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Résumé :Le diagnostic et le pronostic des dé-
faillances ont suscité une attention considérable
dans l’industrie et le monde universitaire en raison
des exigences croissantes en matière de fiabilité, de
disponibilité, de maintenabilité et de sécurité. Dans
de nombreux scénarios industriels, tels que les pro-
cessus chimiques, les systèmes d’entraînement des
machines et la surveillance des structures, la dé-
tection opportune des défauts est d’une grande im-
portance pour réduire les risques de sécurité, éviter
les pannes de système et permettre aux systèmes
de fonctionner dans des conditions optimales. De
plus, la caractérisation d’une défaillance est éga-
lement nécessaire pour offrir une aide à la déci-
sion pour la maintenance du système, le contrôle
tolérant aux défaillances, l’estimation de la durée
de vie restante, etc. Par conséquent, ce travail se
concentre sur les trois tâches principales du pro-
blème de diagnostic des défauts : la détection des
défauts, l’isolation des causes profondes (variables
défectueuses) et l’évaluation de la gravité des dé-
fauts (estimation de l’amplitude des défauts). Au
cours de la dernière décennie, de nombreuses ap-
proches de diagnostic de défauts ont été proposées
à base de modèles ou de données de systèmes,
ce qui a permis de réaliser des progrès significa-
tifs dans ce domaine. Cependant, les méthodolo-
gies de diagnostic de défauts existantes souffrent
toujours de leurs propres limitations, telles que le
manque de données défectueuses suffisantes pour
l’apprentissage, l’inefficacité face aux données dis-
tribuées complexes, la faible sensibilité aux défauts
naissants, et l’interférence du bruit et des valeurs
aberrantes. Parmi ces défis, le diagnostic des dé-
fauts naissants est l’un des plus délicats, ce qui
suscite une attention croissante dans la littérature.
Reconnues comme de minuscules déviations à évo-
lution lente, les défauts naissants sont dangereux
car ils risquent de se transformer en défaillances
graves, mais ils sont difficiles à diagnostiquer en
raison de la confusion entre les déviations minus-
cules et le bruit. Pour résoudre ce problème, ce tra-
vail propose une nouvelle méthode de classification
à une classe mise en œuvre en générant des points

d’ancrage spécifiques et en sélectionnant la marge
de la région locale correspondante pour détermi-
ner une région saine comme zone de décision. En-
suite, une mesure de distance particulière appelée
distance de Mahalanobis locale est définie pour in-
diquer la distance entre un échantillon et la région
saine. Sur la base de la méthode de classification à
une classe proposée et de l’indice LMD, ce travail
développe d’abord une approche de détection des
défauts naissants en combinant l’indice LMD et la
technique de somme cumulée de densité de pro-
babilité empirique. Ce travail examine également
l’efficacité de l’indice LMD en tant que caracté-
ristique représentative pour la détection des dé-
fauts. Deuxièmement, ce travail propose une mé-
thode d’isolation de la variable défectueuse pour
les cas de défaut unique en combinant la tech-
nique LMD avec l’idée du diagramme de contri-
bution. Troisièmement, une expression analytique
du taux d’augmentation des défauts est dérivée de
l’indice LMD pour la tâche d’estimation de la gra-
vité des défauts. Enfin, nous développons une nou-
velle approche basée sur la reconstruction en utili-
sant la distance de Mahalanobis locale comme in-
dice de détection pour améliorer les performances
d’isolation et d’estimation. La méthode améliorée
peut isoler avec précision plusieurs variables défec-
tueuses et estimer simultanément l’amplitude de
leurs défauts. L’étude de cas basée sur les don-
nées de processus du réacteur à réservoir agité à
flux continu montre que la technique LMD pré-
sente des avantages significatifs pour le problème
de diagnostic des défauts, tels qu’une sensibilité
élevée aux défauts naissants, une robustesse au
bruit et aux valeurs aberrantes, et l’absence d’hy-
pothèse de distribution. Les méthodes de diagnos-
tic de défauts développées sur la base de la tech-
nique LMD sont nettement plus performantes que
les solutions les plus récentes. L’étude comparative
sur les données de roulement de la Case Western
Reserve University indique que la technique LMD
peut être utilisée comme approche d’extraction de
caractéristiques et qu’elle est plus efficace et plus
robuste que les autres techniques statistiques.
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Abstract : Fault diagnosis and prognosis have at-
tracted huge attention in industry and academia
for the increasing requirements on reliability, avai-
lability, maintainability, and safety. In many indus-
trial scenarios, such as chemical processes, ma-
chine drive systems, and structure monitoring, ti-
mely fault detection is of great importance to re-
duce security risk, avoid system breakdown, and
allow systems to operate in optimal conditions.
Moreover, characterizing a fault is also necessary
to offer decision support for system maintenance,
fault tolerant control, remaining useful life esti-
mation, and so forth. Therefore, this work focus
on the three principal tasks : fault detection, root
causes (faulty variables) isolation, and fault seve-
rity assessment (fault amplitude estimation). Note
that this study on fault prognosis problem will not
cover the discussion of remaining useful life esti-
mation. In the past decade, abundant fault diagno-
sis approaches have been proposed based on either
system models or data, making significant progress
in this domain. However, the existing fault diagno-
sis methodologies still suffer from their own limi-
tations, such as the lack of sufficient faulty data
for training, ineffectiveness to complex distributed
data, low sensitivity to incipient faults, and the
interference of noise and outliers. Among these
challenges, incipient fault diagnosis is one of the
trickiest, thereby attracting increasing attention in
the literature. Recognized as tiny deviations with
slow-growing evolution, incipient faults are dange-
rous for the tremendous risk of developing to se-
rious failures but are difficult to diagnose due to
the confusion of tiny deviations and noise. To ad-
dress this issue, this work proposes a new one-class
classification method implemented by generating

anchors and selecting the region margin to deter-
mine a healthy region as a decision area. Then a
particular distance measurement called local Ma-
halanobis distance is then defined to indicate the
distance between a sample and the healthy re-
gion. Based on the proposed one-class classifica-
tion method and the LMD index, this work first
develops an incipient fault detection approach by
combining the LMD index and the empirical pro-
bability density cumulative sum technique. This
work also discusses the efficiency of LMD as a re-
presentative feature for fault detection. Secondly,
this work proposes the faulty variable isolation me-
thod for single fault cases by combining the LMD
technique with the contribution plot idea. Thirdly,
an analytical expression of fault increasing rate is
derived from the LMD index for the fault seve-
rity estimation task. Finally, we further develop a
new reconstruction-based approach using the lo-
cal Mahalanobis distance as a detection index to
improve the isolation and estimation performance.
The improved method can accurately isolate mul-
tiple faulty variables and estimate their fault am-
plitudes simultaneously. The case study based on
the Continuous-flow Stirred Tank Reactor process
data shows that the LMD technique has signifi-
cant benefits for the fault diagnosis problem, such
as high sensitivity to incipient faults, robustness
to noise and outliers, and no distribution assump-
tion. The fault diagnosis methods developed on
LMD significantly outperform state-of-the-art so-
lutions. The comparative study on the Case Wes-
tern Reserve University bearing data indicates that
the LMD technique can be used as a feature ex-
traction approach and is more effective and robust
than the other statistical techniques.
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Abstract

Fault diagnosis and prognosis have attracted huge attention in industry and academia
for the increasing requirements on reliability, availability, maintainability, and safety.
In many industrial scenarios, such as chemical processes, machine drive systems, and
structure monitoring, timely fault detection is of great importance to reduce security risk,
avoid system breakdown, and allow systems to operate in optimal conditions. Moreover,
characterizing a fault is also necessary to offer decision support for system maintenance,
fault tolerant control, remaining useful life estimation, and so forth. Therefore, this work
focus on the three principal tasks : fault detection, root causes (faulty variables) isolation,
and fault severity assessment (fault amplitude estimation). Note that this study on fault
prognosis problem will not cover the discussion of remaining useful life estimation. In the
past decade, abundant fault diagnosis approaches have been proposed based on either
system models or data, making significant progress in this domain. However, the existing
fault diagnosis methodologies still suffer from their own limitations, such as the lack
of sufficient faulty data for training, ineffectiveness to complex distributed data, low
sensitivity to incipient faults, and the interference of noise and outliers. Among these
challenges, incipient fault diagnosis is one of the trickiest, thereby attracting increasing
attention in the literature. Recognized as tiny deviations with slow-growing evolution,
incipient faults are dangerous for the tremendous risk of developing to serious failures but
are difficult to diagnose due to the confusion of tiny deviations and noise. To address this
issue, this work proposes a new one-class classification method implemented by generating
anchors and selecting the region margin to determine a healthy region as a decision
area. Then a particular distance measurement called local Mahalanobis distance is then
defined to indicate the distance between a sample and the healthy region. Based on the
proposed one-class classification method and the LMD index, this work first develops
an incipient fault detection approach by combining the LMD index and the empirical
probability density cumulative sum technique. This work also discusses the efficiency of
LMD as a representative feature for fault detection. Secondly, this work proposes the
faulty variable isolation method for single fault cases by combining the LMD technique
with the contribution plot idea. Thirdly, an analytical expression of fault increasing rate
is derived from the LMD index for the fault severity estimation task. Finally, we further
develop a new reconstruction-based approach using the local Mahalanobis distance as
a detection index to improve the isolation and estimation performance. The improved
method can accurately isolate multiple faulty variables and estimate their fault amplitudes
simultaneously. The case study based on the Continuous-flow Stirred Tank Reactor process
data shows that the LMD technique has significant benefits for the fault diagnosis problem,
such as high sensitivity to incipient faults, robustness to noise and outliers, and no
distribution assumption. The fault diagnosis methods developed on LMD significantly
outperform state-of-the-art solutions. The comparative study on the Case Western Reserve
University bearing data indicates that the LMD technique can be used as a feature
extraction approach and is more effective and robust than the other statistical techniques.

iii





List of publications

The work during PhD has led to 3 journal papers and 6 international conference papers.

International journal papers :

1. J. Yang and C. Delpha. An Incipient Fault Diagnosis Methodology Using Local
Mahalanobis Distance : Detection Process Based on Empirical Probability Density
Estimation. Signal Processing, 2022, vol. 190, p. 108308.

2. J. Yang and C. Delpha. An Incipient Fault Diagnosis Methodology Using Local Ma-
halanobis Distance : Fault Isolation and Fault Severity Estimation. Signal Processing,
2022, p. 108657.

3. J. Yang and C. Delpha. A New Reconstruction-based Method Using Local Mahalano-
bis Distance for Incipient Fault Isolation and Amplitude Estimation. , Under Review.

International conference papers :

1. J. Yang and C. Delpha. Empirical Probability Density Cumulative Sum for Incipient
Fault Detection, Prognostics and Health Management Conference (PHM 2020), May
4 - 7, 2020, Besancon, France, IEEE, pp. 187-192.

2. J. Yang and C. Delpha. Open-Circuit Fault Diagnosis for Interleaved DC-DC
Converters, IEEE International Conference on Industrial Electronics (IECON 2020),
Oct 18 - 21, 2020, Singapore, Singapore, IEEE, pp. 3982-3987.

3. J. Yang and C. Delpha. A Local Mahalanobis Distance Analysis Based Methodology
for Incipient Fault Diagnosis. IEEE International Conference on Prognostic and
Health Management (ICPHM 2021), June 7-9, 2021, Detroit, Michigan, USA, IEEE.

4. J. Yang and C. Delpha. Local Mahalanobis Distance Envelope Using A Robust
Healthy Domain Approximation For Incipient Fault Diagnosis. IEEE International
Conference on Industrial Electronics (IECON 2021), Oct 13-16, 2021, Toronto,
Canada, pp. 1-6.

5. J. Yang and C. Delpha. Incipient Fault Severity Estimation Using Local Mahalanobis
Distance. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP2022), May 7-13, 2022, Singapore, pp. 5977-5981.

6. J. Yang and C. Delpha. Bearing Faults Detection Approaches Using Statistical
Feature Extraction and Probability Based Distance : A Comparative Study, IEEE
International Conference on Industrial Electronics (IECON 2022), Oct 17 - 20, 2022,
Brussels, Belgium.

v





Contents

Acknowledgements i

Abstract iv

List of publications v

List of figures xi

List of tables 1

1 General introduction 9

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Fault diagnosis approaches : Review 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Data-driven fault diagnosis methodologies : development and challenges . . 18

2.2.1 Fault detection approaches . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Fault isolation and estimation approaches . . . . . . . . . . . . . . 20

2.3 State-of-the-art techniques for fault diagnosis . . . . . . . . . . . . . . . . . 21

2.3.1 Multivariate statistic techniques . . . . . . . . . . . . . . . . . . . . 22

2.3.1.1 Principal component analysis and its extensions . . . . . . 22

2.3.1.2 Independent Component Analysis . . . . . . . . . . . . . . 28

2.3.1.3 Partial Least Squares . . . . . . . . . . . . . . . . . . . . . 29

2.3.1.4 Canonical Variate Analysis . . . . . . . . . . . . . . . . . 30

2.3.2 Machine learning techniques for one-class classification problem . . 32

vii



2.3.2.1 One-class support vector machine . . . . . . . . . . . . . . 33

2.3.2.2 k-centers . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2.3 Auto-encoder . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2.4 Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Distance measure for fault diagnosis . . . . . . . . . . . . . . . . . . 36

2.3.3.1 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3.2 Kolmogorov Smirnov distance . . . . . . . . . . . . . . . . 38

2.3.3.3 Wasserstein distance . . . . . . . . . . . . . . . . . . . . . 39

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Healthy region approximation for fault diagnosis 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Healthy region approximation with multiple centers . . . . . . . . . . . . . 44

3.3.1 Local Mahalanobis distance calculation . . . . . . . . . . . . . . . . 46

3.3.2 Anchors generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Margin selection based on PDF estimation . . . . . . . . . . . . . . 50

3.4 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Fault diagnosis using local Mahalanobis distance 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Fault modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Fault detection approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Detection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.3 LMD feature for fault detection . . . . . . . . . . . . . . . . . . . . 69

4.4 Contribution plot for faulty variables isolation . . . . . . . . . . . . . . . . 71

4.5 Fault increasing rate estimation based on first order model . . . . . . . . . 74

4.6 Reconstruction based contribution for faulty variables isolation and ampli-
tude estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Applications to industrial engineering 81



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Performance evaluation of fault diagnosis approaches based on process data 83

5.3.1 Continuous-flow stirred tank reactor process . . . . . . . . . . . . . 83

5.3.2 Fault detection performances . . . . . . . . . . . . . . . . . . . . . 86

5.3.2.1 Detecting results . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2.2 Training efficiency . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2.3 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2.4 Detection capability . . . . . . . . . . . . . . . . . . . . . 92

5.3.2.5 Detection robustness . . . . . . . . . . . . . . . . . . . . . 93

5.3.2.6 Detection time occurrence efficiency . . . . . . . . . . . . 94

5.3.3 Fault isolation performance . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3.1 Isolation efficiency of the LMD-based contribution plot
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3.2 Single fault isolation efficiency of the reconstruction based
contribution using LMD . . . . . . . . . . . . . . . . . . . 98

5.3.3.3 Multiple fault isolation efficiency of the reconstruction
based contribution using LMD . . . . . . . . . . . . . . . 101

5.3.4 Fault severity estimation performances . . . . . . . . . . . . . . . . 103

5.3.4.1 Fault’s increasing rate estimation efficiency . . . . . . . . 103

5.3.4.2 Fault amplitude estimation efficiency . . . . . . . . . . . . 106

5.4 Feature efficiency evaluation based on bearing data . . . . . . . . . . . . . 110

5.4.1 Case Western Reserve University Bearing Data . . . . . . . . . . . 110

5.4.2 Detection capability . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.3 Detection sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.4 Robustness to non-stationary operating conditions . . . . . . . . . . 114

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Conclusion and perspectives 117

6.1 Conclusion of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A Appendix 121

A.1 Introduction to extreme value statistics . . . . . . . . . . . . . . . . . . . . 121



A.2 Detailed fault detection result for CSTR data . . . . . . . . . . . . . . . . 122

Bibliography 125



List of figures

2.1 Three kinds of faults : a) abrupt fault ; b) intermittent fault ; c) gradual fault. 15

2.2 General fault diagnosis framework . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Healthy region approximation for the projected data : (a) SPE statistic
for Gaussian distribution ; (b) Hotelling’s T 2 for Gaussian distribution ; (c)
Mixture index for Gaussian distribution ; (d) SPE statistic for non-Gaussian
distribution ; (e) Hotelling’s T 2 for non-Gaussian distribution ; (f) Mixture
index for non-Gaussian distribution ; . . . . . . . . . . . . . . . . . . . . . 43

3.2 Proposed multiple centers idea for healthy region approximation . . . . . . 45

3.3 a) Gaussian distributed data and density curves ; b) Data after Mahalanobis
transformation ; c) Non-Gaussian distributed data and density curves ; d)
Data after Mahalanobis transformation . . . . . . . . . . . . . . . . . . . . 47

3.4 LMD evolution with the number of anchors . . . . . . . . . . . . . . . . . 49

3.5 Evolution of the approximation error along with γan . . . . . . . . . . . . . 50

3.6 Objective function in the solution searching procedure . . . . . . . . . . . . 51

3.7 Estimated and empirical CDF curve . . . . . . . . . . . . . . . . . . . . . . 52

3.8 The developed healthy region by using the proposed healthy region ap-
proximation approach : (a) Gaussian distributed data ; (b) Non-Gaussian
distributed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Output of anchor-generating algorithms : (a) without considering outliers
(ηan = 0) ; (b) considering outliers (ηan = 1). . . . . . . . . . . . . . . . . . 53

3.10 Performance evolution of the proposed method with different parameters
for varying number of outliers . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 The healthy regions of different OCC approaches for the data without
containing outlier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.12 The healthy regions of different OCC approaches for the data containing
outlier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Diagram of data points arrangement . . . . . . . . . . . . . . . . . . . . . 60

4.2 Examples of simulation signals . . . . . . . . . . . . . . . . . . . . . . . . . 62

xi



4.3 (a) 2-Dimensional non-Gaussian distributed samples and the corresponding
healthy region ; (b) LMD result of samples moving from the center to the
outside of the healthy region. . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Proposed LMD-based diagnosis procedure . . . . . . . . . . . . . . . . . . 63

4.5 Evolution of loss function versus region radius . . . . . . . . . . . . . . . . 64

4.6 LMD value of the fault-free training samples . . . . . . . . . . . . . . . . . 65

4.7 Objective function in the solution searching procedure . . . . . . . . . . . . 65

4.8 Estimated CDF of the LMD value and the selected region margin value
corresponding to 99.5% significance level . . . . . . . . . . . . . . . . . . . 65

4.9 Faulty and healthy x1 simulated signal . . . . . . . . . . . . . . . . . . . . 66

4.10 LMD results for simulated signals . . . . . . . . . . . . . . . . . . . . . . . 67

4.11 EPD CUSUM results for simulated signals, where ω = 0.3, α = 99.5% and
UG = 110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.12 Fault detection procedure based on LMD feature and probability-based
distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.13 Distribution of LMD features for healthy and faulty cases. . . . . . . . . . 70

4.14 Detection outcomes of LMD feature using different probability-based dis-
tances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.15 Two-dimensional example for LMD based fault isolation . . . . . . . . . . 72

4.16 Contribution plot for simulation signals . . . . . . . . . . . . . . . . . . . . 73

4.17 Relative error of the proposed method for different increasing rates . . . . 76

4.18 Flow diagram of RBC framework based on LMD . . . . . . . . . . . . . . . 77

4.19 Reconstruction-based contributions of each candidate direction . . . . . . 79

4.20 Relative error of the approach estimation approach based on RBC for
simulation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Schematic diagram of the CSTR process . . . . . . . . . . . . . . . . . . . 84

5.2 Simulation model of the CSTR process . . . . . . . . . . . . . . . . . . . . 85

5.3 Healthy input signals of CSTR process . . . . . . . . . . . . . . . . . . . . 87

5.4 Healthy output signals of the CSTR process . . . . . . . . . . . . . . . . . 87

5.5 LMD and EPD-CUSUM results for 10 faults . . . . . . . . . . . . . . . . . 89

5.6 The accuracy results for different numbers of training samples . . . . . . . 91

5.7 Effect of parameter ω on the performance of the proposed method along
with different FNR conditions . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 ROC curves of EPD-CUSUM results for different FNR settings . . . . . . . 93



5.9 Detection probability performance for different detection approaches, where
PFA = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.10 AUC performance for different noise strength and fault severity . . . . . . 94

5.11 Detection delay performance for different fault severity . . . . . . . . . . . 95

5.12 Detection delay performance for different noise strengths and fault severities 95

5.13 Faulty signal of 4th sensor with 10dB FNR. . . . . . . . . . . . . . . . . . 96

5.14 Fault contribution result of each variable for 1 healthy and 7 faulty cases . 96

5.15 Confusion matrix of the proposed method for FNR=20dB . . . . . . . . . 97

5.16 Confusion matrix of the proposed method for FNR=0dB . . . . . . . . . . 97

5.17 Reconstruction-based contribution of the four RBC approaches for x4 faulty
case in 10dB FNR condition. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.18 Confusion matrix of the LMD-RBC method for FNR=20dB . . . . . . . . 99

5.19 Confusion matrix of the LMD-RBC method for FNR=0dB . . . . . . . . . 99

5.20 Total isolation accuracy performance of different methods along with varying
FNR values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.21 Accuracy of different methods for each faulty case with FNR=0dB . . . . . 101

5.22 Reconstruction based contribution of the four RBC approaches for x4 and
x7 faulty case in 10dB FNR condition. . . . . . . . . . . . . . . . . . . . . 102

5.23 Average isolation accuracy performance of the four RBC approaches for
two sensors faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.24 Example of LMD result with SNR=30dB and FNR=20dB. The fault occurs
at 1000 min and affects the 4th variable . . . . . . . . . . . . . . . . . . . 104

5.25 Estimation error of the true increasing rate and the estimated value along
with time when the increasing rate is constant . . . . . . . . . . . . . . . . 104

5.26 Estimation error of the true increasing rate and the estimated value along
with time when the increasing rate is not constant . . . . . . . . . . . . . 104

5.27 Relative error versus the true value δ . . . . . . . . . . . . . . . . . . . . . 105

5.28 Relative errors of the proposed method for the 7 faulty cases . . . . . . . 106

5.29 Average relative errors of all the reported method. . . . . . . . . . . . . . 106

5.30 Actual fault component and the estimated fault amplitude of the four RBC
approaches for F7 faulty case (a fault occurs in variable x4) in 10dB FNR
condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.31 Mean squared error for different methods in the case of F7 (a fault occurs
in variable x4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.32 Average relative error of the four RBC approaches for single fault . . . . . 108



5.33 Actual fault component and the estimated fault amplitude of the four RBC
approaches for faults occurring in variables x4 and x7 in 10dB FNR conditions109

5.34 Average relative error of the four RBC approaches for two faults . . . . . . 110

5.35 CWRU bearing data experimental set-up. . . . . . . . . . . . . . . . . . . 111

5.36 The drive end (upper) and fan end (lower) healthy signals under the 0 hp
motor load condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.37 The detection outcomes of the four combinations for F7 case : LMD-Dw ;
PCA-Dw ; KPCA-Dw ; ICA-Dw. . . . . . . . . . . . . . . . . . . . . . . . . 113

5.38 The detection outcomes of the four combinations for healthy signals with 1
ph motor load : LMD-Dks ; PCA-Dks ; KPCA-Dks ; ICA-Dks. . . . . . . . 114



List of tables

2.1 Examples of f divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Healthy region approximation performance of Hotelling’s T 2 and SPE
indexes in the PCA framework for the example given in Fig.3.1 . . . . . . 44

3.2 Healthy region approximation performance of the proposed method . . . . 53

3.3 Healthy region approximation performance without outliers . . . . . . . . . 55

3.4 Healthy region approximation performance with outliers . . . . . . . . . . 55

5.1 Notations for CSTR Process . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Description of the faulty scenarios . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Performance of comparative methods for F3 and F5 . . . . . . . . . . . . . 88

5.4 Average detection performance of comparative methods . . . . . . . . . . . 90

5.5 Detailed information of reference and ten faulty cases . . . . . . . . . . . . 112

5.6 The AUC values of different combinations for ten faulty cases . . . . . . . 112

5.7 The sensitivity values of different combinations for ten faulty cases . . . . . 113

5.8 The AUC values of different combinations for healthy signals under different
operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 Detection delay time (hours) of different fault detection approaches for
CSTR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 False alarm rate of different fault detection approaches for CSTR data. . . 123

A.3 Detection rate of different fault detection approaches for CSTR data . . . 123

A.4 AUC performance of different fault detection approaches for CSTR data . . 123

1





Nomenclature

Acronyms

CCA Canonical Correlation Analysis

CDF Cumulative Density Function

CSTR Continuous-flow Stirred Tank Reactor

CVA Canonical Variate Analysis

CVDA Canonical Variate Dissimilarity Analysis

DPCA Dynamic Principal Component Analysis

EMD Earth Mover Distance

EPD Empirical Probability Density

EPD-CUSUM Empirical Probability Density Cumulative Sum

EWMA Exponentially Weighted Moving Average

FDA Fisher Discriminant Analysis

FFT Fast Fourier Transform

FNR Fault to Noise Ratio

GCCA Generalized Canonical Correlation Analysis

GMM Gaussian Mixture Model

ICA Independent Component Analysis

IF Isolation Forest

JSD Jensen-Shannon Divergence

KDE Kernel Density Estimation

KLD Kullback-Leibler Divergence

KPCA Kernel Principal Component Analysis

KS Kolmogorov Smirnov

LMD Local Mahalanobis Distance

MCUSUM Multivariate Cumulative Sum

MD Mahalanobis Distance
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NOMENCLATURE
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NOMENCLATURE
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rL Healthy region margin
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1
General introduction

1.1 Background and motivation

Fault diagnosis and prognosis of complex systems is nowadays a hot topic in industry
and academia. With the rapid development of industrial technology, the efficiency and
safety of equipment have been greatly improved. However, the risk of accidents still exists
and threatens the safety of human life and property. For example, a serious high-speed
rail collision occurred in Wenzhou, China, in 2011, with 40 people dying and at least 192
injured [44,108]. It is believed that one of the major causes of this disaster was the failure
of the railway signaling systems due to a lightning strike. In 2010, a violent explosion
occurred at Tesoro Anacortes oil refinery in Washington State, USA, resulting in the death
of seven people [53,156]. The disaster involved the catastrophic failure of a heat exchanger
housing. The heat exchanger had been continuously exposed to high temperature and
pressure hydrogen for a long time, leading to the crack of its carbon steel shell. These
two serious accidents have raised significant concerns about equipment safety and also
the attention to fault diagnosis. In addition to security risks, failures can also lead to the
reduced efficiency of systems. For example, in the feedback control of the air-fuel ratio of
automobile engines, abnormal oxygen sensors increase harmful emissions and reduce fuel
economy [94,165]. Although controllers can compensate for slight sensor faults to maintain
satisfactory operations, the inaccurate feedback degrades systems’ performance and even
lead to an unexpected breakdown. Moreover, any deviation of sensor signals (considered a
fault) in ultraprecision manufacturing systems is unacceptable and should be detected as
soon as possible to achieve high levels of process productivity [46,147].

With these growing demands for safety, reliability, and maintainability, the development
of fault diagnosis technology is urgent. However, the increased complexity of modern
systems raises new challenges for security surveillance and system maintenance. Modern
industrial systems are usually integrated with a large number of components and driven
by advanced techniques. The large number of components increase the risk of failure
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and the difficulty of locating fault root causes [61,174]. Monitoring the key components
individually, such as the short circuit of input current and the pressure of a reactor, is still
necessary to ensure systems security. But this strategy is time-consuming and expensive
for complex systems. On the other hand, the individual components interact with each
other, making it more challenging to locate root faulty components [54,146].

The growing development of technologies involving big data, the internet of things,
machine learning, artificial intelligence, etc., provides a real opportunity to deal with these
challenges. In the last decade, a large number of fault diagnosis techniques have been
proposed and used in real applications, such as the detection of aging components in
high-speed rail vehicle suspension systems [186,196], faulty sensors detection in nuclear
power plants [55,177], and crack detection in civil engineering structures [48,191]. These
techniques can save human lives and significantly increase productivity and efficiency.
It is believed that more and more fault diagnosis techniques will be applied to different
scenarios, which motivates us to keep improving fault diagnosis techniques.

1.2 Objectives

Conventionally, a fault is ”the unpermitted deviation of at least one process parameter
from an acceptable condition” [81]. In the signal processing domain, fault diagnosis aims
to detect and characterize a faulty behavior of systems from their observed signals. There
are different tasks of fault diagnosis in different application scenarios. More specifically,
this work focuses on three common problems : fault detection, faulty variable isolation,
and fault severity estimation.

Fault detection, as the foundation base of fault diagnosis, is dedicated to decide if a
system operated in faulty condition. It has numerous industrial scenarios, such as chemical
process monitoring [6,169], defective product detection [15,50], crack detection [76,224],
and abnormal behavior detection [168,219]. Fault detection essentially is a classification
problem trying to distinguish faulty patterns from healthy ones. However, fault detection
problem faces particular challenges, especially in industrial applications. For example,
faulty behaviors of complex systems are diverse and unpredictable, resulting in insufficient
data on the faulty pattern. Without these faulty data for training, typical classification
approaches are unavailable. Moreover, there is usually a higher requirement in detection
delay time (time between fault occurrence and detection) since fault-tolerant or protection
actions are necessary after a fault is detected [1, 5]. Recently, incipient fault detection has
attracted increasing attention. It aims to recognize tiny deviations in monitoring signals to
provide early warning. Incipient faults are easily confused with noise, making them more
challenging to diagnose.

After the fault detection step, isolating faulty sources (variables) is also crucial for
subsequent system maintenance. When a fault occurs in a system, sensors’ monitoring
signals may have different characteristics. This faulty behavior is usually caused by one
or more malfunctioning components, which should be isolated for maintenance purposes.
For instance, in the air brake control system of high-speed trains, the brake cylinder
pressure is assigned by the control unit according to braking requirements [22,85]. The
sensors measuring cylinder pressure may suffer from tiny deviation due to the train’s harsh
operating environment. Although these incipient faults will not directly cause a serious
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Contributions

accident, the risk increases with time, threatening peoples’ safety. Therefore, the faulty
sensors should be isolated at the early stage of a fault for maintenance and replacement.

Fault severity estimation is an important part of the fault prognosis problem, dedicated
to assessing how serious the fault is. Unlike most of the literature, this work does not
directly discuss the remaining useful life estimation in the fault prognosis problem. Instead,
we estimate the fault severity in this problem to indicate the systems’ remaining useful
life. Generally, fault severity can be evaluated by estimating either the increasing rate or
the fault amplitude. Take the bearing fault diagnosis as an example. The rolling bearing
elements are one of the essential components in rotating machine drives. Bearing faults,
such as inner race wear, cage fracture, and outer race fracture, frequently occur due to
harsh operating conditions and sometimes manufactory defects [109, 190]. After fault
detection, it is necessary to assess the fault severity to decide on protection actions. In the
event of a serious fracture in a component, the system should be stopped immediately,
while a warning should be raised for minor wear. Therefore, this work tries to estimate
the fault severity of the faulty signals.

Motivated by the above discussion, this work aims to propose fault diagnosis solutions
for different tasks with the following goals.

1. Develop fault diagnosis approaches for complex distributed data, such as non-
Gaussian cases.

2. Be able to offer fault diagnosis solutions when faulty information is weak or missing.

3. Improve the sensitivity of fault diagnosis approaches to incipient faults.

4. Achieve strong robustness to noise and outliers.

1.3 Contributions

The contributions associated with this work are composed of the following points.

1. We propose the healthy region approximation approach as one-class
classification method for fault diagnosis.

• By considering samples’ spatial distribution, this method determines the healthy
region of fault-free samples with multiple anchors and a region margin.
• A robust anchor-generation algorithm with its optimization procedure is proposed
to extract the spatial distribution information of the healthy region.
• Based on the generalized extreme value distribution, we estimate the CDF of
the LMD index in the healthy condition and select the optimal healthy region
margin.
• Based on the approximated healthy region, a key index named the local Maha-
lanobis distance (LMD) is defined, and its properties are also studied so as to
provide a theoretical foundation for fault detection.

2. We propose fault detection methods for time series signals and time-
independent data, respectively.
• The first solution combines the LMD index with the Empirical Probability Density

Cumulative Sum (EPD-CUSUM) method to increase sensitivity to incipient faults.
• The benefit of using the EPD-CUSUM method is shown by comparing it with

the original LMD index and typical detection methods, which again validates its
excellent detection capability.
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• The second detection solution extracts the LMD feature and calculates the dissi-
milarity between the healthy reference data and the testing one using probability-
based distance.
• Compared with other statistical feature extraction approaches, such as principal
component analysis, kernel principal component analysis, and independent com-
ponent analysis, the LMD technique can extract more representative features for
fault detection.

3. A faulty variable isolation method using the contribution-plot idea is
developed to isolate the single faulty variable.
• The fault contribution value of each variable is obtained by analyzing the relative
position of faulty data and its anchor.
• The proposed method is simple to implement and drastically improves isolation
accuracy compared to existing approaches, especially for incipient faults.

4. We establish the analytical expression for fault severity estimation connec-
ting the fault increasing rate and LMD index.
• This approach succeeds the advantages of LMD and achieves high accuracy in
the estimation procedure.

5. We further propose the improved fault isolation and fault amplitude
estimation approaches based on the reconstruction-based contribution
framework.
• The smooth LMD index is designed and used to inhibit noise disturbance with high

frequency, which significantly improves the isolation and estimation performance
of the proposed method.
• To overcome the difficulty of optimizing the non-linear calculation of LMD, this
work proposes an iterative method alternating between updating an anchor and
solving the optimization problem. Then an approximation solution for RBC
calculation is obtained.
• The RBC-based method can isolate multiple faulty variables and estimate their
fault amplitude simultaneously.

6. Based on the industrial engineering applications, we comprehensively
evaluate the performance of each fault diagnosis solution.
• In the case study of the Continuous-flow Stirred Tank Reactor (CSTR) process,
the performance evaluation shows that the proposed fault diagnosis approaches
are robust to noise, highly sensitive to incipient faults, and outperform the
state-of-the-art techniques.
• The comparative study on the Case Western Reserve University (CWRU) bearing

data indicates that the LMD technique can extract more meaningful features for
fault detection and achieves the best sensitivity performance in this study.

1.4 Outline

The remaining part of this thesis is organized as follows.

Chapter 2 briefly introduces the concept of fault and fault diagnosis, such as fault
definition and category, fault diagnosis tasks, and diagnosis procedures. The development of
fault diagnosis methodologies is reviewed, and then challenges are highlighted. Specifically,

12



Outline

we review and summarize the state-of-the-art techniques significantly contributing to the
fault diagnosis problem. The limitation and advantages of each technique are also discussed
by considering the particular case of incipient faults.

Chapter 3 first reveals the major limitations of the existing fault diagnosis methodologies
and then discusses the benefit of using the One-Class Classification (OCC) idea to tackle
these challenges. A new OCC approach composed of the anchor-generation algorithm and
region margin selection is proposed to develop a healthy region for fault-free samples.
The key index named local Mahalanobis distance (LMD) is then defined to indicate the
distance between samples and the healthy region. The healthy region effectiveness of the
proposed method is validated, and its benefit is highlighted using simulation data.

In chapter 4, solutions for fault detection, faulty variables isolation, and fault severity
estimation are proposed based on the developed healthy region and the LMD index.
Based on simulation signals, we give the step-by-step guide of each solution and show the
diagnosis results.

The efficiency evaluation of the proposed methods is considered in chapter 5 using
two industrial engineering application data, namely Continuous-flow Stirred Tank Reac-
tor (CSTR) process and Case Western Reserve University (CWRU) bearing data. The
advantages of our proposal are highlighted by comparing it with the state-of-the-art
approaches.

Finally, chapter 6 concludes this work and presents the perspectives of our work.
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2
Fault diagnosis approaches : Review

2.1 Introduction

Health monitoring and fault diagnosis play a key role in modern industrial systems for
increasing requirements on reliability, availability, maintainability, and safety. With the
development of sensor technology and computational science, fault diagnosis, including
fault detection, faulty variables isolation, and fault severity estimation, has become a more
and more hot topic in the last decade. Its applications cover abundant scenarios such as
manufacturing industry, electrical systems, and chemical processes [8, 193,214].

A fault is conventionally defined as ”the unpermitted deviation of at least one process
parameter from an acceptable condition” [81]. It can be classified according to different
attributes. By considering the time dependency and severity, we introduce three kinds of
faults, namely abrupt fault (stepwise), intermittent fault (pulsewise), and gradual fault
(incipient fault) [13, 39, 81]. Figure 2.1 exhibits the evolution of three kinds of faults along
with time.

! ! !

" " "(a) (b) (c)

Figure 2.1 – Three kinds of faults : a) abrupt fault ; b) intermittent fault ; c) gradual
fault.

• Abrupt fault is recognized as step-like deviation, as shown in Fig.2.1-(a). It usually
links to serious damage of components, like the short circuit of power devices [162],
the fracture of mechanical structures [24], and valve malfunction in a process [128].
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The sudden occurrence of faults with high amplitude may immediately cause severe
performance degeneration and even system breakdown. For distinct fault signatures,
the detection of abrupt faults is less challenging. However, more attention should
be paid to the detection delay time in detecting abrupt faults.
• Intermittent fault appears randomly with short time duration in a process,
as shown in Fig.2.1-(b). In contrast to the persistent behavior of abrupt fault,
intermittent fault results in systems switching between a faulty and healthy behavior,
which is more tricky to detect. It is usually caused by the aging of equipment [2],
poor soldering [221], and partial fault of a distributed network [137].
• Gradual fault, also called incipient fault, is defined as an increasing change
with very low severity or slowly varying evolution (see Fig.2.1-(c)). It does not
dramatically affect the system’s performance at its early stage but may result in
severe system failures if no protective action is taken. Therefore, early diagnosis
of gradual fault in their incipient stage is crucial to discover the potential risk of
system breakdown, which is also becoming a hot topic in the fault diagnosis domain.
Examples of incipient fault are the slight crack of metal [102], mechanical wear and
tear [134], and sensors drift [85].

All these faults can lead to system performance degradation and even an unexpected
stop [81, 175] if neither protection action nor fault-tolerant control is taken. To avoid a
severe accident and reduce economic impact, protection actions or necessary fault-tolerant
control are required for malfunctional systems, which rely on quick and accurate fault
detection. After a fault is detected, the fault isolation and fault severity estimation are
also crucial to characterize a fault and to provide information for fault-tolerant control
steps and system maintenance.

Generally, a fault diagnosis scheme includes three main tasks [39], fault detection,
faulty sources isolation (sometimes treated as fault identification or classification), and
fault severity assessment, as shown in Figure 2.2. They link to real applications like process
state monitoring [26], anomaly detection [20], fault-tolerant control [212], and remaining
useful life estimation [176].

Samples ! Fault detection Fault isolation
Fault severity 

estimationFaulty

No

Yes
End

Sample update

Figure 2.2 – General fault diagnosis framework

• Fault detection is the first step and the foundation base of the fault diagnosis
framework. It aims to accurately recognize a faulty behavior for the input sample,
which may face challenges like strong noise and small fault amplitude [66,81]. For
online applications, an additional requirement of the fault detection step is to detect
a fault with a short delay time [142,200].
• Fault isolation, also called fault root causes location in literature, proceed to locate

the key factors affecting the system’s performance after a fault is detected [83,85,213].
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This step is usually realized based on some necessary assumptions, such as fixed
candidate fault root causes and known fault types.
• Fault severity estimation continues to assess the fault severity when the fault

root cause is isolated [68,135]. It is an important task of the fault prognosis problem,
providing crucial information for remaining useful life prediction, fault-tolerant
control, and so on [23,186]. More precisely, the physical meaning of fault severity
is first specified according to application demand, such as increasing rate, the
amplitude of additive fault, the gain of multiplicative fault, and the key parameter
of a system component. The defined value is then estimated sometimes based on
necessary assumptions, e.g., known fault type (abrupt, intermittent, incipient,...)
and the fault’s evolution model.

In the past decade, abundant fault diagnosis approaches have been proposed based on
either system model or data. Model-based approaches require the knowledge of systems,
such as mathematical process models [81,193]. The relationship between system inputs
and outputs in the healthy operating condition is first established by using parametric or
non-parametric methods. In the diagnosis procedure, the estimated outputs are calculated
based on the obtained model and the new measured input signals. The residual error
between the estimated and actual output signals is then generated and serves as a fault
signature for fault detection and characterization. Model-based approaches are reliable
when the basic model structure is known. However, fault diagnosis performance of these
approaches is usually inadequate for complex systems due to the difficulty for developing
an accurate process model, the large number of latent variables, and non-linear behavior.

With the development of computational science, data storage and management have
become easier, which provides a real opportunity to analyze massive data. Therefore,
data-driven approaches for fault diagnosis have attracted increasing attention. By directly
extracting useful information from measured signals, data-driven approaches can allow to
provide an effective decision and achieve promising diagnosis performance. Data-driven
approaches may consist of different advanced techniques, which is generally summarized as
four steps : pre-processing, feature extraction, feature analysis, and decision making [69].
• Pre-processing step processes raw signals in advance of the diagnosis procedure
to ensure the correctness and availability of data. For example, in this step, the
missing value of measured signals is handled using one of the estimation strategies.
When raw signals contain a lot of noise, the denoising operation is performed on
data. In addition, normalization and signal resampling could be also performed in
this step.
• Feature extraction extracts meaningful features from pre-processed signals and
removes irrelevant information. The ideal feature can reflect the change caused by
faults but is insensitive to noise and other disturbances. As the key of data-driven
approaches, feature extraction is usually performed based on expert knowledge or
statistical properties.
• Feature analysis summarizes the dissimilarity between healthy reference data

and testing data to support the decision-making. A diagnosis index is obtained for
the fault detection task, which may be further used to isolate a fault’s root causes
and estimate fault severity.
• Decision-making is the final step of the fault detection task. The tradeoff among
the detection rate, false alarm rate, miss detection rate, and the detection delay
time is considered when one selects a threshold. The final decision is drawn in this
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step by comparing the diagnosis index with the detection threshold.
In the following section, we summarize the challenges of the fault diagnosis problem

and introduce the development of data-driven fault diagnosis methodologies. Then we
look deeper into the state-of-the-art techniques that significantly contribute to the fault
diagnosis problem. The definition of these techniques is reviewed, and their step-by-step
usages are summarized.

2.2 Data-driven fault diagnosis methodologies : develop-
ment and challenges

In the last two decades, lots of fault diagnosis methodologies have been proposed and
applied to industrial systems, roughly divided into two main categories : model-based and
data-driven approaches according to their prior knowledge. As discussed in the previous
section, model-based fault diagnosis approaches are reliable and usually achieve excellent
diagnosis performance when systems’ knowledge is available, but are difficult to design
for complex systems. Instead, data-driven approaches have more interesting advantages
like flexibility and robustness. They explore data’s characteristics and find the difference
between healthy and faulty cases by describing the system’s behavior in a more flexible
way, such as statistic metric and distance in the feature space. Moreover, data from
real systems may suffer from interference, distortions, and environmental noise. Facing
these difficulties, using data-driven methods helps to develop fault diagnosis approaches
with strong robustness. Therefore, they are wildly used and much more popular than
model-based approaches. This section focuses on data-driven approaches by introducing
their improvement to cope with different challenges.

2.2.1 Fault detection approaches

Fault detection is the foundation for fault diagnosis and prognosis, naturally attracting
huge attention in the literature and yielding various approaches. Masses of studies were
presented in the literature to characterize fault behavior and provide solutions for fault
detection.

Typical methods like Shewhart charts, cumulative sum, and Exponentially Weigh-
ted Moving Average (EWMA) provided simple and effective univariate measurements
to characterize process behavior [120, 140, 149, 161]. Then, parts of these methods were
extended for multivariate analysis, such as Multivariate Exponentially Weighted Moving
Average (MEWMA) and the Multivariate Cumulative Sum (MCUSUM) [59,122]. For high
dimensional data, multivariate statistical techniques are used to reduce the data dimension
and further improve the detection capability by considering the relevant information in a
low dimensional subspace. These kinds of approaches first apply multivariate statistical
techniques, such as Principal Component Analysis (PCA), Independent Component Analy-
sis (ICA), and Fisher Discriminant Analysis (FDA), to extract data’s features. Then they
compute Hotelling’s T 2 and SPE(Q) statistics as discriminated indexes to determine if
the observed data is different from the healthy one [199]. The work described in [198] has
summarized the common multivariate statistical techniques and compared their perfor-
mance based on the Tennessee Eastman Process (TEP) data. Later, multivariate statistical

18



Data-driven fault diagnosis methodologies : development and challenges

techniques aiming to develop the relation between system input and output were applied
to the fault detection problem. These techniques, like Partial Least Square (PLS) [125],
Canonical Correlation Analysis (CCA) [28], and Canonical Variate Analysis (CVA) [139],
usually learn latent variables of systems as fault features. Hotelling’s T 2 and SPE statistics
are also used for feature analysis in these approaches.

Multivariate statistical techniques are powerful tools for extracting features and usually
achieve good performance in the fault detection task. However, the drawbacks of these
methods lies in their ineffectiveness for non-Gaussian data, non-linear processes, and
dynamic systems [198]. Using the kernel trick is a common way to cope with the non-
linear nature of data. The extension of the conventional PCA technique using kernel
function, called kernel PCA, was used in fault detection task and showed its superiority
in non-linear cases. Similarly, non-linear ICA [104,192] and non-linear PLS [145,183] are
good choices for analyzing the non-linear structure of data. Concerning the challenge
of non-Gaussian data, methods based on the Gaussian Mixture Model (GMM) [90,203]
and Generalized Canonical Correlation Analysis (GCCA) [27] were proposed without
the Gaussian distributed assumption of data. Fault detection for dynamic systems is
also a tricky problem due to the changing behavior of systems. Several improvements of
multivariate statistical techniques for this concern have been made by considering the time-
varying information of data, such as the extension of PCA for dynamic systems (dynamic
PCA) [45], and the Canonical Variate Dissimilarity Analysis (CVDA) approach [142].
Despite the significant progress of multivariate statistical techniques contributing to the
fault diagnosis problem, they usually fail to handle complex systems involving a high
dimensionality, the mass of data, and unusual data structure [105, 106]. The extracted
features under statistical optimization goals may not relate to a system’s faulty information.
[106].

Recently, artificial intelligent approaches based on machine learning theories have
been widely used in fault detection problems for their powerful feature representation
capability. In particular, neural network-based methods, which can automatically extract
faulty features and recognize different kinds of samples, are attracting much interest from
academia [30, 106, 179]. However, one challenge of applying artificial intelligent approaches
to industrial applications is the insufficient number of high-quality training samples. Most
artificial intelligent approaches are supervised and require a large number of labeled data for
both healthy and faulty scenarios. However, for most industrial applications, faulty data is
usually scarce or unavailable. The limited number of training samples can lead to the poor
performance of supervised and even unsupervised machine learning approaches. Although it
is possible to develop fault diagnosis methods based on the knowledge or the data of known
faulty behaviors, applying these fault diagnosis methods to unknown faulty behaviors is
sometimes unacceptable. Therefore, the one-class classification (OCC) problem is raised
and discussed to cater to the practical necessity of industrial cases. OCC techniques,
such as k-centers [201], One-Class Support Vector Machine (OC-SVM) [93, 138, 157],
auto-encoder [126, 180], and isolation forest [65, 114, 115], tend to become promising
solutions for fault diagnosis in industrial applications. However, the OCC problem still
faces several challenges, like the outlier issue, inadequate sensitivity for small deviation,
and the non-linear nature of data.

Another challenge of the fault detection problem is that subtle deviation is usually
buried in noise, leading to the detection difficulties [142,153,216]. The subtle deviation,
also called incipient fault, is described as a slowly varying change of parameters, or
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disturbance with a tiny fault amplitude compared to the noise power [68,81]. Unfortunately,
most of the aforementioned approaches are reported as not sensitive enough to detect
incipient faults except the CVDA method [142]. To improve detection sensitivity, the
works [38,67,208,216] introduced a new detection framework that first uses multivariate
statistical techniques to extract fault features and then employs divergences to evaluate the
dissimilarity between the observed data and healthy data. Divergence is highly sensitive
statistical metric evaluating the closeness between two probabilities. In practice, the
probability distributions of data’s feature is estimated by using Kernel Density Estimation
(KDE) method. Although these methods show the benefit of using the Kullback–Leibler
divergence (KLD) and Jensen–Shannon divergence (JSD) in incipient fault detection, they
seem unsuitable for online applications since they need a large number of samples to
accurately estimate the probability distribution.

2.2.2 Fault isolation and estimation approaches

Compared to the considerable progress of fault detection, studies on incipient fault
isolation and severity assessment are more tedious. Fault isolation aims at finding out
the parameters or signal sources affected by a fault, and fault severity assessment is
usually achieved by estimating the characteristics of a fault (amplitude, occurrence time,
evolution function). Accurate solutions to both problems are necessary for fault-tolerant
control [83,212], components’ remaining useful life prediction [110], and the risk assessment
of system breakdown [204].

Numerous model-based methods specific to particular systems have been proposed
for fault isolation and severity estimation problems, but they usually suffer from weak
generalization capability for other systems. General methods for fault isolation and fault
severity estimation problems are therefore attracting researchers’ attention. Additionally,
to take advantage of the excellent characteristics of the existing detection approaches, such
as high sensitivity, reliability, and robustness, researchers tend to develop fault isolation
and fault severity estimation methods based on the fault monitoring index. Based on
this motivation, several important works have been proposed [23,69,84,213,220], where
divergence-based and reconstruction-based contribution techniques deserve particular
attention for their high sensitivity or reliable performance.

Divergence-based methods are highly sensitive to incipient faults and robust to noise.
Therefore, KLD and JSD serve as fault detection indexes and subsequently are used for
fault isolation and severity estimation [41, 68, 216]. KLD combined with PCA feature was
first proposed for incipient fault detection in works [66,69,200], as we introduced in the last
section. Subsequently, the theoretical model estimating the fault severity coefficient was
then developed based on KLD with Gaussian distributed assumption [67,68]. To isolate
the single faulty variable, C. Delpha et al. further proposed the Z-decomposition to linearly
combine variables with binary coefficient and calculated the KLD of the combined signals
between reference and testing samples [41]. The detection result of all combined signals is
decoded from binary code to uniquely determine a single faulty variable (e.g., the result
010 indicates that the third variable is faulty). Similar to KLD-based approach, JSD was
proposed with the same strategy to detect incipient faults, isolate faulty variables, and
estimate fault severity. The main benefit of using JSD is its higher sensitivity for incipient
faults facing noise environments [216,217]. However, both KLD and JSD based approaches
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have limitations. For example, they require a mass of samples to accurately estimate the
probability density function.

The contribution plots method is also commonly used for sensor fault isolation [72,181],
which assumes that faulty variables make a higher contribution to a fault detection
index. This method is simple but only suitable for faults with large amplitude. Later,
the reconstruction-based contribution (RBC), combining the fault reconstruction idea
and contribution plot technique, was proposed with a solid theoretical foundation to
improve the isolation performance and enable the fault amplitude estimation [3, 83, 84].
RBC methods are developed on the existing monitoring indexes, such as PCA-based
T 2 and SPE statistics [3], Mahalanobis Distance (MD), and Exponentially Weighted
Moving Average (EWMA) [83,84]. More precisely, they reconstruct signals by removing
the faulty component in a specify fault direction to recover healthy signals. Subsequently,
one of the monitoring indexes, such as Hotelling’s T 2 statistics, SPE statistics [3], the
combined statistics of T 2 and SPE [207], and Mahalanobis distance [37], is calculated to
decide if the reconstructed signal is correctly recovered. Once the monitoring index of the
reconstructed signal is lower than the detection threshold, the faulty direction indicating
the faulty variables is determined, and the faulty component is obtained simultaneously.
RBC approaches have a solid theoretical foundation and can achieve a reliable fault
diagnosis performance for serious faults with a distinct deviation from healthy conditions.
However, the aforementioned monitoring indexes are not sensitive enough for tiny faults,
leading to the low accuracy performance of the existing RBC-based approaches for incipient
faults isolation and fault severity estimation.

2.3 State-of-the-art techniques for fault diagnosis

Various techniques can be used to develop fault diagnosis approaches. Conventionally,
signal processing approaches based on either time-domain, frequency-domain, or time
frequency-domain are used to extract features and analyze signals’ characteristics [134].
For example, in time-domain analysis, signals’ temporal features are extracted, such as
mean value, root-mean-square, peak value, skewness, kurtosis, etc. [62, 162]. They are
reliable and simple for computation. Similarly, fast Fourier transform (FFT) is frequently
used to extract frequency components of raw signals, which helps to observe the change
of frequency components when faults occur [62]. However, the frequency analysis is not
suitable for non-stationary signals. Therefore, time-frequency analysis approaches, such as
short-time Fourier transform (STFT) [33] and wavelet transform [217], were then proposed.
Although typical signal processing techniques are effective as feature extraction tools,
they have limitations, like the requirement of prior knowledge of faulty signals and high
complexity for calculation [134]. The technical review in this section does not include
typical signal processing techniques but focuses on other state-of-the-art techniques.

Statistic-based techniques are one of the promising methodology branches among
data-driven fault diagnosis approaches. They extract data’s statistical characteristics as
features that are usually sensitive to the change of signals when faults occur. Moreover,
multivariate statistic techniques can decrease the number of features to improve detection
capability and reduce the computational burden. Therefore, statistic-based techniques have
been dominant tools for feature extraction in fault diagnosis tasks and deserve particular
reviews in this section.
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Machine learning and deep learning techniques (artificial intelligence-based approaches)
for fault diagnosis are prevalent since they can automatically extract features and effecti-
vely handle non-linear data [111,205]. Both the detection capabilities of supervised and
unsupervised learning approaches are well explored in the literature [105,189]. However,
the major challenge of applying artificial intelligence approaches to industrial scenarios
is the lack of faulty samples for training. Unsupervised learning approaches also require
faulty samples for training though they don’t need samples’ labels. The special artificial
intelligence approaches only training on positive samples is referred to as the one-class
classification (OCC) technique. The use of this technique for fault diagnosis has attrac-
ted increasing attention. Accordingly, this section introduces the state-of-the-art OCC
approaches to show more details.

In the feature analysis step, two statistics derived from Euclidean distance and Ma-
halanobis distance, namely SPE(Q) and Hotelling’s T 2, are commonly used as indexes
to determine if the observed data is different from the healthy one [199]. Alternatively,
probability density based distances are increasingly used to analyze samples’ features for
their high detection sensitivity. To pursue this development, we introduce state-of-the-art
statistical metrics significantly contributing to the incipient fault diagnosis problem.

2.3.1 Multivariate statistic techniques

Multivariate statistic techniques refine useful information from raw data by using the
different dimension reduction and space partition approaches, such as Principal Component
Analysis (PCA), Independent Component Analysis (ICA), Fisher Discriminant Analysis
(FDA), Partial Least Squares (PLS), Canonical Variate Analysis (CVA), Generalized
Canonical Correlation Analysis (GCCA), etc. [27,88,125,154,198]. Then, the Hotelling
T 2 index and SPE statistics are calculated on different subspaces for fault detection
purposes [198]. In the following introduction, we consider a multivariate sample matrix
X = [x1 · · · xN ]

T ∈ RN×m with zeros mean, where N is the number of observations, and
m is the number of variables.

2.3.1.1 Principal component analysis and its extensions

• Principal component analysis (PCA) is a widely used technique for dimensiona-
lity reduction and feature extraction. Due to its simple operation and the efficiency
of handling massive and high-dimensional data, PCA is popularly used for fault
diagnosis [56, 164]. By projecting the original data to a lower-dimensional space,
PCA preserves data’s correlation structure and removes redundancy information.
Therefore, the features extracted by PCA operation can effectively characterize the
change of measured signals.
The PCA operation divides the original space into two subspaces : principal and
residual components. Both are derived as a linear combination of original variables
with the purpose of maximizing the variance of projected samples. The principal
components space is spanned by the principal components vectors that contain
most of the data’s variation. For example, the first principal component explains
the major variance of data, while the second one explains the most variance when
the first one is removed. Let us consider the projected sample xpi, where pi ∈ Rm
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is called loading vector. The objective of PCA is associated with the following
optimal problem.

maximize Var(xpi) = pT
i Var(x)pi

subject to ∥pi∥ = 1
(2.1)

The m orthogonal loading vectors p1 · · · pm can be calculated as the eigenvectors by
eigen-decomposing the data’s covariance matrix Σ.By ordering the loading vectors
according to their corresponding eigenvalue, the transform matrix P = [p1 · · · pm]
is then obtained. We can select the first l vectors Ppc ∈ Rm×l as the principal
components and obtain the score matrix Z.

Z = XPpc (2.2)

In this step, selecting the proper number of principal components is crucial to
represent the data in an optimal way, which becomes an important issue in using the
PCA technique. Therefore, various studies proposed their criteria for selecting the
optimal principal components number, such as eigenvalues limits, cumulative percent
variance, cross-validation method, the variance of reconstruction error [130,166].
The reconstruction of original data using principal components is obtained as

X̂ = ZP T
pc (2.3)

The residual matrix E is derived as the difference between X and X̂

E = X − X̂ = X(I − PpcP
T
pc) (2.4)

The subspace spanned by E is called the residual space, which represents the error
information caused by the PCA reconstruction. Based on the above introduction,
we briefly formulate the PCA calculation procedure as follows

1. Step 1 : Calculate the samples’ covariance matrix

Σ =
1

N − 1
XTX = PΛP T (2.5)

2. Step 2 : Perform the eigen-decomposition on the covariance matrix

Σ = PΛP T (2.6)

where Λ = diag(λ1, · · · , λm) and λ1 ≥ · · · ≥ λm ≥ 0.

3. Step 3 : Calculate the first l principal component score of the sample xi

z = xiPpc (2.7)

4. Step 4 : Calculate the residual score of the sample xi

ei = xi(I − PpcP
T
pc) (2.8)

Typical PCA-based fault detection approaches calculate the Hotelling T 2 statistic
of principal components and the SPE statistic of residual components as the two
fault diagnosis indexes. It is believed that the SPE statistic is more sensitive to
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a fault than the T 2 statistic since the former relates to the change of signals,
while the latter relates to the steady state of healthy operation [47,198]. To take
advantage of the two statistics, their combined diagnosis index has been proposed
(called PCA-MIX). It was demonstrated that the combined index outperforms each
index [207]. However, this typical approach with the above arbitrary indexes is
ineffective for incipient faults [66,142]. As a common feature extraction tool for fault
diagnosis, the PCA technique is widely used in conjunction with other advanced
techniques, like KL divergence [40, 66, 68, 69], JS divergence [216, 217], empirical
mode decomposition [47] and the K-Nearest Neighbors [211]. Despite such progress
these approaches make in different aspects, PCA is still unsuitable for handling
complex data due to its linear nature.
• Kernel principal component analysis (KPCA) is an extension of the conven-

tional PCA, improving the ability to handle non-linear data [74]. The conventional
PCA can extract useful features by reducing data’s dimension when variables
are jointly normally distributed and highly correlated with each other. However,
the above assumption is not satisfying when data is collected from a non-linear
system, such chemical process [32,124]. The use of conventional PCA in this case is
inadequate, which motivates to propose the KPCA technique.
Theoretically, N sample points can almost always be linearly separated by construc-
ting a hyperplane in a d-dimensional space (d > N) [158]. Based on this theory,
KPCA uses a kernel function to project data onto a kernel Hilbert space whose
dimensions are higher than the original ones. Then, the native linear operations
of PCA are performed to extract principal components. Let Φ(x) be a function
projecting data onto a high dimensional space. Instead of directly working on
the high-dimensional Φ-space, the kernel trick allows non-explicitly calculating
high-dimensional projected data with a specified arbitrary kernel function. More
specifically, an N -by-N kernel representing the inner product of the feature space
is created as

K(x,x) = Φ(x)TΦ(x) (2.9)

where K is called the kernel function. The common kernel functions include Radial
Basis Function (RBF) or Gaussian function, polynomial function, Laplacian function,
and sigmoid function. The conventional PCA operation is performed on the dual
form of the projected data, which avoids the direct eigen-decomposition of the
covariance matrix in the Φ-space. Similar to the conventional PCA operation, the
zero-mean condition of the projected data should be guaranteed to perform the
principal component analysis. Therefore, the centering operation to the kernel
K is also necessary before the PCA operation. We briefly summarize the KPCA
calculation procedure as follows.

1. Step 1 : Construct the kernel matrix K using the Gaussian Kernel as an example

Kij = exp(−γ∥xi − xj∥22) (2.10)

where γ is the bandwidth parameter of the Gaussian kernel function.

2. Step 2 : Compute the Gram matrix K̃

K̃ = K − 2(11/NK) + 11/NK11/N (2.11)

where 11/N is a matrix whose elements are all 1/N .
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3. Step 3 : Perform the eigen-decomposition on the Gram matrix

K̃pi = λipi, i = 1, · · · , N (2.12)

4. Step 4 : Calculate the lth principal component as the signal’s feature

z =
N∑
i=1

pliK(x,xi) (2.13)

KPCA is a useful tool to deal with the challenge of non-linear variables in fault
diagnosis tasks. The conventional fault detection approach first performs KPCA
to obtain principal components in high-dimensional space and then computes the
T 2 and SPE statistics for fault detection. To monitor the behavior of a non-linear
process, the upper control limit of KPCA analysis is estimated using kernel density
estimation techniques [155]. More advanced KPCA-based fault diagnosis approaches
have been proposed to improve detection capability via combining it with generalized
likelihood ratio test [124], FDA [34], and sliding median filter [218]. However, one
major concern about this technique is the high computation complexity when the
number of training samples is large [34].
• Robust principal component analysis (RPCA) is a modification of the
conventional PCA to improve the robustness against outliers in the observed
samples. As mentioned before, the conventional PCA performs well with respect to
jointly normally distributed data. However, this assumption is not always satisfied
in practical applications, such as fault diagnosis for industrial systems [123,172,188],
video surveillance [10, 19, 43], face recognition [19, 71], and latent semantic indexing
[11, 159]. Except for the non-linear nature of data, another potential issue of using
the conventional PCA is the effect of outliers contained in observations (also
called grossly corrupted observations [19]). Once the observations are corrupted,
the variance of measured variables significantly increases, rendering the extracted
principal component using the conventional PCA far from the true situation. In
the case considering outliers, the data matrix X is assumed as the superposition
of two components, namely low-rank component L0 (principal components) and
sparse component S0 (outliers part), such that

X = L0 + S0 (2.14)

The RPCA technique is dedicated to recovering the two components individually
even though the dimension of the low-dimensional space of L0 and the locations
of the nonzero column of S0 are unknown. RPCA can be performed via different
techniques like Principal Component Pursuit method (PCP) [19], stable PCP [185],
quantized PCP [14], block-based PCP [167], and local PCP [182], where the PCP
method can obtain the idealized version of RPCA by solving the following convex
problem

minimize ∥L∥∗ + η∥S∥1
subject to L+ S = X

(2.15)

where ∥L∥∗ :=
∑

i σi(L) denotes the sum of the singular values of the matrix L,
∥S∥1 =

∑
ij |Sij| denotes the ℓ1-norm of S, and η is a scalar coefficient. There are
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also several algorithms that can be used for performing PCP, such as Augmented
Lagrange Multiplier Method (ALM) [112], Alternating Direction Method (ADM)
[206], Fast Alternating Minimization (FAM) [150], Iteratively Reweighted Least
Squares (IRLS) [63,64] or Alternating Projections (AP) [17,18,133], where ALM
achieves higher accuracy in fewer iterations and works stably. ALM minimizes the
augmented Lagrangian

L(L,S,M ) = ∥L∗ + η∥S∥1 + ⟨M ,X −L− S⟩+ µ

2
∥X −L− S∥2F (2.16)

where M is the Lagrange multiplier matrix updated via

Mk+1 = Mk + µ(X −Lk − Sk) (2.17)

∥ · ∥F denotes the Frobenius norm, and µ is the incoherence condition parameter.
Solving Eq.(2.16) is simplified by alternately solving the following two problems

argmin
S
L(L,S,M) = Sηµ(X −L+ µ−1M) (2.18)

argmin
L
L(L,S,M ) = Dµ(X − S + µ−1M) (2.19)

where Sτ (x) = sgn(x)max(|x| − τ, 0) denotes the shrinkage operator, and Dτ (X) =
USτ (Σ)V T denotes the singular value thresholding operator with the singular value
decomposition X = UΣV sT . We summarize the RPCA calculation procedure as
follows.

1. Step 1 : Initialize values S0 = 0, M0 = 0 and set parameter µ > 0

2. Step 2 : Update the low-rank component

Lk+1 = Dµ(X − Sk + µ−1Mk) (2.20)

3. Step 3 : Update the sparse component

Sk+1 = Sλµ(X −LK + µ−1MK) (2.21)

4. Step 4 : Update the Lagrange multiplier matrix

Mk+1 = Mk + µ(X −Lk+1 − Sk+1) (2.22)

5. Step 5 : Repeat Step 2 to Step 4 until Lk+1 + Sk+1 converges to X.

RPCA-based fault diagnosis approaches were developed early to cope with outliers.
This approach decomposes the data into three parts : low-rank component, sparse
component, and dense noise, where the low-rank component mainly represents
systematic variation information. By computing singular value decomposition on the
low-rank component, this approach obtains the principal components and computes
T 2 and SPE statistics for fault detection. Based on this idea, many improvements
have been proposed, such as using the Frobenius norm in the optimizing process
to accelerate convergence [117] and adopting moments-based criterion in outliers
selection to increase fault detection capability [121]. Despite of the significant
progress of the RPCA technique in handling outliers, it still suffers from the same
limitations as the traditional PCA technique, like insensitive to incipient faults and
ineffective to non-linear data.
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• Dynamic Principal Component Analysis (DPCA) is an extended PCA
model for analyzing the dynamic behavior of systems [45]. The statistical process
monitoring approach using the conventional PCA technique is usually designed for
discrete manufacturing processes with the assumption that observed variables are
independent and normally distributed. However, industrial systems do not always
operate in steady states but sometimes show a dynamic behavior in which variables
are correlated over time [77, 97, 148]. When applying PCA to analyze the static
characteristics of dynamic systems, fault diagnosis methods’ effectiveness can not
be guaranteed since dynamic information is ignored and the time-independence
assumption is not satisfied. To take into account the serial correlations of variables,
the dynamic version of PCA uses the ’time lag shift’ method to augment each
sample vector with the previous τ samples. The augmented matrix XA is generated
as

XA(τ) =


xT (τ + 1) xT (τ) · · · xT (1)
xT (τ + 2) xT (τ + 1) · · · xT (2)

...
...

. . .
...

xT (N) xT (N − 1) · · · xT (N − τ)

 (2.23)

Then the conventional PCA operation is applied to the augmented matrix. We
summarize the DPCA calculation procedure as follows.

1. Step 1 : Construct augmented matrix XA via Eq.(2.23).

2. Step 2 : Calculate the covariance matrix of XA

ΣA =
1

N − τ − 1
XT

AXA (2.24)

3. Step 3 : Perform the singular value decomposition on the covariance matrix ΣA

ΣA = UΛV T (2.25)

where Λ = diag(λ1, · · · , λm(τ+1)) and λ1 ≥ · · · ≥ λm(τ+1) ≥ 0.

4. Step 4 : Calculate the first l principal component score of the augmented sample
at time index k, such as xA(k) = [x(k)x(k − 1) · · · x(k − τ)]

z = xA(k)Ppc (2.26)

where Ppc consists of the first l loading vectors.

The fault detection procedure of the DPCA-based approach is the same as the tra-
ditional PCA after the augmented samples are generated. DPCA-based approaches
are effective for monitoring processes with an autocorrelation nature [97]. To deal
with non-linear and multimodal characteristics, a fault detection method based on
DPCA associated with K-nearest neighbors was proposed and outperformed the
classical DPCA-based fault detection approach [210]. However, because of the ”time
lag shift” in constructing augmented samples, the detection delay time is usually
long [198]. Moreover, selecting time lag for the DPCA technique is important and
tricky, which needs further study.
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2.3.1.2 Independent Component Analysis

Derived from the blind source separation problem, Independent Component Analysis
(ICA) is a wildly used multivariate statistical tool aimed to decompose a mixed signal into
independent source signals. It assumes that at most one source signal is non-Gaussian
distributed and the source signals are statistically independent of each other. The famous
application of blind source separation is the ”cocktail party problem” which focuses on
separating persons’ speech from a mixed sound signal recorded in a noisy room. Let us
consider m independent source signals denoted as S = [s1 s1 · · · sm]T . They are recorded
by m sensors, e.g.,. microphones, and mixed as follows,

XT = [x1 x2 · · · xm]T = US, U ∈ Rm×m (2.27)

Each observed signal is the weighted sum of the source signals, such as

x1 =
m∑
j

a1jsj (2.28)

where aij is the mixing coefficients (weights). Therefore, the ICA technique is a process
searching the unmixing coefficients matrix W , where W = U−1 and S = WXT ideally.
This process is achieved by changing the length or orientation of the weight vector of w till
each weight vector is orthogonal to other unmixed signals, according to the independent
and non-Gaussian assumptions. In practice, the ICA technique is performed by using
different approaches, such as FastICA [79], projection pursuit [80], and Infomax [80]. To
maximize the non-Gaussianity, FastICA is commonly used among these approaches for its
high efficiency. Hence, we summarize FastICA computational procedures as follows.

1. Step 1 : Whiten samples

X̃ = PΛ−1/2P TX (2.29)

where P is the orthogonal matrix of eigenvectors of the covariance matrix, and Λ is
the diagonal matrix of its eigenvalues.

2. Step 2 : Calculate the weight vector w using the Fast ICA algorithm. Iterate the
following calculations until they converge

w+ = E{X̃Tð(wTX̃T )T} − E{ð′(wTX̃T )}w (2.30)

w = w+/∥w+∥ (2.31)

where

ð(x) = tanh(x) (2.32)

ð′(x) = 1− tanh2(x) (2.33)

the weight vector w is initialized randomly.

3. Step 3 : Repeat Step 2 for m times to calculate all the weight vector wj. Then
W = [w1 · · · wm].

4. Step 4 : Calculate the jth source signal as the feature

z = wT
j X̃

T (2.34)
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The typical ICA-based fault detection approaches assume the fault signal mixes
healthy independent signals. They extract source signals and the residual error using
the ICA technique and calculate their T 2 and SPE statistics as the diagnosis indexes,
respectively [198]. The thresholds for decision-making are usually determined by the
KDE technique [127]. Lots of fault diagnosis approaches use ICA to extract features. For
example, the approach [217] performs the wavelet transform on independent components
and calculates JS divergence for fault detection, significantly improving the sensitivity to
incipient faults. Fault classification methods using independent components as the input
features and using SVM as classifiers can achieve considerable classification accuracy [29].
Compared to the PCA technique, ICA is more suitable for non-Gaussian data but usually
suffers from high computational complexity [198].

2.3.1.3 Partial Least Squares

Partial Least Squares (PLS) approach attempts to model a linear relationship between
two multivariate data matrices X ∈ RN×m1 and Y ∈ RN×m2 [75, 184]. In contrast to
traditional regression approaches, such as the least-squares regression, PLS also models the
structure of X and Y by projecting them to a new space. This procedure is to cope with
the case that data matrices have a large number of variables that are highly correlated.
PLS reduces the dimension of both data matrices and then develops the linear relation of
the latent variables. Benefiting from this operation, PLS is wildly used to analyze the data
whose observations number is smaller than the number of independent variables [92, 187].
In fact, PLS is highly related to the PCA technique. In the PLS idea, the data matrices
X and Y are first decomposed like in PCA operation, such that

X = HRT (2.35)

Y = JQT (2.36)

Then the regression is performed between H and J , i.e.

J = HB (2.37)

Therefore, the relation between X and Y is obtained as

Y = JQT = HBQT = XRBQT (2.38)

The statistical interpretation of PLS is then given in [144, 223], saying that R =
[r1 r2 · · · rm]T is the eigenvectors of the covariance matrix of Y TX, which is calcula-
ted by solving the following optimization problem

maximize rTXTY Y TXr

subject to ∥r∥ = 1
(2.39)

The calculation procedure of PLS is summarized as follows.

1. Step 1 : Take the j column of Y as h

2. Step 2 : Calculate the vector r and the latent variable hj

r =
XTh

∥XTh∥
(2.40)

h = Xr (2.41)
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3. Step 3 : Calculate the vector q, and update the latent variable hj

q =
Y Th

∥Y Thj∥
(2.42)

hj = Y q (2.43)

4. Step 4 : Repeat Step 2 to Step 3 until converge (hj stop changing).

5. Step 5 : Calculate the residual matrices for X and Y

EX = X − hjp
T (2.44)

EY = Y − hjq
T (2.45)

6. Step 6 : Repeat Step 1 to Step 5 l times by setting

X := EX (2.46)

Y := EY (2.47)

The l latent variables are obtained as Hl = [h1 h2 · · · hl].

Typically, the PLS-based fault detection approach estimates the output Ŷ using the
developed relation model for the given input dataX. Then, the error between the estimated
output and the real one is computed as a diagnosis index [198]. To allow the use of the
information on initial conditions, the work [96] proposed the multiblock multiway PLS
for fault diagnosis. On the other side, the dynamic PLS approach was also proposed to
improve fault diagnosis capability for dynamic processes [103]. Among those approaches,
a system’s input and output relation greatly contribute to the fault diagnosis. However,
PLS and its improved methods are unavailable if the data can not be separated into input
and output, which prevents the use of PLS in many industrial applications.

2.3.1.4 Canonical Variate Analysis

Canonical Variate Analysis (CVA) is a multivariate statistical technique aiming to
determine a relationship between two datasets by maximizing their correlation [100]. It is
the statistically optimal rank-reduced model for multivariate regression problems and hence
wildly used for system identification, filtering, and adaptive control [101]. By considering
the past and further information, CVA is also used for dynamic processes monitoring.
It maximally correlates the past and future data of healthy cases and determines a
reduced-order model for them [139,142,154]. Let us consider the following linear model

x(t+ 1) = Ax(t) + Bu(t) + Kv(t) (2.48)

y(t) = Cx(t) + Du(t) + v(t) (2.49)

where A, B, C, D, K are coefficient matrices ; x, y, u, and v are the state vector, output
vector, input vector, and process noises, respectively. The calculation procedure of CVA is
summarized as follows.
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1. Step 1 : Construct the past data vector pk and future data vector fk

pk =
[
uT
k−1 u

T
k−2 · · · uT

k−Lp
yT
k−1 y

T
k−2 · · · yT

k−Lp

]T
∈ RmLp (2.50)

fk =
[
yT
k yT

k+1 · · · yT
k+Lf−1

]
∈ RmyLf (2.51)

where m = my +mu, my and mu are the dimensions of output and input vectors ;
Lp and Lf are the lags of the past and future data, respectively.

2. Step 2 : Arrange the past data vector and future data vector into Hankel matrices

Yp =
[
pT
k+1 p

T
k+2 · · · pT

k+M

]
∈ RmLp×M (2.52)

Yf =
[
fTk+1 f

T
k+2 · · · fTk+M

]
∈ RmyLf×M (2.53)

where M = N − Lp − Lf − 1, N is the number of samples.

3. Step 3 : Calculate the sample covariance and the cross-covariance of the past and
future samples

Σpp =
1

M − 1
YpY

T
p ∈ RmLp×mLp (2.54)

Σff =
1

M − 1
YfY

T
f ∈ RmyLf×myLf (2.55)

Σfp =
1

M − 1
YfY

T
p ∈ RmyLf×mLp (2.56)

4. Step 4 : Perform the singular value decomposition on the scaled Hankel matrix H

H = Σ
−1/2
ff ΣfpΣ

−1/2
PP = UΣVT (2.57)

5. Step 5 : Select the first n canonical variables (CVs) that span the state subspace.
Therefore we obtain the reduced matrix Vn consisting of the first n columns of V.

6. Step 6 : Calculate the state vector zk and the model residual vector ek for a past
data vectors pk at a certain time point k.

zk = VT
nΣ

−1/2
PP pk (2.58)

ek = (I−VnV
T
n )Σ

−1/2
PP pk (2.59)

By calculating the SPE statistic of the residual vector, CVA usually outperforms
DPCA and PLS in fault diagnosis tasks since it takes into account the time-correlation
information of signals and state equations of a system [139, 154]. Later, the Canonical
Variate Dissimilarity Analysis (CVDA) approach was proposed to improve the sensitivity
to incipient faults [142]. However, the limitations of CVA-related approaches are the
requirement of the known system’s state equations and larger detection delay time compared
to sample-based approaches, such as PCA, PLS, and ICA.
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2.3.2 Machine learning techniques for one-class classification
problem

In the big data era, data-driven methods, such as machine learning and deep learning
techniques, are increasingly popular and play a key role in industrial applications. In
particular, Neural Network-based approaches, e.g. [30, 179], are widely used to solve fault
diagnosis problems for their powerful feature representation capability in non-linear cases.
However, one major issue of applying data-driven methods to industrial applications is
the limited number of high-quality training samples. The good performance of neural
network-based approaches highly relies on a mass of labeled data for both healthy and
faulty scenarios. This requirement is barely satisfied for most industrial applications since
the faulty data of the objected system is scarce or unavailable. Although fault diagnosis
methods can be developed based on the knowledge or the data of known faulty behaviors,
applying these fault diagnosis methods to unknown faulty behaviors is unacceptable.
Therefore, the one-class classification (OCC) problem is raised and discussed to cater to
the practical necessity of industrial cases. The OCC problem aims to identify objects of
a specific class (the healthy samples in the fault diagnosis scenario) by determining a
classification boundary from the training set only containing one class of samples. This
problem is more difficult than the traditional classification problem and faces several
challenges, like the outlier issue, inadequate sensitivity for small deviation, and the non-
linear nature of data.

Typically, three kinds of OCC approaches can be distinguished : density estimation
methods, boundary methods, and reconstruction methods [170]. In spite of some overlap
among these three kinds of methods, they have different characteristics for solving the
OCC problem.
• The density estimation methods create a classifier and set a threshold by estimating
the density model of samples, like the Elliptic Envelope method [151]. When the
model properly fits the data, and the sample number is sufficiently high to ensure
the model’s parameters can be well estimated, the density estimation methods are
good choices for their simplicity and high efficiency.
• The boundary methods aim at determining boundaries around target points to

distinguish the healthy and faulty cases. Some kind of distance is mainly considered
as the description of samples’ position in the space, which is then optimized to
obtain boundaries. The typical boundary methods are k-centers [201], One-Class
Support Vector Machine (OC-SVM) [93], and isolation forest [65,114].
• The reconstruction methods ’ main idea lies in choosing and fitting a general model
which can only describe healthy data in terms of the state of the model but lead
to dramatically different outputs for faulty samples. Widely used reconstruction
methods are the auto-encoders method [180] using the Neural network technique.

Recently, OCC techniques tend to become promising solutions for fault diagnosis in
industrial applications, particularly for the challenging task of incipient fault detection.
In this section, we selectively review several wildly used OCC techniques which can be
applied to the fault diagnosis problem.
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2.3.2.1 One-class support vector machine

The ordinary support vector machine distinguishes between two classes of samples by
using a hyper-plane [138]. Similarly, the idea behind the One-Class Support Vector Machine
(OC-SVM) is to distinguish the target class from other classes by using a hyper-sphere
in the feature space. The hyper-sphere defined by radius r and center c encompasses all
the training samples. OC-SVM tries to determine such a hyper-sphere with the minimum
radius. The same as the ordinary SVM, OC-SVM also uses the kernel function to project
data into a high-dimensional feature space where the samples are separated. Formally, this
idea is described as solving the following constrained optimization problem.

minimize
r,c

r2

subject to ∥Φ(x)i − c∥2 ≤ r2, ∀i = 1, 2, · · · , N
(2.60)

where Φ(x) is the non-linear transformation usually evaluated by a kernel function, such
that κ(xi, xj) =< Φ(xi),Φ(xj) >.

However, the constraint of the above formulation is highly restrictive, resulting in a
poor accuracy performance and weak robustness to outliers. Therefore, a flexible version
of OC-SVM is proposed to tolerate the presence of outliers in the training set [157,171],
which is given as

minimize
r,c,ζ

r2 +
1

νN

N∑
i=1

ζi

subject to ∥Φ(x)i − c∥2 ≤ r2 + ζi, ∀i = 1, 2, · · · , N
(2.61)

where ν > 0 is a parameter balancing the importance of sphere volume and the number of
outliers. The optimization problem involves finding out the radius, center, and a set of
slack variables ζi. Then by using the Karush-Kuhn-Tucker (KKT) optimality conditions,
the center c is obtained as

c =
N∑
i=1

αiΦ(xi) (2.62)

where αi is obtained by solving the following optimization problem

maximize
α

N∑
i=1

αiκ(xi, xi)−
N∑

i,j=1

αiαjκ(xi, xj)

subject to
N∑
i=1

αi = 1 and 0 ≤ αi ≤
1

νN
, ∀i = 1, 2, · · · , n

(2.63)

According to the value of α, each sample belongs to one of three cases : sample is inside
the hyper-sphere if α = 0 ; sample is outside the hyper-sphere if α = 1

νN
; sample lies on

the boundary if 0 < α < 1
νN

. The support vectors are defined as the samples with non-zero
α, which composes of the set Isv. The optimal radius is determined as r = ∥Φ(xi)− c∥
with xi lying on the boundary, where the distance is computed as follows.

∥Φ(x)− c∥2 =
∑

i,j∈Isv
αiαjκ(xi, xj)− 2

∑
i∈Isv

αiκ(xi, x) + κ(x, x) (2.64)
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When ∥Φ(xi)− c∥ < r, one can make a decision that sample xi belongs to the target class.

In the fault diagnosis domain, the OC-SVM technique allows to detect faults without
using faulty samples, which is more practical for industrial applications. Two major
advantages of OC-SVM for fault diagnosis tasks can be highlighted : (i) By using the
kernel trick, this technique can effectively handle complex data distribution ; (ii) It also
has strong robustness against outliers by introducing slack variables in the optimization
procedure. Therefore, it has achieved high fault detection accuracy in different industrial
scenarios, such as mechanical systems [52], chemical processes [7], and power systems [78].
However, the effectiveness of OC-SVM approaches for incipient diagnosis is still unclear,
there are still waiting for further investigation.

2.3.2.2 k-centers

The k-center approach was originally proposed to deal with challenging problems in
the fault detection task [201], such as applications on high-dimensional data with small
sample sizes and dynamical systems. The idea of the k-centers approach is to find a simple
description of a domain that only indicates the healthy behavior of systems. Instead of
considering the density of samples, this approach extracts critical samples from the training
set as supporting points of the healthy domain. The selection of k support objects, denoted
as βi, is called the domain approximation, which actually determines k centers of small
hyper-spheres with equal radius r. The objective of the k-center approach is to minimize
the radius while all the training samples are included in the healthy domain. Formally, the
maximum of the minimum distances between training samples and the support objects is
minimized, such as

minimize r = max
i

(min
k
∥xi − βk∥2) (2.65)

where the Euclidean distance is used as the distance measure. The following procedure is
performed to search for the optimal support objects.

1. Randomly choose k samples from the training set as the support objects.

2. Calculate the radius r using Eq.(2.65).

3. If the radius r is smaller than the previous one, update the support objects.

4. Repeat the above steps until radius r cannot decrease.

After determining the support objects, the distance of a new sample is calculated as.

dk(x) = min
k
∥x− βk∥2 (2.66)

When dk(x) > r, sample x is recognized as a faulty sample (not belonging to the healthy
class). Obviously, although the k-center approach is simple to perform, its performance
is easily affected by the outliers mixed into the training samples [197]. Since outliers are
far away from most training samples, a larger radius will be obtained to include all the
training samples.

2.3.2.3 Auto-encoder

Autoencoder is an artificial neural network aiming to learn the concise representation
of original input data by regenerating the output data from the input one [25, 173]. There
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are two processes of the autoencoder in the training stage : encoding and decoding. The
encoding part attempts to transform input data to a low dimensional vector so as to
refine the data and preserve the critical information. In this process, data are mapped
into a feature (coding) space using nonlinear transformation. The coding is an effective
representation containing the necessary information to recover input data, and thereby
is used as a feature for dimensionality reduction. The decoding process, recovering the
original input data based on the coding vectors, is the inverse operation of the previous
step. The same as the encoding process, a nonlinear function is used in the decoding step.
The objective of the autoencoder is to minimize the difference between the input and
output of the model.

Autoencoder is performed as a feedforward artificial neural network constructed by
input layer, hidden layers, and output layer. Given the input data X ∈ Rm, the encoder is
a nonlinear function G : Rm → Rl (l < m), such that

Z = G(X), Z ∈ Rl (2.67)

Similarly, the decoder is another nonlinear function G′ : Rl → Rm, such that

X̂ = G′(Z) (2.68)

As pointed by Cybenko that any nonlinear function can be fitted by the functions with
following form to an arbitrary degree of precision [35]

Z = σ(ωX + b) (2.69)

where σ is a continuous and monotonically increasing function (activation function) usually
selected as the sigmoid function

σ(x) =
1

1 + e−x
(2.70)

ω is the weight matrix and b is the bias vector. In the training procedure, these two
parameters are updated iteratively through the backpropagation of the reconstructed error
ϵ.

ϵ(X, X̂) = ∥X − X̂∥2 = ∥X −G′(G(X))∥2 (2.71)

Then the decoder is represented as

X̂ = σ(ω′Z + b′) (2.72)

where ω′ and b′ are also updated individually in the training procedure. If the reconstructed
value of new sample X is much different from the original one, i.e.

ϵ(X, X̂) > th (2.73)

where th is a decision threshold, this sample likely does not belong to the target class.

Due to the powerful feature learning ability, the autoencoder is commonly applied to
fault diagnosis tasks and realizes promising performance in these tasks. [129,160]. However,
for the small difference between incipient faults and healthy samples, the healthy region
developed by AE seems not accurate enough [195]. The sensitivity of AE for incipient
faults diagnosis needs to be improved.
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2.3.2.4 Isolation Forest

Isolation Forest (IF) is a non-parametric and ensemble-based OCC approach with linear
time complexity and high accuracy, which can handle large amount of data [65,114,115].
It uses the spatial partitioning strategy to isolate anomalies (faulty samples) rather than
profiles the healthy training samples like the above OCC approaches. This approach uses
binary trees to separate training samples, where anomalies have a shorter partitioning path
in a tree structure since points with low density are easily located with fewer partitioning.
It means that the depth of instances (partitioning path) in the developed binary tree
indicates the sparsity of data. Based on this isolation characteristic, IF can detect anomalies
with few false alarms.

IF uses the ensemble strategy to obtain a convergence result. n binary trees of the IF
are structured by recursively separating data into two parts (left child and right child)
with the randomly selected attribute xi of the data and a split value th until the following
conditions are satisfied : (i) the tree reaches a height limit ; ii) only one sample in each
subspace. The algorithm becomes more stable as the number of trees increases. After
the training procedure is completed, a score indicating the degree of anomaly is required.
As mentioned before, the path length of data is a crucial value in evaluating the degree
of anomaly. Let hp(x) be the path length of sample x, then the average path length is
estimated as

Γ(n) = 2Hp(ne − 1)− (
2(ne − 1)

ne

) (2.74)

where ne is the number of external nodes andHp(·) is the harmonic number that can be
calculated as Hp(ne) = ln(ne) + 0.5772 (Euler’s constant). Then the anomaly score of
sample x given ne is defined as

s(x, ne) = 2−
E(hp(x))

Γ(ne) (2.75)

where E(hp(x)) is the average path length of n isolation trees. The anomaly score takes
values in the range of [0, 1], where the value of 1 indicates the high possibility of the sample
being anomalous, while the value of 0 means the high possibility of normal (healthy)
sample.

Although the IF technique can be used to detect a fault, it is not a good solution
to detect incipient faults since it is only effective for samples showing large deviations.
Therefore, it is common to use IF to remove outliers from raw data and then apply other
techniques for fault detection [87,209].

2.3.3 Distance measure for fault diagnosis

The distance measure is a key for summarizing the dissimilarity between the healthy
reference feature and the testing feature. Then based on the distance measure, a final
decision is made for the fault detection task by comparing the analysis index with a detection
threshold. In this section, we consider two distributions P and Q, whose Probability Density
Functions (PDF) are f and g, and their Cumulative Density Function (CDF) are F and
G, respectively.
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2.3.3.1 Divergence

Divergence is a kind of statistical distance measuring the closeness (similarity) between
two probability distributions. It is different from metric (a general notion of physical
distance), which is a non-negative real-valued function satisfying the identity of indiscer-
nibles, symmetry, and the triangle inequality. Divergences D satisfy the non-negativity
and identity of indiscernibles, such that

D(f ||g) ≥ 0, for all f and q (2.76)

D(f ||g) = 0, if and only if f = g (2.77)

However, divergences do not always satisfy symmetry. Therefore divergence should be
specified as ”from f to g” instead of ”between f and g”. In addition, divergences do not
satisfy triangle inequality since it is a positive-definite quadratic form (squared distance).
Here, we briefly review several important and widely mentioned divergences in fault
diagnosis applications, such as Kullback–Leibler divergence, Jensen-Shannon divergence,
and f-divergence.

• Kullback-Leibler divergence (KLD) measures the loss of information when
replacing a probability with another one. It was originally introduced by Solomon
Kullback and Richard Leibler in [98] and referred to as relative entropy. The
definition of the relative entropy I(f ||g) is

I(f ||g) =
∫

f(x) log
f(x)

g(x)
dx (2.78)

For most practical applications, the symmetric version of relative entropy is more
useful and convenient for calculation. Hereafter, we call its dual form as Kullback-
Leibler divergence, which is defined as

Dkl(f ||g) = I(f ||g) + I(g||f) (2.79)

• Jensen-Shannon Divergence (JSD), also known as information radius (IRad)
[136] or total divergence to the average [36], was developed as a symmetrized and
smoothed version of relative entropy. The Jensen-Shannon divergence is defined as

Djs(f ||g) =
1

2
(I(f ||M) + I(g||M)) (2.80)

where M = 1
2
(f + g) is the mixture distribution of f and g. Jensen-Shannon

divergence has a finite value with an upper bound of logρ(2) in base ρ, i.e.

0 ≤ Djs(f ||g) ≤ logρ(2) (2.81)

• f Divergence is a general form of many divergences, such as Kullback-Leibler
divergence, Jensen-Shannon divergence, and total variation distance [42]. Given
a convex function, such that F : [0,∞)→ (−∞,∞] and f(1) = 0, f-divergence is
defined as

DF (f ||g) =
∫

F (
f(x)

g(x)
)g(x)dx (2.82)

f divergence satisfies linearity, i.e.

D∑
i aiFi

=
∑
i

aiDFi
(2.83)

Some examples of f divergence are given in Table 2.1.
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Table 2.1 – Examples of f divergence

Function F Divergence
x log(x) Relative entropy [4]

(x− 1)log(x) KL divergence [4]
−(x+ 1)log(1+x

2
) + xlog(x) JS divergence [4]

|x− 1| Total variation distance [42]
1
2
(
√
x− 1)2 Squared Hellinger distance [73]

(x− 1)2 Pearson’s chi-square divergence [143]

Recently, divergence metric is prevalent in fault diagnosis domain, serving as the
diagnosis index [40, 66, 68, 69, 217]. Compared to typical indexes, namely T 2 and SPE
statistics, the benefits of using divergence metrics are the high sensitivity to tiny deviations
of data and the strong robustness to noise. However, the divergence calculation is based on
the features’ PDF, which should be estimated accurately. Kernel Density Estimator (KDE)
is a common non-parametric approach for estimating PDF from samples, but it is usually
vulnerable to the setting of parameters and the number of samples. Particularly, the
divergence metric can not describe the distance of two sample sets when their probability
distributions are far away [107,113]

2.3.3.2 Kolmogorov Smirnov distance

Kolmogorov–Smirnov (KS) test is a non-parametric test considering the equality of
two probability distributions [16,119]. In practice, it is used to test whether a given sample
is drawn from the reference probability distribution, which is called the one-sample KS
test. When we consider two sample sets, the KS test is performed to tell if the two sample
sets are drawn from the same distribution, which is called the two-samples test. The
one-sample KS test produces a distance evaluating the difference between the sample’s
empirical probability distribution Fn and the CDF of the reference distribution G(x), such
as

Dks = max |Fn(x)−G(x)| (2.84)

The empirical probability distribution Fn(x) of sample x is calculated by

Fn(x) =
1

n

n∑
i=1

I[−∞,x](xi) (2.85)

where I[−∞,x](x) is an indicator function, such that

IA(x) :=
{

1 if x ∈ A
0 otherwise

(2.86)

In the two-samples case of the Kolmogorov Smirnov test, the distance between two CDFs
is calculated as follows,

Dks = max |F(x)−G(x)| (2.87)

KS distance is also widely used in fault diagnosis tasks [60, 178]. In contrast to
divergence metrics, KS distance is computed based on features’ CDF, which is easy to
estimate empirically. Therefore, using KS distance as the diagnosis index can reflect the
dissimilarity between two sample sets and avoid the influence of external parameters.
However, KS distance is usually not as sensitive as divergence metrics [215].
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Conclusion

2.3.3.3 Wasserstein distance

The Wasserstein distance, also known as Kantorovich–Rubinstein metric, is used
to quantify the distance between two probability distributions in a given metric space.
Intuitively, the distance measurement can be viewed as a transportation problem that
tries to find an optimal solution with a minimum cost to transport one pile of the earth
(distribution) to another. Because of this analogy, Wasserstein distance, in some cases,
is also called Earth Mover Distance (EMD), and the optimal transport theory provides
efficient algorithms to calculate the distance.

Let J (F,G) denote the collection of all the joint distributions with the marginals F
and G. The pth (p ≥ 1) Wasserstein distance between P and Q is :

Dw(P,Q) =

(
inf

J∈J (P,Q)

∫
∥x− y∥pdJ (x, y)

)1/p

(2.88)

According to the optimal transport theory, the pth Wasserstein distance between P and Q
on the measure space R is :

Dw(P,Q) =

(∫ 1

0

|F−1(x)−G−1(x)|pdx
)1/p

(2.89)

Let P = N (m1, C1) and Q = N (m2, C2) be two non-degenerate Gaussian distributions
with the mean center m1 and m2, and symmetric positive semi-definite covariance matrices
C1 and C2, the 2-Wasserstein distance between P and Q is

Dw(P,Q) = ∥m1 −m2∥2 + trace(C1 + C2 − 2(C
1/2
2 C1C

1/2
2 )1/2) (2.90)

Wasserstein distance is increasingly used in fault diagnosis tasks for its simple calculation
and reliable performance [31, 222]. Unlike divergence metrics, Wasserstein distance can
measure the distance between two sample sets even if their distributions are far from
each other. It is more reliable than KS distance since it considers the global distance of
two distributions instead of the local maximum. However, this measurement’s sensitivity
to incipient faults needs further investigation and comparison with divergence metrics,
though they were partly discussed in work [215].

2.4 Conclusion

Fault diagnosis and prognosis are increasingly important for modern complex systems
and become hot topics in the signal processing domain with wide applications. This
chapter recalls the fault’s definition and then classifies faults into three classes : abrupt
fault, intermittent fault, and incipient fault, according to their time dependencies. Abrupt
and intermittent faults are usually more pronounced and relate to severe performance
degeneration of systems for their large fault amplitude or long duration. Incipient fault
does not dramatically affect systems’ performance at its early stage but may result in
severe system failures later. Early diagnosis of incipient fault is crucial to discover the
potential risk of system breakdown. However, this kind of fault creates tiny deviation that
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can easily be confused with noise or other disturbances, which is more challenging than
others.

According to different goals, this chapter summarizes three tasks for the fault diagnosis
problem : namely fault detection, faulty sources isolation, and fault severity estimation.
Fault detection is the first step and also the foundation of fault diagnosis. Subsequently,
the fault isolation and fault severity estimation procedures begin to locate the key factors
affecting the systems’ performance and assess the severity of faults. Over the last few
decades, a large number of fault diagnosis approaches have been studied and presented,
where the data-driven approaches attract more attention than model-based approaches for
their flexibility and robustness. Accordingly, this chapter reviews the development of data-
driven approaches and summarizes them into four steps : pre-processing, feature extraction,
feature analysis, and decision-making. Feature extraction and feature analysis steps are
two critical parts of the data-driven approaches. Signal processing techniques, statistical
techniques, and machine learning approaches are frequently used for feature extraction. This
chapter reviews state-of-the-art techniques for feature extraction, including multivariate
statistical and one-class classification techniques. Regarding the feature analysis step, this
chapter pays more attention to the probability-based metric as the state-of-the-art analysis
tools, such as divergence, Kolmogorov Smirnov distance, and Wasserstein distance.

Despite the significant progress, there are some challenges in the fault diagnosis
problem, such as the unsatisfying performance of the existing approaches for non-Gaussian
distributed data, non-linear processes, and dynamic systems. In addition, the low sensitivity
for tiny deviation, the effect of outliers in the training samples, and the insufficient number
of faulty samples are also great challenges for fault diagnosis of complex systems. These
challenges motivate us to propose advanced feature extraction and analysis techniques.
Recently, OCC techniques aiming to identify one class of samples tend to become promising
solutions for fault diagnosis in industrial applications, particularly for the challenging task
of incipient fault detection. Therefore, the rest of this work will discuss how to apply the
OCC idea to develop fault diagnosis approaches.
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3
Healthy region approximation for fault

diagnosis

3.1 Introduction

This chapter aims to discuss the benefit of using the One Class Classification (OCC)
idea to tackle the challenges faced by the existing fault diagnosis methodologies, such as
the low sensitivity to tiny deviations, poor performance for non-Gaussian distributed data,
non-linear processes, and dynamic systems [198]. In the OCC idea, the fault detection
task is regarded as a classification problem, and the training process only relies on healthy
data. More precisely, OCC approaches are devoted to developing a healthy region for the
fault detection task. Subsequently, the obtained healthy region is used to decide whether
samples are healthy or not. If samples are in the healthy region, they are recognized
as healthy, otherwise faulty. Therefore, the accuracy of the healthy region is crucial to
the fault detection task. Due to the complex data structure, traditional approaches, like
PCA-based methods [56,89], usually fail to develop an effective healthy region. Moreover,
the detection of tiny deviations places a higher demand on the accuracy of healthy
regions. To address these challenges, this chapter first formulates the healthy region
approximation problem and consider ineffective examples of healthy region. Then, we
propose our solution for healthy region approximation by using the Local Mahalanobis
Distance (LMD). The benefits of using LMD for healthy region approximation, such as high
accuracy, effectiveness for complex data, and robustness against outliers, are highlighted
by comparing the performance of the proposed method with the other OCC approaches.
After obtaining an accurate healthy region, fault detection, faulty variables isolation, and
fault severity estimation approaches can be developed.
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3.2 Problem formulation

Let’s consider a sample vector x ∈ Rm with m variables representing features or original
signals, for example, electrical signal, temperature, pressure, and concentration. In the
fault diagnosis context, it is natural to first determine if x is healthy or not. As reviewed
in the last chapter, fault detection approaches can be simplified as a linear or non-linear
function B : Rm → R1, such that

B(x) ≤ th, for healthy samples

B(x) > th, for faulty samples

where th is the detection threshold. From the view of spatial distribution, x belongs to one
of the two regions in m dimension space. They are the healthy region denoted as ΩH , and
the faulty one denoted as ΩF , where ΩH ∩ ΩF = ∅ and ΩH ∪ ΩF = Rm. From this point
of view, fault detection turns to determine such a separating hyperplane B(x)− th = 0
satisfying

B(x)− th ≤ 0,x ∈ ΩH

B(x)− th > 0,x ∈ ΩF

The output of function B serves as a detection index and is also expected to contain
significant information about the fault, such as its root causes and amplitude. Subsequently,
faulty variables isolation and fault severity estimation approaches are developed based on
the detection index.

Although supervised approaches, such as Support Vector Machines (SVM), can ef-
fectively achieve an optimal separation based on negative and positive samples [116],
it is impractical for industrial applications. The lack of sufficient faulty samples in the
training step induces the more challenging OCC problem. A primary solution for the
OCC problem is to obtain the description of the healthy region in feature space based on
historical fault-free samples, which is called healthy region approximation. For example, a
hypersphere in a m dimension space is commonly used to approximate the healthy region
ΩH . Common statistics criterion, namely Hotelling’s T 2 and SPE(Q), and their mixture
index can be used as examples of healthy region approximation in the PCA framework.
Particularly, Hotelling’s T 2 is the particular case of the SPE(Q) statistics normalizing each
dimension [56,89]. These three statistics criteria can be expressed in the form of separating
hyperplane as follows
• Hotelling’s T 2 : B(xpc) = xpcΛ

−1
pc x

T
pc

• SPE(Q) : B(xres) = xresx
T
res

• Mixture index : B(x) = xpcΛ
−1
pc xT

pc

thT2
+ xresxT

res

thSPE

where xpc and xres are transformed data with zero mean in principal subspace and residual
subspace, respectively ; Λpc = diag(λ1, · · · , λj, · · · , λl) is the corresponding eigenvalues
matrix whose element λj is also the variance of the jth projected data in the principal
space. thT 2 and thSPE are the thresholds of Hotelling’s T 2 and SPE statistics, respectively.
However, Hotelling’s T 2, SPE, and their mixture are only effective for elliptically distributed
data, e.g., multivariate Gaussian distribution and multivariate t-distribution. Two toy
examples of input data are shown in Fig.3.1, where the data in Fig.3.1 (a) (b) (c) are
assumed as Gaussian distributed and data in Fig.3.1 (d) (e) (f) are non-Gaussian. Hotelling’s
T 2, SPE, and their mixture index are used to develop a healthy region for the input data,
respectively.
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Problem formulation
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Figure 3.1 – Healthy region approximation for the projected data : (a) SPE statistic for
Gaussian distribution ; (b) Hotelling’s T 2 for Gaussian distribution ; (c) Mixture index for
Gaussian distribution ; (d) SPE statistic for non-Gaussian distribution ; (e) Hotelling’s T 2

for non-Gaussian distribution ; (f) Mixture index for non-Gaussian distribution ;

• In Fig.3.1 (a), the input data is Gaussian distributed with different variances. SPE
statistic approximates the healthy region as a circle without normalizing each
dimension. Since the variance of each dimension is different, the developed healthy
region is too large in the horizontal direction.
• Fig.3.1 (b) using the same data as Fig.3.1 (a). Hotelling’s T 2 creates an ellipse as
the healthy region, which can better fit the data. Therefore this statistical criteria
is effective for healthy region approximation of Gaussian distributed data.
• In Fig.3.1 (c), the result is close to Fig.3.1 (b). Therefore the mixture index is
effective for Gaussian distribution.
• Fig.3.1 (d) shows that when the input data is non-Gaussian, SPE statistic is still
ineffective for the too large healthy region.
• In Fig.3.1 (e), although the healthy region developed by Hotelling’s T 2 is more
compact than by SPE statistic, it is too large to describe the healthy region
efficiently. As a result, Hotelling’s T 2 and SPE statistics are ineffective for non-
Gaussian distribution.
• In Fig.3.1 (f), the result is similar to Fig.3.1 (e), meaning that the mixture index is
also ineffective for non-Gaussian distribution.

Besides evaluating the performance of obtained healthy regions in a graphical way,
we now introduce the following two numerical criteria to show their effectiveness. On the
one hand, the primary goal of healthy region approximation approaches is to develop a
region to include as many training fault-free samples as possible. Therefore, the accuracy
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criterion ACCH is defined as

ACCH =
Number of samples in the region

Number of fault-free samples
× 100% (3.1)

A larger ACCH (closer to 100%) indicates better performance for healthy region approxi-
mation in terms of accuracy. On the other hand, a good healthy region is expected to
be tighter, meaning that it should precisely fit the shape of data distribution instead
of being too large. To evaluate the fitness of a healthy region to fault-free samples, we
consider the Intersection over Union (IoU) criterion, which is widely used in the image
object detection task [57, 58]. We regard fault-free samples as objects and the healthy
region as their detected area. The IoU criterion is defined as the ratio of the intersection
and the union of objects’ area to the detected area, such that

IoU =
Areainter
Areaunion

× 100% (3.2)

To calculate the area of objects and healthy region, we first transform a point into a small
cell of a grid. Then we can compute the objects’ area by locating all the corresponding cells
of fault-free sample points and calculate the area of healthy region in the same way. The
intersection and union areas are easily determined and the IoU criterion can be calculated.
Obviously, a large IoU value indicates a good approximation performance. When the
healthy region perfectly fits fault-free data, IoU is equal to 100%.

As shown in Table 3.1, although all approaches achieve 100% accuracy, their IoU
performance is depressing. Generally, a high accuracy performance but a low IoU value
indicates the developed healthy region is significantly larger than the data distribution. For
both Gaussian and non-Gaussian data, T 2 and the mixture index have similar performance,
and they are better than the SPE index. This example shows that a healthy region
approximation using a hypersphere, such as a circle and an ellipse in 2-dimensional space,
is sometimes not accurate enough for irregular distribution. Although hypersphere is still
an effective model to describe a healthy region by transforming original data into features
grouped at a center, such transformation is always difficult to obtain efficiently. This issue
motivates us to discuss a more flexible way for healthy region approximation in the next
section.

Table 3.1 – Healthy region approximation performance of Hotelling’s T 2 and SPE indexes
in the PCA framework for the example given in Fig.3.1

Methods
Gaussian Non-Gaussian

AccH (%) IoU (%) AccH (%) IoU (%)
SPE 100 28.13 100 31.99
T 2 100 37.04 100 35.32

Mixture 100 37.06 100 35.61

3.3 Healthy region approximation with multiple centers

A common way to develop a healthy region for the given fault-free samples is to
determine a hypersphere with a center and radius, as shown in the last section. When
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-4 0 4
-4

0

4

Transformed data Anchors
Healthy region boundary

Figure 3.2 – Proposed multiple centers idea for healthy region approximation

samples are irregular in their original space, they should be projected to a new space where
a hypersphere effectively encompasses training samples. A typical example of this idea
is the KPCA with Hotelling’s T 2 statistic. Alternatively, the more straightforward idea
is to focus on the local information of samples’ spatial position. More precisely, in this
work, we propose that each local region of training samples is modeled as a hypersphere,
and the healthy region is composed of multiple hyperspheres with different centers and
radius. However, this naive idea leads to a high-computational issue for a large number of
parameters. To simplify the problem, we assign the same radius but determine different
centers for these hyperspheres. We also allow the hyperspheres to overlap each other. As
illustrated in Fig.3.2, with the position of centers and the radius’s value being properly
specified, the overlapping hyperspheres can perfectly cover all the fault-free samples.
These centers, denoted as C and referred to as anchors hereafter, contain essential spatial
information about the healthy region. Likewise, the radius denoted as rL specifies the
margin of a local region. In other words, an approximate healthy region is completely
determined by an anchor set S = {C1, · · · ,Ck, · · · }, S ⊆ ΩH and the healthy region
margin rL.

Since this idea divides the healthy region into multiple small local regions, selecting an
appropriate size of local region is crucial to obtain an accurate description of ΩH . Indeed, a
smaller size can help to improve the accuracy of the description by preserving most details.
An extreme case is rL → 0, where all the training samples are taken as centers of regions.
Although all samples’ information is preserved in this case, any tiny difference between a
new sample and the training samples is not allowed, resulting in the low generalizability
of the model. This situation is also referred to as the over-fitting issue in the machine
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learning domain. In contrast, if the size is too large, the developed model is inflexible to fit
the training samples. The extreme case is the single hypersphere case, which is equivalent
to Hotelling’s T 2 statistic. In order to obtain reasonable sizes of local regions, a distance
measurement should be first defined to decide which samples are close and should be
regarded as neighbors. This concern motivates us to propose a particular distance named
the local Mahalanobis distance (LMD), based on which the anchors-generation and region
margin selection approaches are developed to determine a healthy region.

3.3.1 Local Mahalanobis distance calculation

In the concept of healthy region approximation, distance measure [12] plays a central
role, motivating the following discussion on the distance measure. In multivariate applica-
tions, Mahalanobis distance attracts more interest than Euclidean distance because the
former is unitless and scale-invariant and considers the correlations of variables. Let us
suppose that x,y are two sample vectors generated from the same distribution with the
mean vector µ and the covariance matrix Σ. Then the multivariate Mahalanobis distance
of x with respect to µ is defined as :

dM(x,µ) =

√
(x− µ)T Σ−1 (x− µ) (3.3)

The Mahalanobis distance between x and y is

dM(x,y) =

√
(x− y)TΣ−1 (x− y) (3.4)

By using this distance, data is first transformed to a new space where axes are independent
and then re-scaled to unit variance. So, the Mahalanobis distance is equivalent to a
standard Euclidean distance in the transformed space. There are two main properties of
the Mahalanobis distance for Gaussian distributed data : (i) the probability density of
samples uniquely determines the Mahalanobis distance dM (x,µ) ; (ii) its squared value d2M
follows a chi-squared distribution. However, for non-Gaussian distributed data, Mahalanobis
distance fails to indicate the samples’ order in probability density.

To provide an insight into how Gaussian and non-Gaussian distributed data impact
Mahalanobis distance, we present an example of samples and their probability density
contour lines in Fig.3.3.
• First, let’s consider that sample vectors x1,x2,x3 ∈ R2 are generated from the
Gaussian distributed function N with the following probability density p :

p(x1|N ) < p(x2|N ) = p(x3|N ) (3.5)

As shown in Fig.3.3 (a), x1 is far from the density center, while x2 and x3 are
closer and on the same density contour line. Fig.3.3 (b) illustrates the transformed
samples as the intermediate results of Mahalanobis distance, viz. xTΣ−1/2, from
which one can easily know that :

dM(x1,µ) > dM(x2,µ) = dM(x3,µ) (3.6)

This implies their correct probability order.
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Figure 3.3 – a) Gaussian distributed data and density curves ; b) Data after Mahalanobis
transformation ; c) Non-Gaussian distributed data and density curves ; d) Data after
Mahalanobis transformation

• In the second case, when the same sample vectors are non-Gaussian distributed
with the same probability conditions previously mentioned in Eq.(3.5) (see Fig.3.3
(c) and (d)), the Mahalanobis distance, is then :

dM(x2,µ) < dM(x1,µ) < dM(x3,µ) (3.7)

Indeed, this does not correspond to the correct vectors’ probability order.
Mahalanobis distance with the center µ is disabled to correctly order samples from an
irregular distribution. One may notice from the example that the real key to this issue is
the distance between tested samples and the healthy region in the studied space. Therefore,
we consider the minimum Mahalanobis distance between a sample and the healthy region
as the measurement of their closeness. Then, this minimum distance is called hereafter the
Local Mahalanobis Distance (LMD) for its local consideration of the healthy region and is
denoted as D. Formally, LMD is defined as

DL(x; ΩH) = min
k
{dM (x,Ck) |Ck ∈ S} (3.8)

where S is the anchor set. The selection of anchors, called the healthy region approximation,
aims to generate the anchor set from the training samples as the approximation of ΩH .
Let κ be the element number of S. According to Eq.(3.8), three properties of DL are
summarized as follows :

1. DL ∈ R+.

2. lim
k→+∞

DL(x; ΩH) = 0 for x ∈ ΩH
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It means that the ideal LMD value of the healthy samples is 0. Since x ∈ ΩH and
ΩH = lim

k→+∞
S we have

DL = min
k
{dM (x,y) |x,y ∈ ΩH}

Then, there is always a point y equal to x, and the minimum value is always 0.

3. According to the theorem of extreme value statistics [9, 95], the distribution of DL

can be modeled by the following general form named Generalized Extreme Value
distribution (GEV) for minima

ΦG(DL; ρ, β, τa) = 1− exp

{
−
[
1 + τa

(
ρ−DL

β

)]−1/τa
}

−β − τa(ρ−DL) ≤ 0, β > 0

(3.9)

where ρ, β, τa are the location, scale and shape parameters, respectively.

The three properties of LMD will be used to obtain optimal anchors and determine the
region margin.

3.3.2 Anchors generation

As mentioned previously, the healthy domain approximation for our proposal has to be
done using a set of anchors. This part aims at generating these anchors based on fault-free
samples. According to the definition of LMD, its computational cost is mainly related to
the number of elements of S. Although we will have more accurate results with a larger
number of anchors, we notice that reducing the number of elements to some extent will
not cause severe performance degradation. As an example, we randomly select anchors
from fault-free samples and present in Figure 3.4 the evolution of the LMD according
to the anchors’ number Kan. It is clear that slightly decreasing the number of anchors
can keep reasonable accuracy but reduce computational cost. Therefore, the first goal of
the anchors-generation procedure is to remove redundancy and extract critical spatial
information from the original sample set. More precisely, geometrically close samples are
identified and merged as an anchor. Although clustering algorithms, like k-means [70], can
achieve a similar goal, they are either easily affected by outliers or cannot be optimized
in the proposed framework. The second goal of the anchors-generation procedure is to
eliminate the impact of outliers and increase the generalization ability of the anchor set.
To that end, we use the local density information to identify outliers by restricting the
minimum number of samples in a local region. If the samples number in a local region is
too small, these samples are recognized as outliers and will be excluded from generating
anchors. Finally, the robust anchors generating algorithm is given as follows.

In this algorithm, two parameters are required, namely the region radius γan and
the limitation number ηan. The region radius specifies the size of local regions in which
original samples will be merged since they are close spatially. In other words, the region
radius controls the approximation accuracy and the number of anchors. Furthermore, the
proposed algorithm counts the samples number in each local region and compares them
with the limitation number ηan. When the number is smaller than ηan, indicating a low
local density of samples, the corresponding region will be ignored since samples in this
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Figure 3.4 – LMD evolution with the number of anchors

Algorithm 1 Anchors-generating algorithm.

Input: Fault-free samples X∗ = {xi}Ni=1, local radius γan, minimum number of local
samples ηan

Output: Anchor set S

1: µ←
∑N

i=1 xi

N

2: C1 ← µ
3: Σ← cov(X∗,X∗)
4: dM(xi)←

√
(xi − µ)Σ−1(xi − µ)T

5: Rearrange fault-free samples as X ′∗ in ascending order according to dM(xi)
6: k ← 1
7: repeat
8: k ← k + 1
9: Take one sample xi from X ′∗

10: Find out Zk = {xl|dM(xi,xl) < γan, l > i,xl ∈X ′∗}
11: nk ← samples number in Zk

12: if nk < ηan then Continue
13: end if
14: Ck ← 1

nk

∑nk

q=1 xq(xq ∈ Zk)
15: Remove Zk from X ′∗

16: until X ′∗ is empty
17: S ← {C1, · · · ,Ck}
18: return S ;

region are potential outliers. Therefore, ηan should be firstly selected according to the
quality of training data. Generally, the more outliers contained in the training data, the
larger ηan should be set. Then the local region radius γan can be selected to minimize the
approximated error, which is derived as :

Err =
N∑
i=1

DL(xi) (3.10)
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Figure 3.5 – Evolution of the approximation error along with γan

Fig.3.5 shows the evolution of the approximation error along with γan for different settings
of ηan. For each ηan setting, the evolution curve of the error is convex, guaranteeing that a
minimum value can be found in the searching procedure of the optimal value γopt

an .

3.3.3 Margin selection based on PDF estimation

The previous subsection specifies the centers of a healthy region but remains the
selection of a margin to determine the region ultimately. Margin is as important as centers
to obtain a robust and accurate healthy region. It is also crucial for the fault detection
procedure to trade off the false alarm and fault detection rates. Instead of determining
different radii for each local region, we simplify the margin selection problem by assigning
the same radius for all local regions to avoid high computational cost and over-fitting
issue.

Like the anchors-generation procedure, outliers dramatically affect the margin selection.
For example, the k-centers approach determines a set of regions to cover over all the
training samples and meanwhile minimizes the maximum radius of those regions [201].
This approach usually leads to a larger healthy region for the ineffective margin selection
when outliers are present. This subsection presents a robust approach to obtain a decision
boundary for healthy region approximation by mitigating the influence of outliers. To that
end, we should first identify the potential outliers and then exclude them from determining
a margin. According to the properties of LMD, the major characteristic of outliers is their
distinct large LMD values. If we consider the probability distribution of DL, one can easily
identify outliers since their LMD values are located in the largest part of the CDF curve.
Therefore, we propose to select the corresponding region margin based on the probability
model with a given significance level α.

To estimate the probability distribution of LMD for training samples, we introduce
the Generalized Extreme Value distribution as follows. For more details on extreme value
statistics, readers can refer to [9, 95]. According to the theorem of extreme value statistics,
the probability distribution of LMD is established based on GEV model for minima, i.e.,

50



Healthy region approximation with multiple centers

Eq.(3.9). To estimate the model’s parameters, we minimize the mean square error of the
estimated general extreme value distribution model and the empirical cumulative density.
Then the model’s parameters are determined when the error reaches the minimum. This
procedure is described by the following convex optimization problem.

minimize
ρ,β,τa

1

N

N∑
i=1

[ΦG (DL(xi); ρ, β, τa)− Fe(DL(xi))]
2

subject to − β − τa(ρ−DL(xi)) ≤ 0, β > 0

(3.11)

where ΦG(DL(xi); ρ, β, τa) is the GEV distribution function and Fe(·) is the empirical
cumulative density. To solve the convex optimization problem with multiple constraints, we
employ the Nelder–Mead method to search for the solution iteratively until the objective
function (Eq.3.11) converges [132]. Nelder–Mead method is a numerical technique allowing
to search minimum or maximum in a multidimensional space. It often serves as an essential
tool for convex optimization problems when derivatives of the objective function are
unknown or difficult to calculate [99, 132,163]. After determining the model’s parameters,
the healthy region margin rL is determined with the given significance level α.

rL = Φ−1
G (α; ρ, β, τa) = ρ+

β

τa
− β [− ln (1− α)]−τa

τa
(3.12)
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Figure 3.6 – Objective function in the solution searching procedure

We give an example to show the evolution of the objective value in the solving procedure.
As shown in Fig.3.6, the object value decreases quickly with iterations. After 60 iterations,
the solution is found for a low enough objective value (close to 10−3 in this example).
After the parameters of the GEV model is determined, Fig.3.7 displays the estimated
and the empirical cumulative density functions of the training samples’ LMD values. The
comparison of the two curves indicates that the obtained model has a good approximation
for empirical data.

Finally, an effective healthy region can be obtained based on the generated anchors
and the determined region margin. We apply the proposed approach to the toy example
given in section 3.2. Fig.3.8 illustrates the developed healthy regions for the Gaussian

51



0 0.5 1 1.5 2 2.5 3
0

0.5

1

C
D

F

Estimated GEV
Empirical CDF

Figure 3.7 – Estimated and empirical CDF curve

and non-Gaussian data. Intuitively, the LMD-based healthy regions are notably more
effective than T 2, SPE, and mixture indexes since they fit the data distribution precisely.
The numerical criteria given in Table 3.2 also indicate the significant improvement of the
proposed approach compared to T 2, SPE, and mixture indexes. Although the accuracy of
the proposed method is 1% less than the three traditional indexes, their IoU values are
27.96% larger for Gaussian data and 43.68% larger for non-Gaussian data. The benefit of
using the LMD proposal for healthy region approximation is then highlighted.

Gaussian, LMD

-5 0 5
-5

0

5
Non-Gaussian, LMD

-5 0 5
-5

0

5

(a) (b)

Figure 3.8 – The developed healthy region by using the proposed healthy region ap-
proximation approach : (a) Gaussian distributed data ; (b) Non-Gaussian distributed
data.
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Table 3.2 – Healthy region approximation performance of the proposed method

Methods
Gaussian Non-Gaussian

AccH (%) IoU (%) AccH (%) IoU (%)
LMD 99.0 65.02 99.0 79.29

3.4 Performance analysis

This section shows the performance of the proposed healthy region approximation
approach for different kinds of data and highlights its superiority by comparing it with
other OCC approaches. Let us consider four cases of data as follows :
• Case 1 : Two independent variables following standard Gaussian (normal) distribu-
tion, i.e., x1,x2 ∼ N (0, 1)
• Case 2 : 2-dimensional Gaussian distribution.

X = [x1,x2] ∼ N (0,

[
0.8 0.3
0.3 1

]
)

• Case 3 : Two periodic signals x1 = 2 cos(t), x2 = 2 sin(2t− π
2
)

• Case 4 : Mixed Gaussian distribution X = [x1,x2,x3]
T , where

x1 ∼ N ([0,−2],
[
0.5 0
0 0.5

]
)

x2 ∼ N ([2, 2],

[
0.1 0
0 0.1

]
)

x3 ∼ N ([−2, 2],
[
0.2 0
0 0.6

]
)

We also introduce outliers samples following the uniform distribution, i.e., Xo ∼ U(−5, 5).
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Figure 3.9 – Output of anchor-generating algorithms : (a) without considering outliers
(ηan = 0) ; (b) considering outliers (ηan = 1).
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Outlier is a major external factor affecting the performance of healthy domain ap-
proximation. The proposed anchors-generating algorithm uses local density information of
samples to recognize outliers so as to obtain a more effective anchor set. Accordingly, we
first investigate the benefit of using local density information in generating robust anchors.
We produce the data of case 1 mixed with 50 outliers. Fig.3.9 (a) shows the generated
anchors using the proposed anchors-generating algorithm with ηan = 0, which means the
algorithm does not consider the local density information in the training process. In this
case, anchors spread over the entire observed area instead of concentrating on the center of
the training samples. The corresponding healthy region, in this case, is therefore inaccurate.
While, when we set ηan = 1, the algorithm excludes outliers in the training fault-free
samples, gathering anchors in the density center of training samples (see Fig.3.9 (b)). The
comparative result indicates that using local density information in anchors generation
significantly improves the accuracy and robustness of the healthy region approximation.
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Figure 3.10 – Performance evolution of the proposed method with different parameters
for varying number of outliers

Secondly, we change the number of outliers and investigate the IoU performance of
the proposed method by setting different values for parameter ηan. The result is shown
in Fig.3.10. When the training data does not contain outliers (the blue curve marked by
rectangles), the setting of ηan = 0 results in the best IoU performance. If the outliers
number is 50 (the red curve marked by diamonds), the parameter ηan should be set as 1
to reach the best IoU performance. The optimal parameter value of ηan is 2 and 3 for 200
and 300 outliers, respectively. In summary, ηan should be tuned according to the number
of outliers : the more outliers, the larger ηan value. Even though the exact outliers number
is unknown in practice, one can still properly set the parameter by roughly estimating the
outliers number.

We compare the healthy regions determined by different OCC approaches, namely
OC-SVM [93,138, 157], IF [65, 114, 115], k-centers [201], AE [126,180], the PCA technique
with the mixture index of T 2 and SPE statistics (PCA-MIX) [56,89], and our proposal.
This experiment does not consider outliers but focuses on the methods’ ability to handle
non-linear data. Accordingly, we produce the above four cases of data and apply these
methods to the data. As illustrated in Fig.3.11, the healthy regions of our proposal and
the OC-SVM can fit well with all the data, indicating that they are effective for linear and
non-linear cases. The IF and K-centers approaches are also flexible in describing a healthy
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region for non-linear data. However, the former is too strict to produce a boundary, while
the latter tends to a larger healthy region. In the subsequent fault detection procedure, a
smaller healthy region usually leads to a high false alarm rate, while a larger one leads to
a high miss detection rate. The AE and PCA approach with mixture index have similar
performance for Gaussian cases (case 1 and case 2), which are effective but still not accurate
enough compared to our proposal and OC-SVM. For non-linear cases (case 3 and case 4),
these two approaches are not flexible to fix data.

Table 3.3 – Healthy region approximation performance without outliers

Methods
Case 1 Case 2 Case 3 Case 4

AccH IoU AccH IoU AccH IoU AccH IoU
LMD 99.5 64.70 99.5 68.82 99.5 70.87 99.5 65.23

OC-SVM 99.4 57.01 99.4 57.78 99.6 64.12 99.6 52.54
IF 78.7 52.98 78.9 48.45 59.34 38.73 69.6 27.46

k-centers 100.0 28.59 100.0 38.18 100.0 50.9 100.0 31.94
AE 100.0 27.89 100.0 38.74 100.0 38.19 100.0 28.02

PCA-MIX 100.0 27.71 100.0 33.56 100.0 23.92 100.0 16.19

We also evaluate the IoU and accuracy performance of these approaches for each case
of data, as given in Table 3.3. k-centers, AE, and PCA-MIX achieve the perfect accuracy
performance (100%). The healthy regions they developed can cover all training samples.
However, their IoU results are low (less than 50%), meaning that healthy regions are too
large. Concerning the IoU results, the LMD approach always has the best performance. Its
IoU results are significantly larger than the OC-SVM’s, even though their healthy region
illustrated in Fig.3.11 seems similar. The IF approach is unreliable since its accuracy
performance is low. Therefore, the LMD approach has better trade-off performance between
accuracy and IoU criteria than all the other approaches.

Table 3.4 – Healthy region approximation performance with outliers

Methods
Case 1 Case 2 Case 3 Case 4

AccH IoU AccH IoU AccH IoU AccH IoU
LMD 99.5 59.10 99.5 67.19 99.0 74.23 99.0 70.36

OC-SVM 99.4 46.26 99.5 48.85 99.5 57.62 99.6 40.78
IF 80.0 53.82 78.8 49.89 71.29 48.04 69.6 27.67

k-centers 100.0 23.72 100.0 17.4 100.0 13.45 100.0 11.38
AE 100.0 22.37 100.0 24.43 100.0 32.04 100.0 23.22

PCA-MIX 100.0 20.53 100.0 32.35 100.0 23.91 100.0 16.30

Next, we investigate the robustness of each approach against outliers by introducing
10 outliers to the training data. The healthy regions of each approach are demonstrated in
Fig.3.12. Benefiting from the robustness algorithm, our proposal is not affected by outliers
and can determine an accurate healthy region (see the first line of figures in Fig.3.12).
While outliers have a slight impact on the OC-SVM approach since it mistakenly includes
outliers into the healthy region (see second line of figures in case 1 and case 2). The IF
method also shows strong robustness against outliers but establishes a too small healthy
region in this experiment. IoU and accuracy performance are summarized in Table3.4.
The LMD approach outperforms all the other approaches in terms of IoU and it has
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Figure 3.11 – The healthy regions of different OCC approaches for the data without
containing outlier.
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Figure 3.12 – The healthy regions of different OCC approaches for the data containing
outlier.
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high accuracy performance (at least 99%). Hence, this approach has the best trade-off
performance in this case with outliers. The obtained performance shows that the LMD
proposal is then robust to outliers. k-centers’s performance dramatically degenerates for
the introduction of outliers, indicating its poor robustness performance against outliers.
The outcomes of this experiment clearly demonstrate that the k-centers, AE, and PCA
approaches are dramatically affected by outliers, producing too larger regions. Therefore,
these three approaches are unreliable when the training data contain outliers.

3.5 Conclusion

The Fault diagnosis topic is facing several challenges like incipient fault diagnosis,
non-linear and non-Gaussian data, the lack of fault samples, etc. One-class classification
technique is one promising branch to solve the above challenges. According to the OCC idea,
fault detection turns to determine a minimum region based on the given healthy samples to
separate faulty and healthy samples. Two traditional statistics for fault diagnosis, Hotelling
T 2 and SPE, are two examples of the OCC idea, but they are ineffective for non-Gaussian
data. To develop an effective healthy region from the training samples, we propose a more
flexible way focusing on the local information of spatial distribution. The proposed method
describes a healthy region as multiple hyperspheres with different centers and the same
radius. Then the healthy region approximation problem is simplified as determining those
centers and a radius that minimizes the healthy region. To find the proper size of local
regions, a particular distance measurement, called local Mahalanobis distance, is then
defined as the minimum Mahalanobis distance between a sample and the healthy region.
Based on the LMD, an efficient and robust anchor-generation algorithm is designed to
determine the centers of the healthy region. This algorithm removes the redundancy of
training samples and extracts critical spatial information. Furthermore, the local density
information is used to identify outliers in the training samples so as to improve its accuracy
and robustness. This chapter also discusses the properties of LMD, where we show that
the probability distribution of LMD in the null case can be modeled as the generalized
extreme value distribution. Then the parameters of the GEV model are estimated using
the Nelder-Mead method. Based on the estimated probability distribution, we determine
the radius of the healthy region.

To highlight the advantages of the proposed healthy region approximation idea, we
show its performance by applying it to four cases of simulated data. Comparing two cases
of anchors generated with and without the use of local density information, we show that
this information can avoid the distractions of outliers in the anchor-generation process
and improve the accuracy and robustness of the algorithm. This chapter also compares
the healthy region approximation performance of different OCC approaches. The result
indicates that the proposed method is effective for both Gaussian and non-Gaussian data.
The established healthy region is accurate and flexible to fit different kinds of data. In
the experiment without outliers, the proposed method outperforms the IF, k-centers,
AE, and the PCA technique with mixture index. While, in the experiment with outliers,
the proposed method is the only one not impacted by outliers. In summary, the healthy
region developed by the proposed approach is accurate, effective for data without any
distribution-type assumption, and robust against outliers, which provides an important
foundation for subsequent fault detection, isolation, and severity estimation procedures.
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4
Fault diagnosis using local Mahalanobis

distance

4.1 Introduction

The chapter 3 developed an advanced healthy region approximation approach with the
diagnosis index named the local Mahalanobis distance. It is sensitive to tiny deviations,
effective to complex distributed data, and robust against outliers. Based on this technique,
this chapter proposes different solutions for fault detection, faulty variable isolation, and
fault severity estimation, respectively.

We primarily formulate the fault model and make necessary assumptions for the
theoretical discussion on the fault diagnosis problem. Concerning the fault detection
problem, two LMD-based solutions are proposed. For time-series signals, we propose the
detection scheme combining the LMD with the empirical probability density cumulative
sum technique to accurately discover signals’ tiny deviations. For time-independent samples,
LMD is considered as a feature and the probability-based distance is used for analysis.
After fault detection, we develop the LMD-based contribution plot method for faulty
variable isolation. As this approach is dedicated to single fault cases, we further propose
the improved approach using the reconstruction-based contribution framework with the
LMD index (LMD-RBC), which can accurately isolate multiple faulty variables. As for
the fault severity estimation task, we first estimate the fault’s increasing rate based on
the LMD index. Despite the high accuracy, this approach has some limitations, such as
the strict assumption of fault evolution as a first-order model, lack of information on
fault deviation, and underestimated results. Alternatively, we propose to estimate fault
amplitude by using the LMD-RBC method.

For each proposal, we provide a step-by-step guide by taking simulation data as an
example. The outcome of each step is illustrated and discussed, and then the effectiveness
of each solution is verified.
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4.2 Fault modeling

Before discussing on fault diagnosis approaches, it is essential to formulate the considered
faults and make necessary assumptions. Let us consider a data matrix with m variables and
N observations. A variable (signal) is denoted as xj (j = 1 · · · m), and the ith observed
sample is written as xi = [xi1, · · · , xij, · · · , xim]. Without loss of generality, faulty samples
can be decomposed into two independent parts : healthy and faulty components.

xi = x∗i + xfi , i = 1, · · · , N (4.1)

In this equation, x∗i represents the healthy part of the signal (fault-free data), and xfi
denotes the faulty component. Instead of a strict assumption limiting the application
scenarios of the developed fault diagnosis approaches, Eq.(4.1) is a general model offering
a convenient way to analyze a faulty behavior. A fault with abnormal gain (multiplicative
form) can be modeled as an additive form using Eq.(4.1) [67]. This model establishes
a reasonable bridge between the theoretical analysis and engineering problems. Thus
it is widely used in industrial applications, such as diagnosing sensors fault in control
systems [85,142], detecting the non-destructive crack of material [69,217], and assessing
fault severity [67,68].

We consider that a fault occurs from both to Nth observations, meaning that at least
one variable in the last N − bo + 1 observations is faulty. Particularly, for time series
signals, bo represents the fault occurrence time. Generally, online monitoring tasks usually
require a short delay between the fault detection and the fault occurrence time [142]. For
convenience, we illustrated the above notations in Fig.4.1. The observed value of each
variable is arranged in the horizontal direction according to their sampling order, where
faulty samples started from bo are marked in red. Then each column of data points is
regarded as a sample vector x. Faults may occur in one or more variables. For the case of
multiple faulty variables, we specify the index of the first faulty sample as bo.

Sample: x" x# x$ ... x%& x%&'" x%&'# x(...

Variable: 

)*+"

x%&'$

)*

)*'"

Healthy data Faulty data 

Figure 4.1 – Diagram of data points arrangement

After the fault detection, the major attention of the subsequent diagnosis tasks is
paid to faulty samples, i.e., the last N − bo + 1 observations. The faulty component is
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composed of faulty variables and fault amplitudes. Therefore, we decompose the faulty
component into the fault direction matrix Θ and the fault amplitude vector ∆, such that
xfi = ∆iΘ. The fault direction matrix Θ ∈ {0, 1}nf×m consists of nf columns indicating
nf faulty variables. In each column, the position of element 1 indicates a faulty variable.
For example, when the 1st and 2nd variables are faulty, we have

Θ =

[
1 0 · · · 0
0 1 · · · 0

]
(4.2)

During the fault occurrence, the fault direction is treated as a constant. The fault amplitude
vector ∆ ∈ R1×nf specifies the amplitudes of nf faulty variables. Since ∆ changes with
samples, its estimated value can be easily affected by noise and other interference. An
effective way to improve the estimation performance is to use prior knowledge of a fault
or make the necessary assumption of a faulty behavior. For example, incipient faults
are usually described as slowly developing changes with time. Based on this assumption,
we can further model the amplitude of a single faulty variable (nf = 1) as a first-order
function, such as

∆i = δ · (i− bo + 1) · Te, (i ≥ bo) (4.3)

where δ is a constant factor in small duration, and Te is the sampling time. The first-order
function is proper to describe the behavior of incipient faults since their changes are
slow. By estimating δ as the fault’s increasing rate, the severity degree of the fault can be
assessed [67,216]. A rapidly rising fault usually indicates a severe level of failure. However, if
a fault changes quickly (not incipient faults), we can consider a second-order or exponential
function to represent the fault behavior. This will be studied in our future work. Although
estimating the fault increasing rate is simple and effective, it can not describe the deviation
degree of a fault. Therefore, a more direct way of fault severity estimation is to estimate
the fault amplitude ∆, which will be discussed in the following [83–85]

In the fault diagnosis topic, it is essential to evaluate the performance of fault diagnosis
approaches at different fault severity levels as well as by considering different noise levels.
These two elements simultaneously influence the performance of a method. To take into
account the effect of both elements, the fault-to-noise ratio (FNR) is widely used in the
evaluation procedure. The definition of FNR is given as :

FNR = 10 log
pf
pn

(4.4)

where pn is the noise power, and pf is the faulty component power. Here, we further
develop the fault power pf based on the derived first-order fault model (Eq.(4.3)) as

pf =

∑N
i=bo

∆2
i

N
=

∑N−bo+1
i=1 δ2i2T 2

e

N

=
δ2T 2

e (N − bo + 1)(N − bo + 2)(2N − 2bo + 3)

6N

(4.5)

Using Eq.(4.5), the FNR can be derived, and the influence of the fault severity for a
given noise environment can be studied. Note that generally, the samples’ number N is
usually large, and N − bo is the number of faulty samples. For the isolation and estimation
procedures, only these faulty samples are considered. A low number of faulty samples
will reduce the fault power and increase the difficulty of diagnosis, particularly in a noisy
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environment. The faulty samples number, as a factor affecting the diagnosis performance,
will be further studied in the next chapter by considering different FNR values.

In order to go through the explanations of the proposal and show a step-by-step
validation, we consider, in the following simulations, a multivariate data system example
referred to in the paper [200]. The considered eight-variable system with N samples is
given follows, and their example data are shown in Fig.4.2.

x1(t) = 1 + sin(0.1t)

x2(t) = 2cos3(0.25t) · e−t/N

x3(t) = log(x2(t)
2)

x4(t) = x1(t) + x2(t)

x5(t) = x1(t)− x2(t)

x6(t) = 2x1(t) + x2(t)

x7(t) = x1(t) + x3(t)

x8(t) ∼ N (0, 1)

(4.6)
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Figure 4.2 – Examples of simulation signals
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Figure 4.3 – (a) 2-Dimensional non-Gaussian distributed samples and the corresponding
healthy region ; (b) LMD result of samples moving from the center to the outside of the
healthy region.

4.3 Fault detection approaches

As reviewed in chapter 2, fault detection is the foundational task of fault diagnosis,
attracting major attention in the literature. Basically, the fault detection task focuses
on deciding if observed samples are faulty or not. Moreover, for real-time applications,
this task’s additional requirement is to detect a fault within a short time after the fault
occurrence. This requirement is important, especially for incipient faults, since effective
detection in the early stages of failure can dramatically reduce the accident risk. However,
incipient fault detection is a real challenge, particularly in a strong noisy environment.
Therefore, in this section, we propose effective incipient fault detection approaches using
the local Mahalanobis distance.
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Figure 4.4 – Proposed LMD-based diagnosis procedure
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To explain the benefit of using LMD as the major index for fault detection, we present
2-dimensional non-Gaussian data as a toy example in Fig.4.3. First, in Fig.4.3 (a), the red
dotted curve represents the healthy region and the scatter of points in blue are healthy
samples. To visualize the LMD behavior, we consider samples moving from the center to
the outside of the healthy region. The LMD results of samples demonstrated in Fig.4.3 (b)
fluctuates slightly above 0 when samples are within the region and sharply increases once
they go out of the region. Based on this feature, one can effectively recognize an outlier by
monitoring its LMD value. Then, our proposal for incipient fault diagnosis is presented in
two parts : the training process and the fault diagnosis process. The main steps of these
two parts are summarized in Fig.4.4 and described in the following subsections.

4.3.1 Training process

This training process aims to obtain the optimal anchor set S and determine the
domain margin rL to provide a setting for the detection procedure. Besides fault detection,
the training result is also used for fault isolation and fault amplitude estimation. In this
process, we consider a fault-free data matrix X∗ with Nt observations for training. Like
most learning-based algorithms, the number of training samples Nt is important for the
good performance of the proposed approaches. It should be sufficiently large to estimate
the healthy domain accurately. This dimension will be discussed in the next chapter.

The first step of the training process is to perform the anchor-generation algorithm
on X∗. Here, we set the limitation number ηan = 1. It is a usual value for high-quality
samples set without outliers. The anchor-generation algorithm searches for the optimal
local radius γan by minimizing the approximation error. We calculate the approximation
error for different local radii values and show the result in Fig.4.5. When the loss reaches
its minimum value, the optimization procedure stops, and the corresponding radius is
obtained as the optimal one. In this example, the minimum loss and its corresponding
radius are marked as a red point in Fig.4.5. Finally, the algorithm yields the optimal local
radius γan = 1.461 and allows to obtain 178 anchors from 1200 initial training samples.
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Figure 4.5 – Evolution of loss function versus region radius

In the second step, we compute the LMD value of the training samples based on the
obtained anchors set. Fig.4.6 illustrates the obtained results, showing that their LMD
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Figure 4.8 – Estimated CDF of the LMD value and the selected region margin value
corresponding to 99.5% significance level

values are smaller than 4. Then, we need to determine a threshold (region margin rL) to
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distinguish between faulty and healthy samples. To that end, in the third step, we estimate
the GEV model based on the LMD values of healthy samples. This step employs the
Nelder–Mead method to solve the optimization problem of Eq.(3.11). As shown in Fig.4.7,
the value of the objective function decreases quickly with iterations and finally converges to
a small value. An effective solution is obtained for the simulation data after 120 iterations,
and the objective value is smaller than 10−3. Fig.4.8 displays the estimated CDF of the
LMD values in the healthy case, based on which we select the region margin as rL = 3.045
by specifying the significant level as α = 99.5%. It means that if a sample’s LMD value
is larger than the region margin, we have 99.5% confidence to take the sample as faulty.
Based on the elements obtained in this training process (anchor set S, healthy domain
margin rL, and the GEV model), the next part of our proposed procedure (detection
process) can be computed using new data that can contain faulty behavior.

4.3.2 Detection process
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Figure 4.9 – Faulty and healthy x1 simulated signal

In the detection process, we consider a new set of samples with a fault occurring in
x1 at t = 47s, i.e., the 47th sample, with the FNR= 10dB. As shown in Fig.4.9, the
faulty signal of x1 gradually deviates from the healthy one. At the beginning of the fault
(around 47 seconds), the change is tiny and is difficult to detect. To detect a fault, we
first calculate the LMD values of the new samples based on the anchors set S. The LMD
results of the faulty data are illustrated in Fig.4.10, where the real fault occurrence time
(t = 47s) is marked as the green vertical dashed line, and the healthy region margin is
marked as a red dashed line. In the healthy part (the left side of the green dashed line),
there are several LMD values larger than the region margin, which are called false alarms.
In the faulty part (beyond the green vertical dashed line), LMD index increases along with
time and then exceeds the region margin, which means a fault is detected. According to
this characteristic, LMD is used as the preliminary monitoring index for fault detection.
Although the LMD index is effective for fault detection in the long term, missed detections
still exist at the beginning of the fault occurrence (see Fig.4.10). Since the fault amplitude
is subtle (incipient fault), those insensitive approaches usually can not allow the detection
of incipient fault until the fault become severe. Accordingly, it is still a challenge to detect
incipient faults at early stage.

To increase the fault detection accuracy and sensitivity, we focus on the distribution
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Figure 4.10 – LMD results for simulated signals

information of LMD values instead of a sample-based result. After fault occurrences, the
distribution of LMD value will change because of faulty behavior. Since the distribution
model of LMD values in healthy conditions has been developed, a more effective decision
can be made by comparing the distribution of new LMD results with the healthy one.
Common metrics for evaluating the difference between two distributions, like KLD and
JSD [69, 217], can be used to achieve this goal. However, they usually need to estimate
samples’ PDF functions before calculating metrics, which leads to some potential problems,
such as long computational time and low estimation accuracy. To avoid these problems,
we propose a new metric called Empirical Probability Density Cumulative Sum (EPD-
CUSUM). This technique is used after LMD calculation and is performed sample by
sample. By accumulating the tiny difference of distributions in a recursive manner, it
can detect incipient faults and achieves excellent performance, including high sensitivity,
robustness and high accuracy.

For unknown data, there are two hypotheses : the healthy one H0 and the faulty one
H1.
• Hypothesis H0 : there is no fault in the observed samples.
• Hypothesis H1 : a fault has occurred at the both sample.

A fault detection procedure is then to accept or reject the hypothesis H0 in a test. In
this process, the LMD value of an unknown sample is regarded as a random variable. To
perform the hypothesis test, we first consider a single comparison event based on the LMD
result and represent it by an indicator function I(x), such that

I(xi) =
{

1 DL(xi) > rL
0 otherwise

(4.7)

Under the healthy hypothesis, the probability of the event DL(xi) > rL is equal to 1− α.
Therefore, the probability of the healthy hypothesis, denoted as PF0 , is calculated as

PH0 =
N∏
i=1

(1− α) = (1− α)N (4.8)

However, this event’s probability is unknown under the healthy hypothesis. To indicate
the probability of the fault occurrence in the current sample, we recursively calculate the
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empirical probability density Pf via the following equation

Pf (xi) = (1− ω)Pf (xi−1) + ωI(xi) (4.9)

where Pf(x0) = 0, ω ∈ (0, 1] is a weight factor. Similarly, the probability of the faulty
hypothesis, denoted as PH1 , is calculated as

PH1 =
bo−1∏
i=1

(1− α)
N∏

i=bo

Pf (xi) = (1− α)bo−1

N∏
i=bo

Pf (xi) (4.10)

The two probabilities are compared by calculating the log ratio, such that

L(bo, N) = ln

(
PH1

PH0

)
=

N∑
i=bo

ln

(
Pf (xi)

1− α

)
(4.11)

We further define the instantaneous log ratio for sample xi as :

rin(i) = ln

(
Pf (xi)

1− α

)
(4.12)

Its cumulative sum from 1 to the ith sample is :

Rin(i) =
i∑
1

rin(i) (4.13)

By substituting (4.12) and (4.13) into (4.11), L can be written as :

L(bo, i) = Rin(i)− Rin(bo − 1) (4.14)

Since the fault occurrence time bo is unknown, we estimate the maximum likelihood of the
log ratio L, denoted as De, as follows

De(xi) = max
1≤bo≤i

L(bo, i) = Rin(i)− min
[1≤bo≤i]

Rin(bo − 1) (4.15)

The recursive form of De is derived as

De(xi) =

{
ln

Pf (xi)

1− α
+De(xi−1)

}+

(4.16)

where {℘}+ = ℘ for positive values, otherwise it is equal to 0. When De exceeds the control
limit UG, a fault is detected, and the current time is recorded as the fault detection time.

Generally, a large UG value can reduce the risk of false alarms but increase detection
delay. On one hand, to minimize the false alarm rate, we can set this parameter as the
maximum De value of the healthy samples. On the other hand, the parameters ω should
selected to adapt to the noise strength and fault severity. Generally, we should consider a
small ω value for low fault severity. In practical usage, there are two ways to tune this
parameter.
• When faulty samples are available, we can optimally tune the ω value to maximize
the AUC criterion of De results.

68



Fault detection approaches

0 20 40 60 80
Time (sec)

0

500

1000

1500

2000

2500

EP
D

 C
U

SU
M

EPD CUSUM result
Control limit

Detected a fault (53.4s)

Figure 4.11 – EPD CUSUM results for simulated signals, where ω = 0.3, α = 99.5%
and UG = 110.

• Otherwise, ω can be set to an arbitrary value close to 0.5 to achieve excellent global
detection performance for different fault severity and noise conditions.

The benefit of the EPD-CUSUM technique is twofold. It significantly avoids false
alarms and missed detection since De will only increase with time when the LMD result
exceeds rL continuously. Besides, this technique improves detection sensitivity because
small changes will be cumulative with time, yielding a striking value of De. The final
detection result De of the simulation data is shown in Fig.4.11. In the healthy part of the
samples, all the results are below the control limit UG without causing false alarms. While
in the faulty part (beyond the green vertical dashed line) De increases and exceedes the
control limit at 53.4s. A delay between the real fault occurrence time and the detected
one can then be noticed (53.4− 47 = 6.4s). Note that for this result, the confidence level
α is 99.5%.

4.3.3 LMD feature for fault detection

The above fault detection approach based on LMD effectively recognizes incipient
faults in time-series signals. However, for time-independent samples, a widely used method
is to extract sample features and then analyze whether the test sample deviates from
the reference using probability-based distance [40, 66]. Statistic-based techniques are
frequently used to extract meaningful information from raw samples without faults’ prior
knowledge . For example, principal component analysis can refine the faulty information
by projecting data onto an orthogonal and lower-dimensional healthy space preserving the
maximum variance [82,177]. Subsequently, probability-based distance, like Kullback-Leibler
divergence, is used to measure the tiny dissimilarities between observed and reference
probability distributions [21, 55, 86]. Nevertheless, the major limitation of the existing
detection approaches should be pointed out : PCA is unsuitable for non-linear data
and will cause the loss of information, sometimes degenerating this method’s accuracy
performance. As introduced in chapter 3, the proposed healthy region approximation
method can effectively highlight the tiny change of incipient fault by LMD index and it is
effective for non-linear data. Thus, the LMD index can be used as a representative feature
for the fault detection task.
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Figure 4.12 – Fault detection procedure based on LMD feature and probability-based
distance

This subsection discusses the benefits of using the LMD index as a feature and the
probability-based distance as feature analysis tools. This proposed detection procedure
is displayed in Fig.4.12. The healthy data is first used to generate anchors for the LMD
calculation. Next, the LMD features of the healthy reference and test data are extracted,
respectively. Finally, the probability-based distance of the two LMD features, such as
Kullback-Leibler divergence (Dkl) [66], Jensen-Shannon divergence (Djs) [217], Wasserstein
distance (Dw) [31], and Kolmogorov-Smirnov distance (Dks) [60], are evaluated for detection
purposes.

Figure 4.13 – Distribution of LMD features for healthy and faulty cases.

We consider the simulation data given in section 4.2 as an example. Fig.4.6 shows
the extracted LMD feature of healthy simulation data, and Fig.4.10 illustrates the LMD
feature of the faulty case. The distribution of the two features is exhibited in Fig.4.13,
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Contribution plot for faulty variables isolation

showing that their distributions are significantly different. Fig.4.14 gives the detection
outcomes of using different probability-based distances to measure the dissimilarity of
LMD features. Notes that the first 100 realizations are healthy samples, while the last 100
are faulty. In this example, all the probability-based distances allow a correct detection of
a fault since their detection outcomes for the faulty samples are significantly larger than
for healthy ones. However, their sensitivities are different, which implies different detection
capabilities and robustness to noise. By using the Wasserstein distance, the change of the
detection outcomes after a fault occurs is the most obvious. It can be expected that this
distance may still maintain a high detection accuracy if the noise power increases or the
fault severity becomes small. Conversely, the Jensen-Shannon divergence has relatively
close detection outcomes for healthy and faulty samples, indicating a high risk of false
detection if fault severity is small or the environment is noisy. A deeper study of these
detection strategies’ sensitivity will be considered in the next chapter.

Realizations

D
et

ec
tio

n 
ou

tc
om

es

Figure 4.14 – Detection outcomes of LMD feature using different probability-based
distances

Generally, this toy example shows a real benefit of using the LMD feature for fault
detection. Its efficiency will be further studied in the next section. Besides, we will also
deeply discuss the detection capability of different probability-based distances.

4.4 Contribution plot for faulty variables isolation

Let’s assume that a fault has been detected by the previous detecting process. Subse-
quently, in this section, we first consider a single faulty variable denoted as ι and propose
a LMD-based fault isolation method to identify the faulty source. In the LMD-based
fault detection scheme, the corresponding anchor of a sample is first located, serving as a
reference position for fault analysis. When a fault occurs, the faulty samples obviously
deviate from their references, while healthy samples are close to the corresponding anchors.
These two cases can be distinguished by calculating the Mahalanobis distance between
samples and anchors (LMD). In other words, the distance information is used for the fault
detection task. Similarly, we consider the change of samples’ relative position for the fault
isolation task. The position’s change is based on observed samples and their corresponding
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anchors, where the latter has been obtained in the previous detection step.

Let the local anchor of a sample be A(x), which is written as :

A(xi) = argmin
k
{dM(xi, yk)|yk ∈ S} (4.17)

Given a sample vector xi and its corresponding anchor vector A(xi), the position’s change
with normalization weight is presented as :

Gi = (xi −A(xi))TW (4.18)

where W is the diagonal matrix consisting of the standard deviation σj of each healthy
variable, such that :

W = diag{σ−1
1 , · · · , σ−1

m } (4.19)

Note that the weight is used here to unify the scale of different variables.

LMD

Anchors
Healthy samples
Faulty sample
Healthy region

Figure 4.15 – Two-dimensional example for LMD based fault isolation

As illustrated in Fig.4.15, we use a toy example with two variables to show how the
position’s change information contributes to faulty source isolation. In fact, when a variable
is affected by a fault, the faulty samples will deviate in a certain direction. In this example,
the first variable x1 is affected, and thus the first element of the sample vector increases
from x∗

1 to (x∗
1 +∆). We show the faulty sample and its healthy version to highlight this

change. However, the increment ∆ in x1 direction is invisible for the unknown healthy
version until introducing a reference point, the anchor. For healthy cases, since samples are
close to their anchors, the deviation of samples with respect to their anchors in different
directions is small. In contrast, faulty samples are far away from their anchors. With the
single fault assumption, there is always a distinct shift of faulty samples in one direction.
In other words, the single faulty variable can effectively be isolated by observing the
increment of faulty samples in different directions, which is reflected by the change vector
G.

Regarding the incipient faults cases, the reliability of sample-based results Gi is easily
impacted by noise, especially at the fault early stage. Therefore, a number of sequential
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Contribution plot for faulty variables isolation

faulty samples are used for the final decision to increase the reliability and isolation
accuracy. Suppose a fault is detected at the bdth observation, and then the average position
change vector can be calculated as :

Ḡ =
N∑

i=bd

Gi (4.20)

Let denote Ḡ = [g1, · · · , gj, · · · , gm]. The Softmax function is further applied to the
elements of Ḡ for the unifying purpose. Then the fault contribution Conj of each variable
is calculated as :

Conj =
e|gj |∑m
l=1 e

|gl| (4.21)

Finally, for a single faulty variable case, the faulty variable index number is recognized as :

ι̂ = argmax
j

Conj (4.22)

The corresponding xι̂ faulty variable is then isolated.

As an example, we apply the proposed isolation approach to the simulation data
defined in section 4.2, where a fault with 20dB FNR was introduced in the 3rd signal
x3(t). Fig.4.16 illustrates the fault contribution plot of each variable. The 3rd contribution
value is the largest, and thus the 3rd signal is recognized as faulty. In this example, the
3rd contribution value is significantly larger than the rest, indicating that the isolation
result given by this approach is highly reliable. Indeed, this approach still suffers from the
effect of heavy noise and small fault amplitude. Detailed performance will be evaluated
in the next chapter to reveal how these factors affect this approach. Remarkably, the
proposed isolation method is dedicated to the single faulty source situation. To deal with
the multiple fault cases, an improved approach will be proposed in the following section.
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Variable
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0.1

0.15

0.2

Figure 4.16 – Contribution plot for simulation signals
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4.5 Fault increasing rate estimation based on first order
model

Once the faulty variable is isolated, the fault severity estimation procedure is activated.
This section is dedicated to estimate the fault’s increasing rate based on first order model.
More precisely, we estimate the coefficient δ of the first-order approximation written in
Eq.(4.3) by explicitly establishing its expression based on the LMD index. To that end,
we develop the LMD calculation equation by substituting Eq.(4.17) and Eq.(4.1) into
Eq.(3.8), such that

DL(xi) = dM(xi,A(xi))
=
√

[xi −A(xi)]TΣ−1[xi −A(xi)]
=∥ [xi −A(xi)]TΣ− 1

2 ∥2
=∥ [x∗i + xfi −A(xi)]TΣ− 1

2 ∥2

(4.23)

where ∥ · ∥2 corresponds to the ℓ2 norm.

For simplicity, we define the following three notations :

ζi = x∗i −A(xi) (4.24)

ζ
′

i = ζiΣ
− 1

2 = [ζ
′

i1, · · · , ζ
′

ij, · · · , ζ
′

im] (4.25)

Σ− 1
2 =


ς11 · · · ς1j · · · ς1m
...

...
...

ςj1 · · · ςjj · · · ςjm
...

...
...

ςm1 · · · ςmj · · · ςmm

 (4.26)

With the above notations and first-order approximation model Eq.(4.3), we further develop
Eq.(4.23) to Eq.(4.27).

D2
L(xi;S) =∥ ζ

′

i ∥22 +2∆i

m∑
j=1

ζ
′

ijςcj +∆2
i

m∑
j=1

ς2cj

=∥ ζ ′

i ∥22 +2δ (i− bd + 1)Te

m∑
j=1

ζ
′

ijςcj + [δ (i− bd + 1)Te]
2

m∑
j=1

ς2cj

= i2

(
δ2T 2

e

m∑
j=1

ς2cj

)
+ 2i

[
δTe

m∑
j=1

ζ
′

ijςcj + (1− bd) δ
2T 2

e

m∑
j=1

ς2cj

]

+ 2 (1− bd) δTe

m∑
j=1

(
ς2cj + ζijςcj

)
+ ∥ ζ ′

i ∥22

(4.27)

Although Eq.(4.27) establishes the link between δ and the LMD index, δ can not be
calculated directly through this equation for the unknown ζ

′
ij. However, Eq.(4.27) is a

quadratic function of sample index i, which can be simplified as :

D2
L(xi;S) = ϱ2i

2 + ϱ1i+ ϱ0 (4.28)
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Fault increasing rate estimation based on first order model

where

ϱ2 = δ2T 2
e

m∑
j=1

ς2cj (4.29)

ϱ1 = 2δTe

m∑
j=1

ζ
′

ijςcj + 2(1− b)δ2T 2
e

m∑
j=1

ς2cj (4.30)

ϱ0 = 2(1− bd)δTe

m∑
j=1

(ς2cj + ζijςcj)+ ∥ ζ
′

i ∥22 (4.31)

In fact, D2
L(xi) has been calculated for fault detection, and i is known. Therefore, the

coefficients ϱ0, ϱ1, ϱ2 can be easily estimated by the polynomial curves fitting technique.
More accurately, the solution for Eq.(4.28) is obtained by minimizing the sum of squared
errors between the true and estimated D2

L values based on samples from bd to N . In order
to derive the calculation process, we let :

Υ = [ϱ0, ϱ1, ϱ2] (4.32)

ΨT =

 1 · · · 1 · · · 1
bd · · · i · · · N
b2d · · · i2 · · · N2

 (4.33)

and

Y = [D2
L(xbd), · · · , D2

L(xi), · · · , D2
L(xN)]

T (4.34)

The coefficients vector can be calculated as :

Υ = (ΨTΨ)−1ΨTY (4.35)

Finally, the fault severity represented by δ is estimated as δ̂ as follows :

δ̂ =

√
ϱ2

T 2
e

∑m
j=1 ς

2
cj

(4.36)

As an example, we simulate multivariate data using Eq.4.6 and introduce a fault with
different δ values in the 3rd signal.We apply the proposed estimation approach to the
simulation data and obtain the result as shown in Fig.4.17. As δ increases, the estimated
error gets closer to 0, meaning that the estimated value is close to the actual one. For
extremely small values of δ (δ < 0.3), the tiny change is easily confused with noise, resulting
in the weak estimating capability (the relative error is larger than 0.1). It is noticed that
the relative error is always negative, i.e., the result is underestimated, which should be
avoided. Nevertheless, as the error is so small, this will not lead to a major issue. To
overcome this limitation, we will improve the fault severity estimation approach in the
next section. In summary, Fig.4.17 shows that the proposed method is still effective and
can obtain accurate results for tiny deviations.
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Figure 4.17 – Relative error of the proposed method for different increasing rates

4.6 Reconstruction based contribution for faulty variables
isolation and amplitude estimation

Although the proposed isolation approach and fault increasing rate estimation method
are efficient for simulation data, they have numerous limitations. First, the LMD-based
contribution approach is mainly developed for single fault cases. This method may yield
an unexpected isolation result when multiple faults occur simultaneously. Then isolation
approach should be improved for multiple faults cases. On the other hand, the previously
proposed LMD-based estimation method assesses the severity degree by estimating the
fault’s increasing rate, which is simple but lacks information on the deviation degree
from healthy behavior. A more effective way to assess fault severity is to estimate fault
amplitude. The performance of the LMD-based increasing-rate estimation approach usually
degenerates if the fault does not satisfy the first-order model assumption. Therefore, to
overcome these limitations, we propose an improved solution based on the LMD technique
and the reconstruction-based contribution (RBC) framework for faulty variable isolation
and fault amplitude estimation.

The RBC combines the fault reconstruction idea and contribution plot idea. The goal
is to isolate multiple faulty variables and estimate the fault amplitude more accurately.
Fig.4.18 shows the flow diagram of the RBC framework based on LMD. In this frame-
work, a signal is reconstructed by removing its faulty component if the fault direction
is known. Therefore, given a fault direction Θl from a candidate set of fault directions
Ξ = {Θ1,Θ2, · · · , }, the reconstructed signal of the ith sample xi is obtained as

xl
i = xi −∆l

iΘ
l (4.37)

For practical applications, candidate fault directions are finite and easily determined
according to the known number of faulty situations. When the true fault direction is
selected, the fault detection index of the reconstructed-healthy signal will be lower than
the detection threshold. Otherwise, the detection index of a reconstructed signal is larger
than the threshold.
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Figure 4.18 – Flow diagram of RBC framework based on LMD

The LMD index of the reconstructed signal is calculated as

DL(x
l
i) = (xl

i −A(xl
i))

TM (xl
i −A(xl

i))

= ∥M
1
2 (xi −∆l

iΘ
l −A(xl

i))∥2
(4.38)

where M = Σ−1. The fault direction Θl is constant during a faulty situation, and the
fault amplitude ∆l

i develops slowly according to the definition of incipient faults. However,
the item xi − A(xl

i) in Eq.4.38 changes dynamically due to noise disturbance and the
intrinsic approximation error resulting from anchor calculation, which hinders extract
faulty information and leads to unstable results of the isolation procedure. Therefore, to
inhibit the high-frequency change of this item, we define an exponential smoothing index
ξli as

ξli = (1− ζs)ξ
l
i−1 + ζs(xi −A(xl

i)), (ξ0 = 0) (4.39)

where 0 ≤ ζs ≤ 1 is the smoothing factor. Then the smoothing LMD index for reconstructed
signals is derived as

Ds(x
l
i) = ∥M

1
2 (ξli −∆l

iΘ
l)∥2 (4.40)

Generally, a small value of ζ leads to smooth LMD results but a slow response to signals’
changes.

Given a fault direction Θl, the objective of the reconstruction is to determine the fault
component ∆l

i minimizing Eq.(4.40), which is a quadratic optimization problem without
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constraint. However, since the anchor calculation A(·) is not an analytical function of
∆l

i, we can not directly obtain the optimal solution of Eq.(4.40). As a result, we propose
the iterative method alternating between performing the following two steps to obtain an
approximated solution.

1. Anchor updating step : determine the anchor of reconstructed signal xi using the
optimal solution of ∆l

i

A′(xl
i) = argmin

y∈S
dM(xi −∆l

iΘ
l,y) (4.41)

Initially, we let ∆l
iΘ

l = 0.

2. Optimization solving step : calculate the optimal solution minimizing Eq.(4.40) as

∆l
i = (ΘlTMΘl)−1ΘlTMξli (4.42)

where ξli is updated by Eq.(4.39) with the result A′(xl
i) obtained in the previous

step.

The two steps are executed till the solution converges.

Substitute the solution Eq.(4.42) into Eq.(4.40), we have

Ds(x
l
i) = ∥(I −M

1
2Θl(ΘlTMΘl)−1ΘlTM

1
2 )M

1
2 ξli∥2

= ∥RlM
1
2 ξli∥2

(4.43)

where Rl ≜ I −M
1
2Θl(ΘlTMΘl)−1ΘlTM

1
2 . When the correct fault direction is selected,

i.e., l = ι, the isolation index Ds(x
ι
i) will be lower than the threshold rL, while the isolation

index of other cases will be higher than the threshold, such that

Ds(x
ι
i) < rL ≤ Ds(x

l
i), (l ̸= ι) (4.44)

Therefore, the fault direction is identified by searching the minimal isolation index Ds(x
l
i).

Further, according to the traditional RBC idea [49, 85], the reconstruction-based contribu-
tion of a candidate fault direction is defined as

RBCl
i ≜ ∥M 1/2∆l

iΘ
l∥2

= ξlTi MΘlT (ΘlTMΘl)−1ΘlTMξli
(4.45)

Equivalently, the fault direction is identified by searching the maximal reconstruction-based
contribution

ι̂i = argmax
l

RBCl
i (4.46)

Similar to the LMD-based contribution plot method, the Softmax function (Eq.4.21) can
be further applied to the above reconstruction-based contribution result for the unifying
purpose. With the fault direction being isolated, its corresponding fault amplitude is
simultaneously obtained as

∆̂i = (Θι̂iTMΘι̂i)−1Θι̂iTMξ ι̂ii (4.47)

We generate simulation data using Eq.4.6 and introduce faults with 20dB FNR in
the 2nd and 3rd variables. We apply the proposed RBC approach to the data for faulty
variable isolation and fault amplitude estimation. Fig.4.19 and Fig.4.20 show the obtained
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Figure 4.19 – Reconstruction-based contributions of each candidate direction

isolation and estimation results, respectively. For the isolation task, the contribution value
of the fault direction (2, 3) is the largest, and thus its corresponding variables (2 and 3) are
recognized as faulty. Concerning the estimation performance of the RBC approach, Fig.4.20
shows that the relative errors of the estimation for the two faulty variables are large at
the beginning but converge with time to a small value close to 0. Indeed, when faults just
occur, their amplitudes are too small to estimate, which thereby leads to large errors in
the results. However, the estimation results converge with time, and their relative errors
are stable between −0.1 and 0.1, meaning their absolute percentage errors are around 10%
of the original values. Compared to the increasing rate estimation, this approach does
not always underestimate the fault severity. Therefore the proposed method is effective
and practical in the fault amplitude estimation task. In the next chapter, we will further
investigate the estimation performance of this approach concerning different noise levels
and fault severities. Then its superiority will be highlighted by comparing it with other
estimation methods.
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Figure 4.20 – Relative error of the approach estimation approach based on RBC for
simulation data
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4.7 Conclusion

This chapter proposes a specific incipient fault diagnosis methodology for incipient
faults in a noisy environment. It is based on a procedure composed of two main parts :
the training process and the fault diagnosis process. In the training process, we propose
a specific unsupervised healthy domain approximation method using the Mahalanobis
distance in a particular way. It is composed of an optimized anchor-generation algorithm
and a special margin selection approach. Compared with PCA-based Hotelling’s T 2 and
SPE (Q) statistics, the proposed healthy domain approximation method can effectively
handle non-elliptically distributed data. Based on the approximated healthy domain
characteristics, the detecting process is derived and the local Mahalanobis distance is
defined and serves as a preliminary monitoring index for fault detection. Subsequently, we
derive this sensitive incipient fault detection framework by combining Local Mahalanobis
Distance with the improved Empirical Probability Density Cumulative Sum method.
Besides, we also show that LMD can be used as an effective feature for fault detection.
Probability-based distance is then used to decide if test samples deviate from the healthy
pattern.

After detecting a fault, we consider the faulty variable isolation problem and propose
an approach based on the contribution plot idea. This approach is developed on the LMD
index and its anchor generation algorithm. By analyzing the relative position between
faulty samples and their corresponding anchors, we can intuitively discover which variable
is relative to the fault. The proposed fault isolation method can recognize the single faulty
variable, even for tiny faults. Subsequently, we derive the LMD calculation equation by
substituting the first-order fault model. Thanks to a theoretical study, the fault severity
estimation approach analytically establishes the relation between the increasing rate of a
fault and the LMD index. This offers an effective way to estimate the severity of incipient
faults. These two methods preserve the intrinsic advantages of LMD, such as robustness
to outliers, distribution-free assumption, and high sensitivity for incipient faults. Together
with the LMD-based fault detection method, they compose the LMD-based incipient
fault diagnosis framework. In order to improve the isolation and fault severity estimation
performance, we propose a novel reconstruction-based method using the LMD index for
incipient faults. This method combines the high sensitivity characteristics of the LMD
methodology for incipient faults with the RBC technique’s good properties, which has a
solid theoretical foundation for faulty variables isolation and fault amplitude estimation.

This chapter uses the simulation data with 8 signals as an example to validate the
effectiveness of all the proposed approaches. The calculation results in each key step
of the approaches are given to clearly show how our proposal works and how effective
they are. The primary results indicate that the contribution-plot-based isolation method
can accurately recognize a single faulty variable. The fault increasing rate estimation
approach based on the first-order fault model effectively estimates the increasing rate of a
fault. As the fault increase, the error of fault estimation approach significantly reduces.
Finally, the simulation results show that the RBC-based approach can accurately identify
faulty variables and estimate the their amplitude simultaneously. These results based on
the simulation data validate the effectiveness of our proposal. In the next chapter, we
will validate the proposed methodology using 2 types of industrial application data. The
detailed performance evaluation will be given and will highlight the limits of the proposal.
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5
Applications to industrial engineering

5.1 Introduction

The last chapter presented a series of effective methodologies for different fault diagnosis
tasks based on LMD techniques and validated their effectiveness based on simulation data.
However, there is always a gap between simulation and practical industrial applications. The
industrial data usually follows a non-Gaussian complex distribution and is contaminated
by strong noise. Therefore, this chapter aims to comprehensively evaluate the efficiency of
the proposed methods using industrial data. Prior to the efficiency evaluation, performance
criteria are first given. Then, based on the Continuous-flow Stirred Tank Reactor (CSTR)
process data, we investigate the efficiency of the proposed fault diagnosis solutions developed
on LMD for different diagnosis tasks. The performance analysis concerning different fault
severity and noise level is performed to show the comprehensive diagnostic capability
of our proposals. We also compare our proposals with state-of-the-art approaches, such
as methods based on Kullback-Leibler divergence and Jensen-Shannon divergence, RBC
methods based on principal component analysis, and Mahalanobis distance. Moreover, we
evaluate the feature extraction efficiency of the LMD technique by using bearing data. In
this study, LMD is used as a feature extraction tool, and the probability-based distance is
subsequently used to detect a fault. By combining different features and probability-based
distances, we then show the benefit of using the LMD feature.

5.2 Evaluation criteria

Fault severity and noise level are two major external factors affecting the performance
of fault diagnosis approaches, which should be studied carefully in performance evaluation.
To take into account the effect of fault severity and noise strength simultaneously, the
Fault-to-Noise Ratio (FNR) is used as the quantitative metric of the fault severity regarding
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the noise strength [38]. It is defined as :

FNR = 10 log
pf
pv

(5.1)

where pf is the fault power and pv is the noise power. Note that incipient faults are defined
for FNR values lower than 5dB. In that range, these faults can be partially or totally
masked by the noise. Similarly, the Signal-to-Fault Ratio (SFR) is defined to quantify fault
severity regarding the signal power :

SFR = 10 log
ps
pf

(5.2)

where ps is the signal power. In the particular case of incipient fault, the SFR values are
large. The above two ratios are related to the common metrics SNR by the following
equation :

SNR = SFR + FNR (5.3)

The detection performance evaluation based on samples considers three criteria : the
detection probability (Pd), the false alarm one (PFA), and the accuracy (ACCD) which
are defined as :

Pd =
No. of samples{detected as faulty|faulty}

No. of {All the faulty samples}
(5.4)

PFA =
No. of samples{detected as faulty|healthy}

No. of {All the healthy samples}
(5.5)

ACCD =
No. of {collectly detected samples}

No. of {All the samples}
× 100% (5.6)

Additionally, the Receiving Operating Characteristics (ROC) curve [51] and its correspon-
ding Area Under Curve (AUC) value are also used to assess the detection performance in
terms of robustness and efficiency. The evaluation of AUC is independent of the threshold
selection but focuses on the global detection capability of an index. It allows judging the
performance of the two methodologies conveniently. Usually, AUC value is between 0 and 1.
The value 1 indicates perfect detection performance ; value 0.5 means the diagnosis index
cannot distinguish between healthy and faulty samples ; and the value 0 shows inverse
detection results. Moreover, in the early detection context focusing on incipient faults, an
overview of the reaction speed of a fault detection method is also an important criterion.
Suppose that a fault occurs at bo and the detection time is bd, the detection delay DD
calculated as the difference of these two values will allow reflecting the method response
speed. It is written as :

DD = bo − bd (5.7)

The synthetical performance evaluation of fault detection approaches is performed by
using the above criteria while changing the fault severity and noise level. However, if a
data set does not contain sufficient faulty samples, such as smaller faulty severity, methods’
detection capability for unknown faulty situations cannot be evaluated. Therefore, we
use the detection sensitivity criterion to evaluate the potential detection capability of a
method. The detection sensitivity criterion is defined as

Sen =
D̄f − D̄h

max(Dh)− D̄h

(5.8)
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where D̄h is the average value of any diagnosis index in a healthy condition, and D̄f

is the average value in faulty conditions. When the detection sensitivity criterion value
is less than 1, the miss detection rate will be too high and unacceptable for the fault
detection task. The detection sensitivity value should be larger than 2 to achieve a
reliable detection performance [69]. With higher value, it usually indicates a more powerful
detection capability.

In the faulty variables isolation task, performance can be simply evaluated by the
isolation accuracy criterion calculated as

ACCIso =
No. of samples{correct isolation}

Nf

× 100% (5.9)

Further, we calculate the confusion matrix to allow the visualization of the isolation
performance. It is a table whose row instances indicate the predicted results while each
column is the actual one. Each element of the confusion matrix is the probability that an
actual faulty variable is predicted to be a particular variable. The confusion matrix makes
it easy to conclude if an isolation approach confuses two classes.

Concerning the fault amplitude estimation performance, we can easily assess the mean
square error (MSE) between the actual and estimated fault amplitude, such that

MSE =

∑Nf

i=1(∆i − ∆̂i)
2

Nf

(5.10)

The relative error is used to evaluate the estimation performance, and it can unify the
estimation error of the different studied faulty cases. It is defined as

RE =

∑Nf

i=1
∆̂i−∆i

∆i

Nf

× 100% (5.11)

Generally, smaller MSE or RE value indicates better estimation performance. In the
following, we further analyze our proposal performance using these criteria in different
diagnosis tasks.

5.3 Performance evaluation of fault diagnosis approaches
based on process data

This section focuses on the performance of the proposed fault diagnosis approaches
based on LMD. The CSTR process is first introduced, providing basic information on data
and faults. We discuss fault diagnosis performance in three tasks : fault detection, faulty
variable isolation, and fault severit estimation. For each task, the proposed methods are
evaluated by the performance criteria introduced in the last section and compared with
the state-of-the-art methods. Different fault severities and noise levels will be changed to
test methods’ diagnosis capability.

5.3.1 Continuous-flow stirred tank reactor process

As a benchmark case, the CSTR process is frequently used to evaluate fault diagnosis
methodologies [141,194,202]. The schematic diagram of the CSTR process is displayed in

83



TC

C"($%&/()
*"(+)

,-((/$./)*-"(+) *-(+)

0($%&/()
*(+)

Figure 5.1 – Schematic diagram of the CSTR process

Fig.5.1, where an exothermic reaction takes place in a reactor surrounded by a jacketed
tank. In the process, a fluid stream fed the reactor and perfectly mixed with catalysts. The
reactor temperature is maintained by feeding a coolant medium at a lower temperature.
The model can be described as following exothermic first-order reactions,

dC
dt

=
Q

V
(Ci − C)− βCq0e(

−E
RT ) + ν1 (5.12)

dT
dt

=
Q

V
(Ti − T )− β

∆HrqC
φCp

− h
UA
φCpV

(T − Tc) + ν2E (5.13)

dTc
dt

=
Qc

Vc

(Tci − Tc) + h
UA

φcCpcVc

(T − Tc) + ν3 (5.14)

where the outputs of the process are the reactor temperature (T ), the concentration in the
reactor (C), the coolant temperature (Tc), and the coolant flow rate (Qc). The system’s
inputs are the input flow concentration (Ci), the flow temperature (Ti), and the coolant
flow temperature (Tci). Notations of the above equations are given in Table 5.1.

The corresponding simulation model introduced by Karl Ezra Pilario in [141] is one
of the most influential models for its easy access and professional design. The simulation
model is shown in Fig.5.2. It can simulate the healthy case and ten different faulty
scenarios. All are defined in Table 5.2 : Faults 1 and 2 simulate catalyst decay and heat
transfer fouling ; Fault 3 simulates these two faults’ simultaneous evolution ; Faults 4 to
10 correspond to additive faults simulating sensor drifts. Note that faults 1, 2, and 3 are
multiplicative faults, while all the other faults are additive ones. The subscript F indicates
the single faulty variable. The process noises ν1, ν2, ν3 are additive white Gaussian with
zero mean and variances σ2

1 = 0.002, σ2
2 = σ2

3 = 2, respectively, leading to SNR1 = 27dB
and SNR2 = SNR3 = 47.9dB. As examples, we show input signals in Fig.5.3 and output
signals in Fig.5.4, respectively.
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Figure 5.2 – Simulation model of the CSTR process
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Table 5.1 – Notations for CSTR Process

Parameter Description Units
T Reactor temperature K
Tc Coolant temperature K
Ti Flow temperature K
Tcii Coolant flow temperature K
C Concentration in the reactor mol/L
Ci Input flow concentration mol/L
Qc Coolant flow rate L/min
Q Inlet flow rate L/min
V Tank volume L
UA Heat transfer coefficient cal/in/K
Vc Jacket volume L
q0 Pre-exponential factor min−1

∆Hr Heat of reaction cal/mol
φ, φc Fluid density g/L
E/R Activation energy K
Cp,Cpc Fluid heat capacity acl/g/K
ν1,2,3 Process noise dB

Table 5.2 – Description of the faulty scenarios

Fault ID Description Type
F1 β = β0e

−δt Multiplicative
F2 h = h0e

−δt Multiplicative
F3 Fault 1 and 2 Multiplicative
F4 Ci = Ci,0 + δt Additive
F5 Ti = Ti,0 + δt Additive
F6 Tci = Tci,0 + δt Additive
F7 C = C0 + δt Additive
F8 T = T0 + δt Additive
F9 Tc = Tc,0 + δt Additive
F10 Qc = Qc,0 + δt Additive

5.3.2 Fault detection performances

5.3.2.1 Detecting results

We structure the process variables as X = [Ci, Ti, Tci, C, T , Tc,Qc]. For convenience,
the above variables are denoted as x1 to x7, such that X = [x1,x2,x3,x4,x5,x6,x7].
Our proposal, whose scheme is shown in Fig.4.4, is then applied to the data X for the
CSTR case study. For the training procedure, we used one group of fault-free data with
1200 samples (i.e., 1200 minutes) as the fault-free data matrix X∗. Based on X∗, the
optimal region radius was determined as γopt

an = 1.448 and then 224 anchors were generated.
The healthy domain margin was obtained as rL = 2.7 with the given significance level
α = 99.9%. To evaluate the online monitoring performance, we generated 250 groups of
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Figure 5.3 – Healthy input signals of CSTR process
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Figure 5.4 – Healthy output signals of the CSTR process

data for each faulty scenario, where each group contained 1200 samples, and faults were
introduced at t = 200 minutes (the 200th sample). For the EPD-CUSUM calculation, the
tuning parameters were set as ω = 0.99 and UG = 110.

The obtained detection results for all types of faults are illustrated in Fig.5.5. The
left side of these figures are LMD results, and the margin is marked as a horizontal red
dashed line. On the right side of the figures are EPD-CUSUM results, and the control
limit for the decision-making is marked as a horizontal cyan dashed line. For all these
faults, LMD and EPD-CUSUM results increase with time after faults occurrence. Although
false alarms exist in the healthy part of the LMD results, the right figures highlight that
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EPD-CUSUM results can significantly alleviate the false alarm issue by turning incidental
impulse-like detected results into slight fluctuation. Additionally, using the EPD-CUSUM
technique allows to summarize those small continuous deviations in LMD results, producing
growing results with time. It helps to detect incipient faults accurately and shortens the
detection delay. Moreover, due to the cumulative nature of the EPD-CUSUM method,
missed detection can be remarkably avoided.

Furthermore, to highlight the benefit of our proposal, EPD-CUSUM results are compa-
red with other fair literature methods developed for incipient fault detection. These methods
are reported as effective for non-Gaussian distributed data. The comparative methods
are Generalized Canonical Correlation Analysis (GCCA) [27], Canonical Variate Analysis
(CVA) [139], Canonical Variate Dissimilarity Analysis (CVDA) method [142], Principal
component analysis (PCA) [198], Independent component analysis (ICA) [104,192], Partial
least square (PLS) [145,183], One-class Support vector machine (OC-SVM) [93,138,157],
k-centers [201], Auto-encoder (AE) [126, 180], isolation forest (IF) [65, 114, 115] . We
evaluated the detection delay, false alarm probability, detection probability, and AUC
performance for each of them. Due to the large time constant in the CSTR process, the
detection delay is presented in hours. The false alarm and detection probabilities are given
as ratios.

Table 5.3 – Performance of comparative methods for F3 and F5

Method
F3 (Multiplicative) F5 (Additive)

DD (hour) PFA Pd AUC DD(hour) PFA Pd AUC
Proposed 0.930 0.0197 0.9354 0.983 1.300 0.0103 0.9084 0.974
GCCA-T 2

r1 8.330 0.0004 0.5397 0.973 3.660 0.0005 0.7823 0.970
GCCA-T 2

r2 2.930 0.0009 0.8351 0.979 9.130 0.0008 0.4722 0.939
CVA-T 2 3.390 0.0046 0.7743 0.958 2.820 0.0033 0.8290 0.960
CVA-SPE 2.420 0.0053 0.8504 0.977 4.410 0.0050 0.7174 0.963
CVDA 1.540 0.0075 0.9032 0.983 2.500 0.0057 0.84 0.971
PCA-T 2 5.239 0.0025 0.4916 0.854 7.828 0.0028 0.003 0.499
PCA-SPE 3.931 0.0036 0.5062 0.882 2.746 0.0034 0.7833 0.964

ICA 5.024 0.0017 0.4370 0.848 7.955 0.0013 0.0024 0.546
PLS 7.707 0.0014 0.3999 0.881 4.077 0.0012 0.7278 0.966

OC-SVM 0.307 0.4708 0.8305 0.680 0.431 0.4773 0.9071 0.715
k-centers 3.362 0.0242 0.5888 0.782 2.212 0.0243 0.8271 0.901

AE 10.201 0.020 0.0024 0.814 12.930 0 0.0082 0.846
IF 0.382 0.2534 0.8421 0.794 0.347 0.2734 0.3416 0.534

As an example, we show the performance for a multiplicative fault (F3) and additive
one (F5), respectively, in Table 5.3. Note that F3 is the combination of F1 and F2, and F5

is a challenging faulty case in the CSTR case study for detection. The best values of the
reported techniques are highlighted in the table in bold font. In terms of detection delay,
our proposal efficiently detects a fault for F3 in less than 0.93 hours of detection delay
(no more than 56 additional sample points). This result is not the best but is acceptable.
Similarly, the detection delay of the proposed method for F5 is 1.3 hours, which is also
prominent among the reported techniques. GCCA, CVA, PCA, ICA, PLS, k-centers, and
AE are not sensitive enough to incipient fault detection as their detection delay is quite
large. Although OC-SVM and IF methods seem effective in the early detection of incipient
faults, they either suffer from large false alarms probability or low detection probability.
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Figure 5.5 – LMD and EPD-CUSUM results for 10 faults
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Table 5.4 – Average detection performance of comparative methods

Method DD (hours) PFA Pd AUC
Proposed 0.88 0.0128 0.936 0.985
GCCA-T 2

r1 6.34 0.0006 0.6403 0.971
GCCA-T 2

r2 3.733 0.0011 0.798 0.975
CVA-T 2 2.904 0.0051 0.819 0.961
CVA-SPE 2.239 0.0057 0.86 0.977
CVDA 1.414 0.0081 0.9118 0.983
PCA-T 2 6.516 0.0026 0.2315 0.675
PCA-SPE 5.114 0.0032 0.4438 0.819

ICA 6.369 0.0017 0.3365 0.767
PLS 7.973 0.0017 0.4539 0.885

OC-SVM 0.344 0.484 0.792 0.654
k-centers 4.006 0.0257 0.5303 0.752

AE 12.307 0.0002 0.0958 0.762
IF 0.354 0.2562 0.6697 0.707

CVDA shows similar performance as the proposed method but is not as efficient as the
one we proposed.

Regarding false alarms, the GCCA technique is the most reliable for F3 and AE is the
best one for F5. However, these two approaches have low detection probability, meaning
they can not detect incipient faults. As for our proposal, the false alarm probability is
not perfect but acceptable with values lower than 0.0197. Even with the not perfect false
alarm probability, our proposal has the best performance in terms of detection probability
for the two faulty cases. Concerning the AUC criterion, our proposal offers the largest
value for the two cases, which indicates that the proposed method globally outperforms
the other approaches. Moreover, GCCA, CVA, and CVDA also achieve good performance
in these two cases since their AUC values are larger than 0.9.

We also take into account the performance of these reported approaches for other faulty
cases. The detailed results of these approaches are given in Appendix A.2 (Table A.1 for
detection delay, Table A.2 for false alarm probability, Table A.3 for detection probability,
and Table A.4 for AUC). In summary, we calculated the average performance of all the
faulty cases and illustrated them in Table 5.4. The result indicates that our proposal
outperforms the other approaches in terms of global performance. Its detection speed is
not the best but also acceptable among the reported approaches. Therefore our proposal
can offer the best trade-off performance for the CSTR case study compared to the other
techniques.

5.3.2.2 Training efficiency

The evaluation of training efficiency discusses the influence of available training samples
on the method’s performance. In the procedure of healthy domain approximation, two
aspects are potentially affected by the number of training samples : anchor generation and
domain margin selection. In the anchor generation part, the anchor-generation algorithm
is proposed to reduce the redundancy information and extract crucial spatial information
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Figure 5.6 – The accuracy results for different numbers of training samples

of the healthy domain. Therefore, training samples are expected to include as much
useful information as possible instead of redundancy and noise. While in the domain
margin selection, sufficient training samples are necessary to estimate the parameters of
the density model. Based on these two considerations, the relation between the training
samples’ number and the method’s performance is then investigated.

Fig.5.6 exhibits the evolution of accuracy performance along with the change of sample
number. When training samples are insufficient, such as the sample’s number is less than
50, the accuracy performance is poor, lower than 50%. Consequently, when the sample
number increases to 100, the result notably increases and almost reaches 70% accuracy.
The accuracy further increases when 1000 samples are used for training. However, with
the training samples number continually growing from 1000 to 10000, one can notice the
sight performance degeneration, which may result from the introduction of a large number
of irrelevant samples. As a result, sufficient training samples (> 500) are required, but
excess samples (> 1000) will degrade the performance.

5.3.2.3 Parameter tuning

This part addresses the effect of parameters Ug and ω on the detection performance of
the proposed approach. As introduced in section 4, the control limit Ug is selected as the
maximum De value of the healthy samples to eliminate the false alarm. It means that the
control limit Ug is settled when the parameter ω is selected, and we can investigate the
effect of the parameters by only changing the parameter ω.

Fig.5.7 demonstrates the four performance criteria (AUC, detection delay, false alarm
probability, and detection probability) of the proposed method with different ω values and
FNR conditions. The results show that when FNR is large, e.g., FNR> 15dB, selecting a
large ω value is more likely to have high AUC performance, low false alarm probability,
short detection delay, and high detection probability. On the contrary, with noise increase
or fault decrease, e.g., FNR drops to 15dB, small ω values can achieve better AUC and
detection probability performance. In other words, a larger ω value should be considered for
smaller fault severity or stronger noise power. However, if the FNR condition is unknown,

91



which is more common in practice, a middle value of ω is a good choice to achieve excellent
global performance.
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Figure 5.7 – Effect of parameter ω on the performance of the proposed method along
with different FNR conditions

5.3.2.4 Detection capability

This performance analysis focuses on the detection capability for different fault severity.
Therefore, we considered varying faults severity of F5 by changing FNR from −10dB to
20dB and kept all the other operating conditions the same as previously defined. In Fig.5.8,
ROC curves of the EPD-CUSUM index for different FNR settings are displayed to show
the fault detection capability. It can be noticed that once FNR decreases from 20dB to
−10dB (fault severity decreases), the corresponding AUC value decreases and reaches a
low value close to 0.5, leading to the worst detection performance. When FNR is lower
than 5dB, meaning that the fault power is much lower than the noise power, the fault
detection capability of the proposed diagnosis index is weak.

When we focus on the detection probability performance with a low PFA value, corres-
ponding to a practical condition for fault detection, the improvement from our proposal is
the most significant. To further show the benefit of our proposal, we compare the detection
probability of the detection approaches whose average AUC performance is larger than 0.9
in Table 5.4. Our proposal, GCCA with two indexes, CVA with two indexes, and CVDA are
then compared. We consider the case of PFA = 0.01 and show their detection probability
results in Fig.5.9. The results highlight that the proposed method notably outperforms
the other approaches, particularly for incipient faults detection (like FNR < 5dB). Our
proposed methodology offers a high detection sensitivity and efficiency for incipient faults.
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Figure 5.9 – Detection probability performance for different detection approaches, where
PFA = 0.01

5.3.2.5 Detection robustness

Subsequently, different noise and fault severity levels are taken into account in the
simulation to evaluate the performance of our proposal deeply. The goal is then to qualify
the robustness of the proposed fault detection methodology regarding noise. Note that
Gaussian white noise is added to both the training and testing data. With SNR varying
from 0dB to 50dB and SFR varying from −40dB to 40dB, the resulting AUC values are
plotted in Fig.5.10. The results highlight that both factors affect the performance of the
proposed detection method : either the increase of noise power or the decrease of fault
severity leads to low detection performance. However, for the common range of noise levels,
such as from 15dB to 40dB SNR, when the SFR correspondingly decreases from 0dB to
−40dB, the detection performance of the proposed framework is effective since AUC values
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Figure 5.10 – AUC performance for different noise strength and fault severity

in this area are larger than 0.9. In that range, the proposed methodology remains robust
enough.

5.3.2.6 Detection time occurrence efficiency

The detection time of the fault occurrence is important to qualify the efficiency of the
proposal properly. Therefore, this part considers the detection time occurrence efficiency
for varying fault severity. We set the noise with SNR = 20dB and changed the fault
severity (FNR). In a low false alarm condition (PFA = 0.01), this study compares four
approaches : GCCA, CVA, CVDA, and our proposal, as in subsection 5.3.2.4, and evaluates
their detection delay performance. As demonstrated in Fig.5.11, the result illustrates that
our proposal is the most efficient one for its shortest detection delay. The progress of
our approach in terms of detection delay is significant, especially for incipient faults
(FNR< 5dB). The detection delay of the proposed method is almost one hour smaller than
other methods when FNR< 0dB. It indicates that our approach is the only one that can
detect faults in low FNR conditions. With FNR increase (fault severity increase), all these
approaches have shorter detection delay times.

Then, we changed the noise power and fault severity to evaluate the detection delay
efficiency of the proposed method. As in subsection 5.3.2.4, SNR varies from 0dB to 50dB
and SFR vary from −40dB to 20dB. The detection delay is evaluated for each condition,
and the result is illustrated in Fig.5.12. Note that the detection delay is evaluated in hours
since the signals are collected each minute and incipient faults change slowly. We can
notice that the detection delay remains at a low value when SNR is a very high positive
value (i.e., very low noise level) and SFR is a negative very low value (i.e., very high fault
severity). But if the noise dramatically increases (SNR close to zero) and the fault severity
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Figure 5.11 – Detection delay performance for different fault severity
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Figure 5.12 – Detection delay performance for different noise strengths and fault severities

deeply decreases (SFR positive), then the detection delay will exponentially increase and
its value will be very high. Indeed, the detection occurrence is efficient with our proposal.
The noise influence has been widely reduced by using our proposal, but it is still remaining
and cannot be completely removed. This reduction seems sufficient enough to consider
this proposal for an engineering application study.
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5.3.3 Fault isolation performance

5.3.3.1 Isolation efficiency of the LMD-based contribution plot method

Figure 5.13 – Faulty signal of 4th sensor with 10dB FNR.

In order to properly evaluate the isolation efficiency of the LMD-based contribution
plot method (presented in section 4.4), this subsection only considers the CSTR data with
addictive faults (F4 to F10) to meet the addictive assumption of this approach. Therefore,
we generated 1 healthy and 7 faulty cases with SNR=30dB and FNR=20dB., i.e., F4 to
F10. As introduced in Table. 5.2, each faulty case contains a single faulty variable, e.g., F4

indicates a fault occurring at x1, and so on. Fig.5.13 shows an example of a faulty signal
at variable x4 (F7) with a fault introduced from the 1000th sample. As marked by the
dotted yellow box, the elevated tendency of the faulty signal is slight and almost invisible
at its early stage. The fault contribution of each variable for different cases was calculated
and shown in Fig. 5.14. The results are divided into 8 groups, the healthy one and 7 faulty
ones named F4 to F10. For each group, the first bar stands for the fault contribution of
the first variable, and so on. In the healthy group, all contribution values are close and
lower than 0.15, while the contribution of the true faulty variable is always the largest in
each faulty group. For example, in group F4, whose true faulty variable is the first one, the
fault contribution of the first variable has the largest value of 0.22. Therefore, the faulty
variable x1 can be correctly determined by applying the proposed fault isolation method.

C
on
tri
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n

Figure 5.14 – Fault contribution result of each variable for 1 healthy and 7 faulty cases
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To evaluate the method’s reliability and discrimination ability among different faulty
variables, we repeated the fault isolation experiment 1000 times for each faulty case and
calculated the confusion matrix, which is shown in Fig.5.15. The result highlights that
our isolation method achieves 100% accuracy for all faulty cases under the 20dB FNR
condition. It means that if the noise power is not so close to the fault severity, we can
accurately perform the fault isolation with excellent reliability.
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Figure 5.15 – Confusion matrix of the proposed method for FNR=20dB
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Figure 5.16 – Confusion matrix of the proposed method for FNR=0dB

Despite the above promising isolation result, observing the contribution values of all
faulty cases, we notice that the results of F7 and F10 seem less significant than others, which
implies that these two cases are most challenging for the isolation procedure. Therefore,
to study the impact of fault severity on the isolation procedure, the accuracy performance
was further evaluated for FNR=0dB. Fig.5.16 exhibits the confusion matrix under this
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condition, showing that the accuracy of F7 and F10 cases significantly decreases. Case F7

is confused with F4 in 12.5% of realizations and confused with F6 in 7.1% of realizations.
Although the accuracy for F10 is slightly better than for F7, there are 5.1% of confusing
results with F6. Besides, the accuracy for F4 and F9 also slightly decrease (at least 99.8%
of accuracy), but they are still at a very high level. Our isolation procedure can then be
considered accurate enough to identify faulty variable correctly.

5.3.3.2 Single fault isolation efficiency of the reconstruction based contribution
using LMD
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Figure 5.17 – Reconstruction-based contribution of the four RBC approaches for x4

faulty case in 10dB FNR condition.

This subsection investigates the isolation performance of the proposed LMD-based
RBC method (see Fig.4.18) for single fault situations. The fault number is 1, and there are
7 candidates in the fault direction set. Let us consider an incipient fault with 10dB FNR
occurring at the 4th sensor (x4). To highlight the advantage of using LMD in the RBC
framework, we compare it with other traditional RBC approaches based on the combined
index of PCA (PCA-RBC) [3], conventional Mahalanobis distance (MD-RBC) [85], and
augmented Mahalanobis distance (AMD-RBC) [85]. As an example, Fig.5.17 exhibits the
reconstruction-based contribution results of the four methods for the 1100th sample. In
this example, the LMD-RBC method yields the largest contribution result corresponding
to the variable x4. However, the largest contribution result of PCA-RBC, MD-RBC, and
AMD-RBC approaches correspond to variables x6, x1, and x1, respectively. According to
the isolation strategy of the RBC methods, the fault variable is identified as the one having
the largest reconstruction contribution value. Therefore, only the LMD-RBC method
successfully isolates the faulty variable.

Then, we investigate the discrimination ability of the LMD-RBC approach among
different faulty variables. The evaluated confusion matrix under the 20dB FNR condition
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Figure 5.18 – Confusion matrix of the LMD-RBC method for FNR=20dB
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Figure 5.19 – Confusion matrix of the LMD-RBC method for FNR=0dB

is shown in Fig.5.18. It indicates that the LMD-RBC approach can distinguish all faulty
cases in 20dB FNR. We further decreased the fault severity to 0db FNR and evaluated
the confusion matrix of this approach. As illustrated in Fig.5.19, the accuracy for case
F7 significantly decreases to 63%. This approach confuses case F7 with F6 in 14.5% of
realizations and confuses it with F4 in 9% of realizations. Besides, the accuracy for the cases
F4 and F10 also decrease slightly but maintains a high level (larger than 94%). Although
fault isolation of low fault severity is still a great challenge for the LMD-RBC approach, it
is generally effective in identifying single fault variables.

The previous performance evaluation shows the LMD-based contribution plot and
LMD-RBC methods are effective for single fault isolation. However, the comprehensive
evaluation of fault isolation approaches concerning varying fault severity is necessary
to reveal methods’ isolation efficiency. We compare different fault isolation approaches
to highlight the advantage of our proposal using LMD in the fault isolation task. More
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specifically, we consider two divergence-based methods (KLD and JSD), three RBC
methods (MD-RBC, AMD-RBC, and PCA-RBC), and our two proposals : LMD-based
contribution plot (LMD-Con), and RBC method based on LMD (LMD-RBC). In this test,
a fault occurred in an arbitrary single variable with uniform probability, i.e., 1/7 for each
faulty case. For different FNR conditions, the test was repeated 500 times to obtain stable
results.

Figure 5.20 – Total isolation accuracy performance of different methods along with
varying FNR values

Fig.5.20 displays the total accuracy of 7 methods for the 7 considered faulty cases
along with varying FNR values. The result shows that the two LMD-based approaches
have similar performance, and they outperform others. For FNR > 3dB, the LMD-Con
method can achieve 100% accuracy, and the accuracy of LMD-RBC approach is round 99%.
Although the accuracy of the two LMD-based methods starts to decrease when FNR< 3dB,
their high accuracy performance is satisfying for FNR larger than −5dB. AMD-RBC
approach also has prominent performance close to that of the two LMD-based approaches.
MD-RBC method seems not sensitive enough to low fault severity, resulting in slightly
worse performance for FNR< 5dB. It can be noticed that the AMD-RBC and MD-RBC
methods have the same high accuracy as the LMD-based methods when FNR> 8dB,
while their performance significantly decline if tiny fault severities are considered like for
FNR< 5dB. Although both LMD and AMD techniques originate from the Mahalanobis
distance, LMD’s superior performance indicates that the local change of the signal features
seems more helpful for analyzing the characteristic of incipient faults. According to these
comparison results, the PCA-RBC, JSD, and KLD approaches are all ineffective for fault
isolation of the CSTR process. The better performance of the MD-RBC method than that
of the PCA-RBC method implies that the space partition of PCA leads to the loss of faulty
information and, therefore, worse performance for fault isolation. The poor performance
of divergence-based approaches may result from the inaccuracy estimation of samples’
probability density.
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Performance evaluation of fault diagnosis approaches based on process data

The results of Fig.5.20 also indicate that 2dB to 8dB FNR is a critical range of fault
amplitude change. Below 2dB, the fault’s symptom is too slight and thus is tricky to
diagnose, while above 8dB, a fault is recognizable. In this critical range, the accuracy
performances of all the considered methods are all degraded with FNR decreasing, where the
PCA-RBC, KLD, and JSD methods have the most conspicuous performance degeneration
(about 30%). Although the two LMD-based approaches, AMD-RBC, and MD-RBC methods
have good performance in large FNR conditions, the accuracy of the AMD-RBC and
MD-RBC methods is reduced by 10% and 20% in this critical range, respectively, while
the LMD methods are almost unchanged. The significant performance difference in the
critical range shows that the two proposed LMD-based methods are more sensitive to
incipient faults than other approaches.

To appreciate the limitation of the mentioned methods, we display the obtained
accuracy results of each faulty case for FNR=0dB in Fig.5.21. Consistent with the result of
Figure 5.16, F7 and F10 are the two most difficult cases to isolate for all methods. In other
words, the main limitation of these methods lies in the relatively weak isolation ability for
F7 and F10 cases. For example, the worse total performance of the AMD-RBC and MD-
RBC methods compared to LMD-based methods is mainly caused by their low accuracy
performance for the two challenging cases. Conversely, although the total performance of
the PCA-RBC method is poor, its accuracy for F5 and F6 cases remains promising.
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Figure 5.21 – Accuracy of different methods for each faulty case with FNR=0dB

5.3.3.3 Multiple fault isolation efficiency of the reconstruction based contri-
bution using LMD

Multiple faults are common but challenging for diagnosis, which needs careful inves-
tigation. To validate the effectiveness of the LMD-RBC method for multiple faults, we
consider two faulty variables, x4 and x7, occurring in the CSTR system. In this case, the
total number of candidate fault directions is 21 (the combinations of any two variables
from seven). After applying the proposed and comparative methods, their reconstruction
contribution values for the 1100th sample were obtained and illustrated in Fig.5.22. In
the figure, the elements of a tuple indicate that the two faulty variables, e.g., (4, 7) means
the 4th and 7th variables are faulty. For the LMD-RBC method, the largest contribution
value is located at the situation (4, 7), indicating that this method correctly identifies the
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Figure 5.22 – Reconstruction based contribution of the four RBC approaches for x4 and
x7 faulty case in 10dB FNR condition.

two faulty variables x4 and x7. Furthermore, the largest contribution value is distinct
compared to other contribution values, meaning the risk of false isolating is low. As for
other diagnosis methods, none of them can identify the true faulty variables in this case,
where the contribution values of the PCA-RBC method are nearly random values and
helpless for fault isolation.

Subsequently, we comprehensively evaluate the performance by considering multiple
faulty variables and different FNR conditions. Since the LMD base contribution plot
method, KLD, and JSD methods are not available for multiple faulty cases, we only
consider four RBC-based approaches : LMD-RBC, MD-RBC, AMD-RBC, and PCA-RBC.
The experiment was repeated 500 times to obtain a reliable result. As shown in Fig.5.23,the
LMD-RBC method outperforms the other approaches for low fault severity, and its accuracy
result is about 20% higher than the second good one for −10dB FNR. Similar to single
fault cases, AMD-RBC and MD-RBC methods are worse than the LMD-RBC method
in low fault severity conditions, but they are all accurate if a fault is large (FNR> 5dB).
The PCA-RBC is still unsatisfying for multiple faults isolation. The comparison between
Fig.5.20 and Fig.5.23 shows that the accuracy performance for multiple faults is a little
worse than that for single fault, which indicates that the multiple faults cases are more
challenging. Obviously, the difficulty of the isolation task increases with the number of
faulty variables, and the accuracy performance dramatically degenerates in this case
because of the expanding candidate number of fault directions. However, the LMD-RBC
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Figure 5.23 – Average isolation accuracy performance of the four RBC approaches for
two sensors faults

approach has higher accuracy for single and multiple faults cases than the others. There is
only a 5% accuracy decrease of the LMD-RBC approach for multiple faults cases compared
to the single fault cases. Therefore, the proposed LMD-RBC approach is more powerful
and more accurate for faulty variable isolation tasks.

5.3.4 Fault severity estimation performances

5.3.4.1 Fault’s increasing rate estimation efficiency

After the isolation of the faulty variable, the fault severity estimation procedure can
start based on the fault detection and isolation results obtained from the previous steps.
As introduced in the last section, there are two factors that can be considered to estimate
fault severity : fault’s increasing rate and fault amplitude. This subsection first investigates
the developed method that aims to estimate the fault’s increasing rate (presented in section
4.5). We consider a fault introduced in the 4th variable with SNR=30dB (given noise) and
a constant increasing rate δ = 0.15. The fault occurs at 1000 min (1000th sample). Since
the estimation performance depends on the isolation accuracy, to individually discuss the
performance of estimation procedures, we use the true faulty variable for fault severity
estimation. This operation is not necessary for practical applications but can reveal the
ideal estimation performance of the proposed methods and offer a uniform condition for
comparison.

Fig.5.24 shows the LMD results of observation samples. It can be noticed that LMD
results grow with time after the fault occurrence. The increasing trend of the LMD results
not only indicates the occurrence of a fault but also contains its evolution information.Based
on the fault growing tendency, we apply our method to faulty samples to estimate the
value of increasing rate δ. The fault severity can then be assessed according to the value
of δ.
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Figure 5.24 – Example of LMD result with SNR=30dB and FNR=20dB. The fault
occurs at 1000 min and affects the 4th variable
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Figure 5.25 – Estimation error of the true increasing rate and the estimated value along
with time when the increasing rate is constant

1000 1050 1100 1150 1200
Time (min)

0

0.02

0.04

0.06

Figure 5.26 – Estimation error of the true increasing rate and the estimated value along
with time when the increasing rate is not constant

Fig.5.25 exhibits the error of the true increasing rate and the estimated value along
with time. The result shows that the estimated value is close to the true value with a small
fluctuation. In this case, the proposed method based on LMD can accurately estimate
the increasing rate. The estimated error mainly caused by noise is small. When the fault
assumption is satisfied, i.e., the fault’s increasing rate is a constant, the proposed method
estimates the fault severity accurately. Then, we consider an increasing rate that grows
with time, such that δ = 0.05 + 0.001t. The estimated error of the proposed method for
this test is illustrated in Fig.5.26. It shows that when the assumption is not satisfied, the
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Performance evaluation of fault diagnosis approaches based on process data

estimated error is significantly large and grows with time. Indeed, the increasing rate grows
faster and faster over time, which notably deviates from our assumption. However, at the
first beginning of the fault, such as from 0 to 30 minutes, the error is smaller than 0.005,
and the estimated result is still accurate enough. When the true situation of increasing
rate deviates significantly from the assumption, the estimated value is always larger
than the true value, which is called over-estimation. For the industrial scenario, slightly
over-estimated results are more meaningful than under-estimated results (estimated value
smaller than the true one) since slightly exaggerated estimated results allow operators to
avoid accidents in advance.

Next, we investigate the estimation performance of the proposed method for different
increasing rate. In this test, the increasing rate is constant but was given different values.
Fig.5.27 demonstrates the relative error of the proposed method for varying δ. Basically, as δ
value increases from 4×10−4, the relative error gradually decreases and stabilizes at a small
value close to 1%. It means that the error is approximately equal to 1% of the true increasing
rate. When δ decreases to an extremely small value, such as 2 × 10−4 < δ < 8 × 10−4,
the result is under-estimated. While for a larger δ value, the result is over-estimated. In
summary, the proposed method has an accurate estimation performance even for tiny fault
severity.
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Figure 5.27 – Relative error versus the true value δ

Further, we study the methods’ estimation performance for faults occurring at different
variables and varying fault severity. Fig.5.28 shows relative errors for all faulty cases with
SNR=30dB and varying FNR from −10dB to 20dB. It can be noticed that all faulty cases
have similar evolution tendencies : as fault severity increase (FNR increase), the relative
error decrease from a positive (over-estimation) and then increase to a negative value
(under-estimation). Remarkably, consistent with fault isolation, F7 and F10 are also the
two most challenging cases for fault severity estimation : they have the worst estimation
performance than the other faulty cases.

Finally, we compare the estimation performance of the proposed method with other
approaches by evaluating the average relative error over all faulty cases. This compara-
tive study considers the LMD-RBC, PCA-RBC, MD-RBC, AMD-RBC, KLD and JSD
approaches. Since these approaches aim to estimate the fault amplitude, we convert the es-
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Figure 5.28 – Relative errors of the proposed method for the 7 faulty cases

timated fault amplitude into the corresponding fault increasing rate. Then the performance
comparison can be performed fairly. The relative error result is illustrated in Fig.5.29.
It indicates that the proposed method achieves the best estimation performance among
these methods. The average relative error of the proposed method is less than 2%, and
it decreases as FNR increases. Four RBC-based approaches have outstanding estimation
performance, where the RBC method using the LMD index outperforms the other RBC
approaches. However, KLD and JSD methods seem not accurate enough. Their average
relative error is very large, especially for small fault severity.
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Figure 5.29 – Average relative errors of all the reported method.

5.3.4.2 Fault amplitude estimation efficiency

As the second way to assess the fault severity, fault amplitude is usually estimated to
show faults’ evolution tendency. Fault amplitude is more meaningful in assessing fault
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severity than fault increasing rate since it reflects not only the increasing rate δ but also the
deviation level. Unlike the increasing rate estimation, the estimation of fault amplitudes
does not require the assumption of fault behavior, but it is usually a more challenging
task. Previously, we proposed the LMD-RBC method that can simultaneously isolate the
faulty variable and estimates their amplitude. Therefore, this subsection studies the fault
amplitude estimation efficiency of the LMD-RBC method (introduced in section 4.6) for
both single and multiple faults cases. We also compare the LMD-RBC method with other
approaches based on the RBC framework to highlight the advantages of the proposed
method. KLD and JSD approaches are not taken into account for their poor estimation
performance as shown in the last subsection.
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Figure 5.30 – Actual fault component and the estimated fault amplitude of the four
RBC approaches for F7 faulty case (a fault occurs in variable x4) in 10dB FNR condition.

For the single fault situation, we consider the most challenging faulty case F7. The
estimation results of all the methods based on the RBC framework for this case are shown
in Fig.5.30. It highlights that the proposed LMD-RBC method outperforms others since its
estimated results are closest to the actual value with only small variations. The evolution
of the LMD-RBC result is slower than other methods, which mainly results from the
exponential smoothing operation. Similarly, the AMD-RBC method using augmentation
technique on adjacent samples also obtains a stable estimation result, even though its
variations are slightly larger than LMD-RBC’s. The error of PCA-RBC and MD-RBC
methods are dramatic, and therefore their fault estimation performances are disappointing.

In order to deeply discuss the estimation performance for case F7 with different fault
severity, we calculated another typical error criterion, the mean square error (MSE), and
compared the result of the proposed method with other RBC-based ones. For different
FNR conditions, we repeated the test 500 times to obtain stable results. Fig.5.31 displays
the MSE results in the case of F7 for all the considered techniques. It highlights that
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Figure 5.31 – Mean squared error for different methods in the case of F7 (a fault occurs
in variable x4)

the LMD-RBC method always achieves minimal error for all FNR conditions. Although
the AMD-RBC method also has pronounced estimation performance, its fault severity
estimation capability is significantly weaker than LMD-RBC. MD-RBC and PCA-RBC
methods are similar and much worse than LMD-RBC approach. Therefore, the LMD-RBC
method offers an accurate fault amplitude estimation solution for incipient faults.
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Figure 5.32 – Average relative error of the four RBC approaches for single fault

The comprehensive performance evaluation for different fault severity is then considered.
We calculated the average relative error for all the estimation approaches and shown in
Fig.5.32. The proposed method also achieves the best performance in the fault amplitude
estimation task for its lowest relative error. According to the results, the absolute estimation
error of the LMD-RBC method is less than 3% of the actual fault amplitude, which means
that the estimated value is very close to the actual value, and the bias is insignificant.
Indeed, for severe faults, such as 5 to 10dB FNR, the performances of LMD-RBC and
AMD-RBC methods are nearly equal. While, for extremely tiny faults, such as −10 to
−5dB FNR, the LMD method is the most reliable among the four approaches.

Multiple faults are common but challenging for diagnosis, which needs careful inves-
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Figure 5.33 – Actual fault component and the estimated fault amplitude of the four
RBC approaches for faults occurring in variables x4 and x7 in 10dB FNR conditions

tigation. The proposed LMD-RBC solution can be used for that purpose. With no loss
of generality and in order to highlight the efficiency of the LMD-RBC approach with a
reduced degree of complexity, we show this effectiveness for two faulty variables. The
following example considers faults occurring at x4 and x7 in the CSTR system. In this
case, the total number of candidate fault directions is 21. After applying the proposed
and comparative methods, The estimated results are demonstrated in Fig.5.33, where
the LMD-RBC method accurately estimated the amplitudes of the two faults with a
minor bias. Although the estimated result of the AMD-RBC method is promising, the
results’ fluctuations are significant, especially for variable x7. The PCA-RBC and MD-RBC
methods are inaccurate for fault amplitude estimation since their estimation error are
enormous.

Then, we investigate the estimation efficiency of different RBC-based approaches
concerning varying fault severity. To that end, we evaluate the average relative error of
the four RBC approaches for two faulty situations. As shown in Fig.5.34, the results again
validate the high accuracy of the proposed method for fault amplitude estimation. The
similar results of the single fault and multiple faults cases given in Fig.5.34 and Fig.5.32,
respectively, show that the number of faulty variables has less influence on the estimation
procedure.
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Figure 5.34 – Average relative error of the four RBC approaches for two faults

5.4 Feature efficiency evaluation based on bearing data

The last section demonstrated the specially designed fault diagnosis methods based on
LMD. Nevertheless, LMD can also be used as a general feature for fault detection. Fault
detection schemes using statistical feature extraction approaches and probability based
distance are essential for fault detection. This section aims to discuss the feature extraction
efficiency of LMD by considering the bearing data application. This study compares
different statistical features, such as Local Mahalanobis distance, principal component
analysis, kernel principal component analysis, and independent component analysis. For
each, we evaluate and compare the capability of feature analysis using Kullback-Leibler
divergence, Jensen-Shannon divergence, Wasserstein distance, and Kolmogorov Smirnov
distance.

5.4.1 Case Western Reserve University Bearing Data

The Case Western Reserve University (CWRU) bearing data center published a
standard bearing database based on a reliance electric motor to provide publicly available
data for assessing the performance of bearing fault diagnosis approaches [118]. As shown
in Fig.5.35, the experimental set-up of the CWRU data set consists of a reliance electric
motor, a torque transducer/encoder (center), a dynamometer, and control electronics.
Vibration signals were collected via accelerometers attached to the drive end and fan end
of the motor housing, respectively. In the experiment, faulty bearings with different fault
diameters ranging from 0.007 inches to 0.028 inches were reinstalled into the test motor for
both fan and drive end. The fault types include inner race fault, ball fault, and three outer
race faults located at centered, orthogonal, and opposite positions, respectively. Meanwhile,
different motor loads from 0 to 3 horsepower (ph), which corresponds to the motor speeds
of 1797 to 1720 RPM, were also considered in the experiment.

The comparative study uses the first 2000 healthy drive end and fan end signals under
the 0 hp motor load condition as the reference data, shown in Fig.5.36 as an example, to
determine the healthy models of PCA, KPCA, ICA, and LMD methods. For the KPCA
technique, we used the Radial Basis Function (RBF) kernel and optimized its performance
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Feature efficiency evaluation based on bearing data

Figure 5.35 – CWRU bearing data experimental set-up.

using a cross-validation approach [131]. Then, the pre-fitted models of different approaches
were reused to process the test data. As a reminder, the detection scheme (Fig. 4.12) was
shown in subsection 4.3.3.
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Figure 5.36 – The drive end (upper) and fan end (lower) healthy signals under the 0 hp
motor load condition.

In the bearing fault detection procedure, we perform technical combinations of different
feature extraction approaches and probability based distances on the vibration signal,
where every 2000 data points were taken from the raw signal without overlapping as a
testing sample. In this study, we only consider ten faulty cases with the smallest fault
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diameter, detailed in Table.5.5, to evaluate the detection performance for tiny faults.

Table 5.5 – Detailed information of reference and ten faulty cases

ID Fault type
Fault Load Diameter Frequency

Location (HP) (inches) (samples/sec)
Ref Healthy - 0 - 12000
F1 Inner race Drive 0 0.007 12000
F2 Ball Drive 0 0.007 12000
F3 Outer race (centered) Drive 0 0.007 12000
F4 Outer race (orthogonal) Drive 0 0.007 12000
F5 Outer race (opposite) Drive 0 0.007 12000
F6 Inner race Fan 0 0.007 12000
F7 Ball Fan 0 0.007 12000
F8 Outer race (centered) Fan 0 0.007 12000
F9 Outer race (orthogonal) Fan 0 0.007 12000
F10 Outer race (opposite) Fan 0 0.007 12000

5.4.2 Detection capability

In this experiment, we evaluate the detection capability of different technical combina-
tions. Note that both the healthy reference data and faulty data are collected under the
0 hp motor load condition. The Area Under the receiver operating characteristic Curve
(AUC) was used to summarize the global detection capability of different combinations
since it is not affected by the choice of the threshold value and therefore is fair for perfor-
mance comparison. As shown in Table.5.6, most technical combinations achieve perfect
detection performance in this study since their AUC values reach the maximum. Note that
the bold values in the table indicate the lowest AUC value. The unsatisfied results are
the PCA-based and KPCA-based approaches for F7 and F9 cases corresponding to the
ball fault of the fan end and the outer race fault of the fan end at the opposite position,
respectively. Therefore, these two faulty cases seem more trick for detection compared to
others. On the other hand, LMD and ICA approaches always have superior performance for
all faulty cases indicating that they effectively extract the crucial features from vibration
signals.

Table 5.6 – The AUC values of different combinations for ten faulty cases

ID
LMD PCA KPCA ICA

Dw Dkl Djs Dks Dw Dkl Djs Dks Dw Dkl Djs Dks Dw Dkl Djs Dks

F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F7 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.93 0.98 0.98 0.98 0.93 1.00 1.00 1.00 1.00
F8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F9 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98 1.00 0.98 0.98 0.98 1.00 1.00 1.00 1.00
F10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

Fig.5.37, as an example, shows the detection outcomes of using the four feature
extraction techniques combined with the Wasserstein distance for the F7 case. In this
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Figure 5.37 – The detection outcomes of the four combinations for F7 case : LMD-Dw ;
PCA-Dw ; KPCA-Dw ; ICA-Dw.

result, LMD and ICA-based combinations can totally distinguish healthy and faulty
samples, while the PCA and KPCA-based combinations partly confuse the two cases.
Moreover, the outcomes of LMD-based combinations for faulty samples are much more
distinct than ICA-based combinations.

5.4.3 Detection sensitivity

Although the arbitrary combination of feature extraction techniques and feature analysis
tools has excellent performance for bearing fault detection, their limitation of detection
capability is still unknown. The detection performance naturally degenerates with the fault
severity decrease, such as a smaller fault diameter. Since the CWRU bearing data does
not contain fault diameters smaller than 0.007 inches, we further evaluate the detection
sensitivity of approaches to reveal their potential detection capability for tiny faults.

Table 5.7 – The sensitivity values of different combinations for ten faulty cases

ID
LMD PCA KPCA ICA

Dw Dkl Djs Dks Dw Dkl Djs Dks Dw Dkl Djs Dks Dw Dkl Djs Dks

F1 282.86 33.94 22.92 19.67 29.78 45.71 44.41 9.96 24.76 46.22 44.40 9.70 25.62 47.91 31.62 8.56
F2 26.68 19.55 16.32 7.63 4.58 7.73 7.56 3.04 4.43 7.66 7.31 2.91 6.47 10.52 8.78 2.40
F3 476.42 33.41 25.44 18.41 36.58 32.43 23.56 11.65 17.73 31.40 22.63 10.16 35.03 29.59 20.88 8.41
F4 755.94 31.79 24.84 18.49 60.96 61.13 41.36 13.85 33.12 74.37 49.01 13.47 21.87 30.12 21.84 6.69
F5 115.05 30.23 22.85 8.89 11.35 12.86 13.60 5.07 9.37 13.38 13.81 5.05 7.71 19.31 13.22 3.37
F6 118.62 28.99 23.10 10.24 15.45 21.56 16.64 5.67 12.96 21.87 16.59 5.57 26.24 27.21 19.75 7.78
F7 24.24 21.55 14.85 4.25 3.39 2.89 3.22 0.97 2.92 2.98 3.24 0.94 6.32 14.90 10.91 4.59
F8 190.67 30.66 23.89 10.97 35.87 27.04 25.93 8.03 22.09 26.34 24.39 7.60 37.56 50.42 30.47 7.54
F9 7.73 10.42 8.13 2.79 1.25 0.83 1.06 1.10 1.21 0.83 1.03 1.10 4.82 5.86 5.07 3.63
F10 23.35 17.63 14.73 7.03 2.30 3.44 3.08 1.56 2.19 3.27 2.94 1.51 8.05 12.02 9.16 5.56

The detection sensitivity values of different combinations are shown in Table.5.7, where
the bold values correspond to the highest sensitivity value leading to the best detection
performance. The result shows that the sensitivity value of the combinations using the
LMD feature is significantly larger than the combination using other feature extraction
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tools. Healthy and faulty samples can be effectively distinguished in the LMD feature
space. Despite the effectiveness of the LMD feature, different analysis tools can lead to
diverse detection performance, where the Wasserstein distance has a higher sensitivity
value than the other three distances. However, the superiority of Wasserstein distance
does not exist when it combines with PCA, KPCA, or ICA features. In other words, a
proper choice of combination of features extraction approach and feature analysis tool
is essential to achieve a promising detection performance. In addition, the performances
of two entropy-based methods, namely Kullback-Leibler divergence and Jensen-Shannon
divergence, are similar, and they outperform the Kolmogorov Smirnov distance.

5.4.4 Robustness to non-stationary operating conditions

In the previous experiments, both the reference and test data were collected under
the 0 hp motor load condition without concerning the effectiveness for different operating
conditions. The change of operating conditions may lead to a false detection issue when the
reference data only consists of a single operating condition. This experiment investigates
the robustness of different combinations for non-stationary operating conditions.

Table 5.8 – The AUC values of different combinations for healthy signals under different
operating conditions

Load (ph)
LMD PCA KPCA ICA

Dw Dkl Djs Dks Dw Dkl Djs Dks Dw Dkl Djs Dks Dw Dkl Djs Dks

0 0.52 0.50 0.49 0.49 0.43 0.45 0.45 0.46 0.43 0.45 0.45 0.46 0.44 0.48 0.47 0.45
1 0.24 0.17 0.23 0.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.91 0.92 0.94
2 0.16 0.12 0.18 0.39 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.98 0.99 0.97
3 0.79 0.55 0.57 0.62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.77 0.89 0.89 0.86
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Figure 5.38 – The detection outcomes of the four combinations for healthy signals with
1 ph motor load : LMD-Dks ; PCA-Dks ; KPCA-Dks ; ICA-Dks.

To that end, we used healthy data under the 0 hp motor load condition as the reference
samples and performed fault detection approaches on other healthy data with different
motor loads. A robust fault detection approach is expected to produce consistent outcomes
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Conclusion

for healthy data regardless of operating conditions. Accordingly, the AUC value between
the reference and testing samples should be close to 0.5. Table.5.8 gives the AUC values of
different combinations for varying motor loads. In this table, we highlight the results closet
to 0.5 in bold. The result demonstrates that approaches using PCA and KPCA features
have higher AUC values, inferring that these approaches easily cause a false detection issue
when the operating condition changes. Similarly, fault detection methods based on the
ICA feature also suffers from potential false detection issue though their AUC values are
slightly smaller than PCA and KPCA. Conversely, the AUC values of the approaches using
the LMD feature are much close to 0.5, which illustrates that their detection outcomes are
consistent for healthy data coming from diverse conditions.

This performance is further confirmed in Fig.5.38, which illustrates the detection
outcomes of the four feature extraction techniques combined with the Kolmogorov Smirnov
distance for the healthy signal with 1 ph motor load. Therefore the robustness of the LMD
technique remarkably outperforms other feature extraction approaches.

5.5 Conclusion

This chapter focus on the efficiency of the proposed fault diagnosis approaches based
on local Mahalanobis distance and the efficiency of this diagnosis index as a feature.
To comprehensively evaluate methods’ efficiency, we first introduce different kinds of
evaluation criteria. Then based on the CSTR process data from industrial scenarios, we
evaluate the efficiency of our fault diagnosis proposal in three diagnosis tasks : fault
detection, faulty variable isolation, and fault severity estimation.

The performance analysis shows that the proposed fault detection method based on
LMD is effective for data without any distribution-type assumption. The proposal is robust
to noise influence and achieves pronounced performances in incipient fault detection (high
sensitivity to incipient faults). Comparing the two diagnostic strategies using LMD alone
and combining LMD with the EPD-CUSUM technique, we found that EPD-CUSUM helps
to improve incipient fault detection capability significantly. Compared to other well-tuned
and efficient state-of-the-art methods, the detection capability of our proposal outperforms
these techniques in terms of false alarm probability, detection probability, detection delay,
and AUC.

Concerning the isolation efficiency, the two proposed solutions based on LMD also
achieve state-of-the-art performance. For single fault cases, the LMD-based contribution
plot approach outperforms the other comparative methods, including the approaches based
on Kullback-Leibler divergence and Jensen-Shannon divergence ; RBC methods based on
LMD ; principal component analysis ; and Mahalanobis distance. The total accuracy of this
approach reaches 100% for incipient faults with FNR larger than 5 dB. The LMD-based
contribution plot approach is more sensitive to incipient faults than other approaches.
Although the performance of the LMD-based contribution plot approach is slightly better
than that of LMD-RBC method in single fault cases, this method is not developed for
multiple faults cases. In contrast, the LMD-RBC method is available for both single and
multiple faults cases. When multiple faults occur simultaneously, the isolation accuracy
of all the reported methods decreases compared to the single fault case. However, the
comparative study indicates that the LMD-RBC approach significantly outperforms other
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RBC methods, especially for incipient fault isolation.

For the fault severity estimation task, we proposed two LMD-based solutions for
estimating the fault’s increasing rate and fault amplitude. The first proposal makes an
assumption that the fault’s evolution is a first-order function of time. Therefore, we
investigate the estimation performance of this approach by considering a constant and
dynamic increasing rate, respectively. The result indicates that when the assumption is
satisfied, the estimation error is small, even for tiny faults. If the increasing rate is not
constant (assumption is not satisfied), the error is small at the beginning of a fault but
increases significantly with time. The case study on the CSTR process indicates that
the average relative error of the estimation method is less than 5%, and its performance
outperforms other approaches.

The second solution of fault severity estimation is based on the RBC framework using
LMD, and it aims to estimate fault amplitude. This approach effectively estimates single
and multiple faults. The average estimation error of the proposed method is less than
3% of the actual fault amplitude, showing promising performance in the fault estimation
task. Compared with the traditional RBC approaches, the new RBC-based proposal offers
significant progress in both faulty variables isolation and fault amplitude estimation tasks.

This chapter also investigates the efficiency of LMD as a statistical feature extraction
tool by using the bearing data. The fault detection scheme extracts the LMD feature
and uses probability-based distance as an analysis tool. Overall, this fault detection
scheme achieves a reliable performance for bearing fault detection tasks, even for slight
fault diameters. The comparative study on the CWRU bearing data indicates that the
LMD technique, as a feature extraction approach, is more effective and robust than the
PCA, KPCA, and ICA techniques. Remarkably, the combination of LMD and Wasserstein
distance achieves the best sensitivity performance in this study. Regardless of the probability
based distance, detection approaches using the LMD feature have strong robustness to
non-stationary operating conditions.

In summary, the performance analysis for the considered industrial applications indi-
cates that LMD has numerous notable advantages, such as high sensitivity to incipient
faults, robustness to noise and outliers, and distribution-free assumption. Fault diagnosis
approaches developed on the LMD technique can achieve state-of-the-art performance
in fault detection, faulty variable, and fault severity estimation tasks. Besides, LMD can
also be used as an efficient feature for fault detection. It can provide the representative
information of a faulty behavior and allows accurate detection by subsequently using
probability based distance.
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6
Conclusion and perspectives

6.1 Conclusion of the study

Fault diagnosis and prognosis play a key role in modern complex systems for increa-
sing requirements on reliability, availability, maintainability, and safety. Fault diagnosis
techniques can save human lives and significantly increase productivity and efficiency.
Therefore, more and more fault diagnosis techniques are applied to different industrial sce-
narios, making it as a hot topic in the signal processing domain. Generally, fault diagnosis
problem is divided into three tasks, namely fault detection, faulty sources isolation, and
fault severity estimation, according to different golds of applications. In the last decade,
a large number of approaches have been proposed for each task, and they have achieved
significant improvement. However, these problems still face numerous challenges, especially
in industrial applications, such as the lack of sufficient faulty data for training, ineffecti-
veness to complex distributed data, low sensitivity to incipient faults, and interference
of noise and outliers. Recently, one-class classification techniques, aiming to identify one
class of samples, tend to become promising solutions for fault diagnosis in industrial
applications, particularly for the challenging task of incipient fault detection when low
faulty information are available.

One-class classification techniques aim to determine a minimum region based on the
given healthy samples to distinguish between faulty and healthy samples. From this point
of view, this work shows that the two traditional statistics, namely Hotelling T 2 and SPE,
are ineffective for non-Gaussian distributed data. Therefore, we propose a more effective
approach for healthy region approximation by focusing on the local information of spatial
distribution. The proposed method develops a healthy region by determining multiple
centers and a local region margin. To that end, a robust anchor-generation algorithm
and a region margin selection approach are proposed. A particular distance measurement
called local Mahalanobis distance is then defined to indicate the distance between a sample
and the healthy region. The proposed method can avoid the distractions of outliers in
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the training process. By comparing the performance of different OCC approaches, we
show that this proposal is more accurate, effective for data without any distribution-type
assumption, and robust against outliers.

Based on the proposed healthy region approximation method and the LMD index, we
develop specific fault diagnosis methodologies for three diagnosis tasks (fault detection,
isolation and estimation). Using time-series signals, we propose the fault detection frame-
work combining the LMD with the empirical probability density cumulative sum method
to achieve high sensitivity performance. With time-independent data, LMD is used to
extract features, and probability-based distance is then applied to decide if test samples
deviate from the healthy pattern.

A fault isolation approach is also developed based on the LMD index and the contribu-
tion plot idea. This approach calculates the contribution value of each variable to the fault
by analyzing the relative position between faulty samples and their corresponding anchors.
The proposed fault isolation method can recognize a single faulty variable, even for tiny
faults. Subsequently, we derive an analytical expression from the LMD index to estimate
the fault increasing rate. These two methods preserve the intrinsic advantages of LMD,
such as robustness to outliers, no distribution assumption, and high sensitivity for incipient
faults. To enable the isolation and fault severity estimation for multiple faults cases, we
further propose a novel reconstruction-based method using the LMD index for the two
tasks. This method combines the high sensitivity characteristics of the LMD techniques
with the reliability of the RBC technique. It can isolate multiple faulty variables and
estimate their fault amplitude simultaneously. Using the simulation data, we validate the
proposed methods’ effectiveness.

Based on the CSTR process data, we deeply evaluate the efficiency of our fault diagnosis
proposal. The full performance analysis shows that the proposed fault detection method
based on LMD is effective for complex distribution and robust to noise. Our proposals
outperform state-of-the-art methods in three fault diagnosis tasks. The comparative study
on the CWRU bearing data indicates that the LMD technique can be used as an efficient
and accurate feature extraction approach. It is more effective and robust than other
transformation-based techniques like the PCA, KPCA, and ICA techniques. Therefore,
this study shows that the LMD technique has significant benefits for the fault diagnosis
problem.

6.2 Perspectives

The proposed healthy region approximation method, along with the local Mahalanobis
distance, is the core of this study. Based on this technique, fault diagnosis solutions for
fault detection, faulty variable isolation, and fault severity estimation are developed and
achieve state-of-the-art performance. However, the LMD technique and the developed fault
diagnosis solutions can be further improved in some aspects.

• The first perspective of this work concerns the healthy region approximation
approach. This proposed method in work is implemented in two steps : anchor
generation and region margin selection. The optimization procedure of these two
steps, minimizing the size of the healthy region, is performed sequentially, which
may not achieve the globally optimal goal. Therefore, it is expected to optimize
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Perspectives

the two steps at the same time so as to produce an optimal healthy region. A
reasonable objective function should be first determined for this purpose. An
effective optimization algorithm can be then selected to solve the optimization
problem, such as Stochastic Gradient Descent (SGD) algorithm, Newton’s method,
and Sequential Quadratic Programming (SQP).
• Secondly, we consider the performance improvement of detection delay. This work
proposed the detection strategy combining the LMD with the EPD-CUSUM tech-
nique. This proposal achieves state-of-the-art performance for the fault detection
task in terms of detection delay. However, this performance should be further im-
proved to increase the security of the systems. We can achieve this goal in two ways.
First, we can refine the healthy region to obtain a more accurate healthy region.
Then, the combination of LMD with other highly sensitive detection techniques
should be studied. For example, an improved Exponential Weighted Moving Average
algorithm (EWMA) approach was proposed and shown prominent performance in
detecting small changes [91]. Then, we will deeply investigate this technique and
consider its combination with LMD.
• We will also consider the performance of the proposed fault diagnosis methods for
dynamic systems. In this study, fault diagnosis approaches are developed for the
steady state of systems, meaning that they may incorrectly identify the healthy
dynamic system as faulty. To cope with this problem, we need to improve the
LMD technique to adapt to the dynamic characteristic of systems. The possible
improvement of the LMD technique is to consider the temporal correlation between
adjacent samples in developing a healthy region. For example, the augmented matrix
of adjacent samples can be generated and used for anchor generation.
• The study of combining deep learning techniques with LMD is also taken into
account in our further work. Deep learning techniques can learn relevant features
automatically, which has been extremely successful in many scenarios. The benefits
of deep learning techniques can be transferred to one-class classification approaches.
For example, the deep one-class classification approach [152] is a meaningful attempt
in this direction, which inspires us to leverage the LMD technique for deep learning.
• The applications of our fault diagnosis proposals to other real industrial scenarios
will be considered in our further works. This work has studied the performance of the
proposed methods on CSTR and CWRU data. However, various applications have
different challenges, especially in real industrial environments. The performance
verification and evaluation of these approaches in different applications are necessary
to help us improve the fault diagnosis methodologies. For example, the proposed
LMD-based detection approach can be applied to the Tennessee Eastman Process
data. The proposed RBC-LMD approach can isolate the faulty sensors and estimate
their deviations in high-speed trains’ air brake control system. Then, the limitation
and advantages of these approaches can be further validated in these applications.
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A
Appendix

A.1 Introduction to extreme value statistics

Theorem A.1.1. Let X1, X2, · · · be a sequence of independent and identically distributed
(i.i.d) random variables with cumulative distribution function F(X) and consider their
maximum value Mn of N samples, i.e. Mn = max{X1, · · · , XN}. The induced distribution
of Mn can only take one of three forms, Gumbel, Weibull, or Frechet with ρ, β, and τa
respectively denoted as the location, scale, and shape parameters :

• Gumbel

FG(x, ρ, β) = exp

[
− exp

(
−x− ρ

β

)]
x ∈ R, β > 0

(A.1)

• Weibull

FW (x, ρ, β, τa) =

{
1 x ≥ ρ

exp
[
−
(

ρ−x
β

)τa]
otherwise

(A.2)

• Frechet

F F (x, ρ, β, τa) =

{
exp

[
−
(

β
x−ρ

)τa]
x ≥ ρ

0 otherwise
(A.3)

Let mn = min{X1, · · · , XN}. Similarly, the induced distribution of mn can be one of
three :

• Gumbel

FG(x, ρ, β) = 1− exp

[
− exp

(
x− ρ

β

)]
x ∈ R, β > 0

(A.4)
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• Weibull

FW (x, ρ, β, τa) =

{
0 x ≤ ρ

1− exp
[
−
(

x−ρ
β

)τa]
x > ρ

(A.5)

• Frechet

F F (x, ρ, β, τa) =

{
1− exp

[
−
(

ρ
ρ−x

)τa]
x ≤ ρ

1 otherwise
(A.6)

Eqs.(A.1)–(A.3) can be unified into a simple form for maxima

ΦG(x, ρ, β, τa) = exp

{
−
[
1 + τa

(
x− ρ

β

)]−1/τa
}

−β − τa(x− ρ) ≤ 0, β > 0

(A.7)

Eqs.(A.4)–(A.6) can be unified into a simple form for minima

ΦG(x, ρ, β, τa) = 1− exp

{
−
[
1 + τa

(
ρ− x

β

)]−1/τa
}

−β − τa(ρ− x) ≤ 0, β > 0

(A.8)

For more details about extreme value statistics, readers can refer to [9, 95].

A.2 Detailed fault detection result for CSTR data

Table A.1 – Detection delay time (hours) of different fault detection approaches for
CSTR data

Method F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

LMD 1.500 1.110 0.930 0.740 1.300 1.040 0.170 0.370 0.340 1.310
GCCA-T 2

r1 11.050 9.470 8.330 2.330 3.660 8.730 0.410 2.290 6.620 10.510
GCCA-T 2

r2 10.540 2.950 2.930 2.300 9.130 3.070 0.380 0.880 0.800 4.350
CVA-T 2 4.180 4.820 3.390 2.000 2.820 3.900 0.360 0.870 1.480 5.220
CVA-SPE 2.740 2.630 2.420 2.350 4.410 2.900 0.230 0.530 0.800 3.380
CVDA 1.460 1.590 1.540 1.440 2.500 2.190 0.150 0.370 0.530 2.370
PCA-T 2 4.383 6.780 5.239 7.206 7.828 8.058 7.856 6.938 2.465 8.403
PCA-SPE 4.154 8.248 3.931 7.288 2.746 3.114 7.489 3.367 3.293 7.507

ICA 4.859 8.956 5.024 7.055 7.955 2.696 8.258 5.208 5.923 7.759
PLS 8.150 8.767 7.707 1.772 4.077 5.980 15.667 11.180 11.292 5.141

OC-SVM 0.354 0.300 0.307 0.377 0.431 0.305 0.299 0.346 0.335 0.381
k-centers 3.870 4.892 3.362 6.116 2.212 2.638 5.823 2.947 2.887 5.309

AE 10.338 11.977 10.201 10.345 12.930 14.072 15.683 14.265 13.657 7.639
IF 0.372 0.408 0.382 0.372 0.347 0.402 0.238 0.320 0.383 0.316
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Detailed fault detection result for CSTR data

Table A.2 – False alarm rate of different fault detection approaches for CSTR data.

Method F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

LMD 0.0139 0.0152 0.0197 0.0103 0.0103 0.0095 0.0111 0.0160 0.0113 0.0113
GCCA-T 2

r1 0.0007 0.0005 0.0004 0.0007 0.0005 0.0008 0.0007 0.0007 0.0009 0.0006
GCCA-T 2

r2 0.0013 0.0012 0.0009 0.0011 0.0008 0.0012 0.0011 0.0011 0.0014 0.0009
CVA-T 2 0.0057 0.0059 0.0046 0.0052 0.0033 0.0057 0.0055 0.0051 0.0066 0.0034
CVA-SPE 0.0057 0.0064 0.0053 0.0067 0.0050 0.0054 0.0052 0.0064 0.0066 0.0050
CVDA 0.0089 0.0093 0.0075 0.0083 0.0057 0.0089 0.0083 0.0077 0.0112 0.0060
PCA-T 2 0.0029 0.0030 0.0026 0.0024 0.0028 0.0025 0.0017 0.0028 0.0023 0.0028
PCA-SPE 0.0033 0.0038 0.0037 0.0032 0.0034 0.0030 0.0023 0.0037 0.0028 0.0034

ICA 0.0022 0.0023 0.0017 0.0014 0.0014 0.0018 0.0013 0.0026 0.0014 0.0019
PLS 0.0020 0.0027 0.0014 0.0014 0.0012 0.0013 0.0014 0.0026 0.0017 0.0018

OC-SVM 0.5221 0.4974 0.4708 0.4534 0.4773 0.4799 0.4780 0.4913 0.4955 0.4744
k-centers 0.0394 0.0298 0.0242 0.0273 0.0244 0.0133 0.0263 0.0267 0.0175 0.0281

AE 0.0001 0.0006 0.0002 0 0 0.0001 0.0001 0.0008 0 0.0003
IF 0.2556 0.2562 0.2534 0.2418 0.2734 0.2286 0.2586 0.2725 0.2680 0.2548

Table A.3 – Detection rate of different fault detection approaches for CSTR data

Method F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

LMD 0.8646 0.9249 0.9354 0.9511 0.9084 0.9273 0.9893 0.9770 0.9787 0.9039
GCCA-T 2

r1 0.4822 0.3995 0.5397 0.8646 0.7823 0.4836 0.9778 0.8719 0.6227 0.3790
GCCA-T 2

r2 0.5088 0.8319 0.8351 0.8673 0.4722 0.8247 0.9793 0.9524 0.9562 0.7526
CVA-T 2 0.7088 0.6974 0.7743 0.8852 0.8290 0.7666 0.9804 0.9515 0.9149 0.6827
CVA-SPE 0.8235 0.8351 0.8504 0.8555 0.7174 0.8192 0.9869 0.9693 0.9542 0.7889
CVDA 0.9105 0.8998 0.9032 0.9138 0.8400 0.8612 0.9918 0.9792 0.9695 0.8499
PCA-T 2 0.4483 0.4815 0.4917 0.0024 0.0030 0.0028 0.0027 0.0028 0.8432 0.0371
PCA-SPE 0.4644 0.3415 0.5062 0.0031 0.7834 0.7752 0.0032 0.7782 0.7776 0.0060

ICA 0.4545 0.1605 0.4371 0.0017 0.0024 0.8243 0.0018 0.6479 0.5829 0.2528
PLS 0.3834 0.3249 0.4000 0.8854 0.7279 0.5899 0.0018 0.2905 0.2920 0.6438

OC-SVM 0.7997 0.8044 0.8305 0.4899 0.9071 0.9091 0.4878 0.9030 0.9077 0.8812
k-centers 0.5158 0.5233 0.5888 0.0215 0.8272 0.7903 0.0300 0.7940 0.8047 0.4078

AE 0.2500 0.0254 0.2430 0.0000 0.0082 0.0090 0.0001 0.0128 0.0082 0.4016
IF 0.7628 0.7957 0.8422 0.3608 0.3417 0.5606 0.7934 0.8086 0.7473 0.6846

Table A.4 – AUC performance of different fault detection approaches for CSTR data

Method F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

LMD 0.976 0.982 0.983 0.987 0.974 0.981 0.996 0.994 0.994 0.982
GCCA-T 2

r1 0.895 0.968 0.973 0.986 0.970 0.979 0.995 0.991 0.992 0.962
GCCA-T 2

r2 0.943 0.977 0.979 0.984 0.939 0.973 0.997 0.993 0.994 0.969
CVA-T 2 0.954 0.912 0.958 0.972 0.960 0.964 0.992 0.989 0.970 0.937
CVA-SPE 0.973 0.971 0.977 0.978 0.963 0.973 0.992 0.988 0.988 0.968
CVDA 0.981 0.979 0.983 0.982 0.971 0.977 0.994 0.992 0.992 0.974
PCA-T 2 0.810 0.882 0.854 0.500 0.499 0.504 0.494 0.504 0.966 0.740
PCA-SPE 0.811 0.867 0.882 0.511 0.964 0.957 0.509 0.957 0.961 0.769

ICA 0.813 0.807 0.848 0.506 0.546 0.965 0.509 0.925 0.911 0.836
PLS 0.853 0.892 0.881 0.985 0.966 0.949 0.501 0.933 0.935 0.954

OC-SVM 0.639 0.653 0.680 0.518 0.715 0.715 0.505 0.706 0.706 0.703
k-centers 0.738 0.747 0.782 0.497 0.901 0.888 0.502 0.884 0.894 0.690

AE 0.760 0.776 0.814 0.521 0.846 0.854 0.509 0.839 0.838 0.867
IF 0.754 0.770 0.794 0.559 0.534 0.666 0.767 0.768 0.740 0.715
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