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Résumé

Les marchés de l’électricité subissent des transformations décentralisées importantes en raison de la

numérisation croissante, de l’inclusion à grande échelle des ressources énergétiques distribuées (DER) et

de l’autonomisation des consommateurs. Ces changements posent des défis qui nécessitent de formuler

de nouveaux modèles de marché intégrant des structures décentralisées, des sources d’énergie renou-

velables (RES) et le comportement stratégique des consommateurs. Dans de tels marchés, de multiples

acteurs opèrent à différents niveaux hiérarchiques, induisant des problèmes d’équilibre et nécessitant de

nouvelles approches pour le calcul des équilibres de marché. Cette thèse aborde plusieurs aspects com-

plexes de la réalisation de l’équilibre sur les marchés décentralisés de l’électricité, notamment la coordi-

nation de divers acteurs, la gestion de la variabilité de l’offre et de la demande, la gestion des contraintes

du réseau électrique et l’asymétrie de l’information entre les participants. Des approches théoriques des

jeux sont appliquées, utilisant le concept d’équilibre de Nash généralisé (GNE) pour évaluer les actions

des participants et les contraintes du réseau électrique.

Dans un premier temps, nous abordons les incertitudes dans les marchés de pair à pair (P2P) dans

un contexte hétérogène d’aversion pour le risque. Nous proposons un nouveau cadre dans lequel les pro-

sommateurs peuvent couvrir les risques au moyen de contrats financiers. Le cadre utilise une approche de

jeu de Stackelberg, impliquant une compagnie d’assurance et les prosommateurs, avec deux conceptions

du problème envisagées, chacune conduisant à un schéma de tarification de la couverture des risques. Le

cadre atténue l’inefficacité du marché causée par les objectifs non alignés des consommateurs et de la

compagnie d’assurance, en incluant les incitations de prix pour cette dernière, ce qui garantit l’existence

d’une solution pour la formulation pessimiste. La méthode proposée simplifie l’analyse de l’équilibre du

marché et permet de dériver l’équilibre du marché dans différents contextes.

En outre, l’interaction entre les niveaux physique et financier, gérés par le gestionnaire du réseau

de distribution (GRD), est analysée. Deux modèles de marché financier pour les consommateurs sont

comparés : un modèle centralisé et un modèle P2P entièrement distribué. L’étude démontre l’efficacité

de Pareto de l’équilibre du marché et la façon dont la structure de prix proposée limite le comportement de

resquillage au niveau financier. Les résultats numériques étudient l’influence de la flexibilité des agents

et de l’inclusion de la production renouvelable sur le fonctionnement du marché proposé.

En outre, un cadre traitant de l’asymétrie de l’information est examiné lorsque les agents possèdent

des informations privées. Cette question est formulée comme un jeu de communication non coopératif,

permettant aux agents de déterminer leurs rapports aléatoires à partager avec les autres acteurs du marché.

Des preuves de l’unicité de la solution d’équilibre variationnel du jeu sont dérivées et une expression en

forme fermée du prix de la confidentialité est fournie.
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Enfin, l’étude explore le couplage potentiel entre les marchés de prévision et les marchés P2P de

l’électricité afin d’atténuer l’incertitude liée à l’imprécision des prévisions de production des SER, en

permettant aux agents d’acquérir une prévision de leur production basée sur les SER. Les conditions de

l’efficacité du marché P2P sont identifiées, une condition clé étant la participation des prosommateurs au

marché des prévisions. L’étude présente une preuve de la rationalité individuelle du modèle de marché

couplé, montrant que les consommateurs sont toujours rationnellement incités à participer au marché

des prévisions. En outre, les conditions sur les distributions de probabilité des prévisions garantissant

cette propriété sont explorées. Les résultats numériques confirment les conclusions théoriques, illustrant

la rentabilité du couplage des marchés tant pour les vendeurs de prévisions que pour les consommateurs.

Cette thèse conclut que les services complémentaires, la coordination et l’échange d’informations

sont essentiels pour optimiser les opérations de marché dans des environnements où les agents agissent

de manière stratégique, en explorant les complexités associées aux marchés P2P de l’électricité et les

problèmes d’équilibre correspondants. La thèse se concentre sur la coordination de divers acteurs, la

gestion de l’offre et de la demande, la couverture des risques, la prise en compte des contraintes du

réseau électrique et l’asymétrie de l’information, en s’appuyant sur des approches de la théorie des jeux.

Les résultats soulignent l’importance des services supplémentaires et de l’échange d’informations dans

ces environnements stratégiques. En tant que telle, cette thèse présente des avancées clés pour améliorer

l’état de l’art et la compréhension des complexités des marchés décentralisés de l’électricité, contribuant

ainsi au débat actuel sur la restructuration du marché de l’électricité.

Les marchés de l’électricité sont de plus en plus décentralisés et intègrent davantage de ressources

énergétiques distribuées (DER) et de modèles axés sur le consommateur. Cette transition présente de

nouveaux défis et nécessite des modèles de marché actualisés. Cette thèse explore ces complexités, en se

concentrant sur la coordination de divers acteurs, la gestion de l’offre et de la demande, les contraintes

de distribution et l’asymétrie de l’information. Nous utilisons des approches théoriques des jeux, exa-

minant des cadres pour les marchés de l’électricité de pair à pair avec des agents averses au risque et

des prosommateurs couvrant les risques par le biais de contrats financiers. Nous étudions également l’in-

teraction entre les niveaux physiques et financiers, la comparaison des modèles de marché centralisés

et entièrement distribués, et aborde la question de l’asymétrie de l’information. Enfin, nous étudions le

couplage des marchés prévisionnels avec le marché de l’électricité. Les résultats soulignent l’importance

des services supplémentaires et de l’échange d’informations dans ces environnements stratégiques.

Mots clés : La théorie des jeux, Smart grids, Algorithmes, Pair a pair, L’équilibre de Nash généralisé
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Abstract

Electricity markets are undergoing significant decentralization transformations due to the increasing

digitalization, large-scale inclusion of Distributed Energy Resources (DERs), and borader consumer em-

powerment. These shifts present challenges requiring to formulate new market models incorporating

decentralized structures, renewable energy sources (RES), and the strategic behavior of prosumers. In

such markets, multiple actors operate at different hierarchical levels, inducing equilibrium problems and

necessitating new approaches for market equilibria computation. This thesis addresses several complexi-

ties in achieving equilibrium in decentralized electricity markets, including coordinating diverse actors,

managing supply and demand variability, handling power grid constraints, and information asymmetry

among participants. Game-theoretic approaches are applied, using the Generalized Nash Equilibrium

(GNE) concept to evaluate participants’ actions and power grid constraints.

In the first phase of this research, we address uncertainties in peer-to-peer (P2P) markets with a he-

terogeneous risk-averse setting. A new framework is proposed where prosumers can hedge risks through

financial contracts. The framework uses a Stackelberg game approach, involving an insurance company

and the prosumers, with two problem designs considered, each leading to a risk-hedging pricing scheme.

The framework mitigates market inefficiency caused by non-aligned objectives of the prosumers and

the insurance company, by including the price incentives for the latter ensuring a solution exists for the

pessimistic formulation. The proposed method simplifies market equilibrium analysis and allows the

derivation of market equilibrum in various settings.

Further, the interaction between the physical and financial levels, managed by the Distribution Sys-

tem Operator (DSO), is analyzed. Two designs of the financial level prosumer market are compared :

centralized and P2P fully distributed designs. The study demonstrates the Pareto efficiency of market

equilibrium and how the proposed pricing structure limits free-riding behavior on the financial level.

Numerical results investigate the influence of agents’ flexibility and renewable generation inclusion on

the proposed market operation.

Additionally, a framework addressing information asymmetry is examined where agents possess

private information. This issue is framed as a non-cooperative communication game, allowing agents

to determine their randomized reports to share with other market players. Proofs of the uniqueness of the

Variational Equilibria solution of the game is derived and a closed-form expression of the privacy price

is provided.

Lastly, the study explores the potential coupling between forecast and P2P electricity markets to

mitigate the uncertainty from imprecise RES-generation forecasts, allowing agents to acquire a forecast

of their RES-based generation. Conditions for the efficiency of the P2P market are identified, with a key



4

condition being prosumers’ participation in the forecast market. The study presents proof of individual

rationality of the coupled market model, showing that prosumers are always rationally incentivized to

participate in the forecast market. Furthermore, conditions on the probability distributions of the forecasts

ensuring this property are explored. Numerical results support theoretical findings, illustrating market

coupling profitability for both the forecast sellers and the prosumers.

This research concludes that adjunct services, coordination, and information exchange are vital in

optimizing market operations in environments where agents act strategically, exploring the complexities

associated with P2P electricity markets and corresponding equilibrium problems. The research focuses

on the coordination of diverse players, demand-supply management, risk-hedging, the inclusion of po-

wer grid constraints, and information asymmetry, relying on game-theoretic approaches. As such, this

research presents key advancements to enhancing the state of the art and improving the understanding of

the complexities of decentralized electricity markets, therefore contributing to the current debate on the

electricity market restructuring.

Keywords : Game theory, Smart grids, Algorithms, Peer-to-peer, Generalized Nash Equilibrium
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Long abstract

Electricity markets are expected to undergo a significant transformation, evolving from centralized

to decentralized structures, driven by digitalization, large-scale integration of renewable energy sources

(RES) and distributed energy resources (DERs), and consumer-centric models that encourage active

consumer engagement in electricity markets. This transition necessitates the development and investiga-

tion of novel decentralized market models, among which peer-to-peer (P2P) electricity markets constitute

one of the most prominent forms. These markets, characterized by multiple decision-makers operating at

different hierarchical levels with diverse objectives, motivate new approaches to study the market equili-

bria that will result in efficient market operation and to address the challenges associated with achieving

the equilibria. These include the coordination of multiple actors with diverse objectives, the manage-

ment of supply (inclusion of RES-based generation) and demand variability, the handling of distribution

constraints, and the information asymmetry among participants. To address these challenges, we apply

game-theoretic approaches, combining principles from game theory, optimization, and distributed algo-

rithmic designs. To evaluate the impact of each participant’s actions on the others’ strategies, as well as

the power grid constraints, we use the concept of the Generalized Nash Equilibrium (GNE), which, being

more general than classical Nash Equilibrium, enables the incorporation of shared constraints depending

on the strategies of all players.

In the initial phase of the research, this dissertation considers the effects of the inclusion of RES-

based generation, more precisely, the framework of the P2P electricity markets involving heterogeneous

risk-averse agents. When dealing with future uncertain losses, agents can have individual perceptions

of uncertainties, i.e., different perceptions of risk (heterogeneous risk aversion framework), which might

lead to market inefficiencies. To address this issue, a new framework is proposed, enabling the prosumers

to hedge these risks through financial contracts that they can purchase from an insurance company or

trade directly with their peers. The problem is formulated as a Stackelberg game, in which the insurance

company is seen as the leader and the prosumers as followers. Subsequently, two formulations of the

problem are considered. In the first model, only the insurance company acts as a source of risk-hedging

contracts, while the second model supplements the first design by permitting inter-agent risk-hedging.

A risk-hedging pricing scheme is derived in each design, and it is demonstrated that in the case when

prosumers’ objectives are not aligned with those of the insurance company (i.e., pessimistic formula-

tion), the Stackelberg game may lack a solution, thus resulting in the market inefficiency. This technical

difficulty is mitigated by the proposed equivalent game reformulation, i.e., as a parametrized GNEP, that

simplifies the analysis of market equilibria characterization and its properties, yielding insights into the

proper organization of insurance markets in a decentralized setting. It is proven that price incentives can

13
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be designed by the insurance company, ensuring the existence of a solution to the pessimistic formula-

tion, which is close to the optimistic one up to a preset precision parameter, thus allowing to achieve the

market equilibria in both settings. Subsequently, economic properties of the Stackelberg equilibria, such

as fairness, equity, and economic efficiency, are derived. Numerical simulations in support of the derived

mathematical results quantify the effects of the proposed frameworks on the market organization and the

resulting costs for the prosumers and the insurance company.

Second, as peer-to-peer financial transactions directly affect the grid operation, controlled by the dis-

tribution system operator (DSO) to guarantee grid security, our study develops a mechanism integrating

both elements to address this issue by studying the interaction between the physical level, subject to the

local and physical constraints of the distribution grid, managed by the DSO, and a financial market, sub-

ject to bilateral trading reciprocity coupling constraints. The focus has been placed on the effects of this

interaction on the operation of the market, with the interaction being modeled as a GNEP. Two designs

of the financial level prosumer market have been compared in this study : a centralized and a peer-to-peer

fully distributed design. The study demonstrates that the Pareto efficiency of the market equilibrium can

be guaranteed when the cost to trade is uniform across all participants while also illustrating that the pro-

posed pricing structure of the noncooperative game limits exploitative behavior, utilizing price signals

from the DSO. A case analysis is developed, focusing on the efficiency loss related to varying levels of

agents’ flexibility and the amount of renewable generation in the network. The impact of the prosumers’

pricing on the social cost of the market has also been quantified.

Furthermore, a framework to address the information asymmetry challenge, in which agents possess

private information they might be reluctant to share (e.g., demand or generation profile), is examined

in this dissertation. This key problem is framed as a non-cooperative communication game, taking the

form of a GNEP, which allows agents to determine their randomized reports to share with other market

players while anticipating the form of the solution of another GNEP, representing the peer-to-peer market.

In this non-cooperative game, the decision for each agent on the deterministic and random parts of the

report is made, ensuring that (a) the distance between the deterministic part of the report and the truthful

private information remains bounded, and (b) the expected value of the privacy loss random variable is

also bounded. This structure facilitates a change in the privacy level for each agent. The equilibrium of

the game is characterized, with the uniqueness of the Variational Equilibria proven and a closed-form

expression of the privacy price provided. Furthermore, a closed-form expression has been developed

to gauge the impact of privacy preservation, which is influenced by the inclusion of random noise and

deterministic deviation from the agents’ true values of the private information.

Finally, imprecise forecasts on RES-generation levels introduce additional uncertainty for the agents,
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which impacts their trading in P2P markets, consequently affecting the market’s efficiency. However, the

advent of data markets, which facilitate the exchange of data to improve forecast accuracy, can mitigate

this issue. Our study delves into the potential coupling between forecast markets to enhance the forecasts

available to the agents, where agents can acquire a forecast of their RES-based generation, and the peer-

to-peer electricity market. The electricity market is initially modeled as a two-stage peer-to-peer market,

cast in the form of a GNEP. Further, this study identifies the conditions under which the efficiency of

the electricity peer-to-peer market can be attained. A key one is the participation of prosumers in the

forecast market. The study presents proof of individual rationality of the coupled market model, showing

that prosumers are always rationally incentivized to participate in the forecast market. Furthermore,

conditions on the probability distributions of the forecasts that assure this property are explored. The

numerical results not only corroborate the analytical findings but also illustrate the profitability of the

market coupling for both the forecast sellers and the agents in the peer-to-peer electricity market.

Our research results in several conclusions that help the understanding of P2P electricity markets,

associated complexities, and resulting equilibrium problems, which are addressed using game-theoretic

approaches. A novel risk-hedging framework to address uncertainties is proposed, with the expectation

of enhancing the operational stability of these markets by resolving the difficulties associated with he-

terogeneous risk-aversion of the prosumers and arising bilevel optimization problems. The relationship

between peer-to-peer transactions and grid security is investigated next, with the proposed mechanism

resulting in stabilizing the operation of the market, consequently, increasing its efficiency. The issue of

information asymmetry is addressed through a communication game, where a balance between informa-

tion sharing and privacy is investigated, as well as providing insights into the strategic behavior of the

agents within the framework with privacy constraints. The final focus is on exploring the coupling of

data markets and P2P electricity markets to mitigate additional uncertainty brought by imprecise RES-

generation forecasts. It is anticipated that the successful implementation of this approach will not only

improve market efficiency but also drive profitability for all market participants, heralding a promising

future for P2P electricity markets.



16 TABLE DES FIGURES



Chapitre 1

Introduction

As we witness an increasing reliance on digital technology and a shift towards renewable energy,

the traditional electricity trading system is undergoing significant changes. This shift encouraging more

active consumer participation in electricity markets, with consumers’ active engagement being strongly

supported by recent European Union (EU) policy recommendations.

In accordance with this transition, the central focus of this thesis leans towards the decentralization

of the energy sector, acknowledging it as both an opportunity allowing to accentuate consumers’ role

and position them as proactive players in the energy landscape and a challenge, including technical

difficulties created by the growth of local energy resources, the adoption of market models centered on

consumers as well as decentralized markets, and the evolution of energy trading mechanisms.

The main goal of our research, therefore, is to propose innovative models that leverage game-theoretic

methods to navigate these new and evolving markets effectively, by proposing game-theoretic models for

centralized (acting as a benchmark) and decentralized electricity market designs ; and to investigate their

properties along with performance and their specific aspects taken into consideration, such as e.g. strate-

gic behavior of the agents in a framework with privacy constraints, inclusion of intrinsic preferences and

risk-aversion of the agents, information asymmetry or incomplete information, and locational properties

- all in order to guarantee an efficient operation of the market.

Motivation The European Union (EU) has made a strong commitment to achieving net-zero green-

house gas emissions by 2050. In addition to meeting environmental goals, this effort also presents op-

portunities for economic growth and technological innovation. To support this major change, the EU

launched the Clean Energy Package in 2016. This law encourages the use of renewable energy, aiming

for it to make up 42.5% of all energy in the EU by 2030 [45]. At the heart of this is a move to renewable

energy (Figure 1.1), with constantly increasing share and a focused reduction in carbon emissions.
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FIGURE 1.1 – Share of renewable electricity production in countries or regions that have committed to
the net-zero emission target [43]

At the same time, the power system is benefiting from big technological advances. Digitalization

and the falling costs of new technologies like electric vehicles (EVs), batteries, heat pumps, photovoltaic

systems (PVs), as well as active installation of smart meters enable consumers to play an unprecedented

proactive and interactive role. This emerging role, turning consumers into proactive prosumers (consu-

mers who can both consume and produce energy), is expected to significantly impact the operations

and organization of electricity markets, which were traditionally designed for large-scale dispatchable

generation and largely inflexible loads. Indeed, energy systems are witnessing a clear move from large,

centralized energy systems to smaller, decentralized ones, involving a wider range of participants. While

these new players control relatively small-scale generation and consumption volumes, their influence and

flexible energy use are growing. The combination of technological progress and new energy resources is

changing how energy networks are managed. This shift aligns with the EU’s goals to increase the use of

renewable energy and make the market more consumer-focused.

This shift highlights a key trend : progression towards a more consumer-centric electricity market

design. Consumers are now able and are planned to have a more active role, driving the development

of new technologies and business models, as well as undertaking proactive participation in electricity

markets (local and beyond). Taking this growing role of consumers into account in the design and ope-

rational analyses of electricity markets is essential for maintaining and improving their efficiency. At the

same time, there is an increasing preference among consumers for local, renewable energy sources, with
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FIGURE 1.2 – Expected structural changes in the energy systems made possible by the increased use of
digital tools, source : [60]

communities ready to jointly invest in and use renewable resources for improving their sustainability and

efficiency. These large changes raise the need for rethinking the current market designs to avoid high

costs and grid instability.

These evolving capabilities and assets of the agents in the energy sector open new opportunities for

new market designs. In this respect, the research scope of this thesis is focused on one key emerging mar-

ket design, namely, peer-to-peer (P2P) electricity markets. These markets allow consumers and producers

or prosumers to interact directly, by trading energy among each other, i.e. in a peer-to-peer fashion. This

direct interaction shifts the dynamics from a traditional centralized model, where a single entity regulates

and facilitates the trading process, to a landscape where multiple selfish and independent agents act and

make decisions based on their own interests. Such markets can lead to the rise of energy systems and

local market organizations that are more suited to the needs and preferences of consumers, as they move

away from the traditional centralized model.

Equilibrium problems In such settings, each participant’s optimal decision is intrinsically tied to the

decisions of others in the network, which naturally gives rise to equilibrium problems. In other words,

an individual’s plausible actions might depend on the actions of others. As every participant is trying

to maximize their own benefit, it leads to a strategic game (as a game-theoretic concept, i.e. strategic
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interactions among rational agents) where their individual choices collectively determine the equilibrium

of the market.

Yet, finding this equilibrium state, where no participant can benefit from changing their strategy uni-

laterally, is a complex task. It is a point of balance that depends on many factors, such as the participants’

consumption and generation capabilities, risk attitudes, information exchange, regulatory policies, or the

uncertainty and variability inherent to renewable energy sources (which typically form a significant part

of P2P energy trading). A change in any of these factors can cause a shift in the equilibrium, thus affecting

the performance and stability of the market. Furthermore, achieving this equilibrium state poses several

challenges. First, an effective mechanism is required to coordinate the actions of all participants, while

respecting their autonomy and individual objectives. Secondly, commonly shared constraints implied by

the grid usage and trading quantity reciprocity. Thirdly, due to the decentralized nature of P2P markets,

this equilibrium must be achieved in a distributed manner, without a central authority to orchestrate the

process.

As such, the strategic behaviors of agents and the associated equilibrium problems are crucial topics

of exploration for understanding and improving the operation of decentralized P2P electricity markets

using a game-theoretic approach.

The necessity to incorporate the specificity of these markets has led us to consider various equilibrium

concepts that can better capture these dynamics. One such concept is the Generalized Nash Equilibrium

(GNE). Unlike a traditional Nash Equilibrium, where each player optimizes their strategy, taking into

account the dependence of its objective function (i.e., utility, or total cost) on the decision of others,

a GNE takes into account that the actions of each player can influence not only the payoff but also

the strategy space of the other players, or in other words, the feasible sets. This concept is particularly

useful in decentralized electricity markets because it encapsulates how each participant’s decision may

affect the feasible strategies of others, through constraints such as physical distribution limits or bilateral

trading reciprocity. It provides a framework to incorporate and analyze various aspects of these markets

and to understand how strategic decisions in these markets may influence the policies.

In our research, we focused on the following factors that make achieving equilibrium in decentralized

electricity markets a challenging task :

(i) Coordination between multiple actors : Decentralized markets involve various entities with dif-

ferent objectives, preferences, and constraints. Ensuring that their individual decisions result in a socially

desirable outcome requires sophisticated coordination mechanisms.

(ii) Variability in supply and demand : Decentralized electricity markets are characterized by fluc-

tuations in supply (e.g., intermittent renewable energy sources) and demand (e.g., time-varying consump-
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FIGURE 1.3 – A graphical description of the connection between the research questions and the chapters
of the thesis.

tion patterns). This variability complicates the process of achieving and maintaining equilibria.

(iii) Transmission and distribution constraints : Physical constraints, such as limited transmission

and distribution capacities, can restrict the flow of electricity and impact the attainment of equilibria in

decentralized markets.

(iv) Information asymmetry : Participants in decentralized electricity markets may have access to

different levels of information (due to e.g. privacy issues), which can lead to suboptimal decisions and

hinder the achievement of equilibria.

Addressing these equilibrium problems in decentralized electricity markets is crucial for ensuring

their efficiency, stability, and overall performance. This thesis employs game-theoretic mechanisms, dis-

tributed algorithms, and optimization techniques to address these challenges.

Contributions and thesis structure Chapter 3 addresses the challenge of facilitating coordination

among diverse risk-averse actors in the P2P markets. Understanding and managing risk is crucial in any

market, but even more so in a decentralized one, where individual entities may have different views on

the risk (underlying uncertainty), thus deviating from an efficient market equilibrium. Using a model of a

Stackelberg (that we interpret as a bilevel optimization problem) game, where insurance company plays

a leading role anticipating the reaction of prosumers (i.e. followers), we derived a pricing scheme that

promotes fairness and efficiency under various market structures, while also comparing and discussing

potential insurance (mutual or not) scheme organizations. To overcome technical difficulties associated

with the solution of bi-level problems, especially in a pessimistic setting (when the objective of the prosu-
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mers is not aligned with the objective of the insurance company), we introduced an equivalent reformu-

lation relying on parametrization of a set of the solutions of the Stackelberg game, with the values of the

parameters corresponding to the solutions of modified generalized Nash equilibrium problems (GNEPs).

This allowed us to study the equilibria characterization, solution existence, and market properties in a

simpler setting, concluding the proper organization of the insurance market.

Subsequently, Chapter 4 introduces a two-level model, focused on the interaction between the finan-

cial and grid layers of the local electricity market, where the latter has a limited capacity for electricity

distribution, a constraint that can severely impact the equilibrium formation and its efficiency in elec-

tricity markets. We model the interaction between the two levels as a GNEP, in which the distribution

system operator (DSO) exchanges information with the prosumers using price signals, represented by the

dual variables of its optimization problem. The developed framework, performed analyses, and derived

results provide key insights into the intricacies of this interaction while showcasing that the proposed

trading system effectively limits exploitative behavior (no free-lunch behavior) and guarantees Pareto

efficiency when the cost to trade is uniform across all participants.

Chapter 5, focuses on the issue of ’information asymmetry’, and in particular, the situation where

some market participants possess information that they do not want to share with others. In this regard,

we developed a novel model to predict how individuals might alter their behavior to maintain their

privacy, constructing a communication game in the form of a GNEP in which the agents determine

the amount of information they want to share with others to achieve equilibria in an original GNEP,

representing the peer-to-peer electricity market. The developed framework enables predicting potential

shifts in the behavior of the agents who might choose to withhold or manipulate their private information

for competitive advantage. This model broadens our understanding of privacy dynamics in decentralized

electricity markets and also provides us with a means to quantify the cost of privacy — a concept that

helps to evaluate the trade-off between information sharing and the costs incurred at the equilibrium.

Finally, Chapter 6 addresses the handling of uncertainty that stems from the increasing integration

of renewable energy sources into the energy mix, which introduces variability in power generation. In

this regard, we propose an innovative coupling of electricity markets (modeled as a GNEP) with forecast

markets of energy generation, aiming to mitigate this uncertainty and improve prosumers’ decision-

making. This combined market structure not only improves the quality and accuracy of forecasts but

also encourages active participation from market players, mutually benefiting all parties involved. We

show that it is possible to achieve maximized efficiency of the peer-to-peer electricity market if all the

agents at least report their beliefs (forecasts) to the forecast market operator, which could be done if they

participate in the forecast market. While this can be a strong condition, it is mitigated by the fact, which
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we prove in our work, stating that the agents benefit from purchasing the forecasts, thus, they have an

incentive to participate in the forecast market. In other words, we prove that Individual Rationality holds

for the coupling of these two markets.

For addressing these problems, we have relied on fundamental principles from game theory, optimi-

zation, and algorithmic designs to introduce novel models and thorough solution mechanisms to address

the different underlying technical challenges, allowing us to quantify the transformative potential of de-

centralized energy systems in improving the efficiency and consumer-centricity of emerging electricity

systems and markets. As such, this work provides key contributions to advancing the state of the art

and improving the understanding and navigating the complexities of decentralized electricity markets,

rendering them more resilient and adaptable to future challenges.
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2.1 Research Scope

2.1.1 Call for a Change in Electricity Markets

Shift towards renewable energy

The issue of climate change is a major concern due to its anticipated severe consequences, including

increased frequency and intensity of extreme weather events, which could have negative impacts on pro-

ductivity, infrastructure, health, biodiversity, food production, and political stability, directly impacting

the sustainability, stability, and development of our societies. To address these risks, the European Union

(EU) has proposed a long-term strategy aimed at achieving net-zero greenhouse gas emissions by 2050

[4], in accordance with the 2015 United Nations Climate Change Conference agreement [102]. This

transition is expected to be both cost-efficient and socially fair, with a particular focus on eliminating

emissions from the different energy sectors.

The EU has established regulations outlining the process for preparing long-term climate and energy

plans. The EU and its Member States aim to lead the way toward climate neutrality, capitalizing on the

opportunities for economic growth, new business models, job creation, and technological advancement

that the implementation of the long-term plans will bring. As part of the EU’s efforts to achieve cli-

mate neutrality and reduce greenhouse gas emissions, the European Commission introduced the Clean

Energy Package in November 2016 which was later updated in 2019 [52], which consists of legislative

proposals for various energy-related sectors. The Clean Energy Package suggests utilizing market-based

approaches to incorporate Renewable Energy Sources while also promoting long-term policy consistency

through a reliable investment framework. This strategy aims to reduce regulatory risks for investors and

ensure a stable energy supply. The package sets an EU-wide goal of achieving 42.5% of gross final

energy from RES by 2030 [52]. The EU prioritizes both RES integration and carbon emission reduc-

tions, with the RES target intended to incentivize Member States to continue providing subsidies for

RES thus promoting the transition.

The power system is becoming more distributed

The power system’s digitalization, facilitated by the implementation of information and commu-

nication technologies (ICTs), is occurring in parallel with - and supporting - the integration of rene-

wable electricity resources. The decreasing costs of new technologies, such as smart meters, solar pa-

nels, small/medium wind farms, electric vehicles (EVs), and other distributed energy resources (DERs),

have significantly impacted electricity markets [115]. These cost reductions have enabled the widespread

adoption of DERs and promoted a transition from centralized energy systems to more decentralized ones.
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In most power current systems, DERs remain minor players in the provision of electricity ser-

vices ; nonetheless, smart energy consumption and DER deployment are generally on the rise. The Clean

Energy Package recognizes the potential of these technologies and aims to create a more integrated and

consumer-centric energy market by promoting the participation of DERs, demand response, and energy

storage. The expansion of DERs has allowed consumers to become active participants in the energy mar-

ket, often as prosumers - the consumers who both generate and consume electricity. The combination of

digitalization and the introduction of new energy resources allows for more active network management,

potentially bringing an end to the passive network management paradigm, which relies on networks

being designed to accommodate the aggregate peak demand of passive consumers. This will continue to

transform electricity markets in support of the EU’s efforts to include more renewables in the energy mix

and make the market increasingly consumer-oriented.

Consumer-Centric Markets Factors listed above, such as energy sector liberalization, the rise of dis-

tributed energy resources (DERs), digitalization, and a focus on energy efficiency and demand-side ma-

nagement have facilitated the shift towards consumer-centric models. In these models end-users play a

more active role in the energy system, driving new technologies, services, and business models.

As demonstrated in [46], an increasing number of prosumers desire the freedom to choose their

energy sources or even achieve self-sufficiency. Neglecting to support this consumer preference could

lead to economic inefficiencies within a microgrid, as evidenced by the authors. Another study [20] re-

veals a growing acceptance of renewable and local energy sources among consumers in recent years, with

this trend expected to continue. Additionally, various local communities have demonstrated a willingness

to share investment and use of renewable resources. For example, the Netherlands ranks highly in the

number of EU initiatives in this respect [143]. The social aspect of cooperation encourages consumers to

increasingly participate in energy community initiatives. Therefore, failing to capture a more consumer-

centric approach within (and as a compliment to) electricity markets can run the risk of higher investment

costs, reduced efficiency, and compromised reliability in power delivery [113]. This, as well as the shift

towards renewable energy sources, motivates the need for consumer-centric market models as the next

step of the progression of wholesale and retail electricity markets.

2.1.2 Current Organization of The Electricity Markets

To grasp how electricity markets operate, one must recognize two key physical properties of power

systems. First, electricity is essentially a perishable commodity because we have limited capabilities to

store power once it is generated. Therefore, it must be consumed as soon as it is produced, making it
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necessary to maintain a balance between power supply and demand at all times and locations. Secondly,

electricity must be transmitted from its point of generation to the node of consumption through electrical

networks, subject to physical laws and constraints. These physical constraints, along with the power

balance constraint, give rise to unique power values at specific locations and times within the distribution

power grid.

Maintaining balance in the power system is a challenging task. To ensure that the system remains ba-

lanced at all times, the system operator (SO) must determine how much each power plant should increase

or decrease its production, making use of centralized unit commitment in real-time electricity markets.

The system operators must take into account all aspects of the network, including costs, ramp-rates,

and plant locations, to make technically feasible and efficient decisions in real time. With the inclusion

of RES-based generators and Distributed Energy Resources, it becomes evident that the complexity of

managing the power grid escalates.

Current electrical energy markets provide long price histories on which to base future price pro-

jections, and the market fundamentals which drive prices are straightforward to model [119]. Traditio-

nal electricity markets are designed to accommodate the electricity generated in bulk, with low varia-

bility, and supply power to distributed consumers. This approach assumes that electricity that comes

from controllable, large-scale generation sources (e.g., fossil-fired, hydro, and nuclear generation), flows

downstream to the load buses. The SO acting on the balancing market stage (through procurement and

activation of reserves) is accountable for maintaining a balance between generation and load by regularly

adjusting the generators’ output. While this system has provided some benefits in terms of competition

and price stability, it requires adjustments to efficiently incorporate RES and proactive demand.

The Clean Energy Package proposes a power market where consumers can participate in demand

response, self-consumption, or self-generation and engage in markets [118]. Decentralized energy re-

sources, such as distributed generation, storage, and demand response, should be allowed to participate

in wholesale electricity markets either directly or through aggregators, on an equal footing with traditio-

nal generators, provided they meet the necessary technical capabilities. This would require changes in

the current design of retail and wholesale markets, as well as interactions and coordination between the

TSOs and distribution system operators (DSOs).

This restructuring would involve a shift towards more flexible and dynamic market designs, which

would enable the integration of distributed renewable energy sources into the grid. This introduces a di-

rection both in the research and practice, dedicated to the models that would be based on a decentralized,

digitalized system that enables the real-time trading of energy and provides incentives for the integration

of renewable energy sources. These models would rely on new technologies and market designs to enable
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the integration of a wide range of market participants, including prosumers, community energy projects,

aggregators, etc. A more flexible, dynamic market design would also enable the integration of new tech-

nologies such as electric vehicles and energy storage, which are essential for the decarbonization of other

sectors such as transport and industry. Additionally, it would enable greater market competition, which

would result in lower prices for consumers [115]. In this respect, we focus on the local energy markets

(LEMs) and propose novel models for P2P markets for efficient organization of the interactions among

prosumers.

The shift towards LEMs necessitates the development of additional market clearing mechanisms that

account for distributed systems, renewable energy sources (RES), and more active consumer participa-

tion. As the market incorporates consumer-centric approaches, distributed systems, and RES, institutions

are developing common market rules, standards, and methodologies that facilitate the integration of these

new resources and market actors, while addressing the equilibrium problems that may arise [52], [115]

from the decentralization. This entails the development of additional market mechanisms that address

emerging equilibrium problems and ensure efficient, reliable, and sustainable electricity markets empo-

wering consumers in the face of new challenges.

2.2 Local Electricity Market Designs

Local Electricity Markets The concept of smart grids has been integral in managing the growing

proliferation of DERs, especially at the low voltage level. Smart grids facilitate the incorporation of

new elements into the power system, such as smart meters, DERs, and storage solutions. Given this,

DSOs reevaluate their management approaches to accommodate these alterations at the low voltage level.

Active distribution network management can significantly contribute to new systems by providing novel

ways to govern the grid under diverse operating conditions, preferably in a preventive manner [161].

In this regard, the creation of local electricity markets (LEMs) and virtual power plants might be vital

in implementing these methods and aiding DSOs in the management of the distribution network [107].

Microgrids, often understood as low voltage distribution grids containing DERs (i.e. structures with a

technical focus on the local distribution network) that can operate in both islanding and grid-connected

mode, have the potential to introduce LEMs (understood as social and economic organization of local

electricity consumers/providers) where prosumers and consumers actively engage and exchange energy

among themselves, fostering local energy consumption [107], [92]. They can enhance energy efficiency,

reduce the vulnerability of larger grids, decrease blackouts, and support power for remote communities.

Economically, they diminish greenhouse gas emissions, system losses, grid reinforcement expenses by
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FIGURE 2.1 – Centralized Trading. Source : [101]

the DSO, and load-shedding costs to consumers, all while lowering fuel costs and ancillary services from

a system-wide viewpoint. Environmentally, the widespread adoption of LEMs bolsters the usage of clean

energy sources, thereby reducing pollutant and greenhouse gas emissions.

The advent of microgrids brings a new set of requirements and possibilities to the energy sector,

necessitating the development of novel LEM designs. These new designs must not only accommodate

the smaller scale and potentially isolated nature of microgrids, as well as the benefits from increased

connectivity but also take into account the increased presence of DERs within these networks.

2.2.1 Benchmark : Centralized Design

In the centralized market organization (Figure 2.1), analyzed in this study as a benchmark, a central

entity – Market Operator (MO) – collects the information provided by the participants of the energy tra-

ding process and computes the pricing and allocation rules to optimize a certain objective function (maxi-

mizing social welfare, minimizing costs, etc.). Information provided by the consumers to the MO can

differ in the level of detail as well as the level of complexity – the information reported could contain the

intrinsic preferences of the consumers (eg. locality, type of energy), technological aspects of the equip-

ment (solar panels, CHPs, boilers, etc.), target demand, RES-based generation profiles, etc. Constraints

in the problem solved by the MO arise from different aspects of the energy trading such as physical pro-

perties of the transmission lines, DERs and RES, consumers’ demand and consumption limits, etc. The

advantages of the centralized design are that it relies on already well-established approaches for mathe-

matical modeling of such systems and classical optimization techniques : for large-scale optimization,

there exist decomposition techniques such as Bender’s decomposition, Lagrangian relaxation, consensus

Alternating Direction Method of Multipliers (ADMM), etc. that are extensively used in the power system

economics and market literature. The full-information formulation implies the existence of a mechanism
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that will motivate the participants to reveal their information and preferences to the central entity. The

challenges in the centralized design may arise from large-scale data management scheme design, fore-

casting the generation from renewable energy sources, and from the need to provide a robust system that

will be resistant to malicious behavior such as price information manipulation or attacks aimed at the

privacy violation.

2.2.2 Hierarchical Design

Various types of complexity can be added depending on the considered degree of anticipation of the

agents and the assumed information structure. When we assume that one (or even some of) the agents

have some advantages with respect to the others regarding the order of decisions and his anticipation

capability on the decisions of the others, a Stackelberg game which reflects hierarchy between certain

agents, can be implemented. There is a leader who decides upon his strategy first, anticipating the reac-

tion of the follower, governed by a so-called lower-level optimization problem. The follower can only

react to the strategy of the leader – following the so-called rational reaction function [38]. A Stackel-

berg game with one leader can be represented by a bi-level optimization problem, i.e., an optimization

problem that is constrained by a second optimization problem (the lower-level problem) [37]. Dedicated

reformulations as mathematical programs with equilibrium constraints (MPECs) and reformulations as

mixed integer linear programming (MILP) problems allow solving such problems with state-of-the-art

commercial solvers (such as CPLEX and Gurobi). An MPEC can be used, e.g., to model the strategy

of one profit-maximizing, price-making generator on a wholesale market. To study the interaction bet-

ween multiple strategic agents (e.g., multiple price-making generators on a wholesale market or multiple

local market operators in the local-global market framework), one may move to EPECs, i.e. a set of

MPECs, parameterized in the decision variables of the other strategic agents, possibly with a common

equilibrium problem in their constraints (in the local-global market framework, that would be the clea-

ring of the global market by the global market operator) [79]. Solving such problems typically requires

dedicated decomposition and solution techniques, such as diagonalization approaches.

2.2.3 Peer-to-peer Design

The European Commission Renewable Energy Directive refers to ’peer-to-peer trading’ as to an

exchange of renewable energy amongst market participants [44]. These exchanges are regulated by a

contract having pre-defined conditions that control the automated procedure and settlement of the tran-

saction. The transaction can take place directly amongst market participants or it can be mediated through

a certified third-party market player like an aggregator. The directive ensures that the right to participate
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in peer-to-peer trading does not infringe upon the rights and obligations of the involved parties, which

may include end customers, producers, suppliers, or aggregators. In this context, peer-to-peer (P2P)

energy trading can be seen as the reciprocal buying and selling of energy between two or more parties

connected to the grid. P2P energy trading introduces a choice for consumers, allowing them to select

their electricity providers and purchasers. It provides a mechanism for consumers to decide from whom

they buy electricity and to whom they sell it, all facilitated by a secure platform. A brief overview is

provided below, while a very comprehensive overview can be found in [101].

Historical overview P2P systems have been under rigorous study since the 1990s, predominantly in

the computer science field for distributed computing and decentralized data sharing. The benefits, defini-

tions, and architectures of this system have been explored over time [131]. A widely accepted definition

of P2P encompasses systems and applications that utilize distributed resources to carry out tasks in a

decentralized way instead of a centralized way [13], [131], [135], [71], [103], [2], [147], [112]. The

concept of P2P systems is for agents (or peers) to directly offer their resources to other agents within

the grid, bypassing the need for intermediary coordination. Fundamentally, P2P systems revolve around

three main principles : resource sharing between peers, decentralization of the grid, and self-organization

arising from decentralization.

P2P systems have been adapted across various application domains [112], mainly leveraging the

principles of the collaborative and sharing economy. Codagnone et al. [31] describe the collaborative and

sharing economy as a broad range of digital platforms, both commercial and non-profit, that facilitate

exchanges among diverse players via a multitude of interaction modalities. Within this concept, peer

collaboration often culminates in commercial platforms or platforms that generate common value, and

therefore free/open source projects are created and available to all interested parties [55], [42].

The application of P2P and collaborative economy concepts in power systems is a relatively new

development, largely evolving over the last decade. Aside from early exploratory work in the late 90s

[152], [153], the first instance of proposing P2P concepts for power systems dates back to 2007 [13].

This study analyzed the P2P concept within the smart grid paradigm, where decentralized operation and

control of grids, microgrids, and distributed energy resources are becoming a necessity.

The introduction of microgrids brings about infrastructures and technologies that allow bidirectional

communication and self-metering in prosumers and end-users. Such technological progress aligns well

with the basic information and structural needs of P2P markets, given that decentralized P2P systems ne-

cessitate IoT technologies to develop large-scale sharing communities with appropriate communication

speed between participants. Therefore, microgrids can provide the physical infrastructure in the power
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system that enables P2P LEMs to emerge and interact accordingly, allowing P2P markets to leverage

LEMs characteristics to decentralize decision-making processes related to energy and service exchanges

within the LEM context.

In light of these P2P traits, new designs for LEMs have been suggested, considering the relationship

between producers, prosumers, and consumers, and based on the principles of a collaborative and sharing

economy [21, 30, 68, 78, 84, 87, 93, 128, 148, 163]. Therefore, P2P markets seamlessly integrate within a

microgrid. Mengelkamp et al. [93] proposed a LEM where prosumers and consumers could trade energy

among themselves, thus retaining profits from energy trading within their community. The proposition is

to enable prosumers and consumers to actively participate in the operation of the LEM, taking into ac-

count the environmental consciousness of consumers while saving money and fostering new investments

in local renewable energy production.

Moreover, the challenges of applying this approach to the real-case scenario of the Brooklyn Micro-

grid are also demonstrated. Other research has designed the P2P market of a microgrid in simpler ways,

like energy sharing based on energy profile matching among prosumers [163], and autonomous coope-

rative energy trading with protocols for sharing and matching energy schedules [87]. Alternatively, there

is also research that focuses on schemes using a central entity to manage or oversee energy trades, in line

with the community-based market described in the introductory section. Multi-agent systems for P2P

markets are commonly developed to manage local energy transactions and generate appropriate price

signals for LEM members [30]. In contrast, [84] proposed the use of an energy-sharing provider (also re-

ferred to as a community manager) that coordinates sharing activities among prosumers and consumers.

Following an in-depth review of the literature, it’s clear that microgrids are seen as a significant facilita-

tor and incentive for P2P markets, and P2P markets, in turn, will greatly benefit from the technological

advancements introduced by microgrids.

In this context, local energy markets have evolved, bearing the potential to neutralize local power

imbalances, and thereby, enhance the flexibility of the current distribution grids, avoiding the need for

new investments [93]. Hence, P2P systems have been seen as an attractive method to shape these bud-

ding local markets, considering all the distributed information required to be processed in the market.

These models envisage the notion of collaborative markets where prosumers and consumers trade energy

amongst themselves. This not only fosters cooperation and heightens social consciousness but also dimi-

nishes electricity bills and encourages reinvestment in local energy production. Importantly, by keeping

the profits from local transactions within the community, they provide an additional economic incentive.

A crucial aspect of peer-to-peer (P2P) trading is the structure of its market design. This design lays

out the specific guidelines that participants must adhere to in order to execute the trade. Within the
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FIGURE 2.2 – Decentralized P2P Trading. Source : [101]

P2P framework, these guidelines encompass the necessary information to be submitted by the peers (for

instance, the bid quantity and price), the protocols for bid matching, the adopted pricing model, and

the mechanism for settling the market. Depending on how the trading process is conducted and how

communication of information transpires among the participants, various market design strategies are

employed for P2P trading.

Fully distributed

The full P2P market (Figure 2.2) implies that each agent (i.e. producers, consumers and prosumers)

directly interacts with the other agents without intermediary entities like a retailer or market operator.

Two agents can agree on a transaction for a certain amount of energy and a price without centralized

supervision. A trade between two agents in a local energy community supposes that these two have

decided on a certain quantity to be sent from one side and received by the other side. Therefore, there

must be an “agreement” or trade constraint between each pair of agents in a local community, which

couples their respective decisions. In fact, a single P2P transaction between two agents constitutes a

single bilateral contract for exchanging/sharing a product/service that may return a mutual benefit for

both agents. A complete P2P market then translates to enabling simultaneous and numerous bilateral

contracts among all agents at high temporal resolution and frequency. As a result, although the utility of

a prosumer depends only on her own decisions, some of these decisions, such as the quantity she agrees

to trade with all the other prosumers in her neighborhood, have an impact on the set of feasible actions

of her neighbors ; in the same way, her feasible actions are determined by the actions of her neighbors -

that introduces the notion of coupling constraints.

This approach constitutes a multi-agent system in which the decisions are made in a distributed way.

While any distributed approach can be implemented at a centralized location for the purpose of being able
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to parallelize computation and therefore improve computation speed, two situations in which physically

distributed computations make sense include :

1. when the participating entities do not want to share all of their operational information with any

other entity

2. when it is of importance to ensure that a failure of a single computational entity, i.e. the central

coordinator, will not lead to an inability to control the system.

Indeed, the distributed optimization methods, such as ADMM make it possible to explicitly define indi-

vidual problems for each agent, while guaranteeing their privacy : each agent only shares the information

due to the set level of privacy : for example, in the case considered in [26], in centralized market design,

all the private information is reported to the Market Operator, while in a peer-to-peer market design local

target demands and RES-based generations are known only by an agent.

Coalition-based market design

The second structure is the community-based market. This design relies on a community of members

with a community manager to coordinate trading activities inside the community. It can readily be applied

to microgrids. A group of neighbouring consumers with their own appliances, solar panels, or electric

vehicles can form a community to share energy. In a smart city context, one may also think of a building,

or block of buildings, where all its residents can form a community, which is a natural construct due

to their location (i.e. being geographically close). In some cases, the community members also share

the investment on DERs. More generally a community is to be based on members that share common

interests and goals : for instance, a group of members that are willing to share green energy.

This market design is based on a distributed negotiation between the community manager and all its

members. The community manager also serves as an interface between the community and the rest of

the system.

Coalition games, including both coalition formation and a canonical coalition, can be implemented

in the context of communities and has been already applied for designing services in the energy sector.

For instance, demand response regulation in the EV domain has been implemented by using a coalition

formation game in [75]. In [80], the authors demonstrate how to incentivize energy users with small-

scale energy power production unit such as rooftop solar panels to directly energy trade with other users

within a community instead of trading with the retailer. Further, the exploration of coalition game for

regulation service can be found in [160], in which the authors design a coalition formation game to

schedule the charging and discharging of EVs within a smart grid network such that the grid’s stability

is not compromised.
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As for the previous design, the negogiation process could be solved in a centralized manner, but the

best approach is to solve it in a distributed manner in order to respect the fundamentally decentralized

nature of consumer-centric electricity markets. Naturally, this design relies on such a distributed struc-

ture, for which there is a central node (community manager) to manage the remaining ones (agents).

Each agent solves its own problem and only shares the required information with the central node. In this

way, privacy of all members of the community is guaranteed. To perform the comparison of the different

market designs, performance indicators should be considered, reflecting various points of view on the

system behavior (social welfare, efficiency loss, etc.)

Hybrid P2P market design

Considering the advantages and drawbacks of the aforementioned models, and given the focus on

energy communities in many prosumer-centric studies, a community or hybrid model for peer-to-peer

(P2P) trade has emerged. Here, while trading is decentralized, communication among participating pro-

sumers is centralized. A community manager, acting as a mediator, coordinates P2P energy trading

among prosumers, indirectly encouraging participation through appropriate pricing signals. In this hy-

brid market model, prosumers share minimal information with the mediator, thereby maintaining a high

level of privacy.

2.2.4 The need for game-theoretic models in analyzing these markets

Game theory is a mathematical framework that is often used to model strategic interactions between

individuals or entities in complex systems. With the integration of advanced technologies and services

in decentralized electricity markets, the relevance of game theory in this area has only grown. It’s in-

creasingly needed to develop innovative models and algorithms to tackle key challenges specific to these

markets [129], [141]. Generally, the decentralized electricity market is composed of the nodes or players

(agents) that can operate and interact with each other, aiming to reach an efficient equilibrium. Thus,

the arising equilibrium problems necessitate the use of game-theoretic techniques to address the chal-

lenges encountered at various stages such as design, control, and implementation. Game theory provides

a formal analytical framework equipped with mathematical tools that facilitate this study of agents’ in-

teractions.

Game theory is particularly beneficial in peer-to-peer (P2P) markets for several reasons. Firstly, the

main objective in P2P is to motivate participants to trade energy with each other, forming a nearly au-

tonomous energy community with minimal grid influence. In this context, traditional price signals from

central power stations may not significantly impact P2P trading as they would in conventional systems.
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Secondly, while existing energy trading systems in smart grids utilize various pricing schemes like real-

time and time-of-use pricing, P2P requires the development of more innovative pricing strategies. For

instance, a prosumer, as an independent decision-maker, might opt to sell surplus energy at variable

rates to different network buyers, necessitating new pricing schemes. Lastly, the absence of centralized

management places a heightened emphasis on secure energy trading transactions among P2P network

participants.

In [141] authors highlight challenges associated to the P2P electricity markets as well as advantages

and limitations of game-theory applications. We present them here, while referring to [141] for more

details.

— The challenges include modeling user behavior, devising pricing schemes that facilitate user co-

operation within the P2P network, managing the security and privacy of users, enabling strategy-

proof transactions, maintaining trust between users in the absence of a centralized authority,

reducing dependence on the central grid either partially or fully, managing network congestion

when user numbers increase, stabilizing the system due to higher penetration of renewables, and

integrating the central power station as part of P2P trading.

— Game theory offers a significant advantage in addressing these challenges. It can model user

behavior and their interactive trading with one another, and seamlessly integrate pricing and in-

centive design as part of game framework development. It has the potential to establish trust

between users within the network and motivate them to cooperate via its cooperative game fra-

mework. Furthermore, it can be combined with other signal processing techniques like fuzzy

logic and machine learning.

— However, game theory has its limitations, with practical deployment of game theoretic models

being somewhat restricted. It’s challenging to implement when it involves human subjects di-

rectly in the optimization process. Notwithstanding, recent developments in game theory (such

as auction game) have been deployed in pilot P2P projects like the Brooklyn microgrid.

— Game theory has found similar applications in sectors other than energy. These sectors include

banking, where it’s used in online financial transactions, IoT for device discovery and control,

healthcare for peer-to-peer assistance with patients with chronic conditions, real estate for peer-

to-peer lending, and finance for debt financing.

A comprehensive summary of game-theoretic approaches used in this dissertation is provided in the

next Section.
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2.3 Game theoretic approaches

Brief historical overview Even though the distinct concepts of game theory were known for several

centuries, it emerged as a distinct field when John von Neumann published "On the Theory of Games

of Strategy" in 1928 [145], introducing existence of solution for zero-sum games, utilizing Brouwer’s

fixed-point theorem. His 1944 book "Theory of Games and Economic Behavior," [146] co-authored with

Oskar Morgenstern, marked the pinnacle of his work in game theory, defining strategies for two-person

zero-sum games and revitalizing Daniel Bernoulli’s theory of utility.

The central concept of game theory - Nash equilibrium, named after American mathematician John

Forbes Nash Jr., was earlier used by Antoine Augustin Cournot in 1838 [34] to analyze oligopoly. In

his theory, firms determine their optimal output based on others’ outputs, resulting in a pure-strategy

Nash equilibrium. The modern Nash equilibrium, however, considers mixed strategies, where players

pick a probability distribution over possible strategies. Following findings of J. von Neumann and O.

Morgenstern, Nash expanded the introduced solution concept in 1950/1951 [99], [100] to any game with

finite actions, proving the existence of at least one mixed-strategy Nash equilibrium. Nash’s equilibrium

definition, stating each player’s strategy is optimal against others’, enabled him to use the Kakutani and

Brouwer fixed-point theorems to prove equilibrium existence.

2.3.1 Basic Game Theory Concepts

Game theory, as a mathematical framework, can be broadly classified into two primary categories :

cooperative and non-cooperative game theory. The latter is particularly valuable for investigating the

strategic decision-making processes of multiple autonomous agents, or players, whose interests in the

decision-making outcome may partially or fully conflict.

Fundamentally, non-cooperative games model a distributed decision-making process that enables

the players to optimize their respective objective functions in the absence of coordination or commu-

nication, with these functions inherently interconnected through the players’ actions. It’s important to

clarify that the term ’non-cooperative’ does not necessarily signify a lack of cooperation among players.

Instead, it indicates that any emerging cooperation must be self-sustaining without the need for strate-

gic choice coordination or communication among the players. An emerging area of interest within this

context is devising incentives to promote cooperation within a non-cooperative setting, as exemplified in

some studies [141], [140].

Non-cooperative games often employ strategic-form representations. These representations prima-

rily concentrate on individual strategic decisions and the selection of tactics each player would adopt to
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achieve their objectives. A game in strategic (or normal) form is represented by a family of multi-variate

functions Π1, ...,ΠN ;N ≥ 1. The index set of this family, which is denoted here by N = {1, ..., N},

is called the set of players and, for each n ∈ N , Πn is commonly called the utility (or cost) func-

tion of player n. The strategic form assumes that Πn can be any function of the following form :

Πn : X1 × ... × XN → R, (x1, ..., xN ) 7→ Πn(x) where Xn is called the set of strategies of player

n, xn is the strategy of player n, x = (x1, ..., xN ) ∈ X is the strategy profile, and X = X1× ...×XN . A

strategic-form game can be denoted by the compact triplet notation G = (N , (Xn)n∈N , (Πn)n∈N ). The

notation x−n = (x1, ..., xn−1, xn+1, ..., xN ) is used to denote the strategies taken by all other players

except player n. With a slight abuse of notation, the whole strategy profile is denoted by x = (xn, x−n).

Thus, in generic form of a non-cooperative game, each player n ∈ N solves the following optimization

problem :

min
xn

Πn(xn, x−n),

s.t. xn ∈ Xn,

(2.1)

Note on cooperative games When games permit players to communicate and engage in side payments

(such as utility sharing), fully cooperative strategies may become appropriate. In such instances, the

tools provided by cooperative game theory become highly relevant, as they help address an important

question : "What is the outcome when players have the ability to communicate and choose to work

cooperatively?"

Cooperative games probe the potential of encouraging independent decision-makers to function col-

lectively as an united entity to enhance their overall game positioning. An example can be seen in the

realm of politics, where diverse parties may opt to merge or form a coalition, creating a cooperative

group to improve their odds of gaining a share of power. Cooperative game theory comprises two main

areas : Nash bargaining and coalition games. Nash bargaining involves scenarios where several players

must agree upon the terms of their cooperation, while coalition game theory pertains to the establishment

of cooperative groups or coalitions. Essentially, both aspects of cooperative game theory provide players

with the necessary tools to determine potential partners for cooperation and the terms of such alliances,

taking into consideration a variety of cooperation incentives and rules of fairness. A more in-depth dis-

cussion of cooperative game theory is available in [141].

2.3.2 Nash Equilibrium

The strategic-form representation can encompass a variety of situations in decentralized electricity

markets or markets in general. For instance, players in a game can be : prosumers competing to improve
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their performance in terms of incurred costs, electricity producers competing for market share etc.

Formally, the strategic form is characterized by two key features. Firstly, each player n can have its

own objective, represented by a specific function Πn(x). Secondly, each player n has partial control over

the optimization variables, as it can only control its strategy xn ∈ Xn. While the first feature resonates

with multi-objective optimization, a difference lies in the control of optimization variables as in multi-

objective optimization, one has full control over all variables. Moreover, multi-objective optimization

problems often necessitate the definition of an aggregate objective.

The second feature aligns with the framework of distributed optimization, where a common objective

function is usually considered, i.e., ∀n,Πn(x) = Π(x). More crucially, the conventional assumption in

distributed optimization is that the decision-making process is primarily driven by a single designer (or

controller), who provides a set of strategies that the players strictly adhere to. While this scenario is

possible and might be significant for some algorithmic aspects, game theory often allows players the

freedom to choose their strategies.

A central question in this context is how to “solve” a strategic-form game. The notion of optimality

is unclear since we have multiple objectives and the variables influencing the utility functions cannot be

jointly controlled. Hence, the problem needs to be defined before it can be solved, leading to the necessity

of introducing game-theoretic solution concepts.

The Nash equilibrium (NE) is a fundamental solution concept for a strategic-form game on top of

which many other concepts are built. This section is mostly dedicated to the NE and discusses more

briefly other solution concepts, which might also be considered. In [100], Nash proposed a simple but

powerful solution concept, which is now known as an NE (or Nash point).

Definition 1 An NE of the gameG = (N , (Sn)n∈N , (Πn)n∈N ) is a strategy profile x∗ = (x∗i , . . . , x
∗
N ) =

(x∗n, x
∗
−n) such that :

∀n ∈ N ,∀xn ∈ Xn,Πn(x
∗
n, x

∗
−n) ≥ Πn(xn, x

∗
−n), (2.2)

which describes a situation where an individual cannot improve their expected gains by altering their

strategy, assuming that the strategies of all other participants remain constant, then such a selection of

strategic choices is recognized as a Nash equilibrium. For this reason, an NE is said to be strategically

stable to unilateral deviations.

2.3.3 Generalized Nash Equilibrium problems

It quickly became clear that there was a need to extend the Nash equilibrium problems (NEP), allo-

wing players to also interact at the level of feasible sets. The term generalized Nash equilibrium problems
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(GNEP) was first introduced by G. Debreu in 1952 [36], where he used the term ’social equilibrium’.

This work was essentially a mathematical primer for the well-known paper by K. Arrow and G. Debreu

in 1954 [7] about economic equilibria. In this paper, they called the GNEP an ’abstract economy’, poin-

ting out that “In a game, the pay-off to each player depends upon the strategies chosen by all, but the

domain from which strategies are to be chosen is given to each player independently of the strategies

chosen by other players. An abstract economy, then, may be characterized as a generalization of a game

in which the choice of an action by one agent affects both the pay-off and the domain of actions of other

agents”. (p. 273, [7]).

K. Arrow and G. Debreu’s 1954 paper and Debreu’s subsequent 1959 book set the foundation for the

development of mathematical economics. For a long time (until the early 90s), the GNEP was primarily

the domain of economists and game theory experts. Some critics in this community have questioned

the GNEP, saying that it is not a real game. For instance, Ichiishi, in his impactful 1983 book [67],

stressed that an ’abstract economy’ is not a game because a player needs to know others’ strategies to

identify his feasible strategy set, but others can’t figure out their feasible strategies without knowing the

player’s strategy. Thus, he called an abstract economy a ’pseudo-game’ and saw it only as a mathematical

tool. However, further research showed the power of the GNEP model’s ability to describe and explain

phenomena ; its potential for designing rules, protocols, and taxes to achieve specific goals ; and the fact

that different game paradigms can be used where it’s conceivable, even in a non-cooperative setting, to

have mechanisms that make it possible to satisfy the constraints [47].

Generalized Nash Equilibrium The main difference that distinguishes classical games from GNEP

is that while solving GNEP, each player’s strategy must belong to a set Xn(x−n) ⊆ Rmn that depends

on other players’ strategies, i.e. the feasible set (or strategy space) of player n is defined by the value of

x−n. The goal of player n,∀n ∈ N , given the other players’ strategies x−n, is to choose a strategy xn

that solves the following minimization problem :

min
xn

Πn(xn, x−n),

s.t. xn ∈ Xn(x−n).

(2.3)

For any x−n, the solution set of problem (2.3) is denoted by Sn(x−n). The GNEP is the problem of

finding a vector x such that

xn ∈ Sn(x−n), for all n = 1, ..., N.
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Such a point x is called a solution of the GNEP or generalized Nash equilibrium (GNE). As in the case

of classical Nash equilibrium, a point x is therefore an equilibrium if no player can decrease his objective

function by changing unilaterally xn to any other feasible point :

Definition 2 An GNE of the GNEPG = (N , (Sn)n∈N , (Πn)n∈N ) is a strategy profile x∗ = (x∗1, . . . , x
∗
N ) =

(x∗n, x
∗
−n), where ∀n x∗n ∈ Xn(x

∗
−n), such that :

∀n ∈ N , ∀xn ∈ Xn(x−n),Πn(x
∗
n, x

∗
−n) ≥ Πn(xn, x

∗
−n), (2.4)

If the feasible sets Xn(x−n) do not depend on the rival players’ strategies, i.e. we have Xn(x−n) = Xn

for all n = 1, ..., N , the GNEP reduces to the standard game formulation.

Example 3 (from [47]) Consider a game with two players, i.e. N = 2, each player controlling one

variable. Assume that the players’ problems are

min
x1

(x1 − 1)2 min
x2

(x2 −
1

2
)2

s.t. x1 + x2 ≤ 1, s.t. x1 + x2 ≤ 1.

The optimal solution sets are then given by

S1(x2) =


1, if x2 ≤ 0,

1− x2, if x2 ≥ 0,

S2(x1) =


1
2 , if x1 ≤ 1

2 ,

1− x1, if x1 ≥ 1
2 .

Then it is easy to check that the solutions of this problem are given by (α, 1 − α) for every α ∈ [12 , 1].

Note that the problem has infinitely many solutions.

In the example above the sets Xn(x−n) are defined explicitly by inequality constraints. Defining the

feasible set in GNEP through the shared inequality constraints, i.e. the constraints that depend on the

decision variables of the other agents is a one way to define the GNEP. This is the case in our research and

we will often use such an explicit representation. More precisely, in order to fix notation and terminology,

first we say that the sets Xn(x−n) are given by

Xn(x−n) = {xn ∈ Rmn : gn(xn, x−n) ≤ 0}, (2.5)

where gn(·, x−n) : Rmn → Rkn , with equality constraints incorporated in a straightforward manner.

Consider the following example that will be used as a first step for building the models of peer-to-peer
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electricity markets used in our research.

Example 4 Consider a (simplified) peer-to-peer electricity trading made of a set N of N agents, each

one of them being located in a node of a communication network, that is modeled as a graph G :=

(N , E) where E ⊆ N × N is the set of communication links between the players. Let Γn be the set of

nodes, player n wants to trade electricity with.

Each agent n ∈ N minimizes their costs Πn(xn, x−n), associated with energy production / consum-

tion / trading, while having a possibility to trade with the other peers in the network. Trading decisions

are expressed as a decision variable (qnm)m∈Γn with qnm ∈ xn, i.e. the vector of the quantities exchan-

ged between n and m in the direction from n to m. We use the following convention : if qnm ≥ 0, then n

buys qnm from m, otherwise (qnm < 0) n sells −qnm to m.

The following condition on agent’s trades called trading reciprocity constraint couples the decisions

of two neighboring agents, ensuring for every node m ∈ Ωn that qmn+ qnm = 0. Assume that this is the

only shared constraint of the game. Thus, we can write each agent’s optimisation problem as

min
xn

Πn(xn, x−n),

s.t. xn ∈ X Individual
n

qnm + qmn = 0 ∀m ∈ Γn (ζnm),

(2.6)

where ζnm represents the dual variables, corresponding to the coupling contsraint. Note that we clearly

can express the shared equality constraints as the combination of two : qnm+qmn ≥ 0 and qnm+qmn ≤

0 ∀m ∈ Γn.

Our next goal would be to introduce the basic assumptions and reformulations later used in our

research.

2.3.4 Variational Equilibria

A first and important reformulation can be established under the following additional convexity as-

sumption.

Assumption 5 For every player n and every x−n, the objective function Πn(·, x−n) is convex and the

set Xn(x−n) is closed and convex.

This assumption is very common, especially in the economic applications, and is satisfied for the models

considered in our research. For example, we assume that it holds for (2.6) of Example 4. Using this
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assumption we can use the following reformulation of the GNEP, connecting it to the theory of (quasi-)

variational inequalities :

Theorem 6 ([47]) Let a GNEP be given, satisfying the Convexity Assumption 5, and suppose further that

the Πn are C1 for all n. Then, a point x is a GNE if and only if it is a solution of the quasi-variational

inequality QVI (X (x), F (x)), where

X (x) :=
N⋃

n=1

Xn(x−n)

and

F (x) := (∇xnΠn(x))
N
n=1 ,

where the quasi-variational inequality problem QVI (X (x), F (x)) consists in finding a vector x∗ ∈

X (x∗) such that (y − x∗)TF (x∗) ≥ 0 for all y ∈ X (x∗).

Here we have to note that consideration of the GNE without consideration of its restrictions might lead

to some undesirable results. Firstly, unfortunately, the theory for QVIs is less advanced than that for

variational inequalities (VI) [47], where the variational inequality problem VI (X,F (x)) consists in

finding a vector x∗ ∈ X such that

(y − x∗)TF (x∗) ≥ 0 for all y ∈ X .

The second problem that we might encounter an infinite number of equilibria, as in Example 3, which

is undesirable in general, but specifically in electricity markets, which we consider in our research. It is

therefore of interest to see whether it is possible to reduce a GNEP to a special case, at least under some

suitable conditions. In this respect it turns out that valuable results can be obtained for a special case and

VI.

Definition 7 Let a GNEP be given, satisfying the Convexity Assumption 5. We say that this GNEP is

jointly convex if for some closed convex X and all n = 1, ..., N , we have

Xn(x−n) = {xn : (xn, x−n) ∈ X} (2.7)

Note that Example 3 and Example 4 (under convexity assumptions on the objective functions) are ins-

tances of jointly convex GNEPs. Also, when the sets Xn(x−n) are defined explicitly by a system of

inequalities as in Example 3 or equalities as in Example 4, then it is easy to check that (2.7) is equivalent
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to the requirement that g1 = g2 = · · · = gN := g and that g(x) are (componentwise) convex with respect

to all variables x ; furthermore, in this case, it obviously holds that X = {x : g(x) ≤ 0}.

This class of problems has been first studied in detail in a seminal paper by Rosen (1965) [127] and

has been often identified with the whole class of GNEPs. Jointly convex GNEPs are also often termed as

GNEPs with coupled contraints, which we will use later on, as it reflects the structure of our models.

Finally, for this class of problems we can define a specific case of equilibria, shown to be extremely

useful in the research dedicated to the GNEPs in peer-to-peer electricity markets :

Definition 8 Let a jointly convex GNEP be given with C1-functions Πn. We call a solution of the GNEP

that is also a solution of VI (X , F ) a variational equilibrium (VE).

The first useful application of VE can be demonstrated by the following example :

Example 9 ([47] continued) In Example 3 the game has infinitely many solutions given by (α, 1 − α)

for every α ∈ [12 , 1]. Consider now the VI (X,F ) where

X = {(x1, x2) ∈ R2 : x1 + x2 ≤ 1}, F (x) =

2x1 − 2

2x2 − 1

 .

F is clearly strictly monotone and therefore this VI has a unique solution which is given by (34 ,
1
4) as can

be checked by using the definition of VI. Note that, as expected, this is a solution of the original GNEP.

This demonstrates that we can expect that the restriction of the set of considered GNEP might let us

obtain unique equilibrium. Moreover, as we show next, VE has some valuable properties associated with

desirable market properties in peer-to-peer setting. This is shown using KKT conditions.

2.3.5 KKT conditions

It is not difficult to derive primal-dual conditions for the GNEP. Assume, that the problem is de-

fined as in (2.3) with the sets Xn(x
−n) given by (2.5). With this structure in place, and assuming all

functions involved are C1, we can easily write down the KKT conditions for each player’s problem; the

concatenation of all these KKT conditions gives us what we can call the KKT conditions of the GNEP.

Suppose that x∗ is a solution of the GNEP. Then, if for player n a suitable constraint qualification

holds (for example, the Mangasarian-Fromovitz or the Slater constraint qualification), there is a vector

λ∗n of multipliers so that the classical Karush-Kuhn-Tucker (KKT) conditions

∇xnLn(xn, x
∗
−n, λn) = 0,
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0 ≤ λn ⊥ −gn(xn, x∗−n) ≥ 0

are satisfied by (x∗n, λ
∗
n), where Ln(x, λn) := Πn(x) + gn(x)

Tλn is the Lagrangian associated with

the n-th player’s optimization problem. Concatenating these N KKT systems, we obtain that if x∗ is a

solution of the GNEP and if a suitable constraint qualification holds for all players, then a multiplier λ∗

exists that together with x∗ satisfies the system

L(x, λ) = 0

0 ≤ λ ⊥ −g(x) ≥ 0,
(2.8)

where

λ :=



λ1

.

.

.

λN


, g(x) :=



g1(x)

.

.

.

gN (x)


, and L(x, λ) :=



∇x1L1(x, λ1)

.

.

.

∇xNLN (x, λN )


.

Theorem 10 ([47]) Let a GNEP be given defined by (2.3) and (2.5) and assume that all functions invol-

ved are continuously differentiable.

1. Let x∗ be an equilibrium of the GNEP at which all the player’s sub-problems satisfy a constraint

qualification. Then, a λ∗ exists that together with x∗ solves system (2.8).

2. Assume that (x∗, λ∗) solves the system (2.8) and that the GNEP satisfies the Convexity Assump-

tion. Then x∗ is an equilibrium point of the GNEP.

Remark 11 The differentiability assumption on the problem functions involved can be relaxed by using

some suitable notion of subdifferential.

Next consider the case of a jointly convex GNEP with the feasible setX having the explicit represen-

tation X = {x : g(x) ≤ 0} for some (componentwise) convex function g. Hence the strategy space for

player n is given by Xn(x−n) = {xn : g(xn, x−n) ≤ 0} for all n = 1, . . . , N . Similar to the previous

discussion on general GNEPs, it follows that the KKT conditions of player n-th optimization problem is

given by

∇xnΠn(xn, x−n) +∇xng(xn, x−n)λn = 0

0 ≤ λn ⊥ −g(xn, x−n) ≥ 0
(2.9)

for some multiplier λn. On the other hand, consider the corresponding VI (X,F ). The KKT conditions
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of this VI (see [47]) are given by

F (x) +∇g(x)λ = 0,

0 ≤ λ ⊥ −g(x) ≥ 0
(2.10)

for some multiplier λ. The precise relation between these two KKT conditions and a GNEP solution

is given in the following result which, basically, says that (2.10) holds if and only if (2.9) is satisfied

with the same multiplier for all players n or, in other words, that a solution of the GNEP is a variational

equilibrium if and only if the shared constraints have the same multipliers for all the players.

Theorem 12 [[47], [63]] Consider the jointly convex GNEP with g,Πn being C1. Then the following

statements hold :

1. Let x∗ be a solution of the VI (X , F ) such that the KKT conditions (2.10) hold with some mul-

tiplier λ∗. Then x∗ is a solution of the GNEP, and the corresponding KKT conditions (2.9) are

satisfied with λ1 := . . . := λN := λ∗.

2. Conversely, assume that x∗ is a solution of the GNEP such that the KKT conditions (2.9) are

satisfied with λ∗1 = . . . = λ∗N . Then (x∗, λ∗) with λ∗ := λ∗1 is a KKT point of VI (X,F ), and x̄

itself is a solution of VI (X,F ).

This theorem has important consequences and interpretations for the models considered in this disser-

tation. Consider again the problem presented in Example 4. Following the definition of VE and Theo-

rem 12, we can write that VE of the game defined by the maximization problems (2.6) with coupling

constraints, is a GNE of this game such that, in addition, the Lagrangian multipliers associated to the

coupling constraints are equal, i.e. :

ζnm = ζmn, ∀n ∈ N , ∀m ∈ Γn (2.11)

By duality theory, ζnm for n ∈ N , ∀m ∈ Γn can be interpreted as bilateral energy trading prices [26].

In general, ζnm ̸= ζmn, thus leading to non-symmetric energy trading prices between couple of agents.

Relying on VE as solution concepts enforces a natural symmetry in the bilateral energy price evaluation

between any couple of agents [26].

2.3.6 Algorithmic approaches

The problem of coordinating the agents to a Nash equilibrium is of great importance for control

purposes and it has consequently been addressed by many authors in the last few years. In the field of

GNEP, distributed (variational) GNE computation is an active research area. Generally, decomposition
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algorithms are an intuitive choice when dealing with Generalized Nash Equilibrium Problems (GNEPs).

One of the first proposed solutions is a best-response Gauss-Seidel algorithm [47, 48], applied to a Ge-

neralized Potential Game (GPG). Essentially, in a Nash game, each player tries to optimize their own

objective function. Thus, an iterative algorithm, like a Gauss-Seidel method, suits well as an initial step

in this direction. In this method, during each cycle, each player looks at the strategies the other players

are using, then updates their own strategy by solving their respective optimization problem. The GPG is

a special structure of the game that arises in various applications, e.g., demand side management in the

smart grid [8, 81]. Briefly, this structure can be understood as that there is a single function P that, in

some sense, reflects the changes in the players’ objective functions. In [17] authors show that, with a cor-

rect preconditioning, the preconditioned proximal-point (PPP) method generates an efficient algorithm

for GNE seeking in GPG with linearly coupled cost functions, in terms of convergence speed. Authors

derive a single-layer, fixed-step, distributed algorithm for the computation of a GNE in network potential

games with linear coupling constraints.

Another subclass of games is an aggregative game (AG), which involves a set of linked optimization

problems related to noncooperative agents. In these games, each participant is affected by the collective

impact of all participants’ actions [73], [70]. Aggregative games appear in various types of problems.

These include demand-side management in the smart grid [128], such as the charging and discharging

of electric vehicles [57, 88, 89, 108]. They are also used for demand-response regulation in competi-

tive markets [81], and for managing congestion in traffic and communication networks [11]. Authors in

[105,110], and [59] consider aggregative games with quadratic objective functions, adopting strong mo-

notonicity and Lipschitz pseudo-gradient. In [109] authors consider average aggregated games, in which

each agent’s action is influenced by the average strategy of the entire population. Average aggregated

games are also considered in [106], where authors focus on the relation between Nash and Wardrop

equilibria in GNEPs and propose a decentralized two-level algorithm based on optimal response with

an outer loop that updates a dual variable to achieve a Wardrop equilibrium, as well as propose a de-

centralized one-level asymmetric projection algorithm based on gradient step to achieve either a Nash

or a Wardrop equilibrium. Semi-decentralized algorithm in aggregative games with coupling constraints

and non-differentiable cost functions is considered in [16]. In this work, the authors first critically re-

view the most relevant available algorithms by leveraging the framework of monotone operator theory

and operator splitting. Following this review, authors design two novel schemes. The initial scheme is a

single-layer, fixed-step algorithm with convergence guaranteed for general monotone aggregative games,

even those not classified as co-coercive or strictly monotone. The subsequent scheme is a single-layer

proximal-type algorithm that is specifically designed for a class of monotone aggregative games with
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linearly coupled cost functions.

Operator-splitting approaches are widely used in the literature dedicated to GNE (VE) seeking ; it

allows the design of GNE algorithms that are guaranteed to globally converge with fixed step-sizes, with

concise convergence proofs [111]. For games with affine coupling constraints, distributed and center-

free GNE seeking is investigated via an operator approach in [156–158] : a forward-backward algo-

rithm, convergent in strongly monotone games [156], [158], and preconditioned proximal algorithms for

monotone games [157], while semi-decentralized algorithms, requiring a central node (coordinator) to

broadcast the common multipliers and/or aggregative variables are presented in [15,16,58]. Another sub-

class of operator splitting approaches (Douglas–Rachford splitting) is a celebrated Alternating Direction

Method of Multipliers (ADMM) in distributed optimization, which is a special implementation of the

DR splitting method. In [130] authors develop an algorithm for GNE problems within the framework

of inexact-ADMM. Players are only aware of their own cost functions (which are not in the form of

aggregative but general game), problem data (which is related to a private coupled equality constraint

for each player) and action set of all players (they are not aware of the others’ actions). In [23] authors

use a regularized version of ADMM and present a global convergence result for N ≥ 2 players under a

partial strong monotonicity and a partial Lipschitz condition in Hilbert spaces, while Jacobi-type ADMM

method for the similar problems is considered in [22]. ADMM methods are widely applied to LEMs as

they align well with decentralized structure of these markets [64].

Lastly, a fundamental problem in monotone game theory is the computation of a specific generalized

Nash equilibrium (GNE) among all the available ones, e.g., the optimal equilibrium with respect to a

system-level objective. In [19], authors address this open problem by leveraging results from fixed-point

selection theory and derive distributed algorithms for the computation of an optimal GNE in monotone

games. Authors also extend the technical results to the time-varying setting and propose an algorithm

that tracks the sequence of optimal equilibria up to an asymptotic error, whose bound depends on the

local computational capabilities of the agents.

Distributed computation of GNE and especially VE represents an active area of current research

that hold immense potential for substantial improvements of the distributed systems, with peer-to-peer

electricity markets in particular.
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A Stackelberg Game Analysis of Risk-Hedging Strategies in

Decentralized Electricity Markets

3.1 Introduction

Motivated by the need for electricity market restructuring, this chapter quantitatively analyzes decen-

tralized market designs formulated as equilibrium problems. In the last years, decentralization has been

broadly seen as an upcoming trend in network economics [33,49], and more specifically in the electrcity

market literature where it is perceived as an emerging topic [6, 26, 95], largely due to the liberalization

of the energy sector, that has to account for the massive penetration of renewable energy sources (RES),

and the more proactive role of prosumers.

Equilibrium problems used to analyze market designs rely heavily on the structure and the rules of

the market, as well as on the way network constraints are handled [65]. As a first step, in order to account

for the strategic behavior of consumers and the network constraints, we model the electricity market as

a generalized Nash equilibrium problem (GNEP), i.e., a noncooperative game endogenizing shared cou-

pling constraints within the agents’ parametrized optimization problems. We employ generalized Nash

equilibrium (GNE) as a solution concept [63,74,159], and a refinement of it, called variational equilibria

(VE), assuming that the shadow variables of the shared coupling constraints are aligned among the agents

[74, 127]. We focus on the design of decentralized electricity markets which rely on a network defining

each agent’s trading relationships, e.g., their neighbors. We focus on a financial level of a distribution

network, but coupling between the market and the physical layer of a distribution network (seen e.g. as

two inter-dependent layers [133]) constitutes an interesting direction for future work.

When dealing with future uncertain losses, agents can have individual perception of uncertainties

or risk perception, that should be accounted for in the prosumers’ optimization problems. Whenever

agents have different perceptions of risk (heterogeneous risk aversion framework), it might lead to market

inefficiencies [40, 54, 117, 121]. Additionally, the heterogeneous description of uncertainties makes the

market incomplete for risk [96]. We allow financial contracts trading between agents to complete the

market [123]. These contracts act as instruments to reduce the effect of heterogeneous risk attitudes on

the outcome of the risk adjusted market. The questions that naturally arise from this inclusion are : i)

how to define a mechanism with desirable market properties (e.g., economic efficiency, fairness) for risk

hedging financial contracts ? ii) How to incentivize the prosumers to participate in this market ? And, iii)

how to characterize the resulting equilibria ?
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To answer these questions, we model financial contracts in the form of Arrow-Debreu securities.

Several works have considered Arrow-Debreu securities for risk trading among prosumers in peer-to-

peer electricity markets [54,96,144] in a decentralized one-level setting. Dealing with these securities, a

first market design option requires the involvement in the market of an additional strategic agent, that can

be interpreted as an insurance company. The insurance company acts as a seller of financial contracts with

the goal to maximize its profit. In a second market design option, we allow the agents to trade Arrow-

Debreu securities both with the insurance company and with the other agents, to hedge their risks. For

both options, the presence of an insurance company that has to provide contract options to the prosumers

calls for a Stackelberg formulation of the model, in which the insurance company acts as a leader and

prosumers as followers.

Stackelberg games [138] have been extensively applied in various fields such as market design, fi-

nancial hedging, security applications, etc. [27, 85, 132, 150, 155]. Stackelberg games can be casted as

bilevel optimization problems where one problem (followers’ or lower-level) is nested within another

(leader’s or upper-level). The structure of our problem naturally gives rise to a one-leader, multi-follower

generalized Stackelberg game involving a GNEP at the lower level which might have multiple solutions

[26], [144]. In that setting agents might either try to cooperate with the leader, or behave in an adversarial

way, thus, either they choose the best solution with respect to the leader’s objective (optimistic bilevel

problem) or the worst one (pessimistic bilevel problem). We consider both optimistic (OBP) and pessi-

mistic (PBP) formulations. PBP is usually considered to be more complicated to solve than OBP, due to

the difficulties arising in the computation of its solution or even in the proofs of existence of solutions

[18, 85, 86, 125]. To guarantee the existence of a solution of PBP, we include contract price based in-

centives for the prosumers, which allow us to characterize Stackelberg-Nash equilibrium of PBP, and to

compare it to the solution of OBP.

In addition, the literature dedicated to the computation of PBP solutions often focuses on the compu-

tation of approximate equilibria [77,85] or specific cases [12,32,149]. Using the structure of our model,

we parametrize the response of the prosumers by introducing a choice function, which allows us to refor-

mulate the initial bilevel problem as a set of parametrized GNEPs. This allows us to use results from the

GNEP literature [139, 141, 159] to analyze the market equilibria. Finally, we compare the properties of

our market models on data from Pecan Street, by computing the prosumers’ individual costs, the social

cost, analyzing fairness, and the impact of incomplete information on the insurance company’s cost.
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3.1.1 Related Work

Game-theoretic models have been widely employed to investigate agents’ strategic behaviors in elec-

tricity markets [39,65,141,149]. In [26], authors quantify the efficiency loss relying on the price of anar-

chy and capture the impact of incomplete information on the market equilibrium relying on GNE and VE.

In the same vein, the economic dispatch in electricity trading with different structures of communication

is analysed using consensus based approaches in [95, 96].

A large part of the literature focuses on the impact of risk on the agents’ decisions in competitive

settings [35, 53, 123] and in electricity markets in particular [1, 40, 54, 96, 117, 121, 144]. Among them,

many papers explore equilibrium properties assuming that the market is not complete for risk [1, 35, 40,

117, 121, 123]. In [72], authors analyze the impact of heterogeneous risk preferences on the electricity

market equilibrium. In [35], authors discuss incomplete risk trading and its impact on the long-term

strategic investment decisions, and compare cases of complete and fully incomplete markets for risk.

Risk trading alongside with the properties of complete market is explored in [123]. Financial hedging in

a supply chain, modeled as a Stackelberg game, is considered in [27] and hedging inventory risk in [53],

where authors show that risk hedging leads to a lower risk and a higher return on inventory investment.

Heterogeneous risk-adjusted decentralized electricity markets are considered in [96], [144]. In [96], a

model for risk hedging via financial contracts is considered. It addresses the definition of fairness and the

impact of risk in a one settlement two-stage market. In [144], a Nash equilibrium problem formulation

is considered under different degrees of market completeness for risk. In [54], coherent risk measures

are employed. In this paper, the authors analyse risk-adjusted markets and evaluate the impact of risk-

hedging contracts on the market efficiency. The question of uniqueness and existence of risk-averse

equilibria is addressed in [1, 54, 123], where one can find insights on some equivalences between social

planner problems and equilibrium problems. The problem we address in our paper relies on a similar

risk-averse setting. In [54, 96, 144], risk trading takes the form of Arrow-Debreu financial contracts, that

prosumers can trade among themselves. We go further and supplement this one stage model with an ad-

ditional layer operated by an insurance company. We thoroughly analyze the resulting Stackelberg game,

considering both optimistic and pessimistic formulations and provide results on equilibria characteriza-

tion, solution existence and market properties.

A wide range of problems, from security games [136] to general market design, are modeled as

Stackelberg games. We provide only a few relevant examples and refer the reader to the literature for

further information [38, 85, 136]. In [132], authors study Stackelberg-Nash-Cournot equilibria in a game

with one leader and N followers and analyze its properties under mild economic assumptions. De Wolf

and Smeers extend this result in [150] to a stochastic version, in which the decision of the leader is
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taken while the market demand is uncertain, and provide a practical implementation of their model in

the European gas market. Equilibrium problems with equilibrium constraints (EPECs) arising from the

applications of Stackelberg game to the electricity markets are thoroughly analyzed in [65, 122, 155].

In the bilevel optimization literature, most chapters focus on the solution characterization and the

development of computational approaches [12, 18, 32, 77, 85, 86, 136, 149] . In [77], authors focus on

PBP, reformulating it in a standard form and then as a bilevel problem with a two player GNEP at

the lower level, that later can be solved as a mathematical program with complementarity constraints

(MPCC). They consider ε solution of the lower-level problem in order to overcome issues arising from

PBP solution existence. We use the machinery from [77] to analyze PBP and its properties, but we focus

on ε solution of the upper-level problem and introduce a parametrization of the reaction of the prosumers

that allows us to use computational approaches suited for GNEPs.

3.1.2 Contributions and Chapter Organization

We provide a thorough analysis of equilibrium models for risk-averse market design taking into ac-

count uncertainties, the agents’ strategic behaviors and network constraints. By comparison with the

previous works that account for players with heterogeneous risk-aversion levels, in the context of local

energy communities [96, 144], we focus on an imperfect competition setting in which the electricity

market price is not enforced by an exogenous price setter, but is obtained as the result of the interactions

between the prosumers. To that purpose, we first consider a noncooperative game model with coupled

constraints capturing the energy trading reciprocity constraints between couples of agents, therefore lea-

ding to a GNEP framework. This allows us to include the connection graph structure, capturing the

prosumers’ trading preferences, in the prosumers’ energy exchange model.

We first build a risk-averse model to capture risk-attitude heterogeneity among the agents and sup-

plement it with an additional layer, operated by an insurance company. The insurance company can

supply risk-hedging financial contracts for the agents as a sole supplier and as a competitor for an inter-

agent financial contracts trading. We analyze the resulting Stackelberg game considering both optimistic

and pessimistic formulations, and provide results on equilibria characterization, solution existence and

market properties. We first prove the equivalence of the reformulation of the bilevel problem with a

parameterized GNEP, by using a so-called choice function. Relying on this parametrization, we prove

that the PBP formulation might not have a solution without including additional price incentives from

the insurance company. Then, we prove that a slight decrease in the financial contracts’ price leads to a

solution of PBP that is ε close to the optimistic solution of OBP. We next discuss the situation where the

insurance company has incomplete information about the prosumers’ risk-aversion levels, and analyze
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the resulting two-stage market equilibrium, proving that it is economically efficient and fair.

The organization of the rest of this chapter is as follows : after introducing the problem statement

in section 3.2 and the agents in section 3.2.1, we analyse risk-averse market equilibria in an incomplete

market setting, in section 3.2.2. We discuss completeness of the market in section 3.3, in which we build

a two-stage market design involving an insurance company in section 3.3.1. In section 3.4, we provide

a comprehensive analysis of the resulting Stackelberg game, considering both OBP and PBP. Numerical

illustrations are provided in section 3.5.

3.2 Problem Description

We consider a single-settlement market for decentralized electricity trading modeled as a noncoo-

perative game PG involving a set N of N agents (prosumers). Each agent is located in a node of the

network, which is modeled as an undirected connected graph G := (N,E) where E ⊆ N ×N is the set

of links between the agents. Agent n can trade energy only with her neighbors in G, denoted by Γn. The

graph G does not necessarily reflect the distribution power network constraints. We do not consider the

physical layer of the distribution network, but coupling it with the market (seen as two inter-dependent

layers) constitutes an interesting direction for future work [133].

3.2.1 Agents

We assume that each agent n ∈ N is equipped with RES-based self-generation which is denoted by

∆gn. To model randomness, we employ scenario based approach, which is widely used in the literature

dedicated to the electricity markets [40, 54, 96, 144]. This approach allows to account for the stochasti-

city of the electricity market involving RES-based generation and risk hedging contracts. There are T

possible scenarios : T := (1, . . . , T ). Each agent’s probability of being in a scenario t is given by pt s.t.∑
t∈T p

t = 1. Probabilities pt for all t ∈ T are known by all the agents. Another approach to model

individual and collective uncertainty is described in Appendix 3.7.3.

Each prosumer n chooses independently her bilateral trades qtn, flexible energy generation gtn and

flexible demand dtn, to minimize her cost function Πt
n. The quantity exchanged between n and m, is

denoted as qtnm for all m ∈ Γn \ {n}. If qtnm ≥ 0, then n buys qtnm from m, otherwise (qtnm < 0) n sells

−qtnm to m. We use subscript t to reflect the dependence of the decision variables on the scenario.

Feasibility Set In each node, we introduce Dn := {dtn ∈ R+|Dn ≤ dtn ≤ Dn} as agent n’s demand

set and Gn := {gtn ∈ R+|Gn ≤ gtn ≤ Gn} as agent n’s generation set. Given a scenario t, we impose an
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equality on the trading reciprocity :

qtnm + qtmn = 0, ∀m ∈ Γn (3.1)

which couples agents’ bilateral trading decisions. It means that, in the case where qtmn > 0, the quantity

that n buys fromm should be equal to the quantity qtnm thatm is willing to offer to n. Let κnm ∈ [0,+∞)

be the equivalent trading capacity between node n and node m, such that κnm = κmn. Then

qtnm ≤ κnm, ∀m ∈ Γn (3.2)

Local supply and demand balance leads to the following equality in each node n in N , with ∆gtn

denoting RES-generation :

dtn = gtn +∆gtn +
∑
m∈Γn

qtnm (3.3)

We denote the dual variable ξtnm associated with the constraint (3.2), ζtn as the dual variable for (3.1)

and λtn for (3.3). Denote xt
n := (dtn, g

t
n, q

t
n) to be the vector which contains the decision variables of pro-

sumer n. We denote feasibility sets as Kn(x
t
−n) := {xt

n|dtn ∈ Dn, g
t
n ∈ Gn, (3.1), (3.2), (3.3) hold ∀t ∈

T }, where xt
−n is a vector which contains the decisions of all agents excluding agent n. Joint admissible

set is written then as a K :=
∏

nKn(x
t
−n).

Prosumer n’s Cost Function We consider a quadratic production cost with an, bn, cn > 0 :Cn

(
gtn
)
=

1
2ang

t
n
2
+ bng

t
n + cn for all t ∈ T . We assume that the self-generation occurs at zero marginal cost with

a quadratic form of the cost, that is seen as realistic for a large class of conventional generators [26].

The usage benefit perceived by agent n is modeled as a strictly concave function of agent n’s demand :

Un

(
dtn
)
= −ãn(dtn − d̂tn)2 + b̃n for all t ∈ T , where d̂tn is a target demand defined exogenously for

agent n.

We introduce price differentiation that characterizes both the locational aspects and the preferences

of the prosumers. The preferences are modeled with (product) differentiation prices : each agent n has

a price cnm to trade with an agent m in her neighborhood Γn. The total trading cost of agent n is

modeled by a linear function C̃n(q
t
n) =

∑
m∈Γn,m ̸=n cnmq

t
nm,∀t ∈ T , where parameters cmn > 0 can

be interpreted as taxes for energy trading or agents’ preferences regarding the trade characteristics. If

qtnm > 0 then n has to pay the cost cnmqtnm > 0. Thus, the higher cnm is, the less interesting it is for n

to buy electricity from m but the more interesting it is for n to sell electricity to m. We write prosumer
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n’s cost function ∀t ∈ T as follows :

Πt
n = Cn

(
gtn
)
+ C̃n

(
qtn
)
− Un

(
dtn
)
∀t ∈ T (3.4)

Local Market Operator (MO) In the electricity market literature, the electricity trading problem

is often considered to be solved in a centralized way, requiring the presence of a market operator

(MO) to which all the private information is reported [144], [96]. In our work, the centralized elec-

tricity market design will be considered as the benchmark. The MO minimizes the social cost, SC :=∑
n∈N

∑
t∈T Πt

n, under constraints expressed by the joint feasible set K.

3.2.2 Risk-Averse Electricity Market Design

In this chapter, we focus on a risk-averse design in which we consider a market with collective un-

certainties that are common knowledge, but agents have different risk-aversion levels. On the contrary, in

the risk-neutral formulation, prosumers optimize their costs with respect to the probabilities pt, without

taking into account the heterogeneity of the risk perception of the agents. A detailed description of the

risk-neutral electricity market design can be found in the Appendix.

Under risk-averse market design, the prosumers act upon the set of risk attitudes χn, n ∈ N . Different

risk attitudes imply different risk perception of the cost function (3.4). To account for the risk-averse

behavior of the agents, we employ CVaR as a coherent risk measures in agents’ objective functions. CVaR

is known to have a lot of appealing properties, e.g., it is coherent, easy to integrate in an optimization

problem, etc. [126].

By definition, CVaR is the average of all realizations larger than the VaR, where the latter is gi-

ven by ηn = minηn{ηn |P[Πt
n ≤ ηn] = χn}. Then, we write CVaR as follows : R[Πt

n] = ηn +

1
(1−χn)

∑
t∈T p

t[Πt
n−ηn]+. Note thatR[Πt

n] is convex in (dtn, g
t
n, q

t
n, ηn) if Πt

n is convex in (dtn, g
t
n, q

t
n),

which is the case in our model. The non-differentiability ofR[Πt
n] can be overcome by leveraging the epi-

graph form [126] :R[Πt
n] = ηn+

1
(1−χn)

∑
t∈T p

tutn, with utn ≥ 0 and Πt
n−ηn ≤ utn with dual variables

πtn and τ tn respectively. Define feasibility set K̃n as K̃n(x
t
−n) := {xn = (dtn, g

t
n, q

t
n, u

t
n, ηn)t|(dtn, gtn, qtn) ∈

Kn(x
t
−n), u

t
n ≥ 0,Πt

n−ηn ≤ utn} and denote K̃ :=
∏
K̃n(x

t
−n) as a joint admissible set. We formulate

agent n’s optimization problem as :

min
dtn,g

t
n,q

t
n,u

t
n,ηn

ηn +
1

(1− χn)

∑
t∈T

ptutn, (3.5a)

s.t. (dtn, g
t
n, q

t
n, u

t
n, ηn) ∈ K̃n(x

t
−n). (3.5b)
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To analyse the efficiency loss of decentralized electricity market designs, we apply solutions concepts

of Generalized Nash Equilibria and Variational Equilibria, both of them exist under mild conditions [74],

[159].

Definition 13 A Generalized Nash Equilibrium (GNE) of the noncooperative game PG with coupling

constraints is a vector x := (xn)n that solves the maximization problems of the agents or, equivalently,

a vector x such that x solve the KKT system for each n.

Definition 14 A Variational Equilibrium (VE) is a GNE such that the Lagrangian multipliers of the

coupling constraints (3.1), are equal, i.e. :

ζtnm = ζtmn, ∀n ∈ N ,∀m ∈ Γn (3.6)

By duality theory, ζtnm for n ∈ N ,∀m ∈ Γn can be interpreted as bilateral energy trading prices

[26]. In general, ζtnm might not be aligned with ζtmn, thus leading to non-symmetric energy trading

prices between couple of agents. Relying on VE as solution concepts enforces a natural symmetry in

the bilateral energy price valuations [26]. However, this might require strong coordination between the

agents.

3.3 Completeness of the Market

A market is said to be complete, whenever there exists an equilibrium price for every asset in every

possible state of the world ; the market is incomplete otherwise [10], [96]. To complete the market in

the sense of this definition, we include financial contracts that are intended to hedge the risk of market

participants. We discuss below two possible designs of the risk hedging market.

3.3.1 Two Stage Design of the Risk-Hedging Market with an Insurance Company

We introduce an insurance company I , whose sole purpose is to sell the state contingent claims to

the agents. We want to consider the situation in which financial contracts trading inside the community

is not sufficient to satisfy all the demand, and agents still have the possibility to buy missing contracts

from I . Below, we build a model of a risk hedging market, including first the insurance company and

finally both the insurance company and inter-agent financial contracts trading. We model the insurance

company as a distinct agent whose behavior is restricted purely to contract trading. I decides on the price

αt
n and the maximum contract value J t for the contract J t

n, which is paid if the outcome t is realized. In
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this framework, the cost function of the insurance company is defined as follows :

ΠI =
∑
n∈N

[
−
∑
t∈T

αt
nJ

t
n︸ ︷︷ ︸

Received revenue

+
∑
t∈T

ptJ t
n︸ ︷︷ ︸

Insurance payments

]
(3.7)

With the presence of the sole insurance company at the upper-level and without inter-agent trading on

the lower-level, the timeline of the risk-hedging market can be described as follows :

(1) The insurance company I optimizes (anticipating the reaction of the prosumers) the contract

price αt
n for prosumer n and the maximum amount J t (the same for all agents) for scenario t.

(2) Each prosumer n ∈ N determines the contracts J t
n she wants to buy such that 0 ≤ J t

n ≤ J t

and buys the contracts by paying the total price
∑

t∈T α
t
nJ

t
n to receive J t

n in scenario t.

Note that the price αt
n for the insurances is settled per scenario, per agent instead of per scenario in the

inter-agent trading case. The motivation for this setting comes from the ability of the insurance company

to evaluate the risks related to each agent as it is usually done in practice : the insurance company has

means to assess these risks more accurately than the prosumers. Moreover, the insurance might propose

contract prices that are discriminatory.

The sequence of decisions introduced in the timeline above made by insurance company I and pro-

sumers have a hierarchical structure. It can be modelled as a Stackelberg one leader multi-follower game

in which I acts as a leader and prosumers as followers. The leader anticipates the reaction of the fol-

lowers when optimizing his strategy, while the followers react rationally to the actions of the leader by

computing their best-response functions. Formally, the one leader multi-follower game can be written as

follows :

min
(αt

n,J
t
)n∈N

∑
n∈N

[
−
∑
t∈T

αt
nJ

t
n +

∑
t∈T

ptJ t
n

]
(3.8a)

s.t. 0 ≤ αt
n ∀n ∈ N (3.8b)

∀n ∈ N J t
n ∈ argmin

Jt
n,x

t
n

Πn︷ ︸︸ ︷∑
t∈T

αt
nJ

t
n + ηn +

1

(1− χn)

∑
t∈T

ptutn (3.8c)

s.t. xtn ∈ K̃n(x
t
−n) ∀n ∈ N (3.8d)

0 ≤ J t
n ≤ J t ∀n ∈ N (3.8e)

where (3.8a) - (3.8b) constitute the upper level and (3.8c) - (3.8e), the lower level problems. Note that
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the risk-adjusted costs of the agents are changing due to contract inclusion :

R[Πt
n] =

∑
t∈T

αt
nJ

t
n + ηn +

1

(1− χn)

∑
t∈T

pt[Πt
n − J t

n − ηn︸ ︷︷ ︸
≤ut

n

]+. (3.9)

for which we can employ the epigraph form accordingly.

3.3.2 Two-level Design of the Risk-Hedging Market with Insurance Company and Inter-

Agent Trading

In this design we incorporate risk-hedging that includes both the insurance company and inter-agent

financial contracts trading. We assume that the agents can not only acquire insurances J t
n but also they

can trade risk with each other using financial contracts, i.e., they pay a certain amount contingent on a

given scenario occurring. We assume that agent n can trade risk with the whole communityN . The price

for the contract corresponding to the scenario t ∈ T is denoted γt. It is supposed to be homogeneous,

e.g., the same price is proposed to all the agents in order to have non-discriminatory pricing on the

prosumers’ level. Note, that we impose no bound on the sign of W t
n.

More precisely, we consider a modified formulation of (3.8) with prosumers’ risk-adjusted costs at

the lower level written as

R[Πt
n] =

∑
t∈T

[αt
nJ

t
n + γtW t

n] + ηn +
1

(1− χn)

∑
t∈T

pt[Πt
n −W t

n − J t
n − ηn︸ ︷︷ ︸

≤ut
n

]+. (3.10)

for which we can employ the epigraph form accordingly. It means that now in stage (2) of the timeline

of the two-level game, each prosumer n ∈ N decides on the contracts W t
n, J

t
n she wants to buy after

receiving price αt
n, s.t. 0 ≤ J t

n ≤ J t and buys the contracts by paying the total price
∑

t∈T α
t
nJ

t
n +∑

t∈T γ
tW t

n in order to obtain contingent payments J t
n +W t

n in scenario t.

3.4 Stackelberg Game Analysis

Section 3.4.2 starts with an introduction of the differences between OBP and PBP formulations for

the two-level problem with I as the only seller of financial contracts. In section 3.4.2, we first discuss

the prices of the financial contracts and existence of solution in PBP. We propose price incentives for the

prosumers in section 3.4.2 and compare the resulting equilibria with the solution of OBP, investigated in

3.4.2. Further, in 3.4.2, we discuss an extension of the Stackelberg game, including imperfect information

about risk attitudes of the prosumers. In section 3.4.3 we analyze the two-level formulation with both I
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and inter-agent trading of financial contracts. The also discuss the market properties of the resulting

model.

3.4.1 Two-Stage Problem Preliminaries

First, we will need some standard bilevel optimization notations. We denote the insurance compa-

ny’s (at the upper level) variables as xI = (αt
n, J

t
, utn,I)n and prosumer n’s (at the lower level) va-

riables as xLn = (J t
n,x

t
n). Let ϕ(xI) denote the value function of the lower level problem in (3.8) :

ϕ(xI) := minxn{Πn(xI , x
L
n)|xn ∈ K∗

n(x
L
−n, xI)} where K∗

n(x
L
−n, xI) is the feasible set of the lower

level problem for prosumer n and xI , is the decision variables of I . Then, the dependent optimal point

set of this problem can be written as Sn(xI ,x−n) := {xn ∈ K∗
n(x

L
−n, xI)|Πn(xI , x

L
n) ≤ ϕ(xI)}. XI

denotes the feasible set of the upper-level optimization problem. Combining these definitions, we can

write the bilevel optimization problem as

” min
xI ,xL

n

” ΠI(xI , x
L
n)

s.t. xI ∈ XI

xLn ∈ Sn(xI ,xL
−n) ∀n ∈ N

(3.11)

and separately the individual problem for agent n on a lower-level problem in a compact form ∀n ∈ N :

min
xL
n

Πn(xI , x
L
n)

s.t. xLn ∈ K∗
n(x

L
−n, xI)

(3.12)

For the KKT conditions, we use the following notation : gLn,i(·) ≤ 0 (hLn,j(·) = 0) represents the

generic inequality (equality) constraints of the lower-level problem for prosumer n, while ξLn is the

vector of dual variables for prosumer n’s problem. In the same manner, we use notations gIi (·), hIj (·), ξU

for the upper-level problem. Let IL (JL) denote the index set of the market level inequality (equality)

constraints and IU (JU ) denote the index set for the upper level constraints. The optimal dual variable

set of prosumer n for the lower-level problem is denoted as

Ξn(xI ,x
L
−n, x

L
n) :=

{
ξLn ≥ 0 : ξLn,ig

L
n,i(xI ,x

L
−n, x

L
n) = 0,∇xL

n
L(xI ,xL

−n, x
L
n , ξ

L
n ) = 0

}
(3.13)

Definition 15 (Slater’s condition) We say that Slater’s condition holds for prosumer n’s lower level

problem (3.12) for a given xI , if there exists xLn such that hLi (xi,x
L
−n, x

L
n) = 0 and gLi (xi,x

L
−n, x

L
n) < 0.
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Proposition 16 1. Slater’s condition holds for the lower level problem for each n ∈ N and for

each xI ∈ XI .

2. The lower-level problem (3.12) is convex ∀n ∈ N for each xI ∈ XI .

3. Ξn(xI ,x
L
−n, x

L
n) is upper-semicontinuous.

Proof.

1. The first part of the proposition statement simply follows from the structure of the constraints of

the lower-level problem : taking dtn = gtn > 0, utn > 0 and qnm = 0 ∀n,m if κnm > 0 and

rewriting constraint (3.2) as an equality if κnm = 0 we can guarantee its qualification.

2. Convexity of the lower level problem (3.12) follows from the fact that the matrices of the constraints

are positive semi-definite.

3. Slater’s condition implies MFCQ, then we use Theorem 3.1 from [38], Theorem 2.3 from [125]

Lastly, we recall the notion of equilibria we use in our analysis.

Definition 17 A Stackelberg equilibrium of the game defined in (3.8) is a tuple (x∗I ,x
∗,L) such that

x∗,L
n ∈ Sn(x∗I ,x

∗,L
−n) and ΠI(x

∗,L
I ,x∗) ≤ maxxL

n∈Sn(xI ,x
L
−n)∀n

ΠI(xI ,x
L).

Efficiency of the Lower Level Equilibria First market property that we prove is the economic effi-

ciency of the Variational Equilibrium of the lower level problem (3.12), by considering its centralized

formulation. A centralized problem is formulated by means of a local Market Operator (MO) who col-

lects all the information of prosumers ∈ N and then solves the problem (3.12) as a single optimization

problem, reacting to the actions xI of the leader (insurance company I). It constitutes a single leader

single follower game (SLSF), with the lower level problem written as

min
xL

∑
n∈N

Πn(xI , x
L
n)

s.t. xLn ∈ K∗
n(x

L
−n, xI) ∀n ∈ N

(3.14)

Writing the KKT conditions for the problems (3.12) and (3.14), and using the property of the VE,

we can establish the following result :

Proposition 18 The set of Variational Equilibria of the GNEP given by (3.12) for all n ∈ N coincides

with the set of social welfare optima solutions of (3.14).

Besides the important property of efficiency, Proposition 18 allows us also to build theoretical analy-

sis of both pessimistic and optimistic formulations of bilevel problem.
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3.4.2 Optimistic Versus Pessimistic Formulations of the Game

In our analysis of the two-level insurance market, we focus on two formulations of the bilevel optimi-

zation problem that are classical in the literature : optimistic and pessimistic. These two formulations are

needed to analyse the Stackelebrg game, because the lower level problem in (3.8) does not have unique

equilibrium. Thus, in order to optimize its problem, I has to choose an equilibrium among the set of the

possible equilibria of the lower-level GNEP. Intuitively, we might see it as a situation in which there are

some prosumers at the lower level who are indifferent between several outcomes of the game that result

in the same cost, but the values of some decision variables of these prosumers have an impact on the cost

of the leader. We illustrate this intuition on a simple example below.

Example 19 Assume that there are only two prosumers at the lower level of the Stackelberg game. Let us

consider prosumer n = 1, 2. If at the equilibrium of the game the price for the contracts J t
n established

by insurance company equals pn

1−χn
(which is a reasonable assumption as we show later) and utn =

Πt
n−ηn−J t

n > 0, then prosumer n is indifferent in her choice of insurance : J t
n ∈ [0,min{J t

n,Π
t
n−ηn}].

But this choice is crucial for the profits of I , as J t
n = min{J t

n,Π
t
n − ηn} is the best possible outcome

for it and the worst one is J t
n = 0, constituting two different outcomes of the game for I , while leading

to the same result for prosumer n.

Note that we consider only one of two prosumers in the example above. Indeed, prosumers might

have different behavior on the risk trading market, depending on the values of their decision variables in

the electricity peer-to-peer market equilibrium. We further partition the set N into groups and emphasize

on the ones that are indifferent in the context of risk trading with I , i.e. the group of the agents for whom

the objective function remains of the same value for all J t
n ∈ [0,min{J t

n,Π
t
n − ηn}]. We first formally

define different formulations of the two-level interaction, depending on the response of the prosumers.

When I and prosumers n ∈ N act in cooperative manner, that is prosumers seek not only to minimize

their own costs, but also take into account the maximization of the profits of the insurance company, then

I can choose to solve its own problem with respect to the best possible solution of the GNEP at the lower

level (from its point of view). This leads us to the OBP formulation of (3.8) :

min
xI ,xL

n

ΠI(xI , x
L
n)

s.t. xI ∈ XI

xLn ∈ Sn(xI ,xL
−n) ∀n ∈ N

(3.15)

Optimistic problems are widely studied in the literature [38], [136] and are considered to be more

tractable as compared to the pessimistic position. The optimistic formulation is guaranteed to have an



3.4. STACKELBERG GAME ANALYSIS 65

optimal solutions under reasonable assumptions of regularity and compactness [136]. Indeed, it is easy

to establish existence of solutions of problem (3.15) using Proposition 16 and [38]. On the other hand,

the optimistic solution might not exactly correspond to the design of the risk hedging market, as there

are no intrinsic incentives for the prosumers at the lower level to act in favor of the insurance company’s

profit maximization.

Under PBP setting, we assume that the insurance company and the prosumers do not act in the

cooperative manner. It might be natural to assume that the insurance company I considers “worst case”

with respect to the equilibrium of the lower-level GNEP. Indeed, if we refer to the Example 19 and

consider indifferent prosumers, then it is natural to assume that given the choice of buying the insurance

and not buying it with the same outcome, prosumers would choose the latter option. Then, we can rewrite

bilevel problem (3.8) as

min
xI

max
xL
n

ΠI(xI , x
L
n)

s.t. xI ∈ XI

xLn ∈ Sn(xI ,xL
−n) ∀n ∈ N

(3.16)

The scope of literature that investigates pessimistic formulations of bilevel problems is much smaller than

that for the optimistic one, due to the fact that the pessimistic formulation is often more complicated than

the optimistic one [38]. It is not always guaranteed that the solution of (3.16) exists even for very simple

formulations [77], [86], and a lot of work is dedicated to the computation of approximate equilibria

[77, 85] or focus on specific cases [12, 32, 85].

Insurance Company’s Information About the Prosumers’ Parameters Alongside with the different

formulations of the bilevel optimization problem, we focus on the information structure of the Stackel-

berg game. For the insurance company I , it is crucial to have full information about the set of prosumers’

electricity trading problem parameters : RES-based generation ∆gtn, target demand d̂tn, flexibility ac-

tivation cost function Cn(·) (more specifically parameters an, bn, dtn), utn(·) the usage benefit function

(more specifically parameters ãn, b̃n), and bilateral trade cost function C̃n(·) (more specifically para-

meters (cnm)m∈Γn). Also it is crucial that I has full information about the risk-attitudes (χn)n of the

prosumers to properly settle the prices (αt
n)n.

We first discuss theoretical properties of the Stackelberg game assuming full information of I on the

parameters listed above. We prove that the noncooperative game (3.16) has no solution, and propose a

method to compute an approximate equilibrium that we compare to the equilibrium obtained as output

of the optimistic formulation. Then, we discuss the game outcome in case of incomplete information,

i.e. when the insurance company does not have an access to the true values of the listed parameters in
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section 3.4.2. We start with a lemma about the insurance prices αt in case when there is only insurance

company on the risk-hedging market and there is no inter-agent financial contracts trading.

Lemma 20 The price αt
n of the insurances J t

n for agent n and scenario t does not exceed pt

1−χn
.

Proof. The objective function of the prosumer at the lower level takes the closed form

Πn =
∑
t∈T

[
ηn + αt

nJ
t
n +

pt

1− χn
utn

]

Note that prosumer n can belong to one of the following two groups, at the equilibrium, defined by the

two cases below :

case (i) utn = 0 if Πt
n − ηn − J t

n ≤ 0 case (ii) utn = Πt
n − ηn − J t

n > 0 (3.17)

In case (i), we write the cost of prosumer n as Πn =
∑

t∈T
[
ηn + αt

nJ
t
n

]
and in case (ii) as Πn =∑

t∈T
[
ηn(1− pt

1−χn
) + J t

n(α
t
n −

pt

1−χn
) + pt

1−χn
Πt

n

]
.

We aim to compute insurance company I’s strategy, e.g., the insurance prices (αt
n)n. First, consider

case (ii) : from the term J t
n(α

t
n −

ptn
1−χn

), it is clear that to have J t
n ≥ 0, I needs to set αt

n ≤
ptn

1−χn
.

In case of strict inequality, J t
n = min{J t

,Πt
n − ηn}, in case of equality agent n is indifferent, so J t

n ∈

[0,min{J t
,Πt

n − ηn}], and 0 otherwise.

For case (i), it is clear that J t
n = 0 if Πt

n − ηn ≤ 0, and J t
n = Πt

n − ηn otherwise. It means that the

total price paid for the contract αt
nJ

t
n should be smaller than the loss incurred without one :

αt
nJ

t
n ≤

pt

1− χn
(Πt

n − ηn)⇒ αt
n ≤

pt

1− χn

Thus, considering the response of the prosumers to the price settled by the insurance company, we obtain

that in both cases αt
n ≤

pt

1−χn
.

Choice function In the text below we use the partition of the agents in groups. We denote agents with

the value utn = Πt
n − ηn − J t

n > 0 at the GNE as N ′ ⊆ N . This group is later referred to as indifferent

prosumers (see Example 19). Agents with the value Πt
n − ηn − J t

n ≤ 0 and Πt
n − ηn ≤ 0 are denoted as

N ′′ ⊆ N and with Πt
n − ηn > 0 as N ′′′ ⊆ N .

Consider the group N ′. For this group of agents, we can describe best-response mapping of agent n
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J t
n

αt
n0

min{J t
n,Π

t
n − ηn}

•

Indifference set A
of agent n

•
pt

1−χn

optimistic

pessimistic

BRn(xI)

FIGURE 3.1 – BRn(xI) for n ∈ N ′.

J t
n

αt
n0 pt

1−χn

FIGURE 3.2 – Best-response function in PBP.

to the insurance company w.r.t the decision xI = (αt
n, J

t
) :

J t
n = BRn(xI) =



0 if αt
n >

ptn
q − χn

min{J t
n,Π

t
n − ηn} if αt

n <
ptn

q − χn

Chtn(A,ω) if αt
n =

ptn
q − χn

where A := [0,min{J t
n,Π

t
n − ηn}] and Chtn(A,ω) is a choice function Chtn(A,ω) : {A} × Ω → A.

We refer to Figure 3.1 as an illustration of BRn(xI). More precisely, for each agent n ∈ N ′, for each

scenario t this function takes as input the interval A and parameter ω ∈ Ω and returns a single value

J t
n, corresponding to the insurance bought by agent n : Chtn(A,ω) := ω

[
Πt

n − ηn
]
. Parameter ω ∈

Ω := [0, 1] controls the optimality of the choice of the prosumer for the insurance company I . Using this

function, we write Chtn(A,ω) instead of J t
n in upper-level optimization problem (3.8a). We denote this

formulation of (3.8) as Gch(ω).

Pessimistic Formulation Analysis

Connection between pessimistic formulation and Gch(ω) In the next lemmas, we show the link bet-

ween pessimistic formulation (3.16) and Gch(ω). First, we follow the path established in [77] and refor-

mulate problem (3.16) as a one leader, multi-follower game, where the lower level is modeled as a GNEP

with 2N players. Intuitively, at the lower level, each prosumer cares not only about minimization of her

own cost function, but also about maximization of the cost of insurance company I . To formalize the
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setting, we introduce an auxiliary agent who takes care of this maximization task :

min
xI ,(xL

n ,z
L
n )n

ΠI(xI ,x
L
n)

s.t. xI ∈ XI

(xLn , z
L
n ) ∈ E(xI) ∀n ∈ N

(3.18)

where E(xI) is the equilibrium set of the following GNEP :

min
xL
n

−ΠI(xI ,x
L
n)

s.t. xLn ∈ K∗
n(x

L
−n, xI)

Πn(xI ,x
L
n) ≤ Πn(xI , z

L
n )

min
zLn

Πn(xI ,x
L
n)

s.t. zLn ∈ K∗
n(x

L
−n, xI)

(3.19)

Lemma 21 If solution (x̂I , x̂L
n ) of (3.16) exists and is a local optimal point of this problem, then for any

ẑL
n ∈ Sn(x̂I , x̂L

−n), the tuple (x̂I , x̂L
n , ẑL

n ) is a local optimal point of (3.18).

Proof. Denote the optimal value function ψ(xI) := maxxL
n∈Sn(xI ,x

L
−n)∀n∈N

ΠI(xI ,x
L
n). Suppose by

contradiction that (x̂I , x̂L
n , ẑL

n ) is not a local optimal point for (3.18), i.e., there exists a sequence (xkI ,

xLk

n , zLk

n ) with xkI ∈ XI and (xL
k

n , zL
k

n ) ∈ E(xkI ) for all n ∈ N such that (xkI , xLk

n , zLk

n )→ (x̂I , x̂L
n ,

ẑL
n ) and ψ(xkI ) = ΠI(x

k
I ,x

Lk

n ) < ΠI(x̂I , x̂
L
n) = ψ(x̂I). This contradicts the optimality of (x̂I , x̂L

n ).

Lemma 22 Stackelberg equilibria of (3.18) with VE at the lower level belong to the set of equilibria

EGch
of Gch(0).

Proof. First, note that from Proposition 18, VE at the right part of (3.19) is efficient. From which it

follows that at the left part of (3.19), instead of the last inequality we have an equality. Fix some αt
n as a

solution of the upper-level problem. Then, we can rewrite (3.19) as

min
xL
n

∑
n∈N

∑
t∈T

[
αt
n − pt

]
J t
n

s.t. xLn ∈ V E
(3.20)

where αt
n − pt > 0. Thus, each agent chooses minimal possible J t

n while satisfying the KKT conditions

of (3.19). For prosumers n ∈ N ′′⋃N ′′′, the choice of best response J t
n is fixed, so it follows that we

should consider prosumers n ∈ N ′. The response of this group is fixed unless αt
n = pt

1−χn
, for which, in

order to minimize the profits of the insurance company, each agent in N ′ chooses J t
n = 0.
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No solution Finally, we return to our initial statement that might be seen as the situation where the

absence of the additional price incentives from the insurance company I for the group of indifferent

agents n ∈ N ′ leads to a non-existence of solution of (3.16).

Proposition 23 In a pessimistic framework, the problem (3.16) admits no solution.

Proof. Suppose by contradiction that the solution of problem (3.16) exists. We first state that at optimum

of Gch(0), problem αt
n can not be strictly less than pt

1−χn
. Suppose, by contradiction, that at the optimum,

αt
n <

pt

1−χn
. Then, the insurance company I can always increase its profit by adding sufficiently small

ε : αt
n + ε < pt

1−χn
, and taking the limit ε → 0, we obtain a contradiction wrt the optimality of αt

n.

Then, from Lemma 20, it follows that αt
n = pt

1−χn
. In addition, from the definition of problem Gch(0), it

follows that the values of contracts J t
n acquired by agents n ∈ N ′ are equal to 0. Thus, decreasing αt

n by

small ε > 0 (see Figure 3.2), insurance company can increase its profits. Thus, we obtain a contradiction

which concludes the proof.

Price incentives Although the non-existence of a solution of the pessimistic bilevel problem is not a

rare case [86], it is not desirable from the market point of view. Several works deal with the question

of overcoming this issue by computing ε-optimal solution [77, 85] of the lower level problem. From

Proposition 23, it is natural to consider an approximate solution of the upper level as a way to incentivize

the indifferent prosumers n ∈ N ′ to act in favor of buying insurances thus, increasing the profit of the

insurance company. Indeed, consider again Example 19 and assume that the insurance company chooses

to set αt
n = pt

1−χn
− ε for some now fixed parameter ε > 0. Then, the amount bought by the prosumer

becomes min{J t
n,Π

t
n− ηn} as now it is profitable for her to acquire the insurance. In that case the profit

of insurance company I will become
[ pt

1−χn
− ε− pt

]
min{J t

n,Π
t
n − ηn} > 0. We formalize this in the

following proposition :

Proposition 24 For any given ε, if insurance company sets the prices αt
n = pt

1−χn
− ε for prosumers

n ∈ N ′, then the problem (3.16) has a solution.

Proof. The proof follows directly from the reformulation of PBP as a Stackelberg game with 2N agents

at the lower level and the proof of Lemma 20.

Moreover, these considerations allow us to evaluate how much the insurance company fails to receive

when the agents are reluctant to cooperate by comparison with the optimistic solution. More precisely, we

show that the value of the objective function ΠP
I in this formulation is at most ε

∑
n∈N ′ min{J t

n,Π
t
n −

ηn} less than the value of ΠO
I at the equilibrium of the optimistic problem (3.15).
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Optimistic Formulation Analysis Optimistic formulation can be described by means of the choice

function if we set parameter ω = 1. That means that those agents who are indifferent in their choice

of J t
n choose the best possible option for I : Chtn(A, 1) = Πt

n − ηn. First, note that if the type of the

two-level game is optimistic, then we can set the price αt
n = ptn

1−χn
for all agents n ∈ N . Indeed, we

follow the proof of Lemma 20 and extend it by considering slightly lower prices. But in the optimistic

framework there is no need to provide incentives to the indifferent prosumers, so the insurance company

can always increase price for them up to αt
n = pt

1−χn
. In the next proposition we show the connection

between (3.15) and Gch(ω) :

Proposition 25 Stackelberg equilibria of (3.15) with VE at the lower level coincides with the set of

equilibria EGch
of Gch(1).

Proof. (i) Assume by contradiction that a solution (xGI ,x
LG

) of Gch(1) is not a solution of (3.15). It means

that there exists a solution (x̂I , x̂
L) of (3.15) such that ΠI(x̂I , x̂

L) ≤ ΠI(x
G
I ,x

LG
). Equivalently :

∑
n∈N

∑
t∈T

Ĵ t
n

[
pt − α̂t

n

]
≤
∑
n∈N

∑
t∈T

[
Πt

n − ηn
]+[

pt − αt
n

]

We showed that α̂t
n = αt

n = pt

1−χn
. Then, dividing by the term pt − pt

1−χn
, we obtain

∑
n∈N

∑
t∈T

Ĵ t
n ≥

∑
n∈N

∑
t∈T

[
Πt

n − ηn
]+

The setN can be split into three groups :N ′,N ′′,N ′′′, that are defined as follows : (1) Ĵ = Π̂t
n−η̂n > 0,

(2) Ĵ = 0 and (3) Ĵ ∈ [0, Π̂t
n − η̂n], Π̂t

n − η̂n > 0, thus

∑
n∈N

∑
t∈T

[
Π̂t

n − η̂n
]+ ≥∑

n∈N

∑
t∈T

[
Πt

n − ηn
]+

which contradicts Proposition 18.

(ii) We use the fact that αt
n = pt

1−χn
and write the closed form of the objective function in (3.15) :

min
xI ,xL

n

∑
n∈N

∑
t∈T

J t
n

[
pt − pt

1− χn

]
from which it follows that each agent n maximizes J t

n, while satisfying the KKT conditions. From

Proposition 18, it follows that J t
n = Chtn(1) for all agents n ∈ N ′ which gives us exactly a solution of

Gch(1).

In view of the above results, we can directly establish the following proposition :
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Proposition 26 The value of the objective function ΠP
I in PBP is at most ε

∑
n∈N ′ min{J t

n,Π
t
n − ηn}

less than the value of ΠO
I at the equilibrium of OBP (3.15) :

ΠO
I −ΠP

i = ε
∑
n∈N ′

min{J t
n,Π

t
n − ηn} (3.21)

Incomplete Information About the Risk Attitudes Up to this section, we assumed that the insurance

company I can correctly assess the risk attitudes (χn)n of the prosumers and compute the prices accor-

dingly, alongside with the parameters (an, bn, dtn, ãn, b̃n,∆g
t
n,

D̂n, cnm) of the electricity trading problem. Nevertheless, in practice the insurance company does not

have an access to the agents’ perception of the risk, thus, the only information insurance company I has

access to is some a priori belief about (χn)n, expressed by means of some distribution (Xn)n. We also

assume that the insurance company has an access to good estimations of the electricity trading problem

parameters in the sense that the difference in the resulting assessments and the true values bring negli-

gible difference to our model. We leave the discussion about the ways to achieve this out of the scope

of the chapter. It follows that the insurance company solves the problem (3.8) by taking the expectation

of (3.8c), where the expectation is taken with respect to some distribution χn ∼ Xn, ∀n. Following the

same path as in the proof of Lemma 20, we establish the following result :

Proposition 27 When the only information the insurance company has access to is a distribution χn ∼

Xn, then the price for the contract for agent n is given by αt
n = E

[ pt

1−χn

]
.

It is straightforward to determine which agent acquires the contracts, depending on the relation between

αt
n = E

[ pt

1−χn

]
and αt

n = pt

1−χn
and the partition into groupsN ′,N ′′,N ′′′. The only interesting situation

appears when αt
n = E

[ pt

1−χn

]
= pt

1−χn
for some agent n ∈ N ′ (e.g., when Xn is discrete). Then, we

again have to consider optimistic and pessimistic formulations and use the machinery established in

section 3.4.2.

3.4.3 Analysis of the Two-Level Formulation with Inter-Agent Trading

The most comprehensive formulation proposed in section 3.3.2 poses a lot of questions regarding

the market organization. First, we provide an illustration, why the prices αt
n settled as in the previous

sections may generate market imperfections in the framework with inter-agent trading.

Example 28 Consider decentralized electricity market with two agents at the lower level with risk atti-

tudes χ1 < χ2. Then αt
1 < αt

2 and if the price γt is less than pt

1−χ2
, then agent 1 can buy the insurances
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from I and resell them to agent 2. This behavior clearly reflects a market imperfection that must be

addressed.

We again consider two formulations, optimistic (OBP) and pessimistic (PBP) and analyse the market

prices and its properties at equilibrium. We use the results established in the previous section to address

the problems encountered in the full formulation of the decentralized electricity market with risk hedging.

We consider OBP first. We first show that the price of the contracts at the lower level is settled as

γt = pt

1−χn
.

Proposition 29 For a inter-agent financial contracts trading, the risk-adjusted probabilities are aligned

across market participants. Furthermore, the risk-adjusted probabilities coincide with those of the least

risk averse agent and are equal to the prices of financial contracts, i.e., γt = pt

1−minn χn

Proof.

From the KKT conditions, we get that pt

1−χn
= τ tn + πtn. From the complementarity constraints,

we see that the set of risk adjusted probabilities in the modified problem with risk-hedging contracts

W t
n implies zero probability on the scenarios with Πt

n −W t
n ≤ ηn and τ tn = pt

1−χn
for scenarios with

Πt
n −W t

n ≥ ηn.

pt

1−minχn

pt

1−maxχn

γt

. . .

S ⊆ N B ⊆ N

FIGURE 3.3 – γt on the risk-aversion scale

From the KKT conditions, we infer that the τ tn are ali-

gned across agents : τ tn = τ tm = τ t ∀n,m ∈ N . To show

that they coincide with those of the least risk averse agent,

assume that the price γt if fixed. Then, for those agent

n′ ∈ N for whom γt ≥ pt

1−χn′
, it is profitable to sell the

contracts (n′ ∈ S) : W t
n′ ≤ 0. The opposite holds for agent

n′′ with γt ≤ pt

1−χn′′
, thus making her the buyer of the financial contracts (n′′ ∈ B).

Consider n′′ ∈ B ⊆ N . If utn′′ ≥ 0, then utn′′ = Πt
n′′−ηn′′−W t

n′′ , and the term representing financial

contract trading becomes W t
n′′(γt − pt

1−χn′′
) ≤ 0, which implies that increasing W t

n′′ up to Πt
n′′ − ηn′′

leads to the decrease in the cost of the agent. In other words, taking the sub-derviative ∂Rn′′ [Πt
n′′ ] w.r.t.

W t
n′′ , it is straightforward to establish that 0 ∈ ∂W t

n′′
Rn′′ [Πt

n′′ ](Πt
n′′ − ηn′′).

On the other hand, for n′ ∈ S ⊆ N we can similarly establish that 0 ̸∈ ∂W t
n′
Rn′ [Πt

n′ ](x) for x ∈ R−,

which means that it is always profitable to sell any amount of financial contracts for agents in S ⊆ N .

Hence, agent n∗ with the lowest risk aversion can sell contracts W t
n∗ at the lowest prices γt equal (by

taking infinitesimal ε, and setting ε→ 0) to pt

1−χn∗ = pt

1−minχn
. ■

It follows that the agent with the minimal risk aversion can supply risk-hedging demand for the agents

at the lower level. In such setting, optimistic formulation again is expressed through the choice function
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Chtn(A, 1) and by using choice function reformulation, we establish that the prices for the insurances

provided by I are equal to αt
n = pt

1−minχn
, ∀n ∈ N .

In PBP, the prosumers prefer to trade contracts directly with their peers than with I . More precisely,

we follow the proofs of Lemmas 21 and 22 to derive Proposition 23. It leads to the question of how

to design price incentives described in section 3.4.2, and similarly to Proposition 24. We show that the

prices of the insurances with price incentives are equal to αt
n = pt

1−minχn
− ε, ∀n ∈ N .

Remark 30 In the two-level model the insurance prices do not depend on their own risk aversion, but

solely on the risk aversion of the least risk averse agent. Therefore, it is more appropriate to speak about

equity than about any other kind of fairness, as the prices are now aligned across the agents.

Fairness Investigating the impact of risk preferences on cost allocation in decentralized electricity

markets becomes fundamental in order to design mechanisms that grant fairness among prosumers. We

provide a definition for fairness of cost allocation in risk-adjusted market with financial contracts. In-

tuitively, in our framework involving the presence of an insurance company, fairness should relate the

insurances’ price (αt
n)n to the prosumers’ risk aversion levels. More precisely :

Definition 31 We say that the risk-hedging market with an insurance company is fair if the insurances’

price αt
n is lower for less risk-averse agents, that is αt

n′ ≤ αt
n′′ if χn′ ≤ χn′′ .

From the Propositions 24 and 25, it is straightforward that the risk-hedging market is fair :

Proposition 32 The risk-hedging market described by the two-level game (3.11) is fair in the sense of

Definition 31.

3.5 Numerical Results

We compare the performance of the various electricity and financial contracts trading market designs

proposed in this article, and analyze the impact of heterogeneous risk aversion on the prosumers’ and I’s

costs as well as social cost, by solving the noncooperative games from section 3.3.

Data We use residential data provided by Pecan Street [69] for Austin, Texas. The data consists of

15-minutes intervals specifying renewable generation, load and facilities energy consumption for 25

individual homes. We sample the distribution of scenarios for RES-based generation and demand from

the generation data and aggregated consumption respectively. Histograms representing 100 scenarios

of the RES-based generation and demand of three agents are given in Figures 3.4 and 3.5. To run the
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FIGURE 3.4 – Histograms of RES-generation. FIGURE 3.5 – Histograms of demand.

FIGURE 3.7 – Spread of the prosumers’ costs and social cost in each market design for 5 trials. (RN) -
risk-neutral, (RA) - risk-averse, (Only I) - two level with only I , (No I) - one level with risk-hedging,
(OBP) - two-level optimistic, (PBP) - two-level pessimistic.

experiments, we use the same probabilities to generate the scenarios for all the agents. Extensions of the

model that account for different distributions across the agents is described in the Appendix. We solve the

problem using a radial connection graph depicted in Figure 3.6. Here, edges represent the neighborhood

of each prosumer. Edges were generated randomly, such that the radial structure of the graph is preserved.

FIGURE 3.6 – Connection
graph.

Comparison of different market designs In order to compare the

market design outcomes, we run a set of experiments (trials) with dif-

ferent values of the parameters (ãn, b̃n, an, bn, d̂tn, χn)n sampled from

a uniform distribution U [0, 1]. Then, for each set of parameters and

100 sampled scenarios for RES-based generation and target demand

we solve the corresponding model and compute the prosumers’ costs,

the social cost and the insurance company I’s profit where applicable.

Prosumers’ costs and social costs for 5 trials in the different market

designs are shown in Figure 3.7 ; where a different mark is used for

each trial. The costs are the lowest in the risk-neutral framework (RN).
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They increase in the risk-averse framework (RA), as one could expect,

due to increased risk-aversion of the agents, which motivates them to make more conservative decisions

such that the volatility of their overall costs reduces [144].

The participation of an insurance company in the two-level (optimistic) framework (Only I) allows

the agents to hedge their risk towards uncertainties, but numerical tests show that the prosumers ad-

just their electricity generations, demands and tradings to belong to the set of indifferent prosumers.

RN RA Only I No I OBP PBP

SC [$] 0.101 3.686 3.686 0.186 0.192 0.162

I’s cost [$] - - -1.41 - -0.437 -0.018

Fairness - + - - -

Equity - - + + +

TABLE 3.1 – Prosumers’ social cost, I’s cost, market properties
for different market designs computed on a 15 min interval.

This means that by buying insu-

rances they do not decrease their

costs, but due to the optimistic for-

mulation, the purchases of the insu-

rance company enable it to increase

its profits. Pessimistic formulation in

the Only I setting slightly decreases

both the profits of I and the costs of

the prosumers, but the difference is

minor. The introduction of financial contracts in the one-level setting (No I) [96] sets more profitable

financial contracts conditions for the prosumers, because now the contract prices are uniform and are set

to be pt

1−minχn
.

It allows agents to decrease their costs significantly by comparison with the risk-averse (RA) and

two-level with the sole I (Only I) settings. The possibility for I to propose insurances in the optimistic

(OBP) formulation, allows prosumers to reduce their costs by comparison with the risk-averse setting

– in the same manner as the one-level formulation – while bringing more profits to I . The pessimistic

formulation entails slightly lower costs. That is an important consequence of the price incentives that I

uses in PBP market : the relative reluctance of the agents to buy insurances from I motivates the company

to slightly decrease its contract prices, making them cheaper to the agents. On the other hand, it leads to

a decrease in I’s profits.

From the experiments below, one can conclude that the most profitable framework for insurance

company I is the Only I, in which it is the only provider of risk-hedging contracts. On the other hand, al-

lowing competition between inter-agent contracts and I’s acting as a contract provider allows prosumers

to decrease their costs significantly, at the expense of the insurance company.

Impact of incomplete information In sections 3.4.2 and 3.4.2, we discussed the effects of incomplete

information of I about the prosumers’ parameters. We focus here more specifically on I’s incomplete
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information about (χn)n in PBP, as introduced in section 3.4.2. We test several distributions Xn available

to I as the beliefs about χn and compare I’s resulting profits induced by these distributions, in Table 3.2.

The True value is a vector of risk attitudes for the 25 prosumers sampled from the beta distribution

β(1, 1). Distributions of Xn are taken from the same family of beta distributions with different parameter

values for the distribution. The best outcome is obtained when the parameters of the distribution are

guessed correctly by I .

True value β(1, 1) β(0.5, 1) β(1, 0.5) β(2, 2)

I’s cost [$] -0.0316 -0.0082 -0.0015 -0.0062 -0.0036

TABLE 3.2 – I’s cost differences under different distributions of the prosumers’ risk attitudes in PBP.

However, Table 3.2 shows that the insurance company’s profit even in the best outcome is still 3.85

times lower than with complete information. The same holds for other two-level formulations. Clearly,

this highlights the fact that the insurance company has incentives to learn the distribution of the risk-

aversion levels of the prosumers. Further research should be done in order to understand how to choose

suitable distribution to model the prosumers’ risk aversion, and design learning mechanism for I that

also enables it to maximize its profit. A more detailed analysis of the agents’ parameters impact on the

results of the model, is presented in the Appendix.

3.6 Concluding Remarks

In this work, we investigated two-level risk-hedging market designs of a decentralized electricity

market, and provided a comprehensive analysis of the underlying equilibrium problems. An insurance

company is included in the two-level market first as the only insurance supplier and then as a competitor

with the inter-agent financial contract trading. We showed that the structure of the two-level design

might lead to the nonexistence of a solution, but that problem can be overcome by designing price-based

incentives which aim to incentivize the prosumers to buy insurances instead of trading contract with

their peers. To that purpose, we reformulated the resulting Stackelberg game as a parametrized GNEP.

The price incentives only slightly decrease the profits of the insurance company, but also allow prosumers

to decrease their costs, as we illustrate in the numerical experiments.

The discussion around incomplete information on the prosumers’ risk-aversion levels poses seve-

ral questions for future research, e.g., how can the insurance company optimize the electricity trading

parameters while learning the risk-aversion levels of the agents ? One way to achieve that could be to

build a dynamic incentive-compatible mechanism such that the agents report their private information to



3.7. APPENDIX 77

the insurance company. Another important extension of the proposed market design would be to allow

competition among several insurance companies at the upper level of the Stackelberg game, leading to a

multi-leader, multi-follower framework. Finally, another interesting branch of future research would be

developing more efficient distributed algorithms to compute market equilibria.

3.7 Appendix

3.7.1 Risk-Neutral Framework

In a risk-neutral framework, prosumers optimize their costs with respect to the probabilities pt, wi-

thout taking differences in risk perception of the agents into account. This corresponds to the classical

economic dispatch model, in which prosumers account for the uncertainty of their generation and in-

flexible demand when optimizing their strategy, with a common view on the collective uncertainty.

Centralized case The first formulation that is considered in this chapter, and will be used as a bench-

mark, is formulated in a centralized manner, where a global Market Operator minimizes the social cost

for the risk-neutral community. We can write the formulation as follows :

min
Dt,Gt,qt

E
[
SC
]

s.t. x := (Dt,Gt, qt) ∈ K.

The Social Cost function SC(.) is convex as the sum of convex functions defined on a convex feasibility

set. Indeed, the feasibility set is obtained as Cartesian product of convex sets. Thus, the optimization

problem can be solved using standard convex optimization algorithms.

Decentralized case We propose different decentralized market designs, in which each prosumer n ∈

N selfishly optimizes her demand (dtn), energy generation (gtn) and bilateral trades (qtn) with other prosu-

mers in her neighborhood under constraints on demand, generation and trading capacity so as to minimize

her expected costs. Formally, each prosumer in node n ∈ N solves the following optimization problem :

min
dtn,g

t
n,q

t
n

E[Πt
n], (3.22a)

s.t. xn := (dtn, g
t
n, q

t
n) ∈ Kn(x−n), (3.22b)
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where expectation is given by

E[Πt
n] =

∑
t

pt
[
Cn(g

t
n) + C̃n(q

t
n)− U t

n(d
t
n)
]

︸ ︷︷ ︸
Πt

n

(3.23)

This formulation can be viewed as a decomposition of the centralized problem which accounts for the

strategic behavior of all the prosumers. We first show the efficiency of the equilibria of the game (3.22) :

Proposition 33 The KKT conditions of the centralized market design coincide with the KKT conditions

at any variational equilibrium (VE) of the decentralized market design. It follows that the set of VEs

obtained as outcome of the decentralized market design contains economically efficient outcomes.

Proof. The proof follows from the KKT conditions and the definition of VE that impose that ζtnm =

ζtmn, ∀m ∈ N ,∀m ∈ Γn.

Lemma 34 At equilibrium, Πt
n is uniquely defined, ∀n ∈ N . Moreover, if the values pt(cnm − cmn)nm

are not equal for any couple (n,m) ∈ N ×Γn and corresponding scenarios, then prosumer n’s strategy

xn at VE is unique.

Proof. We start the proof by decomposing the problem into quadratic and linear parts. First, let

Qn =
∑

m∈Γn
qnm be prosumer n’s net import, and note that Qt

n ∈ Qn where due to (3.2) Qn is closed

and bounded set. We consider the following problem ∀(Qt
n)n :

min
Dt,Gt

∑
n∈N

∑
t

pt
[
Cn(g

t
n)− utn(dtn)

]
s.t. (dtn, g

t
n) ∈ Dn × Gn, ∀n ∈ N

dtn = gtn +∆gtn +Qt
n.

(3.24)

Problem (3.24) has unique solution (Dt,Gt) for each Qt
n ∈ Qn because it is strictly convex in Dt,Gt.

To prove the statement of the lemma, we have to consider the linear subproblem, which is formulated as

follows :
min
qt

∑
n∈N

∑
t∈T

ptC̃n(q
t
n)

s.t. qtnm ≤ κnm, ∀m ∈ Γn,∀n ∈ N

qtnm + qtmn = 0 ∀m ∈ Γn,∀m ∈ N

Qt
n =

∑
m∈Γn

qtnm.

(3.25)
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Using (3.1) we can rewrite the objective function of (3.25) as

∑
(n,m)∈N×Γn

∑
t∈T

pt · qtnm(cnm − cmn) (3.26)

For convenience, we index all possible combinations (n,m, t) ∈ N × Γn × T of trades between agents

and denote them as k1, . . . , kM , whereM = |E|·|T |. Coefficients for qki appearing in (3.26) are denoted

as cki Then, the linear subproblem can be written as follows :

min
qt

∑
ki,i=1,...,M

ckiqki

s.t. − κki ≤ qki ≤ κki

Qj =
∑
ki∈Jn

qki ,

(3.27)

where Jn is a subset of indices k1, . . . , kM representing the trades of agent n. By Theorem 1 from [91],

a solution x̄ of the linear problem {minx c
tx|Ax = b, Cx ≥ d} is unique if and only if it remains a

solution to all linear programs obtained by arbitrary but sufficiently small perturbation of its cost vector

c, or equivalently, for each b in Rn, there exists a real positive number ε such that x̄ remains a solution

of the perturbed linear program {minx(c+ εb)Tx|Ax = b, Cx ≥ d}. Thus, to finish the proof, we order

the coefficients cki such that ck1 ≤ ck2 ≤ · · · ≤ ckM , and consider two cases : (i) ∄i, j : cki = ckj or,

equivalently, cki < cki+1
≤ . . . ckM . Then, it is clear that solution q̄t of the original LP is a solution

of the perturbed LP for any vector b, because the order of coefficients cki can be preserved by choosing

sufficiently small ε. In case (ii) in which the ordering of the coefficients is not strict, i.e. ∃i, j : cki = ckj ,

perturbing the cost by vector b = (. . . , bki , . . . , bkj , . . . ) with bki ̸= bkj restricts us from preserving the

order of coefficients thus leading to a non unique solution. It remains to conclude that equal coefficients

cki among agents lead to the same trading costs, thus leading to the unique values of Πt
n.

Remark 35 The implication of the above result is that even if the solution xn at VE is not unique, it

still bears the same individual costs for all the prosumers. Moreover, the condition for having a unique

VE in practice is pretty mild, e.g., it reduces to the agents having non-symmetric coefficients cnm. If

the condition to have symmetric coefficients is crucial, e.g., when they represent taxes, it is possible to

achieve uniqueness of VE by adding a regularization quadratic term ϕ q2nm that accounts for transaction

costs [144]. This track is discussed later in section 3.7.2.
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3.7.2 Regularized lower level problem

In this section, we modify the risk-adjusted costs of the agents in order to ensure the strict convexity

of the lower-level problem :

R[Πt
n] =

∑
t∈T

[αt
nJ

t
n + β1J

t2

n ] + ηn +
1

(1− χn)

∑
t∈T

pt[Πt
n − J t

n − ηn]+. (3.28)

with the costs Πt
n redefined as ΠtR

n := Πt
n+

1
2β2

∑
m∈Γn

cnmq
2
nm+β1J

t2
n for some small β1, β2 > 0 and

ΠR
n :=

∑
t∈T ΠtR

n . The regularization formulation is common in the literature ; for example, in [144],

authors interpret the regularizer β2
∑

m∈Γn
cnmq

2
nm as a transaction cost arising from trades. In [96] the

regularizer β1J t2
n is introduced as a transaction cost for financial contracts. These terms allow us to obtain

a unique solution (J t
n,x

t
n) for all n ∈ N , for all values of xI . With this modification, we can write the

KKT conditions of the lower-level problem (3.12) with modified Πt
n, in which the only changes appear

for the optimality condition w.r.t. q :

∂L
∂qtmn

= 0⇔ ζtnm + ξtnm + τ tncnm(1 + β2qnm)− λtn = 0

∂L
∂J t

n

= 0⇔ αt
n + β1J

t
n − τ tn − σtn + σtn = 0

Proposition 36 For any ε > 0, there exists β1, β2 > 0 s.t. ΠR
n ≤ Πn + ε, i.e., we can approximate any

ε-GNE of the lower level using a regularized formulation. Moreover, there exists a sequence βk1 , β
k
2 s.t.

xk → x̂ ∈ ELL for some x̂.

Proof. We first observe that 1
2β2

∑
m∈Γn

cnmq
2
nm+β1J

t2
n is non-negative, and that |qnm| ≤ κnm∀n,m ∈

N , from which it follows that the difference between the objective functions for agent n can be bounded

by β2
∑

m∈Γn
cnmκ

2
nm. Fixing other decision variables at the equilibrium and taking β2 = ε∑

m∈Γn
cnmκ2

nm
,

we obtain the first statement.

Second, we note that from (3.7.2), boundeness of |qnm| and Proposition 16.3, that for each βk2 there

exists a set of dual variables s.t.

|ζtknm + ξt
k

nm + τ t
k

n cnm − λt
k

n | ≤ βk2κnm −−−→
βk
2→0

0,

which approaches exactly the set of solutions described by KKT for original problem. We note that from

the reformulation (3.19), the set of equilibria solutions of the lower-level problem in PBP is a subset of

equilibra solutions of the lower level of OBP. Thus, the bound is proved for both formulations.
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3.7.3 Numerical results supplement

RN RA No I OBP PBP

CS 0.7 1.21 1.2 1.28 1.28

DS ∼1200 ∼1600 ∼1600 ∼1600 ∼1600

TABLE 3.3 – Average computational time in se-
conds

Computational approaches In general, compu-

ting a GNE can be a challenging task. Many algo-

rithms have been proposed, especially in recent years,

but the conditions that guarantee their convergence,

such as strong monotonicity of the pseudo-gradient of

the game, aggregative structure, potential structure,

etc. [48], [104], [139], [159], might be to strong to

justify in practice. Computing solutions of bilevel problems, especially in the pessimistic framework,

can be even more challenging [136], [12], [85]. Reformulation as a centralized optimization problem

might lead to the inefficiency of the solution [123] and also, due to computational and communication

limitations, it is not always possible to solve a large-scale optimization problem, and it is preferable to

decompose the problem so that it can be solved by a distributed algorithmic approach. Using reformu-

lation Gch with choice function, we can implement both centralized and distributed approaches to solve

the two-level problem. To solve the problem in a distributed fashion, we use gradient-descent method

discussed for e.g. in [159] implemented using PyTorch and for the centralized solution we use Gurobi

Optimizer 9.5. The comparison of the computational time for centralized (CS) and decentralized (DS)

solutions of different models with 100 scenarios are given in Table 3.3.

FIGURE 3.8 – Parameters’ weights

Parameters’ impact We want to assess the agents’ pa-

rameters’ impact on their costs in different frameworks.

To that purpose, we use linear regression on a set of

2000 parameters sampled from the uniform distribution

and extract the weights corresponding to the parameters,

summing them over all agents. The result is depicted in

Figure 3.8. The R2 scored obtained are > 0.75. It might

seem surprising that the main weights are put on b̃n and

dtn, which are the constant terms in agent’s demand and

generation costs. This is due to the fact that these terms are not affected by the decisions of the pro-

sumers, and, while prosumers minimize the terms in their costs that depend on dtn, g
t
n, these constants

remain unchanged. Coefficients an, bn of generation cost Cn(g
t
n) as well as risk aversion χn affect a

lot RA and Only I while not having a significant impact in OBP and PBP frameworks. This is due to

the equity property of the latter, i.e., the price for the financial contracts being the same (and minimal
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possible) for all the prosumers.

Uncertainties Scenario approach considered in the chapter can be supplemented with a distinction

between the correlated and independent random variables reflecting prosumers’ generation, demand etc.

It is possible to adapt the notion of the general types of individual risk and collective risk investigated in

[28], where authors accounted for both of them and investigated the effects of the combination of both

Arrow-Debreu and Malinvaud’s models of insurances on this type of uncertainty. In our work we can

employ the former ones, while considering the same type of uncertainty division. Thus, each agent faces

two sorts of uncertainty : individual uncertainty and collective uncertainty. It allows to speak about the

independence of the random variables we focus on.

For each agent, there are possible Sn individual states (1, . . . , Sn) and T possible collective states

(1, . . . , T ). Each agent correctly believes that her probability of being in a joint state (s, t) is given

by pn(s, t) > 0 s.t.
∑

(s,t) pn(s, t) = 1. We denote the corresponding random variables as Sn and T .

Agents view T as a possible state of nature (e.g. weather conditions) which are common knowledge for

everyone. Sn, on the other hand, reflects individual uncertainties conditioned on the state of nature (e.g.

the demand of agent n). It is natural to assume that after the state of nature t is observed by the agents,

their individual r.v. Sn are independent i.e. Sn are conditionally independent given T and the conditional

probabilities are given by

p(s|t)n =
pn(s, t)∑
s′ pn(s

′, t)
(3.29)

All the results in the chapter can be proven for this modified scenario approach. Additional constraints

are introduced due to the trading in the electricity market. For pairs of agents n,m ∈ N,n ̸= m, in order

to align their trading decisions, we have to consider pairs of individual scenarios (si, sj) ∈ Sn × Sm,

given collective state t. Under the assumption of conditional independence of individual scenarios, we

can write the joint probabilities of individual scenarios conditionally to the state of nature, as p(si, sj |t) =

p
(si|t)
n · p(s

j |t)
m . Given a scenario (si, sj , t), we impose an equality on the trading reciprocity :

q(s
i,sj ,t)

nm + q(s
i,sj ,t)

mn = 0, ∀m ∈ Γn, (3.30)

which couples the agents’ bilateral trading decisions. It means that in the case where q(s
i,sj ,t)

nm > 0,

the quantity that n buys from m should be equal to the quantity q(s
i,sj ,t)

mn that m is willing to offer to

n. Individual uncertainties sets Sn are unknown by other agents in the network, thus it follows that the
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trades of agent n decided for scenario si should be equal for all the scenarios sj , sk of the agentm ∈ Γn :

q(s
i,sj ,t)

nm = q(s
i,sk,t)

nm , ∀sj , sk ∈ Sm. (3.31)
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A Generalized Nash Equilibrium analysis of the interaction

between a peer-to-peer financial market and the distribution

grid

4.1 Introduction

Within peer-to-peer electricity market, agents (prosumers) negotiate with their peers their energy pro-

curement seeking to minimize their costs with respect to both individual and trading reciprocity coupling

constraints taking into account trading cost preferences. Many studies focus on the financial modeling

of peer-to-peer energy trading market. Game theoretic approaches integrating the prosumers’ strategic

behaviors in the peer-to-peer trading are considered in [26]. The economic dispatch in energy communi-

ties under different structures of communications is analysed in e.g. [96] using optimization approaches.

An increasing amount of attention is brought to the determination of suitable pricing mechanisms in the

peer-to-peer market that reflect the contribution of the prosumers to the state of the distribution grid.

Several studies investigate distribution locational marginal pricing (DLMP), e.g. [26,61,62,82] and pro-

vide an insight on impact on the market (efficiency, individual rationality, incentive compatibility), and

regulatory properties (transparency, fairness, etc.), and computational cost.

Practical problem for peer-to-peer implementation is related to the feasibility of the power flows cor-

responding to the bilateral trades negotiated on the financial market, regarding distribution grid network

constraints. In case of infeasibility, some trades might be curtailed and the resulting loss allocated to the

agents. Another important aspect which justifies the need for financial and physical level decoupling is

the information sharing between prosumers and the DSO, as the latter might be reluctant to share the sen-

sitive power grid related information with the former. This research topic has been addressed by several

studies, e.g. [61] proposes a methodology to assess the impact of peer-to-peer transactions on the phy-

sical network and ensures that the physical network constraints are not violated. [137], [162] investigate

multi-agent simulation framework and a consensus-based approach for peer-to-peer electricity trading in

a microgrid respectively. Cooperative or noncooperative Stackelberg games are studied in [90,142], with

an assumption that the distribution system operator (DSO) acts as the leader and prosumers, as followers.

In our model we focus on the interaction between (i) the financial level, in which the agents minimize

the sum of their generation flexibility cost and bilateral trading costs minus their usage benefit, and (ii)

the physical level, in which the DSO minimizes the total generation flexibility cost taking into account the
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FIGURE 4.1 – Simplified example of the two-level interaction

physics of the distribution network, which we model through a linear DC power-flow approximation. The

interactions between the two levels are modeled as generalized Nash equilibrium problems (GNEP), i.e.,

noncooperative games which endogenized shared coupling constraints within the agents’ parametrized

optimization problems. We analyze generalized Nash equilibrium (GNE) [74, 159], and a refinement of

it, called variational equilibria (VE)[74], assuming that the shadow variables associated with the shared

coupling constraints are aligned among the agents.

This chapter key contributions can be summarized as follows : (1) We formally define the optimi-

zation problems for financial market and DSO, and formulate the interaction between the financial and

physical levels as a GNEP (see Fig. 4.1, inspiration from [85]). We consider a two-player GNEP, in

which the financial level is operated in a centralized fashion by a Market Operator (MO). We compare

the two-player GNEP outcome to a N+1 GNEP outcome, in which the financial level made of N prosu-

mers is operated in a fully distributed peer-to-peer fashion. We show that the resulting GNEs are Pareto

efficient under certain conditions. (2) We characterize the solution of the GNEPs and discuss the effects

of the prosumers’ pricing mechanism, which captures the interaction between the financial and physical

levels. We provide an illustrative example that demonstrates that in case the two levels are uncoupled,

there might be a free-lunch behaviors, i.e. agents increasing their trades up to infinity to minimize their

costs. On the contrary, we prove that there is no such possibility in our model. (3) To illustrate our results,

we show that our problem is a generalized potential game (GPG) and implement the Gauss-Seidel best

response algorithm, which converges to a solution of the two-level game. In addition, we investigate the

impact of RES-based generation on the market social cost and DSO’s activation cost under the different

levels of the generation flexibility and flexible demand available. We also consider the impact of functio-

nal dependence of the congestion cost term in the agents’ trading costs functions, on the market social

cost.
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4.1.1 Notations

Bold symbol x denotes a vector and capital italic symbol X denotes a set. Exclusion of a set is

denoted by X \ A := {x|x ∈ X , x /∈ A}. x ⊥ y, means x ≥ 0, y ≥ 0 and xy = 0. Πn denotes a cost

function of agent n. To make a presentation concise, we sometimes omit the dependence of Πn on the

decision variables.

4.2 Description

We consider a single-settlement market for energy trading made of a setN of N agents (prosumers)

– each one of them being located in a node of the distribution grid. On top of the physical level network,

the agents form a trading network which is modeled as a connected undirected graph GM := (N , EM )

where EM ⊆ N × N is the set of trading links between the players, which reflects the financial level

network structure. We denote Γn to be the set of neighbors of n in this trading network, that reflects the

agents she wants to trade with. In this financial level agents make the decisions about their demand Dn,

generation flexibility Gn and bilateral financial trades qnm ∀m ∈ Γn \{n}. If qnm ≥ 0, then n buys qnm

from m, otherwise (qnm < 0) n sells −qnm to m. Inequality means that we allow for the surplus during

the electricity trading. The surplus is handled by an aggregator, who can sell it on the wholesale market.

The modelling of the aggregator’s optimization problem is out of the scope of the current work.

On the physical level, we consider a distribution grid, which is represented by an undirected graph

GDSO := (N , EDSO), where EDSO ⊆ N × N is a set of the distribution lines between agents. Let

Ωn be the set of the agents with whom agent n is connected in the distribution grid (note that Ωn does

not necessary coincide with Γn). DSO makes a decision about power flows Fnm, voltage angles θn and

coefficient ρn for the fraction of the generation flexibility to be used.

To model the interaction between the two levels, we assume that the decision variables Dn and Gn

of the agents act as the parameters in the DSO optimization problem. DSO’s decision variable ρn and

the Lagrangian multiplier γn, which can be interpreted as the congestion price, are used as parameters in

the agent n’s optimization problem. This interaction model implies that each agent n chooses the level

of the generation flexibility she is willing to utilize, while the DSO chooses the share of this generation

flexibility to use. Supply-demand balance constraint should hold both on the financial and physical levels.

Moreover, the coupling between the two levels appears explicitly through the congestion price, a function

of which is a component of the bilateral trading costs of the agents.
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4.2.1 Financial level

Feasibility sets For each agent n ∈ N , we introduce Dn := {Dn ∈ R+|Dn ≤ Dn ≤ Dn} as

agent n’s demand set, with Dn and Dn being the lower and upper-bounds on demand capacity and

Gn := {Gn ∈ R+|Gn ≤ Gn ≤ Gn} be agent n’s generation flexibility set, where Gn and Gn are the

lower and upper-bounds on activation capacity. Let ∆Gn denote the RES-based generation at node n.

We impose an inequality on the trading reciprocity :

qnm + qmn ≤ 0, (4.1)

which couples agents’ bilateral trading decisions 1. We denote ζnm the corresponding dual variable. It

means that, in the case where qnm > 0, the quantity that n buys from m can not be larger than the

quantity qmn that m is willing to offer to n.

Local supply and demand balance leads to the following equality in each node n in N :

Dn = Gn +∆Gn +
∑
m∈Γn

qmn = Gn +∆Gn +Qn, (4.2)

where Qn is defined as the net import at node n. Corresponding dual variable is denoted as λn

Objective function In each node n we model the generation flexibility cost as a quadratic function of

local activated flexibility, using three positive parameters an, bn and dn :

CG
n

(
ρnGn

)
=

1

2
an(ρnGn)

2 + bnρnGn + dn, (4.3)

where ρn ∈ [0, 1] is a decision variable of the DSO, which represents the the fraction of the flexibility

offered by agent n that is activated by the DSO.

The usage benefit perceived by agent n is modeled as a strictly concave function of node n demand,

using two positive parameters ãn, b̃n and a target demand D∗
n, defined exogenously for agent n :

Un

(
Dn

)
= −ãn(Dn −D∗

n)
2 + b̃n (4.4)

The total trading cost function of agent n is denoted by :

C̃n(qn) =
∑

m∈Γn,m ̸=n

qnm(cnm + f(γn)), (4.5)

1. Inequality means that there might be an energy surplus in the system. Surplus might be handled by a third party player
(aggregator) who is part of the game and who would compensate the consumers for the energy surpluses.
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where parameters cmn > 0 can model taxes for energy trading or agents’ preferences regarding trade

characteristics [26]. In real systems, DSO does not reveal γn explicitly, but some function f(γn) as a

function of congestion price, computed by the DSO.

Then, we write prosumer n’s cost function as follows :

Πn = CG
n

(
ρnGn

)
+ C̃n

(
qn
)
− Un

(
Dn

)
(4.6)

4.2.2 Physical level

On the physical, the DSO solves the Optimal Power Flow (OPF) problem. The original power flow

equations for AC systems are non-linear equations of complex numbers, having a quadratic relationship

between power and voltage, bringing non-convexity to the problem. We use the DC-OPF linearization

of the original problem, which is classical in the OPF literature. DC-OPF formulation is used to re-

present distribution grids when it is important to obtain the analytical results and interpretation of the

dual variables corresponding to the different prices in the electricity market [62], [82].

Constraints In DC-OPF approximation, power flow on the line nm can be expressed as

Fnm =
1

xnm
(θn − θm), (4.7)

with the dual variable τnm associated to it, where xnm is the line reactance. We include the upper and

lower bounds Fnm ≤ Fnm ≤ Fnm for which we use dual variables ϕ
nm
, ϕnm correspondingly. In order

to approximate the angles, we impose limits on the angle difference between connected buses :

−π
3
≤ θn − θm ≤

π

3
. (4.8)

with the corresponding dual variables αn, αn. For each node, DSO ensures that local supply and demand

balance holds :

Dn = ρnGn +∆Gn +
∑

m∈Ωn

Fnm (4.9)

with γn as a dual variable.

Optimization problem Denote the joint strategy vector for the market level decision variables as

sMO := (sn)
N
1 . We denote feasibility set for a DSO operator as SDSO(sMO) := {sDSO = (ρn, θn,Fn)1,...,N |Fnm ≤

Fnm ≤ Fnm, (4.7), (4.8), (4.9) hold ∀n ∈ N}. The DSO takes demand Dn as the parameter and mi-

nimizes the sum of generation flexibility costs CG
n (ρnGn) subject to power flow equations (4.7), node
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balance (4.9) and upper and lower bounds on angles and power flows constraints :

min
ρn∈[0,1],θn,Fnm

ΠDSO :=
∑
n

CG
n (ρnGn) (4.10a)

s.t. sDSO ∈ SDSO(sMO) (4.10b)

4.3 Market designs

4.3.1 Centralized financial market operation

We consider two designs of the financial market level, a centralized and a decentralized (peer-to-

peer) ones. Under centralized market design, in which the global Market Operator minimizes social cost

of the agents on the financial level. We denote the feasibility set of agent n as Sn(s−n) := {sn =

(Dn, Gn, qn)|Dn ∈ Dn, Gn ∈ Gn, (4.1), (4.2) hold ∀n ∈ N}, where s−n denotes is a vector that

contains the concatenation of all the agents’ actions excluding agent n.

min
Gn,Dn,qnm

ΠMO :=
∑
n

Πn (4.11a)

s.t. sMO ∈ SMO :=
∏
n

S−n(s−n) (4.11b)

We formulate the interaction between DSO and a local MO as a two-player generalized Nash equili-

brium game : G := {I, (Si)i∈I , (Π)i∈I}, where I is the set of agents, which in this framework is defined

as I := {MO,DSO}, for each i ∈ I , Si is the strategy set and Πi is the cost function. We denote the

systems of the KKT conditions for the financial and physical levels asKKTMO,KKTDSO respectively.

4.3.2 Peer-to-peer financial level market design

In this section we consider peer-to-peer setting on the financial level, in which each agent n ∈ N

selfishly optimizes her demand (Dn), energy generation (Gn) and bilateral trades (qn) with other agents

in her neighborhood under constraints on demand, generation and trading capacity so as to minimize her

costs. Formally, each agent in node n ∈ N solves :

min
Dn,Gn,qn

Πn, (4.12a)

s.t. sn = (Dn, Gn, qn) ∈ Sn(s−n) (4.12b)



92 CHAPITRE 4. INTERACTION WITH A DSO

We formulate the interaction between the DSO and the agents as an N + 1-player generalized Nash

equilibrium game : Gp := {I, (Si)i∈I , (Π)i∈I}, where I is the set of agents, which in this framework is

defined as I := N
⋃
{DSO}, for each i ∈ I , Si is the strategy set and Πi is the cost function of agent i.

We consider the KKT conditions of the game as a system given by KKTp which is the concatenation of

KKTDSO and KKTn for all n = 1 . . . N , where KKTn denotes the KKT conditions for (4.12).

4.4 Equilibrium analysis

In our analysis we rely on Generalized Nash Equilibria and Variational Equilibria ; both of them exist

under mild conditions [74], [159].

Definition 37 ([74]) A Generalized Nash Equilibrium (GNE) of the game G (Gp) with coupling constraints,

is a vector (xMO, xDSO) that solves the system given by KKTMO ∨KKTDSO (KKTp).

Definition 38 We say that GNE of Gp is induced by the Variational Equilibrium (VE) of the financial

level problem if it is a GNE of Gp s.t.

ζnm = ζmn, ∀n ∈ N , ∀m ∈ Γn (4.13)

We denote such equilibria as GNEV E .

As it was stated above, ζnm for n ∈ N ,∀m ∈ Γn can be interpreted as bilateral energy trading prices

[26]. In general, ζnm ̸= ζmn, thus leading to non-symmetric energy trading prices between couple of

agents. Relying on VE as solution concepts enforces a natural symmetry in the bilateral energy price

evaluation between any couple of agents [26].

We note that (s1, . . . , sn) that solve ∨Nn=1KKTn are defined by exactly the same KKT system as the

social cost minimizer of the market level problem -KKTMO. Therefore, we obtain the following result :

Proposition 39 GNE given in two-player game G coincides with GNEV E of Gp.

Pareto-efficiency of GNE A strategy is a Pareto efficient outcome if no joint strategy is both a weakly

better outcome for all players and a strictly better outcome for some player. Formally, if SGNE denotes

the set of the joint equilibrium strategies, then s ∈ SGNE is Pareto efficient if ̸ ∃ s′ ∈ SGNE s.t.

∀i ∈ I : Πi(s
′) ≤ Πi(s), ∃i ∈ I : Πi(s

′) < Πi(s)
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Proposition 40 If the coefficients cnm in the trading costs C̃n(qn) of the agents are homogeneous, i.e.

cnm = cn′m′∀n,m, n′,m′, then GNE of G and GNEV E of Gp are Pareto-efficient.

Proof. Denote c := cnm ∀n,m. Then, we can rewrite the trading cost of the agents using the supply-

demand balance equality :

C̃n(qn) = cQn = c(Dn −Gn −∆Gn), (4.14)

thus the objective function Πn doesn’t depend on qn. Note that Πn is strictly convex in Dn, Gn and

the feasibility set of the financial level optimization problem is convex. Then, solution of the financial

level problem given by the KKTMO (or the ∨N1 KKTn s.t. ζnm are equal) is unique w.r.t. Dn, Gn. Now

we consider the strategies of the DSO. Objective of the DSO doesn’t depend on θn and Fnm is strictly

convex in ρn. The feasible set is convex. Thus, we have a unique ρn that solves the KKT conditions. It

follows that there’s no other GNE that can decrease the costs of the agents.

Pricing In this section we focus on the Lagrangian multipliers that can be interpreted a market prices.

From KKTDSO conditions, we obtain the expression for the γn :

γn = ϕnm − ϕnm + (αn − αn)xnm (4.15)

Note that the angles θn, θm unambiguously define Fnm, thus, for the pair of the agents n,m there can

be only one active constraint out of the power flow bounds Fnm ≤ Fnm ≤ Fnm and the angles bounds

(4.8). It follows that the dual variable γn represents the congestion price on the physical level. From the

KKTMO conditions for the financial level we have that the nodal price λn associated with the supply

and demand balancing constraint in node n can be expressed as the sum of the bilateral trade price ζn

offered by n to m associated with the trading reciprocity constraint (4.1), the coefficient cnm and the

function f(γn) of congestion price γn on the physical level :

λn = cnm + f(γn) + ζnm (4.16)

From the balance equations (4.9) and (4.2), we have that

Gn(1− ρn) =
∑
m∈Γn

Fnm −
∑

m∈Ωn

qnm

Since ρn ∈ [0, 1], 1− ρn ≤ 0 we consider three cases :

1. Gn ≥ 0, then
∑

m∈Γn
qnm ≤

∑
m∈Ωn

Fnm



94 CHAPITRE 4. INTERACTION WITH A DSO

2. Gn ≤ 0, then
∑

m∈Γn
qnm ≥

∑
m∈Ωn

Fnm

3. Gn = 0 or ρn = 1, then
∑

m∈Γn
qnm =

∑
m∈Ωn

Fnm

If node n is injecting power in the grid, i.e. Gn ≥ 0, then the trading cost allocated to this agent is less

than the total congestion cost f(γn)
∑

m∈Ωn
Fnm caused by this agent on the physical level and vice

versa.

No free lunch behavior Term
∑

m∈Γn
f(γn)qnm is crucial in the trading costs of the agents. In the

absence of f(γn) in the trading costs, we might observe the free lunch behavior - situation in which the

financial trades are increasing up to infinity in order to decrease the trading costs C̃n(qn). We illustrate

this in the following example :

Example : Consider 3-node network, which is represented by a complete graph. Assume that the tra-

ding costs of the agents are given by C̃n(qn) =
∑

n∈Γn
cnmqnm and the coefficients cnm are (c12, c13) =

(1, 1), (c21, c23) = (1, 3), (c31, c32) = (2, 1). Let (q1, q2, q3) be a feasible vector of the trading decisions

s.t. q13, q21, q32 < 0 and q31, q12, q23 > 0. Then, w.l.o.g. pick node 3 and assume that it increases amount

of energy she sells to node 1 : q′31 = q31 − ε. Then, it also has to buy the same additional amount from

node 2 : q′32 = q32 + ε. Then, new trading cost C̃3(q
′
3) = 2 ∗ (q31 − ε) + 1 ∗ (q32 + ε) = C̃3(q3) − ε.

Similarly, for node 2, C̃2(q
′
2) = C̃2(q2) − 2ε and for node 1 : C̃1(q

′
1) = C̃1(q1). Note, that all the

bilateral trade constraints (4.1) remain feasible and that Qn do not change. Thus, by increasing ε, agents

are able to decrease their costs without violating any constraint.

The following result states, that adding the term f(γn)Qn in the trading costs of the agents prohibits

the free-lunch behavior.

Proposition 41 Free lunch behavior is not possible in the GNEV E if the trading costs of the agents are

given by (4.5), i.e. ̸ ∃sn s.t. sn ∈ Sn and C̃n → −∞.

Proof. To consider free-lunch behavior, it is sufficient to investigate the cycles in graph G. Consider

a cycle of length k : GCk
:= ((n1, . . . , nk), ECk

). We consider a part of the trading cost function of

agent i is that corresponds to the trades made inside this cycle :

C̃
GCk
i (qi) = ci,i−1qi,i−1 + ci,i+1qi,i+1 + f(γi)(qi,i−1 + qi,i+1)

= λi(qi,i−1 + qi,i+1)− ζi,i−1qi,i−1 − ζi,i+1qi,i+1

Assume that one agent changes her trades by adding ε to the amount she buys and subtracting ε from

the amount she sells. In order to have free-lunch behavior, it is necessary that all the changes in the

trading costs of the agents in GCk
induced by this change are non-positive with one agent having strictly
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decreased cost. Thus, the change in the sum of the total costs of all agents in GCk
should be negative.

Note, that the first term λi(qi,i−1 + qi,i+1) does not change, so it is sufficient to consider the last. Taking

the sum over all the nodes in GCk

−
∑

i∈GCk

[
ζi,i−1qi,i−1 + ζi,i+1qi,i+1

]
=

= −
[
ζ2,1q2,1 + ζ1,2q1,2 + . . . ζ1,kq1,k + ζk,1qk,1

]
= −

[
ζ1,2(q2,1 + q1,2) + · · ·+ ζ1,k(q1,k + qk,1)

]
= 0

Where the equivalence to zero follows from the complementarity conditions for the bilateral trading

constraints (4.1). We finish the proof by noting that it contradicts the necessary condition for the free-

lunch behavior.

4.5 Numerical results

We consider the 18-node distribution network [25], for which all the parameters and the scheme

are provided in [134]. Each node is a consumer with Dn > 0 and some nodes are generators (RES or

conventional), therefore producing energy that can be consumed locally to meet demandDn and exported

to the other nodes to meet the unsatisfied demand.

We are interested in two aspects of the interaction between financial and physical levels : (i) how does

the penetration of RES generation affect the efficiency and performance of the two-level noncooperative

game, (ii) how does the form of the trading cost affect the efficiency of the market, more precisely, what

is the effect of the different functions f(·) that we apply to the congestion price γn.

Potential form of the game Computing GNE in the general case might be a challenging task. For a

specific type of GNEP, which is called Generalized Potential Games (GPG) there are established ap-

proaches in the literature that compute both GNE [48] and VE [14]. A GNEP is a Generalized Exact

Potential Game if (i) the feasible set of the game is non empty, (ii) there exists a continuous func-

tion P (x) : RN → R such that for all n, for all s−n (such that Sn(s−n) is not empty), and for all

sn, zn ∈ Sn(s−n)

Πn(sn, s−n)−Πn(zn, s−n) = P (sn, s−n)− P (zn, s−n) (4.17)

Proposition 42 Problem Gp is a is a Generalized Exact Potential Game (GPG) with a potential function
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given by

P =
∑
n

[
CG
n

(
ρnGn

)
+ C̃n

(
qn
)
− Un

(
Dn

)]
(4.18)

Proof. Indeed, the feasible set of the problem is nonempty and we can check directly that (4.17) holds.

Algorithm 1 Regularized Gauss-Seidel BR algorithm [48]

1: Choose a feasible starting point x0 = (x01, . . . , x
0
N ) ,

a positive regularization parameter τ > 0 and set k := 0.

2: If xk satisfies a suitable termination criterion : STOP.

3: For n = 1, . . . , N , compute a solution xk+1
n of :

min
xn

Πn(x
k+1
1 , . . . , xk+1

n−1, xn, x
k
n+1, . . . , x

k
N )+

+ τ ||xn − xkn||2,

s.t. xn ∈ Sn(xk+1
1 , . . . , xk+1

n−1, x
k
n+1, . . . , x

k
N ).

4: Set xk+1 := (xk+1
1 , . . . , xk+1

N ), k ← k + 1 and go to (2).

First, we investigate the efficiency loss caused by the peer-to-peer equilibrium computation with

respect to centralized solution. Formally, we compute the ratio of the total cost of the system computed

at an optimum and the total cost of the system at a GNE :

Rcost :=
Cost(s1,...,sN ,sDSO)∈SC(s1, . . . , sN , sDSO)

Cost(s1,...,sN ,sDSO)∈GNE(s1, . . . , sN , sDSO)

RES penetration and flexibility Define the percentage of the RES-based generation penetration in the

system as

Rres =

∑
n∈N ∆G∑
n∈N Gn

There are two important points to consider when we increase the amount of RES in the system : (i) how

much does it increase the efficiency loss of the system, (ii) what is the maximum amount of RES that we

can inject so that the problem remains feasible.

Figure 4.2 illustrates how increasing RES generation percentage in the system we can approach the

social cost optimum in the different settings of the generation flexibility availability. Low GF and High

GF correspond to the low and high values of the Gn∀n ∈ N respectively. On the horizontal axis we put

the percentageRres of the RES-based generation in the network, which varies in the intervals that ensure

that the problem is feasible in all settings considered. For the Low GF framework, the problem becomes
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FIGURE 4.2 – Flexible generation FIGURE 4.3 – Flexible demand

infeasible forRres > 23% (orRres > 27%) as there is not enough flexible resource in the nodes to avoid

congestion. First, note, that the efficiency of the GNE in the High GF is lower, which is caused by the

bigger feasible sets, thus, the increased ability of the agents to act selfishly and deviate more from the

SC optimum. Increasing the amount of RES generation available affects the Low GF the most : as soon

as the RES generation of the agents increases, agents obtain more freedom and are able to better adjust

their generation/trades, which leads to the increase in the efficiency with a high growth rate. High GF

efficiency growth is much less affected by the RES injection, because the agents already have had a lot

of freedom for their actions even on the low values of Rres.

Similar behavior is observed when we investigate the effects of the demand flexibility on the ef-

ficiency of the system. Figure 4.3 shows the changes in the efficiency for the High DF and Low DF

settings w.r.t. Rres. Again, more flexibility in the decisions of the agents leads to the lowest values of the

efficiency of the system and lower level of the flexibility induces the highest efficiency growth rate w.r.t.

Rres.

RES penetration and pricing functions We investigate how the form of the function f(·) affects the

total cost of the agents. For our experiments we choose f(·) to be monotonically increasing, continuous

function : we take f(x) =
√
x and f(x) = x. Figures 4.4 and 4.5 illustrate how the total costs of all

agents and DSO change when we increase the RES penetration. On the y-axis we put the ratio between

the costs at the given value of Rres, divided by the first entry, i.e. the cost at a value Rres = 20%.

The decrease of the agents’ and DSO costs shows the same tendency for both of the functions f(x) =
√
x and f(x) = x on Figures 4.4 and 4.5. While the decrease rate of the DSO cost is higher for f(x) =
√
x it is the opposite for the agents’ cost. In this example f(x) =

√
x seems to be a good choice for the

DSO, while bringing some disadvantages for the agents. As it is illustrated in this example, it is important

to design a suitable f(·) which would benefit both layers of the model, thus calling for a further research.
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FIGURE 4.4 – Agents’ cost changes FIGURE 4.5 – DSO cost changes

4.6 Conclusion

We formulate a generalized Nash equilibrium problem which models the interaction between the

financial peer-to-peer electricity market level and the physical level (distribution grid) operated by the

DSO. We provide characterization of the GNE under different designs of the financial level prosumers’

market. We discuss the effects of the trading cost form on the equilibria, focusing on properties such as

Pareto efficiency, no free-lunch behavior and Lagrangian multipliers pricing interpretation.

As a future research direction, we will investigate formally the impact of the functions used to com-

pute the modified nodal prices that the DSO uses to charge the prosumers. Another interesting direction

is to consider the different physical layer models, e.g. second cone order programming (SOCP). It is

interesting to provide the bound on the Price of Anarchy to evaluate the efficiency loss caused by the

decentralization of the decisions in the financial level.
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Privacy Impact on Generalized Nash Equilibrium in

Peer-to-Peer Electricity Market

5.1 Introduction

Within the peer-to-peer electricity market, agents negotiate their energy procurement seeking to mi-

nimize their costs with respect to both individual and coupling constraints, while preserving a certain

level of privacy [26]. In this chapter the problem is modeled as a generalized Nash equilibrium problem

(GNEP), parametrized in the privacy level, chosen by the agents.

Information sharing in the peer-to-peer market can improve agents’ performance, but also may vio-

late their privacy, leading to the disclosure of agent’s private information [154]. This calls for the design

of new communication mechanisms that capture the agents’ ability to define the information they want

to share (their report) with the other market participants, while preserving their privacy [51]. In many

applications, this problem is usually addressed by including noise to the reports that the agents subse-

quently use to compute the market equilibrium [26]. However, this approach does not include the ability

of the agents to act strategically on the values of their report. Moreover, the question of the optimal noise

distribution is crucial in such a framework [97].

To analyse the market in presence of shared coupling constraints, we employ Generalized Nash

Equilibrium (GNE) as solution concept [74], and a refinement of it, called Variational Equilibria (VE),

assuming the shadow variables associated with the shared coupling constraints are aligned among the

agents. In our proposed framework, agents compute GNE with respect to the constraints that bound (a)

the distance between the deterministic deviation from the true values of the private information and (b)

the Kullback-Leibler divergence, that measures the effect of the additive random noise included in the

reports.

Game theoretic approaches integrating the prosumers’ strategic behaviors in the peer-to-peer trading

are considered in [26], [14]. The economic dispatch in energy communities under different structures of

communications is analysed in [95], [96]. The impact of privacy on an energy community was analyzed

in the literature, e.g. in [26], where the sensitive information and the noise added to agents’ reports

were considered as exogenous parameters. Using a prediction model, Fioretto et al. provide a privacy-

preserving mechanism, to protect the information exchanged between the different market operators

while guaranteeing their coordination [51].
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The anticipation of the actions of the agents in our model is represented by the common knowledge

of the form of the solution. This anticipation will be used in strategic behavior framework to compute the

prosumers’ optimal deviation in their private information reports.

Various definitions of privacy have been introduced in the data science literature [56]. Several infor-

mation metrics : e.g., mutual information, entropy, Kullback-Leibler divergence, and Fisher information

are used to quantify information release [50], [97]. Differential privacy (DP) was recently successfully

applied to multi-energy market operations [51] and dynamical systems [97]. DP relies on adding noise

to the reports from predetermined distributions. In our model we also use the additive noise, but we relax

the assumptions of DP mechanism and focus on the prosumers’ ability to determine their noise distribu-

tion. It is done by bounding the the expectation of the privacy loss random variable [9], which constitutes

exactly the Kullback-Leibler divergence for the introduced privacy-preserving randomized mechanism.

Similarly to local DP, in our model we assume that additive noise is added locally and independently

by each agent, but we relax the assumptions of DP mechanism and assume that the prosumers have the

ability to determine their noise distribution and act strategically on the values of their reports. Similarly

to Eilat et al. [41], we bound the expectation of the privacy loss random variable [9], which constitutes

the Kullback-Leibler divergence for the introduced privacy-preserving randomized mechanism.

Allowing the agents to control their privacy level raises questions about the trade-off between privacy

preservation and utility maximization both at the agents and at the system (market) levels. This research

track has been widely analyzed in the literature [83]. In [5], Alvim et al. derive bounds both on the infor-

mation leakage and utility of the agents under differential privacy. In [24], Boursier and Perchet address

this question by the means of the Optimal Transport while including the Kullback-Leibler divergence

term in the utility of the agents.

5.1.1 Contributions

We relate the notion of privacy preservation resulting from the non-disclosure of the nominal de-

mands and RES-based generations of the prosumers in [26], to the privacy mechanism with the additive

Gaussian noise, that allows each agent to control her privacy level. It is done, firstly, by choosing the

deterministic value to report to other agents ; secondly, by using the random noise added to that value.

We quantify the impact of privacy on the prosumers’ costs and provide an analytical expression of the

market equilibria. In addition, we allow each agent to change her level of privacy and show the existence

of the incentives for the prosumers to deviate from their true sensitive parameter values. We rely on

the notion of strong monotonicity to prove the existence and uniqueness of the solution to our problem.

Using Kullback-Leibler divergence, we measure the cost of privacy, caused by inclusion of the random
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noise. All the theoretical results are illustrated on the 14-bus IEEE network.

The organization of the rest of this chapter is as follows : in section 5.2 we first describe the peer-to-

peer electricity trading problem in Subsections 5.2.1 and 5.2.2, which constitutes a basis for our commu-

nication game, that will be defined in Subsection 5.2.4. In section 5.3 we provide the analytical expression

of the GNE, prove the uniqueness of the VE of the game and show that under mild conditions, the com-

munication game has a potential form. We illustrate our theoretical results on the 14-bus IEEE network

and discuss privacy-utility relation in section 5.4.

5.2 Statement of the problem

5.2.1 Preliminaries

In distributed control systems there is a usual trade-off between privacy and cost : to obtain a better

solution, each agent relies on the information of the other agents in the system, which they might not

have incentives to provide.

Consider a single-settlement market for peer-to-peer electricity trading made of a setN of N agents,

each one of them being located in a node of a communication network, that is modeled as a graph

G := (N,E) where E ⊆ N ×N is the set of communication links between the players. Let Ωn be the

set of nodes, player nwants to trade electricity with. Being the interface node between the local electricity

market and at the distribution level and the transmission power network, node 0 can communicate with

any other nodes in Ω0 := N \ 0. The graph G does not necessarily reflect the distribution power network

constraints.

In this chapter we focus on the privacy issues that arise after solving the peer-to-peer electricity

trading problem [26].

Each agent n chooses independently her bilateral trades qn with agents she wants to trade electricity

with, self-generation Gn and flexible demand Dn, in order to minimize her cost function Πn :

Πn(Dn, Gn, qn) := 1/2 · anG2
n + bnGn + dn︸ ︷︷ ︸
Cn(Gn)

+

+ ãn(Dn −D∗
n)

2 − b̃n︸ ︷︷ ︸
Un(Dn)

+
∑

m∈Ωn,m ̸=n

cnmqmn︸ ︷︷ ︸
C̃n(q)

,
(5.1)

where an, bn, dn, ãn, b̃n > 0 and D∗
n denotes the nominal demand of agent n [26]. Thus, the vector of

agent n’s decision variables is (Dn, Gn, qn), where qn := (qmn)m∈Ωn is the vector of the quantities
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exchanged between n and m in the direction from m to n, qmn, for all m ∈ Ωn \ {n}. We use the

following convention : if qmn ≥ 0, then n buys qmn from m, otherwise (qmn < 0) n sells −qmn to m.

We let Qn denote the net import of agent n : Qn :=
∑

m∈Ωn
qmn.

Each agent computes trading cost C̃n(q) using cnm which might represent preferences measured

through product differentiation prices [26], [137] on the possible trades with the neighbors, or taxes. The

following condition on agent’s trades called trading reciprocity constraint couples the decisions of two

neighboring agents, ensuring for every node m ∈ Ωn that qmn + qnm = 0. Note, that this formulation

of the coupling constraints differs from the one presented in [26], as we use equality constraint in our

model, instead of the inequality. That means that the energy surplus is not allowed in the electricity

trading model. Let κnm ∈ [0,+∞) be the equivalent trading capacity between node n and node m, such

that κnm = κmn and ∀m ∈ Ωn. This equivalent trading capacity is used to bound the trading flows such

that qmn ≤ κmn.

Local supply and demand should satisfy the following balance equality in each node n in N : Dn =

Gn+∆Gn+
∑

m∈Ωn
qmn, where ∆Gn is the renewable energy sources (RES)-based generation at node

n, assumed to be non-flexible.

5.2.2 Electricity trading problem

As it was discussed in the introduction, each agent holds some private information that takes the form

of nominal demand D∗
n and RES-based generation ∆Gn, which she does not desire to reveal to the other

agents in the system. In the further analysis, we assume yn := D∗
n −∆Gn to be the private information

of agent n. We assume that the agents desire to solve the electricity trading problem endowed with the

set of coupled constraints while not allowing the other agents to infer their values of yn. We denote

xn := (Dn, Gn, qn) to be the vector that contains agent n’s decision variables and x−n is the vector of

the other agents’ actions. We recall the optimization problem formulated in [26] for the clearing of the

peer-to-peer electricity market.

Peer-to-peer market design In the peer-to-peer setting the problem of the electricity trading takes the

form of generalized Nash equilibrium problem i.e., a game where the feasible sets of the players depend

on the other players’ actions. With the notation introduced above, it means that each agent solves the
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following optimization problem :

min
xn

Πn(xn), (5.2a)

s.t. Gn ≤ Gn ≤ Gn (µ
n
, µn) (5.2b)

Dn ≤ Dn ≤ Dn (νn, νn) (5.2c)

qmn + qnm = 0 (ζnm) (5.2d)

qmn ≤ κmn (ξnm) (5.2e)

Dn = Gn +∆Gn +
∑

m∈Ωn

qmn (λn), (5.2f)

where the corresponding dual variables are placed in blue at the right of each constraint. Note that in

(5.2) the feasible set of the agent n can be rewritten in a more compact form Cn(x−n) = {xn|(5.2b) −

(5.2f) hold}. This notation will be used later in the chapter.

We introduce the following assumption to guarantee that the interface trading capacities are big

enough to supply trading needs of all the agents and that differentiation prices are symmetric for trading

with the root node.

Assumption 43 We assume that there are large trading capacities from and to node 0 – that is ξ0n =

ξn0 = 0 ∀n ∈ N and cn0 = c0n for all n ∈ N .

The following subsection describes the computation of C̃n(q) in the different setting for the diffe-

rentiation prices.

5.2.3 Computation of the trading cost

Under the conditions of Assumption 43, Proposition 8 in [26] states that :

Proposition 44 For any couple of nodes n ∈ N,m ∈ Ωn,m ̸= n with asymmetric preferences (such as

cmn > cnm or cmn < cnm) imply that the node with the smaller preference for the other saturates the

line.

We focus on two opposite instances :

1. All cnm are homogeneous That means that cnm = c for all n,m ∈ N . This case reflects the

interpretation of cnm as the taxes for energy trading, that should be naturally non-discriminating among

agents. In this case bilateral trade cost is given by :

C̃n(qn) = c ·Qn (5.3)
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2. All cnm form,n ̸= 0 are heterogeneous This framework represents the case, when all cnm,m, n ̸=

0 are drawn from some continuous distribution (e.g. uniform). Under the Assumption 43 we are able to

obtain the expressions for C̃n(qn) in this framework for agent n. Again using Proposition 44 we have

that qn0 = Qn −
∑

m∈Ωn,m ̸=0 κnm sgn(cmn − cnm), where Qn is obtained by combining (5.2f) and

expressions for Dn, Gn. Thus, we are able to obtain the cost expressions for each agents n directly :

Proposition 45 Bilateral trade costs for any agent n ∈ N in the network except root node 0 are given

by

C̃n(qn) = c0n
[
Qn −

∑
m∈Ωn,m ̸=0

κnm sgn(cmn − cnm)
]

+
∑

k∈Ωn,k ̸=0

cnkκnk sgn(ckn − cnk).
(5.4)

Bilateral costs for node 0 are expressed as

C̃0(q0) =
∑
n∈Ω0

c0n

[ ∑
m∈Ωn,m ̸=0

κnm sgn(cmn − cnm)−Qn

]
(5.5)

Remark 46 Note, that we do not impose any condition on the ratio between the values of the coefficients

cnm : that is, choosing c0n < cmn, ∀m,n ∈ N , we can ensure the preference for the local trades.

3. Intermediate case To demonstrate the difficulties arising in the general case for computing bilateral

trades, we consider the intermediate case, in which there exists one additional symmetric relation cn′m′ =

cm′n′ for m′, n′ ̸= 0. Thus, for this pair of nodes we have that

Qn′ = q0n′ + qm′n′ +
∑

k ̸=m′∈Ωn′

κn′k sgn(ckn′ − cn′k)

Qm′ = q0m′ + qn′m′ +
∑

k ̸=n′∈Ωm′

κm′k sgn(ckm′ − cm′k),

where qm′n′ = −qn′m′ , which gives us a system of two equations with three unknown variables q0n′ , q0m′ , qm′n′ .

Writing the similar equation for every node k ̸= m′, n′, 0, we get N −3 equations with N −3 unknowns

and adding the expression forQ0 we obtain linear system withN independent equations andN unknown

variables. It follows that adding even one symmetric relation leads to the system of N equations with

N + 1 unknowns.

Link between electricity trading and communication game It is shown in [26], that at the VE, agent

n’s decision variables x∗
n depend on the dual variable λn, which, under the Assumption 43 is aligned

across agents : λn = λ0,∀n ∈ N , where λ0 is the uniform market clearing price. The equilibrium
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expressions, provided in [26], also hold for our model with equality constraint (5.2d). λ0 depends on the

private information yn of the agents. Formally, λ0 is given by :

λ0 =

∑
n yn +

∑
n

bn
an∑

n

(
1

2ãn
+ 1

an

) (5.6)

and the decision variables Dn and Gn are given at the equilibrium by the following expressions :

Dn(y) = D∗
n − 1

2ãn
λ0, Gn(y) = − bn

an
+ 1

an
λ0. The expression for Qn is obtained from the supply

demand equality condition (5.2f) : Qn(y) = D∗
n + bn

an
− ( 1

an
+ 1

2ãn
)λ0 −∆Gn.

Thus, to solve (5.2) each agent needs to compute the uniform market clearing price λ0, which requires

a knowledge of all the (yn)n in the system. It leads to a question for each agent n of how to determine

the report of her private information, so that it has the minimal impact on her cost, while guaranteeing

that the certain level of privacy is met. That is, each agent n anticipates the form of the solution of the

electricity trading problem at the equilibrium and determines the report ỹn of her private information,

that she submits to the other agents in the system.

In order to do so, each agent n minimizes the difference between the cost of the problem with the

modified values and the optimal solution of the problem (5.2) with the truthful reports Π∗
n :

min
ỹn

E
[
Πn(ỹn, ỹ−n)−Π∗

n

]
,

s.t. x∗
n(ỹ) ∈ Cn(x∗

−n(ỹ)),

(5.7)

where the expectation is taken in order to account for both randomized and deterministic cases. Note that

x∗
n depends on ỹ because in the expressions for the decision variables Dn(·), Gn(·) and qn(·) we use the

reports ỹ instead of the true values y as the input. Also note that Π∗
n is a constant as it is calculated using

true values of y, thus it can be omitted from the objective function.

Remark 47 In (5.7) we assume that the form of the electricity trading problem is known by all the agents

in the system. It enables each agent to anticipate the form of the solution x∗n(·), for all n ∈ N and thus,

based on this form to decide on the optimal information ỹn,∀n ∈ N to report to the other agents before

they actually obtain the solution of the electricity trading problem. Note that it differs from [51], as we

take the form of the solution x∗ of the GNEP as given.

5.2.4 Communication game

The report of the agent n takes the form ỹn = ŷn+ εn. The first part of the report captures the ability

of agent n to act strategically on her report by determining the deterministic part ŷn that solves the cost
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minimization problem. In the second part of the report, each agent implements a randomized mechanism

M(·) by choosing the noise εn to add to ŷn in order to preserve a certain level of privacy.

Privacy loss definition First, we define an upper bounded distance as a symmetric adjacency relation

yn ≃ ŷn for agent n : yn ≃ ŷn ⇐⇒ d(yn, ŷn) ≤ αn, where αn is chosen beforehand and reflects the

amount of information agent n desires to preserve [29].

Definition 48 (Privacy loss) Given a randomized mechanism M , let pM(yn)(z) denote the density of

the random variable Z = M(yn). The privacy loss function of M(·) on a pair of yn ≃ ŷn is defined as

lM,yn,ŷn(z) = log
(
pM(yn)(z)/pM(ŷn)(z)

)
. The privacy loss random variable LM,yn,ŷn := lM,yn,ŷn(Z)

is the transformation of the output random variable Z =M(yn) by the function lM,yn,ŷn .

We assume that each agent samples a Gaussian noise εn ∼ N (0, σ2n), thus obtaining the report ỹn ∼

N (ŷn, σ
2
n).

When the Gaussian isotropic random noise is added to the deterministic value of the input, it is

well-known that the privacy loss random variable is also Gaussian :

Lemma 49 ([9]) The privacy loss LM,yn,ŷn of a Gaussian output perturbation mechanism follows a

distribution N (η, 2η), with η = D2/2σ2, where D = ||yn − ŷn||.

A randomized mechanism for information reporting We aim to allow agents to be able to decide on

the optimal noise added to their private information, by choosing the optimal variance Vn. For simplicity

of notations, we denote Vn := σ2n.

First, each agent chooses the neighboring input ŷn ≃ yn, on which she later implements M(·). It

is reflected in the constraint (5.8d). In the constraint (5.8e), the expectation of the privacy loss random

variable measures the expected privacy loss of the mechanism M(yn) on the fixed private information

yn, ŷn. In other words, it shows, how much information can be extracted from the report ỹn. Note, that it

is exactly the Kullback-Leibler divergence (or the relative entropy) between M ’s output distributions on

yn and ŷn.

Thus, to decide on the optimal value of the report ỹn, each agent needs to solve the following opti-
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mization problem :

min
ŷn,Vn

Eεn∼N (0,Vn)

[
Πn(ŷ, ε)

]
(5.8a)

s.t. G′
n ≤ Eεn∼N (0,Vn)

[
Gn(ỹ)

]
≤ G′

n (µ
n
, µn) (5.8b)

D′
n ≤ Eεn∼N (0,Vn)

[
Dn(ỹ)

]
≤ D′

n (νn, νn) (5.8c)

(ŷn − yn)2 ≤ α2
n (γ

n
, γn) (5.8d)

E
[
LM,yn,ŷn

]
≤ An (β

n
, βn) (5.8e)

whereG′
n = Gn+ωGn ,G′

n = Gn−ωGn andD′
n = Dn+ωDn ,D′

n = Dn−ωDn , in which ωDn , ωGn > 0

are introduced in order to account for the strictly feasible solutions of problem (5.2). In the numerical

experiments we set ωDn , ωGn to be a small, e.g. 10−3.

As it is shown below, the only term depending on the variance in the utility function of the agent n is
Bn
B

∑
m Vm, where we denote Bn := 1

an
+ 1

2ãn
and B :=

∑
nBn. In the special case yn = ŷn for some

n, where the constraint (5.8e) (ŷn−yn)2

2Vn
≤ An holds for any 0 < Vn <∞. The possible convention could

be to exclude this constraint from the consideration, when yn = ŷn and set Vn = 0.

The condition for the uniform market clearing price λ0 to have a form given in (5.6) is to have zero

total net import, i.e.
∑

nQn = 0. In the case a fully coordinated mechanism is implemented, i.e the local

Market Operator has an access to all the constraints and parameters of the agents and solves the problem

in a centralized way, it is possible to oblige agents to align their reports ỹ such that E
[∑

nQn(ỹ)
]
=∑

n(yn − ŷn) = 0. It follows that
∑

n ŷn =
∑

n yn. So, when we compute λ0 using ỹ instead of y, we

obtain E
[
λ0(ỹ)

]
= 1

B (
∑

n ŷn +
∑

n
bn
an
) = 1

B (
∑

n yn +
∑

n
bn
an
). Thus, the final market clearing price

does not depend on the reports of the agents, which is formalized in the following statement :

Proposition 50 When the prosumers align their reports ỹ so that the condition E
[∑

nQn(ỹn)
]
= 0 is

met, then the uniform market clearing price λ0 depends only on the true values of their initial parameters

y.

In the case a peer-to-peer communication mechanism is implemented, the sum of the net imports at

each node might not be equal to zero. Indeed, agents might have incentives to violate this condition in

order to decrease their costs. Thus, the condition
∑

nQn = 0 might not hold.

On the market level it is necessary for the condition of zero total net import to hold such that supply

and demand balance each other in problem (5.2) [96] in order to preserve the balance of the market. Also,

note that non zero total net import
∑

nQn ̸= 0 implies that there exists at least one pair of agents (n,m)

with qnm + qmn ̸= 0. Besides, this might cause the violation of the capacity condition qnm ≤ κnm.
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It means that the local MO has to compensate the difference E
[∑

nQn(ỹn)
]

caused by the lack of

coordination in the agents’ reports. In the case E
[∑

nQn(ỹn)
]
≤ 0, there is an energy surplus in the

system, which can be sold by the MO (by the intermediate of an aggregator) to the wholesale market

at price p0. If E
[∑

nQn(ỹn)
]
≥ 0, then the MO (by the intermediate of an aggregator) has to buy the

energy on the wholesale market at price p0, which depends on the wholesale market price, in order to

supply the system demand.

When the constraints and the private information of the agents are not shared, the MO only knows

the aggregate deviation
∑

n(yn − ŷn) thus penalties imposed on the agents depend on it and not on the

personal deviation yn − ỹn of the agent n.

Remark 51 For prosumers, imports/exports of energy from/to the community manager are possible at

prices p−/p+ respectively such that p+ ≤ p0 ≤ p−. To avoid non-differentiability in the utility function,

we let p+ = p0 = p−.

To compensate for the cost of buying the lack of energy at the local market level from the wholesale

market, the MO imposes penalty to each prosumer that takes the form P (ỹ) = p0

N

∑
n(yn − ỹn). Note

that in case of the excess of the production on the local market level, the prosumers will be equally

reimbursed based on the surplus produced. The division by N is introduced in order to equally split the

burden of the non zero total net import and mitigate the possible volatility of the price p0.

Assumption 52 A local MO ensures the compensation for the nonzero total net import. This implies that

the formula for λ0 in (5.6) is used by all the prosumers to compute their decision variables.

Proposition 53 Dual variables β
n
, βn for the constraint (5.8e) can be interpreted as the privacy price

for agent n and are computed by the formula

(βn + β
n
)2 =

B2
n(ŷn − yn)2

4B4

Proof. Constraint (5.8e) can be rewritten as follows, when we consider Vn ̸= 0 for all n ∈ N :

E
[
LM,yn,ŷn

]
≤ An ⇐⇒ (ŷn − yn)2 ≤ 2VnAn. In the following analysis, we denote Bn := 1

an
+ 1

2ãn

and B :=
∑

nBn. The objective function (5.8a) of the agent n depends linearly on the Vn, thus attai-

ning the minimum with respect to this decision variable on the lower boundary of the feasible region.

The lower boundary is given by the constraint (5.8e), from which we can conclude that Vn = (ŷn−yn)2

2An

for any given value of the decision variable ŷn for any agent n. From the KKT conditions we have that

Vn = 2B4

AnB2
n
(βn + β

n
)2, from which we obtain the expression for (βn + β

n
)2.
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First, from the complementarity conditions we know that either of β
n
, βn equals 0. Clearly, it is non-

negative term that appears in the utility of the agent n at the equilibrium. Thus, we can view β
n
, βn as a

privacy price.

Remark 54 The privacy price increases with respect to the distance between the truthful (yn) and biased

(ŷn) values of agent n’s private information.

5.3 Equilibrium problems

5.3.1 Aggregate game formulation

Note that as λ0 depends on the sum of
∑

n

(
D∗

n − ∆Gn

)
, the objective function in (5.8) has an

aggregative game structure, i.e. it depends on player n’s decision ŷn and on the aggregate of the other

agents’ decisions.

Below we provide the computations of the objective function of agents Πn(ỹn, ŷ−n) both in (i) the

fully coordinated mechanism and (ii) the peer-to-peer coordination mechanism.

To arrive to this closed form expression, we observe that ỹn ∼ N (ŷn, Vn). The sum of normal va-

riables is a normal variable itself :
∑

n ỹn ∼ N (
∑

n ŷn,
∑

n Vn), from where it follows that (
∑

n ỹn +∑
n

bn
an
) ∼ N (

∑
n ŷn +

∑
n

bn
an
,
∑

n Vn). Using a formula for the second moment of the normal distri-

bution, expression (5.3) and Proposition 45, we obtain the expression for the utility of the agents in cases

(i) and (ii).

In the homogeneous differentiation price case cnm = c, the cost function of agent n is given by

E
[
Πn(ỹ)

]
=

Bn

2B2

[(∑
m

ŷm +
∑
m

bm
am

)2
+
∑
m

Vm

]
+ c
[
D∗

n −∆Gn +
bn
an
− Bn

B

(∑
m

ŷm +
∑
m

bm
am

)]
+
p0

N

∑
m

(ym − ŷm)− b2n
2an

+ dn − b̃n.

Expression for the utility in the case when cnm are heterogeneous is similar, except that for C̃n(qn), we

use the expressions from Proposition 45.

5.3.2 GNE computation

cnm are homogeneous From the computations of the KKT conditions, we obtain that Bn
B2

∑
m∈N ŷm+

M ′
n = 0, ∀n ∈ N , where M ′

n := Bn
B2

∑
m

bm
am
− p0

N −
cBn
B + 1

anB
(µn − µn) +

1
2ãnB

(νn − νn) + γn −

γ
n
+ βn − βn.
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cnm are heterogeneous for m ̸= 0 Analogously, first order stationarity conditions for agents n ∈ N

are given by Bn
B2

∑
m∈N ŷm +M ′′

n = 0, with M ′′
n := Bn

B2

∑
n

bn
an
− c0nBn

B −
p0

N + 1
anB

(µn − µn) +
1

2ãnB
(νn − νn) + γn − γn + βn − βn and M ′′

0 = B0
B2

∑
n

bn
an

+ 1
a0B

(µ0 − µ0) +
∑

n ̸=0 c0n
Bn
B −

p0

N +

1
2ã0B

(ν0 − ν0) + γ0 − γ0 + β0 − β0.

5.3.3 Uniqueness of the Variational Equilibrium

Definition 55 An operator F : K ⊆ Rn → Rn is strongly monotone on the set K̂ ⊆ K with monotoni-

city constant α > 0 if (F (x) − F (y))⊤(x − y) ≥ α||x − y||2, ∀x, y ∈ K̂. The operator is monotone if

α = 0.

In order to show the uniqueness of the VE of the problem (5.8), we check if the operator

F (ŷ,V ) :=
[
∇nE

(
Πn(ŷ,V )

)]N
n=1

(5.9)

is strongly monotone. For homogeneous differentiation price cnm = c, F (ŷ,V ) writes as follows :

F (ŷ,V ) = col

{(
Bi

B2

(∑
m

ŷm +
∑
m

bm
am

)
− cBi

B
− p0

N
,
ViBi

B2

)N−1

i=0

}
(5.10)

When differentiation prices cnm are heterogeneous for m ̸= 0, operator F (ŷ,V ) is obtained similarly,

but for the expressions of C̃n(qn), we take expressions from Proposition 45. To do so, we use the follo-

wing lemma :

Lemma 56 ([104]) A continuously differentiable operator F : K ⊆ Rn → Rn is α-strongly monotone

with monotonicity constant α (resp. monotone) if and only if ∇xF (x) ⪰ αI (resp. ∇xF (x) ⪰ 0) for all

x ∈ K. Moreover, if K is compact, then there exists α > 0 such that ∇xF (x) ⪰ αI for all x ∈ K if an

only if∇xF (x) ≻ 0 for all x ∈ K.

Lemma 57 Operator F (ŷ,V ) defined in (5.10) is strongly monotone.

Proof. First, note that for heterogeneous cnm, operator F (ŷ,V ) writes as follows for nodes i ̸= 0 :

F (ŷ,V ) = col

{(
Bi

B2

(∑
m

ŷm +
∑
m

bm
am

)
− ci0

Bi

B
− p0

N
,
ViBi

B2

)N−1

i=1

}
, (5.11)

and for node 0 we can write it as follows :

F (ŷ,V ) =

(
B0

B2

(∑
m

ŷm +
∑
m

bm
am

)
+
∑
m̸=0

c0m
Bm

B
− p0

N
,
V0B0

B2

)
. (5.12)
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We want to prove that the operator F (ŷ,V ) defined in (5.10) or in (5.11) and (5.12) is strongly mono-

tone.

We denote vector z to be z := (ŷ0, V0, . . . , ŷN−1, VN−1). We need to investigate whether∇zF (ŷ,V )

is positive-definite. Denote F (ŷ,V )i1 := Bi
B2

(∑
n ŷm +

∑
n

bn
an

)
− cBi

B −
p0

N for the homogeneous

cnm case, and F (ŷ,V )i2 = ViBi
B2 . Similarly, for the heterogeneous cnm case, denote F (ŷ,V )i1 :=

Bi
B2

(∑
n ŷm +

∑
n

bn
an

)
−ci0Bi

B −
p0

N for i ̸= 0 and F (ŷ,V )01 :=
Bi
B2

(∑
n ŷm +

∑
n

bn
an

)
+
∑

m̸=0 c0m
Bm
B −

p0

N . Thus we have that ∂F (ŷ,V )i1
∂ŷj

= Bi
B2 , ∀j ∈ N and ∂F (ŷ,V )i2

∂Vi
= Bi

B2 . All other partial derivatives are 0.

Thus∇zF (ŷ,V ) is a matrix defined with its entries to be

∇zF (ŷ,V )ij =



B i+2
2

B2
if i, j are even

B i+1
2

B2
if i, j are odd and i = j

0 otherwise

Symmetric matrix A is positive definite on compact if its quadratic form is positive : x⊤Ax > 0, ∀x ∈

Rn \ 0. Note, that non-symmetric matrix A is positive definite iff symmetric matrix 1
2

(
A+A⊤) is. In

our case the quadratic form is given by the following expression :

1

2
z⊤
(
∇zF (ŷ,V ) +∇zF (ŷ,V )⊤

)
z =

=
1

B2

N∑
i=1

Biŷ
2
i +

1

2B2

N∑
i=1

∑
j ̸=i

(Bi +Bj)ŷiŷj +
1

B2

N∑
i=1

BiVi

≥ 1

B2

N∑
i=1

Biŷ
2
i +

1

B2

N∑
i=1

∑
j ̸=i

√
BiBj ŷiŷj +

1

B2

N∑
i=1

BiVi

=
1

B2
(

N∑
i=1

√
Biŷi)

2 +
1

B2

N∑
i=1

BiVi,

which is positive for all (ŷi, Vi)i in the feasible region.

Proposition 58 By the strong monotonicity of F (ŷ,V ), VE of the game (5.8) is unique [74].

5.3.4 Generalized Potential Game extension

Assumption 59 Assume that ∀i, j ∈ N : Bi
B ≃

Bj

B , i.e. each agent n’s contribution Bn to the sum B is

relatively small. Denote H := Bn
B ∀n ∈ N .

Proposition 60 Under Assumption 59, the game (5.8) is a Generalized Potential Game.
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Proof. The notion of Generalized Potential Game is widely used in the literature, see e.g. [48]. To

verify that our game is indeed the potential game, consider function P(ŷ), defined as follows :

P(ŷ,V ) =

N∑
i=1

[Hŷi
B

(
1

2

∑
n

ŷn +
∑
n

bn
an

)− p0ŷi
N
− cHŷi

B

+
H

B
Vi

]
We can check that it is a potential function. Indeed, for all ŷ−n, and for all admissible xn, zn, x′n, z

′
n :

Πn(xn, ŷ−n, x
′
n,V−n)−Πn(zn, ŷ−n, z

′
n,V−n) =

=
H

2B

[
(xn − zn)(xn + zn + 2

∑
m̸=n

ŷm + 2
∑
k∈N

bk
ak

)
]

− (xn − zn)cH
B

− p0

N
(xn − zn) +

H

B
(x′n − z′n) =

= P (xn, ŷ−n, x
′
n,V−n)− P (zn, ŷ−n, z

′
n,V−n) (5.13)

Generalized Potential Games constitute a subclass of games for which the convergence of the BR

algorithms is established [48] in the deterministic case. Taking into account that the BR scheme is suited

for our private framework, an interesting direction of the research would be to establish the convergence

of the BR algorithm for the stochastic NE of the GPG.

5.4 Numerical Results

5.4.1 Algorithm description

In [160], authors employ the penalized individual cost functions to deal with coupled constraints

and provide three stochastic gradient strategies with constant step-sizes in order to approach the Nash

Equilibrium. In order to establish their results, authors consider the model with the operator F (ŷ, V )

to be strongly-monotone and Lipschitz continuous, which holds for our case. We consider the scheme,

called by the authors as Diffusion Adapt-then-Penalize :
ψk
ν = ŷk−1

ν − µ∇ŷνΠν(ŷν , ỹ−ν)

ŷkν = ψk
ν − µR∇ŷν (θν(ψ

k
ν )),
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FIGURE 5.1 – IEEE 14-bus network system

where µ denotes the step-size, R - penalty parameter and θν(·) - penalty function for the coupling

constraints, which we choose to be the sum over all the constraints of the form x ≤ 0, of all functions

pν(x) such that pν(x) =
∑

Ix≥0 · x2/2.

For our numerical simulations, we choose the following parameters of the algorithm : µ = 0.003 and

R = 700.

5.4.2 Numerical Results

We consider the IEEE 14-bus network system, which is depicted in Figure 5.1, where each bus (node)

of the network corresponds to a prosumer in our model. We consider the system, which consists of the

agents with the non-zero self-generation and demand parameters, thus we exclude one interim node 6,

which sole purpose in the initial 14-bus system is to connect the flows. Thus, in our model there are 13

buses (nodes).

We first focus on the homogeneous differentiation price case cnm = 1.0 [$/MWh], for all n,m ∈

N . The cost p0, used by local MO to trade with the wholesale market, is set to be higher than c and

equals 5.0 [$/MWh]. The natural assumption is the homogeneity of the self-generation parameters of the

prosumers, which we set to be an = 0.5, bn = 6.0 for all n ∈ N . Also, there are three nodes (2, 5, 7)

that are additionally equipped with a RES-based generation. Values on the links between the nodes on

Figure 5.1 specify the trading capacity parameters κnm. Recall from the Assumption 43 that there are
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large trading capacities to and from node 0, thus we do not specify them on the scheme. The nominal

demands and RES-based generations in Figure 5.1 are given in [GWh]. All the parameters that are used

to calibrate the agents’ utility functions are specified in Table 5.1.

TABLE 5.1 – Agents’ utility function parameters.

Node ã b̃ d D G

0 1.5 0.0 9 25.0 100.0
1 1.18 5.09 15 26.7 100.0
2 1.0 3.78 14 99.2 80.0
3 0.57 4.36 0.0 52.8 20.0
4 1.24 5.03 0.0 12.6 20.0
5 1.62 3.04 2.0 16.2 20.0

Node ã b̃ d D G

6 1.54 4.29 0.0 19.9 20.0
7 1.5 0.0 11.0 25.0 50.0
8 0.31 2.75 0.0 34.5 20.0
9 4.36 4.67 0.0 14.0 20.0
10 1.63 3.32 0.0 8.5 20.0
11 5.16 5.5 0.0 11.1 20.0
12 1.96 6.21 0.0 18.5 20.0

To provide insights on the privacy-utility relation under strategic behavior of the agents in our model,

we measure the impact of our mechanism on the cost of the agents, quantified through the agent’s utility

gap E
[
Π∗

n−Πn(ỹn, ỹ−n)
]

for each agent n. In Figure 5.2, we plot the utility gap as a function of An for

all the agents. We observe that the nodes 3 and 8 decrease their costs the most among all the prosumers

and nodes 9 and 11 have, on the contrary, increasing costs. From Table 5.1 it can be seen that node 3

and 8 have the minimal flexible demand coefficients : ã3 = 0.57 and ã8 = 0.31. Similarly, nodes 9 and

11 have the biggest flexible demand coefficients : ã9 = 4.36 and ã11 = 5.16. The cost of the demand

flexibility affects the utility of the agents, i.e. small cost allows them to adjust their demand such that

they can decrease their costs, while deviating from their true values.

For the graphs shown below, we set αn = 3.0 when we plot the dependance w.r.t.An, andAn = 10.0

when we plot the dependance w.r.t. αn. For this choice of parameters, the color of the nodes in Figure

5.1 shows the privacy price β
n
, βn [$/MWh] from Proposition 53 in each n ∈ N . Light blue denotes the

lowest privacy price (1.129.10−3 [$/MWh]) and dark violet denotes the highest (2.827.10−2 [$/MWh]).

Figure 5.3 represents the dependence of the plot of the utility gap on the parameter αn of the agents.

It is shown, that when the maximal bound on the distance is low, the agents expectedly deviate from their

costs Π∗
n. As soon as αn increases, thus providing more possibility to deviate, agents tend to show the

similar behavior as on the plot with respect to An : nodes 3 and 8 gain the most and nodes 9 and 11 have

the increasing costs.

Figures 5.4 and 5.5 depict the dependance of the social cost of the market w.r.t. An and αn respecti-

vely. We compare three instances : peer-to-peer communication mechanism, fully coordinated commu-

nication mechanism and the social cost evaluated in the truthful reports. Note, that the latter one provides

the same cost when Proposition 50 holds.
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FIGURE 5.2 – Utility gap wrt. An FIGURE 5.3 – Utility gap wrt. αn

FIGURE 5.4 – Social cost decrease wrt. An FIGURE 5.5 – Social cost decrease wrt. αn

It can be seen that increase in An affects the peer-to-peer communication the most, which is caused

by the decrease of the privacy price induced by the noise in the agents’ reports (recall, that the variance is

given by Vn = 2B4

AnB2
n
(βn+βn)

2), thus allowing them to compute their decision variables more precisely.

Clearly, it affects the centralized communication mechanism less. On the other hand, increase of the αn

affects the centralized communication mechanism the most, as it allows the local MO to find an optimal

solution for each agent in the system, thus leading to the biggest decrease in the costs.

The results above are shown in the homogeneous An, αn and cnm case. Heterogeneity in the dis-

tance parameters αn and An does not affect the behavior of the agents in the system described above.

Nevertheless, setting parameters αn to be small for those who deviate the most (e.g. nodes 3 and 8) can

bound their influence on the sum
∑

n ỹn, thus, bounding the deviation from the
∑

n yn. In the case of

heterogeneous differentiation prices cnm for n,m ̸= 0, we compute the trading costs of the agents, using

the expressions given in Proposition 45. Numerical experiments show similar behaviors for all the agents

in the system, while distinguishing the node 0 : in this setting it decreases its cost the most.

Our numerical results suggest that demand flexibility allows the agents to mitigate increase of the

costs induced by privacy, i.e. we observe that the agents with low demand flexibility costs (resp. high

demand flexibility costs) are able to benefit (resp. lose) the most from the proposed privacy mechanism. It
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is remarkable that this advantage holds regardless of the heterogeneity/homogeneity of matket parameters

such as privacy levels (An, αn) or preferences/taxes (cnm).

5.5 Conclusion

In this chapter, we considered a peer-to-peer electricity market, in which agents have private infor-

mation. The problem is modeled as a noncooperative communication game, which takes the form of

a GNEP, where the agents determine their randomized reports to share with the other market players,

while anticipating the form of the peer-to-peer market equilibrium. Agents decide on the deterministic

and random parts of the report, such that the (a) the distance between the deterministic part of the report

and the truthful private information is bounded (b) expectation of the privacy loss random variable is

bounded. This allows them to act strategically on the values of the deterministic part and to choose the

random noise included in their reports. We characterized the equilibrium of the problem and proved the

uniqueness of the Variational Equilibria. We provided a closed form expression for the privacy price.

The theoretical results are illustrated on the 14-bus IEEE network, using the stochastic gradient descent

algorithm. We show the impact of the privacy preservation caused by inclusion of random noise and

deterministic deviation from agents’ true values.

Since our problem has a potential form under mild assumptions, as next step, we will focus on the

development of a distributed learning algorithm to compute a stochastic NE solution of the Generalized

Potential Game. Bayesian games constitute an additional direction of research enabling the study of more

sophisticated information structures.



118 CHAPITRE 5. PRIVACY IMPACT



Chapitre 6

Coupling with Forecast Market

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Coupled Markets Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Agents and Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.2 Peer-to-Peer Electricity Market . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.3 Forecast Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Coupled Markets Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.1 Efficiency of the Peer-to-Peer Market . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.2 Individual Rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

119



120 CHAPITRE 6. COUPLING WITH FORECAST MARKET

Towards Forecast Markets For Enhanced Peer-to-Peer

Electricity Trading

6.1 Introduction

There is a significant amount of literature addressing uncertainty management in electricity mar-

kets through methods such as multistage stochastic bidding strategies, flexibility activation, and forward

contracts [98], [117]. In traditional market structures, uncertainties faced by end-users are handled by

bigger entities such as retailers and DSOs who can benefit from reduced uncertainty by managing a large

portfolio of users. In decentralized electricity markets without such entities, one of the main challenges

is how the agents can accommodate the uncertainty in their generation profiles emanating from variable

renewable energy resources, without an access to its real distribution. When faced with future uncertain

outcomes, agents make decisions based on their own beliefs (forecasts). Therefore, in these markets,

decision-makers need accurate information about the probability distributions for improved decision-

making.

We model the electricity market as a two-stage model, consisting of the day-ahead (DA) forward

market and the real-time (RT) market. An agent may purchase (sell) electricity in both markets to gua-

rantee an adequate supply to meet their demand. In the literature, these markets are commonly modeled

as a variation of stochastic inventory models [98], [96]. Such models typically require full knowledge

of the probability distribution, which can be difficult to attain due to limited historical data or subjective

forecasting techniques. The decision maker must select a probability distribution to use as an input, ei-

ther relying on their forecasts or those provided by another source, which will affect the computed order

quantity [98].

Therefore, forecasting is crucial for making informed decisions and planning, and it has been wi-

dely studied by researchers and practitioners. In [116] authors have written a comprehensive review of

the field and its advancements. In the literature dedicated to stochastic inventory models, a data-driven

approach was investigated in [66] while in [114] authors investigated the effects of partial information

about the random variable distribution (e.g., mean, variance, symmetry, unimodality) available to the

decision maker and how updated information affects agent’s costs.

Prediction (forecast) markets have generated a lot of interest in the research, see e.g. [151] for a

detailed overview. They can be used to aggregate and disperse information into efficient forecasts of

uncertain future events. Such a forecast improvement by combining or utilizing more data from various



6.1. INTRODUCTION 121

sources was shown in multiple studies, see [94] the example of energy applications. Different models for

the data/information/forecast markets were proposed in the literature, associated with different properties

and prediction tasks (see e.g. [3], [124], [76]). In our application, we focus on the forecast market for the

improvement of buyers’ forecasts in a probabilistic format.

The possibility of obtaining an improved forecast could improve the outcome on the electricity mar-

ket side, but raises important research questions such as : (i) how to evaluate the impact of the forecast

purchase on the market outcome, (ii) how to reward the accuracy of the forecasters relative to each other

and their contribution to the client’s utility, (iii) what constitutes a "better" forecast, and (iv) what are the

properties of this connection and under what conditions is there an incentive for prosumers to buy the

forecasts.

In this study, we make the first step in the connection between the forecast market and the peer-to-

peer electricity market. To the best of our knowledge, this is the first work in this direction. To account

for consumer behavior and network restrictions, we model the electricity market as a generalized Nash

equilibrium problem (GNEP), a non-cooperative game that incorporates shared coupling constraints in

the agents’ optimization problems. We use the generalized Nash equilibrium (GNE) as the solution [63,

74] and a refined version called variational equilibria (VE), which assumes alignment of shadow variables

among agents [74, 127]. Our focus is on designing decentralized electricity markets that are based on a

network defining each agent’s trading relationships, for example, with their neighbors. In this work, we

concentrate on the financial aspect of the market connection, excluding the physical distribution network

from consideration.

For the forecast market, we employ the model introduced in [120], in which authors describe plat-

forms for sharing predictive information with compensation for the cost of data collection, processing,

etc., without exposing private data. In that work, the authors generalize the wagering mechanism descri-

bed in [76] and design a mechanism that considers both the forecast skill of the players and the utility

of the forecasts for a decision-maker (prosumer in a peer-to-peer electricity market in our study). The

proposed payoff function for the mechanism fairly rewards forecasters based on the accuracy of the fo-

recasters and their contribution to the improvement of the client’s utility. This suits our goals, answering

question number (ii) from our research questions. Nevertheless, the obstacle in the direct connection of

the proposed forecast market and the peer-to-peer electricity market lies in the evaluation of the forecast

impact on the outcome of the latter. As in [120] the utility of the client is assumed to be exogenous to

the model, the challenge in linking this proposed forecast market to the peer-to-peer electricity market is

to evaluate the impact of the forecast on the market outcome. Unlike previous research, our study takes

a step forward by endogenizing the change in the prosumers’ utility resulting from the acquisition of
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the forecast. Our model inherits all the desirable economic properties of the forecast market properties

demonstrated in [120].

Contributions The main contributions of the work concern (i) the characterization of the equilibria of

the two-stage peer-to-peer electricity market in the presence of random generation and (ii) the impact of

the connection of electricity peer-to-peer market and the forecast market, which allows the prosumers to

update their forecast. We first provide an important result that shows that the impact of the forecast update

prosumer’s outcome on the electricity market can be evaluated independently of the other prosumers’

forecasts. Thus, it allows us to endogenize the utility of prosumers brought by the forecast update, which

has been traditionally assumed as an exogenous factor in the literature on forecast models [120], [76].

Furthermore, our analytical results allow us to demonstrate that the efficiency of the VE of the electri-

city peer-to-peer market can be achieved if the prosumers participate in the forecast market. We prove the

conditions on VE existence and then show that to achieve social optima it is required that the centralized

welfare optimizer has access to prosumers’ forecasts. Although this is a strong requirement, we show

that there are incentives for the prosumers to participate in the forecast market, in other words, individual

rationality of the coupled market model. We show the conditions on the distributions under which we can

guarantee this property and discuss related limitations. These results are significant as they shed light on

the connection between the peer-to-peer electricity market and the forecast market, and provide insights

into how such frameworks can be utilized to enhance the electricity market operation.

Finally, we provide numerical illustration using a dataset specifying renewable generation, load, and

facilities energy consumption for 25 individual homes in Austin, Texas available through Pecan Street

[69] to illustrate the effects and properties of the proposed market connection. We demonstrate that

the introduction of the forecast market connection to the electricity market is beneficial both for the

prosumers and the forecast sellers if the quality of their forecasts allows prosumers to better predict

RES-based generation.

6.2 Coupled Markets Model

6.2.1 Agents and Markets

In this section, we introduce two models used for the peer-to-peer electricity market and the forecast

market and discuss the framework for the coupling. We focus on a two-stage (day-ahead and real-time)

model for the electricity market, in which agents make their decisions on the day-ahead market while

anticipating the outcome of their renewable energy-based generation based on their forecasts. These
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FIGURE 6.1 – High-level presentation of the proposed framework. Red arrows indicate actions before
electricity market clearing, green arrows indicate post-clearing actions.

decisions encompass electricity trading with backup retailers and other prosumers in the network. We

consider the set N of N agents (prosumers). Each agent is located in a node of the network, which is

modeled as an undirected connected graph G := (N , E) where E ⊆ N ×N is the set of links between

the agents. Our focus is on designing decentralized electricity markets that are based on a network defi-

ning each agent’s trading relationships. In this work, we concentrate on the financial aspect of the market

connections, excluding the physical distribution network from consideration. In the real-time market,

agents observe the actual generation and adjust the remaining unsettled quantities. This model represents

a variant of stochastic inventory model, in which prosumers minimize their costs on both stages, com-

plexified by inclusion of the peer-to-peer trading. The quality of agents’ decisions in such models, and

subsequently, their costs, depend on the quality of their forecasts.

In its simplest form, connection between the forecast market and stochastic inventory models can

be represented by the following motivating example, in which we consider the classical variant of the

newsvendor problem :

max
q

Ei[profit] := EFr [pmin(q,D)]− cq

where D is a random variable with distribution with a cumulative distribution function (CDF) Fr repre-

senting demand, each unit is sold for price p and purchased for price c, q is the number of units stocked.

The solution to the optimal stocking quantity is q = F−1
i (p−c

p ), where F−1
i denotes the generalized in-

verse cumulative distribution function of agent i’s belief Fi(·) about distribution Fr of D. If newsvendor

has an access to the forecast market, they can choose to make a purchase of F̂i (before taking decision

about q), thus, leading to solution q = F̂−1
i (p−c

p ) and the payment can be made based on the relative

improvement to the base forecast Fi of the newsvendor.

In our framework, each agent has the option to purchase a forecast before trading on the electricity

market. To do so, agents report their base forecast to the forecast market operator (MO) and receive

the aggregation of the forecasts, provided by the sellers on the forecast market. The set of the sellers
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is denoted as I . We note that it does not necessarily coincide with the set N , but we do not put any

restriction on that. After the electricity market clearing, part of the utility obtained by the agent in N

from the forecast purchase is distributed between forecast sellers in I by MO, who computes payoff

allocation according to the contribution of each forecast seller. Proposed framework is illustrated on

Figure 6.1. Below we describe model for electricity and forecast markets in more details.

6.2.2 Peer-to-Peer Electricity Market

We employ a two-settlement electricity market design consisting of day-ahead and balancing (real-

time) markets. We assume the presence of a backup retailer from whom the community can purchase

energy both in day-ahead (hereafter, referred to as first stage) and in real-time (hereafter, referred to as

second stage). Therefore, we fix the buying (b) and selling (s) prices for first (or day-ahead pda) and

second (or real time prt) stages, such that prt,b > pda,b > pda,s > prt,s. The community is seen as a

price-taker in the electricity market, hence making the prices exogenous to this problem.

Let Γi ⊆ N denote the set of neighbors of agent i, which reflects the agents with whom she wants to

trade. We denote the trade between agent i and j ∈ Γi as qij (limited with upper-limit κij), where qij is

the amount of power i purchases from (or sells to) j if qij ≥ 0 (qij ≤ 0) and impose a bilateral trading

reciprocity constraint qij + qji = 0. Trading cost term is presented in the cost function as
∑

j∈Γi
cijqij ,

where parameters cij > 0 represent (product) differentiation prices and reflect agent i’s preferences for

energy trading. Denote di as agent i’s demand and ∆gi as agent i’s renewable energy generation (wind,

solar, etc.) which we assume to be a random variable with a CDF, Fr ∈ [0,∞). In this work, we do not

account for a correlation between agents’ random variables while it constitutes an important step for a

further research. Then, each agent has to make a trading decision in the first stage (day-ahead market)

about acquiring (qda,bi ) or selling (qda,si ) energy at prices pda,b, pda,s respectively. At the second stage

(real-time market), agents settle imbalances after observing the realization of ∆gi for the prices prt,b

(buying) and prt,s (selling).

Remark 61 For the sake of simplicity, demand di is assumed to be deterministic, as di is prosumer i’s

own demand, and hence may be controlled by i. This reflects the practical case where prosumers can

have relatively precise control over their demand (e.g. using flexible demand and/or storage in an energy

management system). In the more general case, demand can also be a random variable, as it is subject

to factors which can be out of the control of the prosumer (e.g., weather conditions, occupancy, etc). Our

results can be extended to this case by considering the forecast of the net load di−∆gi (instead of simply

∆gi), which introduces an additional term in the proof of Theorem 62 (net load random variables can

have negative values).
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min
qdai ,qrti ,qi

1st stage costs︷ ︸︸ ︷
pda,bqda,bi − pda,sqda,si +

∑
j∈Γi

cijqij (6.1a)

+ E
[ 2nd stage costs︷ ︸︸ ︷
prt,bqrt,bi − prt,sqrt,si

]
s.t. qij + qji = 0, ∀j ∈ Γi (6.1b)

di = ∆gi +
∑
j∈Γi

qij + qda,bi − qda,si + qrt,bi − qrt,si (6.1c)

qij ≤ κij , ∀j ∈ Γi (6.1d)

qda,bi ≥ 0, qda,si ≥ 0, qrt,bi ≥ 0, qrt,si ≥ 0 (6.1e)

Note, that the expectation of the second stage costs is taken with respect to a distribution with CDF,

Fr, which represents a real distribution of ∆gi. Nevertheless, without full knowledge of this distribution,

agent i has access to a forecast (belief) with CDF Fi about the distribution of ∆gi, which she uses for

computing the solution of the problem (6.1). In the next section, we provide a description of the forecast

market, which allows agent i to update her belief to be subsequently used in (6.1).

6.2.3 Forecast Market

We adopt a model for the forecast market from [120], [76] illustrated in Figure 6.2. Let prosumer i

be a buyer of the forecast who is interested in improving a forecast (e.g., forecasting algorithm, weather

forecast or a generation forecast for their renewable energy asset). For this purpose, the prosumer enters

the market by posting a forecasting task for a realization of ∆gi, their own forecast report Fi as a re-

ference for improvement and an offer of a coefficient ϕ for an improvement. Each seller j ∈ I reports

their forecast fj along with a wager mj > 0 defined by themselves, which expresses their confidence on

their forecast. We note that the client is also allowed to enter the market as a player with their own fo-

recast report and wager. The client can compete for a relative forecasting skill reward and also influence

the resulting forecast. Finally, the forecast market operator aggregates all the forecasts provided by the

players, considering their wagers, and delivers the resulting report F̂i(m, f) to the client.

After the occurrence of the event, i.e., the time interval for which the forecast is being elicited, the

market operator observes the true outcome ∆ḡi and evaluates the score s(fj ,∆ḡi) of each seller j ∈ I ,

which shows how “good” was the forecast reported by seller j. Furthermore, the operator also evaluates

the utility allocated by the client for the forecast improvement U(Fi, F̂i,∆ḡi, ϕ) := ϕ(Π̂i(F̂i)−Πi(Fi))
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in monetary terms, which then has to be distributed among the players that have contributed to the

improvement.

The design of this market model requires three main components : (i) an aggregation operator (to

combine forecasts), (ii) a scoring rule, and (iii) a payoff allocation mechanism.

— Aggregation operator : For each forecast seller j ∈ I , let fj be the forecast report in terms

of probability distribution function (PDF) and Fj be the corresponding cumulative distribution

function (CDF). Then, the average quantile (QA) forecast is given by F̂i =
∑

j m̂jF
−1
j , where

m̂j :=
mj∑

k∈I mk
.

— Scoring rule : For an event of interest x, let the PDF reported by a player j be fj , and let ∆ḡi be

the event that actually occurred. Let Fj denote the cumulative distribution. Then, the continuous

ranked probability score is defined as

CRPS(F,∆ḡi) :=

∫ ∞

∞
[Fj(x)− F∆ḡi(x)]

2dx,

where F∆ḡi(x) = 0 if x < ∆ḡi and F∆ḡi(x) = 1 otherwise. To obtain a score s, renewable

energy production can be normalized to obtain a continuous random variable with the values in

[0, 1]. Then, we can re-orient the scoring function by defining s(fj ,∆ḡi) = 1− CRPS.

— Payoff allocation mechanism : Payoff function is divided in two parts, one representing the alloca-

tion from the wager pool and another from the prosumer’s allocated utility. The former evaluates

the relative forecasting skill of a player, and the latter compensates for their contribution to an

improvement of the client’s utility U . Let the wager payoff of a forecast seller j be

Wj(f ,m,∆ḡi) := mj

(
1 + s(fj ,∆ḡi)−

∑
k s(fk,∆ḡi)mk∑

kmk

)
.

An overall payoff is given as

W̃j :=Wj + 1U>0

( s̃(rj ,∆ḡi)mj∑
k s̃(fj ,∆ḡi)mk

U
)
,

where s̃(fj ,∆ḡi) := 1s(fj ,∆ḡi)>s(fi,∆ḡi)s(fi,∆ḡi),

in which s(fi,∆ḡi) is the score of prosumer’s initial forecast. As authors show in [120], this forecast mar-

ket mechanism enjoys some desirable properties, adapted from [76]. We provide their brief descriptions

below, while referring to [120], [76] for more details.

— Budget-balance : A mechanism is budget-balanced if the market generates no profit and creates

no loss.
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FIGURE 6.2 – Proposed data market scheme

— Anonymity : A mechanism satisfies anonymity if the payoff received by a player does not depend

on their identity ; rather it depends only on the forecast reports and the realization of an uncertain

event.

— Individually rational for the forecast sellers : expected profits from participation in the forecast

market are non-negative for the seller.

— Sybilproofness : A truthful mechanism is sybilproof if the players cannot improve their payoff by

creating fake identities and copies of their identities.

— Truthful for the client : A mechanism is truthful for a client, in terms of reported prediction, if

the client’s expected payment is minimized by reporting their true belief as their own forecast.

6.3 Coupled Markets Analysis

In this section we first derive the optimal procurement quantities for the agents, by solving problem

(6.1) as a variant of stochastic inventory management problem complicated by the peer-to-peer trading.

Then we focus on two important properties of our connection between the forecast and peer-to-peer

market : efficiency and individual rationality. We show condition for both properties to hold and discuss

the limitations of these assumptions.

Firstly, total cost of agent i can be expressed as a sum of first-stage cost, second-stage cost observed

after realization of random variable ∆gi and trading cost. First, note that the second stage decision is
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completely defined by the first-stage decision through the supply-demand balance constraint :

qrt,bi − qrt,si =

si︷ ︸︸ ︷
di −∆gi − qda,bi + qda,si −

∑
j∈Γi

qij

Note that qrt,bi,t · q
rt,s
i,t = 0, thus we can rewrite the equation above as

qrt,bi = si if si ≥ 0 else qrt,si = −si

Then, we can insert it into the expected cost function, where Fi denotes a cdf of a forecast of agent i

(with pdf fi) :

Πi := pda,bqda,bi − pda,sqda,si + EFi

[
prt,bsiIsi≥0 + prt,ssiIsi≤0

]
+
∑
j∈Γi

cijqij (6.2)

Denote residual after first-stage decisions as ri := di − qda,bi + qda,si −
∑

j∈Γi
qij and note that it is

obviously non-negative. We first prove the following important result about optimal procurement strategy

in the presence of day-ahead and real-time contracts in a market with random renewable generation :

Theorem 62 The residual ri of agent i after the day-ahead market is given by

qda,bi − qda,si +
∑
j∈Γi

qij = di − F−1
i

(pda,b − prt,s − µda,bi

prt,b − prt,s
)

= di − F−1
i

(pda,s − prt,s + µda,si

prt,b − prt,s
)
= di − F−1

i

(cij − prt,s + ζij + ξij
prt,b − prt,s

)
.

(6.3)

More precisely,

ri = F−1
(pda,b − prt,s
prt,b − prt,s

)
(6.4)

if agent i purchases electricity on the first stage

ri = F−1
(pda,s − prt,s
prt,b − prt,s

)
(6.5)

if agent i sells electricity on the first stage
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Proof. First, we expand the second-stage costs :

Πsecond
i = EFi

[
prt,b[di −∆gi − qda,bi + qda,si −

∑
j∈Γi

qij ]Isi≥0

+ prt,s[di −∆gi − qda,bi + qda,si −
∑
j∈Γi

qij ]Isi≤0

]
= −prt,b

∫ ∞

0
fi(∆gi)∆giIsi≥0d∆gi + prt,b

∫ ∞

0
fi(∆gi)riIsi≥0d∆gi

− prt,s
∫ ∞

0
fi(∆gi)∆giIsi≤0d∆gi + prt,s

∫ ∞

0
fi(∆gi)riIsi≤0d∆gi

= −prt,b
∫ ri

0
∆gifi(∆gi)d∆gi + prt,b(ri)Pi(∆gi ≤ ri)

− prt,s
∫ ∞

di−qda,bi +qda,si −
∑

j∈Γi
qij

∆gifi(∆gi)d∆gi + prt,s(ri)Pi(∆gi ≥ ri)

Then, second stage costs can be rewritten as

Πsecond
i = prt,briFi(ri) + prt,sri(1− Fi(ri))

− prt,b
∫ ri

0
∆gifi(∆gi)d∆gi − prt,s

∫ ∞

ri

∆gifi(∆gi)d∆gi
(6.6)

Then, taking a derivative of the second stage costs w.r.t ri, we obtain :

∂

∂ri
Πsecond

i = prt,bF (ri) + prt,s − prt,sF (ri)

Next we write Lagrangian for (6.1) in which we omit supply-demand balance constraint as it is

already satisfied in (6.6).

Li = pda,bqda,bi − pda,sqda,si +Πsecond
i +

∑
j∈Γi

cijqij +
∑
j∈Γi

ζij(qij + qji)

+
∑
j∈Γi

ξij(qij − κij)− µda,bi qda,bi − µda,si qda,si − µrt,bi qrt,bi − µrt,si qrt,si

Then, first order stationarity conditions give :

∂Li
∂qda,bi

= pda,b − (prt,b − prt,s)Fi(ri)− prt,s − µda,bi = 0 (6.7)

∂Li
∂qda,si

= −pda,s + (prt,b − prt,s)Fi(ri) + prt,s − µda,si = 0 (6.8)

∂Li
∂qij

= ζij + ξij + cij − (prt,b − prt,s)Fi(ri)− prt,s = 0 (6.9)
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From first two equations we get that pda,b − pda,s = µda,bi + µda,si > 0, which (from complementarity

conditions) means that agent i can not simultaneously buy and sell energy from the backup retailer (the

same holds for a real-time market). Then, we obtain exactly equation (6.3). Note that as qda,bi qda,si = 0,

we can consider these cases separately. First, assume that agent i is buying energy from the backup

retailer, i.e. qda,bi > 0. It means that µda,bi = 0 and µda,si = pda,b − pda,s > 0. Thus,

qda,bi +
∑
j∈Γi

qij = di − F−1
i

(pda,b − prt,s
prt,b − prt,s

)
(6.10)

Similarly, if agent i is selling energy on the day-ahead market to the backup retailer, then

−qda,si +
∑
j∈Γi

qij = di − F−1
i

(pda,s − prt,s
prt,b − prt,s

)
(6.11)

The result above expresses the agents’ decision on the day-ahead market in terms of residuals ri,

i.e. the quantities representing the additional purchases that each agent needs to make to balance the

uncertainty of the supply after observing the realization of the renewable generation ∆gi. While not

providing us the explicit expressions for the decision variables qda,bi , qs,dai , qij , it allows us to obtain

important results about electricity market properties.

6.3.1 Efficiency of the Peer-to-Peer Market

When designing market rules, it is important to choose an equilibrium with desirable properties from

a set of equilibria (possibly infinite). In our analysis we rely on a notion of Generalized Nash Equilibria

and its refinement, Variational Equilibria (VE) as discussed in [74].

Definition 63 A Generalized Nash Equilibrium (GNE) of the game defined by the maximization pro-

blems (6.1) with coupling constraints, is a vector xi := (qdai , q
rt
i ,qi) that solves the maximization pro-

blems (6.1) or, equivalently, a vector xi := (qdai , q
rt
i ,qi) such that xi := (qdai , q

rt
i ,qi) solve the system

KKTi for each i.

Definition 64 A Variational Equilibrium (VE) of the game defined by the maximization problems (6.1)

with coupling constraints, is a GNE of this game such that, in addition, the Lagrangian multipliers ζij

associated to the coupling constraints qij + qji = 0 are equal, i.e. :

ζij = ζji, ∀i ∈ N ,∀j ∈ Γi (6.12)
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By duality theory, ζij for i ∈ N , ∀j ∈ Γi can be interpreted as bilateral energy trading prices [26]. In

general, ζij might not be aligned with ζji, thus leading to non-symmetric energy trading prices between

couple of agents. Relying on VE as solution concepts enforces a natural symmetry in the bilateral energy

price valuations [26]. To give a condition on VE existence, we need the following lemma :

Lemma 65 For any pair of agents (i, j) such that j ∈ Γi, dual variables ξij associated with capacity

constraints qij ≤ κij are equal to zero, ξij = ξji = 0.

Proof. From complementarity conditions for (6.1), we have that (qij − κij)ξij = 0 and (qji − κji)ξji =

0. Using the fact that qij + qji = 0 and the fact that κij = κji, we rewrite the second equality as

(qij+κij)ξji = 0. Taking the sum with the first equality, we obtain that qij(ξij+ξji)−κij(ξij−ξji) = 0.

Next we note that ξij ̸= 0 only when qij = κij , thus, κij(2ξji) = 0, from which it follows that ξji = 0.

Symmetric reasoning for qji concludes the proof.

Lemma 65 allows us to use (6.9) in the following way : consider (6.9) for agent i ∈ N and agent j

for j ∈ Γi. Recap that ri := di − qda,bi + qda,si −
∑

j∈Γi
qij and assume that agent i buys energy on the

day-ahead market and agent j sells it on the day-ahead market (the opposite case is considered similarly).

Then, at the Variational Equilibrium ζij = ζji, thus

cij − cji = (prt,b − prt,s)
[
Fi(ri)− Fj(rj)

]
= pda,b − pda,s,

which might raise a question, whether VE exists only if the condition cij − cji = pda,b − pda,s holds. It

is indeed the case as we show in the next proposition :

Proposition 66 VE of the problem (6.1) exists if cij − cji = pda,b − pda,s when agent i (j) purchases

(sells) electricity on the day-ahead market and if cij − cji = pda,s − pda,b in the opposite case.

Proof. Denote xi := (qb,dai , qs,dai , qb,rti , qrti ,qi) the vector of agent i’s decision variables. Following

Definition 1.2 in [74], Variational Equilibrium exists, if there exists x ∈ C, where x := (x1, . . . , xN ) -

tuple of all the decision variables of all agents and C - shared contraint set, such that x solve the following

variational inequality :

F (x)T (y − x) ≥ 0, ∀y ∈ C, (6.13)

where F (x) := (∇x1Πi(x)
T , . . . ,∇xNΠi(x)

T ). Assume that such x exists. Denoting q∗ij , q
∗
ji the values

of bilateral trades in the VE as well as qb,da,∗i , qs,da,∗j the values of the day-ahead trades in the VE. Let

y ∈ C be equal to x except modification of the above quantities : take sufficiently small ε, such that

qb,dai = qb,da,∗i + ε, qs,daj = qs,da,∗j + ε and q∗ij = qij + ε, q∗ji = qji − ε. Then, writing (6.13) for a pair of
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agents i and j ∈ Γi we obtain (after taking the sum) :

pda,b(qb,da,∗i + ε)− pda,bqb,dai − pda,s(qs,da,∗j + ε) + pda,sqb,daj

+ cij(q
∗
ij − ε) + cji(q

∗
ji + ε)− cijq∗ij − cjiq∗ji ≥ 0,

which reduces to

ε(pda,b − pda,s) + ε(cji − cij) ≥ 0.

As this inequality should hold for any values of ε, it follows that cij − cji = pda,b − pda,s. The opposite

case is considered similarly. This result gives a necessary condition for VE to exist, which allows us

to further prove the efficiency property for our peer-to-peer market coupled with the forecast market.

Indeed, solving problem (6.1) in a centralized way leads to redundancy of the bilateral trading conditions

qij + qji = 0 for a pair of agents (i, j). Thus, considering VE we can guarantee that the solutions at VE

are defined by exactly the same KKT system as the social welfare maximizer, if the distributions used

for the solutions of these problems are the same.

First, we prove an interesting result, that shows that there is no impact of the agents’ forecasts on the

other agents. Note that the final trading costs of agent i consist of two terms :
∑

j∈Γi
cijqij , representing

preferences and
∑

j∈Γi
ζijqij , representing the bilateral payment for the trade. Then, from (6.9) we obtain

that
Πq

i =
∑
j∈Γi

(ζij + cij)qij =
∑
j∈Γi

[
(prt,b − prt,s)Fi(ri) + prt,s

]
qij

=
[
(prt,b − prt,s)Fi(ri) + prt,s

]∑
j∈Γi

qij ,
(6.14)

which, with the fact that
∑

j∈Γi
qij and residual ri depend solely on agent i’s parameters (expressions

(6.4) and (6.5)) gives us the following result :

Theorem 67 Total cost of agent i depends only on the parameters of agent i. It means that forecast

market operator can compute utility change of agent i without information from the other agents.

Proof. Follows directly from equations (6.4), (6.5) and (6.14).

This result is not only interesting by itself, it is also crucial for the coupling of the forecast market and

the peer-to-peer market, as it allows to endogenize the utility of the prosumer introduced by the forecast

update without collecting information from the other agents in the system. The seller’s scores and payoff

distribution then occur as in [120].

Nonetheless, this result does not immediately lead to a market efficiency. Indeed, in order to guaran-

tee it, we have to assume that all the agents report their forecasts to the market operator (not necessarily

purchase the forecast).
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Theorem 68 If all the agents report their forecasts to the Market Operator (participate in the forecast

market), then the VE of (6.1) coincides with the set of social welfare optima.

Proof. The proof follows from Lemma 65, Proposition 66 and KKT conditions written for peer-to-peer

electricity market and centralized formulation of (6.1).

While being a strong assumption, it is mitigated by the fact that we establish in the next section,

more precisely, individual rationality of the coupling between forecast market and peer-to-peer electricity

market. We show, that under mild conditions, agents benefit from purchasing the forecasts, thus, they

have incentive for participation in the forecast market.

6.3.2 Individual Rationality

From (6.3) we obtain that ri = F−1
i (

ζij+cij−prt,s

prt,b−prt,s
), thus, Πq

i = (ζij + cij)
∑

j∈Γi
qij . Note, that from

(6.9) we have that ζij + cij = ci for each j ∈ Γi, where ci is some constant specific for each agent with

pda,s ≤ ci ≤ pda,b. Then, from (6.3) we obtain that either ci is equal to pda,b, if agent i buys energy

from the backup retailer, or to pda,s otherwise. It allows us to finally write expressions for the total cost

imposed on the agent i. First, consider the case when i buys energy from backup retailer on the day-ahead

market
Πtotal

i = pda,bqda,bi + pda,b
∑
j∈Γi

qij +Πsecond
i

= pda,b
[
di − F−1

i

(pda,b − prt,s
prt,b − prt,s

)]
+Πsecond

i ,

(6.15)

where Πsecond
i is given by

Πsecond
i =

1︷ ︸︸ ︷
prt,briFr(ri) + prt,sri(1− Fr(ri))

−

2︷ ︸︸ ︷
prt,b

∫ ri

0
∆gifr(∆gi)d∆gi − prt,s

∫ ∞

ri

∆gifr(∆gi)d∆gi,

where Fr (fr) denotes CDF (PDF) of a real distribution of ∆gi. It means that Πtotal
i gives an expected

cost of agent i who takes ri as a first stage decision (ri denotes residual after the first stage). Considering

the first part of the expression :

prt,briFr(ri) + prt,sri(1− Fr(ri)) = ri(p
rt,b − prt,s)Fr(ri) + prt,sri
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The second part can be expressed as follows, where the expectation with respect to the real distribution

is denoted as Er[·] :

prt,b
∫ ri

0
∆gifr(∆gi)d∆gi + prt,s

∫ ∞

ri

∆gifr(∆gi)d∆gi

= prt,bEr[∆gi|∆gi ≤ ri]Pr(∆gi ≤ ri) + prt,sEr[∆gi|∆gi ≥ ri]Pr(∆gi ≥ ri)

= prt,bEr[∆gi|∆gi ≤ ri]Fr(ri) + prt,sEr[∆gi|∆gi ≥ ri](1− Fr(ri))

= prt,bEr[∆gi]− (prt,b − prt,s)Er[∆gi|∆gi ≥ ri](1− Fr(ri))

Summing it all together :

Πtotal
i = pda,b[di − ri]− (prt,b − prt,s)Fr(ri) + prt,sri − prt,bEr[∆gi]

+ (prt,b − prt,s)Er[∆gi|∆gi ≥ ri](1− Fr(ri)),
(6.16)

which gives us expected cost of an agent i.

Expression (6.16) allows us to consider the effects of the forecast market on the peer-to-peer market

in an expectation with respect to the real distribution of ∆gi. First, note that CDF Fr(x) and its PDF

fr(x) are defined on x ∈ [0,∞). The first question to answer (and to show the expected rewards of the

sellers on the forecast market) is the definition of order between distributions. Naturally, we would like

to show that Er[Π̂
total
i ] ≤ Er[Π

total
i ] if distribution F̂i is "better" than Fi. Intuitively, for one shot game it

should compare two distributions by the amount of probability mass concentrated around the realization

of a random variable ∆gi. It provide us a hint that the comparison should be made by conditioning the

distance between distributions. The question on how to choose the metrics is non-trivial as shown below.

Consider an agent i who has an initial forecast about the distribution of ∆gi with CDF Fi and a

’better’ forecast with PDF F̂i. Then, we want to show that

Er[Π̂
total
i ] ≤ Er[Π

total
i ] (6.17)

Now, fix prices prt,b > pda,b > pda,s > prt,s and denote ρ := pda,b−prt,s

prt,b−prt,s
. Assume that agent i buys energy

on the day-ahead market if she uses Fi or F̂i or Fr (this can be expressed as F−1
i (ρ), F̂−1

i (ρ), F−1
r (ρ) ≤

di). Situation in which i sells energy on the day-ahead market is considered similarly. Moreover, denote

rri := F−1
r (ρ) and r̂i := F̂−1

i (ρ).

Denote as Πtotal
r the cost obtained by the agent i associated with the decision ri = F−1

r (ρ), taken

when she knows the real distribution Fr. Subtracting it from both sides of (6.17), and using (6.16) we
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write for the right side of the inequality

Sr := pda,b[rri − ri] + prt,s[ri − rri ] + (prt,b − prt,s)[riFr(ri)− rriFr(r
r
i )]

+ (prt,b − prt,s)
[ ∫ ∞

ri

xfr(x)dx−
∫ ∞

rri

xfr(x)dx
]

with the left side (Sl) written in the same way but with r̂i instead of ri. Now, dividing both sides by

(prt,b − prt,s), we can write Sr (or Sl if we use F̂i) as

Sr = ρ[F−1
r (ρ)− F−1

i (ρ)] + [F−1
i (ρ)Fr(F

−1
i (ρ))− F−1

r (ρ)Fr(F
−1
r (ρ))]

+
[ ∫ ∞

F−1
i (ρ)

xfr(x)dx−
∫ ∞

F−1
r (ρ)

xfr(x)dx
]

= F−1
i (ρ)[Fr(F

−1
i (ρ))− ρ] +

∫ F−1
r (ρ)

F−1
i (ρ)

xfr(x)dx

Integrating by parts gives

Sr = F−1
i (ρ)[Fr(F

−1
i (ρ))− ρ] + F−1

r (ρ)Fr(F
−1
r (ρ))

− F−1
i (ρ)Fr(F

−1
i (ρ))−

∫ F−1
r (ρ)

F−1
i (ρ)

Fr(x)dx

=

∫ F−1
r (ρ)

F−1
i (ρ)

(ρ− Fr(x))dx

Thus, we want to prove that

∫ F−1
r (ρ)

F̂−1
i (ρ)

(ρ− Fr(x))dx ≤
∫ F−1

r (ρ)

F−1
i (ρ)

(ρ− Fr(x))dx (6.18)

Remark 69 From that one can expect that the metric would require a distance between quantiles, e.g.

assume that 1-Wasserstein metric W1(F̂i, Fr) is lower than W1(Fi, Fr) :

∫ 1

0
|F̂−1

i (p)− F−1
r (p)|dp ≤

∫ 1

0
|F−1

i (p)− F−1
r (p)|dp

This does not suffice as can be seen by the following example : assume that W1(F̂i, Fr) ≤ W1(Fi, Fr)

but F−1
r and F−1

i intersect at ρ : F−1
r (ρ) = F−1

i (ρ). Then Sr = 0 and if the condition F̂−1
i (ρ) ≤

F−1
r (ρ) holds, we obtain a contradiction. Thus, a stronger condition is required on the distance between

distributions.
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Assume now that for given ρ,

|F̂−1
i (ρ)− F−1

r (ρ)| ≤ |F−1
i (ρ)− F−1

r (ρ)| (6.19)

which, while being strong, doesn’t immediately guarantee that (6.18) holds without additional assump-

tions on Fr in the neighbourhood of F−1
r (ρ). Next we discuss the conditions on the distributions and ρ

such that (6.17) holds. First, note that ρ = Fr(F
−1
r (ρ)), thus, inequality clearly holds when F−1

i (ρ) ≤

F̂−1
i (ρ) ≤ F−1

r (ρ) or when F−1
i (ρ) ≥ F̂−1

i (ρ) ≥ F−1
r (ρ). We next assume that F̂−1

i (ρ) ≤ F−1
r (ρ) ≤

F−1
i (ρ), while the opposite case can be considered similarly. In this case with the change of variables we

can rewrite (6.18) as

∫ ρ

Fr(F̂
−1
i (ρ)

[F−1
r (x)− F̂−1

i (ρ)]dx ≤
∫ Fr(F

−1
i (ρ))

ρ
[F−1

i (ρ)− F−1
r (x)]dx (6.20)

in which the left part is upper-bounded by
∫ ρ

Fr(F̂
−1
i (ρ)

[F−1
r (ρ) − F̂−1

i (ρ)] and the left part is lower-

bounded by
∫ Fr(F

−1
i (ρ))

ρ [F−1
i (ρ)−F−1

r (ρ)]. Note that without additional assumptions on the distributions

the bounds are tight :

Example 70 Let Fr, Fi and F̂i represent CDFs of Gaussian distributions with means µr, µi and µ̂i

respectively, where µ̂i ≤ µr ≤ µi and µr− µ̂i ≤ µi−µr. Assume that the variance is the same for all the

distributions. Then assumption (6.18) holds ∀ρ ∈ (0, 1) and F−1
r (x)− F̂−1

i (ρ) = F−1
r (ρ)− F̂−1

i (ρ) ≤

F−1
i (ρ)− F−1

r (x) = F−1
i (ρ)− F−1

r (ρ) for all x.

The reasoning above gives us the following result :

Theorem 71 Forecast’s update from Fi to F̂i decreases agent i’s costs (i.e. inequality (6.17) holds) if

1. |F̂−1
i (ρ)− F−1

r (ρ)| ≤ |F−1
i (ρ)− F−1

r (ρ)|

2. b−a
c−a

∫ c
a fr(x)dx ≤

∫ c
b fr(x)dx,.

where a := F̂−1
i (ρ), b := F−1

r (ρ), c := F−1
i (ρ) and Fr denotes real CDF of ∆gi.

Proof. Proof follows from the derivations above. Using the bounds in (6.20) and denoting a := F̂−1
i (ρ), b :=

F−1
r (ρ), c := F−1

i (ρ) we can write it as

(b− a)[Fr(b)− Fr(a)] ≤ (c− b)[Fr(c)− Fr(b)] (6.21)

Which can then be transformed into

b− a
c− a

∫ c

a
fr(x)dx ≤

∫ c

b
fr(x)dx (6.22)
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FIGURE 6.3 – Illustration for condition (6.22). Blue area should be smaller than the orange one.

where coefficient K := b−a
c−a ∈ (0, 12 ]. This, combined with (6.19) gives exactly the conditions of the

theorem. Note that the case with F−1
i (ρ) ≤ F−1

r (ρ) ≤ F̂−1
i (ρ) is considered similarly.

Taking the worst case with K = 1
2 , we obtain that the condition for (6.22) holds if F ′′

r (x) ≥ 0 for

x ∈ [a, c] which represents a sufficient condition for (6.17) to hold. In the general case, condition (6.22)

defines the relationship between the quantiles of the forecasts and CDF of a real distirbution of ∆gi. This

condition is illustrated in Figure 6.3 : blue area should be less than the orange one.

To illustrate the implications of our result we consider the distributions from Example 70 :

Example 72 For shifted Gaussian distributions, condition (6.22) reduces to

ρ ≤ G(ρ) := µi − µr
µi − µ̂i

Φ
(µi − µr

σ
+Φ−1(ρ)

)
− µ̂i − µr
µi − µ̂i

Φ
( µ̂i − µr

σ
+Φ−1(ρ)

)
,

which can be easily evaluated numerically. Figure 6.4 demonstrates the values of G(ρ)− ρ for different

µr while µi and µ̂i are fixed and are equal to 5 and 2 respectively. The closer µ̂i to µr comparing to

µi − µr, the bigger admissible values of ρ are. For example, when µr = 3 (as in Figure 6.3), condition

(6.22) is satisfied with ρ ≲ 0.97453.

6.4 Numerical Experiments

In this section, we provide several numerical examples to provide an illustration on the proposed

market model coupling and to numerically demonstrate the properties of the proposed model on the real-

world data example. The code for the experiments and the values of all the parameters are provided in

[134].
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FIGURE 6.4 – G(ρ)− ρ for different distances between distributions. The closer ’better’ forecast to the
real distribution, the higher the value of ρ for which we can guarantee Individual Rationality.

FIGURE 6.5 – Histograms of RES-generation.

Experimental setup We use residential data provided by Pecan Street [69] for Austin, Texas. The data

consists of 15-minutes intervals specifying renewable generation, load and facilities energy consump-

tion for 25 individual homes. We sample the distribution of scenarios for RES-based generation and

demand from the generation data and aggregated consumption respectively. Histograms representing

100 scenarios of the RES-based generation of three agents in the network are given in Figure 6.5. The

electricity market prices are chosen arbitrarily to be pda,b = 0.3 [$/kWh], pda,s = 0.2 [$/kWh], prt,b =

0.4 [$/kWh] and prt,s = 0.1 [$/kWh]. These prices were selected for demonstration purposes only, and

they can be set to any value as long as they maintain the assumed order prt,b > pda,b > pda,s > prt,s.

For the purpose of our experiment, we assume that there are 25 sellers in the forecast selling market.

This allows us to precisely assess the impact of forecasts on electricity trading, with each seller in the

forecast market having the optimal forecast for their counterpart in the electricity market. This does not

detract from the generality of our results, while it is important to note that in real-life setting the number
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of sellers on the forecast or electricity market is arbitrary.

Each agent on the peer-to-peer electricity market can arrive at the wagering based forecasting market,

described in section 6.2.3 ([120] for detailed description), as a client. The client submits the task of

forecasting the next 15-minutes of renewable energy generation ∆gi. As a historical data Xi, agent i

provides observations of RES-generation (e.g. Figure 6.5), from which the sellers build distributions,

subsequently used in a forecast F̂i. It follows that the forecast sellers utilize same data but different

models (forecasting skill) to construct the forecasts.

In order to obtain an aggregated forecast F̂i we use quantile averaging (QA) desribed in section 6.2.3.

In order to showcase the differences in the forecast only, equal weight values of mn = 1 are assigned

for all n in {1, . . . , 25}. The methodology for selecting wagers and their effect are thoroughly discussed

in [120]. After the task and the forecasts are submitted to the Data Trading Platform, the forecast market

operator evaluates the scores of submitted forecasts compensates accordingly.

Each buyer of the forecast (an agent in the peer-to-peer market) is equipped with a base forecast in

a form of truncated normal distribution with a mean equal to a sample mean, computed from historical

observations. Variance is computed using the scaling factor of 2 and lies in [1.455, 2.452].

We test two types of the forecasts available to the sellers on the forecast market :

1. Firstly, we employ truncated normal distribution with the variance smaller than those in the base

forecasts of the buyers (prosumers). The means remain the same, while the variance for the

’updated’ forecasts now lies in a range [0.364, 0.852].

2. Secondly, we test empirical distributions built from historical data as the ’real’ forecasts : each

seller has access to a distribution i ∈ {1, . . . , 25}, from which we then draw ∆gi as a realization

of a random variable, corresponding to RES-based generation of agent i.

Finally, we examine a scenario where only one (or two) prosumers purchase the forecast on the

forecast market. Due to Theorem 67 we do it without any loss of generality, as the results can be easily

extended to any number of buyers. This allows us to concentrate on the impact of the forecast market

and the individual rationality property on each agent’s level.

Results We first illustrate the conditions of Theorem 71 on the real data. Figure 6.6 illustrates the

distributions used for agent 1. ’Aggregated’ distribution is composed of empirical distributions held by

forecast sellers (this corresponds to the setting number 2 above). ’Updated’ forecast represents setting 1,

while ’Base’ represents the naive forecast available to agent 1 initially. Note that the distance between

quantiles of these distributions and the empirical distribution calculated at ρ = pda,b−prt,s

prt,b−prt,s
is the lowest

for the aggregated forecast, while the distance between the updated forecast is lower than that for the
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FIGURE 6.6 – CDF of different distributions used for agent 1. (i) ’Aggregated’ - aggregated forecast F̂i

using empirical distibutions, (ii) ’Real’ - empirical distribution of ∆gi, (iii) ’Base’ - truncated normal
distribution, (iv) ’Updated’ - truncated normal distribution with reduced variance.

base one.

To represent the costs associated with different distributions used as the forecast of an agent, we a

sliding mean. Figure 6.7 illustrates the costs of agent 1 on the electricity market associated with different

distributions used by the agent to compute the values of her decision variables. We can observe that

while the costs associated with a base forecast are the largest, the costs associated with a ’real’ forecast

and ’updated’ one are very close, with the latter rarely exceeding the former. We also observe that the

interquartile range (IQR) associated with the distributions decreases as the distribution is closer (in a

sense of inequality (6.19), as illustrated on Figure 6.6) to the real one. This is an interesting observation,

as it means that even if in some time intervals the ’best’ forecast might result in higher costs for the agent,

the volatility in the costs of the agent is reduced, which indicates reduced volatility in the electricity

market.

On can intuitively guess that better forecast does not guarantee individual rationality in the one-shot

game and the purchase of the forecast on a forecast market can even increase the costs of the agent in

a short-term. Figure 6.8 demonstrates that even the ’best’ forecast leads to the increase in the costs of

agent 1 in the beginning, within∼ 50 of 15-minutes intervals. Nevertheless, the total effect of the forecast

purchase tends to affect the outcome for the agents positively. We observed that it decreased real costs for

the agents purchasing the forecast, while the costs of the other agents remained the same, as illustrated

by the red dotted line on Figure 6.8. Note that the cumulative costs associated with the ’real’ forecasts

are lower than those associated with the ’updated’ one, which, with Figure 6.6 provides an illustration of

the effect of the ’closeness’ of the distributions which we discuss in section 6.3.2.

To demonstrate the outcome of the proposed coupling for the the sellers on the forecast market,
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FIGURE 6.7 – Sliding mean costs of agent 1 in electricity market with different distributions used to
estimate expected costs. Interquartile range (IQR) for each distribution is represented by the shaded area
on the graph.

FIGURE 6.8 – Cumulative changes in the costs of agents 1 and 25 due to the improvements in their
forecasts.

FIGURE 6.9 – Profits of the top two and bottom two scoring sellers in the forecast market. Bars represent
obtained profit (loss) in each 15-minutes interval, while sliding means are depicted as the lines of a
corresponding color.
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we provide an illustration of the profits (losses) entailed by the forecast purchase by agent 1 in Figure

6.9. For the sake of presentation, we illustrate only the profits (losses) of the top (bottom) two scoring

sellers in the forecast market. We measure the utility obtained by agent 1 from purchasing the forecast

by measuring the difference between the agent’s cost associated with a ’base’ forecast and the ’updated’

one in this case. In our proposed coupling mechanism, this is carried out (as well as scoring allocation

for the forecast providers) by the forecast market operator. In average, seller 11 and 21 performed better

then the others. Nevertheless, as it is shown by the bar plot, in some instances this agents suffer some

losses, caused by misprediction. The opposite holds for sellers 3 and 14.

6.5 Conclusion

In this work we presented a framework for coupling electricity peer-to-peer and forecast markets.

We addressed the main research questions arising from this coupling : how to evaluate the impact of the

forecast update on the agent’s utility, how does it improve the operability of the electricity market and

what are the incentives for the agents in the electricity market to purchase the forecasts. We proved that i)

the impact of the forecast purchase on the prosumers’ utility can be computed without information from

the other prosumers ; ii) if all the prosumers participate in the forecast market, then the electricity market

economic efficiency is achieved ; iii) for the agents there exist incentives to participate in the forecast

market, i.e., the purchase of the forecast leads to decreased costs, given condition on the ’distance’

between the distributions. Thus, the importance of this result lies not only in the fact that it is profitable

for the agent to purchase a forecast, but also in that it allows for achieving electricity market efficiency.

This chapter serves as a starting point in exploring the connection between electricity and forecast

markets, highlighting various critical issues that need to be addressed. One of these issues is determining

a metric for comparing probabilistic forecasts that ensures individual rationality in the electricity market.

Another promising avenue for future research would be to expand the modeling of the electricity market

by incorporating factors such as exploring peer-to-peer trading in real-time markets, and adding a stage to

account for long-term contracts. Continuing in these directions, we can move towards the most efficient

way for the forecast markets to interact with electricity markets with renewable generation.
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7.1 Concluding discussion

This dissertation primarily addresses the challenges posed by the development of decentralized peer-

to-peer electricity markets, a result of the increasing digitalization, shift towards renewable energy, and

emergence of consumer-centric models. The main goal of the work has been to propose game-theoretic

solutions to a number of key challenges arising as equilibrium problems in these new market landscapes.

Thus, this thesis contributes to the ongoing research on the transformation of electricity markets, and

related equilibrium problems, supporting the adoption of new market models for electricity market de-

centralization.

To better capture the market dynamics related to a more proactive role of consumers in decentralized

electricity markets, this dissertation has considered various equilibrium concepts, primarily the Genera-

lized Nash Equilibrium (GNE), which allowed us to take into account how each participant’s actions can

influence the strategy space of others. This framework enabled us to understand how strategic decisions in

these markets might influence the operation of the markets, as well as providing a set of decision-making

rules and methods to guide the decentralized electricity market evolution.

Mainly, our research spotlighted several factors that make achieving equilibrium in decentralized

electricity markets challenging. These include the coordination between multiple actors with diverse ob-

jectives, uncertainty in generation and demand, distribution network constraints, and information asym-

metry among participants. To address these issues, which are vital for the efficiency and overall perfor-

mance of these markets, we have developed several game-theoretic models, incorporating several key

143
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aspects to the studied problems, which are described next.

Contributions

The first step of the dissertation has focused on capturing the presence and effects of heterogeneous

risk-aversion agents in peer-to-peer electricity markets. In this regard, Chapter 3 of this dissertation has

highlighted the importance of managing risk in such markets, where diverse risk-averse actors may have

different perceptions of risk. We used a Stackelberg bi-level game model to derive a pricing scheme

that promotes fairness and efficiency. Our proposed model’s reformulation allowed a simpler analysis

of equilibria characterization and market properties, thus contributing to the understanding of the proper

organization of insurance markets in a peer-to-peer setting.

To connect the financial level of electricity markets with the physical system captured by the electric

distribution grid, we have introduced in Chapter 4 a model that addresses the interaction between the

financial and grid layers of local electricity markets, focusing on constraints in electricity distribution.

We showed how the proposed trading system could limit exploitative behavior by leveraging price signals

from the distributed system operator in the form of dual variables generated from a formulated DSO-level

optimization problem. The derived results show that we can guarantee Pareto efficiency of the market

equilibrium when the cost to trade is uniform across all participants.

In Chapter 5, we tackled the challenge of ’information asymmetry’, aiming at capturing the fact that

decision-makers might possess information they did not want to share with others. In this regard, we have

developed a novel model that predicted strategic behavior of the agents while maintaining privacy within

a GNEP context. This model has offered insights into privacy dynamics in decentralized electricity mar-

kets and provided a means to quantify the cost of privacy, evaluating the trade-off between information

sharing and equilibrium costs.

Finally, in Chapter 6, we addressed the uncertainty arising from the integration of renewable energy

sources into the energy mix. We proposed an innovative combination of electricity markets with fore-

cast markets to improve decision-making and reduce uncertainty. Our results showed the possibility of

achieving efficiency in the peer-to-peer electricity market when all agents report their forecasts, thus

encouraging their active participation.

Overall, our research used fundamental principles from game theory, optimization, and algorithmic

designs to develop novel models and mechanisms, capable of addressing technical challenges, quanti-

fying the potential of decentralized energy systems in enhancing the efficiency and consumer-centricity

of emerging electricity systems and markets. In addition to the advancements to the state of the art des-

cribed above, as well as in the detailed conclusions given in each chapter, several generalizations can be
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drawn from this dissertation :

— Implementation of adjunct services plays a pivotal role in optimizing the functionality of de-

centralized electricity markets and is particularly beneficial in an environment where multiple

agents act strategically in their interests. These services function as corrective mechanisms, offe-

ring tailored solutions to address the specific, distinctive issues raised by the strategic behavior of

individual agents, facilitating the attainment of efficient market equilibrium. These issues reflect

numerous facets of decentralized markets, such as, e.g., decision-makers possessing information

they did not want to share with others, heterogeneous inherent properties (e.g., risk-aversion), or

the quality of the prior belief about the probability distribution of the uncertainty, introduced by

renewables integration. Introduction of targeted services for each of these problems mitigates the

negative impacts of potential disparities and conflicts, thus resulting in better market operation.

— Information exchange is crucial in decentralized electricity markets, essential not only among

prosumers (e.g., private information exchange) but also between prosumers and other market

participants such as distributed system operators (e.g., dual variables, price-signals, etc.). Ho-

wever, the implementation of such information exchanges should be carefully calibrated. In the

absence of control measures, there is a risk that certain agents strategically manipulate the infor-

mation exchange system for personal gain, thus exploiting the system to their advantage, thereby

inducing free-rider behavior. As such, the design of an information exchange system should ba-

lance the need for transparency and mutual benefit with safeguards to prevent exploitation and

promote fair and efficient market organization.

7.2 Future work

The modeling and experimental contributions of this dissertation paves the way for a number of

future research directions. Motivated by the results and discussion in this thesis, future works could be

advanced through the following recommendations.

Refined network representation The models introduced in this work predominantly dismiss the grid

modeling or, when considering grid-related aspects, rely on linearized power flows models (known as

the DC power flow representation, as in Chapter 4), which notably simplifies the non-linear and, im-

portantly, non-convex nature of the alternating current (AC) power flows. This assumption is frequently

made in both short-term and long-term planning issues. However, recent progress in formulating and

solving models based on AC power flows, which are computationally efficient, could enhance the reso-

lution of solutions derived from the proposed models. Incorporating AC constraints into the proposed



146 CHAPITRE 7. CONCLUSIONS AND FUTURE WORK

models will enable accounting for reactive power flows and nodal voltages, which may lead to more

accurate representation of the grid, and the impact the P2P trading can have on the grid operation. This

also allows assessing the technical and financial impacts of fluctuating renewable power generation on

ancillary reactive power and voltage control services. With anticipated increases in renewable energy

usage, ensuring AC feasibility becomes crucial. These model enhancements further allow us to evaluate

the financial worth of the delivery of grid services by the peers. These models enhancement also allow

exploring the potential of peer-to-peer markets to deliver grid services.

Refined modelling approaches In addition to the models presented in this work, there is considerable

scope for enhancing these models by integrating them with other game-theoretic methods to enhance

operations of peer-to-peer electricity markets. This integration would enable us to express different va-

luation types (e.g., various auction models) in a clear and extractable way. Another possibility would be

to incorporate more intricate methods for updating information, akin to what is seen in Bayesian games.

Moreover, in the data-driven analysis, the question of the restricted size of available datasets or noisy

data comes into play. In this case, the next step should be to employ equilibrium refinements to address

the challenges tied to achieving an equilibrium in games with noisy observations.

Refined algorithmic approaches While the algorithmic approaches utilized in this study have shown

considerable effectiveness in addressing the challenges of GNEP in decentralized electricity markets,

there is substantial potential for further improvements. The complexities of GNEPs necessitate the use

of algorithms that are not only efficient but also suitable for the complexity of the optimization pro-

blems inherent to decentralized systems. Advanced algorithmic designs, particularly those capable of

better handling the intricacies of GNEP, could significantly enhance the practical implementation of the

proposed models.

Refined information assessment Designing effective market mechanisms is traditionally based on the

assumption of the rationality of the agents, as well as the objective perception of their environment, un-

derlying uncertainties, and decision-making processes. However, deviations from rationality and noise

in available data are well-known problems, especially in markets shifting towards a decentralized struc-

ture. Thus, capturing subjective preferences, perceptions, and valuations (e.g., private data evaluation)

of decision-makers, as well as the underlying uncertainty, is crucial in multi-player distributed decision-

making processes. This approach leads to a more accurate reflection of the decisions made by the agents

while reacting to price signals (e.g., by acquiring/releasing data), forming coalitions (e.g., collective in-

vestment agreements), or participating in novel markets. This direction closely aligns with the evolution
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of market structures (e.g., data markets), which requires innovative mechanism designs (using auction,

bi-level problems, etc.), enabling decision-makers to reach more efficient outcomes by accurately leve-

raging their information and preferences.
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MOTS CLÉS

La théorie des jeux, Smart grids, Algorithmes, Pair a pair, L’équilibre de Nash généralisé

RÉSUMÉ

Les marchés de l’électricité sont de plus en plus décentralisés et intègrent davantage de ressources énergétiques dis-

tribuées (DER) et de modèles axés sur le consommateur. Cette transition présente de nouveaux défis et nécessite des

modèles de marché actualisés. Cette thèse explore ces complexités, en se concentrant sur la coordination de divers

acteurs, la gestion de l’offre et de la demande, les contraintes de distribution et l’asymétrie de l’information. Nous utili-

sons des approches théoriques des jeux, examinant des cadres pour les marchés de l’électricité de pair à pair avec des

agents averses au risque et des prosommateurs couvrant les risques par le biais de contrats financiers. Nous étudions

également l’interaction entre les niveaux physiques et financiers, la comparaison des modèles de marché centralisés et

entièrement distribués, et aborde la question de l’asymétrie de l’information. Enfin, nous étudions le couplage des mar-

chés prévisionnels avec le marché de l’électricité. Les résultats soulignent l’importance des services supplémentaires et

de l’échange d’informations dans ces environnements stratégiques.

ABSTRACT

Electricity markets are increasingly being decentralized, integrating more Distributed Energy Resources (DERs) and

consumer-focused models. This transition presents new challenges and requires updated market models. This thesis

explores these complexities, focusing on the coordination of diverse players, demand-supply management, distribution

constraints, and information asymmetry. It utilizes game-theoretic approaches, examining frameworks for peer-to-peer

electricity markets with risk-averse agents and prosumers hedging risks through financial contracts. It also investigates

the interplay between physical and financial levels, comparison of centralized and fully distributed market designs, and

addresses the issue of information asymmetry. Lastly, it explores coupling forecast markets with the electricity market.

The findings emphasize the importance of additional services and information exchange in these strategic environments.

KEYWORDS

Game theory, Smart grids, Algorithms, Peer-to-peer, Generalized Nash Equilibrium
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