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Abstract

Cette thèse se concentre sur la conception algorithmique de trois problèmes d’optimisation
combinatoire liés à la recherche en transport, logistique et production avec des types
spécifiques de contraintes industrielles. Tout d’abord, nous considérons le problème du
voyageur de commerce généralisé à contraintes de priorité (PCGTSP). Ce problème est
une extension de deux problèmes d’optimisation combinatoire bien connus : le problème
généralisé du voyageur de commerce (GTSP) et le problème du voyageur de commerce
asymétrique à contrainte de préséance (PCATSP), dont la version de chemin est connue
sous le nom de problème de commande séquentielle (SOP).

Semblable au GTSP classique, le but du PCGTSP est de trouver pour un digraphe
d’entrée donné et une partition de son ensemble de nœuds en clusters un itinéraire
cyclique (tour) à coût minimum visitant chaque cluster dans un seul nœud. De plus,
comme dans le PCATSP, les visites réalisables sont limitées à la visite des clusters
dans le respect de l’ordre partiel donné. Contrairement au GTSP et au SOP, à notre
connaissance, le PCGTSP reste encore peu étudié tant en termes de théorie polyédrique
que d’algorithmes. Dans cette thèse, pour la première fois pour le PCGTSP, nous
proposons plusieurs familles d’inégalités valides, établissons la dimension du polytope
PCGTS et prouvons des conditions suffisantes garantissant que les inégalités π et σ
étendues de Balas induire des facettes. En nous appuyant sur ces résultats théoriques et
les approches algorithmiques existantes pour le PCATSP et le SOP, nous introduisons une
famille de modèles MILP et plusieurs variantes de l’algorithme branch-and-cut pour le
PCGTSP. Nous étudions leurs performances sur les instances de la bibliothèque publique
de benchmark PCGTSPLIB, une adaptation connue du SOPLIB classique au problème
en question. Les résultats obtenus montrent l’efficacité de l’algorithme. L’article a été
publié dans le European Journal of Operational Research.

Notre deuxième sujet de recherche est lié à une application industrielle spécifique du
PCGTSP - le problème du chemin de coupe discret (CPP). Dans ce problème, nous avons
cherché à trouver une trajectoire optimale pour un outil de coupe, afin de minimiser le
coût total de traitement, y compris la découpe, le mouvement de l’air, le perçage et autres
dépenses, soumis aux contraintes induites par les restrictions de découpe industrielle. Il
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est pratique de considérer ces restrictions en termes de contraintes de préséance. Nous
introduisons un cadre de solution général pour le RPC qui comprend : (i) l’approche
de réduction universelle pour de nombreuses variantes de ce problème au problème
du voyageur de commerce généralisé avec contraintes de préséance ; (ii) un support
méthodologique pour trouver des solutions (sous-) optimales à ce problème sur la base de
l’algorithme de branchement et de coupe et de la méta-heuristique PCGLNS. Les résultats
des expériences informatiques montrent l’efficacité du cadre proposé pour résoudre les
instances industrielles du problème. L’article a été soumis à l’International Journal of
Production Research.

Enfin, nous abordons le problème de routage de véhicules capacitaires (CVRP). CVRP
est fortement NP-difficile (même sur le plan euclidien), difficile à approximer dans le cas
général et APX-complet pour une métrique arbitraire. Cependant, pour les paramètres
géométriques du problème, il existe un certain nombre de schémas d’approximation
temporelle quasi-polynomiale et même polynomiale connus. Parmi ces résultats, le
célèbre système d’approximation temporelle quasi-polynomiale (QPTAS) proposé par
A. Das et C. Mathieu semble être le plus général. Dans cette thèse, nous proposons la
première extension de ce schéma à une classe plus large d’espaces métriques. En fait,
nous montrons que la métrique CVRP a un QPTAS à tout moment lorsque le problème
est installé dans l’espace métrique de toute dimension de doublement d > 1 et que la
capacité ne dépasse pas polylog(n). L’article a été publié dans le Journal of Global
Optimization.

Mot-clefs : Problème du voyageur de commerce généralisé avec contraintes de
précédence; Programmation en nombres entiers; Algorithme Branch-and-Cut; Inégalités
valides et facettes ; Structure polyédrique; Problème de chemin de coupe; Problème de
coupe du point final; ALNS; Problème de tournées de véhicules avec capacité; un schéma
d’approximation en temps quasi-polynomial



Abstract

This thesis focuses on algorithmic design for three combinatorial optimization problems
related to transportation, logistics and production research with specific types of indus-
trial constraints. First, we consider the Precedence Constrained Generalized Traveling
Salesman Problem (PCGTSP). This problem is an extension of two well-known combina-
torial optimization problems — the Generalized Traveling Salesman Problem (GTSP)
and the Precedence Constrained Asymmetric Traveling Salesman Problem (PCATSP),
whose path version is known as the Sequential Ordering Problem (SOP).

Similarly to the classic GTSP, the goal of the PCGTSP is to find for a given input
digraph and partition of its node set into clusters a minimum cost cyclic route (tour)
visiting each cluster in a single node. In addition, as in the PCATSP, feasible tours are
restricted to visit the clusters with respect to the given partial order. Unlike the GTSP
and SOP, to the best of our knowledge, the PCGTSP still remain to be weakly studied
both in terms of polyhedral theory and algorithms. In this thesis, for the first time for
the PCGTSP, we propose several families of valid inequalities, establish dimension of
the PCGTS polytope and prove sufficient conditions ensuring that the extended Balas’
π- and σ-inequalities become facet-inducing. Relying on these theoretical results and
existing algorithmic approaches for the PCATSP and SOP, we introduce a family of
MILP-models and several variants of the branch-and-cut algorithm for the PCGTSP. We
study their performance on the instances of the public benchmark library PCGTSPLIB,
a known adaptation of the classic SOPLIB to the problem in question. The obtained
results show the efficiency of the algorithm. The paper was published in European
Journal of Operational Research.

Our second research topic is related to a specific industrial application of the PCGTSP
- the discrete Cutting Path Problem (CPP). In this problem, we aimed to find an optimal
path for a cutting tool, in order to minimize the total processing cost including cutting,
air-motion, piercing, and other expenses, subject to constraints induced by industrial
cutting restrictions. It is convenient to consider such restrictions in terms of precedence
constraints. We introduce a general solution framework for CPP that includes: (i)
the universal reduction approach for numerous variants of this problem to the the
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Precedence Constrained Generalized Traveling Salesman Problem; (ii) methodological
support for finding (sub-) optimal solutions of this problem on the basis of branch-and-cut
algorithm and PCGLNS meta-heuristic. The results of computational experiments show
the efficiency of the proposed framework for solving industrial instances of the problem.
The paper was submitted to International Journal of Production Research.

Finally, we tackle the Capacitated Vehicle Routing Problem (CVRP). CVRP is
strongly NP-hard (even on the Euclidean plane), hard to approximate in general case
and APX-complete for an arbitrary metric. However, for the geometric settings of
the problem, there is a number of known quasi-polynomial and even polynomial time
approximation schemes. Among these results, the well-known Quasi-Polynomial Time
Approximation Scheme (QPTAS) proposed by A. Das and C. Mathieu appears to be the
most general. In this thesis, we propose the first extension of this scheme to a more wide
class of metric spaces. Actually, we show that the metric CVRP has a QPTAS any time
when the problem is set up in the metric space of any fixed doubling dimension d > 1
and the capacity does not exceed polylog(n). The paper was published in Journal of
Global Optimization.

Keywords: Precedence Constrained Generalized Traveling Salesman Problem; In-
teger programming; Branch-and-cut algorithm; Facet-inducing inequalities; Polyhedral
structure; Cutting Path Problem; Endpoint Cutting Problem; Adaptive Large Neighbor-
hood Search; Capacitated Vehicle Routing Problem; Quasi-Polynomial Time Approxima-
tion Scheme
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Chapter 1

Introduction

In this preliminary chapter, we illustrate how the optimization methods
and the operational research can help with the challenges and opportunities
of the modern world. To explain the motivation of this research, we provide
literature review for each topic considered in the thesis. We conclude
the chapter by describing the main contribution the thesis and show the
road-map of its structure.

1.1 Optimization for the global economy

The concept of the globalization comes into a reality. Nowadays, it is
impossible to imagine a modern world without an international trade
[Xu et al., 2020, Hong et al., 2023]. Being a remarkable achievement,
global economy presents many challenges and opportunities [Zhang, 2018,
Kurniawan et al., 2023].

The first challenge deals with the climate changes and global warming
[Peng et al., 2020, Cho et al., 2023]. Due to the rising CO2 emissions,
the industry is trying to find a replacement of fossil fuels by employing a
different, more sustainable sources of power [Güney, 2022]. The following
study reviews the global impact of solar power plants, using different
solar collectors and makes a comprehensive comparison [Gobio-Thomas



2 Introduction

et al., 2023]. In addition, the authors indicate the need of novel algorithms
and software to operate those sophisticated machines. Another study
highlights the importance of optimization in an attempt to replace some
of the fossil fuel with an advanced hydrogen production [Riera et al., 2023].
Authors mention the potential applications of hydrogen in transmission,
distribution and integration with different energy systems, however the
necessary infrastructure is insufficient. Furthermore, the paper indicates
the previously proposed optimization models, such as Mixed Integer Linear
Programming (MILP) in order to improve the production process. The
authors conclude their review by mentioning the need of those models
in practice. Finally, due to the increased temperatures and ever-rising
transportation cost, there is a major risk of disruption of the existing
supply chains [Clavijo-Buritica et al., 2023]. This is especially important
for the agricultural production and the question of resilience of the supply
chains is considered in this study. The authors propose a framework to
analyze and mitigate the potential disruptions of one specific food supply
chain, using the methods of optimization. Once again, authors highlight
the necessity of novel algorithms.

The second challenge is one of the most recent ones concerned with
COVID-19 pandemic [Adedoyin and Soykan, 2023]. As it is shown in
the paper [Montoya-Torres et al., 2023], pre-pandemic supply chains
were not ready for the outbreak. Even after the pandemic was resolved,
many companies still suffer the consequences. However, authors provide
a method, that involves the operations research techniques in order to
compensate the crisis. Speaking of the repercussions of the pandemic, we
should mention the variety of disruptions that occur during COVID-19,
such as food, medicine and eventually the lack of professional assistance
at the right time, in the right quantity, of the right quality [Shen and Sun,
2023, Chervenkova and Ivanov, 2023]. The authors point out the fact that
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conventional methods of the disruption mitigation are no longer viable for
a global crisis and propose a novel frameworks in order to stabilize the
situation with the assistance of optimization methods.

The third challenge consists of geopolitical issues [Iqbal et al., 2019,
Zhang et al., 2023]. A recent work studies changes induced by US-China
trade conflict after 2017 [Yuan et al., 2023]. Authors consider possible
supply chain reallocations and their complete rebuilding process in the
new countries, thus causing a potential disruptions and cost increase.
They also propose an approach to minimize the emissions that can occur
during the relocation. Another study around this trade conflict propose
an optimization model that can reduce the potential costs involved with
the new tariffs and development of novel networks [Huang et al., 2023].
Finally, the decision-making aspect is tackled for the remanufacturing of
global supply chains [Li et al., 2023b]. In particular, the authors propose
practical schemes for decision makers that involve optimization methods
in order to resolve the disruptions.

Speaking of opportunities of the global economy, we should definitely
mention novel technological advances, such as Artificial Intelligence, and
their integration into production process [Kar et al., 2022]. As an approach
to deal with aforementioned challenges, Industry 5.0 has attracted many
researchers around the globe [Leng et al., 2022]. Its applications include
an Interned of Things for the medical devices industry [Nayeri et al., 2023],
Deep Learning approach for airport detection to improve the aircraft routes
[Li et al., 2023a], and additional resilience towards the industry against
the unexpected disruptions, such as geopolitical conflicts or COVID-19
pandemic [Leng et al., 2023]. However, all those results would be impossible
without the optimization methods.
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1.2 Considered problems

This doctoral thesis is devoted to several deterministic extensions of
two classic combinatorial optimization problems — Traveling Salesman
Problem (TSP) [Lawler et al., 1985] and Vehicle Routing Problem (VRP)
[Toth and Vigo, 2014], enhanced with additional constraints.

The TSP was initially introduced in 1932 in [Menger, 1932]. Its state-
ment may be defined as follows. Let G = (V,E) be a graph where V is
a set of n nodes. E is a set of edges (or arcs, if G is a directed graph),
and let C = (Cij) be a transportation cost matrix associated with E. The
problem consists of determining a minimum cost Hamiltonian cycle (one
that visits each node v ∈ V exactly once). The algorithmic analysis of the
TSP is dated back to the seminal paper [Dantzig et al., 1954]. The TSP is
often used as a proving ground for numerous optimization techniques [see
ex. Gutin and Punnen, 2007]. In addition, its popularity is explained by
many real-life applications, including urban distribution [Macrina et al.,
2020], drone trajectory optimization [Otto et al., 2018], logistics [Yu et al.,
2021], machine scheduling problems [Mosayebi et al., 2021], and DNA
sequencing [Caserta and Voß, 2014].

As for the VRP, its statement can be defined as follows [Laporte, 2009].
Let G = (V,E) be a graph whose node set V = X ∪ {y}, where X is a set
of customers, each of them having a unit demand on some homogeneous
commodity, and y is a depot. All the customer’s demand should be
serviced by identical vehicles located initially at the depot y. To each edge
{i, j}, we assign its transportation cost cij. The problem is to construct a
minimum cost family of cyclic routes servicing the total customer demand,
each of them departs from and arrives at the depot y.

There are known many versions of the VRP describing various practical
applications of this problem. Among them are Multi-Objective VRP for
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creation of alternative routes [Rossit et al., 2019], Generalized VRP and
TSP with profits [Baldacci et al., 2010], truck-drone routing problem
[Liang and Luo, 2022], stochastic dynamic routing problem [Soeffker et al.,
2022], sustainable urban vehicle routing [Dündar et al., 2021], two-echelon
routing problems [Cuda et al., 2015], and so on.

In this thesis, our research is focused on the following problems:

• the Precedence Constrained Generalized Traveling Salesman Problem
(PCGTSP), which extends both Asymmetric TSP and Generalized
TSP;

• the discrete Cutting Path Problem (CPP);

• the Capacitated Vehicle Routing Problem (CVRP) in metric spaces
of an arbitrary fixed doubling dimension.

The Generalized Traveling Salesman Problem (GTSP) [see e.g. Pop
et al., 2023] is a modification of the classic TSP, whose instance is still given
by a transportation network specified by a edge-weighted directed graph
G = (V,A). Unlike the TSP, in GTSP, the set of nodes V is partitioned
into mutually disjoint subsets called clusters. The goal is to construct a
closed tour that visits each cluster in one node exactly and minimizes the
accumulated transportation costs. Considered in this thesis the PCGTSP
is a generalization of GTSP, which is enhanced with additional precedence
constraints specifying the traversing order of the clusters [see e.g. Salman
et al., 2020].

In turn, the Capacitated Vehicle Routing Problem [Toth and Vigo,
2001] considered in this thesis is a generalization of the classic VRP, where
each feasible route has a given capacity.

Unlike the first two problems, the discrete CPP [Dewil et al., 2016]
comes from the industry and generally speaking, is not a combinatorial
optimization problem itself. The problem is related to sheet cutting



6 Introduction

processes, whose instance is given by a cutting plan specifying location of
flat parts to be cut out from a plate of material (e.g. metal or plastic). It
is required to construct a path of the cutting tool, which satisfies given
industrial requirements and minimizes the processing cost. We describe
those requirements in more detail in Subsection 1.3.2. In this thesis, we
show that the discrete CPP benefits from the algorithmic results obtained
for the PCGTSP, and can be considered as a practical application of this
problem.

1.3 Related work

1.3.1 Precedence Constrained Generalized Traveling Salesman
Problem

Introduced in the seminal paper by [Srivastava et al., 1969], the Generalized
Traveling Salesman Problem is one of the most well-known generalizations
[Gutin and Punnen, 2007, Pop et al., 2023] of the classic Traveling Salesman
Problem. It has numerous industrial applications including air time
minimization in metal sheet cutting [Dewil et al., 2016, Chentsov et al.,
2018b, Makarovskikh et al., 2018] and coordinate measuring machinery
[Salman et al., 2016].

Being an extension of the classic TSP, the GTSP is strongly NP-hard
even on the Euclidean plane [Papadimitriou, 1977] any time when number
of clusters m is a part of the input. On the other hand, an adaptation
to this problem of the well-known Held and Karp dynamic programming
scheme [Held and Karp, 1962] has running-time bound O(n3m2 ·2m) where
n is the number of nodes, and m is the number of clusters, i.e. the GTSP
belongs to the class of Fixed-Parameter Tractable (FPT) problems, being
parameterized by the number of clusters. Furthermore, it can be solved
to optimality in polynomial time, provided that m = O(log n).
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In the case of PCGTSP, the aforementioned running time bound can be
further improved using notion of ideal of partially ordered set and width
of such an order [see e.g. Davey and Priestley, 2002]. A subset Q of a
partially ordered set P is called its ideal if, whenever x ∈ Q, y ∈ P and
y ≤ x, we have y ∈ Q. In turn, width of an order defined on the set P is
equal to a size of the largest its antichain (a subset L of P , where any two
distinct elements of L are incomparable). As it is shown in [Khachay et al.,
2021b], the running time of the PCGTSP is O(n3m2 · |J |) , where J is a
family of ideals of the given partially ordered set of clusters. In particular,
if the order specifying the precedence constraints is of fixed width w, then
|J | = O(mw) [Steiner, 1990]. Thus, in this case, the PCGTSP can be
solved to optimality in polynomial time.

The algorithmic design for the GTSP has been developed in the litera-
ture in several directions. The first approach is based on the reduction
of the initial problem to an appropriate instance of the Asymmetric TSP
(ATSP) [Noon and Bean, 1993, Laporte and Semet, 1999], which at first
glance gives an opportunity to employ a vast variety of known algorithms
designed for the ATSP [see e.g. Roberti and Toth, 2012]. However, as
it is stated [Karapetyan and Gutin, 2012], despite its mathematical ele-
gance, this approach suffers from several technical shortcomings. First,
even a close-to-optimal solutions of such auxiliary ATSP instances may
correspond to infeasible solutions of the initial GTSP. Furthermore, such
instances may have a quite unusual shape and thus difficult to solve for
the existing TSP solvers.

Another approach provides various heuristics and meta-heuristics. Among
them are the memetic algorithms [Gutin and Karapetyan, 2010], an exten-
sion of the Lin-Kernighan-Helsgaun heuristic solver [Helsgaun, 2015], and
the GLNS meta-heuristic [Smith and Imeson, 2017] based on the Adaptive
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Large Neighborhood Search (ALNS) framework, which appears to be the
most efficient at the moment.

Finally, we should mention two research directions. First of them is
related to design of exact algorithms, including problem-specific branch-
and-bound and branch-and-cut algorithms [Fischetti et al., 1997, Yuan
et al., 2020]. And the second one tackles approximation algorithms with
theoretical performance guarantees [see e.g. Khachai and Neznakhina,
2017]).

The Sequential Ordering Problem (SOP), which is also known as Prece-
dence Constrained Asymmetric TSP (PCATSP), was introduced in [Escud-
ero, 1988]. We should mention three groups of important results obtained
for the both problems on which the current research for the PCGTSP is
based on.

The first of them, in the field of polyhedral study of the PCATSP,
was obtained in the seminal paper [Balas et al., 1995], where sufficient
conditions for the π- and σ-inequalities to be facet-inducing were proved.

The second group comprises valid inequalities that exploit precedence
constraints explicitly and approaches to their strengthening, as well as
the design of MILP-models (formulations) in order to obtain better lower
bounds while decreasing time complexity of the appropriate LP-relaxations.
Among them are compact formulations proposed in [Sarin et al., 2005] as an
extension of results of [Gouveia and Pires, 1999, 2001, Sherali and Driscoll,
2002], and formulations whose exponential-size sets of valid inequalities
are supplemented with polynomial-time separation techniques [Gouveia
and Pesneau, 2006]. To the best of our knowledge, to the date, the models
providing the tightest lower bounds were introduced in [Gouveia et al.,
2018].

The last group of results relies on design and implementation of problem-
specific branch-and-cut algorithms including ones proposed in [Ascheuer
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et al., 2000]), [Cire and van Hoeve, 2013] and [Gouveia and Ruthmair,
2015], where the last one is regarded to be state-of-the-art on the topic.

The PCGTSP extends the PCATSP as follows. Any instance of
PCATSP is considered to be the instance of PCGTSP, where all clus-
ters are singletons. Unlike both GTSP and PCATSP, the PCGTSP still
remains weakly studied. To the best of our knowledge, all the related
published results are limited to:
(i) efficient algorithms for several specific precedence constraints including

partial orders of Balas-type [see e.g. Balas and Simonetti, 2001, Chentsov
et al., 2016] and the orders that lead to quasi- and pseudo-pyramidal
optimal tours [Khachay and Neznakhina, 2020];
(ii) the PCGLNS heuristic solver proposed in [Khachay et al., 2020a] that

extends the results obtained in [Smith and Imeson, 2017] to the case of
PCGTSP;
(iii) branch-and-bound and DP-and-bound algorithms for this problem

[Khachay et al., 2021b], based on Balas instance preprocessing [Balas et al.,
1995], Held and Karp branching framework [see e.g. Morin and Marsten,
1976], and the combinatorial lower bounds from [Salman et al., 2020],
(iv) the public PCGTSPLIB benchmark library proposed in (Salman

et al. [2020]) as an extension of the well-known SOPLIB library. According
to the literature [Salman et al., 2020, Khachay et al., 2021b], 12 out of
40 instances of this library were solved to optimality. Meanwhile, their
solutions can be found within a competitive time by Gurobi solver sup-
plied with our extension of the L1PCATSPxy compact model, previously
introduced in [Sarin et al., 2005] for the PCATSP, built-in cutting planes,
and PCGLNS primal heuristic.

In addition, we should mention the branch-and-cut algorithm proposed
recently in [Yuan et al., 2020] for the GTSP with time windows. This
result seems to be relevant as the time windows defined on clusters induce
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natural precedence constraints. Unfortunately, this approach is hardly
applicable to the general PCGTSP, since a partial order defined on the
set of clusters not necessarily admits encoding in terms of time windows.

1.3.2 Cutting Path Problem

Speaking of industrial applications of the PCGTSP, we focus on air time
minimization in metal sheet cutting [Dewil et al., 2016, Chentsov et al.,
2018b, Makarovskikh et al., 2018] and coordinate measuring machinery
[Salman et al., 2016]. As it is shown in Chapter 3, the nature of cutting
features allow us to propose an efficient general solution framework for
the CPP relying on our recent results obtained for the PCGTSP.

Sheet cutting processes are widely employed by various industries
including aerospace, automotive, or garment. These processes usually
employ a cutting technology, e.g. laser, gas plasma torch, or diamond
cutter to obtain flat parts from a rectangular plate of metal, glass, fabric,
etc.

Typically, design of a cutting procedure pursues two different optimiza-
tion criteria motivated by cutting waste reduction and decreasing of the
process time or cost, respectively. Even if some rare works [Sherif et al.,
2014, Oliveira et al., 2020] develop algorithms to optimize both these ob-
jectives simultaneously, the dominating research direction is based on the
decomposition of the initial problem into two closely related subproblems,
known as the Nesting Problem (NP) [Herrmann and Delalio, 2001] and the
Cutting Path Problem (CPP) [see, e.g. Lee and Kwon, 2006, Silva et al.,
2019]. The former can be reduced to a two-dimensional packing problem
[Gilmore and Gomory, 1961, Dyckhoff, 1990, Wäscher et al., 2007] with
the objective to minimize the nesting costs [Bennell and Oliveira, 2008],
Cherri et al. [2019]. The latter problem aims to construct an optimal path
for the cutting tool while minimizing the total processing cost that includes
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cutting, air-motion, piercing, and other expenses, subject to constraints
induced by industrial cutting restrictions [Dewil et al., 2016].

For the discrete CPP, all the cutting operations should be started only
within a given finite set of points of each contour. In particular, there
are two discrete settings: (i) each contour has a dedicated single starting
point, (ii) each contour may have several such points. In this thesis,
we consider these discrete versions of the CPP for which we describe a
number of frequently encountered in practice cutting features that have
an important impact on the problem modeling and the efficiency of the
obtained solutions.

One of the most common type of such constraints describes the case
where one contour is enclosed into another one. In this case, the outer
contour should not be cut out completely before the inner one. The similar
constraint occurs if a waste area is encompassed by several parts to be
cut. This area, called an island, should be completely cut out before the
last of the neighboring parts.

Another common industrial feature is the existence of so called common
cuts belonging to several contours simultaneously because of adjacency of
two parts.

Finally, in the modeling of CPP, the cases of relatively thin and thick
material plates need to be treated differently. In the former case, each
cut can be made on the fly, while in the latter one, special piercing
procedures may be needed inducing significant additional costs. To avoid
these costs, sometimes it may be convenient to combine several contours
by bridges, which make it possible to traverse between these contours
without switching off the cutting tool. If the model for the corresponding
CPP is appropriately adjusted, it helps also to decide between piercing
expenses and bridge-cutting costs (see Fig.1.1).
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Figure 1.1: Examples of known industrial cutting features: inner/outer contours, common
cuts, islands, and bridges. Red dot marks the current position of a cutting tool.

In the literature, several variants of the CPP are considered. The
classification of these variants introduced in the seminal paper by Hoeft
and Palekar [1997] was notably extended in [Dewil et al., 2016, Chentsov
et al., 2018a, Petunin, 2019, Petunin et al., 2022]. According to this
classification, the CPP family is dichotomized according to the rule of
choosing the entry cutting point for each contour. Within the first sub-
family called continuous, a cutting procedure can be started / interrupted /
resumed at any point of a contour. This group includes two main problems:
the Continuous Cutting Problem (CCP), where each contour must be cut
out entirely before moving to the next one, and the Intermittent Cutting
Problem (ICP) which allows cutting preemption.

Early work on the discrete versions of the CPP is due to Han and Na
[1999] who developed a simulated annealing-based algorithm for torch path
optimization for laser cutting. Castelino et al. [2003] provided a General-
ized Traveling Salesman Problem (GTSP) formulation for the discrete CPP
referred to as machining tool path problem. To solve the obtained problem,
the authors exploited an extended Noon and Bean transformation [Noon
and Bean, 1993] to the Asymmetric Traveling Salesman Problem (ATSP),
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which was solved subsequently with Lin-Kernighan-Helsgaun heuristic
[Helsgaun, 2000], and branch-and-cut algorithm proposed in [Ascheuer
et al., 2000]. However, as it shown in [Karapetyan and Gutin, 2012], this
approach can hardly be applied for the practical solution of the CPP.

In [Chentsov, 2014], the discrete CPP was modeled in terms of sequential
traversing of a given set of megalopolices (clusters) complemented with
precedence constraints and internal jobs. The authors proposed an original
scheme of Dynamic Programming (DP) to solve the problem to optimality
even in the case of uncertain air-time motion and cutting costs. Although
the obtained problem is known to be NP-hard, efficient optimal and
approximation algorithms were proposed for several known classes of
the precedence constraints [see, e.g. Chentsov et al., 2016, Khachay and
Neznakhina, 2020]. The approach was further developed for CNC plate
cutting machines in [Chentsov et al., 2018a].

The Endpoint Cutting Problem (ECP) which is a discrete cutting path
problem that allows preemption for cutting tool has been introduced
by Manber and Israni [1984]. In the literature, this problem was often
reduced to the well-known Rural Postman Problem (RPP) and several
approximate approaches were proposed to solve it: heuristics exploiting
the concept of dynamic graphs [Moreira et al., 2007], a heuristic method
taking into account the density of a super-hard material [Imahori et al.,
2008], memetic algorithms [Rodrigues and Ferreira, 2012].

Other mathematical models and solution methods have been also ex-
ploited for ECP. In [Dewil et al., 2015], several special formulations of ECP
were reduced to the GTSP consequently solved by known heuristics. Hu
et al. [2022] introduced an efficient Delaunay triangulation-based bridging
algorithm minimizing the total bridge length. Makarovskikh et al. [2018]
developed novel approximation algorithms for ECP and ICP, relying on
their recent theoretical results for planar graphs. Finally, Cuellar-Usaquén
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et al. [2023] proposed and evaluated a novel GRASP-based algorithm for
ECP.

The analysis of the aforementioned literature reveals several important
research gaps:

(i) although there exist attempts to reduce special variants of the CPP to
classic combinatorial optimization problem including TSP, GTSP, or
RPP, none of the approaches from the literature is capable to model
the tool routing problem with all the diversity of cutting features,
which makes difficult their use in industrial applications;

(ii) numerical analysis of the corresponding algorithms appears to be
developed rather weakly. Among the related work, only papers
[Dewil et al., 2014, 2015, Moreira et al., 2007, Rodrigues and Ferreira,
2012, Cuellar-Usaquén et al., 2023] report some experimental results.
However, the experiments carried out in these papers still remain irre-
producible. The reported results cannot be taken for the comparison
due to either the lack of implementation details, insufficiently clear
experimental setup, or inaccessibility of benchmark instances.

On the other hand, the PCGTSP has a variety of well-developed
algorithms and solution techniques. The research effort on this problem
stems from seminal papers of Balas et al. [1995], Balas and Simonetti [2001].
At this moment, the branch-and-cut algorithm, proposed in [Khachai et al.,
2023], and based on strong MILP formulations, extensive polyhedral results,
and promising PCGLNS primal heuristic from [Khachay et al., 2020a], is
the state-of-the-art for this problem.

1.3.3 Capacitated Vehicle Routing Problem

In order to tackle the third research direction related to the approximate
methods, we propose an approximation algorithm with accuracy guaran-
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tees for the problem, which is related to the TSP – Capacitated Vehicle
Routing Problem (CVRP). Being an extension of the well-known Vehi-
cle Routing Problem, it is actively studied combinatorial problem with
numerous important applications in Operations Research (Demir et al.
[2019], Laporte [2009], Toth and Vigo [2014]).

To the best of our knowledge, the problem was introduced by G. Dantzig
and J. Ramser in their seminal paper [Dantzig and Ramser, 1959], which
provided the first mathematical model of gasoline distribution over the
network of gas stations.

Since then, the field of the algorithmic design for the CVRP is developed
in several research directions. The first direction is based on a proposition
of the appropriate mixed integer program for the problem in question and
finding an optimal solution of this program using some of the well-known
branch-and-price methods [Demir et al., 2019]. Recently, a significant
success was achieved both in development such algorithms and computa-
tional hardware [Hokama et al., 2016, Pessoa et al., 2018]. It is worth to
mention one of the most recent results by [Pessoa et al., 2020], where the
generic solver for many VRP settings, including CVRP was proposed. In
particular, authors managed to solve six more instances of the CVRPLIB
benchmarking library to optimality. However, an instance with less than
9000 nodes took more than 15 days of computation time. Unfortunately,
with the real-life applications such time limits are unacceptable.

A wide range of modern heuristic algorithms and meta-heuristics makes
up the basis of the second research direction. To date, the most significant
numerical results were obtained for local search algorithms [Arnold and
Sörensen, 2019, Avdoshin and Beresneva, 2019], Tabu search [Qiu et al.,
2018], Variable Neighborhood Search (VNS) [Frifita and Masmoudi, 2020,
Polat, 2017], machine learning [Nazari et al., 2018], evolutional [Vidal
et al., 2013b], and bio-inspired algorithms [Necula et al., 2017, Su-Ping
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and Wei-Wei, 2016], as well as their various combinations [Chen et al.,
2019, Nalepa and Blocho, 2016]. Often heuristic algorithms demonstrate
remarkable performance, yielding close to optimal or even optimal solutions
for CVRP instances of extremely large size. Nevertheless, an absence of any
theoretical guarantees implies additional computational expenses related
to numerical performance evaluation during the transition to any novel
class of instances. Furthermore, in the case when the results of such an
evaluation appear to be inadmissible, we have to perform an additional
tuning of outer parameters of the considered heuristic algorithm [see e.g.
Williamson and Shmoys, 2011].

The arguments above confirm the relevance of the third direction related
to the design of approximation algorithms with theoretical performance
guarantees. It is known that CVRP is NP-hard in the strong sense,
enclosing the classic TSP, and remains intractable even on the Euclidean
plane [Papadimitriou, 1977]. The problem is hard to approximate in general
case (provided P ̸= NP ), APX-complete for an arbitrary metric [Asano
et al., 1997, Haimovich and Rinnooy Kan, 1985] even for an arbitrary fixed
capacity q ≥ 3.

Before we proceed with the review of recent results on approximation
algorithms, we recall some necessary notation. Let C : N → R+. We call
A a C(n) an approximation algorithm, if for an arbitrary instance I of the
combinatorial optimization problem J of length n, the weight of a feasible
solution WI(A(I)) is different from the optimal value OPT at most C(n)
times. In turn, we call C(n) an approximation ratio or accuracy guarantee.

A time-complexity (or running time) of an algorithm A is the function
T : N → R+, estimated by an upper bound of number of operations
necessary for an algorithm A to obtain a feasible solution A(I), for an
arbitrary instance I of length n. Such an algorithm is called a polynomial-
time algorithm, if its time complexity T (n) is restricted by some polynomial
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poly(n). In the literature, these algorithms are called efficient [Garey and
Johnson, 1979].

Sometimes it is possible to construct an approximation scheme for some
NP-hard problems. The instance I has a Polynomial-Time Approximation
Scheme (PTAS), if for an arbitrary ε > 0 there is an (1+ε)-approximation
algorithm Aε, whose time-complexity T (n) = polyε(n) for some polynomial
polyε(n).

In the case, when polyε(n) = f(1/ε)·nε for some c ≥ 1, then this PTAS
is called Efficient Polynomial-Time Approximation Scheme (EPTAS).
Furthermore, if T (n) = poly(1

ε , n), then we have a Fully Polynomial-Time
Approximation Scheme (FPTAS). Finally, when T (n) = npolyε(logn), such
an approximation scheme is called Quasi-Polynomial-Time Approximation
Scheme (QPTAS).

In the field of approximation algorithms with theoretical bounds, the
most significant results were achieved for the settings of CVRP in finite-
dimensional Euclidean spaces. All of them date back to the celebrated
papers by M. Haimovich and A. Rinnooy Kan [Haimovich and Rinnooy Kan,
1985] and S. Arora [Arora and Safra, 1998]. At the moment, the most
general result for the CVRP on the Euclidean plane is the QPTAS pro-
posed by A. Das and C. Mathieu [Das and Mathieu, 2015]. Further, for
the planar CVRP with restricted capacity growth, there are known sev-
eral Polynomial-Time Approximation Schemes (PTAS), among them the
algorithm proposed in [Adamaszek et al., 2010] appears to be the state-of-
the-art. This PTAS allows to find an (1 − ε)-approximate solution of the
problem in polynomial time provided q ≤ 2logδ(ε)n. The approach proposed
in [Haimovich and Rinnooy Kan, 1985] was extended to many modifica-
tions of the problem including the CVRP settings in Euclidean spaces of
an arbitrarily fixed dimension [Khachai and Dubinin, 2017, Khachay and
Dubinin, 2016, Khachay and Zaytseva, 2015], additional time windows
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constraints [Khachai and Ogorodnikov, 2019b, Khachay and Ogorodnikov,
2018], and heterogeneity of demand [Khachay and Ogorodnikov, 2019].

Thus, until now, the class of metric CVRP instances approximable
by PTAS or QPTAS was exhausted by the Euclidean settings of the
problem except maybe some special cases investigated in [Becker et al.,
2019, Khachai and Ogorodnikov, 2019a]. For a long time, the similar
theoretic gap remained for the very close Traveling Salesman Problem,
until the pioneering papers by K. Talwar [Talwar, 2004], and Y. Bartal
et al. [Bartal et al., 2016] providing an opportunity for the extension of
famous Arora’s PTAS [Arora, 1998] to the universe of metric spaces of a
fixed doubling dimension.

1.4 Research motivation

The straightforward practical solution of both TSP, VRP as well as their
generalizations proved to be complicated since those problems are NP-hard
in the strong sense, intractable and hard to approximate [Papadimitriou,
1977, Haimovich and Rinnooy Kan, 1985]. Therefore, the researchers have
to make a compromise between the running-time and the desired accuracy
of the obtained solutions.

According to the literature, the algorithm design and analysis for NP-
hard combinatorial optimization problems develops in three main research
directions [Pardalos et al., 2013].

The first direction is related to exact (optimal) algorithms, including
Branch-and-Bound, Branch-and-Cut, Branch-and-Price and their combi-
nations [see e.g. Ascheuer et al., 2000, Cire and van Hoeve, 2013, Gouveia
and Ruthmair, 2015, Clautiaux et al., 2019]. Having a polyhedral the-
ory as their theoretical background [Balas et al., 1995, Chrétienne et al.,
2014], these methods can obtain high quality solutions, either optimal
or close to optimal. For certain classes of NP-hard problems, sometimes
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it is possible to provide a general solver framework [Pessoa et al., 2020].
Another interesting feature of those methods is the possibility to stop
the computations after reaching a certain gap value, thus reducing the
total time. Unfortunately, due to the nature of NP-hard problems, those
algorithms may encounter computational issues with instances of a large
size.

In order to resolve this, the second research direction is actively develop-
ing, which consists of numerous heuristics, meta-heuristics and matheuris-
tics [Vidal et al., 2013a, Archetti and Speranza, 2014, Glover et al., 2001].
Among them are local search algorithms [Arnold and Sörensen, 2019,
Avdoshin and Beresneva, 2019], Tabu search [Qiu et al., 2018], Variable
Neighborhood Search (VNS) [Frifita and Masmoudi, 2020, Polat, 2017],
machine learning [Nazari et al., 2018], evolutional [Vidal et al., 2013b] and
bio-inspired algorithms [Necula et al., 2017, Su-Ping and Wei-Wei, 2016],
memetic algorithms [Gutin and Karapetyan, 2010], and several efficient
heuristic solvers, such as Lin-Kernighan-Helsgaun [Helsgaun, 2015] and
ALNS-based solver [Smith and Imeson, 2017]. However, while being able
to obtain solutions of remarkable quality, an absence of any theoretical
guarantees implies additional computational expenses related to numerical
performance evaluation and possible tuning of their internal parameters
during the transition to any novel class of instances.

The last direction is related to developing approximation algorithms
with a priori performance guarantees. Here, we should mention the funda-
mental results by [Christofides, 1976, Serdyukov, 1978] and [Haimovich
and Rinnooy Kan, 1985]. In particular, in these papers it was proven that
the metric settings of TSP and VRP are in APX, i.e. both problems can
be approximated in polynomial time within constant factors. In addition,
the results obtained in those papers are used as a building blocks for the
numerous approximation algorithms for the related problems. One of the
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most interesting methods in this field are Polynomial Time Approximation
Schemes (PTAS), that allow one to obtain the approximate solutions
with a predefined accuracy [Arora, 1998, Mitchell, 1999]. Eventually, this
PTAS was extended to more general metrics in [Talwar, 2004, Bartal et al.,
2016]. For the Capacitated Vehicle Routing Problem, the most important
approximation result was obtained in [Das and Mathieu, 2015].

To the best of our knowledge, according to those research directions,
the problems considered in this thesis were developed unevenly. In par-
ticular, the PCGTSP was still lacking efficient optimal algorithms and
heuristics, while those were proposed for close settings - Generalized Trav-
eling Salesman Problem [Fischetti et al., 1997] and Sequential Ordering
Problem [Balas et al., 1995]. In addition, there were certain approximation
algorithms for another close variant - the Traveling Salesman Problem
with Neighborhoods [Chan and Jiang, 2018]. Therefore, we can state the
first research question.

RQ 1. For the PCGTSP: propose MILP-formulations of high relaxation
ability, introduce families of valid inequalities and their liftings, obtain
results describing facet structure of PCGTS polytope, and finally propose
and implement high-performance Branch-and-Cut algorithm.

On the other hand, the CVRP is a well studied combinatorial optimiza-
tion problem with respect to all three aforementioned directions. It has a
plenty of efficient exact methods [see ex. Pessoa et al., 2020] and heuristics
[Gendreau and Potvin, 2019]. In addition, there are known results in the
field of approximation algorithms for this problem [Adamaszek et al., 2010,
Das and Mathieu, 2015, Khachay and Ogorodnikov, 2018]. However, the
most of them were proposed for the Euclidean spaces of fixed dimension.
At the same time, from 2016, we know breakthrough approximation results
for TSP and some related problems in much more general metric spaces
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[Bartal et al., 2016, Chan and Jiang, 2018]. Thus, we have another research
question.

RQ 2. For the CVRP: extending the seminal results of Das and Mathieu,
prove the approximability of the problem by a QPTAS in a metric space
of an arbitrary fixed doubling dimension.

First two research questions are entirely related to the field of com-
binatorial optimization. However, it is important to pay attention to
applications of Operations Research, to which the obtained results can
contribute. To this end, we consider the CPP as an industrial application
of the PCGTSP. Although, the CPP appears to be widely studied and
well-known to the engineering community, a general solution framework
still remains undeveloped for this problem. Therefore, we formulate the
last research question.

RQ 3. For the discrete CPP: propose a general solution framework taking
into account all the known industrial features of the cutting process.

1.5 Contributions

In this section, we briefly overview our results with respect to the afore-
mentioned research questions.

1.5.1 Precedence Constrained Generalized Traveling Salesman
Problem

In this chapter, we introduce polyhedral study, formulations, and branch-
and-cut algorithm for the PCGTSP. Contribution of this chapter is three-
fold:
(i) by evolving the inductive framework developed in [Fischetti et al.,

1995] for the symmetric GTSP, we establish dimension of the PCGTS
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polytope and extend the sufficient facet-inducing conditions for π- and
σ-inequalities proved initially in [Balas et al., 1995] for the PCATSP, to
the more general case of the PCGTSP;
(ii) relying on the known results on formulations for the PCATSP [Sarin

et al., 2005, Gouveia and Pesneau, 2006, Gouveia et al., 2018], we propose
novel valid inequalities for the PCGTSP and a family of compact and
exponential-size MILP-models for this problem aimed to increase tight-
ness of their lower bounds and speed-up the solution procedure for the
appropriate LP-relaxations;
(iii) by combining the best formulations (in terms of lower bounds and

running times) and the PCGLNS primal heuristic, for the first time, we
propose several variants of the branch-and-cut algorithm for the PCGTSP,
and compare their performance with aforementioned best known results
and our adaptation of the state-of-the-art algorithm proposed in [Gouveia
and Ruthmair, 2015] for the SOP.

As a result, the number of PCGTSPLIB instances solved to optimality
has increased twice, to 24 out of 40 instances. Furthermore, the carried out
numerical evaluation confirm that the considered MILP-models and branch-
and-cut algorithm for the PCGTSP benefit well from the incorporation of
the predecessor/successor inequalities.

Chapter 2 has a following structure. In Section 2.1, we give a mathe-
matical statement of the considered problem, introduce some necessary
definitions and notation, discuss the instance preprocessing, and describe
the compact MILP-model used throughout the chapter. In Section 2.2,
we propose novel families of valid inequalities for the problem in question
and explain the corresponding separation procedures. Section 2.3 deals
with the polyhedral study of the PCGTSP. By extending the seminal
results of Balas et al. [1995] and Fischetti et al. [1995], we establish di-
mension of the PCGTS polytope and prove the conditions sufficient for π-
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and σ-inequalities to be facet-inducing. Further, Section 2.4 represents
the proposed formulations for the PCGTSP, while Section 2.5 gives an
overview of our branch-and-cut algorithm. In Section 2.6 we report the
results of the numerical evaluation, both for the proposed formulations
and suggested variants of the branch-and-cut algorithm.

The results of the Chapter 2 were presented at the IMB Seminaire
Optimal Plus at the University of Bordeaux, and published in the European
Journal of Operational Research [Khachai et al., 2023].

1.5.2 Discrete Cutting Path Problems

In the following chapter, we propose novel generic solution framework with
accuracy guarantees. Contribution of this chapter is two-fold:

(i) for each variant of the discrete CPP from the literature, we propose
a polynomial time cost efficient reduction to auxiliary instances of
the PCGTSP;

(ii) relying on the results of numerical evaluation carried out against
industrial instances, we show that the algorithms developed for the
PCGTSP can be successfully applied in order to solve the CPP
efficiently as well. In particular, the PCGLNS heuristic provides good
quality solutions in a few minutes with high probability.

The rest of the chapter is organized as follows. Section 3.1 presents
our approach to reduce different settings of the discrete CPP to the
same combinatorial optimization problem — the Precedence Constrained
Traveling Salesman Problem. In Section 3.2, we describe the generic
solution framework for the discrete CPP. Further, in Section 3.3, we report
and discuss the results of the computational evaluation of the proposed
framework against real-life discrete CPP instances.
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The results of Chapter 3 were presented partially at the 10th IFAC
Conference MIM 2022 on Manufacturing modelling, Management and
Control, and in full at the 22nd International Conference on Mathematical
Optimization Theory and Operations Research (MOTOR 2023). The paper
was submitted for publication in the International Journal of Production
Research.

1.5.3 Capacitated Vehicle Routing Problem

In the final research chapter, we propose an efficient approximation in
metric spaces of a fixed doubling dimension for the CVRP. Contributions
of this chapter are as follows:

(i) by extending the approach of [Bartal et al., 2016] for metric TSP, we
show that the approach proposed by Das and Mathieu for the efficient
approximation of the Euclidean CVRP [Das and Mathieu, 2015] can
be extended to the significantly wider class of metric CVRP settings.
We prove that this framework combined with recent approximation
results obtained for the metric TSP, for any given ε > 0, provides a
(1 +O(ε))-approximate solution for the CVRP formulated in a metric
space of an arbitrary fixed doubling dimension d > 1.

(ii) nevertheless, broadly speaking, the approximation scheme obtained
by the straightforward application of the Das and Mathieu framework
is no longer a QPTAS in general metric space of a fixed doubling
dimension, even for a fixed arbitrary capacity q > 2. Therefore, in
this chapter, we introduce a refinement of their algorithm by replacing
the stage of exhaustive search with our internal dynamic program,
such that the resulting scheme becomes a QPTAS again, at least for
q = polylog(n).
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The remainder of Chapter 4 has a following structure. In Section 4.1, we
present the statement of the metric CVRP. Then, Section 4.2 recalls some
necessary notation regarding the metrics of a fixed doubling dimension.
Main results of the chapter are presented in Section 4.3 and Section 4.4. In
particular, Section 4.3 deals with approximation properties of the proposed
scheme, whilst, in Section 4.4, we prove an upper bound of its running
time.

The results of Chapter 4 were published in the Journal of Global
Optimization [Khachay et al., 2021a].





Chapter 2

Precedence Constrained Generalized
Traveling Salesman Problem:
Polyhedral Study, Formulations, and
Branch-and-Cut Algorithm

2.1 Problem statement

An instance of PCGTSP is given by a triple (G, C,G), where
- the complete loopless arc-weighted digraph G = (V,E, c), |V | = n,

defines a groundset network supplemented with transportation costs c(u, v)
for an arbitrary arc (u, v) ∈ E;
- the partition C = {C1, . . . , Cm} splits the nodeset V of the graph G into
m non-empty pairwise-disjoint clusters, where the cluster C1 is referred to
as depot;
- the directed acyclic graph G = (C, A) defines a partial order (precedence

constraints) on the set of clusters C. Further, without loss of generality,
we assume G to be transitively closed, i.e. (Ci, Cj) ∈ A and (Cj, Ck) ∈ A

imply (Ci, Ck) ∈ A, and that (C1, Cp) ∈ A for any p ∈ {2, . . . ,m}.
A closed m-tour T is called a feasible solution of the PCGTSP, if

- it departs from and arrives at some node v1 ∈ C1;
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- it visits each cluster Cp ∈ C exactly once;
- the tour T is consistent with the partial order G, i.e. no cluster Cq can

be visited by the tour T before its arbitrary predecessor in the order G.
The cost of a tour T = (v1, v2, . . . , vm) is the sum of costs of its arcs

cost(T ) = c(vm, v1) + ∑m−1
i=1 c(vi, vi+1). The objective of the PCGTSP is to

find a feasible m-tour of the minimum cost.

2.1.1 Preliminaries

We start with some necessary definitions and notation. For any pair of
clusters Cp and Cq except the depot cluster C1, for which (Cp, Cq) ∈ A,
we refer to Cp as a predecessor of Cq (and Cq as a successor of Cp) or
shortly Cp ≺ Cq. Further, to any non-depot cluster C, we assign subsets
π(C) = {Ci ̸= C1 : Ci ≺ C} and σ(C) = {Ci ̸= C1 : C ≺ Ci} of its
predecessors and successors, respectively. This notation can be easily
extended to an arbitrary nonempty subset of clusters C ′ ⊂ C \ {C1}:
π(C ′) = ⋃

C∈C′ π(C), σ(C ′) = ⋃
C∈C′ σ(C). In turn, by π̃(C) and σ̃(C)

we denote the subsets of π(C) and σ(C) respectively consisting of the
direct predecessors (parents) and successors (children) of the cluster C.
Finally, by C+ = ⋃m

i=2 π(Ci) and C− = ⋃m
i=2 σ(Ci) we denote the sets of all

aforementioned predecessors and successors, respectively.
If, for C ̸= C1, π(C) ∪ σ(C) = ∅, we call C a free cluster. In terms of

polyhedral results, we restrict ourselves to the setting of PCGTSP with a
singleton free cluster, which we call CBalas.

In the following, by C(v) we denote (the only) cluster that contains
an arbitrary node v ∈ V . We call v a non-individual node, if |C(v)| > 1,
otherwise v is called individual. To simplify the problem at hand, we use
the instance preprocessing technique proposed in [Balas et al., 1995]. We
exclude any arc (i, j) ∈ E, for which at least one of the following options
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holds:

(i ∈ C1) & (j ∈ C−) (2.1)
(i ∈ C+) & (j ∈ C1) (2.2)

C(j) ≺ C(i) (2.3)
∃ C̃ ∈ C = C− ∩ C+ : (C(i) ≺ C̃) & (C̃ ≺ C(j)) (2.4)

C(i) = C(j). (2.5)

For any proper subset ∅ ̸= S ⊂ V , we use the standard notation
δ−(S) = {(i, j) ∈ E : i /∈ S, j ∈ S}, δ+(S) = {(i, j) ∈ E : i ∈ S, j /∈ S},
and δ(S) = δ+(S) ∪ δ−(S) for the appropriate incoming and outgoing cuts,
and their union, respectively.

In the case of a singleton S = {v}, we use simple notation δ+(v) and
δ−(v).

Without loss of generality, we assume that graph G has no isolated
nodes after preprocessing. Furthermore, we can assume that, for any node
v ∈ V , δ+(v) ̸= ∅ and δ−(v) ̸= ∅. As a simple consequence, we obtain
that δ+(C) ̸= ∅ and δ−(C) ̸= ∅ for any cluster C as well.

2.1.2 Compact MILP model

To obtain a basic compact model for the considered problem, we extend
the known L1PCATSPxy formulation, proposed in [Sarin et al., 2005] for
the PCATSP, which is the best performer among compact models in terms
of LP-relaxation bounds for that problem.

For any (i, j) ∈ E and node v ∈ V , we introduce the following binary
decision variables:

xij =


1, if (i, j) belongs to the solution

0, otherwise,
zv =


1, if v is visited by the solution

0, otherwise.
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In addition, we introduce auxiliary variables ypq and upq:

ypq =


1, if cluster Cp precedes Cq in the solution (not necessarily immediately)

0, otherwise,

upq =


1, if cluster Cp immediately precedes Cq in the solution

0, otherwise.

The proposed MILP model for the PCGTSP is as follows:

min
∑

(i,j)∈E

cijxij, (2.6)

s.t.
∑

i∈Ck

zi = 1 (k ∈ {1, . . . ,m}) (2.7)
∑

(i,j)∈δ+(i)
xij = zi (i ∈ V ) (2.8)

∑
(i,j)∈δ−(i)

xji = zi (i ∈ V ) (2.9)

m∑
q=1,q ̸=p

upq = 1 (p ∈ {1, . . . ,m}),
m∑

p=1,p ̸=q

upq = 1 (q ∈ {1, . . . ,m})

(2.10)∑
i∈δ+(Cp)

∑
j∈δ−(Cq)

xij = upq (p, q ∈ {1, . . . ,m}, p ̸= q) (2.11)

(ypq + uqp) + yqr + yrp ≤ 2 (p, q, r ∈ {2, . . . ,m}, p ̸= q ̸= r) (2.12)

upq − ypq ≤ 0 (p, q ∈ {2, . . . ,m}, p ̸= q) (2.13)

ypq + yqp = 1 ({p, q} ⊂ {2, . . . ,m}) (2.14)

ypq = 1 (p, q ∈ {2, . . . ,m}, Cp ≺ Cq) (2.15)

xij, zi ∈ {0, 1}, upq ≥ 0, ypq ≥ 0 (2.16)

The objective is to minimize the total traveling cost (3.1). Constraints
(3.2) ensure that exactly one node from each cluster is visited. Constraints
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(3.3) and (3.4) are flow conservation constraints in terms of nodes, while
constraints (2.10) are flow conservation constraints in terms of clusters.
Technical constraints (3.7) establish the link between the decision and aux-
iliary variables. Similarly to the initial L1PCATSPxy model, constraints
(2.12)-(2.15) ensure subtour elimination and establish the given precedence
constraints simultaneously.

By evolving the arguments of [Sarin et al., 2005], it is easy to verify
the following observation.

Observation 1. For any feasible solutions [x′, z′, u′, y′] and [x′′, z′′, u′′, y′′]
of the model (3.1)-(3.12), (x′ = x′′) ∧ (z′ = z′′) ⇒ (u′ = u′′) ∧ (y′ = y′′).

2.2 Valid inequalities

In this section, we extend to the case of PCGTSP some known families of
valid inequalities initially introduced in papers [Balas et al., 1995, Gouveia
and Ruthmair, 2015, Gouveia et al., 2018] for the PCATSP. It is convenient
to specify these inequalities in terms of the following standard notation.
For any non-empty disjoint cluster subsets U ′,U ′′ ⊂ C,

x(U ′,U ′′) =
∑

Cp⊂U ′

∑
Cq⊂U ′′

∑
i∈Cp

∑
j∈Cq

xij ≡
∑

Cp⊂U ′

∑
Cq⊂U ′′

upq.

2.2.1 Predecessor and successor inequalities

Proposition 1. For an arbitrary non-empty S ⊂ C \ {C1}, S̄ = C \ S,
the predecessor-inequality (π-inequality):

x(S \ π(S), S̄ \ π(S)) ≥ 1 (2.17)

is valid for the PCGTSP.

Proof. Let T be an arbitrary tour that satisfies the precedence constraints
and Cp be the last cluster in S visited by T . Then, Cp ∈ S \ π(S)
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and for the next cluster visited by T , Cq ∈ S̄ \ π(S). Such a cluster
exists, since the tour T should depart from and arrive at C1. Therefore,
x(S \ π(S), S̄ \ π(S)) ≥ upq = 1.

Since the following two propositions can be treated similarly, we skip
their proofs for the sake of brevity.

Proposition 2. For an arbitrary non-empty S ⊂ C \ {C1}, S̄ = C \ S,
the successor-inequality (σ-inequality):

x(S̄ \ σ(S),S \ σ(S)) ⩾ 1 (2.18)

is valid for the PCGTSP.

Proposition 3. Let X ,Y ⊂ C \ {C1} be non-empty subsets such that,
for an arbitrary clusters C ′ ∈ X and C ′′ ∈ Y, C ′ ≺ C ′′, and let Q =
{C1} ∪ π(X ) ∪ σ(Y). Then for any S ⊂ C, S̄ = C \ S such that X ⊆ S,
Y ⊆ S̄, the (π, σ)-inequality:

x(S \ Q, S̄ \ Q) ≥ 1 (2.19)

is valid for the PCGTSP.

2.2.2 Precedence cycle breaking inequalities

For some natural t, consider a subset C′ = {Ci1, . . . , Ci2t+1} ⊂ C \ {C1},
such that Ci1 ≺ . . . ≺ Ci2t+1. Introduce the subsets C′

odd = {Ci2s+1 : s ∈
{0, . . . , t}} and C′

even = {Ci2s
: s ∈ {1, . . . , t}} of C′, that contain Cij

with
odd and even j respectively.

Proposition 4. For an arbitrary non-empty S ⊂ C \ {C1}, S̄ = C \ S,
such that C′

odd ⊂ S and C′
even ⊂ S̄,

x(S, S̄) ≥ t+ 1 (2.20)
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is valid for the PCGTSP.

Proof. Indeed, consider an arbitrary feasible tour T . Since clusters Ci1 . . . Ci2t+1

are linearly ordered and C1 ̸∈ S, the tour T crosses the border from S to
S̄ at least t+ 1 times.

Following [Gouveia and Ruthmair, 2015], without loss of generality, we
can assume that Cij

∈ π̃(Cij+1) for each j ∈ {1, . . . , 2t}. Furthermore, we
can strengthen inequality (3.16) as follows.

Proposition 5. For an arbitrary non-empty S ⊂ C \ {C1}, S̄ = C \ S,
such that C′

odd ⊂ S and C′
even ⊂ S̄, the condition σ̃(Ci2t+1) ̸⊂ S implies the

validity of inequality

x(S \ S′, S̄ \ S′) ≥ t+ 1, (2.21)

where S′ = π(Ci1) ∪ σ(Ci2t+1) \ σ̃(Ci2t+1).

2.2.3 Single-option inequalities

In this subsection, we extend the family of simple (but powerful) inequali-
ties proposed in [Gouveia and Ruthmair, 2015] for the PCATSP, whose
validity can be easily obtained from (3.2)-(3.7) and precedence constraints.

Proposition 6. For an arbitrary {Ci, Cj} ⊂ C \ {C1}, the following
inequalities

uij + uji + ukl + ulk ≤ 1 (Ck ∈ π(Ci), Cl ∈ σ(Cj)) (2.22)
uij + uji +

∑
Cl∈σ(Cj)

ukl ≤ 1 (Ck ∈ π(Ci)) (2.23)

uij + uji +
∑

Cl∈σ(Cj)
ulk ≤ 1 (Ck ∈ π(Ci)) (2.24)

uij + uji +
∑

Ck∈π(Ci)
ukl ≤ 1 (Cl ∈ σ(Cj)) (2.25)

uij + uji +
∑

Ck∈π(Ci)
ulk ≤ 1 (Cl ∈ σ(Cj)) (2.26)
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are valid for the PCGTSP.

2.2.4 Strengthened precedence variables and network flow based
inequalities

The authors of [Gouveia et al., 2018] introduced a novel exponential-size
families of valid inequalities augmented with polynomial-time separation
procedures, their strengthened counterparts, and the related formulations
for the PCATSP. Comprehensive numerical analysis carried out there
showed that more tight lower bounds were provided by the formulations
based on strengthened inequalities. Therefore, in this chapter, we restrict
ourselves only on extension to the PCGTSP of these families.

Proposition 7. For an arbitrary clusters Cp and Cq not equal to C1,
where p ̸= q, the strengthened simple-cut inequality x(S, S̄) ≥ ypq is valid
for the PCGTSP, for any partition

(S, S̄) of (C \ C1
pq) ∪ {Cp, Cq}, such that Cp ∈ S, Cq ∈ S̄, (2.27)

(S, S̄) of (C \ C2
pq) ∪ {C1, Cp}, such that C1 ∈ S, Cp ∈ S̄, (2.28)

(S, S̄) of (C \ C3
pq) ∪ {C1, Cq}, such that Cq ∈ S, C1 ∈ S̄, (2.29)

where C1
pq = {C1} ∪ π(Cp) ∪ σ(Cq), C2

pq = {Cq} ∪ σ(Cp) ∪ σ(Cq) and
C3

pq = {Cp} ∪ π(Cp) ∪ π(Cq).

Proposition 8. For an arbitrary triple (Cp, Cq, Cr) of distinct clusters
not equal to C1, the strengthened GDDL inequality1

x(S, S̄) ≥ ypr + yrq (2.30)

1Generalized Disaggregated Desrochers-Laporte inequality
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is valid for the PCGTSP for any partition (S, S̄) of
(
C\Cpqr

)
∪{C1, Cp, Cq, Cr},

such that {C1, Cr} ⊂ S, {Cp, Cq} ⊂ S̄ and Cpqr =
(
σ(Cp) ∩ σ(Cq)

)
∪(

π(Cr) ∩ σ(Cp)
)

∪
(
σ(Cq) ∩ σ(Cr)

)
.

Proposition 9. For an arbitrary triple (Cp, Cq, Cr) of distinct clusters
not equal to C1, the strengthened Reversed GDDL inequality

x(S, S̄) ≥ ypr + yrq (2.31)

is valid for the PCGTSP for any partition (S, S̄) of
(
C\CR

pqr

)
∪{C1, Cp, Cq, Cr},

such that {Cp, Cq} ⊂ S, {C1, Cr} ⊂ S̄ and CR
pqr =

(
π(Cp) ∩ π(Cr)

)
∪(

π(Cp) ∩ π(Cq)
)

∪
(
σ(Cr) ∩ π(Cq)

)
.

Proposition 10. For an arbitrary triple (Cp, Cq, Cr) of distinct clusters
not equal to C1, the strengthened 2-path inequality x(S, S̄) ≥ ypq + yqr − 1
is valid for the PCGTSP, for any partition

(S, S̄) of (C \ C1
pqr) ∪ {C1, Cp}, such that C1 ∈ S, Cp ∈ S̄, (2.32)

(S, S̄) of (C \ C2
pqr) ∪ {Cp, Cq}, such that Cp ∈ S, Cq ∈ S̄, (2.33)

(S, S̄) of (C \ C3
pqr) ∪ {Cq, Cr}, such that Cq ∈ S, Cr ∈ S̄. (2.34)

(S, S̄) of (C \ C4
pqr) ∪ {C1, Cr}, such that Cr ∈ S, C1 ∈ S̄, (2.35)

where C1
pqr = {Cq, Cr} ∪ σ(Cp) ∪ σ(Cq) ∪ σ(Cr), C2

pqr = {C1, Cr} ∪ π(Cp) ∪
σ(Cq) ∪ σ(Cr), C3

pqr = {C1, Cp} ∪ π(Cp) ∪ π(Cq) ∪ σ(Cr), and C4
pqr =

{Cp, Cq} ∪ π(Cp) ∪ π(Cq) ∪ π(Cr), respectively.

Proposition 11. For an arbitrary quadruple (Cp, Cq, Cr, Cs) of distinct
clusters not equal to C1, the strengthened 3v GDDL-like inequality x(S, S̄) ≥
ypq + yqr + yrs − 1 is valid for the PCGTSP, for any partition:

(S, S̄) of (C\C1
pqrs)∪{Cp, Cq, Cr, Cs}, such that {Cp, Cr} ⊂ S, {Cq, Cs} ⊂ S̄,

(2.36)



36
Precedence Constrained Generalized Traveling Salesman Problem: Polyhedral Study,

Formulations, and Branch-and-Cut Algorithm

(S, S̄) of (C\C2
pqrs)∪{C1, Cp, Cq, Cs}, such that {Cp, Cs} ⊂ S, {Cq, C1} ⊂ S̄,

(2.37)
(S, S̄) of (C\C3

pqrs)∪{C1, Cp, Cr, Cs}, such that {C1, Cr} ⊂ S, {Cp, Cs} ⊂ S̄,

(2.38)
where C1

pqrs = {C1} ∪
(
(π(Cq) ∪π(Cr) ∪σ(Cs)) ∩ (π(Cp) ∪σ(Cq))

)
, C2

pqrs =
{Cr} ∪

(
(π(Cr) ∪ π(Cs)) ∩ (π(Cp) ∪ σ(Cq) ∪ σ(Cr))

)
, and C3

pqrs = {Cq} ∪(
(σ(Cp) ∪ σ(Cq)) ∩ (π(Cq) ∪ π(Cr) ∪ σ(Cs))

)
.

Proposition 12. For an arbitrary quintuple (Cp, Cq, Ck, Cr, Cs) of dis-
tinct clusters not equal to C1, the strengthened 4v GDDL-like inequality
x(S, S̄) ≥ ypq + yqk + ykr + yrs − 2 is valid for the PCGTSP, for any
partition

(S, S̄) of C\Cpqkrs∪{Cp, Cq, Cr, Cs}, such that {Cp, Cr} ⊂ S, {Cq, Cs} ⊂ S̄,

(2.39)
where Cpqkrs = {C1, Ck}∪

(
(π(Cp)∪σ(Cq)∪σ(Ck))∩(π(Ck)∪π(Cr)∪σ(Cs))

)
.

Proofs of all the propositions of this subsection can be obtained by
extension of the arguments presented in [Gouveia et al., 2018].

2.2.5 Separation procedures

All the aforementioned families of valid inequalities are augmented with
polynomial-time separation procedures, which extend he seminal unit flow
propagation approach introduced in [Balas et al., 1995]. In Algorithm 1,
we present the proposed separation technique for π-inequalities (3.14).

For the sake of brevity, we restrict our further discussion to precedence
cycle breaking inequalities (3.16). Other procedures evolve the similar
results obtained in [Gouveia and Ruthmair, 2015, Gouveia et al., 2018] for
the PCATSP and [Yuan et al., 2020] for the GTSP with time windows
and can be retrieved from the supplemented source code (https://github.

com/EnsignDaniels/BnC).

https://github.com/EnsignDaniels/BnC
https://github.com/EnsignDaniels/BnC
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Algorithm 1 Separation technique for π-inequalities
Input: current (fractional) solution (xij , zi, upq , ypq), a non-depot cluster C ̸= C1
Output: π-inequality for an appropriate S (if any)

1: create an auxiliary cluster digraph GC = (CC , EC), where CC = C \π(C) and (Cp, Cq) belongs to EC and has capacity
upq if and only if upq > 0

2: find a maximum C-to-C1 flow F in the graph GC

3: if val(F ) < 1 then
4: find a minimum cut U ′, U ′′ ⊂ CC

5: set S = U ′ ∪ π(C) and S̄ = C \ S = U ′′

6: return π-inequality
x(S \ π(S)), S̄ \ π(S)) ⩾ 1

7: end if

Indeed, suppose we are given by the current fractional solution (x, z, u, y).
For a sequence of non-depot clusters Ci1 ≺ . . . ≺ Ci2t+1, we construct an
auxiliary cluster digraph H = (C ∪ {s, t}, E ′), where s and t are artificial
source and destination nodes connected by incapacitated arcs with clusters
from C′

odd and C′
even ∪ {C1}, respectively. For each other arc (Cp, Cq) ∈ E ′,

its capacity is defined by upq. Next, if the value of the maximum s-t-flow
in the digraph H appears to be less than t + 1, an arbitrary minimum
cut (S, S̄), where S ⊂ C ∪ C′

odd \ ({C1} ∪ C′
even) and S̄ = C \ S, defines

inequality (3.16) violated by the given solution.

2.3 Facets of the PCGTS polytope

In this section, we study a polyhedral structure of the PCGTS polytope. To
elaborate this task, we employ the classic approach relying on dimensions
of the studied polytope and its faces.

By definition, for an arbitrary polytope P , its dimension is equal to the
dimension of its affine hull dimP = dim (aff(P )), which in turn is one less
than the number of affinely independent extreme points this polytope.

An intersection of a polytope P with an arbitrary support hyperplane
is called a face of this polytope. Usually, for the sake of convenience, the
family of faces of a polytope is extended by improper faces ∅ and P . A face
F of a polytope P is called a facet (of this polytope), if dimF = dimP −1.
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The PCGTSP is an extension of an Equality GTSP (E-GTSP) intro-
duced in [Fischetti et al., 1995], where E-GTSP polytope was denoted
by P=. Therefore, we keep the same notation for the PCGTS polytope,
i.e. the convex hull of the incidence vectors [x, z] encoding all the fea-
sible tours of the problem in question. As it follows from Observation
1, P= = conv{[x, z] ∈ RE∪V : (3.2) − (3.12) holds}. Since [x, z] could be
obviously extended to the feasible solution [x, z, u, y] of (3.2)-(3.12), the
polytope P= is isomorphic to the convex hull of the feasible set of the
initial non-relaxed MILP model from Subsection 3.2.1. In the sequel,
for the simplicity, we will not distinguish them. Our goal is to derive
conditions sufficient for an arbitrary inequality

αTx− βTz ≥ γ (2.40)

to induce a facet of the polytope P=.

2.3.1 Dimension of the PCGTS polytope

In this section, we prove the following

Theorem 1. For any instance of PCGTSP, the following equation:

dim (P=) = |E| − n−m+ 1 (2.41)

holds.

To prove Theorem 1, we employ an inductive approach similar to
[Fischetti et al., 1995] on the number of excessive nodes ρ within clusters:

ρ =
m∑

h=1
(|Ch| − 1) = n−m. (2.42)

Here, the base case ρ = 0 corresponds to the Precedence Constrained
Asymmetric Traveling Salesman Problem (PCATSP) and follows from
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Theorem 2 (Balas et al. [1995]). For an arbitrary instance of PCATSP,
dimension of its polytope P=

ATSP is as follows: dimP=
ATSP = |E| − 2n+ 1.

Remark 1. In the paper by Balas et al. [1995], the polytope is denoted in
RE. However, it can be unambiguously extended to RE∪V by setting zv = 1
for each node v ∈ V as it was done in [Fischetti et al., 1995].

In order to prove the inductive step, we need additional notation and
technical lemmas. Let inequality (2.40) be valid for P=, i.e. P= ⊂ {[x, z] ∈
RE∪V : αTx ≥ βTz + γ}. Consider the appropriate face H(α, β, γ) =
P= ∩ {[x, z] ∈ RE∪V : αTx = βTz + γ} of the polytope P=.

Further, to any non-individual node v ∈ V , we assign:
(i) a PCGTSP polytope P=

v associated with the subgraph of G induced
by V \ {v},
(ii) the v-restriction of inequality (2.40) obtained by dropping variables
zv and xe for all e ∈ δ(v),
(iii) the v-compatibility digraph of (2.40) G∗

v = (V \ C(v), E∗
v), where

E∗
v = {(i, j) : i, j ∈ V \ C(v), i ̸= j,∃ [x, z] ∈ H(α, β, γ), xiv = xvj = 1},

(iv) its bipartite representation B∗
v (see Bang-Jensen and Gutin [2009]

and Fig. 2.1).

Lemma 1. For any valid inequality αTx ≥ βTz + γ, and an arbitrary
non-individual node v ∈ V , dim H(α, β, γ) ≥ dim H(α, β, γ)v + rank(B∗

v)
where H(α, β, γ)v is the face of polytope P=

v induced by its v-restriction.

Proof. Consider the matrix M , whose rows are extreme points of the
face H(α, β, γ) (Fig. 2.2). By construction, H(α, β, γ) is contained in
a hyperplane of RE∪V not passing through the origin (due to equation
(3.2)). Therefore, for any subset of rows of M , the affine independence is
equivalent to the linear one. Thus, dim H(α, β, γ) = rank(M) − 1.
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Figure 2.1: Example of a directed graph and its bipartite representation

Figure 2.2: Matrix of extreme points of H(α, β, γ)

Matrix M can be represented as follows:

M =
M11 0 0
M21 M22 1

 ,
where the last column corresponds to node v, and the columns left to
it correspond to the arcs incident with v. By construction, block M11

corresponds to the extreme points of face H(α, β, γ)v. Thus, rank(M11) =
dim H(α, β, γ)v + 1.

Figure 2.3: Block M22 and the incidence matrix of B∗
v
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On the other hand, matrix M22 is located in the part of the tour visiting
node v. By construction, it should visit it only once. Therefore, each
row of M22 has exactly two 1s. Consider an arbitrary row of block M22.
Suppose that 1s are located in the columns (i, v) and (v, j). Hence, in
graph B∗

v , nodes i and j are adjacent and the considered row is a column
in the incidence matrix MB∗

v
of B∗

v . Thus, M22 = MT
B∗

v
(see Fig. 2.3).

Therefore, rank(M22) = rank(B∗
v) = NB∗

v
−κ(B∗

v), where NB∗
v

is a size of
the nodeset of bipartite graph B∗

v and κ(B∗
v) is the number of its connected

components [see e.g. Biggs, 1974].
Finally, rank(M) ≥ rank(M11)+rank(M22). Since rank(M11) = dim H(α, β, γ)v+

1, rank(M22) = rank(B∗
v). Lemma 1 is proved.

The claim of Lemma 1 is valid for an arbitrary face H(α, β, γ). Now,
to determine dimension of polytope P=, we consider its improper face
H(0, 0, 0) = P=. To emphasize the associated bipartite graph B∗

v in this
special case, denote it by B̄∗

v .

Lemma 2. For any non-individual node v, rank(B̄∗
v) = |δ(v)| − 1.

Proof. We prove Lemma 2 by enumeration of all the possible options to
relate cluster C(v) with the given precedence constraints. In the sequel,
we use the following notation. By π̃ and σ̃, for cluster C(v), we denote
subsets of nodes belonging to its direct parents and children, respectively.
Similarly, we introduce subsets π̂ and σ̂ of nodes that belong to other
ancestors and descendants of this cluster. In addition, by r, we denote a
union of all clusters except CBalas incompatible with C(v).

Observation 2. For any cluster, its parents (if any) are mutually incom-
parable. For its children the same claim is valid as well.

Case 1 (π̃ ̸= ∅ and σ̃ = ∅). In this case, cluster C(v) is one of the
minimal descendants in the given partial order. Here, for cut δ(v) in graph
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G (see Fig. 2.4), we have |δ(v)| = |C1| + |π̃| + 2|r| + 2, since |CBalas| = 1.
Consider the appropriate bipartite graph B̄∗

v (Fig. 2.5). It has

Figure 2.4: Cut δ(v) for Case 1 Figure 2.5: Bipartite graph B̄∗
v for

Case 1

NB̄∗
v

= 2|C1| + 2|π̂| + 2|π̃| + 2|r| + 2 nodes. By definition, an arbitrary
node i from the left part and j′ from the right part of graph B̄∗

v are incident
if and only if there is a feasible tour with the fragment i-v-j. If such an arc
exists, then graph B̄∗

v has a complete bipartite subgraph, whose parts are
induced by clusters C(i) and C(j). In Fig. 2.5, we encode such subgraphs
by straight line segments. By construction, all non-isolated nodes of B̄∗

v

belong to the only connected component. Furthermore, the number of
connected components is κ(B̄∗

v) = 1+ |C1|+2|π̂|+ |π̃|. Indeed, for instance,
verify the incidence of some i ∈ π̃ and node j′ corresponding to the only
node of cluster CBalas. Take an arbitrary node v1 ∈ C1 from the depot

Figure 2.6: Cut δ(v) for Case 2 Figure 2.7: Bipartite graph B̄∗
v for

Case 2
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Figure 2.8: Cut δ(v) for Case 3 Figure 2.9: Bipartite graph B̄∗
v for

Case 3

and construct a feasible tour as follows. Departing from v1 the tour visits
all the clusters preceding C(v) such that the cluster C(i) is visited last,
at node i. Then, we traverse arcs (i, v) and (v, j) directly, visit all the
remaining clusters (respecting the precedence constraints) and complete
the tour by returning to node v1.

Finally, rank(B̄∗
v) = NB̄∗

v
− κ(B̄∗

v) = |C1| + |π̃| + 2|r| + 1 = |δ(v)| − 1.
Case 2 (σ̃ ≠ ∅ and π̃ = ∅). This case is dual to Case 1, here

C(v) is the maximal ancestor in the partial order. In the similar sense
(see Fig. 2.6 and Fig. 2.7), we obtain |δ(v)| = |C1| + |σ̃| + 2|r| + 2,
NB̄∗

v
= 2|C1| + 2|σ̂| + 2|σ̃| + 2|r| + 2, κ(B̄∗

v) = 1 + |C1| + 2|σ̂| + |σ̃|, and
finally, rank(B̄∗

v) = |C1| + |σ̃| + 2|r| + 1 = |δ(v)| − 1.
Case 3 (π̃ ≠ ∅, σ̃ ̸= ∅). The only difference here is that cluster C(v)

has both parents and children, which slightly impacts the structure of B̄∗
v .

Proceeding with the proof in a similar way, we obtain (Fig. 2.8 and Fig. 2.9):
|δ(v)| = |π̃| + |σ̃| + 2|r| + 2, NB̄∗

v
= 2(|C1| + |σ̂| + |σ̃| + |π̂| + |π̃| + |r| + 1),

κ(B̄∗
v) = 1 + 2|C1| + |σ̃| + |π̃| + 2|π̂| + 2|σ̂|, and rank(B̄∗

v) = 2|π̃| + 2|σ̃| +
2|r| + 1 = |δ(v)| − 1.

Case 4 (π̃ = ∅, σ̃ = ∅). Without loss of generality, we restrict
ourselves to the case where the set of free clusters is exhausted by C(v)
and CBalas (if the set of free clusters has more than two elements, the
case is similar to this one). Since this case is different from the discussed
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Figure 2.10: Representation of δ(v) and the connected components of B̄∗
v for Case 4.

Bold line provides connectivity of the B̄∗
v

above, we provide an argument in detail. Since v is a non-individual node,
C(v) ̸= CBalas. Again for cut δ(v), we have |δ(v)| = 2|C1| + 2|r| + 2.
We show that in this case B̄∗

v is a connected bipartite graph. We skip
the trivial option of the empty order, since here B̄∗

v is a complete graph.
Otherwise, there are always at least two clusters Cp and Cq, such that Cp

is the parent of Cq. Obviously, these clusters induce a complete bipartite
subgraph of graph B̄∗

v . Since both copies of CBalas are incident with all
other clusters from the opposite part, B̄∗

v is connected (see Fig. 2.10).
Finally, we obtain NB̄∗

v
= 2|C1| + 2|r| + 2, κ(B̄∗

v) = 1, and rank(B̄∗
v) =

2|C1| + 2|r| + 1 = |δ(v)| − 1.
Case 5 (C(v) = C1). This is another unique case. To proceed with

our proof, we need additional notation. By Σ, we denote the set of all
nodes from minimal descendants, Π consists of all nodes from maximal

Figure 2.11: Representation of δ(v) and the connected components of the B̄∗
v for Case 5



2.3 Facets of the PCGTS polytope 45

ancestors in the given partial order. Also, let F be the set of all nodes
from free clusters, except CBalas, and R are the remaining nodes. Then,
|δ(v)| = 2|F | + |Π| + |Σ| + 2.

As for the graph B̄∗
v , it is constructed in the same sense as for the

previous cases. The only difference here, is that the depot is departure and
arrival node at the same time. However, this won’t be a problem, since
any feasible tour is closed (see Fig. 2.11). Finally, NB̄∗

v
= 2(|R| + |Π| +

|F | + 1 + |Σ|), κ(B̄∗
v) = 1 + |Π| + |Σ| + 2|R|, and rank(B̄∗

v) = |δ(v)| − 1.
Lemma 2 is proved.

Now, we ready to establish dimension of the polytope P= and prove
Theorem 1.

Proof. By construction, the PCGTS polytope P= is a part of a solution
set of inequality system (3.2)-(3.7). Hence, dimP= cannot be greater than
dimension of this solution set. In turn, for an arbitrary feasible system of
linear equations Ax = b with m × d coefficient matrix, dimension of its
solution set is d− rank(A).

Let A be the coefficient matrix of system (3.2)-(3.7) (Fig. 2.12). By

Figure 2.12: Structure of matrix A.

construction, rank(A) ⩾ rank(D) + rank(K) = rank(D) + m. We show
that rank(D) = 2n− 1. To the initial graph G, we assign cluster digraph
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Gc = (C, Ec), for which (C ′, C ′′) ∈ Ec if and only if there exist i ∈ C ′ and
j ∈ C ′′, such that (i, j) ∈ E. Let BG and BGc

be bipartite representations
of digraphs G and Gc respectively.

Observation 3. Evidently, if (C ′, C ′′) ∈ Ec, then (i, j) ∈ E ∀i ∈ C ′ ∀j ∈
C ′′.

Observation 4. By construction, D is the incidence matrix of BG.

As a simple consequence, we obtain that graphs BG and BGc
have the

same number of connected components.
Since the initial graphG has at least one free cluster, then by Proposition

5.3 from [Balas et al., 1995], BGc
is connected, i.e. κ(BGc

) = κ(BG) = 1,
rank(D) = 2n− 1, and rank(A) ≥ 2n+m− 1. Therefore,

dimP= ≤ |E| + |V | − rank(A) ≤ |E| +n− 2n−m+ 1 = |E| −n−m+ 1.
(2.43)

To complete the argument, we need to prove the lower bound

dimP= ≥ |E| − n−m+ 1. (2.44)

We proceed with induction on the number of excessive nodes within
clusters:

ρ =
m∑

h=1
(|Ch| − 1) = n−m

Base Case (ρ = 0) follows from Theorem 2 for the PCATSP.
Inductive Step. Assume that inequality (2.44) holds for some ρ. To

prove it for ρ+ 1, take an arbitrary non-individual node v. By Lemma 1
and Lemma 2,

dimP= ≥ dimP=
v + rank(B̄∗

v) = dimP=
v + |δ(v)| − 1.
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Recall that P=
v corresponds to the graph of n − 1 nodes and |E \ δ(v)|

arcs. By induction hypothesis, dimP=
v ≥ |E| − |δ(v)| − n − m + 2, and

the claim follows.
Combination of (2.43) and (2.44) concludes the proof.

2.3.2 Facet-inducing inequalities

By extending the results obtained in [Balas et al., 1995], in this subsection
we establish the sufficient conditions ensuring that π- and σ-inequalities
((3.14) and (3.15)) introduced in Subsection 2.2.1 are facet-inducing.

Theorem 3. For S ⊂ C \ {C1, CBalas} and S̄ = C \ S, an inequality

x(S \ π(S), S̄) ≥ 1 (2.45)

induces a facet of the polytope P=, if π(S) ⊂ S, σ(S) ⊂ S, and S

contains at least 3 free clusters.

Theorem 4. For S ⊂ C \ {C1, CBalas} and S̄ = C \ S, an inequality

x(S̄,S \ σ(S)) ≥ 1 (2.46)

induces a facet of the polytope P=, if π(S) ⊂ S, σ(S) ⊂ S, and S

contains at least 3 free clusters.

Similarly to Theorem 1, our proof is based on the inductive framework
developed in [Fischetti et al., 1995] for the symmetric GTSP. The induction
is carried out on the number of excessive nodes (2.42) in clusters. Since
the base case corresponds to the classic PCATSP, our claim follows from
the known result (Balas et al. [1995], Theorem 5.5). In turn, proof of the
inductive step relies on Lemma 1 and our adaptation of Lemma 2 to the
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case of the proper face Hπ = H(α, β, γ), where

β = 0, γ = 1, αi,j =


1, ∃Cp ∈ S \ π(S),∃Cq ∈ S̄ : i ∈ Cp, j ∈ Cq,

0, otherwise

induced by inequality (2.45).

Lemma 3. Let Hπ be the face of P= induced by π-inequality (2.45). The
hypothesis of Theorem 3 implies that, for an arbitrary non-individual node
v, rank(B∗

v) = |δ(v)| − 1.

Proof. Our argument is based on enumeration of all the possible options
to establish a relation between cluster C(v) and the given partial order.
Previously, in the proof of Lemma 2, for each case, we explored properties
of the associated cut δ(v) and bipartite graph B̄∗

v . Now, each of these
options can be split into several sub-options in correspondence to the ways
to locate C(v) with respect to the face Hπ (see Table 2.1).

Table 2.1: Options for cluster C(v).

case # relation to the partial order relation to the face Hπ

1 minimal descendant S′ = S \ π(S), S̄

2 maximal ancestor π(S), S̄

3 has parents and children π(S), S̄

4 free cluster S′, S̄

5 depot S̄

It is easy to verify that all subcases of any unique case presented at
a single line of Table 2.1 share the same cut δ(v), while their associated
bipartite graphs B∗

v are spanning subgraphs of graph B̄∗
v constructed in

Lemma 2 for the entire polytope P=. In its proof, we showed that, for
any v, graph B̄∗

v contains a single connected component. Therefore, to
prove Lemma 3, it is sufficient to show that the same node subset induces
a connected component in any mentioned graph B∗

v as well.
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For the sake of brevity, we restrict ourselves to cases 3 and 4 (see Table
2.1), since they appear to be the most common. For the other cases, the
argument can be obtained in a similar way.

Figure 2.13: Connected components of B∗
v for Case 3. C(v) ∈ S̄ (left) and C(v) ∈ S̄

(right)

Figure 2.14: Connected components of B∗
v for Case 4. C(v) ∈ S̄′ (left) and C(v) ∈ S̄

(right)

As in the proof of Lemma 2, by π̃, σ̃, and r, we denote the subsets of
nodes (in graph G) belonging to parent, child and incomparable clusters
with respect to cluster C(v), respectively.

Case 3 (π̃ ̸= ∅, σ̃ ̸= ∅). In both subcases, for C(v) ∈ π(S) and
C(v) ∈ S̄, we verify the connectivity of the subgraphs induced by the
connected component found in the proof of Lemma 2, Case 3. We present
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these subgraphs in Fig. 2.13 in more detail. To prove their connectivity, it
is sufficient (a) to show that the single node from CBalas is adjacent to any
other node from the opposite part of graph B∗

v ; (b) to present at least one
additional arc connecting nodes from any two clusters other than CBalas.

(a) For instance, we establish the existence of an arc connecting node
i ∈ CBalas and some node j belonging to some child cluster C ∈ S′ =
S \ π(S) of cluster C(v) (Fig. 2.13). Departing from the depot, we start
with construction of a tour T by visiting all the clusters in S̄ except CBalas

(regarding the precedence constraints). Then, we proceed with all the
ancestors of cluster C(j) except C(v). This is possible due to Proposition
2.

Further, we traverse the i-v-j fragment and proceed with visiting all
the remaining clusters in π(S). Finally, we randomly visit all the clusters
in S′ and return to the depot by a direct arc. By construction, it is the
only arc in the proposed tour that belongs to the cut δ+(S \ π(S), S̄) (in
graph G). Therefore, for this tour, inequality (2.45) becomes tight.

(b) Without loss of generality, provide an argument for subcase C(v) ∈
S̄ (Fig. 2.13). Let i be any node from some parent C(i) of C(v), and j

belongs to a free cluster C(j). Again, we consider the tour T departing
from an arbitrary depot node. We visit all the ancestors of C(v), except
C(i). Next, we pass through the i-v-j fragment and continue from C(j)
by visiting all the clusters in π(S). Then, we proceed with traveling over
the rest of S′. Finally, we return to S̄ by an arc that belongs to the cut
δ+(S \ π(S), S̄), and complete the tour by visiting the remaining clusters,
arriving at the depot.

Case 4 (π̃ = ∅, σ̃ = ∅). Generally speaking, the argument for this
case is close to the previous one. However, we mention it separately, since
this case appears to be the only reason for requiring at least three free
clusters from S′ in the hypothesis of Theorem 3. As it follows from Fig.
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2.14, for C(v) ∈ S′, cluster CBalas does no longer induce a dominating set
in the considered subgraph (of graph B∗

v). Instead, free clusters take its
place.

Furthermore, these free clusters ensure the connectivity of the subgraph.
Indeed, consider free clusters C(i), C(j) ∈ S′, such that C(i) ̸= C(v) ̸=
C(j). Construct a feasible tour T with the fragment i-v-j in graph G.
Since C(i), C(v) and C(j) are free and belong to S′, we are allowed to
move i-v-j directly after the departure from the depot. Then, after visiting
all the clusters in π(S), we come to the remaining clusters from S′, cross
the border between S′ and S̄ (at once), move through all the clusters in
S̄ and return to the depot.

In subcase C(v) ∈ S̄ (Fig. 2.14), the proof can be obtained in a similar
way to the Case 3. Lemma 3 is proved.

Now, we are ready to establish the proof of Theorem 3.

Proof. Let Hπ be the face of polytope P= induced by π-inequality. By
Theorem 1, we have dim Hπ ⩽ dimP= = |E| − n−m+ 1. By induction
on number ρ (see eqn. (2.42)), we show that

dim Hπ ≥ |E| − n−m. (2.47)

Base case of (ρ = 0) is proved in [Balas et al., 1995], since, in this
case, the problem at hand is equivalent to the PCATSP.

Inductive step. Assuming that (2.47) holds for some ρ, prove it for
ρ+ 1. Combining claims of Lemma 1 and Lemma 3, we have dim Hπ ≥
dim Hπ

v + rank(B∗
v) = dim Hπ

v + |δ(v)| − 1. Since, by induction hypothesis,
dim Hπ

v ≥ |E| − |δ(v)| − n + 1 − m, we obtain the desired lower bound
(2.47).
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Figure 2.15: Example of the contradicting solution

To finalize the proof, we show that inequality (2.47) is tight. Indeed,
suppose by contradiction that it is not. But, under this assumption,
dim Hπ = dimP= and, consequently the face Hπ coincides with the
polytope P=. However, we can always provide a feasible solution crossing
the outgoing cut δ+(S\π(S)) at least twice (see, e.g., Fig. 2.15). Theorem
3 follows from the obtained contradiction.

For the sake of brevity, we omit the proof of Theorem 4, which can be
obtained in a similar way.

2.4 Formulations

In this section we describe novel MILP-models (formulations) for the
PCGTSP. Almost all of them are extensions of the known formulations
proposed initially in [Gouveia and Pesneau, 2006, Gouveia and Ruthmair,
2015, Gouveia et al., 2018] for the PCATSP and incorporate exponential
size families of valid inequalities introduced for the PCGTSP in Section
2.2.

Following to [Gouveia et al., 2018], we start with the sequence of models
obtained incrementally as follows:
- M1 is our basic compact model described in Subsection 3.2.1,
- M2 is M1 augmented with strengthened simple-cut (2.27)–(2.29) and
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both strengthened regular (2.30), and reversed GDDL (2.31) inequalities,
- M3 is M2 with strengthened 2-path inequalities (2.32)–(2.35),
- M4 is M3 enforced by strengthened 3v GDDL-like inequalities (2.36)–
(2.38),
- M5 is M4 supplied with strengthened 4v GDDL-like inequalities (2.39).

In addition, we propose the model incorporating the inequalities de-
scribed in Subsection 2.2.1, Subsection 2.2.2, and Subsection 2.2.3:
- M∗

1 is M1 augmented with π-, σ-, and (π, σ)-inequalities (3.14)–(2.19),
precedence cycle breaking inequalities (3.16) and (3.17), and inequalities
(3.18)–(3.22).

In order to increase the tightness of the lower bounds, we combine M∗
1

with other best performers of our exploratory Experiment I (see Subsection
2.6.2):
- M∗

3, which is M∗
1 + M3 and

- M∗
5 = M∗

1 + M5.

In all these models, families of valid inequalities are separated exactly,
following to the incremental pattern proposed in [Gouveia et al., 2018].
Although the models M3 and M5 clearly benefit from the combination
with M∗

1 in terms of the lower bounds, they still remain to be rather
time-consuming.

Therefore, by evolving the well-known roulette-wheel sampling principle
[see ex. Gendreau and Potvin, 2019] and simple online learning technique,
we propose a novel heuristic separation procedure and the corresponding
models M∗

3s and M∗
5s, which we call sampled as well. The main idea of the

proposed procedure is as follows:
- to each family of valid inequalities, we assign an appropriate probabilistic
measure; for instance, in the case of 3v GDDL-like inequalities (2.36)-
(2.38), it is sufficient to define a discrete distribution on the set of ordered
quadruples (Cp, Cq, Cr, Cs) of non-depot clusters;
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- given by a sample size, at each separation epoch, we apply cut generation
technique at this epoch only to the entries of a sample drawn from the
defined distribution;
- each time, when a tuple managed to produce a cut, we increase its
probability.

Generally speaking, the proposed separation heuristic is a compromise
between the tightness of the LP-relaxation bounds and numerical perfor-
mance. However, we decide to evaluate it in our experiments along with
the known incremental separation pattern, because the sampling gives us
an opportunity to adopt powerful but large families of valid inequalities
from the very beginning of the LP-relaxation solution process.

In addition, we introduce the formulation MMTZ-DL, based on the PCGTSP
adaptation of the Miller-Tucker-Zemlin model [Miller et al., 1960] lifted
by Desrochers and Laporte [Desrochers and Laporte, 1991]. It can be
obtained from the compact model proposed in Section 3.2.1 by exclusion
y variables and replacing constraints (2.12)–(2.15) with

vp − vq + (m− 1)upq + (m− 3)uqp ≤ m− 2 (p, q ∈ {2, . . . ,m}, p ̸= q)

−vp + (m− 3)up1 +
m∑

q=2
uqp ≤ 0 (p ∈ {2, . . . ,m})

vp + (m− 3)u1p +
m∑

q=2
upq ≤ m− 2 (p ∈ {2, . . . ,m})

vq − vp ≥ 1 (p, q ∈ {2, . . . ,m} : Cp ≺ Cq)

for upq ≥ 0, vp ≥ 0. We should note that variables vp have the same
meaning as the original free variables ui introduced in [Miller et al., 1960].
For the sake of convenience, we renamed those variables in order to follow
up with our notation.

We take this model intentionally for the subsequent performance com-
parison of the variants of the proposed branch-and-cut algorithm, because
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it is one of the lightest known compact models ensuring efficient enumer-
ation of the nodes in a branching tree. By construction, its complexity
for the PCGTSP is O(n2 +m2), while for M1 we have O(n2 +m3). Fur-
thermore, the choice of this model is motivated by the theoretical and
computational results of [Roberti and Toth, 2012] for the ATSP. Finally,
we obtain the model M∗

MTZ-DL in a similar way as M∗
1.

2.5 Branch-and-Cut Algorithm

Our branch-and-cut algorithm extends the algorithm proposed in [Gouveia
and Ruthmair, 2015] for the SOP and has a component-wise structure
based on few main building blocks. Among them are instance preprocessing
routine, primal heuristic, and a formulation of the problem in question
that specifies a family of cutting planes.

In its current version, the proposed algorithm is restricted to use
the same instance preprocessing routine. The arcs violating precedence
constraints are excluded from the given graph by preprocessing rules
(2.1)-(2.5), previously introduced in [Balas et al., 1995] for the PCATSP.
In addition, as the only primal heuristic, the algorithm uses PCGLNS,
proposed in Khachay et al. [2020a] and briefly described in Subsection
2.5.1. Thus, all the proposed variants of the algorithm (refer to Subsection
2.6.3 for details) were obtained by varying the problem formulation.

2.5.1 PCGLNS Primal Heuristic

The PCGLNS heuristic extends the recent GLNS algorithm proposed in
[Smith and Imeson, 2017] for the common GTSP. PCGLNS is designed
to take into account additional precedence constraints defined on a set of
clusters. In a nutshell, PCGLNS appears to be an original implementation
of the seminal Adaptive Large Neighborhood Search (ALNS) metaheuristic
[see, e.g. Gendreau and Potvin, 2019] and combines the well-known ruin
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and recreate principle with online learning over a given sets of basic removal
and insertion local search heuristics.

2.5.2 Implementation

The proposed algorithm is implemented on top of the Gurobi 9.3 framework.
Primal heuristic and cutting planes are provided as user callback functions.
For the sampled models, all the parameters of the heuristic separation
including sample sizes and learning rates are tuned within preliminary
testing stage. All the built-in Gurobi heuristics and cutting plane algo-
rithms are disabled, while other parameters of the solver keep their default
values. The suggested implementation is carried out in Python 3 leveraging
NetworkX software package for internal graph processing tasks and fully
cross-platform. All source code together with the reported experimental
results are open for public access at https://github.com/EnsignDaniels/BnC.

2.6 Numerical evaluation

In this section, we report results of the competitive numerical experiments
that show how each proposed formulation and variant of the branch-and-
cut algorithm could be useful for the PCGTSP. In particular, these results
reveal the notable impact contributed by predecessor/successor inequalities
in terms of accuracy and running time, which can be considered as an
additional support of the theoretical results obtained in Section 2.3. We
proceed with two separate experiments. In the former one, we evaluate
the proposed formulations with respect to their LP-relaxation bounds
and the time consumption. In turn, the purpose of the latter one is to
compare the best performers of the first experiment with known results
within the branch-and-cut setting. All the computations are carried out

https://github.com/EnsignDaniels/BnC
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Table 2.2: PCGTSPLIB library.
instance n m PC density

ESC07 39 8 14
ESC12 65 13 23
ESC25 133 26 36
ESC47 244 48 79
ESC63 349 64 296
ESC78 414 79 361

br17.10 88 17 31
br17.12 92 17 38

ft53.1 281 53 64
ft53.2 274 53 82
ft53.3 281 53 269
ft53.4 275 53 811
ft70.1 346 70 86
ft70.2 351 70 117
ft70.3 347 70 284
ft70.4 353 70 1394

kro124p.1 514 100 132
kro124p.2 524 100 169
kro124p.3 534 100 365
kro124p.4 526 100 2404

instance n m PC density
p43.1 203 43 53
p43.2 198 43 76
p43.3 211 43 138
p43.4 204 43 538

prob.100 510 99 139
prob.42 208 41 59
rbg048a 255 49 495
rbg050c 259 51 558
rbg109a 573 110 5438
rbg150a 871 151 10484
rbg174a 962 175 14129
rbg253a 1389 254 30434
rbg323a 1825 324 48525
rbg341a 1822 342 56644
rbg358a 1967 359 56894
rbg378a 1973 379 63963
ry48p.1 256 48 59
ry48p.2 250 48 73
ry48p.3 254 48 179
ry48p.4 249 48 643

n and m are the number of nodes and clusters respectively
’PC density’ is the number of arcs in the transitively closed precedence DAG

on the 16-core Intel Xeon 128G RAM server 2 against the same public
benchmark library PCGTSPLIB.

2.6.1 PCGTSPLIB Benchmark library

The PCGTSPLIB library was derived in [Salman et al., 2020] from the
well-known SOPLIB library in order to provide a test-bed for PCGTSP.
To the best of our knowledge, it is the only public library for the problem
in question. We provide a short overview of this library in Table 2.2.

Since computational complexity of the PCGTSP depends mostly on
the number of clusters m (rather than the size of a node set n, as it is for
SOP), it is convenient to partition all 40 instances of this library into small
(up to 30 clusters), medium (up to 70 clusters), large (up to 120 clusters),
and huge ones (more than 120 clusters). In addition, the instances differ
substantially in terms the density of the constituent partial orders.

For each instance, we round the transportation costs to the nearest
integral values. For the sake of convenience, we provide the converted
instances along with our source codes (https://github.com/EnsignDaniels/BnC).

2provided by Supercomputer ‘Uran’ at N.N. Krasovskii Institute of Mathematics and Mechanics

https://github.com/EnsignDaniels/BnC
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2.6.2 Experiment I: Comparison of the LP-relaxations

Inspired by the results of [Gouveia et al., 2018], we start with the compar-
ison of the formulations M1–M5 and M∗

1 in terms of their LP-relaxation
bounds and time complexity. In this experiment, for each competing
model, computation time was limited to 10 hours (36000 seconds).

Table 2.3: Comparison of formulations M1–M5 and M∗
1.

Instance OPT M1 M2 M3 M4 M5 M∗
1

LPB t LPB t LPB t LPB t LPB t LPB t
ESC07 1730 1683 0 1730 0.28 1730 0.29 1730 0.29 1730 0.3 1730 0.09
ESC12 1390 1238 0.02 1387 5.91 1387 7.1 1387 8.21 1387 9.97 1390 0.8
ESC25 1383 1296 0.21 1362 229 1362 300 1362 364 1362 448 1363 7
ESC47 1063 1001 8.46 1012 2982 1012 3545 1013 4655 1016 7420 1023 119
ESC63 62 62 207.36 – – – – – – – – 62 318
ESC78 [14672, 14808] 14629 3829.32 14640 23287 14641 36000 14641 36000 14641 36000 14659 5477
br17.10 43 15 0.05 43 6.81 – – – – – – 32 5
br17.12 43 15 0.05 43 6.54 – – – – – – 35 6
ft53.1 6194 4981 9.71 5780 7045 5781 9646 5781 10540 5781 12688 5833 400
ft53.2 [6571, 6619] 5079 19.45 5951 4381 5960 8084 5961 10924 5962 17774 5982 174
ft53.3 [8360, 8446] 5928 114.76 7168 5761 7169 8637 7169 11541 7169 13080 7178 200
ft53.4 11822 9850 2.6 11443 4828 11449 5964 11449 9858 11449 14692 11437 49
ft70.1 32608 31543 228.15 32258 19022 32258 36000 32258 36000 32258 36000 32348 3069
ft70.2 [33008, 33448] 31820 395.64 32556 19258 32556 23596 32556 24649 32556 36000 32561 673
ft70.3 [34807, 35234] 32842 712.56 33960 9728 33961 25165 33961 36000 33961 36000 33856 1764
ft70.4 44436 40068 115.96 41080 9196 42116 23481 42116 36000 42116 36000 42043 182
kro124p.1 [31787, 32825] 29337 3589.11 29647 36000 29647 36000 29647 36000 29647 36000 30663 36000
kro124p.2 [32379, 34253] 29544 3036 29544 36000 29923 36000 29923 36000 29923 36000 30259 9791.41
kro124p.3 [35110, 40906] 30424 17364.51 30424 36000 30425 36000 30425 36000 30425 36000 31840 21149
kro124p.4 [56151, 62818] 43495 2310.91 43495 36000 47023 36000 47023 36000 47023 36000 49019 4776
p43.1 22545 879 3.19 22414 1702 22414 2175 22414 2997 22414 4363 22545 308
p43.2 22837 985 5.17 22651 1858 22651 2465 22651 3525 22651 4350 22645 409
p43.3 23119 1076 3.38 22802 1956 22802 2532 22802 3689 22802 5636 22848 400
p43.4 66848 44854 1.56 53858 1622 53858 2648 53858 3844 66678 4951 56071 73
prob.100 [830, 1343] 803 428.58 815 36000 816 36000 816 36000 816 36000 822 3457.78
prob.42 202 183 5.33 190 1429 191 1632 192 2718 193 3040 188 201
rbg048a 282 273 4.8 282 2901 – – – – – – 282 61
rbg050c 378 376 7.14 377 3311 377 5763 377 12218 378 14430 378 38
rbg109a 848 803 1.87 803 36000 832 36000 832 36000 832 36000 840 427
rbg150a 1414 1381 7.44 1381 36000 1381 36000 1381 36000 1381 36000 1411 1519
rbg174a 1641 1606 8.19 1606 36000 1606 36000 1606 36000 1606 36000 1631 2512
rbg253a 2372 2308 20.05 2308 36000 2308 36000 2308 36000 2308 36000 2342 850
rbg341a [2062, 2147] 1961 82.02 1961 36000 1961 36000 1961 36000 1961 36000 2019 1604.05
rbg358a [2037, 2172] 1967 7028 1967 36000 1967 36000 1967 36000 1967 36000 2001 36000
rbg378a [2236, 2385] 2132 35422 2132 36000 2132 36000 2132 36000 2132 36000 2166 36000
ry48p.1 [13109, 13135] 11617 22.54 11952 3413 11966 5311 11984 6772 11988 10910 12158 440
ry48p.2 [13401, 13802] 11721 12.24 12188 3529 12216 4375 12216 6812 12216 8171 12357 379
ry48p.3 [15778, 16533] 12520 112.79 13873 1749 13879 4392 13879 4717 13879 5888 13937 235
ry48p.4 25977 20378 3.46 21888 1844.32 21888 2081 22670 6564 23049 8669 22861 33

Notes: column ‘OPT’ provides optimum values of the instances (if known) or the best bounds;
columns M1–M5 and M∗

1 present LP-relaxation lower bounds and the corresponding running times;
optimum values highlighted in bold, best lower bounds underlined

Since the separation procedures for M2–M5 follow the incremental
pattern initially proposed for the SOP, more complex formulations provide
tighter lower bounds, perhaps with substantially increased computation
time. Therefore, for each instance, whose optimum value is achieved by
some Mi model, we do not solve it by Mj, for any j > i. As it follows
from Table 2.3, the optimum values were found for 8 out of 40 instances:
for ESC63 - by model M1, for br17.10 and br17.12 - by model M2, for
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other five - by model M∗
1 (along with M2 and M5 for rbg048a and rbg050c,

respectively). For the remaining instances, M2 found the tightest lower
bound once, M3 three times as well as M5, and M∗

1 — 25 times.
Table 2.4: Performance of the combined and sampled formulations.

Instance OPT M∗
1 M3 M5 M∗

3 M∗
5 M∗

3s M∗
5s

LPB t LPB t LPB t LPB t LPB t LPB t LPB t
ESC07 1730 1730 0.09 1730 0.29 1730 0.3 1730 0.29 1730 0.3 1730 0.04 1730 0.06
ESC12 1390 1390 0.8 1387 7.1 1387 9.97 1387 7.2 1387 10 1390 0.35 1390 0.46
ESC25 1383 1363 7 1362 300 1362 448 1362 205 1362 221 1363 13 1383 4.31
ESC47 1063 1023 119 1012 2982 1016 7420 1014 5899 1018 6658 1026 247 1030 589
ESC63 62 62 318 62 8491 62 36000 62 13790 62 16506 62 250 62 243
ESC78 [14672, 14808] 14659 5477 14640 23287 14641 36000 14660 36000 14660 36000 14660 6106 14660 5312
br17.10 43 32 5 43 7 43 12.63 43 6.87 43 8.1 35 6 33 5
br17.12 43 35 6 43 7 43 35.05 43 6.69 43 7.99 34 5 34 4
ft53.1 6194 5833 400 5781 9646 5781 12688 5803 4786 5803 6144 5895 910 5833 375
ft53.2 [6571, 6619] 5982 174 5960 8084 5962 17774 6035 7282 6035 10144 5981 237 5982 124
ft53.3 [8360, 8446] 7178 200 7169 8637 7169 13080 7169 7717 7171 10286 7176 300 7180 204
ft53.4 11822 11437 49 11449 5964 11449 14692 11450 1450 11457 9649 11498 62 11463 43
ft70.1 32608 32348 3069 32258 36000 32258 36000 32380 13700 32380 36000 32385 4484 32348 2191
ft70.2 [33008, 33448] 32561 673 32556 23596 32556 36000 32563 24445 32564 28444 32598 862 32559 586
ft70.3 [34807, 35234] 33856 1764 33961 25165 33961 36000 33990 21890 33995 29579 33855 1275 33852 1432
ft70.4 44436 42043 182 42116 23481 42116 36000 42120 11022 42120 12040 42019 287 41900 198
kro124p.1 [31787, 32825] 30663 36000 29647 36000 29647 36000 29647 36000 29647 36000 30174 36000 30563 36000
kro124p.2 [32379, 34253] 30259 9791.41 29923 36000 29923 36000 30082 36000 30082 36000 30274 36000 30326 5527
kro124p.3 [35110, 40906] 31840 21149 30425 36000 30425 36000 30425 36000 30425 36000 31780 21225 31871 36000
kro124p.4 [56151, 62818] 49019 4776 47023 36000 47023 36000 47023 36000 47023 36000 48660 2579 48560 2513
p43.1 22545 22545 308 22414 2175 22414 4363 22415 1774 22415 3816 22545 206 22545 167
p43.2 22837 22645 409 22651 2465 22651 4350 22653 2316 22655 3649 22650 445 22642 338
p43.3 23119 22848 400 22802 2532 22802 5636 22870 1272 22872 2361 22915 389 22870 325
p43.4 66848 56071 73 53858 2648 66678 4951 53859 1328 66679 3400 56053 80 66700 340
prob.100 [830, 1343] 822 3457.78 816 36000 816 36000 816 36000 816 36000 823 4736 822 3596
prob.42 202 188 201 191 1632 193 3040 192 1325 193 2043 190 322 188 196
rbg048a 282 282 61 282 3544 282 15951 282 2128 282 21449 282 38 282 46
rbg050c 378 378 38 377 5763 378 14430 378 2880 378 12682 378 29 378 65
rbg109a 848 840 427 832 36000 832 36000 832 36000 832 36000 848 3530 840 952
rbg150a 1414 1411 1519 1381 36000 1381 36000 1381 36000 1381 36000 1411 17762 1411 2280
rbg174a 1641 1631 2512 1606 36000 1606 36000 1606 36000 1606 36000 1635 36000 1632 2455
rbg253a 2372 2342 850 2308 36000 2308 36000 2308 36000 2308 36000 2342 9059 2342 2135
rbg323a 2533 2515 3654.61 2491 36000 2491 36000 2491 36000 2491 36000 2517 5580 2515 7737
rbg341a [2062, 2147] 2019 1604.05 1961 36000 1961 36000 1961 36000 1961 36000 2017 4190 2021 3533
rbg358a [2037, 2172] 2001 36000 1967 36000 1967 36000 1967 36000 1967 36000 2013 36000 2013 36000
rbg378a [2236, 2385] 2166 36000 2132 36000 2132 36000 2132 36000 2132 36000 2189 36000 2191 36000
ry48p.1 [13109, 13135] 12158 440 11966 5311 11988 10910 12052 3539 12053 8878 12458 926 12167 252
ry48p.2 [13401, 13802] 12357 379 12216 4375 12216 8171 12217 5176 12217 8459 12780 1436 12366 253
ry48p.3 [15778, 16533] 13937 235 13879 4392 13879 5888 14011 5084 14597 13794 13783 179 13840 172
ry48p.4 25977 22861 33 21888 2081 23049 8669 22781 1874 23050 4988 22674 34 22677 46

Notes: column ‘OPT’ provides optimum values of the instances (if known) or the best bounds;
optimum values highlighted in bold

Although the model M∗
1 appears to be the best performer for the most

cases, there exist instances, e.g. ft53.4, ft70.4, and ry48.p4, where some
other competitors found more tight lower bounds. Therefore, we evaluate
models M∗

3 and M∗
5 obtained by combination M∗

1 with M3 and M∗
1 with M5,

where M5 and M3 are chosen for the combination as the most powerful
and well-balanced3 models among M2–M5 respectively.

According to results presented in Table 2.4, formulations M3, M5 and
M∗

1 collaborate quite well. In particular, for instances ft53.2, ft70.1 and
p43.2, M∗

3 provides better lower bounds than both initial models M3 and
3with respect to accuracy and time consumption
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M∗
1. The similar result can be observed for instances ry48p.3 and ft53.4

with respect to formulations M5, M∗
1 and their combination M∗

5.
While the combined models perform better than their initial counter-

parts, they still remain to be quite expensive to be applied in the branch-
and-cut algorithm. On the other hand, comparing the model M∗

3 with the
sampled one M∗

3s and excluding tiny instances ESC07, ESC12, br17.10
and br17.12, we observe the significant decrease of the time complexity,
i.e. LP-relaxation was solved 16 times faster in average. Furthermore, the
better lower bounds were obtained in 18 out of 36 remaining instances.
For those instances where M∗

3s found less accurate results, the lower bound
decreased at most by 1.7%. In addition, we should emphasize one large
instance rbg109a, where M∗

3s found an optimum value of the LP-relaxation
faster than all other competitors.

As for the models M∗
5 and M∗

5s, we observe average speed-up by 59
times and better lower bounds in 22 out the same 36 instances. For that
instances, where M∗

5 outperform its sampled counterpart, the lower bound
decreased at most by 5.2%. In addition, we should emphasize the instance
ESC25, for which M∗

5s was the only competitor, who found the optimum
value.

To summarize, we conclude that the addition of predecessor/successor
inequalities and application of the proposed heuristic separation procedure
can provide significant improvement in LP-relaxation of the PCGTSP.

2.6.3 Experiment II: Comparison of Branch-and-Cut Algorithms

This experiment is intended to assess variants of the branch-and-cut algo-
rithm proposed in Section 2.5 induced by several formulations introduced
in Section 2.4.

For the first competition, we choose variants bc∗
1, bc∗

3s, and bc∗
5s in-

duced by the best performers of Experiment I, the models M∗
1, M∗

3s, and
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Table 2.5: Comparison of the branch-and-cut algorithms (a)

Instance OPT Gurobi bc∗
DFJ bc∗

1 bc∗
3s bc∗

5s bc∗
MTZ-DL bc3s bcMTZ-DL

ESC07 1730

UB 1730 1730 1730 1730 1730 1730 1730 1730
LB 1730 1730 1730 1730 1730 1730 1730 1730
gap 0 0 0 0 0 0 0 0

t 0.05 0.06 0.09 0.04 0.06 0.05 0.06 0.09

ESC12 1390

UB 1390 1390 1390 1390 1390 1390 1390 1390
LB 1390 1390 1390 1390 1390 1390 1390 1390
gap 0 0 0 0 0 0 0 0

t 5.05 0.58 0.8 0.35 0.46 0.15 2.14 0.51

ESC25 1383

UB 1383 1383 1383 1383 1383 1383 1383 1383
LB 1383 1383 1383 1383 1383 1383 1383 1383
gap 0 0 0 0 0 0 0 0

t 7.56 1.98 8 15 4.31 2.88 8.55 3.46

ESC47 1063

UB 1063 1063 1063 1063 1063 1063 1063 1063
LB 1063 1063 1063 1063 1063 1063 1063 1063
gap 0 0 0 0 0 0 0 0

t 6963 43.06 623 1520 837 31.62 1355 191

ESC63 62

UB 62 62 62 62 62 62 62 62
LB 62 62 62 62 62 62 62 62
gap 0 0 0 0 0 0 0 0

t 209 7.52 318 250 243 3.24 244 5

ESC78 [14672, 14808]

UB 14808 14808 14808 14808 14808 14808 14808 14808
LB 14633 14657 14661 14666 14667 14672 14553 14659
gap 1.2 1 1 1 1 0.9 1.8 1

t 72000 72000 72000 72000 72000 72000 72000 72000

br17.10 43

UB 43 43 43 43 43 43 43 43
LB 43 43 43 43 43 43 43 43
gap 0 0 0 0 0 0 0 0

t 232 11.74 12 10 13 9.7 10.76 230

br17.12 43

UB 43 43 43 43 43 43 43 43
LB 43 43 43 43 43 43 43 43
gap 0 0 0 0 0 0 0 0

t 75 58.09 11 12 12 9.9 12 101

ft53.1 6194

UB 6194 6194 6194 6194 6194 6194 6194 6194
LB 5933 6194 6169 6176 6177 6194 6176 6051
gap 4.4 0 0.4 0.3 0.3 0 0.3 2.4

t 72000 3398 72000 72000 72000 1120 72000 72000

ft53.2 [6571, 6619]

UB 6619 6619 6619 6619 6619 6619 6619 6619
LB 6087 6442 6410 6490 6439 6571 6487 6279
gap 8.7 2.7 3.3 2 2.8 0.7 2 5.4

t 72000 72000 72000 72000 72000 72000 72000 72000
Notes: best performers are highlighted in bold

M∗
5s respectively. In addition, we adopt variant bc∗

MTZ-DL induced by the
formulation M∗

MTZ-DL. As baselines, we use Gurobi solver applied to the
model M1 with default configuration (including built-in heuristics and
cutting planes) and our PCGTSP adaptation bc∗

DFJ of the state-of-the-
art branch-and-cut algorithm for the SOP proposed in [Gouveia and
Ruthmair, 2015]. This algorithm tackles the similar partial classic Dantzig-
Fulkerson-Johnson (DFJ) model [Dantzig et al., 1954] ((3.1)–(3.7), and
(3.12) without y variables) and separates corresponding families of valid
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inequalities (3.14)–(3.22). In addition, we replace the initial primal heuris-
tic with our GLNS-based heuristic PCGLNS, since GLNS appears to be
more efficient for the GTSP-like problems [see Smith and Imeson, 2017].

Table 2.6: Comparison of the branch-and-cut algorithms (b)

Instance OPT Gurobi bc∗
DFJ bc∗

1 bc∗
3s bc∗

5s bc∗
MTZ-DL bc3s bcMTZ-DL

ft53.3 [8360, 8446]

UB 8446 8446 8446 8446 8446 8446 8446 8446
LB 7135 7786 7992 8186 8222 8360 8108 7525
gap 18.4 8.5 5.7 3.2 2.7 1 4.2 12.2

t 72000 72000 72000 72000 72000 72000 72000 72000

ft53.4 11822

UB 11822 11822 11822 11822 11822 11822 11822 11822
LB 11253 11687 11822 11822 11822 11822 11822 11822
gap 5.1 1.2 0 0 0 0 0 0

t 72000 72000 129 163 192 91,62 733 39271

ft70.1 32608

UB 32614 32608 32614 32614 32614 32608 32614 32614
LB 31765 32608 32466 32480 32455 32608 32475 32082
gap 2.7 0 0.5 0.4 0.5 0 0.4 1.7

t 72000 6523 72000 72000 72000 2385 72000 72000

ft70.2 [33008, 33448]

UB 33448 33448 33448 33448 33448 33448 33448 33448
LB 32029 32889 32799 32890 32805 33008 32740 32850
gap 4.4 1.7 2 1.7 2 1.3 2.2 1.8

t 72000 72000 72000 72000 72000 72000 72000 72000

ft70.3 [34807, 35234]

UB 35234 35234 35234 35234 35234 35234 35234 35234
LB 33232 34105 34304 34761 34719 34807 34629 34361
gap 6 3.3 2.7 1.4 1.5 1.2 1.7 2.5

t 72000 72000 72000 72000 72000 72000 72000 72000

ft70.4 44436

UB 44451 44451 44451 44451 44451 44436 44451 44451
LB 41634 41388 44051 43998 44033 44436 43990 42345
gap 6.8 7.4 0.9 1 0.9 0 1 5

t 72000 72000 72000 72000 72000 59670 72000 72000

kro124p.1 [31787, 32825]

UB 32835 32835 32825 32835 32835 32835 32835 32835
LB 29704 30858 30827 30174 30182 31787 29530 30555
gap 10.5 6.4 6.5 8.8 8.8 3.3 11.2 7.5

t 72000 72000 72000 72000 72000 72000 72000 72000

kro124p.2 [32379, 34253]

UB 34253 34253 34253 34253 34253 34253 34253 34253
LB 30084 30722 30509 30448 30448 32379 29881 31657
gap 13.9 11.5 12.3 12.5 12.5 5.8 14.6 8.2

t 72000 72000 72000 72000 72000 72000 72000 72000

kro124p.3 [35110, 40906]

UB 40906 40906 40906 40906 40906 40906 40906 40906
LB 30945 31930 32734 32954 32674 35110 31122 33918
gap 32.2 28.1 25 24.1 25.2 16.5 31.4 20.6

t 72000 72000 72000 72000 72000 72000 72000 72000

kro124p.4 [56151, 62818]

UB 62818 62818 62818 62818 62818 62818 62818 62818
LB 46861 45720 54993 55329 53841 56151 51210 51495
gap 34.1 37.4 14.2 13.5 16.7 11.9 22.7 22

t 72000 72000 72000 72000 72000 72000 72000 72000
Notes: best performers are highlighted in bold

All the competitors are supplied with the same primal heuristic PCGLNS.
The time limit is set to 20 hours (72000 seconds). We report cost of the
best found solution (UB), the best lower bound (LB), an accuracy measure
(gap, in percentage)

gap = UB−LB
LB ≥ UB−OPT

OPT = ε,
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for the relative error ε of the obtained solution, and the elapsed time (in
seconds).

Table 2.7: Comparison of the branch-and-cut algorithms (c)

Instance OPT Gurobi bc∗
DFJ bc∗

1 bc∗
3s bc∗

5s bc∗
MTZ-DL bc3s bcMTZ-DL

p43.1 22545

UB 22545 22545 22545 22545 22545 22545 22545 22545
LB 22408 22545 22545 22545 22545 22545 22545 22545
gap 0.6 0 0 0 0 0 0 0

t 72000 195 308 206 167 14 2583 5400

p43.2 22837

UB 22837 22837 22837 22837 22837 22837 22837 22837
LB 22461 22711 22731 22837 22837 22774 22801 22674
gap 1.7 0.6 0.5 0 0 0.3 0.2 0.7

t 72000 72000 72000 22780 39365 72000 72000 72000

p43.3 23119

UB 23119 23119 23119 23119 23119 23119 23119 23119
LB 22399 22293 22970 23119 23119 23089 23104 22877
gap 3.2 3.7 0.6 0 0 0.1 0.1 1.1

t 72000 72000 72000 8672 11665 72000 72000 72000

p43.4 66848

UB 66848 66848 66848 66848 66848 66848 66848 66848
LB 45266 66848 66848 66848 66848 66848 66848 66743
gap 47.7 0 0 0 0 0 0 0,2

t 72000 2596 131 283 587 52 212 72000

prob.100 [830, 1343]

UB 1343 1516 1343 1343 1343 1343 1343 1343
LB 813 824 826 824 826 830 813 824
gap 65.2 84 62.6 63 62.6 61.8 65.2 63

t 72000 72000 72000 72000 72000 72000 72000 72000

prob.42 202

UB 204 202 202 202 202 202 202 202
LB 198 202 202 202 202 202 202 202
gap 3 0 0 0 0 0 0 0

t 72000 832 767 869 3559 120 1155 230

rbg048a 282

UB 282 282 282 282 282 282 282 282
LB 282 282 282 282 282 282 282 282
gap 0 0 0 0 0 0 0 0

t 57 13 61 38 46 5 61 26

rbg050c 378

UB 378 378 378 378 378 378 378 378
LB 378 378 378 378 378 378 378 378
gap 0 0 0 0 0 0 0 0

t 42 21 38 29 65 6,62 34 56

rbg109a 848

UB 848 848 848 848 848 848 848 848
LB 848 848 848 848 848 848 848 837
gap 0 0 0 0 0 0 0 1.3

t 1942 51757 781 3567 3530 790 6583 72000

rbg150a 1414

UB 1414 1414 1414 1414 1414 1414 1414 1414
LB 1414 1400 1414 1414 1414 1414 1414 1400
gap 0 1 0 0 0 0 0 1

t 21725 72000 7674 27154 70000 11950 42549 72000
Notes: best performers are highlighted in bold

As it follows from Tables 2.5–2.8, both baseline algorithms solved to
optimality 17 out of 40 instances in total, where the instances rbg150a
and rbg174a (which are huge ones) were solved by Gurobi solely, and the
instances ft53.1, ft70.1, p43.1, p43.4, prob.42 – by bc∗

DFJ. In turn, proposed
algorithms bc∗

1, bc∗
3s, bc∗

5s, bc∗
MTZ-DL managed to solve to optimality 24 out

of 40 instances in total including all the mentioned above. Regarding to
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the new seven instances, ft53.4 and ry48p.4 were solved by all of them,
the instance rbg253a was solved by bc∗

1, the instance ft70.4 – by bc∗
MTZ-DL,

the instance rbg323a – by bc∗
3s, bc∗

5s and bc∗
MTZ-DL. Finally, the optimal

solutions of the instances p43.2 and p43.3 were found by both bc∗
3s and

bc∗
5s. In addition, each of 15 instances solved to optimality by bc∗

DFJ is also
solved exactly by one of the proposed variants about 11 times faster in
average. Nevertheless, we should mention the instance ESC25, where bc∗

DFJ

outperforms other competitors in terms of the elapsed time.
In the residual 16 open instances, the proposed algorithms managed to

significantly increase lower bounds and close the average gap value about
3 times better than both baselines and complement each other quite well.

Our second observation is related to the comparison of variants bc∗
3s and

bc∗
MTZ-DL with the corresponding counterparts bc3s and bcMTZ-DL obtained

by exclusion the predecessor / successor inequalities from the separation
pipeline. Regarding to bc3s and bc∗

3s, we observe that inclusion of such
inequalities allows to solve to optimality three additional instances (p43.2,
p43.3, and rbg323a). Furthermore, for 12 out of 16 instances solved by
both competitors exactly, we observe notable decrease of the running rime.
In addition, for the remaining 21 instances, bc∗

3s closed the gap by 1.7
times better in average. In turn, we should note that bc∗

MTZ-DL significantly
outperforms bcMTZ-DL in terms of instances solved to optimality, gap values
and elapsed time.

Therefore, the predecessor/successor inequalities are proved to be useful
for the PCGTSP in the branch-and-cut setting as well.
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Table 2.8: Comparison of the branch-and-cut algorithms (d)

Instance OPT Gurobi bc∗
DFJ bc∗

1 bc∗
3s bc∗

5s bc∗
MTZ-DL bc3s bcMTZ-DL

rbg174a 1641

UB 1641 1641 1641 1641 1641 1641 1641 1641
LB 1641 1602 1641 1636 1637 1638 1630 1607
gap 0 2.4 0 0.3 0.2 0.2 0.7 2.1

t 62657 72000 14448 72000 72000 72000 72000 72000

rbg253a 2372

UB 2373 2372 2372 2372 2372 2373 2372 2373
LB 2369 2358 2372 2357 2357 2366 2350 2301
gap 0.2 0.6 0 0.6 0.6 0.3 0.9 3.1

t 72000 72000 27642 72000 72000 72000 72000 72000

rbg323a 2533

UB 2595 2597 2586 2533 2533 2533 2594 2554
LB 2528 2517 2531 2533 2533 2533 2530 2493
gap 2.7 3.2 2.2 0 0 0 2.5 2.4

t 72000 72000 72000 71550 71800 54377 72000 72000

rbg341a [2062, 2147]

UB 2180 2195 2199 2184 2147 2160 2184 2146
LB 2047 2017 2056 2061 2062 2058 2060 1932
gap 6.5 8.8 7 6 4.1 5 6 11.1

t 72000 72000 72000 72000 72000 72000 72000 72000

rbg358a [2037, 2166]

UB 2172 2174 2175 2172 2174 2185 2172 2166
LB 1996 2009 2025 2025 2013 2037 2002 1949
gap 8.8 8.2 7.4 7.3 8 7.3 8.5 11.1

t 72000 72000 72000 72000 72000 72000 72000 72000

rbg378a [2236, 2385]

UB 2390 2385 2404 2400 2402 2408 2400 2399
LB 2185 2191 2210 2214 2205 2236 2132 2080
gap 9.4 8.9 8.8 8.4 8.9 7.7 12.6 15.3

t 72000 72000 72000 72000 72000 72000 72000 72000

ry48p.1 [13109, 13135]

UB 13135 13135 13135 13135 13135 13135 13135 13135
LB 12065 12732 12634 13084 12914 13109 12669 12625
gap 8.9 3.2 4 0.4 1.7 0.2 3.7 4.0

t 72000 72000 72000 72000 72000 72000 72000 72000

ry48p.2 [13401, 13802]

UB 13802 13802 13802 13802 13802 13802 13802 13802
LB 12217 12963 12917 13401 13327 13275 13019 12789
gap 13 6.5 6.9 3 3.6 4.0 6 7.9

t 72000 72000 72000 72000 72000 72000 72000 72000

ry48p.3 [15778, 16533]

UB 16533 16533 16533 16553 16533 16533 16533 16533
LB 13387 14753 14825 15147 15441 15778 14672 14532
gap 23.5 12.1 11.5 9.3 7.1 4.8 12.7 13.8

t 72000 72000 72000 72000 72000 72000 72000 72000

ry48p.4 25977

UB 25977 25977 25977 25977 25977 25977 25977 25977
LB 22732 24079 25977 25977 25977 25977 25977 24069
gap 14.3 7.9 0 0 0 0 0 7.9

t 72000 72000 11182 22106 29865 4376 25000 72000
Notes: best performers are highlighted in bold





Chapter 3

Discrete Cutting Path Problems:
General Solution Framework with
Accuracy Guarantees

3.1 General modelling approach: from the discrete
CPP to the PCGTSP

In this section, we present our general modeling approach based on the
reduction of an arbitrary instance of CPP to PCGTSP. The PCGTSP
is based on the formulation of GTSP complemented with precedence
constraints [see, e.g. Salman et al., 2020, Khachai et al., 2023].

An instance of the GTSP [Gutin and Punnen, 2007] is defined by an
edge-weighted directed graph G = (V,E, c), a cost function c : E → R,
and partition C = {C1, C2, . . . , Cm} of the nodeset V = {v1, . . . , vn} into
non-empty mutually disjoint clusters (or megalopolises). The goal is to
construct a closed route R = vi1, . . . , vim

that visits each cluster Cj ∈ C

exactly once and has the minimum cost

c(R) = c(vim
, vi1) +

m−1∑
j=1

c(vij
, vij+1).
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The GTSP appears to be a natural generalization of the classic TSP
corresponding to GTSP where each cluster is a singleton.

In the PCGTSP, precedence constraints define a partial order on the
set of clusters C. This order is given by a directed acyclic graph (DAG)
H = (C, A), such that (Ci, Cj) ∈ A if and only if Ci ≺ Cj, i.e. the cluster
Ci precedes Cj. Furthermore, in the PCGTSP, the cluster C1 is called
depot and plays a specific role: each feasible route R is restricted to depart
from and to arrive to some node vi1 ∈ C1 as well as to visit all other
clusters with respect to the order specified by the DAG H.

In the following, we first consider discrete CPP without cutting pre-
emption and then discuss ECP where such a preemption is allowed.

3.1.1 Discrete CPP without cutting preemption

Each part to be cut is defined by a closed contour that can be complemented
with a family of mutually disjoint enclosed contours. Each contour should
be cut out without preemption, using the following cutting procedure
[Petunin and Stylios, 2016]: the tool starts cutting in a dedicated piercing
point πi; then it moves to a special equidistant curve of the contour and
cuts it out entirely, from the entry point εi; the cutting is finalized at
the exit point θi, where the tool is switched off. Then, it moves by air
to proceed with another contour or to return to the resting point (see
Fig. 3.1). In the considered discrete CPP without cutting preemption,
a finite set of feasible entry, piercing and exit points are known for each
contour.

An instance I1
0 of the considered discrete CPP without cutting preemp-

tion is defined by:

- a set of contours K1, . . . , Kt and the information about their mutual
topology,
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Figure 3.1: An example of the discrete CPP without cutting preemption

- a set of triples
{
(πk

j , ε
k
j , θ

k
j ) : j ∈ {1, . . . , nk}

}
associated with each

contour Kk,

- piercing costs ρk
j that include the cost of piercing itself and lead-in /

lead-out cutting expenses as well,

- air-motion costs δk,l
j,i for moving from contour Kk to contour Kl (with

respect to the exit point θk
j and piercing point πl

i),

- air-motion costs µk
j and νk

j for moving from the rest point vrest to the
piercing point πk

j and from the exit point θk
j respectively associated

with contour Kk.

The goal is to construct a cutting path of a minimum cost. According to
the problem statement, actual cutting costs for the contours are constant,
therefore they are excluded from the objective function.

In the following, we construct the correspondence between instance I1
0

and instance I1 of the PCGTSP. Let us define the edge-weighted digraph
G = (V,E, c):

V =
{
vrest

}
∪
{
vk+1

j : k ∈ {1, . . . , t}, j ∈ {1, . . . , nk}
}
,
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E =
{
(vrest, v

k+1
j ), (vk+1

j , vrest) : k ∈ {1, . . . , t}, j ∈ {1, . . . , nk}
}

∪
{
(vk+1

j , vl+1
i ) : k ̸= l ∈ {1, . . . , t}, j ∈ {1, . . . , nk}, i ∈ {1, . . . , nl}

}
,

c(vrest, v
k+1
j ) = µk

j + ρk
j , c(vk+1

j , vrest) = νk
j , c(vk+1

j , vl+1
i ) = ρl

i + δk,l
j,i .

where vrest encodes the resting point for the cutting tool, and any node
vk+1

j corresponds to the triple (πk
j , ε

k
j , θ

k
j ).

We define the partition C = {C1, C2, . . . , Cm} by splitting the nodeset
V into m = t + 1 pairwise disjoint clusters, where C1 = {vrest} is the
depot cluster, and Ck = {vk

j : j = {1, . . . , nk−1}}, for any k ∈ {2, . . . ,m}.
Precedence constraints are defined in a natural way, i.e. for an arbitrary
k ̸= l ∈ {2, . . . ,m}, Cp ≺ Cq if contour Kp−1 is embedded into Kq−1. The
following proposition holds.

Proposition 13. There exists a polynomial time reduction, for which
instances I1

0 and I1 are equivalent, i.e. an arbitrary feasible path of the
cutting tool in I1

0 corresponds to a feasible solution of I1 of the same cost,
and vice versa.

Proof. Consider an arbitrary feasible cutting path for a given instance of
the discrete CPP without cutting preemption (see, e.g. Fig. 3.2) that
starts / finishes each contour Kk at specified piercing point πk

j and θk
j ,

respectively. According to the construction procedure, in the corresponding
PCGTSP instance, each contour Kk is represented by a cluster Ck+1, whose
nodes correspond to the triples associated with this contour. Furthermore,
by visiting the cluster Ck+1 in some node vk+1

j , we model the cutting out
of the contour Kk with respect to the triple (πk

j , ε
k
j , θ

k
j ). Therefore, the

considered cutting path explicitly corresponds to a feasible solution of the
auxiliary PCGTSP instance of the same cost.
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On the other hand, to an arbitrary feasible solution of the PCGTSP, we
assign a corresponding feasible cutting path of the discrete CPP without
cutting preemption in a similar way.

Finally, by construction, the size |I1| of the obtained instance I1 and
the running time of the proposed reduction do not exceed ψ1 · |I1

0 |, where
|I1

0 | is the size of the initial instance I1
0 and ψ1 ≥ 1 is some constant.

Figure 3.2: Example of the reduction: initial instance with a feasible cutting path(left)
and its auxiliary PCGTSP instance (right). In this example, we have the only precedence
constraint induced by the embedding of the contour K2 into K3. Therefore, K2 should
be cut out before K3, and its PCGTSP counterpart C3 should be visited by an arbitrary
feasible route before C4. Thus, the DAG H has the only arc (C3, C4)

Remark. The proposed reduction covers the general setting of the discrete
CPP without cutting preemption. In the special case of a thin material,
piercing costs are low and can be ignored, and each equidistant curve is
close to the corresponding contour. Therefore, in this case, without loss
of generality, we can assume that any triple (πi, εi, θi) collapses to the
single point, and the resulting PCGTSP instance becomes symmetric and
equivalent to finding a cutting path with the minimal air-motion cost.

In the next section we consider ECP where cutting preemption is
allowed.
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3.1.2 ECP: several sources of industrial constraints

In the ECP, each contour can be partitioned into several elements, each of
them can be cut out separately. As it was shown in [Dewil et al., 2014],
such cutting method induces several sources of precedence constraints. For
the sake of convenience, in this section, we consider each source separately.
The proposed reduction techniques complement each other. If necessary,
the decision makers can combine them to treat more complex settings.

We start with the case of a thin material, where the objective is to
construct a cutting path minimizing the air-motion costs. We assume
that a cutting element corresponds to an arbitrary connected (closed
or non-closed) segment of a contour to be cut out. Such an element is
represented by a two-node element cluster, each its node encodes a moving
direction of the cutting tool (Fig. 3.3).

Figure 3.3: Encoding of a cutting element

For a number of reasons, it is important to keep the relation between
the original contour and its composing elements. In order to accomplish
this, we introduce a concept of a contour gadget.

For any contour, such a gadget consists of two-node clusters of all its
elements and an artificial twin cluster representing this contour itself (see
Fig. 3.4). Each node of any element cluster is connected with a single zero-
cost arc with the corresponding node in the twin cluster. Furthermore, any
outgoing arc for the original element node is doubled for its corresponding
twin node. Finally, the artificial cluster is a direct successor of all respective
element clusters.
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Figure 3.4: Contour gadget: twin nodes, arc doubling and induced precedence constraints.
In this case, the initial contour consists of elements I and II. To this end, the corresponding
contour gadget is represented by two-node clusters CI and CII and their successor –
artificial twin cluster T . Any arc going from two-node clusters is a bold line, while its
corresponding artificial twin arcs are labeled by a dash line

As a consequence, according to the definition of the PCGTSP, a fea-
sible route must visit an artificial twin cluster associated with a contour
immediately after its last-visited element cluster.

Case 1. Inner/outer contours relation can be encoded in terms of the
introduced gadgets almost straightforwardly. In the ECP, this relation
induces the following cutting rule: the last element of an outer contour
must be cut out only after all the elements of any inner contour have been
completely cut.

Consider an instance I2
0 of the ECP, specified by contours K1, . . . , Kt,

where each contour Kj consists of elements Ej
1, . . . , E

j
k(j) for some k(j) ≥ 1

and costs charging air motion between non coincident endpoints of different
contour elements. It is required to construct a tool path, departing from
and arriving to the rest point, while cutting out all the contours with
respect to their possible embedding. To such an instance I2

0 of the ECP,
we assign an auxiliary instance I2 of the PCGTSP as follows.

First, to any contour Kj we assign a contour gadget Gj consisting of
all its element clusters and a single artificial twin cluster. We obtain
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graph G(V,E), where V = V (G1) ∪ V (G2) ∪ . . . ∪ V (Gm) and E =
E(G1) ∪E(G2) ∪ . . .∪E(Gm) ∪E ′, and E ′ is composed of all arcs between
G1, . . . , Gm and the depot. The arc costs are defined equal to the respective
air-motion costs (see Fig. 3.4). The partition into pairwise disjoint clusters
C is established in a natural way. Finally, the precedence constraints,
defined by the graph H, are two-fold. First, each twin cluster Tj is a
direct successor of all element clusters with respect to its gadget. Second,
Tj ≺ Tl if and only if Kj ≺ Kl. Therefore, the reduction from the ECP
to the PCGTSP in the case of inner/outer contours is obtained (see Fig.
3.5).

In order to estimate complexity of the proposed reduction, observe
that both sizes |I2

0 | and |I2| of the initial instance I2
0 and the obtained

auxiliary instance I2 appears to be proportional to T 2 for T = ∑t
j=1 k(j).

Therefore, similarly to Subsection 3.1.1, there exist a constant ψ2 ≥ 1,
such that |I2| and reduction time do not exceed ψ2 · |I2

0 |, and the following
proposition holds.

Proposition 14. Instance I2 is equivalent to the initial instance I2
0 , and

obtained in polynomial time.

Case 2. Common cuts can be tackled in a similar way, however there
is a new notation to be introduced. In the cases mentioned above, each
contour was assigned to one part. Common cuts can induce several
‘artificial’ contours called here shapes. A shape is a closed contour (not
necessary assigned to a single part), whose interior is intersected by a
common cut. Here, the cutting rule is to ensure that the common cut is
carried out before the last element of any shape whose interior is crossed
by this cut (Fig. 3.6).

Consider an arbitrary instance I3
0 of the ECP, given by some regular

elements and common cuts that induce shapes. To this instance, we
assign an instance I3 of the PCGTSP. To each shape we assign a contour



3.1 General modelling approach: from the discrete CPP to the PCGTSP 75

Figure 3.5: Instance of the ECP with inner/outer contours, a feasible cutting path is
colored orange. In this example, we have two contours. The first one consists of the
elements I, II, and III, while the second one of the elements IV and V. Therefore, the
corresponding graph G contains two contour gadgets, specified by clusters CI , CII , CIII ,
T1, and CIV , CV , T2 respectively. Since, the second contour is embedded into the first
one, cluster T2 precedes T1, which is encoded by the arc (T2, T1) in the graph H. Feasible
cutting path and the appropriate same cost PCGTSP solution are presented by orange

gadget. Unlike the previous case, several contour gadgets may contain the
same element cluster. As a consequence, some of them may have several
related twins. Since every outgoing arc from the element cluster node is
being replicated by its twin, those twins create a clique (complete directed
sub-graph) with each other (see Fig. 3.7(b)). In order to fulfill the cutting
rule, we extend our order by adding the precedence constraints between
each common cut cluster and twin clusters of all associated shapes. As a
result, the graph H appears to be a bipartite directed graph.

To estimate complexity of the proposed reduction, observe that the
number of two-node element clusters in the graph G is equal to Nce + Ncc,
where Nce and Ncc are numbers of contour elements and common cuts
of the initial instance I3

0 , respectively. Let further NS be the number
of shapes induced by the common cuts. As it follows from ?, NS is at
proportional to (Ncc)2, while each shape cluster has at most Ncc nodes, by
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Figure 3.6: Common cuts can induce several shapes. In this example, part P2 has two
cuts, J1 and J2 common with parts P1 and P3, respectively. These common cuts induce
the shapes S1, S2, and S3, such that J1 intersects interiors of S1 and S3, while J2 —
interiors of S2 and S3. Therefore, in graph G, each node of the cluster J1 (J2) has a twin
in the clusters S1 and S3 (S2 and S3) inheriting all the outgoing arcs. Each twins of the
same node are induced cliques. Furthermore, precedence of the cluster J1 with respect
to the clusters S1 and S3 (J2 with respect to S2 and S3) is encoded by corresponding
arcs of the graph H

construction. Therefore, there exists a constant ψ3 ≥ 1, the size |I3| of the
constructed auxiliary PCGTSP instance I3 does not exceed ψ3 ·

(
|I3

0 |
)2

and the running time of the reduction is bounded by some small degree
polynomial of |I3

0 |. Thus, we have the following statement.

Proposition 15. An instance I3
0 of the ECP with common cuts can be

reduced to the appropriate instance I3 of the PCGTSP in polynomial time.

As in the previous case, an example given in the Fig.3.7(a) illustrates
a possible cutting path for the ECP, and Fig.3.7(b) for its PCGTSP
counterpart.

Case 3. Some instances of the ECP can have islands, which are bounded
areas of waste material encompassed by several contours (Fig. 3.8). This
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(a)

(b)

Figure 3.7: An example of the ECP instance with common cuts, and the corresponding
auxiliary instance of the PCGTS. Regular cutting elements are denoted by R1, . . . , R4,
common cuts – by J1, J2, J3, and the induced shapes – by S1, . . . , S6. All of them is
represented by the same-name cluster in the graph G. Observe that the cluster J1
precedes clusters S1, S4, and S5, since the respective common cut intersects interior of
these shapes, which is encoded by the arcs (J1, S1), (J1, S4), (J1, S5) in the graph H. The
rest of the precedence constraints is obtained in the similar way. A feasible cutting path
and the appropriate same cost PCGTSP route is colored orange

case can be reduced to the previous one by assuming each island to be a
dummy part, whose contour being composed of common cuts. Complexity
of the proposed reduction has the same upper bound as in Case 2.

Case 4. Finally, we consider the case of the ECP with thick material.
In this case, piercing costs cannot be ignored anymore and the optimization
criterion needs to include also piercing, pre-cut and optional bridge cutting
costs. In practice, before starting any actual cutting, a preliminary phase
is performed, it includes piercing into the material, pre-cutting and so on.
In order to represent these procedures, we introduce a novel crossroad
cluster, which encodes a junction between several contour elements (or
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Figure 3.8: Instance of the ECP with an island

bridges). In addition, we introduce novel element gadgets and bridge
gadgets (Fig. 3.9).

(a) Element gadget
(b) Bridge gadget

Figure 3.9: Crossroads, cutting elements and bridges

Any crossroad cluster consists of (an optional) piercing node and a
dedicated node for each incident cutting elements, which are encoded
by an element gadget. An element gadget, besides the known two-node
cluster specifying cutting direction long this element, consists of additional
gateway clusters. Such a cluster consists of a node encoding an entry point
of the associated element and a dummy node, that encodes completion of
the tool path and return to the depot. To complete representation of the
aforementioned piercing procedure, we introduce precedence constraints
between any crossroad cluster and all the incident gateway clusters.
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In turn, bridge gadget has mostly the same structure, except its cross-
roads do not contain any piercing nodes, and bridge gateways have no
element clusters between them. It allows traversing across the bridge in
both directions or skipping it completely. According to the construction
procedure, a crossroad cluster precedes all the nearby gateways of the
incident cutting elements.

Figure 3.10: Reduction of the ECP with bridges to the equivalent instance of the
PCGTSP: Pi are crossroads, Wj are gateways, and Cq are remaining clusters representing
contour elements. Observe that in this case, the nature of precedence constraints is
specified by the fact that each crossroad cluster precedes all the gateways assigned to
it. For instance, cluster P1 precedes the clusters W1 and W2, which is encoded by the
arcs (P1,W1) and (P1,W2) in the graph H. A feasible cutting path and the same cost
appropriate feasible solution of the PCGTSP are presented by orange

Consider an arbitrary instance I4
0 of a thick-material setting of the ECP.

Similarly to I1
0 , this instance is given by a finite set of contours K1, . . . , Kt,

such that each contour Kk is augmented by triples
{
(πk

j , ε
k
j , θ

k
j ) : j ∈

{1, . . . , nk}
}

of piercing, entry and exit points and corresponding air-
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motion, piercing, and lead-in / lead-out costs. In addition, there are several
bridges Bi, each of them connects a pair of contours (Ki, Kj). Since, the
setting of ECP is free from the ‘no cutting preemption’ constraint, we
extend our notation as follows:

- in this case, ρk
j denotes piercing cost only at the point πk

j of the
contour Kk, while the corresponding lead-in and lead-out costs are
denoted by σk

j and τ k
j respectively;

- along with costs δk,l
j,i corresponding to the air-motion between θk

j and
πl

i, we introduce similar costs γk,l
j,i for air-motion between the points

θk
j and εl

i;

- traversing through the bridge Bi induces the cutting cost βi;

- finally, the rest point air-motion costs µk
j and νk

j remain the same as
in the case of the discretized CCP.

By assigning to each cutting element or bridge a dedicated element and
bridge gadget, as well as to their junctions - an appropriate crossroad,
we naturally obtain the nodeset V of the graph G(V,E) for this case,
and its partition into the set of clusters. The precedence constraints are
established between crossroad and gateway clusters, as it was mentioned
above. The set E consists of:

- arcs connecting the depot with all the piercing nodes (Fig.3.9(a)),
their costs are obtained as the sum of the appropriate air-motion
costs and piercing costs, i.e. µk

j + ρk
j ;

- internal arcs of an arbitrary element gadget, including zero-cost pre-
cut/gateway entry node, entry/same direction element cluster node,
element cluster/self pre-cut node arcs, and arcs between the piercing
node and self gateway entry node of cost σk

j ;
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- element cluster/dummy node arcs of sum of lead-out cost and depot
air-motion cost (τ k

j + νk
j ) respectively;

- bridge gadget arcs (Fig.3.9(b)) between entry node and the pre-cut
node of an appropriate crossroad cluster, of bridge-cut cost βi;

- any arc between bridge entry node and gateway entry node of bridge-
cut cost βi;

- arcs between any element cluster node and foreign pre-cut node of
sum of lead-out and air-motion cost (τ k

j + γk,l
j,i );

- arcs between any element cluster node and foreign piercing node of
sum of lead-out, air-motion and piercing costs (τ k

j + δk,l
j,i + ρk

j );

- arcs between any pre-cut node and foreign piercing node of sum of
lead-out, air-motion and piercing costs (τ k

j + δk,l
j,i + ρk

j );

- zero-cost arcs between all pre-cut nodes of an arbitrary crossroad
cluster and entry nodes of nearby gateways;

- zero-cost arcs of the clique spanning all the dummy nodes.

Thus, we construct a corresponding instance I4 of the PCGTSP (Fig.
3.10). Similarly to Case 1, we can show that both the size |I4| of the
obtained auxiliary instance and the running time of the proposed reduction
depend linearly on the size |I4

0 | of the initial instance I4
0 .

The following proposition summarize our argument.

Proposition 16. Instance I4 is equivalent to the initial instance I4
0 , and

obtained in polynomial time.

3.2 Generic solution framework for the discrete CPP

In this section, we introduce the general algorithmic approach for various
formulations of the discrete Cutting Path Problem. It relies on:
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- the modelling techniques presented in Section 3.1 providing the equiv-
alence to the Precedence Constrained Generalized Traveling Salesman
Problem;

- a recent state-of-the-art branch-and-cut algorithm (Khachai et al.
[2023]) that can be used both for exact and approximate resolution
of the problem with accuracy guarantees;

- PCGLNS heuristic for finding approximate solutions that according
to the performed tests on industrial problems in Section 3.3 can be
close-to-optimal or even optimal in practice.

The general solution framework is summarized in Algorithm 2.
Algorithm 2 Scheme of the proposed solution framework
Input: an instance I0 of the discrete CPP,
Output: a cutting path of the minimal cost or a sub-optimal cutting path with accuracy
guarantees.
1: Analyze the initial instance of the discrete CPP, its cutting restrictions, such as common

cuts, bridges, inner-outer contours etc.
2: Transform I0 to the corresponding instance I of the PCGTSP with the use of the techniques

developed in Section 3.1.
3: Find an optimal or close-to-optimal approximate solution of I with the branch-and-cut

algorithm or PCGLNS heuristic.
4: Transform this solution into the corresponding same cost cutting path for the initial discrete

CPP instance I0.
5: return the required CPP cutting path.

In the sequel, we briefly describe the methodological support for our
framework then present an illustrative example of industrial application.

3.2.1 Branch-and-cut algorithm

The employed branch-and-cut algorithm extends well-known linear pro-
gramming relaxation branching technique and consists of the following
components:

- Mixed Integer Linear Program (MILP) formulation of the problem in
question;
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- primal heuristic to produce close-to-optimal feasible solutions in a
short time;

- problem-specific cutting planes providing accuracy bounds of the
obtained solutions.

MILP formulation

We employ our extension of the well-known compact model for the classic
ATSP [Miller et al., 1960], lifted by Desrochers and Laporte [1991], that we
further strengthened and adapted to the case of the precedence constraints.
This model is chosen because it is one of the best performers for the
general PCGTSP in terms of both LP-relaxation bounds and running time
[Khachai et al., 2023].

To any arc (i, j) ∈ E and node v ∈ V , we assign binary decision
variables as follows:

xij =


1, if (i, j) is included to the solution

0, otherwise,
zv =


1, if the solution visits v

0, otherwise.

In order to describe inter-cluster transitions, we include additional variables
upq

upq =


1, if in the solution, cluster Cq follows Cp immediately

0, otherwise,

and vp that gives the number of clusters visited in the solution between
the depot C1 and the cluster Cp. Although, for any feasible route, values
of the variables upq and vp are integer, it is not necessary to require it
explicitly in the model.

We use the standard notation

δ−(C) = {(j, i) : i ∈ C, j ̸∈ C} and δ+(C) = {(i, j) : i ∈ C, j ̸∈ C}
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for inbound and outbound cuts for an arbitrary proper subset ∅ ̸= C ⊂ V

and the appropriate shortcuts δ−(i) and δ+(i) for any singleton C = {i}.
Thus, the proposed formulation is as follows:

min
∑

(i,j)∈E

cijxij, (3.1)

s.t.
∑

i∈Cp

zi = 1 (p ∈ {1, . . . ,m}) (3.2)
∑

(i,j)∈δ+(i)
xij = zi (i ∈ V ) (3.3)

∑
(i,j)∈δ−(i)

xji = zi (i ∈ V ) (3.4)

m∑
q=1,q ̸=p

upq = 1 (p ∈ {1, . . . ,m}) (3.5)
m∑

p=1,p ̸=q

upq = 1 (q ∈ {1, . . . ,m}) (3.6)
∑

i∈δ+(Cp)

∑
j∈δ−(Cq)

xij = upq (p, q ∈ {1, . . . ,m}, p ̸= q)

(3.7)

vp − vq + (m− 1)upq + (m− 3)uqp ≤ m− 2 (p, q ∈ {2, . . . ,m}, p ̸= q)
(3.8)

− vp + (m− 3)up1 +
m∑

q=2
uqp ≤ 0 (p ∈ {2, . . . ,m}) (3.9)

vp + (m− 3)u1p +
m∑

q=2
upq ≤ m− 2 (p ∈ {2, . . . ,m}) (3.10)

vq − vp ≥ 1 (p, q ∈ {2, . . . ,m} : Cp ≺ Cq)
(3.11)

xij, zi ∈ {0, 1}, upq ⩾ 0, vp ⩾ 0 (3.12)

The goal is to find a feasible solution of the minimal cost (3.1). Con-
straints (3.2) ensure that each cluster is visited exactly in a single node.
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Equations (3.3) and (3.4) are the flow conservation in terms of nodes, while
equations (3.5) and (3.6) establish the same constraints for the clusters.
In turn, equations (3.7) define an expansion of upq in terms of decision
variables. Finally, to eliminate subtours and ensure precedence relations,
we include Desrochers-Laporte-like constraints (3.8)–(3.10) along with
(3.11).

PCGLNS primal heuristic

The PCGLNS meta-heuristic is the main primal heuristic in our framework.
It was developed recently for the PCGTSP in [Khachay et al., 2020a] . It
is a generalization of the well-known Adaptive Large Neighborhood Search
(ALNS) metaheuristic [see, e.g. Gendreau and Potvin, 2019].

The built-in pool of removal heuristics R is used to (partially) destroy
current found feasible route. This pool includes:

- worst removal heuristic removes the node that maximizes the removal
cost for the input route;

- distance removal heuristic removes the node, whose distance to some
randomly chosen node in a route fulfills some predefined criterion, e.g.
takes smallest, largest or random value;

- segment removal removes a randomly chosen continuous segment of
the input route.

The additional insertion heuristics pool I provides built-in algorithms
applied for recovering of the route and consists of well-known nearest,
farthest, cheapest and random insertion local-search heuristics. The main
routine of the PCGLNS employs an online learning for fine tune distribu-
tions on sets R and I. At any warm restart, it picks a removal heuristic
Hrem and an insertion one Hins to obtain the new route, which is compared
with the current best known solution. Each taken heuristic receives a
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specific score based on the current and best tour costs. The higher score
heuristic obtains, the more probable is its selection for the next restart.

To avoid local optima, the PCGLNS applies the standard simulated
annealing acceptance criterion based on the internal temperature parameter
T decreasing successively along the iterations from a given initial value
and affecting the acceptance probability P (Tnew) for newly found tour

P (Tnew) = min{e(c(T )−c(Tnew))/T , 1}.

Problem-specific cutting planes

To improve LP-relaxation bounds and speed-up the overall branch-and-cut
pipeline, we extend the MILP-model (3.1)–(3.12) with additional families
of valid inequalities. An inequality is called valid, if it is fulfilled by an
arbitrary feasible solution of the MILP-model corresponding to a feasible
route of the initial PCGTSP instance. Meanwhile, this inequality can
be violated by some feasible solutions of the appropriate LP-relaxation,
making it possible to exploit this constraint to produce cutting planes.

To describe the chosen families of valid inequalities, we use the following
notation. If U and V are non-empty disjoint subsets of clustering C, then

x(U ,V) =
∑

Cp⊂U

∑
Cq⊂V

upq ≡
∑

Cp⊂U

∑
Cq⊂V

∑
i∈Cp

∑
j∈Cq

xij.

In addition, for an arbitrary p ∈ {2, . . . ,m}, by π(Cp) = {Cq : q >
1, Cq ≺ Cp} and σ(Cp) = {Cq : q > 1, Cp ≺ Cq} we denote the sets of
predecessors and successors of the cluster Cp, respectively. Let C′ =
{Ci1, . . . , Ci2t+1} ⊂ C \ {C1}, t ∈ N be an ordered set of clusters, such that
Ci1 ≺ . . . ≺ Ci2t+1. By

C′
odd = {Ci2s+1 : s ∈ {0, . . . , t}} and C′

even = {Ci2s
: s ∈ {1, . . . , t}}, (3.13)
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we denote subsets of C′ containing Cij
indexed by odd and even numbers j

respectively. Finally, we assume that, for each j ∈ {1, . . . , 2t}, the cluster
Cij

is a direct parent of Cij+1. In the sequel, each time when cluster Cp

is a direct parent of cluster Cq, we use a short notation Cp ∈ π̃(Cq) or
Cq ∈ σ̃(Cp).

In our framework, we employ the following families of valid inequalities:

(i) π- and σ-inequalities

x(S \ π(S), S̄ \ π(S)) ≥ 1

x(S̄ \ σ(S),S \ σ(S)) ≥ 1
(∅ ̸= S ⊂ C \ {C1} and S̄ = C \ S);

(3.14)

(ii) (π, σ)-inequality
x(S \ Q, S̄ \ Q) ⩾ 1, (3.15)

where X ,Y ⊂ C\{C1}, C ′ ∈ X , C ′′ ∈ Y , C ′ ≺ C ′′, Q = {C1}∪π(X )∪σ(Y),
S ⊂ C, S̄ = C \ S, X ⊆ S, and Y ⊆ S̄;

(iii) Precedence cycle breaking (PCB) inequalities

x(S, S̄) ≥ t+ 1, (3.16)

where S ⊂ C \ {C1}, S̄ = C \ S, C′
odd ⊂ S, and C′

even ⊂ S̄;

(iv) Strengthened PCB inequalities

x(S \ S′, S̄ \ S′) ≥ t+ 1, (3.17)



88
Discrete Cutting Path Problems: General Solution Framework with Accuracy

Guarantees

where S ⊂ C \ {C1}, S̄ = C \S, C′
odd ⊂ S, C′

even ⊂ S̄, σ̃(Ci2t+1) ̸⊂ S, and
S′ = π(Ci1) ∪ σ(Ci2t+1) \ σ̃(Ci2t+1);

(v) Single-option inequalities

uij + uji + ukl + ulk ≤ 1 (Ck ∈ π(Ci), Cl ∈ σ(Cj)) (3.18)
uij + uji +

∑
Cl∈σ(Cj)

ukl ≤ 1 (Ck ∈ π(Ci)) (3.19)

uij + uji +
∑

Cl∈σ(Cj)
ulk ≤ 1 (Ck ∈ π(Ci)) (3.20)

uij + uji +
∑

Ck∈π(Ci)
ukl ≤ 1 (Cl ∈ σ(Cj)) (3.21)

uij + uji +
∑

Ck∈π(Ci)
ulk ≤ 1 (Cl ∈ σ(Cj)), (3.22)

where {Ci, Cj} ⊂ C \ {C1}.
The validity of all aforementioned inequalities and their numerical eval-

uation are presented in [Khachai et al., 2023] along with proofs of sufficient
conditions for inequalities (3.14) to be facet-inducing, i.e. generating the
most powerful cutting planes, which substantially improves the overall
performance of the algorithm.

3.2.2 An illustrative example

In this section, we provide a detailed illustration of the proposed frame-
work for instance I4

0 discussed in Case 4 of Section 3.1. We present each
step of Algorithm 2, including the detailed reduction to the corresponding
PCGTSP instance, finding its (sub)optimal solution, and reverse interpre-
tation of the obtained PCGTSP solution in terms of the best (or close to
the best) cutting path of the initial ECP instance.

In this example, the ECP instance is given by contours K1 and K2

complemented with triples {(πk
j , ε

k
j , θ

k
j ) : k, j ∈ {1, 2}} and a single bridge

B1. All the air-motion costs δk,l
j,i , γ

k,l
j,i , µk

j , and νk
j are specified by the
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Figure 3.11: Example of the ECP with bridges

Euclidean distances between the appropriate points (Fig. 3.11). Piercing,
lead-in, lead-out, and bridge costs are constant, ρk

j = 50, βi = 20, σk
j =

τ k
j = 10.

We construct the corresponding PCGTSP instance specified by (G,C, H)
according to the rules of Case 4 in Section 3.1 (see Fig.3.10). In particular,
the set of clusters C consists of all the contour clusters C1, . . . , C7, including
the depot cluster C1, crossroad clusters P1, . . . , P6, and gateway clusters
W1, . . . ,W14. The graph of the partial order H turns to be bipartite and
relates only crossroad clusters Pj with the associated gateway clusters Wk.
According to the construction procedure, the set of arcs E of the graph G
is partitioned into several disjoint subsets. The belonging of arc (u, v) to
some subset is determined by node u.

In Fig. 3.12, we show typical representatives of these subsets:

(i) the unique node of the depot cluster C1 representing the resting point is
connected to each piercing node. In particular, arc e1 connects the depot
with an image of π1

1 and has a cost µ1
1 + ρ1

1;
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Figure 3.12: Specific arcs of the graph G

(ii) each piercing node is connected with entry nodes of the associated
gateway clusters charged by the appropriate lead-in cost, one of such arcs
is e2 of cost σ1

1;

(iii) each entry node has a zero-cost link (e.g. arc e3) to the only appropriate
element cluster node;

(iv) each element cluster node has a zero-cost link to the pre-cut node of
the same-direction crossroad cluster (e.g., arc e4) and a cut-termination
arc to the dummy node of the neighboring gateway, e.g., arc e5 of cost
τ 1

2 + ν1
2 . In addition, if this node belongs to the cluster non-adjacent with

a bridge gadget (clusters C2 and C5 in our case) or it models the cutting
motion away from such a gadget, it has two more types of outgoing arcs: to
entry node of an arbitrary non-bridge foreign gateway (e.g., e6 of the cost
τ 1

2 +γ1,1
2,1) and to an arbitrary piercing node (as e7 of the cost τ 1

2 +δ1,2
2,1 +ρ2

1);

(v) each entry node of a bridge gateway is connected with an entry node
of a gateway neighboring to the opposite side of the bridge (for instance,
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e8), and with an appropriate pre-cut node of the bridge gadget (as arc e9),
both of the cost β1;
(vi) each pre-cut node has a zero-cost link (as e10) to an entry node of the
associated gateway and links to each foreign piercing nodes (like e11 of
cost τ 1

2 + δ1,2
2,2 + ρ2

2);
(vii) finally, each dummy node has a zero-cost link to depot (e12 in our case).
Furthermore, each pair of dummy nodes is connected by a bi-directional
zero-cost link (like e13).

(a) (b)

Figure 3.13: The obtained optimal PCGTSP solution (a) and the appropriate optimal
cutting path of the same cost (b)

We apply the branch-and-cut algorithm from Subsection 3.2.1 and
obtain an optimal solution of the constructed PCGTSP instance:

dep, p1p, w2r, c2r, p2c2, w4r, c3r, p3c2, w7r, p4c2, w10r, c4r, p5c2, w12r, c5l, p6c2,

w14r, c6r, w8r, w6r, c7l, w1d, w3d, w5d, w11d, w13d, w9d, dep

of cost 203. According to Proposition 16, this solution corresponds to an
optimal cutting path for the initial ECP instance of the same cost:

RP, π1
1, ε

1
1, ε

1
2, b

B1
1 , bB1

2 , ε2
2, ε

2
1, b

B1
2 , bB1

1 , ε1
1, θ

1
1, RP.
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The obtained cutting path is the output of Algorithm 2.

3.3 Computational Experiment

As it was proved in Section 3.1, various settings of the CPP can be
efficiently reduced to appropriate auxiliary instances of the PCGTSP.

Following Section 3.2.1, a recent state-of-the-art branch-and-cut algo-
rithm and PCGLNS metaheuristic were proposed for the PCGTSP. The
purpose of this experiment is to evaluate the performance of PCGLNS
against a variety of real-life industrial instances of the CPP, using the
branch-and-cut algorithm as a baseline. We conclude our evaluation with
statistical analysis of PCGLNS in order to demonstrate its efficiency.

3.3.1 Experimental setup

For this experiment, we collected 48 instances of the discrete CPP, which
can be found on https://github.com/EnsignDaniels/CPP. The instances are
grouped by their size: small (≤ 27 clusters), medium (≤ 67 clusters), and
large (≥ 100 clusters). The time limits for the PCGLNS heuristic for these
groups were 60, 300, and 600 seconds, respectively. To assess the accuracy
of the obtained solutions, we employ the branch-and-cut algorithm within
the time limit of 40 hours. The tests were run on the 32-core Intel Xeon
128G RAM, AlmaLinux 8.5 server.

3.3.2 Results

In Table 3.1, we report for each instance, its size (m for number of clusters),
optimum value (OPT) or the values of best lower (LB) and upper bounds
(UB), and results obtained by PCGLNS up to three predefined time
moments (15, 30, and 60 seconds for small instances; 20, 60, and 300 for
medium ones; 25, 240, and 600 for the large ones). In column "PCGLNS",

https://github.com/EnsignDaniels/CPP
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we report the results found by the heuristic for each instance within the
time limit, and the corresponding gap calculated as follows:

gap = PCGLNS − LB
LB ≥ PCGLNS − OPT

OPT = ε,

where ε is the relative error of the obtained solution.
We can observe that PCGLNS was able to find the optimal solution for

all except one small instances in 60 seconds, for the sub-optimal solution
the gap was only 0.04%. For medium size instances, the heuristic found
the optimum value for 4 instances out of 16 in 20 seconds, and for 5 more
in the following 280 seconds.

In the case of large instances, relatively high gap results can be explained
by the fact that branch-and-cut algorithm found only approximate solu-
tions within its time limit. Therefore, to assess the accuracy of solutions
obtained by PCGLNS, we rely on the best lower bounds. Nevertheless,
we believe that PCGLNS still performs well in this case because the best
solution of the branch-and-cut is found by PCGLNS as its only primal
heuristic.

Table 3.2 reports the distribution of gap values of the solutions obtained
by the heuristic for small, medium and large instances for the second
experiment, where PCGLNS was applied 10 times for each instance. The
first column of this table reports the percentage of PCGLNS runs with
the corresponding accuracy. For instance, with probability at least 60%,
the heuristic provided an optimal solution for a medium-sized instance
in 60 seconds, and with probability at least 80%, the gap was inferior to
4.09% after 300 seconds. In a few instances, the PCGLNS managed to
find feasible solutions after 60 seconds. Thus, we highlight these cases by
‘-’.
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Table 3.1: PCGLNS performance results

small instances

instance m OPT or [LB, UB]
time (sec)

15 30 60
PCGLNS gap (%) PCGLNS gap (%) PCGLNS gap (%)

e1x_6_m 17 1513 1514 0.07 1513 0 1513 0
e1x_9_m 17 2926 2926 0 2926 0 2926 0
e1x_10_m 18 2587 2588 0.04 2587 0 2587 0
e3x_2_m 18 1578 1584 0.38 1578 0 1578 0
e1x_8_m 19 1716 1716 0 1716 0 1716 0
e1x_12_m 19 4530 4746 4.77 4530 0 4530 0
e1x_7_m 21 1732 1732 0 1732 0 1732 0
e3x_1_m 21 1176 1176 0 1176 0 1176 0
e1x_1_m 22 2866 2866 0 2866 0 2866 0
e1x_5_m 23 1588 1590 0.13 1588 0 1588 0
e5x_1_m 23 1847 1847 0 1847 0 1847 0
e1x_3_m 24 2290 2293 0.13 2291 0.04 2291 0.04
e1x_13_m 24 2168 2168 0 2168 0 2168 0
e1x_11_m 27 3242 3242 0 3242 0 3242 0
e1x_14_m 27 1958 1977 0.97 1968 0.51 1958 0
e1x_15_m 27 2751 2752 0.04 2751 0 2751 0

medium instances

instance m OPT or [LB, UB]
time (sec)

20 60 300
PCGLNS gap (%) PCGLNS gap (%) PCGLNS gap (%)

e1x_2_m 29 3556 3556 0 3556 0 3556 0
p1xj_21 31 3356 3369 0.39 3356 0 3356 0
p1xj_22 31 3299 3309 0.3 3309 0.3 3309 0.3
ps-33-m 34 5764 5764 0 5764 0 5764 0
ps-34-m 35 [5815, 6008] 6008 3.32 6008 3.32 6008 3.32
ps34-2-m 35 4951 4951 0 4951 0 4951 0
ps-36-m 37 2012 n/a n/a n/a n/a 2012 0
P1xl_23 45 3778 3778 0 3778 0 3778 0
pm-47-m 48 [5948, 6189] 6191 4.09 6191 4.09 6191 4.09
pm-53-m 55 [6338, 6864] 6888 8.68 6878 8.52 6864 8.3
p7xj_9-m 59 5191 5191 0 5191 0 5191 0
p1xj_24 62 [9730, 10581] 10608 9.02 10581 8.75 10581 8.75
p7xj_6-m 63 6001 6006 0.08 6001 0 6001 0
pm-62-m 63 7907 8096 2.39 7907 0 7907 0
pm65-m 66 [3219, 3297] 3352 4.13 3317 3.04 3297 2.42
p7xj_7-m 67 [6499, 7056] 7056 8.57 7056 8.57 7056 8.57

large instances

instance m OPT or [LB, UB]
time (sec)

25 240 600
PCGLNS gap (%) PCGLNS gap (%) PCGLNS gap (%)

P5XJ_9-n-
m

68 [6630, 7106] 7137 7.65 7106 7.18 7106 7.18

p7xj_5-m 69 [8311, 8454] 8682 4.46 8454 1.72 8454 1.72
PL71-m 72 [9632, 10379] 10426 8.24 10379 7.76 10379 7.76
pl-75-m 76 [7276, 7498] 7498 3.05 7498 3.05 7498 3.05
pl-76-m 77 4062 4062 0 4062 0 4062 0
p7xj_8-m 79 7548 7548 0 7548 0 7548 0
ph91-m 79 [7481, 7895] 7895 5.53 7895 5.53 7895 5.53
pl-89 90 [5920, 6464] 6464 9.19 6464 9.19 6464 9.19
ph92 93 [8423, 8602] 8718 3.5 8701 3.3 8701 3.3
ph-99-m 100 14206 14206 0 14206 0 14206 0
ph-99 100 [7862, 8574] 8574 9.06 8574 9.06 8574 9.06
ph-102-m 103 [6034, 6604] 6604 9.45 6604 9.45 6604 9.45
ph-103-m 104 [13904, 15138] 15840 13.92 15138 8.88 15138 8.88
ph-104-m 105 [7682, 7943] 8386 9.16 7943 3.4 7943 3.4
ph-110-m 111 [18088, 20944] 21167 17.02 21104 16.67 20944 15.79
ph-119-m 120 [6773, 6816] 6921 2.19 6921 2.19 6816 0.63
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Table 3.2: PCGLNS gap percentiles for test instances

Small instances gaps (%)
time

α level (%) 15 sec 30 sec 60 sec
10 0.00 0.00 0.00
20 0.00 0.00 0.00
30 0.00 0.00 0.00
40 0.00 0.00 0.00
50 0.00 0.00 0.00
60 0.04 0.00 0.00
70 0.07 0.00 0.00
80 0.13 0.00 0.00
90 0.97 0.00 0.00
100 4.77 0.51 0.04

Medium instances gaps (%)
time

α level (%) 20 sec 60 sec 300 sec
10 0.00 0.00 0.00
20 0.00 0.00 0.00
30 0.00 0.00 0.00
40 0.00 0.00 0.00
50 0.00 0.00 0.00
60 3.32 0.00 0.00
70 4.09 3.32 3.32
80 8.57 8.46 4.09
90 8.68 8.57 8.30
100 - - 8.75

Large instances gaps (%)
time

α level (%) 25 sec 240 sec 600 sec
10 0.00 0.00 0.00
20 0.00 0.00 0.00
30 3.05 2.19 2.19
40 3.50 3.05 3.05
50 5.53 5.53 3.40
60 8.24 7.65 7.65
70 9.06 7.76 7.76
80 9.19 9.06 9.06
90 9.45 9.19 9.19
100 17.02 16.67 15.79

To summarize, PCGLNS provided good results in terms of solution
time and quality for the majority of the industrial instances of the CPP
showing its high potential for practical applications.





Chapter 4

Capacitated Vehicle Routing
Problem: Efficient approximation in
metric spaces of a fixed doubling
dimension

4.1 Problem statement

The Capacitated Vehicle Routing Problem (CVRP) can be formulated
informally as follows. We are given by a set of customers X, each of them
has a unit demand on some homogeneous commodity. All the customer’s
demand should be serviced by identical vehicles of a fixed capacity q

located initially at the given depot y. The problem is to construct a
minimum cost family of cyclic routes servicing the total customer demand,
each of them departs from and arrives at the depot y and satisfies the
capacity constraint.

For the sake of convenience, we give a mathematical statement of a
slightly more general problem, where each customer is free to have a
non-unit integer demand, which can be split between several routes. In the
literature, this problem is referred to as the Capacitated Vehicle Routing
Problem with Splittable Demand (CVRP-SD).
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An instance of the CVRP-SD is given by a complete weighted graph
G = (X ∪ {y}, E,D,w) and a natural number q. Here, X = {x1, . . . , xn}
is a set of customers, y is a depot, the non-negative weighting function
D : X → Z+ specifies customer demand, the symmetric weighting function
w : E → R+, to any couple of nodes {u, v} ⊂ X ∪ {y}, assigns the
transportation cost w(u, v) related to the direct transition along the edge
{u, v} ∈ E, and q is an upper vehicle capacity bound.

A route is an ordered pair R = (π, SR), such that π = y, xi1, . . . , xit
, y is

a cycle in the graph G and the function SR : X → Z+ defines a distribution
of the serviced customer demand. For the route R, its cost w(R) is defined
as follows

w(R) = w(y, xi1) + w(xi1, xi2) + · · · + w(xit−1, xit
) + w(xit

, y).

The route R is called feasible, if

SR(x)


≤ D(x) for any x ∈ {xi1, . . . , xit

},

= 0, otherwise
and

∑
x∈X

SR(x) ≤ q.

An arbitrary family S of feasible routes is called a feasible solution of the
problem, if it services the total customer demand

∑
R∈S

SR(x) = D(x) (x ∈ X).

To any feasible solution S, we assign its cost w(S) = ∑
R∈Sw(R). Thus,

the goal is to construct the cheapest feasible solution S, i.e.

w(S) → min

s.t.
∑

R∈S
SR(x) = D(x) (x ∈ X).

(4.1)
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Obviously, the statement of the classic CVRP can be obtained by
restriction of the above setting with the additional constraint D(x) ≡ 1.

If the function w satisfies the triangle inequality, i.e. w(v1, v2) ≤
w(v1, v3) + w(v3, v2) holds for any subset {v1, v2, v3} ⊂ X ∪ {y}, the
instance of CVRP is called metric. In this case, nodes of the graph G are
called points, w(u, v) is referred to as a distance between the points u and
v, and the cost w(R) of an arbitrary route R is called its length.

In this chapter, we consider the metric CVRP restricted as follows:

(i) the ordered pair (Z,w), where Z = X ∪ {y}, is a finite metric space
of a fixed doubling dimension d > 1;

(ii) the vehicle capacity bound q does not exceed polylog(n).

Hereinafter, we use the notation CVRP(Z,w, q) and CVRP∗(Z,w, q)
for the instance specified by the graph G = (X ∪ {y}, E, w) and capacity
q and its optimum value, respectively1.

4.2 Metric spaces of a fixed doubling dimension

For the subsequent constructions, we need to recall some definitions and
preliminary technical results.

Suppose we are given by some metric space (Z,w). For any z0 ∈ Z

and a number R ≥ 0, the set B(z0, R) = {z ∈ Z : w(z0, z) ≤ R} is called
a metric ball of a radius R centered at the point z0 ∈ Z.

Definition 1 (see, e.g Abraham et al. [2011]). For a number d > 1, the
space (Z,w) is referred to as a metric space of the fixed dimension d, if,
for an arbitrary z0 ∈ Z and R > 0, there exist points z1, . . . , zM ∈ Z, such
that

B(z0, R) ⊆
M⋃

j=1
B(zj, R/2) and M ≤ 2d.

1and the notation CVRP-SD(Z, D, w, q) and CVRP-SD∗(Z, D, w, q) for the case of CVRP-SD as well
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It is easy to verify that, for any d ≥ 1 and p ≥ 1, the space ldp is a
metric space of doubling dimension O(d). On the other hand, there are
known many metrics of a fixed dimension that appear to be very far from
the finite-dimensional numeric spaces [see, e.g. Gupta et al., 2003].

Next, let Z ′ ⊂ Z be an arbitrary nonempty subspace of the space Z
(of doubling dimension d). By ∆ = ∆w(Z ′) = sup{w(u, v) : u, v ∈ Z ′} and
α = αw(Z ′) = inf{w(u, v) : {u, v} ⊂ Z ′} we denote an upper and a lower
bounds for the distances between the distinct points in Z ′, respectively.

Lemma 4 (Talwar [2004]). Let 0 < α ≤ ∆ < ∞. Then, the subspace Z ′

is finite and

|Z ′| ≤
(2∆
α

)d

.

In this chapter, we restrict ourselves to finite metric spaces induced
by complete weighted graphs G = (Z,E,w). Let, further, U ⊂ Z be an
arbitrary nonempty node subset of the graph G, MST(U) be the minimum
spanning tree for the induced subgraph G⟨U⟩, and R = R(U) be a radius
of the minimal ball (centered at some point z ∈ Z) enclosing the subset
U .

The following known small spanning trees lemma [see, e.g. Talwar, 2004,
Smid, 2010] gives a non-trivial upper bound for the cost w(MST (U)). For
the sake of completeness, we provide this result with a proof.

Lemma 5.
w(MST(U)) ≤ 12R · |U |1−1/d. (4.2)

Proof. Following to [Smid, 2010], we show that the following equation

w(MST(V )) ≤ 12R(V )(|V |1−1/d − 1) (4.3)

is valid for an arbitrary ∅ ̸= V ⊆ U . We construct our argument by
induction on |V |.
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Base case: |V | ≤ 2. If |V | = 1, equation (4.3) follows from

R(V ) = w(MST(V )) = 0.

In the case |V | = {u, v},

w(MST(V )) = w(u, v) ≤ 2R(V ) < 4.8R(V ) < 12R(V )(|V |1−1/d − 1)

holds, since 21−1/d − 1 ≥
√

2 − 1 > 0.4 for an arbitrary d ≥ 2.

Inductive step: Let, further, |V | ≥ 3. By induction hypothesis, property
(4.3) is valid for an arbitrary non-empty subset V ′ ⊂ U , |V ′| < |V |. Now,
we proceed with the subset V .

Let B be the minimal metric ball of radius R(V ) enclosing the subset
V . By definition, for some l ≤ 2d, there exist balls B1, . . . , Bl ⊂ Z of
radius R(V )/2, such that ⋃l

j=1Bj ⊇ B.

Defining Vj = Bj ∩ V , without loss of generality, we can assume that,
for any j and k ̸= j, Vj ̸= ∅ and Vj ∩Vk = ∅. Furthermore, we can always
assume that l ≥ 3. Indeed, l > 1 due to the minimality of the ball B. If
l = 2, then at least one of the subsets V1 or V2, e.g. V1, is not a singleton
and can be separated into two nonempty subsets, since |V | ≥ 3.

Next, for each Vj, the inequality R(Vj) ≤ R(V )/2 holds by construction.
Therefore,

w(MST(Vj)) ≤ 12R(Vj)(|Vj|1−1/d − 1) ≤ 6R(V )(|Vj|1−1/d − 1),

by the induction hypothesis.

Let, further, H = {vj ∈ Vj : j ∈ {1, . . . , l}} be an arbitrary hitting set
for the subsets V1, . . . , Vl. Consider a tree

T = MST(H) ∪
l⋃

j=1
MST(Vj).
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By construction, w(MST(H)) ≤ 2R(V )(l− 1), since the diameter ∆(V ) ≤
2R(V ). Combining the bounds, we obtain

w(T ) =
l∑

j=1
w(MST(Vj))+w(MST(H)) < 6R(V )

l∑
j=1

(|Vj|1−1/d−1)+2l·R(V )

≤ 6R(V )
l∑

j=1
|Vj|1−1/d − 4l ·R(V ) ≤ 6R(V )

l∑
j=1

 |V |
l

1−1/d

− 4l ·R(V )

(4.4)

= 6R(V )l1/d|V |1−1/d − 4l ·R(V ) ≤ 12R(V ) · |V |1−1/d − 12R(V ), (4.5)

where inequalities (4.4) and (4.5) follow from the concavity of the function
f(x) = x1−1/d and the inequalities l ≤ 2d and l ≥ 3, respectively.

Thus, the inductive step is proved. To complete the proof of Lemma 5,
just consider the case V = U .

4.3 Extended Das and Mathieu approximation scheme

In this section, we show that the well-known QPTAS proposed by A. Das
and C. Mathieu [Das and Mathieu, 2015] for the Euclidean CVRP can
be extended to the case of metric spaces of any fixed doubling dimension
d > 1. Supplementing the main idea of their scheme with the technical
results underlying the recent PTAS of Y. Bartal et al. [Bartal et al., 2016]
for the metric TSP formulated in such spaces, we propose an algorithm
that, for an arbitrary 0 < ε < 1/8 finds a (1 +O(ε))-approximate solution
of the CVRP in a metric space of any doubling dimension d > 1. On
the other hand, we show that the resulting algorithm, generally speaking,
ceases to be a QPTAS, even for a fixed capacity q. Further, in Subsection
4.3.5, we propose a novel version of Das and Mathieu scheme, whose time
complexity is quasi-polynomial provided q = O(polylog(n)).
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Similarly to the original scheme, our algorithm consists of several
consecutive stages, as follows:

(i) Preliminary processing and accuracy driven rounding. At
this stage, given by ε > 0, to the instance in question, we assign
an auxiliary instance of more simple structure, called rounded, such
that an arbitrary (1 + ε)-approximate solution of this instance can
be transformed efficiently to the appropriate (1 +O(ε))-approximate
solution of the initial problem.

(ii) Randomized hierarchical clustering. Given by values of random
parameters, at this stage, we construct a number of mutually nested
partitions of the set X ∪ {y}. Then, in each cluster located at any
level of the resulting hierarchy, we point out some number of special
points (we call them portals). Following to the approach proposed in
[Talwar, 2004], we show that, for any rounded instance, there exist
(1 + ε)-approximate solutions, each their route crosses any cluster at
most r times (for some number r, which will be defined later) and at
portals exclusively. Such routes are referred to as net-respecting and
r-light [see, e.g. Bartal et al., 2016].

(iii) Dynamic Programming and Iterated Tour Partition. At this
stage, following to [Das and Mathieu, 2015], we allow some routes of
the constructed solutions (we call them relaxed) slightly violate the
capacity constraint. Then, to obtain a required feasible approximate
solution,

(a) we apply dynamic programming to find a relaxed net-respecting
and r-light solution minimizing some specially penalized objective
function

(b) applying a randomized rank procedure for the demand covered
by the routes of the solution obtained, we ensure that each route
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covers at most q demand units of the highest rank; following to
[Das and Mathieu, 2015], we call such units black

(c) all other units (we call them red) are excluded from these routes
and covered separately, by the additional routes constructed
using the well-known Iterated Tour Partition (ITP) heuristic
[Haimovich and Rinnooy Kan, 1985]

(d) thus, we obtain two partial solutions Sblack and Sred, such that
their combination is a feasible solution of the problem in question.

Finally, we show that the expected cost of this combined solution over
random clustering and demand ranking fulfils the following equation

E(w(Sblack) + w(Sred)) = (1 +O(ε)) · CVRP∗(Z,w, q).

(iv) Derandomization. Relying on the arguments from [Das and Math-
ieu, 2015] and [Talwar, 2004], we show that the proposed algorithm
admits polynomial time derandomization.

4.3.1 Accuracy driven rounding

This stage dates back to the classic PTAS proposed by S. Arora for the Eu-
clidean TSP [Arora, 1998]. As above, let ∆ = ∆w(Z) = max{w(u, v) : u, v ∈
Z = X ∪ {y}} be the diameter of the set Z. Without loss of general-
ity, we assume that ∆ = n/ε. Indeed, otherwise, to the initial instance
CVRP(Z,E,w), we can easily assign an equivalent (in terms of optimality
sets) scaled instance CVRP(Z,E,w′) with the following weighting function:
w′(u, v) = w(u, v) · n

ε·∆ .

We define the desired rounded instance in terms of metric nets.

Definition 2. A subset N ⊆ Z is called a δ-net in the metric space (Z,w)
for some given δ > 0, if the following conditions holds
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(i) for any u ∈ Z, there exists v = v(u) ∈ N , such that w(u, v) ≤ δ;

(ii) for an arbitrary distinct points v1, v2 ∈ N , the distance w(v1, v2) > δ.

Let N1 = {ξ1, . . . , ξJ} be an arbitrary 1-net of the set Z. We assign to
the initial instance CVRP(Z,w, q) the rounded one CVRP-SD(N1, D,w1, q)
as follows:

(i) breaking tights arbitrarily, we define a mapping ξ : Z → N1 such that
w(z, ξ(z)) ≤ 1 holds for any z ∈ Z;

(ii) we exclude all the customers associated with the node η = ξ(y);

(iii) as a result, to any node ξj ∈ N1 \ {η}, we assign the accumulated
customer demand

D(ξj) =


|ξ−1(ξj)|, ξj ̸= η,

0, otherwise,

(iv) as new weighting function w1, we take a restriction w|N1 of the function
w to the set N1 ⊂ Z.

Lemma 6 establishes a close relation between optimum values of the initial
and rounded instances.

Lemma 6.

CVRP∗(Z,w, q)−7n ≤ CVRP-SD∗(N1, D,w1, q) ≤ CVRP∗(Z,w, q)+4n.

Proof. I. To prove the upper bound we consider an arbitrary optimal
solution S = {R} of the given instance CVRP(Z,w, q). To each route
R = (π, SR) ∈ S, π = y, xi1, . . . , xit

, y we assign the rounded route R̄ =
(π̄, SR̄) (see Fig. 4.1a), where π̄ = η, ξ(xi1), . . . , ξ(xit

), η and distribution
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SR̄ : N1 → Z+ is defined as follows

SR̄(ξj) =


∑

x : ξ(x)=ξj

SR(x), ξj ̸= η

0, otherwise.

Without loss of generality, we assume that all ξ(xij
) are distinct and

do not coincide with η.
By construction, the obtained route family S̄ = {R̄} is a feasible

solution of the rounded instance CVRP-SD(N1, D,w1, q). Estimate it’s
cost w1(S̄) = ∑

R̄∈S̄w1(R̄). By selection of the weighting function w1 and
mapping ξ and by the triangle inequality, we obtain

w1(R̄) = w1(η, ξ(xi1)) +
t−1∑
j=1

w1(ξ(xij
), ξ(xij+1)) + w1(ξ(xit

), η)

≤ w(y, xi1) +
t−1∑
j=1

w(xij
, xij+1) + w(xit

, y) + 2
t∑

j=1
w(xij

, ξ(xij
)) + 2w(y, η)

≤ w(R) + 2t+ 2.

Hence,

CVRP-SD∗(N1, D,w1, q) ≤ w1(S̄) =
∑
w1(R̄) ≤

∑
w(R) + 2n+ 2n

≤ w(S) + 4n = CVRP∗(Z,w, q) + 4n,

since an arbitrary customer x ∈ X is being visited by exactly one route R
of the optimal solution S.

II. Proof of the lower bound can be obtained in a similar way. We fix an
arbitrary optimal solution S̄ = {R̄1, . . . , R̄K} of CVRP-SD(N1, D,w1, q).
By definition, the demand satisfied by the route R̄ = (π̄, SR̄) ∈ S̄ in an
arbitrary node ξ of the net N1 is defined by SR̄(ξ) such that

∑
ξ∈N1

SR̄(ξ) ≤ q.
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(a) (b)

(c) (d)

Figure 4.1: Proof of Lemma 6

To an arbitrary ξ ∈ N1 except η, we introduce the mapping ζj : Xj → S̄

assigning to any customer x ∈ Xj the rounded route R̄ that fulfils its
demand (see Fig 4.1b). By construction,

|ζ−1
j (R̄)| = SR̄(ξj), (1 ≤ j ≤ J, R̄ ∈ S̄).

Next, to any route R̄ = (π̄, SR̄) ∈ S̄, π̄ = η, ξj1, . . . , ξjt
, η we assign

the unrounded route R = R(R̄) (see Fig. 4.1c) departing from (and
arriving to) the depot y and consecutively visiting all the nodes of subsets
ζ−1

j1 (R̄), . . . , ζ−1
jt

(R̄) (for each subset ζ−1
j (R̄), all its nodes can be visited

by an arbitrary order). Estimate the cost of the family of such routes
S = {R1, . . . ,RK}. By construction of the net N1 and due to the triangle
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inequality, we obtain

w(Rk) ≤ w1(R̄k) + 2
t∑

i=1
SR̄k

(ξji
) + 2,

hence,

w(S) =
K∑

k=1
w(R) ≤

K∑
k=1

w1(R̄k) + 2
K∑

k=1

J∑
j=1

SR̄k
(ξj) + 2K ≤ w1(S̄) + 4n,

since ∑K
k=1

∑J
j=1 SR̄k

(ξj) ≤ n and K ≤ n.
Notice that the family of routes S = {R1, . . . ,RK} is not necessarily a

feasible solution of CVRP(Z,w, b) because all the customers assigned to
η are excluded from the instance CVRP-SD(N1, D,w1, q). To make the
family S feasible, we service these customers by at most

⌈
n
q

⌉
dedicated

routes S′, such that all of them except maybe one visit q customers exactly
(see Fig. 4.1d). Thus, it is easy to verify that their total cost is at most 3n.
Therefore, we obtain the total upper bound for CVRP∗(Z,w, q) as follows

CVRP∗(Z,w, q) ≤ w(S ∪ S′) ≤ CVRP-SD∗(N1, D,w1, q) + 7n. (4.6)

Lemma 6 is proved.

Notice that all the aforementioned procedures, i.e. construction of
the net N1, assigning to the initial CVRP(Z,w, q) its rounded instance
CVRP-SD(N1, D,w1, q), and reconstruction the solution S∪S′ associated
to the (rounded) solution S̄, can be done in polynomial time.

As a simple corollary, we show that an arbitrary approximate solution of
CVRP-SD(N1, D,w1, q) corresponds to the suitable approximate solution
of the initial CVRP(Z,w, q).

Corollary 1. For any ε > 0, an (1 + ε)-approximate solution of the
rounded instance CVRP-SD(N1, D,w1, q) can be transformed efficiently to
an appropriate (1 +O(ε))-approximate solution of CVRP(Z,w, q).
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Proof. By construction, S ∪ S′ is a feasible solution of CVRP(Z,w, q),
whose cost w(S ∪ S′) is defined by (4.6). Taking into account that

w1(S̄) ≤ (1 + ε)CVRP-SD∗(N1, D,w1, q) and ∆w(Z) = n/ε,

we obtain

w(S ∪ S′) ≤ (1 + ε)CVRP-SD∗(N1, D,w1, q) + 7n
≤ (1+ε)(CVRP∗(Z,w, q)+4n)+7n ≤ (1+ε)CVRP∗(Z,w, q)+2ε∆w(Z)(7/2+2ε)

= (1 +O(ε))CVRP∗(Z,w, q),

since the triangle inequality obviously implies 2∆w(Z) ≤ CVRP∗(Z,w, q).
Corollary 1 is proved.

Thus, in the sequel, without loss of generality, we assume that we a
given by a rounded instance.

4.3.2 Randomized hierarchical clustering

Following to [5], we fix a number s ≥ 6 and put L = ⌈logs ∆w(Z)⌉ =
O(log n − log ε). Then, for each l = 0, 1, . . . , L + 1, we fix an arbitrary
sL−l-net N(l) of the set Z. Without loss of generality, assume that
N(l) ⊂ N(l + 1) for any 0 ≤ l ≤ L. Notice, that the net N(L+ 1) = Z,
whilst the net N(0) is a singleton.

In the following, we construct a randomized hierarchical clustering of
Z by induction on level l = 0, . . . , L+ 1 as proposed in the paper [Talwar,
2004].

We start with level l = 0, where we have a single cluster C0
1 . Further,

let Z = C l
1 ∪ C l

2 . . . ∪ C l
K be a clustering at the level l < L. To proceed

with the clustering at level l + 1, we partition each cluster C l
j separately,

applying the following simple procedure

(i) pick a random permutation σ of the sL−(l+1)-netN(l+1) = {h1, . . . , htl+1};
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(ii) to an arbitrary hσ(i) ∈ N(l + 1), assign a number µ = µi picked at
random from [1, 2);

(iii) define a subset C l+1
ji by the formula

C l+1
ji = B

(
hσ(i), µ · sL−(l+1)) ∩ C l

j \
i−1⋃
k=1

C l+1
jk ;

(iv) construct a partition of the cluster C l
j from all non-empty subsets

C l+1
ji .

Finally, we obtain the resulting clustering of the set Z at level l + 1 by
combining individual partitions for all clusters C l

j.
By construction, at level L + 1, all the clusters are singletons, while,

at level l = 0, we have the only cluster C0
1 . Thus, the total number of

clusters is at most (n+ 1) · (L+ 1) = O(n(log n− log ε)).
For the further constructions, we need to introduce a special type of

routes.

Definition 3. A route R = (π, SR) is called net-respecting relatively to a
given hierarchy N(l), l = 0, 1, . . . , L+ 1 and value ε > 0, if, for any edge
{u, v} of the cycle π, there are two possible options

(i) w(u, v) < 1/ε

(ii) sL−l ≤ ε · w(u, v) < sL−l+1 for some 0 ≤ l ≤ L and both endpoints u
and v belong to the net N(l).

Obviously, the aforementioned options appears to be quite similar to
each other, since in case (i), u, v ∈ N(L+ 1) by construction.

We say that a route R = (π, SR) crosses the boundary of some cluster
C l

j at level l > 0, if π contains an edge {u, v}, such that |{u, v} ∩ C l
j| = 1.

In the following, we introduce a special type of the net-respecting routes,
each of them is restricted to cross the boundary of any cluster not too
often and at portals exclusively.
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Definition 4. Let M be some power of s, for which

M

s
≤ dL

ε
< M. (4.7)

We call a portal an arbitrary point from C l
j ∩N(l + logsM).

Applying Lemma 4 we obtain the following upper bound for the number
m of portals of any cluster C l

j.

m ≤
2 4sL−l

sL−l/M

d

= (8M)d = O


d · (log n− log ε)

ε

d
 . (4.8)

Definition 5. A route R crossing the boundary of any cluster C l
j at most

r times, is called r-light.

The main result of Subsection 4.3.2 is the following Structure Theorem.

Theorem 5. Let r = m and d > 1. For any fixed ε ∈ (0, 1/8) and an
arbitrary feasible solution S of CVRP(Z,E,w), there exists an appropriate
feasible solution S̃ consisting of net-respecting and r-light routes, such that

E(w(S̃)) = (1 +O(ε))w(S),

where the expectation is made over the random hierarchical clustering.

Proof of Theorem 5 is based on consecutive transformation the routes of
the given feasible solution S using the following technical lemmas, which
are the straightforward generalizations of the similar results presented in
[Bartal et al., 2016].

Lemma 7. Let ε ∈ (0, 1/8). For an arbitrary route R = (π, SR), there
exists an appropriate net-respecting route R̃ = (π̃, SR̃), SR̃ = SR, whose
cost admits the following upper bound

w(R̃) ≤ (1 + 16ε)w(R). (4.9)
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By Lemma 7, we can assign to an arbitrary feasible solution of the
problem in question an appropriate feasible solution consisting of the
net-respecting routes exclusively (Fig. 4.2).

Figure 4.2: An appropriate net-respecting route, Portals of two levels are denoted by □
and ◦

The next lemma states that for an arbitrary r ≥ 2, without loss of
generality, we can assume that all routes of this solution are r-light.

Lemma 8. For some cluster C l
j, let C ′ ⊂ C l

j, |C ′| = r̃ > r ≥ 2 be a set of
crossing points for the boundary of this cluster by some route R = (π, SR).
There exists a route R̃ = (π, SR̃), SR = SR̃ crossing the boundary of the
cluster C l

j twice, such that its cost can be bounded as follows

w(R̃) ≤ w(R) + 4w(MST(C ′)). (4.10)

Notice, that the claims of Lemma 7 and Lemma 8 remain valid for an
arbitrary metric. In turn, for a metric of doubling dimension d > 1, the
bound (4.10) can be specified in more detail. Indeed, since any cluster
C l

j belongs to a metric ball of radius at most 2sL−l, for w(MST (C ′)),
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equation (4.2) is valid, by Lemma 5. Therefore,

w(R̃) = w(R) +O
(
sL−l · r̃(1−1/d)) . (4.11)

Also, we need the following probabilistic result.

Statement 1 (Bartal et al. [2016]). The probability that two distinct nodes
u and v belong to different clusters at level l is at most

c′ · w(u, v) · d/sL−l, (4.12)

where c′ is some absolute constant.

of Theorem 5. Consider an arbitrary route R ∈ S crossing r̃ times the
boundary of some cluster C l

j for some r̃ > r. Thanks to Lemma 8 (and
equation (4.11)), we can transform R to an r-light R̄, such that the surplus
cost does not exceed O

(
sL−l · r̃(1−1/d)

)
per cluster. Thus, the mean surplus

cost per each edge of the route R among r̃ > r edges crossing the boundary
of the cluster C l

j admits the following bound

O

sL−lr̃(1−1/d)

r̃

 = O

sL−l

r1/d

 = O

sL−l

M

 = O

sL−lε

d · L

 , (4.13)

where the last term follows immediately from inequality (4.7).
Combining equation (4.13) with equation (4.12) proven in Statement 1

and summing on l = 1, . . . , L+ 1, we ascertain the existence of a feasible
solution S′ consisting of r-light routes, for which

E(w(S′)) = (1 +O(ε))w(S).

Further, applying to each route R′ ∈ S′ the claim of Lemma 7, we obtain
the desired net-respecting and r-light solution. Theorem 5 is proved.

As it follows from Theorem 5, any time, when we need to find an
approximate solution of the initial problem, we can restrict ourselves to
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the solutions consisting of net-respecting and r-light routes exclusively. In
the sequel, we call such solutions net-respecting and r-light as well.

4.3.3 Demand ranking and relaxed solutions

The aforementioned approach relies upon the minimization of total trans-
portation cost in the class of net-respecting and r-light solutions yields a
number of seminal approximation results for intractable routing problems,
including the well-known Arora’s PTAS for the Euclidean TSP [Arora,
1998] and its extension to metric spaces of a fixed doubling dimension
[Bartal et al., 2016]. Unfortunately, it is well-known that, for the CVRP,
this approach results in tremendously time expensive algorithms. In this
subsection, following to the main idea of the paper [Das and Mathieu, 2015],
we outline another approach that leads us to really efficient approximation
algorithms based on a concept of relaxed solutions.

We start with some necessary definitions and notation. Consider a
net-respecting route R that enters and leaves the cluster C l

j (located at
some level l > 0) at portals pin and pout respectively. We call an arbitrary
maximal by inclusion fragment

σ = pin, xi1, . . . , xik
, pout, (4.14)

which entirely belongs to the cluster C l
j, a crossing segment of the route

R with respect to the cluster C l
j (or just a segment).

Definition 6. Let Λ = ⌈log1+ε/(L+1)(qε) + 1/ε⌉. Numbers ti, i = 1,Λ are
called rounding thresholds for covered customer demand, if

ti =
 i for all i = 1, . . . , ⌊1/ε⌋
ti−1(1 + ε/(L+ 1)) otherwise .

(4.15)

Next, we proceed with ranking of customer demand. We assume that
each unit of the demand has an integer rank from the range 0, 1 . . . , L+ 1.
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Each customer can have demand units of different ranks. An arbitrary
demand unit can be either active or non-active depending on its rank and
level of the considered enclosing cluster. Namely, a demand unit of rank r
is called active with respect to any enclosing cluster located at level l > r
(otherwise, this unit is called inactive). By convention, demand units of
rank 0 are active at any level.

A segment σ is called unrounded, if it covers all the active demand
assigned to it. On the other hand, we call a segment σ rounded, if it covers
exactly ti units of the assigned active demand, where ti is the largest
rounding threshold (4.15), which does not exceed that demand.

Definition 7. A set of tours S is called a relaxed solution if it covers
the total customer demand and there exists an assignment of ranks for all
demand units, such that

(i) each route R ∈ S covers at most q units of the rank 0;

(ii) if a route R covers exactly t units of active demand at level l, then
at level l + 1, it covers at most t(1 + ε/(L+ 1)) such units;

(iii) for any route R ∈ S, if the number of its segments crossing some
cluster C exceeds γ =

(
L+1

ε

)2d, then all these segments are rounded.
Otherwise, all of them are unrounded.

In the following, we call any relaxed solution S that is also net-
respecting and r-light a structured solution. Such solutions are essential
point of our approach. Given a random hierarchical clustering, we find a
structured solution minimizing the following auxiliary objective function

F (S) =
∑

R∈S
w(R) + ε

L+ 1
∑

R∈S

L+1∑
l=1

c(R, l) · sL−l, (4.16)

where, for any route R ∈ S, c(R, l) is the number of crossings the
boundaries of all clusters at level l.
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Notice that with respect to feasible solutions the initial objective func-
tion w(S) and the introduced above function F behave quite similarly.

Theorem 6. The hypothesis of Theorem 5 implies

E(F (S̃)) = (1 +O(ε))w(S),

where the expectation is made over the random hierarchical clustering.

Proof. Indeed, by definition of the auxiliary objective function F , we have

F (S̃) =
∑

R̃∈S̃
F (R̃) =

∑
R̃∈S̃

w(R̃) + ε

L+ 1
L+1∑
l=1

c(R̃, l) · sL−l

 .
Thanks to Theorem 5, we can estimate

E (w(S̃)) ≤ (1 +O(ε)) · w(S). (4.17)

Further, consider an arbitrary route R̃ ∈ S̃. By Statement 1 we obtain
an upper bound for the expected number of crossings the boundaries of
the level l clusters by the route R̃ as follows:

E(c(R̃, l) · sL−l) ≤ c′ · d · w(R̃) = O(1) · w(R̃).

Summing over all levels l = 1, L+ 1 and routes R̃, we get

∑
R̃∈S̃

ε

L+ 1
L+1∑
l=1

E(c(R̃, l) · sL−l) ≤ O(ε) · w(S̃) ≤ (4.18)

O(ε)(1 +O(ε)) · w(S).

Combining bounds (4.17) and (4.18) we obtain the desired bound. Theo-
rem 6 is proved.
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Let, further, for a given random clustering, SDP be a minimizer of the
function F in the class of structured solutions2. To address the possible
infeasibility of SDP , we introduce a random ranking of the customer
demand by Algorithm 3.

Algorithm 3 Demand Ranking Algorithm
Input: a structured solution SDP with respect to some random hierarchical clustering
Output: ranking of all units of demand

1: initialize rank of each unit of demand by 0
2: for each level l from L+ 1 to 0 do
3: for each cluster C l

j crossed by more than γ segments do
4: for each segment σ crossing the cluster C l

j do
5: Let a be the number of active demand units covered by the segment σ and t

be the largest threshold, such that t ≤ a.
6: Pick an active demand unit at random and a−t−1 consecutive units (wrapping

around to the start of σ if necessary) and assign to them the rank l.
7: end for
8: end for
9: end for

Given by a demand ranking, we color each demand unit of the rank 0
in black and all other units in red. After that, we transform the solution
SDP to the partial solution Sblack by exclusion all the red units. Then, we
employ the ITP heuristic to find an approximate CVRP solution Sred that
covers the remaining red demand. Obtain upper bounds for E(w(Sblack))
and E(w(Sred)) individually. Indeed, by definition of the function F , for
any fixed hierarchical clustering,

w(Sblack) ≤ F (Sblack) ≤ F (SDP ) ≤ F (S̃∗),

where S̃∗ is the net-respecting and r-light feasible solution associated with
an arbitrary optimal solution S∗ of the initial problem, whose existence is
guaranteed by Theorem 5. The right-most inequality is valid, since S̃∗ is
a structured solution, by Lemma 5 from [Das and Mathieu, 2015]. Then,

2In Section 4.3.4, we provide a dynamic programming algorithm, which finds such a solution for any
given random clustering
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by Theorem 6, we obtain

E(w(Sblack)) ≤ E(F (S̃∗)) = (1+O(ε))w(S∗) = (1+O(ε))CVRP∗(Z,w, q),
(4.19)

where the expectation is taken over random clustering. The latter upper
bound is given by Lemma 9.

Lemma 9. For an arbitrary clustering and the expected value of w(Sred)
over random ranking of the demand, the following equation

E(w(Sred)) = O(ε) · (F (SDP ) + CVRP∗(Z,w, q)) (4.20)

is valid.

of Lemma 9. As a result of the performed random demand ranking, the
initial rounded instance CVRP-SD(X ∪ {y}, D,w, q) is decomposed into
two separate subinstances

CVRP-SD(X ∪ {y}, Dblack, w, q) and CVRP-SD(X ∪ {y}, Dred, w, q),

where Dblack(x) + Dred(x) = D(x) for any x ∈ X. Then, Sblack is an
approximate solution for the former instance, whose expected accuracy
bound is given by equation (4.19). To approximate the latter instance,
we employ the Iterated Tour Partition (ITP) heuristic [Haimovich and
Rinnooy Kan, 1985] providing the solution Sred.

For the sake of simplicity, we restrict ourselves to the special case, where
D(x) ≡ 1. This allows us do not distinguish customers and their demand.
In the general case, the proof can be obtained in a similar way.

Let, further, Xred = {x ∈ X : Dred(x) = 1}. As it follows from
[Haimovich and Rinnooy Kan, 1985], the weight w(Sred) admits the
following upper bound

w(Sred) ≤ Rad(Xred) + 2β · TSP∗(Xred ∪ {y}), (4.21)
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where, for any X ′ ⊂ X, Rad(X ′) = 2
q

∑
x∈X ′ w(x, y), TSP∗(Xred∪{y}) is an

optimum of the internal instance of the metric TSP, and β is an accuracy
bound3 of a polynomial time algorithm used to find an approximate solution
of this instance. The remainder of the proof follows straightforwardly from
Lemma 10 and Lemma 11. Lemma 9 is proved.

Hereinafter in this section, unless explicitly stated otherwise, we assume
that expectations are taken over random ranking of the demand units.

Lemma 10.
E(Rad(Xred)) = ε · CVRP∗(Z,w, q).

Proof. By construction, Xred = X1
red ∪ . . .∪XL+1

red , where X l
red is the subset

consisting from the customers with demand of rank l. Then, any customer
x belongs to the subset Xred with probability

P[x ∈ Xred] =
∑
l>0

P[x ∈ X l
red]

with respect to random ranking of the demand.
In turn, the customer x belongs to X l

red, if and only if, for some cluster
C l

j, there exists a crossing segment σ containing x, whose demand unit was
picked by Algorithm 3 at Step 6. Let a be an amount of active demand
units covered by the segment σ and t be the appropriate threshold, for
which t ≤ a < t(1 + ε/(L+ 1)). Then, by construction,

P[x ∈ X l
red] = a − t

a
<
t(1 + ε/(L+ 1)) − t

t
= ε

L+ 1 .

Thus, P[x ∈ Xred] < ε. Finally, we have

E(Rad(Xred)) = 2
q

∑
x∈X

w(x, y)P[x ∈ Xred] < Rad(X)·ε ≤ ε·CVRP∗(Z,w, q),

3e.g., β = 3/2 for the well-known Christofides-Serdyukov algorithm
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where the last inequality follows from Theorem 1 of [Haimovich and
Rinnooy Kan, 1985]. Lemma 10 is proved.

Lemma 11.

E(TSP∗(Xred ∪ {y})) = O(ε) · F (SDP ).

Proof. To obtain the desired upper bound, due to the obvious inequalities

w(MST(Xred ∪ {y})) ≤ TSP∗(Xred ∪ {y}) ≤ 2 · w(MST(Xred ∪ {y})),

which are valid for any metric TSP instance, and

w(MST(Xred ∪ {y})) ≤
L+1∑
l=1

w(MST(X l
red ∪ {y})),

it is sufficient to prove that

E(MST(X l
red ∪ {y})) ≤ O(ε/(L+ 1)) · F (SDP )

To proceed, we introduce the following additional notation:

(i) let Cl be the set of clusters C of level l, for which Cred = (X l
red∩C) ̸= ∅;

without loss of generality, we assume that the depot y belongs to some
cluster C ∈ Cl;
(ii) for any C ∈ Cl, let PC ⊂ C be a subset of portals of the cluster C
(augmented by the depot y, if y ∈ C).

In addition, we introduce the complete edge-weighted graph H with
node set Cl, where the cost of any edge {C1, C2} is specified by the
shortest distance w(p, q), where p and q are portals in clusters C1 and C2,
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respectively. Evidently,

w(MST(X l
red ∪ {y})) ≤

∑
C∈Cl

w(MST(Cred ∪ {p}))

+
∑

C∈Cl

w(MST(PC)) + w(MST(H)), (4.22)

where p be an arbitrary portal of the cluster C (Fig. 4.3).

Figure 4.3: To obtain an upper bound for the weight of MST(X l
red ∪ {y}), we combine the

spanning trees for the red points Cred (bold solid lines) and the portals (dashed) in any cluster
at level l with the minimum spanning tree in the auxiliary graph of clusters H

Remainder of the proof is based on Statement 2 and the claims of Lemma
12, Lemma 13, and Lemma 14, respectively. Lemma 11 is proved.

For any cluster C ∈ Cl, by F |C we denote a restriction of the objective
function F onto the cluster C. For an arbitrary structured solution S,
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F (S)|C is defined by the formula

F (S)|C =
∑

R∈S
w(R ∩ C) + ε

L+ 1 · sL−l ·
∑

R∈S
c(R, C),

where

(i) w(R ∩ C) is equal to w(R), if the route R is enclosed by the cluster
C, and the total cost of all segments of the route R crossing this cluster,
otherwise; (ii) c(R, C) is the number of crossings the boundary of the
cluster C by the route R.

Statement 2. For any l > 0,

∑
C∈Cl

F (SDP )|C ≤ F (SDP ).

The proof of Statement 2 can be obtained immediately from the addi-
tivity of the objective function F .

Lemma 12. For any cluster C ∈ Cl,

E (w (MST(Cred ∪ {p}))) = O

(
ε

L+ 1

)
· F (SDP )|C .

Proof. To obtain the desired bound, consider the tree TC constructed as
follows:

(i) for an arbitrary crossing segment σ of the cluster C, we take an
interval (maybe wrapped) σred induced by the red customers picked at
Step 6 by Algorithm 3;
(ii) let HC be any minimum hitting set for all connected fragments of
such intervals and p be an arbitrary portal located in the cluster C;
(iii) the tree TC is made up by augmentation of MST(HC ∪ {p}) by all
intervals σred.
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Establish an upper bound for

w(TC) =
∑
σ
w(σred) + w(MST(HC ∪ {p})).

According to Algorithm 3, E(w(σred)) < ε/(L+ 1) · w(σ) for any segment
σ. Therefore,

E
(∑

σ
w(σred)

)
<

ε

(L+ 1) · F (SDP )|C .

Further, the number NC of segments σ crossing the cluster C exceeds γ,
since SDP is a structured solution. i.e. NC = γ · gC + rC for some gC ≥ 1
and 0 ≤ rC < γ. Then, |HC | ≤ 2NC ≤ 4γ · gC . Therefore, by Lemma 5,

w(MST(HC ∪ {p})) = O
(
sL−l · |HC |1−1/d

)
= O

(
sL−l · (γ · gC)1−1/d

)

for any fixed d > 1. On the other hand,

F (SDP )|C ≥ ε

L+ 1 · sL−l · 2NC ≥ ε

L+ 1 · sL−l · γ · gC

= Ω
(

ε

L+ 1

)
· γ1/d · w(MST(HC ∪ {p})).

Hence,

w(MST(HC ∪ {p})) = O

(
L+ 1
ε

)
·γ−1/d·F (SDP )|C = O

(
ε

L+ 1

)
·F (SDP )|C ,

since γ = ((L+ 1)/ε)2d, by Definition 7. Lemma 12 is proved.

Lemma 13. For any cluster C ∈ Cl,

w(MST(PC)) = O

( ε

L+ 1

)d
F (SDP )|C .
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Proof. By construction (see, also equations (4.7) and (4.8),

|PC | ≤ m+ 1 = O

(dLs
ε

)d
 = O

(L+ 1
ε

)d
 .

By Lemma 5, we obtain

w(MST(PC)) = O

sL−l
(
L+ 1
ε

)d−1 .
Meanwhile, the cluster C is crossed by at least γ segments. Therefore,

F (SDP )|C ≥ 2γ ε

L+ 1 · sL−l ≥ 2
(
L+ 1
ε

)2d−1
· sL−l

= Ω
(L+ 1

ε

)d
 · w(MST(PC)).

Thus,

w(MST(PC)) = O

( ε

L+ 1

)d
F (SDP )|C .

Lemma 13 is proved.

Lemma 14.

E(w(MST(H))) = O

(
ε

L+ 1

)
· F (SDP )

Proof. Lemma 14 follows immediately from Lemma 10 proved in [Das and
Mathieu, 2015].

Finally, relying on equation (4.19), Lemma 9, and Theorem 6, we easily
obtain the main result of this subsection.

Theorem 7. Let an instance of the CVRP be given in a metric space of
a fixed dimension d > 1 and r = m. Then, for any ε ∈ (0, 1/8), Das and
Mathieu randomized scheme provides an approximate solution Sblack ∪Sred,
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such that

E(w(Sblack) + w(Sred)) = (1 +O(ε))CVRP∗(Z,w, q),

where the expectation is taken over random clustering and ranking of the
demand.

Proof. Indeed, equation (4.19) gives us an upper bound for the black
routes

E(w(Sblack)) ≤ (1 +O(ε))CVRP∗(Z,w, q). (4.23)

In turn, an expected cost of the red routes provided by the statement of
lemma (9) is as follows

E(w(Sred)) = O(ε) · (F (SDP ) + CVRP∗(Z,w, q)) . (4.24)

As we showed above, F (SDP ) ≤ F (S̃∗), where S̃∗ is the net-respecting
and r-light solution associated with an arbitrary optimal solution S∗ of
the initial problem. Due to this fact and statement of Theorem 6,

E(F (SDP )) ≤ (1 +O(ε)) · CVRP∗(Z,w, q). (4.25)

Combining bounds (4.23)-(4.25), we obtain the theorem statement. Theo-
rem 7 is proved.

The obtained results shed new light on the approximation of the Ca-
pacitated Vehicle Routing Problem formulated in metric spaces of a fixed
dimension. Actually, Theorem 7 implies that any structured solution SDP

minimizing the auxiliary objective function F can be transformed into a
required approximate solution if the given problem. Furthermore, as it
follows from the seminal paper [Haimovich and Rinnooy Kan, 1985], such
post-processing can be carried out in polynomial time. In the sequel, we
develop an efficient procedure for finding such structured solutions.
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4.3.4 Baseline Dynamic Programming

In this section, we present a short overview of our adaptation of the initial
Das and Mathieu dynamic program to the case of metric spaces of a fixed
doubling dimension.

We start with some necessary notation. We encode an arbitrary crossing
segment (4.14) by a tuple (pin, pout, s,d), where s is the amount of covered
active demand units and d indicates whether this segment should visit
the depot y.

Given by a fixed hierarchical clustering, we index entries of the lookup
table of our dynamic program by couples (C,C), where C is a cluster
and C is a configuration defining behavioral patterns for all segments
crossing the boundary of the cluster C. Depending on the number of
segments described, we distinguish two kinds of configurations, unrounded
and rounded.

An unrounded configuration is just a finite sequence of at most γ tuples

((pin
i , p

out
i , si,di) : i = 1, ku),

each of them represents a single unrounded crossing segment. On the
other hand, a rounded configuration is set of ordered pairs

{(si,mi) : i = 1, kr}, si1 ̸= si2,

each of them defines a common behavior pattern si = (pin
i , p

out
i , ti,di) for

exactly mi rounded segments. Namely, all such segments should enter and
leave the cluster in portals pin

i and pout
i respectively, cover ti units of active

demand exactly (for some threshold ti), and visit the depot according to
the value of di.

To define the concept of a feasible lookup table entry, we need some
technical notation. A family Σ of segments crossing the boundary of some
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cluster C augmented by a number of routes enclosed within this cluster is
called a partial relaxed solution for the cluster C, if this family covers all
the active customer demand in this cluster and fulfills conditions (i), (ii),
and (iii) enlisted in Definition 7 (with respect to this cluster).

Definition 8. An entry (C,C) is called feasible, if there exists a partial
relaxed solution Σ = Σ(C), such that

(i) if C is unrounded, then all the segments of Σ are unrounded and are
too, s.t. there exists a one-to-one correspondence between them and
the entries of the configuration C;

(ii) otherwise, if C is rounded, then the family Σ is partitioned into
kr subfamilies, such that the i-th subfamily consists of mi rounded
crossing segments sharing the same behavior pattern si.

As usual, the lookup table entries are computed bottom-up. The base
case corresponds to the level L+ 1, where all the clusters are singletons.
Thus, all the entries can be computed trivially.

To proceed with the recurrence, assume that all the entries for the levels
l + 1, . . . , L + 1 are already calculated. Fix an arbitrary cluster C l

j and
try to compute the entry (C l

j,C) for some configuration C. By the given
clustering, we have a partition C l

j = C l+1
j1 ∪ . . . ∪ C l+1

jK for some K = 2O(d).
Guided by the approach proposed in [Das and Mathieu, 2015], to compute
the entry (C l

j,C), it is necessary to employ the two-stage exhaustive search
as follows:

Stage (i) to enumerate all the combinations

((C l+1
j1 ,C1), . . . , (C l+1

jK ,CK)) (4.26)

of the computed already entries induced by the child subclusters;
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Stage (ii) for any given combination (4.26), enumerate all the ways to
stitch child configurations to fulfill the initial configuration C. Any
time when this stitching is possible, the record value of the function
F is updated.

Thus, the entry (C l
j,C) is filled by the resulting record value, if this value

was updated at least once. Otherwise, the entry is set to be infeasible and
excluded from the consideration. To obtain the desired structured solution
SDP minimizing the objective function F , it is sufficient to compute the
only entry (C0

1 ,C) at level 0 for the empty configuration C.

The point is that although for the finite-dimensional Euclidean spaces
considered by Das and Mathieu, Stage (ii) can be calculated efficiently, in
metric spaces even of a fixed doubling dimension, its running time is no
longer quasi-polynomial.

Indeed, at Stage (ii), the calculations are specified in terms of concate-
nation profiles and interface vectors. A concatenation profile defines the
stitching order for any single segment crossing the boundary of the cluster
C l

j (or a route contained in it).

Namely, a finite sequence of tuples φ = ((pin
k , p

out
k , tk,dk) : k = 1, θφ) is

called a concatenation profile, if, for each tuple,
(i) pin

k and pout
k are some child portals

(ii) tk is either a threshold or a natural number from [1, γ]
(iii) dk indicates whether depot should be visited.

In turn, each entry of an interface vector specifies the number of times
when some concatenation profile is used during the stitching procedure.
By definition, an interface vector has the form I = (n1, . . . , n|Φ|), where
ni ∈ [0, n · r] and Φ is the number of all possible concatenation profiles.
Since, by construction, |Φ| = (log n)Ω(r), the number of distinct interface
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vectors enumerated at Stage (ii) is at least

(nr)|Φ| = (nr)(log n)Ω(r)
. (4.27)

Evidently, the lower bound (4.27) is not quasi-polynomial for an arbitrar-
ily slow increasing function r = r(n). Therefore, we cannot claim that the
aforementioned algorithm retains quasi-polynomial running time-bound
in metric spaces of a fixed doubling dimension, even for any fixed q > 2,
since at the moment no structure theorems are known for such spaces,
proved for a constant r [see, e.g. Bartal et al., 2016]. This shortcoming
of the straightforward use of the Das and Mathieu scheme becomes even
more obvious in the context of recent results [Khachai and Ogorodnikov,
2019a] showing that the CVRP in a metric space of any fixed doubling
dimension admits a PTAS for any constant q.

In the following subsection, we propose our modification of this scheme,
where, at Stage (ii) of the recursive step, the exhaustive search for the
optimal interface vector is replaced with an internal dynamic program,
such that the resulting scheme becomes QPTAS again, at least for q =
polylog(n).

4.3.5 Modification based on internal DP

To shorten the redundancy, in this subsection we use the simplified notation
(C,C) and (C1,C1), . . . , (CK ,CK) for the entry to be computed and its
child entries, respectively.

We start with the following simple remark

Remark 2. For any entry (C,C), there exist four possible options:

1. the configuration C is rounded and the cluster C encloses the depot y

2. the configuration C is rounded and the cluster C contains no depots

3. the configuration C is unrounded and the cluster C encloses the depot
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4. the configuration C is unrounded and the cluster C contains no depots.

In the sequel, we consider option (i) in detail, since it appears to be
the most general and involves the greatest time consumption.

Indeed, let the depot y be enclosed in the cluster C and the configuration
C = {(si,mi) : i = 1, kC} be rounded. Without loss of generality, we assume
that all the given child configurations

Cu = {(su
v ,m

u
v) : v = 1, ku}, (u ∈ {1, . . . , K})

are rounded as well.
To match the configuration C with child configurations C1, . . . ,CK , we

need to assign to each si a sequence Φi = (φi,1, . . . , φi,mi
) of not necessarily

distinct concatenation profiles, such that

1. each profile φi,j consists of tuples su
v only;

2. for any tuple si = (pin
i , p

out
i , ti,di), the following inequality

ti ≤ Dφi,j
< ti

(
1 + ε

L+ 1

)

holds, where Dφi,j
is total active demand covered by the profile φi,j;

3. the surplus active demand in the cluster C (not covered by the
segments specified by the configuration C) is serviced by some sequence

ΦkC+1 = (φ(kC+1),1, . . . , φ(kC+1),TC
)

of additional closed profiles, each whose profile φ visits the depot y
and fulfills the capacity constraint Dφ ≤ q;

4. each tuple su
v is contained in the profiles with total multiplicity mu

v ;

5. total length of the constructed concatenation profiles
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kC∑
i=1

mi∑
j=1

cost(φi,j) +
TC∑

j=1
cost(φ(kC+1),j) (4.28)

takes the smallest value.

Here cost(φ) is defined as

cost(φ) =
θ−1∑
k=1

w̃(pout
k , pin

k+1) + 2θ · ε
L+ 1 · sL−l−1 (4.29)

for any non-closed profile φ = ((pin
k , p

out
k , xk,dk) : k = 1, θ), whilst

cost(φ) =
θ−1∑
k=1

w̃(pout
k , pin

k+1) + 2θ · ε
L+ 1 · sL−l−1 + w̃(pout

θ , pin
1 ) (4.30)

for any closed one and

w̃(pout
k , pin

k+1) =


w(pout

k , pin
k+1), if pout

k and pin
k+1 satisfy Definition 3,

+∞, otherwise.

Notice, that criterion (4.28) and the reduced costs of concatenation
profiles (4.29)-(4.30) can be obtained straightforwardly from the auxiliary
objective function (4.16). Indeed, for any given configuration C and
child ones C1 . . . ,CK , thanks to condition (iv), the total cost of all child
subsegments does not depend on the choice of profiles φi,j. Therefore, we
exclude this cost from (4.29) and (4.30).

Further, notice that each concatenation profile φi,j to be constructed
can have its own size θφi,j

fulfilling the condition θφi,j
≤ K · r, due to the

r-lightness of the resulting solution. To ensure that all profiles have the
same size r̄ = K · r, we pad each of them by enough copies of the dummy
tuple σ0.
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For the sake of convenience, we introduce the set

S̄ = {σ0} ∪
K⋃

u=1
{su

1 , . . . , s
u
ku

} = {σ0, σ1, . . . , σK}, K =
K∑

u=1
ku

containing all the tuples su
v from the child configurations and augmented

by the dummy tuple σ0.

To proceed, we propose a three-dimensional nonnegative integer-valued
resource matrix A of size [(kC + 1) × (K + 1) × r̄], whose entry ap

i,ν specifies
how many times the tuple σν is used in the sequence of concatenation
profiles Φi at position p. For any fixed i, we call the submatrix Ai = ∥ap

i,ν∥,
where p = 1, r̄ and ν = 0,K, an i-th resource row.

By construction, for any i = 1, KC, the row Ai corresponds to the
appropriate tuple (si,mi) of the configuration C, whilst the last row AkC+1

is related to the collection of additional routes enclosed in the cluster C.

The resource matrix A is called feasible with respect to the configura-
tions C and C1, . . . ,CK , if the following equations

K∑
ν=0

ap
i,ν = mi, (p = 1, r̄, i = 1, kC) (4.31)

K∑
ν=0

ap
kC+1,ν = TC, (p = 1, r̄) (4.32)

miti ≤
r̄∑

p=1

K∑
ν=1

ap
i,ν · tν < miti

(
1 + ε

L+ 1

)
, (i = 1, kC), (4.33)

r̄∑
p=1

K∑
ν=1

ap
kC+1,ν · tν ≤ TC · q (4.34)

are valid for some non-negative integer constant TC.

Our Algorithm 4 comes as a replacement of Stage (ii) of the initial
Das and Mathieu’s scheme. Its main idea is based on the construction of
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Algorithm 4 Our ‘Stage (ii)’
Input: a parent cluster C with associated configuration C and the child DP table entries
(C1,C1), . . . , (CK ,CK)
Output: the minimum value of the objective function (4.28) for the given configurations
C,C1, . . . ,CK

1: for each resource matrix A do
2: check the validity of the feasibility constraints (4.31)-(4.34)
3: if the matrix A is feasible then
4: for each i ∈ {1, . . . , kC} do
5: employ the Internal Dynamic Program (Algorithm 5) to obtain the minimum

cost family Φi of mi concatenation profiles compatible with Ai (or show that
it is impossible)

6: end for
7: employ the similar version of the internal DP (Algorithm 6) adapted for con-

struction of the minimum cost routes ΦkC+1 enclosed in the cluster C
8: if all Φi are constructed then
9: sum up their costs and update the record

10: end if
11: end if
12: end for

a minimum cost family of concatenation profiles Φi compatible with any
given resource row Ai.

Table 4.1: An example of a resource row Ai and related sequence of the concatenation
profiles for K = 3, mi = 5, and S̄ = {σ0, . . . , σ3}

Ai

HH
HHHHσ

p 1 2 . . .

0 0 1
1 2 1
2 3 1
3 0 2

Φi =


(σ1, σ2, . . .)
(σ1, σ3, . . .)
(σ2, σ1, . . .)
(σ2, σ3, . . .)
(σ2, σ0)



Skipping the rigorous definition of the aforementioned compatibility,
we illustrate it by the simple example (see Table 4.1).
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Internal dynamic programming algorithm

For the sake of convenience, we present two versions of the internal
dynamic program. The former one (Algorithm 5) is intended to construct
the route segments related to the parent configuration C, whilst the latter
(Algorithm 6) is adapted to stitch additional routes enclosed in the cluster
C. Although these algorithms are fairly close in general, there are a few
substantial nuances in their implementation. Therefore, in the sequel, we
discuss each of the algorithms separately.

Case 1: stitching the route segments related to the configuration C. The
goal of Algorithm 5 is to construct a family of the minimum total cost
(induced by the objective function F ), which consists of mi segments
crossing the boundary of the cluster C, each of them corresponds to the
behavior pattern si = (pin

i , p
out
i , ti,di). Every such a segment is stitched

from the child subsegments (defined by the patterns σν ∈ S̄) in accordance
to some concatenation profile φi,j ∈ Φi. For the sake of simplicity, in
the sequel, we do not distinguish those segments and the concatenation
profiles that specify them and call the desired family Φi as well.

We construct the desired family Φi by recursion on the position p in
concatenation profiles.

Each entry of the internal dynamic programming lookup table is indexed
by a couple (p,Hp), where p = 1, . . . , r̄ indicates the current position, and
the matrix Hp = ∥hp

ν,c,d∥, ν = 0,K, c = 0, q, d = 0, r̄ specifies terminal
constraints on a family Φ(p)

i of mi partial concatenation profiles of length
p.

Actually, each entry hp
ν,c,d of the matrix Hp denotes the number of such

profiles (in this family), that cover exactly c units of active demand in
total, visit the depot d times and have the same tuple σν at position p.
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Algorithm 5 Internal Dynamic Program for constructing segments associated with a
tuple si of a given configuration C
Input: a resource row Ai.
Output: a family Φi of concatenation profiles compatible with Ai and minimizing the
function F̄ .

1: base case: the only feasible entry (1, H1), where

h1
ν,c,d =

a1
i,ν , if ν > 0, c = tν , andd = dν

0, otherwise

andD̄(1, H1) = 0
2: recursive step: assume that all feasible entries are computed for any p′ < p
3: for each Hp compatible with the p-th column of the resource row Ai do
4: apply the Bellman equation to compute an entry (p,Hp)

D̄(p,Hp) = min
X=∥xc,d

ν1,ν2 ∥
{D̄(p− 1, Hp−1(X)) + (4.35)

K∑
ν1=1

K∑
ν2=0

q∑
c=0

r̄∑
d=0

xc,d
ν1,ν2conn(σν1 , σν2)},

where the minimization is carried out over the feasible entries (p − 1, Hp−1(X))
only. In turn, Hp−1(X) is obtained by the following formulas

hp−1
0,c,d = xc,d

0,0 , (c = 0, q, d = 0, r̄)

hp−1
ν1,c,d =

K∑
ν2=0

{xc+tν2 ,d+dν2
ν1,ν2 : c+ tν2 ≤ q}, (ν1 = 1,K, c = 0, q, d = 0, r̄).

If at least one such an entry is found, then the result is stored in (p,Hp)
5: end for
6: if there are no feasible entries (r̄, Hr̄) or inf{D̄(r̄, Hr̄)} = ∞ then
7: output ‘no profile families compatible with Ai’.
8: else
9: the cost of the desired family Φi is contained within the entry

(r̄, H∗
r̄ ) = arg min{D̄(r̄, Hr̄)}. (4.36)

10: output the optimal solution Φi, which can be obtained from (4.36) by backtracking.
11: end if

A matrix Hp is called compatible with the p-th column of a resource
Ai, if ∑q

c=0
∑r̄

d=0 h
p
ν,c,d = ap

i,ν is valid for any ν = 0,K. In addition, Hr̄ is
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compatible if and only if, for any ν, hr̄
ν,c,d > 0 implies

ti ≤ c < ti

(
1 + ε

L+ 1

)
, and di ≤ d ≤ di · r̄.

Notice, that, if the cluster C is located at level l, then, for any given
resource row Ai, the sum of terms penalizing for crossings all the boundaries
of the child subclusters (at level l + 1) is fixed and does not depend on Φi.
Therefore, we can restrict ourselves to the minimization of the stitching
costs for child subsegments only.

Thus, we define our reduced internal objective function F̃ as follows.
Let Φ(p)

i be a family of partial concatenation profiles φ(p)
i,1 , . . . , φ

(p)
i,mi

, each
of them consists of p tuples. Then, F̄ (Φ(p)

i ) = ∑mi
j=1 cost(φ(p)

i,j ), where, for
any partial profile φ(p) = (σi1, . . . , σip

), its reduced cost is defined by

cost(φ(p)) =
p−1∑
k=1

conn(σik
, σik+1) =

p−1∑
k=1

w̃
(
pout(σik

), pin(σik+1)
)
.

Further, the Bellman function D̄ takes the form

D̄(p,Hp) = min{F̄ (Φ(p)
i ) : Φ(p)

i satisfies the constraints
imposed by the matrix Hp}.

Thus, to define the Bellman equation, we introduce a special kind of
matrices, establishing relationships between any pair of consecutive entries
(p− 1, Hp−1) and (p,Hp).

A four-dimensional nonnegative integer-valued matrix

X = ∥xc,d
ν1,ν2

∥, (c = 0, q, ν1, ν2 = 1,K, d = 0, r̄)

is called a transition matrix relating some entries (p−1, Hp−1) and (p,Hp),
if xc,d

ν1,ν2
coincides with the number of partial concatenation profiles, each

of them covers exactly c units of active demand, visits the depot exactly
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d times and has the same tuples σν1 and σν2 at positions p − 1 and p,
respectively.

By construction, an arbitrarily transition matrix X fulfills the following
obvious constraints

K∑
ν1=1

xc,d
ν1,ν2

= hp
ν2,c,d, (ν2 = 1,K, c = 0, q, d = 0, r̄), (4.37)

K∑
ν1=0

xc,d
ν1,0 = hp

0,c,d, (c = 0, q, d = 0, r̄). (4.38)

The pseudo-code of these version of the internal dynamic program is
presented in Algorithm 5.

Case 2: stitching the auxiliary routes enclosed in the cluster C. In this
subsection, we discuss Algorithm 6, which is intended to construct a family
ΦkC+1 of the additional closed routes related to the last resource row AkC+1.
To ensure the closedness of these routes, we append our dynamic program
with an additional (r̄ + 1)-th position (which comes as a fictitious copy of
the first one). In addition, we should take into account that some routes
can be padded with the empty segment σ0.

To make them closed, we should keep their last non-empty segments.
To this end, we slightly modify the structure of each matrix Hp. Namely,
for each p, c, and d, we consider the entry hp

0,c,d as a K-dimensional vector
(hp

0,c,d(1), . . . , hp
0,c,d(K)), such that, for any ν > 0, hp

0,c,d(ν) denotes the
number of partial concatenation profiles, whose last segment is σ0 and the
last non-empty segment is σν. Notice that, for any ν ≥ 1, the entries hp

ν,c,d

retain their meanings (introduced in Case 1). Thus, an entry (r̄+ 1, Hr̄+1)
is feasible if the following equations

hr̄+1
ν,c,d > 0 ⇒ (c > 0) ∧ (d > 0) (ν = 0,K), (4.41)

q∑
c=1

r̄∑
d=1

(hr̄+1
0,c,d(ν) + hr̄+1

ν,c,d) = h1
ν,tν ,dν

(ν = 1,K) (4.42)
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Algorithm 6 Internal Dynamic Program for enclosed routes in cluster C
Input: a resource row AkC+1.
Output: a minimum cost family ΦkC+1 of concatenation profiles compatible with the resource row
AkC+1.
1: base case: the only feasible entry (1, H1), where

h1
ν,c,d =

{
a1

kC+1,ν , if ν > 0, c = tν , and d = dν

0, otherwise

and D̄(1, H1) = 0
2: recursive step: assume that all feasible entries are computed for any p′ < p
3: for each Hp compatible with the p-th column of the resource row AkC+1 do
4: apply the Bellman equation to compute an entry (p, Hp)

D̄(p, Hp) = min
X=∥xc,d

ν1,ν2 ∥
{D̄(p − 1, Hp−1(X)) + (4.39)

K∑
ν1=1

K∑
ν2=0

q∑
c=0

r̄∑
d=0

xc,d
ν1,ν2

conn(σν1 , σν2)},

where the minimization is carried out over the feasible entries (p − 1, Hp−1(X)) only. In turn,
Hp−1(X) is obtained by the following formulas

hp−1
0,c,d(ν) = xc,d

0,0(ν), (ν = 1, K, c = 0, q, d = 0, r̄),

hp−1
ν1,c,d =

K∑
ν2=0

{x
c+tν2 ,d+dν2
ν1,ν2 : c + tν2 ≤ q}, (ν1 > 0).

If at least one such an entry is found, then the result is stored in (p, Hp)
5: end for
6: for each feasible matrix Hr̄+1 do
7: compute an entry (r̄ + 1, Hr̄+1) by the Bellman Equation (4.39) minimizing over the feasible

entries (r̄, Hr̄(X)), where Hr̄(X) is calculated as follows

hr̄
0,c,d(ν1) =

K∑
ν2=1

xc,d
ν1,ν2

, ν1 = 1, K, c = 1, q, d = 1, r̄,

hr̄
ν1,c,d =

K∑
ν2=1

xc,d
ν1,ν2

, (ν1 > 0), c = 1, q, d = 1, r̄.

8: end for
9: if there are no feasible entries (r̄ + 1, Hr̄+1) or inf{D̄(r̄ + 1, Hr̄+1)} = ∞ then

10: output ‘no profile families compatible with AkC+1’.
11: else
12: the cost of the desired family ΦkC+1 is contained within the entry

(r̄ + 1, H∗
r̄+1) = arg min{D̄(r̄ + 1, Hr̄+1) : (r̄ + 1, Hr̄+1) is feasible}. (4.40)

13: output the optimal solution ΦkC+1, which can be obtained from (4.40) by backtracking.
14: end if
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are valid.

Further, for any p ≤ r̄, a matrix Hp is compatible with the p-th column
of the resource row AkC+1 if

q∑
c=0

r̄∑
d=0

hp
ν,c,d = ap

kC+1,ν, (ν = 1,K), (4.43)
q∑

c=0

r̄∑
d=0

K∑
ν=1

hp
0,c,d(ν) = ap

kC+1,0 (4.44)

are valid.

By the similar way, we transform transition matrices X. Keeping the
sense of all the entries xc,d

ν1,ν2
for the case of ν1 > 0, for an arbitrary c and

d, we replace the entry xc,d
0,0 with the vector (xc,d

0,0(1), . . . , xc,d
0,0(K)), such

that xc,d
0,0(ν) denotes the number of partial concatenation profiles, each of

them covers exactly c units of active demand, visits the depot d times,
has the same tuple σ0 at last two positions, and the same last non-empty
tuple σν, respectively. Thus, any transition matrix X should fulfill the
following constraints (similar to equations (4.37)-(4.38))

K∑
ν1=1

xc,d
ν1,ν2

= hp
ν2,c,d, (ν2 = 1,K, c = 0, q, d = 0, r̄),

xc,d
0,0(ν) + xc,d

ν,0 = hp
0,c,d(ν), (ν = 1,K, c = 0, q, d = 0, r̄).

The pseudo-code of the internal dynamic programming for resource row
AkC+1 is presented in Algorithm 6.

Thus, we conclude a detailed algorithmic analysis of option (i) men-
tioned in Remark 2. It can be shown that this analysis can be easily
extended to all other options. Indeed, option (ii) (considered in detail in
[Khachay et al., 2020b]) can be obtained by setting d ≡ 0, option (iii) by
mi ≡ 1, whilst the last option (iv) corresponds to the case of d ≡ 0 and
mi ≡ 1.
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4.4 Complexity bounds

In this section, we establish an upper time complexity bound for the
proposed scheme, which can be easily obtained as a product of the size
of dynamic programming lookup table and the maximum time consumed
during processing each its entry.

Since the entries of the master dynamic program lookup table are
indexed by couples (C,C), where C is a cluster and C is an associated
configuration, respectively, the size of this table does not exceed the amount
of clusters scaled by the maximum number of configurations, which can
be associated with each of them.

Taking into account that we have at most O(n log(n/ε)) clusters and,
there are at most (2m2q)γ and (n · r)2m2O(L log q) options to assign to each
of them an unrounded or rounded configuration, respectively, we obtain
the following upper bound

O(n log(n/ε)) · Cmax

where

Cmax = (n · r)2m2O(L log q) + (2m2q)γ = (n · r)2m2O(L log q),

since m = r = O

((
d(log n−log ε)

ε

)d
)
, L = O(log n− log ε), γ =

(
L+1

ε

)2d, and
d > 1 is a fixed constant.

Further, establish the complexity bound for computing of an arbitrary
entry (C,C) of this lookup table. Obviously, the running time of such
computing is maximized in the case of option (i) mentioned in Remark
2. Therefore, in the sequel, we restrict ourselves to this option. To
proceed with such a computation, we apply Algorithm 4 to each possible
combination (4.26) of child configurations. Those combinations are at
most (Cmax)K .
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In turn, Algorithm 4 enumerates all feasible resource matrices A. The
amount NA

of such matrices does not exceed

(n · r)(kC+1)(K+1)r̄.

Given by any feasible matrix A, Algorithm 4 successively applies Algo-
rithm 5 to process all of the resource rows Ai for i = 1, kC and Algorithm
6 for the last row AkC+1.

Therefore, the running time of Algorithm 4 does not exceed the com-
plexity bound for Algorithm 6 scaled by the factor NA · (kC + 1), since
Algorithm 6 is more time-consuming than Algorithm 5.

Next, the time complexity of Algorithm 6 is determined by the number of
entries in the internal dynamic programing lookup table and the processing
time for each entry, i.e.

(r̄ + 1) · (n · r)2Kqr̄ × (n · r)4K2qr̄ = (n · r)O(K2·q·r),

since
r̄ = K · r = 2O(d) · r.
Finally, by combining all the terms, we obtain the desired time com-

plexity bound

poly(n)·((n·r)2m2L log q)2O(d) ·(n·r)O(m4L2 log2 q+K2qr) = poly(n)·nO(m5L2q log2 q).

Leveraging the techniques proposed in [Das and Mathieu, 2015] and
[Talwar, 2004], we derandomize our scheme in polynomial time.

Theorem 8. For the CVRP in a metric space of an arbitrary doubling
dimension d > 1, an (1 +O(ε))-approximate solution can be found by the
randomized approximation algorithm within time poly(n) · nO(m5L2q log2 q),
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where m = O

((
d(log n−log ε)

ε

)d
)
, and L = O(log n − log ε). The algorithm

can be derandomized efficiently.

The proposed scheme is QPTAS any time when q = O(polylog(n)).



Conclusion

4.5 Summary

This research was motivated by the challenges in the global economy and
the optimization techniques that are widely employed to overcome those
challenges. According to the literature, there are several combinatorial
optimization problems employed to model the aforementioned techniques,
including TSP, VRP and their variants. Due to the NP-hard nature
of those problems, there are known three major solution approaches,
namely optimal (or exact) algorithms, heuristics and meta-heuristics, and
approximation algorithms with accuracy guarantees. In this thesis, we
propose a novel algorithmic results for each solution approach and for a
specific deterministic routing problems with various constraints.

In particular, in Chapter 2, we address the Precedence Constrained
Generalized Traveling Salesman Problem (PCGTSP) both in terms of
the polyhedral study and algorithmic analysis. By evolving the results
previously introduced for PCATSP, we propose several novel families of the
valid inequalities. Then, we establish dimension of the PCGTS polytope
and proved sufficient conditions for the predecessor/successor inequalities
to be facet-inducing. Further, we offer a sequence of novel formulations for
the PCGTSP and propose the first branch-and-cut algorithm relying on
these formulations. In the numerical evaluation, we report the most efficient
formulations in terms of LP-relaxation bounds and suggested several well-
collaborating variants of the proposed branch-and-cut. As a result, the
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number of PCGTSPLIB instances solved to optimality became 24 out of
40, where for 12 instances it was done for the first time. In addition, the
obtained results confirmed the importance of the predecessor/successor
inequalities for the PCGTSP, both for LP-relaxation and branch-and-cut
framework.

In Chapter 3, we propose a general framework that allows us to solve
the discrete Cutting Path Problem by reducing all its known settings to the
auxiliary instances of the Precedence Constrained Generalized Traveling
Salesman Problem. As it follows from the obtained theoretical results,
the proposed reduction is efficient (polynomial time) and cost preserving,
that is an arbitrary feasible solution of the auxiliary problem induces the
corresponding same cost cutting path for the CPP, which can be efficiently
decoded from this solution. In turn, the results of the numerical evaluation
carried out against real industrial instances show that close to optimal
or even optimal solutions of these auxiliary instances can be obtained
efficiently as well. In particular, the performed statistical analysis of the
results obtained by PCGLNS heuristic in comparison with solutions of the
branch-and-cut algorithm shows the capability of this heuristic to provide
high quality solutions in a few minutes. Therefore, we believe that the
contribution of this chapter is promising in the field of cutting problems.

Finally, the results of Chapter 4 extend the famous approximation
framework proposed by A. Das and C. Mathieu for the Euclidean Capac-
itated Vehicle Routing Problem to the case of metric spaces of a fixed
doubling dimension. To establish quasi-polynomial time upper bound
for our scheme, we replace exhaustive search in the initial algorithm by
the novel internal dynamic program, which ensures that the resulting
approximation scheme becomes QPTAS for an arbitrary fixed doubling
dimension d > 1, at least for q = polylog(n).
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4.6 Open questions and Perspectives

Based on the related work and the obtained results of this thesis, we
can propose the following research perspectives. First of all, we should
mention the further study of the dynamic versions of GTSP and VRP
as those variants correspond well to the changing environments of the
real-world optimization applications. An example of such an environment
is the traffic jams or car accidents on the roads, thus the overall travel
time and fuel expenses could increase. Another potential example is the
last minute preference of the customer to change the delivery time and/or
their location, therefore our route should be restructured.

Dynamic GTSP and VRP are obviously more complicated than their
static variants considered in this thesis due to the variation of number of
nodes and the weights of the arcs of the graph G. The uncertainty of dif-
ferent parameters related to the real life applications, however, potentially
could be handled by various estimation methods, such as fuzzy estimation
or stochastic estimation. Nevertheless, the uncertain GTSP and VRP are
viable research directions for future work.

We understand that our results for the CPP can be considered only as a
proof-of-concept. It seems useful to incorporate industrial implementation
of all the proposed reductions and numerical algorithms into state-of-the-
art CAD/CAM systems as a plugin, which will simplify the job for tool
operators, allowing them to assign an optimal (close to optimal) cutting
path for a current cutting template in almost a real time. We believe
that the implementation of such plugin as well as its further testing and
maintenance can be a viable direction for future work.

Regarding to the approximation algorithms, it seems interesting to take
into account asymmetric versions of the considered problems, relying on
the recent breakthrough results by (Svensson et al. [2020]) and (Traub
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and Vygen [2022]) for the Asymmetric Traveling Salesman Problem with
triangle inequality.

Speaking of real-world applications, one could distinguish the problem
related to the design of reliable production processes. The recent changes
in the hyper-competitive marketplace environment call for a considerable
effort to research and implementation of sustainable and resilient supply
chains. It is possible, however, to take advantage of stochastic models,
where possible disruptions of a transportation network are described in
terms of given scenarios. However, such an approach deteriorates if the
interruption in question was not anticipated. Therefore, in some cases, a
more suitable solution would be the one that minimizes the risks and remain
preferably deterministic. To the best of our knowledge, those assured risk
mitigation techniques for the deterministic production processes remain
rather weakly studied. Therefore, a proposal of a novel deterministic
modeling framework aimed to protect the manufacturing system from
various non-anticipated production or logistic failures is a valid direction
for future research.

The final research direction is the question of whether the CVRP can
be formulated in a metric space of an arbitrary fixed doubling dimen-
sion without any restriction on the capacity growth be approximated by
QPTAS.
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