
HAL Id: tel-04370250
https://theses.hal.science/tel-04370250

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-driven-based models for seismic damage assessment
of buildings : using machine learning at a regional scale

and in-situ structural monitoring at building scale
Subash Ghimire

To cite this version:
Subash Ghimire. Data-driven-based models for seismic damage assessment of buildings : using ma-
chine learning at a regional scale and in-situ structural monitoring at building scale. Earth Sciences.
Université Grenoble Alpes [2020-..], 2023. English. �NNT : 2023GRALU021�. �tel-04370250�

https://theses.hal.science/tel-04370250
https://hal.archives-ouvertes.fr


 

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
École doctorale : STEP - Sciences de la Terre de lEnvironnement et des Planètes
Spécialité : Sciences de la Terre et de lEnvironnement
Unité de recherche : Institut des Sciences de la Terre

Modèles  basés  sur  des  données  pour  l'évaluation  des  dommages
sismiques des bâtiments : utilisation de l'apprentissage automatique
à l'échelle régionale et de la surveillance structurelle in situ à l'échelle
du bâtiment.
Data-driven-based  models  for  seismic  damage  assessment  of
buildings:  using  machine  learning  at  a  regional  scale  and  in-situ
structural monitoring at building scale.
Présentée par :
Subash GHIMIRE
Direction de thèse :

Philippe GUEGUEN Directeur de thèse

Danijel Schorlemmer
GFZ German Research Centre for Geosciences

Co-directeur de thèse

Rapporteurs :
Andrea PENNA
PROFESSEUR, University of Pavia
Emily SO
PROFESSEUR, Department of Architecture, University of Cambridge

Thèse soutenue publiquement le 5 juin 2023, devant le jury composé de :
Philippe GUEGUEN
DIRECTEUR DE RECHERCHE, Université Gustave Eiffel

Directeur de thèse

Danijel SCHOERLEMMER
CHARGE DE RECHERCHE, German Research Center for
Geosciences

Co-directeur de thèse

Andrea PENNA
PROFESSEUR, University of Pavia

Rapporteur

Emily SO
PROFESSEUR, Department of Architecture, University of Cambridge

Rapporteure

Vitor SILVA
PROFESSEUR ASSOCIE, Global Earthquake Model (GEM)
Foundation

Examinateur

Jocelyn CHANUSSOT
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes

Examinateur

DIRECTEUR DE RECHERCHE, Université Gustave Eiffel



 

 



 

 

Résumé 

Les tremblements de terre sont moins fréquents, mais leurs conséquences représentent un cinquième 

des catastrophes naturelles. Par conséquent, pour une gestion et une atténuation efficaces des risques 

sismiques, il est essentiel d'évaluer les dommages potentiels causés à un bâtiment (au niveau du 

bâtiment) et leur étendue dans un environnement urbain (à grande échelle) avant qu'un tremblement de 

terre ne se produise. Récemment, des données collectées sur les bâtiments sont devenues librement 

accessibles, notamment des bases de données d'enquêtes sur les dommages après les tremblements de 

terre et des enregistrements de données sur les mouvements violents. Ces ensembles de données 

permettent de tester les nouveaux modèles d'évaluation des dommages sismiques : évaluation rapide 

des pertes à grande échelle et prévision opérationnelle des pertes dues aux tremblements de terre au 

niveau des bâtiments sur la base d'une évaluation de la vulnérabilité variable dans le temps. Par 

conséquent, dans cette étude, nous avons utilisé ces données sur les tremblements de terre des bâtiments 

pour développer des idées basées sur les données dans l'évaluation des dommages sismiques en se 

concentrant sur l'évaluation rapide des dommages à grande échelle et l'évaluation des dommages au 

niveau des bâtiments. Cette thèse est divisée en deux parties. Premièrement, en se concentrant sur 

l'évaluation rapide des dommages à grande échelle, nous présentons nos conclusions sur les tests des 

modèles d'apprentissage automatique pour la prédiction des dommages à l'aide d'un ensemble de 

données de dommages aux bâtiments après le tremblement de terre. Nous avons évalué différentes 

questions liées aux modèles d'apprentissage automatique pour l'évaluation des dommages à grande 

échelle, y compris la sélection du modèle d'apprentissage automatique, la relation entre les 

caractéristiques des bâtiments et le niveau des dommages, l'efficacité des caractéristiques facilement 

disponibles (telles que l'âge, le nombre d'étages, la surface au sol, la hauteur) dans l'évaluation des 

dommages à grande échelle, l'efficacité de l'utilisation d'un modèle d'apprentissage automatique formé 

sur les données des dommages des bâtiments après un tremblement de terre pour prédire les dommages 

potentiels lors de futurs tremblements de terre, l'efficacité de la méthode d'apprentissage automatique 

par rapport aux méthodes classiques d'évaluation des dommages, et la transférabilité des modèles 

d'apprentissage automatique développés dans une région pour évaluer les dommages dans une autre 

région. Deuxièmement, en nous concentrant sur l'évaluation des dommages au niveau des bâtiments, 

nous présentons nos conclusions sur l'évaluation de la réponse cosismique des bâtiments pendant la 

charge sismique à l'aide de l'enregistrement des données sur les tremblements de terre à fort mouvement 

à partir des bâtiments. Plus précisément, nous avons examiné la relation entre la réponse cosismique 

d'un bâtiment en fonction des mesures d'intensité du mouvement du sol et les variabilités associées liées 

à la variation temporelle de l'état structurel due aux dommages induits par le tremblement de terre dans 

un bâtiment, à la magnitude du tremblement de terre et à la distance, en regroupant les bâtiments par 

classe et par région. En outre, nous avons évalué la capacité de résistance aux charges latérales d'un 

bâtiment et sa variation due aux dommages induits par le tremblement de terre et leur accumulation 



 

 

dans le temps dans un bâtiment spécifique, parmi les bâtiments de la même classe, et les ajustements 

nécessaires pour tenir compte de l'état structurel réel au cours de la modélisation des dommages 

variables dans le temps. Enfin, des conclusions générales sont présentées, ainsi que des perspectives de 

travail. 

 

Mots-clés: Évaluation des dommages sismiques dans les bâtiments, apprentissage automatique, 

efficacité et suffisance de l'IM, courbes de capacité 



 

 

Abstract 

Earthquakes are less frequent, but their consequences represent one-fifth of natural catastrophes. 

Therefore, for efficient seismic risk management and mitigation, it is crucial to assess potential damage 

to a building (building-level) and its extent within an urban environment (large-scale) before the 

occurrence of an earthquake. Recently, data collected from buildings have become openly accessible, 

including post-earthquake damage survey databases and strong-motion data recordings. These datasets 

offer an opportunity to test the new models in seismic damage assessment: rapid loss assessment at 

large-scale and operational earthquake loss forecasting in building-level based on time-varying 

vulnerability assessment. Therefore, in this study, we utilized these earthquake data from buildings to 

develop data-driven-based insights into seismic damage assessment focusing in rapid damage 

assessment at large scale and building-level damage assessment. This thesis is divided into twofold. 

First, focusing on rapid damage assessment at a large scale, we present our findings on testing machine 

learning models for damage prediction using post-earthquake building damage dataset. We evaluated 

different issues related to machine learning models for large-scale damage assessments, including the 

machine learning model selection, the relationship between building features and damage level, the 

effectiveness of readily available features (such as age, number of stories, floor area, height) in large-

scale damage assessment, the effectiveness of using machine learning model trained on past earthquake 

building damage data to predict potential damage during future earthquakes, the effectiveness of 

machine learning method compared to classical damage assessment methods, and the transferability of 

machine learning models developed in a region to assess damage in another region. Second, focusing 

on building-level damage assessment, we present our findings on evaluating the co-seismic building 

response during earthquake loading using the strong motion earthquake data recording from buildings. 

More precisely, we examined the relationship between the co-seismic response of a building as a 

function of ground motion intensity measures and the associated variabilities related to the time-

variation of structural state due to induced earthquake damage in a building, earthquake magnitude and 

distance, grouping buildings by class and region. In addition, we evaluated the lateral load-resisting 

capacity of a building and its variation due to the earthquake-induced damage and its accumulation over 

time in a specific building, among buildings with the same class, and the adjustments needed to account 

for the actual structural health required for time-varying damage modeling. Finally, some general 

conclusions are presented, together with some perspective work. 

 

Keywords: Seismic damage assessment in buildings, Machine learning, Efficiency and sufficiency of 

IM, Capacity curves 
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Introduction 

Earthquakes are less frequent among natural catastrophes; however, they contribute significantly to the 

physical and social consequences of natural hazards such as human casualties, economic losses, 

psychological trauma, social disruption, and environmental destruction.  

The global population is increasing, and the proportion of the population living in urban areas is also 

remarkably increasing. For example, 55% of the global population was living in urban space at the end 

of 2020, which is anticipated to be 68% by 2050. As a consequence, urban infrastructures are 

developing at an accelerated rate (UN, 2018). Globally, 16.8% of urban areas are exposed to 

earthquake-prone areas. Out of 94 earthquake-prone countries, the United States, Iran, Turkey, Mexico, 

and Japan are the top 5 countries with earthquake-prone urban areas; and Pakistan, China, Iran, India, 

Afghanistan, Nepal, and Bangladesh are the top 7 countries expected with higher fatalities (He et al., 

2021).  

Earthquakes' consequences represent one-fifth of annual economic losses, with an annual average of 

approximately US$34.7 billion and more than 20 thousand deaths per year  between 1900 and 2018 

(Daniell et al., 2017; Silva et al., 2019). Out of all the earthquakes that occur worldwide, more than 

56% of them result in casualties, and more than 91% of earthquake casualties are due to building 

collapses (He et al., 2021).  

Some of the deadliest earthquakes that occurred in the last 15 years include (Munich Re, IMF, World 

Bank, EM-DAT disaster database): the 2010 Haiti earthquake, which resulted in an estimated fatalities 

more than 250,000, left more than 2 million people injured and 1.5 million people homeless, with an 

estimated economic loss more than US$ 7.5 billion; the 2011 Tohoku earthquake, which resulted an 

estimated fatalities more than 20,000, left more than 6,000 people injured and 1.05 million people 

homeless, with an economic loss more than US$ 250 billion; the 2015 Nepal earthquake, which resulted 

in an estimated fatalities more than 8000, left more than 22,000 people injured and 3.0 million people 

homeless, with an economic loss more than US$ 1.9 billion; the 2021 Haiti earthquake, which caused 

an estimated fatalities more than 2500, left more than 12,000 people injured and 30,000 people 

homeless, with an economic loss more than US$ 1.6 billion; the latest 2023 Turkey-Syria earthquake, 

which resulted in an estimated fatalities more than 56,000, left more than 121,000 people injured and 

2.7 million people homeless, with an economic loss more than US$ 109.1 billion, as of 01/04/2023.  

A significant number of buildings were damaged during these earthquakes. The building’s poor 

performance against the seismic loading, observed in recent earthquakes, highlights the need to enhance 

our state-of-art knowledge of the complex response of buildings during seismic loading and to 
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understand better the occurrence of damages, characterize their nature, and develop strategies to 

minimize them.  

 

(i) Progress in collecting earthquake data from buildings 

The availability of earthquake data, such as accelerometric recordings, parametric values, post-

earthquake damage surveys, collected from buildings is the key to understanding the earthquake’s 

impact and necessary mitigation strategies (So, 2022). In recent years, communities worldwide are 

collaborating to collect earthquake data from buildings in the form of (a) post-earthquake building 

damage datasets (Dolce et al., 2019; MINVU, 2021; MTPTC, 2010; NPC, 2015; Omoya et al., 2022; 

Stojadinović et al., 2021), and (b) earthquake data recordings from buildings (Astorga et al. 2020), and 

share them with open access.  

This post-earthquake building damage dataset includes information on the damage sustained by 

buildings, collected through visual screening, and building parameters describing the structural and 

built-up environment. Damage surveys were carried out on many buildings covering a wide spatial 

range. For example, the post-earthquake building damage database of the 2015 Nepal earthquake (NPC, 

2015) and 2010 Haiti earthquake (MTPTC, 2010) has more than 700,000 and 300,000 buildings 

collected from several districts of Nepal and Haiti, respectively. In addition, the database of observed 

damage in Italy (DaDO), a platform of the Civil Protection Department developed by the Eucentre 

Foundation, has more than 100,000 buildings collected after several earthquakes of different 

magnitudes from different regions (Dolce et al., 2019).  

Similarly, earthquake recordings in buildings (NDE1.0) released by Astorga et al. (2020) contains 8,250 

records of strong motion data collected over the years from 2,737 events and 108 buildings from 

different designs and regions. The database includes structural engineering demand parameters (EDP) 

such as drift ratios (relative displacement between top and bottom floors normalized by their height), 

peak top values of acceleration, velocity, displacement, pre- and co-seismic fundamental frequencies, 

the ground motion intensity measures (IM) such as peak ground acceleration, velocity, displacement, 

spectral acceleration, velocity, displacement. In addition, this database contains information on 

buildings and earthquakes characteristics such as building design, location, magnitude, and epicentral 

distance.  

 

(ii) Methods for assessing damage in buildings 

Understanding potential damage to buildings and its extent within an urban environment during an 

earthquake event is crucial for decision-makers, emergency planners, insurers, and reinsurers for 

effective seismic risk management and mitigation in earthquake-prone areas (Bommer and Crowley, 

2006; Earle et al., 2010; Riedel et al., 2015,  2018).  
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A building damage assessment usually involves the definition of the hazards affecting the region of 

interest (i.e., expected frequency and intensity of the ground shaking), the definition of the vulnerability 

of the assets exposed to the hazards (i.e., likelihood to suffer damage or loss), and a classification of the 

buildings in the region as exposure (Silva et al., 2022). The extent of damage to buildings is then 

calculated as a function of hazard, exposure, and vulnerability (Crowley et al., 2021). 

Several methods have been developed for assessing damage in buildings due to earthquakes depending 

on the level of information, methods, tools required for the assessment, and the objectives to be achieved 

(Erdik et al., 2011; Kassem et al., 2020). Some of the most advanced methods include: 

 

The machine learning method, first introduced by (Riedel et al., 2015), is an emerging robust method 

capable of handling a large amount of data, superior computational efficacy, ability to handle complex 

problems, and incorporation of uncertainties for building damage assessment (Chi et al., 2020; Hegde 

and Rokseth, 2020; Karmenova et al., 2020; Rodriguez-Galiano et al., 2019; Sajedi and Liang, 2020; 

Salehi and Burgueño, 2018; Sun et al., 2021; Zhang et al., 2018; Zhao et al., 2020; Mangalathu et al., 

2020a; Harirchian et al., 2021; Roeslin et al., 2020; Stojadinović et al., 2021). In this method, the input 

features defining a building portfolio are initially mapped to the damage level (target) using supervised 

machine learning algorithms to create a damage prediction model. Subsequently, this model is utilized 

in other building portfolios with the same input features to assess the potential damage.  

 

The Performance-based earthquake engineering (PBEE) method is a probabilistic framework 

designed to improve seismic risk decision-making (Porter, 2003). PBEE works in four stages: hazard 

analysis, structural analysis, damage analysis, and consequence analysis. In hazard analysis, intensity 

measures (IM) and their annual frequency of exceedance are defined by probabilistic seismic hazard 

assessment (PSHA). In structural analysis, the structure's response to a given IM is modeled and 

expressed in terms of engineering demand parameters (EDPs) such as structural drift, maximal top 

acceleration, etc. In damage analysis, damage measure (DM) is calculated based on EDP values. 

Finally, the earthquake's consequences, in terms of repair costs, operability of the structure, and 

potential economic or human losses for a given DM, is calculated and expressed as decision variables 

(DVs) on which stakeholders base their decisions. In this framework, the relationship between the EDP 

and IM is utilized to assess damage in the building when compared with the reference EDP values at 

the damage-state threshold.  Two natures of IM is defined: IM that results in the smallest variability in 

EDP|IM is defined as efficient IM, and IM that results in EDP|IM conditionally independent of 

earthquake magnitude and distance is defined as sufficient IM (Luco, 2002).  
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The vulnerability modeling method estimates the potential damage through the crossing of hazard, 

exposure, and vulnerability/fragility models (Crowley et al., 2021). The hazard model defines the 

ground-shaking potential in terms of expected frequency and intensity in a region of interest and can be 

calculated in three different ways: scenario-based, intensity-based, and frequency-based approach 

(Crowley et al., 2021).  

The exposure model defines the built environment in terms of vulnerability class, function, 

reconstruction cost, and spatial distribution. Exposure modeling involves grouping buildings into a class 

based on a set of attributes that characterize their vulnerability rather than classifying each building 

individually (Silva et al., 2022).  

The vulnerability and fragility model relates hazards with exposure to determine the likelihood of 

potential damage. The vulnerability model provides a more comprehensive overall estimate of damage 

using statistical functions. These functions are derived from post-earthquake damage observations from 

similar building classes experiencing a similar seismic load or based on experts’ opinions (Kassem et 

al., 2020; Rossetto et al., 2014).  

The fragility model estimates the probability of a building class reaching or exceeding a specific damage 

state as a function of ground motion intensity measures (Martins and Silva, 2021). Fragility models are 

defined in three different ways: based-on expert opinion (heuristic), post-earthquake damage evaluation 

data (empirical), structural modeling and response simulation (analytical) (Lallemant et al., 2015).  

 

(iii) Recent insights for assessing damage in buildings 

In a recent European Project (RISE, Wiemer, 2018), the dynamic damage assessment (DDA) 

framework was summarized as providing real-time assessment of seismic damage by addressing the 

two major limitations of the existing vulnerability modeling method: (a) the assumption of constant 

exposure and (b) the inability of structural vulnerability models to account for damage accumulation in 

buildings (Wiemer, 2018). DDA method aims to consider the dynamic urban environment by using a 

time-varying exposure model and time-varying vulnerability models that can capture damage 

accumulation in buildings during different earthquakes over time (Wiemer, 2018; Nievas; et al., 2023). 

This framework was not new but compiled several ideas proposed by other authors for time-varying 

vulnerability and exposure. 

First, the global dynamic exposure model is developing as a time-varying exposure model for DDA. It 

is a novel OpenStreetMap-based exposure model designed to capture the real-time spatial distribution 

of buildings, as well as their operational function, structural characteristics, occupancy, and valuation 

in real-time (Schorlemmer et al., 2020). The information related to building is collected explicitly (for 

example, location, number of floors, function), implicitly (for example, building shapes and positions), 

and semantically derived data based on expert judgment; and is growing at the rate of ~ 150,000 
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building data per day (consists of more than 375 million building footprints at the moment) 

(Schorlemmer et al., 2020).  

The time-varying vulnerability modeling both at large-scale (urban or regional) and building-level is 

achieved through the use of the rapid loss assessment (RLA) and Operational Earthquake Loss 

Forecasting (OELF) methods, respectively (Wiemer, 2018; Nievas; et al., 2023). 

The RLA method provides the first-order quantitative estimation of the damage induced in the buildings 

within a few hours after an earthquake at a larger scale through a time-varying exposure and 

vulnerability model (e.g., using machine learning methods as proposed initialy by Riedel et al. (2014, 

2015, 2018), updating existing vulnerability model with the Bayesian method).   

The OELF method calculates the probable damage knowing the residual lateral load resisting capacity 

of a building after seismic loading. The residual capacity can be accessed through structural health 

monitoring, which involves continuous tracking of a building’s structural state (for example, age, level 

of degradation, maintenance history, etc.) by measuring the dynamic parameters describing the building 

(e.g., structural period, (Trevlopoulos and Guéguen., 2018;, Trevlopoulos et al., 2020)).  

 

The Host-to-target transfer method is an alternative approach for damage assessment when there is 

limited data available or when it is too costly due to time and resource-requirement to develop a region-

specific damage assessment method or for a specific building. In this case, the model developed in one 

condition (host) is transferred to another condition (target) by applying certain adjustments. The 

adjustment is applied from the generic host condition to the generic target conditions and/or target-

specific conditions: for example, transferring the damage assessment models from high-seismic areas 

to moderate-seismic areas with adjustments  (e.g., Guéguen et al., 2007; Roca et al., 2006) or in regions 

with buildings of different seismic performance (e.g., Lagomarsino and Giovinazzi, 2006). 

 

(iv)  Key issues 

During emergency situations, it may not be feasible to collect the necessary data for creating and 

updating the exposure model in relation to the vulnerability model for the RLA method due to time and 

resource constraints, as this information may not be readily available (Riedel et al., 2015). In this 

context, machine learning methods can offer a paradigm shift by reasonably assessing damage by 

relying on readily available data in a cost-effective way (Mangalathu et al., 2020a; Harirchian et al., 

2021; Roeslin et al., 2020; Stojadinović et al., 2021). In addition, the machine learning method allows 

the development of relationships between readily available building features and damage level 

bypassing the vulnerability modeling step. It can handle a large amount of data so it could easily 

incorporate the global dynamic exposure model. However, the machine learning method is still in its 

early stages and requires rigorous testing across various issues such as method, data, effectiveness, and 
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transferability before it can be implemented in the RLA framework for large-scale damage assessment 

(Mangalathu et al., 2020a; Harirchian et al., 2021; Roeslin et al., 2020; Stojadinović et al., 2021). 

Specifically, the following issues need to be addressed: 

Which machine learning algorithm and damage assessment framework is robust for RLA 

application? What are the most crucial features, and how are they related to damage level? How 

about the host-to-target transfer, i.e., can machine models developed in one region be transferred 

between regions, and what parameters influence the model performance? The data are not clean 

and uniform, so how does that impact the performance of machine learning models? Do they 

outperform conventional damage assessment methods?  

 

In PBEE and OELF methods, building response to ground motion intensity measures is typically 

developed through structural modeling and response simulation of a representative building in a given 

class, using simple (e.g., single-degree-of-freedom oscillators) to most advanced (e.g., finite element-

based methods) modeling methods (Iervolino, 2017; Martins and Silva, 2021; Nievas; et al., 2023). 

Structural modeling involves significant assumptions about the building’s attributes (e.g., materials, 

design, geometry, foundation, period, damping, etc.). The response simulation uses different natural or 

synthetic accelerograms from different tectonic regions with or without scaling to obtain the desired 

building response values (Iervolino, 2017; Martins and Silva. 2021). Such modeling assumptions can 

have a significant impact on the nonlinear seismic response of a building, potentially limiting our 

understanding of the true response of structures, and its variability from building to building and from 

earthquake to earthquake. This can also contribute to epistemic uncertainty in damage assessment 

(Astorga et al., 2018; Kalakonas et al., 2020; Lestuzzi et al., 2016; Perrault et al., 2013, 2020; Perrault 

and Guéguen, 2015; Spence et al., 2003). Mainly, it raises the following questions: 

Which ground motion intensity measures (IM) can capture the best building response (EDP) in 

real-world problems? What about the experimental efficiency and sufficiency of IMs? How does 

the building response change over time after experiencing damage? Do all buildings with the same 

class respond similarly to a given ground motion? What features of the building contribute the 

most in response modeling uncertainties? 

In addition, to advance the OELF method as a reliable tool for DDA, it is crucial to enhance our 

understanding of earthquake-induced damage and residual capacity of the building, including its 

variation from building to building and earthquake to earthquake (Wiemer, 2018; Nievas; et al., 2023). 

Specifically, the following questions need to be answered: 

How does the building’s co-seismic capacity change after experiencing damage? How do they 

vary from building to building? How can we consider the actual structural health required for 

the OELF method? 
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(v)  Organization of the Thesis 

This thesis is organized as follows: 

Chapter One presents a comparative study on the efficacy of different machine learning models for 

predicting damage using the 2015 Nepal earthquake building damage dataset. This chapter also 

discusses crucial features for damage prediction, methods to address the imbalanced distribution of 

target features (damage grade) during model training, and the minimum number of data points required 

to develop a reasonable damage prediction model. The findings of this study have been published in 

the Earthquake Spectra journal(Ghimire et al., 2022) . 

Chapter Two presents the findings on testing machine learning models for heuristic building damage 

assessment at a regional scale using the database of observed damage (DaDO) in Italy. We evaluate the 

efficacy of machine learning models trained on past earthquake building damage datasets to predict 

potential damage in future earthquakes. This chapter also explores the contribution of building features 

to the damage level and compares the damage prediction efficacy of the machine learning model with 

the Risk-UE method. The finding of this study is under review in the Natural Hazards and Earth System 

Science journal (Ghimire et al., 2023). 

Chapter Three compares the damage prediction efficacy of machine learning models developed in 

three different regions (Nepal, Italy, and Haiti) to test their host-to-target adjustment for damage 

assessment. The chapter also discusses the impact of a building’s characteristic features, such as 

typology, construction practice, seismic regulations, etc., on transferring machine learning models for 

damage prediction from host to target dataset. 

Chapter Four presents the findings of the structural response (EDP) analysis to a given set of intensity 

measures (IM) using the NDE1.0. This chapter examines the efficiency and sufficiency of IMs, as well 

as the associated variability related to different factors such as structural health, typology, earthquake 

magnitude and distance. This chapter also discusses the variation of building frequency in response to 

earthquake loading. Moreover, a building damage prediction equation is provided for different building 

typologies. The  finding from this study have been published in the Soil Dynamics and Earthquake 

Engineering journal (Ghimire et al., 2021a). 

Chapter Five presents the findings on the variability in the co-seismic capacity response of buildings 

under seismic loading using the NDE1.0. This chapter investigates the variation in the co-seismic 

capacity of a building before and after the first damage occurs, as well as the accumulation of damage 

over time and the variation between similar buildings. Additionally, this chapter provides the necessary 

adjustments to account for the actual structural health required for the OELF method. The finding of 

this study is currently under review at Bulletin of Earthquake Engineering for possible publication. 

Finally, our conclusions are presented, along with perspectives for future work. 
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1 Testing machine learning models for seismic damage prediction at 

regional scale using building-damage dataset compiled after 2015 

Gorkha Nepal earthquake 

 
This chapter evaluates the effectiveness of machine learning models for a rapid damage assessment 

at a large scale using the 2015 Nepal earthquake building damage dataset. We analyze the efficacy of 

different machine learning models, methods for handling imbalanced target features, input feature’s 

importance, the effectiveness of readily available building features for large-scale damage 

assessment, and minimum data points required for a reasonable prediction model. Our study's findings 

are published in Earthquake Spectra. 

Ghimire, S., Guéguen, P., Giffard-Roisin, S., and Schorlemmer, D. (2022). Testing machine learning 
models for seismic damage prediction at a regional scale using building-damage dataset compiled 
after the 2015 Gorkha Nepal earthquake. Earthquake Spectra, 38(4), 2970-2993. 

 

Abstract 

Assessing post-seismic damage on an urban/regional scale remains relatively difficult owing to the 

significant amount of time and resources required to acquire information and conduct a building-by-

building seismic damage assessment. However, the application of new methods based on artificial 

intelligence, combined with the increasingly systematic availability of field surveys of post-seismic 

damage, has provided new perspectives for urban/regional seismic damage assessment. This study 

analyzes the effectiveness and relevance of a number of machine learning techniques for analyzing 

spatially distributed seismic damage after an earthquake at the regional scale. The basic structural 

parameters of a portfolio of buildings and the post-earthquake damage surveyed after the Nepal 2015 

earthquake are analyzed and combined with macro-seismic intensity values provided by the United 

States Geological Survey ShakeMap tool. Among the methods considered, the random forest regression 

model provides the best damage predictions for specified ground motion intensity values and structural 

parameters. For traffic-light-based damage classification (three classes: green-, amber-, and red-tagged 

buildings based on post-earthquake damage grade), a mean accuracy of 0.68 is obtained. This study 

shows that restricting learning to basic features of buildings (i.e., number of stories, height, plinth area, 

and age), which could be readily available from authoritative databases (e.g., national census) or field-

surveyed databases, yields a reliable prediction of building damage (4 features/3 damage grade accuracy 

accuracy: 0.64). 



 

 
9 

Keywords: Machine learning, 2015 Gorkha Nepal earthquake, post-earthquake building-damage data, 

building damage prediction, regional and urban scale risk assessment 

 

1.1 Introduction 

Earthquakes may not occur frequently; however, they contribute significantly to the physical and social 

consequences of natural hazards. From 1990 to 2017, the consequences of earthquakes represent an 

annual average of approximately USD 34.7 billion (OECD, 2018). Information regarding the estimated 

extent and spatial distribution of potential seismic damage within a built environment is crucial for 

decision makers, emergency planners, insurers, and reinsurers (e.g., Bommer and Crowley 2006; Ranf 

et al. 2007; Earle et al. 2010; Riedel and Guéguen 2018). The level of detail, methods, and tools required 

for the assessment are conditioned by the objectives to be achieved (Erdik et al., 2011). The estimation 

of potential damage could be obtained through fragility or vulnerability modelling. Seismic fragility or 

vulnerability modelling is the crossing of hazard, exposure, and fragility/vulnerability component 

(Crowley et al., 2019). The exposure-related component provides information regarding the built 

environment, including vulnerability class, function, reconstruction cost, and spatial distribution. The 

hazard-related component defines the ground-shaking potential in a region of interest based on a 

probabilistic seismic hazard assessment or from a deterministic rupture scenario. Finally, the 

vulnerability/fragility-related component relates hazards with exposure to determine the likelihood of 

potential damage (Silva et al., 2018). Many advanced empirical methods have been developed for 

seismic vulnerability assessment (e.g., FEMA 2003; Milutinovic and Trendafiloski 2003; Lagomarsino 

and Giovinazzi 2006; Guéguen et al. 2007; Hancilar et al. 2010, 2012; Silva et al. 2014), based on field 

surveys of building parameters in relation to standardized building typologies, which are associated 

with the vulnerability or fragility functions for a specified seismic intensity measurement. The 

application of these damage assessment methods for rapid damage assessment in regional or urban scale 

is still challenging because the acquisition of building features and the application of classical methods 

is time- and resources-consuming on urban or regional scale.  

Over the last decade, substantial progress has been realized in the field of machine learning tools and 

their applications in various domains. Within the scope of this study, Riedel et al. (2015) demonstrated 

the capacity of the support vector machine in providing seismic vulnerability assessments at regional 

and national scales. As the application of conventional vulnerability assessment methods on a large 

scale requires information that is not readily available, they proposed assessing the ability of available 

data from national census for a region to estimate building vulnerabilities and modeling seismic damage 

for specified seismic intensities. More recent studies have demonstrated the efficiency of using machine 

learning techniques in seismic-risk engineering to solve the aforementioned time and resource issues 

(Chi et al., 2020; Hegde and Rokseth, 2020; Karmenova et al., 2020; Mangalathu et al., 2020a; Sajedi 
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and Liang, 2020; Salehi and Burgueño, 2018; Sun, 2019; Zhang and Burton, 2019; Zhao et al., 2020). 

Xie et al. (2020) summarized the ongoing research on the application of machine learning methods in 

earthquake engineering, they concluded that the implementation of machine learning in earthquake 

engineering is still in its early stage and needs further investigations. Limited number of studies are 

available concerning the post-earthquake damage classification using machine learning (Mangalathu et 

al., 2020b; Roeslin et al., 2020; Harirchian et al., 2021; Stojadinović et al., 2021). In particular, 

Mangalathu et al., (2020b) tested the performance of machine learning techniques in a building damage 

survey performed after the 2014 South Napa earthquake and demonstrated the effectiveness of such 

tools in interpreting the patterns of seismic damage observed in buildings. Harirchian et al., (2021) 

studied the performance of different machine learning methods for damage prediction in RC buildings. 

They observed reasonable damage prediction by machine learning models and suggested further 

investigation by considering a large number of buildings with more features to define the building 

vulnerability.  Roeslin et al., (2020) explored the performance of different machine learning methods 

using 2017 Puebla-Morelos earthquake building damage data and suggested further investigation using 

a large number of buildings in each damage typology.  

 In fact, the added value of post-earthquake studies based on building-damage observations has long 

been recognized for its contribution in improving our understanding and validating state-of-the-art 

seismic risk assessment models (Colombi et al., 2008; Spence et al., 2009; Eleftheriadou and Karabinis, 

2011, 2012; Guðmundsson, 2012; Karababa and Pomonis, 2011; Del Gaudio et al., 2017, 2020). In 

parallel to these machine learning developments, open access to a significant amount of information 

describing real-estate portfolios has improved (Crowley et al., 2020), and post-earthquake building-

damage surveys are now available online (2015 Nepal Earthquake: Open Data Portal, 2021; Dolce et 

al., 2019; Loos et al., 2020). For example, the National Planning Commission of Nepal shared a massive 

data survey of damaged buildings after the Mw 7.8 Nepal earthquake in 2015 (NPC, 2015a).  

To prepare for the increased use of machine learning for earthquake and seismological engineering 

applications, combined with the increasing number of open-source data, independent studies on 

independent datasets and with different machine learning methods are essential to advance science in 

this emerging field. Unlike previous studies (e.g., Mangalathu et al., 2020b; Roeslin et al., 2020), this 

study herein compares the damage prediction performance of various machine learning models to 

explain post-earthquake seismic damage, considering two different classifications of damage and two 

different sets of building features, applied to the 2015 Nepal earthquake building-damage portfolio 

(NBDP). This dataset is first described in the data section (1.2). In the method section (1.3), we present 

a summary of the selected machine learning tools applied to the dataset. In the results section (1.4), we 

present and discuss the results, considering damage assessment as the target value of this study. Finally, 

we provide our conclusions and perspectives in the last section (1.5) and (1.6). 
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1.2 Data 

On April 25, 2015, a devastating MW 7.8 earthquake struck central Nepal, with an epicentral distance 

of approximately 80 km NW of Kathmandu, a hypocentral depth of 8.2 km, and a 120 km long rupture 

toward the east. Level VIII epicentral intensity was estimated in Nepal based on the observed damage 

(Martin et al., 2015). Thousands of residential buildings were damaged, resulting in 8,790 fatalities and 

22,300 injuries (NPC, 2015). Additionally, 31 among 75 administrative districts of Nepal were affected, 

with 14 districts being severely affected and declared as crisis-hit areas, and an estimated loss of around 

seven billion US dollars was reported (NPC, 2015). The government of Nepal conducted a massive 

post-earthquake survey in the 11 most severely affected districts (Fig. 1.1), excluding the Kathmandu 

Valley. The survey comprised a visual screening of damaged buildings by experts to map the damage 

in each district and to develop the NBDP database. The NBDP database comprised information 

regarding 762,106 buildings, each characterized by socio-economic status, engineering properties, and 

damage. The damage grades were classified into five levels (5DG) that are generally used in post-

earthquake surveys following the EMS-98 damage classification system. 

Damage Grade 1 (DG1): Thin cracks in walls and falling of plaster or loose stones from the upper part 

of the building, few architectural repairs required. 

Damage Grade 2 (DG2): Cracks, falling of plaster or stones in many sections, damage to non-

structural parts such as chimneys, and projecting cornices, with no significant reduction in the load-

bearing capacity of the building. 

Damage Grade 3 (DG3): Large, extensive cracks and collapse of a small portion of non-load-bearing 

walls. Detachment of roof tiles, tilting or falling of chimneys, failure of individual non-structural 

elements such as partitions/gable walls, and delamination of stone/adobe walls. Partial reduction in the 

load-bearing capacity of structural members, significant repairs required. 

Damage Grade 4 (DG4): Large gaps or collapse of walls and partial structural failure of floors/roofs, 

resulting in the building classified as dangerous. 

Damage Grade 5 (DG5): Complete or near collapse. 

The color scale in Fig. 1.1 highlights the proportion of buildings tagged with DG5 in each district. 

Additionally, a set of building parameters related to structure and environment, frequently used in 

empirical seismic vulnerability assessment, was assigned to each screened building for the NBDP 

database: 

Numbers of stories: total numbers of floors above the ground surface. 

Height of building: total height of the building above the ground surface measured in feet. 

Building age: calculated from the date of construction to the date of the earthquake. 
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Plinth area: total area occupied by the building at ground floor level in square feet. 

Ground slope condition: ground surface topography at the building location, considering three types 

of ground slope conditions, i.e., flat, mild slope, and steep slope. 

Roof type:  three types of roofs are considered based on the material used, i.e., light timber/bamboo 

roof, heavy timber/bamboo roof, and reinforced concrete roof. 

Position of building: indications of the building’s location relative to other buildings. Four types of 

positions are cited, i.e., stand-alone, attached on one side, attached on two sides, and attached on three 

sides. 

Construction material: Eleven types of construction materials used in the superstructure are 

considered: adobe, stone flange, mud-mortar stone, mud-mortar brick, cement-mortar stone, cement-

mortar brick, reinforced concrete non-engineered, reinforced concrete engineered, timber, bamboo, and 

others. 

Furthermore, in the NBDP database the geographic location of each building was assigned to a ward 

that belonged to a district. The ward was an elementary administrative cell. The total number of wards 

in 11 districts was 949. Considering building-by-building locations and the associated soil conditions, 

which may vary within a ward, can improve the damage prediction performance of a machine learning 

model (Mangalathu et al., 2020b; Roeslin et al., 2020; Stojadinović et al., 2021). However, having as 

objective the large-scale classification of damages (and not the classification and representation per 

building), and considering the macro-seismic intensities, the attribution of each building within a ward 

is consistent with our approach. 

In a first case, all the building features contained in the NBDP database are considered in the learning 

phase, without any preconceived idea on their significance or possible cross-correlation. Their 

importance score will then be evaluated in order to know their contribution in the learning phase. In a 

second case, a subset of input features assumed easy to collect without significant expertise or available 

via authoritative national or global open databases are considered to test their damage prediction 

performance, without taking into account their importance.  

No specific data cleaning methods were applied to the NBDP database. In the NBDP database, 12 

buildings had missing damage information so they were removed from the database and 5,731 buildings 

had missing age value so they were replaced by the average age value.   
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Figure 1.1 Location of the studied area and the proportion of DG5 tagged buildings (percentage 
indicated and highlighted by the color scale) in the 11 districts surveyed by the Nepalese authorities 
(NPC 2015a). 

 

Table 1.1 summarizes the distribution of the building parameters in the database. In the NBDP database, 

the distribution of the buildings per damage grade was as follows: 10.34% for DG1, 11.45% for DG2, 

17.90% for DG3, 24.12% for DG4, and 36.19% for DG5. The number of stories ranged from one to 

nine floors, the building age ranged from 1 to 200 years, the building plinth area ranged from 70 to 

5,000 square feet, and the building height was between 6 and 97 feet (approximately 2 to 30 m). The 

distribution of buildings based on the material used to construct the superstructure was as follows: 

4.24% adobe, 80.02% mud-mortar stone, 3.51% stone flange, 1.58% cement mortar stone, 2.29% mud-

mortar brick, 7.15% cement-mortar brick, 25.87% timber, 8.04% bamboo, 3.97% reinforced concrete 

(RC) non-engineered, 1.63% RC engineered, and 1.20% other materials.  
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Table 1.1 Distribution of different building parameters present in the NBDP database. 

S.N. Parameters Data type Distribution 
(%) Remarks 

1 Damage Grades 
(DG) 

DG1 

Categorical 

10.34 

Fig. 1.2a 
DG2 11.45 
DG3 17.90 
DG4 24.12 
DG5 36.19 

2 Number of stories 
0–3 (NS1) 

Numerical 
98.9 

Fig. 
1.2b 3–5 (NS2) 1.04 

> 5 (NS3) 0.06 

3 Age (years) 
0–10 (Ag1) 

Numerical 
32.03 

Fig. 1.2c 10–50 (Ag2) 62.92 
> 50 (Ag3) 5.05 

4 Plinth area 
(square feet) 

0–500 (Ar1) 
Numerical 

79.39 
Fig. 
1.2d 500–1000 (Ar2) 18.54 

> 1000 (Ar3) 2.07 

5 Height (feet) 
0–10 (Ht1) 

Numerical 
13.19 

Fig. 1.2e 10–20 (Ht2) 70.93 
> 20 (Ht3) 15.88 

6 Ground slope at 
building's location 

flat slope (FS) 
Categorical 

82.89 
Fig. 1.2f mild slope (MS) 13.87 

steep slope (SS) 3.24 

7 Roof type 

bamboo/timber heavy roof 
(RT1) 

Categorical 
28.05 

Fig. 
1.2g bamboo/timber light roof (RT2) 66.10 

reinforce concrete (RT3) 5.85 

8 Building position 

stand-alone (NA) 

Categorical 

79.32 
Fig. 
1.2h 

attached to one side (A1) 16.98 
attached to two side (A2) 3.53 
attached to three side (A3) 0.17 

9 Construction 
material 

adobe (CM1) 

Categorical 

4.24 

Fig. 1.2i 

mud-mortar stone (CM2) 80.02 
stone-flange (CM3) 3.51 
cement-mortar stone (CM4) 1.58 
mud-mortar brick (CM5) 2.29 
cement-mortar brick (CM6) 7.15 
timber (CM7) 25.87 
bamboo (CM8) 8.04 
non-engineered reinforced 
concrete (CM9) 3.97 

engineered reinforced concrete 
(CM10) 1.63 

others (CM11) 1.20 
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Additional information provided by the ShakeMap tool from the United States Geological Survey 

(USGS) supplied the macro-seismic intensity (MSI) field and completed the database (Wald et al., 

2005). ShakeMap provides an estimate of the spatial distribution of earthquake ground shaking intensity 

by combining recorded ground motions, modeled ground motions, Did You Feel It? information, and 

slope-vs30-based site conditions. In recent studies requiring spatially distributed information as input 

ground motion, ShakeMap intensities have been successfully used to compensate for insufficient 

instrumental data (Jaiswal and Wald, 2010; Mak and Schorlemmer, 2016; Silva and Horspool, 2019; 

Del Gaudio et al., 2020; Pothon et al., 2020). The USGS ShakeMap provides the MSI value in modified 

Mercalli intensity scale (Fig. 1.3a). Because the geo-localization of the buildings is available at the ward 

level, we computed the mean MSI value for each ward and assigned it to all the buildings located within 

the same ward. The MSI values ranged from 5.30 to 8.30 (Fig. 1.3b). 

 

Figure 1.2. Distribution of building parameters in the whole NBDP dataset. The y-axis shows 
percentage and the x-axis is (a) damage grade, (b) number of stories (NS1: 0 - 3, NS2: 3 - 5, NS3: > 5), 
(c) age (Ag1: 0 - 10, Ag2: 10 - 50, Ag3: >50), (d) plinth area (Ar1: 0 - 500, Ar2: 500 - 1000, Ar3: > 
1000) (e) building height (Ht1: 0 - 10, Ht2: 10 - 20, Ht3: > 20, in ft as contained in the original database), 
(f) ground slope condition at building location (FS: flat slope, MS: mild slope, SS: steep slope), (g) roof 
construction material (RT1: heavy bamboo/timber roof, RT2: light bamboo/timber roof, RT3: 
reinforced concrete), (h) position of building with respect to other buildings (A1: attached on one side, 
A2: attached on two sides, A3: attached on three sides, NA: stand-alone building), and (i) superstructure 
construction material (CM1: adobe, CM2: mud-mortar stone, CM3: stone-flange, CM4: cement-mortar 
stone, CM5: mud-mortar brick, CM6: cement-mortar-brick, CM7: timber, CM8: bamboo, CM9: RC 
non-engineered, CM10: RC engineered, CM11: other). 
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Figure 1.3. (a) Spatial distribution of the macroseismic intensity for the MW 7.8 earthquake in 2015 
obtained from the USGS ShakeMap tool and (b) distribution of the macro-seismic intensity in the 
database, the x-axis is the intensity value and the y-axis is the frequency. 

 

1.3 Method 

In this study, damage prediction was considered first as a classification problem. Machine learning 

classification involves assigning a label (or class) to categorical response variables. Damage grades 

(from 1 to 5) are considered categorical variables; hence, the application of classification models is 

recommended. In this study, we focused on two typically used classification machine learning methods, 

i.e., random forest classification (RFC) (Breiman, 2001) and gradient boosting classification (GBC) 

(Friedman, 1999). However, the damage grades were ordered and can be regarded as a continuous 

variable to minimize misclassification errors. In this study, regression models were considered 

simultaneously with the damage grade as a continuous variable ranging between 1 (DG1) and 5 (DG5). 

Because the regression model outputs a real value between 1 and 5 and not an integer, we rounded the 

output (real number) to the nearest integer to plot the confusion matrix. However, the error matrices 

were computed without rounding the model outputs to the nearest integer. Four regression machine 

learning models were considered, i.e., linear regression (LR) (Hastie et al., 2009), support vector 



 

 
17 

regression (SVR) (Cortes and Vapnik, 1995), gradient boosting regression (GBR) (Friedman, 1999), 

and random forest regression (RFR) (Breiman, 2001). Using classification methods, every 

misclassification yields the same penalty loss, whereas regression methods penalize the relative penalty 

loss (i.e., difference error) by minimizing the squared loss between the true and predicted damage 

grades. In this study, we tested both approaches (regression and classification), and their strengths and 

weaknesses in terms of damage prediction were compared.  

RFC/RFR and GBC/GBR are based on a set of several decision trees as base learners; this enables them 

to achieve greater efficiency while integrating the complexity and nonlinear interaction of the features 

in the dataset. LR has simple analytical and computational properties; additionally, it can easily 

illustrate the interpretable description of the effect of the input on the output, i.e., the contribution of 

each feature in the model. SVR is effective in high-dimensional spaces and is extremely versatile in 

terms of application (i.e., it can be used for linear and polynomial models). 

Hereinafter, the damage grade is defined as the target variable, and the building parameters (i.e., number 

of stories, height, age, plinth area, ground-slope condition, building position, roof type, and construction 

material) and the ground-motion intensity (MSI) are defined as the input features. A one-hot encoding 

technique was used to transform categorical values (i.e., construction material, position, ground slope 

condition, and roof type) into nominal values (Pedregosa et al., 2011). The one-hot encoding technique 

generates a unique binary value 1 or 0 for each categorical feature by creating a sparse matrix, which 

resulted in 26 input features for the model (Table 1.1).  

The building damage dataset was randomly partitioned into three subsets. The training dataset 

constituted 60% of the entire dataset and was used to train the machine learning model. Meanwhile, the 

validation dataset constituted 20% of the entire dataset and was used to select the best model by 

comparing the strengths and weaknesses of the different machine learning models for damage 

prediction (Section 1.4.1). Model optimization was performed by investigating data imbalance arising 

from the unequal distribution of the target features in the training dataset (Section 1.4.2) and the 

importance of each feature in the model (Section 1.4.3). The test dataset constituted the remaining 20% 

of the entire dataset; it was kept hidden from the model until the final optimized model was developed. 

Once the optimized model was developed, the test dataset was used to test the performance of damage 

prediction of the optimized model (Section 1.4.4). The percentage distribution of each feature in the 

training, validation, and test dataset follows the same percentage distribution as in the entire NBDP 

database (Fig. 1.2). 

In this study, we used the models provided in Python using the Scikit-learn package. The performance 

of each model was quantified by measuring the accuracy score (percentage of correctly predicted labels) 

(Pedregosa et al., 2011). A high accuracy score (approximately 1) indicates the high efficacy (i.e., 

ability to perform a task to a satisfactory or expected degree) of the machine learning model in damage 
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prediction. In addition, we computed the following statistical error indicators to compare the 

performance of each machine learning model: the mean of the absolute error (MAE) and the mean 

squared error (MSE). The scores of these indicators are referred to as the performance scores 

hereinafter. The smaller the MAE (approximately 0) and MSE (approximately 0), the higher is the 

efficacy of the models. We considered different metrics because we observed that one metric could not 

fully explain the predictive performance among classification and regression methods. For each 

machine learning model, the predictive performance is extremely sensitive to the model input 

parameters, which are known as hyperparameters. The hyperparameters of each machine learning 

model were tuned using a grid-search technique on the training set. Finally, computational time (time 

taken by each model in our personal computer, Macbook Pro 2019) is considered as one additional 

parameter to facilitate comparison among machine learning models.  

The performance of each machine learning technique for damage prediction is presented graphically 

based on the distribution of errors as well as in a confusion matrix (see Fig. 1.4). A confusion matrix 

presents a comparison between the true and predicted damage grades. In the confusion matrix, the value 

of the predicted damage grades (cell value along the row of the confusion matrix) is normalized by the 

total number of true damage grades. The values along the main diagonal elements of the confusion 

matrix indicate the recall (i.e., the number of predicted values equal to the true values) of the machine 

learning model. A perfect model would have ones along the main diagonal of the confusion matrix, and 

zero everywhere else. In the confusion matrix, the accuracy score represents the number of correctly 

predicted instance (sum of the diagonal terms) over the total number of instances (sum of the full 

matrix). Because the regression model outputs a real value between 1 and 5 and not a label, we rounded 

the output (real number) to the nearest integer to plot the confusion matrix. But the error matrices were 

computed without rounding the model outputs to the nearest whole integer. 

1.4 Result 

1.4.1 Model selection 

This section summarizes the performance of damage prediction provided by the machine learning 

models on the validation set. The input variables, performance scores, and relative computation time 

for each optimized model are listed in Table 1.2 and Appendix A. Within the classification model group, 

the GBC (MAE = 0.60) provided the best performance as compared with the RFC (MAE = 0.67). The 

GBC and RFC yielded MSE scores of 1.05 and 1.25, respectively. The GBC (Fig. 1.5a) and RFC (Fig. 

1.5b) provided better classification recall for the two extreme damage grades (DG1 and DG5) than for 

the intermediate damage grades (DG2, DG3, and DG4). For these models, the intermediate damage 

grades were associated with a significant misclassification, independent of the classification model. 

However, this result shows that the GBC and RFC models did not yield high efficacies in damage 
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prediction. This may reflect the fact that, unlike DG1 (slight damage) and DG5 (near or complete 

collapse), the intermediate damage grades are more subjective as well as more difficult to classify and 

distinguish in the field. 

The regression models, GBR (MAE = 0.64) and RFR (MAE = 0.66), demonstrated similar performance 

results, with the smallest values of MSE (GBR = 0.72; RFR = 0.76). For the RFR (Fig. 1.4b) and GBR 

(Fig. 1.5c), the predicted damage grades were similar to the ground-truth damage grades in the 

confusion matrix. High percentage values were observed on the diagonal of the matrix or offset by one 

level of damage, and they constituted 80% to 95% of the total prediction in each damage grade, as 

shown in Figs. 1.4b and 1.5c. As expected, the regression models penalized the large errors more 

efficiently than the GBC (Fig. 1.5a) and RFC (Fig. 1.5b). In addition, these methods are associated with 

low computational time (RFR: 563 s; GBR: 875 s, Tab. 1.2). It is noteworthy that the LR (MAE = 0.86) 

and SVR (MAE = 0.77) demonstrated worse performances, with a significant misclassification (LR: 

Fig. 1.5d and SVR: Fig. 1.5e) that might be due to the complexity and nonlinear feature interactions in 

the dataset.  

In conclusion, considering the damage-prediction task as a regression problem and using GBR/RFR 

machine learning models provides the best damage-prediction efficacy (see Fig. 1.4, 1.5 and Table 1.2). 

For the GBR and RFR models, the damage prediction efficacy, and computational time were extremely 

sensitive to the hyperparameters. For example, the GBR model required a careful tuning of a significant 

number of hyperparameters, which increased the computational time compared with the RFR model. 

In addition, the GBR model might be less generalizable to new data owing to its possible overfitting 

issue and is more difficult to implement compared with the RFR model. Hence, the RFR model was 

used in the remainder of this study to test the damage prediction.
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Table 1.2. Summary of the optimized input parameters and the performance scores of different machine 
learning models observed on the validation dataset. The values of the input parameters are the hyper-
parameters for the machine learning methods (the other hyperparameters not mentioned here are the 
default ones in the Scikit-learn documentation (Pedregosa et al., 2011)). The best model for each 
measure is indicated in bold. 

Machine 
learning 
model 

 
Input 
parameters 

Score  
Computational 
time (sec) 
 

Classification 
Accuracy 

Statistical 
MAE MSE 

LR Default 0.30 0.86 1.14 3 

SVR C = 1 
Kernel = rbf 0.43 0.77 1.09 80900 

 
GBR 

learning rate = 0.1 
0.51 0.64 0.72 875 no_estimators = 500 

max_depth = 10 
 
RFR 

no_estimators =1000 
0.49 0.66 0.76 563 

max_depth = 20 

 
GBC 

learning rate = 0.1 
0.57 0.60 1.05 8584 no_estimators = 1000 

max_depth = 10 
 
RFC 

no_estimators = 1000 
0.53 0.67 1.25 450 

max_depth = 30 
 

 

Figure 1.4. Graphical representation of the predictive performance of the random forest regression 
(RFR) on the validation dataset. (a) Distribution of errors between the true and predicted damage grades 
(DG) and corresponding MAE value. (b) DG normalized confusion matrix for the RFR model. The 
model outputs were rounded to the nearest whole integer to plot the confusion matrix, which is not the 
case to compute the error matrices. 

MAE = 0.66(a) (b)
RFR
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Figure 1.5. Damage grade (DG) normalized confusion matrix for (a) gradient boosting classification 
(GBC) model, (b) random forest classification (RFC) model, (c) gradient boosting regression (GBR) 
model, (d) linear regression (LR) model, and (e) support vector regression (SVR) model on the 
validation dataset. A color bar shows the normalized cell value for each confusion matrix. 

 

GBC RFC

GBR LR

SVR

(a) (b)

(c) (d)

(e)
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1.4.2 Management of data imbalance 

The distribution of labels in the training dataset affects the performance of machine learning models 

(e.g., Estabrooks and Japkowicz 2001; Japkowicz and Stephen 2002; Branco et al. 2017). The NBDP 

dataset shows an unequal distribution of the damage grades, i.e., the highest damage grade represents 

the largest fraction of the dataset (Fig. 1.2a). This data imbalance may have affected the predictive 

performance of the RFR model (Fig. 1.4). In this study, we considered some extensively adopted 

techniques to manage an imbalanced dataset: over and undersampling the target features (e.g., 

Estabrooks and Japkowicz 2001; Japkowicz and Stephen 2002). Undersampling is achieved by 

selecting an equal amount of data through random selection of a minimum number of values in each 

damage grade from the training dataset, whereas oversampling is achieved by replicating the minority 

damage grades (i.e., DG1 and DG2 in our case). 

The RFR model was trained using the resampled dataset to observe its performance on the validation 

dataset. Fig. 1.6 shows the performance of the RFR model after (a) undersampling and (b) 

oversampling. Compared with the previous model trained using an imbalanced dataset (Fig. 1.4b), the 

undersampling method degraded the efficacy of the RFR model with an increase in the MAE by 9%. 

By oversampling, the performance yielded was similar to that of the original method (1% increase in 

the MAE). However, undersampling increased the recall value for the lowest damage grades (Fig. 1.6a) 

i.e., the recall value increased by 20%–25% for DG1 to DG3 and reduced by less than 15% for DG4 

and DG5. Meanwhile, oversampling improved the recall value moderately for the lower grades without 

significantly affecting the recall value of the higher damage grades, e.g., the DG1/DG5 recall value 

changed from 0.33/0.54 (Fig. 1.4b) to 0.41/0.51 (Fig. 1.6b), respectively. Therefore, for further studies, 

we plan to use the oversampling technique to address data imbalance issues such that a better estimation 

of the lower grades can be obtained. 
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Figure 1.6. Data imbalance testing applied to the RFR model. Damage grade (DG) normalized 
confusion matrix for (a) undersampling and (b) oversampling techniques.  

1.4.3 Feature importance 

The importance of each input feature in the RFR damage-prediction model is analyzed in this section. 

In decision trees, each node is a condition for dividing the values into single characteristics such that 

similar values of the dependent variable appear in the same set after the division. The condition is based 

on impurity, which is the variance in the case of regression trees. In other words, each feature’s 

contribution can be measured by the average decrease in impurity using all the trees in the forest, 

without considering the linear separability of the data (Pedregosa et al., 2011). The significance of each 

feature in the model is measured in terms of the feature importance scores. The feature importance score 

is a value assigned to each feature in the model while a model is developed. Note also that RFR uses 

the bagging algorithm (randomly splitting data into smaller subsets) while developing the trees, so the 

correlated features may or may not be used for a particular tree. Thus, correlated features may not affect 

the overall predictive performance, however, it may impact the importance ranking between two 

correlated features, removing one of the correlated features may lower the damage predictive 

performance of the RFR model. 

Fig. 1.7 shows the importance score associated with each input feature considered in this study. The 

highest importance score (32% in Fig. 1.7) was associated with the mud-mortar stone material. 

Buildings constructed using mud-mortar-stone constituted the highest proportion in our dataset (Fig. 

1.2i), and this building class was damaged severely during the Nepal earthquake, independent of the 

MSI. In fact, this type of building is generally associated with the most vulnerable class in most 

(b)(a) RFR: under-sampling RFR: over-sampling
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vulnerability assessment methods. The fact that the RFR identified the mud-mortar-stone feature as the 

most important feature in damage prediction is consistent with previous studies (Maheri et al., 2005; 

Sayin et al., 2013; Webster and Tolles, 1999). Additionally, Fig. 1.7 shows that, as expected, the MSIs 

that characterized the ground motion were one of the most significant input features for earthquake 

damage prediction (31%), i.e., damage was first conditioned by the MSI regardless of the building 

parameters. Other building-related input features, such as plinth area (8%), construction age (7%), and 

height (5%) contributed significantly to earthquake damage prediction model; meanwhile, the other 

features contributed only marginally to the damage prediction model (RFR). 

As mentioned earlier (Tab. 1.2), a higher damage-prediction accuracy (0.49) was observed when all 

features were considered (MAE = 0.66). However, information regarding building construction 

materials is typically not easily accessible. The four basic building parameters (i.e., number of stories, 

age, height, and plinth area) could be easily accessible from the institutional databases (e.g., national 

census, national housing database)  (Crowley et al., 2020; Riedel et al., 2015), from filed survey, and 

partially available in open-source platform (e.g., OpenStreetMap (OSM) (Bennett, 2010), 

OpenBuildingMap (OBM) (Schorlemmer et al., 2017)). Thus, the performance of RFR model 

considering only the basic parameters of the building (i.e., number of stories, age, height, and plinth 

area) in addition to the ground-motion intensities is explored. The RFR model provided a similar level 

of accuracy (0.46) in damage prediction (MAE = 0.72). This result suggests that basic building 

parameters enable the development of satisfactory RFR models for predicting damage, and therefore 

earthquake losses, for the given value of ground-motion intensity (as reported by Riedel et al. (2015) 

and Guettiche et al. (2017) for seismic vulnerability classification using a support vector machine).  
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Figure 1.7. Graphical representation of the importance scores associated with the different input 
features considered for the RFR model. Categorical features are transformed to binary features. The 
features (same as in Fig. 1.2) considered in this study are on the y-axis and the x-axis is the importance 
score. In the figure the building features are represented by a set of colors: no. of storey (blue), age 
(grey), plinth area (green), height (cyan), construction material (orange), MSI (red), ground slope 
(purple), roof type (magenta), and building’s position (sky blue). 

1.4.4 Damage prediction using test dataset 

This section presents the predictive performance of the RFR model for the test dataset. The RFR model 

was developed for two sets of features, i.e., all building parameters (i.e., full-feature setting) and the 

basic parameters (i.e., number of stories, age, height, plinth area, and ground-motion intensity) (basic-

feature setting).  

The full-feature/basic-feature settings yielded MSE scores of 0.81/0.93. Confusion matrices for the full- 

and basic-feature settings are shown in Figs. 1.8a and 1.8b, respectively. The main diagonals and their 

adjacent values are associated with a higher recall value, illustrating higher efficacy in damage 

prediction and a lower misclassification rate. As shown in Figs. 1.4b and 1.6b, the RFR model applied 

to the test dataset predicted the highest damage grades (DG4/DG5) with a higher recall value, 

corresponding to 60%/51% and 57%/46% in the full- and basic-feature settings, respectively. 
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Figure 1.8. Damage grade (DG) normalized confusion matrix for (a) the full-features setting and (b) 
the basic-features setting observed in the test dataset. 

 

During field observations for damage classification, it is often difficult to assign a damage level to 

buildings falling between two damage grades. Moreover, it is more convenient to classify damage into 

three categories, i.e., in the same manner as using the traffic-light-system (TLS)-based classification 

system (green, yellow, and red) in post-earthquake emergency surveys (ATC, 2005; Bazzurro et al., 

2004). Therefore, we classified the five damage grades into three categories by considering the severity 

of damage based on the damage grade definition (Section 1.2), as follows: S (slight: DG1+DG2), M 

(medium: DG3), and H (heavy: DG4+DG5). The MSE scores for the full-feature/basic-feature settings 

were 0.34/0.39. Fig. 1.9 shows the confusion matrices. The damage prediction accuracy increased 

significantly when the TLS-based approach was used. For example, the recall values for the S/M/H 

damage grades were 59%/60%/73% and 51%/61%/70% for the full- and basic-feature settings, 

respectively. 

(a) (b)
RFR: full-features-setting RFR: basic-features-setting
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Figure 1.9. Damage grade (DG) normalized confusion matrix for (a) the full-features setting and (b) 
the basic-features setting in the traffic-light (TLS) -based classification approach, grouping the five 
damage grades (DG) into three classes, small, medium, and heavy damage grades (S, M, H). 

 

Table 1.3 summarizes the MAE, and MSE scores observed with the full- and basic-feature settings. For 

the basic-feature setting, the values of these scores (e.g., MAE = 0.73/0.45), considering that the 

5DG/TLS damage scales were similar to those of the full-feature setting (e.g., MAE = 0.69/0.41). 

Section 4.3 shows that using the RFR model, a reasonable damage prediction was possible by merely 

considering the basic features of the buildings.  

Table 1.3. Summary of the performance scores for RFR model considering the test datasets for the full-
features setting and basic-features setting. The performance scores are associated to the 5DG and TLS-
based damage classification systems. 

Features Damage 
grade 

Accuracy 
score 

MAE MSE 

Full-features setting 5DG 0.49 0.69 0.81 
TLS 0.68 0.41 0.34 

Basic-features setting 5DG 0.46 0.73 0.93 
TLS 0.64 0.45 0.39 

 

The results yielded by the RFR model confirmed that considering basic building features resulted in a 

relatively similar damage prediction efficacy as compared with considering all features. The possible 

reason behind this is maybe the combination of these basic features is able to indirectly capture some 

key parameters of buildings needed to define the vulnerability, such as the building typology. The RFR 

model developed by considering the basic features thereby may overcome the challenges of data 

RFR: full-features-setting RFR: basic-features-setting(a) (b)
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acquisition for vulnerability assessments as well as earthquake damage and loss prediction on the urban 

or regional scale. 

1.4.5 Testing the proportionating of the dataset 

We explored the damage prediction efficacy of the RFR model as a function of the amount of data in 

the training dataset.  Fig. 1.10 shows the performance of the method (accuracy and MSE scores) for 

several percentage of data in the training phase according to the test dataset (% of NT). In this case 

100% of the original training set correspond to 300% of NT. For 10% of NT, the accuracy score is 

0.63/0.57 and 0.42/0.37 for TLS- and 5DG- based damage classifications considering full-

features/basic-features-setting, respectively. These scores are very close to the performance scores 

noted in Table 1.3. Major improvement in the damage prediction efficacy of the RFR model is achieved 

up to 50% of NT. After 50%, a minor improvement is observed. 

Moreover, the damage prediction efficacy of the RFR model was further improved by taking into 

account the geographic location of the building (ward-id in this case). For example, at 10% of NT, the 

accuracy score was 0.66/0.63 and 0.47/0.44 for TLS and 5DG based damage classification at full-

features/basic-features-setting, respectively.  

 

Figure 1.10. Variation of the accuracy (a) and MSE (b) of the RFR model as a function of the percentage 
of the whole test dataset, NT, used for the training phase. The black-solid/red-dashed lines with the grey 
circle corresponds to TLS-based damage classification for the full-features/basic-features-setting, 
respectively. The black-solid/red-dash line with the grey square corresponds to 5DG-based damage 
classification for the full-features/basic-features-setting, respectively. 
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1.5 Discussion  

In this study, we investigated the efficiency of various machine learning techniques for post-earthquake 

seismic damage assessment using the NBDP database compiled after the 2015 MW 7.8 earthquake in 

Nepal. Machine learning models were trained based on a number of building characteristics and some 

basic parameters that contributed significantly to damage prediction performance. We tested the 

predictive efficacies of LR, SVR, GBC/GBR, and RFR/RFC models. For classification methods 

significant misclassification is observed for intermediate damage grades whereas for regression 

methods the predicted values were similar to the ground truth (see. Fig 1.4, 1.5 and Table 1.2). This 

could be because for classification methods every mis-classification has the same penalty loss whereas 

regression methods penalize the relative penalty loss (i.e. difference error) by minimizing the squared 

loss between true and predicted damage grades. Among these models, RFR was the most relevant model 

for damage prediction when applied to our dataset; it provided the best cost/benefit ratio in terms of 

performance and computing time. For the baseline comparison, the result obtained from the RFR model 

is compared with a random uniform baseline (randomly assigning damage grades following an uniform 

distribution) and a random stratified baseline (following the distribution of damage grades in the 

training set) to every input. The RFR model resulted largely higher accuracy score (0.49) as compared 

to the random uniform baseline (0.20) and the random stratified baseline (0.25) to every input for 5DG 

classification. Moreover, in this case study, the RFR model demonstrated superior performance in 

predicting higher damage grades, which is ultimately the most pursued information for seismic damage 

assessment and earthquake loss reduction. 

Additionally, we achieved a moderate improvement in damage prediction by addressing data imbalance 

issues via data resampling using the RFR model. In this study, we considered an unseen test dataset to 

ensure the overfitting issues of the model. The error values of validation and test datasets are very 

similar (same 0.49 accuracy on both cases), indicating that the model did not over-fit on the validation 

set. 

However, the results herein show that considering a traffic-light damage classification and a limited 

number of building features, the results reach very satisfactory scores according to the objectives set: 

damage prediction accuracy 0.64 for basic-features setting, to be compared to Mangalathu et al. 

(2020b), Roslin et al., (2020), and Harirchian et al., (2021) studies that reported accuracy values of 0.66, 

0.67, and, 0.65, respectively also with the random forest method. The 3-class classification model 

lowers the number of targets and then lowers the confusion as is often observed during damage surveys 

for the intermediary damage grade (e.g., between DG3 and DG4). In addition, so-called basic building 

features (i.e., number of stories, age, height, and plinth area) associated with ground-motion intensity 

provided a relevant estimate of the damage grade with a significant level of accuracy. Similar 

observations have also been reported by Mangalathu et al. (2020b) and Stojadinović et al. (2021) in 
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their studies using the 2014 South Napa and 2010 Kraljevo, Serbian earthquake building damage 

dataset, respectively. Moreover, the RFR model trained on a relatively small amount of dataset (5% - 

20% of the test dataset) resulted in a reasonable estimate of damage; similar observation has been 

reported by Stojadinović et al., (2021).  

The input ground motion used was the USGS ShakeMap intensity of the mainshock, whereas the overall 

quality of the NBDP database results were based on the cumulative effects of the mainshock and 

aftershock events, which might have affected the prediction efficacy. In addition, missing building-by-

building information in the NBDP database relative to their localization and their associated site 

condition reduce the damage prediction efficacy of the machine learning model (Mangalathu et al., 

2020b; Roeslin et al., 2020; Stojadinović et al., 2021). However, we also observed that by considering 

the geographic locations of buildings (ward-id in our case) slightly improved the damage prediction 

efficacy of the RFR model.  

Finally, in Nepal, a majority of the building typology inventory collected after the 2015 earthquake 

holds a good match with the building typology inventory as observed in the 2011 national census 

(Chaulagain et al., 2015). Thus, the findings from this study seems promising to the Nepal’s exposure 

context. Further investigations should be carried out to strengthen these findings: after the 2015 Gorkha 

Nepal earthquake, national and international communities are collaborating to develop an exposure 

model for Nepal (Jordan, 2019).  

1.6 Conclusion  

To summarize, a framework for combining building parameters and earthquake building damage 

information collected after an earthquake event with machine learning techniques for seismic-damage 

assessment was presented herein. This study shows a possibility of using machine learning methods for 

immediate damage assessment once ground-motion information is published via operational tools, such 

as the USGS ShakeMap. This study shows that the building's features (number of stories, age, floor 

area, height) could result in reasonable damage prediction. These basic building parameters could be 

available in existing institutional databases (e.g., national census, national housing database), thereby 

resolving data acquisition issues associated with seismic-damage assessments at the urban or regional 

scale.  

Without anticipating how a city planner can use these results, machine learning developed on a building 

portfolio makes it possible to explain post-earthquake damage. One may assume that the model herein 

for a specific portfolio might be used to predict and represent seismic damage in another region with 

the same portfolio (for example, Riedel et al., 2014) or for another characterization of the seismic hazard 

(Riedel et al., 2015), in an emergency situation (immediately after an earthquake if the exposure model 

is known) or in a planning process. This will of course have to be confirmed on another dataset, e.g. 
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consisting of a series of earthquakes affecting the same region, i.e. characterized by the same portfolio 

of buildings. In addition, the results herein show that using a traffic-light damage classification and a 

limited number of building features, the results reach very satisfactory scores according to the objectives 

set (damage prediction accuracy 0.64 for 4 basic features/3 damage grade settings, to be compared to 

the studies of Mangalathu et al. (2020b), Roslin et al. (2020), and Harirchian et al., (2021) that reported 

accuracy values of 0.66, 0.67, and, 0.65, respectively with the random forest method). 

Additionally, the collection of the building exposure data is the key challenge faced by the damage 

assessment communities. The observed performance of machine learning considering only basic 

parameters, easy to collect and without requiring much technical expertise, may suggest the interest of 

exploring the potential of crowed-source databases (e.g. OSM/OBM) as input parameters. This 

approach will require validation before being able to assert it definitively, but it would solve the 

difficulty of considering the evolution of the building in the definition of the exposure models.  
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2 Testing machine learning models for heuristic building damage 

assessment applied to the Italian Database of Observed Damage (DaDO) 

 

In chapter 1, we compared the damage prediction performance of various machine learning models 

to explain post-earthquake seismic damage, considering two different classifications of damage and 

two different sets of building features, applied to the 2015 Nepal earthquake building-damage 

portfolio (NBDP). 

In this chapter, we evaluate machine learning models for heuristic building damage assessment at a 

regional scale using the database of observed damage (DaDO) in Italy. We analyzed the efficacy of 

machine learning models trained on past earthquake building damage datasets to predict potential 

damage in future earthquakes, the relation between building features and damage level, and methods 

to handle imbalance distribution of target features. We also compared the damage prediction efficacy 

of the machine learning model with the Risk-UE method. The content of this chapter is under review 

in the Natural Hazards and Earth System Science journal. 

Ghimire, S., Guéguen, P., Pothon, A., and Schorlemmer, D. (2023). Testing machine learning models 
for heuristic building damage assessment applied to the Italian Database of Observed Damage 
(DaDO). Natural Hazards and Earth System Sciences Discussions, 1-29 

 

Abstract  

Assessing or forecasting seismic damage to buildings is an essential issue for earthquake disaster 

management. In this study, we explore the efficacy of several machine learning models for damage 

characterization, trained and tested on the database of damage observed after Italian earthquakes 

(DaDO). Six models were considered: regression- and classification-based machine learning models, 

each using random forest, gradient boosting and extreme gradient boosting. The structural features 

considered were divided into two groups: all structural features provided by DaDO or only those 

considered to be the most reliable and easiest to collect (age, number of storeys, floor area, building 

height). Macroseismic intensity was also included as an input feature. The seismic damage per building 

was determined according to the EMS-98 scale observed after seven significant earthquakes occurring 

in several Italian regions. The results showed that extreme gradient boosting classification is statistically 

the most efficient method, particularly when considering the basic structural features and grouping the 

damage according to the traffic-light based system used, for example, during the post-disaster period 

(green, yellow and red), 68% buildings were correctly classified. The results obtained by the machine 
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learning-based heuristic model for damage assessment are of the same order of accuracy (error values 

were less than 17%) as those obtained by the traditional Risk-UE method. Finally, the machine learning 

analysis found that the importance of structural features with respect to damage was conditioned by the 

level of damage considered.    

Keywords 

Earthquake building-damage, DaDO building damage database, Machine learning, RISK-UE, Seismic 

vulnerability of buildings, Italy. 

 

2.1 Introduction 

Population growth worldwide increases exposure to natural hazards, increasing consequences in terms 

of global economic and human losses. For example, between 1985 and 2014, the world's population 

increased by 50% and average annual losses due to natural disasters increased from US$14 billion to 

over US$140 billion (Silva et al., 2019). Among other natural hazards, earthquakes represent one-fifth 

of total annual economic losses and cause more than 20 thousand deaths per year (Daniell et al., 2017; 

Silva et al., 2019). To develop effective seismic risk reduction policies, decision-makers and 

stakeholders rely on a representation of consequences when earthquakes affect the built environment. 

Two main risk metrics generally considered at the global scale are associated with building damage: 

direct economic losses due to costs of repair/replacement and loss of life of inhabitants due to building 

damage. The damage is estimated by combining the seismic hazard, exposure models and 

vulnerability/fragility functions (Silva et al., 2019).  

For scenario-based risk assessment, damage and related consequences are computed for a single 

earthquake defined in terms of magnitude, location, and other seismological features. Many methods 

have been developed to characterize the urban environment for exposure models. In particular, damage 

assessment requires vulnerability/fragility functions for all types of existing buildings, defined 

according to their design characteristics (shape, position, materials, height, etc.) and grouped in a 

building taxonomy (e.g. among other conventional methods  FEMA, 2003; Grünthal, 1998; Guéguen 

et al., 2007; Lagomarsino and Giovinazzi, 2006; Mouroux and Le Brun, 2006; Silva et al., 2014). At 

the regional/country scale, damage assessment is therefore confronted with the difficulty of accurately 

characterizing exposure according to the required criteria and assigning appropriate 

vulnerability/fragility functions to building features. Unfortunately, the necessary information is often 

sparse and incomplete, and exposure model is suffering from economic and time constraints. 

Over the past decade, there has been growing interest in artificial intelligence methods for seismic risk 

assessment, due to its superior computational efficiency, easy handling of complex problems, and the 

incorporation of uncertainties (e.g., Riedel et al., 2014, 2015; Azimi et al., 2020; Ghimire et al., 2022; 
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Hegde and Rokseth, 2020; Kim et al., 2020; Mangalathu and Jeon, 2020; Morfidis and Kostinakis, 

2018; Salehi and Burgueño, 2018; Seo et al., 2012; Sun et al., 2021; Wang et al., 2021; Xie et al., 2020; 

Y. Xu et al., 2020; Z. Xu et al., 2020).  In particular, several studies have tested the effectiveness of 

machine learning methods in associating damage degrees with basic building features and spatially-

distributed seismic demand with acceptable accuracy compared with conventional methods or  tested 

with post-earthquake observations (e.g., Riedel et al., 2014, 2015; Guettiche et al., 2017; Harirchian et 

al., 2021; Mangalathu et al., 2020; Roeslin et al., 2020; Stojadinović et al., 2021; Ghimire et al., 2022). 

In parallel, significant efforts have been made to collect post-earthquake building damage observations 

after damaging earthquakes (Dolce et al., 2019; MINVU, 2010; MTPTC, 2010; NPC, 2015). With more 

than 10,000 samples compiled, the Database of Observed Damage (DaDO) in Italy, a platform of the 

Civil Protection Department, developed by the Eucentre Foundation (Dolce et al., 2019), allows 

exploration of the value of heuristic vulnerability functions calibrated on observations (Lagomarsino et 

al., 2021), as well as the training of heuristic functions using machine learning models (Ghimire et al., 

2022) and considering sparse and incomplete building features.  

The main objective of this study is to investigate the effectiveness of several machine learning models 

trained and tested on information from the DaDO to develop a heuristic model for damage assessment. 

The model may be classified as heuristic because it applies a problem-solving approach in which a 

calculated guess based on previous experience is considered for damage assessment (as opposed to 

applying algorithms that effectively eliminate the approximation). The damage is thus estimated in a 

non-rigorous way defined during the training phase and the results must be validated and then tested 

against observed damage. By analogy with psychology, this procedure can reduce the cognitive load 

associated with uncertainties when making decisions based on damage assessment, by explicitly 

considering the uncertainties in the assessment, being aware about the incompleteness of the 

information and the accuracy level to make a decision. The dataset and methods are described in the 

data (2.2) and method (2.3) sections, respectively. The 2.4 section presents the results of damage 

prediction produced by machine learning models compared with conventional methods, followed by a 

conclusion section. 

 

2.2 Data 

The Database of Observed Damage (DaDO, Dolce et al., 2019) is accessible through a web-GIS 

platform and is designed to collect and share information about building features, seismic ground 

motions and observed damage following major earthquakes in Italy from 1976 to 2019. A framework 

was adopted to homogenize the different forms of information collected and to translate the damage 

information into the EMS-98 scale (Grunthal et al., 1998) using the method proposed by Dolce et al. 
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(2019). For this study, we selected building damage data from seven earthquakes summarized in Table 

2.1 and presented in Fig. 2.1. 

 

Table 2.1. Building-damage data from the DaDO for the seven earthquakes considered in this study. 
‘Ref’ is the reference to the earthquake. ‘DL’ is the number of the damage grade available in DaDO. 
‘NB’ is the number of buildings considered in this study. AeDES is the post-earthquake damage survey 
form, first introduced in 1997 and become the official operational tool recognized by the Italian Civil 
Protection in 2002. 

Ref Earthquake Event date Mag. Epicentre Damage 

survey form 

DL NB 

Lat. Long. 

E1 Irpinia-1980  23/11/1980 6.9 40.91 15.37 Irpinia-1980 8  37,828 

 

E2 Pollino-1998  09/09/1998 5.6 40.04 15.98 AeDES-1998 4  9,485 

E3 Molise-Puglia-2002  31/10/2002 5.9 41.79 14.87 AeDES-2000 4  6,396 

E4 Emilia-Romagna-2003  14/09/2003 5.3 44.33 11.45 AeDES-2000 4  239 

E5 L'Aquila-2009  06/04/2009 6.3 42.34 13.34 AeDES-2008 4  37,999 

E6 Emilia-Romagna-2012  20/05/2012 6.1 44.89 11.23 AeDES-2008 4  10,581 

E7 Garfagnana-Lunigiana-2013  21/06/2013 5.3 44.15 10.14 AeDES-2008 4  1,474 

 

The converted EMS-98 damage grade (DG) ranges from damage grade DG0 (no damage) to DG5 (total 

collapse). The building features are available for each individual building and relate to the shape and 

design of the building and the built-up environment (Tab. 2.2, Fig. 2.2), as follows:  

Building location - the location of each building is defined by its latitude and longitude, assigned using 

either the exact address of the building if available or the address of the local administrative centre 

(Dolce et al., 2019). 

Numbers of storeys - total number of floors above the surface of the ground. 

Age of building - time difference between the date of the earthquake and the date of building 

construction/renovation.  

Height of building - total height of the building above the surface of the ground, in m.  

Floor area – average of the storey surface area, in m2.  

Ground slope condition - four types of ground slope conditions are defined (flat, mild slope, steep 

slope, and ridge). 

Roof type – four types of roofs are defined (thrusting heavy roof, non-thrusting heavy roof, thrusting 

light roof, and non-thrusting light roof). 
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Position of building - indication of the building’s position in the block: isolated, extreme, corner, and 

intermediate. 

Regularity: building regularity in terms of plan and elevation, classified as either irregular or regular.  

Construction material:  vertical elements: good and poor-quality masonry, good and poor quality 

mixed frame masonry, reinforced concrete frame and wall, steel frame, and other. 

For features defined as value ranges (e.g., date of construction/renovation, floor area, and building 

height), the average value was used. Furthermore, the Irpinia-1980 building damage portfolio (E1) was 

constructed using the specific Irpinia-1980 damage survey form, while the AeDES damage survey form 

was used for the others. The Irpinia-1980 dataset will therefore be analysed separately. 

Building damage data from earthquake surveys other than the Irpinia-1980 earthquake damage survey 

primarily include damaged buildings. This is because the data was collected based on requests for 

damage assessments after the earthquake event (Dolce et al. 2019). The damage information in the 

DaDO database is still relevant for testing the machine learning models for heuristic damage 

assessment. Mixing these datasets to train machine learning models can lead to biased outcomes. 

Therefore, the machine learning models were developed on the other earthquake dataset excluding the 

Irpinia dataset, and the Irpinia earthquake dataset was used only in the testing phase.  

The distribution of the samples is very imbalanced (Fig. 2.2): for example, there is a small proportion 

of buildings in DG4+DG5 (7.59%), and a large majority of masonry (65.47%) compared to reinforced 

concrete frame (21.31%) buildings. This imbalance should be taken into account when defining the 

machine learning models.   
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Figure 2.1. Geographic location of the buildings considered in this study.  

To consider spatially-distributed ground motion, the original DaDO data are supplemented with the 

main event macroseismic intensities (MSI) provided by the United States Geological Survey (USGS) 

ShakeMap tool (Wald et al., 2005). Macroseismic intensities (MSI) given in terms of modified Mercalli 

intensities are considered and assigned to buildings based on their location. The distribution of MSI 

values in the database is shown in Fig. 2.2k. 

Table 2.2. Distribution of the different features used in this study. 

No. Parameters Data type Distributio
n (%) Remarks 

1 
Damage 
grades 
(DG) 

No damage DG0 

Categorical 

43.63 

Fig. 2.2a 
Slight damage DG1 28.90 
Moderate damage DG2 7.41 
Substantial damage DG3 12.48 
Very heavy damage DG4 3.94 
Total collapse DG5 3.65 

2 Number of 
storeys 

0-3 NF1 
Numerical 

85.81 
Fig. 2.2b 3-5 NF2 13.01 

> 5 NF3 1.19 

3 Age (years) 

0-20 AG1 

Numerical 

15.22 

Fig. 2.2c 
21-40 AG2 18.81 
41-60 AG3 34.15 
61-80 AG4 21.34 
>80 AG5 10.49 

4 0-50 A1 Numerical 22.16 Fig. 2.2d 
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Floor area 
(square 
metres) 

50-100 A2 34.73 
100-150 A3 22.53 
150-200 A4 8.32 
> 200 A5 12.26 

5 Height 
(metres) 

0-10 H1 
Numerical 

87.78 
Fig. 2.2e 10-15 H2 10.69 

>15 H3 1.50 

6 Position 

Corner P1 

Categorical 

9.71 

Fig. 2.2f Extreme P2 24.47 
Internal P3 22.80 
Isolated P4 43.02 

7 Ground 
slope 

Ridge GS1 

Categorical 

2.62 

Fig. 2.2g Plain GS2 34.25 
Moderate slope GS3 43.74 
Steep Slope GS4 20.39 

8 Regularity Irregular in plan and elevation IR Categorical 22.28 Fig. 2.2h Regular in plan and elevation Re 77.72 

9 Roof type 

Heavy no thrust R1 

Categorical 

36.43 

Fig. 2.2i Heavy thrust R2 11.25 
Light thrust R3 26.48 
Light no thrust R4 25.83 

10 Material 

Masonry poor quality CM1 

Categorical 

36.51 

Fig. 2.2j 

Masonry good quality CM2 28.96 
Mixed frame masonry poor quality CM3 2.64 
Mixed frame masonry good quality CM4 5.21 
Reinforced concrete frame CM5 21.31 
Reinforced concrete wall CM6 0.42 
Steel frame CM7 0.09 
Other CM8 4.10 
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Figure 2.2. Distribution of the different features in the database. E1, E2, E3, E4, E5, E6, and E7, 
representing Irpinia-1980, Pollino-1998, Molise-Puglia-2002, Emilia-Romagna-2003, L'Aquila-2009, 
Emilia-Romagna-2012, and Garfagnana-Lunigiana-2013 building damage portfolios, respectively. The 
y-axis is the percentage distribution and the x-axis is (a) Damage grade, (b) Number of storeys (NF1: 
0-3, NF2: 3-5, NF3: >5), (c) Building age (AG1: 0-20, AG2: 21-40, AG3: 41-60, AG4: 61-80, AG5: 
>80), (d) Floor area (A1: 0-50, A2: 51-100, A3: 101-150,  A4: 151-200, A5: >200), (e) Height (H1: 0-
10, H2: 10-15, H3: >15), (f) Building position (P1: corner, P2: extreme, P3: internal, P4: isolated), (g) 
Ground slope condition (GS1: ridge, GS2: plain, GS3: moderate slope, GS4: steep slope), (h) Regularity 
in plan and elevation (IRe: irregular, Re: Regular), (i) Roof type (RT1: heavy no thrust, RT2: heavy 
thrust, RT3: light no thrust, RT4: light thrust), (j) Construction material (CM1: poor-quality masonry, 
CM2: good-quality masonry, CM3: poor-quality mixed frame masonry, CM4: good-quality mixed 
frame masonry, CM5: reinforced concrete frame, CM6: reinforced concrete wall, CM7: steel frames, 
CM8: other), and (k) macro-seismic intensity. 

 

2.3 Method 
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In chapter 1, we applied classification- and regression-based machine learning models to the damage 

observed after the 2015 Gorkha Nepal earthquake (NPC, 2015). The main concepts for method 

selection, the definition of the dataset for training and testing, and the representation of model 

performance are presented here. 

To develop the heuristic damage assessment model, the damage grades are considered as the target 

feature. The damage grades are discrete labels, from DG0 to DG5. Three most advanced classification 

and regression machine learning algorithms were selected: random forest (RFC) and regression (RFR) 

(Breiman, 2001), gradient boosting classification (GBC) and regression (GBR) (Friedman, 1999), and 

extreme gradient boosting classification (XGBC) and regression (XGBR) (Chen and Guestrin, 2016). 

A label (or class) was thus assigned to the categorical response variables (DG) for the classification-

based machine learning models. For the regression-based machine learning models, DG is converted 

into a continuous variable to minimize misclassifications (Ghimire et al., 2022).  

Building features and macroseismic intensities were considered as input features. A one-hot encoding 

technique was used to convert the categorical features (i.e., ground slope condition, building position, 

roof type, construction material) into binary values (1 or 0), resulting in 28 input variables (Tab. 2.2). 

No input features were removed from the dataset: some building features (e.g., number of storeys and 

height) may be correlated but we assumed that the presence of correlated features does not impact the 

overall performance of these machine learning methods (Ghimire et al., 2022). No specific data cleaning 

methods were applied to the DaDO database. 

The machine learning algorithms from the Scikit-learn package developed in Python (Pedregosa et al., 

2011) were applied. The machine learning models were trained and tested on the randomly selected 

training (60% of the dataset) and testing (40% of the dataset) subsets of data, considering a single 

earthquake dataset or the whole DaDO dataset. The testing subset was kept hidden from the model 

during the training phase.  

Machine learning model efficacy 

The efficacy of the heuristic damage assessment model (i.e., its ability to predict damage to a 

satisfactory or expected degree) was analysed in three stages: comparison of the efficacy of the machine 

learning models using metrics; analysis of specific issues related to machine learning using the selected 

models; and application of the heuristic model to the whole DaDO dataset. 

 

 

First stage: model selection 
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In the first stage, only the L’Aquila-2009 portfolio was considered for the training and testing phases. 

This is the largest dataset in terms of the number of buildings and was obtained using the AeDES survey 

format (Baggio et al., 2007; Dolce et al., 2019). Model efficacy was provided by the confusion matrix, 

which represents model prediction compared with the so-called “ground truth” value. Accuracy was 

then represented on the confusion matrix by the ratio of the number of correctly predicted DGs to the 

total number of observed values per DG (ADG).  

Total accuracy (AT) was computed as the ratio of the number of correctly predicted DGs to the total 

number of observed values. AT and ADG values close to 1 indicate high efficacy. Moreover, the 

quantitative statistical error was also calculated as the mean of the absolute value of errors (MAE) and 

the mean squared error (MSE) (MAE and MSE values close to 0 indicate high efficacy). For 

classification-based machine learning models, the ordinal value of the DG was used to calculate the 

MAE and MSE scores directly. For the regression-based machine learning models, the output DG 

values were rounded to the nearest integer for the accuracy scores plotted for the confusion matrix, but 

not for the MAE and MSE value calculations.  

Second stage: machine learning related issues 

In the second stage, the best heuristic model for damage assessment was selected based on the highest 

efficacy, and used to analyse and test specific issues related to machine learning: (1) the imbalance 

distribution of DGs in the DaDO, (2) the performance of the selected model when only some basic, but 

accurately assessed, building features are considered (i.e., number of storeys, location, age, floor area), 

and (3) the simplification of the heuristic model, in the sense that DGs are grouped into a traffic-light-

based classification (i.e., green, yellow and red, corresponding to DG0+DG1, DG2+DG3 and 

DG4+DG5, respectively). In the second stage, the issues related to machine learning were first analysed 

using the L’Aquila-2009 portfolio. The whole DaDO dataset was then used.  

Third stage: application to the whole DaDO portfolio and comparison with Risk-UE 

In the third stage, several learning and testing sequences were considered, with the idea of moving to 

an operational configuration in which past information is used to predict damage from future 

earthquakes: either learning based on a portfolio of damage caused by one earthquake and tested on 

another portfolio, or learning based on a series of damage portfolios and tested on the portfolio of 

damage caused by an earthquake placed in the chronological continuity of the earthquake sequence 

considered.  In this stage, the efficacy of the heuristic damage assessment model was analysed by 

comparing the prediction values with the so-called “ground truth” values through the error distribution, 

as follows: 

 ε!(%) = &"!
#
' ∗ 100  (2.1) 
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where n$ is the total number of buildings at a given error level (difference between observed and 

predicted DGs), N is the total number of buildings in the damage portfolio.  

In this stage, the efficacy of the heuristic damage assessment model was compared with the 

conventional damage prediction framework proposed by the RISK-UE method (Milutinovic and 

Trendafiloski, 2003). The RISK-UE method assigns a vulnerability index (IV) to a building, based on 

its construction material and structural properties (e.g., height, building age, position, regularities, 

geographic location). For a given level of seismic demand (MSI), the mean damage (µd) and the 

probability, pk, of observing a given damage level k (k = 0 to 5) are given by: 

 

 µ! = 2.5 11 + tanh	 &%&'().+,'-./0./
+.0

'7   (2.2)   

 

 p1 =
,!

1!(,.1)!
&5"
,
'
,
&1 − 5"

,
'
,.1

 (2.3) 

 

Herein, comparing the heuristic model and the RISK-UE method amounts to considering the following 

steps, based on the equations given by RISK-UE:  

Step 1 - The buildings in the training and testing datasets are grouped into different classes according 

to construction material. 

Step 2 - For a given building class in the training dataset, computation of 

Step 2.1 - mean damage (µ!) using the observed damage distribution at a given MSI value by: 

 µ! = ∑ p1k,
167    (2.4) 

 Step 2.2 - vulnerability index (IV) with the µ! obtained in step 2.1 by: 

 IV = /
).+,

113.1 − MSI + 2.3 Atanh./ &5"+., − 1'B7   (2.5) 

 

Step 3 - For the same building class in the test dataset, calculation of 

 Step 3.1 - mean damage (µ!) Eq. 2.2 for a given MSI value with the value of IV obtained in 

step 2.2; 

 Step 3.2 - damage probability (p1)  Eq. 2.3 with the value of µ! obtained in step 3.1; 

 Step 3.3 - distribution of buildings in each damage grade within a range of MSI values observed 

in the test dataset as follows: 

  N89$!,1 = ∑ p1	n;<=,%&'%&'   (2.6) 
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where	n;<=,%&' is the total number of buildings observed in the test set for a given MSI value;   

 Step 3.4 –absolute error (ε1) in each damage level k, given by:      

 ε1 = C##$%,'.#()!",'
#

C  (2.7) 

where, N;<=,1 is the total number of buildings observed in the given damage grade k. 

 

Similarly, the heuristic damage assessment model was also compared with the mean damage 

relationship (Eq. 2.4) applied to the test set. Thus, for each building class in the test set, the error value 

(Eq. 2.7) for each DG was computed from the µ! on the observed damage using Eq. (2.4), the 

probability p1 of obtaining a given DG k (k= 0 to 5) using Eq. (2.3), and the distribution of buildings 

in each DG N89$!,1 for a given MSI value using Eq. (2.6).  

2.4 Result 

2.4.1 First stage: model selection 

The efficacy of the regression (RFR, GBR, XGBR) and classification (RFC, GBC, XGBC) machine 

learning models trained and tested on the randomly selected 60% (training set) and 40% (test set) of the 

2009 -L’Aquila earthquake building damage portfolio is summarized in Table 2.3. The hyperparameters 

indicated in Tab. 2.3 were choosen after tests performed by Ghimire et al. (2021). The regression-based 

machine learning models RFR, GBR and XGBR yielded similar MSE scores (1.22, 1.22 and 1.21) and 

accuracy scores (AT = 0.49, 0.50 and 0.50), considering the five DGs of the EMS-98 scale. In the 

confusion matrix (Fig. 2.3a: RFR, Fig. 2.3b: GBR, and Fig. 2.3c: XGBR), the accuracy ADG values 

show that the efficacy of these models is higher for the lower DGs (around 60% for DG0 and 55% for 

DG1) and lower for the higher DGs (6% and 1% of the buildings are correctly classified in DG4 and 

DG5, respectively).  

For the classification-based machine learning models, the XGBC model ([MSE, AT] = [1.78, 0.59]) was 

more effective than the RFC ([MSE, AT] = [1.86, 0.57]) and GBC ([MSE, AT] = [1.80, 0.58]) models, 

considering the EMS-98 scale. In the confusion matrix (Fig. 2.3d: RFC, Fig. 2.3e: GBC, and Fig. 2.3f: 

XGBC), the accuracy ADG values also show higher model efficacy for the lower DGs (86% for DG0 

and 39% for DG1) and lower efficacy for the higher DGs (5%, 23%, 12% and 17% buildings correctly 

classified in DG2, DG3, DG4 and DG5, respectively).  
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Table 2.3. Summary of optimized hyperparameters parameters, accuracy AT and quantitative statistical 
error values for the regression-based and classification-based machine learning methods. The 
parameters are the hyperparameters chosen for the machine learning models (the other hyperparameters 
not mentioned here are the default parameters in the Scikit-learn documentation (Pedregosa et al., 
2011)). The best accuracy and error values are indicated in bold. 

Method Parameters Accuracy AT MSE MAE 

RFR n_estimators = 1000 
max_depth = 25 0.49 1.22 0.77 

GBR 
n_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.50 1.22 0.77 

XGBR 
n_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.50 1.21 0.76 

RFC no_estimators = 1000 
max_depth = 25 0.57 1.86 0.77 

GBC 
no_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.58 1.80 0.77 

XGBC 
n_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.59 1.78 0.74 

 

The classification-based machine learning models thus yielded slightly better predictive efficacy, but 

still lower than recent studies applied to other datasets (Ghimire et al., 2022; Harirchian et al., 2021; 

Mangalathu et al., 2020; Roeslin et al., 2020; Stojadinović et al., 2021). The high classification error in 

the higher DGs could be related to the characteristics of the building portfolio and the imbalance of DG 

distribution. Among the classification methods, the XGBC model showed slightly higher classification 

efficacy; the XGBC model was therefore selected for the next stages 2.4.2 and 2.4.3. 
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Figure 2.3. Normalized confusion matrix between predicted and observed DGs. The values given in 
each main diagonal cell are the accuracy scores ADG. All values are also represented by the colour scale. 
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2.4.2 Second stage: issues related to machine learning  

2.4.2.1 Imbalance distribution of the DGs in the DaDO 
The efficacy of the heuristic damage assessment model depends on the distribution of target features in 

the training dataset. This can lead to low prediction efficacy, especially for minority classes (Estabrooks 

and Japkowicz 2001; Japkowicz and Stephen 2002; Branco et al. 2017; Ghimire et al., 2022).  The 

previous section reports significant misclassification associated with the highest DGs for all 

classification- and regression-based models (Fig. 2.3), i.e., for the DGs with the lowest number of 

buildings (Fig. 2.2a). The efficacy of the XGBC model is analysed below, addressing the class-

imbalance issue with data resampling techniques applied to the training phase and considering the 

L’Aquila-2009 portfolio.  

Four strategies to solve the class imbalance issue were tested:  

(a) random undersampling: randomly selecting the number of data entries in each class equal to the 

number of data entries in the minority class (DG4 in our case);  

(b) random oversampling: randomly replacing the number of data entries in each class equal to the 

number of data entries in the majority class (DG0 in our case);  

(c) Synthetic Minority Oversampling Technique (SMOTE): creating an equal number of data entries in 

each class by generating synthetic samples by interpolating the neighbouring data in the minority class;  

(d) a combination of oversampling and undersampling methods: oversampling of the minority class 

using the SMOTE method, followed by the Edited Nearest Neighbours (ENN) undersampling method 

to eliminate data that is misclassified by its three nearest neighbours (SMOTE-ENN).  

Fig. 2.4 shows the confusion matrices of the four strategies considered for the class imbalance issue. 

Compared with Fig. 2.3f (i.e., XGBC), the effects of addressing the issue of imbalance were as follows: 

(a) undersampling (Fig. 2.4a): ADG value increased by 20/22/26% for DG2/DG4/DG5 and decreased by 

29% for DG0.  

(b) oversampling (Fig. 2.4b): ADG value increased by 11/16/18% for DG2/DG4/DG5 and decreased by 

13% for DG0 

(c) SMOTE (Fig. 2.4c): ADG value increased by 4/1/4% for DG2/DG4/DG5 and decreased by 3% for 

DG0 

(d) SMOTE-ENN (Fig. 2.4d): ADG value increased by 13/9/8% for DG2/DG4/DG5 and decreased by 

25% for DG0. 

The AT, MAE and MSE scores are given in Table 2.4 with the associated effects.  
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Table 2.4 – Scores of the accuracy AT, MSE and MAE metrics considering the imbalance issue and 
their variation Δ compared with values without consideration of the imbalance. 

Method Accuracy AT MSE MAE 

 Scores 
 Δ Score Δ Score Δ 

Undersampling 0.26 -0.33 1.24 -0.34 1.20 0.46 

Oversampling 0.53 -0.06 2.13 0.35 0.86 0.12 

SMOTE 0.57 -0.02 1.87 0.09 0.77 0.03 
SMOTE-ENN 0.49 -0.10 2.28 0.50 0.93 0.19 

 

In conclusion, the random oversampling method improves prediction in the minority class without 

significantly decreasing prediction in the majority class. The random oversampling method was 

therefore applied in this study. 
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Figure 2.4. Confusion matrices for the four methods to solve the DG imbalance issue in the DaDO. 
The values given in each main diagonal cell are the accuracy scores ADG. All values are also represented 
by the colour scale. 

 

2.4.2.2 Testing the XBGC model with basic features 
This section begins by exploring the importance of each feature in the heuristic damage assessment 

model applied to the L’Aquila-2009 portfolio. We used the Shapely Additive Explanations (SHAP) 

method developed by Lundberg and Lee (2017). The SHAP method compares the efficacy of the model 

with and without considering each input feature to measure its average impact, provided in terms of 

mean absolute SHAP values.  

Figure 2.5a shows the average SHAP value associated with each feature considered in this study as a 

function of DG. The most weighted features are building age, location (latitude and longitude), material 

(poor quality masonry, RC frame), MSI, roof type, floor area, and height. Interestingly, the mean SHAP 

values are dependent on the DG, i.e., the weight of the feature is not linear depending on the DG 

considered; this is never taken into account in vulnerability methods. For example, Scala et al. (2022) 

(c) SMOTE oversampling

(b) Random oversampling(a) Random undersampling

(d) SMOTE-ENN overrsampling
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and Del Gaudio et al. (2021) observed a decrease in the vulnerability of structures as construction year 

increases, without distinguishing the DG considered, which is not the case herein. Note also that the 

importance score associated with the location feature can indirectly capture variations in local 

geological properties and the spatially distributed vulnerability associated with the built-up area of the 

L'Aquila-2009 portfolio (e.g., the distinction between the historic town and more modern urban areas). 

Furthermore, the average SHAP value obtained for poor quality masonry buildings for DG3/DG4/DG5 

confirms the same high vulnerability of this typology as in the EMS-98 scale (Grünthal, 1998), 

regardless of DG. 

Some basic features of the building (e.g., location, age, floor area, number of storeys, height) are 

observed with a high mean SHAP value (Fig. 2.5a). Compared with others, these five basic features can 

be easily collected from the field or provided by national census databases, for example. Fig. 2.5b shows 

the efficacy of the heuristic damage assessment model using XGBC trained with a set of easily 

accessible building features (i.e., basic-features-setting: geographic location, floor area, number of 

stories, height, age, MSI), after addressing the class-imbalance issue using the random oversampling 

method. Compared with Fig. 2.4b (considering all features and named as the full-features-setting), the 

XGBC model with the basic-features-setting (Fig. 2.5b) gives almost the same efficacy with only a 6% 

average reduction in the accuracy scores.  

 

Figure 2.5. (a) Graphic representation of the importance scores associated with the different input 
features considered for the XGBC model. The features (the same as in Fig. 2.2) considered in this study 
are on the y-axis, and the x-axis is the mean SHAP score according to DG. (b) Confusion matrices 
considering the basic-features-setting. The values given in each main diagonal cell are the accuracy 
scores ADG. All values are also represented by the colour scale. 
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2.4.2.3 Testing the XBGC model with the traffic-light system for damage grades 
In this section, a simplified version of the DG scale was used, in the sense that the DGs are classified 

according to a traffic-light system (TLS) (i.e., green G, yellow Y and red R classes, corresponding to 

DG0+DG1, DG2+DG3 and DG4+DG5, respectively), as monitored during post-earthquake emergency 

situations (Mangalathu et al., 2020a; Riedel et al., 2015; ATC, 2005; Bazzurro et al., 2004).  For the 

TLS-based damage classification, the XGBC model (after oversampling to compensate of the 

imbalance issue) with the basic-features-setting applied to the L’Aquila-2009 portfolio (Fig. 2.6a) gives 

almost the same efficacy compared to the full-features-setting (Fig. 2.6b). For example, accuracy values 

ADG using the basic-features-setting and the full-features-setting were 0.76/0.34/0.56 and 

0.82/0.36/0.54 for G/Y/R classes, with the accuracy score AT of 0.68 and 0.72, respectively. 

Mangalatheu et al. (2020), Roslin et al., (2020), and Harirchian et al., (2021) reported similar damage 

grade classification accuracy values of 0.66, 0.67, and 0.65 respectively.  

The efficacy of the heuristic damage assessment model using TLS-based damage classification 

indicates that classifying damage into three classes is much easier for the machine learning model 

compared with the six-class classification system (EMS-98 damage classification). This is also 

observed during damage surveys in the field, which sometimes find it hard to distinguish the 

intermediate damage grades, such as DG2 and DG3, or DG3 and DG4. Similar observations have been 

reported in previous studies by Guettiche et al., (2017); Harirchian et al., (2021); Riedel et al., (2015); 

Roeslin et al., (2020) and Stojadinović et al., (2021).  

 

Figure 2.6. Confusion matrices for (a) the basic-features-setting and (b) the full-features-setting using 
the traffic-light (TLS)-based classification, grouping the EMS-98 damage grades (DG) into three 
classes (green for no or slight damage; yellow for moderate damage; and red for heavy damage). The 
values given in each main diagonal cell are the accuracy scores ADG. All values are also represented by 
the colour scale. 

 

(a) TLS: basic-features-setting (b) TLS: full-features-setting
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2.4.2.4 Testing the XGBC model with the whole dataset 
The efficacy of the XGBC model was tested using a dataset with six building damage portfolios, 

excluding the 1980-Irpinia building damage portfolio. The XGBC model was trained and tested on the 

randomly selected 60% (training set) and 40% (test set) of the dataset for EMS-98/TLS damage 

classification, with two sets of features (full-features-setting and basic-features-setting), applying the 

random oversampling method to compensate for class-imbalance issues. Fig. 2.7 shows the associated 

confusion matrix. 

The basic-features-setting resulted in a similar level of damage prediction compared with the full-

features setting for both EMS-98 and TLS-based damage classification systems. For EMS-98 damage 

classification (Fig. 2.7a, b), the accuracy ADG scores indicated in the confusion matrices are almost the 

same for the basic-features-setting and the full-features-setting. Furthermore, the accuracy AT and MAE 

scores are also almost the same (0.45 and 1.08 for the basic-features-setting and 0.48 and 0.95 for the 

full-features-setting). 

Likewise, for TLS-based damage classification (Fig. 2.7c, d), the accuracy values ADG for the basic-

features-setting and the full-features-setting are almost the same, with similar accuracy AT/ MAE scores 

(0.63/0.45 and 0.67/0.39, respectively).  
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Figure 2.7. Confusion matrices for EMS-98 (a, b) and TLS (c, d) damage classification systems using 
the basic- and full-features-settings (green for no or slight damage; yellow for moderate damage; red 
for heavy damage) with (c) the full-features-setting and (d) the basic-features-setting. The values given 
in each main diagonal cell are the accuracy scores ADG. All values are also represented by the colour 
scale. 

 

2.4.3 Third stage: application to the whole DaDO portfolio and comparison with Risk-

UE 

In this section, the efficacy of the heuristic damage assessment model was considered for building 

damage predictions, without respecting the time frame of the earthquakes. Two scenarios were 

considered: (1) a single building damage portfolio was used for training and the model was then tested 

on the others (named single-single), in situations using a single portfolio to predict future damage; and 

(2) some building damage portfolios were used for training but testing was performed on a single 

portfolio (named aggregate-single), i.e. a larger number of damage portfolios were used as a training 

(c) TLS: full-features-setting (d) TLS: basic-features-setting

(a) EMS-98: full-features-setting (b) EMS-98: basic-features-setting
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set to predict the damage caused by the next earthquake. The model XGBC was applied with the basic-

features-setting (number of storeys, building age, floor area, height, MSI for EMS-98) and EMS-98- 

and TLS-based damage classification.  

2.4.3.1 Single-single scenario 

First, a series of building damage portfolios, concerning earthquakes occurring in northern or southern 

Italy and of different magnitudes, was used for training and testing: 

Training set: E3 – test set: E1, E5, E7. 

Training set: E5 – test set: E1, E3, E7. 

Training set: E7 – test set: E1, E3, E5.  

Figure 2.8 shows the distribution of correct DG classification (i.e., 1 − ε! in % given by Eq. 2.1) 

observed for each building for the EMS-98 damage grade (2.8a) and the TLS (2.8b) systems.  The x-

axis represents the incremental error in the damage grade (e.g., 1 corresponds to the delta of damage 

grade between observation and prediction, regardless of the DG considered).  

For the EMS-98 damage scale, correct classification (x-value centred on 0) in the range of 31% to 48% 

was found, depending on the training/test data sets. The error distribution is quite wide with incorrect 

predictions of +/-1 DG in the range of +/- 13-35%. Remarkably, when considering the E1 portfolio 

(Irpinia-1980), for which the post-earthquake inventory was based on another form, as the test set, the 

error is larger. The predictions at +/-1 DG (i.e., the sum of the x-values Fig. 2.8a between -1 and +1) 

were 70.5%, 69.9% and 72.8% with portfolios E3, E5 and E7 as the test set, respectively, for an average 

of 71%. For the other portfolios, the average of the predictions at +/- 1 DG was 77%, 78% and 77%, 

respectively, for portfolios E5, E3 and E7 as the test set. This tendency was also observed for the TLS 

damage system (Fig. 2.8b). In this case, the classification of the E1 portfolio was correct on average 

(average of x-values centred on 0) at 63% and equal to 72%, 73%, and 70.5% for the test on portfolios 

E5, E3, and E7. For both damage scales, the distributions were skewed, with a larger number of 

predictions being underestimated (positive x-values), as certainly a consequence of the choice of 

machine learning models, their implementation (including imbalance issues), the distribution of input 

and target features considered, or all. The interest of machine learning model is also to have a relevant 

representation of the errors and limits of these methods. 

2.4.3.2 Aggregate-single scenario 

Secondly, several aggregated building damage portfolio scenarios were considered to predict a single 

earthquake, thus testing whether the prediction was improved by increasing the number of post-

earthquake damage observations. Three scenarios were tested. They are represented in Fig. 2.9 applying 

the EMS-98 damage grade (9a) and the TLS (9b): 
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Training set:  E2+E3+E4+E6 (shown as E2346) – test set: E1, E5 and E7.  

Training set:  E2+E4+E5+E6 (shown as E2456) – test set: E1, E3 and E7.  

Training set:  E2+E4+E6+E7 (shown as E2467) – test set: E1, E3 and E5.  

For the EMS-98 damage scale, correct classification (x-value centred on 0) in the range of 27% to 49% 

was found, depending on the training/test datasets. As in Fig. 2.8, using the E1 (Irpinia-1980) 

earthquake for testing score is lower regardless of the portfolio used for training (28.7%, 27.2% and 

27.4% prediction accuracy). With E1 as the test set, the predictions at +/-1 DG (i.e., the sum of the x-

values on Fig. 2.9a between -1 and +1) were 65.7%, 63.8% and 62.4% considering the E2346, E2456 

and E2467 portfolios as the training set, respectively, for an average of 64% (compared with the 70% 

score for the single portfolio scenario, Fig. 2.8a). Other scenarios were also tested by aggregating the 

building damage portfolios differently (not presented herein), leading to the two main conclusions: (1) 

the quality and homogeneity of the input data (i.e., building features) affect the efficacy of the heuristic 

model and (2) this efficacy is limited and not improved by increasing the number of building damage 

observations, with a score (excluding E1) between 40% and 49% (x-value centred on 0), and up to 78% 

(average of the two scenarios, Fig. 2.8a and Fig. 2.9a) at +/-1 DG. Considering the TLS damage scale 

(Fig. 2.9b), a damage prediction efficacy of about 72% was obtained (compared with 72% in Fig. 2.8b), 

i.e., but no significant improvement was observed when the number of damaged buildings in the training 

portfolio was increased. For EMS-98 and TLS, the distributions were skewed, with a larger number of 

predictions being underestimated (positive x-values).  

Finally, in conclusion, the heuristic damage assessment model based on the XGBC model gives a better 

score for TLS damage assessment than for the EMS-98 damage scale. The TLS system also allows for 

quick assessment of damage on a large scale such as a city or region from an operational point of view. 
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Figure 2.8. Distribution of the classification value (1 − ε! in % given by Eq. 2.1) for (a) EMS-98- and 
(b) TLS-based damage classification using XGBC machine learning models and considering a single 
damage portfolio to predict a single portfolio (single-single scenario). The colour bar indicates the 
associated value in each cell. The x-values are the difference between the DG observed and the DG 
predicted, regardless of the DG considered. 
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Figure 2.9. Distribution of the classification value (1 − ε! in % given by Eq. 2.1) for (a) EMS-98- and 
(b) TLS-based damage classification using XGBC machine learning models and considering an 
aggregate damage portfolio to predict a single portfolio (aggregate-single scenario). The colour bar 
indicates the associated value in each cell. The x-values are the difference between the DG observed 
and the DG predicted, regardless of the DG considered. 
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The efficacy of the heuristic damage assessment model was then compared with conventional damage 
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the distribution of the mean damage observed (Eq. 2.4) was compared with the distribution of damage 

directly on the test set, using Eq. 2.3.  
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Fig. 2.10 shows the distribution of absolute errors associated with the RISK-UE, mean damage 

relationship, and XGBC methods (with and without compensation for the class-imbalance issue) trained 

on earthquake building damage portfolio E5 and tested on E3. For EMS-98 damage classification (Fig. 

2.10a), the XGBC model (without compensation for class-imbalance issues) resulted in a level of 

absolute errors similar to that of the RISK-UE and/or mean damage relationship, except for DG0 (24%). 

Random oversampling to compensate for the class-imbalance issues improved the distribution of errors 

for the XGBC model (errors less than 8%, except for DG1: 13%).  

For TLS-based damage classification, the XGBC model also resulted in a similar level of errors 

compared with the mean damage relationship and/or RISK-UE methods (Fig. 2.10b), except for the 

green class (no or slight damage, 17.04%). Compensation for class-imbalance issues slightly improved 

the distribution of errors for the XGBC model with a 2% drop in errors for green (no/slight damage) 

and yellow (moderate damage) classes.  

Figure 2.11 shows the distribution of absolute errors trained using the E2456 portfolio and tested on the 

E3 portfolio. For EMS-98 damage classification (Fig. 2.11a), the XGBC model (without compensation 

for class-imbalance issues) resulted in a level of errors similar to that of the RISK-UE and/or mean 

damage relationship; errors were highest for DG0 with 15.15%. With compensation for the class-

imbalance issues, the XGBC model achieved a slightly lower error distribution for DG0 (5%) and DG3 

(4%); however, for other damage grades, the error value increased significantly (DG1: 11%, DG2: 12% 

DG4: 7%, DG5: 2%). For TLS-based damage classification, the distribution of absolute errors was 

similar for both the XGBC model and the mean damage relationship and/or RISK-UE methods (Fig. 

2.11b). The highest absolute error value was associated with the green (no or slight damage) class of 

buildings (16.40%). Compensation for the class-imbalance issues slightly increased the error 

distribution for the XGBC model with nearly 5% for buildings in the green (no or slight) and red (heavy) 

classes.  

These results show that the heuristic building damage model based on the XGBC model, trained using 

building damage portfolios with the basic-features-setting, provides a reasonable estimation of potential 

damage, particularly with TLS-based damage classification.  
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Figure 2.10. Comparison of the efficacy of the heuristic model with the conventional model considering 
the DaDO portfolio (training set: E5; test set: E3) for (a) EMS-98- and (b) TLS-based damage 
classification. The x-axis is the damage grade and the y-axis is the percentage of absolute error (ε1 in 
% given by Eq. 2.7). The blue bar corresponds to the mean damage relationship, the red bar corresponds 
to the RISK-UE method, the green and orange bars correspond to the heuristic model without (XGBC1) 
and with (XGBC2) compensation for the class-imbalance issues, respectively.  

 

Figure 2.11. Comparison of the efficacy of the heuristic model with the conventional model considering 
the DaDO portfolio (training set: E2456; test set: E3) for (a) EMS-98- and (b) TLS-based damage 
classification. The x-axis is the damage grade and the y-axis is the percentage of absolute error (ε1 in 
% given by Eq. 2.7). The blue bar corresponds to the mean damage relationship, the red bar corresponds 
to the RISK-UE method, the green and orange bars correspond to the heuristic model without (XGBC1) 
and with (XGBC2) compensation for the class-imbalance issues, respectively. 

 

2.5 Discussion 

Previous studies have aimed to test a machine learning framework for seismic building damage 

assessment (e.g., Mangalathu et al., 2020; Roeslin et al., 2020; Harirchan et al., 2021; Ghimire et al., 

2022). They evaluated various machine learning and data balancing methods to classify earthquake 

damage to buildings. However, these studies (Mangalathu et al., 2020, Roeslin et al., 2020, Harirchan 
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et al., 2021) had limitations such as limited data samples, damage classes, and building characteristics 

limited to a spatial coverage and range of seismic demand values. Ghimire et al. (2022) also used a 

larger building damage database, but did not investigate the importance of input features as a function 

of damage levels and did not compare machine learning with conventional damage assessment methods.  

Our study aims to go beyond previous studies by testing advanced machine learning methods and data 

resampling techniques using the unique DaDO dataset collected from several major earthquakes in 

Italy. This database covers a wide range of seismic damage and seismic demands of a specific region, 

including undamaged buildings. Most importantly, this study highlights the importance of input features 

according to the degrees of damage and finally compares the machine learning models with a classical 

damage prediction model (Risk-UE). The machine learning models achieved comparable accuracy to 

the Risk-UE method. In addition, TLS-based damage classification, using red for heavily damaged, 

yellow for moderate damage, and green for no to slight damage, could be appropriate when the 

information for undamaged buildings is unavailable during model training. 

Indeed, it is worth noting that the importance of the input features used in the learning process changes 

with the degree of damage: this indicates that each feature may have a contribution to the damage that 

changes with the damage level. Thus, the weight of each feature does not depend linearly on the degree 

of damage, which is not considered in conventional vulnerability methods. 

The prediction of seismic damage by machine learning remains until now tested on geographically 

limited data. The damage distribution is strongly influenced by region-specific factors such as 

construction quality and regional typologies, implementation of seismic regulations and hazard level. 

Therefore, machine learning-based models can only work well in regions with comparable 

characteristics and a host-to-target transfer of these models should be studied. In addition, the 

distribution of damage is often imbalanced, impacting the performance of machine learning models by 

assigning higher weights to the features of the majority class. However, data balancing methods like 

random oversampling can reduce bias caused by imbalanced data during the training phase, but they 

may also introduce overfitting issues depending on the distribution of input and target features. Thus, 

integrating data from a wider range of input features and earthquake damage from different regions, 

relying on a host-to-target strategy, could help achieve a more natural balance of data sets and lead to 

less biased results. Moreover, the machine learning methods trained only on the data available in the 

learning phase, reflects the building portfolio in the study area. The importance of the features 

contributing to the damage could thus be modulated, and would require a host-to-target adjustment for 

the application of the model to another urban zone/seismic region. 

However, the machine learning models trained and tested on the DaDO dataset resulted in similar 

damage prediction accuracy values reported in existing literature using different models and datasets 

with different combinations of input features. This might suggest that the uncertainty related to building 



 

 
60 

vulnerability in damage classification may be smaller than the primary source of uncertainty related to 

the hazard component (such as ground motion, fault rupture, slip duration, etc.).  

In recent years, there has been a proliferation of open building data, such as the OpenStreetMap-based 

dynamic global exposure model (Schorlemmer et al., 2020) and building damage dataset after an 

earthquake (such as DaDO). We must therefore continue this paradigm shift initiated by Riedel et al. 

(2014, 2015) which consisted in identifying the exposure data available and as certain as possible, and 

in finding the most effective relationships for estimating the damage, unlike conventional approaches 

which proposed established and robust methods but relying on data not available and therefore difficult 

to collect. The global dynamic exposure model will make it possible to meet the challenge of modelling 

exposure on a larger scale on available data, using a tool capable of integrating this large volume of 

data. Machine learning methods are one such rapidly growing tool that can aid in exposure classification 

and damage prediction by leveraging readily available information. It is therefore necessary to continue 

in this direction in order to evaluate the performance of the methods and their pros and cons for 

maximum efficacy of the prediction of damage. 

Future works will therefore have to address several key issues that have been discussed here but that 

need to be further investigated. For example, the weight of the input features varies according to the 

level of damage, but one can question the systematization of this observation whatever the dataset and 

the feature considered. The efficiency of the selected models and the management of imbalance data 

remain to be explored, in particular by verifying regional independence. Taking advantage of the 

increasing abundance of exposure data and post-seismic observations, the imbalanced feature 

distribution and observed damage levels could be solved by aggregating datasets independent of the 

exposure and hazard contexts of the regions, once the host-to-target transfer of the models has been 

resolved. Finally, key input features (still not yet identified) describing hazard or vulnerability may be 

unexplored, and incorporating them into the models may improve the accuracy of damage classification. 

2.6 Conclusion 

In this study, we explored the efficacy of machine learning models trained using DaDO post-earthquake 

building damage portfolios. We compared six machine learning models: RFC, GBC, XGBC, RFR, 

GBR, and XGBR. These models were trained on numbers of building features (location, number of 

storeys, age, floor area, height, position, construction material, regularity, roof type, ground slope 

condition) and ground motion intensity defined in terms of macro-seismic intensity. The classification 

models performed slightly better than the regression methods and the XGBC model was ultimately 

found to be the most efficient model for this dataset. To solve the imbalance issue concerning observed 

damage, the random oversampling method was applied to the training dataset to improve the efficacy 

of the heuristic damage assessment model by rectifying the skewed distribution of the target features 

(DGs).  
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Surprisingly, we found that the weight of the most important building feature evolves according to DG, 

i.e., the weight of the feature for damage prediction changes depending on the DG considered, which 

is not taken into account in conventional methods.  

The basic-features-setting (i.e., considering number of storeys, age, floor area, height and macroseismic 

intensity, which are accurately evaluated for the existing building portfolio) gave the same accuracy 

(0.68) as the full-features-settings (0.72) with the TLS-based damage classification method. For training 

and testing, the homogeneity of the information in the portfolios is a key issue for the definition of a 

highly effective machine learning model, as shown by the data from the E1 earthquake (Irpinia-1990). 

However, the efficacy of the model reaches a limit which is not improved by increasing the number of 

damaged buildings in the portfolio used as the training set, for example. For damage prediction, this 

type of heuristic model results in approximately 75% correct classification. Other authors (e.g., Riedel 

et al., 2014, 2015; Ghimire et al. 2022) have already reached this same conclusion by increasing the 

percentage of the training set compared with the test set.  

Despite this limit threshold, the level of accuracy achieved remains similar to that attained by 

conventional methods, such as Risk-UE and the mean damage relationship, for the basic-features-

settings and TLS-based damage classification (error values less than 17 %). Machine learning models 

trained on post-earthquake building damage portfolios could provide a reasonable estimation of damage 

for a different region with similar building portfolios, after host-to-target adjustment.  

Some variability may have been introduced into the damage prediction model due to the framework 

defined to translate the original damage scale to the EMS-98 damage scale and because in the DaDO 

database, the year of construction and the floor area of each building are provided as interval values, 

and missing locations of buildings were replaced with the location of local administrative centres. The 

latter can lead to a smoothing of the macro-seismic intensities to be considered for each structure and 

also affect the distance to the earthquake. Similarly, the building damage surveys were carried out after 

the seismic sequence, which includes aftershocks as well as the mainshock, whereas the MSI input 

corresponds to the mainshock from the USGS ShakeMap. All these issues may reduce the efficacy of 

the heuristic model and its limit threshold. Addressing these issues could improve the damage prediction 

performance of machine learning models.
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3 Testing host-to-target transfer of machine learning models for 

regional-scale damage assessment 

 

In chapter 2, we analyzed the efficacy of machine learning models trained on past earthquake building 

damage datasets to predict potential damage in future earthquakes in regions with similar building 

portfolios. This chapter focuses on the influence of a building’s characteristic features, such as 

typology, construction practice, seismic regulations, etc., on transferring machine learning models 

for damage prediction from host-to-target dataset. In this chapter, we compared the efficacy of 

machine learning models developed in Nepal, Italy, and Haiti for large-scale damage assessment. 

 

Abstract 

This study evaluates the effectiveness of machine learning models for classifying seismic damage, using 

post-earthquake observation of the 2010 Haiti earthquake, the 2015 Nepal earthquake, and the database 

of observed damage from Italy. Two regression and two classification methods, random forest and 

extreme gradient boosting, were compared. The result showed that the extreme gradient boosting 

classification (XGBC) achieved higher accuracy (0.57 for three-class classification) used in post-

earthquake damage surveys. Furthermore, the XGBC model estimated building damage using readily 

accessible features such as the building’s age, number of storeys, and MSI, with accuracy score of 0.45 

(building-by-building comparison) but error value below 10% when analyzed by aggregating buildings 

according to the damage grades in the test dataset, indicating its suitability for large-scale portfolio level 

rapid damage classification. A comparative study on damage prediction using XGBC models trained 

and tested with age, number of storeys, and MSI from building damage datasets in Haiti, Nepal, and 

Italy revealed varying efficacy and damage distribution, emphasizing the influence of factors such as 

building typologies, construction practices, seismic regulations, etc. 

Keywords: Machine learning, 2010 Haiti earthquake building damage dataset, host-to-target transfer, 

large-scale damage assessment.

 

3.1 Introduction 

The main objective of seismic risk mitigation is to ensure people’s safety and protect their sources of 

sustenance by minimizing earthquake threats (Bommer, 2022). To achieve this objective, accurate risk 

assessment requires a thorough examination of seismic damage as a crucial component of the process. 

Advanced methods have been developed to estimate seismic damage (among other, FEMA, 2003; 
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Milutinovic and Trendafiloski, 2003; Porter, 2003; Vamvatsikos and Cornell, 2004; Silva et al., 2014; 

Guéguen et al., 2007; Hancilar et al., 2010; Lagomarsino and Giovinazzi, 2006). These methods provide 

damage as a function of seismic hazard, exposure models describing the portfolio of buildings, and the 

vulnerability/fragility functions describing the damage probability for building typologies. However, 

for large-scale damage assessment, the information necessary for these methods is often sparse, 

incomplete, or low resolution, making regional and national-scale damage assessment very challenging 

and time-consuming (Riedel et al., 2015). 

Communities worldwide are collaborating to build exposure models and fragility/vulnerability 

functions for large-scale seismic damage assessment by aggregating available information from existing 

databases (Crowley et al. 2020). Similarly, efforts have been made to test novel methods that use 

satellite and ground-based remote sensing for exposure modeling and damage classification (Pittore 

and Wieland, 2013; Wieland et al., 2015; Stone et al., 2018; Rao et al., 2022). In parallel, platforms 

outlining basic building features suitable for damage assessment have increased in number (e.g., 

OpenBuildingMaps (Schorlemmer et al., 2017); the National Institute of Statistics and Economic 

Studies in France (INSEE) (www.insee.fr); global exposure database (Gamba et al., 2012); the World 

Housing Encyclopaedia (http://db.world-housing.net/); e-Stat Japan (https://www.e-stat.go.jp/)). These 

platforms offer access to the low-resolution, high-density building information, which opens an 

opportunity to be used for seismic damage assessment (Riedel et al., 2015). In this context, Riedel et 

al. (2014, 2015) investigated machine learning methods to estimate seismic damage on a regional and 

national level using readily available data for many buildings in the INSEE database.  

On the other hand, numerous studies have investigated the effectiveness of machine learning methods 

in accurately connecting building features and spatially-distributed ground motion to different levels of 

damage, with satisfactory levels of accuracy when compared to traditional methods or tested using post-

earthquake observations (e.g., Riedel et al. 2015; Harirchian et al., 2021; Mangalathu et al., 2020; 

Roeslin et al., 2020; Stojadinović et al., 2021; Ghimire et al., 2022, 2023). In parallel, significant efforts 

have been made to collect and share post-earthquake building damage observations after damaging 

earthquakes (MTPTC, 2010; NPA, 2021; MINUV, 2021; Dolce et al., 2019; Omoya et al., 2022; 

Stojadinović et al., 2021). By taking advantage of the convergence of situations, i.e. rapidly developing 

learning methods and the increasing amount of available building open-data, it is time to evaluate the 

efficiency conditions of the damage classification methods, in particular for different post-earthquake 

data according to the building criteria and damage classification, but also for the construction of a 

building damage model through host‐to‐target region adjustments, i.e. developing a machine from one 

specific region in terms of seismicity and building design to be applied to another region. 

The main objective of this study is to perform a comparative study on damage prediction across different 

regions using machine learning models trained on the readily available building features from the post-

earthquake damage database. Therefore, this study compares the damage prediction effectiveness of 
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machine learning models trained on the age, number of storeys, and macroseismic intensity using 

building damage datasets from Haiti, Nepal, and Italy. The dataset and methods are described in the 3.2 

and 3.3 sections. The 3.4 and 3.5 section presents the results of the comparative study of damage 

prediction, followed by a conclusion in 3.6. 

3.2 Data 

2010-Haiti earthquake building damage dataset (HBDP) 

A Mw 7 earthquake struck Haiti on January 12, 2010, with the epicentre located 25 km SW of Port-au-

Prince, with a hypocentre depth of 13 km and a 15-40 km long rupture, followed by three large 

aftershocks 6.0 Mw, 5.7 Mw, and 5.9 Mw, causing over 300,000 casualties, leaving over 1.3 million 

people homeless, and resulting an estimated losses of US$ 7 to US$ 14 billion, exceeding the Haiti 

gross domestic product (DesRoches et al., 2011). The government of Haiti conducted a massive post-

earthquake damage survey with the help of more than 300 trained engineers, alongside a third-party 

structural engineers, and developed a database of observed damage (MTPTC, 2010).  

During the field survey of damage, the ATC-20 damage classification methodology (ATC, 2005) was 

adopted for damage classification (MTPTC, 2010).  

The damage was grouped into seven discrete classes based on visual observation. 

Damage grades (DG): none for no damage (DG0) slight for 0-1% damage (DG1), light for 1-10% 

damage (DG2), moderate for 10-30% damage (DG3), heavy for 30-60% damage (DG4), major for 60-

100% damage (DG5) and destroyed for 100% damage (DG6), respectively. 

In the same survey, building features related to structural typology were also collected in the field: 

Number of storeys- total number of floors above the ground surface. 

Age of building- time difference between the date of the earthquake and the date of building 

construction/renovation; buildings were grouped into four categories according to age: 0-10 years, 11-

25 years, 26-50 years, and older than 50 years. 

Floor plan- geometric shape defining the building plan; eight types of plans were defined: E-shape, H-

shape, L-shape, O-shape, Rectangular-shape, T-shape, U-shape, and Other-shape. 

Wall type- materials used in vertical wall; seven wall types were defined: block-masonry with 

reinforcement, block-masonry without reinforcement, brick-masonry, reinforced concrete, stone-

masonry, wood-masonry, and others. 

Structure type- material used in the vertical structure; four structure types were defined: reinforced 

concrete structures, load-bearing wall structures, steel sheet-metal structures, and wood sheet-metal 

structures. 
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Floor-type- materials used for flooring system in a building: three floor types were defined: reinforced 

concrete floor, concrete floor, and wooden floor. 

For each building, the geographic location was provided in terms of latitude and longitude.  

The 2010 Haiti earthquake building damage portfolio (HBDP) contained 351,819 buildings with 

complete information on the above-defined features. Fig. 3.1 shows their location, and Fig. 3.2 and Tab 

3.1. show the distribution of building features in the HBDP database. The distribution of the samples 

was imbalanced: for example, there was a small portion of buildings with higher damage grades 

DG5+DG6 (16.01%) as compared with DG0+DG1 (42.23%), a large majority of buildings were 1-

storey (83.05%), reinforced concrete structure (82.11%), and unreinforced block masonry wall 

(87.81%).  

For this study, the HBDP was completed with the spatially distributed ground motion information in 

terms of macroseismic intensities (MSI) values defined in terms of modified Mercalli intensities 

provided by the United States Geological Survey (USGS) ShakeMap tool (Wald et al., 2005). The MSI 

values corresponding to the 2010 mainshock were added to each building information using their 

geographic location (Fig. 3.1).  

 

Figure 3.1. The geographic location of buildings used in this study and the distribution of macro-
seismic intensity of mainshock obtained from the USGS ShakeMap. 
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Table 3.1. Distribution of building features in the HBDP and their label reported in Fig. 3.2. 

No. Parameters Data type Distribution 
(%) Remarks 

1 Damage 
grades 

none DG0 

Categorical 

14.37 

Fig. 3.2a 

slight DG1 27.86 
light DG2 19.10 
moderate DG3 15.14 
heavy DG4 7.52 
major DG5 8.28 
destroyed DG6 7.73 

2 
Number 
of 
storeys 

1  NF1 
Numerical 

83.05 
Fig. 3.2b 2 NF2 14.75 

3-10 NF3 2.20 

3 Age 
(years) 

1–10 Ag1 

Numerical 

38.38 

Fig. 3.2c 11–25 Ag2 45.49 
26–50 Ag3 13.64 
> 50  Ag4 2.49 

4 Floor 
plan 

E-shape FP1 

Categorical 

0.02 

Fig. 3.2d 

H-shape FP2 0.08 
L-shape FP3 2.61 
O-shape FP4 0.09 
Other-shape FP5 4.99 
Rectangle-shape FP6 91.73 
T-shape FP7 0.12 
U-shape FP8 0.36 

5 Wall 
type 

Block-masonry with reinforced WT1 

Categorical 

2.00 

Fig 3.2e 

Block-masonry without reinforced WT2 87.81 
Brick-masonry WT3 0.26 
Reinforced concrete WT4 0.83 
Stone-masonry WT5 4.54 
Other WT6 0.83 
Wood-masonry WT7 3.73 

6 Structure 
type 

Reinforced concrete ST1 

Categorical 

82.11 

Fig. 3.2f 
Load-bearing walls ST2 13.02 
Steel sheet-metal ST3 0.40 
Wood sheet-metal ST4 4.47 

7 Floor 
type 

Reinforced concrete floor FT1 Categorical 42.92 Fig. 3.2g 
Concrete floor FT2 55.14 
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Wooden floor FT3 1.94 
 

 

Figure 3.2. Distribution of different features in the Haiti building damaged database. The y-axis is the 
percentage distribution, and the x-axis is (a) Damage grades, (b) Number of storeys (NF1: 1-storey, 
NF2: 2-storeys, NF3: 3-10 storeys), (c) Building age (Ag1: 0-10 years; Ag2: 11-25 years; Ag3: 26-50 
years; and Ag4: > 50 years), (d) Floor plan (FP1: E-shape; FP2: H-shape; FP3: L-shape; FP4: O-shape; 
FP5: other-shape; FP6: rectangle-shape; FP7: T-shape; FP8: U-shape), (e) Wall type (WT1: block-
masonry with reinforcement; WT2: block-masonry without reinforcement; WT3: brick-masonry; WT4: 
reinforced concrete; WT5: stone-masonry; WT6: other; WT7: wood-masonry), (f) Structure type (ST1: 
reinforced concrete; ST2: load-bearing wall; ST3: steel sheet-metal; ST4: wood sheet-metal), (g) Floor 
type (FT1: reinforced concrete floor; FT2: concrete floor; FT3: wooden floor), and (h) macroseismic 
intensity. 
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2015-Nepal earthquake building damage database (NBDP) 

Following the 7.8 Mw earthquake on 25 April 2015 in Nepal, the government of Nepal conducted a 

post-earthquake damage survey in the 11 most affected districts and released a database of the observed 

damage. Tab. 3.2 summarizes the distribution of building features considered for this study and the full 

description of the database, including the building features, the damage classification and the seismic 

hazard classification according to USGS macroseismic shake-map is described in Ghimire et al. (2022) 

(Chapter 1). In this database, information are given by districts (corresponding to an administrative 

unit). 

 

Table 3.2. Distribution of building features in the NBDP. 

No. 
Parameters Data type Distribution (%) 

1 Damage grades 
DG1 

Categorical 
10.34 

DG2 + DG3 29.35 
DG4 + DG5 60.31 

2 Number of 
storeys 

1-3 
Numerical 

98.94 
4-6 1.05 
7-10 0.01 

3 Age 
(years) 

0-20 

Numerical 

62.9 
21-40 27.63 
41-60 6.51 
> 60  2.95 

4 MSI 

5 

Numerical 

0.54 
6 11.90 
7 35.90 
8 51.66 

 

Italian earthquakes building damage database (DaDO) 

The Database of Observed Damaged (DaDO) provides information on damaged buildings surveyed 

after several earthquakes in Italy. The full description of the data used for this study is given in Ghimire 

et al. (2023) (Chapter 2). Tab. 3.3 summarizes the categories of the features from DaDO and the number 

of building features used in this study, corresponding to seven Italian post-earthquake surveys. 
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Table 3.3. Distribution of building features in the DaDO. 

No. Parameters Data type Distribution (%) 

1 Damage grades 
DG0+DG1 

Categorical 
69.60 

DG2+DG3 22.26 
DG4+DG5 8.15 

2 Number of 
storeys 

1-3 
Numerical 

85.82 
4-6 13.76 
7-10 0.43 

3 Age 
(years) 

0-20 

Numerical 

15.22 
21-40 18.80 
41-60 34.16 
> 60 31.82 

4 MSI 

4 

Numerical 

2.23 
5 21.75 
6 31.78 
7 33.57 
8 6.28 
9 4.39 

 

 

3.3 Method 

A detailed description on the development of machine learning models is presented in Ghimire et al. 

(2022, 2023), and a short summary is presented here.  

The damage grades were considered as target features. Damage grades were considered as categorical 

response variables from DG0 to DG6 to test the classification machine learning models. Two advanced 

classification-based machine learning methods were selected: random forest classification (RFC) 

(Breiman, 2001) and extreme gradient boosting classification (XGBC) (Chen and Guestrin, 2016). 

Similarly, the damage grades were ordinal variables, and they were converted as continuous variables 

from 0 (DG0) to 6 (DG6). Two advanced regression models were selected: random forest regression 

(RFR) (Breiman, 2001) and extreme gradient boosting regression (XGBR) (Chen and Guestrin, 2016).  

Building features and MSI were considered as input features. A one-hot encoding technique was used 

to convert the categorical features (i.e., wall type, structure type, floor plan, floor type) into binary 

values (1 or 0), resulting in 30 input variables (Tab. 3.2). No specific data cleaning methods were 

applied to the HBDP database.  
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The machine learning algorithms were applied from the Scikit-learn package developed in Python 

(Pedregosa et al., 2011). The HBDP was randomly divided into training (60% of the whole HBDP) and 

test (40% of the whole HBDP) dataset with the identical distribution of target features in the training 

and the test set. The test dataset was kept hidden from the model during the training phase and used for 

model testing. The efficacy of the machine learning damage prediction model (i.e., its ability to predict 

damage to a satisfactory or expected degree) was analyzed in three different ways: at building level, at 

building-class level (defined according to the combination of three input features, i.e. number of storeys, 

age, and MSI), and at portfolio level. 

 

Testing efficacy at building level 

Model selection 

At the building level, model efficacy was evaluated by the confusion matrix, representing model 

prediction compared with the observed (so-called “ground truth”) value. Accuracy was then represented 

on the confusion matrix by the ratio of the number of correctly predicted DG to the total number of 

observed values per DG (ADG). Total accuracy (AT) was computed in a similar manner as the ratio of 

the number of correctly predicted DGs to the total number of observed buildings in the whole test 

dataset. AT and ADG values close to 1 indicate high efficacy. Moreover, the quantitative statistical error 

was also calculated as the average of the absolute value of errors (MAE): value close to 0 indicate high 

efficacy.  

For classification-based machine learning models, the ordinal value of the DG was used to calculate the 

MAE score directly. For the regression-based machine learning models, the output DG values were 

rounded to the nearest integer for the accuracy scores plotted in the confusion matrix but not to calculate 

the MAE score.  

 

Machine learning related issues 

The best model for damage assessment was selected based on the highest efficacy and used to test 

specific issues related to (a) the imbalance distribution of DGs in the HBDP and (b) the simplification 

in the damage classification. In this case, DGs are grouped into a traffic-light based damage 

classification, i.e., green, yellow and red, corresponding to DG0+DG1, DG2+DG3, and 

DG4+DG5+DG6, respectively. 
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Testing efficacy by DG aggregation  

DG aggregation in the whole test dataset 

The buildings in the test dataset were aggregated according to the DG values and the error values was 

computed using Eq. 3.1: 

 ε8(%) = CD"*+
#
C ∗ 100  (3.1) 

where Dn>? is the difference between the number of buildings observed and predicted at each DG level, 

and  N is the total number of buildings in the test dataset.  

 

DG aggregation in the building-class  

The buildings in the test dataset were grouped into different building-class defined according to the 

combination of three input features (number of storeys, age, and MSI). The buildings in each building-

class were aggregated according to the DG values and the error values were computed using Eq. 3.2: 

 ε@/(%) = CD"*+/-
#

C ∗ 100  (3.2) 

where Dn>?/@ is the difference between the number of buildings observed and predicted at each DG 

level for a given building-class, and N is the total number of buildings in the test dataset.  

 

Comparison between the datasets  

The efficacy of the damage prediction model was explored in the HBDP, NBDP, and DaDO datasets. 

These datasets were randomly divided into training (60%) and test (40%) datasets. The machine 

learning model was trained on the training set, and its efficacy was explored in the test dataset. 

 

Efficacy at building-level between the datasets  

The efficacy at the building level was compared through the error distribution computed using Eq. 3.3: 

 ε!(%) = C"!
#$
C ∗ 100  (3.3) 

where n$ is the total number of buildings at a given error level (difference between observed and 

predicted DG), and N< is the total number of buildings in each test datasets.  
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Efficacy at building-class level between the datasets  

The efficacy was compared at building-class level through the error distribution computed using Eq. 

3.4: 

 ε@+	(%) = CD"*+/-
#@

C ∗ 100  (3.4) 

 

where Dn>?/@ is the difference between the number of buildings observed and predicted at each DG in 

each building class, N@ is the total number of buildings in each building class. 

 

Damage probabilities between the datasets 

Finally, the damage probabilities were computed at the building-class level using Eq. 3.5 and compared 

between HBDP, NBDP, and DaDO datasets. 

 P!C	(%) = C"*+/-
#@

C ∗ 100  (3.5) 

where n>?/@ is the difference between the number of buildings observed and predicted at each DG in 

each building class, N@ is the total number of buildings in each building class. 

3.4 Results 

3.4.1 Testing efficacy at building level 

3.4.1.1 Model selection 
 

The efficacy of the regression (RFR, XGBR) and classification (RFC, XGBC) models trained and tested 

on the randomly selected 60% (training set) and 40% (test set) of the HBDP is summarized in Tab. 3.4.  

For the ATC-20 damage classification, the regression-based machine learning models RFR and XGBR 

yielded similar MAE scores (1.14, 1.18) and accuracy scores (AT = 0.30, 0.27). The classification-based 

machine learning models XGBC and RFC provide very similar scores ( [MAE, AT] = [1.21, 0.38] and 

[MAE, AT] = [1.21, 0.37], respectively). The efficacy of XGBC model is shown in Fig. 3.3a. In the 

confusion matrix (Fig. 3.3a), the accuracy ADG values show that the efficacy of the XGBC model is 

higher for DG1 (0.75) and DG6 (0.41) as compared to DG4 (0.03) and DG5 (0.18). The smaller ADG 

values in Fig. 3.3(a) may be due to the imbalance distribution of the target feature as reported for Nepal 

and Italian datasets in Chapter 1 and 2 (Ghimire et al. 2022, 2023). 

In conclusion, the classification models showed slightly better efficacy as compared to the regression 

models and finally, the XGBC classification model is selected for this study.  
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Table 3.4. Summary of optimized input parameters, accuracy AT, and quantitative statistical error 
values for the regression-based and classification-based machine learning methods for ATC-20 damage 
classification (seven-class classification). The parameters are the hyperparameters chosen for the 
machine learning models (the other modal parameters not mentioned here are the default parameters in 
the Scikit-learn documentation (Pedregosa et al., 2011)). The best accuracy and error values are 
indicated in bold. 

Method Parameters Accuracy AT MAE 

RFR n_estimators = 1000 
max_depth = 20 

0.30 1.14 

XGBR n_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.27 1.18 

RFC n_estimators = 1000 
max_depth = 25 

0.37 1.21 

XGBC n_estimators = 1000 
max_depth = 10 
learning_rate = 0.01 

0.38 1.21 

 

3.4.1.2 Machine learning related issues 

 

3.4.1.2.1 Handling of class-imbalance issue 

The imbalance distribution of target features in the training dataset, known as class-imbalance issues, 

significantly impact the efficacy of the machine learning models (Estabrooks and Japkowicz 2001; 

Japkowicz and Stephen 2002; Branco et al. 2017; Ghimire et al. 2022). Resampling the training data 

using the random oversampling method effectively address the class-imbalance issues (Ghimire et al. 

2022, 2023).   

In this study, the random oversampling method was then applied in the training set before developing 

the XGBC model. The damage prediction efficacy on the test set is shown in Fig. 3.3(b). Compared 

with the result in Fig. 3.3(a), the XGBC model with random oversampling method yielded slightly 

better efficacy. For DG0/DG2/DG4/DG5/DG6, the ADG value increased by 30/5/15/11/12%; however, 

the ADG value for DG1 decreased by 42%, with a slightly higher MAE score (1.39) and lower AT score 

(0.33). The lower damage prediction efficacy could be originated from the confusion for the machine 

learning algorithms in multi-class classification depending on the resolution and distribution of input 

features (Ghimire et al., 2022; Harirchian et al., 2021; Roeslin et al., 2018). This is also observed during 

damage surveys in the field, which sometimes find it hard to distinguish the intermediate damage 

grades, such as DG2 and DG3, or DG3 and DG4.  
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Figure 3.3. Normalized confusion matrix between predicted and observed damage grades (DG) (a) 
without and (b) with handling the DG imbalance issue in HBDP. The values given in each main diagonal 
cell are the accuracy scores ADG. The color scale represents all values. 

 

3.4.1.2.2 Testing traffic-light based damage classification 

The ATC-20 damage classification was reframed into three classes according to the Traffic-Light based 

classification System (named TLS) (i.e., green G, yellow Y, red R classes, corresponding to DG0+DG1, 

DG2+DG3, DG4+DG5+DG6, respectively), as followed during post-earthquake emergencies 

(Mangalathu et al., 2020; Riedel et al., 2015; ATC, 2005; Bazzurro et al., 2004; Ghimire et al., 2022, 

2023).  

XGBC model was trained on the training dataset with the TLS-based damage classification, and its 

efficacy on the test dataset is shown in Fig. 3.4 without (Fig. 3.4a) and with (Fig. 3.4b) handling the 

class-imbalance issues using the random oversampling method. Without addressing the class-imbalance 

issue, the XGBC model resulted in ADG values of 0.76/0.42/0.45 for G/Y/R, respectively, with the MAE 

score of 0.51 and AT score of 0.57. After addressing the class imbalance issues, efficacy improved 

slightly, with ADG values of 0.62/0.46/0.60 for G/Y/R, respectively, and an MAE score of 0.52 and AT 

score of 0.57. 

The AT score obtained here (0.57) is slightly lower than those reported by other similar studies: 0.66 by 

Mangalathu et al. (2020), 0.67 by Roeslin et al. (2020), 0.65 by Harirchian et al. (2021), and 0.68 and 

0.72 by Ghimire et al. (2022 and 2023) using Nepal and Italian datasets. 

The XGBC model is observed to have higher damage prediction efficacy for TLS-based damage 

classification, indicating that it is easier for the machine to classify damage into three-class than seven-

class (ATC-20 classification system) with the given level resolution of input features. This is consistent 

with previous studies by (Ghimire et al., 2023 and 2023; Harirchian et al., 2021; Riedel et al., 2015; 

Roeslin et al., 2020).  
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Figure 3.4. Normalized confusion matrix between predicted and observed damage grades (DG) in 
HBDP using the traffic-light (TLS)-based classification, grouping the ATC-20 damage classification 
into three classes (green for no or slight damage; yellow for moderate damage; and red for heavy 
damage) (a) without and (b) with handling the DGs imbalance issue. The values given in each main 
diagonal cell are the accuracy scores ADG. The color scale represents all values. 

 

3.4.2 Testing efficacy by DG aggregation  

3.4.2.1 DG aggregation in the whole test dataset 
Five XGBC models were developed using different combinations of input features and random 

oversampling method in HBDP dataset:  

(a) XGBC1 with all input features and without handling class-imbalance issues;  

(b) XGBC2 with all features and random oversampling;  

(c) XGBC3 with the number of storeys, age, floor type, wall type, structure type, floor plan, MSI, 

and random oversampling;  

(d) XGBC4 with location, number of storeys, age, MSI, and random oversampling;  

(e) XGBC5 with the number of storeys, age, MSI, and random oversampling.  

The damage prediction efficacy of these XGBC models was tested by DG aggregation in the HBDP 

test dataset. The distribution of error values (ε8 from Eq. 3.1) is shown in Fig. 3.5. 

The XGBC2 and XGBC4 models show a better damage prediction efficacy for ATC-20 classification 

(Fig. 3.5a), with error values less than 6% for all DGs except DG0 (9%) and DG1 (11%). Other models 

give error values of less than 10% for all DGs except DG0 (7-18%) and DG1(18-27%). 

For TLS-based damage classification (Fig. 3.5b), XGBC1 shows higher error values (5-11%) among 

the DGs. Other models have smaller error values (less than 6%). Among them, XGBC4 and XGBC5 
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show higher damage prediction efficacy with the smallest error values (2-4% and 3-6%, respectively) 

for the DGs prediction. 

In conclusion, considering DGs aggregation through TLS, easily accessible building features (number 

of stories, age, location, and MSI) and random oversampling for class-imbalance issues provide 

reasonable damage estimates for ATC-20 and for TLS-based damage classification, highlighting their 

broad applicability for larger-scale damage classification. Therefore, the XGBC5 model for TLS-based 

damage classification is selected for further investigation in this study. 

 
Figure 3.5. Distribution of error values (ε8 from Eq. 3.1) for (a) ATC-20 and (b) TLS-based damage 
classification. The x-axis is the damage grades. The y-axis is the error values in percentage. The blue, 
orange, yellow, purple, and green bar corresponds to the XGBC1, XGBC2, XGBC3, XGBC4, and 
XGBC5 models, respectively. 

 

3.4.2.2 DG aggregation in the building-class using XGBC5 model 

 
Building classes were defined based on the combination of number of stories, age, and MSI (H1= 1-3 

stories, H2=4-6 stories, H3=7+stories. A1=0-20 years, A2=21-40 years, A3=41-60 years, A4=60+ 

years. MSI values between 4-9 as IV-XI). Only eight building classes had enough samples for analysis 

in the test dataset: (a) H1-A1-VII, (b) H1-A1-VIII, (c) H1-A2-VII, (d) H1-A2-VIII, (e)H1-A3-VII, (f) 

H1-A3-VIII, (g) H2-A1-VIII, and (h) H2-A2-VIII.  

The damage prediction efficacy of the XGBC5 model for TLS-based damage classification was tested 

by aggregating observed and predicted DG values in each building class. The distribution of buildings 

in each class and the associated error values (ε@/ from Eq. 3.2) is shown in Fig. 3.6. Most buildings in 

the test set were observed in H1-A1-VIII and H1-A2-VIII building classes (Fig. 3.6c and 6d), while 

other classes had smaller number of buildings.  

The XGBC5 model resulted higher error values (Fig. 3.6i) for H1-A2-VIII (3-7%) and H1-A1-VIII (0.5-

3.5%) but smaller than 1% for other classes. The XGBC5 model showed reasonable damage prediction 
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efficacy in TLS-based damage classification for large-scale classification at the building-class level 

considering age and number of storeys.  

 

Figure 3.6. Distribution of (a) - (h) the observed and predicted DG values and (i) the distribution of 
error values (ε@/ from Eq. 3.2) in each building class level for the TLS-based damage classification 
XGBC5 model. The x-axis is the damage grades. The y-axis for (a) - (h) is building density and (i) error 
values in percentage. In figure (a) - (g), the grey and blue bar corresponds to the observed and predicted 
DG.  
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3.5 Testing host-to-target machine learning models 

The damage prediction efficacy was compared among three datasets: HBDP, NBDP, and DaDO. These 

datasets were randomly divided into training (60%) and test (40%) datasets. The XGBC5 model 

considering TLS-based damage classification was trained on the training set, and its efficacy was 

explored in the test dataset. The damage prediction efficacy was first compared at the building level 

and then at the building-class level. 

 

3.5.1 Efficacy at building-level between the datasets  

The distribution of error values in the DG (ε!	from Eq. 3.3) (e.g., 1 corresponds to the delta of 1 damage 

grade between observed and prediction, regardless of the DG considered) is shown in Fig. 3.7.  The 

percentage of buildings correctly classified (x-value centred on 0 in Fig. 3.7a) in HBDP, DaDO, 

L’Aquila (a single earthquake of the DaDO dataset) and NBDP is 45%, 59%, 61% and 67%, 

respectively. The error values were concentrated in +/-1 DG in the range of 7-21% in NBDP, 5-23% in 

DaDO and L’Aquila, and 18-22% in HBDP. The error values in +/-2 DG was higher for HBDP (5-9%) 

and DaDO (1-11%) as compared to NBDP (below 4%).  

In the probability density function (Fig. 3.7b), skewed error distribution is observed, with a large 

number of predictions being underestimated in NBDP (positive x-value at peak: 0.21) and 

overestimated significantly in DaDO (negative x-value at the peak: -0.28) and slightly in HBDP 

(negative x-value at the peak: -0.08). 

 

Figure 3.7. The distribution of (a) error values (ε! from Eq. 3.3) and (b) probability distribution 
function for TLS-based damage classification using the XGBC5 model. The x-axis is the difference 
between the observed and predicted DG. The y-axis is the error values in percentage. The blue, orange, 
yellow, and purple colour corresponds to the NBDP, L’Aquila, DaDO, and the HBDP database, 
respectively. 
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3.5.2 Efficacy at building-class level between the datasets  

The HBDP, NBDP, and DaDO dataset have six common building classes according to the nomenclature 

considered for the Haiti dataset. Fig. 3.8 shows the distribution of the error values (ε@/ from Eq. 3.2) 

by building classes for each dataset. For HBDP, error values are below 1% except for class H1-A2-VIII 

(3-7%) and H1-A1-VIII (below 4%). For NBDP, error values are below 3% except for class H1-A1-

VII (between 1-5%). For DaDO, error values are below 2% except for class H1-A3-VII (between 2-

4%) 

 

Figure 3.8. Distribution of the error values (ε@/ from Eq. 3.2) for TLS-based damage classification 
using the XGBC5. The x-axis is the damage grades. The y-axis is the error values in percentage. The 
blue, red, and black lines with square, circle, and diamond markers correspond to the DaDO, NBDP, 
and HBDP databases. 

 

Fig. 3.9 shows the distribution of the error values (ε@+ from Eq. 3.4) by building classes for each dataset. 

For NBDP, error values were below 10%, except for class H1-A1-VII (4-18%). For DaDO, error values 

are below 9% for three building classes (H1-A1-VII, H1-A2-VII, and H1-A1-VIII), between 19-36% 

in H1-A3-VII, 1-31% in H1-A2-VIII, and 18-50% in H1-A3-VIII. For HBDP, error values are below 

8% for H1-A1-VII and H1-A1-VIII, and between 1-19% for H1-A2-VII and H1-A3-VII. For H1-A2-
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VIII and H1-A3-VIII, the error are larger than 20% for H1-A2-VIII and H1-A3-VIII for DaDO and 

HBDP. Among the datasets, the lowest error values (below 10%) was observed in H1-A1-VIII, 

followed by H1-A2-VII (below 17%) and H1-A1-VII (below 18%) building classes.  

 

 

 

Figure 3.9. Distribution of the error values (ε@+ from Eq. 3.4) for TLS-based damage classification 
using the XGBC5. The x-axis is the damage grades. The y-axis is the error values in percentage. The 
blue, red, and black lines with square, circle, and diamond markers correspond to the DaDO, NBDP, 
and HBDP databases. 

 

The XGBC model showed smaller efficacy in the HBDP when compared with NBDP and DaDO for 

TLS-based damage classification. The difference in damage prediction efficacy across datasets may be 

attributed by the varying degrees of feature variability. For instance, HBDP and DaDO consider interval 

age values whereas NBDP considers discrete values. In addition, damage information was collected 

adopting different damage survey form and the damage survey covered the seismic sequence, including 

aftershocks, while the MSI input only includes the mainshock from USGS ShakeMap. 
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Interestingly, low-resolution features resulted in reasonable efficacy for large-scale damage 

classification at the building-class level or higher. The easily accessible building’s features (age and the 

number of stories) and MSI can then provide a reasonable estimate of damage in TLS-based damage 

classification systems. This method is suitable for rapid damage classification at the regional and 

national scales, as Riedel et al. (2015) noted.  

 

3.5.3 Damage probabilities between the datasets 

We observed that the smallest error values for the H1-A1-VIII class, followed by H1-A1-VII, and 

higher error values for H1-A2-VIII and H1-A3-VIII class. Fig. 3.10 shows the damage probabilities 

(P!C)  for a building in these classes using Eq. 3.5.  

For a building in the H1-A1-VIII class, the probability of being in no-to-slight (G), moderate (Y) and 

heavy (R) damage grade is 96%, 1% and 3% in Italy, 49%, 35% and 16% in Haiti, and 16%, 28% and 

56% in Nepal, respectively. For the building class H1-A2-VII, the probability is 90%, 9% and 2% in 

Italy, 6%, 41% and 53% in Haiti, and 10%, 29% and 61% in Nepal, respectively. For H1-A1-VII class, 

the probability is 99%, 0.5% and 0.5% in Italy, 40%, 47% and 13% in Haiti, and 36%, 30% and 34% 

in Nepal, respectively. 

For H1-A3-VII class, the probability of G, Y and R is 28%, 45% and 27% for Italy, 7%, 28% and 65% 

in Haiti, and 2%, 21% and 77% in Nepal, respectively. 

Finally, for the H1-A3-VIII class, the probability of G, Y and R is 10%, 47% and 43% in Italy, 5%, 7% 

and 88% in Haiti, and 0.5%, 25.5% and 74% in Nepal, respectively. 

 

Thus, a given building class with a given MSI value has different probability to be in each DG, as a 

consequence of the regional structural typologies and seismic regulations.  For example, Nepal and 

Haiti provide very similar results whatever the class of building, compared to Italian dataset. Therefore, 

based on these three datasets, raw machine-learning based models for damage prediction are only valid 

for the hosting region. Thus, empirical adjustments for host-to-target region design differences using 

regional observation of damage are unlikely to be robust unless the buildings class are similar. In 

essence, these questions the relevance of generic vulnerability models developed for a host region and 

which are very tempting to apply to a target region. Testing empirical adjustments of machine learning 

model for regional characteristics is needed, isolating each host-to-target difference to analyse the 

contributions of the regional building design differences to the epistemic uncertainty of the model and 

the damage grades related to macroseismic intensity. 
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Figure 3.10. Distribution of the damage probabilities values (P!C from Eq. 3.5) using the XGBC5 
model. The x-axis is the damage grades. The y-axis is the probability values in percentage. The blue, 
red, and black lines with square, circle, and diamond markers correspond to the DaDO, NBDP, and 
HBDP databases, respectively. 

 

3.6 Conclusion 

In this study, the damage classification efficacy of machine learning models was explored by using the 

2010 Haiti earthquake building damage portfolio (HBDP), 2015-Nepal earthquake building damage 

portfolio (NBDP) and the observed damage for several earthquakes in Italy (DaDO). Compared to 

building-level damage classification, the XGBC model showed higher damage prediction efficacy when 

analysed by aggregating buildings according to DG values in building classes or in the whole test 

dataset.  

When tested with the readily available features (age, number of storeys, and MSI) with TLS-based 

damage classification, the XGBC model show smaller efficacy in the HBDP when compared with 

NBDP and DaDO. This could be due to the difference in the resolution of features in these datasets. For 

instance, HBDP and DaDO has interval age values whereas NBDP has discrete values, and damage 

information was collected adopting different damage survey form.  
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Similarly, the XGBC model trained and tested on HBDP, NBDP, and DaDO showed different damage 

probabilities among the DGs for a given building class. It suggests that when transferring damage 

prediction models (e.g., Ge et al., 2023) or vulnerability models from active seismic regions to moderate 

or less active regions, careful consideration on building typologies and their distribution, construction 

practices and seismic regulations are required. 

Higher-resolution features can result in higher efficacy in damage prediction. Interestingly, the low-

resolution features (age, the number of stories, MSI) and ground truth damage information can also 

provide in reasonable efficacy for large-scale damage classification and enable a rapid large-scale 

damage classification, as also noted in previous studies (Riedel et al. 2014, 2015; Ghimire et al. 2022, 

2023). This study opens an opportunity to test building data from the institutional database (e.g., 

national census, national housing database) for large-scale seismic risk assessment, as already discussed 

by Riedel et al. (2014, 2015). It can also benefit and encourage the exposure and vulnerability modeling 

communities (e.g., Jordan, 2019; Schorlemmer et al., 2017). Further investigation should be carried out 

by collecting building damage portfolios from different regions and building information from different 

sources (e.g., OpenBuildingMap, European exposure model, INSEE database) to develop this emerging 

field.  
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4 Analysis of the efficiency of Intensity Measures from real earthquake 

data recorded in buildings 

Chapter 1-3 is focused on seismic damage prediction in buildings at regional scale using post-

earthquake damage survey data, whereas, this chapter is focused on seismic response of building at 

building-level using earthquake data recordings from buildings. In this chapter, we investigate the 

relationship between engineering demand parameters (EDP) and intensity measures (IM). We analyze 

the efficiency and sufficiency of IMs, sources of uncertainties in the EDP|IM relationship, building 

frequency variation under earthquake loading, and develop an empirical building damage prediction 

equation for different building typologies. The study findings have been published in the Soil Dynamics 

and Earthquake Engineering journal. 

Ghimire, S., Guéguen, P., and Astorga, A. (2021). Analysis of the efficiency of intensity measures from 
real earthquake data recorded in buildings. Soil Dynamics and Earthquake Engineering, 147, 106751. 

 

Abstract 

In this chapter, a number of spectral and ordinary ground motion intensity measures (IMs) are tested 

for use in structural performance assessment. Real strong motion values recorded at the top and the 

bottom of US, Japanese and Romanian buildings are analyzed in order to identify the source of 

uncertainties in the prediction of engineering demand parameters (i.e., structural drift) for given IMs 

(i.e. σEDP|IM). The efficiency and sufficiency of each IM from a large set of building and earthquake 

motion data are tested for different criteria characterizing the seismic source (magnitude and source-to-

site distance), and considering several building classes and a specific single-building analysis including 

aging due to cumulative earthquake damage over time. The spectral values at co-seismic resonance 

frequency was found to be the most efficient IMs for the range of buildings and earthquakes 

investigated, particularly for velocity with a reduction of approximately 50% of the σEDP|IM value. 

Conversely, most IMs are relatively insufficient. 

Keywords 

Structural performance assessment, strong motion recordings in buildings, building frequency, 

efficiency and sufficiency of IM 

4.1 Introduction 

Performance-based earthquake engineering (PBEE) refers to the probabilistic framework in which 

earthquake consequences are expressed by a set of performance objectives, based on a comprehensive 

scientific foundation (Porter, 2003). Depending on the application, these performance objectives can 
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help stakeholders to make decisions with regard to crisis management and structural capacity, such as 

immediate occupancy or near-collapse levels, by predicting human or economic losses. In the 

framework proposed by PEER (Porter, 2003), PBEE works in four stages, starting with the hazard itself 

through to the consequence analysis. In hazard analysis, intensity measures (IM) and their annual 

frequency of exceedance (λIM) are defined by probabilistic seismic hazard assessment (PSHA). In 

structural analysis, the response of the structure to a given IM can be modeled and expressed in terms 

of engineering demand parameters (EDPs), such as structural drift, maximal top acceleration, etc. In 

damage analysis, damage measurement (DM) is calculated based on EDP values and models of 

structure capacity or fragility. Finally, the earthquake’s consequences, in terms of repair costs, 

operability of the structure and potential economic or human losses for a given DM, can be calculated 

and expressed as decision variables (DVs) on which stakeholders can base their decisions in view of 

the expected performance levels.  

The four steps of the underlying probabilistic framework of PBEE estimate the frequency of failure of 

a performance level over a given period of time; this involves uncertainties. For example, the annual 

frequency of exceeding a given EDP value (λEDP) is expressed by: 

 λD>E = ∫ P[EDP/IM = im]|dλim
	
FG  (4.1) 

where P(EDP|IM=im) is the conditional probability of occurrence of each EDP value, taking into 

account the value of the IM, and dλim is the annual rate of exceeding an IM value, derived from the 

hazard curves. P(EDP|IM=im) is usually obtained by considering a series of nonlinear dynamic analyses 

of the structure. Baker and Cornell (2008a) provide a detailed description of approaches to characterize 

and propagate uncertainties at each step. Current research on PBEE is mainly focused on identifying 

the origins of uncertainties, distinguishing between epistemic and random uncertainties, in order to 

boost scientific efforts on the reducible elements that contribute most to performance uncertainty (e.g., 

Iervolino, 2017). In practice, P(EDP|IM=im) satisfies a chosen model of EDP distribution for a given 

IM and is obtained by regression of EDP values for IM values. Luco (2002), Luco and Cornell  (2007), 

and Baker and Cornell (2008b) considered an IM to be sufficient if the prediction of EDP given IM is 

statistically independent of earthquake magnitude and epicentral distance values. Furthermore, the 

efficiency of IMs is assessed by measuring the variability of values of EDP (given IM) around the 

regression on the IM values. In general, Peak Ground Acceleration (PGA) or the acceleration spectral 

value at the resonance period T1 of the structure Sa(T1) (with 5% damping) are considered as outputs 

of the seismic hazard curves.  

Structure response and the associated uncertainties are conditioned by time-history seismic excitation, 

considering the IM at which the EDP value is exceeded. The efficiency and sufficiency of Sa(T1) 

compared with PGA were investigated by Shome and Cornell (1999) according to the type of building 

and the contribution of the higher modes to the total response was also considered (Shome and Cornell, 



 

 
86 

1999). Other ground motion parameters have also been investigated in terms of sufficiency and 

efficiency, such as peak values in velocity, duration or energy, or spectral values considering different 

resonant periods (Buratti, 2012; Ebrahimian et al., 2015), spectral values in acceleration (Luco and 

Cornell, 2007; Shome and Cornell, 1999; Bianchini et al., 2009; Lin et al., 2011; Eads et al., 2015) or 

velocity (Jayaram et al., 2011; Mollaioli et al., 2011), or by combining IMs based on vector-valued 

approach (Baker and Cornell, 2008b; Luco et al., 2005; Vamvatsikos and Cornell, 2005). All these 

studies are based on the numerical modeling of structures considering different ground motion datasets, 

mostly using the Incremental Dynamic Analysis approach (IDA). In structural analysis, the selection or 

generation of natural or synthetic accelerograms from different tectonic areas, the scaling applied to 

obtain the desired structural response values, the selection of physical modal parameters (e.g., structural 

period and damping) and their co-seismic variations, as well as other modeling assumptions related to 

component fragility functions, affect the overall uncertainty of the performance estimate. Furthermore, 

a typical assumption in the assessment of P(EDP|IM) is that the building response variability for a class 

of buildings is the same as the response variability for a given building in this class (this assumption is 

an ergodic assumption affecting fragility curves). 

According to several authors (e.g., Guéguen et al., 2016; Trifunac et al., 2010), considering that data 

from full-scale observations in real buildings are much more representative than even the most 

sophisticated laboratory or numerical experiments, one way of improving engineering science to 

understand the physical behavior of structures is to use a complete database of earthquake recordings 

in real structures. For example, Perrault and Guéguen (2015) analyzed the variability of EDP versus IM 

using accelerometric data recorded in Californian buildings, taking structural drift as the EDP, and 

derived a single-building damage prediction equation (BDPE) with its associated uncertainties. Astorga 

et al. (2018, 2019, 2020) completed the analysis, confirming the added value of physical data in 

understanding the seismic response of Japanese buildings in terms of co-seismic demand parameters 

related to modal (i.e. resonance frequency) parameter variations, especially during repetitive earthquake 

sequences.  

In this study, the efficiency and sufficiency of several IMs for P(EDP|IM) from a large number of 

experimental datasets are analyzed using the regression model of EDP values for IM values. In the 4.2 

section, the IMs and EDPs are described based on the study by Astorga et al. (2020).  The 4.3 section 

describes the datasets and the methodology used. Then, the results in terms of efficiency and sufficiency 

are discussed in the 4.4 section, completed in the 4.5 by a specific analysis of the co-seismic frequency 

value versus EDP. Finally, the conclusion develops a simple empirical BDPE using available 

experimental data. 
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4.2 Description of IMs and EDPs 

This study uses accelerometric data recorded in several sets of buildings and processed by Astorga et 

al. (2020) for NDE1.0. Herein, we propose a brief description of the building information and 

earthquake data; more detailed information is available in NDE1.0 (Astorga et al. 2020). 

Six ordinary IM values are considered in this study, computed from the data recorded at the bottom 

floor of each building:  

 - Peak ground acceleration (PGA) (Fig. 4.1a), velocity (PGV) (Fig. 4.1b), and displacement (PGD) 

(Fig. 4.1c), corresponding to the absolute values of maximum acceleration, velocity and displacement 

time histories, respectively. 

- Arias intensity (AI), destructive potential (DP) and cumulative absolute velocity (CAV). Arias 

intensity (Arias, 1970) includes both the amplitude and duration of seismic shaking, computed as 

follows:  

 AI = H
+C∫ a+(t)dtIJ

7   (4.2)

where g is the acceleration due to gravity, a(t) is the acceleration recorded at time t, and tf is the total 

duration of the recording. AI is an energy-based parameter that considers amplitude and duration of the 

ground motion, but it is unable to capture the frequency characteristics of ground motions. To overcome 

this, Araya and Saragoni (1984) define DP, as follows:  

 DP = K'
L./

   (4.3) 

where  v7+ is the intensity of zero crossings, calculated over the entire duration of ground motion, as 

defined in its original version. Araya and Saragoni (1984) have shown a strong correlation between DP 

and observed real damage. Actually, 	v7+  provides a measure of the dominant frequency content of the 

seismic ground motion.  

Finally, Cumulative absolute velocity (EPRI, 1988) is computed as follows: 

 CAV = ∫ |a(t)|dtIJ
7   (4.4) 

where |a(t)| is the absolute value of acceleration at time t.  

Six spectral IM values are also considered: spectral acceleration (5% damping) (SAi and SAmin) (Fig. 

4.1f), velocity (SVi and SVmin) (Fig. 4.1g) and displacement (SDi and SDmin) (Fig. 4.1h) for two specific 

frequency values (i and min) impacting seismic demand. Index i corresponds to the spectral value 

computed at the elastic frequency of the system fi, i.e., the frequency obtained by Fourier analysis of 

the pre-event noise window before the earthquake. Index min corresponds to the minimal co-seismic 

value of the resonance frequency fmin during the strongest loading and obtained by applying a time-

frequency distribution to the seismic recording (Fig. 4.1d), using the reassigned smoothed Wigner-Ville 
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distribution (Auger and Flandrin, 1995) .The time-frequency distribution is applied to the top 

accelerometric time history (Fig. 4.1e). The time and frequency smoothing windows are Hamming 

windows, with N/10 and N/4 points, respectively. Then, a 3rd order Savitzky-Golay filter is applied to 

the maximum values of energy window. Fig 4.1(e) shows an example of the time-frequency process 

applied to the data. The fmin corresponds to the average value of ± 10 samples around the minimum 

value observed in the smoothing function (Astorga et al. 2018).  

Finally, in this study, drift ratio (DR) is considered as an EDP to describe the building response (Astorga 

et al. 2020). DR corresponds to the peak of the transient drift observed during the ground motion, 

obtained by computing the maximum relative displacement, as follows: 

 DR =	 ∆0#(.	∆$#00#1
N

  (4.5) 

where ∆top and ∆bottom are the horizontal displacements recorded at the top and bottom floors of each 

building, respectively, and h is the height between the top and bottom floors.   

 

Figure 4.1. Illustrations on the left side is the time history of (a) acceleration, (b) velocity, (c) 
displacement, recorded at the bottom floor sensor of the building. The red dots (a-c) correspond to the 
peak values. Similarly, the figures on the right are (d) the pseudo-Wigner-Ville time-frequency 
distribution, the red-line is the smoothing of the maximum of Wigner-Ville, (e) the acceleration 
recorded at the top floor sensors. Response spectrum of (f) acceleration, (g) velocity, and (h) 
displacement, the dashed vertical line represents the position of elastic frequency (fi) and co-seismic 
resonance frequency (fmin). 
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4.3 Data and Method  

NDE1.0 accelerometric data (Astorga et al., 2020) from the US and Japan plus additional data collected 

from Romania, processed according the same method as that defined in NDE1.0, were used in this study 

(Fig. 4.2). Information such as magnitude and epicentral distance is available for each earthquake but 

there is no description of the source parameters. A brief description of the buildings, earthquakes and 

datasets is given hereafter. 

US data - Data from 84 US buildings provided by Center for Engineering Strong Motion Data (CESMD) 

(https://strongmotioncenter.org/) were considered (Fig. 4.2a). The distribution of the buildings 

according to construction material is as follows: 27% reinforced concrete (US-RC), 57% steel (US-ST), 

11% masonry (US-MA), and 5% wood (US-WO). 684 accelerometric recordings were collected; 

among them, 225/302/134/24 recordings were collected from concrete/steel/masonry/wooden 

buildings. Moment magnitude (Mw) varies from 3.5 to 7.3 and epicentral distance varies from 2.6 to 

331 km (Fig. 4.2b). The dataset includes strong earthquakes, such as the 7.2 Mw Landers event in 1992 

and the 7.3 Mw Baja California event in 2010. Two subsets of Californian data are considered to assess 

uncertainties related to the tectonic context. These subsets are named specific tectonic source STS1 and 

STS2. The latitude and longitude boundaries of STS1 and STS2 are 33 to 35 and 35 to 39 degrees; 116 

to 120 and 120 to 123 degrees, respectively (Fig. 4.2a).  

RO data - A ten-story reinforced concrete building monitored by the National Center for Seismic Risk 

Reduction (NCSRR) of Romania is also considered. This building has been monitored since December 

2013. 108 accelerometric records were collected, most of them corresponding to earthquakes located in 

the Vrancea seismic zone to the north of Bucharest (Fig. 4.2a). Epicentral distance thus varies slightly, 

between 127 and 178.3 km for Mw ranging from 3.8 to 5.6 (Fig. 4.2b). The largest earthquakes Mw 5.6 

and 5.4 in 2016 and 2014, respectively, are included.  

JPN data – 11,763 accelerometric recordings from 32 high/mid-rise Japanese buildings were collected 

from the BRI strong motion network (https://smo.kenken.go.jp/) (Fig. 4.2a). The building distribution 

according to elementary typology is as follows: 24% steel (JPN-ST), 40% reinforced concrete (JPN-

RC), and 36% steel-reinforced concrete (JPN-SRC). The main shock and aftershock sequences of the 

strongest earthquake, 2011 Tohuku, are included. Magnitude varies from 2.6 to 9.1 (JMA magnitude) 

and epicentral distance varies from 2.2 to 2,394 km (Fig. 4.2b).  
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Figure 4.2. View of the whole dataset used in this study. (a) Positions of epicenters (gray circles) and 
buildings (red squares) in the US (California), Romania and Japan. For the US dataset, the two red 
rectangular boxes define the area of the two specific regions discussed in the manuscript. (b) Magnitude 
versus epicentral distance distribution of the whole dataset including Japan (open circles), the US (gray 
squares) and Romania (solid diamonds). (c) Distribution of natural log(PGA) for American, Japanese 
and Romanian datasets, respectively. σ is the standard deviation of the distribution. 

 

ANX – One of the Japanese buildings, ANX, is a building that has been studied extensively by the BRI 

strong motion network. A detailed description of ANX is available in Astorga et al. (2018). ANX is an 

8-story, steel-reinforced concrete building located approximately 60 km northwest of Tokyo, in 

Tsukuba (Japan) (Fig. 4.3a).  ANX has one basement floor resting on spread foundations (8.2 m deep) 

lying on soft soil made up of alternating layers of clay and sandy-clay to a depth of 40 m. A description 

of the instrumentation is provided by Kashima (2004, 2014). The ANX dataset is the largest of our 

datasets, comprising 1,630 recordings in both horizontal directions, made over a period of 20 years, 

starting immediately after building completion in March 1998 and including the main shock and 

aftershocks of the 2011 Tohuku earthquake. Magnitude varies from 2.6 to 9.1 and epicentral distance 

varies from 2.2 to 1,730 km. (Fig. 4.3b). A specific subset of data for ANX is considered, with a 

geographical boundary of 34 to 41.5 degrees (latitude) and 137 to 145 degrees (longitude). Furthermore, 

three data subsets are defined based on the distribution of magnitude-distance criteria considered to 

have an adequate number of data in each dataset (Fig. 4.3b): MR1 corresponding to 166 entries with R 

= 20 ± 50% and M= 3.5 ± 0.5; MR2 corresponding to 575 entries with R =120 ± 60% and M= 4.5 ± 0.5 
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and MR3 corresponding to 274 entries with R = 250 ± 70% and M= 5.5 ± 0.5). The distribution of PGA 

for MR1/MR2/MR3 is shown in Fig. 4.3(c). Astorga et al. ( 2018, 2019) analyzed the time variation of 

the resonance frequency of the ANX building since 1998. They defined four time periods corresponding 

to changes in its behavior. During the first period (T1), the fundamental frequency starts to decrease 

immediately after the completion of construction work, from 1998 to 2005. Frequency stabilizes during 

period T2 (2006-2011/02/30) until the Tohoku earthquake sequence in 2011. During period T3, the 

fundamental frequency drops significantly and a slow recovery of the resonance frequency is observed 

directly after the Tohoku earthquake during the immediate aftershock sequence between 2011/03/01 

and 2011/09/30. Finally, T4 corresponds to the period between 2011/10/01 and 2018/05/15.  

T1/T2/T3/T4 comprise a total of 366/313/402/468 data, respectively. Four further subsets of data within 

the magnitude distance criteria MR2 are considered according to the period criteria: T1-MR2 (118 data), 

T2-MR2 (119 data), T3-MR2 (193 data), and T4-MR2 (121 data). 

 

Figure 4.3. Dataset for the specific Annex (ANX) building in Japan. (a) Location of the ANX building 
(red square) and related earthquake epicenters (gray circles). The black square represents the specific 
subset of data considered. (b) Magnitude versus epicentral distance distribution. The red rectangles 
define the boundaries of the three magnitude-distance criteria (MR1, MR2 and MR3) described herein. 
(c) Distribution of log(PGA) for specific magnitude-distance criteria MR1, MR2 and MR3. σ is the 
standard deviation of the distribution. 
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One method of obtaining P[EDP|IM] is to perform a series of non-linear dynamic analyses for a given 

structure and for a given series of earthquakes (Luco, 2002). Another method is to perform regression 

between EDP and IM, knowing the probability distribution (Shome and Cornell, 1999; Cornell and 

Luco, 1999) for variability analysis. The degree of scattering around the fitted model represents the 

uncertainty of the EDP|IM model. To analyze EDP|IM uncertainty and testing efficiency and 

sufficiency of IMs, one-parameter log-log (log: natural logarithm) linear regression of EDP on IM 

(Luco, 2002) is used, defined as follows: 

 log(EDP) = a + b. log(IM) + ε (4.6) 

where a and b are the estimated regression coefficients and ε is the standard error.  

The variability associated with IMs and EDP is represented hereafter as σIM, and σEDP, respectively, i.e. 

the standard deviation of the log of IM and EDP values, normalized by their mean value.  

The efficiency of IMs is defined simply as the IM that results in a small variability of EDP given IM 

(Luco and Cornell, 2007). The variability associated with EDP for a given IM is measured by 

calculating the standard deviation of the residuals of the fitted regression model between EDP and IM 

(Eq. 4.6), represented hereafter as σEDP|IM. However, an efficient IM reduces the record-to-record 

variability between building responses. For practical purposes, this can then reduce the number of non-

linear time history analyses for IDA (Shome and Cornell, 1999) with the necessary degree of precision. 

The sufficiency of IMs is defined as the IM that makes EDP conditionally independent on earthquake 

parameters such as magnitude (M) and source-to-site distance (R). Sufficiency is estimated by 

computing the linear regression between EDP and IM regression residuals (ε|IM) of Eq. 4.6 and the 

corresponding value of M or log(R) (Luco and Cornell, 2007).  

Fig. 4.4 shows the distribution of residual values EDP|PGA for the whole dataset, versus M or log(R). 

As expected, σEDP|PGA varies significantly, reflecting several sources of uncertainties, which will be 

explored in the following section. 



 

 
93 

 

Figure 4.4. Distribution of residual values (EDP|PGA) as function of (a) M and (b) log(R), considering 
the whole dataset. The lines represent the fitted linear model between log(R)/M and the residuals. 

 

4.4 Results on EDP|IM 

4.4.1 General trends - σ 

For several candidate IMs, global and regional ground motion prediction equation (GMPE) models are 

continuously evolving (Douglas, 2020). For e.g., Dhakal et al. (2008), Podili and Raghukanth (2019), 

and Zhao et al. (2016) developed GMPE models for Japan, the value of sigma (σGMPE) reported in these 

models were 0.86 for PGA, 0.70 for PGV, 0.82 for PGD, 1.46 for AI, 0.69 for CAV, and 0.64-0.88 for 

acceleration response spectra, and 0.28-0.39 for velocity response spectra with a structural period 

ranging from 0.01-5 sec. Atkinson (2015) developed GMPE models for the US, the value of sigma 

reported for these models were 0.37 for PGA, 0.33 for PGV, and 0.31-0.41 for acceleration response 

spectra with a structural period ranging between 0.03-5 sec.  

This section compares the efficiency of these candidates IMs in structural response prediction using our 

experimental data. Fig. 4.5 shows the standard deviation of the residuals of the fitted standard log-linear 

regression model between EDP and IM (Eq. 4.6) for ALL (JPN+US+RO) datasets. For each IM 

parameter, σIM is given in Fig. 4.5b. All the σEDP, σIM and σEDP|IM values are provided in Appendix B. In 

the main body of the manuscript, only the most relevant results are discussed.  

The first observation is that the JPN dataset (σEDP=1.44), largest in terms of numbers, is predominant in 

our global dataset (1.48) compared with the US dataset (1.32). Fig. 4.5a shows that the value of σEDP|IM 

is oscillating between 0.8 and 1.1, with an average value of 0.9. The highest value of σEDP|IM corresponds 

to the spectral and peak ground acceleration values and DP intensity measures. Fig. 4.5b shows that 

PGA corresponds to the smallest value of σIM (1.15), whereas spectral acceleration corresponds to the 
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highest value of σIM (in average around 1.60) after DP (3.33) and AI (2.29). Here we can see that the 

velocity related IMs (PGV, SVi and SVmin) corresponds to the relatively smaller value of σIM. However, 

for AI and DP, σEDP|IM remains similar to the other values. These IMs are also associated with the 

relatively higher value of σGMPE in the above mentioned GMPE models. This indicates that these 

parameters are not good indicators of the natural variability of ground motion and do not enable a high 

degree of certainty for predicting the response of structures for a given IM.  

The velocity related IMs are observed with a smaller value of σEDP|IM (e.g., 0.80 for PGV, 0.79 for SVi, 

and 0.79 for SVmin). The efficiency of velocity IMs has already been reported for US data by Perrault 

and Guéguen (2015) and is confirmed herein, regardless of the dataset considered. It is interesting to 

note that these IMs are associated with the relatively smallest value of σGMPE in the above mentioned 

GMPE models, thus, the velocity related IMs are the most efficient IMs i.e. PGV, SVi, and SVmin.   

In order to capture the origins of the uncertainties in building response prediction, several relationships 

are tested in the following sections, according to tectonic region, building typology and ageing effect. 

The paucity of the data for specific analysis in some datasets makes it necessary to separate the studies; 

sub-datasets are therefore presented.  

 

Figure 4.5. (a) σEDP|IM values for the IMs concerned, computed for the whole dataset. (b) σIM values. 
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4.4.2 Variability associated with the tectonic context - σR 

Atkinson and Morisson (2009) demonstrated that seismic ground-motion amplitudes in northern and 

southern California were significantly different for the same magnitude/distance pair of earthquakes, 

without identifying the origin of this difference, but related to different tectonic regions. In this study, 

the effect of the region on building response is examined for all building classes. Fig. 4.6 shows the 

effect of the tectonic region on the US dataset. The whole US dataset (US ALL) and both STS1 and 

STS2 subsets are tested, considering all of the previously mentioned US building typologies. Note that 

for STS1 and STS2, the σEDP values are the same (1.24 and 1.20 respectively, Appendix B), and σIM 

differs only marginally. In Fig. 4.6, the effect of considering the data by specific region barely 

minimizes the σEDP|IM values, for the same values of σIM (Fig. 4.6b). Some exceptions should be noted, 

the most remarkable being displacement and acceleration. Firstly, the figure shows that for velocity 

IMs (i.e. PGV, SVi and SVmin), the σEDP|IM values are similar, being around 1 for ALL, STS1 and STS2 

(values in Appendix B).  On the other hand, the σEDP|IM values for STS1 and STS2, respectively, 

correspond to 1.15 and 0.97 for SAi, 1.15 and 1.04 for SAmin, 1.03 and 1.10 for SDi and 1.03 and 1.10 

for SDmin. Thus, a trend inversion (the smallest values for STS2 or STS1) is observed depending on 

whether acceleration or displacement IM values are considered. Although the origin of this inversion 

has not been confirmed, the class of the buildings concerned in these two geographical areas is likely 

to be cause, since some buildings are more sensitive to acceleration than others, depending on their 

period of resonance (i.e. stiff or flexible buildings). The following sections will therefore focus mainly 

on velocity IMs, testing the variability observed in relation to the class of structure in particular, and 

assuming an insignificant effect of the tectonic context.   
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Figure 4.6. (a) Values of σEDP|IM for the IMs concerned computed for US buildings by tectonic region 
(US STS1 and US STS2) and for all US buildings (US ALL). (b) σIM values associated with each IM. 

 

4.4.3 Epistemic uncertainties related to building typology - σT 

The seismic performance of buildings depends on their design and characteristics (construction 

material, height, plan area, regularity etc.). The uncertainties affecting vulnerability assessments are 

mainly epistemic because, according to Spence et al. (2003), they are due to the classification of 

buildings into typologies and the attribution of a single generic model to a whole class of buildings. 

Furthermore, when evaluating seismic capacity, we suppose that many buildings of the same typology 

have the same ergodic epistemic uncertainties, implying that the values of the epistemic uncertainties 

do not change between buildings. In this section, the variability associated with different classes of 

buildings is explored using the US and JPN datasets. Only a basic description of the buildings, based 

on material, is available in our database. A more detailed classification according to international 

standards (e.g., HAZUS typology, GEM taxonomy) could be considered in a more comprehensive 

analysis.  

Fig. 4.7(a) shows the variability observed for different classes of buildings in the US dataset. The trends 

are the same as those observed previously between the velocity IMs and the other IMs. Two typologies 

stand out: MA and WO. For these two typologies, the small amount of data in our dataset does not 
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allow a more detailed analysis nor a definitive conclusion as to the effectiveness of certain IMs for EDP 

prediction. However, for MA buildings, the velocity IMs give higher values of σEDP|IM, and IMs in 

acceleration and displacement seem more and less efficient, respectively, than for the other typologies, 

due to the greater stiffness (i.e. smaller resonance period) generally observed in such buildings. For 

WO, all the σEDP|IM values are well below those of the other typologies, but the small number of 

buildings involved ultimately reduces the epistemic uncertainty related to structural differences within 

each building class.  

 

Figure 4.7. Variability of σEDP|IM values as a function of the class of buildings (a) US dataset, (b) JPN 
dataset, (c) ANX single building dataset. 

 

For the US classes (Fig. 4.7a), the type of structure only has a slight influence on the σEDP|IM values for 

the velocity IMs (i.e. 0.94 and 0.93 for PGV, 1.01 and 1.02 for SVi, and 0.99 and 0.98 for SVmin for RC 

and ST, respectively, Appendix B). On the other hand, a notable difference exists between US ST and 

US RC buildings in particular, the latter having a lower σEDP|IM value for displacement IMs (i.e. 0.94 

and 0.91 for PGD, 0.91 and 0.99 for SDi for RC and ST buildings, respectively). 
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There are significant differences between the JPN data (Fig. 4.7b) and the US data. First of all, the 

velocity IMs give different σEDP|IM values for different classes of buildings. For JPN ST, the σEDP|IM 

values are all lower, reflecting lower epistemic uncertainty related to the diversity of buildings within 

this class; this contrasts with JPN RC buildings (e.g. 0.86 and 0.76 for PGV, 0.86 and 0.70 for SVi and 

0.82 and 0.50 for SVmin for JPN RC and JPN ST buildings, respectively). This epistemic uncertainty is 

confirmed in Fig. 4.7c, where the σEDP|IM values for one specific single building (ANX building) are 

compared with those of its building class. There is a significant contribution to the specific single 

building σEDP|IM values, with significantly reduced σEDP|IM values (e.g., 0.64 to 0.50 for PGV, 0.61 to 

0.48 for SVi, and 0.60 to 0.40 for SVmin), particularly for parameters other than acceleration. It is also 

interesting to note an evident contribution of the response spectra calculated by taking into account the 

co-seismic response values to significantly reduce σEDP|IM for the SRC buildings (e.g., 0.78/0.48/0.48 

for SAi/SVi/SDi and 0.46/0.40/0.39 for SAmin/SVmin/SDmin for the ANX building, Fig. 4.7c). Co-seismic 

resonance frequency, which modifies co-seismic demand, is known to vary for this building Astorga et 

al. (2018, 2019), as well as for a specific US ST building reported by Guéguen et al., (2016). A similar 

variation is observed for JPN ST buildings (Fig. 4.7b), significantly reducing the σEDP|IM values (e.g., 

0.80/0.70/0.78 for SAi/SVi/SDi and 0.59/0.50/0.48 for SAmin/SVmin/SDmin). This point will be analyzed 

more specifically in the last section of this manuscript. 

4.4.4 Within-building variability associated with earthquake magnitude-distance - σMR 

Fig. 4.8a shows the effect of M/R pairs on the variability of the ANX building response. The M/R 

criteria are described in Fig. 4.3 (section 4.3). Firstly, there is a significant effect on σEDP|IM values 

compared with the totality of the ANX data, regardless of the IMs considered, except for the 

displacement values of the IMs for the MR3 data subset (R = 250 ± 70% and M= 5.5 ± 0.5). These 

events generated longer periods of ground motion, to which the ANX building, with its resonance period 

of around 1Hz (Astorga et al., 2018), is more sensitive. For MR1 and MR2, the σEDP|IM values are lower 

than the values of the ANX dataset, particularly for the velocity IMs (values for PGV/SVi/SVmin are 

0.50/0.48/0.40 for all ANX data compared with 0.42/0.40/0.34 for MR1 and 0.41/0.41/0.37 for MR2) 

and for the displacement IMs (values for PGD/SDi/SDmin are 0.46/0.48/0.39 for all ANX data compared 

with 0.38/0.37/0.33 for MR1 and 0.35/0.42/0.29 for MR2).  

IM sufficiency is tested by considering the JPN building class dataset. The statistical significance of the 

coefficient obtained from the standard linear regression for M and log(R) is assessed based on the p-

value (i.e. the probability of obtaining an estimated value of the coefficient at least as large as the actual 

value, the actual value of the coefficient being zero) (Benjamin and Cornell, 1970).  If the p-value 

observed is greater than or equal to 0.05, the estimated coefficient of M or log(R) is statistically 

insignificant and the IM is considered sufficient (Luco and Cornell, 2007). For the JPN building class, 

Fig. 4.8b shows the p-value considering all the IM parameters, summarized in Tab. 4.1.  
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Based on Fig. 4.8b, it appears difficult to conclude on the sufficiency of the IMs tested on our dataset, 

i.e. EDP is not conditionally independent of magnitude and distance. For the ALL-JPN dataset, the most 

sufficient IM with respect to magnitude is DP (p-value=0.47) and with respect to distance SDi (0.13) 

and SVmin (0.78), the latter value (the highest) allowing us to assume that the prediction of EDP knowing 

SVmin is statistically independent of distance. However, for individual building classes, the p-values 

differ between IMs. It seems that displacement IMs are the most sufficient in distance, such as PGD (p-

value=0.57) and SDmin (0.41) for the ST class, as these buildings are the most slender - long-period 

buildings, i.e. more sensitive to ground displacements. For RC buildings, the most sufficient IMs (in 

distance) are SAmin (p-value=0.80) and PGD (0.84) and, to a lesser extent, SDi (0.05) and SVmin (0.06). 

For the same class of buildings, the sufficient IMs in magnitude are SVmin (p-value=0.42) and, to a 

lesser extent, PGD (0.23) and DP (0.07).  Finally, for SRC buildings, only two IMs (DP and CAV) are 

sufficient in magnitude, with p-values of 0.21 and 0.50, respectively.  

Since sufficiency differs according to building class, these results suggest that particular attention 

should be paid when selecting the accelerometric time histories used to perform non-linear time history 

analysis or PBEE assessment. Furthermore, if insufficient IMs are considered, site-specific ground 

motion data must be provided to avoid inaccurate estimation of the damage levels or failure rates used 

in PBEE if the ground motion characteristics do not match the source and site requirements (Kazantzi 

and Vamvatsikos, 2015).  

Table 4.1 – p-values for the whole JPN dataset, and by JPN building class. Values in bold are greater 
than  0.05, i.e. the threshold for evaluating IM sufficiency. 

  PGA PGV PGD AI DP CAV SAi SVi SDi SAmin SVmin SDmin 
All 
JPN 

M 0.00 0.00 0.00 0.00 0.47 0.03 0.00 0.00 0.00 0.00 0.00 0.00 
R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.78 0.00 

RC M 0.00 0.00 0.23 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.42 0.00 
R 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.05 0.80 0.06 0.00 

SRC M 0.00 0.00 0.01 0.00 0.21 0.50 0.00 0.00 0.00 0.00 0.00 0.02 
R 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 

ST M 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 
R 0.00 0.00 0.03 0.00 0.74 0.00 0.00 0.00 0.44 0.00 0.00 0.00 
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Figure 4.8. (a) Variability of σEDP|IM values as a function of the IMs concerned for different magnitude 
and earthquake-to-building distance criteria, considering the ANX single building dataset. 
Magnitude/distance criteria are R = 20 ± 50% and M= 3.5 ± 0.5 for MR1; R =120 ± 60% and M= 4.5 
± 0.5 for MR2; R = 250 ± 70% and M= 5.5 ± 0.5 for MR3. (b) Sufficiency analysis with respect to 
magnitude (o) and distance (x) observed for the JPN building class datasets. The dashed line 
corresponds to a p-value of 0.05. 

 

4.4.5 Within-building variability associated with aging - σA 

Karapetrou et al. (2016) discussed the effect of aging over time on the seismic vulnerability of buildings. 

Moreover, Astorga et al. (2018, 2019) demonstrated the time-dependent response of the ANX building 

to cumulative events during a long sequence of moderate to strong earthquakes in experimental 

conditions. Incorporating the real state of a structure may therefore help to reduce variability, yielding 

more reliable results for PBEE analysis. Fig. 4.9 shows the σEDP|IM variations as a function of the age of 

the ANX building. Astorga et al. (2018, 2019) distinguished four specific periods (T1 to T4) during 

which the frequency of the building changed over time, depending on structural health related to the 

cumulative damage in the structure. Astorga et al. (2018, 2019) also showed that ANX’s response 
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between seismic events stabilized with its degradation, expressed as a function of the dispersion of 

structural drift values.  

These four periods are considered here, focusing only on the M/R dataset corresponding to MR2 (i.e. 

the dataset with the most data). A progressive reduction of σEDP|IM values is observed between T1 and 

T4, the last two periods being the most efficient (Appendix B), which confirms the results previously 

reported in Astorga et al. (2018) concerning the stability of the building response with degradation. It 

therefore appears that taking into account the ageing or actual state of a structure in performance 

analysis will help to modify the efficiency of the IMs, particularly as even moderate seismic shaking 

may change the building response (Perrault et al., 2020). For example, for PGV/SVi/SVmin, the σEDP|IM 

values correspond to 0.39/0.37/0.35 for the MR2-T2 ANX dataset and 0.37/0.37/0.26 for the MR2-T3 

ANX dataset, compared with 0.41/0.41/0.37 for the MR2 ANX dataset as a whole. This results in a 

reduction of the performance prediction uncertainties as required during aftershock sequences for the 

short-time operative assessment of time-dependent building capacity assessment, based on resonance 

period shift (Trevlopoulos et al., 2020; Trevlopoulos and Guéguen, 2016).  

 

 

Figure 4.9. Variation of σEDP|IM values as a function of the IMs for different periods, considering seismic 
cumulative damage in the ANX building. Magnitude/distance criteria (MR2) are R =120 ± 60% and 
M= 4.5 ± 0.5 and periods T1 to T4 are described in the manuscript. 

 

4.5 Summary 

Fig. 4.10 is a summary of the identification of building response prediction uncertainties for the 

different IMs considered, based on available data and metadata. In general, for the specific case of the 

ANX building, the σEDP|IM values are considerably lower than the model evaluated on the dataset to take 

into account structural characteristics such as construction type or ageing. For example, for 

PGV/SVi/SVmin, the σEDP|IM values decrease from 0.41/0.41/0.37 to 0.37/0.37/0.26. Table 4.2 

summarizes the contribution of each component to the epistemic uncertainties of Eq. 4.6. While the 
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regional distinction (σR) does not bring any significant gain (4% on average), distinction by type of 

construction (σT) and specific building (σB) contributes significantly (19% and 21% respectively). 

Concerning the IMs that make EDP conditionally independent from magnitude M and source-to-site 

distance (σMR), the figure shows that all the IMs are globally non-sufficient, with a reduction of σEDP|IM 

values of approximately 19% for the specific case of the ANX building. When ageing (σA), i.e. the 

actual health of the structure, is taken into account, the σEDP|IM values are reduced by 8%.  

In total, the spectral IMs benefit most from these successive components. For example, the 

SAmin/SVmin/SDmin value reductions are equal to 69%/67%/69% for σEDP|IM values corresponding to 

0.27/026/0.27. These results concern one specific building, with a resonance frequency of 

approximately 1Hz. For longer- or shorter-resonance period buildings, the results would be different, 

particularly for acceleration or displacement IM values. However, spectral values integrating the co-

seismic increase of the resonant period (index 2) allow a reduction of the σEDP|IM values of approximately 

10%. 

 

Figure 4.10. Summary of the variation of σEDP|IM values as a function of the IMs concerned, considering 
different components of the uncertainties in prediction models. 
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Table 4.2 – Summary of the σEDP|IM values and their reduction (in %) applied to the specific ANX 
building. The Avg column is the mean value of all IMs. 

 PGA PGV PGD AI DP CAV SAi SVi SDi SAmin SVmin SDmin Avg. 
σ 1.05 0.80 0.81 0.84 0.91 0.85 0.87 0.79 0.87 0.87 0.79 0.88 0.86 
σR 1.02 0.78 0.78 0.81 0.85 0.81 0.83 0.76 0.82 0.83 0.76 0.83 0.82 
σR/ σ 3 % 3 % 4 % 4 % 7 % 5 % 5 % 4 % 6 % 5 % 4 % 6 % 4 % 
σT 0.87 0.64 0.67 0.66 0.74 0.72 0.65 0.61 0.61 0.62 0.60 0.64 0.67 
σT/ σR 15 % 18 % 14 % 19 % 13 % 11 % 22 % 20 % 26 % 25 % 21 % 23 % 19 % 
σB 0.80 0.50 0.46 0.51 0.57 0.51 0.78 0.48 0.48 0.46 0.40 0.39 0.53 
σB/ σT 8 % 22 % 31 % 23 % 23 % 29 % -20 % 21 % 21 % 26 % 33 % 39 % 21 % 
σMR 0.55 0.41 0.35 0.41 0.41 0.48 0.61 0.41 0.42 0.37 0.37 0.29 0.42 
σMR/ σB 31 % 18 % 24 % 20 % 28 % 6 % 22 % 15 % 13 % 20 % 8 % 26 % 19 % 
σA 0.55 0.37 0.30 0.45 0.53 0.44 0.50 0.37 0.35 0.27 0.26 0.27 0.39 
σA/ σMR 0 % 10 % 14 % -10 % -29 % 8 % 18 % 10 % 17 % 27 % 30 % 7 % 8 % 
σA/ σ 48 % 54 % 63 % 46 % 42 % 48 % 43 % 53 % 60 % 69 % 67 % 69 % 55 % 
 

4.5.1 Building frequency variation and the average response spectral value as an IM 

Many previous studies (Astorga et al., 2018, 2019; Calvi et al., 2006; Clinton et al., 2006; Guéguen et 

al., 2016; Kashima, 2014; Masi and Vona, 2010; Michel and Gueguen, 2010; Mucciarelli et al., 2004) 

have observed the co-seismic shifting of the resonance frequency for different building typologies. 

Using a US dataset, Perrault and Guéguen (2015) showed that mean spectral values computed between 

the pre- and co-seismic periods provided the most effective IM for the EDP|IM model. On the other 

hand, several authors (Ebrahimian et al., 2015; Bianchini et al., 2009; Eads et al., 2015; Kazantzi and 

Vamvatsikos, 2015; Bommer et al., 2004; Adam et al., 2017; Kohrangi et al., 2016, 2017) investigated 

the average spectral values computed between two periods to take into account the co-seismic nonlinear 

response of building in structural analysis. All these studies were carried using numerical modeling. 

Boomer et al. (2004) considered the correlation of damage measures and average spectral IMs computed 

between T1 and F*T1, T1 being the elastic period of structure, for F values from 1.7 to 3. Bianchini et 

al. (2009) found the most efficient and sufficient spectral values computed from 0.2*T1 to 2*T1 and 

0.2*T1 to 3*T1. Eads et al. (2015) concluded that average spectral acceleration computed between 

0.2*T1 and 3*T1 yields lower variability in terms of structural response. Ebrahimian et al. (2015) also 

considered three average spectral values between 0.2*T1 and 1.5*T1, T1 and 2*T1, and 0.2*T1 and 

2*T1. Adam et al. (2017) used average spectral acceleration values computed from T1 to 1.6*T1 and 

from 0.2*T1 to 1.6*T1 and observed a reduction of dispersion in the collapse capacity relationship. 

Finally, Kohrangi et al.(2017, 2016) observed that the average spectral acceleration value from 0.2*T1 



 

 
104 

to 1.5*T1 yields better prediction of structural response. We found no clear consensus on the values to 

be considered to reproduce co-seismic demand in structure analysis. 

In this study, the frequency variation with respect to EDP was observed for the JPN dataset by building 

class. Fig. 4.11 summarizes the variation of the frequency ratio Rf =fmin/fi between pre-seismic 

frequency (fi) and co-seismic frequency fmin with respect to EDP for different JPN building classes and 

the whole US database, with EDP ranging from 5 10-6 to 10-2. The variation of Rf confirms that, 

regardless of building class, the frequency shift between the pre- and the co-seismic period increases 

with EDP, which means large frequency drops occur for the strongest earthquakes. Significant variation 

of Rf is observed even at the lower end of the EDP range from 0.9 to 0.65 (below the slight damage 

threshold=0.0025). For EDP values between 10-5 and 10-3, a relatively similar trend is observed 

regardless of building class, with Rf values decreasing from 0.78 to 0.65. There are no stronger 

earthquakes, which prevent us from extending this result to a higher level of drift, but this first 

experimental evaluation suggests the need to collect a large amount of earthquake data in buildings in 

order to refine our performance prediction models.  

 

 

Figure 4.11 – Variation of the frequency ratio (Rf=fmin/fi) for different datasets. 

 

4.6 Conclusions 

Experimental data is very useful in helping us to understand the complex physical processes at work in 

civil engineering structures to be able to integrate them into our models to reduce the epistemic 
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uncertainty of these complex process. Earthquake data collected from buildings under long-term 

monitoring in Japan, the US and Romania were used to attempt to identify the components of the 

uncertainties associated with EDP|IM. Region-to-region, building-to-building and within-building 

uncertainties associated with earthquake magnitude-distance and ageing were explored.  

Compared with the conventional IMs based on peak values or conventional spectral value (SAi, SVi or 

SDi), the ground motion intensity measure, denoted SAmin, SVmin and SDmin, which considers inelastic 

period lengthening, was found to be the most efficient IM for estimating EDP, taken as structural drift 

herein. In terms of sufficiency, generally speaking, it appears that no IMs are sufficient due to a 

significant conditional dependence of EDP on R (i.e. earthquake source-to-building distance) and M 

(i.e. magnitude). Some exceptions are pointed out in Fig. 4.8 for specific building classes and IMs. In 

fact, depending on the type of building and, in particular, its period, displacement and acceleration IMs 

might be more efficient or sufficient; this could be confirmed with additional data and a specific analysis 

of the building characteristics, which is not considered by this study. Nevertheless, all our results 

indicate that velocity IMs are those that provide the lowest variability for predicting EDP given IM. 

Based on the ANX building results, the components that make the largest contribution to overall 

uncertainties are building class and specific building associated with the M/R condition (Fig. 4.10, Tab. 

4.2). When analyzing specific buildings using long-term monitoring data, the real structural state also 

appears to make a significant contribution to the uncertainties, reflecting the real co-seismic demand in 

EDP prediction. The underlying key issue is related to the variation of frequency, which is strongly 

dependent on EDP. Note that regardless of building class, this frequency variation follows the same 

trend for all the drift values in our dataset.  

Several numerical studies have been carried out to investigate the efficiency and sufficiency of IMs 

considering one building or a group of buildings and using suits of input ground motions (Buratti, 2012; 

Ebrahimian et al., 2015; Bianchini et al., 2009; Lin et al., 2011; Eads et al., 2015; Jayaram et al., 2011; 

Mollaioli et al., 2011; Luco et al., 2005; Vamvatsikos and Cornell, 2005). In contrast, this study 

compares the efficiency and sufficiency of IMs and the variation of sigma in the EDP|IM relationship 

using real experimental data. We are able to capture the real structural response from different building 

typologies during several earthquakes, which is the main advantage of this study. This study shows that 

the most commonly used IMs i.e., PGA and SAi are not efficient and sufficient to predict the structural 

response within the range of our dataset. The velocity related IMs i.e., PGV, SVi, and SVmin are observed 

to be the most efficient in building response prediction. Our findings strongly agree with previous 

studies carried out on real data by Perrault and Guéguen (2015). It is very interesting note here that the 

IMs which are found efficient in our studies are also associated with relatively smaller variability in the 

available GMPE models.  
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This study highlights the importance of real experimental dataset. Having more information on the 

earthquakes and descriptions of the building characteristics would help to improve the prediction of 

structural response for analyzing seismic vulnerability or loss assessment. Although the amount of data 

contained in our dataset provides relevant results, the paucity of data concerning specific classes of 

buildings or components of uncertainties limits the strength of the conclusions that can be drawn. To 

resolve outstanding issues, we must continue our international collaborative efforts and motivate 

building owners to share their data, which would increase their interest in this type of study. In 

particular, having more specific data would enable verification of the aforementioned conclusions.  

Moreover, building response prediction models can be developed considering several parameters 

related to earthquakes and buildings, such as ground motion IM, magnitude, distance, building 

typology, height, structural properties, etc. (Perrault and Guéguen, 2015; FEMA, 1999; Hancock et al., 

2008). In conclusion to this study, an empirical building damage prediction model is proposed (Tab. 

4.3) based on the entire dataset (US, Japan and Romania) according to building class and considering 

the most efficient IMs (SVmin and PGV) using the functional form given in Eq. 4.6: 

log(EDP) = a + b. log(IM) + ε 

Table 4.3- Empirical building damage prediction model according to building class. 

IM  Parameter BT-ALL BT-RC BT-SRC BT-ST BT-MA BT-WO 
 
SVmin 

a -10.22 -10.65 -10.00 -9.81 -9.17 -9.26 
b 0.87 0.83 0.89 1.08 0.55 0.58 
σ 0.79 0.84 0.60 0.60 1.10 0.68 

 
PGV 

a -9.41 -9.78 -9.21 -9.17 -8.80 -9.02 
b 0.94 0.86 0.95 1.16 0.60 0.55 
σ 0.80 0.87 0.64 0.80 1.07 0.71 
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5 The variability of experimental capacity curve models for existing 

buildings and its within-building and between-building components.  

 
In this study, we developed an experimental co-seismic capacity curve based on strong motion data 

recordings from buildings. Using the experimental capacity curves, we analyzed the evolution of 

building co-seismic capacity during a seismic event, including the variation before and after initial 

damage, accumulation of damage over time, and variation in a building class, and proposed 

adjustments to account for the actual structural health required for the OELF method. 

 

Abstract 

In this study, accelerometric data from seven Japanese buildings under long-term monitoring were 

analysed to explore the variability of the buildings’ co-seismic response over time and its within- and 

between-building components, using co-seismic capacity curves developed in acceleration-

displacement-response-spectrum format. The data include the 2011 Tohoku Mw9.1 earthquake, which 

caused building damage of different levels of severity, and the time-varying actual capacity curves were 

analysed considering earthquakes before and after 2011. We observed that the initial slope of the 

capacity curves reflects the amount of damage. The between-building and within-building components 

of the variability are discussed by comparing a single building and several buildings in the same class 

for several earthquakes. Finally, the epistemic uncertainty of seismic risk assessment studies is 

discussed in relation to the selection of a generic capacity model for all buildings in a single class. 

 

Keywords: experimental capacity curves, earthquake data recordings from buildings, building’s co-

seismic capacity variation after damage, operational earthquake loss forecasting, structural health 

monitoring. 

 

5.1 Introduction 

Earthquake engineering is currently focused on improving the seismic resistance of structures through 

earthquake capacity design. Capacity design refers to the design of a building to ensure controlled ductile 

behavior to avoid collapse in a design-level earthquake specified by stakeholders. The main objective is 

to minimize the direct and indirect losses generally correlated with any level of structural damage that 

affect the assets and people exposed and, indirectly, to limit the downtime of vital functions and essential 

facilities in urban areas following an earthquake. Herein, damage refers to any undesirable change in 
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structural properties that significantly affects the intended functions of a structure over its expected 

lifespan (Farrar & Worden, 2007). Anticipating seismic consequences requires prior information on the 

damage that structures might be expected to suffer in a given earthquake, i.e., capacity models for the 

structures exposed. 

In the recent European Seismic Risk Model (Crowley et al., 2021), three main approaches are considered 

to assess seismic risk: scenario-based, intensity-based and frequency-based. The main difference lies in 

the definition of seismic hazard, but once the latter has been defined, risk is calculated as the convolution 

of the hazard with the vulnerability or fragility functions. This results in a loss estimate for a given class 

of building, which is then aggregated to the geographical unit of the area concerned. The fragility 

functions are developed based on the capacity model of the building or building class, which describes 

the lateral strength and deformation capacity in acceleration-displacement-response-spectrum format 

(ADRS). Capacity curves are then developed, considering various structural attributes (e.g., materials, 

lateral load resistance system, number of storeys, etc.) to cover a wide range of building classes in the 

exposed area. In urban-specific seismic risk studies, it is common practice to start by assessing the 

exposure model at the site concerned and then to attribute class-capacity curves to each building 

(Crowley et al., 2021). This approach offers the potential advantage of taking into account a large set of 

buildings, but specific attributes within a class can cause significant deviations from the generic model.  

For example, Martins and Silva (2021) released a databank of capacity curves that has been used to 

represent the vulnerability classes of current European buildings (Crowley et al., 2021). For each class, 

the backbone capacity curves were compiled from simulated design-based research studies, i.e., push-

over analysis (Fajfar, 2000) or incremental dynamic analysis (Vamvatsikos and Cornell, 2002). The 

method returned an average capacity curve for a generic building model without considering the effects 

of any specific building features. The application of generic backbone models to large sets of buildings 

in a single class introduces epistemic uncertainties into damage assessment (Ghimire et al., 2021; 

Perrault & Guéguen, 2015; Spence et al., 2003). Among other attributes, specific features may control 

the nonlinear seismic response of a building (Lagomarsino & Giovinazzi, 2006; Martins & Silva, 2021), 

thus bringing significant epistemic uncertainty to the damage estimation (Lestuzzi et al., 2016). The 

most advanced numerical models (e.g., finite element-based models, Mazzoni et al., 2006) explicitly 

take into account all the specific attributes of the design and geometry of an individual building. 

However, these more complex models may also have to cope with additional sources of uncertainties: 

(i) the description of the design and materials, including foundation systems, and (ii) the assessment of 

the actual condition of the structures. These uncertainties are all the more critical in seismic prone 

regions because of the possible effects of cumulative seismic damage (e.g., Perrault et al., 2020).  

To resolve the afore-mentioned issues, other approaches can be used to implement a so-called “host-to-

target” adjustment to eliminate the adverse effects of considering average “generic” building class 

models. This adjustment can be based on a modal analysis of existing buildings to define their elastic 

properties related to design and actual condition, or the processing of earthquake data recorded in 
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buildings (e.g., Mucciarelli et al. 2004; Dunand et al. 2004; Clinton et al. 2006; Masi and Vona 2010; 

Michel et al. 2012; Vidal et al. 2014; Perrault et al., 2013; Astorga et al. 2018, 2019; Astorga and 

Guéguen 2020) to take into account the nonlinear processes activated in the buildings during earthquakes 

and estimate their residual capacity (Dowgala & Irfanoglu, 2016; Freeman et al., 1999; Pan et al., 2019). 

Using these data, within-building variability ϕ (i.e., the misfit between a single structure response for a 

given earthquake and the structure-specific median response model, which is defined as the median 

prediction of the model for a given structure plus the variability between earthquakes) and between-

building variability τ (i.e., the average shift of the observed structure-specific median model from the 

class-specific median model of the same class) can be examined to quantify, understand, and process 

the variability of the seismic building response and to address the origins of uncertainties through 

residual analysis (Fig. 5. 1). Ultimately, the total variability σ for a single building is given by: 

 σ = Yτ+ + ϕ+  (5.1) 

 

 

Figure 5.1. Between-building and within-building components of building response variability 
modelled in acceleration-displacement-response-spectrum format. 

 

The main objective of this study is to develop a chain of processing to obtain experimental capacity 

curves using strong motion data recorded in buildings and to quantify and process the variability of the 

building response, taking into account the building class adjustment to capacity curves provided by 

Martins and Silva (2021). The dataset is described first, the selected buildings are presented in the 

second section, and the methods used to adjust the capacity curves from experimental data are discussed 

in the third section. The fourth section presents the results, and the paper ends with a discussion and 

conclusion.  
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5.2 Data 

Seven Japanese buildings monitored by the Building Research Institute (BRI) with slight-to-extensive 

damage reported by Kashima (2014) after the 2011 Tohoku Mw9.1 earthquake were selected from 

NDE1.0 (Astorga et al., 2020, Fig. 5.2). Accelerometric data were recorded at the top and bottom of 

each building in both horizontal directions and processed (double integration for displacement and time-

frequency analysis for fundamental frequency assessment) by Astorga et al. (2020).  

(1) The Annex building (ANX) is an eight-storey steel reinforced concrete (SRC) structure. Since 

its completion in 1998, a seismic monitoring system has been installed and 1,630 earthquakes have been 

recorded over a 20-year period. During the 2011 Tohoku earthquake, slight-to-moderate damage was 

reported. 

(2) The Tohoku University building (THU) is a nine-storey SRC structure constructed in 1969. 

Monitoring started in 1994 and comprises 203 earthquake recordings, including a series of very strong 

ground motion events (e.g., 2005 Miyagi-ken earthquake, 2008 Iwate–Miyagi earthquake, 2008 Iwate 

earthquake). Moderate-to-extensive damage was reported after the Tohoku earthquake, during which 

multi-storey shear walls suffered serious bending failures. 

(3, 4, and 5) The Iwaki city hall building (IWK), Toda city hall building (TDS) and Chiba 

government office building (CHB) are eight-storey SRC buildings, with monitoring periods of 1993 to 

2014, 1998 to 2013 and 2000 to 2012, respectively, corresponding to 415, 337 and 29 earthquakes. 

None-to-slight damage was reported in the IWK building. 

 (6 and 7) The Hachinohe city hall building (HCN) and the Nippon Institute of Technology building 

(NIT) are six-storey reinforced concrete (RC) buildings, with recordings from 428 and 213 earthquakes 

over 1998-2014 and 1994-2014, respectively. 
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Figure 5.2. Building locations (open red squares) and earthquake epicentres (solid colour circles) for 
this study.  
 

Structural drift, computed as the relative displacement between top and bottom and normalized by the 

distance between sensors, is considered as the engineering demand parameter (EDP). The intensity 

measure (IM) considered hereafter is the peak acceleration recorded at the bottom floor (PBA). The 

distribution of EDP versus IM is shown in Fig. 5.3. Structural drift ranges from about 10-7 to 10-2, 

corresponding to PBA from approximately 10-1 to 500 cm/s2.  

In addition to IM and EDP, resonance frequency variations were obtained by applying a Wiegner-Ville 

time-frequency distribution (see Astorga et al., 2020 for details) to the top recordings. Analysis of the 

ante-, co- and post-seismic resonance frequency of buildings identifies the nonlinear processes activated 

during the earthquakes due to the opening/closing of cracks (Astorga et al., 2018, 2019; Clinton et al., 

2006) and improves the efficiency analysis P(EDP|IM) (Ghimire et al., 2021). In this study, fi 

corresponds to the frequency obtained by analyzing the noise window before the earthquake, and fmin is 

the minimal value of the co-seismic frequency observed during strong loading. 
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Figure 5.3. Distribution of maximum acceleration at the bottom of the building versus the drift ratios 
(relative roof displacement normalized by height) for each building. 

 

5.3 Method 

Empirical capacity curves are typically represented in acceleration-displacement-response-spectrum 

(ADRS) format (Freeman et al., 1999). This study uses the mass normalized capacity curve in the Sa-

Sd spectrum proposed by Freeman et al. (1999). The following four-step procedure is used to obtain the 

empirical capacity curve. 

Step 1.  Calculation of the relative displacement time histories (δ_top) as follows: 

 δI;8= uT(t)-uB(t)  (5.2) 

where uT(t) and uB(t) are the top and bottom floor displacements (Fig. 5.4b) obtained from the 

accelerometric data (Fig. 5.4a). 

Step 2.  Calculation of the time history of the fundamental frequency from δI;8 by applying a 4th order 

Butterworth filter between fi and fmin (Fig. 5.4c). 

Step 3.  Calculation of Sa and Sd to develop the building response hysteresis (Fig. 5.4d) as follows: 
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 SQ = S! &
+H
R
'
+
   (5.4) 

where Γ is the fundamental mode performance factor ranging from 1.3 to 1.4 for a multi-degree-of-

freedom system (Martins and Silva, 2021), and T corresponds to the fundamental period given by the 

time-frequency distribution (Fig. 5.4c). 

Step 4.  Finally, the empirical capacity curve is the envelope of the absolute value of the ADRS 

spectrum (Fig. 5.4e). 

The mass-normalized co-seismic stiffness (i.e., mean ± standard deviation), measured in s-2, is 

approximated by the slopes of the peaks in the ADRS map (Fig. 5.4d).  

 

 

Figure 5.4. Four-step procedure used to obtain the empirical capacity curve illustrated with the 2011 
Tohoku earthquake recorded in the THU building. (a) Bottom and (b) Top floor recordings in 
acceleration and displacement time histories, (c) Time-frequency distribution of the fundamental 
frequency obtained from the Wigner-Ville distribution applied to the top recording with before (black) 
and after (red) Savitsky-Golay smoothing functions, (d) Fundamental mode building response 
hysteresis in the Sa-Sd spectrum, (e) The Sa-Sd spectrum in absolute value (black) with empirical 
ADRS curve (red dashes). 

 

In this study, a selection of data from NDE1.0 is used to analyze the variation of the experimentally 

derived capacity considering two different contexts (before and after the 2011 Tohoku earthquake) 

presented hereafter. In this manuscript, the ADRS curves are referenced according to the NDE1.0 

format, i.e., date of the earthquake, building code, and direction of the component considered.  
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One-parameter linear regression on Sa and Sd is used to analyze ADRS curve variability, as follows: 

 

 Sa=a+ b.Sd + e   (5.5)  

where a and b are the estimated regression coefficients and e  is the standard error. The variability 

associated with ADRS curves is measured by calculating the standard deviation of the residuals of the 

fitted regression model between Sa and Sd (Eq. 5.5), representing within-building variability ϕ. 

First, we considered the within-building residual (Fig. 5.1) as the misfit between the capacity curves of 

a given structure for a single earthquake (i.e., single ADRS model) and the median response to several 

earthquakes (i.e., building-specific ADRS model). Within-building variability accounts for (1) the time-

varying co-seismic dynamic properties related to the cumulative effect of earthquakes and the related 

structural ageing (Astorga et al. 2018, 2019; Trevlopoulos et al. 2020) and (2) IM efficiency obtained 

by measuring the variability of the building response (i.e., EDP given IM) around the regression on the 

IM values. Post-seismic visual inspections of ANX, THU and IWK reported slight to moderate 

structural damage after the 2011 Tohoku earthquake. We explored the capacity variation of these 

buildings over time (within-building variation) using a set of seismic events recorded before and after 

the 2011 earthquake.  

Secondly, we considered the between-building variability (Fig. 5.1), which refers to the average shift 

of the model of a single structure in a specific class of structures (i.e., building-specific ADRS model), 

from the median model defined for this class (i.e., class-specific ADRS model). This variability can be 

attributed to several components, including within-building components related to ground motion, 

variability of structural design, site conditions, and ageing of the building. Here, we explored the 

between-building variability of the capacity response for the two building classes that include the 8-

storey SRC buildings (i.e., IWK, TDS, and CHB) and the 6-storey RC buildings (i.e., NIT and HCN). 

Finally, we compared the experimental co-seismic capacity curves of the ANX and THU buildings with 

the corresponding GEM-taxonomy capacity curves provided by Martins and Silva (2021). The 

comparison is made by measuring the difference in the initial slope of the ADRS curves as follows: 

 D (%) = 
23
2"4!5!)6-

.					232"!7(!)61!5038
23
2"4!5!)6-

x	100  (5.6) 

 

5.4 Results 

5.4.1 Within-building variability 𝜙 
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Figure 5.5 shows the variation of the co-seismic capacity of the ANX building along one horizontal 

direction (N270) during a selection of earthquakes from 2004 to 2016. Fig. 5.5a corresponds to the co-

seismic ADRS curve of the 2011 Tohoku earthquake (main shock file 201103111446-ANX and one 

immediate aftershock file 201103111515-ANX), which produced the largest displacement and 

acceleration values at the top of the building. Fig. 5.5b shows the ADRS curves for a selection of 

moderate earthquakes before and after the 2011 sequence, which clearly indicate the impact of the 

Tohoku earthquake (and the damage induced) on the capacity curve. The seismic damage caused an 

increase in variability of the ADRS response (about 39%), as indicated by the higher ϕ value (1.72) 

after the Tohoku event compared with the ϕ value (1.24) from before.  

 

Figure 5.5. ADRS curve of the ANX building along the lateral direction (N270 component) before and 
after the Tohoku 2011 earthquake. (a) Co-seismic ADRS curves corresponding to the main shock (file 
201103111446-ANX-270) and one immediate aftershock (file 201103111515-1NX-270). (b) Co-
seismic ADRS curves before (squares) and after (circles) the Tohoku event. The dashed-blue and 
dashed-red lines represent the mean ADRS models before and after 2011. 

 

Figure 5.6 shows the within-building variation of the capacity curves before and after the Tohoku 

earthquake in the ANX building for three ranges of shaking amplitude: strong, corresponding to a drift 

ratio of 10-3 or above (Fig. 5.6a), moderate for a drift ratio between 10-4 and 1.1x10-4 (Fig. 5.6b), and 

slight for a ratio between 1.25x10-6 and 1.35x10-6 (Fig. 5.6c). The impact of the 2011 Tohoku earthquake 

is clear even for moderate and slight amplitudes, as indicated by the change in slope of the before and 

after ADRS curves. The variation in the ADRS response is captured by the differences in the ϕ values 

before (0.31 for moderate and 0.007 for slight shaking) and after (0.32 for moderate and 0.005 for slight 

shaking) the Tohoku earthquake. The impact of the deterioration of structural health on response 

variability is more pronounced in the ADRS response to the earthquakes that caused strong shaking 
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(Fig. 5.6a), also indicated by the higher ϕ value (2.50) after the Tohoku earthquake, compared with the 

events that caused only moderate or slight shaking.  

The different ϕ values for earthquakes causing strong, moderate and slight shaking illustrate the direct 

relationship between variability and degree of shaking, which has already been reported by other studies 

(e.g., Masi and Vona 2010; Trifunac et al. 2010; Michel et al. 2011; Vidal et al. 2014; Astorga et al. 

2018; Astorga and Guéguen 2020; Ghimire et al. 2021). 

 

 
Figure 5.6. Co-seismic ADRS curves for the ANX building along the lateral direction, illustrating the 
within-building variability during various earthquakes before (grey lines with square markers) and after 
(grey lines with circular markers) the 2011 Tohoku earthquake, considering events inducing (a) strong 
shaking (drift ratio ≥ 10-3), (b) moderate shaking (10-4 ≤ drift ratio ≤1.1x10-4), and (c) slight shaking 
(1.25x10-6 ≤ drift ratio ≤ 1.35x10-6), respectively. The dashed-blue and dashed-red lines represent the 
curves of the mean ADRS model before and after 2011. 
 

 

The same plots are given in Fig. 5.7b and 5.7c for the THU and IWK buildings, respectively, and Fig. 

5.7a includes ANX for the main shock. The three buildings belong to the same class of buildings (Steel 

Reinforced Concrete buildings) but have different numbers of storeys. During the Tohoku earthquake, 

THU, ANX, and IWK experienced severe, slight-to-moderate, and none-to-slight structural damage, 

respectively (Kashima, 2014). In Fig. 5.7a, the slope break in the ADRS curve illustrates the co-seismic 

response of these buildings during the 2011 mainshock, with the threshold Sd values corresponding to 

the onset of damage: a significant increase in Sd values without a corresponding increase in Sa values 

indicates severe damage. In the building-specific ADRS model for THU (Fig. 5.7b) and IWK (5.7c), 

the same trend as for ANX (Fig. 5.5 and Fig. 5.6) is observed, i.e., the slopes of the ADRS model change 

over time as a consequence of the damage caused by the 2011 earthquake. The THU and IWK models 

have ϕ values of 7.98 and 1.46 before Tohoku and 2.54 and 3.80 afterwards, respectively. 

Fig. 5.7d shows the time variation of the ADRS slopes through mass-normalised co-seismic stiffness 

(mean  ±  standard deviation) for ANX, THU, and IWK. For ANX during Tohoku (2011/03/11/14:46), 
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the mass-normalised co-seismic stiffness value is 42.43  ± 15.65 (s-2) with a drift ratio of 2.7x10-3. The 

lowest co-seismic stiffness value (33.82  ±  7.54 s-2) is observed during the strongest aftershock 

(2011/03/11/15:15) with a drift ratio of 5.2x10-3. No further reduction of mass-normalised co-seismic 

stiffness is observed during the subsequent earthquakes with a similar loading amplitude. After 2011, 

the mass-normalised co-seismic stiffness of the ANX building dropped by an average of 45.35%.  

THU and IWK exhibit a similar trend in mass-normalised co-seismic stiffness following the Tohoku 

earthquake. After this event, the mass-normalised co-seismic stiffness of THU and IWK dropped by 

41.39% and 24.83%, respectively. These results show that the extent of the decline in co-seismic rigidity 

is proportional to the amplitude of loading and the level of residual damage in the building.  

Furthermore, the initial slopes of the ADRS response (Fig. 5.7a) and the mass-normalised co-seismic 

stiffness (Fig. 5.7d) are similar for the ANX and THU buildings. The damage also reduces the variability 

of the structure response, as seen here with the rigidity variation (Fig. 5.7d). This reflects the decreasing 

variability of the within-building capacity curve based on experimental data, as previously reported by 

Astorga et al. (2018) for ANX. Astorga et al. (2018, 2019), Astorga and Guéguen (2020), and Abeele et 

al. (2000) related the variability of the building’s response to the seismic activation of pre-existing 

cracks in the structure.  

These examples illustrate how long-term monitoring enables the development of building-specific 

SHM-based solutions for updating actual capacity and reducing the within-building variability of the 

vulnerability function.  

 
Figure 5.7. Co-seismic ADRS curves for the Steel Reinforced Concrete class of buildings. (a) ADRS 
curves for ANX, THU and IWK during the 2011 Tohoku earthquake. (b) ADRS curves before and after 
the 2011 earthquake for THU. (c)  Same as (b) for IWK. (d) Mass-normalised co-seismic stiffness 
variation (mean  ±  standard deviation) for ANX, THU and IWK. The colour bar indicates the range of 
drift ratios observed. 
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5.4.2 Between-building variability τ 

In this section, the between-building variation of co-seismic capacity is discussed by considering 

buildings from the same class. τ is computed as the standard deviation of the residual between the 

experimental building-specific ADRS model and the mean experimental class-specific ADRS model 

for this class. Fig. 5.8 shows the co-seismic ADRS curves for the eight-storey SRC buildings (IWK, 

TDS and CHB) during (Fig. 5.8a), before (Fig. 5.8b), and after (Fig. 5.8c) the 2011 Tohoku earthquake, 

the building-specific and the mean class-specific ADRS model. In Figures 5.8a and 5.8b, the same 

earthquakes are considered for all buildings. For the first part of the co-seismic ADRS curves in Fig. 

5.8a, the response of the structures is very similar, characterised by the same slope. During the seismic 

loading caused by the Tohoku event, the responses evolve differently because of the shaking induced 

in each building (related to earthquake-to-building distance, for example), illustrating the damage 

caused with the broken slope at a given Sd value. For example, the CHB building suffered the least 

seismic loading, characterised by a co-seismic ADRS curve that remains mostly linear during the 

Tohoku earthquake, and also illustrated by the within-building variability ϕ which remains similar 

before (1.22) and after (1.25) the 2011 earthquake. The ADRS curves for TDS and IWK show clear 

breaks in the slope, probably due to the strong and moderate damage suffered, respectively. The level 

of damage is also confirmed by the ϕ values before (1.2 for TDS and 0.48 for IWK) and after (3.92 for 

TDS and 2.02 for IWK) the Tohoku earthquake.  As a result, a significant deviation is observed between 

the mean ADRS curve for the class and the building-specific ADRS curves both before (Fig. 5.8b) and 

after (Fig. 5.8c). The changes are illustrated by the different between-building variability and total 

variability (Eq. 5.1) values for each building [τ, σ]. The before Tohoku values are [0.53, 0.71], [2.43, 

2.71], and [1.72, 2.11] for IWK, TDS, and CHB, respectively, which evolve to [4.66, 5.08], [3.69, 5.39], 

and [0.72, 1.44] after the earthquake. Finally, total variability for this class (corresponding to the mean 

class-specific ADRS model) before (1.50) and after (3.44) the Tohoku earthquake is observed to differ 

from the total variability for each building-specific ADRS model belonging to the same class. 
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Figure 5.8. Co-seismic ADRS curves for 8-storey Steel Reinforced Concrete (SRC) buildings. (a) 
ADRS curves for TDS, CHB and IWK during the 2011 Tohoku earthquake. (b) ADRS curves before 
the 2011 Tohoku earthquake for IWK, TDS and CHB. (c) Same as (b) after the 2011 earthquake. The 
dashed-black, dashed-red, dashed-blue, and solid-red lines represent the mean ADRS curves for IWK, 
CHB, TDS, and for the whole class, respectively.  
 

 

Fig. 5.9 gives the between-event variability analysis for the 6-storey reinforced concrete buildings (NIT 

and HCN). As reported by Kashima (2014), the NIT building suffered more damage than HCN in the 

2011 Tohoku earthquake. As a consequence, for Sd < 0.4 cm (Fig. 5.9a), the ADRS curves are quite 

similar for both buildings, despite a minor slope difference due to the slight variation in the response of 

the buildings in the same class. For Sd > 0.4 cm, the NIT ADRS curve shows a broken slope, indicating 

damage. Also note that during the 2011 Tohoku earthquake, HCN suffered slight co-seismic degradation 

around Sd = 0.28cm. Furthermore, the difference in damage levels in both buildings is also illustrated 

by comparing the f value before (0.97 for NIT and 0.76 for HCN) and after (5.22 for NIT and 1.91 for 

HCN) the 2011 earthquake (Fig. 5.9b and Fig. 5.9c), confirming that the strongest 2011 earthquake 

caused damage to the NIT building. The before Tohoku values of [τ, 𝜎] are [6.45, 6.53] and [9.93, 9.96] 

for NIT and HCN, respectively, which become [3.46, 6.26] and [17.96, 18.06] after the earthquake. 

Similarly, the total variability of the class before (5.67) and after (7.29) the Tohoku earthquake differs 

from the total variability for each specific building in the same class. 

This shows that the variability [ϕ, τ, σ] associated with a building class is time-dependent, being related 

to the actual condition of the individual buildings in the class. Furthermore, the ergodic assumption, 

which supposes that class-specific variability is the same as that of a single building within that class, 

is not validated. This is confirmed by the total variability of the class-specific ADRS model compared 

with that of the building-specific ADRS model for that class, both before and after the Tohoku 

earthquake for 8-storey SRC and 6-storey RC buildings. This is a key observation for large-scale 

building damage assessment methods, for which a generic class-specific capacity curve is considered 
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for all buildings in the same class. This can introduce significant epistemic uncertainty, as reported 

previously by other studies (Ghimire et al., 2021; Spence et al., 2003). Furthermore, an updated capacity 

curve based on experimental data enables the assessment of damage level and the residual capacity of 

monitored buildings after a mainshock. 

 
Figure 5.9. Same as Fig. 5.8 for the 6-story Reinforced Concrete (RC) buildings, NIT and HCN. 

5.4.3 Adjustments to the generic capacity curves 

Fig. 5.10 compares the experimental co-seismic capacity curves for the ANX and THU buildings in 

both horizontal directions with the corresponding curves of the GEM-taxonomy generic class-specific 

ADRS model provided by Martin and Silva (2021). The GEM-taxonomy reference for these buildings 

is SRC-LDUAL-DUH-Hx, where x corresponds to the number of storeys. The experimental ADRS 

model curves are observed to be similar in both lateral and transversal directions, with only a slight 

variation observed during the 2011 Tohoku earthquake.  

For the ANX building (Fig. 5.10a, zoomed in 5.10b), significant differences in the initial slope are 

observed between the generic and experimental ADRS curves (D  calculated using Eq. 5.6). Over time, 

ANX experienced slight to moderate damage and the D values fall by 114% and 20% compared with 

the generic capacity model values for this 8-storey SRC building before and after the Tohoku 

earthquake, respectively.  For THU (9-storey SRC class), the D  values are -63% and +8% before and 

after the Tohoku earthquake, respectively.  

As reported by Kashima (2014), the THU building (Fig. 5.10c, zoomed in 5.10d) was severely damaged 

by the Tohoku earthquake, and its D  values are high. For example, the initial slope of the generic 

capacity model for the nine-storey building has a D  value of -107% before the Tohoku earthquake and 

- 4% after, while the generic model for the eight-storey building shows a D  value of -63% before and 

+18% after. 
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The difference observed between the experimental and generic capacity models in ANX and THU 

quantifies the adjustment needed to make the generic model more relevant to these buildings, and thus 

reduce epistemic uncertainty in the seismic damage assessment model. For example, for the ANX 

building, increasing the initial slope of the eight-storey model by 20% helps to account for the actual 

structural condition of ANX building. This significantly reduces the level of uncertainty in building 

vulnerability models applied to existing structures and contributes to the time-updating of seismic 

vulnerability, thus improving seismic risk assessment (Ghimire et al., 2021; Guéguen et al., 2014; 

Hannewald et al., 2020; Michel et al., 2010, 2012).  

 

Figure 5.10. Comparison between the building-specific ADRS model and the generic GEM-Taxonomy 
model for the THU and ANX class. (a) ANX building, zoomed in (b), (c) THU building, zoomed in (d). 
The generic capacity model curves are represented by the thick black lines, the thin, solid, and dashed 
lines represent the experimental capacity curves before, during, and after the Tohoku earthquake along 
the transversal and lateral directions. 

 

5.5 Discussion 

Previous studies have attempted to develop capacity models describing the lateral strength and 

deformation capacity of buildings or building classes (Martins and Silva, 2021). These capacity models 

are defined based on simulated design-based research studies that characterise building attributes (e.g., 

materials, lateral load resisting system, number of storeys, etc.) using simple single- or multi-degree-

of-freedom systems. Such developments are based on significant modelling assumptions, which may 

prevent full understanding of the actual response of structures, as well as increasing epistemic 
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uncertainty in risk assessment. Some studies have attempted to develop experimental capacity curves 

using strong motion data recorded in buildings (Dowgala & Irfanoglu, 2016; Freeman et al., 1999; Pan 

et al., 2019). Few of these studies have analysed the variability of the co-seismic response of buildings 

using experimental capacity curves.  

In this study, we explore the variability of building response for specific buildings with time-varying 

conditions and different earthquakes, and between buildings with the same typology using experimental 

capacity curves developed from strong motion data recorded in buildings. Inspired by Al Atik et al. 

(2010), who analysed the variability and variability components of empirical ground motion models, 

we examined the within-building variation of co-seismic capacity by analysing separately the ANX, 

THU and IWK buildings, which suffered slight to moderate structural damage during the 2011 Tohoku 

earthquake (Kashima, 2014). Our analysis of the experimental capacity curves revealed clear evidence 

of damage in these buildings resulting from the Tohoku earthquake, indicated by a shift in the initial 

slope and higher variability in the ADRS models. We also found that the degree of variability is linked 

to the degree of damage in the building. For instance, after the Tohoku earthquake, the ANX, THU, and 

IWK buildings show within-building variability of 1.72, 2.54, and 3.80, respectively. We also show that 

the variability of the ADRS curve depends on the amplitude of seismic loading. For example, for ANX, 

variability is 2.50, 0.32, and 0.01 for strong, moderate, and slight shaking, respectively, which we 

interpret as being due to the activation of existing cracks in the building (Astorga et al. 2018, 2019; 

Astorga and Guéguen, 2020; Abeele et al., 2000). Thus, the time-varying condition of the buildings, 

due to the cumulative effects of earthquakes, produces a change in the variability of the building-

specific ADRS model for the same class. For example, IWK, TDS, and CHB (6-storey SRC class) show 

between-building variability of 0.53, 2.43, and 1.72 before the Tohoku earthquake and 4.66, 3.69, and 

0.72 after the earthquake, respectively. The differences in response variability among buildings of the 

same class may be related to the degree of heterogeneity in the residual crack systems and the nature of 

the crack activation mechanisms during seismic activity.  

Comparison of the experimental capacity curves of buildings with long-term monitoring (ANX and 

THU) and their GEM-taxonomy generic capacity models shows significant differences between the 

experimental (building-specific) and generic (class-specific) models. For example, following the 

Tohoku earthquake, a 20% difference was observed for the ANX building, indicating that the initial 

slope of the generic capacity model should be adjusted by 20% to account for the actual structural 

condition of the building. This updated ADRS model enables the use of time-varying co-seismic 

capacity for seismic risk assessment studies or operational loss forecasting, and at the same reducing 

epistemic uncertainty (Trevlopoulos and Guéguen 2016, Trevlopoulos et al. 2020, Ghimire et al. 2021, 

Perrault and Gueguen 2015). 

Our study found that, during the Tohoku earthquake, the ANX building experienced a 45.35% co-

seismic stiffness drop with slight-to-moderate damage, while the THU building experienced a 41.39% 

drop with moderate-to-extensive damage. Furthermore, when we analysed the THU building for a 
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different range of shaking amplitudes, we observed different values of co-seismic stiffness degradation: 

36.43% for strong shaking (drift ratio of 1x10-3 or more), 21.71% for moderate shaking (drift ratio 

between 1x10-4 and 1.4x10-4), and 9.34% for slight shaking (drift ratio between 2x10-5 and 3x10-5). 

These findings suggest that the change in co-seismic stiffness is proportional to the shaking amplitude 

and the level of residual damage in the building before the earthquake under consideration. Previous 

studies (e.g., Dunand et al. 2004; Masi and Vona 2010; Trifunac et al. 2010; Michel et al. 2011; Vidal 

et al. 2014) have defined different thresholds of co-seismic stiffness/period elongation for detecting 

damage and estimating building condition. However, our results highlight the need for caution when 

implementing co-seismic stiffness-degradation-threshold-based approaches for structural health 

monitoring, as highlighted by Astorga et al. (2018). 

Experimental capacity curves also reflect earthquake-induced damage in buildings, as illustrated by the 

broken slope of the ADRS model. The plateau of the break is proportional to the amount of damage in 

these buildings, as reported by Kashima (2014). These curves highlight the fact that actual structural 

condition is required to evaluate capacity immediately after an earthquake. The experimental capacity 

curves developed in this study only consider the fundamental mode, and additional parameters (high 

modes, damping, etc.) could be used to assess the impact of such parameters on total variability.  

  

5.6 Conclusion 

Experimental data from buildings are crucial for quantifying, understanding and processing the 

variability of the seismic building response and for identifying the origin of uncertainties through 

residual analysis. Experimental data offers the advantage of including the complex physical processes 

that affect buildings during seismic loading, and consideration of the time-varying capacity due to the 

actual condition of the building. In this study, we used strong motion data collected from seven Japanese 

buildings equipped with permanent instrumentation and post-processed in the NDE1.0 database 

(Astorga et al., 2020) to investigate variability in the co-seismic capacity curves. We developed an 

ADRS-based framework, considering the method proposed by Freeman et al. (1999). We explored the 

within-building variability related to the building-specific response for a given earthquake, including 

its change in condition, and the between-building variability related to the drift of building-specific and 

class-specific models, which are derived from experimental data or selected from the GEM-Taxonomy 

models.   

Analysis of the ANX building’s co-seismic capacity before and after the 2011 Tohoku earthquake shows 

that the damage helped to reduce ANX’s co-seismic stiffness by 45% and increase the variability of the 

co-seismic capacity response by 39%. Furthermore, we observed that strong shaking earthquakes 

resulted in greater variability in the co-seismic capacity response compared with moderate to slight 

earthquakes. The IWK and THU buildings, which experienced none-to-slight and moderate-to-severe 

damage during the Tohoku earthquake, also showed the same trend. Similarly, the other buildings in the 
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same class (IWK, CHB, TDS, and NIT, HCN) confirmed that cumulative seismic loading of varying 

amplitudes over time resulted in significant changes in the co-seismic capacity curves. This, in turn, led 

to changing levels of variability among the buildings in the same class, as indicated by different 

between-building variability values before and after the 2011 Tohoku earthquake. Consequently, the 

response variability of a given building in a given class differs from that of the class as a whole, which 

contradicts the ergodic assumption that the response variability for a class of buildings is the same as 

the response variability for any given building in that class. Time-varying experimental capacity models 

are useful for calculating time-varying seismic risk, especially after strong earthquakes or during a 

mainshock-aftershock sequence. Furthermore, the difference observed between experimental curves 

and the generic capacity curves obtained from the global databank of capacity curves can quantify the 

adjustments required to account for a building’s actual structural condition.  

Using the model developed in this study, we derived experimental capacity curves that took into account 

the damage-related condition and the necessary adjustment of the generic capacity models by reducing 

epistemic uncertainty. These experimental capacity curves can be helpful for characterising the actual 

seismic integrity of structures, for both time-variant seismic risk assessment and operational loss 

forecasting. These empirical capacity curves were developed by considering the fundamental mode 

period, and do not reflect the entire capacity of the building, i.e., considering the contribution of the 

higher modes in the building co-seismic response and the associated variability. Finally, there is a huge 

need for building testing to develop and calibrate actual models, which are superior to even the most 

sophisticated numerical models. The most important aspect is possibly not only related to the median 

values of engineering demand parameters, but their variability according to the physical processes in 

the structure that are activated by shaking.  
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General conclusion 

Recently, earthquake data collected from buildings have become openly accessible, including post-

earthquake damage survey databases and strong-motion data recordings. These data represent the actual 

physical processes involved in buildings during earthquake loading more than even the most 

sophisticated numerical studies. In this study, we used the post-earthquake building damage survey 

database and strong-motion data recordings from buildings to develop new insights into the large-scale 

rapid damage assessment and building-level seismic damage assessment, respectively. 

In the framework of the rapid damage assessment at a large scale, we evaluated the effectiveness of 

machine learning models by training and testing on the post-earthquake building damage dataset. 

Machine learning models could reasonably estimate damage in a cost-effective way. Readily available 

building features such as the number of stories, age, floor area, and height can result in a reasonable 

assessment of damage at a large scale, particularly when using a traffic-light-based (green, yellow, and 

red) damage classification framework. Machine learning models trained on these readily available 

building features showed efficacy similar to conventional methods like Risk-UE. In addition, these 

parameters can be easily obtained from an institutional database, such as the national census or national 

housing database, thereby resolving data acquisition issues associated with seismic-damage 

assessments at the urban or regional scale. 

We observed that the distribution of target features (damage grades) in the training set could 

significantly affect the damage prediction efficacy of the machine learning model. Random 

oversampling method or integrating naturally balanced datasets (selecting data from a wider range of 

input features and earthquake damage from different regions) while training the machine learning model 

can penalize the skewed distribution of the target features and improve the damage prediction efficacy 

of the machine learning model. The efficacy of a machine learning model is influenced by the quality 

and diversity of the training dataset, i.e., the efficacy of a machine learning model depends more on the 

quality of the dataset’s resolution than on the quantity of dataset used in the training phase. Thus, 

increasing the number of damaged buildings in the training set may not improve the model’s efficacy 

beyond a certain limit, but improving the dataset’s resolution can enhance the prediction accuracy of 

the damage.  

We also observed that the contribution of the building’s feature changes depending on the damage level 

considered. This behaviour has not been discussed previously. The machine learning models trained on 

past earthquake building damage portfolios can reasonably estimate damage during the future 

earthquake for a different region with similar building portfolios. However, the damage distribution is 

strongly influenced by region-specific factors such as construction quality and regional typologies, 

implementation of seismic regulations, and hazard level. Thus, machine learning models trained with 
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building damage datasets from one region may not directly apply to another region without first 

accounting for host-to-target adjustments. 

Focusing on the building-level damage assessment, we evaluated the co-seismic response of a building 

during seismic loading using the earthquake data recordings from buildings. We found that using 

ground motion intensity measures that accurately capture a building’s co-seismic response (for 

example, as spectral velocity at the co-seismic period) by considering the building’s structural state, 

along with the earthquake’s magnitude and distance, can significantly decrease the level of uncertainty 

in damage assessment.  

We also observed that the damage caused by an earthquake and the damage accumulation over time 

could alter the co-seismic response of a building. The seismic loading of different amplitude can impact 

buildings with similar typologies differently. As a result, the co-seismic response of buildings with the 

same typologies can be significantly different over time. Assuming a generic co-seismic response for a 

building throughout its lifetime or grouping buildings into a class based on taxonomy and assuming a 

generic co-seismic response to all buildings during seismic loading (such as in fragility modeling or 

building response modeling in the performance-based earthquake engineering framework) can lead to 

significant uncertainty in damage assessment. 

Co-seismic capacity curves can accurately capture a building’s lateral load-resisting capacity during 

earthquake loading. The extent of damage caused by the first occurrence and the accumulation of 

damage over time can be easily reflected by a shift in the co-seismic capacity curves proportional to the 

degree of damage. The capacity curves help to quantify the necessary adjustments to generic capacity 

models and can help to reduce epistemic uncertainties in damage assessment. A time-varying capacity 

model is necessary for calculating time-varying seismic risk. The experimental capacity curves can be 

an efficient tool for characterizing a structure’s actual seismic integrity for both time-variant seismic 

risk assessment and operational loss forecasting, particularly after strong earthquakes or during a 

mainshock aftershock sequence. 

This study further highlighted the importance of real earthquake datasets to enhance our understanding 

of the seismic damage response of buildings and develop a tool for seismic damage assessment. More 

information on the earthquakes and descriptions of the building characteristics would help cover diverse 

aspects of the seismic damage or loss assessment framework. To further develop our insights into the 

seismic response of buildings and strengthen the conclusions mentioned above through data-driven 

studies, we must continue our global collaboration to collect and share earthquake data collected from 

buildings. 
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Perspectives 

Developing the dynamic damage assessment method requires rigorous testing of the damage response 

of buildings during seismic loading. Several issues need to be studied to fully develop the dynamic 

damage assessment method as a tool for seismic risk decision-making. Potential issues related to this 

study need to be addressed in further studies and are presented here as follows.  

In the framework of the rapid damage assessment at a large scale: 

(a) In Chapter 3, we observed that the accuracy of machine learning-based damage assessment at 

large-scale is heavily influenced by region-specific factors such as construction quality, 

regional typologies, implementation of seismic regulations, and hazard level; host-to-target 

adjustments are required to apply machine learning models trained in one region to another. 

Further studies should focus on quantifying these adjustments based on the region-specific 

factors mentioned above. Similarly, the accuracy of damage assessment must also be compared 

between machine learning models developed in different regions with and without focusing on 

these specific features (e.g., typology and age). 

(b) In Chapters 1-3, we observed that the readily available basic building features (age, number of 

stories, floor area, height) could result in a reasonable building damage assessment. The global 

dynamic exposure model incorporates a significant amount of low-resolution but high-density 

open-building data describing some basic features of the building. Further studies can be 

focused on evaluating the value of this data; and developing a system that integrates the 

machine learning-based damage prediction models and the global dynamic exposure model to 

facilitate real-time building damage assessment. To start, we can develop a database that 

includes damaged buildings surveyed in the field which are also included in the global dynamic 

exposure model. Using this database, we can develop a machine learning model and conduct a 

series of comparative analysis to assess the significance of the open building data in the global 

dynamic exposure model for large-scale damage assessment in real-time. 

(c) Future studies could also focus on gathering earthquake loss data and evaluating machine 

learning models directly for loss assessment. These models will map building features with the 

loss value, bypassing vulnerability modeling and translating damage to loss. 

 

In the framework of real-time building-level damage assessment: 

(d) In Chapter 4, we observed that the engineering demand parameter (EDP) is not conditional 

independent with earthquake magnitude and distance. In reality, buildings near fault rupture 

were observed to have significant damage (Bessason and Bjarnason, 2016). Previous study 

suggest that, the pulse-like signals of near-fault ground motions can induce fewer cycles in 

structures than far-field ground motions but with higher energy content (Mollaioli et al., 2011). 
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As a result, buildings may experience sudden demands for energy and displacement, leading to 

a larger concentration of drift demand (Mollaioli et al., 2011; Baker and Cornell, 2008b). 

Additionally, higher modes may affect high-rise buildings near the fault area and the maximum 

displacement may not necessarily be at the top-story level (Mollaioli et al., 2011). In NDE1.0, 

we have earthquake data recordings in buildings located near to the epicentre. Further studies 

can be carried out to explore the building response for given intensity measures (EDP|IM) near 

the epicentre using the earthquake data recordings from the building available in NDE1.0. 

(e) Chapter 5 presents co-seismic capacity curves, which enable real-time tracking of the residual 

load-resisting capacity of buildings that are equipped with strong motion sensors. In reality, not 

all buildings are currently being monitored by a strong motion sensors network. Various 

analytical methods have been developed to facilitate the real-time evaluation of potential 

damage to non-instrumented buildings based on structural health monitoring applications to 

assess the actual building's condition (e.g., by measuring certain dynamic parameters, such as 

the fundamental frequency) (e.g., Cremen and Baker, 2018; Goulet, Michel and Kiureghian, 

2015; Hwang and Lignos, 2018; Porter et al., 2006; Reuland et al., 2019; Tubaldi et al., 2022; 

Uma, 2007). However, a paradigm shift from model-driven to data-driven methods is needed 

to test existing methods and to provide data-driven solutions improving our understanding in 

this domain (Ozer et al., 2022). The NDE1.0 database contains a substantial amount of 

earthquake data that can be utilized to develop and test solutions for the structural health 

monitoring-based operational earthquake loss forecasting (OELF) framework required to 

facilitate real-time damage assessment for non-instrumented buildings. Further studies can be 

carried out in this domain. 

(f) The earthquake data recordings in the NDE1.0 database can be used to test the feasibility of 

integrating machine learning-based solutions for the OELF framework (for e.g., Iaccarino et 

al., 2021). Using earthquake data recordings from buildings available in NDE1.0, further 

studies can be carried out to develop a framework to integrate the machine learning methods 

with the OELF method for building level damage assessment. 
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Appendix 

Table A. Distribution of precision and recall observed for different machine learning models developed 
in this study. RFC represents random forest classification, GBC represents gradient boosting 
classification, LR represents linear regression, SVR represents support vector regression, GBR 
represents gradient boosting regression, RFR represents random forest regression, US represents 
undersampling, OS represents oversampling, FFS represents full-feature-setting, BFS represents basic-
features-setting, Re represents recall, and Pr represent precision (ratio of correctly predicted instances 
over the total instances predicted in a particular class). 

Dataset Method Score 
5DG TLS Overall  

accuracy 
DG1 DG2 DG3 DG4 DG5 S M H 5DG TLS 

Validation 

RFC 
Re 0.65 0.24 0.31 0.43 0.78 

- 0.53 - 
Pr 0.59 0.38 0.40 0.46 0.64 

GBC 
Re 0.67 0.33 0.39 0.49 0.75 

- 0.57 - 
Pr 0.61 0.40 0.42 0.50 0.71 

LR 
Re 0.12 0.25 0.24 0.74 0.09 

- 0.30 - 
Pr 0.60 0.27 0.24 0.28 0.59 

SVR 
Re 0.44 0.23 0.20 0.56 0.52 

- 0.43 - Pr 0.64 0.31 0.30 0.32 0.63 

GBR 
Re 0.37 0.34 0.42 0.65 0.56 

- 0.51 - Pr 0.79 0.34 0.36 0.40 0.83 

RFR 
Re 0.33 0.35 0.39 0.65 0.54 

- 0.49 - Pr 0.80 0.33 0.36 0.39 0.81 

RFR 
US 

Re 0.45 0.42 0.52 0.55 0.35 
- 0.45 - Pr 0.73 0.32 0.33 0.37 0.88 

OS Re 0.41 0.40 0.43 0.59 0.51 - 0.49 - 
Pr 0.75 0.33 0.35 0.39 0.82 

Test RFR 
FFS Re 0.42 0.40 0.43 0.60 0.51 0.59 0.60 0.73 0.49 0.68 

Pr 0.75 0.34 0.35 0.39 0.82 0.77 0.32 0.88 

BFS Re 0.32 0.36 0.45 0.56 0.46 0.51 0.61 0.70 0.46 0.64 
Pr 0.71 0.30 0.32 0.38 0.82 0.73 0.30 0.88 
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Table B. σIM, σEDP, and σEDP|IM values considering different sub datasets discussed in the manuscript 

   PGA PGV PGD AI DP CAV SAi SVi SDi SAmin SVmin SDmin 

US+JPN 
+RO ALL 

IM 1.15 1.33 1.63 2.29 3.35 1.21 1.53 1.31 1.43 1.63 1.44 1.61 
EDP 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 
EDP|IM 1.05 0.80 0.81 0.84 0.91 0.85 0.87 0.79 0.87 0.87 0.79 0.88 

US data 
 

ALL 
IM 0.90 1.07 1.49 1.73 2.73 0.96 1.03 1.04 1.35 1.09 1.08 1.54 
EDP 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 
EDP|IM 1.19 1.00 0.98 1.01 1.07 0.97 1.14 1.03 1.08 1.18 1.01 1.08 

STS1 
IM 0.86 0.94 1.15 1.48 2.20 0.77 1.00 1.06 1.20 1.03 1.08 1.31 
EDP 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 
EDP|IM 1.14 1.00 0.93 1.00 1.07 0.93 1.15 1.03 1.03 1.15 1.01 1.03 

STS2 
IM 0.74 0.85 1.15 1.49 2.29 0.84 0.92 0.95 1.20 0.95 0.92 1.29 
EDP 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 
EDP|IM 1.12 1.01 0.99 1.00 1.06 0.98 0.97 1.01 1.10 1.04 1.01 1.10 

RC 
IM 0.84 0.98 1.47 1.58 2.63 0.91 1.03 1.03 1.25 1.07 1.04 1.31 
EDP 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 
EDP|IM 1.21 0.94 0.94 0.99 1.03 0.93 1.20 1.01 0.91 1.22 0.99 0.90 

ST 
IM 0.84 1.01 1.46 1.55 2.78 0.87 0.91 1.02 1.32 0.99 1.08 1.64 
EDP 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.29 1.28 1.28 1.29 1.28 
EDP|IM 1.20 0.93 0.91 0.97 1.01 0.89 1.13 1.02 0.99 1.19 0.98 0.99 

MA 
IM 0.91 1.08 1.43 1.83 2.35 1.02 0.94 1.27 1.71 1.00 1.18 1.46 
EDP 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.21 1.21 1.23 1.23 1.23 
EDP|IM 1.11 1.07 1.01 1.02 1.10 1.00 1.11 1.12 1.15 1.14 1.12 1.14 

WO 
IM 1.02 1.36 1.83 2.20 3.21 1.21 1.07 1.32 1.60 1.06 1.32 1.65 
EDP 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 
EDP|IM 0.66 0.71 0.81 0.71 0.77 0.75 0.67 0.69 0.72 0.70 0.68 0.70 

Japanese 

ALL 
IM 1.11 1.31 1.61 2.26 3.34 1.22 1.50 1.30 1.42 1.61 1.43 1.61 
EDP 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 
EDP|IM 1.02 0.78 0.78 0.81 0.85 0.81 0.83 0.76 0.82 0.83 0.76 0.83 

RC 
IM 0.98 1.13 1.50 2.02 2.98 1.12 1.25 1.09 1.22 1.37 1.20 1.35 
EDP 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 
EDP|IM 0.98 0.86 0.92 0.84 0.93 0.85 0.79 0.86 0.95 0.73 0.82 0.98 

SRC 
IM 1.14 1.40 1.66 2.36 3.53 1.24 1.48 1.37 1.46 1.56 1.52 1.68 
EDP 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 
EDP|IM 0.87 0.64 0.67 0.66 0.74 0.72 0.65 0.61 0.61 0.62 0.60 0.64 

ST 
IM 1.11 1.24 1.61 2.18 3.24 1.21 1.72 1.37 1.56 1.65 1.43 1.70 
EDP 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 
EDP|IM 1.36 0.76 0.46 0.87 0.67 0.65 0.80 0.70 0.78 0.59 0.50 0.48 

ANX 
building 

ALL 
IM 1.00 1.27 1.51 2.12 3.25 1.13 1.54 1.31 1.42 1.44 1.41 1.59 
EDP 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 
EDP|IM 0.80 0.50 0.46 0.51 0.57 0.51 0.78 0.48 0.48 0.46 0.40 0.39 

STS 
IM 1.01 1.28 1.50 2.13 3.25 1.13 1.55 1.32 1.43 1.45 1.42 1.60 
EDP 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 
EDP|IM 0.80 0.50 0.45 0.50 0.56 0.50 0.78 0.48 0.47 0.45 0.39 0.39 

MR1 
IM 0.69 0.80 0.90 1.30 2.10 0.65 1.06 0.85 0.91 0.89 0.88 0.97 
EDP 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 
EDP|IM 0.59 0.42 0.38 0.46 0.52 0.46 0.62 0.40 0.37 0.39 0.34 0.33 

MR2 IM 0.71 0.75 0.78 1.16 1.82 0.57 1.21 0.79 0.89 0.89 0.79 0.86 



 

 
140 

EDP 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 
EDP|IM 0.55 0.41 0.35 0.41 0.41 0.48 0.61 0.41 0.42 0.37 0.37 0.29 

MR3 
IM 0.79 0.86 0.96 1.47 2.17 0.73 1.10 0.85 0.93 0.88 0.92 1.03 
EDP 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 
EDP|IM 0.57 0.46 0.52 0.47 0.59 0.47 0.75 0.47 0.52 0.47 0.35 0.40 

T1-
MR2 

IM 0.83 0.95 1.02 1.58 2.19 0.81 1.18 0.92 0.99 0.98 0.98 1.05 
EDP 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 
EDP|IM 0.64 0.51 0.50 0.50 0.55 0.51 0.81 0.46 0.45 0.44 0.45 0.46 

T2-
MR2 

IM 0.66 0.77 0.89 1.24 1.93 0.61 1.17 0.86 0.94 0.86 0.84 0.90 
EDP 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 
EDP|IM 0.59 0.39 0.37 0.43 0.57 0.42 0.62 0.37 0.33 0.33 0.35 0.31 

T3-
MR2 

IM 0.60 0.71 0.80 1.14 1.98 0.57 0.91 0.78 0.82 0.79 0.80 0.90 
EDP 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
EDP|IM 0.55 0.37 0.30 0.45 0.53 0.44 0.50 0.37 0.35 0.27 0.26 0.27 

T4-
MR2 

IM 0.63 0.75 0.90 1.22 2.13 0.61 0.98 0.83 0.87 0.91 0.89 1.01 
EDP 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
EDP|IM 0.61 0.39 0.30 0.43 0.42 0.41 0.46 0.37 0.34 0.25 0.25 0.25 

 

 

 


