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“I think it's much more interesting to live not knowing than to have answers which might be 

wrong. I have approximate answers and possible beliefs and different degrees of uncertainty 

about different things, but I am not absolutely sure of anything and there are many things I 

don't know anything about, such as whether it means anything to ask why we're here. I don't 

have to know an answer. I don't feel frightened not knowing things, by being lost in a 

mysterious universe without any purpose, which is the way it really is as far as I can tell.” 

 

Richard Feynman 
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Résumé 

L’agriculture et les autres usages des terres sont responsables de 23% des émissions 

anthropiques mondiales de gaz à effet de serre (GES). Pour atteindre les objectifs fixés par l’Accord de 

Paris, il est nécessaire de réduire les émissions de GES dans tous les secteurs y compris l’agriculture. 

L’Agriculture Biologique (AB) apparait comme un modèle agricole prometteur du fait (i) du non recours 

aux engrais azotés de synthèse – et de la réduction des émissions de N2O associées – et (ii) de pratiques 

favorisant le stockage de carbone (C) dans les sols – et donc le retrait de CO2 atmosphérique. 

Cependant l’AB est souvent critiquée pour ses rendements plus faibles, engendrant potentiellement 

des changements d’usage des terres si ce mode de production se développait. Plusieurs études ont 

estimé que la généralisation de l’AB serait de nature à atténuer les émissions de GES d’origine agricole 

(de -3 à -40%), mais celles-ci n’ont pas tenu compte des rétroactions systémiques potentielles que le 

développement de ce mode de production pourrait générer. Ces rétroactions sont principalement le 

fait d’une plus forte compétition pour les ressources fertilisantes organiques avec une potentielle 

cascade d’effets menant à (i) une réduction de la disponibilité en azote pour les cultures engendrant 

une réduction des rendements, (ii) une réduction des entées de C et des stocks de C dans les sols 

agricoles et (iii) des changements d’usage des terres liés à un besoin accru de surfaces agricoles. Si 

l’effet de ces rétroactions sur la production alimentaire mondiale a été étudié dans une récente étude, 

leurs effets sur les émissions de GES n’ont encore jamais été explorés à l’échelle mondiale. L’objectif 

de cette dissertation est d’évaluer l’effet d’une généralisation de l’AB – ainsi que des rétroactions 

systémiques qu’elle engendre – sur les émissions de GES d’origine agricole. Pour répondre à cet 

objectif, nous avons couplé le modèle GOANIM –  modèle simulant la disponibilité en azote et ses 

conséquences sur la productivité des cultures dans des scénarios de généralisation de l’AB – à trois 

autres modèles : le modèle N2O-CH4 adapté des directives du GIEC pour estimer les émissions de N2O 

et CH4 des activités agricoles, un modèle simulant la dynamique du C dans les sols agricoles (RothC) 

pour estimer les changements de stocks de carbone organique des sols et un modèle visant à estimer 

un changement de besoin en terres agricoles en fonction des rendements agricoles et des régimes 

alimentaires (GlobAgri-AgT) pour estimer le changement d’usage des terres. Les résultats obtenus 

montrent qu’une généralisation de l’AB verrait les émissions de GES d’origine agricole augmenter de 

56% comparées aux émissions actuelles. Cette augmentation nette s’explique par (i) une baisse de 60% 

des émissions annuelles de N2O et CH4 (-3.1 Gt CO2eq.an-1), (ii) une augmentation des émissions de CO2 

liée au déstockage du carbone des sols agricoles (+2.3 Gt CO2eq.an-1) et (iii) des émissions de CO2 

induites par des changements d’usage des terres (+3.7 Gt CO2eq.an-1). De plus, nous avons trouvé une 

réponse non-linéaire des émissions mondiales de GES en fonction de la part des surfaces agricoles 

mondiales occupées par l’AB. Ainsi, dans un scénario où l’AB ne couvre que 20% des surfaces agricoles 

mondiales, les émissions de GES mondiales pourraient être réduites de 70%. Ce résultat suggère 

l’existence d’un développement optimal de l’AB minimisant les émissions de GES d’origine agricole. 

Par ailleurs, nos résultats permettent d’identifier des pratiques en AB (comme la généralisation des 

cultures intermédiaires) qui permettraient d’améliorer les effets de l’AB sur les émissions de GES. 

L’approche utilisée dans cette dissertation est une base méthodologique qui permettra l’analyse 

d’autres scénarios incluant une plus grande diversité de pratiques, apportant un éclairage sur les pistes 

ouvertes aux producteurs et décideurs publiques pour réduire les émissions de GES d’origine agricole. 

 
Mots clés: Agriculture Biologique, Agriculture Conventionnelle, Agronomie Globale, Gas à effet de 

serre, Cycle de l’Azote, Production animales, Usage des terres, Systèmes alimentaire Globales, 

Modélisation 
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Abstract  

Agriculture and other land uses are responsible of 23% of global anthropogenic greenhouse 

gas (GHG) emissions. In order to reach the goal set by the Paris Agreement, it is necessary to reduce 

GHG emissions in all sectors, including agriculture. Organic farming appears to be a promising farming 

system, due to (i) the non-use of synthetic nitrogen fertilizers – and the associated reduction of N2O 

emissions – and (ii) practices that promote soil carbon sequestration – and therefore the removal of 

atmospheric CO2. However, organic farming is often criticized for its lower yields, potentially leading 

to land-use changes if this mode of production was to expand. Several studies have estimated that the 

expansion of organic farming worldwide would mitigate GHG emissions from agriculture (from -3 to -

40%), these studies have not taken into account the numerous systemic feedbacks that the 

development of this farming system could generate. These feedbacks are mainly due to a stronger 

competition for organic fertilizing resources with potential effects leading to (i) a reduction of nitrogen 

availability for crops resulting in yields reduction, (ii) a reduction of C inputs and C stocks in agricultural 

soils and (iii) land-use changes related to an increased need for agricultural land. While the effect of 

these feedbacks on global food production has been investigated in a recent study, their effects on 

GHG emissions have not yet been explored on a global scale. The objective of this dissertation is to 

assess the effect of a widespread adoption of organic farming – and the systemic feedbacks it 

generates – on GHG emissions in agriculture. To meet this objective, we combined the GOANIM model 

–  a model that simulates nitrogen availability and its consequences on global crop productivity under 

scenarios of widespread adoption of organic farming – to three other models: the N2O-CH4 model 

adapted from the IPCC guidelines to estimate N2O and CH4 emissions from agricultural activities, a 

model simulating the C dynamics in agricultural soils (RothC) to estimate changes in soil organic carbon 

stocks, and a model that estimate changes in agricultural land requirements as a function of 

agricultural yields and diets (GlobAgri-AgT) to estimate land-use changes. Our results show that a 

global expansion of organic farming would see agricultural GHG emissions increase by 56% compared 

to current emissions. This net increase would be explained by (i) a 60% decrease in annual N2O and 

CH4 emissions (-3.1 Gt CO2eq.yr-1), (ii) an increase in CO2 emissions related to carbon depletion from 

agricultural soils (+2.3 Gt CO2eq.yr-1) and (iii) GHG emissions induced by land-use changes (+3.7 Gt 

CO2eq.yr-1). Furthermore, we found a non-linear response of global GHG emissions as a function of 

the share of global agricultural lands occupied by organic farming. Thus, in a scenario where organic 

occupies only 20% of the world's agricultural area, global GHG emissions could be reduced by 70%. 

This result suggests the existence of an optimal development of organic farming minimizing 

agricultural GHG emissions. Furthermore, our results allow us to identify practices in organic farming 

(such as systemic use of cover crops) that would improve the effects of organic farming on GHG 

emissions. The approach used in this dissertation is a methodological basis that will allow the analysis 

of other scenarios including a greater diversity of practices, shedding light on the possibilities for 

producers and public decision makers to reduce GHG emissions in agriculture. 

  
Keywords: Organic Farming, Conventional Farming, Global Agronomy, Greenhouse gas, Nitrogen 

Cycle, Livestock productions, Land uses, Global food system, Modelling 
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Résumé substantiel 

Le XXIe siècle sera marqué par les problèmes sociaux et environnementaux mondiaux induits 

par le développement passé et actuel des sociétés industrielles. Les activités humaines modifient le 

système terrestre, et plusieurs limites environnementales ont déjà été franchies (Rockström et al., 

2009). Parmi celles-ci, le changement climatique mondial représente une menace directe pour les 

sociétés humaines (IPCC, 2021). L'augmentation des concentrations atmosphériques de gaz à effet de 

serre (GES) – due aux émissions produites par les activités humaines – est le principal facteur du 

changement climatique mondial observé (IPCC, 2021). Au cours de la période 1750-2019, les 

concentrations atmosphériques de CO2, CH4 et N2O ont augmenté respectivement de 47, 156 et 23 %. 

Dans ce contexte, l'agriculture est à la fois un contributeur important du changement 

climatique – par ses émissions de GES et ses effets d'altération de l'albédo – et une victime – car la 

production alimentaire mondiale est menacée par le changement climatique. L'agriculture est 

responsable de 23% des émissions anthropiques mondiales de GES (IPCC, 2021), avec trois gaz 

principaux : CO2 (54% des émissions du secteur agricole, CH4 (24%) et N2O (18%). Pour maintenir 

l'augmentation de la température moyenne mondiale bien en-dessous de 2°C en 2050 – comme défini 

par l’accord de Paris en 2015 – une forte réduction des émissions de GES de ce secteur est attendue 

(IPCC, 2018). 

L'agriculture biologique est souvent présentée comme une option pour réduire les émissions 

de GES du secteur agricole à l’échelle mondiale (Muller et al., 2017; Niggli et al., 2009). Les précédents 

travaux aillant estimé l’effet d’un passage mondial à l’agriculture biologique se sont jusqu’à présent 

basé sur des méta-analyses basées sur des expérimentations. Ces méta-analyses ont montré que 

l'agriculture biologique réduisait les émissions de N2O à l'échelle de la parcelle (Skinner et al., 2014) et 

augmentait la séquestration du carbone dans le sol à cette même échelle (Gattinger et al., 2012). 

Toutefois, les rendements plus faibles (Ponisio et al., 2015; Seufert et al., 2012) mettent en péril ce 

potentiel effet bénéfique de l'agriculture biologique, car ils pourraient entraîner des changements 

d’usage des terres (déforestation, conversion de prairies en cultures) dans un monde entièrement géré 

de manière biologique et, par conséquent, engendrer des émissions de GES supplémentaires. En outre, 

ces méta-analyses caractérisent des situations où l'agriculture biologique occupe une faible part des 

terres agricoles – moins de 2 % de la surface agricole mondiale (IFOAM, 2020). De récentes études ont 

montré que l'expansion de l'agriculture biologique à grande échelle engendrerait des rétroactions 

systémiques modifiant profondément les systèmes de production alimentaire (Barbieri et al., 2021; 

Smith et al., 2018). Ces modifications se traduiraient par une baisse des rendements des cultures 

menées en agriculture biologiques et une baisse du nombre d’animaux d’élevage. Un tel effet de 

l'expansion de l'agriculture biologique sur les systèmes de production alimentaire pourrait avoir 

d’importants effets sur les émissions de GES dans un monde complètement cultivé en agriculture 

biologique. 

Cette thèse a pour but de discuter du potentiel de l'expansion de l'agriculture biologique à 

l’échelle mondiale pour réduire les émissions nettes de GES du secteur agricole, en considérant les 

rétroactions systémiques possible liées à cette expansion de l’agriculture biologique. Ce travail est basé 

sur (i) une estimation de la production alimentaire mondiale dans des scénarios d’expansion mondiale 

de l'agriculture biologique – en considérant les rétroactions systémiques – et (ii) une estimation des 

émissions de GES dans ces scénarios. Les émissions mondiales dans les scénarios d'expansion de 

l'agriculture biologique seront comparées à un scénario de base représentant les émissions de GES 

actuelles du secteur agricole. Dans ce scénario de base, nous avons supposé un équilibre entre la 
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demande et la production alimentaires, se traduisant par l'absence de changement d'affectation des 

terres. L'agriculture biologique occupant actuellement moins de 2 % des terres agricoles mondiales 

(IFOAM, 2020), nous avons considéré que les émissions de GES agricoles actuelles constituaient une 

bonne approximation des émissions de l'agriculture conventionnelle de la planète. Ce travail est basé 

sur une approche de modélisation couplant un modèle de production alimentaire agricole mondial 

(GOANIM) – adapté à l'expansion de l'agriculture biologique – et des modèles estimant les émissions 

de GES de l'agriculture et liées aux changements d'affectation des terres. 

GOANIM (Global Organic Agriculture Nitrogen Model) est un modèle biophysique et 

d'optimisation linéaire spatialement explicite (résolution de 5 minutes d'arc, soit des mailles d’environ 

10x10km à l'équateur) qui simule le bilan d'azote des terres cultivées dans des scénarios d'expansion 

de l'agriculture biologique mondiale – en tenant compte des flux d'azote entre l'atmosphère, les sols 

des terres cultivées, les sols des prairies, le bétail et l'alimentation humaine (Barbieri et al., 2021). Le 

bilan azoté des terres cultivées et ses effets sur le rendement des cultures sont estimés pour une série 

de 61 espèces végétales. Comme il est difficile de transporter les engrais organiques sur de longues 

distances (Bartelt et Bland, 2007), le modèle GOANIM suppose que les engrais organiques azotés sont 

produits et appliqués à l’échelle de la maille où ils sont produits. Par conséquent, tous les flux d'azote 

et le budget d'azote des terres cultivées sont estimés à l'échelle de la maille. De même, afin de 

respecter la réglementation biologique visant à l'autosuffisance des exploitations d'élevage biologique 

(Lampkin et al., 2017), les aliments pour animaux sont supposés être produits dans la maille où le bétail 

est situé et, les populations de bétail dans chaque maille sont limitées par la disponibilité des aliments 

dans celle-ci. GOANIM vise à maximiser la production alimentaire dans chaque maille (à partir de 

produits d'origine végétale et animale). Pour ce faire, il maximise la population de chacune des 9 

espèces animales considérées afin de (i) minimiser la compétition pour la nourriture entre les animaux 

et les humains et (ii) maximiser la disponibilité de l'azote dans les terres cultivées par l'application de 

fumier. Ce module d'optimisation alloue également le fumier aux différentes espèces de plantes 

cultivées afin de maximiser la quantité de calories produites par unité d'azote organique appliqué. 

Dans GOANIM, les différences entre l'agriculture biologique et l'agriculture conventionnelle 

sur les rotations des cultures et les rendements des cultures ont été incluses dans une première 

version. Cependant, en raison du manque d'études fournissant des informations sur les différences 

mondiales entre la productivité et les stratégies d'alimentation du bétail biologique et conventionnel, 

ces différences n'avaient pas été incluses dans le modèle jusqu'à présent. Pourtant, les animaux 

d'élevage jouent un rôle clé dans les systèmes d'agriculture biologique en fournissant des éléments 

nutritifs aux terres cultivées (par la production de fumier) et des aliments à forte densité nutritionnelle 

pour la consommation humaine (Lampkin et al., 2017; Mottet et al., 2017).  Dans le premier chapitre 

de cette thèse, nous comblons un manque d’informations en proposant une première comparaison 

globale mettant en évidence les différences entre l'agriculture biologique et l'agriculture 

conventionnelle en matière de productivité animale, de stratégie d'alimentation et d'efficacité de 

l'utilisation des aliments chez les bovins laitiers, les porcs et les volailles (poules pondeuses et poulets 

de chair). Nous avons constaté (i) une productivité animale inférieure de 12 % dans le cadre du 

traitement biologique, (ii) des différences significatives dans la stratégie d'alimentation, en particulier 

pour les bovins laitiers biologiques nourris avec une proportion plus faible de concentrés et d'aliments 

en concurrence avec l’alimentation humaine que dans les systèmes conventionnels, (iii) une efficacité 

globale de l'utilisation des aliments inférieure de 14 % dans le cadre du traitement biologique (-11 et -

47 % pour les bovins laitiers biologiques et les poulets de chair, respectivement) compensée par (iv) 

une concurrence plus faible de 46 % entre l’alimentation humaine et animale chez les bovins laitiers 
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biologiques. Ces résultats fournissent des informations essentielles sur la durabilité de la gestion du 

bétail biologique. Ils sont également essentiels pour modéliser l'expansion de l'agriculture biologique 

à l'échelle mondiale tout en évitant de surestimer la production de l'agriculture biologique dans les 

scénarios de transposition à plus grande échelle. 

Nous avons ensuite utilisé les estimations de ce chapitre I pour apporter plus de précision à la 

simulation de la production animale dans GOANIM - en modifiant la composition de la ration 

alimentaire du bétail et les niveaux de productivité. Outre ces précisions, nous avons également affiné 

la définition de la production animale du modèle GOANIM en (i) considérant les animaux non 

productifs dans l’estimation des besoins nutritionnels des animaux et leurs excrétions d'azote, (ii) 

limitant la récolte de fourrage dans les prairies permanentes pour respecter un niveau de pâturage 

durable (Erb et al., 2016), (iii) en limitant la récolte de fourrage dans les prairies temporaires pour 

respecter un seuil techniquement réalisable d’extraction de la biomasse (Soussana and Lemaire, 2014) 

et (iv) en appliquant les nouvelles lignes directrices du GIEC sur la gestion du fumier et les pertes 

d'azote dans l'environnement (émissions de N2O et N2, lixiviation de l'azote et volatilisation du NH3). 

Cette nouvelle version de GOANIM estime un perte de 57 % des rendements agricoles (exprimés en 

kcal.ha-1) ainsi qu’une réduction de 66% de la population animales (exprimée en unité gros bovins). 

Ces modifications, on potentiellement un effet important sur les émissions de GES liées aux activités 

agricoles, sur les stocks de carbone organique du sol et sur les besoins en terres agricoles pour nourrir 

la planète. 

L'augmentation des stocks de carbone organique du sol dans les terres agricoles étant 

essentielle pour atténuer le changement climatique et l'agriculture biologique est souvent considérée 

comme une option prometteuse pour y parvenir. Jusqu'à présent, les preuves de stocks de carbone 

organique du sol plus élevés, dans les fermes biologiques que dans les fermes conventionnelles, 

reflètent des situations où l'agriculture biologique occupe de petites fractions des terres agricoles 

mondiale, avec un accès à de grandes quantités de ressources de fertilisation organique - accès qui 

pourrait être réduit avec l'expansion de l'agriculture biologique (Seufert and Ramankutty, 2017). Dans 

le second chapitre de cette thèse, nous avons couplé la dernière version de GOANIM (V2) à un modèle 

estimant la dynamique du carbone organique des sols (RothC, (Coleman et al., 1997; Martin et al., 

2007)). À l'aide de cette approche de modélisation, nous avons estimé les changements de stocks 

mondiaux de carbone organique des sols suite à une conversion complète des terres agricoles (prairies 

et cultures combinées) mondiales à l'agriculture biologique. Nous avons constaté que (i) les apports 

mondiaux de carbone aux sols (résidus de culture et effluents d’élevage combinés) seraient réduits de 

39 % dans les terres cultivées mais resteraient inchangés dans les prairies, ce qui entraînerait (ii) une 

réduction de 6, 8 et 10 % des stocks mondiaux de carbone organique des sols agricoles (terres cultivées 

et prairies confondues) respectivement 20, 50 et 100 ans après cette transition. Ces résultats suggèrent 

que l'expansion de l'agriculture biologique pourrait réduire son propre potentiel d'atténuation du 

changement climatique par la séquestration du carbone dans les sols. Cependant, ce potentiel pourrait 

être maintenu lorsque des pratiques appropriées sont mises en œuvre pour atténuer les limitations 

en azote et augmenter les apports de carbone dans les sols – telles que l’implémentation de cultures 

intermédiaires dans les rotations de cultures. 

Comme mentionné précédemment, les preuves d’émissions de GES réduites dans les fermes 

biologiques comparées aux fermes conventionnelles ne tenaient pas compte des changements 

systémiques profonds qui accompagneraient l'expansion de l'agriculture biologique - comme la 

concurrence accrue pour les engrais biologiques. À l'aide d'une approche de modélisation couplant la 

dernière version de GOANIM à trois autres modèles – (i) une adaptation des consignes du GIEC pour 
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estimer les émissions de N2O et CH4 (IPCC, 2019a), (ii) RothC pour estimer les émissions de CO2 

provenant des changement de stocks de carbone organic du sols et (iii) et GlobAgri-AgT pour estimer 

les émissions de GES liés aux changements d’usage des terres (Le Mouël et al., 2018) – nous avons 

estimé le bilan mondial des émissions de GES dans différents scénarios d'expansion de l'agriculture 

biologique. Ces scénarios tenaient compte de différentes parts des terres agricoles mondiales sous 

gestion biologique (20, 40, 60, 80 et 100 %) et en partaient de l'hypothèse d’un changement des 

régimes alimentaires afin que la demande alimentaire mondiale moyenne s'adapte à l'offre 

alimentaire mondiale moyenne. Nous avons constaté une augmentation de 56 % des émissions de GES 

d'origine agricole dans un monde entièrement géré de manière biologique par rapport aux émissions 

actuelles (considéré comme la référence). Cette augmentation des émissions de GES est 

principalement due aux changements d'utilisation des terres (+3,7 Gt CO2eq.an-1) et aux pertes de 

stocks de carbone organique des sols agricoles (+2,3 Gt CO2eq.an-1), partiellement compensées par 

une réduction de 60% des émissions de N2O et de CH4 (-3,1 Gt CO2eq.an-1). Nous avons également 

constaté qu'une conversion de 20 % des terres agricoles mondiales à l'agriculture biologique (associée 

à une adaptation des régimes alimentaires humains) réduirait les émissions de GES de 70 % par rapport 

au scénario de référence. Plus généralement, nous avons constaté une réponse non linéaire des 

émissions de GES à la part des terres agricoles mondiales occupées par l'agriculture biologique, ce qui 

suggère l'existence d'une part optimale d'agriculture biologique (estimée ici à 20 %) qui minimiserait 

les émissions de GES du secteur agricole. Dans nos scénarios, l’existence de cet optimum est co-

dépendant d’une adaptation des régimes alimentaires. Cet optimum pourrait être modifié si des 

pratiques appropriées étaient mises en œuvre dans l'agriculture biologique pour améliorer (i) la 

séquestration du carbone dans le sol (comme les cultures intermédiaires), ou (ii) si des réductions dans 

les pertes et gaspillages alimentaire sont opérés. 

Toutefois, ces résultats doivent être utilisés avec précaution car ils dépendent fortement des 

hypothèses - pour la plupart conservatrices - faites sur les pratiques agricoles mises en œuvre dans 

l'agriculture biologique ainsi que sur des hypothèses fortes sur les régimes alimentaires. Notons tout 

de même que cette thèse souligne que l’agriculture biologique pourrait s’étendre de façon importante. 

Une multiplication par 10 des surfaces agricoles occupées par l’agriculture biologique (actuellement, 

l’agriculture biologique occupe moins de 2% des surfaces agricoles mondiales) permettrait de réduire 

les émissions de GES, à condition que des changements systémiques profonds soient appliqués au 

système agroalimentaire. Premièrement, nos travaux suggèrent qu'une refonte profonde du secteur 

de la production animale est nécessaire avec l'expansion de l'agriculture biologique, notamment via le 

développement de système de production mixtes (culture-élevage) à l’échelle de la ferme ou du 

territoire. Deuxièmement, nos travaux, ainsi que d'autres études, montrent que de profonds 

changements dans les modes de consommation alimentaire sont nécessaires parallèlement à cette 

expansion de l'agriculture biologique (Barbieri et al., 2021, 2021; Morais et al., 2021; Poux and Aubert, 

2018). Les modes de consommation doivent s’orienter vers une consommation réduite de produits 

animaux ainsi que la réduction des pertes et gaspillages de produits alimentaires. Enfin, cette thèse 

montre qu'un monde entièrement géré de manière biologique entraînerait une augmentation des 

émissions de GES si les pratiques agricoles n’étaient pas fortement modifiées - notamment par la mise 

en œuvre de pratiques qui augmenteraient la disponibilité des nutriments dans les terres cultivées ou 

augmenteraient les stocks de carbone organique des sols. Toutes ces conditions doivent être considéré 

dans les politiques visant à augmenter la part de l’agriculture biologique à large échelle, comme le 

Green Deal européen qui vise à atteindre 25% d’agriculture biologique dans l’union européenne d’ici 

2030.  
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The 21st century will be scarred by social and environmental global issues induced by the past 

and current development of industrial societies. The Earth system is being altered by human activities, 

and several planetary boundaries have already been crossed (Rockström et al., 2009). Among them, 

global climate change represents a direct threat to human societies (IPCC, 2021). Increased 

greenhouse gas (GHG) atmospheric concentrations – due to emissions from human activities – is the 

main driver of the observed global climate change (IPCC, 2021). During the 1750-2019 period, CO2, CH4 

and N2O atmospheric concentrations have increased by 47, 156 and 23% respectively. 

In this context of global climate change, agriculture is both a significant contributor – through 

GHG emissions and altered albedo effects – and a victim – as global food production is at risk with 

climate change (IPCC, 2021). Agriculture, is responsible of 23% of global anthropogenic GHG emissions 

(IPCC, 2021), with three main gases: CO2, CH4 and N2O. To maintain the global mean temperature 

increase well below 2°C in 2050, sharp reduction in GHG emissions from this sector is expected (IPCC, 

2018). 

Organic farming is often presented as an option to reduce GHG emissions from the agricultural 

sector (Muller et al., 2017; Niggli et al., 2009). Meta-analyses of field experiments showed that organic 

farming reduces field scaled N2O emissions (Skinner et al., 2014) and increases field scale soil carbon 

sequestration (Gattinger et al., 2012). However, lower yields (Ponisio et al., 2015; Seufert et al., 2012) 

put at risk this potential beneficial effect of organic farming as they might lead to land-use changes – 

and additional GHG emissions – in a fully organically managed world. Additionally, those meta-analyses 

characterise situations where organic farming occupies small share of agricultural lands – less than 2% 

of the agricultural area globally (IFOAM, 2020). Recent studies have provided evidence that organic 

farming expansion at large scale would deeply modify the food production systems (Barbieri et al., 

2021; Smith et al., 2018) – with a drop of organic crop yields and livestock population. Such effect of 

organic farming expansion on the food production systems might affect the potential of organic 

farming expansion to reduce GHG emissions globally. 

In this dissertation, we will discuss the potential of organic farming to reduce global GHG 

emissions from the agricultural sector, accounting for all systemic feedbacks due to organic farming 

expansion. This introductive chapter will first present the state of the art (i) on GHG emissions from 

the agricultural sector and (ii) in organic farming and, on (iii) the systemic feedbacks due to organic 

farming expansion. It will then present the main scientific objectives and hypothesis of this PhD. After 

discussing the methodological objectives and the different modelling options, this chapter will 

introduce the overall modelling approach used in this dissertation. Finally, a short outline will introduce 

the following chapters of this dissertation. 
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Greenhouse gas emissions from the agricultural sector 

GHG emissions from the agricultural sector are made of three main gases: CO2 (54% of total 

GHG emission from the agricultural sector expressed in CO2 equivalent), CH4 (24%) and N2O (18%) 

(Tubiello et al., 2014). In this first section, we will present the biochemical processes resulting in 

emissions of those three gases and the related potential mitigation options.  

 

CO2 emissions from the agricultural sector 

In the AFOLU sector, two main sources of CO2 emissions are often considered: (i) CO2 emissions 

from biophysical processes and (ii) CO2 emissions due to on farm energy use – meaning CO2 emissions 

from fossil fuel burning directly on farm, and CO2 emitted in the production of the electricity used on 

farm. While those two sources of CO2 emissions are affected by different processes, agricultural 

practices play a key role in reducing emissions in those sectors. 

Emissions of CO2 from biophysical processes are to be considered within the wider carbon 

cycle. In the global terrestrial carbon cycle, two main carbon pools are to be considered: (i) the 

terrestrial lands pool – composed of C stored in the organic plant biomass (560 Pg C), soil organic 

matter (2400 Pg C in the first 2 meters of soil) and soil inorganic matter (695 Pg C in the first meter of 

soil) – and (ii) the atmospheric pool composed of CO2 (760 Pg C) (Lal, 2004a). Here we will focus on the 

organic components of the terrestrial lands pool (2960 Pg C) which is 3.9 times higher than the carbon 

stock in the atmospheric carbon pool. These two carbon pools are linked through two opposite carbon 

fluxes: (i) atmospheric CO2 removal by plant photosynthesis and (ii) CO2 emissions by plants, animals 

or soil respiration. Photosynthesis is a biochemical process that uses H2O and CO2 to produce O2 and 

glucose – glucose is then used in the plant metabolism to produce other organic component of the 

plant biomass. Respiration, is a biochemical process that uses glucose to produce energy for organisms 

(plants, animals and micro-organisms). In aerobic conditions, respiration uses O2 in the process and 

produces H2O and CO2. The net atmospheric CO2 removal from plant – meaning the difference between 

atmospheric CO2 removed by photosynthesis and CO2 emitted by plant respiration – is called the NPP. 

When those two fluxes (atmospheric CO2 removal and CO2 emissions from organisms’ respiration) are 

unbalanced they lead to net emissions or removal of atmospheric CO2, and a reduction or increase in 

the carbon stock of the terrestrial lands pool. Here, we detail two main effects of agricultural activities 

on the organic carbon stock in terrestrial lands pool: (i) changes in soil organic carbon stocks in 

agricultural lands and (ii) changes in soil and plant biomass organic carbon stocks in lands converted 

to agricultural lands. 

In agricultural lands, soil organic carbon stocks decrease or increase result in a balance 

(negative or positive, respectively) between soil carbon inputs – as plant residues or animal excretion 

(manure) – and CO2 emissions from soil organic matter mineralisation (Lal, 2004b). The amount of soil 

carbon inputs in agricultural lands depends on the global NPP and the share of this NPP that returns 

to agricultural soils – either directly as plant residues or indirectly as manure. In agricultural lands, the 

NPP depends on pedo-climatic conditions, water and nutrient availability. Therefore, agricultural 

practices that improve nutrient availability (e.g., through fertilization) and water management have 

direct effects on agricultural lands NPP. In croplands, crops are cultivated in a limited period of time 

over the year, while in the remaining time soils can either be bare – resulting with the absence of NPP 

in that period of time – or covered by other plants. Improving crop rotations can increase the 
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cultivation period and therefore the overall NPP of croplands (Mcdaniel et al., 2017) – especially when 

high carbon fixing species are included in crop rotations (such as temporary pastures or cover crops 

(Poeplau and Don, 2015; Vertès and Mary, 2007)). Crop rotations can also be managed to improve 

nutrient availability in agricultural lands, by including N fixing plants such as legumes and avoiding loss 

of nutrient through leaching (Mazzoncini et al., 2011). Bare soils also increase soil organic carbon 

mineralisation rate (Coleman et al., 1997). Avoiding period with bare soil in croplands therefore helps 

to maintain high level of soil organic carbon stocks in agricultural lands. 

Globally, the decrease in organic carbon stocks of the terrestrial lands are mostly caused by 

changes in land uses (Lal, 2004a). Converting land cover with high organic carbon stock (in both plant 

biomass and soils) – such as forest, wetlands or natural grasslands – towards land cover with lower 

organic carbon stock – such as croplands – results in CO2 emissions to the atmosphere. These CO2 

emissions from land-use changes are due to either (i) immediate emissions if the plant biomass present 

in the initial land-use is burned or (ii) more slowly following organic matter decay over decades 

(Moutinho and Schwartzman, 2005). More generally, the amount of CO2 emitted by a land-use change 

correspond to the difference in organic carbon stocks between the initial and the new land use.  

 

CH4 emissions from the agricultural sector 

Methane (CH4) is a product of organic matter decomposition in anoxic conditions. In the 

agricultural sector, such conditions of organic matter decomposition are found in (i) the livestock 

digestive system (enteric fermentation), (ii) in some systems of manure storage and (iii) in flooded rice 

lands. 

Livestock digestive system – and especially those of ruminant livestock – create anoxic 

conditions for the degradation of organic matter, leading to CH4 emissions from enteric fermentation. 

CH4 emissions from enteric fermentation depend on the livestock species considered and the 

composition of its feed ration (IPCC, 2019b; Mottet et al., 2017). Forage-based feed rations are less 

digestible compared to concentrate-based feed ration, resulting in higher CH4 emissions from enteric 

fermentation per animal (Beauchemin et al., 2008; IPCC, 2019b; Patra, 2012; Pellerin et al., 2015). 

CH4 emissions from organic matter decomposition during manure storage depends on (i) 

storage duration and manure pile (ii) temperature, (iii) humidity and (iv) aeration. High level of 

humidity or compact manure storage increase anoxic conditions leading to CH4 emissions, while 

temperature influences the microbial activity. A better management of these conditions as well as 

reduced duration of manure storage can help reduce CH4 emissions (Chadwick, 2005; Pardo et al., 

2015; Pattey et al., 2005; Smith et al., 2008). 

Compared to other crops, rice production has the specificity to be potentially flooded, creating 

anoxic conditions for soil and plant organic matter decomposition, thereby leading to CH4 emissions. 

Therefore, reducing the flooded period can reduce CH4 emissions by reducing the anoxic period for 

organic matter decomposition (Cai et al., 1997; IPCC, 2019b; Smith et al., 2008). Better management 

of organic amendments in rice lands, and especially better timing regarding flooded period can 

therefore reduce CH4 emissions (Cai et al., 1997; Smith et al., 2008). 
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N2O emissions from the agricultural sector 

N2O is a co-product of two chemical processes: nitrification and denitrification. Nitrification is 

the biological oxidation process of ammonia (NH4
+) into nitrite (NO2

-) and then of nitrite into nitrate 

(NO3
-). Denitrification is the biological reduction of nitrate into N2. In the agricultural sector, we identify 

two sources of N2O emissions. First, direct emissions due to nitrification and denitrification in 

agricultural soils or in manure storage facilities. Second, indirect emissions due to transfer of nitrogen 

(N) from agricultural lands to other ecosystems through leaching (as nitrate) and volatilisation (as 

ammonia) – in those other ecosystem N2O emissions are also due to nitrification and denitrification. 

Globally, soil nitrogen has three main origins: (i) atmospheric N deposition on lands, (ii) 

biological N fixation by N fixing-plants (such as leguminous crops) and (iii) synthetic N fertilizer 

application (van Groenigen et al., 2015). Soil nitrogen is included in a larger N cycle interconnecting N 

in crop biomass, in grass biomass and in livestock production systems through plant based livestock 

feed and livestock manure application on agricultural lands (Smil, 1999). There is direct N2O emissions 

due to nitrification and denitrification processes at difference step of this N cycle.  

 First, N2O emissions in agricultural soils depends on N inputs for fertilization either as (i) 

recycled crop residues, (ii) manure application and (iii) synthetic N fertilizers (IPCC, 2019c). The level 

of N2O emissions per unit of N input depends on the composition of the N input (organic vs synthetic), 

the climate (wet vs dry) and the timing of the N application to soil (IPCC, 2019c; Venterea et al., 2012). 

Note that there is no N2O emissions from the biological N fixation process (Rochette and Janzen, 2005). 

Nitrogen excreted by livestock can either be directly applied to croplands or grasslands or be 

stored before application to croplands. During the storage period, nitrogen in manure is affected by 

the nitrification and denitrification processes (IPCC, 2019b). N2O emissions are driven by manure 

storage practices through the control of temperature and humidity conditions (Chadwick et al., 2011; 

Chadwick, 2005; Pardo et al., 2015). 

Finally, the production of synthetic fertilizers and especially the production of ammonium 

nitrate and urea are also responsible for N2O emissions – along with CO2 (Davidson and Kanter, 2014). 

Therefore, a comprehensive estimation of global N2O emissions should consider all sources of direct, 

indirect and induced emissions from all agricultural activities.  

 

Opportunities to reduce GHG emissions from the agricultural sector 

Among all human activities, the Agriculture, Forest and Other Land-Use (AFOLU) sector plays 

a key role in environmental issues (Foley et al., 2011), and especially regarding climate change 

(Campbell et al., 2017). Being one of the first sector to be threatened by climate change consequences 

(IPCC, 2019d; Ray et al., 2019), the AFOLU sector is also responsible of 23% (12 Gt of CO2eq.yr-1) of all 

anthropogenic GHG emissions (IPCC, 2021). During the 1990-2000 period, global GHG emissions from 

the AFOLU sector have raised from 7.5 to 8.1 Gt of CO2eq (Tubiello et al., 2014). These increasing 

emissions are driven by increased demand for agricultural products, together with changes in diets 

towards more land-demanding food diets (in particular with more livestock products). In the 1990-

2010 period, the global population has increased of about 1.63 billion and the mean daily energetic 

consumption has increased by 130 kcal.capita-1.day-1 to reach 2353 kcal.capita-1.day-1 in the meantime 

(source FAOSTAT). This increasing demand in agricultural products has led to increased cropland soil 

fertilization (responsible of most N2O emissions from the agricultural sector), in livestock population 

(responsible of most CH4 emissions from the agricultural sector) and in the agricultural land surfaces 
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(responsible of large CO2 emissions) (Dawson and Hilton, 2011; Thornton, 2010). The AFOLU sector 

faces, therefore, both the issues of feeding the increasing global population while mitigating climate 

changes (IPCC, 2019d). 

However, the agricultural sector also shows unique opportunities to mitigate climate change 

either by reducing emissions or by increasing CO2 removals from the atmosphere (Smith et al., 2008). 

Changes in farming practices towards (i) better soil fertilization management, (ii) better rice 

management system, (iii) optimized manure management systems and (iv) optimized animal feeding 

are put forward as practices to reduce GHG emissions in the crop and livestock production systems 

(Pellerin et al., 2015; Smith et al., 2008). Increasing soil organic carbon stocks in agricultural lands is 

considered as an option to remove atmospheric CO2. Changes in agricultural practices by, (i) optimizing 

crop rotations, (ii) using cover crops, (iii) developing agroforestry or (iv) increasing organic matter 

return to soils (Fuss et al., 2018), are required to increase soil organic carbon stocks in agricultural 

lands. The potential of increasing organic carbon stocks in arable lands is estimated at 0.79-1.54 Gt 

C.yr-1 (Amelung et al., 2020; Fuss et al., 2018) – which would represent 2.9-5.6 Gt CO2eq removed from 

the atmosphere each year. However, adopting those farming practices – despite their individual 

potential to mitigate climate changes– might not be sufficient to reduce significantly global emissions 

from the agricultural sector. A French study showed that the application of ten practices without 

systemic changes in farming systems would only reduce GHG emissions from the agricultural sector by 

10% at the scale of France (Pellerin et al., 2015). As a comparison the French low carbon national 

strategies aims at reducing GHG emissions from the agricultural sector by 19% in 2030 compared to 

2015. 

Two different pathways are often considered to reduce GHG emissions from the food 

production system: (i) changes in the demand side or (ii) changes in the supply side of the food system. 

Changing human diets towards reduction of livestock product consumption or more locally based diets 

is often put forward as an option to reduce GHG emissions in the AFOLU sector (Tilman and Clark, 

2014). Livestock production is often criticized for the large amount of natural resources it requires, and 

especially lands (Steinfeld and Gerber, 2010). Therefore, reducing livestock products in human diets 

should free croplands and grasslands either for crop food production or for natural vegetation 

regeneration, in addition to reducing direct GHG emissions from the livestock sector (namely CH4 and 

N2O from enteric fermentation and manure management). In the same time, alternative farming 

systems are often brought forward to move the food production system towards more sustainable 

production (Ramankutty et al., 2019). Among those alternative farming systems, organic farming 

stands out as it is widely growing farming systems in terms of surface occupied  (+31 million ha in the 

1999-2019 period) and market  (+91.3 billion euros in the same) (IFOAM, 2020).  

 

Organic farming a promising option to mitigate climate change 

Organic farming is often considered as a potential alternative to the current farming systems 

in order to face the global environmental and social issues of the 21st century (IFOAM EU Group, 2016; 

Reganold and Wachter, 2016). The International Federation of Organic Agriculture Movements 

(IFOAM) defines organic farming as “a production system that sustains the health of soils, ecosystems 

and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather 

than use of inputs with adverse effect. Organic agriculture combines tradition, innovation and science 

to benefit the shared environment and promote fair relationships and a good quality of life for all 
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involved” (IFOAM EU Group, 2016). This definition is often verified on fields, as evidences show 

benefits of organic farming for (i) biodiversity (Mondelaers et al., 2009; Tuck et al., 2014), (ii) water 

eutrophication (Tuomisto et al., 2012), (iii) water pollution, (iv) farmer incomes, (v) farmer and 

consumer health (Reganold and Wachter, 2016) and finally (vi) mitigating climate changes (IFOAM EU 

Group, 2016; Meier et al., 2015; Niggli et al., 2009; Scialabba and Mller-Lindenlauf, 2010). 

Regarding climate change, there is two methods used to compare organic to conventional 

farming: (i) meta-analyses that capture the current differences between both farming systems and (ii) 

scenario modelling that try to estimate how these differences will evolve with the expansion of organic 

farming. The approach based on meta-analyses show lower greenhouse gas emissions (Lee et al., 2015; 

Mondelaers et al., 2009) and higher atmospheric CO2 removals per unit of surface in organic farming 

compared to conventional farming. The ban of synthetic fertilizers in organic regulations is the main 

explanation of lower N2O emissions in organic farming compared to conventional farming (Skinner et 

al., 2014). To compensate for the ban of synthetic fertilizers, organic farming practices generally adapt 

by applying more organic fertilizers than in conventional farming. This higher organic matter 

application to agricultural soils is responsible of higher soil carbon sequestration in organically 

managed soils compared to conventional ones (Gattinger et al., 2012). In addition, the different 

composition of organic amendments used in organic farming vs. conventional farming – especially with 

higher C/N ratio of crop residues in organic farming – seems to be also responsible of the higher soil 

organic carbon sequestration in organic farming (García-Palacios et al., 2018). Evidences are also 

reported of lower energy use in organic farming systems compared to conventional ones (Lee et al., 

2015; Muller et al., 2017). This lower energy use is mainly explained by the ban of synthetic inputs that 

require a high amount of energy to be produced, such as synthetic fertilizers. Such decreased energy 

consumption in organic farming systems might potentially lead to GHG emissions reduction in the 

energy production sector. However, when measured per unit of products (i.e. yields), organic farming 

performances exhibit higher GHG emissions compared to conventional farming (Skinner et al., 2014). 

The reason for these higher GHG emissions per unit of product is the 20-30% lower yields in organic 

compared to conventional farming (Ponisio et al., 2015; Seufert et al., 2012). In scenarios of organic 

farming expansion at the global scale, lower crop yields may translate into expansion of croplands over 

other land uses resulting in additional GHG emissions (Alexander et al., 2015; Erb et al., 2016; Morais 

et al., 2021; Muller et al., 2017). Such comparison of organic and conventional farming impact on GHG 

emissions from the agricultural sector based on meta-analyses of field experiment does not totally 

capture differences between both farming systems (Meier et al., 2015). More precisely, such approach 

does not capture differences in N fertilisation between both farming systems and how this difference 

might evolve with the expansion of organic farming at large scales.  

Several studies have estimated the overall impact of organic farming on GHG emissions 

compared to conventional farming based on scenario modelling (Morais et al., 2021; Muller et al., 

2017). Results from scenario modelling might provide a more suitable approach to better capture 

differences between organic and conventional. However, modelling is based on assumptions and the 

choice of those assumptions is key to provide accurate estimates of the differences between the two 

farming systems. For instance, the study from (Muller et al., 2017) was based on the extrapolation of 

results from meta-analysis of field experiment (Badgley et al., 2007; Seufert et al., 2012) to estimate 

crop yields in organic farming. However, those meta-analyses are representative of a situation where 

organic farming covers less than 2% of the global agricultural area (IFOAM, 2020). 

Recent studies on organic farming upscaling have shown that an increased share of organic 

farming in the agricultural area is likely to modify organic farming performances (Barbieri et al., 2021; 
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Smith et al., 2018). Organic farming expansion might lead to increased competition for organic 

fertilizing resources, thus resulting in systemic feedback that might affect crop yields and livestock 

population. Those systemic feedbacks due to organic farming expansion might modify the potential of 

organic farming systems to mitigate climate change. The systemic feedbacks that organic farming 

expansion creates on the global food production system and GHG emissions from the agricultural 

sector are discussed in the next section.  

 

Organic farming expansion and systemic feedbacks 

Organic farming has now regulation rules in 108 countries with a large variety, making it 

difficult to define organic farming globally (Seufert et al., 2017). However, all those regulations have in 

common the ban of synthetic agricultural inputs – such as pesticides and fertilizers. The expansion of 

organic farming will lead to the global ban of those synthetic agricultural inputs with uncertainty on 

the consequences on the food production system. 

However, organic farming productivity is mostly impacted by the lack of fertilizing material, 

due to the ban of synthetic fertilizers (Muller et al., 2017). Nitrogen (N) availability represents a key 

issue in maintaining organic crop yields (Seufert et al., 2012). Organic farming relies on only three 

resources of nitrogen for crop fertilization, that are each limited: (i) atmospheric nitrogen deposition, 

(ii) biological nitrogen fixation by leguminous crops and (iii) farmyard manure application to soils 

(Lampkin et al., 2017). A higher share of leguminous crops is observed in organic crop rotations 

compared to conventional farming (Barbieri et al., 2017). However, the additional N from biological N 

fixation that this higher share of leguminous crops might bring would not be sufficient to fill the 

productivity gap between organic and conventional farming (Barbieri et al., 2019). Therefore, organic 

farming N fertilization require additional resources such as farmyard manure (Nowak et al., 2013; 

Oelofse et al., 2013). Manure is a limited resource which production is regionally concentrated due to 

the regional agricultural specialisation of livestock and crop production (Nesme et al., 2015; Peyraud 

et al., 2014; Schut et al., 2021). A global transition towards organic farming might lead to increasing 

competition for this resource (Barbieri et al., 2021; Smith et al., 2018), leading to reduced N availability 

for crops. Due to the difficult process that represents long distance manure transportation (Bartelt and 

Bland, 2007), the crop and livestock production segregation (Nesme et al., 2015) might lead to manure 

production surpluses in certain regions and increased competition for manure resources in other. 

Therefore, without global changes in livestock spatial repartition and density, organic farming 

expansion might face a strong increasing N deficiency and is likely to experience reduced productivity 

(Barbieri et al., 2021). Systemic changes in the food production system will be required in scenarios of 

large organic farming expansion in order to limit the food production reduction. 

Such potential systemic changes in the food production system due to organic farming 

expansion have been capture by two recent studies (Barbieri et al., 2021; Smith et al., 2018). Those 

two studies were based on a similar modelling approach aiming at maximizing food production in 

scenarios of large organic farming expansion. The main difference between the two studies was the 

scale considered: (Smith et al., 2018) focused on England and (Barbieri et al., 2021) on the global scale. 

Both studies concluded to a significant drop of 40-56% in crop yields – which is much higher than the 

20-30% drop observed in previous meta-analyses (Ponisio et al., 2015; Seufert et al., 2012). Profound 

changes in the livestock production system were also found in those studies, with a significant drop in 

the monogastric populations and a higher presence of ruminant livestock (Barbieri et al., 2021; Smith 
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et al., 2018). Those changes in the global food production system brings uncertainty on the GHG 

emissions budget of such scenarios of organic farming expansion. 

 

Objectives and hypotheses 

Main scientific questions and hypotheses 

This dissertation aims at discussing the potential of global organic farming expansion to reduce 

agricultural GHG net emissions. This work is based on (i) estimating the global food production in 

scenarios of large organic farming expansion – considering all systemic feedbacks – and (ii) estimating 

GHG emissions in those scenarios. Global emissions in scenarios of large organic farming expansion 

will be compared to a baseline representing the current GHG emissions from the agricultural sector. 

In the baseline we assumed an equilibrium between food demand and food production, thus resulting 

in the absence of land-use change. Organic farming currently occupies less than 2% of the global 

agricultural lands (IFOAM EU Group, 2016), therefore we considered the current agricultural GHG 

emissions as a good proxy of the emissions from conventional farming of the planet. This work is based 

on a modelling approach coupling a global agricultural food production model – adapted to organic 

farming expansion – and models estimating GHG emissions from agriculture and related to land-use 

changes. 

More precisely, we aim at answering the following question: 

 

“What is the potential of organic agriculture to reduce net GHG emissions at the global 

scale in scenarios of large organic farming expansion?” 

 

In order to answer this question, we aimed at answering four intermediate questions: 

1. How will organic farming expansion change the global stocks of soil organic carbon in 

agricultural lands?  

 

2. How will organic farming expansion change global N2O and CH4 emissions on agricultural lands 

converted to organic farming? 

 

3. How will organic farming expansion affect land use, land-use changes and related GHG 

emissions? 

 

4. How will the overall GHG budget be affected by global organic farming expansion?  

 

Regarding those questions, we formulated several hypotheses for each of the three gases emitted 

from the agricultural sector: 

 According to results from latest meta-analyses showing higher carbon sequestration rates 

under organic farming compared to conventional farming (García-Palacios et al., 2018; 

Gattinger et al., 2012), we expect SOC stocks to increase with expansion of organic farming. 

However, this increase of SOC stocks might be lower than what is observed in previous meta-
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analysis of field experiment, due to a drastic yield reduction in organic farming, thereby 

resulting in reduction of soil carbon inputs.  

 
Figure 1:  Expected evolution of the CO2 emissions with the expansion of organic farming. %orglim 
represents the share of organic farming under which the world could be fed without land-use change. 
The horizontal black dashed line represents the level of CO2 emissions in the baseline. 

 Previous studies have shown that, above a certain share of the global agricultural lands 

occupied by organic farming, organic farming expansion may require significant land-use 

changes(Barbieri et al., 2021; Erb et al., 2016). Above this share of organic farming (called 

%orglim), food production on current agricultural lands may not be sufficient to feed the world 

(Barbieri et al., 2021). Therefore, we hypothesized that up to this %orglim, land-use change 

would have little effect on CO2 emissions. In contrast, above this %orglim, land-use change 

would significantly increase CO2 emissions (Figure 1). This %orglim might vary according to 

which farming practices – and especially N fertilization practices – were implemented in 

organic farming. 

 

 We hypothesized that the ban of synthetic fertilizers would lead to drastic reduction of N2O 

emissions in scenarios of large organic farming expansion (Figure 2). However, above the 

previously mentioned %orglim, the increase of croplands – required to feed the world – would 

bring additional N2O emissions due to additional agricultural activities on those lands. Those 

additional N2O emissions would make the reduction of overall N2O emissions less drastic 

above %orglim.  
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Figure 2:  Expected evolution of the N2O emissions with the expansion of organic farming. %orgopt 
represents the share of organic farming under which the world could be fed without land-use change. 
The horizontal black dashed line represents the level of N2O emissions in the baseline. 

 As a consequence of competition for N fertilizers, livestock feed production might be limited 

in scenarios of large organic farming expansion. As a consequence, livestock populations are 

expected to be reduced in those scenarios (Barbieri et al., 2019; Smith et al., 2018). We 

hypothesised that this livestock reduction would attenuate CH4 emissions from the livestock 

production sector – meaning enteric fermentation and manure management.(Figure 3). Again, 

above the previously mentioned %orglim, the increase of croplands – required to feed the world 

– would bring additional CH4 emissions due to additional livestock production on those lands.  

 
Figure 3:  Expected evolution of the CH4 emissions with the expansion of organic farming. %orgopt 
represents the share of organic farming under which the world could be fed without land-use change. 
The horizontal black dashed line represents the level of CH4 emissions in the baseline.  
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Specific questions related to changes in GOANIM 

GOANIM (Barbieri et al., 2021) provide opportunities to test various scenarios of organic farming 

expansion and their impact on the global food production. In this model, the differences between 

organic and conventional farming on crop rotations and crop yields have been included. However, due 

to the lack of studies providing information on global differences between organic and conventional 

livestock productivity and feeding strategies, such differences in the model had not been included so 

far. In a preliminary work, we explored such differences. This additional work comes with a specific 

scientific question: 

 What are the differences between organic and conventional livestock production in terms of 

productivity, feed rations and feed-use efficiency? 

 

This question comes with specific hypotheses: 

 Livestock production in organic farming differs from conventional farming by lower animal 

productivity, and lower feed-use efficiency.  

 We also expect that organic ruminant livestock feed ration will be composed of more forages 

compared to conventional ones. Therefore, organic ruminant livestock are less in competition 

with human food than their conventional counterparts. 

 

Modelling objectives and options 

In this section, we present the different modelling options that are available and we discuss 

their possible contribution to our scientific questions. 

 

Options to estimate global CH4 and N2O emissions 

Two main modelling approaches are possible to estimate CH4 and N2O emissions at large 

scales: (i) the bottom-up approach or (ii) the top-down approach. The bottom-up approach aggregates 

regional and source-specific data to estimate global N2O and CH4 emissions; while the top-down 

approach uses measurements of N2O and CH4 in models to estimate their sources (Nisbet and Weiss, 

2010). If top-down provide accurate estimation of current CH4 and N2O emissions – and are often used 

to verify values estimated based on a bottom-up approach (Bergamaschi et al., 2015; Reay et al., 2012) 

– they are not fitted to estimate N2O and CH4 emissions in prospective scenarios such as the global 

expansion of organic farming. In such global prospective scenarios, bottom-up approaches and 

especially those provided by the IPCC guidelines are classical tools (Muller et al., 2017; Smith et al., 

2019). Additionally the IPCC guidelines have already been used to estimate global N2O and CH4 

emissions from the agricultural sector at the global scale (Carlson et al., 2016), providing a source of 

comparison in our estimation of the current N2O and CH4 emissions. For those reasons, we decided to 

use the IPCC guidelines in our estimations of N2O and CH4 emissions. 

The IPCC guidelines offer three options to estimate CH4 and N2O emissions with an increasing 

precisions and data requirement between Tier 1, Tier 2 and Tier 3 (IPCC, 2019a). Tier 1 is the simplest 

approach suggested by the IPCC guidelines. It is based on robust default equations built upon regional 

and source-specific data (Hergoualc’h et al., 2021). Those equations are based on robust relationships 
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between national activity data – such as amount of nitrogen applied on lands or number of livestock 

animals – and regional or condition-specific emission factors (IPCC, 2019a). As defined in the IPCC 

guidelines, emission factors represent the amount of GHG emitted per unit of activity data (in kg of 

GHG emitted.unit of activity data-1). Among all approaches suggested by the IPCC guidelines, the Tier 

1 approach is the most commonly used to estimate N2O and CH4 emissions at the global and regional 

levels in agriculture (Carlson et al., 2016; Hong et al., 2021). The simplicity of the Tier 1 approach and 

its low requirement in data make it easily applicable in global studies. In studies estimating emissions 

in scenarios of large development of alternative farming systems (such as organic farming) this simple 

approach is an asset due to the lack of global data on the diversity of farming systems (Muller et al., 

2017). However, this Tier 1 approach is often debated, especially regarding N2O emissions from 

fertilizers application. In the IPCC guidelines, the relation between N2O emissions and N fertilizers 

application is considered linear (IPCC, 2019c). However, recent study showed that this relation is rather 

exponential (Hoben et al., 2011; Philibert et al., 2012; Shcherbak et al., 2014), resulting in potential 

underestimation of N2O emissions in highly fertilized lands (Makowski, 2019). 

Tier 2 is based on the same methodological approach than Tier 1, but uses more precise 

emission factors, mostly based on country specific data (IPCC, 2019a). The estimation of country 

specific emission factors for each agricultural sector requires detailed country specific data. Such 

precision is often not available at the global scale – and especially for alternative farming systems (such 

as organic farming) – even though this approach has already been used to estimate livestock emissions 

at the global scale within the GLEAM model (Mottet et al., 2017). 

Finally, Tier 3 is the most complex and precise approach of all three (IPCC, 2019a). It is based 

on country specific mechanistic models and estimation approved by the IPCC (Bannink et al., 2011). 

This method has been developed to allow countries to use specific methods to estimate their emissions 

with method adapted to their environmental and social conditions.  

In our study, we chose to use the Tier 1 approach because it is easily applicable to alternative 

farming systems and because it has been used in past studies, thus providing sources of comparison 

for our own estimates. 

 

Options to estimate global CO2 emissions from change in SOC stocks  

Emissions or removal of atmospheric CO2 from changes in stocks of soil organic carbon (SOC) 

of agricultural lands  are usually estimated using Equation 1: 

Equation 1  CO2=
∆𝑆𝑂𝐶

∆𝑇
∗

44
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Where ∆SOC (Mg C) is the variation of SOC stock in a given time period, ∆T is the time period 

over which the ∆SOC is measured or estimated. Variations of soil organic carbon stocks are converted 

into CO2 emissions using the ratio of the molar masses of CO2 and C (44/12). Modelling CO2 emissions 

in scenarios of global organic farming expansions comes with choice of approach to estimate ∆SOC. 

The above mentioned Tier 1 approach allows to estimate ∆SOC for a finite period of time – usually 20 

years – in scenarios of changes in farming practices (i.e. soil tillage, level of carbon input to soils) using 

a zero-order kinetic approach (Table 1) and default regional values (IPCC, 2006a, 2019e). This approach 

based on default regional values does not allow to capture the systemic feedbacks related to organic 

farming expansion and their effects on global SOC stocks in agricultural lands. More suitable 

approaches based on SOC dynamics model allow to estimate ∆SOC in scenarios of deep systemic 
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changes in farming systems (Plante and Parton, 2007; Smith et al., 2020). Such model generally 

estimates changes in SOC stocks by modelling the interactions between several active soil carbon pools 

according to pedo-climatic conditions, farming practices and level of soil carbon inputs. In those 

models, SOC stocks results from balance between the amount of soil carbon inputs and the amount of 

soil carbon mineralised. There is a large diversity of approaches to estimate the mineralisation level of 

soil organic carbon (Table 1). 

Table 1: Different functions to simulate soil organic carbon mineralisation. The abbreviations describe 
the carbon (C) at the start (C0) and at a certain time (t) step (Ct), the decomposition rate (k), the 
Michaelis–Menten constant (Km) and the maximum reaction velocity for the process (Vm), the carbon 
demand by the microbes (X0), the Monod constant (Kt) and the maximum growth rate (µmax). The 
graphs show Ct in a time series for one set of arbitrary parameters. This table was retrieved from (Smith 
et al., 2020). 

 

Due to the lack of data required by the most complex approaches  – such as the maximum 

velocity (Vm) in the enzyme kinetics approach or the maximum growth rate (μmax) in the microbial 

growth approach (Table 1) – for organic farming context, such approach could not be used in our 

estimations of ∆SOC. Therefore, we chose to use a first-order kinetics model. More specifically, we 

chose to use the RothC model (Coleman et al., 1997; Martin et al., 2007) for the little amount of data 

it requires and its proved robustness at large scale and for different land cover – croplands and 

grasslands (Martin et al., 2021). 

 

Options to estimate global land-use change 

The land-use change processes result from complex interactions between a large variety of 

drivers such as (i) global food demand, (ii) global food productivity, (iii) variations of food products 

prices and (iv) food and land-use policies (Alexander et al., 2015; Meyfroidt et al., 2013). Those drivers, 

though distant both geographically and economically (Meyfroidt et al., 2013) are interconnected and, 

a forest regeneration policy in a given country could induce land-use changes abroad, leading to what 

is called land-use displacement (Meyfroidt et al., 2010). Similarly, a change in farming systems locally 

can induce higher agricultural land requirements abroad (Smith et al., 2019). The precise 

representation of the processes leading to land-use changes requires information on a large variety of 

drivers, their effects on one another and potential feedback effects (Meyfroidt et al., 2013). 
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Different modelling approaches have been developed to model the dynamic of land-use 

changes (Schaldach et al., 2011). Economic models such as GTAP (Corong and Tsigas, 2017) or MATSIM-

LUCA (Forslund et al., 2020) are market-based models, where food demand, land productivity, global 

trade of food products and prices interact with each other. Integrated models – such as the IMAGE 

model (Bouwman and Kram, 2006) – combine an economic model to environmental processes. Those 

two different modelling approaches, by their complex representation of the global agri-food product 

market, require large quantity of economic and biotechnical data that are often poorly available 

regarding alternative farming system. In other models – such as GlobAgri (Le Mouël et al., 2018; Mora 

et al., 2020) – a more simple representation of the global agri-food product markets is considered. 

Those models estimate land-use changes based on mass balance between agri-food products 

availability and their uses (for food, feed and other uses). In those models, the mass balance is verified 

regionally and the agri-food products availability is estimated as balance between production, exports 

and imports. Those models represent the agri-food market only through variations of imports and 

exports with variations of crop yields or food demand, and does not consider prices in those variations, 

resulting in lower data requirement. Therefore, land-use change estimation in those more simple 

models is only driven by the regional food demand and land productivity (Lambin and Meyfroidt, 

2011).  

 

Options to estimate global GHG emissions from land-use change 

The IPCC guidelines provide an approach to estimate GHG emissions from land-use changes 

(IPCC, 2006a). This approach estimates two sources of GHG emissions. First, CO2 emissions from 

changes in organic carbon stocks that  can be summarised by Equation 2. 

Equation 2  CO2=
∆𝑂𝐶

∆𝑇
∗

44

12
 

Where ∆OC (Mg C) is the variation of organic carbon stock (in soil and plant biomass) in a given 

time period, ∆T is the time period over which the ∆OC is measured or estimated. Variations of organic 

carbon stocks are converted into CO2 emissions using the ratio of the molar masses of CO2 and C 

(44/12). Second, the IPCC guidelines account for N2O and CH4 emissions due to the burning of natural 

ecosystems during the land-use change process. 

The approach suggested by the IPCC guidelines has been spatialized in the Agro-ecological 

zone emission factor (AEZEF) model (Plevin et al., 2014). The AEZEF model, in addition to provide a 

spatially explicit version of the IPCC guidelines, also include more precise information on organic 

carbon stocks in the different land covers (Pan et al., 2011) and soil organic carbon mineralisation in 

the land-use change process (Poeplau et al., 2011), thus making the AEZEF model more robust than 

the tier 1 IPCC guidelines. Additionally, the AEZEF model has already been combined to different 

models estimating land-use changes such as GTAP (Plevin et al., 2014) and MATSIM-LUCA (Forslund et 

al., 2020). For those different reasons, we chose to use data from the AEZEF model to estimate GHG 

emissions due to land-use changes. 
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Overall modelling approach 

In this dissertation, we aim at modelling emissions of three greenhouse gases (CO2, CH4 and 

N2O) from agricultural activities and lands and land-use changes in scenarios of global organic farming 

expansion. To do so we used the GOANIM model (Barbieri et al., 2021) that estimates the global food 

production in scenarios of organic farming expansion. Then, we combined the GOANIM model outputs 

to three other models to estimate (i) N2O and CH4 emissions from agricultural activities, (ii) CO2 

emissions or removal from changes in SOC stocks, and (iii) land-use changes and related CO2 emissions 

induced by those scenarios.  

 

Description of the GOANIM model 

GOANIM (Global Organic Agriculture Nitrogen Model) is a spatially explicit (5 arc-min 

resolution, i.e. ~10x10km at the equator) biophysical and linear optimisation model that simulates the 

cropland N budget in scenarios of global organic farming expansion – considering the flows of N 

between the atmosphere, cropland soils, grassland soils, livestock and human food (Figure 4). The 

cropland N budget and its effects on crop yields is estimated for a series of 61 crop species. As long 

distance transportation of organic fertilizers is difficult (Bartelt and Bland, 2007), the GOANIM model 

assumes that organic N fertilizers are produced and applied within the grid cell in which they are 

produced. Therefore, all N flows and the cropland N budget are estimated at the grid cell scale. 

Therefore, all N flows and the cropland N budget are estimated in each grid cell. Similarly, in order to 

respect the organic regulation aiming at a self-sufficiency of organic livestock farms (Lampkin et al., 

2017), livestock feed are assumed to be produced within the grid cell where livestock are located and, 

livestock populations within each grid cell are limited by the feed availability in that grid cell. GOANIM 

aims at maximising the food production within each grid cell (from both crop-based and animal-based 

products). To do so it maximises the population of the 9 livestock species considered in order to (i) 

minimize the feed vs food competition and (ii) maximize N availability in croplands through manure 

application. This optimization module also allocates manure to the different cultivated plant species 

in order to maximise the amount of calories produced per unit of N applied. 

We modified the first GOANIM version (GOANIM V1), as defined by (Barbieri et al., 2021). This 

new version of the GOANIM model (GOANIM V2) includes the following modification (the relative 

detailed method is presented in Annex III).  

1. In Chapter I, we highlights differences between organic and conventional livestock 

feeding strategies and feed-use efficiency (Gaudaré et al., 2021). We included those 

differences to provide a more precise simulation of organic livestock in GOANIM. 

 

2. We updated N losses estimates in agricultural systems using the new 2019 IPCC 

guidelines on manure management and nitrogen losses towards the environment 

(direct N2O and N2 emissions, N leaching and N volatilisation as ammonia, (IPCC, 

2019c)). 

 

3. Non-productive animals also consume feed and produce manure and, thus 

participate to both the feed-food competition and cropland fertilization. Therefore, 

we modified GOANIM so that it can include non-productive animals (for the 9 
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species considered) in the estimation of livestock feed requirements and N annual 

excretion rates. 

 

4. The above-ground biomass of temporary pastures is not entirely cut or grazed by 

livestock animals and part of this above-ground biomass remain on field (Soussana 

and Lemaire, 2014). To account for temporary pastures above-ground biomass 

remaining on field, we set-up a threshold in temporary pasture fodders production 

available as feed.  

 

5. There is a maximum grazing intensity – meaning the annual amount of grass 

removed from grassland by livestock animals – above which permanent grassland 

exploitation is not sustainable – meaning that there productivity might be reduced 

(Erb et al., 2016). We assumed that this limit was respected in organic farming. 

Therefore, we set-up a threshold in permanent grassland production available as 

feed 

 

 
Figure 4: System definition of the GOANIM model represented by its boundaries, biomass and N flows 
as defined in (Barbieri et al., 2021). 
 

Combination of GOANIM with other models 

To estimate the N2O and CH4 emissions from agricultural activities and lands, we adapted the 

Tier1 approach of the 2019 IPCC guidelines refinement (IPCC, 2019b, 2019c) in a spatially explicit way 

– hereafter this adaptation is called the N2O-CH4 model. This model was used to estimate N2O and CH4 

emissions from agricultural activities and lands in both the baseline and scenarios of large organic 
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farming expansion. As input data, this model requires (i) crop yields, (ii) crop harvested areas and (iii) 

livestock population. In scenario of global organic farming expansion, crop yields and livestock 

population were retrieved from the outputs of GOANIM (Figure 5), while the crop harvested areas 

were retrieved from (Barbieri et al., 2019) 

 
Figure 5: Conceptual framework of the general method used in this dissertation. Boxes in red 

represent the different models used. Boxes in black, brown and purple represent global CO2, CH4 and 

N2O emissions respectively. Blue arrows represent fluxes of data between the different models. Pink 

arrows represent CH4 and N2O emissions estimations. Black arrows represent CO2 emissions 

estimations. 
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We used the RothC model (Coleman et al., 1997; Martin et al., 2007) to estimate changes in 

soil organic carbon (SOC) stocks in both croplands and grasslands. RothC is a first order kinetic model 

(Smith et al., 2020) that estimates the soil organic carbon turnover according to soil carbon inputs, 

climate and soil conditions. RothC considers four active soil organic carbon pools: the resistant plant 

material pool (RPM), the decomposable plant material pool (DPM), the microbial biomass pool (BIO) 

and the humic pool (HUM). RothC estimates the carbon flows among those four pools as well as the 

amount of carbon mineralised from each pool, with a monthly time step. Input data for the RothC 

model are (i) soil carbon inputs, (ii) pedo-climatic conditions, (iii) soil covering period and (iv) initial 

SOC stocks. Soil and climatic data were retrieved from the harmonized world soil map database (Ruane 

et al., 2015) and the Agmerra dataset (Nachtergaele et al., 2009), respectively. Soil covering data were 

retrieved from (Sacks et al., 2010) and initial SOC stocks were retrieved from the AEZEF database (Gibbs 

et al., 2014). Soil carbon inputs were estimated by using GOANIM outputs on crop yields and livestock 

population to estimate carbon inputs from crop residues and manure, respectively (see Chapter II, 

Figure 5). 

Land-use changes were estimated by first estimating the global cropland and grassland 

requirements using the GlobAgri-Agt model (Le Mouël et al., 2018; Mora et al., 2020). The GlobAgri-

AgT model is a mass balance model that ensures equilibrium between regional resources and 

utilization of 22 agri-food products (for 14 regions), as well as equilibrium between total imports and 

exports of agri-food products globally. The main input data of the GlobAgri-AgT model are regional (i) 

crop yields (for 17 crop categories), (ii) livestock input-output ratios – meaning the amount of feed 

required for each unit of livestock product (for 5 livestock products) – and (iii) human diet (21 food 

categories). Crop yields were retrieved from GOANIM outputs (Figure 5). The livestock input-output 

ratios were estimated based on a combination of the livestock population estimated by GOANIM and 

the feed requirements used as input data to GOANIM. The regional human diets were estimated based 

on the assumption that the mean global food demand would fit the mean global food production 

estimated by GOANIM (see Chapter III). 

The estimated land requirements were then converted into land-use changes based on the 

following assumptions: 

1. Cropland expansion is likely to occur over grasslands (if the grassland area is sufficient in the 

given region). 

 

2. If the grassland area is not sufficient to satisfy the need for cropland expansion, the remaining 

croplands are taken over forests. 

 

3. Grasslands expansion occurs over forests and grasslands abandonment will lead to 

afforestation whenever pedo-climatic conditions are gathered. 

 

4. Abandoned croplands are converted into grasslands. 

We converted the estimated land-use changes into GHG emissions using the emission factors (in 

Gt CO2eq.ha-1.yr-1) retrieved from the AEZEF database (Plevin et al., 2014). We also estimated 

additional N2O and CH4 emissions from agricultural activities on the additional croplands, by applying 

a mean per hectare N2O and CH4 emission rate estimated from the N2O and CH4 model (see Chapter 

III). 
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Finally, we combined the estimates from the three different models (N2O-CH4, RothC and GlobAgri-

AgT) to estimate the overall GHG net emissions (expressed in Gg of CO2 eq) from agriculture and for 

each of the considered scenarios of organic farming expansion (Figure 5). N2O and CH4 emissions were 

converted into emissions expressed in CO2eq by using their respective global warming potential over 

100 years: 298 and 25 respectively. 
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Outline of this PhD 

The following dissertation will be structured as follows.  

 Chapter I will discuss the systemic differences in terms of (i) productivity, (ii) feed ration 

composition and (iii) feed-use efficiency between organic and conventional farming. Results 

from this chapter were used to provide more precision in the simulation of the organic 

livestock production in GOANIM. 

 

 Chapter II will discuss the effect of global organic farming expansion – and the related systemic 

feedbacks – on global agricultural SOC stocks. In this chapter, we combined the GOANIM 

model to the RothC model to estimate changes in SOC stocks in both croplands and grasslands, 

20, 50 and 100 years after a global transition towards organic farming. We also tested the 

impact of cover crops and manure transfer from conventional to organic farming on SOC stock 

changes. Those estimations were made in scenarios covering different intermediate shares of 

organic farming expansion – meaning different shares of the global agricultural lands occupied 

by organic farming. Results obtained in this chapter were used to estimate CO2 emissions from 

changes in SOC stocks in the chapter III. 

 

 Chapter III will discuss the GHG emissions budget in scenarios of large organic farming 

expansion. In this chapter, we aggregated all GHG emission sources estimated, meaning (i) CH4 

and N2O emissions from agricultural activities (based on the N2O-CH4 model), (ii) CO2 emissions 

or removal from SOC stocks changes in agricultural lands (based on RothC) and (iii) GHG 

emissions from land-use changes (based on a combination of GlobAgri-AgT and the AEZEF 

database). In this chapter we discuss how systemic feedbacks due to organic farming 

expansion affects each GHG emission sources. We also discuss the response of the global GHG 

budget to scenarios of intermediate organic farming expansion, and how changes in farming 

practices (such as cover cropping) or in human diet (such as reduction of food waste and loss) 

impact the agricultural GHG budget globally. 

 

 The general discussion and conclusion synthesises the results obtained in the three first 

chapters, put them in perspectives with previous studies. Finally, we discuss how this 

dissertation could be used in further studies to better estimate the sustainability of an 

organically managed world. 
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Abstract 

Livestock animals play a key role in organic farming systems by providing nutrients for croplands 

through manure production and nutrient-dense food for human consumption. However, we lack 

global, synthetic view about livestock productivity in organic farming and about its differences with 

conventional farming. Here we fill this important gap of knowledge by providing a first global 

comparison highlighting differences between organic and conventional farming on animal 

productivity, feeding strategy and feed use efficiency in dairy cattle, pigs and poultry (both layers and 

broilers). We found (i) a 12% lower animal productivity under organic treatment, (ii) significant 

differences in feeding strategy, especially for organic dairy cattle fed with a lower proportion of 

concentrate and food-competing feed than in conventional systems, (iii) an overall 14% lower feed-

use efficiency under organic treatment (-11 and -47% for organic dairy cattle and poultry broilers, 

respectively) compensated by (iv) a 46% lower human-food vs. animal-feed competition in organic 

dairy cattle. These results provide critical information on the sustainability of organic livestock 

management. They are also key for modelling global organic farming expansion while avoiding 

overestimation of organic farming production in upscaling scenarios. 

 

Keywords 

Organic farming, conventional farming, livestock production, feed-use efficiency, meta-analysis 

  

In the previous chapter, we introduced the state of the art behind this 

dissertation, the objectives and the general methodology of this dissertation. 

As mentioned in the previous chapter, GOANIM is at the core of this 

dissertation. GOANIM, alongside all model representing organic farming 

expansion scenarios, do not properly encompass the specificities of organic 

livestock management. This chapter represent an additional work aiming at 

making GOANIM more precise in its simulation of organic livestock production. 

In this chapter we realised a global comparison of organic and conventional 

livestock based on three indicators: productivity, feed ration composition and 

feed-use efficiency. 
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Introduction 

Scaling up organic farming is often considered as a promising option for a more sustainable 

food system (Reganold and Wachter, 2016). Global organic food sales were multiplied four-fold 

between 2001 and 2016, an increase driven by a strong consumer demand and constant policy support 

towards more sustainable forms of agriculture (Willer and Lemoud, 2018). Nevertheless, the 

sustainability of organic farming remains debatable, in particular due to its lower productivity 

compared to conventional – i.e., non-organic – farming (Reganold and Wachter, 2016; Seufert et al., 

2012): on average, organic crops exhibit a 19 to 25% yield gap compared to conventional farming (De 

Ponti et al., 2012; Ponisio et al., 2015; Seufert et al., 2012). The effects of these crop yield gaps have 

been considered in organic farming upscaling scenarios in order to test the potential of that way of 

farming to meet global food security goals (Erb et al., 2016; Muller et al., 2017) and high environmental 

benefits.  

However, none of those scenarios has considered consistent differences between organic and 

conventional livestock farming (Barbieri et al., 2019; Erb et al., 2016; Muller et al., 2017). This is likely 

due to the fact that, whereas some individual studies have compared the animal productivity and feed-

use efficiency of organic and conventional farms (Röös et al., 2018; Van Wagenberg et al., 2017), no 

effort has been conducted so far to synthesize this information at the global scale. Such an important 

gap of knowledge is surprising due to the utmost importance of livestock animals for both food security 

and organic farming sustainability. On the one hand, livestock production provides rich food 

commodities with a high concentration of amino acids and nutrients (Mottet et al., 2017), contributes 

to replace synthetic fertilizers by animal manure (Watson et al., 2006) and fulfils a number of 

ecosystem services (especially when grass-fed). On the other hand, livestock production is a major 

anthropogenic driver of pollution and challenges food security through strong feed/food competition 

(Ertl et al., 2015; Laisse et al., 2018a; Mottet et al., 2017; Wilkinson, 2011).  

In this study, we aim to fill that important gap of knowledge by providing, synthesizing and 

comparing data on organic vs. conventional livestock production levels and feed use. In particular, we 

assess whether organic livestock farming differs from conventional in terms of animal productivity, 

composition of feed ration and feed-use efficiency. Because livestock feeding may have major 

consequences on feed/food competition, we paid specific attention to the composition of animal feed 

rations in organic vs. conventional farming systems and to feed use efficiency of animals fed on food-

competing feeds. We hypothesized that organic livestock (i) are less productive and (ii) have a lower 

feed use efficiency, but - due to differences in feeding strategies - (iii) also have a lower use of food-

competing feed than their conventional counterparts. Finally, we hypothesized that those results vary 

across animal functional types (mainly ruminants vs. monogastrics). 
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Material & Methods 

Literature search and screening 

The objective of our comparison was to evaluate whether organic and conventional farming 

systems differ in terms of livestock productivity, with a particular focus on feed-use efficiency and 

dietary composition. To do this, we searched for scientific papers comparing organic vs. conventional 

livestock productions and providing data on productivity as well as on feed rations. We included both 

research papers based on farm monitoring and those on experimental data. We focused our analysis 

on five main animal species –cattle, pigs, poultry, goats and sheep – as well as on three production 

types – meat, egg and milk. In order to identify suitable publications, we screened the "Web of 

Knowledge" and the "Scopus" portals using the following complex Boolean search: 

 ((Organic OR Biological OR Ecological OR Sustainable OR conventional) NEAR/0 (Farm* OR Agriculture 

OR Livestock OR Animal OR Husbandry OR system* OR management OR production OR dairy)) & 

((Ruminant* OR monogastric*) OR (Beef OR Cattle OR Dairy OR Cow OR Heifer OR Calf OR Calves) OR 

Buffaloes OR Sheep OR Goat OR (Swine OR Pig) OR (Poultry OR Chicken OR Broiler OR Turkey OR Hen 

OR Duck OR Layer)) & (Feed OR "Life Cycle"). 

The last search run was conducted on September 10th, 2020, yielding 2085 articles. These 

articles were further screened via a selection process based on three main steps in order to limit the 

number of papers to those that fulfilled our selection criteria (Figure S1). After a first selection based 

on title and abstract screening (in order to exclude off-topic papers), we screened 201 articles to select 

those that (i) specifically mentioned one organic system (either certified or in line with the definition 

of organic agriculture given in the Basic Standard for Organic Production and Processing of the 

International Federation of the Organic Agricultural Movement (IFOAM)) and one non-organic system 

that we defined as conventional, (ii) provided animal production and animal feed (either the entire 

feed ration or at least the share of concentrate feed) or the feed-use efficiency directly, (iii) reported 

data from animal or farm observation (national statistics and results from models were excluded) and 

(iv) had a number of observations (i.e. number of monitored animals) higher than 20. After this 

process, we retained 34 pertinent articles that referred to four livestock species and the three 

production types mentioned, covering 14 countries worldwide. Nevertheless, we only identified a 

limited number of papers that focused on beef cattle (three comparisons) and none on goats and sheep 

that fitted our selection criteria. Therefore, we finally excluded beef cattle from the analysis – i.e., we 

used only 37 comparisons from 31 papers to run our statistical analyses. Among the different livestock 

species, dairy cattle were the most highly represented (20 comparisons), followed by a much lower 

number of comparisons for pigs, broilers and layers (Table 2). Ruminant-related data were mainly 

taken from farm monitoring (18 comparisons out of 20 for dairy cattle), while monogastric-related 

data were mainly experimental. Developed countries are the most highly represented (31 

comparisons), while only six studies were located in developing countries (Table 2). Studies selected 

were mainly located in Europe (25 comparisons) and the Middle-East (6 comparisons) (Figure S2). The 

complete list of studies is reported in Table S1.  

We are aware of the reduced size of our dataset. This is mainly due to the fact that papers 

often report incomplete information, thereby not fulfilling our selection criteria. We tried to make up 

for this by directly contacting a number of authors in order to collect additional data, with a low share 

of response. Therefore, our dataset remained heterogeneous, meaning that we could not calculate all 
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of the requested variables for each article, hence leading to fluctuation in dataset size among the 

considered variables. Despite such shortcomings, our comparison represents the first attempt to 

globally quantify and compare livestock production performances between organic and conventional 

production farming based on the best available literature. 

Table 2. Number of organic-to-conventional comparisons for each animal category, type of 
observation, country level of development and studied variable. 

 
Total no. 
comparisons 

Type of observation Level of development 
Animal 

productivity 
Feed-use efficiency 

Experiment 
Farm 

monitoring 

Develope
d 

countries 

Developing 
countries 

 
Total 
feed 

Concentrate 
feed 

Food-
competing 

feed 

Cattle dairy 20 2 18 19 1 19 18 19 6 
Pig meat 7 7 0 5 2 7 6 6 6 

Poultry egg 4 3 1 2 2 4 4 4 4 
Poultry 
meat 

6 5 1 3 3 6 6 6 4 

All animals 37 17 20 29 8 36 34 35 20 

 

Data extraction 

In each selected paper, we extracted one or several pieces of information comparing one 

organic system and one conventional system in terms of animal productivity, feed ration and feed-use 

efficiency. We encountered cases where articles provided several different organic systems and/or 

several different non-organic systems. We therefore had to gather data in order to extract one or 

several comparisons. When one treatment for organic or non-organic treatments was compared to 

several of the other treatments, a mean was calculated with the other treatments in order to have 

only two treatments to compare. When several treatments of both organic and non-organic systems 

were present, treatments were combined (based on similar geographical position, breed or housing 

system) in order to make several comparisons. 

We applied the following data extraction procedure: (1) when available, we recorded data 

reporting production quantities expressed as the amount of animal product per unit of time and per 

head. We considered the animal product to be the main product of the production type, i.e., animal 

by-products (e.g. meat from reformed dairy cattle) are not considered. Animal production quantities 

were expressed as energy corrected milk (ECM), kg of egg and kg of live weight gain. When not 

available, production was calculated to fit the previous units (see Annex I); (2) when available, feed 

ration composition was recorded as the amount of dry matter per unit of time and per head for each 

feed type. Data were sometimes in the form of fresh weight: we converted such data to dry matter 

(DM) equivalents using dry matter coefficients retrieved from the Feedipedia and Feedtables 

databases (see Annex I). When the detailed feed ration composition was not available, composition in 

terms of forage and concentrate was recorded; (3) we recorded feed-use efficiencies expressed as the 

ratio between production quantity and feed intake, although other authors express feed-use efficiency 

as the ratio between feed intake and production (Mottet et al., 2017; Wilkinson, 2011). Because both 

formulas represent a good feed-use efficiency indicator (Laisse et al., 2018a), we decided to use the 

former for easier interpretation and greater comparability with crop input use efficiency. If feed-use 

efficiency was not available, we calculated it using the data recorded in the two previous steps.  
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Different authors question whether calculating feed efficiency as the ratio of production to 

total feed ingested is an appropriate indicator. These same authors instead suggest calculating 

independent feed-use efficiency as the ratio between production and specific feed items, e.g., 

concentrate or food-competing feed (Ertl et al., 2015; Mottet et al., 2017; Wilkinson, 2011). These two 

other feed-use efficiency indicators are important in order to understand the impact of livestock 

production on feed/food competition. We therefore also recorded feed-use efficiencies based on 

concentrate and food-competing feeds when available.  

Feed-use efficiency is commonly calculated as a mass ratio (Mottet et al., 2017) (Equation 3). 

Equation 3  𝑓𝑒𝑒𝑑 𝑢𝑠𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

𝑘𝑔 𝑜𝑓 𝑎𝑛𝑖𝑚𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝑘𝑔 𝑜𝑓 𝑖𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑒𝑒𝑑⁄  (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑑𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟) 

Nevertheless, since energy and protein are two important nutritional human and animal 

components, feed-use efficiency is often calculated as the ratio between production expressed in 

energy and crude protein (CP) and the energy or protein ingested as feed (Ertl et al., 2015; Mottet et 

al., 2017; Wilkinson, 2011). Similarly, we recorded the energy and crude protein feed-use efficiency for 

all feed categories when available (Equation 4, Equation 5). 

Equation 4  𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑒𝑒𝑑 𝑢𝑠𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑀𝐽 𝑖𝑛 𝑎𝑛𝑖𝑚𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝑀𝐽 𝑖𝑛 𝑓𝑒𝑒𝑑⁄  

Equation 5 𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑒𝑒𝑑 𝑢𝑠𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑘𝑔 𝐶𝑃 𝑖𝑛 𝑎𝑛𝑖𝑚𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝑘𝑔 𝐶𝑃 𝑖𝑛 𝑓𝑒𝑒𝑑⁄  

In addition to those efficiency indicators, we recorded the net feed-use efficiency defined as 

the ratio of the energy (or protein) available for human consumption in the animal product to the 

energy (or protein) available for human consumption in the feed ration. Although several authors 

suggested different calculation methods for this indicator, we used the method developed by (Laisse 

et al., 2018a) because it is the only one that provides a detailed classification of feed products with 

their corresponding human-edible energy and protein content. Since no proof of differences in energy 

and protein content between organically-produced and conventionally-produced food is clearly 

available (Srednicka-Tober et al., 2016), we used the same coefficients to estimate animal food product 

energy and protein content (following (Laisse et al., 2018a). 

 

Statistical analysis 

In our comparison, we used the non-organic treatment as the control. To estimate productivity 

and feed use efficiency differences between organic and conventional systems, we calculated as an 

effect size the organic-to-conventional log response-ratios (Makowski et al., 2017) for both 

productivity and feed-use efficiency. We then tested whether the mean effect size was significantly 

different from zero using a linear weighted mixed-effect model. The production type (e.g., dairy cows, 

poultry broilers) was set as a fixed factor, whereas we used a dummy variable representing each paper 

ID number as a random factor. The absence or the poorly reporting of variance values in the selected 

papers did not allow to follow the common study-weighting procedure – meaning weighting each 

study by the inverse of its variance. However, alternative procedures are possible for example by 

weighting each study by its number of observations (i.e. the number of monitored animals in our case) 

(Beillouin et al., 2019; Letourneau et al., 2011; Philibert et al., 2012). In addition, we compared the 

results obtained following this statistical procedure with results based on simpler statistics using non-
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weighted means. Note that this last approach does not account for the often greater accuracy of 

studies that report data from large number of monitored animals. 

Since livestock management differs across animal species and production types and since 

organic practices may vary depending on the geographical location, we disaggregated our dataset 

according to the different (i) livestock species, (ii) production types (meat, milk or eggs) and – for each 

of them – (iii) type of data (experimental vs. on-farm observations) and (iv) geographical locations 

(developed vs. developing regions). We then run our statistical analyses for each sub-group. Note that 

the developed vs. developing country grouping is common when comparing organic to conventional 

farming (Barbieri et al., 2017; Seufert et al., 2012). Dairy cattle data was additionally disaggregated 

according to (i) the duration of animal monitoring (i.e. over the whole year vs. over the lactation 

period) and (ii) the monitored entity (herd vs. individual cows). 

To compare whether the two systems differ in terms of the entire feed rations, we run a 

permutational analysis of variance (non-parametric MANOVA) using a Euclidean dissimilarity index and 

999 permutations to compute the significance tests. In addition, we tested the presence of significant 

differences between organic and conventional farming in the use of each single feed category by using 

a non-parametric Kruskal-Wallis test – due to the non-normal distribution, tested through a Shapiro-

Wilk test and residual check plots. All analyses were run on R x 64 3.5.1, using lmer4 (Bates et al., 2019) 

and vegan packages  (Oksanen et al., 2019). 

 

Results  

Animal productivity in organic vs. conventional systems 

Our results show that overall productivity per animal is 12% (± 5%) lower in organic compared 

to conventional farming (Figure 6). Despite high variability in the effect-sizes across animal species - 

especially for pigs and poultry layers (Figure 6) - all livestock species exhibit a lower productivity in 

organic vs. conventional farming. Among all livestock types, dairy cattle productivity, with a difference 

of -14% in organic compared to conventional farming, is the only one that reveals a significant 

difference. Note that similar results were observed by using non-weighted means   ̶  although with 

lower uncertainties   ̶ (Figure S3) or when breaking down our dataset into research experiment vs. farm 

monitoring (Figure S4). Exception for this are dairy cows and poultry broilers for which experiment-

based results yield no difference between organic and conventional management whereas lower 

organic productivity was reported in farm-based studies (Figure S4). Note also that by breaking down 

our dataset into developed vs. developing countries (Figure S5), we found lower organic productivity 

in developed countries compared to conventional – in particular for dairy cows and poultry broilers. 

These results are in line with the statement that organic farming may perform well in many developing 

regions while drop in productivity is higher in regions with high conventional productivity (De Ponti et 

al., 2012; Kniss et al., 2016; Rigby and Cáceres, 2001). 
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Figure 6. Organic-to-conventional animal productivity ratios. Values are the weighted means of 
organic-to-conventional ratios with 95% confidence intervals. The numbers in brackets provide the 
number of observations for each livestock type. The vertical red line indicates a ratio of value one 
(meaning no differences between organic and conventional animal productivity). A ratio higher than 
one represents cases where organic farming has higher productivity than conventional farming. 

Several factors may explain the observed productivity gaps, such as (i) use of less productive 

animal breeds, (ii) higher vulnerability to animal diseases and parasites, in particular for monogastrics 

and (iii) difference in feeding strategies, in particular for ruminants (longer grazing period, lower energy 

and protein density of the feed ration, higher share of fodder in the feed ration) (Röös et al., 2018; Van 

Wagenberg et al., 2017). Our dataset did not make it possible to confirm any differences in the use of 

animal breeds and in vulnerability to diseases and parasites between organic and conventional farming 

systems, but it allowed to highlight differences in feed ration composition (see next section). 

 

Feed ration composition in organic vs. conventional farming 

Our results show that differences in animal feed ration composition are small for poultry, 

moderate for pigs and large for dairy cows when all eight of the detailed feed categories (Table S2) are 

considered (Figure 7a). These differences between organic and conventional were consistent 

independently of whether feed rations are expressed in mass (Figure 7), energy or protein (Figure S6). 

More precisely, we found that the share of grassland products and hay is higher in organic than 

in conventional dairy feed rations (63 vs. 44%, respectively). Similarly, the share of legume grains was 

higher in organic rations (Table S2). In contrast, organic rations exhibit a lower share of non-legume 

grains (e.g., cereal grains: 21 vs. 38%), non-legume by-products (e.g., wheat middling: 6 vs. 8%), and 

legume by-products (e.g., soybean cakes: 0 vs. 3%). These differences might be explained by a longer 

grazing season in organic dairy farming compared to conventional (Van Wagenberg et al., 2017), a 

higher occurrence of legume grains in organic crop rotations (Barbieri et al., 2017), especially in 

Europe, and a reluctance to use processed, costly concentrates such as legume and non-legume by-

products. All these explanatory factors are clearly in line with the recommendations of organic 

regulations aimed at a high degree of self-sufficiency of organic livestock farming (Lampkin et al., 

2017). As mentioned before, moderate differences were observed between organic and conventional 

pig ration composition, with organic rations containing more legume grains (16 vs. 9%), on the one 

hand, and the absence of feed from the ‘other concentrate’ category in organic rations, on the other 
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hand. The ‘other concentrates’ represent 3% of the conventional pig ration and contain feed such as 

synthetic amino acids. These synthetic amino acids are banned in organic livestock feed rations, 

thereby probably contributing to the observed lower animal productivity (Wu et al., 2007) as reported 

in Figure 6. 

 

Figure 7. Animal feed rations composition in organic and conventional farming systems for three 
livestock species. Horizontal bars represent the share of each feed category as a fraction of the total 
feed ration (expressed in kg of dry matter). The composition of the feed ration is expressed based on 
eight detailed feed categories (a) or clustered as forage vs. concentrate feed (b), or as food-competing 
vs. non-competing feed (c). ‘Org’ and ‘Conv’ refer to organic and conventional farming, respectively. 
The number of studies supporting each comparison is given at the left of the horizontal bars.  
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When considering feed rations expressed in terms of forage vs. concentrate feed (Figure 7b), 

we found that rations of organic dairy cattle contain significantly more forage products than for 

conventional dairy cattle (76 vs. 60%, respectively), a result confirmed when expressing feed rations in 

energy and protein (Table S3 and Table S4). Organic farmers often use a higher share of fodder to feed 

their animals due to (i) the low availability of organic concentrate feed (lower diversity and higher 

prices than for conventional ones) (Escribano, 2018; Flaten and Lien, 2009), and (ii) organic regulation 

requirements that set a minimum share of forage in ruminants’ diets (Lampkin et al., 2017). This higher 

use of forage and limited utilisation of concentrates probably contribute to the productivity gap 

between organic and conventional dairy cattle found in Figure 6 (Aguerre et al., 2011). 

Finally, when considering feed rations expressed in terms of food-competing vs. non-

competing feed (Figure 7c), we found a 45% lower share of food-competing feed in the organic dairy 

cattle feed ration compared to conventional livestock feeding (25% vs. 46% respectively). Similar 

results are found when considering the energy and protein feed ration (Table S3 and Table S4). 

However, no differences can be observed regarding pigs and poultry production, with approximately 

92% of the ration potentially competing with human food in both organic and conventional farming 

(Table S2).  

 

Feed-use efficiency in organic vs. conventional farming 

Our results show that feed-use efficiency (the ratio of the amount of animal product to the 

animal feed intake), when calculated over the entire feed ration, is 14% (± 8%) lower in organic 

compared to conventional farming (Figure 8a). This lower feed use efficiency in organic compared to 

conventional is especially significant for dairy cattle (-11% ± 9%) and poultry broilers (-47% ± 10%). 

Similar results were observed by using non-weighted means (Figure S7) – although with smaller 

uncertainties –, when feed-use efficiency is calculated based on the energy and protein feed ration 

(Figure S8) or when disaggregating our dataset into studies based on research experiment vs. farm 

monitoring (Figure S9).  

The lower feed-use efficiency for organic dairy cattle may be partly explained by differences in 

feeding strategies. We found a higher share of rough forages in animal diets in organic compared to 

conventional farming (Figure 7). Forage based diets are known to be often less balanced than grain 

based diets (Brito and Silva, 2020; Voelker et al., 2002), leading to reduced milk yield. However, in 

those forage based diets, the negative effect of lower milk yield on feed-use efficiency might be 

compensated (though not completely) by a lower feed intake: as rough forages are less digestible, they 

require more space and time in the cow’s rumen, leading to lower ingestion of other feeds (Voelker et 

al., 2002). Milk yield reduction can be exacerbated if feeding animals with rough forages comes with 

more grazing. Indeed, grazing costs more energy to the animals than other feed intakes, leading to 

reduced energy availability for milk production (Kaufmann et al., 2011). Although our dataset did not 

provide information on grazing management between organic and conventional dairy cows, we found 

both a reduced milk yield and a higher forage share in the organic dairy rations compared to 

conventional ones. Therefore, lower feed-use efficiency for organic dairy cattle (Figure 8a) may be 

explained by a lower animal productivity due to a coarser and less energetic forage-based feed ration 

(Figure 7). 
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Figure 8. Organic-to-conventional animal feed-use efficiency. Feed-use efficiency is calculated based 
on the entire feed ration (a), on concentrate feed (b), and on food-competing feed (c). Values are 
weighted means of organic-to-conventional ratio with 95% confidence intervals. The numbers in 
brackets provide the number of observations for each livestock type. The vertical red line indicates a 
ratio of value one - i.e., no differences between organic and conventional feed-use efficiency. A ratio 
higher than one represents cases where feed-use efficiency is higher in organic than in conventional 
farming. 

In contrast, the difference in feed-use efficiency for poultry broilers cannot be explained by a 

difference in animal productivity (which was non-significantly different in organic vs. conventional 

farming, see Figure 6). Data on poultry life span showed a 45% longer lifespan for organic vs. 

conventional poultry broilers in our database. This result is in agreement with organic regulations that 

do not allow broiler slaughtering before 81 days (Rezaei et al., 2018). Consequently, organic broilers 

need to be fed over a longer time, which leads to lower feed-use efficiency. When controlling slaughter 

age (two of our comparisons were based on an experiment where organic and conventional poultry 

were both slaughtered at the same age), similar feed-use efficiencies were found between organic vs. 

conventional (data not shown) thus confirming effect of slaughter age. 
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Interestingly, our results show that these differences between organic vs. conventional 

farming are modified when feed-use efficiency was calculated based on concentrate feed or on food-

competing feed. Concentrate feed-use efficiency generally exhibited a higher - although not significant 

- value for organic animals (Figure 8b). In particular, organic dairy cattle are 44% (± 23%) more efficient 

in their use of concentrate feeds than their conventional counterparts (Figure 8b), a result explained 

by the lower concentrate consumption in organic dairy cattle production (Figure 7b). We found a 

similar result when feed-use efficiency was expressed in terms of food-competing feed, with organic 

dairy cattle being 37% (± 26 %) more efficient in their use of food-competing feed compared to their 

conventional counterparts (Figure 8c). In contrast, for pigs and poultry, feed-use efficiency does not 

significantly change when calculated based on the entire feed ration, the concentrate feed or the food-

competing feed (Figure 8), a result explained by those animals being mainly fed with concentrate, food-

competing feeds (Figure 7). Finally, by breaking down our dataset into developed vs. developing 

countries we found a consistent – although rarely significant – greater feed-use efficiency in developed 

countries (Figure S11). This result is probably related to more precise feeding management in 

developed countries, as well as to scarce data regarding developing countries. 

 

Discussion 

When comparing the sustainability, profitability and food security impacts of organic 

compared to conventional farming systems, the yield gap between the two systems is a key issue 

(Connor, 2008; Gattinger et al., 2012; Reganold and Wachter, 2016; Skinner et al., 2014). To the best 

of our knowledge, this study is the first global comparison to provide quantification of the productivity 

gap between organic and conventional livestock production. More importantly, we provide here a first 

comparison of organic vs. conventional livestock’s feed ration composition and feed-use efficiency in 

a systemic way. By calculating partial feed-use efficiencies based on concentrate and food-competing 

feed, our analysis also provides critical values to assess the impact of organic livestock production on 

the feed/food competition in a food security context.  

Feeding strategies and animal productivity are closely related. A higher forage-to-concentrate 

ratio often result in lower animal productivity (Aguerre et al., 2011), whereas the use of synthetic 

amino acids often promotes animal growth (Eriksson et al., 2010). Our results show similar trends, with 

(i) lower animal productivity under organic compared to conventional farming and (ii) differences in 

the feed ration composition that likely impact animal productivity. Different feeding strategies 

contribute to the differences we found in feed-use efficiency as well, although the main driver probably 

also lies in the management practices applied (such as age at slaughter and reproduction cycle 

management).  

Our results have different implications for the development of organic farming and for 

assessing its potential to deliver food in a sustainable manner. First, the overall lower productivity of 

organic animals contrasts with the observed increasing consumption of livestock products at the global 

scale, especially in developing countries (Tilman and Clark, 2014). Therefore, farming the planet 

organically would make it difficult to satisfy animal product demand, thus reinforcing the global 

mitigation of animal product demand as a key leverage factor to achieve global food security (Erb et 

al., 2016; Muller et al., 2017). Second, our results highlight how the organic vs. conventional livestock 

affect and contribute to the feed/food competition. Livestock production uses one-third of the global 

cereal production (Foley et al., 2011), with considerable implications for human food supply. An 

increase in the feed-use efficiency of food-competing feed is essential to reduce cereal use by livestock 
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animals and to enhancing global food security. Providing indicators and data on the impact of organic 

farming on feed/food competition is therefore highly needed to assess its potential to ensure food 

security. Our results show that this impact strongly depends on the animal species and type 

considered. Organic poultry is less efficient in its use of food-competing feed (improvement of this 

might come from the selection of breeds more adapted to organic conditions (Röös et al., 2018)), 

whereas the opposite is observed for dairy cattle (that strongly rely on forage products for feeding). 

Those results are in line with the outcomes of scenarios that explore more sustainable ways of 

managing livestock production globally (Röös et al., 2016; van Zanten et al., 2016). Most of those 

scenarios converge on the need to feed ruminants a grass-based diet in order to alleviate the feed/food 

competition. Our results show that organic dairy cattle management already apply those 

recommendations. Third, the forage-rich diets of organic dairy cattle that we highlighted is highly 

consistent with previous studies showing a higher share of temporary pasture in organic crop rotation 

compared to conventional ones (Barbieri et al., 2019, 2017). Rotated, temporary pastures have been 

reported to have environmental benefits – especially in terms of carbon sequestration – (Dumont et 

al., 2019) thus helping to offset part of livestock greenhouse gas emissions. Therefore, by being more 

often grass-based than in conventional farming, organic dairy systems contribute to more sustainable 

and climate-friendly ways of farming. 

Note however that the significance of our results must be balanced with their limitations. The 

scientific literature on feed-use efficiency between organic and livestock production remains limited 

and often provides incomplete data (on variance or detailed feed ration), with some consequences for 

our study implications. First, weighting studies by their internal variance was made impossible, thus 

preventing to account for individual study accuracy and precision. However, weighting studies by their 

number of observations is a satisfactory alternative that we applied here and similar results were 

obtained by using weighted and non-weighted methods, thus confirming the robustness of our 

approach. Second, though we consider geographical variability by disaggregating our dataset between 

developed vs. developing countries, we could not consider more regional variability. Our data set is 

mainly focused on Europe and Middle East (Figure S2), and this specificity must be accounted for when 

using our results. Clearly, more results are needed from developing countries to better capture effects 

of organic management in those regions. Finally, some livestock categories are under-represented in 

the literature, with a very limited number of studies on small ruminants and on beef cattle production, 

thus preventing to extend considerably our study beyond the four livestock species and types 

considered here. For instance, based on the very few data available in the literature (in Italy and in 

India, (Buratti et al., 2017; Singh et al., 2010), we found that the productivity gap between organic and 

conventional animals was lower (and closer to zero) for beef than for dairy systems. This result is in 

line with the fact that, at least in Europe, beef systems are often managed less intensively (whether 

organic or conventional) than dairy systems. Therefore, these dataset limitations must be accounted 

for when using our results as inputs in global models that explore the consequences of organic farming 

upscaling and its impacts on food security and the environment. If these limitations are taken into 

consideration, our results could be of strong interest for models exploring such upscaling scenarios - 

such as the BioCBioBaM (Erb et al., 2016) or the SOL models (Muller et al., 2017) - which currently 

consider no differences between organic and conventional livestock production. Implementing our 

results in those models will improve their accuracy about feed demand and animal product supply. 

Finally, the limited size of our dataset highlights the need for more standardised procedures 

when comparing and reporting data concerning organic and conventional livestock production and 

feeding strategies, e.g., by detailing the animal feed ration composition. In addition, a unified 



36 
 

classification of feed products and their potential to be used in human nutrition (currently and 

considering technological improvements in energy and protein extraction for human use) would be a 

big help to calculate appropriate food-competing feed-use efficiencies (Laisse et al., 2018a; Mottet et 

al., 2017). Adopting a production system approach in studies reporting animal feed use (e.g., by 

detailing animal number of lactations or herd replacement rate) would be of great benefit to consider 

the different factors that influence animal productivity and system feed-use efficiency. 

 

Conclusion 

This first global comparison on organic vs. conventional livestock production highlights a 

clearly lower level of animal productivity and feed-use efficiency of organic compared to conventional 

livestock farming. Differences in productivity are likely to be explained by differences in feeding 

strategies for which we provided some evidence. Differences in feed-use efficiency are likely to be 

explained by differences in livestock system management (such as herd structure and slaughter age) 

in addition to feeding effects. Such findings may result in more land required by organic livestock 

farming compared to conventional farming to achieve the same level of animal production. 

Notwithstanding, our results also show that organic dairy cattle are less in competition with human 

food production due to their higher food-competing feed-use efficiency, with strong implication for 

land use and human food production. Even though additional research efforts are needed to 

consolidate our findings, those are key to understanding and assessing the impact that organic 

livestock upscaling may have on global food security and farming sustainability.  
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Abstract 

Increasing soil organic carbon (SOC) stocks in agricultural lands is key to mitigate climate 

change and, organic farming is often considered as a promising option to do so. So far, evidence of 

higher SOC stocks in organic farms compared to conventional farms reflects situations where organic 

farming occupies small fractions of agricultural areas, with access to ample amounts of organic 

fertilising resources – access that might be reduced with organic farming expansion. Using a modelling 

approach, we estimated global SOC stocks following a 100% conversion to organic farming of global 

agricultural lands. We found that (i) global soil carbon inputs would be reduced by 39% in croplands 

and not changed in grasslands, leading to a (ii) 6, 8 and 10% global SOC stock reduction in agricultural 

lands 20, 50 and 100 years after that transition, respectively. These results suggest that organic farming 

expansion might reduce its potential to mitigate climate change through soil carbon sequestration. 

This potential might be maintained when appropriate practices – such as enhanced soil cover cropping 

– are implemented to alleviate nitrogen limitations and boost carbon inputs to soils. 

 

Keywords 

Organic farming, Soil organic carbon stocks, Soil carbon inputs, Global scale, Modelling 

  

In the previous chapter, we highlighted differences between organic and 

conventional livestock. These differences were implemented in the latest 

version of GOANIM alongside other modifications. In this chapter, we 

combined this new version of GOANIM to the RothC model in order to 

estimate changes in soil organic carbon stocks of agricultural lands due to 

organic farming expansion. We used this combination to test different 

scenarios of organic farming expansions based on: the share of agricultural 

lands occupied by organic farming, the use of cover crops in organic farming 

and the application of conventional manure in organic farming.  
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Introduction 

The agricultural sector is responsible for 23% of global anthropogenic greenhouse gas (GHG) 

emissions (Foley et al., 2011; IPCC, 2021). Meanwhile, it offers unique opportunities to mitigate climate 

change through carbon sequestration in agricultural soils. The potential of arable lands to sequester 

carbon has been estimated at 0.79-1.54 Gt C.yr-1  (Amelung et al., 2020; Fuss et al., 2018), a value equal 

to 11% of global anthropogenic GHG emissions. While arable lands have lost up to half of their organic 

carbon stocks since the industrial revolution (Lal, 2004a), agricultural practices could help increase soil 

organic carbon stocks, by increasing soil carbon inputs or by reducing soil carbon mineralisation 

(Paustian et al., 2016). 

Organic farming is often presented as a way of farming that helps increase soil carbon 

sequestration and soil organic carbon (SOC) stocks (Clark and Tilman, 2017). Meta-analyses of field 

experiments have shown that organically managed soils have higher SOC stocks (+3.5 Mg C.ha-1) and 

soil carbon sequestration rate (+0.45 Mg C.ha-1.yr-1) than conventional ones (Gattinger et al., 2012; 

Seufert and Ramankutty, 2017). These results are largely explained by higher soil carbon inputs in 

organic systems through both enhanced manure application rates and the use of more complex crop 

rotations with higher frequency of temporary pastures and cover crops (Barbieri et al., 2017), resulting 

in higher plant-based organic carbon inputs to soils.  

However, organic farming occupies less than 2% of the global utilized agricultural area (UAA,  

(IFOAM, 2020). Evidence provided by meta-analyses therefore represent situations where organic 

materials are abundant for fertilisation of organically managed soils (Nowak et al., 2013). In contrast, 

the expansion of organic farming might generate an increased competition for fertilising resources, 

possibly resulting in a reduction of soil carbon inputs and soil carbon sequestration rate. A recent study 

has shown that organic farming upscaling to 100% of  the UAA would lead to a 56% crop yield reduction 

due to severe nitrogen (N) limitation (Barbieri et al., 2021) – a significant drop compared to the 20-

30% yield reduction previously reported by field-based meta-analyses (Ponisio et al., 2015; Seufert et 

al., 2012). This drop is mostly due to the ban of synthetic N fertilizers in organic guidelines that reduces 

both the range of N fertilization resources (e.g., crop residues, livestock manure) and their global 

availability with large consequences for soil fertilisation – a result confirmed by recent studies 

highlighting N fertilisation limitation in organic farming upscaling scenarios (Billen et al., 2021; Erb et 

al., 2016; Muller et al., 2017). Organic farming expansion is thus likely to have major consequences for 

soil carbon inputs as crop residues and as fertilising materials, potentially resulting in large changes in 

SOC stocks.  

Capturing those systemic feedbacks of organic farming expansion on N availability is key to get 

accurate estimates of soil carbon inputs in scenarios of large organic farming upscale. Additionally, 

considering both croplands and grasslands is needed to get unbiased estimates of SOC sequestration 

due to possible horizontal carbon transfers between croplands and grasslands (Leifeld et al., 2013; 

Nesme et al., 2021). Finally, adopting a spatially explicit approach is highly relevant to account for the 

spatial variability in soil carbon inputs, soil mineralisation rates and initial SOC stocks. We addressed 

these knowledge gaps by combining (i) GOANIM, a spatially explicit model simulating cropland N cycle, 

crop productivity and livestock populations under scenarios of large organic farming 

expansion(Barbieri et al., 2021) with (ii) RothC, a dynamic, first order kinetic model simulating carbon 

dynamics in soils (Coleman et al., 1997; Martin et al., 2007). We used GOANIM outputs about livestock 

manure and crop residue production to estimate carbon fluxes between croplands, grasslands and 

livestock, and to estimate soil carbon inputs (SCI) in scenarios of large organic farming expansion (for 
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both croplands and grasslands). We then used the estimated SCI as an input to RothC to simulate the 

changes in SOC stocks under different time horizons. We assessed different scenarios combining (i) 

variations in organic farming practices (cover cropping, use of conventional manure on organic 

croplands) and (ii) variations in the level of organic farming expansion globally, each compared with a 

baseline scenario of no changes in agricultural practices. 

Organic farming encompasses a diverse set of farming practices, depending on regional 

regulations, farming contexts and markets. Although all organic regulations are gathered under the 

ban of synthetic fertilisers (Seufert et al., 2017), organic farms exhibit ample variability in the way this 

ban is translated into farming practices (Kirchmann et al., 2016; Ponisio et al., 2015; Puech et al., 2014). 

In particular, organic farms may adopt cropping practices that are known to improve soil carbon 

sequestration (e.g. cover cropping, agroforestry). In this study, we will consider situations of simple 

organic farming practices, thereby excluding cropping practices that would provide additional soil 

carbon sequestration (see Methods). This conservative attitude is not meant to provide a normative 

view on organic farming. Instead, it is meant to provide estimates that can serve as references to 

envision additional and complementary cropping practices. This conservative definition of organic 

farming in the GOANIM model led to a drastic reduction of cropland production (-56%) and livestock 

population reduction (- 20 % in livestock units) in a fully organically managed world (Barbieri et al., 

2021), with a large shift towards ruminant animal species. In such a scenario, we hypothesized that 

both SCI and SOC stocks would be negatively affected by a global transition to organic farming, with 

potential modulations when accounting for additional organic farming practices – such as cover 

cropping. 

 

Material & Methods 

The objective of this study was to estimate the potential impact of global organic farming 

expansion on soil organic carbon stocks. To do so, we used a modelling approach to estimate the SOC 

stock changes in scenarios of global organic farming expansion compared to the currently observed 

SOC stocks (that we considered as those in conventional farming and hereafter called the baseline). 

The modelling approach was based on two separate steps, as explained below. 

First, we estimated the soil carbon inputs (SCI) in both the scenarios of large organic farming 

expansion and in the baseline for croplands and grasslands in a spatially explicit way (5 arcmin 

resolution, i.e. ~10x10km at the equator). In both the organic scenarios and the baseline, we estimated 

the SCI as a sum of (i) the amount of carbon that is returned to agricultural lands as plant residues 

(crop-based and grass-based residues) and (ii) the amount of carbon excreted by animals as farmyard 

manure (FYM) applied to lands after accounting for C losses during manure storage. The SCI estimates 

for the organic farming scenarios were computed using outputs from the GOANIM model (Barbieri et 

al., 2021). GOANIM is a spatially explicit (5 arcmin resolution) linear optimisation model that simulates 

nitrogen flows to and from croplands and grasslands under scenarios of organic farming upscaling. 

GOANIM calculates cropland N budget and its effects on crop yield for 61 crop species. The optimising 

module of GOANIM is designed to maximise food availability at the global scale (from both crop-based 

and animal-based products) by spatially optimising the global livestock population and the N allocation 

from animal manure to the different considered crops. We used the latest version of GOANIM (see 

Annex III), accounting for (i) differences in feed rations and feed use efficiency between organic 

farming and conventional farming (Gaudaré et al., 2021), (ii) the 2019 refinement of the IPCC guidelines 
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values on manure management and nitrogen losses (as direct N2O emissions, nitrate leaching and 

ammonia volatilisation) and (iii) representation of non-productive, young animals. 

Second, we used those estimated SCI in the RothC (Coleman et al., 1997; Martin et al., 2007) 

model to estimate changes in SOC stocks in the organic farming scenarios, considering only annual 

crops (which represents 45 of the 61 crops in GOANIM, thereby assuming no changes in carbon inputs 

to soils for perennial crops). RothC is a model that estimates soil organic carbon turnover in both 

croplands and grasslands according to SCI, soil covering, climate and soil conditions. RothC considers 

four active soil organic carbon compartments: the resistant plant pool (RPM), the decomposable plant 

pool (DPM), the microbial pool (BIO) and the humic pool (HUM). An additional inert organic matter 

(IOM) pool is considered but the latter is supposed to be constant over time in RothC; it is thus assumed 

unchanged in the organic scenarios vs. in the baseline, and is not included in the equations below. 

RothC estimates the carbon flows among the four active compartments as well as the amount of 

carbon mineralised from each compartment, with a monthly time step and through first order kinetic 

equations. In this study we used the continuous formulation of RothC (Martin et al., 2007) summarized 

in Equation 6. 

Equation 6  𝑆𝑂𝐶′(𝑡) = ⍴(𝑡) ∗ 𝐴 ∗  𝑆𝑂𝐶(𝑡) + 𝐵(𝑡) 

Where SOC’(t) represent the derivative of SOC with respect of time, SOC(t) represent the SOC 

stocks at time t. A is a 4x4 matrix representing the mineralisation and carbon flows among the four 

active soil organic carbon pools. ⍴(t) is the decomposition rate modifier and depends on the climatic, 

edaphic and soil covering conditions. Note that soil covering affects SOC dynamics by reducing its 

mineralisation rate in RothC. We assumed similar rates of soil organic carbon stabilisation and 

mineralisation in both the organic scenarios and the baseline – a rather conservative estimate due to 

lack of consistent data, despite preliminary evidence of more active carbon cycling in organically 

managed soils (Lori et al., 2017). Spatially explicit climatic data were retrieved from the AgMERRA 

dataset (Ruane et al., 2015) combined with the Penman equation to estimate potential 

evapotranspiration. Spatially explicit data on soil clay content were retrieved from the harmonized 

world soil database (Nachtergaele et al., 2009). Finally, spatially explicit soil covering data for all crops 

considered where extracted from (Sacks et al., 2010). B(t) represents the soil carbon inputs at time t 

and was estimated using Equation 7: 

Equation 7  𝐵(𝑡) = [(𝑎𝑑𝑝𝑚 𝑎𝑟𝑝𝑚 𝑎𝑏𝑖𝑜 𝑎ℎ𝑢𝑚)𝑐𝑟𝑜𝑝 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
𝑇 ∗ (1 − %𝐹𝑌𝑀) +

(𝑎𝑑𝑝𝑚 𝑎𝑟𝑝𝑚 𝑎𝑏𝑖𝑜 𝑎ℎ𝑢𝑚)𝑓𝑎𝑟𝑚𝑦𝑎𝑟𝑑 𝑚𝑎𝑛𝑢𝑟𝑒
𝑇 ∗ %𝐹𝑌𝑀] ∗ 𝑏𝑡 

Where adpm, arpm, abio and ahum are four coefficients (in %) that define the composition of the 

carbon inputs to soils between the four active soil organic carbon pools for both crop residues and 

farmyard manure. Here, adpm, arpm, abio and ahum were parametrised as follow: (0.6,0.4,0,0) for crop-

based residues, (0.4,0.6,0,0) for grass residues and (0.49,0.49,0,0.02) for farmyard manure. %FYM (in 

%) represents the share of farmyard manure in total soil carbon inputs and bt represents the total soil 

carbon inputs at time t (in t C.ha-1). 
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Soil carbon input (SCI) estimation 

For both the organic scenario and the baseline, we estimated the annual SCI using Equation 8: 

Equation 8  𝑆𝐶𝐼 = 𝐴𝑔𝐶 ∗ % 𝑅𝑒𝑐𝑦𝑐𝑙𝑒𝑑 + 𝐵𝑔𝐶 + 𝐹𝑌𝑀𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

Where SCI represents the inputs of organic carbon to either cropland or grassland soils (in t 

C.ha-1.yr-1). AgC and BgC (in t C.ha-1.yr-1) are respectively the above and belowground plant carbon 

biomass. %Recycled (in %) represents the percentage of the AgC that remains on field. In croplands 

the %Recycled data were extracted from the GOANIM model(Barbieri et al., 2021). In grasslands, 

%Recycled represents the non-grazed carbon share of the entire grassland biomass production. Finally, 

FYMapplied (in t C.ha-1) is the carbon from farmyard manure applied to cropland or grassland soils. We 

assumed that biomass quality and its related carbon stabilisation and mineralisation properties were 

similar in both the organic scenarios and the baseline due to inconsistent data in the literature(García-

Palacios et al., 2018). We estimated AgC and BgC using Equation 9 and Equation 10: 

Equation 9 𝐴𝑔𝐶 = 𝑌𝑖𝑒𝑙𝑑 ∗ 0.5/𝐻𝐼 

Equation 10  𝐵𝑔𝐶 = 𝐴𝑔𝐶 ∗ 𝑅𝑆 

Where HI and RS represent the crop-specific harvest index (unit-less) and the root-shoot ratio 

(unit-less), respectively, for each of the considered 45 crop species. Both HI and RS values were 

retrieved from Monfreda et al. 2008(Monfreda et al., 2008) and Smil et al. 1999(Smil, 1999). Yield 

refers to the crop yields (in tons DM.ha-1) as retrieved from Monfreda et al. 2008(Monfreda et al., 

2008) (for the baseline) or from the GOANIM model (for the organic scenarios)(Barbieri et al., 2017). 

To convert the estimated dry matter production in C, we used a 0.5 coefficient value (in t C.t DM-1).  

In order to account for possible uncertainties in input data, we tested the sensitivity of the 

RothC outputs to variations in SCI values. We considered two possible sources of uncertainty in SCI 

values related to crop and grass biomass production and to biomass allocation to above- vs. below-

ground plant compartments. Uncertainties in SCI were explored by a ±20% variation in the carbon 

biomass production of both croplands and grasslands, modulated by a variation in root-shoot ratio (RS) 

for croplands (see Annex II). 

FYMapplied was estimated using Equation 11 and Equation 12: 

Equation 11  𝐹𝑌𝑀𝑎𝑝𝑝𝑙𝑖𝑒𝑑 =
𝐶𝑒𝑥∗(1−𝛽)

𝐻𝐴
 

Equation 12 𝐶𝑒𝑥 = ∑ 𝑉𝑆𝑎 ∗ 𝑃𝑜𝑝𝑎𝑎  

Where Cex (in tC.yr-1) is the total amount of carbon excreted by the livestock population as 

farmyard manure and HA is the total harvested area (ha). β represents the share of Cex that is not 

applied to the agricultural lands. In croplands, β represents the share of Cex that is left on pasture during 

animal grazing, used for non-agricultural purposes (e.g., as fuel) and is lost during the manure 

management process. In grasslands, β the share of Cex that is not left on pasture during animal grazing. 

β was estimated following the 2019 IPCC guidelines refinement (IPCC, 2019b). The amount of carbon 

lost in the manure management process was estimated according to Bareha et al., 2021. In equation 

(7), Popa is the livestock population (in heads) for each of the nine considered animal species a. VS (in 

tC.head-1.yr-1) is the amount of volatile solid carbon excreted per animal and per year (see Annex II). 
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We made sure that the VS excretion would remain in a range of 10 to 50% of the total C ingested by 

livestock animals (Soussana and Lemaire, 2014). This helped to close the carbon cycle within both the 

organic scenarios and the baseline, thereby avoiding any overestimation of soil carbon inputs.  

 

Additional soil carbon input from cover crops  

The observed higher share of cover crops in organic crop rotations – compared to conventional 

ones – may bring additional SCI in the organic scenarios (Barbieri et al., 2017). To the best of our 

knowledge, there is no global, spatially-explicit database about SCI from cover crops. The use of cover 

crops is limited by agronomic and pedo-climatic conditions. Based on a previous meta-analysis on the 

extent of cover-crops, we considered that cover cropping could be potentially applied on 25% of global 

croplands (Poeplau and Don, 2015). Therefore, we considered two situations for the organic scenarios: 

(i) a reference situation without cover crops, i.e. the cropland soils remain bare between main crops 

(as simulated in the 100% REF organic scenario) and (ii) a situation with a use of cover crops between 

main crops to avoid bare soil on 25% of the organically managed croplands (named the organic 25% 

cover crops (CC) scenario). For this second situation, we estimated the additional SCI from cover crops 

using Equation 13. Meanwhile, we assumed that there were no cover crops in the baseline. 

Equation 13  𝑆𝐶𝐼𝑐𝑐,𝑖,𝑚𝑜𝑛𝑡ℎ =
 1.87

𝐺𝑀𝐵𝑆𝑃
∗

𝑌𝑖𝑒𝑙𝑑𝑝𝑙𝑎𝑛𝑡,𝑖

𝑌𝑖𝑒𝑙𝑑𝑝𝑙𝑎𝑛𝑡,𝑤𝑜𝑟𝑙𝑑
 

Where SCIcc,i,month (in t C.ha-1..month-1) is the soil carbon input from cover crops in country i per 

month of cover cropping. The 1.87 value (in t C.ha-1
.yr-1) is the global annual mean of soil carbon input 

from cover crops estimated by Poeplau and Don, 2015. We divided this 1.87 value by the estimated 

global mean time of cover crop presence in the baseline (GMBSP, expressed in month). To account for 

the variability of cover cropping productivity among countries – that is driven by climatic and farming 

factors (Justes, 2012) – we multiplied this global mean cover-cropping biomass production by the ratio 

of the country specific mean yield (Yieldplant,i) to the global mean yield (Yieldplant,world) for the most 

productive crop species between wheat and maize in the country. 

 

RothC parametrisation 

We used RothC assuming carbon pools to be at steady state in the baseline. This needed 

assumption translates into a steady state assumption for climatic conditions and soil carbon inputs 

over the years for both organic farming scenarios and the baseline. Although partly unrealistic, this 

assumption is consistent with the though experiment of large organic farming expansion that we 

report in this study. To remain in line with this steady state assumption in the baseline, we first 

estimated the SCI that are required to keep baseline SOC stocks at their current level (SCI0) by using 

the method developed by Martin et al., 2007 and summarized in Equation 14. 

Equation 14  𝑆𝐶𝐼0 = (𝐼4 − 𝐹) ∗  𝑆𝑂𝐶∗ 

Where SCI0 is the carbon inputs (in t C.ha-1.yr-1) required to maintain SOC stocks at their current 

level. F is a 4x4 matrix representing the mineralisation and carbon flows among the four active soil 

organic carbon pools. F values depend on the climatic, edaphic and soil covering conditions. SOC* is 

the current active (i.e. not comprised in the IOM pool) SOC stocks that is assumed to be at the 
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equilibrium (in either croplands or grasslands). Total SOC stocks were retrieved from the AEZEF dataset 

(Gibbs et al., 2014) that provides estimates of soil organic carbon stocks for croplands, grasslands and 

forestlands on the first 30cm of topsoils per country and for 18 agroecological zones (Figure S12). SOC* 

was estimated after subtracting the IOM content which was estimated using the Falloon, 2000 

equation. 

To estimate the SCI in the organic farming scenarios (SCI1), we corrected SCI0 by the ratio of 

SCIorg to SCIbaseline (RCI) as detailed in Equation 15. 

Equation 15  𝑆𝐶𝐼1 = 𝑆𝐶𝐼0 ∗ 𝑅𝐶𝐼 = 𝑆𝐶𝐼0 ∗
𝑆𝐶𝐼𝑜𝑟𝑔

𝑆𝐶𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

Where SCIorg and SCIbaseline are the soil carbon inputs for the organic farming scenarios and the 

baseline, respectively, estimated using the methods presented in the previous sections. We used SCI1 

as input in the RothC model to estimate the changes in SOC stocks in the organic farming scenarios – 

20, 50 and 100 years after a global conversion to this farming system – using Equation 6. We assumed 

constant climate data over the simulation periods. This assumption is disputable given current and 

future climate change, but it remains consistent with our thought experiment that consists in exploring 

situations of drastic expansion of organic farming. Further studies that are beyond the scope of this 

article would be needed to account for future climate scenarios. The estimated SCI1 is expressed in 

tC.ha-1.yr-1, though RothC requires monthly data. We assumed that the annual soil carbon inputs were 

equally between the twelve months.  

In order to account for the observed difference in crop rotations between organic and 

conventional farming (Barbieri et al., 2017), we ran RothC in the organic farming scenarios for each of 

the 45 considered crop species separately, and then, estimated a weighted mean of SOC stocks 

according to crop species harvested areas, as detailed in Equation 16. 

Equation 16  𝑆𝑂𝐶𝑡,𝑚𝑒𝑎𝑛 =
∑ 𝑆𝑂𝐶𝑡,𝑖∗𝐻𝐴𝑖𝑖

𝐻𝐴𝑡𝑜𝑡𝑎𝑙
 

Where SOCt,mean is the weighted mean of SOC stocks at time t and SOCt,I is the SOC stocks 

estimated by the run of RothC for each specific crop i, HAi represents the harvested area of crop i in 

the organic farming scenario and HAtotal is the total harvested area (all crop considered). HAi and HAtotal 

were retrieved from Barbieri et al. 2019 (Barbieri et al., 2019).  
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Results 

Carbon flows to agricultural soils in an organic world 

We found a global 43% reduction (with a sensitivity range between 26 and 54%, see Methods) 

in the total SCI to croplands for the 100% organic farming scenario (hereafter called REF 100% organic 

scenario) compared to the baseline and no change for the global SCI to grasslands (Table 3). In 

croplands, the massive drop of SCI is primarily due to (i) a 39% reduction in plant-based residues 

returned to the soil (-1 PgC.yr-1) followed by (ii) a 68% reduction in farmyard manure application rate 

(-0.23 PgC.yr-1) in the REF 100% organic scenario compared to the baseline. The reduction in plant-

based residues returns is mainly due to a 51% reduction of annual crop dry matter production, partially 

attenuated by a lower dry matter yield reduction for temporary pastures (-26%), resulting in an overall 

47% reduction of cropland biomass production (Table S6). The reduction in manure application rate is 

mainly due to a 66% reduction in the livestock population, as well as changes in animal types and in 

regional location of livestock populations. 

Table 3: Global soil carbon inputs (PgC.yr-1) for croplands and grasslands under the REF 100% organic 
scenario and the baseline. 

  

Soil C inputs to croplands Soil C inputs to grasslands 

Plant-based 
residues 

Manure Total 
Grass 

residues 
Manure Total 

Baseline 2.5 0.34  2.8 17.1 0.33 17.4 

REF 100% 
organic scenario 

1.5 0.11 1.6 17.2 0.1 17.3 

 

Ratio 
organic/baseline 

0.61 0.31 0.57 1.01 0.29 1.00 

Difference 
organic - baseline 

-1 -0.23 -1.2 +0.1 -0.23 -0.1 

These global reductions in soil carbon inputs mask large variations among world regions 

(Figure 9 and Figure S13). In some specific regions – such as Central Africa or Russia – soil carbon inputs 

are increased in the 100% REF organic scenario compared to the baseline (Figure 9a). This is explained 

by higher inputs as plant-based residues (Figure 9b) due to (i) high manure application rates that help 

to sustain high crop yields in organic farming (Figure 9c) and (ii) high share of carbon fixing crops – 

such as temporary pastures – in organic rotations (Barbieri et al., 2019, 2017). Note, that in other 

regions – such as Northern Brazil – the increase in plant-based residues resulting from more frequent 

carbon fixing crops in organic rotations is offset by a drop in farmyard manure application, resulting in 

reduced soil carbon inputs to cropland soils.  
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Figure 9: Annual organic-to-conventional ratios of soil total carbon inputs (panels a and d), plant-
based residue (panels b and e) and farmyard manure (panels c and f) inputs to cropland soils, 
reported as global maps (a, b & c) and density curves (d, e & f). In the density curves, the blue dashed 
line indicates the value 1. 

In grasslands – unlike to croplands – we found that regional increase in manure application 

rate is associated to a reduction of grass residue inputs to soils and consequently to a SCI reduction 

(Figure S13). This is mainly explained by the fact that a higher manure application often means higher 

grazing intensity, which leads to higher grass residue removal as livestock feed.  

 



Chapter II 

49 
 

SOC stocks changes in an organically farmed world 

We found that the transition to organic farming would result in a 6, 8 and 10% (with an 

uncertainty range of 5-13, 7-20 and 9-16%) SOC stocks reduction in agricultural lands (croplands plus 

grasslands) after 20, 50 and 100 years, respectively, compared to the baseline (Table 4). This reduction 

represents an overall loss of -13 PgC from agricultural soils in the first 20 years after that transition – 

resulting from -7 and -6 PgC losses from croplands and grasslands, respectively (Figure 10). 

Table 4: Global changes in SOC stocks (PgC) for grasslands, croplands and total agricultural land (i.e. 
grasslands and croplands combined) after 20, 50, and 100 years. Ratios and differences between the 
organic and the baseline are indicated. 

 Global soil organic carbon stocks (PgC) 

  20 years 50 years 100 years 

Croplands 

Baseline 76 
REF 100% organic scenario 69 65 62 

    

Ratio organic/baseline 0.9 0.86 0.81 

Difference organic - 
baseline 

-7 -11 -14 

     

Grasslands 

Baseline 121 
REF 100% organic scenario 115 115 116 

    

Ratio organic/baseline 0.95 0.95 0.96 

Difference  organic - 
baseline 

-6 -6 -5 

     

Total 
agricultural 

lands 

Baseline 197 

REF 100% organic scenario 184 180 177 
    

Ratio organic/baseline 0.94 0.92 0.90 

Difference organic - 
baseline 

-13 -17 -20 

Again, these global estimates mask spatial variations among world regions (Figure 10). Some 

regions (such as India and Mexico) would experience a decrease in their cropland SOC stocks while 

others (such as central Africa) would experience an increase (Figure 10b and Figure 10c) – a result 

largely explained for both croplands and grasslands by regional variations in soil carbon inputs (Figure 

9 and Figure S13). 

In grasslands, we found a global SOC stock reduction (-6 PgC in the first 20 years) while no 

reduction was observed in total SCI. This result is explained by the spatial variability of the response of 

SOC stocks to SCI variations (Figure S14), due to differences in pedo-climatic conditions, initial SOC 

stock values, and composition of SCI (grass residues vs. farmyard manure). 
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Figure 10: Global changes in soil organic carbon (SOC) stocks (PgC) over time, and maps of the SOC 
stock ratios (Rstock) between the REF 100% organic scenario and the baseline at 20 years. Changes 
in SOC stocks and spatial distribution are reported for croplands (red line, panel c), grasslands (green 
line, panel b), and croplands plus grasslands combined (blue line, panel a). A scenario variant where 
25% of organically managed croplands are covered by cover-crops is also considered (see below and 
Methods) and the resulting changes in SOC stocks for croplands and the combination of croplands and 
grasslands are represented by the red and blue dashed lines respectively (called the organic 25% CC 
scenario). Values at the right end of each curve represent the global SOC stocks 100 years after 
transition to organic farming. The shaded area around each curve lies between the upper and lower 
values obtained through the sensitivity analysis of soil carbon input values (see Methods). The black 
dashed lines represent the global SOC stock for croplands, grasslands and both combined in the 
baseline. 

We also found that SOC stocks would be drastically reduced in the first 20 years after 

transitioning to organic farming (-0.5 %.ha-1.yr-1 on average) whereas the SOC reduction would slow 

down afterwards (-0.2%.ha-1.yr-1 on average) (Figure S15). The slowing decrease after 20 years can be 

explained by the spatial variability in the pace of SOC stock changes due to differences in pedo-climatic 

conditions – modulated by variations in soil carbon inputs and their composition. For instance, in 

tropical regions, the SOC stock reduction is fast in the first 20 years and then slows down afterwards. 

This is in contrast with northern regions – such as Northern Canada and Russia – where the reduction 

in SOC stocks remains slow throughout the considered 50 years.  
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The potential of cover crops to improve SOC stocks in organic farming 

Covering soils by catch and cover-crops – to protect soils from erosion, to maintain year round 

carbon inputs to the soil, to recycle nutrients or to control pests and weeds – is common practice that 

many organic farmers implement(Barbieri et al., 2017). Based on a previous meta-analysis on the 

extent of cover-crops, we considered that cover cropping could be potentially applied on 25% of global 

croplands (Poeplau and Don, 2015). Accordingly, we simulated soil carbon inputs and changes in SOC 

stocks under a scenario where cover crops are used to avoid bare soil in 25% of organically managed 

croplands (hereafter called the organic 25% CC scenario, see Methods). 

 
Figure 11: Additional SOC stocks per ha [tC.ha-1.yr-1] due to cover cropping in the organic 25% CC 
scenario compared to the 100% REF organic scenario. 

Our results show that the use of cover crops could increase SOC stocks by +0.29 tC.ha-1.yr-1 on 

average over the 50 first years (+0.47 tC.ha-1.yr-1 over the 20 first years) in the organic 25% CC scenario 

compared to the 100% REF organic scenario. This additional SOC stock in the organic 25% CC scenario 

comes along with (i) an additional SCI of +0.07 tC.ha-1.yr-1 on average (which represents an additional 

global SCI of +0.11 PgC.yr-1, Figure S16) and (ii) an additional soil covering effect that reduces SOC 

mineralisation. We also found that the increase in SOC stock would be higher in tropical regions (Figure 

11), with about +1.5 tC.ha-1.yr-1 in Southern Asia, and sub-Saharan Africa.  However, this additional SOC 

stock would not be sufficient to fully compensate the estimated SOC stock reduction in the 100% REF 

organic scenario compared to the baseline. In the organic 25% CC scenario, SOC stocks in croplands 

and grasslands combined would be 5, 6 and 7% lower than those in the baseline at 20, 50 and 100% 

respectively - representing a loss of 9.5 PgC over the first 20 years (Table S7). 
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Intermediate scenarios of organic farming expansion 

Because converting the whole agricultural area to organic farming is a rather drastic thought 

experiment, we also explored more realistic scenarios of intermediate conversion to organic farming. 

We found that global SOC stocks (in croplands and grasslands combined) would exhibit a linear 

reduction with increasing share of the UAA under organic farming, without the use of cover crops 

(Figure 12). SOC stocks are reduced by 1.3, 2.6, 3.9, 5.2 and 6.5% with 20, 40, 60, 80 and 100% of the 

UAA under organic farming and at 20 years compared to the baseline. We observe the same linearity 

in the reduction of SOC stocks in croplands (Figure S17) and in grasslands (Figure S18). For both 

croplands and grasslands, the linear reduction of SOC stock is explained by the linear reduction of the 

soil carbon inputs with increasing share of the UAA under organic farming (Table S8). This linearity in 

SOC stock changes is translated spatially, with similar regional trends in the scenario with 20% (Figure 

12) and 100% (Figure 10a) of the global UAA under organic farming. 

 
Figure 12: Global changes in agricultural (croplands and grasslands combined) SOC stocks (PgC) 20 
years after conversion to organic farming when considering various shares of UAA converted to 
organic farming. The pink and blue lines represent situations with and without conventional manure 
surplus application on organic croplands, respectively. The dotted black line represents global SOC 
stocks in the baseline.  The shaded area around each curve represents the model response to the 
variation of soil carbon input values (see Methods). The map represents the ratios of SOC stocks 
between the 20% of global UAA under organic farming scenario with conventional manure and the 
baseline, 20 years after conversion to organic. 

So far, we did not consider the fact that conventional manure surplus – meaning all 

conventional manure that is in excess compared with conventional cropland N requirements – is often 

applied on organically farmed lands. Using conventional manure surplus as an additional, external 

source of organic fertilising material on organically managed croplands – a practice sometime 

implemented by organic farmers (Nowak et al., 2013; Oelofse et al., 2013) – would change the 

evolutions of SOC stocks (Figure 12). Twenty years after the conversion to organic farming, and in a 

situation with 20% of the global UAA under organic farming, agricultural SOC stocks would be close to 

those reported in the baseline. Above 20% of the UAA under organic farming, we found a positive and 
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constant effect on global SOC stocks in case conventional manure is used in organic farming. Up to 

80% of the global UAA under organic management, global SOC stocks remain higher in the situation 

where conventional manure surplus is applied on organic croplands compared to the situation where 

it is not. Of course, this effect disappears when 100% of the UAA is converted to organic farming as no 

more conventional manure is produced.  

Again, the use of conventional manure surpluses on organically managed croplands would 

affect the spatial variations of SOC stocks. Some regions – such as the UK, Northern India and Northern 

China – would see their cropland SOC stocks increase compared to the baseline. In those same regions, 

SOC stock would decrease in a scenario with 20% of the UAA under organic farming without 

conventional manure application compared to the baseline. This regional effect is explained by the 

uneven geographic distribution of conventional manure surpluses at the global scale (Figure S19), with 

major consequences for soil carbon inputs. This transfer of fertilising resource from conventional to 

organic farming would boost SOC stocks in organically managed croplands by (i) increasing the carbon 

inputs to organic cropland soils and (ii) stimulating organic crop biomass production – due to an 

additional N fertilization – resulting in further increase in soil carbon inputs as crop residues. However, 

the effect of an increased soil carbon input to organic croplands would be globally compensated by an 

equivalent reduction of soil carbon input in conventional croplands – due to the transfer of organic 

material from conventional to organic farming. Therefore, this transfer of fertilising resource from 

conventional to organic farming would boost global SOC stocks only by increasing organic croplands 

biomass and thus, increasing the global soil carbon inputs.  

 

Discussion and conclusion 

Organic farming is often considered as a potential option to mitigate climate change through 

enhanced soil carbon sequestration (Clark and Tilman, 2017; Gattinger et al., 2012). We provide here 

a first estimate of the change in global SOC stocks in both croplands and grasslands – accounting for 

possible transfers of carbon between these two land uses – under scenarios of global expansion of 

organic farming.  

Contrary to what is sometimes claimed (IFOAM EU Group, 2016), our results show that 

agricultural global SOC stocks would decrease in such scenarios. This SOC stock reduction is mostly due 

to drastic reduction in global soil carbon inputs (SCI), especially on croplands. These unexpected results 

are in strong contrast with previous results on the carbon sequestration potential of organic farming 

based on field observations at the local scale (Gattinger et al., 2012). These results highlight that the 

estimation of the potential of soil carbon sequestration in scenarios of organic farming offtake cannot 

be based only on the extrapolation of local field observations without considering whole-system 

effects. Put differently, the contrast between observed or experimental carbon sequestration data and 

our modelling results illustrates that simulating the geographic expansion of organic farming systems 

needs to consider the systemic feedbacks that go along with organic farming expansion itself (Nesme 

et al., 2021). In particular, special attention must be paid to the availability of N fertilising resources 

and their effects on crop biomass production (Barbieri et al., 2021; Smith et al., 2018).  

Nevertheless, a panel of additional cropping practices could be explored, in addition to those 

we considered in the organic farming scenarios we simulated, which could attenuate this modelled 

SOC stock reduction. We found that the use of cover crops would help to limit SOC stock reduction by 

both increasing SCI and reducing SOC mineralisation (Lal, 2015; Mazzoncini et al., 2011). Other 

practices – such as agroforestry – may have a similar impact on SOC stocks, and their potential use in 
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organic farming system is yet to be studied. Because the estimated SOC stock reductions result mainly 

from N deficiency in many organic croplands, cropping practices that would enhance N availability for 

plants are likely to improve soil carbon sequestration. Higher biological N fixation by leguminous crops 

or cover crops in organic rotations – by increasing their frequency (including as relay crops), their 

fixation rate or their biomass return to soils – could help achieve that objective by increasing N 

availability for other crops (Smith et al., 2008). An additional benefit from improved crop rotations is 

the reduction in nitrate leaching (Abdalla et al., 2019) and thereby the conservation of N resources in 

soils for plant uptake. Another source of N for organically farmed lands comes from possible import of 

animal manure from conventional farms (Nowak et al., 2013), going along with a transfer of carbon. 

This transfer of organic fertilising materials brings on indirect carbon inputs by stimulation of crop 

biomass production. Similarly, using external fertilising organic materials – such as urban compost, 

green wastes, food industry by-products or eventually sewage sludge – could provide N to soils on top 

of providing additional soil carbon inputs. Many regulatory and social barriers exist for the use of some 

of those external materials, in particular regarding sewage sludge (Tanase et al., 2017), making more 

detailed studies needed about those products. Modelling the benefits brought by this extensive set of 

additional cropping practices was beyond the scope of this study. However, our results suggest that 

making organic farming more climate beneficial will require some of these additional practices and 

enhanced circularity in organic farming systems (Morais et al., 2021). 

Modelling variations in soil organic carbon stocks in contrasted farming scenarios at the global 

scale comes with some methodological choices and related limitations. In particular, the SOC stocks 

were modelled using RothC, a model that has proved its potential to accurately simulate SOC changes 

at the local (Falloon and Smith, 2002) and large (Martin et al., 2021) scales, but that requires some 

specific modelling assumptions. Among them, we had to assume that carbon stocks in the baseline are 

at the equilibrium. It is likely that this assumption does not always reflect the reality (Chen et al., 2015; 

Meersmans et al., 2011) which may have implications for our findings. However, through additional 

analysis, we found evidence that the error brought by this assumption was negligible (see 

Supplementary Information). We found only a 1% reduction of global croplands SOC stocks after 100 

years compared to the initial croplands SOC stocks, when SOC stock in the baseline where not 

considered at the equilibrium. This suggests that our equilibrium assumption is acceptable when 

considered at the global scale. Another limitation may be related to the fact that the soil organic carbon 

mineralisation we estimated goes along with a nitrogen mineralisation (Cai et al., 2016), a factor we 

did not consider in our study. This may lead to a slight over-estimation of SOC stock reduction due to 

over-estimate of reduction in soil carbon inputs compared to the baseline. 

In addition, our modelling requires a series of input data, each affected by its own 

uncertainties. The complexity of the GOANIM and RothC models and limited knowledge about several 

aspects of input data makes the quantification of uncertainties very difficult. However, the SOC stocks 

we estimated were determined over long periods (20, 50 and 100 years). Long term averages show 

reduced errors on estimated variables due to reduced aggregation effects by the input data – especially 

the climate data (Kuhnert et al., 2017). In addition, this study is based on the comparison of organic 

farming to a baseline, that are both affected by the same errors and uncertainties. Therefore, 

concentrating the analysis on the ratios (or differences) of organic to conventional estimation helps to 

reduce errors and uncertainties. 

The lack of knowledge on input data also affects the estimation of the potential of cover crops 

to increase SOC stocks. To the best of our knowledge, information on (i) potential areas available for 

cover cropping, (ii) spatially explicit species composition of the cover crops and (iii) cover crops biomass 
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production are not (or poorly) available. The potential additional SOC stocks offered by cover crops 

that we found in our study (0.29 tC.ha-1.yr-1) is very similar to the 0.32 value reported in a recent meta-

analysis (Poeplau and Don, 2015). This suggests that, despite the limitations of our data, our estimate 

remains solid. 

Finally, this study provides important information to estimate the potential of organic farming 

to reduce greenhouse gas (GHG) emissions from agriculture. Accurate estimates of changes in soil 

organic carbon stocks, along with N2O and CH4 emission estimation, is key to estimate the net GHG 

emissions of scenarios for organic farming upscaling (Tuomisto et al., 2012). Latest studies comparing 

organic vs. conventional farming impacts on GHG emissions at the global scale used an upscaling 

method of SOC stock differences based on field observations (Muller et al., 2017; Tuomisto et al., 

2012). Further studies, comparing organic to conventional impacts on GHG emissions might consider 

our results in their methodology.  
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Abstract 

Reducing emissions in the AFOLU sector is a key lever to reach greenhouse gas (GHG) emission 

mitigation goals. Organic farming is often considered as a promising option to reduce GHG emissions 

in the food production sector. However, previous estimations of the potential of organic farming to 

reduce GHG emissions globally did not account for deep systemic changes that would come along with 

organic farming expansion – such as increased competition for organic fertilizers. Using a modelling 

approach, we estimated the global GHG budget of different scenarios of organic farming expansion 

accounting for different shares of the global agricultural land under organic management (20, 40, 60, 

80 and 100%) and based on the assumption that human food demand will adapt to the food supply. 

We found a 56% increase in agricultural GHG emissions in a fully organically managed world compared 

to current emissions (i.e. the baseline). We found that this increase in GHG emissions is mainly due to 

land-use changes (+ 3.7 Gt CO2eq.yr-1) and losses of agricultural soil organic carbon stocks (+2.3 Gt 

CO2eq.yr-1), partly compensated by a reduction of N2O and CH4 emissions (-3.1 Gt CO2eq.yr-1). We also 

found that a 20% conversion of global agricultural lands towards organic farming (together with 

adapted human food diets) would reduce GHG emissions by 70% compared to the baseline. More 

generally, we found a non-linear response of GHG emissions to the share of global agricultural lands 

occupied by organic farming, suggesting the existence of an optimal organic farming share (here 

estimated at 20%) that minimizes agricultural GHG emissions. This optimum might differ if appropriate 

practices are implemented in organic farming to improve (i) soil carbon sequestration (such as cover 

cropping), or (ii) if changes in human food diets are favoured. 

 

Keywords 

Organic farming, GHG emissions, Land-use change, Global scale, Modelling  

In the previous chapter, we found that converting agricultural lands to 

organic farming would lead to reduced global soil organic carbon stocks of 

croplands and grasslands. Such results differ from those provided by meta-

analyses of field experiment, such highlighting the need of systemic 

approaches to estimate the sustainability of organic farming expansion. In 

the following chapter, we combine GOANIM to the IPCC guidelines and the 

GLobAgri-AgT model to estimate N2O, CH4 and CO2 emissions from the 

agricultural sector in organic farming expansion scenarios. We used this 

combination of models to estimate the GHG budget of different scenarios 

accounting for intermediate level of organic farming expansion, cover crops 

effect on soil organic carbon stocks and reduced food waste and losses. 
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Introduction 

The agriculture, forest and other land uses (AFOLU) sector is responsible of 23 % of global 

anthropogenic greenhouse gas emissions (IPCC, 2021). Emissions in the AFOLU sector are due to both 

(i) agricultural activities – with CH4 and N2O emissions from soil, manure and livestock management 

alongside CO2 emissions from fossil use and soil carbon losses – (ii) and the expansion of agricultural 

lands over natural ecosystems – with CO2 emissions due to biomass and soil organic carbon (SOC) loss, 

and N2O and CH4 emissions due to biomass burning. Changes in cropping and husbandry practices – 

such as reduced tillage, improved crop rotations or optimised animal feeding – show some large 

potential to reduce emissions from the AFOLU sector (Smith et al., 2008). At the scale of France, a 

recent study has shown that adjusting cropping and husbandry practices without changing farming 

system management, location or productivity level, would help achieve only 10% reduction of current 

agricultural GHG emissions (Pellerin et al., 2015). Therefore, more systemic changes of the food 

production sector are expected, for instance through the generalisation of alternative farming system 

such as organic farming (Foley et al., 2011; Ramankutty et al., 2019; Tilman and Clark, 2014). 

Organic farming is often presented as a potential alternative to achieve drastic reduction in 

GHG emissions in the AFOLU sector (Muller et al., 2017; Niggli et al., 2009; Reganold and Wachter, 

2016). At the field scale, and based on meta-analysis of field experiments, evidence has been provided 

that organic farming reduces N2O emissions (-434 kg CO2eq.ha-1.yr-1, (Skinner et al., 2014)) and 

increases soil carbon sequestration (+0.45 Mg C.ha-1.yr-1 (Gattinger et al., 2012)) compared to 

conventional farming. Studies based on the extrapolation of local results reported in meta-analyses of 

field experiments have estimated a potential 3 to 40% reduction of GHG emissions in scenarios of 

global organic farming expansion (Muller et al., 2017; Niggli et al., 2009). However, those meta-

analyses relate to data collected in situations where organic farming occupies small share of 

agricultural lands (IFOAM, 2020). While organic fertilisers are relatively easy to source by organic farms 

in those contexts (Nowak et al., 2013), expansion of organic farming might lead to more severe 

competition for these fertilising materials. Such competition might reduce the amount of fertilizers 

applied on organically managed land, thus possibly impacting the potential of organic farming to 

reduce agricultural GHG emissions – especially N2O emissions (Smith et al., 2019). In addition, lower 

yields observed in organic farming compared to conventional farming (-20-30% (Ponisio et al., 2015; 

Seufert et al., 2012)) may lead to increased requirements of agricultural lands to feed the world, 

resulting in GHG emissions due to land-use change that may offset the benefits reported in field-based 

meta-analyses.  Capturing those systemic effects related to organic farming expansion is key to get 

accurate estimate of the real potential of organic farming to attenuate agricultural GHG emissions. 

To the best of our knowledge, no study has been conducted to estimate GHG emissions in 

scenarios of large organic farming expansion, especially by accounting for systemic feedbacks induced 

by organics expansion. To address this gap of knowledge we used a modelling approach combining 

GOANIM, a spatially explicit (~10x10km at the equator) model simulating cropland N cycle, crop 

productivity and livestock populations under scenarios of large organic farming expansion (Barbieri et 

al., 2021) with three other models: (i) a model adapted from the Tier 1 approach of the IPCC guidelines 

that estimates N2O and CH4 emissions due to agricultural activities (IPCC, 2019a) – hereafter called the 

N2O-CH4 model – (ii) RothC, a first order kinetic SOC dynamic model (Coleman et al., 1997; Martin et 

al., 2007) and (iii) GlobAgri-AgT, a partial equilibrium model that estimates regional land requirements 

in different food demand and productivity scenarios (Le Mouël et al., 2018; Mora et al., 2020). GOANIM 

outputs on livestock densities and crop yields were used as inputs in the three other models. We based 
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our use of GlobAgri-AgT on the assumption that the global human food demands would change to fit 

the global food production as estimated by the GOANIM model. The N2O-CH4 and RothC models were 

used to spatially estimate N2O, CH4 and CO2 emissions of from agricultural lands. We used the GlobAgri-

AgT model outputs on land requirements for 14 world regions to estimate regional land-use changes 

induced by the expansion of organic farming. We combined these regional land-use changes with 

emissions factors (in Gt of CO2 eq.ha-1) adapted from the AEZEF model (Plevin et al., 2014) to estimate GHG 

emissions due to land-use change. We used this model combination to assess different scenarios combining (i) 

variations in the level of organic farming expansion globally and (ii) variations in organic farming 

practices (e.g. cover cropping), each compared with a baseline involving no changes in current 

agricultural practices. We also tested scenarios where food wastes were reduced by 50% and 100%. 

Organic farming encompasses a diverse set of farming practices, depending on regional 

regulations, farming contexts and markets. Although all organic regulations are  based on the ban of 

synthetic fertilisers (Seufert et al., 2017), organic farms exhibit ample variability in the way this ban is 

translated into farming practices (Kirchmann et al., 2016; Ponisio et al., 2015; Puech et al., 2014). In 

this study, we defined organic farming as the simple ban of synthetic fertilisers, with minimal changes 

in the type of crops grown in rotations and moderate yield losses due to pest and diseases, without 

more ambitious changes in soil management (i.e. through intercropping or soil cover cropping). This 

conservative attitude is not meant to provide a normative view on organic farming. Instead, it is meant 

to provide estimates that can serve as references to envision additional and complementary cropping 

practices.  

 This study is based on the recent evidence that global and regional expansion of organic 

farming is likely to lead to strong competition for nitrogen (N) fertilising resources (Barbieri et al., 2021; 

Smith et al., 2018). The ban of synthetic N fertilizers within organic farming regulation limits the 

diversity of N fertilizers and their availability – such as crop residues and animal manure – resulting in 

severe N limitations for cropland fertilization (Billen et al., 2012; Erb et al., 2016; Muller et al., 2017). 

Recent simulations performed with the GOANIM model (and by using the same conservative definition 

of organic farming) have shown that the full conversion of global agricultural lands to organic farming 

would lead to a drastic -57% reduction of global cropland production (Annex II) – due to lower N 

availability for crops – and drop in livestock population (-66% in livestock units) – with large shift 

towards ruminant animal species. Such global changes have numerous impacts on global GHG 

emissions. On the one hand, reduced N fertilization and livestock population is expected to lead to a 

reduction of global N2O and CH4 emissions. On the other hand, reduction of cropland productivity is 

expected to lead to increased requirements of global agricultural lands, resulting in additional GHG 

emissions from land-use changes and agricultural activities. We thus hypothesized that GHG emissions 

from land-use changes would overcome the reduction of N2O and CH4 emissions, resulting in increased 

GHG emissions in a fully organically managed world compared to the baseline.  
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Methods 

General framework 

We aimed at estimating the global agricultural GHG emissions in scenarios of organic farming 

expansion at the global scale. To do so, we used a modelling approach in order to estimate (i) N2O and 

CH4 emissions from agricultural activities, (ii) CO2 emissions and removal from changes in agricultural 

land SOC stocks and (iii) GHG emissions from land-use changes. We compared the GHG emission 

estimates of each organic farming expansion scenario to the current GHG emissions – hereafter called 

the baseline. This modelling approach was based on the combination of four different models, using 

the following steps.  

 First, we estimated the global agricultural production, in scenarios of large organic farming 

expansion, by using the GOANIM model (Barbieri et al., 2021). GOANIM is a spatially explicit (5 arc-min 

resolution, i.e. ~10x10km at the equator) linear optimisation model that simulates N flows to and from 

croplands and grasslands under scenarios of organic farming upscaling. GOANIM calculates croplands 

N budgets and their effects on crop yields for a series of 61 crop species. The optimising module of 

GOANIM is designed to maximise food availability at the global scale (from both crop-based and 

animal-based products) by spatially optimising the global livestock population and the N allocation 

from animal manure to croplands. We used the latest version of the GOANIM model (see Annex III). 

 Secondly, we estimated spatially explicit N2O and CH4 emissions in both the organic farming 

scenarios and the baseline by using a modelling adaptation of the Tier 1 approach of the IPCC 

guidelines (IPCC, 2019a, 2019b, 2019c, 2019e) – hereafter called the N2O-CH4 model. In the organic 

scenarios, we used the main GOANIM outputs on (i) crop harvested areas, (ii) crop yields and (iii) 

livestock densities as inputs of the N2O-CH4 model. 

 Then, we estimated the CO2 emissions from changes in agricultural SOC stocks using the 

estimations provided in Chapter II of this dissertation by combining the GOANIM model outputs to the 

RothC model (Coleman et al., 1997; Martin et al., 2007). RothC estimates soil organic carbon turnover 

in both croplands and grasslands according to soil carbon inputs, climate and soil conditions. RothC 

estimates the carbon flows among four active soil organic carbon compartments as well as the amount 

of carbon mineralised from each pool, with a monthly time step and using a first order kinetic equation. 

 Finally, we estimated regional land requirements in scenarios of global organic farming 

expansion by combining the GOANIM outputs on crop and livestock production to the GlobAgri-AgT 

model (Le Mouël et al., 2018; Mora et al., 2020). GlobAgri-AgT is a mass balance model that ensures 

equilibrium between regional resources and utilization of each agri-food product, while respecting 

global equilibrium between total imports and exports of each of those products. In each region, lands 

used for crop production are limited in their expansion according to their potential suitability for crop 

production – retrieved from the GAEZ database (Fischer et al., 2021).  

 Most studies comparing organic to conventional farming energy consumption concluded to a 

lower consumption under organic farming (Lynch et al., 2011; Muller et al., 2017; Reganold and 

Wachter, 2016; Tilman and Clark, 2014). This lower energy consumption in organic farming is mainly 

due to the ban of energy-intensive synthetic fertilizer and pesticide inputs. To the best of our 

knowledge, we found no global information showing a difference between organic and conventional 

farming on-farm energy consumption – meaning GHG emissions due to on-farm fossil fuel 

consumption (for engines and building) or GHG emissions for the production of on-farm electric energy 
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used. Therefore, we assumed that a transition towards organic farming would not impact GHG 

emissions due to on-farm energy use.  

All other GHG emission pathways considered are detailed in the following sections. 

 

Estimation of CH4 and N2O emissions 

The N2O-CH4 model is an adaptation of the IPCC guidelines (IPCC, 2019e, 2019b, 2019c) that 

spatially estimates N2O or CH4 emissions for five agricultural emitting sectors – for both the baseline 

and the organic farming scenarios. Those emitting sectors are (i) livestock enteric fermentation, (ii) 

paddy rice, (iii) farmyard manure uses, (iv) crop residues and (v) synthetic N fertilizers application. The 

N2O-CH4 model can be summarized by Equation 17 for all emitting sectors. 

Equation 17  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖 = 𝐴𝑖 ∗ 𝐸𝐹𝑖  

Where Emissionsi (in kg gas.yr-1) represents the emissions in sector i, Ai (in unit adapted for 

each sector, i.e. livestock heads, ha or kg N) represents the activity in sector i and EFi is the emission 

factor for each sector i (in kg gas.unit of A-1.yr-1 ).  

 

 CH4 emissions from livestock enteric fermentation 

We estimated CH4 emissions due to livestock enteric fermentation, using spatially explicit 

livestock densities (in heads) for nine different species as activity data in Equation 17. In the baseline, 

livestock densities were retrieved from spatially explicit livestock densities map for nine species 

(Robinson et al., 2014). In scenarios of global organic farming expansion, we retrieved livestock 

densities from the GOANIM outputs (in heads of producing animals) corrected by the fraction of 

producing animals over the entire livestock population (in heads/heads of producing animals). The 

enteric fermentation emission factors (in kg CH4.head-1.yr-1) for each of the nine species considered 

were retrieved from the default values in table 10.11 of the 2019 IPCC guidelines (Table S13,(IPCC, 

2019b)). Because organically managed ruminants are generally fed with more roughages than their 

non-organic counterparts (Gaudaré et al., 2021),their enteric fermentation is likely to be higher (Patra, 

2012). However, consistent and global data are missing to get an accurate estimate of the difference 

between the two management systems. Therefore, we assumed similar CH4 emission factors for 

enteric fermentation in both organic vs. non-organic systems, although this remains a fairly optimistic 

assumption. 

 

 CH4 emissions from paddy rice management 

We estimated CH4 emissions from paddy rice by using rice harvested areas (in ha) as activity 

data in Equation 17. In the baseline, we retrieved rice harvested areas from (Monfreda et al., 2008). 

In scenarios of global organic farming expansion, crop harvested areas in the organic farming scenarios 

were adapted from (Monfreda et al., 2008) corrected by differences in crop rotations between organic 

farming and conventional farming (Barbieri et al., 2019, 2017). In paddy rice management, CH4 

emission factor (in kg CH4.ha-1.yr-1) was estimated using the tier 1 approach from the IPCC guidelines 

(IPCC, 2019e) and summarized in Equation 18: 
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Equation 18  𝐸𝐹 = (𝐸𝐹𝑐 + 𝑆𝐹𝑤 + 𝑆𝐹𝑝 + 𝑆𝐹0) ∗ 𝑡 

Where EF (in kg CH4.ha-1.yr-1) is the emission factor for rice cultivation, EFc (in kg CH4.ha-1.day-

1) is the default emissions factor from continuously flooded fields without organic amendments, 

retrieved from table 5.11 of the 2019 IPCC guidelines (IPCC, 2019e), SFw (unitless) is the scaling factor 

due to water management during the cultivation period, SFp is the scaling factor due to pre-cultivation 

water management and SFo is the scaling factor due to organic amendments. SFw, SFp and SFo where 

retrieved from tables 5.12, 5.13 and 5.14 of the 2019 IPCC guidelines (IPCC, 2019e) respectively. SFo 

depends on the amount of organic amendments applied on soil. For both the baseline and the organic 

scenarios, we retrieved organic amendments values (in t DM.ha-1.yr-1) from estimations made in 

Chapter II of this dissertation. t is the rice cultivation period (in days). Spatially explicit information on 

cultivation periods, water management in the cultivation period and the pre-cultivation period were 

retrieved from (Carlson et al., 2016). 

 

 N2O emissions from farmyard manure uses 

We estimated N2O emissions for the three uses of farmyard manure defined by the IPCC (IPCC, 

2019b): (i) manure left on pasture during the grazing period, (ii) manure management systems and (iii) 

manure applied on croplands. For all three uses, we used the amount of N (in kg N) in each farmyard 

manure use as activity data in Equation 17. We estimated the spatially explicit amount of N in each 

manure use based on Equation 19, Equation 20 and Equation 21. 

Equation 19  𝑁𝑝𝑎𝑠𝑡𝑢𝑟𝑒 = ∑ 𝑃𝑜𝑝𝑎,𝑟 ∗ 𝑁𝑒𝑥𝑎,𝑟 ∗ %𝑃𝑎,𝑟𝑎,𝑟  

Equation 20  𝑁𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = ∑ 𝑃𝑜𝑝𝑎,𝑟 ∗ 𝑁𝑒𝑥𝑎,𝑟 ∗ %𝑀𝑎,𝑟𝑎,𝑟  

Equation 21  𝑁𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠 = ∑ 𝑃𝑜𝑝𝑎,𝑟 ∗ 𝑁𝑒𝑥𝑎,𝑟 ∗ %𝑀𝑎,𝑟 ∗ (1 − %𝑙𝑜𝑠𝑡𝑎,𝑟)𝑎,𝑟  

Where Npasture, Nmanagement and Ncroplands represent the amount of N (in kg N.yr-1), left on pasture 

during grazing, in manure management systems and applied on croplands respectively. Popa,r, (in 

heads) is the livestock population for species a and region r, Nexa,r (in kg N.head-1.yr-1) is the annual N 

excretion rate per animal. In the baseline, the annual N excretion rates were retrieved from default 

values in tables 10.19 and 10A.5 of the 2019 IPCC guidelines (Table S10, (IPCC, 2019b)). In the organic 

farming scenarios, the annual N excretion rates were estimated based on annual mass conservation 

between feed N intake on the one hand and N outputs in livestock biomass and manure production on 

the other hand. %Pa,r and %Ma,r are the share of the excreted manure left on pasture during the grazing 

period and stored in manure management systems, respectively. %Pa,r and %Ma,r were retrieved from 

the default values in tables 10A.6 to 10A.9 of the 2019 IPCC guidelines (Table S10, (IPCC, 2019b)). In 

each region, and for each livestock species, the sum of %Pa,r and %Ma,r should equal one. %losta,r, is the 

share of N lost during manure management through direct N2O and N2 emissions, NO3 leaching, and 

NH3 volatilization. %losta,r was retrieved from default values in table 10.21 to 10.23 in the 2019 IPCC 

guidelines (IPCC, 2019b).  

Direct N2O emissions from N in manure applied to grasslands and croplands were estimated 

using emissions factors (in kg N2O-N.kg N-1) retrieved from default values in table 11.1 of the 2019 IPCC 

guidelines (IPCC, 2019c) – using the specific value for rice lands and accounting for differences between 

wet and dry climates (Annex III). Indirect N2O emissions were estimated using the default values of 
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leaching and volatilization fraction (in kg N.kg N-1 and kg NH3-N/NOx-N.kg N-1, respectively) and the 

default emission factors (in kg N2O-N.kg N-1 and kg N2O-N. kg NH3-N/NOx-N-1 respectively) provided by 

table 11.3 of the 2019 IPCC guidelines (IPCC, 2019c). N2O-N emissions were converted to N2O emissions 

by using the ratio of molar masses. Direct N2O emissions from N in manure management systems was 

estimated using emissions factor (in kg N2O-N.kg N-1) retrieved from default values in table 10.21 of 

the 2019 IPCC guidelines (IPCC, 2019c) – using the specific value for each manure management 

systems. Indirect N2O emissions from manure management systems were estimated using the default 

values of leaching and volatilization fraction in manure management systems (in kg N.kg N-1 and kg 

NH3-N/NOx-N.kg N-1, respectively) retrieved from default values in table 10.22 and the default 

emission factors (in kg N2O-N.kg N-1 and kg N2O-N.kg NH3-N/NOx-N-1 respectively) provided by table 

11.3 of the 2019 IPCC guidelines (IPCC, 2019c, 2019b). 

 

CH4 emissions from manure management 

We estimated CH4 emissions from manure management systems (IPCC, 2019b). The amount 

of manure in manure management systems (in kg DM) was used as activity data in Equation 17. We 

estimated the spatially explicit amount of manure in manure management systems based on Equation 

22. 

Equation 22 𝑀𝐴𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = ∑ 𝑃𝑜𝑝𝑎,𝑟 ∗ 𝑀𝐴𝑒𝑥𝑎,𝑟 ∗ %𝑀𝑎,𝑟𝑎,𝑟  

Where MAmanagement represents the amount of manure (in kg DM.yr-1) in manure management 

systems. Popa,r, (in heads) is the livestock population for species a and region r, MAexa,r (in kg DM.head-

1.yr-1) is the annual manure excretion rate per animal. In the baseline, the annual manure excretion 

rates were retrieved from default values in table 10.13 of the 2019 IPCC guidelines (Table S10, (IPCC, 

2019b)). In the organic farming scenarios, the annual manure excretion rates were estimated based 

on Equation S5. %Ma,r is the share of excreted manure stored in manure management systems, and 

was retrieved from the default values in tables 10A.6 to 10A.9 of the 2019 IPCC guidelines (Table S10, 

(IPCC, 2019b)).  

CH4 emissions from manure management systems were estimated using emissions factors (in 

kg CH4.kg DM-1) retrieved from default values in table 10.14 of the 2019 IPCC guidelines  (IPCC, 2019b) 

– using the specific value for each manure management system and livestock species. 

 

 N2O emissions from crop residues remaining on fields 

We estimated the N2O emissions from crop residues remaining on fields by using the amount 

of N in those crop residues (in kg N) as activity data in Equation 17, which was estimated following 

Equation 23: 

Equation 23  𝑁𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠,𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = ∑ 𝑌𝑖𝑒𝑙𝑑𝑐 ∗ 𝐻𝐴𝑐 ∗ [𝑁]𝑐 ∗ %𝑅𝑒𝑐𝑦𝑐𝑙𝑒𝑑𝑐𝑐  

Where Nresidues,remaining is the amount of N in crop residues remaining on fields (in kg N.yr-1), 

Yieldc (in t DM.ha-1.yr-1) is the crop yield for crop species c, HAc (in ha) is the harvested area of crop 

species c, [N]c is the N concentration of crop residues biomass (in kg N.t DM-1) and %Recycledc is the 

share of the overall crop residues production that remains on field. Yieldc and HAc were retrieved from 

(Monfreda et al., 2008) in the baseline, and from GOANIM outputs for the organic farming scenarios 
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(Barbieri et al., 2021). [N]c was retrieved from (Monfreda et al., 2008) and (Smil, 1999). %Recycledc was 

retrieved from (Liu et al., 2010; Sheldrick et al., 2003; Smil, 1999). 

To estimate direct N2O emissions from crop residues remaining on field, we used the emission 

factors (in kg N2O-N.kg N-1) as defined in table 11.1 of the 2019 IPCC guidelines (IPCC, 2019c) – using 

the specific value for rice lands and accounting for differences between wet and dry climates. Indirect 

N2O emissions were estimated using the default values of leaching and volatilization fraction (in kg 

N.kg N-1 and kg NH3-N/NOx-N.kg N-1, respectively) and the default emission factors (in kg N2O-N.kg N-1 

and kg N2O-N.kg NH3-N/NOx-N-1 respectively) provided by table 11.3 of the 2019 IPCC guidelines (IPCC, 

2019c). N2O-N emissions were converted to N2O emissions by using the ratio of molar masses. 

 

N2O and CH4 emissions from crop residues burning 

We estimated the N2O and CH4 emissions from crop residues burning by using the amount of 

crop residues dry matter burned (in kg DM.yr-1) as activity data in Equation 17. The amount of crop 

residues burned was estimated following Equation 24: 

Equation 24 𝐷𝑀𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠,𝑏𝑢𝑟𝑛𝑒𝑑 = ∑ 𝑌𝑖𝑒𝑙𝑑𝑐 ∗ 𝐻𝐴𝑐 ∗ %𝑏𝑢𝑟𝑛𝑒𝑑𝑐𝑐  

Where DMresidues,burned is the amount of crop residues (in kg DM.yr-1) burned, Yieldc (in t DM.ha-

1.yr-1) is the crop yield for species c, HAc (in ha) is the harvested area of crop c and %burnedc is the share 

of the overall crop residues production that is used for burning. Yieldc and HAc were defined as 

mentioned previously. %burnedc was retrieved from the default values in table 2.4 from the 2006 IPCC 

guidelines (IPCC, 2006a).  

To estimate N2O and CH4 emissions from crop residues burning, we used the emission factors 

(in kg N2O.kg DM-1 and kg CH4.kg DM-1 respectively) that were retrieved from default values in table 

2.5 of the 2006 IPCC guidelines (IPCC, 2006a).  

 

N2O emissions from synthetic N fertilizer application 

We estimated N2O emissions from synthetic N fertilizers by using the amount of N from 

synthetic fertilizers applied on croplands (in kg N.yr-1) as activity data in Equation 17, which was 

retrieved from (Mueller et al., 2012). Direct emissions from synthetic N application were estimated 

using emissions factors (in kg N2O-N.kg N-1) retrieved from default values in table 11.1 of the 2019 IPCC 

guidelines (IPCC, 2019c) – using the specific value for rice lands and accounting for differences between 

wet and dry climates. Indirect N2O emissions were estimated using the default values of leaching and 

volatilization fraction (in kg N.kg N-1 and kg NH3-N/NOx-N.kg N-1, respectively) and the default 

emissions factor (in kg N2O-N.kg N-1 and kg N2O-N. kg NH3-N/NOx-N-1 respectively) provided by table 

11.3 of the 2019 IPCC guidelines (IPCC, 2019c). N2O-N emissions were converted to N2O emissions by 

using the ratio of molar masses. 
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CO2 emissions or removals from changes in agricultural SOC stocks  

We estimated the annual net CO2 emissions due to changes in soil organic carbon (SOC) stocks 

in both grasslands and croplands using Equation 25. 

Equation 25  𝐸𝐶𝑂2 =
∆𝑆𝑂𝐶

20
∗

44

12
 

Where ECO2 (in Gt CO2.yr-1) represents the CO2 net emissions due to changes in SOC stocks and 

∆SOC (in t C) is the variation of global, agricultural SOC stocks between an organic farming scenario (at 

20 years) and the baseline, as estimated in Chapter II of this dissertation for both croplands and 

grasslands. 44/12 is a dimensionless factor representing the ratio of molar masses used to convert SOC 

stocks variation into CO2 emissions.  

 

Land requirements estimation 

In the section we provide the method use to estimate the amount of lands (grasslands and 

croplands) required to feed the world in scenarios of global organic farming expansion – hereafter 

called land requirements. To estimate global and regional land requirements we used the GlobAgri-

AgT model. The GlobAgri-AgT model estimates regional cropland and grassland requirements in 

different scenarios of crop productivity and diets changes. The GlobAgri-AgT model is based on the 

balance between resources and utilisation for each agri-food product and in each world region, as 

defined in Equation 26.  

Equation 26  𝑃𝑟𝑜𝑑𝑖,𝑟 + 𝐼𝑚𝑝𝑖,𝑟 − 𝐸𝑥𝑝𝑖,𝑟 = 𝐹𝑜𝑜𝑑𝑖,𝑟 +  𝐹𝑒𝑒𝑑𝑖,𝑟 + 𝑂𝑡ℎ𝑖,𝑟 + 𝑊𝑎𝑠𝑡𝑒𝑖,𝑟 + 𝑉𝑆𝑡𝑜𝑐𝑘𝑖,𝑟  

Where i is one of the 22 agri-food products and r one of the 14 regions considered in the model 

(Table S14). On the left-hand side of Equation 26 Prod (in t FM.yr-1) represents the domestic 

production, Imp (in t FM.yr-1) the imports and Exp (in t FM.yr-1) the exportations. On the right-hand 

side, Food (in t FM.yr-1) is the domestic food consumption, Feed (in t FM.yr-1) the feed consumption, 

Oth (in t FM.yr-1) the other uses, Waste (in t FM.yr-1) the waste (before retailing) and VStock (in t FM.yr-

1) the stock variations. In our study, other uses and stock variations were set-up at a zero value. 

For crop-based agri-food products (17 crop categories), Prodi,r is defined using Equation 27.  

Equation 27 𝑃𝑟𝑜𝑑𝑖,𝑟 = 𝑆𝑢𝑟𝑓𝑖,𝑟 ∗ 𝑌𝑖𝑒𝑙𝑑𝑖,𝑟  

Where Surfi,r (in ha) and Yieldi,r (in t FM.ha-1) are the harvested area and yield of crop i in region 

r respectively. In the baseline, Yieldi,r was retrieved from the GlobAgri-AgT database (Mora et al., 2020). 

In the organic farming scenarios, Yieldi,r was estimated using Equation 28. 

Equation 28  𝑌𝑖𝑒𝑙𝑑𝑖,𝑟 =
∑ 𝑌𝑖𝑒𝑙𝑑𝑝,𝑖,𝑟∗𝐻𝐴𝑝,𝑖,𝑟𝑝

∑ 𝐻𝐴𝑝,𝑖,𝑟𝑝
 

Where Yieldp,i,r (in t DM.ha-1) was retrieved from GOANIM outputs and represent the yield of 

each plant species p (from the 61 crop species considered in GOANIM, Table S9) of the plant category 

i (as defined in the 17 crop categories in the GlobAgri-AgT model, Table S14). HAp,i,r (ha) is the harvested 

area of each plant species p of the plant category i and was retrieved from (Barbieri et al., 2019). Yieldi,r 
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was adapted to fit the GlobAgri-AgT model requirements – meaning yields expressed in tons of fresh 

matter per ha  – by using the inverse dry matter ratio retrieved from Feedipedia1. 

For each region, Feedi,r is defined using Equation 29. 

Equation 29 𝐹𝑒𝑒𝑑𝑖,𝑟 = ∑ 𝛽𝑙,𝑖,𝑟 ∗𝑙 𝑃𝑟𝑜𝑑𝑙,𝑟  

Where βl,i,r (in kg.FM.kg FM-1) is the annual ratio of feed intake from crop category i to livestock 

production l, for region r. Prodl,r is the annual livestock (in kg FM) and was retrieved from the GlobAgri-

AgT database (Mora et al., 2020). In the baseline, βl,i,r was retrieved from the GlobAgri-AgT database 

(Mora et al., 2020). In the organic farming scenarios, βl,i,r was estimated using Equation 30. 

Equation 30  𝛽𝑙,𝑖,𝑟 =
∑ 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑝,𝑎𝑝,𝑎

∑ 𝑃𝑜𝑝𝑎∗𝑃𝑟𝑜𝑑𝑎𝑎
 

Where Consumedp,a (in kg FM.head-1) represents the amount of plant species p (in plant 

category i) consumed by livestock species a (from the 9 livestock species considered in GOANIM) 

included in production l (as defined in the 5 livestock products in the GlobAgri-AgT model). Consumedp,a 

was estimated using the GOANIM outputs about cropland production for feed use. Popa and Proda 

represent the livestock population (in heads) and the livestock production (in kg FM.head-1) for each 

animal a and livestock production l. Popa was retrieved from the GOANIM outputs. Proda was retrieved 

from the FAOSTAT database2 for ruminants and pigs, and from (Cobb-Vantress, 2015; Ross Aviagen, 

2014) for poultry production. We made the assumption that livestock products were not used in 

organic livestock feeding (Gaudaré et al., 2021). 

GlobAgri-AgT estimates the regional cropland and grassland areas required to provide enough 

food for the global human population according to regional crop yields and human food diets. In the 

baseline the human food diets were retrieved from the GlobAgri-AgT database (Mora et al., 2020). 

Evidences show that organic farming expansion might not be feasible without deep changes in human 

food diets (Erb et al., 2016; Morais et al., 2021). Additionally, there is evidence of different food 

purchase behaviours of organic food consumers (Baudry et al., 2019). Therefore, we assumed that the 

global human food diets would evolve with organic farming expansion. However, due to the lack of 

data on potential changes in human diets with organic farming expansion, we assumed that regional 

human diets will adapt so that that the mean global food demand fits the mean global food production 

as estimated by GOANIM. We thus estimated regional food diets so that they would respect two 

conditions: (i) the mean global food demand should have the same caloric composition than the global 

food production and (ii) regional caloric consumption level should be maintained – in other word we 

assumed the per capita daily caloric intake to be constant in each region. The mean global food 

demand caloric composition was estimated using Equation 31. 

Equation 31  %𝐸𝑜𝑟𝑔,𝑓 =
𝐸𝑓

∑ 𝐸𝑓𝑓
 

Where %Eorg,f  represents the caloric share of each agri-food product f considered in GlobAgri-

AgT in the total caloric intake (in kcal.cap-1.day-1) in the adapted organic diet. Ef represents the total 

calories produced in the REF 100% organic scenario for each agri-food product f, retrieved from the 

GOANIM outputs. 

                                                           
1 https://feedipedia.org/ 
2 https://www.fao.org/faostat/ 
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Regional diets were then estimated using Equation 32. 

Equation 32  𝐷𝑖𝑒𝑡𝑜𝑟𝑔,𝑓,𝑟 = 𝐷𝑖𝑒𝑡𝑏,𝑓,𝑟 ∗
%𝐸𝑜𝑟𝑔,𝑓

%𝐸𝑏,𝑓
∗ 𝐸𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛,𝑟  

Where Dietorg,f,r represents the organic food demand for each agri-food product f in each 

region r and %Eb,f represents the caloric share of each agri-food product f in the mean global food 

demand (in kcal.cap-1.day-1) in the baseline. Ecorrection,r is a regional caloric correcting factor 

(dimensionless) to maintain the regional daily energetic intake similar in the baseline and in the 

adapted organic diets. 

GlobAgri-AgT, estimates the regional land required to answer the regional agri-food products 

demand. Croplands requirements is limited regionally to a given area suitable for cropping, as defined 

in Equation 33  

Equation 33 𝑆𝑢𝑟𝑓𝑟 ≤ 𝑆𝑢𝑟𝑓𝑟
̅̅ ̅̅ ̅̅ ̅ 

Where Surf (in ha) is the cropland requirements area and 𝑆𝑢𝑟𝑓̅̅ ̅̅ ̅̅
𝑟̅ (in ha) is the upper limit of 

land suitable for cropping in each region. In each region r, cropland required area is limited to a 

maximum cropping area 𝑆𝑢𝑟𝑓𝑟
̅̅ ̅̅ ̅̅ ̅. When the cropland required area this maximum cropping area in one 

region, the uses not covered by the local production are covered through trade, by following two steps. 

First, the considered region decreases its export market shares; second, if not sufficient, the region 

increases its imports. Changes in regional exports and imports must respect a global equilibrium 

between total global imports and total global exports as defined in Equation 34. 

Equation 34 ∑ Impi,rr = ∑ Expij  

The GlobAgri-AgT model has been specifically designed for the Inra/Cirad foresight study 

Agrimonde-Terra: Land use and food security in 2050. (Mora et al., 2020)report the main results of 

Agrimonde-Terra.  Supporting data for Mora et al. (2020) are available on the INRAE data repository 

(https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/RMCZTW). In this chapter, we use the 

same initial data as Agrimonde-Terra but scenarios are completely different.  

 

Land-use changes estimation 

In the previous section, we explained how we combined the GOANIM and the GlobAgri-AgT 

models to estimate agricultural land requirements in scenarios of global organic farming expansion. 

These agricultural land requirements need to be translated into land-use changes to estimate their 

related GHG emissions. We assumed that the change of agricultural lands requirements is translated 

in an equivalent change in agricultural land use – meaning the estimated regional land requirements 

changes correspond to regional changes in land-use area, resulting in land-use change. We based our 

land-use changes estimation based on three main assumptions. First, croplands area expansion will 

first occur on grasslands and, if necessary, on forests. Second, we assumed that abandoned croplands 

will be turned into grasslands. Third, we assumed that abandoned grasslands will be afforested 

whenever pedo-climatic conditions allow afforestation. 

 More in details, we estimated land-use changes in each of the 14 regions defined in GlobAgri-

AgT by using the decision process summarized in Figure 13 and based on Equation 35 and Equation 

36.  

https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/RMCZTW
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Equation 35  ∆𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑜𝑡𝑎𝑙𝑜𝑟𝑔 − 𝑇𝑜𝑡𝑎𝑙𝑏 

Equation 36  ∆𝐶𝑟𝑜𝑝 = 𝐶𝑟𝑜𝑝𝑜𝑟𝑔 − 𝐶𝑟𝑜𝑝𝑏 

Where Totalorg and Totalb (in ha) are the total regional agricultural lands (sum of croplands and 

grasslands) used in the organic scenario and the baseline, respectively. Croporg and Cropb (in ha) are 

the regional cropland areas (sum of croplands and grasslands) used in the organic scenario and the 

baseline, respectively.  

 
Figure 13: Decision process to estimate regional land-use changes. ∆Total and ∆Crop are defined in 
Equation 35 and Equation 36, respectively. Limafforestation represents the pedo-climatic potential area for 
afforestation (Bastin et al., 2019). 

As reported by several studies, there is evidence of high uncertainty on the estimation of 

grassland areas and grassland use in India (Bouwman et al., 2005; Chang et al., 2016; Fetzel et al., 2017; 

Petz et al., 2014). As grasslands expansion is the first source of land-use changes – through 

deforestation (Gibbs et al., 2010; Herrero et al., 2013), based on our approach, a misestimating of 
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grassland areas might lead to misestimating of land-use changes and related GHG emissions. In India, 

we found a potential +18 Gt CO2eq.yr-1 due to the uncertainty on initial grassland areas – representing 

a 46% increase in the agricultural GHG emissions in a fully organically managed world scenario. Due to 

lack of accurate and validated data on grassland areas in India, we assumed that current grassland 

areas in this region would be sufficient to cover grassland and cropland requirements in scenarios of 

global organic farming expansion. In other word, we assumed no deforestation in India induced by the 

expansion of organic farming. 

 

GHG emissions from land-use changes 

We estimated GHG emissions from land-use changes, by using land-use change areas (in ha) 

estimated in the previous section as activity data in Equation 17 for all types of land-use changes  in 

each of the 14 regions considered in GlobAgri-AgT. The regional emission factors for each type of land-

use change were estimated using Equation 37. 

Equation 37  𝐸𝐹𝑙𝑢𝑐,𝑟 =
∑ 𝐸𝐹𝐴𝐸𝑍,𝑙𝑢𝑐,𝑟 ∗ 𝐴𝑟𝑒𝑎𝐴𝐸𝑍,𝑟𝐴𝐸𝑍

∑ 𝐴𝑟𝑒𝑎𝐴𝐸𝑍,𝑟𝐴𝐸𝑍
 

Where EFluc,r is the emission factor (in Gt CO2eq.ha-1.yr-1) for a given land-use change luc in 

region r as defined in GlobAgri-AgT. EFluc,r represents the CO2 emission or removal from changes in 

organic biomass (sum of living biomass, dead organic biomass and soil organic biomass) as well as N2O 

and CH4 emissions from biomass burning. EFAEZ,luc,r is the emissions factor (in Gt CO2eq.ha-1.yr-1) for a 

given agroecological zone AEZ and a given land-use change in region r. EFAEZ,luc,r  values were retrieved 

from the AEZEF model (Plevin et al., 2014). AreaAEZ,r is the total area of croplands or grasslands (in ha) 

in a given agroecological zone in region r and was estimated using global maps of current cropland and 

grassland areas (Ramankutty et al., 2008). 

 The expansion of croplands over the other land uses comes with additional agricultural 

activities. Inversely, a reduction of croplands areas would come with a reduction of agricultural 

activities. Those variation of agricultural activities results in a variation of N2O and CH4 emissions and 

must therefore be accounted for. To simulate these variation of N2O and CH4 emissions, we used the 

regional variation of croplands (∆Crop) as activity data in Equation 17. Regional mean emission factors 

(in Gt CO2eq.ha-1.yr-1) for both N2O and CH4 were estimated based on Equation 38: 

Equation 38  𝐸𝐹𝑟 =
𝑇𝑜𝑡𝑎𝑙_𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑟

𝐴𝑟𝑒𝑎𝑟
 

Where EFr is the regional mean emission factor (in Gt CO2eq.ha-1.yr-1) in region r, 

Total_Emissionr is the total emissions of both CH4 and N2O (in Gt CO2eq.yr-1, as estimated using the 

N2O-CH4 model) in region r and Arear represents the total cropland areas (in ha) in region r. 

In Chapter II, we estimated changes in SOC stocks in scenarios of transition towards organic 

management of croplands and grasslands. Such changes in SOC stocks (and the related CO2 emissions 

or removal) are only representative of conversion of the land management towards organic farming, 

and should not be considered when croplands or grasslands are converted in other land uses. 

Therefore, for all croplands or grasslands converted into another land use, we estimated the amount 

of CO2 that should have been emitted or removed, if those lands had remained within the same land-

use but managed organically. We considered this amount of CO2 emitted or removed as avoided 

emissions or removal due to land-use change. 
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Upstream GHG emissions and GHG aggregation 

Finally, we estimated CO2 and N2O emissions from the production process of synthetic N 

fertilizers in the baseline by using the IPCC guidelines on chemical industries emissions (IPCC, 2006b). 

Based on Equation 17, we used the amount of ammonia (tons) and nitric acid (tons) produced for 

synthetic N fertilizers as activity values. Values for global ammoniac and nitric acid production we 

converted from FAOSTAT data on global urea and anhydrous ammonia production, respectively. We 

converted urea production into ammonia production using a 0.57 coefficient (in t ammonia.t urea 

produced-1). Assuming that all anhydrous ammonia was converted into nitric acid, we converted 

anhydrous ammonia into nitric acid using a 1.85 coefficient (in t nitric acid.t anhydrous ammonia-1). 

We used an emission factor of 2 (in t CO2.t ammonia-1) for ammonia production and 0.005 (in t N2O.t 

nitric acid-1) for nitric acid production (IPCC, 2006b). Note that, due to the lack of consistent data, we 

assumed that GHG emissions are similar downstream in the food chains – meaning in the food 

transport, packaging and retailing process – for both organic and non-organic products. 

All CO2, CH4 and N2O emissions were aggregated using their respective global warming 

potential over 100 years (1, 25 and 298 respectively). 

  

Scenarios definition 

We estimated the GHG budget of several scenarios of global organic farming expansion. 

Because converting the whole agricultural area to organic farming is a rather drastic thought 

experiment, we also explored more realistic scenarios of intermediate conversion to organic farming 

– meaning scenarios where organic farming occupies a limited share of the global agricultural lands 

(20 to 80%). In those scenarios we estimated Yieldi,r, βl,i,r and Dieto,f,r as defined in Annex IV.  

Additionally, we considered two situations for all scenarios: (i) a reference situation where cover crops 

are not considered in the estimation of SOC stocks changes (see Chapter II) and (ii) a situation where 

the effect of using cover crops between main crops to avoid bare soil on 25% of the organically 

managed croplands is considered in the estimation of SOC stocks changes (see Chapter II). Finally, as 

reducing food waste in retailing systems and households represent key levers to improve global food 

availability, we explored three situations for each scenario: (i) a situation where food wastes are not 

reduced, (ii) a situation where food waste are reduced by 50% and (iii) a situation where food wastes 

are reduced by 100% (see Annex IV). 
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Results 

Conversion of agricultural lands to organic farming and related GHG emissions 

We found that N2O emissions would be reduced by 60% (-1.1 Gt CO2eq.yr-1) in a scenario of 

full conversion of agricultural lands to organic farming (hereafter called the REF 100% organic scenario) 

compared to the baseline. This strong reduction was observed for all N2O emitting sectors (Figure 14), 

with a specific disappearance of emissions from synthetic fertilizers due to the ban of those inputs in 

organic farming regulations. We found a 51%, 45% and 41% reduction in N2O emissions from manure 

left on pasture, applied to croplands and managed in storage systems, respectively, that are mostly 

explained by a 44% reduction (Table S15) in the amount of N excreted by animals – itself driven by a 

66% reduction in the livestock population (expressed in livestock units). As the share of manure 

excreted and left on pasture or managed in storage facilities varies from one region to another (IPCC, 

2019b), changes in the spatial distribution of the livestock population in the REF 100% organic scenario 

compared to the baseline affect the global mean N2O emission intensity per unit of N excreted by 

animals (37% lower in the REF 100% organic farming scenario compared to the baseline). Finally, we 

found a 55% reduction in N2O emissions from crop residues left on fields and a 57% reduction in N2O 

emissions from crop residues burning, some results largely explained by the 49% reduction in crop 

yields (in t DM.ha-1) that we found globally (see Annex II). 

We also found that CH4 emissions would be reduced by 60% (-2 Gt CO2eq.yr-1) in the 100% REF 

organic scenario compared to the baseline (Figure 14). This large drop in CH4 emissions is in great part 

due to the drastic 62% reduction in CH4 emissions from enteric fermentation that we found. This cut 

in enteric fermentation is mostly explained by the 66% reduction in the livestock population (expressed 

in livestock units) that we found previously (see Annex IV), partially compensated by a higher share of 

ruminants (representing 94% of the global livestock population when expressed in livestock units) in 

the REF 100% organic scenario compared to the baseline (where ruminants represent 72% of the global 

livestock population) (Table S15). We found a nearly 100% reduction in CH4 emissions from manure 

management. Such drastic reduction is explained by (i) a 66% reduction of manure excretion  (in tons 

of volatile solids), together with a transition towards livestock species that have lower emitting factors 

(in kg CH4.t VS-1, (IPCC, 2019b)). The 31% reduction of the rice harvested area due to differences in 

crop rotations in organic farming compared to conventional farming (Barbieri et al., 2019, 2017) – 

along with a 43% reduction of organic fertiliser application on lands (see Chapter II) – results in a 37% 

reduction in CH4 emissions from paddy rice managed organically compared to the baseline. Finally, the 

49% reduction in crop production that we found is the main explanation of the 57% reduction in CH4 

emissions from crop residues burning. 

As a result, we found a 60% reduction emissions of both N2O and CH4 combined either 

expressed globally (-3.1 Gt CO2eq.yr-1) or as mean per hectare emissions (-2 t CO2eq.ha-1.yr-1) compared 

to the baseline. This global mean reduction of per hectare emissions masks spatial variations. In some 

regions – such as Canada, Russia and Australia – we found increased N2O and CH4 emissions per hectare 

(Figure S20), driven by increased livestock population (expressed in livestock units), thus indicating 

higher agricultural intensity in the REF 100% organic scenario compared to the baseline. In contrast, 

regions experiencing a reduced livestock population in the REF 100% organic scenario – such as Central 

America and India – showed decreased N2O and CH4 emissions.   
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Figure 14: Changes in global N2O and CH4 emissions between the 100% REF organic scenario and the 

baseline. Emissions are expressed in Gt CO2eq.yr-1 for all emitting sectors. The numbers on top of each 

bars represent the cumulative emissions (all sectors combined) for both gases. Dotted black lines 

represent the changes of each emitting sector. 

Functional units have critical role when comparing GHG emissions from different production 

systems. If normalised by caloric production (i.e., if expressed in kcal of crop and livestock products 

combined), we found that agricultural N2O and CH4 emissions combined would be reduced by only 10% 

(-406 kg CO2eq.kcal produced-1.yr-1). This result is explained by the 57% reduction in total caloric 

production that we found in the REF 100% organic scenario compared to the baseline – decomposed 

in a 57% reduction in the crop energy production (Table S15) and an 80% reduction in the livestock 

energy production. However, this reduction in caloric production is compensated by a higher share of 

the total energy dedicated to human food in the REF 100% organic scenario (77%) compared to the 

baseline (56%), resulting in a 35% reduction of GHG emissions (N2O and CH4 combined) when 

expressed per kcal of food produced globally (-251 kg CO2eq.kcal of food-1.yr-1). 

In Chapter II, we found a reduction of global SOC stocks in both croplands and grasslands – 

mainly explained by a reduction of soil carbon inputs. We estimated that such reduction of global SOC 

stock would result in 1.2 and 1.1 Gt 1.2 and 1.1 Gt CO2eq.yr-1 from croplands and grasslands 

respectively. 

To summarize, in the REF 100% organic scenario, (i) N2O emissions are reduced by -1.1 Gt 

CO2eq.yr-1, (ii) CH4 emissions are reduced by -2 Gt CO2eq.yr-1 and there are additional CO2 emissions 

from SOC stocks reduction in croplands (+1.2 Gt CO2eq.yr-1) and grasslands (+1.1 Gt CO2eq.yr-1). All 

gases considered, this result in a reduction of -0.8 Gt CO2eq.yr-1 from the agricultural sector, which 

would represent a 16% reduction compared to the baseline. 
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In addition, we found that the GHG emissions from the chemical process of fertilizer production that 

are induced by the use of synthetic fertilizers would be 0.09 Gt CO2eq.yr-1. Added to the emissions 

from the agricultural sector, this would lead to a global reduction of 0.9 Gt CO2eq.yr-1 in the REF 100% 

organic scenario, which would represent an 18% reduction compared to the baseline.  

 

Land requirements and land-use changes in a fully organic world 

 
Figure 15: Global cropland and grassland requirements and land-use changes in the REF 100% diets 
adapted organic scenario and the baseline. The brown bars represent the cropland requirements (in 
billion ha) and the green bars the grassland requirements (in billions ha) for both the organic scenario 
and the baseline.  

We found a 58% increase (+0.7 billion ha) in cropland requirements in the REF 100% organic 

scenario with regional adapted organic diets (see Methods) – hereafter called the REF 100% diets 

adapted organic scenario - compared to the baseline (Figure 15). Such increase in cropland 
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requirements is explained by an increased competition for N fertilizers. We found that, in addition to 

the ban of synthetic fertilizers, we found that the amount of N from manure applied on croplands was 

reduced by 48% (Table S15), thus resulting in 57% reduction of cropland productivity. These increased 

cropland requirements resulted in a 0.7 billion ha of croplands expansion over grasslands – with an 

additional 0.01 billion ha of croplands expansion over forest. In contrast, we found a 41% lower (-1.3 

billion ha) grassland requirements, which is driven by the reduction of livestock products in the 

adapted organic diets compared to the baseline diets (Table S16), partially compensated by the higher 

share of fodder in organic livestock feed rations (Gaudaré et al., 2021). These decreased grassland 

requirements resulted in a 1.1 billion ha of grassland abandonment –  with 49% of it available for 

afforestation – and, as mentioned above, a conversion of 0.7 billion ha of grasslands in croplands. 

However, as land-use changes were estimated regionally, in some regions we found some grassland 

expansion over forests (see below), resulting in a 0.5 billion ha of forests converted into grasslands 

globally. For similar reasons, we found 0.05 billion ha of croplands would be turned into grasslands. 

Again, these global changes mask regional variabilities (Figure S21). While most regions 

experience similar land requirements than globally, we found noticeable variations in specific regions. 

In Oceania, we found increased grassland requirements, resulting in the expansion of 0.3 billion ha of 

grasslands over forest. These high grassland requirements is due to (i) a 59% higher regional demand 

of small ruminant meat (Table S16) in the adapted organic diets compared to the baseline diets, 

combined with (ii) important exports of small ruminant meat from this region (the Oceania region 

represents currently 90% of the global small ruminant meat export). Such high grassland requirements 

was also observed in China, although at a lesser extent, largely explained by the increased demand for 

small ruminant meat. 

Those global land-use changes would result in several fluxes of GHG. First, we found large 

atmospheric CO2 removal mostly due to afforested grasslands (-4.1 Gt CO2eq.yr-1), complemented by 

some croplands conversion to grasslands (-0.2 Gt CO2eq.yr-1). Second, GHG emissions from forest 

conversion to grasslands and croplands would lead to a massive emission of 4.6 Gt CO2eq.yr-1 while 

grasslands conversion to croplands would result in 2.8 Gt CO2eq.yr-1 emission. We also found that 

agricultural activities on the additional 0.7 billion ha of croplands would be responsible of 1 Gt 

CO2eq.yr-1. Finally, the correction made on CO2 emissions from changes in SOC stocks due to the 

conversion of current agricultural lands towards organic farming (see Methods) accounted for 0.5 Gt 

CO2eq.yr-1. Putting all those GHG emissions together, we found that land-use changes would result in 

net GHG emissions of 3.7 Gt CO2eq.yr-1
. 
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Global GHG budget in a fully organic world 

We found that the REF 100% diets adapted organic scenario would increase global agricultural 

GHG emissions by 56% compared to the baseline (+2.9 Gt CO2eq.yr-1) (Figure 16). This would result 

from the addition of the net decrease of GHG emissions on current agricultural lands (-0.8 Gt CO2eq.yr-

1) and the net increase of GHG emissions due to land-use changes (+3.7 Gt CO2eq.yr-1).  

Again, the global GHG increase in the REF 100% diets adapted organic scenario compared to 

the baseline masks regional variabilities (Table S17). We found that in Oceania, GHG emissions would 

increase by 2500%, mainly due to GHG emissions from forest conversion to grasslands (+ 2.8 Gt CO2 

eq) that represents 83% of the regional emissions in the REF 100% diets adapted organic scenario. 

Other regions show important increase of GHG emissions such as West Africa (+443%), Europe (+208%) 

and China (+166%). In contrast, we found a 623% reduction of GHG emissions in the Former Soviet 

Union, mainly explained by large increase of forest lands over grasslands (-0.9 Gt CO2 eq), added to 

smaller increase of grasslands over croplands (-0.1 Gt CO2 eq). 

 
Figure 16: Global changes in the GHG emissions (in Gt CO2eq.yr-1) of the REF 100% diets adapted 
organic scenario compared to the baseline. The global change in GHG emissions is decomposed 
between GHG emissions without and with land-use changes. Full bars represent changes in GHG 
emissions and striped bars represent corrections due to land-use changes (see Methods). 
 

Intermediate scenarios of organic farming expansion 

Because considering a 100% of the global agricultural area under organic farming is a drastic 

and unrealistic thought experiment, we also explored scenarios with lower extents of organic farming. 

We found a non-linear response of the global GHG budget with an increase of the global share of 

organic farming (Figure 17). Such non-linear response of GHG emissions to organic farming expansion 

was found for each gas considered and was explained by the non-linear emissions due to land-use 

changes (Figure S22). We found that the response curve of the global GHG budget was mainly driven 
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by CO2 emissions or removal(Figure 17) – which are themselves driven by CO2 emissions or removal 

from land-use changes (Figure S22). 

More specifically, we found reduction of the GHG budget up to 20% of the global agricultural 

lands occupied by organic farming – with a potential reduction of GHG emissions by 70% compared to 

the baseline (-3.6 Gt CO2eq.yr-1, Figure S23). Such reduction of GHG emissions in a scenario with 20% 

of the global agricultural lands occupied by organic farming (together with a diets adapted to the global 

food supply – is explained by a negative budget of GHG emissions due to land-use changes (-3.3 Gt 

CO2eq.yr-1), alongside a negative balance between N2O, CH4 and CO2 emissions on current agricultural 

lands (-0.3 Gt CO2eq.yr-1). Such negative budget is explained by (i) a 28% reduction in grassland 

requirements – resulting in a removal of -3.7 Gt CO2eq.yr-1 of atmospheric CO2 from afforested 

grasslands – and (ii) a 2% reduction in cropland requirements – resulting in a removal of -0.3 Gt 

CO2eq.yr-1 of atmospheric CO2 from croplands converted to grasslands. Regional specificities (Table 

S18) lead and to 0.5 Gt CO2eq.yr-1 emissions from forests converted to grasslands to 0.2 Gt CO2eq.yr-1 

emissions from grasslands converted to croplands. While the decrease in grassland requirements in 

explained by reduction of livestock products in the estimated organic diets adapted to the food supply 

(Table S16), the decrease in cropland requirements is explained by a higher share of organic crop 

produced for food purposes – which compensated the yield reduction induced by the expansion of 

organic farming. 

 
Figure 17: Changes in GHG emissions in intermediate scenarios of diets adapted organic farming 

expansion compared to the baseline. Full lines represent scenarios without cover crops in organic 

farming (here called REF diets adapted organic scenario), and dashed lines represent scenarios where 

cover crop are systematically used on 25% of organically managed croplands (here called diets adapted 

organic 25% CC, see Chapter II). 

Above 20% of the global agricultural lands occupied by organic farming, the yield reduction 

effect becomes predominant, thus resulting in increased cropland requirements (Figure 18). Up to 60% 
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of the global agricultural lands occupied by organic farming, CO2 removal from afforested grasslands – 

explained by reduced grassland requirements – still overcome CO2 emissions due to land-use changes 

– mainly due to increased cropland requirements, resulting in a reduced GHG budget compared to the 

baseline (Figure 17). Due to an exponential increased cropland requirements (Figure 18) – explained 

by increased competitions for N fertilizers in organic farming – above 60% of the global agricultural 

lands occupied by organic farming, the net GHG budget from land-use changes become positive and 

lead to a global increase of the GHG budget compared to the baseline.  

 
Figure 18: Global croplands and grassland requirements (in billion ha) in the intermediate diets 
adapted organic farming expansion scenarios and the baseline. The brown bars represent the 
croplands and the green bars the grasslands for both the diets adapted organic scenarios and the 
baseline. The black dashed lines represent the croplands and grassland requirements levels in the 
baseline. Values in each bar show the absolute value of croplands and grassland requirements in each 
scenarios (in billions ha). 
 

Global options to reduce GHG emissions in organic farming 

Covering soils by catch and cover-crops – to protect soils from erosion, to maintain year round 

carbon inputs to the soil, to recycle nutrients or to control pests and weeds – is common practice that 

many organic farmers implement (Barbieri et al., 2017). Based on a previous meta-analysis on the 

extent of cover-crops, we considered that cover cropping could be potentially applied on 25% of global 

croplands managed organically (Poeplau and Don, 2015) – hereafter called the diets adapted organic 

25% CC scenario – and we estimated the global GHG budget of global organic farming expansion 

scenarios accounting for the effect of cover crops on SOC stocks and the GHG emissions associated to 

their changes. We found that with the 100% diets adapted organic 25% CC scenario, the discrepancy 

in GHG net emissions to the baseline is 11% lower than within the REF 100% diets adapted organic 

scenario (Figure 19). 

Food waste reduction has often been suggested as an option to reduce the GHG footprint of 

organic farming (Muller et al., 2017). We found that with a 50% food waste reduction (or more), A full 

conversion of organic farming would exhibit lower GHG net emissions than the baseline (Figure 19). In 

the REF 100% adapted diets organic scenario with 50% food waste reduction, we found a 2% GHG 
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emission reduction compared to the baseline. In this scenario, we estimated a 0.7 Gt CO2eq.yr-1 net 

GHG emissions due to land-use changes – explained by increased cropland requirements of 0.2 billion 

ha (Figure S24) – combined with a net decreased of GHG emissions (-0.8 Gt CO2eq.yr-1) from 

agricultural activities on current agricultural lands. In all scenarios with food waste reduction, we found 

that net emissions from land-use changes would not compensate the decrease of GHG emissions from 

agricultural activities on current agricultural lands. However, food waste reduction could also result in 

a GHG emission reduction in the baseline. We estimated that in a scenario with 50% food waste 

reduction and 0% of organic farming worldwide (hereafter called the 50% relative baseline), GHG 

emissions would be reduced by 38%. Compared to 50% relative baseline, the REF 100% adapted diets 

organic scenario with 50% food waste reduction would exhibit 37% higher GHG net emissions (Figure 

S25), and the REF 20% adapted diets organic scenario with 50% food waste reduction would have 67% 

lower GHG emissions. 

 

 
Figure 19: Changes in global agricultural GHG net emissions (%) between the diets adapted organic 
scenarios, food waste reduction scenarios and the baseline. In each cell, the value represents the 
discrepancy in GHG emissions (%) between each scenario and the baseline (bottom left cell with a red 
frame). The colour indicates GHG increase (red) or GHG decrease (blue) compared to the baseline – the 
intensity of the colour depends on the distance to the baseline. 
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Discussion and conclusion 

Organic farming is often promoted as a potential option to reduce GHG emissions (Muller et 

al., 2017; Niggli et al., 2009) at the global scale. However, previous studies did not consider potential 

systemic feedbacks due to the expansion of organic farming, and especially the severe N fertilisation 

limitation that might come along (Barbieri et al., 2021; Smith et al., 2018). Here, we provide a first 

estimate of GHG emissions in scenarios of global organic farming expansion – accounting for possible 

systemic feedbacks and all emitting sectors affected by the development of organic farming – 

compared to current emissions.  

We found that a fully organically managed world would increase agricultural GHG emissions 

by 56%. Such result contrasts with previous studies estimating 3-40% GHG emission reduction in global 

scenarios of organic upscaling (Muller et al., 2017; Niggli et al., 2009). However, a recent study on 

organic farming expansion at the scale of England and Wales found similar results to ours (Smith et al., 

2019) – both studies found a potential 56% GHG budget increased in organic farming compared to the 

baseline. The increased GHG emissions found in our study is explained by the 57 lower caloric cropland 

productivity that we found, resulting in large GHG emissions from land-use changes needed to feed 

the global population. Those results highlight the necessity to consider whole-system effects when 

estimating the impact of alternative farming systems – such as organic farming – on GHG emissions 

(Seufert and Ramankutty, 2017), with special attention to the availability of N fertilising resources and 

their impact on food production (Barbieri et al., 2021).  

We also found that a scenario with only 20% of the global agricultural lands under organic 

management would lead to a 70% reduction in agricultural global GHG emissions compared to the 

baseline. Additionally, GHG emissions in organic farming expansion scenarios can remain lower relative 

to the baseline if up to 60% of the global agricultural land is converted to organic management. Those 

results highlight the large potential for organic farming expansion level to minimizing GHG emissions 

and suggest an optimal level of organic farming expansion that minimize GHG emissions. To the best 

of our knowledge, such a concept of optimal level of organic farming expansion has not yet been 

discussed in the scientific literature. These results are in line with a previous study showing that, 

without accounting for land-use changes, organic farming can be extended over up to 60% of the global 

agricultural land while maintaining the global food production (Barbieri et al., 2021). Moreover, in our 

study, we found an optimum at about 20% of global agricultural land under organic management. We 

also found that the choice of farming practices possibly implemented in organic farming – such as cover 

cropping – could reduce GHG emissions in global organic farming expansion scenarios and potentially 

increase the optimal level of organic farming expansion. 

As mentioned above and in Chapter II, in this study, we limited the definition of organic 

farming to the ban of synthetic outputs (fertilizers and pesticides), differences in crop rotations 

(Barbieri et al., 2017) and differences in livestock management (Gaudaré et al., 2021). This definition 

occults the diversity of farming practices that are possible under organic farming regulations (Seufert 

et al., 2017). The exploration of this range of practices could lead to additional GHG emission reduction 

in organic farming either by improving N availability for cropland soils – resulting in higher cropland 

productivity in organic farms – or by reducing the emission intensity of agricultural practices (e.g. cover 

crops could reduce GHG emissions by 11% in a fully organically managed world thanks to additional 

carbon storage). Special attention must be paid to increasing N availability in organic farming – as we 

found that its severe limitation is the main explanation of increased GHG emissions in an organic world, 

because of the induced increased cropland requirements. As mentioned in Chapter II, the use of 
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leguminous (or mixed with non-leguminous) cover crops to increase N availability through biological N 

fixation or N leaching limitation (Abdalla et al., 2019) would help to close the N fertility gap between 

organic farming and the baseline (Badgley et al., 2007). Other additional sources of N – such as urban 

composts, green wastes, food industry by-products or eventually sewage sludges – might also help to 

close this gap. However, if increasing N availability in organic farming would increase cropland 

productivity, it might also increase the intensity of agricultural activities, resulting in additional N2O 

and CH4 emissions. Modelling the potential benefits of applying such additional practices in organic 

farming would require further systemic studies, which were beyond the scope of this study. 

The estimation of land-use changes requires accurate data on current land uses and on human 

food diets. Regarding human diets, while there is evidence of differences between consumers 

including a high share of organic products in their diet vs. other consumers (Baudry et al., 2019), there 

is no available estimation of future diets under large-scale organic farming expansion. Therefore, we 

assumed that food diets would adapt to changes in agricultural production. It is likely that this 

assumption does not reflect the reality (Le Mouël et al., 2018), though it gives indication on how the 

diets might evolve when agricultural production systems face strong N fertilization deficiency. 

However, previous studies concluded that the expansion of organic farming should come with change 

in the global food demand (Billen et al., 2021; Erb et al., 2016; Morais et al., 2021).  

There exists a wide variety of modelling approaches to estimate global agricultural land 

requirements (Heistermann et al., 2006; Schaldach et al., 2011). In this study, we chose to use 

GlobAgri-AgT, a mass balance model that estimates agricultural land requirements for different 

scenarios of crop and livestock productivity and of human food diets. GlobAgri-AgT is based on a simple 

representation of the equilibrium process between resources (supply) and utilisations (demand) of 

agri-food products at both the regional and the global scales. Compared to other models – such as 

Integrated Assessment Models (Bouwman and Kram, 2006) or equilibrium economic models (Corong 

and Tsigas, 2017; Forslund et al., 2020) – such simple representation of the agri-food market does not 

encompass potential feedbacks between crop and livestock productivity, output and input prices, 

trade and land requirements (Forslund et al., 2020; Mazzocchi et al., 2012). However, none of the 

existing market and trade models considers both conventional and organic markets and trade. 

Furthermore, introducing organic markets and trade in such models is made difficult by the lack of 

data on organic agri-food markets at the global scale. Nevertheless, to the best of our knowledge, this 

study is the first estimation of land requirements in an organic world, using a combination of models 

where crop yields are endogenous and trade in agri-food products among broad regions may adjust, 

allowing thus to spatialize, even partially, land-use changes. 

Finally, this study provides a methodological approach to estimate GHG emissions in scenarios 

of organic farming expansion – and more generally in scenarios of alternative farming systems 

expansion – accounting for systemic feedbacks. Despite the simple representation of organic farming 

we used, this study could be used to test other forms of organic farming, accounting for additional 

practices helping to close the gap of food production (especially on N availability and agricultural land 

areas). 
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Summary of our key results 

Livestock as a key component of organic farming systems 

The ban of synthetic N fertilizers limits the diversity of N resources in organic farming. Among 

the available N fertilizing resources, livestock manure is a key resource for organic soil fertilisation 

(Lampkin, 2000). In addition to the participation in the nutrient recycling process, the livestock sector 

also plays a key role in the food supply system. On the one hand, livestock production provides rich 

food commodities with high concentration of amino acids and nutrients (Mottet et al., 2017). On the 

other hand, livestock production is a major anthropogenic driver of pollution and it challenges food 

security through strong feed vs food competition (Corong and Tsigas, 2017; Laisse et al., 2018a; Mottet 

et al., 2017; Wilkinson, 2011). For those reasons, the livestock sector is a key component of organic 

farming systems. The organic principles as defined by the IFOAM clearly set up a goal of animal welfare 

in organic livestock management. This principle is implemented into organic regulations (Lampkin et 

al., 2017) with large effects on the organic livestock production systems– such as length of the grazing 

period, feed ration composition and diseases management (Van Wagenberg et al., 2017). Most studies 

on organic farming expansion scenarios did not account for those differences between organic and 

conventional livestock management (Barbieri et al., 2021; Erb et al., 2016; Morais et al., 2021; Smith 

et al., 2018) and, when considered, those differences were limited to a productivity gap (Muller et al., 

2017). This poor consideration of organic to conventional differences in livestock management 

efficiency was mainly explained by the lack of synthetic review highlighting such differences. 

In Chapter I, we carried out a meta-analysis to provide a global comparison of organic vs 

conventional livestock management based on three topics: (i) animal productivity, (ii) feed ration 

composition and (iii) feed-use efficiency – meaning the amount of livestock products per unit of feed 

required. Our results confirmed that feed ration composition differ in organic vs. conventional farming, 

with higher forage (+16%) share for organic ruminants and the absence of synthetic feed (such as 

synthetic amino acids) for any organic animal species. Such differences in the feed ration composition 

is mainly explained by organic regulations that ban synthetic inputs and that aim at a high degree of 

organic farms’ self-sufficiency (Lampkin et al., 2017). These differences between organic and 

conventional livestock feed ration contributes to the productivity gap (-12% in organic compared to 

conventional livestock) we found between both husbandry systems. We also found a 14% lower feed-

use efficiency in organic compared to conventional livestock farming. More precisely, we found 

significant lower feed-use efficiency for organic poultry broilers and dairy cattle compared to their 

conventional counterparts. Due to a 45% longer lifespan, organic poultry broilers show a 47% lower 

feed-use efficiency that conventional ones. As for organic dairy cattle, we found a 11% lower feed-use 

efficiency compared to conventional ones. Such lower feed-use efficiency for organic dairy cattle is 

mainly explained by their lower productivity compared to conventional ones. Though the higher share 

of forage also explains the lower feed-use efficiency (as it is les digestible) but in a lower extend.  

However, for organic dairy cattle, we found a higher share of non-competing feed – meaning feed that 

cannot be used as human food – in their feed ration compared to their conventional counterparts. This 

result leads to higher non-competing feed-use efficiency (37%) by organic dairy cattle compared to 

conventional ones. These results suggest that organic dairy cattle – and probably all organic ruminant 

livestock – could be less in competition with human food than their conventional counterparts. 

We then used the estimates from Chapter I to provide more precision in the simulation of 

livestock production in GOANIM – by changing livestock feed ration composition and productivity 
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levels (see Annex III). In addition to those precisions, we also refined the simulation of organic livestock 

production in GOANIM by (i) simulating non-productive animals for both the feed requirements and N 

excretion rates, (ii) limiting forage harvest from permanent grasslands to fit sustainable grazing 

intensities (Erb et al., 2016), (iii) limiting forage harvest from temporary pasture to respect a feasible 

uptake threshold (Soussana and Lemaire, 2014) and (iv) implementing the 2019 IPCC guidelines on 

manure management and nitrogen losses towards the environment (N2O and N2 emissions, N leaching, 

and NH3 volatilization). Accounting for all those precisions brought to the GOANIM V2 (see Annex III). 

Compared to the first GOANIM version (GOANIM V1, Barbieri et al. 2021), we found no differences in 

the  amount of people potentially fed in a fully organic world (Table 5). However, we found differences 

in the energetic sources to feed the world population. Due to (i) a 7% higher cropland energetic 

productivity – resulting in a 15% higher crop-based food energetic production – and a 60% livestock 

population reduction (expressed in livestock units) in GOANIM V2 compared to GOANIM V1, we found 

a higher share of crop products (97% of the total food energy produced) in GOANIM V2 compared to 

GOANIM V1 (83%). Such differences in the livestock population were also translated in the spatial 

distribution of livestock populations (Figure S20). 

Table 5:  Comparison of the main results from the two different versions of the GOANIM model and 
the baseline. 

 

 Croplands  Pasture  Livestock   Total  

Total 
Energy 

Energy 
for 

feed 

Energy 
for 

food 

Energy from 
temporary 

pasture 

Permanent 
pasture used 

as feed 
Population 

Energy 
Produced 

Food 
energy 

People fed 

Unit [1012 MJ] [1012 MJ] [1012 MJ] [1012 MJ] [1012 MJ] [LU] [1012 MJ] [1012 MJ] 
[Million 
people] 

 Baseline  49.8 23.3 26.5 4.1 20 1 089 3.2 29.7 8 847 
 GOANIM V1  21.3 6.0 15.3 4 44 866 3.2 18.5 5 503 
 GOANIM V2  22.9 5.3 17.6 3.3 10 345 0.6 18.2 5 434 

 

GHG emissions from agricultural activities and lands  

Organic farming is often considered as a potential option to decrease field scaled GHG 

emissions. Meta-analyses have shown a reduction of N2O emissions (Skinner et al., 2014) – due to the 

ban of synthetic N fertilizers – and an increase of soil carbon sequestration – due to a higher amount 

of soil carbon inputs combined to a different composition (García-Palacios et al., 2018; Gattinger et al., 

2012) – in organic farming compared to conventional farming. However, due to 20-30% lower yields in 

organic farming (Ponisio et al., 2015; Seufert et al., 2012), those meta-analyses also show that GHG 

emissions might be higher in organics when expressed per unit of crop products (Skinner et al., 2014). 

However, these estimations are based on meta-analyses of field experiments representative of 

situations where organic farming occupies less than 2% of global agricultural lands (IFOAM, 2020) and 

with transfer of fertilizing material from conventional towards organic farms through farmyard manure 

(Nowak et al., 2013). However, as mentioned above, we found deep changes in the global food 

production in scenarios of large organic farming expansion, as estimated by GOANIM. Such changes 

might affect the potential of organic farming to reduce agricultural GHG emissions. 

In Chapter III, we confirmed that N2O emissions would be reduced in organic farming 

compared to the baseline (-60%). We found that this reduction resulted in a mean reduction of -0.7 kg 

CO2eq.ha-1.yr-1, a reduction significantly higher than reported in meta-analysis of field experiments 

(Skinner et al., 2014). In both approaches, the ban of synthetic fertilizers is one of the main reasons of 
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such reduction in N2O emissions. Therefore, the main difference between what we modelled and the 

results provided by (Skinner et al., 2014) is due to the competition for N fertilizers that comes with 

organic farming expansion. Such competition led to a reduction of organic N fertilizers application on 

organically farmed lands and especially manure. We found that compared to the baseline, N from 

manure applied on croplands was reduced by 48% (Annex IV) thus resulting in a 0.5 Gt CO2eq.yr-1 

reduction in N2O emissions at the global scale. In meta-analysis of field experiments, N2O emissions 

are higher in organic compared to conventional farming when expressed per unit of food produced. 

Unexpectedly, we found -35% lower N2O emissions per unit of kcal produced for food in scenarios of 

global organic farming expansions compared to the baseline. This result might be explained by the 

optimized N fertilization in our organic farming scenarios – as defined by the GOANIM model – that 

tend to minimize the quantity of N fertilizers applied per kcal of food produced in those scenarios 

(Barbieri et al., 2021). 

Indirectly, this reduction of N fertilizers application on organic farmed lands affects the global 

livestock population by reducing feed availability (Barbieri et al., 2021; Smith et al., 2018). We found a 

68% reduction of the global livestock population (expressed in livestock units) – in a fully organically 

managed world compared to the baseline – resulting in a global 62% reduction of CH4 emissions from 

enteric fermentation and manure management. This global drop in livestock population also reduced 

CH4 emissions from manure management process. Additionally, the lower presence of primary crops 

in organic compared to conventional crop rotations (Barbieri et al., 2019) induces lower rice harvested 

areas globally (31%) resulting in a 37% CH4 emissions reduction from paddy rice management. More 

generally, we found a 60% CH4 emissions reduction in a fully organically managed world compared to 

the baseline. This reduction was also observed when CH4 emissions were expressed per kcal of food 

produced (-35%). 

In Chapter II, we combined the GOANIM model with the RothC model to estimate changes in 

soil organic carbon stocks in scenarios of global organic farming expansion. We found that the 

previously mentioned reductions in yields and livestock populations resulted in an overall 43% 

reduction of soil carbon inputs in a fully organically managed world compared to the baseline. This soil 

carbon input reduction resulted in a diminution of soil organic carbon stocks in croplands (-10% at 20 

years after a conversion towards organic farming), which represents an annual loss of about 0.23 Mg 

C.ha-1.yr-1 – a significantly opposite results to what is claimed in meta-analysis of field experiment 

(+0.45 Mg C.ha-1.yr-1 (Gattinger et al., 2012)). We also found a reduction in grassland soil organic carbon 

stocks (-5% at 20 years after a conversion towards organic farming), resulting in an overall 6% reduction 

of soil organic carbon stocks in agricultural lands (croplands and grasslands combined). In Chapter III 

we estimated the annual CO2 emissions that these soil organic carbon stocks reduction would 

represent. We found an overall global emissions of 2.3 Gt CO2eq.yr-1 due to soil organic carbon stocks 

reduction (in both croplands and grasslands combined) in an organically managed world. Our 

modelling approach allowed us to estimate the potential of different farming practices application to 

increase soil organic carbon stocks in organic farming – such as cover crops and conventional manure 

application. Our results confirmed the potential of cover crops to increase soil organic carbon stocks 

(Poeplau and Don, 2015). However, such potential would not be enough to fully compensate the soil 

organic carbon stocks reduction. As conventional manure is no longer available in a fully organically 

managed world, we can observe an effect of its application only in scenarios of intermediate organic 

farming expansion. We found that applying conventional manure in organic farms would help to 

mitigate the reduction in soil organic carbon stocks that comes with organic farming expansion. 

Applying conventional manure in organic farmed land affects SOC stocks in two ways. First, it results 
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in a transfer of carbon from conventional to organic farms, thus resulting in (i) increased SOC stocks in 

organically managed croplands and (ii) decreased SOC stocks in conventionally managed croplands. 

We can expect that both SOC stocks changes (in conventionally and organically farmed land) might 

compensate themselves. Second, applying conventional manure in organic farms, will increase N 

availability for organic crops. Such increased N availability will lead to increased crop yields in organic 

farming, thus increasing organic crop residues production and the amount of those residues left on 

soils. As a consequence, applying conventional manure would indirectly increase soil carbon inputs. 

We expect this second effect to be the prevailing effect of applying conventional manure in organic 

farmed land on global SOC stocks. 

These results – contrasting with previous meta-analyses of field experiments – highlight that 

the estimation of the potential of GHG emissions reduction of organic farming offtake cannot be based 

only on the extrapolation of local field observations without considering whole system effects. Put 

differently, the contrast between observed or experimental carbon sequestration data vs. our 

modelling results illustrates that simulating the geographic expansion of organic farming systems 

needs to consider the systemic feedbacks that go along with organic farming expansion itself (Nesme 

et al., 2021; Seufert and Ramankutty, 2017). In particular, special attention must be paid to the 

availability of N fertilising resources and their effects on crop biomass production (Barbieri et al., 2021; 

Smith et al., 2019). 

 

Global productivity, land requirements and land-use changes.  

Systemic feedbacks of organic farming expansion result in competition for N fertilizing 

resources in organic farming (Barbieri et al., 2021; Smith et al., 2018). Such competition for N fertilizing 

resources leads to reduced crop yields and as a consequences reduced food production (Barbieri et al., 

2021; Smith et al., 2018). Using GOANIM, we found a 57% reduction of the global cropland energetic 

production in an organic world compared to current cropland productivity, and an overall 49% 

reduction in the total food production. This reduction of the global cropland energetic production 

echoes previous analysis showing that 30 to 50% of current crop yields are explained by the use of 

synthetic fertilizers (Stewart et al., 2005). In Chapter III, we found that this global food production 

reduction results in a 58% increase in the global cropland requirements (+ 0.7 billion ha) in an organic 

world, mainly resulting in expansion of croplands over grasslands (0.7 billion ha). Such increase of 

cropland areas has two effects: (i) CO2 emissions (7.4 Gt CO2eq.yr-) due to loss of organic carbon stocks 

(in both biomass and soils) and (ii) additional N2O and CH4 emissions (1 Gt CO2eq.yr-1) from agricultural 

activities on newly farmed croplands. 

The competition for N fertilizers caused by systemic feedbacks also leads to necessary changes 

in livestock population (Barbieri et al., 2021; Smith et al., 2018), with important reduction of the 

livestock population (-68% expressed in livestock units) and transition towards ruminant livestock. 

Those changes in the global food production are likely to have strong effects on consumers’ behaviour. 

In this study, we assumed that human diets will adapt so that that the mean global food demand fits 

the mean global food production. As changes in human diets is a long process facing several social, 

political and economic bottlenecks (Mozaffarian et al., 2012; Shepherd, 2002), such assumption might 

not be fully realistic. However, there is evidence that consumers including organic products in their 

purchases have different diets than those who do not (Baudry et al., 2019). Additionally, there is 

evidence that a fully organic world might not be feasible without deep changes in human food diets 
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(Erb et al., 2016; Morais et al., 2021; Muller et al., 2017). In a scenario where the mean global food 

demand will adapt to the mean global food production in a fully organically managed world, we found 

that demand of livestock products (expressed in per capita daily energetic intakes) will be reduced by 

78%, while the share of pulses would be increased by 300%. This reduction in the share of livestock 

products in the human diets results in a global reduction of grassland requirements (-41%), mainly 

resulting in grassland abandonments – over which half could be potentially left for afforestation. Such 

afforestation could partially compensate the GHG emissions induced by the increase in global cropland 

areas. 

 

Changes in the GHG budget with organic farming expansion is not linear. 

The systemic feedbacks mentioned above were not considered in previous studies estimating 

GHG emissions in scenarios of large organic farming expansion (Morais et al., 2021; Muller et al., 2017). 

In those studies, GHG emissions were estimated by extrapolating results from meta-analyses of field 

experiments, resulting in a linear response of the GHG agricultural budget to intermediate scenarios 

of organic farming expansion (Muller et al., 2017) – meaning scenarios where organic farming occupies 

a limited share of the global agricultural land (i.e. 20%). In our study, we found that the GHG budget 

response to the share of the global agricultural lands occupied by organic farming – hereafter called 

%org – is parabolic-like. Such parabolic response of the GHG budget to organic farming expansion is 

caused by two opposite effects, whose weight depends on the share of the global agricultural lands 

occupied by organic farming. First, changes in human diets and especially the reduced demand of 

livestock products, results in reduced grassland requirements, and thus in atmospheric CO2 removal 

from afforested grasslands. Second, global crop yield reduction induced by the competition for N 

fertilizers coming with organic farming expansion results in increased cropland requirements, and thus 

GHG emissions from land-use changes and additional agricultural activities. In our study, in situations 

where organic farming occupies less than 60% of global agricultural lands, the effect of changes in 

human diets is predominant, resulting in reduced GHG emissions compared to the baseline. Above 

60%, the effect of decreased cropland productivity overcome the potential benefits of changes in 

human diets, thus resulting in increased GHG emissions compared to the baseline. This parabolic 

response of the GHG budget to organic farming expansion suggests that there might be an optimal 

share of organic farming (hereafter called %orgopt) worldwide that would minimize GHG emissions. In 

Chapter III, we estimated this optimal share of organic farming to be around 20% with a potential 70% 

reduction of GHG emissions compared to the baseline (Figure 20a). 

However, the global GHG budget of a fully organically managed world and the shape of the 

GHG balance response curve to %org also depends on the way organic farming is captured and 

simulated in our model. We tested the effect of considering a higher share of cover crops in organic 

compared to conventional farming (Barbieri et al., 2017) on global SOC stocks. We found that using 

cover crops in organic farming would attenuate the increase of GHG emissions in the REF 100% organic 

scenario, but also would displace the %orgopt towards a higher share of organic farming and lower level 

of GHG emissions (Figure 20b). This result highlights what potential effect of considering a larger 

diversity of farming practices in organic farming would have on the GHG balance of organic farming 

expansion scenarios. 

As land-use change highly depends on food diets (Alexander et al., 2015), we also tested the 

effect of changes in food consumption behaviours – and especially reduced food waste and losses - on 

the overall GHG balance response curve to %org. We found that reducing food waste and losses would 
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reduce GHG emissions compared to the baseline for all scenarios of organic farming expansion – 

meaning from 0 to 100% of the global agricultural lands occupied by organic farming (Figure 20c). 

 
Figure 20: Schematic representation of the changes in GHG emissions with organic farming 
expansion. ∆E represents the difference in GHG emissions between a given scenario and the baseline. 
The global organic share represents the variable share of the global agricultural lands occupied by 
organic farming. Circles represent the lower point of each curves. Dashed-pointed curves represent 
scenarios simulated in this dissertation. 
 

Comparison with previous studies 

In the past decade, only two studies attempted to estimate GHG emissions in scenarios of 

global organic farming expansion using a modelling approach (Table 6, (Morais et al., 2021; Muller et 

al., 2017)), and another study made the same attempt at the regional scale of England and Wales 

(Smith et al., 2019). Among those studies, we observed a diversity of approaches and assumptions that 

led to differences in the results obtained. In this section we compare the methodological approach 

between this dissertation and those studies, and we explain how the observed differences affect the 

results.  

 

Crop yield estimation 

We observed differences in the way crop yields are estimated. GOANIM, used in this study, 

estimates (~10x10km) spatially explicit crop yields for 61 crops using crop yield response curves to soil 

N supply. Such modelling approach is highly similar to the one used by  Smith et al., 2019. The main 
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difference between both studies is the scale considered. Smith et al., 2019 focused on England and 

Wales while we worked at the global scale (Table 6). In his study, Morais et al., 2021 also estimates 

crop yields based on their response to N availability. However, their crop yields estimation is made at 

the regional scale, which does not encompass for potential local limitation that would furthermore 

reduce N availability. Finally, the last study (Muller et al., 2017) had the most distant approach 

compared to ours. Crop yields were estimated by extrapolating results from meta-analyses of field 

experiments comparing organic to conventional crop yields (Badgley et al., 2007; Seufert et al., 2012). 

As mentioned previously, such approach does not encompass for the effect on crop yields of systemic 

feedback coming with organic farming expansion. 

Those different methods explain the differences observed in the crop yield estimates between 

the four studies. As both methods are highly similar, our estimation of crop yield changes in a fully 

organically managed world compared to the baseline (-57%) is close to the estimation made by Smith 

et al., 2019 (-40%). Unfortunately, yields are not reported in Morais et al., 2021 which does not allow 

the full comparison to our respective approaches. As expected, the most distant approach resulted in 

a highly different estimation of crop yield changes. They used two scenarios, with 8 and 25% reduced 

crop yields in organic farming compared to the baseline respectively. Such differences in crop yield 

estimates might explain many of the observed differences in the estimation of agricultural land 

requirements. 

 

Agricultural land requirements and land-use change 

All studies considered potential changes in agricultural land requirements with the expansion 

of organic farming. More precisely, they all considered a potential increased cropland requirements 

induced organic farming expansion. In all studies changes in agricultural land requirements were 

converted into land-use changes and, GHG emissions from those land-use changes were accounted in 

the global GHG budget of organic farming expansion scenarios. However, the approaches to estimate 

agricultural land requirements and land-use changes differed in several aspects between studies. 

First, as cropland requirements is partly driven by cropland productivity, the above mentioned 

differences in crop yield estimations highly affect the land requirements estimations. Second, 

agricultural land requirements and land-use changes are also highly driven by changes in human diets 

(Alexander et al., 2015; Meyfroidt et al., 2013). Note that two studies did not considered changes in 

human food diets (Muller et al., 2017; Smith et al., 2019). The study of Morais et al., 2021 particularly 

well encompasses the potential effect of different diets on land-use changes, by testing several diet 

options in his scenarios. The approach used in Morais et al., 2021 differs from our approach as they 

assumed that the food production will adapt to the food demand, and we assumed the contrary. 

Thirdly, we note differences on the land-use change considered. While all studies estimated increased 

cropland requirements (Table 6), (Muller et al., 2017) considered grasslands to remain constant and 

(Morais et al., 2021) only considered scenarios without deforestation – meaning the total agricultural 

lands remain constant and only croplands expansion over grasslands is possible. Note also that only 

one study spatially estimated agricultural land requirements and land-use changes (Morais et al., 

2021), thus encompassing regional differences in term of GHG emissions due to land-use changes. 

Finally, while all studies only estimated GHG emissions due to land-use changes, (Smith et al., 2019) 

accounted for a carbon opportunity cost – meaning the amount of carbon that could have been 

sequestered in land converted to croplands if they were afforested. 
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These different approaches in land requirements and land-use changes estimation might result 

in important differences in GHG emissions due to land-use changes. Regarding land requirements and 

land-use changes estimation, we found similar increased cropland requirements than Smith et al., 

2019: +39% (in our study) vs +40%. Such similarity is mainly due to similar crop yield estimations. 

Morais et al., 2021 found large variation in cropland requirements changes in organic farming 

expansion scenarios (+7 to +390% compared to the baseline). Such large variation is explained by the 

variety of human diets tested in their approach. Note that Morais et al., 2021 is the only study that 

also spatially estimated cropland requirements and land-use changes. Finally, Muller et al., 2017 

estimated increased cropland requirements of only 18 to 33% without changes in human diets. Such 

low increased cropland requirements compared to our study is mainly explained by the differences in 

crop yields estimations. As for GHG emissions from land-use changes, note that two studies did not 

specify the GHG emissions attributed to land-use changes (Morais et al., 2021; Muller et al., 2017), 

thus making the comparison to our study impossible. The only study that provided such information 

was Smith et al., 2019, but, due to different scaling of the analysis – England and Wales vs global scale 

- we could not compare results on GHG emissions from land-use changes.  

 

SOC stock changes 

Except for the study of Smith et al., 2019, no previous study considered changes in SOC stocks 

in the estimations of agricultural GHG emissions within organic farming expansion scenarios (Table 6). 

This is a severe limitation to the previous published studies given the large role that agricultural soils 

play in the overall GHG budget of organic farming expansion scenarios. 

Note also that if they considered changes in SOC stocks in their study, Smith et al., 2019 

estimated changes in SOC stocks by extrapolating results from meta-analyses of field experiments 

(Gattinger et al., 2012; Kirk and Bellamy, 2010). As mentioned in Chapter II, such extrapolation cannot 

capture all systemic effects of large organic farming expansion on SOC stocks. More specifically, such 

approach does not encompass the reduction in carbon inputs to cropland soils due to crop yield 

reduction. Additionally, Smith et al., 2019 did not consider possible carbon transfers from grasslands 

to croplands (through ruminant livestock manure) possibly resulting in grasslands SOC stock depletion. 

Therefore, in their study, Smith et al., 2019 might have overestimated the potential of organic farming 

to sequester carbon in agricultural soils, resulting in possible underestimated GHG emissions in 

scenarios of organic farming expansion in England and Wales. 
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Table 6: Comparison between studies estimating GHG emissions in scenarios of global organic farming expansion. 

  Studies 

Organic scenario Mueller et al. 2017 Smith et al. 2019 Morais et al. 2021 This study 

Simulation year 2050 current 2050 current 

Spatial scale Global England and Wales Global Global 

Models used SOL-Model OLUM BioBaM GOANIM, RothC, GlobAgri-AgT 

Resolution World 2.7 arc-min 11 world regions 5 arc-min 

Baseline BAU scenario in 2050 Emissions in the year 2010 Emissions in the year 2000 Emissions estimated in the year 2000 

100% 
organic 
world 

Agronomic 
parameters 

Organic to 
conventional 

yield-gap 

Methods 
Extrapolation of results from 
meta-analyses of field 
experiments 

Simulated according to soil N 
availability 

Simulated according to soil N 
availability 

Simulated according to soil N supply 

Value 
-8% or -25%  
(t DM.ha-1.yr-1) 

-40%  
(ME.ha-1.yr-1) 

No values 
-56%  
(ME.ha-1.yr-1) 

Livestock population No changes 
Livestock population is 
optimized to maximise food 
production. 

Estimated to fit the global food 
demand. 

Livestock population is optimized to 
maximise food production. 

Diet and 
land-use 
changes 

Dietary 
changes 

Scenarios No changes No changes 6 different diet tested Organic diet adapted scenario 

Link with 
production 

NS NS Production adapted to diet Diet adapted to production 

Land 
requirements 

Main hypothesis grasslands = constant 
Land expansion only outside 
England and Wales 

No deforestation See chapter III 

Global average croplands: +16-33% agricultural lands : +50% Croplands: ~7% to 390% higher 
croplands: +58% 
grasslands: -41% 

GHG 
emissions 

Due to 
changes in 
SOC stocks 

Methods 
Not considered 

Extrapolation of meta-analysis 
for croplands 

Not considered 
 Estimated using the RothC model 

Values +18 to +0.28 Mg C ha−1 yr−1 
croplands: -0.23  Mg C ha−1 yr−1 
grasslands: -0.09  Mg C ha−1 yr−1 

N2O and CH4 NS ~-11% NS -60% 

Due to land-use change NS ~0 to 30 Mt CO2eq.yr-1 NS 3.7 Gt CO2eq.yr1 

GHG budget 3-7% lower  
+56% with high overseas LUC 
-5% with low overseas LUC 

~57% lower to 29% higher +56% compared to the baseline 

Intermediate scenarios of organic farming expansion 
(20-80%) 

Linear response of GHG 
emissions to organic farming 
expansion 

Not simulated Not simulated 
Non-linear response of GHG emissions to 
organic farming expansion 

Additional farming practices Not considered Not considered 
3 additional farming practices 
resulting in higher N availability 

Additional soil carbon sequestration from 
cover crops 



 
 

 
 

Global GHG budget of an organic world 

Finally, those different approaches yielded in different GHG estimates in scenarios of organic 

farming expansion (Table 6). We found similar results than the one obtained in the worst case scenario 

of Smith et al., 2019 (+56% of annual GHG emissions), due to the many similarities of both approaches 

– spatially explicit yield estimation and consideration of all potential land-use changes. Again, 

comparing our results to those from Smith et al., 2019 is limited due the differences in the scaling of 

each study. We found higher increase of GHG emissions (in scenarios of large organic farming 

expansions compared to the baseline) compared to the worst case scenario from Morais et al., 2021 

(+56% vs +29% of annual GHG emissions). Such difference is mainly due to (i) the absence of 

deforestation and (ii) SOC stocks changes in the scenarios presented in Morais et al., 2021. Finally, the 

study from Muller et al., 2017 might be the one presenting the most distant approach compared to 

ours. The main difference between both approaches is the way organic yields are estimated. As the 

approach used by Muller et al., 2017 to estimate crop yields does not encompass potential competition 

for N fertilizing resources, organic yields are probably overestimated. As a consequence, land-use 

changes and the related GHG emissions in organic farming expansion scenarios might be 

underestimated. Similarly to our study, Muller et al., 2017 also found reduced N2O emissions with 

organic farming expansion but, they found slightly increased CH4 emissions from livestock’s enteric 

fermentation. Globally, they found that the reduced N2O emissions were not compensated by 

increased GHG emissions from land-use changes and livestocks. For those reasons, (Muller et al., 2017) 

find reduced GHG emissions with organic farming expansion (-3 to -7% of annual GHG emissions) 

where we find an increase (+56% of annual GHG emissions). Additionally, the way GHG emissions are 

estimated in (Muller et al., 2017) – meaning based on the extrapolation of results from meta-analyses 

of field experiments – results in linear decrease of GHG emissions with increasing share of the global 

agricultural lands occupied by organic farming, while our results exhibit a parabolic-like response (see 

Chapter III). 

 

A new approach with potential for improvement 

Potential to increase N availability in organic croplands 

The GOANIM model has opened opportunities to estimate both the global food production 

and the related GHG emissions in large organic farming expansion scenarios while considering 

potential systemic feedbacks relative to this expansion. The use of the GOANIM model allows to test 

different scenarios – such as intermediate levels of organic farming expansion (20 to 100% of the global 

agricultural lands under organic farming) or additional N resources in organic farming (such as 

conventional manure or waste waters) (Barbieri et al., 2021). Additional N resources in organic farming 

could increase N availability in organically managed croplands with potential effects on GHG emissions 

by (i) increasing N2O emissions and (ii) increasing crop productivity, resulting in both increased of soil 

carbon inputs in organically managed croplands – which would increase SOC stocks in those lands – 

and decrease in cropland requirements to feed the world – which would reduce GHG emissions from 

land-use change. In this section we will discuss global options to increase N availability in organically 

managed croplands their potential effect on GHG estimations. 

Simulations presented in this dissertation did not encompass the large diversity of organic 

farming practices (Seufert et al., 2017), especially practices that might enhance N availability in 
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croplands. Yet, such practices are often more present in organic farming compared to conventional 

farming. Indeed, evidences show that organic farming have more complex crop rotations, composed 

with more leguminous crops and cover crops than their conventional counterparts (Barbieri et al., 

2017). In our use of GOANIM, we did consider higher shares of leguminous crops in organic crop 

rotations using specific harvested areas for organic farming (Barbieri et al., 2019), but we did not 

consider potential additional N from potential leguminous cover crops. However, other studies 

estimating food production in scenarios of organic farming estimate (sometimes much) higher 

frequency of N fixing crops in organic rotations (Badgley et al., 2007; Billen et al., 2021; Morais et al., 

2021), resulting in higher level of N supplied to soils from biological N fixation. Such increase in N 

availability would have two antagonist effects. On the one hand, increased N availability in organic 

farming would increase organic crop yields with reducing effects on global cropland requirements and 

land-use changes. On the other hand, additional available N also means additional N2O emissions from 

managed soils. Additionally, higher yields in organic farming would mean more feed available for 

livestock, resulting in potential increase in the livestock population and additional CH4 emissions in 

organic scenarios. As land-use changes are the main driver of the global GHG emissions in organic 

farming scenarios, we would expect a global decrease in GHG emissions in organic farming scenarios. 

We would also expect that %orgopt would be increased – meaning that the optimal share of agricultural 

lands occupied by organic farming would increase (Figure 21d). We would expect a similar effect for 

all additional N resources that could be implemented in organic farming scenarios – such as waste 

water or recycled urban waste. 

 
Figure 21: Schematic representation of the changes in GHG emissions with different scenarios of 
organic farming expansion. ∆E represents the difference in GHG emissions between a given scenario 
and the baseline. The global organic share represents the variable share of the global agricultural lands 
occupied by organic farming. Circles represent the lower point of each curves. Dashed curves represent 
scenarios not simulated in this dissertation. 
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Potential to improve livestock production simulation 

Another point of improvement in our simulation could be on the simulation of livestock 

production and especially their feeding material. In the GOANIM model, feed rations are defined 

regionally for each of the nine livestock species considered with default shares of forages, crop 

residues and grains. However, in a given region, and for a given livestock species, there is large variety 

of livestock feeding strategies (Herrero et al., 2013). Even though we found that livestock feeding 

strategies are different in organic compared to conventional livestock management (Gaudaré et al., 

2021), those changes might not fully erase the variety of livestock feeding strategies within regions. 

An improved option would be to give more freedom to GOANIM to define the livestock feed 

composition regionally – by defining maximum and minimum thresholds for the share of each category 

(grain, fodder and stovers). 

Finally, GOANIM optimization process almost supresses the monogastric livestock population. 

Monogastric livestock are highly in competition with human food as their feed ration is mainly based 

on food-competing feed (Gaudaré et al., 2021). Additionally, they do not participate in the transfer of 

nutrients from grasslands to croplands. However, the drastic drop of monogastric livestock populations 

observed in our simulation is not fully realistic. There are probably strong social bottlenecks to such a 

drop. There are options for future studies to account for such bottlenecks, by either defining minimum 

thresholds in the locally food produced by monogastric livestock or by providing larger diversity of 

monogastric feeding strategies – by considering backyard monogastric livestock for instance (Herrero 

et al., 2013; Mottet et al., 2017). 

Changes in livestock production simulation in GOANIM might have several effects on 

estimations global GHG emissions in organic farming expansion scenarios. First, it might increase 

livestock population in those scenarios and, thus N2O and CH4 emissions that come with. Second, this 

potential increased livestock population might result in higher feed vs food competition, potentially 

leading to higher agricultural land requirements and GHG emissions from land-use changes. Finally, 

changes in livestock production simulation in GOANIM might affect the locals’ N budget of croplands. 

As organically managed cropland fertilization highly depend on nitrogen from manure, changes in 

livestock population will change the amount of N from manure applied on croplands. Such changes in 

N availability in organically managed croplands would lead to changes in organic cropland productivity, 

with potential effects on agricultural lands requirements and GHG emissions from land-use changes. 

  

Potential for more precise N2O and CH4 estimations 

In this study, we used the latest IPCC tier 1 method to estimate N2O and CH4 emissions (IPCC, 

2019b, 2019c, 2019e). If a recent study has confirmed the robustness of such approach (Hergoualc’h 

et al., 2021), in certain cases more precision could be brought by using more detailed information. 

First, the IPCC guidelines suggest a linear relation between N fertilizer application and direct 

N2O emissions from soils, while recent studies have provided evidence of an exponential relationship 

(Hoben et al., 2011; Philibert et al., 2012; Shcherbak et al., 2014), which might lead to underestimation 

of current N2O emissions (Makowski, 2019). In our study, considering an exponential relationship 

between N fertilizer application and N2O soil emissions might not significantly affect N2O emissions in 

the organic farming scenarios due to low N fertilization rates in organic vs. conventional farming. 

However, due to over N fertilization in conventional farming – and especially from synthetic N 
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fertilization in certain areas – this non-linear relationship between N fertilizer application and N2O soil 

emissions might lead to increased N2O emissions in the baseline (Makowski, 2019). In other words, 

using a tier 3 approach might increase the organic to conventional gap in N2O emissions. 

Second, we used the Tier 1 approach in our estimation of CH4 emissions from enteric 

fermentation, based on default emissions for each livestock species in each region. However, we found 

that organic ruminants have a more forage-based diet than their conventional counterparts (see 

Chapter I, Gaudaré et al., 2021). The IPCC Tier 1 approach does not account for the diet effect on CH4 

emissions from enteric fermentation – especially the positive effect of forage based diet on CH4 

emissions. Using a Tier 2 approach, as in the GLEAM model (FAO, 2018; Mottet et al., 2017), would 

better account for this diet effect on CH4 emissions from enteric fermentation, thereby probably 

resulting in increased CH4 emissions in the organic farming expansion scenarios (Figure 21e). 

 

Potential for a larger variety of human diets analysed 

Several studies have claimed that organic farming expansion might not be feasible without 

deep changes in consumers’ food behaviours (Seconda et al., 2021). Additionally, there is evidence of 

differences in diets for consumers including large share or organic products in their purchases (Baudry 

et al., 2019). However, the assumption that diets would change so that the global food demand would 

fit the food supply might not reflect the reality, especially if we consider social and economic 

bottlenecks that refrain diets changes (Mozaffarian et al., 2012; Shepherd, 2002). As a comparison, 

most studies on similar topic considered that the global food demand would orient the global food 

production, not the contrary (Erb et al., 2016; Morais et al., 2021; Muller et al., 2017). 

The main effect of assuming that diets would change so that the global food demand would fit 

the food supply is minimized GHG emissions from land-use changes in organic farming expansion 

scenarios. Therefore, moving away from adapted diets would put more pressure on crops with low 

productivity under organic conditions and would therefore increase the global cropland requirements 

in scenarios of global organic farming expansion. Such increase of global cropland requirements would 

lead to global increase in GHG emissions– especially in the 100% organic scenario, with displacement 

of %orgopt farming towards 0% (Figure 22). 

Additionally, adapting diets so that the global food demand fits the global food production 

might not be relevant, especially in term of nutritional requirements. In our study, we found an 

increased demand of plant-based sugar products and a reduced demand of fruits and vegetable 

consumption. Such results are contradictory compared to the dietary requirement of healthy diets 

(Willett et al., 2019). Future scenarios should estimate GHG emissions in organic farming expansion 

scenarios with larger diversity of human diets, and especially diets that fits dietary requirements. 

Though, as mentioned above, such scenarios will see GHG emissions increase (Figure 22f). 

 

Uncertainties brought by coupling GOANIM to GlobAgri-AgT 

In our study, we combined different models, which represent a modelling challenge as models 

often have different objectives, variables and input data. We faced such challenge in our modelling 

approach, especially in the combination of GOANIM and GlobAgri-AgT. We succeeded to make those 

two models fit by adapting GOANIM outputs on (i) crop yields and (ii) livestock requirements to the 

input data requirements of GlobAgri-AgT (see Chapter III) and (iii) by defining hypothetical diets 
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adapted to the global food production estimated by GOANIM. However, these adaptations of the 

GOANIM outputs to fit GlobAgri-AgT requirements could not completely offset the differences of the 

two models, especially in the way they define crop and livestock production. First, in GOANIM crop 

areas are an input data of the model, while those areas are variables in GlobAgri-AgT. Second, if in both 

model the livestock population is a variable, its variations are not driven by the same processes. In 

GOANIM, livestock population is optimised in order to locally close the N cycle to maximize the food 

production (Barbieri et al., 2021). In GlobAgri-AgT, the livestock population is estimated in order to 

meet the food demand regionally (Le Mouël et al., 2018). If those differences do not affect the global 

land requirements, they lead to differences in regional estimates of food production between the two 

models, bringing uncertainties in the regional land-use changes estimation and, therefore, in the global 

estimation of GHG emissions from land-use changes (Figure 22). 

 
Figure 22: Schematic representation of the changes in GHG emissions with different scenarios of 
organic farming expansion. ∆E represents the difference in GHG emissions between a given scenario 
and the baseline. The global organic share represents the variable share of the global agricultural lands 
occupied by organic farming. Circles represent the lower point of each curves. Dashed curves represent 
scenarios not simulated in this dissertation. The red shaded area represents the uncertainty due to the 
estimation of land-use changes. 
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Potential implications 

Further scientific studies. 

To the best of our knowledge, this dissertation presents the first estimation of GHG emissions in 

scenarios of global organic farming expansion by considering potential systemic feedbacks linked to 

this expansion. In the previous section, we presented several limitations and possible improvements 

of our approach. In this section, we suggest future scenarios that may be explored to provide more 

precision in the estimation of the potential of organic farming to reduce agricultural GHG emissions at 

the global scale. 

 

Scenario including N resources from cover crops. In Chapter II, we explored a scenario considering the 

effect of cover cropping on soil organic carbon stocks through additional soil carbon inputs and soil 

covering. However, cover crops could also increase N availability to croplands (Badgley et al., 2007; 

Morais et al., 2021), by either limiting N leaching (Abdalla et al., 2019) or by providing additional N 

through biological N fixation, if they are based on leguminous crops. Future scenarios might include 

additional N resources in organic farming from N-fixing cover crops by using a spatially explicit 

estimation of potential additional N from cover crops in the GOANIM model, as well as a reduced N 

leaching factor in organic farming. Building such spatially explicit estimation of potential additional N 

from cover crops would require precise spatial information on (i) period available for cover cropping 

and (ii) potential cover crops productivity. Period available for cover cropping could potentially be 

estimated based on spatial information of cropping periods (Kotsuki and Tanaka, 2015; Sacks et al., 

2010). However, estimation of the potential cover crops productivity would require a specific meta-

analysis on this topic, which might be limited by little data available (especially in developing 

countries).  

 

Scenario including N-C linked mineralisation. In Chapter II, we estimated the potential decrease in soil 

organic carbon stocks that would be experienced by agricultural lands if managed organically. 

However, soil organic carbon mineralisation also releases N that is available for plants, and that could 

boost crop biomass production. A scenario considering such additional N could be explored by 

developing a feedback loop between GOANIM and the RothC models. First, RothC outputs on spatially 

explicit annual soil organic matter mineralized should be converted in annual soil N mineralised using 

the C/N ratio of the soil organic matter (Tipping et al., 2016). Second, estimated spatially explicit annual 

soil N mineralized are to be used as additional N resources in GOANIM. Finally, the new GOANIM 

outputs should be adapted again to be used as inputs in RothC. Such feedback loop between GOANIM 

and RothC should be run until an equilibrium is reached. 

 

Scenario including further precision on livestock production systems. As mentioned previously, the 

optimisation process of GOANIM yields in drastic change in the global livestock population, namely (i) 

a 68% reduction of the livestock population (in livestock units) (ii), an almost complete suppression of 

monogastric livestock and (iii) a drastic spatial redistribution of livestock populations. Three options 

might be explored to temper the effect of this optimisation process. First, considering a larger variety 

of livestock management systems as presented in previous studies (Herrero et al., 2013; Mottet et al., 

2017). Second, considering additional feed resources – such as crop by-products, grass from road sides 

or cover-crops residues. Third, GOANIM offers the possibility to impose a minimum share of 
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monogastric animals in the simulated livestock populations. This third option, however, might result 

in lower N recycling and higher feed vs. food competition in global organic farming expansion 

scenarios, thus potentially resulting in even higher GHG emissions from agriculture.   

 

Scenario including spatial estimation of land-use changes. In Chapter III, we combined the GOANIM 

model to the GlobAgri-AgT model. As mentioned above, improvements can be made for a better 

combination of those two models. One option would be to spatialize land-use changes (as estimated 

based on GlobAgri-AgT outputs) in order to estimate new spatially explicit (5 arc-min) cropland and 

grassland areas. Those new spatially explicit cropland and grassland areas would then be used in 

GOANIM in order to estimate global food production on those lands. This feedback loop between 

GOANIM and GlobAgri-AgT should be done until the energetic food production estimated by GOANIM 

fits the global energetic food demand (expressed in kcal). The modelling of such approach and, 

especially the step that spatialize land-use changes, would require strong assumption on how and 

where hypothetical land-use changes might occur, thus probably facing a lack of global data.  

 

Scenario including a global uneven expansion organic farming. Finally, the current use of GOANIM to 

estimate the global food supply in scenarios of intermediate expansion of organic farming is based on 

a spatially uniform expansion of organic farming – for instance 20% of all grid cells are converted to 

organic farming. However, as the amount of N fertilizing resources varies among regions, organic 

farming expansion might not be similarly limited in all regions. Therefore, one organic farming 

expansion might aim at estimating local maximum feasible organic farming expansion – meaning the 

share of local agricultural lands occupied by organic farming under which organic farming does not 

face nitrogen limitation. This scenario could be tested by using GOANIM in a feedback loop where the 

share of organic farming in each grid cell increases as long as N availability remain above a certain 

threshold.  

 

Implications for policy makers, consumers and farmers 

In our simulations, we found that a fully organically managed world might increase GHG 

emissions compared to the baseline – meaning current GHG emissions. However, this result must be 

use cautiously as it is highly dependent on all assumptions – mostly conservative – made on farming 

practices implemented in organic farming. Based on the assumption that human diets will change, we 

also found that an intermediate transition towards a 20% organically farmed world, might reduce GHG 

emission by 70% compared to the baseline. Note that such a world consist in multiplying by 

approximately ten times the current agricultural areas under organic farming (~1.5 % of the global 

agricultural lands (IFOAM, 2020)). Therefore, this dissertation highlight that there is space for organic 

farming expansion while reducing GHG emissions, provided that deep systemic changes are applied to 

the agri-food system. 

First, our work suggests that a deep redesign of the livestock production sector is needed with 

the expansion of organic farming. A previous work based on GOANIM has shown that the current 

spatial segregation between crop and livestock production is a key obstacle for organic farming 

expansion (Barbieri et al., 2021), as it limits nutrient availability for organically grown crops (Nesme et 

al., 2015). This previous work also suggests that, in order to reach a feasible organic farming expansion 

globally, the livestock population should be (i) decreased and (ii) more composed of ruminant livestock. 

Ruminants are key components of organic farming systems as they allow to transfer nutrients from 
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grasslands to croplands. Such results have also been discussed on studies at the European and country 

scales (Billen et al., 2021; Poux and Aubert, 2018; Smith et al., 2018). This redesign of the livestock 

population is also meant to reduce the feed vs. food competition by favouring ruminant livestock – 

that are less in competition with human food, especially when managed organically (Gaudaré et al., 

2021). Most policies aiming at increasing organic farming regionally, such as the European Green Deal 

– that aim at converting 25% of agricultural lands to organic farming in the EU by 2030 (European 

Council, 2020) – often don’t consider such changes in livestock populations. Therefore, we suggest that 

such policies should include tools aiming at reshaping livestock population by favouring local 

recoupling of crop and livestock production. In Europe, the common agricultural policy (CAP) might 

use economic incentive towards this goal. A redefinition of organic regulation could also be considered 

a tool to reach this same objective. For instance, the new French organic regulation bans conventional 

manure application on organically farmed lands, given the current importance of such fertilizing 

resource in organic farming, this change in organic regulations might lead to a transition of organic 

farming towards mixed-farming system at the farm or territorial scale. 

Second, our work and other studies show that deep changes in human food consumption 

patterns are needed along with the expansion of organic farming (Barbieri et al., 2019; Erb et al., 2016; 

Morais et al., 2021; Poux and Aubert, 2018; Smith et al., 2018). Without such changes in human food 

consumption behaviours, organic farming expansion will probably lead to increased GHG emissions 

(Figure 23.1). Two options are often considered in that perspective: (i) changes in human diets (Figure 

23.2) and (ii) reducing food waste and losses (Figure 23.3). Our results – which is in line with other 

recent studies (Erb et al., 2016; Morais et al., 2021) – show that reducing the livestock products’ share 

in human diets is a key target. However, such changes in diets faces strong social bottlenecks that can 

be overpass by political and economic measures, such as taxes, school programs and changes in dietary 

guidelines (Mozaffarian et al., 2012; Ritchie et al., 2018; Shepherd, 2002). As food wastes occur on 

several steps along the food chain, reducing those wastes should come with global coordination of all 

sectors – food production, transport, retailing and consumption (Dorward, 2012) – based on raising 

awareness and appropriate political measures. A first step to reduce food waste would be to better 

identify food waste sources in the food chain (Xue et al., 2017) in order to identify proper paths of 

action. 

Finally, this work, supported by other recent studies (Billen et al., 2021; Morais et al., 2021), 

shows that a fully organically managed world would lead to increased GHG emissions without strong 

changes in farming practices – especially by implementing practices that would increase nutrient 

availability in croplands (Figure 23.5) or increase SOC stocks in agricultural lands (Figure 23.4). So far, 

the large diversity of international organic farming regulations is mostly gathered under the ban of 

synthetic fertilizers (Seufert et al., 2017). Making organic farming more sustainable might require the 

redefinition of organic regulations to encourage farming practices improving N availability in organic 

croplands – such as improved crop rotations, enhanced share of leguminous crops in those rotations, 

the use of cover crops (and especially leguminous cover crops) and potentially allowing external N 

resource such as waste waters. Note that such farming practices could also be implemented in non-

organic farming systems, thus reducing GHG emissions in such farming systems (Arbenz et al., 2016). 

In the European Green Deal, the lack of a proper definition of organic farming is problematic in this 

perspective. We strongly suggest that the goal of 25% of organic farming in the EU by 2030 should 

come with proper definition of farming practices to be implemented within organic farms. More 

locally, NGOs and public administration should aim at help farmers implement such practices in organic 

farming by proper farming advisory.   
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Figure 23: Schematic representation of the changes in GHG emissions with different scenarios of 
organic farming expansion. ∆E represents the difference in GHG emissions between a given scenario 
and the baseline. The global organic share represents the variable share of the global agricultural lands 
occupied by organic farming. Circles represent the lower point of each curves. Dashed-pointed curves 
represent scenarios simulated in this dissertation. Dashed curves represent scenarios not simulated in 
this dissertation. The red shaded area represents the uncertainty due to the estimation of land-use 
changes. 

To conclude, this dissertation, by using a new methodological approach, brings an additional 

vision on the potential of organic farming to reduce GHG emissions from the agricultural sector. This 

new approach confirmed several results highlighted by previous studies, such as the need of deep 

changes in (i) livestock production, (ii) food consumption behaviours and (iii) organic farming practices.  
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Annex I: Supplementary information for chapter I 

 

Supplementary methods 

Estimation of milk productivity 

We quantified milk production by using the energy corrected milk (ECM) corresponding to a 

milk standardised at 3.5% fat and 3.2% protein, according to the following formula in Equation S1 

(Tyrrell and Reid, 1965): 

Equation S1 𝐸𝐶𝑀 = 𝑀𝑖𝑙𝑘 (𝑘𝑔) ∗ (0.327 + 12.95 ∗ [𝐹𝑎𝑡] + 7.65 ∗ [𝑃𝑟𝑜𝑡𝑒𝑖𝑛]) 

Where Milk, [Fat] and [Protein] stand for the kg of milk produced, the fat concentration (kg of 

fat.kg of milk-1) and the protein concentration in the milk (kg of protein.kg of milk-1). Corrected milk 

productivity was expressed as kg of ECM/unit of time. Milk productivity was also expressed in Mega 

Joules (2.9 MJ.kg of ECM-1) and kg of Crude Protein (3.2 g CP.kg of ECM-1). 

 

Estimation of feed ration energy content 

We calculated the feed ration energy content using the values provided by the Feedipedia 

(feedipedia.org) and Feedtables (feedtables.com) databases. However, our database did not allow to 

account for digestive interactions between forage and concentrate intake when expressed in energy. 

Although those digestive interactions are negligible when feed rations are expressed in dry matter or 

in proteins, they may be important for energy estimate when feed rations contain more than 40% 

concentrates. Note, however, that not considering those interactions may lead to small (~5%) 

overestimate of energy available in feed rations, especially for conventional, concentrate-rich feed 

rations. 

 

Estimation of the replacement rate 

The replacement rate was extracted for studies on dairy cattle herds. It is defined as the ratio 

of the number of cows entering the herd (heifer and purchased cows) on the total herd population (in 

%). When only the number of lactations during the animal life span was available, the replacement 

rate was estimated as the inverse of the number of lactation (Tatar et al., 2017).  
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Figure S1 : PRISMA Flowchart representing the procedure used to build up the dataset.   
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Figure S2: Geographical distribution of the selected articles 
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Table S1: List of selected articles 

Title Country First Author Journal 
Year of 
publication 

Nb of 
observation 

Life-cycle impact assessment of 
organic and non-organic grass-fed 
beef production in Japan 

Japan Tsutsumi. M 
J. Cleaner 
Production 

2018 500 

Effect of Organic Production 
system on the performance and 
meat quality of two purebred slow-
growing chicken breeds 

Poland 
Sosnowka-
Czajka. E 

Annals of 
Animal Science 

2017 123 

Pasture feeding conventional cows 
removes differences between 
organic and conventionally 
produced milk 

New 
Zealand 

Schwendel Food Chemistry 2017 95 

Life Cycle Assessment of Canadian 
egg products, with differentiation 
by hen housing system type 

Canada Pelletier 
J. Cleaner 
Production 

2017 2137862 

Carbon Footprint of conventional 
and organic beef production 
systems : An Italian case study 

Italy Burrati. C 
Science of the 
Total 
Environment 

2017 416 

Environmental Assessment of 
Small-scale dairy farms with 
multifunctionality in Mountain 
areas 

Italy Salvador. S 
J. Cleaner 
Production 

2016 896 

Comparison of growth 
performance and carcass traits of 
Japanese quails reared in 
conventional, pasture and organic 
conditions 

Turkey Inci. H 
Revista 
Brasileira de 
Zootecnia 

2016 90 

Fatty acid profiles and antioxidants 
of organic and conventional milk 
from low and high-input systems 
during outdoor period 

Germany Kusche. D 
Science of Food 
and Agriculture 

2014 1224 

Feeding strategies and manure 
management for cost-effective 
mitigation of greenhouse gas 
emissions from dairy farms in 
Wisconsin 

USA Dutreuil. M 
Journal of Dairy 
Science 

2014 13260 

Methods for assessing phosphorus 
overfeeding on organic and 
conventional dairy farms 

Sweden Nordqvist. M Animal 2013 2005 

Effects of rearing systems on 
performance, Egg Characteristics 
and immune response in two layer 
hen genotype 

Turkey 
Kucukyilmaz. 
K. 

Asian-
Australasian 
Journal of 
Animal Sciences 

2012 416 

Feeding management and milk 
production in organic and 
conventional buffalo farms. 

Italy Di Francia. A.  
Italian Journal 
of Animal 
Science 

2007 534 

Performance, meat and carcass 
traits of with organic versus 
conventional housing and nutrition 

Belgium Millet. S. 
Livestock 
Production 
Science 

2004 32 
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 Comparison of Carcass 
Characteristics, Meat Quality, and 
Blood Parameters of Slow and Fast 
Grown Female Broiler Chickens, 
Raised in Organic or Conventional 
Production System 

Turkey Cömert. M.  
Asian-Australas 
Journal of 
Animal Sciences 

2016 20 

Dairy cow nutrition in organic 
farming system. Comparison with 
the conventional system 

Spain Orjales. L.  Animal 2018 1559 

Economic characteristics and 
produced milk quality in Holstein 
lactating cows in organic and 
conventional systems 

Iran Sharifi. M. 
Iranian Journal 
of Applied 
Animal Science 

2016 30 

Effect of on-farm diets for organic 
pig production on performance and 
carcass quality 

Germany Sundrum. A. 
Journal of 
Animal Science 

2000 100 

Organic versus Conventional dairy 
farming- studies from öjebyn 
Project 

Sweden Byström. S. 
Agricultural 
Sciences 

2002 145 

Parameters affecting the 
environmental impact of a range of 
dairy farming systems in Denmark, 
Germany and Italy. 

Denmark Guerci. M. 
J. Cleaner 
Production 

2013 656 

Differences in whey protein 
content between cow's milk 
collected in late pasture and early 
indoor feeding season from 
conventional and organic farms in 
Poland 

Poland Kuczynska. B. 
Journal of 
cleaner 
Production 

2013 85 

A comparison of egg quality from 
hens reared under organic and 
commercial systems 

USA Taha. Y.S. 
IFOAM 
Conference 

2012 240 

Effect of production system and 
farming strategy on greenhouse 
gas emissions from commercial 
dairy farms in a life cycle approach 

Denmark 
Kristensen. 
T. 

Livestock 
Science 

2011 7950 

Growth, Carcass and Meat Quality 
traits of pigs raised under organic 
or conventional rearing systems 
using commercially available feed 
mixtures 

Slovenia Prevolnik. M. 
Slovenian 
Veterinary 
research 

2011 75 

Cadmium in organic and 
conventional pig production 

Sweden Linden. A. 

Archives of 
Environmental 
Contamination 
and Toxicology 

2001 78 

Analysis and simulation modelling 
of the production in Danish organic 
and conventional dairy herds 

Denmark 
Kristensen. 
T. 

Livestock 
Production 
Science 

1998 1821 

Environmental impact evaluation 
of conventional, organic and 

Italy Boggia. A. 
World's Poultry 
Science Journal 

2010 64534 



108 
 

organic-plus poultry production 
systems using life cycle assessment 

An assessment of the energy 
footprint of dairy farms in Missouri 
and Emilia-Romagna 

USA Pagani. M. 
Agricultural 
System 

2016 1237 

An assessment of the energy 
footprint of dairy farms in Missouri 
and Emilia-Romagna 

Italy Pagani. M. 
Agricultural 
system 

2016 3038 

Conversion to organic farming 
decreases the vulnerability of dairy 
farms 

France Bouttes. M. 
Agronomy for 
Sustainable 
Development 

2019 1126 

Environmental Impacts of the Beef 
Production Chain in The Northeast 
of Portugal Using Life Cycle 
Assessment 

Portugal 
Presumido. 
P.H. 

Agriculture 2018 289 

Basic chemical composition and 
mineral content of the milk of cows 
of various breeds raised on organic 
and on traditional farms using 
intensive and traditional feeding 
systems 

Poland Litwinczuk. Z. 

Medycyna 
Weterynaryjna-
Veterinary 
Medicine-
Science and 
Practice 

2018 16388 

The status of essential elements 
and associations with milk yield 
and the occurrence of mastitis in 
organic and conventional dairy 
herds 

Swenden 
Blanco-
penedo. I. 

Livestock 
science 

2014 289 

Fatty acid and fat-soluble 
antioxidant concentrations in milk 
from high- and low-input 
conventional and organic systems: 
seasonal variation 

United 
Kingdom 

Butler. G 
Journal of the 
Science of Food 
and Agriculture 

2008 5730 

Meat and fat quality of Krskopolje 
pigs reared in conventional and 
organic production systems 

Poland Tomazin. U Animal 2018 24 

Differing responses n milk 
composition from introducing 
rapeseed and naked oats to 
conventional and organic dairy 
diets 

United 
Kingdom 

Butler. G 
Scientific 
Reports 

2019 150 

Does rearing system (conventional 
vs organic) affect ammonia 
emissions during the growing and 
fattening periods of pigs?  

Slovenia Ocepek.M 
Biosystems 
Engineering 

2016 60 
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Supplementary results 

 
Figure S3: Non-weighted organic-to-conventional animal productivity ratios. Values are the non-
weighted means (i.e. not accounting for number of monitored animals) of organic-to-conventional 
ratios with 95% confidence intervals. The numbers in brackets provide the number of observations for 
each livestock type. The vertical red line indicates a ratio of value one (meaning no differences between 
organic and conventional animal productivity). A ratio higher than one represents cases where organic 
farming has a higher productivity than conventional farming. 

 
Figure S4: Influence of the type of data collection (experiment vs. farm monitoring) on the organic-
to-conventional animal productivity ratios. Values are the weighted means of organic-to-conventional 
ratios with 95% confidence intervals. The numbers in brackets provide the number of observations for 
each livestock type. The vertical red line indicates a ratio of value one (meaning no differences between 
organic and conventional animal productivity). A ratio higher than one represents cases where organic 
farming has a higher productivity than conventional farming. The blue and red zones represent results 
based on research experiment and on farm monitoring, respectively.  
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Figure S5: Influence of the origin of the data (developed vs. developing country) on the organic-to-
conventional animal productivity ratios. Values are the weighted means of organic-to-conventional 
ratios with 95% confidence intervals. The numbers in brackets provide the number of observations for 
each livestock type. The vertical red line indicates a ratio of value one (meaning no differences between 
organic and conventional animal productivity). A ratio higher than one represents cases where organic 
farming has a higher productivity than conventional farming. The blue and red zones represent results 
from developed and developing countries, respectively. 
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Figure S6: Animal feed rations composition in organic and conventional farming systems for three 
livestock species. Horizontal bars represent the share of each feed category as a fraction of the total 
feed ration (expressed in MJ and in crude protein). The composition of the feed ration is expressed 
based on eight detailed feed categories (a) or clustered as forage vs. concentrate feed (b), or as food-
competing vs. non-competing feed (c). Org and Conv refer to organic and conventional farming, 
respectively. The number of studies supporting each comparison is also given at the left of the 
horizontal bars.  



112 
 

Table S2: Mean and standard error of each feed category share in the feed ration expressed in mass 
(kg of DM) for organic and conventional animal systems. Differences between organic and 
conventional systems were tested using a Kruskal-Wallis test whose results are represented by the p-
value. 

   

Grassland 
and hay 

Other 
forage 

Non-
legume 
grains 

Legume 
grains 

Non-
legume 
by-
product 

Legume 
by-
product 

Other 
concentrate 

Animal 
product Concentrate 

Food-
competing 
feed 

Dairy 
cattle 

 

Org Mean 63.2% 7.2% 20.9% 3.2% 5.6% 0.0% 0.0% 0.0% 23.8% 24.9% 

 S.E. 15.4% 8.2% 7.6% 4.4% 11.0% 0.0% 0.0% 0.0% 11.0% 5.3% 
            

Conv Mean 43.6% 5.0% 38.5% 2.0% 7.8% 3.1% 0.0% 0.1% 39.7% 45.8% 
 S.E. 10.6% 6.9% 20.0% 2.7% 13.0% 3.0% 0.0% 0.1% 13.7% 11.3% 
                        

Kruskal-
Wallis 
test p_value  0.0758 0.7382 0.206 0.9142 0.4354 0.05391 0.3173 0.3173 0.02828 0.01629 

                          

Pig 
 

Org Mean 0.6% 0.0% 65.0% 16.4% 15.2% 2.8% 0.0% 0.1% 99.4% 91.0% 

 S.E. 0.9% 0.0% 8.9% 11.4% 10.4% 4.3% 0.0% 0.2% 0.9% 5.7% 
            

Conv Mean 0.6% 0.0% 68.6% 9.1% 13.7% 4.8% 3.0% 0.2% 99.4% 94.1% 
 S.E. 0.7% 0.0% 13.8% 10.7% 12.3% 7.0% 4.9% 0.6% 0.7% 6.1% 
                        

Kruskal-
Wallis 
test p_value  0.721 NA 0.5218 0.1659 0.631 0.3191 0.007397 0.902 0.721 0.4233 

                          

Poultry 
 

Org Mean 0.0% 0.0% 64.9% 0.0% 5.3% 28.8% 0.0% 1.0% 100.0% 92.8% 
 S.E. 0.0% 0.0% 4.2% 0.0% 5.6% 3.8% 0.0% 1.5% 0.0% 13.1% 
            

Conv Mean 0.0% 0.0% 65.3% 0.1% 6.6% 26.6% 0.3% 1.1% 100.0% 93.0% 

 S.E. 0.0% 0.0% 4.9% 0.2% 8.4% 7.2% 0.6% 1.7% 0.0% 11.9% 
                        

Kruskal-
Wallis 
test p_value  NA NA 0.9162 0.3173 0.6358 0.8334 0.02728 0.9079 NA 0.4616 
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Table S3: Mean and standard error of each feed category share in the feed ration expressed in energy 
(MJ) for organic and conventional animal systems. Differences between organic and conventional 
systems were tested using a Kruskal-Wallis test whose results are represented by the p-value. 

   

Grassland 
and hay 

Other 
forage 

Non-
legume 
grains 

Legume 
grains 

Non-
legume 
by-
product 

Legume 
by-
product 

Other 
concentrate 

Animal 
product Concentrate 

Food-
competing 
feed 

Dairy 
cattle 

Org Mean 61.1% 7.1% 22.5% 3.6% 5.8% 0.0% 0.0% 0.0% 36.1% 17.3% 

 S.E. 15.7% 8.0% 8.9% 4.6% 11.6% 0.0% 0.0% 0.0% 15.2% 3.9% 
            

Conv Mean 41.7% 5.0% 40.5% 2.2% 7.2% 3.3% 0.0% 0.1% 53.3% 31.7% 

 S.E. 11.2% 7.0% 21.2% 2.7% 13.6% 3.2% 0.1% 0.3% 11.3% 10.0% 

                          

 p_value  0.1172 0.7382 0.2506 0.7465 0.5775 0.05391 0.3173 0.3173 0.02828 0.02828 

                          

Pig 

Org Mean 0.6% 0.0% 63.7% 17.0% 15.6% 3.0% 0.0% 0.1% 99.5% 61.0% 

 S.E. 0.9% 0.0% 9.1% 11.6% 10.1% 4.6% 0.0% 0.2% 0.9% 6.4% 
            

Conv Mean 0.6% 0.0% 66.6% 10.7% 13.4% 5.1% 3.3% 0.3% 99.4% 59.8% 

 S.E. 0.7% 0.0% 13.8% 13.0% 12.7% 7.3% 5.7% 0.7% 0.7% 5.4% 

                          

 p_value  0.721 NA 0.5218 0.4632 0.5218 0.3191 0.007397 0.902 0.721 0.7488 

                          

Poultry 
 

Org Mean 0.0% 0.0% 62.5% 0.0% 6.0% 30.5% 0.0% 1.1% 100.0% 51.8% 

 S.E. 0.0% 0.0% 4.7% 0.0% 5.3% 3.4% 0.0% 1.5% 0.0% 6.7% 
            

Conv Mean 0.0% 0.0% 62.5% 0.1% 7.8% 28.1% 0.3% 1.2% 100.0% 57.0% 

 S.E. 0.0% 0.0% 5.0% 0.2% 6.8% 7.2% 0.6% 2.0% 0.0% 5.4% 

                        

 p_value  NA NA 1 0.3173 0.3174 0.7524 0.02728 0.9079 NA 0.0116 
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Table S4: Mean and standard error of each feed category share in the feed ration expressed in crude 
protein (g) for organic and conventional animal systems. Differences between organic and 
conventional systems were tested using a Kruskal-Wallis test whose results are represented by the p-
value. 

   

Grassland 
and hay 

Other 
forage 

Non-
legume 
grains 

Legume 
grains 

Non-
legume 
by-
product 

Legume 
by-
product 

Other 
concentrate 

Animal 
product Concentrate 

Food-
competing 
feed 

Dairy 
cattle 

 

Org Mean 63.2% 7.2% 20.9% 3.2% 5.6% 0.0% 0.0% 0.0% 23.8% 24.9% 

 S.E. 15.4% 8.2% 7.6% 4.4% 11.0% 0.0% 0.0% 0.0% 11.0% 5.3% 
            

Conv Mean 43.6% 5.0% 38.5% 2.0% 7.8% 3.1% 0.0% 0.1% 39.7% 45.8% 

 S.E. 10.6% 6.9% 20.0% 2.7% 13.0% 3.0% 0.0% 0.1% 13.7% 11.3% 

                        

 p_value  0.1745 0.7382 0.3472 0.7465 0.5775 0.05391 NA 0.3173 0.1172 0.1745 

                          

Pig 
 

Org Mean 0.6% 0.0% 65.0% 16.4% 15.2% 2.8% 0.0% 0.1% 99.4% 91.0% 

 S.E. 0.9% 0.0% 8.9% 11.4% 10.4% 4.3% 0.0% 0.2% 0.9% 5.7% 
            

Conv Mean 0.6% 0.0% 68.6% 9.1% 13.7% 4.8% 3.0% 0.2% 99.4% 94.1% 

 S.E. 0.7% 0.0% 13.8% 10.7% 12.3% 7.0% 4.9% 0.6% 0.7% 6.1% 

                        

 p_value  0.721 NA 0.4233 0.37 0.2002 0.3191 0.007397 0.902 0.721 1 

                          

Poultry 
 

Org Mean 0.0% 0.0% 64.9% 0.0% 5.3% 28.8% 0.0% 1.0% 100.0% 92.8% 

 S.E. 0.0% 0.0% 4.2% 0.0% 5.6% 3.8% 0.0% 1.5% 0.0% 13.1% 
            

Conv Mean 0.0% 0.0% 65.3% 0.1% 6.6% 26.6% 0.3% 1.1% 100.0% 93.0% 

 S.E. 0.0% 0.0% 4.9% 0.2% 8.4% 7.2% 0.6% 1.7% 0.0% 11.9% 

                        

 p_value  NA NA 0.9162 0.3173 0.9105 0.9162 0.02728 1 NA 0.3439 
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Figure S7: Non-weighted organic-to-conventional feed-use efficiency. Values are non-weighted 
means (i.e. not accounting for number of monitored animals) of organic-to-conventional ratio with 95% 
confidence intervals. Feed-use efficiency is calculated based on the entire feed ration (a), on 
concentrate feed (b), and on food-competing feed (c). The numbers in brackets provide the number of 
observations for each livestock type. The vertical red line indicates a ratio of value one - i.e., no 
differences between organic and conventional feed-use efficiency. A ratio higher than one represents 
cases where feed-use efficiency is higher in organic than in conventional farming.  
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Figure S8: Organic-to-conventional animal energy (left) and crude protein (right) feed-use efficiency. 
Feed-use efficiency is calculated based on the entire feed ration (a), on concentrate feed (b), and on 
food-competing feed (c). Values are the weighted means of organic-to-conventional ratio with 95% 
confidence intervals. The numbers in brackets provide the number of observations for each livestock 
type. The vertical red line indicates a ration of value one - i.e., no differences between organic and 
conventional feed-use efficiency. A ratio higher than one represents cases where feed-use efficiency is 
higher in organic than in conventional farming.  
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Figure S9: Influence of the type of data collection (experiment vs. farm monitoring) on the organic-
to-conventional animal feed-use efficiency. Feed-use efficiency is calculated based on the entire feed 
ration (a), on concentrate feed (b), and on food-competing feed (c). Values are the weighted means of 
organic-to-conventional ratio with 95% confidence intervals. The numbers in brackets provide the 
number of observations for each livestock type. The vertical red line indicates a ration of value one - 
i.e., no differences between organic and conventional feed-use efficiency. A ratio higher than one 
represents cases where feed-use efficiency is higher in organic than in conventional farming. The blue 
and red zones represent results from experiment vs. farm monitoring, respectively. 
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Figure S10: Organic-to-conventional dairy cattle feed-use efficiency calculated at the herd scale, the 
animal scale over the whole year and the animal scale over its lactation period. Feed-use efficiency 
is calculated based on the entire feed ration. Values are the weighted means of organic-to-conventional 
ratio with 95% confidence intervals. The numbers in brackets provide the number of observations for 
each entity observed. The vertical red line indicates a ration of value one - i.e., no differences between 
organic and conventional feed-use efficiency. A ratio higher than one represents cases where feed-use 
efficiency is higher in organic than in conventional farming. 
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Figure S11: Influence of the origin of the data (developed vs. developing country) on the organic-to-
conventional animal feed-use efficiency. Feed-use efficiency is calculated based on the entire feed 
ration (a), on concentrate feed (b), and on food-competing feed (c). Values are the weighted means of 
organic-to-conventional ratio with 95% confidence intervals. The numbers in brackets provide the 
number of observations for each livestock type. The vertical red line indicates a ration of value one - 
i.e., no differences between organic and conventional feed-use efficiency. A ratio higher than one 
represents cases where feed-use efficiency is higher in organic than in conventional farming. The blue 
and red zones represent results from developed vs. developing countries, respectively.  



120 
 

Table S5: Classification of the feed products in the eight feed categories 
Grassland 
product 

Other forage Non-legume grains 
Legume 
grains 

Non-legume by-product 
Legume by-
product 

Other 
concentrate 

Animal 
product 

Alfalfa Hay 
Alfalfa Silage 
Alphalpha 
Forage 1 
Grass 
Hay 
Italian Ryegrass 
Hay 
Timothy Hay 
Wild Grass Hay 

Corn Silage 
Oat Hay 
Rice Straw 
Sorghum 
Silage 
Straws 
Wheat Straw 
Wheat silage 

Barley 
Carob 
Grain Mixture 
Maize 
Oat 
Oat Flakes 
Rapeseed 
Sorghum 
Sunflower 
Triticale 
Wheat 
White Maize 
Turnips 

Faba Bean 
Flaked 
Soybean 
Lupine 
Peas 
Soybean 

Brewers 
Grains 
Brewes grain 
Cane 
Molasses 
Canola Meal 
Canola Oil 
Citrus Pulp 
Corn-Dried 
Distillers 
Grain 
DDGS 
Maize Gluten 
Maize Meal 
Malt Sprout 
Molasses 
Oil 

Molasses 
Oil 
Palm Kernel 
Expeler 
Potato 
Protein 
Rapeseed 
Cake 
Sorghum 
Meal 
Sunflower 
Cake 
Sunflower 
meal 
Sunflower 
Seed Oil 
Wheat Bran 
Wheat 
Middlings 
Wheat 
Shorts 

Alfalfa Meal 
Alfalfa Meal 18% 
Beet Pulp 
Extruded 
Soybean 
Full Fat Soybean 
Solvent 
Extracted 
Soybean 
Soybean Hulls 
Soybean Meal 
Soybean Meal 
48% 
Soybean Oil 

Amino Acids 
Bakery Meal 
DL-Methionine 
Energy booster 
L-Lysine 
L-Threonine 
Meal Mixture 
Protein 
concentrate 

Animal Meal 
Blood Meal 
Fat choice 
white grease 
Fish Meal 
Meat Meal 
Milk Powder 
Poultry Fat 
Poultry 
Feather Meal 
Poultry Meal 
Ruminant Fat 
Swine Fat 

 
 



 

 
 

Annex II: Supplementary information for chapter II 

 

Supplementary methods 

Sensitivity estimation 

To test the sensitivity of the RothC outputs to variations of SCI values, we considered a 

combination of two possible sources of uncertainty in SCI values: (i) ±20% uncertainties in the carbon 

biomass production of both croplands and grasslands and (ii) uncertainties in the repartition of the 

crop carbon biomass between AgC and BgC, i.e. in root-shoot ratio (RS). The estimation of the 

minimum and maximum values of AgC and BgC were made following Equation S2 and Equation S3. 

Equation S2  {
𝐴𝑔𝐶𝑚𝑖𝑛 = 𝑌𝑖𝑒𝑙𝑑 ∗ 0.5 ∗ 0.8/𝐻𝐼

𝐵𝑔𝐶𝑚𝑖𝑛 = 𝐴𝑔𝐶𝑚𝑖𝑛 ∗ 𝑅𝑆
 

 

Equation S3  {

𝑇𝑜𝑡𝑎𝑙𝑚𝑎𝑥 = 𝑌𝑖𝑒𝑙𝑑 ∗ 0.5 ∗ 1.2 ∗ (1 + 𝑅𝑆)/𝐻𝐼

𝐴𝑔𝐶𝑚𝑎𝑥 =
𝑇𝑜𝑡𝑎𝑙𝑚𝑎𝑥

(1+𝑅𝑆′)

𝐵𝑔𝐶𝑚𝑎𝑥 = 𝐴𝑔𝐶𝑚𝑎𝑥 ∗ 𝑅𝑆′

 

Where AgCmin, and  AgCmax are the minimum values of the aboveground carbon biomass 

respectively (in tC.ha-1.yr-1). BgCmin, and BgCmax are the maximum values of the belowground carbon 

biomass respectively (in tC.ha-1.yr-1). Where HI and RS represent the crop-specific harvest index (unit-

less) and the root-shoot ratio (unit-less), respectively, for each of the considered 45 crop species. Yield 

refers to the crop yields (in tons DM.ha-1) as retrieved from Monfreda et al. 2008 (Monfreda et al., 

2008) (for the baseline) or from the GOANIM model (for the organic scenarios, Barbieri et al., 2017b). 

To convert the estimated dry matter production in C, we used a 0.5 coefficient value (in t C.t DM-1). 0.8 

is the coefficient used to represent the situation where the carbon biomass production is considered 

overestimated (-20%). 1.2 is the coefficient used to represent the situation where the carbon biomass 

production is considered underestimated (+20%), and Totalmax represents the total plant carbon 

biomass (in tC.ha-1) in this situation. Evidences show that the root-shoot ratio (RS) is higher (up to twice 

higher) in conditions of low N availability compared to conditions of high N availability (Marschner and 

Marschner, 2012). We estimated a root-shoot ratio adapted to level of N availability in organically 

managed croplands (RS’) using Equation S4: 

Equation S4  {
𝑖𝑓 𝑌𝑖𝑒𝑙𝑑 < 𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑥 𝑡ℎ𝑒𝑛 𝑅𝑆′ = (2 −

𝑌𝑖𝑒𝑙𝑑

𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑥
) ∗ 𝑅𝑆

𝑖𝑓 𝑌𝑖𝑒𝑙𝑑 = 𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑥 𝑡ℎ𝑒𝑛 𝑅𝑆′ = 𝑅𝑆
 

Where Yield is the crop specific yield (in tons C.ha-1) retrieved from the GOANIM model 

outputs. Yieldmax is the crop specific maximum attainable yield for organic farming (in tons C.ha-1) as 

defined in the GOANIM model (Barbieri et al., 2021). 
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Livestock carbon excretion 

To estimate the VS (volatile solid, tC.head-1.yr-1) excretion rate from livestock, we used the 

equation 10.24 of 2019 refinement of IPCC guidelines represented in Equation S5.  

Equation S5  𝑉𝑆 = [𝐺𝐸 ∗ (1 −
𝐷𝐸

100
) + (𝑈𝐸 ∗ 𝐺𝐸)] ∗ [(

1−𝐴𝑆𝐻

18.45
)] 

Where, GE is the gross energy intake (MJ.day-1), DE is the feed digestibility (%), UE is the urinary 

energy (% of GE) and ASH is the ash content of the feed (% of DM). UE had a value of 0.02 for pigs and 

0.04 for all other animals. In the organic scenario, the estimation of GE, DE and ASH where made using 

the feed nutritional composition from feedipedia (feedipedia.org). In the baseline, we used data from 

Herrero et al. 2013(Herrero et al., 2013) to estimate DE and ASH and used Equation S6 (Weiss and 

Tebbe, 2019) to estimate GE.  

Equation S6 𝐺𝐸 = 𝐶𝑃 ∗ 0.056 + 𝐹𝑎𝑡 ∗ 0.096 + (100 − 𝐶𝑃 − 𝐹𝑎𝑡 − 𝐴𝑆𝐻) ∗ 0.042 

Where, CP is the crude protein content of the ration (%), Fat is the fat content of the ration 

(%) and ASH is the mean ash content of the ration (%). CP, Fat and Ash were retrieved from Herrero et 

al. 2013 (Herrero et al., 2013). 

 

SOC stock estimation using SCIorg and SCIconv 

 
Figure S12: Changes in global SOC stocks (PgC) over time using directly SCIbaseline and SCIorg as inputs 
to the RothC model. Changes in global cropland SOC stocks are reported for the baseline (black line) 
and the REF 100% organic scenario (red line). Values at the right end of each curve represent the SOC 
stocks after 100 years. The black dashed lines represent the current global SOC stock for croplands. 
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Supplementary results 

Carbon flows to agricultural soils in an organic world 

Table S6: Main outputs from the latest version of GOANIM.  

 
Energetic 

yield 

Yield  Livestock Population 

 
Temporary 

pastures 
Annual 
crops 

Total  Ruminants Monogastric Total 

Units  Gcal.ha-1 t DM.ha-1  Livestock units 

Baseline 9.4 2.4 2.8 2.8  552 220 772 
REF 100% 

organic 
4.5 1.8 1.4 1.5  249 15 264 

         

Ratio 
organic/baseline 

0.48 0.74 0.49 0.53  0.45 0.07 0.34 
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Figure S13: Annual organic to baseline ratios of soil carbon inputs and farmyard manure application 
for grassland soils. Organic to baseline ratios of soil carbon inputs (panels a and d), of farmyard manure 
application (panels b and e) and of grass residues (panels c and f) are reported as global maps (a, b & 
c) and density curve (d, e & f). In the density curves the blue dashed lines indicate the value 1. 
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SOC stock changes in an organically farmed world 

 
Figure S14: SOC stocks (t C.gridcell-1) response to SCI (t C.gridcell-1) absolute variations 
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Figure S15: Organic to baseline annual SOC stock change (%.ha-1.y-1). Annual SOC stock change is 
reported as a map and a density curve for each period after global transition to organic farming (0-20 
years, 20-50 years, 50-100 years). In the density curves, the red dashed lines indicate the estimated 
global mean of organic to baseline ratio of annual SOC stock change per ha, and the blue dashed lines 
indicate the value 1. 
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Cover crops potential to improve SOC stocks  

Table S7: Global changes in SOC stocks (PgC) for grasslands, croplands and total agricultural land 
(i.e. grasslands and croplands combined) after 20, 50, and 100 years in a scenario with systematic 
use of cover crops in organic farming (organic 25% CC). Ratios between the organic and the baseline 
are indicated. 

 Soil organic carbon stocks (PgC) 

  20 years 50 years 100 years 

Croplands 

Baseline 76 

Organic 25% CC 72.5 70.5 69 

    

Ratio organic/baseline 0.95 0.93 0.91 

Difference  organic - 
baseline 

-3.5 -5.5 -7 

     

Grasslands 

Baseline 121 

Organic 25% CC 115 115 116 

    

Ratio organic/baseline 0.95 0.95 0.96 

Difference  organic - 
baseline 

-6 -6 -5 

     

Total 
agricultural 

lands 

Baseline 197 

Organic 25% CC 187.5 185.5 184 

    

Ratio organic/baseline 0.95 0.94 0.93 

Difference  organic - 
baseline 

-9.5 -11.5 -13 
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Figure S16: Annual ratios of organic to baseline soil carbon inputs for cropland soils, and annual 
additional C from cover crops (tC.ha-1). The ratio of organic to baseline soil carbon inputs (RCI) and 
additional C from cover crops are reported as global maps (a & b) and density curves (c & d). In the 
density curve representing the organic to baseline ratio of SCI, the blue dashed line indicates the value 
1. 
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Intermediate scenarios of organic farming expansion 

 
Figure S17: Global changes in soil organic carbon (SOC) stocks in croplands (PgC) with various shares 
of UAA converted to organic farming, 20 years after conversion to organic farming. The red line 
represents the situation where conventional manure surplus is not applied on organic croplands; the 
purple line represents the situation where conventional manure surplus is applied on organic croplands; 
the dotted black line represents current global stocks. The shaded area around each curve represent 
the model response to the variation of soil carbon input values (see Methods). Maps represent the 
ratios of SOC stocks between the 20% of global UAA under organic farming scenario and the baseline, 
20 years after conversion to organic farming in the situation where conventional manure surplus is 
applied on croplands (a) and where it is not applied (b). 

 
Figure S18: Global changes in soil organic carbon (SOC) stocks in grasslands (PgC) with various shares 
of UAA converted to organic farming, 20 years after conversion to organic farming. The light green 
line represents the situation where conventional manure surplus is not applied on organic croplands; 
the dark green line represents the situation where conventional manure surplus is applied on organic 
croplands; the dotted black line represents current global stocks. The shaded area around each curve 
represent the model response to the variation of soil carbon input values (see Methods). The map 
represents the ratios of SOC stocks between the 20% of global UAA under organic farming scenario and 
the baseline, 20 years after conversion to organic farming in the situation where conventional manure 
surplus is applied on croplands.  
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Table S8: Soil carbon inputs (PgC) for croplands and grasslands for different levels of organic farming 
expansion. Ratios between the organic and the baseline are indicated.  

 

Soil C inputs to croplands Soil C inputs to grasslands 

Total 
Crop 

residues 
Manure Total 

Grass 
residues 

Manure 

Baseline 2.5 0.34 2.8 17.1 0.33 17.4 

20% 

REF organic 
scenario 

2.3 0.3 2.6 17.1 0.28 17.4 

Ratio 
organic/baseline 

0.92 0.86 0.92 1 0.86 1 

40% 

REF organic 
scenario 

2.1 0.25 2.4 17.1 0.24 17.4 

Ratio 
organic/baseline 

0.84 0.72 0.83 1 0.72 1 

60% 

REF organic 
scenario 

1.9 0.2 2.1 17.1 0.19 17.4 

Ratio 
organic/baseline 

0.77 0.58 0.75 1.01 0.57 1 

80% 

REF organic 
scenario 

1.7 0.15 1.9 17.1 0.14 17.4 

Ratio 
organic/baseline 

0.69 0.44 0.66 1.01 0.43 1 
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Figure S19: Conventional manure surpluses available for organic croplands (Mg C.ha-1) 
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Annex III: Changes in GOANIM 

 

Crop and livestock species in GOANIM 

Table S9:Different crop and livestock species considered in GOANIM (Barbieri et al., 2021). 

Crop species Livestock species  

Alfalfa, Apple, Banana, Barley, Bean, Broadbean, 
Buckwheat, Cabbage, Cashew, Cassava, Chickpea, 
Clover, Cocoa, Coconut, Coffee, Cotton, Cowpea, 
Forages n.e.s., Fruit n.e.s., Grape, Grass n.e.s., 
Groundnut, Legume n.e.s., Lentil, Linseed, Maize, 
Maize forage, Mango, Millet, Mixed grass, Oats, Oil 
palm, Oilseed forage, Olive, Onion, Orange, Pea, 
Pigeonpea, Plantain, Potato, Pulse n.e.s., 
Rapeseed, Rice, Rubber, Rye, Sesame, Sorghum, 
Soybean, Sugar beet, Sugarcane, Sunflower, Sweet 
potato, Tea, Tobacco, Tomato, Triticale, Vegetable 
n.e.s., Vetch, Watermelon, Wheat, Yam 

Dairy cattle, Meat cattle, Dairy goats, Meat 
goats, Dairy sheep, Meat sheep, Pigs, Poultry 
broilers, Poultry layers, 

 

Nitrogen fluxes update 

The estimation of N fluxes in the first version of GOANIM (GOANIM V1, (Barbieri et al., 2021)) 

was based on the 2006 IPCC guidelines. The latest GOANIM version (GOANIM V2) has been updated 

to the latest IPCC guidelines (2019) by modifying the default values as follows. First, we changed all 

default direct N2O emission factors from N application on croplands. We also changed the fraction of 

this N applied on cropland that volatilise and leach by using the updated coefficient (Table S10). 

Table S10: Comparison of default values for direct N2O emissions, N volatilisation and N leaching 
coefficient between the 2006 and 2019 IPCC guidelines (IPCC, 2019c). 

  Unit IPCC 2006 IPPC2019 

Direct N2O 
emissions 
factor EF1 

Synthetic fertilisers in wet 
climates 

kg N2O-N.kg N-1 0.01 

0.016 

Organic fertilisers in wet 
climates 

0.006 

All fertilisers Dry climate 0.005 

Direct N2O 
emissions 
factor EF1 

(flooded rice) 

Continuous flooding 

kg N2O-N.kg N-1 0.003 

0.003 

Single and multiple 
drainage 

0.005 

Fraction that 
volatilises 

Synthetic fertilisers 
(kg NH3-N + NOX-N). kg N-1 

0.1 0.11 
Organic fertilisers 0.2 0.21 

Fraction that leaches kg N.kg N-1 0.3 0.24 

Second, we updated the default values of manure repartition between management systems 

using the table 10A.6 of the 2019 IPCC guidelines (IPCC, 2019b). Finally, we update the amount of N 

lost according to each management systems using updated direct N2O default emissions factors from 

N managed. We also changed the fraction of this N applied on cropland that volatilise and leach by 
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using coefficient retrieved from table 10.21 and table 10.22 of the 2019 IPCC guidelines (IPCC, 2019b), 

respectively. We also accounted for direct N2 emissions using emission factors retrieved from table 

10.23 of the 2019 IPCC guidelines (IPCC, 2019b). 

Changes in livestock feeding rations, productivity and nitrogen excretion. 

In Chapter I (Gaudaré et al., 2021), we found that organic feed ration for dairy cattle was 

composed 40% less concentrate compared to conventional farming (table S2).  We also assumed that 

this difference observed for dairy cattle production could be applied for all ruminant species. To 

account for this difference, we used the following equations (Equation S7 to Equation S10). 

Equation S7 %𝐺𝑜𝑟𝑔 = %𝐺𝑐𝑜𝑛𝑣 ∗ 0.6 

Equation S8 %𝐹𝑜𝑟𝑔 +  %𝑆𝑜𝑟𝑔 = %𝐹𝑐𝑜𝑛𝑣 +  %𝑆𝑐𝑜𝑛𝑣 + %𝐺𝑐𝑜𝑛𝑣 ∗ 0.4 

Equation S9 %𝐹𝑜𝑟𝑔 = (%𝐹𝑜𝑟𝑔 + %𝑆𝑜𝑟𝑔) ∗
%𝐹𝑐𝑜𝑛𝑣

%𝐹𝑐𝑜𝑛𝑣+ %𝑆𝑐𝑜𝑛𝑣
 

Equation S10 %𝑆𝑜𝑟𝑔 = (%𝐹𝑜𝑟𝑔 +  %𝑆𝑜𝑟𝑔) ∗
%𝑆𝑐𝑜𝑛𝑣

%𝐹𝑐𝑜𝑛𝑣+ %𝑆𝑐𝑜𝑛𝑣
 

Where %Gorg and %Gconv represents the share of grains (i.e. concentrates, as defined in 

GOANIM) in the total feed ration, %Forg and %Fconv represents the share of forages in the total feed 

ration and %Sorg and %Sconv represents the share of stovers in the total feed ration of organic and 

conventional ruminant livestock, respectively. 

In Chapter I, we also found a 5% lower productivity for organic livestock compared to 

conventional livestock. To account for this difference we used Equation S11 for all livestock species 

(with the exception on of poultry broilers). 

Equation S11 𝑃𝑟𝑜𝑑𝑜𝑟𝑔 =  𝑃𝑟𝑜𝑑𝑐𝑜𝑛𝑣 ∗ 0.95 

Due to a longer lifespan, we also found that organic poultry broilers have a lower feed use 

efficiency. To account for this results,  we increased their energetic requirement using Equation S12 

Equation S12 𝐸𝑟𝑒𝑞,𝑜𝑟𝑔 = 𝐸𝑟𝑒𝑞,𝑐𝑜𝑛𝑣 ∗ 1.85 

Similarly to the yield max definition in the first GOANIM version (Barbieri et al., 2021), we assumed 

that the changes mentioned above were only applicable for countries with high agricultural 

performances – meaning where current agricultural yields were at least 75% of the potential yield 

(Table S11). 
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Table S11: List of developed and developing countries considered in the modifications relative to the 
livestock production. 

Countries where modifications were applied Other countries 

Afghanistan, Argentina, Australia, Austria, 
Bangladesh, Belgium, Belize, Benin, Bhutan, Bolivia, 
Brazil, Brunei Darussalam, Burkina Faso, Cambodia, 
Cameroon, Canada, Chad, Chile, China, Colombia, 
Costa Rica, Croatia, Cuba, Cyprus, Czech Republic, 
Democratic People's Republic of Korea, Denmark, 
Djibouti, Dominican Republic, Ecuador, Egypt, El 
Salvador, Ethiopia, Finland, France, French Guiana, 
Gambia, Georgia, Germany, Ghana, Greece, 
Guatemala, Guinea Bissau, Guyana, Honduras, 
Hungary, Iceland, India, Indonesia, Iran (Islamic 
Republic of), Iraq, Ireland, Israel, Italy, Jamaica, Japan, 
Jordan, Kenya, Kuwait, Kyrgyzstan, Lao People's 
Democratic Republic, Lebanon, Liberia, Libya, 
Macedonia, Madagascar, Malaysia, Mali, Mauritania, 
Mexico, Montenegro, Morocco, Myanmar, Namibia, 
Nepal, Netherlands, New Zealand, Nicaragua, Niger, 
Norway, Oman, Pakistan, Panama, Papua New 
Guinea, Paraguay, Peru, Philippines, Poland, Portugal, 
Republic of, Korea, Russian Federation, Saudi Arabia, 
Senegal, Serbia, Sierra Leone, Slovakia, Slovenia, 
Somalia, South Africa, Spain, Sri Lanka, Sudan, 
Swaziland, Sweden, Switzerland, Syrian Arab 
Republic, Tajikistan, Thailand, Timor-Leste, Trinidad 
and Tobago, Turkey, Uganda, United Arab Emirates, 
United Kingdom, United Republic of Tanzania, United 
States of America, Uruguay, Uzbekistan, Venezuela, 
Vietnam, Yemen, Zimbabwe 

Albania, Algeria, Angola, Armenia, Azerbaijan, 
Belarus, Bosnia and Herzegovina, Botswana, Bulgaria, 
Burundi, Central African Republic, Congo, Cote 
d'Ivoire, Democratic Republic of the, Congo, 
Equatorial Guinea, Eritrea, Estonia, Gabon, Guinea, 
Haiti, Kazakhstan, Latvia, Lesotho, Lithuania, 
Luxembourg, Malawi, Mongolia, Mozambique, 
Nigeria, Puerto Rico, Qatar, Republic of Moldova, 
Romania, Rwanda, South Sudan, Suriname, Togo, 
Tunisia, Turkmenistan, Ukraine, Western Sahara, 
Zambia 

Non-productive animals also consume feed and produce manure and, thus participate to both 

the feed-food competition and cropland fertilization. Therefore, in this latest version of GOANIM, we 

also accounted for non-productive animals (hereafter called young animals) in livestock energetic 

requirements (for the 9 livestock species considered in GOANIM). To estimate the livestock energetic 

requirement, we used Equation S13 and Equation S14.  

Equation S13 𝐸𝑟𝑒𝑞 = 𝐸𝑟𝑒𝑞,𝑎𝑑𝑢𝑙𝑡𝑠 ∗ 𝑊𝑎𝑑𝑢𝑙𝑡𝑠 ∗ (1 + 𝐶𝑦𝑜𝑢𝑛𝑔/𝑎𝑑𝑢𝑙𝑡𝑠) + 𝐸𝑟𝑒𝑞,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

Equation S14 𝐶𝑦𝑜𝑢𝑛𝑔/𝑎𝑑𝑢𝑙𝑡𝑠 = 𝑅𝑎𝑡𝑖𝑜𝑦𝑜𝑢𝑛𝑔/𝑎𝑑𝑢𝑙𝑡𝑠 ∗
𝐿𝑈𝑦𝑜𝑢𝑛𝑔

𝐿𝑈𝑎𝑑𝑢𝑙𝑡𝑠
 

Where Ereq (kcal.heads-1.yr-1) is the annual livestock energetic requirement, Ereq,adults (kcal.kg-

1.yr-1) is the annual livestock energetic requirement for an adult to maintain is weight, Wadults is the 

weight of an adults (kg.heads-1) and Cyoung/adults is the weight ration of young and adults animals (Table 

S12). Ereq,adults (kcal.heads-1.yr-1) is the annual livestock energetic requirement for an adults production. 

In Equation S14, Ratioyoung/adults is the number of young animals per adults animals and was estimated 

based on FAOSTAT3 data on total livestock and productive animals populations.  

                                                           
3 https://www.fao.org/faostat/ 



136 
 

Table S12: Regional values of Cyoung/adults. 

Region 
Cattle Goats Sheep 

Pigs Poultry 
Dairy Meat Dairy Meat Dairy Meat 

CIS 7% 9% 15% 24% 9% 16% 4% 0% 

EAS 22% 27% 17% 19% 5% 8% 4% 0% 

EUR 12% 15% 5% 5% 3% 7% 2% 0% 

LAM 27% 34% 22% 22% 10% 20% 8% 0% 

MNA 6% 7% 8% 8% 4% 6% 8% 0% 

NAM 23% 29% 33% 33% 3% 7% 2% 0% 

OCE 25% 32% 16% 16% 3% 7% 2% 0% 

SAS 22% 28% 13% 13% 8% 13% 12% 0% 

SEA 28% 35% 25% 25% 2% 3% 3% 0% 

SSA 28% 35% 5% 5% 10% 16% 11% 0% 

CIS : Commonwealth of Independent State (Central Asia) 
EAS: East Asia 
EUR: Europe 
LAM: Latin America 
MNA: Middle East North Africa 

NAM: North America 
OCE: Oceania 
SAS: South Asian Sub-continent 
SEA: South-East Asia 
SSA: Sub-Saharan Africa 

We also included young animals in the estimation of the livestock N excretion rate using 

equation Equation S15. 

Equation S15 𝑁𝑒𝑥𝑐𝑟𝑒𝑡𝑒𝑑 = 𝑁𝑟𝑒𝑞,𝑎𝑑𝑢𝑙𝑡𝑠 ∗ 𝑊𝑎𝑑𝑢𝑙𝑡𝑠 ∗ (1 + 𝐶𝑦𝑜𝑢𝑛𝑔/𝑎𝑑𝑢𝑙𝑡𝑠) − 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

Where Eexcreted (kg N.heads-1.yr-1) is the annual livestock N excretion rate, Nreq,adults (kg N.kg-1.yr-

1) is the annual livestock N requirement for an adult to maintain is weight, Wadults is the weight of an 

adults (kg.heads-1) and Cyoung/adults is the weight ration of young and adults animals (Table S12). Nproduction 

(kg N.heads-1.yr-1) is the annual livestock N requirement for an adults production. 

 

Fodder availability 

In the latest version of GOANIM we also provide more precision on fodder availability, as 

follows. First, there is a maximum grazing intensity – meaning the annual amount of grass removed 

from grassland by livestock animals – above which permanent grassland exploitation is not sustainable 

– meaning that there productivity might be reduced (Erb et al., 2016). Therefore, we made the 

assumption that the grazing intensity of permanent grasslands under organic management would 

respect a sustainable limit. This limit was set-up using a grazing intensity threshold as defined in (Erb 

et al., 2016). Second, the above-ground biomass of temporary pastures is not entirely cut or grazed by 

livestock animals and part of this above-ground biomass remain on field (Soussana and Lemaire, 2014). 

Therefore, we made the assumption that the above-ground biomass of temporary pastures cannot be 

fully sustainably used as fodder. Based on (Soussana and Lemaire, 2014), we assumed that only 80% 

of the above-ground biomass produced by temporary pastures was available for livestock feeding. We 

also assumed that the N in the non-harvested above-ground biomass is in a closed loop – is returned 

directly to the soil as crop residues, thus reducing the total net N demand of temporary pastures. This 

assumption was translated in GOANIM by a change in the maximum attainable yield of temporary 

pastures in organic farming following Equation S16.  

Equation S16 𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑥,𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑥 ∗ 0.8 
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Supplementary material 

IPCC guidelines 

Table S13: Enteric fermentation’s emission factors (kg.CH4.head.yr-1). 

Region 
Cattle 

Sheeps Goats Pigs Poultry 
Dairy Meat 

Africa 76 52 5 5 1 0 
Asia 78 54 5 5 1 0 

Eastern Europe 93 58 9 9 2 0 
Russia 93 58 9 9 2 0 
India 73 46 5 5 1 0 

Latin America and Caribbean 87 56 5 5 1 0 
North Africa 76 52 5 5 1 0 
Middle East 76 60 5 5 1 0 

North America 138 64 9 9 2 0 
Oceania 93 63 9 9 2 0 

Western Europe 126 52 9 9 2 0 

 

GlobAgri-AgT set up. 

Table S14: Main categories considered in GlobAgriAgT 

Geographic regions Crop category Livestock products 

Brazil/Argentina 
Canada/USA 
China 
North Africa 
Rest of America 
EU-27 
India 
West Africa 
Oceania 
Rest of Asia 
East, Central and Southern Africa 
Rest of the world 
Former Soviet Union 
Near and Middel East 

Fibres etc. 
Fruit and vegetables 
Pulses 
Roots and tubers 
Maize 
Other cereals 
Rice 
Wheat 
Sugar plants and products 
Other plant products 
Other products 
Grass-like forages 
Other forages 
Grass 

Bovine meat 
Dairy 
Eggs 
Pork meat 
Poultry meat 
Small ruminant meat 
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Intermediate scenarios of organic farming expansions 

As mentioned in Chapter II, we also explored more realistic scenarios of intermediate 

conversion to organic farming by redefining Yieldi,r, βl,i,r and Dietf,r using Equation S17, Equation S18 

and Equation S19, respectively. 

Equation S17: 𝑌𝑖𝑒𝑙𝑑𝑖,𝑟 =  
𝑌𝑖𝑒𝑙𝑑𝑜,𝑖,𝑟∗𝐻𝐴𝑜,𝑖,𝑟∗%𝑜𝑟𝑔 + 𝑌𝑖𝑒𝑙𝑑𝑏,𝑖,𝑟∗𝐻𝐴𝑏,𝑖,𝑟∗(1−%𝑜𝑟𝑔)

𝐻𝐴𝑜,𝑖,𝑟+𝐻𝐴𝑏,𝑖,𝑟
 

Where Yieldo,i,r and Yieldb,i,r are the yield of crop category i in region r in the REF 100% organic 

scenario and the baseline, respectively. HAo,i,r and HAb,i,r are the harvested area of crop category i in 

region r in the REF 100% organic scenario and the baseline respectively. %org represent the share of 

the global agricultural lands occupied by organic farming.  

Equation S18: 𝛽𝑙,𝑖,𝑟 =
𝛽𝑜,𝑙,𝑖,𝑟∗𝑃𝑜𝑝𝑜,𝑙,𝑟 + 𝛽𝑏,𝑙,𝑖,𝑟∗𝑃𝑜𝑝𝑏,𝑙,𝑟∗(1−%𝑜𝑟𝑔)

𝑃𝑜𝑝𝑜,𝑙,𝑟+𝑃𝑜𝑝𝑏,𝑙,𝑟
 

Where βo,l,i,r and βb,l,i,r are the annual input to output ratio for livestock production l, crop 

category i and region r in the REF 100% organic scenario and the baseline, respectively. Popo,l,r and 

Popb,l,r are the livestock population of livestock production l in region r in the REF 100% organic scenario 

and the baseline respectively. 

Equation S19: 𝐷𝑖𝑒𝑡𝑓,𝑟 =  𝐷𝑖𝑒𝑡𝑜,𝑓,𝑟 ∗ %𝑜𝑟𝑔 + 𝐷𝑖𝑒𝑡𝑏,𝑓,𝑟 ∗ (1 − %𝑜𝑟𝑔) 

Where Dieto,f,r and Dietb,f,r represents the food demand for each agri-food product f in each 

region r in the REF 100% organic scenario and the baseline, respectively. 

 

Scenarios of food waste reduction 

As reducing food waste in retailing systems and households represent a key lever to improve 

the global food availability , we explored two scenarios representing a reduction of 50% and 100% of 

food waste using Equation S20. 

Equation S20: 𝐷𝑖𝑒𝑡_𝑤𝑎𝑠𝑡𝑒_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑓,𝑟 =  𝐷𝑖𝑒𝑡𝑓,𝑟 ∗ (1 − %𝑙𝑜𝑠𝑡𝑟𝑒𝑡𝑎𝑖𝑙𝑖𝑛𝑔,𝑓,𝑟 ∗ %𝑟𝑒𝑑𝑢𝑐𝑒𝑑) ∗ (1 −

%𝑙𝑜𝑠𝑡ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠,𝑓,𝑟 ∗ %𝑟𝑒𝑑𝑢𝑐𝑒𝑑) 

Where Diet_waste_reductionf,r represents the food demand for each agri-food product f in 

each region r with a certain level of food waste reduction. Dietf,r represents the food demand for each 

agri-food product f in each region r without food waste reduction. %lostretailing,f,r and %losthouseholds,f,r 

represent the share of agri-food product f in each region r lost in retailing and households respectively. 

%lostretailing,f,r and %losthouseholds,f,r were retrieved from (Gustavsson et al., 2013). %reduced represent the 

level of food waste reduction – meaning either 50% or 100%.   
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Supplementary results 

Conversion of agricultural lands to organic farming and related GHG emissions 

Table S15: Main results of the latest GOANIM version on cropland production, Livestock population 
and N in farmyard manure. 

 Cropland production Livestock Population 
N in farmyard 

manure 
Grasslands 

used as 
feed [% of 

the global 
NPP] 

 

Total 
energy 
[e+15 
kcal] 

Food 
energy [%] 

Feed 
energy [%] 

Total 
population 

[LU] 

Ruminant 
[%] 

Monogastric 
[%] 

Excreted 
[e+9 kg 
N] 

Applied 
on 

croplands 
[e+9 kg N] 

Baseline 10.9 68% 42% 1089 72% 28% 146 27 10% 

REF 100% organic 4.7 90% 10% 346 94% 6% 82 14 5% 
 

Ratio 
organic/baseline 

0.43   0.32   0.56 0.52  

          

 Total production Total food production    

 

Total 
energy 
[e+15 
kcal] 

Crop based 
products 

[%] 

Livestock 
products 

[%] 

Total 
energy 

[e+15 kcal] 

Crop 
based 

products 
[%] 

Livestock 
products 

[%] 
   

Baseline 12.7 94% 6% 7.1 89% 11%    

REF 100% organic 5.6 97% 3% 4.4 96% 4%    
 

Ratio 
organic/baseline 

0.44   0.61   
   

          

 
Number of people fed 

[billions]       

Baseline 8.8       

REF 100% organic 5.4       
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Figure S20: REF 100% organic scenario to baseline ratio of N2O emissions (a), CH4 emissions (b) and 
livestock population (c). N2O and CH4 emissions correspond to the sum of the emissions (Gt CO2eq.ha-

1.yr-1) for each of their respective emitting sector. Livestock population corresponds to the sum of the 
population (expressed in livestock units) of the 9 livestock species considered in the GOANIM model. 
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Table S16: Composition of the global mean human diet in % of the kcal.cap-1.day-1. 

For the 21 food categories in 
GlobAgriAgT   

For 8 categories  

  
Baseline 

REF 
100% 

organic 
Ratio 

 

  Baseline 
REF 

100% 
organic 

Ratio 

Bovine meat 1% 1% 0.73 Livestock 
products 

13% 3% 0.22 
Poultry meat 2% 0% 0.03 

Pork meat 2% 0% 0.02 

Cereals 53% 52% 0.98 
Small 

ruminant 
meat 

0% 1% 1.59 

Dairy products 6% 1% 0.20 Pulses 4% 14% 4.09 

Eggs 1% 0% 0.02 Fruits and 
vegetables 

8% 3% 0.38 
Maize 7% 17% 2.53 
Rice 25% 15% 0.59 

Oilcrops 6% 6% 0.90 
Wheat 18% 10% 0.54 

Other cereals 3% 10% 3.21 Sugar 
plants and 
products 

10% 14% 1.34 
Soyabeans 
products 

2% 10% 6.43 

Other pulses 2% 4% 2.18 
Roots and 

Tuber 
5% 5% 0.93 Fruits and 

vegetables 
8% 3% 0.38 

Oilpalm 
products 

0% 1% 3.00 Others 1% 3% 3.01 

Rape and 
Mustardseed 

products 
1% 1% 1.05 

 

    

Sunflowerseed 
products 

1% 1% 1.07 
 

    

Other Oilcrops 
products 

4% 2% 0.62 
 

    

Sugar plants 
and products 

10% 14% 1.34 
 

    

Roots and 
Tuber 

5% 5% 0.93 
 

    

Fibers 0% 0% 0.00      

Other plant 
products 

1% 3% 3.73 
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Figure S21: Regional cropland and grassland requirements and land-use changes in the REF 100% 
diet adapted organic scenario and the baseline. The brown bars represent the cropland requirements 
(in billion ha) and the green bars the grassland requirements (in billions ha) for both the organic 
scenario and the baseline. The black dashed lines represent the croplands and grasslands used in the 
baseline for each region. 

Table S17: Regional GHG budget (Gt CO2eq.yr-1) in the baseline and the REF 100% organic scenario. 

Regions Baseline REF 100% organic scenario  Ratio ∆Emissions 

Brazil, Argentina 0.6 -0.1  -11% -0.7 

Canada, USA 0.4 0.1  20% -0.4 

China 0.9 1.4  166% 0.6 

Former Soviet Union 0.2 -0.9  -523% -1.1 

India 0.7 0.2  31% -0.5 

Near and Middle East 0.1 0.0  -35% -0.2 

North Africa 0.1 0.0  -14% -0.1 

Oceania 0.1 3.4  2507% 3.3 

Rest of Africa 0.5 -0.8  -177% -1.3 

Rest of America 0.3 0.1  17% -0.3 

Rest of Asia 0.7 0.9  140% 0.3 

Rest of the World 0.0 0.1  537% 0.1 

UE 27 0.4 0.9  208% 0.5 

West Africa 0.1 0.5  443% 0.4 
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Figure S22: Changes in N2O, CH4 (a) and CO2 (b) emissions between different diet adapted scenarios 
of organic farming development and the baseline. Purple lines represent N2O emissions, orange lines 
represent CH4 emissions and brown lines represent CO2 emissions. Dashed lines represent the emissions 
without land use changes, pointed lines represent the emissions due to land use changes and the full 
line represent the sum of both. 

 
Figure S23: Global changes in the GHG emissions (in Gt CO2eq.yr-1) of the REF 20% diet adapted 
organic scenario compared to the baseline. The global change in GHG emissions is decomposed 
between GHG emissions without and with land-use changes. Full bars represent changes in GHG 
emissions and striped bars represent corrections due to land-use changes (see Methods). 
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Table S18: Regional GHG budget (Gt CO2eq.yr-1)  in the baseline and the REF 20% organic scenario. 

Regions Baseline REF 20% organic scenario  Ratio ∆Emissions 

Brazil, Argentina 0.6 -0.3  -52% -0.9 

Canada, USA 0.4 -0.2  -44% -0.6 

China 0.9 1.3  152% 0.4 

Former Soviet Union 0.2 -0.4  -249% -0.6 

India 0.7 0.6  95% 0.0 

Near and Middle East 0.1 0.0  13% -0.1 

North Africa 0.1 0.0  35% 0.0 

Oceania 0.1 -0.3  -232% -0.4 

Rest of Africa 0.5 -0.5  -114% -1.0 

Rest of America 0.3 -0.2  -65% -0.6 

Rest of Asia 0.7 0.6  85% -0.1 

Rest of the World 0.0 0.0  52% 0.0 

UE 27 0.4 0.2  50% -0.2 

West Africa 0.1 0.1  121% 0.0 
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Figure S24: Global cropland and grassland requirements (in billion ha) in the intermediate diet 
adapted organic farming expansion scenarios and the baseline with 50% (a) and 100% (b) food waste 
reduction. The brown bars represent the croplands and the green bars the grasslands for both the diet 
adapted organic scenarios and the baseline. The black dashed lines represent the croplands and 
grassland used in the baseline. Values in each bar show the absolute value of cropland and grassland 
requirements in each scenarios (in billions ha). 
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Figure S25: Changes in global agricultural GHG net emissions (%) between the diet adapted organic 
scenarios, food waste reduction scenarios and the relative baselines. In each cell, the value represents 
the discrepancy in GHG emissions (%) between each scenario and the baseline (bottom left cell with a 
red frame). The colour indicates GHG increase (red) or GHG decrease (blue) compared to the baseline 
– the intensity of the colour depends on the distance to the baseline. 



 

 
 

References 

Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M., Truu, J., Rees, R.M., Smith, 

P., 2019. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse 

gas balance and crop productivity. Glob Change Biol 25, 2530–2543. 

https://doi.org/10.1111/gcb.14644 

Aguerre, M.J., Wattiaux, M.A., Powell, J.M., Broderick, G.A., Arndt, C., 2011. Effect of forage-to-

concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, 

lactation performance, and manure excretion. Journal of Dairy Science 94, 3081–3093. 

https://doi.org/10.3168/jds.2010-4011 

Alexander, P., Rounsevell, M.D.A., Dislich, C., Dodson, J.R., Engström, K., Moran, D., 2015. Drivers for 

global agricultural land use change: The nexus of diet, population, yield and bioenergy. 

Global Environmental Change 35, 138–147. https://doi.org/10.1016/j.gloenvcha.2015.08.011 

Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J., Amundson, R., Bol, R., Collins, 

C., Lal, R., Leifeld, J., Minasny, B., Pan, G., Paustian, K., Rumpel, C., Sanderman, J., van 

Groenigen, J.W., Mooney, S., van Wesemael, B., Wander, M., Chabbi, A., 2020. Towards a 

global-scale soil climate mitigation strategy. Nat Commun 11, 1–10. 

https://doi.org/10.1038/s41467-020-18887-7 

Arbenz, M., Gould, D., Stopes, C., 2016. Organic 3.0 - for truly sustainable farming & consumption. 

IFOAN - Organic International and SOAAN, Bonn. 

Badgley, C., Moghtader, J., Quintero, E., Zakem, E., Chappell, M.J., Avilés-Vázquez, K., Samulon, A., 

Perfecto, I., 2007. Organic agriculture and the global food supply. Renewable Agriculture and 

Food Systems 22, 86–108. https://doi.org/10.1017/S1742170507001640 

Bannink, A., van Schijndel, M.W., Dijkstra, J., 2011. A model of enteric fermentation in dairy cows to 

estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 

approach. Animal Feed Science and Technology 166, 603–618. 

https://doi.org/10.1016/j.anifeedsci.2011.04.043 

Barbieri, P., Pellerin, S., Nesme, T., 2017. Comparing crop rotations between organic and 

conventional farming. Scientific Reports 7, 1–10. https://doi.org/10.1038/s41598-017-14271-

6 

Barbieri, P., Pellerin, S., Seufert, V., Nesme, T., 2019. Changes in crop rotations would impact food 

production in an organically farmed world. Nature Sustainability 2, 378–385. 

https://doi.org/10.1038/s41893-019-0259-5 

Barbieri, P., Pellerin, S., Seufert, V., Smith, L., Ramankutty, N., Nesme, T., 2021. Global option space 

for organic agriculture is delimited by nitrogen availability. Nat Food 2, 363–372. 

https://doi.org/10.1038/s43016-021-00276-y 



 

148 
 

Bareha, Y., Affès, R., Buffet, J., Girault, R., 2021. SYS-Metha : Outil de prédiction des flux d’azote et de 

carbone sur les filières de méthanisation et des propriétés des digestats. 

https://doi.org/10.15454/U4S6OF 

Bartelt, K.D., Bland, W.L., 2007. Theoretical analysis of manure transport distance as a function of 

herd size and landscape fragmentation. Journal of Soil and Water Conservation 62, 345–352. 

Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M., Crowther, 

T.W., 2019. The global tree restoration potential. Science 365, 76–79. 

https://doi.org/10.1126/science.aax0848 

Bates, D., Maechler, M., Bolker, B., Walker, S., Haubo, R., Christensen, B., Singmann, H., Scheipl, F., 

Grothendieck, G., Green, P., Fox, J., 2019. Package “lme4”. Linear Mixed-Effects Models using 

“Eigen” and S4. 

Baudry, J., Pointereau, P., Seconda, L., Vidal, R., Taupier-Letage, B., Langevin, B., Allès, B., Galan, P., 

Hercberg, S., Amiot, M.-J., Boizot-Szantai, C., Hamza, O., Cravedi, J.-P., Debrauwer, L., Soler, 

L.-G., Lairon, D., Kesse-Guyot, E., 2019. Improvement of diet sustainability with increased 

level of organic food in the diet: findings from the BioNutriNet cohort. The American Journal 

of Clinical Nutrition 109, 1173–1188. https://doi.org/10.1093/ajcn/nqy361 

Beauchemin, K.A., Kreuzer, M., Mcallister, T.A., 2008. Nutritional management for enteric methane 

abatement. A review. Australian Journal of Experimental Agriculture 48, 21–27. 

https://doi.org/10.1071/EA07199 

Beillouin, D., Ben-Ari, T., Makowski, D., 2019. Evidence map of crop diversification strategies at the 

global scale. Environ. Res. Lett. 14, 123001. https://doi.org/10.1088/1748-9326/ab4449 

Bergamaschi, P., Corazza, M., Karstens, U., Athanassiadou, M., Thompson, R.L., Pison, I., Manning, 

A.J., Bousquet, P., Segers, A., Vermeulen, A.T., Janssens-Maenhout, G., Schmidt, M., 

Ramonet, M., Meinhardt, F., Aalto, T., Haszpra, L., Moncrieff, J., Popa, M.E., Lowry, D., 

Steinbacher, M., Jordan, A., O’Doherty, S., Piacentino, S., Dlugokencky, E., 2015. Top-down 

estimates of European CH4 and N2O emissions based on four different inverse models. 

Atmos. Chem. Phys. 15, 715–736. https://doi.org/10.5194/acp-15-715-2015 

Billen, G., Aguilera, E., Einarsson, R., Garnier, J., Gingrich, S., Grizzetti, B., Lassaletta, L., Le Noë, J., 

Sanz-Cobena, A., 2021. Reshaping the European agro-food system and closing its nitrogen 

cycle: The potential of combining dietary change, agroecology, and circularity. One Earth 4, 

839–850. https://doi.org/10.1016/j.oneear.2021.05.008 

Billen, G., Garnier, J., Thieu, V., Silvestre, M., Barles, S., Chatzimpiros, P., 2012. Localising the nitrogen 

imprint of the Paris food supply: the potential of organic farming and changes in human diet. 

Biogeosciences 9, 607–616. https://doi.org/10.5194/bg-9-607-2012 

Bouwman, A.F., Kram, T., 2006. Integrated modelling of global environmental change: an overview of 

IMAGE 2.4, Netherlands Environmental Assessment Agency. ed. Bilthoven. 



References 

 

149 
 

Bouwman, A.F., Van der Hoek, K.W., Eickhout, B., Soenario, I., 2005. Exploring changes in world 

ruminant production systems. Agricultural Systems 84, 121–153. 

https://doi.org/10.1016/j.agsy.2004.05.006 

Brito, A.F., Silva, L.H.P., 2020. Symposium review: Comparisons of feed and milk nitrogen efficiency 

and carbon emissions in organic versus conventional dairy production systems. Journal of 

Dairy Science 103, 5726–5739. https://doi.org/10.3168/jds.2019-17232 

Buratti, C., Fantozzi, F., Barbanera, M., Lascaro, E., Chiorri, M., Cecchini, L., 2017. Carbon footprint of 

conventional and organic beef production systems: An Italian case study. Science of the Total 

Environment 576, 129–137. https://doi.org/10.1016/j.scitotenv.2016.10.075 

Cai, A., Xu, H., Shao, X., Zhu, P., Zhang, W., Xu, M., Murphy, D.V., 2016. Carbon and Nitrogen 

Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and 

Manure Application in a Continuous Maize Cropping System. PLoS ONE 11, e0152521. 

https://doi.org/10.1371/journal.pone.0152521 

Cai, Z., Xing, G., Yan, X., Xu, H., Tsuruta, H., Yagi, K., Minami, K., 1997. Methane and nitrous oxide 

emissions from rice paddy fields as affected by nitrogen fertilisers and water management. 

Plant and Soil 196, 7–14. https://doi.org/10.1023/A:1004263405020 

Campbell, B.M., Beare, D.J., Bennett, E.M., Hall-Spencer, J.M., Ingram, J.S.I., Jaramillo, F., Ortiz, R., 

Ramankutty, N., Sayer, J.A., Shindell, D., 2017. Agriculture production as a major driver of the 

earth system exceeding planetary boundaries. Ecology and Society 22, 1–12. 

https://doi.org/10.5751/ES-09595-220408 

Carlson, K.M., Gerber, J.S., Mueller, N.D., Herrero, M., MacDonald, G.K., Brauman, K.A., Havlik, P., 

O’Connell, C.S., Johnson, J.A., Saatchi, S., West, P.C., 2016. Greenhouse gas emissions 

intensity of global croplands. Nature Climate Change 7, 63–68. 

https://doi.org/10.1038/nclimate3158 

Chadwick, D., Sommer, S., Thorman, R., Fangueiro, D., Cardenas, L., Amon, B., Misselbrook, T., 2011. 

Manure management: Implications for greenhouse gas emissions. Animal Feed Science and 

Technology 166, 514–531. https://doi.org/10.1016/j.anifeedsci.2011.04.036 

Chadwick, D.R., 2005. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: 

Effect of compaction and covering. Atmospheric Environment 39, 787–799. 

https://doi.org/10.1016/j.atmosenv.2004.10.012 

Chang, J., Ciais, P., Herrero, M., Havlik, P., Campioli, M., Zhang, X., Bai, Y., Viovy, N., Joiner, J., Wang, 

X., Peng, S., Yue, C., Piao, S., Wang, T., Hauglustaine, D.A., Soussana, J.-F., Peregon, A., 

Kosykh, N., Mironycheva-Tokareva, N., 2016. Combining livestock production information in 

a process-based vegetation model to reconstruct the history of grassland management. 

Biogeosciences 13, 3757–3776. https://doi.org/10.5194/bg-13-3757-2016 

Chen, L., Smith, P., Yang, Y., 2015. How has soil carbon stock changed over recent decades? Glob 

Change Biol 21, 3197–3199. https://doi.org/10.1111/gcb.12992 



 

150 
 

Clark, M., Tilman, D., 2017. Comparative analysis of environmental impacts of agricultural production 

systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016. 

https://doi.org/10.1088/1748-9326/aa6cd5 

Cobb-Vantress, L., 2015. Broiler Performance $ Nutrition Supplement tech. 

Coleman, K., Jenkinson, D.S., Crocker, G.J., Grace, P.R., Klir, J., Körschens, M., Poulton, P.R., Richter, 

D.D., 1997. Simulating trends in soil organic carbon in long term experiments using RothC-

26.3. Geoderma 81, 29–44. 

Connor, D.J., 2008. Organic agriculture cannot feed the world. Field Crops Research 106, 187–190. 

https://doi.org/10.1016/j.fcr.2007.11.010 

Corong, E.L., Tsigas, M.E., 2017. The Standard GTAP Model, Version 7. Journal of Global Economic 

Analysis 2, 119. 

Davidson, E.A., Kanter, D., 2014. Inventories and scenarios of nitrous oxide emissions. Environ. Res. 

Lett. 9, 105012. https://doi.org/10.1088/1748-9326/9/10/105012 

Dawson, C.J., Hilton, J., 2011. Fertiliser availability in a resource-limited world: Production and 

recycling of nitrogen and phosphorus. Food Policy 36, S14–S22. 

https://doi.org/10.1016/j.foodpol.2010.11.012 

De Ponti, T., Rijk, B., Van Ittersum, M.K., 2012. The crop yield gap between organic and conventional 

agriculture. Agricultural Systems 108, 1–9. https://doi.org/10.1016/j.agsy.2011.12.004 

Dorward, L.J., 2012. Where are the best opportunities for reducing greenhouse gas emissions in the 

food system (including the food chain)? A comment. Food Policy 37, 463–466. 

https://doi.org/10.1016/j.foodpol.2012.04.006 

Dumont, B., Ryschawy, J., Duru, M., Benoit, M., Chatellier, V., Delaby, L., Donnars, C., Dupraz, P., 

Lemauviel-Lavenant, S., Méda, B., Vollet, D., Sabatier, R., 2019. Review: Associations among 

goods, impacts and ecosystem services provided by livestock farming. Animal 13, 1773–1784. 

https://doi.org/10.1017/S1751731118002586 

Erb, K.H., Lauk, C., Kastner, T., Mayer, A., Theurl, M.C., Haberl, H., 2016. Exploring the biophysical 

option space for feeding the world without deforestation. Nature Communications 48, 829–

834. https://doi.org/10.1038/ncomms11382 

Eriksson, M., Waldenstedt, L., Elwinger, K., Engström, B., Fossum, O., 2010. Behaviour, production 

and health of organically reared fast-growing broilers fed low crude protein diets including 

different amino acid contents at start. Acta Agriculturae Scandinavica A: Animal Sciences 60, 

112–124. https://doi.org/10.1080/09064702.2010.502243 

Ertl, P., Klocker, H., Hörtenhuber, S., Knaus, W., Zollitsch, W., 2015. The net contribution of dairy 

production to human food supply: The case of austrian dairy farms. Agricultural Systems 137, 

119–125. https://doi.org/10.1016/j.agsy.2015.04.004 



References 

 

151 
 

Escribano, A.J., 2018. Organic feed: A bottleneck for the development of the livestock sector and its 

transition to sustainability? Sustainability 10, 1–18. https://doi.org/10.3390/su10072393 

European Council, 2020. COMMUNICATION DE LA COMMISSION AU PARLEMENT EUROPÉEN, AU  

CONSEIL, AU COMITÉ ÉCONOMIQUE ET SOCIAL EUROPÉEN ET AU COMITÉ  DES RÉGIONS. 

Falloon, P., Smith, P., 2002. Simulating SOC changes in long-term experiments with RothC and 

CENTURY: model evaluation for a regional scale application. Soil Use and Management 18, 

101–111. https://doi.org/10.1111/j.1475-2743.2002.tb00227.x 

Falloon, P., Smith, P., Coleman, K., Marshall, S., 2000. How important is inert organic matter for 

predictive soil carbon modelling using the Rothamsted carbon model? Soil Biology and 

Biochemistry 32, 433–436. https://doi.org/10.1016/S0038-0717(99)00172-8 

FAO, 2018. GLEAM 2, 2016. Global Livestock Environmental Assessment Model. FAO, Rome,Italy. 82. 

Fetzel, T., Havlik, P., Herrero, M., Kaplan, J.O., Kastner, T., Kroisleitner, C., Rolinski, S., Searchinger, T., 

Van Bodegom, P.M., Wirsenius, S., Erb, K.H., 2017. Quantification of uncertainties in global 

grazing systems assessment. Global Biogeochemical Cycles 31, 1089–1102. 

https://doi.org/10.1002/2016GB005601 

Fischer, G., Nachtergaele, F., van Velthuizen, H., Chiozza, F., Franceschini, G., Henry, M., Muchoney, 

D., Tramberend, S., 2021. Global Agro-Ecological Zones (GAEZ v4), Model documentaiton. 

FAO & IIASA. 

Flaten, O., Lien, G., 2009. Organic dairy farming in Norway under the 100% organically produced feed 

requirement. Livestock Science 126, 28–37. https://doi.org/10.1016/j.livsci.2009.05.014 

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., 

O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., 

Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M., 

2011. Solutions for a cultivated planet. Nature 478, 337–342. 

https://doi.org/10.1038/nature10452 

Forslund, A., Levert, F., Gohin, A., Mouël, C.L., 2020. Etude complémentaire à l’analyse rétrospective 

des interactions du développement des biocarburants en France avec l’évolution des 

marchés français et internationaux et les changements d’affectation des sols - Volet 2: 

Evaluation des effets du développement des biocarburants en France sur les marchés des 

grandes cultures et sur le changement d’affectation des sols: Le modèle MATSIM-LUCA. 

Agence de l’Environnement et de la Maîtrise de l’Energie. 

Fuss, S., Lamb, W.F., Callaghan, M.W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., de Oliveira 

Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G.F., Rogelj, J., Smith, P., Vicente, 

J.L.V., Wilcox, J., del Mar Zamora Dominguez, M., Minx, J.C., 2018. Negative emissions—Part 

2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002. 

https://doi.org/10.1088/1748-9326/aabf9f 



 

152 
 

García-Palacios, P., Gattinger, A., Bracht-Jørgensen, H., Brussaard, L., Carvalho, F., Castro, H., 

Clément, J.C., De Deyn, G., D’Hertefeldt, T., Foulquier, A., Hedlund, K., Lavorel, S., Legay, N., 

Lori, M., Mäder, P., Martínez-García, L.B., Martins da Silva, P., Muller, A., Nascimento, E., 

Reis, F., Symanczik, S., Paulo Sousa, J., Milla, R., 2018. Crop traits drive soil carbon 

sequestration under organic farming. Journal of Applied Ecology 55, 2496–2505. 

https://doi.org/10.1111/1365-2664.13113 

Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mader, P., Stolze, M., 

Smith, P., Scialabba, N.E.-H., Niggli, U., 2012. Enhanced top soil carbon stocks under organic 

farming. Proceedings of the National Academy of Sciences 109, 18226–18231. 

https://doi.org/10.1073/pnas.1209429109 

Gaudaré, U., Pellerin, S., Benoit, M., Durand, G., Dumont, B., Barbieri, P., Nesme, T., 2021. Comparing 

productivity and feed-use efficiency between organic and conventional livestock animals. 

Environ. Res. Lett. 16, 024012. https://doi.org/10.1088/1748-9326/abd65e 

Gibbs, H., Yui, S., Plevin, R., 2014. New Estimates of Soil and Biomass Carbon Stocks for Global 

Economic Models. GTAP Technical Paper 33, 1–43. 

Gibbs, H.K., Ruesch, A.S., Achard, F., Clayton, M.K., Holmgren, P., Ramankutty, N., Foley, J.A., 2010. 

Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. 

Proceedings of the National Academy of Sciences 107, 16732–16737. 

https://doi.org/10.1073/pnas.0910275107 

Gustavsson, J., Cederberg, C., Sonesson, U., 2013. The methodology of the FAO study: “Global Food 

Losses and Food Waste - extent, causes and prevention” (No. 857). FAO. 

Heistermann, M., Müller, C., Ronneberger, K., 2006. Land in sight? Achievements, deficits and 

potentials of continental to global scale land-use modeling. Agriculture, Ecosystems & 

Environment 114, 141–158. https://doi.org/10.1016/j.agee.2005.11.015 

Hergoualc’h, K., Mueller, N., Bernoux, M., Kasimir, Ä., Weerden, T.J., Ogle, S.M., 2021. Improved 

accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC 

emission factor for direct N2O emissions from nitrogen inputs to managed soils. Glob Change 

Biol 00, 1–15. https://doi.org/10.1111/gcb.15884 

Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M.C., Thornton, P.K., Blümmel, M., Weiss, F., 

Grace, D., Obersteiner, M., 2013. Biomass use, production, feed efficiencies, and greenhouse 

gas emissions from global livestock systems. Proceedings of the National Academy of 

Sciences of the United States of America 110, 20888–20893. 

https://doi.org/10.1073/pnas.1308149110 

Hoben, J.P., Gehl, R.J., Millar, N., Grace, P.R., Robertson, G.P., 2011. Nonlinear nitrous oxide (N2O) 

response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change 

Biology 17, 1140–1152. https://doi.org/10.1111/j.1365-2486.2010.02349.x 



References 

 

153 
 

Hong, C., Burney, J.A., Pongratz, J., Nabel, J.E.M.S., Mueller, N.D., Jackson, R.B., Davis, S.J., 2021. 

Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561. 

https://doi.org/10.1038/s41586-020-03138-y 

IFOAM, 2020. Annual Report 2020.pdf. IFOAM - Organic International. 

IFOAM EU Group, 2016. Organic farming, climate change mitigation and beyond. 

IPCC, 2021. AR6 Full Report. 

IPCC, 2019a. CHAPTER 1 INTRODUCTION. 

IPCC, 2019b. CHAPTER 10 EMISSIONS FROM LIVESTOCK AND MANURE MANAGEMENT. 

IPCC, 2019c. CHAPTER 11 N 2 O EMISSIONS FROM MANAGED SOILS, AND CO2 FROM LIME AND UREA 

APPLICATION. 

IPCC, 2019d. Climate Change and Land: IPCC report 906. 

IPCC, 2019e. CHAPTER 5 CROPLAND. 

IPCC, 2018. Global Warming of 1.5°C. 

IPCC, 2006a. CHAPTER 2 GENERIC METHODOLOGIES APPLICABLE TO MULTIPLE LAND-USE CATEGORY. 

IPCC, 2006b. Chapter 3 CHEMICAL INDUSTRY EMISSIONS. 

Justes, E., 2012. Réduire les fuites de nitrate au moyen de cultures intermédiaires. INRAE. 

Kaufmann, L.D., Münger, A., Rérat, M., Junghans, P., Görs, S., Metges, C.C., Dohme-Meier, F., 2011. 

Energy expenditure of grazing cows and cows fed grass indoors as determined by the 13C 

bicarbonate dilution technique using an automatic blood sampling system. Journal of Dairy 

Science 94, 1989–2000. https://doi.org/10.3168/jds.2010-3658 

Kirchmann, H., Kätterer, T., Bergström, L., Börjesson, G., Bolinder, M.A., 2016. Flaws and criteria for 

design and evaluation of comparative organic and conventional cropping systems. Field 

Crops Research 186, 99–106. https://doi.org/10.1016/j.fcr.2015.11.006 

Kirk, G.J.D., Bellamy, P.H., 2010. Analysis of changes in organic carbon in mineral soils across England 

and Wales using a simple single-pool model. European Journal of Soil Science 61, 406–411. 

https://doi.org/10.1111/j.1365-2389.2010.01242.x 

Kniss, A.R., Savage, S.D., Jabbour, R., 2016. Commercial Crop Yields Reveal Strengths and Weaknesses 

for Organic Agriculture in the United States. PLoS ONE 11, e0161673. 

https://doi.org/10.1371/journal.pone.0161673 

Kotsuki, S., Tanaka, K., 2015. SACRA – a method for the estimation of global high-resolution crop 

calendars from a satellite-sensed NDVI. Hydrol. Earth Syst. Sci. 19, 4441–4461. 

https://doi.org/10.5194/hess-19-4441-2015 



 

154 
 

Kuhnert, M., Yeluripati, J., Smith, P., Hoffmann, H., van Oijen, M., Constantin, J., Coucheney, E., 

Dechow, R., Eckersten, H., Gaiser, T., Grosz, B., Haas, E., Kersebaum, K.-C., Kiese, R., Klatt, S., 

Lewan, E., Nendel, C., Raynal, H., Sosa, C., Specka, X., Teixeira, E., Wang, E., Weihermüller, L., 

Zhao, G., Zhao, Z., Ogle, S., Ewert, F., 2017. Impact analysis of climate data aggregation at 

different spatial scales on simulated net primary productivity for croplands. European Journal 

of Agronomy 88, 41–52. https://doi.org/10.1016/j.eja.2016.06.005 

Laisse, S., Baumont, R., Dusart, L., Gaudré, D., Rouillé, B., Benoit, M., Veysset, P., Rémond, D., 

Peyraud, J.-L., 2018a. L’efficience nette de conversion des aliments par les animaux 

d’élevage : une nouvelle approche pour évaluer la contribution de l’élevage à l’alimentation 

humaine. INRA Productions Animales 31, 269–288. https://doi.org/10.20870/productions-

animales.2018.31.3.2355 

Lal, R., 2015. Soil carbon sequestration and aggregation by cover cropping. Journal of Soil and Water 

Conservation 70, 329–339. https://doi.org/10.2489/jswc.70.6.329 

Lal, R., 2004a. Agricultural activities and the global carbon cycle. Nutrient Cycling in Agroecosystems 

70, 103–116. https://doi.org/10.1023/B:FRES.0000048480.24274.0f 

Lal, R., 2004b. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22. 

https://doi.org/10.1016/j.geoderma.2004.01.032 

Lambin, E.F., Meyfroidt, P., 2011. Global land use change, economic globalization, and the looming 

land scarcity. Proceedings of the National Academy of Sciences 108, 3465–3472. 

https://doi.org/10.1073/pnas.1100480108 

Lampkin, N., 2000. Organic Farming. Farming Press. 

Lampkin, N., Measures, M., Padel, S., 2017. 2017 Organic Farm Management handbook, 11th ed. The 

Organic Research Centre, Hamstead Marshall, Newbury. 

Le Mouël, C., de Lattre-Gasquet, M., Mora, O., 2018. Land Use and Food Security in 2050: A Narrow 

Road. Agrimonde-Terra., Quae. ed. Versailles Cedex, France. 

Lee, K.S., Choe, Y.C., Park, S.H., 2015. Measuring the environmental effects of organic farming: A 

meta-analysis of structural variables in empirical research. Journal of Environmental 

Management 162, 263–274. https://doi.org/10.1016/j.jenvman.2015.07.021 

Leifeld, J., Angers, D.A., Chenu, C., Fuhrer, J., Kätterer, T., Powlson, D.S., 2013. Organic farming gives 

no climate change benefit through soil carbon sequestration. Proceedings of the National 

Academy of Sciences 110, E984–E984. https://doi.org/10.1073/pnas.1220724110 

Letourneau, D.K., Armbrecht, I., Rivera, B.S., Lerma, J.M., Rrez, C.G., Rangel, J.H., Rivera, L., Saavedra, 

C.A., Torres, A.M., Trujillo, A.R., 2011. Does plant diversity benefit agroecosystems? A 

synthetic review. Ecological Applications 21, 9–21. 



References 

 

155 
 

Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A.J.B., Yang, H., 2010. A high-

resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci USA 107, 

8035–8040. https://doi.org/10.1073/pnas.0913658107 

Lori, M., Symnaczik, S., Mäder, P., De Deyn, G., Gattinger, A., 2017. Organic farming enhances soil 

microbial abundance and activity—A meta-analysis and meta-Regression. PLoS ONE 12, 

e0180442. https://doi.org/10.1371/journal.pone.0180442 

Lynch, D.H., MacRae, R., Martin, R.C., 2011. The carbon and global warming potential impacts of 

organic farming: Does it have a significant role in an energy constrained world? Sustainability 

3, 322–362. https://doi.org/10.3390/su3020322 

Makowski, D., 2019. N2O increasing faster than expected. Nat. Clim. Chang. 9, 909–910. 

https://doi.org/10.1038/s41558-019-0646-y 

Makowski, D., Piraux, F., Brun, F., 2017. De l’analyse des réseaux expérimentaux à la méta-analyse, 

in: QUAE. pp. 107–161. 

Marschner, H., Marschner, P., 2012. Marschner’s mineral nutrition of higher plants, 3rd ed. ed. 

Elsevier/Academic Press, London ; Waltham, MA. 

Martin, M.P., 2018. RothC, a R package, INRAE (https://forgemia.inra.fr/manuel.martin/rothc). 

Martin, M.P., Cordier, S., Balesdent, J., Arrouays, D., 2007. Periodic solutions for soil carbon dynamics 

equilibriums with time-varying forcing variables. Ecological Modelling 204, 523–530. 

https://doi.org/10.1016/j.ecolmodel.2006.12.030 

Martin, M.P., Dimassi, B., Román Dobarco, M., Guenet, B., Arrouays, D., Angers, D.A., Blache, F., 

Huard, F., Soussana, J., Pellerin, S., 2021. Feasibility of the 4 per 1000 aspirational target for 

soil carbon: A case study for France. Glob Change Biol 27, 2458–2477. 

https://doi.org/10.1111/gcb.15547 

Mazzocchi, M., Shankar, B., Traill, B., 2012. the development of global diets since 1992: influences of 

agri-food sector trends and policies (No. 34). FAO. 

Mazzoncini, M., Sapkota, T.B., Bàrberi, P., Antichi, D., Risaliti, R., 2011. Long-term effect of tillage, 

nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil 

and Tillage Research 114, 165–174. https://doi.org/10.1016/j.still.2011.05.001 

Mcdaniel, A.M.D., Tiemann, L.K., Grandy, A.S., Mcdaniel, M.D., Tiemann, L.K., Grandy, A.S., 2017. 

Does agricultural crop diversity enhance soil microbial biomass and organic matter 

dynamics? A meta-analysis. Ecological Applications 24, 560–570. https://doi.org/10.1890/13-

0616.1 

Meersmans, J., Van WESEMAEL, B., Goidts, E., Van MOLLE, M., De BAETS, S., De RIDDER, F., 2011. 

Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960-

2006. Global Change Biology 17, 466–479. https://doi.org/10.1111/j.1365-

2486.2010.02183.x 



 

156 
 

Meier, M.S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., Stolze, M., 2015. Environmental 

impacts of organic and conventional agricultural products – Are the differences captured by 

life cycle assessment? Journal of Environmental Management 149, 193–208. 

https://doi.org/10.1016/j.jenvman.2014.10.006 

Meyfroidt, P., Lambin, E.F., Erb, K.-H., Hertel, T.W., 2013. Globalization of land use: distant drivers of 

land change and geographic displacement of land use. Current Opinion in Environmental 

Sustainability 5, 438–444. https://doi.org/10.1016/j.cosust.2013.04.003 

Meyfroidt, P., Rudel, T.K., Lambin, E.F., 2010. Forest transitions, trade, and the global displacement 

of land use. Proceedings of the National Academy of Sciences 107, 20917–20922. 

https://doi.org/10.1073/pnas.1014773107 

Mondelaers, K., Aertsens, J., Van Huylenbroeck, G., 2009. A meta‐analysis of the differences in 

environmental impacts between organic and conventional farming. British Food Journal 111, 

1098–1119. https://doi.org/10.1108/00070700910992925 

Monfreda, C., Ramankutty, N., Foley, J.A., 2008. Farming the planet : 2 . Geographic distribution of 

crop areas , yields , physiological types , and net primary production in the year 2000 22, 1–

19. https://doi.org/10.1029/2007GB002947 

Mora, O., Le Mouël, C., de Lattre-Gasquet, M., Donnars, C., Dumas, P., Réchauchère, O., Brunelle, T., 

Manceron, S., Marajo-Petitzon, E., Moreau, C., Barzman, M., Forslund, A., Marty, P., 2020. 

Exploring the future of land use and food security: A new set of global scenarios. PLoS ONE 

15, e0235597. https://doi.org/10.1371/journal.pone.0235597 

Morais, T.G., Teixeira, R.F.M., Lauk, C., Theurl, M.C., Winiwarter, W., Mayer, A., Kaufmann, L., Haberl, 

H., Domingos, T., Erb, K.-H., 2021. Agroecological measures and circular economy strategies 

to ensure sufficient nitrogen for sustainable farming. Global Environmental Change 69, 

102313. https://doi.org/10.1016/j.gloenvcha.2021.102313 

Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., Gerber, P., 2017. Livestock: On our plates or 

eating at our table? A new analysis of the feed/food debate. Global Food Security 14, 1–8. 

https://doi.org/10.1016/j.gfs.2017.01.001 

Moutinho, P., Schwartzman, S., 2005. Tropical Deforestation and Climate Change. Brazil. 

Mozaffarian, D., Afshin, A., Benowitz, N.L., Bittner, V., Daniels, S.R., Franch, H.A., Jacobs, D.R., Kraus, 

W.E., Kris-Etherton, P.M., Krummel, D.A., Popkin, B.M., Whitsel, L.P., Zakai, N.A., 2012. 

Population Approaches to Improve Diet, Physical Activity, and Smoking Habits: A Scientific 

Statement From the American Heart Association. Circulation 126, 1514–1563. 

https://doi.org/10.1161/CIR.0b013e318260a20b 

Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A., 2012. Closing yield 

gaps through nutrient and water management. Nature 490, 254–257. 

https://doi.org/10.1038/nature11420 



References 

 

157 
 

Muller, A., Schader, C., El-Hage Scialabba, N., Brüggemann, J., Isensee, A., Erb, K.H., Smith, P., Klocke, 

P., Leiber, F., Stolze, M., Niggli, U., 2017. Strategies for feeding the world more sustainably 

with organic agriculture. Nature Communications 8, 1–13. https://doi.org/10.1038/s41467-

017-01410-w 

Nachtergaele, F., van Velthuizen, H., Verelst, L., 2009. Harmonized World Soil Database - Version 1.1. 

FAO. 

Nesme, T., Barbieri, P., Gaudaré, U., Pellerin, S., Angers, D., 2021. Sound methods are needed to 

assess GHG mitigation potential of organic farming deployment. A comment on. Agricultural 

Systems 187, 102994. 

Nesme, T., Senthilkumar, K., Mollier, A., Pellerin, S., 2015. Effects of crop and livestock segregation 

on phosphorus resource use: A systematic, regional analysis. European Journal of Agronomy 

71, 88–95. https://doi.org/10.1016/j.eja.2015.08.001 

Niggli, U., Fließbach, A., Hepperly, P., Scialabba, N., 2009. Low greenhouse gas agriculture: Mitigation 

and adaptation potential of sustainable farming systems (No. 2). FAO. 

Nisbet, E., Weiss, R., 2010. Top-Down Versus Bottom-Up. Science 328, 1241–1243. 

https://doi.org/10.1126/science.1189936 

Nowak, B., Nesme, T., David, C., Pellerin, S., 2013. Disentangling the drivers of fertilising material 

inflows in organic farming. Nutr Cycl Agroecosyst 96, 79–91. https://doi.org/10.1007/s10705-

013-9578-5 

Oelofse, M., Jensen, L.S., Magid, J., 2013. The implications of phasing out conventional nutrient 

supply in organic agriculture: Denmark as a case. Org. Agr. 3, 41–55. 

https://doi.org/10.1007/s13165-013-0045-z 

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., Hara, 

R.B.O., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., 2019. Package ‘ vegan ’ | 

Community Ecology Package. CRAN Repos. 1-292 (2017). 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., 

Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., 

Rautiainen, A., Sitch, S., Hayes, D., 2011. A Large and Persistent Carbon Sink in the World’s 

Forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609 

Pardo, G., Moral, R., Aguilera, E., del Prado, A., 2015. Gaseous emissions from management of solid 

waste: A systematic review. Global Change Biology 21, 1313–1327. 

https://doi.org/10.1111/gcb.12806 

Patra, A.K., 2012. Enteric methane mitigation technologies for ruminant livestock: A synthesis of 

current research and future directions. Environmental Monitoring and Assessment 184, 

1929–1952. https://doi.org/10.1007/s10661-011-2090-y 



 

158 
 

Pattey, E., Trzcinski, M.K., Desjardins, R.L., 2005. Quantifying the reduction of greenhouse gas 

emissions as a result of composting dairy and beef cattle manure. Nutrient Cycling in 

Agroecosystems 72, 173–187. https://doi.org/10.1007/s10705-005-1268-5 

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., Smith, P., 2016. Climate-smart soils. 

Nature 532, 49–57. https://doi.org/10.1038/nature17174 

Pellerin, S., Bamière, L., Angers, D., Béline, F., Benoît, M., Butault, J.-P., Chenu, C., Colnenne-David, C., 

De Cara, S., Delame, N., Doreau, M., Dupraz, P., Faverdin, P., Garcia-Launay, F., Hassouna, M., 

Hénault, C., Jeuffroy, M.-H., Klumpp, K., Metay, A., Moran, D., Recous, S., Samson, E., Savini, 

I., Pardon, L., 2015. Agriculture et gaz à effet de serre: Dix actions pour réduire les émissions, 

QUAE. ed. QUAE. 

Petz, K., Alkemade, R., Bakkenes, M., Schulp, C.J.E., van der Velde, M., Leemans, R., 2014. Mapping 

and modelling trade-offs and synergies between grazing intensity and ecosystem services in 

rangelands using global-scale datasets and models. Global Environmental Change 29, 223–

234. https://doi.org/10.1016/j.gloenvcha.2014.08.007 

Peyraud, J.-L., Taboada, M., Delaby, L., 2014. Integrated crop and livestock systems in Western 

Europe and South America: A review. European Journal of Agronomy 57, 31–42. 

https://doi.org/10.1016/j.eja.2014.02.005 

Philibert, A., Loyce, C., Makowski, D., 2012. Quantifying Uncertainties in N2O Emission Due to N 

Fertilizer Application in Cultivated Areas. PLoS ONE 7, e50950. 

https://doi.org/10.1371/journal.pone.0050950 

Plante, A.F., Parton, W.J., 2007. THE DYNAMICS OF SOIL ORGANIC MATTER AND NUTRIENT CYCLING, 

in: Soil Microbiology, Ecology and Biochemistry. Elsevier, pp. 433–467. 

https://doi.org/10.1016/B978-0-08-047514-1.50020-2 

Plevin, R.J., Gibbs, H.K., Duffy, J., Yui, S., Yeh, S., 2014. Agro-ecological Zone Emission Factor (AEZ-EF) 

Model (v47). 

Poeplau, C., Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover crops - A 

meta-analysis. Agriculture, Ecosystems and Environment 200, 33–41. 

https://doi.org/10.1016/j.agee.2014.10.024 

Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B., Schumacher, J., Gensior, A., 2011. 

Temporal dynamics of soil organic carbon after land-use change in the temperate zone - 

carbon response functions as a model approach. Global Change Biology 17, 2415–2427. 

https://doi.org/10.1111/j.1365-2486.2011.02408.x 

Ponisio, L.C., M’gonigle, L.K., Mace, K.C., Palomino, J., Valpine, P.D., Kremen, C., 2015. Diversification 

practices reduce organic to conventional yield gap. Proceedings of the Royal Society B: 

Biological Sciences 282, 1–7. https://doi.org/10.1098/rspb.2014.1396 



References 

 

159 
 

Poux, X., Aubert, P.-M., 2018. Une Europe agroécologique en 2050 : une agriculture 

multifonctionnelle pour une alimentation saine (No. 9). IDDRI-AScA. 

Puech, C., Baudry, J., Joannon, A., Poggi, S., Aviron, S., 2014. Organic vs. conventional farming 

dichotomy: Does it make sense for natural enemies? Agriculture, Ecosystems & Environment 

194, 48–57. https://doi.org/10.1016/j.agee.2014.05.002 

Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A., 2008. Farming the planet: 1. Geographic 

distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, 1–19. 

https://doi.org/10.1029/2007GB002952 

Ramankutty, N., Ricciardi, V., Mehrabi, Z., Seufert, V., 2019. Trade‐offs in the performance of 

alternative farming systems. Agricultural Economics 50, 97–105. 

https://doi.org/10.1111/agec.12534 

Ray, D.K., West, P.C., Clark, M., Gerber, J.S., Prishchepov, A.V., Chatterjee, S., 2019. Climate change 

has likely already affected global food production. PLoS ONE 14, e0217148. 

https://doi.org/10.1371/journal.pone.0217148 

Reay, D.S., Davidson, E.A., Smith, K.A., Smith, P., Melillo, J.M., Dentener, F., Crutzen, P.J., 2012. 

Global agriculture and nitrous oxide emissions. Nature Clim Change 2, 410–416. 

https://doi.org/10.1038/nclimate1458 

Reganold, J.P., Wachter, J.M., 2016. Organic agriculture in the twenty-first century. Nature plants 2, 

1–8. https://doi.org/10.1038/nplants.2015.221 

Rezaei, M., Yngvesson, J., Gunnarsson, S., Jönsson, L., Wallenbeck, A., 2018. Feed efficiency, growth 

performance, and carcass characteristics of a fast- and a slower-growing broiler hybrid fed 

low- or high-protein organic diets. Organic Agriculture 8, 121–128. 

https://doi.org/10.1007/s13165-017-0178-6 

Rigby, D., Cáceres, D., 2001. Organic farming and the sustainability of agricultural systems. 

Agricultural Systems 68, 21–40. https://doi.org/10.1016/S0308-521X(00)00060-3 

Ritchie, H., Reay, D.S., Higgins, P., 2018. The impact of global dietary guidelines on climate change. 

Global Environmental Change 49, 46–55. https://doi.org/10.1016/j.gloenvcha.2018.02.005 

Robinson, T.P., William Wint, G.R., Conchedda, G., Van Boeckel, T.P., Ercoli, V., Palamara, E., Cinardi, 

G., D’Aietti, L., Hay, S.I., Gilbert, M., 2014. Mapping the global distribution of livestock. PLoS 

ONE 9, e96084. https://doi.org/10.1371/journal.pone.0096084 

Rochette, P., Janzen, H.H., 2005. Towards a revised coefficient for estimating N2O emissions from 

legumes. Nutrient Cycling in Agroecosystems 73, 171–179. https://doi.org/10.1007/s10705-

005-0357-9 

Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F.S.I., Lambin, E., Lenton, T.M., Scheffer, 

M., Folke, C., Schellnhuber, H.J., Nykvist, B., de Wit, C.A., Hughes, T., van der Leeuw, S., 

Rodhe, H., Sörlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., 



 

160 
 

Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., 

Foley,  jonathan, 2009. Planetary Boundaries: Exploring the Safe Operating Space for 

Humanity. Ecology and society 14, 1–22. https://doi.org/10.1038/461472a 

Röös, E., Mie, A., Salomon, E., Johansson, B., Gunnarsson, S., Wallenbeck, A., Hoffmann, R., Nilsson, 

U., Sundber, C., A. Watson, C., 2018. Risks and opportunities of increasin yields in organic 

farming. A review. Agronomy for sustainable Development 38, 1–21. 

https://doi.org/10.1007/s13593-018-0489-3 

Röös, E., Patel, M., Spångberg, J., Carlsson, G., Rydhmer, L., 2016. Limiting livestock production to 

pasture and by-products in a search for sustainable diets. Food Policy 58, 1–13. 

https://doi.org/10.1016/j.foodpol.2015.10.008 

Ross Aviagen, 2014. Broiler Management Handbook. 

Ruane, A.C., Goldberg, R., Chryssanthacopoulos, J., 2015. Climate forcing datasets for agricultural 

modeling: Merged products for gap-filling and historical climate series estimation. 

Agricultural and Forest Meteorology 200, 233–248. 

https://doi.org/10.1016/j.agrformet.2014.09.016 

Sacks, W.J., Deryng, D., Foley, J.A., Ramankutty, N., 2010. Crop planting dates: an analysis of global 

patterns: Global crop planting dates. Global Ecology and Biogeography 19, 607–620. 

https://doi.org/10.1111/j.1466-8238.2010.00551.x 

Schaldach, R., Alcamo, J., Koch, J., Kölking, C., Lapola, D.M., Schüngel, J., Priess, J.A., 2011. An 

integrated approach to modelling land-use change on continental and global scales. 

Environmental Modelling & Software 26, 1041–1051. 

https://doi.org/10.1016/j.envsoft.2011.02.013 

Schut, A.G.T., Cooledge, E.C., Moraine, M., Van De Ven, G.W.J., Jones, D.L., Chadwick, D.R., 2021. 

Reintegration Of Crop-Livestock Systems In Europe: An Overview. Front. Agr. Sci. Eng. 8, 111–

129. https://doi.org/10.15302/J-FASE-2020373 

Scialabba, N.E.H., Mller-Lindenlauf, M., 2010. Organic agriculture and climate change. Renewable 

Agriculture and Food Systems 25, 158–169. https://doi.org/10.1017/S1742170510000116 

Seconda, L., Fouillet, H., Huneau, J.-F., Pointereau, P., Baudry, J., Langevin, B., Lairon, D., Allès, B., 

Touvier, M., Hercberg, S., Mariotti, F., Kesse-Guyot, E., 2021. Conservative to disruptive diets 

for optimizing nutrition, environmental impacts and cost in French adults from the NutriNet-

Santé cohort. Nat Food 2, 174–182. https://doi.org/10.1038/s43016-021-00227-7 

Seufert, V., Ramankutty, N., 2017. Many shades of gray—the context-dependent performance of 

organic agriculture. Science Advances 3, e1602638. https://doi.org/10.1126/sciadv.1602638 

Seufert, V., Ramankutty, N., Foley, J.A., 2012. Comparing the yields of organic and conventional 

agriculture. Nature 485, 229–232. https://doi.org/10.1038/nature11069 



References 

 

161 
 

Seufert, V., Ramankutty, N., Mayerhofer, T., 2017. What is this thing called organic? – How organic 

farming is codified in regulations. Food Policy 68, 10–20. 

https://doi.org/10.1016/j.foodpol.2016.12.009 

Shcherbak, I., Millar, N., Robertson, G.P., 2014. Global metaanalysis of the nonlinear response of soil 

nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of 

Sciences 111, 9199–9204. https://doi.org/10.1073/pnas.1322434111 

Sheldrick, W., Syers, J.K., Lingard, J., 2003. Contribution of livestock excreta to nutrient balances. 

Nutrient Cycling in Agroecosystems 66, 119–131. 

Shepherd, R., 2002. Resistance to Changes in Diet. Proc. Nutr. Soc. 61, 267–272. 

https://doi.org/10.1079/PNS2002147 

Singh, S., Nag, S.K., Kundu, S.S., Maity, S.B., 2010. Relative intake, eating pattern, nutrient 

digestibility, nitrogen metabolism, fermentation pattern and growth performance of lambs 

fed organically and inorganically produced cowpea haybarley grain diets. Tropical Grasslands 

44, 55–61. 

Skinner, C., Gattinger, A., Muller, A., Mäder, P., Fliebach, A., Stolze, M., Ruser, R., Niggli, U., 2014. 

Greenhouse gas fluxes from agricultural soils under organic and non-organic management - A 

global meta-analysis. Science of the Total Environment 468, 553–563. 

https://doi.org/10.1016/j.scitotenv.2013.08.098 

Smil, V., 1999. Nitrogen in crop production: An account of global flows. Global Biogeochem. Cycles 

13, 647–662. https://doi.org/10.1029/1999GB900015 

Smith, L.G., Jones, P.J., Kirk, G.J.D., Pearce, B.D., Williams, Adrian.G., 2018. Modelling the production 

impacts of a widespread conversion to organic agriculture in England and Wales. Land Use 

Policy 76, 391–404. https://doi.org/10.1016/j.landusepol.2018.02.035 

Smith, L.G., Kirk, G.J.D., Jones, P.J., Pearce, B.D., 2019. The greenhouse gas impacts of converting 

food production in England and Wales to organic methods. Nature Communications 10, 1–

10. https://doi.org/10.1038/s41467-019-12622-7 

Smith, Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., 

Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., 

Towprayoon, S., Wattenbach, M., Smith, J., 2008. Greenhouse gas mitigation in agriculture. 

Philosophical Transactions of the Royal Society B: Biological Sciences 363, 789–813. 

https://doi.org/10.1098/rstb.2007.2184 

Smith, P., Soussana, J., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H., Egmond, F., 

McNeill, S., Kuhnert, M., Arias‐Navarro, C., Olesen, J.E., Chirinda, N., Fornara, D., Wollenberg, 

E., Álvaro‐Fuentes, J., Sanz‐Cobena, A., Klumpp, K., 2020. How to measure, report and verify 

soil carbon change to realize the potential of soil carbon sequestration for atmospheric 

greenhouse gas removal. Glob Change Biol 26, 219–241. https://doi.org/10.1111/gcb.14815 



 

162 
 

Soussana, J.-F., Lemaire, G., 2014. Coupling carbon and nitrogen cycles for environmentally 

sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems 

& Environment 190, 9–17. https://doi.org/10.1016/j.agee.2013.10.012 

Srednicka-Tober, D., Barański, M., Seal, C., Sanderson, R., Benbrook, C., Steinshamn, H., Gromadzka-

Ostrowska, J., Rembiałkowska, E., Skwarło-Sońta, K., Eyre, M., Cozzi, G., Krogh Larsen, M., 

Jordon, T., Niggli, U., Sakowski, T., Calder, P.C., Burdge, G.C., Sotiraki, S., Stefanakis, A., Yolcu, 

H., Stergiadis, S., Chatzidimitriou, E., Butler, G., Stewart, G., Leifert, C., 2016. Composition 

differences between organic and conventional meat: A systematic literature review and 

meta-analysis. British Journal of Nutrition 115, 994–1011. 

https://doi.org/10.1017/S0007114515005073 

Steinfeld, H., Gerber, P., 2010. Livestock production and the global environment: Consume less or 

produce better? Proceedings of the National Academy of Sciences 107, 18237–18238. 

https://doi.org/10.1073/pnas.1012541107 

Stewart, W.M., Dibb, D.W., Johnston, A.E., Smyth, T.J., 2005. The Contribution of Commercial 

Fertilizer Nutrients to Food Production. Agron.j. 97, 1–6. 

https://doi.org/10.2134/agronj2005.0001 

Tanase, V., Vrînceanu, N., Preda, M., Motelica, D.M., 2017. RESIDUAL EFFECTS OF FERTILIZATION 

WITH SEWAGE SLUDGE  COMPOST ON CROPLAND. AgroLife Scientific Journal 6, 227–234. 

Tatar, A.M., Sireli, H.D., Tutkun, M., 2017. Reasons for Culling and Replacement Rate in Dairy Cattle. 

Scientific Papers-Series D-Animal Science 60, 49–51. 

Thornton, P.K., 2010. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B 365, 

2853–2867. https://doi.org/10.1098/rstb.2010.0134 

Tilman, D., Clark, M., 2014. Global diets link environmental sustainability and human health. Nature 

515, 518–522. https://doi.org/10.1038/nature13959 

Tipping, E., Somerville, C.J., Luster, J., 2016. The C:N:P:S stoichiometry of soil organic matter. 

Biogeochemistry 130, 117–131. https://doi.org/10.1007/s10533-016-0247-z 

Tubiello, F.N., Salvatore, M., Cóndor Golec, R.D., Ferrara, A., Rossi, S., Biancalani, R., Federici, S., 

Jacobs, H., Flammini, A., 2014. Agriculture , Forestry and Other Land Use Emissions by 

Sources and Removals by Sinks (No. 2). FAO. 

Tuck, S.L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L.A., Bengtsson, J., 2014. Land‐use intensity 

and the effects of organic farming on biodiversity: a hierarchical meta‐analysis. J Appl Ecol 

51, 746–755. https://doi.org/10.1111/1365-2664.12219 

Tuomisto, H.L., Hodge, I.D., Riordan, P., Macdonald, D.W., 2012. Does organic farming reduce 

environmental impacts? - A meta-analysis of European research. Journal of Environmental 

Management 112, 309–320. https://doi.org/10.1016/j.jenvman.2012.08.018 



References 

 

163 
 

Tyrrell, H.F., Reid, J.T., 1965. Prediction of the Energy Value of Cow’s Milk. Journal of Dairy Science 

48, 1215–1223. https://doi.org/10.3168/jds.S0022-0302(65)88430-2 

van Groenigen, J.W., Huygens, D., Boeckx, P., Kuyper, Th.W., Lubbers, I.M., Rütting, T., Groffman, 

P.M., 2015. The soil N cycle: new insights and key challenges. SOIL 1, 235–256. 

https://doi.org/10.5194/soil-1-235-2015 

Van Wagenberg, C.P.A., De Haas, Y., Hogeveen, H., Van Krimpen, M.M., Meuwissen, M.P.M., Van 

Middelaar, C.E., Rodenburg, T.B., 2017. Animal Board Invited Review: Comparing 

conventional and organic livestock production systems on different aspects of sustainability. 

Animal 11, 1839–1851. https://doi.org/10.1017/S175173111700115X 

van Zanten, H.H.E., Mollenhorst, H., Klootwijk, C.W., van Middelaar, C.E., de Boer, I.J.M., 2016. Global 

food supply: land use efficiency of livestock systems. International Journal of Life Cycle 

Assessment 21, 747–758. https://doi.org/10.1007/s11367-015-0944-1 

Venterea, R.T., Halvorson, A.D., Kitchen, N., Liebig, M.A., Cavigelli, M.A., Grosso, S.J.D., Motavalli, 

P.P., Nelson, K.A., Spokas, K.A., Singh, B.P., Stewart, C.E., Ranaivoson, A., Strock, J., Collins, H., 

2012. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized 

cropping systems. Frontiers in Ecology and the Environment 10, 562–570. 

https://doi.org/10.1890/120062 

Vertès, F., Mary, B., 2007. Modelling the long term SOM dynamics in fodder rotations with a variable 

part of grassland, in: Organic Matter Symposium. pp. 17–19. 

Voelker, J.A., Burato, G.M., Allen, M.S., 2002. Effects of Pretrial Milk Yield on Responses of Feed 

Intake, Digestion, and Production to Dietary Forage Concentration. Journal of Dairy Science 

85, 2650–2661. https://doi.org/10.3168/jds.S0022-0302(02)74350-6 

Watson, C.A., Atkinson, D., Gosling, P., Jackson, L.R., Rayns, F.W., 2006. Managing soil fertility in 

organic farming systems. Soil Use and Management 18, 239–247. 

https://doi.org/10.1111/j.1475-2743.2002.tb00265.x 

Weiss, W.P., Tebbe, A.W., 2019. Estimating digestible energy values of feeds and diets and 

integrating those values into net energy systems. Translational Animal Science 3, 953–961. 

https://doi.org/10.1093/tas/txy119 

Wilkinson, J.M., 2011. Re-defining efficiency of feed use by livestock. Animal 5, 1014–1022. 

https://doi.org/10.1017/S175173111100005X 

Willer, H., Lemoud, J., 2018. The world of organic agriculture. Statistics and emerging trends 2018., 

IFOAM & FIBL. https://doi.org/10.4324/9781849775991 

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Garnett, T., Tilman, D., Wood, A., 

DeClerck, F., Jonell, M., Clark, M., Gordon, L., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J.A., 

Branca, F., Lartey, A., Fan, S., Crona, B., Fox, E., Bignet, V., Troell, M., Lindahl, T., Singh, S., 

Cornell, S., Reddy, S., Narain, S., Nishtar, S., Murray, C., 2019. OUR FOOD IN THE 



 

164 
 

ANTHROPOCENE: THE EAT-LANCET COMMISSION ON HEALTHY DIETS FROM SUSTAINABLE 

FOOD SYSTEMS. Lancet 393, 447–492. https://doi.org/10.1016/S0140- 6736(18)31788-4 

Wu, G., Bazer, F.W., Davis, T.A., Jaeger, L.A., Johnson, G.A., Kim, S.W., Knabe, D.A., Meininger, C.J., 

Spencer, T.E., Yin, Y.-L., 2007. Important roles for the arginine family of amino acids in swine 

nutrition and production. Livestock Science 112, 8–22. 

https://doi.org/10.1016/j.livsci.2007.07.003 

Xue, L., Liu, G., Parfitt, J., Liu, X., Van Herpen, E., Stenmarck, Å., O’Connor, C., Östergren, K., Cheng, S., 

2017. Missing Food, Missing Data? A Critical Review of Global Food Losses and Food Waste 

Data. Environ. Sci. Technol. 51, 6618–6633. https://doi.org/10.1021/acs.est.7b00401 

 


