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Céline Grandmont
Directrice de recherche, Inria Directrice de thèse
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This PhD thesis has been prepared in the MΞDISIM team at Inria and École polytechnique,
funded by the LabEx Mathématique Hadamard, under the supervision of Céline Grandmont and
Philippe Moireau.

Biological tissues modeled as porous media

In the human body, most biological tissues are composed of elastic components that interact with
fluids. This structure of human organs has been revealed by anatomists over the centuries [Singer,
1925] as illustrated in Figure 1, and occurs both at microscopic and macroscopic scales. At the
microscopic scale, biological tissues are constituted by cells surrounded by an extracellular matrix
that is mainly made of water and proteins, see [Frantz et al., 2010] for further details. Each tissue
has a specific extracellular matrix, whose composition and topology determine its macroscopic
mechanical properties. For instance, the heart muscle is made of various biological fibers and is
supplied in blood by the coronary circulation, namely the capillary vessels surrounding the heart
represented in Figure 2. In the lungs, blood and gas exchanges occur at very small scales in the
alveoli that are irrigated by the bronchial tree. As for the brain, its parenchyma is filled by the
cerebrospinal fluid that plays a central role in the brain clearance process – see Figure 3 – and in
protecting the brain tissue from injury. Such interaction of solids and fluids in biological tissues is
called perfusion.

Figure 1 – (Left) Human physiology according to Galen (129 – 216) [Singer, 1925]. (Middle) Studies of the
coronary vessels and heart valves by Leonardo da Vinci (1452 – 1519). Credits: British Royal Collection.
(Right) Lung observation by Marcello Malpighi (1628 – 1694). Credits: Welcome Library, London.

Let us mention that all the fluids involved in the forementioned tissues – blood, pulmonary
airflows, cerebrospinal fluid – can be considered as incompressible, see [Baffico et al., 2010] for a
justification of this assumption for the airflows in the lungs. Therefore, many biological tissues in
the human body are perfused by incompressible fluids. The perfusion of such tissues is crucial to
understand their mechanical behavior and its dysfunction can lead to severe pathologies. Hence
a heart perfusion malfunction, which can for example be caused by the occlusion of a coronary
vessel as in Figure 2, is responsible for 20% of deaths in Europe [Nichols et al., 2014]. For the
lungs, pathologies may affect the tissue parenchyma as in fibrosis [Nunes et al., 2015] or induce an
inflammation at the alveolar level as for instance in COVID19 [Zhang et al., 2020]. Lastly, if the
brain perfusion is disturbed, waste clearance is altered, which may be a cause of Alzheimer’s disease
[Iliff et al., 2013; Stone et al., 2015].

From the modeling point of view, a solid that is irrigated by a fluid is called a porous medium.
The study of the mechanical behavior of porous media is named poromechanics [Coussy, 2004].

2
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Figure 2 – (Left) Microcirculation networks in a human chest. Credits: Museo Sansevero, Naples. (Middle)
Coronary flow in beating hearts [Demeulenaere et al., 2022]. (Right) Porous modeling of the coronary
network and zoom on a coronary occlusion. Courtesy from [Burtschell, 2016].

Figure 3 – (Left) Nature methods cover "Monitoring blood flow in the brain at high spatiotemporal reso-
lution", August 2022. (Right) Simulation of CSF/ISF clearance, blood perfusion and parenchymal tissue
displacement in the brain using multiple-network poroelastic theory [Guo et al., 2018].

Historically, the field of poromechanics was first developed for geosciences [Biot, 1941; Terzaghi,
1943] and only more recently did it focus on biomedical applications. The role of porous effects
in the mechanical response of biological tissues is now clearly established, see the review [Khaled
and Vafai, 2003] and references therein. Porous models have been used to simulate many perfused
organs, starting with the heart [Yang and Taber, 1991; Huyghe et al., 1992; Nash and Hunter,
2000; Chapelle et al., 2010; Michler et al., 2013; Chabiniok et al., 2016; Di Gregorio et al., 2021;
Barnafi Wittwer et al., 2022; Chabiniok et al., 2022]. Concerning the lungs, [Patte et al., 2022]
considers a non-linear quasi-static porous model and formulates physiological boundary conditions,
while [Wall et al., 2010] and [Berger et al., 2016] have proposed multiscaled coupled models of
the ventilation process where the lung parenchyma is described by a porous media, and the use
of poromechanics for patient-specific fibrosis diagnosis is considered in [Genet et al., 2020]. In the
brain, poroelasticity can be used to model the waste clearance process [Basser, 1992; Tully and
Ventikos, 2011; Vardakis et al., 2016; Guo et al., 2018; Lee et al., 2019; Kedarasetti et al., 2022] but
also drug transport [Støverud et al., 2011] and stenosis [Chou et al., 2016]. When coupled with a
fluid flow, porous models showed their ability to simulate lipid and drug transport in blood vessel
walls [Koshiba et al., 2007; Calo et al., 2008; Badia et al., 2009; D’Angelo and Zunino, 2011; Čanić
et al., 2021] and the interfacial flow in the eye [Boon et al., 2022; Ruiz-Baier et al., 2022]. More
broadly, the poroelasticity framework was applied to tissue growth [Ambrosi and Preziosi, 2002;
Armstrong et al., 2016; Sacco et al., 2017; Deville et al., 2018], to eye perfusion [Causin et al., 2014]
and to tongue vascularization [Qohar et al., 2021].
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In this context, the goal of this thesis is to

Develop a mathematical framework for biological tissue perfusion
modeling and simulation.

To contribute to this broad objective, this thesis focuses on the linearized version of a non-linear
poromechanics model formulated in [Chapelle and Moireau, 2014]. Compared to the forementioned
works, the non-linear model from [Chapelle and Moireau, 2014] has two specificities. The first one
is that it is valid for fast porous flows and large deformations. Hence it is particularly adapted to
the perfusion of organs that are subject to large deformations such as the heart and the lungs. The
second one is that it preserves energy estimates, which is an important physical feature and will be
a key ingredient for the theoretical and numerical analysis performed in this thesis on its linearized
version. This model is presented below, as well as its linearized counterpart.

Perfusion porous modeling

To understand the theoretical and numerical properties of the non-linear poromechanics model
from [Chapelle and Moireau, 2014], a first step is to study its linearized version. The mathematical
analysis and the formulation of numerical methods together with their numerical analysis for the
corresponding linearized poromechanics model is the main topic of this thesis. In what follows,
we first recall the governing equations derived in [Chapelle and Moireau, 2014]. These equations
were obtained by revisiting Biot theory of poroelasticity [Biot, 1941, 1955; Coussy, 2004; Dormieux
et al., 2006] for finite strains in order to retrieve a non-linear formulation compatible with the
principles of thermodynamics, leading to a generic energy balance. Then, we show how to linearize
this model. Note that such a linearization process was performed in [Burtschell et al., 2019] for
a porous medium satisfying Terzaghi’s effective stress principle. Here, the linearization is carried
out without assuming that this principle is satisfied. This leads to a model where the Biot-Willis
coefficient may be different from 1, which finally allows us to make the link between the resulting
linearized model to the standard Biot equations. This linearization procedure was published as an
appendix in [Barré et al., 2023].

A general finite strain poromechanics formulation adapted to biological soft tis-
sue perfusion

We consider a deformable porous medium that occupies the space domain Ω(t) at time t. The
deformed domain is obtained from a reference configuration domain Ω̂ ⊂ Rd, namely Ω(t) = Â(Ω̂),
where

Â(·, t) :

∣∣∣∣∣ Ω̂ −→ Ω(t),

x̂ 7−→ x = x̂+ ûs(x̂, t),

denotes the deformation mapping and ûs is the displacement field defined in the reference configu-
ration, see Figure 4. We then introduce usual mechanical quantities in the reference configuration
such as the deformation gradient tensor F̂ = ∇Â = Î +∇ûs, the Cauchy-Green deformation tensor
Ĉ = F̂ T F̂ , the Green-Lagrange strain tensor Ê = 1

2(Ĉ − Î), and the apparent change of volume of
the material Ĵ = det F̂ .

By convention, we use a hat superscript for lagrangian quantities (defined in the reference
configuration), and no superscript for the corresponding eulerian quantities (defined in the deformed
configuration). For instance, J is the function satisfying

J(x, t) = J
(
Â(x̂, t), t

)
= Ĵ(x̂, t).
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Figure 4 – Porous medium in deformed and reference configurations. Adapted from [Patte, 2020].

The porous medium is modeled as a mixture of a fluid phase and a solid phase called the skeleton.
At each point of the deformed domain, we assume that the material contains a volume fraction φ
of fluid and 1− φ of solid, with φ(x, t) the porosity, and that the fluid and solid parts interact with
each other. Moreover, we suppose that the fluid is homogeneous and incompressible, as it is the
case in most of biomedical applications. Hence its density is independent of space and time.

The porous medium motion is described by the following set of unknows: the porosity φ men-
tioned previously (denoted by φ̂ in the reference configuration), the solid displacement ûs, the solid
velocity v̂s in the reference configuration (denoted by vs in the deformed configuration), the fluid
velocity vf in the deformed configuration (denoted by v̂f in the reference configuration) and the
interstitial pressure p (denoted by p̂ in the reference configuration), namely the fluid pressure in the
pores.

Moreover, let us denote by φ̂0(x̂) = φ̂(x̂, 0) the initial porosity in the reference configuration,
by ρ̂s the solid density in the reference configuration, by ρf the fluid density in the deformed
configuration, by kf the hydraulic conductivity tensor in the deformed configuration – and k̂f in
the reference configuration – which represents the friction between the fluid and solid phases, by

m̂ = ρf (Ĵ φ̂− φ̂0) (1)

the added fluid mass per unit volume in the reference configuration, by f an exterior body force
applied to the material and by θ a distributed fluid mass source term.

The macroscopic governing equations derived in [Chapelle and Moireau, 2014] for a general
poromechanics formulation valid in large strains and adapted to soft tissue perfusion then read:

ρ̂s(1− φ̂)
∂v̂s
∂t
− div

(
F̂ Σ̂s(ûs, v̂s, p̂)

)
− Ĵ φ̂2 k̂−1

f (v̂f − v̂s) + p̂Ĵ F̂−T ∇φ̂ = ρ̂s(1− φ̂) f̂ , (x̂, t) ∈ Ω̂× (0, T ), (2a)
1

J

∂

∂t
(Jρfφ vf )

∣∣
x̂

+ div
(
ρfφ vf ⊗ (vf − vs)

)
−div

(
φσtot

f (vf , p)
)

+ φ2 k−1
f (vf − vs)− θ vf = ρfφ f, (x, t) ∈ Ω(t)× (0, T ), (2b)

1

J

∂m

∂t

∣∣∣
x̂

+ div
(
ρfφ(vf − vs)

)
= θ, (x, t) ∈ Ω(t)× (0, T ). (2c)
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In this system, the first two equations correspond respectively to the solid and fluid phases momen-
tum balance equations, and the third one to the mass conservation equation. These equations are
complemented by the following constitutive laws. From [Chapelle and Moireau, 2014, Theorem 6],
a general form of the fluid Cauchy stress tensor σtot

f is given by σtot
f = σf (vf )− p I, with

σf (v) = λf Tr(ε(v)) I + 2µf ε(v), ε(v) =
1

2

(
∇v +∇vT

)
,

and the skeleton contribution to the second Piola-Kirchhoff stress tensor is given by

Σ̂s =
∂Ψ̂s

∂Ê
+
∂Ψ̂damp

∂
˙̂
E

+ φ̂ p̂Ĵ Ĉ−1, (3)

where Ψ̂s denotes the skeleton free energy density potential and Ψ̂damp is a viscous pseudo-potential,

here chosen as a function of ˙̂
E for simplicity. Finally, noting that Ĵs = (1 − φ̂)Ĵ , the system is

closed by the relation

p̂ = −∂Ψ̂s

∂Ĵs
. (4)

One fundamental property of such model is its thermodynamical compatibility. Mathematically
speaking, this imply that the solution of (2) satisfies an energy balance as proved in [Chapelle and
Moireau, 2014, Theorem 7]. Assuming in our case homogeneous Dirichlet conditions for the fluid
and the solid, we have

dK
dt

+
dŴs

dt
= −

∫
Ω̂

∂Ψ̂damp

∂
˙̂
E

:
˙̂
E dx̂−

∫
Ω(t)

φσf (vf ) : ε(vf ) dx

−
∫

Ω(t)
φ2k−1

f (vf − vs) · (vf − vs) dx+ Ptotalext + JKθ + JGθ, (5)

with
K =

1

2

∫
Ω(t)

ρs(1− φ) |vs|2 dx+
1

2

∫
Ω(t)

ρfφ |vf |2 dx, Ŵs =

∫
Ω̂

Ψ̂s dx̂

the mixture’s kinetic energy and the skeleton free energy,

JKθ =
1

2

∫
Ω(t)

θ |vf |2 dx, JGθ =

∫
Ω(t)

p

ρf
θ dx,

the incoming rates of fluid kinetic energy and Gibbs free energy, and

Ptotalext =

∫
Ω(t)

ρfφf · vr dx+

∫
Ω(t)

ρf · vs dx =

∫
Ω(t)

ρfφf · vf dx+

∫
Ω(t)

ρs(1− φ)f · vs dx,

the power of external forces, with vr = vf − vs the relative velocity between the fluid and the solid
and ρ = ρs(1−φ) + ρfφ the porous medium total density. One benefit of considering the linearized
version of (2) is to keep such energy balance after linearization.

But before linearizing the coupled system, let us specify the skeleton constitutive law. Following
the guidelines of [Chapelle and Moireau, 2014, Section 5.4], we consider a free energy density
potential of the form

Ψ̂s = Ŵ skel(Ê) + Ŵ bulk

(
Ĵs

1− φ̂0

χ̂s(Ĵ)

)
, (6)

where χ̂s(Ĵ) is a function representing the variations of solid volume directly due to macroscopic
volume changes in the absence of pore pressure. In other words, (6) means that the energy bulk

6
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term depends on the ratio between the change of volume for the solid part Ĵs and the change
of volume χ̂(Ĵ) = χ̂s(Ĵ)

1−φ̂0
occuring in each cell of the microstructure when assuming that the pore

pressure is constant during the deformation. We suppose that χ̂(Ĵ) is affine with respect to Ĵ and
that χ̂(Ĵ) = 1 when Ĵ = 1, namely

χ̂(Ĵ)− 1 = β(Ĵ − 1) ⇔ χ̂s(Ĵ) = (1− φ̂0)
(
1 + β(Ĵ − 1)

)
,

with 0 ≤ β < 1 a coefficient vanishing for incompressible materials.
Combining (4) and (6), we see that

p̂ = −∂Ŵ
bulk

∂Ĵs
.

From (3), it follows that

Σ̂s =
∂Ŵ skel

∂Ê
− p̂∂Ĵs

∂Ê
+
∂Ŵ bulk

∂Ĵ
· ∂Ĵ
∂Ê

+
∂Ψ̂damp

∂
˙̂
E

+ φ̂ p̂Ĵ Ĉ−1.

Observing that ∂
∂Ê

(Ĵ φ̂) = ∂
∂Ê

( m̂ρf +φ̂0) = 0 because m̂ corresponds to the fluid mass entering into the
pores in the reference configuration and thus does not depend on the deformation of the material,
we get

∂Ĵs

∂Ê
=
∂Ĵ

∂Ê
= Ĵ Ĉ−1.

Since ∂Ŵ bulk

∂Ĵ
= Ĵsχ̂′s(Ĵ)

χ̂s(Ĵ)
, we obtain

Σ̂s =
∂Ŵ skel

∂Ê
+
∂Ψ̂damp

∂
˙̂
E

−
(

1− Ĵsχ̂
′
s(Ĵ)

χ̂s(Ĵ)
− φ̂

)
p̂Ĵ Ĉ−1. (7)

Note that this expression is valid for any potentials Ŵ skel and Ψ̂damp. To further develop the
computations, we can for example use a Ciarlet-Geymonat-like potential [Ciarlet, 1988] for the bulk
potential Ŵ bulk, which yields

Ŵ bulk

(
Ĵs

1− φ̂0

χ̂s(Ĵ)

)
= γ̂ κ

(
Ĵs

χ̂s(Ĵ)
− 1− log

(
Ĵs

χ̂s(Ĵ)

))
,

where κ denotes the solid grains bulk modulus and γ̂ is a scaling factor. In order to recognize the
storage coefficient in the pressure equation, we choose from now on γ̂ = 1−φ̂

1−β . Using (4), we get

p̂ = −∂Ŵ
bulk

∂Ĵs
= −(1− φ̂)κ

1− β

(
1

χ̂s(Ĵ)
− 1

Ĵs

)
=

(1− φ̂)κ

1− β
· χ̂s(Ĵ)− Ĵs
Ĵsχ̂s(Ĵ)

.

Remarking that χ̂s(Ĵ)− Ĵs = Ĵ φ̂− φ̂0 + β(1− φ̂0)(Ĵ − 1) + 1− Ĵ = ρ−1
f m̂−

(
1− β(1− φ̂0)

)
(Ĵ − 1),

we obtain

p̂ =
κ

(1− β)(1− φ̂0)
·
ρ−1
f m̂−

(
1− β(1− φ̂0)

)
(Ĵ − 1)

Ĵ
(
1 + β(Ĵ − 1)

) . (8)

This closure relation will be the cornerstone of the linearization process. As a matter of fact, it
involves the interstitial pressure p̂, the fluid added mass m̂ that is related to the porosity φ̂, and
the change of volume Ĵ that is close to 1 when linearizing the coupled system.
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The linearized model

We linearize (2) for infinitesimal transformations around the configuration (ûs, v̂s, vf , φ̂) = (0, 0, 0, φ̂0).
In particular we have

Â = Î +O
(
|∇ûs|

)
, Ê = ε̂+O

(
|∇ûs|2

)
,

where |∇ûs|2 = ∇ûs : ∇ûs, with the notation

A : B =
d∑

i,j=1

AijBij , ∀A ∈Md(R), ∀B ∈Md(R).

Thus, the reference and deformed configurations reduce to a single domain, which will be denoted
by Ω, allowing us to drop from now on the hat superscripts used previously to distinguish variables
defined on Ω̂ or Ω(t). Besides, it holds

J = 1 + Tr ε+O
(
|ε|2
)

= 1 + div us +O
(
|∇us|2

)
and, in virtue of (8) and (1),

φ = φ0 +O
(
|(div us, p)|

)
.

Furthermore, any choice of potentials W skel(E) and Ψdamp(Ė) satisfies

∂W skel

∂E
= λTr(ε) I + 2µ ε+O

(
|∇us|2

)
and

∂Ψdamp

∂Ė
= ν Tr(ε̇) I + 2η ε̇+O

(
|∇vs|2

)
,

for some Lamé constants λ, µ, ν and η, where η represents the solid grains viscosity. To simplify, we
suppose that ν = 0, but note that choosing ν = λ∗ > 0 would mean taking into account secondary
consolidation effects as in [Murad and Cushman, 1996].

Since
Jsχ

′
s(J)

χs(J)
=
Jsβ(1− φ0)

χs(J)
and

Js
χs(J)

= 1 +O
(
|(div us, p)|

)
,

the solid stress tensor expression (7) implies that

σs = λTr(ε) I + 2µ ε+ 2η ε̇−
(
1− β(1− φ0)− φ0

)
p I +O

(
|(∇us,∇vs, p)|2

)
.

The Biot-Willis coefficient, denoted by α, is then defined as the coefficient multiplying the pressure
term in the porous medium linearized total stress tensor Σ = σs + φ0 σ

tot
f . Therefore

α = 1− β(1− φ0), (9)

and (2a) becomes

ρs(1− φ0) ∂tvs − div
(
λTr(ε(us)) I + 2µ ε(us) + 2η ε(vs)

)
− φ2

0 k
−1
f (vf − vs) + (α− φ0)∇p = ρs(1− φ0)f, ∀(x, t) ∈ Ω× (0, T ). (10)

The fluid equation readily results from the linearization of (2b), leading to

ρfφ0 ∂tvf − div
(
φ0 σf (vf )

)
+ φ2

0 k
−1
f (vf − vs)− θ vf + φ0∇p = ρfφ0 f, in Ω× (0, T ). (11)

To recover a mass balance equation, we infer from (8) that

(1− β)(1− φ0)

κ
p =

ρ−1
f m− α div us +O

(
|∇us|2

)
1 +O

(
|div us|

) .

8
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Since (1− β)(1− φ0) = α− φ0 and p divus = O
(
|(∇us, p)|2

)
, it follows that

ρ−1
f m =

α− φ0

κ
p+ α div us +O

(
|(∇us, p)|2

)
,

Differentiating this relation with respect to time and using (2c), we finally get

α− φ0

κ
∂tp+ div

(
(α− φ0)vs + φ0vf

)
= ρ−1

f θ, ∀(x, t) ∈ Ω× (0, T ). (12)

The coefficient α−φ0

κ is known as the storage coefficient and is often denoted by c0. The Biot-
Willis coefficient, given by (9), is usually computed by the formula

α = 1− κ0

κ
,

with κ0 the drained bulk modulus. Hence κ0 = β(1− φ0)κ – see (9), and we have in particular

κ→ +∞⇔ α→ 1⇔ β → 0⇔ χs(J)→ 1− φ0,

so that (6) reduces to
Ψs = W skel(E) +W bulk(Js)

for nearly-incompressible materials. Such a decomposition for Ψs corresponds to a material satisfy-
ing Terzaghi’s effective stress principle, for which the microstructure Poisson effects are not taken
into account. This was the assumption made in [Burtschell et al., 2019].

Gathering (10), (11) and (12), the linearized model reads:

ρs(1− φ0) ∂tvs − div
(
λTr(ε(us)) I + 2µ ε(us) + 2η ε(vs)

)
−φ2

0 k
−1
f (vf − vs) + (α− φ0)∇p = ρs(1− φ0)f, ∀(x, t) ∈ Ω× (0, T ), (13a)

ρfφ0 ∂tvf − div
(
λfφ0 Tr(ε(vf )) I + 2µfφ0 ε(vf )

)
+φ2

0 k
−1
f (vf − vs)− θ vf + φ0∇p = ρfφ0 f, ∀(x, t) ∈ Ω× (0, T ), (13b)

α− φ0

κ
∂tp+ div

(
(α− φ0)vs + φ0vf

)
= ρ−1

f θ, ∀(x, t) ∈ Ω× (0, T ). (13c)

Note that in (13), the porosity φ0 is no longer an unknown of the model since the non-linear system
(2) is linearized around a given porosity. Hence, in the rest of the thesis, the porosity will be
considered as a given data depending only on space, and will be denoted by φ to simplify the
notation.

The theoretical and numerical analysis of Problem (13) is the main goal of this thesis. In
particular, this thesis focuses on the incompressible case for which κ = +∞ and the pressure
equation (13c) reduces to the incompressibility constraint

div
(
(α− φ0)vs + φ0vf

)
= ρ−1

f θ. (14)

Before recalling the literature related to this system, let us connect it to more standard porous
media models.

Although it is obtained by linearizing a recent poromechanics model, system (13) is in fact
strongly related to commonly used porous models such as Biot equation. More precisely, in Chap-
ter 1, we show thanks to an appropriate change of variable that if η = µf = λf = 0, then (13)
reduces to 

ρ ∂2
ttus + ρfφ∂tvr − (λ+ µ)∇(div us)− µ∆us + α∇p = ρf,

ρf∂
2
ttus + ρf∂tvr + φk−1

f vr +∇p = ρff,

∂t(c0p+ α div us) + div
(
φ vr

)
= ρ−1

f θ,

(15)

9
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where we recall that vr = vf − vs denotes the relative velocity between the fluid and the solid,
ρ = ρs(1 − φ) + ρfφ the porous medium total density and c0 = (α − φ)/κ the storage coefficient.
Problem (15) corresponds exactly to Biot poroacoustic equations [Biot, 1956b].

Therefore, system (13) can also be interpreted as a poroacoustic model with additional viscosity
effects in both fluid and solid phases. Moreover, note that if the fluid inertial effects are neglected,
(15) further simplifies into{

ρ ∂2
ttus − (λ+ µ)∇(div us)− µ∆us + α∇p = g,

∂t(c0p+ α div us)− div (kf∇p) = h,
(16)

which is nothing else than Biot’s consolidation model, one of the most widely used poromechanics
models. We refer to Chapter 3 for further details.

Before going into the contributions of this thesis, we give a short state of the art on modeling,
theoretical and numerical aspects of porous media problems.

State of the art

From the mechanical modeling point of view, the first works dealing with porous media subject
to finite strains arised from mixture theory [Bowen, 1980], a theory in which the fluid and solid
constituents of the porous medium are treated equally. Mixture theory formulations allowing large
structural deformations and strong inertial effects were proposed in [Wilmanski, 2005; Rajagopal
and Tao, 2005] but without a full thermodynamical justification since they do not satisfy Clausius-
Duhem inequality. In the framework of Biot theory in which the solid skeleton plays a special role,
also referred to as Theory of Porous Media (TPM), such formulations were given in [Bourgeois,
1997; Lopatnikov and Cheng, 2004; Gajo and Denzer, 2011]. Yet, these models assume that the
fluid viscous effects within the fluid can be neglected with respect to the frictional effects between
the two phases, and in [Gajo and Denzer, 2011] the fluid is supposed to be compressible. Therefore,
to our knowledge, the non-linear poromechanics model derived in [Chapelle and Moireau, 2014] is
the first one to take into account inertial and viscous effects both for the incompressible fluid and the
solid consituting the porous medium. Moreover, it is compatible with the laws of thermodynamics.
Let us mention that a new model based on [Chapelle and Moireau, 2014] was designed in [Vuong
et al., 2015], and that recent extensions of the TPM were considered for the study of subcutaneous
injection [Gil, 2020; Gil et al., 2022] and fluid-porous structure interaction [Zakerzadeh and Zunino,
2019].

Concerning the mathematical studies of non-linear porous systems, existence and uniqueness
results are available. These works include non-linear constitutive laws [Showalter and Stefanelli,
2004; Barucq et al., 2005], permeability depending on pressure [Showalter and Su, 2001] or porosity
and solid dilatation [Tavakoli and Ferronato, 2013; Bociu et al., 2016; Bociu and Webster, 2021;
Bociu et al., 2022], coupling with heat flow [Brun et al., 2019] and fluid-porous structure interaction
[Benešová et al., 2023]. The existence and uniqueness of Biot-type problems, namely systems of
the form (15) or (16), has also been largely studied. For the unsteady Biot’s consolidation model,
namely (16) with ρ > 0, the existence of strong solutions goes back to [Dafermos, 1968] where
the proof relies on Laplace transform. The existence of weak solutions was then shown in [Barucq
et al., 2004] thanks to a Galerkin method together with a regularization technique. Biot’s quasi-
static equation, namely (16) with ρ = 0, was analyzed with homogenization theory in [Auriault,
1980], leading to the existence of strong solutions. Existence of weak solutions using a Galerkin
approach was obtained in [Ženíšek, 1984] and more regularity on the weak solution was retrieved in
[Owczarek, 2010]. One of the most comprehensive work is [Showalter, 2000], in which a semigroup
approach allows the author to establish the existence of strong but also weak solutions, in particular
in the incompressible case c0 = 0. Concerning Biot poroacoustic equations, see (15), the existence of
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solutions was proved in [Santos, 1986] and [Ezziani, 2005] using respectively Galerkin and semigroup
approaches. Yet, in these two articles, the incompressible case c0 = 0 is not considered, whereas it
is essential for the biomedical applications targeted in this thesis.

In parallel with these theoretical works, the conception of robust discretization techniques for
poromechanics problems became an active field of research. The first developments of this field
can be found in [Russell and Wheeler, 1983] and [Lewis and Schrefler, 1987]. Among others, more
recent studies include finite differences using MAC grids [Harlow and Welch, 1965; Gaspar et al.,
2003], discontinuous Galerkin elements [Phillips and Wheeler, 2008; Liu et al., 2009; Chen et al.,
2013; Khan and Zanotti, 2020], nonconforming discretizations based on Raviart-Thomas elements
[Yi, 2013; Hu et al., 2017; Khan and Zanotti, 2020], finite volumes [Nordbotten, 2014, 2016] and
stabilization techniques [Rodrigo et al., 2016, 2018]. Particular attention has been paid to better
understand the causes of the so-called poroelastic locking, which occurs when the incompressible
or low-permeability regime is reached [Phillips and Wheeler, 2009; Ferronato et al., 2010; Haga
et al., 2012; Yi, 2017; Bertrand et al., 2022]. To overcome this locking, [Oyarzúa and Ruiz-Baier,
2016] introduces an additional unknown related to the total stress of the porous medium, while
[Lee, 2018] and [Lee et al., 2019] consider an additional unknown named total pressure, which
allows to retrieve robust estimates with respect to the locking physical parameters. Moreover,
splitting schemes were proposed in [Zienkiewicz et al., 1988; Settari and Mourits, 1998]. These
splitting procedures, known respectively as the undrained split and fixed-stress split algorithms,
were shown to be convergent in [Mikelić and Wheeler, 2013] and [Girault et al., 2019]. Recent
theoretical and numerical optimizations were given in [Both et al., 2017; Storvik et al., 2019; Both
et al., 2019a], which has led to renewed interest in such methods. Other splitting schemes based
on projection methods were designed in [Zienkiewicz et al., 1993; Huang et al., 2001; Li et al.,
2003] for the unsteady Biot’s consolidation model, namely (16) with ρ > 0, and in [Markert et al.,
2009] for Biot incompressible poroacoustics equations, namely (15) with c0 = 0. However, to our
knowledge, no convergence or complete stability analysis was shown for these projection methods.
The above references focus on Biot-type systems. Yet, under certain physical assumptions, (16)
further simplifies to Darcy equation, for which many numerical methods have been proposed. In
particular, Darcy equation can be used to simulate fractured porous media, see [Angot et al., 2009;
Bukač et al., 2016; Köppel et al., 2018; Van Duijn et al., 2019; Bonaldi et al., 2021] just to name a
few.

We also note that the non-linear poromechanics model (2) shows some similiarities with fluid-
structure interaction problems, as shown in [Burtschell, 2016, Remark 13]. Indeed, it can be inter-
preted as a fluid-structure interaction problem in which the fluid and solid parts share the same
porous domain and hence interact at each point of the domain. Moreover, as in fluid-structure
interaction modeling, Problem (2) can be formulated within an Arbitrary Lagrangian Eulerian
framework. Therefore, numerical strategies developed for fluid-structure interaction problems may
provide some hints for the system considered here. The numerical analysis of the linearized version
of fluid-structure interaction problems in the incompressible case was performed in [Le Tallec and
Mani, 2000]. For non-linear fluid-structure interaction problems dealing with viscous incompress-
ible flows, the first numerical approaches consisted in fixed point algorithms [Le Tallec and Mouro,
2001; Mok and Wall, 2001; Deparis et al., 2003], that were improved in [Gerbeau and Vidrascu,
2003] using a quasi-Newton algorithm. In these problems, when the densities of the fluid and of
the structure are close, numerical unstabilities arise in loosely coupled strategies from the so-called
added-mass effect, which was studied in [Causin et al., 2005] using a toy model together with a
spectral analysis. These unstabilities were treated in semi-implicit coupling schemes based on pro-
jection schemes [Fernández et al., 2007; Astorino and Grandmont, 2010], other operator splitting
approaches [Guidoboni et al., 2009; Bukač et al., 2014], algebraic factorization [Quaini and Quar-
teroni, 2007; Badia et al., 2008] or Robin method [Astorino et al., 2010]. Then, a fully explicit
coupling was proposed in [Burman and Fernández, 2009] using Nitsche’s method. The convergence
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of this explicit strategy, in particular the dependency of the error with respect to the mesh size,
was further improved in [Burman and Fernández, 2014] and in [Burman et al., 2022a] thanks to a
Robin-Robin coupling approach. Note moreover that Nitsche’s method for fluid-structure interac-
tion problems, originally described in [Hansbo et al., 2004], has also been used in the development
of immersed boundary methods [Burman et al., 2015; Massing et al., 2015].

Concerning works specifically relating to the non-linear poromechanics model (2) or to its lin-
earized counterpart (13) studied here, some mathematical and numerical results are already avail-
able. For the non-linear model, [Burtschell et al., 2017] proposes a partioned method in which the
fluid viscous step is treated explicitely while the fluid and the solid remain coupled implicitly in
their respective projection steps. This study considers the case of total stress boundary conditions,
which are treated thanks to a Robin method inspired from fluid-structure interaction [Astorino
et al., 2010]. In [Chabiniok et al., 2022], a model reduction of (2) is derived assuming that the
porous medium presents a spherical symmetry. Moreover, the model is slightly modified in or-
der to take into account the blood perfusion provided by the coronary network, thus paving the
way to clinical applications. For the linearized poromechanics model (13) with Dirichlet boundary
conditions, [Burtschell et al., 2019] shows the existence and uniqueness of strong solutions for a
compressible and viscous skeleton, namely κ < +∞ and η > 0. In [Barnafi et al., 2021], the com-
pressible non-viscous case κ < +∞ and η = 0 is investigated. The existence of weak solutions is
obtained thanks to a Galerkin method provided that the permeability kf is large enough and that
the additional fluid mass input θ is small enough. Yet, the existence of solutions for an incompress-
ible material κ = +∞ is not addressed. From a numerical point of view, [Burtschell et al., 2019]
proposes a Newmark discretization for the solid together with a Backward Euler method for the
fluid, while [Barnafi et al., 2021] considers a Backward Euler method both for the solid and fluid
parts. Spatial and temporal convergence analysis are established assuming that a discrete inf-sup
condition associated with the incompressibility constraint (14) is satisfied. However, note that the
inf-sup condition obtained in these works depends on the porosity φ, so that it could not be gener-
alized to the non-linear case in which the porosity is an unknown of the system. Finally, in [Both
et al., 2022], the authors extend the undrained and fixed-stress algorithms for Biot’s equations to
the porous model (13). This results in an alternating minimization algorithm iterating between the
solid and the fluid steps until convergence. The number of iterations before convergence is very
sensitive to the various physical parameters and in particular to permeability, which is a limitation
of this scheme in the low-permeable regime.

In this context, the major contributions of this thesis are detailed in what follows.

Main contributions

This thesis is divided into five chapters, the contents of which are summarized below.

Chapter 1 – Analysis of a linearized poromechanics model for incompressible and nearly
incompressible materials In Chapter 1, we prove the existence and uniqueness of weak and
strong solutions to Problem (13) in all cases η ≥ 0 and κ ≤ +∞. In the compressible regime
κ < +∞, we extend the previous existence results by dropping the conditions made on the per-
meability and the additional fluid mass input, while the study of the incompressible case κ = +∞
requires a specific analysis of the incompressibility constraint (14). The proofs hinges on a combi-
nation of semigroup theory and energy estimates together with T-coercivity. T-coercivity is a notion
generalizing coercivity that enables us to handle all the difficulties of the problem in a compact way,
and which is equivalent to the inf-sup conditions. First, it allows us to deal with the hyperbolic
– parabolic coupling of the solid and fluid equations that occurs for a non-viscous solid. Indeed
when η = 0 the solid equation (13a) becomes hyperbolic, while the fluid equation (13b) is always
parabolic. Second, we use this notion to deal with the incompressible case κ = +∞ in which the

12



Table des matières

solid and fluid phases are coupled through the divergence constraint (14) by retrieving an inf-sup
condition indepedent of porosity. Moreover, we show how to pass to the limit on the weak solutions
between the compressible and incompressible regimes.

Chapter 2 – The T-coercivity method for mixed problems (joint work with Patrick
Ciarlet, ENSTA Paris) The notion of T-coercivity was originally introduced for unconstrained
static problems [Bonnet-Ben Dhia et al., 2010a; Ciarlet Jr, 2012; Chesnel and Ciarlet, 2013; Bonnet-
Ben Dhia et al., 2014]. Chapter 2 is devoted to the extension of this concept for saddle-point
problems, that appears in particular in system (13) when κ = +∞. We start by applying T-coercivity
to Stokes problem, and then deduce a general framework from this example. In particular, we prove
the equivalence between the T-coercivity theory and the usual Ladyzhenskaya–Babuška–Brezzi inf-
sup condition. Furthermore, it is shown that T-coercivity simplifies some proofs of the standard
theory for perturbed saddle-point problems. The T-coercivity method appears to be a flexible tool
that can be applied to various physical problems, including electromagnetism, nearly-incompressible
elasticity and neutron diffusion. In particular, the method allows to go from the continuous to the
discrete level in a simple way by invoking a Fortin operator.

Chapter 3 – Numerical analysis of an incompressible soft material poromechanics model
using T-coercivity This third chapter deals with the numerical approximation of Problem (13) in
the incompressible regime using mixed finite elements. Two monolithic schemes are considered with
either a Newmark discretization for solid and fluid quantities, or a Backward Euler discretization for
the fluid. Thanks to the T-coercivity mappings built in Chapter 1, we define a discrete projection
operator adapted to the bilinear form involved in the problem. Using this projection operator
together with discrete energy balances, a spatial and temporal error analysis for both schemes is
performed as long as the standard divergence inf-sup condition is satisfied. Doing so, we obtain a
discretization that is robust with respect to incompressibility, porosity and permeability. Moreover,
we study both theoretically and numerically the influence of the additional fluid mass input on the
stability and convergence of the schemes.

Chapter 4 – A projection scheme for an incompressible soft material poromechanics
model After the monolithic approach followed in Chapter 3, this chapter aims at proposing a
splitting scheme decoupling the computation of solid, fluid and pressure quantities at each time
step regardless of boundary conditions. By taking into account the specific saddle-point structure
of the problem, a projection scheme is designed for Dirichlet, Neumann and total stress boundary
conditions. For this last case, we use a Robin-Robin coupling method inspired from fluid-structure
interaction problems [Burman et al., 2022a] in order to ensure stability with respect to possible
added-mass effects. The stability analysis is carried out paying attention on the explicit or implicit
treatment of permeability. In the case of Dirichlet boundary conditions, we prove the convergence of
the scheme for both its non-incremental and incremental versions. Numerical results are provided.

Chapter 5 – Modeling and simulation of artificial microvessel perfusion (joint work
with Claire A. Dessalles, University of Geneva) The last chapter of this thesis is turned
towards biomedical applications. More precisely, the goal of Chapter 5 is to use the poromechan-
ics model (13) to simulate microvessel-on-chip platforms. The microvessel-on-chip platform under
study is a microfluidics experiment in which a porous hydrogel is perforated by a cylindrical water
channel symbolizing a microvessel. Using the monolithic scheme analyzed in Chapter 3 with suitable
boundary conditions, we show that our model is able to reproduce such experiments. The simula-
tion results are first validated qualitatively by a realistic test case and then more quantitatively by
a parametric study.
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The key concepts involved in this thesis and the links between its chapters are represented
schematically in Figure 5.

Chapitre 1
Analysis of a linearized poromechanics
model for incompressible and nearly

incompressible materials

sg ex tc in

Chapitre 2
The T-coercivity method

for mixed problems

tc ex pb in

Chapitre 3
Numerical analysis of an incompressible

soft material poromechanics model
using T-coercivity

mo cv tc st in

Chapitre 4
A projection scheme for

incompressible soft material
poromechanics model

sp st cv in

Chapitre 5
Modeling and simulation of

artificial microvessel perfusion

sc mo tc

Figure 5 – Thesis organization and key concepts. sg semigroup theory, ex existence and uniqueness of

PDEs solutions, tc T-coercivity, in incompressibility and inf-sup conditions, pb perturbed saddle-point

problems, mo monolithic scheme, cv spatial and temporal convergence analysis, st stability analysis,

sp splitting scheme, sc scientific computing, tc transmission conditions.
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Note that the first three chapters of this thesis have been published or submitted.

• Barré, M., Grandmont, C. and Moireau, P. (2023) Analysis of a linearized poromechanics
model for incompressible and nearly incompressible materials. Evolution Equations and Con-
trol Theory, 12(3):846-906, DOI:10.3934/eect.2022053.

• Barré, M., Grandmont, C. and Moireau, P. (2023) Numerical analysis of an incompressible
soft material poromechanics model using T-coercivity. Comptes Rendus. Mécanique, 351(S1),
1-36, DOI:10.5802/crmeca.194.

• Barré, M. and Ciarlet Jr, P. (Submitted) The T-coercivity approach for mixed problems.

Moreover, each of the numerical schemes proposed in Chapters 1, 3, 4 and 5 have been imple-
mented using the FEniCS finite element software [Logg et al., 2012; Alnæs et al., 2015]. Altogether,
these implementations represent about 10 000 lines of code.

To conclude this introduction, we reproduce a comic strip created with the illustrator and
scriptwriter Marine Spaak. This comics strip was part of a scientific outreach project for Inria and
Université Paris-Saclay. It aims at explaining with simple words the subject and motivations of this
thesis.
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CHAPTER 1

Analysis of a linearized poromechanics model for incom-
pressible and nearly incompressible materials

This chapter reproduces results published in Evolution Equations and Control Theory, 12(3):846-
906 (2023) and obtained in collaboration with Céline Grandmont and Philippe Moireau. Moreover,
in June 2021, I presented this work at the International Conference on Coupled Problems in Science
and Engineering (ECCOMAS) in Chia Laguna, Italy (online).
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Abstract

In this work, we thoroughly analyze the linearized version of a poromechanics model developed to
simulate soft tissues perfusion. This is a fully unsteady model in which the fluid and solid equations
are strongly coupled through the interstitial pressure. As such, it generalizes Darcy, Brinkman and
Biot equations of poroelasticity. The mathematical and numerical analysis of this model was initially
performed for a compressible porous material. Here, we focus on the nearly incompressible case
with a semigroup approach, which also allows us to prove the existence of weak solutions. We show
the existence and uniqueness of strong and weak solutions in the incompressible limit case, for which
a divergence constraint on the mixture velocity appears. Due to the special form of the coupling,
the underlying problem is not coercive. Nevertheless, by using the notion of T-coercivity, we obtain
stability estimates and well-posedness results. Our study also provides guidelines to propose stable
and robust approximations of the problem with mixed finite elements. In particular, we recover an
inf-sup condition that is independent of the porosity. Finally, we numerically investigate the elliptic
regularity of the associated steady-state problem and illustrate the sensitivity of the solution with
respect to the different model parameters.

Keywords — Mixture theory, incompressible limit, weak and strong solutions, semigroup theory,
T-coercivity.
Mathematics Subject Classification (2020) — 35M31, 35A15, 47D06, 74F10.

Introduction

Poromechanical models aim at describing the mechanical behavior of saturated porous media with
the interaction of a fluid flow within a deformable porous structure through the definition of a multi-
phase continuum framework [Coussy, 2004; De Boer, 2005]. The initial introduction of such models
concerns geophysics [Biot, 1941; Terzaghi et al., 1996], but these models have been recently used for
biomechanical applications, in particular to represent perfused living tissues. If the heart perfusion
remains a leading example of application [Yang and Taber, 1991; Huyghe et al., 1992; Nash and
Hunter, 2000; Chapelle et al., 2010; Michler et al., 2013; Chabiniok et al., 2016], poroelastic models
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have also been considered to simulate lipid and drug transport in blood vessel walls [Koshiba et al.,
2007; Calo et al., 2008; Badia et al., 2009; D’Angelo and Zunino, 2011; Čanić et al., 2021], water
transport and drug delivery in the brain [Basser, 1992; Støverud et al., 2011; Tully and Ventikos,
2011; Vardakis et al., 2016; Chou et al., 2016; Guo et al., 2018; Lee et al., 2019], ocular diseases
such as glaucoma [Causin et al., 2014; Ruiz-Baier et al., 2022], fibrosis diagnosis in the lungs [Berger
et al., 2016; Genet et al., 2020], or also tissue growth [Ambrosi and Preziosi, 2002; Sacco et al., 2017;
Deville et al., 2018].

In these biomedical applications, physical phenomena such as fluid inertia and solid quasi-
incompressibility, generally neglected in civil engineering, may play an important role. Therefore,
the original poroelasticity model derived by Terzaghi [Terzaghi, 1943] and Biot [Biot, 1941] must
be revised to include inertial effects. Note that in the many applications of poroelasticity, unsteady
behavior for the fluid and the solid is typically included when studying wave propagation in porous
media, see [Schanz, 2009] and references therein. It is also an important topic for the simulation of
fluid-porous structure interaction (FPSI) occurring in living tissues [Showalter, 2005; Badia et al.,
2009; Bukač et al., 2015b,a, 2016; Cesmelioglu, 2017; Angot, 2018; Ambartsumyan et al., 2018; Ager
et al., 2019; Čanić et al., 2021; Bociu et al., 2021]. In addition to inertial effects, perfused organs
such as the heart or the lungs are subject to finite strains, so their modeling must also account for
these non-linear effects and, in particular, consider porosity – which represents the fraction of fluid
in the porous material – as a primary variable. Such modeling extensions were proposed within the
framework of Biot theory where the solid skeleton plays a special role [Bourgeois, 1997; Lopatnikov
and Cheng, 2004; Gil et al., 2022], or in the context of mixture theory treating equivalently all
components of the mixture [Bowen, 1980; Wilmanski, 2005; Rajagopal and Tao, 2005]. All these
models suppose – explicitly or implicitly – that the frictional effects within the fluid can be neglected
due to its viscosity, and rarely take into consideration the influence of solid viscosity. Recently,
authors in [Chapelle and Moireau, 2014] have revisited the framework of Biot theory at finite strain
to derive general formulations adapted to soft tissues perfusion, including inertial and viscous effects
both for the fluid and the solid.

Their formulation is compatible with thermodynamical principles. In particular, the solution of
the linearized version of the fully coupled model proposed in [Chapelle and Moireau, 2014] satisfies
energy estimates, opening the way to prove well-posedness. In [Burtschell et al., 2019; Barnafi et al.,
2021] the case where the structure is compressible is considered for a linearized system close to the
one considered here. Still, the general resulting formulation can exhibit – when solid viscosity is
neglected – a hyperbolic-parabolic coupling between the structure and the fluid, with – when the
skeleton is incompressible – an additional incompressibility constraint involving a mixture velocity,
and therefore leads to challenging questions of analysis.

From a mathematical point of view, there is a large literature related to the existence and
uniqueness of solutions for linear Biot’s consolidation models, namely systems of the form{

ρ ∂2
ttus − (λ+ µ)∇(div us)− µ∆us + α∇p = f, (1.1a)

∂t(c0p+ α div us)− div (kf∇p) = g, (1.1b)

where the two unknowns are the displacement of the structure us and the interstitial pressure
p, which corresponds to the fluid pressure in the pores. For the unsteady system (ρ > 0), the
existence of strong solutions was first derived in [Dafermos, 1968] using Laplace transform and then
completed by [Fichera, 1974], and the existence of weak solutions was obtained in [Barucq et al.,
2004] with a Galerkin method and a regularization technique. The quasi-static case (ρ = 0) was
first studied in [Auriault, 1980] where it was recovered using homogenization techniques, leading to
the existence of strong solutions. Existence of weak solutions was shown in [Ženíšek, 1984] using a
Galerkin approach, which was recently refined to get a more regular solution [Owczarek, 2010]. In
[Showalter, 2000], existence of strong but also weak solutions is established by means of a semigroup
approach. This article also handles secondary consolidation phenomena occuring in clays [Murad
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and Cushman, 1996], modeled by the presence of an extra term −∇
(
λ∗∂t(div us)

)
in (1.1a). Non-

linear extensions of (1.1) were also analyzed [Showalter and Stefanelli, 2004; Showalter, 2013; Cao
et al., 2013; Bociu et al., 2016; Both et al., 2021; Bociu and Webster, 2021; Bociu et al., 2022]. Yet,
in the previous models, fluid inertial effects are neglected and, apart from [Showalter, 2000; Bociu
et al., 2022], little attention is paid to the incompressible case c0 = 0. Moreover, fluid inertial effects
are included in porous wave propagation models [Biot, 1956a], whose well-posedness was studied in
[Santos, 1986] and [Ezziani, 2005] using respectively Galerkin and semigroup approaches. However,
the fluid viscosity is still not considered and the existence of solutions is carried out only for a
compressible fluid, while the fluids present in biomedical applications (blood, lymph, cerebrospinal
fluid) are mostly incompressible. Finally, [Burtschell et al., 2019] and [Barnafi et al., 2021] take into
account inertial and viscous fluid effects as their formulation are derived from the linearization of
[Chapelle and Moireau, 2014] and show respectively the existence of a strong solution when solid
viscosity is included, and the existence of a weak solution in absence of solid viscosity, both for a
compressible solid. The existence result for incompressible or nearly-incompressible materials was
not covered by their results.

In the present work, we study the well-posedness for a linearized system, obtained by linearizing
the fully coupled system introduced in [Chapelle and Moireau, 2014], by unifying semigroup and
variational approaches. The considered model takes into account both fluid and structure inertia,
the fluid viscosity, possible damping in the structure, a friction force between both phases, and
the interstitial pressure. The elastic or viscoelastic skeleton can be compressible or incompressible,
so that we consider four different cases. Our results include the compressible fully viscous case
originally studied in [Burtschell et al., 2019] and generalize, by relaxing the condition on the fluid
mass source term, the results on the compressible elastic case obtained in [Barnafi et al., 2021].
Note moreover that the linearized system here considered differs slightly from the one studied in
[Burtschell et al., 2019; Barnafi et al., 2021], since it incorporates the Biot-Willis coefficient that
models pressure-deformation coupling, hence relating the proposed model to the forementioned
Biot-type systems. In addition to the compressible case, we fully analyze the incompressible limit
case, which corresponds to the physiological regime when considering living tissues. Our approach
exploits the notion of T-coercivity [Ciarlet Jr, 2012; Chesnel and Ciarlet, 2013] to prove, when no
damping is added to the structure, the surjectivity of the underlying operator that involves the
resolution of a non-coercive problem. Furthermore, we also take advantage of the recent parallel
between inf-sup conditions and T-coercivity [Barré and Ciarlet Jr, 2022] to prove the fundamental
inf-sup condition associated with the mixture velocity constraint that we have to deal with in the
incompressible case. It appears that the inf-sup condition is ultimately independent of the porosity.
This result, already conjectured in [Burtschell et al., 2019] and partially justified in [Barnafi et al.,
2021], is crucial to be able to use generic finite-element discretization. It would also be essential
when considering the discretization of the non-linear model from [Chapelle and Moireau, 2014], in
which the porosity is an unknown of the system.

The paper is organized as follows. Section 1.1 presents the poromechanics model under study,
its connection with standard Biot models, and general preliminaries such as the formal derivation
of energy estimates on the system. Further details concerning the full non-linear model introduced
in [Chapelle and Moireau, 2014] and its linearization can be found in the thesis introduction. In
Section 1.2, we unify the semigroup and variational approaches used in [Burtschell et al., 2019] and
[Barnafi et al., 2021] by proving the existence and uniqueness of strong and weak solution for a
compressible porous material. We highlight the role of solid viscosity on the model by pointing out
the differences that appear in the variational formulation when this coefficient vanishes. Section 1.3
is devoted to the incompressible regime and more specifically to the saddle-point structure of the
problem arising in this case, with a particular attention dedicated to the existence and regularity
of pressure. Next, in Section 1.4, we establish a link between the results of Sections 1.2 and 1.3
by passing to the incompressible limit obtained when the bulk modulus of the structure skeleton
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1.1. Problem setting

goes to infinity. Finally, these theoretical results are complemented with numerical experiments
exploring the regularity of solutions and the domain of the underlying semigroup operator.

1.1 Problem setting

The model, close to the one we consider here, was introduced in [Burtschell et al., 2019] and further
explored in [Barnafi et al., 2021; Both et al., 2022]. This model comes from the linearization of the
poromechanical model developed in [Chapelle and Moireau, 2014]. For the sake of completeness, we
refer the reader to the thesis introduction for a brief presentation of the non-linear model proposed
in [Chapelle and Moireau, 2014] and details about the linearization process in which we introduce
the Biot-Willis coefficient that was not taken into account in [Burtschell et al., 2019; Barnafi et al.,
2021; Both et al., 2022]. We will explain in Section 1.1.1 that the resulting linearized model is a
variant of the well-known Biot systems [Biot, 1941, 1955; Biot and Temple, 1972]. Its peculiarity
compared to Biot-type models is that it incorporates inertial and viscous effects for both the fluid
and the solid, and satisfies an energy balance which is formally derived in Section 1.1.2 and further
rigorously justified.

We consider a porous medium in a bounded domain Ω ⊂ Rd (d = 2, 3) with Lipschitz boundary.
In each point of the domain Ω, we consider a mixture of fluid and structure and we denote by φ the
porosity. For all x ∈ Ω, φ(x) ∈ (0, 1) represents the fraction of fluid whereas 1−φ(x) represents the
fraction of elastic medium. The fluid phase is assumed to be an homogeneous, viscous, Newtonian
and incompressible fluid. We denote by vf its velocity, ρf its density and µf its viscosity. Since
the fluid is incompressible (resp. homogeneous), ρf is independent of time (resp. of space). We
also assume that the structure is elastic and, to simplify, that its macroscopic behavior law is linear
and isotropic and, thus, characterized by two Lamé constants λ and µ. They stand for the elastic
parameters characterizing the macroscopic behavior of the elastic part of the mixture (i.e. the
homogenized behavior of a perforated elastic medium with no fluid). We denote by us the structure
displacement and by vs = ∂tus the structure velocity. The density of the structure is denoted by
ρs and its viscosity by η. The fluid and the structure are coupled through a friction force that
depends linearly on the relative velocity vf −vs and reads φ2k−1

f (vf −vs), where kf is the hydraulic
conductivity tensor. In addition, they are coupled through the interstitial pressure p, that is further
linked to the incompressibility of the whole fluid-structure mixture. Finally, α(x) ∈ (φ(x), 1) is the
Biot-Willis coefficient, which takes into account the pressure-deformation coupling. This coefficient
depends on space for a compressible material but tends to 1 in the incompressible limit as the
skeleton elastic bulk modulus, denoted κ, tends to +∞, see the thesis introduction.

The fully coupled model then reads

ρs(1− φ) ∂2
ttus − div

(
σs(us)

)
− div

(
σviss (∂tus)

)
−φ2 k−1

f (vf − ∂tus) + (α− φ)∇p = ρs(1− φ) f, in Ω× (0, T ), (1.2a)

ρfφ∂tvf − div
(
φσf (vf )

)
+φ2 k−1

f (vf − ∂tus)− θ vf + φ∇p = ρfφ f, in Ω× (0, T ), (1.2b)
α− φ
κ

∂tp+ div
(
(α− φ) ∂tus + φ vf

)
=

θ

ρf
, in Ω× (0, T ), (1.2c)

where the structure stress tensor is given by Hooke’s law

σs(u) = λTr(ε(u)) I + 2µ ε(u),

with ε(u) = 1
2(∇u+∇uT ), the structure additional viscosity is given by

σviss (v) = 2η ε(v),
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and the fluid stress tensor reads

σf (v) = λf Tr(ε(v)) I + 2µf ε(v).

In the above system, the data are the applied exterior force f and the additional fluid mass input
θ. The coupled system (1.2) describes the mixture of an elastic, possibly viscous medium and an
incompressible Newtonian flow. The first equation (1.2a) represents the momentum conservation
law of the elastic phase including inertial effects, macroscopic elastic behavior, possible viscous
damping, friction force between the fluid and the structure, and the gradient of the interstitial
pressure. The second equation (1.2b) stands for the momentum conservation law of the fluid phase
including inertial effects, macroscopic viscous effects, friction force and the gradient of the interstitial
pressure. The third equation (1.2c) traduces the total mass conservation dynamic, it involves
the parameter κ, that represents the bulk modulus of the elastic medium constituting the porous
matrix, and the Biot-Willis parameter α. When κ < +∞ it corresponds to a compressible skeleton,
whereas when κ = +∞ (that implies α = 1) we have an incompressible elastic skeleton. Since the
fluid is assumed to be incompressible we deal in the limit case κ = +∞ with an incompressible
porous medium. This latter case is crucial when considering living tissues since they are nearly
incompressible. Note that when κ = +∞ there is no dynamic of the pressure since the term ∂tp in
(1.2c) vanishes, but the pressure is the Lagrange multiplier associated with the mixture constraint
ρf div

(
(1 − φ) ∂tus + φ vf

)
= θ involving the mixture velocity vm = (1 − φ) ∂tus + φ vf . Further

details on the derivation of this linearized coupled system are gathered in the thesis introduction.

Remark 1.1. Note that the skeleton incompressibility is equivalent to κ → +∞, but does not
necessarily imply that λ → +∞. As a matter of fact, λ is the drained Lamé coefficient, namely
the mechanical parameter of a skeleton perforated by holes corresponding to the fluid phase in the
porous medium. In particular, in the targeted biomedical applications, the porous medium is mostly
composed of the fluid phase, so that λ may remain small even if the solid phase is incompressible.

For a presentation of typical boundary conditions for such systems, we refer to [Burtschell et al.,
2017, 2019; Sacco et al., 2019; Čanić et al., 2021] and their analysis will imply further development.
In the present work, we limit our analysis to the case of homogeneous Dirichlet boundary conditions
for the structure and for the fluid: {

us = 0, on ∂Ω× (0, T ), (1.3a)
vf = 0, on ∂Ω× (0, T ). (1.3b)

This coupled problem has to be completed with initial data:
us(0) = us0, in Ω, (1.4a)
∂tus(0) = vs0, in Ω, (1.4b)
vf (0) = vf 0, in Ω, (1.4c)

and in the case κ < +∞
p(0) = p0, in Ω. (1.5)

Before detailing the well-posedness analysis of the considered coupled system, let us first em-
phasize its links to other systems modeling porous media.

1.1.1 Related poromechanics models

As shown in [Rajagopal, 2007], Darcy, Brinkman and Biot equations can be derived within the
framework of mixture theory under specific assumptions. The system (1.2), which arises from Biot
theory, can be seen as a combination of these models. Indeed, (1.2) is close to the fully dynamic
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Biot system introduced in [Biot, 1956a] for the study of acoustic waves in saturated porous media,
but also includes a viscous fluid term as in Brinkman equation.

More precisely, denoting by uf the displacement of fluid particles within the porous medium
and by w = φ(uf − us) the relative displacement of the fluid phase with respect to the solid one,
the model from [Biot, 1956a] reads

ρ ∂2
ttus + ρf ∂

2
ttw − div

(
σs(us)

)
+ α∇p = g, (1.6a)

ρf ∂
2
ttus + aρf ∂

2
tt

(
w

φ

)
+ k−1

f q +∇p = h, (1.6b)

c0p+ α div us + divw = k, (1.6c)

where ρ = ρs(1−φ)+ρfφ corresponds to the density of the mixture, a ≥ 1 is a coefficient describing
tortuosity effects, and

c0 =
φ

κf
+
α− φ
κ

,

is the storage coefficient, with κf the fluid bulk modulus.
In our case, the fluid is assumed to be incompressible and thus κf = +∞, so that c0 = α−φ

κ . To
link (1.2) and (1.6), let us assume that we have no additional fluid mass input, namely θ = 0, and
that we can neglect viscous effects, which amounts to take η = µf = λf = 0. Introducing the new
unknown

q = φ(vf − ∂tus) = ∂tw,

which corresponds to the filtration velocity, (1.2) becomes
ρs(1− φ) ∂2

ttus − div
(
σs(us)

)
− φk−1

f q + (α− φ)∇p = ρs(1− φ) f, (1.7a)

ρfφ∂
2
ttus + ρf∂tq + φk−1

f q + φ∇p = ρfφ f, (1.7b)

c0 ∂tp+ div
(
α∂tus + q

)
= ρ−1

f θ. (1.7c)

Replacing (1.7a) by (1.7a) + (1.7b) and dividing (1.7b) by φ, we get
ρ ∂2

ttus + ρf∂tq − div
(
σs(us)

)
+ α∇p = ρf, (1.8a)

ρf ∂
2
ttus + ρf ∂t

(
q

φ

)
+ k−1

f q +∇p = ρf f, (1.8b)

∂t(c0p+ α div us) + div q = ρ−1
f θ, (1.8c)

which, provided that a = 1, corresponds exactly to (1.6) since q = ∂tw and (1.8c) = ∂t(1.6c). Note
that if c0 > 0, equation (1.6c) can be used to eliminate the pressure unknown as done in [Zienkiewicz
and Shiomi, 1984; Santos, 1986; Ezziani, 2005], but it is no longer the case if we consider (1.8c). The
assumption a = 1 indicates that (1.2) does not take into account tortuosity effects since they are not
compatible with the first principle of continuum mechanics introduced in [Chapelle and Moireau,
2014], see [Gil et al., 2022, Section 5.3.4] for a discussion on the thermodynamical compatibility of
these effects and [Lopatnikov and Cheng, 2004] for a fully unsteady poromechanical model in which
they are included.

If the fluid and solid inertial effects are also neglected, (1.8a) reduces to (1.1a) and (1.8b)
implies that q = −kf∇p + ρfkff . Substituting this result in (1.8c), we recover the quasi-static
Biot’s consolidation model, namely (1.1) with ρ = 0. Therefore, the model studied in this paper is
connected to Darcy, Brinkman and Biot equations, but the presence of inertial and viscous terms
both for the fluid and the solid requires a separate study. In particular, because of these extra terms,
the functional setting adapted to the problem differs from the one developped for Biot models. This
functional setting is guided by the energy balance presented below.
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Remark 1.2. Darcy, Brinkman and Biot models have been justified a posteriori using homogeneiza-
tion techniques, see for instance [Auriault, 1997; Hornung et al., 1997; Mikelić, 2000; Rohan et al.,
2019] and references therein. The justification of (1.2) by homogeneization is an open problem.

Remark 1.3. For a physical discussion about when viscous effects can be neglected or not, we refer
the reader to [Rajagopal, 2007] or [Markert, 2007, Section 3].

1.1.2 Energy estimate

Existence of solutions of such a coupled system, in the compressible case κ < +∞, has been partially
obtained in [Burtschell et al., 2019; Barnafi et al., 2021]. More precisely, the case κ < +∞, η > 0
and θ = 0 has already been studied in [Burtschell et al., 2019], where existence of strong solutions
thanks to the semigroup formalism has been derived. The case κ < +∞, η = 0 is treated in [Barnafi
et al., 2021], where existence of variational solutions is obtained under a smallness assumption on
θ. Here, we consider all the different cases κ ≤ +∞, η ≥ 0, and any given θ sufficiently smooth. We
prove existence of unique strong and mild solutions – in a sense to be made precise later – using
semigroup theory, from which we deduce existence of a unique variational solution. We eventually
show that one can pass to the limit in the weak formulation as κ goes to infinity.

Before going through the proofs, let us first derive formally some energy bounds satisfied by any
smooth enough solutions of the coupled problem. We first derive them in the case κ < +∞ and
then in the limit case κ = +∞. Let us multiply (1.2a) by the structure velocity ∂tus, integrate over
Ω and integrate by parts in space. No boundary terms appear thanks to the homogeneous Dirichlet
boundary conditions (1.3a) and we obtain

ρs
2

d

dt

∫
Ω

(1− φ)|∂tus|2 dx+
1

2

d

dt

∫
Ω
σs(us) : ε(us) dx+ 2η

∫
Ω
ε(∂tus) : ε(∂tus) dx

−
∫

Ω
φ2k−1

f (vf − ∂tus) · ∂tus dx−
∫

Ω
p div

(
(α− φ) ∂tus

)
dx =

∫
Ω
ρs(1− φ)f · ∂tus dx.

Let us also multiply (1.2b) by the fluid velocity vf , integrate over Ω and integrate by parts in space.
No boundary terms appear thanks to the homogeneous Dirichlet boundary conditions (1.3b) and
we get

ρf
2

d

dt

∫
Ω
φ|vf |2 dx+

∫
Ω
φσf (vf ) : ε(vf ) dx

+

∫
Ω
φ2k−1

f (vf − ∂tus) · vf dx−
∫

Ω
θ|vf |2 dx−

∫
Ω
pdiv (φ vf ) dx =

∫
Ω
ρfφf · vf dx.

The last equation (1.2c) is multiplied by p and integrated over Ω, which leads to

1

2

d

dt

∫
Ω

α− φ
κ
|p|2 dx+

∫
Ω

div
(
(α− φ) ∂tus + φ vf

)
p dx =

∫
Ω

θ

ρf
p dx. (1.9)

Adding these three contributions, we see that the terms involving the divergence of the mixture
velocity vm,α = (α− φ)∂tus + φ vf cancel, and we have the following energy equality

ρs
2

d

dt

∫
Ω

(1− φ)|∂tus|2 dx+
1

2

d

dt

∫
Ω
σs(us) : ε(us) dx

+ 2η

∫
Ω
ε(∂tus) : ε(∂tus) dx+

ρf
2

d

dt

∫
Ω
φ|vf |2 dx+

∫
Ω
φσf (vf ) : ε(vf ) dx

+

∫
Ω
φ2k−1

f (vf − ∂tus) · (vf − ∂tus) dx+
1

2

d

dt

∫
Ω

α− φ
κ
|p|2 dx

=

∫
Ω
ρs(1− φ)f · ∂tus dx+

∫
Ω
ρfφf · vf dx+

∫
Ω

θ

ρf
pdx+

∫
Ω
θ|vf |2 dx. (1.10)
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1.1. Problem setting

Remark 1.4. The energy identity (1.10) corresponds exactly to the linearized counterpart of the
energy balance (5) derived for the non-linear poromechanics model from [Chapelle and Moireau,
2014].

Consequently, in order to obtain an energy estimate, we impose the following assumptions on
the data:

(h1) The constants ρs, ρf , µf , λ, µ are assumed to be strictly positive, whereas η ≥ 0;
(h2) The porosity φ ∈ Hd/2+r(Ω) with r > 0, and is such that there exists (φmin, φmax) satisfying

0 < φmin ≤ φ(x) ≤ φmax < 1, ∀x ∈ Ω;

(h3) The friction tensor kf is invertible and there exists k−1
min > 0 such that

k−1
f v · v ≥ k−1

min|v|
2, ∀v ∈ Rd;

(h4) f ∈ L2((0, T )× Ω);
(h5) θ ∈ C0([0, T ]× Ω) ;
(h6) The (non-homogeneous) Biot-Willis coefficient α ∈ Hd/2+r(Ω) with r > 0, and is such that

there exists
(
(α− φ)min, (α− φ)max

)
satisfying

0 < (α− φ)min ≤ α(x)− φ(x) ≤ (α− φ)max < 1, ∀x ∈ Ω;

Remark 1.5. The hypotheses (h2) and (h6) imply that the porosity φ and the Biot-Willis coefficient
α belong to a multiplior space of H1(Ω). These assumptions are needed to define the term div

(
(α−

φ) ∂tus + φ vf
)
in (1.9). Indeed, if α, φ ∈ Hd/2+r(Ω) with r > 0, then for any (ws, wf ) ∈ [H1

0(Ω)]d

we have div
(
(α− φ)ws + φwf

)
∈ L2(Ω).

Under these assumptions, using Young inequality to bound the right-hand side of (1.10) by

1

2

∫
Ω
ρs(1− φ) |f |2 dx+

1

2

∫
Ω
ρs(1− φ) |∂tus|2 dx+

1

2

∫
Ω
ρfφ |f |2 dx

+
1

2

∫
Ω
ρfφ |vf |2 dx+

1

2

∫
Ω

κ

ρ2
f (α− φ)min

|θ|2 dx

+
1

2

∫
Ω

α− φ
κ
|p|2 dx+

2‖θ‖C0([0,T ]×Ω)

ρfφmin
· 1

2

∫
Ω
ρfφ|vf |2 dx,

integrating in time from 0 to t and applying Grönwall Lemma, we obtain the following energy bound

ρs
2

∫
Ω

(1− φ)|∂tus(t)|2 dx+
1

2

∫
Ω
σs(us(t)) : ε(us(t)) dx

+ 2η

∫ t

0

∫
Ω
ε(∂tus) : ε(∂tus) dx ds+

ρf
2

∫
Ω
φ|vf (t)|2 dx+

1

2

∫
Ω

α− φ
κ
|p(t)|2 dx

+

∫ t

0

∫
Ω
φσf (vf ) : ε(vf ) dx ds+

∫ t

0

∫
Ω
φ2k−1

f (vf − ∂tus) · (vf − ∂tus) dx ds

≤ exp

(
max

(
1,

2‖θ‖C0([0,T ]×Ω)

ρfφmin

)
t

)((
ρs
2

(1− φmin) +
ρf
2
φmax

)∫ t

0

∫
Ω
|f |2 dx ds

+
κ

2ρ2
f (α− φ)min

∫ t

0

∫
Ω
|θ|2 dx ds+

ρs
2

∫
Ω

(1− φ)|vs0|2 dx

+
1

2

∫
Ω
σs(us0) : ε(us0) dx+

ρf
2

∫
Ω
φ|vf 0|

2 dx+
1

2

∫
Ω

α− φ
κ
|p0|2 dx

)
. (1.11)
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Note that the friction contribution induces dissipation in the system since∫
Ω
φ2k−1

f (vf − ∂tus) · (vf − ∂tus) dx ≥ 0,

in virtue of (h3).
Moreover, Korn inequality [Duvaut and Lions, 1972; Ciarlet, 1988] implies that the fluid and

structure dissipative terms are coercive in [H1
0(Ω)]d. Namely, there exists Cd > 0 such that

∀v ∈ [H1
0(Ω)]d,

∫
Ω
ε(v) : ε(v) dx ≥ Cd‖v‖2[H1

0(Ω)]d , (1.12)

which implies that the bilinear elastic form is coercive in [H1
0(Ω)]d and verifies

∀v ∈ [H1
0(Ω)]d,

∫
Ω
σs(v) : ε(v) dx ≥ 2µCd‖v‖2[H1

0(Ω)]d . (1.13)

For the fluid part, thanks to assumption (h2), one also has

∀v ∈ [H1
0(Ω)]d,

∫
Ω
φσf (v) : ε(v) dx ≥ 2µfφminCd‖v‖2[H1

0(Ω)]d . (1.14)

Consequently, assuming (us0, vs0, vf 0, p0) ∈ [H1
0(Ω)]d×[L2(Ω)]d×[L2(Ω)]d×L2(Ω), it follows that

us ∈ L∞(0, T ; [H1
0(Ω)]d), ∂tus ∈ L∞(0, T ; [L2(Ω)]d), vf ∈ L∞(0, T ; [L2(Ω)]d) ∩ L2(0, T ; [H1

0(Ω)]d),
p ∈ L∞(0, T ; L2(Ω)), and that, moreover, ∂tus ∈ L2(0, T ; [H1

0(Ω)]d) if η > 0.
Note that the energy bound (1.11) depends on the bulk modulus κ. Nonetheless, if θ is regular

enough, we can recover an energy estimate independent of κ by coming back to the case where the
right-hand side of (1.2c) is equal to zero, as we are now going to perform it in the incompressible
case.

Let us now focus on the case κ = +∞ for which α = 1. The equation (1.2c) reduces to

div
(
(1− φ) vs + φ vf

)
=

θ

ρf
, in Ω. (1.15)

Without loss of generality we can assume that the right-hand side of (1.15) is equal to zero. Indeed,
provided that θ is regular enough and that

∫
Ω θ dx = 0, there exists vθ such that div vθ = θ

ρf
.

Considering the system satisfied by vs − vθ and vf − vθ, namely defining the new displacement

us0 +

∫ t

0
(vs − vθ) ds = us −

∫ t

0
vθ ds,

we end up with a system for which the constraint reads div
(
(1 − φ) vs + φ vf

)
= 0. To obtain

the energy estimates, we proceed as for the case κ < +∞ by multiplying (1.2a) by the structure
velocity ∂tus, and (1.2b) by the fluid velocity vf . After integration over the domain and integration
by parts, adding these two contributions and taking into account the mixture incompressibility
constraint div

(
(1− φ) vs + φ vf

)
= 0 yields

ρs
2

d

dt

∫
Ω

(1− φ)|∂tus|2 dx+
1

2

d

dt

∫
Ω
σs(us) : ε(us) dx+ 2η

∫
Ω
ε(∂tus) : ε(∂tus) dx

+
ρf
2

d

dt

∫
Ω
φ|vf |2 dx+

∫
Ω
φσf (vf ) : ε(vf ) dx+

∫
Ω
φ2k−1

f (vf − ∂tus) · (vf − ∂tus) dx

=

∫
Ω
ρs(1− φ)f · ∂tus dx+

∫
Ω
ρfφf · vf dx+

∫
Ω
θ|vf |2 dx. (1.16)
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Grönwall Lemma then implies

ρs
2

∫
Ω

(1− φ)|∂tus(t)|2 dx+
1

2

∫
Ω
σs(us(t)) : ε(us(t)) dx

+ 2η

∫ t

0

∫
Ω
ε(∂tus) : ε(∂tus) dx ds+

ρf
2

∫
Ω
φ|vf (t)|2 dx

+

∫ t

0

∫
Ω
φσf (vf ) : ε(vf ) dx ds+

∫ t

0

∫
Ω
φ2k−1

f (vf − ∂tus) · (vf − ∂tus) dx ds

≤ exp

(
max

(
1,

2‖θ‖C0([0,T ]×Ω)

ρfφmin

)
t

)((
ρs
2

(1− φmin) +
ρf
2
φmax

)∫ t

0

∫
Ω
|f |2 dx ds

+
ρs
2

∫
Ω

(1− φ)|vs0|2 dx+
1

2

∫
Ω
σs(us0) : ε(us0) dx+

ρf
2

∫
Ω
φ|vf 0|

2 dx

)
. (1.17)

Thanks to Korn inequality (1.12), coercivities (1.13), (1.14), assumptions (h1) − (h5) and as-
suming that (us0, vs0, vf 0) ∈ [H1

0(Ω)]d × [L2(Ω)]d × [L2(Ω)]d, we have us ∈ L∞(0, T ; [H1
0(Ω)]d),

∂tus ∈ L∞(0, T ; [L2(Ω)]d), vf ∈ L∞(0, T ; [L2(Ω)]d) ∩ L2(0, T ; [H1
0(Ω)]d), and if η > 0, ∂tus ∈

L2(0, T ; [H1
0(Ω)]d). Here the energy bounds does not give bounds on the pressure, which is the

main difference between the cases κ < +∞ and κ = +∞.
We then propose the following milestones for our analysis. We start by considering the com-

pressible case for which κ < +∞. In this case the pressure p has its own dynamic. Then the
incompressible case, namely κ = +∞, is treated and we have to deal with a divergence-free con-
straint on the mixture velocity. Each case is split into two cases: the viscous one (namely η > 0)
for which we have a parabolic-parabolic coupling between the solid and fluid equations, and the
inviscid one (namely η = 0) for which we have a hyperbolic-parabolic coupling. For each four cases
we prove existence of strong, mild and variational solutions and give the link between the three
types of solutions. In particular, existence of strong and mild solutions relies on the study of the
first order system of the form ż + Az = g associated with (1.2) and the underlying unbounded op-
erator A using semigroup theory. By strong solution, we mean that the solution is regular in time
and that the equations are satisfied almost everywhere in the sense that all the components of ż
and Az are defined almost everywhere, whereas mild solutions are solutions satisfying the Duhamel
formula. Note that in the case η = 0 in order to prove that the operator is maximal accretive we
need to take care of the non coercivity of the associated bilinear form. This issue is solved thanks
to the notion of T-coercivity introduced in [Ciarlet Jr, 2012; Chesnel and Ciarlet, 2013]. Next the
variational solutions are obtained by an approximation strategy as the limit of a sequence of strong
solutions. Note that, as we will see, the definition of the variational formulations is different when
considering η > 0 or η = 0. The main difference comes from the fact that, in the latter case, the
structure velocity is not in [H1

0(Ω)]d in space but only in [L2(Ω)]d. We end up with the study of the
incompressible limit, which allows to pass to the limit in the weak formulation for κ < +∞, to re-
cover the weak formulation associated with κ = +∞. The theoretical results are further completed
by numerical illustrations to investigate the regularity of the solutions.

1.2 Existence of solutions for a compressible skeleton κ < +∞.

In this section, we study the poromechanical problem for a compressible skeleton, that corresponds
to κ < +∞. First, we write (1.2) as a first-order evolution equation and we define the associated
unbounded operator. Then, by investigating the properties of this operator, we use a semigroup
approach to show existence and uniqueness of strong and mild solutions to the system. The existence
of variational solutions is then obtained by an approximation strategy. The cases η > 0 and η = 0
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are treated separately in order to emphasize the influence of solid viscosity on the model. But let
us start with some general notation and definitions valid for both cases.

1.2.1 Semigroup framework

The system (1.2) can be rewritten as a first order system as follows

∂tus − vs = 0, in Ω× (0, T ), (1.18a)
ρs(1− φ) ∂tvs − div

(
σs(us)

)
− div

(
σviss (vs)

)
−φ2 k−1

f (vf − vs) + (α− φ)∇p = ρs(1− φ) f, in Ω× (0, T ), (1.18b)

ρfφ∂tvf − div
(
φσf (vf )

)
+φ2 k−1

f (vf − vs)− θ vf + φ∇p = ρfφ f, in Ω× (0, T ), (1.18c)
α− φ
κ

∂tp+ div
(
(α− φ) vs + φ vf

)
=

θ

ρf
, in Ω× (0, T ). (1.18d)

Let z = (us, vs, vf , p) and z0 = (us0, vs0, vf 0, p0) denote respectively the unknown variable and
the initial condition of (1.18). We formulate (1.18) as an abstract evolution problem{

ż(t) +Aκηz(t) +G(t)z(t) = g(t), t ∈ [0, T ],

z(0) = z0,
(1.19)

where Aκη is an unbounded operator specified with respect to the solid viscosity η and the bulk
modulus κ, and G(t) is a bounded perturbation defined below.

Let us first define the energy space

Z = [H1
0(Ω)]d × [L2(Ω)]d × [L2(Ω)]d × L2(Ω),

associated with (1.18). Since the functions ρs(1− φ), ρfφ and α−φ
κ are bounded and bounded from

below by strictly positive constants, the space Z can be endowed with the scalar product defined
by

(z, y)Z =

∫
Ω
σs(us) : ε(ds) dx +

∫
Ω
ρs(1 − φ) vs · ws dx +

∫
Ω
ρfφ vf · wf dx +

∫
Ω

α− φ
κ

p q dx,

for any z = (us, vs, vf , p) and y = (ds, ws, wf , q) belonging to Z. The associated norm reads

‖z‖2Z = ‖us‖2s +

∫
Ω
ρs(1− φ) |vs|2 dx+

∫
Ω
ρfφ |vf |2 dx+

∫
Ω

α− φ
κ

p2 dx, (1.20)

with
‖us‖2s =

∫
Ω
σs(us) : ε(us) dx. (1.21)

This norm is equivalent to the canonical norm on Z according to Korn inequality (1.13).
Setting

Y = [H1
0(Ω)]d × [H1

0(Ω)]d × [H1
0(Ω)]d × L2(Ω),

as an intermediate space, we introduce the bilinear form aκη defined for all z = (us, vs, vf , p) ∈ Y
and y = (ds, ws, wf , q) ∈ Y by

aκη(z, y) =−
∫

Ω
σs(vs) : ε(ds) dx+

∫
Ω
σs(us) : ε(ws) dx+ 2η

∫
Ω
ε(vs) : ε(ws) dx

+

∫
Ω
φσf (vf ) : ε(wf ) dx+

∫
Ω
φ2 k−1

f (vf − vs) · (wf − ws) dx

+

∫
Ω

div
(
(α− φ) vs + φ vf

)
q dx−

∫
Ω
pdiv

(
(α− φ)ws + φwf

)
dx. (1.22)

30



1.2. Existence of solutions for a compressible skeleton κ < +∞.

The bilinear form aκη is continuous over Y × Y .
Associated with this bilinear form, we introduce the unbounded operator(

Aκη , D(Aκη)
)
defined by

(Aκηz, y)Z = aκη(z, y), ∀z ∈ D(Aκη), ∀y ∈ Y, (1.23)

in the domain
D(Aκη) =

{
z ∈ Y : ∃g ∈ Z, aκη(z, y) = (g, y)Z , ∀y ∈ Y

}
. (1.24)

Finally, for all t ∈ [0, T ], we define the time-dependent operator

G(t) : z = (us, vs, vf , p) ∈ Z 7−→
(

0, 0,−θ(t)
ρfφ

vf , 0

)
. (1.25)

Taking g =
(

0, f, f, κ
α−φ ·

θ
ρf

)
, the state-space formulation (1.19) is equivalent to (1.18) in a sense

that will be specified in Corollary 1.9.

Remark 1.6. Note that in the domain of operator the equation stating that the time derivative
of the structure displacement is equal to the structure velocity (that comes from the first order
rewriting of a second order in time problem) will hold true in [H1

0(Ω)]d in the space variable. This
is the reason of the presence of the term −

∫
Ω σs(vs) : ε(ds) dx in (1.22). Yet, even if the solid

velocity is considered in [H1
0(Ω)]d in the latter integral, we will see that when η = 0 the resulting

weak solution does not satisfy (1.18a) in [H1
0(Ω)]d but only in [L2(Ω)]d. The same issue appears

when studying the wave equation.

For z = (us, vs, vf , p) ∈ D(Aκη), we can write

Aκηz =


−vs
(ρs(1− φ))−1

(
−div (σs(us))− div (σviss (vs))

+φ2 k−1
f (vs − vf ) + (α− φ)∇p

)
(ρfφ)−1

(
−div (φσf (vf )) + φ2 k−1

f (vf − vs) + φ∇p
)

κ
α−φdiv

(
(α− φ) vs + φ vf

)

 , (1.26)

so that the operator Aκη can be expressed in matrix form as

Aκη = N−1
0 × 

0 −I 0 0

−div (σs(·)) −div (σviss (·)) + φ2 k−1
f −φ2 k−1

f (α− φ)∇
0 −φ2 k−1

f −div (φσf (·)) + φ2 k−1
f φ∇

0 div ((α− φ) ·) div (φ ·) 0

 ,

where I denotes the identity operator of the space [H1
0(Ω)]d endowed with the norm (1.21), and

N0 =


I 0 0 0
0 ρs(1− φ) 0 0
0 0 ρfφ 0

0 0 0 α−φ
κ

 .

Moreover, from (1.24) and (1.26), it follows that

D(Aκη) =


us, vs,vf ∈ [H1

0(Ω)]d, p ∈ L2(Ω) such that

− div (σs(us))− div (σviss (vs)) + (α− φ)∇p ∈ [L2(Ω)]d,

− div (φσf (vf )) + φ∇p ∈ [L2(Ω)]d,

div ((α− φ) vs + φ vf ) ∈ L2(Ω)

 . (1.27)
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Note that belonging to D(Aκη) does not mean that all the above terms individually belong to
L2(Ω), but only that their sum does. For instance, (vf , p) does not necessarily belong to [H2(Ω)]d×
H1(Ω), but we know that −div (φσf (vf )) +φ∇p ∈ [L2(Ω)]d. Specifying D(Aκη) in terms of classical
Sobolev spaces requires to study the regularity of the solution to the static problem Aκηz = g with
g ∈ Z. This issue, delicate from a theoretical point of view, will be explored in more details in
numerical experiments, see Section 1.5.

In what follows, we exploit the previous framework to prove that Problem (1.18) has a unique
strong and mild solution for κ < +∞. We also recover the existence of variational solutions as the
limit of a sequence of strong solutions. If η > 0, the solid equation (1.18b) is parabolic, while it
becomes hyperbolic when η = 0. For this reason, we distinguish the cases η > 0 and η = 0.

1.2.2 The case η > 0

Let us start with the parabolic-parabolic coupling configuration. This case was treated in [Burtschell
et al., 2019] for θ = 0 and α = 1. Here, we propose a proof of existence and uniqueness which is
valid for a time-dependent θ. Note that considering α 6= 1 does not induce additional difficulties.

Theorem 1.7. Assume that (h1), (h2), (h3) and (h6) hold true and that η > 0.

(i) If θ ∈ C1([0, T ]; L∞(Ω)), z0 ∈ D(Aκη) and f ∈ H1(0, T ; [L2(Ω)]d), then there exists a unique
strong solution z ∈ C1([0, T ];Z) ∩ C0([0, T ];D(Aκη)) satisfying (1.19).

(ii) If θ ∈ C0([0, T ] × Ω), z0 ∈ Z and f ∈ L2(0, T ; [L2(Ω)]d), then Problem (1.19) has a unique
mild solution z ∈ C0([0, T ];Z) such that z(0) = z0 and∫ T

0
z(t)ψ(t) dt ∈ D(Aκη), (1.28)

−
∫ T

0
z(t)ψ̇(t) dt+Aκη

(∫ T

0
z(t)ψ(t) dt

)

+

∫ T

0
G(t)z(t)ψ(t) dt =

∫ T

0
g(t)ψ(t) dt, (1.29)

for all ψ ∈ C1
c([0, T ]; R). Moreover, z verifies the Duhamel formula

z(t) = Φκ
η(t)z0 +

∫ t

0
Φκ
η(t− s)

(
−G(s)z(s) + g(s)

)
ds, (1.30)

where Φκ
η denotes the continuous semigroup generated by Aκη in the sense that

Aκηx = − d

dt

(
Φκ
η(t)x

)
|t=0+ , x ∈ Z. (1.31)

Proof. Let us prove (ii). We shall first show that the operator Aκη defined by (1.23) is maximal-
accretive, namely:

• (Aκηz, z)Z ≥ 0, ∀z ∈ D(Aκη);

• Aκη + λ0I is surjective from D(Aκη) to Z, for all λ0 > 0.

For any z = (us, vs, vf , p) ∈ D(Aκη), we have by definition of the bilinear form aκη and the
operator Aκη

(Aκηz, z)Z = a(z, z) = 2η

∫
Ω
|ε(vs)|2 dx+

∫
Ω
φ2 k−1

f (vf−vs)·(vf−vs) dx+

∫
Ω
φσf (vf ) : ε(vf ) dx.
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Since k−1
f (vf − vs) · (vf − vs) ≥ 0, we find that (Aκηz, z)Z ≥ 0.

Let λ0 > 0 be a positive real number and let g be an element of Z. To prove that Aκη + λ0I is
surjective from D(Aκη) to Z, we consider the variational problem{

Find z ∈ Y such that
∀y ∈ Y, aκη(z, y) + λ0(z, y)Z = (g, y)Z .

(1.32)

Using Poincaré inequality, we see that the linear form y 7→ (g, y)Z is continuous over Y and that
the bilinear form aκη(·, ·) + λ0(·, ·)Z is continuous over Y × Y . Moreover,

aκη(z, z) + λ0(z, z)Z = 2η

∫
Ω
|ε(vs)|2 dx+

∫
Ω
φ2 k−1

f (vf − vs) · (vf − vs) dx+

∫
Ω
φσf (vf ) : ε(vf ) dx

+ λ0

(
‖us‖2s +

∫
Ω
ρs(1− φ) |vs|2 dx+

∫
Ω
ρfφ |vf |2 dx+

∫
Ω

α− φ
κ

p2 dx
)

≥λ0‖us‖2s + 2η‖ε(vs)‖2 + 2µfφmin‖ε(vf )‖2 + λ0
(α− φ)min

κ
‖p‖2, (1.33)

where ‖·‖ denotes the L2 norm indifferently in [L2(Ω)]d or L2(Ω). Consequently, the bilinear form
aκη(·, ·) + λ0(·, ·)Z is coercive on Y thanks to Korn inequality (1.12).

From Lax-Milgram theorem, we deduce that there exists a unique z ∈ Y solution of (1.32).
Since by construction aκη(z, y) = (g − λ0z, y)Z for all y ∈ Y and g − λ0z ∈ Z, we finally get that
z ∈ D(Aκη) in view of (1.24).

Hence, Aκη is maximal-accretive and Lumer-Phillips theorem (see for instance [Pazy, 2012, Chap-
ter 1, Theorem 4.3]) implies that Aκη is the infinitesimal generator – in the sense of (1.31) – of a
C0-semigroup of contraction (Φκ

η(t))t≥0. In particular, we have

‖Φκ
η(t)‖L(Z) ≤ 1, t ∈ [0, T ]. (1.34)

Then, we observe that G(t) is a bounded perturbation of Aκη . Indeed, for any z ∈ Z,

‖G(t)z‖2Z =

∫
Ω
ρfφ

(
θ(t)

ρfφ

)2

|vf |2 dx ≤ ω2‖z‖2Z ,

with (ρfφmin)−1ω = ‖θ‖L∞((0,T )×Ω). Thus G ∈ C0([0, T ];L(Z)) and

‖G(t)‖L(Z) ≤ ω, t ∈ [0, T ]. (1.35)

Therefore, the assertion (ii) follows from [Bensoussan et al., 2007, Part II, Chapter 1, Proposition
3.4] and [Burq and Gérard, 2002, Corollary 2.19].

If θ ∈ C1([0, T ]; L∞(Ω)) then G ∈ C1([0, T ];L(Z)), which proves (i) by an application of [Ben-
soussan et al., 2007, Part II, Chapter 1, Proposition 3.5].

Remark 1.8. The bilinear form aκη(·, ·) + λ0(·, ·)Z is coercive on Y precisely because η > 0. It
will not be the case when η = 0. In particular, this implies that, here, (Φκ

η(t))t≥0 is an analytic
semigroup [Bensoussan et al., 2007, Part II, Chapter 1, Theorem 2.12].

The solution z ∈ C1([0, T ];Z) ∩ C0([0, T ];D(Aκη)), called strong solution in the foregoing, is
sometimes referred to as strict solution to account for the C1 regularity in time – see for instance
[Bensoussan et al., 2007, Part II, Chapter 1, Definition 3.1]. The next result clarifies in which sense
this solution satisifies the original equation under study.

Corollary 1.9. If θ ∈ C1([0, T ]; L∞(Ω)), z0 ∈ D(Aκη) and f ∈ H1(0, T ; [L2(Ω)]d), then the strong
solution defined above satisfies (1.18) almost everywhere in (0, T )× Ω.
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Proof. The strong solution satisfies{
ż(t) +Aκηz(t) +G(t)z(t) = g(t), t ∈ [0, T ],

z(0) = z0.

Since z ∈ C1([0, T ];Z), we know that ∂tus ∈ C0([0, T ; [H1
0(Ω)]d]), ∂tvs ∈ C0([0, T ]; [L2(Ω)]d),

∂tvf ∈ C0([0, T ]; [L2(Ω)]d) and ∂tp ∈ C0([0, T ]; L2(Ω)). In view of (1.27), the regularity z ∈
C0([0, T ];D(Aκη)) implies that

−div (σs(us))− div (σviss (vs)) + (α− φ)∇p ∈ C0([0, T ]; [L2(Ω)]d),

−div (φσf (vf )) + φ∇p ∈ C0([0, T ]; [L2(Ω)]d),

and div
(
(α−φ)vs+φ vf

)
∈ C0([0, T ]; L2(Ω)). Thus for every t ∈ [0, T ], (1.18b), (1.18c) and (1.18d)

are verified in [L2(Ω)]d, and in particular almost everywhere.

In other words, Corollary 1.9 does not mean that each individual term appearing in (1.18) is
defined almost everywhere. However, each line of (1.18) is satisfied almost everywhere since ż and
Aκηz are both defined almost everywhere.

Theorem 1.7 provides the existence and uniqueness of two types of solutions: the strong so-
lution and the mild solution. The strong solution is regular since it belongs to C1([0, T ];Z) ∩
C0([0, T ];D(Aκη)) but it requires high regularity assumptions on the source terms and on the ini-
tial conditions, in particular z0 ∈ D(Aκη). The mild solution requires weaker assumptions, but the
Duhamel formula (1.30) is quite abstract. The next theorem establishes the existence and unique-
ness of a third notion of solution: the variational solution, that satisfies a weak formulation in the
following sense.

Theorem 1.10. Assume that (h1) − (h6) hold true and that η > 0. If z0 = (us0, vs0, vf 0, p0) ∈
Z, there exists a variational solution us ∈ C0([0, T ]; [H1

0(Ω)]d), and ∂tus ∈ C0([0, T ]; [L2(Ω)]d) ∩
L2(0, T ; [H1

0(Ω)]d), and vf ∈ C0([0, T ]; [L2(Ω)]d) ∩L2(0, T ; [H1
0(Ω)]d) and p ∈ C0([0, T ]; L2(Ω)) such

that (
us(0), ∂tus(0), vf (0), p(0)

)
= (us0, vs0, vf 0, p0), (1.36)

and such that the following equations hold true in D′(0, T ):

∀(ws, wf , q) ∈ [H1
0(Ω)]d × [H1

0(Ω)]d × L2(Ω),

d2

dt2

∫
Ω
ρs(1− φ)us(t) · ws dx+

∫
Ω
σs(us(t)) : ε(ws) dx

+2η

∫
Ω
ε(∂tus(t)) : ε(ws) dx−

∫
Ω
φ2 k−1

f (vf (t)− ∂tus(t)) · ws dx

−
∫

Ω
p(t) div

(
(α− φ)ws

)
dx =

∫
Ω
ρs(1− φ)f(t) · ws dx, (1.37a)

d

dt

∫
Ω
ρfφ vf (t) · wf dx+

∫
Ω
φσf (vf (t)) : ε(wf ) dx

+

∫
Ω
φ2 k−1

f (vf (t)− ∂tus(t)) · wf dx−
∫

Ω
θ(t) vf (t) · wf dx

−
∫

Ω
p(t) div (φwf ) dx =

∫
Ω
ρfφf(t) · wf dx, (1.37b)

d

dt

∫
Ω

α− φ
κ

p(t)q dx+

∫
Ω

div
(
(α− φ) ∂tus(t) + φ vf (t)

)
q dx

=

∫
Ω

θ(t)

ρf
q dx. (1.37c)
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Furthermore, the energy estimate (1.11) holds true and, if we assume that ∂tθ ∈ L∞((0, T ) × Ω)),
this solution is unique.

Proof. To show the existence of variational solutions verifying (1.37), we proceed as follows. First,
we approximate the data by sequences of regular functions and we consider the sequence of strong
solutions associated with these regular data. Then, we show that these strong solutions satisfy a
variational formulation and we pass to the limit on this formulation after having established some
a priori estimates and strong convergences of the sequences.

As Aκη is maximal, D(Aκη) is dense in Z. Let zn0 be a sequence of elements of D(Aκη) converging
towards z0 strongly in Z. Let fn denote a sequence of H1(0, T ; L2(Ω)) converging towards f in
L2(0, T ; L2(Ω)) and θn denote a sequence of C1([0, T ]; L∞(Ω)) converging towards θ in C0([0, T ]×Ω).
From Theorem 1.7, we know that there exists a unique strong solution zn = (uns , v

n
s , v

n
f , p

n) ∈
C1([0, T ];Z) ∩ C0([0, T ];D(Aκη)) to the problem

{
żn(t) +Aκηz

n(t) +Gn(t)zn(t) = gn(t), t ∈ [0, T ],

zn(0) = zn0 .
(1.38)

Multiplying (1.38) by y = (ds, ws, wf , p) ∈ Y , we see from (1.23) that (Aκηz
n(t), y)Z = aκη(zn(t), y).

Hence zn satisfies the following variational formulation:
for all s ∈ [0, T ],

(V F )n



∀(ds, ws, wf , p) ∈ Y = [H1
0(Ω)]d × [H1

0(Ω)]d × [H1
0(Ω)]d × L2(Ω),∫

Ω
σs(∂tu

n
s (s)) : ε(ds) dx =

∫
Ω
σs(v

n
s (s)) : ε(ds) dx,∫

Ω
ρs(1− φ) ∂tv

n
s (s) · ws dx+

∫
Ω
σs(u

n
s (s)) : ε(ws) dx

+2η

∫
Ω
ε(vns (s)) : ε(ws) dx−

∫
Ω
φ2 k−1

f (vnf (s)− vns (s)) · ws dx

−
∫

Ω
pn(s) div ((α− φ)ws) dx =

∫
Ω
ρs(1− φ)fn(s) · ws dx,∫

Ω
ρfφ∂tv

n
f (s) · wf dx+

∫
Ω
φσf (vnf (s)) : ε(wf ) dx

+

∫
Ω
φ2 k−1

f (vnf (s)− vns (s)) · wf dx−
∫

Ω
θn(s) vnf (s) · wf dx

−
∫

Ω
pn(s) div (φwf ) dx =

∫
Ω
ρfφf

n(s) · wf dx,∫
Ω

α− φ
κ

∂tp
n(s) q dx

+

∫
Ω

div
(
(α− φ) vns (s) + φ vnf (s)

)
q dx =

∫
Ω

θn(s)

ρf
q dx.

Recalling that zn ∈ C0([0, T ];D(Aκη)) ⊂ C0([0, T ];Y ), we can choose ds = uns (s), ws = vns (s),
wf = vnf (s) and q = pn(s) as test functions. Integrating in time from 0 to t and applying Grönwall
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Lemma like in Section 1.1, we get the energy inequality

1

2

∫
Ω
σs(u

n
s (t)) : ε(uns (t)) dx+

ρs
2

∫
Ω

(1− φ)|vns (t)|2 dx+ 2η

∫ t

0

∫
Ω
ε(vns ) : ε(vns ) dx ds

+
ρf
2

∫
Ω
φ|vnf (t)|2 dx+

∫ t

0

∫
Ω
φσf (vnf ) : ε(vnf ) dx ds+

1

2

∫
Ω

α− φ
κ
|pn(t)|2 dx

≤ exp

(
max

(
1,

2‖θn‖C0([0,T ]×Ω)

ρfφmin

)
t

)((
ρs
2

(1− φmin) +
ρf
2
φmax

)∫ t

0

∫
Ω
|fn|2 dx ds

+
κ

2ρ2
f (α− φ)min

∫ t

0

∫
Ω
|θn|2 dx ds+

1

2

∫
Ω
σs(u

n
s 0) : ε(uns 0) dx

+
ρs
2

∫
Ω

(1− φ)|vns 0|
2 dx+

ρf
2

∫
Ω
φ|vnf 0

|2 dx+
1

2

∫
Ω

α− φ
κ
|pn0 |2 dx

)
. (1.39)

Thanks to the assumptions done on the data, the right-hand side of the latter inequality is uni-
formly bounded with respect to n. Consequently, taking into account the assumptions (h2) and
(h6) on φ and α, Korn inequality (1.12), the coercivity of the elastic and fluid forms (1.13) and
(1.14), we deduce that uns is uniformly bounded in C0([0, T ]; [H1

0(Ω)]d), vns in C0([0, T ]; [L2(Ω)]d) ∩
L2(0, T ; [H1

0(Ω)]d), vnf in C0([0, T ]; [L2(Ω)]d) ∩ L2(0, T ; [H1
0(Ω)]d) and pn in C0([0, T ]; L2(Ω)).

Similarly, one can show that zn is a Cauchy sequence in C0([0, T ]; [H1
0(Ω)]d)×

(
C0([0, T ]; [L2(Ω)]d)

∩L2(0, T ; [H1
0(Ω)]d)

)
×
(
C0([0, T ]; [L2(Ω)]d)∩L2(0, T ; [H1

0(Ω)]d)
)
×C0([0, T ]; L2(Ω)). Indeed, denoting

zn,m = zn − zm, using the linearity of the coupled problem, the uniform bound we just obtained
and taking into account the fact that ‖θn‖L∞((0,T )×Ω) is bounded uniformly in n, we obtain that
there exists C > 0 independent of n such that

d

dt
χn,m(t) ≤ Cχn,m(t) +

ρs
2

∫
Ω

(1− φ)|fn,m(t)|2 dx

+
ρf
2

∫
Ω
φ|fn,m(t)|2 dx+ C‖θn,m‖L∞((0,T )×Ω),

with

χn,m(t) =
ρs
2

∫
Ω

(1− φ)|vn,ms (t)|2 dx+
1

2

∫
Ω
σs(u

n,m
s (t)) : ε(un,ms (t)) dx

+
ρf
2

∫
Ω
φ|vn,mf (t)|2 dx+

1

2

∫
Ω

α− φ
κ
|pn,m(t)|2 dx

+ 2η

∫ t

0

∫
Ω
ε(vn,ms ) : ε(vn,ms ) dx ds+

∫ t

0

∫
Ω
φσf (vn,mf ) : ε(vn,mf ) dx ds.

Grönwall Lemma and the fact that the sequences associated with the data are Cauchy sequences
imply that

∀δ > 0, ∃N ∈ N, ∀n ≥ N, ∀m ≥ N, χn,m(t) ≤ δ exp(Ct).

Consequently, there exists us ∈ C0([0, T ]; [H1
0(Ω)]d), vs ∈C0([0, T ]; [L2(Ω)]d)∩L2(0, T ; [H1

0(Ω)]d),
vf ∈ C0([0, T ]; [L2(Ω)]d) ∩ L2(0, T ; [H1

0(Ω)]d) and moreover, p ∈ C0([0, T ]; L2(Ω)) such that

uns−→ us in C0([0, T ]; [H1
0(Ω)]d), vns −→ vs in C0([0, T ]; [L2(Ω)]d),

vnf−→ vf in C0([0, T ]; [L2(Ω)]d), pn −→ p in C0([0, T ]; L2(Ω)),

while
vns−→ vs in L2(0, T ; [H1

0(Ω)]d), vnf −→ vf in L2(0, T ; [H1
0(Ω)]d).
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Note that since vns = ∂tu
n
s , it also holds true in the limit and ∂tus = vs ∈ C0([0, T ]; [L2(Ω)]d) ∩

L2(0, T ; [H1
0(Ω)]d). These convergences enable to pass to the limit in (V F )n, except for the inertial

terms. Yet, these terms can be rewritten thanks to an integration by parts in time as follows: for
ψ ∈ D(0, T ), we have for example∫ T

0

∫
Ω
ρs(1− φ) ∂tv

n
s (t) · wsψ(t) dx dt =−

∫ T

0

∫
Ω
ρs(1− φ) vns (t) · wsψ̇(t) dx dt

−→
n→∞

−
∫ T

0

∫
Ω
ρs(1− φ) vs(t) · wsψ̇(t) dx dt.

By similar arguments and thanks to the strong convergences, we get, in D′(0, T ),

∀(ds, ws, wf , p) ∈ Y,
d

dt

∫
Ω
σs(us(t)) : ε(ds) dx =

∫
Ω
σs(vs(t)) : ε(ds) dx, (1.40a)

d

dt

∫
Ω
ρs(1− φ) vs(t) · ws dx+

∫
Ω
σs(us(t)) : ε(ws) dx

+2η

∫
Ω
ε(vs(t)) : ε(ws) dx−

∫
Ω
φ2 k−1

f (vf (t)− vs(t)) · ws dx

−
∫

Ω
p(t) div

(
(α− φ)ws

)
dx =

∫
Ω
ρs(1− φ)f(t) · ws dx, (1.40b)

d

dt

∫
Ω
ρfφ vf (t) · wf dx+

∫
Ω
φσf (vf (t)) : ε(wf ) dx

+

∫
Ω
φ2 k−1

f (vf (t)− vs(t)) · wf dx−
∫

Ω
θ(t) vf (t) · wf dx

−
∫

Ω
p(t) div (φwf ) dx =

∫
Ω
ρfφf(t) · wf dx, (1.40c)

d

dt

∫
Ω

α− φ
κ

p(t) q dx+

∫
Ω

div
(
(α− φ) vs(t) + φ vf (t)

)
q dx

=

∫
Ω

θ(t)

ρf
q dx. (1.40d)

To obtain (1.37), it only remains to rewrite (1.40a) and (1.40b) as a second order equation in
time, which holds true since vs = ∂tus in C0([0, T ]; [L2(Ω)]d)∩L2(0, T ; [H1

0(Ω)]d). Lastly, we recover
the initial conditions (1.36) by simply passing to the limit in the second line of (1.38).

To ensure uniqueness, we observe that every variational solution satisfying the energy estimate
is unique. Indeed, for f = 0, θ = 0 and z0 = 0, we obtain z = 0 in virtue of (1.11). Therefore, it is
sufficient to prove that every variational solution satisfying (1.37) verifies the energy identity (1.10)
and thus the energy estimate. To do so, let us first derive a bound on (∂tus, ∂tvs, ∂tvf , ∂tp). From
(1.40), we deduce

∀y ∈ Y, −
∫ T

0

(
z(t), y

)
Z
ψ̇(t) dt+

∫ T

0
aκη
(
z(t), y

)
ψ(t) dt

+

∫ T

0

(
G(t)z(t), y

)
Z
ψ(t) dt =

∫ T

0

(
g(t), y

)
Z
ψ(t) dt. (1.41)

Since f ∈ L2(0, T ; [L2(Ω)]d), θ ∈ C0((0, T ) × Ω) and by continuity of the bilinear form aκη over
Y × Y , we have

∀y ∈ Y, −
∫ T

0

(
z(t), y

)
Z
ψ̇(t) dt =

∫ T

0

(
h(t), y

)
Z
ψ(t) dt with h ∈ L2(0, T ;Y ′).
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Thus ż ∈ L2(0, T ;Y ′), namely (∂tus, ∂tvs, ∂tvf , ∂tp) belongs to

L2(0, T ; [H−1(Ω)]d)× L2(0, T ; [H−1(Ω)]d)× L2(0, T ; [H−1(Ω)]d)× L2(0, T ; L2(Ω)).

Since ∂tus = vs, finally, it holds

∂tus ∈ L2(0, T ; [H1
0(Ω)]d) and ∂2

ttus ∈ L2(0, T ; [H−1(Ω)]d),

vf ∈ L2(0, T ; [H1
0(Ω)]d) and ∂tvf ∈ L2(0, T ; [H−1(Ω)]d),

p ∈ L2(0, T ; L2(Ω)) and ∂tp ∈ L2(0, T ; L2(Ω)).

(1.42)

Using a standard result of functional analysis (see for instance [Dautray and Lions, 1992, Chapter
XVIII, Proposition 7]), the previous regularities imply that the following relations hold in D′(0, T ):

∀ws ∈ [H1
0(Ω)]d,

d2

dt2

∫
Ω
ρs(1− φ)us(t) · ws dx

=
〈
ρs(1− φ) ∂2

ttus(t), ws

〉
[H−1(Ω)]d,[H1

0(Ω)]d
,

∀wf ∈ [H1
0(Ω)]d,

d

dt

∫
Ω
ρfφ vf (t) · wf dx =

〈
ρfφ∂tvf (t), wf

〉
[H−1(Ω)]d,[H1

0(Ω)]d
,

∀q ∈ L2(Ω),
d

dt

∫
Ω

α− φ
κ

p(t) q dx =

∫
Ω

α− φ
κ

∂tp(t) q dx.

Moreover, since functions in [H1
0(Ω)]d⊗D(0, T ) and L2(Ω)⊗D(0, T ) generate respectively the spaces

L2(0, T ; [H1
0(Ω)]d) and L2(0, T ; L2(Ω)), we obtain the space-time variational formulation

∀(ws, wf , q) ∈ L2(0, T ; [H1
0(Ω)]d)× L2(0, T ; [H1

0(Ω)]d)× L2(0, T ; L2(Ω)),∫ T

0

〈
ρs(1− φ) ∂2

ttus, ws

〉
[H−1(Ω)]d,[H1

0(Ω)]d
dt+

∫ T

0

∫
Ω
σs(us) : ε(ws) dx dt

+2η

∫ T

0

∫
Ω
ε(∂tus) : ε(ws) dx dt−

∫ T

0

∫
Ω
φ2 k−1

f (vf − ∂tus) · ws dx dt

−
∫ T

0

∫
Ω
p div

(
(α− φ)ws

)
dx dt =

∫ T

0

∫
Ω
ρs(1− φ)f · ws dx dt,∫ T

0

〈
ρfφ∂tvf , wf

〉
[H−1(Ω)]d,[H1

0(Ω)]d
dt+

∫ T

0

∫
Ω
φσf (vf ) : ε(wf ) dx dt

+

∫ T

0

∫
Ω
φ2 k−1

f (vf − ∂tus) · wf dx dtv −
∫ T

0

∫
Ω
θ vf · wf dx dt

−
∫ T

0

∫
Ω
p div (φwf ) dx dt =

∫ T

0

∫
Ω
ρfφf · wf dx dt,∫ T

0

∫
Ω

α− φ
κ

∂tp q dx dt

+

∫ T

0

∫
Ω

div
(
(α− φ) ∂tus + φ vf

)
q dx dt =

∫ T

0

∫
Ω

θ

ρf
q dx dt.

Now, since we know ∂tus ∈ L2(0, T ; [H1
0(Ω)]d), vf ∈ L2(0, T ; [H1

0(Ω)]d) and p ∈ L2(0, T ; L2(Ω)),
we can choose (ws, wf , q) = (∂tus, vf , p) as test functions in the above formulation, which provides
the energy identity (1.10) and thus the energy estimate (1.11).

Remark 1.11. The method used to prove Theorem 1.10 is standard and close to the Faedo-Galerkin
method. The difference with Faedo-Galerkin method is that the approximated sequence is directly

38



1.2. Existence of solutions for a compressible skeleton κ < +∞.

recovered from the existence of strong solutions instead of being constructed on a suitable finite
dimensional space. This allows us to obtain strong convergence for the whole sequence, whereas
Faedo-Galerkin method provides only weak convergence of subsequences. In addition, it directly
provides the continuity with respect to time of the solution and the strong convergence of the initial
condition z(0) = z0 in Z.

Remark 1.12. The variational solution could also be defined without assuming that it is continuous
with respect to time, but only assuming that the regularities (1.42) are satisfied. The time continuity
of the solution can then be recovered using the existence of a continuous and linear mapping of the
space

W (0, T ) =
{
u ∈ L2(0, T ; [H1

0(Ω)]d) such that ∂tu ∈ L2(0, T ; [H−1(Ω)]d)
}
,

into C0([0, T ]; [L2(Ω)]d), see [Lions and Magenes, 1972, Chapter 1, Theorem 3.1].

The mild solution and the variational solution are two notions of solution whose existence and
uniqueness here require the same hypotheses on the data. In fact, the following result states that
these two types of solution are the same whenever f ∈ L2((0, T )×Ω) and θ ∈ C0([0, T ]×Ω). Thus,
they can be used indifferently depending on the context. For instance, the mild solution is widely
used in control theory because of the practical aspects of Duhamel formula, whereas the variational
solution formulation is usually the one implemented at the discrete level when considering finite
element discretization.

Proposition 1.13. If f ∈ L2((0, T ) × Ω) and θ ∈ C0([0, T ] × Ω), then the mild solution given by
(1.30) and the variational solution satisfying (1.37) coincide.

Proof. The mild solution and the variational solution are both unique. Hence, it is sufficient to
show that the variational solution defined in Theorem 1.10 is also a mild solution, namely that it
satisfies (1.28) and (1.29).

Let ψ be given in D(0, T ). Since vs ∈ L2(0, T ; [H1
0(Ω)]d), vf ∈ L2(0, T ; [H1

0(Ω)]d), it holds that

aκη

(∫ T

0
z(t)ψ(t) dt, y

)
=

∫ T

0
aκη
(
z(t), y

)
ψ(t) dt,

for all y ∈ Y , so that we can rewrite (1.41) as

∀y ∈ Y, −
∫ T

0

(
z(t), y

)
Z
ψ̇(t) dt+ aκη

(∫ T

0
z(t)ψ(t) dt, y

)
+

∫ T

0

(
G(t)z(t), y

)
Z
ψ(t) dt =

∫ T

0

(
g(t), y

)
Z
ψ(t) dt.

From the definition of D(Aκη), it follows that∫ T

0
z(t)ψ(t) dt ∈ D(Aκη),

and thus

−
∫ T

0

(
z(t), y

)
Z
ψ̇(t) dt+

(
Aκη

(∫ T

0
z(t)ψ(t) dt

)
, y

)
Z

+

∫ T

0

(
G(t)z(t), y

)
Z
ψ(t) dt =

∫ T

0

(
g(t), y

)
Z
ψ(t) dt, (1.44)

for all y ∈ Y . As Y is dense in Z, (1.44) is also true for all y ∈ Z, which proves (1.29).

Remark 1.14. Note that the mild and variational solutions coincide only under the assumption
f ∈ L2((0, T ) × Ω) and θ ∈ C0([0, T ] × Ω). If f ∈ L2(0, T ; [H−1(Ω)]d), we can readily extend the
existence and uniqueness of variational solutions proved in Theorem 1.10, but the existence of a
mild solution is not guaranteed.
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1.2.3 The case η = 0

Without solid viscosity, the solid formulation becomes hyperbolic. This hyperbolic-parabolic cou-
pling was studied in [Barnafi et al., 2021], where existence of variational solutions is derived. In
[Barnafi et al., 2021], the fluid mass input θ is supposed to be small enough, namely there exists
Cf > 0 such that

∀vf ∈ [H1
0(Ω)]d,

∫
Ω
φσf (vf ) : ε(vf ) dx−

∫
Ω
θ |vf |2 dx ≥ Cf‖vf‖2[H1

0(Ω)]d .

Here, we are going to prove existence results of strong and mild solutions thanks to semigroup
theory and deduce existence of variational solutions directly, without any smallness assumption on
θ.

The main issue in this case is that the underlying bilinear form is not coercive. Indeed if
η = 0, then the bilinear form introduced in the proof of Theorem 1.7 is no more coercive on Y in
view of (1.33). Despite this lack of coercivity, we are going to show that Problem (1.32) is still
well-posed when η = 0. To do so, we use the T-coercivity approach [Ciarlet Jr, 2012; Chesnel
and Ciarlet, 2013], which is a reformulation of Banach-Nečas-Babuška theory [Ern and Guermond,
2021a, Theorem 25.9] and that has been designed especially for non-coercive problems. For the sake
of completeness, the definition and properties of T-coercivity are recalled below.

Definition 1.15. [Chesnel and Ciarlet, 2013, Definition 3] Let V be an Hilbert space and let a(·, ·)
be a continuous bilinear form over V × V . We say that a is T-coercive if there exists a bijective
application T ∈ L(V ) and α > 0 such that

|a(z, Tz)| ≥ α‖z‖2V , z ∈ V.

Proposition 1.16. [Chesnel and Ciarlet, 2013, Theorem 1] Let V be an Hilbert space. Let `(·) be
a continuous linear form over V and a(·, ·) be a continuous bilinear form over V × V . The problem{

Find z ∈ V such that
∀y ∈ V, a(z, y) = `(y),

is well-posed if and only if a is T-coercive.

The following theorem states existence and uniqueness of solutions to Problem (1.19) in the case
η = 0.

Theorem 1.17. If η = 0, then the conclusions of Theorem 1.7 remain true.

Proof. Let us show that Aκ0 is maximal by proving that the variational problem{
Find z ∈ Y such that
∀y ∈ Y, aκ0(z, y) + λ0(z, y)Z = (g, y)Z ,

is well-posed, where

aκ0(z, y) + λ0(z, y)Z =

∫
Ω
λ0 σs(us) : ε(ds) dx−

∫
Ω
σs(vs) : ε(ds) dx+

∫
Ω
λ0ρs(1− φ) vs · ws dx

+

∫
Ω
σs(us) : ε(ws) dx+

∫
Ω
φ2 k−1

f (vf − vs) · (wf − ws) dx

+

∫
Ω
λ0ρfφ vf · wf dx+

∫
Ω
φσf (vf ) : ε(wf ) dx+

∫
Ω
λ0
α− φ
κ

p q dx

−
∫

Ω
p div

(
(α− φ)ws + φwf

)
dx+

∫
Ω

div
(
(α− φ) vs + φ vf

)
q dx,

40



1.2. Existence of solutions for a compressible skeleton κ < +∞.

for any z = (us, vs, vf , p) and y = (ds, ws, wf , q) in Y . From Proposition 1.16, it is sufficient to show
that aκ0(·, ·) + λ0(·, ·)Z is T-coercive.

For a given z, we look for a y∗ depending continuously on z such that aκ0(z, y∗) + λ0(z, y∗)Z ≥
α‖z‖2Y for some constant α > 0. Choosing w∗s = vs, w∗f = vf , q∗ = p and d∗s in the form β us + γ vs
yields

aκ0(z, y∗) + λ0(z, y∗)Z =

∫
Ω
λ0β σs(us) : ε(us) dx+

∫
Ω
λ0γ σs(us) : ε(vs) dx

−
∫

Ω
β σs(vs) : ε(us) dx−

∫
Ω
γ σs(vs) : ε(vs) dx+

∫
Ω
λ0ρs(1− φ) |vs|2 dx

+

∫
Ω
σs(us) : ε(vs) dx+

∫
Ω
φ2 k−1

f (vf − vs) · (vf − vs) dx

+

∫
Ω
λ0ρfφ |vf |2 dx+

∫
Ω
φσf (vf ) : ε(vf ) dx+

∫
Ω
λ0
α− φ
κ

p2 dx.

By setting β = 1
2 and γ = − 1

2λ0
, the terms of the form

∫
Ω σs(us) : ε(vs) dx vanish so that

aκ0(z, y∗) + λ0(z, y∗)Z ≥
λ0

2
‖us‖2s +

1

2λ0
‖vs‖2s + 2µfφmin‖ε(vf )‖2 + λ0

(α− φ)min

κ
‖p‖2.

Therefore, aκ0(·, ·) + λ0(·, ·)Z is T-coercive for the mapping T defined by

T : (us, vs, vf , p) 7−→
(

1

2
us −

1

2λ0
vs, vs, vf , p

)
, (1.45)

which is continuous and bijective on Y .

The remainder of the proof follows the very same lines as for the viscous case.

Next we recover the existence of variational solutions from the existence of strong solutions. How-
ever, we obtain a variational formulation that slightly differs from (1.37) because of the hyperbolic-
parabolic coupling between the solid and fluid equations.

Theorem 1.18. Assume that (h1) − (h6) hold true, that ∂tθ ∈ L∞((0, T ) × Ω), and that η = 0.
If z0 = (us0, vs0, vf 0, p0) ∈ Z, there exists a variational solution us ∈ C0([0, T ]; [H1

0(Ω)]d), ∂tus ∈
C0([0, T ]; [L2(Ω)]d), vf ∈ C0([0, T ]; [L2(Ω)]d)∩L2(0, T ; [H1

0(Ω)]d) and p ∈ C0([0, T ]; L2(Ω)) such that

(
us(0), ∂tus(0), vf (0), p(0)

)
= (us0, vs0, vf 0, p0), (1.46)
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and the following equations hold true, in D′(0, T ),

∀(ws, wf , q) ∈ [H1
0(Ω)]d × [H1

0(Ω)]d × L2(Ω),

d2

dt2

∫
Ω
ρs(1− φ)us(t) · ws dx+

∫
Ω
σs(us(t)) : ε(ws) dx

−
∫

Ω
φ2 k−1

f (vf (t)− ∂tus(t)) · ws dx−
∫

Ω
p(t) div

(
(α− φ)ws

)
dx

=

∫
Ω
ρs(1− φ)f(t) · ws dx, (1.47a)

d

dt

∫
Ω
ρfφ vf (t) · wf dx+

∫
Ω
φσf (vf (t)) : ε(wf ) dx

+

∫
Ω
φ2 k−1

f (vf (t)− ∂tus(t)) · wf dx−
∫

Ω
θ(t) vf (t) · wf dx

−
∫

Ω
p(t) div (φwf ) dx =

∫
Ω
ρfφf(t) · wf dx, (1.47b)

d

dt

∫
Ω

α− φ
κ

p(t)q dx+
d

dt

∫
Ω

div
(
(α− φ)us(t)

)
q dx

+

∫
Ω

div (φ vf (t))q dx =

∫
Ω

θ(t)

ρf
q dx. (1.47c)

This variational solution is unique, and coincides with the mild solution. Furthermore, the energy
estimate (1.11) with η = 0 holds true.

Remark 1.19. Theorem 1.18 sheds light on the influence of solid viscosity on the model. Since
η = 0, ∂tus does not belong to L2(0, T ; [H1

0(Ω)]d) but only to C0([0, T ]; [L2(Ω)]d). For this reason,
equations (1.37c) and (1.47c) are not similar because, when η = 0, the term div

(
(1− φ) ∂tus(t)

)
is

not in L2(Ω) in the space variable. One has only div
(
(1 − φ) ∂tus(t)

)
∈ C0([0, T ]; H−1(Ω)). This

confirms that viscoelastic effects have an impact on the regularity of the solution, as it was already
observed for other linear or non-linear poroelastic models [Showalter, 2000; Bociu et al., 2016; Verri
et al., 2018].

Proof. We follow the same steps as for the proof of Theorem 1.10. The input data are approximated
by regular functions, a priori estimates are established for the approximated solutions and we pass
to the limit on the variational formulation (V F )n with η = 0.

The estimate (1.39) still holds true even if η = 0 because zn ∈ C0([0, T ];D(Aκ0)) ⊂ C0([0, T ];Y ),
in particular vns ∈ C0([0, T ]; [H1

0(Ω)]d), which justifies that zn is regular enough to reproduce the
formal calculations made in Section 1.1. As previously, this estimate implies that zn is a Cauchy
sequence in C0([0, T ];Z). However, since η = 0, estimate (1.39) only implies that vnf is a Cauchy
sequence in L2(0, T ; [H1

0(Ω)]d). Hence, the convergence

vnf −→ vf in L2(0, T ; [H1
0(Ω)]d),

is still valid but now vns = ∂tu
n
s does not converge in L2(0, T ; [H1

0(Ω)]d) but only in C0([0, T ]; [L2(Ω)]d).
This changes the way to pass to the limit on (V F )n and in particular in the first equation. Let ψ
be an element of D(0, T ). For any ds ∈ [L2(Ω)]d, we consider the unique solution ηs ∈ [H1

0(Ω)]d of
−div

(
σs(ηs)

)
= ds as a test function, so that∫ T

0

∫
Ω
σs(v

n
s (t)) : ε(ηs)ψ(t) dx dt =

∫ T

0

∫
Ω
ε(vns (t)) : σs(ηs)ψ(t) dx dt

=

∫ T

0

∫
Ω
vns (t) · ds ψ(t) dx dt −→

n→∞

∫ T

0

∫
Ω
vs(t) · ds ψ(t) dx dt.
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This proves that for all ds ∈ [L2(Ω)]d, we have

d

dt

∫
Ω
us(t) · ds dx−

∫
Ω
vs(t) · ds dx = 0, (1.48)

and we recover that vs = ∂tus inD′((0, T )×Ω). In particular, it holds that ∂tus ∈ C0([0, T ]; [L2(Ω)]d).
We can obtain (1.47a) and (1.47b) in a similar way as for the viscous case. Finally, to get

(1.47c), we observe that∫ T

0

∫
Ω

div
(
(α− φ) vns (t)

)
q ψ(t) dx dt =−

∫ T

0

∫
Ω

div
(
(α− φ)uns (t)

)
q ψ̇(t) dx dt

−→
n→∞

−
∫ T

0

∫
Ω

div
(
(α− φ)us(t)

)
q ψ̇(t) dx dt,

where we have integrated by parts in time and then used that uns converges in
C0([0, T ]; [H1

0(Ω)]d).
In the same way as for the viscous case, we notice that the weak formulation (1.47) provides

some regularity on the time derivative of the solution. For instance, the fluid equation (1.47b)
implies that for any ψ ∈ D(0, T ) and wf ∈ [H1

0(Ω)]d, we have

−
∫ T

0

∫
Ω
ρfφ vf (t) · wf ψ̇(t) dx dt =

∫ T

0

∫
Ω
F (t) · wf ψ(t) dx dt,

with F = ρfφ f+div
(
φσf (vf )

)
−φ2 k−1

f (vf−vs)+θ vf−φ∇p ∈ L2(0, T ; [H−1(Ω)]d). Since functions
in [H1

0(Ω)]d⊗D(0, T ) generate L2(0, T ; [H1
0(Ω)]d), it follows that ∂tvf ∈ L2(0, T ; [H−1(Ω)]d) and that,

for any test function wf ∈ L2(0, T ; [H1
0(Ω)]d),∫ T

0

〈
ρfφ∂tvf , wf

〉
[H−1(Ω)]d,[H1

0(Ω)]d
dt+

∫ T

0

∫
Ω
φσf (vf ) : ε(wf ) dx dt

+

∫ T

0

∫
Ω
φ2 k−1

f (vf − ∂tus) · wf dx dt−
∫ T

0

∫
Ω
θ vf · wf dx dt

−
∫ T

0

∫
Ω
p div (φwf ) dx dt =

∫ T

0

∫
Ω
ρfφf · wf dx dt. (1.49)

Similarly, we infer from (1.47a) and (1.47c) that ∂2
ttus ∈ L2(0, T ; [H−1(Ω)]d) and α−φ

κ ∂tp+div
(
(α−

φ)∂tus
)
∈ L2(0, T ; L2(Ω)), and that for any ws ∈ L2(0, T ; [H1

0(Ω)]d)∫ T

0

〈
ρs(1− φ) ∂2

ttus, ws

〉
[H−1(Ω)]d,[H1

0(Ω)]d
dt+

∫ T

0

∫
Ω
σs(us) : ε(ws) dx dt

−
∫ T

0

∫
Ω
φ2 k−1

f (vf − ∂tus) · ws dx dt−
∫ T

0

∫
Ω
pdiv

(
(α− φ)ws

)
dx dt

=

∫ T

0

∫
Ω
ρs(1− φ)f · ws dx dt, (1.50)

and for any q ∈ L2(0, T ; L2(Ω))∫ T

0

∫
Ω

(α− φ
κ

∂tp+ div
(
(α− φ)∂tus

))
q dx dt+

∫ T

0

∫
Ω

div (φ vf ) q dx dt = 0. (1.51)

Note that the main difference compared to the viscous case is that ∂tp is not in L2(0, T ; L2(Ω))

any more since the structure velocity ∂tus does not belong to L2(0, T ; [H1
0(Ω)]d). Yet ∂t

(
α−φ
κ p +

div
(
(α− φ)us

))
∈ L2(0, T ; L2(Ω)) and ∂tp ∈ L2(0, T ; H−1(Ω)).
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Let us now prove that the weak solution is unique. Let (us, vf , p) be a solution to (1.47) with
zero initial conditions and source terms, and let τ be given in (0, T ). Contrary to the viscous case,
we cannot take ws = ∂tus as test function in (1.50) because ∂tus /∈ L2(0, T ; [H1

0(Ω)]d). To overcome
this lack of regularity, we consider the so-called Ladyzhenskaya test functions [Ladyženskaja et al.,
1968]. For the solid and pressure equations, we use the same test functions that were considered in
[Barucq et al., 2004, Theorem 3] and [Saint-Macary, 2004, Section 4.2.2.] for Biot’s consolidation
model, namely

ψs(t) =

−
∫ τ

t
us(σ) dσ if τ ≥ t

0 if τ ≤ t
and ψp(t) =

−
∫ τ

t

∫ v

0
p(σ) dσ dv if τ ≥ t

0 if τ ≤ t.

To these test functions, we have to add a fluid test function which is built in the very same manner
and corresponds to the fluid counterpart of the previous structure and pressure test functions.
Therefore we consider

ψf (t) =

−
∫ τ

t

∫ v

0
vf (σ) dσ dv if τ ≥ t

0 if τ ≤ t.

The functions ψs belongs to C0([0, T ]; [H1
0(Ω)]d), ψf belongs to C1([0, T ]; [H1

0(Ω)]d) and ψp belongs to
C1([0, T ]; L2(Ω)) and they are admissible test functions. For t ≤ τ , remembering that the considered
solution is associated with zero initial conditions, they satisfy

ψs(τ) = 0, ∂tψs(t) = us(t), ∂tψs(0) = 0. (1.52)

ψp(τ) = 0, ∂tψp(t) =

∫ t

0
p(σ) dσ, ∂2

ttψp(t) = p(t), ∂2
ttψp(0) = 0, (1.53)

and

ψf (τ) = 0, ∂tψf (t) =

∫ t

0
vf (σ) dσ, ∂2

ttψf (t) = vf (t), ∂2
ttψf (0) = 0. (1.54)

Taking ψs as a test function in (1.50) we compute the different terms. Due to (1.52), we have in
a standard way (see [Lions and Magenes, 1972] in the case of an abstract second order equation or
[Saint-Macary, 2004] for the Biot’s consolidation model)∫ τ

0

〈
ρs(1− φ) ∂2

ttus, ψs

〉
[H−1(Ω)]d,[H1

0(Ω)]d
dt = −1

2

∫
Ω
ρs(1− φ) |us(τ)|2 dx,

∫ τ

0

∫
Ω
σs(us) : ε(ψs) dx dt = −1

2

∫
Ω
σs(ψs(0)) : ε(ψs(0)) dx,

Moreover, since vf (t) = ∂2
ttψf (t), ∂tus(t) = ∂2

ttψs(t), ∂tψf (0) = ∂tψs(0) = 0 and ψs(τ) = 0, the
friction term writes, after integration by parts in time,

−
∫ τ

0

∫
Ω
φ2k−1

f (vf − ∂tus) · ψs dx dt =

∫ τ

0

∫
Ω
φ2k−1

f (∂tψf − ∂tψs) · ∂tψs dx dt.

Finally we obtain the following identity

− 1

2

∫
Ω
ρs(1− φ) |us(τ)|2 dx− 1

2

∫
Ω
σs(ψs(0)) : ε(ψs(0)) dx

+

∫ τ

0

∫
Ω
φ2k−1

f (∂tψf − ∂tψs) · ∂tψs dx dt

−
∫ τ

0

∫
Ω
p div

(
(α− φ)ψs

)
dx dt = 0. (1.55)
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Let us now focus on the fluid equation. We take ψf as a test fonction in (1.49). Due to the
properties (1.54), the fluid inertial and viscous terms become respectively∫ τ

0

〈
ρfφ∂tvf , ψf

〉
[H−1(Ω)]d,[H1

0(Ω)]d
dt = −

∫ τ

0

∫
Ω
ρfφ vf · ∂tψf dx dt

= −1

2

∫
Ω
ρfφ |∂tψf (τ)|2 dx,

and ∫ τ

0

∫
Ω
φσf (vf ) : ε(ψf ) dx dt = −

∫ τ

0

∫
Ω
φσf (∂tψf ) : ε(∂tψf ) dx dt.

Once again the friction term can be transformed as follows∫ τ

0

∫
Ω
φ2k−1

f (vf − ∂tus) · ψf dx dt = −
∫ τ

0

∫
Ω
φ2k−1

f (∂tψf − ∂tψs) · ∂tψf dx dt,

and, thanks to (1.54), (1.53), an integration by parts in time in the pressure term yields

−
∫ τ

0

∫
Ω
p div

(
φψf

)
dx dt =

∫ τ

0

∫
Ω
∂tψp div

(
φ∂tψf

)
dx dt.

The last term, involving θ, writes

−
∫ τ

0

∫
Ω
θ vf · ψf dx dt =

∫ τ

0

∫
Ω
θ |∂tψf |2 dx dt+

∫ τ

0

∫
Ω
∂tθ ψf · ∂tψf dx dt.

Summing up all these contributions implies

− 1

2

∫
Ω
ρfφ |∂tψf (τ)|2 dx−

∫ τ

0

∫
Ω
φσf (∂tψf ) : ε(∂tψf ) dx dt

−
∫ τ

0

∫
Ω
φ2k−1

f (∂tψf − ∂tψs) · ∂tψf dx dt+

∫ τ

0

∫
Ω
∂tψp div

(
φ∂tψf

)
dx dt

= −
∫ τ

0

∫
Ω
θ |∂tψf |2 dx dt−

∫ τ

0

∫
Ω
∂tθ ψf · ∂tψf dx dt. (1.56)

Next we take ψp as a test function in (1.51). As in [Saint-Macary, 2004] we have∫ τ

0

∫
Ω

(α− φ
κ

∂tp+ div
(
(α− φ)∂tus

))
ψp dx dt

= −1

2

∫
Ω

α− φ
κ
|∂tψp(τ)|2 dx+

∫ τ

0

∫
Ω
p div

(
(α− φ)ψs

)
dx dt.

Moreover ∫ τ

0

∫
Ω

div
(
φ vf

)
ψp dx dt = −

∫ τ

0

∫
Ω

div
(
φ∂tψf

)
∂tψp dx dt,

and thus we obtain the following identity

− 1

2

∫
Ω

α− φ
κ
|∂tψp(τ)|2 dx+

∫ τ

0

∫
Ω
p div

(
(α− φ)ψs

)
dx dt

−
∫ τ

0

∫
Ω

div
(
φ∂tψf

)
∂tψp dx dt = 0. (1.57)
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Summing up (1.55), (1.56) and (1.57), we obtain

1

2

∫
Ω
ρs(1− φ) |us(τ)|2 dx+

1

2

∫
Ω
ρfφ |∂tψf (τ)|2 dx+

1

2

∫
Ω

α− φ
κ
|∂tψp(τ)|2 dx

+
1

2

∫
Ω
σs(ψs(0)) : ε(ψs(0)) dx+

∫ τ

0

∫
Ω
φσf (∂tψf ) : ε(∂tψf ) dx dt

+

∫ τ

0

∫
Ω
φ2k−1

f (∂tψf − ∂tψs)2 dx dt =

∫ τ

0

∫
Ω
θ |∂tψf |2 dx dt

+

∫ τ

0

∫
Ω
∂tθ ψf · ∂tψf dx dt. (1.58)

To conclude, we observe that∫ τ

0

∫
Ω
θ |∂tψf |2 dx dt ≤ (ρfφmin)−1‖θ‖L∞((0,T )×Ω)

∫ τ

0

∫
Ω
ρfφ |∂tψf |2 dx dt

and that, since ψf (t) = −
∫ τ
t ∂tψf (σ)dσ, we can estimate the last term of (1.58) as follows∫ τ

0

∫
Ω
∂tθ ψf · ∂tψf dx dt

≤ ‖∂tθ‖L∞((0,T )×Ω)

∫ τ

0

∫
Ω

∣∣∣∣∫ τ

t
∂tψf (σ) dσ

∣∣∣∣ |∂tψf (t)| dx dt

≤ ‖∂tθ‖L∞((0,T )×Ω)

∫
Ω

∫ τ

0

∫ τ

0
|∂tψf (σ)| |∂tψf (t)| dσ dt dx

≤ T (ρfφmin)−1‖∂tθ‖L∞((0,T )×Ω)

∫ τ

0

∫
Ω
ρfφ |∂tψf |2 dx dt.

Consequently, using Grönwall Lemma, we deduce that us = ∂tψf = ∂tψp = 0. Hence us = vf =
p = 0, which proves the uniqueness of the variational solution.

Now that we know that the variational solution is unique, it follows that it is necessarily the
one obtained by the approximation process built from (V F )n. Since this approximation process is
based on the energy estimate (1.39) with η = 0, we can pass to the limit in this estimation to get
(1.11).

In particular, to show that the mild solution is equal to the variational solution, it is sufficient
to prove that it also derives from this approximation process. Let us denote by z the mild solution
given by Theorem 1.17, and remind the notation Gn(t)(us, vs, vf , p) =

(
0, 0,−(ρfφ)−1θn(t)vf

)
,

with θn ∈ C1([0, T ]; L∞(Ω)) converging towards θ in C0([0, T ] × Ω). From Duhamel formula, it
holds that

z(t)− zn(t) = Φκ
0(t)(z0 − zn0 )

+

∫ t

0
Φκ

0(t− s)
(
g(s)− gn(s)

)
ds−

∫ t

0
Φκ

0(t− s)
(
G(s)z(s)−Gn(s)z(s)

)
ds.

Writing G(s)z(s)−Gn(s)zn(s) = (G(s)−Gn(s)) zn(s) +G(s) (z(s)− zn(s)) and recalling that Φκ
0

is a C0-semigroup of contraction, we infer

‖z(t)− zn(t)‖Z ≤ ‖z0 − zn0 ‖Z +

∫ t

0
‖g(s)− gn(s)‖Z ds

+ (ρfφmin)−1‖θ − θn‖C0([0,T ]×Ω)

∫ t

0
‖zn(s)‖Z ds+ ω

∫ t

0
‖z(s)− zn(s)‖Z ds,
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where ω is defined in (1.35). Thus, for any δ > 0, we can find n large enough such that

‖z(t)− zn(t)‖Z ≤ δ + ω

∫ t

0
‖z(s)− zn(s)‖Z ds.

Using Grönwall Lemma, we conclude that ‖z(t)− zn(t)‖Z ≤ δeωT , and hence zn −→ z in C0([0, T ];Z).

Remark 1.20. In the previous proof, we took advantage of the semigroup framework to show the
existence of the variational solution. Note that it could also be shown by regularization of the
viscous case, see [Barucq et al., 2004, Theorem 2] where such a regularization is performed on Biot’s
consolidation model.

Remark 1.21. As in the viscous case, we could also define the variational solution without assuming
that it is continuous with respect to time, but rather by seeking for

us ∈ L∞(0, T ; [H1
0(Ω)]d), ∂tus ∈ L∞(0, T ; [L2(Ω)]d) and ∂2

ttus ∈ L2(0, T ; [H−1(Ω)]d),

vf ∈ L2(0, T ; [H1
0(Ω)]d) ∩ L∞(0, T ; [L2(Ω)]d) and ∂tvf ∈ L2(0, T ; [H−1(Ω)]d),

p ∈ L∞(0, T ; L2(Ω)) and ∂t
(α− φ

κ
p+ div

(
(α− φ)us

))
∈ L2(0, T ; L2(Ω)),

such that (1.46) and (1.47) are verified. With this definition, the continuity in time of the solution
can then be recovered using, for instance, a parabolic regularization, while it is obtained directly in
the above proof.

In the next section, we analyze the poromechanics problem for an incompressible elastic skele-
ton, modeled by the assumption κ = +∞. This assumption is crucial for targeting biomedical
applications since the tissues in our body are mostly composed of water, and thus are close to being
incompressible.

1.3 Existence of solutions for an incompressible skeleton κ = +∞

When κ = +∞ – and thus α = 1, see the thesis introduction – the system of equations (1.18) reads

∂tus − vs = 0, (1.59a)
ρs(1− φ) ∂tvs − div

(
σviss (vs)

)
− div

(
σs(us)

)
−φ2 k−1

f (vf − vs) + (1− φ)∇p = ρs(1− φ) f, (1.59b)

ρfφ∂tvf − div
(
φσf (vf )

)
+ φ2 k−1

f (vf − vs)− θ vf + φ∇p = ρfφ f, (1.59c)

div
(
(1− φ) vs + φ vf

)
=

θ

ρf
. (1.59d)

It has to be completed with boundary conditions (1.3) and initial conditions (1.4). Note that,
in the present case, there is no initial condition for the pressure anymore.

Equation (1.59d) traduces the mixture’s incompressibility, which comes from the assumption
that the solid and the fluid phases are both incompressible. It takes the form of a constraint on the
divergence of the mixture’s velocity.

But, as already noticed in Section 1.1, it is sufficient to consider the case

div
(
(1− φ) vs + φ vf

)
= 0, in Ω× (0, T ). (1.60)
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Indeed, assuming for instance that θ ∈ H1(0, T ; L2(Ω))∩L2(0, T ; H1(Ω)) and that the compatibility
condition

∫
Ω θ(t) dx = 0 is satisfied for all t ∈ [0, T ], we consider the Bogovskii’s operator [Bogovskii,

1979] and we build vθ ∈H1(0, T ; [H1
0(Ω)]d) ∩ L2(0, T ; [H2(Ω)]d) such that

div vθ =
θ

ρf
. (1.61)

The change of variables v̂s = vs−vθ and v̂f = vf−vθ gives div
(
(1−φ) v̂s+φ v̂f

)
= 0 by construction.

Furthermore,
(
us −

∫ t
0 vθ(s) ds, v̂s, v̂f , p

)
verifies (1.59a), (1.59b) and (1.59c) with right-hand sides

that are different but still regular since vθ ∈ H1(0, T ; [H1
0(Ω)]d) ∩ L2(0, T ; [H2(Ω)]d).

The first part of this section is devoted to the functional analysis of the coupling constraint
(1.60).

1.3.1 Functional framework

We consider the space

Vφ =
{

(vs, vf ) ∈ [H1
0(Ω)]d × [H1

0(Ω)]d : div
(
(1− φ) vs + φ vf

)
= 0 in Ω

}
of functions in [H1

0(Ω)]d× [H1
0(Ω)]d satisfying the constraint (1.60). Let us also define the space Hφ

as the closure of Vφ in [L2(Ω)]d × [L2(Ω)]d.
Then, we introduce the mixture’s divergence operator defined by

B : [H1
0(Ω)]d × [H1

0(Ω)]d −→ L2
0(Ω)

(vs, vf ) 7−→ div
(
(1− φ) vs + φ vf

)
.

The bounded operator B satisfies the following inf-sup condition.

Proposition 1.22. Assume that φ ∈ Hd/2+r(Ω) with r > 0. There exists β > 0 such that, for all
p ∈ L2

0(Ω),

sup
(vs,vf )∈[H1

0(Ω)]d×[H1
0(Ω)]d

∫
Ω

div
(
(1− φ) vs + φ vf

)
p dx

‖(vs, vf )‖[H1
0(Ω)]d×[H1

0(Ω)]d
≥ β‖p‖. (1.62)

Proof. There exists Cdiv > 0 such that for any p ∈ L2
0(Ω), there exists vp ∈ [H1

0(Ω)]d satisfying

div vp = p and ‖∇vp‖ ≤ Cdiv‖p‖. (1.63)

Setting v = (vp, vp), we have Bv = p by construction and ‖v‖[H1
0(Ω)]d×[H1

0(Ω)]d ≤ C‖p‖ from the
above inequality.

Remark 1.23. Note that the constant β of the above inf-sup condition does not depend on the
porosity φ and is also valid for φ = 0 (resp. φ = 1) which are the limit cases for which there is no
fluid (resp. no structure).

This inf-sup condition allows us to state the following result, which is a generalization of De
Rham Theorem [Temam, 2001; Girault and Raviart, 1986; Boyer and Fabrie, 2012]. It is a key
ingredient to show the existence of pressure in the incompressible case.

Theorem 1.24. Assume that φ ∈ Hd/2+r(Ω) with r > 0. If f = (fs, ff ) ∈ [H−1(Ω)]d × [H−1(Ω)]d

satisfies

〈f, w〉 = 〈fs, ws〉[H−1(Ω)]d,[H1
0(Ω)]d + 〈ff , wf 〉[H−1(Ω)]d,[H1

0(Ω)]d = 0, ∀w = (ws, wf ) ∈ Vφ,

then there exists a unique p ∈ L2
0(Ω) such that fs = −(1− φ)∇p and ff = −φ∇p.
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Proof. The proof follows standard arguments and is based on the Closed Range Theorem. Note
that Vφ = KerB. Let us characterize the adjoint of B. Since φ ∈ Hd/2+r(Ω) with r > 0, φ is a
multiplier of [H1

0(Ω)]d, namely

∀v ∈ [H1
0(Ω)]d, φ v ∈ [H1

0(Ω)]d and ‖∇(φ v)‖ ≤ Cφ‖∇v‖

for some positive constant Cφ. Therefore, for all p ∈ L2
0(Ω), (1−φ)∇p and φ∇p belong to [H−1(Ω)]d

so that we can define the adjoint operator as

B∗ : L2
0(Ω) −→ [H−1(Ω)]d × [H−1(Ω)]d

p 7−→
(
−(1− φ)∇p,−φ∇p

)
.

Thanks to Proposition 1.22, the Closed Range Theorem implies that (KerB)◦ = RgB∗. Con-
sequently, for any f ∈ (KerB)◦ = (Vφ)◦, namely for any f = (fs, ff ) ∈ [H−1(Ω)]d × [H−1(Ω)]d

satisfying
〈f, w〉 = 0, ∀w ∈ Vφ,

there exists a unique p ∈ L2
0(Ω) such that fs = −(1− φ)∇p and ff = −φ∇p.

Theorem 1.24 allows us to characterize the space Hφ in the following way.

Proposition 1.25. The space Hφ can be expressed as

Hφ =
{

(vs, vf ) ∈ [L2(Ω)]d × [L2(Ω)]d : div
(
(1− φ) vs + φ vf

)
= 0 inD′(Ω)

and
(
(1− φ) vs + φ vf

)
· n = 0 on ∂Ω

}
.

Proof. We denote by H the space{
(vs, vf ) ∈ [L2(Ω)]d × [L2(Ω)]d : div

(
(1− φ) vs + φ vf

)
= 0 inD′(Ω)

and
(
(1− φ) vs + φ vf

)
· n = 0 on ∂Ω

}
.

Let v = (vs, vf ) be an element ofHφ. By definition, Hφ is the closure of Vφ in [L2(Ω)]d×[L2(Ω)]d,
so there exists a sequence (vns , v

n
f ) belonging to Vφ that converges towards v in [L2(Ω)]d × [L2(Ω)]d.

Since div
(
(1 − φ) vns + φ vnf

)
= 0, the equality div

(
(1 − φ) vs + φ vf

)
= 0 holds true in the limit.

Further, (1− φ) vs + φ vf ∈ Hdiv(Ω). The continuity of the normal trace operator then implies that∥∥((1− φ) vs + φ vf
)
· n−

(
(1− φ) vns + φ vnf

)
· n
∥∥
H−1/2(∂Ω)

−→
n→∞

0,

which implies that ((1− φ) vs + φ vf ) · n = 0, since (1− φ) vns + φ vnf
)
· n = 0. Hence, Hφ ⊂ H.

Now, let us prove the other inclusion. Let denote by H∗ the orthogonal complement of Hφ into
H and let f = (fs, ff ) be an element of H∗. Noting that H∗ ⊂ H⊥φ and Vφ ⊂ Hφ, it follows from
Theorem 1.24 that there exists a pressure p ∈ L2

0(Ω) such that fs = −(1− φ)∇p and ff = −φ∇p.
Moreover since ∇p = −(fs + ff ) and (fs, ff ) ∈ [L2(Ω)]d × [L2(Ω)]d, we get p ∈ H1(Ω). Since f
belongs to H, we have div

(
((1 − φ)2 + φ2)∇p

)
= div

(
(1 − φ)2∇p + φ2∇p

)
= 0 in D′(Ω) and(

(1 − φ)2∇p + φ2∇p
)
· n = 0. Thus p is equal to zero (up to a constant) as the unique solution

of an elliptic Neumann problem, so ∇p = 0 and f = 0. To conclude, H∗ = {0}, which proves that
Hφ = H.

Remark 1.26. If φ ∈ C∞(Ω), one can show that Vφ and Hφ correspond to the closures of the space
Vφ in [H1

0(Ω)]d × [H1
0(Ω)]d and [L2(Ω)]d × [L2(Ω)]d, where

Vφ =
{

(vs, vf ) ∈ [D(Ω)]d × [D(Ω)]d : div
(
(1− φ) vs + φ vf

)
= 0
}
.

We are now going to combine this functional framework adapted to the constraint (1.60) with
the semigroup approach in order to study Problem (1.59). Here again, we investigate the cases
η > 0 and η = 0 separately. To simplify the proof we consider that θ, which appears now only in
the term −θ vf in the fluid equation, does not depend on time: θ ∈ L∞(Ω). It simplifies the proof,
but it could be easily modified to include the time-dependent case as in the proofs of Section 1.2.
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1.3.2 The case η > 0

We formulate the problem in the functional framework established previously. We seek for a solution
z = (us, vs, vf ) in the energy space H = [H1

0(Ω)]d ×Hφ endowed with the scalar product

(z, y)H =

∫
Ω
σs(us) : ε(ds) +

∫
Ω
ρs(1− φ) vs · ws dx+

∫
Ω
ρfφ vf · wf dx,

for any z = (us, vs, vf ), y = (ds, ws, wf ) belonging to H, and with the corresponding norm

‖z‖2H = ‖us‖2s +

∫
Ω
ρs(1− φ) |vs|2 dx+

∫
Ω
ρfφ |vf |2 dx.

Setting V = [H1
0(Ω)]d × Vφ, we consider the bilinear form

a∞η (z, y) = −
∫

Ω
σs(vs) : ε(ds) dx+

∫
Ω
σs(us) : ε(ws) dx

+ 2η

∫
Ω
ε(vs) : ε(ws) dx+

∫
Ω
φ2 k−1

f (vf − vs) · (wf − ws) dx

+

∫
Ω
φσf (vf ) : ε(wf ) dx−

∫
Ω
θvf · wf dx, (1.64)

defined for all z = (us, vs, vf ) and y = (ds, ws, wf ) in V . This bilinear form is the same as (1.22)
but without the terms involving the pressure because of the test functions in V . Note that here,
since we have assumed that θ does not depend on time, we can include the term

∫
Ω θvf · wf in the

definition of the bilinear form associated with our coupled problem. When θ depends on time, one
cannot and we have to introduce the operator G(t) which is a bounded perturbation, see (1.25). As
in (1.23) and (1.24), we define the unbounded operator

(
A∞η , D(A∞η )

)
associated with the bilinear

form (1.64) by
(A∞η z, y)H = a∞η (z, y), ∀z ∈ D(A∞η ), ∀y ∈ V,

in the domain
D(A∞η ) = {z ∈ V : ∃g ∈ H, a∞η (z, y) = (g, y)H , y ∈ V }.

The above definitions are quite abstract, in particular because they rely on test functions in the
constrained space Vφ. In the next proposition, we recover a more explicit expression of A∞η and
D(A∞η ) thanks to the generalization of De Rham’s Theorem established previously.

Proposition 1.27. The operator’s domain can be characterized as

D(A∞η ) =


us,vs, vf ∈ [H1

0(Ω)]d such that ∃! p ∈ L2
0(Ω) such that

− div (σs(us))− div (σvis
s (vs)) + (1− φ)∇p ∈ [L2(Ω)]d,

− div (φσf (vf )) + φ∇p ∈ [L2(Ω)]d,

div
(
(1− φ)vs + φ vf

)
= 0

 . (1.65)

In addition, for all z = (us, vs, vf ) ∈ D(A∞η ) and g = (gu, gs, gf ) ∈ H, we have

A∞η z = g ⇔ ∃! p ∈ L2
0(Ω) such that,

gu = −vs,
ρs(1− φ) gs = −div

(
σs(us)

)
− div

(
σvis
s (vs)

)
−φ2 k−1

f (vf − vs) + (1− φ)∇p,

ρfφ gf = −div
(
φσf (vf )

)
+ φ2 k−1

f (vf − vs)− θ vf + φ∇p.

(1.66)
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Proof. Let z = (us, vs, vf ) be an element of D(A∞η ). By definition, there exists g = (gu, gs, gf ) ∈ H
such that a∞η (z, y) = (g, y)H for all y = (ds, ws, wf ) ∈ V , namely∫

Ω
σs(gu) : ε(ds) dx = −

∫
Ω
σs(vs) : ε(ds) dx, ∀ds ∈ [H1

0(Ω)]d, (1.67)

and∫
Ω
ρs(1− φ) gs · ws dx+

∫
Ω
ρfφ gf · wf dx =

∫
Ω
σs(us) : ε(ws) dx

+ 2η

∫
Ω
ε(vs) : ε(ws) dx+

∫
Ω
φ2 k−1

f (vf − vs) · (wf − ws) dx

+

∫
Ω
φσf (vf ) : ε(wf ) dx−

∫
Ω
θvf · wf dx, ∀(ws, wf ) ∈ Vφ. (1.68)

The relation (1.67) implies that gu = −vs in [H1
0(Ω)]d. From (1.68), we deduce that

∀(ws, wf ) ∈ Vφ,
(
(gs, gf ), (ws, wf )

)
Hφ

=〈
−div

(
σs(us)

)
− div

(
σviss (vs)

)
− φ2 k−1

f (vf − vs), ws
〉

[H−1(Ω)]d,[H1
0(Ω)]d

+
〈
−div

(
φσf (vf )

)
+ φ2 k−1

f (vf − vs)− θ vf , wf
〉

[H−1(Ω)]d,[H1
0(Ω)]d

.

Applying Theorem 1.24, we get the existence of a pressure p ∈ L2
0(Ω) such that

ρs(1− φ) gs = −div
(
σs(us)

)
− div

(
σviss (vs)

)
−φ2 k−1

f (vf − vs) + (1− φ)∇p in [H−1(Ω)]d,

ρfφ gf = −div
(
φσf (vf )

)
+ φ2 k−1

f (vf − vs)− θ vf + φ∇p in [H−1(Ω)]d,

which proves (1.66). Since gs and gf belong to [L2(Ω)]d, the above relation essentially holds true in
[L2(Ω)]d, which yields (1.65).

Remark 1.28. The characterization of the Lagrange multiplior p associated with the constraint on
the mixture velocity as the weak solution of an elliptic problem, as done in [Avalos and Triggiani,
2009] in the context of fluid-structure interaction problems, is not straightforward precisely because
the constraint involves the mixture velocity which is not a natural unknown of our coupled problem.

Lastly, we set g = (0, f, f) and we denote by Π the Leray projection operator from [H1
0(Ω)]d ×

[L2(Ω)]d× [L2(Ω)]d into H = [H1
0(Ω)]d×Hφ. We are now ready to state the following existence and

uniqueness result.

Theorem 1.29. Assume that (h1)− (h3) hold true, that η > 0 and that
∫

Ω θ dx = 0.

(i) If z0 ∈ D(A∞η ) and f ∈ H1(0, T ; [L2(Ω)]d) so that Πg ∈ H1(0, T ;H), then there exists a unique
strong solution z ∈ C1([0, T ];H) ∩ C0([0, T ];D(A∞η )) satisfying{

ż(t) +A∞η z(t) = Πg(t), t ∈ [0, T ],

z(0) = z0.
(1.69)

(ii) If z0 ∈ H and f ∈ L2(0, T ; [L2(Ω)]d) so that Πg ∈ L2(0, T ;H), then Problem (1.69) has a
unique mild solution z ∈ C0([0, T ];H) such that z(0) = z0 and∫ T

0
z(t)ψ(t) dt ∈ D(A∞η ),

−
∫ T

0
z(t)ψ̇(t) dt+A∞η

(∫ T

0
z(t)ψ(t) dt

)
=

∫ T

0
Πg(t)ψ(t) dt,
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for all ψ ∈ C1
c([0, T ]; R). Moreover, z is given by the Duhamel formula

z(t) = Φ∞η (t)z0 +

∫ t

0
Φ∞η (t− s)Πg(s) ds, (1.70)

where Φ∞η denotes the continuous semigroup generated by A∞η in the sense that

A∞η x = − d

dt

(
Φ∞η (t)x

)
|t=0+ , x ∈ H. (1.71)

Proof. The proof of this result is almost similar to the proof of Theorem 1.7, replacing Z by H and
Y by V . The only difference is that the term −θ vf is treated within the operator A∞η instead of
being considered as a perturbation.

For any z = (us, vs, vf ) ∈ D(A∞η ), we observe that

a∞η (z, z) = 2η

∫
Ω
|ε(vs)|2 dx+

∫
Ω
φ2 k−1

f (vf − vs) · (vf − vs) dx

+

∫
Ω
φσf (vf ) : ε(vf ) dx−

∫
Ω
θ |vf |2 dx.

Thus (A∞η z, z)H ≥ −ω‖z‖2H with ω = (ρfφmin)−1‖θ‖L∞(Ω).
Moreover, for all λ0 > ω, the operator A∞η + λ0I is surjective from D(A∞η ) to H because

a∞η (z, z) + λ0(z, z)H

≥ λ0‖us‖2s + 2η‖ε(vs)‖2 + 2µfφmin‖ε(vf )‖2 +
(
λ0ρfφmin − ‖θ‖L∞(Ω)

)
‖vf‖2.

From Lumer-Phillips theorem, we deduce that A∞η is the generator – in the sense of (1.71) – of
a strongly continuous semigroup and the conclusion follows from [Bensoussan et al., 2007, Part II,
Chapter 1, Propositions 3.1–3.3] and [Burq and Gérard, 2002, Corollary 2.25].

Remark 1.30. By reproducing the proof of Theorem 1.7, we can extend the result of Theorem
1.29 for a time-dependent θ satisfying the compatibility condition

∫
Ω θ(t) dx = 0 for all t ∈ [0, T ].

The existence of a mild solution then requires that θ ∈ C0([0, T ]×Ω) and the existence of a strong
solution is guaranteed under the assumption θ ∈ C1([0, T ]; L∞(Ω)). However, because of the lifting
(1.61), more regularity on θ is needed for the original problem to be well-posed. More precisely,
when performing the change of variables (us, vf , p) 7−→

(
us−

∫ t
0 vθ(s) ds, vf −vθ, p

)
, the right-hand

sides of (1.59b) and (1.59c) become respectively

ρs(1− φ)f − ρs(1− φ)∂tvθ + div

(
σs

(∫ t

0
vθ ds

))
+ div

(
σviss (vθ)

)
,

and
ρfφf − ρfφ∂tvθ + div

(
φσf (vθ)

)
+ θvθ.

The existence of a mild solution requires that all terms belong to L2(0, T ; [L2(Ω)]d) and thus that
the lifting vθ ∈ H1(0, T ; [L2(Ω)]d) ∩ L2(0, T ; [H2(Ω)]d), which is ensured if θ ∈ H1(0, T ; L2(Ω)) ∩
L2(0, T ; H1(Ω)). Similarly, the existence of a strong solution is guaranteed under the assumption
θ ∈ H2(0, T ; L2(Ω)) ∩H1(0, T ; H1(Ω)).

The previous theorem only involves the displacement and velocity fields. The existence of
pressure and the relation between (1.69) and the original system (1.59) are precised below.

Corollary 1.31. Assume that z0 ∈ D(A∞η ), f ∈ H1(0, T ; [L2(Ω)]d) and let z = (us, vs, vf ) ∈
C1([0, T ];H) ∩ C0([0, T ];D(A∞η )) be the strong solution of (1.69). There exists a unique pressure
p ∈ C0([0, T ]; L2

0(Ω)) such that (z, p) satisfies (1.59) pointwise almost everywhere.
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Proof. Let z = (us, vs, vf ) be the solution of (1.69). Since z ∈ C1([0, T ];H) ∩ C0([0, T ];D(A∞η )),
for almost every t ∈ (0, T ), the equation

A∞η z(t) = Πg(t)− ż(t),

holds true in the energy spaceH, where we recall that g = (0, f, f). Thus for almost every t ∈ (0, T ),
Proposition 1.27 ensures the existence of a pressure p(t) ∈ L2

0(Ω) such that
−∂tus = −vs,
ρs(1− φ) f − ρs(1− φ) ∂tvs = −div

(
σviss (vs)

)
− div

(
σs(us)

)
−φ2 k−1

f (vf − vs) + (1− φ)∇p,

ρfφ f − ρfφ∂tvf = −div
(
φσf (vf )

)
+ φ2 k−1

f (vf − vs) + φ∇p.

In virtue of (1.65), the two last lines of the above system are verified at least in [L2(Ω)]d (the
first one is satisfied in [H1

0(Ω)]d). Hence (1.59) is satisfied almost everywhere. Moreover, since
z ∈ C0([0, T ];V ), we find that ∇p ∈ C0([0, T ];H−1(Ω)), which implies that p ∈ C0([0, T ]; L2

0(Ω)) in
virtue of Nečas Lemma.

If the input data are less regular, we get the existence of displacement, velocities and pressure
in the following weak sense.

Theorem 1.32. Assume (h1)− (h4) are satisfied, η > 0,
∫

Ω θ dx = 0 and z0 = (us0, vs0, vf 0) ∈ H.
Then there exists a unique variational solution us ∈ C0([0, T ]; [H1

0(Ω)]d), ∂tus ∈ C0([0, T ]; [L2(Ω)]d)
and vf ∈ C0([0, T ]; [L2(Ω)]d) with (∂tus, vf ) ∈ L2(0, T ;Vφ) such that(

us(0), ∂tus(0), vf (0)
)

= (us0, vs0, vf 0),

and, for all (ws, wf ) ∈ Vφ, the following equation holds in D′(0, T ):

d2

dt2

∫
Ω
ρs(1− φ)us(t) · ws dx+

∫
Ω
σs(us(t)) : ε(ws) dx+ 2η

∫
Ω
ε(∂tus(t)) : ε(ws) dx

+
d

dt

∫
Ω
ρfφ vf (t) · wf dx+

∫
Ω
φσf (vf (t)) : ε(wf ) dx

+

∫
Ω
φ2 k−1

f (vf (t)− ∂tus(t)) · (wf − ws) dx−
∫

Ω
θ vf (t) · wf dx

=

∫
Ω
ρs(1− φ)f(t) · ws dx+

∫
Ω
ρfφf(t) · wf dx. (1.72)

The energy estimate (1.17) holds true and the variational solution coincides with the mild solu-
tion given by (1.70). Furthermore, there exists a unique pressure p ∈ D′

(
(0, T ) × Ω

)
such that

(us, vs, vf , p) satisfies (1.59) in the distribution sense, with vs = ∂tus.

Remark 1.33. The incompressibility constraint is satisfied since (∂tus, vf ) belongs to L2(0, T ;Vφ).
It can be written in variational form as

∀q ∈ L2(Ω),

∫
Ω

div
(
(1− φ) ∂tus(t) + φ vf (t)

)
q dx = 0.

Proof. The proof of existence of (us, vf ) follows exactly the same lines as in the compressible case.
We build a sequence of strong solutions for smooth data. These solutions (uns , v

n
s , v

n
f )n satisfy the

energy estimate (1.17) and constitute a Cauchy sequence in C0([0, T ];H). Moreover (vns , v
n
f ) is a
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Cauchy sequence in L2(0, T ;Vφ) and we can pass to the limit as we did in the proof of Theorem
1.10. We get the first order system:

∀t ∈ [0, T ],∀(ds, ws, wf ) ∈ V = [H1
0(Ω)]d × Vφ,

d

dt

∫
Ω
σs(us(t)) : ε(ds) dx−

∫
Ω
σs(vs(t)) : ε(ds) dx = 0, (1.73a)

d

dt

∫
Ω
ρs(1− φ) vs(t) · ws dx+

∫
Ω
σs(us(t)) : ε(ws) dx

+ 2η

∫
Ω
ε(vs(t)) : ε(ws) dx+

d

dt

∫
Ω
ρfφ vf (t) · wf dx−

∫
Ω
θ vf (t) · wf dx

+

∫
Ω
φσf (vf (t)) : ε(wf ) dx+

∫
Ω
φ2 k−1

f (vf (t)− vs(t)) · (wf − ws) dx

=

∫
Ω
ρs(1− φ)f(t) · ws dx+

∫
Ω
ρfφf(t) · wf dx, (1.73b)

which can be rewritten in second order to obtain (1.72).
Apart for the regularity provided by the energy estimate (in particular (vs, vf ) ∈ L2(0, T ;Vφ)),

like in the compressible regime, the previous system provides some regularity on the time derivatives
of the solution. The first equation (1.73a) states that ∂tus = vs in L2(0, T ; [H1

0(Ω)]d) and the second
equation (1.73b) implies that

(∂2
ttus, ∂tvf ) ∈ L2(0, T ;V ′φ).

These regularities, together with the density of Vφ in Hφ, yield

d2

dt2

∫
Ω
ρs(1− φ)us(t) · ws dx+

d

dt

∫
Ω
ρfφ vf (t) · wf dx

=
〈(
ρs(1− φ) ∂2

ttus(t), ρfφ∂tvf (t)
)
, (ws, wf )

〉
V ′φ,Vφ

in D′(0, T ), for all (ws, wf ) ∈ Vφ. Since functions in Vφ ⊗ D(0, T ) generate the space L2(0, T ;Vφ),
we get 

∀(ws, wf ) ∈ L2(0, T ;Vφ),∫ T

0

〈(
ρs(1− φ) ∂2

ttus, ρfφ∂tvf
)
, (ws, wf )

〉
V ′φ,Vφ

dt+

∫ T

0

∫
Ω
σs(us) : ε(ws) dx dt

+ 2η

∫ T

0

∫
Ω
ε(vs) : ε(ws) dx dt+

∫ T

0

∫
Ω
φσf (vf ) : ε(wf ) dx dt

+

∫ T

0

∫
Ω
φ2 k−1

f (vf − vs) · (wf − ws) dx dt−
∫ T

0

∫
Ω
θ vf · wf dx dt

=

∫ T

0

∫
Ω
ρs(1− φ)f · ws dx dt+

∫ T

0

∫
Ω
ρfφf · wf dx dt.

The energy estimate (1.17) then follows by choosing (ws, wf ) = (∂tus, vf ) above and guarantees
uniqueness.

The equivalence between the variational and mild solutions can be proved in the same way as
in the compressible case (see Proposition 1.13). We only need to notice that V is dense in H.

To show the existence of pressure, we integrate (1.73b) in time over (0, t) (see for instance
[Temam, 2001] for a similar argument for the Stokes system). Let us define

Us(t) =

∫ t

0
us(s) ds, Vs(t) =

∫ t

0
vs(s) ds, Vf (t) =

∫ t

0
vf (s) ds and F (t) =

∫ t

0
f(s) ds,
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it follows that〈
ρs(1− φ) (vs(t)− vs0)− div

(
σviss (Vs(t))

)
− div

(
σs(Us(t))

)
− φ2 k−1

f (Vf (t)− Vs(t))− ρs(1− φ)F (t), ws

〉
[H−1(Ω)]d,[H1

0(Ω)]d

+
〈
ρfφ (vf (t)−vf 0)−div

(
φσf (Vf (t))

)
+φ2 k−1

f (Vf (t)−Vs(t))−ρfφF (t), wf

〉
[H−1(Ω)]d,[H1

0(Ω)]d
= 0,

for all (ws, wf ) ∈ Vφ. Combining Theorem 1.24 and Nečas Lemma provides the existence of P ∈
C0([0, T ]; L2

0(Ω)) such that

ρs(1− φ) (vs − vs0)− div
(
σviss (Vs)

)
− div

(
σs(Us)

)
− φ2 k−1

f (Vf − Vs)− ρs(1− φ)F = −(1− φ)∇P,

ρfφ (vf − vf 0)− div
(
φσf (Vf )

)
+ φ2 k−1

f (Vf − Vs)− ρfφF = −φ∇P.

As a consequence, p = ∂tP satisfies (1.59) in the distribution sense.

Remark 1.34. We could also define the variational solution without assuming time continuity.
Time continuity would then follow from the continuous injection of the space

Wφ(0, T ) =
{

(vs, vf ) ∈ L2(0, T ;Vφ) such that (∂tvs, ∂tvf ) ∈ L2(0, T ;V ′φ)
}
,

into C0([0, T ];Hφ).

1.3.3 The case η = 0

This case combines the two difficulties encountered earlier: the incompressibility constraint and the
absence of solid viscosity. To handle this case, an option is to combine the functional framework
adapted to the incompressibility constraint with the T-coercivity approach used in Section 1.2.3.
This method provides the following result.

Theorem 1.35. If η = 0, then the conclusions of Theorem 1.29 and Corollary 1.31 remain true.

Proof. To prove that the operator A∞0 + λ0I is surjective from D(A∞0 ) to H for all λ0 > ω, we
show that a∞0 (·, ·) + λ0(·, ·)H is T-coercive for the mapping T : (us, vs, vf ) 7−→ (1

2us −
1

2λ0
vs, vs, vf )

defined by (1.45). To do so, we reproduce exactly the same calculations as in the compressible case
(see the proof of Theorem 1.17), but replacing Y and Z by V and H respectively. This mapping is
bijective from V into itself because it does not affect the velocity components and thus the mixture’s
divergence constraint. The rest of the proof is the same as in Theorem 1.29 and Corollary 1.31.

Yet, we present here another approach to prove that A∞0 +λ0I is surjective. This proof is based
on a mixed formulation of the problem and is more suitable for numerical approximation. Indeed,
the formulation (1.64) involves a constrained space Vφ that we would like to relax for numerical
purpose, most numerical strategies relying on mixed formulations. Note moreover that the space
Vφ depends on the porosity and thus on a specific data set. The mixed problem we would like to
solve writes {

Find z ∈ Y0 such that
∀y ∈ Y0, aλ0(z, y) = (g, y)Z0 ,

(1.75)
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with

aλ0(z, y) = λ0

∫
Ω
σs(us) : ε(ds) dx−

∫
Ω
σs(vs) : ε(ds) dx

+ λ0

∫
Ω
ρs(1− φ) vs · ws dx+

∫
Ω
σs(us) : ε(ws) dx

+

∫
Ω
φ2 k−1

f (vf − vs) · (wf − ws) dx+ λ0

∫
Ω
ρfφ vf · wf dx

+

∫
Ω
φσf (vf ) : ε(wf ) dx−

∫
Ω
θvf · wf dx

−
∫

Ω
p div

(
(1− φ)ws + φwf

)
dx+

∫
Ω

div
(
(1− φ) vs + φ vf

)
q dx,

for any z = (us, vs, vf , p) and y = (ds, ws, wf , q) in Y0, where

Z0 = [H1
0(Ω)]d × [L2(Ω)]d × [L2(Ω)]d × L2

0(Ω)

and
Y0 = [H1

0(Ω)]d × [H1
0(Ω)]d × [H1

0(Ω)]d × L2
0(Ω).

The spaces Z0 and Y0 are almost similar to Z and Y but include the additional condition
∫

Ω p dx = 0
that is required to ensure pressure uniqueness.

Proposition 1.36. Let g ∈ Z0. If λ0 > (ρfφmin)−1‖θ‖L∞(Ω), then Problem (1.75) is well-posed in
Y0.

Proof. According to Proposition 1.16, it is sufficient to find y∗ depending continuously on z such
that the inequality aλ0(z, y∗) ≥ α‖z‖2Y0

is satisfied for any z ∈ Z0, with α > 0.
From the properties of the divergence operator, we know, as already stated in (1.63), that for

any p ∈ L2
0(Ω), there exists vp ∈ [H1

0(Ω)]d and Cdiv > 0 such that

div vp = p and ‖∇vp‖2 ≤ Cdiv‖p‖2.

For some constants α, β and γ to be adjusted, we choose d∗s = β us + γ vs, w∗s = α vs − vp,
w∗f = α vf − vp and q∗ = αp. Thus

aλ0(z, y∗) = λ0

∫
Ω
β σs(us) : ε(us) dx+ λ0

∫
Ω
γ σs(us) : ε(vs) dx

−
∫

Ω
βσs(vs) : ε(us) dx−

∫
Ω
γ σs(vs) : ε(vs) dx−

∫
Ω
σs(us) : ε(vp) dx

+ λ0

∫
Ω
ρs(1− φ)

(
α |vs|2 − vs · vp

)
dx+

∫
Ω
ασs(us) : ε(vs) dx

+

∫
Ω
αφ2 k−1

f (vf − vs) · (vf − vs) dx+

∫
Ω

(
λ0ρfφ− θ

)(
α |vf |2 − vf · vp

)
dx

+

∫
Ω
φ
(
ασf (vf ) : ε(vf )− σf (vf ) : ε(vp)

)
dx+

∫
Ω
p div

(
(1− φ) vp + φ vp

)
dx.

Note that the term
∫

Ω p div
(
(1− φ) vp + φ vp

)
dx is equal to ‖p‖2 thanks to the choice of vp. As in

the proof of Theorem 1.17, we set β = α
2 and γ = − α

2λ0
in order to remove the terms in the form
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∫
Ω σs(us) : ε(vs) dx. Consequently, we have

aλ0(z, y∗) ≥ λ0α

2

∫
Ω
σs(us) : ε(us) dx−

∫
Ω
σs(us) : ε(vp) dx

+
α

2λ0

∫
Ω
σs(vs) : ε(vs) dx+ λ0ρs(1− φmax)

∫
Ω

(
α |vs|2 − vs · vp

)
dx

+
(
λ0ρfφmin − ‖θ‖L∞(Ω)

) ∫
Ω

(
α |vf |2 − vf · vp

)
dx

+ φmin

∫
Ω

(
ασf (vf ) : ε(vf )− σf (vf ) : ε(vp)

)
dx+

∫
Ω
p2 dx. (1.76)

We choose λ0 such that λ0ρfφmin − ‖θ‖L∞(Ω) > 0. Next, for all δ > 0, Young inequality yields

−
∫

Ω
σs(us) : ε(vp) dx ≥ −δ

2

∫
Ω
σs(us) : ε(us) dx− 1

2δ

∫
Ω
σs(vp) : ε(vp) dx,

−
∫

Ω
σf (vf ) : ε(vp) dx ≥ −δ

2

∫
Ω
σf (vf ) : ε(vf ) dx− 1

2δ

∫
Ω
σf (vp) : ε(vp) dx,

−
∫

Ω
vs · vp dx ≥ −δ

2

∫
Ω
|vs|2 dx− 1

2δ

∫
Ω
|vp|2 dx,

−
∫

Ω
vf · vp dx ≥ −δ

2

∫
Ω
|vf |2 dx− 1

2δ

∫
Ω
|vp|2 dx.

(1.77)

Furthermore, it holds

‖vp‖2 ≤ Cp‖∇vp‖2 ≤ CpCdiv‖p‖2,∫
Ω
σf (vp) : ε(vp) dx = λf‖div vp‖2 + 2µf‖ε(vp)‖2 ≤ (λf + 2µfCdiv)‖p‖2,∫
Ω
σs(vp) : ε(vp) dx = λ‖div vp‖2 + 2µ‖ε(vp)‖2 ≤ (λ+ 2µCdiv)‖p‖2,

(1.78)

where Cp denotes the constant of Poincaré inequality.
Using (1.77) and (1.78) to bound from below the right-hand side of (1.76) and rearranging terms,

we obtain

aλ0(z, y∗) ≥
(λ0α

2
− δ

2

)
‖us‖2s +

α

2λ0
‖vs‖2s + λ0ρs(1− φmax)

(
α− δ

2

)
‖vs‖2

+ (λ0ρfφmin − ‖θ‖L∞(Ω))
(
α− δ

2

)
‖vf‖2 + 2µfφmin

(
α− δ

2

)
‖ε(vf )‖2 +

(
1− δ∗

2δ

)
‖p‖2,

where δ∗ = λ+2µCdiv +λ0ρs(1−φmax)CpCdiv +(λ0ρfφmin−‖θ‖L∞(Ω))CpCdiv +φmin(λf +2µfCdiv),
δ∗ > 0.

Hence, setting δ = δ∗ and α = α∗ = max
(
δ∗, 2δ∗

λ0

)
, we get

aλ0(z, y∗) ≥ δ∗

2
‖us‖2s +

α∗

2λ0
‖vs‖2s + µfφminδ

∗‖ε(vf )‖2 +
1

2
‖p‖2.

Finally, we infer that aλ0 is T-coercive for the mapping

T : (us, vs, vf , p) 7−→
(α∗

2
us −

α∗

2λ0
vs, α

∗vs − vp, α∗vf − vp, α∗p
)
, (1.79)

which is bijective since p 7−→ vp is a bijection.
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Remark 1.37. This mixed formulation is also applicable to the case κ = +∞ and η > 0. In
that case, the proof can be simplified by considering the mapping T : (us, vs, vf , p) 7−→ (us, α

∗vs −
vp, α

∗vf − vp, α∗p).

Remark 1.38. The mixed formulation is equivalent to the constrained formulation thanks to the
inf-sup property proved in Proposition 1.22. Note moreover that, as for the proof of Proposition
1.22, the T-coercivity only relies on the standard inf-sup condition for the divergence operator and
therefore is independent of the porosity φ.

Finally, as for the compressible inviscid case, we can prove the existence of a variational solution.

Theorem 1.39. Assume (h1) − (h4) are satisfied, η = 0,
∫

Ω θ dx = 0 and z0 = (us0, vs0, vf 0) ∈
H. Then there exists a unique variational solution us ∈ C0([0, T ]; [H1

0(Ω)]d) and (∂tus, vf ) ∈
C0([0, T ];Hφ) with vf ∈ L2(0, T ; [H1

0(Ω)]d)such that(
us(0), ∂tus(0), vf (0)

)
= (us0, vs0, vf 0)

and the following equations hold, in D′(0, T ),

d2

dt2

∫
Ω
ρs(1− φ)us(t) · ws dx+

∫
Ω
σs(us(t)) : ε(ws) dx

+
d

dt

∫
Ω
ρfφ vf (t) · wf dx+

∫
Ω
φσf (vf (t)) : ε(wf ) dx

+

∫
Ω
φ2 k−1

f (vf (t)− ∂tus(t)) · (wf − ws) dx−
∫

Ω
θ vf (t) · wf dx

=

∫
Ω
ρs(1− φ)f(t) · ws dx+

∫
Ω
ρfφf(t) · wf dx, ∀(ws, wf ) ∈ Vφ.

(1.80)

The energy estimate (1.17) holds true (with η = 0) and the variational solution coincides with the
mild solution. Furthermore, there exists a unique pressure p ∈ D′

(
(0, T )×Ω

)
such that (us, vs, vf , p)

satisfies (1.59) in the distribution sense, with vs = ∂tus.

Proof. We follow the same steps as in Theorem 1.18, but within the functional framework adapted
to the incompressibility constraint. Existence of solutions is obtained by an approximated sequence
of strong solutions zn = (uns , v

n
s , v

n
f ) ∈ C1([0, T ];H) ∩ C0([0, T ];D(A∞0 )) verifying{

żn(t) +A∞0 z
n(t) = Πgn(t), t ∈ [0, T ],

zn(0) = zn0 ,

where Πgn = Π(0, fn, fn) ∈ H1(0, T ;H) and zn0 ∈ D(A∞0 ) denote respectively an approximation of
source terms and initial conditions. This sequence of solution satisfies the variational formulation

(V F )n∞



∀t ∈ [0, T ],∀(ds, ws, wf ) ∈ V = [H1
0(Ω)]d × Vφ,∫

Ω
σs(∂tu

n
s (t)) : ε(ds) dx =

∫
Ω
σs(v

n
s (t)) : ε(ds) dx, (1.81a)∫

Ω
ρs(1− φ) ∂tv

n
s (t) · ws dx+

∫
Ω
σs(u

n
s (t)) : ε(ws) dx

+

∫
Ω
ρfφ∂tv

n
f (t) · wf dx+

∫
Ω
φσf (vnf (t)) : ε(wf ) dx

+

∫
Ω
φ2 k−1

f (vnf (t)− vns (t)) · (wf − ws) dx−
∫

Ω
θn vnf (t) · wf dx

=

∫
Ω
ρs(1− φ)fn(t) · ws dx+

∫
Ω
ρfφf

n(t) · wf dx. (1.81b)
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Moreover, by taking (uns , v
n
s , v

n
f ) ∈ C0([0, T ];V ) as test functions in (1.81a), we get that it satisfies

the energy estimate (1.17) with η = 0. Hence zn is a Cauchy sequence in C0([0, T ];H) and vnf is a
Cauchy sequence in L2(0, T ; [H1

0(Ω)]d), which allows us to pass to the limit in (1.81b). For a given
ds ∈ [L2(Ω)]d, we choose the unique solution ηs ∈ [H1

0(Ω)]d of −div
(
σs(ηs)

)
= ds as a test function

in (1.81a), which yields

∀t ∈ [0, T ], ∀ds ∈ [L2(Ω)]d,
d

dt

∫
Ω
us(t) · ds dx−

∫
Ω
vs(t) · ds dx = 0,

after passing to the limit. Putting these two limit formulations together gives (1.80). As for the
viscous case the equation (1.80) implies that

(∂2
ttus, ∂tvf ) ∈ L2(0, T ;V ′φ),

and for any test functions (ws, wf ) in Vφ

d2

dt2

∫
Ω
ρs(1− φ)us · ws dx+

d

dt

∫
Ω
ρfφ vf · wf dx =

〈
(ρs(1− φ) ∂2

ttus, ρfφ∂tvf ), (ws, wf )
〉
V ′φ,Vφ

.

To show uniqueness, we are going to use the same Ladyzhenskaya test functions as in the
compressible case. The difficulty then lies in justifying that the calculations done in the compressible
case remain valid in the constrained functional setting. Let (us, vf ) be a solution to (1.80) with zero
initial conditions and source terms, and let τ be given in (0, T ). We first write the weak space-time
variational formulation satisfied by (us, vf ). In a standard way, by multiplying the weak formulation
(1.80) by a ψ ∈ H1(0, T ) such that ψ(T ) = 0 and integrating over (0, T ) and by parts in time we
obtain

−
∫ T

0

∫
Ω
ρs(1− φ) ∂tus · ∂tψ(t)ws dx dt+

∫ T

0

∫
Ω
σs(us) : ε(ws)ψ(t) dx dt

−
∫ T

0

∫
Ω
ρfφ vf · ∂tψ(t)wf dx dt+

∫ T

0

∫
Ω
φσf (vf ) : ε(wf )ψ(t) dx dt

+

∫ T

0

∫
Ω
φ2 k−1

f (vf − ∂tus) · (wf − ws)ψ(t) dx dt−
∫ T

0

∫
Ω
θ vf · wfψ(t) dx dt = 0.

Since linear combinaisons of fonctions of the type (ψ(t)ws, ψ(t)wf ) with ψ ∈ H1(0, T ) such that
ψ(T ) = 0 and (ws, wf ) ∈ Vφ are dense in the space of functions w of H1(0, T ;Vφ) such that
w(T ) = 0, we obtain

−
∫ T

0

∫
Ω
ρs(1− φ) ∂tus · ∂tws dx dt+

∫ T

0

∫
Ω
σs(us) : ε(ws) dx dt

−
∫ T

0

∫
Ω
ρfφ vf · ∂tψ(t)wf dx dt+

∫ T

0

∫
Ω
φσf (vf ) : ε(wf ) dx dt

+

∫ T

0

∫
Ω
φ2 k−1

f (vf − ∂tus) · (wf − ws) dx dt−
∫ T

0

∫
Ω
θ vf · wf dx dt = 0,

∀(ws, wf ) ∈ H1(0, T ;Vφ) such that ws(T ) = wf (T ) = 0.

(1.82)

Then, we consider the same test functions as in the compressible case, namely

ψs(t) =

−
∫ τ

t
us(σ) dσ, if τ ≥ t

0, if τ ≤ t
and ψf (t) =

−
∫ τ

t

∫ v

0
vf (σ) dσ dv, if τ ≥ t

0, if τ ≤ t.
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These test functions are still admissible here. Indeed, we know that (∂tus, vf ) ∈ C0([0, T ];Hφ).
Recalling the characterization of the space Hφ established in Proposition 1.25, it follows that

div
(
(1− φ) ∂tus + φ vf

)
= 0, in C0([0, T ];D′(Ω)).

Note that, as in the inviscid compressible case, div
(
(1−φ) ∂tus+φ vf

)
belongs to L2((0, T ); H−1(Ω)).

Next, by integrating two times in time, we obtain

div

(
(1− φ)

(
−
∫ τ

t

∫ v

0
∂tus(σ) dσ dv

)
+ φ

(
−
∫ τ

t

∫ v

0
vf (σ) dσ dv

))
= 0.

Since us(0) = 0, we conclude that (ψs, ψf ) ∈ C1([0, T ];Vφ).
Choosing (ψs, ψf ) as test functions, the calculations are exactly the same as in the compressible

case – see (1.58) – but without the pressure terms, and with θ independent of time. We get

1

2

∫
Ω
ρs(1− φ) |us(τ)|2 dx+

1

2

∫
Ω
ρfφ |∂tψf (τ)|2 dx+

1

2

∫
Ω
σs(ψs(0)) : ε(ψs(0)) dx

+

∫ τ

0

∫
Ω
φσf (∂tψf ) : ε(∂tψf ) dx dt+

∫ τ

0

∫
Ω
φ2k−1

f (∂tψf − ∂tψs)2 dx dt

=

∫ τ

0

∫
Ω
θ |∂tψf |2 dx dt.

Estimating the right-hand side as in the viscous case shows that us = vf = 0 by an application
of Grönwall Lemma.

Using Duhamel formula (1.70), one shows exactly as in the compressible case that the sequence
zn also converges towards the mild solution in C0([0, T ];H), so that the mild solution coincides
with the variational solution built from the same approximation process. Finally, the existence of a
pressure p such that (us, vs, vf , p) satisfies (1.59) in the distribution sense is obtained by combining
Theorem 1.24 and Nečas Lemma, like in the proof of Theorem 1.32.

1.4 Incompressible limit

In this section, we show how to pass to the limit in the weak formulation for κ < +∞ as κ goes
to infinity and obtain the incompressible system. Similar incompressible limits were considered for
Biot’s consolidation model, both in linear [Showalter, 2000] or non-linear [Bociu and Webster, 2021]
regimes, and the influence of compressibility was analyzed in the 1D linear case [Bociu et al., 2019].

For this purpose, we need to get an energy estimate independent of κ in the compressible case.
This can be achieved by lifting the right-hand side of the pressure equation. We consider vθ,α = 1

αvθ
where vθ is defined by (1.61), so that

div (α vθ,α) = ρ−1
f θ. (1.83)

Note that to ensure that vθ,α is in [H2(Ω)]d, we need more assumptions and more regularity on the
Biot-Willis coefficient α. Therefore, (h6) becomes

(h6)bis

{
α ∈ Hd/2+r(Ω) with d/2 + r ≥ 2,

∀x ∈ Ω, 0 < (α− φ)min ≤ α(x)− φ(x) ≤ (α− φ)max < 1.

As already noticed in Remark 1.30, in order to have the adequate regularity for the right-hand
side of the equation verified by the new unknowns, such a lifting requires additional assumptions
on the fluid mass input θ, namely

(h5)bis


θ ∈ C0([0, T ]× Ω) ∩H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)),

∀t ∈ [0, T ],

∫
Ω
θ(t) dx = 0.
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Consequently, under (h5)bis and (h6)bis, the lifting vθ,α satisfying (1.83) belongs to the space
H1(0, T ; [H1

0(Ω)]d) ∩ L2(0, T ; [H2(Ω)]d), and we make the change of variables (us, vf , p) 7−→
(
us −∫ t

0 vθ,α(s) ds, vf − vθ,α, p
)
so that the right-hand side of the pressure equation reduces to zero.

In order to recover the initial conditions in the incompressible limit, we are not going to pass
to the limit in (1.37) and (1.47) which are written in D′(0, T ), but rather in the following weak
formulation: for any (us0, vs0, vf 0, p0) ∈ Z and f ∈ L2(0, T ; [L2(Ω)]d), find uκs ∈ C0([0, T ]; [H1

0(Ω)]d),
∂tu

κ
s ∈ C0([0, T ]; [L2(Ω)]d) ∩ L2(0, T ; [H1

0(Ω)]d) if η > 0 or ∂tuκs ∈ C0([0, T ]; [L2(Ω)]d) if η = 0, and
vκf ∈ C0([0, T ]; [L2(Ω)]d) ∩ L2(0, T ; [H1

0(Ω)]d), and pκ ∈ C0([0, T ]; L2(Ω)) such that

∫ T

0

∫
Ω
ρs(1− φ)uκs · ∂2

ttws dx dt+

∫ T

0

∫
Ω
σs(u

κ
s ) : ε(ws) dx dt

+ 2η

∫ T

0

∫
Ω
ε(∂tu

κ
s ) : ε(ws) dx dt−

∫ T

0

∫
Ω
φ2 k−1

f (vκf − ∂tuκs ) · ws dx dt

−
∫ T

0

∫
Ω
pκ div

(
(α− φ)ws

)
dx dt =

∫ T

0

∫
Ω
ρs(1− φ)f · ws dx dt

+

∫
Ω
ρs(1− φ) vs0 · ws(0) dx−

∫
Ω
ρs(1− φ)us0 · ∂tws(0) dx, (1.84a)

−
∫ T

0

∫
Ω
ρfφ v

κ
f · ∂twf dx dt+

∫ T

0

∫
Ω
φσf (vκf ) : ε(wf ) dx dt

+

∫ T

0

∫
Ω
φ2 k−1

f (vκf − ∂tuκs ) · wf dx dt−
∫ T

0

∫
Ω
θ vκf · wf dx dt

−
∫ T

0

∫
Ω
pκ div (φwf ) dx dt =

∫ T

0

∫
Ω
ρfφf · wf dx dt

+

∫
Ω
ρfφ vf 0 · wf (0) dx, (1.84b)

and 

−
∫ T

0

∫
Ω

α− φ
κ

pκ ∂tq dx dt+

∫ T

0

∫
Ω

div
(
(α− φ) ∂tu

κ
s

)
q dx dt

+

∫ T

0

∫
Ω

div (φ vκf )q dx dt =

∫
Ω

α− φ
κ

p0q(0) dx, if η > 0, (1.85a)

−
∫ T

0

∫
Ω

α− φ
κ

pκ ∂tq dx dt−
∫ T

0

∫
Ω

div
(
(α− φ)uκs

)
∂tq dx dt

+

∫ T

0

∫
Ω

div (φ vκf )q dx dt =

∫
Ω

α− φ
κ

p0q(0) dx

+

∫
Ω

div
(
(α− φ)us0

)
q(0) dx, if η = 0, (1.85b)

for all admissible test functions
ws ∈ H2(0, T ; [L2(Ω)]d) ∩ L2(0, T ; [H1

0(Ω)]d),

wf ∈ H1(0, T ; [L2(Ω)]d) ∩ L2(0, T ; [H1
0(Ω)]d),

q ∈ H1(0, T ; L2(Ω)),

ws(T ) = ∂tws(T ) = wf (T ) = q(T ) = 0.

(1.86)

The main difference between the weak formulation (1.84) – (1.85) and (1.37) or (1.47) is that
the test functions depend on space but also on time. Besides, the initial conditions are weakly
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imposed in (1.84) – (1.85), while they are strongly imposed in (1.36) or (1.46). This space-time
weak formulation can be obtained from (1.37) or (1.47) with the same arguments used to derive
(1.82).

Remark 1.40. By choosing (ws, wf , q) =
(
ŵs(x), ŵf (x), q̂(x)

)
ψ(t) with (ŵs, ŵf , q̂) ∈ [H1

0(Ω)]d ×
[H1

0(Ω)]d × L2(Ω) and ψ ∈ D(0, T ), we see that the weak formulation (1.84) – (1.85) implies the
variational formulation (1.37) or (1.47). Hence, from the uniqueness of the variational solution, the
solutions of these two formulations coincide.

We are now ready to establish how the solution in the compressible case converges towards the
solution in the incompressible regime as κ goes to infinity.

Theorem 1.41. Assume that (h1)−(h4), (h5)bis and (h6)bis are satisfied. For z0 = (us0, vs0, vf 0) ∈
Z, let (uκs , v

κ
f , p

κ) be the solution of (1.84) – (1.85). As κ goes to infinity, (uκs , ∂tu
κ
s , v

κ
f ) converge

weakly towards the solution of the following formulation: find us ∈ C0([0, T ]; [H1
0(Ω)]d), ∂tus ∈

C0([0, T ]; [L2(Ω)]d) and vf ∈ C0([0, T ]; [L2(Ω)]d) ∩ L2(0, T ; [H1
0(Ω)]d) or (∂tus, vf ) ∈ L2(0, T ;Vφ) if

η > 0, such that

∫ T

0

∫
Ω
ρs(1− φ)us · ∂2

ttws dx dt+

∫ T

0

∫
Ω
σs(us) : ε(ws) dx dt

+2η

∫ T

0

∫
Ω
ε(∂tus) : ε(ws) dx dt−

∫ T

0

∫
Ω
ρfφ vf · ∂twf dx dt

+

∫ T

0

∫
Ω
φσf (vf ) : ε(wf ) dx dt+

∫ T

0

∫
Ω
φ2 k−1

f (vf − ∂tus) · (wf − ws) dx dt

−
∫ T

0

∫
Ω
θ vf · wf dx dt =

∫ T

0

∫
Ω
ρs(1− φ)f · ws dx dt

+

∫ T

0

∫
Ω
ρfφf · wf dx dt+

∫
Ω
ρs(1− φ) vs0 · ws(0) dx

−
∫

Ω
ρs(1− φ)us0 · ∂tws(0) dx+

∫
Ω
ρfφ vf 0 · wf (0) dx,

(1.87)

and 

∫ T

0

∫
Ω

div
(
(1− φ)∂tus + φ vf

)
q dx dt = 0, if η > 0, (1.88a)

−
∫ T

0

∫
Ω

div
(
(1− φ)us

)
∂tq dx dt

+

∫ T

0

∫
Ω

div (φ vf )q dx dt =

∫
Ω

div
(
(1− φ)us0

)
q(0) dx, if η = 0, (1.88b)

for all admissible test functions

ws ∈ H2(0, T ; [L2(Ω)]d),

wf ∈ H1(0, T ; [L2(Ω)]d),

(ws, wf ) ∈ L2(0, T ;Vφ),

q ∈ H1(0, T ; L2(Ω)),

ws(T ) = ∂tws(T ) = wf (T ) = q(T ) = 0.

(1.89)

Proof. Let us prove this result in the inviscid case η = 0, the viscous case being similar. Since we
can lift the mixture’s divergence constraint as in (1.83), let us consider the case where the right-hand
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side of the pressure equation is equal to zero. The resulting energy estimate reads

ρs
2

∫
Ω

(1− φ)|∂tuκs (t)|2 dx+
1

2

∫
Ω
σs(u

κ
s (t)) : ε(uκs (t)) dx

+ 2η

∫ t

0

∫
Ω
ε(∂tu

κ
s ) : ε(∂tu

κ
s ) dx ds+

ρf
2

∫
Ω
φ|vκf (t)|2 dx

+

∫ t

0

∫
Ω
φσf (vκf ) : ε(vκf ) dx ds+

∫ t

0

∫
Ω
φ2k−1

f (vκf − ∂tuκs ) · (vκf − ∂tuκs ) dx ds

+
1

2

∫
Ω

α− φ
κ
|pκ(t)|2 dx ≤ exp

(
max

(
1,

2‖θ‖C0([0,T ]×Ω)

ρfφmin

)
t

)

×

((
ρs
2

(1− φmin) +
ρf
2
φmax

)∫ t

0

∫
Ω
|f |2 dx ds+

ρs
2

∫
Ω

(1− φ)|vs0|2 dx

+
1

2

∫
Ω
σs(us0) : ε(us0) dx+

ρf
2

∫
Ω
φ|vf 0|

2 dx+
1

2

∫
Ω

α− φ
κ
|p0|2 dx

)
. (1.90)

We deduce that, up to subsequences, the following weak convergences hold true as κ goes to
infinity:

uκs ⇀ u∞s weakly star in L∞(0, T ; [H1
0(Ω)]d),

∂tu
κ
s ⇀ ∂tu

∞
s weakly star in L∞(0, T ; [L2(Ω)]d),

vκf ⇀ v∞f weakly star in L∞(0, T ; [L2(Ω)]d),

vκf ⇀ v∞f weakly in L2(0, T ; [H1
0(Ω)]d),

for some elements u∞s ∈ L∞(0, T ; [H1
0(Ω)]d) with ∂tuκs ∈ L∞(0, T ; [L2(Ω)]d) and v∞f belonging to the

space L∞(0, T ; [L2(Ω)]d) ∩ L2(0, T ; [H1
0(Ω)]d).

We have no bound on the pressure pκ but (1.90) implies that pκ√
κ
is bounded in L∞(0, T ; L2(Ω)).

Hence, we can select a subsequence (still denoted by pκ) such that pκ√
κ
converges in the weak–∗

topology of L∞(0, T ; L2(Ω)).
By adding (1.84a) to (1.84b) and by restricting the velocities test functions (ws, wf ) to functions

in L2(0, T ;Vφ), it follows that (uκs , v
κ
f , p

κ) satisfies

∫ T

0

∫
Ω
ρs(1− φ)uκs · ∂2

ttws dx dt+

∫ T

0

∫
Ω
σs(u

κ
s ) : ε(ws) dx dt

+ 2η

∫ T

0

∫
Ω
ε(∂tu

κ
s ) : ε(ws) dx dt−

∫ T

0

∫
Ω
ρfφ v

κ
f · ∂twf dx dt

+

∫ T

0

∫
Ω
φσf (vκf ) : ε(wf ) dx dt+

∫ T

0

∫
Ω
φ2 k−1

f (vκf − ∂tuκs ) · (wf − ws) dx dt

−
∫ T

0

∫
Ω
θ vκf · wf dx dt =

∫ T

0

∫
Ω
ρs(1− φ)f · ws dx dt+

∫ T

0

∫
Ω
ρfφf · wf dx dt

+

∫
Ω
ρs(1− φ) vs0 · ws(0) dx−

∫
Ω
ρs(1− φ)us0 · ∂tws(0) dx

+

∫
Ω
ρfφ vf 0 · wf (0) dx,

−
∫ T

0

∫
Ω

α− φ
κ

pκ ∂tq dx dt−
∫ T

0

∫
Ω

div
(
(α− φ)uκs

)
∂tq dx dt

+

∫ T

0

∫
Ω

div (φ vκf )q dx dt =

∫
Ω

α− φ
κ

p0q(0) dx+

∫
Ω

div
(
(α− φ)us0

)
q(0) dx,
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for all admissible test functions verifying (1.89).
Thus we can pass to the weak limit in this formulation by noting that α− φ −→ 1− φ,∫ T

0

∫
Ω

α− φ
κ

pκ ∂tq dx dt =
1√
κ

∫ T

0

∫
Ω

(α− φ)
pκ√
κ
∂tq dx dt −→ 0,

and that ∫
Ω

α− φ
κ

p0q(0) dx −→ 0,

as κ goes to infinity.
To conclude, (u∞s , v

∞
f ) satisfies exactly (1.87) and (1.88b) in the incompressible limit. Moreover

u∞s , ∂tu∞s and v∞f are continuous functions in time because they also satisfy (1.80) and hence
coincide with the mild solution. Indeed, (1.80) can be recovered from (1.87) – (1.88b) by taking
admissible test functions of the form (ws, wf , q) =

(
ŵs(x), ŵf (x), q̂(x)

)
ψ(t) with (ŵs, ŵf , q̂) ∈

Vφ × L2(Ω) and ψ ∈ D(0, T ).

Remark 1.42. In the case where the right-hand side of the pressure equation is not equal to zero,
we need to perform a lifting. Note that without this lifting step the energy estimate does not provide
a uniform bound in κ as κ goes to infinity because of the coefficient κ

2ρ2
f (α−φ)min

appearing in the

right-hand side of (1.11). Moreover once the lifting is performed under assumptions (h5)bis and
(h6)bis, the new right-hand sides of the structure and fluid equations depend on α. Yet, it is easy to
verify that they converge strongly in the proper spaces ensuring the convergence of the right-hand
sides as α goes to one in Hd/2+r(Ω) with d/2 + r ≥ 2.

Remark 1.43. Theorem 1.41 provides the weak convergence of the displacement and velocities in
the incompressible limit. If the incompressible regime solution is more regular, we can also obtain
the pressure convergence and recover strong convergence for the displacement and velocities. More
precisely, following the same guidelines as in [Ern and Guermond, 2021b, Lemma 75.1], we can show
that∥∥uκs − u∞s ∥∥2

L∞(0,T ;[H1
0(Ω)]d)

+
∥∥∂tuκs − ∂tu∞s ∥∥2

L∞(0,T ;[L2(Ω)]d)

+
∥∥vκf − v∞f ∥∥2

L∞(0,T ;[L2(Ω)]d)
+

1

κ

∥∥pκ − p∞∥∥2

L∞(0,T ;L2(Ω))

+ η
∥∥∂tuκs − ∂tu∞s ∥∥2

L2(0,T ;[H1
0(Ω)]d)

+
∥∥vκf − v∞f ∥∥2

L2(0,T ;[H1
0(Ω)]d)

.
1

κ2

∥∥∂tp∞∥∥2

H1(0,T ;L2(Ω))
.

Thus, if ∂tp∞ ∈ H1(0, T ; L2(Ω)), then the above error estimate specifies the convergence speed of
(uκs , ∂tu

κ
s , v

κ
f , p

κ) towards (u∞s , ∂tu
∞
s , v

∞
f , p

∞) as κ goes to infinity.

1.5 Numerical experiments

In this section, we present some numerical examples to illustrate the theoretical results presented
earlier. In particular, we numerically investigate the regularity of the solutions to the static and
time-dependent problems. Note that there is an extensive literature on the numerical approximation
of Biot-type systems, see [Russell and Wheeler, 1983; Zienkiewicz and Shiomi, 1984; Wheeler and
Yotov, 2006; Phillips and Wheeler, 2008; Markert et al., 2009; Mikelić and Wheeler, 2013; Wheeler
et al., 2014; Oyarzúa and Ruiz-Baier, 2016; Yi, 2017; Both et al., 2017; Lee, 2018; Storvik et al.,
2019] and references therein. The numerical analysis of the specific model (1.2) presented in this
work was performed in [Burtschell et al., 2019; Barnafi et al., 2021], where the time discretization
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is performed with a monolithic backward Euler scheme. Moreover, an alternating minimization
splitting scheme was proposed in [Both et al., 2022], which leads to a solver closely related to
the undrained and fixed-stress splits of Biot’s equations. We follow here the monolithic scheme
of [Burtschell et al., 2019; Barnafi et al., 2021]. In addition, all simulations in this section were
performed using the FEniCS finite element library [Logg et al., 2012; Alnæs et al., 2015].

1.5.1 Spatial discretization

For small values of bulk modulus, our equations can be discretized with standard finite elements.
However, when the coefficient κ becomes large, we have to take into account the saddle-point
structure of the problem involving the mixture’s divergence constraint and to chose finite element
spaces that satisfy the inf-sup condition (1.62) at the discrete level.

In the incompressible or nearly incompressible case, the expression of the mapping

T : (us, vs, vf , p) 7−→
(α∗

2
us −

α∗

2λ0
vs, α

∗vs − vp, α∗vf − vp, α∗p
)
,

defined in (1.79) suggests us how to select convenient finite element spaces in order to discretize the
problem. Indeed, to get a stable discretization, it is sufficient to reproduce the construction of vp at
the discrete level. This is possible by choosing finite elements that are stable (in the Brezzi [Boffi
et al., 2013] sense) for Stokes equations.

More precisely, let us suppose that we use a conforming approximation of the space Y =
[H1

0(Ω)]d × [H1
0(Ω)]d × [H1

0(Ω)]d × L2(Ω) by a finite dimensional space

Yh = Vs,h × Vs,h × Vf,h ×Qh ⊂ Y,

where Vs,h, Vf,h and Qh denote respectively the finite element spaces chosen to discretize the solid
part, the fluid part and the pressure of the mixture. Assume further that (Vs,h, Qh) and (Vf,h, Qh)
are two inf-sup stable pairs associated with the standard Stokes problem and verify Fortin Lemma
[Boffi et al., 2013, Proposition 5.4.2], i.e. there exists two operators Πs,h : [H1

0(Ω)]d 7→ Vs,h and
Πf,h : [H1

0(Ω)]d 7→ Vf,h satisfying, for each v ∈ [H1
0(Ω)]d,

• For all qh ∈ Qh, ∫
Ω

div v qh dx =

∫
Ω

div
(
Πi,h(v)

)
qh dx, i ∈ {s, f}; (1.91)

• There exists a constant Ci,π > 0 independent of h such that

‖∇
(
Πi,h(v)

)
‖ ≤ Ci,π‖∇v‖, i ∈ {s, f}. (1.92)

Under these hypotheses, we claim that the bilinear form aλ0 defined in the mixed formulation (1.75)
is uniformly Th-coercive. Namely, it holds

∀h > 0,∃Th ∈ L(Yh),∀zh ∈ Yh, |aλ0(zh, Thzh)| ≥ α‖zh‖2Yh and |||Th||| ≤ C, (1.93)

for some constants α > 0 and C > 0 independent of h.
Indeed, setting

Th : (us,h, vs,h, vf,h, ph)

7−→
(α∗

2
us,h −

α∗

2λ0
vs,h, α

∗vs,h −Πs,h(vph), α∗vf,h −Πf,h(vph), α∗ph

)
, (1.94)

where vph is defined by (1.63), the property (1.91) enables us to reproduce the calculations from
the proof of Proposition 1.36 at the discrete level, so that the first condition of (1.93) holds true.
The second condition then follows from (1.92) since

‖∇
(
Πi,h(vph)

)
‖ ≤ Ci,π‖∇vph‖ ≤ Ci,πCdiv‖ph‖,
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for each i ∈ {s, f}.
Therefore, a stable discretization of the incompressible system is offered by standard inf-sup

stable conforming finite elements associated with the Stokes system. For instance, as it was observed
in [Barnafi et al., 2021], one can use Taylor-Hood elements [Pk+1]d − Pk (k ≥ 1) for the pairs
(Vs,h, Qh) and (Vf,h, Qh). More broadly, the previous Th-coercivity argument implies the stability
of the MINI element Pb1 − P1, the P2 − P0 element, or also Scott-Vogelius elements [Pk]d − P−1

k−1

with k ≥ 4 and d = 2.
Finally, note that the mapping (1.94) is independent of the porosity φ and that the obtention of

(1.93) does not require any assumption on the size of the permeability tensor kf , as it was assumed
in [Barnafi et al., 2021]. Hence, our approach provides a robust discretization regardless of porosity
and permeability.

1.5.2 Regularity of the operator’s domain

In both compressible and incompressible cases, we proved the existence and uniqueness of a strong
solution in C0([0, T ];D(Aκη)), with η ≥ 0 and 0 < κ ≤ +∞. The operator’s domain D(Aκη) was
defined by extension from a continuous bilinear form (see e.g. (1.23) and (1.24)) but we did not
express it as a standard Sobolev space. In what follows, we give some numerical evidences that the
operator’s domain is not regular, namely

D(Aκη≥0) 6= [H2(Ω)]d ∩ [H1
0(Ω)]d × [H2(Ω)]d ∩ [H1

0(Ω)]d × [H2(Ω)]d ∩ [H1
0(Ω)]d ×H1(Ω)

and
D(A∞η≥0) 6= [H2(Ω)]d ∩ [H1

0(Ω)]d ×
(
[H2(Ω)]d × [H2(Ω)]d ∩ Vφ

)
×H1(Ω).

To do so, we compute numerically the solution of the static problem z+Aκηz = g with g ∈ Z or
g ∈ H, viz. 

us − vs = gu,

ρs(1− φ) vs − div
(
σs(us)

)
− div

(
σviss (vs)

)
+ (α− φ)∇p = ρs(1− φ) gs,

ρfφ vf − div
(
φσf (vf )

)
+ φ∇p = ρfφ gf ,

α− φ
κ

p+ div
(
(α− φ) vs + φ vf

)
=


α− φ
κ

gp if κ < +∞,

0 if κ = +∞,

(1.95)

with (gu, gs, gf , gp) ∈ [L2(Ω)]d× [L2(Ω)]d× [L2(Ω)]d×L2(Ω) and where we have assumed that kf = 0
and θ = 0 without loss of generality.

We consider Ω = {x ∈ R2, |x| ≤ 1} a very smooth domain and (Th)h a regular family of meshes
of Ω̄, made of triangles. The coarsest mesh size H corresponds to a uniform mesh constructed with
8 subdivisions along each axis direction. Setting ρs = ρf = λf = µf = η = λ = µ = 1 and taking
a constant porosity φ = 0.5, we compute the error in L2-norm between the approximated solution
(us,h, vs,h, vf,h, ph) of (1.95) and a reference solution computed on a very refined mesh.

The resulting convergence graphs are presented in Figure 1.1 for κ = 1 and smooth data gs,
gf , gp. The convergence rates depend on the regularity of the solid displacement data gu. If
gu is smooth, we obtain optimal orders of convergence, as expected by the theory. However, if
gu ∈ [H1

0(Ω)]d\[H2(Ω)]d, Figure 1.1 (right) exhibits suboptimal convergence rates, thus indicating
that the solution of (1.95) is not in H2. The same occurs in the incompressible case, as shown in
Figure 1.2.

Remark 1.44. In most applications, we have gu = 0 so that the solution of the static problem
(1.95) may me more regular than suggested by Figures 1.1 and 1.2. Yet, if κ < +∞ or if η = 0, we
only know that div

(
(1 − φ)vs

)
∈ L2(Ω), while the usual regularity results for Stokes-like systems
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Figure 1.1 – Approximation errors and computed convergence rates for the discretization of the compressible
(κ = 1) steady-state problem (1.95) with [P1]2 × [P1]2 × [P1]2 × P1 elements.
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Figure 1.2 – Approximation errors and computed convergence rates for the discretization of the incompress-
ible (κ = +∞) steady-state problem (1.95) with Pb1 × Pb1 × Pb1 × P1 elements.

require a divergence right-hand side in H1(Ω). Therefore, our conjecture is that the only case in
which the full regularity [H2(Ω)]d ∩ [H1

0(Ω)]d × [H2(Ω)]d ∩ [H1
0(Ω)]d × [H2(Ω)]d ∩ [H1

0(Ω)]d × H1(Ω)
is recovered is the viscous incompressible case η > 0 and κ = +∞, provided that the porosity φ is
smooth enough.

1.5.3 Regularity of solutions

Even if the operator’s domain is not regular, we are now going to shed light on the regularizing
effect for the solution of the unsteady problem. For this purpose, we use the time discretization
introduced and fully analyzed in [Burtschell et al., 2019], which consists of a midpoint scheme for
the solid fields and an implicit backward Euler scheme for the fluid and the pressure. The major
interest of this scheme is that it preserves energy balance at the discrete level.

As before, we perform the simulation on the smooth domain Ω = {x ∈ R2, |x| ≤ 1} meshed by
a regular family of triangulations (Th)h. We set ρs = ρf = λf = µf = λ = µ = 1, kf = 0, θ = 0
and φ = 0.5. We take κ = 1010, but smallest values of κ would lead to comparable results. All the
simulations are run during a hundred of time iterations, with a time step ∆t = 10−2 and up to the
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final time T = 1.
Figure 1.3 illustrates the possible regularizing effect of time. Indeed, although the initial ve-

locities and the applied exterior body force belong to [H1
0(Ω)]d\[H2(Ω)]d, we recover optimal con-

vergence rates in L∞(0, T ;Z)-norm between the approximated and reference solutions. Indeed,
when using Pb1 × Pb1 × Pb1 × P1 elements for spatial discretization, the optimal convergence rate
in this norm is equal to 1 for the displacement and to 2 for the other quantities since Z =
[H1

0(Ω)]d × [L2(Ω)]d × [L2(Ω)]d × L2(Ω). Note that putting η = 0 slightly degrades the conver-
gence order of the solid velocity, but does not affect the regularity of solid displacement, fluid
velocity and pressure.
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Figure 1.3 – Approximation errors and convergence rates for the discretization of the time-dependent problem
(1.59) with Pb1 × Pb1 × Pb1 × P1 elements and vs0, vf 0, f in [H1

0(Ω)]d\[H2(Ω)]d.

If the initial conditions and the right-hand side belong strictly to the energy space, Figure 1.4
highlights that the convergence rates are considerably diminished, which confirms the regularity
found in Theorems 1.32 and 1.39. Moreover, the solution is less regular when η = 0, as predicted
by our theoretical results.
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Figure 1.4 – Approximation errors and convergence rates for the discretization of the time-dependent problem
(1.59) with Pb1 × Pb1 × Pb1 × P1 elements and vs0, vf 0, f in [L2(Ω)]d\[H1

0(Ω)]d.
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Conclusion

In this work, we study the well-posedness for a fully unsteady and strongly coupled poromechanics
model. Using an original combination of semigroup theory and T-coercivity, we demonstrated the
existence and uniqueness of strong solutions in the compressible and incompressible cases, with or
without solid viscosity. By unifying semigroup and variational techniques, we also recovered the
existence and uniqueness of weak solutions. From the methodological point of view, this unified ap-
proach enabled us to take benefit of the best of both theories depending on the hyperbolic-parabolic
or parabolic-parabolic nature of the coupling, in particular to prove uniqueness. To handle the in-
compressible case, we developed a functional framework and an extension of De Rham Theorem
adapted to the mixture’s divergence constraint. When the incompressible regime is reached, our
analysis offers a spatial discretization of the problem with conforming finite elements, including
Taylor-Hood elements but also any Stokes-stable elements such as the MINI element. Moreover,
this choice of finite element discretization spaces is robust with respect to porosity and permeabil-
ity. Finally, our theoretical results are corroborated by numerical experiments. We have shown
numerically that the operator’s domain is not regular, and illustrate the possible regularizing effect
on the unsteady problem.
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CHAPTER 2

The T-coercivity method for mixed problems

This chapter reproduces results obtained in collaboration with Patrick Ciarlet (ENSTA Paris).
The corresponding article is currently under review. In Chapter 1, the notion of T-coercivity was in
particular used to deal with the incompressibility mixture divergence constraint. The goal of this
chapter is to extend this concept to general saddle-point and perturbed saddle-point problems and
to apply it to electromagnetism, nearly-incompressible elasticity and neutron diffusion.
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Abstract

Classically, the well-posedness of variational formulations of mixed linear problems is achieved
through the inf-sup condition on the constraint. In this note, we propose an alternative framework
to study such problems by using the T-coercivity approach to derive a global inf-sup condition. This
is a constructive approach that leads to the design of suitable approximations in a simple way. In
general, the derivation of the uniform discrete inf-sup condition for the approximate problems stems
straightforwardly from the study of the original problem. To support our view, we solve a series
of classical mixed problems with the T-coercivity approach. Among others, the celebrated Fortin’s
Lemma appears naturally in the numerical analysis of the approximate problems.

Keywords — T-coercivity, inf-sup condition, Fortin’s Lemma, perturbed saddle-point problems.
Mathematics Subject Classification (2020) — 65N30, 35J57, 76D07, 78M10.

Introduction

Traditionally, the well-posedness of variational formulations of mixed linear problems is achieved
through the inf-sup condition, also called stability condition [Ladyzhenskaya, 1969; Babuška, 1973;
Brezzi, 1974]. As a matter of fact, proving this condition allows to derive existence and uniqueness
of the solution, and continuous dependence with respect to the data. On the other hand, the way
this condition is established depends on the problem to be solved. The analysis of such problems
can be performed either following a monolithic approach, namely studying the all-in-one bilinear
form incorporating the constraint, or by studying the constrained part of the problem separately.

In this note, we focus on the monolithic approach and investigate the mixed problem’s well-
posedness based on the T-coercivity framework. The principle of this framework is to find an
explicit realization of the inf-sup condition for the all-in-one bilinear form. Of equal importance, in
the T-coercivity framework, is the design of suitable approximations of the original problem. Indeed,
with the help of the explicit realization of the condition for the original problem, one can get useful
insight on how to derive the so-called uniform discrete inf-sup condition for the approximate, or
discrete, problems set in finite-dimensional vector spaces. Thus, convergence of the approximate
solutions to the exact one follows under well-known principles in numerical analysis, such as Céa’s
Lemma (or a variant), and a basic approximability property of elements of the original space of
solutions. To summarize, although the T-coercivity approach may not bring new result to the
theory of variational formulations, it proposes a compact way to study them theoretically and also
on how to approximate them.
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So far, the T-coercivity approach has been mainly applied to two categories of linear problems.
First, for problems involving an invertible operator and a compact perturbation, see eg. [Hipt-
mair, 2002; Buffa et al., 2002; Buffa and Christiansen, 2003; Buffa, 2005; Ciarlet Jr, 2012; Sayas
et al., 2019]. Then, for problems with sign-changing coefficients, cf. [Bonnet-Ben Dhia et al.,
2010b; Nicaise and Venel, 2011; Bonnet-Ben Dhia et al., 2012; Chesnel and Ciarlet, 2013; Bonnet-
Ben Dhia et al., 2013; Bonnet-Ben Dhia et al., 2018, 2014b,a; Bunoiu and Ramdani, 2016; Chesnel,
2016; Bunoiu et al., 2020; Ciarlet Jr, 2020; Halla, 2021; Bunoiu et al., 2021; Ciarlet Jr, 2022]. For
the second category, we observe that well-posedness and (efficient) approximation of the variational
formulations has actually been achieved with the help of the T-coercivity approach. Up to the
authors’ knowledge, this approach was only applied to mixed problems in [Jamelot and Ciarlet Jr,
2013; Hong et al., 2023]: in the first reference, it is applied to the specific case of neutron diffusion,
whereas the second one focuses on perturbed saddle-point problems.

In this note, we apply the T-coercivity approach to general mixed problems, including unper-
turbed and perturbed saddle-point problems. In particular, we will explain the connections with
the classical theory, for which we use [Boffi et al., 2013] as the reference textbook. Among those
connections, we note that the celebrated Fortin’s Lemma will appear naturally in the (numerical)
analysis of the discrete problems.

Let us introduce some notation. Given a Hilbert space V , we denote by (·, ·)V and ‖ · ‖V the
inner product and the norm on V , and by V ′ its dual space. In a product space V ×W , we use the
norm

‖(v, w)‖V×W =
(
‖v‖2V + ‖w‖2W

)1/2
,

and similarly for the inner product. Vector-valued function spaces are written in boldface character.
A connected, bounded, open subset of Rd with a Lipschitz boundary is called a domain.

Let Ω be a domain with boundary ∂Ω. We denote by n the unit outward normal vector field to
∂Ω. Let L2(Ω) and L2(Ω) be the set of square-integrable real-valued and Rd-valued functions on Ω.
The natural norm in L2(Ω) or L2(Ω) is denoted by ‖ · ‖, and we let

L2
0(Ω) =

{
v ∈ L2(Ω) ,

∫
Ω
v dx = 0

}
.

In what follows, unless otherwise stated, the standard Sobolev space H1
0 (Ω) is endowed with the

norm v 7→ ‖∇v‖, that defines a norm that is equivalent to ‖ · ‖H1(Ω) thanks to Poincaré’s inequality.
The dual space of H1

0 (Ω) is denoted by H−1(Ω). Similarly, H1
0 (Ω) is endowed with the norm

v 7→
(∑

i=1,d ‖∇vi‖2
)1/2, that defines a norm that is equivalent to ‖ · ‖[H1(Ω)]d , and its dual space is

denoted by H−1(Ω). We introduce the usual Sobolev spaces for vector-valued fields [Assous et al.,
2018]

H(div ; Ω) =
{
v ∈ L2(Ω), div v ∈ L2(Ω)

}
,

H0(div ; Ω) =
{
v ∈H(div ; Ω), v · n = 0 on ∂Ω

}
,

H(div 0; Ω) =
{
v ∈H(div ; Ω), div v = 0

}
,

H(curl ; Ω) =
{
v ∈ L2(Ω), curlv ∈ L2(Ω)

}
, for d = 3,

H0(curl ; Ω) =
{
v ∈H(curl ; Ω), v × n = 0 on ∂Ω

}
, for d = 3.

Unless otherwise specified, H(div ; Ω) is endowed with the norm v 7→
(
‖v‖2 + ‖div v‖2

)1/2 and
H(curl ; Ω) with the norm v 7→

(
‖v‖2 + ‖curlv‖2

)1/2.
The outline is as follows. In Section 2.1, we introduce the T-coercivity approach, and explain

how it can be applied to solve the Stokes problem theoretically. Then, in Section 2.2, we develop the
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Chapter 2. The T-coercivity method for mixed problems

abstract framework underlying the approach for mixed problems, including saddle-point, augmented
and perturbed ones. In Sections 2.3, 2.4 and 2.5, we propose some applications, respectively to
electromagnetism, nearly-incompressible elasticity, and diffusion. Then, in Section 2.6, we propose
the natural extension of the T-coercivity approach for the conforming approximation of mixed
problems. As before, we begin by the Stokes problem, then we consider the numerical analysis for
mixed problems in general, before describing how the approach can be applied to electromagnetism,
nearly-incompressible elasticity, and diffusion. We conclude by a list of further extensions and recent
applications of the T-coercivity approach.

2.1 T-coercivity for the Stokes problem

The starting point of our study is to propose a T-coercivity approach to solve Stokes problem.
Let Ω ⊂ Rd be a domain. We consider the Stokes problem with homogeneous Dirichlet boundary
conditions: given a prescribed body force f ∈ H−1(Ω), find the velocity u ∈ H1(Ω) and the
pressure p ∈ L2

0(Ω) such that
−ν∆u +∇p = f , in Ω,

divu = 0, in Ω,

u = 0, on ∂Ω,

(2.1)

where ν > 0 denotes the fluid’s viscosity.
The standard method to solve Problem (2.1) – see [Girault and Raviart, 1986] – consists in a

one-plus-one approach. The problem is split into a coercive part

a(u,v) = ν

∫
Ω
∇u : ∇v dx

and divergence constraint terms of the form

b(v, q) = −
∫

Ω
q div v dx,

so that the weak formulation of Problem (2.1) reads: find (u, p) ∈H1
0 (Ω)× L2

0(Ω) such that

a(u,v) + b(v, p) = 〈f ,v〉, ∀v ∈H1
0 (Ω),

b(u, q) = 0, ∀q ∈ L2
0(Ω),

(2.2)

where 〈·, ·〉 denotes the duality product in H1
0 (Ω). The well-posedness of Problem (2.2) then follows

from Ladyzhenskaya–Babuška–Brezzi’s theory [Ladyzhenskaya, 1969; Babuška, 1973; Brezzi, 1974]
since the bilinear form a is coercive on H1

0 (Ω) and the bilinear form b satisfies the inf-sup condition

inf
q∈L2

0(Ω)\{0}
sup

v∈H1
0 (Ω)\{0}

b(v, q)

‖∇v‖‖q‖
≥ β (2.3)

for some constant β > 0.
Here, we are going to give an alternative proof that Problem (2.1) is well-posed by analysing

the all-in-one bilinear form defined on H1
0 (Ω)× L2

0(Ω)

A
(
(u, p), (v, q)

)
= ν

∫
Ω
∇u : ∇v dx−

∫
Ω
p div v dx−

∫
Ω
q divu dx

instead of splitting it into two bilinear forms a and b as in (2.2). This bilinear form is not coercive
since

A
(
(0, p), (0, p)

)
= 0, ∀p ∈ L2

0(Ω).
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2.1. T-coercivity for the Stokes problem

For this reason, we use the notion of T-coercivity [Ciarlet Jr, 2012; Chesnel and Ciarlet, 2013],
which can be seen as a reformulation of Banach-Nečas-Babuška’s theory [Ern and Guermond, 2021a,
Theorem 25.9]. For an Hilbert space W , let L(W ) denote the set of bounded operators on W . The
definition and the main property of T-coercivity are recalled below.

Definition 2.1. [Chesnel and Ciarlet, 2013, Definition 3] Let W be a Hilbert space and let A(·, ·)
be a continuous bilinear form over W ×W . We say that A is T-coercive if there exists a bijective
operator T ∈ L(W ) and α > 0 such that

|A(u, Tu)| ≥ α‖u‖2W , ∀u ∈W.

Proposition 2.2. [Chesnel and Ciarlet, 2013, Theorem 1] Let W be a Hilbert space. Let `(·) be a
continuous linear form over W and A(·, ·) be a continuous bilinear form over W ×W . The problem{

Find u ∈W such that
∀v ∈W, A(u, v) = `(v)

is well-posed if and only if A is T-coercive. If so, it holds that

‖u‖W ≤
C`
α
|||T|||, (2.4)

with C` the continuity constant of the linear form ` and

|||T||| = sup
v∈W\{0}

‖Tv‖W
‖v‖W

When the bilinear form A(·, ·) is in addition symmetric, the requirement that the operator T is
bijective can be dropped.

2.1.1 Proving well-posedness with T-coercivity

With the T-coercivity tool in mind, we are now ready to establish the main result of this section.
To that aim, we use the result below, see for instance [Girault and Raviart, 1986, Corollary I.2.4].
Let q ∈ L2

0(Ω). Then, there exists vq ∈H1
0 (Ω) satisfying

− div vq = q. (2.5)

In addition, there exists a constant Cdiv > 0 independent of q such that

‖∇vq‖ ≤ Cdiv‖q‖. (2.6)

Theorem 2.3. The problem{
Find (u, p) ∈H1

0 (Ω)× L2
0(Ω) such that

∀(v, q) ∈H1
0 (Ω)× L2

0(Ω), A
(
(u, p), (v, q)

)
= 〈f ,v〉

(2.7)

is well-posed and

‖(u, p)‖H1
0 (Ω)×L2

0(Ω) ≤
2 max

(√
2νC2

div, Cdiv

(
2 + ν2C2

div

)1/2)
min(ν2C2

div, 1)
‖f‖H−1(Ω). (2.8)

75



Chapter 2. The T-coercivity method for mixed problems

Proof. The linear form defined by

`
(
(v, q)

)
= 〈f ,v〉, ∀(v, q) ∈H1

0 (Ω),×L2
0(Ω)

is continuous over H1
0 (Ω)× L2

0(Ω) in view of the inequality

`
(
(v, q)

)
≤ ‖f‖H−1(Ω)‖(v, q)‖H1

0 (Ω)×L2
0(Ω). (2.9)

The bilinear form A is continuous over
(
H1

0 (Ω)×L2
0(Ω)

)2 and we observe that it is also symmetric.
Then, from Proposition 2.2, it is sufficient to show that the bilinear form A is T-coercive. For

a given (u, p) ∈ H1
0 (Ω) × L2

0(Ω), we look for an element (v∗, q∗) of H1
0 (Ω) × L2

0(Ω) depending
continously on (u, p) and such that

A
(
(u, p), (v∗, q∗)

)
≥ α‖(u, p)‖2H1

0 (Ω)×L2
0(Ω)

for some constant α > 0. In order to get an intuitive idea of the construction of (v∗, q∗), let us start
with specific elements (u, p).
• If p = 0, then ‖(u, p)‖2

H1
0 (Ω)×L2

0(Ω)
= ‖∇u‖2 and

A
(
(u, p), (v∗, q∗)

)
= ν

∫
Ω
∇u : ∇v∗ dx−

∫
Ω

divu q∗ dx,

so that we can take v∗ = u and q∗ = p = 0.

• If u = 0, then ‖(u, p)‖2
H1

0 (Ω)×L2
0(Ω)

= ‖p‖2 and

A
(
(u, p), (v∗, q∗)

)
= −

∫
Ω
p div v∗ dx.

In order to recover the expected term ‖p‖2 in the above expression, we have to choose v∗, the
divergence of which is "as close as possible" to −p. The idea is now to choose v∗ = vp, where
vp is as in (2.5)-(2.6). Hence, taking q∗ = 0, we find

A
(
(u, p), (v∗, q∗)

)
= ‖p‖2,

and (2.6) ensures that the pair (vp, 0) depends continously on (0, p) in H1
0 (Ω)× L2

0(Ω).

• If divu = 0, then

A
(
(u, p), (v∗, q∗)

)
= ν

∫
Ω
∇u : ∇v∗ dx−

∫
Ω
p div v∗ dx.

Since we need to get a term of the form ‖∇u‖2 but also of the form ‖p‖2, we combine the
previous two cases by setting v∗ = λu+vp, where λ is a positive coefficient to be adjusted and
vp is the divergence lifting from (2.5) – (2.6). Now, we compute

A
(
(u, p), (v∗, q∗)

)
= νλ

∫
Ω
∇u : ∇udx+ ν

∫
Ω
∇u : ∇vp dx− λ

∫
Ω
p divu dx−

∫
Ω
p div vp dx

= νλ‖∇u‖2 + ν

∫
Ω
∇u : ∇vp dx+ ‖p‖2

since divu = 0 and −div vp = p. For all η > 0, Young’s inequality implies that∫
Ω
∇u : ∇vp dx ≥ −η

2
‖∇u‖2 − 1

2η
‖∇vp‖2

≥ −η
2
‖∇u‖2 −

C2
div

2η
‖p‖2 in virtue of (2.6),
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2.1. T-coercivity for the Stokes problem

and thus

A
(
(u, p), (v∗, q∗)

)
≥ ν

(
λ− η

2

)
‖∇u‖2 +

(
1−

νC2
div

2η

)
‖p‖2.

Hence, by setting η = λ = νC2
div, we obtain

A
(
(u, p), (v∗, q∗)

)
≥
ν2C2

div

2
‖∇u‖2 +

1

2
‖p‖2.

In the general case, we choose v∗ = λu + vp with λ = νC2
div and q∗ = −λp so that, even if

divu 6= 0, the term −λ
∫

Ω p divudx cancels with the term −
∫

Ω divu q∗ dx and we get the same
results as in the case divu = 0. Namely, the bilinear form A is T-coercive for the mapping

T : H1
0 (Ω)× L2

0(Ω) −→H1
0 (Ω)× L2

0(Ω)

(u, p) 7−→
(
νC2

divu + vp,−νC2
divp

)
,

where vp is defined by (2.5) with estimate (2.6), and it holds that

A
(
(u, p), T(u, p)

)
≥
ν2C2

div

2
‖∇u‖2 +

1

2
‖p‖2 ≥ 1

2
min(ν2C2

div, 1)‖(u, p)‖2H1
0 (Ω)×L2

0(Ω). (2.10)

Thanks to (2.5)-(2.6), T belongs to L(H1
0 (Ω)× L2

0(Ω)). More precisely, we have

‖T(u, p)‖2H1
0 (Ω)×L2

0(Ω) = ‖νC2
divu + vp‖2H1

0 (Ω) + ‖νC2
divp‖2

≤ 2(νC2
div)2‖∇u‖2 + 2‖∇vp‖2 + (νC2

div)2‖p‖2

≤ 2(νC2
div)2‖∇u‖2 +

(
2C2

div + (νC2
div)2

)
‖p‖2

and thus
|||T||| ≤ max

(√
2νC2

div, Cdiv

(
2 + ν2C2

div

)1/2)
. (2.11)

Using (2.9), (2.10) and (2.11) in the stability estimate (2.4), we finally obtain (2.8).

Remark 2.4. The previous result readily extends to the case of a non-null divergence constraint

−ν∆u +∇p = f , in Ω,

divu = g, in Ω,

u = 0, on ∂Ω,

with g ∈ L2
0(Ω), leading to the stability estimate

‖(u, p)‖H1
0 (Ω)×L2

0(Ω) ≤
2 max

(√
2νC2

div, Cdiv

(
2 + ν2C2

div

)1/2)
min(ν2C2

div, 1)
‖(f , g)‖H−1(Ω)×L2

0(Ω). (2.12)

2.1.2 Comments

The stability estimates (2.8) and (2.12) are valid for all Cdiv that fulfills (2.6). On the other hand,
one has

lim
Cdiv→∞

2 max
(√

2νC2
div, Cdiv

(
2 + ν2C2

div

)1/2)
min(ν2C2

div, 1)
= +∞,

i.e. the stability estimates become meaningless for large Cdiv.
Going through the proof of Theorem 2.3, we observe that the constant obtained in (2.8) and

(2.12) is just one of the many bounds one can achieve with T-coercivity for the Stokes problem.
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Indeed, the operator T is in general not unique. In particular, one can choose any positive value of
λ, so that there exists a family of admissible operators T in the sense of Definition 2.1, which shows
the flexibility of the approach.

Let us provide an illustration. For small viscosity ν (the domain Ω being fixed), it is well-known
that the stability constant appearing in the estimate

‖(u, p)‖H1
0 (Ω)×L2

0(Ω) ≤ C(ν) ‖(f , g)‖H−1(Ω)×L2
0(Ω)

behaves likes O(ν−1). For instance, for the velocity u, the result is elementarily obtained by taking
the test field (v, q) = (u, p) in (2.2). On the other hand, in (2.8) and (2.12), we find a behavior in
O(ν−2). But, if one is interested in obtaining a less severe blowup, one can simply choose

η =
νC2

div

2(1− ν
2 )

and λ =
1

2
(1 + η)

in the above proof, for all 0 < ν ≤ 1. Then, one finds that

α =
ν

2
and |||T||| ≤ max

( 1√
2

(1 + C2
div),

(
2C2

div +
1

4
(1 + C2

div)2
)1/2)

,

so that (2.4) actually yields a stability constant in O(ν−1).

Remark 2.5. Note that the dependence of the previous estimates on viscosity can be removed by
using the scaled norm ‖·‖ν defined by ‖u‖ν = ν

∫
Ω∇u : ∇v dx for all u ∈H1

0 (Ω).

Theorem 2.3 provides a fully constructive proof for the well-posedness of Stokes problem, which
is an emblematic example of mixed problem. In the next section, we show that the T-coercivity
approach employed here is in fact very general and can be extended to a large class of saddle-point
problems.

2.2 Abstract framework

We start with the classical statements regarding the definition of saddle-point problems, and the
equivalent conditions to ensure an inf-sup condition on the constraint. Then, we proceed with the
design of abstract operators T to ensure well-posedness for saddle-point problems, and for augmented
saddle-point problems.

2.2.1 Saddle-point problems in Hilbert spaces

Let V and Q be two Hilbert spaces. In the Hilbert space Q, we introduce the canonical isomorphism
1Q→Q′ : Q→ Q′ defined by

〈1Q→Q′p, q〉Q′,Q = (p, q)Q, ∀p ∈ Q, ∀q ∈ Q,

which is a bijective isometry according to Riesz Theorem. As a matter of fact, its inverse 1Q′→Q is
also a bijective isometry, and

(1Q′→Qg, q)Q = 〈g, q〉Q′,Q, ∀g ∈ Q′, ∀q ∈ Q.

We then introduce two bilinear forms a(·, ·) on V × V and b(·, ·) on V ×Q that are assumed to
be continuous, i.e. there exist Ca > 0 and Cb > 0 such that

a(u, v) ≤ Ca‖u‖V ‖v‖V , ∀u ∈ V,∀v ∈ V, (2.13)
b(v, q) ≤ Cb‖v‖V ‖q‖Q, ∀v ∈ V,∀q ∈ Q. (2.14)
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We denote by A and B the linear continuous operators associated with a and b, defined by

A ∈ L(V, V ′), 〈Au, v〉V ′,V = a(u, v), ∀u ∈ V,∀v ∈ V,
B ∈ L(V,Q′), 〈Bv, q〉Q′,Q = b(v, q), ∀v ∈ V,∀q ∈ Q.

The adjoint operator of B is given by

B∗ ∈ L(Q,V ′), 〈B∗q, v〉V ′,V = 〈Bv, q〉Q′,Q = b(v, q), ∀v ∈ V,∀q ∈ Q.

Given f ∈ V ′ and g ∈ Q′, we consider the saddle-point problem: find (u, p) ∈ V ×Q such that

Au+B∗p = f, in V ′,
Bu = g, in Q′.

(2.15)

Or, equivalently, in variational form:
Find (u, p) ∈ V ×Q such that
∀v ∈ V, a(u, v) + b(v, p) = 〈f, v〉V ′,V ,
∀q ∈ Q, b(u, q) = 〈g, q〉Q′,Q.

(2.16)

As for the Stokes problem, we write Problem (2.15) as an all-in-one variational formulation{
Find (u, p) ∈ V ×Q such that
∀(v, q) ∈ V ×Q, A

(
(u, p), (v, q)

)
= 〈f, v〉V ′,V + 〈g, q〉Q′,Q,

(2.17)

where
A
(
(u, p), (v, q)

)
= a(u, v) + b(v, p) + b(u, q).

In what follows, we show that Problem (2.17) is well-posed using the notion of T-coercivity, with
slightly different techniques depending on the assumptions made on the bilinear form a.

Regarding the form b(·, ·) and the operator B, one has the well-known result below, see for
instance [Girault and Raviart, 1986, Lemma I.4.1]1 or [Ern and Guermond, 2021a, Lemma C.44],
which can be viewed as a reformulation of Banach’s Closed Range Theorem.

Theorem 2.6. The following three statements are equivalent:
(i) There exists β > 0 such that

inf
q∈Q\{0}

sup
v∈V \{0}

b(v, q)

‖v‖V ‖q‖Q
≥ β. (2.18)

(ii) B : (KerB)⊥ → Q′ is an isomorphism, and

‖Bv‖Q′ ≥ β ‖v‖V , ∀v ∈ (KerB)⊥.

(iii) There exists an isomorphic operator LB : Q′ → (KerB)⊥ such that

B(LBg) = g and ‖g‖Q′ ≥ β ‖LBg‖V , ∀g ∈ Q′.
1Item (iii) below is a rephrasing of the original statement, because it is better suited for our purposes. For details,

see the proof of Lemma I.4.1. of [Girault and Raviart, 1986] p. 59, item 2. The operator LB is a right-inverse of the
operator B.
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Since our aim is to build operators T from V ×Q to itself, we first introduce the operator

B = 1Q′→Q ◦B : V → Q.

For all v ∈ V , ‖Bv‖Q′ = ‖1Q′→Q(Bv)‖Q = ‖Bv‖Q and, for all (v, q) ∈ V ×Q,

b(v, q) = 〈Bv, q〉Q′,Q = 〈1Q→Q′(Bv), q〉Q′,Q = (Bv, q)Q. (2.19)

Whenever applicable, we also introduce its right-inverse

LB = LB ◦ 1Q→Q′ : Q→ (Ker B)⊥.

Observe that

b(LBp, q) = 〈BLBp, q〉Q′,Q = 〈1Q→Q′p, q〉Q′,Q = (p, q)Q, ∀p ∈ Q, ∀q ∈ Q. (2.20)

Under these notation, items (ii)-(iii) of Theorem 2.6 now write
(ii) B : (Ker B)⊥ → Q is an isomorphism, and

‖Bv‖Q ≥ β ‖v‖V , ∀v ∈ (Ker B)⊥. (2.21)

(iii) There exists an isomorphic operator LB : Q→ (Ker B)⊥ such that

B(LBq) = q and ‖q‖Q ≥ β ‖LBq‖V , ∀q ∈ Q. (2.22)

For convenience, we often use β = β−1, so that

‖LBq‖V ≤ β‖q‖Q, ∀q ∈ Q.

2.2.2 How to achieve T-coercivity for saddle-point problems?

If a is coercive on the whole space V , we can extend the proof of Theorem 2.3 in the following way.

Theorem 2.7. Assume that (2.18) holds true and that the form a is symmetric and positive. If
there exists a constant α > 0 such that

a(u, u) ≥ α‖u‖2V , ∀u ∈ V, (2.23)

then there exists a unique solution to Problem (2.17) and

‖(u, p)‖V×Q ≤
2 max

(√
2Caβ

2, β
(
2 + C2

aβ
2
)1/2)

min(αCaβ2, 1)
‖(f, g)‖V ′×Q′ . (2.24)

Proof. First, we note that the symmetry of the bilinear form a implies that A is also symmetric.
Then, we follow the same ideas as in the proof of Theorem 2.3, replacing vp by LBp. We introduce
the mapping

T : V ×Q −→ V ×Q
(u, p) 7−→

(
λu+ LBp,−λp

)
and we compute

A
(
(u, p), T(u, p)

)
= a(u, λu) + a(u, LBp) + b(λu, p) + b(LBp, p)− b(u, λp)
= λa(u, u) + a(u, LBp) + ‖p‖2Q,
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in view of (2.20).
Because the form a is symmetric and positive, we can apply Young’s inequality: for any η > 0,

a(u, LBp) ≥ −
η

2
a(u, u)− 1

2η
a(LBp, LBp).

Taking into account (2.13) and (2.22), the latter being equivalent to (2.18), we get

a(LBp, LBp) ≤ Ca‖LBp‖2V ≤ Caβ2‖p‖2Q

and thus

a(u, LBp) ≥ −
η

2
a(u, u)− Caβ

2

2η
‖p‖2Q.

Hence, recalling (2.23), if λ− η
2 > 0 it follows that

A
(
(u, p), T(u, p)

)
≥ α

(
λ− η

2

)
‖u‖2V +

(
1− Caβ

2

2η

)
‖p‖2Q.

Setting in particular η = λ = Caβ
2, we infer that

A
(
(u, p), T(u, p)

)
≥ αCaβ

2

2
‖u‖2V +

1

2
‖p‖2Q ≥

1

2
min(αCaβ

2, 1)‖(u, p)‖2V×Q, (2.25)

which proves that A is T-coercive.
Since T(u, p) = (Caβ

2u+ LBp,−Caβ2p), it holds that

‖T(u, p)‖2V×Q = ‖Caβ2u+ LBp‖2V + ‖Caβ2p‖2Q
≤ 2(Caβ

2)2‖u‖2V + 2‖LBp‖2V + (Caβ
2)2‖p‖2Q

≤ 2(Caβ
2)2‖u‖2V +

(
2β2 + (Caβ

2)2
)
‖p‖2Q,

which yields
|||T||| ≤ max

(√
2Caβ

2, β
(
2 + C2

aβ
2
)1/2)

. (2.26)

Lastly, we observe that

〈f, v〉V ′,V + 〈g, q〉Q′,Q ≤ ‖(f, g)‖V ′×Q′‖(v, q)‖V×Q. (2.27)

Combining (2.25), (2.26) and (2.27), the stability estimate (2.4) furnishes exactly (2.24).

Remark 2.8. By applying Theorem 2.7 to Stokes problem, we recover stability estimates (2.8) and
(2.12) from the correspondence α = ν, Ca = ν and β = Cdiv.

Remark 2.9. The all-in-one bilinear form A can also be studied using Banach-Nečas-Babuška’s
theory inf-sup conditions, see [Ern and Guermond, 2021a, Theorem 49.15 and Lemma 53.12].

In Ladyzhenskaya–Babuška–Brezzi’s theory and in many applications, the bilinear form a is not
coercive on the whole space V but only on the kernel of the operator B. This is for instance the case
in electromagnetism, which will be detailed in Section 2.3. The next result shows how to address
this situation in the T-coercivity framework (provided that the form a is symmetric and positive),
thus establishing the equivalence between the two theories.

Theorem 2.10. Assume that the form a is symmetric and positive.
1. If (2.18) holds true, and if there exists a constant α0 > 0 such that

a(u0, u0) ≥ α0‖u0‖2V , ∀u0 ∈ Ker B, (2.28)
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then the form A is T-coercive. In other words, Problem (2.17) is well-posed and

‖(u, p)‖V×Q ≤ C‖(f, g)‖V ′×Q′ , (2.29)

with C a constant depending only on α0, β, Ca and Cb.
2. Conversely, if Problem (2.17) is well-posed, that is, if the form A is T-coercive, then (2.18) and
(2.28) both hold.

Proof. 1. We consider the mapping

T : V ×Q −→ V ×Q
(u, p) 7−→

(
λu+ LBp,−λp+ λµ Bu

)
.

This is almost the same mapping as the one used in the proof of Theorem 2.7. The only difference
is the term λµ Bu, which is going to help us handling the extra terms that do not belong to the
kernel of B by adjusting the value of the constant µ. We get

A
(
(u, p), T(u, p)

)
= a(u, λu) + a(u, LBp) + b(λu, p) + b(LBp, p)− b(u, λp) + b(u, λµ Bu)

= λa(u, u) + a(u, LBp) + ‖p‖2Q + λµ‖Bu‖2Q

because b(LBp, p) = ‖p‖2Q as previously, and

b(u, Bu) =
〈
Bu, Bu

〉
Q′,Q

=
(
1Q′→Q(Bu), Bu

)
Q

= ‖Bu‖2Q.

Since the form a is symmetric and positive, one may use Young’s inequality. By proceeding as
in the proof of Theorem 2.7 and after setting λ = Caβ

2, we know that

λa(u, u) + a(u, LBp) + ‖p‖2Q ≥
Caβ

2

2
a(u, u) +

1

2
‖p‖2Q,

from which we deduce

A
(
(u, p), T(u, p)

)
≥ Caβ

2

2

(
a(u, u) + 2µ‖Bu‖2Q

)
+

1

2
‖p‖2Q.

To compensate the lack of coercivity of a outside Ker B, we use the decomposition u = u0 + ū
with u0 ∈ Ker B and ū ∈ (Ker B)⊥. Following [Boffi et al., 2013, p. 254], Young’s inequality yields

a(u, u) = a(u0, u0) + 2a(u0, ū) + a(ū, ū)

≥ (1− θ)a(u0, u0) +

(
1− 1

θ

)
a(ū, ū)

≥ (1− θ)a(u0, u0) +

(
Ca −

Ca
θ

)
‖ū‖2V

for all 0 < θ < 1. Since u0 ∈ Ker B, we have ‖Bu‖2Q = ‖Bū‖2Q. Moreover, using (2.21) yields
‖Bū‖2Q ≥ β−2‖ū‖2V . Thus

a(u, u) + 2µ‖Bu‖2Q ≥ (1− θ)a(u0, u0) +

(
Ca −

Ca
θ

+
2µ

β2

)
‖ū‖2V . (2.30)

Choosing θ = 1
2 and µ = 3

4Caβ
2, it holds that

a(u, u) + 2µ‖Bu‖2Q ≥
1

2
a(u0, u0) +

Ca
2
‖ū‖2V .
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Hence, recalling (2.28) and using the inequality Ca ≥ α0, we obtain

a(u, u) + 2µ‖Bu‖2Q ≥
α0

2
‖u0‖2V +

α0

2
‖ū‖2V =

α0

2
‖u‖2V

and we conclude that

A
(
(u, p), T(u, p)

)
≥ α0

Caβ
2

4
‖u‖2V +

1

2
‖p‖2Q. (2.31)

From the above, we have

T(u, p) =
(
Caβ

2u+ LBp,−Caβ2p+
3

4
(Caβ

2)2Bu
)
.

Finally, T belongs to L(V ×Q) since ‖LBp‖V ≤ β‖p‖Q (see (2.22)) and2

‖Bu‖Q ≤ Cb‖u‖V . (2.32)

The stability estimate (2.29) is then given by (2.4).

2. Conversely, suppose that there exist αV > 0, αQ > 0 and T ∈ L(V ×Q) such that

A
(
(u, p), T(u, p)

)
≥ αV ‖u‖2V + αQ‖p‖2Q, ∀(u, p) ∈ V ×Q. (2.33)

Noting T : (u, p) 7→
(
TV (u, p), TQ(u, p)

)
, we have

A
(
(u, p), T(u, p)

)
= a

(
u, TV (u, p)

)
+ b
(
TV (u, p), p

)
+ b
(
u, TQ(u, p)

)
and, since T is bounded,

‖TV (u, p)‖2V + ‖TQ(u, p)‖2Q ≤ |||T|||
2(‖u‖2V + ‖p‖2Q

)
. (2.34)

Now, choosing u = 0 in (2.33) and (2.34) yields

b
(
TV (0, p), p

)
≥ αQ‖p‖2Q and ‖TV (0, p)‖V ≤ |||T||| · ‖p‖Q, ∀p ∈ Q.

Thus, for p ∈ Q\{0}, TV (0, p) 6= 0, otherwise b
(
TV (0, p), p

)
= 0, which contradicts b

(
TV (0, p), p

)
> 0.

Then it follows that

sup
v∈V \{0}

b(v, p)

‖v‖V
≥
b
(
TV (0, p), p

)
‖TV (0, p)‖V

≥
αQ
|||T|||
‖p‖Q, ∀p ∈ Q \ {0},

which shows that the inf-sup condition (2.18) is fulfilled. Likewise, taking p = 0 and u ∈ Ker B in
(2.33) and (2.34), we get

a
(
u, TV (u, 0)

)
≥ αV ‖u‖2V and ‖TV (u, 0)‖V ≤ |||T||| ‖u‖V , ∀u ∈ Ker B.

By symmetry and positivity of a, it holds that

a
(
u, TV (u, 0)

)
≤
(
a(u, u)

)1/2
a
(
TV (u, 0), TV (u, 0)

)1/2
.

Thus
αV ‖u‖2V ≤ a

(
u, TV (u, 0)

)
≤
(
a(u, u)

)1/2(
Ca|||T|||2‖u‖2V

)1/2
and hence a(u, u) ≥ α2

V

Ca|||T|||2
‖u‖2V for all u ∈ Ker B, which proves (2.28).

Remark 2.11. The T-coercivity estimate (2.31) is very close to the case where a is coercive on the
whole space V . As a matter of fact, the only difference compared to (2.25) is that the constant
before the term ‖u‖2V is twice as small, with α0 = α.

2Classically,

‖Bu‖2Q = (Bu, Bu)Q =
〈
1Q→Q′(Bu), Bu

〉
Q′,Q

by definition of 1Q→Q′ ,

=
〈
1Q→Q′ ◦ 1Q′→Q(Bu), Bu

〉
Q′,Q

=
〈
Bu, Bu

〉
Q′,Q

since 1Q→Q′ ◦ 1Q′→Q = IdQ′ ,

= b(u, Bu) ≤ Cb‖u‖V ‖Bu‖Q by definition and continuity of b (2.14).
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Chapter 2. The T-coercivity method for mixed problems

2.2.3 Augmented saddle-point problems

Let c(·, ·) be a positive and continuous bilinear form defined on Q×Q, namely

c(p, p) ≥ 0, ∀p ∈ Q and ∃Cc > 0, c(p, q) ≤ Cc‖p‖Q‖q‖Q, ∀p ∈ Q,∀q ∈ Q. (2.35)

In some cases, the assumption on the positivity of the form c can be relaxed, see Remark 2.13. We
denote by C the linear operator associated with the form c, defined by

C ∈ L(Q,Q′), 〈Cp, q〉Q′,Q = c(p, q), ∀p ∈ Q,∀q ∈ Q.

The all-in-one approach developed previously also enables us to deal with augmented saddle-
point problems: given f ∈ V ′ and g ∈ Q′, find (u, p) ∈ V ×Q such that

Au+B∗p = f, in V ′,
Bu− Cp = g, in Q′,

(2.36)

where the operator C possibly acts as a small perturbation of the original saddle-point problem
(2.15). The weak formulation of (2.36) reads:{

Find (u, p) ∈ V ×Q such that
∀(v, q) ∈ V ×Q, Ac

(
(u, p), (v, q)

)
= 〈f, v〉V ′,V + 〈g, q〉Q′,Q,

(2.37)

with
Ac
(
(u, p), (v, q)

)
= a(u, v) + b(v, p) + b(u, q)− c(p, q).

As before, the bilinear form a is supposed to be symmetric and positive.

2.2.4 How to achieve T-coercivity for augmented saddle-point problems?

Once again, we distinguish the case where the form a is coercive on V or only on Ker B. If the form
a is coercive on V , the results from the un-augmented case allow straightforwardly to handle the
augmented one.

Theorem 2.12. Assume that (2.18) holds true, that the form c fulfills (2.35) and that the form a
is symmetric and positive. If there exists a constant α > 0 such that

a(u, u) ≥ α‖u‖2V , ∀u ∈ V,

then there exists a unique solution to Problem (2.37).

Proof. With the same operator T as for the un-augmented problem, namely

T : V ×Q −→ V ×Q
(u, p) 7−→

(
Caβ

2u+ LBp,−Caβ2p
)
,

it holds that

Ac
(
(u, p), T(u, p)

)
= Caβ

2a(u, u) + a(u, LBp) + ‖p‖2Q + Caβ
2c(p, p).

Therefore, a similar argument as in Theorem 2.7 furnishes

Ac
(
(u, p), T(u, p)

)
≥ αCaβ

2

2
‖u‖2V +

1

2
‖p‖2Q + Caβ

2c(p, p),

which shows that Ac is T-coercive since c is positive.

84



2.2. Abstract framework

Remark 2.13. A particular case that appears in many applications – see Section 2.4 for the example
of nearly-incompressible elasticity – is when c has the form

c(p, q) = ε(p, q)Q, ε ≥ 0.

In this case, we obtain the estimate

Ac
(
(u, p), T(u, p)

)
≥ αCaβ

2

2
‖u‖2V +

(
1

2
+ εCaβ

2

)
‖p‖2Q, (2.38)

so that the augmentation c improves the constant before the term ‖p‖2Q and thus stabilizes the
bilinear form Ac. Moreover, the above estimate is robust for small values of ε. Besides, it even
allows to take negative values of ε. Indeed, if ε < 0, we have

Ac
(
(u, p), T(u, p)

)
≥ αCaβ

2

2
‖u‖2V +

(
1

2
− |ε|Caβ2

)
‖p‖2Q.

Hence, the bilinear form Ac remains T-coercive whenever |ε| < 1
2Caβ2 .

Let us now suppose that a is not coercive on the whole space V but only on the kernel of B.
Then, two different situations occur. Either the form c can be viewed as a small perturbation, and
we shall look for a solution of (2.36) that is close to the solution of the original problem (2.15). Or
this is not the case, and the form c is viewed as a “fixed” augmentation, and there is no obvious
connection a priori between the solutions of the augmented and un-augmented problems.

2.2.5 Additional results for small perturbations

We say that c is a small perturbation if it can be written as

c(p, q) = εc0(p, q), ε > 0, (2.39)

with ε a small parameter and c0 a symmetric, positive and continuous form on Q. We start with
the simple case

c(p, q) = ε(p, q)Q, ε > 0, (2.40)

for which the T-coercivity approach yields a shorter proof than the corresponding result stated in
Ladyzhenskaya–Babuška–Brezzi’s framework, see [Boffi et al., 2013, pages 247-252].

Theorem 2.14. Assume that (2.18) holds true, that the form a is symmetric and positive, and that
c takes the simple form of (2.40). If there exists a constant α0 > 0 such that

a(u0, u0) ≥ α0‖u0‖2V , ∀u0 ∈ Ker B, (2.41)

and if ε is small enough, namely

ε ≤ 1

2Caβ4C2
b

(
2− α0

Ca

)
, (2.42)

then Problem (2.37) is well-posed and

‖(u, p)‖V×Q ≤ C‖(f, g)‖V ′×Q′ , (2.43)

with C a constant depending only on α0, β, Ca and Cb.
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Proof. Here again, we consider the mapping

T : V ×Q −→ V ×Q
(u, p) 7−→

(
λu+ LBp,−λp+ λµ Bu

)
.

The beginning of the proof is the same as in Theorem 2.10. Taking into account the extra terms
coming from the perturbation, we get

Ac
(
(u, p), T(u, p)

)
= λa(u, u) + a(u, LBp) + ‖p‖2Q + λµ‖Bu‖2Q′ + λc(p, p)− λµc(p, Bu).

Using Young’s inequality and setting λ = Caβ
2, it follows that

Ac
(
(u, p), T(u, p)

)
≥ Caβ

2

2

(
a(u, u) + 2µ‖Bu‖2Q′

)
+

1

2
‖p‖2Q + Caβ

2c(p, p)− Caβ2µc(p, Bu). (2.44)

Now, as in (2.30), it holds that

a(u, u) + 2µ‖Bu‖2Q′ ≥ (1− θ)a(u0, u0) +

(
Ca −

Ca
θ

+
2µ

β2

)
‖ū‖2V (2.45)

for all 0 < θ < 1, where u = u0 + ū with u0 ∈ Ker B and ū ∈ (Ker B)⊥.
Knowing that c(p, q) = ε(p, q)Q for all p and q in Q, Young’s inequality implies that, for all

δ > 0,

−c(p, Bu) = −c(p, Bū) = −ε(p, Bū)Q ≥ −ε
δ

2
‖p‖2Q −

ε

2δ
‖Bū‖2Q

≥ −εδ
2
‖p‖2Q − ε

C2
b

2δ
‖ū‖2V in view of (2.32).

Putting (2.44), (2.45) and the above inequality together, we find that

Ac
(
(u, p), T(u, p)

)
≥ Caβ

2

2

(
(1− θ)a(u0, u0) +

(
Ca −

Ca
θ

+
2µ

β2
− µε

C2
b

δ

)
‖ū‖2V

)

+
1

2
‖p‖2Q + εCaβ

2

(
1− µδ

2

)
‖p‖2Q.

Hence, choosing θ = 1
2 , µ = Caβ

2 and recalling (2.41), it holds that

Ac
(
(u, p), T(u, p)

)
≥ Caβ

2

2

(
α0

2
‖u0‖2V +Ca

(
1−ε

β2C2
b

δ

)
‖ū‖2V

)
+

1

2
‖p‖2Q+εCaβ

2

(
1−Caβ2 δ

2

)
‖p‖2Q.

(2.46)
Finally, we set δ = 1

Caβ2 so that

1− Caβ2 δ

2
=

1

2
and 1− ε

β2C2
b

δ
= 1− εCaβ4C2

b ≥
1

2
· α0

Ca

in virtue of (2.42). Thus

Ac
(
(u, p), T(u, p)

)
≥ α0

Caβ
2

4
‖u‖2V +

(
1

2
+ ε

Caβ
2

2

)
‖p‖2Q, (2.47)

where we used that ‖u‖2V = ‖u0‖2V + ‖ū‖2V . All in all, we have chosen

T(u, p) =
(
Caβ

2u+ LBp,−Caβ2p+ (Caβ
2)2Bu

)
.

Then, estimate (2.43) follows from (2.4) with a stability constant independent of ε since (2.47) is
robust for vanishing ε and since |||T||| does not depend on ε either.
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Remark 2.15. The final estimate (2.47) is very close to (2.38). The only difference between these
two estimates is a factor of 2 between the constants multiplying the norms of u and p, with α0 = α.

Remark 2.16. In Ladyzhenskaya–Babuška–Brezzi’s framework, it is commonly assumed that ε ≤ 1.
On the other hand, in (2.42), we find a smallness condition that depends explicitly on the various
constants of the problem.

Remark 2.17. The inf-sup condition (2.18) and the continuity of b imply that β ≤ Cb, i.e. Cbβ ≥ 1.
Therefore, (2.42) yields in particular

ε ≤ 1

Caβ2
,

which corresponds to the condition found in Remark 2.13 for negative values of ε. As a matter
of fact, the non-coercivity of a on the whole space V calls for the introduction of a term Bu in
the mapping T. This term induces an additional term of the form c(p, Bu) in the expression of
Ac
(
(u, p), T(u, p)

)
, that can be interpreted as a “negative perturbation” of the bilinear form A.

Now, we move to the case where c is given by (2.39). Let us denote by Cc0 the continuity
constant of the bilinear form c0. The next theorem establishes the well-posedness of the perturbed
problem for a very general form c0.

Theorem 2.18. Assume that (2.18) holds true, and that the bilinear forms a and c0 are both
symmetric and positive. Suppose in addition that there exist α0 > 0 and γ0 > 0 such that

a(u0, u0) ≥ α0‖u0‖2V , ∀u0 ∈ Ker B,

and
c0(p0, p0) ≥ γ0‖p0‖2Q, ∀p0 ∈ Ker B∗. (2.48)

If ε is small enough, namely

ε ≤ 1

2Cc0Caβ
4C2

b

, (2.49)

then Problem (2.37) is well-posed and

‖(u, p)‖V×Q ≤ C‖(f, g)‖V ′×Q′ ,

with C a constant depending only on α0, β, γ0, Ca and Cb.

Proof. First, we adapt the beginning of the proof of Theorem 2.14 to take into consideration the
bilinear form c0. Since c0 is symmetric and positive, we can use Young’s inequality to obtain

−c(p, Bu) = −εc0(p, Bū)Q ≥ −ε
δ

2
c0(p, p)− ε

2δ
c0(Bū, Bū)

≥ −εδ
2
c0(p, p)− ε

Cc0C
2
b

2δ
‖ū‖2V since ‖Bū‖2Q ≤ C2

b ‖ū‖2V ,

and thus (2.46) becomes

Ac
(
(u, p), T(u, p)

)
≥ Caβ

2

2

(
α0

2
‖u0‖2V + Ca

(
1− ε

Cc0β
2C2

b

δ

)
‖ū‖2V

)

+
1

2
‖p‖2Q + εCaβ

2

(
1− Caβ2 δ

2

)
c0(p, p),

where T is the mapping

T : V ×Q −→ V ×Q
(u, p) 7−→

(
Caβ

2u+ LBp,−Caβ2p+ (Caβ
2)2Bu

)
.
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Setting δ = 1
Caβ2 as before, we get the estimate

Ac
(
(u, p), T(u, p)

)
≥ α0

Caβ
2

4
‖u‖2V +

1

2
‖p‖2Q + ε

Caβ
2

2
c0(p, p),

as long as ε ≤ 1
2Cc0Caβ

4C2
b
(2− α0

Ca
), which is the case under the assumption (2.49) since α0 ≤ Ca.

Then, as the bilinear form c0 is not necessarily coercive on the whole space Q, we use the
decomposition p = p0 + p̄ with p0 ∈ Ker B∗ and p̄ ∈ (Ker B∗)⊥. From Young’s inequality, we have

c0(p, p) ≥ (1− θ)c0(p0, p0) +

(
Cc0 −

Cc0
θ

)
‖p̄‖2Q

for all 0 < θ < 1. Setting θ = 1
2 and using (2.48), it follows that

Ac
(
(u, p), T(u, p)

)
≥ α0

Caβ
2

4
‖u‖2V +

1

2
‖p‖2Q + ε

Caβ
2

2

(γ0

2
‖p0‖2Q − Cc0‖p̄‖2Q

)
.

Now, we notice that
1

2
‖p‖2Q ≥

1

8
‖p‖2Q +

3

8
‖p̄‖2Q

and that, thanks to (2.49),

3

8
‖p̄‖2Q =

1

2
· 3

4
‖p̄‖2Q ≥ εCc0Caβ4C2

b ·
3

4
‖p̄‖2Q ≥ ε

Caβ
2

2
· 3

2
Cc0‖p̄‖2Q

because Cbβ ≥ 1. Hence

Ac
(
(u, p), T(u, p)

)
≥ α0

Caβ
2

4
‖u‖2V +

1

8
‖p‖2Q + ε

Caβ
2

2

(
γ0

2
‖p0‖2Q +

(
3

2
Cc0 − Cc0

)
‖p̄‖2Q

)
≥ α0

Caβ
2

4
‖u‖2V +

(
1

8
+ εγ0

Caβ
2

4

)
‖p‖2Q since Cc0 ≥ γ0,

which shows that Ac is T-coercive.

Lastly, we mention that an important consequence of the previous result is to estimate the
distance between the solution (uε, pε) of the perturbed problem

Auε +B∗pε = f, in V ′,
Buε − εC0pε = g, in Q′,

(2.50)

and the solution (u, p) of the original saddle-point problem (2.15) as a function of the penalty
parameter ε.

Corollary 2.19. Assume that (2.18) holds true, that the form a is symmetric and positive, and
that c takes the form of (2.39). If there exist α0 > 0 and γ0 > 0 such that

a(u0, u0) ≥ α0‖u0‖2V , ∀u0 ∈ Ker B, c0(p0, p0) ≥ γ0‖p0‖2Q, ∀p0 ∈ Ker B∗,

and if

ε ≤ 1

2Cc0Caβ
4C2

b

,

then we have
‖u− uε‖V + ‖p− pε‖Q ≤ Cε, (2.51)

with C a constant depending only on α0, β, γ0, Ca, Cb and Cc0.
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Proof. Subtracting (2.50) from (2.15), we find that (u− uε, p− pε) solves the system

A(u− uε) +B∗(p− pε) = 0, in V ′,
B(u− uε)− εC0(p− pε) = −εC0p, in Q′.

From Theorem 2.18, we infer that

‖(u− uε, p− pε)‖V×Q ≤ C‖(0,−εC0p)‖V ′×Q′

with C depending only on α0, β, γ0, Ca and Cb. Thus

‖(u− uε, p− pε)‖V×Q ≤ CCc0ε‖p‖Q,

which proves (2.51).

2.2.6 Case of a “fixed” augmentation

If the bilinear form c is not given by (2.39), the extra terms of the form c(p, Bu) arising from the
previously considered T-coercivity operator cannot be controlled as before, because there is no factor
ε to adjust. Below, we assume that c is coercive on Q, namely that there exists γ > 0 such that

c(p, p) ≥ γ‖p‖2Q, ∀p ∈ Q. (2.52)

So, to control these extra terms, we introduce an operator C−1 in the expression of T, where
C−1 ∈ L(Q′, Q) is defined by

c(C−1g, q) = 〈g, q〉Q′,Q, ∀g ∈ Q′,∀q ∈ Q.

One can easily check that the operator C−1 satisfies

(Cc)
−1‖g‖Q′ ≤ ‖C−1g‖Q ≤ γ−1‖g‖Q′ , ∀g ∈ Q′,

and 〈
g, C−1g

〉
Q′,Q

≥ γ

C2
c

‖g‖2Q′ , ∀g ∈ Q′. (2.53)

Theorem 2.20. Assume that (2.52) holds true and that the bilinear forms a and c are both sym-
metric and positive. Suppose in addition that there exists a constant αB > 0 such that

a(u, u) +
γ

2C2
c

‖Bu‖2Q′ ≥ αB‖u‖2V , ∀u ∈ V, (2.54)

then Problem (2.37) is well-posed and

‖(u, p)‖V×Q ≤ C‖(f, g)‖V ′×Q′ ,

with C a constant depending only on αB, γ and Cb.

Proof. For η, µ > 0, we consider the mapping

T : V ×Q −→ V ×Q
(u, p) 7−→

(
u,−ηp+ µC−1(Bu)

)
.

Then, using the definitions of C−1 and B, we compute

Ac
(
(u, p), T(u, p)

)
= a(u, u) + b(u, p)− ηb(u, p) + µb(u,C−1Bu) + ηc(p, p)− µc(p, C−1Bu)

= a(u, u) + (1− η)b(u, p) + µ〈Bu,C−1Bu〉Q′,Q + ηc(p, p)− µ〈Bu, p〉Q′,Q
= a(u, u) + (1− η − µ)b(u, p) + µ〈Bu,C−1Bu〉Q′,Q + ηc(p, p).
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Let us choose η, µ > 0 such that η + µ = 1 to cancel the second term above. To fix ideas, let
η = µ = 1/2, so that

T(u, p) =
(
u,−1

2
p+

1

2
C−1(Bu)

)
(2.55)

and
Ac
(
(u, p), T(u, p)

)
= a(u, u) +

1

2
〈Bu,C−1Bu〉Q′,Q +

1

2
c(p, p).

Owing to (2.53) and (2.52), we deduce that

Ac
(
(u, p), T(u, p)

)
≥ a(u, u) +

γ

2C2
c

‖Bu‖2Q′ +
γ

2
‖p‖2Q,

and the result follows.

Remark 2.21. The T-coercivity estimate reads

Ac
(
(u, p), T(u, p)

)
≥ αB‖u‖2V +

γ

2
‖p‖2Q, (2.56)

so that it depends on γ, whereas it was independent of ε in the small perturbation case. Moreover,
because of the term C−1(Bu) in (2.55), |||T||| behaves as γ−1. Nevertheless, the final stability
estimate is robust because the value of the constant γ is fixed.

Remark 2.22. Note that Theorem 2.20 does not require the inf-sup condition (2.18) to be true.
However, if (2.18) holds, then (2.54) is automatically satisfied. As a matter of fact, for any u ∈ V ,
using the decomposition u = u0 + ū with u0 ∈ Ker B and ū ∈ (Ker B)⊥, we have seen in the proof of
Theorem 2.10 that, for all 0 < θ < 1, it holds

a(u, u) ≥ (1− θ)a(u0, u0) +

(
Ca −

Ca
θ

)
‖ū‖2V and ‖Bu‖2Q′ = ‖Bū‖2Q ≥ β−2‖ū‖2V .

Hence,

a(u, u) +
γ

2C2
c

‖Bu‖2Q′ ≥ (1− θ)a(u0, u0) +

(
Ca −

Ca
θ

+
γ

2C2
c

β−2

)
‖ū‖2V .

We then observe that(
Ca −

Ca
θ

+
γ

2C2
c

β−2

)
> 0, ∀θ ∈

((
1 +

γ

2C2
cCa

β−2
)−1

, 1

)
,

so (2.54) is obtained by choosing some θ = θ(Ca, β, Cc, γ) in the above interval.

Remark 2.23. We will see in Section 2.5 that Theorem 2.20 is sufficient to handle the case of
neutron diffusion. Nevertheless, note that assumption (2.54) is not optimal since it depends on the
arbitrary choice η = µ = 1/2 made in the proof. Looking through the proof, we see that the result
of Theorem 2.20 still holds true as long as there exist α̃B > 0 and 0 < µ̃ < 1 such that

a(u, u) + µ̃〈Bu,C−1Bu〉Q′,Q ≥ α̃B‖u‖2V , ∀u ∈ V.

The final T-coercivity estimate then reads

Ac
(
(u, p), T(u, p)

)
≥ α̃B‖u‖2V + (1− µ̃)γ‖p‖2Q.

However, this estimate is possibly less sharp than (2.56) if µ̃ > 1
2 .

In addition to the Stokes problem, let us see next how other typical examples of mixed formu-
lations fall within the T-coercivity framework.
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2.3 Application to electromagnetism

Our goal is to solve the so-called quasi-static magnetic problem set in a homogeneous or an
anisotropic medium, surrounded by a perfect conductor (see [Assous et al., 2018, Section 6.4]).
The medium is characterized by its dielectric permittivity ε and its magnetic permeability µ.

Let Ω be the domain of R3 in which the problem is set. For simplicity, we assume that Ω is
simply connected, with a connected boundary. Moreover, we assume that ξ ∈ {ε, µ} satisfy the
following assumption:{

ξ is a real-valued, symmetric, measurable tensor field on Ω,
∃ξ−, ξ+ > 0, ∀z ∈ R3, ξ− |z|2 ≤ ξz · z ≤ ξ+ |z|2 a.e. in Ω.

(2.57)

Because one is dealing with symmetric tensors, if ξ fulfills (2.57), so does ξ−1, with (ξ−1)+ = (ξ−)−1

and (ξ−1)− = (ξ+)−1.
GivenH? ∈ L2(Ω), such that µH? ∈H0(div ; Ω)∩H(div 0; Ω) and ρ ∈ H−1(Ω), the quasi-static

magnetic problem amounts to finding E ∈ L2(Ω) such that

µ−1curlE = H?, in Ω,

div (εE) = ρ, in Ω,

E × n = 0, on ∂Ω.

(2.58)

Under the assumptions on ε and µ, on the one hand we note that E ∈ H0(curl ; Ω). On the
other hand, it is known that the problem (2.58) is well-posed, see for instance [Assous et al., 2018,
Theorem 6.1.4]. Below, we propose to recover well-posedness using the T-coercivity approach.

2.3.1 Proving well-posedness with T-coercivity

2.3.1.1 In a homogeneous medium

Let us first assume that ε = µ = I3 in Ω. To build an all-in-one equivalent variational formulation,
we follow e.g. [Ciarlet Jr, 2021]. In this case, the electromagnetic energy can be expressed in
terms of the electric field as (E,E)L2(Ω) + (curlE, curlE)L2(Ω). In other words, it is equal to
‖E‖2H(curl ;Ω), where ‖ · ‖H(curl ;Ω) denotes the "natural" norm in H(curl ; Ω). We endow H1

0 (Ω)

with ‖∇·‖ and the corresponding inner product (∇·,∇·)L2(Ω). Bearing in mind that curl (∇p) = 0,
it follows that

‖∇q‖ = ‖∇q‖H(curl ;Ω), ∀q ∈ H1
0 (Ω).

First, for H? ∈H0(div ; Ω)∩H(div 0; Ω) and ρ ∈ H−1(Ω), one can prove that the equivalent weak
formulation of Problem (2.58) reads: find E ∈H0(curl ; Ω) such that

(curlE, curlv)L2(Ω) = (H?, curlv)L2(Ω), ∀v ∈H0(curl ; Ω),

(E,∇q)L2(Ω) = −〈ρ, q〉H−1(Ω),H1
0 (Ω), ∀q ∈ H1

0 (Ω).

Second, in order to fit (2.58) into the abstract framework (2.15), we introduce an artifical pressure
unknown p̃ by adding a term (v,∇p̃)L2(Ω) in the first equation. The previous formulation becomes:
find (E, p̃) ∈H0(curl ; Ω)×H1

0 (Ω) such that

(curlE, curlv)L2(Ω) + (v,∇p̃)L2(Ω) = (H?, curlv)L2(Ω), ∀v ∈H0(curl ; Ω),

(E,∇q)L2(Ω) = −〈ρ, q〉H−1(Ω),H1
0 (Ω), ∀q ∈ H1

0 (Ω).
(2.59)

Indeed, one can easily check that (E, p̃) is solution of (2.59) if and only if p̃ = 0 and E is solution
of (2.58). So, defining the bilinear forms

a(u,v) = (curlu, curlv)L2(Ω), ∀u ∈H0(curl ; Ω),∀v ∈H0(curl ; Ω),

b(v, q) = (v,∇q)L2(Ω), ∀v ∈H0(curl ; Ω), ∀q ∈ H1
0 (Ω),
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the all-in-one bilinear and linear forms of Maxwell problem are respectively given by

A
(
(E, p̃), (v, q)

)
= a(E,v) + b(v, p̃) + b(E, q), (2.60)

`((v, q)) = (H?, curlv)L2(Ω) − 〈ρ, q〉H−1(Ω),H1
0 (Ω). (2.61)

The continuity constants are such that Ca = 1, Cb = 1, and C` ≤
(
‖H?‖2 + ‖ρ‖2H−1(Ω)

)1/2.
Let us give an explicit expression of the abstract operators

B ∈ L
(
H0(curl ; Ω), H1

0 (Ω)
)
, LB ∈ L

(
H1

0 (Ω), (Ker B)⊥
)

corresponding to this problem. According to (2.19), for u ∈H0(curl ; Ω),

Bu = 0⇐⇒ (u,∇q)L2(Ω) = 0, ∀q ∈ H1
0 (Ω)⇐⇒ divu = 0.

Hence,
Ker B = KN (Ω), where KN (Ω) = H0(curl ; Ω) ∩H(div 0; Ω). (2.62)

In addition, one easily checks that

(Ker B)⊥ =
{
v ∈H0(curl ; Ω), ∃q ∈ H1

0 (Ω), v = ∇q
}
. (2.63)

With those results, we can characterize LB. On the one hand, by definition of b, we observe that

b(LBp, q) =
(
LBp,∇q

)
L2(Ω)

, ∀p, q ∈ H1
0 (Ω). (2.64)

On the other hand, according to (2.20), one has

b(LBp, q) = (∇p,∇q)L2(Ω), ∀p, q ∈ H1
0 (Ω). (2.65)

Putting (2.63), (2.64) and (2.65) together, we deduce that

LBp = ∇p.

Moreover, for all p ∈ H1
0 (Ω), one has

‖LBp‖H(curl ;Ω) = ‖∇p‖H(curl ;Ω) = ‖∇p‖,

hence LB is an isometry, so LB satisfies (2.22) with β = 1. The inf-sup condition (2.18) holds.
Going back to Ker B (cf. (2.62)), we recall Weber inequality [Weber, 1980]: there exists CK > 1

such that
‖k‖H(curl ;Ω) ≤ CK‖curlk‖, ∀k ∈KN (Ω).

The fact that not only CK > 0, but even CK > 1, stems from the definition of the "natural"
norms involved. Hence, Weber inequality says that the form a is coercive on Ker B, so that all the
conditions of Theorem 2.10 are fulfilled, with α0 = (CK)−2 < 1. Precisely, Theorem 2.10 states
that the bilinear form A is T-coercive for the mapping

T : H0(curl ; Ω)×H1
0 (Ω) −→H0(curl ; Ω)×H1

0 (Ω)

(E, p̃) 7−→
(
E +∇p̃,−p̃+

3

4
φE

)
,

(2.66)

where φE = BE ∈ H1
0 (Ω). By definition of the operator B (cf. (2.19)), for any v ∈H0(curl ; Ω), we

have
(∇(Bv),∇q)L2(Ω) = b(v, q) = (v,∇q)L2(Ω), ∀q ∈ H1

0 (Ω).
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Therefore, Bv is the unique φv ∈ H1
0 (Ω) satisfying

(∇φv,∇q)L2(Ω) = (v,∇q)L2(Ω), ∀q ∈ H1
0 (Ω).

Furthermore, following (2.31), it holds that

A
(
(E, p̃), T(E, p̃)

)
≥ (CK)−2

4
‖E‖2H(curl ;Ω) +

1

2
‖∇p̃‖2L2(Ω) ≥ α

(
‖E‖2H(curl ;Ω) + ‖∇p̃‖2L2(Ω)

)
,

with α = (CK)−2

4 .
To get the stability constant, we need to compute |||T|||, that is, bound ‖T(E, p̃)‖H0(curl ;Ω)×H1

0 (Ω)

for (E, p̃) ∈H0(curl ; Ω)×H1
0 (Ω). We find that

‖T(E, p̃)‖2H0(curl ;Ω)×H1
0 (Ω) = ‖E +∇p̃‖2H(curl ;Ω) +

∥∥∥∥−∇p̃+
3

4
∇φE

∥∥∥∥2

L2(Ω)

≤ 2‖E‖2H(curl ;Ω) + 2‖∇p̃‖2H(curl ;Ω) + 2‖∇p̃‖2L2(Ω) + 2 ·
(

3

4

)2

‖∇φE‖2L2(Ω)

≤ 2‖E‖2H(curl ;Ω) + 4‖∇p̃‖2L2(Ω) + 2 ·
(

3

4

)2

‖E‖2H(curl ;Ω)

≤ 4
(
‖E‖2H(curl ;Ω) + ‖∇p̃‖2L2(Ω)

)
,

where we used that ‖∇φE‖L2(Ω) = ‖∇(BE)‖L2(Ω) ≤ ‖E‖H(curl ;Ω) thanks to (2.32). Therefore,
|||T||| ≤ 2.

Applying (2.4), we conclude that

‖E‖H(curl ;Ω) ≤ 8C2
K

(
‖H?‖2 + ‖ρ‖2H−1(Ω)

)1/2
. (2.67)

2.3.1.2 In an anisotropic medium

In an anisotropic medium, let us follow for instance [Ciarlet Jr, 2020] to build an all-in-one equivalent
variational formulation. In this case, the electromagnetic energy can be expressed as (εE,E)L2(Ω) +
(µ−1curlE, curlE)L2(Ω). Under the assumption (2.57) made on ε and µ, we note that we can endow
H0(curl ; Ω) with the inner product (·, ·)ε,µ−1curl : (u,v) 7→ (εu,v)L2(Ω)+(µ−1curlu, curlv)L2(Ω).
The associated scaled norm

‖u‖ε,µ−1curl =
(
(εu,u)L2(Ω) + (µ−1curlu, curlu)L2(Ω)

)1/2
is equivalent to the "natural" norm. Then, we endow H1

0 (Ω) with the inner product (·, ·)1,ε :
(p, q) 7→ (ε∇p,∇q)L2(Ω), and the associated scaled norm

‖q‖1,ε =
(
(ε∇q,∇q)L2(Ω)

)1/2
is equivalent to ‖·‖H1(Ω) according to Poincaré inequality. With this choice of norms, for q ∈ H1

0 (Ω),
one has ‖q‖1,ε = ‖∇q‖ε,µ−1curl . Also, 1H1

0 (Ω)→H−1(Ω) is the isomorphism defined by

〈1H1
0 (Ω)→H−1(Ω)p, q〉H−1(Ω),H1

0 (Ω) = (p, q)1,ε = (ε∇p,∇q)L2(Ω), ∀p, q ∈ H1
0 (Ω),

while the norm in H−1(Ω) is

‖g‖−1,ε−1 = sup
q∈H1

0 (Ω)\{0}

〈g, q〉H−1(Ω),H1
0 (Ω)

‖q‖1,ε
, ∀g ∈ H−1(Ω).
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Finally, for ξ ∈ {ε, ε−1, µ, µ−1}, we use the inner product (·, ·)ξ : (u,v) 7→ (ξu,v)L2(Ω), and
the associated scaled norm ‖ · ‖ξ in L2(Ω). As we shall see below, these scaled norms and inner
products, which are introduced to account for the anisotropic medium, lead to computations that
are very similar to those that have been carried out for a homogeneous medium.
As before, in order to fit (2.58) into the abstract framework (2.15), we introduce a vanishing artificial
pressure p̃. The resulting formulation is: find (E, p̃) ∈H0(curl ; Ω)×H1

0 (Ω) such that

(µ−1curlE, curlv)L2(Ω) + (εv,∇p̃)L2(Ω) = (H?, curlv)L2(Ω), ∀v ∈H0(curl ; Ω),

(εE,∇q)L2(Ω) = −〈ρ, q〉H−1(Ω),H1
0 (Ω), ∀q ∈ H1

0 (Ω).
(2.68)

So, defining the bilinear forms

aµ−1(u,v) = (µ−1curlu, curlv)L2(Ω), ∀u ∈H0(curl ; Ω),∀v ∈H0(curl ; Ω),

bε(v, q) = (εv,∇q)L2(Ω), ∀v ∈H0(curl ; Ω), ∀q ∈ H1
0 (Ω),

the all-in-one bilinear form of Maxwell problem is now given by

Aε,µ
(
(E, p̃), (v, q)

)
= aµ−1(E,v) + bε(v, p̃) + bε(E, q), (2.69)

while the linear form remains defined by (2.61). Thanks to the introduction of scaled norms, we find
that the bilinear form aµ−1 is continuous on H0(curl ; Ω)×H0(curl ; Ω) with a continuity constant
Ca = 1, while the bilinear form bε is continuous on H0(curl ; Ω)×H1

0 (Ω) with a continuity constant
Cb = 1. With respect to the scaled norms, we have∣∣(H?, curlv)L2(Ω) − 〈ρ, q〉H−1(Ω),H1

0 (Ω)

∣∣ ≤ ‖H?‖µ‖curlv‖µ−1 + ‖ρ‖−1,ε−1‖q‖1,ε,

so that C` ≤
(
‖H?‖2µ + ‖ρ‖2−1,ε−1

)1/2. Let us give an explicit expression of the abstract operators

Bε ∈ L
(
H0(curl ; Ω), H1

0 (Ω)
)
, LBε ∈ L

(
H1

0 (Ω), (Ker Bε)
⊥).

Given u ∈H0(curl ; Ω), we observe that, by definition of operator Bε (cf. (2.19))

Bεu = 0⇐⇒ (εu,∇q)L2(Ω) = 0, ∀q ∈ H1
0 (Ω)⇐⇒ div (εu) = 0.

Hence,

Ker Bε = KN (Ω; ε), where KN (Ω; ε) =
{
v ∈H0(curl ; Ω), div (εv) = 0

}
. (2.70)

In addition (see e.g. (6.16) in [Assous et al., 2018])

(Ker Bε)
⊥ =

{
v ∈H0(curl ; Ω), ∃q ∈ H1

0 (Ω), v = ∇q
}
, (2.71)

where orthogonality is understood with respect to the inner product (·, ·)ε,µ−1curl .
With those results, we can characterize LBε . By definition of bε, we observe that

bε(LBεp, q) =
(
ε(LBεp),∇q

)
L2(Ω)

, ∀p, q ∈ H1
0 (Ω). (2.72)

While, according to (2.20), one has

bε(LBεp, q) = (p, q)1,ε = (ε∇p,∇q)L2(Ω), ∀p, q ∈ H1
0 (Ω). (2.73)

Putting (2.71), (2.72) and (2.73) together, we deduce that LBεp = ∇p. So, for all p ∈ H1
0 (Ω), it

follows that ‖LBεp‖ε,µ−1curl = ‖p‖1,ε. In other words, LBε is an isometry with respect to the scaled
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norms: LBε satisfies (2.22) with β = 1, and the inf-sup condition (2.18) holds.
Going back to Ker Bε (cf. (2.70)), we recall the generalized Weber inequality [Weber, 1980] (or
[Assous et al., 2018, Theorem 6.1.4]): there exists CK > 1 such that

‖k‖ε,µ−1curl ≤ CK‖curlk‖µ−1 , ∀k ∈KN (Ω; ε).

While the bound CK > 1 remains as a consequence of the definition of the scaled norms, the value
of the constant CK now possibly depends on ε or µ.
The generalized Weber inequality implies that the form aµ−1 is coercive on Ker Bε: all the conditions
of Theorem 2.10 are fulfilled, with α0 = (CK)−2 < 1. Interestingly, Theorem 2.10 states that the
bilinear form Aε,µ is T-coercive for the mapping T that is again given by (2.66), but with the
ε-dependent φE = BεE ∈ H1

0 (Ω). Based on this observation, the final computations are very
close to those of Section 2.3.1.1, replacing the "natural" norms and inner products by their scaled
counterparts.

First, using (2.19), we find that Bεv is the unique φv ∈ H1
0 (Ω) satisfying

(ε∇φv,∇q)L2(Ω) = (εv,∇q)L2(Ω), ∀q ∈ H1
0 (Ω). (2.74)

Second, following (2.31) and introducing α = (CK)−2

4 (which depends on ε or µ), it holds that

Aε,µ
(
(E, p̃), T(E, p̃)

)
≥ α

(
‖E‖2ε,µ−1curl + ‖p̃‖21,ε

)
.

Finally, thanks to (2.32), which yields ‖φE‖1,ε ≤ ‖E‖ε,µ−1curl , we now find that

‖T(E, p̃)‖2H0(curl ;Ω)×H1
0 (Ω) = ‖E +∇p̃‖2ε,µ−1curl +

∥∥∥∥−p̃+
3

4
φE

∥∥∥∥2

1,ε

≤ 4
(
‖E‖2ε,µ−1curl + ‖p̃‖21,ε

)
.

Using the scaled norms, we have again that |||T||| ≤ 2, and we conclude with (2.4) that

‖E‖ε,µ−1curl ≤ 8C2
K

(
‖H?‖2µ + ‖ρ‖2−1,ε−1

)1/2
. (2.75)

2.3.2 Optimized bounds in an anisotropic medium

To achieve T-coercivity, the abstract theory does not take into account the so-called double or-
thogonality property (or Helmholtz decomposition), which states that for all k ∈KN (Ω; ε) and all
q ∈ H1

0 (Ω), one has (εk,∇q)L2(Ω) = (µ−1curlk, curl (∇q))L2(Ω) = 0, so that

‖k +∇q‖2ε,µ−1curl = ‖k‖2ε,µ−1curl + ‖q‖21,ε.

Indeed, given E ∈H0(curl ; Ω), we note that, with the help of φE ∈ H1
0 (Ω) solving (2.74), one has

the (orthogonal) Helmholtz decomposition E = kE +∇φE , with kE ∈KN (Ω; ε).
We sketch below how one can improve the estimates, see [Ciarlet Jr, 2021] for further details.

Let us choose

Topt : H0(curl ; Ω)×H1
0 (Ω) −→H0(curl ; Ω)×H1

0 (Ω)

(E, p̃) 7−→
(
kE +∇p̃, φE

)
.

Thanks to the double orthogonality property, one finds easily that Topt is an isometry and that

Aε,µ
(
(E, p̃), Topt(E, p̃)

)
= ‖curlkE‖2µ−1 + ‖p̃‖21,ε + ‖φE‖21,ε
≥ (CK)−2

(
‖E‖2ε,µ−1curl + ‖p̃‖21,ε

)
,
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where CK is the constant that appears in the generalized Weber inequality. Applying (2.4), we
have the optimized stability estimate

‖E‖ε,µ−1curl ≤ C2
K

(
‖H?‖2µ + ‖ρ‖2−1,ε−1

)1/2
. (2.76)

We conclude that, for all possible choices of coefficients ε and µ, there is only a factor 8 difference
between the stability constant obtained via the abstract T-coercivity approach, see (2.75), and the
optimized stability constant which relies explicitly on the double orthogonality property, see (2.76).
This shows the robustness of the abstract theory.

Remark 2.24. One can obtain similar results in more general geometries, such as a non-simply-
connected domain, or a non-connected boundary, see [Ciarlet Jr, 2021].

2.4 Application to nearly-incompressible elasticity

In this section, we apply the T-coercivity framework to the equations of elasticity, assuming homo-
geneous Dirichlet boundary conditions. Let Ω ⊂ Rd be a domain, where 2 ≤ d ≤ 3. For a prescribed
body force f ∈H−1(Ω), we look for the displacement u ∈H1(Ω) such that

−div
(
σ(u)

)
= f , in Ω,

u = 0, on ∂Ω,
(2.77)

where σ(u) denotes the stress tensor. We assume that it is given by Hooke’s law

σ(u) = 2µ ε(u) + λ(divu)I,

where λ, µ > 0 are the Lamé coefficients of the material and ε(u) = 1
2

(
∇u+(∇u)T

)
is the linearized

strain tensor. Thanks to Korn inequality [Duvaut and Lions, 1972], the spaceH1
0 (Ω) is here endowed

with the inner product

(u,v) 7−→
∫

Ω
ε(u) : ε(v) dx,

whose associated norm u 7→ ‖ε(u)‖ is equivalent to the H1(Ω)-norm in H1
0 (Ω). Introducing the

new unknown p = λdivu, the elasticity system (2.77) can be written in mixed form as follows: find
u ∈H1

0 (Ω) and p ∈ L2
0(Ω) such that

−2µ div
(
ε(u)

)
−∇p = f , in Ω,

divu− 1

λ
p = 0, in Ω.

Or equivalently, in variational form: find u ∈H1
0 (Ω) and p ∈ L2

0(Ω) such that

a(u,v) + b(v, p) = 〈f ,v〉, ∀v ∈H1
0 (Ω),

b(u, q)− 1

λ
c0(p, q) = 0, ∀q ∈ L2

0(Ω),
(2.78)

with

a(u,v) = 2µ

∫
Ω
ε(u) : ε(v) dx, b(v, q) =

∫
Ω
q div v dx and c0(p, q) =

∫
Ω
pq dx.

For nearly-incompressible materials, the first Lamé coefficient λ goes to infinity, so that λ−1 goes
to zero. Therefore, (2.78) can be seen as a small perturbation of Stokes system.

Since the bilinear form a is coercive on the whole space H1
0 (Ω), we can directly apply Theo-

rem 2.12 in the special case of Remark 2.13. The bilinear form a is continuous and coercive, with
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Ca = α = 2µ. In addition, the bilinear form b is continuous and satisfies the inf-sup condition
(2.18) with β = Cdiv since b is the same form – except to the sign – as for Stokes problem. Then,
Theorem 2.12 furnishes that the all-in-one bilinear form Ac defined by

Ac
(
(u, p), (v, q)

)
= 2µ

∫
Ω
ε(u) : ε(v) dx+

∫
Ω
p div v dx+

∫
Ω
q divu dx− 1

λ

∫
Ω
pq dx (2.79)

is T-coercive for the mapping

T : H1
0 (Ω)× L2

0(Ω) −→H1
0 (Ω)× L2

0(Ω)
(u, p) 7−→

(
2µC2

div u + v−p,−2µC2
div p

)
,

(2.80)

and (2.38) implies that

Ac
(
(u, p), T(u, p)

)
≥ 2µ2C2

div ‖ε(u)‖2 +

(
1

2
+

2µ

λ
C2

div

)
‖p‖2.

Note that this estimate is robust in the incompressible limit, namely for large values of λ.
Finally, replacing ν by 2µ in (2.11) and using (2.4), we get that the unique solution of (2.78)

satisfies

‖(u, p)‖H1
0 (Ω)×L2

0(Ω) ≤
2 max

(
2
√

2µC2
div, Cdiv

(
2 + 4µ2C2

div

)1/2)
min(4µ2C2

div, 1 + 4µλ−1C2
div )

‖f‖(H1
0 (Ω))′ ,

where ‖·‖(H1
0 (Ω))′ denotes the dual norm of ‖ε(·)‖.

Remark 2.25. Here again, the stability constant obtained above depends on the choice of the norms
for u and p. In particular, it is possible to remove the dependence on the first Lamé coefficient by
considering the scaled norm defined by ‖u‖µ = 2µ

∫
Ω ε(u) : ε(u) dx for all u ∈H1

0 (Ω).

2.5 Application to neutron diffusion

Let Ω ⊂ Rd be a domain, where 2 ≤ d ≤ 3. We consider the neutron diffusion equation with zero
flux boundary condition: given a prescribed fission source Sf ∈ L2(Ω), find u ∈ H1(Ω) such that

−div (D∇u) + σu = Sf , in Ω,

u = 0, on ∂Ω,
(2.81)

where u, D, and σ denote respectively the neutron flux, the diffusion coefficient and the macroscopic
absorption cross section. It is assumed that the diffusion coefficient D fulfills (2.57), and that the
macroscopic absorption cross section is such that{

σ is a real-valued measurable scalar field on Ω,
∃σ−, σ+ > 0, σ− ≤ σ ≤ σ+ a.e. in Ω.

(2.82)

Because Sf ∈ L2(Ω), one has D∇u ∈H(div ; Ω). This problem can be recast equivalently in mixed
form, introducing the auxiliary unknown p = −D∇u, called the neutron current. It reads: find
(u,p) ∈ H1

0 (Ω)×H(div ; Ω) such that

div p + σu = Sf , in Ω,

D−1p +∇u = 0, in Ω.
(2.83)

It can be shown that equivalent weak form is: find (u,p) ∈ L2(Ω)×H(div ; Ω) such that∫
Ω

(
v div p + σuv −D−1p · q + udiv q

)
dx =

∫
Ω
Sfv dx ∀(v, q) ∈ L2(Ω)×H(div ; Ω). (2.84)
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Remark 2.26. Among other things, one can recover that the solution u ∈ L2(Ω) from the weak
form (2.84) is such that u ∈ H1(Ω), and that u = 0 on ∂Ω.

Defining the bilinear forms

aD−1(p, q) = (D−1p, q)L2(Ω), ∀p ∈H(div ; Ω),∀q ∈H(div ; Ω),

b(q, v) = −(div q, v)L2(Ω), ∀q ∈H(div ; Ω),∀v ∈ L2(Ω),

cσ(u, v) = (σu, v)L2(Ω), ∀u ∈ L2(Ω),∀v ∈ L2(Ω),

the all-in-one bilinear form of the diffusion problem is given by

Ac
(
(p, u), (q, v)

)
= aD−1(p, q) + b(q, u) + b(p, v)− cσ(u, v). (2.85)

Here, we are in the case of a “fixed” augmentation, as treated in Section 2.2.6.
Let us check below that all the conditions of Theorem 2.20 are fulfilled. First, cσ is coercive

on L2(Ω) with γ = σ−. Then, aD−1 fulfills (2.13) with Ca = (D−)−1, whereas b fulfills (2.14)
with Cb = 1. Finally, we look for the condition (2.54). It is straightforward to check that, for all
p ∈H(div ; Ω), Bp = Bp = −div p. Hence

aD−1(p,p) +
γ

2C2
c

‖Bp‖2 = (D−1p,p) +
σ−
2σ2

+

‖div p‖2

≥ min
(

(D+)−1,
σ−
2σ2

+

)
‖p‖2H(div ;Ω).

Then, Theorem 2.20 establishes that the bilinear form Ac is T-coercive for the mapping (2.55)

T : H(div ; Ω)× L2(Ω) −→H(div ; Ω)× L2(Ω)

(p, u) 7−→
(
p,

1

2
(−u− σ−1div p)

)
.

Furthermore, using the estimate (2.56), it holds that

Ac
(
(p, u), T(p, u)

)
≥ min

(
(D+)−1,

σ−
2σ2

+

)
‖p‖2H(div ;Ω) +

σ−
2
‖u‖2 ≥ α‖(p, u)‖2H(div ;Ω)×L2(Ω), (2.86)

with α = 1
2 min

(
2(D+)−1, σ−(σ+)−2, σ−

)
.

There remains to estimate |||T|||. One has

‖T(p, u)‖2H(div ;Ω)×L2(Ω) = ‖p‖2H(div ;Ω) +
1

4
‖−u− σ−1div p‖2L2(Ω)

≤ ‖p‖2H(div ;Ω) +
1

4

(
(1 + 3)‖u‖2L2(Ω) +

(
1 +

1

3

)
(σ−)−2‖div p‖2L2(Ω)

)
≤

(
1 +

1

3
(σ−)−2

)
‖(p, u)‖2H(div ;Ω)×L2(Ω),

so that |||T||| ≤
(
1 + 1

3(σ−)−2
)1/2. Applying (2.4), we conclude that

‖(p, u)‖H(div ;Ω)×L2(Ω) ≤
2
(
1 + 1

3(σ−)−2
)1/2

min
(
2(D+)−1, σ−(σ+)−2, σ−

)‖Sf‖L2(Ω).

Remark 2.27. Some of those computations can be found in [Jamelot and Ciarlet Jr, 2013; Ciarlet
Jr et al., 2017]. Here, we see them as a consequence of the general result stated in Theorem
2.20. Note that in [Jamelot and Ciarlet Jr, 2013; Ciarlet Jr et al., 2017], the T-coercivity estimate
(2.86) is obtained with a constant α′ = 1

2 min
(
2(D+)−1, (σ+)−1, σ−

)
, which is very close to α since

σ−(σ+)−2 = (σ+)−1 · σ−σ+
and σ−

σ+
≤ 1.
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Remark 2.28. Here again, the operator T is not unique, see for instance [Ern and Guermond,
2021b, Exercise 56.6] for another possible choice of T-coercive operator with a slightly different
weak formulation of (2.81).

Remark 2.29. If one wants to obtain estimates without the bounding factors σ± and D±, a
standard path is to imbed the parameters D and σ into the definition of the norms, like it is done
in Section 2.3. Namely, one chooses the norms:

‖v‖σ =
(
(σv, v)L2(Ω)

)1/2
,

‖q‖D−1,σ−1div =
(
(D−1q, q)L2(Ω) + (σ−1div q,div q)L2(Ω)

)1/2
,

‖(q, v)‖V =
(
‖v‖2σ + ‖q‖2D−1,σ−1div

)1/2
.

On the one hand, all norms are “fixed” once the parameters are given. On the other hand, one can
easily check that the stability constant is now independent of the bounding factors, by using the
same mapping T as before.

2.6 T-coercivity at the discrete level

Previously, we demonstrated the robustness and the flexibility of the T-coercivity approach to study
mixed problems at the continuous level. In this section, we are going to see how T-coercivity also
enables us to provide a stable discretization of such problems with mixed finite elements. Let us
recall the simple results below [Ciarlet Jr, 2012; Chesnel and Ciarlet, 2013].

Definition 2.30. [Chesnel and Ciarlet, 2013, Definition 5] Let W be a Hilbert space, A(·, ·) be a
continuous bilinear form over W ×W and (Wh)h be conforming approximations of W . We say that
A is uniformly Th-coercive if

∃α∗, β∗ > 0, ∀h > 0, ∃Th ∈ L(Wh), |A(uh, Thuh)| ≥ α∗‖uh‖2W , ∀uh ∈Wh, and |||Th||| ≤ β∗.

Proposition 2.31. [Chesnel and Ciarlet, 2013, Theorem 2] Let W be a Hilbert space, f be an
element of W ′, A(·, ·) be a continuous bilinear form over W ×W and (Wh)h be conforming ap-
proximations of W . Denote by AAAh ∈ L(Wh,W

′
h) the discrete operator associated to A|Wh

. The
problem {

Find uh ∈Wh such that
∀vh ∈Wh, A(uh, vh) = 〈f, vh〉

is well-posed and (AAA−1
h )h is uniformly bounded if and only if A is uniformly Th-coercive. In that

case, denoting by CA the continuity constant of the bilinear form A, it holds that

‖u− uh‖W ≤ C inf
vh∈Wh

‖u− vh‖W , (2.87)

with C = 1 + CAβ
∗

α∗ independent of h.

Remark 2.32. Proposition 2.31 can be extended to the case where the discrete forms Ah and fh
differs from the continuous forms A and f . In that case, Céa’s lemma (2.87) becomes

‖u− uh‖W ≤ C inf
vh∈Wh

(
‖u− vh‖W + Consf,h + ConsA,h(vh)

)
,

with

Consf,h = sup
vh∈Wh\{0}

|〈f − fh, vh〉|
‖vh‖W

and ConsA,h(vh) = sup
wh∈Wh\{0}

|(A−Ah)(vh, wh)|
‖wh‖W

, ∀vh ∈Wh.

As before, we start with the leading example of Stokes problem.
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2.6.1 Stokes problem

For a given h, the natural discretization of Problem (2.7) reads:{
Find (uh, ph) ∈ Vh ×Qh such that
∀(vh, qh) ∈ Vh ×Qh, A

(
(uh, ph), (vh, qh)

)
= 〈f ,vh〉,

(2.88)

where Vh ⊂ H1
0 (Ω) and Qh ⊂ L2

0(Ω) are two finite dimensional spaces constituting a conforming
approximation of H1

0 (Ω)× L2
0(Ω).

From Proposition 2.31, we know that Problem (2.88) is well-posed if and only if A is uniformly
Th-coercive. To build a suitable mapping Th ∈ L(Vh × Qh), a natural idea is to reproduce the
continuous mapping from the proof of Theorem 2.3

T : H1
0 (Ω)× L2

0(Ω) −→H1
0 (Ω)× L2

0(Ω)

(u, p) 7−→
(
λu + vp,−λp

)
at the discrete level. The operator T above depends on the divergence lifting vp ∈ H1

0 (Ω) of the
pressure p ∈ L2

0(Ω) defined by, see (2.5)-(2.6),

−div vp = p and ‖∇vp‖ ≤ Cdiv‖p‖.

To obtain a similar lifting in the discrete setting, we consider the continuous lifting of the discrete
pressure ph ∈ Qh ⊂ L2

0(Ω), namely vph ∈H1
0 (Ω) such that

− div vph = ph and ‖∇vph‖ ≤ Cdiv‖ph‖. (2.89)

This lifting vph does not necessarily belong to the discrete space Vh ⊂ H1
0 (Ω), so we need an

operator Πh : H1
0 (Ω) −→ Vh to project it on Vh. Therefore, we consider a discrete mapping of the

form
Th : Vh ×Qh −→ Vh ×Qh

(uh, ph) 7−→
(
λuh + Πh(vph),−λph

)
.

(2.90)

Now, let us precise under which conditions the bilinear form A is uniformly Th-coercive by
mimicking the proof of Theorem 2.3. We compute

A
(
(uh, ph), Th(uh, ph)

)
= νλ‖∇uh‖2 + ν

∫
Ω
∇uh : ∇

(
Πh(vph)

)
dx−

∫
Ω
phdiv (Πhvph) dx.

In order to get a term of the form ‖ph‖2, we assume that∫
Ω
phdiv (Πhvph) dx =

∫
Ω
phdiv vph dx, (2.91)

so that
A
(
(uh, ph), Th(uh, ph)

)
= νλ‖∇uh‖2 + ν

∫
Ω
∇uh : ∇

(
Πh(vph)

)
dx+ ‖ph‖2

in view of (2.89). Then, for any η > 0, Young inequality yields∫
Ω
∇uh : ∇

(
Πh(vph)

)
dx ≥ −η

2
‖∇uh‖2 −

1

2η
‖∇
(
Πh(vph)

)
‖2

≥ −η
2
‖∇uh‖2 −

C2
divC

2
π

2η
‖ph‖2

provided that there exists a constant Cπ > 0, independent of h and of ph, such that

‖∇
(
Πh(vph)

)
‖ ≤ Cπ‖∇vph‖. (2.92)
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2.6. T-coercivity at the discrete level

Hence, it holds that

A
(
(uh, ph), Th(uh, ph)

)
≥ ν

(
λ− η

2

)
‖∇uh‖2 +

(
1−

νC2
divC

2
π

2η

)
‖ph‖2.

Setting η = λ = νC2
divC

2
π, we obtain

A
(
(uh, ph), Th(vh, ph)

)
≥
ν2C2

divC
2
π

2
‖∇uh‖2 +

1

2
‖ph‖2

≥ 1

2
min(ν2C2

divC
2
π, 1)‖(uh, ph)‖2H1

0 (Ω)×L2
0(Ω). (2.93)

Moreover, taking into account (2.92) and mimicking the continuous case (see (2.11)), we have

|||Th||| ≤ max
(√

2νC2
divC

2
π, CdivCπ

(
2 + ν2C2

divC
2
π

)1/2)
. (2.94)

So, with the help of the operator Πh : H1
0 (Ω) −→ Vh, we have proven the following result.

Theorem 2.33. If there exist a family of operators (Πh)h and a constant Cπ > 0 such that, for all
h, ∫

Ω
qh div (Πhv) dx =

∫
Ω
qh div v dx, ∀v ∈H1

0 (Ω),∀qh ∈ Qh, (2.95)

‖∇
(
Πh(v)

)
‖ ≤ Cπ‖∇v‖, ∀v ∈H1

0 (Ω), (2.96)

then Problem (2.88) is well-posed for all h and

‖(u− uh, p− ph)‖H1
0 (Ω)×L2

0(Ω) ≤ C inf
(vh,qh)∈Vh×Qh

‖(u− vh, p− qh)‖H1
0 (Ω)×L2

0(Ω), (2.97)

with

C = 1 +
2 max(ν, 2) max

(√
2νC2

divC
2
π, CdivCπ

(
2 + ν2C2

divC
2
π

)1/2)
min(ν2C2

divC
2
π, 1)

.

Proof. The previous reasoning shows that the bilinear form A is uniformly Th-coercive for the
mapping

Th : Vh ×Qh −→ Vh ×Qh
(uh, ph) 7−→

(
νC2

divC
2
πuh + Πh(vph),−νC2

divC
2
πph
)

as long as the two conditions (2.91) and (2.92) are fulfilled for all ph ∈ Qh, which is the case if
(2.95) and (2.96) hold true. The stability estimate (2.97) then follows by using (2.93) and (2.94) in
(2.87).

The conditions (2.95) and (2.96) correspond exactly to the assumptions of an abstract result
known as Fortin’s lemma [Fortin, 1977]. Above, the T-coercivity approach allowed us to recover
these two conditions in a somewhat direct way. Moreover, we recall that, since the form b fulfills
an inf-sup condition (2.3), those conditions (2.95)-(2.96) are equivalent to the so-called uniform
discrete inf-sup condition on the form b

∃β′ > 0, ∀h, inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

∫
Ω qh div vh dx

‖∇vh‖‖qh‖
≥ β′,

see for instance [Girault and Raviart, 1986, Lemma II.1.1].
Finally, we recall that, provided there is a basic approximability property (i.e. any element of
V × Q can be approximated by a sequence of elements of (Vh × Qh)h), the convergence of the
discrete solutions to the exact one is a consequence of (2.97).
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2.6.2 Approximation of saddle-point problems

We now derive a conforming approximation of the abstract problem (2.15), starting from the vari-
ational expressions (2.16) or (2.17), the latter with the form

A
(
(u, p), (v, q)

)
= a(u, v) + b(v, p) + b(u, q).

So, let (Vh)h, resp. (Qh)h, be two families of finite dimensional subspaces of V , resp. Q. Starting
from (2.16), the discrete variational formulation writes

Find (uh, ph) ∈ Vh ×Qh such that
∀vh ∈ Vh, a(uh, vh) + b(vh, ph) = 〈f, vh〉V ′,V
∀qh ∈ Qh, b(uh, qh) = 〈g, qh〉Q′,Q.

while, starting from (2.17), the all-in-one discrete variational formulation writes{
Find (uh, ph) ∈ Vh ×Qh such that
∀(vh, qh) ∈ Vh ×Qh, A

(
(uh, ph), (vh, qh)

)
= 〈f, vh〉V ′,V + 〈g, qh〉Q′,Q.

In abstract form, the uniform discrete inf-sup condition on the form b writes

∃β′ > 0, ∀h, inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ β′. (2.98)

We suppose that the discrete version of the operator B is the restriction of B to Vh, namely

B(Vh) ⊂ Q′h. (2.99)

Introducing the discrete operators Bh : Vh → Qh such that for all h,

(Bhvh, qh)Q = b(vh, qh), ∀(vh, qh) ∈ Vh ×Qh,

the straightforward discrete counterpart of Theorem 2.6 is

Theorem 2.34. The following three statements are equivalent:
(i) There exists β′ > 0 such that the form b fulfills the uniform discrete inf-sup condition (2.98).
(ii) For all h, Bh : (Ker Bh)⊥ → Qh is an isomorphism, and

‖Bhvh‖Q ≥ β′‖vh‖V , ∀vh ∈ (Ker Bh)⊥. (2.100)

(iii) For all h, there exists an isomorphic operator LB,h : Qh → (Ker Bh)⊥ such that

Bh(LB,hqh) = qh and ‖qh‖Q ≥ β′‖LB,hqh‖V , ∀qh ∈ Qh. (2.101)

Remark 2.35. Obviously, this result also holds if the value of the constant in the discrete inf-
sup condition on the form b depends on h, i.e. for each h it holds for some β′(h) > 0, with
limh→0 β

′(h) = 0. In this case however, getting error estimates can be more intricate.

As mentioned above for the Stokes system, one has the Fortin’s Lemma (cf. [Girault and Raviart,
1986, Lemma II.1.1]).

Theorem 2.36. Assume that the form b fulfills an inf-sup condition (2.18). The uniform discrete
inf-sup condition on the form b (2.98) holds if, and only if, there exist a family of operators (Πh)h,
with Πh : V −→ Vh, and a constant Cπ > 0 such that, for all h,

b(Πhv, qh) = b(v, qh), ∀v ∈ V, ∀qh ∈ Qh,
sup
h
|||Πh||| ≤ Cπ. (2.102)
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Operators (Πh)h that fulfill conditions (2.102) are called Fortin operators.

Let us now proceed with the derivation of conditions to ensure that the form A is uniformly
Th-coercive. As a general rule, the proofs of the results follow very closely the proofs that were given
in the exact case. The straightforwardness of the procedure when going from the continuous to the
discrete level is one of the main features of the T-coercivity approach. We give next the discrete
counterparts of Theorems 2.7 and 2.10.

Theorem 2.37. Assume that the form a is symmetric and positive, that there exists a constant
α′ > 0 such that

a(uh, uh) ≥ α′‖uh‖2V , ∀uh ∈ Vh, (2.103)

and that the uniform discrete inf-sup condition (2.98) on the form b holds true.
Then the form A is uniformly Th-coercive.

The property (2.103) is sometimes called the the uniform discrete coercivity property.

Proof. Let h be given. We introduce the mapping

Th : Vh ×Qh −→ Vh ×Qh
(uh, ph) 7−→

(
λuh + LB,hph,−λph

)
.

We then compute

A
(
(uh, ph), Th(uh, ph)

)
= a(uh, λuh) + a(uh, LB,hph) + b(λuh, ph) + b(LB,hph, ph)− b(uh, λph)

= λa(uh, uh) + a(uh, LB,hph) + ‖ph‖2Q, according to (2.101)-left.

Because the form a is symmetric and positive, we can apply Young’s inequality: for any η > 0,

a(uh, LB,hph) ≥ −η
2
a(uh, uh)− 1

2η
a(LB,hph, LB,hph).

According now to (2.101)-right, we find

a(LB,hph, LB,hph) ≤ Ca‖LB,hph‖2V ≤ Ca(β′)−2‖ph‖2Q.

Using assumption (2.103), if λ− η
2 > 0, it follows that

A
(
(uh, ph), Th(uh, ph)

)
≥ α′

(
λ− η

2

)
‖uh‖2V +

(
1−

Ca(β
′)−2

2η

)
‖ph‖2Q.

Setting η = λ = Ca(β
′)−2 as in the exact case, we infer that

A
(
(uh, ph), Th(uh, ph)

)
≥ 1

2
min(α′Ca(β

′)−2, 1)‖(uh, ph)‖2V×Q

which proves that A is Th-coercive, with a T-coercivity constant 1
2 min(α′Ca(β

′)−2, 1) > 0 that is
independent of h.

Since Th(uh, ph) = (Ca(β
′)−2uh + LB,hph,−Ca(β′)−2ph), one finds that

‖Th(uh, ph)‖2V×Q ≤ 2(Ca(β
′)−2)2‖uh‖2V + 2‖LB,hph‖2V + (Ca(β

′)−2)2‖ph‖2Q
≤ 2(Ca(β

′)−2)2‖uh‖2V +
(
2(β′)−2 + (Ca(β

′)−2)2
)
‖ph‖2Q,

where the last inequality follows from (2.101)-right. The bound is valid for all h, which yields

sup
h
|||Th||| ≤ max

(√
2Ca(β

′)−2, β
(
2 + C2

a(β′)−2
)1/2)

,

so the form A is uniformly Th-coercive.
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Chapter 2. The T-coercivity method for mixed problems

Remark 2.38. As for the Stokes problem, the discrete right-inverse LB,h is connected to the Fortin
operator Πh. As a matter of fact, if there exists a family of discrete projectors (Πh)h verifying
(2.102), the operator defined by LB,h = Πh(LB) satisfies (2.101) with β′ = (Cπβ)−1 since for all
qh ∈ Qh

‖Πh(LBqh)‖V ≤ Cπ‖LBqh‖V ≤ Cπβ‖qh‖Q,

according to (2.22). As a consequence, to perform stability estimates at the discrete level using
Th-coercivity, one has only to replace β by Cπβ in the computations done at the continuous level.

Theorem 2.39. Assume that the form a is symmetric and positive, that there exists a constant
α′0 > 0 such that

a(u0,h, u0,h) ≥ α′0‖u0,h‖2V , ∀u0,h ∈ Ker Bh, (2.104)

and that the uniform discrete inf-sup condition (2.98) on the form b holds true.
Then the form A is uniformly Th-coercive.

The property (2.104) is sometimes called the uniform discrete coercivity property on the kernels.

Proof. Let h be given. We consider the mapping

Th : Vh ×Qh −→ Vh ×Qh
(uh, ph) 7−→

(
λuh + LB,hph,−λph + λµ Bhuh

)
.

As in the proof of Theorem 2.10, we can compute

A
(
(uh, ph), Th(uh, ph)

)
= λa(uh, uh) + a(uh, LB,hph) + ‖ph‖2Q + λµ‖Bhuh‖2Q

because b(LB,hph, ph) = ‖ph‖2Q. Since the form a is symmetric and positive, one may use Young’s
inequality. By proceeding as in the proof of Theorem 2.37 and after setting λ = Ca(β

′)−2, we find
that

λa(uh, uh) + a(uh, LB,h, ph) + ‖ph‖2Q ≥
1

2
Ca(β

′)−2a(uh, uh) +
1

2
‖ph‖2Q,

and
A
(
(uh, ph), Th(uh, ph)

)
≥ 1

2
Ca(β

′)−2
(
a(uh, uh) + 2µ‖Bhuh‖2Q

)
+

1

2
‖ph‖2Q.

Then, we use the decomposition uh = u0,h + ūh with u0,h ∈ Ker Bh and ūh ∈ (Ker Bh)⊥. As before,
Young’s inequality yields

a(uh, uh) ≥ (1− θ)a(u0,h, u0,h) +

(
Ca −

Ca
θ

)
‖ūh‖2V

for all 0 < θ < 1. Moreover, ‖Bhuh‖2Q = ‖Bhūh‖2Q ≥ (β′)2‖ūh‖2V according to (2.100), so that

a(uh, uh) + 2µ‖Bhuh‖2Q ≥ (1− θ)a(u0,h, u0,h) +

(
Ca −

Ca
θ

+ 2µ(β′)2

)
‖ūh‖2V .

Choosing θ = 1
2 and µ = 3

4Ca(β
′)−2, it holds that

a(uh, uh) + 2µ‖Bhuh‖2Q ≥ 1

2
a(u0,h, u0,h) +

Ca
2
‖ūh‖2V

≥ α′0
2
‖u0,h‖2V +

α′0
2
‖ūh‖2V =

α′0
2
‖uh‖2V ,

where we used assumption (2.104) and Ca ≥ α′0 on the second line.
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2.6. T-coercivity at the discrete level

Finally, we conclude that

A
(
(uh, ph), Th(uh, ph)

)
≥ 1

4
α′0Ca(β

′)−2‖uh‖2V +
1

2
‖ph‖2Q,

which yields that A is Th-coercive, with a T-coercivity constant min(1
4α
′
0Ca(β

′)−2, 1
2) > 0 that is

independent of h.
From the above, we have Th(uh, ph) =

(
Ca(β

′)−2uh+LB,hph,−Ca(β′)−2ph+ 3
4(Ca(β

′)−2)2Bhuh
)
,

and, noting that ‖Bhuh‖Q ≤ Cb‖uh‖V , one concludes that

sup
h
|||Th||| ≤ ∞,

so the form A is uniformly Th-coercive.

Remark 2.40. The reciprocal of Theorem 2.39 is also true. To see this, one simply needs to mimick
the proof of Theorem 2.10 - item 2. at the discrete level.

Remark 2.41. Note that replacing Bu by Bhuh when going from the continuous operator T to the
discrete operator Th is possible because we assumed that Bh is the restriction of B to Vh, see (2.99).
If (2.99) does not hold, one introduces Φh : Q −→ Qh defined by

b(vh,Φhq) = b(vh, q), ∀q ∈ Q,∀vh ∈ Vh,

like in [Boffi et al., 2013, Proposition 5.1.2]. Then, one has to replace Bhuh by Φh(Bhuh) in the
previous proof, i.e.

Th : Vh ×Qh −→ Vh ×Qh

(uh, ph) 7−→
(
Ca(β

′)−2uh + LB,hph,−Ca(β′)−2ph +
3

4
(Ca(β

′)−2)2Φh(Buh)
)
.

Again, provided a basic approximability property holds, that is, any element of V × Q can be
approximated by a sequence of elements of (Vh×Qh)h, convergence will follow under the assumptions
of Theorem 2.37 or Theorem 2.39.

2.6.3 Approximation of augmented saddle-point problems

We now approximate the abstract problem (2.36), starting from the variational expression (2.37),
with the form

Ac
(
(u, p), (v, q)

)
= a(u, v) + b(v, p) + b(u, q)− c(p, q),

where c(·, ·) is a form defined on Q × Q that fulfills (2.35); in particular, c(·, ·) is positive. So, let
again (Vh)h, resp. (Qh)h, be two families of finite dimensional subspaces of V , resp. Q. The discrete
variational formulation writes{

Find (uh, ph) ∈ Vh ×Qh such that
∀(vh, qh) ∈ Vh ×Qh, Ac

(
(uh, ph), (vh, qh)

)
= 〈f, vh〉V ′,V + 〈g, qh〉Q′,Q,

To ensure that the form Ac is uniformly Th-coercive, the proofs once more follow very closely those
that were given in the exact case. We give next the discrete counterparts of Theorems 2.12, 2.14
and 2.20.

Theorem 2.42. Assume that the form a is symmetric, positive, fulfills the uniform discrete coer-
civity property (2.103), and that the uniform discrete inf-sup condition (2.98) on the form b holds
true. Then the form Ac is uniformly Th-coercive.
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Theorem 2.43. Assume that the form a is symmetric and positive, fulfills the uniform discrete
coercivity property on the kernels (2.104), and that the uniform discrete inf-sup condition (2.98) on
the form b holds true. If moreover the form c is like in (2.40), where ε is small enough, namely

ε ≤ 1

2Ca(Cπβ)4C2
b

(
2− α0

Ca

)
,

then the form Ac is uniformly Th-coercive.

Theorem 2.44. Assume that (2.52) holds true and that the bilinear forms a and c are both sym-
metric and positive. If there exists a constant α′B > 0 such that

a(uh, uh) +
γ

2C2
c

‖Bhuh‖2Q ≥ α′B‖uh‖2V , ∀uh ∈ Vh, (2.105)

then the form Ac is uniformly Th-coercive.

As before, provided a basic approximability property holds, that is, any element of V × Q
can be approximated by a sequence of elements of (Vh × Qh)h, convergence will follow under the
assumptions of Theorem 2.42, Theorem 2.43 or Theorem 2.44.

2.6.4 Applications

Let us briefly see how the T-coercivity approach can be used to discretize the mixed problems,
that is for Stokes, electromagnetism, nearly-incompressible elasticity and finally neutron diffusion.
For each problem, we propose one or several possibilities. Note that, since there is a vast litter-
ature on this topic, there is no need to devise new approximation techniques. On the contrary,
the simple framework of the T-coercivity approach provides elementary guidelines to help us choose
among existing techniques. In most cases, we emphasize that this leads to explicit discrete opera-
tors Th. And, as we shall see next, the degree of explicitness depends on the problem that is studied.

In each case, the first step is to choose a conforming finite element discretization adapted to
the space V under consideration. We assume for simplicity that Ω is a polyhedron for d = 3, or a
polygon for d = 2, so one can use meshes made of simplices for the discretization by finite elements.
For k ≥ 1, Pk stands for the Lagrange finite elements of order k. For Stokes and elasticity, we
note that the space H1

0 (Ω) may be approximated using (Pk)d finite elements with k ≥ 2. For
electromagnetism, we have to deal with the space H0(curl ; Ω), which can be discretized using the
(first-kind) Nédélec finite elements of order k ≥ 1, denoted by Nk. Lastly, for neutron diffusion, we
have to deal with the space H(div ; Ω), discretized with the help of the Raviart-Thomas elements
of order k ≥ 0, denoted by RT k. We refer to [Boffi et al., 2013] for details.

The next step is to choose the conforming finite element discretization in the space Q in such
a way that convergence of the discrete solutions to the exact one is guaranteed. This occurs as
soon as one achieves uniform Th-coercivity for the all-in-one form A. To that aim, one simply has
to build discrete operators Th similarly as in the continuous case but using (when applicable) the
Fortin operators defined in Theorem 2.36 to project the lifting LB on the discrete space. Note that
according to classical theory [Girault and Raviart, 1986; Boffi et al., 2013], the existence of such
operators is equivalent to the uniform discrete inf-sup condition (2.98) on the form b. Doing so, the
discrete stability estimates then follow from the continuous case by changing the constant β to take
into account the influence of the Fortin operators, see Remark 2.38.

First, for Stokes and elasticity, and for k = 2, setting Qh = P1 leads to Fortin operators ΠPh :
H1

0 (Ω) −→ (Pk)d satisfying (2.95)-(2.96), or the abstract counterpart (2.102): the pair ((P2)d,P1)
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2.6. T-coercivity at the discrete level

is called the Taylor-Hood finite element. In this case, building Fortin operators is a very technical
issue. We do not go into the details, and refer instead to Section 8.8 in [Boffi et al., 2013]: we
note that the resulting expression of the operator ΠPh is quite involved. This leads to a uniform
discrete inf-sup condition on the form b. Regarding uniform Th-coercivity, one uses (2.90) to define
the discrete operators Th for Stokes. While, for nearly-incompressible elasticity, the bilinear form
defined in (2.79) is uniformly Th-coercive for the mapping

Th : (P2)d × P1 −→ (P2)d × P1

(uh, ph) 7−→
(
2µ(Cπ,PCdiv )2uh + ΠPh (v−ph),−2µ(Cπ,PCdiv )2ph

)
,

according to Theorem 2.42 and (2.80).

For electromagnetism in an anisotropic medium, for k ≥ 1, setting Qh = Pk leads to Fortin
operators ΠNh : H0(curl ; Ω) −→ Nk satisfying (2.102). Let us explain below how to proceed. In
(2.102), the operators must fulfill the compatibility conditions

(εΠNh v,∇qh)L2(Ω) = (εv,∇qh)L2(Ω), ∀v ∈H0(curl ; Ω), ∀qh ∈ Pk. (2.106)

Under the assumptions (2.57) on ε (and µ), the Helmholtz decomposition of v, orthogonal with
respect to the inner product (·, ·)ε,µ−1curl , writes v = kv +∇φv, where kv ∈ KN (Ω; ε) and φv ∈
H1

0 (Ω) solves (2.74). Since qh ∈ H1
0 (Ω), we note that

(εv,∇qh)L2(Ω) = (ε∇φv,∇qh)L2(Ω), ∀v ∈H0(curl ; Ω), ∀qh ∈ Pk.

This leads to the "natural" choice
ΠNh v = ∇(P khφv),

where P kh : H1
0 (Ω) −→ Pk is the orthogonal projection on Pk with respect to the inner product

(·, ·)1,ε, namely

(ε∇(P khφ),∇qh)L2(Ω) = (ε∇φ,∇qh)L2(Ω), ∀φ ∈ H1
0 (Ω), ∀qh ∈ Pk. (2.107)

Indeed, the above problem is well-posed thanks to the assumptions (2.57) on ε, and ΠNh v automat-
ically belongs to Nk because, by design, the finite element space Nk contains ∇[Pk].
With this definition of the operator ΠNh , the compatibility conditions (2.106) immediately follow.
Furthermore, the uniform bound on the norm of the operators in (2.102) is obtained via

‖ΠNh v‖2ε,µ−1curl = ‖∇(P khφv)‖2ε,µ−1curl

= (ε∇(P khφv),∇(P khφv))L2(Ω)

(cf. (2.107)) = (ε∇φv,∇(P khφv))L2(Ω)

≤ ‖∇φv‖ε,µ−1curl ‖∇(P khφv)‖ε,µ−1curl

= ‖∇φv‖ε,µ−1curl ‖ΠNh v‖ε,µ−1curl ,

so that ‖ΠNh v‖ε,µ−1curl ≤ ‖v‖ε,µ−1curl by orthogonality of the Helmholtz decomposition.
On the other hand, the uniform coercivity condition on the discrete kernels in Theorem 2.39 is
obtained for instance in [Ciarlet Jr, 2020, Theorem 3]. It hinges on the crucial property stating
that, given a field v = ∇q with q ∈ H1

0 (Ω), the result of the interpolation of v with the Nédélec
interpolation operator may be expressed as ∇qh for some qh ∈ Pk.
Hence, for electromagnetism in an anisotropic medium we infer from Theorem 2.39 that the bilinear
form Aε,µ defined in (2.69) is uniformly Th-coercive for the mapping

Th : Nk × Pk −→ Nk × Pk

(Eh, p̃h) 7−→
(

(Cπ,N )2Eh + ΠNh (∇p̃h),−(Cπ,N )2p̃h +
3

4
(Cπ,N )4φEh

)
,
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where φEh ∈ Qh satisfies the discrete counterpart of (2.74), namely

(ε∇φEh ,∇qh)L2(Ω) = (εEh,∇qh)L2(Ω), ∀qh ∈ Pk.

Alternatively, one can follow Section 2.3.2. In this case, adding indices and superscripts h in
the definition of Topt, one considers

(Topt)h : Nk × Pk −→ Nk × Pk
(Eh, p̃h) 7−→

(
khEh +∇p̃h, φhEh

)
,

with the decomposition Eh = khEh + ∇φhEh . The crucial idea is now to use a discrete Helmholtz
decomposition to define khEh and φhEh . Namely, for vh ∈ Nk, φhvh ∈ Pk is defined by

(ε∇φhvh ,∇qh)L2(Ω) = (εvh,∇qh)L2(Ω), ∀qh ∈ Pk,

and khvh = vh − ∇φhvh . Doing so, one obtains an (orthogonal) discrete Helmholtz decomposition
that is uniformly stable, and it can be checked that the form Aε,µ is uniformly Th-coercive. Details
can be found in [Ciarlet Jr, 2020, Proposition 13].

Last, for neutron diffusion and for k ≥ 1, one only needs to select Qh in such a way that (2.99) is
fulfilled, namely div (RT k) ⊂ Q′h. To do so, we set Qh = Ppwk , for k ≥ 0, where the superscript pw

stands for piecewise Lagrange finite elements of order k. Assuming for simplicity that σ restricted
to any simplex is constant, we introduce the discrete mapping [Jamelot and Ciarlet Jr, 2013; Ciarlet
Jr et al., 2017]

Th : RT k × Ppwk −→ RT k × P
pw
k

(ph, uh) 7−→
(
ph,

1

2
(−uh + σ−1div ph)

)
,

and the property div (RT k) ⊂ Ppwk guarantees the uniform Th-coercivity of the bilinear form (2.85)
in virtue of Theorem 2.44.

All basic approximability properties are established in [Boffi et al., 2013], which guarantees
convergence in all of the above cases. We again refer to [Boffi et al., 2013] for details and possible
extensions, such as the generalized Taylor-Hood elements (k ≥ 3) or the MINI element for Stokes
or elasticity.

Conclusion

We have demonstrated the flexibility of the T-coercivity approach, here applied to classical lin-
ear mixed problems, both for the theoretical study of the problems and for their numerical ap-
proximation by finite elements. Let us mention some possible extensions, such as nonconforming
discretization methods for Stokes [Jamelot, 2023], multigroup diffusion [Giret, 2018] or DDM for
diffusion [Ciarlet Jr et al., 2017]. It is our belief that numerous applications can be studied with
the T-coercivity approach, both theoretically and numerically. Recent works include application
in poromechanics [Barré et al., 2023], time-harmonic Maxwell’s equations with impedance sur-
faces [Levadoux, 2022], and the applications listed in [Hong et al., 2023].
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CHAPTER 3

Numerical analysis of an incompressible soft material poro-
mechanics model using T-coercivity

This chapter reproduces results published in Comptes Rendus. Mécanique, 351(S1), 1-36 (2023) and
obtained in collaboration with Céline Grandmont and Philippe Moireau. Moreover, in September
2022, I presented this work at the GIMC-SIMAI joint Workshop for Young Scientists in Pavia,
Italy.
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Abstract
This article is devoted to the numerical analysis of the full discretization of a generalized porome-

chanical model resulting from the linearization of an initial model fitted to soft tissue perfusion. Our
strategy here is based on the use of energy-based estimates and T-coercivity methods, so that the
numerical analysis benefits from the essential tools used in the existence analysis of the continuous-
time and continuous-space formulation. In particular, our T-coercivity strategy allows us to obtain
the necessary inf-sup condition for the global system from the inf-sup condition restricted to a sub-
system having the same structure as the Stokes problem. This allows us to prove that any finite
element pair adapted to the Stokes problem is also suitable for this global poromechanical model
regardless of porosity and permeability, generalizing previous results from the literature studying
this model.

Keywords — Poromechanics, mixture theory, incompressible limit, total discretization, inf-sup
stability, energy preserving time-scheme.

Introduction

Poromechanical models describe the mechanical response of saturated porous media in which fluid
flow interacts with a deformable structure through the definition of a multiphase continuum frame-
work. Such models were originally developed by the geosciences community [Biot, 1941; Terzaghi,
1943; Russell and Wheeler, 1983], but have reached new application areas such as biomechanics to
model perfused living tissues [Yang and Taber, 1991; Huyghe et al., 1992; Khaled and Vafai, 2003;
Chapelle et al., 2010; Tully and Ventikos, 2011; Michler et al., 2013; Berger et al., 2016; Vardakis
et al., 2016; Chou et al., 2016; Sacco et al., 2017; Lourenco et al., 2022]. In these biomedical appli-
cations, physical phenomena such as the fluid inertia and solid quasi-incompressibility may not be
neglected, as it was the case in soil engineering, leading to more general formulations. In this spirit,
[Chapelle and Moireau, 2014] has proposed a rather general formulation, valid for large strains and
adapted to soft tissue perfusion. In a recent paper [Barré et al., 2023], we analyze the linearization
of this model in the context of small deformations, small velocities and around a given state of per-
fusion. Our analysis generalizes previous existence results explored in [Burtschell et al., 2019] and
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3.1. Problem setting

[Barnafi et al., 2021] by extending the existence to the incompressible case and in the absence of solid
viscosity where we face a hyperbolic-parabolic problem under a global incompressibility constraint.
In particular, the results obtained in [Barré et al., 2023] are based on the use of energy estimates and
T-coercivity. This notion was originally introduced for sign-changing coefficients problems [Chesnel
and Ciarlet, 2013] but we took advantage of it in our mixed hyperbolic-parabolic setting. In fact,
T-coercivity was moreover recently explored for general mixed formulations in [Barré and Ciarlet Jr,
2022]. In this case, the T-coercivity approach is an alternative to the classical inf-sup condition. It
allows us to elegantly combine several transformations defined from the inf-sup condition of sub-
systems into a general inf-sup condition for the globally coupled problem. This provides a powerful
tool to integrate in a unique framework (a) the hyperbolic structure of the solid – in the absence of
solid viscosity – and (b) the parabolic structure of the fluid, as well as (c) the divergence constraint
on the mixture velocity, which combines the velocities of fluid and solid, without being restricted
by porosity.

In this work, we propose to use T-coercivity in the context of numerical analysis by proving the
convergence of space and time discretization schemes of the linearized version of the model proposed
in [Chapelle and Moireau, 2014]. Again, T-coercivity provides a general framework for the study
of such coupled and constrained systems and facilitates the numerical analysis. Firstly, it allows
us to easily handle the hyperbolic-parabolic coupling at the discrete level when the solid has no
viscosity, in which case the model rewritten in first order form is no longer associated with a coercive
form. Secondly, it allows us to find a global inf-sup condition for the coupled problem directly from
an inf-sup condition applied to a subsystem that is exactly the Stokes problem. Therefore, we
can benefit from all the results of the numerical analysis for the Stokes problem [Pironneau and
Glowinski, 1979; Glowinski, 2003; Boffi et al., 2013; Ern and Guermond, 2021a] and show that any
pair of finite elements adapted to the Stokes problem provides a way to define a set of finite elements
fitted to this general poromechanical model, independently of the porosity that originally appears
in the divergence condition. This leads to a generalization of the convergence results obtained
in [Burtschell et al., 2019] and [Barnafi et al., 2021], in particular without any restriction on the
model parameters and in the incompressible limit case that was not considered in these studies.
Furthermore, our analysis takes into account an additional fluid mass input entering the porous
medium, which was not included in [Burtschell et al., 2019] and was assumed to be small enough in
[Barnafi et al., 2021]. In the case where no restriction is imposed on the fluid mass input, we prove
the stability and convergence of the proposed schemes under a smallness condition on the time step.

The paper is organized as follows. In the next section we recall the model formulation, the
energy estimates, the existence results and the key properties of T-coercivity. In the third section,
we present the time schemes under consideration and in Section 4, we proceed to the space-time
convergence analysis. The last section is devoted to numerical illustrations.

3.1 Problem setting

3.1.1 Presentation of the model

In this work, we consider a poromechanics model describing the motion of an elastic medium
filled by an incompressible viscous fluid. This model arises from the linearization of the non-
linear poromechanics model introduced in [Chapelle and Moireau, 2014] in the context of soft-tissue
perfusion. The porous medium is modeled as a mixture of a solid phase and a fluid phase that
cohabit and interact at each point of the domain Ω. For all x ∈ Ω ⊂ Rd (d = 2, 3), a porosity
0 ≤ φ(x) ≤ 1 is given, which corresponds to the fraction of fluid within the porous mixture, whereas
1 − φ(x) represents the fraction of elastic medium. The macroscopic state variables are the solid
displacement us, the fluid velocity vf and the interstitial pressure p, namely the fluid pressure in the
pores. The governing equations derived in [Burtschell et al., 2019; Barré et al., 2023] by linearizing
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the model from [Chapelle and Moireau, 2014] read:

ρs(1− φ) ∂2
ttus − div

(
σs(us)

)
− div

(
σviss (∂tus)

)
−φ2 k−1

f (vf − ∂tus) + (b− φ)∇p = ρs(1− φ) f, in Ω× (0, T ), (3.1a)

ρfφ∂tvf − div
(
φσf (vf )

)
+ φ2 k−1

f (vf − ∂tus)− θ vf + φ∇p = ρfφ f, in Ω× (0, T ), (3.1b)
b− φ
κ

∂tp+ div
(
(b− φ) ∂tus + φ vf

)
= ρ−1

f θ, in Ω× (0, T ). (3.1c)

In the above system, the first equation (3.1a) is the solid mass momentum balance, the second one
(3.1b) is the fluid mass momentum balance equation, and the third one (3.1c) corresponds to the
mass balance equation for the global mixture incorporating both the solid and fluid phases.

The solid and fluid densities are denoted by ρs and ρf , so that ρs(1 − φ)∂2
ttus and ρfφ∂tvf

represent respectively the accelerations of solid and fluid particles within the mixture. We assume
that the structure stress tensor σs(us) follows Hooke’s law

σs(us) = λTr(ε(us))I + 2µ ε(us),

where λ and µ are two Lamé constants characterizing the macroscopic behavior of the solid perfo-
rated part, and ε(u) = 1

2(∇u+∇uT ) is the linearized Green-Lagrange strain tensor. Similarly, we
suppose that the fluid stress tensor is given by

σf (vf ) = λf Tr(ε(vf ))I + 2µf ε(vf ),

and that the solid additional viscosity reads σviss (∂tus) = 2η ε(∂tus), with µf and η denoting the
fluid and solid viscosities. The solid and fluid equations are coupled by a term φ2k−1

f (vf − ∂tus)
translating the friction between the two phases. This friction term is proportional to the filtration
velocity φ(vf−∂tus) through a coefficient φk−1

f , where kf denotes the hydraulic conductivity tensor,
namely the ratio between the intrinsic permeability and the fluid viscosity. Moreover, the solid and
fluid dynamics are coupled by the gradient of pressure ∇p, which is splitted into a contribution
(b−φ)∇p in (3.1a) and φ∇p in (3.1b), where b is the Biot-Willis coefficient that takes into account
the pressure-deformation coupling at the pore scale. The interstitial pressure dynamics is governed
by the mass balance equation (3.1c) involving the solid grain bulk modulus κ, or more precisely
the storage coefficient b−φ

κ . Finally, in addition to the porosity and the Biot-Willis coefficient, the
input data are the applied exterior body force f , distributed with a coefficient ρs(1−φ) among the
solid and ρfφ among the fluid, and a volumic fluid mass source term described by a scalar function
θ which is assumed to depend only on space.

As shown in [Barré et al., 2023, Section 1.1], this model can be seen as a generalization of Darcy,
Brinkman and Biot equations. As a matter of fact, (3.1) includes inertial and viscous effects both
for the solid and fluid phases, while most of standard poromechanics models – see for instance [Biot,
1941, 1955; Biot and Temple, 1972] – do not consider the fluid velocity as a primary state variable.

In what follows, we will focus on the case where the solid is non-viscous and incompressible, so
that we may assume that η = 0, b = 1 and κ =∞. The last hypothesis is motivated by the targeted
physiological applications, since most of biological tissues are nearly incompressible. Under such
assumptions, system (3.1) becomes: find (us, vf , p) such that

ρs(1− φ) ∂2
ttus − div

(
σs(us)

)
−φ2 k−1

f (vf − ∂tus) + (1− φ)∇p = ρs(1− φ) f, in Ω× (0, T ), (3.2a)

ρfφ∂tvf − div
(
φσf (vf )

)
+ φ2 k−1

f (vf − ∂tus)− θ vf + φ∇p = ρfφ f, in Ω× (0, T ), (3.2b)

div
(
(1− φ) ∂tus + φ vf

)
= ρ−1

f θ, in Ω× (0, T ). (3.2c)
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Note that in this case, the interstitial pressure is no longer a state variable since the term b−φ
κ ∂tp

vanishes, but rather a Lagrange multiplier associated with the incompressibility constraint

div
(
(1− φ) ∂tus + φ vf

)
= ρ−1

f θ.

The model (3.2) has to be complemented with initial and boundary conditions. For the sake of
simplicity, we will restrict our study to the case of homogeneous Dirichlet boundary conditions

us = 0, on ∂Ω,

vf = 0, on ∂Ω,
(3.3)

where the motion of the porous medium is fixed on the boundary. For other types of boundary
conditions such as Neumann or total stress boundary conditions, we refer the reader to [Burtschell
et al., 2019]. Furthermore, we assume that an initial condition (us0, vs0, vf 0) is given, so that

us(0) = us0, in Ω,

∂tus(0) = vs0, in Ω,

vf (0) = vf 0, in Ω.

Through the rest of the paper, we will suppose that (us0, vs0, vf 0) is sufficiently regular.

3.1.2 Energy balance

One of the specificities of the model (3.1) – and also of the original non-linear model proposed
in [Chapelle and Moireau, 2014] – compared to other poromechanics models is that it satisfies a
natural energy balance. Before deriving this balance, we observe that we may assume without loss
of generality that the right-hand side of the constraint equation is equal to zero. As a matter of
fact, if it is not the case, we can build a divergence lifting vθ such that div vθ = ρ−1

f θ and perform

the change of variable (us, vf ) 7→
(
us −

∫ t
0 vθ ds, vf − vθ

)
. The existence of such a lifting requires

that θ is regular enough and that ∫
Ω
θ dx = 0,

where the last assumption is a compatibility condition coming from the Dirichlet boundary condi-
tion. Indeed, if us and vf satisfy (3.2c) and (3.3), then Stokes formula implies that∫

Ω
θ dx = ρf

∫
Ω

div
(
(1− φ) ∂tus + φ vf

)
dx = ρf

∫
∂Ω

(
(1− φ) ∂tus + φ vf

)
· n ds = 0.

For all these reasons, we will suppose from now on that the right-hand side of (3.2c) is equal to
zero. Note that the fluid mass input term θ also appears in (3.2b) through the term −θvf . We will
keep this term in (3.2b) since it is not affected by the above lifting, leading to a more general result
than in [Burtschell et al., 2019] where it is assumed that θ = 0.

Formally, multiplying (3.2a) by ∂tus, (3.2b) by vf and integrating by parts in space, we then
obtain the energy identity

ρs
2

d

dt

∫
Ω

(1− φ)|∂tus|2 dx︸ ︷︷ ︸
Structure kinetic energy

+
1

2

d

dt

∫
Ω
σs(us) : ε(us) dx︸ ︷︷ ︸

Structure mechanical energy

+
ρf
2

d

dt

∫
Ω
φ|vf |2 dx︸ ︷︷ ︸

Fluid kinetic energy

+

∫
Ω
φσf (vf ) : ε(vf ) dx︸ ︷︷ ︸

Viscous dissipation within the fluid

+

∫
Ω
φ2k−1

f (vf − ∂tus) · (vf − ∂tus) dx︸ ︷︷ ︸
Friction dissipation between solid and fluid phases

=

∫
Ω
θ|vf |2 dx︸ ︷︷ ︸

Incoming rate of fluid kinetic energy

+

∫
Ω
ρs(1− φ)f · ∂tus dx+

∫
Ω
ρfφf · vf dx︸ ︷︷ ︸

Power of external forces

, (3.4)
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where the physical meaning of each of the terms is indicated below them.
Guided by the above identity, we make the following hypotheses on the data:

(h1) The constants ρs, ρf , µf , λ, µ are assumed to be strictly positive;

(h2) The porosity φ ∈ Hd/2+r(Ω) with r > 0, and is such that there exists (φmin, φmax) satisfying

0 < φmin ≤ φ(x) ≤ φmax < 1, ∀x ∈ Ω;

(h3) The hydraulic conductivity tensor kf is invertible and there exists k−1
min > 0 such that

k−1
f v · v ≥ k−1

min|v|
2, ∀v ∈ Rd;

(h4) θ ∈ L∞(Ω) in addition to
∫

Ω θ dx = 0;

(h5) f ∈ L2(0, T ; [L2(Ω)]d).

Remark 3.1. In (h4), we assume for the sake of simplicity that the fluid mass input term is
independent of time. It simplifies the analysis, but the time-dependent case could be handled by
supposing that θ is regular enough, in particular θ ∈ C0

(
[0, T ]× Ω

)
, see [Barré et al., 2023].

Remark 3.2. If the right-hand side of (3.2c) is not assumed to be equal to zero, an extra term∫
Ω

p

ρf
θ dx appears in the right-hand side of (3.4), which corresponds to an incoming rate of Gibbs

free energy, see [Chapelle and Moireau, 2014].
Under assumptions (h1)− (h5), the application of Grönwall Lemma to the energy balance (3.4)

allows us to control the growth of the total energy defined by

E(t) =
ρs
2

∫
Ω

(1− φ)|∂tus(t)|2 dx+
1

2

∫
Ω
σs
(
us(t)

)
: ε
(
us(t)

)
dx+

ρf
2

∫
Ω
φ|vf (t)|2 dx,

and of the total dissipation defined by

D(t) =

∫
Ω
φσf

(
vf (t)

)
: ε
(
vf (t)

)
dx+

∫
Ω
φ2k−1

f

(
vf (t)− ∂tus(t)

)
·
(
vf (t)− ∂tus(t)

)
dx.

As a matter of fact, with these notation, (3.4) reads: for each t ∈ (0, T ),

d

dt
E(t) +D(t) =

∫
Ω
θ |vf (t)|2 dx+ F (t),

with
F (t) =

∫
Ω
ρs(1− φ)f(t) · ∂tus(t) dx+

∫
Ω
ρfφf(t) · vf (t) dx.

Then, three different situations occur depending on the fluid mass input term θ: either (a) θ is
negative, or (b) θ is possibly positive but remains small – in a sense specified below, or finally (c)
θ is possibly positive and large.

(a) If θ is negative, namely if fluid mass is removed from the system, then

d

dt
E(t) +D(t) +

∫
Ω
|θ| |vf (t)|2 dx = F (t)

≤ ‖f(t)‖ρs(1−φ) ‖∂tus(t)‖ρs(1−φ) + ‖f(t)‖ρfφ ‖vf (t)‖ρfφ
≤
√

2
(
‖f(t)‖ρs(1−φ) + ‖f(t)‖ρfφ

)
E(t)1/2,

114



3.1. Problem setting

where we used the notation ‖v‖α for the [L2(Ω)]d norm scaled by a function α(x), namely ‖v‖2α =∫
Ω α |v|

2 dx. Therefore, Grönwall Lemma yields: for each t ∈ (0, T ),

E(t) +

∫ t

0
D(s) ds+

∫ t

0

∫
Ω
|θ| |vf (s)|2 dx ds ≤

(
E(0) +

√
2

2

∫ t

0

(
‖f(s)‖ρs(1−φ) + ‖f(s)‖ρfφ

)
ds

)2

.

(b) When θ can be positive but small enough, the incoming rate of fluid kinetic energy can be
compensated by the fluid viscous dissipation. To do so, let us recall Korn inequality [Ciarlet, 1988],
which states that there exists C > 0 such that∫

Ω
ε(v) : ε(v) dx ≥ C‖v‖2[H1

0(Ω)]d , ∀v ∈ [H1
0(Ω)]d. (3.5)

Combining (3.5) with Poincaré inequality, we know that there exists a constant Cd > 0 such that∫
Ω
|v|2 dx ≤ Cd

∫
Ω
ε(v) : ε(v) dx, ∀v ∈ [H1

0(Ω)]d.

Hence ∫
Ω
θ |vf (t)|2 dx ≤

Cd ‖θ‖L∞(Ω)

2µfφmin

∫
Ω
φσf

(
vf (t)

)
: ε
(
vf (t)

)
dx,

so that

d

dt
E(t) +

(
1−

Cd ‖θ‖L∞(Ω)

2µfφmin

)∫
Ω
φσf

(
vf (t)

)
: ε
(
vf (t)

)
dx

+

∫
Ω
φ2k−1

f

(
vf (t)− ∂tus(t)

)
·
(
vf (t)− ∂tus(t)

)
dx ≤

√
2
(
‖f(t)‖ρs(1−φ) + ‖f(t)‖ρfφ

)
E(t)1/2,

provided that
Cd ‖θ‖L∞(Ω)

2µfφmin
≤ 1. (3.6)

As a consequence, if (3.6) is satisfied, then for each t ∈ (0, T ) we have

E(t) +

(
1−

Cd ‖θ‖L∞(Ω)

2µfφmin

)∫ t

0

∫
Ω
φσf

(
vf (s)

)
: ε
(
vf (s)

)
dx ds

+

∫ t

0

∫
Ω
φ2k−1

f

(
vf (s)− ∂tus(s)

)
·
(
vf (s)− ∂tus(s)

)
dx ds

≤

(
E(0) +

√
2

2

∫ t

0

(
‖f(s)‖ρs(1−φ) + ‖f(s)‖ρfφ

)
ds

)2

.

(c) In the general case where θ can be positive and taking possibly large values, we use Young
inequality to obtain

d

dt
E(t) +D(t) =

∫
Ω
θ |vf (t)|2 dx+ F (t) ≤

2 ‖θ‖L∞(Ω)

ρfφmin
· 1

2

∫
Ω
ρfφmin |vf (t)|2 dx

+
1

2
‖f(t)‖2ρs(1−φ) +

1

2
‖∂tus(t)‖2ρs(1−φ) +

1

2
‖f(t)‖2ρfφ +

1

2
‖vf (t)‖2ρfφ

≤

(
1 +

2‖θ‖L∞(Ω)

ρfφmin

)
E(t) +

1

2
‖f(t)‖2ρs(1−φ) +

1

2
‖f(t)‖2ρfφ ,
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leading to

E(t)+

∫ t

0
D(s) ds ≤ exp

((
1+

2‖θ‖L∞(Ω)

ρfφmin

)
t

)(
E(0)+

1

2

∫ t

0

(
‖f(s)‖2ρs(1−φ) +‖f(s)‖2ρfφ

)
ds

)
. (3.7)

In this article, to remain as general as possible, we will focus on the case c) where θ may take
large values and for which the solution possibly shows an exponential growth as in (3.7). Indeed,
this general case was not covered in the litterature, in particular [Burtschell et al., 2019; Barnafi
et al., 2021]. Note however that in the case where θ satisfies (3.6) as it is assumed in [Barnafi et al.,
2021], our analysis also provides error estimates with no exponential growth, see Remarks 3.11, 3.18
and 3.22. The energy estimate (3.7), which has been theoretically proven in [Barré et al., 2023], is
a fundamental property of the system and its discrete counterpart will be the cornerstone of the
numerical analysis. But before proposing a discretization of Problem (3.2) in the next section, let us
briefly recall existence and uniqueness results at the continuous level and introduce a few notation.

3.1.3 Existence results

From the theoretical point of view, Problem (3.2) combines two major difficulties. The first one
is that the solid equation (3.2a) is hyperbolic, whereas the fluid equation (3.2b) is parabolic. The
second one is the incompressibility constraint (3.2c) coupling the solid and fluid velocities. Therefore,
system (3.2) is a strongly coupled problem with a hyperbolic-parabolic coupling that also involves
a saddle-point structure associated with a non-standard divergence constraint.

The existence of strong, mild and weak solutions of Problem (3.2) has been studied and justified
in detail in [Barré et al., 2023] using a semigroup approach and the notion of T-coercivity [Chesnel
and Ciarlet, 2013]. The first step is to formulate our problem as a first-order evolution system. In-
troducing the solid velocity variable vs = ∂tus, Problem (3.2) can be rewritten as: find (us, vs, vf , p)
such that 

∂tus − vs = 0, (3.8a)
ρs(1− φ) ∂tvs − div

(
σs(us)

)
− φ2 k−1

f (vf − vs) + (1− φ)∇p = ρs(1− φ) f, (3.8b)

ρfφ∂tvf − div
(
φσf (vf )

)
+ φ2 k−1

f (vf − vs)− θ vf + φ∇p = ρfφ f, (3.8c)

div
(
(1− φ) vs + φ vf

)
= 0. (3.8d)

Then, denoting by z = (us, vs, vf ) the state variable, we seek for a solution z in the energy space

H = [H1
0(Ω)]d × [L2(Ω)]d × [L2(Ω)]d,

endowed with the scalar product

(z, y)H =

∫
Ω
σs(us) : ε(ds) +

∫
Ω
ρs(1− φ) vs · ws dx+

∫
Ω
ρfφ vf · wf dx,

for any y = (ds, ws, wf ) belonging to H, and with the corresponding norm

‖z‖2H =

∫
Ω
σs(us) : ε(us) dx+

∫
Ω
ρs(1− φ) |vs|2 dx+

∫
Ω
ρfφ |vf |2 dx,

associated with the energy balance (3.4). Note that this norm is equivalent to the canonical norm
on H thanks to Korn inequality (3.5). Setting

V = [H1
0(Ω)]d × [H1

0(Ω)]d × [H1
0(Ω)]d and Q = L2

0(Ω),
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we define the all-in-one mixed bilinear form incorporating the constraint

A
(
(z, p), (y, q)

)
=−

∫
Ω
σs(vs) : ε(ds) dx+

∫
Ω
σs(us) : ε(ws) dx

+

∫
Ω
φ2 k−1

f (vf − vs) · (wf − ws) dx+

∫
Ω
φσf (vf ) : ε(wf ) dx−

∫
Ω
θvf · wf dx

−
∫

Ω
p div

(
(1− φ)ws + φwf

)
dx+

∫
Ω

div
(
(1− φ) vs + φ vf

)
q dx, (3.9)

for all z = (us, vs, vf ), y = (ds, ws, wf ) in V and p, q in Q. Within this functional framework, the
mixed formulation of Problem (3.8) reads{

Find z = (us, vs, vf ) ∈ C1
(
[0, T ];H

)
∩ C0

(
[0, T ];V

)
and p ∈ C0

(
[0, T ];Q

)
such that(

ż(t), y
)
H

+A
(
(z(t), p(t)), (y, q)

)
= (g(t), y)H , ∀y ∈ V,∀q ∈ Q,

(3.10)

with ż = d
dtz and g(t) = (0, f(t), f(t)). From [Barré et al., 2023, Theorem 3.14], we know that

this formulation is well-posed. The solution of Problem (3.10) satisfies (3.8b), (3.8c) and (3.8d) in
[L2(Ω)]d, whereas the identity (3.8a) is fulfilled in the space [H1

0(Ω)]d, endowed with the specific
scalar product (u, v) 7→

∫
Ω σs(u) : ε(v) adapted to the elasticity operator −div

(
σs(·)

)
.

The proof of well-posedness in [Barré et al., 2023] hinges on showing that the evolution operator
associated with (3.8) is maximal-accretive. This property can be proven using the notion of T-
coercivity, that will also be a central tool for the numerical analysis of the discrete problem and
that we present below.

3.1.4 The T-coercivity approach

The T-coercivity approach is a reformulation of Banach-Nečas-Babuška theory for the study of
well-posedness and numerical approximation of non-coercive problems. T-coercivity was originally
introduced for problems involving an invertible operator perturbed by a compact term [Buffa, 2005;
Ciarlet Jr, 2012] and problems with sign-changing coefficients, see for instance [Bonnet-Ben Dhia
et al., 2010b; Chesnel and Ciarlet, 2013; Bonnet-Ben Dhia et al., 2014a; Bunoiu et al., 2021; Halla,
2021]. More recently, it was applied to saddle-point problems [Barré et al., 2023; Barré and Cia-
rlet Jr, 2022]. This approach is particularly appropriate here as it allows us to handle the two
difficulties of the problem – the incompressibility constraint and the non-coercivity of the underly-
ing operator coming from the hyperbolic-parabolic coupling – in a monolithic way by analyzing the
all-in-one bilinear form (3.9).

For the sake of completeness, the definition and main property of T-coercivity are recalled below
at the continuous level.
Definition 3.3. LetW be a Hilbert space and let A(·, ·) be a continuous bilinear form overW ×W .
We say that A is T-coercive if there exists a bijective operator T ∈ L(W ) and α > 0 such that

|A(u, Tu)| ≥ α ‖u‖2W , ∀u ∈W.

Proposition 3.4. Let W be a Hilbert space. Let `(·) be a continuous linear form over W and A(·, ·)
be a continuous bilinear form over W ×W . The problem{

Find u ∈W such that
∀v ∈W, A(u, v) = `(v)

is well-posed if and only if A is T-coercive.
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The all-in-one bilinear form A is not coercive, but it was shown in [Barré et al., 2023, Proposition
3.15] that the bilinear form Aλ0 defined by

Aλ0

(
(z, p), (y, q)

)
= A

(
(z, p), (y, q)

)
+ λ0(z, y)H , (3.11)

is T-coercive provided that the parameter λ0 is large enough. More precisely, we have the following
result.
Proposition 3.5. If λ0 > (ρfφmin)−1 ‖θ‖L∞(Ω), then the bilinear form Aλ0 is T-coercive for the
mapping

T : (us, vs, vf , p) 7−→
(
βus + γvs, αvs − vp, αvf − vp, αp

)
, (3.12)

where vp ∈ [H1
0(Ω)]d is a divergence lifting defined by

div vp = p and ‖∇vp‖ ≤ Cdiv ‖p‖ , (3.13)

with Cdiv > 0, and α, β and γ are constants depending on λ0 and the various physical parameters.
As can be seen in Definition 3.3 and Proposition 3.5, the T-coercivity framework relies on the

explicit building of an operator T such that the bilinear form under study is T-coercive. This
explicit realization provides insights on how to design a suitable approximation of the continuous
problem when going at the discrete level. Indeed, the following results [Chesnel and Ciarlet, 2013]
indicate that if one is able to reproduce the continuous mapping T in the discrete setting, then the
convergence of the associated discrete solution is ensured.
Definition 3.6. Let W be a Hilbert space, A(·, ·) be a continuous bilinear form over W ×W and
(Wh)h be conforming approximations of W . We say that A is uniformly Th-coercive if

∃α∗, β∗ > 0, ∀h > 0, ∃Th ∈ L(Wh), |A(uh, Thuh)| ≥ α∗ ‖uh‖2W , ∀uh ∈Wh, and |||Th||| ≤ β∗.

Proposition 3.7. Assume that the hypotheses of Proposition 3.4 hold and that the bilinear form A
is T-coercive. Let (Wh)h be conforming approximations of W , and denote by AAAh ∈ L(Wh,W

′
h) the

discrete operator associated with A|Wh
. The problem{

Find uh ∈Wh such that
∀vh ∈Wh, A(uh, vh) = `(vh)

is well-posed and (AAA−1
h )h is uniformly bounded if and only if A is uniformly Th-coercive. In that

case, denoting by CA the continuity constant of the bilinear form A, it holds that

‖u− uh‖W ≤ C inf
vh∈Wh

‖u− vh‖W , (3.14)

with C = 1 + CAβ
∗

α∗ independent of h.
The approximation property (3.14) will enable us to build a discrete projection operator on the

finite dimension space considered that is adapted to the specific structure of Problem (3.8).

3.2 Two discretization schemes

3.2.1 Semi-discrete time discretization

We propose two monolithic time schemes to discretize Problem (3.8). The first one is a Crank-
Nicolson scheme [Crank and Nicolson, 1947], in which both the solid and fluid quantities are dis-
cretized using a midpoint rule. In the second one, the solid part is still discretized with a midpoint
rule but the fluid and pressure parts are approximated with an implicit backward Euler method.
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This second scheme is motivated by the fact of reproducing in a linearized setting the splitting
scheme introduced in [Burtschell et al., 2017] for the non-linear model from [Chapelle and Moireau,
2014], in which the solid and fluid parts are discretized respectively with Newmark and backward
Euler schemes following [Hauret and Le Tallec, 2006]. These schemes are close to those studied in
[Burtschell et al., 2019] and [Barnafi et al., 2021] but include the additional fluid mass term θ and
cover the incompressible regime.

The interval (0, T ) is divided into nT time intervals. Let us denote by ∆t = T
nT

the time
step of the method, and by tn = n∆t the discrete times, with initial time t0 = 0 and final time
tnT = nT∆t = T . The continuous solution (us, vs, vf , p) at time tn will be approximated by the
semi-discrete solution (uns , v

n
s , v

n
f , p

n), which is initialized by

(u0
s, v

0
s , v

0
f , p

0) = (us0, vs0, vf 0, 0).

Moreover, we will denote by un+ 1
2

s , vn+ 1
2

s , vn+ 1
2

f and pn+ 1
2 the midpoint quantities

u
n+ 1

2
s =

un+1
s + uns

2
, v

n+ 1
2

s =
vn+1
s + vns

2
, v

n+ 1
2

f =
vn+1
f + vnf

2
, pn+ 1

2 =
pn+1 + pn

2
,

which correspond to an approximation of the solution at time tn+ 1
2 =

(
n+ 1

2

)
∆t.

Under these notation, the proposed semi-discrete Crank-Nicolson scheme reads:

un+1
s − uns

∆t
− vn+ 1

2
s = 0, (3.15a)

ρs(1− φ)
vn+1
s − vns

∆t
− div

(
σs(u

n+ 1
2

s )
)

−φ2 k−1
f (v

n+ 1
2

f − vn+ 1
2

s ) + (1− φ)∇pn+ 1
2 = ρs(1− φ) fn+ 1

2 , (3.15b)

ρfφ
vn+1
f − vnf

∆t
− div

(
φσf (v

n+ 1
2

f )
)

+φ2 k−1
f (v

n+ 1
2

f − vn+ 1
2

s )− θ vn+ 1
2

f + φ∇pn+ 1
2 = ρfφ f

n+ 1
2 , (3.15c)

div
(
(1− φ) v

n+ 1
2

s + φ v
n+ 1

2
f

)
= 0, (3.15d)

where the discrete external body force fn+ 1
2 is defined by

fn+ 1
2 =

f(tn+1) + f(tn)

2
.

The second proposed scheme, which will be referred to as backward Euler scheme, then consists in

un+1
s − uns

∆t
− vn+ 1

2
s = 0, (3.16a)

ρs(1− φ)
vn+1
s − vns

∆t
− div

(
σs(u

n+ 1
2

s )
)

−φ2 k−1
f (vn+1

f − vn+ 1
2

s ) + (1− φ)∇pn+1 = ρs(1− φ) fn+ 1
2 , (3.16b)

ρfφ
vn+1
f − vnf

∆t
− div

(
φσf (vn+1

f )
)

+φ2 k−1
f (vn+1

f − vn+ 1
2

s )− θ vn+1
f + φ∇pn+1 = ρfφ f

n+ 1
2 , (3.16c)

div
(
(1− φ) v

n+ 1
2

s + φ vn+1
f

)
= 0. (3.16d)
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Note that a similar scheme was proposed in [Burtschell et al., 2019] to discretize the viscous and
compressible system (3.1) with θ = 0. However, the convergence estimates in [Burtschell et al., 2019]
depend on κ and hence are not valid for the limit case κ = ∞. Here, we consider the non-viscous
and incompressible case with θ 6= 0, which leads to additional difficulties since we have to deal with
a hyperbolic-parabolic coupled system with a constraint on the mixture velocity and with possible
unstabilities arising from the fluid additional mass input.
Remark 3.8. The two schemes (3.15) and (3.16) are written as a four-field formulation to benefit
from the existence results obtained at the continuous level. However, it is more efficient in practice
to eliminate the solid velocity variable thanks to the relations

v
n+ 1

2
s =

un+1
s − uns

∆t
, vn+1

s = 2v
n+ 1

2
s − vns = 2

un+1
s − uns

∆t
− vns ,

vn+1
s − vns

∆t
=

2

∆t

(
v
n+ 1

2
s − vns

)
=

2

∆t2
(
un+1
s − uns −∆tvns

)
,

(3.17)

and solve a three-field formulation.

3.2.2 Fully discrete schemes

For the space discretization, we consider two finite dimensional spaces Xh ⊂ [H1
0(Ω)]d and Qh ⊂

L2
0(Ω) constituting a conforming approximation of [H1

0(Ω)]d and L2
0(Ω). We seek for the vectorial

quantities – both solid and fluid – in the discrete space Xh and for the pressure in the discrete space
Qh. Moreover, in order to take into account the incompressibility constraint (3.8d), we assume that
(Xh, Qh) are selected in order to satisfy the uniform discrete inf-sup condition

∃β > 0,∀ph ∈ Qh, sup
vh∈Xh

∫
Ω

div vh ph dx

‖vh‖[H1
0(Ω)]d

≥ β ‖ph‖ . (3.18)

Note that this is the inf-sup condition associated with the standard divergence constraint that
has been widely studied in the scope of Stokes equation. This condition does not depend on the
porosity, as opposed to the hypotheses made in [Burtschell et al., 2019]. Therefore, to choose the
pair (Xh, Qh), we can use the large literature existing on this topic for Stokes equations [Glowinski,
2003; Girault and Raviart, 1986; Boffi et al., 2013]: possible choices include for instance Taylor-
Hood elements or the MINI element. All these choices rely on the design of a Fortin operator
Πh : [H1

0(Ω)]d 7→ Xh satisfying, for each v ∈ [H1
0(Ω)]d,

• For all qh ∈ Qh, ∫
Ω

div
(
Πh(v)

)
qh dx =

∫
Ω

div v qh dx, (3.19)

• There exists a constant Cπ > 0 independent of h such that∥∥∇(Πh(v)
)∥∥ ≤ Cπ ‖∇v‖ . (3.20)

The existence of such an operator is ensured by the inf-sup condition (3.18) by virtue of the Closed
Range Theorem. Following [Barré and Ciarlet Jr, 2022], we will use this Fortin operator rather than
the inf-sup condition (3.18) to build a Th-coercivity mapping adapted to the mixture’s divergence
constraint (3.8d) and to the specific structure of Problem (3.8).

After selecting the spaces Xh and Qh, the fully-discrete versions of the Crank-Nicolson scheme
(3.15) and the backward Euler scheme (3.16) respectively amount to finding un+1

s,h , v
n+1
s,h , vn+1

f,h , p
n+1
h ∈
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Xh ×Xh ×Xh ×Qh at each time step such that for all (ds,h, ws,h, wf,h, qh) ∈ Xh ×Xh ×Xh ×Qh,

∫
Ω
σs

(
un+1
s,h − u

n
s,h

∆t

)
: ε(ds,h) dx+

∫
Ω
ρs(1−φ)

vn+1
s,h − v

n
s,h

∆t
·ws,h dx+

∫
Ω
ρfφ

vn+1
f,h − v

n
f,h

∆t
·wf,h dx

−
∫

Ω
σs(v

n+ 1
2

s,h ) : ε(ds,h) dx+

∫
Ω
σs(u

n+ 1
2

s,h ) : ε(ws,h) dx

+

∫
Ω
φσf (v

n+ 1
2

f,h ) : ε(wf,h) dx−
∫

Ω
θv

n+ 1
2

f,h · wf,h dx+

∫
Ω
φ2 k−1

f (v
n+ 1

2
f,h − v

n+ 1
2

s,h ) · (wf,h − ws,h) dx

−
∫

Ω
p
n+ 1

2
h div

(
(1− φ)ws,h + φwf,h

)
dx+

∫
Ω

div
(
(1− φ) v

n+ 1
2

s,h + φ v
n+ 1

2
f,h

)
qh dx

=

∫
Ω
ρs(1− φ) fn+ 1

2 · ws,h dx+

∫
Ω
ρfφ f

n+ 1
2 · wf,h dx, (3.21)

or

∫
Ω
σs

(
un+1
s,h − u

n
s,h

∆t

)
: ε(ds,h) dx+

∫
Ω
ρs(1−φ)

vn+1
s,h − v

n
s,h

∆t
·ws,h dx+

∫
Ω
ρfφ

vn+1
f,h − v

n
f,h

∆t
·wf,h dx

−
∫

Ω
σs(v

n+ 1
2

s,h ) : ε(ds,h) dx+

∫
Ω
σs(u

n+ 1
2

s,h ) : ε(ws,h) dx

+

∫
Ω
φσf (vn+1

f,h ) : ε(wf,h) dx−
∫

Ω
θvn+1
f,h · wf,h dx+

∫
Ω
φ2 k−1

f (vn+1
f,h − v

n+ 1
2

s,h ) · (wf,h − ws,h) dx

−
∫

Ω
pn+1
h div

(
(1− φ)ws,h + φwf,h

)
dx+

∫
Ω

div
(
(1− φ) v

n+ 1
2

s,h + φ vn+1
f,h

)
qh dx

=

∫
Ω
ρs(1− φ) fn+ 1

2 · ws,h dx+

∫
Ω
ρfφ f

n+ 1
2 · wf,h dx. (3.22)

Moreover, both schemes are initialized by(
u0
s,h, v

0
s,h, v

0
f,h

)
= Ih

(
us0, vs0, vf 0

)
,

where Ih is the interpolation operator from [H1
0(Ω)]d × [H1

0(Ω)]d × [H1
0(Ω)]d to Xh ×Xh ×Xh.

Setting Vh = Xh ×Xh ×Xh, introducing the notation

zn+1
h = (un+1

s,h , v
n+1
s,h , vn+1

f,h ), z
n+ 1

2
h = (u

n+ 1
2

s,h , v
n+ 1

2
s,h , v

n+ 1
2

f,h ), yh = (ds,h, ws,h, wf,h),

and recalling the definition of the bilinear form A, the weak formulations (3.21) and (3.22) can be
condensed intoFind zn+1

h ∈ Vh and pn+1
h ∈ Qh such that for all (yh, qh) ∈ Vh ×Qh,(

zn+1
h −znh

∆t , yh

)
H

+A
(
(z
n+ 1

2
h , p

n+ 1
2

h ), (yh, qh)
)

=
(
gn+ 1

2 , yh
)
H
,

(3.23)

for the Crank-Nicolson scheme andFind zn+1
h ∈ Vh and pn+1

h ∈ Qh such that for all (yh, qh) ∈ Vh ×Qh,(
zn+1
h −znh

∆t , yh

)
H

+A
(
(u
n+ 1

2
s,h , v

n+ 1
2

s,h , vn+1
f,h , p

n+1
h ), (yh, qh)

)
=
(
gn+ 1

2 , yh
)
H
,

(3.24)

for the backward Euler scheme, with gn+ 1
2 = (0, fn+ 1

2 , fn+ 1
2 ).
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Remark 3.9. As already noticed in Remark 3.8, the four-field formulations (3.23) and (3.24) are
convenient for the theoretical and numerical analysis of the problem but are not optimal when
it comes to numerical efficiency. For example, to implement (3.21) in practice, it is preferable
to remove the solid velocity variable using (3.17) and to solve the three-field formulation: find
un+1
s,h , v

n+1
f,h , p

n+1
h ∈ Xh ×Xh ×Qh such that for all (ws,h, wf,h, qh) ∈ Xh ×Xh ×Qh,

∫
Ω
ρs(1− φ)

2

∆t2
(
un+1
s,h − u

n
s,h −∆tvns,h

)
· ws,h dx+

∫
Ω
ρfφ

vn+1
f,h − v

n
f,h

∆t
· wf,h dx

+

∫
Ω
σs(u

n+ 1
2

s,h ) : ε(ws,h) dx+

∫
Ω
φσf (v

n+ 1
2

f,h ) : ε(wf,h) dx−
∫

Ω
θv

n+ 1
2

f,h · wf,h dx

+

∫
Ω
φ2 k−1

f

(
v
n+ 1

2
f,h −

un+1
s,h − u

n
s,h

∆t

)
· (wf,h − ws,h) dx−

∫
Ω
p
n+ 1

2
h div

(
(1− φ)ws,h + φwf,h

)
dx

+

∫
Ω

div

(
(1−φ)

un+1
s,h − u

n
s,h

∆t
+φ v

n+ 1
2

f,h

)
qh dx =

∫
Ω
ρs(1−φ) fn+ 1

2 ·ws,h dx+

∫
Ω
ρfφ f

n+ 1
2 ·wf,h dx,

and then to post-process the solid velocity node by node with the formula

vn+1
s,h = 2

un+1
s,h − u

n
s,h

∆t
− vns,h.

We are now going to use the T-coercivity approach presented in Section 3.1.4 to see under which
conditions the discrete problems (3.23) and (3.24) are well-posed. We will see that the two bilinear
forms involved in (3.23) and (3.24) are closely related to the family of bilinear forms

Aλ0

(
(z, p), (y, q)

)
= A

(
(z, p), (y, q)

)
+ λ0(z, y)H

introduced in (3.11). Therefore, we start with the more general result below.
Lemma 3.10. Assume that (h1)−(h4) hold and that the discrete inf-sup condition (3.18) is satisfied.
Let ` be a continuous linear form on V × Q. If λ0 > (ρfφmin)−1 ‖θ‖L∞(Ω), then the bilinear form
Aλ0 is uniformly Th-coercive. In particular, the problem{

Find (zh, ph) ∈ Vh ×Qh such that
Aλ0

(
(zh, ph), (yh, qh)

)
= `
(
(yh, qh)

)
, ∀yh ∈ Vh, ∀qh ∈ Qh,

is well-posed and admits a solution that is uniformly bounded with respect to h. Moreover, there
exists a constant C > 0 independent of h such that

‖(z, p)− (zh, ph)‖V×Q ≤ C inf
(yh,qh)∈Vh×Qh

‖(z, p)− (yh, qh)‖V×Q , (3.25)

where (z, p) is the solution of the continuous problem{
Find (z, p) ∈ V ×Q such that
Aλ0

(
(z, p), (y, q)

)
= `
(
(y, q)

)
, ∀y ∈ V,∀q ∈ Q.

Proof. Let λ0 > (ρfφmin)−1 ‖θ‖L∞(Ω). We are going to reproduce the T-coercive mapping (3.12)
used at the continuous level in the discrete setting. To do so, mimicking (3.13), for all ph ∈ Qh, we
introduce vph ∈ [H1

0(Ω)]d such that

div vph = ph and ‖∇vph‖ ≤ Cdiv ‖ph‖ . (3.26)
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Since vph does not necessarily belong to the discrete space Xh, we project it on Xh using the Fortin
operator Πh and consider a mapping of the form

Th : (us,h, vs,h, vf,h, ph) 7−→
(
βus,h + γvs,h, αvs,h −Πhvph , αvf,h −Πhvph , αph

)
,

where α, β and γ are some constants to be adjusted.
First, we observe that |||Th||| is bounded uniformly with respect to h since

∥∥∇(Πhvph
)∥∥ ≤ Cπ ‖∇vph‖ ≤ CπCdiv ‖ph‖ (3.27)

by virtue of (3.26)-right and (3.20).
Thanks to the divergence-compatibility property of the operator Πh, the proof then follows the

same lines as in the continuous level, see [Barré et al., 2023, Proposition 3.15]. Indeed, we compute

Aλ0

(
(zh, ph), Th(zh, ph)

)
= λ0

∫
Ω
β σs(us,h) : ε(us,h) dx+ λ0

∫
Ω
γ σs(us,h) : ε(vs,h) dx

−
∫

Ω
β σs(vs,h) : ε(us,h) dx−

∫
Ω
γ σs(vs,h) : ε(vs,h) dx−

∫
Ω
σs(us,h) : ε(Πhvph) dx

+ λ0

∫
Ω
ρs(1− φ)

(
α |vs,h|2 − vs,h ·Πhvph

)
dx+

∫
Ω
ασs(us,h) : ε(vs,h) dx

+

∫
Ω
αφ2 k−1

f (vf,h − vs,h) · (vf,h − vs,h) dx+

∫
Ω

(
λ0ρfφ− θ

)(
α |vf,h|2 − vf,h ·Πhvph

)
dx

+

∫
Ω
φ
(
ασf (vf,h) : ε(vf,h)− σf (vf,h) : ε(Πhvph)

)
dx−

∫
Ω
ph div

(
(1− φ)αvs,h + φαvf,h

)
dx

+

∫
Ω
ph div

(
(1− φ) Πhvph + φΠhvph

)
dx+

∫
Ω

div
(
(1− φ) vs,h + φ vf,h

)
αph dx.

Note that the term −
∫

Ω ph div
(
(1− φ)αvs,h + φαvf,h

)
dx and

∫
Ω div

(
(1− φ) vs,h + φ vf,h

)
αph dx

cancel out, and that

∫
Ω
ph div

(
(1− φ) Πhvph + φΠhvph

)
dx =

∫
Ω
ph div (Πhvph) dx =

∫
Ω
phdiv vph dx =

∫
Ω
p2
h dx,

thanks to (3.19) and (3.26)-left. Now, we set β = α
2 and γ = − α

2λ0
in order to remove the terms of

the form
∫

Ω σs(us,h) : ε(vs,h) dx. Consequently, we have

Aλ0

(
(zh, ph),Th(zh, ph)

)
(3.28)

≥ λ0α

2

∫
Ω
σs(us,h) : ε(us,h) dx−

∫
Ω
σs(us,h) : ε(Πhvph) dx

+
α

2λ0

∫
Ω
σs(vs,h) : ε(vs,h) dx+ λ0ρs(1− φmax)

∫
Ω

(
α |vs,h|2 − vs,h ·Πhvph

)
dx

+
(
λ0ρfφmin − ‖θ‖L∞(Ω)

) ∫
Ω

(
α |vf,h|2 − vf,h ·Πhvph

)
dx

+φmin

∫
Ω

(
ασf (vf,h) : ε(vf,h)− σf (vf,h) : ε(Πhvph)

)
dx+

∫
Ω
p2
h dx. (3.29)
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Next, for all δ > 0, Young inequality yields

−
∫

Ω
σs(us,h) : ε(Πhvph) dx ≥ −δ

2

∫
Ω
σs(us,h) : ε(us,h) dx− 1

2δ

∫
Ω
σs(Πhvph) : ε(Πhvph) dx,

−
∫

Ω
σf (vf,h) : ε(Πhvph) dx ≥ −δ

2

∫
Ω
σf (vf,h) : ε(vf,h) dx− 1

2δ

∫
Ω
σf (Πhvph) : ε(Πhvph) dx,

−
∫

Ω
vs,h ·Πhvph dx ≥ −δ

2

∫
Ω
|vs,h|2 dx− 1

2δ

∫
Ω
|Πhvph |

2 dx,

−
∫

Ω
vf,h ·Πhvph dx ≥ −δ

2

∫
Ω
|vf,h|2 dx− 1

2δ

∫
Ω
|Πhvph |

2 dx.

(3.30)
To control the new terms appearing in (3.30), we use the inequalities

‖div v‖2 ≤ d ‖∇v‖2 and ‖ε(v)‖ ≤ ‖∇v‖ , ∀v ∈ [H1
0(Ω)]d,

together with (3.27) to retrieve∫
Ω
σf (Πhvph) : ε(Πhvph) dx = λf ‖div (Πhvph)‖2 + 2µf ‖ε(Πhvph)‖2 ≤ C2

πC
2
div(λfd+ 2µf ) ‖ph‖2 ,∫

Ω
σs(Πhvph) : ε(Πhvph) dx = λ ‖div (Πhvph)‖2 + 2µ ‖ε(Πhvph)‖2 ≤ C2

πC
2
div(λd+ 2µ) ‖ph‖2 .

(3.31)
Furthermore, denoting by Cp the constant of Poincaré inequality, it holds that

‖Πhvph‖
2 ≤ Cp ‖∇(Πhvph)‖2 ≤ CpC2

πC
2
div ‖ph‖

2 . (3.32)

Using (3.30), (3.31) and (3.32) to bound from below the right-hand side of (3.29) and rearranging
terms, we obtain

Aλ0

(
(zh, ph), Th(zh, ph)

)
≥
(λ0α

2
− δ

2

)
‖us,h‖2s +

α

2λ0
‖vs,h‖2s + λ0ρs(1− φmax)

(
α− δ

2

)
‖vs,h‖2

+ (λ0ρfφmin − ‖θ‖L∞(Ω))
(
α− δ

2

)
‖vf,h‖2 + 2µfφmin

(
α− δ

2

)
‖ε(vf,h)‖2 +

(
1− δ∗

2δ

)
‖ph‖2 ,

where

δ∗ = C2
πC

2
div

(
λd+ 2µ+ λ0ρs(1− φmax)Cp + (λ0ρfφmin − ‖θ‖L∞(Ω))Cp + φmin(λfd+ 2µf )

)
.

Thanks to the assumption λ0 > (ρfφmin)−1 ‖θ‖L∞(Ω), we have δ∗ > 0.
Hence, setting δ = δ∗ and α = α∗ = max

(
δ∗, 2δ∗

λ0

)
, we get

Aλ0

(
(zh, ph), Th(zh, ph)

)
≥ δ∗

2
‖us,h‖2s +

α∗

2λ0
‖vs,h‖2s + µfφminδ

∗ ‖ε(vf,h)‖2 +
1

2
‖ph‖2 . (3.33)

Finally, we infer that Aλ0 is Th-coercive for the mapping

Th : (us,h, vs,h, vf,h, ph) 7−→
(α∗

2
us,h −

α∗

2λ0
vs,h, α

∗vs,h −Πhvph , α
∗vf,h −Πhvph , α

∗ph

)
.

Remark 3.11. If θ is small, namely if it satisfies (3.6), then the condition λ0 > (ρfφmin)−1 ‖θ‖L∞(Ω)

can be dropped.
Coming back to the weak formulation of the Crank-Nicolson scheme, we get the following well-

posedness result.
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3.2. Two discretization schemes

Theorem 3.12. Assume that (h1) − (h4) hold and that the discrete inf-sup condition (3.18) is
satisfied. If we have in addition

∆t <
2ρfφmin

‖θ‖L∞(Ω)

, (3.34)

then Problem (3.23) is well-posed.
Proof. Isolating the unknown zn+1

h , the formulation (3.23) is equivalent to
Find zn+1

h ∈ Vh and pn+1
h ∈ Qh such that for all (yh, qh) ∈ Vh ×Qh,

2(∆t)−1
(
zn+1
h , yh

)
H

+A
(
(zn+1
h , pn+1

h ), (yh, qh)
)

= 2(∆t)−1
(
znh , yh

)
H
−A

(
(znh , p

n
h), (yh, qh)

)
+ 2
(
gn+ 1

2 , yh
)
H
.

Here, we see that the bilinear form involved for solving the discrete problem at time tn+1 is a
perturbation of the bilinear form A. Moreover, the perturbed form is exactly the same than the
one studied at the continuous level in Proposition 3.5. Indeed, recalling the notation (3.11), we get
the formulation{

Find zn+1
h ∈ Vh and pn+1

h ∈ Qh such that for all (yh, qh) ∈ Vh ×Qh,
A2(∆t)−1

(
(zn+1
h , pn+1

h ), (yh, qh)
)

= 2(∆t)−1
(
znh , yh

)
H
−A

(
(znh , p

n
h), (yh, qh)

)
+ 2
(
gn+ 1

2 , yh
)
H
.

(3.35)
To ensure well-posedness, we know from Proposition 3.7 that it is sufficient to prove that the
bilinear form A2(∆t)−1 is Th-coercive. Applying Lemma 3.10, we find that this problem is well-
posed provided that 2(∆t)−1 > (ρfφmin)−1 ‖θ‖L∞(Ω), which corresponds exactly to the time step
restriction (3.34).
Remark 3.13. Here, we propose a stable space discretization that is indepedent of the porosity
φ. This is motivated by the fact that in the original non-linear model derived in [Chapelle and
Moireau, 2014], the porosity is an unknown state variable depending on time, so that any space
discretization must be robust with respect to this parameter. If we allow the choice of the pair
(Xh, Qh) to depend on φ, one has to study the influence of the porosity on the constant β involved
in the discrete inf-sup condition

∃β > 0, ∀ph ∈ Qh, sup
(vs,h,vf,h)∈Xh×Xh

∫
Ω

div
(
(1− φ) vs,h + φ vf,h

)
ph dx

‖(vs,h, vf,h)‖[H1
0(Ω)]d×[H1

0(Ω)]d
≥ β ‖ph‖ ,

see [Barnafi et al., 2021] for a discussion on this topic.
Remark 3.14. If we chose different discretization spaces for the solid and the fluid, namely if
Vh = Xs,h×Xs,h×Xf,h with Xs,h 6= Xf,h, the proof of Lemma 3.10 can be extended provided that
there exists a Fortin operator Πh : [H1

0(Ω)]d 7→ Xs,h ∩Xf,h verifying (3.19) and (3.20). Hence, the
well-posedness of the discrete problem is guaranteed under the inf-sup condition

∃β > 0,∀ph ∈ Qh, sup
vh∈Xs,h∩Xf,h

∫
Ω

div vh ph dx

‖vh‖[H1
0(Ω)]d

≥ β ‖ph‖ .

Remark 3.15. Note that the result of Theorem 3.12 does not require any assumption on the size
of the permeability tensor kf , contrary to the assumptions made in [Barnafi et al., 2021] for the
compressible case.
Remark 3.16. If θ depends on time, the bilinear form Aλ0 also depends on time. Nevertheless,
the result of Lemma 3.10 could be extended as long as we assume that θ ∈ C0

(
[0, T ] × Ω

)
and

λ0 > (ρfφmin)−1 ‖θ‖
C0
(

[0,T ]×Ω
).
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For the backward Euler scheme, we obtain well-posedness under a time step condition that is
slightly more restrictive than (3.34).

Theorem 3.17. Assume that (h1) − (h4) hold and that the discrete inf-sup condition (3.18) is
satisfied. If we have in addition

∆t <
ρfφmin

‖θ‖L∞(Ω)

, (3.36)

then Problem (3.24) is well-posed.

Proof. Let us rewrite (3.24) by isolating the unknown (u
n+ 1

2
s,h , v

n+ 1
2

s,h , vn+1
f,h , p

n+1
h ). Writing un+1

s −uns =

2(u
n+ 1

2
s − uns ) and vn+1

s − vns = 2(v
n+ 1

2
s − vns ), we obtain the following discrete problem: find

(u
n+ 1

2
s,h , v

n+ 1
2

s,h , vn+1
f,h , p

n+1
h ) ∈ Vh ×Qh such that for all yh = (ds,h, ws,h, wf,h) ∈ Vh and qh ∈ Qh,

2(∆t)−1

∫
Ω
σs(u

n+ 1
2

s,h ) : ε(ds,h) dx+2(∆t)−1

∫
Ω
ρs(1−φ)v

n+ 1
2

s,h ·ws,h dx+(∆t)−1

∫
Ω
ρfφv

n+1
f,h ·wf,h dx

+A
(
(u
n+ 1

2
s,h , v

n+ 1
2

s,h , vn+1
f,h , p

n+1
h ), (yh, qh)

)
= `(yh), (3.37)

where ` is a continuous linear form depending only on the prescribed body force fn+ 1
2 and the

solution at time tn. As for the Crank-Nicolson scheme, the bilinear form appearing in the left-hand
side of (3.37) is a perturbation of the bilinear form A. However, this perturbation does not exactly
correspond to the scalar product (·, ·)H because the coefficients in front of the solid and fluid terms
– namely 2(∆t)−1 and (∆t)−1 – are different, so that we cannot directly apply Lemma 3.10.

Nevertheless, we can reproduce its proof with this modified perturbation, which amounts to
replacing (λ, µ, ρs) by (2λ, 2µ, 2ρs) and adapting the choice of the constants α, β and γ. But the
restriction on the parameter λ0 comes from the coefficient

(
λ0ρfφmin−‖θ‖L∞(Ω)

)
arising in front of

the fluid term, which is not affected by this modification. Therefore, we conclude that the discrete
problem is well-posed for (∆t)−1 > (ρfφmin)−1 ‖θ‖L∞(Ω), which corresponds to (3.36).

Remark 3.18. If θ satisfies the smallness condition (3.6), then the assumptions made on the time
step in Theorems 3.12 and 3.17 are not necessary. Indeed, if (3.6) holds true, then the discrete
problems (3.23) and (3.24) are well-posed irrespectively of the time step ∆t.

3.2.3 Discrete energy balances

The two schemes (3.15) and (3.16) satisfy fundamental energy balances at the discrete level. As a

matter of fact, choosing (ds,h, ws,h, wf,h, qh) = (∆t u
n+ 1

2
s,h ,∆t v

n+ 1
2

s,h ,∆t v
n+ 1

2
f,h ,∆t p

n+ 1
2

h ) in (3.21), we
obtain∫

Ω
σs(u

n+1
s,h −u

n
s,h) : ε(u

n+ 1
2

s,h ) dx+

∫
Ω
ρs(1−φ) (vn+1

s,h −v
n
s,h)·vn+ 1

2
s,h dx+

∫
Ω
ρfφ (vn+1

f,h −v
n
f,h)·vn+ 1

2
f,h dx

−∆t

∫
Ω
σs(v

n+ 1
2

s,h ) : ε(u
n+ 1

2
s,h ) dx+ ∆t

∫
Ω
σs(u

n+ 1
2

s,h ) : ε(v
n+ 1

2
s,h ) dx

+ ∆t

∫
Ω
φσf (v

n+ 1
2

f,h ) : ε(v
n+ 1

2
f,h ) dx−∆t

∫
Ω
θv

n+ 1
2

f,h · v
n+ 1

2
f,h dx+ ∆t

∫
Ω
φ2 k−1

f (v
n+ 1

2
f,h − v

n+ 1
2

s,h )2 dx

−∆t

∫
Ω
p
n+ 1

2
h div

(
(1− φ) v

n+ 1
2

s,h + φ v
n+ 1

2
f,h

)
dx+ ∆t

∫
Ω

div
(
(1− φ) v

n+ 1
2

s,h + φ v
n+ 1

2
f,h

)
p
n+ 1

2
h dx

= ∆t

∫
Ω
ρs(1− φ) fn+ 1

2 · vn+ 1
2

s,h dx+ ∆t

∫
Ω
ρfφ f

n+ 1
2 · vn+ 1

2
f,h dx,
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where φ2k−1
f

(
v
n+ 1

2
f,h − v

n+ 1
2

s,h

)2
is a shortcut notation for φ2k−1

f

(
v
n+ 1

2
f,h − v

n+ 1
2

s,h

)
·
(
v
n+ 1

2
f,h − v

n+ 1
2

s,h

)
.

Therefore, using that (vn+1 − vn) · vn+ 1
2 = 1

2

(∣∣vn+1
∣∣2 − |vn|2) and introducing the discrete energy

Enh =
1

2

∫
Ω
σs(u

n
s,h) : ε(uns,h) dx︸ ︷︷ ︸

Structure discrete mechanical energy

+
1

2

∫
Ω
ρs(1− φ)

∣∣vns,h∣∣2 dx︸ ︷︷ ︸
Structure discrete kinetic energy

+
1

2

∫
Ω
ρfφ

∣∣vnf,h∣∣2 dx︸ ︷︷ ︸
Fluid discrete kinetic energy

,

we find

(
En+1
h − Enh

)
+ ∆t

∫
Ω
φσf (v

n+ 1
2

f,h ) : ε(v
n+ 1

2
f,h ) dx+ ∆t

∫
Ω
φ2k−1

f

(
v
n+ 1

2
f,h − v

n+ 1
2

s,h

)2
dx

= ∆t

(∫
Ω
θ

∣∣∣∣vn+ 1
2

f,h

∣∣∣∣2 dx+

∫
Ω
ρs(1− φ) fn+ 1

2 · vn+ 1
2

s,h dx+

∫
Ω
ρfφ f

n+ 1
2 · vn+ 1

2
f,h dx

)
, (3.38)

which corresponds to the discrete counterpart of the energy balance (3.4). Note that in absence of
external forces and if the mass input term θ is negative, namely if this term removes fluid mass
from the system, (3.38) directly implies the stability of the system since we then have

En+1
h +∆t

∫
Ω
φσf (v

n+ 1
2

f,h ) : ε(v
n+ 1

2
f,h ) dx+∆t

∫
Ω
φ2k−1

f

(
v
n+ 1

2
f,h −v

n+ 1
2

s,h

)2
dx+∆t

∫
Ω
|θ|
∣∣∣∣vn+ 1

2
f,h

∣∣∣∣2 dx ≤ Enh .

The general case requires an application of a discrete version of Grönwall Lemma, as it will be
detailed in the next section.

Proceeding similarly for the backward Euler scheme, namely taking (ds,h, ws,h, wf,h, qh) =

(∆t u
n+ 1

2
s,h ,∆t v

n+ 1
2

s,h ,∆t vn+1
f,h ,∆t p

n+1
h ) in (3.22) and using the identity

(vn+1 − vn) · vn+1 =
1

2

(∣∣vn+1
∣∣2 − |vn|2 +

∣∣vn+1 − vn
∣∣2),

we get the discrete energy balance

(
En+1
h − Enh

)
+

1

2

∫
Ω
ρfφ

∣∣∣vn+1
f,h − v

n
f,h

∣∣∣2 dx

+ ∆t

∫
Ω
φσf (vn+1

f,h ) : ε(vn+1
f,h ) dx+ ∆t

∫
Ω
φ2k−1

f

(
vn+1
f,h − v

n+ 1
2

s,h

)2
dx

= ∆t

(∫
Ω
θ
∣∣∣vn+1
f,h

∣∣∣2 dx+

∫
Ω
ρs(1− φ) fn+ 1

2 · vn+ 1
2

s,h dx+

∫
Ω
ρfφ f

n+ 1
2 · vn+1

f,h dx

)
. (3.39)

This is almost the same energy balance as for the Crank-Nicolson scheme, the principal differ-

ence being the presence of an additional fluid term 1
2

∫
Ω ρfφ

∣∣∣vn+1
f,h − v

n
f,h

∣∣∣2 dx inducing numerical
dissipation.

3.3 Convergence analysis

The goal of this section is to compare the solution of the continuous problem to the solution of the
fully-discrete schemes (3.21) or (3.22). To do so, we are first going to build a projector from the
continuous to the discrete space that is adapated to the bilinear form appearing in our problem.
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3.3.1 Choosing the finite element spaces

Let us assume that the discrete inf-sup condition (3.18) is fulfilled, and choose a parameter λ0 >
(ρfφmin)−1 ‖θ‖L∞(Ω). Then, Lemma 3.10 implies that for any (z, p) ∈ V ×Q, there exists a unique
Ph(z, p) ∈ Vh ×Qh such that

Aλ0

(
Ph(z, p), (yh, qh)

)
= Aλ0

(
(z, p), (yh, qh)

)
, ∀(yh, qh) ∈ Vh ×Qh. (3.40)

This defines a projector Ph from [H1
0(Ω)]d × [H1

0(Ω)]d × [H1
0(Ω)]d × L2

0(Ω) to Xh ×Xh ×Xh × Qh.
The projector Ph can be seen as a Riesz projector [Wheeler, 1973; Baker, 1976] adapted to the
hyperbolic – parabolic structure of the problem, shifted by the additional mass term with a scaling
of λ0. Let us denote by P uh , P

s
h , P

f
h and P ph the solid displacement, solid velocity, fluid velocity

and pressure components of Ph. The four corresponding projectors act on an element of [H1
0(Ω)]d×

[H1
0(Ω)]d × [H1

0(Ω)]d × L2
0(Ω), but when z = (us, vs, vf ) we will use the notation

Ph(z, p) =
(
P uh us, P

s
hvs, P

f
h vf , P

p
hp
)
.

Similarly, we will condense the three vectorial components of Ph in an operator P zh and make the
abuse of notation Ph(z, p) = (P zhz, P

p
hp), so that (3.40) is equivalent to

A
(
Ph(z, p), (yh, qh)

)
+λ0(P zhz, yh)H = A

(
(z, p), (yh, qh)

)
+λ0(z, yh)H , ∀(yh, qh) ∈ Vh×Qh. (3.41)

Moreover, in view of property (3.25), it holds

‖(z, p)− Ph(z, p)‖V×Q ≤ C inf
(yh,qh)∈Vh×qh

‖(z, p)− (yh, qh)‖Vh×Qh , (3.42)

with C > 0 a constant independent of h. If z and p are regular enough, the right-hand side of the
previous estimate behaves as a power of the mesh size h. More precisely, denoting by H`+1(Ω) the
space [H`+1(Ω)]d × [H`+1(Ω)]d × [H`+1(Ω)]d, we have

inf
yh∈Vh

‖z − yh‖V ≤ Ch
` ‖z‖H`+1(Ω) , ∀z ∈ H`+1(Ω) ∩ V,

and
inf

qh∈Qh
‖p− qh‖ ≤ Chr ‖p‖Hr(Ω) , ∀p ∈ Hr(Ω) ∩Q,

where the convergence orders ` and r ≤ ` depend on the choice of Xh and Qh. For instance, if
(Xh, Qh) correspond to the so-called Taylor-Hood elements, then ` = r = 2.

Since ‖z − P zhz‖H ≤ C ‖z − P
z
hz‖V owing to Korn inequality (3.5), we deduce that

‖z − P zhz‖H ≤ C
(
h` ‖z‖H`+1(Ω) + hr ‖p‖Hr(Ω)

)
, (3.43)

and ∥∥p− P php∥∥ ≤ C(h` ‖z‖H`+1(Ω) + hr ‖p‖Hr(Ω)

)
. (3.44)

These two estimates will play a central role to control the space consistency terms arising in the
error analysis.

3.3.2 Error analysis for the Crank-Nicolson scheme

We recall that the continuous solution (z, p) = (us, vs, vf , p) from (3.10) satisfies(
ż(t), y

)
H

+A
(
(z(t), p(t)), (y, q)

)
= (g(t), y)H , ∀y ∈ V,∀q ∈ Q.
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In particular, since we consider conforming finite element approximations Vh ⊂ V and Qh ⊂ Q, we
have (

ż(t), yh
)
H

+A
(
(z(t), p(t)), (yh, qh)

)
= (g(t), yh)H , ∀yh ∈ Vh,∀qh ∈ Qh. (3.45)

In what follows, we assume that (z, p) is regular enough. In order to quantify the convergence of
the fully discrete solution towards the solution of the continuous problem above, for k an integer or
a half-integer, we introduce the error εkh = z(tk)− zkh = (εku,h, ε

k
s,h, ε

k
f,h) with

εku,h = us(t
k)− uks,h,

εks,h = vs(t
k)− vks,h,

εkf,h = vf (tk)− vkf,h.

We are now ready to state the following error estimate for the Crank-Nicolson scheme, which is the
main result of this paper.
Theorem 3.19. Assume that (h1) − (h5) hold, and that the solution of the continuous problem
(3.10) has the additional regularity

(us, vs, vf ) ∈ C1
(
[0, T ];H`+1(Ω)

)
, p ∈ C1

(
[0, T ];Hr(Ω)

)
,(

∂2
ttus, ∂

2
ttvs, ∂

2
ttvf

)
∈ C1

(
[0, T ];H

)
, ∂2

ttvf ∈ L2
(
0, T ; [H1

0(Ω)]d
)
.

(3.46)

If we have in addition

∆t <
ρfφmin

4 ‖θ‖L∞(Ω)

, (3.47)

then for all 0 ≤ N ≤ nT , it holds that

1

2

∫
Ω
σs(ε

N
u,h) : ε(εNu,h) dx+

1

2

∫
Ω
ρs(1− φ)

∣∣εNs,h∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣εNf,h∣∣2 dx

+ ∆t
N−1∑
n=0

∫
Ω
φσf (ε

n+ 1
2

f,h ) : ε(ε
n+ 1

2
f,h ) dx+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
ε
n+ 1

2
f,h − ε

n+ 1
2

s,h

)2
dx

≤ C exp

(
4(ρfφmin)−1 ‖θ‖L∞(Ω) T

1− 4∆t(ρfφmin)−1 ‖θ‖L∞(Ω)

)
(∆t2 + h` + hr)2, (3.48)

with C a constant independent of h and ∆t.

Proof. The proof is divided into four steps. First, we derive a suitable error equation by using the
definition of the specific projector Ph introduced earlier and by gathering time and space consis-
tency terms. Then, after exploiting the stability of the scheme, these terms are estimated and the
conclusion is obtained by an application of a discrete version of Grönwall Lemma.

Step 1: derivation of the error equation. First, we want to inject the continuous solution into
the semi-discretized in time scheme (3.15), namely compute(

z(tn+1)− z(tn)

∆t
, yh

)
H

+A
((z(tn+1) + z(tn)

2
,
p(tn+1) + p(tn)

2

)
, (yh, qh)

)
,

for all (yh, qh) ∈ Vh ×Qh. To do so, we observe that averaging (3.45) at times tn and tn+1 leads to(
ż(tn+1) + ż(tn)

2
, yh

)
H

+A
((z(tn+1) + z(tn)

2
,
p(tn+1) + p(tn)

2

)
, (yh, qh)

)
=

(
g(tn+1) + g(tn)

2
, yh

)
H

.
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Therefore, writing

ż(tn+1) + ż(tn)

2
=
ż(tn+1) + ż(tn)

2
− z(tn+1)− z(tn)

∆t
+
z(tn+1)− z(tn)

∆t
,

we obtain(
z(tn+1)− z(tn)

∆t
, yh

)
H

+A
((z(tn+1) + z(tn)

2
,
p(tn+1) + p(tn)

2

)
, (yh, qh)

)
=

(
g(tn+1) + g(tn)

2
, yh

)
H

+
(
Rn+ 1

2 , yh
)
H
, (3.49)

where Rn+ 1
2 gathers the time consistency error defined by

Rn+ 1
2 =

z(tn+1)− z(tn)

∆t
− ż(tn+1) + ż(tn)

2
,

which will hereafter be controled using a Taylor expansion.
Next, for a given λ0 > (ρfφmin)−1 ‖θ‖L∞(Ω), we are going to approximate the continuous solution

by means of the discrete projector Ph defined in (3.41). We recall that Ph satisfies, for any (z, p) ∈
V ×Q,

A
(
(z, p), (yh, qh)

)
= A

(
Ph(z, p), (yh, qh)

)
+ λ0

(
P zhz − z, yh

)
H
, ∀yh ∈ Vh,∀qh ×Qh.

Averaging this relation for the choices (z, p) =
(
z(tn), p(tn)

)
and (z, p) =

(
z(tn+1), p(tn+1)

)
, we get

A
((z(tn+1) + z(tn)

2
,
p(tn+1) + p(tn)

2

)
, (yh, qh)

)
= A

((P zhz(tn+1) + P zhz(t
n)

2
,
P php(t

n+1) + P php(t
n)

2

)
, (yh, qh)

)
+ λ0

(
P zhz(t

n+1) + P zhz(t
n)

2
− z(tn+1) + z(tn)

2
, yh

)
H

.

Plugging this result into (3.49), it follows that

(
z(tn+1)− z(tn)

∆t
, yh

)
H

+A
((P zhz(tn+1) + P zhz(t

n)

2
,
P php(t

n+1) + P php(t
n)

2

)
, (yh, qh)

)
=

(
g(tn+1) + g(tn)

2
, yh

)
H

+
(
Rn+ 1

2 , yh
)
H

+ λ0

(
Sn+ 1

2
h , yh

)
H
, (3.50)

where Sn+ 1
2

h is a space consistency term given by

Sn+ 1
2

h =
z(tn+1) + z(tn)

2
−
P zhz(t

n+1) + P zhz(t
n)

2
,

that will further be estimated using the approximability properties of the operator Ph. Decomposing
the first term of (3.50) as

z(tn+1)− z(tn)

∆t
=
z(tn+1)− z(tn)

∆t
− P zh

(
z(tn+1)− z(tn)

∆t

)
+ P zh

(
z(tn+1)− z(tn)

∆t

)
,
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and using the linearity of Ph, we end up with(
P zhz(t

n+1)− P zhz(tn)

∆t
, yh

)
H

+A
((P zhz(tn+1) + P zhz(t

n)

2
,
P php(t

n+1) + P php(t
n)

2

)
, (yh, qh)

)
=

(
g(tn+1) + g(tn)

2
, yh

)
H

+
(
Rn+ 1

2 , yh
)
H

+ λ0

(
Sn+ 1

2
h , yh

)
H

+
(
T n+ 1

2
h , yh

)
H
, (3.51)

where

T n+ 1
2

h = P zh

(
z(tn+1)− z(tn)

∆t

)
− z(tn+1)− z(tn)

∆t
,

is another space consistency term coming from the spatial approximation of the discrete derivative
of the solution.

Now, let us denote by (enh, δ
n
h) the error between the projection of the continuous solution and

the discrete solution at time tn, namely enh = P zhz(t
n)− znh = (enu,h, e

n
s,h, e

n
f,h) with

enu,h = P uh us(t
n)− uns,h,

ens,h = P shvs(t
n)− vns,h,

enf,h = P fh vf (tn)− vnf,h,

and
δnh = P php(t

n)− pnh.

From (3.23), we know that the fully-discrete solution (z
n+ 1

2
h , p

n+ 1
2

h ) = (u
n+ 1

2
s,h , v

n+ 1
2

s,h , v
n+ 1

2
f,h , p

n+ 1
2

h )
satisfies(
zn+1
h − znh

∆t
, yh

)
H

+A
(
(z
n+ 1

2
h , p

n+ 1
2

h ), (yh, qh)
)

=

(
g(tn) + g(tn+1)

2
, yh

)
H

, ∀yh ∈ Vh,∀qh ∈ Qh.

(3.52)
Substracting (3.52) from (3.51), we obtain

(
en+1
h − enh

∆t
, yh

)
H

+A
(
(e
n+ 1

2
h , δ

n+ 1
2

h ), (yh, qh)
)

=
(
Rn+ 1

2 , yh
)
H

+ λ0

(
Sn+ 1

2
h , yh

)
H

+
(
T n+ 1

2
h , yh

)
H
, ∀yh ∈ Vh, ∀qh ∈ Qh. (3.53)

where we have adopted the notation

e
n+ 1

2
h =

P zhz(t
n+1) + P zhz(t

n)

2
− zn+ 1

2
h =

en+1
h + enh

2
,

and

δ
n+ 1

2
h =

P php(t
n+1) + P php(t

n)

2
− pn+ 1

2
h =

δn+1
h + δnh

2
.

Step 2: stability estimate in the discrete energy norm. Choosing (yh, qh) = (e
n+ 1

2
h , δ

n+ 1
2

h ) as
test function in (3.53) yields

(
en+1
h − enh

∆t
, e
n+ 1

2
h

)
H

+A
(
(e
n+ 1

2
h , δ

n+ 1
2

h ), (e
n+ 1

2
h , δ

n+ 1
2

h )
)

=
(
Rn+ 1

2 , e
n+ 1

2
h

)
H

+ λ0

(
Sn+ 1

2
h , e

n+ 1
2

h

)
H

+
(
T n+ 1

2
h , e

n+ 1
2

h

)
H
.
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With the stability identity (3.38), this implies

1

2

∥∥en+1
h

∥∥2

H
− 1

2
‖enh‖

2
H + ∆t

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx+ ∆t

∫
Ω
φ2k−1

f

(
e
n+ 1

2
f,h − e

n+ 1
2

s,h

)2
dx

= ∆t

∫
Ω
θ

∣∣∣∣en+ 1
2

f,h

∣∣∣∣2 dx+ ∆t
(
Rn+ 1

2 + λ0S
n+ 1

2
h + T n+ 1

2
h , e

n+ 1
2

h

)
H
.

Applying Young inequality ab ≤ ξ
2a

2 + 1
2ξ b

2 for a generic parameter ξ > 0, we get

1

2

∥∥en+1
h

∥∥2

H
− 1

2
‖enh‖

2
H + ∆t

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx+ ∆t

∫
Ω
φ2k−1

f

(
e
n+ 1

2
f,h − e

n+ 1
2

s,h

)2
dx

≤
∆t ‖θ‖L∞(Ω)

ρfφmin

∥∥∥∥en+ 1
2

h

∥∥∥∥2

H

+
ξ∆t

2

∥∥∥∥Rn+ 1
2 + λ0S

n+ 1
2

h + T n+ 1
2

h

∥∥∥∥2

H

+
∆t

2ξ

∥∥∥∥en+ 1
2

h

∥∥∥∥2

H

. (3.54)

Step 3: estimation of the consistency terms. Let us now estimate the consistency terms
Rn+ 1

2 , Sn+ 1
2 and T n+ 1

2 appearing in the right-hand side of the previous inequality.
The time consistency error Rn+ 1

2 is controled using a Taylor expansion. As a matter of fact, we
easily verify that∥∥∥Rn+ 1

2

∥∥∥
H

=

∥∥∥∥z(tn+1)− z(tn)

∆t
− ż(tn+1) + ż(tn)

2

∥∥∥∥
H

≤ C∆t2 ‖z‖C3([0,T ];H) . (3.55)

The space consistency term Sn+ 1
2

h and T n+ 1
2

h can be handled with the approximability prop-
erty (3.42) under suitable regularity assumptions. Indeed, as z ∈ C0

(
[0, T ];H`+1(Ω)

)
and p ∈

C0
(
[0, T ];Hr(Ω)

)
, we infer from (3.43) that∥∥∥∥Sn+ 1

2
h

∥∥∥∥
H

=

∥∥∥∥z(tn+1) + z(tn)

2
− P zh

(
z(tn+1) + z(tn)

2

)∥∥∥∥
H

≤ C(h` + hr). (3.56)

For the second term T n+ 1
2

h , we observe that∥∥∥∥T n+ 1
2

h

∥∥∥∥
H

=

∥∥∥∥z(tn+1)− z(tn)

∆t
− P zh

(
z(tn+1)− z(tn)

∆t

)∥∥∥∥
H

≤ C
(
h`
∥∥∥∥z(tn+1)− z(tn)

∆t

∥∥∥∥
H`+1(Ω)

+ hr
∥∥∥∥p(tn+1)− p(tn)

∆t

∥∥∥∥
Hr(Ω)

)

= C

(
h`

∥∥∥∥∥ 1

∆t

∫ tn+1

tn
ż(t) dt

∥∥∥∥∥
H`+1(Ω)

+ hr

∥∥∥∥∥ 1

∆t

∫ tn+1

tn
ṗ(t) dt

∥∥∥∥∥
Hr(Ω)

)
,

and hence ∥∥∥∥T n+ 1
2

h

∥∥∥∥
H

≤ C(h` + hr), (3.57)

by virtue of (3.46), with C a constant depending on z and p.

Step 4: final error analysis. Putting the consistency errors (3.55), (3.56) and (3.57) together
with (3.54), we deduce

1

2

∥∥en+1
h

∥∥2

H
− 1

2
‖enh‖

2
H + ∆t

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx+ ∆t

∫
Ω
φ2k−1

f

(
e
n+ 1

2
f,h − e

n+ 1
2

s,h

)2
dx

≤ ∆t

(
‖θ‖L∞(Ω)

ρfφmin
+

1

2ξ

)∥∥∥∥en+ 1
2

h

∥∥∥∥2

H

+
ξ∆t

2
C(∆t2 + h` + hr)2.
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Multiplying by two and choosing for instance ξ =
ρfφmin

2‖θ‖L∞(Ω)
, we get

∥∥en+1
h

∥∥2

H
− ‖enh‖

2
H + 2∆t

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx+ 2∆t

∫
Ω
φ2k−1

f

(
e
n+ 1

2
f,h − e

n+ 1
2

s,h

)2
dx

≤
4∆t ‖θ‖L∞(Ω)

ρfφmin

∥∥∥∥en+ 1
2

h

∥∥∥∥2

H

+ C(∆t2 + h` + hr)2,

where the constant C now also depends on θ.
Let N ≤ nT be an arbitrary integer. Summing from 0 to N −1 and noting that N∆t ≤ T yields

∥∥eNh ∥∥2

H
+ 2∆t

N−1∑
n=0

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx+ 2∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
e
n+ 1

2
f,h − e

n+ 1
2

s,h

)2
dx

≤
∥∥e0

h

∥∥2

H
+

4∆t ‖θ‖L∞(Ω)

ρfφmin

N−1∑
n=0

∥∥∥∥en+ 1
2

h

∥∥∥∥2

H

+ C(∆t2 + h` + hr)2,

with C another constant, which also depends on T . Thanks to the chosen initial conditions we have∥∥e0
h

∥∥
H

= ‖P zhz(0)− Ihz(0)‖H ≤ ‖P
z
hz(0)− z(0)‖H + ‖z(0)− Ihz(0)‖H ≤ C(h` + hr).

Moreover, since

N−1∑
n=0

∥∥∥∥en+ 1
2

h

∥∥∥∥2

H

=

N−1∑
n=0

∥∥∥∥∥en+1
h + enh

2

∥∥∥∥∥
2

H

≤ 1

2

N−1∑
n=0

(∥∥en+1
h

∥∥2

H
+ ‖enh‖

2
H

)
≤

N∑
n=0

‖enh‖
2
H ,

we find

∥∥eNh ∥∥2

H
+ 2∆t

N−1∑
n=0

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx+ 2∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
e
n+ 1

2
f,h − e

n+ 1
2

s,h

)2
dx

≤ C(∆t2 + h` + hr)2 +
4∆t ‖θ‖L∞(Ω)

ρfφmin

N∑
n=0

‖enh‖
2
H . (3.58)

To conclude, we use a discrete version of Grönwall Lemma, recalled below for the sake of complete-
ness. For a proof of this result, we refer the reader to [Heywood and Rannacher, 1990, Lemma
5.1].

Lemma 3.20. Let C > 0 and δ > 0. Let (an), (bn) and (γn) be sequences of positive numbers such
that

aN + δ
N∑
n=0

bn ≤ C + δ
N∑
n=0

γnan.

Assume that δγn < 1 for all n, and set σn = (1− δγn)−1. Then, for all N ≥ 0, it holds that

aN + δ
N∑
n=0

bn ≤ C exp

(
δ

N∑
n=0

σnγn

)
.

Let us define γ =
4‖θ‖L∞(Ω)

ρfφmin
. Recalling (3.47), we have γ∆t < 1. Therefore, Lemma 3.20 implies
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that

∥∥eNh ∥∥2

H
+ 2∆t

N−1∑
n=0

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx+ 2∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
e
n+ 1

2
f,h − e

n+ 1
2

s,h

)2
dx

≤ C(∆t2 + h` + hr)2 exp

(
(N + 1)∆t

γ

1− γ∆t

)
≤ C(∆t2 + h` + hr)2 exp

(
γT

1− γ∆t

)
since N∆t ≤ T.

Finally, writing

εNh = z(tN )− P zhz(tN ) + P zhz(t
N )− zNh = z(tN )− P zhz(tN ) + eNh ,

and using (3.43), we obtain

1

2

∥∥εNh ∥∥2

H
+ ∆t

N−1∑
n=0

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
e
n+ 1

2
f,h − e

n+ 1
2

s,h

)2
dx

≤ C(∆t2 + h` + hr)2 exp

(
γT

1− γ∆t

)
.

In order to derive (3.48), we rewrite the viscous part as

vf (tn+ 1
2 )− vn+ 1

2
f,h = vf (tn+ 1

2 )−
vf (tn+1) + vf (tn)

2

+
vf (tn+1) + vf (tn)

2
− P fh

(
vf (tn+1) + vf (tn)

2

)
+ P fh

(
vf (tn+1) + vf (tn)

2

)
− vn+ 1

2
f,h ,

namely

ε
n+ 1

2
f,h = vf (tn+ 1

2 )−
vf (tn+1) + vf (tn)

2
+ Sn+ 1

2
f,h + e

n+ 1
2

f,h .

The second term of the above expression is controled thanks to (3.56), and the first one can be
estimated as follows

∆t
N−1∑
n=0

∫
Ω
φσf

(
vf (tn+ 1

2 )−
vf (tn+1) + vf (tn)

2

)
: ε

(
vf (tn+ 1

2 )−
vf (tn+1) + vf (tn)

2

)
dx

≤ C∆t4
∥∥∂2

ttvf
∥∥2

L2(0,T ;[H1
0(Ω)]d)

using a Taylor expansion.
Remark 3.21. Here, we prove convergence under the time step restriction (3.47), which is slightly
more restrictive than the condition found for the well-posedness of the discrete problem, see (3.34).
Note however that it may not be optimal.
Remark 3.22. If the smallness condition (3.6) is fulfilled, namely if

Cd ‖θ‖L∞(Ω)

2µfφmin
≤ 1,

another strategy would be to absorb the additional fluid mass term by the viscous fluid dissipation.
Indeed, we then have

∆t

∫
Ω
θ

∣∣∣∣en+ 1
2

f,h

∣∣∣∣2 dx ≤ ∆t
Cd ‖θ‖L∞(Ω)

2µfφmin

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx ≤ ∆t

∫
Ω
φσf (e

n+ 1
2

f,h ) : ε(e
n+ 1

2
f,h ) dx,

which indicates that the condition (3.47) may be dropped if the fluid mass input is small enough or
if the fluid viscosity is large enough.
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3.3.3 Error analysis for the backward Euler scheme

Now, we move to the analysis of the backward Euler scheme, for which we establish a similar result
than the one found in [Burtschell et al., 2019] for a compressible material (case κ < +∞).
Theorem 3.23. Assume that (h1) − (h5) hold, and that the solution of the continuous problem
(3.10) has the additional regularity

(us, vs, vf ) ∈ C1
(
[0, T ];H`+1(Ω)

)
, p ∈ C1

(
[0, T ];Hr(Ω)

)
,(

∂2
ttus, ∂

2
ttvs, ∂

2
ttvf

)
∈ C1

(
[0, T ];H

)
, ∂tvf ∈ L2

(
0, T ; [H1

0(Ω)]d
)
.

If we have in addition

∆t <
ρfφmin

4 ‖θ‖L∞(Ω)

,

then for all 0 ≤ N ≤ nT , it holds that

1

2

∫
Ω
σs(ε

N
u,h) : ε(εNu,h) dx+

1

2

∫
Ω
ρs(1− φ)

∣∣εNs,h∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣εNf,h∣∣2 dx

+ ∆t
N−1∑
n=0

∫
Ω
φσf (εn+1

f,h ) : ε(εn+1
f,h ) dx+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
εn+1
f,h − ε

n+ 1
2

s,h

)2
dx

+
1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣εn+1
f,h − ε

n
f,h

∣∣∣2 dx ≤ C exp

(
4(ρfφmin)−1 ‖θ‖L∞(Ω) T

1− 4∆t(ρfφmin)−1 ‖θ‖L∞(Ω)

)
(∆t+ h` + hr)2,

(3.59)

with C a constant independent of h and ∆t.
Proof. The difficulty of the backward Euler scheme is that it includes a shift between the solid
quantities, which are approximated at time tn+ 1

2 , and the fluid and pressure quantities, which are
approximated at time tn+1. Therefore, we cannot project the continuous solution on the discrete
space at the same time as we did for the Crank-Nicolson scheme, since our projector Ph acts
simultaneously on solid, fluid and pressure quantities. To overcome this issue, our strategy is to
be as close as possible to the analysis performed for the Crank-Nicolson scheme by changing the
definitions of the errors to take into account the time shifting rather than handling this shift at the
projection level.

To do so, we start the proof from equation (3.50), that reads(
z(tn+1)− z(tn)

∆t
, yh

)
H

+A
((P zhz(tn+1) + P zhz(t

n)

2
,
P php(t

n+1) + P php(t
n)

2

)
, (yh, qh)

)
=

(
g(tn+1) + g(tn)

2
, yh

)
H

+
(
Rn+ 1

2 , yh
)
H

+ λ0

(
Sn+ 1

2
h , yh

)
H
.

From (3.24), the fully-discrete solution (zn+1
h , pn+1

h ) = (un+1
s,h , v

n+1
s,h , vn+1

f,h , p
n+1
h ) satisfies(

zn+1
h − znh

∆t
, yh

)
H

+A
(
(u
n+ 1

2
s,h , v

n+ 1
2

s,h , vn+1
f,h , p

n+1
h ), (yh, qh)

)
=

(
g(tn+1) + g(tn)

2
, yh

)
H

.

Substracting these two relations, we obtain(
z(tn+1)− z(tn)

∆t
−
zn+1
h − znh

∆t
, yh

)
H

+A
(
(e
n+ 1

2
u,h , e

n+ 1
2

s,h , ẽn+1
f,h , δ̃

n+1
h ), (yh, qh)

)
=
(
Rn+ 1

2 , yh
)
H

+ λ0

(
Sn+ 1

2
h , yh

)
H
, ∀yh ∈ Vh, ∀qh ∈ Qh, (3.60)
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where the solid quantities errors

e
n+ 1

2
u,h =

P uh us(t
n+1) + P uh us(t

n)

2
− un+ 1

2
s,h and e

n+ 1
2

s,h =
P shvs(t

n+1) + P shvs(t
n)

2
− vn+ 1

2
s,h ,

are defined as in the Crank-Nicolson scheme, whereas for the fluid and pressure quantities we
consider the new errors

ẽn+1
f,h =

P fh vf (tn+1) + P fh vf (tn)

2
− vn+1

f,h and δ̃n+1
h =

P php(t
n+1) + P php(t

n)

2
− pn+1

h .

In order to derive a system satisfied by the error (e
n+ 1

2
u,h , e

n+ 1
2

s,h , ẽn+1
f,h , δ̃

n+1
h ), we compute

en+1
u,h − e

n
u,h

∆t
=
P uh us(t

n+1)− P uh us(tn)

∆t
−
un+1
s,h − u

n
s,h

∆t
,

en+1
s,h − e

n
s,h

∆t
=
P shvs(t

n+1)− P shvs(tn)

∆t
−
vn+1
s,h − v

n
s,h

∆t
,

ẽn+1
f,h − ẽ

n
f,h

∆t
=
P fh vf (tn+1)− P fh vf (tn−1)

2∆t
−
vn+1
f,h − v

n
f,h

∆t
.

Plugging these results into (3.60), it follows that for any yh = (ds,h, ws,h, wf,h) ∈ Vh and qh ∈ Qh,
we have∫

Ω
σs

(
en+1
u,h − e

n
u,h

∆t

)
: ε(ds,h) dx+

∫
Ω
ρs(1−φ)

(
en+1
s,h − e

n
s,h

∆t

)
·ws,h dx+

∫
Ω
ρfφ

(
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f,h − ẽ

n
f,h
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)
·wf,h dx

+A
(
(e
n+ 1

2
u,h , e
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2

s,h , ẽn+1
f,h , δ̃

n+1
h ), (yh, qh)

)
=
(
Rn+ 1

2 , yh
)
H

+ λ0

(
Sn+ 1

2
h , yh

)
H

+

∫
Ω
σs
(
T n+ 1

2
u,h

)
: ε(ds,h) dx+

∫
Ω
ρs(1− φ) T n+ 1

2
s,h · ws,h dx+

∫
Ω
ρfφ T n+1

f,h · wf,h, (3.61)

with

T n+ 1
2

u,h =
P uh us(t

n+1)− P uh us(tn)

∆t
− us(t

n+1)− us(tn)

∆t
,

T n+ 1
2

s,h =
P shvs(t

n+1)− P shvs(tn)

∆t
− vs(t

n+1)− vs(tn)

∆t
,

T n+1
f,h =

P fh vf (tn+1)− P fh vf (tn−1)

2∆t
−
vf (tn+1)− vf (tn)

∆t
.

Note that the two first terms T n+ 1
2

u,h and T n+ 1
2

s,h correspond exactly to the solid components of the

term T n+ 1
2

h that have already been studied for the Crank-Nicolson scheme, while the third term
T n+1
f,h is different.

Choosing (yh, qh) = (e
n+ 1

2
u,h , e

n+ 1
2

s,h , ẽn+1
f,h , δ̃

n+1
h ) as test function in (3.61) and exploiting the stability

identity (3.39), it follows
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∣∣∣ẽn+1
f,h

∣∣∣2 dx+ ∆t
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)
H

+

∫
Ω
σs
(
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2
u,h

)
: ε(e
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2

u,h ) dx+

∫
Ω
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2
s,h dx+

∫
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f,h . (3.62)
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The rest of the proof is almost similar to the one of Theorem 3.19.

The terms Rn+ 1
2 , Sn+ 1

2
h , T n+ 1

2
u,h and T n+ 1

2
s,h have already been estimated during the analysis of

the Crank-Nicolson scheme, see (3.55), (3.56) and (3.57). We only need to deal with the term T n+1
f,h ,

that we decompose as

T n+1
f,h = P fh

(
vf (tn+1)− vf (tn−1)

2∆t

)
−
vf (tn+1)− vf (tn−1)

2∆t
+
vf (tn+1)− vf (tn−1)

2∆t
−
vf (tn+1)− vf (tn)

∆t

The first part of the above expression is a space error term that can be estimated as in (3.57),
namely∥∥∥∥P fh(vf (tn+1)− vf (tn−1)

2∆t

)
−
vf (tn+1)− vf (tn−1)

2∆t

∥∥∥∥ ≤ (h` ‖ż‖C0([0,T ];H`+1(Ω))+h
r ‖ṗ‖C0([0,T ];Hr(Ω))

)
.

The second part is a time error term coming from the shift between the fluid and solid quantities.
Using a Taylor expansion, we easily check that∥∥∥∥vf (tn+1)− vf (tn−1)

2∆t
−
vf (tn+1)− vf (tn)

∆t

∥∥∥∥ ≤ C∆t ‖vf‖C2([0,T ];[L2(Ω)]d) .

Hence, we deduce that ∥∥∥T n+1
f,h

∥∥∥ ≤ C(∆t+ h` + hr).

and it is at this point that we lose the O(∆t2) accuracy in time.
The rest of the proof is similar to the Step 4 of the proof of Theorem 3.19. In particular, the

viscous part of (3.59) is recovered by decomposing the fluid error as

εn+1
f,h = vf (tn+1)− vn+1

f,h = vf (tn+1)−
vf (tn+1) + vf (tn)

2
+ Sn+ 1

2
f,h + ẽn+1

f,h ,

and using that ∂tvf ∈ L2
(
0, T ; [H1

0(Ω)]d
)
.

Remark 3.24. Note that our strategy of proof requires strong regularity assumptions on the con-
tinuous solution, since it is based on a comparison with the error analysis for the Crank-Nicolson
scheme. Handling the temporal shift between the fluid and the solid at the projection level would
lead to weaker regularity assumptions, in particular on ∂2

ttus, ∂2
ttvs and ∂2

ttvf .

3.4 Numerical results

In this section, we present numerical results to illustrate the theoretical statements established
previously. All the simulations have been obtained with the finite element software FEniCS [Logg
et al., 2012; Alnæs et al., 2015] using a direct LU solver. First, we validate numerically the discrete
energy balances for the two schemes under study, and show the influence of the fluid mass source
term θ on the schemes stability. Then, the error results of Theorems 3.19 and 3.23 are discussed by
means of convergence plots. Finally, we illustrate the importance of the choice of the finite element
spaces employed when entering the incompressible regime.

3.4.1 Discrete energy balance and influence of the additional fluid mass input

To numerically recover the discrete energy balance derived in Section 3.2.3, we simulate the evolution
of the system starting from a non-zero initial condition, but in absence of external body forces and
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fluid mass source term, namely f = 0 and θ = 0. According to (3.38) and (3.39), the discrete energy
of the scheme then satisfies

ENh + ∆t
N−1∑
n=0

∫
Ω
φσf (v

n+ 1
2

f,h ) : ε(v
n+ 1

2
f,h ) dx︸ ︷︷ ︸
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∫
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v
n+ 1

2
f,h − v

n+ 1
2

s,h

)2
dx︸ ︷︷ ︸

Discrete friction dissipation

= E0
h, (3.63)

for the Crank-Nicolson scheme and
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∫
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φσf (vn+1
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f,h ) dx︸ ︷︷ ︸
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+ ∆t
N−1∑
n=0

∫
Ω
φ2k−1

f

(
vn+1
f,h − v

n+ 1
2

s,h

)2
dx︸ ︷︷ ︸

Discrete friction dissipation

+
1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣vn+1
f,h − v

n
f,h

∣∣∣2 dx︸ ︷︷ ︸
Discrete numerical dissipation

= E0
h, (3.64)

for the backward Euler scheme. The different above contributions are represented on Figure 3.1,
for a test case in the domain Ω = (0, 1)2 discretized in space with [P2]d × [P2]d × [P2]d × P1 finite
elements. Since all the dissipation terms are strictly positive, the discrete energy curve (in blue) is
strictly decreasing. Apart from the dissipation coming from the viscosity within the fluid and the
friction between the two phases, the yellow curve shows an additional numerical dissipation term
for the backward Euler scheme, which is not part of the balance for the Crank-Nicolson scheme.
Moreover, by summing the energy and the total dissipation in the system (black curve), we see that
we recover exactly the initial energy, as predicted by (3.63) and (3.64).

0 0.5 1 1.5 2

0

1

2

Time

(a) Crank-Nicolson scheme

0 0.5 1 1.5 2

0

1

2

Time

(b) Backward Euler scheme

Energy Viscous fluid dissipation Friction dissipation
Total dissipation Sum of energy and dissipation Numerical dissipation

Figure 3.1 – Time evolution of the dissipation terms involved in the discrete energy balance in absence of
external body forces and additional fluid mass input for the two schemes under study. Simulations run with
∆t = 0.05, T = 2, ρf = 20, ρs = 1, φ = 0.5, µf = 0.1, λ = µ = 1, k−1f = 1.5I and θ = 0.

In Figure 3.2, we simulate the same test case as in Figure 3.1a, but with a non-zero fluid mass
source term θ. The resulting curves shed light on the influence of the sign of θ on the system
dynamics. If θ is negative, the term −θvf supplies the system with an additional dissipation term,
so that the energy in Figure 3.2a decreases faster than in Figure 3.1a. If θ is positive, then the term
−θvf brings fluid kinetic energy to the system. In this case, if this incoming rate of fluid kinetic
energy is not compensated by the viscous and friction dissipation terms, then the total energy
increases, as it is the case in Figure 3.2b.
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0 0.5 1 1.5 2
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(a) θ < 0

0 0.5 1 1.5 2

−5

0
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Time

(b) θ > 0

Energy Viscous fluid dissipation Friction dissipation
Total dissipation Sum of energy and dissipation Fluid mass input or dissipation

Figure 3.2 – Time evolution of the dissipation terms involved in the discrete energy balance with f = 0 for
the Crank-Nicolson scheme, but with an additional fluid mass source term. Simulations run with ∆t = 0.05,
T = 2, ρf = 20, ρs = 1, φ = 0.5, µf = 0.1, λ = µ = 1, k−1f = 1.5I and θ = −10 (left) or θ = 10 (right).

Another implication of the additional fluid mass source term θ – when it does not satisfy the
smallness condition (3.6) – is that it imposes a restriction on the time step. Indeed, from The-
orems 3.12 and 3.17, the existence of the discrete solution associated with the Crank-Nicolson
or backward Euler schemes is respectively ensured under the sufficient condition (3.34) or (3.36),
namely

∆t <
2ρfφmin

‖θ‖L∞(Ω)

or ∆t <
ρfφmin

‖θ‖L∞(Ω)

.

Figures 3.3 and 3.4 highlight the unstability of the schemes when these conditions are not respected,
that thus appear to be necessary for the considered test case. For the Crank-Nicolson scheme,
Figures 3.3c and 3.3d show that the computed fluid velocity diverges after a few iterations in time
when (3.34) is not satisfied, whereas the fluid velocity profile is close to the initial condition profile
when (3.34) is satisfied, see Figures 3.3a and 3.3b. The same phenomenon occurs for the backward
Euler scheme in Figure 3.4, but with a time step restriction that is twice more restrictive than for
the Crank-Nicolson scheme, in accordance with (3.36).

(a) ∆t = 0.05 (b) ∆t = 0.09 (c) ∆t = 0.11 (d) ∆t = 0.15

Figure 3.3 – Fluid velocity x-component profile computed with the Crank-Nicolson scheme after three iter-
ations in time, for different time steps close to the threshold 2ρfφmin

‖θ‖L∞(Ω)
= 0.1. Simulation run with f = 0,

ρf = ρs = 1, φ = 0.5, µf = 0.001, λ = µ = 1, k−1f = 0 and θ = 10.

Interestingly, these unstabilities can be removed by increasing the value of the fluid viscosity, as
shown in Figure 3.5. Indeed, if µf is large enough, then the incoming rate of fluid kinetic energy
coming from the θ term can be counterbalanced by the fluid viscous dissipation even if the time
step restriction is not fulfilled, as mentioned in Remarks 3.11, 3.18 and 3.22.
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(a) ∆t = 0.02 (b) ∆t = 0.04 (c) ∆t = 0.06 (d) ∆t = 0.09

Figure 3.4 – Fluid velocity x-component profile computed with the backward Euler scheme after three
iterations in time, for different time steps close to the threshold ρfφmin

‖θ‖L∞(Ω)
= 0.05. Simulation run with f = 0,

ρf = ρs = 1, φ = 0.5, µf = 0.001, λ = µ = 1, k−1f = 0 and θ = 10.

(a) µf = 0.001 (b) µf = 0.1

Figure 3.5 – Fluid velocity x-component profile computed with the backward Euler scheme after three
iterations in time, for ∆t = 0.06 and two different values of fluid viscosity.

Finally, Table 3.1 illustrates that even when the time step restriction is satisfied, the error
between the discrete and continuous solutions may be large in long time simulations if the time step

is not small enough. This is due to the constant exp

(
4(ρfφmin)−1‖θ‖L∞(Ω)T

1−4∆t(ρfφmin)−1‖θ‖L∞(Ω)

)
appearing in the

error estimates (3.48) and (3.59). In the example of Table 3.1, we see that ∆t must be less than
0.001 to get an error that is not polluted by this exponential growth.

∆t Relative error ∆t Relative error
0.0002 0.02 0.005 1.8
0.0005 0.08 0.01 8.8
0.001 0.20 0.02 240

Table 3.1 – Relative error
∥∥zref(T )− znT

h

∥∥
H
/
∥∥zref(T )

∥∥
H

at T = 1 between the discrete solution computed
for different time steps and a reference solution zref computed for ∆t = 0.0001, obtained with the backward
Euler scheme and the same physical parameters as in Figure 3.4.

3.4.2 Convergence rates

Next, we present convergence plots generated using the manufactured solution method in the unit
square domain Ω = (0, 1)2. To build an analytical solution, we assume that the porosity φ is
constant and we pick a function vref such that div vref = 0 in Ω and vref = 0 on ∂Ω, for instance

vref(x, y) =
(

sin(2πy)
(
cos(2πx)− 1

)
, sin(2πx)

(
1− cos(2πy)

))
.

Then, we choose the fluid and solid velocities analytical solutions as

vref
s (x, y, t) = cos(t)φ vref(x, y) and vref

f (x, y, t) = cos(t)(1− φ) vref(x, y),
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in such a way that, since φ is constant, we have

div
(
(1− φ)vref

s + φvref
f

)
= cos(t)φ(1− φ) div vref = 0.

The solid displacement analytical solution is then obtained by time integration of the solid veloc-
ity, namely uref

s (x, y, t) = sin(t)φ vref(x, y). Lastly, for the pressure analytical solution, we take
pref(x, y, t) = sin(t) sin(2πx) sin(2πy), which satisfies the condition

∫
Ω p dx = 0. To simplify, we as-

sume that θ = 0. The simulation is then run with the source terms and initial conditions associated
with the analytical solution, for ρs = ρf = µf = λ = µ = 1, kf = I, φ = 0.5 and T = 1. By com-
paring the resulting discrete solution to the previous analytical solution, we investigate numerically
the spatial and temporal convergence rates of the two proposed schemes.

In Figures 3.6 and 3.7, the simulation is performed with a very small time step ∆t = 0.005 and
the mesh size is progressively decreased. For the spatial discretization, we use finite element spaces
pairs (Xh, Qh) that are known to be stable for Stokes problem, namely the MINI element or Taylor-
Hood elements [Glowinski, 2003; Boffi et al., 2013]. Figure 3.6-left corroborates the statement of
Theorem 3.19: it shows a spatial convergence rate of 1 in the energy and fluid viscous dissipation
norms for the MINI element, for which ` = r = 1. In Figure 3.6-right, the energy norm is decomposed
into the three contributions of solid displacement, solid velocity and fluid velocity. We observe that
the convergence rate is of order 2 for the velocities, so that the energy norm convergence rate is
restricted by the solid displacement term. This extra convergence probably comes from the fact
that estimate (3.43) is optimal only for the displacement [H1

0(Ω)]d norm, but may be improved for
the velocities [L2(Ω)]d norm using a duality argument. This may be one of the drawbacks of the
T-coercivity method since it is by essence an all-in-one approach handling all the variables together.
Note that even if this result is not given by Theorem 3.19, we also recover numerically the pressure
convergence, with a convergence rate of 1.5 as found in other studies on the MINI element [Eichel
et al., 2011; Cioncolini and Boffi, 2019].
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Figure 3.6 – Error curves with respect to the mesh size h for [P1

b ]
d× [P1

b ]
d× [P1

b ]
d×P1 elements. Simulation

run with the Crank-Nicolson scheme for ∆t = 0.005, starting from a mesh size H that corresponds to a
uniform mesh built with 8 subdivisions along each axis direction.

For Taylor-Hood elements, we have ` = r = 2 and Figure 3.7 gives a convergence rate of 3 in
the energy norm. This superconvergence is probably due to the C∞ regularity of our analytical
solution. Here again, we find an improved convergence for the velocity variables compared to the
displacement one.
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Figure 3.7 – Error curves with respect to the mesh size h for [P2]d× [P2]d× [P2]d×P1 elements. Simulation
run with the Crank-Nicolson scheme for ∆t = 0.005, starting from a mesh size H that corresponds to a
uniform mesh built with 8 subdivisions along each axis direction.

Figures 3.6 and 3.7 are obtained for the Crank-Nicolson scheme, but similar results hold for the
backward Euler scheme since this scheme does not change the spatial discretization of the problem.
However, when it comes to temporal convergence, Figure 3.8 highlights the major difference between
the two proposed schemes: the Crank-Nicolson scheme is of second order in time, whereas the
backward Euler scheme is of first order. Note however that on Figure 3.8b, the solid velocity still
shows a second-order convergence in time in the backward Euler scheme, as if it was not affected
by the other variables.
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(b) Backward Euler scheme
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Figure 3.8 – Error curves of the two proposed schemes with respect to the time step. Simulation run for a
very refined mesh, starting from the time step ∆t = 0.1.
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3.4.3 Choosing the finite element spaces in the incompressible limit

In the previous sections, we have focused on the case where the porous material is fully incompress-
ible, namely κ = ∞. Yet, our analysis also provides guidelines to discretize the system (3.1), in
which the mixture divergence equation is penalized by a term of the form b−φ

κ ∂tp. As a matter of
fact, it was shown in [Barré et al., 2023, Theorem 4.2] that the solution of the compressible system
(3.1) converges towards the solution of the incompressible system (3.2) as the bulk modulus κ goes
to infinity. This suggests to use finite elements satisfying the inf-sup condition (3.18) to discretize
the system (3.1) when κ is large, namely for nearly incompressible materials. Theorems 3.19 and
3.23 extend the convergence analysis of [Burtschell et al., 2019] and [Barnafi et al., 2021] up to the
incompressible limit, which also suggests a discretization of (3.1) that is robust with respect to κ
provided that the discrete inf-sup condition (3.18) is fulfilled.

To illustrate numerically what happens if (3.18) is not satisfied, we use the same analytical
solution as in the previous section and simulate the solution of (3.1) for different values of κ with
[P1]d × [P1]d × [P1]d × P1 finite elements, which do not satisfy the discrete inf-sup condition. To
do so, we use the Crank-Nicolson scheme (3.15) where the mixture divergence equation (3.15d) is
replaced by

b− φ
κ

pn+1 − pn

∆t
+ div

(
(1− φ) v

n+ 1
2

s + φ v
n+ 1

2
f

)
= gn+ 1

2 ,

with gn+ 1
2 a source term corresponding to the pressure analytical solution. The resulting pressure

profile is shown in Figure 3.9, where pressure oscillations appear when entering the incompressible
regime. The size of these oscillations increases with the bulk modulus κ, leading to a completely
incorrect pressure above κ = 100. Finally, Figure 3.9e shows that these oscillations are removed
when using a Stokes-stable pair, as indicated by our theoretical results.

(a) κ = 1 (b) κ = 10 (c) κ = 100

(d) κ = 1000 (e) κ = 1000, MINI element

Figure 3.9 – Pressure profile for different values of bulk modulus. Except for Figure 3.9e, the problem is
discretized using [P1]d× [P1]d× [P1]d×P1 finite elements, which do not satisfy the discrete inf-sup condition.
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Chapter 3. Numerical analysis of an incompressible soft material poromechanics model using
T-coercivity

Conclusion

We have derived error estimates for two monolithic schemes: one based on a Crank-Nicolson time
discretization for both the fluid and structural parts, the other based on an implicit backward-
Euler discretization for the fluid part. For both schemes, the spatial discretization is a well-chosen
finite element discretization that satisfies an inf-sup condition that allows one to derive a discrete
T-coercivity property, independent of the porosity of the mixture, hence ensuring robustness with
respect to it. The T-coercivity property approach provides the existence of the discrete solution,
assuming the time step is small enough compared to the additional fluid mass input but without
any permeability condition. Moreover, the T-coercivity allows us to define a well-adapted projection
operator on the finite element space, which is a key argument of the error derivation. The theoretical
results are confirmed by numerical simulations. We believe that the considered strategy paves the
way to propose an asymptotically stable scheme with respect to the bulk modulus that will not suffer
from poroelastic locking, which occurs in Biot-type systems [Phillips and Wheeler, 2009; Ferronato
et al., 2010; Haga et al., 2012; Oyarzúa and Ruiz-Baier, 2016; Yi, 2017; Lee, 2018]. In future work,
we expect to use the proposed time schemes as pivot in order to obtain error estimates for splitting
strategies commonly used for poromechanical models [Zienkiewicz et al., 1993; Huang et al., 2001;
Li et al., 2003; Markert et al., 2009].
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CHAPTER 4

A projection scheme for an incompressible soft material
poromechanics model

In this chapter, splitting schemes for the linearized poromechanics model (13) are proposed and
analyzed. Different kind of boundary conditions are considered and special attention is paid to the
treatment of the friction term between the fluid and structure phases. In particular, to avoid the
added mass effect in the case of total stress boundary conditions, we use a Robin-Robin strategy
inspired from fluid-structure interaction problems. Stability analysis is performed together with
a convergence analysis in the case of homogeneous Dirichlet boundary conditions. The chapter is
concluded with numerical illustrations. The results of this chapter, obtained in collaboration with
Céline Grandmont and Philippe Moireau, will be the object of a forthcoming article. Moreover, in
September 2023, I presented this work at the European Conference on Numerical Mathematics and
Advanced Applications (ENUMATH) in Lisbon, Portugal.
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Chapter 4. A projection scheme for an incompressible soft material poromechanics model

Introduction

In the previous chapter, we analyzed a monolithic scheme for the linearized poromechanics problem
under study in the incompressible case. When the discrete inf-sup condition is satisfied, this scheme
has been shown to circumvent pressure oscillations occuring in the incompressible limit and to
be robust with respect to porosity and permeability. However, it is a strongly implicit scheme
that requires to solve at each time step a large linear system with a saddle-point structure. The
main goal of this chapter is to propose a splitting scheme that enables to decouple the solid, fluid
and pressure equations at each time step. Our approach is close to the Chorin-Temam projection
method [Chorin, 1969; Temam, 1969] but takes into account the specific saddle-point structure of
the poromechanics problem involving the mixture divergence constraint. Moreover, it includes the
case of total stress boundary conditions thanks to a Robin-Robin coupling technique inspired by
fluid-structure interaction problems [Burman et al., 2022a].

Projection methods, also known as fractional-step methods, were originally introduced for the
study of incompressible fluid problems. These methods are prediction-correction schemes, in which
a tentative velocity is computed without taking into account the incompressibility constraint, and
then corrected by projecting it on a divergence-free space. First proposed by Chorin and Temam
[Chorin, 1969; Temam, 1969], these schemes were improved in [Goda, 1979] and [Van Kan, 1986],
their convergence analysis was performed in [Heywood and Rannacher, 1990; Rannacher, 1992;
Shen, 1995; Guermond, 1996; Guermond and Quartapelle, 1998; Badia and Codina, 2007] and
general boundary conditions were considered in [Maria Denaro, 2003; Guermond et al., 2005], see
the review [Guermond et al., 2006]. More recently, projection schemes were used in fluid-structure
interaction problems [Fernández et al., 2007; Guidoboni et al., 2009; Astorino and Grandmont, 2010].
In order to obtain robust schemes with respect to added-mass effects occuring in such problems,
they were combined with Nitsche’s method [Burman and Fernández, 2009], Robin coupling derived
from Nitsche’s method [Astorino et al., 2010] or again Robin-Robin coupling [Burman et al., 2022a].
Similarly, projection methods were used in fluid-porous structure interaction problems [Caiazzo
et al., 2011; Bukač et al., 2015b].

For Biot-type systems, the most popular splitting procedures are the undrained split and fixed-
stress split algorithms [Zienkiewicz et al., 1988; Settari and Mourits, 1998], for which time conver-
gence and space-time convergence were respectively established in [Mikelić and Wheeler, 2013] and
[Girault et al., 2019]. These algorithms were applied to the quasi-static Biot equations, namely
equation (1.1) with ρ = 0, but also to the multiple-network poroelasticity equations [Hong et al.,
2020]. For the fixed-stress split, variants and numerical optimizations were described in [Both et al.,
2017; Storvik et al., 2019; Both et al., 2019a]. Following this approach, [Both et al., 2022] proposes
an alternating minimization splitting scheme for the linearized poromechanics model studied in the
previous chapters, which is shown to be convergent by adapting the method from [Both et al., 2019b].
However, when the bulk modulus becomes large, this scheme requires a large number of iterations
before convergence is reached. In addition, total stress boundary conditions are not considered.

Less attention has been paid to projection methods for unsteady Biot-type problems. For the
unsteady Biot equations, namely equation (1.1) with ρ > 0, [Zienkiewicz et al., 1993] developed
a staggered time stepping algorithm that was further improved in [Huang et al., 2001] and [Li
et al., 2003]. In [Markert et al., 2009], a fractional-step method is studied for the incompressible
poroacoustic equations, namely system (1.7) with c0 = 0, which is very close to the poromechanics
model considered here. In these studies, equal-order finite elements for the velocities and the pressure
are employed, which results in a condition on the time step for the scheme to be stable. Lastly,
let us mention that Chorin-Temam-like methods were also used to deal with mixture divergence
constraints appearing in biofilms growth modeling, see [Clarelli et al., 2013] and [Polizzi et al., 2017].

In [Burtschell et al., 2017], the non-linear poromechanics model from [Chapelle and Moireau,
2014] is discretized using a partitioned method adapted from fluid-structure interaction [Astorino
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4.1. Problem setting

et al., 2010]. Using a Newmark scheme for the solid part [Gonzalez, 2000; Le Tallec and Mani, 2000;
Hauret and Le Tallec, 2006] together with a projection scheme for the fluid part, the authors propose
a splitting scheme in which the fluid viscous sub-step is treated explicitly and that tackles the case
of total stress boundary conditions. Yet, the fluid projection sub-step is still coupled implicitly with
the solid sub-step through the interstitial pressure.

In this chapter, we present and analyze a projection scheme for the incompressible linearized
poromechanics problem from Chapters 1 and 3. Our strategy first consists in computing tentative
fluid and solid velocities that do not verify the incompressibility constraint, but take into account
the fluid viscous effects, the solid deformation and the friction between the two phases. Then, the
pressure is obtained by solving a Poisson-like problem with an homogenized density coefficient and
the end-of-step velocities are built from the tentative ones in order to satisfy the mixture divergence
constraint. Because the projection is made on the incompressible space common to both phases,
this approach does not require any iteration between the different sub-steps as in [Burtschell et al.,
2017] and [Both et al., 2022], except if the friction term is treated explicitly. The proposed scheme
is close to the one designed in [Markert et al., 2009], for which no stability analysis has been carried
out to our knowledge. Here, we provide a complete stability analysis of the scheme depending on the
treatment of permeability and of the various boundary conditions under consideration, and show
the convergence of the method provided that the discrete inf-sup condition is satisfied.

The chapter is organized as follows. First, Section 4.1 briefly recalls the model under study and
presents the different types of boundary conditions. Then, Section 4.2 is devoted to the description of
the method and its variants, and the stability analysis is performed with a particular attention made
on the friction term. In Section 4.3, we show how to extend the projection scheme to Neumann
and total stress boundary conditions while keeping its stability properties. Coming back to the
simple case of Dirichlet boundary conditions, an error estimate is provided in Section 4.4. Finally,
the theoretical findings are illustrated by numerical results in Section 4.5 and the efficiency of the
resulting solver is compared to a monolithic approach.

4.1 Problem setting

We consider the same poromechanics problem as in Chapters 1 and 3. We focus on the incompress-
ible case κ = +∞. To simplify, we assume that there is no fluid mass input in the porous medium,
namely θ = 0. We refer to Chapter 3 for more details about the numerical treatment of the case
θ 6= 0. Written as a first-order evolution equation, the porous problem under study reads: find us,
vs, vf and p such that

∂tus − vs = 0, (4.1a)
ρs(1− φ) ∂tvs − div

(
σs(us)

)
− φ2 k−1

f (vf − vs) + (1− φ)∇p = ρs(1− φ) f, (4.1b)

ρfφ∂tvf − div
(
φσf (vf )

)
+ φ2 k−1

f (vf − vs) + φ∇p = ρfφ f, (4.1c)

div
(
(1− φ) vs + φ vf

)
= 0, (4.1d)

where we used the same notation as in the previous chapters for denoting the different physical
quantities involved in the model. The assumptions made on the physical parameters are similar
to the ones made previously, except for the permeability tensor kf for which we assume that there
exists k−1

max > 0 such that
k−1
f v · v ≤ k−1

max|v|2, ∀v ∈ Rd, (4.2)

in addition to the coercivity condition k−1
f v · v ≥ k−1

min|v|2 made before.
To be well-posed, Problem (4.1) has to be complemented with initial conditions for the solid

displacement, solid velocity and fluid velocity, and with boundary conditions. Let us denote by
ΓD, ΓN and ΓT three subsets (possibly empty) of ∂Ω, such that ∂Ω = ΓD ∪ ΓN ∪ ΓT . In this
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Chapter 4. A projection scheme for an incompressible soft material poromechanics model

chapter, we consider three types of boundary conditions. First, Dirichlet boundary conditions,
either homogeneous, namely

us = 0, on ΓD,

vs = 0, on ΓD,

vf = 0, on ΓD,

(4.3)

or non-homogeneous, namely
us = us,bc, on ΓD,

vs = vs,bc, on ΓD,

vf = vf,bc, on ΓD,

(4.4)

where us,bc, vs,bc and vf,bc belong to [L2(ΓD)]d and verify the compatibility condition∫
ΓD

(
(1− φ)vs,bc + φ vf,bc

)
· n dS = 0. (4.5)

Second, Neumann boundary conditions, for which an exterior traction force b ∈ [L2(ΓN )]d acting
on a part of the boundary is distributed between the solid and fluid stresses in the following way:

σs(us)n− (1− φ) pn = (1− φ) b, on ΓN ,

φ σf (vf )n− φ pn = φ b, on ΓN ,
(4.6)

with n the exterior normal of ∂Ω. Third, a total stress boundary condition, which is close to trans-
mission boundary conditions encountered in fluid-solid interaction through the fluid-solid interface.
In this case, the repartition of the boundary traction b between the fluid and solid stresses is not
precised but the solid and fluid velocities are assumed to match at the interface, namely

vf = vs, on ΓT ,

σtotn = b, on ΓT ,
(4.7)

where
σtot = σs(us) + φσf (vf )− pI,

denotes the total stress tensor of the porous medium. This last kind of boundary conditions has
only been considered for Problem (4.1) in [Burtschell et al., 2017] and [Burtschell et al., 2019], where
they are treated using a Nitsche’s method inspired from [Astorino et al., 2010]. Similar boundary
conditions have been largely studied in fluid-structure interaction problems, see for instance [Ger-
beau and Vidrascu, 2003; Causin et al., 2005; Fernández et al., 2007; Guidoboni et al., 2009]. In
fluid-structure interaction, they occur on the fluid-solid interface between a fluid domain Ωf and a
solid domain Ωs. The major difference here is that the fluid and the solid phases cohabit in the same
domain Ω, so that (4.7) is written on a part of the porous boundary and with the same exterior
normal n for the fluid and the solid. Moreover, in fluid-structure interaction problems, the fluid
incompressibility is known to cause an added-mass effect bringing numerical unstabilities. A similar
issue happens here for the porous medium with the incompressibility constraint (4.1d).

Problem (4.1) is a strongly coupled system in which the fluid and solid parts are coupled through
the friction term, the interstitial pressure and the incompressibility constraint, and that can be
solved numerically using a monolithic time scheme as in the previous chapter. Let us now present
our splitting strategy to decouple the different equations of (4.1) and solve the fluid, solid and
pressure separately at each time step.

4.2 Time discretization: decoupling strategies

In this section, we will suppose that the porous medium is submitted to homogeneous Dirichlet
boundary conditions (4.3), namely that ΓN = ∅ and ΓT = ∅. The treatment of Neumann and total
stress boundary conditions (4.6) and (4.7) will be the object of the next section.
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4.2. Time discretization: decoupling strategies

4.2.1 The fully decoupled projection scheme

The proposed projection scheme is detailed in Scheme 1 below. The first step is a prediction step in
which we compute solid and fluid tentative velocities ṽn+1

s and ṽn+1
f without taking into account the

incompressibility constraint and the pressure gradient terms, but only the solid deformation, the
fluid viscous effects and the friction between the two phases. Then, these velocities are corrected
by reincorporating the pressure gradient term in (4.10a) and (4.10b). This is a projection step: to
obtain the end-of-step velocities vn+1

s and vn+1
f , the tentative velocities ṽn+1

s and ṽn+1
f are projected

on the mixture divergence-free space

Hφ =
{

(vs, vf ) ∈ [L2(Ω)]d × [L2(Ω)]d : div
(
(1− φ) vs + φ vf

)
= 0 inD′(Ω)

and
(
(1− φ) vs + φ vf

)
· n = 0 on ΓD

}
studied in Chapter 1, see Proposition 1.25. Lastly, the solid displacement un+1

s is computed directly
in the structure prediction sub-step, and does not need to be corrected.

Scheme 1 Explicit treatment of permeability (non-incremental version)

Step 1: (prediction step)

– Step 1.1: (structure prediction sub-step)
Find un+1

s and ṽn+1
s such that un+1

s |ΓD = 0, ṽn+1
s |ΓD = 0 and

ρs(1− φ)
ṽn+1
s − vns

∆t
− div

(
σs

(un+1
s + uns

2

))
−φ2k−1

f

(
vnf −

ṽn+1
s + vns

2

)
= ρs(1− φ)fn+ 1

2 , (4.8a)

un+1
s − uns

∆t
=
ṽn+1
s + vns

2
. (4.8b)

– Step 1.2: (fluid prediction sub-step)
Find ṽn+1

f such that ṽn+1
f |ΓD = 0 and

ρfφ
ṽn+1
f − vnf

∆t
− div

(
φσf (ṽn+1

f )
)

+ φ2k−1
f

(
ṽn+1
f − ṽn+1

s + vns
2

)
= ρfφ f

n+ 1
2 . (4.9)

Step 2: (correction step)
Find vn+1

s , vn+1
f and pn+1 such that

∫
Ω p

n+1 dx = 0 and

ρs(1− φ)
vn+1
s − ṽn+1

s

∆t
+ (1− φ)∇pn+1 = 0, (4.10a)

ρfφ
vn+1
f − ṽn+1

f

∆t
+ φ∇pn+1 = 0, (4.10b)

div
(
(1− φ)vn+1

s + φ vn+1
f

)
= 0, (4.10c)(

(1− φ)vn+1
s + φ vn+1

f

)
· n|ΓD = 0. (4.10d)
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Note that in the prediction step, we choose to start by advancing the structure before the fluid.
This is motivated by the fact that the friction term has a greater impact on the fluid than on the
structure, which is more rigid. As a consequence, it is better to treat the friction term explicitly in
the solid sub-step, see the term vnf appearing in (4.8a), which allows to treat it implicitly in the fluid
sub-step (4.9). Note moreover that as in Chapter 3, the solid part is discretized using a Newmark
scheme while the fluid part is discretized with a backward Euler scheme.

From a numerical point of view, the main advantage of this scheme is that in the prediction
step, the solid and fluid degrees of freedom are decoupled, which was not the case in the monolithic
approach from Chapter 3 that requires to solve a saddle-point problem at each time step. In the
projection step, the solid, fluid and pressure degrees of freedom seem coupled at first sight, but this is
only because system (4.10) corresponds to the Darcy-formulation of the projection step. In practice,
it is more convenient to first solve the pressure with a Poisson-like equation, and then correct the
velocities accordingly. As a matter of fact, under suitable regularity assumptions, dividing (4.10a)
by ρs, (4.10b) by ρf , summing and taking the divergence, we find that

1

∆t
(div vn+1

m − div ṽn+1
m ) + div

((
1− φ
ρs

+
φ

ρf

)
∇pn+1

)
= 0,

where we use the notation ṽn+1
m and vn+1

m for the tentative and end-of-step mixture velocities, namely

ṽn+1
m = (1− φ)ṽn+1

s + φ ṽn+1
f and vn+1

m = (1− φ)vn+1
s + φ vn+1

f .

From (4.10c), we know that div vn+1
m = 0. Thus, noting ρeff =

(
1−φ
ρs

+ φ
ρf

)−1
, we obtain

−div
(
ρ−1

eff∇p
n+1
)

= −(∆t)−1div ṽn+1
m .

Similarly, by dividing (4.10a) by ρs, (4.10b) by ρf , summing, taking the normal trace on ΓD and
using that vn+1

m · n|ΓD = 0 in virtue of (4.10d), we get ρ−1
eff∇p

n+1 · n|ΓD = 0. Hence, the Poisson
formulation of the correction step reads: find pn+1 such that

−div
(
ρ−1

eff∇p
n+1
)

= −(∆t)−1div ṽn+1
m , in Ω,

ρ−1
eff∇p

n+1 · n = 0, on ΓD.
(4.11)

After solving (4.11), the end-of-step velocities vns and vnf can then be directly computed from (4.10a)
and (4.10b), without having to couple the solid and fluid degrees of freedom. Note that in Chorin-
Temam scheme for Stokes or Navier-Stokes equations, the Poisson correction step involves only
∆pn+1. Here, (4.11) involves a coefficient ρ−1

eff that depends on space and that is closely related to
the values taken by the porosity. More precisely, the effective density

ρeff =

(
1− φ
ρs

+
φ

ρf

)−1

, (4.12)

corresponds to the harmonic mean of the solid and fluid densities, weighted by the proportions of
solid and fluid in the porous medium.

Therefore, Scheme 1 allows to fully decouple the solid, fluid and pressure degrees of freedom.
Its main features are that the prediction steps consist in two unconstrained problems, the pressure
step can be solved using an efficient Poisson solver, and the solid and fluid correction steps are
numerically costless. Finally, let us check its consistency with respect to the initial problem. By
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summing the prediction and correction steps, we get

un+1
s − uns

∆t
=
ṽn+1
s + vns

2
,

ρs(1− φ)
vn+1
s − vns

∆t
− div

(
σs

(un+1
s + uns

2

))
−φ2k−1

f

(
vnf −

ṽn+1
s + vns

2

)
+ (1− φ)∇pn+1 = ρs(1− φ)fn+ 1

2 ,

ρfφ
vn+1
f − vnf

∆t
− div

(
φσf (ṽn+1

f )
)

+ φ2k−1
f

(
ṽn+1
f − ṽn+1

s + vns
2

)
+ φ∇pn+1 = ρfφ f

n+ 1
2 ,

div
(
(1− φ)vn+1

s + φ vn+1
f

)
= 0,

(4.13)

which shows the consistency of the scheme with respect to Problem (4.1). Moreover, we see that
(4.13) is very close to the backward Euler monolithic scheme (3.16). In particular, the solid midpoint
discretization allows to preserve the discrete mechanical energy, as it will be detailed in the stability
analysis of the next subsection. The main difference is the explicit treatment of the fluid velocity
in the permeability term, that comes from the decoupling of the solid and fluid prediction steps.
However, when it comes to boundary conditions, the solid displacement and the tentative velocities
satisfy exactly the Dirichlet boundary conditions (4.3), whereas a priori the end-of-step velocities
only satisfy (

(1− φ)vn+1
s + φ vn+1

f

)
· n|ΓD = 0.

This is one of the drawbacks of the method for Dirichlet boundary conditions, which was also
pointed in projection methods for fluid problems [Rannacher, 1992].
Remark 4.1. For non-homogeneous boundary conditions (4.4), the only difference is that we have
to impose un+1

s |ΓD = us,bc(t
n+1), ṽn+1

s |ΓD = vs,bc(t
n+1) and ṽn+1

f |ΓD = vf,bc(t
n+1) in the prediction

step, with us,bc, vs,bc and vf,bc satisfying the compatibility condition (4.5). Moreover, the Poisson
formulation of the correction step becomes: find pn+1 such that

∫
Ω p

n+1 dx = 0 and

−div
(
ρ−1

eff∇p
n+1
)

= −(∆t)−1div ṽm(tn+1), in Ω,

ρ−1
eff∇p

n+1 · n = (∆t)−1vn+1
m,bc · n, on ∂Ω,

where vm,bc(tn+1) = (1− φ) vs,bc(t
n+1) + φ vf,bc(t

n+1).
Remark 4.2. If we add solid viscosity in the model, namely if η > 0, the scheme can be modified

by simply adding a term −div

(
σviss

(
ṽn+1
s +vns

2

))
in the solid prediction step (4.8a). If we consider

the compressible or nearly-incompressible case κ < +∞ and α < 1, the prediction step remains the
same but one has to change the correction step as follows: find vn+1

s , vn+1
f and pn+1 such that

ρs(1− φ)
vn+1
s − ṽn+1

s

∆t
+ (α− φ)∇pn+1 = 0,

ρfφ
vn+1
f − ṽn+1

f

∆t
+ φ∇pn+1 = 0,

α− φ
κ

pn+1 − pn

∆t
+ div

(
(α− φ)vn+1

s + φ vn+1
f

)
= 0.

From the Darcy-formulation above we can retrieve as before a Poisson formulation, that reads

(∆t)−1α− φ
κ

pn+1 − pn

∆t
− div

((
α− φ
ρs

+
φ

ρf

)
∇pn+1

)
= −(∆t)−1div ṽn+1

m ,
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and that has to be complemented with the boundary conditions imposed on the pressure. This
formulation is close to (4.11), but involves the pressure discrete derivative and an effective density

ρκeff =
(
α−φ
ρs

+ φ
ρf

)−1
that depends on the Biot coefficient α.

For incompressible fluid problems, there exists two versions of projection schemes: the non-
incremental one, which corresponds to the original scheme introduced by Chorin and Temam
[Chorin, 1969; Temam, 1969], and the incremental one first proposed by [Goda, 1979], which is
known to improve the convergence rate in time of the pressure. Assuming that the interstitial
pressure is regular enough, we can propose such an incremental variant of Scheme 1. To do so,
the key idea is to take into account the pressure gradients from the previous time step during the
prediction step, and to modify the correction step accordingly. This improves the approximation
of the tentative velocities by being as close as possible to (4.1b) and (4.1c), and hence the pressure
approximation. The corresponding algorithm is presented in Scheme 2.

Scheme 2 Explicit treatment of permeability (incremental version)

Step 1: (prediction step)

– Step 1.1: (structure prediction sub-step)
Find un+1

s and ṽn+1
s such that un+1

s |ΓD = 0, ṽn+1
s |ΓD = 0 and

ρs(1− φ)
ṽn+1
s − vns

∆t
− div

(
σs

(un+1
s + uns

2

))
−φ2k−1

f (vnf − ṽn+1
s ) + (1− φ)∇pn = ρs(1− φ)fn+ 1

2 , (4.14a)

un+1
s − uns

∆t
= ṽn+1

s . (4.14b)

– Step 1.2: (fluid prediction sub-step)
Find ṽn+1

f such that ṽn+1
f |ΓD = 0 and ρfφ
ṽn+1
f − vnf

∆t
− div

(
φσf (ṽn+1

f )
)

+φ2k−1
f (ṽn+1

f − ṽn+1
s ) + φ∇pn = ρfφ f

n+ 1
2 . (4.15a)

Step 2: (correction step)
Find vn+1

s , vn+1
f and pn+1 such that

∫
Ω p

n+1 dx = 0 and

ρs(1− φ)
vn+1
s − ṽn+1

s

∆t
+ (1− φ)∇(pn+1 − pn) = 0, (4.16a)

ρfφ
vn+1
f − ṽn+1

f

∆t
+ φ∇(pn+1 − pn) = 0, (4.16b)

div
(
(1− φ)vn+1

s + φ vn+1
f

)
= 0, (4.16c)(

(1− φ)vn+1
s + φ vn+1

f

)
· n|ΓD = 0. (4.16d)
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Here again, the correction step (4.16) can be reformulated as a Poisson problem, by simply
replacing pn+1 by the pressure increment pn+1 − pn in (4.11). Note that for stability reasons that
will be made clearer in the next subsection, the midpoint velocity ṽn+1

s +vns
2 has been replaced by

ṽn+1
s in the prediction step.

Scheme 2 is very close to the one proposed in [Markert et al., 2009]. Indeed, the only differences
are that in [Markert et al., 2009], the fluid viscosity effects considered in (4.15) are neglected following
a magnitude argument given in [Markert, 2007], and that the solid displacement is treated explicitly
in (4.14a). However, [Markert et al., 2009] does not include a stability analysis of the scheme, which
we are now going to carry out.

4.2.2 Stability analysis

We start with the non-incremental version of the scheme. Let us introduce the notation

u
n+ 1

2
s =

un+1
s + uns

2
,

for the solid displacement midpoint velocity, and

ṽ
n+ 1

2
]

s =
ṽn+1
s + vns

2
, (4.17)

to denote the specific midpoint velocity appearing in the prediction steps. Moreover, we will denote
by H1(Ω)/R the subspace of H1(Ω) composed of functions with zero mean value, namely

H1(Ω)/R =

{
p ∈ H1(Ω) ,

∫
Ω
pdx = 0

}
.

For the stability analysis, we assume that no external body force is applied to the porous medium,
namely f = 0. Note nonetheless that the forthcoming stability analysis can easily be extended to
the case where f 6= 0. The weak formulation associated with Scheme 1 then reads:

Step 1: (prediction step)

– Step 1.1: (structure prediction sub-step)
Find un+1

s ∈ [H1
0(Ω)]d and ṽn+1

s ∈ [H1
0(Ω)]d such that∫

Ω
ρs(1− φ)

ṽn+1
s − vns

∆t
· ws dx+

∫
Ω
σs

(un+1
s − uns

∆t

)
: ε(ds) dx

−
∫

Ω
σs(ṽ

n+ 1
2
]

s ) : ε(ds) dx+

∫
Ω
σs(u

n+ 1
2

s ) : ε(ws) dx

−
∫

Ω
φ2k−1

f (vnf − ṽ
n+ 1

2
]

s ) · ws dx = 0, (4.18)

for all ws ∈ [H1
0(Ω)]d and ds ∈ [H1

0(Ω)]d.

– Step 1.2: (fluid prediction sub-step)
Find ṽn+1

f ∈ [H1
0(Ω)]d such that

∫
Ω
ρfφ

ṽn+1
f − vnf

∆t
· wf dx+

∫
Ω
φσf (ṽn+1

f ) : ε(wf ) dx

+

∫
Ω
φ2k−1

f (ṽn+1
f − ṽn+ 1

2
]

s ) · wf dx = 0, (4.19)

for all wf ∈ [H1
0(Ω)]d.
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Step 2: (correction step)
Find vn+1

s ∈ [L2(Ω)]d, vn+1
f ∈ [L2(Ω)]d and pn+1 ∈ H1(Ω)/R such that

∫
Ω
ρs(1− φ)

vn+1
s − ṽn+1

s

∆t
· ws dx+

∫
Ω
ρfφ

vn+1
f − ṽn+1

f

∆t
· wf dx

+

∫
Ω

(1− φ)∇pn+1 · ws dx+

∫
Ω
φ∇pn+1 · wf dx

−
∫

Ω
(1− φ)vn+1

s · ∇q dx−
∫

Ω
φ vn+1

f · ∇q dx = 0, (4.20)

for all ws ∈ [L2(Ω)]d, wf ∈ [L2(Ω)]d and q ∈ H1(Ω)/R.

Remark 4.3. An alternative way of formulating weakly the correction step is to use a mixed
formulation in the space Hφ. From a numerical point of view, such a formulation requires to use an
approximation of the space Hφ, which may be done with Raviart-Thomas elements. Yet, it is not
clear whether this strategy can lead to error estimates that are robust with respect to the porosity
field φ.

The stability analysis is based on a discrete energy balance for each step of the algorithm. Let
us define the discrete kinetic and mechanical energies by

Enc =
1

2

∫
Ω
ρs(1− φ) |vns |

2 dx+
1

2

∫
Ω
ρfφ

∣∣vnf ∣∣2 dx and Enm =
1

2

∫
Ω
σs(u

n
s ) : ε(uns ) dx.

Moreover, we introduce the tentative kinetic energy associated with the prediction velocities, namely

Ẽn+1
c =

1

2

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f

∣∣∣2 dx.

In what follows, we will often use the algebraic identity

(
an+1 − an

)
an+1 =

1

2

(
an+1

)2 − 1

2

(
an
)2

+

(
an+1 − an

)2
2

. (4.21)

For the prediction step, we choose ws = ∆t ṽ
n+ 1

2
]

s , ds = ∆t u
n+ 1

2
s and wf = ∆t ṽn+1

f in (4.18)
and (4.19) to obtain

(
Ẽn+1
c − Enc

)
+
(
En+1
m − Enm

)
+

1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx

−∆t

∫
Ω
φ2k−1

f

(
vnf − ṽ

n+ 1
2
]

s

)
· ṽn+ 1

2
]

s dx+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)
· ṽn+1
f dx = 0.

The explicit part of the friction term requires a special treatment. Writing vnf = ṽn+1
f +(vnf − ṽ

n+1
f ),

it can be decomposed as

− φ2k−1
f

(
vnf − ṽ

n+ 1
2
]

s

)
· ṽn+ 1

2
]

s + φ2k−1
f

(
ṽn+1
f − ṽn+ 1

2
]

s

)
· ṽn+1
f

= φ2k−1
f (ṽn+1

f − ṽn+ 1
2
]

s )2 − φ2k−1
f

(
vnf − ṽn+1

f

)
· ṽn+ 1

2
]

s ,

so that the prediction step energy balance reads:

(
Ẽn+1
c − Enc

)
+
(
En+1
m − Enm

)
+

1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx

+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)2
dx = ∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· ṽn+ 1

2
]

s dx. (4.22)
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4.2. Time discretization: decoupling strategies

Testing (4.60) with ws = ∆t vn+1
s , wf = ∆t vn+1

f and q = ∆t pn+1, we get the correction step energy
balance(

En+1
c − Ẽn+1

c

)
+

1

2

∫
Ω
ρs(1− φ)

∣∣vn+1
s − ṽn+1

s

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣vn+1
f − ṽn+1

f

∣∣∣2 dx = 0. (4.23)

Summing up the prediction and correction steps contributions (4.22) and (4.23), the tentative kinetic
energy Ẽn+1

c simplifies and it follows that

(
En+1 − En

)
+

1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx+
1

2

∫
Ω
ρs(1− φ)

∣∣vn+1
s − ṽn+1

s

∣∣2 dx

+
1

2

∫
Ω
ρfφ

∣∣∣vn+1
f − ṽn+1

f

∣∣∣2 dx+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx

+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)2
dx = ∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· ṽn+ 1

2
]

s dx, (4.24)

where En corresponds to the total energy of the system, namely

En = Enc + Enm =
1

2

∫
Ω
ρs(1− φ) |vns |

2 dx+
1

2

∫
Ω
ρfφ

∣∣vnf ∣∣2 dx+
1

2

∫
Ω
σs(u

n
s ) : ε(uns ) dx.

Remark 4.4. Because of the midpoint discretization chosen for the solid, no numerical dissipation
appears in the prediction step for the structure part. However, (4.24) includes a solid numerical
dissipation term 1

2

∫
Ω ρs(1−φ)

∣∣ṽn+1
s − vn+1

s

∣∣2 dx that comes from the correction step. It is possible
to get rid of this term by changing the mixture divergence constraint (4.10c) into

div
(

(1− φ)
vn+1
s + ṽn+1

s

2
+ φ vn+1

f

)
= 0,

and by testing (4.60) with ws = vn+1
s +ṽn+1

s
2 instead of ws = vn+1

s . Nonetheless, we will see in the
proof of Theorem 4.5 below that this solid numerical dissipation term is useful to control unsigned
terms coming from the explicit treatment of the permeability.

With the discrete energy balance (4.24) in hand, we are now ready to establish the following
stability result.
Theorem 4.5. Let uns , vns , vnf , p

n, ṽns and ṽnf satisfy Scheme 1 with f = 0. If the time step verifies

∆t2 <
ρfρs(1− φmax)

2φ3
max(k−1

max)2
, (4.25)

then for all 0 ≤ N ≤ nT , it holds

EN +
3

8

N−1∑
n=0

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vn+1

s

∣∣2 dx+
1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vn+1

f

∣∣∣2 dx

+ ∆t

N−1∑
n=0

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)2
dx ≤ CTE0, (4.26)

with CT > 0 a constant independent of ∆t.
Proof. The idea is to control the right-hand side of (4.24) thanks to the solid and fluid numerical
dissipation. To do so, recalling (4.17), we decompose it as

∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· 1

2

[(
ṽn+1
s − vn+1

s

)
+
(
vn+1
s + vns

)]
dx. (4.27)
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Then, we use Young inequality on each part of the above decomposition to obtain

∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
·
(
ṽn+1
s − vn+1

s

)
dx

≤ 1

2

∫
Ω
ρfφ

∣∣∣vnf − ṽn+1
f

∣∣∣2 dx+
1

2

∫
Ω

∆t2φ4

ρfφρs(1− φ)
ρs(1− φ)k−2

f

(
ṽn+1
s − vn+1

s

)2
dx

≤ 1

2

∫
Ω
ρfφ

∣∣∣vnf − ṽn+1
f

∣∣∣2 dx+
1

2

∫
Ω

∆t2
φ3

max

(
k−1

max

)2
ρfρs(1− φmax)

ρs(1− φ)
∣∣ṽn+1
s − vn+1

s

∣∣2 dx,

(4.28)

where we used the new assumption (4.2) made on the permeability tensor. Likewise, we have

∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
·
(
vn+1
s + vns

)
dx

≤ 1

2

∫
Ω
ρfφ

∣∣∣vnf − ṽn+1
f

∣∣∣2 dx+
1

2

∫
Ω

∆t2
φ3

max(k−1
max)2

ρfρs(1− φmax)
ρs(1− φ)

∣∣vn+1
s + vns

∣∣2 dx. (4.29)

Taking the half-sum of (4.28) and (4.29) and using that
∣∣vn+1
s + vns

∣∣2 ≤ 2
(∣∣vn+1

s

∣∣2 + |vns |
2), it follows

that

∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· ṽn+ 1

2
]

s dx ≤ 1

2

∫
Ω
ρfφ

∣∣∣vnf − ṽn+1
f

∣∣∣2 dx

+
1

4

∫
Ω

∆t2
φ3

max

(
k−1

max

)2
ρfρs(1− φmax)

ρs(1− φ)
∣∣ṽn+1
s − vn+1

s

∣∣2 dx

+
1

2

∫
Ω

∆t2
φ3

max(k−1
max)2

ρfρs(1− φmax)
ρs(1− φ)

(∣∣vn+1
s

∣∣2 + |vns |
2) dx. (4.30)

Setting

C =
φ3

max(k−1
max)2

ρfρs(1− φmax)
, (4.31)

the time step restriction (4.25) is equivalent to C∆t2 < 1/2. Therefore, we observe that

1

4

∫
Ω

∆t2
φ3

max

(
k−1

max

)2
ρfρs(1− φmax)

ρs(1− φ)
∣∣ṽn+1
s − vn+1

s

∣∣2 dx =
C∆t2

4

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vn+1

s

∣∣2 dx

≤ 1

8

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vn+1

s

∣∣2 dx.

Consequently, plugging (4.30) into the discrete energy balance (4.24) yields

(
En+1 − En

)
+

3

8

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vn+1

s

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vn+1

f

∣∣∣2 dx

+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)2
dx

≤ 1

2

∫
Ω

∆t2
φ3

max(k−1
max)2

ρfρs(1− φmax)
ρs(1− φ)

(∣∣vn+1
s

∣∣2 + |vns |
2) dx ≤ C∆t2

(
En+1 + En

)
.
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Summing this estimate between 0 and N − 1, we deduce

EN +
3

8

N−1∑
n=0

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vn+1

s

∣∣2 dx+
1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vn+1

f

∣∣∣2 dx

+ ∆t

N−1∑
n=0

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)2
dx

≤ E0 + C∆t2
N−1∑
n=0

(
En+1 + En

)
≤ E0 + 2C∆t2

N∑
n=0

En,

Since 2C∆t2 < 1, the conclusion then follows from discrete Grönwall Lemma 3.20.
Remark 4.6. In the viscous case η > 0, an extra term

∆t

∫
Ω
σviss

(
ṽ
n+ 1

2
]

s

)
: ε
(
ṽ
n+ 1

2
]

s

)
dx,

appears in the left-hand side of (4.24). This viscous term can then be used to control the unsigned

permeability term ∆t
∫

Ω φ
2k−1
f

(
vnf − ṽ

n+1
f

)
· ṽn+ 1

2
]

s dx without using the decomposition (4.27).
A similar result can be obtained for the incremental version of the scheme, whose weak form in

absence of external body forces reads:

Step 1: (prediction step)

– Step 1.1: (structure prediction sub-step)
Find un+1

s ∈ [H1
0(Ω)]d and ṽn+1

s ∈ [H1
0(Ω)]d such that∫

Ω
ρs(1− φ)

ṽn+1
s − vns

∆t
· ws dx+

∫
Ω
σs

(un+1
s − uns

∆t

)
: ε(ds) dx

−
∫

Ω
σs(ṽ

n+1
s ) : ε(ds) dx+

∫
Ω
σs(u

n+ 1
2

s ) : ε(ws) dx

−
∫

Ω
φ2k−1

f (vnf − ṽn+1
s ) · ws dx+

∫
Ω

(1− φ)∇pn · ws dx = 0, (4.32)

for all ws ∈ [H1
0(Ω)]d and ds ∈ [H1

0(Ω)]d.

– Step 1.2: (fluid prediction sub-step)
Find ṽn+1

f ∈ [H1
0(Ω)]d such that

∫
Ω
ρfφ

ṽn+1
f − vnf

∆t
· wf dx+

∫
Ω
φσf (ṽn+1

f ) : ε(wf ) dx

+

∫
Ω
φ2k−1

f (ṽn+1
f − ṽn+1

s ) · wf dx+

∫
Ω
φ∇pn · wf dx = 0, (4.33)

for all wf ∈ [H1
0(Ω)]d.
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Step 2: (correction step)
Find vn+1

s ∈ [L2(Ω)]d, vn+1
f ∈ [L2(Ω)]d and pn+1 ∈ H1(Ω)/R such that∫

Ω
ρs(1− φ)

vn+1
s − ṽn+1

s

∆t
· ws dx+

∫
Ω
ρfφ

vn+1
f − ṽn+1

f

∆t
· wf dx

+

∫
Ω

(1− φ)∇(pn+1 − pn) · ws dx+

∫
Ω
φ∇(pn+1 − pn) · wf dx

−
∫

Ω
(1− φ)vn+1

s · ∇q dx−
∫

Ω
φ vn+1

f · ∇q dx = 0, (4.34)

for all ws ∈ [L2(Ω)]d, wf ∈ [L2(Ω)]d and q ∈ H1(Ω)/R.

Theorem 4.7. Let uns , vns , vnf , p
n, ṽns and ṽnf satisfy Scheme 2, and assume that p0 ∈ H1(Ω)/R. If

the time step verifies (4.25), then for all 0 ≤ N ≤ nT , it holds

EN +
∆t2

2

∫
Ω
ρ−1

eff

∣∣∇pN ∣∣2 dx+ ∆t

N−1∑
n=0

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx

+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+1

s

)2
dx ≤ CT

(
E0 +

∆t2

2

∫
Ω
ρ−1

eff

∣∣∇p0
∣∣2 dx

)
, (4.35)

with CT > 0 a constant independent of ∆t.

Proof. Choosing ds = ∆t u
n+ 1

2
s , ws = ∆t ṽn+1

s and wf = ∆t ṽn+1
f in (4.32) and (4.33), we have

(
Ẽn+1
c − Enc

)
+
(
En+1
m − Enm

)
+

1

2

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vns

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx

+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+1

s

)2
dx

+ ∆t

∫
Ω

(1− φ)∇pn · ṽn+1
s dx+ ∆t

∫
Ω
φ∇pn · ṽn+1

f dx

= ∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· ṽn+1
s dx. (4.36)

Choosing ws = ∆t vn+1
s , wf = ∆t vn+1

f and q = ∆t pn+1 in the correction step (4.34), the terms of
the form ∆t

∫
Ω(1− φ)∇pn+1 · vn+1

s dx and ∆t
∫

Ω φ∇p
n+1 · vn+1

f dx cancel out, so that we obtain

(
En+1
c − Ẽn+1

c

)
+

1

2

∫
Ω
ρs(1− φ)

∣∣vn+1
s − ṽn+1

s

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣vn+1
f − ṽn+1

f

∣∣∣2 dx

−∆t

∫
Ω

(1− φ)∇pn · vn+1
s dx−∆t

∫
Ω
φ∇pn · vn+1

f dx = 0. (4.37)

Summing (4.36) and (4.37), we infer(
En+1 − En

)
+

1

2

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vns

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx

+
1

2

∫
Ω
ρs(1− φ)

∣∣vn+1
s − ṽn+1

s

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣vn+1
f − ṽn+1

f

∣∣∣2 dx

+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+1

s

)2
dx

+ ∆t

∫
Ω

(1− φ)∇pn · (ṽn+1
s − vn+1

s ) dx+ ∆t

∫
Ω
φ∇pn · (ṽn+1

f − vn+1
f ) dx

= ∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· ṽn+1
s dx. (4.38)
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The major difference between (4.38) and the energy balance of the non-incremental scheme (4.24)
is the extra pressure terms coming from the explicit treatment of pressure, and the additional solid
numerical dissipation term coming from the replacement of ṽn+ 1

2
]

s by ṽn+1
s in the prediction step.

To control the pressure terms, we test (4.34) with ws = ∆t2

ρs
∇pn, wf = ∆t2

ρf
∇pn and q = 0 to

retrieve

∆t

∫
Ω

(1− φ)(vn+1
s − ṽn+1

s ) · ∇pn dx+ ∆t

∫
Ω
φ∇pn · (vn+1

f − ṽn+1
f ) dx

+ ∆t2
∫

Ω

(
1− φ
ρs

+
φ

ρf

)
∇(pn+1 − pn) · ∇pn dx = 0.

Since ∇(pn+1 − pn) · ∇pn = 1
2

(∣∣∇pn+1
∣∣2 − |∇pn|2 − ∣∣∇(pn+1 − pn)

∣∣2), it follows that
∆t

∫
Ω

(1− φ)∇pn · (ṽn+1
s − vn+1

s ) dx+ ∆t

∫
Ω
φ∇pn · (ṽn+1

f − vn+1
f ) dx

=
∆t2

2

∫
Ω

(
1− φ
ρs

+
φ

ρf

) ∣∣∇pn+1
∣∣2 dx− ∆t2

2

∫
Ω

(
1− φ
ρs

+
φ

ρf

)
|∇pn|2 dx

− ∆t2

2

∫
Ω

1− φ
ρs

∣∣∇(pn+1 − pn)
∣∣2 dx− ∆t2

2

∫
Ω

φ

ρf

∣∣∇(pn+1 − pn)
∣∣2 dx.

But from (4.16a), we know that

∆t2

2

∥∥∥∥
√

1− φ
ρs
∇(pn+1−pn)

∥∥∥∥2

=
∆t2

2

∥∥∥∥√ρs(1− φ)
vn+1
s − ṽn+1

s

∆t

∥∥∥∥2

=
1

2

∫
Ω
ρs(1−φ)

∣∣vn+1
s − ṽn+1

s

∣∣2 dx.

(4.39)
Proceeding similarly for the fluid correction step, we find that

∆t2

2

∥∥∥∥
√

φ

ρf
∇(pn+1 − pn)

∥∥∥∥2

=
1

2

∫
Ω
ρfφ

∣∣∣vn+1
f − ṽn+1

f

∣∣∣2 dx. (4.40)

Combining (4.38) with (4.39) and (4.40), the numerical dissipation terms from the correction step
vanish and we deduce(
En+1 − En

)
+

1

2

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vns

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx

+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+1

s

)2
dx

+
∆t2

2

(∫
Ω
ρ−1

eff

∣∣∇pn+1
∣∣2 dx−

∫
Ω
ρ−1

eff |∇p
n|2 dx

)
= ∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· ṽn+1
s dx, (4.41)

where we recall that ρ−1
eff = 1−φ

ρs
+ φ

ρf
as in the Poisson problem (4.11).

The end of the proof is similar to that of Theorem 4.5. Defining C as in (4.31), Young inequality
implies that

∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· ṽn+1
s dx

= ∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· (ṽn+1

s − vns ) dx+ ∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· vns dx

≤ 1

2

∫
Ω
ρfφ

∣∣∣vnf − ṽn+1
f

∣∣∣2 dx+ C∆t2
∫

Ω
ρs(1− φ)

∣∣ṽn+1
s − vns

∣∣2 dx+ C∆t2
∫

Ω
ρs(1− φ) |vns |

2 dx.
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Plugging this result into (4.41) and recalling that C∆t2 < 1/2, we finally get

(
En+1 − En

)
+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+1

s

)2
dx

+
∆t2

2

(∫
Ω
ρ−1

eff

∣∣∇pn+1
∣∣2 dx−

∫
Ω
ρ−1

eff |∇p
n|2 dx

)
≤ 2C∆t2En,

and we conclude by an application of discrete Grönwall Lemma.
Remark 4.8. At the end of the proof, we see that the solid numerical dissipation term coming
from the prediction step is used to control the permeability unsigned term. This is a reason why
we have replaced the midpoint velocity ṽn+ 1

2
]

s by ṽn+1
s in Scheme 2.

Remark 4.9. Note that the stability of the incremental version of the scheme requires more regu-
larity on the pressure than the non-incremental version since (4.35) requires that p(0) ∈ H1(Ω).

Therefore, we have proved stability estimates for both the non-incremental and incremental
versions of the projection scheme. However, the estimates of Theorems 4.5 and 4.7 are subject to
the time step restriction (4.25), namely

∆t2 <
ρfρs(1− φmax)

2φ3
max(k−1

max)2
.

If the permeability tensor is small, i.e. if k−1
max is large, this condition can be very restrictive in

practice. As a matter of fact, in biological applications, kf typically takes values between 10−9 and
10−12 m2 Pa−1 s−1, so that for realistic density values – say ρs = ρf = 103 kg m−3 – the time step
condition (4.25) becomes ∆t . 10−6 s. In order to overcome this time step restriction, we are now
going to present two other variants of the scheme.

4.2.3 Other treatments of permeability

The time step condition (4.25) comes from the explicit treatment of the fluid velocity in the perme-
ability term during the solid prediction sub-step (4.8a). It is possible to treat implicitly this term
by recoupling the solid and fluid prediction sub-steps, leading to the following scheme.

Scheme 3 Implicit treatment of permeability (non-incremental version)

Step 1: (prediction step)
Find un+1

s , ṽn+1
s and ṽn+1

f such that un+1
s |ΓD = ṽn+1

s |ΓD = ṽn+1
f |ΓD = 0 and

ρs(1− φ)
ṽn+1
s − vns

∆t
− div

(
σs(u

n+ 1
2

s )
)

−φ2k−1
f

(
ṽn+1
f − ṽn+ 1

2
]

s

)
= ρs(1− φ)fn+ 1

2 ,

ρfφ
ṽn+1
f − vnf

∆t
− div

(
φσf (ṽn+1

f )
)

+ φ2k−1
f

(
ṽn+1
f − ṽn+ 1

2
]

s

)
= ρfφ f

n+ 1
2 ,

un+1
s − uns

∆t
= ṽ

n+ 1
2
]

s .
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Step 2: (correction step)
Find vn+1

s , vn+1
f and pn+1 such that

∫
Ω p

n+1 dx = 0 and

ρs(1− φ)
vn+1
s − ṽn+1

s

∆t
+ (1− φ)∇pn+1 = 0,

ρfφ
vn+1
f − ṽn+1

f

∆t
+ φ∇pn+1 = 0,

div
(
(1− φ)vn+1

s + φ vn+1
f

)
= 0,(

(1− φ)vn+1
s + φ vn+1

f

)
· n|ΓD = 0.

The drawback of this scheme is that it requires to couple the solid and fluid degrees of freedom
to solve the prediction step. Its main advantage is to totally get rid of the time step restriction
(4.25). As a matter of fact, assuming that f = 0 and reproducing the computations made for the
stability analysis of Scheme 1, the discrete energy balance associated with Scheme 3 reads:

(
En+1 − En

)
+

1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx+
1

2

∫
Ω
ρs(1− φ)

∣∣vn+1
s − ṽn+1

s

∣∣2 dx

+
1

2

∫
Ω
ρfφ

∣∣∣vn+1
f − ṽn+1

f

∣∣∣2 dx+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx

+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)2
dx = 0, (4.42)

which directly proves the unconditional stability of the scheme.
Of course, a similar variant can be designed for the incremental version of the scheme. This

variant is presented in Scheme 4 below.

Scheme 4 Implicit treatment of permeability (incremental version)

Step 1: (prediction step)
Find un+1

s , ṽn+1
s and ṽn+1

f such that un+1
s |ΓD = ṽn+1

s |ΓD = ṽn+1
f |ΓD = 0 and

ρs(1− φ)
ṽn+1
s − vns

∆t
− div

(
σs(u

n+ 1
2

s )
)

−φ2k−1
f

(
ṽn+1
f − ṽn+1

s

)
+ (1− φ)∇pn = ρs(1− φ)fn+ 1

2 ,

ρfφ
ṽn+1
f − vnf

∆t
− div

(
φσf (ṽn+1

f )
)

+φ2k−1
f

(
ṽn+1
f − ṽn+1

s

)
+ φ∇pn = ρfφ f

n+ 1
2 ,

un+1
s − uns

∆t
= ṽn+1

s .
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Step 2: (correction step)
Find vn+1

s , vn+1
f and pn+1 such that

∫
Ω p

n+1 dx = 0 and

ρs(1− φ)
vn+1
s − ṽn+1

s

∆t
+ (1− φ)∇(pn+1 − pn) = 0,

ρfφ
vn+1
f − ṽn+1

f

∆t
+ φ∇(pn+1 − pn) = 0,

div
(
(1− φ)vn+1

s + φ vn+1
f

)
= 0,(

(1− φ)vn+1
s + φ vn+1

f

)
· n|ΓD = 0.

Here again, the stability of the scheme is ensured irrespectively of the time step in virtue of the
energy balance(
En+1 − En

)
+

1

2

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vns

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx

+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+1

s

)2
dx

+
∆t2

2

(∫
Ω
ρ−1

eff

∣∣∇pn+1
∣∣2 dx−

∫
Ω
ρ−1

eff |∇p
n|2 dx

)
= 0, (4.43)

which is directy adapted from (4.41).
Finally, if one is attached to decouple the solid and fluid degrees of freedom during the prediction

step, another option is to use a fixed-point strategy, which consists in iterating between the solid and
fluid prediction sub-steps until a convergence criterion is reached, for a given tolerance parameter
εtol. Such an algorithm is summarized in Scheme 5.

Scheme 5 Fixed-point procedure

Initialization: k = 0, un+1,0
s = uns , ṽ

n+1,0
s = vns , ṽ

n+1,0
f = vnf and e = +∞.

Step 1: (prediction step) While e > εtol, go into the following sub-steps:

– Step 1.1: (structure prediction sub-step)

Find un+1,k+1
s and ṽn+1,k+1

s such that un+1,k+1
s |ΓD = 0, ṽn+1,k+1

s |ΓD = 0 and

ρs(1− φ)
ṽn+1,k+1
s − vns

∆t
− div

(
σs

(un+1,k+1
s + uns

2

))
−φ2k−1

f

(
ṽn+1,k
f − ṽn+1,k+1

s + vns
2

)
= ρs(1− φ)fn+ 1

2 ,

un+1,k+1
s − uns

∆t
=
ṽn+1,k+1
s + vns

2
.

– Step 1.2: (fluid prediction sub-step)

Find ṽn+1,k+1
f such that ṽn+1,k+1

f |ΓD = 0 and
ρfφ

ṽn+1,k+1
f − vnf

∆t
− div

(
φσf (ṽn+1,k+1

f )
)

+φ2k−1
f

(
ṽn+1,k+1
f − ṽn+1,k+1

s + vns
2

)
= ρfφ f

n+ 1
2 .
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– Step 1.3: (fixed-point error update)
Compute

e =
∥∥un+1,k+1

s − un+1,k
s

∥∥+
∥∥ṽn+1,k+1

s − ṽn+1,k
s

∥∥+
∥∥ṽn+1,k+1

f − ṽn+1,k
f

∥∥,
and update k ← k + 1.

Prediction step output: set un+1
s = un+1,k

s , ṽn+1
s = ṽn+1,k

s and ṽn+1
f = ṽn+1,k

f .

Step 2: (correction step)
Find vn+1

s , vn+1
f and pn+1 such that

∫
Ω p

n+1 dx = 0 and

ρs(1− φ)
vn+1
s − ṽn+1

s

∆t
+ (1− φ)∇pn+1 = 0,

ρfφ
vn+1
f − ṽn+1

f

∆t
+ φ∇pn+1 = 0,

div
(
(1− φ)vn+1

s + φ vn+1
f

)
= 0,(

(1− φ)vn+1
s + φ vn+1

f

)
· n|ΓD = 0.

Remark 4.10. In order to reduce the number of iterations of the fixed-point procedure, note that
Scheme 5 can be solved using a Netwon method as in [Gerbeau and Vidrascu, 2003].

In all this section, we restricted our study to the case of Dirichlet boundary conditions. Let us
see what changes for the proposed projection schemes when other types of boundary conditions are
considered.

4.3 Neumann and total stress boundary conditions

In many applications, boundary conditions appear on the solid or fluid stresses, either in a dis-
tributed way, see (4.6), or with an additional Dirichlet boundary condition between the fluid and
solid velocities, see (4.7). The goal of this section is to include such conditions in the projection
scheme presented previously. For the sake of conciseness, we will only consider the non-incremental
version of the algorithm.

4.3.1 Neumann boundary conditions

We start with the case of Neumann boundary conditions (4.6), namely ΓD = ΓT = ∅ and

σs(us)n− (1− φ) pn = (1− φ) b, on ΓN ,

φ σf (vf )n− φ pn = φ b, on ΓN ,

with b ∈ [L2(ΓN )]d. Let us denote by πτ = I − n ⊗ n the tangential plane projection operator. To
impose (4.6) in Scheme 1, the boundary traction b applied to the porous medium has to be splitted
between the projection and correction steps. To do so, we are going to impose its tangential
component in the prediction step, while its normal component will be imposed in the correction
step. More precisely, in the solid prediction sub-step (4.8), we impose weakly

σs(u
n+ 1

2
s )n = (1− φ)πτ (bn+ 1

2 ), on ΓN .
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Similarly, in the fluid prediction sub-step (4.9), we impose weakly

φσf (ṽn+1
f )n = φπτ (bn+ 1

2 ), on ΓN .

Then, the normal component of the external traction is imposed in the correction step (4.10) as a
Dirichlet boundary condition on the pressure, namely

pn+1 = −bn+ 1
2 · n, on ΓN .

The corresponding scheme is weakly written in Scheme 6 below.

Scheme 6 Neumann boundary conditions

Step 1: (prediction step)

– Step 1.1: (structure prediction sub-step)
Find un+1

s ∈ [H1(Ω)]d and ṽn+1
s ∈ [H1(Ω)]d such that∫

Ω
ρs(1− φ)

ṽn+1
s − vns

∆t
· ws dx+

∫
Ω
σs

(un+1
s − uns

∆t

)
: ε(ds) dx

−
∫

Ω
σs(ṽ

n+ 1
2
]

s ) : ε(ds) dx+

∫
Ω
σs(u

n+ 1
2

s ) : ε(ws) dx−
∫

Ω
φ2k−1

f (vnf − ṽ
n+ 1

2
]

s ) · ws dx

=

∫
Ω
ρs(1− φ)fn+ 1

2 · ws dx+

∫
ΓN

(1− φ)πτ (bn+ 1
2 ) · ws dS, (4.44)

for all ws ∈ [H1(Ω)]d and ds ∈ [H1(Ω)]d.

– Step 1.2: (fluid prediction sub-step)
Find ṽn+1

f ∈ [H1(Ω)]d such that

∫
Ω
ρfφ

ṽn+1
f − vnf

∆t
· wf dx+

∫
Ω
φσf (ṽn+1

f ) : ε(wf ) dx

+

∫
Ω
φ2k−1

f (ṽn+1
f − ṽn+ 1

2
]

s ) · wf dx

=

∫
Ω
ρfφ f

n+ 1
2 · wf dx+

∫
ΓN

φπτ (bn+ 1
2 ) · wf dS, (4.45)

for all wf ∈ [H1(Ω)]d.

Step 2: (correction step)
Find vn+1

s ∈ [L2(Ω)]d, vn+1
f ∈ [L2(Ω)]d and pn+1 ∈ H1(Ω) with pn+1|ΓN = −bn+ 1

2 · n,

∫
Ω
ρs(1− φ)

vn+1
s − ṽn+1

s

∆t
· ws dx+

∫
Ω
ρfφ

vn+1
f − ṽn+1

f

∆t
· wf dx

+

∫
Ω

(1− φ)∇pn+1 · ws dx+

∫
Ω
φ∇pn+1 · wf dx

−
∫

Ω
(1− φ)vn+1

s · ∇q dx−
∫

Ω
φ vn+1

f · ∇q dx = 0, (4.46)

for all ws ∈ [L2(Ω)]d, wf ∈ [L2(Ω)]d and q ∈ H1(Ω).
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Let us assume that we use the same test functions in the prediction and correction steps.
Summing (4.44), (4.45) and (??), the boundary terms appearing in the right-hand side are∫

ΓN

(1− φ)πτ (bn+ 1
2 ) · ws dS +

∫
ΓN

φπτ (bn+ 1
2 ) · wf dS +

∫
ΓN

(bn+ 1
2 · n)

(
(1− φ)ws + φwf

)
· n dS.

Using the equality (b ·n)(w ·n) = (n⊗n)b ·w for all b and w in Rd, these terms can be rewritten as∫
ΓN

(1− φ)πτ (bn+ 1
2 ) · ws dS +

∫
ΓN

φπτ (bn+ 1
2 ) · wf dS +

∫
ΓN

(bn+ 1
2 · n)

(
(1− φ)ws + φwf

)
· ndS

=

∫
ΓN

(1− φ)
(
πτ (bn+ 1

2 ) + (n⊗ n)bn+ 1
2
)
· ws dS +

∫
ΓN

φ
(
πτ (bn+ 1

2 ) + (n⊗ n)bn+ 1
2
)
· wf dS

=

∫
ΓN

(1− φ) bn+ 1
2 · ws dS +

∫
ΓN

φ bn+ 1
2 · wf dS since πτ = I− n⊗ n,

which shows the consistency of Scheme 6.
In absence of external forces, namely if f = 0 and b = 0, the energy balance of Scheme 6 is

exactly the same as for Scheme 1. Note that if b 6= 0, the discrete energy estimate can be extended
using a trace inequality. Let us now consider the case of total stress boundary conditions, which
requires a specific stability analysis.

4.3.2 Total stress boundary condition

Let us assume that the total stress boundary condition (4.7) holds, namely ΓD = ΓN = ∅ and

vf = vs, on ΓT ,

σtotn = b, on ΓT ,

with
σtot = σs(us) + φσf (vf )− pI.

As mentioned previously, this kind of boundary conditions is very close to the transmission condi-
tions encountered in fluid-structure interaction. Moreover, as in fluid-structure interaction problems,
the incompressibility constraint (4.1d) may cause an added-mass effect responsible of numerical un-
stabilities.

A first option is to treat explicitly the fluid stress part of this condition. This consists in imposing
weakly

σs(u
n+ 1

2
s )n = πτ (bn+ 1

2 )− φσf (vnf )n, on ΓN

in the structure prediction sub-step. Then, knowing ṽn+1
s , the fluid and solid velocities equality is

imposed strongly by setting
ṽn+1
f = ṽn+1

s , on ΓD

in the fluid prediction sub-step. Finally, as for Neumann boundary conditions, the external traction
normal component is taken into account by imposing strongly

pn+1 = −bn+ 1
2 · n, on ΓN

in the correction step. This strategy leads to a consistant formulation. Yet, it introduces in the
solid prediction step an additional term of the form

∫
ΓN

φσf (vnf )n · ṽn+ 1
2
]

s dS on the boundary that
cannot be controled during the stability analysis and thus may cause numerical unstabilities.
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To overcome this difficulty, we are going to use a Robin-Robin coupling approach that was
introduced for fluid-structure interaction problems in [Burman et al., 2022b,a], but also analyzed
for general parabolic/parabolic and hyperbolic/parabolic problems [Burman et al., 2021]. These
studies generalize the Robin method developed in [Burman and Fernández, 2014] and improve the
uniformity of the time splitting error with respect to the mesh size h, which is often of orderO(∆t/h)
in Nitsche’s methods [Hansbo et al., 2004; Burman and Fernández, 2009]. Here, we are going to
employ the Robin-based algorithm from [Burman et al., 2022b,a] in the prediction step, and show
that the correction step can then be handled as in the case of Neumann boundary conditions without
any destabilizing added-mass effect.

Let us denote by α > 0 the Robin coefficient of the method. The proposed Robin-Robin coupling
approach hinges on imposing weakly

σs(u
n+ 1

2
s )n+ αṽ

n+ 1
2
]

s = (1− φ)πτ (bn+ 1
2 ) + αṽnf − φσf (ṽnf )n, on ΓT , (4.47)

in the solid prediction sub-step (4.8a), and imposing weakly

φσf (ṽn+1
f )n+ αṽn+1

f = φπτ (bn+ 1
2 ) + αṽ

n+ 1
2
]

s + φσf (ṽnf )n on ΓT , (4.48)

in the fluid prediction sub-step. Then, as for Neumann boundary conditions, we impose strongly

pn+1 = −bn+ 1
2 · n, on ΓT ,

in the correction step. Introducing the notation

λ̃n = φσf (ṽnf )n,

for the tentative fluid traction, we respectively get from (4.47) and (4.48) that

−
∫

ΓT

σs(u
n+ 1

2
s )n ·ws dS = α

∫
ΓT

(ṽ
n+ 1

2
]

s − ṽnf ) ·ws dS+

∫
ΓT

λ̃n ·ws dS−
∫

ΓT

(1−φ)πτ (bn+ 1
2 ) ·ws dS,

and

−
∫

ΓT

φσf (ṽn+1
f )n · wf dS = α

∫
ΓT

(ṽn+1
f − ṽn+ 1

2
]

s ) · wf dS −
∫

ΓT

λ̃n · wf −
∫

ΓT

φπτ (bn+ 1
2 ) · wf dS,

which results in the following weak formulation.

Scheme 7 Robin-Robin coupling for total stress boundary conditions

Step 1: (prediction step)

– Step 1.1: (structure prediction sub-step)
Find un+1

s ∈ [H1(Ω)]d and ṽn+1
s ∈ [H1(Ω)]d such that∫

Ω
ρs(1− φ)

ṽn+1
s − vns

∆t
· ws dx+

∫
Ω
σs

(un+1
s − uns

∆t

)
: ε(ds) dx

−
∫

Ω
σs(ṽ

n+ 1
2
]

s ) : ε(ds) dx+

∫
Ω
σs(u

n+ 1
2

s ) : ε(ws) dx−
∫

Ω
φ2k−1

f (vnf − ṽ
n+ 1

2
]

s ) · ws dx

+ α

∫
ΓT

(ṽ
n+ 1

2
]

s − ṽnf ) · ws dS +

∫
ΓT

λ̃n · ws dS

=

∫
Ω
ρs(1− φ)fn+ 1

2 · ws dx+

∫
ΓT

(1− φ)πτ (bn+ 1
2 ) · ws dS, (4.49)

for all ws ∈ [H1(Ω)]d and ds ∈ [H1(Ω)]d.
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4.3. Neumann and total stress boundary conditions

– Step 1.2: (fluid prediction sub-step)
Find ṽn+1

f ∈ [H1(Ω)]d such that

∫
Ω
ρfφ

ṽn+1
f − vnf

∆t
· wf dx+

∫
Ω
φσf (ṽn+1

f ) : ε(wf ) dx

+

∫
Ω
φ2k−1

f (ṽn+1
f − ṽn+ 1

2
]

s ) · wf dx+ α

∫
ΓT

(ṽn+1
f − ṽn+ 1

2
]

s ) · wf dS −
∫

ΓT

λ̃n · wf

=

∫
Ω
ρfφ f

n+ 1
2 · wf dx+

∫
ΓT

φπτ (bn+ 1
2 ) · wf dS, (4.50)

for all wf ∈ [H1(Ω)]d.

Step 2: (correction step)
Find vn+1

s ∈ [L2(Ω)]d, vn+1
f ∈ [L2(Ω)]d and pn+1 ∈ H1(Ω) with pn+1|ΓN = −bn+ 1

2 · n,

∫
Ω
ρs(1− φ)

vn+1
s − ṽn+1

s

∆t
· ws dx+

∫
Ω
ρfφ

vn+1
f − ṽn+1

f

∆t
· wf dx

+

∫
Ω

(1− φ)∇pn+1 · ws dx+

∫
Ω
φ∇pn+1 · wf dx

−
∫

Ω
(1− φ)vn+1

s · ∇q dx−
∫

Ω
φ vn+1

f · ∇q dx = 0, (4.51)

for all ws ∈ [L2(Ω)]d, wf ∈ [L2(Ω)]d and q ∈ H1(Ω).

Note that from (4.48), we infer

λ̃n+1 = λ̃n + α
(
ṽ
n+ 1

2
]

s − ṽn+1
f

)
+ φπτ (bn+ 1

2 ), on ΓT . (4.52)

This relation can be used to update the field λ̃n+1 after the fluid prediction sub-step, so that λ̃n

does not need to be solved like an additional unknown. Moreover, (4.52) will be crucial for the
stability analysis that we are now going to carry out.
Theorem 4.11. Let uns , vns , vnf , p

n, ṽns and ṽnf satisfy Scheme 7 with f = 0 and b = 0. If the time
step verifies the smallness condition (4.25), then for all 0 ≤ N ≤ nT , it holds

EN +
∆t

2α

∫
ΓT

∣∣∣λ̃N ∣∣∣2 dS +
α∆t

2

∫
ΓT

∣∣ṽNf ∣∣2 dS +
α∆t

2

N−1∑
n=0

∫
ΓT

∣∣∣∣ṽn+ 1
2
]

s − ṽnf
∣∣∣∣2 dS

+
3

8

N−1∑
n=0

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vn+1

s

∣∣2 dx+
1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vn+1

f

∣∣∣2 dx

+ ∆t
N−1∑
n=0

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)2
dx

≤ CT
(
E0 +

∆t

2α

∫
ΓT

∣∣∣λ̃0
∣∣∣2 dS +

α∆t

2

∫
ΓT

∣∣ṽ0
f

∣∣2 dS

)
, (4.53)

with CT > 0 a constant independent of ∆t.
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Proof. To obtain the discrete energy balance of Scheme 7, we proceed as for Scheme 1. Testing (4.49)

with ws = ∆t ṽ
n+ 1

2
]

s and ds = ∆t u
n+ 1

2
s , (4.50) with wf = ∆t ṽn+1

f and (??) with ws = ∆t ṽn+1
s ,

wf = ∆t ṽn+1
f and q = ∆t pn+1, and summing the prediction and correction contributions, we get

(
En+1 − En

)
+

1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx+
1

2

∫
Ω
ρs(1− φ)

∣∣vn+1
s − ṽn+1

s

∣∣2 dx

+
1

2

∫
Ω
ρfφ

∣∣∣vn+1
f − ṽn+1

f

∣∣∣2 dx+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)2
dx

+α∆t

∫
ΓT

(ṽ
n+ 1

2
]

s − ṽnf ) · ṽn+ 1
2
]

s dS+∆t

∫
ΓT

λ̃n · (ṽn+ 1
2
]

s − ṽn+1
f ) dS+α∆t

∫
ΓT

(ṽn+1
f − ṽn+ 1

2
]

s ) · ṽn+1
f dS

= ∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· ṽn+ 1

2
]

s dx, (4.54)

The energy balance (4.54) is almost the same than (4.24). The only terms needing a special attention
are the ones on the boundary, namely

TΓT = α∆t

∫
ΓT

(ṽ
n+ 1

2
]

s − ṽnf ) · ṽn+ 1
2
]

s dS + ∆t

∫
ΓT

λ̃n · (ṽn+ 1
2
]

s − ṽn+1
f ) dS

+ α∆t

∫
ΓT

(ṽn+1
f − ṽn+ 1

2
]

s ) · ṽn+1
f dS.

Splitting ṽn+ 1
2
]

s − ṽnf into (ṽ
n+ 1

2
]

s − ṽn+1
f ) + (ṽn+1

f − ṽnf ), TΓT can be recast as

TΓT = α∆t

∫
ΓT

∣∣∣∣ṽn+ 1
2
]

s − ṽn+1
f

∣∣∣∣2 dS+α∆t

∫
ΓT

(ṽn+1
f − ṽnf ) · ṽn+ 1

2
]

s dS+ ∆t

∫
ΓT

λ̃n · (ṽn+ 1
2
]

s − ṽn+1
f ) dS

Now, since b = 0, we know from the key identity (4.52) that ṽn+ 1
2
]

s − ṽn+1
f = 1

α(λ̃n+1 − λ̃n). Thus

TΓT = α∆t
∥∥ṽn+ 1

2
]

s − ṽn+1
f

∥∥2

ΓT
+α∆t

∫
ΓT

(ṽn+1
f − ṽnf ) · ṽn+ 1

2
]

s dS+
∆t

α

∫
ΓT

λ̃n · (λ̃n+1− λ̃n) dS, (4.55)

where we used the notation
∥∥v∥∥2

ΓT
=
∫

ΓT
|v|2 dS for the norm on the boundary. Moreover, we have

∆t

α

∫
ΓT

λ̃n · (λ̃n+1 − λ̃n) dS =
∆t

2α

(∥∥λ̃n+1
∥∥2

ΓT
−
∥∥λ̃n∥∥2

ΓT
−
∥∥λ̃n+1 − λ̃n

∥∥2

ΓT

)
.

Using again (4.52), it follows that

∆t

α

∫
ΓT

λ̃n · (λ̃n+1 − λ̃n) dS =
∆t

2α

(∥∥λ̃n+1
∥∥2

ΓT
−
∥∥λ̃n∥∥2

ΓT

)
− α∆t

2

∥∥ṽn+ 1
2
]

s − ṽn+1
f

∥∥2

ΓT
. (4.56)

Following [Burman et al., 2022a], to estimate the second term of (4.55) we use the algebraic identity

(a− b) · c =
1

2

(
|a|2 − |b|2 − |c− a|2 + |c− b|2

)
,

which can be seen as a generalization of (4.21). This identity implies that

α∆t

∫
ΓT

(ṽn+1
f − ṽnf ) · ṽn+ 1

2
]

s dS =
α∆t

2

(∥∥ṽn+1
f

∥∥2

ΓT
−
∥∥ṽnf ∥∥2

ΓT
−
∥∥ṽn+ 1

2
]

s − ṽn+1
f

∥∥2

ΓT
+
∥∥ṽn+ 1

2
]

s − ṽnf
∥∥2

ΓT

)
(4.57)
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Collecting (4.55), (4.56) and (4.57), we deduce

TΓT = α∆t
∥∥ṽn+ 1

2
]

s − ṽn+1
f

∥∥2

ΓT
+

∆t

2α

(∥∥λ̃n+1
∥∥2

ΓT
−
∥∥λ̃n∥∥2

ΓT

)
− α∆t

2

∥∥ṽn+ 1
2
]

s − ṽn+1
f

∥∥2

ΓT

+
α∆t

2

(∥∥ṽn+1
f

∥∥2

ΓT
−
∥∥ṽnf ∥∥2

ΓT

)
− α∆t

2

∥∥ṽn+ 1
2
]

s − ṽn+1
f

∥∥2

ΓT
+
α∆t

2

∥∥ṽn+ 1
2
]

s − ṽnf
∥∥2

ΓT

=
∆t

2α

(∥∥λ̃n+1
∥∥2

ΓT
−
∥∥λ̃n∥∥2

ΓT

)
+
α∆t

2

(∥∥ṽn+1
f

∥∥2

ΓT
−
∥∥ṽnf ∥∥2

ΓT

)
+
α∆t

2

∥∥ṽn+ 1
2
]

s − ṽnf
∥∥2

ΓT
.

Coming back to (4.54), we have shown that

(
En+1 − En

)
+
(
En+1

ΓT
− EnΓT

)
+
α∆t

2

∥∥ṽn+ 1
2
]

s − ṽnf
∥∥2

ΓT

+
1

2

∫
Ω
ρfφ

∣∣∣ṽn+1
f − vnf

∣∣∣2 dx+
1

2

∫
Ω
ρs(1− φ)

∣∣ṽn+1
s − vn+1

s

∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣vn+1
f − ṽn+1

f

∣∣∣2 dx

+ ∆t

∫
Ω
φσf (ṽn+1

f ) : ε(ṽn+1
f ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ṽn+1
f − ṽn+ 1

2
]

s

)2
dx

= ∆t

∫
Ω
φ2k−1

f

(
vnf − ṽn+1

f

)
· ṽn+ 1

2
]

s dx, (4.58)

with
EnΓT =

∆t

2α

∥∥λ̃n∥∥2

ΓT
+
α∆t

2

∥∥ṽnf ∥∥2

ΓT
. (4.59)

The right-hand side of (4.58) can be bounded as in the proof of Theorem 4.5, and the final estimate
(4.53) follows from discrete Grönwall Lemma after summing (4.58) between 0 and N − 1.

Therefore, the Robin-Robin coupling designed in Scheme 7 furnishes a stable time discretization
of the total stress boundary conditions (4.7). The drawback of the method is that it induces an
artificial energy term on the boundary, see (4.59). To ensure that this additional energy does not
pollute the scheme convergence, the Robin coefficient α must be chosen to be large enough, but not
too large in view of the term α∆t

2

∥∥ṽNf ∥∥2

ΓT
appearing in the left-hand side of (4.58). This issue will

be explored numerically in Section 4.5.
Remark 4.12. In [Burtschell et al., 2017], the authors follow the Robin coupling derived from
Nitsche’s method in [Astorino et al., 2010]. In our case, such an approach leads to the following
scheme, in which h denotes the mesh size and γ > 0 the Nitsche’s penalty coefficient.

Scheme 8 Nitsche’s method for total stress boundary conditions

Step 1: (prediction step)

– Step 1.1: (fluid prediction sub-step)
Find ṽn+1

f ∈ [H1(Ω)]d such that

∫
Ω
ρfφ

ṽn+1
f − vnf

∆t
· wf dx+

∫
Ω
φσf (ṽn+1

f ) : ε(wf ) dx

+

∫
Ω
φ2k−1

f (ṽn+1
f − vns ) · wf dx+

γµf
h

∫
ΓN

φ
(
ṽn+1
f − ṽn−

1
2
]

s

)
· wf

−
∫

ΓN

φσf (ṽn+1
f )n · wf =

∫
Ω
ρfφ f

n+ 1
2 · wf ,

for all wf ∈ [H1(Ω)]d.

169



Chapter 4. A projection scheme for an incompressible soft material poromechanics model

– Step 1.2: (structure prediction sub-step)
Find un+1

s ∈ [H1(Ω)]d and ṽn+1
s ∈ [H1(Ω)]d such that

∫
Ω
ρs(1− φ)

ṽn+1
s − vns

∆t
· ws dx+

∫
Ω
σs

(un+1
s − uns

∆t

)
: ε(ds) dx

−
∫

Ω
σs(ṽ

n+ 1
2
]

s ) : ε(ds) dx+

∫
Ω
σs(u

n+ 1
2

s ) : ε(ws) dx

−
∫

Ω
φ2k−1

f (ṽn+1
f − ṽn+ 1

2
]

s ) · ws dx+
γµf
h

∫
ΓN

φ
(
ṽ
n+ 1

2
]

s − ṽn−
1
2
]

s

)
· ws

=

∫
Ω
ρs(1− φ)fn+ 1

2 · ws dx+

∫
ΓN

πτ (bn+ 1
2 ) · ws −Rf (ws),

for all ws ∈ [H1(Ω)]d and ds ∈ [H1(Ω)]d, where Rf (ws) denotes the residual coming
from the fluid prediction sub-step, namely

Rf (ws) =

∫
Ω
ρfφ

ṽn+1
f − vnf

∆t
· ws dx+

∫
Ω
φσf (ṽn+1

f ) : ε(ws) dx

+

∫
Ω
φ2k−1

f (ṽn+1
f − ṽn−

1
2
]

s ) · wf dx−
∫

Ω
ρfφ f

n+ 1
2 · ws.

Step 2: (correction step)
Find vn+1

s ∈ [L2(Ω)]d, vn+1
f ∈ [L2(Ω)]d and pn+1 ∈ H1(Ω) with pn+1|ΓN = −bn+ 1

2 · n,

∫
Ω
ρs(1− φ)

vn+1
s − ṽn+1

s

∆t
· ws dx+

∫
Ω
ρfφ

vn+1
f − ṽn+1

f

∆t
· wf dx

+

∫
Ω

(1− φ)∇pn+1 · ws dx+

∫
Ω
φ∇pn+1 · wf dx

−
∫

Ω
(1− φ)vn+1

s · ∇q dx−
∫

Ω
φ vn+1

f · ∇q dx = 0, (4.60)

for all ws ∈ [L2(Ω)]d, wf ∈ [L2(Ω)]d and q ∈ H1(Ω).

Note that in Scheme 8, the fluid is advanced before the solid, contrary to Scheme 7. One can show
that Scheme 8 is stable provided that the time step restriction (4.25) is fulfilled, that the penalty
coefficient γ is large enough – more precisely, γ > 4Cie with Cie a trace-inverse inequality constant
– and that γµf∆t = O(h). An advantage of the Robin-Robin coupling presented before compared
to Scheme 8 is that it gets rid of the latter condition.

4.4 Convergence analysis

In this section, we provide a complete error analysis for the projection scheme proposed previously.
To simplify, we will restrict ourselves to the case of homogeneous Dirichlet conditions. Moreover, to
avoid the time step condition (4.25) that happens to be very restrictive for the targeted biomedical
applications, we will assume that the permeability is treated implicitly in the prediction step as in
Schemes 3 and 4. In order to reuse some notation and computations from Chapter 3, the solid will
be discretized using a backward Euler scheme. The scheme for which we are going to perform the
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4.4. Convergence analysis

convergence analysis is summarized in Scheme 9. Note that Scheme 9 includes both non-incremental
and incremental versions thanks to a parameter i ∈ {0, 1}, with the convention

i =

{
0 for the non-incremental version of the scheme,
1 for the incremental version of the scheme.

Scheme 9 is almost similar to Schemes 3 and 4, the only difference being the discretization of the
solid part that induces numerical dissipation.

Scheme 9 Implicit treatment of permeability (dissipative version)

Step 1: (prediction step)
Find un+1

s , ṽn+1
s and ṽn+1

f such that un+1
s |ΓD = ṽn+1

s |ΓD = ṽn+1
f |ΓD = 0 and

ρs(1− φ)
ṽn+1
s − vns

∆t
− div

(
σs(u

n+1
s )

)
−φ2k−1

f

(
ṽn+1
f − ṽn+1

s

)
+ i(1− φ)∇pn = ρs(1− φ)fn+1,

ρfφ
ṽn+1
f − vnf

∆t
− div

(
φσf (ṽn+1

f )
)

+φ2k−1
f

(
ṽn+1
f − ṽn+1

s

)
+ iφ∇pn = ρfφ f

n+1,

un+1
s − uns

∆t
= ṽn+1

s .

Step 2: (correction step)
Find vn+1

s , vn+1
f and pn+1 such that

∫
Ω p

n+1 dx = 0 and

ρs(1− φ)
vn+1
s − ṽn+1

s

∆t
+ (1− φ)∇(pn+1 − ipn) = 0,

ρfφ
vn+1
f − ṽn+1

f

∆t
+ φ∇(pn+1 − ipn) = 0,

div
(
(1− φ)vn+1

s + φ vn+1
f

)
= 0,(

(1− φ)vn+1
s + φ vn+1

f

)
· n|ΓD = 0.

Remark 4.13. The correction step at time tn implies that

ρs(1− φ)

∆t
vns =

ρs(1− φ)

∆t
ṽns − (1− φ)∇(pn − ipn−1) and

ρfφ

∆t
vnf =

ρfφ

∆t
ṽnf − φ∇(pn − ipn−1).

This relation can be used to totally eliminate the end-of-step velocities vns and vnf from the prediction
step, leading to

ρs(1− φ)
ṽn+1
s − ṽns

∆t
− div

(
σs(u

n+1
s )

)
−φ2k−1

f

(
ṽn+1
f − ṽn+1

s

)
+ (1− φ)∇

(
pn + i(pn − pn−1)

)
= ρs(1− φ)fn+1,

ρfφ
ṽn+1
f − ṽnf

∆t
− div

(
φσf (ṽn+1

f )
)

+φ2k−1
f

(
ṽn+1
f − ṽn+1

s

)
+ φ∇

(
pn + i(pn − pn−1)

)
= ρfφ f

n+1,

un+1
s − uns

∆t
= ṽn+1

s .

(4.61)
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Furthermore, the mixture divergence constraint yields

div
(
(1− φ)ṽn+1

s + φ ṽn+1
f

)
−∆t div

(
ρ−1

eff∇(pn+1 − ipn)
)

= 0. (4.62)

From (4.61) and (4.62), we see that Scheme 9 can be interpreted as a penalized version of the
monolithic scheme, in which the pressure gradient is treated explicitly. At the continuous level, this
corresponds to penalizing the incompressibility constraint of Problem (4.1) as follows:

div
(
(1− φ)vs + φ vf

)
− εdiv

(
ρ−1

eff∇p
)

= 0 if i = 0, with ε = ∆t,

and
div
(
(1− φ)vs + φ vf

)
− εdiv

(
ρ−1

eff∇∂tp
)

= 0 if i = 1, with ε = ∆t2.

The value of the penalty parameter ε gives us a first intuition of the time convergence order of the
scheme in non-incremental and incremental versions, which will be justified theoretically in what
follows.

The section is organized as follows. First, we will give the discrete setting associated with
the spatial discretization of Scheme 9. Then, we derive the error equations between the continuous
solution and the fully discrete solution of the scheme. The error system is established simultaneously
for the non-incremental and incremental versions. Lastly, the final error analysis will be presented
separately for the case i = 0 and i = 1.

4.4.1 Total discretization

As mentioned in (4.13), the projection scheme is consistent with the monolithic scheme studied in
the previous chapter. Consequently, we globally use the same spatial discretization than the one
proposed in Chapter 3 and we adopt the same notation as in this chapter: we consider conforming
approximationsXh and Qh of the spaces [H1

0(Ω)]d and L2
0(Ω). Moreover, we assume that the discrete

inf-sup condition

∃β > 0,∀ph ∈ Qh, sup
vh∈Xh

∫
Ω

div vh ph dx

‖vh‖[H1
0(Ω)]d

≥ β‖ph‖. (4.63)

is satisfied. Note that one might be tempted to use standard finite elements that do not satisfy
the inf-sup condition since Scheme 9 does not require to solve any saddle-point problem, neither
in the prediction step nor in the correction step that can be formulated as a Poisson problem,
see (4.11). However, we will numerically illustrate in Section 4.5 that the inf-sup condition (4.63)
is fundamental to retrieve a correct approximation of the pressure field, as it has been shown in
the case of projection schemes for incompressible fluids [Guermond and Quartapelle, 1998]. This
condition can be dropped only if the time step is large enough or by using stabilization techniques.
The stabilization approach is the one followed in [Markert et al., 2009], in which the time step
is in addition restricted by a CFL condition coming from the explicit treatment of the structural
displacement.

In order to solve the correction step as a Poisson problem for the pressure, we assume in addition
that the discrete pressure space Qh is a conforming approximation of the space H1(Ω). This is the
case for many of the finite elements satisfying (4.63), such as the Taylor-Hood or MINI elements.
Supposing to simplify that fn+1

h = f(tn+1), the fully discrete formulation of Scheme 9 then reads:
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Step 1: (prediction step)
Find un+1

s,h ∈ Xh, ṽn+1
s,h ∈ Xh and ṽn+1

f,h ∈ Xh such that

∫
Ω
σs

(un+1
s,h − u

n
s,h

∆t

)
: ε(ds,h) dx+

∫
Ω
ρs(1− φ)

ṽn+1
s,h − v

n
s,h

∆t
· ws,h dx

+

∫
Ω
ρfφ

ṽn+1
f,h − v

n
f,h

∆t
· wf,h dx−

∫
Ω
σs(ṽ

n+1
s,h ) : ε(ds,h) dx+

∫
Ω
σs(u

n+1
s,h ) : ε(ws,h) dx

+

∫
Ω
φσf (ṽn+1

f,h ) : ε(wf,h) dx+

∫
Ω
φ2k−1

f (ṽn+1
f,h − ṽ

n+1
s,h ) · (wf,h − ws,h) dx

+ i

∫
Ω

(1− φ)∇pnh · ws,h dx+ i

∫
Ω
φ∇pnh · wf,h dx

=

∫
Ω
ρs(1− φ) f(tn+1) · ws,h dx+

∫
Ω
ρfφ f(tn+1) · wf,h dx, (4.64)

for all ws,h ∈ Xh, ds,h ∈ Xh and wf,h ∈ Xh.

Step 2: (correction step)
Find vn+1

s,h ∈ Ys,h, v
n+1
f,h ∈ Yf,h and pn+1

h ∈ Qh such that

∫
Ω
ρs(1− φ)

vn+1
s,h − ṽ

n+1
s,h

∆t
· ws,h dx+

∫
Ω
ρfφ

vn+1
f,h − ṽ

n+1
f,h

∆t
· wf,h dx

+

∫
Ω

(1− φ)∇(pn+1
h − ipnh) · ws,h dx+

∫
Ω
φ∇(pn+1

h − ipnh) · wf,h dx

−
∫

Ω
(1− φ)vn+1

s,h · ∇qh dx−
∫

Ω
φ vn+1

f,h · ∇qh dx = 0, (4.65)

for all ws,h ∈ Ys,h, wf,h ∈ Yf,h and qh ∈ Qh, where the discrete spaces

Ys,h = Xh + (1− φ)∇Qh and Yf,h = Xh + φ∇Qh

are conforming approximations of [L2(Ω)]d since Qh ⊂ H1(Ω).

4.4.2 Error system

To derive the equations satisfied by the error between the fully discrete solution of (4.64) – (4.65)
and the continuous solution of (4.1), we use the same projector Ph that has been introduced in the
previous chapter, see (3.40). The advantage of this projector is that it is adapted to the bilinear
form involved in the system, so that it generates few residual terms. Let us denote by us,h(tn),
vs,h(tn), vf,h(tn) and ph(tn) the projections on the discrete spaces of the continuous solution at time
tn using this projector, namely(

us,h(tn), vs,h(tn), vf,h(tn), ph(tn)
)

= Ph
(
us(t

n), vs(t
n), vf (tn), p(tn)

)
.

Provided that the continuous solution is regular enough, we know from (3.43) and (3.44) that∥∥∥(us(tn), vs(t
n), vf (tn), p(tn)

)
−
(
us,h(tn), vs,h(tn), vf,h(tn), ph(tn)

)∥∥∥
X
≤ C(h` + hr), (4.66)

where the constant C > 0 depends on the continuous solution, the convergence orders ` and r ≤ `
depend on the choice of the discrete spaces, and X = [H1

0(Ω)]d × [L2(Ω)]d × [L2(Ω)]d × L2(Ω).
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In particular, (4.66) implies that it is sufficient to study the error between the projection of the
continuous solution and the fully discrete solution since

∥∥∥(us(tn), vs(t
n), vf (tn), p(tn)

)
−
(
uns,h, v

n
s,h, v

n
f,h, p

n
h

)∥∥∥
X

≤
∥∥∥(us(tn), vs(t

n), vf (tn), p(tn)
)
−
(
us,h(tn), vs,h(tn), vf,h(tn), ph(tn)

)∥∥∥
X

+
∥∥∥(us,h(tn), vs,h(tn), vf,h(tn), ph(tn)

)
−
(
uns,h, v

n
s,h, v

n
f,h, p

n
h

)∥∥∥
X
.

To that end, we introduce the discrete errors

enu,h = us,h(tn)− uns,h, δnh = ph(tn)− pnh,
ẽns,h = vs,h(tn)− ṽns,h, ens,h = vs,h(tn)− vns,h,
ẽnf,h = vf,h(tn)− ṽnf,h, ens,h = vf,h(tn)− vnf,h.

(4.67)

As in Chapter 3 – see (3.51) – we get that the Ph-projection of the solution satisfies

∫
Ω
σs

(us,h(tn+1)− us,h(tn)

∆t

)
: ε(ds,h) dx

+

∫
Ω
ρs(1− φ)

vs,h(tn+1)− vs,h(tn)

∆t
· ws,h dx+

∫
Ω
ρfφ

vf,h(tn+1)− vf,h(tn)

∆t
· wf,h dx

−
∫

Ω
σs
(
vs,h(tn+1)

)
: ε(ds,h) dx+

∫
Ω
σs
(
us,h(tn+1)

)
: ε(ws,h) dx

+

∫
Ω
φσf

(
vf,h(tn+1)

)
: ε(wf,h) dx+

∫
Ω
φ2k−1

f

(
vf,h(tn+1)− vs,h(tn+1)

)
· (wf,h − ws,h) dx

+

∫
Ω

(1− φ)∇ph(tn+1) · ws,h dx+

∫
Ω
φ∇ph(tn+1) · wf,h dx

−
∫

Ω
(1− φ)vs,h(tn+1) · ∇qh dx−

∫
Ω
φ vf,h(tn+1) · ∇qh dx

=

∫
Ω
σs
(
Rn+1
u,h

)
: ε(ds,h) dx+

∫
Ω
ρs(1− φ)Rn+1

s,h · ws,h dx+

∫
Ω
ρfφR

n+1
f,h · wf,h dx

+

∫
Ω
ρs(1− φ) f(tn+1) · ws,h dx+

∫
Ω
ρfφ f(tn+1) · wf,h dx, (4.68)

for all ws,h ∈ Xh, ds,h ∈ Xh, wf,h ∈ Xh and qh ∈ Qh, with the residual term(
Rn+1
u,h , R

n+1
s,h , Rn+1

f,h

)
= Rn+1 + λ0Sn+1

h + T n+1
h

that is computed from the space and time consistency terms Rn+1, Sn+1
h and T n+1

h defined in
Chapter 3. Note that this residual term depends on a parameter λ0. In Chapter 3, this parameter
needs to satisfy the condition λ0 > (ρfφmin)−1‖θ‖L∞(Ω). Here, since θ = 0, we can choose any
positive parameter for λ0. In the sequel, we will therefore assume for instance that λ0 = 1. Moreover,
in view of the consistency terms estimates (3.55), (3.56) and (3.57), we have∫

Ω
σs
(
Rn+1
u,h

)
: ε
(
Rn+1
u,h

)
dx+

∫
Ω
ρs(1−φ)

∣∣∣Rn+1
s,h

∣∣∣2 dx+

∫
Ω
ρfφ

∣∣∣Rn+1
f,h

∣∣∣2 dx ≤ C(∆t+h`+hr)2. (4.69)

We are now ready to derive the equations satisfied by the errors defined in (4.67). Substracting
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the discrete prediction step (4.64) from (4.68) with qh = 0, we obtain∫
Ω
σs

(en+1
u,h − e

n
u,h

∆t

)
: ε(ds,h) dx

+

∫
Ω
ρs(1− φ)

ẽn+1
s,h − e

n
s,h

∆t
· ws,h dx+

∫
Ω
ρfφ

ẽn+1
f,h − e

n
f,h

∆t
· wf,h dx

−
∫

Ω
σs
(
ẽn+1
s,h

)
: ε(ds,h) dx+

∫
Ω
σs
(
en+1
u,h

)
: ε(ws,h) dx

+

∫
Ω
φσf

(
ẽn+1
f,h

)
: ε(wf,h) dx+

∫
Ω
φ2k−1

f

(
ẽn+1
f,h − ẽ

n+1
s,h

)
· (wf,h − ws,h) dx

+

∫
Ω

(1− φ)∇
(
ph(tn+1)− ipnh

)
· ws,h dx+

∫
Ω
φ∇

(
ph(tn+1)− ipnh

)
· wf,h dx

=

∫
Ω
σs
(
Rn+1
u,h

)
: ε(ds,h) dx+

∫
Ω
ρs(1− φ)Rn+1

s,h · ws,h dx+

∫
Ω
ρfφR

n+1
f,h · wf,h dx, (4.70)

for all ws,h ∈ Xh, ds,h ∈ Xh and wf,h ∈ Xh. For the correction step, we write

vn+1
s,h − ṽ

n+1
s,h = vn+1

s,h − vs,h(tn+1) + vs,h(tn+1)− ṽn+1
s,h = ẽn+1

s,h − e
n+1
s,h ,

and likewise vn+1
f,h − ṽ

n+1
f,h = ẽn+1

f,h − e
n+1
f,h . Moreover, since

−
∫

Ω
(1− φ)vs,h(tn+1) · ∇qh dx−

∫
Ω
φ vf,h(tn+1) · ∇qh dx = 0, ∀qh ∈ Qh,

and
−
∫

Ω
(1− φ)vn+1

s,h · ∇qh dx−
∫

Ω
φ vn+1

f,h · ∇qh dx = 0, ∀qh ∈ Qh,

we also have
−
∫

Ω
(1− φ)en+1

s,h · ∇qh dx−
∫

Ω
φ en+1

f,h · ∇qh dx = 0, ∀qh ∈ Qh.

Incorporating these results into (4.65), we get∫
Ω
ρs(1− φ)

en+1
s,h − ẽ

n+1
s,h

∆t
· ws,h dx+

∫
Ω
ρfφ

en+1
f,h − ẽ

n+1
f,h

∆t
· wf,h dx

+

∫
Ω

(1− φ)∇(ipnh − pn+1
h ) · ws,h dx+

∫
Ω
φ∇(ipnh − pn+1

h ) · wf,h dx

−
∫

Ω
(1− φ)en+1

s,h · ∇qh dx−
∫

Ω
φ en+1

f,h · ∇qh dx = 0, (4.71)

for all ws,h ∈ Ys,h, wf,h ∈ Yf,h and qh ∈ Qh. The pressure residuals multiplying the test functions
(1−φ)ws,h and φwf,h in (4.70) and (4.71), namely the terms ph(tn+1)− ipnh and ipnh − p

n+1
h , play a

key role in the time convergence of the scheme, as we are now going to see it in the error analysis.

4.4.3 Error analysis

The error analysis hinges on the discrete energy balances derived previously. Let us define the
energy associated with the errors (4.67) by

Enh =
1

2

∫
Ω
σs(e

n
u,h) : ε(enu,h) dx+

1

2

∫
Ω
ρs(1− φ)

∣∣ens,h∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣enf,h∣∣2 dx.

The convergence of Scheme 9 in the non-incremental case is stated in Theorem 4.14 below, which
is the main result of this section.
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Theorem 4.14. Assume that i = 0 and that the solution of Problem (4.1) is regular enough, in
particular that p ∈ L2(0, T ; H1(Ω)). If ∆t < 1 and if the initialization of Scheme 9 is such that

E0
h ≤ C(h` + hr)2, (4.72)

then for all 0 ≤ N ≤ nT , it holds

ENh +
1

2

N−1∑
n=0

∫
Ω
σs(e

n+1
u,h − e

n
u,h) : ε(en+1

u,h − e
n
u,h) dx+

1

4

N−1∑
n=0

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx

+
1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣ẽn+1
f,h − e

n
f,h

∣∣∣2 dx+
1

4

N−1∑
n=0

∫
Ω
ρs(1− φ)

∣∣∣en+1
s,h − ẽ

n+1
s,h

∣∣∣2 dx

+
1

4

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣en+1
f,h − ẽ

n+1
f,h

∣∣∣2 dx+
∆t

2

N−1∑
n=0

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx

+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
ẽn+1
f,h − ẽ

n+1
s,h

)2
dx ≤ C(h` + hr)2 + C∆t, (4.73)

with C > 0 a constant independent of h and ∆t.

Proof. As in the stability analysis – see (4.42) – we consider the test functions ws,h = ∆t ẽn+1
s,h ,

ds,h = ∆t en+1
u,h , wf,h = ∆t ẽn+1

f,h in the error prediction step (4.70), and ws,h = ∆t en+1
s,h , wf,h =

∆t en+1
f,h , qh = ∆t δn+1

h in the error correction step (4.71), leading to

(En+1
h − Enh ) +

1

2

∫
Ω
σs(e

n+1
u,h − e

n
u,h) : ε(en+1

u,h − e
n
u,h) dx+

1

2

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx

+
1

2

∫
Ω
ρfφ

∣∣∣ẽn+1
f,h − e

n
f,h

∣∣∣2 dx+
1

2

∫
Ω
ρs(1− φ)

∣∣∣en+1
s,h − ẽ

n+1
s,h

∣∣∣2 dx+
1

2

∫
Ω
ρfφ

∣∣∣en+1
f,h − ẽ

n+1
f,h

∣∣∣2 dx

+ ∆t

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ẽn+1
f,h − ẽ

n+1
s,h

)2
dx

= T n+1
p + T n+1

u + T n+1
s + T n+1

f , (4.74)

with the residual terms

T n+1
p = −∆t

∫
Ω

(1− φ)∇ph(tn+1) · ẽn+1
s,h dx−∆t

∫
Ω
φ∇ph(tn+1) · ẽn+1

f,h dx

+ ∆t

∫
Ω

(1− φ)∇pn+1
h · en+1

s,h dx+ ∆t

∫
Ω
φ∇pn+1

h · en+1
f,h dx

+ ∆t

∫
Ω

(1− φ)∇δn+1
h · en+1

s,h dx+ ∆t

∫
Ω
φ∇δn+1

h · en+1
f,h dx,

and

T n+1
u = ∆t

∫
Ω
σs
(
Rn+1
u,h

)
: ε(en+1

u,h ) dx,

T n+1
s = ∆t

∫
Ω
ρs(1− φ)Rn+1

s,h · ẽ
n+1
s,h dx,

T n+1
f = ∆t

∫
Ω
ρfφR

n+1
f,h · ẽ

n+1
f,h dx.
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Let us start by estimating the pressure residual term T n+1
p . Since pn+1

h = ph(tn+1)− δn+1
h , the

terms of the form (1− φ)∇δn+1
h · en+1

s,h and φ∇δn+1
h · en+1

f,h cancel out, so that

T n+1
p = −∆t

∫
Ω

(1− φ)∇ph(tn+1) · (ẽn+1
s,h − e

n+1
s,h ) dx−∆t

∫
Ω
φ∇ph(tn+1) · (ẽn+1

f,h − e
n+1
f,h ) dx.

These two terms can then be controled using the numerical dissipation coming from the correction
step. Indeed, Young inequality implies that

−∆t

∫
Ω

(1− φ)∇ph(tn+1) · (ẽn+1
s,h − e

n+1
s,h ) dx ≤ γ1

2

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n+1
s,h

∣∣∣2 dx

+
∆t2

2γ1ρs

∫
Ω

(1− φ)
∣∣∇ph(tn+1)

∣∣2 dx,

for all γ1 > 0. Handling the fluid term in the same way, it follows that

T n+1
p ≤ γ1

2

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n+1
s,h

∣∣∣2 dx+
γ2

2

∫
Ω
ρfφ

∣∣∣ẽn+1
f,h − e

n+1
f,h

∣∣∣2 dx+ C∆t2
∥∥∇ph(tn+1)

∥∥2
,

(4.75)
where γ2 > 0 and C is a positive constant depending only on γ1, γ2, ρs, ρf and φ.

For the displacement residual term T n+1
u , in virtue of the consistency estimate (4.69), we have

T n+1
u ≤ ∆t

2

∫
Ω
σs
(
Rn+1
u,h

)
: ε(Rn+1

u,h ) dx+
∆t

2

∫
Ω
σs
(
en+1
u,h

)
: ε(en+1

u,h ) dx

≤ C∆t(∆t+ h` + hr)2 + ∆tEn+1
h . (4.76)

Then, the fluid residual term T n+1
f is controled thanks to the fluid viscous dissipation by using

Young inequality together with Korn inequality as follows:

T n+1
f ≤ γ3∆t

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx+ C∆t

∫
Ω
ρfφ

∣∣∣Rn+1
f,h

∣∣∣2 dx

≤ γ3∆t

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx+ C∆t(∆t+ h` + hr)2, (4.77)

with γ3 > 0 and C a positive constant depending on γ3, µf , φ and Ω. Finally, let us consider the
solid residual term T n+1

s , which we decompose as

T n+1
s = ∆t

∫
Ω
ρs(1− φ)Rn+1

s,h · (ẽ
n+1
s,h − e

n
s,h) dx+ ∆t

∫
Ω
ρs(1− φ)Rn+1

s,h · e
n
s,h dx.

The first term is controled with the help of the solid numerical dissipation by writing

∆t

∫
Ω
ρs(1− φ)Rn+1

s,h · (ẽ
n+1
s,h − e

n
s,h) dx ≤ γ4

2

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx

+
∆t2

2γ4

∫
Ω
ρs(1− φ)

∣∣∣Rn+1
s,h

∣∣∣2 dx

and the second term is controled as in (4.76), which results in

∆t

∫
Ω
ρs(1− φ)Rn+1

s,h · e
n
s,h dx ≤ ∆t

2

∫
Ω
ρs(1− φ)

∣∣∣Rn+1
s,h

∣∣∣2 dx+ ∆tEnh .

Recalling (4.69), we deduce

T n+1
s ≤ γ4

2

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx+ ∆tEnh + C∆t(∆t+ h` + hr)2. (4.78)
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Now, gathering (4.75), (4.76), (4.77) and (4.78) into (4.74), it follows that

(En+1
h − Enh ) +

1

2

∫
Ω
σs(e

n+1
u,h − e

n
u,h) : ε(en+1

u,h − e
n
u,h) dx+

1− γ4

2

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx

+
1

2

∫
Ω
ρfφ

∣∣∣ẽn+1
f,h − e

n
f,h

∣∣∣2 dx+
1− γ1

2

∫
Ω
ρs(1− φ)

∣∣∣en+1
s,h − ẽ

n+1
s,h

∣∣∣2 dx

+
1− γ2

2

∫
Ω
ρfφ

∣∣∣en+1
f,h − ẽ

n+1
f,h

∣∣∣2 dx+ (1− γ3)∆t

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx

+ ∆t

∫
Ω
φ2k−1

f

(
ẽn+1
f,h − ẽ

n+1
s,h

)2
dx ≤ C∆t(∆t+ h` + hr)2

+ ∆t(En+1
h + Enh ) + C∆t2

∥∥∇ph(tn+1)
∥∥2
.

Setting γ1 = γ2 = γ3 = γ4 = 1
2 and summing between 0 and N − 1 yields

ENh +
1

2

N−1∑
n=0

∫
Ω
σs(e

n+1
u,h − e

n
u,h) : ε(en+1

u,h − e
n
u,h) dx+

1

4

N−1∑
n=0

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx

+
1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣ẽn+1
f,h − e

n
f,h

∣∣∣2 dx+
1

4

N−1∑
n=0

∫
Ω
ρs(1− φ)

∣∣∣en+1
s,h − ẽ

n+1
s,h

∣∣∣2 dx

+
1

4

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣en+1
f,h − ẽ

n+1
f,h

∣∣∣2 dx+
∆t

2

N−1∑
n=0

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx

+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
ẽn+1
f,h − ẽ

n+1
s,h

)2
dx ≤ E0

h + C(∆t+ h` + hr)2

+ ∆t

N−1∑
n=0

(En+1
h + Enh ) + C∆t2

N−1∑
n=0

∥∥∇ph(tn+1)
∥∥2
. (4.79)

To conclude, let us focus on the pressure term remaining in the right-hand side of the above estimate,
which is responsible for the loss of the scheme’s first-order convergence in time. Using Poincaré-
Wirtinger inequality together with the regularity assumption made on the solution, we observe
that

C∆t2
N−1∑
n=0

∥∥∇ph(tn+1)
∥∥2 ≤ C∆t2

N−1∑
n=0

∥∥∇ph(tn+1)−∇p(tn+1)
∥∥2

+ C∆t2
N−1∑
n=0

∥∥∇p(tn+1)
∥∥2

≤ C∆t2
N−1∑
n=0

∥∥ph(tn+1)− p(tn+1)
∥∥2

+ C∆t ·∆t
N−1∑
n=0

∥∥∇p(tn+1)
∥∥2

≤ C∆t(h` + hr)2 + C∆t‖p‖2L2(0,T ;H1(Ω)).

Since ∆t < 1, estimate (4.73) then follows from (4.79) and discrete Grönwall Lemma.
Remark 4.15. Another possible strategy to control the solid residual term T n+1

s is to use the
decomposition

T n+1
s = ∆t

∫
Ω
ρs(1− φ)Rn+1

s,h · (ẽ
n+1
s,h − ẽ

n+1
f,h ) dx+ ∆t

∫
Ω
ρs(1− φ)Rn+1

s,h · ẽ
n+1
f,h dx.

The first term can be estimated using the friction dissipation term, while the second can be bounded
thanks to the viscous fluid dissipation. Nevertheless, this leads to an estimate with a constant C that
depends on k−1

max, which is often large in practice. Note moreover that in the parabolic/parabolic
case η > 0 this difficulty does not appear since T n+1

s can then be directly controled using the viscous
solid dissipation.
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4.4. Convergence analysis

Therefore, we have proved that the non-incremental version of Scheme 9 shows a O(
√

∆t)
convergence in time. The next theorem establishes that the incremental version of the scheme
enhances it by recovering first-order convergence.
Theorem 4.16. Assume that i = 1 and that the solution of Problem (4.1) is regular enough, in
particular that ∂tp ∈ L2(0, T ; H1(Ω)) and p(0) ∈ H1(Ω). If ∆t < 1 and if the initialization of
Scheme 9 satisfies (4.72), then for all 0 ≤ N ≤ nT , it holds

ENh +
∆t2

2

∫
Ω
ρ−1

eff

∣∣∇δNh ∣∣2 dx+
1

2

N−1∑
n=0

∫
Ω
σs(e

n+1
u,h − e

n
u,h) : ε(en+1

u,h − e
n
u,h) dx

+
1

4

N−1∑
n=0

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx+
1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣ẽn+1
f,h − e

n
f,h

∣∣∣2 dx

+
∆t

2

N−1∑
n=0

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
ẽn+1
f,h − ẽ

n+1
s,h

)2
dx

≤ C(h` + hr)2 + C∆t2, (4.80)

with C > 0 a constant independent of h and ∆t.
Proof. The proof is very close to that of Theorem 4.14. Let us denote by

ψnh = ph(tn+1)− pnh
the pressure term involved in the prediction step (4.70). Then, the pressure term involved in the
correction step (4.71) can be rewritten as

pnh − pn+1
h = pnh − ph(tn+1) + ph(tn+1)− pn+1

h = δn+1
h − ψnh .

Therefore, testing (4.70) by (ws,h, ds,h, wf,h) = ∆t (ẽn+1
s,h , e

n+1
u,h , ẽ

n+1
f,h ) and (4.71) successively by

(ws,h, wf,h, qh) = ∆t (en+1
s,h , e

n+1
f,h , δ

n+1
h ) and (ws,h, wf,h, qh) =

(
ρ−1
s ∆t2∇ψnh , ρ

−1
f ∆t2∇ψnh , 0

)
, we ob-

tain as in (4.43) that(
En+1
h − Enh

)
+

1

2

∫
Ω
σs(e

n+1
u,h − e

n
u,h) : ε(en+1

u,h − e
n
u,h) dx+

1

2

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx

+
1

2

∫
Ω
ρfφ

∣∣∣ẽn+1
f,h − e

n
f,h

∣∣∣2 dx+ ∆t

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ẽn+1
f,h − ẽ

n+1
s,h

)2
dx

+
∆t2

2

(∫
Ω
ρ−1

eff

∣∣∇δn+1
h

∣∣2 dx−
∫

Ω
ρ−1

eff |∇ψ
n
h |

2 dx

)
= T n+1

u + T n+1
s + T n+1

f . (4.81)

The displacement and velocities residual terms T n+1
u , T n+1

s and T n+1
f are estimated exactly as in

the proof of Theorem 4.14. The only terms requiring a special attention are the new pressure terms
appearing in the left-hand side, that will be treated as in [Guermond and Quartapelle, 1998].

Since
ψnh = ph(tn+1)− ph(tn) + ph(tn)− pnh = ph(tn+1)− ph(tn) + δnh ,

the inequality (a+ b)2 ≤ (1 + γ)a2 +
(

1 + 1
γ

)
b2 with γ = ∆t yields

∆t2 |∇ψnh |
2 ≤ ∆t2(1 + ∆t) |δnh |

2 + ∆t(1 + ∆t)
∣∣∇(ph(tn+1)− ph(tn)

)∣∣2 .
Hence

∆t2

2

∫
Ω
ρ−1

eff |∇ψ
n
h |

2 dx ≤ ∆t2

2

∫
Ω
ρ−1

eff |∇δ
n
h |

2 dx+
∆t3

2

∫
Ω
ρ−1

eff |∇δ
n
h |

2 dx

+ C∆t(1 + ∆t)
∥∥∇(ph(tn+1)− ph(tn)

)∥∥2
,
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so that (4.81) becomes

(
En+1
h − Enh

)
+

1

2

∫
Ω
σs(e

n+1
u,h − e

n
u,h) : ε(en+1

u,h − e
n
u,h) dx+

1

2

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx

+
1

2

∫
Ω
ρfφ

∣∣∣ẽn+1
f,h − e

n
f,h

∣∣∣2 dx+ ∆t

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx+ ∆t

∫
Ω
φ2k−1

f

(
ẽn+1
f,h − ẽ

n+1
s,h

)2
dx

+
∆t2

2

(∫
Ω
ρ−1

eff

∣∣∇δn+1
h

∣∣2 dx−
∫

Ω
ρ−1

eff |∇δ
n
h |

2 dx

)
≤ T n+1

u + T n+1
s + T n+1

f

+
∆t3

2

∫
Ω
ρ−1

eff |∇δ
n
h |

2 dx+ C∆t(1 + ∆t)
∥∥∇(ph(tn+1)− ph(tn)

)∥∥2
.

Controling T n+1
u , T n+1

s and T n+1
f as in Theorem 4.14 and summing the above estimates for n

between 0 and N − 1, we infer

ENh +
∆t2

2

∫
Ω
ρ−1

eff

∣∣∇δNh ∣∣2 dx+
1

2

N−1∑
n=0

∫
Ω
σs(e

n+1
u,h − e

n
u,h) : ε(en+1

u,h − e
n
u,h) dx

+
1

4

N−1∑
n=0

∫
Ω
ρs(1− φ)

∣∣∣ẽn+1
s,h − e

n
s,h

∣∣∣2 dx+
1

2

N−1∑
n=0

∫
Ω
ρfφ

∣∣∣ẽn+1
f,h − e

n
f,h

∣∣∣2 dx

+
∆t

2

N−1∑
n=0

∫
Ω
φσf (ẽn+1

f,h ) : ε(ẽn+1
f,h ) dx+ ∆t

N−1∑
n=0

∫
Ω
φ2k−1

f

(
ẽn+1
f,h − ẽ

n+1
s,h

)2
dx

≤ E0
h +

∆t2

2

∫
Ω
ρ−1

eff

∣∣∇δ0
h

∣∣2 dx+ C(∆t+ h` + hr)2 + ∆t

N−1∑
n=0

(En+1
h + Enh )

+ ∆t

N−1∑
n=0

∆t2

2

∫
Ω
ρ−1

eff |∇δ
n
h |

2 dx+ C∆t(1 + ∆t)

N−1∑
n=0

∥∥∇(ph(tn+1)− ph(tn)
)∥∥2

.

To retrieve (4.80), we note that

N−1∑
n=0

∥∥∇(ph(tn+1)− ph(tn)
)∥∥2

=

N−1∑
n=0

∥∥∇(ph(tn+1)− p(tn+1) + p(tn+1)− p(tn) + p(tn)− ph(tn)
)∥∥2

≤ CN(h` + hr)2 + C∆t‖∂tp‖2L2(0,T ;H1(Ω))

in view of (4.66), and thus

C∆t(1 + ∆t)

N−1∑
n=0

∥∥∇(ph(tn+1)− ph(tn)
)∥∥2 ≤ C(h` + hr)2 + C∆t2.

The final conclusion once again follows from discrete Grönwall Lemma.

4.5 Numerical results

In this section, we present simulations to validate numerically the schemes previously analyzed. The
simulations were performed using the FEniCS software [Logg et al., 2012; Alnæs et al., 2015]. All
types of boundary conditions are investigated, starting with Dirichlet boundary conditions.
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4.5. Numerical results

4.5.1 Dirichlet boundary conditions

The implementation of the projection scheme is validated thanks to the manufactured solution
method in the unit square domain Ω = (0, 1)2. To build an analytical solution, we proceed as in
Chapter 3. We consider the function

vref(x, y) =
(

sin(2πy)
(
cos(2πx)− 1

)
, sin(2πx)

(
1− cos(2πy)

))
,

which verifies div vref = 0 in Ω and vref = 0 on ∂Ω. Assuming that the porosity is constant, we set

vref
s (x, y, t) = tφ vref(x, y) and vref

f (x, y, t) = t(1− φ) vref(x, y),

so that
div
(
(1− φ)vref

s + φ vref
f

)
= tφ(1− φ) div vref = 0.

For the pressure analytical solution, we take pref(x, y, t) = t sin(2πx) sin(2πy). In order to satisfy
the inf-sup condition (4.63), the solid and fluid parts are discretized using [P2]d elements, and the
pressure with P1 elements. The projection scheme is implemented with the Poisson-formulation
of the correction step. Hence, denoting by f ref

s and f ref
f the right-hand side computed from the

analytical solution, the weak formulation of Scheme 1 associated with the manufactured solution
above reads:

Step 1: (prediction step)

– Step 1.1: (structure prediction sub-step)
Find un+1

s,h ∈ Xh and ṽn+1
s,h ∈ Xh, ∀ws,h ∈ Xh, ∀ds,h ∈ Xh,

∫
Ω
ρs(1− φ)

ṽn+1
s,h − v

n
s,h

∆t
· ws,h dx+

∫
Ω
σs

(un+1
s,h − u

n
s,h

∆t

)
: ε(ds,h) dx

−
∫

Ω
σs(ṽ

n+ 1
2
]

s,h ) : ε(ds,h) dx+

∫
Ω
σs(u

n+ 1
2

s,h ) : ε(ws,h) dx

−
∫

Ω
φ2k−1

f (vnf,h − ṽ
n+ 1

2
]

s,h ) · ws,h dx =

∫
Ω
f ref
s (tn+1) · ws,h dx.

– Step 1.2: (fluid prediction sub-step)
Find ṽn+1

f,h ∈ Xh, ∀wf,h ∈ Xh,

∫
Ω
ρfφ

ṽn+1
f,h − v

n
f,h

∆t
· wf,h dx+

∫
Ω
φσf (ṽn+1

f,h ) : ε(wf,h) dx

+

∫
Ω
φ2k−1

f (ṽn+1
f,h − ṽ

n+ 1
2
]

s,h ) · wf,h dx =

∫
Ω
f ref
f (tn+1) · wf,h dx.

Step 2: (pressure step)
Find pn+1

h ∈ Qh, ∀qh ∈ Qh,∫
Ω
ρ−1

eff∇p
n+1
h · ∇qh dx = −(∆t)−1

∫
Ω

div
(
(1− φ)ṽn+1

s,h + φ ṽn+1
f,h

)
qh dx.
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Step 3: (correction step)

– Step 3.1: (solid correction sub-step)
Find vn+1

s,h ∈ Ys,h such that, ∀ws,h ∈ Ys,h,∫
Ω
ρs(1− φ)vn+1

s,h ·ws,h dx =

∫
Ω
ρs(1− φ)ṽn+1

s,h ·ws,h dx−∆t

∫
Ω

(1− φ)∇pn+1
h ·ws,h.

– Step 3.2: (fluid correction sub-step)
Find vn+1

f,h ∈ Yf,h such that, ∀wf,h ∈ Yf,h,∫
Ω
ρfφ v

n+1
f,h · wf,h dx =

∫
Ω
ρfφ ṽ

n+1
f,h · wf,h dx−∆t

∫
Ω
φ∇pn+1

h · wf,h.

The simulation is run with the following parameters: φ = 0.5, ρf = ρs = 103, µf = λ = µ = 1
and kf = 10−6I. From Theorem 4.5, the stability of the scheme is guaranteed as long as the time
step condition (4.25) is fulfilled, namely

∆t <

(
ρfρs(1− φmax)

2φ3
max(k−1

max)2

)1/2

= 2× 10−3.

The importance of the time step condition is highlighted by Figure 4.1. As a matter of fact, if
the time step condition is not satisfied, Figure 4.1b shows that the pressure profile is far from the
reference solution.

(a) ∆t = 10−3 (b) ∆t = 10−2 (c) Reference solution

Figure 4.1 – Pressure profile at T = 1 for different values of time step compared to the analytical solution.

In Figure 4.1a, the pressure profile is closer to the reference solution, but we note that the
pressure is badly approximated on the boundaries. This is confirmed by Figure 4.2, which plots the
difference between the numerical and analytical solutions. The error is smaller for the incremental
version of the scheme, see Figure 4.2b, but still large. In fact, this large error comes from the explicit
treatment of the permeability term in the solid prediction sub-step. Indeed, if it is treated implicitly,
Figure 4.3 shows that the error is considerably reduced. Moreover, we observe on Figure 4.3 that
the error is mainly located in the corners of the domain and in the boundaries. The error occuring
at the corners is probably due to the lack of regularity of the domain. As for the error on the
boundaries, it is a consequence of the non-physical pressure boundary condition ρ−1

eff∇p
n+1
h · n = 0,

which is known to induce a numerical boundary layer in fluid problems [Rannacher, 1992].
Finally, Figure 4.4 emphasizes the importance of the discrete inf-sup condition. Even if none of

the steps of the projection method in Poisson form requires solving a saddle-point problem, we have
seen in (4.13) that the proposed splitting schemes are consistent with the monolithic algorithm, for
which the inf-sup condition is essential. As a result, if the inf-sup condition (4.63) is not satisfied,
numerical oscillations appear on the pressure profile of Figure 4.4a.
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(a) Non-incremental version (b) Incremental version

Figure 4.2 – Pressure error field p(tn)− pnh at T = 1 obtained for Schemes 1 and 2.

(a) Non-incremental version (b) Incremental version

Figure 4.3 – Pressure error field p(tn)− pnh at T = 1 obtained for Schemes 3 and 4 (scale factor 100).

(a) Solid and fluid quantities
discretized with [P1]d elements

(b) Solid and fluid quantities
discretized with [P2]d elements

Figure 4.4 – Pressure field at T = 1 for different choices of discretization for the solid and fluid quantities.
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4.5.2 Neumann boundary conditions

Here, we use the physical parameters from the swelling test case of [Burtschell et al., 2019], namely
Ω = (0, 0.01)2, φ = 0.1, ρf = ρs = 103, µf = 0.035, λ = 710, µ = 4066 and kf = 10−4I, with
∆t = 10−2. On the left side of the domain, we impose a growing external pressure, while the
pressure is maintained at zero on the right side of the domain and the top and bottom sides are
fixed. More precisely, we set

us = vs = vf = 0, on (0, 1)× {0} ∪ (0, 1)× {1}, (4.82)

and
σs(us)n− (1− φ) pn = 0, on {1} × (0, 1),

φ σf (vf )n− φ pn = 0, on {1} × (0, 1),

σs(us)n− (1− φ) pn = −(1− φ)pextn, on {0} × (0, 1),

φ σf (vf )n− φ pn = −φ pextn, on {0} × (0, 1),

(4.83)

with
pext(t) = 1000(1− e−4t2).

The Dirichlet boundary condition (4.82) is enforced strongly during the prediction step, and the
Neumann boundary conditions (4.83) are enforced strongly by imposing p = 0 and p = pext during
the pressure step.

Because of the pressure gradient between the left and right sides, we expect the porous medium
to bend to the right. This behaviour is exactly the one observed in Figure 4.5, which also illustrates
the accuracy of the projection scheme with respect to the monolithic scheme studied in the previous
chapter.

(a) Projection scheme (b) Monolithic scheme

Figure 4.5 – Solid displacement at T = 1 resulting from the set of boundary conditions (4.82) – (4.83),
computed with Scheme 6 or Scheme (3.16).

4.5.3 Total stress boundary condition

To test the implementation of total stress boundary conditions, we come back to the manufactured
solution method of Section 4.5.1, with Ω = (0, 1)2, φ = 0.5, ρf = ρs = µf = λ = µ = 1, kf = I,
∆t = 10−3 and T = 1. On the left side of the domain, instead of imposing homogeneous Dirichlet
boundary conditions, we set

vf = vs, on {0} × (0, 1),

σtotn = bref , on {0} × (0, 1),
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4.5. Numerical results

where bref corresponds to the total stress associated with the reference solution. This total stress
boundary condition is imposed with the Robin-Robin coupling method proposed in Scheme 7. On
the other sides of the domain, we enforce homogeneous Dirichlet conditions as before.

In Figure 4.6, we see that the Robin coefficient α has a strong influence on the accuracy of the
method. In the discrete energy balance (4.53), the Robin-Robin coupling induces artificial energy
on the boundary, scaling as ∆t(α−1 + α). Therefore, α must be chosen neither too large nor too
small, as reported in [Burman et al., 2022a]. This heuristic reasoning is corroborated by Figure 4.6,
which indicates to choose α between 100 and 200 for the considered test case.

5 10 50 100 200 500 103 104

1

2

3

4

5

·10−3

max
0≤n≤nT

√
Enh max

0≤n≤nT

‖δnh‖

Figure 4.6 – Energy and pressure errors with respect to the Robin coefficient α.

Conclusion

In this chapter, we proposed and analyzed a projection scheme for a linearized incompressible
poromechanics problem. Different variants of the scheme were given depending on the treatment
of the pressure and permeability terms in the prediction step and on the boundary conditions
considered. Stability analysis were performed for all these variants, in particular in the case of
total stress boundary conditions for which a Robin-Robin coupling approach allowed us to obtain
stability irrespectively of possible added-mass effects. For Dirichlet boundary conditions, a complete
convergence analysis was provided and confirmed that the major difference between the incremental
and non-incremental versions of the scheme lies in the convergence rate in time of the pressure field.
The proposed schemes were implemented and validated on simple test cases. Further perspectives
include the use of these splitting schemes in more complex scenarios and a more detailed comparison
of their computational efficiency with respect to the monolothic approach from Chapter 3.
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CHAPTER 5

Modeling and simulation of artificial microvessel perfusion

This chapter is based on results obtained in collaboration with Claire A. Dessalles (University
of Geneva), Céline Grandmont and Philippe Moireau. In this perspective chapter, we explore the
relevance of the poromechanis model (13) for simulating experiments with artificial microvessels
carried out by Claire A. Dessalles as part of her PhD research at the LadHyX laboratory (École
polytechnique, CNRS, Institut Polytechnique de Paris) under the supervision of A. Babataheri and
A. Barakat. Several numerical results are provided and compared with experimental data.
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Chapter 5. Modeling and simulation of artificial microvessel perfusion

Introduction

This chapter results from a collaboration with Claire A. Dessalles, who was a PhD student at the
Hydrodynamics Laboratory of École Polytechnique (LadHyX) and is now a post-doctoral researcher
at the University of Geneva. During her PhD thesis [Dessalles, 2021], Claire A. Dessalles developed
microfluidics experiments to study the mechanical properties of human vessels. This kind of exper-
iment is called an organ-on-chip platform [Huh et al., 2010; J. Polacheck et al., 2013] since it aims
at devicing a microfluidics chip to mimick the behaviour of a human organ, here a microvessel. In
[Dessalles et al., 2021], Claire A. Dessalles and co-authors designed a microvessel-on-chip system
based on a porous hydrogel. This device sheds light on the key role played by endothelial cells –
the cells covering blood vessels, see Figure 5.1 – in microvessels mechanics, whose dysfunction can
lead to pathologies such as atherosclerosis [Cunningham and Gotlieb, 2005; Chatzizisis et al., 2007;
Hahn and Schwartz, 2009] or brain and lung diseases [O’Rourke and Safar, 2005; Stone et al., 2015;
De Montgolfier et al., 2019; Wu and Birukov, 2019]. Moreover, it shows that the mechanical forces
involved in microvessels are highly dynamic and very sensitive to the poroelastic behavior of their
environment.

Figure 5.1 – Mechanical forces in blood vessel walls [Hahn and Schwartz, 2009].

The main goal of this chapter is to reproduce and characterize this poroelastic behavior by using
the poromechanics model studied in this thesis. A second objective is to go towards the coupling
of the model with the blood flow in the microvessel, which requires to consider the interaction
between the fluid inside the vessel and the porous structure surrounding it and hence can be seen
as a fluid-porous structure interaction problem.

The chapter is organized as follows. In Section 5.1, we briefly recall the microfluidics experiment
leading to the microvessel-on-chip platform set up in [Dessalles et al., 2021], and explain how to rep-
resent it by the poromechanics model analyzed in this thesis. Then, in Section 5.2, numerical results
are presented and compared to experimental data from [Dessalles, 2021]. Finally, Section 5.3 is a
perspective section to go towards a fluid-porous structure interaction modeling of the experiment.
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5.1. Experimental setup and modeling

5.1 Experimental setup and modeling

5.1.1 Experiments description

The microfluidics experiment carried out by Claire A. Dessalles involves a collagen hydrogel pierced
by a microchannel into which water is injected. The hydrogel is contained into a rectangular box
with an open top and the water channel has a cylindrical shape, as shown in Figure 5.2. The
experimentalist controls the water flow rate imposed at the channel inlet and the pressure at the
top of the box as well as at the channel outlet. Then, the velocity profile in the water and the
channel deformation can be observed using respectively particle tracking velocimetry and optical
coherence tomography tools. In addition, endothelial cells can be deposited on the surface of the
channel.

Figure 5.2 – Diagram of the microfluidic chip experimental setup described in [Dessalles et al., 2021].

As depicted in Figure 5.3, the dimensions of the setup are small. In particular, the channel
radius is 60 µm. We will see in the next section that this requires to use a proper system of units
and a refined mesh close to the channel for the simulation.

Figure 5.3 – Dimensions of the microfluidics experiment. Courtesy from Claire A. Dessalles.

The hydrogel at stake is made of 99.4% water and a few elastic collagen fibers. It is fabricated
by diluting collagen fibers in water. Therefore, when taken out of its box, it is almost liquid, as
depicted in Figure 5.4. For more details concerning the hydrogel fabrication, the cells seeding and
the imagery techniques employed, we refer the reader to [Dessalles et al., 2021].

Since human vessel membranes are partly composed of collagen, this experiment models a mi-
crovessel (the channel) surrounded by a poroelastic biomaterial (the collagen hydrogel), possibly

189



Chapter 5. Modeling and simulation of artificial microvessel perfusion

Figure 5.4 – Photograph of the experimental setup (left) and of a hydrogel outside its rectangular box (right).

with a layer of endothelium (cells). The aim of the setup is to observe the influence of water flow
rate and cells on the channel deformation and the water circulation.

Parameter Value Physical meaning

φ 0.994 Porosity
ρf 1.0× 103 kg m−3 Water density
ρs 1.0× 105 kg m−3 Collagen fibers density
µf 1.0× 10−3 Pa s Water viscosity
kf 2.0× 10−11 I m2 Pa−1 s−1 Hydraulic conductivity tensor
E 3900 Pa Young modulus
ν 0.3 Poisson ratio
α 0.99 Biot-Willis coefficient
κ 2.0× 109 Pa Bulk modulus

Table 5.1 – Physical parameters for the microfluidics experiment.

Table 5.1 reports the typical physical parameters associated with the microvessel-on-chip plat-
form. The porosity value is directly infered from the concentration property of the hydrogel. Since
the hydrogel is mostly composed of water, it is nearly-incompressible and the value of the bulk
modulus has been chosen to be slightly smaller than the bulk modulus of pure water. The hydraulic
conductivity value was calculated in [Dessalles et al., 2021] following an experimental formula from
[Huxley et al., 1987] but also thanks to an analytical model. However, the hydrogel mechanical
parameters were estimated in [Dessalles, 2021] without a high degree of accuracy, so that one goal
of Section 5.2 will be to calibrate these parameters using the porous model studied in the previous
chapters together with experimental data. Let us now show how to use this model for the considered
experiment.

5.1.2 Porous modeling of the hydrogel

Our strategy is to model only the porous hydrogel involved in the microfluidics experiment. The
water inside the channel is taken into account as an external pressure Neumann boundary condition,
and the presence of cells on the channel wall is not considered.
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Let us denote by Ω the volume occupied by the hydrogel in the microfluidics experiment. It is a
rectangular box pierced by a cylinder, as depicted in Figure 5.5. To model the poroelastic behavior
of the hydrogel, we consider the poromechanics model studied in this thesis in absence of external
body forces and additional fluid mass input, namely

ρs(1− φ) ∂tvs − div
(
σs(us)

)
− φ2 k−1

f (vf − vs) + (α− φ)∇p = 0, in Ω,

ρfφ∂tvf − div
(
φσf (vf )

)
+ φ2 k−1

f (vf − vs) + φ∇p = 0, in Ω,

α− φ
κ

∂tp+ div
(
(α− φ) vs + φ vf

)
= 0, in Ω,

(5.1)

with the usual notation. The problem is complemented with the following boundary conditions.
The top of the box is opened and a zero pressure is applied by the experimentalist, so that it can
be considered as a free surface. Therefore, denoting by Γtop this surface – see Figure 5.5, we impose

σs(us)n− (1− φ) pn = 0, on Γtop,

φ σf (vf )n− φ pn = 0, on Γtop.
(5.2)

On the surface in contact with the water channel, denoted by Γchannel, the hydrogel is subject to a
pressure coming from the fluid injected into the channel. The corresponding Neumann boundary
condition reads:

σs(us)n− (1− φ) pn = −(1− φ)pchanneln, on Γchannel,

φ σf (vf )n− φ pn = −φ pchanneln, on Γchannel.
(5.3)

Determining exactly the pressure pchannel requires simulating the flow inside the channel and will be
explored in Section 5.3. Indeed, this pressure depends on the flow rate at the inlet of the channel,
on the pressure at its outlet, but also on time and on the channel deformation. Here, we consider
a linear pressure along the channel axis that is independent of time, namely

pchannel(x, y, z) =
pin − pout

L
(L− z) + pout, (5.4)

where z denotes the direction along the channel axis (with the convention z = 0 at the inlet), L the
channel length, pin the pressure at the channel inlet and pout < pin the pressure at its outlet.

Figure 5.5 – Porous domain and boundaries of the collagen hydrogel.

Finally, since the rest of the box is closed, we set

us = vs = vf = 0, on ∂Ω \ Γtop ∪ Γchannel. (5.5)

191



Chapter 5. Modeling and simulation of artificial microvessel perfusion

To solve numerically Problem (5.1) – (5.5), we use the backward Euler scheme presented in
Chapter 3, see (3.16). More precisely, at each time step, we solve the variational formulation: find
(un+1
s,h , v

n+1
f,h , p

n+1
h ) ∈ Xh ×Xh ×Qh such that for all (ws,h, wf,h, qh) ∈ Xh ×Xh ×Qh,

∫
Ω

α− φ
κ

pn+1
h − pnh

∆t
qh dx+

∫
Ω
ρfφ

vn+1
f,h − v

n
f,h

∆t
· wf,h dx

+

∫
Ω
ρs(1− φ)

2

∆t2
(
un+1
s,h − u

n
s,h −∆tvns,h

)
· ws,h dx+

∫
Ω
σs(u

n+ 1
2

s,h ) : ε(ws,h) dx

+

∫
Ω
φσf (vn+1

f,h ) : ε(wf,h) dx+

∫
Ω
φ2 k−1

f

(
vn+1
f,h −

un+1
s,h − u

n
s,h

∆t

)
· (wf,h − ws,h) dx

−
∫

Ω
pn+1
h div

(
(1− φ)ws,h + φwf,h

)
dx+

∫
Ω

div

(
(1− φ)

un+1
s,h − u

n
s,h

∆t
+ φ vn+1

f,h

)
qh dx

= −
∫

Γchannel

(1− φ)pchanneln · ws,h dS −
∫

Γchannel

φ pchanneln · wf,h dS, (5.6)

whereXh andQh correspond to the discrete spaces associated with [P2]d and P1 Lagrange continuous
finite elements respectively. The solid velocity is then post-processed node by node thanks to the
formula

vn+1
s,h = 2

un+1
s,h − u

n
s,h

∆t
− vns,h.

The numerical simulations resulting from formulation (5.6) are the object of the next section.

5.2 Numerical results

To validate our model, let us first see if the solution computed numerically behaves qualitatively as
in the microfluidics experiments.

5.2.1 Validation of the model

The simulation is run with the finite element software FEniCS [Logg et al., 2012; Alnæs et al.,
2015] using MUMPS (MUltifrontal Massively Parallel Sparse direct Solver). The mesh is generated
using pygmsh [Geuzaine and Remacle, 2009; Schlömer, 2022]. Since the physical phenomenon is
mainly happening around the channel, the geometry is meshed more finely close to the channel, see
Figure 5.6. Moreover, in order to limit the calculation time, we first run the simulation for a shorter
channel of length 2 mm before simulating the experiments channel that is 15 mm long.

Figures 5.7, 5.8 and 5.9 show the results of the simulation of (5.6) for the short channel (L =
2 mm) with pin = 500 Pa, pout = 50 Pa, ∆t = 0.1 and T = 5. In Figure 5.7, we see that the
pressure progressively increases in the hydrogel, starting around the channel and then spreading
into the rest of the domain. Moreover, we note that the pressure is higher under the channel
than above. As a consequence, the channel bends upwards and the hydrogel swells to the top,
as illustrated in Figure 5.8. In addition, Figure 5.9 shows that the water in the hydrogel flows
towards the free surface and that some water escapes at the top of the gel, see Figure 5.9a. This
behavior corresponds exactly to the one observed by Claire A. Dessalles during the microfluidics
experiments. Furthermore, the order of magnitude of the solid displacement obtained numerically
– see the colorbar of Figure 5.8 – is consistent with the average displacement value of 8.1× 10−6 m
measured experimentally.

Then, we run the simulation for the experiments channel (L = 15 mm) with pin = 300 Pa,
pout = 100 Pa, ∆t = 0.1 and T = 5. The mesh and all the physical parameters are expressed in
CGS units.
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5.2. Numerical results

(a) L = 2 mm (b) L = 15 mm

Figure 5.6 – Meshes of the porous hydrogel domain generated for the simulation.

(a) t = 0.1 (b) t = 0.5 (c) t = 1

(d) t = 2 (e) t = 3 (f) t = 5

Figure 5.7 – Interstitial pressure in the hydrogel (Pa) over time.
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(a) t = 0.1 (b) t = 0.5 (c) t = 4

Figure 5.8 – Deformed channel (scale factor 10) with pressure coloration and solid displacement vector (m).

(a) t = 0.2 (b) t = 0.6 (c) t = 5

Figure 5.9 – Fluid velocity in the hydrogel (m s−1) over time.
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Figure 5.10 – Interstitial pressure in the experiments hydrogel (10−1Pa) at T = 5.

(a) z = 1 mm (b) z = 7.5 mm (c) z = 14 mm

Figure 5.11 – Slice of pressure (10−1Pa) near the inlet, in the middle of the channel and near the outlet.

Figure 5.12 – Channel deformation (scale factor 20) with pressure coloration at T = 5.
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The results of the long channel simulation are shown in Figures 5.10, 5.11 and 5.12. The pres-
sure growth observed in Figure 5.7 for the short channel is confirmed by Figure 5.10. Furthermore,
Figure 5.11 highlights that the pressure gradient is not homogeneous along the channel axis: the
smaller the pressure value imposed on the channel, the more the pressure in the gel is concentrated
around the channel. Finally, Figure 5.12 illustrates the channel deformation and the swelling of the
gel towards the free surface on the top. Once again, the channel deformation profile obtained in Fig-
ure 5.12 is in accordance with the experimental results, which validates the use of the poromechanics
model (5.1) to simulate the microfluidics experiments from [Dessalles et al., 2021].

5.2.2 Pressure ramps

Next, we apply the porous hydrogel modeling (5.1) – (5.3) to the simulation of pressure ramps.
Instead of imposing a spatially dependent pressure that is independent of time as in the previous
subsection, we study the gel response to a gradual pressure. More precisely, we reproduce a part
of the experiment detailed in Figure 5.13, in which the microvessel-on-chip is subject to various
loading flow rates at the channel entrance.

Figure 5.13 – Deformation of the channel as a function of time for different loading rates (color coded).
The imposed flow rate is shown in panel A. The loading is progressively slower while the unloading is kept
instantaneous. The response of the channel is shown in panel B, with a disappearing overshoot and an
increasing undershoot. Courtesy from [Dessalles, 2021].

The associated boundary conditions are similar to the ones proposed in Section 5.1.2. The only
difference is the expression of the pressure term pchannel appearing in the right-hand side of (5.6),
for which we take

pchannel(t) =

{
p0t/tload if t ≤ tload,

p0 if t > tload,

where tload represents the loading time before reaching the constant value p0, see Figure 5.14 – left.
Compared to Figure 5.13A, this expression focuses on the first part of the imposed flow rate curve,
and not on the part where the flow rate falls back to zero. Therefore, we expect to reproduce the
first parts of the curve shown in Figure 5.13B. Note however that the pressure load is modeled in a
rather crude way. Moreover, note that Figure 5.13B represents the deformation of the channel as a
percentage of its initial radius (equal to 60 µm). This quantity is directly proportional to the radial
displacement of the channel, which will be the plotted quantity in the numerical simulations that
follows.

These curves are useful from an experimental point of view, but also to calibrate mechanical
parameters. Indeed, the response curve hides different physical parameters, as we are now going
to see it thanks to a parametric study. To analyze the influence of the various parameters on the
channel response, we start from the parameters listed in Table 5.1, with p0 = 300 Pa, tload = 1 s,
∆t = 0.1 and T = 5 or T = 10. Then, we vary each parameter separately and plot the corresponding
radial displacement response curves. These curves are generated at three points of the hydrogel that
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are close to the inlet. The first one is located on the channel surface (point A), the second is at the
same altitude than the first one but near the right wall (point B) and the third one is located above
the first one on the top of the box (point C), see Figure 5.14 – right.

Figure 5.14 – Pressure imposed on the channel (left) and points used for the parametric study (right).

Figure 5.15 sheds light on the influence of the different parameters on the response curve at
point A, which is located on the channel and which corresponds to the point where the measures of
Figure 5.13B were done. Note that Figure 5.15 represents the x component of the displacement since
it corresponds to its radial value. From Figure 5.15, we deduce the following sensitivity analysis.

The Young modulus E mainly plays a role on the amplitude of the response. The stiffer the
structure, the lower the gel deforms. In Figure 5.13B, the curve associated with tload = 1 is the
second sharpest one. This curve shows a maximum value of 8% of strain, which corresponds to a
maximum radial displacement of 4.8 µm. Hence, the best Young modulus fitting this value seems
to be E = 2.5× 103 Pa (green curve).

The Poisson ratio of the solid skeleton ν impacts the maximum value of the response, the speed
at which the curve goes down, and most importantly the final value of the radial displacement. Note
that the Poisson ratio corresponds here to the solid skeleton of the hydrogel, which is a structure
full of holes since the hydrogel is mostly composed of water. Therefore, the porous hydrogel quasi-
incompressibility does not mean that ν must be close to 0.5. Indeed, the curve for ν = 0.49 (red
curve) shows a radial displacement final value that is very close to the peak value, which does not
correspond to the observations of Figure 5.13B.

The bulk modulus κ does not affect the response curve significantly. As a matter of fact, the
incompressible regime is reached from κ = 100 Pa, value above which this parameter has no influence
on the response.

The intrinsic permeability k influences the response peak, but above all controls the speed at
which the curve goes down. The greater the permeability, the faster the response curve descends.
Comparing the permeability curves of Figure 5.15 with experimental data shows that the perme-
ability value must be between 10−14 m2 and 5× 10−14 m2 (orange and green curves), in accordance
with the value k = 2× 10−14 m2 found in [Dessalles et al., 2021].

The fluid viscosity has the opposite effect than the permeability. This comes from the relation
between the hydraulic conductivity kf , the fluid viscosity µf and the intrinsic permability k, that
reads kf = k/µf .

It appears that the porosity φ does not modify the response curve. This is probably because
E and ν should depend on φ since they represent the homogenized skeleton parameters but this
dependency is not taken into account in (5.1).

The response curves are not related to the solid and fluid densities ρs and ρf . For this particular
test case, this means that the inertial effects are negligible in comparison to the other terms of the
model, in particular the friction effect between the two phases.
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Figure 5.15 – Parametric study of the response curve at point A with respect to the physical parameters.
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This sensitivity analysis is confirmed by Figures 5.16 and 5.17, in which the same parametric
study is carried out at points B and C, which are respectively located close to the right wall and on
the top free surface, see Figure 5.14 – right. Moreover, Figure 5.16 shows that the response peak
are shifted in time when the Young modulus and the fluid viscosity (or the permeability) vary, thus
highlighting the propagation effects occuring between the channel and the box wall. Independently
of the parametric study, let us mention that Figures 5.16 and 5.17 illustrates the ability of numerical
simulation to compute quantities for which experimental data are not available.
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Figure 5.16 – Parametric study of the response curve at point B with respect to the physical parameters.
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Figure 5.17 – Parametric study of the response curve at point C with respect to the physical parameters.

Coming back to simulations on the channel (at point A), Figure 5.18 illustrates the importance
of the pressure ramps parameters on the poromechanical response. Unsurprisingly, Figure 5.18 –
left shows that the final value p0 imposed on the channel is directly correlated with the radial dis-
placement amplitude. In Figure 5.18 – right, we infer that the final value of the radial displacement
does not depend on the ramp sharpness, which reproduces the behavior observed in Figure 5.13B.
Further work needs to be done to extract the permeability value from this curve, which can be done
by fitting exponentially the different peaks of Figure 5.18 – right, see [Dessalles, 2021, Figure 3.9].
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5.2. Numerical results

Figure 5.18 – Parametric study of the response curve at point A with respect to the pressure ramp parameters.

Finally, we investigate the influence of the box. From Figure 5.19, we conclude that the domain
geometry strongly impacts the solid displacement. Indeed, the narrower the box containing the
hydrogel, the less space the channel has to deform without being constrained by the lateral walls.
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Figure 5.19 – Parametric study of the response curve at point A with respect to the domain width.
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Figure 5.20 – Solid displacement at point A when closing the top surface of the box.

In Figure 5.20, Neumann boundary conditions (5.2) are replaced by homogeneous Dirichlet boundary
conditions, which is equivalent to closing the top surface of the box containing the hydrogel. We
find that the displacement value is very small and rapidly goes to zero. This corroborates the
importance of the free surface on the top, as commented in [Dessalles, 2021].
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5.3 Perspectives

A first perspective of this chapter is to take into account the presence of cells on the channel walls.
This may be done by using a membrane model or by modeling the cells as an additional porous
layer following [Bociu et al., 2021].

Another perspective is to take into account the water flow inside the channel in order to remove
the approximation made in (5.4). To do so, we need to couple the poromechanics model (5.1) with
a Stokes flow inside the channel, which requires to formulate proper transmission conditions on the
interface.

Note that such transmission conditions have already been studied in the literature of fluid-
porous structure interaction problems. For the coupling of Darcy and Stokes equations, these
conditions were derived by Beavers, Joseph and Saffman [Beavers and Joseph, 1967; Saffman, 1971]
and justified a posteriori by homogenization [Mikelic and Jäger, 2000]. For the coupling of Biot and
Stokes equations, they were among others formulated in [Murad et al., 2001]. However, to the best
of our knowledge, coupling the linearized poromechanics model derived in [Burtschell et al., 2019]
with a Stokes flow has never been considered.

Let us denote by Ωc the volume occupied by the water channel, Γin and Γout the inlet and
outlet channel boundaries, and Γ the interface between the channel and the hydrogel as depicted in
Figure 5.21.

Figure 5.21 – Porous and fluid domains and boundaries in the fluid-porous structure interaction setting.

The water flow in the channel is slow, so that we can neglect convection phenomena. Therefore,
we use Stokes equation to model the water channel, namely{

∂tvc − div
(
σc(vc)

)
+∇pc = 0, in Ωc,

div v = 0, in Ωc,
(5.7)

where vc and pc denote respectively the channel’s velocity and pressure, and σc(vc) = 2µfε(vc).
System (5.7) is complemented with Neumann boundary conditions on the inlet and outlet bound-
aries.

To couple (5.1) with (5.7), we propose the following transmission conditions on the interface:

vc = (1− φ) vs + φ vf , on Γ,

σtot
s n = (1− φ)σtot

c n, on Γ,

φ σtot
f n = φσtot

c n, on Γ,

where σtot
c = σc(vc) − pcI, σtot

s = σs(us) − (1 − φ)pI and σtot
f = σf (vf ) − pI. One can show

that these transmission conditions are compatible with an energy balance, paving the way to the
well-posedness of the coupled system.
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5.3. Perspectives

From a numerical point of view, transmission conditions in fluid-porous structure interaction
problems can be imposed using various mixed formulations [Arbogast and Brunson, 2007; Gatica
et al., 2011; Li and Yotov, 2022], Lagrange multipliers [Ambartsumyan et al., 2017], discontinuous
Galerkin methods [Rivière and Yotov, 2005; Girault and Rivière, 2009], mortar elements [Girault
et al., 2014], domain decomposition techniques [Discacciati et al., 2007; Badia et al., 2009] or
again Nitsche’s method [Bukač et al., 2015a]. Here, we employ a Lagrange multiplier living on the
interface, which requires to use the mixed-dimensional branch of FEniCS for the implementation of
the coupling [Daversin-Catty et al., 2021].

The resulting numerical results are shown in Figures 5.22 and 5.23 for parameters similar to the
ones used in Section 5.2.1 for validating the porous model. In Figure 5.22, we see that the channel
deformation profile is quite similar to the one obtained in Figure 5.12 without the fluid-porous
structure interaction coupling. Nevertheless, Figure 5.23 confirms that the evolution pressure on
the interface cannot be modeled by (5.4).

Figure 5.22 – Channel deformation (scale factor 20) with pressure coloration at T = 5 simulated with the
fluid-porous structure interaction coupling.

(a) t = 0.1

(b) t = 0.2

(c) t = 0.3

(d) t = 0.4

(e) t = 0.5

Figure 5.23 – Pressure in the water channel (10−1Pa) over time.

In [Dessalles, 2021], the longitudinal wave propagation in the microfluidic experiment was stud-
ied. In particular, it was found in [Dessalles, 2021, Figure 3.17] that the corresponding pulse wave
velocity depends on the amplitude of the inlet flow rate, hence contradicting elastic wave prop-
agation theory. In the future, we hope that the fluid-porous structure interaction coupling will
enable us to retrieve the pulse wave velocity numerically and to analyze how it is affected by the
poroelasticity parameters.
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Résumé substantiel

De nombreux tissus biologiques peuvent être modélisés comme des milieux poreux, c’est-à-dire des
milieux continus composés d’une structure solide irriguée par un fluide. Dans les tissus biologiques,
le fluide peut désigner le sang, les flux d’air dans les poumons ou encore le liquide céphalo-rachidien,
fluides qui peuvent tous être considérés comme incompressibles. On appelle perfusion cette interac-
tion entre les solides et les fluides dans les tissus biologiques. De plus, pour de telles applications,
le milieu poreux en tant que tel est quasi-incompressible.

Dans cette thèse, nous analysons un modèle d’équations aux dérivées partielles récent qui décrit
le mouvement d’un milieu poreux quasi-incompressible ou incompressible. Ce modèle provient de
la linéarisation d’un modèle de poromécanique non linéaire adapté au contexte des tissus mous
perfusés, mais nous montrons qu’il est également fortement relié aux équations de Biot plus clas-
siques en poroélasticité. Dans ce modèle, les équations du solide et du fluide ont un comportement
respectivement hyperbolique et parabolique, et sont couplées par la pression interstitielle associée
à la contrainte d’incompressibilité. D’un point de vue théorique comme numérique, les principales
difficultés du modèle résident dans ce couplage hyperbolique – parabolique et dans sa structure de
type point-selle en régime incompressible.

La première contribution de cette thèse est de démontrer l’existence et l’unicité des solutions
fortes ou faibles dans les cas quasi-incompressible et incompressible. La preuve repose sur une
combinaison de théorie des semi-groupes et d’estimations d’énergie. Dans le cas non visqueux,
la forme bilinéaire sous-jacente n’est pas coercive. Afin de résoudre cette difficulté technique, on
fait appel à la notion de T-coercivité pour obtenir l’existence et l’unicité des solutions fortes. Par
ailleurs, on met en lumière l’influence de la viscosité sur la régularité des solutions faibles.

La notion de T-coercivité, développée initialement pour des problèmes non contraints, est ici
étendue aux problèmes de type point-selle avec ou sans pénalisation. Au niveau discret, cette méth-
ode permet de concevoir simplement des approximations numériques adaptées car la dérivation de la
condition inf-sup discrète uniforme découle en général directement de l’étude du problème continu.
Ainsi, la preuve par T-coercivité utilisée au niveau continu donne un cadre pour guider la conception
d’éléments finis stables dans la limite incompressible et pour effectuer l’analyse numérique du sys-
tème au cœur de cette thèse. Ce faisant, l’outil de T-coercivité permet de gérer de façon compacte
à la fois le couplage hyperbolique – parabolique et la contrainte d’incompressibilité.

Deux types de schémas numériques sont considérés pour discrétiser le problème. Tout d’abord,
un schéma monolithique, pour lequel on démontre la convergence spatiale et temporelle avec des
estimations d’erreur robustes par rapport à l’incompressibilité, la porosité et la perméabilité. Afin
d’accélérer le temps de calcul, un schéma à pas fractionnaires est également proposé et analysé.
L’intérêt de ce schéma est de découpler les degrés de liberté du solide, du fluide et de la pression à
chaque pas de temps. En revanche, sa stabilité est particulièrement sensible à la perméabilité, ce
qui nous amène à formuler plusieurs variantes offrant une stabilité inconditionnelle. En outre, des
conditions aux limites générales couplant le fluide et le solide sur le bord du domaine sont envisagées
et imposées grâce à une méthode de type Robin-Robin. Dans le cas des conditions de Dirichlet, on
prouve la convergence espace – temps du schéma, que ce soit dans sa version incrémentale ou non
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incrémentale.
Enfin, la pertinence de ce modèle pour les applications biomédicales est illustrée en comparant

des simulations de microvaisseaux sur puce à des données expérimentales. Plus précisément, le
modèle de poromécanique étudié dans ce travail est utilisé pour simuler la réponse mécanique d’un
hydrogel percé par un microvaisseau dans lequel est injecté un fluide. Après calibration des différents
paramètres physiques, on retrouve le comportement qualitatif de déformation du gel. À l’avenir, un
tel modèle pourrait alors être couplé à une distribution de fluide dans le canal, ce qui permettrait
en particulier de prendre en compte l’influence de cellules sur la paroi et fournirait ainsi un outil
numérique pour appréhender le rôle joué par l’endothélium dans le fonctionnement mécanique des
vaisseaux humains.
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Titre : Cadre mathématique pour la modélisation et la simulation de tissus biologiques perfusés

Mots clés : Poromécanique, Caractère bien posé, Analyse numérique, Limite incompressible, T-coercivité,
Schéma à pas fractionnaire

Résumé : De nombreux tissus biologiques peuvent
être modélisés comme des milieux poreux, c’est-à-
dire des milieux continus composés d’une structure
solide irriguée par un fluide. Dans les tissus bio-
logiques, le fluide peut désigner le sang, les flux
d’air dans les poumons ou encore le liquide céphalo-
rachidien, fluides qui peuvent tous être considérés
comme incompressibles. De plus, pour de telles
applications, le milieu poreux en tant que tel est
quasi-incompressible. L’objectif de cette thèse est
d’analyser un modèle d’équations aux dérivées par-
tielles récent qui décrit le mouvement d’un milieu
poreux quasi-incompressible ou incompressible. Ce
modèle provient de la linéarisation d’un modèle de po-
romécanique non linéaire adapté au contexte des tis-
sus mous perfusés, mais il est également fortement
relié aux équations de Biot en poroélasticité. Dans
ce modèle, les équations du solide et du fluide ont
un comportement respectivement hyperbolique et pa-
rabolique, et sont couplées par la pression intersti-
tielle associée à la contrainte d’incompressibilité. La
première contribution de cette thèse est de démontrer
l’existence et l’unicité des solutions fortes ou faibles

dans les cas quasi-incompressible et incompressible.
La preuve repose sur une combinaison de théorie des
semi-groupes, d’estimations d’énergie et fait appel à
la notion de T-coercivité. Cette notion, développée ori-
ginellement pour les problèmes non contraints, est ici
étendue aux problèmes de type point-selle avec ou
sans pénalisation. Le concept de T-coercivité s’avère
également utile pour la conception d’éléments finis
stables dans la limite incompressible et pour l’ana-
lyse numérique du système. La convergence spatiale
et temporelle d’un schéma monolithique est prouvée,
avec des estimations d’erreur robustes par rapport à
l’incompressibilité, la porosité et la perméabilité. Afin
d’accélérer le temps de calcul, un schéma à pas frac-
tionnaires est proposé et analysé. En particulier, des
conditions aux limites générales couplant le fluide et
le solide sur le bord du domaine sont envisagées et
imposées grâce à une méthode de type Robin-Robin.
Enfin, la pertinence de ce modèle pour les applica-
tions biomédicales est illustrée en comparant des si-
mulations de microvaisseaux sur puce à des données
expérimentales.

Title : Mathematical framework for biological tissue perfusion modeling and simulation

Keywords : Poromechanics, Well-posedness, Numerical analysis, Incompressible limit, T-coercivity,
Fractional-step method

Abstract : Many biological tissues can be modeled
as porous media, namely continuous media compo-
sed of a solid skeleton filled by a fluid. In biological
tissues, the fluid at stake can be blood, airflows in the
lungs or cerebrospinal fluid, all of which can be seen
as incompressible fluids. Moreover, in such applica-
tions, the porous medium itself can be considered as
nearly-incompressible. The goal of this PhD thesis is
to analyze a recent partial differential equation mo-
del describing the motion of a nearly-incompressible
or incompressible porous medium. This model arises
from the linearization of a non-linear poromechanics
model adapted to soft tissue perfusion, but is also
strongly connected to Biot’s equations of poroelasti-
city. In this model, the solid and fluid equations show
a hyperbolic – parabolic behavior, and are in addi-
tion coupled through the interstitial pressure associa-
ted with the incompressibility divergence constraint.
The first contribution of this thesis is to show the
existence and uniqueness of strong and weak so-

lutions in the nearly-incompressible and incompres-
sible cases. This is achieved by combining semigroup
theory, energy estimates and T-coercivity. T-coercivity
theory, originally developed for unconstrained pro-
blems, is extended here to treat general saddle-point
and perturbed saddle-point problems. This concept
also appears to be useful for the design of stable finite
elements in the incompressible limit and for the nu-
merical analysis of the system. Spatial and temporal
convergence analysis are performed for a monolithic
scheme, leading to robust error estimates with res-
pect to incompressibility, porosity and permeability. In
order to improve computational efficiency, a fractional-
step method is proposed and analyzed. In particular,
general boundary conditions connecting the fluid and
the solid on the boundary are considered and impo-
sed thanks to a Robin-Robin coupling method. Finally,
the relevance of the model to biomedical applications
is illustrated by comparing microvessels-on-chip simu-
lations with experimental data.
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