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Titre : Modélisation à l’échelle atomique de la diffusion dans les alliages concentrés
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Résumé : L’objectif de cette thèse est d’étudier
la diffusion dans les alliages concentrés à l’aide de
modèles à l’échelle atomique. Notre travail se di-
vise en deux grandes parties.

Dans la première étude, nous avons modé-
lisé l’interdiffusion dans des multicouches nanomé-
triques Fe/Cr à l’aide d’un modèle Monte Carlo
cinétique à l’échelle atomique (AKMC) développé
précédemment, et nous avons simulé leurs pro-
fils de diffraction de rayons X (DRX). Nous avons
comparé les profils de concentration et les épais-
seurs de couches aux mesures expérimentales obte-
nues par nos collaborateurs. Nous avons constaté
que le modèle AKMC reproduit l’interdiffusion
dans la région riche en Fe et aux interfaces à
500°C avec un accord satisfaisant avec les résul-
tats expérimentaux. Les profils DRX étaient en
bon accord qualitatif avec les profils expérimen-
taux, malgré le fait que les profils DRX expéri-
mentaux décroient globalement plus rapidement,
à 450°C et 500°C, en particulier au début du re-
cuit. Nous avons constaté qu’une analyse des pro-
fils DRX basée sur l’interférence des rayons X nous
permet d’identifier la partie de la multicouche qui
affecte principalement chaque satellite DRX. En
raison de l’asymétrie de diffusion, la décroissance
du logarithme des intensités des satellites DRX est
linéaire pendant un intervalle de temps spécifique
et avec un taux de décroissance différent pour-
chaque satellite. Nous avons pu séparer l’évolution
de la multicouche en différents régimes cinétiques,
chacun attribué à l’interdiffusion dans une région
spécifique de la multicouche, et extraire à partir
des simulations et des expériences, des coefficients
d’interdiffusion à 450°C et 500°C, et à différentes
valeurs de concentration : région riche en Cr, ré-
gion riche en Fe, aux interfaces, et à des concen-
trations proches des limites de solubilité. Les va-
leurs obtenues à 500°C sont en accord satisfaisant
avec les valeurs calculées par une méthode d’atté-
nuation d’ondes. Les observations expérimentales

ont montré la présence de dislocations misfit ainsi
qu’une possibilité de croissance partiellement cohé-
rente des multicouches. Pour une étude plus com-
plète, nous devons prendre en compte dans nos
simulations la présence de dislocations et les pro-
priétés élastiques de l’alliage. Cela peut en outre
aider à faire le lien entre la mobilité de l’interface,
les distances interplaires et l’interdiffusion.

Dans la deuxième étude, nous avons développé
un modèle à l’échelle atomique pour la diffusion
dans les alliages concentrés dans un cadre plus
général. Nous avons étendu la reformulation de
la théorie du champ moyen auto-cohérent et le
code KineCluE aux alliages concentrés, et mis en
œuvre une procédure d’échantillonnage pour ré-
duire la taille de l’espace de configuration. La pro-
cédure d’échantillonnage est basée sur le remplis-
sage des sites de l’environnement à partir d’un
réservoir d’atomes en fonction de leur composi-
tion moyenne, combiné à un algorithme de pseudo
temps de résidence qui privilégie les configurations
les plus stables thermodynamiquement. Notre mo-
dèle introduit une façon originale d’explorer un es-
pace de configuration connecté. Nous avons ap-
pliqué notre modèle à des alliages binaires avec
différentes énergies d’ordre. Dans les alliages sans
interactions, nous avons trouvé un bon accord avec
les résultats de la littérature lorsque les fréquences
de saut des différentes espèces atomiques sont du
même ordre de grandeur. Dans les alliages où les
interactions thermodynamiques sont non nulles,
avec une tendance à l’ordre ou à la démixion, nous
avons trouvé un bon accord avec les simulations
AKMC pour les faibles valeurs absolues d’énergies
d’ordre. L’implémentation actuelle de notre mo-
dèle ne peut pas être utilisée pour étudier avec pré-
cision la diffusion dans les alliages qui présentent
un ordre à longue distance important, et une étude
plus approfondie devra être menée pour optimiser
la procédure d’échantillonnage et pour appliquer
notre modèle à des alliages plus réalistes.



Title : Atomic-scale modeling of diffusion in concentrated alloys
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Abstract : The aim of this thesis is to study diffu-
sion in concentrated alloys using atomic-scale mo-
dels. Our work is divided in two main parts. In the
first part, we combine Atomic Kinetic Monte Carlo
(AKMC) with X-ray diffraction (XRD) to calcu-
late concentration dependent interdiffusion coeffi-
cients, and in the second part we develop a general
atomic-scale model to calculate transport coeffi-
cients in multi-component alloys.

In the first study, we modeled interdiffusion in
Fe/Cr nanometric multilayers using a previously
developed AKMC model and we simulated their
corresponding XRD profiles. We compared the
concentration profiles and layer thicknesses to ex-
perimental multilayers which were studied by our
experimental collaborators. We found that the
AKMC model reproduces interdiffusion in the Fe-
rich region and at the interfaces at 500°C, with
overall satisfactory agreement with the experimen-
tal results. The XRD profiles were in good quali-
tative agreement with the experimental profiles,
while experimental XRD profiles exhibit an overall
faster decay at 450°C and 500°C, especially at the
beginning of annealing. We found that an analysis
of multilayer XRD profiles based on interference of
X-rays allows us to identify the part of the mul-
tilayer which affects predominantly each XRD sa-
tellite. We also found that, due to diffusion asym-
metry, the decay of the logarithm of XRD satellite
intensities is linear during specific time ranges of
annealing, with a decay rate specific to each satel-
lite. We were able to separate the evolution of the
multilayer into different kinetic regimes, each attri-
buted to diffusion in a specific region of the multi-
layer, and extract, from the simulations and the ex-
periments, interdiffusion coefficients at 450°C and
500°C, and at different concentration ranges : in
high Cr concentration, in high Fe concentration, at
the interfaces, and at concentrations close to the

solubility limits. We found that the values obtai-
ned at 500°C are in satisfactory agreement with va-
lues calculated using a wave attenuation method.
Experimental observations showed the presence of
misfit dislocations and a possible partial coherency
growth of the multilayers. For a more complete
study, we need to take into account in our simu-
lations the presence of dislocations and the elastic
properties of the alloy. This can further help make
the link between interface mobility, interplanar spa-
cing and interdiffusion.

In the second study, we developed an atomic-
scale model for diffusion in concentrated alloys in
a more general framework. We extended the Self-
Consistent Mean-Field theory reformulation and
the KineCluE code to concentrated alloys, and im-
plemented a sampling procedure to reduce the size
of the configuration space. The sampling proce-
dure is based on filling environment sites from a
reservoir of atoms based on their average com-
position, combined with a pseudo residence-time
algorithm which favors the most thermodynami-
cally stable configurations. Our model introduces
an original way to explore a connected configura-
tion space. We applied our model to binary alloys
with different ordering energies. In non-interacting
alloys, we found good agreement with the litera-
ture results when the jump frequencies of the dif-
ferent atomic species were within the same order
of magnitude. In interacting alloys with both or-
dering and clustering tendencies, we found good
agreement with AKMC simulations for low values
of ordering energies. The current implementation
of our model cannot be used to study accurately
diffusion in alloys with long-range order and a fur-
ther study needs to be conducted to optimize the
sampling scheme and apply the model to more rea-
listic alloys.
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Introduction

Materials have long been made and used by humans. The progress of materials
science contributed to the progress of humanity, all the while progressing with it.
While metals were first used in their raw form, it was then discovered that alloys
consisting of a mixture of specific elements could have better overall properties
(tensile strength, resistance to fracture, oxidation, etc...). Alloys also evolved from
dilute alloys formed by adding a small concentration of elements to a main metal
element, to concentrated alloys formed by mixing equal or near-equal proportions
of two or more elements. Nowadays, in most applications, metals are no longer
used in their pure forms, as we can optimize the composition of alloys with respect
to the application of interest. There is a great variety of alloys and alloy properties,
and they are used in different applications based on the macroscopic constraints
and conditions of the application (temperature, pressure, volume, etc...). While
properties of alloys used to be optimized based on macroscopic experimentation
and observation, it is now known that macroscopic properties result from the mi-
croscopic state of the alloy. Atoms are constantly moving in a material at finite
temperature, which leads to atomic jumps and a redistribution of atoms. These
changes at the atomic scale affect the macroscopic properties of materials. For
example, a local chromium depletion in stainless steel can make the depleted area
more sensitive to corrosion. Additionally, alloys have different phases at differ-
ent temperatures and compositions, and each phase can have different properties.
Diffusion properties allow the evolution of the material from one phase to another
and explain how and at which rate alloy properties change. Materials used in
nuclear applications are faced with potential variations of temperature, stress and
irradiation, which may change the initial phase of the material and hence its prop-
erties. Even at steady-state, it is enough to modify the microstructure [1] and
phase diagrams [2]. This can weaken the material and render it unsuitable for the
application for which it was originally designed. These variations result from irra-
diation which creates defects in the material [3,4]. These defects (mainly vacancies
and interstitials and their clusters) diffuse in the alloy and can lead to segregation
or precipitation [5–7]. The concentration of these defects depends on the irradi-
ation conditions, temperature and microstructure. Next generation reactors and
fusion reactors under development, such as ITER (International Thermonuclear
Experimental Reactor), will operate up to higher irradiation doses, hence produc-
ing more defects in the material. This will require materials that are even more
withstanding to irradiation damage and temperature. To ensure the mechanical
strength of these reactor materials throughout their operation time, it is necessary
to understand and to be able to predict the consequences of atomic diffusion in
them.

FeCr based alloys (FeCrC, FeNiCr, etc...) are currently largely used in the
nuclear and energy industry, and constitute good candidates for next generation
nuclear and fusion reactors. The reason is that FeCr alloys are characterized by
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good mechanical properties and resistance to corrosion, and, more importantly,
they have good resistance to void swelling under irradiation. However, FeCr alloys
decompose at certain temperatures and concentrations, and this new phase can
increase the alloy’s chances of corrosion and weaken it [8,9]. There is however little
data on the diffusion properties of the FeCr alloy at high Cr concentrations and
at low temperatures [9], which further limits its applications to certain domains of
temperature and concentration.

High-entropy alloys (HEA) show great potential in many applications, includ-
ing nuclear applications, as they can have high corrosion and irradiation resistance
as well as high strength. These alloys are a special class of multi-component alloys
which have five or more elements mixed in comparable proportions. HEA triggered
huge scientific interest recently [10,11], but diffusion is still not well understood in
this type of alloys. Until recently, diffusion in HEA was thought to be sluggish [12],
which made them of great technological interest for high-temperature applications.
However, there now exists a convincing amount of scientific works which show that
diffusion in HEA is not necessarily sluggish, and that it can rather be accelerated
in some cases by increasing the number of elements [10]. Therefore, before being
able to use HEA in environments with high irradiation and temperature, we need
to properly understand their diffusion properties. These properties are not unique
in this class of alloys, and a study is required for each type of HEA alloy as a
function of the alloying elements and the defects mediating diffusion. Hence the
interest of developing a general theoretical model which can be applied to all, or
at least a big portion, of these alloys, and to a variety of potential experimental
conditions.

Diffusion is quantified by the Onsager matrix (also known as the transport
coefficients matrix) which links the macroscopic flux to the driving forces of diffu-
sion [13, 14]. Diffusion experiments do not allow us to calculate the full Onsager
matrix except in very special experimental conditions [15]. Theoretical meth-
ods have therefore been developed. Numerical approaches, like Monte Carlo and
Molecular Dynamics simulations, are a powerful tool to study diffusion. For in-
stance, a Monte Carlo model has been developed to study the decomposition in
FeCr alloys, and takes into account the effect of temperature, magnetism and con-
centration on the atomic-scale diffusion properties [8, 9, 16]. Nevertheless, as we
shall explain in detail, numerical approaches have their limitations when it comes
to calculating transport coefficients, and analytical models have been developed
to try and fill the remaining gaps. Models have been developed at different scales
and by relying on a variety of alloy properties. It is known that geometrical and
kinetic correlations arise in diffusing systems due to interactions between the dif-
ferent chemical species, and because diffusion is mediated by a small number of
defects [17]. It was found that calculating kinetic correlations analytically is a
difficult task. While many efforts have been made to study diffusion in alloys, an-
alytical models have been able to predict the full Onsager matrix mainly in dilute
alloys [18]. In concentrated alloys, kinetic correlations become more challenging
to calculate as the number of components increases. Progress has been mainly
made in the case of a non-interacting concentrated alloy [19, 20] and in simple
and specific cases of concentrated alloys [21, 22]. In both cases, models have been
mostly applied in the case of a binary alloy. The need for a general model which
predicts the full Onsager matrix in any concentrated alloy is still present.

The aim of this thesis is to tackle this problem specifically in the case of a
FeCr alloy, by relying on Monte Carlo simulations and X-ray diffraction profiles,
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and from a more general theoretical point of view, by studying the atomic diffu-
sion in a multicomponent alloy. Monte Carlo simulations allow us to work on a
specific alloy and compare with experimental works, which provides a macroscopic
vision of diffusion. A general theory allows us, on the other hand, to work on a
greater variety of applications, but it comes with challenging technical difficulties
and relies on Monte Carlo simulations to test the validity of its hypotheses and
approximations.

In the first chapter, we present a detailed bibliographical study on the ex-
perimental, numerical and theoretical works that have been done so far to study
diffusion in alloys in general, and in concentrated alloys in particular. We discuss
in detail interdiffusion experiments and how they can be combined with other ex-
perimental and theoretical methods in order to obtain interdiffusion coefficients.
We show the strength and limitations of Monte Carlo simulations in calculating
transport coefficients, and why the problem of diffusion has been mostly solved
in the case of dilute alloys, but not in the general case of concentrated alloys.
We finally present a detailed summary of the models that have been developed
for concentrated alloys, and compare them based on their approximations, their
limitations and the range of applications in which they can be used.

In the second chapter, we study interdiffusion in Fe/Cr nanometric multilay-
ers, and present a general method which combines Atomic Kinetic Monte Carlo
simulations and X-ray diffraction profiles to calculate interdiffusion coefficients.
Multilayers provide a workaround to performing experiments in reasonable time
while at relatively low temperatures [23,24], which allows us to compare our sim-
ulation works with the experimental results obtained by our collaborating teams
(Gladice Magnifouet, Véronique Pierron-Bohnes, Maxime Vallet, and Estelle Mes-
lin). We present a previously developed analytical model to otain a concentration
independent interdiffusion coefficient from X-ray diffraction profiles [25, 26]. De-
veloping a model based on a concentration dependent interdiffusion coefficient is
a highly challenging task, and potentially impossible to solve in the general case.
Instead, we show how a concentration independent model, combined with a proper
analysis of the X-ray diffraction profile, enables us to calculate interdiffusion coef-
ficients which depend on concentration. We apply this methodology to both the
simulated and experimental multilayer X-ray diffraction profiles, and we show that
our calculated interdiffusion coefficients are in good agreement with each other and
with literature values calculated using a wave-attenuation method.

In the third chapter, we expand our scope of work and develop a new atomic-
scale model to study diffusion in concentrated alloys. We present a previously
developed theory [22] and code (KineCluE) which have automated the calculation
of transport coefficients [18] in the case of dilute alloys. We show how we extend
the theoretical framework of this model to apply it to the case of concentrated
alloys, as well as its implementation in the KineCluE code. Our model consists in
studying diffusing species and a local environment around them in a precise and
exact way, and on using an original formulation of a mean-field approximation
far from the diffusion species. We apply our model to the case of non-interacting
and interacting binary alloys with both ordering and clustering tendencies. Our
results are in good agreement with the literature results, especially for low absolute
values of ordering energies and when the different atomic jump frequencies are not
too different. We show that alloys in which long-range order is important require
the treatment of larger environments around diffusing species, which increases the
size of the configuration space that we need to study. Computational memory
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limitations require us to sample the configuration space to reduce the size of the
system. We present our sampling scheme and analyze the sampled concentration
and probability distributions, as well as the accuracy of the sampling in the case of
a non-interacting alloy. We then discuss the remaining open-questions regarding
how to perform an accurate and efficient sampling before it can be applied to more
realistic alloys.



Chapter 1

Bibliographical study on diffusion
in alloys

1.1 Introduction to chapter 1

The concept of diffusion flux was first introduced in 1807 by Fourier while
studying heat transfer in metals [27]. Since then, flux became a fundamental
concept to describe any transport phenomena. The flux represents the rate at
which some physical quantity crosses a plane of unit area per unit time. The nature
of the physical quantity depends on the transport phenomena that is being studied,
and can represent a variety of things going from particles and atoms to pedestrians
and cars (Table 1.1). For Fourier it was heat, while for Fick it was matter transport
[28]. To study matter transport, i.e. diffusion, in alloys, we are interested in
the flux of the different atomic species that constitute the alloy, including point
defects which are usually the diffusion mediators. The driving force for diffusion
is the chemical potential gradients of atomic species. Onsager’s thermodynamics
of irreversible processes [13, 14] established the phenomenological laws that relate
the flux and the driving forces through transport coefficients and what is known
as the Onsager matrix. Random walk theories have also been established to study
diffusion as a consequence of successive atom jumps. The difficulty in studying
diffusion generally lies in calculating kinetic correlations which arise because atoms
interact with each other and because diffusion is usually mediated by a limited
number of point defects which deviates diffusion from a completely random walk.

The Onsager matrix is hard to determine experimentally in solids. Some dif-
fusion experiments allow for the calculation of the full transport matrix only in
specific cases. Diffusion experiments are also usually only feasible at high temper-
atures in order to observe and measure the phenomena of interest in a reasonable
amount of time. Transport coefficients are not necessarily linear in temperature
and we cannot always extrapolate their values to low temperatures from high tem-
perature experiments. Numerical methods, especially Monte Carlo simulations,
are a powerful tool to study diffusion [8, 16, 29–37]. They are versatile in struc-
ture, jump mechanisms, concentration and temperature. However, Monte Carlo
simulations do not allow us to study unstable systems and can present numeri-
cal errors and kinetic trapping, especially when calculating the off-diagonal terms
of the matrix. Several analytical models have been developed to overcome these
problems.

In dilute alloys, which are composed of one main chemical element and a small
number of impurities, analytical models already exist and allow for the computa-
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tion of the full Onsager matrix. Le Claire and Lidiard’s n-jump frequency models
and their generalization [38–41] are famous examples to study impurity diffusion.
Trinkle’s Onsager code [42] and Schuler’s KineCluE code [18] are other examples
which allow the computation of transport coefficients in an automated way for a
variety of crystal structures, point defects and jump mechanisms. Concentrated
alloys on the other hand, are composed of at least two elements that are present
in relatively high concentrations (i.e. concentrations above 1%). The reason why
models developed for dilute alloys cannot be used in the case of concentrated
alloys is because the medium around diffusing species becomes chemically het-
erogeneous and the set of different jump frequencies becomes a lot bigger. Since
thermodynamic interactions and jump mechanisms are usually influenced by the
surroundings, this heterogeneity increases the number of different interactions and
jumps in the alloy. This further introduces kinetic correlations that are usually
hard to calculate. Currently, models have mainly been developed to study diffu-
sion in non-interacting concentrated alloys. These belong to a class of Random
Alloy (RA) models [19, 20, 36, 43–45] which cannot be applied to the more gen-
eral case of interacting alloys. The Path Probability Method (PPM) [21, 46, 47]
and the Self-Consistent Mean-Field (SCMF) theory [22, 48–50] were developed to
study diffusion in an interacting concentrated alloy, with both theories taking into
account short-range order and computing the full Onsager matrix.

In this chapter, we try to summarize some of the most important breakthroughs
in the concepts and theory of diffusion. In Sec. 1.2, we present the phenomeno-
logical law of Onsager and treat some special cases of it, such as Fick’s laws of
diffusion. We also try to summarize the most commonly used diffusion coefficients
and show in which case each one is used. In Sec. 1.3, we present some of the most
important diffusion experiments and show their limitations in computing the full
Onsager matrix in the general case. In Sec. 1.4, we discuss the main differences
between different statistical ensembles which are needed for a theoretical macro-
scopic description of diffusion. Section 1.5 discusses the basics of Monte Carlo
simulations and how they can be used to calculate transport coefficients. In Sec.
1.6, we present the problematic of analytically calculating kinetic correlations, how
it can be done in the case of a dilute alloy, and the theoretical challenges it gener-
ates in concentrated alloys. We lastly present, in Sec. 1.7, the analytical models
developed to study diffusion in non-interacting (RA) and interacting (PPM and
SCMF) concentrated alloys. We will also present the strengths, applicability and
limitations of each of these methods, and try to compare them among each other.

1.2 Phenomenological laws of diffusion

1.2.1 Onsager’s diffusion laws

A system subjected to some driving forces ~Fj is driven to a non-equilibrium

state. As a consequence, a net flux ~J i of a quantity i is established to cancel
these forces out, until the system reaches a steady state in which the net flux and
the driving forces become zero. Note that this final state is not necessarily the
same as the equilibrium state. This is true if the driving force is not maintained.
In the framework of thermodynamics of irreversible processes (TIP), the driving
force is maintained constant and therefore the steady-state has a non-zero flux.
It is assumed that, when driving forces are sufficiently small, the system is in a
steady-state state that is close enough to the equilibrium state so that the fluxes are
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linearly proportional to the driving forces. It can be shown that the proportionality
coefficients are equilibrium properties that are independent of the driving forces
[51]. The net flux vector of i can therefore be written as

~J i = −
∑
j

Lij ~Fj, (1.1)

where the Lij coefficients are the transport coefficients, also known as the Onsager
coefficients. Note that, when the driving force vanishes, the flux also becomes null.
The nature of the i (subsequently ~J i) and ~Fj quantities depends on the transport
phenomena that is being studied, as shown in Table 1.1.

phenomena i driving force ~Fi
chemical diffusion atoms chemical potential gradient

fluid flow liquid pressure gradient
heat conduction heat temperature gradient

electrical conduction charge electric field
pedestrian flow pedestrians self-driving force

Table 1.1: Examples of matter transport phenomena and their associated matter
and driving force.

In the rest of the manuscript, we will be exclusively interested in diffusion in
alloys which requires the study of the net flux of atomic species β as a consequence
of the chemical potential gradients ~∇µα of all species α present in the system, such
that the flux equation (Eq. 1.1) becomes

~Jβ = −
∑
α

Lβα
~∇µα
kBT

, (1.2)

where kB is the Boltzmann constant, and T is the temperature. Note that the
transport coefficients form a square matrix with diagonal coefficients Lββ and off-
diagonal coefficients Lβα. A diagonal coefficient relates the flux of a species to the
driving force that originates from the same species. The off-diagonal coefficient
relates the flux of a species to the driving forces originating from other species
and shows the existence of a kinetic flux coupling, such that a species diffuses
under the influence of other species. As a consequence of the second principle of
thermodynamics, the Onsager matrix is a positive definite matrix, and therefore

Lαα ≥ 0 and LααLββ − L2
αβ ≥ 0. (1.3)

Onsager further proved in 1931 [13, 14], through his reciprocal relations, that the
transport matrix is symmetric, except in cases where time-reversal is not symmet-
ric, leading to

Lαβ = Lβα. (1.4)

In chemical diffusion, detailed balance at the microscopic scale entails that the
probability of the system being in a state n and transitioning into a state m is equal
to the probability of being in state m and transitioning into state n. Time reversal
is symmetric when detailed balance is verified, and is not symmetric otherwise,
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like in the case of diffusion under irradiation with forced relocations of atoms [52].
The importance of this relation lies in the fact that, for a matrix of size N , we
only need to determine N (N + 1) /2 independent coefficients.

1.2.2 Special cases of the Onsager equation

In the general case, the challenge is to calculate the full transport coefficient
matrix. There are many special cases of the Onsager equation, each associated
with a different type of diffusion coefficient. In some of these cases, there exist
experimental and/or theoretical tools to determine the transport or diffusion co-
efficients. In this section, we will summarize some of the most important cases
along with commonly used diffusion coefficients.

1.2.2.1 Chemical diffusion coefficient

Onsager’s law can be re-written as a function of the concentration gradients.
The chemical potential can generally be expressed as a function of concentration
through the relation

µα = µrefα + kBT ln γαCα, (1.5)

where µrefα is a reference chemical potential for species α, γα is the activity coef-
ficient and Cα is the volume concentration of species α. Note that the chemical
potential has to always be calculated with respect to a reference, and hence the
need for µrefα . The activity coefficient quantifies the deviation from an ideal solid
solution in which there are no interactions, such that γα = 1 when interactions
can be neglected (e.g. random alloys). The chemical potential gradient can then
be calculated as

~∇µα
kBT

= ~∇ ln γα + ~∇ lnCα (1.6)

=
1

Cα

(
1 +

d ln γα
d lnCα

)
~∇Cα (1.7)

=
1

Cα
Φα

~∇Cα, (1.8)

where Φα = 1 + d ln γα/d lnCα is the thermodynamic factor of species α. The flux
of β can hence be written as a function of the concentration gradients

~Jβ = −
∑
α

Lβα
Cα

Φα
~∇Cα. (1.9)

If we consider that there is no cross-diffusion then all non-diagonal transport co-
efficients are null and the flux of β becomes proportional to the concentration
gradient of β

~Jβ = −Lββ
Cβ

Φβ
~∇Cβ. (1.10)

This is known as Fick’s first law of diffusion [28], in which the flux of a species
depends only on its own concentration gradient and is not affected by the presence
of other species

~Jβ = −Dc
β
~∇Cβ. (1.11)
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The proportionality constant Dc
β is known as the chemical diffusion coefficient

of β and is identified using Eq. 1.10 as

Dc
β = −Lββ

Cβ
Φβ. (1.12)

Note that the chemical diffusion coefficient has to include the effect of the interac-
tions between atoms. Fick’s law is a special case of Onsager’s law and is applicable
when there is no cross-diffusion. One of the most important questions is whether
or not the off-diagonal coefficients are small enough to be neglected, which would
greatly simplify the problem by using Fick’s law. On one hand, it is easier to mea-
sure concentration gradients than chemical potential gradients, and on the other
hand, there are fewer parameters to calculate; for N species, there are N diffusion
coefficients in comparison with N (N + 1) /2 transport coefficients. This is why
Fick’s law is often used experimentally. However, in many cases, cross-diffusion
coefficients are important and cannot be neglected. Experiments done by Darken
(Sec. 1.3.3) and Anthony (Sec. 1.3.4) showed that the flux of a species is not
necessarily null when its concentration gradient is. The off-diagonal transport co-
efficients cannot be neglected when there is vacancy drag effect (which happens
when the vacancy and solute diffuse in the same direction, entailing that the va-
cancy drags the solute with it) and therefore Fick’s law cannot be used when
studying cases like non-equilibrium interfacial segregations [53]. Several studies
have also showed that diffusion in nanoscale binary systems does not always fol-
low Fick’s law [54,55]. Percolation phenomena as well cannot be correctly studied
if kinetic couplings are ignored. Therefore, one of the most important questions
to answer when studying diffusion, is whether or not the cross terms are small
enough to neglected, since removing them would greatly simplify the problem. In
the general case, these terms cannot be neglected.

1.2.2.2 Tracer diffusion coefficient

In the case of a dilute alloy in which there are no interactions between atoms
(Φα = 1) and no flux coupling, for a species A, the flux expression 1.9 reduces to
a special case of Fick’s first law of diffusion

~JA = −LAA
CA

~∇CA, (1.13)

with

D∗A =
LAA
CA

, (1.14)

known as the tracer diffusion coefficient. The tracer diffusion coefficient is also
known as the self-diffusion coefficient when A is an isotope in a homogeneous
A matrix (often labeled A∗), and as the impurity diffusion coefficient when A
is a solute found in a very low concentration in a homogeneous B matrix. In both
cases, the tracer diffusion coefficient can be measured experimentally as a function
of the tracer concentration gradient, as is shown in Sec. 1.3.1.

1.2.2.3 Interdiffusion in a binary alloy

We can consider the case of a binary alloy AB in which we can assume either
diffusion via direct exchange between A and B atoms, either diffusion via point
defects (for example vacancies) such that the concentrations of point defects is too
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low with respect to the concentration of A and B. In these two cases, we can write
CA + CB ' Cat, where Cat is the total number of atoms per unit volume, and
~∇CA = −~∇CB. This leads to the thermodynamic factors of the two species being
equal ΦA = ΦB = ΦAB. The flux of species A can be calculated as a function of
its concentration gradient, even if we take into account the off-diagonal term in
the 2× 2 Onsager matrix

~JA = −LAA
CA

ΦA
~∇CA −

LAB
CB

ΦB
~∇CB

= −LAA
CA

ΦAB

(
1− CALAB

CBLAA

)
~∇CA

= −Dc
A

(
1− CALAB

CBLAA

)
~∇CA

= −DI
A
~∇CA. (1.15)

The proportionality factor

DI
A = Dc

A

(
1− CALAB

CBLAA

)
, (1.16)

is known as the intrinsic diffusion coefficient. Note that this is not equivalent
to using Fick’s law because the cross-diffusion coefficient LAB is not necessarily
null, even though the equation has the same form as Fick’s equation. The only
approximation done here with respect to Onsager’s general law is considering CA+
CB ' Cat. The intrinsic diffusion coefficient of species B can be written by analogy
in the same way

~JB = −DI
B
~∇CB, (1.17)

with

DI
B = Dc

B

(
1− CBLAB

CALBB

)
. (1.18)

Each intrinsic diffusion coefficient quantifies the diffusion of one species. When
interdiffusion is mediated by vacancies, atomic planes move at Kirkendall’s velocity
and the flux of species A and B observed in the reference frame of the laboratory
can be written as a function of one coefficient, D̃AB, such that

~JAlab = −D̃AB
~∇CA and ~JBlab = −D̃AB

~∇CB, (1.19)

where

D̃AB = XAD
I
B +XBD

I
A, (1.20)

is known as the interdiffusion coefficient and quantifies the intermixing of both
species. Here, Xα = Cα/Cat is the atomic fraction of species α. Kirkendall’s ex-
periment and the derivation of the interdiffusion coefficient are explained in detail
in the experimental section (Sec. 1.3.2). There are several ways to calculate the
interdiffusion coefficient from an experimental or simulated concentration profile,
like the Boltzmann-Matano construction [56, 57], the Sauer-Freise analysis [58],
and den Broeder’s method [59]. This is further discussed in Sec. 1.3.2.
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1.3 Diffusion experiments

To quantify diffusion, it is necessary to calculate the transport coefficients or
the diffusion coefficients. Experiments have long been the best available tool to
better understand diffusion and to measure diffusion properties. Different types
of diffusion experiments have been proposed to calculate the previously defined
diffusion coefficients. It is not always easy to reconcile theory and experiment due
to difficulties that may arise experimentally to apply theoretical approximations
and assumptions. In general in an experiment, one can impose, measure and
control a concentration gradient and not a chemical potential gradient. Therefore,
diffusion experiments are usually done by forcing on the system a concentration
gradient and observing its response to it. Fluxes need to be expressed as a function
of concentration gradients, and the diffusion coefficients that are measured are
those of Eq. 1.11. Additionally, diffusion at room temperature is slow and one
would need to run an experiment for an unreasonably long time before observing
the evolution of the system. To overcome this difficulty, experiments are usually
performed at high temperatures or in nanometric materials. We will highlight in
this section some of the most important experimental breakthroughs in diffusion.
We will present tracer diffusion experiments which allow the calculation of diffusion
properties related to a single atom, and interdiffusion experiments which allow
the measurement of interdiffusion coefficients and correlation factors of collective
atoms. We will also talk about Anthony’s experiment which presents the ideal
conditions to calculate the full Onsager matrix experimentally.

1.3.1 Tracer diffusion experiments

Figure 1.1: Main steps of a tracer diffusion experiment. Image taken from [17].

Self-diffusion, followed by impurity diffusion, is the easiest type of diffusion
to study both theoretically and experimentally. In tracer diffusion experiments,
Fick’s equations can be used (Eq. 1.11) which requires only the knowledge of a
concentration gradient. The assumptions made require a small enough amount
of the tracer species to diffuse in a chemically homogeneous matrix of A (it can
also be a matrix of AB, ABC, etc...) such that the presence of the tracer does
not interact with the bulk matrix. In a self-diffusion experiment, an isotope of A
labeled as A∗ is introduced, such that isotope atoms are either stable and distin-
guished by their mass, either unstable and distinguished by their radioactivity. In
impurity diffusion, a very small amount of a different species B is introduced and
distinguished by its different chemical nature. Let us assume the more general
case of a tracer B in a homogeneous A matrix. One of the most fundamental laws
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of diffusion is the continuity equation, also known as the mass conservation law,

∂CB (~r, t)

∂t
+ ~∇ ~JB = 0, (1.21)

where CB (~r, t) is the local concentration of species B at position ~r and time t.
Combining the continuity equation with Fick’s first law of diffusion gives

∂CB (~r, t)

∂t
= ~∇

(
DB

~∇CB (~r, t)
)
. (1.22)

In such a chemically homogeneous system, and if ~∇CB is not too high, one can
assume that the diffusion coefficient is homogeneous in space, and we obtain an
equation known as Fick’s second law of diffusion

∂CB (~r, t)

∂t
= DB∆CB (~r, t) . (1.23)

Note that here, ∆ represents the Laplacien operator. Therefore, the diffusion
coefficient is the proportionality constant that links the time evolution of the con-
centration field to its second derivative with respect to space. The solution to
such equation in a semi-infinite system (tracer deposited on the surface) has the
Gaussian form

CB (~r, t) =
CS
b

d
√
π

exp

(
− ~r2

2d2

)
, (1.24)

where CS
B is the initial number of B atoms per unit surface, d is the diffusion

distance of an atom B, whose diffusion coefficient is DB, during time t

d =
√

2DBt. (1.25)

In such Gaussian distribution, the distance 2d represents the standard deviation
and is equal to the distribution’s full width at half maximum. Calculating DB

requires then the knowledge of the evolution of the concentration profile with the
diffusion distance. The experimental procedure (Fig. 1.1) is conceptually simple
and consists in depositing a very thin layer of tracer atoms on the surface of a
homogeneous sample (semi-infinite system), followed by an isothermal annealing
during a time t so that tracer atoms diffuse into the volume. The sample is then
sectioned into layers parallel to the surface of deposition and the tracer concentra-
tion in each sample is calculated using an experimental technique adapted to the
type of isotopes used. This allows us to construct the concentration-depth profile
and calculate from it the diffusion coefficient using Eq. 1.25 as

DB =
d2

2t
. (1.26)

Therefore, tracer diffusion experiments allow the calculation of tracer (self-diffusion
and impurity) diffusion coefficients and correlation factors that are related to a
single tracer atom.
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1.3.2 Interdiffusion experiments

Figure 1.2: Example of the distribution of atoms in a multilayer before (left) and
after (right) annealing. Image simulated using Atomic Kinetic Monte Carlo.

Interdiffusion experiments consist in studying diffusion between different atomic
layers, for example between a layer containing A atoms and a layer containing B
atoms, by studying the time evolution of the different concentration profiles (Fig.
1.2). Nowadays, interdiffusion experiments are done either at high temperatures,
or in nanometric multilayers [60]. The most famous interdiffusion experiment
is the one done by Kirkendall in 1939 during his thesis, and published later in
1942 [61,62], and which lead him to prove that diffusion is mediated by vacancies,
at a time when direct exchange and ring mechanism were thought to be the only
diffusion mechanisms. In his experiment, Kirkendall introduced inert markers at
an interface between copper and brass (CuZn alloy) and observed that these mark-
ers (i.e. the interface), which were expected to stay immobile, shifted positions
during the experiment (Fig. 1.3). This is a consequence of the difference in intrin-
sic diffusion coefficients of A and B that must be compensated by the presence of
a third species in the system, the vacancy. Few years later in 1948, Darken [63]
established the theoretical framework to describe what is known as the Kirkendall
effect.
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Figure 1.3: Schematic representation of Kirkendall’s interdiffusion experiment.
After annealing, a flux of vacancies towards the brass layer compensates for the
difference in Zn and Cu fluxes, which leads to the disappearance of atomic planes
in the brass-rich layer and as a consequence to the interface shift towards the brass
layer.

A net flux of vacancies compensates for the difference in atomic fluxes

~JV = −
(
~JA + ~JB

)
. (1.27)

Since vacancies are always at their equilibrium concentration, there is creation
and elimination of vacancies at different parts of the crystal which means that
some atomic sites, and eventually atomic planes, disappear and appear at different
places. The consequent movement of atomic planes is assimilated to Kirkendall’s
velocity ~vK and is directly linked to the flux of vacancies through the moving
planes. The previously determined flux expressions of A and B as a function
of the intrinsic diffusion coefficients (Eq. 1.15 and Eq. 1.17) are intrinsic fluxes
that do not take into consideration this movement of planes, and are therefore
calculated relative to the moving lattice planes. If we were to calculate the flux of
A in the frame of reference of an observer in the laboratory, it is simply a function
of ~JA and the velocity of the planes with respect to the laboratory, which is ~vK

~JAlab = ~JA + ~vKCA. (1.28)

Kirkendall’s velocity is directly linked to the flux of vacancies observed in the
reference frame of the laboratory

~vK =
~JVlab
Csites

, (1.29)

where Csites is the total number of sites per unit volume. Since the vacancy concen-
tration is considered too low with respect to the sites concentration, Kirkendall’s
velocity becomes a function of ~JV
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~vK =
~JV

Csites
+ ~vK

CV
Csites

'
~JV

Csites
. (1.30)

Combining this equation with Eq. 1.27, Eq. 1.15, and Eq. 1.17, ~vK can be
expressed as a function of the intrinsic diffusion coefficients and the concentration
gradient of one of the two species

~vK =
1

Csites

(
DI
A −DI

B

)
~∇CA. (1.31)

The flux vector of A in the laboratory can be written as a function of the A
concentration gradient by replacing ~vK and ~JA with their expressions in Eq. 1.28

~JAlab = −
(
XAD

I
B +XBD

I
A

)
~∇CA, (1.32)

where Xα = Cα/Csites is the atomic fraction of species α. The flux of B in the
frame of reference of the laboratory can be written by analogy as

~JBlab = −
(
XAD

I
B +XBD

I
A

)
~∇CB. (1.33)

The fluxes of both A and B species are proportional to their corresponding species
concentration gradient, and can both be written as a function of the same propor-
tionality constant D̃AB such that

~JAlab = −D̃AB
~∇CA and ~JBlab = −D̃AB

~∇CB, (1.34)

with

D̃AB = XAD
I
B +XBD

I
A, (1.35)

known as the interdiffusion coefficient. Note that we find a Fickian law with
effective diffusion coefficients. The interdiffusion coefficient is the same for both
species and it describes the behavior of intermixing of both species. Note that the
fluxes of A and B in the reference frame of the laboratory are equal in magnitude
but are in opposite directions. The interdiffusion coefficient can also be written
explicitly as a function of concentrations, transport coefficients and the common
thermodynamic factor

D̃AB =

(
C2
ALAA + C2

BLBB − 2CACBLAB
CACB

)
ΦAB. (1.36)

Note that in this case, the thermodynamic factor can be expressed as a function
of the second-order derivative of the free energy G,

ΦAB =
CACB
kBTCat

d2G

dC2
A

=
CACB
kBTCat

d2G

dC2
B

, (1.37)

where Cat is the atomic concentration. Since the second order derivative of G
depends on its curvature, the thermodynamic factor can be negative, leading to
negative intrinsic diffusion coefficients and a negative interdiffusion coefficient.
The interdiffusion coefficient can be measured in several parts of the multilay-
ers as a function of the local concentration, using for example the Boltzmann-
Matano [56,57], the Sauer-Freise [58], or the den Broeder [59] method. One needs
to make sure that the volume is constant and that the local concentration gradient
is small enough to consider a constant local concentration where the interdiffusion
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coefficient is being measured. From the evolution of the interdiffusion coefficient
with respect to concentration (Eq. 1.35) and from Kirkendall’s velocity measured
from the marker’s velocity (Eq. 1.31), the intrinsic diffusion coefficients can be
obtained. Therefore, an interdiffusion experiment allows the calculation of the
concentration dependent interdiffusion coefficient that describes the behavior of
intermixing of both species, and the concentration dependent intrinsic diffusion
coefficients that describe the diffusion of each species separately in a homogeneous
solid solution. Because of its simplicity, this approach is widely used to calculate
interdiffusion and intrinsic diffusion coefficients. However, from the intrinsic diffu-
sion coefficients we can only measure a linear combination of the Lαβ coefficients
and not the full Onsager matrix. Anthony’s experiment (next paragraph) showed
that in some alloys one can obtain a third equation which allows us to calculate
all transport coefficients.

Over the past years, there has been great interest in studying interdiffusion
in nanometric multilayers, because their small size is a workaround to performing
diffusion experiments at low temperature in reasonable times [60]. Multilayers are
additionally characterized by an interface mobility and an X-ray diffraction pro-
file with satellites around the main Bragg peak due to composition modulations.
Calculating interdiffusion coefficients from interface mobility and X-ray diffraction
patterns [55,60,64–66]. Since the shift in position of the interface is directly related
to the asymmetry in fluxes (as explained in this section), several models are being
developed to calculate interdiffusion coefficients based on the observable interface
shift [55, 64–67]. On the other hand, X-ray diffraction profiles are sensitive to the
composition and lattice parameter profiles, which change during interdiffusion.
The intensity of XRD satellite peaks decreases with annealing [60] and this decay
is directly related to interdiffusion. Interdiffusion, multilayer compositions, X-ray
diffraction profiles and interface mobility are closely linked. Therefore, interdiffu-
sion experiments can be combined with other experimental and theoretical tools
for a better understanding of the link between the atomic scale and the macro-
scopic scale, and the calculation of interdiffusion coefficients. In Chapter 2, we
will discuss the theory of simulating X-ray diffraction profiles of multilayers and
the challenges that arise to make the link between the interdiffusion coefficients
and the measurable concentration profile and satellite intensities.

1.3.3 Darken’s experiment

In 1941, Darken conducted an interdiffusion experiment in a bilayer of a ternary
FeCSi alloy, such that the concentration in silicon and iron is different in the two
layers and the concentration in carbon is the same in both. After annealing, Darken
observed that the C concentration decreased in the Si-rich layer and increased in
the other layer. This experiment is a simple and clear proof that the flux of a
species is not necessarily null if its concentration gradient is null (Fick’s laws of
diffusion, Eq. 1.11), and that the true driving force of diffusion is a chemical
potential gradient (the general laws of Onsager, Eq. 1.2) that arises not only from
a concentration gradient but also from the thermodynamic interactions between
the different species. In the general case, Fick’s laws are not sufficient and flux
couplings cannot be neglected.
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1.3.4 Anthony’s experiment

Anthony’s experiment provides an experimental way to measure the full On-
sager matrix. The conditions of this particular diffusion experiment make it possi-
ble to obtain, in addition to the two equations obtained in a regular interdiffusion
experiment, an equation which relates all atomic transport coefficients, and there-
fore allow the calculation of all transport coefficients of a binary alloy. In 1970,
Anthony observed in a alumina based alloy the segregation of impurities in va-
cancy sinks, and was able to measure the ratio of impurity flux to vacancy flux
(AlCu [68], AlZn [69]). The experiment consists in slowly quenching a dilute alu-
minum based alloy (AB) from a temperature close to its melting temperature to
room temperature. This slow process of cooling down increases the concentration
of vacancies in the alloy and forces them to diffuse to the surface to get eliminated
there. However, alumina forms an oxide layer on the surface and prevents the
elimination of vacancies, and therefore, vacancies precipitate at the surface in the
form of cavities. The solutes B are either depleted or enriched near these cavities,
depending on whether the vacancy drags B atoms with it (drag effect) or if they
diffuse in opposite directions. This is known as the inverse Kirkendall effect since
in this case it is the induced vacancy flux which affects the diffusion of A and B.
The ratio of vacancy flux to B flux is calculated by measuring the ratio of the
volume of the cavities to the volume of the B atoms near the cavities and by as-
suming fluxes are proportional to ∇µV only. A new equation linking the transport
coefficients is obtained since the flux ratio is

~JB
~JV

=
LAB + LBB

LAA + 2LAB + LBB
. (1.38)

Combining this equation with the equations previously obtained in the interdiffu-
sion experiment, one can calculate all three transport coefficients LAA, LAB and
LBB, necessary for a full description of diffusion in a binary alloy. This experiment
is of great importance because it provides the missing equation to calculate the
full Onsager matrix experimentally. The alloys used by Anthony is his experiment
were aluminum alloys AlX (X=Zn, Mg, Cd, Si, Ge), copper alloys CuX (X=Zn,
Mn, Ag, In) and gold alloys AgX (X=Zn, Cu), and his experiment could not be
reproduced with other alloys as no voids were observed at the oxide/substrate
interface because of the low concentration of vacancy precipitation at the surfaces.

1.3.5 Limitations

The modern era of technology and computation marked the switch from exper-
imentally assisted theories, to computationally assisted experiments. Previously,
theories were being developed mainly to explain the scientific phenomena observed
in experiments, while nowadays, modeling and simulation are essential to guide
researchers in their choice of experiments and setups. When it comes to studying
diffusion, at low temperatures species diffuse rather slowly. As a consequence, in
order to observe interesting phenomena, experiments need to be performed in very
small systems or for an unreasonable period of time and for a considerable amount
of resources. Therefore, experiments do not allow us to observe nor predict the
long-term consequences of atoms diffusing in big systems at low temperatures.
They are usually limited to either the range of high temperatures, or to small
dimensional systems like nanometric multilayers [60]. To extrapolate high tem-
perature results to low temperatures is a quick assumption that does not take
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into account that diffusion properties - such as the diffusion coefficient - do not
necessarily have an Arrhenius evolution as a function of temperature, nor that the
different phases of an alloy can have different properties at different temperatures
and that diffusion mechanisms with other activation energies can be activated at
high temperature (see Fig. 1.4). Therefore, we cannot always extrapolate the
results of high temperature experiments to low temperatures. A solution would be
to instead study diffusion in nanometric systems, however such systems can have
very different behavior from the bulk material due to their very small size [70]. At-
tempts to accelerate diffusion lead to studying diffusion under irradiation, however
this usually leads to the production of additional defects which involves additional
fluxes and flux couplings that need to be taken into account. One of the main
limitations is therefore that diffusion properties are not necessarily linear in tem-
perature, concentration or size. Experimental setups can be cumbersome in light
of the different samples, temperatures and conditions that need to be tested, all
while controlling sample pollution and contamination issues. Besides all this, in
the general case, the main reason diffusion experiments are insufficient is that they
do not allow us to measure the full Onsager matrix in solids. Anthony’s experiment
is a special case in which we can, and only in such systems can we measure enough
diffusion coefficients to compute the full Onsager matrix. For all these reasons, and
thanks to the progress of ab initio methods and pseudo-potentials that can pro-
vide accurate atomic-scale data, scientists in this field have started to rely greatly
on numerical and analytical methods. Numerical approaches include most impor-
tantly Monte Carlo simulations (Section 1.5) and Molecular Dynamics, that can
simulate diffusion within a bigger range of temperature in a more reasonable time
and can compute the full Onsager matrix in many more cases. Analytical models
(Sections 1.6 and 1.7) have been developed with the aim to give further insight
on the problem and to express the Onsager coefficients as a function of measur-
able quantities. While numerical methods have their own limitations, analytical
approaches are challenging, especially when studying diffusion in concentrated al-
loys. The next sections will focus on the most important advancements made in
modeling and simulation of diffusion in alloys.
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Figure 1.4: Self-diffusion coefficient as a function of temperature in the α−, γ−
and δ−phases of Fe, measured experimentally: full circles [71]; open circles [72];
triangles [73]; squares [74]. This image was taken from [17].

1.4 Statistical ensembles

While we are usually interested in the macroscopic state and evolution of a
system, to each macroscopic state corresponds in fact several microscopic states in
which the system can be. The probability that the system is in a specific micro-
scopic state is not the same for all states, and a macroscopic property is the average
of this property over all microscopic states weighted by their probabilities. Sta-
tistical physics provides the mathematical framework to quantify the macroscopic
behavior of a system. Each system is described by a statistical ensemble, and the
type of this ensemble depends on the macroscopic constraints. The three most
important ensembles are the microcanonical ensemble (MCE), the canonical en-
semble (CE) and the grand canonical ensemble (GCE). In each ensemble, variables
are either fixed or can vary, however the ensemble can always be quantified by a
probability distribution over the microscopic states. Throughout this manuscript,
we will be working with canonical and grand-canonical ensembles, depending on
the constraints of the system under study. It is therefore practical to define a
general probability distribution which can be applied to any statistical ensemble.
We define the generalized energy En of a microscopic state n of the system, and
we write the probability distribution of n as a function of En,

Pn =
1

Z
exp

(
− En
kBT

)
, (1.39)

where kB is the Boltzmann constant, T is the temperature, and Z is the partition
function of the corresponding system which guarantees the normalization of the
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probability distribution

Z =
∑
n

exp

(
− En
kBT

)
. (1.40)

Equations 1.39 and 1.40 are valid for micro-canonical, canonical and grand-canonical
ensembles, and it is the definition of the generalized energy which differs from one
ensemble to the other.

An MCE is isolated and cannot exchange energy or particles with its environ-
ment. The total energy and number of particles are fixed, and the generalized
energy is independent of the state of the system and is always null

En|MCE = 0. (1.41)

Note that all microstates have equal probabilities. A CE represents a closed system
in contact with a thermostat at fixed temperature, and cannot exchange particles
with its environment. This means that the temperature and number of particles
are fixed, while the energy can vary in the microstates. The generalized energy is
equal to the internal energy Hn,

En|CE = Hn. (1.42)

A GCE represents an open system which can exchange energy and particles with
its environment. The chemical potential is fixed, while the energy and number of
atoms can vary between the microstates. The generalized energy is a function of
the internal energy and the chemical potential of species

En|GCE = Hn −
∑
α

Nα
nµα, (1.43)

where Nα
n is the number of atoms of species α in n, and µα is the chemical potential

of species α. The GCE partition function can be expressed as a function of the
CE partition function, by grouping together all microstates that have the same
number of atoms

Z|GCE =
∑
n

exp

(
−Hn −

∑
αN

α
nµα

kBT

)
(1.44)

=
∑
{Nα}

exp

(∑
αN

αµα
kBT

) ∑
n:Nα

n={Nα}
exp

(
− Hn

kBT

)
(1.45)

=
∑
{Nα}

exp

(∑
αN

αµα
kBT

)
Z|{N

α}
CE . (1.46)

Here, the sum over {Nα} is a sum over specific combinations of number of atoms

α, and Z|{N
α}

CE is the canonical partition function at fixed number of atoms equal
to {Nα}. In this manuscript, we will use a CE to study systems in which the
number of atoms is the same in all states of the system, and a GCE when the
number of atoms can fluctuate.

In each ensemble, many relationships exist between the different thermody-
namic quantities. For the sake of brevity, we will only mention here the ones
which will be used in this manuscript. Each ensemble is characterized by a ther-
modynamic potential energy which describes the state of the system. The partition
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functions can be written as a function of these thermodynamic potentials. In the
canonical ensemble, the thermodynamic potential is the free energy F ,

Z|CE =
∑
n

exp

(
− Hn

kBT

)
= exp

(
− F

kBT

)
. (1.47)

If in addition to the CE constraints (fixed N and T ), the pressure is also fixed
in the system (i.e. in an isobaric ensemble), the canonical partition function can
instead be written as a function of the Gibbs free energy G,

Z|CE = exp

(
− G

kBT

)
, (1.48)

where G =
∑

αN
αµα. In the GCE, the grand potential A is the thermodynamic

potential and the partition function can be written as

Z|GCE =
∑
n

exp

(
−Hn −

∑
αN

α
nµα

kBT

)
= exp

(
− A
kBT

)
, (1.49)

where A = −PV , is a function of the pressure and volume of the system.

1.5 Monte Carlo simulations of diffusion in al-

loys

1.5.1 Basis of the method

Monte Carlo is a stochastic modeling tool that has been widely used in materials
science in general and in studying diffusion in alloys in particular [8,16,29–37]. The
probabilistic method consists in studying the discrete time evolution of a system
towards its equilibrium state through a series of consecutive jumps or exchanges.
It relies on the principle of ergodicity and on detailed balance1 to ensure that all
states of the system can be explored and that the equilibrium state is reached
by the end of the simulation. The system can however be trapped in some local
minima instead. In general, the total number of possible configurations of a system
is too big for all of them to be found, and rather a connected sample of the most
probable configurations is explored (importance sampling).

From an initial configuration of the system, a connected trajectory is created
through successive jumps that occur based on a specific jump frequency model and
stochastic algorithm. These two parameters determine if a jump (a state transition
of the system) is chosen or not by comparing its success probability to a randomly
generated number. The accuracy of the Monte Carlo relies mainly on the sophis-
tication of the implemented jump model and its ability to properly describe the
behavior of the real alloy. Monte Carlo simulations can be a very powerful tool
when the thermodynamic properties and jump mechanisms are determined accu-
rately (experimentally and/or using ab initio methods) and implemented properly
in the

simulation. An optimal choice of the stochastic algorithm based on the problem
at hand ensures that the simulation is not stuck in a local equilibrium state and

1In some cases, such as when there are radiation-induced ballistic jumps, atomic exchanges
which do not satisfy the detailed balance are simulated instead.
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that it converges to the correct global equilibrium state, with the least number of
jumps.

Simulations can be done in the canonical or grand canonical ensemble, while
they are mostly done in the canonical ensemble because it is easier to simulate a
fixed number of atoms of each species. The probability distribution of a configu-
ration n is equal to its equilibrium probability

P 0
n =

1

Z
exp

(
− En
kBT

)
, (1.50)

where En is the energy of configuration n which includes thermodynamic interac-
tions, and Z is the partition function. The system evolves according to the master
equation

dPn
dt

=
∑
m

(PmWmn − PnWnm) , (1.51)

where Wnm is the jump frequency which transitions the system from configuration
n to configuration m. The master equation shows that the time evolution of the
probability of being in a configuration is equal to the probability of transitioning
to it (from another configuration) minus the probability of transitioning out of it
(to another configuration). At equilibrium, these two latter probabilities are equal
and the global detailed balance is verified∑

m

P 0
mWmn = P 0

n

∑
m

Wnm. (1.52)

When a jump and its reverse jump have the same probability of occurring, this is
described by the microscopic detailed balance equation

P 0
nWnm = P 0

mWmn. (1.53)

This jump frequency from n to m is calculated using transition state theory (TST)
[75] as

Wnm = Γnm exp

(
−∆Enm

kBT

)
, (1.54)

where Γnm is the attempt frequency (assumed equal to Γmn), and kB and T are
the usual Boltzmann constant and temperature respectively (Fig. 1.5). The ex-
ponential part of the jump frequency corresponds to the transition probability

wnm = exp

(
−∆Enm

kBT

)
, (1.55)

and the energy ∆Enm is calculated based on the energetic model that was imple-
mented. The transition probabilities between two configurations have to respect
detailed balance (Eq. 1.52) to ensure that the system reaches a stationary state
after a sufficient number of jumps (dPn/dt in Eq. 1.51 becomes null). The neces-
sary number of jumps required to reach convergence is not trivial to determine and
usually depends on the system and on the size of the Monte Carlo box (usually
of the order of a 106). In general, the simulation results are averaged by divid-
ing it in several observations which are called Monte Carlo blocks and calculating
the properties of interest in each block. In each block, a total number of jump
attempts Ns is made such that at each time-step i one jump is attempted and
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either accepted or refused. The choice of the jump depends on the implemented
algorithm (we will present in Sec. 1.5.2 two of the most widely used algorithms,
the Metropolis algorithm [76] and the time residence algorithm [77]). The number
of Monte Carlo blocks is usually of the order of 106 blocks, while the number of
attempt jumps depends on the number of species and is usually at least 100 per
atom that can potentially jump to ensure convergence. This becomes harder to
guarantee when the different jump frequencies are very different, say 4 orders of
magnitude different. This makes it particularly difficult to ensure a good statistics
to calculate off-diagonal transport coefficients in highly correlated systems. In the
theoretical limit of percolation phenomena for example, when the different jump
frequencies ratio in a binary alloy is infinite (in practice above 104), it is hard to
accurately calculate the correlation factor of species [33, 36]. Usually, the more
correlated diffusion is, the longer are the trajectories that need to be considered,
and the harder it is to ensure convergence.

Figure 1.5: Schematic representation of the system’s transition probability be-
tween states n and m. Here, the migration barrier for a jump from n to
m is ∆Enm = ESP − En, and its corresponding jump frequency is Wnm =
Γnm exp (−∆Enm/ (kBT )), where ESP is the energy of the saddle-point configu-
ration, and En is the energy of configuration n. Note that, in the general case,
∆Enm 6= ∆Emn and Wnm 6= Wmn.

1.5.2 Algorithms

1.5.2.1 Metropolis algorithm

The Metropolis algorithm [76] is based on picking one accessible configuration
at each time-step and deciding whether or not the system transitions to it by
comparing its transition probability to a random probability. Sampling of the
configurations is based on their thermodynamic weight and, in theory, the sampled
configuration space will be mostly formed of the most stable configurations. It is
based on a rejection versus acceptance algorithm and physical Monte Carlo time
increases constantly at each time-step.

1. Start with an initial configuration;

2. Find the set of all Nm configurations {mk; k ∈ [1, Nm]} that are accessible
from the current configuration n based on the implemented jump model;
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3. Pick a random number r ∈ [0, Nm] and pick the corresponding configuration
mr;

4. Calculate the transition probabilitywnmr (Eq. 1.55 with ∆Enm = Em−En);

(a) If wnmr ≥ 1: the system transitions to configuration mr;

(b) If wnmr < 1 : pick a random probability P ∈ [0, 1[, and:

i. if wnmr ≥ P : the system transitions to configuration mr;

ii. if wnmr < P : the system stays in configuration n;

5. Increment Monte Carlo time by a constant Monte Carlo time-step δt;

6. Go back to step 2.

Step 4 ensures that the system always transitions to more or equally stable configu-
rations (corresponding to ∆Enm ≤ 0), and transitions to a less stable configuration
only if its transition probability is greater than a random transition probability,
which means if its corresponding transition energy is lower than a randomly chosen
transition energy (the random energy being −kBT ln (P )). Therefore, the algo-
rithm explores mostly thermodynamically stable configurations, and occasionally
less stable configurations.

1.5.2.2 Residence-time algorithm

The residence-time algorithm [77] is based on picking one accessible configura-
tion at each time-step based on the transition probability to it compared to the
transition probabilities to other accessible configurations. Sampling of the config-
urations is based on their transition rate and, in theory, the sampled configuration
space will be mostly formed of the most stable configurations2. It is based on
an acceptance algorithm and physical Monte Carlo time does not increase in a
constant manner at each time-step.

1. Start with an initial configuration;

2. Find the set of all Nm configurations {mk; k ∈ [1, Nm]} that are accessible
from the current configuration n based on the implemented jump model;

3. Calculate the set of all transition frequencies {Wnmk ; k ∈ [1, Nm]} (Eq. 1.54
with ∆Enm = ESP − En);

4. Pick a random probability P ∈ [0, 1[;

5. Form a list of all transition frequencies (Fig. 1.6) and pick the r-th transition
which satisfies

r−1∑
k=1

Wnmk < P
Nm∑
k=1

Wnmk ≤
r∑

k=1

Wnmk ; (1.56)

6. The system transitions to configuration mr;

7. Increment Monte Carlo time by the average residence time δtn = 1/
∑Nm

k=1Wnmk ;

2In fact, it is most probable trajectories, i.e. trajectories in which the saddle-point config-
urations have the lowest energies, which are sampled. There is usually a correlation between
configuration energies and saddle-point energies (at least qualitatively), and in most cases it is
indeed the most stable configurations which are sampled.
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8. Go back to step 2;

Step 5 ensures that the system transitions to a configuration with a probability
proportional to its transition probability. Step 7 ensures that the transition time
depends on the configuration that the system is in and on the total transition
probability out of it. Therefore, the more stable a configuration is, the longer it
should take to transition out of it, and the physical Monte Carlo time is adjusted
accordingly without making the actual computational time longer. Therefore, tra-
jectories are built mostly according to the highest transition probabilities, and
occasionally according to lower transition probabilities, and transition time is ad-
justed according to the stability of configurations.

Figure 1.6: Scheme that shows how the residence-time algorithm works in the case
of 6 possible transitions from a configuration n. Transition frequencies are stacked
in a line such that the length of a probability is proportional to its value Wnmk . A
point is randomly chosen along the line and the code transitions to configuration
mk which corresponds to the Wnmk on which the random point falls. This guaran-
tees that the probability of transitioning to a configuration is proportional to its
value.

1.5.2.3 Choice of algorithm

The advantage of using the Metropolis algorithm is that at each time-step only
one transition probability is calculated which saves computation time compared
to the residence-time algorithm in which all transition probabilities are calculated.
The disadvantage of using the Metropolis algorithm is, however, that when the
transition is rejected, no configurations are chosen and the system remains in
the same configuration. In contrast, using the residence-time algorithm guaran-
tees that at every-time step a transition is made. The Metropolis algorithm can
therefore waste computational time and include a lower number of jumps in the
statistics, as compared to the residence-time algorithm.

The Metropolis algorithm is not suitable for cases when the energetic land-
scape presents sharp local minima as the system will most likely remain in the
same configuration for several time-steps. Also, when studying diffusion at low
temperatures, most transition probabilities are low and will be rejected, making
the Metropolis algorithm unsuitable in such cases.

The residence-time algorithm is not suitable for cases when the number of
transition probabilities is high or when there is a big difference in transition prob-
abilities. Even though the state of the system changes at each step, it can still get
stuck in local minima. When a saddle-point energy is low, the system will transi-
tion back and forth between two configurations and will not evolve to a new area
of phase space. Instead of getting stuck in one configuration like the Metropolis
algorithm, it will get stuck in a small sample of configurations.
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Regardless of the algorithm, transition probabilities verify detailed balance and
the system should converge towards its equilibrium state. Both algorithms have
their advantages and disadvantages, and depending on the system that is being
studied, and more specifically depending on the jump frequency model and energy
landscape, one of the two might be more or less suitable to use. For example, to
study decomposition phenomena in FeCr alloys, the residence-time algorithm is
better because, on one hand, the number of possible transitions via the vacancy
mechanism are low, and, on the other hand, decomposition is studied at relatively
low temperatures which could result in low transition probabilities and make the
Metropolis less suitable [9].

1.5.3 Time re-normalization problem

In the case of a vacancy-mediated diffusion mechanism, we need at least one
vacancy in the Monte Carlo box for atoms to exchange with it. The size of a
Monte Carlo box being usually of the order of 1 million, the resulting vacancy
concentration is of the order of 10−6. This is much higher than the real vacancy
concentration (which can be of the order of magnitude of 10−13 in FeCr alloys at
770K [9]). A higher number of vacancies leads to more frequent vacancy exchanges
and a faster atomic diffusion, leading to higher absolute values of the transport
coefficients. Time re-normalization is therefore crucial to fix this problem and
obtain accurate transport coefficients. The correction to the Monte Carlo can be
done at each time-step i according to

ti = tMC
i

CMC
V

CV
, (1.57)

where tMC
i and ti are respectively the time measured at time-step i in the Monte

Carlo simulation and the real physical time, and CMC
V and CV are respectively the

average vacancy concentration in the Monte Carlo simulation box and the real av-
erage vacancy concentration. Note that the average vacancy concentration in the
real alloy is equal to its equilibrium value CV = Ceq

V . The ratio of average concen-
trations CMC

V /Ceq
V can be approximated by the ratio of local concentrations in an

environment α inside which we know how to calculate the equilibrium concentra-
tion, CMC

V (α) /Ceq
V (α), and which is assumed to be the same in all environments.

The real physical time becomes

ti = tMC
i

CMC
V (α, δt)

Ceq
V (α)

. (1.58)

Here, Ceq
V (α) = exp

(
−E

f
V (α)

kBT

)
is a function of Ef

V (α), the vacancy formation

energy in α. CMC
V (α, δt) is calculated in an environment α during the time-step

δt. The chosen environment has to be well representative of the system to ensure
a big enough statistics. Equivalently, δt has to be big enough for the vacancy
to explore all the possible environments, and small enough with respect to the
evolution of the alloy’s structure. In the general case, the choice of α should not
affect the simulation itself, and the real physical time calculated from it should
still be of the same order of magnitude regardless of our choice. For more detail
on the time re-normalization problem, please refer to [78].
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1.5.4 Calculating transport coefficients

1.5.4.1 The Einstein-Smoluchowski formula: diffusion coefficients

In the case of isotropic diffusion and in the absence of a driving force, Einsten
[79] and Smoluchowski [80] established independently the relationship between
the diffusion coefficient Dα of an atom of species α and its total mean-square
displacement vector, ~rα (t), during a time t,

Dα = lim
t→∞

〈
~rα (t)2〉

6t
. (1.59)

The brackets here represent an ensemble average that is measured at equilibrium,
and time needs to be long enough for an accurate calculation. This relationship can
be used to calculate the diffusion coefficient in a Monte Carlo simulation in which
the system is already at equilibrium. Atomic displacements can be measured at
each Monte Carlo step and the total displacement of an atom α can be calculated
in each Monte Carlo block as the sum of its Ns successive displacements that
happen at each step i,

Dα =

〈(∑Ns
i=1 ~rα,i

)2
〉

6t
, (1.60)

where ti is the time at step i, such that the total time t =
∑Ns

i=1 ti. The brackets
represent an average over the different Monte Carlo blocks. Note that Monte Carlo
blocks represent various parts of the trajectory. Averaging over blocks is a time
average, and using the ergodicity principle, it is equivalent to an ensemble average.
To improve the convergence of Dα, it can also be calculated by averaging the sum
of displacements of α over all identical atoms α present in the simulation box, such
that

Dα =

〈∑Nα
k=1

(∑Ns
i=1 ~rαk,i

)2
〉

6Nαt
, (1.61)

where Nα is the total number of α atoms. Correlations between successive jumps
of the same species α are taken into account, and this can be seen in the ~rα,i~rα,j
term when expanding the square of the sum(

Ns∑
i=1

~rα,i

)2

=
Ns∑
i=1

~r2
α,i + 2

Ns−1∑
i=1

Ns∑
j=i+1

~rα,i~rα,j. (1.62)

This allows for the calculation of the diffusion coefficient from atomic displacements
while implicitly taking into account kinetic correlation effects. This demonstrates
the power of the Monte Carlo simulations because, as will be further discussed in
Sec. 1.6.1, calculating correlations analytically is not a trivial task.

1.5.4.2 The Allnatt formula: transport coefficients

In 1982, in the case of isothermal diffusion on a lattice of total volume V ,
Allnatt established the link between transport coefficients and equilibrium fluc-
tuations of atomic positions using a generalized Einstein formula [81]. The Lβα
coefficient is calculated as a function of the mean-square displacement of atoms β
and α at equilibrium,
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Lβα = lim
t→∞

〈
~Rβ (t) ~Rα (t)

〉
6V t

, (1.63)

where t is the time during which the collective displacement vector of atoms of
species α is ~Rα (t). The brackets represent a thermodynamic average and time
needs to be long enough for an accurate calculation. This relationship can be used
in Monte Carlo simulations in which the system has already converged towards
equilibrium and by assuming that the measurement time is long enough. Note
that the displacement of all atoms of species α is related to the displacement of
one atom of species α (discussed in the previous paragraph, Sec. 1.5.4.1) through

~Rα (t) =
Nα∑
k=1

~rαk (t) , (1.64)

where Nα is the total number of α atoms. The total equilibrium fluctuations of
atomic positions of atoms α can be calculated after Ns steps as

~Rα (t) =
Ns∑
i=1

~Rα,i =
Ns∑
i=1

Nα∑
k=1

~rαk,i, (1.65)

and the transport coefficient as

Lβα =

〈(∑Ns
i=1

∑Nβ
k=1 ~rβk,i

)(∑Ns
i=1

∑Nα
k=1 ~rαk,i

)〉
6V t

, (1.66)

where the brackets indicate an average over the different blocks. Here, the Lβα
coefficient takes into account kinetic correlations between successive jumps, and
therefore, there is no need to explicitly model them in the simulation. Note that,
in the case of 1 α atom in the box (very dilute case), the relationship between the
diagonal transport coefficient and the tracer diffusion coefficient established in Eq.
1.14, is found here again

Lαα = Cα

〈(∑Ns
i=1 ~rα,i

)2
〉

6t
= CαDα, (1.67)

where Cα = 1/V is the volume concentration of α.

1.5.5 Limitations

Monte Carlo simulations have been widely used to compute transport coef-
ficients and correlation factors in alloys [9, 16, 29–32, 35]. Even though Monte
Carlo simulations are a very powerful tool, they still have some limitations when
it comes to computing transport coefficients. It is not always easy to generate
a big enough statistics that gives converged results, especially when calculating
off-diagonal transport coefficients in correlated systems. Kinetic trapping in local
energy basins can arise depending on the energetic landscape and the chosen al-
gorithm. In these cases, a large number of steps is needed to properly sample the
configuration space and for the calculated coefficients to converge, even though
many efforts have been done to try and overcome these trapping problems [82–88].
Performing a complete study on the effect of several parameters (composition,
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temperature, interaction energies) on the transport coefficients becomes computa-
tionally heavy. Furthermore, there are some cases in which we cannot calculate
diffusion coefficients using Monte Carlo simulations. Diffusion coefficients are cal-
culated after a system has reached equilibrium which means we cannot calculate
accurate diffusion coefficients in systems under decomposition. In unstable sys-
tems, for example, in supersaturated solid solutions, the decomposition of the
system will happen at the same time as the diffusion coefficient is being calculated
and there is no way to verify that enough steps were made to converge the value of
the diffusion coefficient. Furthermore, even though off-lattice methods exist (e.g.
k-ART [89], which requires an interatomic potential and is much heavier compu-
tationally), simulations are usually performed on a rigid lattice which disables us
from modeling strained systems, inclusions and dislocations.

Analytical models allow us to overcome these obstacles. Atomic-scale analyti-
cal models in particular, allow us to explicitly make the link between measurable
quantities, like the diffusion coefficients, and atomic quantities, like jump frequen-
cies, interaction energies, and formation energies. This enables us to have access
to atomic scale data, to better understand the diffusion process, and finally to
make predictions at different scales in an accurate and efficient way. Yet, they are
often limited by the complexity of the system that can be addressed, in terms of
defects and jump mechanisms. The next two sections will focus on some of the
most important analytical models that were developed to study diffusion in alloys
in general, and diffusion in concentrated alloys in particular, as well as all the
difficulties that arise in the latter case.

1.6 Correlation factors

The difficulty in analytically calculating transport coefficients lies mainly in
calculating the correlated part of the coefficients. Even though jumps are random,
successive jumps depend on the direction of preceding jumps. For instance, a
tracer that can only move by exchanging with a vacancy will move according to
the direction from which the vacancy comes to exchange with it. While in Monte
Carlo simulations correlation factors can be directly calculated as a function of the
displacement of atoms (Sec. 1.6.1 and Sec. 1.6.2), analytical models of diffusion
require us to explicitly formulate and calculate them. In self-diffusion in a one
component system, all jump frequencies are the same and correlations arise solely
from geometrical effects. In such a case, the random walk theory is enough to
accurately calculate correlation factors. In some simple cases of dilute alloys where
the number of different jump frequencies is low, the Le Claire model can be used to
approximate in a simple manner the correlation factor (Sec. 1.6.3). In the general
cases of dilute alloys and concentrated alloys, the number of jump frequencies
is too high to use the Le Claire model and it is necessary to build a model that
couples the thermodynamics and the kinetics of the system for a proper calculation
of transport coefficients (Sec. 1.6.4).

1.6.1 Correlations in the Einstein equation

Combining Eq. 1.60 and Eq. 1.62, the diffusion coefficient of an atom of species
α as given by Einstein and Smoluchowski (Sec. 1.5.4.1) is divided in two terms,
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Dα =

∑Ns
i=1

〈
~r2
α,i

〉
6t

+
2
∑Ns−1

i=1

∑Ns
j=i+1 〈~rα,i~rα,j〉
6t

. (1.68)

The first term,
∑Ns

i=1

〈
~r2
α,i

〉
, is a thermodynamic average of all individual jumps of

atom α and does not take into account how these jumps are connected. The second
term,

∑Ns−1
i=1

∑Ns
j=i+1 〈~rα,i~rα,j〉, is an average of displacement vector products of all

consecutive jumps i and j. For each jump i, one has to find all possible jumps after
i, which takes into account correlations between consecutive jumps. Even though
individual jumps follow a Markovian process and are random, the sequences of
consecutive jumps do not necessarily have the same probability of being formed.
This latter term therefore takes into account all the possible trajectories and their
different probabilities, making it hard to calculate. Enumerating and studying
all possible individual jumps of an atom analytically is not always easy, but it
remains much easier than enumerating and studying all possible trajectories. This
term is in general negative because consecutive exchanges between two atoms are
more likely to happen in the opposite direction. This is further explained in Fig.
1.7. Correlations can be quantified by introducing the correlation factor of species
α, fα, which represents the deviation of the total diffusion coefficient from the
non-correlated diffusion coefficient

Dα = fαD
0
α. (1.69)

Here, D0
α is the uncorrelated diffusion coefficient of α and is equal to the diffusion

coefficient that one would obtain in a crystal of the same structure if consecutive
jumps were not correlated

D0
α =

〈∑Ns
i=1 ~r

2
α,i

〉
6t

, (1.70)

and the correlation factor is

fα = 1 + 2

〈∑Ns−1
i=1

∑Ns
j=i+1 ~rα,i~rα,j

〉
〈∑Ns

i=1 ~r
2
α,i

〉 . (1.71)

Note that 0 ≤ fα ≤ 1, and the closer the correlation factor is to 0 the more
correlated the diffusion (Dα → 0), and the closer it is to 1 the less correlated
the diffusion (Dα → D0

α). Correlation factors therefore reduce the efficiency of
diffusion with respect to a non-correlated one and slow down the diffusion process
(Dα ≤ D0

α).
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Figure 1.7: A first exchange between a vacancy (white square) and tracer α atom
(black circle) puts the vacancy to the right of atom α. The probability that
the vacancy exchanges with α from the right side, P (a) = (1/z), is higher than
exchanging with it from any other side, e.g. from the left P (b) = (1/z)5, z = 4
being the coordination number. Even though a vacancy jump in any direction has
an equal probability of (1/z), the number of jumps the vacancy needs to make to
exchange with α from the right (with the fewest number of jumps) is lower than
the number of jumps required to exchange with α from any other direction (with
the fewest number of jumps), making the exchange from the right more probable.
Note that this only concerns tracer atoms α whose movement relies on a vacancy
exchanging with them.

1.6.2 Correlations in the Onsager formalism

Using Allnatt’s formalism, the diagonal transport coefficient of collective atoms
of species α is

Lαα =

〈(∑Ns
i=1

~Rα,i

)2
〉

6V t
=

〈∑Ns
i=1

~R2
α,i

〉
6V t

+

〈
2
∑Ns−1

i=1

∑Ns
j=i+1

~Rα,i
~Rα,j

〉
6V t

. (1.72)

By analogy with the treatment of diffusion coefficients, the correlated transport
coefficient can be written as a function of the un-correlated coefficient multiplied
by the correlation factor

Lαα = f (α)
αα L

0
αα, (1.73)

where the un-correlated transport coefficient is a function of individual jumps only

L0
αα =

〈∑Ns
i=1

~R2
α,i

〉
6V t

, (1.74)

and the correlation factor is given by

f (α)
αα =

Lαα
L0
αα

= 1 + 2

〈∑Ns−1
i=1

∑Ns
j=i+1

~Rα,i
~Rα,j

〉
〈∑Ns

i=1
~R2
α,i

〉 . (1.75)

The off-diagonal correlation factor f
(γ)
βα quantifies the deviation of the transport

coefficient Lβα, with respect to the coefficient L0
γγ which one would obtain in the

case of a random walk in a crystal of the same structure containing only γ atoms
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(of the form of Eq. 1.74, and where γ is either α or β). This off-diagonal correlation
factor can also be calculated

f
(γ)
βα =

Lβα
L0
γγ

=

〈(∑Ns
i=1

~Rβ,i

)(∑Ns
i=1

~Rα,i

)〉
〈∑Ns

i=1
~R2
γ,i

〉 . (1.76)

The difficulty in calculating fα, f
(α)
αα and f

(γ)
αβ (Eq. 1.71, 1.75 and 1.76) analytically

lies in calculating the averages of successive displacement vectors of atoms. Cal-
culating the terms in the averages requires us to find all the possible trajectories
of the atoms that are being followed, which is not feasible in the general case of
many-body diffusion. Despite the fact that it is difficult to calculate correlation
factors analytically, they are significant in many cases (see Fig. 1.13), especially
at low temperatures, and must be taken into account for a full description of the
diffusion phenomena. The following sections will show some methods to calculate
correlation factors in dilute alloys, and the challenges that arise to calculate them
in concentrated alloys.

1.6.3 Correlation factors of tracer atoms

The first studies to calculate correlation factors focused on studying the diffu-
sion of a solute atom by means of a vacancy mechanism in pure (self-diffusion) or
very dilute (impurity diffusion) alloys. Let us consider a vacancy V diffusing in
a homogeneous matrix of A atoms containing a tracer B (B = A∗ in the case of
self-diffusion and B 6= A in the case of impurity diffusion).

1.6.3.1 Self-diffusion

In the case of self-diffusion, the tracer A∗ has the same properties as A, and
therefore all atoms in the crystal are the same. As seen in 1.6.1 and 1.6.2, the
diffusion coefficient and the diagonal transport coefficient (which, in this case, is
directly proportional to the diffusion coefficient) deviate from the random-walk
coefficients and show a correlated tracer diffusion. Figure 1.7 shows how and
why correlation effects arise, even when all matrix atoms are the same, due to
geometrical effects. Note that it is only the tracer’s diffusion that is correlated,
while the vacancy’s diffusion is a non-correlated random walk since at all times it
can jump in any direction with equal probability (Fig. 1.8).
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Figure 1.8: The probability that a vacancy (white square) jumps in any direction
is equal to 1/z, z being the coordination number. This is true whether the vacancy
is exchanging with a matrix atom (gray circle) or with an isotope (black circle). A
red trajectory drawn in (a) occurs with the same probability as the red trajectory
drawn in (b), and which represents a trajectory which is symmetric to it with
respect to the vertical plane. This is true for any trajectory in the system (e.g.
blue trajectories and purple trajectories also have the same probabilities in (a) and
(b)). For every couple of displacements ~rV,i~rV,j there exists an ~rV,j~rV,i that occurs
with the same probability. These two terms cancel out for all trajectories and the
correlated part of Eq. 1.68 becomes null.

As a first approximation, the self-diffusion correlation factor can be calculated
as the fraction of vacancy exchanges that take the vacancy away from the tracer in a
way to randomize its direction with respect to the tracer. Let z be the coordination
number of the crystal. After a first exchange with the tracer, a vacancy has (z − 1)
possibilities of exchanging with a matrix atom and one possibility of exchanging
back with the tracer. Let us approximate the problem by considering that all V −A
exchanges take the vacancy sufficiently far from the tracer so that the vacancy is
dissociated from it and its direction is randomized. Among (z + 1) possible jumps,
there are (z − 1) jumps that take the vacancy away from the tracer. This allows
us to calculate a first-order approximation of the correlation factor as

f0 ≡ fA∗ =
z − 1

z + 1
. (1.77)
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Figure 1.9: A vacancy (white square) escapes from a tracer (black circle) by jump-
ing away from it (blue arrows). An escape jump to the right can eventually lead
the vacancy to a scenario (a) or (b), among other possibilities. Diffusion is being
studied along the horizontal axis. In (a), the vacancy can come back from a non-
random direction to exchange with the tracer, as explained in Fig. 1.7. The first
jump shown in (a) was not efficient in randomizing the position of the vacancy
with respect to the tracer’s position. In (b), the probability that the vacancy comes
back from the right or left of the tracer are equal. The trajectory shown in (b) was
efficient in randomizing the position of the vacancy. Therefore, only a fraction of
the initial blue arrow jump to the right is indeed an escape frequency, and the real
value is lower than (z − 1), z being the coordination number.

The results are not very accurate as expected, since not all (z − 1) jumps with
A will be effective in randomizing the direction of the vacancy with respect to the
tracer. This can be better seen in Fig. 1.9. However, the results remain within a
10% relative error, and given its simplicity, this approximation is a good fast way
to estimate the self-diffusion correlation factor. For a better accuracy, trajectories
longer than 2 jumps need to be considered, and the correlation factor converges
with increasing size of the longest considered trajectory. Note again that the self-
diffusion correlation factor is only a function of the crystalline structure. More
sophisticated models now exist to calculate it accurately and there are databases
of self-diffusion correlation factors of different crystalline structures. The next
paragraph will focus on the more general case of impurity diffusion which can also
be applied to the case of self-diffusion.

1.6.3.2 Impurity diffusion

In the case of self-diffusion, correlations are purely geometrical, while in the
case of impurity diffusion, the difference in vacancy exchange rates with a solute
B and a matrix atom A in the vicinity of B leads to additional correlations. In
1955, Le Claire and Lidiard developed an n-jump frequency model to study solute
diffusion via the vacancy mechanism in dilute alloys by expressing all quantities as
a function of vacancy concentrations and vacancy jump frequencies [38–41]. The
number of vacancy jump frequencies in the model, n, depends on the crystalline



CHAPTER 1. BIBLIOGRAPHICAL STUDY ON DIFFUSION IN ALLOYS 45

structure and the number of different frequencies that are considered around the
solute. The simplest models consider vacancy jump frequencies between only two
types of configurations: those in which the vacancy and the tracer are 1nn, and
those in which they are dissociated (i.e. at any distance beyond 1nn). The 4
frequency model in SC, the 4 frequency model in BCC, and the 5 frequency model
in FCC (Fig. 1.10 and Table 1.2) are such examples. Configurations where the
vacancy and tracer are 2nn or further apart can also be included which increases
the accuracy but also the complexity of the calculation. For example, in the BCC
structure, there is a 6 frequency model which includes 2nn configurations.

Figure 1.10: The 5 different types of vacancy exchange frequencies in a FCC
crystal in which only 1nn and dissociated configurations are considered. Image
taken from [41].

exchanging species relative initial position relative final position multiplicity

w0 V − A ∞ ∞ ≈ Nz/2→∞
w1 V − A 1nn 1nn 2
w2 V −B 1nn 1nn 1
w3 V − A 1nn ∞ 5
w4 V − A ∞ 1nn 5

Table 1.2: The five types of vacancy exchange frequencies in a FCC crystal in
which only 1nn and dissociated configurations are considered. The pair of species
involved in the exchanged is given in the second column where V , A and B repre-
sent respectively the vacancy, the matrix atom and the tracer. The relative initial
and final positions of the vacancy with respect to the tracer B are given in the
third and fourth columns, and the multiplicity of each exchange (i.e. the number
of such exchanges) is given in the last column.

In transition state theory [75], jump frequencies are thermally activated events
expressed as

wi = νi exp

(
− Hi

kBT

)
, (1.78)

where Hi is the activation enthalpy and νi is the attempt frequency which takes
into account the vibrational entropy contribution. Furthermore, detailed balance
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can be written for reverse jumps (for example jumps related to w3 and w4)

P1nnw3 = P∞w4, (1.79)

where

P1nn = exp

(
−E

f
V + EBV
kBT

)
, (1.80)

is the probability of a configuration in which the vacancy and the tracer are 1nn,
and

P∞ = exp

(
− Ef

V

kBT

)
, (1.81)

is the probability of any other configuration. Here, Ef
v and EBV are respectively the

formation energy of a vacancy and the interaction energy of a nearest-neighboring
pair of a vacancy and a tracer B. This allows the expression of jump frequency
ratios as a function of interaction energies

w4

w3

= exp

(
−EBV
kBT

)
. (1.82)

In 1959, Manning [90] showed that, within the n-jump frequency model and in the
case of diffusion in isotropic crystals, the tracer correlation factor of an atom of
species α can be rigorously written as

fα =
H

2wα +H
, (1.83)

where wα corresponds to the exchange frequency between the vacancy and α (here
denoted as w2), and H represents the effective escape frequency of the vacancy
from α. The escape frequency is the frequency at which the vacancy diffuses
away from α in a way that randomizes the next vacancy-α exchange direction.
Therefore, jumps that allow the vacancy to come back and exchange with the tracer
from a non-random direction are not included in H. The tracer correlation factor
quantifies therefore the competition between the vacancy-tracer jump frequency
and the vacancy escape frequency. Figure 1.11 shows the variation of the tracer
correlation factor as a function of wα/H. Let us consider the two extreme cases.
When wα/H � 1, the vacancy exchange rate with the impurity is much lower
than the escape frequency, the vacancy will perform a random-walk by exchanging
mostly only with matrix atoms, and it will so frequently exchange with them
that its direction will be randomized before its next exchange with the solute.
The diffusion of the solute will then be similar to an uncorrelated diffusion and
fα → 1. In the opposite case when wα/H � 1, after a first exchange with the
solute the vacancy will prefer to exchange with it again which will cancel out
its displacement. This will lead to another reverse jump happening with high
probability and so on. The solute will therefore mostly keep moving back and
forth between two positions, leading to a net displacement of zero and a highly
correlated diffusion, fα → 0.
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Figure 1.11: Evolution of the tracer correlation factor fα as a function of the ratio
of tracer-vacancy exchange frequency wα to vacancy escape frequency H.

Manning further derived analytical expressions of H as a function of the jump
frequencies and as a function of F (k), which represents the fraction of dissoci-
ated vacancy jumps that are effective in randomizing the vacancy’s direction with
respect to the tracer. k is usually a jump frequency ratio and the value of F (k) de-
pends on the crystalline structure and on the value of k (See [90,91] for references).
For example, in the case of a 5-jump frequency model in the FCC structure, the
escape frequency is obtained by Manning as

H = 2w1 + w3F (w4/w0) , (1.84)

with

F (k) = 7− 10k4 + 180.5k3 + 927k2 + 1341k

2k4 + 40.2k3 + 254k2 + 597k + 436
, (1.85)

where k = w4/w0 represents the competition of a dissociated vacancy between
jumping further away from the tracer and jumping back close to it.

Note that these relations can be applied to the case of self-diffusion by consid-
ering all jump frequencies wi to be equal. In this case, the n-jump frequency model
is more accurate than the first approximation presented in Sec. 1.6.3.1 because it
better approximates the escape frequency.

The works of Lidiard and Le Claire [38–41] have made the n-jump frequency
model a widely used method because it provides a simple analytical solution, it
takes as input atomic-scale data that can be calculated relatively easily using ab-
initio methods, and it gives a good estimate of the correlation factors in pure and
dilute alloys despite its simplicity [92]. The limitations of this model is that it is
only valid for tracer diffusion via vacancy mechanisms and that it assumes a null
vacancy-solute interaction energy when they are at a distance greater than 1nn.
Extending the model beyond the 1nn configurations has been done in some cases,
however this increases the number of jump frequencies that have to be taken into
account making the analytical expressions harder to manipulate.
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1.6.4 Challenges in modeling diffusion in concentrated al-
loys

The challenge in calculating transport coefficients in concentrated alloys relies
mainly on calculating correlations. In order to properly take into account correla-
tions, it is necessary to construct the different trajectories made up of successive
atom jumps. In order to do this, we need to find the different jump frequencies
and construct a graph between the various configurations of the system through
these jump frequencies. For a given graph in the dilute system, each configuration
or jump frequency is degenerated with respect to the occupation of matrix sites.
We can reduce the degeneracy by assuming short-range interactions. However,
in a concentrated system where several species are present at similar concentra-
tions, the spatial distribution of species over the available sites in any configuration
can vary greatly in space. A jump frequency depends on the surrounding of the
jumping species and therefore varies depending on their location in the lattice.
The short-range and long-range environments around diffusing species are hetero-
geneous, and as a consequence, the number of possible configurations and jump
frequencies to consider becomes too large to enumerate them, let alone to construct
the graph of the trajectories that link them. The total number of configurations
of a system in the Grand Canonical ensemble depends on the number of ways the
different atomic species and point defects can be arranged on the lattice. There-
fore, the number of configurations is closely related to the number of different
species (Nspecies species in an Nspecies-component system), the number of defects
(Ndefects, number of vacancies for example), and the total number of sites Nsites.
If the system contains one vacancy at a specific site, the number of possible con-
figurations is equal to the number of ways we can arrange the atomic species on
the remaining Nsites − 1 sites. The number of configurations in this case is equal
to Ωspecies = NNsites−1

species , and scales with the number of components in the system
and the number of sites in it.

In dilute alloys, simplifications could be made by assuming that diffusing de-
fects are surrounded by a homogeneous medium, which reduces the number of
configurations to the number of different ways of arranging defects on a uniform
lattice. This number is further reduced because most configurations of defects on a
uniform lattice are symmetrically equivalent. Additionally, since the environment
around diffusing species is uniform, a lot of the jump frequencies become identical
and translational invariance allows us to treat only a fraction of the configuration
space. For instance, the n-jump frequency model of Le Claire and Lidiard shows
that in the case of a vacancy diffusing in a dilute system, the number of jump
frequencies can be reduced to less than a dozen. If we were to apply the n-jump
frequency model to a concentrated alloy, jump frequencies that were previously
equivalent become different due to the difference in the environment surrounding
the tracer-vacancy pair, and the multiplicity of most jump frequencies in Table 1.2
will be 1 (few will be equivalent by symmetry). This means that for each unique
configuration of the system, we would have to consider an infinite number of jump
frequencies. For example, in a ternary (3-component system of RBG) FCC crystal
in which the vacancy has 17 nearest and second-nearest neighbors (other than the
tracer), there are more than 100 million different ways to arrange the species R, B
and G in these 17 sites, leading to more than 100 million different configurations,
most of which will be symmetrically unique. This further leads to more than 1
billion different jump frequencies to consider. One of the possible configurations
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is shown in Figure 1.12. Is is therefore impossible to analytically study the case of
concentrated alloys using the n-jump frequency model, even when we only consider
1nn pairs.

Figure 1.12: The different types of vacancy exchange frequencies in a FCC crystal
in the case of a ternary alloy RBG (red, blue, and green circles). Jump frequencies
do not only depend on the relative positions of the vacancy and impurity, but also
on the type of species the vacancy is exchanging with, and on their surrounding.
Jump frequencies that were equivalent in the homogeneous matrix are no longer
so, and the five unique jump frequencies drawn in Figure 1.10 become 13 in this
case. Note that Fig. 1.10 represents the only possible configuration of the system,
while this figure represents one of the million possible configurations.

One way to approach the problem would be to approximate the heterogeneous
medium around diffusing species (the vacancy and the solute which is being treated
explicitly) by one average homogeneous medium having properties that are the av-
erage of those of the initial system [93]. This reduces the concentrated alloy to
an average dilute alloy, which allows us to study it using any of the tools devel-
oped for dilute alloys. However, this approach neglects all correlations that arise
from the difference in interactions between different atomic species. A vacancy
surrounded by A and B atoms will exchange with each with a different frequency,
and the diffusion of the vacancy will be correlated, while a vacancy surrounded by
a hypothetical average M species will exchange with all atoms with the same fre-
quency and its diffusion will be uncorrelated, as we showed in Sec. 1.6.3. Several
analytical models have been developed in this mean-field spirit, and each of them
relies on a different definition or interpretation of the mean-field to reproduce and
calculate the correlations [19,21,22]. Each of these models also relies on a different
set of kinetic and thermodynamic assumptions and approximations. In the next
section, we choose to detail three of these models.
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1.7 Analytical models of diffusion in concentrated

alloys

The development of analytical models of diffusion in concentrated alloys has
been an ongoing work for many years now, the goal being to express the Onsager
coefficients as a function of measurable quantities. Because of all the difficulties of
modeling concentrated alloys, the first models focused on treating non-interacting
alloys. Manning [19, 20] was the first to introduce the random alloy model in
which a vacancy diffuses in a non-interacting alloy such that the vacancy jump
frequency depends only on the species with which it is exchanging. The relations
derived by Manning allow the expression of the transport coefficients as a function
of tracer diffusion coefficients. In the case of a binary random alloy, knowing
the self diffusion correlation factor, the tracer and vacancy correlation factors
can be obtained using a very simple analytical formula. Despite its simplicity,
Manning’s model is in good agreement with Monte Carlo simulations [29–32],
except when the off-diagonal transport coefficients are negative, as his model fails
to predict a negative Lαβ. Other methods have been developed in the same spirit to
study correlations in a random alloy in what is known as the “random lattice gas”
models [43,44]. These methods often yield more accurate tracer correlation factors,
however, they are also much more complex to use than Manning’s analytical result.
The difficulty is usually to reproduce with high accuracy the tracer correlation
factor of the fastest diffusing species because it is the species whose diffusion is
the most correlated. Another challenge is to reproduce the percolation phenomena
which occurs when the exchange frequency of the vacancy with one of the species
is infinitely big compared to the other frequencies (Fig. 1.13).

Kikuchi was on the other hand the first to develop an analytical model to treat
interacting alloys [21, 46, 94]. His Path Probability Method (PPM) was mainly
used to study order-disorder transitions. This PPM is limited to a statistical pair
approximation and the generalization beyond it is complex theoretically. It was
only extended once to a triangle approximation but only in a 2D structure [95].
When applied to a random alloy, a revised version of the PPM showed satisfactory
results in comparison with Monte Carlo simulations but remained less accurate
than Manning’s model [47].

Vaks et al. later used a different approach based on a master equation which
describes the evolution of the non-equilibrium probability distribution of the sys-
tem [96,97]. His model, however, predicts a diagonal Onsager matrix, and therefore
neglects cross-diffusion coefficients. In more recent years, based on the same for-
malism, Nastar et al. developed the Self-Consistent Mean-Field (SCMF) theory
to study diffusion in interacting alloys [22, 48, 98, 99]. Unlike Vaks, the SCMF
manages to compute the full Onsager matrix. In the case of an interacting alloy
and a random vacancy concentration, the theory was in general good agreement
with Monte Carlo simulations. In the case of a random alloy, a subsequent work
by Barbe et al. [49] showed that the method yields results in good agreement
with Monte Carlo simulations for all range of jump frequency ratios. Even though
the SCMF is limited to an alloy with short range order, it allows for the calcula-
tion of single and collective correlation factors in both cases of an interacting and
non-interacting alloy.

In the following parts, we will discuss in more detail the three models that are
most important for a full understanding of the evolution of analytical models of
diffusion in concentrated alloys: the RA model, the PPM, and the SCMF theory.
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In an effort to properly compare these three approaches, we will show as briefly
as possible the theory behind each one of them and address the advantages and
disadvantages of each method.

Figure 1.13: Schematic representation of the percolation phenomena in a binary
alloy RG. Red, green and white squares represent respectively atoms of species
R, atoms of species G and the vacancy. Let wα be the exchange frequency of the
vacancy with an atom of species α, and let us consider the case of an infinite jump
frequency ratio wR/wG, such that the vacancy can only exchange with atoms of
species R. The net displacement of the vacancy is non-null only if the vacancy can
exchange with an infinite connected cluster of R atoms. When the R concentration
CR is low and below a structure specific concentration C∗R, known as the percolation
threshold or the critical percolation concentration, an infinite connected cluster of
R atoms cannot form. In this case, the vacancy exchanges with R atoms in a small
closed system and its net diffusion is null and the vacancy correlation factor fV ,
as well as the tracer correlation factor fR, are null. When the R concentration
increases above the percolation threshold, the higher its concentration, the closer
the diffusion is to an un-correlated walk. In this case, the vacancy correlation
factor converges towards 1.

1.7.1 Manning’s Random Alloy model (RA)

One of the most used models to study tracer-vacancy diffusion in concentrated
alloys is the random alloy (RA) model developed by Manning in 1971 [19, 20].
Manning managed to calculate the vacancy and solute correlation factors by ap-
proximating the concentrated alloy by a random alloy containing only tracer atoms
and a vacancy (or a very low concentration of vacancies). A random alloy is an
alloy in which there are no interactions between its components nor between its
components and defects (vacancy). Therefore, there are no preferential sites for
atoms to occupy, and for a given alloy concentration, all configurations of the sys-
tem have the same energy regardless of the atomic distribution. This type of alloy
is also known as an ideal solid solution.
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The model

Manning approximates the heterogeneous medium of a concentrated alloy by
a hypothetical average homogeneous dilute alloy containing a tracer atom of each
α component of the alloy. All sites, other than the ones with a tracer atom, are
occupied by an average atom M , whose properties are the average of those of
the chemical species. The tracer atoms are sufficiently diluted in the matrix to
consider that each tracer is surrounded by M atoms only. Since there is only
one environment surrounding the vacancy-tracer pair, the jump frequency wα of a
vacancy with an α atom is the same anywhere in the system. This approximates
the real jump frequency which usually depends on the atoms surrounding the
vacancy-α pair. Manning considers the jump frequency of a vacancy with an atom
M to be the average of all wα frequencies, each weighted by the atomic fraction
of the corresponding α

WM =
∑
α

Xαwα, (1.86)

where Xα is the atomic fraction α. In order to calculate the tracer correlation
factor using an equation of the form of Eq. 1.83, one needs to calculate the escape
frequency Hα of a vacancy away from an atom α. Manning considers that the
escape frequency depends only on the geometry of the crystal and on the vacancy
correlation factor

H = fVH0, (1.87)

where H0 is the escape frequency in a pure M crystal, and fV is the vacancy
correlation factor in the random alloy. This can be justified by the fact that, on
one hand, there are no thermodynamic interactions between V and α, and on the
other hand, the jump frequency WM of exchanging with any atom other than α,
does not depend on α. Therefore, the vacancy escape frequency is the same for
all α atoms. One can go further and say that it is the same even if the α atom is
replaced by an M atom. In this case, the system is equivalent to a pure M crystal.
We have shown that in a pure crystal correlations arise only from geometrical
effects (Sec. 1.6.3.1), and using Eq. 1.83 the escape frequency in a pure M crystal
can be calculated as a function of the self-diffusion correlation factor f0 as

H0 =
2WMf0

1− f0

. (1.88)

Equation 1.87 can be intuitively understood. If the movement of the vacancy
is not correlated (i.e. fV = 1), then the escape frequency of the vacancy in
the random alloy is equal to its escape frequency in a pure M crystal. On the
other hand, the higher the correlations, the less efficient is the diffusion of the
vacancy, which reduces the rate of its escape proportionally to the strength of
correlations. In the limit of very high correlations (i.e. fV = 0), the vacancy’s net
diffusion is null and so is its escape frequency. Manning further separates the total
vacancy correlation factor into partial vacancy correlation factors that arise from
each species separately

fV =

∑
α Xαwαf

α
V∑

α Xαwα
, (1.89)

where fαV is the partial vacancy correlation factor related to α. All of Manning’s
approximations reduce the number of different jump frequencies from an infinite
number to (Nspecies + 1), where Nspecies is the number of different α species, and
the additional frequency is the vacancy escape frequency H. In a single-component
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system, the self-diffusion correlation factor, f0, can be written as a function of the
vacancy escape frequency (Eq. 1.83), which enables us to calculate this quantity
from it as

H =
2f0fVWM

1− f0

. (1.90)

Remember that, as seen previously in Sec. 1.6.3.1, the self-diffusion correlation
factor is a geometrical factor that can be determined based on the structure and an
accurate database has already been established for different crystalline structures
[100]. The correlation factor of tracer α is calculated using Eq. 1.83, where the
vacancy-tracer exchange frequency is wα and the escape frequency is given in Eq.
1.90

fα =
f0fVWM

wα (1− f0) + f0fVWM

. (1.91)

Manning interestingly finds a relationship between the tracer correlation factor and
the vacancy correlation factor. This equation is valid for all α species separately,
and forms a system of non-linear Nspecies independent equations with (Nspecies + 1)
correlation factors to be calculated. Vacancy flux equations derived on one hand
using vacancy drift velocities, and on the other hand using atom fluxes, allow
Manning to express the vacancy correlation factor as a function of the tracer
correlation factors and obtain an additional equation to complete the system of
Eq. 1.91. A brief summary of this work is detailed below, and for more details, one
can refer to Manning’s paper [19]. The vacancy flux compensates for the tracer
fluxes through

~JV = −
∑
β

~Jβ, (1.92)

and both ~JV and ~Jβ can be expressed as a function of transport coefficients. Fur-
thermore, since vacancies are at equilibrium in the system, there is no driving force
related to a vacancy concentration or chemical potential gradient, and the vacancy
flux depends on the vacancy equilibrium concentration and on the average vacancy
drift velocity

~JV = CV 〈~vF 〉V = CV
∑
α

〈~vF 〉αV , (1.93)

where CV is the vacancy concentration per unit volume at equilibrium, 〈~vF 〉V =∑
α 〈~vF 〉

α
V is the average vacancy drift velocity vector, and 〈~vF 〉αV is the average

contribution to the vacancy drift velocity that results from the driving force of
species α, ~Fα

V = −~∇µα/ (kBT ). The vacancy drift velocity is calculated using the
general Nernst-Einstein equation which is valid for cubic crystals for a very low
vacancy concentration, and Manning finds the final form of the vacancy flux (Eq.
1.93) to be

~JV = −
∑
α

LV α
~∇µα
kBT

, (1.94)

with

LV α = XαDα
fαV
fα
. (1.95)

Here, Dα is the tracer diffusion coefficient of species α, and the passage from wα
to Dα happens by expressing the tracer diffusion coefficient as (see Sec. 1.6.1)

Dα = fVD
0
α, (1.96)
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with the un-correlated part of the diffusion coefficient being

D0
α =

l2wα
6

, (1.97)

where l is the displacement distance. Manning also finds the expression of the flux
of species α as

~Jβ = −
∑
α

Lβα
~∇µα
kBT

, (1.98)

where the transport coefficients are given as a function of the diffusion coefficients
Lββ = XβDβ

[
1 +

(1− f0)XβDβ

f0

∑
αXαDα

]
,

Lβα = XβDβ

[
(1− f0)XαDα

f0

∑
αXαDα

]
, α 6= β.

(1.99)

Using the flux equality (Eq. 1.92), a relation between the tracer correlation factor
and the partial vacancy correlation factors is found

fα = f0f
α
V . (1.100)

This equation shows that, when the vacancy diffusion around α is not correlated
(i.e. fαV = 1), the tracer correlation factor is equal to the self-diffusion correla-
tion factor, fα = f0. This makes sense because the tracer’s diffusion is vacancy-
mediated, and in this case correlations are only geometrical. In the opposite case
of a highly correlated vacancy diffusion around α (i.e. fαV = 0), the diffusion of
the tracer is also highly correlated (fA = 0). In general, Eq. 1.100 states that the
tracer’s diffusion is f0 times more correlated than the vacancy around it. Replacing
Eq. 1.100 in Eq. 1.89, a relationship between the vacancy and tracer correlation
factors is found

fV =

∑
αXαwαfα

f0

∑
αXwα

. (1.101)

A system of (Nspecies + 1) independent equations with (Nspecies + 1) correlation
factors is formed from Eq. 1.91 and Eq. 1.101

fα =
f0fVWM

wα (1− f0) + f0fVWM

,∀α

fV =

∑
αXαwαfα

f0

∑
αXαwα

.

(1.102)

By solving this system of equations, Manning’s model allows for the calculation of
all correlation factors (tracer and vacancy) in a self-consistent manner. Note that
Manning’s off-diagonal coefficients are always positive (all the terms in Eq. 1.99
are positive), and therefore his model is limited to cases where the cross coefficients
are positive. For example, his model cannot be used to study drag phenomena.

Results

Manning applied his model to the case of a binary random alloy AB and
calculated the vacancy and tracer correlation factors as a function of concentration
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for different values of the vacancy jump frequency ratio wA/wB. In this case, the
vacancy escape frequency from any atom is calculated (using Eq. 1.90 and Eq.
1.102) as

H =
XAwA +XBwB

1− f0

−wA−wB+

[(
XAwA +XBwB

1− f0

− wA − wB
)2

+
4wAwBf0

1− f0

]1/2

.

(1.103)
The tracer correlation factors of α ∈ [A,B],

fα =
H

2wα +H
, (1.104)

and the vacancy correlation factor,

fV =

∑
αXαwαfα

f0

∑
αXαwα

, (1.105)

are given in their general form and can be easily calculated knowing the vacancy
escape frequency H. These analytical expressions are very simple to use directly,
and are only a function of the concentrations and jump frequencies. It is therefore
no surprise that they have been extensively used since.

Several Monte Carlo simulations of a vacancy-tracer diffusion in a binary ran-
dom alloy have been performed to test the validity of the Manning model in differ-
ent crystalline structures: SC [31], BCC [29,31] and FCC [30–32]. The conclusions
of all the comparisons are consistent. They showed that Manning’s model accu-
rately reproduces the vacancy correlation factor and the fastest and slowest tracer
correlations factors at all concentrations for a jump frequency ratios wA/wB are
below 10. In the range of higher jump frequency ratios, the vacancy correlation
factor exhibits a small but non-negligible deviation below the critical percolation
concentration, while the tracer correlation factors deviate in a more noticeable
manner. The percolation concentration found by Manning is equal to (1− f0) and
is a good first approximation of the exact value in several structures. In all cases,
Manning’s model captures the percolation phenomena behavior of the correlation
factors and predicts a percolation limit within satisfying accuracy. In the case of a
BCC ternary alloy in which the maximum jump frequency ratio is 100, Belova et
al. [33] showed that the collective transport coefficients of Manning’s theory are in
semi-quantitative agreement with Monte Carlo simulations, and that off-diagonal
transport coefficients are the least accurate ones.

Conclusion

The beauty of Manning’s model is its simplicity. Despite its simplicity, the
binary random alloy model provides a very good approximation of the correlation
factors of the vacancy and of both the slowest and fastest tracers. The agreement
is less satisfying when the jump frequency ratios are high, but it still manages
to predict a satisfying percolation threshold. To globally reproduce the percola-
tion phenomena one needs to properly describe both short and long range order
through the exchange frequencies, and as will be shown in later models, this is not
a trivial task. Manning’s model manages to do this despite its simplicity which is
one of its major fortes. The model’s general agreement with Monte Carlo simula-
tions shows that the average frequencies introduced in the model are able to well
reproduce the exact vacancy-tracer exchange frequencies and the exact vacancy
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escape frequency, or at least the ratio between them. The RA model has however
its limitations. More importantly, the RA model is only valid for alloys in which
thermodynamic interactions can be neglected and in which diffusion is mediated
by a low concentration of vacancies. Extending the model to ordered alloys in
general is not trivial and may be impossible.

1.7.2 Other random alloy models

Since 1971, many works have been inspired by Manning’s random alloy model
in hopes of both generalizing it and improving its accuracy. The main limitation of
Manning’s model is that it is not a good approximation in the case of interacting
alloys. Belova et al. [101] extended the model to an ordered binary alloy that has
two random sublattices and in which intrasublattice jumps are not allowed. This
limits the model to ordered alloys in which jumps happen within each sublattice
independently and in which the distribution of atoms on each sublattice can be
approximated by a random distribution.

Bocquet [102] applied the random alloy model to the case of dumb-bell in-
testitial diffusion but, even though the results were in reasonable agreement with
Monte Carlo simulations, he found that there is not a general simple analytical
solution in this case. Besides the fact that the random alloy applies mainly in the
case of a vacancy-mediated diffusion, another of the model’s limitations is that
it treats alloys with a low vacancy concentration. This has been addressed by
Moleko and Allnatt in 1988 [103], in a work in which they extend the random
alloy model to an arbitrary vacancy concentration. This type of model is known
as the “random lattice gas” model, however their results were not accurate for
high vacancy concentrations. Among the “random lattice gas” based models, it is
worth noting those developed in 1986 by Holdsworth and Elliott (HE) [43], in 1989
by Moleko, Allnatt and Allnatt (MAA) [44], and in 2016 by Paul et al. (Man-
ning+HE) [36]. The HE model applies to a multicomponent alloy and for a general
vacancy concentration, and the combined Manning+HE model was tested in the
case of a ternary alloy. The HE results obtained in the case of a binary random
alloy are in general good agreement with Monte Carlo simulations, especially for
the slow diffusing species, and in better agreement than Manning’s model. The
main drawback of the HE method is its theoretical complexity. The MAA can
be applied to any vacancy concentration, and, even though it presents the best
accuracy at all jump frequency ratios in the case of binary alloys, it cannot in
practice be extended to alloys with more than three components. A theoretically
lighter version was later presented by Allnatt et al. [45]. They calculated with this
new version tracer correlation factors of the fastest and slowest diffusing species
in binary, ternary, quaternary and quinary alloys. By comparing their results to
Monte Carlo simulations, they found that their model is less accurate than the
original MAA, but that it still well reproduces the tracer correlation factor of the
fastest (with high accuracy) and slowest diffusing species (with less accuracy).
Even though this new MAA-light can treat alloys with more than three compo-
nents, it still requires an iterative numerical calculation for alloys with five or more
components. This method is more complex to use than the combined Manning
and HE theory, however it is much more accurate, especially for the fast diffusing
species which is usually the hardest to reproduce with accuracy.

It is worthwhile to note that Moleko and Allnatt [103] derived the following
exact analytical relations between the tracer correlation factors and the jump
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frequencies ∑
β

f
(α)
αβ

wα
wβ

= 1, (1.106)

and this relation should be used to verify the validity of a diffusion model applied
to a random alloy. In a binary alloy, this reduces the number of tracer correlation
factors needed to be calculated to just one factor.

All the above mentioned models were restrained to the case of a random alloy
because their generalization to the case of an interacting alloy was too compli-
cated. The next two paragraphs will focus on two methods that were developed
to calculate all the transport coefficients in an interacting alloy.

1.7.3 Kikuchi’s Path Probability Method (PPM)

The method

The Path Probability Method (PPM) developed by Kikuchi in 1966 [21] was
the first method to allow the calculation of the full Onsager matrix in an inter-
acting concentrated alloy and the expression of transport coefficients as a function
of measurable microscopic quantities. A few years earlier in 1951, Kikuchi had
developed the Cluster Variation Method (CVM) to approximate the entropy and
free energy of an order-disorder system at equilibrium [104]. In the CVM, a cluster
of a finite size is chosen and used to represent the whole system along with smaller
sized clusters that are included in it. The level of approximation is controlled
by the size of the biggest cluster introduced - point, pair, triangle, tetrahedron,
etc... At equilibrium, a configuration of the system is described by a set of state
variables {α} whose definition depends on the approximation. In the point ap-
proximation, the state variables represent site occupation probabilities, in the pair
approximation they represent nearest-neighbors pair occupation probabilities, and
so on. The energy of a configuration is written as a function of {α}, E ({α}), and
its probability is written as

P ({α}) =
1

Z
exp

(
−E ({α})− TS ({α})

kBT

)
, (1.107)

where the entropy, S ({α}), is obtained as a function of the state variables by
calculating the number of ways of filling the lattice sites with clusters of specific
atomic species. Z is the partition function of the system, and it is expressed as a
function of the free energy F ({α}) as

Z =
∑
{α}

exp

(
−E ({α})− TS ({α})

kBT

)
= exp

(
−F ({α})

kBT

)
. (1.108)

Using the variational principle, the most probable configuration of the system is
found by minimizing the free energy with respect to the state variables

∂F ({α})
∂ {α}

= 0, (1.109)

and equilibrium quantities can then be deduced. Note that minimizing the free
energy is equivalent to maximizing the probability P ({α}), and therefore to finding
the most probable state of the system

Z ≈ max

[
exp

(
−E ({α})− TS ({α})

kBT

)]
. (1.110)
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The CVM was then extended to out-of-equilibrium time-dependent processes,
in what is known as the PPM. In the PPM, the state variables are time-dependent,
α (t), and additional variables named “path variables”, A (t0, t0 + ∆t), are intro-
duced to describe the change in the cluster configuration that is happening between
times t0 and t0 + ∆t. The probability of a certain state of the system occuring
at time t0 + ∆t, P [A (t0, t0 + ∆t)], is calculated as the probability that a path
A (t0, t0 + ∆t) occurs during ∆t. The PPM then consists in expressing this path
probability as a function of microscopic quantities and maximizing it to find the
most probable path. The path variables should then satisfy the condition

∂P [A (t0, t0 + ∆t)]

∂A
= 0. (1.111)

The state variables, the path variables and the path probabilities are written de-
pending on the problem at hand. The path probability is usually written as a
function of several parameters such as the entropy term calculated using the CVM,
a transition rate factor, an exponential of interaction energies, a diffusion activity
term and the lattice coordination number. The path probability is then maxi-
mized with respect to the path variables by fixing the initial state variables of the
system. Then the time evolution of the state variables can be deduced. By con-
sidering the steady state close to equilibrium, the flux is then directly calculated
as the net current of atoms jumping in a given direction or through a specific site
or plane, and the transport coefficient matrix is deduced. The PPM consists then
in finding the most probable path that a cluster configuration takes to change
with time. The way the PPM is built as the dynamic version of the CVM ensures
a coherence between the thermodynamic and kinetic approximations by ensuring
the same level of approximations in both. However, as will be shown later in its
applications, this makes the method too complex to be used beyond the pair ap-
proximation and prevents a good description of the paths. For more details on the
theory behind the PPM, the reader can refer to one of these reviews by Sato [105]
and Akbar [106].

Applications

Throughout the years, the PPM has been used to study thermal diffusion,
chemical diffusion and tracer diffusion, but mostly it has been used within the
pair approximation to study second-order phase transitions in BCC binary al-
loys [107–109]. In the first paper [21], the PPM was applied by Kikuchi to study
relaxation towards equilibrium of an order-disorder AB system and the relaxation
time was calculated in the case of a disordered equilibrium state. Kikuchi [94]
also used it to study vacancy diffusion in an ordered BCC ternary alloy analyti-
cally, and he calculated the isotope diffusion coefficient in a binary BCC alloy as a
function of concentration and degree of order for different temperatures and inter-
action energies. An application to the BCC AgMg alloy showed agreement with
experimental results. Therefore, in addition to calculating transport coefficients
of interacting concentrated alloys, the PPM allows the study of phase transfor-
mations of spinodal decomposition. The method was however limited to the pair
approximation in most cases, which cannot be used, for example, to study FCC
alloys with first-order transitions. The first attempt to extend the PPM beyond
the pair approximation was made by McCoy et al. in 1982 [95]. They used a tri-
angle approximation in the simplest case of a 2D triangular lattice. They showed
how a lot of complexities arise to find the proper independent state variables and
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construct the path probabilities. Another attempt was made by Wada et al. to
extend the PPM to a triangle approximation to study the kinetics of a 2D ferro-
magnetic Ising system [110]. Even though in theory the PPM can be extended
beyond the pair approximation, it remains a difficult task because the number of
independent state variables increases and one cannot visualize the different possi-
ble paths and their constraints necessary to write and solve the equations. Even
though the PPM showed satisfactory results in studying several diffusion problems,
in particular second-order phase transitions in BCC binary alloys, it has shown
some limitations when calculating correlation factors. These limitations are not
only due to the pair approximation but also to the PPM formalism itself. This
will be further discussed below.

Kikuchi [46] studied the general case of diffusion via a vacancy mechanism in
a binary solid solution AB using the pair approximation model. He calculated
the correlation factors for a BCC structure in the special cases of self-diffusion,
impurity diffusion, and tracer diffusion in a concentrated random alloy.

- In the case of self-diffusion, the calculated correlation factor has the same form
as a first-order approximation, f0 = (z − 1) / (z + 1), z = 8 being the coordination
number in a BCC structure. This value deviates by around 7% from the exact
one, and the discrepancy is due to the pair approximation that considers in this
case trajectories of one jump (as was seen in Fig. 1.9). The calculated escape
frequency is calculated by considering that a vacancy that just jumped from site
i to site j has a zero probability of returning to the site j after it has exchanged
with one of its (z − 1) neighboring sites. The calculated escape frequency is

H = (z − 1) ŵ, (1.112)

with ŵ being the jump frequency which includes the effect of the surrounding
atoms. In reality, the probability of a vacancy returning after a first jump away
from the tracer is not null because not all (z − 1) jumps will be effective in ran-
domizing the position of the vacancy, and the PPM therefore overestimates the
escape frequency.

- In the case of impurity diffusion, the escape frequency from impurity B calcu-
lated using the PPM is the same as the one calculated in the case of self-diffusion,
since all sites except the one occupied by B are occupied by A atoms, so that

HB = (z − 1) ŵA. (1.113)

This is also a higher frequency than the real one and overestimates the correlation
factor.

- In the case of a binary random alloy, the correlation factor of tracer A∗ was
calculated and compared to Manning’s for a jump frequency ratio wA/wB ranging
between 0.1 and 103. The two methods are in good agreement for ratios lower or
equal to 10, while the PPM deviates from Manning’s results for higher ratios. In
particular, the PPM does not reproduce the critical percolation concentration and
the correlation factor is not null for concentrations below the critical concentration.
Again, this is caused by an overestimation of the escape frequency; below the
critical concentration, a connected cluster of A atoms that extends to infinity
cannot form and the escape frequency from A should be null, whereas in the PPM
the escape frequency is greater than zero and obtained as

HA = (z − 1)
2qBŵB + qA (ŵA + ŵB)

2qBŵA + qA (ŵA + ŵB)
ŵB, (1.114)
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where qα is an equilibrium quantity proportional to the probability of finding an
α atom as a nearest-neighbor of the vacancy. It is true that in most real alloys the
jump frequency ratios are below 10, however, failing to reproduce the percolation
phenomena reveals the method’s inability to properly reproduce long-range order.
Note that these deviations from the expected correlation factors are not only due
to the pair approximation but also to the formalism itself, and to how the CVM
was extended.

Revised PPM

The failure of the PPM in predicting the percolation phenomena and its under-
performance compared to the CVM at the same level of approximation is due to the
fact that, in the PPM, the state variables and the path probabilities are averaged
with respect to the ensemble of states and not with respect to the real space. The
real space is assumed to be constructed by translating replicas of the ensemble
averaged states which results in a homogeneous space. This explains why the
PPM yields satisfactory results when the system is represented by a homogeneous
lattice and the fluctuations of energies and jump frequencies are small. This also
means that the PPM works best when the diffusion of a large number of atoms
is being followed, because then the space average becomes more accurate. This
also means that the PPM cannot predict precise correlations between consecutive
transitions of configurations, which are needed to follow the diffusion of a single
atom, like in the case of tracer correlation calculations. Furthermore, in a random
binary alloy, as long as both species are present in an averaged state of the system,
there are no restrictions that prevent an infinitely connected cluster of A atoms
to form, even if the A composition is below its critical percolation value. In
1983, Kikuchi introduced a correction to the PPM in the pair approximation by
replacing ensemble averages with time averages [47]. This allows the PPM to
predict the time evolution of a single system instead of an ensemble system, and
therefore the behavior of a small number of atoms. This revised version of yields
the same values as the CVM of the correlation factor in the cases of self-diffusion
and impurity diffusion. In the case of a random binary alloy, the accuracy of
the newly calculated correlation factors is greatly improved for all jump ratios
and the percolation phenomena is well described. This revised PPM has not
been extensively applied to transport phenomena problems and its generalization
beyond the pair approximation is theoretically very complex and has not been
done.

Conclusion

The PPM allows the expression of transport coefficients as a function of mea-
surable microscopic quantities. The system is represented by state variables, the
most probable path is found by maximizing the path probability function, and the
time evolution of the averaged system is studied. It provides control over the ap-
proximation by choosing the size of the cluster, however it was mostly used within
the pair approximation, and the attempts to extend it beyond that showed great
theoretical complexity. The PPM is a good method for modeling second order
phase transformations which are homogeneous in space. The revised version of
the PPM replaces ensemble averages with time averages and allows for the study
of the time evolution of a single system. The revised PPM is a good method to use
when the diffusion of a small number of atoms is followed, like in the case of tracer
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diffusion. It has been mainly applied to the case of a random binary alloy and
only within the pair approximation due to its complexity. Even though the PPM
and its revised version allow the study of both tracer and non-tracer diffusion,
the system dependence of all state variables and path functions make this method
hard to generalize to complex systems, even within the pair approximation model.

1.7.4 Nastar’s Self-Consistent Mean-Field theory (SCMF-
o)

A more recent model is the Self-Consistent Mean-Field theory, which was de-
veloped in 2000 by Nastar et al. [22] to calculate the transport coefficients in alloys.
In this thesis, we will call this original formulation of the Self-Consistent Mean-
Theory by the abbreviation SCMF-o. Several subsequent works have extended
this theory to other approximations or systems, which allowed for its application
to a great variety of diffusion problems [48–50, 98, 99, 111–114]. The theory con-
siders a stationary system in a state close to a homogeneous equilibrium driven by
stationary chemical potential gradients. The distribution function is defined as a
correction to the equilibrium distribution in the same way as Vaks [97] defined it,
however, unlike the work of Vaks where the Onsager matrix is diagonal, the SCMF-
o manages to compute the full Onsager matrix. The correction to the equilibrium
distribution function is written as a function of unknown effective interactions to
be calculated. A master equation defines the time evolution of the system and mi-
croscopic detailed balance is assumed at equilibrium. The stationnarity condition
allows the calculation of the unknown effective interactions as a linear function
of the chemical potential gradients by dividing each configuration into finite sized
clusters surrounded by a mean-field. These effective interactions are used in a self-
consistent manner to calculate the flux as a linear function of chemical potential
gradients, and a symmetric non-diagonal Onsager matrix is obtained. To simplify
the theoretical framework of this method and to make it more accessible, Schuler
et al. reformulated it in 2020 and implemented it in an open-source code called
KineCluE [18]. However, their reformulation was limited to dilute alloys and one
of the main objectives of this thesis is to extend KineCluE to concentrated alloys.
In Chapter 3, we will present the new formulation and its implementation in the
KineCluE code, and we will present the work done within this thesis to extend
KineCluE to concentrated alloys. Therefore, the theoretical details of the SCMF-o
theory needed for an understanding of Chapter 3 are outlined below.

Distribution function

Consider a system in the Grand Canonical ensemble, in which n represents
one configuration of the system in which all atomic positions are occupied by well
defined atomic species up to infinity. The physical Hamiltonian Hn of n is given
by

Hn =
1

2!

∑
i,j,α,β

V αβ
ij n

α
i n

β
j +

1

3!

∑
i,j,k,α,β,γ

V αβγ
ijk nαi n

β
j n

γ
k + ..., (1.115)

where nαi is the occupation number of site i with atomic species α (nαi = 1 if
site i is occupied by species α, and 0 otherwise), and V αβ...

ij... is the thermodynamic
interaction between atomic species α, β, ... occupying sites i, j, .... At equilibrium,
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the probability of a configuration n is given by a Boltzmann distribution of the
form

P 0
n = exp

(
−
Hn −

∑
i,α n

α
i µ

α − Ω

kBT

)
, (1.116)

with µα being the chemical potential of species α. Note that, at equilibrium,
chemical potentials are homogeneous. Ω is a normalization constant, such that

Ω = kBT lnZ, (1.117)

where kB is the Boltzmann constant, T is the temperature, and Z is the partition
function of the system

Z =
∑
n

exp

(
−
Hn −

∑
i,α n

α
i µ

α

kBT

)
. (1.118)

The model assumes the presence of uniform and stationary chemical potential
gradients (CPG) driving the system out of equilibrium. As a consequence, fluxes of
the different species present in the system arise. The chemical potential gradients
are taken small enough for the system to be in an out-equilibrium state close to the
homogeneous equilibrium state, and for fluxes to be written as a linear function
of the CPG. The out-of-equilibrium probability of a configuration n is considered
to be a deviation of the equilibrium probability

Pn = P 0
nδPn, (1.119)

and the deviation δPn has the same mathematical form as the equilibrium proba-
bility, except that now, the chemical potential is not homogeneous

δPn = exp

(
−
hn −

∑
i,α n

α
i δµ

α
i − δΩ

kBT

)
. (1.120)

Here δµα and δΩ include the corrections needed on respectively the chemical po-
tentials and the normalization constant, while hn includes all other corrections.
To calculate hn, they use the Cluster Expansion Theorem [115] which shows that
any function of n can be written as a Hamiltonian function

hn =
1

2!

∑
i,j,α,β

ναβij n
α
i n

β
j +

1

3!

∑
i,j,k,α,β,γ

ναβγijk n
α
i n

β
j n

γ
k + ... (1.121)

hn is called the effective Hamiltonian and να,β,...i,j,... are called the N -body effective
interactions, which are not a Hamiltonian or interactions in the thermodynamic
sense. In fact, they represent the deviation from equilibrium caused by the driv-
ing forces and are therefore kinetic properties. Jump mechanisms change the
configuration n of the system to a configuration m. The time evolution of the
out-of-equilibrium distribution function is described by means of master equations

∀n, dPn
dt

=
∑
m

(PmWmn − PnWnm) , (1.122)

where Wnm is the transition frequency from a configuration n to a configuration
m. The master equation describes the microscopic evolution of the probability
of each configuration n as the probability of being in any configuration m and
transitioning to a configuration n minus the probability of being in configuration
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n and transitioning to any configuration m. It is therefore the difference between
the probability of transitioning out of configuration n and the probability of tran-
sitioning into it. At equilibrium, the distribution function is stationary

∀n, dP
0
n

dt
=
∑
m

(
P 0
mWmn − P 0

nWnm

)
= 0, (1.123)

and the global detailed balance holds

∀n,
∑
m

P 0
mWmn = P 0

n

∑
m

Wnm. (1.124)

Furthermore, microscopic detailed balance is supposed to hold, which implies that

∀n, ∀m, P 0
mWmn = P 0

nWnm. (1.125)

Note that microscopic detailed balance (Eq. 1.125) implies general detailed balance
(Eq. 1.124), while the opposite is not true.

Transport coefficients The flux of species β from site i to site j, Jβi→j, is
calculated using the continuity equation (Eq. 1.21) applied locally

dXβ
i

dt
= −

∑
j

Jβi→j, (1.126)

where Xβ
i is the atomic fraction of β at site i. The macroscopic flux of β is

calculated in cubic crystals as

Jβ =
a

Vat

∑
j

Jβi→j, (1.127)

where a is the lattice parameter, and Vat is the atomic volume per site. The site
concentration can be calculated as the average of site occupancy

Xβ
i =

∑
n

Pnn
β
i =

〈
nβi

〉
. (1.128)

In order to calculate the time evolution of the site concentration

dXβ
i

dt
=

d

dt

∑
n

Pnn
β
i =

∑
n

dPn
dt

nβi , (1.129)

one needs to calculate the time evolution of the out-of-equilibrium distribution
function. Note that the inversion between the sum and the derivative can be made
because the phase space is constant over time. Combining Eq. 1.122 with Eq.
1.119 and using the microscopic detailed balance (Eq. 1.125), the time evolution
of Pn can be calculated as

dPn
dt

= P 0
n

∑
m

Wnm (δPm − δPn) . (1.130)

The difference in the deviations from equilibrium δPm−δPn needs to be calculated.
Since the system is considered close to equilibrium, Pn ' P 0

n , δPn ' 1, and
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equivalently hn −
∑

i,α n
α
i δµ

α
i − δΩ vanishes at equilibrium. A first-order Taylor

expansion can be made of the exponential of δPn so that it becomes

δPn ' 1−
hn −

∑
i,α n

α
i δµ

α
i − δΩ

kBT
. (1.131)

The difference in deviations becomes

δPm − δPn '
hn − hm +

∑
i,α (mα

i − nαi ) δµαi
kBT

. (1.132)

Remember that it was assumed that the chemical potential gradients are constant,
which allows us to express δµαi in terms of the macroscopic chemical potential

gradient ~∇µα, and as a function of a reference chemical potential δµαr , which is
the chemical potential of α at a reference point r where its value is known

δµαi = δµαr + ~∇µα~ri. (1.133)

The product in Eq. 1.132 becomes∑
i,α

(mα
i − nαi ) δµiα = δµrα

∑
i,α

(mα
i − nαi ) +

∑
i,α

(mα
i − nαi ) ~∇µα~ri. (1.134)

The first sum is null since the number of atoms of each species is considered to be
the same in all configurations of the system∑

i,α

(mα
i − nαi ) =

∑
α

(mα − nα) = Nat −Nat = 0, (1.135)

where Nat is the total number of atoms in the system. The second sum can be
expressed in terms of the total displacement vector of species α from configuration
n to m, ~dnm, by writing for each α∑

i

(mα
i − nαi ) ~ri =

∑
i

[
~ri−

(
~ri+ ~dαimn

)]
= −~dαmn = ~dαnm. (1.136)

Note that ~dαinm is the displacement vector of species α between configurations n

and m, such that α was at site i in configuration n and moved a distance of
∥∥∥~dαinm∥∥∥

from site i in configuration m. The difference in deviations from equilibrium
probabilities can now be written as

δPm − δPn '
hn − hm
kBT

+
∑
α

~dαnm ·
~∇µα
kBT

. (1.137)

The time evolution of the site concentration is deduced by replacing the above
equation in Eq. 1.130 and Eq. 1.129

dXβ
i

dt
=
∑
n

P 0
nn

β
i

∑
m

Wnm

(
hn − hm
kBT

+
∑
α

~dαnm ·
~∇µα
kBT

)
. (1.138)

The sum over configurations m that are accessible from configuration n can be
rewritten as a sum over jumps that take atom β from site i in configuration n to
site j in configuration m

dXβ
i

dt
=
∑
n

P 0
nn

β
i

∑
j 6=i

mβ
jWnm

(
hn − hm
kBT

+
∑
α

~dαnm ·
~∇µα
kBT

)
. (1.139)
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The flux from site i can be finally expressed as a function of the homogeneous
gradient of chemical potential and the unknown effective Hamiltonians

∑
j

Jβi→j =
∑
n

P 0
nn

β
i

∑
j 6=i

mβ
jWnm

(
hm − hn
kBT

−
∑
α

~dαnm ·
~∇µα
kBT

)
, (1.140)

or equivalently as a function of the effective interactions

∑
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−
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~dαnm ·
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kBT

. (1.141)

Note that this flux can also be expressed as an ensemble average over the equilib-
rium distribution function∑

j

Jβi→j =

〈
nβi
∑
j 6=i

mβ
jWnm

(
hm − hn
kBT

−
∑
α

~dαnm ·
~∇µα
kBT

)〉
. (1.142)

As can be seen in the two equations above, to calculate the flux, it is necessary to
first determine the effective Hamiltonians, or equivalently the effective interactions.

Effective interactions The SCMF-o finds a self-consistent way to calculate the
effective interactions as a linear function of the chemical potential gradients and
then reinjects them into the flux equations to obtain the full Onsager matrix. In
a stationary system, even though the system is evolving at the microscopic level,
the distribution probability remains constant, and therefore

∀n, dPn
dt

= 0. (1.143)

Effective interactions cannot in theory be calculated from this stationnarity equa-
tion because it is a function of a large number of interactions. Instead of applying
stationnarity to the distribution function, the SCMF-o constructs a set of kinetic
equations by applying the stationnarity principle to a finite number of moments
of the distribution function and calculates from each one of them an effective in-

teraction. The moments of order 1, 2, 3, ... are defined as 〈nαi 〉
(1)
oe ,

〈
nαi n

β
j

〉(2)

oe
,〈

nαi n
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, ... such that
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β
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γ
k, ... (1.146)
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and so on, such that the brackets here 〈.〉oe represent averages over the out-of-
equilibrium distribution function. Note that the first moment is equal to the site
concentration Xα

i . Under steady-state conditions, all these moments become in-
dependent of time and the stationnarity principle can be applied to them. The
kinetic approximation in the SCMF-o consists in truncating the effective Hamil-
tonian to a finite number of effective interactions, nν , and in calculating each
of the nν effective interactions from its corresponding stationnarity equation. In
other words, the N -th order effective interaction ναβγ...ijk... is calculated from the N -th
moment stationnarity equation

d
〈
nαi n

β
j n

γ
k...
〉(N)

oe

dt
=
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dt

∑
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Pnn
α
i n

β
j n

γ
k... =

∑
n

dPn
dt

nαi n
β
j n

γ
k... = 0. (1.147)

This allows for the calculation of a finite number of effective interactions. For
example, if a pair approximation is used for the effective interactions, all effective
interactions other than ναβij are considered to be null and there is only a 2-body

effective interaction to be calculated. From the 2nd moment stationnarity equation
(Eq. 1.145),〈
nαim

β
jWnm

[
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~dαnm ·
~∇µα
kBT

〉
,

(1.148)
and ναβij are obtained as a linear function of the chemical potential gradients by
solving the linear system of equations of the form of Eq. 1.148. Note that, even
though we assumed a pair approximation for effective interactions, we made no
approximations on the distance between two species (i.e. sites i and j do not
have to be first nearest-neighbors sites). In the same way, any N -body effective
interaction is obtained as a linear function of the chemical potential gradients
by solving the system of linear equations formed by the N moment stationnarity
equations.

Back to the transport coefficients As shown in the previous paragraph, the
effective interactions can be calculated as a linear function of the driving forces by
using the stationnarity of the moments of the distribution function. To simplify the
notations, the sum over all effective interactions that appears in the flux equation
1.141 (sum in brackets) can be written as a linear function of the chemical potential
gradients

ναβij =
∑
α

~κij,α · ~∇µα, (1.149)

such that ~κij,α is the calculated proportionality constant. Using Eq. 1.127 and Eq.
1.141, the macroscopic flux becomes a linear function of the driving force

Jβ =
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n
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n

∑
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nβim
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jWnm

∑
α

(
~κij,α − ~dαnm

)
·
~∇µα
kBT

, (1.150)

and the Onsager transport coefficients along a direction ~eµ can be identified using
Eq. 1.141
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Ldβα =
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κµij,α − dαµnm

)
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where κµij,α and dαµnm are projections along the CPG direction, ~eµ. Again, we see
that the macroscopic transport coefficients can be calculated as a thermodynamic
average over the equilibrium distribution function

Ldβα =

〈
a

Vat

∑
j

nβim
β
jWnm

∑
α

(
κµij,α − dαµnm

)〉
. (1.152)

Within the framework of the SCMF-o theory, in case the effective interactions are
neglected, the Onsager matrix is diagonal (all cross coefficients are null), meaning
that the effective interactions contain all the information on kinetic correlations.
This is the reason why Vaks’ theory lead to a diagonal Onsager matrix [97]. Hence
the importance of taking them into consideration. Even though it wasn’t formally
proven, the more effective interactions are considered, the better the description
of correlations and the more precise the result of the SCMF-o is, which allows
the choice and control of balance between complexity and precision. The SCMF-
o has the great advantage of producing the full Onsager matrix and taking into
consideration correlations, as can be seen from the above equations. The only
other theory that had managed to achieve these two things was the PPM which
was discussed in the previous section (Sec. 1.7.3). Additionally, Eq. 1.152 shows
the decoupling in the SCMF-o between the thermodynamic approximation (P 0

n)
and the kinetic approximation (κµij,α).

Applications In the first SCMF-o paper [22], Nastar et al. applied the theory
to the case of a binary alloy AB in which diffusion is mediated by vacancies. A
statistical point approximation (Bragg-Williams) was used to describe the short-
range order and a pair approximation was assumed for the effective interactions,
and they introduced a cut-off radius for the pair distance beyond which effective
interactions are assumed to be null. The effective interactions decrease towards
zero with the cut-off radius. Self-diffusion correlation factor in a BCC structure
converges with increasing cut-off radius. In the case of an interacting alloy, correla-
tion factors calculated using the SCMF-o are in good agreement with Monte Carlo
simulations, in both cases of a positive and negative mixing enthalpy. Deviations of
20% of the calculated off-diagonal correlation factors are found at some concentra-
tions and are due to both thermodynamic and kinetic approximations. In the case
of a random alloy, for a jump frequency ratio of 1 the theory yields exact results,
while for higher ratios the results are less accurate, and in the limit of an infinite
ratio, the percolation phenomena is not reproduced. Note that in a random alloy,
the Bragg-Williams approximation is exact and therefore the discrepancy is due
to the kinetic approximation. Since the year 2000, many subsequent works have
been made to improve the SCMF-o theory and apply it to substitutional, intersti-
tial and dumbbell diffusion mechanisms [48–50,98,99,111–114]. In one subsequent
work, Barbe et al. [49] showed that in the case of a random alloy, using a triplet
approximation for the effective interactions and considering only a finite number
of triplet effective interactions is enough to reproduce the percolation limit. The
solution in this case is numerical and iterative, and correlation factors converge
with the number of iterations (STEIPA formalism). The work also showed that
the MAA’s decoupling scheme applied to their effective Hamiltonians leads to
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an analytical solution that is simpler than calculating all triplet effective interac-
tions, and that the solution is equivalent to the converged STEIPA. The critical
percolation concentration is obtained at 1 − f0. In the case of an interacting al-
loy, the theory was in general good agreement with Monte Carlo simulations, but
was less accurate than other theories because of the use of the Bragg-Williams
thermodynamic approximation. This, however, made it possible to account for
effective interactions beyond the pair approximation and improve on its kinetic
description of diffusion. Subsequent applications improved on the thermodynamic
approximation by considering the pair approximation. They found that in many
cases of vacancy, interstitial and dumbbell diffusion, the use of a pair approxima-
tion drastically improved the results with respect to a point approximation. In
dilute alloys, it was shown that the transport coefficients can be calculated ex-
actly within a thermodynamic and kinetic pair approximation and for an infinite
kinetic cut-off radius. In the case of concentrated alloys, this could not be done
and an optimization between thermodynamic and kinetic approximations has to
be found as a function of thermodynamic interactions and jump frequency ratios.
Additionally, the SCMF-o was able to predict a vacancy drag effect in an FCC
structure, in agreement with Monte Carlo observations. Even though the SCMF-o
theory was in practice limited to alloys with short range order, it still allowed for
the calculation of single and collective correlation factors in both cases of an inter-
acting and non-interacting alloy, with general good agreement with Monte Carlo
simulations and other theories. In addition to these applications, the SCMF-o was
used to study the kinetics of non-uniform composition fluctuations [23], and the
theory managed to predict the qualitative behavior of the composition gradient
parameter and the non-linearity of the interdiffusion coefficient, in agreement with
Monte Carlo simulations.

Note that Eq. 1.152 is general for the case of any pair of species α and β, and
for any transition frequency model, and so in theory, the SCMF-o can be applied
to the case of any concentrated alloy. The theoretical difficulty of the SCMF-o
resides mainly in constructing and solving simultaneously the nν equations with
effective interactions up to nν-body interactions. One can see that, the bigger
the nν the more accurate the result should be, but also the more mathematically
challenging it will be to find the effective interactions. A great mathematical effort
is required to calculate Eq. 1.147 for interactions beyond the pair approximation
(nν > 2). The thermodynamic interactions, the effective interactions and the tran-
sition frequencies depend on the thermodynamic and kinetic approximations, on
the crystal’s structure, on the number of species and defects, and on the chosen
atomic jump model. The difficulty of the analytical calculations is proportional
to all these factors. One of the interesting features of the SCMF-o theory, and
what mainly differentiates it from the PPM, is that the thermodynamic and ki-
netic approximations are decoupled. This allows us to consider the appropriate
level of approximation for the thermodynamic and kinetic parts separately, leading
to a good level of accuracy in both with the least mathematical complexity. For
example, a point approximation can be used for thermodynamic interactions, in
order to simplify the calculations, while a triplet approximation can be used for
the kinetic approximation, which could be necessary to properly evaluate kinetic
trajectories and correlations. Despite this great simplification, in practice, a gen-
eral analytical result is hard to obtain using the SCMF-o, and for each different
crystalline structure, diffusing species or jump mechanisms a new development of
the equations is required.
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Conclusion

Besides the PPM, the SCMF-o is the only method to allow the calculation of
the full Onsager matrix in the case of an interacting concentrated alloy, without
neglecting off-diagonal coefficients. Very small driving forces are assumed to drive
the system to an out-of-equilibrium state close to a homogeneous equilibrium and
fluxes are calculated using the continuity equation as a function of concentration.
A thermodynamic Hamiltonian describes the thermodynamic interactions while
an effective Hamiltonian describes the system’s kinetic response to the driving
forces. The effective Hamiltonian is a function of effective interactions which con-
tain all the information on kinetic correlations and which can be calculated as
a linear function of chemical potential gradients. Stationnarity of the different
moments of the distribution function allow the calculation of the effective interac-
tions, which are then used to calculate the transport coefficients. Even though the
thermodynamic and kinetic parts are treated simultaneously, their approximations
are treated separately. Compared to its most concurrent method, the PPM, the
SCMF-o has the advantage of separating thermodynamic and kinetic approxima-
tions, giving it the possibility to improve on its kinetic approximation for a greater
accuracy of correlation factors, all while being less theoretically challenging. In
most applications a point approximation was used for the thermodynamic part
while a pair approximation was used for the kinetic part, but other applications
required higher level of either or both for accurate results. The SCMF-o was ap-
plied in the cases of vacancy and self-interstitial diffusion in different crystalline
structures. By adjusting in each case the level of approximations, the SCMF-o
was found in a general good agreement with Monte Carlo simulations in the case
of interacting and non-interacting alloys. The theoretical challenge in the SCMF-o
is to calculate the effective interactions, which becomes harder with the number of
defects, components, and levels of approximations. A general analytical formula-
tion cannot be established, and one needs to develop the equations depending on
the case to study.

1.7.5 Comparative summary of the models

All three methods, the RA, the PPM and the SCMF-o, constitute a remarkable
advancement in the development of analytical methods for the study of diffusion in
concentrated alloys. The three methods make it possible to calculate the complete
Onsager matrix. The direct comparison between the three methods could only be
made in the case of a random binary alloy. The three methods lead to close results
at all concentrations and for a wide range of jump frequencies, and in the limit
of an infinitely big jump frequency, the three models provide a good description
of the percolation phenomena (the PPM after its reformulation, and the SCMF-
o after including triplet effective interactions in a decoupled scheme). The PPM
and the SCMF-o have additionally the power to study concentrated alloys without
neglecting thermodynamic interactions. While these two methods are very similar
in nature, they still have their differences, and they are both very different from
Manning’s approach. In Table 1.3, we make the effort to compare exhaustively
several aspects of the three methods. In short, Manning’s model is very simple in
the case of vacancy diffusion in a non-interacting alloy. Its application to dumb-bell
interstitials proved that there are no simple analytical solutions in this case [102].
The PPM and the SCMF-o are more complex but provide the capacity to study
interacting alloys. The PPM and the SCMF-o rely on thermodynamic and kinetic
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approximations that are similar in built and objective. However, the PPM provides
coherency between the thermodynamic and kinetic aspects by keeping the same
level of approximation in both parts, while the SCMF-o provides the flexibility
to separate the two approximations, making it more versatile and less complex.
Additionally, the PPM has been widely used to study order-disorder kinetics but
it has been only applied in the case of vacancy diffusion, while the SCMF-o’s
flexibility allowed it to study a greater variety of diffusion mechanisms. Both
methods remain however hard to generalize to large cluster systems that include
a big number of point defects, and to complex crystalline structures and jump
mechanisms.
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RA PPM SCMF-o

Description of the

system

Tracer of each species

embedded in a

homogeneous

mean-field.

Finite sized cluster

embedded in a mean-field.

Finite sized cluster

embedded in a mean-field.

Equilibrium

probabilities

All configuration

probabilities are equal.

Equilibrium probability

represented by a Boltzmann

distribution.

Equilibrium probability

represented by a Boltzmann

distribution

Control over

thermodynamic

approximation

Bragg-Williams

approximation.

Level of approximation

depends on the size of the

biggest cluster and the

range of thermodynamic

interactions. Mostly used in

the pair approximation.

Level of approximation

depends on the size of the

biggest cluster and the

range of thermodynamic

interactions. Mostly used in

the point approximation.

Time evolution of

the system

Evolution of a

steady-state system

near equilibrium.

Evolution of a steady-state

system near equilibrium.

Evolution of a steady-state

system near equilibrium.

Kinetic interactions

Represented directly by

escape frequencies and

partial correlation

factors.

Represented by path

variables.

Represented by effective

interactions.

Control over kinetic

approximation
-

Level of approximation

depends on the size of the

biggest cluster, i.e. has to

be the same as the

thermodynamic

approximation. Only used

in the nearest-neighbors pair

approximation.

Level of approximation

depends on the largest

effective interaction. Mostly

used in the pair

approximation, but also

beyond in the triplet

approximation.

Applications: types

of alloys

Regular solid solution

model of concentrated

interacting alloys.

Homogeneous

non-interacting and

interacting concentrated

alloys. A revised version

allows the extension to

heterogeneous concentrated

alloys but has only been

applied to the case of

vacancy-tracer diffusion in a

binary random alloy.

Heterogeneous

non-interacting and

interacting concentrated

alloys with short range

order.

Applications: jump

mechanisms

Vacancy mechanism

with very low

concentration of

vacancies.

Vacancy mechanism.

Vacancy mechanism, direct

interstitial mechanism,

dumbbell mechanism, ...

Complexity level Simple.

Hard to generalize to any

structure and any jump

mechanisms.

Hard to generalize to any

structure and any jump

mechanisms.

Table 1.3: Comparative summary of different aspects of Manning’s RA, Kikuchi’s PPM

and Nastar’s SCMF-o.
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1.8 Conclusions of chapter 1

In the general case, we cannot calculate the full Onsager matrix experimentally.
Additionally, diffusion experiments are generally only feasible at high temperatures
and, in most cases, it is not correct to extrapolate the results to low temperatures.
To overcome this obstacle, interdiffusion experiments can be performed in nano-
metric multilayers, because their small size allows the study of interdiffusion at
relatively low temperatures and in reasonable time. Numerical and analytical
models were found necessary to fill these gaps. Monte Carlo simulations cannot
study unstable systems and they suffer from statistical errors and kinetic trapping,
especially when calculating off-diagonal coefficients and when studying highly cor-
related systems. Analytical methods, on the other hand, are hard to develop for
concentrated alloys because of the difficulty of explicitly calculating kinetic cor-
relations, which are measured naturally in numerical methods. This difficulty is
due to the size and complexity of the configuration space, hence to simplify and
reduce it, models have been developed with various assumptions and approxima-
tions. These methods have been applied either to the case of a non-interacting
alloy (RA), or to the case of an interacting alloy in specific cases of structures
and diffusion mechanisms (PPM and SCMF-o). Even though the PPM and the
SCMF-o share a lot of similarities, the SCMF-o provides more flexibility and treats
correlations more rigorously, which allowed for its application to a greater variety
of diffusion problems. The fact that they are both system specific does not help
since the analytical equations have to be reworked from the beginning for each
different case. A general and relatively simple analytical method to calculate the
full Onsager matrix in concentrated alloys is therefore still missing.

In recent years, the SCMF-o has been reformulated by Schuler et al. [18], in
what we will call in this thesis the SCMF-d, and it was implemented in an open-
source code called KineCluE. The main difference in the SCMF-d lies in the way
effective interactions are treated and their new approach allows the treatment of
much longer kinetic trajectories. In this work, however, they made the assumption
that clusters are sufficiently dilute in a homogeneous matrix which limited their
approach to pure and dilute alloys. Nevertheless, this showed the potential of
simplifying the SCMF-o and making it more versatile, accessible and fast. The
successive advancements in the SCMF-o theory and its reformulation, the SCMF-
d, and its implementation in the KineCluE code show the potential of extending
the SCMF-d to concentrated alloys.

Therefore, the need for a general model to study diffusion in any concentrated
alloy is still present. The aim of the next sections is to provide atomic-scale models
to calculate interdiffusion coefficients and transport coefficients in concentrated
alloys. In Chapter 2, we present a method to extract concentration dependent
interdiffusion coefficients from experimental and simulated nanometric multilayers
from their X-ray diffraction profiles, and in Chapter 3, we present a new analytical
model, based on the SCMF-d and KineCluE, to compute transport coefficients in
concentrated alloys.



Chapter 2

Interdiffusion in Fe/Cr
multilayers

2.1 Introduction to chapter 2

In an interdiffusion experiment, a diffusion over a given distance is required to
obtain a measurable signal. The typical diffusion distance being d ∼

√
2Dt and the

diffusion coefficientD being typically an Arrhenius form, D = D0 exp (−Q/ (kBT )),
interdiffusion experiments can only be performed at high temperatures. At low
temperatures, interdiffusion experiments would require to be performed for an
unreasonable amount of time. Nanometric multilayers provide a workaround to
access low temperature data by analyzing the evolution of composition waves over
time instead of the classical Boltzmann-Matano analysis [57] of interdiffusion ex-
periments. The advantage is that atoms need to diffuse over only a few nanometers
to affect the concentration at the center of a layer. Hence the interest in studying
interdiffusion in nanometric multilayers. For instance, Fe/Cr multilayers attract a
lot of attention because diffusion properties of Fe-Cr alloys are still not well known
at low temperatures, yet their α− α′ decomposition at industrial temperatures is
of high interest [8, 9, 16, 35]. There is also little data on the kinetic properties of
Fe-Cr alloys with high Cr concentrations [9], and the interdiffusion coefficient in
such system is very concentration dependent [16], making it hard to extrapolate
data from high Fe concentrations to high Cr concentrations.

Nanometric multilayers provide two additional interesting features, besides
their small size: an interface between the different atomic layers, and a compo-
sition modulation. These characteristics lead scientists to develop a wide variety
of interface mobility models and to make the link between interdiffusion coeffi-
cients and interface shift [55, 64–67]. The particularity of these features can also
be seen in X-ray diffraction (XRD) profiles. While XRD profiles of monolayers
present a main Bragg peak characteristic of their lattice parameter, XRD profiles
of multilayers present satellites around the main Bragg peak due to modulations
of concentration and lattice parameter (Fig. 2.1). During annealing, interdiffusion
between different atomic species alters the concentration profile and consequently
the interplanar spacing profile. This causes XRD satellite peak intensities to de-
cay, but the relationship between interdiffusion and satellite decay is not clear
yet. The evolution of the composition and the XRD profiles are relatively easy to
obtain experimentally, hence the interest in finding the link between interdiffusion
coefficients and the evolution of XRD profiles in multilayers.

The aim of this work is to study interdiffusion in Fe/Cr multilayers and calcu-

73
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late interdiffusion coefficients based on X-ray diffraction profiles. In Sec. 2.2, we
present previous analytical works that have been done to study X-ray diffraction in
multilayers. These models tried to make the analytical link between composition
profile, lattice spacing profile, interdiffusion coefficients, and X-ray satellite peak
positions and intensities. In Sec. 2.3, we present the thermodynamic and kinetic
properties of FeCr alloys. Then in Sec. 2.4, we talk about the experimental work
done by our collaborators to grow Fe/Cr multilayers and characterize them, and
the previously developed simulation tools that enabled us to study interdiffusion in
Fe/Cr multilayers and to simulate their X-ray profile. In Sec. 2.5, we analyze what
each satellite peak represents and which part of the multilayer affects it. In Sec.
2.6, we present a detailed simulation study of interdiffusion in a Fe/Cr multilayer,
we analyze composition and X-ray profiles, and calculate interdiffusion coefficients
from the decay of satellite intensities, and in Sec. 2.7, we compare our simulation
results to the experiment and discuss the common points and differences.

Figure 2.1: Schematic representation of the difference between the X-ray diffraction
profiles of a monolayer and a multilayer.

2.2 Previous analytical works on X-ray diffrac-

tion in multilayers

The intensity recovered from the diffraction of X-rays on a sample results from
the scattering of the incident rays by atoms, and from the interference between
these scattered rays. Each atomic species has a different scattering factor which
reduces the intensity of the incident ray depending on its wavelength and angle
of incidence with respect to the atom’s position. The density and type of atoms
on an atomic plane determine the intensity of each scattered wave, and the in-
terference between them depends on the relative positions of the planes. This is
why, in theory, from the X-ray diffraction profile, we are able to recover both the
concentration and interplanar spacing profiles. XRD profiles of multilayers present
satellites around the main Bragg peak due to modulations of concentration and
lattice parameter. Upon annealing, satellite peak intensities decrease due to in-
terdiffusion and/or strain relaxation. It is known that interdiffusion causes the
concentration profile to change, which changes both the scattering factor profile
and the interplanar spacing profile. The time evolution of the average scattering
factor profile affects the intensity of the diffracted rays, while the time evolution of
the interplanar spacing profile changes both the nature and number of planes sat-
isfying Bragg’s law. This leads to a change in both the angles at which diffracted
rays are constructive as well as the intensity of the satellites. Yet, the relation-
ship between decay rate and interdiffusion parameters, such as the interdiffusion
coefficient, is not clearly established. Furthermore, interface mobility occurs in
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some types of multilayers due to the asymmetry in both interdiffusion and misci-
bility gap, for example in Cu/Brass multilayers in Kirkendall’s experiment (Sec.
1.3.2) or in equiatomic Fe/Cr multilayers (as will be shown later in Sec. 2.3).
It is still not clear how interface mobility affects XRD profiles. Several theories
have been developed to study interdiffusion in multilayers and to obtain the time
evolution of composition profiles from XRD (see [116] for a review). It was Du-
Mond and Youtz [117] who were the first to link X-ray intensity decay to diffusion
properties. They determined the diffusion coefficient as a function of the decay
rate of satellite intensities and noted the power of this method in calculating very
small values of interdiffusion coefficients. Guinier [25] was then the first to con-
sider a sinusoidal modulation of the scattering factor and the inter-planar spacing,
and to establish the relation between diffracted intensities and modulation am-
plitudes. This model was extended to include a sum of several harmonics, and
similarly, the composition and distance profiles could be concluded from the X-ray
diffracted intensities [118–120]. From the combination of Guinier’s theory with a
linear diffusion model (Eq. 2.52) in which the interdiffusion coefficient D̃ is as-
sumed constant, the decay rate of satellites can be expressed as a function of a
unique interdiffusion coefficient [121–123]. However, in the case of a concentra-
tion dependent interdiffusion coefficient D̃ (C), which is the more realistic case,
the relationship between decay rate and interdiffusion parameters could not be
established yet because the equations rely on a specific function of D̃ (C) and be-
come more difficult to solve. Aubertine et al. [124] discussed that in the case of
a concentration dependent interdiffusion coefficient in Si/SiGe hetero-structures,
calculating the interdiffusion coefficient from the decay of the first order peak
doesn’t necessarily correspond to calculating it at the mean concentration, nor
does it give insight on the range of inter-diffusivity values, i.e. the minimum and
maximum values of it. Tsakalakos [125] used a perturbation method to find an
approximate analytical solution to a nonlinear diffusion equation (Eq. 2.63) by
writing the interdiffusion coefficient as a quadratic function of composition. He
gave the solution to the composition variation as a sum of truncated first and
second order Fourier components whose time-dependent amplitudes are a function
of their amplitudes before annealing, the interdiffusion coefficient, and the period
of the multilayer. Intensities of different order X-ray satellites can be deduced
from this model since they are proportional to the square of the amplitude of the
same order Fourier components. The diffusion parameters and the gradient energy
coefficient can then be deduced using a non-linear regression model.

In this section, we will present an overview on the basics of diffraction theory
in multilayers (Sec. 2.2.1) and the theoretical advancements made to recover the
composition and lattice spacing profiles from XRD profiles, by assuming sinusoidal
functions of single harmonics and the more complicated case of several harmonics
(Sec. 2.2.2 and Sec. 2.2.3). We will also discuss the theories developed to calculate
interdiffusion coefficients from satellite decay rates, in both cases of concentration
dependent and concentration independent coefficients (Sec. 2.2.4).

2.2.1 Basics of diffraction theory

In the classical wave method, an X-ray, just like any electromagnetic wave,
is composed of oscillating electric ~E, and magnetic ~B, fields that are orthogo-
nal. Mathematically, an X-ray can be expressed as sinusoidal wave functions that
describe its field equations
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 ~E (~r, t) = ~E0 sin
(
~k.~r − wt+ φ0

)
,

~B (~r, t) = ~B0 sin
(
~k.~r − wt+ φ0

)
,

(2.1)

where
∥∥∥ ~E0

∥∥∥ and
∥∥∥ ~B0

∥∥∥ are the amplitudes of the electric and magnetic fields respec-

tively, and φ0 is the phase shift. The X-ray wavelength is given by λ = 2π/
∥∥∥~k∥∥∥,

and its frequency by f = 2π/w. At any point in time, the intensity of the plane
wave formed by these two fields is given by the time average of the Poynting vector

I = 〈S (t)〉 =

〈
1

µ0

(
~E × ~B

)〉
=

1

2cµ0

E2
0 ∝ E2

0 . (2.2)

Therefore, the intensity of the X-ray is proportional to the squared amplitude of
its electric field. Note that the intensity can also be expressed in an equivalent
way in terms of the squared amplitude of the magnetic field, or in terms of the
amplitude of both the electric and magnetic fields.

Figure 2.2: Schematic representation of two incident waves with an angle θ that
get diffracted by atoms α and β located on two different planes distant by d.

Let us now consider a crystal formed by parallel planes with an equal spacing d
between the planes. Let us consider two X-rays emitted by the X-ray source at the
same time, and incident on the crystal such that they get diffracted by an atom
of species α on plane 1, and by an atom of species β on plane 2, as can be seen
in Figure 2.2. Note that diffracted X-rays are mostly emitted by elastic scattering
of the atoms’ electrons. Both rays, when emitted, have the same wavelength,
frequency and phase shift, and can both be described by the above equations (Eq.
2.1 and Eq. 2.2). For example, the electric field of the incident rays when emitted
can be expressed as

~Ei
1 (~r, t) = ~E0 sin

(
~k.~r − wt+ φ0

)
, (2.3)

~Ei
2 (~r, t) = ~E0 sin

(
~k.~r − wt+ φ0

)
, (2.4)

where ~Ei
1 (~r, t) and ~E ı̂

2 (~r, t) correspond respectively to the electric fields of the
first incident ray before it hits atom α and to the second incident ray before it
hits atom β. After getting diffracted by the atoms, the ray hitting atom β has to
travel a longer distance before reaching the detector. This creates a path difference
between the two rays, which we will call ‖∆~r‖. Using simple geometry, we find
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that this path difference depends on the planes at which the particles are found
and is a function of the distance between the two planes d and of the scattering
angle θ, such that

‖∆~r‖ = 2d sin θ. (2.5)

As a consequence to this path difference, the two rays reach the detector with a
phase difference, even though they were initially emitted with the same phase shift
φ0. On the other hand, a wave diffracted by an atom loses some of its energy due
to interactions between the wave and the atom, and therefore the amplitude of the
diffracted field will be smaller than the emitted one. These interactions not only
depend on the atomic species, but also on the X-ray wavelength and on the angle
at which the wave hits the atomic planes. The amplitude of the scattered wave
will then depend on the diffracting species, the ray wavelength and the scattering
angle. This can be quantified by introducing a scattering factor such that the

initial amplitude
∥∥∥ ~E0

∥∥∥ of a ray of wavelength λ reduces to
∥∥∥ ~E0

∥∥∥ f 0
α (θ, λ) after

getting diffracted by species α at an angle θ. The electric field of the diffracted
rays then becomes

~E1 (~r, t) = ~E0f
0
α (θ, λ) sin

(
~k.~r − wt+ φ1

)
, (2.6)

~E2 (~r, t) = ~E0f
0
β (θ, λ) sin

(
~k.~r − wt+ φ2

)
, (2.7)

where φ1 and φ2 are the new wave phases. Note that the wavelength and frequency
are not affected by the diffraction and remain the same, and that the incident
angles θ are the same because planes are assumed to be parallel. When these two
individual waves reach the detector, the wave resulting from their superposition is
the sum of the two waves such that

~Ef (~r, t) = ~E1 (~r, t) + ~E2 (~r, t)

= ~E0f
0
α (θ, λ) sin

(
~k.~r − wt+ φ1

)
+ ~E0f

0
β (θ, λ) sin

(
~k.~r − wt+ φ2

)
.

(2.8)

Instead of using trigonometric functions, we can equivalently express each wave
as a complex exponential function. This is equivalent to expressing a wave as a
vector instead of a sine function and makes it easier to manipulate waves, especially
when performing addition operations on them. This can be done since a sinusoidal
function is the imaginary part of a complex exponential function

sin
(
~k.~r − wt+ φ

)
= Im

[
ei(

~k.~r−wt+φ)
]
. (2.9)

The superposition of the two waves (Eq. 2.8) becomes

~Ef (~r, t) = ~E0f
0
α (θ, λ) ei(

~k.~r−wt+φ1) + ~E0f
0
β (θ, λ) ei(

~k.~r−wt+φ2)

= ~E0e
i(~k.~r−wt) [f 0

α (θ, λ) eiφ1 + f 0
β (θ, λ) eiφ2

]
. (2.10)

Equation 2.10 represents the superposition of two waves, one diffracted by an atom
α on plane 1, and the other diffracted by an atom β on plane 2 which is parallel to
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plane 1. The advantage of using complex exponential functions is that the result
we obtained can be generalized for the superposition of any number of waves from
any number of planes and from any number and type of species on the planes,

~Ef (~r, t) = ~E0e
i(~k.~r−wt)

∑
j

eiφj
∑
α

Nα (j) f 0
α (θ, λ) , (2.11)

where the sum over j runs over all planes, and the sum over α runs over all atomic
species. Here, Nα (j) represents the number of atoms of species α on plane j.
Nα (j) can be more conveniently written as a function of the concentration Cα (j)
of α on plane j, such that

Nα (j) = Cα (j)N, (2.12)

with N the total number of sites on a plane, which is assumed to be the same for
all planes. We can choose a reference plane r with respect to which we calculate
the phase differences, and Eq. 2.11 becomes

~Ef (~r, t) = ~E0e
i(~k.~r−wt+φr)N

[∑
j

e
iφ
′
j

∑
α

Cα (j) f 0
α (θ, λ)

]
, (2.13)

with φ
′

j
= φj − φr. What we are interested in calculating is the intensity of the

diffracted waves since this is what the detector will measure. Recall from Eq. 2.2
that the intensity is proportional to the amplitude squared, which gives us

I ∝
∥∥∥ ~Ef (~r, t)

∥∥∥2

∝

∥∥∥∥∥ ~E0e
i(~k.~r−wt+φr)

∑
j

e
iφ
′
j

∑
α

Cα (j) f 0
α (θ, λ)

∥∥∥∥∥
2

∝

∥∥∥∥∥∑
j

e
iφ
′
j

∑
α

Cα (j) f 0
α (θ, λ)

∥∥∥∥∥
2

. (2.14)

To calculate the diffracted intensity we need to calculate the scattering factor
f 0
α (θ, λ) of each species α and the phase difference φj of each wave diffracted

on plane j. There already exists models and datasets for the calculation of the
scattering factor. The phase difference on the other hand, can be calculated from
the path difference as

φ
′

j
=

2π

λ
‖∆~rj‖ =

4πdr,j sin θ

λ
, (2.15)

where dr,j is the distance between plane j and a reference plane (r). This distance
is often referred to as the perpendicular lattice spacing because it is in the direc-
tion perpendicular to the diffracting planes. The lattice spacing between atoms
belonging to the same plane is the in-plane lattice spacing. In this manuscript,
when it is not specified, the lattice spacing refers to the perpendicular lattice spac-
ing by default. Note that waves diffracted by atoms belonging to the same plane
will have the same phase difference since it only depends on the position of the
plane with respect to a reference plane and on the scattering angle θ, and not on
the species diffracting them. However, these waves will have different intensities
depending on the species diffracting them because of the difference in atomic scat-
tering factors. The intensity resulting from the superposition of waves (Eq. ??)
diffracted by atoms α belonging to the same plane j is proportional to

Ij ∝
∥∥eiφjf (j)

∥∥2
, (2.16)
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where f (j) is the average scattering factor of plane j,

f (j) =
∑
α

Cα (j) f 0
α (θ, λ) . (2.17)

The scattering factor profile f (j) has therefore the same variation in space as the
concentration profile Cα (j). The exact distribution of atoms in the plane does not
matter, and only their average planar concentration does. Note that, by definition,
constructive interference happens when the amplitude of the superposition of waves
takes its maximum value. This is equivalent to a maximum in diffracted intensity,
and mathematically corresponds to

∀j, eiφ
′
j = 1, (2.18)

and consequently

∀j, φ′
j

= 2nπ, (2.19)

where n is an integer. If we put this condition in Eq. 2.15, we get the well-known
Bragg’s law

2dr,j sin θ = nλ. (2.20)

The incidence angle θ between the emitted ray and the crystal plane is equal to
the angle between the crystal plane and the diffracted (Fig. 2.2). Therefore, the
angle between the X-ray emitter and the detector is 2θ, and diffraction profiles
are drawn as a function of 2θ because it is an easily measurable quantity. For
practical reasons, in an X-ray experiment, the detector rotates around the sample
and at the same time either the sample or the emitter are rotated. The diffraction
pattern is obtained for a range of 2θ values and the different lattice spacings
characteristic of the crystal are determined from the 2θ angles at which the most
intense rays are detected (Bragg’s law, Eq. 2.20). The detected rays form a 2D
diffraction pattern of spots with different intensities. The positions of the spots
and their relative intensities depend on the crystal lattice and atomic distribution.
In order to find dominating lattice spacings in the crystal, a post-processing step
is required to transform the 2D diffraction pattern into a 1D profile, in which
detected intensities are mapped as a function of the 2θ angle. This 1D profile is
easier to analyze because Bragg’s law can be directly used to determine the lattice
spacing corresponding to each peak. Note that this lattice spacing is often referred
to as the perpendicular lattice spacing, which is not necessarily the same as the
lattice spacing in the plane. XRD measurements can further be combined with the
sin2 Ψ method to study residual stress and calculate perpendicular and in-plane
lattice parameters [126].

2.2.2 Guinier’s theory with single harmonics

In the previous section we showed that the intensity of rays diffracted from
several planes and the angle at which rays are constructive, are both a function
of the atomic scattering factor and the interplanar spacing. Interdiffusion in mul-
tilayers changes the composition profile, which in turn changes both the atomic
scattering profile and the interplanar spacing profile. Interdiffusion therefore alters
the intensity and peak positions of the XRD profile. While it is relatively easy
experimentally to measure the XRD intensities and peak positions, it is much
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harder to get information on the composition of the material and the lattice spac-
ings, especially in a non-destructive way like provided by XRD. One can see that
XRD has the potential of being a great characterization tool at the atomic scale
and an experimental technique that allows the calculation of diffusion coefficients.
Modeling XRD and establishing the link between satellite intensities and positions
on one hand, and composition, lattice parameter and diffusion properties on the
other hand, has therefore attracted a lot of attention. The goal is to find the an-
alytical expression of the time evolution of the scattering factor and of the lattice
spacing, and express them as a function of interdiffusion coefficients. From there,
we are able to calculate the interdiffusion coefficients from the time evolution of
the intensity and the position of each satellite.

Let us consider a multilayer structure of the form [α/β]r with a periodicity Λ,
where [α/β] is a bilayer formed by one layer of pure α and one layer of pure β, and
r is the number of bilayers. Guinier [25] was the first to consider a one-dimensional
sinusoidal modulation of the composition. He wrote the composition of species α
in the z-direction as

Cα (z) = C0
α + A sin

(
2π

Λ
z

)
, (2.21)

where C0
α is the average concentration of species α in the multilayer, and A is the

amplitude of the concentration modulation. As shown in Eq. 2.17, the scattering
factor of a plane is simply the average of the atomic scattering factors of all atoms,
and therefore the composition modulation in a direction z causes a modulation of
the same form of the average scattering factor in the same direction

f (z) = Cα (z) f 0
α (θ, λ) + [1− Cα (z)] f 0

β (θ, λ) (2.22)

=

[
C0
α + A sin

(
2π

Λ
z

)]
f 0
α (θ, λ) +

[
1− C0

α − A sin

(
2π

Λ
z

)]
f 0
β (θ, λ)

(2.23)

= C0
αf

0
α (θ, λ) +

(
1− C0

α

)
f 0
β (θ, λ) + A sin

(
2π

Λ
z

)(
f 0
α (θ, λ)− f 0

β (θ, λ)
)
.

(2.24)

The scattering factor has the same modulation as the concentration profile, with
different average values and amplitudes, such that

f (z) = f0 + A∆f sin

(
2π

Λ
z

)
(2.25)

where f0 = C0
αf

0
α (θ, λ) + (1− C0

α) f 0
β (θ, λ) is the average scattering factor of all

atoms in the multilayer, and ∆f = f 0
α (θ, λ)−f 0

β (θ, λ) is the difference between the
atomic scattering factors. The interplanar spacing depends on the composition,
but there is no general direct relationship between the two. Guinier considered
a sinusoidal modulation of the lattice spacing in the z-direction, such that the
distance between planes n and n+ 1 is of the form

dn,n+1 = d0 + εd0 sin

(
2π

Λ
nd0

)
, (2.26)

where d0 is the average interplanar spacing, and ε is a strain parameter to be
defined. The interplanar spacing is therefore following the concentration profile.
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The period of the multilayer is a function of the average spacing, Λ = Nd0, where
N is the number of planes in a bilayer. Remember that the goal of this work
is to reconstruct the composition and lattice spacing profiles of the multilayers
from XRD profiles. The unknowns are therefore A, Λ, d0 and ε, assuming that
the average concentration C0

α is known and that the scattering factors can be
determined. Guinier manages to find an analytical link between the unknowns
and the measurable XRD peak positions and intensities. As mentioned in Sec.
2.2.1, the diffraction pattern results from the interference of scattering of rays by
atoms’ electrons based on their relative positions and scattering factors. A Fourier
transform allows the transition between the space domain and the time domain,
which can in some situations simplify a mathematical problem. For instance, the
amplitude, frequency and phase shift of a wave resulting from the interference
of several waves. A Fourier transform of the diffraction pattern transforms the
resulting diffracted wave pattern into the separate diffracted waves that make
it up. The amplitude of diffracted X-ray waves can be calculated as the Fourier
transform of the electronic density along z, ρ (z), by integrating over the reciprocal
space

A (k) =

ˆ
ρ (z) exp (ikz) dz =

ˆ
f (z)

∑
n

δ (z − zn) exp (ikz) dz, (2.27)

where A (k) is the amplitude of the diffracted rays at the spacial frequency k, and
zn is the position of plane n with respect to the reference of the z axis. To calculate
zn, let us first consider the reference of the z axis to be at a distance (εΛ) / (2π)
from the first plane of the multilayer (i.e. from the plane to which corresponds
n = 0). Therefore, the distance between the first plane (n = 0) and the reference
plane (n = r) is

dr,0 = −εΛ
2π
. (2.28)

The position of plane n with respect to the position of the first plane can be
calculated as the sum over all distances between consecutive planes

dn,0 =
n−1∑
j=0

dj,j+1. (2.29)

To calculate the position of plane n with respect to the reference of the z axis, we
need to add to dn,0 the distance from the reference of plane 0

zn = dr,0 +
n−1∑
j=0

dj,j+1. (2.30)

By assuming that the deviations between the interplanar spacings are very small,
and by approximating the sum over planes k by an integral, the position of plane
n is finally

zn ≈ −
εΛ

2π
+ nd0 + εd0

n−1ˆ

0

sin

(
2π

Λ
kd0

)
dk

≈ jd0 −
εΛ

2π
cos

(
2π

Λ
nd0

)
. (2.31)
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A (k) = FT

[(
f0 + A∆f sin

(
2π

Λ
z

))∑
n

δ

(
z − nd0 +

εΛ

2π
cos

(
2π

Λ
nd0

))]
(2.32)ˆ ∑

n

δ

(
z − nd0 +

εΛ

2π
cos

(
2π

Λ
nd0

)
exp (ikz)

)
dk (2.33)

The Fourier transform of ρ (z) is the convolution of the two transforms of the
functions f (z) and

∑+∞
n=−∞ δ (z − zn) . The final result is

A (k) =
∑
n

2πf0

d0

δ

(
k − 2πn

d0

)
− 2πif0

d0

∑
n

[(
Λεk

4π
− A∆f

2f0

)
δ

(
k − 2πn

d0

− 2π

Λ

)
+

(
Λεk

4π
+
A∆f

2f0

)
δ

(
k − 2πn

d0

+
2π

Λ

)]
. (2.34)

Remember that the diffracted intensity is proportional to the amplitude squared.
For each n, the δ functions are non-null for three values of k, to which corresponds
three non-null diffracted amplitudes and equivalently three intensity peaks. The
values of k at which the intensities are not null, and the values of the associated
intensities are given below as a function of n



k0 =
2πn

d0

, I0 =

(
2πf0

d0

)2

,

k+1 =
2πn

d0

+
2π

Λ
, I+1 (k+1) =

(
2πf0

d0

)2(
Λεk+1

4π
− A∆f

2f0

)2

,

k−1 =
2πn

d0

− 2π

Λ
, I−1 (k−1) =

(
2πf0

d0

)2(
Λεk−1

4π
+
A∆f

2f0

)2

.

(2.35)

The indices (0, +1, and −1) are only to differentiate between the intensity of the
central peak of order 0, and the satellite at its left said to be of order −1, and the
satellite at its right said to be of order +1. Therefore, Guinier’s solution (Eq. 2.35)
represents a central peak with a pair of satellites around it, one on each side. The

position of the main peak is
2πn

d0

and the satellites are distant from it by ±2π

Λ
.

Note that the two satellites are equally distant from the main peak, however they
do not have the same intensities. The intensity of the satellites ±1 with respect
to the central peak’s intensity is

F 2
±1 ≡

I±1 (k±1)

I0

=

(
Λεk±1

4π
∓ A∆f

2f0

)2

. (2.36)

If there is no lattice strain (ε = 0 and all interplanar spacings are equal to d0) the

intensities of the satellites are both equal to

(
A∆f

2f0

)2

. Therefore, an asymmetry

in satellite intensities is due to a variation in the lattice spacing between the planes.
From the XRD profile, we can calculate the unknown quantities of interest:
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� the average lattice spacing d0 from the position of the main peak,
2πn

d0

;

� the periodicity of the multilayer Λ from the distance between the main peak

and one of the satellites,
2π

Λ
;

� the modulation amplitude A and the strain ε from the intensity of both
satellites, by solving the system of two equations with two unknowns (Eq.
2.36),

if
A

ε
≤ f0

∆f

(
1 +

nλ

d0

)
, then


ε =

d0

nΛ
(F−1 + F+1) ,

A =
d0

nΛ
(F−1k+1 − F+1k−1) ,

(2.37)

if
A

ε
≥ f0

∆f

(
1 +

nλ

d0

)
, then


ε =

d0

nΛ
(F−1 − F+1) ,

A =
d0

nΛ
(F−1k+1 + F+1k−1) .

(2.38)

Note that the scattering factors (and hence f0 and ∆f) are known if we know
the chemical species of the multilayers and their average composition, which
is normally the case.

Remember that the lattice spacing is assumed to follow the concentration profile
(Eq. 2.26), but no explicit model was used to make the link between the two. If
we were to write the lattice spacing using Vegard’s law as an average of the lattice
spacings of α and β (dα and dβ) weighted by their concentrations

dn,n+1 = Cα (z) dα + [1− Cα (z)] dβ, (2.39)

we would obtain that the strain parameter represents

ε = A (dβ − dα) /d0. (2.40)

The strain calculated from the XRD profiles could tell us the validity of such
assumption by comparing the calculated value with Eq. 2.40.

Therefore, Guinier’s single harmonic model allows for the calculation of the
profiles of composition, scattering factor, lattice spacing, from the positions and
intensities of the XRD peaks. This model is simple and reproduces a main peak
with two satellites equally distant from it and with asymmetric intensities. In
many cases, XRD profiles of multilayers present second order satellites which are
not reproduced by this model. This model is also limited to sinusoidal profiles
of concentration and lattice spacing. Benoudia [26] showed in his thesis that the
range of validity of this model depends on the system under study, on the number
of planes in the multilayer (its periodicity), and that it applies only within a specific
range of values of ε and A.

2.2.3 Extension of Guinier’s theory to several harmonics

Since a periodic function can be better approximated by a Fourier series,
Guinier’s model was extended [26] by replacing the sinusoidal function by a sum
over several sinusoidal functions. The composition, scattering factor and interpla-
nar spacing profiles are described by
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Cα (z) = C0
α +

∞∑
m=1

Am sin

(
m

2π

Λ
z

)
, (2.41)

f (z) = f0 + ∆f
∞∑
m=1

Am sin

(
m

2π

Λ
z

)
(2.42)

dn,n+1 = d0 + d0

∞∑
m=1

εm sin

(
m

2π

Λ
nd0

)
, (2.43)

These modulations can be equivalently expressed as a sum of cosine functions
instead of sine functions. The position of the n-th plane can be calculated in the
same manner as above

zn ≈ nd0 −
∞∑
m=1

εmΛ

m2π
cos

(
m

2π

Λ
nd0

)
. (2.44)

The diffracted amplitude is also calculated as the Fourier transform of the electron
density and has an analogous form

A (k) =
∑
n

2πf0

d0

δ

(
k − 2πn

d0

)
(2.45)

−
∞∑
m=1

{
2πif0

d0

∑
n

[(
εmkm
4π/Λ

− Am∆f

2f0

)
δ

(
km −

2πn

d0

−m2π

Λ

)
(2.46)

+

(
εmkm
4π/Λ

+
Am∆f

2f0

)
δ

(
km −

2πn

d0

+m
2π

Λ

)]}
. (2.47)

This represents, for each order n, a central intensity peak at
2πn

d0

, surrounded

by both sides by peaks with asymmetric intensities and that are distant from the

center by m
2π

Λ
, where m is a positive integer. The position of the central peak

and of the satellites of order ±m, as well as their respective intensities are given
below



k0 =
2πn

d0

, I0 =

(
2πf0

d0

)2

,

k+m =
2πn

d0

+m
2π

Λ
, I+m =

(
2πf0

d0

)2(
Λεmk+m

4π
− Am∆f

2f0

)2

,

k−m =
2πn

d0

−m2π

Λ
, I−m =

(
2πf0

d0

)2(
Λεmk−m

4π
+
Am∆f

2f0

)2

.

(2.48)

The intensity of a satellite ±m with respect to the intensity of the main peak is

I±m
I0

=

(
Λεmk±m

4πm
∓ Am∆f

2f0

)2

. (2.49)

From the XRD profile, we can calculate the unknown quantities of interest:

� the average lattice spacing d0 from the position of the main peak,
2πn

d0

;
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� the periodicity of the multilayer Λ from the distance between the main peak

and any of the satellites ±m, k±m − k0 = ±m2π

Λ
;

� the modulation amplitude Am and the strain εm of the m-th order harmonic
from the intensity of the ±m satellites, by solving a system of two equations
with two unknowns (Eq. 2.49) for each m separately, in the same way that
was done in the case of only order 1 satellites (Sec. 2.2.2)

if
Am
εm
≤ f0

∆f

(
1 +

nλ

d0

)
, then


εm =

d0

nΛ
(F−m + F+m) ,

Am =
d0

nΛ
(F−mk+m − F+mk−m) ,

(2.50)

if
Am
εm
≥ f0

∆f

(
1 +

nλ

d0

)
, then


εm =

d0

nΛ
(F−m − F+m) ,

Am =
d0

nΛ
(F−mk+m + F+mk−m) .

(2.51)

Several works have used this method to predict experimental composition and
interplanar spacing profiles from XRD peak intensities and positions [118–120].
Benoudia [26] tested the validity of this model in the case of Mo/V and Cu/Ni
multilayers. In each case, he considered a specific sinusoidal modulation of com-
position and lattice spacing, he simulated the XRD profiles of the multilayer and
calculated the composition and lattice spacing profiles by applying Guinier’s the-
ory to the diffracted intensities and he compared the calculated profiles to the
initially input profiles. He found that this model cannot be applied to Mo/V mul-
tilayers and leads to erroneous composition and lattice spacing profiles, while in
the case of Cu/Ni multilayers, the calculated profiles were in good agreement with
the input profiles. It is interesting to note that in Guinier’s theory and in the
extension to several harmonics, the position and intensity of the main peak do
not depend on the concentration, scattering factor or lattice spacing profiles, and
rather they only depend on the average values of the lattice spacing and scattering
factor of the α components of the multilayer. This means that the main peak of
an XRD profile of a Fe/Cr multilayer will always be the same, regardless of the
distribution of atoms in the different planes.

2.2.4 Calculating interdiffusion coefficients

To calculate interdiffusion coefficients from XRD profiles, we need to express
the composition modulation as a function of interdiffusion coefficients. This can
be done if the interdiffusion coefficient D̃, does not depend on the concentration.
In the case of a concentration dependent interdiffusion coefficient, the problem
becomes harder to solve because of the need of an analytical function of the in-
terdiffusion coefficient as a function of concentration, D̃ (C). This requires finding
one general solution for any mathematical form of D̃ (C), which is not trivial and
is not necessarily feasible. Therefore, there is still no general analytical solution
to determine D̃ (C) from XRD profiles.
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2.2.4.1 Concentration independent coefficient

When the interdiffusion coefficient does not depend on concentration, Glicks-
man [127] solved Fick’s second law of diffusion in a direction z

∂Cα (z, t)

∂t
= D̃

∂2Cα (z, t)

∂z2
, (2.52)

by separating the time and space variables, C (z, t) = Z (z)T (t), and by then
writing the solution using a Fourier series to express the concentration as a sum of
sinusoidal functions. Initial and boundary conditions lead to an analytical solution
of the form

Cα (z, t) =
Cα (0, 0) 4h

Λ
+

2Cα (0, 0)

π

∞∑
m=1

1

m
cos

(
m

4πh

Λ

)
sin

(
m

2πz

Λ

)
exp

(
−4m2π2D̃

Λ2
t

)
.

(2.53)
From Guinier’s theory with several harmonics (Sec. 2.2.3), if strain is assumed to
be null (εm = 0), satellites ±m have the same intensity

I±m =

(
2πf0

d0

)2(
Am∆f

2f0

)2

, (2.54)

and to calculate these satellite intensities we need to identify the composition
modulation Am. Eq. 2.53 can be written in the form

Cα (z, t) = C0
α + γ −

∞∑
m=1

Am sin

(
m

2πz

Λ

)
, (2.55)

where the scaling constant

γ =
Cα (0, 0) 4h

Λ
− C0

α, (2.56)

only shifts the profile, and where the modulations are identified as

Am =
2Cα (0, 0)

π

1

m
cos

(
m

4πh

Λ

)
exp

(
−4m2π2D̃

Λ2
t

)
. (2.57)

Injecting this expression of Am in the intensity equation (Eq. 2.54), we obtain the
±m satellite intensity as a function of time and the interdiffusion coefficient

I±m (t) =

(
2πf0

d0

)2(
∆f

2f0

)2
2Cα (0, 0)

πm2
cos2

(
m

4πh

Λ

)
exp

(
−8m2π2D̃

Λ2
t

)
. (2.58)

Since in Guinier’s theory the intensity of the main peak only depends on the aver-
age lattice spacing and the average scattering factor, therefore it remains constant
throughout interdiffusion

∀t, I0 (t) =

(
2πf0

d0

)2

. (2.59)

The intensity of a satellite at a time t, normalized with respect to the main peak’s
intensity at time t is

I±m (t)

I0 (t)
=

(
∆f

2f0

)2
2Cα (0, 0)

πm2
cos2

(
m

4πh

Λ

)
exp

(
−8m2π2D̃

Λ2
t

)
. (2.60)



CHAPTER 2. INTERDIFFUSION IN FE/CR MULTILAYERS 87

More interestingly, we can study the evolution of a satellite’s intensity by calcu-
lating its intensity at time t with respect to its initial intensity

I±m (t)

I±m (0)
= exp

(
−8m2π2D̃

Λ2
t

)
. (2.61)

We obtain that the logarithm of the ratio of (normalized and un-normalized) in-
tensities varies linearly with time, and that the linearity constant is a function of
the interdiffusion coefficient

ln

(
I±m (t) /I0 (t)

I±m (0) /I0 (0)

)
= ln

(
I±m (t)

I±m (0)

)
= −8m2π2D̃

Λ2
t. (2.62)

Note that the periodicity of the multilayer is either already known, or determined
from the XRD profiles from the positions of satellites (Sec. 2.2.3), and m is the
order of the satellite under study and is also known. There are some interesting
features to this result which appear as a consequence to the approximations made
to reach it:

� satellite peak intensities always decay during interdiffusion. This is a conse-
quence of the slope of Eq. 2.62 always being negative (because m, D̃1 and Λ
are all always positive). This results from considering a constant interdiffu-
sion coefficient which leads to a symmetric interdiffusion and evolution of the
composition profile until all layers’ concentrations become equal to the aver-
age concentration. When the system reaches this stationary state, all layers
have identical composition and lattice spacing profiles (which are constant
average values) and the multilayer is reduced to a homogeneous mono-layer.
At this point, satellites disappear and only the main peak corresponding to
the average lattice spacing remains, which is in agreement with XRD profiles
of mono-layers (i.e. homogeneous systems).

� peak intensities of positive and negative satellites of the same order are equal
at all times, I−m (t) = I+m (t), and therefore they both decay in the same
way. This is a direct consequence of considering that there are no lattice
spacing fluctuations (Eq. 2.54).

As a conclusion of this section, combining Glicksman’s solution of Fick’s equa-
tion with Guinier’s theory offers a fast and easy way of calculating interdiffusion
coefficients from XRD satellite peak decays. One has to draw the logarithm of
satellite intensity ratios as a function of time and calculate the slope. The larger
the interdiffusion coefficient, the faster the satellites disappear because the sys-
tem homogenizes faster. The larger the period of the multilayer, the slower the
satellite’s decay because atoms have to diffuse for a longer distance in each layer.
This is a very simple method to determine D̃, but it is limited to a concentra-
tion independent interdiffusion coefficient and to multilayers in which the lattice
spacing is constant, which are both too harsh approximations. However, note that
these approximations (in particular a constant diffusion coefficient) can be valid
for small time intervals during which the system evolves slightly.

1D̃ is proportional to the thermodynamic factor, which in turn is proportional to the second
derivative of free energy (Sec. 2.2.4). D̃ can therefore be negative in a spinodal decomposition
regime.



CHAPTER 2. INTERDIFFUSION IN FE/CR MULTILAYERS 88

2.2.4.2 Concentration dependent coefficient

Tsakalakos [125] studied this problem in the case of an interdiffusion coefficient
that has a quadratic dependence on concentration. He considered the nonlinear
diffusion equation

∂C (z, t)

∂t
=

∂

∂z

(
D̃ (C)

∂C (z, t)

∂z

)
− 2K̃

∂4C (z, t)

∂z4
, (2.63)

where K̃=(2M/NV )κ, with M the atomic mobility, NV the number of atoms per
unit volume, κ a constant termed as the gradient energy coefficient, and D̃ (C) the
interdiffusion coefficient which is expressed as

D̃ (C) = D0 +D1C +D2C
2. (2.64)

Using a perturbation theory, Tsakalakos obtained the solution to the composition
variation as a sum of truncated first and second order Fourier components, whose
time-dependent amplitudes are a function of their amplitudes before annealing,
the interdiffusion coefficient, and the period of the multilayer. He then deduced
the intensities of different order satellites from the square of the amplitude of the
same order Fourier component. He finally used a non-linear regression model to
calculate the diffusion parameters and the gradient energy coefficient. The problem
with Tsakalakos’ approach is that it does not provide an analytical solution and
requires numerical calculations. The solution is therefore not straightforward,
and the model has been used in very few applications. In addition, it requires
the interdiffusion coefficient to have a quadratic form, but this remains a better
approximation than a concentration independent coefficient. We will see in the
next section (Sec. 2.3.2) that interdiffusion coefficients in FeCr alloys are quadratic
over limited concentration ranges. Note that in the case of a non dependence of
D̃ on concentration, Tsakalakos’ model gives correctly the time evolution of the
intensity of the 1st order satellite of Eq. 2.62 (m = ±1).

2.3 Fe-Cr alloy

FeCr alloys are widely used in the nuclear industry as the basis of ferritic and
ferritic-martensitic steels used for the structures of nuclear and fusion reactors.
Additionally, Fe-Cr alloys are good candidates for magnetic sensor devices, as
well as for micro and nano-electronics, because of their giant magnetoresistance
[128, 129]. However, diffusion properties of Fe-Cr alloys are still not well known
at low temperatures and in alloys with high Cr concentrations. The interdiffusion
coefficient in Fe/Cr multilayers is concentration dependent and its value in Cr-rich
regions cannot be extrapolated from its value in Fe-rich regions. In this section
we will present the thermodynamic and kinetic properties of this alloy.

2.3.1 Thermodynamic properties

Phase diagrams are usually built based on thermodynamic properties that are
either measured experimentally, either calculated from ab initio methods. The
Computer Coupling of Phase Diagrams and Thermochemistry method [130], more
commonly known as the Calphad method, is the most used numerical method to
calculate the phase diagram based on experimental and/or ab initio properties.
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The Fe-Cr phase diagram calculated with the Calphad method was adjusted on
experimental data measured at temperatures above 400°C. The first Fe-Cr phase
diagrams calculated with the Calphad method showed a symmetric miscibility gap.
However, many studies showed that the miscibility gap shouldn’t be symmetric
since, at low concentrations of Cr, there is tendency for ordering linked to the
magnetic properties of Fe-Cr, and at high concentrations of Cr, there is tendency
for phase separation. The parametrization of Calphad was then optimized in two
different ways separately by Bonny et al. [131] and by Xiong [132] by adjusting
the parameters on more recent theoretical and experimental data. Both Bonny et
al. and Xiong managed to calculate phase diagrams that present a non-symmetric
miscibility gap and that are in agreement with each other and with experimental
results. Senninger’s Monte Carlo model [9, 16], that implements Levesque et al.’s
pair interaction model, was also in agreement with Bonny’s results (Fig. 2.3).

Figure 2.3: Phase diagram of Fe-Cr as calculated by Bonny et al. using Calphad
[133] (black line) and by Senninger et al. using a Monte Carlo simulation [9,
16] (red points). The point-dashed line represents the Curie temperature of the
homogeneous solid solution as calculated by Xiong et al. [134].
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Figure 2.4: Schematic representation of an interface shift in the case of asymmetric
solubility limits with Ceq

1 > 1−Ceq
2 . Initially at t = t0, both layers have the same

thickness l0. The number of purple (green) squares has to remain the same.

In a Fe/Cr multilayer, the concentration of Cr (respectively Fe) in the Fe-rich
layer (respectively Cr-rich layer), will increase until it reaches its solubility limit
(if we neglect finite size effects). At 500°C, the equilibrium concentration of Cr in
Fe is of 15.0 at. %Cr, and that of Fe in Cr is of 14.8 at. %Cr. If we start with
equiatomic layers of Fe and Cr, and if we assume a sharp interface throughout
interdiffusion, at equilibrium, the Cr concentration in Fe has to be higher than
that of Fe in Cr, which means that the Fe layer will have a lower total number of
atoms and it will be thinner than the Cr layer. This can be seen mathematically
using a conservation law. We consider two layers with a rectangular profile before
annealing at t = t0 (Fig. 2.4). At equilibrium, t = teq, we consider an interface
shift from its initial position by δl, such that a positive (negative) δl means an
interface shift towards Layer 2 (Layer 1). What is lost in one layer is gained in the
other, in a way to keep the total amount of each species constant and equal to its
initial value. Let us consider the purple species, which here represents Cr,

Ceq
1 (l0 + δl) + Ceq

2 (l0 − δl) = l0, (2.65)

where l0 is the initial thickness of each layer, and l0 + δl and l0 − δl are the
thicknesses of the Fe-rich (Layer 1) and Cr-rich (Layer 2) layers respectively. Ceq

1

and Ceq
2 are the equilibrium concentrations of Cr in the Fe-rich and Cr-rich layer

respectively. Since Ceq
1 > 1 − Ceq

2 , we obtain that δl0 > 0 and that the Fe-rich
(Cr-rich) layer’s thickness increases (decreases) with respect to its initial value.
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The asymmetry in equilibrium concentrations is of the order of 0.2 at. %Cr, and
the relative difference in thickness will be of the order of 1.3%. Therefore, the
asymmetry of the phase diagram is not expected to have a significant influence on
the difference between layer thicknesses at equilibrium.

2.3.2 Kinetic properties

Figure 2.5 shows the Fe-Cr interdiffusion coefficient as a function of tempera-
ture and composition, measured experimentally and using Monte Carlo simulations
with the wave attenuation method [16], for temperatures above 500°C. Figure 2.6
shows the values calculated at 500°C using the same AKMC model. The interdif-
fusion coefficient has not been calculated below 600°C experimentally, and below
500°C using AKMC simulations. Additionally, there is a lack of experimental
data at high concentrations of Cr. Both the experiment and simulation show a
strong dependence of the interdiffusion coefficient on temperature, and a depen-
dence on concentration which is mostly observed in the simulations due to the
lack of experimental data in the Cr-rich region. At temperatures below 1440°C,
the interdiffusion coefficient seems to be parabolic in the Fe-rich region, reaching a
maximum value at around 15 at. %Cr, which is the solubility limit in this region.
At all temperatures, the interdiffusion coefficient calculated using AKMC is almost
100 times larger in pure Fe than in pure Cr. This diffusion asymmetry leads to
interface mobility in multilayers, since when one atomic species diffuses fast in one
of the layers and is blocked in the other one, some atoms are forced to accumulate
at the interface between the two layers.

Figure 2.5: Interdiffusion coefficient calculated using AKMC [16] and measured
experimentally (at temperatures below 1000°C from [135] and above 1000°C from
[67]).
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Figure 2.6: Interdiffusion coefficient calculated using AKMC [16] at 500°C.

2.4 Context of the study

Within the framework of Gladice Magnifouet’s thesis at the “Institut de physique
et de chimie des Matériaux de Strasbourg” (IPCMS) under the supervision of
Véronique Pierron-Bohnes, Magnifouet and Pierron-Bohnes prepared nanometric
Fe/Cr multilayers by molecular beam epitaxy (MBE). They annealed the multi-
layers at different temperatures and analyzed the evolution of the X-ray diffraction
profile during annealing. The XRD profiles showed the presence of satellite peaks
around the main Bragg peak (as expected), and the satellites decayed throughout
the annealing. Additionally, samples before and after annealing at 500°C for 4h
were sent to our laboratory, the “Service de Recherches de Métallurgie Physique”
(SRMP) at CEA. Researchers Maxime Vallet and Estelle Meslin analyzed the con-
centration profiles and layer thicknesses using Atom Probe Tomography (APT)
and Scanning Transmission Electron Microscopy/High-Angle Annular Dark-Field
(STEM/HAADF). On the other hand, in 2013 at the SRMP, Oriane Senninger
and Frédéric Soisson developed during Senninger’s thesis an Atomic Kinetic Monte
Carlo (AKMC) model to study diffusion in Fe-Cr alloys. They used an energetic
model that is concentration and temperature dependent to better reproduce the
behavior of Fe-Cr alloys. Their model was tested in alloys at different concentra-
tions and temperatures (Fig. 2.5). The model reproduces well the Fe-Cr phase
diagram (Fig. 2.3) and the simulated interdiffusion coefficients are in agreement
with the experimental results in Fe-rich regions. In the Cr-rich part, there is not
enough experimental data to compare with. The simulation showed the strong
concentration dependency of the interdiffusion coefficient, with a difference be-
tween pure Fe and pure Cr of 2 orders of magnitude. The AKMC model was never
tested on multilayers to know if it correctly reproduces interdiffusion or not. It is
not obvious that the model would work in multilayers because, on one hand, we do
not know the validity of the results in Cr-rich layers, and, on the other hand, we
do not know if interdiffusion around the interface requires some special treatment.
Given the new experimental data that was provided by the experimental teams
of IPCMS and SRMP, we wanted to apply the AKMC model to multilayers and
compare the simulated concentration profiles with the experimental ones, and we
wanted to simulate the XRD profiles during annealing from the AKMC concentra-
tion profiles, to calculate interdiffusion coefficients from XRD profiles. Therefore,
the aim of this study is to reproduce the experimental results of interdiffusion using
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AKMC simulations and a theoretical work on XRD diffraction to better under-
stand the attenuation of XRD satellite peak intensities, and to try and calculate
accurate interdiffusion coefficients from a simulated concentration profile.

We will first present in this section the experimental tools that were used by the
collaborating teams to elaborate the multilayers and characterize them. We will
then present the AKMC model developed by Senninger [9, 16] as well as the code
provided by Pierron-Bohnes to simulate XRD profiles from input concentration
profiles.

2.4.1 Experimental tools

Fe/Cr multilayers were prepared by molecular beam epitaxy (MBE) to ensure
an interface as close as possible to the ideally simulated interface. The multilayer
was cut into several pieces, and after verifying using XRD that the growth is
coherent in and out of the multilayer plane, each group of samples was annealed
under vacuum at a constant temperature for different annealing times: at 500°C for
16h, at 450°C for 540h and at 400°C for 540h. XRD measurements were performed
on the samples before and after annealing at the three temperatures to study the
evolution of satellite peak positions and intensities. Atom Probe Tomography
(APT), Scanning Transmission Electron Microscopy/High-Angle Annular Dark-
Field (STEM/HAADF) measurements were performed on the multilayers annealed
at 500°C for 4h to study the layer compositions and widths. We will list the
experimental tools used by the various experimental teams and what each of these
method gives us insight into.

2.4.1.1 Molecular Beam Epitaxy (MBE)

MBE is an advanced epitaxy technique that allows the growth of nanostruc-
tured samples at a rate of about one atomic monolayer per second. This makes
it possible to control a homogeneous doping of the multilayer and to insure an
interface as close as possible to an ideally sharp interface. The slow growth also
enables measurements in real time which allows to follow the evolution of the struc-
ture during growth. Fe/Cr multilayers were prepared by molecular beam epitaxy
(MBE) by Gladice Magnifouet and Véronique Pierron-Bohnes at IPCMS. Five bi-
layers of Fe/Cr were grown on an MgO/STO(100) substract at room temperature,
such that each layer has a thickness of 10nm (Fig. 2.7).

We will therefore use Senninger’s AKMC model to simulate Fe/Cr multilayers
by initializing the composition profiles to sharp rectangular profiles such that the
thickness of each layer is 10nm.
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Figure 2.7: Schematic representation of the experimentally grown Fe/Cr multilay-
ers.

2.4.1.2 X-Ray Diffraction (XRD)

XRD is a commonly used characterization technique because it is a non-
destructive tool which provides information on numerous properties of the ma-
terial. It allows us to identify the crystalline phases and the atomic structure of
crystals, in a non-destructive manner.

Gladice Magnifouet and Véronique Pierron-Bohnes at IPCMS performed X-ray
diffraction on the multilayers before annealing them. XRD profiles showed a main
peak surrounded by four satellites, two on each side. A cumulative fit peak and the
sin2 Ψ method were used to calculate the average lattice parameters parallel and
perpendicular to the multilayer growth direction. This was done with respect to the
main peak position and the satellite peak positions, and all calculations resulted
in the same values of a⊥ = 2.8628± 2× 10−4Å and a‖ = 2.8896± 5× 10−4Å.

XRD measurements were performed again on samples annealed at 450°C and at
500°C, throughout the annealing process to study the evolution of the microstruc-
ture. Absolute values of the diffracted intensities depend on the experimental
measurement conditions. For example, the intensity of the incident rays on the
sample as well as the adjustment parameters (like the position of the sample with
respect to the incident beam) vary between different measurements. Therefore,
XRD intensities obtained from different measurements (on different samples an-
nealed at different times) cannot be directly compared. To overcome the depen-
dency on experimental conditions, after each measurement, diffracted intensities
are normalized with respect to the maximum measured intensity. This allows for
a consistent comparison of relative intensities at different annealing times. Addi-
tionally, this makes it easier to compare relative peak intensities with Guinier’s
theory (Sec. 2.59), since in his theory the intensity of the main peak is predicted
to be constant over time.

We will simulate the XRD profile of AKMC simulated concentration profiles
before and after annealing, and compare our results to the experimental findings.

2.4.1.3 Atom Probe Tomography (APT)

APT is a high resolution atomic-scale experimental technique to study the
three-dimensional chemical composition of a sample. It’s a destructive technique
which consists in sending an intense and periodic electric field on the surface of
a sample to evaporate the atoms one by one in the form of ions, and then detect
theses ions and reconstruct the initial position of the atoms based on the position
and time of their impact with the detector. APT reconstruction algorithms are
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based on the assumption that the shape of the emitter during field evaporation
is spherical. Evaporation of two alternative metal layers with different evapora-
tion fields produces some local compression effect within the low evaporation field
layers [136]. Because of the difference in the evaporation field between Fe and Cr
(ECr > EFe), we have an over-density at the Fe/Cr interface and an under-density
at the Cr/Fe interface. This leads to erroneous concentrations at the interfaces.
As a consequence, the thicknesses of the layers measured from the composition
profile are also wrong. The most reliable data that we can extract from the APT
analysis are the compositions at the center of the layers that are less sensitive
to reconstruction artifacts. Therefore, in our comparisons, we will use the APT
results only to compare the compositions at the center of the layers.

APT measurements were done by Maxime Vallet and Estelle Meslin at SRMP
on samples before annealing and after annealing at 500°C for 4h. We will use their
results as a reference for comparison with the simulated composition profiles.

2.4.1.4 Scanning Transmission Electron Microscopy/High-Angle An-
nular Dark-Field (STEM/HAADF)

STEM/HAADF is another high resolution technique to characterize the three-
dimensional structure of a sample. The advantage of this technique is that images
obtained by it are easy to interpret and do not require post-processing. It consists
in sending a beam of electrons at the sample, collecting the electrons scattered
from it and forming a contrasting image based on the atomic number of the atoms
scattering the electrons. Elements with a higher atomic number appear brighter
on the image, allowing direct and easy interpretation of the results. This technique
is highly sensitive to the atomic number and allows precise measurements of layer
thicknesses in multilayers. The geometry of the detector allows, on one hand, the
collection of a bigger number of scattered electrons than what can be done with
conventional STEM imagining, which offers higher resolution. On the other hand,
it can be coupled with the Electron Energy Loss Spectroscopy (EELS), which
allows a chemical characterization of the sample.

STEM/HAADF measurements on the Fe/Cr multilayers were done by Maxime
Vallet and Estelle Meslin at SRMP on samples before and after annealing at 500°C
for 4h. This provides an accurate tool to measure the thicknesses of layers and
allows us to study the accuracy of the simulated layer thicknesses.

2.4.1.5 Summary of experimental tools

The conditions of elaboration of the Fe/Cr multilayers, as well as the annealing
conditions in which characterizations were made, are summarized in Table. 2.1.
We also cite the most reliable information that each technique gives us so that we
know which information is reliable for comparisons with simulations. Combining
all these methods allows us to know the compositions at the center of the layers and
layer thicknesses at 500°C, and the evolution of the XRD profile at two different
temperatures.
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Research team
Experimental

conditions

Most reliable
information

available

MBE
Magnifouet and
Pierron-Bohnes

(IPCMS)

5 bi-layers of Fe/Cr
10nm each layer

Expected
homogeneous layers
and sharp interfaces

Annealing
Magnifouet and
Pierron-Bohnes

(IPCMS)

500°C, 0h - 16h
450°C, 0h - 260h -

XRD
Magnifouet and
Pierron-Bohnes

(IPCMS)

500°C, 0h - 16h
450°C, 0h - 260h

XRD peak positions
and intensities,

lattice parameters

APT
Vallet and Meslin

(SRMP)
500°C, 0h and 4h

Compositions at the
center of the layers

STEM/HAADF
Vallet and Meslin

(SRMP)
500°C, 0h and 4h Layer thicknesses

Table 2.1: Summary of the work of the experimental research teams, the elabora-
tion and characterization conditions (annealing temperatures and duration), and
the most reliable information available from each contribution.

2.4.2 Simulation tools

Fe/Cr multilayers were simulated by us using Senninger et al.’s Atomic Kinetic
Monte Carlo code developed to study diffusion in FeCr alloys [9,16]. We simulate
two Fe/Cr bilayers with periodic boundary conditions and we initialize the profiles
to step functions in order to simulate the sharp interfaces. We choose a number
of planes that ensures that the thicknesses of each layer is as close as possible to
10nm (Fig. 2.8). The system evolves under constant temperature and we simulate
through three different simulations the annealing of multilayers: at 500°C for 274h,
at 450°C for 276 days and at 400°C for 6 years. We obtain the time evolution of
the concentration profiles and the layer thicknesses. We simulate the XRD profiles
using a code where the theory presented in Sec. 2.2.1 is implemented. Using the
concentration profiles obtained by the AKMC simulation, the time evolution of the
satellite peak positions and intensities are simulated at the different temperatures.
In this section, we will present in more detail the AKMC simulation and the XRD
code that we used in this study.

Figure 2.8: Schematic representation of the Fe/Cr multilayers simulated using
Senninger’s AKMC model [9, 16].
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2.4.2.1 Atomic Kinetic Monte Carlo simulation

Senninger’s AKMC model relies on a DFT-based vacancy diffusion model, is
concentration and temperature dependent, and successfully reproduces the phase
diagram and high temperature diffusion properties. The code has not been tested
in the case of multilayers nor for temperatures below 500°C. The Hamiltonian is
reduced to a pair interaction model in which interactions between Fe and Cr are
dependent on temperature and on local concentration (up to the second nearest-
neighbors) [137]. Magnetic properties are properly reproduced in this model by
fitting the decrease of the migration barriers near the ferromagnetic to param-
agnetic transition to experimental data, which allowed the model to reproduce
the experimental interdiffusion coefficients (Fig. 2.5). The AKMC model uses a
residence time algorithm [77] (Sec. 1.5.2.2) and includes a time correction with
respect to vacancy concentration [78]. As explained in Sec. 1.5.3, this correction
is necessary for the calculated physical time to match the real time.

We use this code to simulate the annealing of two 20nm Fe/Cr bilayers. We
simulate the annealing of the multilayers at 500°C for 274h, and at 450°C for 276
days, which correspond to the experimental annealing temperatures but to much
longer annealing times. The concentration profiles and layer thicknesses obtained
at 500°C after approximately 4h (≈ 3.8h) of annealing are compared with the
experimental APT, STEM/HAADF observations. The concentration profiles are
also used as input in the XRD code (Sec. 2.4.2.2) to simulate the time evolution
of the diffracted profiles from the multilayers.

2.4.2.2 X-Ray Diffraction simulation code

There are several models, usually involving some approximations, to obtain
the XRD spectra from AKMC simulations. Pierron-Bohnes’s code [138] simulates
the X-ray diffraction of FeCr multilayers by calculating the total amplitude of the
superposition of the waves scattered from each atomic plane. The code takes as
input an average uni-dimensional (along z axis) concentration profile (obtained
from AKMC simulations for example) and outputs the diffraction profile. The
theory behind this method was presented in Sec. 2.2.1. The diffracted intensity is
calculated as the amplitude squared (combining Eq. 2.16 and Eq. 2.15)

I (2θ) =

∥∥∥∥∥∑
j

f (j) exp

(
i
4π sin θ

λ
zj

)∥∥∥∥∥
2

, (2.66)

where zj =
∑j−1

k=0 dk,,k+1 is the z-position of plane j with respect to the reference
plane which is chosen to be the first plane of the multilayer. f (j) is the average
scattering factor (Eq. 2.17), λ is the X-ray wavelength, and θ is the angle between
the incident ray and the atomic plane (Fig. 2.2).

The atomic scattering factor of an atom of species α is calculated as a function
of θ and λ using Cromer and Mann’s fit [139]

f 0
α (θ, λ) =

4∑
i=1

aαi e
−bαi (sin θ/λ)2

+ cα, (2.67)

where aαi , bαi and cα are the Cromer-Mann fitting parameters [139] corresponding
to species α and are tabulated in Table 2.2 for Fe and Cr.
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The interplanar spacing between planes j and j + 1 is calculated using a local
Vegard’s law of the form

dj,j+1 =
∑
α

Cα
j,j+1dα, (2.68)

where dα is the interplanar spacing in the pure α phase, and Cα
j,j+1 = (Cα (j) + Cα (j + 1)) /2

is the average α concentration between planes (j) and (j + 1). The values of the
interplanar spacing in pure BCC Cr and pure BCC Fe are taken respectively as
dCr = 0.14425 nm and dFe = 0.14200 nm. As we saw throughout Sec. 2.2, the
interplanar spacing profile will affect both satellite peak positions and intensities,
and it is therefore important to make sure that the model used to simulate it is
accurate. Using a Vegard’s law assumes an incoherent growth of the multilayers
(stress-free) [140], and is justified because loss of coherency is usually observed in
multilayers with periods larger than around 4 nm [141], which is our case (our
multilayer’s period is 20 nm).

a1 a2 a3 a4 b1(Å
2
) b2 (Å

2
) b3 (Å

2
) b4 (Å

2
) c

Fe 11.769 7.357 3.522 2.305 4.761 0.307 15.354 76.881 1.037

Cr 10.641 7.354 3.324 1.492 6.104 0.392 20.263 98.740 1.183

Table 2.2: Cromer-Mann fittings parameters [139] of the scattering factors of Fe
and Cr used in the XRD code.

2.4.2.3 Summary of simulation tools

Table 2.3 summarizes the two codes which were used in this study and the input
parameters that were used to simulated the Fe/Cr multilayers. We can identify two
main approximations which are made with respect to the experimental multilayers.
The first one is in the AKMC simulation code which assumes that the multilayers
have no dislocations or inclusions. The second one is in the XRD simulation code
which assumes that the lattice spacing follows a Vegard’s law and neglects local
lattice strains.
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Simulation
approximations

Simulation
parameters

Most
reliable

information
available

Code
developers

AKMC

- Residence time
algorithm

- Concentration and
temperature

dependent pair
interaction model

- Magnetic
correction

- Time correction

2 bi-layers of
Fe/Cr;

10nm each
layer;

500°C, 0h -
274h;

450°C, 0h -
6623h;

Composition
profiles and

layer
thicknesses

Senninger
et al.

(SRMP)
[9,16]

XRD

- Vegard’s law for
the lattice spacing
- Bragg’s law for

intensity calculations

dCr =
0.14425nm;
dFe =

0.14200nm;
f 0
Cr (θ, λ) and

f 0
Fe (θ, λ) from
Cromer and
Mann [139];

500°C, 0h - 16h;
450°C, 0h -

6623h;

XRD peak
positions

and
intensities

Pierron-
Bohnes

(IPCMS)
[138]

Table 2.3: Summary of the codes we used and the simulation conditions (multi-
layers, annealing temperatures and duration), and the most reliable information
available from each simulation method.

2.5 Identifying XRD peaks of a Fe/Cr multilayer

The aim of this part of the work is to study interdiffusion in Fe/Cr multilayers
by analyzing, among other things, XRD peak positions and intensities. We know
from Sec. 2.2 that there is a close link between interdiffusion, composition profile,
lattice spacing profile and XRD peak positions and intensities, however the link
is not clear and depends on the approximations and assumptions of each theory.
We also saw in Guinier’s theory with several harmonics that there could be sev-
eral satellites around the main peak, and that each peak’s position and intensity
depends on different factors. Therefore, the time evolution of each satellite’s in-
tensity will differ from the others, and it will be sensitive to different diffusion and
composition parameters. Note that Guinier’s equations were in Fourier space and
a function of the space frequency k. We can re-write these equations as a function

of the 2θ angle instead by using the fact that k =
2π sin θ

λ
, and make the link with

commonly used X-ray profiles. The set of Eq. 2.49, becomes
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2θ0 = 2 arcsin

(
nλ

2d0

)
, I0 =

(
2πf0

d0

)2

,

2θ+m = 2 arcsin

(
nλ

2d0

+m
λ

2Λ

)
, I+m (2θ+m) =

(
2πf0

d0

)2(
Λεm sin θm

λ
− Am∆f

2f0

)2

,

2θ−m = 2 arcsin

(
nλ

2d0

−m λ

2Λ

)
, I−m (2θ−m) =

(
2πf0

d0

)2(
Λεm sin θ−m

λ
+
Am∆f

2f0

)2

,

(2.69)
and 2θm is the peak position of satellite m.

According to Bragg’s law of diffusion (Eq. 2.20), which makes no assumptions
on the composition nor lattice spacing profiles, constructive interference at an
angle 2θ results from rays diffracted by planes r and j that are distant by

dr,j =
nλ

2 sin θ
, (2.70)

where n is an integer and λ is the X-ray wavelength. The position and intensity
of peaks depends on the dominant lattice spacings. The intensity further depends
on the scattering factor, and therefore on the atomic species on each plane and
the composition profile. All of this shows that, before analyzing XRD profiles, it
is important to know what each peak represents by identifying what its position
and intensity are sensitive to. This is the aim of this section.

Figure 2.9: Normalized XRD profile simulated using the the XRD simulation code
on the initial (rectangular) composition profile of the multilayers before annealing.

Let us consider the multilayers before annealing. The composition profile is
rectangular and we expect the lattice spacing profile to also be almost rectangular.
This is because we expect the lattice spacing in a pure α layer to be almost equal
to the bulk lattice spacing in a pure α crystal. This is especially true far from
the interfaces because the short range distribution will be the same as in a free-
strain alloy and strains from differences in lattice parameters become negligible.
Therefore, dj,j+1 = dα when j and j + 1 are planes of the α layer, α here being Fe
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or Cr, and at the interface we consider a Vegard’s law like it is implemented in the
code. In this case, Vegard’s law is a good approximation because we know it should
be exact in the pure layers, and as a consequence, the error resulting from this
approximation is smaller than when the concentration profile is not rectangular
(i.e. after annealing).

We simulate the XRD profile and plot it in Fig. 2.9. As predicted by Guinier’s
theory with several harmonics, the XRD profile is composed of a main peak sur-
rounded by satellites on both sides. Here, there are 4 satellites, 2 on each side of
the main peak. Guinier’s theory further predicts that all consecutive peaks are
equally spaced, which is not what we observe in the simulated profiles. While first
order satellites are indeed equidistant from the main peak by 0.6°, negative (resp.
positive) order satellites -1 and -2 (resp. +1 and +2) are distant from each other
by 0.43° (resp. 0.46°). Note that Guinier’s equations are established in Fourier
space and peaks are represented by Dirac functions, whereas here in 2θ space,
peaks have a non-null width. Throughout this manuscript, a peak’s position is
calculated as the position of its maximum intensity. Using Eq. 2.70, we calculate
the lattice spacing corresponding to each peak position at t = 0h, dr,j (m) with
m ∈ [0,±1,±2], and we tabulate the values in Table 2.4. Note that the 2θ is
inversely proportional to the lattice spacing (Eq. 2.70), and higher values of 2θ
correspond to lower values of dr,j .

� The lattice spacings calculated from the simulation of first order satellites
m = −1 and m = +1 correspond respectively to the input values of the
lattice spacing in pure Cr (dCr = 0.14425 nm) and the lattice spacing in
pure Fe (dFe = 0.14200 nm) within a 0.04% relative error. This is further
confirmed in Fig. 2.10 where first order satellite positions are in agreement
with the main peaks of pure Fe and pure Cr layers. Therefore, the peaks of
satellites m = −1 (respectively m = +1) corresponds to a positive interfer-
ence of rays diffracted from the planes of the Cr layer (respectively Fe layer).
Note that, even though the number of constructive waves is the same from
both Cr and Fe layers, the intensity diffracted from Fe layers (satellite +1) is
higher than the intensity diffracted from Cr layers (satellite −1) due to the
higher scattering factor of Fe atoms. This asymmetry due to the scattering
factor profile (or equivalently the composition profile) is present in Guinier’s
theory with several harmonics, in which satellite intensities are a function of
the composition modulation (Sec. 2.2.3).

� The lattice spacing calculated from the main peak’s position corresponds to
the average lattice spacing d0 = (dCr + dFe) /2 within a 0.01% relative error.
This means that the average lattice spacing is the most dominant one in the
structure, which is intuitive. This is also in agreement with Guinier’s theory
(Sec. 2.2.2 and Sec. 2.2.3), in which he predicts the main peak’s position at

2θ0 = 2 arcsin

(
nλ

2d0

)
, see Eq. 2.69.

� The lattice spacing calculated from second order satellites is harder to iden-
tify and it is not clear which part of the multilayers they represent. We
know that second order satellites appear when the lattice spacing profile is
not perfectly rectangular and that the peak width is very large (and there-
fore not very noticeable) in the case of only one Fe/Cr bi-layer (Fig. 2.10).
Second order satellites must therefore be related to the presence of an in-
terface and to the periodicity of the bi-layer. It is interesting to note that
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both these satellites are not centered around their peak positions and their
intensity distribution has an asymmetric Gaussian form. This means that
lattice spacing fluctuations around its main value are not symmetric. Since
satellite -2 (respectively +2) is inclined towards higher values of 2θ, there
are more planes with negative (positive) lattice spacing fluctuations around
its corresponding lattice spacing dr,j (−2) (respectively dr,j (+2)).

-2 -1 0 +1 +2

calculated
lattice spacings,

in nm
0.145160 0.144296 0.143111 0.141949 0.141074

input lattice
spacings, in nm

dCr = 0.144250 d0 = 0.143125 dFe = 0.142000

absolute value
of the relative

error
0.03% 0.01% 0.04%

Table 2.4: Lattice spacings (in nm) calculated from the simulated XRD profiles
before annealing using Bragg’s law on each peak’s position. The X-ray wavelength
is λ = 0.154061 nm and n = 1.

Figure 2.10: Comparison of the XRD profile obtained in the case of a multilayer,
one bilayer, a pure Fe layer, and a pure Cr layer. The main XRD peak of the pure
Fe layer (resp. Cr layer) is at the same position as satellite +1 (resp. -1) of the
multilayer. In the case of one bilayer, second order satellites disappear.

What we can conclude from this study is that each satellite results from rays
diffracted from specific planes of the multilayer, and therefore the time evolution
of each satellite is mostly related to the evolution of the composition profile (and
as a consequence the scattering factor and the lattice spacing profiles) in these
particular layers. We conclude the following
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� satellite 0: related to the average lattice spacing in the multilayer. Peak
position shift related to the decrease of the homogeneity of the multilayer;

� satellite -1: related to the Cr-rich layer. Peak position shift and intensity
decay related to the decrease in the homogeneity in the Cr-rich layer due to
Fe diffusion, which affects the lattice spacing (less constructive waves) and
the scattering factor (increases on average it because f 0

Fe (θ, λ) > f 0
Cr (θ, λ),

∀θ);

� satellite +1: related to the Fe-rich layer. Peak position shift and intensity
decay related to the decrease in the homogeneity in the Fe-rich layer due to Cr
diffusion in it, which affects the lattice spacing (less constructive waves) and
the scattering factor (decreases on average because f 0

Cr (θ, λ) < f 0
Fe (θ, λ),

∀θ);

� satellites ±2: related to the periodicity of the multilayer but the relation
is not very clear. Peak positions affected by the change in lattice spac-
ing periodicity in the whole multilayer. Peak intensities affected by the
in-homogeneity in the composition and lattice spacing profiles.

Since the intensity of first order satellites depends here on the average lattice
spacing in a pure layer, the intensity of such satellites will decrease if:

� atoms with a lower scattering factor replace atoms with a higher scattering
factor. Here, if Cr atoms replace Fe atoms. In the opposite scenario in which
Fe atoms replace Cr atoms, the intensity of the satellite will increase;

� the number of planes belonging to the layer decreases. When the thickness
of a layer decreases the diffracted intensity from it will decrease, and the
opposite is true when the thickness increases;

� planes have different compositions. When the concentration deviates from
its initial value in a fraction of the planes, so does the lattice spacing and
only a fraction of the diffracted rays are constructive which decreases the
intensity of the satellite.

On the other hand, the position of the main peak will change if the average lattice
spacing changes (which is not expected to happen with a linear Vegard’s law), and
the position of first order satellites will change if the average lattice spacing in
their corresponding layer changes.

2.6 Simulation of interdiffusion in Fe/Cr multi-

layers

In this section, we simulate the concentration profiles using an AKMC simula-
tion (Sec. 2.4.2.1), and we simulate XRD profiles using the XRD simulation code
(Sec. 2.4.2.2). We simulate the evolution of two bi-layers of Fe/Cr at 500°C for up
to 274h, at 450°C for around 276 days. We analyze the evolution of the composi-
tion profile, the microstructure and the XRD peak positions and intensities. From
the XRD profiles we study the evolution of the lattice spacing and the periodicity
of the multilayer, we identify different kinetic regimes and calculate interdiffusion
coefficients. In this section, we will only discuss in detail the results obtained at
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500°C because all temperatures lead to the same conclusions. The evolution of the
microstructure, the composition profile and the XRD profiles are the same qualita-
tively, the only difference being that diffusion is slower at lower temperatures. As
a consequence, the evolution of the diffusion profile using the AKMC simulation
is the most advanced at 500°C and allows us to study with better accuracy the
diffusion in the Cr-rich layer, which is the slowest diffusion process in this system.

2.6.1 Concentration profiles

We simulate the annealing of Fe/Cr multilayers using Senninger’s AKMC code
by studying 2 Fe/Cr bilayers as shown in Fig. 2.8. We simulate the annealing at
the constant temperature of 500°C for 274h. Figure 2.11 shows how the simulated
concentration profile in one of the bilayers evolves during annealing. The concen-
tration profile is not symmetric between the two different layers. This makes sense
because we know that the interdiffusion coefficient is concentration dependent and
that Cr diffusion is faster in a pure Fe layer than in a pure Cr layer (Fig. 2.6). At
the beginning of annealing, Cr diffuses fast and deep into the Fe-rich layer while
Fe atoms diffuse slower in the Cr-rich layer and accumulate in the vicinity of the
interface. The interface (if we define it at the inflection point of the concentration
profile) shifts towards the Cr-rich layer, which leads to a thickening of the Fe layer
and a shrinking of the Cr layer. Equilibrium is reached in the Fe-rich layer after
approximately 24h. After that, Cr no longer diffuses in the Fe-rich layer while the
Fe atoms that accumulated at the interface start diffusing slowly in the bulk of the
Cr layer until equilibrium is almost reached at 274h. During this latter diffusion
mechanism, the interface shifts in the opposite direction, towards the Fe-rich layer,
and the layers almost go back to their initial thicknesses (minus the broadening of
the interface). After equilibrium is reached in both layers, if the interface is sharp,
we know that the Fe-rich layer will be slightly thicker than the Cr-rich layer due
to the asymmetry in the miscibility gap (discussed in Sec. 2.3.1).

Therefore, at the beginning of annealing, there is diffusion of Cr in the Fe-rich
layer accompanied by a diffusion of Fe along the interface and an interface shift.
At longer times, and after equilibrium is reached in the Fe-rich layer, there is slow
diffusion of Fe in the Cr-rich layer. The two bulk diffusion phenomena happen in
two separate times and both of them occur along with interface mobility.
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Figure 2.11: Simulated Cr concentration profile before and after annealing at 500°C
for 274h. Dashed lines indicate the solubility limits in the Fe-rich (15 at. %Cr)
and the Cr-rich (85.2 at. %Cr) layers. At t = 24h, equilibrium is reached in the
Fe-rich layer, and at 274h, equilibrium is almost is reached in the Cr-rich layer.

2.6.2 Microstructural evolution

Figure 2.11 shows the evolution of the average concentration in the z-direction,
which is a direction perpendicular to the multilayer’s stacking planes. Each concen-
tration value is an average value over a plane and is not necessarily representative
of the local concentration at all points of the plane. We do not know if there
is preferential diffusion directions or planes or if diffusion is homogeneous in all
directions. OVITO [142] allows us to study the microstructure of the multilayers
from the configurations obtained in the AKMC simulation. In Fig. 2.12, we study
the evolution of the atomic structure and the local equilibrium concentration at
different annealing times. We take a slice perpendicular to the interface planes and
of 10 lattice planes of thickness, and we consider, around each Cr atom, a local
surrounding made up of its nearest-neighbors within a 3 lattice parameter radius.
In the right part of Fig. 2.12, we only draw the Cr atoms whose local surrounding
has a concentration equal to one of the two equilibrium concentrations (15 at.
%Cr in a Fe phase, and 85.2 at. %Cr in a Cr phase). From the left side of Fig.
2.12, we can know that Cr and Fe diffuse progressively through the interface and
that diffusion is homogeneous in each plane, the Cr diffusion being faster. From
the right side the figure, we can see that as diffusion progresses plane by plane, so
does local equilibrium concentration.

When annealing starts, local equilibrium concentration is immediately estab-
lished at the interfaces with the Cr-rich layers. Then Cr diffuses fast in the Fe-rich
layers and local equilibrium concentration in the Fe-rich layers is established pro-
gressively from the interface towards the middle of the layer. The same phenomena
is observed when Fe later diffuses in the Cr-rich layers, except that this latter dif-
fusion and equilibrium happen at a slower pace.
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When equilibrium is reached in the Fe-rich layer at 24h of annealing, around
21% of the Cr atoms that are in the Fe-rich layer are at local equilibrium and
they are distributed in a homogeneous manner in the layer. In the Cr-rich layer,
there is only equilibrium concentration at the interfaces and its distribution is also
homogeneous.

After 274h of annealing, around 24% of the Cr atoms that are in the Fe-rich
layer are at local equilibrium and they are still distributed homogeneously. The
number of Cr atoms at equilibrium remained almost the same between 24h and
274h, but their percentage increased because the Fe-rich layer’s thickness decreased
and the total number of atoms in it decreased. On average, around 14% of Cr atoms
are at equilibrium in the Cr-rich layer and are also distributed in a homogeneous
manner. The percentage of Cr atoms at equilibrium in the middle plane of the
Cr-rich layer is 12% and is slightly lower than the average 14%, which confirms
that equilibrium is almost but not yet reached in this layer.

We conclude from this paragraph that Cr and Fe diffuse in a homogeneous
way plane by plane from the interface towards the bulk, and by progressively
establishing local equilibrium concentration in the planes.
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Figure 2.12: Left: distribution of all Fe and Cr atoms in the bi-layer. Fe atoms are
represented in purple, while Cr atoms are represented in green; Right: distribution
of Cr atoms that are at local equilibrium concentration within a radius of 3 lattice
parameters during annealing. Cr atoms at a local equilibrium concentration Ceq

1 =
15.0± 0.5 at. %Cr are drawn in dark green, while Cr atoms at a local equilibrium
concentration Ceq

2 = 85.2± 0.5 at. %Cr are drawn in orange.

2.6.3 XRD simulation

We use the concentration profiles obtained in the AKMC simulation (Fig.2.11)
as inputs in the XRD simulation code (Sec. 2.4.2.2), to simulate the diffracted
profiles before and after annealing. Since experimental XRD profiles should always
be normalized with respect to the maximum intensity (Sec. 2.4.1.2), we present
simulated profiles in the same way. Normalized satellite intensities decay with
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annealing in a visible manner, while peak positions shift in a less pronounced
way. In this section, we will study in detail the qualitative and quantitative peak
position shifts and intensity decays.

Figure 2.13: Normalized XRD profiles simulated using the AKMC concentration
profiles and the XRD simulation code, before and after annealing at 500°C for up
to 274h. The intensities at a time t are normalized by the intensity of the main
peak at time t, such that the intensity drawn corresponds to I (t) /I0 (t), where
I (t) and I0 (t) are respectively the un-normalized intensity and the main peak’s
intensity, at time t.

2.6.3.1 Satellite peaks decay

The decay of satellite peak intensities with annealing can be observed more
clearly by studying the time evolution of the un-normalized intensity of each satel-
lite, I±m (t), with respect to its initial intensity, I±m (0). In Fig. 2.14 we plot the
time evolution of the logarithm function of the intensity ratios. Remember that,
if the interdiffusion coefficient does not depend on concentration, the evolution of
this function is expected to be linear (Sec. 2.2.4). All satellite intensities exhibit a
sharp linear decrease at the beginning of annealing, and until around 4h. At longer
annealing times, the evolution of satellites has a slower pace, and is again linear
after 32h. Satellites +1 and -2 keep decaying but in a slower manner, satellite -1
decays very slowly and seems to reach a stationary evolution, while the intensity
of satellite +2 increases slightly over time. Therefore, there are two regimes in
which the decay is linear, the first one between 0 and 4 hours, and the second
one between 32 and 274 hours. We know that the FeCr interdiffusion coefficient is
concentration dependent (Fig. 2.5), however the linearity of the intensity decay at
different time ranges hints at the presence of separate kinetic regimes, such that,
in each regime, one interdiffusion coefficient dominates and drives the evolution of
the system. We call these regimes respectively A and C. Between regimes A and
C, a regime B which is not linear is identified and is sort of a transition regime
between the two. The critical times at which regimes A and C begin and end are
therefore: 0, 4, 32 and 274 hours.
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Figure 2.14: XRD satellites intensity decay of AKMC simulated multilayers an-
nealed at 500°C for 274h. The three different kinetic regimes are separated by
black vertical lines. The decay is linear in regimes A and C, and non-linear in
regime B. Therefore, only regimes A and C could be linearly fit.

Figure 2.15: Simulated Cr concentration profile at the regime transition times:
regime A is between 0h and 4h, regime B is between 4h and 32h, and regime C
is between 32h and 274h. Dashed lines indicate the solubility limits in the Fe-rich
(15 at. %Cr) and the Cr-rich (85.2 at. %Cr) layers.
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Analysis of the composition profile in each regime In order to identify
the diffusion mechanisms dominating each kinetic regime, we plot in Fig. 2.15
the composition profiles at these critical times. In regime A, Cr diffuses in the
Fe-rich layers and reaches the center of the layer, while Fe accumulates at the
interfaces and causes the interfaces to move towards the Cr-rich layers. In regime
C, Fe diffuses in the Cr-rich layers and the interfaces move towards the Fe-rich
layers. In regime B, a transition between the kinetics of regimes A and C takes
place when equilibrium is reached in the Fe-rich layer (which happens at t=24h,
see Sec. 2.6.1 and Sec. 2.6.2). Note that the two bulk interdiffusion mechanisms
happen in two separate times since Fe does not diffuse in the Cr layer until after
equilibrium is reached in the Fe-rich layer. In regime A, there is only bulk diffusion
in the Fe-rich layer, while in regime C there is only bulk diffusion in the Cr-rich
layer. Therefore, the fast decay of satellite intensities in regime A happens along
with a fast interdiffusion in a local environment of low Cr concentration, while
the slower decay in regime C takes place in parallel with a slower interdiffusion
in a local environment of high Cr concentration. Interface mobility also affects
satellite decays and peak positions because it reflects a change of layer thicknesses.
Table 2.5 summarizes the kinetic phenomena happening in each regime. Since the
evolution of satellites +1 and -1 is related to the evolution of the Fe-rich layer and
Cr-rich layer respectively (Sec. 2.5), we can study the absolute intensity of these
satellites and their decay rates as a function of the kinetic events listed in Table
2.5.
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Regime A Regime B Regime C

fast diffusion of Cr in
the Fe-rich layer

fast diffusion of Cr in
the Fe-rich layer until
equilibrium, then slow
diffusion of Fe from the
interface to the Cr-rich

layer

slow diffusion of Fe from
the interface to the

Cr-rich layer

fast diffusion of Fe from
the Fe-rich layer to the

interface

fast diffusion of Fe from
the Fe-rich layer to the

interface until
equilibrium, then slow

diffusion of Cr from the
Cr-rich layer to the

interface

slow diffusion of Cr
from the Cr-rich layer

to the interface

fast Fe accumulation at
the interface

fast Fe accumulation at
the interface, then slow

Fe depletion at the
interface

slow Fe depletion at the
interface

interface shift towards
Cr-rich layers:

- thickness of the
Fe-rich layer increases

- thickness of the
Cr-rich layer decreases

interface shift towards
Fe-rich layers until
equilibrium, then

interface shift towards
Cr-rich layers:

- thickness of the
Fe-rich layer decreases

then increases
- thickness of the

Cr-rich layer increases
then decreases

interface shift towards
Fe-rich layers:

- thickness of the
Fe-rich layer decreases

- thickness of the
Cr-rich layer increases

Table 2.5: Comparative summary of the kinetic phenomena happening in regimes
A, B and C.

Analysis of peak intensity changes in each regime We know from Table
2.5 how in each regime the composition profile changes in the Fe-rich and Cr-rich
layers, and how the interface shift modifies the number of planes of these layers.
We can make the following conclusions, which are also summarized in Table 2.6:

� In regime A, in the Fe-rich layer,

– the thickness of the layer increases. This increases the number of
diffracting planes;

– the concentration gradient increases, and therefore the lattice spacing
is not constant between all planes. This lowers the number of diffracted
rays in constructive interference;

– Cr atoms replace Fe atoms. This lowers the scattering factor of these
planes.

Therefore, in regime A, the decay of satellite +1 results from a competition
between, on one hand, Cr atoms replacing Fe atoms and the non-homogeneity
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of the layer, which decrease the diffracted intensity, and, on the other hand,
the increase of the Fe-rich layer’s thickness, which increases the diffracted
intensity.

� In regime A, in the Cr-rich layer,

– the thickness of the layer decreases. This decreases the number of
diffracting planes;

– the concentration is constant across all planes, and therefore so is the
lattice spacing;

– Fe atoms did not replace Cr atoms. The scattering factor remains the
same.

Therefore, in regime A, the decay of satellite -1 is a consequence of the
interface shift which decreases the Cr-rich layer’s thickness.

� In regime B, in the Fe-rich layer,

– the thickness of the layer increases. This increases the number of
diffracting planes;

– the concentration gradient decreases and becomes null, and therefore
the lattice spacing is the same between all planes of the layer. This
increases the number of rays in constructive interference;

– Cr atoms replace Fe atoms. This lowers the scattering factor of these
planes.

Therefore, in regime B, the decay of satellite +1 results from a competi-
tion between, on one hand, Cr atoms replacing Fe atoms which decreases
the diffracted intensity, and, on the other hand, the homogenization of the
concentration gradient in the layer and the increase of the Fe-rich layer’s
thickness, which increases the diffracted intensity.

� In regime B, in the Cr-rich layer,

– the thickness of the layer decreases. This decreases the number of
diffracting planes;

– the concentration gradient increases, and therefore so does the lattice
spacing. This decreases the number of rays in constructive interference;

– Fe atoms replace Cr atoms. This increases the scattering factor of these
planes.

Therefore, in regime B, the decay of satellite -1 results from a competition
between, on one hand, the decrease of the Cr-rich layer’s thickness and the
increase of the concentration gradient, which decreases the diffracted inten-
sity, and, on the other hand, Fe atoms replacing Cr atoms, which increases
the diffracted intensity.

� In regime C, in the Fe-rich layer,

– the thickness of the layer decreases slightly. This decreases the number
of diffracting planes;
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– the concentration is constant across all planes, and therefore so is the
lattice spacing;

– there is no diffusion and atoms remain the same. The scattering factor
remains the same.

Therefore, in regime C, the decay of satellite +1 is a consequence of the
interface shift which decreases the Fe-rich layer’s thickness.

� In regime C, in the Cr-rich layer,

– the thickness of the layer increases. This increases the number of
diffracting planes;

– the concentration gradient in the middle of the Cr-rich layer increases
until Fe atoms reach the middle plane (after around 124h, see Fig. 2.11),
and then the concentration gradient tends towards zero. This lowers the
number of rays in constructive interference before 124h, then increases
it;

– Cr atoms are replaced by Fe atoms. This increases the scattering factor
of these planes.

Therefore, during the first 100 hours of regime C, the decay of satellite -1
results from a competition between, on one hand, the concentration gradient
in the layer, which decreases the diffracted intensity, and, on the other hand,
Fe atoms replacing Cr atoms and the increase of the Cr-rich layer’s thickness,
which increase the diffracted intensity. After Fe reaches the middle Cr plane
in the Cr-rich layer, there are no factors that we can identify that lead to
the decay of satellite -1. This is in agreement with the observations of Fig.
2.14.

Table 2.6 summarizes how the peak intensity of satellites ±1 is affected in each
regime. Furthermore, this table shows clearly how the evolution of satellite inten-
sities in regime B is at first the same as the evolution in regime A until equilibrium
is reached in the Fe-rich layer (around 24h), and then becomes the same as the
one in regime C. It is therefore not surprising that the decay is not linear in this
regime since there is not one dominating kinetic phenomena but rather a transition
between two.
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Regime A Regime B Regime C

decay of
satellite +1

- Cr diffusion in
the Fe-rich layer

(Cr atoms
replacing Fe
atoms, and
increased

concentration
gradient)

- Cr diffusion in
the Fe-rich layer

(Cr atoms
replacing Fe

atoms)

- interface shift

increase of
satellite +1

- interface shift

- interface shift
- Cr diffusion in
the Fe-rich layer
(homogenization

of the
concentration

gradient)

-

decay of
satellite -1

- interface shift

- interface shift
- Fe diffusion in
the Cr-rich layer

(increased
concentration

gradient)

- Fe diffusion in
the Cr-rich layer

(increased
concentration

gradient until Fe
reaches the

middle of the
Cr-rich layer)

increase of
satellite -1

-

- interface shift
- Fe diffusion in
the Cr-rich layer

(Fe atoms
replacing Cr

atoms)

- interface shift
- Fe diffusion in
the Cr-rich layer

(Fe atoms
replacing Cr
atoms and

homogenization
of the

concentration
gradient after Fe

reaches the
middle of the
Cr-rich layer)

Table 2.6: Comparative summary of the reasons behind the increase and decrease
of the intensities of satellites ±1 in regimes A, B and C.

Analysis of peak decay rates in each regime After having identified in each
regime the factors which increase and decrease a satellite’s intensity, now we can
better understand the difference in decay rates between different satellites and in
different regimes. Interdiffusion in the Fe-rich layer is faster than in the Cr-rich
layer due to the asymmetry of the interdiffusion coefficient. Therefore, the diffusion
of Cr in the Fe-rich layer and the interface shift caused by it (regime A) alter the
concentration and lattice spacing profiles at a faster rate than the interface shift
caused by the diffusion of Fe in the Cr-rich layer (regime C). Therefore, the time
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evolution of all satellites will be faster in regime A. Then we try to understand
why the decay of satellite -1 is faster than that of satellite +1 in regime A, and
why the opposite is true in regime C:

� We first compare satellite intensity decay rates in regime A. This can be due
to the fact that the decay of satellite -1 is caused by interface mobility and
there are no factors that favor its increase. In contrast, the decay of satellite
+1 resulting from the diffusion of Cr in the Fe-rich layer is opposed to by the
interface shift. If we assume that the interface broadening is symmetric, then
the interface shift which increases the number of planes in one layer decreases
the number of planes in the other layer by an equal amount. Therefore,
interface shift decreases the intensity of satellite -1 and increases the intensity
of satellite +1 by the same amount. As a consequence, if we add up the decay
of both satellites, we should obtain the decay of satellite +1 resulting from
only the diffusion of Cr in the Fe-rich layer.

� Then we compare satellite intensity decay rates in regime C. In this regime,
the decay of satellite +1 is caused by interface mobility and there are no
factors that favor its increase. The decay of satellite -1 results from a com-
petition of several factors and is therefore slower. We expect an intensity
increase of satellite +1 after around 124h of annealing, however Fig. 2.14
shows that the intensity reaches a constant value instead. This hints that
there are other factors contributing to first order satellite decays that we are
not taking into consideration here. We know however, that interface shift
contributes to the decrease of the intensity of satellite +1 in the regime.

What we can conclude from this study is that, in regime A, the fast and deep
diffusion of Cr in the Fe-rich layer changes in a fast manner the composition and
lattice spacing profiles of the Fe-rich layer, keeps the interface sharp and leads to
a fast interface mobility due to the accumulation of Fe at the interface instead of
diffusing in the Cr-rich layer. This leads to a fast decay of the satellite intensities,
especially that of satellite -1 which is caused by the shrinking of the Cr-rich layer’s
thickness. In regime C, Fe diffuses slowly in the Cr-rich layer and the resulting
interface shift is also slow. The evolution of the profiles affecting the XRD satellites
is slower than in regime A and leads to a slower decay. Satellite +1 decays faster in
regime C due to the interface shift which reduces the Fe-rich layer’s thickness. In
both regimes, the layer corresponding to the fastest decaying satellite corresponds
to the layer whose thickness decreases and in which the composition profile does
not change, and the decay of the fastest satellite is therefore directly related to the
interface mobility. Ideally, this study should also be conducted for second order
satellites. Unfortunately, since it is not clear which planes or layers contribute to
the 2nd order satellite intensities, a similar study cannot be conducted for these
satellites at the moment.

2.6.3.2 Interpretation of kinetic regimes

Separating satellite intensity decays into different kinetic regimes in which the
decay is linear allows us to use Eq. 2.62 to calculate the interdiffusion coefficient.
The use of this equation assumes that the interdiffusion coefficient does not de-
pend on concentration. In our case, we assume that in each regime there is one
dominating kinetic phenomena driven by an interdiffusion coefficient which alters
the structure of the system in the most noticeable way. The use of Eq. 2.62 further
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assumes that the lattice spacing is constant in the multilayer which leads to the
same intensities of satellites ±m (see Eq. 2.54). In our case, we know that these
satellites do not have the same intensities at any time, not even at t = 0h. Since
each satellite is diffracted at a different 2θ angle, it is a consequence of X-rays
diffracted from planes with different lattice spacings (through the use of Bragg’s
law, Eq. 2.20). We showed in Sec. 2.5 that, before annealing, peak positions
of satellites -1 and +1 correspond to the lattice spacing of the Cr-rich and Fe-
rich layer respectively. Annealing will change the composition and lattice spacing
profiles of these layers and therefore the intensity and position of these satellites.
In general, each satellite stems from constructive interference in some part of the
multilayer, and we assume that each of these parts has a constant average lattice
spacing, and that we can write Eq. 2.62 for each satellite separately. This makes
sense because all our previous analysis showed that each satellite is expected to
be more sensitive to a specific interdiffusion coefficient, and because the evolution
of the different parts of the multilayers (for example the bulk of the Fe-rich layer
and the bulk of the Cr-rich layer) does not happen within the same time scale.
Even though there are several approximations behind Eq. 2.62, the linearity of
each satellite’s decay in each regime suggests that we can use it by assuming that
each satellite’s decay is linked to a dominant interdiffusion coefficient. This might
not give us exact values of interdiffusion coefficients, but could provide us with an
order of magnitude for its value.

2.6.3.3 Multilayer period

To calculate the interdiffusion coefficients, we first need to determine the period
of the multilayer. Guinier finds that the distance between a satellite m and a main
peak is a function of the period of the multilayer (Eq. 2.69), which allows us to
calculate this latter property from the XRD profiles as

Λ =
±mλ

2 (sin θ±m − sin θ0)
=
±md0d±m
d0 − d±m

, (2.71)

where θ±m corresponds to the peak position of satellite ±m, and d±m is the lattice
spacing calculated from it using Bragg’s law. According to Eq. 2.71, the value of
the period is independent of the satellite and all peak positions lead to the same
value of Λ. However, this is not the case in our work because peaks are not equally
spaced. Remember that for first order satellites, d−1 = dCr and d+1 = dFe, and we
know that dCr − d0 6= dFe − d0. Therefore, if we want to use Eq. 2.71, we will not
obtain the real period of our multilayer. The positions of each satellite ±m with
respect to the main peak’s position will give us a different period Λ±m. Λ±m can be
seen as the period of an ideal multilayer in which the lattice spacing corresponds
to d±m. Additionally, peak positions shift with annealing, and therefore each
satellite’s period Λ±m changes over time. This is clearly seen in Fig. 2.16.
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Figure 2.16: Multilayer period Λ±m calculated from the positions of first and sec-
ond order satellites with respect to the main peak’s position at different annealing
times, using Eq. 2.71.

The period related to satellite -1 decreases by 0.286165 nm after around 5h of
annealing (beginning of regime B), while the one related to satellite +1 increases by
0.295866 nm at the beginning of annealing (beginning of regime A). The change of
periods related to satellites ±1 are therefore similar in absolute value. This result
is consistent with our previous observations and how peak positions of satellites
-1 and +1 are affected by the lattice spacing in the Cr-rich and Fe-rich layers
respectively. Satellite -1 (resp. +1) corresponds to the Cr-rich (resp. Fe-rich)
layer whose average lattice spacing decreases (resp. increases) because of the
incorporation of Fe (Cr) atoms in it, knowing that dFe < dCr. This explains
why Λ−1 decreases, while Λ+1 increases. Λ−1 increases again towards the end of
annealing and it is not very clear why this happens. It could be related to the
interface shift which increases the thickness of the Cr-rich layer, but this assumes
that the added planes have a higher Cr concentration than the ones in the middle
of the Cr-rich layer. Concerning second order satellites, the period of satellite +2
is the one that changes the most. It increases gradually throughout regimes A
and B and reaches a stationary value in regime C, before decreasing again towards
the end of annealing. This satellite’s period changes mainly with the diffusion of
Cr in the Fe-rich layer. The period calculated from satellite -2 remains the same
until around 80 hours (which is close to when Fe reaches the middle Cr-rich layer)
when it increases to a constant value for the rest of annealing. It is interesting
that the periods calculated from second order satellites are the closest to the real
multilayer period (20 nm), and that they both have similar values at the end of
annealing.

For the calculation of the interdiffusion coefficient in each kinetic regime, we
will consider the average values of Λ±m calculated in each kinetic regime. We
assume that this average period is the one that is the most representative of the
part of the multilayer which affects the evolution of satellite m throughout the
corresponding regime. We call ΛR

m the average period calculated from the position
of satellite m during regime R, and we present in Table 2.7 the calculated averages
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for the different satellites and regimes.

-2 -1 +1 +2

ΛA
±m (nm) 20.279361 17.427120 17.722187 19.971828

ΛC
±m (nm) 20.442590 17.172402 17.781360 20.702744

Table 2.7: Average multilayer period (in nm) in each kinetic regime R = {A,C},
calculated from the simulated XRD profiles, using Eq. 2.71 and the peak position
of each satellite m with respect to the main peak’s position.

2.6.3.4 Interdiffusion coefficients

We calculate in regimes A and C, the interdiffusion coefficients by applying Eq.
2.62 to the normalized intensity decays of each satellite separately. We use the
average multilayer period values calculated in Table 2.7. For better readability,
we plot the results in Fig. 2.17 as a function of each satellite, and in Fig. 2.18
as a function of concentration, in order to compare with Senninger’s results of the
concentration dependent interdiffusion coefficient (Fig. 2.6).

Figure 2.17: Interdiffusion coefficient calculated using Eq. 2.62 from the simulated
XRD satellite intensity decays (Fig. 2.17) in the kinetic regimes A and C, and
from each satellite decay separately. Note that D̃ could not be calculated from the
evolution of satellite +2 in regime C because its intensity does not decrease.

Extracted interdiffusion coefficients are around 10−18 cm2/s in regime A, and
between 10−20 and 10−19cm2/s in regime C. As expected, coefficients in regime
A are larger than those in regime C because the evolution of the structure as a
consequence of Cr diffusion in the Fe-rich layer is faster than its evolution as a con-
sequence of Fe diffusion in the Cr-rich layer. Additionally, coefficients calculated
in regime A are consistent with Senninger’s coefficients at low-Cr concentrations,
while those calculated in regime C are similar to her coefficients at high-Cr concen-
trations. Let us examine in more detail the values of the interdiffusion coefficient
calculated in each regime:
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� Regime A: The values of D̃ extracted from the decay of satellites ±1 and
satellite +2 correspond to the values calculated by Senninger for concentra-
tions between 0 and 15% at. Cr, which is the concentration range in the
Fe-rich layer during this regime. This is consistent with our previous find-
ings. The interdiffusion coefficient related to satellite -1 is close to the value
at 15 at. %Cr, which is the concentration close to the interface with the Fe-
rich layer, and its value slightly below the 15 at. %Cr one is consistent with
the fact that Cr content inside the Fe-rich layer is below 15 at. %Cr. This
further confirms that this satellite is sensitive to the interface shift. Con-
cerning satellite +1, we know that its decay is directly a consequence of Cr
diffusing in the Fe-rich layer, and the calculated value of D̃ is coherent with
this hypothesis. Satellite -2 gives the smallest value of D̃ and is consistent
with the one calculated by Senninger at 20 at. %Cr. This concentration
represents the Cr content at the interface and satellite -2 could be related to
the diffusion along the interface with the Fe-rich layer or across it.

� Regime C: All satellites yield a value of D̃ consistent with Senninger’s coef-
ficients in a range of concentrations between 90 and 100 at. %Cr. The value
calculated from the decay of satellite +1 is the highest and close to the value
at 90 at. %Cr. This concentration is similar to the concentration near the
interface with the Cr-rich layer, and confirms this satellite’s sensitivity to
interface shift in this regime. We expected satellite -1 to be sensitive to the
diffusion of Fe from the interface to the middle of the Cr-rich layer, and this
is consistent with a value of the interdiffusion coefficient at a concentration
between 95 and 100 at. %Cr.

Figure 2.18: Values of the interdiffusion coefficient calculated from each simulated
satellite intensity decay, in regimes A and C, for multilayers annealed at 500°C
for 274h. The values are compared to the values of the concentration dependent
interdiffusion coefficient calculated by Senninger et al. using the wave attenuation
method and the same AKMC model [9, 16]. Since our calculated coefficients do
not depend on concentration, we draw them as horizontal lines.
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We conclude from this section that, in the case of a concentration dependent
interdiffusion, we can still split the kinetics of the system into different regimes in
which one diffusion mechanism dominates in changing the composition and lattice
parameter. Then we can identify, with a good order of magnitude, the value of the
interdiffusion coefficient affecting the satellite’s decay. This method of calculating
interdiffusion coefficients should apply best when diffusion is most asymmetric,
because then the different kinetic regimes are well separated. In Fe/Cr multilay-
ers, in the first kinetic regime, we can calculate the interdiffusion coefficient at the
interface with the Fe-rich layer (close to the solubility limit) and at a concentration
close to 100 at. %Fe. In the second regime, we can calculate the interdiffusion
coefficient at the interface with the Cr-rich layer (close to the solubility limit) and
at a concentration close to 100 at. %Cr. In theory, this should be applicable to
any binary multilayers in which one species diffuses faster than the other, by at
least two orders of magnitude. In Table 2.8, we compare the values obtained from
satellites ±1 to the values calculated by Senninger at different concentrations. The
absolute value of the relative error between these values is less than 31% for all
concentration ranges, which is reasonable for an interdiffusion coefficient. This
suggests that the method we proposed to calculate interdiffusion coefficients, com-
bining AKMC simulations, XRD simulation based on Bragg’s law, linear diffusion
theory and Guinier’s model, is a powerful tool to calculate concentration depen-
dent interdiffusion coefficients in multilayers. In Table 2.9, we list the calculated
interdiffusion coefficients from first order satellite peak decays as a function of the
concentration ranges which we think they represent.

In the next section (Sec. 2.7), we will apply the same methodology to ex-
perimentally annealed Fe/Cr multilayers and test the validity of our analysis and
conclusions. We will calculate interdiffusion coefficients from satellite peak decays
at 450°C and 500°C, and compare the values with the simulation results.
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500°C

Senninger
Our

simulation
Absolute value
of the relative
error

at.%Cr D̃ (cm2/s) D̃ (cm2/s)

0-15 2.76E-18 2.00E-18 27.4%

15 2.50E-18 3.02E-18 20.9%

90 5.30E-20 4.57E-20 13.7%

90-100 3.12E-20 2.17E-20 30.4%

Table 2.8: Interdiffusion coefficients calculated at 500°C from our simulations and
compared to the values obtained by Senninger [9, 16] at different concentrations:
the average value at concentrations between 0 and 15 at. %Cr, at the solubility
limits (ideally we should compare our calculated value with D̃ (85.2) but this value
was not calculated by Senninger, so we compare it with D̃ (90) instead, and the
average value at concentrations between 90-100 at. %Cr (also, ideally, it should
be 85.2-100 at. %Cr).

450°C

at.%Cr D̃ (cm2/s)
0-15 7.79E-20
15 1.19E-19
85 1.13E-21

85-100 5.34E-22

Table 2.9: Interdiffusion coefficients at 450°C extracted from our multilayer simu-
lations as a function of the concentration ranges we think they represent.

2.6.4 Conclusion on the simulation results

We conclude from this section that the combination of an AKMC simulation
with an XRD simulation which produces diffraction profiles based on the AKMC
composition profiles, is a powerful tool to extract composition-dependent inter-
diffusion coefficients in multilayers. The analytical theory behind the work was
based on several assumptions which were not satisfied in the case of Fe/Cr mul-
tilayers. We managed to overcome this by properly dividing the evolution of the
kinetics into several regimes, by identifying the time scales in which XRD satellite
intensity decay is linear and by carefully analyzing the evolution of composition
profiles. We identified that in each regime there is a main part of the multilayer
(a set of planes or a layer) whose structure is the most affected by interdiffusion.
This variation reflected in the decay of satellite intensities which allowed us to
determine an interdiffusion coefficient at the average concentration in this part of
the multilayer. In the first kinetic regime, which is the fastest, the diffusion of Cr
in the Fe-rich layer changes the composition profile in that layer and allowed us
to calculate interdiffusion coefficients at low Cr concentrations. During the second
kinetic regime, the diffusion of Fe in the Cr-rich layer changed its composition
and allowed us to calculate interdiffusion coefficients at high Cr concentrations.
Additionally, we identified satellites sensitive to diffusion in the bulk part of the
layers and satellites sensitive to diffusion near the interfaces, and therefore calcu-
late coefficients in a Cr-rich layer, Fe-rich layer, and at concentrations near the
solubility limits. In both regimes, the calculated coefficients were in agreement
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with Senninger’s calculations [16].

2.7 Comparison of simulation and experiment

results

In this section, we will compare experimental and simulation interdiffusion
results. Experimentally, multilayers were annealed at 500°C for 16h and at 450°C
for 260h, and XRD measurements were done throughout annealing at both these
temperatures. Additionally, samples annealed at 500°C for 4h were analyzed using
APT and STEM/HAADF. Therefore, we will compare the composition profiles
and the layer thicknesses before and after annealing at 500°C for 4h, and we will
compare XRD profiles at both temperatures, 450°C and 500°C. A comparative
table at the end of this section (Table 2.11) summarizes these different comparison
points.

2.7.1 Concentration profiles

We compare the Cr concentration profiles obtained by AKMC to the profiles
obtained by APT before and after annealing at 500°C for 4h. The simulated
and experimental profiles shown respectively in yellow and red in Fig. 2.19, are
qualitatively and quantitatively in agreement, before and after annealing. In both
simulation and experiment, Cr diffuses into the bulk of the Fe layer and reaches
its center, while Fe diffuses more slowly into the Cr-rich layer, mainly close to
the interface and without reaching the center of the Cr layer. The average values
of Cr atomic fraction in the middle of the Cr-rich and Fe-rich layers are also in
agreement between AKMC and experiment. The average of Cr atomic fraction
(averaged over 5 different layers in the experiment, and 2 different layers in the
simulation) in the middle plane of the Fe-rich layer and Cr-rich layer is measured
to be 4.2 at. %Cr and 99.9 at. %Cr respectively by APT, and 4.7 at. %Cr
and 100.0 at. %Cr respectively by AKMC. The average of Cr atomic fraction
over the different layers and over 2.5 nm in the middle of the Fe-rich and Cr-rich
layer is measured to be 4.5 at. %Cr and 99.9 at. %Cr respectively, by APT, and
5.0 at. %Cr and 100.0 at. %Cr respectively, by AKMC. We conclude that the
asymmetry of the annealed profile and the resulting Cr composition in the center
of the Fe-rich layers are in good agreement between AKMC and APT. Remember
that, due to reconstruction artifacts, APT is not reliable around interfaces and
leads to erroneous layer widths (Sec. 2.4.1.3). Therefore, layer thicknesses are
studied experimentally using STEM/HAADF and the comparison is done in the
next paragraph (Sec. 2.7.2).
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Figure 2.19: Cr concentration profiles in a Fe/Cr bilayer before (left) and after
(right) annealing at 500°C for 4h measured by APT (red) and simulated by AKMC
(yellow). The background image shows the Fe (light) and Cr (dark) layers obtained
by STEM/HAADF.

2.7.2 Layer thicknesses

Figure 2.19 shows the simulated concentration profiles on a STEM/HAADF
background. The layer thicknesses are in qualitative and quantitative agreement
before and after annealing. Figure 2.20 shows more clearly how the simulated layer
thicknesses change after a 4h annealing. Before annealing, the average values of Fe
and Cr layer thicknesses measured by STEM/HAADF over the 3 middle layers are
9.6 nm ±0.3 nm and 9.3 nm ±0.3 nm respectively. After annealing, the thickness of
the Fe-rich layer increases by relatively 5.8%, in the experiment, and by relatively
4.7%, in the AKMC. The thickness of the Cr-rich layer decreases by relatively
4.6%, in the experiment, and by relatively 4.7% in the AKMC. While the decrease
of the thickness of the Cr layer is in agreement between AKMC and experiment,
the relative increase of the Fe-rich layer is in less good agreement. This could be
due to the fact that the simulations are done at constant volume as a consequence
of using Vegard’s law for the lattice parameter . This is why, in the simulation,
the relative increase of one layer (here the Fe-rich layer) is exactly equal to the
relative decrease of the other layer (here the Cr-rich layer), which is not the case
in the experiment.
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Figure 2.20: Cr concentration profile in the AKMC simulation of a Fe/Cr bilayer
before and after annealing the multilayer at 500°C for 4h.

2.7.3 Microstructure

APT results showed that the annealed multilayer samples contain Fe-rich in-
clusions and oxides around dislocation lines traversing the Cr layers in various
directions. The composition of these inclusions and oxides is not homogeneous
and differs from one inclusion to the other. An example of an inclusion is shown
in Figure 2.21, in comparison with the simulated layers. Since the simulation is
missing these inclusions, this could lead to discrepancies between the experimen-
tal and simulated results. The chemical composition of the inclusion is shown in
two directions in Fig. 2.22. The concentration of the inclusion ranges between
50 and 72 at. %Fe in one direction, and between 40 and 75 at. %Fe in another
direction. These inclusions do not seem to affect the planar concentration profile
in a noticeable way, since the concentrations in the middle of the Cr-rich layer
remain almost equal to 100 at. %Cr (Sec. 2.7.1) and show no presence of Fe in
this layer. Note that, according to Fig. 2.19, these inclusions do not seem to affect
the compositions in the middle of the Cr-rich layer.
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Figure 2.21: Fe inclusion (purple) traversing the Cr-rich layer (black) observed
using APT (left) in the sample annealed at 500°C for 4h. The simulation (right)
does not include any inclusions. The chemical compositions of the inclusion in the
A and B directions are shown in Fig. 2.22.

Figure 2.22: The chemical composition of the Fe inclusion (Fig. 2.21) in the A
direction (left) and in the B direction (right).

2.7.4 XRD profiles

In this section, we compare the experimental and simulated XRD profiles. We
focus on comparing the time evolution of peak positions and intensities. In Fig.
2.23, we show the profiles before annealing and after annealing at 500°C for 4h and
for 16h. Note that we cannot compare absolute values of intensities, and in both
experiment and simulation, the intensities are normalized with respect to the main
peak’s intensity (discussed in Sec. 2.4.1.2). In both experiment and simulation,
the XRD profiles present a main Bragg peak at around 2θ = 65° and four satellite
peaks, two on each side of the main peak.

Before annealing, the intensities and positions of the peaks are in good agree-
ment between the experiment and simulation. Table 2.10 shows that the lattice
spacings calculated from the experimental and simulated satellite peak positions
are all below a 0.1% relative error. This verifies that the input conditions in the
AKMC code (number of planes) and in the XRD simulation code (lattice spacings
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-2 -1 0 +1 +2

experimental
dr,j (m), in nm

0.145220 0.144216 0.143228 0.142083 0.141055

simulated
dr,j (m), in nm

0.145160 0.144296 0.143111 0.141949 0.141074

absolute value
of relative error

0.04% 0.06% 0.08% 0.09% 0.01%

Table 2.10: Lattice spacings (in nm) calculated from the experimental and simu-
lated XRD profiles before annealing by using Bragg’s law on each peak’s position,
and the absolute value of the relative errors between them. The X-ray wavelength
is λ = 0.154061 nm and n = 1.

and scattering factors of the pure elements, and Vegard’s law) are consistent with
the experiment before annealing. This confirms again the APT analysis which
showed that before annealing, the multilayers have almost the same composition.

After annealing, peak positions shift and satellite intensities decay. These two
changes are more pronounced in the experimental profiles, in which satellites decay
faster after 4h of annealing, and all peaks shift positions in a more visible way.
In particular, 2nd order satellites almost disappear in the experiment after 4h of
annealing, while this is not the case in the simulation even after 16h of annealing.
The main peak’s position also shifts towards lower values of 2θ in a sharp way after
4h of annealing in the experiment, while it remains constant throughout annealing
in the simulation. In the following, we will analyze the evolution of the positions
and intensities in closer details, and study what causes the discrepancies between
experiment and simulated XRD profiles.

Figure 2.23: Experimental (dashed lines) and simulated (solid lines) XRD profiles,
before (black) and after annealing at 500°C for 4h (red) and for 16h (green). The
intensity at a time t is normalized by the intensity of the main peak at time t,
such that the intensity drawn corresponds to I (t) /I0 (t).
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2.7.4.1 Satellite intensity decay

The decay of satellite peak intensities with annealing can be observed more
clearly by studying the time evolution of the intensity of each satellite, I±m (t),
with respect to its initial intensity, I±m (0). In Fig. 2.24 we plot the time evolution
of the logarithm of normalized intensity ratios of the experimental and simulated
profiles at 500°C. Remember that if the interdiffusion coefficient does not depend
on concentration, the evolution of this function is linear (Sec. 2.2.4). Qualitatively,
all satellites exhibit the same behavior: a sharp linear decrease at the beginning
of annealing, followed by a slower linear decrease at longer annealing times. A
difference can be seen in the behavior of satellite −2, whose intensity remains
almost the same in the simulation but decays fast in the experiment (this can also
be seen in the XRD profiles of Fig. 2.23). Quantitatively, the intensity decay of
all satellites is faster in the experiment, especially at short times. Since intensity
decay is linked to interdiffusion, this hints to a faster diffusion in the experiment,
especially at the beginning of annealing. The transition between the two linear
slopes is around 4h in the experiment as well as in the simulation, however; we
do not know if the two regimes observed experimentally are the same two regimes
that are observed in the simulation. We therefore separate the experimental time
evolution in regime 1 and regime 2. Note that we know, from the study done in
Sec. 2.6, that the evolution of the simulated multilayers between 4 and 32h is not
linear but rather a transition between the two kinetic regimes A and C. However, it
seems from the plot in Fig. 2.24 that regime B can also be decomposed into linear
kinetic regimes, at least between 4 and 16h. We will call the regime between 4
and 16 hours regime B’. We draw in Fig. 2.25 the simulated concentration profiles
at 0, 4 and 16 hours to better visualize how the concentration profile evolves in
regimes A and B’. After reaching the center of the Fe-rich layer, Cr continues to
diffuse in the Fe-rich layer. At 16h, equilibrium is almost reached in this layer,
but not quite (this actually happens at 24h, see Sec. 2.7.1). Fe on the other hand
keeps accumulating at the interface and this asymmetry leads to interface mobility
towards the Cr-rich layer. If regime B is a transitional regime between A and C, we
can clearly see that regime B’ is the part of it which is a continuation of regime A.
Therefore, it is dominated by almost the same kinetics driving regime A, in which
bulk diffusion mainly occurs in the Fe-rich layer. It is therefore not surprising that
the evolution of satellites in B’ is linear. The evolution of the composition field
in B’ is slower than in A because the Cr concentration gradient is smaller and
interdiffusion in the Fe-rich layer decreases with the Cr concentration.
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Figure 2.24: Time evolution of the decay of satellite intensity ratios during an-
nealing at 500°C for around 16h, in the experiment (filled squares) and simulation
(empty circles). Dashed and filled lines represent the linear fits of experimental
and simulated data respectively. Each satellite’s decay requires two linear fits
which we attribute to two different kinetic regimes. We call the two experimental
regimes “regime 1” and “regime 2”, and we separate them with a black vertical
line at 4h. The simulated regimes are “regime A” and “regime B’” and they are
separated as well at 4h. The average decay slope of regime 1 is 13 times bigger
than that of regime A, while in regime 2 it is 4 times bigger than that of regime
B’.

Figure 2.25: Simulated concentration profiles in regimes A and B’ at 500°C.
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We found the same results and conclusions in the case of multilayers annealed
at 400°C and at 450°C. We plot the decay of the satellite intensities at 450°C in
Fig. 2.26. At this temperatures, the experimental and simulated kinetic regimes
(1 and 2, and A and B’) are separated at around t = 85h instead of 4h. What is
interesting at 400°C and at 450°C is that, between 0 and 4h, a very sharp decay
is observed only in the experimentally annealed multilayers. This decay is even
faster than the one observed in regime 1. Fig. 2.27 is a zoomed-in version of
Fig. 2.26 and better shows that there is a different kinetic regime that cannot be
considered part of regime 1. This suggests the presence of a fast diffusion that is
missing from the simulation. It is not clear if at 500°C this regime does not exist,
if it is happening along regime 1 and we were unable to separate the two, or if
annealing times were not short enough to observe it. If it occurs at the same time
as regime 1, it could explain why XRD satellites decay faster in the experiment
when APT and STEM/HAADF showed composition profiles and layer thicknesses
similar to the simulated one. On the other hand, at a temperature higher than
450°C, this fast decay might occur at a time earlier than 4h, and it was simply
not measured at 500°C. Moreover, the different regimes have been well identified
in the simulation, so the question is: what is happening during the early and very
fast regime?

Figure 2.26: Time evolution of the decay of satellite intensity ratios during anneal-
ing at 450°C for around 260h, in the experiment (filled squares) and simulation
(empty circles). Dashed and filled lines represent the linear fits of experimental
and simulated data respectively. Each satellite’s decay requires two linear fits
which we attribute to two different kinetic regimes. We call the three experimen-
tal regimes “regime 0”, “regime 1” and “regime 2”, and we separate them with a
dashed black vertical line at 4h and 85h. The two simulated regimes are “regime
A” and “regime B’” and are separated at 85h. Fig. 2.27 shows a magnified version
of regime 0.
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Figure 2.27: Sharp decay of the experimental satellite intensities in regime 0.

2.7.4.2 Lattice parameter

Véronique Pierron-Bohnes used the sin2 Ψ method [126] to calculate in-plane
and perpendicular lattice parameters during the annealing of the multilayers at
500°C, and deduced the average volume lattice parameter. The results are plotted
in Fig. 2.28. The perpendicular (parallel) lattice spacing increases (decreases)
throughout regime 1. In regime 2, the lattice parameters vary only at the beginning
of the regime and then seem to reach a constant value close to the average volume
lattice parameter. This suggests that the system was strained at the beginning
of annealing and relaxes throughout regime 1. The strain originates from lattice
mismatch during the growth of the multilayer. When a layer is grown on another
layer with a different in-plane lattice parameter, the system is forced to relax in the
perpendicular direction by varying the perpendicular lattice parameter in a way
to compensate for the change in the in-plane parameter. The system relaxes with
annealing as atoms diffuse and the lattice mismatch is reduced. Fig. 2.28 shows
that relaxation happens mainly during regime 1, and that the system reaches a
relaxed state at the early stage of regime 2. In our simulations, deformations and
elastic properties are not taken into account, neither in the AKMC simulation, nor
in the XRD simulation code. These results show that there is residual strain and
possibly a partial coherency growth of the multilayers, which means that Vegard’s
law should not be used to simulate the interplanar lattice spacing [140]. This needs
further investigation and will be discussed in more detail in the perspectives (Sec.
3.11). XRD peak positions and intensities are directly linked to the perpendicular
lattice spacing, and this could explain why experimental satellites decay faster,
especially in regime 1.
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Figure 2.28: Time evolution of the parallel (a‖), perpendicular (a⊥) and average
volume (aV ) lattice parameters, calculated by Véronique Pierron-Bohnes [138] us-
ing the sin2 Ψ method from the experimental XRD profiles of multilayers annealed
at 500°C. The black vertical line separates the two kinetic regimes observed in the
experiment (1 and 2).

The perpendicular lattice parameter can also be calculated from each satel-
lite peak position in the simulation and experiment. The lattice spacing can be
calculated using Eq. 2.70, and the perpendicular lattice parameter is deduced
(the lattice parameter is the double of the lattice spacing in the BCC structure).
Note that a shift of peak positions towards lower (higher) angles is related to an
increasing (decreasing) lattice parameter. The time evolution of the lattice param-
eter calculated this way is plotted in Fig. 2.29. The lattice parameter variation is
negligible in the simulation for all satellites. In the experiment, all lattice spacings
increase in regime 1 and seem to fluctuate around a constant value in regime 2
(as expected from Fig. 2.28). Strain relaxations increase the perpendicular lattice
spacing of the layers with higher lattice spacing (here Cr) because it is the layer
whose in-plane lattice parameter decreases. Therefore, the increase in the lattice
parameter of satellite -1 is a consequence of this relaxation. On the other hand,
throughout regime 1, Cr diffuses in the Fe-rich layer, which leads to an increase
of its in-plane and perpendicular lattice parameters (because dCr > dFe). The
increase in the lattice parameter of satellite +1 is not necessarily linked to relax-
ations, but rather to an increase in the lattice spacing of the Fe-rich layer due to
Cr diffusion in it. However, in this case, it is surprising that the simulated peak
position of satellite +1 does not reflect this increase. Even with a linear Vegard
law, there should be an increase of Ceq

1 + (1− Ceq
1 ) aCr/aFe = 6.75 × 10−3 nm

in the lattice spacing of the Fe-rich layer, which is not observed here. Overall,
experimental values are higher and this is in agreement with strain relaxations of
experimental multilayers, which are missing from the simulations.
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Figure 2.29: Time evolution of the lattice parameter calculated from experimental
(full squares) and simulated (open circles) satellite peak positions of XRD profiles
of multilayers annealed at 500°C for up to 16h. The values are calculated for 1st

and 2nd order satellites, m = {±1,±2}. The black vertical line separates the two
kinetic regimes in the experiment (1 and 2) and simulation (A and B’).

2.7.4.3 Multilayer period

In order to calculate interdiffusion coefficients, we need to calculate the av-
erage period related to each satellite’s position in each regime. The procedure
was explained in detail in Sec. 2.6.3.3. Figure 2.30 shows the evolution of the
average period Λm at 500°C between the first and second kinetic regimes, in the
experiment and simulation. There is a large deviation between experimental and
simulated values. The experimental periods are higher than the simulation ones
for all satellites except ±2 in the first regimes and +2 in the second regimes. In
the experiment, periods of first order satellites vary slightly between regimes 1
and 2, while the variation is more apparent in the case of periods of second order
satellites which both increase in regime 2. This is a consequence of satellites ±1
and the main peak shifting by the same amount which keeps the distance between
±1 peaks and the main peak constant. This can be a consequence of the Cr-rich
and Fe-rich layers both expanding by the same amount.
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Figure 2.30: Average period Λm of multilayers annealed at 500°C, in the experi-
ment (dashed lines) and simulation (solid lines). The values are calculated using
Eq. 2.71 for 1st and 2nd order satellites, m = {±1,±2} and averaged in each
kinetic regime. The black vertical line separates the two kinetic regimes in the
experiment (1 and 2) and simulation (A and B’).

2.7.4.4 Interdiffusion coefficients calculation

Using the values of the multilayer periods obtained in the previous paragraph
(Sec. 2.7.4.3), we calculate the interdiffusion coefficients which dominate in each
regime and which are responsible for the decay of each satellite (Eq. 2.62). The
results obtained at 450°C and at 500°C are plotted respectively in Fig. 2.32 and
in Fig 2.31, as a function of the different satellites. At both temperatures and
in all kinetic regimes except regime C, we obtain the same qualitative variation
of D̃ as a function of satellites m. Values calculated in regimes 1 and A are
in good agreement, and so are the values calculated in regimes 2 and B’. The
experiment shows slightly faster kinetics, especially in regime 1. On other hand,
values calculated in regimes 0 and C are respectively the highest and lowest, and
do not seem to match with any other regime’s kinetics. This suggests that the
simulation is missing a fast regime at the beginning of annealing at 450°C, while
the experiment cannot be performed for long enough to reach regime C.
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Figure 2.31: Values of the interdiffusion coefficient calculated from the experimen-
tal (regimes 1 and 2) and simulated (regimes A, B’ and C) XRD intensity decays
of each satellite separately using Eq. 2.62, after annealing at 500°C.

Figure 2.32: Values of the interdiffusion coefficient calculated from the experimen-
tal (regimes 0, 1 and 2) and simulated (regimes A, B’ and C) XRD intensity decays
of each satellite separately using Eq. 2.62, after annealing at 450°C.

In Fig. 2.33 and Fig. 2.34, we compare the results at 500°C, in the first and
second regimes respectively, to Senninger’s values. Figure 2.33 shows that, while
simulated coefficients in the first regime are all around Senninger’s values at high Cr
concentrations, the experimental values are all slightly higher. This figure allows
us to extract reliable experimental values of D̃ (C) around the solubility limit.
In the second regime, the experimental and simulated coefficients are between
Senninger’s values at the solubility limits (between D̃ (15) and D̃ (80)). In the
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region inside the miscibility gap, the system should separate in two phases, one
rich in Cr and the other one rich in Fe, and it is hard to define interdiffusion
coefficients in this region because the measurement would be accompanied by an
evolving microstructure due to phase separation. If we assume that D̃ decreases
linearly from D̃ (15) to D̃ (80), then the values of D̃ calculated in regimes 2 and B’
corresponds to the interdiffusion coefficient at concentrations between 15 and 80
at. %Cr. This is consistent with our initial hypothesis that regime B is a transition
between regimes A and C.

Figure 2.33: Interdiffusion coefficients calculated in the first kinetic regimes, from
the experimental (regime 1) and simulated (regime A) XRD satellite intensity
decays after annealing at 500°C. The values are compared to the values of the
concentration dependent interdiffusion coefficient calculated by Senninger et al.
using the wave attenuation method with the same AKMC model [9, 16].
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Figure 2.34: Interdiffusion coefficients calculated in the second kinetic regimes,
from the experimental (regime 2) and simulated (regime B’) XRD satellite intensity
decays after annealing at 500°C. The values are compared to the values of the
concentration dependent interdiffusion coefficient calculated by Senninger et al.
using the wave attenuation method with the same AKMC model [9, 16].

2.7.5 Comparative summary

Table 2.11 summarizes the most important points of comparison between the
simulation and the experiment after 4h of annealing at 500°C. APT and STEM/HAADF
comparisons showed that the kinetics of interdiffusion are qualitatively and quan-
titatively well reproduced by the AKMC model. APT even suggests that the
experiment is slightly slower than the simulation because the concentration of Cr
in the Fe-rich layer does not increase as fast as it does in the simulation, while
XRD comparisons hinted at a faster interdiffusion in the experiment. After 4h of
annealing at 500°C, simulated Cr composition in the center of the Fe-rich layers as
well as the simulated layer thicknesses are in good agreement with the experiment,
while XRD measurements show that experimental satellites decay faster than the
simulation. This overall slow satellite intensity decay in the simulation is also ob-
served when annealing at 450°C. An additional fast decay is observed at the very
early stages of experimental annealing at 450°C. This fast decay, in what we call
regime 0, is not reproduced in the simulation and is not observed experimentally
at 500°C. The slow decay at late annealing times, in the simulated regime C, is not
observed experimentally because experimental annealing times were much shorter
than the simulations.
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Experiment Simulation
Absolute value
of the relative

error
Cr

concentration in
the middle
plane of the
Cr-rich layer

99.9 at. %Cr 100 at. %Cr 0.1%

Cr
concentration in

the middle
plane of the
Fe-rich layer

4.2 at. %Cr 4.7 at. %Cr 10.6%

Cr
concentration
over 2.5nm in
the middle of
the Cr-rich

layer

99.9 at. %Cr 100 at. %Cr 0.1%

Cr
concentration
over 2.5nm in
the middle of

the Fe-rich layer

4.5 at. %Cr 5 at. %Cr 10%

Thickness
increase of the
Fe-rich layer

5.8 % 4.7 % 23.4%

Thickness
decrease of the
Cr-rich layer

4.6 % 4.7 % 2.1%

Defects

Fe-rich
inclusions and
oxides around

dislocation lines
traversing the
Cr-rich layers

No defects -

Satellite
peak
intensities
(normalized)

-2 0.183 0.102 44.3%
-1 0.305 0.406 33.1%
+1 0.401 0.583 45.3%
+2 0.110 0.092 15.9%

Satellite
peak
positions

-2 63.86 64.10 0.8%
-1 64.42 64.53 0.2%
0 64.94 65.13 0.3%

+1 65.51 65.72 0.3%
+2 66.06 66.17 0.2%

Table 2.11: Comparative summary of the experimental and simulated results after
a 4h annealing at 500°C.

It seems that the overall kinetics is comparable between AKMC and experi-
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ment, and that the physical time calculated by the AKMC matches the experimen-
tal one. Despite the apparent faster experimental interdiffusion, calculated values
of the interdiffusion coefficient show a satisfying agreement between regimes 1 and
2 of the experiment and regimes A and B’ of the simulation for all satellites. These
regimes correspond to the fast diffusion of Cr in the Fe-rich layer until equilibrium
is reached, and to the accumulation of Fe atoms at the interface leading to an
interface mobility. At 450°C and 500°C, interdiffusion coefficients are less than
an order of magnitude different, and the relative errors decrease with annealing
times. This can be better understood by combining all our previous analysis. Re-
member that each satellite stems from interference in some part of the multilayer,
and is therefore sensitive to that part’s lattice spacing profile and interdiffusion
coefficient. An increase in the perpendicular lattice spacing leads at the same time
to an increase in the multilayer period and to a faster XRD peak decays. In the
experiment, the perpendicular lattice spacing increases to relax strains resulting
from lattice mismatch at the interfaces (especially at the interface between Fe and
the substrate). The simulation misses to reproduce lattice relaxation because, on
one hand, the AKMC simulation is at a constant volume, and on the other hand,
a linear Vegard law was used to calculate the perpendicular lattice spacing as a
function of concentration only, without taking into account the material’s elas-
tic properties as a function of Fe and Cr distribution in the sample. Strains are
more important when annealing starts and relax over time through diffusion, until
the system becomes unstrained. Pierron-Bohnes calculations (Fig. 2.28) and our
calculations based on satellite peak positions (Fig 2.29) confirm that the perpen-
dicular lattice spacing increases throughout regime 1 and reaches a constant value
at the early stages of regime 2. This justifies on one hand, why the experiment
is slightly faster, and on the other hand, why the deviations of experimental and
simulated results are more important in regime 1.

The sharp peak decay at the beginning of annealing in the experiment’s regime
0 also seems to result from simulating a perfect system which does not exactly
describe the experimental system. APT showed that the samples annealed at
500°C contain oxides and Fe inclusions in the Cr-rich layers around dislocation
lines, which are all missing from the simulation. The agreement between the
simulated and experimental profiles tends to show that these defects do not affect
interdiffusion in the Fe-rich layers nor at the interfaces. We think that, when
annealing starts, misfit dislocations originating from the Fe/substrate interface
and which were formed to relax the lattice mismatch strain, become diffusion
shortcuts for Fe in the Cr layers. This leads to a fast diffusion of Fe along these
dislocations and the formation of Fe inclusions around them. This reduces the
periodicity of the multilayer and disrupts the interplanar spacing profile. The effect
of these inclusions could be negligible on the average planar composition profile but
important on the lattice spacing profile. If characteristic time for diffusion along
dislocations is small with respect to the characteristic time for microstructure
evolution, the effects of this diffusion would be mainly seen on the XRD profiles
at the very early stages of annealing, and become negligible over time. This would
explain the agreement between composition profiles at 500°C, and the sharp peak
decays in the experiment at the beginning of annealing at 450°C.

Finally, we can summarize the kinetic regimes in the following:

� Regime 0: only observed experimentally at 450°C and at the very early stages
of annealing (first 4h). We think it is dominated by Fe’s fast diffusion along
dislocation lines in the Cr-rich layers. Characterized by the sharpest satellite
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intensity decays and the highest calculated interdiffusion coefficients.

� Regime 1/A: observed in the experiment and simulation at 450°C and 500°C
within the same time scales. Simulated and experimental profiles at 500°C
show that it is dominated by Cr’s diffusion from the Cr-rich layer to the mid-
dle layers of the Fe-rich layer and an interface shift towards the Cr rich layers.
Allowed us to calculate interdiffusion coefficients at high Fe concentrations
in agreement with Senninger’s wave attenuation method calculations.

� Regime B: observed in the simulation at 450°C and 500°C. Represents the
transition between Cr’s diffusion in the Fe-rich layer and Fe’s diffusion in the
Cr-rich layer which happens when equilibrium is reached in the Fe-rich layer.
Satellite decays are not linear and reflect the presence of several competing
interdiffusion coefficients.

� Regime 2/B’: observed in the experiment and simulation at 450°C and 500°C
within the same time scales. This regime is a linear part of regime B in
which kinetics are mainly driven by Cr’s diffusion in the Fe-rich layer until
equilibrium. This regime’s kinetics are slower than regime 1/A because the
Cr concentration gradient decreases in the Fe-rich layer and the interdiffusion
coefficient decreases when the Cr concentration becomes greater than 10 at.
%Cr in the Fe-rich layer. The extracted interdiffusion coefficients correspond
to the average value of D̃ at the solubility limits.

� Regime C: observed only in the simulation, at time scales beyond the ex-
perimental annealing times. The evolution of the structure is dominated by
Fe’s slow diffusion from the interface to the Cr-rich layer. Characterized by
the slowest intensity decays. The calculated interdiffusion coefficients agree
with Senninger’s values at high Cr concentrations.

2.7.6 Challenges in comparing AKMC and experiment

Besides the fact that our AKMC simulations do not include dislocation lines
and lattice elasticity, which are present in real life and have a non-negligible effect
on interdiffusion, this work made us ask ourselves a lot of questions related to
the general way AKMC simulations are made, and to what extent they can be
compared to experiments. Even though AKMC simulations show good agreement
with experiment in many cases of interdiffusion, a lot of subtleties exist that are
rarely addressed or questioned.

One of these things is the way equilibrium vacancy concentration is treated in
AKMC simulations. In real alloys, the equilibrium vacancy concentration depends
on the vacancy formation energy and therefore on the local concentration. This
means that the equilibrium concentration changes in space and time. It is often
assumed that local equilibrium is established fast enough for vacancies to be treated
as conservative species whose equilibrium concentration is fixed. Vacancy sources
and sinks create and absorb vacancies in a way to keep their concentration equal
to the equilibrium one. Kirkendall’s interdiffusion experiment ( [61–63] and Sec.
1.3.2) showed that when an α species is diffusing faster than a β species, there
is a net flux of vacancies that compensates the flux difference between α and β.
This net flux increases the concentration of vacancies in one region and decreases
it in another, and regulating the vacancy concentration can only be done via the
presence of vacancy sources and sinks. Sites and planes can disappear and appear
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as a consequence leading to a mobility of the lattice itself, in addition to the fluxes
of atoms on this lattice. The number of vacancies in the simulation box is fixed and
the vacancy concentration is ensured to be equal to the equilibrium one through
the time correction explained in Sec. 1.5.3. However, this correction does not
affect the trajectory of the vacancy, and only affects the time scale associated with
a given portion of the trajectory. This correction comes as a post-processing step
after the vacancy-atom exchanges have happened and after the composition profile
has been modified. In the AKMC simulation, there is nothing that simulates a net
flux of vacancies, and sites and planes are fixed and cannot disappear or appear.
There is also no proper simulation of sources and sinks of vacancies, since in the
simulation box a vacancy can only jump from one site to a neighboring site, and
in no way can it disappear in one layer and appear in another. Periodic boundary
conditions might be considered as an approximation to sources and sinks since
they make a vacancy disappear from one extreme side of the box and appear on
the other extreme, but it is not necessarily a good approximation and its effect on
vacancy migration decreases as the simulation box size increases. This condition
rather adds a layer of ambiguity to the way vacancies diffuse in the simulation box.
Imagine a vacancy at a plane X that diffuses towards the left side of the box until
it reaches plane L. In reality, the only way for the vacancy to go back to plane X
is to make a U-turn and diffuse back in the opposite direction, by passing through
the same planes in the reverse order. In the AKMC simulation however, a vacancy
that reaches plane L can jump to the left and get teleported to the right side of
the box, to plane R. Then the vacancy can keep diffusing to the left and reach the
X plane from the right side. Sources and sinks are related to defect positions and
to interdiffusion, and there is no reason for them to be only at the extremities of
the box. All this calls into question the interdiffusion coefficient that we calculate
from the simulation and how it can be compared with experimental measurements.
Since the lattice in the simulation does not move, we may be calculating an intrinsic
diffusion coefficient rather than an interdiffusion coefficient (Sec. 1.2.2.3). While
there is one interdiffusion coefficient that characterizes both species, each one has
its own intrinsic coefficient. If we are computing an intrinsic diffusion coefficient,
the question is: which one are we computing? Since the kinetics do not represent
what is really happening in the experiment, this also brings into question whether
or not we can really compare interdiffusion coefficients calculated using AKMC to
the experimental ones.

2.8 Conclusions of chapter 2

We presented in this chapter the basics of X-ray diffraction and some impor-
tant analytical models that make the link between satellite peak positions and
intensities on one hand, and composition profiles, lattice spacing profiles, and in-
terdiffusion coefficients on the other hand. We used a combination of Fick’s law
and Guinier’s theory to calculate interdiffusion coefficients from satellite peak in-
tensity decays. This combined theory assumes a constant interdiffusion coefficient
and no lattice parameter fluctuations. We overcame these constraints by first sep-
arating the time evolution of our system into several kinetic regimes and then by
treating each satellite separately. To identify the kinetic regimes, we had to find
the time ranges in which the decay of satellites is linear and during which there
is an interdiffusion coefficient which dominates in altering the system’s structure.
Because each satellite stems from interferences in some part of the system, we were
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able to identify these parts based on each satellite’s position (at least ±1 satel-
lites, while for satellites ±2 it is still not so clear). A theory based on a constant
interdiffusion coefficient and a constant lattice spacing can therefore be used to
calculate concentration dependent interdiffusion coefficients.

We applied this methodology to experimental and simulated XRD profiles of
Fe/Cr multilayers. The overall kinetics were in agreement between simulation and
experiment. We showed that if the regimes are well identified and if it is well un-
derstood what each satellite is sensitive to, concentration dependent interdiffusion
coefficients can be calculated. Since there are no analytical models which allow
the calculation of concentration dependent interdiffusion coefficients from XRD
profiles, our work provides a good and simple workaround. We were able to calcu-
late, with satisfying accuracy with Senninger’s work, interdiffusion coefficients at
500°C in Fe-rich and Cr-rich environments, at the interfaces and at concentrations
close to the solubility limits. We were also able to provide these coefficient values
at 450°C.

2.9 Perspectives of chapter 2

To wrap up this work and get a complete analysis of results, additional work
can be done, from both the simulation and experimental sides. On the theoretical
side as well, additional work can be done to improve the existing theories. Our
simulations are mainly missing to take into account dislocations and elasticity.

On the simulation side, we should find ways to take into account dislocations,
lattice relaxations, and the non-conservative nature of vacancy diffusion.

� We can account for the dislocation diffusion shortcuts and the Fe-rich in-
clusions by introducing dislocation lines in the AKMC simulation box where
atoms would diffuse faster. In practice, we can do this by adding for example
a connected lines in the Cr-rich layer in a way to form a bridge between the
two adjacent Fe-rich layers and by either imposing a faster interdiffusion at
this line, or by initializing it with Fe atoms. This can be done arbitrarily to
see its qualitative effect on interdiffusion, or even more realistically based on
experimental measures of the size of these defects. This study will allow us
to test the validity of our analysis on the link between fast diffusion along
dislocations and the sharp decay of satellites at the beginning of annealing.
This could also explain the overall faster experimental kinetics which are less
important at long annealing times. In all cases, this will be interesting to
study the effect of dislocations at the early and long stages of interdiffusion.

� Furthermore, as mentioned above in the discussion, the vacancy diffusion
mechanism related to its non-conservative nature is not taken into account
properly in the AKMC simulation. This can be properly modeled by explic-
itly adding sites and/or planes that act as sources and sinks of vacancies.
For example, misfit dislocations can act as such. We have to also account for
the fact that when vacancies get eliminated and created, sites and/or planes
can disappear or appear in different layers.

� Throughout our work, we have demonstrated the importance of the lattice
spacing on both satellite peak positions and intensities, and it is therefore
important to reproduce it as accurately as possible in the simulation. The
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noticeable difference between experimental and simulated satellite peak po-
sitions suggests that the simulations are missing to properly reproduce the
interplanar spacing, and could be due to the fact that stress is neglected. We
need to study the elastic properties of the multilayers in more detail to see
how they affect the lattice spacing. Since it is not clear whether or not the
multilayers were grown in a coherent way or not, and since it is more likely
to have partial coherency than one of the two extremes (no coherency and
perfect coherency), we need to calculate the strain in our multilayers. There
are several models which allow for such calculations. This will add a correc-
tion to Vegard’s linear law [140], and can potentially lead to a perpendicular
lattice spacing closer to the experimental one.

� Finally, on the theoretical side, this work can be completed by studying the
mobility of the interface in more details. This will be further discussed in the
general perspectives as it requires extensive work and can consist a research
project on its own.

On the experimental side, we need a more complete set of data to compare with.

� One of our theories is that the diffusion of Fe in the Cr-rich layer is not
observed experimentally (besides the diffusion along dislocation lines). This
can be confirmed by analyzing with the APT at least one of the annealed
samples at the end of the experimental annealing times.

� Additionally, one can anneal the samples at 500°C for longer times and per-
form XRD measurements on them. It is probably not possible to observe
regime C in the experiment at temperatures below 500°C because annealing
times are unrealistically long at lower temperatures. At 500°C however, an-
nealing the samples for 20 more hours allows us to reach regime C, and any
longer annealing will allow us to observe the eventual slow diffusion of Fe in
the Cr-rich layer. This would allow us to extract experimental interdiffusion
coefficients in the Cr-rich region, and validate our simulation results.

� Samples annealed at 450°C can rather be analyzed at shorter annealing times
using APT and STEM/HAADF. Since at 450°C we observe an additional
kinetic regime, it will be interesting to see the experimental profiles at the
beginning of each kinetic regime and how they compare to the simulated
profiles.

All these simulation improvements and additional experimental annealings and
characterizations will allow us see how dislocations and inclusions affect interdif-
fusion throughout the annealing process, and the effect of the lattice parameter
and relaxations on peak positions and intensities.

On the theoretical side, the link between concentration and lattice profiles and
XRD satellite peak positions and intensities has not been made in the general
case. There is also no model to calculate concentration dependent interdiffusion
coefficients from XRD profiles. The difficulty in developing such models lies in
the fact that we cannot establish a general analytical function which describes the
interdiffusion coefficient of any alloy. Tsakalakos considered a quadratic function
to describe the interdiffusion coefficient and developed a model to calculate it from
satellite intensity decays. However, the solution he provided required an iterative
calculation and was not used in applications. Therefore, considering a polynomial
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function of high order to describe D̃ (C) does not necessarily allow us to express
it as a function of satellite intensities. Improving the model of Tsakalakos or
working on another mathematical form of the interdiffusion coefficient seems to be
a far-from-reach perspective at the moment.

Another way to calculate interdiffusion coefficients is to use atomic-scale ana-
lytical models developed to study diffusion in concentrated alloys. We presented in
the first chapter (Sec. 1) the most important models an showed their limitations
and the need for a general diffusion model for concentrated alloys. In the next
chapter, we will tackle the diffusion problem within a more general framework and
from a different perspective. We will present the development of an analytical
model to compute diffusion coefficients in any concentrated alloy, and not just in
the case of FeCr alloys. Instead of relying on XRD profiles and interdiffusion in
multilayers, we will solve a general diffusion problem in a concentrated alloy, by
studying the thermodynamics and kinetics of the system to calculate the transport
coefficients matrix. From that, we can fit analytical laws of interdiffusion variation
as a function of local concentration, and maybe improve on Tsakalakos’ work.



Chapter 3

Extending SCMF-d and
KineCluE to concentrated alloys

3.1 Introduction to chapter 3

Many materials of interest are concentrated alloys, and yet, as seen in chapter
1, there is no general model to compute the full Onsager matrix in these alloys.
The exact expression of transport coefficients as a function of atomic jump fre-
quencies is out of reach due to the vastness and complexity of the configuration
space. A standard analytical approach consists in replacing each atom by average
or mean-field atoms. Using a mean-field approach in a random alloy, Manning, fol-
lowed by others, managed to properly take into account kinetic correlations in the
case of vacancy diffusion. Despite its simplicity, Manning’s model remains limited
to Bragg-Williams alloys. In the general case of an interacting alloy with short-
range order, a mean-field simplification becomes too crude and prevents treating
kinetic correlations properly. The only models that allowed for the computation
of the full transport coefficients matrix in interacting alloys are the PPM [143]
and the SCMF-o [22]. These two methods consisted key milestones in studying
diffusion in concentrated interacting alloys and showed great potential in many
applications. Despite their great results, both these methods were mostly applied
in specific simple cases only due to their mathematical complexity, and a gen-
eral analytical solution was hard to obtain. Among these methods, the SCMF-o
allowed for greater flexibility and control over the thermodynamic and kinetic ap-
proximations. This made it less complex than the PPM and allowed for its use in a
wider range of applications. In this chapter, we present a new atomic-scale model
to study diffusion in concentrated alloys and we show its application to the case
of a random alloy and an interacting alloy within a thermodynamic pair approxi-
mation. Our formalism is based on an extension of the SCMF-o and our approach
is intermediary between an exact solution and a mean-field approximation.

First in section 3.2, we will present the work of T. Schuler et al. on the
reformulation and implementation of the SCMF-o theory in an open-source code
called “KineCluE”, which allowed for the study of diffusion in dilute alloys [18].
We will show how, in the framework of this PhD, we managed to extend both the
theoretical framework (Sec. 3.3) and the KineCluE code (Sec. 3.4) to the case of
concentrated alloys. In our case, the convergence of kinetic correlations required
a large computational effort, therefore, we decide to introduce a sampling scheme.
In sections 3.5 and 3.6, we present our original sampling scheme and analyze the
accuracy of the sampling procedure. In Sec. 3.7, we propose an energetic model

144
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to calculate mean-field interactions, in order to apply our theory to the case of an
interacting alloy. In Sec. 3.8 we analyze our code’s computational performance
by studying the convergence of correlation factors. In Sec. 3.9, we compare our
model’s results to the literature in the case of a non-interacting alloy, and to our
own AKMC simulations in the case of an interacting alloy. We finally conclude with
the most important results and analysis in Sec. 3.10, and offer our perspectives
accordingly in Sec. 3.11.

3.2 SCMF-d and KineCluE in the case of dilute

alloys

The SCMF-o theory, presented in the first chapter in Sec. 1.7.4, has the ad-
vantage of reproducing the full Onsager matrix in the case of concentrated alloys.
However, it is very system specific and it is hard to generalize analytically for the
case of any crystal structure, any jump mechanism, any defects or any number
of components. In 2020, Schuler et al. [18] reformulated it and implemented it
in an open-source code that they called “KineCluE” in order to automate it and
allow it to be more accessible. We will call, in this thesis, their new theoretical
formalism the “SCMF-d”. The SCMF-d is based on the same general assumptions
and hypotheses as the SCMF-o, but treats the effective Hamiltonian and effective
interactions in a different way. The new treatment comes with a different set of
assumptions which allow the computation of transport coefficients in the case of
dilute alloys only, and the aim of this thesis is to extend it to concentrated alloys.
In this section we will discuss the theoretical framework of, the SCMF-d and out-
line the main differences with the original SCMF-o method. We will also present
the way they implemented it in KineCluE and the general functioning of the code.
It is important to detail this section since our work is directly based on it, rather
than on the original SCMF-o.

3.2.1 Kinetic cluster expansion method

Cluster expansions (CE) have been extensively used to divide a configuration
function into cluster functions and calculate thermodynamic properties as a func-
tion of the cluster functions [115]. Based on CE, the SCMF-d makes the assump-
tion that the system is sufficiently dilute to divide it into independent clusters of
finite size (Fig. 3.1). This relies on the hypothesis that each cluster is surrounded
by a homogeneous medium and is able to reach local equilibrium before it interacts
with the other clusters. Each cluster is characterized by a kinetic radius within
which equilibrium cluster properties are calculated exactly, and beyond which the
cluster is considered to be dissociated, i.e. cluster components are assumed to not
interact with each other anymore. The limitation of this approach is therefore that
it is limited to dilute systems.

KineCluE allows the study of each cluster c separately and the computation of
equilibrium cluster properties (transport coefficients, partition function, mobility,
...). The total transport coefficient of the system, Lαβ, can then be calculated by
the user in a post-processing step as the sum over all cluster transport coefficients,
Leqαβ (c), calculated using KineCluE, each weighted by the concentration of the
corresponding cluster [c]
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Lαβ =
∑
c

[c]Leqαβ (c) . (3.1)

Here, while the cluster transport coefficients are equilibrium quantities, the clus-
ter concentrations [c] can be out-of-equilibrium quantities, which allows for the
computation of the total transport coefficients in out-of-equilibrium systems. For
example, cluster concentrations can be calculated at equilibrium using a low-
temperature expansion (LTE) formalism [144], or out-of-equilibrium using a cluster
dynamics simulation.

Concerning the choice of the kinetic radius, on one hand, it has to be small
enough to preserve the dilute hypothesis that clusters are sufficiently far from
from each other to not interact. On another hand, the kinetic radius has to
be big enough to include enough trajectories with a high thermodynamic weight
for cluster properties to converge. It was found that the kinetic radius should
be the smallest value for which the product Z (αβ)Lαβ (αβ) converges, where
Z (αβ) and Lαβ (αβ) are respectively the partition function and the off-diagonal
transport coefficient of an αβ pair cluster. KineCluE includes an option that
allows the user to calculate this product for several values of the kinetic radius
until Z (αβ)Lαβ (αβ) converges (within a desired value). Additionally, numerical
applications showed that in several cases, a relatively small kinetic radius - around
3 lattice parameters - is enough for this product to converge [18].

Figure 3.1: Schematic representation of a cluster decomposition in a homogeneous
gray matrix.

3.2.2 Theoretical background of the SCMF-d

The SCMF-o in its original form studies a system in a stationary state close
to a homogeneous equilibrium and considers a stationary and homogeneous driv-
ing force (chemical potential gradients) that drives the system out-of-equilibrium.
The out-of-equilibrium system is described by a distribution function written as
a function of the equilibrium distribution and a correction term that contains the
deviation from equilibrium. The time evolution of the system is described by
means of a master equation and the microscopic detailed balance is supposed to
be satisfied. To calculate the flux or the Onsager transport coefficients, effective
interactions that appear in the correction term of the distribution function need
to first be calculated. All these assumptions and approximations are maintained
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in the new formulation of the SCMF-d, and the main difference will appear in
the way of calculating the effective interactions, which will require making differ-
ent assumptions. Therefore, even though the SCMF-o directly studies the whole
system and computes the total transport coefficients, while the SCMF-d aims to
first study independent clusters and calculates cluster transport coefficients, the
spirit behind this new formalism is based on the original SCMF-o, and the theory
remains almost the same up to the point of calculating the effective interactions.

Cluster distribution function

In the SCMF-o formalism, a configuration n represents one configuration of the
whole system, while in the SCMF-d formalism n represents a configuration of the
cluster c under study. A configuration n is divided into a specific configuration of
cluster components, cn, and a uniform environment surrounding them, such that
n = cn ∪ c̄An , where c̄n represents all sites outsides of cluster component sites (all
sites that are not occupied by any of the cluster components), and the suffix A
designs the atomic species which occupies all these sites. Remember that cluster
components are assumed to be in a homogeneous matrix, and therefore all sites of
c̄n have to be occupied by the same atomic species, which in this case we arbitrarily
chose it to be species A.

In both formalisms, the out-of-equilibrium probability, Pn, of a configuration
n is considered to be a deviation from the equilibrium probability, P 0

n , such that
Pn = P 0

nδPn. δPn represents the deviation from the equilibrium probability and has
the same mathematical form as P 0

n (Eq. 1.116). The time evolution of the distri-
bution function is described by a master equation of the form of Eq. 1.122, which,
using the microscopic detailed balance (Eq. 1.125) reduces to Eq. 1.130. In both
formalisms, the probability distribution is a function of an effective Hamiltonian
hn, but each one defines it differently. In SCMF-o, hn has the same mathematical
form as the thermodynamic Hamiltonian and is written as a sum over N -body
effective interactions να,β,...i,j,... , which represent the deviation from equilibrium of the
N -body thermodynamic interactions (Eq. 1.121). In SCMF-d, the expression is
simplified by assigning to each configuration n, associated with a specific configu-
ration of the cluster, an effective interaction νn, and the effective Hamiltonian of
n is simply written as the effective interaction of configuration n

hn = νn. (3.2)

The effective Hamiltonian is therefore simply reduced to the effective interaction
in SCMF-d. The deviation from equilibrium is therefore

δPn = exp

(
−
νn −

∑
i,α n

α
i δµ

α
i − δΩ

kBT

)
. (3.3)

Note that this new way of defining effective interactions allows us to talk about
cluster configurations n and effective interactions νn interchangeably.

Cluster transport coefficients

The flux of atoms of species β between sites i and j in a cluster c, is calculated
using the continuity equation per site, in the same way as Eq. 1.126. This leads
to the same microscopic flux equation (Eq. 1.127), with the difference being that
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the microscopic flux here represents the flux associated to cluster c and not in the
entire system

Jβi→j (c) =
∑
n

P 0
nn

β
im

β
jWnm

(
hm − hn
kBT

−
∑
α

~dαnm
~∇µα
kBT

)
. (3.4)

In SCMF-d, the effective Hamiltonian difference is equivalent to an effective inter-
actions difference, and the flux equation is therefore

Jβi→j (c) =
∑
n

P 0
nn

β
im

β
jWnm

(
νm − νn
kBT

−
∑
α

~dαnm
~∇µα
kBT

)
. (3.5)

Also in SCMF-d, the flux can be expressed as an average over the equilibrium
distribution function

Jβi→j (c) =

〈
nβim

β
jWnm

(
νm − νn
kBT

−
∑
α

~dαnm
~∇µα
kBT

)〉
. (3.6)

In SCMF-d, the macroscopic flux is calculated along a direction ~ed as the aver-
age over all sites of the system of the microscopic flux along the same direction,
weighted by the jump distance along ~ed

Jβd (c) =
1

V

∑
i

nβi
∑
j∈θβi+

dβdij J
β
i→j (c) (3.7)

=
1

V

∑
i

∑
j∈θβi+

dβdij
∑
n

nβim
β
jP

0
nWnm

(
νm − νn
kBT

−
∑
α

~dαnm
~∇µα
kBT

)
(3.8)

=
1

V

∑
i

∑
j∈θβi+

dβdij

〈
nβim

β
jWnm

(
νm − νn
kBT

−
∑
α

~dαnm
~∇µα
kBT

)〉
, (3.9)

where V is the volume of the system, and dβdij is the jump distance of an atom of

species β between sites i and j along the direction ~ed. The ensemble θβi+ represents

the ensemble of β jumps from i to j such that the jumping distance dβdij is positive.
Taking only positive distances ensures that a jump and its reverse jump are not
contributing twice to the flux calculation. If one were to sum over all sites and all
jumps of the system, a jump’s contribution would be counted twice and the flux
expression would need to be divided by two

Jβd (c) =
1

2V

∑
i

nβi
∑
j

dβdij J
β
i→j (c) , (3.10)

because dβdij J
β
i→j = dβdji J

β
j→i. To extract cluster transport coefficients from the

above equation, the flux needs to be expressed as a linear function of the chemical
potential gradients (Onsager’s Eq. 1.2). In SCMF-o, the effective interactions
were found to be a linear function of the chemical potential gradient (CPG). The
next paragraph will show that in SCMF-d, the effective interactions can also be
expressed as a linear function of the CPG.
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Effective interactions To calculate the effective interactions as a linear func-
tion of the chemical potential gradients, the SCMF-o applied the stationnarity
principle to the different moments of the distribution function. The maximum size
of interactions nν is chosen based on the desired level of approximation, and all
N -body effective interactions with N ≤ nν are studied, while all others are consid-
ered to be null. The nσ effective interactions are calculated from the stationnarity
of each N -moment of the out-of-equilibrium distribution function (Eq. 1.147). In
SCMF-d, the effective interaction νn is calculated by applying the stationnarity
principle directly to the out-of-equilibrium distribution function of configuration
n, since in this case each cluster configuration n corresponds to an effective inter-
action νn

dPn
dt

= 0. (3.11)

Substituting dPn/dt with its expression (Eq. 1.130) and replacing hn with νn in
the above equation gives

∀n,
∑
m

P 0
nWnm (νn − νm) =

∑
m

P 0
nWnm

∑
α

~dαnm
~∇µα. (3.12)

Equation 3.12 is written for each cluster configuration n (or equivalently effective
interaction νn), which gives a system of coupled linear equations whose unknowns
are the effective interactions. Solving this system of equations gives the effective
interactions as linear functions of the chemical potential gradients

νn =
∑
α

ναn∇µα, (3.13)

where ναn are calculated. Since the chemical potential gradients of different species
are independent of each other, the stationnarity equation can be re-written for
each species α independently

∀n ∀α ,
∑
m

P 0
nWnm (ναm − ναn ) =

∑
m

P 0
nWnmd

αµ
nm, (3.14)

where dαµnm = ~dαnm~eµ is the projection of the distance vector along the direction of
the CPG, ~eµ. Once the ναn are calculated from the system of equations formed by
Eq. 3.14, the effective interactions are re-injected in the flux expression (Eq. 3.9).

Back to cluster transport coefficients Once the effective interactions are
calculated, the flux becomes a linear function of the CPG

Jβd (c) = −
∑
α

1

V

∑
i

∑
j∈θβi+

dβdij
∑
n

nβim
β
jP

0
nWnm (ναn − ναm + dαµnm)

∇µα
kBT

, (3.15)

and the cluster transport coefficients along a direction ~ed can be identified using
the Onsager equation (Eq. 1.2)

Ldβα (c) =
1

V

∑
i

∑
j∈θβi+

dβdij
∑
n

nβim
β
jP

0
nWnm (ναn − ναm + dαµnm) . (3.16)
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The transport coefficients can be further expressed as an average over the equilib-
rium distribution function

Ldβα (c) =
1

V

∑
i

∑
j∈θβi+

dβdij

〈
nβim

β
jWnm (ναn − ναm + dαµnm)

〉
. (3.17)

3.2.3 Symmetry operations

A system of Nconf equations has to be solved to calculate the effective inter-
actions, Nconf being the total number of cluster configurations. Even in dilute
alloys,Nconf can become a big number depending on the number of cluster compo-
nents and the kinetic radius they can diffuse in. Symmetry operations can be used
to reduce the number of equations. There are two types of symmetry operations
that we can use: crystal symmetry operations which preserve the crystal lattice,
and CPG symmetry operations which are crystal symmetry operations that ad-
ditionally preserve the direction of the CPG. Configurations that are symmetric
with respect to the crystal have the same equilibrium probability P 0

n , and are
therefore thermodynamically equivalent. Let Nthconf be the number of configu-
rations that are thermodynamically equivalent. However, these configurations do
not necessarily have the same out-of-equilibrium distribution. Remember that δPn
and νn appear due to a driving force and represent deviations from equilibrium.
All configurations which are symmetric with respect to the CPG direction will be
influenced by the driving force in the same way and will have the same δPn and νn.
These configurations have the same out-of-equilibrium probability and are there-
fore kinetically equivalent. Kinetically equivalent configurations will have effective
interactions with the same magnitude and their corresponding stationnarity equa-
tions (Eq. 3.14) will be the same. This reduces the number of equations in the
system and the number of effective interactions to calculate from Nconf to Ninter,
Ninter being the number of symmetry unique effective interactions. Note that
configurations that are kinetically equivalent are necessarily thermodynamically
equivalent, but the opposite is not necessarily true.

3.2.4 Classes of effective interactions

It is convenient to group CPG symmetric effective interactions in classes, such
that effective interactions that have the same magnitude, ‖νn‖ = νσ, belong all
to the same class σ = {νn; ‖νn‖ = νσ} = {ναn ; ‖ναn‖ = νασ ∀α}. Each effective
interaction νn can further be characterized by an occupation number nσ which
represents the class it belongs to, such that nσ equals ±1 if νn ∈ σ, and 0 otherwise.
In each class, a representative effective interaction νrefσ can be arbitrarily chosen
so that its nσ is equal to one, and for the remaining interactions in σ, nσ = 1 if the
symmetry operation that transforms it into νrefσ preserves the CPG vector, and
nσ = −1 if the symmetry operation inverses the CPG vector (Fig. 3.2). Note that
as a consequence to this, a configuration that is symmetric to itself with respect to
the direction of the CPG has a null effective interaction. This makes sense because
the distribution function of such configuration will not be affected by the CPG.
The effective interactions are therefore re-written as

νn =
∑
σ

nσνσ, (3.18)
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and
ναn =

∑
σ

nσν
α
σ . (3.19)

Note that there is only one non-zero term in the sums. Effective interactions
belonging to the same class will have effective interactions with the same magnitude
and their corresponding stationnarity equation (Eq. 3.14) will be the same. The
advantage of grouping effective interactions in symmetry unique classes is that it
reduces the number of equations to solve and the number of effective interactions
to calculate from Nconf to Ninter, Ninter being the number of effective interactions
classes.

Figure 3.2: Schematic representation of two effective interactions. On the left, a
configuration is symmetric to itself with respect to the CPG direction. The jump
frequency of the vacancy (white square) in the positive and negative directions
of the CPG are equal (wg). This configuration is not affected by the presence
of the CPG and it therefore has a null effective interaction. On the right, a
class of 4 configurations which are symmetry equivalents with respect to the CPG
direction. None of these configurations is symmetric to itself with respect to the
CPG direction, and note that a vacancy jump frequency in the positive direction
of the CPG is different from the vacancy jump frequency in the negative direction
of the CPG (wG 6= wR). These configurations have non-null effective interactions
equal to ±ν1, depending on whether a symmetry operation that allows us to obtain
them from the first configuration (top left) keeps the CPG vector or inverts it.

3.2.5 Matrix notations

The stationnarity and flux equations can be more conveniently re-written in
matrix format.

Vector of effective interactions

The stationnarity equation 3.14 is re-written in matrix notation as

Tν = Mµ, (3.20)

where ν is a vector of length Ninter whose components are the values of the effective
interactions of each class νσ/(kBT ), and µ is a vector of length Nspecies whose com-
ponents are the chemical potential gradients of each species ∇µα/ (kBT ), Nspecies
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being the total number of species. T is a matrix of size Ninter × Ninter whose
components are

Tσ0σ = nσ0

∑
m

P 0
nWnm (mσ − nσ) (3.21)

and M is a matrix of size Ninter ×Nspecies whose components are

Mσ0α = nσ0

∑
m

P 0
nWnmd

αµ
nm. (3.22)

The effective interactions vector is calculated by inverting the T matrix and solving
the system of Ninter equations of Ninter unknowns

ν = T−1Mµ. (3.23)

Note that microscopic detailed balance (Eq. 1.125) can be used to express the
components of T and M as equilibrium averages

Tσ0σ = 〈nσ0Wmn (mσ − nσ)〉 , (3.24)

and
Mσ0α = 〈nσ0Wmnd

αµ
nm〉 . (3.25)

Tensor of cluster transport coefficients

The flux equation (Eq. 3.9) can be written as a function of the ν and µ vectors

Jβd (c) = − 1

V

(
Λd

0µ− Λdν
)
, (3.26)

where Λd
0 is a matrix of size Nspecies ×Nspecies whose components are

Λd
0,βα =

∑
i

∑
j∈θβi+

dβdij

〈
nβim

β
j

∑
m

Wnmd
αµ
nm

〉
, (3.27)

and Λd is a matrix of size Nspecies ×Ninter whose components are

Λd
βσ =

∑
i

∑
j∈θβi+

dβdij

〈
nβim

β
j

∑
m

Wnm (nασ −mα
σ)

〉
. (3.28)

Replacing the effective interaction vector in Eq. 3.26 with its calculated value from
Eq. 3.23, allows us to express the flux as a function of the µ vector

Jβd (c) = − 1

V

(
Λd

0 − ΛdT−1M
)
µ, (3.29)

and the cluster transport coefficients are identified as

Ldβα (c) =
1

V

(
Λd

0 − ΛdT−1M
)
βα
. (3.30)

Schuler et al. [18] showed that if the matrix Λ is calculated along the CPG direction
(i.e. if ~ed = ~eµ), it can be expressed as a function of the M matrix, such that their
components are linked via

NσMσα = Λµ
ασ, (3.31)
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where Nσ is the number of effective interactions belonging to class σ. The matri-
ces can be linked through a diagonal matrix N of size Ninter × Ninter and whose
components are Nσ

NM = (Λµ)t . (3.32)

Here, the t exponent denotes the transpose of the matrix. Each Nσ can be calcu-
lated by applying symmetry operations that preserve the CPG direction to one of
the configurations in σ and counting the number of unique symmetry equivalent
configurations, and this is simpler and faster than calculating the M matrix. The
transport coefficient components can then be calculated along the CPG direction
as a function of three matrices only T̃ , Λ and Λ0

Lµβα (c) =
1

V

[
Λµ

0 − Λµ (NT )−1NM
]
βα

=
1

V

[
Λµ

0 − ΛµT̃−1 (Λµ)t
]
βα
, (3.33)

where T̃ = NT . Note that as long as microscopic detailed balance holds, T̃ is a
symmetric positive definite matrix. Furthermore, T̃ is a sparse matrix because, in
the general case, the number of configurations in the system is large, however, from
one configuration (νσ0) there are few accessible configurations (νσ), and therefore
most components of a line or column will be null.

3.2.6 Finite number of configurations

The dilute alloy approximation allows us to ensure a finite number of cluster
configurations to study. This is done by using the system’s invariance by transla-
tion and by setting a kinetic radius beyond which the cluster dissociates.

System volume and invariance by translation

To calculate the sums which appear in the flux and stationnarity equations
(Eq. 3.9 and 3.14), it is necessary to sum over all possible configurations n of the
cluster system which has a total volume V , and to sum over all configurations
m accessible from n. In practice, even if the cluster components are surrounded
by a homogeneous medium, the number of possible configurations in a volume of
interest V can still be large depending on the size of V , which could lead to a large
number of elements in the sums and make the system of equations harder to solve.
However, the homogeneity around cluster components makes it possible to use
invariance by translation and to work in a smaller volume. A primitive cell can be
chosen to represent the system where a translated version of all configurations with
different relative positions of the components can be built. The volume V that
appears in the equations represents then the volume of the primitive cell and not of
the whole system, and jumps are studied only from configurations belonging to this
volume. This represents a small but very important change to the stationnarity
equation by reducing a large sum to a much smaller one

Ldβα (c) =
1

V

∑
i

∑
j∈θβi+

dβdij
∑
n∈V

nβim
β
jP

0
nWnm (ναn − ναm + dαµnm) . (3.34)
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Note that here, from a configuration n in V , accessible configurations m are not
necessarily in the primitive cell volume and can be translated versions of a config-
uration belonging to the primitive cell.

Associated and dissociated configurations

As mentioned in Sec. 3.2.1, each cluster is characterized by a kinetic radius
beyond which the cluster dissociates and can associate with other clusters. The
kinetic radius represents the cut-off radius for effective interactions. Dissociated
configurations are configurations in which one or more cluster component is found
at a distance greater than the kinetic radius from all other components (Fig. 3.3).
In this case, there is no linking path between cluster components whose branches
are shorter than the kinetic range. Cluster components are assumed to no longer
interact with each other, and jumps from dissociated configurations are not stud-
ied. Connected (or associated) configurations are configurations in which all cluster
components are found to be within the kinetic radius, and jumps from these con-
figurations are studied. A jump that transforms a connected configuration to a
dissociated configuration is a dissociated jump, while the inverse jump is an asso-
ciated jump. All trajectories within the kinetic radius are to be explored. In the
formalism, all sums over initial configurations (sums over n) are sums over asso-
ciated configurations. Configurations that are accessible (m) from an associated
configuration can be both associated or dissociated, however once a dissociated
configuration is found, its corresponding kinetic trajectory is not further explored.
This happens naturally since the sum over initial configurations n does not include
dissociated configurations.

Figure 3.3: Examples of associated configurations (a and b) and a dissociated
configuration (c) in the case of a kinetic radius of 4 lattice parameters. A jump
from an associated configuration to a dissociated configuration is a dissociated
jump jd, and the inverse jump is an associated jump ja.

3.2.7 Implementation of the SCMF-d in KineCluE

This new formalism of the SCMF, SCMF-d, was implemented in an open-
source code named KineCluE in order to make the calculation of cluster transport
coefficients more accessible and user-friendly. The aim of the code is to calculate
Lµβα (c) using Eq. 3.33, which requires the computation of the three matrices T̃ ,
Λ and Λ0. The code also outputs the partition function of the cluster, which
can be used later by the user to calculate cluster concentrations and deduce the
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total transport coefficients. The code is split in two parts. The first part is an
analytical part in which the code looks for all possible cluster configurations within
a user-defined kinetic radius, makes all the links between the configurations by
finding the jump frequencies between them, and then constructs and outputs the
symbolic matrices needed to compute the transport coefficients. The second part
is a numerical part in which the code uses numerical energy values input by the
user to fill the symbolic matrices and outputs the numerical values of the transport
coefficients. The way the code is split in an analytical and numerical part allows to
compute transport coefficients as a function of temperature and strain in the most
efficient way, by running the analytical part once for each crystal structure and
atomic jump model, and by running the numerical part several times for different
values of interactions, temperature and strain.

The user input, code output and organigram of both the analytical and nu-
merical parts are summarized in the following.

3.2.7.1 Analytical part

User input The code requires information on the crystal, cluster components
and atomic jump model. The mandatory user input required to run the analytical
part of the code consists in:

� Kinetic radius.

� Lattice vectors and basis atoms to construct the crystal.

� Cluster components species and lattice sites they can occupy.

� Symmetry unique jump mechanisms.

Running the code with these information only allows the study of the transport
coefficients in a crystal with no deformations in which the driving force is along
the first user defined lattice vector. Additional user input can be provided, for
example, to:

� Apply a deformation to the crystal.

� Change the default direction of the CPG.

� Compute transport coefficients in a direction normal to the CPG.

� Run a convergence study of the transport coefficients as a function of the
kinetic radius to find the optimal kinetic radius.

Organigram Figure 3.4 shows the main steps of the analytical part of the code
which consist in reading the user input, exploring the configuration space and
finding the jump frequencies that connect the configurations, computing the sym-
bolic matrices and finally outputting and saving the necessary objects to run the
numerical part of the code.
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Figure 3.4: Organigram of the analytical part of KineCluE, in the case of a dilute
alloy.

Configuration space exploration Finding all cluster configurations and jump
frequencies that link them is a crucial step of the analytical part of the code. This
step is computationally demanding and it is therefore important to do it in an
optimized way. Figure 3.5 shows how the code finds all cluster configurations in an
efficient way. The code starts with an initial associated configuration of the cluster
components and uses the provided jump mechanisms to find all the configurations
that are accessible from it. The code then picks the next available configuration
that is associated and that hasn’t been studied before and does the same until all
configurations whose components satisfy the kinetic radius condition are found.
This allows the code to also find all jump frequencies that link configurations
through jump mechanisms. While exploring the configuration space, the code
applies symmetry operations (which conserve the crystal and the CPG direction)
to reduce the number of configurations and speed up the exploration. The code
studies symmetry unique configurations instead of studying all configurations, and
finds all accessible configurations from each symmetry unique configuration, which
reduces the code’s computational time and memory needs.
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Figure 3.5: Organigram of the full configuration space exploration in KineCluE,
in the case of a dilute alloy [18].

Output The analytical part of the code outputs and mainly saves the following
objects:

� Thermodynamically unique configurations (symmetry unique configurations
with respect to the crystal symmetry).

� Kinetically unique configurations (one configuration of each effective inter-
action class).

� Thermodynamically unique jump frequencies (associated to symmetry unique
saddle-point configurations).

� Symbolic matrices T̃ , Λ and Λ0.

� Symbolic partition function Z.

3.2.7.2 Numerical part

User input The numerical part of the code requires information to perform a
numerical application to the matrices. The mandatory user input has to contain:
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� Configuration binding energies.

� Saddle-point binding energies.

� Temperature(s) at which to calculate the transport coefficients.

Note that there are several ways for the energies to be given. The user can either
provide these energies directly, or provide enough information for the code to
calculate them using an interaction model. The user can also ask the code to
assign random values to them. In the next section, we will present briefly some
information related to the calculation of these binding energies, and for more
detailed information, one can refer to the KineCluE documentation file.

In this numerical part as well, the user can provide additional information, for
example, to:

� Compute mobility coefficients, exchange coefficients, drag ratios, correlation
factors and uncorrelated contributions.

� Compute transport coefficients in a strained crystal.

� Compute transport coefficients in a direction normal to the CPG.

� Change the default numerical precision.

� Perform a sensitivity study of the transport coefficients to identify the most
relevant jump frequencies.

� Run a convergence study of the transport coefficients as a function of the
kinetic radius to find the optimal kinetic radius.

Organigram The flowchart of the numerical part of the code is presented in
Fig. 3.6. The main steps are to load the saved objects, to read the user input and
to apply numerical values to the matrices in order to output the desired numerical
quantities.
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Figure 3.6: Organigram of the numerical part of KineCluE, in the case of a dilute
alloy.

Output The numerical part of the code outputs by default the numerical:

� Tensor of the transport coefficients along the CPG direction.

� Partition function.

Based on the user input, the code can additionally output the numerical:

� Mobility coefficients, exchange coefficients, drag ratios, correlation factors
and uncorrelated contributions.

� Tensor of the transport coefficients in a direction normal to the CPG.

3.2.8 Energy calculations

In the previous section (Sec. 3.2.7), we said that in order to run the numeri-
cal part of the code the user needs to provide configuration binding energies and
saddle-point energies. The user needs to either directly provide these values, or
provide sufficient information for the code to calculate them. Configuration en-
ergies appear in the equilibrium probabilities while saddle-point energies appear
in the jump frequency. Remember that a configuration n is split into a cluster
configuration cn and a a homogeneous matrix of pure A atoms surrounding it.
Let us introduce some notations. Let P 0

(
cn, c̄

A
n

)
≡ P 0

n and E
(
cn, c̄

A
n

)
be respec-

tively the equilibrium distribution function and the energy of a configuration n.
A saddle-point configuration is a configuration in which the cluster components
are in a saddle-point position between two stable configurations. The ’SP ’ index
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is then added to the energy notation so that ESP
(
cnm, c̄

A
nm

)
represents the energy

of a saddle-point configuration between the stable configurations n and m. The
equilibrium distribution function of a configuration n is a function of its energy
and the partition function (see Eq. 1.116 of the SCMF-o), such that

P 0
(
cn, c̄

A
n

)
=

1

Z
exp

(
−
E
(
cn, c̄

A
n

)
kBT

)
, (3.35)

where Z is the partition function of the cluster system defined as

Z =
∑
cn∈V

exp

(
−
E
(
cn, c̄

A
n

)
kBT

)
. (3.36)

The jump frequency between a configuration n and m is a function of the energy
difference between the saddle-point energy and the stable configuration energy

W ij
nm ≡ Γijnm exp

(
−
ESP

(
cnm, c̄

A
nm

)
− E

(
cn, c̄

A
n

)
kBT

)
, (3.37)

where Γijnm is the attempt frequency. The energy of any configuration n is defined
as

E
(
cn, c̄

A
n

)
= H

(
cn, c̄

A
n

)
− µ

(
cn, c̄

A
n

)
, (3.38)

where H
(
cn, c̄

A
n

)
is the Hamiltonian of configuration n, and µ

(
cn, c̄

A
n

)
is the chem-

ical potential of n. Note that the stationnarity equation and the transport coeffi-
cients equation depend on the product P 0

nW
ij
nm which is a function of saddle-point

energies and the partition function

P 0
nW

ij
nm =

1

Z
Γijnm exp

(
−
ESP

(
cnm, c̄

A
nm

)
kBT

)
. (3.39)

We can re-write the stationnarity equation

∀n ∀α,
∑
m

Γijnm exp

(
−
ESP

(
cnm, c̄

A
nm

)
kBT

)
(ναm − ναn ) =

∑
m

Γijnm exp

(
−
ESP

(
cnm, c̄

A
nm

)
kBT

)
dαµnm,

(3.40)
and the transport coefficient

Ldβα (c) =
1

V Z

∑
i

∑
j∈θβi+

dβdij
∑
n∈V

nβim
β
j Γijnm exp

(
−
ESP

(
cnm, c̄

A
nm

)
kBT

)
(ναn − ναm + dαµnm) ,

(3.41)
explicitly as a function of the energies. Notice that the 1/Z factor gets simplified
on both sides of the stationnarity equation, and therefore the effective interactions
depend only on saddle-point energies and not on stable configuration energies. This
is interesting to note because, on one hand, it makes sense that the energy of the
configuration in which the system is should not affect its kinetic transition to the
next state, and it is rather the competition between different saddle-point energies
that dictate the transition. On the other hand, this means that two systems
with completely different landscapes of configuration energies will have the same
kinetic behavior if they have the same distribution of saddle-point energies. Stable
configuration energies will only affect the value of the transport coefficients, but
not the kinetic trajectories of the system.
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Equations 3.40 and 3.41 are a function of absolute values of energies which in
practice cannot be calculated. We can calculate energy differences and therefore
we need to introduce a reference energy, Eref , with respect to which we calculate
E
(
cn, c̄

A
n

)
and ESP

(
cnm, c̄

A
nm

)
. We can multiply both sides of Eq. 3.40 with

an exponential involving the energy of a reference configuration. We call this
exponential

κ = exp

(
−Eref
kBT

)
. (3.42)

We further multiply and divide by κ both Eq. 3.41 and the partition function.
The stationnarity equation and the transport coefficient equation become

∀n ∀α ,
∑
m

Γijnm exp

(
Eb
SP

(
cnm, c̄

A
nm

)
kBT

)
(ναm − ναn ) =

∑
m

Γijnm exp

(
Eb
SP

(
cnm, c̄

A
nm

)
kBT

)
dαµnm,

(3.43)
and

Ldβα (c) =
1

V Z

∑
i

∑
j∈θβi+

dβdij
∑
n∈V

nβim
β
j Γijnm exp

(
Eb
SP

(
cnm, c̄

A
nm

)
kBT

)
(ναn − ναm + dαµnm) ,

(3.44)
where

Z =
∑
cn∈V

exp

(
Eb
(
cn, c̄

A
n

)
kBT

)
. (3.45)

Eb
SP

(
cnm, c̄

A
nm

)
= Eref −ESP

(
cnm, c̄

A
nm

)
is the binding energy at the saddle-point,

and Eb
(
cn, c̄

A
n

)
= Eref − E

(
cn, c̄

A
n

)
is the binding energy of configuration n. The

change of sign is just a matter of convention, and here a positive binding energy
means attraction. The choice of the reference energy is left for the user and should
not affect the calculations, as long as all energies are calculated with respect to it.
The most obvious choice is to choose it as the energy of the configuration in which
all cluster components are isolated in a pure A matrix. The energy difference
represents the binding energy of cluster components in each configuration and can
be calculated using standard approaches like Density Function Theory (DFT) or
a theoretical interaction model.

3.3 Extending the SCMF-d to concentrated al-

loys

When dividing the system into cluster, the SCMF-d makes the assumption that
the system can be divided into independent clusters that do not interact with each
other. Within the dilute approximation, each cluster is in a homogeneous matrix.
The number of possible configurations of each cluster is a finite number equal to the
number of possible ways cluster components can occupy the sites of a primitive cell
volume within a defined kinetic radius. As a consequence the number of effective
interactions was also finite and the system of stationnarity equations could be
solved to calculate them (Eq. 3.14). However, in a concentrated alloy, clusters can
be found surrounded by different types of atoms depending on their location in the
matrix, and the medium around cluster components is heterogeneous. Invariance
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by translation can no longer be used since the occupation of sites is not the same
everywhere in the crystal. The number of cluster configurations becomes infinite,
and, as a consequence, we cannot solve the SCMF-d equations exactly. We also
showed that replacing all sites around the cluster by a homogeneous mean-field
is a strict approximation that disables us from properly treating correlations. A
mean-field approximation can be made to replace the heterogeneous matrix by an
average homogeneous matrix. In this case, the SCMF-d formalism can be used by
considering the bulk species to have properties that are the average of those of the
species consisting the concentrated alloy. However, this approximation disables us
from properly treating the diffusion problem in concentrated alloys: short-range
order, kinetic coupling between the alloy species and kinetic correlations related
to the chemical nature of species are all not taken into account. Furthermore, we
cannot study diffusion properties related to specific chemical species since these
quantities will be calculated for the average bulk species and not for each chemical
species separately. For example, in a binary AB alloy, a mean-field approximation
which replaces all A and all B atoms by an average atom M , prevents us from
calculating collecting transport coefficients of atoms of species A since they no
longer exist in the system, and we can instead calculate transport coefficients
related to M atoms. Even though the SCMF-d is globally based on the SCMF-o,
it differs from it in the way it decomposes the system into clusters and in the way
it calculates effective interactions. This new formulation simplifies the original
theory, and the implementation of SCMF-d in the KineCluE code made it further
simpler and faster to use. In light of this new progress of the SCMF theory, the aim
of this thesis is to extend the SCMF-d to concentrated alloys and implement the
extension in the KineCluE code, in order to compute the full Onsager matrix in a
concentrated alloy in a general and automated way. In this section, we will present
the theoretical formalism of extending the SCMF-d equations to concentrated
alloys, and in the next section (Sec. 3.4), we will show its implementation in
KineCluE and the general functioning of the code.

3.3.1 Theoretical development of SCMF-c

Our model

The equations derived in SCMF-d do not explicitly take into account the ho-
mogeneity of the system. The dilute approximations simplify the problem when
summing over the different configurations and finding all configurations that are
accessible from each one of them. The derived equations remain therefore valid for
a concentrated alloy. The system of stationnarity equations to calculate effective
interactions (Eq. 3.14) , the flux equation (Eq. 3.9) and the transport coefficients
equation (Eq. 3.16) can all be used.

To calculate the flux and cluster transport coefficients, we first need to calcu-
late the unknown effective interactions. We start from the stationnarity equation
of SCMF-d (Eq. 3.14), in which we re-organize the terms as follows just for con-
venience

∀n ∀α ,
∑
m

P 0
nWnmν

α
n =

∑
m

P 0
nWnm (ναm − dαµnm) . (3.46)

Remind that here, the system under study is a cluster c, and that n represents one
cluster configuration of the system such that all atomic positions are occupied by
well defined atoms up to infinity. This equation is valid for the case of any concen-
trated alloy, given that we treat all possible configurations and jump frequencies.
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However, as discussed in the introduction of this section, Eq. 3.46 represents an
infinite set of equations with an infinite sum in each, and the equations cannot
be established nor solved in an exact manner. We also discussed that replacing
all sites around the cluster components by a homogeneous mean-field is too crude
of an approximation which prevents us from properly treating correlations. The
aim of our model, as shown in Fig. 3.7, is to provide an intermediate approach
between the exact solution and a mean-field approximation. Around each cluster
component, we consider a local environment in which we treat the problem exactly
by considering well identified atomic species occupying these lattice sites. Outside
of this environment and far from the cluster components, we consider a mean-field.
Our approach relies therefore on a mean-field approximation, but studies exactly
big clusters which do not only include the species whose diffusion is being followed,
but also their near surroundings. The advantage of this approach is that we are
precise locally around the diffusing species, which is where it matters most, and
further away we consider a mean-field which restores translational invariance since
a cluster and its local environment are in a homogeneous system. The definition
of the mean-field and mean-field atoms is not required so far and it will be defined
naturally later on as we develop the formalism. Note that, depending on the po-
sitions of cluster components, and for a fixed environment radius, the geometry
of the environment will be different. Therefore, the number of environment sites
changes from one cluster configuration to the other. Also, the type of chemical
species occupying the environment sites can change from one configuration to the
other. The varying number of species in each environment leads us to naturally
develop our formalism within the grand canonical ensemble.

Figure 3.7: Schematic representation of a 2D-square ternary concentrated alloy.
Left: exact representation. Diffusing species (white) are surrounded by a hetero-
geneous medium (green, red and yellow circles). Jump frequencies depend on the
diffusing species, on the species with which it is exchanging and on their surround-
ings; Middle: mean-field approximation. Diffusing species (white) are surrounded
by a homogeneous medium (tricolor circles) in which the properties of the mean-
field species are the average of those constituting the alloy. Jump frequencies only
depend on the diffusing species; Right: our model. Diffusing species (white) are
surrounded by a local environment radius in which the species are well-defined
(green, red and yellow circles), which in turn is embedded in a mean-field (gray
circles) whose properties are not necessarily average properties. Jump frequencies
depend on the diffusing species, on the species with which it is exchanging and on
their local surrounding.
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Effective interactions

In the case of a dilute alloy, a configuration n consisted in a cluster configuration
cn surrounded by a homogeneous matrix c̄An , which we arbitrarily chose to be a
pure A matrix; n = cn ∪ c̄An . In the case of a concentrated alloy, we split the
configuration n into a cluster configuration cn, a cluster environment en (i.e. local
environment around cluster components) and sites outside of the environment ēn
(sites that do not belong to the cluster cn nor the environment en); n = cn∪en∪ ēn
(Fig. 3.8). Note that, in the case of a dilute alloy, en and ēn are both occupied by
the same species A. Equation 3.46 is rewritten by showing the explicit dependency
of P 0

n , Wnm, and ναn on the components of n

∀n ∀α ,
∑
m

P 0 (cn, en, ēn)W (cn, en, ēn, cm, em, ēm) να (cn, en, ēn)

=
∑
m

P 0 (cn, en, ēn)W (cn, en, ēn, cm, em, ēm) [να (cm, em, ēm)− dαµnm] . (3.47)

The equilibrium probability can be written explicitly as a function of exponential
energies and the partition function

P 0 (cn, en, ēn) =
1

Z
exp

(
−E (cn, en, ēn)

kBT

)
, (3.48)

where the energy contains the Hamiltonian and the chemical potentialsE (cn, en, ēn) =
H (cn, en, ēn)−

∑
i,α n

α
i µα. Moreover, the sum over all other configurations m can

be replaced by a sum over jumps j available from configuration n. The jump
frequency is also calculated as a function of the energy difference between the
saddle-point energy and the stable configuration energy. Let cnj be the saddle-
point cluster configuration. In our case, the saddle-point energy depends on the
union of the environments of initial and final cluster configurations. Let enj be this
union of environments and ēnj the sites outside of it. We introduce the notation
Cj
n to describe all the sites which do not belong to the environment of the initial

configuration, en, but belong to the environment of the final configuration, em,
such that enj = en ∪ Cj

n. We call Cj
n the complement of en available from jump j.

Note that, for any jump j, ēn = Cj
n ∪ ēnj. The jump frequency from configuration

n to configuration m can be expressed as (Fig. 1.5)

Wnm = Wj (cn, enj, ēnj) = Γj exp

(
−ESP (cnj, en, C

j
n, ēnj)− E (cn, en, ēn)

kBT

)
,

(3.49)
where Γj is the attempt frequency associated with jump j. We make the following
assumptions:

� the effective interactions only depend on cluster configuration and cluster
environment, ναn ≡ να (cn, en, ēn) ≈ να (cn, en), and not on sites beyond en;

� the cluster configuration cn only interacts with sites belonging to the envi-
ronment, and therefore not with sites of ēn, Ecn,ēn = 0;

� the saddle-point cluster configuration cnj only interacts with the union of
sites belonging to the environment of the initial and final configuration enj,
Ecnj ,ēnj = 0;
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Figure 3.8: Schematic representation of the decomposition of a configuration n in
the case of a ternary alloy into a cluster configuration cn (containing three cluster
components drawn in white), a cluster environment en (i.e. local environment
around cluster components) and sites outside of the environment ēn (sites that
do not belong to the cluster cn nor the environment en). Chemical species of the
ternary alloy are drawn in colored circles.

Let us now focus on the left-hand side of the stationnarity equation (Eq. 3.47),
which we will call Slnα

∀n, ∀α, Slnα = να (cn, en)
∑
j

P 0 (cn, en, ēn)Wj (cn, enj , ēnj)

= να (cn, en)
∑
j

1

Z
exp

(
−E (cn, en, ēn)

kBT

)
Γj exp

−ESP
(
cnj , en, C

j
n, ēnj

)
− E (cn, en, ēn)

kBT


= να (cn, en)

1

Z

∑
j

Γj exp

−ESP
(
cnj , en, C

j
n, ēnj

)
kBT

 . (3.50)

The last line shows that, since the effective interaction να (cn, en) does not depend
on ēn, for a given cn and en, the same equation can be written for the different
occupations of the complement Cj

n and the outside sites ēnj (since ēn = Cj
n ∪ ēnj),

with να (cn, en) being a common factor. Configurations with the same cn and en
also have the same jump mechanisms j, and we can therefore sum both sides of
the equation over all possible occupations of Cj

n and ēnj

∀cn, ∀en, ∀α, Sl
nα ≡

∑
Cjn

∑
ēnj

Slnα = να (cn, en)
1

Z

∑
j

Γj
∑
Cjn

∑
ēnj

exp

(
−ESP (cnj, en, C

j
n, ēnj)

kBT

)
.

(3.51)
Effective interactions are treated in the same way as in the SCMF-d, the difference
being that they now depend on a cluster configuration and an environment around
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it, instead of just depending on a cluster configuration. In this case as well,
effective interactions can be divided into classes such that each class contains
effective interactions that have the same magnitude. There are two main difficulties
in calculating this equation in an exact manner and they are due to the large
number of cluster-environment configurations (cn, en), and on the large number
of environments ēnj for each (cn, en). The first one arises when the size of the
environment en and the number of different chemical species in the alloy lead to
a large number of possible (cn, en) configurations, and hence to a large number of
effective interactions (in Chapter 1 we discuss several times how the number of
configurations scales exponentially with the number of different species and sites,
and how it can become too large to handle even in systems that seem small). The
second problem lies in calculating the sum over all possible occupations of ēnj.
This would require us to explicitly set a size for our system in order to know the
number of sites in ēnj, since there is no translational invariance. Then, we would
have to enumerate all possible occupations of these sites, knowing that the size of
ēnj needs to be big enough to ensure that clusters are isolated and do not interact
with each other. The number of configurations with the same (cn, en, C

j
n) and

different ēnj is equal to the number of ways we can arrange the different species of
the alloy on the different sites of ēnj, and is therefore equal to

Ωēnj = (Nspec)
Nēnj , (3.52)

Nspec being the number of chemical species, and Nēnjthe number of sites in ēnj.
We arbitrarily choose to write this sum as

∑
ēnj

exp

(
−ESP (cnj, en, C

j
n, ēnj)

kBT

)
= Ωēnj exp

(
−
ESP

(
cnj, en, C

j
n, ē

M
nj

)
kBT

)
, (3.53)

where M represents mean-field atoms whose properties are not defined yet, and
the upper index M on ēnj means that all of its sites are occupied by mean-field
atoms. Therefore, ESP

(
cnj, en, C

j
n, ē

M
nj

)
represents the energy of a saddle-point

cluster configuration cnj, surrounded by a jump frequency environment enj =
en ∪ Cj

n, which in turn is embedded in a homogeneous mean-field M . Equation
3.53 represents our mean-field definition. Since we do not know the number of
sites in ēnj, and since we do not want to explicitly specify a size of the system,
we write Ωēnj = Ωe/Ωenj , where e = enj ∪ ēnj represents the entire environment
lattice sites, i.e. all the sites that can be occupied the chemical species. We do not
know the size of e, but as will be shown in a bit, Ωe is a common factor that can
be simplified, unlike Ωēnj . Sl

nα becomes

∀cn, ∀en, ∀α, Sl
nα = να (cn, en)

1

Z
Ωe

∑
j

Γj
1

Ωenj

∑
Cjn

exp

(
−
ESP

(
cnj, en, C

j
n, ē

M
nj

)
kBT

)
.

(3.54)
So far, no approximations were made on how to calculate the mean-field or an
energy involving mean-field atoms, and we only made a change in writing the sum
over ēnj as a function of a mean-field energy. The same calculation can be carried
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out for the right-hand side of the stationnarity equation (Eq. 3.47)

∀cn, ∀en, ∀α, Sr
nα =

1

Z
Ωe

∑
j

Γj
1

Ωenj

∑
Cjn

exp

(
−
ESP

(
cnj, en, C

j
n, ē

M
nj

)
kBT

)[
να (cn+j, en+j)− dαµj

]
,

(3.55)
where να (cn+j, en+j) represents the effective interaction of the configuration acces-
sible from n via a jump j (originally written as ναm), and dαµj is the total displace-
ment distance of atoms of species α after a jump j from configuration n (originally
written as dαµnm). The system of coupled linear equations that we need to solve to
obtain the effective interactions is

∀cn, ∀en, ∀α, να (cn, en)
∑
j

Γj
1

Ωenj

∑
Cjn

exp

(
−
ESP

(
cnj, en, C

j
n, ē

M
nj

)
kBT

)

=
∑
j

Γj
1

Ωenj

∑
Cjn

exp

(
−
ESP

(
cnj, en, C

j
n, ē

M
nj

)
kBT

)[
να (cn+j, en+j)− dαµj

]
. (3.56)

Note that Ωe is simplified on both sides of the equations. Just like in SCMF-d,
the saddle-point energy that appears in the equations is an absolute energy, and
we multiply both sides of the equation by some exponential involving the energy
of a reference configuration with respect to which we can calculate the saddle-
point energy. We call this exponential κ, and−ESP

(
cnj, en, C

j
n, ē

M
nj

)
is turned to

Eb
SP

(
cnj, en, C

j
n, ē

M
nj

)
, the binding energy at the saddle-point. We keep the same

sign convention for the binding energy, such that a positive binding energy means
attraction.

∀cn, ∀en, ∀α, να (cn, en)
∑
j

Γj
1

Ωenj

∑
Cjn

exp

(
Eb
SP

(
cnj, en, C

j
n, ē

M
nj

)
kBT

)

=
∑
j

Γj
1

Ωenj

∑
Cjn

exp

(
Eb
SP

(
cnj, en, C

j
n, ē

M
nj

)
kBT

)[
να (cn+j, en+j)− dαµj

]
. (3.57)

To solve this system of equations, we need to first calculate the mean-field saddle-
point binding energies. We already explained the difficulty in calculating these
terms exactly because of the sum in Eq. 3.53. Therefore, we need to find another
way of calculating them, or approximating them, and this will be the main topic of
Section 3.5. Once we know the values of these binding energies, we can calculate
the effective interactions from Eq. 3.57. These effective interactions are then used
to calculate the cluster transport coefficients.

Cluster transport coefficients

We need to establish the expressions of the cluster transport coefficients in the
case of a concentrated alloy. Equation 3.16 of SCMF-d which gives the transport
coefficients is also valid in the general case of a cluster. We make few notation
adjustments which make the expression more convenient to use in the treatment
of concentrated alloys. The respective sums over all sites in the cluster system
i and all accessible sites j with a positive displacement vector between them is
instead written as a sum over all jumps j that are possible from a configuration n,
and the expression is divided by a factor 2 since a jump and its reverse jump are
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counted twice (see Eq. 3.10). Lastly, the displacement distance dβdij is replaced by

the notation dβdj , and the cluster transport coefficient becomes

Ldβα (c) =
1

2V

∑
n∈V

∑
j

dβdj P
0
nWnm

(
ναn − ναm + dαµj

)
. (3.58)

Note that here and in the following, we will write ναn instead of να (cn, en) to
simplify notations, but keep in mind that an effective interaction νn only depends
on cn and en, and not on ēn. By analogy with the way we treated the stationnarity
equation, a configuration m accessible from n via a jump j is represented by the
symbols (n+ j), the probability of being in a configuration n and transition into
a configuration m is calculated as a function of a saddle-point energy

P 0
nWnm =

1

Z
Γj exp

(
−ESP (cnj, en, C

j
n, ēnj)

kBT

)
, (3.59)

and the sum over n is divided into a sum over its components (cn, en, ēn), which
for a jump j is equivalent to (cn, en, C

j
n, ēnj),

Ldβα (c) =
1

2V Z

∑
cn∈V

∑
en

∑
j

dβdj Γj
∑
Cjn

∑
ēnj

exp

(
−ESP (cnj, en, C

j
n, ēnj)

kBT

)(
ναn − ναn+j + dαµj

)
.

(3.60)
Using the mean-field definition (Eq. 3.53), the transport coefficient becomes a
function of a mean-field saddle-point energy

Ldβα (c) =
1
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∑
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)
.

(3.61)
Here again, we need to transform the absolute energy into a binding energy, so we
multiply and divide Eq. 3.61 by the energy exponential of a reference configuration,
which we call κ. We also replace Ωēnj by Ωe/Ωenj

Ldβα (c) =
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)
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(3.62)
Just like in SCMF-d, we can use matrix notations for convenience, and we can
calculate the components of the transport coefficients tensor as

Ldβα (c) =
1

V

[
Λd

0 − ΛdT−1M
]
βα
, (3.63)

where, Λd
0 is an Nspecies ×Nspecies matrix whose components are

Λd
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dαµj , (3.64)

Λd is an Nspecies ×Ninter matrix whose components are

Λd
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,

(3.65)
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T is an Ninter ×Ninter matrix whose components are

Tσ0σ = nσ0

∑
j

Γj (mσ − nσ)
1

Ωenj

∑
Cjn

exp

(
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nj

)
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)
, (3.66)

and M is an Ninter ×Nspecies matrix whose components are

Mσ0α =
∑
j

Γj
1
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(
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(
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)
kBT

)
dαµj . (3.67)

Remember that Λd
0 and ΛdT−1M represent respectively the un-correlated and the

correlated part of Ldβα. Furthermore, in case the diffusion direction is taken to be
the CPG direction (~ed = ~eµ), the expression of the transport coefficient is further
simplified such that we only need to calculate three of these matrices

Ldβα (c) =
1

V

[
Λµ

0 − ΛµT̃−1 (Λµ)t
]
βα
, (3.68)

where T̃ = NT , with N a diagonal matrix whose components are the number of
effective interactions in each class.

Cluster partition function

The partition function of the system can be calculated

Z =
∑
n∈V

P 0 (cn, en, ēn) (3.69)

=
∑
cn∈V

∑
en

∑
ēn

exp

(
−E (cn, en, ēn)

kBT

)
. (3.70)

The difficulty in calculating the partition function exactly is of the same spirit as
the problem encountered in the above equations. The number of configurations n
depends mainly on the number of configurations ēn for each cluster-environment
configuration, because of its relatively big size. We use the same mean-field ap-
proximation used for saddle-point energies, but this time we apply it to stable
configurations∑

ēn

exp

(
−E (cn, en, ēn)

kBT

)
= Ωēn exp

(
−
E
(
cn, en, ē

M
n

)
kBT

)
. (3.71)

Ωēn is the number of ways we can arrange species on the sites of ēn, and E
(
cn, en, ē

M
n

)
represents the energy of a cluster-environment configuration embedded in a homo-
geneous mean-field whose properties are still undetermined. Since e represents the
set of all environment sites, it can also be written as e = en ∪ ēn, and therefore
Ωēn = Ωe/Ωen . The partition function becomes a function of a mean-field energy

Z = Ωe

∑
cn∈V

1

Ωen

∑
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(
−
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)
kBT

)
, (3.72)

which is then expressed as a function of a mean-field binding energy for convenience

Z =
Ωe

κ
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cn∈V

1
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∑
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(
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)
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)
. (3.73)
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Note that κ and Ωe get simplified when substituting the partition function (Eq.
3.73) in the transport coefficient expression (Eq. 3.62). The choice of the refer-
ence configuration and its energy do not affect the calculations, and only provides
a reference with respect to which all energies (stable configuration energies and
saddle-point energies) are calculated. The size of the system also does not appear
explicitly and does not affect the calculations.

Correlation factors

In the following sections, we will be interested in calculating correlation factors
of cluster components, therefore it is useful to quickly show its expression in the
SCMF-c. Remember that the correlation factor represents the ratio of the real
diffusion coefficient over the diffusion coefficient that we would obtain in case there
were no correlations (see Sec. 3.3.1). In our formalism, the full transport coefficient
is given by Eq. 3.68 and the uncorrelated part is given by Λµ

0/V . Therefore, once
the three matrices are computed, the correlation factor of a species β can be
calculated from

f
(β)
ββ =

Lµββ
[Λµ

0 ]ββ / (V )
= 1−

[
ΛµT̃−1 (Λµ)t

Λµ
0

]
ββ

. (3.74)

3.3.2 Theoretical differences between SCMF-d and SCMF-
c

In SCMF-c, the three main equations are the stationnarity equation,
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(3.75)
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]
, (3.76)

the transport coefficients,
Ldβα (c) =
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(3.77)
and the partition function,
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∑
cn∈V

1

Ωen

∑
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kBT
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. (3.78)

Terms colored in red represent the deviation of the SCMF-c equations from those
of the SCMF-d. The key differences are summarized in Table 3.1. In a dilute
alloy, for any cluster configuration cn there is no environment en = ∅, and there
is one exterior ēn = ēAn . Note that since there are no environments around cluster
configurations, ēn = c̄n, and therefore for any configuration we have ēn = ēAn = c̄An .
For each jump j, there are no complements or jump frequency environments, and
there is one exterior of pure A atoms, so that for all j, Cj

n = ∅, enj = ∅ and
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ēnj = ēAnj = c̄Anj. The number of possible configurations of ēnj is therefore Ωenj = 1.
Using all this in the stationnarity equation (Eq. 3.76), it reduces as expected to
its dilute form
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)
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)
(3.79)
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]
. (3.80)

This is also the case for transport coefficients (Eq. 3.77)

Ldβα (c) =
1

2κV Z

∑
cn∈V

∑
j

dβdj Γj exp

(
Eb
SP

(
cnj, c̄

A
nj

)
kBT

)[
να (cn)− να (cn+j) + dαµj

]
,

(3.81)
and for the partition function (Eq. 3.78)
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)
. (3.82)

Note that the binding-energy which is a function of a mean-field (Eq. 3.71) can
be calculated exactly in the case of a dilute alloy since the sum over ēn reduces to
one element
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(3.83)

SCMF-d SCMF-c

Stable
configuration n

cluster + cluster
exterior pure A

cn ∪ c̄An ≡ cn ∪ eAn ∪ ēAn

cluster + environment + environment exterior
pure M

cn ∪ en ∪ ēMn

Saddle-point
configuration nj

jump cluster + jump
cluster exterior pure A

cnj ∪ c̄Anj ≡
cnj ∪ eAn ∪ Cj,A

n ∪ ēAnj

jump cluster + jump environment (en ∪ Cj
n) +

jump environment exterior pure M
cnj ∪ en ∪ Cj

n ∪ ēMnj

Effective
interaction ναn

function of cn function of cn and en
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(e, en, and enj)

1
1
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Table 3.1: Summary of the main differences between SCMF-c and SCMF-d.
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3.4 Extending KineCluE to concentrated alloys

The theoretical development of SCMF-c was implemented in the KineCluE
code to extend it to the computation of transport coefficients in concentrated
alloys. To study dilute alloys, the code assumes a homogeneous medium around the
cluster components, and to study concentrated alloys, the code creates the required
local environments around user-chosen defects and assumes a homogeneous mean-
field around them. The implementation of the formalism was done in a way to
preserve as much of the original organigram as possible, and to include the special
treatment of concentrated alloys only when needed, particularly the management
of environments and the mean-field homogeneous medium. For the study of a
dilute alloy, the user input, the organigram and the output remain the same as
presented in Sec. 3.2.7. For the study of a concentrated alloy, additional user input
is required to the original one, and the output of the code is now also concentration
dependent.

In the case of concentrated alloys, the main difference is the presence of local en-
vironments with different species in them around cluster components. This directly
increases the number of configurations and effective interactions, and therefore the
size of the matrices that need to be calculated. Particularly, this increases the size
of the T̃ matrix (Ninter×Ninter) which needs to be inverted. It is therefore impor-
tant to find the optimal balance between what to calculate once, store in memory
and use several times (memory consuming but time friendly), and between what
to calculate several times (memory friendly but time consuming).

The main question was to find if it is better to construct symbolic matrices,
store them and then apply numerical values to them, or if it is better to directly
construct the numerical matrices. As discussed in 3.2.7 when exploring the con-
figurations, symmetry operations help reduce the size of the configuration space.
In the case of cluster configurations, the number of components is usually small
enough to obtain several symmetry equivalent configurations and reduce the size of
the configuration space. Adding environment sites with different species occupy-
ing them reduces the number of symmetry equivalent configurations and therefore
doesn’t reduce by much the size of the configuration space. Reducing the number
of cluster-environment configurations through symmetry operations comes mainly
from symmetry equivalent cluster components positions. It is therefore more inter-
esting to apply symmetry operations on cluster components alone first, reduce the
number of cluster configurations, construct environments around symmetry unique
cluster configurations, then apply symmetry operations on the reduced number of
cluster-environment configurations.

In practice, we cannot enumerate all environments around cluster configura-
tions, and we need to introduce a sampling scheme that reduces their number.
The most efficient sampling is a concentration based sampling (this will be further
discussed in Sec. 3.5). Ideally, we want to calculate transport coefficients as a
function of concentration and we don’t want to repeat the analytical calculation
from zero for the same crystal structure, jump mechanism and environment struc-
ture, every time we change the concentration of species. This means that it is
more efficient to construct only once the environments around symmetry unique
cluster configurations and around symmetry unique jump frequencies, and, in a
second step, to fill the environments with species based on a sampling scheme,
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to identify symmetry unique cluster-environment configurations and effective in-
teractions, and to directly construct numerical matrices. We can no longer build
the complete symbolic matrices in the analytical part of the code, and we will
need to directly construct the numerical matrices. This is an added argument to
fill environments in the numerical part of the code, since the size of the matrices
can become large, symbolic calculations can be slow, and it can become computa-
tionally demanding to save these objects and to apply numerical values to them.
enumeration of cluster-environment configurations and effective interactions has
to be done in the numerical part of the code.

Based on the symmetry and sampling arguments given in the previous two para-
graphs, grouping cluster-environment configurations in thermodynamically equiv-
alent classes and kinetically equivalent classes has to be done in two separate steps
and divided between the analytical and numerical parts. In the first step in the
analytical part of the code, we work with cluster components alone as if they were
surrounded by a homogeneous matrix, and we group them in effective interaction
classes of cluster components. This is equivalent to what the code already did in
the case of dilute alloys. In the second step, once the concentration is known, en-
vironments are built around representatives of these previously identified classes,
symmetry operations are applied to them again, and they are split accordingly into
cluster-environment classes that are thermodynamically equivalent and kinetically
equivalent.

In this section we will highlight the most important additional algorithmic fea-
tures and functionalities, as well as the required user input to study a concentrated
alloy, in both the analytical and numerical parts of the code.

3.4.1 Analytical part

Additional user input The analytical part of the code creates environments
around symmetry unique defects, jump mechanisms, cluster configurations and
jump frequencies. For the creation of such environments, the necessary additional
user input consists of:

� Environment radius (the maximum distance between the cluster component
and the sites of the environment):

� Lattice sites that can be occupied by the environment species:

� Cluster components whose local environment is to be explored.
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(a) Scheme of local environment (blue circles) around isolated cluster components
(white square, circle and triangle). The environment radius is 1.5 lattice parameters

and the environment sites are substitutional lattice sites. Each letter denotes a unique
environment site (not the occupation of it).

(b) Scheme of local environment around a cluster configuration n. The environment of
a configuration is the combination of the environments around the isolated cluster.
Environment sites that overlap (red letters) are identified and considered to be only

one unique site (only one species can occupy each of these sites).

(c) Scheme of local environment around a jump mechanism j (white square exchange
with a nearest neighbor atom). We define a jump mechanism environment as the

collection of sites that are around the final cluster component configuration (within the
yellow circle) and that do not overlap with the sites around the initial cluster

component configuration (within the blue circle). This definition is useful to construct
the environments around jump frequencies.

(d) Scheme of local environment around a jump frequency that links configurations n
and m via a jump mechanism j. The jump frequency environment is the combination

of the environment around the initial cluster components configuration (within the
blue circles) and the environment around the corresponding jump mechanism (yellow

letters).

Figure 3.9: Schemes of local environment construction around isolated cluster com-

ponents, a cluster configuration, a jump mechanism and a jump frequency. Note that

environments are constructed only around symmetry unique objects to reduce computa-

tional time and memory, and symmetry operations are used to determine environments

around symmetry equivalent objects when needed.
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Organigram Figure 3.10 shows the main steps of the analytical part of the code.
The first part is common for studying both dilute and concentrated alloys and con-
sists in finding all cluster configurations and jump frequencies and reducing their
numbers by grouping them using symmetry operations. In the case of a concen-
trated alloy, the code then uses the additional input to create local environments
around isolated cluster components and around jump mechanisms, and combines
them to create a local environment around each symmetry unique cluster con-
figuration and around each symmetry unique cluster jump frequency. Figure 3.9
shows how the code creates these environments and combines them while dealing
with overlapping sites. In the case of a dilute alloy, the code instead computes the
symbolic matrices and stores them.

Figure 3.10: New organigram of the analytical part of KineCluE.
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Output The analytical part of the code outputs and saves mainly the following
objects:

� Thermodynamically unique cluster configurations;

� Thermodynamically unique cluster jump frequencies;

� Environment objects around configurations and jump frequencies.

Note that in this case, the symbolic matrices are no longer needed and the numer-
ical matrices are calculated directly in the numerical part since the exact cluster-
environment configurations and effective interactions cannot be determined until
the environment species are given and the environment occupations are explored.

3.4.2 Numerical part

Additional user input The numerical part of the code consists mainly on filling
the environment sites with species, grouping cluster-configurations in symmetry
unique groups and effective interaction classes by the use of symmetry operations,
and finally computing the numerical matrices and the transport coefficients. For
this, the mandatory numerical user input should contain:

� Environment species;

� Average concentrations and local concentration fluctuations of each species.

Additionally, as will be shown in the next Section 3.5, it is recommended to use a
sampling scheme to reduce the configuration space. The user has to provide infor-
mation on the sampling scheme and set a maximum number of effective interaction
classes, Ninter, to explore, which is equivalent to setting the maximum size of the
T̃ (Ninter ×Ninter) and Λ (Nspecies ×Ninter) matrices. Note that the code samples
the configurations on-the-fly while finding them, and the way it is implemented
and how it reduces the number of configurations efficiently are discussed in more
detail in the Sec. 3.5.

Organigram Figure 3.11 shows the main flowchart of the numerical part of
the code which, for the case of a concentrated alloy, consists in exploring the
full or sampled configuration space, finding the jump frequencies that link the
configurations and directly computing the numerical matrices. Note that the code
remains unchanged when studying a dilute alloy.



CHAPTER 3. EXTENDING SCMF-D AND KINECLUE TO CONCENTRATED ALLOYS 177

Figure 3.11: New organigram of the numerical part of KineCluE.

Output The numerical part of the code outputs the same properties as in the
case of a dilute alloy except that they are concentration dependent. By default
the code outputs the concentration dependent:

� Tensor of the transport coefficients along the CPG direction;

� Partition function.

Additionally the code can output the concentrated dependent:

� Mobility coefficients, exchange coefficients, drag ratios, correlation factors
and uncorrelated contributions;

� Tensor of the transport coefficients in a direction normal to the CPG.
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3.5 Sampling the configuration space: general

sampling organigram

As has been discussed multiple times in this manuscript so far, the main diffi-
culty when studying concentrated alloys is the number of configurations and jump
frequencies that scales with the size of the system and the number of species in it.
In the SCMF-d and SCMF-c theories, the number of effective interaction classes
is also a limiting factor because the size of the linear system to solve increases
with the number of effective interaction classes. In SCMF-c, instead of studying
precisely all the possible occupations of the sites of the system, under our assump-
tions, the problem reduces to the study of a finite number of local environments
sites surrounding the diffusing species, which reduces drastically the size of the
relevant configuration space. Yet, if environments have radii up to only the 2nd or
3rd nearest neighbors (nn), the number of environment sites is still big enough to
make the problem too large to be solved. Imagine the simplest case of diffusion of
one vacancy in a simple cubic structure, and let us suppose the local environment
around the vacancy has a radius of a0

√
3, a0 being the lattice parameter (Fig.

3.12). Such environment consists in considering the nearest-neighbor sites around
the vacancy up to its 3rd nn, which makes a total of 26 sites to fill. For binary
alloys, there are more than 67 million configurations to explore, and for ternary al-
loys, the number of possible configurations is more than a trillion! Computational
time and memory are limiting factors when it comes to enumerating such a big
number of configurations while finding all jumps that connect them. Even though
computational time can become a limiting factor, we will show in Sec. 3.23 that
the main computational limitation of the code in its current state is its memory
requirements. Memory scales with the number of cluster-environment configura-
tions and in particular with the number of effective interactions. On one hand, the
code requires enough memory to save necessary information and objects related
to each configuration and effective interaction. More importantly on the other
hand, as shown in Sec. 3.3.1, the sizes of the T̃ and Λ matrices are respectively
Ninter ×Ninter and Nspec ×Ninter, where Ninter is the number of effective interac-
tion classes. Even though the T̃ matrix is in general sparse, and even though we
use mathematical tools that are optimized for sparse matrices, like the Cholesky
decomposition [145], storing and inverting an Ninter × Ninter matrix becomes a
limiting factor as the size and number of species of the environment increase. It
is therefore crucial to implement a sampling scheme that reduces the number of
configurations and effective interaction classes. Our goal is to compute transport
coefficients using only a fraction of the effective interactions, in order to reproduce
the results of the full configuration space with as few configurations as possible.
In order to get accurate results, the sampling scheme has to be able to identify the
configurations and trajectories with the most important thermodynamic and/or
kinetic weights and which have the most important effect on the calculated values
of transport coefficients.
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Figure 3.12: Schematic representation of a simple cubic structure in which a va-
cancy is surrounded by an environment with a a0

√
3 radius, a0 being the lattice

parameter. The 26 environment sites represent the vacancy’s nearest neighbors
(nn) up to the 3rd nn. The vacancy is represented by a white cube, its 1st nn by
red spheres, its 2nd nn by blue spheres and its 3rd nn by green spheres.

Remember that, in our formalism, a configuration n is defined by its cluster
configuration and the local environment surrounding it, and all remaining sites
constitute a homogeneous mean-field. A cluster-environment configuration in the
concentrated case can be treated in the same way as a cluster configuration in the
case of a dilute alloy. The first difference is that a cluster-environment is bigger
than a cluster alone, with more species and sites to consider, which increases the
number of configurations. The second main difference is that the homogeneous
bulk around the configuration in the concentrated case is a mean-field and affects
the calculations, while in the dilute case it is a reference system which has no effect
on the calculations. Even though the environment is local around cluster compo-
nents, and its size increases exponentially the extent of the configuration space, we
still need to consider a big enough environment radius for a better representation
of the real system and to properly take into account interactions and kinetic cor-
relations. This implies that we cannot enumerate and calculate the energies of all
the configurations, and we need to sample the cluster-environment configurations.
Since these configurations are used to study the kinetics of the system, they need
to be connected among each other, and therefore we need to insure that the sam-
pled configurations form a connected sub-space of the original configuration space.
Additionally, each time a configuration is found, all its symmetry equivalent con-
figurations are automatically accounted for. The reason behind this is that, on one
hand, symmetry equivalent configurations are thermodynamically equivalent and
it is necessary to include them all to properly account for the symmetry of kinetic
trajectories. On the other hand, it is not very computationally expensive to add
them since some of them will also be kinetically equivalent, and most importantly
we only need to explore the trajectory from one of them (the trajectories from the
others being symmetrically equivalent).

We present here the general way the sampling algorithm works, and in the
next section we will discuss in detail the different schemes that we tested. Here,
we need to distinguish between three different lists of configurations

� Kirep List contains configurations that have a non-null kinetic interaction
and that were explored, i.e. all jumps from these configurations were consid-
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ered. An equation of the form of Eq. 3.57 will be written for each of these
configurations, and the size of the system to be solved will depend on the
number of configurations in this list. The maximum size of this list is set by
the user.

� Found List contains configurations that were found but not necessarily ex-
plored. This includes both associated and dissociated configurations, and
configurations with a null or non-null kinetic interactions.

� To Explore List contains non-dissociated configurations which were found
and are waiting to be explored.

The steps of the algorithm are

1. Initialize empty Kirep List;

2. Pick a random cluster configuration ci;

3. Apply a sampling scheme to the environment of ci and get one environment
occupation ei, such that (ci ∪ ei) has a non-null effective interaction;

4. Initialize To Explore List with (ci ∪ ei);

5. Initialize Found List with (ci ∪ ei) and its symmetry equivalents;

6. Apply a sampling scheme to cluster-environment configurations in To Explore List
and select one (cn ∪ en) from the list;

7. Add (cn, en) and its kinetic equivalents to Kirep List;

8. Loop over jumps available from (cn ∪ en)

(a) Find final cluster configuration cm and identify its environment sites
em;

(b) Identify the species that occupy the sites that are in common between
en and em;

(c) Apply a sampling scheme to the environment of cm and get one envi-
ronment occupation em, while properly managing the sites that are in
common between en and em;

(d) Add (cm ∪ em) and its symmetry equivalents to Found List, if it was
not there already;

(e) Add (cm ∪ em) to To Explore List if its cm is not a dissociated cluster
configuration, if its kinetic interaction is not null, and if it was not
already in the list;

9. Is the number of effective interaction classes in Kirep List equal to the
desired number?

(a) yes: end configuration space sampling;

(b) no: continue to next step;

10. Remove (cn, en) from To Explore List;

11. Is To Explore List empty?
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(a) yes: end configuration space sampling;

(b) no: go back to step 6;

We need to use a sampling scheme at steps 3, 6, and 8(c). Ideally, we want
the sampling scheme to give us in the end the sub-space of cluster-environment
configurations that is the most representative of the full configuration space. At the
same time, we want the sampling algorithm to be computationally optimized since
we are applying it several times. We need it to be fast and to not waste time by
computing things that will not be used later on by the algorithm. The sampling
scheme at steps 3 and 8(c) needs to sample environments and fill environment
sites to create new configurations, while the one at step 6 needs to select one
configuration among existing cluster-environment configurations. The filling of
environment sites can be done at random or based on concentration, and will be
further discussed in Sec. 3.5.2.

The sampling scheme at steps 3 and 8(c) is used to find one occupation of
the environment sites among all the possible occupations. If at these steps the
code enumerates all possible occupations, calculates the energy of all associated
cluster-environment configurations and then picks only one of them, we can see
that a lot of computational time will be lost on enumerating and calculating the
energies of configurations which will not be used. Ideally, we want to instead pick
an occupation among all the possible ones without enumerating them.

On the other hand, for the sampling that happens at step 6, we already have a
list of well identified cluster-environment configurations and we want to pick one
of them. Additionally, these configurations will be part of the configuration space,
even if we do not explore the possible jumps from them. This means that the
energies of these configurations are needed and we will need to calculate them at
some point. For this reason, in step 6, we decide to use a pseudo residence-time
algorithm to pick a configuration to explore among the ones in To Explore List
based on its energy.

The coupling of the pseudo residence-time algorithm which picks a configura-
tion based on its energy with another sampling scheme that picks a configuration
based on concentration, has the power to construct a sub-space in which concentra-
tion distribution and thermodynamic interactions both play a role in the selection
of configurations.

3.5.1 Sampling configurations: the pseudo residence-time
algorithm

This sampling step consists in selecting one configuration from a list of previ-
ously identified configurations. This list represents a subspace of the configuration
space, and we use the pseudo-residence time algorithm to select one of the config-
urations based on thermodynamic weights. The pseudo residence-time algorithm
that we implemented works in a similar way to the residence-time algorithm dis-
cussed in Sec. 1.5.2.2. In the residence-time algorithm, the probability of picking
a transition is proportional to its frequency. Here, the probability of picking a
configuration is proportional to its equilibrium probability. The main steps of the
algorithm are:
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1. Calculate the sum of all un-normalized configuration probabilities,

Z =

Nconf∑
n=1

pn =

Nconf∑
n=1

exp [−En/ (kBT )] , (3.84)

where Z represents the partition function of a subspace of the phase space;

2. Pick a random number between 0 and 1, rn ∈ [0, 1];

3. Form the list of all configurations and pick the k-th configuration whose
probability satisfies

k−1∑
n=1

pn ≤ rnZ ≤
k∑

n=1

pn. (3.85)

The probability of picking a configuration is therefore proportional to its proba-
bility, as shown in Figure 3.13. Additionally, using this algorithm guarantees that
at every time step a configuration is chosen, as opposed to using a Metropolis
algorithm for example. We chose to apply this algorithm to stable configuration
energies, but one can also apply it to saddle-point configuration energies. While
configuration energies and saddle-point energies are linked, from a configuration
n, the jump with the highest probability does not necessarily lead to the configu-
ration with the highest probability among the accessible ones. We showed in Sec.
3.2.8 that it is in fact saddle-point energies which drive the kinetics of the sys-
tem. The subspace built based on the lowest saddle-point energies will therefore
contain the most probable trajectories. While a good representation of kinetic
trajectories is important for a good description of the diffusion phenomena and
kinetic correlations, so is a good representation of the thermodynamics of the con-
figuration space. Here, we choose to apply the pseudo residence-time algorithm to
configuration energies because it is easier to implement and less computationally
demanding. It would be interesting to conduct a study to analyze the effect of this
choice on the results.

Figure 3.13: Scheme that shows how the pseudo residence-time algorithm works
in the case of a number of configurations Nconf = 6. The pseudo residence-time
algorithm is equivalent to stacking the configuration probabilities such that the
length of a probability is proportional to its value pn, and to randomly set a point
on the line and pick the configuration on which the point falls. This guarantees
that the probability of picking a configuration n is proportional to its length, which
is proportional to its probability pn. Note the similarities with the residence-time
algorithm presented in Chapter 1 in Sec. 1.5.2.2, where the difference between the
two is only in replacing transition probabilities with configuration probabilities.

In an Atomic Kinetic Monte Carlo (AKMC) simulation, we explore the con-
figuration space in a linear manner by following a specific kinetic trajectory. In
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the sampling scheme of KineCluE, we construct little by little trajectories in all
directions, and at each stage of the sampling algorithm, the construction starts
from any of the previously visited points, and not necessarily from the last one.
Once the configuration subspace is built, we generate all the possible trajectories
within it and solve the problem of effective interactions in an exact way inside this
subspace.

3.5.2 Sampling environments

As discussed in Sec. 3.5, we need a sampling scheme to fill the sites of an
environment around a cluster configuration, without having to enumerate all the
possible occupations of these sites. Therefore, this sampling does not depend on
the energy of the cluster configuration. Nonetheless, the choice of how to fill
environment sites is important because it is the cluster-environment configura-
tions built from these environments which will constitute the basis from which
the pseudo residence-time algorithm will pick the most probable configurations.
The pseudo residence-time algorithm makes sense only if the configurations among
which it chooses one are relevant, and these configurations are generated by the
environment sampling scheme.

We suggest two environment sampling schemes. The first one is the “random”
sampling which consists in filling environment sites in a completely random way.
The second one is the “reservoir” sampling which consists in filling environment
sites from an outside reservoir of atomic species. In the next section (Sec. 3.6),
we will discuss in detail these two schemes, and highlight the advantages and
disadvantages of each.

3.6 Sampling the configuration space: choice of

the environment sampling scheme

In order to study the random sampling scheme and the reservoir sampling
scheme, we apply both of them to the case of a mono-vacancy diffusion in a binary
random alloy AB with a 2D-square structure. Since filling environment sites does
not depend on their energies, we choose to study the case of a random alloy in
which there are no thermodynamic interactions between atoms and in which all
configurations have the same equilibrium probability. The system consists of a
cluster of one vacancy, and the local environment radius around it is 2a0, a0 being
the lattice parameter (Figure 3.14). The environment includes 12 sites up to the
3nd nearest-neighbors (nn) of the vacancy. Since the cluster contains only one
vacancy, there is no use of a kinetic radius (see Sec. 3.2.6). We consider that
the vacancy (V ) diffuses via vacancy-environment (V −A and V −B) exchanges,
where wA (resp. wB) is the vacancy-A (resp. vacancy-B) exchange frequency.
The vacancy jump frequency ratio wA/wB is taken equal to 5. The size of the
configuration space of this system (4096 cluster-environment configurations and
1008 cluster-environment kinetic interaction classes) is on one hand big enough to
be interesting and to include a variety of configurations, and on the other hand not
too big to be able to perform a full exploration and use its results as a reference.
We test the random sampling and the reservoir sampling by creating with each
one of them a configuration subspace containing only a fraction of the effective
interactions, and we calculate the values of the vacancy correlation factor and
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compare it to the value obtained when considering the full configuration space.

Figure 3.14: Representation of the system used to study and optimize the envi-
ronment sampling schemes: a vacancy (white square) in a 2D-square random alloy
with an environment radius of 2 lattice parameters. Sites belonging to the envi-
ronment are colored in black, and sites outside of the environment are colored in
gray. In the case of a binary alloy, each black site can be occupied by either an A
or a B atom, while all gray sites are occupied by mean-field atoms.

3.6.1 Properties of interest

Before we study the sampling schemes, let us define the properties that we will
be calculating and using to judge a sampling’s performance.

3.6.1.1 Sampled percentage

We need to reduce the number of effective interaction classes in the system.
Based on the available computational power, we can usually know the maximum
size of the linear system that can be solved and therefore the biggest number
of effective interactions that can be considered (in our case it was around 50000
for a calculation on a personal laptop). A sampling’s accuracy will depend on
the number of sampled interactions, but more importantly on the percentage of
interactions that are sampled. A sampled space of 500 effective interaction classes
out of 600 is more representative of the full configuration space than a sample of
500 interactions out of 6000. We define η as the percentage of sampled effective
interaction classes, such that

η =
N scs
inter

N fcs
inter

× 100 [%] , (3.86)

where N scs
inter and N fcs

inter represent the number of effective interaction classes in
the sampled configuration space (scs) and the full configuration space (fcs) re-
spectively. Note that, practically, we cannot always know the value of N fcs

inter, as
calculating it requires us to explore the full configuration space and to find CPG
symmetry equivalent configurations in order to group them in effective interaction
classes. What we can know is the total number of possible configurations, which
requires us to explore cluster configurations only (not cluster-environment config-
urations) and can be directly calculated from the number of environment sites in
each cluster configuration (which depends on the geometry of the configuration)
and the number of components in the system. The total number of configurations
in the system is higher than the number of effective interaction classes, but it can
give us an order of magnitude. In all cases, we know that in realistic applications,
the value of η will be much lower than 1%.
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3.6.1.2 Relative error

Ideally, we want the properties (transport coefficients, correlation factors, etc...)
calculated using a sampled configuration space to be as close as possible to the
values we would calculate if we were to consider the full configuration space. The
accuracy of a property φ calculated using a sampled system is therefore given by
the relative error

ζ (φ) =

∣∣φscs − φfcs∣∣
φfcs

, (3.87)

where φscs and φfcs are respectively the values of φ calculated using a sampled con-
figuration space (scs) and the full configuration space (fcs). In order to calculate
this relative error, we need to work with systems in which the number of effective
interaction classes is small enough for a full configuration space exploration to be
feasible.

3.6.1.3 Distribution functions

Local concentration distribution In an alloy, the local concentration can
differ from the average concentration in the alloy. The local concentration distri-
bution represents the number of configurations at different local concentrations.
We define the normalized local concentration distribution of A as the ratio of the
number of sampled configurations at a concentration XA with respect to the total
number of configurations at the same concentration XA that can be found in the
full configuration space

Cd (XA) =
N scs (XA)

N fcs (XA)
, (3.88)

whereN scs (XA) andN fcs (XA) represent respectively the number of configurations
in the sampled configuration space in which the concentration of A equals XA,
and the number of configurations in the full configuration space in which the
concentration of A equals XA. This allows us to know how many of the available
configurations at a given concentration the code managed to find. A ratio Cd (XA)
of 1 means that the sample includes all the possible configurations at XA, and
a ratio of 0 means that the sample does not include any configurations at XA.
Ideally, if the targeted average alloy concentration of A is say 0.1, we want most
of the configurations that have a local concentration of A of 0.1 to be found and
included in the sample, and most of the configurations with a concentration far
from 0.1 to be less included because they have a lower thermodynamic weight and
therefore will probably not affect much the numerical result. Therefore, we want
the distribution CA

d (XA) to be centered around the average A concentration with
a value close to 1.

Probability distribution It is important to some extent that the local con-
centration be centered around the average concentration, but it is much more
important that the sampled probability distribution reproduces the full configura-
tion space probability distribution. It is physically less accurate to have the local
concentration sharply centered around the average concentration while the propor-
tion of configuration probabilities is not maintained. Since diffusion is based on the
probability of being in a certain configuration and transitioning into another, if the
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probabilities of the configurations remain the same, the diffusion problem that we
are solving also remains the same. In other words, even if the un-normalized prob-
ability of a configuration varies because of the sampling, it is important to keep the
normalized probability distribution as close as possible to the expected one. We
denote the probability distribution of configurations in which the concentration of
A equals XA as

P (XA) =
1

Z

∑
X=XA

exp

(
−E (X)

kBT

)
, (3.89)

where the sum runs over all configurations with a concentration XA, E (X) is the
generalized energy of a configuration which contains its internal energy and the
chemical potentials, and Z is the partition function of the system in the same
thermodynamic ensemble. Because of the finite size of the environments, local
concentration values are discrete. Remember that here, we are working with a
vacancy diffusion in a random alloy. This implies that there is only one cluster
configuration and that the number of environment sites is the same in all cluster-
environment configurations (here equal to 12, see Fig. 3.14). As a consequence,
configurations in which the concentration equals XA will have the same number
of A atoms. In a random alloy, the energy of a configuration depends only on the
number of elements of each species (their chemical potential) and not on the way
they are arranged on the sites because thermodynamic interactions are null. All
configurations in which the number of A equals NA (i.e. the concentration of A
equals XA) will therefore have the same energy, which allows us to re-write Eq.
3.89 as

P (XA) =
1

Z
gXA exp

(
−E (XA)

kBT

)
, (3.90)

and

Z =
∑
XA

gXA exp

(
−E (XA)

kBT

)
(3.91)

where gXA is the degeneracy number of a configuration in which the concentration
of A is XA. In the sampled system gXA = N scs (XA), and in the full configuration
space gXA = N fcs (XA).

In the next paragraph, we sample 50% of the configuration space using sep-
arately the random sampling and the reservoir sampling, and we calculate the
vacancy correlation factor and the relative error with respect to the one calculated
using the full configuration space. At each concentration, we run the code with
the corresponding sampling method 20 separate times and average the result. We
show in each case the correlation factor calculated from the separate runs as well
as its average value, the relative error, the local concentration distribution and the
probability distribution of the sampled configurations.

3.6.2 Random sampling scheme

3.6.2.1 Basics of the random sampling

In a random sampling scheme, the probability that a species α occupies any site
i is independent of the species and site; ∀i, ∀α, p = 1/Nspec, Nspec being the number
of species. The probability to fill an environment e of Nsites sites with Nα, Nβ, ...
atoms of species α, β, ... depends only on the number of species and the number
of sites in the environment,

∑
i,α (p)n

α
i = (1/Nspec)

Nsites . The number of species
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is fixed in the system, while the number of environment sites can differ from one
environment to another based on its geometry. In our example, all environments
have the same number of sites Nsites = 12, and therefore all environments have the
same probability to be obtained using a random filling, p = (1/2)12, independently
on their local concentrations. This sampling is equivalent to having an equiatomic
alloy and filling sites with atomic species based on their average concentration.

3.6.2.2 Local concentration and probability distributions

The left part of Fig. 3.15 shows the local concentration distribution of the
sampled system averaged over the 20 separate runs of the code. The distribu-
tion is almost symmetric and centered around 0.5. Configurations with concen-
trations ranging between 3/12 and 9/12 are chosen with the same ratio (around
0.9) while configurations with the largest deviation from 0.5 (pure A and pure B
configurations) are chosen with a smaller ratio of around 0.3. The concentration
distribution is therefore not constant and the sampled configurations are not com-
pletely random, contrary to what we would expect. This is in part due to effective
interactions and in part due to symmetry operations. Pure A and pure B con-
figurations have a null effective interaction, and therefore, regardless on whether
or not a pure configuration is found, the code still needs to find N scs

inter effective
interaction classes which have concentrations between 1/12 and 11/12 inclusive.
Therefore, our sampling procedure will favor configurations with non-null effec-
tive interactions, which here are configurations with local concentrations far from
0/12 and 12/12. Symmetry equivalent configurations additionally contribute to
a non-constant concentration distribution. When a configuration is found, all its
symmetry equivalents are automatically added to the sampled configuration space
(see steps 5 and 7(d) of the general sampling algorithm in Sec. 3.5). For example,
there are 12 configurations with an XA = 1/12, but only 3 symmetry unique ones
(configurations in which the distance between the A atom and the vacancy are
equal are equivalent by symmetry). It is therefore sufficient to find 3 symmetry
unique configurations in order to add all 12 of them to the sampled configuration
space. Configurations with a higher number of symmetry equivalents will there-
fore be faster to find than configurations with no equivalents. All of this biases the
concentration distribution by favoring configurations at concentrations that can
give rise to non-null effective interactions and configurations with a higher number
of symmetry equivalent configurations.

The probability distribution of the sampled configurations (right part of Fig.
3.15) is almost exact whenXA = 0.5 and less accurate as the concentration deviates
from 0.5. The probability distribution slightly deviates from the exact one at a
local concentration of 3/12 = 0.25 and of 9/12 = 0.75, but the main deviations
occur when the A alloy concentration is 0.1 and 0.9, where the peak values are
overestimated by around 65% and 92% respectively. This confirms that the random
sampling produces a sampled configuration space representative of an equiatomic
alloy.
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Figure 3.15: Normalized concentration distribution (left) and average probability
distribution (right) in the case of a random sampling. These values are averaged
over 20 separate runs of the code. Here, the x-axis represents the local concen-
tration of A in the different configurations. Note that the random sampling is
independent from the average alloy concentration. The number of environment
sites in all configurations is 12, and local concentrations are equal to x/12, where
x is an integer between 0 and 12.

3.6.2.3 Accuracy of the vacancy correlation factor

Figure 3.16 shows the vacancy correlation factor calculated after sampling half
the effective interaction classes with a random sampling, along with the relative
error with respect to the reference value. The correlation factor is well reproduced
for concentrations ranging between 0.3 and 0.7, where the relative error ranges
from 0.90% to 5.09%. The values obtained from the different runs of the code
are centered when the concentration is 0.5 and more scattered the further away
the concentration deviates from 0.5. Especially at a concentration of 0.1, the
relative error varies from around 0% to 78%, making it indispensable to average
over several runs to obtain a reliable result. However, even when averaging over
20 different samples, the relative error remains above 20%. Also, there is nothing
which guarantees that averaging the results over multiple runs would converge
towards the expected result. This confirms that the accuracy of a sampling depends
on how well the probability distribution is reproduced.

It is interesting to note that at XA = 0.9 the calculated values from the different
runs are less scattered than at XA = 0.1, and that on average the correlation factor
calculated at XA = 0.9 is more accurate than the one calculated at XA = 0.1, even
though the probability distribution of the former is less accurate. This shows
that the probability distribution is not the only factor which affects the accuracy
of a sampled correlation factor. The same is observed between XA = 0.7 and
XA = 0.3, even though their probability distribution functions are calculated as
accurately. The asymmetry of the jump frequency ratio creates an asymmetry of
the correlation factor, and it seems that the random sampling is more accurate
when the system is less correlated (higher values of fV ). The more correlated a
system is, the more important the kinetic weight of trajectories is, and sampling
the configuration space based on only the thermodynamic weights of configurations
becomes less accurate.
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Figure 3.16: Vacancy correlation factor fV (left) and absolute value of the relative
error ζ (fV ) (right) as a function of concentration. The solid line represents the
reference value of the correlation factor calculated when the full configuration
space is explored. Symbols with different colors correspond to 20 separate runs
of the code when 50% of the effective interactions are sampled using the random
sampling, and the dashed line represents the average values. Note that the jump
frequency ratio is wA/wB = 5.

3.6.2.4 Conclusion on the random sampling

The random sampling has the advantage and disadvantage of being concentra-
tion independent. This makes it time efficient because it can be performed only
once and the same sampled configurations can be used at different concentrations
of the alloy. However, this subspace is only representative of an equiatomic alloy
and is not accurate in the general case of a concentrated alloy. This is why we
implemented instead a concentration dependent sampling. This reservoir sampling
will be the topic of the next paragraph.

3.6.3 Reservoir sampling scheme

3.6.3.1 Defining the reservoir

In the reservoir sampling, we consider the reservoir to be a box of a certain size
filled with species such that the concentration of each α species in the box is equal
to its average alloy concentration. In practice, the concentration of a species α in
the reservoir, Xres

α , is not necessarily exactly equal to the desired composition Xα

due to the finite size of the box. The exact concentration of α in the reservoir is
then

Xres
α =

Nα
res

Nres

=
fr (NresXα)∑
α fr (NresXα)

, (3.92)

where Nα
res and Nres are respectively the number of atoms of species α in the

reservoir and the total number of reservoir sites. fr (x) is a function which rounds
a real number x to an integer, to make sure there is not a fractional number of
atoms. When NresXα is not an integer, the reservoir composition will be close to,
but not exactly equal to, the average alloy composition. Note that here, fr (x) is
a general rounding function that can be chosen to round up to the closest integer,
round down to the closest integer, round to the nearest integer where halves get
rounded either up or down, etc... In our code, we choose it to be a ceiling function,
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fr (x) = min {n ∈ Z|n ≥ x}, such that it rounds up a real number x to the nearest
integer greater or equal to x.

From this reservoir, we pick species to fill the environment sites one after the
other. Some questions can be raised regarding the way we pick and fill sites with
species, and regarding when to reset the reservoir. The choice of the size of the
reservoir and the evolution of the reservoir’s size and concentrations (which are
linked) with the filling are not obvious as each choice implies a different approxi-
mation regarding the concentration distribution of environments.

3.6.3.2 Global versus local reservoir

One possibility is to have one global reservoir from which we fill all environment
sites of the system, while another possibility is to have different local reservoirs
which fill different sets of environment sites. The global reservoir affects the con-
centration of all environment sites of the system, while the local reservoirs affect
directly the concentration in a specific set of environment sites, which indirectly
affects the global concentration of all environment sites. Both approaches can
guarantee a global concentration close or equal to the average concentration, but
the latter approach has the additional advantage of controlling local compositions
and their fluctuations from the average composition. For this reason, we chose to
use local reservoirs. This required us to further identify the set of environment
sites to fill with the same reservoir. This step is important because it is the compo-
sition of this set of sites which can be controlled. Figure 3.17 shows three different
examples of what a set of environment sites can be:

1. environment sites around one cluster configuration; en.

2. environment sites around one jump frequency configuration; en ∪ Cj
n, for a

jump j available from cn ∪ en.

3. environment sites around one cluster configuration and all its jump comple-
ments; en ∪ (∪jCj

n). We call this set of sites the total jump environment of
a configuration n.

Figure 3.17: Three examples of sets of environment sites around a vacancy (white
square) that we can choose to fill with the same reservoir. Left: environment
sites around one cluster configuration; en. Middle: environment sites around one
jump frequency configuration; en ∪Cj

n, for a jump j available from cn ∪ en. Right:
environment sites around one cluster configuration and all its jump complements;
en ∪ (∪jCj

n). Sites belonging to each set are colored in black, the blue circle
represents the environment radius around the cluster configuration cn, and the red
circle(s) represent(s) the environment radius around the vacancy’s position in the
accessible configuration(s).
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We choose the third option because we think that it allows to have more con-
centration fluctuations at the level of the cluster configurations but to keep at the
same time a bigger local environment around the diffusing cluster at the average
concentration. This way, the total jump environment is at the average composi-
tion, and the environment around a final cluster configuration will depend on the
environment around the initial cluster environment. For example, in an equiatomic
binary alloy AB, if the environment around a cluster configuration is mainly com-
posed of A atoms, we expect its surrounding to have more B atoms than A to
compensate, which implies that the environment around the accessible configura-
tions is mainly composed of B atoms instead of being at equiatomic composition.
In this case, a vacancy surrounded by a pure A environment will transition to
configurations that have more B atoms than A, and vice-versa. With this option,
even when using the smallest possible reservoir, cluster environment compositions
can fluctuate while keeping the local cluster and the total jump environment at
the average composition. Note that these fluctuations exist in an alloy and should
be taken into account as there is nothing that requires us to have an average
composition around the cluster components. In addition, our aim from sampling
the configuration space is to find the most important trajectories which are not
necessarily exclusively built from configurations having a nominal composition.

In theory, the union of all complement sites includes overlapping sites just
once. In practice, it is not straightforward to deal with overlapping sites and their
occupancy. The way our code works, when looping over jumps separately (see
step 7 in the flowchart presented in Sec. 3.5), overlapping sites are not easy to
identify and are therefore treated separately. This means that, for a jump j1,
all its complement sites, Cj1

n , are filled independently of the occupation of the
other complements corresponding to the other jumps, ∪j 6=j1Cj

n. This implies that
overlapping sites are filled as many times as they overlap, and the same site can be
filled by different species. This introduces a small error to our target set of sites,
and the set that we are actually treating is in fact en ∪ (∪jCj

n). In the general
case, the number of overlapping sites is expected to be small compared to the
total number of sites, and sites usually overlap between a few number of accessible
configurations. This is especially true when the transition does not involve all
cluster components because this usually increases the number of sites in en, and
hence the total number of sites that are not overlapping. Figure 3.18 shows how
geometry affects the number of overlapping sites. For example, in the case of a
vacancy with an environment of 2a0 radius around it, there are 8 out of 24 sites
that overlap between two final configurations, while in the case of an environment
radius of 1.5a0, there would be no overlap among the 20 sites. While the number
of overlapping sites is not always negligible, we think that this will not introduce
additional errors to our calculations. Not treating overlapping sites exhaustively
can create a slight bias in the dynamics of the system but it will not create an
additional source of errors since there are already other aspects of our model and
sampling procedure which are expected to have a similar effect.
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Figure 3.18: Representation of the set of environment sites around one cluster
configuration and all its jump complements; en ∪ (∪Cj

n). The blue circle repre-
sents the environment radius (EnRa) around the initial vacancy position, and the
red circles represent the environment radius around the final vacancy position in
the accessible configurations. The left figure represents the case of EnRa = 2a0

and the right figure represents the case of EnRa = 1.5a0, a0 being the lattice
parameter. Sites belonging to the environment of the initial cluster configuration
are colored in blue. Sites that belong exclusively to final cluster configurations
and that overlap are colored in red, while those that do not overlap are colored in
orange.

3.6.3.3 Reservoir size and concentration

We can impose a varying concentration of species in the reservoir by drawing
species from it without replacement. Then the probability to draw a species α from
the reservoir after k draws depends on the previous k− 1 draws. This probability
can be calculated as

Pα
ik

=
Nα
resk

Nres − (k − 1)
, (3.93)

where Nα
resk

is the number of α atoms in the reservoir after k − 1 draws from it.
During the first draw, the probability to pick a species α is equal to its average con-
centration in the reservoir, and after k draws this probability increases or decreases
based on how many times it has been drawn with respect to the other species. In
case the size of the reservoir is exactly equal to the number of environment sites to
be filled with it, this constrains the concentration of α in the set of environment
sites to be exactly equal to its average concentration Xα

res. The bigger the size of
the reservoir with respect to the sites it is filling, the more the local concentration
may fluctuate from its average value. In the case of an infinitely big reservoir with
respect to the environment sites (Nres � (k − 1) and Nα

resk
≈ Nα

res), this type of
filling becomes equivalent to drawing species with replacement (i.e. keeping the
reservoir always at the nominal concentration),

Pα
ik
≈ Nα

res

Nres

= Xres
α . (3.94)

In this case, the probability to draw an atom of species α from the reservoir after
k draws depends only on its initial reservoir concentration Xres

α . In all cases, it is
the ratio between the size of the reservoir Nres, and the size of the set of environ-
ments to fill around a configuration n, Nen∪(∪jCjn), which affects the probabilities

of picking species and the local concentrations. We define the reservoir size ratio
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independently of the size of the jump environment around n, such that

∀n, Rres =
Nres

Nen∪(∪jCjn)
. (3.95)

In the following, we will analyze the local concentration distribution, the probabil-
ity distribution and the vacancy correlation factor obtained when sampling using
the reservoir sampling with Rres = 2 and Rres = ∞, i.e. using respectively Eq.
3.93 and Eq. 3.94 for the filling probabilities.

3.6.3.4 Local concentration and probability distributions

The local concentration distribution and probability distribution are shown in
Fig. 3.19. For both Rres = 2 and Rres = ∞, the concentration distribution is
centered around the average concentration, and its maximum value is found at the
local concentration closest to the average one for all concentrations. The prob-
ability distribution is almost exactly well reproduced for average concentrations
of 0.1 and 0.9, and it is slightly overestimated for other concentrations. Small
differences can be seen between the two reservoir size ratios. When Rres = ∞,
the concentration distribution peaks are wider than when Rres = 2, which is due
to larger fluctuations of the local concentration. Concentration distribution peaks
have the same value for both size factors except when the alloy’s A composition
is 0.5. This is due to the large number of configurations with 6 A atoms and 6 B
atoms compared to the other compositions (binomial law). At the other composi-
tions, the number of configurations with a local composition close to the average
one is small enough so that all of them are found regardless of the reservoir’s size.
As a consequence ,when Rres = 2, the probability distribution is slightly overesti-
mated at XA = 0.5. Note that, at this concentration, the reservoir sampling with
Rres =∞ becomes equivalent to the random sampling, which produces a sampled
configuration space of an equiatomic alloy with high accuracy.

Figure 3.19: Normalized concentration distribution (left) and average probability
distribution (right) in the case of a reservoir sampling of 50% of the effective
interaction classes, with Rres = 2 (dashed lines) and Rres = ∞ (dotted lines), as
compared to the reference values of the full configuration space (solid lines). These
values are averaged over 20 separate runs of the code. Here, the x-axis represents
the local concentration of A in the different configurations.
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3.6.3.5 Accuracy of the vacancy correlation factor

Figure 3.20 shows that the vacancy correlation factor calculated using a reser-
voir sampling is in very good agreement with the reference value at all concentra-
tions and regardless of the reservoir size ratio. In both cases, the average relative
error is of 1.4%, with its highest value being at XA = 0.3 and its lowest one at
XA = 0.7, which is due the asymmetry of the jump frequency ratio (discussed in
Sec. 3.6.2). The values of the correlation factor calculated from separate runs are
centered around the average value with very low scattering. When the average
concentration of A is 0.1 and 0.9, there is a negligible scattering of the data and
the correlation factor is very well reproduced. This is because at these composi-
tions, the sampling scheme finds all configurations with a local composition equal
to the average one and the probability distribution is very well reproduced.

Figure 3.20: Vacancy correlation factor fV (top) and absolute value of the relative
error ζ (fV ) (bottom) as a function of concentration. The solid line represents the
reference value of the correlation factor calculated when the full configuration space
is explored. Symbols with different colors correspond to 20 separate runs of the
code when 50% of the effective interaction classes are sampled using the reservoir
sampling with Rres = 2 (left) and Rres = ∞ (right). Dashed lines represent the
average values. Note that the jump frequency ratio is wA/wB = 5.

In order to study multicomponent alloys beyond the binary limit, and to study
clusters containing several types of defects, the configuration space will be too
large and will require us to sample very low percentages of it. We complete this
study by further decreasing the size of the sample, in order to study the accu-
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racy of the sampling scheme in more realistic conditions. Figure 3.21 shows the
accuracy of the reservoir sampling with a size factor of 2 for sampled percentages
ranging between 5 and 50%. For η = 5%, the correlation factor is well reproduced
with a relative error below 0.13 at all concentrations. Regardless of the sampled
percentage, the correlation factor is always underestimated, and the relative error
is the highest at the concentration corresponding to the most correlated system.
As discussed in Sec. 3.6.2, this can be due to the fact that some trajectories with
high kinetic weight are not included when sampling configurations based on their
thermodynamic weights. A sampling based on saddle-point energies instead of
stable configuration energies might be more accurate in high correlated systems.

Figure 3.21: Vacancy correlation factor fV (left) and absolute value of the relative
error ζ (fV ) (right) as a function of concentration. The solid line represents the
reference value of the correlation factor calculated when the full configuration space
is explored. Lines with different colors correspond to different percentages of the
sampled effective interaction classes. These values were obtained by averaging the
result over 20 separate runs of the code, and using the reservoir sampling with
Rres = 2. Note that the jump frequency ratio is wA/wB = 5.

3.6.3.6 Conclusion on the reservoir sampling

With the reservoir sampling with two different reservoir size ratios, we were able
to reproduce with high accuracy the vacancy correlation factor at all concentra-
tions. This is a direct consequence of the good agreement between the probability
distributions of the sampled configuration space and the full configuration space.

The choice of the set of environment sites to fill with the same reservoir, the
evolution of the size of the reservoir and whether we draw species from it with
or without replacement all affect the sampled configuration space’s concentration
and probability distributions, and eventually the accuracy of the calculated trans-
port coefficients. These choices are important because they affect the way we
choose to impose a local equilibrium condition on the system. Drawing species
from a reservoir with replacement or in the case of an infinitely big reservoir, all
environment sites of the system will be filled based on the average composition of
species, which is equivalent to imposing a concentration equilibrium condition per
site of the system. In case we draw species from the reservoir without replacement
the equilibrium is imposed on the set of environment sites that are being filled
with the reservoir before we reset it or change it. We can also think of a more
sophisticated approach in which trajectories instead of configuration or total jump
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environments follow the average composition. To keep things simple for the sake
of efficiency, we chose to use a local reservoir sampling to fill the sites of the total
jump environment around cluster components. We found that this was enough in
the case of a random alloy to calculate vacancy correlation factors with high accu-
racy at all concentrations. The size of the reservoir affects the local concentrations
of the sampled configurations, such that the bigger the size of the reservoir the
more composition fluctuations are allowed. We expect the effect of the reservoir
size to become more apparent when a lower percentage of the configuration space
is sampled, because when fewer configurations are selected, the concentration dis-
tribution sampled by a small reservoir will be more centered around the average
composition. This can be verified in a future study. We found in the several
examples that we tested that a reservoir size ratio between 2 and 5 represents a
good compromise between not allowing any local fluctuations and allowing some
of them.

3.7 Energy model

We cannot calculate absolute values of energies, and we always need a reference
with respect to which we calculate all energies. This is why we introduced binding
energies in Sec. 3.2.8 and Sec. 3.3 by multiplying all absolute energies by the
factor κ (Eq. 3.42). We did not, however, explicit the choice of the reference
configuration, nor did we provide a way to calculate binding energies that are a
function of mean-field atoms. We only know that we cannot calculate these energies
exactly in the case of a concentrated alloy, because it involves an infinite number of
configurations (Eq. 3.53). In this section, we will provide an approximate method
of calculating mean-field related energies.

3.7.1 Binding energies

We choose our reference configuration to be one in which cluster components
are isolated from each other, and surrounded by a buffer environment that we
choose as a pure A environment, and which in turn is embedded in a mean-field.
Let (x, ex, ēx) represent a configuration of one isolated cluster component x, sur-
rounded by a local environment ex, which is embedded in ēx. Let (X, eX , ēX)
represent a configuration in which all cluster components are isolated (X = ∪xx),
each surrounded by an environment ex such that eX is the union of all these envi-
ronments, eX = ∪xex, and in which eX is surrounded by ēX = ∪xex. The reference
configuration is therefore represented by

(
X, eAX , ē

M
X

)
, and

κ = exp

(
−
E
(
X, eAX , ē

M
X

)
kBT

)
. (3.96)

A mean-field binding energy of the form Eb
(
cn, en, ē

M
n

)
, is therefore calculated as

Eb
(
cn, en, ē

M
n

)
= E

(
X, eAX , ē

M
X

)
− E

(
cn, en, ē

M
n

)
. (3.97)

Note that here cn and en can represent any configuration of the cluster and any
environment around it, including a saddle-point cluster configuration (cnj) and
a jump frequency environment (enj). We write the binding energy of (cn, en) in
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a mean-field as a function of the binding energy of (cn, en) in a homogeneous A
matrix

Eb
(
cn, en, ē

M
n

)
= Eb

(
cn, en, ē

A
n

)
−
[
E
(
X, eAX , ē

A
X

)
− E

(
cn, en, ē

A
n

)]
+
[
E
(
X, eAX , ē

M
X

)
− E

(
cn, en, ē

M
n

)]
,

(3.98)

where
Eb
(
cn, en, ē

A
n

)
= E

(
X, eAX , ē

A
X

)
− E

(
cn, en, ē

A
n

)
. (3.99)

Note that we simply added and subtracted Eq. 3.99 to Eq. 3.97. In a grand canon-
ical ensemble (GCE), the generalized energy is written as a function of a cohesive
energy term and a chemical potential term (Sec. 1.4). For any configuration γ
which can be split into γ1 and γ2 such that γ = γ1 ∪ γ2, we can write

E (γ) = E (γ1) + E (γ2) + hγ1γ2 ,

E (γ) = H (γ)− µ (γ) ,

H (γ) = H (γ1) +H (γ2) + hγ1γ2 .

(3.100)

H (γ) is the cohesive energy of γ, µ (γ) is the chemical potential of γ, and hγ1γ2

is the interaction energy between γ1 and γ2. To calculate transport coefficients of
the cluster under study, the number and type of cluster components remains the
same in all configurations of the system. We are working with a fixed number of
cluster components and varying number of chemical species in the environment
(leading to a varying number of mean-field atoms). Note that, initially in the case
of dilute alloys, KineCluE was developed in the canonical ensemble because it is
the most natural one for dilute alloys. In concentrated alloys, the varying number
of atoms in each environment naturally leads to a grand canonical formulation for
the calculation of transport coefficients. The binding energy of (cn, en) embedded
in pure A becomes

Eb
(
cn, en, ē

A
n

)
= Hb

(
cn, en, ē

A
n

)
− µ

(
X, eAX , ē

A
X

)
+ µ

(
cn, en, ē

A
n

)
, (3.101)

where Hb
(
cn, en, ē

A
n

)
= H

(
X, eAX , ē

A
X

)
− H

(
cn, en, ē

A
n

)
. The chemical potential

difference can be calculated as

µ
(
cn, en, ē

A
n

)
−µ
(
X, eAX , ē

A
X

)
=

(∑
x

Nxµx +
∑
α

N en
α µα +NēnµA

)
−

(∑
x

Nxµx +NeXµA +NēXµA

)
,

(3.102)

where Ne is the number of sites in e, N e
α is the number of atoms of species α in e,

and µα is the chemical potential of species α. Note how most of the terms in Eq.
3.102 will get simplified because the number of each type of cluster component is
the same in both these configurations, and because most sites of the system are
occupied by A atoms. Therefore, the chemical potential difference comes solely
from the sites of en which are not occupied by A atoms,

µ
(
cn, en, ē

A
n

)
− µ

(
X, eAX , ē

A
X

)
=
∑
α

N en
α µα −NenµA =

∑
α

N en
α µαA, (3.103)

with µαA = µα − µA. There are calculation methods to calculate the chemical
potentials µαA, such as the Cluster Variation Method (CVM) [104], the Low Tem-
perature Expansion (LTE) [144] or Widom’s integration scheme [146]. There are
methods as well to calculate Hb

(
cn, en, ē

A
n

)
, like Density Functional Theory (DFT),
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Semi-Empirical potentials (SE), or a pair interaction model. Therefore, there exist
methods that allow the calculation of the binding energy of (cn, en) in pure A

Eb
(
cn, en, ē

A
n

)
= Hb

(
cn, en, ē

A
n

)
+
∑
α

N en
α µαA. (3.104)

We need to calculate the remaining terms of Eq. 3.98, which we call ∆Eb,

∆Eb = E
(
cn, en, ē

A
n

)
− E

(
cn, en, ē

M
n

)
+ E

(
X, eAX , ē

M
X

)
− E

(
X, eAX , ē

A
X

)
. (3.105)

Using the definition in Eq. 3.100, the above equation becomes

∆Eb =
[
E (cn, en) + E

(
ēAn
)

+ henēAn
]
−
[
E (cn, en) + E

(
ēMn
)

+ henēMn
]

(3.106)

+
[
E
(
X, eAX

)
+ E

(
ēMX
)

+ heAX ēMX

]
−
[
E
(
X, eAX

)
+ E

(
ēAX
)

+ heAx ēAX

]
.

(3.107)

Remember that, in our model, cluster components only interact with the environ-
ment around them, and all hcnēn interactions are null (this was our assumption at
the beginning of the SCMF-c formalism). ∆Eb gets simplified

∆Eb =
[
E
(
ēAn
)
− E

(
ēMn
)

+ E
(
ēMX
)
− E

(
ēAX
)]

+
[
henēAn − henēMn + heAX ēMX − heAx ēAX

]
.

(3.108)
Let ∆Eb

1 represent the energy term of the first bracket. An energy of the form
E (ēαm) represents the energy of a homogeneous system in which all sites ēm are
occupied by species α. This energy term lacks the interactions with the exterior
(where the exterior of ēm is em) for it to become an energy of a complete homoge-
neous system in which there are no edge effects. We assume that the interaction
energy of a site with other sites is split equally among them, such that the energy
per site includes half the total interaction energy of this site with all other sites.
We can add and substract these interactions to the first bracket so that it becomes

∆Eb
1 =

[
Ẽ
(
ēAn
)
− Ẽ

(
ēMn
)

+ Ẽ
(
ēMX
)
− Ẽ

(
ēAX
)]
− 1

2

(
heAn ēAn − heMn ēMn + heMX ēMX − heAX ēAX

)
(3.109)

= (NēX −Nēn) (EM − EA)− 1

2

(
heAn ēAn − heMn ēMn + heMX ēMX − heAX ēAX

)
, (3.110)

where Ẽ (ēαm)=E(ēαm) +
1

2
heαmēαm = NēmEα represents the energy of a complete

homogeneous system of ēm in which all Nēm sites are occupied by α and have the
same energy per site. The factor 1/2 comes from the fact that we assumed that an
interaction heαmēαm is split in equally between the energy of sites eαm, Ẽ (eαm), and the

energy of sites ēαm, Ẽ (ēαm). The energy per atom α in this system is Eα. Equation
3.108 becomes

∆Eb = (NēX −Nēn) (EM − EA) + δh, (3.111)

where

δh = henēAn − henēMn + heAX ēMX − heAx ēAX −
1

2

(
heAn ēAn − heMn ēMn + heMX ēMX − heAX ēAX

)
,

(3.112)
contains all interaction energies. Note that ∆Eb represents the energy it takes to
replace mean-field atoms with A atoms in an exterior ēX surrounded by A atoms
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(eAX), and the energy it takes to replace A atoms with mean-field atoms in an
exterior ēMn surrounded by a specific occupation of en. To calculate NēX and Nēn

we need to know the total size of the system. We do not want our calculations to
depend on the size of the system. Therefore, without loss of generality, we write
NēX = Ne−NeX and Nēn = Ne−Nen , where Ne is the total number of sites in the
system. Ne gets simplified in Eq. 3.111,

∆Eb = (Nen −NeX ) (EM − EA) + δh, (3.113)

and we are left with the quantities NeX and Nen , which are finite quantities that
we can determine. In Eq. 3.113, we are able to calculate

� EA = Ecoh
A − µA, where Ecoh

A is the cohesion energy of A, and µA can be
calculated (CVM, LTE, Widom, ...);

� the interaction energies: heAX ēAX , heAn ēAn and henēAn , knowing the geometry of
the environment en and having an interaction model between atoms.

However, we do not have a method to calculate quantities that are a function of
mean-field atoms

� The energy per site of a mean-field atom, EM = HM − µM ;

� the interaction energies with mean-field atoms heAX ēMX , henēMn , heMX ēMX and
heMn ēMn .

In the next section (Sec. 3.7.2), we will discuss how to calculate these quantities.

3.7.2 Mean-field energetic properties

Up until this point, we have made two mean-field definitions that have the
same mathematical form (Eq. 3.53 and Eq. 3.71). By defining the mean-field in
the same way for different sets of sites (en and enj generally do not have the same
size), and for any occupation of en and enj, we have assumed that the mean-field
definition is valid for any environment e and for any occupation of e. Therefore, the
mean-field definition and the quantities related to the mean-field do not depend
on the size of e (and equivalently do not depend on the size of ē). The general
mean-field definition can be written

∀e , exp

(
−
E
(
e, ēM

)
kBT

)
=

1

Ωē

∑
ē

exp

(
−E (e, ē)

kBT

)
. (3.114)

3.7.2.1 Energy of a mean-field atom

We can apply the general mean-field definition to the whole system by consid-
ering that e = ∅,

∀e , exp

(
−
E
(
ēM
)

kBT

)
=

1

Ωē

∑
ē

exp

(
−E (ē)

kBT

)
. (3.115)

E
(
ēM
)

represents the energy of a homogeneous system of pure M atoms, and
can therefore be written as a function of the mean-field energy per site, E

(
ēM
)

=
NēEM . On the other hand,

ZGCE
ē =

∑
ē

exp

(
−E (ē)

kBT

)
= exp

(
− A

kBT

)
, (3.116)
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is the grand canonical partition function of the system of ēn. The grand potential
for a system in the GCE (Sec. 1.4) is Aē = −kBT lnZGCE

ē = −PVē, where P and
Vē are respectively the pressure and total volume of the system. The volume of the
system is equal to the total number of sites in the system, Nē, times the atomic
volume, Ωat; Vē = NēΩat. The number of possible configuration of ē is equal to
the number of ways we can arrange the Nspec on the Nē sites; Ωē = (Nspecies)

Nē.
With all these substitutions, Eq. 3.115 becomes

∀e , exp

(
−NēEM

kBT

)
= (Nspec)

−Nē exp

(
PNēΩat

kBT

)
, (3.117)

which gives the energy of a mean-field atom by applying a logarithm function on
both sides of the above equation

EM = kBT ln (Nspec)− PΩat. (3.118)

The order of magnitude of kBT ln (Nspec) is of 0.03 eV in a binary alloy at 500°C.
For PΩat to be of the same order of magnitude, the pressure needs to be of the
order of 1 GPa, which is only encountered in extremely high pressure applications.
Therefore, the product PΩat is very small compared to kBT ln (Nspec) and we can
neglect it. Therefore, we obtain a mean-field energy which is only a function of
temperature and of the number of chemical species in the alloy.

3.7.2.2 Mean-field interaction energies

We need to calculate interaction energies between mean-field atoms (heMX ēMX and

heMn ēMn ), and between mean-field atoms and the alloy’s chemical species (heAX ēMX and

henēMn , where the sites of en can be occupied by any combination of species).

εMM interactions between M and M Let us consider a canonical ensemble
which has the same concentration and chemical potential as the previously studied
system of ē. Our mean-field definition applied within the CE is

∀e , exp

(
−
H
(
ēM
)

kBT

)
=

1

ΩC
ē

∑
ē

exp

(
−H (ē)

kBT

)
, (3.119)

where the generalized energies do not depend on chemical potentials. Note that
the number of possible configuration of ē is different in the canonical system, and
can be calculated from

ln ΩCE
ē = −N

∑
α

Xα lnXα, (3.120)

where Xα is the concentration of species α. The canonical partition function is

ZCE
ē =

∑
ē

exp

(
−H (ē)

kBT

)
= exp

(
− G

kBT

)
, (3.121)

where the Gibbs free energy is G =
∑

αN
ē
αµα = Nē

∑
αXαµα (Sec. 1.4). Equation

3.119 becomes

∀e , exp

(
−NēHM

kBT

)
= exp

(
Nē

∑
α

Xα lnXα

)
exp

(
−Nē

∑
αXαµα
kBT

)
, (3.122)
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where
H
(
ēM
)

= NēHM = Nē

∑
α

Xα (µα − kBT lnXα) . (3.123)

The mean-field interaction is a function of species concentrations, their chemical
potential and temperature. Note that kBT lnXα is the chemical potential of α in
a random alloy, and HM is therefore an average of the chemical potential devia-
tion from its random alloy value. An interaction model can be used to express
HM as a function of heM ēM and deduce the latter needed interaction. Assuming
that interactions within the mean-field can be reduced to nearest-neighbors pair
interactions, we can calculate the interaction between two mean-field atoms as

εMM =
2

z
HM , where z is the coordination number of the crystal. Note that com-

bining Eq. 3.100, Eq. 3.118 and Eq. 3.123, gives us the chemical potential of a
mean-field atom

µM =
∑
α

Xα [µα − kBT ln (XαNspec)] . (3.124)

It is interesting to note that, in an equiatomic system (e.g. high entropy alloys),
Xα = 1/Nspec, and µM becomes an arithmetic average of the chemical potentials
of the alloy’s atomic species, µM =

∑
αXαµα.

εαM interactions between α and M We apply the mean-field definition to a
system containing only one atom of species α that is fixed. All sites other than
the one occupied by α are averaged using Eq. 3.71

∑
ᾱ

exp

(
−E (α) + E (ᾱ) + hαᾱ

kBT

)
= Ωᾱ exp

(
−
E (α) + E

(
ᾱM
)

+ hαᾱM

kBT

)
.

(3.125)
We are interested in calculating the interactions between α and M

exp

(
−hαᾱM
kBT

)
=

1

Ωᾱ

∑
ᾱ

exp

(
−E (ᾱ) + hαᾱ

kBT

)
exp

(
−
E
(
ᾱM
)

kBT

) . (3.126)

Instead of calculating the infinite sum over all possible occupations of ᾱ, we divide
ᾱ into a local finite-sized environment b around the α atom and the exterior of
b; ᾱ = b ∪ b̄. We assume that thermodynamic interactions are limited within
the b environment and therefore that α only interacts with species belonging to
environment b; εαb̄ = 0. We can make this assumption since interactions are usually
short-ranged. The introduction of environment b is important because it allows us
to sample a finite-sized system b instead of an infinite system ᾱ. Equation 3.126
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becomes
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The mean-field definition is used between lines 1 and 2 to replace the sum over b̄
by a mean-field expression, and between the last two lines to express the mean-
field exponential as a function of a sum over b. Note that now we only have
sums over b. The size of environment b has to be big enough to include enough
thermodynamic interactions between α and its surrounding, and small enough to
be able to calculate the sums in Eq. 3.127. We assume that interactions with the
mean-field are reduced to first nearest-neighbors interactions;{

hαbM = zεαM

hbb̄M = −kBT ln
(∏

γ ξγmbγ b̄M

)
,

(3.128)

where

ξγ = exp

(
− εγM
kBT

)
, (3.129)

and mbγ b̄M is the number of bonds between atoms of species γ in b and b̄. This
number depends on the geometry of the system and of the chosen b environment.
Equation 3.127 becomes a polynomial equation∑

b

exp

(
−E (b)

kBT

)[
exp

(
− hαb
kBT

)
− (ξα)z

]∏
γ

ξγmbγ b̄M = 0. (3.130)

We can write Eq. 3.130 for all the possible α species separately and obtain a
system of Nspec coupled equations with Nspec unknowns. We can solve this system
of equations and obtain all the Nspec unknown interactions ξγ.
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3.7.3 Conclusion on energy calculations

To conclude, we proposed in this section a method to calculate a configuration’s
binding energy which is a function of the mean-field. These energies are needed for
the calculation of effective interactions and transport coefficients. We assume that
all interactions with a mean-field atom are limited to first nearest-neighbors pair
interactions, and that thermodynamic interactions between an atomic species are
limited to a finite range. We finally obtain the binding energy of a configuration n

Eb
(
cn, en, ē

M
n

)
= Hb

(
cn, en, ē

A
n

)
+
∑
α

N en
α µαA+(Nen −NeX )

[
kBT ln (Nspec)− Ecoh

A + µA
]
+δh,

(3.131)
with

δh = NeX εAM −
∑
α

N en
α εαM +

1

2
(Nen −NeX ) εMM + henēAn −

1

2
heAX ēAX −

1

2
heAn ēAn .

(3.132)
In Eq. 3.131 and Eq. 3.132, we are able to calculate all the terms

� the total number of species, Nspec;

� the number of species in an environment, N en
α ;

� the number of sites in an environment, NeX and Nen ;

� the chemical potential of species µα, and subsequently µαA;

� the cohesion energy of A, Ecoh
A ;

� the interaction energies heAX ēAX , heAn ēAn and henēAn ;

� the M −M interaction energies, εMM =
2

z

∑
αXα (µα − kBT lnXα), with µα

and Xα known for all species α;

� the α −M interaction energies, εαM , calculated for each α by solving the
system of equations formed by Eq. 3.130.

3.7.4 Calculating the mean-field binding energy in special
cases

In this section, we will calculate the configuration binding energies in the case
of a concentrated random alloy and in the case of a binary interacting alloy with
interactions described by a pair interaction model. These two types of alloys will
be the ones used in our applications to test the validity of our model and code. The
random alloy has been the most widely used type of alloys to study the validity of a
diffusion model in a concentrated alloy, and there are several literature works with
which we can compare our results. Additionally, in the case of a random alloy, we
can calculate exactly the mean-field energy and compare it to the value calculated
using our model. The interacting binary alloy provides on the other hand a model
which depends on thermodynamic interactions and will be more sensitive to the
accuracy of our energy model.
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3.7.4.1 Case of a concentrated random alloy

In the case of a concentrated alloy with Nspec species, all thermodynamic inter-
actions are null and we can calculate exactly the generalized energies as a function
of the mean-field (Eq. 3.71). The energy of a configuration is only a function of
the chemical potentials and the sum reduces to
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(3.136)

where the last line is obtained using Newton’s multinomial law. Additionally in a

random alloy, we can prove that exp

(
µαA
kBT

)
=
Xα

XA

, where Xα is the concentration

of species α We write the number of occupancy Ωēn = (Nspec)
Nēn , and knowing

that
∑

αXα = 1, we obtain the exact value of the configuration energy in the case
of a random alloy
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(3.137)
Let us now calculate this energy using the approximated equations that we ob-
tained in this section (Eq. 3.131 and Eq. 3.132), and compare the approximated
values to the exact ones. We have:

� the total number of species, Nspec;

� the number of species in an environment, N en
α ;

� the number of sites in an environment, NeX and Nen ;

� the chemical potential of species µα = kBT lnXα, and subsequently µαA =
kBT ln (Xα/XA);

� the cohesion energy of A, Ecoh
A = 0, because all A− A interactions are null;

� the interaction energies heAX ēAX , heAn ēAn and henēAn are all null;

� the M − M interaction energies, εMM =
2

z

∑
αXα (µα − kBT lnXα) = 0,

since µα = kBT lnXα;

� the α−M interaction energies, εαM = 0, ∀α, calculated from Eq. 3.130.
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In this case, the binding energy of a configuration is a function of the total number
of species in the alloy, their average concentrations, the number of environment
sites in the configuration, and the number of different species occupying these sites

Eb
(
cn, en, ē

M
n

)
= kBT

∑
α

N en
α ln (Xα/XA) + (Nen −NeX ) kBT ln (XANspec) .

(3.138)
Using Nen = Ne − Nēn , the exponential of this energy becomes equivalent to Eq.
3.137 up to a constant
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(3.139)
However, this constant,

(XANspec)
(Ne−NeX ) , (3.140)

is independent of the configuration n, and shifts all energies of the system by
the same amount. In practice, since all energies are normalized by the partition
function, which is a sum of energies, this constant will always get simplified, and
therefore the normalized probabilities calculated with our energy model are equal
to the exact probabilities in the case of a concentrated random alloy.
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and
Pn|our model

RA = Pn|exactRA . (3.142)

3.7.4.2 Case of a binary alloy within a pair interaction model

Let us now consider a 2D-square structure (z = 4) of a binary alloy AB in which
interactions are limited to first nearest-neighbors pair interactions. We define the
ordering energy of the alloy as

W = εAA + εBB − 2εAB, (3.143)

such that, when W is positive, the alloy has an ordering tendency, and when W is
negative, the alloy has a clustering tendency. We assume that all interactions in
the system are null except for the A−B interactions, such that there is no energy
asymmetry between A and B atoms, and A and B atoms do not interact with
cluster components unless they are A or B tracer atoms.

� the total number of species, Nspec = 2;

� the number of species in an environment, N en
A and N en

B ;

� the number of sites in an environment, NeX and Nen ;
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� the chemical potential of species is calculated within the pair approximation
of the CVM [104]

µA =
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1− z

2

)
kBT lnXA −

z

2
kBT ln
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L

)
, (3.144)

and

µBA = −zW + kBT ln
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)
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, (3.145)

where
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√
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4XA (1−XA)

K2
− 2XA + 1, (3.146)

and

K = exp
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− εAB
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)
= exp
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W

2kBT

)
. (3.147)

� the cohesion energy of A, Ecoh
A = 0, because all A− A interactions are null;

� the interaction energies heAX ēAX and heAn ēAn are null, and henēAn = meBn ē
A
n
εAB,

where meBn ē
A
n

represents the number of B atoms in en interacting with the
A atoms of ēn and depends on the crystal structure, the geometry of en and
the distribution of B atoms in it;

� the M −M interaction energies,

εMM =
2

z
[XA (µA − kBT lnXA) + (1−XA) (µB − kBT ln (1−XA))] ;

(3.148)

� the α−M interaction energies, εαM = −kBT ln (ζα) calculated by numerically
solving the polynomial equation obtained from Eq. 3.130

z∑
nB=0

(
z

nB

)[
exp

(
µBA
kBT

)(
ξB
ξA

)z−1
]nB [

Kz−nB −
(
ξB
ξA

)z
KnB

]
= 0.

(3.149)
Figure 3.22 shows examples of the calculated interactions εAM and εBM as
a function of the alloy’s A concentration, for values of the ordering energy
normalized by kBT equal to ±0.5 and ±1.96. εAM and εBM are symmetric
and equal to εAB/2 when the alloy has an equiatomic composition. When
the alloy is rich in A, εAM tends towards 0 as we would expect since εAA
interactions will be more important than εAB interactions. The opposite is
also true and εAM tends towards εBM when the alloy is rich in B. We can
see from these graphs that the interactions with the mean-field calculated
with our energetic model are not equivalent to a Bragg-Williams (BW) point
approximation which would be written as

εαM =
∑
β

Xβεαβ, (3.150)

and in which interactions εαM vary linearly with the concentration between
0 and εAB. This is the case in our model only when the ordering energy is
low, because in this case the alloy is close to a random alloy and the effect
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of the surrounding atoms of any site is negligible, which is consistent with
the point approximation in which the site occupation depends only on the
average compositions. However, the BW approximation is not valid in the
general case of an interacting alloy, and our model’s mean-field interactions
deviate from the linear approximation with the increasing ordering energy.

Figure 3.22: Interaction energies between environment species and the mean-field
as a function of concentration for different values of the ordering energy normalized
by kBT . These values are calculated numerically by solving Eq. 3.149. Positive
(negative) values of W correspond to an alloy with a tendency to ordering (clus-
tering).

3.8 Code’s general performance

In this section, we will analyze how the code’s computational time and memory
scales with the kinetic and environment radii, and how fast correlation factors
converge with these increasing radii.

3.8.1 Computational time and memory as a function of
KiRa and EnRa

KineCluE’s computational time and memory are mostly affected by the num-
ber of configurations and effective interaction classes in the system. The number of
cluster components, the kinetic radius and the environment radius all increase the
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number of configurations in the system. Here, we will calculate the transport coef-
ficients in the case of a vacancy-tracer diffusion in a binary alloy with a 2D-square
structure and a BCC structure, as a function of the kinetic and the environment
radii by fixing one of them and varying the other. In most cases, the environ-
ment radius is considered to be null (no environment) around the tracer atom
and non-null around the vacancy. Even though this is less realistic to describe a
concentrated alloy based on our model, it provides the possibility to further in-
crease the environment radius and to better study the computational performance
of the code as a function of the increasing radii. In each case, we determine the
number of effective interaction classes (which is also the size of the T̃ matrix, and
which represents the needed computational memory) and the computational time
required to compute transport coefficients, and we plot these results in Fig. 3.23.

The number of effective interactions and the computational time vary in the
same way as a function of the radii in all the tested systems. In all systems,
computational load increases with both KiRa and EnRa. The increase is in par-
ticular fast with the increasing EnRa. The increase in computational time is of
no issue here since all the tested systems required less than 3 hours of calculations
on one processor of our laboratory’s calculation cluster (Intelr Xeonr Gold 6132
CPU (2.60 GHz)). The size of the T̃ matrix was however a limiting factor here.
While the increase in KiRa (at small EnRa values) did not cause computational
problems, tests could not be carried out for EnRa values higher than 2 lattice
parameters in the 2D-square structure and higher than 1 lattice parameter in the
BCC structure, even when KiRa was fixed to the smallest possible value of 1 a0.
We were unable to perform calculations in systems with more than around 105

effective interaction classes because the code fills up all the RAM memory of our
workstation. This limits local environments to 3rd nearest-neighbors in a 2D struc-
ture and to 2nd nearest-neighbors in a BCC structure, knowing that in both these
cases, the environment is around only one cluster component. This also forces us
to have either a big KiRa or a big EnRa, and not both at the same time, leading
us to truncate either kinetic trajectories or local cluster surroundings, and in most
cases the approximation has to be done on the size of the environments. Bigger
clusters in which more than one component is surrounded by an environment and
multicomponent alloys with more than two elements become impossible to treat
without a sampling scheme.
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Figure 3.23: Size of the T̃ matrix (left) and computational time (left) as a function
of KiRa and EnRa in the case of a vacancy-tracer diffusion in a binary alloy. Closed
symbols and dashed lines indicate that KiRa is fixed in this system while EnRa
is increased. Open symbols and dotted lines indicate that EnRa is fixed in this
system and KiRa is increased. Labels are written in the form S − e (α) − R,
where S represents the structure (2D-square or BCC), α represents the cluster
components around which a local environment is built (V for vacancy and C for
tracer), and R represents the fixed radius (kinetic or environment) and its value.
These calculations were run on one processor of our laboratory’s calculation cluster
Gatsby: Intelr Xeonr Gold 6132 CPU (2.60 GHz).

3.8.2 Convergence of correlation factors

If we treat the full configuration space, we know that in the limit of an infinite
kinetic radius, all kinetic trajectories are taken into account, and that in the limit
of an infinite environment radius, all sites of the system are treated exactly. The
previous paragraph showed how computational load increases with both these
radii, and that the increase with EnRa is much faster than the increase with KiRa
and that EnRa cannot be increased beyond very few lattice parameters because of
computational memory limitations. It is important to know the order of magnitude
of KiRa and EnRa at which calculations are well converged in order to assess the
computational requirements of a converged result.

3.8.2.1 Convergence as a function of KiRa

We study the convergence of tracer and vacancy correlation factors as a func-
tion of the kinetic radius in the case of a vacancy-tracer cluster diffusing in an
interacting binary alloy AB (Sec. 3.7.4.2) with a 2D-square structure. We fix the
environment radius around both cluster components to 1 lattice parameter and we
calculate the tracer (Fig. 3.24) and the vacancy (Fig. 3.25) correlation factors for
different kinetic radii going from 1 a0 to 15 a0, where a0 is the lattice parameter.
We do this study for an average A concentration going from 0.1 to 0.9, and for
normalized ordering energies going from -1.96 to +1.96. A well converged calcu-
lation (relative error below 5%) does not always occur at the same kinetic radius.
Here, it differs between the tracer correlation factor and the vacancy correlation
factor, and it changes according to the ordering energy. However, in all cases,
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the values of the correlation factor converge after a few lattice parameters, and
for a kinetic radius of 6 lattice parameters, the relative error is less than 5% at
all concentrations and for all ordering energies. For a kinetic radius of 6 a0 and
an environment radius of 1 a0, the size of the system is still small enough for the
full configuration space to be explored (less than 104), and the calculation time is
less than 20 minutes per point. Therefore, for small environment radii, converged
results with respect to the kinetic radius can be obtained with no computational
limitations. It is important to have converged results not only for accuracy, but
because in some cases it also affects the qualitative evolution of the correlation
factor as a function of concentration or ordering energy. For example, in the case
of the vacancy correlation factor with W/kBT = 1.96 (Fig. 3.25), when KiRa=1
a0, the system is found to be the most correlated when the average A composition
is of 0.5, while after convergence the opposite is found. Another interesting thing
to note here is that, with a small kinetic radius, the values of the correlation factors
are almost always overestimated. This is equivalent to underestimating correlation
effects and is consistent with the fact that the bigger the kinetic radius the more
correlated trajectories are taken into account. After a big enough kinetic radius, all
correlated trajectories with an important weight are considered and the correlation
factor values converge. These results are in agreement with the observations made
in the case of a dilute alloy [18], except that the value of the converged kinetic
radius is higher in concentrated alloys (6a0 instead of the 3a0 obtained in the case
of dilute alloys). This means that, in a concentrated alloy, the kinetic weight of
trajectories does not decrease with the length of the trajectory as fast as it does in
a dilute alloy. This makes sense because, when the surrounding of diffusing species
varies in space as they diffuse, longer kinetic trajectories need to be considered to
find all the ones with an important weight which do not randomize the relative
positions of species and to properly treat kinetic correlations.
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Figure 3.24: Convergence of the tracer correlation factor with increasing KiRa
(units of a0), as a function of concentration, for different values of ordering energies
normalized by kBT , in the case of a tracer-vacancy diffusion in a 2D-square binary
alloy with EnRa = 1 a0. The relative error is calculated by taking as a reference
the value of the correlation factor obtained when KiRa = 15 a0.
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Figure 3.25: Convergence of the vacancy correlation factor with increasing KiRa
(units of a0), as a function of concentration, for different values of ordering energies
normalized by kBT , in the case of a tracer-vacancy diffusion in a 2D-square binary
alloy with EnRa = 1 a0.. The relative error is calculated by taking as a reference
the value of the correlation factor obtained when KiRa = 15 a0.

3.8.2.2 Convergence as a function of EnRa

Due to computational memory limitations, we studied the smallest possible
system, a cluster of one vacancy diffusing in a binary alloy with a 2D-square struc-
ture, and we increased the environment radius from 1a0 to 2a0. We calculate
the mono-vacancy correlation factor at different concentrations and for different
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values of the normalized ordering energy. While the results shift in the same direc-
tion with increasing EnRa, the relative error between EnRa=1.5a0 and EnRa=2a0

remains high in most cases and the results are not fully converged yet. It is there-
fore necessary to increase the environment radius beyond 2 lattice parameters, and
hence the importance of the sampling scheme.

Figure 3.26: Convergence of the vacancy correlation factor with increasing EnRa
(units of a0), as a function of concentration, for different values of ordering energies
normalized by kBT , in the case of a mono-vacancy diffusion in a 2D-square binary
alloy. The relative error is calculated by taking as a reference the value of the
correlation factor obtained when EnRa=2a0.
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3.8.3 Computational performance of sampling

As discussed previously, computational time and memory are mostly affected
by the number of configurations and effective interaction classes. In our case,
sampling the configuration space should in theory reduce the needed memory to
run the calculations because it reduces the number of configurations and the size
of the T̃ matrix. As a consequence, sampling also reduces the time needed to
invert the T̃ matrix and solve the system of Eq. 3.23. However, it also introduces
a new part of the code which is responsible for filling the environment sites with
species and choosing which cluster-environment configurations to keep. Remember
that when sampling, for each (initial or final) cluster-environment configuration,
we need to determine the number of sites in the reservoir based on the number
of environment sites to fill, fill the reservoir with species based on their average
concentrations, and draw one species from it to fill one of the environment sites
until all sites are filled. At a later step, a pseudo residence-time algorithm chooses
among the found configurations which ones to keep based on their thermodynamic
weights. Additionally, since the sampled configurations differ from one run of the
code to another, we are usually required to run the code several times to average the
results of the different runs and get a reliable result. All of this requires additional
computation time, which in some cases compensates for the time saved by the
code when solving a smaller system of equations. This is especially true when the
size of the sample is big compared to the size of the full configuration space, as
is seen in Fig. 3.27 for the case of η = 10%. Here, we sampled the configuration
space at a specific percentage η and we calculated the vacancy-tracer transport
coefficients from 20 separate runs, and we plot in Fig. 3.27 the time required to run
the sampling scheme 20 times as compared to running it once in the case of a full
configuration space exploration. For smaller samples, regardless of the ordering
energy and kinetic radius, sampling the configuration space saves computational
time. Even though computational time is not a limitation, it is good to know that
sampling the configuration space will not increase the time needed to compute
transport coefficients. Additionally, the more computational time is saved when
sampling, the higher the number of calculations that we can run, which leads to
averaging over a bigger number of runs and possibly having a more reliable result.
In most realistic cases, the size of the sample will be smaller than 1% and sampling
the system will therefore save both computational memory and time.
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Figure 3.27: Computational time t required to sample the configuration space
and calculate transport coefficients 20 times in the case of a vacancy-tracer clus-
ter diffusing in a 2D-square structure of a binary alloy AB, with respect to the
computational time tfcs required to calculate the same transport coefficient in the
case of a full configuration space exploration. These measurements are plotted
as a function of the percentages of sampled effective interactions (η), for differ-
ent values of the normalized ordering energy, and in the case of KiRa=3a0 (full
symbols) and KiRa=6a0 (empty symbols). In all cases, EnRa is limited to 1st

nearest-neighbors around cluster components. The solid horizontal line represents
the values obtained in the case of a full configuration space exploration. The values
are averaged over the range of concentrations, and the error bars are smaller than
the markers and therefore not drawn. All these calculations were performed on a
standard personal computer: Intelr Core� i3-8130U CPU (2.20 GHz).

3.9 Comparison of KineCluE’s correlation fac-

tors with other methods

3.9.1 Case of a random binary alloy

We calculate the tracer correlation factor in a random binary alloy AB (Sec.
3.7.4.1) with a BCC structure in the case of a vacancy jump frequency ratio wA/wB
of 5 and of 104. We consider a local environment which includes the first nearest-
neighbors only (EnRa = a0

√
3/2) around the vacancy, and no local environments

around the tracer, and we explore the full configuration space. The kinetic ra-
dius is set to 5 lattice parameters which was enough to obtain converged values
at this environment radius. The results are shown in Fig. 3.28 in comparison
with Manning’s RA model ( [19, 20] and Sec. 1.7.1), Kikuchi’s PPM ( [46] and
Sec. 1.7.3), and Mishin’s Monte Carlo simulations [29]. In the case of a low jump
frequency ratio, our results are in very good agreement with the literature results
in the full range of concentrations. In the case of a high jump frequency ratio,
our model fails to reproduce the percolation curve at low concentrations and to
predict a percolation concentration threshold. Our model is more accurate than
the PPM at all concentrations, and when the concentration of the fast diffusing
species (A) is higher than 0.5, our results are close to Manning’s. However, all of
these models do not reproduce the Monte Carlo results accurately. It is interesting
to note the similarity in our curve and the PPM’s curve, which both increase lin-
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early and do not predict a percolation concentration threshold. Kikuchi identified
that the PPM’s problem was averaging over ensembles while a time average is re-
quired to follow the movement of one particular species during diffusion ( [47] and
Sec. 1.7.3). This is because long range order is necessary to know if an infinitely
connected cluster exists in the system or not. The probability of such an event
is either 0 or 1, and as long as the concentration of the fast species is below the
percolation threshold, this probability is null and so is the diffusion and corre-
lation factors. In our case, this probability is never null because it is calculated
based on the short range order established only around the vacancy (no environ-
ments around the tracer). Therefore, the size of the environments and trajectories
needs to be big enough for this probability to converge towards 0. In the case of
a 2D-square structure with an environment around both cluster components and
which includes first nearest-neighbors, our model predicts a percolation threshold
at XA = 0.1 (Fig. 3.29). Even though the predicted threshold is smaller than
the one found by Manning and by our Monte Carlo simulations, nevertheless, it
shows that percolation can be studied using our model by further increasing the
environment radius and properly applying a sampling scheme. It is interesting to
note that our model predicts a null correlation factor only at low concentrations
of the fast diffusing species, and that our model is overall more accurate at low
and high concentrations of A, regardless of how correlated the system is. This can
be related to the fact that, at these concentrations, the local concentration and
probability distributions are more centered around the average concentrations (see
the probability distribution in Sec. 3.6.3.4). In this case, the concentration distri-
bution of bigger environments and the kinetic probabilities of trajectories converge
faster to their exact values than when all configurations have similar probabilities.
This leads to a better description of kinetic correlations. Here this also leads to a
faster convergence of the probability of having an infinitely connected cluster to 0
at low concentrations, and to 1 at high concentrations.

Overall, our model’s result in the case of a random alloy is satisfying in the
case of a small jump frequency ratio, and promising in the case of a high jump
frequency ratio. Additionally, as was shown in Sec. 3.23, obtaining these results
is not computationally demanding. In the case of the 2D-square structure, it
was actually faster to calculate the correlation factors with KineCluE than with
the Monte Carlo simulations. Long range order cannot be reproduced without
increasing the environment radius beyond the first nearest-neighbors, and therefore
cannot be done without resorting to sampling the configuration space. This will be
especially necessary in the case of concentrated alloys with compositions around 0.5
because they will require larger environment and kinetic radii for a good description
of kinetic trajectories and correlations.
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Figure 3.28: Tracer correlation factor fA in a BCC binary random alloy, in the
case of a low jump frequency ratio of 5 (left) and a high jump frequency ratio
of 104 (right), calculated using KineCluE (this work) and compared with results
from the literature: Manning’s RA model [19,20], Kikuchi’s PPM [46], and Monte
Carlo simulations [29]. Note that the Monte Carlo results are the most accurate
ones.

Figure 3.29: Tracer correlation factor in a 2D-square binary random alloy calcu-
lated using KineCluE with KiRa = 6 a0 and EnRa = 1 a0 around both the vacancy
and the tracer, in the case of a high jump frequency ratio of 104, and compared
with Manning’s RA model [19, 20] and with our Monte Carlo simulations.

3.9.2 Case of an interacting binary alloy

We calculate the tracer correlation factors and the vacancy correlation factor
in the case of an interacting binary alloy with a 2D-square structure within the
pair interaction approximation1as a function of the ordering energy W normalized
by kBT . The absolute value of the maximum tested normalized ordering energy,
|W | / (kBT ) = 1.96) corresponds to the average ordering energy of the FeCr alloy
(taken from [8] and integrated over the whole range of concentrations) at 500°C.
Note that here, positive values of W correspond to alloys with an ordering ten-
dency, while negative values represent alloys with a clustering tendency. We plot

1Not to be confused with the PPM’s pair approximation. The interaction model used here,
which relies on first nearest-neighbors pair interactions, was presented in Sec. 3.7.4.2.
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the correlation factors in Fig. 3.30 for different compositions of the alloy. In each
case, we run Monte Carlo simulations to compare our results with. We calculate
the correlation factor in a 2 × 2 Monte Carlo box with 9 × 104 sites and we let
the system reach its equilibrium. We start measuring the diffusion coefficient after
108 jumps have been made, and we verify that our results converge with 5 × 103

AKMC blocks of 104 AKMC steps, and we make sure that both species jump at
least 400 times in each block. In KineCluE and in the AKMC simulation, we
calculate saddle-point energies using the Kinetically Resolved Activation (KRA)
approximation [147], and we consider all activation energies to be equal and all
attempt frequencies to be equal. We show in Fig. 3.31 the AKMC microstructure
at different values of concentrations and energies, which helps to see the level of
ordering and clustering in each case.

In both our model and the AKMC simulations, the tracer correlation factors
fA∗ and fB∗ are symmetric to each other with respect to the alloy’s composition
(i.e. fA∗ at XA is equal to fB∗ at 1 −XA). Therefore, it is sufficient to draw the
correlation factors at compositions of A below or equal to 0.5. The first noticeable
comparison points are that correlation factors are less precise for higher abso-
lute values of ordering energies and when the alloy’s composition approaches an
equiatomic distribution. Taking AKMC simulations as the reference calculations,
tracer correlation factors calculated with KineCluE are underestimated in alloys
with positive ordering energies, and overestimated in alloys with negative ordering
energies. Vacancy correlation factors are however always overestimated, except in
the case of XA = 0.1 and W/ (kBT ) = −1.96. For values of W/ (kBT ) between
−0.5 and +0.5, the three correlation factors are in good agreement with the AKMC
calculations, such that the relative error is below 20% at all concentrations.

In alloys with high ordering tendencies (W/ (kBT ) = +1.96), the correlation
factor of the dilute species is in very good agreement with the AKMC (relative
error below % at all concentrations), while that of the concentrated species is less
accurate. At this energy, the vacancy correlation factor deviates the most from
the AKMC value which decreases with the A concentration towards a null value.
When the ordering energy is high, atom distribution tends to maximize the num-
ber of A−B interactions, and A and B atoms are distributed in a highly ordered
manner such that A atoms are surrounded only by B atoms, and vice-versa (see
Fig. 3.31). In highly ordered alloys, a vacancy which exchanges with any atom
will decrease the level of order in the structure and lead to the creation of anti-
sites and anti-phase boundaries which decrease the efficiency of its diffusion. A
vacancy which exchanges with an A atom for example, breaks A − B bonds and
is more likely to exchange with it again to re-increase the number of A−B bonds
rather than exchanging with one of its neighboring B atoms. This high proba-
bility of jumps and reverse jumps leads to an almost null net displacement of the
atoms and the vacancy, and therefore to correlation factors close to 0. This effect
is not reproduced by our model because of the small environment radius. With
an environment radius consisting of only first nearest-neighbors, in most configu-
rations (all configurations in which the tracer and vacancy environments do not
interact) there are no interactions between the environment atoms. Interactions
are mainly between the tracer and the environment atoms around it, and between
the environment atoms and the mean-field. A vacancy exchanging with an A atom
around it needs to break an A −M bond, which is not the same as breaking an
A−B bond and is energetically less costly. The reverse jump is also not necessarily
more probable than any other jump, and the vacancy’s diffusion is therefore not
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as correlated as it is in the AKMC simulation. This is also the reason why tracer
correlation factors are in good agreement. When the vacancy is near the tracer, its
exchange frequency with the tracer and its escape frequency both take into account
the breaking and forming of bonds. These two frequencies are properly calculated
by our model for two reasons: 1. environments include first nearest-neighbors and
interaction energies are limited to pair first nearest-neighbors; 2. as explained, in
this type of alloys kinetic correlations arise from back and forth vacancy exchanges
with atoms, and therefore short trajectories contain most of the information on
kinetic correlations.

All this highlights the importance of having sufficiently big environments for
thermodynamic and kinetic interactions to be well represented. Large environ-
ments are not necessarily needed, as long as the interactions which are the most
representative of the system and its thermodynamic energy are properly described.

In alloys with high clustering tendencies, long-range order is needed to properly
characterize the decomposition of the system (see Fig. 3.31). This situation is
similar to the percolation case, except that jump frequency ratios are not infinite.
The discrepancy between our results and the AKMC simulation lies in KineCluE
not being able to properly reproduce the connected cluster of A or B atoms,
because environments are not being big enough for the short-range order present
in them to be well representative of the long-range order of the structure.

Overall, the tracer and vacancy correlation factors calculated with our model
are in good agreement with the AKMC simulation for normalized values of the
ordering energy between −0.5 and +0.5 and for the whole range of alloy compo-
sition. Our model is not particularly developed to treat highly ordered alloys as
the number of generated environments is small compared to the number of en-
vironments one needs to generate in order to reproduce the short-range and the
long-range order present in this type of alloys. However, our model reproduces
the tracer correlation factor in these alloys with good agreement with the AKMC
simulations. Contrary to the vacancy correlation factor, the short-range order
around the tracer is well modeled and sufficient for an accurate computation of its
correlation factor.
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Figure 3.30: Correlation factors (tracers fA∗ and fB∗ , and vacancy fV ) as a function
of ordering energy normalized by kBT , for three different concentrations of A in the
case of a 2D-square binary alloy AB, with clustering (negative W ) and ordering
(positive W ) tendencies. Values obtained from KineCluE (this work) are drawn in
solid lines and full symbols, while values obtained from our AKMC simulation are
drawn in dashed lines and open symbols. The values of fA∗ and fB∗ at XA = 0.7
and XA = 0.9 can be deduced from the above figures because fA∗ and fB∗ are
symmetric, and fA∗ at a concentration XA is equal to fB∗ at a concentration
1 − XA. Note that the error bars on the AKMC results are smaller than the
marker’s size and therefore not represented.
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Figure 3.31: AKMC snapshots of the structure at different concentrations and
values of the normalized ordering energy (W ′ = W/ (kBT )), in the case of a binary
alloy AB with clustering (top) and ordering (bottom) tendencies. A atoms are
represented in blue, and B atoms are represented in red. These snapshots were
taken using Ovito [142].

3.10 Conclusions of chapter 3

In this chapter, we showed how we extended Schuler’s SCMF-d and KineCluE
code [18] to concentrated alloys. Our model relies on local environments around
cluster components to describe short-range order, and on an original mean-field
approximation far from diffusing species in order to simplify the calculations. De-
spite this, a sampling scheme is necessary to reduce the configuration space which
scales with the number of components in the alloy and with the size of the local
environments. The computational limitation of the code is its memory require-
ments, and even though correlation factors converge fast with increasing kinetic
radius, the environment radius cannot be increased beyond 3rd nearest-neighbors
in the simplest cases and a convergence with respect to the environment radius
cannot be achieved. We presented a general sampling scheme and found a good
compromise between accuracy and simplicity using a reservoir sampling scheme.
The size of the reservoir with respect to the size of the sites we are filling from
it controls the local equilibrium approximation that we are imposing on our sys-
tem and the local configuration composition fluctuations. The reservoir sampling
was combined with a pseudo residence-time algorithm which picks configurations
based on their thermodynamic weights. We applied our model to the case of an
interacting and non-interacting alloy, and we compared our results to the litera-
ture results and to our own Monte Carlo simulations. In the case of a random
alloy, KineCluE is in agreement with the literature when jump frequency ratios
are small, but it cannot reproduce the percolation curve at high jump frequency
ratios with a relatively small environment radius. In the case of an interacting
alloy, our model is in good agreement with Monte Carlo simulations in both cases
of positive and negative ordering energies, with normalized values between -0.5
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and +0.5. A larger environment radius is required to reproduce special cases of
highly ordered systems and of spinodal decomposition.

3.11 Perspectives of chapter 3

This chapter showed that our model allows for the computation of correlation
factors in good agreement with other theories, for a range of exchange frequen-
cies, ordering energies and concentrations. These results are promising because
they were obtained using the smallest possible local environments. Increasing the
environment radius, even to only second-nearest neighbors, has the potential to
improve the accuracy of our model significantly. It is clear however that this is not
feasible without sampling the configuration space. We think that our sampling
procedure still needs optimization and better understanding of how and what con-
figurations are being sampled at each step.

We saw in Fig. 3.27 that sampling is quite sensitive to the ordering energy.
This is most likely related to the combination of both the pseudo residence-time
algorithm and the reservoir sampling, which can favor specific couples of initial
and final configurations. This needs to be further investigated by analyzing the
configurations sampled at each sampling step, by studying whether this occurs at
specific concentrations more frequently than others (for example at lower concen-
trations it is more likely to happen because of the lower number of configurations
with local compositions close to the dilute limit). We need to identify whether or
not this energy dependency will cause severe trapping in some cases, and if yes,
optimize the sampling to deal with such cases. For example, we can allow the code
to explore jumps from the same configuration a fixed number of times only.

Additionally, we found in Sec. 3.6, that sampling always overestimates cor-
relations. In some cases, especially when a low percentage of the configuration
space is being sampled, we obtain negative correlation factors. It is still not clear
if these negative values are physical or an artifact of our sampling procedure. If
it is the former, we need to better understand in which cases a subspace of the
phase space leads to negative correlation factors in general. If it is the latter,
we identified some possible reasons for it. The first one is that, in some cases,
the sampled subspace can be a closed system and does not allow diffusion in an
infinite volume. This leads to an underestimation of the escape frequency and
explains the overestimation of the sampled correlation factor. Intuitively, includ-
ing all symmetry equivalent configurations and trajectories (which is what we do)
seems to be a solution to this problem because it increases the chances of a con-
figuration transitioning into an equivalent version of itself (for example translated
version) and creating an open-system. Rigorously, however, there is no guarantee
that symmetry equivalents solve the problem in all types of structures and for any
jump mechanisms. Additionally, including symmetry equivalent subspaces raises
the question of whether or not these subspaces are connected, and at the moment,
there is no theoretical evidence that they are. In case they are not, transport co-
efficients need to be calculated in each subspace separately. Negative correlation
factors can also arise as a consequence of simplifications and assumptions made in
the formalism, which are no longer valid if not all configurations and trajectories
are explored. A simple example is the occupation number Ωe of an environment
e, which depends on the number of sampled environments e and can no longer be
written as a function of the number of species and the number of sites in e. There-
fore, we need to make sure that the formalism developed for a full configuration
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space exploration is valid as well in the case of a sampled subspace. As sampling
the configuration space is crucial, these studies must be done in a meticulous way.

Currently, computational time is not a limiting problem and it is not expected
to be one since the biggest system that can be studied requires around a couple
of hours on one processor. Nevertheless, computational time can be optimized for
faster calculations which will allow for complete studies of transport coefficients
as a function of energies, composition, temperature and strain. Hence, it is ad-
vantageous to parallelize the code. Indeed, several parts of the code can be run in
parallel, such as the sampling scheme and the construction of the un-correlated and
correlated matrices. The configuration space can be sampled in parallel by making
sure that the parallel sampling procedures contain at least one cluster-environment
configuration in common (to guarantee a connected subspace).

Once the sampling procedure is optimized, it will allow us to test a greater
variety of crystalline structures, and to not be limited to a 2D structure. Addi-
tionally, in the case of a binary alloy, we can test the effect of not only the ordering
energy, but also the energy asymmetry on the transport coefficients (by taking dif-
ferent values of εAA and εBB, εAV and εBV ), and we can extend interactions beyond
first nearest-neighbors and go on to calculate transport coefficients of FeCr alloys.
Eventually, we should be able to test our model in the case of multicomponent
alloys beyond the binary limit, in order to see how well the model can predict
transport coefficients of high entropy alloys.



Conclusions

The work described in this thesis can be divided in two main parts. Here, we
summarize the conclusions obtained in chapters 2 and 3.

� We simulated interdiffusion in nanometric Fe/Cr multilayers using Senninger
et al.’s Atomic Kinetic Monte Carlo (AKMC) model [9, 16], which was de-
veloped to study the α − α′ phase separation in FeCr alloys. We compared
the concentration profiles and layer thicknesses to experimental multilayers
which were studied by our experimental collaborators. We found that the
AKMC model reproduces interdiffusion in the Fe-rich region and at the in-
terfaces at 500°C, with overall satisfactory agreement with the experimental
results.

� We used the AKMC concentration profiles to simulate X-ray diffraction
(XRD) profiles of Fe/Cr multilayers using Pierron-Bohnes’ simulation code
[138]. We compared the XRD profiles to the experimental profiles and found
good qualitative agreement, while experimental XRD profiles exhibit an over-
all faster decay at 450°C and 500°C.

� We found that an analysis of multilayer XRD profiles based on interference of
X-rays allows us to identify the part of the multilayer which affects predom-
inantly each XRD satellite. We also found that, due to diffusion asymmetry,
the decay of the logarithm of XRD satellite intensities is linear during spe-
cific time ranges of annealing, with a decay rate specific to each satellite.
We were therefore able to separated the evolution of the multilayer into sep-
arate kinetic regimes, each attributed to diffusion in a specific region of the
multilayer.

� We were able to extract, from the simulations and the experiments, inter-
diffusion coefficients at 450°C and 500°C, and at different concentrations:
in high Cr concentration, in high Fe concentration, at the interfaces, and
at concentrations close to the solubility limits. We found that the values
obtained at 500°C are in satisfactory agreement with values calculated by
Senninger et al. [9, 16].

� We found that multilayers with strong diffusion asymmetry allow us to ex-
tract, from their XRD profiles, interdiffusion coefficients at certain relevant
concentrations. Our methodology applies best when interdiffusion coeffi-
cients in phases rich in one element are very different, because then, bulk
interdiffusion in the different layers happens in separate time-scales and
changes the rate of XRD satellite decays in an observable way.

� Experimental observations showed the presence of misfit dislocations and a
possible partial coherency growth of the multilayers. For a more complete
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study, we need to take into account in our simulations the presence of dis-
locations and the elastic properties of the alloy. This can help improve the
simulation results and explain the faster experimental XRD decay at the
beginning of annealing.

� We extended the Self-Consistent Mean-Field theory reformulation (SCMF-d)
and the KineCluE code to concentrated alloys, and implemented a sampling
procedure to reduce the size of the configuration space. The sampling proce-
dure is based on filling environment sites from a reservoir of atoms based on
their average composition, combined with a pseudo residence-time algorithm
which favors the most thermodynamically stable configurations. Our model
introduces an original way to explore a connected configuration space. We
start from an initial configuration and extend the configuration space little
by little, starting at every step of the sampling from any previously found
configuration. The exploration is oriented toward configurations with a high
thermodynamic weight and a local composition which fluctuates around the
average composition. Then, we are able to reconstruct all possible trajecto-
ries between these sampled configurations.

� We applied our model to binary alloys with different ordering energies. In
non-interacting alloys, we found good agreement with the literature results
when the jump frequencies of the different atomic species were within the
same order of magnitude. In interacting alloys with both ordering and clus-
tering tendencies, we found good agreement with AKMC simulations when
the ordering energy normalized by kBT was lower than 0.5 in absolute value.

� In the limit of a very high difference in jump frequencies, the current state of
our model does not predict a null diffusion flux when the concentration of the
fast diffusing species is below the percolation threshold. We found that our
model yields similar results to the original version of the Path Probability
Method (PPM), hinting that the long range order (LRO) is constructed from
an overlay of copies of the short range order (SRO), and that the SRO of
our model is not big enough to be representative of the LRO. We think
that this is also the reason why the current implementation of our model
cannot be used to study accurately diffusion in alloys undergoing spinodal
decomposition or in highly ordered alloys, i.e. systems with high values of
ordering energies normalized by kBT .

� We found that correlation factors converge with increasing kinetic and envi-
ronment radii. A kinetic radius of 6 lattice parameters was enough for our
results to converge at different values of ordering energies. Due to compu-
tational limitations, we could not increase the environment radius beyond
2 lattice parameters to study in depth the convergence with respect to this
parameter.

� We found that the sampling scheme is accurate when more than 1% of the
effective interaction classes are sampled. We found that correlations are
always overestimated in the sampled configuration space and that the more
correlated a system is, the more its correlations are overestimated. Further
studies need to be conducted to better understand this effect and construct
a reliable sampling scheme in realistic systems where sampling is likely to be
well below 1%.



Perspectives

Besides the technical perspectives which were discussed at the end of each
chapter, more general perspectives can be suggested in order to complete our
study. For a complete understanding of interdiffusion in Fe/Cr multilayers, we
need to understand interface mobility and elasticity. This will provide a better
understanding of interdiffusion in general, and of interdiffusion as analyzed and
quantified from X-ray diffraction (XRD) profiles, as interface mobility and elastic
properties are closely linked to the variation of the interplanar lattice spacing
profile. On the other hand, in order to be able to calculate transport coefficients
in Fe/Cr, among other multi-component alloys, using KineCluE, we need to further
optimize and test our sampling procedure. This will allow us to set the convergence
parameters to values which ensure the accuracy of the results, while allowing to
perform calculations with reasonable computational power. We also need to test
the validity of our mean-field model and generalize it to be applicable for a larger
variety of applications. In this section, we discuss three perspectives of our work.

Interface mobility model for Fe/Cr multilayers

Interface mobility occurs alongside interdiffusion in multilayers with an asym-
metrical miscibility gap and/or asymmetrical diffusion. This can be seen from
Kirkendall’s experiment (Sec. 2.2.4), and from our AKMC simulations (Sec. 2.11).
Interface mobility is therefore closely linked to interdiffusion and it affects layer
thicknesses and the lattice spacing profile. It has therefore an effect on the evolu-
tion of the XRD profiles. The importance in developing an interface mobility model
lies in making the link between the atomic scale (AKMC) and the macroscopic scale
(XRD). An interface mobility model can be simple enough to be studied analyti-
cally, all while making an explicit link between the atomic and macroscopic scales.
The first question which arises it: how can we define the interface unequivocally?
Should it be sharp or diffuse? Should the choice be based on a thermodynamic or
kinetic argument? Is there or not local equilibrium at the interface?

Available models of interface mobility either assume an interface at a local
thermodynamic equilibrium whose mobility is controlled by the slow bulk diffu-
sion [64, 130], or they assume an out-of-equilibrium interface whose mobility is
controlled by its deviation from equilibrium concentrations [67]. In each plane of
our AKMC simulation, we calculated the gradient of chemical potential difference
∇µCrFe between the Cr and the Fe chemical potential gradients using Widom’s
integration scheme [146] and the same AKMC model (Fig. 3.32). We found that
∇µCrFe is zero at the interface, which is inconsistent with phase-field models which
assume a non-null gradient ∇µCrFe [65]. We suspect that the interface is in a
two-phase equilibrium state with different proportions of phases. An example of
a model that could apply to Fe/Cr multilayers is presented in Fig. 3.33. In such
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model, we can express the fluxes as a function of chemical potential gradients, and
make the link between the fluxes and Kirkendall’s velocity through changes in the
reference frames (see Sec. 2.2.4). We need to find a convincing definition of the
position of the inner interface which separates the two phases of the interface. We
thought of using a lever rule to divide them in a way to keep the average interface
concentration Cnom constant. This model is conceptually simple, but requires us
to better understand the microstructure of the system and the validity of a local
equilibrium condition before it is assumed. Further work needs to be done to set
meaningful hypothesis, establish the corresponding equations and solve them ana-
lytically if possible. An interface mobility model will also require parametrization,
and most probably an analytical expression of the interdiffusion coefficient as a
function of concentration and temperature. Finally, interface mobility is closely
linked to strain and can also be calculated from the lattice parameter variations
(calculated in Fig. 2.28) combined with an elasticity theory, which will be dis-
cussed in the next paragraph.

Figure 3.32: Time evolution of the gradient of chemical potential difference∇µCrFe,
at the different planes of the multilayer. The black dashed line indicates the po-
sition of the interface before annealing, while colored dashed lines indicate the
position of the interface at different annealing times. The position of the inter-
face was determined as the abscissa corresponding to the inflection point of the
concentration curve.
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Figure 3.33: Schematic representation of the kind of model which seems relevant
to us. J1 and J2 are the fluxes between the interface and the layers, Cb

1 and Cb
2 are

the bulk concentrations in the Fe-rich and Cr-rich layers respectively, Cnom is the
average concentration at the interface, and xi is the position of the middle interface
that splits the two equilibrium phases. Solid line arrows show the evolution of
concentrations and plane positions in the case where J1 � J2.

Elasticity of Fe/Cr multilayers

In our AKMC simulations, we assumed a rigid lattice, and in our X-ray diffrac-
tion simulations, we assumed a linear Vegard’s law to calculate the interplanar
spacing profile, which assumes no coherency at the interface [140]. This is a rea-
sonable approximation because loss of coherency is observed in multilayers whose
period is larger than approximately 4 nm of thickness [141] (remember that our
multilayers have a period of 20 nm). Pierron-Bohnes’s measurements of the par-
allel and perpendicular lattice parameters show a linear relationship between the
two and an evolution which is more important at the beginning of annealing (Fig.
2.28). This suggests that misfit dislocations were not enough to relax the mul-
tilayers and some residual strain exists in them and leads to a residual stress.
With annealing, atoms diffuse across the interface which shifts its position, and
the phase proportions at the interface change. Therefore, strain decreases with
annealing. Therefore, it is not clear if there is coherency or not at the interfaces,
and a partial coherency is the most likely scenario. In this case, the time evolution
of the interface mobility can be expressed as a function of the time variation of
the ratio of parallel and perpendicular lattice parameters, which provides an ad-
ditional way to study interface mobility. Transport properties and XRD profiles
depend on the degree of coherency in the multilayers and interface mobility, and
therefore, for this study to be complete, we must be able to calculate the degree
of coherency in our multilayers. Cahn’s elasticity model [148], which takes into
account surface tension and elastic energy, assumes a completely coherent growth.
His model, however, is only valid in multilayers with low composition modulations
at the interface, which is not the case of our multilayers in which the concentra-
tion gradient varies between approximately the two solubility limits (see Fig. 2.11
for example). Ariosa et al. [140] considered the case of partially coherent growth,
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which is more adapted for a strong composition variation at the interface. Their
model relates the strain induced from lattice mismatch to the density of misfit
dislocations, which our collaborating experimental teams can measure. This will
add a correction to our interplanar spacing profile and modify the simulated XRD
profiles. It will be interesting to analyze whether this correction improves the
agreement between simulated and experimental XRD profiles, and it will help us
to better understand the experimentally measured evolution of the multilayers and
make the link between strain, misfit dislocations and interface mobility, and how
they affect and are affected by interdiffusion.

Computation of transport coefficients in concen-

trated alloys using KineCluE

We saw that, in its current state, KineCluE’s main limitation is its memory
requirements, due to the large size of the configuration space. Optimizing the
sampling procedure to be reliable and accurate compared to the full configuration
space results, is the number one priority for this work to be complete. In most
real applications, the configuration space will be way too large and we will need to
sample very small portions of it. Even though it is not a problem, computational
time can also be improved by parallelizing some parts of the code. These two
points will allow us to test the model in a greater variety of applications, which
will help us to better understand the nature and validity of our assumptions and
approximations. We need to work some more at getting a deeper understanding
of our mean-field definition and what it implies, i.e. what a mean-field atom really
represents in our model and how it relates to previous formulations of mean-field
interactions. The applications that we presented were made based on a simple
energetic model that we developed for theoretical development, and which is not
inherent to our SCMF-c model itself. Our energetic model relies on a nearest-
neighbors pair interactions and on the first nearest-neighbors pairs CVM for the
calculation of chemical potentials, which is probably not a good approximation
when second-nearest neighboring pair interactions need to be considered, for in-
stance in the case of FeCr alloys. In such case, we would need to extend the CVM
to second nearest-neighbors pairs. We also considered a point approximation when
calculating the interactions with mean-field atoms, and we still need to study the
effect of the size of the cluster on mean-field energies. There are no conceptual
problems for the generalization of our model to any energetic model, except for the
treatment of interactions with mean-field atoms. Therefore, our energetic model
needs to be further generalized if we want it to be applicable in the case of any
concentrated alloy. Ultimately, the application of the code to multi-component
alloys (with more than two components) will lead to a better understanding of
diffusion in HEA.



Résumé

1. Introduction

Dans la plupart des applications, les métaux ne sont pas utilisés sous leurs
formes pures parce que nous pouvons optimiser la composition des alliages en
fonction de l’application souhaitée. Il existe une grande variété d’alliages et de pro-
priétés d’alliages, et ces alliages sont utilisés dans différentes applications en fonc-
tion des contraintes macroscopiques et des conditions d’utilisation (température,
pression, volume, etc...). Alors que les propriétés des alliages étaient autrefois
optimisées sur la base d’expérimentations et d’observations macroscopiques, on
sait maintenant que les propriétés macroscopiques résultent d’états microscopiques
du système. Les atomes sont constamment en mouvement dans un matériau à
température finie, ce qui entrâıne des sauts atomiques et une redistribution des
atomes. La diffusion peut être généralement définie comme le mouvement net de
ces atomes. Il est intéressant d’étudier la diffusion parce que ces changements à
l’échelle atomique affectent les propriétés macroscopiques des matériaux. De plus,
les alliages ont différentes phases à différentes températures et compositions, et
chaque phase peut avoir des propriétés différentes. Le phénomène de diffusion
permet l’évolution du matériau d’une phase à l’autre et explique comment et à
quelle vitesse les propriétés de l’alliage changent.

1.1 Lois de diffusion dans les alliages

Du point de vue phénoménologique, la diffusion est quantifiée par la matrice
d’Onsager (ou matrice des coefficients de transport), qui relie le flux macroscopique
d’espèces chimiques aux forces motrices de la diffusion (les gradients de potentiel
chimique des espèces) [13,14]. Le flux d’atomes d’espèce β est donné par

~Jβ = −
∑
α

Lβα
~∇µα
kBT

, (3.151)

où les Lβα constituent les coefficients de transport d’Onsager, ~∇µα est le gradient
de potentiel chimique de l’espèce α, kB est la constante de Boltzmann, et T est la
température. Notez que la matrice d’Onsager est une matrice symmétrique définie
positive. Il existe toute une zoologie de coefficients de diffusion qui sont utilisés
pour quantifier la diffusion dans des conditions spécifiques, comme la diffusion de
traceur ou l’interdiffusion. Les coefficients de diffusion représentent alors un cas
particulier de la matrice d’Onsager.

Du point de vue atomique, la diffusion est le résultat d’une marche aléatoire
des espèces qui se déplacent de proche en proche. Dans le cas d’une diffusion
isothèrme sur un réseau de volume total V , en généralisant la formule d’Einstein
[79], Allnatt [81] a établi le lien entre les coefficients de transport et les fluctuations
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d’équilibre des positions atomiques. Les coefficients Lβα sont calculés en fonction
du déplacement quadratique moyen des atomes β et α à l’équilibre,

Lβα = lim
t→∞

〈
~Rβ (t) ~Rα (t)

〉
6V t

, (3.152)

où t est le temps durant lequel le vecteur de déplacement collectif des atomes de
l’espèce α est ~Rα (t). Les 〈.〉 représentent une moyenne thermodynamique sur un
ensemble de réalisation et le temps de calcul doit être suffisamment long pour
assurer une bonne statistique et un calcul précis.

Même si les sauts atomiques individuels sont aléatoires et suivent un processus
markovien, différentes séquences de sauts ne sont pas nécessairement équiprobables.
Ces corrélations entre sauts successifs résultent de la géométrie du système et/ou
des interactions entre différentes espèces chimiques. Les corrélations peuvent être
quantifiées en introduisant les facteurs de corrélation des espèces qui quantifient
l’écart des coefficients de transport totaux par rapport aux coefficients de trans-
port idéaux, c’est-à-dire correspondant à une marche aléatoire sans bias dans les
trajectoires. Le facteur de corrélation diagonal f

(α)
αα peut être calculé en fonction

du coefficient de transport diagonal Lαα et de sa valeur non corrélée L0
αα,

f (α)
αα =

Lαα
L0
αα

. (3.153)

Le facteur de corrélation non-diagonal f
(γ)
βα quantifie la déviation du coefficient de

transport Lβα, par rapport au coefficient L0
γγ où γ est soit α soit β,

f
(γ)
βα =

Lβα
L0
γγ

. (3.154)

La difficulté du calcul analytique des facteurs de corrélation réside dans le fait de
devoir calculer des moyennes de vecteurs de déplacement successifs d’atomes, et de
devoir trouver toutes les trajectoires possibles des atomes suivis, ce qui n’est pas
faisable dans le cas général de la diffusion à plusieurs corps. Malgré le fait qu’il est
difficile de calculer analytiquement les facteurs de corrélation, ils sont importants
dans de nombreux cas, notamment à basse température, et doivent être pris en
compte pour une description complète du phénomène de diffusion.

1.2 Diffusion dans les alliages concentrés

Dans cette thèse, nous nous sommes intéressés particulièrement à l’étude de la
diffusion dans les alliages concentrés. Par définition, un alliage concentré est un
alliage avec au moins deux composants présents à des concentrations relativement
élevées (c’est-à-dire des concentrations supérieures à 1%). Les alliages concentrés
comprennent les alliages à haute entropie (HEA), qui sont un mélange d’au moins
cinq éléments présents dans des proportions comparables. L’augmentation du
nombre d’éléments dans un matériau ajoute une complexité chimique au problème
de la diffusion, notamment des corrélations cinétiques apparaissent en raison de la
différence d’espèces chimiques occupant les différents sites du système.

Il est difficile de quantifier les coefficients de transport en général, et en partic-
ulier dans le cas des alliages concentrés. Des expériences de diffusion, des approches
numériques stochastiques et des modèles théoriques ont tous été utilisés pour une
meilleure compréhension des phénomènes de diffusion. Cependant, chacune de ces
méthodes a ses propres forces et limites.
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Les expériences de diffusion ne sont généralement réalisables qu’à des températures
élevées et, dans la plupart des cas, il n’est pas correct d’extrapoler les résultats
aux basses températures. Pour surmonter cet obstacle, des expériences de dif-
fusion peuvent être réalisées dans des matériaux présentant une microstructure
nanométrique afin de réduire les distances de diffusion pertinentes. Par exem-
ple, les multicouches nanométriques permettent l’étude de l’interdiffusion à des
températures relativement basses et en un temps raisonnable. Dans le cas général,
les expériences de diffusion deviennent plus difficiles à établir et surtout à analyser
avec l’augmentation du nombre de composants, et dans la plupart des cas, elles ne
permettent pas de mesurer la matrice d’Onsager entière.

Par ailleurs, les approches numériques stochastiques nécessitent le calcul de
moyennes de déplacement, et peuvent donc souffrir de problèmes de piégeage
cinétique et de convergence. Cela est particulièrement vrai lors de l’étude de
systèmes hautement corrélés d’alliages concentrés et lors du calcul des coefficients
de transport hors diagonaux. Ces problèmes peuvent dans de nombreux cas être
résolus à l’aide d’algorithmes d’optimisation qui empêchent le système de rester
bloqué dans les minima locaux. En revanche, il reste difficile de calculer la matrice
d’Onsager dans des systèmes hors d’équilibre car la mesure est faite en parallèle
de la décomposition du système et il n’est pas trivial de garantir la convergence
des résultats.

Les approches analytiques et théoriques ont tenté de surmonter ces problèmes,
mais elles souffrent de devoir calculer explicitement les effets de corrélation. Cela
nécessite l’étude exhaustive de toutes les configurations possibles du système et de
toutes les trajectoires. Ceci est particulièrement difficile dans les alliages concentrés
car le nombre de configurations et de fréquences de saut devient vite gigantesque
avec le nombre croissant de composants et de sites dans le système. C’est pourquoi
les approches théoriques s’appuient fortement sur des approximations cinétiques
et thermodynamiques afin de réduire l’espace de configuration. Actuellement, des
modèles théoriques ont été appliqués soit dans le cas d’un alliage sans interactions
[19, 20], soit dans le cas d’un alliage avec interactions dans des cas particuliers de
structures et de mécanismes de diffusion [21,22].

1.3 Objectifs de la thèse

Le besoin d’un modèle général pour étudier la diffusion dans un alliage con-
centré est toujours présent. L’objectif des deux sections suivantes est de fournir des
modèles à l’échelle atomique pour calculer les coefficients d’interdiffusion et les co-
efficients de transport dans les alliages concentrés. Dans la première section, nous
avons étudié l’interdiffusion dans le système spécifique des alliages FeCr. Nous
avons réalisé une étude d’interdiffusion à basse température dans des multicouches
nanométriques afin de mesurer les coefficients d’interdiffusion à partir de profils de
diffraction des rayons X (DRX). Ce travail a combiné des expériences et des simu-
lations de Monte Carlo cinétique à l’échelle atomique (AKMC). Dans la deuxième
section, nous présentons un nouveau modèle théorique développé pour calculer les
coefficients de transport dans le cas général des alliages concentrés, ainsi que son
implémentation dans un code de calcul automatisé.
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2. Interdiffusion dans les multicouches Fe/Cr

2.1 État de l’art

Le coefficient d’interdiffusion des alliages FeCr dépend fortement de la concen-
tration, et beaucoup de travaux ont tenté de le calculer en fonction de la concentra-
tion et de la température, du point de vue expérimental et à partir de simulations
AKMC. Senninger et al. ont développé une simulation AKMC et comparé leurs
coefficients d’interdiffusion aux valeurs expérimentales et ils ont trouvé un bon
accord dans les environnements riches en Fe, en particulier à des températures
élevées [9,16]. Il n’y a cependant pas de données expérimentales ou ab initio dans
les environnements riches en Cr, ce qui rend difficile de juger de la validité des
simulations dans cette région, sachant que la simulation est ajustée à la fois sur les
données expérimentales et ab initio. De plus, il n’y a pas de données expérimentales
à des températures inférieures à 642°C. Récemment, G. Magnifouet-Tchinda et V.
Pierron-Bohnes de l’IPCMS Strasbourg ont fait crôıtre des multicouches Fe/Cr
nanométriques dans la direction (100) en utilisant l’épitaxie par jets moléculaires
et les multicouches ont été recuites à basse température (450°C et 500°C) [60].
Des mesures de diffraction des rayons X ont été effectuées à différents temps de
recuit et les profils de diffraction ont montré un pic principal de Bragg entouré
de quatre satellites, deux de chaque côté. Pendant le recuit, il a été observé que
l’intensité normalisée des satellites décroissait. Cependant, la relation entre cette
décroissance et l’interdiffusion n’est pas établie, et certaines questions demeurent
ouvertes concernant ce que représente chaque pic et sur l’obtention des coefficients
d’interdiffusion à partir de la décroissance de l’intensité des pics.

L’objectif de cette partie est de calculer les coefficients d’interdiffusion à par-
tir de profils de diffraction des rayons X simulés et expérimentaux, aux basses
températures de 450°C et 500°C.

2.2 Résultats

Nous avons simulé les multicouches nanométrique ainsi que l’évolution de leurs
profils de concentration lors du recuit à l’aide de la simulation AKMC développée
par Senninger et al. [9, 16]. Nous avons simulé deux bi-couches de FeCr avec
des conditions aux limites périodiques aux températures constantes de 450°C et
500°C séparément. Afin de tester la validité de la simulation AKMC, nous avons
comparé les profils de concentration simulés aux profils des multicouches car-
actérisés expérimentalement avant recuit et après recuit à 500°C pendant 4h.
Expérimentalement, la sonde atomique tomographique (APT) a été utilisée pour
mesurer les concentrations au milieu de chaque couche et le microscope Elec-
tronique en Transmission en mode STEM/HAADF a été utilisé pour mesurer
les épaisseurs des couches [149]. Dans la simulation et l’expérience, on a observé
après le recuit que le Cr diffuse dans la couche riche en Fe alors que le Fe ne diffuse
pas au milieu de la couche riche en Cr. On a observé aussi que l’épaisseur de la
couche Fe augmente avec le recuit. Ces observations sont à la fois qualitativement
et quantitativement en accord entre la simulation et l’expérience. La cinétique
d’interdiffusion est alors bien reproduite par la simulation AKMC, au moins à la
température de 500°C et après un recuit de 4h.
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Figure 3.34: Profils DRX simulés (noire) et expérimentaux (rouge), avant recuit
(gauche) et après un recuit à 500°C pendant 4h (droite). L’intensité à un temps
t, I (t), est normalisée par l’intensité du pic central au temps t, I0 (t), tel que
l’intensité dessinée correspond à I (t) /I0 (t) .

Nous avons ensuite utilisé les profils de concentration obtenus par AKMC pour
simuler l’évolution du profil DRX avec le recuit. Nous avons utilisé un code DRX
précédemment développé qui simule, à partir du profil de concentration, le pro-
fil d’espacement du réseau et le profil du facteur de diffusion [138]. Les profils
d’espacement entre deux plans consécutifs et du facteur de diffusion de chaque
plan sont considérés comme évoluant linéairement avec la concentration. Les dis-
tance inter-atomiques du Cr pur et du Fe pur mises en entrée du code ont été
obtenues à partir d’une étude précédente [60], et les facteurs de diffusion de Cr
et de Fe ont été donnés par Cromer et Mann [139]. L’intensité diffractée en fonc-
tion de l’angle 2θ est obtenue à l’aide des lois de diffraction de Bragg. Afin de
tester la validité de la simulation DRX, nous avons comparé les profils diffractés
simulés aux profils expérimentaux, avant recuit et après recuit à 500°C pendant
4h (Fig. 3.34). Avant recuit, les positions et intensités des pics ont été en bon
accord qualitatif et quantitatif. Cela a montré que les paramètres d’entrée de la
simulation sont en bon accord avec les conditions expérimentales. Après recuit, les
pics satellites expérimentaux avaient des intensités plus faibles et un décalage plus
prononcé vers les valeurs inférieures de 2θ. La décroissance des pics de l’expérience
plus rapide peut signifier que l’interdiffusion est plus rapide dans l’expérience.
Cependant, ceci est en contradiction avec ce que nous avons observé lorsque nous
avons précédemment comparé les profils de concentration à la même température
et après la même durée de recuit. La décroissance expérimentale plus rapide est
une conséquence de quelque chose qui manque soit dans la simulation AKMC, soit
dans la simulation DRX, soit dans les deux. Notez que les positions des pics sont
généralement liées aux espacements des plans du réseaux (selon la loi de Bragg), ce
qui laisse entendre que les simulations pourraient ne pas reproduire correctement
l’évolution du profil de distance inter-plans. Afin de mieux comprendre l’écart en-
tre les profils DRX simulés et expérimentaux, nous avons d’abord tenté d’analyser
l’origine de chaque satellite.

Afin de quantifier les décroissances d’intensités des satellites et de calculer les
coefficients d’interdiffusion à partir de ces décroissances, nous avons utilisé un
modèle qui combine la loi de Fick [28] et la théorie de Guinier [25]. Cette théorie
combinée suppose un coefficient d’interdiffusion constant et aucune fluctuation
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des paramètres de réseau [26], ce qui ne s’applique pas au cas des alliages FeCr.
Nous avons surmonté ces contraintes en séparant d’abord l’évolution temporelle
de notre système en plusieurs régimes cinétiques puis en traitant chaque satellite
séparément. Pour identifier les régimes cinétiques, on a trouvé les plages de temps
dans lesquelles la décroissance des satellites est linéaire et nous avons supposé
donc qu’il n’y a qu’un seul coefficient d’interdiffusion qui domine dans la redis-
tribution des atomes dans le système. Étant donné que chaque satellite provient
d’interférences dans une partie du système, nous avons identifié ces parties en
fonction de la position de chaque satellite. Nous avons remarqué que les posi-
tions des satellites de premier ordre -1 et +1 correspondent respectivement aux
espacements de réseau dans le Cr pur et le Fe pur respectivement. Nous pensons
que les satellites de premier ordre correspondent aux principaux pics de diffraction
des couches de Cr et de Fe respectivement, et que ce sont les seuls pics avec une
interprétation physique directe. Dans cette théorie combinée, le logarithme de la
décroissance de l’intensité du satellite est linéaire avec le temps et la pente est
fonction de la période de la multicouche et d’un coefficient d’interdiffusion con-
stant. Connaissant la période de la multicouche, cette théorie permet le calcul
du coefficient d’interdiffusion en traçant le log de la décroissance de l’intensité
en fonction du temps de recuit. Nous avons appliqué cette méthodologie aux
décroissances d’intensité de satellites de DRX des multicouches recuites à 450°C
et 500°C, obtenus par l’expérience et par la simulation.

En analysant l’évolution du profil de concentration dans chaque régime cinétique
linéaire, nous avons identifié dans la simulation un premier régime linéaire rapide
(régime A) durant lequel le Cr diffuse dans la couche riche en Fe et l’interface
se décale vers la couche riche en Cr . Nous avons identifié un second régime
linéaire plus lent (régime C) dans lequel le Fe diffuse dans la couche riche en Cr
et l’interface se décale en sens inverse, vers la couche riche en Fe. Nous avons
également identifié un régime intermédiaire non linéaire (régime B) dans lequel les
deux régimes linéaires A et C coexistent.

A 500°C, nous avons comparé les coefficients d’interdiffusion calculés à partir
des profils simulés aux valeurs obtenues par Senninger et al. [9, 16] en utilisant la
même simulation AKMC combinée à la méthode d’atténuation des ondes (Figure
3.35). Les valeurs que nous avons obtenues à partir du régime A (resp. régime
C) correspondent aux valeurs de Senninger dans des environnements riches en Fe
(resp. riches en Cr). Cela a validé notre méthodologie et a montré que, en utilisant
la même simulation AKMC, nous pouvons calculer les coefficients d’interdiffusion
en utilisant une méthode d’atténuation des ondes ou une méthode de décroissance
de satellites de DRX.
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Figure 3.35: Coefficients d’interdiffusion obtenus à 500°C par Senninger [9, 16]
(points) et par notre méthodologie à partir des profils de DRX simulés (lignes
continues).

A 450°C et 500°C, nous avons comparé les coefficients d’interdiffusion obtenus
à partir des profils simulés et expérimentaux en régime A et nous avons trouvé un
bon accord aux deux températures, l’expérience donnant des valeurs légèrement
supérieures mais restant dans la précision acceptée (Figure 3.36). Notez que l’écart
augmente avec la température décroissante, et cela peut être dû au fait que la
simulation est ajustée sur des données expérimentales à haute température. Notez
également que le régime C n’a pas été étudié expérimentalement car les expériences
n’ont pas été assez longues pour l’observer. A 450°C, l’expérience a présenté en
plus de ces régimes une très forte décroissance d’intensité au début du recuit qui
n’a pas été observée dans la simulation. Nous pensons que ce régime très rapide est
dû à la présence de dislocations et d’inclusions riches en Fe traversant les couches
riches en Cr, qui ont été observées à l’aide de l’APT et qui ne sont pas modélisées
dans la simulation.
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Figure 3.36: Coefficients d’interdiffusion obtenus par notre méthodologie à 450°C
(marron) et 500°C (bleu), à partir des profils de DRX simulés (lignes continues)
et expérimentaux (lignes pointillées).

2.3 Conclusions et perspectives

Nous avons montré que si les régimes cinétiques dans lesquels un seul mécanisme
de diffusion domine sont bien identifiés et si on comprend bien à quelle partie
de la multicouche chaque satellite est sensible, des coefficients d’interdiffusion
dépendant de la concentration peuvent être obtenus à partir d’une théorie basée
sur un coefficient d’interdiffusion constant et un espacement de plans de réseau
constant. En l’absence de modèles analytiques qui permettent le calcul des coef-
ficients d’interdiffusion dépendants de la concentration à partir des profils DRX,
notre travail fournit une alternative simple et quantitative. Nous avons pu calculer
à partir de la simulation et de l’expérience, des coefficients d’interdiffusion à 500°C
dans des environnements riches en Fe et riches en Cr, avec une précision satis-
faisante par rapport aux travaux de Senninger. Nous avons également pu fournir
ces valeurs à 450°C. En utilisant les données expérimentales sur les multicouches
nanométriques, nous avons pu fournir des valeurs à 450°C et 500°C dans des en-
vironnements riches en Fe, qui correspondent à des températures qui n’avaient ja-
mais été étudiées expérimentalement auparavant. Par conséquent, cette étude peut
également aider à fournir des données expérimentales à plus basse température afin
de mieux ajuster la simulation AKMC.

Malgré le fait que les expériences ont été réalisées en utilisant des multicouches
nanométriques, le régime cinétique lent de la diffusion du Fe dans le Cr n’a pas
pu être exploré et pourrait être inaccessible à des températures inférieures à 500°C
dans notre système (par example, à 450°C, le temps nécessaire serait de l’ordre
d’une année d’après nos simulations AKMC). La validité de la simulation dans
des environnements riches en Cr n’a pas pu être vérifiée, et un recuit expérimental
plus long serait nécessaire, au moins à 500°C. Les deux limites principales de cette
étude sont que, d’une part, elle s’applique mieux aux systèmes dans lesquels il
existe une forte asymétrie d’interdiffusion, et d’autre part, elle ne permet pas le
calcul du coefficient d’interdiffusion à des concentrations spécifiques, mais plutôt
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dans des plages de concentration dans notre cas données par limites de solubilité.
D’autres travaux théoriques et appliqués doivent être menés afin de tester cette
méthode sur d’autres alliages et de déterminer ses limites de validité, et si elle peut
ou non être étendue au cas de n’importe quel alliage binaire.

3. Éxtention du SCMF-d et KineCluE aux alliages

concentrés

3.1 État de l’art

Actuellement, il existe trois principaux modèles théoriques pour calculer les
coefficients de transport dans les alliages concentrés : le modèle d’alliage aléatoire
(RA) de Manning [19, 20], la méthode “Path Probability Method” (PPM) de
Kikuchi [21] et la théorie de champ moyen auto-cohérent (SCMF-o) de Nastar [22].
Le modèle de Manning a été largement utilisé en raison de sa simplicité, mais
il s’applique uniquement aux alliages dans lesquels les interactions thermody-
namiques peuvent être négligées. De plus, dans la plupart des cas, le modèle
a été appliqué à la diffusion via une faible concentration de lacunes. D’autre
part, la PPM et le SCMF-o ont été en théorie développées pour le cas général
des alliages avec interactions via n’importe quel mécanisme de diffusion. Ces
deux méthodes sont cependant théoriquement difficiles à appliquer et elles étaient
principalement appliquées à des systèmes simples spécifiques, tels que l’alliage
binaire avec diffusion de lacunes dans un cristal cubique. Le fait que ces deux
méthodes soient spécifiques au système n’aide pas puisque les équations analy-
tiques doivent être retravaillées depuis le début pour chaque cas différent. Des ap-
proximations thermodynamiques et cinétiques strictes ont également été utilisées
dans les deux cas pour simplifier le problème mathématique. Même si la PPM et le
SCMF-o partagent de nombreuses similitudes, le SCMF-o offre plus de flexibilité
en découplant l’approximation cinétique de l’approximation thermodynamique et
traite par conséquent les corrélations cinétiques plus rigoureusement, ce qui a
permis son application à une plus grande variété de problèmes de diffusion. Le
SCMF-o a été reformulée ces dernières années par Schuler et al. [18], et cette nou-
velle formulation que nous appelons SCMF-d, a été implémentée dans un code de
calcul open-source appelé KineCluE. Cependant, les hypothèses du SCMF-d ne la
rendent valable que dans le cas des alliages très dilués.

Le SCMF-d est basée sur un développement en amas cinétique du système. On
suppose que le système est suffisamment dilué pour le diviser en amas indépendants.
Chaque amas est constitué d’un groupe d’espèces qui diffusent. Ces espèces sont
entourées d’un milieu homogène, c’est-à-dire que chaque site du cristal (autres
que ceux occupés par les espèces de l’amas) est occupé par des atomes identiques.
Les composants de l’amas diffusent dans un rayon cinétique tel que l’amas se
dissocie lorsqu’une des espèces diffusantes s’éloigne au-delà de ce rayon cinétique
par rapport à toutes les autres espèces diffusantes. Le coefficient de transport
total est alors calculé comme la somme des coefficients de transport de tous les
amas, chacun pondéré par la concentration d’amas correspondante. KineCluE cal-
cule les coefficients de transport d’amas, tandis que les concentrations des amas
sont calculées séparément par l’utilisateur. Ces concentrations peuvent être des
concentrations à l’équilibre ou hors d’équilibre, ce qui permet le calcul des coef-
ficients de transport totaux de systèmes à l’équilibre et hors équilibre. La raison
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pour laquelle le SCMF-d, ainsi que d’autres théories précédemment développées
pour les alliages dilués [38–42], ne peut pas être utilisée dans le cas des alliages
concentrés est que le milieu autour des espèces diffusantes est considéré comme ho-
mogène. Dans un alliage concentré composé de plusieurs espèces, le milieu autour
des espèces qui diffusent est hétérogène, c’est-à-dire que plusieurs espèces peuvent
occuper chaque site du système et l’environnement des espèces diffusantes dépend
de leur emplacement dans le système. En conséquence, le problème ne peut pas
être résolu d’une manière exacte car le nombre de configurations possibles évolue
de manière exponentielle avec le nombre d’espèces et de sites dans le système.
Cela rend impossible dans la plupart des cas l’énumération complète des toutes
les configurations et fréquences de saut dans le système. D’un autre côté, utiliser
une approximation en champ moyen et remplacer le milieu hétérogène par un mi-
lieu homogène moyen réduit l’alliage concentré à un alliage dilué moyen. Cela
fait perdre beaucoup d’informations et empêche une prise en compte correcte des
corrélations cinétiques puisque tous les sites deviennent chimiquement équivalents.

Dans ce chapitre, nous montrons comment nous avons étendu le SCMF-d et
KineCluE aux alliages concentrés. Notre modèle s’appuie sur des environnements
locaux spécifiques autour des composants d’amas pour décrire l’ordre à courte
portée, et sur une approximation originale de champ moyen loin des espèces diffu-
santes afin de simplifier les calculs.

3.2 Résultats

Nous avons étendu le SCMF-d aux alliages concentrés en considérant dans
chaque amas une approche intermédiaire entre la solution exacte et l’approximation
du champ moyen. Autour des espèces qui diffusent nous avons considéré un “en-
vironnement” local et c’est uniquement au sein de ce milieu que nous avons étudié
toutes les occupations possibles des sites. Loin des espèces qui diffusent et au-
tour des environnements locaux, nous avons utilisé une approximation de champ
moyen en considérant que chaque site est occupé par un atome “moyen”. Les
propriétés de cet atome “moyen” satisfont une équation mathématique qui permet
de remplacer une somme d’exponentielles d’énergie d’un nombre infiniment grand
de configurations par une exponentielle d’énergie d’une seule configuration dans
laquelle les sites sont remplacés par des atomes “moyens’. En d’autres termes, cela
signifie que la contribution au problème de diffusion provenant de différentes con-
figurations ayant la même configuration d’espèces diffusantes et d’environnement
est équivalente à la contribution provenant d’une seule et même configuration
d’espèces diffusantes et d’environnement entourés d’un milieu homogène d’atomes
moyens. Nous avons implémenté notre modèle dans le code KineCluE qui permet
désormais l’étude des alliages dilués et concentrés. Dans le cas des alliages con-
centrés, le code prend une configuration initiale des espèces de l’amas et construit
autour d’elles un environnement en fonction du rayon choisi par l’utilisateur. Le
code explore ensuite toutes les occupations possibles de ces sites. Pour chaque
occupation possible, le code trouve tous les sauts possibles et les configurations
accessibles, et calcule toutes les fréquences de saut de telle sorte que, lorsque les
atomes sont en position de point-col, l’environnement qui les entoure est une combi-
naison de l’environnement autour de la configuration initiale et de l’environnement
autour de la configuration finale. Une fois le saut effectué, les sites qui ne sont
plus à l’intérieur du rayon de l’environnement autour de la configuration finale
sont considérés comme occupés par des atomes moyens. De cette façon, le code
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trouve toutes les configurations connectées possibles pour des rayons cinétique et
d’environnement spécifiés par l’utilisateur.

Nous avons appliqué le code pour calculer les facteurs de corrélation des atomes
de traceurs dans les alliages binaires pour une large gamme d’énergies d’ordre.

Figure 3.37: Facteur de corrélation du traceur rapide, fA∗ , en fonction de la com-
position, dans le cas d’un alliage binaire aléatoire avec une structure BCC, pour
un rapport de fréquence de saut faible (égal à 5, gauche) et pour un rapport de
fréquence de saut élevé (égal à 104, droite), calculé avec KineCluE (ce travail)
et comparé aux résultats de la littérature: modèle de l’alliage aléatoire de Man-
ning [19,20], la PPM de Kikuchi [46], et les simulations Monte Carlo [29]. Notons
que les résultats Monte Carlo sont considérés comme les valeurs de référence.

Dans le cas d’un alliage binaire aléatoire, c’est-à-dire un alliage sans interac-
tions thermodynamiques, ayant une structure BCC et dans lequel le rapport de
fréquence de saut est faible (wA/wB = 5), le facteur de corrélation du traceur cal-
culé par le code est en très bon accord avec les résultats de la littérature à toutes
les concentrations (Figure 3.37 à gauche). Dans le cas d’un rapport de fréquence
de saut élevé (wA/wB = 104), le facteur de corrélation du traceur calculé par le
code ne reproduit pas la courbe de percolation prédite par le modèle de Man-
ning (Random Alloy Model, i.e. RA) et par les simulations AKMC (Figure 3.37
à droite). Cela est dû au fait que les environnements autour de la lacune sont
trop petits et conduisent à une surestimation de la fréquence d’échappement de
la lacune de l’atome traceur. L’augmentation des rayons d’environnement au-delà
des premiers voisins nécessite une mémoire de calcul supérieure à celle disponible
sur nos machines.

Dans le cas d’un alliage binaire aléatoire avec une structure carrée 2D, on
observe que certaines combinaisons de rayons cinétique et d’environnement per-
mettent la reproduction du facteur de corrélation nul en dessous du seuil de per-
colation à des concentrations de l’espèce rapide inférieures à 0.15. On observe en
outre que certaines combinaisons conduisent à des résultats plus précis avec moins
de mémoire de calcul. Par conséquent, il est possible de trouver, dans chaque cas,
une combinaison de rayons cinétique et d’environnement pour obtenir les résultats
les plus précis avec le moins de ressources de calcul possible.

On a considéré ensuite le cas d’un alliage binaire dans lequel les interactions
thermodynamiques ne peuvent pas être négligées. On a considéré des interactions
de paires de premiers voisins et on a quantifié les interactions par une énergie
d’ordre. Les facteurs de corrélation des traceurs calculés avec notre modèle sont
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en bon accord avec la simulation AKMC pour les faibles énergies d’ordre (c’est-à-
dire avec des valeurs normalisées de l’énergie d’ordre entre -0,5 et +0,5) et pour
toute la gamme de composition d’alliage (Figure 3.38).

Figure 3.38: Facteur de corrélation fA∗ en fonction de la composition dans le cas
d’un alliage binaire avec une structure 2D-carrée et un ordre à courte distance
(énergie d’ordre normalisée égale à 0.5).

Dans les alliages à forte tendance à la démixion (Figure 3.39 à gauche), un ordre
à longue distance est nécessaire pour caractériser correctement la décomposition
du système. Cette situation est similaire au cas de la percolation, sauf que les
rapports de fréquence de saut ne sont pas infinis. L’écart entre nos résultats et
la simulation AKMC réside dans le fait que KineCluE n’est pas en mesure de
reproduire correctement l’amas connexe d’atomes A ou B, car les environnements
ne sont pas assez grands pour que l’ordre à courte distance qui y est présent soit
bien représentatif de l’ordre à longue distance de cette structure.

Notre modèle n’est pas particulièrement développé pour traiter les alliages
hautement ordonnés car le nombre d’environnements générés est faible par rapport
au nombre d’environnements qu’il faut générer pour reproduire l’ordre à courte dis-
tance ainsi que l’ordre à longue distance présents dans ce type d’alliages. Malgré
cela, notre modèle reproduit le facteur de corrélation de traceur dans ces alliages
avec un bon accord avec les simulations AKMC (Figure 3.39 à droite). En effet,
l’ordre à courte distance autour du traceur est bien modélisé par KineCluE et
suffisant pour un calcul précis de son facteur de corrélation et pour une bonne
reproduction de l’ordre à longue distance.
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Figure 3.39: Facteur de corrélation fA∗ en fonction de la composition dans le cas
d’un alliage binaire avec une structure 2D-carrée et un ordre à longue distance
(énergie d’ordre normalisée égale à 1.96).

3.3 Conclusions et perspectives

Nous avons appliqué notre modèle au cas d’un alliage avec et sans interactions,
et nous avons comparé les facteurs de corrélation du traceur calculés par KineCluE
aux résultats de la littérature et à nos propres simulations de Monte Carlo. Dans
le cas d’un alliage aléatoire (sans interactions), KineCluE reproduit les facteurs
de corrélation de traceurs en accord avec la littérature lorsque les rapports de
fréquence de saut sont faibles. KineCluE ne reproduit pas la courbe de percola-
tion à des rapports de fréquence de saut élevés avec les rayons d’environnement
relativement petits que nous avons été en mesure de tester. Dans le cas d’un al-
liage où les interactions thermodynamiques sont non-négligeables, les facteurs de
corrélation de traceur calculés par KineCluE sont en bon accord avec les résultats
des simulations de Monte Carlo, dans les deux cas d’énergies d’ordre positives et
négatives, avec des valeurs normalisées comprises entre −0.5 et +0.5. Un rayon
d’environnement plus grand est nécessaire pour reproduire des cas particuliers de
systèmes hautement ordonnés et de décomposition spinodale. Ces résultats ont
montré que notre modèle permet le calcul de facteurs de corrélation en bon accord
avec d’autres théories, pour une large gamme de fréquences d’échange, d’énergies
d’ordre et de concentrations. Ces résultats sont prometteurs car ils ont été obtenus
en utilisant des environnements locaux autour des espèces qui diffusent qui sont les
plus petits possibles. L’augmentation du rayon de l’environnement a le potentiel
d’améliorer considérablement la précision de notre modèle. Il est clair cependant
que cela n’est pas faisable sans échantillonner l’espace de configuration. Nous
avons encore à optimiser une procédure d’échantillonnage et à mieux comprendre
comment et quelles configurations sont échantillonnées à chaque étape. Une fois
la procédure d’échantillonnage optimisée, elle nous permettra de tester une plus
grande variété de structures cristallines, et de ne pas nous limiter à une structure
2D. De plus, dans le cas d’un alliage binaire, on peut tester l’effet non seulement de
l’énergie d’ordre avec des interactions premiers voisins, mais aussi de l’asymétrie
énergétique sur les coefficients de transport et des interactions au-delà des premiers
plus proches voisins. Cela nous permettra de passer au calcul des coefficients de
transport des alliages FeCr par exemple. A terme, nous devrions pouvoir tester



RÉSUMÉ 243

notre modèle dans le cas d’alliages multi-composants au-delà de la limite binaire,
afin de voir dans quelle mesure le modèle peut prédire les coefficients de transport
des alliages à haute entropie.
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