + (µ − µ∗)T dµ

dt .Observe that dΦ
dt = dΦ

dµ
dµ
dt = ∇Φ(µ)Φ(µ), we write then

dV (µ)

dt
= ΦT (∇Φ(µ)T +∇Φ(µ))Φ︸ ︷︷ ︸

≤0 since∇Φ is negative semidfinite
+(µ− µ∗)T (Φ(µ)− Φ(µ∗))︸ ︷︷ ︸

≤0 by Lemma 66
.
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There follows that dV (µ)
dt ≤ 0, thus V (µ) is a global Lyapunov function for the dynamical

system (DNN) and (DNN) is stable in the sense of Lyapunov.
According to LaSalle’s invariance principle, the trajectories µ(t) of system (DNN) converge
to the largest invariant setM =

{
µ | dV (µ)

dt = 0
}. It is easy to see that dµ

dt = 0 if and only
if dV

dt = 0, therefore, the proposed neural network converges globally to the solution set
of the problem (5.5).

5.3.3 . Numerical experiments
To assess the performance of our dynamical neural network, we employed the multi-

dimensional shape optimization problem with joint chance constraints from [89].

min
x∈RM

++

m∏
i=1

x−1
i ,

s.t P

m−1∑
j=1

(
m− 1

Awallj
x1

m∏
i=1,i ̸=j

xi),
1

Afloor

m∏
j=2

xj ≤ 1

 ≥ 1− ϵ, (5.14)
1

γi,j
xix

−1
j ≤ 1, 1 ≤ i ̸= j ≤ m.

In our numerical experiments, we fixed the following parameters: m = 10, 1
γi,j

= 0.5,
ϵwall = 0.15, ϵfloor = 0.15 and ϵ = 0.15. The inverse of floor’s area ( 1

Afloor
) and the inverse

of wall area ( 1
Awallj

) for each j = 1, ...,m were considered as dependent variables. The
mean value of 1

Afloor
was set to 1.0/20.0 and the mean values of 1

Awallj
, j = 1, ...,m were

randomly selected from the range [1.0/60.0, 1.0/40.0]. The value of the coefficients of
the covariance matrix is set to 0.01. We first compare the results of our approach with
those of the sequential convex approximation algorithm from [75] for θ = 10.0 (i.e, high
dependency). We test the robustness of the different approaches by creating 100 random
samples of the variables 1

Awallj
and 1

Afloor
using the same mentioned moments. We then

examine if the solutions from the three methods meet the constraints of (5.14) for all 100
cases. If the solutions are not viable for a particular case, it is referred to as a violated
scenario (VS). The numerical results are displayed in Table 5.3. Column one gives the
number of variablesm. Columns two and three show the objective value and the number
of VS obtained through our neural network, respectively. Columns four and five present
the objective value and the number of VS obtained using the sequential algorithm. The
sixth column gives the gap between the two objective values, calculated as follows: GAP
= (Obj valueSA−Obj valueNN)Obj valueSA × 100, where Obj valueNN and Obj valueSA represent the
objective values obtained by the neural network and sequential algorithm, respectively.
Table 5.3 indicates that our neural network outperforms the sequential algorithm, as the
upper bounds obtained are better and fewer scenarios are violated.

We solve (5.14) for different values of m and different values of θ; the dependence
parameter of Gumbel-Hougaard Copula. Tables 5.4, 5.5, 5.6 show the obtained results
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m Neural Network VS Sequential Algorithm VS GAP3 0.283 5 0.334 8 15.37 0.399 0 0.444 9 10.110 0.601 1 0.667 9 9.915 0.253 3 0.277 6 8.620 0.663 4 0.685 5 3.2
Table 5.3: Neural network vs. the sequential algorithm for normal distribution

m θ = 1 θ = 2 θ = 10(independent constraints)Obj value VS Obj value VS Obj value VS10 2.78 11 1.97 14 1.06 2115 13.91 11 10.46 22 6.19 3120 1.07 8 0.85 9 0.60 1030 3.13 1 2.50 7 1.75 9
Table 5.4: Results for different values ofm for normal distribution

of the normal distribution, Laplace distribution and the logistic distribution, respectively.
For the three tables, column one gives the number of variables m. Columns two and
three give the objective value and the number of VS when θ = 1, respectively. Columns
four and five show the objective value and the number of VS when θ = 2, respectively.
Finally, columns six and seven present the objective value and the number of VS when
θ = 10, respectively. We observe that for the different distributions, the objective value
decreases as the dependency between the random variables becomes higher. The last
observation is coherent since the joint chance constraint becomes less restrictive as θ
increases. Nevertheless, the number of violated scenarios increases for the problems
with high dependency.

5.4 . Linear programs as a particular case

This section was published in Results in Control and Optimization Journal [131].
We study now the following stochastic linear programming problem

min cTx,

s.t. P(Tkx ≤ Dk, k = 1, ..,K) ≥ 1− α, (5.15)
x ≥ 0,

where Tk, k = 1, ..,K are random vector rows, Dk, k = 1, ..,K are constants and 1 − α

is a given confidence level. In our study, the dependence among the random rows Tk,
k = 1, ..,K , is modeled using the Gumbel-Hougaard copula with a parameter θ. Each row
vector Tk is characterized by a known mean vector µk = (µk1 , ...., µkn)

T and a covariance
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m θ = 1 θ = 2 θ = 10(independent constraints)Obj value VS Obj value VS Obj value VS10 2.30 24 1.34 30 0.86 3615 4.22 19 2.47 26 1.53 3120 5.19 10 3.79 15 2.33 1830 11.49 2 6.83 5 4.21 8
Table 5.5: Results for different values ofm for Laplace distribution
m θ = 1 θ = 2 θ = 10(independent constraints)Obj value VS Obj value VS Obj value VS10 0.75 1 0.28 4 0.21 715 2.21 4 1.35 5 0.75 620 3.30 5 2.37 7 1.38 930 4.98 1 3.56 5 2.05 9
Table 5.6: Results for different values ofm for Logistic distribution

matrix Σk.
5.4.1 . Deterministic formulation equivalent

Problem (5.15) can be equivalently formulated as [27]
min cTx,

s.t. µTk x+ ϕ−1((1− α)yk
1
θ )
√
xTΣkx ≤ Dk, k = 1, ..,K,

K∑
k=1

yk = 1, (5.16)
yk ≥ 0, k = 1, ..,K,

x ≥ 0,

where ϕ is one-dimensional standard normal distribution.
The convexity of the feasible set of problem (5.16) is guaranteed under certain con-

ditions, as stated in the following Theorem. The detailed proof of this Theorem can be
found in the work of Cheng et al. [27].
Theorem 41. [27]. If 1− α ≥ max(ϕ(u∗, v∗)) where

u∗ = maxk rk + 1

rk − 1
(λkmin)

−1
2 ||µk||

and
v∗ = maxk rk + 1√

(rk + 1) + ( 1−θ
2pln(p)fϕ(

√
rk + 1))2 + 1−θ

2pln(p)fϕ(
√
rk + 1)

,
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for some rk ≥ 1 with λmin is the smallest eigenvalue of Σk, ϕ is the standard normal
distribution and fϕ is the associated density, then the feasible set of (8)

X(α) =

{
x ≥ 0 | ∀k = 1, ..,K, ∃yk ≥ 0 : µTk x+ ϕ−1((1− α)yk

1
θ )
√
xTΣx ≤ Dk,

K∑
k=1

yk = 1

}

is convex.

Corollary 42. By Theorem 41, problem (5.16) is biconvex.

Let f(x) = cTx, gθk(x, y) = µTk x + ϕ−1((1− α)yk
1
θ )
√
xTΣkx − Dk, l(y) = (

∑K
k=1 yk −

1, 1−
∑K

k=1 yk)
T , hk(y) = −yk and w(x) = −x. We write problem (5.15) as

min f(x),

s.t. gθk(x, y) ≤ 0, k = 1, ..,K,

l(y) ≤ 0, (5.17)
hk(y) ≤ 0, k = 1, ..,K,

w(x) ≤ 0,

Theorem 43. Let U the feasible set of (5.16), let (x∗, y∗) ∈ U . If there are µ(1), µ(2), γ, λ, ω
such that
∇xf(x

∗) + µ(1)
T∇xgθ(x

∗, y∗) + ωT∇xw(x
∗) = 0, (5.18)

µ(1) ≥ 0, µ(1)
T
gθ(x

∗, y∗) = 0, ω ≥ 0, ωTw(x∗) = 0, (5.19)
µ(2)

T∇ygθ(x
∗, y∗) + γT∇yl(y

∗) + λT∇yh(y
∗) = 0, (5.20)

µ(2) ≥ 0, µ(2)
T
gθ(x

∗, y∗) = 0, γ ≥ 0, γT l(y∗) = 0, (5.21)
λ ≥ 0, λTh(y∗) = 0, (5.22)
with gθ(x, y) = (gθ1(x, y), . . . , gθK (x, y))

T and h(y) = (h1(y), . . . , hK(y))T , then (x∗, y∗) is
a partial KKT point of (5.17).

As stated in the previous Section, if (5.17) is satisfied with partial Slater constraints
qualificationt (x∗, y∗), then (x∗, y∗) is a partial optimum of (5.17) if and only if (x∗, y∗) is a
partial KKT point of (5.17). Moreover, if µ(1) = µ(2) then (x∗, y∗) is a KKT point of (5.17).

5.4.2 . The dynamical neural network

The neural network to solve (5.17) is driven by the following differential system
101



dx

dt
= −(∇xf(x) +∇xgθ(x, y)

T (µ+ gθ(x, y))+ +∇xw(x)
T (ω + w(x))+), (5.23)

dy

dt
= −(∇ygθ(x, y)

T (µ+ gθ(x, y))+ +∇yl(y)
T (γ + l(y))+ +∇yh(y)

T (λ+ h(y))+), (5.24)
dµ

dt
= (µ+ gθ(x, y))+ − µ, (5.25)

dγ

dt
= (γ + l(y))+ − γ, (5.26)

dλ

dt
= (λ+ h(y))+ − λ, (5.27)

dω

dt
= (ω + w(x))+ − ω. (5.28)

We rewrite the dynamical system as
{

dz
dt = Φ(z)
z(t0) = z0

,
where z = (x, y, µ, γ, λ, ω) and

Φ(z) =


−(∇xf(x) +∇xgθ(x, y)

T (µ+ gθ(x, y))+ +∇xw(x)
T (ω + w(x))+)

−(∇ygθ(x, y)
T (µ+ gθ(x, y))+ +∇yl(y)

T (γ + l(y))+ +∇yh(y)
T (λ+ h(y))+)

(µ+ gθ(x, y))+ − µ
(γ + l(y))+ − γ
(λ+ h(y))+ − λ
(ω + w(x))+ − ω

.
The neural network system given by equations (5.23)-(5.28) can be implemented as an
autonomous differential system using a generalized circuit. Figure 5.3 illustrates a gen-
eralized circuit implementation of the neural network. To begin the computation, we ini-
tialize the values of the variables x, y, µ, γ, λ, and ω with the initial values x0, y0, µ0, γ0, λ0,and ω0, respectively. We then solve equations (5.23)-(5.28) iteratively until convergence is
achieved.

The following Theorem establishes the equivalence between an equilibrium point of
the neural network system (5.23)-(5.28) and a Karush-Kuhn-Tucker (KKT) point of the op-
timization problem (5.16).

Theorem 44. Let (x∗, y∗, µ∗, γ∗, λ∗, ω∗) an equilibrium point of (5.23)-(5.28), then (x∗, y∗)

is a partial KKT point of (5.16) with µ(1) = µ(2). If (x∗, y∗) is a partial optimum of (5.16),
then there exist (µ∗, γ∗, λ∗, ω∗) such that (x∗, y∗, µ∗, γ∗, λ∗, ω∗) is an equilibrium point of
(5.23)-(5.28).

Proof. Let (x∗, y∗, µ∗, γ∗, λ∗, ω∗)be anequilibriumpoint of (5.23)-(5.28), wehave then dx∗

dt =
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Figure 5.3: A block diagram for the neural network (5.23)-(5.28)
0, dy∗dt = 0, dµ∗

dt = 0, dγ∗

dt = 0, dλ∗

dt = 0 and dω∗

dt = 0. There follows that
∇xf(x

∗) +∇xgθ(x
∗, y∗)T (µ∗ + gθ(x

∗, y∗))+ +∇xw(x
∗)T (ω∗ + w(x∗))+ = 0,

∇ygθ(x
∗, y∗)T (µ+ gθ(x

∗, y∗))+ +∇yl(y
∗)T (γ∗ + l(y∗))+ +∇yh(y

∗)T (λ∗ + h(y∗))+ = 0,

(µ∗ + gθ(x
∗, y∗))+ − µ∗ = 0,

(γ∗ + l(y∗))+ − γ∗ = 0,

(λ∗ + h(y∗))+ − λ∗ = 0,

(ω∗ + w(x∗))+ − ω∗ = 0.

We observe that (µ∗ + gθ(x
∗, y∗))+ − µ∗ = 0 if and only if µ∗ ≥ 0, gθ(x∗, y∗) ≤ 0 and
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µ∗T gθ(x
∗, y∗) = 0. The same observation applies for (γ∗+l(y∗))+−γ∗ = 0, (λ∗+h(y∗))+−

λ∗ = 0 and (ω∗ + w(x∗))+ − ω∗ = 0. By substitution, we find the KKT system (5.18)-(5.22).
The proof of the converse is straightforward and the conclusion follows.
Theorem 45. For any initial point (x(t0), y(t0), µ(t0), γ(t0), λ(t0), ω(t0)), there exists an
unique continuous solution (x(t), y(t), µ(t), γ(t), λ(t), ω(t)) for (5.23)-(5.28).
Proof. Since∇xf(x),∇xgθ(x, y),∇ygθ(x, y),∇xw(x),∇yh(y) and∇yl(y) are continuouslydifferentiable on open sets, then all the second terms of the differential equations (5.23)-
(5.28) are locally Lipschitz continuous. According to the local existence of ordinary differ-
ential equations also known as Picard–Lindelöf Theorem [77], the neural network (5.23)-
(5.28) has a unique continuous solution (x(t), y(t), µ(t), γ(t), λ(t), ω(t)).

To show the stability of the neural network (5.23)-(5.28), we need to show the semidef-
initeness of the Jacobian matrix∇Φ(z).
Theorem 46. The Jacobian matrix∇Φ(z) is negative semidefinite.
Proof. We consider the dynamical neural network (5.23)-(5.28). We assume that there
exist 0 ≤ p ≤ K , 0 ≤ q ≤ 2, 0 ≤ s ≤ K and 0 ≤ t ≤ n such that (µ+ gθ)+ =

(µ1 + gθ1(x, y), µ2 + gθ2(x, y), ....., µp + gθp(x, y), 0, ...., 0︸ ︷︷ ︸
K−p

),
(γ + l)+ = (γ1 + l1(y), γ2 + l2(y), ....., γq + lq(y), 0, ...., 0︸ ︷︷ ︸

2−q

),
(λ+ h)+ = (λ1 + h1(y), λ2 + h2(y), ....., λs + hs(y), 0, ...., 0︸ ︷︷ ︸

K−s

),
(ω + w)+ = (ω1 + w1(x), ω2 + w2(x), ....., ωt + wt(x), 0, ...., 0︸ ︷︷ ︸

n−t

).

We write the Jacobian matrix of ϕ as follows ∇Φ(z) =



A1 A2 A3 0 0 A6

B1 B2 B3 B4 B5 0
C1 C2 C3 0 0 0
0 D2 0 D4 0 0
0 E2 0 0 E5 0
F1 0 0 0 0 F6

 ,
where

A1 = −(∇2
xf(x) +

p∑
i=1

((µi + gθi)∇2
xgθ

p
i (x, y)) +∇xgθ

p(x, y)T∇xgθ
p(x, y)

+
t∑

i=1

((ωi + wi)∇2
xw

t
i(x)) +∇xw

t(x)
T∇xw

t(x)),

A2 = −(

p∑
i=1

((µi + gθi)∇y∇xgθ
p
i (x, y)) +∇ygθ

p(x, y)T∇xgθ
p(x, y)),
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B1 = −(

p∑
i=1

((µi + gθi)∇x∇ygθ
p
i (x, y)) +∇xgθ

p(x, y)T∇ygθ
p(x, y)),

B2 = −(

p∑
i=1

((µi + gθi)∇2
ygθ

p
i (x, y)) +∇ygθ

p(x, y)T∇ygθ
p(x, y) +

q∑
i=1

((γi + l)∇2
yl

q
i (y))

+∇yl
q(y)T∇yl

q(y) +
s∑

i=1

((λi + h)∇2
yh

s
i (y)) +∇yh

s(y)T∇yh
s(y)),

A3 = −∇xg
p
θ(x, y)

T , A6 = −∇xw
t(x)T , B3 = −∇yg

p
θ(x, y)

T

B4 = −∇yl
q(y)T , B5 = −∇yh

s(y)T , C1 = ∇xg
p
θ(x, y),

C2 = ∇yg
p
θ(x, y), D2 = ∇yl

q(y), E2 = ∇yh
s(y),

F1 = ∇xw
t(x),

C3 = Sp = −
[

Op×p Op×(K−p)

O(K−p)×p I(K−p)×(K−p)

]
, D4 = Sq = −

[
Oq×q Oq×(2−q)

O(2−q)×q I(2−q)×(2−q)

]
,

E5 = Ss = −
[

Os×s Os×(K−s)

O(K−s)×q I(K−s)×(K−s)

]
and F6 = St = −

[
Ot×t Ot×(n−t)

O(n−t)×t I(n−t)×(n−t)

]
.

The Jacobian matrix becomes∇Φ(z) =



A1 BT
1 A3 0 0 A6

B1 B2 B3 B4 B5 0
−AT

3 −BT
3 Sp 0 0 0

0 −BT
4 0 Sq 0 0

0 −BT
5 0 0 Ss 0

−AT
6 0 0 0 0 St

.

Let A =

[
A1 BT

1

B1 B2

]
, B =

[
A3 0 0 A6

B3 B4 B5 0

]
and S =


Sp 0 0 0
0 Sq 0 0
0 0 Ss 0
0 0 0 St

, we have then
∇Φ(z) =

[
A B

−BT S

]
.

It is clear that S is negative semidefinite. Furthermore, since gθ is biconvex, l, h and w are
convex then∇2

xgθ
p
i (x, y),∇2

xw
p
i (x),∇2

ygθ
p
i (x, y),∇2

yl
q
i (y) and∇2

yh
s
i (y) are positive semidefi-

nite. It is easily proved that∇xgθ
p(x, y)T∇xgθ

p(x, y),∇xw
t(x)

T∇xw
t(x),∇ygθ

p(x, y)T∇ygθ
p(x, y),

∇yl
q(y)T∇yl

q(y) and ∇yh
s(y)T∇yh

s(y) are positive semidefinite. There follows that A1and B2 are negative semidefinite; hence, A is negative semidefinite. Since A and S are
negative semidefinite, we conclude that∇Φ is negative semidefinite [48].
Theorem 47. The neural network (5.23)-(5.28) is stable and converges to a partial opti-
mum of (5.16).
Proof. Let z∗ = (x∗, y∗, µ∗, γ∗, λ∗, ω∗) an equilibrium point for the neural network (5.23)-
(5.28). We consider the following Lyapunov function

E1(z) = ∥Φ(z)∥2 + 1

2
∥z − z∗∥2
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we have that dΦ
dt = ∇Φ

∇z
dz
dt = ∇Φ(z)Φ(z), then dE1(z(t))

dt = (dΦdt )
TΦ+ ΦT dΦ

dt + (z − z∗)T dz
dt =

ΦT (∇Φ(z)T +∇Φ(z))Φ + (z − z∗)TΦ(z).
By Theorem 46, we have ΦT (∇Φ(z)T +∇Φ(z))Φ ≤ 0. By Theorem 46 and Lemma 24,

we have (z − z∗)TΦ(z) = (z − z∗)T (Φ(z)−Φ(z∗)) ≤ 0 then dE1(z(t))
dt ≤ 0. E1(z) is positive

and dE1(z(t))
dt ≤ 0 then the neural network (5.23)-(5.28) is globally stable in the sense of

Lyapunov.
AsE1(z) ≥ 1

2 ∥z − z∗∥2, then there exists a convergent subsequence (z(tk)k≥0)where
tk −→ ∞ when k −→ ∞, such that limk−→∞z(tk) = ẑ, where ẑ satisfies dE1(z(t))

dt = 0.
Notice that ẑ is aw-limit point of {z(t)}t≥t0 . We have by LaSalle’s invariance principle [128]
that the neural network converges to the largest invariant set contained in M which is
defined byM = {z(t)|dE1(z)

dt = 0}. We observe that (dxdt = 0, dydt = 0, dµdt = 0, dγdt = 0, dλdt =

0 and dω
dt = 0) ⇔ dE1(z)

dt = 0, therefore, ẑ is an equilibrium point for the neural network
(5.23)-(5.28).
We now define a new Lyapunov function

E2(z) = ∥Φ(z)∥2 + 1

2
∥z − ẑ∥2

E2(z) is continuously differentiable,E2(ẑ) = 0 and limk−→∞z(tk) = ẑ then limt−→∞E2(z(t)) =

E2(ẑ). We have also dE2(z)
dt ≤ 0, then 1

2 ∥z − ẑ∥2 ≤ E2(z(t)). Hence, limt−→∞ ∥z − ẑ∥ = 0

and limt−→∞z(t) = ẑ. Therefore, the neural network (5.23)-(5.28)) is convergent in the
sense of Lyupanov to an equilibrium point ẑ = (x̂, ŷ, µ̂, γ̂, λ̂, ω̂) where (x̂, ŷ) is a partial
optimum of problem (5.16).

5.4.3 . Numerical experiments
To assess the performance of our approach, we conducted computational tests on a

standard profit maximization problem. We compared the obtained results with a tangent
approximation method proposed by Cheng et al. [25].

A manufacturing firm operates three machines to produce three different products.
Themanufacturing time for each unit of the products follows a normal distribution. Table
5.7 provides the mean and standard deviation values for the manufacturing time of each
product, as well as the daily capacity of the machines. The first column lists the machine
names, while columns 2 to 7 display the mean and standard deviation values for each
product. The machine capacities are listed in column 8.

Our objective is to find the optimal daily production quantities for each product, taking
into account the available machining times. The profit per unit for product 1, 2, and 3 is
given by p1 = 60, p2 = 65, and p3 = 62, respectively. We can formulate the minimization
problem as follows

min −60x1 − 65x2 − 62x3, (5.29)
s.t. P(t11x1 + t12x2 + t13x3 ≤ 680,

t21x1 + t22x2 + t23x3 ≤ 660,

t31x1 + t32x2 + t33x3 ≤ 710) ≥ 0.95, (5.30)
x1, x2, x3 ≥ 0. (5.31)
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Machine Time per unit (min) MachineProduct 1 Product 2 Product 3 capacitymean standard mean standard mean standard (min/day)deviation deviation deviationMachine 1 ¯t11 = 12 σ11 = 2.3 ¯t12 = 12 σ12 = 2.0 ¯t13 = 12 σ13 = 2.0 C1 = 680Machine 2 ¯t21 = 12 σ21 = 2.9 ¯t22 = 12 σ22 = 2.3 ¯t23 = 13 σ23 = 2.0 C2 = 660Machine 3 ¯t31 = 14 σ31 = 2.9 ¯t32 = 14 σ32 = 2.9 ¯t33 = 12 σ33 = 2.9 C3 = 720

Table 5.7: Data
The resulting deterministic equivalent problem of (5.29)- (5.31) is given as follows

min −60x1 − 65x2 − 62x3,

s.t. t̄11x1 + t̄12x2 + t̄13x3 + ϕ−1((0.95)y1
1
θ )
√
σ211x

2
1 + σ212x

2
2 + σ213x

2
3 ≤ 680,

t̄21x1 + t̄22x2 + t̄23x3 + ϕ−1((0.95)y2
1
θ )
√
σ221x

2
1 + σ222x

2
2 + σ223x

2
3 ≤ 660,

t̄31x1 + t̄32x2 + t̄33x3 + ϕ−1((0.95)y3
1
θ )
√
σ231x

2
1 + σ232x

2
2 + σ233x

2
3 ≤ 710,

y1 + y2 + y3 = 1,

x1, x2, x3, y1, y2, y3 ≥ 0.

We consider that [t11, t12, t13]T , [t21, t22, t23]T and [t31, t32, t33]
T are dependent and the de-

pendence is driven by Gumbel-Hougaard copula. We solve problem (5.29)-(5.31) using the
proposed neural network for θ = 2 and θ = 10. We compare the results obtained with
the dynamical neural network with those obtained using the piecewise tangent approxi-
mation with 20 tangent points [25]. In order to evaluate the robustness of our approach,
we generate a set of 100 instances of the stochastic vectors [t11, t12, t13]T , [t21, t22, t23]T and
[t31, t32, t33]

T with thedata in Table 5.7 and the functionnumpy.random.multivariate_normal.
Then, we check whether the two solutions are feasible for the constraints (5.29)-(5.31) for
the 100 scenarios. If the solutions are not feasible for a given scenario, we call such a
scenario a violated scenario denoted (VS).

θ = 1 θ = 2 θ = 10(independent constraints)Solution VS CPU Time Solution VS CPU Time Solution VS CPU Time
−2929.76 4 7.65 −2961.40 5 10.44 −2986.594 6 31.03

Table 5.8: Results of problem (5.29)-(5.31) for different values of θ
We observe that the neural network converges for the different values of θ and the

number of violated scenarios doesn’t exceed 6 which proves the robustness of the ap-
proach as shown by Figure 5.4.
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Figure 5.4: Number of VS for different values of θ

In order to compare the robustness for different values of θ, we solve problem (5.29)-
(5.31) for different values of the confidence parameter α. We recapitulate the obtained
results for different values of α in Table 5.9.

We observe that for all the values of α the dynamical neural network converges using
the three values of θ. The solutions are all robust as they don’t exceed the number of per-
mitted violations. We notice that the solutions are more conservative when α increases.

We fixα = 0.10 andwemodify the number ofmachines k and the number of products
n. We compare the results obtained using the neural network with the tangent approxi-
mation [27]. We use 20 tangent points for the tangent approximation and we recapitulate
the results in Table 5.10. We notice that the gaps remain tight i.e they do not exceed 0.15%

in the same way as in the independent case.
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α θ = 1 θ = 2 θ = 10(independent constraints)Obj value VS CPU Time Obj value VS CPU Time Obj value VS CPU Time0.10 -2803.75 1 9.50 -2856.78 1 9.46 -2897.36 4 2.600.15 -2863.54 2 9.89 -2926.52 5 9.19 -2976.50 8 2.990.20 -2911.68 2 9.42 -2983.73 9 9.70 -3041.72 11 3.220.25 -2953.43 9 10.86 -3034.27 15 10.33 -3100.25 24 3.83
Table 5.9: Results for different values of α

n k θ = 2 θ = 10Tangent VS Neural VS GAP Tangent VS Neural VS GAPapproximation network approximation network5 3 -2422.18 0 -2420.41 0 0.07% -2425.46 1 -2425.16 1 0.01%7 5 -2524.58 5 -2523.07 5 0.05% -2545.96 10 -2545.78 10 0.007%10 5 -2638.22 3 -2634.13 2 0.15% -2675.62 9 -2674.92 9 0.02%15 10 -2839.43 4 -2837.83 4 0.05% -2867.28 7 -2867.05 7 0.08%
Table 5.10: Results for different data sizes with α = 0.10
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6 - Distributionally Robust Optimization

6.1 . Introduction

Uncertainty in parameters is a common characteristic of real-world decision problems
in engineering and management. This uncertainty can arise from factors such as limited
data observability, noisy measurements, implementation variations, and prediction er-
rors. To address this uncertainty, stochastic optimization, (SO) and robust optimization
(RO) frameworks have been traditionally employed in decision-making processes.

While SO assumes that the decision-maker possesses complete knowledge about the
underlying uncertainty through a known probability distribution and minimizes a cost
function based on this distribution, RO assumes that the decision-maker lacks detailed
distributional knowledge about the uncertainty, except for its support. In RO, the goal
is to minimize the worst-case cost over an uncertainty set, as studied in the works of El
Ghaoui and Lebret [43], Ben-Tal and Nemirovski [12], and Bertsimas and Sim [14].

Distributionally Robust Optimization (DRO) is a framework used to address optimiza-
tion problems in the presence of uncertain probability distributions. The goal of DRO is
to find robust solutions that perform well across a range of possible distributions, rather
than assuming a single fixed distribution.

Recent papers have considered the use of distributionally robust approaches in trans-
portation network optimization problems [35], multistage distribution system planning
[145], portfolio optimization problems [49, 140], planning and scheduling [121], risk mea-
sures [108], multimodal demand problems [60], appointment scheduling [148], vehicle
routine problems [52] and energy and reserve dispatch [104].

6.2 . Geometric Programs

We consider the following geometric program.

min
t∈RM

++

I0∑
i=1

c0i

M∏
j=1

t
a0ij
j , (6.1)

s.t
Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ 1, k = 1, ....,K,

where cki , i = 1, ..., Ik, k = 0, ....,K are positive constants and the exponents akij , i =

1, ..., Ik, j = 1, ...,M, k = 0, 1, ...,K are real constants.
In this paper, we consider the case where the coefficients ci are not known. In conse-
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quence, we reformulate the optimization problem (6.1) as follows

min
t∈RM

++

sup
F0∈D0

EF0

 I0∑
i=1

c0i

M∏
j=1

t
a0ij
j

 , (JCP)

s.t inf
F∈D

PF

 Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ 1, k = 1, ....,K

 ≥ 1− ϵ,

where F0 is the probabilistic distribution of vector C0 = (c01, .., c
0
I0
)T , F is the joint dis-

tribution for C1 = (c11, .., c
1
I1
)T , ..., Ck = (ck1, .., c

k
Ik
)T , D0 is the uncertainty set for the

probability distribution F0, D is the uncertainty set for the probability distribution F and
1− ϵ, ϵ ∈ (0, 0.5], is the confidence parameter for the joint constraint.

This paper examines the distributionally robust geometric programs (JCP) using two
different groups sets of uncertainty. The first group focuses on uncertainties in distribu-
tions, considering both known and unknown first two order moments. The second group
of uncertainty sets incorporates first ordermoments alongwith nonnegative support con-
straints.

6.2.1 . Uncertainty Sets with First Two Order Moments

We first consider that the mean vector of Ck, k = 0, 1, ...,K lies in an ellipsoid of
size γk1 ≥ 0 with center µk and that the covariance matrix of Ck, k = 0, 1, ...,K lies in
a positive semidefinite cone of center Σk =

{
σki,j , i, j = 1, ..., Ik

}. We define for every
k = 0, 1, ...,K , D2

k(µk,Σk) =

{
Fk

∣∣∣∣ (EFk
[Ck]− µk)

TΣ−1
k (EFk

[Ck]− µk) ≤ γk1COVFk
(Ck) ⪯ γk2Σk

}
, where

Fk is the probability distribution of Ck, γk2 ≥ 0 and COVFk
is a covariance operator under

probability distribution Fk of Ck.
Based on whether the row vectors Ck, k = 1, ..,K are mutually independent or de-

pendent, we have two cases.

Case (JCP) with Jointly Independent Row Vectors.

Assumption 48. We assume thatD = {F|F = F1F2...FK}, where F is the joint distribu-
tion for mutually independent random vectors C1 , C2 , ..., CK with marginals F1, F2, ...,
FK .

Theorem 49. Given Assumption 48, (JCP) is equivalent to
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(JCPind ) min
t∈RM

++,y∈RK
+

I0∑
i=1

µ0i

M∏
j=1

t
a0ij
j +

√
γ01

√√√√ I0∑
i=1

I0∑
l=1

σ0i,l

M∏
j=1

t
a0ij+a0lj
j , (6.2)

s.t
Ik∑
i=1

µki

M∏
j=1

t
akij
j +

√
γk1

√√√√ Ik∑
i=1

Ik∑
l=1

σki,l

M∏
j=1

t
akij+aklj
j

+

√
yk

1− yk

√
γk2

√√√√ Ik∑
i=1

Ik∑
l=1

σki,l

M∏
j=1

t
akij+aklj
j ≤ 1, k = 1, ...,K, (6.3)

K∏
k=1

yk ≥ 1− ϵ, 0 < yk ≤ 1 , k = 1, ...,K. (6.4)
Proof. As the row vectorsCk, k = 1, ...,K aremutually independent, (JCP) is written equiv-
alently by introducingK nonegative auxiliary variables yk as [132].

min
t∈RM

++

sup
F0∈D0

EF0

 I0∑
i=1

c0i

M∏
j=1

t
a0ij
j

 ,
s.t inf

Fk∈Dk

PFk

 Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ 1

 ≥ yk, , k = 1, ....,K,

K∏
k=1

yk ≥ 1− ϵ, 0 < yk ≤ 1 , k = 1, ...,K.

By Theorem 1 in [89], we conclude that (JCP) is equivalent to (JCPind ).
Problem (JCPind ) is not convex. By applying the logarithmic transformation rj =

log(tj), j = 1, ...,M and xk = log(yk), k = 1, ...,K , we have the following equivalent
reformulation of (JCPind )

(JCPlogind ) min
r∈RM ,x∈RK

I0∑
i=1

µ0i exp


M∑
j=1

a0ijrj

+
√
γ01

√√√√√ I0∑
i=1

I0∑
l=1

σ0i,lexp


M∑
j=1

(a0ij + a0lj)rj

, (6.5)

s.t
Ik∑
i=1

µki exp


M∑
j=1

akijrj

+
√
γk1

√√√√√ Ik∑
i=1

Ik∑
l=1

σki,lexp


M∑
j=1

(akij + aklj)rj


+
√
γk2

√√√√√ Ik∑
i=1

Ik∑
l=1

σki,lexp


M∑
j=1

(akij + aklj)rj + log
(

exk

1− exk

) ≤ 1, k = 1, ...,K,

K∑
k=1

xk ≥ log(1− ϵ), xk ≤ 0 , k = 1, ...,K. (6.6)
Theorem 50. [89] If σki,l ≥ 0 for all i, l and k, problem (JCPlogind ) is a convex programming
problem.
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Case (JCP) with Jointly Dependent Row Vectors.

In this case, (JCP) is equivalent to [89]

(JCPdep ) min
t∈RM

++,y∈RK
+

I0∑
i=1

µ0i

M∏
j=1

t
a0ij
j +

√
γ01

√√√√ I0∑
i=1

I0∑
l=1

σ0i,l

M∏
j=1

t
a0ij+a0lj
j , (6.7)

s.t
Ik∑
i=1

µki

M∏
j=1

t
akij
j +

√
γk1

√√√√ Ik∑
i=1

Ik∑
l=1

σki,l

M∏
j=1

t
akij+aklj
j

+

√
yk

1− yk

√
γk2

√√√√ Ik∑
i=1

Ik∑
l=1

σki,l

M∏
j=1

t
akij+aklj
j ≤ 1, k = 1, ...,K, (6.8)

K∑
k=1

yk ≥ K − ϵ, 0 < yk ≤ 1 , k = 1, ...,K. (6.9)

As for the independent case, we obtain the following biconvex equivalent problem for
(JCPdep )

(JCPlogdep ) min
r∈RM ,x∈RK

I0∑
i=1

µ0i exp


M∑
j=1

a0ijrj

+
√
γ01

√√√√√ I0∑
i=1

I0∑
l=1

σ0i,lexp


M∑
j=1

(a0ij + a0lj)rj

, (6.10)

s.t
Ik∑
i=1

µki exp


M∑
j=1

akijrj

+
√
γk1

√√√√√ Ik∑
i=1

Ik∑
l=1

σki,lexp


M∑
j=1

(akij + aklj)rj


+
√
γk2

√√√√√ Ik∑
i=1

Ik∑
l=1

σki,lexp


M∑
j=1

(akij + aklj)rj + log
(

yk
1− yk

) ≤ 1, k = 1, ...,K,

K∑
k=1

yk ≥ K − ϵ, 0 < yk ≤ 1 , k = 1, ...,K. (6.11)

Theorem 51. [89] If ϵ ≤ 0.5 and σki,l ≥ 0 for all i, l and k, problem (JCPlogdep ) is a convexprogramming problem.
6.2.2 . Uncertainty Sets with Known First Order Moment and Nonnegative

Support
In this section, we consider uncertainty sets with nonnegative supports and known

first-order moments. The uncertainty sets for (JCP) can be formulated as follows

D3
k(µk,Σk) =

{
Fk

∣∣∣∣ E[Ck] = µk

PFk
[Ck ≥ 0] = 1

}
, k = 0, 1, ...,K , where µk > 0.
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Case (JCP) with Jointly Independent Row Vectors.

Wefirst consider the casewhen themarginal distributions in the uncertainty set are jointly
independent. Using the strong duality [89], (JCP) can be reformulated as follows

(JCPindNS ) min
t∈RM

++,λ,β,π

I0∑
i=1

µ0i

M∏
j=1

t
a0ij
j , (6.12)

s.t K∏
k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1 , k = 1, ...,K, (6.13)
ykλ

−1
k − λ−1

k βkTµk ≤ 1, k = 1, ....,K, (6.14)
βk ≤ 0, 0 < λ ≤ 1, k = 1, ....,K, (6.15)
λ−1
k πk ≥ 1, k = 1, ....,K, (6.16)

(−βk)−1πk

M∏
j=1

t
akij
j ≤ 1, i = 1, ..., Ik, k = 1, ....,K, (6.17)

(JCP) can be reformulated as a convex problem using a logarithmic transformation xj =

log(yj), tj = log(rj), λ̃k = log(λk), β̃k = log(−βk), π̃ = log(π). Problem (JCPNS ) becomes,

(JCPlogNS−ind ) min
x,r,λ̃,β̃,π̃

I0∑
i=1

µ0i exp


M∑
j=1

a0ijrj

 , (6.18)

s.t K∑
k=1

xk ≥ log(1− ϵ), xk ≤ 0, k = 1, ...,K, (6.19)

exp(xk − λ̃k) +

Ik∑
i=1

exp{−λ̃k + β̃ki + logµki
}
≤ 1, k = 1, ....,K,

λ̃k ≤ 0, k = 1, ....,K, (6.20)
λ̃k ≤ π̃k, k = 1, ....,K, (6.21)
π̃k +

M∑
j=1

akijrj − β̃ki ≤ 0, i = 1, ..., Ik, k = 1, ....,K. (6.22)
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Case (JCP) with Jointly Dependent Row Vectors.

In the case where the constraints of (JCP) are jointly dependent, we have the following
deterministic equivalent

(JCPdepNS ) min
t∈RM

++,λ,β,π

I0∑
i=1

µ0i

M∏
j=1

t
a0ij
j , (6.23)

s.t K∏
k=1

yk ≥ K − ϵ, 0 ≤ yk ≤ 1 , k = 1, ...,K, (6.24)
ykλ

−1
k − λ−1

k βkTµk ≤ 1, k = 1, ....,K, (6.25)
βk ≤ 0, 0 < λ ≤ 1, k = 1, ....,K, (6.26)
λ−1
k πk ≥ 1, k = 1, ....,K, (6.27)

(−βk)−1πk

M∏
j=1

t
akij
j ≤ 1, i = 1, ..., Ik, k = 1, ....,K, (6.28)

The log transformation fails to convert (JCPlogNS ) into a convex problem. Nevertheless,
we can obtain the following biconvex equivalent by taking tj = log(rj), λ̃k = log(λk),
β̃k = log(−βk), π̃ = log(π)

(JCPlogNS−dep ) min
x,r,λ̃,β̃,π̃

I0∑
i=1

µ0i exp


M∑
j=1

a0ijrj

 , (6.29)

s.t K∏
k=1

yk ≥ K − ϵ, 0 ≤ yk ≤ 1 , k = 1, ...,K, (6.30)

ykexp(−λ̃k) +
Ik∑
i=1

exp{−λ̃k + β̃ki + logµki
}
≤ 1, k = 1, ....,K,

λ̃k ≤ 0, k = 1, ....,K, (6.31)
λ̃k ≤ π̃k, k = 1, ....,K, (6.32)
π̃k +

M∑
j=1

akijrj − β̃ki ≤ 0, i = 1, ..., Ik, k = 1, ....,K. (6.33)

6.2.3 . Adynamical recurrentneural network for (JCPlogdep ), (JCP
log
ind ) and (JCP

log
NS−ind )

Observe that (JCPlogdep ), (JCPlogind ) and (JCPlogNSind
) can be written in the following general

form
min
r
f(z), (6.34)

s.t. g(z) ≤ 0,
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where f and g are two convex functions.

For (JCPlogind ), z = (r, x)T , f(z) =∑I0
i=1 µ

0
i exp

{∑M
j=1 a

0
ijrj

}
+
√
γ01

√
I0∑
i=1

I0∑
l=1

σ0i,lexp
{∑M

j=1(a
0
ij + a0lj)rj

}

and g(z) =



I1∑
i=1

µ1i exp
{∑M

j=1 a
1
ijrj

}
+
√
γ11

√√√√ I1∑
i=1

I1∑
l=1

σ1i,lexp
{

M∑
j=1

(a1ij + a1lj)rj

}

+
√

ex1
1−ex1

√
γ12

√√√√ I1∑
i=1

I1∑
l=1

σ1i,lexp
{

M∑
j=1

(a1ij + a1lj)rj

}
− 1

...
IK∑
i=1

µKi exp
{

M∑
j=1

aKij rj

}
+
√
γK1

√
IK∑
i=1

IK∑
l=1

σKi,lexp
{∑M

j=1(a
K
ij + aKlj )rj

}
+

√
exK

1−exK

√
γK2

√√√√ IK∑
i=1

IK∑
l=1

σKi,lexp
{

M∑
j=1

(aKij + aKlj )rj

}
− 1

log(1− ϵ)−
∑K

k=1 xk
x1...
xK



.

For (JCPlogdep ), z = (r, x)T , f(z) =∑I0
i=1 µ

0
i exp

{∑M
j=1 a

0
ijrj

}
+
√
γ01

√
I0∑
i=1

I0∑
l=1

σ0i,lexp
{∑M

j=1(a
0
ij + a0lj)rj

}

and g(z) =



I1∑
i=1

µ1i exp
{∑M

j=1 a
1
ijrj

}
+
√
γ11

√√√√ I1∑
i=1

I1∑
l=1

σ1i,lexp
{

M∑
j=1

(a1ij + a1lj)rj

}

+
√

ex1
1−ex1

√
γ12

√√√√ I1∑
i=1

I1∑
l=1

σ1i,lexp
{

M∑
j=1

(a1ij + a1lj)rj

}
− 1

...
IK∑
i=1

µKi exp
{

M∑
j=1

aKij rj

}
+
√
γK1

√
IK∑
i=1

IK∑
l=1

σKi,lexp
{∑M

j=1(a
K
ij + aKlj )rj

}
+

√
exK

1−exK

√
γK2

√√√√ IK∑
i=1

IK∑
l=1

σKi,lexp
{

M∑
j=1

(aKij + aKlj )rj

}
− 1

log(K − ϵ)−
∑K

k=1 xk
x1...
xK



.

For (JCPlogNS−ind ), z = (r, x, λ̃, β̃, π̃)T , f(z) = I0∑
i=1

µ0i
∏M

j=1 t
a0ij
j
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and g(z) =



log(1− ϵ)−
K∑
k=1

xk

x1...
xK

exp(x1 − λ̃1) +
I1∑
i=1

exp{−λ̃1 + β̃1i + logµ1i
}
− 1

...
exp(xK − λ̃K) +

IK∑
i=1

exp{−λ̃K + β̃Ki + logµKi
}
− 1

λ̃1...
λ̃1 − π̃1...
λ̃K − π̃K

π̃1 +
∑M

j=1 a
1
ijrj − β̃1i ≤ 0, i = 1, ..., I1...

π̃K +
∑M

j=1 a
K
ij rj − β̃Ki ≤ 0, i = 1, ..., IK



.

We know that z∗ is an optimal solution of (6.34) if andonly if the following Karush–Kuhn–Tucker
(KKT) are satisfied.
∇f(z) +∇g(z)Tγ = 0 (6.35)
γ ≥ 0, γT g(z) = 0 (6.36)
To solve problem (6.34), we propose a dynamical recurrent neural network driven by the
following ODE system
κ
dz

dt
= −

(
∇f(z) +∇g(z)T (γ + g(z))+

) (6.37)
κ
dγ

dt
= −γ + (γ + g(z))+ (6.38)

where z(.) and γ(.) are two time-dependent variable, κ is a given convergence rate and
(x)+ = max(x, 0).
Theorem 52. If (z∗, γ∗) is an equilibrium point of (6.37)-(6.38) if and only if z∗ is an optimal
solution of (6.34) where γ∗ is the correspondent Lagrange multiplier.
Proof. Let (z∗, γ∗) is an equilibrium point of (6.37)-(6.38), then dz∗

dt = 0 and dγ∗

dt = 0.
dz∗

dt
= 0 ⇔ ∇f(z∗) +∇g(z∗)T (γ∗ + g(z∗))+ = 0, (6.39)
dγ∗

dt
= 0 ⇔ −γ∗ + (γ∗ + g(z∗))+ = 0 (6.40)
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Observe that γ∗ = (γ∗ + g(z∗))+ if and only if γ∗ ≥ 0, g(z∗) ≤ 0 and γ∗T g(z∗) = 0, we ob-
tain then (6.130) of the KKT system (6.130)- (6.36). Furthermore, we replace (γ∗ + g(z∗))+by γ∗ in the right hand side of (6.39) we obtain then ∇f(z∗) + ∇g(z∗)Tγ∗ = 0 which is
equation (6.36) of the KKT system (6.130)- (6.36). For the converse part of the theorem, it
is straightforward that if z∗ is an optimal solution of (6.34) where γ∗ is the correspondent
Lagrange multiplier then (z∗, γ∗) is an equilibrium point of (6.37)-(6.38).
Lemma 53. For any initial point (z(t0), γ(t0)), there exists a unique continuous solution
(z(t), γ(t)) for (6.37)-(6.38).
Proof. The right-hand side of system (6.37)-(6.38) is locally Lipschitz continuous, given that
∇f ,∇g and (γ + g)+ and are locally Lipschitz continuous. By applying the local existence
theorem of ordinary differential equations, we can conclude that there exists a unique
continuous solution trajectory (z(t), γ(t)) for (6.37)-(6.38).
Theorem 54. The neural network proposed in equations (6.37)-(6.38) exhibits global sta-
bility in the Lyapunov sense. Furthermore, the dynamical network globally converges to
a KKT point denoted (z∗, γ∗) where z∗ is the optimal solution of the problem (6.34).
Proof. Let ζ = (z, γ), we define U(ζ) =

[
−
(
∇f(z) +∇g(z)T (γ + g(z))+

)
−γ + (γ + g(z))+

]
.

First, consider the following Lyapunov function
E(ζ) = ||U(ζ)||2+1

2
||ζ − ζ∗||, (6.41)

where ζ∗ = (z∗, γ∗) is an equilibrium point of (6.37)-(6.38).
dE(ζ(t))

dt = dU
dt

T
U + UT dU

dt + (ζ − ζ∗)T dζ
dt . Observe that dU

dt = dU
dζ × dζ

dt = ∇U(ζ)U(ζ).
Without loss of generality suppose that there exists p ∈ N such that (γ + g(z))+ =

(γ1 + g1(z)), ..., (γp + gp(z)), 0, ..., 0), and we define gp = (g1, ..., gp).
Wehave∇U(ζ) =

[
−
(
∇2f(z) +

∑p
i=1∇2gp(z) (γp + gp(z)) +∇g(z)T∇g(z)

)
−∇gp(z)T

∇gp(z) Sp

]
.

where Sp =
[

Op×p Op×(N−p)

O(N−p)×q I(N−p)×(N−p)

]
, where N is the length of vector γ.

Since f and g are convex, then the hessian matrices∇2f and∇2gp are positive semidefi-
nite. Furthermore∇gT∇g is positive semidefinite, we conclude that∇U is negative semidef-
inite.
Back to the expression of dE(ζ(t))

dt ,
we have dE(ζ(t))

dt = UT (∇U +∇UT )U︸ ︷︷ ︸
≤0 since∇U is negative semidfinite

+(ζ − ζ∗)T (U(ζ)− U(ζ∗))︸ ︷︷ ︸
≤0 by Lemma 4 in [132]

≤ 0. So the neu-
ral network (6.37)-(6.38) is globally stable in the sense of Lyapunov.
Next similarly to the proof of Theorem 5 in [132], we prove that the dynamical neural
network (6.37)-(6.38) is globally convergent to (z∗, γ∗) where z∗ is the optimal solution of
(6.34).
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6.2.4 . A two-time scale neurodynamic duplex for (JCPlogNS−dep )

(JCPlogNS−dep ) can be written in the following general form
min
z,y

f(z), (6.42)
s.t. g(z, y) ≤ 0,

where f is a convex function and g is a biconvex function, z = (r, λ̃, β̃, π̃)T , f(z) =
I0∑
i=1

µ0i
∏M

j=1 t
a0ij
j

and g(z, y) =



K − ϵ−
K∏
k=1

yk

−y1...
−yK
y1 − 1...
yK − 1

y1exp(−λ̃1) + I1∑
i=1

exp{−λ̃1 + β̃1i + logµ1i
}
− 1

...
yKexp(−λ̃K) +

IK∑
i=1

exp{−λ̃K + β̃Ki + logµKi
}
− 1

λ̃1...
λ̃1 − π̃1...
λ̃K − π̃K

π̃1 +
∑M

j=1 a
1
ijrj − β̃1i ≤ 0, i = 1, ..., I1...

π̃K +
∑M

j=1 a
K
ij rj − β̃Ki ≤ 0, i = 1, ..., IK



.

We denote U = {z, y | g(z, y) ≤ 0} the feasible set of (6.42).The Lagrangian function of
problem (6.42) is defined as follows:

L(z, y, ω) = f(z) + ωT g(z, y). (6.43)
For any (z, y) ∈ U , the KKT conditions are stated as follows:
∇L(z, y, ω) = 0, (6.44)
ω ≥ 0, ωT g(z, y) = 0. (6.45)
Definition 21. Let (z, y) ∈ U , (z, y) is called a partial optimum of (6.42) if and only if

f(z) ≤ f(z̃),∀z̃ ∈ Uy, (6.46)
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where Uy = {z | g(z, y) ≤ 0}.
Theorem 55. The KKT system (6.44)-(6.45) is equivalent to the following system
∇f(z) +∇zg(z, y)

T (ω + g(x, z))+ = 0 (6.47)
∇yg(z, y)

T (ω + g(z, y))+ = 0 (6.48)
(ω + g(x, z))+ − ω = 0 (6.49)
Proof. The proof of Theorem 55 follows the same lines of the proof of Theorem 52.

Based on the equations (6.47)-(6.49), we consider the following two-time-scale recur-
rent neural network model
κ1
dz

dt
= −

(
∇f(z) +∇zg(z, y)

T (ω + g(x, z))+
)
, (6.50)

κ2
dy

dt
= −

(
∇yg(z, y)

T (ω + g(z, y))+
)
, (6.51)

κ2
dω

dt
= −ω + (λ+ g(z, y))+, (6.52)

where (z, y, ω) are now time-dependent variables and κ1 and κ2 are two time scaling con-
stants with κ1 ̸= κ2. We propose a duplex of two two-time-scale recurrent neural network
(6.50)-(6.52) for solving (6.34) one with κ1 > κ2 and the second with κ1 < κ2 as shown inFigure 6.6.

Figure 6.1: A block diagram depicting a duplex neurodynamic systemwith a two-timescaleconfiguration

Theorem 56. (z, y, ω) is an equilibrium point of (6.50)-(6.52) if and only if (z, y, ω) is a KKT
point of (6.42).
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Proof. Let (z, y, ω) is an equilibrium point of (6.50)-(6.52). We have then
dz

dt
= 0 ⇔ −

(
∇f(z) +∇zg(z, y)

T (ω + g(x, z))+
)
= 0, (6.53)

dy

dt
= 0 ⇔ −

(
∇yg(z, y)

T (ω + g(z, y))+
)
= 0, (6.54)

dω

dt
= 0 ⇔ −ω + (λ+ g(z, y))+ = 0. (6.55)

We obtain then system (6.47)-(6.49). By Theorem 55, the conclusion follows. The converse
part of the Theorem is traightforward.

The process begins by initializing the state variables of the neurodynamic models.
Subsequently, each model undergoes a precise local search based on its dynamics to
optimize its performance. Once all neurodynamic models have converged to their equi-
libria, the initial states of the recurrent neural networks are optimized using the particle
swarm optimization (PSO) updating rule. In this context, we represent the position of the
ith particle as Λi = (Λi1, ...,Λin)

T , and its velocity as vi = (vi1, ..., vin)
T . The inertia weight

w ∈ [0, 1] determines the extent towhich the particle retains its previous velocity. The best
previous position that yielded themaximum fitness value for the ith particle is denoted as
Λ̃i = (Λ̃i1, ..., Λ̃in)

T , and the best position in the entire swarm that yielded the maximum
fitness value is represented by Λ̂ = (Λ̂1, ..., Λ̂n)

T . The initial state of each neurodynamic
model is updated using the PSO updating rule, as described in reference [34].
vi(j + 1) = wvi(j) + c1r1(Λ̃i − Λi(j)) + c2r2(Λ̂i − Λi(j)), (6.56)
Λi(j + 1) = Λi(j) + vi(j + 1). (6.57)
where the iterative index is represented by j, while the two weighting parameters are
denoted as c1 and c2 and r1 and r2 represent two random values from the interval [0, 1].

To achieve global optimization, the diversity of initial neuronal states is crucial. One
approach to enhance this diversity is by introducing amutation operator, which generates
a random Λi(j + 1). This random generation of Λi(j + 1) helps increase the variation
among the initial neuronal states. To measure the diversity of these states, we employ
the following function

d =
1

n

n∑
i=1

∥Λi(j + 1)− Λ̂(j)∥. (6.58)
We utilize the wavelet mutation operator proposed in [86], which is performed for the i-th
particle if d < ζ. The mutation operation is carried out as follows

Λi(j + 1) =

{
Λi(j) + µ(hi − Λi(j)) , µ > 0
Λi(j) + µ(Λi(j)− li) , µ < 0

(6.59)
where hi and li are the upper and the lower bound for Λi, respectively. ζ > 0 is a given
threshold and µ is defined using a walvet function

µ =
1√
a
e−

ϕ
2a cos(5ϕ

a
) (6.60)
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When the value of µ approaches 1, the mutated element of the particle tends to move
towards the maximum value of Λi(j + 1). On the other hand, as µ approaches -1, the
mutated element tends to move towards the minimum value of xi(j+1). The magnitude
of |µ| determines the size of the search space for xi(j + 1), with larger values indicating
a wider search space. Conversely, smaller values of |µ| result in a smaller search space,
allowing for fine-tuning.

To achieve fine-tuning, the dilation parameter a is adjusted based on the current it-
eration j relative to the total number of iterations T . Specifically, a is set as a function of
j/T , with a = e10

j
T . Additionally, ϕ is randomly generated from the interval [−2.5a, 2.5a].

The algorithm details are given in Algorithm 2 where Λ = (z, y, ω)

Algorithm 2 The neurodynamic duplex
- Let Λ1(0) and Λ2(0) be randomly generated in the feasible region.- Let Λ̃(0) = Λ̂(0) = y(0) the initial best previous position and best position,respectively.-Set the convergence error ϵ.
while ||Λ(j + 1)− Λ(j)||≥ ϵ doCompute the equilibrium points Λ̄1(j) and Λ̄2(j) of RNN1 and RNN2.
if f(z̄1(j)) < f(z̃(j)) then
Λ̃(j + 1) = Λ̄1(j)

else
Λ̃(j + 1) = Λ̃(j)

end if
if f(z̄2(j)) < f(z̃(j)) then
Λ̃(j + 1) = Λ̄2(j)

else
Λ̃(j + 1) = Λ̃(j)

end if
if f(z̃(j)) < f(ẑ(j)) then
Λ̂(j + 1) = Λ̃(j + 1)

else
Λ̂(j + 1) = Λ̂(j)

end ifCompute the value of Λ(j + 1) following (6.56)-(6.57).
if d < ζ thenPerform the wavelet mutation (6.59).
end ifj=j+1

end while

Lemma 57. [137] Suppose that the objective function f is measurable, and the feasible
region U is a measurable subset, and for any Borel subset B of U with positive Lebesgue
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measurewehave ∞∏
k=1

(1−Pk(B)) = 0. Let {y(k)}∞k=1 be a sequence generated by a stochas-
tic optimization algorithm. If {y(k)}∞k=1 is a nonincreasing sequence, then converges withprobability one to the global optimum set.
Theorem 58. If the state of the neurodynamic model with a single timescale, described
by the following equations
κ
dz

dt
= −

(
∇f(z) +∇zg(z, y)

T (ω + g(x, z))+
)
, (6.61)

κ
dy

dt
= −

(
∇yg(z, y)

T (ω + g(z, y))+
)
, (6.62)

κ
dω

dt
= −ω + (λ+ g(z, y))+, (6.63)

converges to an equilibrium point, then the state of the neurodynamic model with two
timescales, as described by equations (6.50)-(6.52), globally converges to a partial opti-
mum of problem (6.42).
Proof. We recall the Lagrangian function of (6.42)

L(z, y, ω) = f(z) + ωT g(z, y). (6.64)
An equilibrium point (z∗, y∗, ω∗) of (6.61)-(6.63) corresponds to a KKT point of (6.42). We
fix y∗, and take z ∈ Uy∗ , (6.42) becomes a convex optimization problem and we have

L(z∗, y∗, ω∗) ≤ L(z, y∗, ω∗), (6.65)
which is equivalent to

f(z∗) + ω∗T g(z∗, y∗) ≤ f(z) + ω∗T g(z, y∗). (6.66)
As ω∗T g(z, y∗) ≤ ω∗T g(z∗, y∗) = 0, we have f(z∗) ≤ f(z). By Definition 21, (z∗, y∗) is a
partial optimum of 6.42.
Theorem 59. The duplex of two two-timescale neural networks in Figure 6.6 system is
globally convergent to a global optimal solution of problem (6.34) with probability one.
Proof. By Theorem58, the two-timescale neurodynamicmodels RNN1 andRNN2 are provento converge to a partial optimum. From Algorithm 2, the solution sequence is generated
as follows

{
Λ̂(j + 1) = Λ̃(j + 1) if f(z̃(j)) < f(ẑ(j)),

Λ̂(j + 1) = Λ̂(j) else.
Weobserve that the generated solution sequence ismonotonically increasing {f(Λ̃(j))}∞j=1.LetMi, j represent the supporting set of the initial state of RNNi at iteration j. According
to equation (6.59), the mutation operation ensures that the initial states of the recurrent
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neural networks are constrained to the feasible region U . Therefore, for every iteration
index J ≥ 1, the supporting sets satisfy the following condition:

U ⊆ M =
J⋃

j=1

2⋃
i=1

Mi,j . (6.67)

Consequently, we have v(U) = v(M) > 0.
By Lemma 66, we have

lim
j−>∞

P(Λ̂(j) ∈ Φ) = 1 (6.68)
where Φ is the set of the global optimal solutions of (6.34). The conclusion follows.

6.2.5 . Numerical experiments
We consider three geometric problems to evaluate the performance of our neurody-

namic approaches. All the algorithms in this Section are implemented in Python. We run
our algorithms on Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz. The random instances are
generatedwith numpy.random, andwe solve theODE systemswith solve_ivp of scipy.integrate.
The deterministic equivalent programs are solved with the package gekko and the gradi-
ents and partial derivatives are computed with autograd.grad and autograd.jacobian. For
the following numerical experiments, we set γk1 = 2, γk2 = 2 and the error tolerance for
the neurodynamic duplex ζ = 10−4. In the second subsection, we evaluate the quality of
our neurodynamic duplex by comparing the obtained solutionswith the ones given by the
Convex Alternate Search (CAR) from [57]. The gap between the two solutions is computed
as follows GAP = SolCAR−SolDuplexSolCAR , where SolCAR and SolDuplex are the solutions obtained
using the CAR and the neurodynamic duplex, respectively. For the neurodynamical du-
plex, we take κ1

κ2
= 0.1 for the first dynmical neural network and κ1

κ2
= 10.0 for the second

one.
6.2.6 . Uncertainty Sets with First Two Order Moments

A three-dimension shape optimization problem

We first consider a transportation problem involving the shifting of grain from a ware-
house to a factory. The grain is transported within an open rectangular box, with dimen-
sions of length x1 meters, width x2 meters, and height x3 meters, as illustrated in Figure
6.2. The objective of the problem is to maximize the volume of the rectangular box, given
by the product of its length, width, and height (x1x2x3). However, two constraints must
be satisfied. The first constraint relates to the floor area of the box, and the second con-
straint relates to the wall area. These constraints are necessary to ensure that the shape
of the box aligns with the requirements of a given truck. In our analysis, we assume that
the wall area Awall and the floor area Afloor are random variables. We formulate our
shape optimization problem as follows
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Figure 6.2: 3D-box shape [1]
Independent case Dependent caseObj value CPU Time VS Obj value CPU Time VS

0.296 0.43 0 0.298 0.46 0
Table 6.1: Results of solving problem (6.69) when D = D2

min
x∈R3

++

x−1
1 x−1

2 x−1
3 , (6.69)

s.t inf
F∈D

P
(

1

Awall
(2x3x2 + 2x1x3) ≤ 1,

1

Afloor
x1x2 ≤ 1

)
≥ 1− ϵ.

where F is the joint distribution for 1
Awall

and 1
Afloor

and D is the uncertainty set for the
probability distribution F . We solve problem (6.69) when the uncertainty set is equal
to D2 using the dynamical neural network (6.37)-(6.38). For the numerical experiments,
we take the mean and the covariance describing the uncertainty sets for 1

Awall
mwall =

0.05, σwall = 0.01, respectively and for 1
Afloor

mfloor = 0.5, σfloor = 0.1, respectively.
We recapitulate the obtained results in Table 6.1. Columns one, two and three give the
optimal value, the CPU time and the number of violated scenarios (VS) in the independent
case, respectively. Columns four, five and six show the optimal value, the CPU time and
the number VS in the dependent case, respectively. We observe that the dependent case
is more conservative compared to the independent and that the dynamic neural network
covers well the risk region in both cases. Figure 6.3 show the convergence of the state
variables.

A generalized shape optimization problem

To further assess the performance of our dynamical neural network, we employed the
multidimensional shape optimization problem with joint chance constraints from [89].
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Figure 6.3: Transient behaviors of the state variables

min
x∈RM

++

m∏
i=1

x−1
i ,

s.t inf
F∈D

PF

m−1∑
j=1

(
m− 1

Awallj
x1

m∏
i=1,i ̸=j

xi),
1

Afloor

m∏
j=2

xj ≤ 1

 ≥ 1− ϵ, (6.70)
1

γi,j
xix

−1
j ≤ 1, 1 ≤ i ̸= j ≤ m.

In our numerical experiments, we fixed the following parameters 1
γi,j

= 0.5 and ϵ = 0.15.
The inverse of floor’s area ( 1

Afloor
) and the inverse of wall area ( 1

Awallj
) for each j = 1, ...,m

were considered as random variables. We test the robustness of the different approaches
by creating 100 random samples of the variables 1

Awallj
and 1

Afloor
. We then examine if the

solutions meet the constraint of (6.70) for all 100 cases for the gaussian distribution for
example. If the solutions are not feasible for a particular case, it is referred to as a violated
scenario (VS).

We first solve (6.70) form = 5 and when the uncertainty set is D2 in the independent
case for different initial points, we observe that the dynamical neural network (6.37)-(6.38)
converges to the same final value independently from the starting value as shown in Fig-
ure 6.4.

Now we solve (6.70) when we know the first-order moments of 1
Afloor

and 1
Awallj

for
both the dependent and the independent case. We present the obtained results in Table
6.6. We observe again that the dependent case is more conservative compared to the
independent one.

6.2.7 . Uncertainty Sets with Known First Order Moment and Nonnegative
Support

A generalized shape optimization problem

We solve (6.70) when the uncertainty set is D3 for both the independent and the depen-
dent case.
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Figure 6.4: Convergence of the dynamical neural network (6.37)-(6.38) for different initialpoints for (6.70).

m Independent case CPU Time Dependent case CPU Time3 1.03 1.05 1.30 1.395 2.09 5.11 2.15 5.2010 14.79 4.83 5.04 15.1015 7.76 47.80 7.99 58.0420 10.68 97.72 10.87 100.91
Table 6.2: Results for different values ofm

For the numerical experiments, we take ϵ = 0.2. We solve problem (6.70) using the
neurodynamic duplex in the dependent case. We recapitulate the obtained results in
Table 6.3. Column one gives the number of variables m. Columns two, three and four
give the objective value, the CPU time and the number of VS in the independent case,
respectively. Columns five, six and seven give the objective value, the CPU time and the
number of VS for the dependent case, respectively. We observe that the problem with
dependent variables is more conservative. Nevertheless, the solution, in this case, covers
well the risk area as the number of VS is equal to 0 for all the values ofm.

Now we additionally solve problem (6.70) using the assumption that the random vari-
ables follow a normal distribution [132] form = 5. In order to compare the solutions ob-
tained with the stochastic and the robust approaches, we evaluate the robustness of the
solutions for different hypotheses on the true distribution of the random parameters, i.e,
the uniform distribution, the normal distribution, the log-normal distribution, the logis-
tic distribution and Gamma distribution. The obtained results are presented in Table 6.4
which gives the number of violated scenarios for both the normal solutions and the robust
ones and the objective value obtained by each solution. We can infer that the distribu-
tionally robust approaches are a conservative approximation of the stochastic programs.
We observe that the solutions obtained by the nonnegative support are more conserva-
tive compared to the stochastic ones. Notice that the distributionally robust solutions are
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m Independent case Dependent caseObj value CPU Time VS Obj value CPU Time VS3 0.204 2.28 3 0.491 10.12 05 1.03 6.25 2 1.82 98.68 010 6.99 15.26 2 9.79 86.35 015 18.43 23.84 3 23.45 201.13 020 32.09 94.76 5 38.71 744.26 030 42.37 100.23 3 51.56 1155.42 0
Table 6.3: (6.70) for different values ofm for D = D3

more robust, i.e., the number of VS when the true distribution is the Logistic distribution
is equal to 23 and 19 for the nonnegative support solutions and is equal to 0 for the robust
solutions.

Normal solutions Robust solutionsIndependent Dependent Independent DependentObjective Value 0.86 0.99 2.43 4.14Number Uniform distribution 22 15 0 0of Normal distribution 18 11 1 0violated Log-normal distribution 7 4 2 1scenarios Logistic distribution 23 19 0 0Gamma distribution 16 12 2 2
Table 6.4: Number of violated scenarios for the stochastic and the robust solu-tions

Maximizing the worst user signal-to-interference noise ratio

We consider the problem of maximizing the worst user signal-to-interference noise ratio
(SINR) for Massive Multiple Input Multiple Output (MaMIMO) systems subject to antenna
assignment and mul- tiuser interference constraints taken from [4] and given by

max
p∈K

++

min
i∈U

pi|gHi gi|2∑
j∈U ,j ̸=i

pj |gHi gj |2+|σi|2
, (6.71)

s.t Pmin ≤ pi ≤ Pmax, ∀i ∈ U , (6.72)
where pi is the power to be assigned for each user i ∈ U . gi ∈ CT×1, gHi ∈ C1×T and σ2iare the beam domain channel vector associated to user i ∈ U , its Hermitian transpose
and Additive White Gaussian Noise (AWGN), respectively.
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Let aij = |gHi gj |2|gHi gi|−2 and bi = |σi|2|gHi gi|−2, we derive a geometric reformulation
of (6.71)-(6.72)

min
p∈K

++,w∈++

w−1, (6.73)
s.t ∑

j∈U ,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1, ∀i ∈ U , (6.74)

Pmin ≤ pi ≤ Pmax, ∀i ∈ U . (6.75)
We assume that the coefficients aij and bi are independent random variables and we
propose the following optimization problem with individual and joint chance constraints

min
p∈K

++,w∈++

w−1,

s.t inf
Fi∈D−i

PFi

 ∑
j∈U ,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1

 ≥ 1− ϵi,∀i ∈ U , (POI)
Pmin ≤ pi ≤ Pmax,∀i ∈ U .

and

min
p∈K

++,w∈++

w−1,

s.t inf
F∈D

PF

 ∑
j∈U ,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1,∀i ∈ U

 ≥ 1− ϵ, (POJ)
Pmin ≤ pi ≤ Pmax,∀i ∈ U .

We assume that the uncertainty set for the distributionally robust problems (POI) and
(POJ) is D3. We fix ϵ = 0.2. We first solve problem (POJ) for K = 10. Figure 6.5 shows the
convergence of the power variables. Next, we solve (POI) and (POJ) for different values of
the number of users K. Table 6.5 presents the obtained results. Column one gives the
number of usersK. Columns two and three give the optimal value and the number of VS
for (POI), respectively. Columns four and five show the optimal value and the number of
VS for (POJ), respectively. As observed in the previous section, the use of joint constraints
leads to a more conservative minimization problem but covers well the risk area com-
pared to the problem with individual constraints since the number of VS is lower.

6.3 . Linear programs as a particular case
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Figure 6.5: Convergence of the power variables

K Individual constraints Joint constraintsObj value VS Obj value VS5 27.27 5 29.07 010 47.36 4 50.23 015 66.03 5 68.76 120 123.48 3 127.43 0
Table 6.5: Results for different values ofK

We consider in this section the case of linear programs. The distributionally robust
problem can be formulated as follows.

min
x∈n

+

sup
F0∈D0

EF0

[
ζ̃0

T
x
]
, (6.76)

s.t inf
F∈D

PF

(
ζ̃kx ≤ bk, k = 1, ...,K

)
≥ α. (6.77)

where ζ̃0 ∈n is an uncertain parameter, [ζ̃1, ζ̃2, ...ζ̃K ]T is a K × n set of pairwise inde-
pendent random vectors in n and b ∈K is a deterministic vector. We consider the case
where the probability distributionF0 of ζ̃0 belongs to a certain uncertainty setD0 and theprobability distributions Fk of ζ̃k, k = 1, ...,K are not completely known and belong to
Dk. Thus, we take the worst-case where constraints (6.77) are jointly satisfied for all pos-sible distributions in a given distributional uncertainty setD with a given probability level
α. Based on the pairwise independence between the vectors (ζ̃k)k∈{1,..,K}, we introduce
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nonnegative auxiliary variables zk, k = 1, ...,K and rewrite the constraint (6.77) as

inf
Fk∈Dk

PFk

(
ζ̃kx ≤ bk

)
≥ αzk , k = 1, ...,K

K∑
k=1

zk = 1,

zk ≥ 0, k = 1, ...,K.

(6.78)

In the following subsections, we provide deterministic equivalent formulations for the
optimization problem described in equations (6.76)-(6.77). To handle the uncertainty in
the problem, we consider two moments-based uncertainty sets to define the sets Dk,where k = 1, ...,K.

We begin by assuming that we have knowledge of the mean vector µk and the co-
variance matrix Σk associated with the random vector ζ̃Tk . Based on this information, we
define the following uncertainty ser for each k = 0, 1, ...,K.
D1

k(µk,Σk) =

{
Fk

∣∣∣∣ E[ζ̃Tk ] = µk
E[(ζ̃Tk − µk)(ζ̃

T
k − µk)

T ] = Σk

}
, where Fk is a probability distribu-

tion of ζ̃Tk . In the case where we have the mean vector µk and the covariance matrixΣk of
ζ̃Tk available, we can obtain a deterministic reformulation for the distributionally robust
joint chance constraint (6.77) as follows [26].

µTk x+

√
αzk

1− αzk
||Σ

1
2
k x||≤ bk, k = 1, ...,K

K∑
k=1

zk = 1,

zk ≥ 0, k = 1, ..,K.

(6.79)

The deterministic equivalent problem for (6.76)-(6.77) under these assumptions is given
by.

min µT0 x, (6.80)
s.t. µTk x+

√
αzk

1− αzk
||Σ

1
2
k x||≤ bk, k = 1, ...,K (6.81)

K∑
k=1

zk = 1, x ≥ 0, (6.82)
zk ≥ 0, k = 1, ..,K. (6.83)

Lemma 60. The function z 7→√
αz

1−αz , with 0 < α < 1 is convex ∀z > 0.
Proof. Let z > 0 and 0 < α < 1, we have√ αz

1−αz = exp{1
2(zlog(α)− log(1− αz))

}. We
have z 7→ αz is a convex function and the function z 7→ log(1 − z) is non-increasing and
concave, there follows that z 7→ log(1−αz) is concave. We have then that z 7→ 1

2(zlog(α)−
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log(1 − αz)) is convex as an addition of two convex functions. Furthermore, z 7→ ez is a
non-increasing convex functionwe conclude then that z 7→ exp{1

2(zlog(α)− log(1− αz))
}

is convex. The conclusion follows.
Corollary 61. Problem (6.80)-(6.83) is biconvex on (x, z)

Now we consider the case where the mean of ζ̃k lies in an ellipsoid of size γk1 ≥ 0

with center µk and the covariancematrix of ζ̃k lies in a positive semidefinite cone of center
Σk. We define for every k = 0, 1, ...,K ,

D2
k(µk,Σk) =

{
Fk

∣∣∣∣ (EFk
[ζ̃Tk ]− µk)

TΣ−1
k (EFk

[ζ̃Tk ]− µk) ≤ γk1COVFk
(ζ̃Tk ) ⪯ γk2Σk

}
, where γk2 ≥ 0 and

COVFk
is a covariance operator under probability distributionFk. The deterministic refor-

mulation for the distributionally robust joint chance constraint (6.77) in this case where
the mean lies in an ellipsoid and the covariance matrix lies in a positive semidefinite cone
is provided in [106].

µTk x+

(√
αzk

1− αzk

√
γk2 +

√
γk1

)
||Σ

1
2
k x||≤ bk, k = 1, ...,K

K∑
k=1

zk = 1,

zk ≥ 0, k = 1, ..,K.

(6.84)

The objective function can be formulated as [89].
min
x∈n

+

µT0 x+
√
γ01||Σ

1
2
0 x||. (6.85)

The constraints set (6.84) is biconvex and the objective function (6.85) is convex.
To study the optimality conditions of the robust joint chance-constrained problem. We
give the equivalent deterministic problem for each uncertainty set in a general form as
follows.

min f(x), (6.86)
s.t. gk(x, z) ≤ 0, k = 1, ...,K, (6.87)

h(z) ≤ 0, (6.88)
l(x) ≤ 0, (6.89)

where, f(x) =
{

µT0 x, if Dk = D1
k

µT0 x+
√
γ01||Σ

1
2
0 x||, if Dk = D2

k

, h(z) = (
K∑
k=1

zk−1, 1−
K∑
k=1

zk,−z1,−z2, ..., zK)T ,
l(x) = −x and
gk(x, z) =

 µTk x+
√

αzk

1−αzk ||Σ
1
2
k x||−bk, if Dk = D1

k

µTk x+ (
√

αzk

1−αzk

√
γk2 +

√
γk1)||Σ

1
2
k x||−bk, if Dk = D2

k

.
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Definition 22. Let U the feasible set of (6.86)-(6.89), Ux = {z | gk(x, z) ≤ 0, h(z) ≤ 0, k =

1, ...,K} and Uz = {x | gk(x, z) ≤ 0, l(x) ≤ 0, k = 1, ...,K}. (x∗, z∗) is a partial optimum of
(6.86)-(6.89) if f(x∗) ≤ f(x), ∀x ∈ Uz∗ .
Lemma 62. Let U the feasible set of (6.86)-(6.89) and (x∗, z∗) ∈ U . If there exists β(1), β(2),
γ and λ such that (x∗, z∗) verifies
∇xf(x) + β(1)

T∇xg(x, z) + λT∇xl(x) = 0, (6.90)
λ ≥ 0, λT l(x) = 0, β(1) ≥ 0, β(1)

T
g(x, z) = 0, (6.91)

β(2)
T∇zg(x, z) + γT∇zh(z) = 0, (6.92)

β(2) ≥ 0, β(2)
T
g(x, z) = 0, γ ≥ 0, γTh(z) = 0, (6.93)

where g(x, z) = (g1(x, z), ..., gK(x, z)) and (x)+ = max(0, x). Then (x∗, z∗) is a partial KKT
point of (6.86)-(6.89).
Theorem 63. The partial KKT system (6.90)-(6.93) is equivalent to the following system
∇xf(x) +∇xg(x, z)

T (β(1) + g(x, z))+ +∇xl(x)(λ+ l(x))+ = 0 (6.94)
∇zg(x, z)

T (β(2) + g(x, z))+ +∇zh(z)
T (γ + h(z))+ = 0 (6.95)

(β(1) + g(x, z))+ − β(1) = 0 (6.96)
(β(2) + g(x, z))+ − β(2) = 0 (6.97)
(λ+ l(x))+ − λ = 0 (6.98)
(γ + h(z))+ − γ = 0 (6.99)
Proof. By (β(1) + g(x, z))+ = β(1) and (λ+ l(x))+ = λ, we have(

∇xf(x) +∇xg(x, z)
T (β(1) + g(x, z))+ +∇xl(x)(λ+ l(x))+ = 0

)
is equivalent to (

∇xf(x) + β(1)
T∇xg(x, z) + λT∇xl(x) = 0

)
We then obtain the equation (6.93) of the partial KKT system.

Furthermore, observe that
• (β(1) + g(x, z))+ − β(1) = 0 if and only if β(1) ≥ 0, g(x, z) ≤ 0 and β(1)T g(x, z) = 0,
• (λ+ l(x))+ − λ = 0 if and only if λ ≥ 0, l(x) ≤ 0 and λT l(x) = 0,

which leads to the equation (6.91) of the partial KKT system. We obtain the remaining
equations following the same lines.
The converse part of the theorem is straightforward.

The following theorem gives the optimality conditions of problem (6.86)-(6.89) similarly to
the previous Chapters.
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Theorem 64. If partial Slater constraint qualification hold for (6.86)-(6.89) at (x∗, z∗), then
(x∗, z∗) is a partial optimum of (6.86)-(6.89) if and only if (x∗, z∗) is a partial KKT point of
(6.86)-(6.89). Furthermore, if β(1) = β(2) then (x∗, z∗) is a KKT point of (6.86)-(6.89).

6.3.1 . A neurodynamic duplex
Based on the projection equations (6.47)-(6.49), we propose a duplex of two two-time-

scale recurrent neural network models for solving (6.86)-(6.89)
κ1
dx

dt
= −

(
∇xf(x) +∇xg(x, z)

T (β + g(x, z))+ +∇xl(x)(λ+ l(x))+
)
, (6.100)

κ2
dz

dt
= −

(
∇zg(x, z)

T (β + g(x, z))+ +∇zh(z)
T (γ + h(z))+

)
, (6.101)

κ2
dβ

dt
= −β + (β + g(x, z))+, (6.102)

κ2
dλ

dt
= −λ+ (λ+ l(x))+. (6.103)

κ2
dγ

dt
= −γ + (γ + h(z))+. (6.104)

where (x, z, β, γ, λ) are now time-dependent variables and κ1 and κ2 are two time scaling
constants with κ1 ̸= κ2. We consider duplex of two two-time-scale recurrent neural net-
work (6.100)-(6.104) for solving (6.86)-(6.89) one with κ1 > κ2 and the second with κ1 < κ2as shown in Figure 6.6. The zoom on RNN1 shows the circuit implementation of a single
two-timescale recurrent neural network (6.100)-(6.104).
Theorem65. (x∗, z∗, β∗, γ∗, λ∗) is an equilibriumpoint of (6.100)-(6.104) if andonly if (x∗, z∗)
is a KKT point of (6.86)-(6.89) and β∗, γ∗ and λ∗ are the associated Lagrange variables.
Proof. (x∗, z∗, β∗, γ∗, λ∗) is an equilibrium point of (6.100)-(6.104) if and only if dx

dt = 0,
dz
dt = 0, dβ

dt = 0, dλ
dt = 0 and dγ

dt = 0, we then obtain equations (6.94)-(6.99). By Theorems
63 and 64.

First, the state variables of the neurodynamicmodels are initialized. Then, eachmodel
undergoes a precise local search based on its dynamics for the optimization process.
Once all neurodynamic models have converged to their equilibria, the initial states of
the recurrent neural networks are optimized using the updating rule of particle swarm
optimization (PSO). We denote yi = (yi1, ..., yin)

T the position of the ith particle and
vi = (vi1, ..., vin)

T its velocity. The inertia weightw ∈ [0, 1] determines the degree to which
the particle’s previous velocity is retained. The best previous position yielding the maxi-
mum fitness value for the ith particle is denoted as ỹi = (ỹi1, ..., ỹin)

T , and the best posi-
tion yielding the maximum fitness value in the swarm is represented by ŷ = (ŷ1, ..., ŷn)

T .
The initial state of each neurodynamicmodel is updated using the PSOupdating rule given
by [34], i.e,
vi(j + 1) = wvi(j) + c1r1(ỹi − yi(j)) + c2r2(ŷi − yi(j)), (6.105)
yi(j + 1) = yi(j) + vi(j + 1). (6.106)
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Figure 6.6: A block diagramdepicting a duplex neurodynamic systemwith a two-timescaleconfiguration

where the iterative index is represented by j, while the two weighting parameters are
denoted as c1 and c2 and r1 and r2 represent two random values drawn from the interval
[0, 1].

The diversity of initial neuronal states plays a critical role in achieving global optimiza-
tion. Introducing a mutation operator, which generates a random yi(j + 1), can enhance
the diversity of initial neuronal states. To quantify the diversity of these states, we use the
following function

d =
1

n

n∑
i=1

∥yi(j + 1)− ŷ(j)∥. (6.107)
We use wavelet mutation operator from [86] and performing for the ith particle if d < ζ

as follows
yi(j + 1) =

{
yi(j) + µ(hi − yi(j)) , ρ > 0
yi(j) + µ(yi(j)− li) , ρ < 0

(6.108)
where hi and li are the upper and the lower bound for yi, respectively. ζ > 0 is a given
threshold and ρ is defined using a wavelet function

ρ =
1√
a
e−

ϕ
2a cos(5ϕ

a
) (6.109)
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As the value of ρ approaches 1, the mutated element of the particle will move towards
the maximum value of yi(j + 1), whereas approaching -1, the mutated element goes to-
wards the minimum value of xi(j + 1). The magnitude of |ρ| determines the size of the
search space for xi(j+1), with larger values indicating a wider search space. Conversely,
smaller values of |µ| lead to a smaller search space for fine-tuning. To achieve fine-tuning,
the value of the dilation parameter a is adjusted based on the current number of itera-
tions j relative to the total number of iterations T . Specifically, a is a function of j/T , we
take a = e10

j
T . We generate ϕ randomly from [−2.5a, 2.5a].

The algorithm details are given in Algorithm 3 where y = (x, z, β, γ)

Algorithm 3 The neurodynamic duplex
- Let y1(0) and y2(0) be randomly generated in the feasible region.- Let ỹ(0) = ŷ(0) = y(0) the initial best previous position and best position,respectively.-Set the convergence error ϵ.
while ||y(j + 1)− y(j)||≥ ϵ doCompute the equilibrium points ȳ1(j) and ȳ2(j) of RNN1 and RNN2 based on(6.28)-(4.96).
if f(x̄1(j)) < f(x̃(j)) then
ỹ(j + 1) = ȳ1(j)

else
ỹ(j + 1) = ỹ(j)

end if
if f(x̄2(j)) < f(x̃(j)) then
ỹ(j + 1) = ȳ2(j)

else
ỹ(j + 1) = ỹ(j)

end if
if f(x̃(j)) < f(x̂(j)) then
ŷ(j + 1) = ỹ(j + 1)

else
ŷ(j + 1) = ŷ(j)

end ifCompute the value of y(j + 1) following (6.105)-(6.106).
if d < ζ thenPerform the wavelet mutation (6.108).
end ifj=j+1

end while

6.3.2 . Convergence Analysis
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Lemma 66. [137] Suppose that the objective function f is measurable, and the feasible
region U is a measurable subset, and for any Borel subset B of U with positive Lebesgue
measurewehave ∞∏

k=1

(1−Pk(B)) = 0. Let {y(k)}∞k=1 be a sequence generated by a stochas-
tic optimization algorithm. If {f(y(k))}∞k=1 is a nonincreasing sequence, then it convergeswith probability one to the set of global optimal solutions.
Theorem 67. If the state of the following neurodynamic model with a single timescale,
κ
dx

dt
= −x+

(
x− (∇xf(x) + βT∇xg(x, z))

)
+
, (6.110)

κ
dz

dt
= −z + (z − (βT∇zg(x, z) + γT∇zh(z)))+, (6.111)

κ
dβ

dt
= −β + (β + g(x, z))+, (6.112)

κ
dλ

dt
= −λ+ (λ+ l(x))+. (6.113)

κ
dγ

dt
= −γ + (γ + h(z))+. (6.114)

converges to an equilibrium point, then the state of a neurodynamic model with two
timescales, as described by equations (6.100)-(6.104) globally converges to a partial opti-
mum of problem (6.86)-(6.89).
Proof. The Lagrangian function of problem (6.86)-(6.89) is given by

L(x, z, β, λ, γ) = f(x) + βT g(x, z) + γT l(x) + λTh(z). (6.115)
As an equilibrium point of (6.110)-(6.114) corresponds to a KKT point (x∗, z∗, β∗, λ∗, γ∗) of
(6.86)-(6.89) [142] verifying
∇xL(x∗, z∗, β∗, λ∗, γ∗) = 0, (6.116)
∇zL(x∗, z∗, β∗, λ∗, γ∗) = 0, (6.117)
∇βL(x∗, z∗, β∗, λ∗, γ∗) = 0, (6.118)
∇γL(x∗, z∗, β∗, λ∗, γ∗) = 0, (6.119)
∇λL(x∗, z∗, β∗, λ∗, γ∗) = 0, (6.120)
β∗T g(x∗, z∗) = 0, β∗ ≥ 0, (6.121)
γ∗T l(x∗) = 0, γ∗ ≥ 0. (6.122)
λ∗Th(z∗) = 0, λ∗ ≥ 0. (6.123)
We fix x∗ and take z ∈ U∗

x , problem (6.86)-(6.89) becomes convex, we have then
L(x∗, z∗, β∗, λ∗, γ∗) ≤ L(x∗, z, β∗, λ∗, γ∗), (6.124)

which leads to
f(x∗) + β∗T g(x∗, z∗) + λ∗Th(z∗) ≤ f(x∗) + β∗T g(x∗, z) + λ∗Th(z). (6.125)
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As λ∗T l(x) ≤ λ∗T l(x∗) = 0, γ∗Th(z) ≤ γ∗Th(z∗) = 0 and β∗T g(x∗, z) ≤ β∗T g(x∗, z∗) = 0

from the KKT conditions, then f(x∗) ≤ f(x) and this for every z ∈ U∗
x . By Definition 22,

we have that x∗ is a partial optimum of (6.86)-(6.89).
Theorem 68. If the state of the two-timescale neurodynamic model (6.100)-(6.104) con-
verges to a partial optimum and the initial states and time constants of the two neuro-
dynamic models are sufficiently different. Then the duplex of two two-timescale neural
networks in Figure 6.6 system is globally convergent to a global optimal solution of prob-
lem (6.86)-(6.89) with probability one.
Proof. By Theorem58, the two-timescale neurodynamicmodels RNN1 andRNN2 are provento converge to a partial optimum. From Algorithm 2, the solution sequence is generated
as follows

{
ŷ(j + 1) = ỹ(j + 1) if f(x̃(j)) < f(x̂(j)),

ŷ(j + 1) = ŷ(j) else.
We observe that the generated solution sequence {f(ŷ(j))}∞j=1 is monotonically increas-
ing.

Let Mi,j be the supporting set of the initial state of RNNi at iteration j. As indicatedby equation (6.108), the mutation operation ensures that the initial states of the RNNs
are forced to be in the feasible region U . Hence, for every iteration index J ≥ 1, the
supporting sets fulfill the following condition

U ⊆ M =

J⋃
j=1

2⋃
i=1

Mi,j . (6.126)

We have then v(U) = v(M) > 0. By Lemma 66, we have
lim

j−>∞
P(ŷ(j) ∈ Φ) = 1 (6.127)

where Φ is the set of the global optimal solutions of (6.86)-(6.89). The conclusion follows.

6.3.3 . Numerical experiments
To evaluate the performances of our approach, we consider a standard profit maxi-

mization problem. A manufacturing firm produces n products with N different machines. The
times required to manufacture each unit are random variables. The mean vector µj and the
covariance matrix Σj describing the uncertainty sets of the time vector tj = {tij}1≤i≤n, where
tij is the time required to manufacture one unit of each of product i using machine j and the
daily capacity of eachmachine j given by bj are given. The objective of the study is to determine
the daily number of units to be manufactured for each product without exceeding the available
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machining times. We write our robust joint chance-constrained maximization problem as
follows.

min sup
F0∈D0

−E
[
c̃Tx

]
, (6.128)

s.t. inf
F∈D

P

(
n∑

i=1

tijxi ≤ bj , j = 1, ...,N
)

≥ p, (6.129)
x ≥ 0, (6.130)

where vector c̃ is a random variable and corresponds to the profit per unit for each
product, tij is the time required to manufacture one unit of product i using machine j, bjis the time capacity of machine j, p is a given probability level,D0 is an uncertainty set forthe distribution F0 of c̃ and D is an uncertainty set for the distribution F of the random
variables.

All the algorithms in this Section are implemented in Python. We run our algorithms
on Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz. The random instances are generated with
numpy.random, and we solve the ODE systems with solve_ivp of scipy.integrate. The de-
terministic equivalent programs are solved with the package gekko and the gradients and
partial derivatives are computed with autograd.grad and autograd.jacobian. For the fol-
lowing numerical experiments, the values of µj and c̄ the mean of c̃ are uniformly gen-
erated in [2.0, 4.0], the components of the matrix Σj are uniformly drawn in the interval
[1.0, 3.0] and we generate the values of bj uniformly in [50.0, 60.0], γk1 = 5 and γk2 = 5.

The resulting deterministic equivalent problems of (6.128)-(6.130), where the uncer-
tainty sets are D1 and D2 are given respectively by

min c̄Tx, (6.131)
s.t. µTj x+

√
pzj

1− pzj
||Σ

1
2
j x||≤ bj , j = 1, ..., N, (6.132)

N∑
j=1

zj = 1, (6.133)
x ≥ 0, zj ≥ 0, j = 1, ..., N, (6.134)

and
min c̄Tx, (6.135)
s.t. µTj x+

(√
pzj

1− pzj
√
γk2 +

√
γk1

)
||Σ

1
2
j x||≤ bj , j = 1, ..., N, (6.136)

N∑
j=1

zj = 1, (6.137)
x ≥ 0, zj ≥ 0, j = 1, ..., N, (6.138)
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The neurodynamic duplex vs. convex approximations

Cheng et al. [26] propose two convex approximations to solve problem (6.128)-(6.130). A
linear approximation that gives an upper bound to the minimization problem and a tan-
gent approximations that leads to a lower bound. In this first subsection, we compare
the objective value obtained using the neurodynamic duplex with those obtained using
the linear and the tangent approximations. We compute the gap between the two bounds
and the global optimumgivenby theneurodynamic duplex byGAP= Boundlower, upper−NDBoundlower, upper ,
where Boundlower is the value of the lower bound, Boundupper is the value of the upperbound, and ND is the value obtained using the neurodynamic duplex. We recapitulate
the obtained results in Table 6.6. Column one gives the value of the confidence parame-
ter p. Column two gives the final value of the neurodynamic duplex. Columns three and
four show the lower bound and its gap with the neurodynamic duplex, respectively. Fi-
nally, columns five and six present the upper bound and the gap with the neurodynamic
approach. We observe that the final value obtained with the dynamical duplex remains
between the two bounds for the different values of p with gaps less than 0.5%, demon-
strating that the neurodynamic approach effectively converges to the global optimum.
Moreover, we remark that as p increases the value of the objective function increasewhich
is coherent since lower values of p induce larger risk area.
p Neurodynamic duplex Tangent approximation Linear approximationObj value Obj value GAP Obj value GAP0.95 -36.25 -36.41 0.43% -36.20 -0.13%0.9 -40.48 -40.51 0.07% -40.46 -0.04%0.8 -45.30 -45.41 0.24% -45.22 -0.17%0.7 -47.31 -47.38 0.14% -47.28 -0.06%0.6 -48.09 -48.13 0.08% -48.07 -0.06%

Table 6.6: Results for different values of p for D1(µ,Σ)

n N Neurodynamic duplex Tangent approximation Linear approximationObj value Obj value GAP Obj value GAP7 4 -22.86 -22.97 0.47% -22.77 -0.39%10 5 -22.51 -22.65 0.61% -22.44 -0.31%15 10 -21.36 -21.61 1.15% -20.82 -2.59%20 15 -21.28 -21.78 2.29% -20.93 -1.67%25 20 -19.79 -20.78 4.67% -19.01 -4.10%
Table 6.7: Results for different values of n and N for D1(µ,Σ)
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The distributionally robust optimization approach vs. stochastic optimiza-
tion approaches

To evaluate the robustness of the proposedduplex for the twouncertainty setsD1 andD2,
we additionally solve problem (6.128)-(6.130) when the random variables follow uniform
and normal distributions and p = 0.95. We compare the solution of our proposed dis-
tributionally robust approach with the solution of the stochastic programming approach.
We generate 100 instances for (tij)1≤I≤n,1≤j≤N using themean vectors and the covariance
matrix when the true distribution of the stochastic variables is one of the five following
distributions: uniform distribution, normal distribution, log-normal distribution, logistic
distribution and Gamma distribution. We calculate the number of times when the con-
straints were violated over the 100 generated scenarios for each stochastic and robust
solutions. Table 6.8 recapitulates the obtained results, where column one gives the true
distribution, columns two, three, four and five give the number of violated scenarios for
the solution obtained using the uniform approach, the normal approach, the first robust
approach and the second robust approach, respectively. The relative expected profit is
computed relatively to the value achieved by the solution of the stochastic program with
uniform distribution.

We observe that the distributionally robust approaches are more conservative com-
pared to the stochastic approaches. We invest between 4.3% and 12.2% of the expected
profit in order to ensure the joint constraint. In fact, the average number of violated sce-
narios for the robust approaches are 0 while the numbers of violated scenarios for the
stochastic solutions are significant, i.e., when Gamma is the true distribution of the ran-
dom variables, the average number of the violated scenarios are 24 and 9 for the uniform
and the normal solutions, respectively.

Stochastic solutions Robust solutionsUniform Normal D1(µ,Σ) D2(µ,Σ)Relative expected profit -0% -0.5% -4.3% -12.2%Number Uniform distribution 2 0 0 0of Normal distribution 8 5 0 0violated Log-normal distribution 15 6 0 0scenarios Logistic distribution 23 5 0 0Gamma distribution 24 9 0 0
Table 6.8: Number of violated scenarios for the stochastic and the robust solu-tions
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7 - Conclusions and Perspectives

7.1 . Conclusions

Dynamical recurrent neural networks have emerged as a powerful tool for tackling
optimization problems, showcasing notable advancements in both theory and applica-
tions within optimization theory. However, despite these significant strides, several im-
portant challenges remain unresolved, creating an appealing avenue for further research
and exploration in neurodynamic optimization. This thesis has been dedicated to investi-
gating the practical application of recurrent dynamical neural networks in solving various
geometric optimization problems. The dissertation’s contributions encompass the de-
velopment of novel theoretical frameworks, algorithmic techniques, and computational
methodologies that effectively incorporate chance-constrained geometric optimization.
Additionally, the research conducted in this thesis extends to practical applications across
diverse domains, including telecommunications, engineering, transportation, and shape
optimization. Through investigating these real-world problem scenarios, valuable insights
and solutions have been derived, facilitating informed decision-making processes.

Chapter 4 of this thesis is dedicated to the exploration of geometric programs with
joint chance constraints. We focus specifically on the case where the stochastic param-
eters are independently distributed according to a normal distribution. To address this
problem, webegin by deriving a biconvex deterministic reformulation of the initial chance-
constrained problem through the application of a standard variable transformation tech-
nique. Next, we review existing state-of-the-art methods that rely on convex approxima-
tion. In contrast, we propose a novel neurodynamic approach that solves the stochastic
program without the need for any approximations. We establish the stability and global
convergence of the proposed neurodynamic approach using Lyapunov analysis. To vali-
date the effectiveness of our approach, we conduct numerical experiments that demon-
strate its robustness and superior performance compared to a sequential algorithm. Fur-
thermore, we extend our research to consider the scenario of joint rectangular geometric
chance-constrained programs. In this case, we obtain the biconvex equivalent formula-
tion by employing the log transformation and leveraging the arithmetic-geometric mean
inequality. In the final part of the chapter, we present a real-world application of our pro-
posed method. Specifically, we apply it to solve a problem involving the maximization
of signal-to-interference noise ratio for massive multiple-input, multiple-output (MIMO)
systems.

In Chapter 5, we introduced the copula theory as an efficient tool to model chance-
constrained optimization problems with dependent stochastic variables. We first con-
sider the case of linear programs. We propose a neurodynamic approach to solve the
equivalent deterministic program based on the optimality conditions given by the par-
tial KKT system. We apply the proposed algorithm to solve a profit maximization prob-
lem. Further, we extend our approach to solve geometric-dependent chance-constrained
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programs. The deterministic equivalent was obtained using an Archimedian copula com-
bined with a log transformation. A generalized shape optimization problem was solved
using the neurodynamical approach with different elliptical distributions.

Chapter 6 of this thesis focuses on distributionally robust chance-constrained opti-
mization. Initially, we explore the linear case and consider two different uncertainty sets
based on moments. For each uncertainty set, we derive the corresponding deterministic
equivalent formulation. To tackle the obtained equivalents, we propose a duplex consist-
ing of two two-timescale recurrent neural networks. This novel approach demonstrates
convergence almost surely to a global optimum, providing a robust solution method for
distributionally robust chance-constrained optimization problems in the linear case. In
addition to the linear case, we extend our investigation to geometric programs. We pro-
pose two uncertainty sets: one with known first-order moments and the other with a
known first-order moment and nonnegative support. We further consider the scenarios
of independent and dependent random variables, resulting in four different determinis-
tic programs. For the first three programs, where the obtained equivalents are convex,
we utilize a single timescale dynamical neural network to solve them efficiently. How-
ever, for the fourth program, biconvex, we adapt the neurodynamic duplex approach
to address its complexity and find the optimal solution effectively. By incorporating dis-
tributionally robust techniques and leveraging the power of recurrent neural networks,
this chapter contributes to advancing the field of chance-constrained optimization. The
proposed methodologies offer robustness and efficiency in solving linear and geometric
distributionally robust chance-constrained programs. The convergence properties and
adaptability of the neurodynamic duplex highlight its effectiveness in finding global op-
tima for complex optimization problems.

In conclusion, the outcomes obtained in this dissertation not only enrich the existing
knowledge base but also offer fresh perspectives and practical tools and methodologies
for addressing geometric chance-constrained problems in real-world settings. The re-
search presented herein contributes to advancing the field, paving the way for further
exploration and application of recurrent dynamical neural networks in optimization con-
texts.

7.2 . Perspectives

In this dissertation, we explore the research landscapeof geometric chance-constrained
problems and propose novel neurodynamic algorithms to tackle these optimization chal-
lenges. While our work contributes valuable insights and algorithmic solutions, there are
still open issues and future directions that warrant further investigation in the application
of dynamical neural networks to chance-constrained optimization.

One important area for future research is the development of more efficient and
scalable neurodynamic algorithms for solving large-scale chance-constrained optimiza-
tion problems. The size and complexity of real-world problems often pose computational
challenges, and exploring techniques to enhance the computational efficiency of neural
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network-based approaches can greatly improve their applicability and practicality.
Furthermore, the exploration of alternative neural network architectures and learning

paradigms could yield further improvements in addressing chance-constrained optimiza-
tion problems. For instance, investigating recurrent neural networks with attentionmech-
anisms or reinforcement learning-based approaches can offer new perspectives and po-
tentially overcome limitations associated with traditional neurodynamic algorithms.

Moreover, the theoretical analysis of neurodynamic algorithms applied to chance-
constrained optimization problems is an important research direction. Examining the
convergence properties, stability guarantees, and robustness of these algorithms under
different problem settings and assumptions can provide a deeper understanding of their
behavior and facilitate their reliable application in practical scenarios.

Additionally, exploring the combination of dynamical neural networks with other op-
timization techniques and frameworks, such as evolutionary algorithms, swarm intelli-
gence, or metaheuristics, can lead to hybrid approaches that leverage the strengths of
different methods and offer improved performance in solving chance-constrained opti-
mization problems.

Finally, we must highlight that the efficiency and quality of the developed algorithms
can be improved through further research and development. One approach is to im-
plement ODE solvers based on artificial intelligence techniques. Neural networks or rein-
forcement learning can potentially enhance the speed and accuracy of solving the dynam-
ical differential system. These AI techniques can learn patterns and optimize the solution
process, leading to faster and more precise results.

Additionally, other optimization techniques, such as parallel computing, GPU accel-
eration, or distributed computing, can accelerate the algorithm’s execution time further.
These techniques leverage hardware advancements to process computations in parallel,
reducing the overall time required for solving the system.

By exploring these avenues of research and development, the algorithm can bemade
more efficient, allowing for faster and more effective solutions to chance-constrained ge-
ometric optimization problems.
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