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Abstract

The long-term dynamical evolution of the Earth-Moon system is revisited. We address
three distinct geophysical mechanisms pertaining to solid and fluid planetary mass
redistributions affecting the system’s history.

First, the effect of Cenozoic glacial cycles on the Earth’s figure is constrained. In the
framework of glacial isostatic adjustment, and using a recently compiled proxy of global
ice volume, we self-consistently solve the sea level equation. We then present a time
series of the evolution of the Earth’s dynamical ellipticity over the Cenozoic ice age.
We map out the problem in full generality, identifying major sensitivities to possible
variations in surface loading, and to uncertainties in rheological modeling and internal
viscosity profiles. We match our parametric exploration with present observations of
the rate of change of 𝐽2 and true polar wander measurements. We consequently provide
well-constrained intervals for the relative perturbation in the dynamical ellipticity due
to the Cenozoic ice age.

Next, we revisit the evolution history of the Earth-Moon distance. Available geological
data provide snapshots of the lunar orbital history, the earliest registered to date at ∼ 3.2
Ga. However, a complete theoretical reconstruction of the lunar orbit, which traces its
evolution from the present state to a post-impact nosy neighbor at ∼ 4.5 Ga is yet to
be established. Namely, previous models of this reconstruction are often empirical, or
numerically costly, and are always incompatible with the well-constrained lunar age. We
undertake a systematic exploration of the time-varying tidal dissipation in the Earth’s
oceans and solid interior to provide, for the first time, a history of the lunar orbit that
fits the present measurement of its recession and the estimated lunar age. Our work
extends a lineage of earlier works on the analytical treatment of fluid tides on varying
bounded surfaces, further coupled with bodily solid tidal deformations. We obtain a
history of the lunar orbit that is predominantly shepherded by robust resonant excitations
in the Earth’s paleo-oceans. These resonances caused significant and, relatively, rapid
variations in the lunar semi-major axis, the Earth’s length of the day, and the Earth’s
obliquity. Consequently, these astronomical features should have driven major paleo-
climatic variations through tidal heating and the changing insolation. Our solution
demonstrates the robustness of the cyclostratigraphic method in unraveling astronomical
quantities from sedimentary sequences.

Finally, we examine the effect of thermal tides on the evolution of planetary rotational
motion. We revisit the hypothesis of a fixed Precambrian length of day for the Earth,
which is contingent upon encountering a Lamb resonance in the atmosphere. We



construct an ab initio model of thermal tides describing a neutrally stratified atmosphere.
The model takes into account dissipative processes with Newtonian cooling and the
delayed thermal response of the ground. We retrieve from this model a closed form
solution for the frequency-dependent thermal tidal torque. Our solution captures the main
spectral features computed numerically in earlier studies using 3D general circulation
models. In particular, the delayed response of the ground proves to be responsible for an
asymmetry in the Lamb resonance, thus positing serious question marks on the rotational
equilibrium hypothesis. Finally, though the study was motivated by the tidal history on
Earth, the solution can be straightforwardly applied in exoplanetary settings.

Key Words: Earth – Moon – Oceanic tides – Atmospheric tides – Glacial isostatic
adjustment – Terrestrial planets.



Resumé

L’évolution dynamique à long terme du système Terre-Lune est revisitée à travers trois
mécanismes géophysiques distincts qui impliquent des redistributions de masse plané-
taire solide et fluide affectant l’histoire du système.

Tout d’abord, nous estimons l’effet des cycles glaciaires du Cénozoïque sur la figure
de la Terre. Dans le cadre de la théorie de l’ajustement isostatique, et en utilisant une
compilation récente des proxys du volume global de glace, nous résolvons l’équation du
niveau de la mer, et nous présentons une série temporelle de l’évolution de l’ellipticité
dynamique pendant les périodes glaciaires du Cénozoïque. Nous identifions les princi-
pales sensibilités de cette évolution aux variations potentielles de la charge de glace, et
aux incertitudes de la modélisation rhéologique et des profils de viscosité interne. Nous
ajustons notre modèle paramétrique aux observations récentes du taux de variation du
𝐽2 et aux mesures de la dérive des pôles. Nous fournissons ainsi des estimations de la
perturbation relative de l’ellipticité dynamique durant l’âge glaciaire du Cénozoïque.

Ensuite, nous revisitons l’histoire de l’évolution de la distance Terre-Lune. Les données
géologiques disponibles fournissent des instantanés de l’histoire de l’orbite lunaire, le
plus ancien enregistré à ce jour datant de ∼ 3.2 Ga. Cependant, une reconstruction
théorique complète de l’orbite lunaire, qui retrace son évolution depuis l’état actuel
jusqu’à sa formation il y a ∼ 4.5 Ga, restait à établir. En effet, les modèles précédents de
cette reconstruction sont souvent empiriques ou numériquement coûteux, et sont tous
incompatibles avec l’âge de la Lune. Nous entreprenons une caractérisation systéma-
tique de la dissipation de marée à la fois dans les océans et dans l’intérieur solide de la
Terre. Nous fournissons ainsi, pour la première fois, une histoire de l’orbite lunaire en
accord avec la mesure actuelle de sa récession et avec l’âge estimé de la Lune. Notre
travail s’inscrit dans une lignée de travaux antérieurs sur le traitement analytique des
marées fluides, couplées en outre aux déformations des marées solides. Nous obtenons
une histoire de l’orbite lunaire qui est contrôlée par des excitations résonantes dans les
paléo-océans de la Terre. Ces résonances ont provoqué des variations importantes et
relativement rapides du demi-grand axe lunaire, de la durée du jour et de l’obliquité de la
Terre. Ces variations astronomiques ont pu entraîner d’importantes variations paléocli-
matiques dues au chauffage de marée et aux modifications de l’insolation à la surface de
la Terre. Notre solution démontre aussi la robustesse de la méthode cyclostratigraphique
pour extraire les données astronomiques des séquences sédimentaires.

Enfin, nous étudions l’effet des marées thermiques atmosphériques sur l’évolution du
mouvement de rotation planétaire. Nous réexaminons, pour la Terre, l’hypothèse d’une



stagnation de la durée du jour pendant le Précambrien, qui résulterait de la rencontre
d’une résonance d’un mode de Lamb dans l’atmosphère. Nous construisons un modèle
ab initio de marées thermiques décrivant le cas d’une atmosphère à stratification neu-
tre. Le modèle prend en compte les processus dissipatifs à travers le refroidissement
radiatif de l’atmosphère et la réponse thermique retardée du sol. Nous extrayons de ce
modèle une solution exacte du couple de marée thermique dépendant de la fréquence de
marée. Notre solution rend compte des principales caractéristiques spectrales obtenues
numériquement dans des études antérieures utilisant des modèles de circulation générale
3D. En particulier, la réponse retardée du sol s’avère être responsable d’une asymétrie
dans la résonance du mode de Lamb, remettant ainsi sérieusement en doute l’hypothèse
d’une stagnation de la durée du jour. Enfin, bien que l’étude ait été motivée par l’histoire
des marées sur Terre, les solutions développées peuvent être directement appliquées à
l’étude des exoplanètes.

Mots Clés: Terre – Lune – Marées océanique – Marées atmosphériques – Rebond
post-glaciaire – Planètes telluriques.
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SYNOPSIS

In the era of exoplanetary exploration and wide astronomical surveys, much is left to
fathom in the solar system. While it is compelling to seek answers to some of the most
profound questions on the habitability of Earth analogs, the history of our own planetary
neighborhood is still fraught with uncertainties. The collective amnesia of the inner
solar system due to its chaotic nature, and of the Earth due to its bombardment history
and the intense geomorphological evolution, left us with little archival traces. For us
Earthlings, this historical blurriness hinders our complete understanding of abiogenesis
and the consequent evolution of the ecosystem, up until we came into sight.

The Milankovitch theory of the variability in the Earth’s insolation provides an exquisite
tool for probing the complex interplay between astronomical and climatic variations.
Ever since Milutin Milankovitch himself, there has been a growing appreciation of
the importance of the theory among solar system dynamicists, geophysicists, geologists,
paleontologists, climatologists, and the list goes on. In particular, our retrieval of the past
dynamical evolution of the solar system has been used to tune the depths of ancient strata.
Conversely, and more recently, with limitations on this retrieval arising, rhythmic strata
are being used as an indirect astronomical observatory. The Milankovitch machinery
has thus opened a very rich interdisciplinary scientific avenue, and this work is a mere
telltale of the theory’s beauty.

In this thesis, I pay the Earth’s geophysical and dynamical history a humble visit,
patching gaps in certain problems and addressing others that are more serious, perhaps
perplexing. While all the studied problems are concerned with the Earth’s history of
deformation and mass redistribution, they are of different physical nature. Namely,
the thesis addresses solid Earth viscoelastic deformation, oceanic gravitational tides
over geological timescales, and atmospheric mass redistribution due to thermal forcing.
I thus ask the reader to turn a blind eye to the possible discontinuities between the
chapters. Concerning the thesis outline, I opted for a separate introduction to each
chapter, rather than the common tradition of a single introductory chapter. Therein, I
provide a historical overview of the problem, its state-of-the-art, and my motivation in
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Synopsis 2

addressing it. Moreover, the reader will soon enough notice the interdisciplinary nature
of the work. I thus “tried" to avoid surmising the reader’s familiarity with the theoretical
background and provided, for each chapter, a conspectus on the matter. This might
trigger the reader’s patience at some point, but it will certainly save me a lot of trouble
when visiting back similar problems in the future. It is noteworthy that when writing
the manuscript, the chapters were ordered chronologically, abiding by the progress of
my thesis work in time. Finally, I hereafter let go of the singular first-person pronoun,
in favor of the plural, as this work was in its entirety a team endeavour.

In Chapter 1 we describe the work of Farhat, Laskar, and Boué (2022b) on a limitation we
have in computing the past rotational motion of the Earth. Namely, the Earth’s dynamical
ellipticity, or equivalently the Earth’s oblateness enters as a parameter in computing the
Earth’s rotational evolution. However, this parameter features an unconstrained history.
Its variation is driven by all sorts of surface and internal mass redistributions. We focus
in this chapter on the effect of surface loading and internal re-adjustment during glacial
cycles. We utilize the theory of viscoelastic relaxation, the glacial isostatic adjustment
formalism, and the theory of sea level variation to recover the Earth’s geopotential
evolution during the Cenozoic.

Chapter 2 is devoted to the work of Farhat, Auclair-Desrotour, Boué, and Laskar (2022a)
on the time-scale problem of the lunar origin. The latter corresponds to the incompat-
ibility between the tidal modelling of the Earth-Moon system and the geologically
constrained age of the Moon. We revisit this classical “conundrum" armed with a rich
history of advancement in the linear theory of fluid tides. Our aim is to evade the
time-scale problem by constructing a model that fits the present state of the lunar orbit
and the lunar formation age.

In Chapter 3 we escape the Earth’s interior and surface into its atmosphere. Motivated
by the hypothesis of a fixed Precambrian length-of-day on Earth, we revisit the theory
of thermal tidal resonances. Our goal is to construct an ab initio model of thermal tides
that can be satisfactorily and consistently accommodated into the Earth-Moon evolution
history.

We conclude in Chapter 4 on these problems, and we provide an outlook of future
problems that shall keep us busy in the near future.



CHAPTER 1

THE CENOZOIC DYNAMICAL ELLIPTICITY

1.1 Introduction

1.1.1 Glacial theory: a historical anecdote

Some twenty-thousand years ago, the Earth, as we know it today, was utterly dissimilar.
Our planet was held in thrall by tightly gripping ice sheets that initiated at the poles, the
capital of the glacial empire, and extended to lower latitudes, inattentive of the thriving
ecosystem at the time. Quite reflective of any imperial expansion, the slow glacial
spread mercilessly distorted the quasi-stable climate system, plummeting temperatures,
burying mountains, drying oceans, and depressing land surfaces by its accumulating
weight. Such relentless violations were destined to create scars when the ice sheets
retreated, leaving behind a vengeful landscape that has been patiently, ever since, trying
to re-establish its forsaken equilibrium.

Though this sketch might resonate negatively, it is exactly these scars that led the
human mind to initially postulate, argue, and eventually accept the glacial theory1.
The ice sheets’ expansion and retreat grinding away the underlying surface, leaving
deep grooves in bedrock, pulverizing existing material, and transporting eroded ma-
terials onto a chaotic clutter around their furthest extent, have left various clues for
(mis-)interpretation. For example, countless versions exist of the sagas and folktales
explaining the existence of unfamiliar rough boulders around the Alps and central Eu-
rope, up to Scandinavia. Was it the failed plan of the devil, who intended to drop these
boulders upon a crowded church on a Sunday, but was, fortunately, intercepted and
instead, furiously dropped them at random? Or were these huge boulders the homes
of angry trolls, who communicated by throwing rocks on each other (a more plausible

1A neat and authoritative summary of the theory’s development can be found in Imbrie and Imbrie
(1986). A more historical archive on the matter can be found in Krüger (2013). We used these references
to develop most of this section.
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Chapter 1. The Cenozoic Dynamical Ellipticity 4

theory than the former as it explains the existence of scattered Findlinge - smaller pieces
of rocks around their parent beds)? These "unnatural" erratic blocks around the Alps
and European lowlands were indeed extremely attractive for locals and foreigners alike,
and were turned into worship places and used as megalithic tombs.

From the devil’s devious plans to homes of trolls, clashing theories of the existence of
these weird piles of rock continued to emerge. The possibility of them having been flung
away by volcanic eruptions was the major postulate in the 18th and early 19th centuries.
Though met with strict objections, the eruption theory continued to attract adherents
up till the 20th century (even after the theory of ice ages was widely accepted). In
early 1940s, Dutch geologist Christoph Sandberg, clearly anachronistically, published
a multi-volume work against the theory of ice ages and argued that these erratics are
solidified mudflow that are the consequence of catastrophic volcanic eruptions. This
theory was accompanied by another widely spread postulate that attempted to explain
the non-local origin and migration of these rocks. Mainly depending on the analysis of
fossil samples, it was suggested that these rocks were transported by monstrous, horrific
floods. This claim was widely applauded in European communities as it was equated
with the biblical major flood. Catastrophism was vastly dominant in the geological
philosophy at the time; certainly because it provided, ironically, a pristine account of
fossil records without opposing the word of God. And it is mostly because of this that
the theory of ice ages was met with fierce resistance when introduced onto the scientific
community. Namely, it was as early as 1787 that the existence of the erratic boulders was
attributed to ancient glaciation. The early work of the Swiss minister Friedrich Kuhn,
followed by the studies of James Hutton in the Swiss Jura, Jens Esmark in Norway, and
Reinhard Bernhardi in central Germany, over the period of 40 years, were all independent
observations and deductions on the existence of a vastly spreading ice sheet. But the
postulate of the erratics being the deposits of the great flood was so deeply entrenched
such that none of the pioneers of the glacial theory at the time were able to defend their
revolutionary ideas.

It took another 25 years and another chain of scientists, accompanied with some happy
coincidences, leading up to the famous meeting in Neuchâtel (1837), to overthrow the
established theory of the major flood. The new chain of the glacial Swiss apostles
started with Jean Pierre Perraudin, who put a lot of effort into finding a sympathetic
ear for his observations of the Alpine glaciers. He eventually succeeded in doing so,
and onward started the fundamental association between the ice-age research pioneers:
Ignaz Venetz, Jean de Charpentier, and above all, Louis Agassiz. Venetz was the first to
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Figure 1.1: The beginning of La Mer de Glace: one of the largest persisting glaciers in
the Alps, extending nearly 5.6 km to the north of Mont Blanc near Chamonix, France.
Lateral and medial moraines have clearly developed as the glacier retreats, and it does
so by 30 ∼ 40 meters per year, losing 4 to 5 meters in thickness. Photograph from
personal library, taken in July, 2021.

bring up the topic of glaciers at the Swiss Society of Natural Sciences at Bern (1816),
though he did so only to present new ideas on glacial movement and to describe the
accumulation of moraines (Figure 1.1). His reluctance and patience to accept the theory
at first led de Charpentier with his remarkable scientific reasoning to delve deeper into
the theory and establish its proper foothold in the Swiss scientific community. But both
were humble scientists lacking the aggressiveness required for the theory’s triumph.
And it was exactly those elements that Agassiz offered with his extravagant lectures,
well established network, and frequent travels across the globe. His assertions about
the extent of the ice sheets grew more and more strong, forcing a heated debate among
the geological community. For instance, the great English geologist Charles Lyell, an
advocate of the great flood theory at the time, and later an influential convert wrote:
"Agassiz...has gone wild about glaciers. The whole of the great [Amazon] valley, down
to its mouth was filled by ice...[though] he does not pretend to have met with a single
glaciated pebble or polished rock." While a scientific clash was raging in Europe, Agassiz
moved to the United States, where the theory was welcomed with less aggression. By
the late 1860s, the theory of ice-ages had established a firm stronghold in both Europe
and America, with scattered voices of opposition arising every now and then, but none
being able to stand against the growing evidence of Agassiz’ theory. A new scientific
world has indeed emerged.
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1.1.2 The rotational history of the Earth and some of its vexing
problems

It is currently well established that the Earth’s rotation has forever been in a continuously
evolving state, with variability occurring on timescales that extend over the whole span
from days to millions of years. Such variations are mainly quantified in terms of
changes in the rate of rotation about the instantaneous spin axis (variations in the length
of day - LOD hereafter), changes in the orientation of the spin axis relative to an outer
reference frame (obliquity, axial precession, and nutation variations), and changes in
the orientation of the spin axis relative to the surface geography (henceforth true polar
wander, TPW).

A whole myriad of interconnected mechanisms and processes contribute to this multi-
variate evolution (Peltier, 2015). On relatively short daily to annual timescales, LOD
variations arise primarily due to angular momentum exchange between the Earth’s
solid, oceanic, and atmospheric counterparts (Hide et al., 1980). On longer interannual
timescales, El Niño–Southern Oscillation events that occur upon the atmosphere-ocean
coupling across the equatorial Pacific region are associated with significant LOD vari-
ability excitations (Cox and Chao, 2002; Dickey et al., 2002). These signals are now
confirmed with Very-Long Baseline Interferometry (VLBI) observations, and are ac-
companied with measurements from the global positioning system (GPS). The afore-
mentioned signals can be explained by angular momentum exchange computations in
global circulation models in the atmosphere and the ocean. However, a residual in-
terdecadal signal requires additional angular momentum exchange that is attributed to
core-mantle coupling (Holme, 2007; Duan and Huang, 2020).

On comparable timescales, various wobbles of annual and decadal (quasi-)periodicities
were also identified. For example, the Chandler wobble, occurring with a period
of about 14 months, involves angular displacement of the pole ranging between 100
and 200 milliarcseconds (mas) (Dahlen and Smith, 1975; Gross, 2000). However,
identifying the exact excitation mechanism behind this wobble has been the subject of
several studies as it turned out to be greatly elusive (Wahr, 1983; Jault and Le Mouël,
1993; Gross, 2000). The Markowitz wobble, with decadal periodicity, is associated with
polar displacements of amplitude around 30 mas (Dickman, 1981). Over millennial
timescales, both the Earth’s spin rate and orientation exhibit apparent secular variations
that are induced primarily by the last ice age, namely the late Pleistocene cycle of
glaciation and deglaciation (Peltier, 1983). Consequently, a secular drift in the polar
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position of ∼ 0.98◦Myr−1 with a rate of ∼ 3.5 mas yr−1 is measured (Argus and Gross,
2004). These variations are brought about through the process of glacial isostatic
adjustment (GIA), which we expand on in the following sections of this chapter.

Quantitatively, these variations satisfy the classical Euler equation for the conservation
of angular momentum of a body subject to external torques T𝑖:

𝑑

𝑑𝑡
(𝐼𝑖 𝑗 𝜔 𝑗 ) + 𝜀𝑖 𝑗 𝑘 𝜔 𝑗 𝐼𝑘𝑙 𝜔𝑙 = T𝑖, (1.1)

where 𝐼𝑖 𝑗 are elements of the the inertia tensor, 𝜀𝑖 𝑗 𝑘 is the Levi-Civita alternating tensor,
and 𝜔 𝑗 are the Cartesian components of the angular velocity vector. This equation is
often linearized and solved for small perturbations in the inertia components Δ𝐼𝑖 𝑗 and
velocity components 𝑚𝑖 such that:

𝐼11 = 𝐴 + Δ𝐼11

𝐼22 = 𝐵 + Δ𝐼22

𝐼33 = 𝐶 + Δ𝐼33

𝐼𝑖 𝑗 = Δ𝐼𝑖 𝑗 , 𝑖 ≠ 𝑗

𝜔𝑖 = Ω(𝛿𝑖3 + 𝑚𝑖), 𝑚𝑖 = 𝜔𝑖/Ω, (1.2)

where the angular velocityΩ is that of the steady unperturbed rotation, while 𝐴, 𝐵, and𝐶
are the principal moments of inertia. Substitution of these perturbations into the angular
momentum conservation gives the so-called linearized Liouville equations ( e.g., Munk
and MacDonald, 1960; Peltier, 2015):

𝑑𝑚1
𝑑𝑡

+ 𝐶 − 𝐴
𝐴

Ω𝑚2 = Ψ1 , (1.3)

𝑑𝑚2
𝑑𝑡

+ 𝐶 − 𝐴
𝐵

Ω𝑚1 = Ψ2 , (1.4)

𝑑𝑚3
𝑑𝑡

= Ψ3 , (1.5)

where Ψ𝑖 are the so-called ‘excitation functions’, which are functions of the external
torques T𝑖 and the quantities Δ𝐼𝑖 𝑗 , and are thus a combination of both external and
internal perturbations. Eqs. (1.3) and (1.4) are used to trace the polar wander, while
Eq. (1.5) is used to trace the evolution of the LOD. Ignoring any external torque, the
variability of the LOD is driven by the changing axial component of the moment of
inertia of the solid Earth, an influence that is generally observed on Earth in terms of
the parameter ¤𝐽2. The latter is the time derivative of 𝐽2, the non-dimensional degree 2,
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order 0 coefficient in the spherical harmonic expansion of the gravitational potential of
the Earth, or as often called the second zonal harmonic given by

𝐽2 =
𝐶 − (𝐴 + 𝐵)/2

𝑅2
E𝑀E

. (1.6)

Here 𝑅E and 𝑀E are the radius and the mass of the Earth. The relation between ¤𝐽2 and
variations in the rotational velocity of the Earth, and consequently the LOD, is expressed
as:

¤𝐽2 =
3
2

𝐶

𝑅2
E𝑀E

𝑑𝑚3
𝑑𝑡

. (1.7)

Of specific interest to us in this context is computing the variation of the Earth’s dy-
namical ellipticity, or ellipsoidal flattening, 𝐻, over the long timescales associated with
glacial cycles. For the Earth, 𝐻 is estimated to be around 1/299.8 (Chambat et al.,
2010), and is primarily a property of the mass distribution resulting from the hydrostatic
competition between the dominant gravitational force and the weaker centrifugal force.
It is related to the second zonal harmonic by

𝐻 =
𝑅2

E𝑀E

𝐶
𝐽2 =

𝐶 − (𝐴 + 𝐵)/2
𝐶

. (1.8)

Modern observational inferences of this quantity report an excess in the flattening of
0.5%, which corresponds to a difference between the equatorial and polar radii that is
110 m larger than equilibrium (Stacey and Davis, 2008; Chambat et al., 2010). This
excess is also observed to be decreasing in an attempt of recovering the equilibrium figure
(Cox and Chao, 2002). Mechanisms driving this excess vary in nature, magnitude, and
time-scales as we described above. They range from astronomical forcing leading to
a variation in the gravitational potential between the equator and the poles and tidal
friction, to geophysical mechanisms pertaining to surface and internal adjustment in
response to the mantle heterogeneity or to surface loading. The net outcome is altering
the Earth’s rotational motion and consequently the Milankovitch band cyclicity in proxy
records (Peltier, 1983; Laskar et al., 1993a; Levrard and Laskar, 2003; Stephenson,
2008).

As a measure of the difference between the polar and equatorial moments of inertia,
the dynamical ellipticity is a very significant parameter in astronomical and geophysical
studies, and the difficulty in computing its present value or tracing its history over
geological timescales poses several problems and enigmas on which we expand further
in what follows.
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• The role played by 𝐻 in TPW determination

The Earth’s background dynamical ellipticity, which was traditionally equated with
the hydrostatic equilibrium ellipticity, is a key element in computing polar motion in
response to glacial surface loading. When an ice sheet accumulates and loads the
Earth at the pole, two competing forces directly arise and alter the rotational motion
of the Earth: a force tipping the Earth to break the alignment between the glacial
load and the pole, and consequently between the equatorial plane and the elliptical
bulge; and another opposing force that acts on the bulge and tries to restore the Earth
to its initial configuration. This opposing force is completely dependent on how the
ellipticity of the Earth is modelled.

Namely, the background dynamical ellipticity 𝐻b is often expressed in terms of the
fluid tidal Love number 𝑘T,f

2 defined as (see Section 1.2.7 for a detailed definition of
the Love numbers):

𝐻b = 𝑘
T,f
2

𝑅5
E

3𝐺𝐶
Ω2, (1.9)

where𝐺 is the gravitational constant. In the traditional rotational stability theory (Wu
and Peltier, 1982), the fluid tidal Love number is the value the tidal Love number 𝑘T

2
takes in the limit of very long time, or identically, in the limit of the frequency 𝑠 going
to zero in the Laplace domain:

𝑘
T,f
2 = 𝑘T

2 (𝑡 = ∞) = 𝑘T
2 (𝑠 = 0). (1.10)

The background ellipticity implied by this approximation deviates from the observed
value on the order of 1%. When the traditional rotation theory of an ice age Earth
was developed (Wu and Peltier, 1982), it was well known that Eq. (1.10) is an ap-
proximation, but it was thought at the time that the induced inaccuracy is insignificant
when dealing with 1D Earth models. However, the insightful work of Nakada (2002)
presented perplexing results on predictions of present day TPW using the traditional
theory. The author showed that results generated using an Earth model with an
elastic lithosphere (the most common choice in Earth interior modelling), diverge
significantly from those obtained with a viscoelastic lithosphere with extremely high
viscosity. The rotational theory was later revised (Mitrovica et al., 2005), and it was
shown that the underlying sensitivity to minor variations in the background ellipticity
is due to an inherent instability introduced in the traditional theory (Matsuyama et al.,
2010; Mitrovica and Wahr, 2011). Specifically, in the traditional theory, the Earth
adjusts perfectly to changes in the orientation of the pole, losing memory of the initial
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state. The updated theory developed in Mitrovica et al. (2005) ties the background
ellipticity in the rotational stability computations to the observed value. Consequently,
this 1% inaccuracy in the background ellipticity induces a difference for present TPW
estimates between the traditional and revised theories by up to a factor of 4.

• The role played by geological constraints on 𝐻 in entangling viscosity inference

Astronomical calibration is now a well established method of tuning a wide va-
riety of climate proxy records such as isotopoic and elemental records, magnetic
susceptibility, and organic records to astronomical solutions (Laskar et al., 1993a,
2004, 2011a; Gradstein et al., 2020). This method often allows the conversion of
such depth-dependent records to time-dependent series, and it has been applied ex-
tensively to Cenozoic records (see e.g., Hilgen et al., 2012, 2015; Hinnov, 2018). The
accuracy of this procedure is dependent on several factors, including the stability of
the astronomical frequencies (especially the precession and obliquity bands), and the
availability of some well dated points such as magnetic reversals. As we will discuss
in the next section, the Milankovitch frequencies are functions of the dynamical el-
lipticity and the Earth-Moon tidal dissipation. As such, given our inability to directly
measure the evolution of these two quantities in the past, palaeoclimatic records have
been used to constrain their possible variation. For example, Lourens et al. (2001)
obtained a depth-dependent series of titanium-aluminum ratios using core drilling in
the Mediterranean (ODP Site 967). Upon calibration with the astronomical solutions,
and by varying the dynamical ellipticity and tidal dissipation, they concluded that the
relative perturbation - in the non-hydrostatic component - of the dynamical ellipticity
over the last 3 Myr falls inside [-0.03%,+0.03%]. Similarly, Pälike and Shackleton
(2000) constructed a magnetic susceptibility record from the Ceara Rise (ODP Leg
154), and concluded that the perturbation is bounded within [-0.01%,0.04%] over the
last 25 Myr.

The obvious consistency between these independently imposed bounds is misleading,
simply because the constrains are imposed over different time scales. In particular,
the variation of 𝐻 over the last 3 Myr is dominated by GIA, while over longer time
intervals in the past it was dominated by mantle convection (Forte and Mitrovica, 1997;
Ghelichkhan et al., 2021; Farhat et al., 2022b). These two geophysical processes are
highly dependent on the internal viscosity profile of the Earth. By a suite of numerical
experiments of GIA and mantle convection, Morrow et al. (2012) investigated the
following question: what depth-dependent viscosity profile(s) of the Earth’s interior
would predict ellipticity variations that simultaneously match the two geologically
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suggested bounds? Their results defined an enigma, in which no mantle viscosity
profile can reconcile the two bounds over the two separate time intervals. Namely,
GIA requires a relatively weak lower-mantle viscosity to satisfy the bound of Lourens
et al. (2001), while a highly viscous lower mantle is required to match the bounds of
Pälike and Shackleton (2000). As such, if taken for granted, geological constraints on
𝐻 revive the possibility of the mantle viscosity being transient, i.e., the viscoelastic
response of the Earth being dependent on the forcing timescale; a possibility explored
for example in Sabadini et al. (1985), and abandoned later after overwhelming evidence
in the literature of matching GIA byproduct observables with simpler viscosity models
(e.g., Mitrovica and Forte, 2004; Roy and Peltier, 2017). However, as we shall see next,
the effects of the dynamical ellipticity and tidal dissipation variations on Milankovitch
cyclicities are interchangeable. Thus, tidal dissipation could have varied over 25 Ma
in such a way to reconcile the two bounds, given, again, that the two bounds are taken
at face value.
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• The role played by the unconstrained history of 𝐻 in limiting our astronomical solu-
tions

The extended triumph of the Milankovitch theory of paleoclimates relies on the possi-
bility of obtaining accurate solutions for the motion of the Earth over several millions
of years. At present, reliable orbital solutions have been obtained for the solar system
over about 50 Myr (Laskar et al., 2004, 2011a), and we know that extending the
validity of the solution beyond this limit is hindered by the chaotic behaviour of the
solar system (Laskar, 1989; Laskar et al., 2011b; Hoang et al., 2021). In contrast, the
validity of the precession and obliquity solutions of the Earth is much more limited, to
about 10 − 20 Myr (Laskar et al., 2004). This is due to several uncertainties that arise
in the computation of the past rotational evolution of the Earth; the unconstrained
history of the dynamical ellipticity being one of them, and here we expand on this in
greater detail.

The independent canonical variables well suited to describe the rotational motion
of the Earth are the Andoyer action-angle variables, with (𝐿, 𝑋) being the action
variables, and (ℓ,−𝜓) their conjugate angles (Kinoshita, 1977). Using these variables
and applying the gyroscopic approximation removes two of the six degrees of freedom
necessary for the complete determination of the Earth’s rotational dynamics, greatly
simplifying the problem. This leaves us with: 𝐿 = 𝐶Ω, the magnitude of the rotational
angular momentum of the Earth; 𝑋 = 𝐿 cos 𝜀, the projection of the angular momentum
on the normal to the ecliptic, 𝜀 being the Earth’s obliquity; ℓ, the hour angle between
the equinox of a reference ecliptic and a fixed point of the equator; whereas −𝜓 is the
opposite of the general precession angle. We refer the interested reader to the works
of Kinoshita (1977), Laskar (1986, 1996), and Neron de Surgy and Laskar (1997) for
a full development of the Hamiltonian dynamical formulation in these variables, and
we brief here on what is necessary for the purpose of our work. The Hamiltonian H
describing the rotational motion of the Earth, which combines the rotational kinetic
energy of the Earth, the potential energy of the torque exerted by the Sun and the
Moon on the equatorial bulge of the Earth, and the gravitational perturbations of the
other planets reads

H =
𝐿2

2𝐶
− 𝛼

2
𝑋2

𝐿
+ 2C(𝑡)𝑋 − 𝐿

√︁
1 − (𝑋/𝐿)2 [A(𝑡) sin𝜓 + B(𝑡) cos𝜓] . (1.11)
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Here we use the time dependent functions (Laskar, 1986)

A(𝑡) = 2√︁
1 − 𝑝2 − 𝑞2

[ ¤𝑞 + 𝑝(𝑞 ¤𝑝 − 𝑝 ¤𝑞)] , (1.12)

B(𝑡) = 2√︁
1 − 𝑝2 − 𝑞2

[ ¤𝑝 + 𝑞(𝑞 ¤𝑝 − 𝑝 ¤𝑞)] , (1.13)

C(𝑡) = 𝑞 ¤𝑝 − 𝑝 ¤𝑞, (1.14)

with 𝑞 = sin(𝑖E/2) cosΩE and 𝑝 = sin(𝑖E/2) sinΩE; 𝑖E and ΩE being the orbital
inclination and longitude of the ascending node of the Earth respectively. With these
definitions, the functions A,B, and C describe the secular evolution of the orbit of
the Earth driven by the gravitational perturbations of the other planets. Lastly, the
precession "constant"2 𝛼 is defined as

𝛼 =
3𝐻
2Ω

(
𝑛2

M𝑚M

(1 − 𝑒2
M)3/2

(
1 − 3

2
sin2 𝑖M

)
+

𝑛2
⊙𝑚⊙

(1 − 𝑒2
⊙)3/2

)
, (1.15)

where𝑚M and𝑚⊙ are the masses of the Moon and the Sun respectively, 𝑛M and 𝑛⊙ are
their mean motions, 𝑒M and 𝑒⊙ are their orbital eccentricities, while 𝑖M is the orbital
inclination of the Moon. The Hamiltonian canonical equations 𝑑𝑋/𝑑𝑡 = 𝜕H/𝜕𝜓 and
𝑑𝜓/𝑑𝑡 = −𝜕H/𝜕𝑋 would then give the precession equations in the form (Laskar,
1986; Laskar et al., 1993a,b)

𝑑𝑋

𝑑𝑡
= −𝐿

√︁
1 − (𝑋/𝐿)2 [A(𝑡) cos𝜓 − B(𝑡) sin𝜓], (1.16)

𝑑𝜓

𝑑𝑡
= 𝛼

𝑋

𝐿
− 𝑋

𝐿
√︁

1 − (𝑋/𝐿)2
[A(𝑡) cos𝜓 + B(𝑡) sin𝜓] − 2C(𝑡). (1.17)

Evidently, it is exactly within 𝛼where uncertainties in the dynamical ellipticity and the
tidal history of the Earth-Moon system propagate to limit our astronomical solutions
laid down by H , specifically through the parameters 𝐻,Ω, and 𝑛M, and to a lesser
degree 𝑒M and 𝑖M (see for e.g. Section 9.2 in Laskar et al., 2004). Moreover,
the fact that the signature of the past variation of the dynamical ellipticity and the
orbital parameters of the Earth-Moon system are interchangeable makes it difficult
to decipher their histories in geological records. Namely, as we mentioned in the
previous section, variations in the LOD can compensate for variations in 𝐻, and vice
versa. This degeneracy leads to questioning the geological constraints of Pälike and

2as this quantity is certainly not a constant, we added the quotations to emphasize that this traditionally
used description is misleading.
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Shackleton (2000) and Lourens et al. (2001) described earlier, and calls for more
accurate modelling of the Earth-Moon geophysical and astronomical history.

Besides the uncertainty that 𝐻 imposes on the rotational solution, variations in 𝐻
can force the Earth into rotational resonances. A quasi-periodic decomposition of
the perturbation function A(𝑡) + 𝑖B(𝑡) into 𝑁 modes of amplitudes, frequencies, and
phases 𝛼𝑘 , 𝜈𝑘 , and 𝜙𝑘 respectively, allows us to writeH as (Laskar and Robutel, 1993):

H =
𝐿2

2𝐶
− 𝛼

2
𝑋2

𝐿
+ 2C(𝑡)𝑋 − 𝐿

√︁
1 − (𝑋/𝐿)2

𝑁∑︁
𝑘=1

𝛼𝑘 sin[𝜈𝑘 𝑡 + 𝜙𝑘 + 𝜓] . (1.18)

This expression is identical to the Hamiltonian of an oscillator with frequency 𝛼 cos 𝜀0,
perturbed by a small amplitude quasi-periodic external forcing term. A resonance is
thus encountered when the Earth’s precession frequency ¤𝜓 ≈ 𝛼 cos 𝜀0 = 50.47 arcsec/yr
is equal in magnitude and opposite in sign to one of the frequencies 𝜈𝑘 . In fact, the
quasi-periodic decomposition of A(𝑡) + 𝑖B(𝑡) reveals that a periodic term of small
amplitude, related to the contributions of Jupiter and Saturn and labeled 𝑠6 − 𝑔6 + 𝑔5,
is characterized by a frequency 𝜈23 = −50.33 arcsec/yr (Laskar et al., 1993a, 2004).
This suggests that variations in the precession frequency ¤𝜓, propagating from varia-
tions in the dynamical ellipticity 𝐻 through the precession "constant" 𝛼, can impose
a rotational resonance. This scenario was examined parametrically by Laskar et al.
(1993a) who found that a perturbation in 𝐻 of −0.223% relative to the present value
suffices to encounter such a resonance, forcing a significant obliquity increase of about
0.5 degrees (see Figure 9 of Laskar et al. 1993a).

In the rest of this chapter, we focus on computing the variation of the dynamical ellipticity
during an ice age, where cycles of glaciation and deglaciation exert a varying surface
load upon the Earth’s lithosphere due to the movement of water between the ice caps and
the oceans. This load forces the Earth to deform by subsiding under the growing load and
rebounding upon its decay. However, this deformation is constrained by re-establishing
an equilibrium between the deformation of the lithosphere and the underlying mantle; a
state that is classically coined as isostatic equilibrium. Thus GIA describes the process
of isostatic deformation due to ice and water surface loading variation. As a result
of glaciation, surface mass is transferred into the poles and the dynamical ellipticity
is reduced. This direct effect of glaciation is partially compensated by the delayed
effect of GIA attempting to re-balance the inertia budget. The opposite occurs during
deglaciation periods.
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The influence of recent glacial cycles on the dynamical ellipticity have been first ad-
dressed outside the scope of GIA using simplified models of surface loading on a rigid
Earth (Berger, 1988; Thomson, 1990; Dehant et al., 1990). The results are upper bound
limits that cannot be attained in the context of a realistic Earth model, but were sufficient
to the community at that time. More elaborate and meticulous approaches to the problem
were motivated by the analysis of Laskar et al. (1993a) suggesting the resonance crossing
with Jupiter and Saturn described above. This called for a sequence of works that used
climatic proxy records over the past million years to constrain the glacial surface loading
and the developed theory of the viscoelastic response of the Earth (Peltier and Jiang,
1994; Mitrovica and Forte, 1995; Mitrovica et al., 1997). All studies concluded with the
unlikelihood of occurrence of the resonance. The problem was recently addressed again
covering the past three million years corresponding to the interval of maximum glacial
volumetric loading and continental spread over the surface of the Earth (Ghelichkhan
et al., 2021). We attempt in what follows to trace 𝐻 over an extended period of the
Cenozoic.

1.2 Viscoelastic relaxation theory

In this section, we present the theoretical and numerical recipes upon which we construct
the viscoelastic structure and behavior of the Earth, along with its response to surface
loading, quantified by the famous Love numbers, and leading to our computation of the
dynamical ellipticity. This section can be considered as a manifestation of our evolving
understanding of the problem as we undertook the first foray, a rather vigilant one, into
the realm of geophysics. Thus this formulation extends a lineage of studies on the topic,
and an impatient reader who is familiar with the theory can refer directly to Section
1.2.7. We based the following conspectus on the works of Peltier (1974), Peltier and
Andrews (1976), Sabadini and Peltier (1981), Wu and Peltier (1982), Peltier (1985), Wu
and Ni (1996), Vermeersen and Sabadini (1997a), and heavily on the carefully laid out
monograph of Sabadini et al. (2016).

1.2.1 Momentum and Poisson equations

We start by describing the response of a self-gravitating planetary model to external
forces. Aiming at the long time-scale processes, we can neglect inertial forces and
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establish linear momentum conservation by balancing out the force per unit volume ®𝐹
acting on an infinitesimal element in a continuum body and the stress 𝜎 acting at the
surface of the element, namely

∇ · σ + ®𝐹 = 0, (1.19)

where the force ®𝐹 can account for gravitation due to the Earth, internal loads, surface
loads, tidal forces of external bodies, centrifugal effect, seismic forcing, etc... We
decompose this combination of effects into a family of non-conservative forces ®𝐹nc

and a family of conservative forces ®𝐹c. The non-conservative part mostly accounts for
seismic forcing, internal loads, or the effect of discontinuities in the displacement across
fault planes upon earthquakes (Smylie and Mansinha, 1971). The conservative part is
expressed as a gradient of the total potential 𝜙:

®𝐹c = −(𝜌E + 𝜌L)∇𝜙, (1.20)

where the densities are those of the Earth, 𝜌E, and an external load at the surface of the
Earth, 𝜌L, and the potential 𝜙 is the sum of all the possibly felt potentials, thus

𝜙 = 𝜙E + 𝜙L + 𝜙T + 𝜙C, (1.21)

where 𝜙E is the gravitational potential of the Earth, 𝜙L is that of the load, 𝜙T is the tidal
potential, and 𝜙C is the centrifugal potential. Each of these potentials satisfies its own
Poisson equation,

∇2𝜙E = 4𝜋𝐺𝜌E,

∇2𝜙L = 4𝜋𝐺𝜌L,

∇2𝜙T = 4𝜋𝐺𝜌T,

∇2𝜙C = −2Ω2. (1.22)

Here 𝜌T is the density of the tidally forcing external object, while the centrifugal potential
at a position vector ®𝑟 due to the Earth’s rotation with angular velocity 𝛀 is

𝜙𝐶 =
1
2
[
(𝛀 · ®𝑟)2 − (Ω𝑟)2] . (1.23)

With these definitions we can construct our initial system that needs to be solved. It
describes the response of the Earth, as a continuum body, to external forces using both
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the momentum conservation equation Eq. (1.19) and the total Poisson equation given by

∇2𝜙 = 4𝜋𝐺 (𝜌E + 𝜌L + 𝜌T) − 2Ω2. (1.24)

The momentum equation should be solved over the volume of the Earth, while the
Poisson equation is to be solved over full space. Adopting the Lagrangian specification
of the deformation, each particle in the continuum body will be tracked by a position
vector

®𝑟 = ®𝑟0 + ®𝑟1(®𝑟0, 𝑡). (1.25)

Following the work of Wolf (1991), any field 𝑓 under study can be decomposed into
local and material incremental parts such that

𝑓 (®𝑟, 𝑡) = 𝑓0(®𝑟) + 𝑓 Δ(®𝑟, 𝑡),

𝑓 (®𝑟, 𝑡) = 𝑓0(®𝑥) + 𝑓 𝛿 (®𝑟, 𝑡), (1.26)

where the local field 𝑓 Δ is the increment of the field at a certain position ®𝑟 with respect
to the initial field 𝑓0 at the same position. In contrast, the material field 𝑓 𝛿 is the
increment of the field at ®𝑟 with respect to the initial field at the position ®𝑥, the initial
position of the particle before moving to ®𝑟. Clearly, the only difference between the two
incremental fields is the difference between the initial fields evaluated at the initial and
current positions of the tested particle, a difference that results in the so-called advective
field

𝑓 𝛿 = 𝑓 Δ + ®𝑟1 ·∇ 𝑓0. (1.27)

To model deformation, we assume that the body is initially in a non-rotating hydrostatic
equilibrium, thus the initial hydrostatic stress is expressed as

σ0 = −𝑝0I , (1.28)

with I being the identity tensor, and 𝑝0 the initial hydrostatic pressure. In this state, the
Poisson equation is simply

∇2𝜙0 = 4𝜋𝐺𝜌0. (1.29)

Enforcing momentum conservation, we get the condition for the non-rotating hydrostatic
equilibrium state as

−∇𝑝0 − 𝜌0∇𝜙0 = ®0. (1.30)
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Now that the initial state is fully described, we are fully geared to perturb the system by
introducing stress as a material increment such that

σ(®𝑟, 𝑡) = −𝑝0(®𝑥) ®𝐼 + σ𝛿 (®𝑥, 𝑡). (1.31)

On the other hand, the natural choice for the description of the potential perturbations is
that of local increments; we then have:

𝜙(®𝑟, 𝑡) = 𝜙0(®𝑡) + 𝜙Δ(®𝑟, 𝑡),

𝜌(®𝑟, 𝑡) = 𝜌0(®𝑡) + 𝜌Δ(®𝑟, 𝑡). (1.32)

Substituting the perturbed quantities in the momentum and Poisson equations, then
cancelling equilibrium terms while keeping first-order perturbations, we obtain the
incremental momentum and Poisson equations in the form:

∇ · σ𝛿 +∇(®𝑟1 ·∇𝑝0) − 𝜌Δ∇𝜙0 − 𝜌0∇𝜙Δ − 𝜌L∇𝜙0 + ®𝐹nc = ®0,

∇2𝜙Δ = 4𝜋𝐺 (𝜌Δ + 𝜌L + 𝜌T) − 2Ω2. (1.33)

This system describes the quasi-static limit of the perturbed momentum conservation
equation in which stresses are applied over long timescales such that the system evolves
in an inertia-free fashion. Each of the terms in the momentum equation is physically
understood as follows:

i) The first term, ∇ · σ𝛿, describes the material incremental stress as established
earlier.

ii) The second term,∇(®𝑟1 ·∇𝑝0), accounts for the advection of the initial hydrostatic
pressure (the difference between incremental and material fields (Eq. 1.27) after
the initial hydrostatic equilibrium condition of Eq. (1.30) is applied at the position
®𝑟. It is an essential term shown by Love (1911) to be absolutely critical for
the description of processes of the free elastic gravitational oscillations of the
planet. As shown in Peltier and Andrews (1976), it plays a significant role in the
viscoelastic field theory by ensuring that the boundary conditions on the surface
of the planet are met.

iii) The third term, 𝜌Δ∇𝜙0, describes buoyancy forces as a result of density changes.

iv) The fourth term, 𝜌0∇𝜙Δ, describes the gravitational perturbations.
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v) The fifth term, 𝜌L∇𝜙0, accounts for the weight of the surface load.

vi) The sixth term, ®𝐹nc, accounts for the non-conservative forces.

The coupling of the momentum and Poisson equations is controlled, at first, by the
self-consistency of the incremental potential 𝜙Δ and the incremental density 𝜌Δ. This
coupling is imposed by the continuity equation of mass

𝜌Δ = −∇ · (𝜌0®𝑟1) = −𝜌0Δ − ®𝑟1 ·∇𝜌0, (1.34)

where we denote by Δ the volume changes of the particle, namely:

Δ = ∇ · ®𝑟1. (1.35)

The first term on the right hand side of the mass continuity equation (1.34) refers to
density perturbation due to volume variations of the particle, while the second term
represents the advection of the initial density field. Compared to the advection effect
equation, this equation ensures that

𝜌𝛿 = −𝜌0Δ. (1.36)

1.2.2 Expanding the governing system in spherical harmonics

Considering that the Earth is composed of multiple concentric layers with a central
core, a single or multiple layers representing the mantle, and a lithosphere just below
the surface, each layer is to be characterized by a constant value of density 𝜌, rigidity
𝜇, elasticity 𝜆, and consequently a bulk modulus 𝜅. At the boundaries between the
layers, the parameters will have a step-function like variation. We consider no lateral
variations in the parameters, so all the parameters are only depth-dependent. We use
a spherical reference frame with an origin at the center of the Earth and with the
coordinates (𝑟, 𝜃, 𝜓) measuring respectively the radial separation form the center, the
co-latitude, and the longitude, with (r̂, θ̂, ψ̂) denoting the respective unit vectors. The
three–dimensional gradient operator is defined as:

∇ = r̂𝜕𝑟 +
1
𝑟
∇s, (1.37)
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where the surface gradient operator ∇s is expressed as:

∇s = θ̂𝜕𝜃 + ψ̂
1

sin 𝜃
𝜕𝜓 . (1.38)

The divergence of a vector ®𝑢 then becomes

∇ · ®𝑢 = 𝜕𝑟𝑢𝑟 +
2
𝑟
𝑢𝑟 +

1
𝑟
𝜕𝜃𝑢𝜃 +

cot 𝜃
𝑟
𝑢𝜃 +

1
𝑟 sin 𝜃

𝜕𝜓𝑢𝜓 , (1.39)

and the Laplacian is written as:

∇2 = 𝜕2
𝑟 +

2
𝑟
𝜕𝑟 +

1
𝑟2

(
𝜕2
𝜃 + cot 𝜃𝜕𝜃 +

1
sin2 𝜃

𝜕2
𝜓

)
. (1.40)

Considering only the radial dependence of the initial density, potential, pressure, and
their gradients, the incremental Poisson and momentum equations become

∇ · σ𝛿 − 𝜌0∇(𝑔®𝑟1 · r̂) + 𝜌0𝑔Δr̂ − 𝜌0∇𝜙Δ − 𝜌L𝑔r̂ + ®𝐹nc = ®0, (1.41)

∇2𝜙Δ = −4𝜋𝐺 (𝜌0Δ + 𝜕𝑟𝜌0®𝑟1 · r̂) + 4𝜋𝐺 (𝜌L + 𝜌T) − 2𝜔2. (1.42)

We expand all the variables in spherical harmonics, starting with the incremental poten-
tial,

𝜙Δ(𝑟, 𝜃, 𝜓) =
∑︁
𝑙𝑚

Φ𝑙𝑚 (𝑟)𝑌𝑙𝑚 (𝜃, 𝜓). (1.43)

Hereafter, we reduce the double summation
∑∞
𝑙=0

∑𝑙
𝑚=−𝑙 to the notation

∑
𝑙𝑚. The dis-

placement on the other hand is first decomposed into a sum of spheroidal displacements,
®𝑟S, and toroidal displacements, ®𝑟T, such that

®𝑟S(®𝑟) =
∑︁
𝑙𝑚

𝑈𝑙𝑚 (𝑟) ®𝑅𝑙𝑚 (𝜃, 𝜓) +𝑉𝑙𝑚 (𝑟) ®𝑆𝑙𝑚 (𝜃, 𝜓), (1.44)

®𝑟T(®𝑟) =
∑︁
𝑙𝑚

𝑊𝑙𝑚 (𝑟) ®𝑇𝑙𝑚 (𝜃, 𝜓). (1.45)

The spherical harmonic vectors are defined as:

®𝑅𝑙𝑚 = 𝑌𝑙𝑚r̂, (1.46)

®𝑆𝑙𝑚 = 𝑟∇𝑌𝑙𝑚 = 𝜕𝜃𝑌𝑙𝑚θ̂ + 1
sin 𝜃

𝜕𝜓𝑌𝑙𝑚ψ̂, (1.47)

®𝑇𝑙𝑚 = ∇× (®𝑟𝑌𝑙𝑚) =
1

sin 𝜃
𝜕𝜓𝑌𝑙𝑚θ̂ − 𝜕𝜃𝑌𝑙𝑚ψ̂, (1.48)
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where their coefficients Φ𝑙𝑚,𝑈𝑙𝑚, 𝑉𝑙𝑚 are referred to as the potential, radial, and tangen-
tial spheroidal displacements.

1.2.3 Linear rheology and the correspondence principle

The momentum (1.41) and Poisson (1.42) equations are to be supplemented by a third
constraint that relates how incremental stress and strain affect each other. We restrict our
study to the linear behavior as is the common tradition (e.g., Yuen and Peltier, 1982),
and we start with Hook’s law,

𝜎𝑖 𝑗 = 𝜆Δ𝛿𝑖 𝑗 + 2𝜇𝜖𝑖 𝑗 . (1.49)

Here we recall that 𝜎𝑖 𝑗 is the stress tensor, Δ represents the volume changes of the
particle (Eq. 1.35), 𝛿𝑖 𝑗 is the Kronecker delta function, and the shear modulus 𝜇 with
the elasticity 𝜆 are the two Lamé parameters. To describe the rheological behavior,
it’s sufficient to consider one of the Lamé parameters since the other will have similar
properties. Starting with

𝜎𝑖 𝑗 = 2𝜇𝜖𝑖 𝑗 , (1.50)

the strain tensor is defined as

ϵ =
1
2
[
∇ ⊗ ®𝑟1 + (∇ ⊗ ®𝑟1)𝑇

]
, (1.51)

where ⊗ stands for the algebraic product. This representation in dyadic formulation is
equivalent to the usual definition in terms of Cartesian components 𝑥𝑖 expressed as

𝜖𝑖 𝑗 =
1
2

(𝜕𝑟1𝑖
𝜕𝑥 𝑗

+
𝜕𝑟1 𝑗

𝜕𝑥𝑖

)
, (1.52)

Linear rheology defines the proportionality relation between tensors and their time
derivatives. For example, the rheological behavior of a particle in a continuous medium
is defined by

... + 𝑎2 ¥𝜎𝑖 𝑗 + 𝑎1 ¤𝜎𝑖 𝑗 + 𝑎0𝜎𝑖 𝑗 = 2𝜇(𝑏0𝜖𝑖 𝑗 + 𝑏1 ¤𝜖𝑖 𝑗 + 𝑏2 ¥𝜖𝑖 𝑗 + ...), (1.53)

where 𝑎, 𝑏 are constants. We can obtain the spectral form of such equations easily by
moving into the frequency domain via a Fourier or a Laplace transformation, thus we
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have(
... + (𝑖𝜔)2𝑎2 + (𝑖𝜔)𝑎1 + 𝑎0

)
𝜎𝑖 𝑗 (𝜔) = 2𝜇

(
... + (𝑖𝜔)2𝑏2 + (𝑖𝜔)𝑏1 + 𝑏0

)
𝜖𝑖 𝑗 (𝜔), (1.54)

which can be also written as:

𝜎𝑖 𝑗 (𝜔) = 2𝜇(𝜔)𝜖𝑖 𝑗 (𝜔), (1.55)

where
𝜇(𝜔) = 𝜇 ... + (𝑖𝜔)2𝑏2 + (𝑖𝜔)𝑏1 + 𝑏0

... + (𝑖𝜔)2𝑎2 + (𝑖𝜔)𝑎1 + 𝑎0
. (1.56)

The latter equation has the form of Hooke’s law, except that the components are now
functions of the frequency. If we decompose the latter equation into partial fractions as
in Legros et al. (2005), we obtain

𝜇(𝜔) = 𝜇
(
... + 𝑖𝜔𝛼1 + 𝛼2 +

∑︁
𝑛≥3

𝛼𝑛

𝑖𝜔 + 1
𝜏𝑛

)
, (1.57)

where 𝛼𝑛 is a function of 𝜏𝑛. The denominator has real roots 1/𝜏𝑛 with reciprocals
being the relaxation times of 𝜇(𝜔). As a particular case, the dependence with 𝜇(𝜔) = 𝜇
and 𝛼2 = 1 gives an elastic medium obeying Hooke’s law. However, if we consider the
dependence

𝜇(𝜔) = 𝜇𝛼1𝑖𝜔, (1.58)

and noting that 𝜇𝛼1 is the viscosity 𝜂, we obtain

𝜎𝑖 𝑗 (𝜔) = 2𝑖𝜂𝜔𝜖𝑖 𝑗 (𝜔), (1.59)

or in the time domain
𝜎𝑖 𝑗 (𝑡) = 2𝜂 ¤𝜖𝑖 𝑗 (𝑡). (1.60)

This equation describes the law of diffusion of velocity defining a Newtonian viscous
medium. Thus we have the two elementary components for rheological behaviours that
are traditionally depicted in the literature as a spring and a piston. In particular, the
Maxwell body has a stress-strain relation of the form:

𝜎𝑖 𝑗 = 2𝜇

[
𝑖𝜔

𝑖𝜔 + 𝜇

𝜂

]
. (1.61)
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Evidently, a Maxwell body reduces to an inviscid fluid for infinitely small frequencies,
and it becomes elastic at very large frequencies. Moreover, if the strain is described by
a Heaviside step function, i.e. 𝜖𝑖 𝑗 = 𝐻 (𝑡), then the relaxation process of the stress takes
the form:

𝜎𝑖 𝑗 (𝑡) = 2𝜇𝑒−
𝑡
𝜏𝐻 (𝑡), (1.62)

where
𝜏 = 𝜂/𝜇 (1.63)

is the so-called Maxwell time. Thus we can describe the transition from the elastic to
the Newtonian fluid limit behavior of the Earth by the timescale 𝜏. To explore further
the viscoelastic behavior of a Maxwell body, we now employ the Laplace transform
between the time and frequency domains. The Laplace transform of a function of time
𝑓 (𝑡) is defined by

L[ 𝑓 (𝑡)] =
∫ ∞

0
𝑓 (𝑡)𝑒−𝑠𝑡𝑑𝑡, (1.64)

where 𝑠 denotes the variable frequency. We denote by tilde above any function ( 𝑓 ) its
Laplace transform for brevity. Applying the Laplace transform to Eq. (1.62) and making
use of the definition of the stress tensor we get

σ𝛿 (𝑠) = 𝜆Δ̃(𝑠) ®𝐼 + 2�̃�(𝑠)ϵ̃(𝑠), (1.65)

where the frequency dependent rigidity is the classical Maxwellian rigidity function
defined as:

�̃�(𝑠) = 𝜇𝑠

𝑠 + 1/𝜏 . (1.66)

This sums up the beauty of the correspondence principle, which was first demonstrated
by Biot (1956). Comparing the stress-strain relation in the frequency domain with that
in the time domain, it is evident that they both have the same form. Thus to solve for
the viscoelastic response of the Earth, it suffices to solve the for elastic response in the
Laplace domain and then use the inverse Laplace transform to have the time-dependent
solutions.

That said, given the viscoelastic stress-strain relation of Eq. (1.65), we develop the
divergence of the stress using the definition of the strain in Eq. (1.51) to obtain

∇ · σ𝛿 = (𝜆 + 𝜇)∇Δ + 𝜕𝑟𝜆Δr̂ + 𝜇∇2®𝑟1 + 𝜕𝑟𝜇
(
2𝜕𝑟 ®𝑟1 + r̂ × (∇ × ®𝑟1)

)
, (1.67)

where we have used ∇𝜇 = 𝜕𝑟𝜇r̂ and ∇𝜆 = 𝜕𝑟𝜆r̂.
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1.2.4 Spheroidal deformations

Now we are equipped with all the tools needed to complete describing the viscoelastic
response. The volume change in this framework is decomposed into spherical harmonics,
namely:

Δ = ∇ · ®𝑟1 =
∑︁
𝑙𝑚

𝜒𝑙𝑚𝑌𝑙𝑚, (1.68)

where
𝜒𝑙𝑚 = 𝜕𝑟𝑈𝑙𝑚 + 2

𝑟
𝑈𝑙𝑚 − 𝑙 (𝑙 + 1)

𝑟
𝑉𝑙𝑚 . (1.69)

The components 𝑈,𝑉 are the previously defined radial and tangential spheroidal dis-
placements. We note that the toroidal displacement does not contribute to volume
changes, and it has no component along r̂. This means that the local incremental
density is only affected by spheroidal deformations such that

𝜌Δ = −𝜌0∇ · ®𝑟𝑆 − 𝜕𝑟𝜌0®𝑟𝑆 · r̂. (1.70)

Next we consider the spherical harmonic expansion of the material incremental stress
acting radially on the surface, and we use the Maxwell body in the Laplace domain
equation to obtain

σ𝛿 · r̂ = 𝜆Δr̂ + 𝜇[∇(®𝑟1.r̂) − (∇r̂) · ®𝑟1 + (r̂ ·∇)®𝑟1] . (1.71)

Substituting the spherical harmonic expansions of displacements and volume changes,
we have

σ𝛿 · r̂ =
∑︁
𝑙𝑚

[
𝑅𝑙𝑚 ®𝑅𝑙𝑚 + 𝑆𝑙𝑚 ®𝑆𝑙𝑚 + 𝑇𝑙𝑚 ®𝑇𝑙𝑚

]
, (1.72)

where the spherical harmonic coefficients are defined by:

𝑅𝑙𝑚 = 𝜆𝜒𝑙𝑚 + 2𝜇𝜕𝑟𝑈𝑙𝑚, (1.73)

𝑆𝑙𝑚 = 𝜇

(
𝜕𝑟𝑉𝑙𝑚 + 𝑈𝑙𝑚 −𝑉𝑙𝑚

𝑟

)
, (1.74)

𝑇𝑙𝑚 = 𝜇

(
𝜕𝑟𝑊𝑙𝑚 − 𝑊𝑙𝑚

𝑟

)
, (1.75)

and we refer to these coefficients as the radial (𝑅𝑙𝑚), tangential spheroidal (𝑆𝑙𝑚), and
toroidal stresses (𝑇𝑙𝑚). Using the expression of the divergence of the stress in Eq. (1.67),
along with the incremental material Poisson equation (Eq. 1.42), we get the following
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set of equations:

− 𝜌0𝜕𝑟Φ𝑙𝑚 − 𝜌0𝜕𝑟 (𝑔𝑈𝑙𝑚) + 𝜌0𝑔𝜒𝑙𝑚 + 𝜕𝑟 (𝜆𝜒𝑙𝑚 + 2𝜇𝜕𝑟𝑈𝑙𝑚) − 𝜌𝐿𝑙𝑚𝑔

+ 𝜇

𝑟2 [4𝑟𝜕𝑟𝑈𝑙𝑚 − 4𝑈𝑙𝑚 + 𝑙 (𝑙 + 1) (3𝑉𝑙𝑚 −𝑈𝑙𝑚 − 𝑟𝜕𝑟𝑉𝑙𝑚)] + 𝑓 𝑅𝑙𝑚 = 0, (1.76)

− 𝜌0
𝑟
𝑔𝑈𝑙𝑚 − 𝜌0

𝑟
Φ𝑙𝑚 + 𝜆

𝑟
𝜒𝑙𝑚 + 𝜕𝑟

[
𝜇
(
𝜕𝑟𝑉𝑙𝑚 + 1

𝑟
𝑈𝑙𝑚 − 1

𝑟
𝑉𝑙𝑚

) ]
+ 𝜇

𝑟2 [5𝑈𝑙𝑚 + 3𝑟𝜕𝑟𝑉𝑙𝑚 −𝑉𝑙𝑚 − 2𝑙 (𝑙 + 1)𝑉𝑙𝑚] + 𝑓 𝑆𝑙𝑚 = 0, (1.77)

𝜕𝑟
[
𝜇
(
𝜕𝑟𝑊𝑙𝑚 − 𝑊𝑙𝑚

𝑟

) ]
+ 𝜇

(3
𝑟
𝜕𝑟𝑊𝑙𝑚 − 1 + 𝑙 (𝑙 + 1)

𝑟2 𝑊𝑙𝑚

)
+ 𝑓 𝑇𝑙𝑚 = 0, (1.78)

∇2
𝑟Φ𝑙𝑚 = −4𝜋𝐺 (𝜌0𝜒𝑙𝑚 +𝑈𝑙𝑚𝜕𝑟𝜌0) + 4𝜋𝐺 (𝜌𝐿𝑙𝑚 + 𝜌𝑇𝑙𝑚). (1.79)

Here we have also decomposed the densities of the loads, 𝜌𝐿 , and the tidal forcing body,
𝜌𝑇 , along with the non-conservative forces, ®𝐹nc, into spherical harmonics. Namely,

𝜌𝐿 =
∑︁
𝑙𝑚

𝜌𝐿𝑙𝑚𝑌𝑙𝑚,

𝜌𝑇 =
∑︁
𝑙𝑚

𝜌𝑇𝑙𝑚𝑌𝑙𝑚,

®𝐹𝑛𝑐 =
∑︁
𝑙𝑚

( 𝑓 𝑅𝑙𝑚 ®𝑅𝑙𝑚 + 𝑓 𝑆𝑙𝑚
®𝑆𝑙𝑚 + 𝑓 𝑇𝑙𝑚

®𝑇𝑙𝑚). (1.80)

From the set of decomposed equations, we can clearly notice that the radial equation
(1.76), the tangential spheroidal equation (1.77), and the Poisson equation (1.79) are
decoupled from the toroidal equation (1.78), and thus they can be solved separately.
We also note that toroidal deformations are only driven by seismic forces, meaning that
surface loading, tidal forcing, and centrifugal effects only drive spheroidal deformations.
Furthermore, the 𝑙 = 0, 1 cases would require specific treatments, and they also do not
contribute to the surface loading problem at hand (Farrell, 1972; Greff-Lefftz, 2011). We
exploit this decoupling of the equations to focus only on spheroidal deformations. The
remaining equations (1.76,1.77, and 1.79) are re-casted into six first-order differential
equations that are well suitable for numerical integration given a specific model of the
Earth with certain constraints. The spheroidal 6-vector solution ®𝑦𝑙𝑚 is defined as

®𝑦𝑙𝑚 = (𝑈𝑙𝑚, 𝑉𝑙𝑚, 𝑅𝑙𝑚, 𝑆𝑙𝑚,Φ𝑙𝑚, 𝑄𝑙𝑚)𝑇 , (1.81)
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where the first two components,𝑈𝑙𝑚 and𝑉𝑙𝑚 are the radial and tangential displacements,
the third (𝑅𝑙𝑚) and the fourth (𝑆𝑙𝑚) are the radial and tangential stresses, the fifth (Φ𝑙𝑚)
is the potential, while the sixth (𝑄𝑙𝑚) is referred to as the "potential stress" defined by

𝑄𝑙𝑚 = 𝜕𝑟Φ𝑙𝑚 + 𝑙 + 1
𝑟

Φ𝑙𝑚 + 4𝜋𝐺𝜌0𝑈𝑙𝑚 . (1.82)

With this formulation, the system of differential equations is written in the form:

𝑑®𝑦𝑙𝑚 (𝑟)
𝑑𝑟

= ®𝐴𝑙 (𝑟) ®𝑦𝑙𝑚 (𝑟) − ®𝑓𝑙𝑚 (𝑟), (1.83)

where ®𝐴𝑙 (𝑟) is a 6 × 6 matrix given by (for 𝛽 = 𝜆 + 2𝜇):



−2
𝑟

𝜆

𝛽

𝑙 (𝑙 + 1)𝜆
𝑟𝛽

1
𝛽

0 0 0

−1
𝑟

1
𝑟

0
1
𝜇

0 0

4
𝑟

(3𝜅𝜇
𝑟𝛽

− 𝜌𝑔
) 𝑙 (𝑙 + 1)

𝑟

(
𝜌0𝑔 −

6𝜅𝜇
𝑟𝛽

)
−4𝜇
𝑟𝛽

𝑙 (𝑙 + 1)
𝑟

−𝜌0
𝑙 + 1
𝑟

𝜌0

1
𝑟

(
𝜌0𝑔 −

6𝜅𝜇
𝑟𝛽

) 2𝜇
𝑟2

[
𝑙 (𝑙 + 1) (1 + 𝜆

𝛽
) − 1

]
− 𝜆

𝑟𝛽
−3
𝑟

𝜌0
𝑟

0

−4𝜋𝐺𝜌0 0 0 0 − 𝑙 + 1
𝑟

1

−4𝜋𝐺𝜌0(𝑙 + 1)
𝑟

−4𝜋𝐺𝜌0𝑙 (𝑙 + 1)
𝑟

0 0 0
𝑙 − 1
𝑟



.

(1.84)

1.2.5 Boundary conditions

Solving the above system requires radial discretization depending on the used layered
model, and supplemented with proper boundary conditions at the bottom interface,
between intermediate interfaces, and at the surface. Suppose we have 𝑁 layers in
the used model, and 𝑟 𝑗 ( 𝑗 = 1..𝑁), moving from core to surface, are the radii at the
interfaces, with 𝑟1 being the core-mantle boundary, and 𝑟𝑁 being the radius of the Earth.
We can impose different types of boundary conditions on our system depending on the
level of complexity we want to employ, and on whether we have chemical compositional
differences, a compressible model, or a homogeneous incompressible model. Here
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we discuss boundary conditions on the surface, on the core-mantle boundary (CMB
hereafter), and on interfaces between the layers.

1.2.5.1 Core-Mantle boundary condition

We model the core as an inviscid fluid. As such, in the absence of 𝑚-dependent forcing
terms, the material incremental stress reads

σ𝛿 (®𝑟, 𝑡) = −𝑝𝛿 ®𝐼 = 𝜅Δ®𝐼, (1.85)

and the radial and tangential stresses are

𝑅𝑙 = 𝜅𝜒𝑙 ,

𝑆𝑙 = 0. (1.86)

The CMB is a free-slip boundary where the solid mantle can slip over the fluid core
without tangential stresses, hence the tangential displacement is set as a constant, and
the 6-vector solution (Eq. 1.81) at the boundary is written as:

®𝑦(𝑟+𝐶) =

©«

𝑈𝑙 (𝑟−𝐶)
0

𝑅𝑙 (𝑟−𝐶)
0

Φ𝑙 (𝑟−𝐶)
𝑄𝑙 (𝑟−𝐶)

ª®®®®®®®®®®®¬
+ 𝐶1

©«

0
1
0
0
0
0

ª®®®®®®®®®®®¬
. (1.87)

Following Wu and Peltier (1982), the fluid core can be regarded as a viscoelastic body
in the Laplace domain with frequency set to zero. We thus obtain the equations for the
momentum components,

𝜕𝑟𝑅𝑙

𝜌0
− 𝜕𝑟 (𝑔𝑈𝑙) + 𝑔𝜒𝑙 − 𝜕𝑟Φ𝑙 = 0, (1.88)

𝑅𝑙

𝜌0
− 𝑔𝑈𝑙 −Φ𝑙 = 0, (1.89)
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where forcing terms are omitted as they do not contribute at the core. Subtracting the
radial derivative of the second equation from the first equation we get

𝜅

𝜌2

(
𝜕𝑟𝜌0 +

𝜌0𝑔

𝜅

)
𝜒𝑙 . (1.90)

Eliminating the radial displacement and the volume changes from the Poisson equation,
we obtain

∇2
𝑟Φ𝑙 = 4𝜋𝐺𝜕𝑟𝜌0

Φ𝑙

𝑔
. (1.91)

The solution of this second order equation 𝜓𝑙 should satisfy a regularity condition at the
center, namely

lim
𝑟−→0

𝑟−𝑙𝜓𝑙 (𝑟) = 1. (1.92)

Thus the solution should be in the form

Φ𝑙 (𝑟) = 𝐶2𝜓𝑙 (𝑟), (1.93)

with 𝜓𝑙 satisfying the regularity condition around the center. Regarding the other
components of the solution, the above equations for the momentum components are not
linearly independent, so we restrict our attention to the radial stress such that

𝑅𝑙 = 𝜌0𝑔

[
𝑈𝑙 +

(Φ𝑙

𝑔

) ]
= 𝜌0𝑔𝐶3. (1.94)

This allows us to obtain the radial displacement,𝑈𝑙 , and the potential stress,𝑄𝑙 , in terms
of the constants of integration 𝐶2, 𝐶3, giving us:

𝑈𝑙 = −𝐶2
𝜓𝑙

𝑔
+ 𝐶3, (1.95)

𝑄𝑙 = 𝐶2𝑞𝑙 + 4𝜋𝐺𝜌0𝐶2, (1.96)

with 𝑞𝑙 defined as
𝑞𝑙 = 𝜕𝑟𝜓𝑙 +

𝑙 + 1
𝑟
𝜓𝑙 −

4𝜋𝐺𝜌0
𝑔

𝜓𝑙 . (1.97)
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With these solutions, the spheroidal vector solution at the CMB is written as ®𝑦𝑙 (𝑟1) =
®𝐼𝐶 ®𝐶, where the CMB matrix 𝐼𝐶 is defined by

®𝐼𝐶 =



−𝜓𝑙 (𝑟1)/𝑔(𝑟1) 0 1
0 1 0
0 0 𝑔(𝑟1)𝜌0(𝑟−1 )
0 0 0

𝜓𝑙 (𝑟1) 0 0
𝑞𝑙 (𝑟1) 0 4𝜋𝐺𝜌0(𝑟−1 )


. (1.98)

1.2.5.2 Surface boundary conditions

A complete analysis of the surface boundary conditions can be found in Sabadini et al.
(2016) and Vermeersen and Sabadini (1997a), and we shall only brief here the final
conditions for completeness. For the forcing of interest, the tangential stress 𝑆𝑙𝑚 is zero
at the Earth’s surface 𝑎 = 𝑟N = 𝑅E, while the radial and potential stresses, 𝑅𝑙 and 𝑄𝑙
respectively, are constrained. The full constraints are summarized in the form

®𝑃1®𝑦(𝑎−) = ®𝑏, (1.99)

where ®𝑃1 is the projector of the stresses from the 6-vector solution ®𝑦(𝑟), and ®𝑏 is a
3-vector defined as:

®𝑏 = 𝜎L
𝑙𝑚
®𝑏L +

[
ΦT
𝑙𝑚 (𝑎) +ΦC

𝑙𝑚 (𝑎)
] ®𝑏T, (1.100)

where

®𝑏L =

©«

− (2𝑙 + 1)𝑔(𝑎)
4𝜋𝑎2

0

− (2𝑙 + 1)𝐺
𝑎2

ª®®®®®®®®¬
, (1.101)

®𝑏T =

©«
0
0

2𝑙 + 1
𝑎

ª®®®®¬
. (1.102)
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1.2.6 The viscoelastic solution

The differential system of Eq. (1.83) is to be solved for each harmonic degree, except
for 𝑙 = 0, 1 as mentioned earlier, from the center of the Earth with proper boundary
conditions reaching the surface. Analytical solutions are found in the literature for the
component equations, mostly for a homogeneous Earth, while numerical solutions via
algorithms of numerical integration are more widely applicable for layered models. The
general solution of the differential system of Eq. (1.83) can be written as (e.g., Sabadini
et al., 2016)

®𝑦𝑙𝑚 = ®Π𝑙 (𝑟, 𝑟0) ®𝑦0 −
∫ 𝑟

𝑟0

®Π𝑙 (𝑟, 𝑟′) 𝑓𝑙𝑚 (𝑟′)𝑑𝑟′, (1.103)

where ®𝑦𝑙𝑚 (𝑟0) = ®𝑦0, and ®Π𝑙 is the so-called propagator matrix, a 6 × 6 matrix used for
solving the spheroidal deformation system. The propagator matrix satisfies the following
system:

𝑑 ®Π𝑙 (𝑟, 𝑟′)
𝑑𝑟

= ®𝐴𝑙 (𝑟) ®Π𝑙 (𝑟, 𝑟′). (1.104)

It is noteworthy that the propagator matrix follows a continuity constraint when crossing
an internal interface inside the Earth, thus allowing the continuation of integration
among layers. Namely:

®Π𝑙 (𝑟+𝑗 , 𝑟′) = ®Π𝑙 (𝑟−𝑗 , 𝑟′). (1.105)

Moreover, imposing the CMB conditions discussed earlier on the general solution, we
choose to start the integration at the top of the core, thus setting 𝑟0 = 𝑟+

𝐶
to obtain

®𝑦𝑙𝑚 (𝑟+𝐶) = ®𝑦0 = ®𝐼𝐶 ®𝐶. (1.106)

As such, the fill solution is re-written as

®𝑦𝑙𝑚 (𝑟) = ®Π𝑙 (𝑟, 𝑟+𝐶) ®𝐼𝐶 ®𝐶 − ®𝑤(𝑟), (1.107)

where the component ®𝑤(𝑟) is defined as

®𝑤(𝑟) =
∫ 𝑟

𝑟+
𝐶

®Π𝑙 (𝑟, 𝑟′) ®𝑓𝑙𝑚 (𝑟′)𝑑𝑟′. (1.108)

The three constants of integration in the vector ®𝐶 are to be estimated by imposing the
boundary conditions. At the surface we have

®𝑃1®𝑦𝑙𝑚 (𝑎) = ®𝑃1

[
Π𝑙 (𝑎, 𝑟𝐶) ®𝐼𝐶 ®𝐶 − ®𝑤(𝑎)

]
= ®𝑏. (1.109)
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Noting that only the internal loads and seismic forces contribute to the vector ®𝑤, we ignore
this element to find our spheroidal solution, though we keep it for now to establish a
general solution. Using the latter equation we write the vector of constants of integration
as

®𝐶 = ( ®𝑃1 ®Π𝑙 (𝑎, 𝑟𝐶) ®𝐼𝐶)−1( ®𝑃1 ®𝑤(𝑎) + ®𝑏). (1.110)

Hence in full generality, we write the solution of the elastic problem which determines
the spheroidal deformations and the perturbations of the potential within the Earth, as
well as stresses, all in response to internal loading, surface loading, tidal, centrifugal, or
seismic forcing, in the form given by

®𝑦𝑙𝑚 (𝑟) = ®Π𝑙 (𝑟, 𝑟𝐶) ®𝐼𝐶
[
®𝑃1 ®Π𝑙 (𝑎, 𝑟𝐶) ®𝐼𝐶

]−1 [
®𝑃1 ®𝑤(𝑎) + ®𝑏

]
− ®𝑤(𝑟). (1.111)

This general solution can be expressed analytically once we determine the CMB matrix,
®𝐼𝐶 , and the propagator matrix, ®Π𝑙 . The matrix ®𝐼𝐶 is by definition required to satisfy
the regularity condition for the viscoelastic solution as we approach the center of the
Earth. Assuming a uniform density core, the Poisson equation inside the core (Eq. 1.91)
becomes

∇2𝜓𝑙 = 0, (1.112)

admitting two independent solutions such that

𝜓𝑙 (𝑟) = 𝑐1𝑟
𝑙 + 𝑐2𝑟

−𝑙+1. (1.113)

The regularity condition eliminates the first term leaving us with the second. As such,
that the quantity 𝑞𝑙 defined in Eq. (1.97) becomes

𝑞𝑙 (𝑟) = 2(𝑙 − 1)𝑟 𝑙−1. (1.114)

Hence in the case of a homogeneous core, the general form of the CMB matrix in
Eq. (1.98) is rewritten as

®𝐼𝐶 =



−𝑟 𝑙/𝑔(𝑟𝐶) 0 1
0 1 0
0 0 𝑔(𝑟𝐶)𝜌0(𝑟𝐶)
0 0 0
𝑟 𝑙 0 0

2(𝑙 − 1)𝑟 𝑙−1 0 4𝜋𝐺𝜌0(𝑟𝐶)


. (1.115)
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To find the propagator matrices, we discretize the governing differential equation (1.83)
over the radially separated layers. It thus becomes

𝑑®𝑦𝑙 (𝑟)
𝑑𝑟

= ®𝐴𝑙 (𝑟) ®𝑦𝑙 (𝑟) for 𝑟 𝑗−1 < 𝑟 < 𝑟 𝑗 , (1.116)

with the proposed solution

®𝑦𝑙 (𝑟) = ®𝑌𝑙 (𝑟) ®𝐶 for 𝑟 𝑗−1 < 𝑟 < 𝑟 𝑗 . (1.117)

Here we denote by ®𝑌𝑙 the fundamental 6 × 6 matrix whose columns are independent
solutions of the spheroidal homogeneous differential system in the 𝑗 th layer, and by ®𝐶
the vector of integration constants. We also note that we have dropped the toroidal
effects associated with internal forcing terms, and we focused on the spheroidal system.
This allows us to re-write the propagator matrix of the 𝑗 th layer in the form

®Π𝑙 (𝑟, 𝑟′) = ®𝑌𝑙 (𝑟) ®𝑌−1
𝑙 (𝑟′) for 𝑟 𝑗−1 < 𝑟, 𝑟

′ < 𝑟 𝑗 , (1.118)

where 𝑟, 𝑟′ are in the same layer. Otherwise, when 𝑟, 𝑟′ belong to different layers, the
propagator matrix is to be obtained by the continuity equation of the solution across
interfaces expressed as ®𝑦𝑙 (𝑟+𝑗 ) = ®𝑦𝑙 (𝑟−𝑗 ). This gives us

®Π𝑙 (𝑟, 𝑟′) = ®Π𝑙 (𝑟, 𝑟 𝑗 )
[

𝑗∏
𝑘=𝑖+1

Π𝑙 (𝑟𝑘 , 𝑟𝑘−1)
]
Π𝑙 (𝑟𝑖, 𝑟′), (1.119)

moving across the 𝑘 th layer between the 𝑖th and 𝑗 th layers with 𝑗 > 𝑖. To complete this
analytical endeavour, we still need the matrix of linearly independent solutions ®𝑌𝑙 (𝑟).
The analytical expression of this matrix was first obtained by Sabadini et al. (1982) and
Wu and Peltier (1982), and it included three regular and three singular solutions at the



Chapter 1. The Cenozoic Dynamical Ellipticity 33

Earth’s center. Both parts are given by

®𝑌𝑙 (𝑟) =

©«

𝑙𝑟 𝑙+1

2(2𝑙 + 3) 𝑟 𝑙−1 0

(𝑙 + 3)𝑟 𝑙+1

2(2𝑙 + 3) (𝑙 + 1)
𝑟 𝑙−1

𝑙
0

(𝑙𝜌0𝑔𝑟 + 2(𝑙2 − 𝑙 − 3)𝜇)𝑟 𝑙
2(2𝑙 + 3) (𝜌0𝑔𝑟 + 2(𝑙 − 1)𝜇)𝑟 𝑙−2 𝜌0𝑟

𝑙

𝑙 (𝑙 + 2)𝜇𝑟 𝑙
(2𝑙 + 3) (𝑙 + 1)

2(𝑙 − 1)𝜇𝑟 𝑙−2

𝑙
0

0 0 𝑟 𝑙

2𝜋𝐺𝜌0𝑙𝑟
𝑙+1

2𝑙 + 3
4𝜋𝐺𝜌0𝑟

𝑙−1 (2𝑙 + 1)𝑟 𝑙−1

(𝑙 + 1)𝑟−𝑙
2(2𝑙 − 1) 𝑟−𝑙−2 0

(2 − 𝑙)𝑟−𝑙
2𝑙 (2𝑙 − 1) −𝑟

−𝑙−2

𝑙 + 1
0

(𝑙 + 1)𝜌0𝑔𝑟 − 2(𝑙2 + 3𝑙 − 𝑙)𝜇
2(2𝑙 − 1)𝑟 𝑙+1

(𝜌0𝑔𝑟 − 2(𝑙 + 2)𝜇)
𝑟 𝑙+3

𝜌0

𝑟 𝑙+1

(𝑙2 − 1)𝜇
𝑙 (2𝑙 − 1)𝑟 𝑙+1

2(𝑙 + 2)𝜇
(𝑙 + 1)𝑟 𝑙+3 0

0 0
1
𝑟 𝑙+1

2𝜋𝐺𝜌0(𝑙 + 1)
(2𝑙 − 1)𝑟 𝑙

4𝜋𝐺𝜌0

𝑟 𝑙+2 0

ª®®®®®®®®®®®®®®®®®®®®®®®®®®¬

. (1.120)

We recall that this fundamental matrix represents solutions for the incompressible case,
i.e. solutions of the differential system of Eq. (1.83) where in the limit of 𝜅 → ∞.
The construction of the propagator matrix requires also the inverse of the fundamental
matrix ®𝑌𝑙 (𝑟). The analytical expression was obtained by Spada et al. (1991, 1992), and
we denote it by ®̄𝑌𝑙 (𝑟). The latter satisfies:

®𝑌𝑙 (𝑟) = ®𝐷 𝑙 (𝑟) ®̄𝑌𝑙 (𝑟), (1.121)
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where ®𝐷 𝑙 (𝑟) is a diagonal matrix defined as:

Diag[ ®𝐷 𝑙 (𝑟)] =
1

(2𝑙 + 1)

(
𝑙 + 1
𝑟 𝑙+1 ,

𝑙 (𝑙 + 1)
2(2𝑙 − 1)𝑟 𝑙−1 ,−

1
𝑟 𝑙−1 , 𝑙𝑟

𝑙 ,
𝑙 (𝑙 + 1)

2(2𝑙 + 3) 𝑟
𝑙+2, 𝑟 𝑙+1

)
.

(1.122)
After tedious, but straightforward manipulation, the matrix ®̄𝑌𝑙 (𝑟) is expressed as

®̄𝑌𝑙 (𝑟) =

©«

𝜌𝑔𝑟

𝜇
− 2(𝑙 + 2) 2𝑙 (𝑙 + 2) − 𝑟

𝜇

𝑙𝑟

𝜇

𝜌𝑟

𝜇
0

−𝜌𝑔𝑟
𝜇

+ 2(𝑙2 + 3𝑙 − 1)
𝑙 + 1

−2(𝑙2 − 1) 𝑟

𝜇

(2 − 𝑙)𝑟
𝜇

−𝜌𝑟
𝜇

0

4𝜋𝐺𝜌 0 0 0 0 −1

𝑟

𝜇
+ 2(𝑙 − 1) 2(𝑙2 − 1) − 𝑟

𝜇
− (𝑙 + 1)𝑟

𝜇

𝜌𝑟

𝜇
0

−𝜌𝑔𝑟
𝜇

− 2(𝑙2 − 𝑙 − 3)
𝑙

−2𝑙 (𝑙 + 2) 𝑟

𝜇

(𝑙 + 3)𝑟
𝜇

−𝜌𝑟
𝜇

0

4𝜋𝐺𝜌𝑟 0 0 0 2𝑙 + 1 −𝑟

ª®®®®®®®®®®®®®®®®®®®®®®®¬

.

(1.123)

1.2.7 Loading Love numbers and model stratification

Considering the general solution of Eq. (1.81), we denote by ®𝐾𝑙𝑚 the 3-vector containing
only the displacements and local incremental potential defined as

®𝐾𝑙𝑚 (𝑎) = ®𝑃2®𝑦𝑙𝑚 (𝑎) = ®𝐵𝑙 (𝑎)
[
®𝑃1 ®𝑤(𝑎) + ®𝑏

]
− ®𝑃2 ®𝑤(𝑎), (1.124)

where the second projection matrix ®𝑃2 projects the displacement components, and we
have defined:

®𝐵𝑙 (𝑎) = ®𝑃2 ®Π(𝑟, 𝑟𝐶) ®𝐼𝐶
[
®𝑃1 ®Π𝑙 (𝑎, 𝑟𝐶) ®𝐼𝐶

]−1
. (1.125)

We recall that ®𝑤(𝑎) vanishes if we neglect internal loading and only consider surface,
tidal, or centrifugal effects, as is the focus of our study here. The Love numbers are
defined via non-dimensional Green functions (Peltier, 1974) that relate the displacements
3-vector ®𝐾𝑙𝑚 to the perturbations that caused it, namely

®𝐾𝑙𝑚 (𝑎) = ®𝑁L

∫ 𝑎

𝑟C

®𝑘𝐿𝑙 (𝑟)𝛿(𝑟 − 𝑎)𝜎
L
𝑙𝑚𝑑𝑟 + ®𝑁T®𝑘T [

ΦT
𝑙𝑚 (𝑎) +ΦC

𝑙𝑚 (𝑎)
]
, (1.126)



Chapter 1. The Cenozoic Dynamical Ellipticity 35

where ®𝑘L and ®𝑘T denote the load and tidal Green functions respectively, and we have
also defined

®𝑁L =
𝐺

𝑎
Diag

[
1

𝑔(𝑎) ,
1

𝑔(𝑎) , 1
]
,

®𝑁T = Diag
[

1
𝑔(𝑎) ,

1
𝑔(𝑎) , 1

]
. (1.127)

With these definitions, the Green functions are expressed as

®𝑘L
𝑙 (𝑎) = ®𝑁−1

L
®𝐵𝑙 (𝑎) ®𝑏L, (1.128)

®𝑘T
𝑙 (𝑎) = ®𝑁−1

T
®𝐵𝑙 (𝑎) ®𝑏T. (1.129)

These Green functions have three components corresponding to radial, tangential, and
gravitational proportionality functions between the perturbations and their responses,
and they are denoted by ℎ𝑙 , 𝑙𝑙 , 𝑘 𝑙 respectively such that

®𝑘L
𝑙 (𝑎) =

©«
ℎL
𝑙
(𝑎)

𝑙L
𝑙
(𝑎)

1 + 𝑘L
𝑙
(𝑎)

ª®®®¬ . (1.130)

The correspondence principle allows the transition into the viscoelastic framework via
two steps: First, we take the same form of the solution in the frequency domain instead of
the time domain, i.e., we replace the shear modulus 𝜇(𝑡) by 𝜇(𝑠) as defined in Eq. (1.66)
to obtain

®̃𝑘L(𝑎, 𝑠) = L
[®𝑘L(𝑎, 𝑡)

]
= ®𝑁−1

L
®𝐵𝑙 (𝑎) ®𝑏L |𝜇=�̂�(𝑠) . (1.131)

Next, we perform an inverse Laplace transform3 on the viscoelastic solution to obtain it
in the time domain. This gives

®𝑘L(𝑡) = L−1 [ ®̃𝑘L(𝑠)
]
=

1
2𝜋𝑖

∫ 𝑐+𝑖∞

𝑐−𝑖∞
®̃𝑘L(𝑠)𝑒𝑠𝑡𝑑𝑠, (1.132)

where a decision has to be made on the real constant 𝑐 such that all the singularities of
the integrand are on one side of the line going from 𝑐 − 𝑖∞ to 𝑐 + 𝑖∞. This leads us to a
contour integration over the half-circle 𝐶R:

®𝑘L(𝑡) = − 1
2𝜋𝑖

lim
𝑅→∞

∫
𝐶R

®̃𝑘L(𝑠)𝑒𝑠𝑡𝑑𝑠 + 1
2𝜋𝑖

∫
Γ

®̃𝑘L(𝑠)𝑒𝑠𝑡𝑑𝑠, (1.133)

3For the inverse Laplace transform, we use the Mellin’s inverse formula, or the Bromwich integral
defined as: 𝑓 (𝑡) = 1

2𝜋𝑖

∫ 𝑐+𝑖∞
𝑐−𝑖∞ 𝐹 (𝑠)𝑒𝑠𝑡𝑑𝑠 (see Chapter 15 of Boas, 2006).
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where the closed contour Γ contains all the singularities. We note that the limit of
Eq. (1.131) for |𝑠 | → ∞ converges to the elastic Green function ®𝑘L

E because the limit of
�̃�(𝑠) for |𝑠 | → ∞ converges to the shear modulus 𝜇. It is thus straightforward to show
that the first term yields ®𝑘L

E𝛿(𝑡), and thus we have

®𝑘L(𝑡) = ®𝑘L
E𝛿(𝑡) +

1
2𝜋𝑖

∫
Γ

®̃𝑘L(𝑠)𝑒𝑠𝑡𝑑𝑠. (1.134)

The remaining problem for us is finding the singularities in the integral part of Eq. (1.134).
A complete discussion on the physical origins of these singularities can be found in Cam-
biotti et al. (2009, 2010). Briefly, it has been shown that these singularities arise from
two sources: i) the differential system of the propagator matrix being non–uniformly
Lipschitzian, and this occurs when 𝑠 = 0 , 𝑠 = −𝜏−1

M (Eq. 1.63), and for 𝑠 = 𝜏M
(
1 + 4𝜇

3𝜅
)
;

ii) the second source emerges from the constants of integration determined via the
boundary conditions. The inverse of the matrix

[ ®𝑃1 ®Π𝑙 (𝑎, 𝑟) ®𝐼𝐶
]
|𝜇=�̂�(𝑠) is singular for

some values of the frequency. Thus the matrix ®𝐵𝑙 (𝑟) can be re-written as

®𝐵𝑙 (𝑟) |𝜇=�̂�(𝑠) =
[ ®𝑃2 ®Π𝑙 (𝑟, 𝑟𝐶) ®𝐼𝐶

] [ ®𝑃1 ®Π𝑙 (𝑎, 𝑟) ®𝐼𝐶
]†

𝐷 (𝑠) , (1.135)

where 𝐷 (𝑠) is the so-called secular determinant defined as

𝐷 (𝑠) = det
(
®𝑃1 ®Π𝑙 (𝑎, 𝑟) ®𝐼𝐶

)���
𝜇=�̂�(𝑠)

. (1.136)

With this definition, the singularities would occur at the solutions of the secular equation

𝐷 (𝑠) = 0. (1.137)

It has been established that the solutions of the secular equation are real, finite, or at most
infinite denumerable, and they are first-order roots (Tanaka et al., 2006). This implies
that the Love numbers in the Laplace domain have first order poles at these roots, and
each root contributes to the complex integration along the closed contour which appears
in Eq. (1.134) as ∮

Γ 𝑗

®𝑘L(𝑠)𝑒𝑠𝑡 = ®𝑘L
𝑗 𝑒
𝑠 𝑗 𝑡 , (1.138)

where 𝑠 𝑗 and Γ 𝑗 denote the 𝑗 th root and the closed path containing the roots respectively,
while ®𝑘L

𝑗
are the residues. According to the residue theorem4, these residues are

4The Cauchy residue theorem states that if a function 𝑓 (𝑠) is analytical over a domain 𝐷, except for
a number of distinguishable and isolated singularities, the integral of 𝑓 (𝑠) over a curve Γ inside 𝐷, such
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computed by
®𝑘L
𝑗 = lim

𝑠→𝑠 𝑗
(𝑠 − 𝑠 𝑗 ) ®𝑘L(𝑠). (1.139)

Each root is associated with a response of the viscoelastic model of the Earth model to
the perturbation, and the set of the roots are referred to as the normal modes of the Earth
with relaxation times 𝜏𝑗 . For simple layered incompressible models, the total number
of normal modes is finite and can be determined as follows:

i) A buoyancy mode, labeled Mi, emerges for density variations between adjacent
viscoelastic layers. Two additional relaxation modes are triggered if the Maxwell
times of both sides are different. The latter are called transient viscoelastic modes,
with relatively short time-scales, and are denoted by T

i
and T−

i
.

ii) If one side of the layers interface is elastic, while the other is viscoelastic – which
is the case in traditional Earth models between the uppermost viscoelastic mantle
layer and the elastic Lithosphere – one buoyancy mode and one transient mode
are triggered, and they are labelled asM0 and L0 respectively.

iii) The CMB contributes with one buoyancy mode labelled C0

In what follows, we implement the recipe detailed thus far to compute the Love numbers
for various Earth models. The most widely used spherically symmetric Earth model of
physical parameters is the Preliminary Reference Earth Model, PREM (Dziewonski and
Anderson, 1981), specifying the material parameters of the Earth’s interior in terms of
polynomials of the radial distance from the Earth’s center. We consider an averaged-
PREM model, which discretizes the material properties of the PREM model into layers
with uniform values of all the parameters. In the models we use we shall consider
an elastic Lithosphere, an inviscid core with no differentiation between the inner core
and the outer core, and 𝑁𝑉 viscoelastic layers in-between the core and the lithosphere.
Regardless of the layering configuration we choose, we abide by the discontinuities that
are clearly present in PREM. For example, in Table 1.1 we describe an 11-layer (11-L)
model. The model is characterized by an elastic lithosphere of thickness 𝐿 = 120 km;
two shallow viscoelastic upper mantle layers, the first ending at depth 𝑟 = 220 km, where
the PREM shows the first density discontinuity, while the second ends at depth 𝑟 = 400
km, the position of another discontinuity; then follows a transition zone that ends at
depth 𝑟 = 670 km, the major density discontinuity of the PREM. Six viscoelastic layers

that Γ does not pass through any of the singularities, is equal to 2𝜋𝑖 times the sum of the residues of the
singularities of 𝑓 (𝑠) internal to the curve Γ (see e.g., Chapter 14 of Boas, 2006)
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constitute the lower mantle, each with thickness around 370 km. Finally, we have the
fluid core (Table 1.1).

We adopt the viscosity profile from Lau et al. (2016b), in which the authors constrain
the mean of the upper mantle viscosity to ≈ 3× 1020 Pa s, the top 1500 km of the mantle
to ≈ 1021 Pa s, and the mean lower mantle viscosity to around ≈ 5 × 1021 Pa s. This
profile is then volume averaged over any required layered model. For example, for the
11-L, the discretization is described in Table 1.1 and plotted in Figure 1.2.

Layer Δ𝑟 (km) r (km) 𝜌 (kg/m3) 𝜇 (1011N/m2) 𝜂 (Pa.s)
Core-1 3480 0-3480 10932 0 0
LM-1 370.17 3480-3850.17 5436 2.82 3.11 ×1022

LM-2 370.17 3850.17-4220.33 5252 2.61 2.81×1022

LM-3 370.17 4220.33- 4590.50 5077 2.41 1.28×1022

LM-4 370.17 4590.50-4960.67 4893 2.21 1.61×1021

LM-5 370.17 4960.67-5330.83 4673 1.97 6.01×1020

LM-6 370.17 5330.83-5701.00 4474 1.74 1.38 ×1021

Trans. 270 5701.00-5971.00 3858 1.06 3.67×1021

UM-1 180 5971.00-6151.00 3476 0.76 1.37 ×1020

UM-2 100 6151.00-6251.00 3367 0.66 1.51 ×1021

L-11 120 6251.00-6371.00 3234 0.61 0

Table 1.1: Parameters of our standard 11-layer volume averaged Earth model. For each
layer of thickness Δ𝑟 (second column), the radial boundaries are identified in the third
column, while the constant density 𝜌, shear modulus 𝜇, and viscosity 𝜂 are identified
in the third, fourth, and fifth columns respectively. The material parameters are derived
from the PREM. The viscosity profile is adopted from Lau et al. (2016b). Variations
are plotted in Figure1.2.

After prescribing the model, we numerically implement the analytical recipe detailed
above. We start with a consistency check for our numerical code, computing the
relaxation times for a specific model. In Figure 1.3, we plot the relaxation times of the
normal modes as a function of the harmonic degree 𝑙 going from 𝑙 = 2 to 𝑙 = 100, and
we use a 9-L incompressible model with 7 viscoelastic layers. For this model, we expect
21 normal modes as follows:

i) The CMB will give rise to the mode C0.

ii) The upper mantle/lithosphere boundary will give rise to two modes L0 andM0.

iii) Each of the 6 interfaces of the 7 viscoelastic layers will give rise to one buoyancy
modeMi and two transient modes T

i
and T−

i
, thus 18 modes.
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Figure 1.2: Radial profiles of the used Earth model. PREM profiles are plotted, and
on top of them are the PREM-volume averaged density, shear modulus, and calculated
gravitational acceleration for the used 11-layer model. Known discontinuities are
respected in the layering, especially at 420 and 670 km of depth. Numerical values are
presented in Table.1.1. The last panel shows the radial Viscosity profile adopted from
Lau et al. (2016b), inferred from non-linear inversion of GIA observables. In Red we
averaged their data over our 11-layered model (9 viscoelastic layers).

All of these modes were successfully captured by our code. The slowest modes are
the buoyancy modes triggered between viscoelastic layers, and they range between
𝜏𝑀1 ≈ 102 kyr and 𝜏𝑀6 ≈ 106 kyr for small harmonic orders. The CMB triggered
normal mode features a relaxation time 𝜏𝐶0 ranging between 10 and 100 kyr, while the
modes triggered by density and rheological discrepancies between the mantle and the
lithosphere feature smaller relaxation times on the order of less than one to few kyr.

The spectrum portrayed in Figure 1.3 is consistent with classic studies of viscoelastic
relaxation (Sabadini et al., 2016). We therefore shift to study the effect of layering on
the relaxation spectrum. In Figure 1.4, we plot the secular determinant as a function
of the frequency for different layering models labelled N-L, and for different harmonic
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Figure 1.3: Relaxation times 𝜏𝑖 in kyr for the 9-L model as a function of the harmonic
degree going from 𝑙 = 2 to 𝑙 = 100.

degrees. In particular, we do so for 4 models: 5-L, 9-L, 11-L, and 14-L. As expected,
increasing the level of the model stratification naturally increases the number of normal
modes, abiding by the analytical rules detailed above. A notable feature of all the
used models is the relative stability of the transient modes when increasing the harmonic
order, which can be also seen in Figure 1.3. This is evident when comparing the transient
modes to the buoyancy modes, which compactify on the spectrum when we increase
the harmonic order. When increasing the layering complexity, the secular determinant
starts to feature a worrying erratic behavior at very small frequencies. This hinders root
finding algorithms from determining the normal modes. A similar effect was observed
in Spada and Boschi (2006), but for increasing the harmonic order. However, for the
purpose of our dynamical ellipticity computations (associated with 𝑙 = 2), we are not
concerned with high harmonic orders, thus we focus next on the effect of increasing the
layering. We do so by computing the Love numbers, starting with Eq. (1.134), where
the normal modes enter as in Eq. (1.138). The explicit form of the Love numbers is
written as (Peltier, 1974):

©«
ℎ𝑙

𝑙𝑙

𝑘 𝑙

ª®®®¬ (𝑠) =
©«
ℎ𝑙

𝑙𝑙

𝑘 𝑙

ª®®®¬
E

+
𝑁∑︁
𝑗=1

1
𝑠 − 𝑠𝑙 𝑗

©«
ℎ𝑙 𝑗

𝑙𝑙 𝑗

𝑘 𝑙 𝑗

ª®®®¬
VE

, (1.140)

where the superscript E denotes the elastic component of the Love numbers, which,
independent of the viscosity profile, describes the response of the Earth in the limit of
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Figure 1.4: The secular determinant (1.136) computed for different harmonic degrees
and different layering models. The y-axis represents a function of the secular deter-
minant that is chosen as 𝐹 (𝐷 (𝑠)) = sign(𝐷 (𝑠)) × log10 |𝐷 (𝑠) | if |𝐷 (𝑠) | > 10 and
𝐹 (𝐷 (𝑠)) = 𝐷 (𝑠)/10 if |𝐷 (𝑠) | < 10. Each row corresponds to a specific layering
model where the first corresponds to a 5L model with 3-viscoelastic layers, the second
refers to a 9L model, the third refers to 11L, while the fourth refers to 14L model. Each
column represents a harmonic degree going left to right: 𝑙 = 2, 20, 80.
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infinite frequency or instantaneous time. On the other hand, the superscript VE denotes
the viscous residues, which are dependent on the chosen viscosity profile, and they
describe the relaxation spectrum. Finally, 𝑠𝑙 𝑗 are the harmonic dependent normal modes
described above. In the time domain we have:

©«
ℎ𝑙

𝑙𝑙

𝑘 𝑙

ª®®®¬ (𝑡) =
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𝑙𝑙

𝑘 𝑙

ª®®®¬
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𝑁∑︁
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𝑒𝑠𝑙 𝑗 𝑡
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𝑘 𝑙 𝑗

ª®®®¬
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. (1.141)

For the fluid limit of the Love numbers (Vermeersen and Sabadini, 1997b), we obtain:
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. (1.142)

The time dependent loading Love numbers can now be computed as the convolution
between the Love numbers of Eq. (1.141), and the function 𝑓 (𝑡) describing the temporal
variation of the surface load:

©«
ℎ𝑙

𝑙𝑙

𝑘 𝑙

ª®®®¬
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(𝑡) =
©«

ℎ𝑙 (𝑡)
𝑙𝑙 (𝑡)

𝛿(𝑡) + 𝑘 𝑙 (𝑡)

ª®®®¬ ⊗ 𝑓 (𝑡). (1.143)

For a Heaviside loading function of the form

𝑓 (𝑡) = 𝐻 (𝑡), (1.144)

the convolution is written as:
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𝑒𝑠𝑙 𝑗 𝑡 . (1.145)

In Figures 1.5 and 1.6, we summarize the variation of the viscoelastic relaxation spectra
for an increasing level of stratification in terms of the Love numbers and the relaxation
times respectively. As before, the radial viscosity profile was adopted from the joint
nonlinear inversions in Lau et al. (2016b), and volume averaged over the needed number
of layers. For the Love numbers, the elastic limit is identical for the radial and transverse
displacement parts ℎL

2 and 𝑙L2 , while the signature of different layering can be identified in
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Figure 1.5: Time evolution of the three load Love numbers: The radial, tangential, and
the gravitational, convoluted with the Heaviside step function, going as a function of
time from the elastic limit to the fluid limit. The plots in each figure refer to a certain
model of the Earth, going from simple stratification into more layering. All models
used are PREM averaged and maintaining same viscosity profile. The convergence of
the evolution of the Love numbers as we increase stratification is clear.

the elastic limit of 𝑘L
2 . In contrast, the fluid limit of 𝑘L

2 is identical when different layering
is adopted, while the fluid limit of ℎL

2 and 𝑙L2 clearly diverges. Transitioning between the
limits, and around the timescales of relevance to our work, those corresponding to GIA,
the three Love numbers exhibit clear discrepancies for different layering models, courtesy
of the varying viscous residues. The latter is explored further in Figure 1.6. The𝐶0, 𝐿0,
and 𝑀0 modes, associated with the core-mantle and mantle-lithosphere boundaries, are
of strongest viscous amplitudes (depicted by thickness), and converge towards constant
values for a number of viscoelastic layers as small as three. With each added viscoelastic
interface, a buoyancy mode 𝑀𝑖 and a transient doublet 𝑇±

𝑖
emerge, though these modes

feature viscous amplitudes that decay as 𝑖 increases. This explains the discrepancies
obtained in Figure 1.5, and proves the a larger number of viscoelastic layers (typically
larger than 8) is not required to capture the essential viscoelastic response of the Earth, as
the modes of strongest amplitudes converge fast enough with stratification. We proceed
with a model of nine viscoelastic layers in the mantle, i.e., the 11-L model, for which
the relaxation spectrum is detailed in Table 1.2.

Now that the viscoelastic response of the Earth is modelled, we move to quantify the
surface loading perturbation. The variation of the latter features an intricate interplay
between the ice caps and the oceans. We expand on this in the framework of the sea
level variation theory.
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Figure 1.6: Viscoelastic relaxation times, 𝜏𝑖 = −1/𝑠𝑖 , of harmonic degree 𝑙 = 2
computed in the normal modes theory formalism, for an increasing stratification of the
Earth’s model. Zeroth modes are associated with the boundaries of the mantle with
the core and the lithosphere. Buoyancy modes, 𝑀𝑖 , and transient doublets, 𝑇𝑖 , emerge
at each added interface between viscoelastic layers, however, their contribution to the
multi-exponential form (Eq. 1.141) decays with increasing layering. The labelling of
modes is based upon the shear kernels derived on the basis of a viscoelastic extension
of Rayleigh’s elastic variational principle Peltier and Andrews (1976). The strength of
each mode is indicated by its thickness. The partitioning of the viscoelastic layers is
consistent with the detected seismological discontinuities of the PREM model.

1.3 Sea level variation theory

Changes of water volume in the oceans, along with changes in the volume of the
ocean basins themselves drive sea level variation over a continuum of time scales
that spans 10−3 ∼ 108 yr. On the longer timescale end of the spectrum, sea level
variability is dominated by basin geometry and topography changes driven by tectonic
plates (e.g., Douglas, 1991), sea floor spreading (e.g., Hays and Pitman, 1973), land
erosion and consequently sedimentary transport into the oceans (Dalca et al., 2013),
continental collisions and the subsequent compression of the continental areal extent
(e.g., Van Andel, 1994), and mantle convection (e.g., Gurnis, 1990; Moucha et al.,
2008).

Of interest to us here are variations over thousands to hundreds of thousands of years
associated with surface mass distribution during glacial cycles, which result in the
viscoelastic response of the solid Earth described in the previous section, and the
consequent change in sea level as the planet isostatically compensates the effect of the
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Mode s (kyr−1) 𝑘2 VE-Residue (kyr−1) Relaxation Time (kyr)
M8 -5.55×10−7 -1.36×10−11 1.80×106

M7 -1.62×10−5 -3.25×10−8 6.16×104

M6 -2.33×10−5 -3.04×10−8 4.29×104

M5 -4.03×10−5 -5.58×10−8 2.48×104

M4 -9.67×10−5 -1.75×10−7 1.03×104

M3 -2.98×10−4 -2.37×10−6 3.35×103

M2 -9.74 ×10−4 -1.70×10−5 1.03×103

M1 -0.0059 -1.90×10−5 169.67
C0 -0.1018 -8.70×10−4 9.816
L0 -0.4022 -0.1305 2.486
M0 -1.9183 -0.3427 0.521
T1 -2.1397 -0.0168 0.467
T2 -2.2153 -0.1093 0.451
T3 -2.5193 -0.0640 0.397
T4 -2.6987 -0.1290 0.370
T5 -3.4777 -0.0439 0.287
T6 -3.7364 -0.0040 0.268
T7 -4.9301 -0.0347 0.203
T8 -5.4766 -4.99×10−6 0.183
T9 -5.7807 -8.23×10−4 0.173
T10 -5.9606 -0.0244 0.169
T11 -6.4950 -0.0116 0.154
T12 -6.6772 -0.0141 0.150
T13 -7.2264 -0.0082 0.138
T14 -7.3872 -0.0061 0.135
T15 -7.9237 -0.0056 0.126
T16 -8.0635 -0.0032 0.124

Table 1.2: Relaxation spectrum of the Earth using an 11-layer model with 9 viscoelastic
layers. 27 modes are retrieved, as expected from the analytical constraints. The normal
modes are displayed in the second column, the associated Love number 𝑘2 viscoelastic
residue (non-normalized) in the third column, and the relaxation times in the fourth
column.

loading-unloading cycles. The glacial isostatic adjustment of the planet exhibits a spatial
pattern of sea-level variation that changes systematically from the near field to the far
field pivots of the glacial cover (e.g., Mitrovica and Peltier, 1991).

For this spectrum of sea level variations, tide gauges have been used for centuries to
establish an instrumental record by measuring the height of the sea level relative to the sea
floor. The Proudman Laboratory at the University of Bristol maintains the repository of
the Permanent Service for Mean Sea Level (PSMSL)5, a database assimilating records

5www.psmsl.org.

www.psmsl.org
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Figure 1.7: The variance [in cm2] of detrended sea level observations at 596 tide gauge
sites in the PSMSL (RLR) database. Figure adopted from Hay et al. (2013).

from a global network containing nearly two thousand tide gauges. The data-set is
divided into two subsets: the metric records, which contain the raw observations in their
individual reference frames; and the revised local reference (RLR) record, a smaller
subset of 1166 tide gauges in which records have been reduced to a common height
datum. For studies of global mean sea level variations (GMSL), it is proper to use the
RLR subset as it allows a direct comparison between the tide gauge records.

Figure 1.7 shows the geographic distribution of nearly 600 gauges from the PSMSL
RLR database with at least 20 years of data present in the last 50 years (Hay et al.,
2013). Color coding corresponds to the variance of the tide gauge data computed from
the annual records using all available data from 1807 to 2000. The largest variability is
evident in the inner basins of the Baltic and Black seas, as well as along the coast of the
Russian Arctic Ocean. The figure clearly establishes the regional variability of sea level,
however, GMSL estimates are often used as a metric to describe the trends in sea level
associated with climate variability. Different methods are used to compute the GMSL:
the most common approach uses a small number of tide gauges that satisfy certain
criteria of record continuity, duration, and consistency between neighboring sites, as
well as a clear separation from tectonically active regions (e.g., Peltier and Tushingham,
1989; Douglas, 1997; Holgate and Woodworth, 2004); other approaches combine local
averages of larger subsets (e.g., Jevrejeva et al., 2008), or establish spatial variability by
combining altimetry with the tide gauge records (e.g., Church et al., 2011). Consistent
among these approaches is the computed rate of sea level variation of 1.7 ± 0.2 mm/yr
from 1900 to 1993. The rate increases to 2.8±0.8 mm/yr as computed using tide gauges,
and to 3.2 ± 0.4 mm/yr using altimetry data (Church et al., 2011).
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Thermometric contributions, driven by the thermal expansion of the oceans due to
increased heat content and the overflow of melt ice into the oceans, are thought to
contribute around 25 percent of the sea-level trend over the past century, and up to 55
percent in the last decade of the 20th century (Antonov et al., 2005; Ishii and Kimoto,
2009; Cazenave and Llovel, 2010). This leaves changes in the mass of ice sheets and
inland glaciers with a contribution of 75 percent to the century-scale trend, and 45
percent of the trend in the last decade of the century (Kaser et al., 2006; Bindoff et al.,
2007). These GIA-related sea level changes deform the Earth, alter its rotational state,
and perturb its gravitational field. The latter is exactly what we explore in the next
section to compute variations in the Earth’s dynamical ellipticity.

1.3.1 Sea level equation and the dynamical ellipticity

There exists, technically, two fundamental unknowns when modelling GIA: a model of
the interior of the Earth describing its response to loading, i.e., its rheology, as detailed
in Section 1.2, and a spatio-temporal function describing the evolution of the ice sheets.
Once these are determined, a space-time variation of the relative sea-level change can
then be obtained through a solution of the Sea Level Equation (SLE). This equation
constructs the self-consistent gravitational redistribution of ice and water across the
surface of the Earth. The SLE’s mathematical theory and numerical implementation
are undergoing continuous development by the community since its first introduction
in the 1970s through a series of seminal papers (Peltier, 1974; Farrell and Clark, 1976;
Peltier and Andrews, 1976; Clark et al., 1978; Milne and Mitrovica, 1998; Mitrovica
and Milne, 2003; Kendall et al., 2005; Spada and Stocchi, 2007; Peltier, 2015; Adhikari
et al., 2016; Whitehouse, 2018). We start with the definition of the relative sea level 𝑆
as:

𝑆 = 𝑁 −𝑈, (1.146)

𝑁 being the height of the sea surface relative to the center of mass of the Earth,
and 𝑈 being the height of the surface of the solid Earth. The variation of these two
surfaces responds to ice and ocean changes, but because both the solid surface vertical
displacement and sea surface variations are functions of the sea level itself, the SLE
takes a more complicated form to account for this feedback:

Δ𝑆(𝛾, 𝑡) = 𝜌I
Γ
𝐺S ⊗I 𝐼 (𝛾, 𝑡) +

𝜌w
Γ
𝐺S ⊗O Δ𝑆 + 𝐶SL(𝑡) (1.147)
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where Δ𝑆(𝛾, 𝑡) is the change in relative sea level at position 𝛾 = (𝜃, 𝜆) between time 𝑡
and a reference 𝑡0; 𝐼 (𝛾, 𝑡) is the spatio-temporal distribution of ice on the surface of the
Earth; 𝜌I and 𝜌w are ice and water densities; 𝐺S is a Green’s function that combines a
set of Love numbers to describe the perturbation of the Earth’s solid surface in response
to loading; ⊗I and ⊗O are convolutions in space and time over the ice sheets and oceans
respectively. Finally, 𝐶SL(𝑡) is a time dependent uniform shift in sea level that is added
to the equation to conserve the total mass transferring between ice sheets and the oceans,
and is given by:

𝐶SL(𝑡) = − 𝑚I(𝑡)
𝜌w𝐴O(𝑡)

− 𝜌I
Γ
𝐺S ⊗I 𝐼 −

𝜌w
Γ
𝐺S ⊗O Δ𝑆. (1.148)

The first term is often called the eustatic term, and it is the solution to the sea level
equations when the other four terms are dropped, i.e., when the Green functions are
zero. This physically corresponds to completely neglecting the deformation of the Earth
and the time variations of the gravitational attractions between the solid earth and the
oceans, the oceans and the ice sheets, and between the ice sheets and the solid earth.
Thus this term describes a spatially uniform sea level that settles across the ocean with
area 𝐴O(𝑡) due to variations in ice mass 𝑚I(𝑡). The oceanic area was time independent
when the SLE was initially introduced in Farrell and Clark (1976), but further updates
accounted for the expansion and retreat of marine-grounded ice (Milne and Mitrovica,
1998), and the effect of shoreline migration (Mitrovica and Milne, 2003). The final two
terms are spatially averaged over the ocean, and these are subtracted because although
the mean of the spatially varying terms could vanish when integrated over the surface
of the Earth, the mean will not necessarily vanish when integrated over the ocean, thus
this uniform shift is added to satisfy mass conservation.

The implicit nature of the SLE being a three dimensional non-linear integral equation,
in the form of a Fredholm equation of the second kind, calls for an iterative approach
in order to be solved. We adopt the theory and numerical code developed over the
past two decades and called SELEN4 (Sea lEveL EquatioN solver, version 4.0, Spada
and Stocchi, 2007; Spada et al., 2012; Spada and Melini, 2015, 2019). In SELEN4,
the SLE is solved by a pseudo-spectral iterative approach (Mitrovica and Peltier, 1991)
over a spatially discretized Earth surface on a spherical grid of icosahedron shaped
pixels (Tegmark, 1996). The gravitationally self-consistent surface loading is computed
allowing for shoreline migration and the transfer of ice between grounded and marine-
based. SELEN4 also accounts for the influence of the rotational feedback on sea level.
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For a more elaborate explanation on the SELEN4 scheme, the reader is referred to the
supplementary material of Spada and Melini (2019).

Out of the various byproducts of the SLE solver, we are interested in computing the
variation of the geoid response function defined as:

G(𝛾, 𝑡) = Γ𝑔 (𝛼, 𝑡) ⊗ L(𝛾, 𝑡), (1.149)

where Γ𝑔 (𝛼, 𝑡) is the geoid Green’s function (Peltier, 1974; Peltier and Andrews, 1976).
It channels the solid interior response through the Love numbers computed in Section
1.2; specifically it is given by (Wu and Peltier, 1982):

Γ𝑔 (𝛼, 𝑡) = 𝑅E
𝑀E

∞∑︁
𝑙=0

[
𝛿(𝑡) + 𝑘L

𝑙 (𝑡)
]
𝑃𝑙 (cos𝛼), (1.150)

where 𝛼 is the difference between the position of the measured sea level variation 𝛾 and
the position of the load 𝛾′. On the other hand, the surface loading function L describes
the variation of the glacial and oceanic load on the Earth with respect to a reference state.
In almost all numerical implementations of the SLE, continuous solutions in time have
not been used, and a time discretization for all quantities is imposed over a piece-wise
function (𝑛 = 1..𝑁). With this time discretization and the pseudo-spectral approach, the
geoid response function, expanded in spherical harmonics of degree 𝑙 and order 𝑚, is
written as:

G𝑙𝑚 =
3
𝜌E

𝑁∑︁
𝑛

ΔL𝑙𝑚,𝑛

2𝑙 + 1

[
1 + 𝑘L

𝑙 +
𝑀∑︁
𝑖=1

𝑘L
𝑙,𝑖

𝑠𝑙,𝑖
(𝑒𝑠𝑙,𝑖 (𝑡−𝑡𝑛) − 1)

]
𝐻 (𝑡 − 𝑡𝑛), (1.151)

where ΔL𝑙𝑚,𝑛 = L𝑙𝑚,𝑛+1 − L𝑙𝑚,𝑛, with L𝑙𝑚,𝑛 representing the harmonic decomposition
and temporal discretization of L, and 𝜌E being the average density of the Earth. Finding
the variation in the geoid allows us to compute the variation in the geopotential Φ using
the classic Bruns formula (Heiskanen, 1967):

G =
Φ

𝑔
. (1.152)

This allows us to write the geoid response function as

G(𝛾, 𝑡) = 𝑅E

𝑙max∑︁
𝑙=2

𝑙∑︁
𝑚=0

[𝛿𝑐𝑙𝑚 (𝑡) cos𝑚𝜆 + 𝛿𝑠𝑙𝑚 (𝑡) sin𝑚𝜆] 𝑃𝑙𝑚 (cos𝛼). (1.153)

Here, the Legendre polynomials are the fully normalized associated set, and 𝑐𝑙𝑚 and
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𝑠𝑙𝑚 are the well known Stokes’ coefficients (Yoder, 1995). We note that the loading
mass conservation law cancels the surface average of the load variation and equivalently
the zeroth degree harmonic of the load’s expansion. Furthermore, the first order also
vanishes because we use a reference frame with an origin at the center of mass.

After computing the geoid response function via the SLE solver, the Stoke’s coefficients
in Eq. (1.153) are obtained by utilizing the general relationship between the coefficients
of a complex spherical harmonics expansion of a time dependent scalar function; namely:

𝑐𝑙𝑚 (𝑡) + 𝑖𝑠𝑙𝑚 (𝑡) =
√︁

2 − 𝛿0𝑚G∗
𝑙𝑚 (𝑡). (1.154)

Using the scaling relationship derived in Mitrovica and Peltier (1989), we find the
gravitational zonal harmonics of the Earth as

𝐽𝑙 (𝑡) = − 1
𝑅E

√
2𝑙 + 1G𝑙0(𝑡). (1.155)

More specifically, we are after the harmonic that corresponds to the equatorial flattening:

𝐽2(𝑡) = −
√

5
𝑅E
𝑐20. (1.156)

Hence the variation of the dynamical ellipticity (Eq. 1.8) relative to its present day value
𝐻0 ≈ 3.27 × 10−3 (Burša et al., 2008) can be written as:

𝛿𝐻 (𝑡)
𝐻0

=
𝛿𝐽2(𝑡)
𝐻0K

(
1 − 2

3
𝐻0

)
≈ 𝛿𝐽2(𝑡)
𝐻0K

= −
√

5
𝐻0K𝑅E

𝛿𝑐20(𝑡), (1.157)

where K = 𝐶

𝑀E𝑅
2
E

is the so-called structure constant. The problem of finding the relative
variations in the dynamical ellipticity thus reduces for us to finding the geoid response
function G in the framework of the SLE solver. Another contribution arises from
variations in the centrifugal potential, but we ignore that based on the arguments in the
following section.

1.3.2 The effect of the centrifugal potential variation on the dynam-
ical ellipticity

In addition to the direct effect of surface loading, the dynamical ellipticity is also
affected by the varying centrifugal potential as a consequence of altering the magnitude
and direction of the angular velocity vector due to the mass redistribution. This rotational
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effect was one of the additions that came about during the development of the sea level
variation theory, and is of significance in TPW computations. However, on the basis
of the following approximations, we argue that this effect is minimal on the dynamical
ellipticity, and we then decide to ignore it in our calculations. It should be stressed
that the variation of the angular velocity discussed here is merely related to the mass
redistribution associated with surface loading. On the other hand, the angular velocity
variation associated with the tidal interaction between the Earth and the Moon is the
dominant contributor to the precession "constant" evolution over geological timescales;
an effect that we detail on in Chapter 2.

Considering the rotating Earth and aligning the z-axis along the angular velocity vector
𝛀E, we re-write the centrifugal potential defined in Eq. (1.23) and felt by a point P at
the surface, i.e., in the co-rotating frame as:

𝜙C(𝑃) = 1
2
Ω2𝑟2

p =
1
2
Ω2𝑅2

E(1 − cos2 𝜃p), (1.158)

where 𝜃p is the angular separation of P from the axis of rotation. Using the Legendre
polynomials, this can be written as:

𝜙C(𝑃) =
Ω2𝑅2

E
3

[
𝑃0(cos 𝜃p) − 𝑃2(cos 𝜃p)

]
. (1.159)

The theory usually continues by expanding the potential variation into variations in
the angular velocity vector and, to leading terms in the perturbation, this expansion is
used in the problem of the true polar wander when solving the Liouville equations (see
Section 1.1.2; Sabadini et al., 2016). But for our purposes here, we are considering
only the variations in the second zonal harmonic. In a general sense, the variation in
the dynamical ellipticity 𝐻 due to variations in the surface loading potential 𝜙L, and the
centrifugal potential 𝜙C can be derived from:

𝐻 =
𝑅3

E
𝐺𝐶

(1 + 𝑘L
2 )𝜙

L
2 +

𝑅3
E

𝐺𝐶
𝑘T

2𝜙
C
2

=
𝑅3

E
𝐺𝐶

(1 + 𝑘L
2 )𝜙

L
2 + 𝑘T

2
Ω2𝑅5

E
3𝐺𝐶

. (1.160)

The variation in the potential is driven by variations in the polar moment of inertia due
to the following three contributions: A rigid Earth variation given by

𝛿𝐶r =
2𝑅3

E
3𝐺

𝛿𝜙L
2 , (1.161)
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a viscoelastic compensation expressed as

𝛿𝐶ve =
2𝑅3

E
3𝐺

𝑘L
2 𝛿𝜙

L
2 = 𝑘L

2 𝛿𝐶
r, (1.162)

and the rotational effect:

𝛿𝐶rot =
2𝑅3

E
3𝐺

𝑘T
2 𝛿𝜙

C
2 =

4𝑅5
E

9𝐺
𝑘T

2Ω𝛿Ω. (1.163)

In a general sense too, the dynamical ellipticity can be split into the hydrostatic com-
ponent 𝐻F, and a residual part 𝛿𝐻 depending on all possible surface and internal
irregularities:

𝐻 = 𝐻F + 𝛿𝐻, (1.164)

where the hydrostatic part can be found by taking the fluid limit of Eq. (1.160) such that:

𝐻F =
𝑅3

E
𝐺𝐶

(1 + 𝑘L,F
2 )𝜙L

2 + 𝑘T,F
2

𝑅5
E

3𝐺𝐶
Ω2

≈𝑘T,F
2

𝑅5
E

3𝐺𝐶
Ω2. (1.165)

The last approximation is possible since 𝑘L,F
2 ≈ −0.98 while 𝑘T,F

2 ≈ 0.97. Ignoring the
loss of angular momentum due to tidal dissipation, the variation in the angular velocity
or the length of the day is accompanied by a variation in the moment of inertia to
conserve the angular momentum, thus we can write:

𝛿(𝐶Ω) = 𝐶𝛿Ω +Ω(1 + 𝑘L
2 )𝛿𝐶

r +Ω𝛿𝐶rot

= 𝛿Ω

(
𝐶 + 4𝑎5

9𝐺
𝑘T

2Ω
2
)
+ (1 + 𝑘L

2 )Ω𝛿𝐶
r

= 𝛿Ω𝐶

(
1 + 4

3
𝑘T

2

𝑘
T,f
2

𝐻f

)
+ (1 + 𝑘L

2 )Ω𝛿𝐶
r

≈ 𝛿Ω𝐶 + (1 + 𝑘L
2 )Ω𝛿𝐶

r ≡ 0, (1.166)

where the approximation was based on the relatively small value of 𝐻F (≈ 0.97). This
allows us to write

𝛿Ω ≈ −(1 + 𝑘L
2 )Ω

𝛿𝐶r

𝐶
. (1.167)

With these quantities, we compute the ratio of the contributions to the polar inertia
variation as: ����� 𝛿𝐶rot

(1 + 𝑘L
2 )𝛿𝐶r

����� =
�����4𝑅5

EΩ
2

9𝐺𝐶
𝑘T

2

����� =
����� 4𝑘T

2

3𝑘T,f
2

𝐻f

����� ≈ 10−3, (1.168)
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where 𝑘T
2 ≈ 0.3. On this basis, we ignored the effect of rotation on the perturbation of

dynamical ellipticity in our simulations.

1.4 Cenozoic glacial history

In this section, we give a historical overview of glaciation on the Earth’s surface over
the geological past. We focus on the last ice ages, the Cenozoic era, which extends
over the past 65 million years. Starting 50 million years ago (Ma), the Earth entered a
cooling phase that led to the inception of the grounded ice sheet on Antarctica around 34
Ma. Following that, the Earth witnessed a significant increase of the global ice volume
during the Oligocene and the Miocene, with limited intervals of warming, and variations
occurred almost completely on Antarctica due to the uni-polar ice configuration. To
date, we have no geological evidence on continental scale glaciation in the northern
hemisphere, except for Greenland, before 3 Ma. Since then, the Earth’s climate oscillated
strongly between glacial and interglacial stages. Towards the end of the Pliocene, glacial
periods started to feature the expansion of ice caps on both hemispheres, whereas during
interglacials, ice sheets were present only in Antarctica and Greenland, similar to the
present interglacial: the Holocene. In what follows, we expand on this history in an
attempt to have a detailed spatio-temporal evolution of ice that can be used as an input
to the sea level equation developed in the previous section.

1.4.1 From benthic foraminiferal 𝛿18O to ice volume

Oxygen isotopic records measured with respect to the VPDB (Vienna Pee Dee Belemnite)
standard and extracted from fossilised benthic foraminiferal shells have long been used
as a primary proxy for climate variations (e.g., Emiliani, 1954, 1961; Shackleton, 1975;
Zachos et al., 2001, 2008). The two main components affecting the uptake of 𝛿18O drawn
from calcite shells are local temperature and sea water variations. Water evaporation
preferentially removes the lighter isotope from water, thus the ratio given by

𝛿18O = 1000 ×
(𝛿18O/𝛿16O)sample − (𝛿18O/𝛿16O)standard

(𝛿18O/𝛿16O)standard
(1.169)

will get more negative as the moisture heading to the polar regions passes across latitudes
to accumulate mass on ice. On the other hand, the net evaporation enriches the sea water
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with the heavier isotope, so the buildup of ice volume will cause the ratio extracted
from the ocean to increase. Thus the isotopic ratio extracted from the ocean responds to
climatic variations oppositely to that extracted from the ice . Following Fowler and Ng
(2019), we use the mass conservation equation

𝛿18Osw𝑉O + 𝛿18Oi𝑉i = 𝐾, (1.170)

𝐾 being a constant, 𝑉O and 𝑉i being respectively the ocean and global ice volumes,
𝛿18Osw is the ratio in sea water, and 𝛿18Oi is the mean ratio in ice sheet. The constant K
can be defined at the present day, scaled with ice and ocean volume, thus:

Δ𝛿18Osw = −𝛿
18Oi𝑉i
𝑉O

+ 𝛿
18Oi𝑉i
𝑉O

����
PD
. (1.171)

The benthic ratios depend on ice volume through the sea water ratios, but they also
depend on water temperature. In colder water the shells have a preferential uptake
of the heavier isotope, hence an additional increase in the ratio. This contribution is
parametrised as a linear relation between the change in deep-water temperature Δ𝑇dw

and the change in the isotopic ratio from temperature Δ𝛿18OT such that:

Δ𝛿18OT = 𝛾Δ𝑇dw, (1.172)

where the value of 𝛾 can be taken for example from Duplessy et al. (2002) so that
𝛾 = −0.28‰◦C−1. Thus the total change in benthic isotopes is the combination of the
two effects giving us:

Δ𝛿18Obn = −𝛿
18Oi𝑉i
𝑉O

+ 𝛿
18Oi𝑉i
𝑉O

����
PD

+ 𝛾Δ𝑇dw. (1.173)

The latter equation means that the interpretation of climate variations from benthic
isotopic ratios is ambiguous as to separate the contributions of temperature from those
of ice volume. Consequently, an independent constraint on ice volume or deep ocean
temperature is necessary to separate both components. A common approach is to use
Mg/Ca ratios in benthic foraminifera as an independent proxy for deep ocean temperature
(Lear et al., 2000, 2003; Shevenell et al., 2008; Sosdian and Rosenthal, 2009), though
this method lacks sufficient constraints on the seawater Mg/Ca ratio creating a huge
uncertainty in the temperature contribution to oxygen isotopic ratios. Cramer et al.
(2011) demonstrated that benthic oxygen isotopic ratios combined with the available
benthic Mg/Ca ratios and added to sea level variation curves are reconcilable under
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reasonable assumptions. Thus Mg/Cabn can constrain temperature, and combined with
𝛿18Obn can constrain ice volume. In parallel, sea level curves can constrain ice volume,
and combined with 𝛿18Obn can constrain temperature. Hence records of temperature
and ice volume are almost independently constructed.

In our attempt to have a spatio-temporal distribution of ice on the Earth’s surface over the
Cenozoic, we will start with a constraint on the temporal evolution of global ice volume
derived from benthic isotope oxygen ratios that use the same method explained above
to separate the contributions from ice and temperature. The evolution of temperature as
a function of Mg/Ca ratios is described in Cramer et al. (2011) by the following linear
equations:

𝑇 =
Mg/Ca − 1.36

0.106
, (1.174)

𝑇 =
Mg/Ca − 1.27

0.242
, (1.175)

where Mg/Ca is to be corrected to account for the effect of variations in seawater
carbonate ion saturation state. Following Miller et al. (2020), Eq. (1.175) is used. Once
the temperature evolution is constructed, the required separation between the effects
of temperature and ice volume variations can be established via a paleotemperature
equation (O’Neil et al., 1969; Kim and O’Neil, 1997; Lynch-Stieglitz et al., 1999):

𝑇 = 16.1 − 4.76
[
𝛿18Obf − (𝛿18Osw − 0.27)

]
. (1.176)

Using a linear relation between 𝛿18Osw and sea level variations associated with ice
volume, glacial volume variations can be directly extracted. Based on this technique, we
adopt the oxygen isotope splice and its associated sea level equivalent of ice compiled
recently in Miller et al. (2020), covering the Cenozoic era, starting 66 Ma 6. This
compiled splice, denoted M20 hereafter, is similar to that in De Vleeschouwer et al.
(2017), but is composed entirely of Pacific records, which compromise 60% of the
modern and 80% of the early Cenozoic global reservoir, minimizing the effects of
temperature and salinity present in other regions due to deep circulation changes. That
said, uncertainties of the glaciation history we shall derive from the oxygen isotopic
record mainly propagate from three different sources: uncertainties on the oxygen isotope
record itself, uncertainties associated with filtering out the temperature contribution to
the record, and uncertainties associated with the conversion of the remaining pure glacial

6we use the usual convention where ka, Ma (thousand, million years) denote dates in the past from
now, while kyr, Myr denote durations
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Figure 1.8: Cenozoic benthic foraminiferal 𝛿18O records from the splice compiled
in Miller et al. (2020) [M20], and their ice volume contribution after the removal of
the temperature contribution à la Cramer et al. (2011). The first panel is the isotope
variation with time relative to the VPDB standard; the drilling sites are indicated on
the top of the panel. The second panel is the ice variation with time in volume units
on the right axis and in percentage relative to modern values on the left axis. The ice
free line is equivalent to 66m of sea level increase above present, corresponding to the
total increase in sea level if the Earth becomes ice free. The GIS/WAIS (Greenland and
West Antarctic Ice Sheets) and the Laurentide lines are equivalent to 12m and -50m
sea level variations. The gray bars on top of the second panel are rough sketches of
the glacial evolution of the ice sheets across 8 intervals that we have defined for the
spatio-temporal glacial function used in our simulations (more on that in Section 1.5).
The 8th interval covers the last glacial cycle.

component to GMSL variations and eventually absolute ice volume (the calibration used
in the M20 splice is 0.13‰/10m; see for e.g., Winnick and Caves, 2015).

1.4.2 Cenozoic Ma-scale climate

The M20 splice (Figure 1.8) is interpreted to distinguish between a mostly un-glaciated
Cenozoic Hothouse with 𝛿18O < −0.5‰, a moderate Warmhouse having ephemeral ice
sheets with −0.5 < 𝛿18O < 1.8‰, and an Icehouse with continental scale ice sheets on
one or both of the Earth’s poles with higher isotopic values (Miller et al., 1987; Huber
et al., 2018) (the terms Hothouse, Warmhouse, and Icehouse have been adopted from
Westerhold et al. 2020). A long term warming stage started in the late Paleocene (60 to
54 Ma) and led to the Paleocene-Eocene thermal maximum followed by a stable interval
of minimum isotopic values during the Early Eocene climatic optimum (55 to 48 Ma).
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The middle Eocene after that witnessed a cooling phase with an increase in 𝛿18O around
2‰, then the climate relatively stabilizes until the end of the Eocene with 𝛿18O ≈ 1‰.

During Middle to Late Eocene, although continental scale glaciation had not yet started
in Antarctica, recent evidence suggests partial glaciation in high elevation regions (Rose
et al., 2013, see Figure 1.9), and the expansion into marine terminating glaciers, specifi-
cally around the Aurora subglacial basin (Gulick et al., 2017). In their attempt to model
the Eocene-Oligocene transition (EOT) and the continental scale glaciation of Antarc-
tica, DeConto and Pollard (2003) simulated the glacial inception and the early growth of
the East Antarctic ice sheet (EAIS) coupling components of the atmosphere, the oceans,
and the ice sheets, while incorporating effects of paleogeography, greenhouse gas, orbital
parameters variation, and ocean heat transport. Their model indicates that the declining
CO2 during that period leads to the formation of highly dynamic ice caps on high surface
elevations, specifically on Dronning Maud Land and the Gamburtsev and Transantarctic
mountains.

Figure 1.9: Surface elevation map of Antarc-
tica. Data set is from bedmap2 (Fretwell et al.,
2013), and the plot is generated using the
Antarctic Mapping Tools (Greene et al., 2017)

Ice on these separate caps slightly was fluc-
tuating with orbital parameters. DeConto
and Pollard (2003) explain that the transi-
tion into the ice-house of the Oligocene is
only possible after crossing a CO2 threshold
that allows these ice caps to expand in vol-
ume and coalesce permanently. Hence this
model can explain the existence of substan-
tial amount of Antarctic ice volume even be-
fore the EOT, however, it cannot explain the
large amplitude variations occurring during
that period, which are most probably due to
the error in the Mg/Ca record. This limita-
tion is discussed in detail in Cramer et al.
(2011), prescribing much larger errors on
the record before 48 Ma, which explains the
negative ice volumes obtained before this period in Figure 1.8. As such, we have limited
our computations and model prediction of the evolution of the dynamical ellipticity to
the interval covering the last 47 Myr.

On the opposite pole of the Earth, the growth of ice sheets in the Northern Hemisphere is
thought to have initiated much later than that on Antarctica (Bailey et al., 2013). Ongoing
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consensus suggests that the beginning of glaciation on southern Greenland only started
in the late Miocene (Larsen et al., 1994), and it was until the late Pliocene when major
glacial cycles and vast volume expansion culminated with the onset of the Laurentide ice
sheet (Shackleton et al., 1984). However, recent evidence reports on sediment rafting
by glacial ice on the south eastern end of Greenland dating back to 30 − 38 Ma (Eldrett
et al., 2007). This was further supported by geochemical data and accurate source
determinations of individual ice-rafted Fe-oxide grains giving evidence to episodic
glaciation on Greenland beginning in the middle Eocene (Tripati and Darby, 2018). The
relatively stable final phase of the Eocene was terminated by one of the major known
Myr-scale features of the Cenozoic, the Eocene-Oligocene transition (EOT), around 34
Ma (Coxall et al., 2005), which is associated with the rapid glaciation of the Antarctic
ice sheet (AIS) up to a continental scale, marking the onset of the Earth’s Icehouse.

Following the EOT, a continental scale AIS was established, almost completely on the
Eastern terrestrial region (Galeotti et al., 2016). During the Oligocene, the evolution
shows that the EAIS was not yet permanently developed, as we have large scale os-
cillations that peaked at the loss of more than 60% of the AIS after the EOT around
30 Ma, indicating its long term instability. The extent to which the West Antarctic
ice sheet (WAIS) participated in the mostly unipolar Oligocene glaciation is unknown.
The model of DeConto and Pollard (2003) initiates glaciation as we mentioned on the
high-elevation plateaus of East Antarctica. Oldest seismic stratigraphic evidence for ice
in the Ross Sea is interpreted as late Oligocene (Bartek et al., 1992), or middle Miocene
(Bart, 2003). However, glacial erosion going back to 28 Ma of dated volcanoes in the
interior of Marie Byrd Land (MBL; see Figure 1.9) suggest a small Oligocene ice cap
there (Rocchi et al., 2006). Moreover, seismic reflection data in Sorlien et al. (2007)
suggests an episode of Oligocene grounded ice in West Antarctica far from the elevated
plateau of MBL. The data also provides evidence for a higher elevation at the Ross
Embayment for the early Cenozoic, which calls for the correction of the absence of ice
accumulation in the existing GCMs (e.g., DeConto and Pollard, 2003).

During the Early to mid-Miocene, major variations occurred in Antarctic ice sheet
volume and extent. The splice presented here estimates larger variations than those
proposed in Pekar and DeConto (2006) (50% to 125% of modern EAIS values). GCMs
previously failed to completely simulate such large scale variations because of strong
hysteresis effects and glacial-interglacial symmetry, and the resultant stable ice sheet
when the continental scale ice spread is achieved. Modelling this variability required
adding more atmospheric components to account for ice sheet-climate feedback (Gasson
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Table 1.3: A compilation of references used to constrain the spatio-temporal distribu-
tion of ice over the Earth’s surface. Some elements of the list correspond to geological
evidence of various ice sheets extent over the Cenozoic. Others correspond to numerical
modelling of ice sheets, specifically used to simulate onsets of continental glaciation.

Geologic Evidence / Geographic Constraint Reference
• Partial glaciation in Antarctic high elevation regions
during the Early Eocene.

Rose et al. (2013)

• Antarctic expansion into marine terminating glaciers,
specifically around the Aurora subglacial basin.

Gulick et al. (2017)

• Simulating the inception of the EAIS requires small ice
caps on elevated plateaus.

DeConto and Pollard (2003)

• Sediment rafting by glacial ice on the S-E end of Green-
land dating back late Eocene.

Eldrett et al. (2007)

• Middle Eocene episodic glaciation on Greenland from
ice-rafted Fe-oxide grains.

Tripati and Darby (2018)

• Seismic stratigraphic evidence for ice in the Ross Sea
during Oligocene-Miocene.

Bartek et al. (1992) Bart (2003)

• Oligocene grounded ice in the WAIS around and far
from Marie Byrd Land.

Rocchi et al. (2006); Sorlien et al. (2007)

• Terrestrial retreat of the EAIS during the Miocene Cli-
matic Optimum.

Levy et al. (2016)

• Expansion of terrestrial ice across the Ross Sea conti-
nental shelf around 24.5–24 Ma.

Hauptvogel et al. (2017)

• Terrestrial AIS stability for the past 8 Ma from cosmo-
genic isotope data.

Shakun et al. (2018)

• Early Pliocene loss of ice from WAIS and Greenland. Naish et al. (2009)
• Substantial marine ice retreat in the EAIS during Early
Pliocene.

Cook et al. (2013)

• Simulating the AIS evolution over the last 3 Myr: Sep-
aration between polar caps’ contributions to the global
volume.

Pollard and DeConto (2009)

et al., 2016b). These large oscillations were punctuated by the Miocene Climatic
Optimum (17 - 13.8 Ma). The latter was a period of reduced ice volume where near
ice free conditions were attained around 15 Ma, probably establishing the most recent
ice-free Earth. Records from around the Antarctic margin support this terrestrial retreat
of the EAIS (Levy et al., 2016; Gulick et al., 2017). GCMs and simulated AIS are much
more stable than the geologic record for this period, calling for more work in order to
understand how the AIS responded to past climate changes and what drove the terrestrial
retreat (Gasson and Keisling, 2020).

Following that warm period, the Middle Miocene Climatic Transition (MMCT) involved
three major steps of cooling and consequently sea level falls (Mi3a, Mi3, Mi4, 14.8-12.8
Ma) resulting in a permanent EAIS (Miller et al., 2020) and a global ice volume a bit
higher that today (∼ 120%). The ice volume then remained approximately constant
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until early Pliocene. This scenario of Antarctic stability for the past 8 million years
is supported by cosmogenic isotope data from the Ross Sea (Shakun et al., 2018).
Consequently, any ice loss during this interval would be from the marine sectors either
in the WAIS, or the large basins of East Antarctica, and the Wilkes and Aurora subglacial
basins. This was the case of the Early Pliocene, when sea level rose to levels above 12
m, indicating the loss of ice from WAIS and Greenland (Naish et al., 2009). Some peaks
were even higher, requiring the melting of the marine parts of the EAIS. Although the
sea level maximum of this period remains poorly constrained (Dutton et al., 2015), there
is physical evidence for substantial ice retreat in the marine sectors of East Antarctica
(Cook et al., 2013).

During the last 3 Ma, build-ups of ice volume were associated with sea level lowering up
to 130 m below present, indicating the onset of a continental scale northern hemispheric
ice sheets. The largest of these build-ups were during the past 800 kyr. The last glacial
maximum (LGM, 21 ∼ 26 Ka) is not only a local maximum of glaciation but a global
one across Cenozoic ice history as it is associated with the maximum sea level drop
∼130 m (Austermann et al., 2013). We summarize this brief Cenozoic glacial history in
Table 1.3.

1.5 Evolution of Cenozoic dynamical ellipticity

In the framework of the SLE solver, the ice volume input should be temporally discretized
as we discussed, but also spatially distributed over the surface of the Earth in order to
facilitate the computation of the surface integrals by the pseudo spectral approach
(Mitrovica and Peltier, 1991). Since an exact distribution is currently impossible to
obtain over such a prolonged history, we approximate the input by conserving the global
limit from the M20 splice (Figure 1.8), and abiding by major known glacial events and
available geological constraints that help model the glacial spatial distribution ( Table
1.3). The global estimate of ice volume is thus distributed over the spherically pixelated
grid on the surface of the Earth. SELEN4 adopts a grid of equal-area, icosahedron-shaped
pixels (Tegmark, 1996). This grid is characterized by a resolution parameter 𝑅 such that
the total number of pixels on the surface 𝑃 is

𝑃 = 40𝑅(𝑅 − 1) + 12. (1.177)
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All our simulations were performed with 𝑅 = 30, yielding 𝑃 = 34812. For such a large
number of pixels, each pixel can be thought of as a disk of radius 𝑟disk ≈ 2𝑅E/

√
𝑃. Thus

each pixel approximately covers a surface area of 14600 km2.

Figure 1.10: Time slices of the Antarctic ice distribution on the pixelated surface of
the Earth. Color coding represents the ice thickness in meters. Each spatial spread in
used over a specific interval of time (see text).

Over the time interval of our simulations (47 Myr), we scale our glacial input with the
global limit of M20, however, we separate between 8 intervals of spatial distribution
(marked by the vertical gray lines in Figure 1.8). Samples of the distribution over these
intervals are plotted via Matlab’s Mapping Toolbox (Greene et al., 2017) and shown
in Figure 1.10 for the Antarctic ice sheet, and in Figure 1.11 of the northern ice cap.
Before the Eocene-Oligocene transition, ice is distributed over the high elevation regions
of the East Antarctic Ice Sheet (EAIS); specifically on the Dronning Maud Land, the
Gamburtsev Mountain, and parts of the Trans-Antarctic Mountains. The second interval,
the Oligocene, witnesses continental scale spread on the EAIS, with minimal glaciation
on the high elevation plateaus of the western part (WAIS), and on the Eastern side of the
Greenland Ice Sheet (GIS). The third interval, covering the Early Miocene, only differs
from the second interval by the expansion of the EAIS into marine terminating glacial
spread. The fourth interval represents the warm period of the Middle Miocene Climatic
Optimum (MMCO), and is characterized by Antarctic glacial retreat reaching the spread
of the first interval. Following the MMCO, the stable EAIS is established, and ice fully
covers the WAIS and the GIS for the first time. The sixth interval represents the warm
period of the Early Pliocene, and it witnessed the retreat of the WAIS. Starting 3 Ma,
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Figure 1.11: Same as Figure 1.10, but for the glacial spread over the northern hemi-
sphere.

the seventh interval highlights the maximum glacial spread over the Cenozoic, with
the glaciation of the Laurentide and the Fennosacida ice sheets (Figure 1.11). In this
interval, for the separation of the global ice volume between the northern and southern
regions, we use the simulation of Pollard and DeConto (2009) as an estimate of Antarctic
ice. Subtracting this estimate from the global limit leaves us with the contribution of
the northern cap. Finally, we terminate our established history with the ICE-6G model
(Peltier et al., 2015), and we use the distribution of the Last Glacial Maximum (LGM)
as the limit of the maximum possible ice spread. In each interval, the distribution of
the allocated ice volume over the pixels of the corresponding region is controlled by the
relative distribution among the same pixels at the LGM.

It is noteworthy that such a distribution may not be adequate for high precision geodetic
computations. However, we are after the second degree harmonic decomposition of
the load, which is characterized by even parity and symmetry under rotation. Also, the
change in oblateness reflects long wavelength deformation, so abiding by major climatic
events, it is safe to assume that we are capturing the backbone of the evolution of the
dynamical ellipticity. Our sensitivity tests will later show that variations in the spatial
distribution are only higher order corrections.

Using SELEN4, the SLE is solved over two nested loops, and the convergence of the
solution as a function of the number of iterations is discussed in Milne and Mitrovica
(1998); Spada and Melini (2019). Based on the convergence tests in these studies, all of
our simulations were performed over three internal and three external loops. We use the
11-layer Earth model described earlier, and we provide SELEN4 with the needed Green’s
functions based on the viscoelastic response of this model.

Global ice input uncertainty propagates from the uncertainty of the sea level variation.
Estimates of uncertainty on the latter vary between ±10m and ±20m (Kominz et al.,
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2008; Miller et al., 2012; Raymo et al., 2018). Thus we consider these limits as 1𝜎
and 2𝜎 error estimates respectively, and we consequently create a white Gaussian noise
with these amplitudes to perform 40 simulations of the SLE solver. In addition to this
error, sea level variation is under a systematic uncertainty propagating from the variation
in the volume of the oceans basins and a contribution from tectonic changes (Conrad,
2013). Constraining the former was already done in the M20 data set based on Cramer
et al. (2011) by limiting the ice contribution to the sea level variation through end
member scenarios. To remove the tectonic contribution, we apply a LOESS regression
filter (a generalized moving polynomial regression; Cleveland and Devlin, 1988), with a
window of 20 Myr, to isolate and then remove variability occurring over plate tectonic
timescales, thus only keeping short timescale variability that is most likely due to the
ice volume contribution.

In Figure 1.12, we plot in red the evolution of the relative perturbation in the dynamical
ellipticity based on our SLE solutions. In black are solutions with 1𝜎 correction, and 2𝜎
solutions are in gray. Since the present Earth is in an interglacial period, the mean of the
perturbation across the Cenozoic is negative, as glaciation involves a net transfer of mass
into the poles, reducing the dynamical ellipticity. As discussed earlier, the viscoelastic
response attempts to compensate for this reduction by increasing the flattening again,
but the overall perturbation nonetheless remains negative. The mean of the oscillations
over the Eocene approaches zero, with relatively high amplitude oscillations attributable
to the poor constraint of the Mg/Ca ratios. The first major amplification in our model
prediction of the perturbation occurs in a step-function like jump and is, as expected,
across the Eocene-Oligocene transition (34 Ma), upon the initiation of a continental
scale glaciation on Antarctica. After that, the unstable terrestrial East Antarctic Ice sheet
results in moderate amplitude oscillations averaging around −0.04% (Figure 1.12). The
following major Myr-scale variation in the secular trend occurs around the Miocene
climatic optimum when the Earth enters a period of reduced glaciation reaching near
ice-free conditions. During this period, the relative perturbation in the ellipticity trend
drops to around −0.012%, then attains its global average again with the initiation of a
larger scale glaciation on West Antarctica and Greenland, and with the stabilization of
the EAIS. The final major variation in the trend occurs when the Earth transitions into
its bipolar glaciation. During the last 3 Myr, the dynamical ellipticity enters a regime of
extremely high amplitude oscillations that are maximized during the last million years.
The average value during this period drops to around −0.05% (second panel of Figure
1.12), and reaches −0.07% during the most recent glacial cycles. Glacial peaks over the
same period average around −0.11%, and reach −0.17% within the 2𝜎 envelope. The
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Figure 1.12: Model prediction of the evolution of the relative perturbation in dynamical
ellipticty due to GIA over the past 47 Myr (the limit beyond which Mg/Ca data is
compromised by large errors). Top: Evolution in red corresponds to the ice load
variation derived from the M20 𝛿18𝑂 splice of Figure 1.8 and internal profiles averaged
from the PREM model with viscosity variation adopted from Lau et al. (2016b) . In
black and gray are 40 other simulations accounting for 1𝜎 and 2𝜎 uncertainty in ice
as discussed in the text. Bottom: A smaller window over the past million years only.
Plotted is our solution compared to that provided in Ghelichkhan et al. (2020), each
with their smoothed secular trends.

last interglacial period is marked with a global maximum with a relative perturbation
of +0.08%. We note that using simpler geometries of glacial spread yields results that
are well confined within this uncertainty envelope. For instance, replacing the spatial
evolution of the Antarctic glacial distribution by the spread of the Last Glacial Maximum
(LGM), which almost represents a spherical cap confined within a circle of latitude at
−66◦, yields an evolution of the dynamical ellipticity within the 2𝜎 uncertainty envelope
for the Eocene and parts of the Miocene, and within 1𝜎 for the rest of the Cenozoic.

In a similar procedure to that adopted here, Ghelichkhan et al. (2020) also derived the
evolution of the dynamical flattening due to GIA over the last 3 Myr. In the second
panel of Figure 1.12, we compare their solution to the present work over the past million
years only. By visual inspection, the two solutions appear to evolve in-phase along the
glacial cycles within the same order of magnitude. We also investigated the periodicity
of both solutions and they matched identically. However, the evolution in Ghelichkhan
et al. (2020) involves more amplified oscillations and a larger secular reduction in the
dynamical ellipticity. In fact, the plotted secular trends show that our estimate is around
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Figure 1.13: Continuous Wavelet Transforms (CWT) performed for the ice volume
input provided to our simulations and the computed dynamical ellipticity evolution. The
color mapping shows the relative power of varying amplitudes of spectral components
of the data. Major spectral components associated with orbital forcing are identified on
the y-axis. On top of the scalogram, the top white curve corresponds to the computed
local nyquist frequency. The bottom shaded area represents the cone of influence,
which is the area potentially affected by edge-effect artifacts, and is suspected to have
time-frequency misinformation.

half that produced in their analysis (around −0.055% compared to −0.11%). Their
study adopts an ice history from Raymo et al. (2011), which is also developed from
foraminiferal oxygen data. However, it is not clear whether their direct scaling took
into account the contribution of temperature or not, so that could partially justify the
discrepancy. However, as our ice sensitivity envelope well constrains the long term trend,
we expect the difference to have emerged from adopting different viscosity profiles for
the Earth, thus we perform a viscosity sensitivity analysis in the following sections.

1.5.1 Pacing by astronomical beats

On timescales of 101 ∼ 103 kyr, the climatic state behaves as a nonlinear system that
responds to quasi-periodic astronomical forcing. To better understand this modulation
and its influence on the dynamical ellipticity variation, we perform a continuous wavelet
transform (CWT) using Matlab for both the ice input data and our dynamical ellipticity
evolution solution. That of the former is similar to that present in Miller et al. (2020),
and on a Myr timescale, it shows the general transition in the power spectrum from a
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climate that was mostly dominated by long period orbital forcing, into a regime of short
period forcing dominance. The long eccentricity and obliquity cycles are clearly present
before the Eocene-Oligocene transition, along with a less prominent shorter eccentricity
( 405-kyr) modulation. The long periodicity dominance continued across the Oligocene,
where large amplitude oscillations in ice volume were paced by the long obliquity cycle,
along with an emerging dominance of the eccentricity period modulation (Boulila et al.,
2011). During this period, we also identify the short eccentricity (100-kyr) and obliquity
(40-kyr) bands being present to a lesser power (Pälike et al., 2006; Liebrand et al., 2017).

Across the Miocene, the attenuation of the long period orbital forcing control is clear, in
favor of a growing effect for the 405-kyr eccentricity and 40-kyr obliquity cycles. While
the first major expansion of terrestrial ice across the Ross Sea continental shelf took place
at 24.5–24 Ma (Naish et al., 2001; Hauptvogel et al., 2017), Levy et al. (2019) suggested
that the pacing by short obliquity forcing increases when ice sheets margins extend into
marine environments, a persistent feature after the Miocene Climatic Transition (MCT,
15 Ma). Accordingly, our spectrogram is consistent with this analysis showing more
power at the 40 kyr modulation starting around this period. During the last 3 Myr,
blow-ups of ice volume were associated with extreme sea level falls and the onset of a
continental scale northern hemispheric ice sheets. The 40-kyr obliquity cycle continued
to be dominant with the 100-kyr eccentricity cycle which takes over across the last 800
kyr, although it was already present before this transition. We note the clear attenuation
of the 405-kyr eccentricity cycle that was dominant during intervals of the Miocene, and
the almost complete muting of the long eccentricity and obliquity cycles. This general
trend was also identified in another compiled oxygen splice (Westerhold et al., 2020),
explained by the spectrum of different nonlinear responses of the climate system to
orbital forcing during different climate states: Eccentricity cycles should dominate the
pacing of the Hothouse and the WarmHouse, as the eccentricity dominates temperature
responses in low latitudes, while obliquity cycles dominate over the CoolHouse and the
IceHouse, as high latitude glaciation is mostly influenced by the obliquity. This feature
is also clear in our spectral analysis, except for the fact that long term obliquity pacing
was also prominent even before the Oligocene.

As for our dynamical ellipticity evolution, its CWT is a filtered version of that of the
ice input. Since its evolution is dictated by the evolution of the surface loading, one
can expect to have an identical pacing for both signals. However, the solid Earth’s
response behavior is orchestrated by the relaxation spectrum of the normal modes
whose timescales range between 10−1 ∼ 105 kyr (Figure 1.6). We also note that the
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modes with the longest relaxation times correspond to buoyancy modes with very low
normalized viscous amplitudes 𝑘𝐿2,𝑖/𝑠2,𝑖, and thus minimal contribution to the summation
in Eq. (1.151). Hence the viscous relaxation of the solid Earth acts as a high pass
filter that will only keep short periodicities at play. Thus the CWT of the dynamical
ellipticity attenuates the imprints of long orbital forcing and maintains the pacing by
the short obliquity and eccentricity cycles. It must be stressed that this frequency
filter is only associated with the physics under study. A complete study of solid Earth
deformation would incorporate low frequency signals associated with mechanisms like
mantle convection and plate tectonics.

1.5.2 Viscosity profiles sensitivity test

To better constrain the evolution of the dynamical ellipticity, we investigate the effect of
mantle viscosity on the presented solution. The literature is very dense with modelled
profiles, and we present a sample of them in Figure 1.14. The problem of inferring
this radial profile from GIA observables dates back to Daly (1925). In general, relative
sea level histories and post glacial rebound data, specifically those from Fennoscandia
or Antarctica, constrain the upper mantle’s viscosity, while post glacial signals from
Canada are used to constrain the upper part of the lower mantle. Other geophysical
observables, including the rate of change of 𝐽2 and the polar wander are used to constrain
the viscosity of the rest of the lower mantle, though these constraints may be challenged
(Nakada et al., 2015; Adhikari et al., 2018). Other radial profiles were derived from
joint inversion of data that include these GIA effects along with data related to mantle
convection (Mitrovica and Forte, 1997, 2004; Moucha et al., 2008). Based on that, a
community consensus has been established that the viscosity’s radial profile increases
some orders of magnitudes along the Earth’s depth. However, precise accounts of this
transition are almost irreconcilable in the literature (Figure 1.14). Particularly, some
models infer a viscosity jump of two orders of magnitude (Lambeck et al., 2014; Nakada
et al., 2015), while others advocate a less acute transition (e.g. the VM5a model Peltier
et al., 2015)).

The low contrast viscosity profile we have used so far is presented in Lau et al. (2016b),
and was constructed by analyzing GIA data using a combination of forward predictions
and inversions based on nonlinear Bayesian inference. The result is constraining the
upper mantle viscosity to around 3 × 1020 Pa s, the depth in between the mid-upper
mantle and mid-lower mantle to around 1021 Pa s, and the bottom half of the lower
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Figure 1.14: Mantle radial viscosity profiles from six different models in the literature
(Mitrovica and Forte, 2004; Whitehouse et al., 2012; Lambeck et al., 2014; Peltier et al.,
2015; Lau et al., 2016b; Lambeck et al., 2017; Roy and Peltier, 2017). Most models are
inferred from inversions of GIA observables including sea level variations, rebound,
rate of change of the second zonal harmonic, and polar wander. Almost all models
involve at least an order of magnitude viscosity transition between the mean of the
upper mantle and the mean of the lower mantle, however some models advocate more
acute jumps than others, especially around the 660 Km seismic discontinuity. Shaded
are the areas we cover in our sensitivity analysis.

mantle to a mean value in excess of 1022 Pa s. This low contrast viscosity model of
Lau et al. (2016b) is very similar to the VM7 model of Roy and Peltier (2017) and
the VM5a of Peltier et al. (2015), especially in the upper part of the lower mantle.
In contrast, the profile used in Ghelichkhan et al. (2020) is the high viscosity contrast
model of Mitrovica and Forte (2004) (further updated in Moucha et al. (2008) and Forte
et al. (2009) removing the soft layer at the 660 km discontinuity). The latter model was
derived from joint inversions of mantle convection and GIA constraints, but it is argued
that it overestimates solid Earth relaxation times inferred from shoreline displacement
histories in the James Bay area (Pendea et al., 2010). Models inferring more pronounced
contrast across the seismic discontinuity are completely ruled out by the present true
polar wander constraints and global positioning system (GPS) observations of the crustal
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Figure 1.15: Relative perturbation in dynamical ellipticity over the past 3 Myr as a
function of the lower mantle viscosity 𝜈LM. The upper mantle viscosity is fixed at
𝜈UM = 0.5 × 1021 Pa s. The middle branch, 𝛿𝐻𝑚/𝐻0, represents the mean of the
evolution, while the upper and lower branches represent the highest and lowest peaks
in the evolution, denoted by 𝛿𝐻+/𝐻0 and 𝛿𝐻−/𝐻0 respectively. For each value of
𝜈LM we perform 20 simulations that differ in the ice input to account for a random
uncertainty in the interval [0 2𝜎] as discussed in the text. Each point on the branches
is thus the average of these simulations. Specified points on the branch refer to the
specific viscosity profiles in Figure 1.14 using the same color coding. The shaded area
refers to a part of the identified region R1 after constraining the lower mantle viscosity
to log10 𝜈LM ∈ [21.2, 21.6] by observed values of ¤𝐽2 (see text). We also marked the
threshold value of 𝛿𝐻/𝐻0, which if attained, the Earth could have crossed the 𝑠6−𝑔6+𝑔5
resonance described in Eq. (1.18) (Laskar et al., 1993a).

vertical motion over the North American continent (Argus et al., 2021).

We proceed by performing a systematic exploration of the dynamical ellipticity solution’s
sensitivity to mantle viscosity variations. We perform simulations for effective viscosity
values, namely a single value for the upper mantle and another single value for the
lower mantle. For the specified models with more layering, volumetric averaging was
performed over concentric spherical shells. As previously predicted by Mitrovica and
Forte (1995), the results are mostly insensitive to viscosity variations in the upper mantle
and almost entirely dependent on the lower mantle. The contribution of the upper mantle
is expected to arise for higher order harmonics. Thus in Figure 1.15, we show the results
of a suite of simulations for a span of lower mantle effective viscosity 𝜈LM for fixed upper
mantle effective viscosity 𝜈UM = 0.5 × 1021 Pa s. Considering a time interval covering
the most recent 3 Myr, we plot the mean (𝛿𝐻𝑚/𝐻0), the upper envelope (𝛿𝐻+/𝐻0), and
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the lower envelope (𝛿𝐻−/𝐻0) values of the evolution of our model predictions of the
relative perturbation for each viscosity value. Each point on each branch is the average
of 20 simulations that covered the ice uncertainty envelope. The negative values of
𝛿𝐻𝑚/𝐻0 and 𝛿𝐻−/𝐻0 get more negative as the viscosity contrast between the upper
and lower mantle increases. However, the slope of this monotonic trend is smaller for
smaller values of 𝜈LM than it is for larger values. In contrast, 𝛿𝐻+/𝐻0 is less sensitive to
viscosity variations. The time evolution of each simulation also shows that the difference
between the long term trends grows in time, and this has two causes: the general feature
of ice volume increase with time, and the accumulation of the non-linear effects due to
the solid Earth’s relaxation response.

Besides the reduction in the mean, Figure 1.15 shows that larger values of lower mantle
viscosity, corresponding to a larger viscosity jump across the 660 km discontinuity, are
associated with a broader separation between the peaks, (𝛿𝐻+−𝛿𝐻−)/𝐻0. This behavior
of the cycles’ amplitudes, along with that of 𝛿𝐻𝑚/𝐻0, is understandable when increasing
the viscosity. The latter results in an increase in the relaxation times which reduces the
value of the fluid Love number, and consequently the magnitude of the viscoelastic
compensation effect. The larger the viscosity value, the more we approach the limit
of elastic compensation only, which is characterized by a larger relative perturbation
in the geoid and in the dynamical ellipticity. This justifies the plateau that we reach
for log10 𝜈LM > 23.2 Pa s. In contrast, decreasing the viscosity results in decreasing
the relaxation times and increasing the viscoelastic compensation effect, thus shrinking
the relative perturbation. Accounting for this viscosity effect explains the difference we
obtain with the larger amplitude oscillations in Ghelichkhan et al. (2020). The authors
use the viscosity profile of Mitrovica and Forte (2004), characterized by a larger lower
mantle viscosity than our volume averaged profile from Lau et al. (2016b). The offset
between the two solutions in Figure 1.12 is now clear in Figure 1.15, where the black
dot of the former profile corresponds to 𝛿𝐻𝑚/𝐻0 = −0.116%, while the red of the latter
profile corresponds to 𝛿𝐻𝑚/𝐻0 = −0.05%.

Investigating the possibility of the past occurrence of the resonance scenario discussed
after Eq. (1.18), we also mark in Figure 1.15 the threshold value required to cross the
𝑠6 − 𝑔6 + 𝑔5 resonance exhibited by Laskar et al. (1993a). It is evident that the average
value of the ellipticity variation does not cross this threshold, as it plateaus for large
values of 𝜈LM as explained above. Values of 𝛿𝐻−/𝐻0 , plotted on the lower curve, only
cross the threshold value when log10 𝜈LM > 22.6 Pa s, i.e., for lower mantle viscosity
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values excluded by the observational constraints (Argus et al., 2021), as we will further
confirm in the following section.

1.5.3 Constraining the evolution of 𝐻 by ¤𝐽2

The average and the amplitude of the ellipticity perturbation cycles are highly sensitive
to the chosen viscosity profile. The presented solution in Figure 1.12 is based on a recent
inference of the viscosity profile. To justify this choice in the context of our viscosity
sensitivity study, we attempt to constrain our effective viscosity freedom by the observed
values of ¤𝐽2, which as discussed earlier, is the major constraint used for lower mantle
viscosity (Peltier, 1983). The first Satellite Laser Ranging (SLR) based estimate of the
variation of 𝐽2 was reported in Yoder et al. (1983) as a linear trend of −3 × 10−11yr−1.
As time proceeded, further analysis of SLR data over longer time spans and using more
satellites provided more estimates of the secular trend. In Figure 1.16 we compiled an
inter-study comparison of this trend from different references. All studies until the late
1990s approximated the trend by a negative linear drift that is most likely an outcome
of GIA (Peltier, 1983; Yoder et al., 1983; Cheng et al., 1989). However, analyses of the
time span after 1995 showed a systematic decrease in this trend suggesting non-linearity
(Cheng et al., 2013). The likely cause of this swing was attributed to modern melting
of glaciers as an outcome of global warming (Roy and Peltier, 2011; Matsuo et al.,
2013; Loomis et al., 2019; Chao et al., 2020). It is suggested that obtaining a pure GIA
signal of ¤𝐽2 requires isolating this "contamination" of glaciers’ modern melting (Ivins
et al., 1993). This can lead to a pure GIA contribution of larger negative values [ e.g.
−5.4 ± 0.7 × 10−11yr−1 (Lau et al., 2016b) ; −(6.0 − 6.5) × 10−11yr−1(Nakada et al.,
2015)]. However, in our effective model, we restrict our study to the trend of ¤𝐽2 before
the departure from linearity, and we consider this trend to be a pure GIA signal (Roy
and Peltier, 2011).

On a grid covering the ranges of mantle viscosity values (Figure 1.14), and using the
already developed ice distribution, we compute present day rates of variation of 𝐽2. In
Figure 1.16, we contour the surface of ¤𝐽2 in this effective viscosity space, and we specify
level curves of relevance with respect to the observed values. The latter appear to be
concentrated around two regions, which as discussed earlier, are mostly dependent on
the lower mantle viscosity. This sensitivity is clear with the vertical structure of the
level curves. Thus in total, two regions of viscosity combinations are preferred for the
best fit with observational data: R1, a region enclosed by log10 𝜈LM ∈ [21.2, 21.6] for
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Figure 1.16: Constraining the choice of the viscosity profile by a comparison with
observational estimates of ¤𝐽2. Left: an inter-study of computed values of the secular
trend. We note that more recent analyses were based on larger time spans of SLR
measurements and more satellites. In studies that showed the quadratic form of the
variation, we only took the negative linear trend that is most likely attributed to the
post glacial rebound (Roy and Peltier, 2011). We also note that, unlike the rest, the
estimate of Stephenson et al. (1995) is based on the analysis of the Earth’s rotational
data over the recent centuries, which features a much larger uncertainty compared
to other studies. Right: Level curves of the surface of computed ¤𝐽2 on a grid of
combinations of viscosity values for the upper and lower mantle parts. We specified
curves corresponding to relevant limits of observational values.

any value of 𝜈UM, and a region R2, enclosed by log10 𝜈LM ∈ [23.1, 23.6] with large
values of upper mantle viscosity. R2 diverges for lower values of upper mantle viscosity
corresponding to an Earth with a very acute jump between the mantle parts (three to four
orders of magnitude). Thus for values of upper mantle viscosity well constrained within
the shaded region of Figure 1.14, R1 best fits the observed ¤𝐽2. Moreover, as explained
earlier, the region R2 is ruled out by taking the second rotational datum into account
(Peltier, 2015; Argus et al., 2021). Namely, modern observations of the speed (0.98◦

Myr−1) and direction (79.9◦ W) of the true polar wander (Argus and Gross, 2004) can
only be fitted using low viscosity contrast models. We identified R1 in the dynamical
ellipticity evolution space in Figure 1.15. This region is consistent with the inferred
low contrast viscosity profiles: VM5a (Peltier et al., 2015), VM7 (Roy and Peltier,
2017), and that of Lau et al. (2016b). This rectangular region represents our constrained
estimates for the average and amplitude of the variation in the dynamical ellipticity. It
clearly shows that the pure GIA contribution cannot drive the Earth into the 𝑠6 − 𝑔6 + 𝑔5

resonance.
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1.6 Summary

In this chapter, we provide the evolution of the dynamical ellipticity of the Earth over
the past 47 Myr due to the varying glacial surface load. We start by computing the
viscoelastic Love numbers in the normal modes theory. There we identified an essential
limitation of the propagator matrix method when solving the differential deformation
system: increasing the stratification level of the Earth’s model produced erratic response
spectra in the high frequency regime. However, we proved that this limitation can
be judiciously avoided due to the convergence of the viscoelastic response with the
modelled layering of the Earth.

After computing the surface loading viscoelastic Love numbers, we constructed a
detailed history of the glacial variation during the Cenozoic starting from benthic
foraminiferal records. We used a recently-compiled far-field record of benthic oxygen
isotopes (Miller et al., 2020). As both oceanic temperature and ice volume take part in
the isotopic variation, the contributions were deconvolved using benthic Mg/Ca records
as an independent temperature proxy. Though we translated the glacial contribution to
ice volume, we proceed with caution noting the following:

• Our inference of the global glacial volume from the isotopic record is only a
rough estimate of glacial volume that gains more precision when accompanied by
a record of oxygen isotope composition in the ice sheets (Langebroek et al., 2010).

• This global ice volume inference could be compromised by variations in atmo-
spheric moisture transport and the thickness of ice sheets yielding an overestimate
of glacial volume (Winnick and Caves, 2015). Uncertainties in using this iso-
tope record can also propagate from the used temperature contribution correction
(Cramer et al., 2011), especially given evidence on discrepancies between ice
growth reconstruction and the isotopic record over the last glacial cycle (Pico
et al., 2017), or over the Pliocene (Gasson et al., 2016a).

• The comparison of the sea level equivalent of the record with the sea level con-
struction from continental margins (Miller et al., 2020) can also be compromised
by effects of mantle dynamic topography rather than pure glacial dynamics (Forte
et al., 1993; Moucha et al., 2008).

• However, our ice sensitivity tests proved that the correction to the dynamical
ellipticity evolution due to an ice uncertainty propagating from an error of ±20
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m in eustatic sea level equivalence does not corrupt model predictions (Figure
1.12). Moreover, uncertainties in the spatial distribution of ice are minimized by
the symmetries of the second zonal harmonic. The geological evidence employed
(see Table 1.3) is also a critical backbone of the analysis we report here.

Based on this ice history, we used the sea level equation solver of Spada and Melini
(2019) to self-consistently trace the evolution of the surface loading between the ice
caps and the oceans. Once the sea level variation is established, we directly recover
the evolution of the geopotential of the Earth, from which we isolate the dynamical
ellipticity.

The viscoelastic response of the Earth features the major uncertainty in retrieving an
accurate evolution of the dynamical ellipticity. The predicted evolution of the dynamical
ellipticity mostly depends on the Earth’s viscosity profile, specifically on the lower mantle
viscosity. As the latter is not well determined in the literature, we studied the sensitivity
of our prediction of the dynamical ellipticity perturbation to lower mantle viscosity
variations. We then proceeded with a misfit analysis of model predictions of ¤𝐽2 with
recent observational estimates. The final outcome is constraining the average relative
perturbation of the dynamical ellipticity over the past 3 Myr to [−0.031%,−0.055%],
with a lower boundary inside [−0.07%,−0.13%], and a less sensitive upper limit around
+0.07%. Scrutinizing our model dynamical ellipticity perturbation evolution over the
past 700 Kyr, and using the same viscosity profiles, our mean and peak-to-peak estimates
are smaller than those computed by Mitrovica and Forte (1995) (for the averaged viscosity
profile of Mitrovica and Forte (2004), our maximum negative perturbation of 𝛿𝐻/𝐻0

is −0.21%, while their maximum is −0.3%). In contrast, our estimates are larger than
those less acute in Peltier and Jiang (1994).

These intervals also account for the uncertainty propagating from the used ice distri-
bution. Our evolution extends to the mostly unipolar interval of the Cenozoic with an
average inside [−0.02%, −0.045%]. Going beyond 47 Ma, our ice input, and conse-
quently our prediction of the ellipticity evolution are compromised by the growing error
in the Mg/Ca record.



CHAPTER 2

REVISITING THE LONG-TERM TIDAL EVOLUTION
OF THE EARTH-MOON SEPARATION

2.1 Introduction

The Earth-Moon duo represents, to a large extent, a unique system. Setting aside Pluto &
Charon, the satellite to planet radius ratio in the Earth-Moon system is the largest among
all known analogues (Peale, 1999). The ambiguous nature and -most probably tiny- size
of the lunar core (e.g., Viswanathan et al., 2019), the large total angular momentum,
the partially molten early Moon with a deep magma ocean (e.g., Maurice et al., 2020),
and the current orbital configuration of the system, all along with other features require
an intricate lunar formation and evolution theory to be satisfactorily explained. Here,
we brief on the history and state-of-the-art of some perplexing challenges in modelling
the Earth-Moon system. We focus on three “conundrums" associated with reconciling
presently measured observables of the Earth-Moon system with formation, early, and
long term evolution models.

❖ The isotopic crisis and the angular momentum reconciliation

Pre-Apollo theories of lunar formation were largely based on dynamical scenarios,
since little was established on the chemical composition of the lunar building blocks
(Cummings, 2019). Theories included, but were not limited to:

• rotational fission, in which the rapidly rotating proto-Earth flung away the lunar
forming material by the mere act of the centrifugal force. The theory is primarily
accredited to Darwin (1879) who, aided by the work of Poincaré (1885) on
the equilibrium forms of rotating fluids, argued that the rapid rotation of the
proto-Earth can bring its spheroidal equilibrium into an unstable pear-shaped
mass distribution. Consequently, for 4-5 hr length of day, resonances between
the solar semi-diurnal tide and the free oscillations of the fluid may rupture

75
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the unstable configuration into two or more parts. Although the theory was
later challenged on the basis of the insufficient amplitudes of the resonance tides
when tamed by core-fluid friction (Jeffreys, 1930), it remained alive, with various
modifications, until the beginning of the Apollo explorations. Perhaps the reason
for the staying power had to do with linking the rupture scenario during the lunar
genesis with the formation of oceanic basins (Fisher, 1882; Wise, 1963).

• collisional fission; the less recognized fission scenario, whereby fission occurred
after the Earth collided with another “planetoid" (Daly, 1946).

• co-accretion, in which the Earth and the Moon formed simultaneously, close to
each other within the circumsolar cloud of dust and gas (Schmidt, 1958; Urey,
1962). Namely, satellite formation is the result of particles encountering the
planetary embryos with certain velocities such that they do not agglomorate
on them, but rather join a swarm revolving around the planet. The swarm
particles also collide amongst themselves, and accumulated to form independent
embryos, the future satellites. Schmidt (1958) argues on the same basis that the
ring of Saturn is the exception of the process where the swarm particles did not
agglomerate due to the strong Saturnian tides. On the same day of writing this
paragraph, the work of Wisdom et al. (2022) was published arguing, in contrast,
that the rings are the byproduct of a long-lived satellite that was shattered upon
approaching Saturn.

• capture; as a correction to the theory of the Earth and the Moon co-accreting in
the same region, pre-Apollo estimates of the density of the Moon suggested the
simultaneous accretion in different regions of the solar accretion disk. Namely,
the lunar low iron content is an anomaly among terrestrial solar system objects
(Kaula, 1969), and thus it should have formed elsewhere. Subsequently, its orbit
was disrupted so that it crossed the Earth’s orbit, and it was eventually captured
by the Earth (Urey, 1963).

The genesis of the Moon via a giant impact with the Earth emerged as the leading
theory at the 1984 “Origin of the Moon” conference, as it seemed best able to explain
several features of the system (Wood, 1986). A class of simulated impact models
demonstrated that a giant collision can leave behind an iron-poor disk around the Earth
(Benz et al., 1986), thus explaining the iron content anomaly of the Moon (Kaula,
1969). This class of models required the impact to occur when the Earth was half-
grown (Cameron, 1997, 2001), such that they can explain the lunar mass. However,
these models could not explain the accretion of lunar siderophile-rich material. It
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was then suggested that the impact scenario should involve a grazing, Mars-sized
impactor, having a very small relative velocity at infinity (Canup and Asphaug, 2001),
and it should have happened at the end of the Earth’s accretion phase (Canup, 2004).
Namely, an oblique impact, characterized with a total Earth-Moon angular momentum
(AM) roughly the same as the present, can generate a debris disk up to twice the mass
of the Moon. This disk would later follow classic accretion scenarios to form the a
Moon depleted in iron and volatile elements, and would account for the AM in the
current Earth-Moon system (Ida et al., 1997; Salmon and Canup, 2012; Canup et al.,
2015).

The tale does not end here because this so-called “canonical impact” scenario presents
a conundrum: the simulated disk composition is predominated by that of the impactor,
while the Earth largely maintains its pre-impact composition. This means that the
produced Moon would be compositionally distinct from the Earth’s mantle, in contrast
with high-precision measurements of lunar isotopes (Zhang et al., 2012; Herwartz
et al., 2014). This quandary was later coined by some as the “isotopic crisis” of the
giant impact model (Melosh, 2014). The likely resolution of the problem is another
modification of the giant impact scenario by increasing the impact AM. This allows
for a disk and a planet that have close to equal proportions of impactor material and
consequently similar isotopic signatures (Ćuk and Stewart, 2012).

Yet again, the high AM impact scenario solves a chemical problem but poses another
dynamical one: the consistency with the current AM requires significant loss of AM
post-impact. Capture into the evection resonance was the first promising mechanism
proposed to solve this problem (along with another problem described below; Touma
and Wisdom, 1998; Touma and Sridhar, 2015). This resonance occurs when the
apsidal precession period of the Moon is equal to the orbital period of the Earth, and
during which the luni-solar angle at the lunar apse maintains a value of −𝜋/2. AM is
thus transferred to the Earth-Sun system by virtue of the solar tidal torque as the Moon
migrates outwards. The resonance would occur at 4.6 Earth radii (𝑅⊕) for an initial 5
hr LOD (Touma and Wisdom, 1998), but increasing the initial AM by decreasing the
initial LOD and increasing the Earth’s oblateness shifts its location outwards (Ćuk and
Stewart, 2012). However, the scenario requires maintaining a high lunar eccentricity
which may be challenging (Tian et al., 2017; Ward et al., 2020), thus near-resonant
dynamics are currently emerging as the more plausible scenario (Wisdom and Tian,
2015; Rufu and Canup, 2020).

❖ The present and post-impact inclination reconciliation
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When classic tidal models trace the current 5 degrees of lunar inclination backwards
in time, the inclination of the Moon when it was close to the Earth is found to be ∼ 12
degrees (Goldreich, 1966; Touma and Wisdom, 1998; Rubincam, 2016). However,
in the canonical giant impact theory described above, the Moon should have formed
by re-accretion in the Earth’s equatorial plane, thus with a zero-inclination orbit.
Reconciling the inclination upon formation with the long term inclination evolution
until the present of the outwards-migrating Moon is often coined as the inclination
problem. Proposed theories of inclination excitation ranged from scenarios involving
resonances: capture into the evection then eviction resonances (Touma and Wisdom,
1998), or resonances between the proto-Moon and the debris disk (Ward and Canup,
2000); to scenarios involving a high obliquity (60-80 degrees), high AM Earth (Ćuk
et al., 2016), which can produce a lunar orbit inclined by 30 degrees via the notorious
Laplace plane instabilities (Tremaine et al., 2009; Farhat and Touma, 2021) [see
also Tian and Wisdom, 2020 for arguments against this scenario based on vertical AM
constraints]. Other scenarios involve inclination excitation via collisionless encounters
with planetesimals over a period of tens of millions of years post-formation (Pahlevan
and Morbidelli, 2015). In all cases, any posited inclination excitation scenario should
also account for inclination damping as a result of tidal heating during the lunar
magma ocean phase (Tyler, 2008), or the high lunar obliquity during the Cassini state
transition (Chen and Nimmo, 2016). Other constrains on the the orbital history can
also be derived from the lunar figure (Matsuyama et al., 2021; Downey et al., 2022).

2.2 The time-scale problem of the lunar origin

The third problem of the Earth-Moon evolution that is the focus of our work here is the
time-scale problem of lunar origin. Namely, it corresponds to the difficulty in modelling
the tidal history of the Earth-Moon separation such that the presently measured rate of
increase in the lunar semi-major axis is properly evolved in the past to predict the correct
formation age of the Moon. This is exactly the problem we address and expand on next
in this chapter.

Ever since the Moon has formed close to the Earth, the energy dissipation1 of gravi-
tational tides on Earth has been depleting the Earth’s rotational AM and pumping the

1Hereafter, when we discuss energy dissipation we refer to that only driven by astronomical forcing;
i.e. that dependent on the Earth’s rotation and lunar semi-major axis, which is described at the present as
anomalously high.
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lunar orbital AM. This net outcome is the effect of the axial component of the torque
exerted by the lunar tidal potential on the mass redistribution of the Earth produced
by the deformational action of the tidal potential itself. This deformation response is
delayed relative to the forcing potential because of the dissipative mechanisms in the
Earth’s constituent layers. Consequently, the torque retards the Earth’s rotational veloc-
ity (LOD increases), and the reciprocal torque on the Moon causes its semi-major axis to
increase (e.g., Spencer Jones, 1939; Dickey et al., 1994). The rate of the latter variation
is measured at the present to sub-mm-precision and is well constrained to 38.30 ± 0.08
mm/year using lunar laser ranging (LLR; e.g., Williams and Boggs, 2016). This rate is
associated with an energy dissipation rate of 3.7 TW (Egbert and Ray, 2003).

It is now well established that the present dissipation rate is largely dominated by the
effect of oceanic tides, with much smaller contributions from solid Earth dissipation.
Ray et al. (1999) estimated the oceanic signature in the present ΔLOD to be 2.28
ms/century. The contribution due to solid Earth represents only 6% of the total tidal
variation of LOD (Mathews and Lambert, 2009). During most of the 20th century,
oceanic dissipation was thought to occur solely in shallow seas, and dissipation in deep
oceans was neglected (Jeffery, 1921; Lamb, 1945). However, with TOPEX/Poseidon
altimetry, it was shown that up to 30% of dissipation comes from the deep ocean (Egbert
and Ray, 2000).

The total dissipative-driven variation in LOD is often associated with a series of 𝑘 sin 𝜒 –
or more commonly 𝑘/𝑄 – factors for the phase-delayed potential of tides (Williams and
Boggs, 2016). The whole time-scale problem of the lunar origin reduces to how these
factors, the tidal Love number 𝑘 , the quality factor 𝑄, and the phase lag 𝜒 are modeled.
The traditional theory of tides is characterized by two essential features: First, the tidal
response is decomposed into a Fourier series with harmonic modes; then each mode
is associated with a separate magnitude and phase delay (Darwin, 1879; Kaula, 1964).
When adopted to bodily tides, this procedure was often reduced into models associated
with ad hoc tools such as the constant geometric lag model (MacDonald, 1964; Goldreich,
1966), or the constant time lag model (Mignard, 1979, 1980, 1981; Hut, 1981). The
former assumes a uniform tidal response independent of orbital and rotational variations
(frequency independent phase lag, or quality factor), except for a mere change of sign
at the 1:1 resonance. As Efroimsky and Makarov (2013) demonstrated, the constant
geometric lag model implicitly sets the time lag of the response to be also constant when
used with the traditional expression of the polar component of the torque (for e.g., Eq.
(4.159) of Murray and Dermott, 1999). Both the quality factor and the time lag cannot be
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simultaneously frequency independent and thus this model is inherently contradictory.
Another commonly used model for long-term studies of the Earth-Moon system is the
constant time lag (Δ𝑡) model (e.g., Mignard, 1979; Neron de Surgy and Laskar, 1997),
where Δ𝑡 represents the interval between the time of lunar stress on the Earth and the
time at which the Earth establishes its equilibrium.

A variety of these models were employed by Touma and Wisdom (1994a) to study the
evolution of the Earth-Moon system. As also noted earlier by Goldreich (1966), Touma
and Wisdom (1994a) demonstrated that different tidal models bring little differences
into the evolution history. In Figure 2.1 we adopt their results that summarize the time-
scale problem, which is vividly encountered for any of the used tidal models. Namely,
integrating the lunar semi-major axis backwards from the present, it collapses onto the
Earth in between one and two billion years ago, an event coined previously by Munk
(1968) as a “Gerstenkorn event". This modelled prediction of a younger Moon was not
completely discredited pre-Apollo missions. While advocating for the theory of lunar
capture, Gerstenkorn (1955) estimated the age of the Moon at 1.4 Ga. Similar estimates
from tidal modelling of 1.68 Ga (MacDonald, 1966), 1.78 Ga (Baldwin, 1965), and
1.4-2.3 Ga (Slichter, 1963), were also present, along with estimates of the age of the
lunar maria at 3.6 Ga (Hartmann, 1965). All these estimates raised questions about
lunar formation theories discussed at the time.

With Apollo came strict geological and geochemical constraints on the lunar age, reveal-
ing it has roughly the same age of the Moon (e.g., Tera and Wasserburg, 1972; Hertogen
et al., 1977; Turcotte and Kellogg, 1986; Halliday et al., 1996; Lee et al., 1997; Nemchin
et al., 2009; Barboni et al., 2017; Maurice et al., 2020). The problem now shifted from
being a lunar formation problem to a tidal modelling problem. Namely, the tidal theory
was required to address the following issue: how to reconstruct a history of the Earth-
Moon distance with an associated tidal dissipation rate that is higher at the present than
it was in the past with a closer Moon. More specifically, it should be elucidated how tidal
dissipation can have a non-monotonic dependence on the Earth-Moon separation. The
transition to oceanic tidal modelling was then inevitable, especially given that the analyt-
ical theory of oceanic tides was simultaneously being developed (e.g., Doodson, 1958;
Wunsch, 1967; Longuet-Higgins, 1968; Longuet-Higgins and Pond, 1970; Cartwright,
1977; Platzman, 1983, 1984). The likely resolution of the problem of explaining the
“anomalous" high dissipation at the present was then attributed to an enhanced resonant
state of dissipation in the oceans.
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Figure 2.1: The time-scale problem of the Lunar origin. The semi-major axis of the
lunar orbit is tidally evolved forward and backward in time, and plotted on the y-axis
normalized by the Earth radius. The solid line corresponds to the tidal evolution with
the constant time lag model. The dotted and dashed lines correspond to the evolutions
assuming constant phase shifts and geometric lags. In the three curves, the backward
evolution depicts that the lunar orbit collapses onto the Earth between 1 and 2 Ga.
Figure reproduced from Touma and Wisdom (1994a).

There is no established consensus to date, however, on the reason behind pushing the
oceans into this resonant state. A long standing hypothesis is the re-organization of
the oceanic eigenoscillation spectrum that accompanied the variation in the continental
configuration (e.g., Brosche and Sündermann, 1984; Ooe, 1989). Namely, the periodic
build up and disintegration of super-continents and the associated opening and closing
of oceans (Wilson cycles) should impose a spectral shift, attenuation, or amplification
in oceanic normal modes (Gotlib and Kagan, 1985). Evidence supporting the role of
continentality in establishing the resonance can be drawn from the frequency overlap
between the forcing frequency and the oceanic normal models computed for realistic
configurations (Sanchez, 2008).

Early models of the Earth-Moon tidal evolution that took into account the varying oceanic
resonant properties were proposed by Webb (1980, 1982a,b) and Hansen (1982). In
Webb’s series of papers, the dynamical equations of tides were solved for a hemispherical
ocean of constant depth to evaluate the tidal torque. The hemispherical ocean was first
fixed about the equator to mimic the present pacific ocean, then later allowed to vary
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on the surface between equatorial and polar configurations. For each oceanic position,
tidal energy distribution was averaged over a tidal cycle, and then weighted averaging
was performed over the oceanic position to reflect the average response, in a statistical
sense, to luni-solar tidal forcing. The dependence of this average response on the
tidal frequency was then used to compute the Earth-Moon tidal evolution. Thus the
model of Webb can be considered the first to incorporate, rather implicitly, the effect of
continental drift. Besides the prescribed uniform oceanic depth, Webb’s model was also
tuned by another free parameter: a bottom friction coefficient that enters linearly in the
momentum equation.

A similar procedure was adopted in Hansen (1982), where the tidal torque was also
derived for an idealized hemispherical ocean bounded by a continental counterpart,
with a center either at the equator or at the pole. The results reported in both works,
though ignoring the effect of solid Earth deformation on the ocean and dissipation
in the mantle itself, provided evidence to the fact that a Gerstenkorn’s event was not
necessary, i.e. the modelled closest encounter between the Earth and the Moon occurs
beyond 4.5 Ga. The idealized models of Webb and Hansen opened a can of worms
on studying the effect of continental drift on Earth-Moon evolution, and left the field
with a series of novel works on how to evade the Gerstenkorn event (e.g., Kagan and
Maslova, 1994; Kagan, 1997; Abe et al., 1997; Poliakow, 2004). The circle was recently
closed back onto numerical modelling, with the growing sophistication and resolution of
tidal numerical simulations (e.g., OTIS, Egbert et al., 1994). The possible added value
of numerical modelling over analytical modelling lies in the capacity to account for
realistic continental configurations, and that the inclusion of dissipation is not restricted
to a linear term. However, both the drag coefficient and the tidal conversion dissipative
terms in the numerical models are also free parameters that need to be prescribed (Green
and Huber, 2013). Paleo-tidal dynamics were simulated for the LGM (21 ka), Pliocene
(3 Ma), Miocene (25 Ma), Eocene (50 Ma), Cretaceous (116 Ma) and the Permian-
Triassic (252 Ma) in Green et al. (2017). Tidal dissipation was then computed for each
simulation and interpolated in-between to establish a history of the Earth-Moon system.
More recently. Daher et al. (2021) used the same continental configurations in Green
et al. (2017) to compute possible histories of the Earth-Moon system assuming each
of the configurations is fixed in time, or using MCMC sampling between them. The
results of the latter work with all possible continental sampling indeed avoids any close
Earth-Moon encounter, but the Moon would still have a high orbit around its formation
time.
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Along with the spectral shifting due to continental drift, it is argued that paleo-dissipation
might have also varied significantly during ice ages, as areas of continental shelves vary
with sea level (Griffiths and Peltier, 2009; Arbic and Garrett, 2010). However, both
ice ages and basin geometry cycles have much smaller periodicities compared to the
Earth’s age (Boulila et al., 2018; Farhat et al., 2022b). Accurately accounting for such
level of realism in deep-time modeling is hindered by the accumulating uncertainty.
It is estimated that the “world uncertainty”, that is the lithospheric percentage that has
already been subducted at given time and is consequently unavailable for use to constrain
tectonic and paleo-continental reconstructions, is as high as 60% by ∼ 140 Ma and 65%
by ∼ 220 Ma (Müller et al., 2016; Tetley et al., 2019). Thus if it is indeed that the
effect of continentality dominates controlling the tidal response, then it might very well
be impossible to accurately model the tidal history of the Earth-Moon system, and
sampling/statistical optimization is where the field should be heading.

Fortunately, as we are concerned with the long term tidal modelling, the explanation
provided by continental drift for the current resonant state does not involve a robust
mechanism. As Tyler (2021) argues, the frequency overlap between the tidal forcing
and the basin normal modes is not sufficient to enhance resonances, but an overlap in
spatial form is required too. Namely, basin modes that shift with continental drift do not
feature the same degree-two harmonic form of the tidal forcing, and thus are not directly
forced by tidal forces. In fact, long wavelength tides are excited first, and these can
then scatter energy into basin modes. Therefore, the effect of continental drift should be
secondary in driving paleo-dissipation. The primary player would then be the spin rate
of the Earth. The latter establishes a robust mechanism of exciting tidal resonances (e.g.,
Auclair-Desrotour et al., 2018, 2019a; Tyler, 2021), and thus the decreasing spin rate
of the Earth has played the dominant role in driving the Earth into its current enhanced
resonance.

With the question of the hierarchy of contributions to paleo-disspation still open-ended,
and with our quest to compute the tidal history over geological timescales, we attempt
in our work below to compromise between the practicality of effective models that
parametrize continentality, and the realism of costly numerical models that depend on
paleogeographic reconstruction. We thus undertake a systematic exploration of the time
varying tidal dissipation in the oceans by studying two configurations: a hemispherical
ocean that migrates on the Earth mimicking continental drift, and a global ocean. We
first expand on the theory of computing the tidal flows for these two configurations
below, then we detail on the model of the evolution over geological timescales.
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2.3 Oceanic tidal dynamics

2.3.1 The tidal response of a hemispherical ocean

We start with the computation of the tidal response of a hemispherical ocean on the
surface of the Earth. The formalism is heavily based on earlier works (Longuet-Higgins
and Pond, 1970; Webb, 1980) describing the free oscillations and the tidal response of a
hemispherical ocean symmetric about the equator; we expand upon it here by adopting
the true polar wander scenario (Webb, 1982a) to solve for a general oceanic position.
We note that the mathematical formulation of the referenced works (Longuet-Higgins
and Pond, 1970; Webb, 1980, 1982a) contains several misprints that we correct here.

In the co-planar problem under study (ignoring the Earth’s obliquity and the lunar orbital
inclination), we define a frame of reference co-rotating with the Earth, with a spin vector
of ®Ω = Ω𝑧, Ω being the Earth’s spin rate and 𝑧 as the unit vector along its figure axis. In
this frame, we use the spherical coordinates (𝑟, 𝜃, 𝜆) denoting the radius, the co-latitude,
and the longitude respectively, and their corresponding unit vectors (𝑟, 𝜃, �̂�). We start
with the linearized system of equations that describe the conservation of momentum
and mass in a tidally forced shallow oceanic layer2 (e.g., Laplace, 1798; Lamb, 1945;
Longuet-Higgins, 1968; Tyler, 2011):

𝜕𝑡 ®𝑢 + 𝜎R ®𝑢 + ®𝑓 × ®𝑢 + 𝑔∇𝜁 = 𝑔∇𝜁eq, (2.1a)

𝜕𝑡𝜁 +∇ · (𝐻 ®𝑢) = 0, (2.1b)

where ®𝑢 = 𝑢𝜃𝜃 + 𝑢𝜆�̂� is the horizontal velocity field, 𝑔 is the gravitational acceleration
at the surface, 𝜁 is the oceanic depth variation, 𝜁eq is the equilibrium depth variation,
𝐻 is the uniform oceanic thickness (the first of only two free parameters in our model),
and 𝜎R is the Rayleigh (or linear) drag frequency (Matsuyama, 2014; Auclair-Desrotour
et al., 2018); the latter is an effective dissipation parameter characterizing the damping of
the oceanic tidal response by dissipative mechanisms (the second free parameter in our
model). On Earth, 𝜎R mainly accounts for the loss of energy of the barotropic flow by
bottom friction in the shallow seas and the loss of energy over ridges in the deep oceans
through the conversion of barotropic tidal flows into internal gravity waves (which in
some local areas represents nearly 85% of the total dissipation; see for e.g., Carter et al.,
2008). For the latter mechanism, the Rayleigh drag frequency can actually be related to

2In the rest of this chapter, we use the notation 𝜕𝑛𝑥 for 𝜕𝑛

𝜕𝑥𝑛
.



Chapter 2. Revisiting the tidal evolution of the Earth-Moon separation 85

physical parameters such as the Brunt-Väisälä frequency, which quantifies the stability
of the ocean’s stratification against convection (see, e.g., Gerkema and Zimmerman,
2008), and to the length-scale of topographical patterns at the oceanic floor (Bell Jr,
1975; Palmer et al., 1986). In Eq. (2.1), the Coriolis parameter ®𝑓 is given by

®𝑓 = 2Ω cos 𝜃𝑟, (2.2)

the horizontal gradient operator ∇ is defined as

∇ = 𝑅−1 [
𝜃𝜕𝜃 + �̂� (sin 𝜃)−1 𝜕𝜆

]
, (2.3)

and the horizontal divergence of the velocity field ∇ · ®𝑢 as

∇ · ®𝑢 = (𝑅 sin 𝜃)−1 [𝜕𝜃 (sin 𝜃𝑢𝜃) + 𝜕𝜆𝑢𝜆] , (2.4)

with 𝑅 being the Earth’s radius. Finally, we remark that the interaction of tidal flows
with the mean flows of the oceanic circulation are ignored in the momentum equation,
namely, Eq. (2.1a).

For ®𝑢 = 𝜕𝑡 ®𝑥, where ®𝑥 is the horizontal tidal displacement field, the momentum equation
(2.1a) is rewritten as [

𝜕2
𝑡 + (𝜎R + ®𝑓×)𝜕𝑡

]
®𝑥 + 𝑔

(
∇𝜁 −∇𝜁eq

)
= 0. (2.5)

Following Proudman (1920b), we use Helmholtz’s theorem at this step (e.g., Arfken and
Weber 1999, Chapter 1) to decompose the horizontal displacement vector field into

®𝑥 = ∇Φ +∇Ψ× 𝑟, (2.6)

where ∇Φ is a curl-free vector field (∇× (∇Φ) = ®0) and ∇Ψ× 𝑟 is a divergence-free
vector field (∇ · (∇Ψ× 𝑟) = 0). In the above equation, we introduce the divergent
displacement potential Φ and the rotational displacement streamfunction Ψ (e.g., Gent
and McWilliams 1983; Webb 1980; Tyler 2011), with the latter accounting for the
vortical component of the tidal displacement field (e.g., Vallis 2017). As discussed
by Fox-Kemper et al. (2003), while the Helmholtz decomposition is unique for infinite
domains, this is not true for bounded domains such as hemispherical oceanic shells
due to lack of additional physical constraints on the boundary conditions for either of
the components of the sum. There are boundary conditions only on the total flux at
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coastlines. Impermeability is a typical boundary condition: the net flux normal to the
coast is zero, which is expressed as ®𝑥 · �̂� = 0, where �̂� designates the outward pointing
unit vector defining the normal to the coast. Following Webb (1980, 1982a), we assume
that both components of the flux satisfy this condition, namely

�̂� ·∇Φ = 0, �̂� · (∇Ψ× 𝑟) = 0. (2.7)

We note that the second condition of the above equation can be rewritten as (𝑟 × �̂�) ·
∇Ψ = 0, which implies that Ψ is constant along the coastline (in the following, we
set Ψ = 0 at the oceanic boundary). This condition thus means that the coastline
corresponds to a closed streamfunction contour, which depicts a distinct gyre of the tidal
flow.

Although arbitrary, the assumption that both components of the flux satisfy the imper-
meability condition has been widely used to study the dynamics of ocean basins because
of its convenience relative to other possible conditions (e.g., Gent and McWilliams
1983; Watterson 2001; Han and Huang 2020). In particular, this assumption provides
a unique decomposition apart from an arbitrary additive constant to each function, Φ
and Ψ. Moreover, the second condition given by Eq. (2.7) enforces the orthogonality of
the curl-free and divergence-free components of the tidal flow. By combining together
the identity ∇ · (Φ∇Ψ× 𝑟) = (∇Ψ× 𝑟) ·∇Φ and Gauss’ theorem (e.g., Arfken and
Weber 1999) ∫

O
∇ · (Φ∇Ψ× 𝑟) 𝑑𝐴 =

∮
𝜕O

Φ (∇Ψ× 𝑟) · �̂� 𝑑ℓ, (2.8)

with 𝑑𝐴 and 𝑑ℓ being the infinitesimal area element of the hemispherical oceanic domain,
O, and length element of the coastline, 𝜕O, respectively, we obtain∫

O
(∇Φ) · (∇Ψ× 𝑟) 𝑑𝐴 =

∮
𝜕O

Φ (∇Ψ× 𝑟) · �̂� 𝑑ℓ. (2.9)

As the second condition of Eq. (2.7) enforces (∇Ψ× 𝑟) · �̂� = 0 along the coastline, it
follows that ∫

O
(∇Φ) · (∇Ψ× 𝑟) 𝑑𝐴 = 0, (2.10)

meaning that the components ∇Φ and ∇Ψ × 𝑟 each belong to one of the two orthog-
onal subspaces that form the space of horizontal displacements satisfying the assumed
boundary conditions. We remark that the orthogonality of the Helmholtz decomposi-
tion is not necessarily verified in the general case since it is itself a consequence of the
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specific boundary condition chosen for the divergence-free component of the tidal flow.

The functions Φ and Ψ are expanded in terms of complete sets of eigenfunctions over
the domain O such that:

Φ(𝜃, 𝜆, 𝑡) =
∞∑︁
𝑟=1

𝑝𝑟 (𝑡)𝜙𝑟 (𝜃, 𝜆), (2.11)

Ψ(𝜃, 𝜆, 𝑡) =
∞∑︁
𝑟=1

𝑝−𝑟 (𝑡)𝜓𝑟 (𝜃, 𝜆). (2.12)

The eigenfunctions (𝜙𝑟 , 𝜓𝑟) satisfy, over the oceanic domain (O), the Helmholtz equa-
tions given by (e.g., Riley et al. (1999), Chapter 21)

∇2𝜙𝑟 + 𝜇𝑟𝜙𝑟 = 0, (2.13)

∇2𝜓𝑟 + 𝜈𝑟𝜓𝑟 = 0, (2.14)

and, along the coastline (𝜕O), the boundary conditions given by Eq. (2.7)

�̂� ·∇𝜙𝑟 = 0, 𝜓𝑟 = 0. (2.15)

Here we introduced the horizontal Laplacian

∇2 = (𝑅 sin 𝜃)−2 [sin 𝜃 𝜕𝜃 (sin 𝜃 𝜕𝜃) + 𝜕𝜆𝜆] , (2.16)

and the real eigenvalues, 𝜇𝑟 and 𝜈𝑟 , associated with the eigenfunctions 𝜙𝑟 and 𝜓𝑟 ,
respectively. We note that the eigenfunctions are normalized such that∫

O
𝜙𝑟𝜙𝑠𝑑𝐴 =

∫
O
𝜓𝑟𝜓𝑠𝑑𝐴 = 𝛿𝑟𝑠, (2.17)

where the notation 𝛿𝑟𝑠 referring to the Kronecker 𝛿-symbol is 𝛿𝑟𝑠 = 1 for 𝑟 = 𝑠 and 0
otherwise. Using these conditions, the eigenfunctions are defined as:

𝜙𝑟 =
𝛼𝑛,𝑚

𝑅
𝑃𝑚𝑛 (cos 𝜃) cos𝑚𝜆, (2.18)

𝜓𝑟 =
𝛼𝑛,𝑚

𝑅
𝑃𝑚𝑛 (cos 𝜃) sin𝑚𝜆, (2.19)

with eigenvalues 𝜇𝑟 = 𝜈𝑟 = 𝑛(𝑛 + 1)/𝑅2 and the normalization coefficient

𝛼𝑛,𝑚 =

√︄
2𝑛 + 1
𝜋

(𝑛 − 𝑚)!
(𝑛 + 𝑚)!

1
1 + 𝛿𝑚0

. (2.20)
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Figure 2.2: Eigenfunctions 𝜙𝑟 (left) and 𝜓𝑟 (right), and the associated tidal flows. The
eigenfunctions defined by Eqs. (2.18) and (2.19) are plotted over the hemispherical
oceanic domain for 0 ≤ 𝑛 ≤ 4 (from top to bottom) and 0 ≤ 𝑚 ≤ 𝑛 (from left to
right). Bright or dark colors designate positive or negative values of the eigenfunctions,
respectively. Streamlines indicate the tidal flows corresponding to ∇𝜙𝑟 for the set {𝜙𝑟 }
and to ∇𝜓𝑟 × 𝑟 for the set {𝜓𝑟 }.

In Eqs. (2.18) and (2.19), each harmonic index, 𝑟, of the eigenfunctions is associated
with a degree, 𝑛, and order, 𝑚, and the expansion functions are the associated Legendre
functions (defined in Section 2.3.1.2). In the definition of 𝜙𝑟 Eq. (2.18), 𝑛 ∈ N and
𝑚 = 0, 1, ..., 𝑛 while in the expression of 𝜓𝑟 Eq. (2.19), 𝑛 ∈ N∗ and 𝑚 = 1, 2, ..., 𝑛. By
convention, we set 𝜓0 = 0 hereafter. Figure 2.2 shows the eigenfunctions 𝜙𝑟 and 𝜓𝑟 for
1 ≤ 𝑚 ≤ 𝑛 ≤ 4 and the streamlines of the associated tidal flows.

The eigenfunctions (𝜙𝑟 , 𝜓𝑟) can be split into two sets describing tidal solutions that
are symmetric or anti-symmetric about the equator, and thus one can decide, based on
the symmetry of the tidal forcing, on the associated set of eigenfunctions that need to
be considered using a classification scheme (Longuet-Higgins, 1968; Longuet-Higgins
and Pond, 1970) for the pairs (𝑛, 𝑚). However, in our model, where the ocean is no
longer symmetric about the equator, both symmetric and anti-symmetric eigenfunctions
are required. In substituting the definitions of Eqs. (2.11), (2.12), and (2.13) into the
continuity equation (2.1b), we find that:

𝜁 = 𝐻

∞∑︁
𝑟=1

𝜇𝑟 𝑝𝑟𝜙𝑟 . (2.21)
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What is left to complete the solution is finding the coefficients 𝑝𝑟 and 𝑝−𝑟 by substituting
the series expansions in the momentum equation (2.1a) and multiplying by ∇𝜙𝑟 and
∇𝜓𝑟 × 𝑟 , then integrating over the oceanic area. Starting with the former, we get

∞∑︁
𝑠=0

(
𝜕2
𝑡 𝑝𝑠 + 𝜎R𝜕𝑡 𝑝𝑠 + 𝑔𝐻𝑝𝑠𝜇𝑠 − 𝑔𝜁eq,𝑠

)
∇𝜙𝑠 ·∇𝜙𝑟

+
(
𝜕2
𝑡 𝑝−𝑠 + 𝜎R𝜕𝑡 𝑝−𝑠

)
(∇𝜓𝑠 × 𝑟) ·∇𝜙𝑟

+ 𝜕𝑡 𝑝𝑠
(
®𝑓 ×∇𝜙𝑠

)
·∇𝜙𝑟 + 𝜕𝑡 𝑝−𝑠

[
®𝑓 × (∇𝜓𝑠 × 𝑟)

]
·∇𝜙𝑟 = 0. (2.22)

The product of the gradients of two eigenfunctions is computed using Green’s first
identity (e.g., Strauss (2007), Chapter 7)∫

O
∇𝜙𝑠 ·∇𝜙𝑟𝑑𝐴 =

∫
𝜕O
𝜙𝑠 (∇𝜙𝑟 · �̂�) 𝑑ℓ −

∫
O
𝜙𝑠∇2𝜙𝑟𝑑𝐴. (2.23)

The first term on the right-hand side vanishes as it includes the boundary condition at
the coast (Eq. 2.15). The second term is computed using the eigenvalue equation (Eq.
2.13) and the normalization condition, thus∫

O
∇𝜙𝑠 ·∇𝜙𝑟𝑑𝐴 = 𝜇𝑟𝛿𝑟𝑠 . (2.24)

Rearranging the other terms using vector identities, we rewrite Eq. (2.22) as

∞∑︁
𝑠=0

(
𝜕2
𝑡 𝑝𝑠 + 𝜎R𝜕𝑡 𝑝𝑠 + 𝑔𝐻𝑝𝑠𝜇𝑠 − 𝑔𝜁eq,𝑠

)
𝜇𝑟𝛿𝑟,𝑠

+
(
𝜕2
𝑡 𝑝−𝑠 + 𝜎R𝜕𝑡 𝑝−𝑠

) ∫
O
(∇𝜓𝑠 × 𝑟) ·∇𝜙𝑟 𝑑𝐴 + 𝜕𝑡 𝑝𝑠

∫
O

®𝑓 · (∇𝜙𝑠 ×∇𝜙𝑟) 𝑑𝐴

+ 𝜕𝑡 𝑝−𝑠
∫
O

(
®𝑓 · 𝑟

)
(∇𝜙𝑟 ·∇𝜓𝑠) 𝑑𝐴 = 0. (2.25)

The third term vanishes due to orthogonality (see Eq. 2.10), while upon replacing the
Coriolis term by its definition in Eq. (2.2) we are left with(
𝜕2
𝑡 𝑝𝑟 + 𝜎R𝜕𝑡 𝑝𝑟 + 𝑔𝐻𝑝𝑟𝜇𝑟 − 𝑔𝜁eq,𝑟

)
𝜇𝑟 − 2Ω

∞∑︁
𝑠=1

𝜕𝑡 𝑝𝑠

∫
cos 𝜃𝑟 · (∇𝜙𝑟 ×∇𝜙𝑠) 𝑑𝐴

+ 2Ω
∞∑︁
𝑠=1

𝜕𝑡 𝑝−𝑠

∫
cos 𝜃 (∇𝜙𝑟 ·∇𝜓𝑠) 𝑑𝐴 = 0. (2.26)
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To close the system, we multiply the momentum equation with ∇𝜓𝑟 × 𝑟 to get

∞∑︁
𝑠=0

(
𝜕2
𝑡 𝑝𝑠 + 𝜎R𝜕𝑡 𝑝𝑠 + 𝑔𝐻𝑝𝑠𝜇𝑠 − 𝑔𝜁eq,𝑠

)
∇𝜙𝑠 · (∇𝜓𝑟 × 𝑟)

+ 𝜕𝑡 𝑝𝑠
(
®𝑓 ×∇𝜙𝑠

)
· (∇𝜓𝑟 × 𝑟) + 𝜕𝑡 𝑝−𝑠

[
®𝑓 × (∇𝜓𝑠 × 𝑟)

]
· (∇𝜓𝑟 × 𝑟)

+
(
𝜕2
𝑡 𝑝−𝑠 + 𝜎R𝜕𝑡 𝑝−𝑠

)
(∇𝜓𝑠 × 𝑟) · (∇𝜓𝑟 × 𝑟) = 0. (2.27)

Integrating Eq. (2.27) over the area of the ocean and using basic vector calculus, we get

∞∑︁
𝑠=0

(
𝜕2
𝑡 𝑝𝑠 + 𝜎R𝜕𝑡 𝑝𝑠

) ∫
∇𝜓𝑠 ·∇𝜓𝑟𝑑𝐴 − 𝜕𝑡 𝑝𝑠

∫ (
®𝑓 · 𝑟

)
(∇𝜙𝑠 ·∇𝜓𝑟) 𝑑𝐴

− 𝜕𝑡 𝑝−𝑠
∫ (

®𝑓 · 𝑟
)
𝑟 · (∇𝜓𝑟 ×∇𝜓𝑠) 𝑑𝐴 = 0, (2.28)

where upon replacing the Coriolis term as before we finally obtain

𝜕2
𝑡 𝑝−𝑟 + 𝜎R𝜕𝑡 𝑝−𝑟 −

2Ω
𝜈𝑟

∞∑︁
𝑠=1

𝜕𝑡 𝑝𝑠

∫
cos 𝜃 (∇𝜙𝑠 ·∇𝜓𝑟) 𝑑𝐴

− 2Ω
𝜈𝑟

∞∑︁
𝑠=0

𝜕𝑡 𝑝−𝑠

∫
cos 𝜃𝑟 · (∇𝜓𝑟 ×∇𝜓𝑠) 𝑑𝐴 = 0. (2.29)

We identify in Eqs. (2.26) and (2.29) the so-called “gyroscopic coefficients" (e.g.,
Proudman, 1920a,b) that are defined as

𝛽𝑟,𝑠 = −
∫
O

cos 𝜃 𝑟 · (∇𝜙𝑟 ×∇𝜙𝑠) 𝑑𝐴,

𝛽𝑟,−𝑠 =

∫
O

cos 𝜃∇𝜙𝑟 ·∇𝜓𝑠𝑑𝐴,

𝛽−𝑟,𝑠 = −
∫
O

cos 𝜃∇𝜓𝑟 ·∇𝜙𝑠𝑑𝐴,

𝛽−𝑟,−𝑠 = −
∫
O

cos 𝜃 𝑟 · (∇𝜓𝑟 ×∇𝜓𝑠) 𝑑𝐴, (2.30)

with 𝛽−𝑠,𝑟 = −𝛽𝑟,−𝑠. These coefficients carry the effect of rotational distortion to the tidal
waves and the boundary conditions imposed by the coastlines. Using these definitions,
Eqs. (2.26) and (2.29) form an infinite linear system in the coefficients 𝑝𝑟 (𝑡) and 𝑝−𝑟 (𝑡)
that is expressed as

𝜕2
𝑡 𝑝𝑟 + 𝜎R𝜕𝑡 𝑝𝑟 + 𝑔𝐻𝜇𝑟 𝑝𝑟 − 𝑔𝜁eq,𝑟 +

2Ω
𝜇𝑟

𝑠=∞∑︁
𝑠=−∞

𝛽𝑟,𝑠𝜕𝑡 𝑝𝑠 = 0, (2.31)
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𝜕2
𝑡 𝑝−𝑟 + 𝜎R𝜕𝑡 𝑝−𝑟 +

2Ω
𝜈𝑟

𝑠=∞∑︁
𝑠=−∞

𝛽−𝑟,𝑠𝜕𝑡 𝑝𝑠 = 0. (2.32)

This system is then transformed to the frequency domain, truncated, and solved spectrally
as a function of the tidal forcing frequency 𝜎. We re-write it as

− 𝜎2𝑝𝑟 − 𝑖𝜎𝜎R𝑝𝑟 + 𝑔𝐻𝜇𝑟 𝑝𝑟 − 𝑔𝜁eq,𝑟 −
2𝑖𝜎Ω
𝜇𝑟

𝑠=∞∑︁
𝑠=−∞

𝛽𝑟,𝑠𝑝𝑠 = 0,

− 𝜎2𝑝−𝑟 − 𝑖𝜎𝜎R𝑝−𝑟 −
2𝑖𝜎Ω
𝜈𝑟

𝑠=∞∑︁
𝑠=−∞

𝛽−𝑟,𝑠𝜕𝑡 𝑝𝑠 = 0. (2.33)

Once the series 𝑝𝑟 is found, the root mean squared tidal amplitude is computed via
(Webb, 1980)

𝐻rms =

√√
𝐻

𝜋𝑅2

∞∑︁
𝑟=1

𝜇2
𝑟 𝑝

∗
𝑟 𝑝𝑟 , (2.34)

where ∗ represents complex conjugation.

2.3.1.1 Coupling the hemispherical ocean response with solid Earth deformation

In the tidal theory under study, the solid component of the Earth is subject to viscoelastic
deformation as a result of three contributions: the direct tidal effect of the tidal perturber,
the loading effect of the perturbed oceanic shell, and the effect of gravitational self-
attraction between the oceanic shell and the solid part (Farrell, 1972; Zahel, 1980). If
we were to take these into account when studying oceanic tides, 𝜁 becomes a function
of two moving surfaces: the free oceanic surface, 𝜁os, and the vertically deforming solid
surface 𝜁ss.

In the frame co-rotating with the Earth, the gravitational potential is expressed as (e.g.,
Auclair-Desrotour et al., 2019a)

𝑈 (®𝑟, ®𝑟 ′) = 𝐺𝑀

|®𝑟 − ®𝑟 ′| −
𝐺𝑀

𝑟′2 𝑟 cos 𝜃 , (2.35)

where 𝐺 is the gravitational constant, 𝑀 is the mass of the tidal perturber (the Sun or
the Moon), and 𝑟′ is the distance between the Earth and the perturber. In the shallow
ocean approximation, the tidal potential at the Earth’s surface (𝑟 = 𝑅) is

𝑈T(𝜃, 𝜆, ®𝑟 ′) = 𝑈 (𝑅, 𝜃, 𝜆, ®𝑟 ′) − 𝐺𝑀
𝑟′

, (2.36)
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where a constant offset was removed as it does not contribute to the tidal force. In the
frequency domain, the associated complex gravitational potential 𝑈T, such that UT =

Re{𝑈T}, is expanded spectrally in Fourier series and spatially in spherical harmonics,
with complex coefficients𝑈𝑚;𝑠

𝑛 as (Kaula, 2013; Auclair-Desrotour et al., 2019a)

𝑈T =

∞∑︁
𝑛=2

𝑛∑︁
𝑚=−𝑛

∞∑︁
𝑠=−∞

𝑈𝑚;𝑠
𝑛 𝑃𝑚𝑛 (cos 𝜃) exp

{
𝑖(𝜎𝑠𝑚𝑡 + 𝑚𝜆)

}
, (2.37)

where 𝑠 is an integer and the tidal forcing frequency 𝜎𝑠𝑚 = 𝑚Ω − 𝑠𝑛orb, the frequency
𝑛orb being the orbital mean motion of the tidal perturber. In the absence of obliquity, the
𝑛th harmonic of the tidal potential𝑈𝑚;𝑠

𝑛 is given by (Ogilvie, 2014)

𝑈𝑚;𝑠
𝑛 =

𝐺𝑀

𝑎

(
𝑅

𝑎

)𝑛
𝐴𝑛,𝑚,𝑠 (𝑒). (2.38)

Here 𝑎 is the semi-major axis of this perturber and 𝐴𝑛,𝑚,𝑠 (𝑒) are dimensionless functions
of the orbital eccentricity of the perturber 𝑒 computed via the Hansen coefficients
𝑋
𝑛,𝑚
𝑠 (Laskar, 2005). The functions 𝐴𝑛,𝑚,𝑠 (𝑒) read as (Correia et al., 2014)

𝐴𝑛,𝑚,𝑠 (𝑒) = (2−𝛿𝑚,0 𝛿𝑠,0) (1−𝛿𝑚,0 𝛿𝑠<0)

√︄
2(𝑛 − 𝑚)!

(2𝑛 + 1) (𝑛 + 𝑚)!𝑃
𝑚
𝑛 (0)𝑋

−(𝑛+1),𝑚
𝑠 (𝑒) (2.39)

Here 𝛿𝑘,𝑙 is the usual Kronecker delta symbol such that 𝛿𝑘,𝑙 = 1 if 𝑘 = 𝑙 and 0 otherwise;
analogously, 𝛿𝑠<0 = 1 if 𝑠 < 0. In our study, we restrict the tidal potential to the
dominant contribution of the semi-diurnal component identified by 𝑛 = 𝑚 = 𝑠 = 2
and corresponding to the tidal frequency 𝜎2

2 = 2(Ω − 𝑛orb). For this component, while
neglecting the small orbital eccentricity of the Sun and the Moon, 𝐴2,2,2(0) =

√︁
3/5.

Hereafter, we use𝑈T
𝑛 to represent a single harmonic (𝑛, 𝑚, 𝑠) of the tidal potential. This

harmonic of degree 𝑛 is defined as

𝑈T
𝑛 = 𝑈𝑚;𝑠

𝑛 𝑃𝑚𝑛 (cos 𝜃) exp
{
𝑖(𝜎𝑠𝑚𝑡 + 𝑚𝜆)

}
. (2.40)

In what follows, we use 𝜎 instead of 𝜎𝑠𝑚 to simplify the notation. Subject to 𝑈T
𝑛 only,

the equilibrium oceanic depth would be 𝜁 = 𝑈T
𝑛 /𝑔. However, the loading effect of the

deforming oceanic shell adds to the tidal potential and they both affect the ocean surface
𝜁os and the ocean floor corresponding to the solid surface 𝜁ss. The former is expressed
as (Matsuyama, 2014)

𝜁os =
ℎT
𝑛𝑈

T
𝑛

𝑔
+

∑︁
𝑙

3𝜌oc
(2𝑙 + 1)𝜌se

ℎL
𝑙 𝜁𝑙 , (2.41)
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where 𝜌oc and 𝜌se stand for the uniform oceanic and solid Earth densities, respectively.
In this equation, the oceanic depth variation, 𝜁, is decomposed into spherical harmonics
(defined by Eq. (2.98)) such that

𝜁𝑙 (𝜃, 𝜆, 𝑡) =
𝑙∑︁

𝑚=−𝑙
𝜁𝑚𝑙 (𝑡)𝑃

𝑚
𝑙 (cos 𝜃) exp(𝑖𝑚𝜆) . (2.42)

Although 𝜁 given in (2.21) is only defined over the oceanic hemisphere, this decompo-
sition over the whole sphere is required when applying the Love numbers. Using the
orthogonality of spherical harmonics, and the fact that 𝜁 (𝜃, 𝜆, 𝑡) = 0 over the continental
hemisphere, Eq. (2.42) may also be expressed as

𝜁𝑙 (𝜃, 𝜆, 𝑡) =
1
2

𝑙∑︁
𝑚=0

𝛼2
𝑙𝑚

∫
O
𝜁 (𝜃′, 𝜆′, 𝑡)𝑃𝑚𝑙 (cos 𝜃)𝑃𝑚𝑙 (cos 𝜃′) × cos(𝑚(𝜆 − 𝜆′)) 𝑑Ω ,

(2.43)
where the integral is computed over the solid angle spanned by the ocean. The second
contribution to the equilibrium tide, which is due to the solid redistribution of mass, is

𝜁ss = (1 + 𝑘T
𝑛 )
𝑈T
𝑛

𝑔
+

∑︁
𝑙

3𝜌oc
(2𝑙 + 1)𝜌se

(1 + 𝑘L
𝑙 )𝜁𝑙 . (2.44)

In equations (2.41) and (2.44), we used the tidal Love numbers 𝑘T
𝑛 and ℎT

𝑛 , and the
surface-loading Love numbers 𝑘L

𝑛 and ℎL
𝑛 , where the first of each set is the transfer

function corresponding to the gravitational response, and the second codes for the
vertical displacement. We emphasize that here the Love numbers are defined in the
Fourier domain, therefore, they correspond to the intrinsic mechanical impedances of
the solid part that relate its visco-elastic tidal response to tidal forcings in the permanent
regime and they characterise both the elastic deformation of the body and its anelastic
deformation resulting from energy dissipation due to viscous friction in the Earth’s
interior. In the general case, the four Love numbers (𝑘T

𝑛 , ℎ
T
𝑛 , 𝑘

L
𝑛 , and ℎL

𝑛 ) can be computed
from internal structure models (e.g., Tobie et al., 2005, 2019; Bolmont et al., 2020). In
our work, for the sake of simplicity, we use the closed-form solutions derived for a
uniform solid interior (Munk and MacDonald, 1960)

{
𝑘T
𝑛 , ℎ

T
𝑛 , 𝑘

L
𝑛 , ℎ

L
𝑛

}
=

1
(1 + �̃�𝑛)

{
3

2(𝑛 − 1) ,
2𝑛 + 1

2(𝑛 − 1) ,−1,−2𝑛 + 1
3

}
, (2.45)

where �̃�𝑛 is a complex dimensionless effective shear modulus, with a form that is depen-
dent on the chosen solid rheology (Efroimsky, 2012; Renaud and Henning, 2018). To
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specify �̃�𝑛, we consider an Andrade rheology (Andrade, 1910), which has an advantage
over the commonly used Maxwell rheology in attenuating the rapid decay of the anelas-
tic component of the deforming solid Earth for high tidal frequencies (Castillo-Rogez
et al., 2011; Auclair-Desrotour et al., 2019a). This is particularly useful with regard to
avoiding an overestimation of the tidally dissipated energy of the solid part during early
eons. For this rheology, �̃�𝑛 takes the following form (Findley et al., 1977; Efroimsky,
2012):

�̃�𝑛 =
4(2𝑛2 + 4𝑛 + 3)𝜋𝑅4

3𝑛𝐺𝑀2
E

𝜇E

1 + (𝑖𝜎𝜏A)−𝛼AΓ(1 + 𝛼A) + (𝑖𝜎𝜏M)−1 , (2.46)

where 𝑀E is the mass of the Earth, 𝜇E its average rigidity, and Γ is the gamma function
(Abramowitz et al., 1988); 𝛼A is a dimensionless rheological exponent determined
experimentally (Castelnau et al., 2008; Petit and Luzum, 2010); 𝜏A is the anelastic
Andrade timescale; and 𝜏M the Maxwell relaxation time defined as the ratio of viscosity
to rigidity. For a volumetric average of the mantle’s shear modulus 𝜇E = 17.3 × 1010

Pa, and volumetric average of viscosity deduced from inversions of Lau et al. (2016b),
we have 𝜏M = 685 yrs. The values 𝛼A = 0.25 and 𝜏A = 2.19 × 104 yrs that we use in
our model are adopted from Auclair-Desrotour et al. (2019a). All the applied parameter
values are summarized in Table 2.3.

Taking the effect of solid Earth deformation into account, we replace the equilibrium
tide 𝜁eq in the momentum equation (2.1a) by the difference 𝜁os − 𝜁ss of Eqs.(2.41) and
(2.44) and we resolve it in the Fourier domain using the forcing tidal frequency, 𝜎. The
modified momentum conservation equations is then expressed as

𝑖𝜎 ®𝑢 + 𝜎R ®𝑢 + ®𝑓 × ®𝑢 = −𝑔∇
(
−𝛾T

𝑛 𝜁 +
∑︁
𝑙

𝛾L
𝑙 𝜁𝑙

)
, (2.47)

with 𝜁 = 𝑈T
𝑛 /𝑔, and where the loading and tidal tilt factors are defined as (Matsuyama,

2014)
𝛾T
𝑛 = 1 + 𝑘T

𝑛 − ℎT
𝑛 ; 𝛾L

𝑙 = 1 − 3𝜌oc
(2𝑙 + 1)𝜌se

(1 + 𝑘L
𝑙 − ℎ

L
𝑙 ). (2.48)

Just like the Love numbers, 𝛾T
𝑛 and 𝛾L

𝑙
are complex in the general case and tend toward

unity as the deformability of the solid and oceanic layers decreases. Now we get to
the added contribution of the ocean-solid coupling to the linear system of 𝑝𝑟 and 𝑝−𝑟 .
Multiplying the added contribution of loading and self-attraction effects by ∇𝜙𝑟 and
∇𝜓𝑟 × 𝑟, then resolving the added terms in the frequency domain, after a number of
manipulations, we can finally re-write the expression of the system of Eqs. (2.31) and
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(2.32) as

− 𝜎2𝑝𝑟 − 𝑖𝜎𝜎R𝑝𝑟 + 𝑔𝐻𝜇𝑟
(
1 − 𝛾L

𝑟

2

)
𝑝𝑟 − 𝑔𝛾T

𝑛 𝜁𝑟 −
2𝑖𝜎Ω
𝜇𝑟

𝑠=∞∑︁
𝑠=−∞

𝛽𝑟,𝑠𝑝𝑠

− 1
2
𝑔𝐻

∞∑︁
𝑠′=1
𝑠′≠𝑟

𝜇𝑠′𝐹
𝑠′
𝑟 𝑝𝑠′ = 0 (2.49)

− 𝜎2𝑝−𝑟 − 𝑖𝜎𝜎R𝑝−𝑟 −
2𝑖𝜎Ω
𝜈𝑟

𝑠=∞∑︁
𝑠=−∞

𝛽−𝑟,𝑠𝜕𝑡 𝑝𝑠 = 0 (2.50)

where we define

𝐹𝑠
′
𝑟 = 4𝛼𝑛,𝑚𝛼𝑛′,𝑚′

∑︁
𝑝

∑︁
𝑞

𝛾L
𝑝𝑞

2𝛼2
𝑝,𝑞

O𝑛,𝑚
𝑝,𝑞 O𝑛′,𝑚′

𝑝,𝑞

(𝑞2 − 𝑚2) (𝑞2 − 𝑚′2)
, (2.51)

with O𝑛,𝑚
𝑝,𝑞 corresponding to the Gram matrix of the ALFs,

O𝑢,𝑣
𝑛,𝑚 =

∫ 1

−1
𝑃𝑚𝑛 (𝜇)𝑃𝑣𝑢 (𝜇)𝑑𝜇, (2.52)

for which the method of computation is detailed in Section 2.3.1.3. Coupled to the
orbital dynamical evolution, the tidal frequency 𝜎 is determined at each point in time
in the hemispherical phase of the model, then the system is truncated at 𝑟max and solved
numerically (see Section 2.3.1.5). We re-write the linear system as

(𝑎 (1) + 𝑎 (2)𝑟 )𝑝𝑟 + 𝑎 (3)𝑟
𝑠=∞∑︁
𝑠=−∞

𝛽𝑟,𝑠𝑝𝑠 + 𝑎 (5)
∞∑︁
𝑠′=1
𝑠′≠𝑟

𝜇𝑠′𝐹
𝑠′
𝑟 𝑝𝑠′ = 𝑐𝑟 , (2.53)

𝑎 (1) 𝑝𝑟 + 𝑎 (4)𝑟
𝑠=∞∑︁
𝑠=−∞

𝛽𝑟,𝑠𝑝𝑠 = 0, (2.54)

where the first equation is for 𝑟 > 0 and the second is for 𝑟 < 0, and we have introduced
the following coefficients:

𝑎 (1) = −𝜎2 − 𝑖𝜎𝜎R, 𝑎
(2)
𝑟 = 𝑔𝐻𝜇𝑟 (1 − 𝛾L

𝑟 /2),

𝑎
(3)
𝑟 = −2𝑖𝜎Ω𝜇−1

𝑟 , 𝑎
(4)
𝑟 = −2𝑖𝜎Ω𝜈−1

−𝑟 ,

𝑎 (5) = −1
2
𝑔𝐻, 𝑐𝑟 = 𝑔𝛾

T
𝑛 𝜁𝑟 . (2.55)
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2.3.1.2 The gyroscopic coefficients

The gyroscopic coefficients introduced in Eq. (2.30) characterize the rotational distortion
of tidal waves via the Coriolis force term and the effect of boundary conditions imposed
by the oceanic geometry. This coupling is dependent on the position of the ocean on
the sphere and the relative position of the tidal perturber with respect to the tidally
forced ocean. Since we are after a generic configuration describing the response of the
oceanic hemisphere at any position, the expressions of Eq. (2.30) should be written for
any frame rotating with the ocean. We start with the definition of the ALFs (Chapter 8
of Abramowitz et al., 1988)

𝑃𝑚𝑛 (𝜇) =
(−1)𝑚
2𝑛𝑛!

(1 − 𝜇2)𝑚/2𝜕𝑛+𝑚𝜇 (𝜇2 − 1)𝑛, (2.56)

which are solutions to the Legendre equation,

𝜕𝜇
[
(1 − 𝜇2)𝜕𝜇𝑃𝑚𝑛

]
+

[
𝑛(𝑛 + 1) − 𝑚2

1 − 𝜇2

]
𝑃𝑚𝑛 = 0. (2.57)

Upon differentiation, we obtain

𝜕𝜇𝑃
𝑚
𝑛 = − 𝑚𝜇

1 − 𝜇2𝑃
𝑚
𝑛 −

𝑃𝑚+1
𝑛√︁

1 − 𝜇2
. (2.58)

Substituting Eq. (2.58) in Eq. (2.57) we get the recurrence relation

𝑃𝑚+2
𝑛 − 2𝑚𝜇2(𝑚 + 1)

1 − 𝜇2 𝑃𝑚𝑛 − 2𝜇(𝑚 + 1)𝜕𝜇𝑃𝑚𝑛 + [𝑛(𝑛 + 1) − 𝑚(𝑚 + 1)] 𝑃𝑚𝑛 = 0,

which gives the useful relation

𝜇𝜕𝜇𝑃
𝑚
𝑛 =

𝑃𝑚+2
𝑛

2(𝑚 + 1) +
[
𝑛(𝑛 + 1) + 𝑚(𝑚 + 1)

2(𝑚 + 1) − 𝑚

1 − 𝜇2

]
𝑃𝑚𝑛 . (2.59)
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ŝ
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Figure 2.3: Adopted transformation scheme that allows recovering the tidal response
of a hemispherical ocean with an arbitrary center on the sphere. We use an Eulerian
transformation of the form R3(𝛼)R2(𝛽)R3(𝛾) with 𝛾 = 0, allowing us to shift the
latitude of the oceanic center 𝑂 by shifting the spin axis from 𝑠 to 𝑠′′ in a true polar
wander scenario (Webb, 1982a).

From Eqs. (2.56-2.59), it is straightforward to obtain the following ALFs recurrence
relations that are necessary to compute the integral equations of the gyroscopic coeffi-
cients,

𝜇𝑃𝑚𝑛√︁
1 − 𝜇2

= − 1
2𝑚

(
𝑃𝑚+1
𝑛 + (𝑛 − 𝑚 + 1) (𝑛 + 𝑚)𝑃𝑚−1

𝑛

)
, (2.60)

𝑃𝑚𝑛√︁
1 − 𝜇2

= − 1
2𝑚

(
𝑃𝑚+1
𝑛−1 + (𝑛 + 𝑚 − 1) (𝑛 + 𝑚)𝑃𝑚−1

𝑛−1

)
, (2.61)√︃

1 − 𝜇2𝜕𝜇𝑃
𝑚
𝑛 = −1

2
𝑃𝑚+1
𝑛 + 1

2
(𝑛 + 𝑚) (𝑛 − 𝑚 + 1)𝑃𝑚−1

𝑛 , (2.62)

(1 − 𝜇2)𝜕𝜇𝑃𝑚𝑛 =
1

2𝑛 + 1
(
(𝑛 + 1) (𝑛 + 𝑚)𝑃𝑚𝑛−1−𝑛(𝑛−𝑚 +1)𝑃𝑚𝑛+1

)
. (2.63)

The theory of the hemispherical tidal response is based on an ocean bound by two
meridians. Thus for an oceanic center moving on the sphere, we instead rotate the spin
axis relative to the center of the ocean, and accordingly the frame of the tidal perturber to
maintain the coplanar configuration of the dynamical system. These rotations will enter
the system through the Coriolis term, specifically through the gyroscopic coefficients,
along with the tidal forcing term. We define an arbitrary rotation {𝜃, 𝜆} → {𝜃′, 𝜆′}
using an Eulerian rotation matrix of the form R3(𝛼) 𝑅2(𝛽) 𝑅3(𝛾), with (0 ≤ 𝛼 ≤ 2𝜋)
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and (0 ≤ 𝛽 ≤ 𝜋), and we fix 𝛾 = 0 (see Figure 2.3). For a vector 𝐽 defined as

𝐽 = R3(𝛼)R2(𝛽)
(
0 0 1

)𝑇
=

(
sin 𝛽 cos𝛼 sin 𝛽 sin𝛼 cos 𝛽

)𝑇
,

the transformed gyroscopic coefficients are:

𝑅2

𝛼𝑟𝛼𝑠
𝛽𝑟,𝑠 = 𝐽𝑧 𝛽

(1)
𝑟,𝑠 + 𝐽𝑥 𝛽(2)𝑟,𝑠 + 𝐽𝑦 𝛽(3)𝑟,𝑠 , (2.64)

𝑅2

𝛼𝑟𝛼𝑠
𝛽𝑟,−𝑠 = 𝐽𝑧 𝛽

(1)
𝑟,−𝑠 + 𝐽𝑥 𝛽(2)𝑟,−𝑠 + 𝐽𝑦 𝛽(3)𝑟,−𝑠, (2.65)

𝑅2

𝛼𝑟𝛼𝑠
𝛽−𝑟,−𝑠 = 𝐽𝑧 𝛽

(1)
−𝑟,−𝑠 + 𝐽𝑥 𝛽(2)−𝑟,−𝑠 + 𝐽𝑦 𝛽(3)−𝑟,−𝑠, (2.66)

𝛽−𝑟,𝑠 = −𝛽𝑠,−𝑟 , (2.67)

where, for 𝑟 associated with the harmonic pair of integers (𝑛, 𝑚) and 𝑠 associated with
(𝑢, 𝑣), we introduce the coefficients:

𝛽
(1)
𝑟,𝑠 =

2
𝑚2 − 𝑣2

∫ [
𝑣2𝑃𝑣𝑢𝜕𝜇𝑃

𝑚
𝑛 + 𝑚2𝑃𝑚𝑛 𝜕𝜇𝑃

𝑣
𝑢

]
𝜇𝑑𝜇, (2.68)

𝛽
(2)
𝑟,𝑠 =

𝜋

4

∫ [
𝑚𝐾

(1)
𝑚,𝑣𝑃

𝑚
𝑛 𝜕𝜇𝑃

𝑣
𝑢 �̄�

1/2 − 𝑣𝐾 (2)
𝑚,𝑣𝜕𝜇𝑃

𝑚
𝑛 𝑃

𝑣
𝑢 �̄�

1/2
]
𝑑𝜇, (2.69)

𝛽
(3)
𝑟,𝑠 =

∫ [
𝑚𝐾

(3)
𝑚,𝑣𝑃

𝑚
𝑛 𝜕𝜇𝑃

𝑣
𝑢 �̄�

1/2 − 𝑣𝐾 (4)
𝑚,𝑣𝜕𝜇𝑃

𝑚
𝑛 𝑃

𝑣
𝑢 �̄�

1/2
]
𝑑𝜇, (2.70)

𝛽
(1)
𝑟,−𝑠 =

−2𝑣
𝑚2 − 𝑣2

∫ [
𝜕𝜇𝑃

𝑣
𝑢𝜕𝜇𝑃

𝑚
𝑛 𝜇�̄� + 𝑚2𝑃𝑚𝑛 𝑃

𝑣
𝑢

𝜇

�̄�

]
𝑑𝜇, (2.71)

𝛽
(2)
𝑟,−𝑠 =

𝜋

4

∫ [
𝐾

(2)
𝑚,𝑣𝜕𝜇𝑃

𝑚
𝑛 𝜕𝜇𝑃

𝑣
𝑢 �̄�

3/2 − 𝑚𝑣𝐾 (1)
𝑚,𝑣𝑃

𝑚
𝑛 𝑃

𝑣
𝑢 �̄�

−1/2
]
𝑑𝜇, (2.72)

𝛽
(3)
𝑟,−𝑠 =

∫ [
𝐾

(4)
𝑚,𝑣𝜕𝜇𝑃

𝑚
𝑛 𝜕𝜇𝑃

𝑣
𝑢 �̄�

3/2 − 𝑚𝑣𝐾 (3)
𝑚,𝑣𝑃

𝑚
𝑛 𝑃

𝑣
𝑢 �̄�

−1/2
]
𝑑𝜇, (2.73)

𝛽
(1)
−𝑟,−𝑠 =

2𝑚𝑣
𝑚2 − 𝑣2

∫ [
𝑃𝑣𝑢𝜕𝜇𝑃

𝑚
𝑛 + 𝑃𝑚𝑛 𝜕𝜇𝑃𝑣𝑢

]
𝜇𝑑𝜇, (2.74)

𝛽
(2)
−𝑟,−𝑠 =

𝜋

4

∫ [
𝑣𝐾

(1)
𝑚,𝑣𝜕𝜇𝑃

𝑚
𝑛 𝑃

𝑣
𝑢 �̄�

1/2 − 𝑚𝐾 (2)
𝑚,𝑣𝑃

𝑚
𝑛 𝜕𝜇𝑃

𝑣
𝑢 �̄�

1/2
]
𝑑𝜇, (2.75)

𝛽
(3)
−𝑟,−𝑠 =

∫ [
𝑣𝐾

(3)
𝑚,𝑣𝜕𝜇𝑃

𝑚
𝑛 𝑃

𝑣
𝑢 �̄�

1/2 − 𝑚𝐾 (4)
𝑚,𝑣𝑃

𝑚
𝑛 𝜕𝜇𝑃

𝑣
𝑢 �̄�

1/2
]
𝑑𝜇, (2.76)
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with �̄� = 1 − 𝜇2 and

𝐾
(1)
𝑚,𝑣 = (1 + 𝛿𝑣,0)𝛿𝑚−𝑣,1 − 𝛿𝑚−𝑣,−1, (2.77)

𝐾
(2)
𝑚,𝑣 = 𝐾

(1)
𝑣,𝑚, (2.78)

𝐾
(3)
𝑚,𝑣 = 𝑚

(
1

𝑚2 − (𝑣2 + 1)2 + 1
𝑚2 − (𝑣2 − 1)2

)
, (2.79)

𝐾
(4)
𝑚,𝑣 = 𝐾

(3)
𝑣,𝑚 . (2.80)

Under the terms of this transformation, the latitude of the center of the ocean in the
rotating frame is given by

cos 𝜃′ = cos 𝜃 cos 𝛽 + sin 𝜃 sin 𝛽 cos(𝜆 − 𝛼). (2.81)

To compute the integrals involved in the gyroscopic coefficients, we make use of the
essential condition3 (e.g., Longuet-Higgins and Pond, 1970)

𝑃𝑚𝑛 𝑃
𝑣
𝑢

��
𝜇=±1 = 0, (2.82)

and we use the overlap integral of two ALFs (Eq. 2.52), which we compute using the
closed form relations provided in the following section. Now we have at hand all the
elements to compute the gyroscopic coefficients harmonically. The final form of the
three coefficients with superscript (1) are identical to those in Webb (1980) and similar
to those in Longuet-Higgins and Pond (1970) up to certain misprints. For the rest of the
terms, the expressions given in Webb (1982a) involve numerous typographical errors
and inconsistencies, so we provide here the full set of the gyroscopic coefficients. The
coefficients 𝛽(1)𝑟,𝑠 and 𝛽(2)𝑟,𝑠 are expressed as

𝛽
(1)
𝑟,𝑠 =

[
𝑢(𝑢 + 1) + 𝑣(𝑣 + 1)

𝑣 + 1
− 2𝑣

𝑛(𝑛 + 1) − 𝑢(𝑢 + 1) + 𝑣
𝑚2 − 𝑣2

]
O𝑢,𝑣
𝑛,𝑚 + 1

𝑣 + 1
O𝑢,𝑣+2
𝑛,𝑚 ,

𝛽
(2)
𝑟,𝑠 =

𝜋

4

[
𝑚𝐾

(1)
𝑚,𝑣

∫
𝑃𝑚𝑛 𝜕𝜇𝑃

𝑣
𝑢 �̄�

1/2𝑑𝜇 − 𝑣𝐾 (2)
𝑚,𝑣

∫
𝜕𝜇𝑃

𝑚
𝑛 𝑃

𝑣
𝑢 �̄�

1/2𝑑𝜇

]
, (2.83a)

=
𝜋

8

{
𝑚𝐾

(1)
𝑚,𝑣

[
(𝑢 + 𝑣) (𝑢 − 𝑣 + 1)O𝑢,𝑣−1

𝑛,𝑚 − O𝑢,𝑣+1
𝑛,𝑚

]
−𝑣𝐾 (2)

𝑚,𝑣

[
(𝑛 + 𝑚) (𝑛 − 𝑚 + 1)O𝑢,𝑣

𝑛,𝑚−1 − O𝑢,𝑣

𝑛,𝑚+1

] }
, (2.83b)

3we note that this general condition is invalid in the case where 𝑛 = 𝑚 = 𝑢 = 𝑣 = 0. However, this
case is excluded here by the definition of the eigenfunctions in Eqs. (2.18) and (2.19).
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where we used Eq. (2.62) for each integrand in Eq. (2.83a) to obtain Eq. (2.83b). The
coefficients 𝛽(3)𝑟,𝑠 , 𝛽

(1)
𝑟,−𝑠, and 𝛽(2)𝑟,−𝑠 read as:

𝛽
(3)
𝑟,𝑠 =

1
2

{
𝑚𝐾

(3)
𝑚,𝑣

[
(𝑢 + 𝑣) (𝑢 − 𝑣 + 1)O𝑢,𝑣−1

𝑛,𝑚 − O𝑢,𝑣+1
𝑛,𝑚

]
− 𝑣𝐾 (4)

𝑚,𝑣

[
(𝑛 + 𝑚) (𝑛 − 𝑚 + 1)O𝑢,𝑣

𝑛,𝑚−1 − O𝑢,𝑣

𝑛,𝑚+1

] }
, (2.84)

𝛽
(1)
𝑟,−𝑠 =

−2𝑣
(𝑚2 − 𝑣2) (2𝑛 + 1)

{
(𝑛 + 1) (𝑛 − 1) (𝑛 + 𝑚)O𝑢,𝑣

𝑛−1,𝑚 + 𝑛(𝑛 + 2) (𝑛 − 𝑚 + 1)O𝑢,𝑣

𝑛+1,𝑚

}
,

(2.85)

𝛽
(2)
𝑟,−𝑠 =

𝜋

4

[
𝐾

(2)
𝑚,𝑣

∫
𝜕𝜇𝑃

𝑚
𝑛 𝜕𝜇𝑃

𝑣
𝑢 �̄�

3/2𝑑𝜇 − 𝑚𝑣𝐾 (1)
𝑚,𝑣

∫
𝑃𝑚𝑛 𝑃

𝑣
𝑢 �̄�

−1/2𝑑𝜇

]
, (2.86a)

=
𝜋

4

[
𝐾

(2)
𝑚,𝑣

∫
𝜕𝜇𝑃

𝑚
𝑛 �̄�𝜕𝜇𝑃

𝑣
𝑢 �̄�

1/2𝑑𝜇 − 𝑚𝑣𝐾 (1)
𝑚,𝑣

∫
𝑃𝑚𝑛 𝑃

𝑣
𝑢 �̄�

−1/2𝑑𝜇

]
, (2.86b)

=
𝜋𝐾

(2)
𝑚,𝑣

8(2𝑛 + 1)

{
(𝑛 + 1) (𝑛 + 𝑚)

[
(𝑢 + 𝑣) (𝑢 − 𝑣 + 1)O𝑢,𝑣−1

𝑛−1,𝑚 − O𝑢,𝑣+1
𝑛−1,𝑚

]
+ 𝑛(𝑛 − 𝑚 + 1)

[
O𝑢,𝑣+1
𝑛+1,𝑚 − (𝑢 + 𝑣) (𝑢 − 𝑣 + 1)O𝑢,𝑣−1

𝑛+1,𝑚

] }
+
𝜋𝑣𝐾

(1)
𝑚,𝑣

8

{
O𝑢,𝑣

𝑛−1,𝑚+1 + (𝑛 + 𝑚 − 1) (𝑛 + 𝑚)O𝑢,𝑣

𝑛−1,𝑚−1

}
, (2.86c)

where we used the recurrence relations of Eq. (2.62) and Eq. (2.63) to compute the first
integral of Eq. (2.86b), and the relation of Eq. (2.61) to compute the second integral.
Finally, the remaining terms 𝛽(3)𝑟,−𝑠, 𝛽

(1)
−𝑟,−𝑠, 𝛽

(2)
−𝑟,−𝑠, and 𝛽(3)−𝑟,−𝑠 are expressed as:

𝛽
(3)
𝑟,−𝑠 =

𝐾
(4)
𝑚,𝑣

2(2𝑛 + 1)

{
(𝑛 + 1) (𝑛 + 𝑚)

[
(𝑢 + 𝑣) (𝑢 − 𝑣 + 1)O𝑢,𝑣−1

𝑛−1,𝑚 − O𝑢,𝑣+1
𝑛−1,𝑚

]
+ 𝑛(𝑛 − 𝑚 + 1)

[
O𝑢,𝑣+1
𝑛+1,𝑚 − (𝑢 + 𝑣) (𝑢 − 𝑣 + 1)O𝑢,𝑣−1

𝑛+1,𝑚

] }
+
𝑣𝐾

(3)
𝑚,𝑣

2

{
O𝑢,𝑣

𝑛−1,𝑚+1 + (𝑛 + 𝑚 − 1) (𝑛 + 𝑚)O𝑢,𝑣

𝑛−1,𝑚−1

}
, (2.87)

𝛽
(1)
−𝑟,−𝑠 =

−2𝑚𝑣
𝑚2 − 𝑣2O

𝑢,𝑣
𝑛,𝑚, (2.88)
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𝛽
(2)
−𝑟,−𝑠 =

𝜋

8

{
−𝑚𝐾 (2)

𝑚,𝑣

[
(𝑢 + 𝑣) (𝑢 − 𝑣 + 1)O𝑢,𝑣−1

𝑛,𝑚 − O𝑢,𝑣+1
𝑛,𝑚

]
+ 𝑣𝐾 (1)

𝑚,𝑣

[
(𝑛 + 𝑚) (𝑛 − 𝑚 + 1)O𝑢,𝑣

𝑛,𝑚−1 − O𝑢,𝑣

𝑛,𝑚+1

]}
, (2.89)

𝛽
(3)
−𝑟,−𝑠 =

1
2

{
−𝑚𝐾 (4)

𝑚,𝑣

[
(𝑢 + 𝑣) (𝑢 − 𝑣 + 1)O𝑢,𝑣−1

𝑛,𝑚 − O𝑢,𝑣+1
𝑛,𝑚

]
+ 𝑣𝐾 (3)

𝑚,𝑣

[
(𝑛 + 𝑚) (𝑛 − 𝑚 + 1)O𝑢,𝑣

𝑛,𝑚−1 − O𝑢,𝑣

𝑛,𝑚+1

]}
. (2.90)

2.3.1.3 The overlap integral O𝑢,𝑣
𝑛,𝑚

Here, we provide a closed form solution for the computation of the overlap integral of
Eq. (2.52). The procedure is assimilated from tools of angular momentum quantization
(Varshalovich et al., 1988). Following Dong and Lemus (2002) and introducing the
notation 𝑞 = 𝑣 − 𝑚, we have

O𝑢,𝑣
𝑛,𝑚 = 𝐶𝑢,𝑣𝑛,𝑚

∑︁
𝑙

(2𝑙 + 1)D(|𝑞 |, 𝑙) ·
(
𝑛 𝑢 𝑙

0 0 0

) (
𝑛 𝑢 𝑙

−𝑚 𝑣 𝑚 − 𝑣

)
, (2.91)

where the factors 𝐶𝑢,𝑣𝑛,𝑚 are given by:

𝐶𝑢,𝑣𝑛,𝑚 = (−1)𝜅2|𝑞 |−2 |𝑞 |

√︄
(𝑛 + 𝑚)!(𝑢 + 𝑣)!
(𝑛 − 𝑚)!(𝑢 − 𝑣)! , (2.92)

and the coefficients D(|𝑞 |, 𝑙) by

D(|𝑞 |, 𝑙) =
[
1 + (−1)𝑙+|𝑞 |

] √︄
(𝑙 − |𝑞 |)!
(𝑙 + |𝑞 |)!

Γ(𝑙/2)Γ((𝑙 + |𝑞 | + 1)/2)
((𝑙 − |𝑞 |)/2)!Γ((𝑙 + 3)/2) . (2.93)

We note here that the phase 𝜅 introduced in Dong and Lemus (2002) as

𝜅 =


𝑚 if 𝑣 ≥ 𝑚,

𝑣 otherwise,
(2.94)

corrects the phase given in Mavromatis and Alassar (1999) and Crease (1966), where the
latter was used for the computation of the gyroscopic coefficients in Longuet-Higgins
and Pond (1970) and Webb (1980, 1982a).

In Eq. (2.91), the summation over 𝑙 runs for |𝑛−𝑢 | ≤ 𝑙 ≤ (𝑛+𝑢); 𝑙 ≥ |𝑞 |; and |𝑙+𝑛+𝑢 | is
even. Finally, the Wigner 3-jm symbols are determined from Varshalovich et al. (1988)
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by (
𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

)
=(−1)𝑅21+𝑅31+𝑅32

[
𝑅31!𝑅32!𝑅33!𝑅13!𝑅23!

(𝐽 + 1)!𝑅11!𝑅12!𝑅21!𝑅22!

]1/2

×
∑︁
𝑧

(−1)𝑧 (𝑅21 + 𝑧)!(𝑅11 + 𝑅31 − 𝑧)!
𝑧!(𝑅31 − 𝑧)!(𝑅23 − 𝑧)!(𝑅13 − 𝑅31 + 𝑧)!

, (2.95)

where 𝐽 = 𝑎 + 𝑏 + 𝑐, and 𝑅𝑖 𝑗 are the elements of the so-called Regge ℜ-symbol (Regge,
1958) defined as

𝑅11 = −𝑎 + 𝑏 + 𝑐, 𝑅12 = 𝑎 − 𝑏 + 𝑐, 𝑅13 = 𝑎 + 𝑏 − 𝑐,

𝑅21 = 𝑎 + 𝑑, 𝑅22 = 𝑏 + 𝑒, 𝑅23 = 𝑐 + 𝑓 ,

𝑅31 = 𝑎 − 𝑑, 𝑅32 = 𝑏 − 𝑒, 𝑅33 = 𝑐 − 𝑓 . (2.96)

The summation in Eq. (2.95) runs over all integer values of 𝑧 for which all the factorial
arguments are non-negative. Finally, we note that using Eq. (2.91), O𝑢,𝑣

𝑛,𝑚 = 0 when
𝑣 = 𝑚. In that case, we alternatively use

O𝑢,𝑚
𝑛,𝑚 =

2
2𝑛 + 1

(𝑛 + 𝑚)!
(𝑛 − 𝑚)!𝛿𝑛,𝑢 . (2.97)

This method for the computation of the overlap integral was verified numerically using
MATLAB’s ALFs package.

2.3.1.4 The tidal forcing term 𝜁𝑟

As in Webb (1980), considering the equilibrium tide 𝜁 to have a unit root mean square
amplitude, and to be driven by a spherical harmonics term of the form

𝑌
𝑞
𝑝 (𝜃, 𝜆) =

√︄
2𝑝 + 1

4𝜋
(𝑝 − 𝑞)!
(𝑝 + 𝑞)! 𝑃

𝑞
𝑝 (cos 𝜃) exp(𝑖𝑞𝜆) , (2.98)

with angular frequency 𝜎, we define

𝜁 =
√

2𝜋𝑌 𝑞𝑝 (𝜃, 𝜆) exp(𝑖𝜎𝑡). (2.99)

Under the rotation of the coordinate system described by the Euler angles (𝛼, 𝛽, 𝛾) (see
Section 2.3.1.2 and Figure 2.3), the spherical harmonics transform as (Varshalovich



Chapter 2. Revisiting the tidal evolution of the Earth-Moon separation 103

et al., 1988)

𝑌 𝑠𝑝 (𝜃′, 𝜆′) =
𝑝∑︁

𝑞=−𝑝
𝑌
𝑞
𝑝 (𝜃, 𝜆)𝐷 𝑝

𝑠,𝑞 (𝛼, 𝛽, 𝛾), (2.100)

or

𝑌
𝑞
𝑝 (𝜃, 𝜆) =

𝑝∑︁
𝑠=−𝑝

𝑌 𝑠𝑝 (𝜃′, 𝜆′)𝐷
𝑝∗
𝑠,𝑞 (𝛼, 𝛽, 𝛾), (2.101)

where 𝐷 𝑝
𝑞,𝑠 designate the Wigner D-functions. These functions are themselves the

product of three functions (Varshalovich et al., 1988), each depending on one argument:
𝛼, 𝛽, or 𝛾 such that

𝐷
𝑝
𝑠,𝑞 (𝛼, 𝛽, 𝛾) = 𝑒−𝑖𝑞𝛼𝑑𝑝𝑠𝑞 (𝛽)𝑒−𝑖𝑠𝛾 . (2.102)

In this expression, the functions 𝑑𝑝𝑠𝑞 (𝛽) are given by

𝑑
𝑝
𝑠𝑞 (𝛽) = (−1)𝑝−𝑠 [(𝑝 + 𝑞)!(𝑝 − 𝑞)!(𝑝 + 𝑠)!(𝑝 − 𝑠)!]1/2

×
∑︁
𝑗

(−1) 𝑗 (cos 𝛽/2)𝑞+𝑠+2 𝑗 (sin 𝛽/2)2𝑝−𝑞−𝑠−2 𝑗

𝑗!(𝑝 − 𝑞 − 𝑗)!(𝑝 − 𝑠 − 𝑗)!(𝑞 + 𝑠 + 𝑗)! , (2.103)

with 𝑗 running over all integer values for which the factorial arguments are positive.
This sum involves 𝑁 + 1 terms, where 𝑁 is the minimum of (𝑝 + 𝑞), (𝑝 − 𝑞), (𝑝 + 𝑠),
and (𝑝 − 𝑠). Since we are studying the semi-diurnal tide (𝑝 = 𝑞 = 2), we are left with
one term only. Expanding the harmonic factor 𝑌 𝑠𝑝 (𝜃′, 𝜆′) of Eq. (2.101) in terms of the
basis eigenfunctions, we get the expression of the equilibrium oceanic depth variation
in the rotated frame of reference,

𝜁 =

√︂
𝜋𝑅2

2
exp(𝑖𝜎𝑡)

𝑝∑︁
𝑠=−𝑝

𝐷
𝑝∗
𝑠,𝑞 (𝛼, 𝛽, 𝛾) (1 + 𝛿𝑠,0)1/2 [

𝜙𝑠𝑝 + 𝑖𝜓𝑠𝑝
]
. (2.104)

Then, invoking the definition of the component 𝜁𝑟 ,

𝜁𝑟 =

∫
O
𝜙𝑟𝜁𝑑𝐴, (2.105)

we get its expression in the rotated frame of reference as

𝜁𝑟 =

√︂
𝜋𝑅2

2
exp(𝑖𝜎𝑡)

𝑝∑︁
𝑠=−𝑝

𝐷
𝑝∗
𝑠,𝑞 (𝛼, 𝛽, 𝛾) (1 + 𝛿𝑠,0)1/2

×
[ ∫

O
𝜙𝑠𝑝𝜙

𝑚
𝑛 𝑑𝐴 + 𝑖

∫
O
𝜓𝑠𝑝𝜙

𝑚
𝑛 𝑑𝐴

]
, (2.106)



Chapter 2. Revisiting the tidal evolution of the Earth-Moon separation 104

where the dot products of the eigenfunctions are simplified as follows:

∫
O
𝜙𝑠𝑝𝜙

𝑚
𝑛 𝑑𝐴 =


𝛿𝑛,𝑝, if 𝑠 = 𝑚,

(−1)𝑚𝛿𝑛,𝑝, if 𝑠 = −𝑚,

0, otherwise,

(2.107)

and ∫
O
𝜓𝑠𝑝𝜙

𝑚
𝑛 𝑑𝐴 =


0, if 𝑚 + 𝑠 = even,

𝛼𝑝,𝑠 𝛼𝑛,𝑚
2𝑠

𝑠2 − 𝑚2O
𝑛,𝑚
𝑝,𝑠 otherwise.

(2.108)

We note that as the index 𝑠 takes negative values, we use

𝑃−𝑠
𝑝 = (−1)𝑠 (𝑝 − 𝑠)!(𝑝 + 𝑠)!𝑃

𝑠
𝑝 (2.109)

in the overlap integral of Eq. (2.52).

2.3.1.5 Tidal torque of a hemispherical ocean

Once the gyroscopic coefficients are computed, the linear system of the coefficients
(𝑝𝑟 , 𝑝−𝑟) in Eq. (2.53) is truncated and solved numerically. What we are after are
the tidal torques that enter in the dynamical equations of the Earth-Moon system (see
Section 2.5.2), which depend on the rotational angular velocity of the Earth and the
orbital frequency of the tidal perturber. Defining the tidal torque transferring power
from the Earth’s rotational momentum to the perturber’s orbital angular momentum by
T , the power lost by the Earth would be TΩ, and the power gained by the perturber
is T 𝑛orb. The difference between them is the dissipative work of the total tidal mass
redistribution Wdiss, thus

T =
Wdiss

Ω − 𝑛orb
. (2.110)

The total dissipative work is the sum of two contributions: the dissipative work of
oceanic tidal currents, Woc

diss, and dissipation in the deforming viscoelastic mantle.
In the formalism established thus far, we calculated the self-consistently coupled tidal
responses of the ocean and solid part for the Earth’s half hosting the hemispherical ocean,
which corresponds to the effective tidal response of the planet for this hemisphere. The
tidal response of the continental hemisphere is simply described by the solid Love
numbers introduced in Eq. (2.45), since there is no oceanic tide in that case. The
coupled solid-oceanic tidal response accounts for both the direct gravitational tidal
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forcing generated by the perturber on the solid part and ocean and the mutual forcings of
the two layers through the variations of the loading exerted by the latter on the former, and
the variations of the Earth’s self-gravitational potential due to mass redistribution. For
simplicity, we ignore the energy dissipated in the solid part in the calculation of the tidal
torque and we only consider that which is occurring within the oceanic shell, namely,
Woc

diss. This is justified by the predominance of the oceanic response over the solid part
over the time interval covered by the hemispherical ocean configuration in our model
(see Section 2.5). This hierarchy of contributions is only jeopardized by the emerging
significance of the solid dissipation when moving backwards in time and increasing
the Earth’s rotational velocity Ω. Solid Earth dissipation would also be amplified with
an early less viscous mantle due to higher Hadean-Archean temperatures (Ross and
Schubert, 1989). Eventually, a regime transition may lead to the predominance of the
mantle’s elastic response (Lau et al., 2015, 2016a). In our nominal model described in
Section 2.5, we switch from the hemispherical ocean configuration to the global ocean
configuration during mid-Archean, beyond which we self-consistently account for the
dissipative contribution of the solid part (Section 2.3.2). Thus, we have only ignored the
dissipative contribution of the mantle when it is insignificant. The oceanic dissipative
work is given by (Webb, 1980)

Woc
diss =

〈∫
O
®𝑢(𝑡) · 𝜎R ®𝑢(𝑡)𝑑𝐴

〉
=

1
2
𝜎R𝜎

2
∞∑︁
𝑟=1

(
𝜇𝑟 𝑝𝑟 𝑝

∗
𝑟 + 𝜈𝑟 𝑝−𝑟 𝑝∗−𝑟

)
, (2.111)

where ⟨⟩ denotes time averaging over the tidal period. This work should be equal to the
work done by the tidal force on the ocean

Woc
tide =

〈
𝜌oc𝑔𝐻

∫
O
∇𝜁 (𝑡) · ®𝑢(𝑡)𝑑𝐴

〉
=

1
2
𝜌oc𝑔𝐻𝜎 Im

{ ∞∑︁
𝑟=1

𝑝𝑟𝜇𝑟𝜁
∗
𝑟

}
. (2.112)

Hence, the tidal torque associated with the lunar semi-diurnal frequency 𝜎 = 2(Ω−𝑛M),
𝑛M being the lunar mean motion, is

TM = 𝜌oc𝑔𝐻 Im

{ ∞∑︁
𝑟=1

𝑝𝑟𝜇𝑟𝜁
∗
𝑟

}
, (2.113)
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Figure 2.4: Numerical analysis on the dependence of the tidal response computation
on the truncation order 𝑟max. The response is quantified by the root mean square tidal
amplitude, 𝜁rms, (Eq. 2.114) and the dissipative work, Woc

diss, (Eq. 2.111), and plotted
for three tidal frequencies: 7.3, 11.4, and 22 rad/day that correspond to the vicinity of
a tidal resonance, the peak of a resonance, and the background spectrum respectively.

and we obtain a similar expression for the solar tides TS when solving the system with
the solar tidal frequency component 𝜎 = 2(Ω − 𝑛S), 𝑛S being the solar mean motion
that generates the solar tidal work.

Besides the tidal torque, the tidal response can also be quantified by the root mean square
tidal height variation, 𝜁rms, given as

𝜁rms =

√√
𝐻

𝜋𝑅2

∞∑︁
𝑟=1

𝜇2
𝑟 𝑝

∗
𝑟 𝑝𝑟 . (2.114)

As these quantities are computed numerically, a truncation order, 𝑟max, is required. In
Figure 2.4, we show the numerical dependence of the tidal response on 𝑟max. Since
the response is dominated by gravity modes, the tidal solution converges fast enough
with 𝑟max. To avoid any truncation effect in our computation, and to properly account
for the resonances, we adopted 𝑟max = 50. In Figure 2.5, we plot the torque of the
hemispherical configuration for two scenarios: accounting for the oceanic response only
and accounting for both the oceanic and solid responses self-consistently. As explained
in Section 2.3.1.1, the effects of self-attraction and loading interactions between the solid
mantle and the oceanic shell are evident in attenuating the amplitude of the response and
slightly shifting the position of resonances. This delay effect is due to the influence of
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Figure 2.5: Tidal torque between the Earth and the Moon. We compare the torque
of the hemispherical ocean model between a pure oceanic response, and the response
of the ocean when accounting for loading and self-attraction effects arising from solid
Earth deformation assuming an Andrade rheology. The procedure of this coupling for
the hemispherical configuration is detailed in Section 2.3.1.1. We recall that the energy
tidally dissipated in the solid part is ignored in the hemispherical configuration. The
thickness of the oceanic shell is set to 𝐻 = 4000 m. The ocean is symmetric around the
equator and bounded by longitudes 𝜆 = 0 and 𝜆 = 𝜋. Energy dissipation is quantified
by the linear Rayleigh drag frequency 𝜎R. The logarithm of the torque is plotted as a
function of the normalized frequency 𝜔 = (Ω − 𝑛orb)/Ω0, where the Earth’s spin rate
varies with the tidal forcing frequency Ω = 𝑛orb + 𝜎/2 at fixed 𝑛orb, and Ω0 being the
present spin rate of the Earth.

this coupling on the phase of resonance depths of near-resonant free oscillations (Müller,
2008).

In Figure 2.6, we plot the tidal torque for a hemispherical ocean at different surface
positions. With longitudinal symmetry, the latter is defined by the latitude of the
oceanic center. The drifting effect on the resonances ranges from position shifting
and attenuation for small forcing frequencies to major distortion in the spectrum at
larger frequencies. Extreme distortion occurs in the polar oceanic scenario: the major
resonance around 11 rad/day reaches a maximum relative to other configurations and the
rest of the resonances are absorbed into the background leaving a unimodal spectrum.
This behavior makes it important to take into account the position of the hemispherical
cap into the model we develop next.

2.3.2 The tidal response of a global ocean

We next describe the oceanic tidal dynamics assuming a spherical fluid shell, also of
uniform thickness 𝐻, covering the Earth’s surface. The reason we are interested in
this configuration will become clearer when we describe our evolution model later on.
The premise of the analytical treatment of the problem can be found in its gory details
in several works (e.g., Tyler, 2011; Matsuyama, 2014; Auclair-Desrotour et al., 2014,
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Figure 2.6: Drifting effect of the continental cap on the oceanic response: the tidal
torque of a hemispherical ocean is plotted as a function of the forcing semi-diurnal
frequency for different positions of the center of the ocean.

2018, 2019a). Adopting this formalism for the Earth-Moon system was recently done
in Motoyama et al. (2020) for the first half of the system’s age where the removal of
continents was justified due to the timing of continental formation and evolution. Tyler
(2021) used the formalism for the full age of the system arguing that “continentality" can
be implicitly parametrized. We provide here a brief recipe of this analytical formalism
necessary for constructing our model.

In the global ocean configuration, solving the governing system of Eq. (2.1) is done
by expanding the velocity field, the tidal elevation, and the forcing gravitational tidal
potential in Fourier series of time and longitude, with the tidal frequency serving as
the expansion frequency4. This is justified by the imposed linear approximation, where
the response of each given mode is proportional to the corresponding component of the

4We remind the reader that we proceed with this theory by studying dynamics in the coplanar setting.
The theory requires further development if one were to account for the Earth’s obliquity and lunar
inclination.
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forcing. Thus, we have

®𝑢 =
∑︁
𝑚,𝜎

®𝑢 𝑚,𝜎 (𝜃) exp{𝑖(𝜎𝑡 + 𝑚𝜆},

𝜁 =
∑︁
𝑚,𝜎

𝜁 𝑚,𝜎 (𝜃) exp{𝑖(𝜎𝑡 + 𝑚𝜆},

𝜁eq =
∑︁
𝑚,𝜎

𝜁
𝑚,𝜎

eq (𝜃) exp{𝑖(𝜎𝑡 + 𝑚𝜆}. (2.115)

Defining the complex tidal frequency �̃� and the complex spin parameter �̃� as in Auclair-
Desrotour et al. (2018) by

�̃� = 𝜎 − 𝑖𝜎R and �̃� =
2Ω
�̃�
, (2.116)

and replacing the tidal quantities by their expansions, the governing system reduces to
an eigenvalue-eigenfunction problem, known classically (when ignoring friction) as the
Laplace tidal equation (e.g., Lee and Saio, 1997). We assume that the Fourier compo-
nents can be expanded spatially using a set of the latitudinal complex Hough functions
{Θ𝑚,�̃�𝑛 (𝜃)} (Hough, 1898), associated with a set of eigenvalues {Λ𝑚,�̃�𝑛 }. Hough func-
tions arise as natural solutions of the Laplace tidal equation when describing horizontal
dynamics:

L𝑚,�̃�Θ𝑚,�̃�𝑛 (𝜃) = −Λ𝑚,�̃�𝑛 Θ𝑚,�̃�𝑛 (𝜃), (2.117)

where the operator L𝑚,�̃� is defined as

L𝑚,�̃� =
1

sin 𝜃
𝑑

𝑑𝜃

(
sin 𝜃

1 − �̃�2 cos2 𝜃

𝑑

𝑑𝜃

)
− 1

1 − �̃�2 cos2 𝜃

(
𝑚�̃�

1 + �̃�2 cos2 𝜃

1 − �̃�2 cos2 𝜃
+ 𝑚2

sin2 𝜃

)
.

(2.118)
With the complex nature of �̃�, it follows that the Hough functions and their eigenvalues
upon the introduction of dissipation are complex too, in contrast with earlier studies.
To compute the Hough functions and their associated eigenvalues, we adopt the method
developed in Wang et al. (2016), where Hough functions are expanded in terms of
Associated Legendre Functions

Θ𝑚,�̃�𝑛 (𝜃) =
∑︁
𝑚≤𝑙

𝐴
𝑚,�̃�

𝑛,𝑙
𝑃𝑚𝑙 (cos 𝜃),

𝑃𝑚𝑙 (cos 𝜃) =
∑︁
𝑛

𝐵
𝑚,�̃�

𝑙,𝑛
Θ𝑚,�̃�𝑛 (𝜃), (2.119)

with 𝐴𝑚,�̃�
𝑛,𝑙

and 𝐵𝑚,�̃�
𝑙,𝑛

being complex coefficients defining a change of basis . In Figure
2.7 we plot a sample of these functions associated with the symmetric modes of degree
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Figure 2.7: A sample from the set of Hough functions {Θ𝑚,�̃�
𝑛 (𝜃)}. Real and imaginary

parts of even mode Hough functions (𝑛 being even), plotted as a function of the latitu-
dinal angle 𝜃. The functions are associated with the quadrupolar (𝑚 = 2) perturbation,
which is relevant for the semi-diurnal tidal forcing. Each column corresponds to a
different value of the dissipative frequency 𝜎R, such that going from left to right is
equivalent to going from a strongly to a weakly frictional regime.

𝑚 = 2 for various values of 𝜎R. In a weakly dissipative regime, where 𝜎 ≫ 𝜎R, the
Hough functions and their eigenvalues are pure real. The real spin parameter for this
case of a perfect fluid can be approximated as 𝜈 = 2Ω/𝜎. This is the classic case usually
studied in the linear theory of tides (e.g., Lee and Saio, 1997; Auclair-Desrotour et al.,
2014; Matsuyama, 2014), where viscous friction only slightly modifies the horizontal
structure of the tides. The tidal modes in this case are divided into families of gravity
modes and inertial modes that correspond to 𝑛 ≥ 0 and 𝑛 < 0 respectively. Gravity
modes can further be defined in the regime of super-inertial waves, where |𝜈 | ≤ 1, or in
the regime of sub-inertial waves, with |𝜈 | > 1. In contrast, the inertial modes can only
be defined in the regime of sub-inertial waves. In the limit of slow rotation, with 𝜈 → 0,
the Hough functions associated with gavity modes can be represented by the associated
Legendre Polynomials 𝑃𝑚

𝑙
with 𝑛 = 𝑙 − 𝑚. Thus the Hough functions have been often

described on the sphere as Legendre Polynomials distorted by rotation.

In the limit of strong dissipation, where 𝜎R > 𝜎, friction significantly affects the
horizontal structure of tidal waves. In the limit of 𝜎R → ∞, gravity and Rossby
Hough functions merge asymptotically and converge towards the associated Legendre
Polynomials again (Volland, 1974). Thus strong friction also tames the Coriolis effects,
as if the planet is stationary.
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Using the change of basis coefficients 𝐴𝑚,�̃�
𝑛,𝑙

, the tidal displacement solution is expressed
as

𝜁
𝑚,𝜎

𝑙
=

∑︁
𝑛

𝐴
𝑚,�̃�

𝑛,𝑙
𝜁𝑚,𝜎𝑛 , (2.120)

where the components 𝜁𝑚,𝜎𝑛 are solutions to the linear algebraic system

©«
𝜎�̃�I𝑁 −



𝜎2
1,1 . . . 𝜎2

1,𝑛 . . . 𝜎2
1,𝑁

...
. . .

...
...

𝜎2
𝑛,1 . . . 𝜎2

𝑛,𝑛 . . . 𝜎2
𝑛,𝑁

...
...

. . .
...

𝜎2
𝑁,1 . . . 𝜎2

𝑁,𝑛
. . . 𝜎2

𝑁,𝑁



ª®®®®®®®®®¬



𝜁
𝑚,𝜎

1
...

𝜁
𝑚,𝜎
𝑛

...

𝜁
𝑚,𝜎

𝑁


=



F 𝑚,𝜎

1
...

F 𝑚,𝜎
𝑛

...

F 𝑚,𝜎

𝑁


. (2.121)

In this linear system, I𝑁 denotes the identity matrix of size 𝑁 × 𝑁 , the forcing terms of
the studied tidal potential𝑈𝑚,𝜎

𝑙
(Eq. 2.37) are expressed as

F 𝑚,𝜎
𝑛 = −𝐻Λ
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𝑙
, (2.122)

and the complex characteristic frequencies 𝜎𝑛,𝑘 as

𝜎𝑛,𝑘 =
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𝑔𝐻�̂�2
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where the horizontal wave-number of the degree-𝑛 mode �̂�𝑛 =

√︃
Λ
𝑚,�̃�
𝑛 /𝑅, and the

coupling coefficients 𝛾T
𝑙

and 𝛾L
𝑙

are defined in Eq. (2.48). Once the solution of this
algebraic system is obtained, the self-consistent tidal response of the Earth is quantified
by the total frequency dependent complex Love number defined, for each order, 𝑚, and
degree, 𝑙, as
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𝑙

. (2.124)

The first term of the above expression accounts for the direct tidal gravitational forcing
of the solid part by the perturber. The second term is related to the oceanic tidal
response, which is coupled to that of the solid part through gravitational and surface
loading interactions via the loading Love number 𝑘L

𝑙
(see Section 1.2.7). We remark

that the effective Love number characterizing the full tidal response of the planet (Eq.
2.124) depends on both the latitudinal and longitudinal harmonic degrees, 𝑙 and 𝑚, in
contrast with the solid tidal Love number, 𝑘T

𝑙
. This results from the fact that Coriolis
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forces alter the oceanic tidal response, which is not the case for the solid tidal response.
A more typical parameter often associated with tidal dissipation is the quality factor
𝑄. The definition of the latter varies in the literature, and is confusingly referred to as
the dissipation parameter. As Tyler (2021) points out, 𝑄 is related to both kinetic and
potential energy densities (KE and PE, respectively), thus it is linked to the partition of
energy between gravity and rotational modes. However, studying tidal dynamics is often
the study of the tidal flow and therefore kinetic energy rather than the potential energy.
Hence, if the definition of 𝑄 as 𝑄 = 𝜎(KE + PE)/𝑊 , where𝑊 is the work done by the
tidal potential, is adopted (Egbert et al., 2004), then𝑄 quantifies not only the dissipation
timescale but also the relative importance of rotation in the dynamics. Consequently, it
is not a good parameter for comparing tidal dissipation of two bodies that have different
rotational motion, and it should be used with caution only to quantify the number of
cycles to obtain an e-folding decay of the tidal amplitude, i.e. only to describe the
damping, rather than being a fundamental parameter characterizing dissipation. In
our formulation, it is the Love number, and more specifically its imaginary part that
characterizes the process of dissipative deformation. The tidal quality factor 𝑄 can now
be defined in terms of the Love number as (Mathis and Le Poncin-Lafitte, 2009)

𝑄 =

������� 𝑘O
𝑙,𝑚

Im
{
𝑘O
𝑙,𝑚

}
������� . (2.125)

In Figure 2.8, we plot the frequency spectrum of 𝑄. The figure clearly depicts the res-
onances associated with surface-gravity modes modified by rotation. These resonances
are situated around the pairs of complex eigen-frequencies 𝜎±

𝑛 defined as (Auclair-
Desrotour et al., 2018)

𝜎±
𝑛 = 𝑖

𝜎R
2

±
√︂
𝑔𝐻�̂�2

𝑛 −
(𝜎R

2

)2
, (2.126)

which depicts explicitly the predominance of friction over the rotational distortion of tidal
waves in a strong friction regime. The spectral coverage of the non-resonant background
of the response increases with increasing 𝜎R. In the opposite limit, resonant peaks are
spelled out intensifying in amplitude as friction is weakened5. Besides, when 𝜎R → 0,
the frequencies 𝜎±

𝑛 become real and positive, and we recover the eigen-frequencies of
high-wavelength surface gravity modes travelling around the sphere.

5Auclair-Desrotour et al. (2015) studied the dependence of the resonant peaks on the frequencies
of dissipative mechanisms in a fluid box. The authors showed that the heights of resonant peaks scale
as the inverse of the frequency associated with viscous friction, while the widths of the peaks and the
non-resonant background are proportional to this frequency. Though the setting in their study is idealized,
the resonances of the global ocean are expected to behave in a similar way.
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Figure 2.8: The tidal quality factor 𝑄 associated with the semidiurnal oceanic tide of
the Earth. The logarithms of𝑄 is plotted as functions of the normalized tidal frequency
𝜔 = Ω − 𝑛orb/Ω0 (where Ω0 designates the present spin rate of the Earth) for different
orders of magnitude of the dissipative frequency 𝜎R. The frequency spectrum of 𝑄 is
computed via the Love number function of Eq. (2.125). The mean motion of the Moon,
𝑛orb, is assumed to be constant and the variation in 𝜎 (consequently 𝜔) is driven by
variations in Ω. The excitation of resonances is clear for moderate values of 𝜎R.

2.3.2.1 The pure oceanic response

Before wrapping up on our oceanic analytics, we pause briefly to comment again on the
effect of solid tides on the global oceanic response, as we did in Section 2.3.1.1 for the
hemispherical configuration. Looking back at Eq. (2.124), the Love number for the pure
oceanic response can be computed in the limit of an infinitely rigid mantle (𝜇 → ∞).
Furthermore, the Cowling approximation is assumed (e.g., Cowling, 1941; Unno et al.,
1989), whereby the term with 𝜌oc/𝜌se, which results from the action of the self-attraction
variations due to the oceanic tidal mass redistribution on the oceanic tides themselves,
is ignored. Consequently, the tidal and loading Love numbers would vanish, and the
tilt coefficients 𝛾T

𝑛 , 𝛾L
𝑙

of Eq. (2.48) would be equal to unity. We focus for now on the
semi-diurnal forcing which corresponds to 𝑙 = 𝑚 = 2, and thus Eq. (2.124) can then be
re-written as

𝑘O2,2 =
3𝑔
5
𝜌oc
𝜌se

𝜁
2,𝜎
2

𝑈
2,𝜎
2

. (2.127)

By virtue of the imposed approximations, the complex characteristic frequencies 𝜎𝑛,𝑘
of Eq. (2.123) vanish for 𝑛 ≠ 𝑘 , and the algebraic system of Eq. (2.121) simplifies to

𝜁2,𝜎
𝑛 =

F 2,𝜎
𝑛

𝜎�̃� − 𝜎2
𝑛,𝑛

, (2.128)
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Figure 2.9: The tidal response of the Earth, quantified by the imaginary part of the Love
number. In each panel, we plot the logarithm of the absolute value of the imaginary
part of the Love number as a function of the normalized frequency 𝜔 = (Ω− 𝑛orb)/Ω0,
where the Earth’s spin rate varies with the tidal forcing frequency Ω = 𝑛orb + 𝜎/2 at
fixed 𝑛orb, and Ω0 being the present spin rate of the Earth. The panels differ by the
prescribed value of the 𝜎R. In each panel, we plot the Love number in two settings: that
of Eq. (2.124), where the tidal response of the Earth is that self-consistently computed
when accounting of oceanic tides and solid Earth deformation and dissipation; and
that of Eq. (2.130), which is retrieved from the former under the rigid mantle and
Cowling approximations, i.e. when the mantle is taken to be non-deformable and the
gravitational feedback of the tidal response due to the induced self-attraction variation
is ignored. The effects of solid Earth deformation and self-attraction can thus be seen in
the attenuation and spectral shift of the resonances, while the effect of solid dissipation
can be noticed at high frequencies with the divergence of the two Love numbers in each
panel.

where the forcing terms F 2,𝜎
𝑛 reduce to

F 2,𝜎
𝑛 = −𝐻Λ

𝑚,�̃�
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These expressions allow us to re-write the Love number of the coupled response in
Eq. (2.124) in the limit of the pure oceanic response as
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. (2.130)

In Figure 2.9, we plot the Love numbers of the pure (Eq. 2.130) and coupled responses
(Eq. 2.124) for different values of the dissipation frequency𝜎R. Solid Earth deformation
via the effects of self-attraction and loading has its robust signature on the oceanic
response spectrum: attenuation of the response in terms of the background spectrum
and the peaks and a slight shift in the peaks spectral position. We have observed the
same effect when studying the hemispherical ocean in Section 2.3.1.1 (Figure 2.5).
However, the added signature here is that of the tidal dissipation in the solid itself. In
the hemispherical configuration, we have ignored the dissipation of the solid part and
considered only the effects of loading and self-attraction. In Figure 2.9, the effect of
solid dissipation is amplified at higher frequencies. The difference between the two



Chapter 2. Revisiting the tidal evolution of the Earth-Moon separation 115

Love number grows with 𝜎, reaching half an order of magnitude for 4 ≤ 𝜔 ≤ 5.
This is physically expected as the mantle approaches the fluid limit for an extremely
rapid rotation, and can start dissipating like a fluid. As we mentioned earlier, solid
Earth dissipation would also be amplified with an early less viscous mantle due to
higher Hadean-Archean temperatures (Ross and Schubert, 1989). Eventually, a regime
transition may lead to the predominance of the mantle’s elastic response (Lau et al.,
2015, 2016a).

With the tidal response now properly characterized, the remaining part is to compute
the tidal torque. The contribution of the component 𝑈𝑚,𝜎

𝑙
of the tidal potential to the

total tidal torque exerted on the Earth scales as the imaginary part of the associated Love
number and is expressed as (Efroimsky and Williams, 2009; Correia et al., 2014)

T𝑚
𝑙 =

3
2
𝐺𝑀2 𝑅

5

𝑎6 Im
{
𝑘O
𝑙,𝑚

}
. (2.131)

In Figure 2.10, we summarize the spectra of the tidal torques of the two configurations:
the global and the hemispherical oceans. Comparing the two spectra in the limit of
weak friction reveals the highly irregular nature of the waveforms in the hemispherical
response against the fairly regular resonance periodicity in the global configuration.
Several resonances can be encountered in the hemispherical configuration due to the
spatially inhomogeneous response where the hemispherical continent is a barrier on
propagation of tidal pathways. This can happen in between only two resonant peaks of
the global configuration. These spectral differences will have important signatures in
the model of the Earth-Moon system evolution that we describe next.

2.3.2.2 The high friction asymptotic regime

We provide here a brief interlude on the tidal spectrum in a high friction regime.
Looking at Figure 2.10, the first two panels correspond to regimes of high friction, and
are characterized with a smooth spectrum, relative to those of moderately or weakly
dissipative regimes in the panels on the right. The spectrum is also characterized with
a single peak in the response which is close to spin-orbit synchronization. Thus we
can study this regime by ignoring the Coriolis term in the tidal equations as the friction
term dominates and as we are in the slow rotation regime. Under these assumptions, we
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Figure 2.10: Tidal torque between the Earth and the Moon corresponding to the coupled
oceanic-solid response in two configurations: a global oceanic shell of thickness 𝐻 =

4000 m (shown in red), and a hemispherical ocean with the same thickness, symmetric
around the equator and bounded by longitudes 𝜆 = 0 and 𝜆 = 𝜋 (in blue). Energy
dissipation is quantified by the linear Rayleigh drag frequency 𝜎R. The logarithm of the
torque is plotted as a function of the normalized frequency 𝜔 = (Ω − 𝑛orb)/Ω0, where
the Earth’s spin rate varies with the tidal forcing frequency Ω = 𝑛orb +𝜎/2 at fixed 𝑛orb,
and Ω0 being the present spin rate of the Earth.

re-write the governing system of Eq. (2.1) as:

𝜕𝑡 ®𝑢 + 𝜎R ®𝑢 = ∇(𝑈 − 𝑔∇𝜁), (2.132a)

𝜕𝑡𝜁 +∇ · (𝐻 ®𝑢) = 0. (2.132b)

Transforming to the Fourier domain we obtain

®𝑢 =
∇(𝑈 − 𝑔𝜁)
𝜎R + 𝑖𝜎 , (2.133a)

∇ · ®𝑢 = −𝑖𝜎𝜁
𝐻
. (2.133b)

Taking the divergence of Eq. (2.133a) and equating it with Eq. (2.133b) we obtain a
solution for the tidal amplitude 𝜁 of the form

𝑔𝜁

𝑈
=

𝜇𝑛𝐻/𝑅2

𝜎(𝑖𝜎R − 𝜎) + 𝜇𝑛𝑔𝐻/𝑅2 . (2.134)

In the preceding equation, we use the set of eigenvalues of spherical harmonics 𝜇𝑛 =

𝑛(𝑛 + 1). We further define the characteristic frequency 𝜎p;n

𝜎2
p;n = 𝜇𝑛𝑔𝐻/𝑅2, (2.135)
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and we use the definition of the complex tidal frequency �̃� (Eq. 2.116) to re-write the
solution of Eq. (2.134) as

𝑔𝜁

𝑈
= −

𝜎2
p;n

𝜎�̃� − 𝜎2
p;n
. (2.136)

Looking at the expression of the Love number in Eq. (2.124), and dropping the super-
scripts and the subscripts while ignoring the effect of solid deformation, we use the tidal
solution of Eq. (2.136) to write the quadrupolar Love number as
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which can be also expressed as
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Since we use the imaginary part of the Love number to describe the tidal response, we
easily extract the imaginary part from Eq. (2.138) to obtain
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We are interested in retrieving a closed form solution for the position of the single peak
near synchronization, thus we straightforwardly proceed to compute the derivative of
Eq. (2.139) to obtain
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for which the solution is

𝜎⊗ = ±
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where only the plus sign inside the square root gives a real frequency. Noting that
𝜎p ∼ 10−4 s−1, we re-arrange the latter expression using powers of the ratio 𝜎p/𝜎R,
and we ignore terms of order 3 and more. Doing so, the peak frequency 𝜎⊗ simplifies
drastically to

𝜎⊗ ≃
𝜎2

p

𝜎R
. (2.142)
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Figure 2.11: The spectrum of the imaginary part of the Love number in the high friction
regime. As seen in Figure 2.10, the spectrum in this regime is characterized by a smooth
regularity, and a single peak near synchronization. We zoom here logarithmically
around this peak, and we plot the spectrum along with our analytical estimates of the
position and the value of the peak derived in Eq. (2.142) and Eq. (2.143) respectively.
The figure shows the accuracy of these estimates for values of log10 𝜎R > −3.7, beyond
which we start observing the discrepancy.

Substituting 𝜎 by 𝜎⊗ in Eq. (2.139), we retrieve the value of the imaginary part of the
Love number at this peak, which is the maximum value of the spectrum in the high
friction regime, as

Im
{
𝑘O2,2

} �����
𝜎=𝜎⊗

= − 3
10
𝜌oc
𝜌se

. (2.143)

In Figure 2.11 we plot the imaginary part of the Love number for the pure oceanic re-
sponse in the form given by Eq. (2.130). We focus on the spectrum near synchronization,
and we mark the solutions for the position of the peak and its value, for different values
of 𝜎R. Evidently, our analytical characterization of the peak is accurate in matching the
full solution of the Love number. The interesting solution of the value at the peak (Eq.
2.143), being merely a ratio of the ocean and solid Earth densities, serves as a precise
threshold of the maximum value of the Love number, as long as log10 𝜎R < −3.7 s−1,
beyond which the position of the peak and its value no longer match our estimates, as
seen for the blue and orange markers.
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2.4 Geological snapshots

Before embarking on the implementation of the the oceanic tidal theory to model
the past evolution of the Earth-Moon system, we pause for an essential geological
window. Besides the fact that we have no geological evidence on the possible cataclysmic
features accompanying a Gerstenkorn’s event, certain sets of geological data provided
the earliest evidence against any suggestion of a younger Moon, even before the Apollo
era. Namely, sedimentary structures were identified as associated with tidal deposition
in Archean sand-stones, mud-stones, and carbonate rocks (e.g., Eriksson, 1977). The
time-scale problem was not an actual problem in the geological studies, in contrast with
geophysical modelling, due to the abundance of data, of various nature, that indicated
the non-uniformity of tidal dissipation in the geological past.

The earliest established bundle of these data sets are the so-called paleontological
“clocks" associated with studying sequences of different coloring in fossil corals, bi-
valves and brachiopods for the Phanerozoic eon, and in stromatolites for the Proterozoic
eon. Namely, studying growth increments in invertebrate fossils can indicate the number
of solar days per year and the length of the synodic month (e.g., Wells et al., 1963);
a methodology that presumes certain periodicities across different bands. Although
these data sets have proved the variation of the tidal dissipation rate during the past 500
Myrs, the quantitative interpretation of these growth increments is widely controversial
(Lambeck, 1980; Scrutton, 1978; Williams, 2000).

Another data set is established through the study of cyclic rhythmites with tidal origin
(e.g. Williams, 1989; Sonett and Chan, 1998; Williams, 2000; Eulenfeld and Heubeck,
2022); a methodology that has been providing another scope into the geological past
since the 1980s. Namely, tidal laminae, or vertically accreted thin beds were generated
by the alternating deposition of fine-grained sandstone, siltstone, and mudstone. The
periodic nature of these thickness alternations reflects the strong tidal influence on
sedimentation during phases of strong and weak tidal currents. These cyclicities were
later labelled as tidal rhythmites, and were studied to identify the past tidal periodicities.
For instance, diurnal laminae are related to the lunar day, while synodic tides leave a
distinctive signature in the rhythmite record. Determining the periodicities is optimized
for long records of tidal deposits that span several years such that several independent
astronomical parameters can then be computed and cross-verified. The earliest of these
data points is that of Eriksson and Simpson (2000), where tidal bundles from an exposed
outcrop in the Moodies Group of the Barberton Greenstone Belt in South Africa, which
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Figure 2.12: A compilation of proxies of the deep time history of the Earth-Moon
system, plotted in terms of the LOD. The data are split into the three sets discussed in
the text: the paleonotlogical clocks that include fossil corals, bivalves and brachiopods,
and stromatolites (Williams, 2000; Denis et al., 2011); the tidal rhythmites data set
(Williams, 1989, 1990, 1997, 2000; Sonett and Chan, 1998; Walker and Zahnle, 1986;
de Azarevich and Azarevich, 2017), and the cyclostratigraphic data set (Meyers and
Malinverno, 2018; Zhong et al., 2020; Sørensen et al., 2020; Huang et al., 2020; Lantink
et al., 2022).

dates back to about 3.22 billion years old, were analyzed. The data point was recently
revisited in Eulenfeld and Heubeck (2022) to provide a LOD estimate around 13 hours,
and an Earth-Moon separation of ∼ 42𝑅E. Although the inference methodology in tidal
bundles avoids some of the uncertainties associated with paleontological data, it is still
subject to the way the cycles are interpreted and the possible detorioration of the laminae,
which has led to divergent astronomical quantities inferred from the same record (e.g.,
Walker and Zahnle, 1986; Sonett and Chan, 1998).

An alternative, and to our understanding more robust scope into deep geological time
is based on the study of Milankovitch cycles. Namely, quasi-periodic variations in
insolation driven by astronomical cyclicity leave behind climate variations that are
recorded in sedimentary strata (see Section 1.5.1 for the analogy in glacial cycles).
The study of these strata, now well known as the field of cyclostratigraphy, involves
contrasting the variability and constructing the deep-time ratios between the periodicities
of the Earth’s eccentricity, climatic precession, and obliquity cycles (e.g., Hinnov, 2018;
Sinnesael et al., 2019). Namely, climatic precession and obliquity periods depend on
the precession frequency of the Earth, which varies along the tidal history, while the
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Table 2.1: Cyclostratigraphic data. In boldface, we display the direct observables we used:
the precession frequency 𝑝 in arcsec/yr. The time of observation, 𝑇, is in the second column.
The semi-major axis of the Moon (𝑎M) given in Earth radius (𝑅E) or in km, and the length of
the solar day (LOD), in hours, are derived from the observed quantities using the model that
is presented in the text. These values may thus differ from the corresponding values published
in the referenced publications; IC denotes the initial conditions (Laskar et al., 2004). The two
values (a,b) for the Lucaogou data set correspond to different analyses (a): TimeOptMCMC
(Meyers and Malinverno, 2018); (b) obliquity and precession cycle counting (Huang et al.,
2020). Whenever it is specified in the original publication, the uncertainty in 𝑝 is set to 2𝜎.
The uncertainty of the other variables is propagated through the nominal solution of the present
study. The references for the datasets, indicated by superscripts are as follows: 1- Laskar et al.
(2004), 2- Meyers and Malinverno (2018), 3- Huang et al. (2020), 4- Zhong et al. (2020), 5-
Sørensen et al. (2020), 6- Fang et al. (2020), 7- Lantink et al. (2022).

dataset T [ Ga ] 𝑝 [ arcsec/yr ] 𝑎M [ 𝑅E ] 𝑎M [ km ] LOD [ hr ]
IC(1) 0.000 50.467718 60.142611 383598 24.00
Walvis Ridge(2) 0.055 51.28 ± 1.02 59.94 ± 0.26 382284 ± 1650 23.80 ± 0.24
Lucaogou(a)(3) 0.268 57.01 ± 1.37 58.57 ± 0.31 373538 ± 2000 22.56 ± 0.27
Lucaogou(b)(3) 0.270 55.36 ± 0.51 58.95 ± 0.12 375967 ± 750 22.90 ± 0.11
Yangtze Block(4) 0.445 57.19 ± 0.53 58.52 ± 0.12 373277 ± 750 22.53 ± 0.10
Alum shale(5) 0.493 60.11 ± 1.59 57.88 ± 0.34 369153 ± 2200 21.99 ± 0.28
Luoyixi(6) 0.500 61.06 ± 0.94 57.67 ± 0.20 367854 ± 1300 21.82 ± 0.16
Xiamaling(2) 1.400 85.79 ± 2.72 53.27 ± 0.41 339777 ± 2600 18.70 ± 0.25
Joffre(7 2.460 108.91 ± 8.28 50.24 ± 0.96 320452 ± 6100 16.98 ± 0.50

eccentricity cycles of the Earth are largely stable (Laskar et al., 2011a). The robustness of
this method is of course dependent on how well preserved these sedimentary successions
are; a feature that is less and less established the deeper we head in geological time,
especially given the need of independent high-precision geochronological verification.
At the time of writing this manuscript, the oldest cyclostratigraphic reconstructions
studied the records in the 1.4-billion-year-old Xiamaling Formation from the North
China Craton (Zhang et al., 2015; Meyers and Malinverno, 2018), and the 2.46-billion-
year-old Joffre Member of the Brockman banded iron formation (Lantink et al., 2022).

In Figure 2.12 we plot samples of these three data sets (paleontological data set, tidal
rhythmites, and cylcostratigraphic inferences) in terms of the inferred LOD. We first
note that the LOD is not the directly inferred quantity for the tidal rhythmites or the
cyclostratigraphy data, but it is rather the length of the synodic month for the former and
the precession frequency for the latter. That said, the LOD is computed for each data
point in the corresponding study based on different assumptions about tidal evolution
that are usually model dependent. By visual inspection, the data empirically trace a
delicate history of the long term evolution of the LOD that involves a rich variation
behavior. However, it is impossible to accept all the data points at face value, as several
data points coincide in time (or are in each other’s vicinity), but vary in their LOD
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Table 2.2: Tidal rhythmites data. In boldface, we display the observables. In general, the
observable is the number of synodic lunar months per year or in an equivalent way, as quoted
here, the number of sidereal lunar months per year (col. 3). The values are issued from the
referenced publications (col. 1). For the Moodies Group, we could not infer this quantity
from the original publication, and the corresponding estimate of the lunar semi-major axis was
taken from de Azarevich and Azarevich (2017). The semi-major axis, 𝑎M, is obtained through
Kepler’s law (𝑛2

M𝑎
3
M = 𝐺 (𝑀M + 𝑀E)). As for the cyclostratigraphic data (Table.2.1), all other

quantities (𝑝, LOD) are derived from the observed quantities using the model that is presented in
the text. These values may thus differ from the corresponding values published in the referenced
publications. The uncertainty of the observables are propagated to the derived variables through
the nominal solution of the present study. The values at the origin (𝑇 = 0) are from Laskar
et al. (2004). It should be noted that the present value of sidereal lunar months per year and
lunar semi-major axis provided here for 𝑇 = 0 differs from some published value because here
we consider averaged values, which should be the case for such long-term studies (see Figure
18 from Laskar et al., 2004). The references for the datasets, indicated by superscripts are as
follows: 1- Laskar et al. (2004), 2-Sonett and Chan (1998), 3- Williams (1997), 4- Williams
(2000), 5- Williams (1990), 6- Walker and Zahnle (1986), 7- Eriksson and Simpson (2000), 8-
de Azarevich and Azarevich (2017).

dataset T [ Ga ] smo/yr 𝑝 [ arcsec/yr ] 𝑎M [ 𝑅E ] LOD [ hr ]
IC(1) 0.000 13.4289 50.467718 60.142611 24.00
Mansfield(2) 0.310 13.86 ± 0.21 55.60 ± 2.55 58.89 ± 0.59 22.85 ± 0.52
Elatina(2) 0.620 14.93 ± 0.01 69.24 ± 0.13 56.04 ± 0.03 20.56 ± 0.02
Elatina(3,4) 0.620 14.10 ± 0.10 58.55 ± 1.24 58.22 ± 0.28 22.27 ± 0.23
Cottonwood(2) 0.900 15.33 ± 0.60 74.68 ± 8.32 55.06 ± 1.44 19.87 ± 0.99
Weeli Wolli(4,5) 2.450 16.70 ± 1.10 94.71 ± 17.19 52.01 ± 2.29 17.95 ± 1.32
Weeli Wolli(6) 2.450 15.50 ± 0.50 77.04 ± 7.03 54.66 ± 1.18 19.59 ± 0.79
Moodies Group(7,8) 3.200 148.36 ± 18.61 46.45 ± 1.50 15.17 ± 0.65

inference drastically. As we are faced with the model-dependence of the data and our
inability to judge their accuracy, we decide not to take the geological data into account
when building our tidal model, and rather see independently the matching between them
and our modelled evolution history afterwards. Furthermore, we only consider hereafter
the data sets of tidal rhythmites and cyclostratigraphy, as they are, potentially, more
robust than the paleontological data. We summarize the two data sets in Tables 2.1 and
2.2.

2.5 Model description

2.5.1 Continental drift and oceanic geometry shifting

We are now fully geared to construct and describe our model for the long term tidal
evolution of the Earth-Moon system. The tidal theory detailed earlier serves as the
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Figure 2.13: A sample of crustal growth curves representing those that rely on age
distributions preserved in present day geology (Artemieva, 2006; Condie and Aster,
2010), and those that constrain the volumes of crust in the past independent of present
day age distributions (Dhuime et al., 2012; Sun et al., 2019). While acknowledging
the discrepancies in the predictions arising from each approaches, all curves agree on
transitioning from a global ocean in the earliest eons to the present continental volume.
Gray patches mark major super-continental cycles.

foundation of the model. Focusing on the dependence of tidal dissipation on the Earth’s
spin rate, we combine the two analytical formulations detailed earlier that describe long-
wavelength barotropic tidal flows over shallow spherical and hemispherical shells. Both
configurations are parameterized by two free parameters: the oceanic uniform thickness
𝐻 and the dissipation frequency 𝜎R. The spherical shell describes a global ocean that
we assume had existed in the earliest eons of the lifetime of the Earth similar to the
recent study in (Motoyama et al., 2020). The existence of an early ocean is supported
by models on planetary atmosphere formation and the early solidification of the magma
ocean (e.g., Hamano et al., 2013), evidence from the analysis of detrital zircon around 4.4
Ga (Wilde et al., 2001), evidence on the interaction between the ocean and continental
crust 4 billion years ago (Mojzsis et al., 1996), and from isotopic studies on Earth’s early
surface environment (Oxygen isotopes: Peck et al., 2001; Bindeman et al., 2018; Johnson
and Wing, 2020; Hydrogen isotopes: Pope et al., 2012; Kurokawa et al., 2018. The
stability of isotopic compositions are indicative of the subaqueous nature of almost all
large igneous province volcanism pre-Archean (e.g., Kump and Barley, 2007). Moreover,
to date, the Earth’s earliest extensive platform sedimentary successions correspond to
the late Archean, indicative of the continents becoming exposed at that time.

The voluminous nature of early oceans is supported by experimental thermodynamic
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models studying water storage capacities in the mantle and its dependence on the
pressure-temperature effects (e.g., Townsend et al., 2016; Muir and Brodholt, 2018;
Chen et al., 2020). Recently, Dong et al. (2021) established a temperature-dependent
water storage capacity model for the Earth’s mantle. Their experiments depicted that
the early – significantly hotter – mantle was characterized by a water storage capacity
that is lower than that at present. Due to the continuous exchange and redistribution
of water between the ocean and the mantle reservoirs over geological time (van Keken
et al., 2011), estimates of water content in the mantle today being greater than its storage
capacity in the early Archean means that early Archean oceans must have been volu-
minous and possibly larger than at present, with very probable excessive flooding over
the existing continents, if any (Dong et al., 2021). The “globality" of the early ocean
is justified by the analysis of continental crust growth curves based on geochemical
evidence in radiogenic isotope ratios (e.g., Hawkesworth et al., 2020). In Figure 2.13
we plot a sample of curves for the modelled growth of the continental crust from the
literature (Artemieva, 2006; Condie and Aster, 2010; Dhuime et al., 2012; Sun et al.,
2019), all anchored to the present day volume. The curves are based on the presently
preserved proportions of rocks with either different geological or crust formation ages.
One of the controversial issues among these models is whether the predicted crustal
growth is more realistic when based on archives in the crust or in the mantle, and the
role of the underlying assumptions in the application of such archives (e.g., Payne et al.,
2016; Korenaga, 2018). The discrepancies we observe in the sampled curves thus arise
based on different assumptions. A limitation with these models is that they account for
the cumulative growth of the crust summing ultimately to unity at the present, hence by
construction, they do not allow for a past crustal volume greater than the current one. It
is thus likely that such curves represent minimum estimates for the volumes (Guo and
Korenaga, 2020). Nonetheless, these curves typically agree on two asymptotic limits: a
near-to-full global ocean in the Archean, and a long term transition towards the present
configuration. It is also noteworthy that the curve of Dhuime et al. is representative of
a larger ensemble of models in the literature (e.g., Pujol et al., 2013), all agreeing that
65–75% of the present volume had been generated by 3 Ga. Thus taking these curves
into account, we use the hemispherical ocean configuration to model the Earth’s surface
at the present, and we transition to the global ocean configuration in the earliest eons.

In the hemispherical ocean phase of the model, we still have one variable to constrain:
the position of the center of the ocean. As seen in Figure 2.6, the surface position of the
ocean on the sphere can distort the tidal spectrum by shifting the spectral position and
changing the amplitude of resonances. In particular, in the limit of a polar ocean, the
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Figure 2.14: Temporal evolution of the latitude of the surface “paleo-barycenter" over
the last one billion years. The plate tectonics reconstruction is adopted from Merdith
et al. (2021), which establishes the first kinematically continuous tectonic motion
model across multiple super-continental cycles. The evolution is smoothed in red using
a moving polynomial regression filter with a window of 200 Myr. In our effective
model, this curve maps the evolution of the center of the hemispherical continental cap
that transitions from being symmetric about the equator during the Mesozoic, to being
almost polar during the Paleozoic.

spectrum is uniquely characterized by a single resonant peak and a smooth response in the
remainder of the spectrum where all the resonances are absorbed into the background.
Thus it is essential for us to take this variation into account in our model. For this
purpose, we adopt a recent model that reconstructs the first kinematically continuous
history of plate tectonics and continental drift over the last one billion years (Merdith
et al., 2021). We use the modeled tectonic boundaries provided by the authors, and
we construct a history of the geographic center by computing the surface projection
of the “barycenter” of the continental distribution. We use the GPlates open-source
reconstruction software (Boyden et al., 2011; Gurnis et al., 2012) to post-process the
data of Merdith et al. (2021). In Figure 2.14 we plot the evolution of the latitude of
the continental barycenter in time, along with sketches of the continental distribution.
The evolution is also smoothed using a LOESS regression filter (a generalized moving
polynomial regression subroutine for MATLAB; Cleveland and Devlin, 1988), and it shows
a regime transition between a near-equatorial continental cap around the present, to a
near polar one during the Paleozoic, and then back again to the equatorial configuration
during the Neo-Proterozoic. When the hemispherical configuration is adopted for the
ocean, we anchor the center of the continental cap to this barycenter evolution history.
As the model of Merdith et al. (2021) covers the interval of 0-1 Ga only, we fix the
hemispherical ocean to its position at 1 Ga beyond that.

In summary, the tidal response of the Earth is initiated with the hemispherical ocean
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configuration from the present till 1 Ga, with a center of the continental cap that
follows the continental drift, and we call that Phase 1 of the model. In Phase 2, we
continue to use the hemispherical configuration, but due to the lack of a continuous
tectonic reconstruction, we fix the ocean to its position at 1 Ga. During Phase 2, the
tidal responses of the hemispheric and global configurations are computed, but only the
former is used as the response of the Earth. Phase 2 terminates when the responses of the
two configurations equate, signaling the transition into the global ocean configuration
and the initiation of Phase 3. We denote by 𝑡switch this transition epoch, which is
determined implicitly and autonomously by the integrator, and it takes a different value
for different combinations of the pair of free parameters (𝐻, 𝜎R).

2.5.2 Orbital dynamics

For the reconstruction of the Earth-Moon distance, we use a reduced secular dynamical
model describing the exchange of angular momentum between the Earth’s rotation and
the lunar orbital motion (Webb, 1982a; Tyler, 2021). Similar to Goldreich (1966),
the equations for tidal friction are averaged over the tidal timescale, ignoring lunar
eccentricity. We further assume co-planarity, i.e. we ignore the Earth’s obliquity and
lunar inclination as we are, at this stage, only focused on the time-scale problem and
the lunar distance evolution. The tidal evolution model of Touma and Wisdom (1994a)
made the same approximations as Goldreich (1966), but their formulation was carried
out in a canonical framework. They computed, numerically, the full (un-averaged) tidal
evolution, including planetary perturbations, and the full rigid-body dynamics of the
Earth. They further enhanced their model by carrying out the integrations using the
symplectic mapping methods of Wisdom and Holman (1992) and Touma and Wisdom
(1994b). Their results depicted that the full numerical integrations are in good agreement
with the averaged model of Goldreich (1966). Thus we proceed with the averaged model
as a fairly adequate description of this highly non-linear system.

While the predominance of oceanic dissipation over terrestrial and lunar solid dissipation
is established, we mainly focus on terrestrial oceanic tides in our reduced dynamical
model. This simplification allows for a systematic understanding of the hierarchically
complex contributions of multiple intervening players. The contribution of eccentricity
tides becomes significant when the orbit of the Moon was highly eccentric. Accounting
for lunar tides and lunar core-mantle boundary dissipation would counteract the effect
of terrestrial tides and increase the lunar eccentricity when going backwards in time,
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but only to moderate values (𝑒 ≤ 0.1) (e.g., Daher et al., 2021). Attaining a highly
eccentric lunar orbit is possible through an evection resonance, which occurs when the
precession period of the perigee of the Moon equals 1 year, the orbital period of the
Earth. Touma and Wisdom (1998) studied this regime and showed that the capture into
such a resonance could have been encountered for a lunar semi-major axis 𝑎M ≈ 4.6𝑅E,
exciting the lunar eccentricity to 𝑒M ≈ 0.5. However, the timescale of capture and
escape from this evection resonance is 104 ∼ 105 yr, after which the lunar orbit tends
to circularization again (Rufu and Canup, 2020). Furthermore, the evection regime can
only be encountered by integrating forwards, while we integrate backwards in our model
due to the lack of constrained initial conditions in the forward integration.

Dissipation within the Moon is also rendered significant at the early stage of the system
with the Earth fully molten and the moon having little to no atmosphere, forcing it to
quickly cool into a highly dissipative body. However, this also occurs over a relatively
short time interval, specifically when 𝑎M < 20𝑅E (Zahnle et al., 2015). The timescale
of these mechanisms that can render our approximations invalid is much smaller than
that associated with the long-term tidal evolution we model in our work. Furthermore,
a key feature of the lunar distance evolution is the runaway effect encountered in the
backward integration, with 𝑎M collapsing rapidly when reaching 30𝑅E to the formation
site, slightly beyond the Roche limit, within few million years. This effect is a robust
one regardless of the tidal model (see for e.g., Webb, 1982a; Touma and Wisdom,
1994a). We also observe the same effect in our results (see Figure 2.16). Our evolution
prediction in the next section also shows that the Moon spends 97% of its lifetime with
𝑎M > 30𝑅E. Thus, as much as early stage mechanisms are essential to constrain the
formation scenarios of the system, the robustness of the runaway evolution beyond 30𝑅E

renders the reduced dynamical model a safe and sufficient approach for the long-term
study. This model should provide the skeleton of the secular evolution in the system
around which full spatial dynamics can flesh. Other effects such as climate friction
(Levrard and Laskar, 2003) and core-mantle coupling (Neron de Surgy and Laskar,
1997; Touma and Wisdom, 2001) are also ignored, as well as halts of tidal interaction
due to Laplace plane transitions (Ćuk et al., 2016). We also ignore periods of extensive
glaciation, where the Earth could be potentially covered by a thick ice shell altering the
generated oceanic tides (Tyler, 2020).
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Under these assumptions, the governing dynamical system of equations is expressed as

𝑑𝐿Ω

𝑑𝑡
= − (TM + TS) , (2.144)

𝑑𝐿M
𝑑𝑡

= TM , (2.145)

whereTM is the lunar semi-diurnal tidal torque coupling between the oceanic and the solid
response of the Earth, andTS is its solar counterpart, both computed for the hemispherical
configuration as detailed in Section 2.3.1.5 and for the global configuration as described
in Section 2.3.2. The orbital angular momentum of the Moon 𝐿𝑀 = 𝛽

√︁
𝐺 (𝑀E + 𝑀M)𝑎M,

where 𝛽 = 𝑀E𝑀M/(𝑀E+𝑀M) is the Earth-Moon system’s reduced mass. The rotational
angular momentum of the Earth is defined as 𝐿Ω = 𝐶 (Ω)Ω, with the time-varying
principal moment of inertia given by (Goldreich, 1966)

𝐶 (Ω) = 𝐶 (Ω0) +
2𝑘 𝑓2 𝑅

5
E

9𝐺
(Ω2 −Ω2

0). (2.146)

Here, 𝑘 𝑓2 is the second-degree fluid Love number of centrifugal/tidal deformation and
𝐺 is the gravitational constant. The differential equation is integrated backwards in
time using the Runge-Kutta 9(8) method, starting from the present and stopping at
𝑎M = 3𝑅E. The tidal torque computation is coupled to the orbital integrator and is
computed simultaneously at each step. It takes the model parameters (𝐻, 𝜎R) as input,
and the system’s variables, 𝑎M and Ω, to compute the tidal frequency and, consequently,
the coupled tidal response.

Once the lunar semi-major axis (𝑎M) and the rotation speed of the Earth (Ω) are de-
termined, we compute the obliquity of the Earth (𝜖) and the precession frequency (𝑝)
as derived quantities (Laskar et al., 2004). Starting with Equations (40) and (46) from
Correia and Laskar (2010) in the case of zero eccentricity, we obtain

𝑑𝜖

𝑑𝑡
=

𝐾𝑛

𝐶 (Ω)Ω sin 𝜖
(
Ω

2𝑛M
cos 𝜖 − 1

)
, (2.147)

and
𝑑𝑎M
𝑑𝑡

=
2𝐾
𝛽𝑎M

(
Ω

𝑛M
cos 𝜖 − 1

)
, (2.148)

that is
𝑑𝜖

𝑑𝑎M
=
𝛽𝑛M𝑎M

4𝐶 (Ω)Ω sin 𝜖
Ω cos 𝜖 − 2𝑛M
Ω cos 𝜖 − 𝑛M

. (2.149)
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We note that the tidal response parameter, 𝐾 , disappears from the equations. This
would also be the case if 𝐾 depended on Ω. The obliquity evolution equation (2.149)
is integrated using the values of 𝑎M and Ω that result from the tidal flows and orbital
dynamics coupled system. The precession frequency, 𝑝, is then derived using Equations
(6) and (8) from Laskar et al. (2004) with zero eccentricity and inclination, that is

𝑝 =
3
2

(
𝐺𝑀S

𝑎3
E

+ 𝐺𝑀M

𝑎3
M

)
𝐸𝑑 (Ω0)

Ω

Ω2
0

cos 𝜖 . (2.150)

In (2.149) and (2.150), the constant values taken for the Earth’s radius 𝑅E, the grav-
itational constant of the Moon, 𝐺𝑀M, and the Sun, 𝐺𝑀S, the mass ratio 𝑀E/𝑀M,
the rotational velocity Ω0, the Earth’s semi-major axis 𝑎E, and the inertia parameter
𝐶 (Ω0)/𝑀E𝑅

2
E are adopted from INPOP21 (Fienga et al., 2021). The dynamical elliptic-

ity at the origin of date, 𝐸𝑑 (Ω0) = 0.003243, is determined from the initial conditions
for the obliquity (𝜖0) and precession (𝑝0) adopted from the La2004 solution (Laskar
et al., 2004). All the values of applied parameters are summarized in Table 2.3.

This derivation of the obliquity and precession frequency evolutions is only valid in the
limit of a distant Moon, that is, when the Moon is beyond its Laplace radius (Tremaine
et al., 2009; Farhat and Touma, 2021) and its Laplace plane is the ecliptic rather than the
Earth’s equatorial plane (Boué and Laskar, 2006). In our 𝑎M evolution of Figure 2.16,
the Laplace regime transition occurs very early in the evolution (𝑡 > 4Ga); thus, when
we compute and plot the precession frequency evolution in the next section, we do so
over the interval between the present and 3.5 Ga. We also note that for cyclostratigraphic
data points, the precession frequency is the direct observable (Table 2.1).

2.6 Model prediction

2.6.1 Constraining effective parameters

With the tidal-orbital coupled model properly described, what remains is to constrain the
two free effective parameters. We recall that the first of these is the effective frequency
𝜎R, which parameterizes oceanic dissipation by globally modeling the bottom friction
and the conversion of barotropic flows into internal gravity waves (e.g., Carter et al.,
2008). This frequency can also be interpreted as the inverse of a dissipation timescale, 𝜏,
that quantifies the time needed to deplete the kinetic energy budget of tidal oscillations
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Table 2.3: Values of constant parameters used in the numerical implementation of the
theory. Astronomical values are adopted from INPOP21 (Fienga et al., 2021). Oceanic
and rheological parameters are adopted from Auclair-Desrotour et al. (2019a). The
average rigidity is computed from the PREM model (Dziewonski and Anderson, 1981),
while the average viscosity is computed from mantle viscosity inversions in Lau et al.
(2016b). The initial conditions of the orbital integration are the mean elements from
the La2004 astronomical solution (Laskar et al., 2004).

Parameter Value
Surface gravitational acceleration (𝑔) 9.81 m s−2

Earth radius (𝑅E) 6378.1366 km
Solar gravitational constant (𝐺𝑀S) 2.95912208285381355×10−4 AU3 day−2

Earth-Moon gravitational constant (𝐺 [𝑀E+𝑀M]) 8.99701139522114438×10−10 AU3 day−2

Earth to Moon mass ratio (𝑀E/𝑀M) 81.30056789872074318737
Uniform oceanic density (𝜌oc) 1022 kg m3

Andrade characteristic time (𝜏A) 2.19 × 104 yr
Andrade rheological exponent (𝛼A) 0.25
Average rigidity of the deformable mantle (𝜇E) 17.3 × 1010 Pa
Average viscosity of the deformable mantle (𝜂E) 3.73 × 1021 Pa s
Present day mean lunar semi-major axis (𝑎0) 60.142611 𝑅E
Present day mean sidereal length of the day
(𝐿𝑂𝐷s)

23.934468 hr

Present day mean obliquity (𝜖0) 23.2545◦
Present day mean precession frequency (𝑝0) 50.467718 arcsec yr−1

Earth’s semi-major axis (𝑎E) 1.495978707 × 108 km
Earth’s inertia parameter (𝐶0/(𝑀E𝑅

2)) 0.3306947357075918999972
Earth’s fluid Love number (𝑘 𝑓

2 ) 0.93

after switching off the forcing. Although 𝜎R is probably a function of local topography,
its spatial variation can be averaged out longitudinally over the Earth’s fast rotation and
latitudinally over precession and plate tectonics. The second free parameter in our model
is the uniform effective oceanic thickness, 𝐻. The imprints of these two parameters on
the tidal response spectrum are distinguishable: variations in 𝐻 smoothly shift the
positions of the resonant peaks while slightly varying their amplitudes. In contrast, as
we have seen in Figure 2.10, variations in 𝜎R can completely reshape the tidal spectrum,
amplifying the resonant peaks by several orders of magnitude when 𝜎R decreases or,
otherwise, completely absorbing the resonant peaks into the background spectrum.

To constrain these parameters, we compute the evolution of the Earth-Moon system
that results from the luni-solar semi-diurnal tidal torque over a two-dimensional grid
defined by ranges of values of (𝐻, 𝜎R). We do so for three models that ascend in
realism: a global ocean model across the full geological history (similar to Tyler, 2021);
an “average” hemispherical ocean model across the full geological history (similar to
Webb, 1982a), for which the response at any tidal frequency is averaged over all possible
oceanic positions on the sphere; and our combined model that starts at the present with
the hemispherical ocean evolving with the mimetic continental drift, then switches to
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the global ocean (further details on the combined model in Section 2.5). For each pair of
(𝐻, 𝜎R), we extract from the corresponding constructed dynamical history of the Earth-
Moon distance the resulting present rate of lunar recession, ¤𝑎0, and the lunar formation
time, 𝑡f (the time at which the Moon reaches 3𝑅E), and then we compute the mean square
weighted deviation 𝜒2, taking two data points into account: the Lunar Laser Ranging
(LLR) estimate of lunar orbital recession, which gives ¤𝑎LLR

0 ± 𝜎LLR = 38.30 ± 0.08
mm/year (Williams and Boggs, 2016); and geochemical estimates of lunar formation
time, which we denote by 𝑡geo

f ± 𝜎geo = 4.425 ± 0.025 Ga (Maurice et al., 2020). 𝜒2 is
then computed as

𝜒2 =
1
2


(
¤𝑎0 − ¤𝑎LLR

0
𝜎LLR

)2

+
(
𝑡f − 𝑡geo

f
𝜎geo

)2 . (2.151)

Misfit surfaces of 𝜒2 for the three models are shown in Figure 2.15. Two 𝜒2 local
minima exist for the global oceanic response; however, one of them corresponds to
an unreasonably large average oceanic depth 𝐻 ≈ 5500 m, leaving us with a global
minimum of (𝐻, log10 𝜎R)= (2273 m, -4.89), where𝜎R is in s−1. The global minimum in
the “average” hemispherical ocean model corresponds to (𝐻, log10 𝜎R)= (3816 m, -4.54),
which is close to the average depth of the Pacific Ocean (Amante and Eakins, 2009).
For the combined model, the global minimum corresponds to (𝐻, log10 𝜎R)=(4674 m,
-5.19), where 𝐻 is the oceanic thickness for the hemispherical phase of the model, which
is twice that of the global ocean phase during earlier eons. The switch between the two
geometries occurs at 𝑡switch, which is implicitly determined by the dynamical integrator
as we explained in Section 2.5.1. For the best-fit solution, we have 𝑡switch = 3.25 Ga,
which is consistent with the discussed evidence on the existence of a global ocean until
the late Archean. If we assume that the oceanic volume is conserved over time, the
best-fit value of 𝐻 for the combined model corresponds to a volume of 1.19 × 1018 m3,
which is only 10% off from the currently estimated value of 1.33 × 1018 m3 based on
global relief models (Amante and Eakins, 2009). The fitted dissipation frequency, 𝜎R,
corresponds to a decay time 𝜏 = 43.1 hr, which is consistent with real oceanic studies
(Garrett and Munk, 1971; Webb, 1973) that offer a range between 24 and 60 hr (or
log10 𝜎R ∈ [−4.93,−5.33]). The best-fit values for the combined model correspond to
a lunar trajectory characterized by a current rate of recession ¤𝑎0 = 3.829 cm/yr and an
impact time at 4.431 Ga. We summarize the numerical results of this experiment in
Table 2.4.

For the combined model only, we evaluate the uncertainties on the fitted parameters
from those on the observables following the standard propagation of uncertainty method.
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Figure 2.15: Misfit surfaces of 𝜒2 for the three studied geometric models. The past
dynamical evolution of the Earth-Moon system is reconstructed for the shown ranges of
our two free model parameters 𝐻 and 𝜎R. The misfit is established using the currently
measured lunar recession rate via LLR, and the lunar age as described in the text. The
three models differ in the imposed geometry of the oceanic shell over the geological
history, with the combined model featuring more physical realism that the other two.
The numerical results of this analysis are summarized in Table 2.4. The dynamical
evolution associated with each of the misfit minima is plotted in terms of: the lunar
semi-major axis in Figure 2.16, length of the day in Figure 2.18, and obliquity and
precession frequency in Figure 2.19.

Table 2.4: Misfit analysis summary. Best-fit values of the two free parameters, 𝜎R and
𝐻, for each of the three studied models are shown, along with the corresponding value
of 𝜒2, as well the resulting lunar recession rate at the present ¤𝑎0 and the impact time, 𝑡f .

Model Global Ocean Hemispherical
Ocean

Combined
Model

𝜎R [ s−1] 1.2770 × 10−5 2.8860 × 10−5 6.4417 × 10−6

𝐻 [ m ] 2273 3816 4674
¤𝑎0[cm yr−1] 3.833 3.828 3.829
𝑡f [ Ga ] 4.422 4.432 4.431
𝜒2 0.0775 0.0705 0.0345

Because of the absence of correlation between the two data ¤𝑎0 and 𝑡f , the entries of the
variance matrix,

Σ =


var(𝐻) cov(𝐻, 𝜎R)

cov(𝐻, 𝜎R) var(𝜎R)

 , (2.152)
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are given by:

var(𝐻) =

(
𝜕𝐻

𝜕 ¤𝑎0

)2 (
𝜎LLR

)2
+

(
𝜕𝐻

𝜕𝑡f

)2
(𝜎geo)2

, (2.153a)

var(𝜎R) =

(
𝜕𝜎R
𝜕 ¤𝑎0

)2 (
𝜎LLR

)2
+

(
𝜕𝜎R
𝜕𝑡f

)2
(𝜎geo)2

, (2.153b)

cov(𝐻, 𝜎R) =
𝜕𝐻

𝜕 ¤𝑎0

𝜕𝜎R
𝜕 ¤𝑎0

(
𝜎LLR

)2
+ 𝜕𝐻
𝜕𝑡f

𝜕𝜎R
𝜕𝑡f

(𝜎geo)2
. (2.153c)

The partial derivatives entering in these formulae are computed numerically from the fit
of ( ¤𝑎0±𝜎LLR, 𝑡f) and ( ¤𝑎0, 𝑡f±𝜎geo). The marginal uncertainties on parameters𝐻 and𝜎R

are 𝜎𝐻 = var(𝐻)1/2 = 32.75 m and 𝜎𝜎R = var(𝜎R)1/2 = 0.2631×10−6 s−1, respectively.
We use the variance matrix Σ to evaluate the 2𝜎-confidence ellipsoid around the best-fit
parameters (𝐻, 𝜎R). When providing the uncertainties on the evolution of the Earth-
Moon distance 𝑎M, and the length of the day LOD in the next section, we integrate 25
pairs of the parameters (𝐻, 𝜎R) chosen at the boundary of this 2𝜎-confidence region.

2.6.2 Earth-Moon separation: A history of surfing resonances

For each of the global minima of the misfit parametric studies, we plot the evolution of
the Earth-Moon distance in Figure 2.16. At the top of the evolution, we spread the earlier
discussed compilation of geological proxies from tidal rhythmites and cyclostratigraphy
(Tables 2.1 and 2.2). The associated evolution of the LOD, precession frequency, and
obliquity are plotted in Figures 2.18 and 2.19. The three models are constrained at
the end points, thus differences arise mostly in between. To better elaborate on the
models’ discrepancies, we plot in Figure 2.17 the temporal evolution of the tidal torque
(normalized by its present value) associated with the combined model. As it is directly
proportional to tidal dissipation, the long-term evolution of the torque is characterized
by a non-monotonic variation, characteristic of the shrinking Earth-Moon separation,
that is interrupted by multiple crossings of resonances. The distribution of resonances
in the hemispherical configuration, 𝑡 < 𝑡switch, is less regular than that in the global
configuration, 𝑡 > 𝑡switch, (see also Figs. 2.10 and 2.5 for a global description of the
tidal response spectrum). Each resonance crossing in the torque generates an inflection
point in the evolution of 𝑎M, which depends on the width and to a lesser degree on the
amplitude of the resonance peak (Auclair-Desrotour et al., 2014).
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Figure 2.16: Evolution of the lunar semi-major axis over time. The Earth-Moon
separation, 𝑎M, is plotted for the three studied models, taking the best-fit values of the
free parameters (𝐻, 𝜎R) as described in Figure 2.15. Plotted on top of the evolution
curves are geological inferences of 𝑎M from cyclostratigraphy and tidal laminae data
(Tables 2.1 and 2.2). The shaded envelope corresponds to 2𝜎-uncertainty in the
fitted parameters of the combined model (Section 2.6.1). In the narrow window,
we zoom over the most recent 250 Myr of the evolution and make a comparison with
the evolution corresponding to explicit numerical tidal modeling using paleogeographic
reconstructions (Green et al., 2017) and the prediction of the numerical solution La2004
(Laskar et al., 2004). We note that the integration of 𝑎E extends to 3𝑅E, but the y-axis
is trimmed to start at 15𝑅E for a better visualization of the geological data.
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Figure 2.17: History of the tidal torque. The logarithm of the semi-diurnal tidal
torque of the Earth (normalized by its present value: T̃ = T/T (𝑡 = 0)) is plotted as a
function of time. The solid curve corresponds to the torque of the combined model that
involves three phases: in the first phase, a hemispherical ocean migrates on the surface
of the Earth following the evolution of the continental barycenter of Figure 2.14. Given
that we lack a continuous plate tectonics model beyond 1 Ga, in Phase 2, we fix the
hemispherical ocean to its configuration at 1 Ga to avoid discontinuities in the modeling.
It is noteworthy that the attenuated tidal torque over this phase is not due to the fixed
oceanic position but due to the tidal response occupying the non-resonant background
of the spectrum for the tidal frequencies associated with this interval. Beyond 𝑡switch,
we enter Phase 3 of the model with the global ocean configuration. The dashed and
dashed-dotted curves correspond, respectively, to the global and hemispherical oceanic
torques that are ignored over the specified intervals by the selective combined model.

Figure 2.17 depicts a critical feature of the combined model: starting with the hemi-
spherical geometry at present, the torque is located around a resonance peak, which
provides a higher dissipation rate than for the global ocean configuration. This models
the anomalous present rate of dissipation attributed to the blocking of westward tidal
propagation by the current continental distribution and the effect of enhanced dissipation
by continental shelves (Arbic et al., 2009). The first phase of the model involves two
major resonances between the present and 700 Ma, resulting in cascade falls of 𝑎M of
2.8𝑅E within 330 Myr. These resonances are associated with rapid variations of the
Earth’s obliquity (Figure 2.19) that could have triggered major climatic events. We
observe that the first resonance overlaps with the Paleozoic oxygenation event (∼ 350
Ma), while the second overlaps with the Neoproterozoic major oxygenation event (∼ 600
Ma) and the Cambrian Explosion (Wood et al., 2019). Possible correlation between the
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Earth’s LOD and the benthic ecosystem should thus be considered (Klatt et al., 2021).
The second resonance peak is almost half an order of magnitude lower than in the global
configuration. This is an essential feature of the combined model by which it preserves
the lunar angular momentum budget at this stage and better matches the cyclostrati-
graphic proxy estimates at 1.4 and 2.5 Ga, which clearly cannot be explained by the
other, more dissipative models considered in Figure 2.15.

Following these resonances, the torque enters a long non-resonant interval associated
with the intrinsic tidal response occupying the background of the spectrum (Figure
2.10). This “dormant” torque phase covers the interval of the so-called “boring billion
years” associated with stabilized rates of atmospheric oxygenation (Alcott et al., 2019).
Entering the oceanic global geometry phase of the combined model occurs at 3.25 Ga,
namely after covering all significant super-continental cycles, although 𝑡switch is implicitly
determined by the dynamical integrator. Samples of continental growth curves predict
a fast decay in continental crust volume beyond 𝑡switch (Sun et al., 2019; Hawkesworth
et al., 2020). After switching to the global ocean response spectrum, the torque passes
through a major resonance around 3.35 Ga, resulting in a significant and abrupt drop
in 𝑎M of 6.5𝑅E within 250 Myr. Beyond this age, the evolution again follows the tidal
dissipation background spectrum before terminating with the impact.

2.6.3 New target for geological studies

As elucidated thus far, our semi-analytical physical model was fitted only to the most
accurate constraints of the Earth-Moon evolution: the present tidal dissipation rate and
the age of the Moon. We deliberately avoided fitting our model to any of the available
geological data. The unique solution of our combined model is nearly a perfect match to a
large set of those geological data (Figure 2.16 and Figs. 2.18 and 2.19). This solution will
provide a new target for geological studies, as it clearly validates the cyclostratigraphic
approach, which estimates the Earth’s precession frequency from stratigraphic sequences
(Meyers and Malinverno, 2018; Huang et al., 2020; Sørensen et al., 2020; Lantink et al.,
2022) (Table 2.1). In particular, the cyclostratigraphic evaluation of the Earth-Moon
distance at 2459 ± 1.3 Ma in the Joffre banded iron formations (BIF, Lantink et al.,
2022) is in remarkable agreement with our model, compared to the equivalent estimates
deciphering tidal rhythmites in the (∼ 2450 Ma) Weeli Wooli BIF in Australia (Walker
and Zahnle, 1986; Williams, 2000). Our target curve can probably now be used to
elaborate robust procedures for the analysis of these tidal rhythmites that led sometimes
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Figure 2.18: Evolution of the Earth’s length of the day with time. Similar to Figure
2.16, but here for the LOD evolution associated with the three studied oceanic models.
Geological data on the LOD are summarized in Tables 2.1 and 2.2. The minimal value
reached for the LOD when the integration is terminated at 3 Earth radii is 5.25 hr.

to divergent interpretations (Walker and Zahnle, 1986; Sonett and Chan, 1998; Williams,
2000) (Table 2.2).

We obtained a striking fit with the estimate of 𝑎M at 3.2 Ga obtained through the
analysis of the Moodies group rhythmites (Eriksson and Simpson, 2000; de Azarevich
and Azarevich, 2017), but we do not deny that this agreement could be coincidental
and a new analysis of these sections in association with cyclostratigraphic estimates
is required. We expect that substantial progress will be made in the near future with
the analysis of many cyclostratigraphic records, which could then be used to further
constrain our physical model. The sequences that occur during the resonant states (or in
their vicinity), corresponding to the steep slopes in Figure 2.16, are of particular interest.
This coherence between the geological data and the present scenario for the Earth-Moon
evolution will also promote the use of these geological data and, in particular, the
cyclostratigraphic geological data as a standard observational window for recovering the
past history of the solar system.
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Figure 2.19: Evolution of the Earth’s obliquity, precession frequency, and precession
period with time. The evolution of 𝑎M (Figure 2.16) and LOD (Figure 2.18) are used
to compute the evolution of obliquity and precession by Eqs. (2.149) and (2.150). The
geological data of the precession frequency from tidal rhythmites and cyclostratigraphy
are also plotted on top of the curve (Tables 2.1 and 2.2). We note that the precession
frequency is the directly measured observable in cyclostratigraphy.

2.7 Summary

In this chapter, we revisited the classic time-scale problem of the lunar origin by taking
a different modelling route than what is traditionally considered. Namely, we chose to
study the tidal evolution history of the Earth-Moon system by constraining it to its most
certain points: the well constrained present and the well constrained genesis epoch. In
between, we studied the Earth’s tides in the oceans and the mantle to recover a history
of dissipation in the Earth-Moon system that allowed us to trace the system’s orbital and
rotational dynamics.

We followed the semi-analytic tradition of the linear theory of tides in solving the
governing system of tidal equations. The tradition was initiated by Laplace, whose
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work on the eigen-oscillations of fluids ushered a stream of works that extended from
solid, then oceanic, to atmospheric tides. We recovered the behavior of fluid tides
in two geometric configurations of the ocean: spherical and hemispherical shells. In
both geometries, we adopted a uniform oceanic thickness and a constant Rayleigh drag
frequency that parameterizes oceanic dissipation. The two effective parameters were
considered as the free parameters of the model with which we fitted the orbital history of
the Moon to its formation age and current recession rate. The two geometries required
different solutions for the tidal equations, an endeavour that took us on a wild analytical
roller-coaster.

The two geometries were adopted to mimic the continental evolution on the Earth’s
surface. We used the hemispherical geometry to model the present configuration moving
backwards, and we further coupled the position of the hemispherical continent with plate
tectonic models. Abiding by predictions of continental crust evolution, we switch to the
spherical oceanic shell in the earlier eons, allowing for a global Archean ocean.

Though we allowed for the effect of continental drift on tidal dissipation, the predominant
regulator of dissipation is the evolving spin rate of the Earth. The latter controls the
evolution of the tidal frequency, laying down an erratic spectrum of dissipation. The
spectrum involves multiple crossings of resonances associated with frequency overlaps
between the eigenmodes of the oceans and the forcing frequency. Modelled histories
of the lunar orbit and the Earth’s LOD live on this spectrum: smooth variations in the
dissipation translate to a smooth evolution of the lunar distance and the LOD; while
resonance crossings in the spectrum trigger abrupt (∼Myr-timescale) and significant
changes.

Having isolated these players, we then coupled our oceanic dynamics solver with our
mimetic continental drift tracer, along with an orbital dynamics integrator. We then im-
posed the aforementioned constraints on this rich dynamical system, and provided a tidal
history of the Earth-Moon system that evades the time-scale “conundrum". Though we
decided to be completely agnostic of the geological proxies on the Earth-Moon history
when building the model, our predicted tidal history was in good agreement with the
geological data. It specifically demonstrates the robustness of the cyclostratigraphic ma-
chinery in unravelling astronomical quantities from sedimentary sequences, and further
suggests interesting intervals for future investigations.





CHAPTER 3

A FIXED PRECAMBRIAN LOD FOR THE EARTH?

3.1 Introduction

Resonances are tempting; or at least we would like to believe that they appeared as such
in the previous chapter, as they managed to save us from the time-scale problem. They
were also appealing to Kelvin (1882), who invoked a very similar theory of resonances
to explain his barometric observations on the relatively large semi-diurnal pressure
oscillations, compared to the diurnal component variation. The latter is by far much
larger than the former in the harmonic analysis of air temperature variations that cause
both these pressure variations (Figure 3.1). These typical oscillations in the atmosphere
are majorly produced by either the luni-solar gravitational forcing, or the solar thermal
forcing (thus the corresponding gravitational and thermal atmospheric tides). The semi-
diurnal variation of barometric pressure is certainly not in response to the gravitational
influence of the sun, because if it were the case, then there should be a much larger
component associated with the lunar analogue, while in reality there is not. As such,
according to Kelvin, it is the thermal influence driving modes of oscillation whereby
an overlap between the semi-diurnal term and the corresponding forcing frequency
can explain this modal amplification. Investigating the normal modes spectrum of the
atmosphere might have been unfeasible at the time of Kelvin, thus onwards started a
community debate on the resonance theory, neatly and authoritatively summarized in
Chapman and Lindzen (1969), henceforth CL69.

Early tests of Kelvin’s theory of the resonance were performed by Rayleigh (1890) and
Margules (1892). Rayleigh’s results failed Kelvin’s hypothesis as he estimated the free
period of oscillation for the semi-diurnal and the diurnal components to be 13.7 hrs
and 23.8 hrs respectively, thus establishing a stronger overlap in the diurnal type of
oscillations. Margules predicted a closer resonance for the semi-diurnal component.
However, both attempts were fraught with unrealistic approximations, such as the non-
rotation in the case of Rayleigh’s work, and the uniformity of the tidal phase with height
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Figure 3.1: Daily variations in temperature and pressure recorded over one year and av-
eraged over a day, with the subsolar point anchored to 12 h. The data was recorded every
minute over the year 2013 with a Vantage Pro 2 weather station at latitude 48.363◦ N.
The average values of temperature (10.8973◦ C) and pressure (1015.83 mbar) have been
removed keeping only the variations. In both panels, the raw data is plotted in green,
while a Fourier decomposition over the solar day is plotted in blue for two harmonics,
and in red for five harmonics. Temperature is dominated by the diurnal component, with
a maximum value around 14h26mn. The largest harmonics of the pressure variations is
the semi-diurnal term, followed by the diurnal term (Auclair-Desrotour et al., 2017a).

in the case of Margules. It took a couple of decades until Lamb (1911) significantly
improved Laplace’s theory of free oscillations by abstracting from the problem the
Earth’s rotation and sphericity via his plane-based formalism. Lamb is probably the
first to assert that the propagation of long waves in the atmosphere are indeed similar to
those of a liquid ocean of depth 𝐻 if and when the density variations occur isothermally
for an atmosphere in adiabatic equilibrium. The latter of course being not realistic, one
of Lamb’s major contributions to the theory was his discovery of the existence of an
infinite series of long waves with different speeds, thus an infinite series of values for
the equivalent depth1 ℎ. This step was necessary to relax the assumptions considered
in the case study of Laplace, and it allowed Taylor (1929, 1932) to estimate the period
of oscillation of the semi-diurnal component to be greater than 12 hrs, thus establishing
serious doubts around the resonance hypothesis.

The revival of the theory was possible by adopting variations on the temperature profile
of the atmosphere. Pekeris (1937) applied Taylor’s method to determine the atmospheric
free oscillations for which the temperature increases upwards in the stratosphere. He
showed that, conditionally, the atmosphere can be characterized by two equivalent
oceanic depths, one of which gives a period very close to 12 hours and is characterized
by surface distribution of quadrupolar nature. The exact estimate of the oscillation period

1The original definition of ℎ dates back to Laplace (1798) who, when studying the tidal oscillations
of an isothermal atmosphere, showed that they can be inferred from those of a liquid ocean of uniform
depth ℎ, hence the nomenclature of ℎ as the tidally equivalent depth of the atmosphere. We provide its
mathematical definition in Eq. (3.44).
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was subject to the large uncertainty on the upper atmospheric data. The condition referred
to was that the atmospheric temperature, after increasing upward above the stratosphere,
should reach a maximum and thereafter start decreasing. The same calculation was
performed a decade later by Weekes and Wilkes (1947) and Jacchia and Kopal (1952),
who had better constraints on the temperature profile with the advent of some of the
earliest rockets used for upper atmospheric characterization (Best et al., 1947). Their
estimates on the free oscillation period provided a temporary support of the resonance
theory. Later, Holmberg (1952) used these estimates to suggest that the torque arising
from the resonant thermal response at the present is equal in magnitude and opposite
in sign to that generated by terrestrial gravitational tides, thus placing the Earth into a
rotational equilibrium with a stabilized spin rate. With the accurate determination of the
atmospheric temperature profile that followed, the theory was completely abandoned,
along with any possibility of the magnification of the present semi-diurnal tide by a
resonance, giving the deathblow to a track of work over 80 years initiated by Kelvin.

Though the resonance theory was proven to be inapplicable to the Earth at the present,
could it still be valid in other settings, and its total dismissal too hasty? The semi-
diurnal tide, generated via the atmospheric pressure waves, describes the movement of
atmospheric mass away from the substellar point. As a result, mass culminates forming
bulges on the nightside and the dayside, generating a torque that acts to accelerate
the Earth’s rotation. As such, the thermally generated torque counteracts the luni-solar
gravitational torque associated with solid and oceanic Earth tides. The latter components
typically act to drive the closed system of the tidally perturbing-perturbed players towards
its equilibrium states of circularity, coplanarity, and synchronous rotation via dissipative
mechanisms2 (e.g., Hut, 1980, 1981). In contrast, the inclusion of the stellar flux as
an external source of energy renders the system an open system with radiative energy
converted, by the atmosphere, into mechanical deformation and gravitational potential
energy in the tidal response. Though the competition between the torques is established
on Earth, the thermal torque remains, at least currently, orders of magnitude smaller.
However, the afore-summarized long series of studies advanced the theory of thermal
tides for it to be applied to Venus (Goldreich and Soter, 1966; Gold and Soter, 1969;
Dobrovolskis and Ingersoll, 1980; Ingersoll and Dobrovolskis, 1978; Correia and Laskar,
2001; Correia et al., 2003; Correia and Laskar, 2003b), hot Jupiters (e.g., Arras and
Socrates, 2010; Auclair-Desrotour and Leconte, 2018; Gu et al., 2019; Lee, 2020), or
near-synchronous and Earth-like rocky exoplanets (Cunha et al., 2015; Leconte et al.,
2015; Auclair-Desrotour et al., 2017a, 2019b). Namely, for planetary systems within the

2A fourth tidal evolution scenario involves orbital spiralling (see e.g., Hut, 1980).
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– misleadingly coined – habitable zone, the gravitational tidal torque diminishes in the
regime near synchronization and becomes comparable in magnitude to the thermal tide
torque. Consequently, the latter may actually prevent the planet from entering a precisely
synchronous state (Laskar and Correia, 2004; Correia and Laskar, 2010; Cunha et al.,
2015; Leconte et al., 2015).

Going back home, Zahnle and Walker (1987) – hereafter ZW87 – revived Holmberg’s
hypothesis of the rotational equilibrium for the Earth by applying the resonant theory
of thermal tides to the distant past. Their suggestion relied on two factors needed to
close the gap between the thermal and gravitational torques. The first hypothesis is
that an atmospheric resonance occurred when the LOD was around 21 hrs, exciting
the thermal torque to large values. Secondly, the gravitational tidal torque must have
been, on average, much lower in the Precambrian. In the absence of a complete tidal
evolution model for the Earth-Moon system at the time, ZW87 relied, for the second
factor, on the rotational deceleration estimates of Lambeck (1980), fitted to match the
distribution of geological data available then. While most of the datasets used to support
this claim are questionable3 (Section 2.4), we have shown in the previous chapter that
this claim still holds, since the larger interval of the Precambrian is associated with what
we called a “dormant” torque phase, lacking any significant resonances (Figure 2.17).
This rotational stabilization scenario is what we aim to investigate in what follows.

In general, long wavelength (≲ few days) free atmospheric oscillations take the form
of Rossby waves, while those with shorter periods are associated with gravity waves.
The term ‘Lamb wave’, corresponding to large-scale horizontally propagating acoustic
modes (i.e. restored by the fluid compressibility), is usually associated with the latter.
Intermediately, the smallest wavelength, large-scale Rossby waves exhibit a common
vertical structure with Lamb waves (Deland, 1970). In the isothermal approximation,
this vertical structure is associated with a velocity profile of horizontal waves that grows
with altitude 𝑧 as exp{𝜅𝑧/𝐻}, where 𝜅 is an atmospheric parameter function of the
adiabatic exponent Γ1 (the ratio of heat capacities); namely 𝜅 = (Γ1 − 1)/Γ1, and the
pressure height scale 𝐻 is defined as

𝐻 (𝑧) = Rs𝑇0(𝑧)
𝑔

, (3.1)

3To estimate the Precambrian torque, ZW87 specifically used the tidal rhythmite record preserved in
the Weeli-Wolli Banded Iron formation. As we show in Figure 2.12 and Table 2.2, this record is fraught
with multiple inferences featuring significantly different values for the LOD, altogether different from
the cyclostratigraphic inference from the Joffre member that is estimated to have roughly the same age
(Lantink et al., 2022).
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where Rs = RGP/M is the specific gas constant, with RGP and M being the perfect gas
and molar mass constants respectively (Vallis, 2017); 𝑇0 is the equilibrium temperature,
and 𝑔 the gravitational acceleration (we note that the vertical dependence of𝐻 propagates
only from that of the temperature based on the approximations discussed in Section
3.2.1). This growth profile corresponds to energy decay such that most of the energy
of free oscillations is concentrated within a few scale heights from the ground. This
is due to the fast decay of density compared to that of the tidal energy as the altitude
increases, facilitating the movement of a parcel of smaller density with the same amount
of energy, and consequently inducing horizontal oscillations of larger velocities and
amplitudes. The increase of oscillation amplitude is substantial (Lindzen and Blake,
1972), which suggests that small scale oscillations near the surface boundary might imply
very significant oscillations at ionospheric heights via upwards-propagating gravity
waves. Noting that the tidal equivalent depth is approximated as4

ℎ ≃
4𝑅2

EΩ
2
E

𝑔Λ
, (3.2)

where Λ is the eigenvalue of the tidal horizontal wave structure (as defined in Section
2.3.2), 𝑅E is the radius of the Earth,ΩE is the spin rate of the Earth, and that the equivalent
depth of the fundamental symmetric semi-diurnal tidal oscillation is currently estimated
as ℎ0 = 7.852 km, the equivalent depth in the past would have been

ℎ(𝑡) = ℎ0

(
24

LOD(𝑡)

)2
. (3.3)

Since the Lamb waves at the present have an equivalent depth of∼ 10 km, the atmosphere
would evidently resonate with the semi-diurnal thermal tide for LOD= 21.26 hr. Using
the model of LOD evolution of Lambeck (1980), ZW87 made this back-of-the-envelope
calculation to establish the scenario of the rotational equilibrium for the Earth at 600 Ma.
They used an idealized atmospheric model to allow for a significant enhancement in the
semi-diurnal thermal torque by amplifying the amplitude of surface pressure oscillations
from roughly 1 to ∼ 20 mbar.

If the occurrence of the resonance is surmised, the trapping and the consequent ro-
tational stabilization hinges on other factors: the resonance width, where a sufficient
timescale over which restoring forces must act, should be granted; atmospheric com-
position, contributing via the scaling and the efficiency of radiation/absorption; surface
temperature, and dissipative mechanisms of radiative transfer. The more recent work

4the exact definition given later in Eq. (3.44)
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of Bartlett and Stevenson (2016) – hereafter BS16 – followed up on the suggestion of
ZW87 and investigated the effect of temperature fluctuations, i.e. thermal noise, on the
resonance trapping. They concluded that the rotational stabilization could have lasted 1
billion years, only to be distorted again by a drastic deglaciation event (on the scale the
follows a snowball Earth), thus allowing the LOD to increase again from ∼ 21 hr to the
present value. In Figure 3.2 we plot a summary of the results of their model. Using a
simplified tidal model of the lunar gravitational forcing, with a strength weighed by the
scaling factor 𝜏0, BS16 studied the stability of the resonance trapping when combining
the thermal torque with the lunar gravitational tidal torque, along with thermal noise.
Of interest to us in this Figure is the evident mismatch between the LOD inference
from the earliest cyclostratigraphic data points and the various curves of LOD evolution.
Specifically, smack within the interval of the trapping lies the data point of Meyers and
Malinverno (2018) with an inferred LOD of 18.7 hr, instead of the supposed resonant
∼ 21 hr. The incompatibility between these cyclostratigraphic records and the resonance
trapping theory leads us to consider one, or more, of the following explanations:

• The resonance-trapping scenario did occur, and the mismatch is due to the wrong
cyclostratigraphic LOD inference. We recall here that the directly inferred quan-
tity of the cyclostratigraphic method is the precession frequency of the Earth.
Translating the latter to an LOD estimate is often model-dependent, and thus any
caveats in the used model would propagate to the LOD estimate [see Section 2.4
for further details].

• The resonance-trapping did occur, but at a different LOD, or at the same LOD at a
different time interval. If the cyclostratigraphic estimates are taken at face value,
they can be fitted by a tidal evolution history that allows for resonance trapping
at a different semi-diurnal tidal frequency. Namely, the used equivalent depth of
the atmosphere depends primarily on its tropospheric scale height, which in turn
depends on the surface temperature and composition (Eq. 3.1). In the model
used by ZW87, an isothermal atmosphere was adopted (in which case the pressure
height 𝐻 is independent of altitude) to make use of the relation ℎ = Γ1𝐻 (see
for e.g., Siebert, 1961). The resonant behavior of a realistic atmosphere is most
probably different with a more realistic temperature and composition profiles.
Such probable variations would translate to variations in the spectral position of
the resonance, and thus the LOD at which it occurs.

• The resonance did occur, but was highly unstable for trapping to endure over a
geologic time-scale. The stability of the resonance straddles several factors. The
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Figure 3.2: The evolution of the LOD in the resonance trapping scenario. We regener-
ate the results of Bartlett and Stevenson (2016), where the authors use a simplified lunar
tidal forcing scaled to the present by the coefficient 𝜏0 [see their Section 4], along with
a thermal torque that encounters a resonance when the LOD reached ∼ 21 hr. Their
integration is performed forward in time; thus when the resonance is encountered, a
thermal noise is applied to test for the stability of the trapping. The escape from res-
onance is guaranteed by an ad-hoc severe temperature drop that the authors assume is
associated with snowball Earth scenarios. Plotted against the generated LOD curves is
our compiled data set of cyclostratigraphic inferences.

effect of thermal high frequency fluctuations was investigated in BS16, and the
resilience of the resonance against them was established. However, this resilience
is also dependent on the width of the resonance, which provides a frequency
buffer such that thermal-induced variations in the spectrum would not break the
resonance. It was assumed in ZW87 that the width of the resonance is independent
of the dissipative mechanisms. However, as proven later (e.g., Auclair-Desrotour
et al., 2014), and as we shall confirm next, this assumption is invalid.

Another factor that can destabilize the trapping is due to the other player in the
torque balance, the oceanic gravitational tide. We argued in the previous chapter
for the tidal frequency to be the dominant modulator of the oceanic tidal spectrum.
As such, when the Earth enters the resonance trap, the tidal frequency is stabilized,
and consequently the oceanic tidal torque. However, continental drift as we also
saw in the previous chapter can independently induce spectral shifts, and thus
the resonance stability would hinge upon the competition between the thermal
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resonance width and the paleogeographic-induced spectral shift. This effect was
not explored in earlier studies.

• The resonance never occurred, or did occur but with a pressure anomaly amplitude
such that the resulting thermal torque never matched the oceanic gravitational
torque. This is the scenario we plan to explore next. It should be noted here
that the local tidal spectrum (in the vicinity of the resonance) shown in ZW87
and BS16 is symmetric about the resonant frequency (or equivalently the LOD).
In Figure 3.3, left panel, we show the local spectrum obtained for the Lamb
resonance by BS16. The panel predicts: i) the occurrence of the Lamb resonance
during the Precambrian (for LOD ∈ [20.5, 21.5] hr); ii) The possibility of this
resonance to amplify the thermal torque to values greater than the oceanic torque;
iii) The symmetry of the resonance, such that a positive and a negative peak of the
torque are present, both acting oppositely to accelerate and decelerate the Earth’s
rotation, respectively. Namely, the phase of the semi-diurnal tide reverses upon
passage through the resonance. Starting with faster and moving to slower rotation
before reaching the resonant frequency, the thermal tide acts to decelerate the
Earth, complementing the gravitational tide. At the position of the resonance,
the pressure maximum is reached, and the phase of the tide then reverses (and
consequently the sign of the torque), such that the thermal tide starts accelerating
the Earth.

Since the pioneering work of Gold and Soter (1969) on Venus, only a handful of works
studied the frequency spectrum of the thermal torque for rocky planets. Progress has
been achieved through analytical models well founded in the classical theory of tides
(Ingersoll and Dobrovolskis, 1978; Dobrovolskis and Ingersoll, 1980; Auclair-Desrotour
et al., 2017a,b), parameterized models that captured essential spectral features (e.g.,
Correia and Laskar, 2001, 2003a), and fully numerical approaches that made use of
the advancing sophistication of general circulation models (GCM; e.g., Leconte et al.,
2015; Auclair-Desrotour et al., 2019b). The latter two works are, to our knowledge, the
only attempts on establishing the tidal torque numerically. Interested in the response of
habitable-zone planets, Leconte et al. (2015) focused on the low frequency spectrum.
Auclair-Desrotour et al. (2019b) – henceforth ALM19 – characterized the dependence
of the tidal torque interpolating between the low and high frequency regimes. ALM19’s
study is thus the first, and perhaps the only study that numerically computed the tidal
response and torque at the Lamb resonance. Of interest to us is a perplexing feature that
ALM19 established (Figure 3.3 right panel): the torque at the Lamb resonance featured
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Figure 3.3: The spectrum of the thermal tidal response. Left: The spectrum of the
tidal torque is plotted as a function of the length of day on Earth, as computed by the
model of BS16 (panel adapted from their Figure 1). The panel is zoomed over the
part of the spectrum where the Lamb resonance occurs. Solid curves correspond to
different prescribed damping factors of the atmospheric tide. Dashed curves differ by
the prescribed atmospheric temperature. The black horizontal line marks the assumed
value of the Precambrian oceanic tidal torque, while the gray horizontal line marks the
present value, both multiplied by −1. The panel shows the occurrence of the Lamb
resonance in the Precambrian with a symmetric positive and negative peaks for the
torque. Right: The spectrum of the pressure anomaly, which is directly proportional to
the tidal torque (via Eq. 3.55) is plotted as a function of the normalized tidal frequency
𝜔 (panel adapted from Figure 3 of ALM19). In contrast with the left panel, the full
spectrum is plotted here, with the Lamb resonance occurring in the high frequency
regime for 𝜔 = 260.. The spectrum in blue interpolates the data points in black, which
were retrieved via GCM simulations for a dry Venus-sized planet with a surface of
bare rocks, and a 10 bar atmosphere. The GCM-spectrum shows that the resonance
is asymmetric, with a single negative peak that acts to complement the oceanic tidal
torque. In contrast, the spectrum in yellow, obtained from an analytical model assuming
an isothermal atmosphere, shows the existence of the two peaks.

a single peak, specifically the peak that acts in the same direction of gravitational tides;
i.e. the peak required for the rotational stabilization was gone with the wind!

With view to greater physical realism, we intend to analytically establish the frequency
spectrum of the thermal tidal torque, from first principles, to specifically characterize
the Lamb resonance, bearing in mind that the models used in ZW87 and BS16 were
idealized. The specific goal is to unravel the cause of the resonance asymmetry observed
in ALM19, and to provide a new physical model for the thermal tidal torque that better
matches the GCM-computed response. We next start where we should, with the primitive
equations of atmospheric waves.
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Figure 3.4: Reference frame of atmospheric dynamics. Spherical coordinate system
co-rotating with the Earth.

3.2 Atmospheric dynamics

3.2.1 Minimal model and essential structure

For the atmosphere enveloping the Earth (Figure 3.4), and similar to the set-up in Auclair-
Desrotour et al. (2017a), we define the reference frame RE co-rotating with the Earth,
i.e. RE : {𝑂,XE,YE,ZE}, with 𝑂 at the Earth’s center, XE and YE in the equatorial
plane and ZE = 𝛀E/|ΩE |. In this frame, the position of an atmospheric parcel 𝑃 is
defined by the position vector r in the spherical coordinates (𝑟, 𝜃, 𝜆), where 𝑟 = |𝑂𝑃 |
designates the radial distance, 𝜃 the co-latitude, and 𝜆 the longitude. The position of the
same parcel in the atmospheric shell is defined by the altitude z, where 𝑟 = 𝑅E + 𝑧.

The atmosphere is characterized by the scalar fields of pressure 𝑝, temperature𝑇 , density
𝜌, and the vectorial velocity field V. Each of these variables varies with time and space,
and can be decomposed into two terms: an equilibrium state field, for which we used
the subscript 0; and a perturbation term, for which we add the prefix 𝛿 (except for the
velocity, for which the perturbation is simply denoted by V . We thus have:

𝑝 = 𝑝0 + 𝛿𝑝 𝑇 = 𝑇0 + 𝛿𝑇 𝜌 = 𝜌0 + 𝛿𝜌 V = V0 + V . (3.4)

In order to simplify the analytical treatment of tidal dynamics of the atmosphere, we
make the following assumptions to define the hitherto arbitrary atmospheric structure.
Namely (CL69):
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(i) The background equilibrium fields are uniform in time. This assumption relies on
the hierarchy of variation timescales between the relatively short period perturba-
tive tidal dynamics and the long period adjustment of equilibrium fields. That said,
this approximation is valid as long as we do not get very close to synchronization.

(ii) Only lowest order perturbations are considered. The atmospheric response to tidal
forcing is considered relatively small and is linearized near equilibrium. We recall
here Figure 3.1 where the amplitude of the pressure oscillations at latitude 48◦ N
peaks at ∼ 0.5 mbar, thus corresponding to 0.05% (it would be ∼ 1 mbar at the
equator, thus 0.1%). Nonlinear effects are consequently ignored, including those
corresponding to the interactions between tidal waves. Thus we have:

|𝛿𝑝(r, 𝑡) | ≪ 𝑝0(r), |𝛿𝜌(r, 𝑡) | ≪ 𝜌0(r), |𝛿𝑇 (r, 𝑡) | ≪ 𝑇0(r). (3.5)

(iii) No differential rotation between the atmosphere and the solid counterpart. With
this imposed solid rotation, we set V0 = 0.

(iv) Hydrostatic equilibrium is assumed. The background fields are adjusted by gravity
such that the weight of the air column balances ground pressure. Namely:

𝑑𝑝0
𝑑𝑧

= −𝑔𝜌0. (3.6)

Using the ideal gas law, 𝑝0 = Rs𝜌0𝑇0, (3.6) is re-written as

𝑑 ln 𝑝0
𝑑𝑧

= − 𝑔

Rs𝑇0
, (3.7)

which allows us to identify the definition of the pressure height scale in Eq. (3.1).
It is noteworthy that the ideal gas approximation is valid for the Earth up to an
atmospheric altitude of 95 km, where the molecular weight starts varying (US
standard atmosphere; NOAA, 1976). The hydrostatic approximation implicitly
dictates neglecting the variation rates of vertical flows and the vertical component
of Coriolis acceleration. It is thus closely related to the thin-layer approximation
which we adopt for our model described in Section 3.2.2.

(v) Spherical symmetry is imposed (the Earth’s ellipticity is ignored). As such, only
radial atmospheric variations are considered as we ignore temperature and gravity
gradients between the poles and the equator. Further more, the atmosphere is
regarded as a thin fluid shell (𝐻atm ∼ 100 km), radial variations in gravity can be
ignored. One can justify the latter by computing the difference in 𝑔 between the
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ground and the upper atmospheric limit. Defining the gravitational acceleration
as g = −𝑔(𝑟)𝑟, where 𝑔(𝑟) = 𝐺𝑀E/𝑟2, the relative difference in 𝑔 is:

Δ𝑔

𝑔
≈ 2𝐻atm

𝑅E
, (3.8)

which is on the order of 3%.

(vi) Weather fluctuations are ignored. There is a separation of time scales and length
scales, which prevents the meteorological patterns and the tidal patterns from
overlapping and interacting. Furthermore, compared to the background profiles,
the mean flow, and tidal oscillations, meteorological fluctuations correspond to
chaotic variations that average to zero on the considered timescales (Figure 3.1;
see also North et al., 2014).

(vii) Surface topography is ignored such that the effects of mountains and the land-sea
distribution are not taken into account. These effects, however, are expected to
influence the atmospheric tidal response of the planet, with earlier suggestions on
affecting tidal amplitudes and phases for the Earth (Zharov and Gambis, 1996)
and Mars (Guzewich et al., 2016).

With these approximations, we introduce the reduced altitude 𝑥 defined as:

𝑥 =

∫ 𝑧

0

𝑑𝑧

𝐻 (𝑧) , (3.9)

and we can thus define the background distributions of pressure, density, and temperature
as:

𝑝0(𝑥) = 𝑝0(0)𝑒−𝑥 , 𝜌0(𝑥) =
𝑝0
𝑔𝐻

, 𝑇0(𝑥) =
𝑔𝐻

Rs
. (3.10)

3.2.1.1 The buoyancy frequency

Essential to our atmospheric structure definition and central in the analytical model we
develop next is the buoyancy frequency, 𝑁 , a measure of the strength of vertical density
stratification (chapter 2.9 of Vallis, 2017). Also known as the Brunt–Väisälä frequency,
𝑁 is used as an indicator of the local gravitational stability of a fluid, with a vertical
density gradient, with respect to convection.

A fluid can be labelled as stably stratified if a parcel tends to return to its original position
after being displaced under the action of the Archimedean force. In contrast, the fluid is
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𝜌0(𝑥) 𝑝0(𝑥), 𝜌0(𝑥), 𝑇0(𝑥)

𝜌0(𝑥) + 𝛿𝜌 𝑝0(𝑥 + 𝛿𝑥), 𝜌0(𝑥 + 𝛿𝑥), 𝑇0(𝑥 + 𝛿𝑥)

Figure 3.5: Vertical displacement of a parcel in a stratified atmosphere.

unstably stratified if the fluid parcel tends to diverge away from its original position upon
displacement, and neutrally stratified if it tends to settle where it is. To quantify this
description, we consider the background density profile 𝜌0(𝑥) discussed above. A parcel
moves upward in the atmosphere from 𝑥 to 𝑥 + 𝛿𝑥 as described in Figure 3.5. Initially,
the parcel has the same density 𝜌0(𝑥) as the surrounding. Its vertical displacement in
the atmosphere incurs a density change of 𝛿𝜌. The parcel of volume 𝑉p will therefore
feel the buoyancy force

𝛿𝐹 = −
[
𝜌0(𝑥) + 𝛿𝜌 − 𝜌(𝑥 + 𝛿𝑥)

]
𝑉p𝑔 . (3.11)

The parcel will move back towards its initial position if it is heavier than the surrounding
fluid (𝛿𝐹 < 0); thus the stability condition can be expressed as

𝜌0(𝑥) + 𝛿𝜌 > 𝜌0(𝑥 + 𝛿𝑥), (3.12)

which upon Taylor expansion gives

𝜌0(𝑥) + 𝛿𝜌 > 𝜌0(𝑥) +
𝑑𝜌0
𝑑𝑥

𝛿𝑥 + · · · . (3.13)

In the case of infinitesimal parcel displacements (𝛿𝑥 → 0), this condition becomes:

− 𝑑𝜌0
𝑑𝑥

+ 𝛿𝜌
𝛿𝑥

> 0. (3.14)

The first density gradient in this condition simply corresponds to the rate at which the
static density varies with height. The second term denotes the rate at which the parcel’s
own density changes during its vertical displacement. It is thus the difference between
the two density gradients that determines the stability of the stratification.
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The vertical motion of the parcel satisfies the equation

𝜌0(𝑥)𝑉p 𝛿¥𝑧 = 𝛿𝐹 (3.15)

with 𝛿𝑧 = 𝐻𝛿𝑥. Subsituting the buoyancy force 𝛿𝐹 by its expression (3.11) expanded at
first order in 𝛿𝑥, we recover the equation of an harmonic oscillator

𝛿 ¥𝑥 + 𝑁2𝛿𝑥 = 0 , (3.16)

where 𝑁 is the buoyancy frequency defined as

𝑁2 = − 𝑔

𝜌0𝐻

(
𝑑𝜌0
𝑑𝑥

− 𝛿𝜌

𝛿𝑥

)
. (3.17)

In terms of this frequency, the stability condition (3.14) reduces to: local stability if
𝑁2 > 0, local instability if 𝑁2 < 0, and neutral stratification when 𝑁2 = 0. To simplify
this expression of the buoyancy frequency, we recall that variations of pressure in a
gas are balanced much quicker than those of temperature. Therefore, we can consider
the transformation of the gas inside the parcel to be adiabatic with a pressure always
at equilibrium with the atmosphere, i.e., 𝑝0(𝑥) + 𝛿𝑝 = 𝑝0(𝑥 + 𝛿𝑥). According to the
Laplace law, the transformation is thus subject to

𝑝0(𝑥 + 𝛿𝑥) [𝜌0(𝑥) + 𝛿𝜌]−Γ1 = 𝑝0(𝑥)𝜌0(𝑥)−Γ1 . (3.18)

Expanding to first order in 𝛿𝑥 and 𝛿𝜌, we get

𝛿𝜌

𝛿𝑥
=

1
Γ1

𝜌0
𝑝0

𝑑𝑝0
𝑑𝑥

. (3.19)

From this result, the buoyancy frequency of Eq. (3.17) can be expressed in terms of
the density gradient and the pressure gradient. To highlight the role of the temperature
gradient, we substitute the density gradient using the ideal gas law

𝑑 ln 𝜌0
𝑑𝑥

=
𝑑 ln 𝑝0
𝑑𝑥

− 𝑑 ln𝑇0
𝑑𝑥

, (3.20)

then the buoyancy frequency reads

𝑁2 =
𝑔

𝐻

(
𝑑 ln𝑇0
𝑑𝑥

− 𝜅 𝑑 ln 𝑝0
𝑑𝑥

)
. (3.21)

As such, if the atmosphere were to be isothermal i.e., 𝑇0(𝑥) = 𝑇0(0), then the buoyancy
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Figure 3.6: Temperature profile measured in the tropical Pacific. The measurements
were obtained from a radiosonde (“weather balloon”) launched on March 15, 1993.
Figure adapted from Pierrehumbert (2010).

frequency reduces to 𝑁 =
√︁
𝜅𝑔/𝐻, recalling that 𝑝0(𝑥) = 𝑝0(0)𝑒−𝑥 gives to 𝑑 ln 𝑝0/𝑑𝑥 =

−1. It should be also stressed that the most appropriate thermodynamical quantity to
express the buoyancy frequency is not the temperature 𝑇0 but the potential temperature
Θ0 defined as the asymptotic temperature that a parcel would attain if it were adiabatically
brought to a reference pressure 𝑝ref , namely (Vallis, 2017, Section 1.7.1),

Θ0 = 𝑇0

(
𝑝ref
𝑝0

) 𝜅
. (3.22)

Indeed, in terms of this potential temperature, the buoyancy frequency is simply ex-
pressed as (Vallis, 2017, Eq. 2.2445)

𝑁2 =
𝑔

𝐻

𝑑 lnΘ0
𝑑𝑥

(3.23)

and therefore, the stability is controlled by the slope of Θ0. In what follows, we focus
on the neutrally stratified scenario where Θ0(𝑥) is uniform and 𝑁2 = 0, and we adopt
it for our tidal model developed next. The neutral stratification case is a limiting case,
the other limiting case being the stably isothermal case. With the massive troposphere

5We note that we use the reduced altitude in our Eq. (3.23), compared to the equation in Vallis where
the geometric altitude is used.



Chapter 3. A fixed Precambrian LOD for the Earth? 156

controlling the tidal response of the Earth, we adopt the neutral stratification limiting
case because it is closer to the actual structure of the Earth’s troposphere than the
isothermal approximation. In Figure 3.6 we show the vertical profile of temperature
obtained via weather balloon measurements (Pierrehumbert, 2010). The profile clearly
depicts the negative temperature gradient of the troposphere, which is evidently closer
to an idealised adiabatic profile than to an idealised isothermal profile. In fact, it is
the heating of the troposphere by the surface which generates convective motions and
efficient turbulent mixing, thus enhancing energy transfer and driving the layer towards
an adiabatic temperature profile. Furthermore, the temperature profile being adiabatic
would prohibit the propagation of gravity waves, i.e. waves restored by the Archimedean
force, which compose the baroclinic component of the atmospheric tidal response. This
leaves the atmosphere with barotropic tidal flows, which is consistent with the tidal
dynamics generated under the shallow water approximation.

Closing this interlude, we provide an essential condition on the scale height 𝐻 that will
be deemed useful in our model. We evoke the hydrostatic equilibrium condition on
Eq. (3.17) to re-write the Brunt–Väisälä frequency as

𝑁2 =
𝑔

𝐻

(
𝜅 + 1

𝐻

𝑑𝐻

𝑑𝑥

)
. (3.24)

With the adopted neutral stratification scenario, 𝑁2 = 0, Eq. (3.24) implies that

𝑑 ln𝐻
𝑑𝑥

= −𝜅. (3.25)

3.2.2 Tidal waves and the primitive equations

Now we are fully geared to explore the governing system of dynamical equations. In the
co-rotating reference frame RE described earlier, the atmosphere is subject to the total
gravitational potential6 U = 𝑈g +𝑈T +𝑈, where𝑈g is the equilibrium self-gravitational
potential of the Earth (∇𝑈g = −g), 𝑈T is the gravitational tidal potential, and 𝑈 is the
tidal response potential, arising from the mass redistribution. With these potentials,
the motion of a fluid parcel is described by the horizontal momentum equation for a

6We note that the notations and conventions used to describe the potentials in this chapter are not
identical to those in the previous one.
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compressible gas (e.g., Vallis, 2017):

𝜕𝑡V +V ·∇V + 2Ω ×V = −1
𝜌
∇𝑝 −∇U, (3.26)

where the effect of centrifugal acceleration, Ω×(Ω×r), along with dissipative processes
such as molecular and turbulent viscosity and ion drag are ignored. The momentum
equation is accompanied by the continuity equation of mass conservation:

𝜕𝑡𝜌 +∇ · (𝜌V) = 0. (3.27)

Poisson’s equation defines the relation between the gravitational potential and the redis-
tribution of mass:

∇2U = 4𝜋𝐺𝜌. (3.28)

As the atmosphere is thermally forced by the sun, we decompose the absorbed thermal
power per unit mass J into the sum of the average power absorbed, 𝐽0 that defines
thermal equilibrium, and the thermal tide component 𝐽, i.e., J = 𝐽0 + 𝐽. Heat transport
follows (CL69):

𝐶p

Γ1
(𝜕𝑡𝑇 +V ·∇𝑇) = 𝑔𝐻

𝜌
(𝜕𝑡𝜌 +V ·∇𝜌) + J . (3.29)

In this equation, we used the specific heat capacity 𝐶p defined as 𝐶p = Rs/𝜅. As we
mentioned earlier, hydrostatic equilibrium is assumed, and tidal fields are considered
as relatively small perturbations. We thus linearize the governing equations keeping
only first order terms; we further ignore fluctuations in the self-gravity field of the Earth
induced by the tidal density variations (which correspond to the Cowling approximation
we adopted for the oceanic tidal dynamics in Section 2.3.2.1). Under these assumptions,
Eq. (3.26) is re-written as:

𝜕𝑡V + 2Ω × V = − 1
𝜌0

∇𝛿𝑝 − 𝑔

𝜌0
𝛿𝜌r̂ = −∇𝑈T. (3.30)

Projecting this equation onto the basis vectors, we obtain the system provided in CL69:

𝜕𝑡𝑉𝜃 − 2Ω𝑉𝜆 cos 𝜃 = − 1
𝑅E
𝜕𝜃

(
𝛿𝑝

𝜌0
+𝑈T

)
, (3.31)

𝜕𝑡𝑉𝜆 + 2Ω𝑉𝜃 cos 𝜃 + 2Ω𝑉𝑟 sin 𝜃 = − 1
𝑅E sin 𝜃

𝜕𝜆

(
𝛿𝑝

𝜌0
+𝑈T

)
, (3.32)

𝜕𝑡𝑉𝑟 − 2Ω𝑉𝜆 sin 𝜃 = − 1
𝐻𝜌0

𝜕𝑥𝛿𝑝 − 𝑔
𝛿𝜌

𝜌0
− 1
𝐻
𝜕𝑥𝑈T. (3.33)
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The parcel’s displacement in one direction is dependent on the characteristic length
scale of the atmosphere in that direction. As such, with the adopted thin-shell approx-
imation (CL69), the vertical acceleration 𝑉𝑟 is neglected in the momentum constituent
equations. Furthermore, we adopt the traditional approximation (e.g., Unno et al., 1989;
Mathis et al., 2008), thus ignoring the Coriolis coupling terms between the equations.
Furthermore, for the vertical momentum equation, this amounts to assuming the hydro-
static approximation for the tidal perturbation in addition to the background profiles7.
This approximation is justified as long as the buoyancy term given by −𝑔𝛿𝜌/𝜌0 is
strong compared to the Coriolis term in the vertical direction; and as long as the tidal
velocity is essentially horizontal. For further details on the reasoning and the valid-
ity behind these approximations, the reader is referred to CL69, Unno et al. (1989),
Mathis and Le Poncin-Lafitte (2009), Tort and Dubos (2014), Prat et al. (2016), and
Auclair-Desrotour (2016).

We continue our system’s linearization to obtain for the mass conservation,

𝜕t𝛿𝑝 +
1
𝐻
𝜕𝑥 (𝜌0𝑉𝑟) = − 𝜌0

𝑅E sin 𝜃
[𝜕𝜃 (sin 𝜃𝑉𝜃) + 𝜕𝜆𝑉𝜆] , (3.34)

and for the heat transport equation,

𝐶p

Γ1

(
𝜕𝑡𝛿𝑇 + 1

𝐻

𝑑𝑇0
𝑑𝑥
𝑉𝑟

)
=
𝑔𝐻

𝜌

(
𝜕𝑡𝛿𝜌 +

1
𝐻

𝑑𝜌0
𝑑𝑥
𝑉𝑟

)
+ 𝐽. (3.35)

Along with the aforementioned approximations, we further ignore the gravitational tide
as its effect is negligible compared to the thermal counterpart. In sum, the perturbed
and linearized system of momentum and mass conservation, and heat transfer governing

7We note that the hydrostatic approximation is implicitly applied to both components, the tidal
perturbation and the background profile, in GCMs solving the hydrostatic primitive equations (e.g., LMD
GCM, Hourdin et al., 2006).
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the dynamics of tidal waves under the ideal gas law reads:

𝜕𝑡𝑉𝜃 − 2Ω𝑉𝜆 cos 𝜃 = − 1
𝑅E
𝜕𝜃
𝛿𝑝

𝜌0
, (3.36)

𝜕𝑡𝑉𝜆 + 2Ω𝑉𝜃 cos 𝜃 = − 1
𝑅E sin 𝜃

𝜕𝜆
𝛿𝑝

𝜌0
, (3.37)

0 = − 1
𝐻𝜌0

𝜕𝑥𝛿𝑝 − 𝑔
𝛿𝜌

𝜌0
, (3.38)

𝜕t𝛿𝑝 +
1
𝐻
𝜕𝑥 (𝜌0𝑉𝑟) = − 𝜌0

𝑅E sin 𝜃
[𝜕𝜃 (sin 𝜃𝑉𝜃) + 𝜕𝜆𝑉𝜆] , (3.39)

𝐶p

Γ1

(
𝜕t𝛿𝑇 + 1

𝐻

𝑑𝑇0
𝑑𝑥
𝑉𝑟

)
=
𝑔𝐻

𝜌0

(
𝜕t𝛿𝜌 +

1
𝐻

𝑑𝜌0
𝑑𝑥
𝑉𝑟

)
+ 𝐽 , (3.40)

𝛿𝑝

𝑝0
=
𝛿𝑇

𝑇0
+ 𝛿𝜌
𝜌0
. (3.41)

The analytical treatment of this system is classical in the literature, and best depicted
in CL69. It follows that the variation of the Lagrangian pressure 𝐺 is adopted as a
convenient quantity in tidal theory. It is defined as:

𝐺 = − 1
Γ1𝑝0

(
𝜕𝑡𝛿𝑝 +

1
𝐻

𝑑𝑝0
𝑑𝑥
𝑉𝑟

)
. (3.42)

Next, the tidal response, assumed to be linear to thermal forcing, is Fourier-decomposed
in time and longitude using the tidal frequency 𝜎 and the longitudinal order 𝑚. Thus all
the physically varying quantities take the form:

𝑓 =
∑︁
𝜎,𝑚

𝑓 𝜎,𝑚 (𝑥, 𝜃)𝑒𝑖(𝜎𝑡+𝑚𝜆) . (3.43)

We refer the reader to CL69 for the full and classic procedure that follows; a procedure
that leads to the decomposition of the response into a horizontal component described
by the Laplace tidal equation (see Section 2.3.2), where the Hough functions {Θ𝑛 (𝜃)}
serve as eigenfunctions8, and a vertical component characterized by the vertical structure
equation. The two equations are coupled by the eigenvalues {Λ𝑛} defined in Section
2.3.2, where for each mode of index 𝑛 an equivalent depth ℎ𝑛 is defined as

ℎ𝑛 =
𝑅E𝜎

2

𝑔Λ𝑛
. (3.44)

8We note that unlike the case of the global ocean model, the Hough functions and their associated
eigenvalues are in this case real.
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As such, the coefficients of the Fourier expansion in of each variable in Eq. (3.43) are
expanded in terms of the Hough eigenfunctions whereby

𝑓 𝜎,𝑚 =
∑︁
𝑛∈Z

𝑓 𝜎, 𝑚𝑛 (𝑥) Θ𝜎, 𝑚𝑛 (𝜃). (3.45)

Essential to the tidal model we develop next is the vertical structure equation, which is
obtained by straightforward manipulations of Eqs. (3.38) and (3.39). It reads as:

𝐻𝜕𝑧𝑧𝐺
𝜎,𝑚 +

(
𝑑𝐻

𝑑𝑧
− 1

)
𝜕𝑧𝐺

𝜎,𝑚 =
𝑔

𝑅2
E𝜎

2
L𝜎,𝑚

[(
𝑑𝐻

𝑑𝑧
+ 𝜅

)
𝐺𝜎,𝑚 − 𝜅𝐽𝜎,𝑚

Γ1𝑔𝐻

]
, (3.46)

where the horizontal operator L𝜎,𝑚 is the same operator9 defined in Eq. (2.118). The
vertical structure equation is an in-homogeneous equation which, given two boundary
conditions at the ground and the uppermost layer, has a unique solution for the vertical
structure for each Hough mode. We follow the common practice of reducing it to a
canonical form by a change of variables defined as:

𝑦𝑛 (𝑥) = 𝐺𝑛 (𝑥)𝑒−𝑥/2. (3.47)

Thus the vertical structure equation becomes:

𝑑2𝑦𝑛

𝑑𝑥2 + �̂�2
𝑥;𝑛 (𝑥)𝑦𝑛 =

𝜅𝐽𝑛

Γ1𝑔ℎ𝑛
𝑒−𝑥/2 (3.48)

where the dimensionless vertical wavenumber �̂�𝑥;𝑛 is defined by

�̂�2
𝑥;𝑛 =

1
4

[
4
ℎ𝑛

(
𝜅𝐻 + 𝑑𝐻

𝑑𝑥

)
− 1

]
. (3.49)

The vertical structure equation thus reduces to an equation describing a forced harmonic
oscillator with a wavenumber that determines the nature of tidal waves. We will come
back to the wavenumber characterization later when we extend the theory to build our
mode.

For now, we close this section by moving to the solution of the perturbed quantities, which
are easily obtained, for each Hough and Fourier mode, from the system of equations
(3.36-3.41), after solving the vertical structure equation for 𝑦(𝑥). We hereafter drop
the subscripts and superscripts identifying the modes. Of particular interest is the
delayed mass redistribution resulting from the thermal forcing and generating the tidal

9in the case where 𝜎R = 0.
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torque. With the hydrostatic balance imposed, i.e. with the pressure and gravitational
forces exactly compensating each other, and assuming that the Earth is rigid enough to
support atmospheric variations without noticeable distortions, it follows that the mass
distribution is directly proportional to the surface pressure variation, which we denote
by 𝛿𝑝s. The latter can be retrieved from the solution of the pressure perturbation10:

𝛿𝑝(𝑥) = 𝑝0(0)
𝐻

[
Γ1ℎ

𝑖𝜎
𝑒−𝑥/2

(
𝑑𝑦(𝑥)
𝑑𝑥

− 1
2
𝑦(𝑥)

)]
. (3.50)

The velocity field components on the other end read as:

𝑉𝑟 = Γ1ℎ𝑒
𝑥/2

[
𝑑𝑦

𝑑𝑥
+

(
𝐻

ℎ
− 1

2

)
𝑦

]
, (3.51)

𝑉𝜃 =
Γ1ℎ𝑝0(0)
𝑅E𝐻𝜎2 𝑒−𝑥/2

(
𝑑𝑦

𝑑𝑥
− 1

2
𝑦

)
, (3.52)

𝑉𝜆 = 𝑖
Γ1ℎ𝑝0(0)
𝑅E𝐻𝜎2 𝑒−𝑥/2

(
𝑑𝑦

𝑑𝑥
− 1

2
𝑦

)
. (3.53)

The generated tidal torque T about the Earth’s spin axis is obtained by integrating the
gravitational force exerted by the tidal bulge over the spherical domain S. Hence for the
thin atmospheric shell under study it is expressed as (e.g., Zahn, 1966; Auclair-Desrotour
et al., 2019b):

T =
𝑅2

E
𝑔

∫
S
𝜕𝜆𝑈T𝛿𝑝s𝑑Ω, (3.54)

where 𝑑Ω is the solid angle. Expanding both the pressure anomaly and the tidal
pontential and picking up the semi-diurnal component (𝑙 = 𝑚 = 2), we end up with
the familiar expression of the quadrupolar torque in the thin layer approximation (e.g.,
Leconte et al., 2015; Auclair-Desrotour et al., 2019b):

T =

√︂
24𝜋

5
𝑀⊙
𝑀E

𝑅6
E
𝑎3 Im{𝛿𝑝s}, (3.55)

where 𝑀⊙ is the solar mass. Having dropped the modal and harmonic indices, we
emphasize here that 𝛿𝑝s is the frequency-dependent semi-diurnal component of the
surface pressure anomaly. Eq. (3.55) shows that the magnitude of the torque is fully
determined by the magnitude of the complex quantity 𝛿𝑝s, in analogy to the oceanic tides
where we characterized the torque by the imaginary part of the Love number (see for

10 For the solutions of the perturbed quantities, we adopt the exact equations laid down in Chapman and
Lindzen (1969), which were developed in the adiabatic case. With our inclusion of radiative cooling, the
solutions in the diabatic case are expected to be dependent on the frequency 𝜎0, as established in Auclair-
Desrotour and Leconte (2018). We proceed as such cautiously, leaving the self-consistent treatment to
the following stage of the work.



Chapter 3. A fixed Precambrian LOD for the Earth? 162

example Section 2.3.2). Furthermore, the action of the torque is fully dependent on the
sign of the imaginary part of the pressure anomaly. Namely, when sign (Im{𝛿𝑝s}) < 0,
the thermal torque is pushing the Earth in the direction of spin-orbit synchronization by
depleting its rotational angular momentum budget, i.e., the thermal torque complements
the oceanic tidal torque. In contrast, when sign (Im{𝛿𝑝s}) > 0, the thermal torque
pushes the Earth away from synchronization by accelerating its spin rate, thus opposing
the effect of solid-oceanic tides. Recalling the rotational stabilization scenario, we thus
require a positive, and certainly large, surface pressure anomaly.

3.3 Thermal tide of a neutrally stratified atmosphere

We are interested in recovering an analytical expression of the frequency-dependent
tidal torque in the limit of a neutrally stratified atmosphere (Section 3.2.1.1). Similar
analytical expressions of the tidal perturbations, and consequently the torque, are only
possible in few cases where assumptions are imposed on the atmospheric structure
and the forcing. An example that is essential to our work is the solution provided in
ALM19. The main assumption of the analytical model in ALM19 – along with the
other assumptions we listed earlier – is the isothermal profile of the atmosphere, with
which the authors managed to capture the essential features of the GCM-generated tidal
spectrum. However, the Lamb resonance predicted analytically was characterized by
two opposite peaks, mismatching the asymmetry of their GCM results (Figure 3.3, right
panel). In dialogue with the latter, we present next our tidal model, specifically aiming
at unravelling the asymmetry. Before embarking on the details of our model, and in
dialogue with the analytical model in ALM19, we highlight our model’s key ingredients.

3.3.1 Dissipative radiative transfer

In the dynamical model described hitherto, the thermal energy absorbed by the at-
mosphere is fully converted into the dynamics of tidal waves and thermal variations.
However, in reality, thermal oscillations of a gas depend on its temperature and are
associated with thermal losses. A thermally forced atmospheric layer thus releases heat
into space, the ground, or into neighboring layers. This process of thermal cooling has
been traditionally ignored in the case of diurnal and semi-diurnal tides on Earth since
its signature on the redistribution of mass is at least an order of magnitude lower than
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the other dynamical effects. Nevertheless, the significance of this mechanism was high-
lighted for atmospheres of planets near synchronization. Namely, the classical theory of
non-dissipative, adiabatic tides predicts a singular response at synchronization, with the
amplitude of pressure, density, and temperature perturbation diverging (This divergence
can be observed in Figure 7 of Dobrovolskis and Ingersoll, 1980). For instance, the
tidal response of Venus was studied by Correia and Laskar (2001) who characterized
two possible regimes: a regime far from synchronization, where dissipative processes
can be ignored; and a regime in the vicinity of synchronization, where the perturbations
should annihilate themselves. This behavior was confirmed using the GCM simulations
in Leconte et al. (2015).

In our case study of the Earth, although we are far from synchronization, a similar singular
behavior of the response is expected at the Lamb resonance (Zahnle and Walker, 1987;
Auclair-Desrotour et al., 2019b), unless we allow for dissipation to cap the peak. We
thus introduce radiative losses, denoted by 𝐽rad, in the dynamics of atmospheric tides,
particularly in the heat equation (Eq. 3.40). Building on the pioneering work of Lindzen
and McKenzie (1967) on Newtonian cooling, and the work of Auclair-Desrotour et al.
(2017a) and Auclair-Desrotour and Leconte (2018), thermal losses (heat per unit mass)
are expressed as:

𝐽rad(𝑧, 𝛿𝑇) = 𝐶p𝜎0(𝑧)𝛿𝑇 (3.56)

Thermal losses are here parameterized by the characteristic frequency𝜎0, which we shall
call the radiative frequency, indicative of the radiative cooling time. An evident caveat
in this dissipative approximation is the linear dependence of 𝐽rad on the temperature
perturbation, which can be interpreted as an optically thin layer approximation (Auclair-
Desrotour et al., 2017a). Indeed, this term corresponds to the behaviour of a gray
body atmosphere where radiation escapes to space. However, the flux emitted by a
single layer is naturally absorbed by the neighboring layers, inducing nonlinear thermal
coupling. This is true specifically for optically thick atmospheres. However, accounting
for such a complex mechanism would make the dynamical equations a hard beast to
handle analytically. Newtonian cooling should thus be used with caution as a convenient
approximation of thermal radiation, perhaps justified by matching with GCM numerical
simulations run with more realistic descriptions of radiative transfer11 (Leconte et al.,
2015).

11Radiative transfer is computed consistently using the method of correlated-k distributions (e.g., Lacis
and Oinas, 1991) both in Leconte et al. (2015) and in Auclair-Desrotour et al. (2019b), who used the LMD
GCM (Hourdin et al., 2006) with similar physical setups.
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The radiative frequency 𝜎0 can vary with the atmospheric altitude (Pollack and Young,
1975). However, following Lindzen and McKenzie (1967), we consider the limiting case
where the radial profile of 𝜎0 is assumed to be uniform. An effective value computed
by Leconte et al. (2015) with a GCM in the case of Venus is 𝜎0 = 7.5× 10−7 s−1. In our
case, we allow 𝜎0 to be a free parameter. With the added thermal radiation term, the
heat equation is re-written as:

𝐶p

Γ1

(
𝜕t𝛿𝑇 + 1

𝐻

𝑑𝑇0
𝑑𝑥
𝑉𝑟

)
=
𝑔𝐻

𝜌0

(
𝜕t𝛿𝜌 +

1
𝐻

𝑑𝜌0
𝑑𝑥
𝑉𝑟

)
+ 𝐽 − 𝐽rad. (3.57)

This slight modification is deceivingly simple, as it induces drastic variations in the
vertical structure equation. Without going into the gory details of that procedure, we
provide the final form of the vertical structure equation which finally reads as (Lindzen
and McKenzie, 1967):

𝑑2𝑦

𝑑𝑥2 + 𝜎

𝜎 − 𝑖𝜎0

{
1
ℎ

𝑑𝐻

𝑑𝑥
+ 𝜅𝐻
ℎ

− 1
4
− 𝑖𝜎0

2𝜎

[
1
𝐻

𝑑𝐻

𝑑𝑥
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2
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𝐻

𝑑𝐻2

𝑑𝑥2 − 1
𝐻2

(
𝑑𝐻

𝑑𝑥

)2
+ 𝑖𝜎0
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× 1
𝐻

𝑑𝐻

𝑑𝑥

(
1

2𝐻
𝑑𝐻

𝑑𝑥

) ]}
𝑦 =

𝜅𝐽

Γ1𝑔ℎ

𝜎

𝜎 − 𝑖𝜎0
exp

{
−1

2

[
𝑥 −

∫ 𝑥

0

𝑖𝜎0
𝐻𝜎

𝑑𝐻

𝑑𝑥

𝜎

𝜎 − 𝑖𝜎0
𝑑𝑥

]}
.

(3.58)

3.3.2 Thermal forcing profile

To solve the vertical structure equation in the form given by Eq. (3.58), it is necessary to
define a vertical profile for the tidal heating power per unit mass 𝐽. As the atmosphere
is optically thin in the visible, most of the Solar flux impinging on the Earth reaches the
ground. The ground returns the absorbed energy to the atmosphere with a delay due
to thermal inertia. Three exchange mechanisms are activated between the atmosphere
and the surface. First, the major part of the absorbed Solar flux is re-emitted by the
surface in the infrared, where part of it is absorbed by greenhouse gases filling the
lowermost layers of the atmosphere, and the rest escapes towards space. Another part
of the energy is transmitted to the atmosphere in the form of sensible heat, and due to
the presence of water on Earth another part is given in the form of latent heat, both heat
exchanges occurring in the planetary boundary layer near the surface (Pierrehumbert,
2010). Similar to Dobrovolskis and Ingersoll (1980) and following Lindzen et al. (1968)
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and Auclair-Desrotour et al. (2019b), we adopt a tidal heating profile of the form:

𝐽 (𝑥) = 𝐽s𝑒
−𝑏J𝑥 , (3.59)

where 𝐽s is the heat absorbed at the surface, and 𝑏J is a dimensionless skin thickness that
characterizes the decay of heating along the vertical coordinate. This functional form
of 𝐽 is consistent with the assumption that heat fluxes are absorbed near the planet’s
surface. Besides, it allows the distribution of heat per unit mass to vary between the
Dirac distribution adopted by Dobrovolskis and Ingersoll (1980) where 𝑏J → ∞, and
a uniform distribution where the whole air column is uniformly tidally forced in the
limit 𝑏J = 0. The decay is described by an exponential function to ease mathematical
manipulations, noting that this choice allows us to preserve the form of the right-hand
member of the wave equation (3.58).

The atmosphere is thus predominantly heated by the upward propagating radiative flux
emitted by the surface in the infrared. To determine 𝐽s, we invoke its dependence on the
total propagating flux 𝛿𝐹tot by computing the energy budget over the air column. The net
input of energy corresponds to the difference between the amount of flux absorbed by
the column and associated with a local increase of thermal energy, and the amount that
escapes into at the upper boundary into space. We quantify the fraction of energy actually
transferred to the atmosphere and that is consequently available for tidal dynamics by
𝛼A, where 0 ≤ 𝛼A ≤ 1; the rest of the flux amounting to 1 − 𝛼A is radiated towards
space. We thus have ∫ ∞

0
𝐽 (𝑥)𝜌0(𝑥)𝐻 (𝑥)𝑑𝑥 = 𝛼A𝛿𝐹tot . (3.60)

The background distributions of the pressure, density, and temperature in the neutrally
stratified atmosphere are expressed as (Auclair-Desrotour, 2016)

𝑝0(𝑥) = 𝑝0(0)𝑒−𝑥 , 𝜌0(𝑥) =
𝑝0(0)
𝑔𝐻 (0) 𝑒

(𝜅−1)𝑥 , 𝑇0(𝑥) =
𝑔𝐻 (0)
Rs

𝑒−𝜅𝑥 , (3.61)

while the vertical distribution of the pressure height scale follows

𝐻 (𝑥) = 𝐻 (0)𝑒−𝜅𝑥 . (3.62)

These distributions allow us to write the heat absorbed at the surface as:

𝐽s =
𝛼A𝑔(𝑏J + 1)

𝑝s(0)
𝛿𝐹tot. (3.63)
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To completely define 𝐽s, we still have to define the total flux 𝐹tot. To do so, we establish
the power flux budget for a small thermal perturbation at the planetary surface. We
start with 𝛿𝐹inc, a variation of the effective incoming stellar flux – after the reflected
component has been removed – absorbed at the surface. 𝛿𝐹inc generates a variation 𝛿𝑇s

in the surface temperature 𝑇s. This variation induces radiative emission with magni-
tude 𝛿𝐹rad. A fraction of the incident power, 𝛿𝑄gr, is then transmitted to the ground
by thermal conduction, and another fraction, 𝛿𝑄atm, is transmitted to the atmosphere
through turbulent thermal diffusion. Finally, as the atmosphere is heated surface thermal
forcing, it undergoes radiative cooling, in a similar fashion to the surface. We denote the
atmospheric flux impinging upon the surface by 𝛿𝐹atm. Under these definitions, 𝛿𝐹tot is
expressed as

𝛿𝐹tot = 𝛿𝐹inc − 𝛿𝑄gr. (3.64)

Having isolated these thermal mechanisms, the total power budget of the thermal per-
turbation at the surface interface is expressed as12:

𝛿𝐹inc − 𝛿𝑄gr = 𝛿𝑄atm + 𝛿𝐹rad − 𝛿𝐹atm. (3.65)

The surface radiative emission can be obtained by differentiating the Stefan-Boltzmann
law as a function of the surface temperature assuming that the surface radiates as a black
body. We thus obtain

𝛿𝐹rad = 4𝜎SB𝑇
3
s 𝛿𝑇s, (3.66)

in the blackbody approximation, with𝜎SB being the Stephan-Botlzmann constant. With-
out any serious loss of generality, and justified by the small magnitude of the atmospheric
emission towards the surface, one can assume that 𝛿𝐹atm is also proportional to 𝛿𝑇s, and
combine the two radiative terms 𝛿𝐹rad and 𝛿𝐹atm into a single term with an effective
emissivity 𝜖R. This assumption can follow from: i) the fact that the bulk atmosphere
responsible for the greenhouse effect is formed by the lowermost atmospheric layers
where temperature oscillations are close to the surface temperature oscillations 𝛿𝑇s;
ii) the fact that energy given to the atmosphere is a fraction of 𝛿𝐹rad, and the flux 𝛿𝐹atm

is a fraction of this input energy, which implies it should have the same form of 𝛿𝐹rad,
up to a scaling factor.

For our purposes, it suffices to compute the difference 𝛿𝐹inc − 𝛿𝑄gr. To do so, we
define the thermal exchanges 𝛿𝑄gr and 𝛿𝑄atm associated with the diffusive process by
the gradient of temperature in the vicinity of the surface using the gradient-flux theory

12at this stage of the work, we ignore latent heat exchanges associated with changes of states.
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(e.g., Garratt, 1994). Namely,

𝛿𝑄gr(𝑡) = 𝑘gr
𝜕𝑇

𝜕𝑧

�����
𝑧=0−

, (3.67)

𝛿𝑄atm(𝑡) = −𝑘atm
𝜕𝑇

𝜕𝑧

�����
𝑧=0+

. (3.68)

In these definitions, 𝑘gr and 𝑘atm are, respectively, the thermal conductivities of the
ground and the atmosphere at the interface. We further define the corresponding diffu-
sivities as:

𝐾gr =
𝑘gr

𝜌0(0−)𝐶gr
and 𝐾atm =

𝑘atm
𝜌0(0+)𝐶p

, (3.69)

where 𝐶gr is, in analogy to 𝐶p in the atmosphere, the thermal capacity per unit mass of
the ground. With these definitions, the power budget balance in Eq. (3.65) is re-written
as:

𝛿𝐹inc − 𝑘gr
𝜕𝑇

𝜕𝑧

�����
𝑧=0−

= −𝑘atm
𝜕𝑇

𝜕𝑧

�����
𝑧=0+

+ 4𝜖R𝜎SB𝑇
3
s 𝛿𝑇s. (3.70)

Temperature variations near the surface can be traced by the heat transport equations
(e.g., Chapman and Lindzen, 1969)

𝜕𝛿𝑇

𝜕𝑡
= 𝐾gr

𝜕2𝛿𝑇

𝜕𝑧2 for 𝑧 < 0 , (3.71)

𝜕𝛿𝑇

𝜕𝑡
= 𝐾atm

𝜕2𝛿𝑇

𝜕𝑧2 for 𝑧 > 0 . (3.72)

which in the frequency domain read

𝑖𝜎𝛿𝑇 = 𝐾gr
𝜕2𝛿𝑇

𝜕𝑧2 for 𝑧 < 0 , (3.73)

𝑖𝜎𝛿𝑇 = 𝐾atm
𝜕2𝛿𝑇

𝜕𝑧2 for 𝑧 > 0 . (3.74)

These equations have solutions in the form:

𝛿𝑇 (𝑧) = 𝛿𝑇s exp
{
(1 + 𝑖𝑠)𝑥/𝛿𝜎gr

}
for 𝑧 ≤ 0 , (3.75)

𝛿𝑇 (𝑧) = 𝛿𝑇s exp
{
−(1 + 𝑖𝑠)𝑧/𝛿𝜎atm

}
for 𝑧 > 0 , (3.76)

where we use 𝑠 = sign(𝜎), and we denote by the pair 𝛿𝜎gr and 𝛿𝜎atm the skin thicknesses of
heat transport by thermal diffusion in the ground and the atmosphere. We define them
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as:

𝛿𝜎gr =

√︄
2𝐾gr

|𝜎 | and 𝛿𝜎atm =

√︄
2𝐾atm
|𝜎 | . (3.77)

The incident flux 𝛿𝐹inc and the temperature variation 𝛿𝑇s are essentially directly pro-
portional. We denote this proportionality by the boundary layer transfer function B𝜎

gr;
namely:

𝛿𝑇s = B𝜎
gr𝛿𝐹inc. (3.78)

To obtain the explicit form of B𝜎
gr, we substitute the solutions 𝛿𝑇 (𝑥) into the power

balance equation (3.70). By straightforward manipulation we get:

B𝜎
gr =

{(
4𝜖R𝜎SB𝑇

3
s

) [
1 + (1 + 𝑠𝑖)

√︁
𝜏bl |𝜎 |

]}−1
, (3.79)

which is identical to the form deduced in Auclair-Desrotour et al. (2017a). In this transfer
function, we defined the timescale 𝜏bl as:

𝜏bl =
1
2

(
𝐼gr + 𝐼atm

4𝜖R𝜎SB𝑇
3
s

)2
, (3.80)

where the functions 𝐼gr and 𝐼atm denote, respectively, the thermal inertia13 of the ground
and the atmospheric surface layer, specifically they are given as:

𝐼gr = 𝜌0(0−)𝐶gr
√︁
𝐾gr and 𝐼atm = 𝜌0(0+)𝐶p

√︁
𝐾atm . (3.81)

With these definitions, 𝜏bl can be interpreted as a characteristic timescale of the surface
thermal response. Namely, it is a diffusive timescale, which accounts for diffusion
in the ground and in the atmospheric surface layer. It grows quadratically with the
soil and atmospheric thermal inertias. We associate with 𝜏bl the frequency 𝜎bl = 𝜏

−1
bl , a

characteristic frequency that we use hereafter to parametrize the function B𝜎
gr, and which

reflects the thermal properties of the diffusive boundary layer. It will serve as the second
free parameter of our tidal model, the first being the dissipative frequency 𝜎0. From
Eq. (3.79), it is evident that 𝜎bl will play a significant role in the tidal response of the
Earth. Namely, the ratio 𝜎/𝜎bl determines the angular delay of the ground temperature
variations. As discussed in Auclair-Desrotour et al. (2017a), this frequency is used to
explain the position of the diurnal peak observed in the surface temperature oscillations

13The term thermal inertia could be confusing at first glance, One can argue that this definition does
not look identical to the usual expression thermal inertia in the literature, which is the square root of the
product of the conductivity and the heat capacity per unit volume (e.g.m Hourdin et al., 1993). However,
considering that the diffusivity is the conductivity divided by the heat capacity per unit volume, we recover
the well-known definition of the thermal inertia.
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being roughly three hours late with respect to the midday point. For our study of the
global tidal response, the frequency ratio determines whether the ground response is
synchronous with the thermal excitation (when 𝜎 ≪ 𝜎bl), meaning thermal inertias
vanish, the soil and the surface layer cannot store energy, and the ground response is
instantaneous; or if due to the combination of thermal inertias, the energy reservoir of
the ground is huge, and the ground response lags the excitation, imposing another shift in
the tidal bulge (when 𝜎 ≳ 𝜎bl). This signature of 𝜎bl will be later reaped in our attempt
to explain the Lamb resonance asymmetry. But we are getting ahead of ourselves, so
without further ado, we finalize defining the thermal forcing profile.

With the definition of B𝜎
gr, we re-write the temperature profile solution of Eq. (3.75) as:

𝛿𝑇 (𝑧) = B𝜎
gr exp

{
(1 + 𝑖𝑠)𝑧/𝛿gr

}
𝛿𝐹inc for 𝑧 ≤ 0 , (3.82)

which upon derivation gives:

𝜕𝑇

𝜕𝑧

�����
𝑧=0−

=
B𝜎

gr(1 + 𝑖𝑠)
𝛿gr

𝛿𝐹inc. (3.83)

Substituting the latter in Eq. (3.67) we obtain:

𝛿𝑄gr =
𝑘gr√︁
2𝐾gr

√︁
|𝜎 |B𝜎

gr𝛿𝐹inc . (3.84)

By virtue of the power budget balance in Eq. (3.70), we finally obtain for 𝛿𝐹tot (Eq. 3.64):

𝛿𝐹tot = 𝛿𝐹inc

[
1 −

𝑘gr√︁
2𝐾gr

√︁
|𝜎 |B𝜎

gr(1 + 𝑠𝑖)
]
. (3.85)

What remains for us to complete characterizing the thermal forcing profile is to explicitly
define the incident flux 𝛿𝐹inc. As we are considering the semi-diurnal forcing, we aim to
extract the quadrupolar contribution from 𝛿𝐹inc (hereafter denoted by 𝐹 for convenience).
We start by expressing the day-night periodically varying flux 𝐹 as:

𝐹 =


𝐹∗ cosΘ, for 0 ≤ Θ ≤ 𝜋/2

0, otherwise ,
(3.86)

where 𝐹∗ = 𝐿∗/4𝜋𝑎2, 𝐿∗ being the stellar luminosity, 𝑎 the star-planet distance, and Θ

is the zenith angle. To obtain the quadrupolar component of the thermal forcing we first
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expand 𝐹 in Legendre Polynomials:

𝐹 (Θ) =
∞∑︁
𝑙=0

𝐹𝑙𝑃𝑙 (cosΘ), (3.87)

where the expansion coefficients are given by

𝐹𝑙 =
2𝑙 + 1

2

∫ 𝜋/2

0
𝐹 (Θ)𝑃𝑙 (cosΘ) sinΘ𝑑Θ ,

=
2𝑙 + 1

2

∫ 𝜋/2

0
𝐹∗𝑃𝑙 (cosΘ) sinΘ cosΘ𝑑Θ. (3.88)

Next, using the addition theorem, we write the Legendre Polynomials as series of
spherical harmonics:

𝑃𝑙 (cosΘ) = 4𝜋
2𝑙 + 1

𝑚=𝑙∑︁
𝑚=−𝑙

𝑌𝑙𝑚 (𝜃, 𝜆)𝑌 ∗
𝑙𝑚 (𝜃S, 𝜆S) , (3.89)

where the asterisk corresponds to complex conjugation and the coordinates (𝜃S, 𝜆S) =
[𝜋/2, (Ω − 𝑛S)t] define the position of the Sub, 𝑛S being its orbital mean motion. Thus
we have:

𝐹 (Θ) =
∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝐶𝑙𝐹𝑙𝑌𝑙𝑚 (𝜃, 𝜆)𝑌 ∗
𝑙𝑚 (𝜃S, 𝜆S) , (3.90)

where we have defined 𝐶𝑙 = 4𝜋/(2𝑙 + 1). Using the definition of spherical harmonics

𝑌𝑙𝑚 = 𝑁𝑙𝑚𝑃𝑙𝑚𝑒
𝑖𝑚𝜆, (3.91)

with

𝑁𝑙𝑚 =

√︄
(2𝑙 + 1) (𝑙 − 𝑚)!

4𝜋(𝑙 + 𝑚)! , (3.92)
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we re-write Eq. (3.90) as:

𝐹 (Θ) =
∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝛾𝑙𝑚 (𝜃) exp[𝑖𝑚(Λ𝑡 + 𝜆)]

=

∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝛾𝑙𝑚 (𝜃) cos[𝑚(𝜈𝑡 + 𝜆)] + 𝑖
∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝛾𝑙𝑚 (𝜃) sin[𝑚(𝜈𝑡 + 𝜆)]

=

∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝛾𝑙𝑚 (𝜃) cos[𝑚(𝜈𝑡 + 𝜆)] + 𝑖
∞∑︁
𝑙=0

𝑚=−1∑︁
𝑚=−𝑙

𝛾𝑙𝑚 (𝜃) sin[𝑚(𝜈𝑡 + 𝜆)]

+ 𝑖
∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=1

𝛾𝑙𝑚 (𝜃) sin[𝑚(𝜈𝑡 + 𝜆)]

=

∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝛾𝑙𝑚 (𝜃) cos[𝑚(𝜈𝑡 + 𝜆)] + 𝑖
∞∑︁
𝑙=1

𝑚=𝑙∑︁
𝑚=1

sin[𝑚(𝜈𝑡 + 𝜆)] [𝛾𝑙𝑚 (𝜃) − 𝛾𝑙−𝑚 (𝜃)] ,

where we have defined 𝛾𝑙𝑚 (𝜃) = 𝐶𝑙𝐹𝑙𝑁2
𝑙𝑚
𝑃𝑙𝑚 (cos 𝜃)𝑃𝑙𝑚 (0), and 𝜈 = Ω − 𝑛S. Next we

note that

𝛾𝑙𝑚 (𝜃) − 𝛾𝑙−𝑚 (𝜃) = 𝐶𝑙𝐹𝑙
[
𝑁2
𝑙𝑚𝑃𝑙𝑚 (cos 𝜃)𝑃𝑙𝑚 (0) − 𝑁2

𝑙−𝑚𝑃𝑙−𝑚 (cos 𝜃)𝑃𝑙−𝑚 (0)
]
= 0,
(3.93)

by virtue of the equality

𝑃𝑙−𝑚 = (−1)𝑚 (𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃𝑙𝑚 . (3.94)

Thus 𝐹 (Θ) is written as the real part of the thermal forcing function in the Fourier
domain, �̃� (Θ) which is defined as:

�̃� (Θ) =
∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝛾𝑙𝑚 (𝜃)𝑒𝑖𝑚(𝜈+𝜆) . (3.95)

Finally we retrieve the quadrupolar component of the forcing in the form:

�̃�22(𝜃) =
15

128
𝐹∗ sin2(𝜃)𝑒𝑖(𝜎22𝑡+2𝜆) . (3.96)

Combined with Eq. (3.85), the latter equation allows us to express the heat absorbed at
the surface 𝐽s of Eq. (3.63) in its final form as:

𝐽s =
15

128
𝐹∗
𝛼A𝑔(𝑏J + 1)

𝑝s(0)

[
1 −

𝑘gr√︁
2𝐾gr

√︁
|𝜎 |B𝜎

gr(1 + 𝑠𝑖)
]
. (3.97)
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Figure 3.7: Convergence test of the harmonic decomposition of the thermal forcing
function 𝐹 (Θ) with amplitude 𝐹∗ = 1.

3.3.3 Tidal response: the asymmetric Lamb resonance

Now we are fully geared to establish the tidal response. As elucidated in Section
(3.2.1.1), we adopt the neutral stratification scenario, 𝑁2 = 0, and we recall that

𝜅𝐻 = −𝑑𝐻
𝑑𝑥
. (3.98)

We impose this condition on the vertical structure equation Eq. (3.58), further substitut-
ing for 𝐽 its definition of Eq. (3.59). It is then straightforward then to recast the vertical
structure equation into a simpler one of the form:

𝑑2𝑦

𝑑𝑥2 + �̂�2
𝑥;𝑛𝑦 = 𝛼𝑒

−𝛿𝑥 , (3.99)

where we have defined the square of the radial wave-number as:

�̂�2
𝑥;𝑛 =

1
4

1
�̃� − 𝑖

[
−�̃� + 𝜅2

�̃� − 𝑖 + 𝑖(1 + 2𝜅)
]
, (3.100)

or
�̂�𝑥;𝑛 = ± 1

2(�̃�2 + 1)
[
𝜅�̃� + 𝑖(1 + 𝜅 + �̃�2)

]
. (3.101)

The non-dimensional function 𝛿 is defined as:

𝛿 =
1

2(�̃�2 + 1)
[
(1 + 2𝑏J) (�̃�2 + 1) − 𝜅 + 𝑖𝜅�̃�

]
, (3.102)
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while the forcing function 𝛼 is:

𝛼 =
𝜅𝐽s
Γ1𝑔ℎ

�̃�2 + 𝑖�̃�
�̃�2 + 1

. (3.103)

In these functions, we denote by �̃� the non-dimensional frequency of dissipation.
Namely, we have defined: �̃� = 𝜎/𝜎0. Furthermore, we denote by �̄� the non-dimensional
parameter characterizing the response of the boundary layer. Namely, �̄� =

√︁
|𝜎 |/𝜎bl.

We note that �̄� has not appeared explicitly yet in the preceding equations, but it is
embedded in the definition of 𝐽s. These two non-dimensional frequencies serve as the
free parameters of our tidal model.

Before providing the solution to the vertical structure equation, we take a sneak peek
at wave dynamics through the wavenumber variation. In Figure 3.8 we plot the surface
of the �̂�𝑥;𝑛 as a function of the normalized tidal frequency 𝜔, and the dissipation
frequency𝜎0. For illustrative purposes, we do so for two different atmospheric structures:
the neutrally stratified case that we are studying, and the stably stratified case in the
isothermal limit. It is straightforward to produce the expression of the wavenumber in
the latter case by imposing the condition 𝑑𝐻/𝑑𝑥 = 0 on the vertical structure equation.
Without going through the full procedure, we provide the final form of the imaginary
and real parts of the wavenumber in the isothermal case. They read as:

Im
{
�̂� IS
𝑥;𝑛

}
=

1
√

2


[

1
16

+ 𝜅𝐻𝜎2

ℎ𝑛 (𝜎2 + 𝜎2
0 )

(
𝜅𝐻

ℎ𝑛
− 1

2

)] 1
2

+ 𝜅𝐻𝜎2

ℎ𝑛 (𝜎2 + 𝜎2
0 )

− 1
4


1
2

, (3.104)

Re
{
�̂� IS
𝑥;𝑛

}
=

1
√

2


[

1
16

+ 𝜅𝐻𝜎2

ℎ𝑛 (𝜎2 + 𝜎2
0 )

(
𝜅𝐻

ℎ𝑛
− 1

2

)] 1
2

− 𝜅𝐻𝜎2

ℎ𝑛 (𝜎2 + 𝜎2
0 )

+ 1
4


1
2

. (3.105)

We recall here that the equivalent depth ℎ𝑛 is frequency dependent via Eq. (3.44).
The imaginary part of the wavenumber is significant because it dictates the strength
of the evanescent nature of the tidal waves, while the real part shows the strength of
the propagative modes. In the neutrally stratified scenario, the buoyancy force, which
serves as the restoring force of the gravity waves, vanishes. Thus we only expect non-
propagating evanescent waves, as propagating gravity waves do not exist in convective
layers. This is what we confirm in the surface plot of �̂�𝑥;𝑛: Im

{
�̂�𝑥;𝑛

}
maintains the

same order of magnitude with a very slight window of variation as a function of the
frequencies. In contrast, Re

{
�̂�𝑥;𝑛

}
is orders of magnitude smaller, indicating the absence

of propagating waves. In hindsight, this regime is preferable to better compute the
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Figure 3.8: Surface maps of the logarithm of the imaginary and real parts of the
radial wavenumbers �̂�𝑥;𝑛 and �̂� IS

𝑥 . The former corresponds to the neutrally stratified
case (panels on the left), while the latter corresponds to the isothermal case (panels
on the right). The surfaces are plotted as a function of logarithms of the normalized
tidal frequency 𝜔 = 𝜎/(2𝑛S) and the dissipative frequency 𝜎0. The vertical line in the
isothermal case marks the Lamb frequency given by Eq. (3.106). The plots indicate the
strong evanescent nature of the tidal waves in the neutrally stratified atmosphere, and
the existence of propagating and evanescent modes in the isothermal atmosphere, with
a regime shift around the Lamb frequency.

tidal response. Gravity waves, at least in the adiabatic case, can involve oscillatory
behavior that tend to annihilate the large-scale structure of the tidal response (see for
e.g., Auclair-Desrotour, 2016)14. In contrast, the behavior is different in the isothermal
case: Im

{
�̂� IS
𝑥

}
≪ 1 for a wide range of values of the frequencies (blue to green regions),

indicating a weak evanescent regime. A regime-shift into evanescent modes is evident
for very high 𝜎, i.e., in the fast rotation limit, with the order of magnitude increase in
Im

{
�̂� IS
𝑥

}
(the red region). The position of this regime shift coincides with the Lamb

14It would be interesting to check if they would maintain this behavior when accounting for radiative
cooling.
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frequency, which represents the cut-off frequency of acoustic waves (Auclair-Desrotour
et al., 2017a). This frequency is defined for every horizontal Hough mode 𝑛 as (e.g.,
Chapman and Lindzen, 1969):

𝜎L
𝑛 =

(Λ𝑛Γ1𝑔𝐻)1/2

𝑅E
. (3.106)

We mark with the vertical line the position of this frequency. It is expected that 𝜎L
0

indicate the position of the tidal response resonance in the high frequency regime. The
position is thus mainly dependent on the main gravity mode of the horizontal Hough
modes, the surface temperature through 𝐻, and the planetary radius. The opposite
regime shift is observed in Re

{
�̂� IS
𝑥

}
, indicating strong propagation before the Lamb

resonance, and weak propagation after it. We now proceed to solve the vertical structure
equation in the neutrally stratified limit. Eq. (3.99) admits the general solution

𝑦(𝑥) = 𝐴𝑒𝑖 �̂�𝑥;𝑛𝑥 + 𝐵𝑒−𝑖 �̂�𝑥;𝑛𝑥 + 𝑦p(𝑥), (3.107)

where we obtain the particular solution in the form:

𝑦p(𝑥) =
𝛼

𝛿2 + �̂�2
𝑥;𝑛
𝑒−𝛿𝑥 . (3.108)

Applying the non-divergence boundary condition at the upper most layer of the atmo-
sphere, we set 𝐵 = 0 and choose the proper sign of the wavenumber accordingly, keeping
only the evanescent waves under study. Noting that the imaginary part of �̂�𝑥;𝑛 is always
non-zero due to the included radiative cooling, contrary to the usual non-dissipative case
Chapman and Lindzen (1969). As a consequence, one component of the general solu-
tion of the homogeneous equation tends to infinity at the limit 𝑥 → ∞, while the other
component tends to zero. The second boundary condition is simply a wall condition at
the ground, and it can be expressed as 𝑉𝑟

��
𝑥=0 = 0. Thus from Eq. (3.51) we obtain the

condition15:
𝑑𝑦(0)
𝑑𝑥

+
(
𝐻

ℎ
− 1

2

)
𝑦(0) = 0, (3.109)

which gives us

𝐴 =
𝛼

𝛿2 + �̂�2
𝑥;𝑛

𝛿 − 𝐻/ℎ + 1/2
𝑖 �̂�𝑥;𝑛 + 𝐻/ℎ − 1/2

. (3.110)

15The same comment of footnote 10 applies here.
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Thus the general solution is thus given by:

𝑦(𝑥) = 𝛼

𝛿2 + �̂�2
𝑥;𝑛

[
𝛿 − 𝐻/ℎ + 1/2

𝑖 �̂�𝑥;𝑛 + 𝐻/ℎ − 1/2
𝑒𝑖 �̂�𝑥;𝑛𝑥 + 𝑒−𝛿𝑥

]
. (3.111)

As discussed earlier, to obtain the tidal torque, we compute the pressure anomaly at
the surface 𝛿𝑝s, which is readily obtained from Eq. (3.50) using the general solution of
Eq. (3.111). We thus have

𝛿𝑝s
𝑝s

=
Γ1
𝜎

𝛼

𝛿2 + �̂�2
𝑥;𝑛

𝑖𝛿 − �̂�𝑥;𝑛

𝑖 �̂�𝑥;𝑛 + 𝐻/ℎ − 1/2
. (3.112)

More precisely, the tidal torque is proportional to the imaginary part of 𝛿𝑝s. Obtain-
ing the latter requires tedious but straightforward manipulations. In the process, we
define another non-dimensional parameter, namely 𝛽 = 𝜎2

0 /2𝜎2
D, where the dynamical

frequency 𝜎D =
√︁
𝑔𝐻Λ/𝑅E. Is is clear that 𝛽 quantifies the relative importance of

radiative cooling to the fluid “elasticity". On the other hand, 𝜎D is the typical frequency
of long-wavelength compressibility waves, which are analogous to the long-wavelength
surface gravity waves in the ocean, with the pressure height scale translating to the
uniform oceanic thickness. We finally obtain:

Im
{
𝛿𝑝s
𝑝s

}
=

2𝛼A𝜅𝑔Λ𝛿𝐹22𝛽

𝑅2
E𝑝s(1 + 2�̄� + 2�̄�2)𝜎3

0

𝐶1�̃�
5 + 𝐶2�̃�

4 + 𝐶3�̃�
3 + 𝐶4�̃�

2 + 𝐶5�̃� + 𝐶6

𝐷1�̃�8 + 𝐷2�̃�6 + 𝐷3�̃�4 + 𝐷4�̃�2 + 𝐷5
,

(3.113)
where the numerator polynomial coefficients are given by:

𝐶1 = −2 bJ
2 𝛽 𝐹

𝐶2 = −𝜇gr bJ
2 𝛽 𝑠 �̄� (𝜅 + 2)

𝐶3 = −
(
2 bJ

2 𝛽 + 2 𝛽 𝜅2 − bJ
2 − 4 bJ 𝛽 𝜅

)
𝐹

𝐶4 = −𝜇gr 𝑠 �̄�
(
2 bJ

2 𝛽 + 2 𝛽 𝜅2 + 𝛽 𝜅3 − bJ
2 − 4 bJ 𝛽 𝜅 − 2 bJ 𝛽 𝜅

2 + bJ
2 𝛽 𝜅

)
𝐶5 = (bJ − 𝜅)2 𝐹

𝐶6 = 𝜇gr 𝑠 �̄� (bJ − 𝜅)2,

with
𝐹 = 2 �̄� − 𝜇gr �̄� − 2 𝜇gr �̄�

2 + 2 �̄�2 + 1, (3.114)
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Figure 3.9: Left: Imaginary part of the quadrupolar component of the surface pressure
anomaly as a function of the normalized forcing frequency 𝜔 = (Ω − 𝑛S)/𝑛S. Plotted
are the two curves corresponding to the spectrum of our analytical ab initio model in the
neutrally stratification case (blue, given by Eq. (3.113)), and the spectrum obtained via
the GCM simulations in Auclair-Desrotour et al. (2019b). To compare the two curves,
we adopted the same reference case parameters of Auclair-Desrotour et al. (2019b),
which correspond to a rocky Venus-like planet; more specifically, a dry Venus-sized
planet with a surface of bare rocks, and a 10 bar atmosphere with the composition of
the Earth’s atmosphere, but irradiated by the same Solar flux as Venus. Right: We
zoom over the vicinity of the Lamb resonance and plot the torque, which is directly
proportional to the imaginary part of 𝑝s (Eq. 3.55). We do so for different values of 𝜎bl,
the effective frequency characterizing the thermal response of the ground. The values
cover a range that goes from an instantaneous ground response (dark blue) to a delayed
response (light blue).

and for the denominator we have:

𝐷1 = 4 𝑏J
2 𝛽2,

𝐷2 = 𝑏J
2 𝛽2 𝜅2 + 4 𝑏J
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2 𝜅 + 4 𝛽2 𝜅2,
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2 𝛽 𝜅,

𝐷5 = (𝑏J − 𝜅)2. (3.115)

In the above expressions, we defined the dimensionless parameter 𝜇gr as

𝜇gr =
𝑘gr

√
𝜎bl

𝜖R𝜁gr
√︁

2𝐾gr
. (3.116)
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The results of this model are summarized in Figure 3.9. In the left panel we plot the
frequency spectrum of the imaginary part of the pressure anomaly, accompanied with
that generated by the GCM simulations in ALM19. The latter work recovered the tidal
torque of a rocky planet with Venus-like orbital and structural parameters (also identical
to those in Leconte et al., 2015); namely, a dry Venus-sized planet with a surface of
bare rocks and a 10-bar Earth-like atmosphere, irradiated by the Solar flux irradiating
Venus at its actual position. We thus use the same parameters listed there in our model,
and we further tune our free parameters 𝜎0 and 𝜎bl to resemble the GCM-generated
spectrum. As we noted earlier, the work of ALM19 is the only work, to-date, to have
established the spectrum of the tidal torque in the high frequency regime, and thus the
only work available to us to benchmark our model. In the right panel, we plot the tidal
torque spectrum over a small frequency spectrum where we capture the Lamb resonance
for different values of 𝜎bl. Both panels allow the following observations:

• We capture with the neutrally stratified atmospheric model the inherent features
of the spectrum obtained via sophisticated GCM simulations: i) the thermal
peak near-synchronization with a comparable amplitude ∼ 2000 Pa; ii) the Lamb
resonance in the high frequency regime; iii) the proper scaling of the spectrum that
is almost linear near synchronization, and ∝ 𝜎−1 in the high frequency regime.
The success of obtaining an exact fit of the model to the GCM simulation in
hindered by the complex interplay between the two free parameters, and the effect
of the dissipative frequency. Increasing 𝜎0 would reduce the amplitude of the
Lamb resonance, but also the amplitude of the thermal peak, and vice versa. Still,
it is interesting, for now at least, to see all the spectral features captured in the
model.

• Recalling that the Lamb resonance in the high frequency regime is essential for the
rotational equilibrium hypothesis, we zoom over it in the panel on the right. The
studied values of 𝜎bl correspond to a ground thermal response timescale that goes
from instantaneous (dark blue) to very delayed (light blue) due to ground thermal
inertia. As we discussed earlier, the Lamb resonance, as portrayed in ZW87
and BS16, required for the rotational equilibrium hypothesis features two peaks
symmetric around the resonance frequency: a negative peak that complements the
oceanic gravitational torque, thus depleting the Earth’s angular momentum 𝐿Ω,
and a positive peak that opposes the gravitational tide and pumps 𝐿Ω. This regime
is observed via the dark blue curves.
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With the introduction of the delayed thermal response of the ground (going from
dark to light blue), the thermal tidal bulge is phase delayed such that the symmetry
of the peaks is broken. The symmetry breaking is enhanced with decreasing
𝜎bl until a critical value 𝜎crit

bl is reached, where the positive peak completely
disappears. Beyond this critical value, the peaks reverse positions, with the
positive peak becoming at the high frequency side of the resonance position, and
are evidently characterized with smaller amplitudes than the negative peaks. The
reason behind this transition lies in the variation of the position of the tidal bulge
as we vary the thermal inertia of the ground via 𝜎bl. This bulge lags the sub-stellar
point by roughly 3 hours in the adiabatic tidal theory Chapman and Lindzen
(1969), and more precisely by 2h26mn in the measurements shown in Figure 3.1.
It is evident now that accounting for this bulge shift induces the Lamb asymmetry
and has, most probably, significant effects on the Earth’s rotational history.

We close this section by analyzing our model in the low frequency regime. The spectrum
in this region features the near-synchronization thermal peak, and is often associated in
the literature with a functional form that corresponds to the so-called Maxwell model
(e.g., Efroimsky, 2012; Correia et al., 2014). This model describes the idealized be-
haviour of a forced oscillator composed of a string and a damper in series. It was shown
in Auclair-Desrotour et al. (2019b) that this model does not match the numerical results
of the GCM, though Leconte et al. (2015) obtained a good agreement, an issue worthy
of further investigation. Due to the significance of the peak in the rotational stabilization
of planets near synchronization, the quest for a simple model to describe this regime
continues.

From our numerical exploration, it turns out that the low frequency regime is largely in-
sensitive to variations in 𝜎bl and consequently �̄�. Without any serious loss of generality,
we study the limit of �̄� → 0, i.e. 𝜎bl → ∞. In this limit, Eq. (3.113) reduces to:

Im
{
𝛿𝑝s
𝑝s

}
=

2𝛼A𝜅𝑔Λ𝛿𝐹22𝛽
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3
0

× 𝐶1�̃�
5 + 𝐶3�̃�

3 + 𝐶5�̃�

𝐷1�̃�8 + 𝐷2�̃�6 + 𝐷3�̃�4 + 𝐷4�̃�2 + 𝐷5
. (3.117)
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Figure 3.10: The position of the thermal peak near synchronization plotted in terms
of the rotational period of the planet, as a function of the dissipation frequency 𝜎0, for
different values of the planetary semi-major axis (Eq. 3.120). Color coding corresponds
to the amplitude of the peak.

Taking the derivative we get:
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for which the roots satisfy:

0 = (−3𝐶1𝐷1) �̃�12 + (−𝐶1𝐷2 − 5𝐶3𝐷1) �̃�10 + (𝐶1𝐷3 − 3𝐶3𝐷2 − 7𝐶5𝐷1) �̃�8

+ (3𝐶1𝐷4 − 𝐶3𝐷3 − 5𝐶5𝐷2) �̃�6 + (5𝐶1𝐷5 + 𝐶3𝐷4 − 3𝐶5𝐷3) �̃�4

+ (3𝐶3𝐷5 − 𝐶5𝐷4) �̃�2 + 𝐶5𝐷5. (3.119)

As we are considering a planet rotating near synchronization with a strongly dissipative
atmosphere, we take the lowest order terms in �̃� to approximate the position of the
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near-synchronization peak 𝜎NSP by the closed form solution:

𝜎NSP = 𝜎0

(
𝐶5𝐷5

𝐶5𝐷4 − 3𝐶3𝐷5

)1/2

=
𝜎0(𝑏J − 𝜅)√︃

(𝑏J − 𝜅)2 [1 + 2𝛽(1 − 𝜅)] − 2𝑏2
J

. (3.120)

With 𝜎NSP defined also as semi-diurnal tidal frequency, we plot in Figure 3.10 the
rotational period of the planet at which the thermal peak is encountered as a function
of 𝜎0, for different values the planetary semi-major axis. First, we note the obvious,
that with increasing 𝜎0 the thermal peak diminishes in amplitude. With increasing
dissipation also, the position of the peak shifts towards lower rotational periods (higher
spin rates), such that planets at different semi-major axes share the same peak. Allowing
𝜎0 to approach moderate values (10−6 ∼ 10−7 s−1), a regime transition is encountered
where the position of the peak shifts towards higher rotational periods and its amplitude
grows to ∼ 103 Pa. We note here that the inferred value of 𝜎0 = 7.5 × 10−7 via GCM
simulations falls within this regime Leconte et al. (2015). Decreasing 𝜎0 further, the
spectral position of the peak approaches synchronization.

3.4 Summary

In this chapter, we revisited the tempting hypothesis of the Earth encountering a rotational
equilibrium in the geological past. The occurrence of this equilibrium is contingent upon
the passage through an enhanced resonance in the thermal tide such that its associated
torque is opposite in sign and comparable in magnitude to the gravitational counterpart
in the mantle and the oceans. The opposing effects of the tidal bulges can then cancel
out each other and the Earth would enter an eon of fixed length-of-day (LOD) associated
with a zero tidal torque phase. The equilibrium was first studied by Zahnle and Walker
(1987), then its stability against thermal fluctuations was tested more recently in Bartlett
and Stevenson (2016). The occurrence of such a scenario has significant implications
on paleooclimatic and ecosystem studies, with growing evidence on links between the
evolving length-of-day and the evolution of Precambrian benthic life (e.g., Klatt et al.,
2021).

Our motivation to revisit the hypothesis is based on an evident mismatch between
certain geological proxies used to infer the past LOD, and the predicted LOD evolution
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if the equilibrium scenario is surmised. After elucidating the possible reasons behind
this mismatch, we proceeded to explore a single explanation: the thermal – also read
Lamb – resonance either did not occur in the direction opposing the gravitational tide,
or it did occur but with an amplitude that is insufficient to cancel the opposing torque.
We pursued this scenario driven by the thermal tide spectrum established in Auclair-
Desrotour et al. (2019b). The latter work is the first, and to-date the only work that
managed to retrieve the planetary thermal tidal response using GCM simulations. The
unfortunate news delivered from these GCM results to the equilibrium hypothesis is the
absence of the resonant tidal peak required to accelerate the Earth’s rotation. While
further and more rigorous numerical exploration is required to predicate this surprising
result, we attempted in this chapter to understand it from an analytical perspective.

Having convinced ourselves of the significant implications this hypothesis holds, we
worked with the primitive equations of atmospheric dynamics. We developed a handy
tidal model that allows for radiative cooling, but more importantly it accommodates
the delayed thermal response of the ground. The two mechanisms entered our model
parameterized by two effective parameters. The delayed response of the ground proved
to be a possible suspect behind the asymmetry of the Lamb resonance observed in
the GCM simulations. Our preliminary and fresh numerical implementation of the
model suggests that the asymmetry is a robust feature when accounting, as one should,
for diffusive mechanisms in the planetary boundary layer. The rotational equilibrium
hypothesis of the Earth is thus jeopardized by this asymmetry, although we cannot make
more definite quantitative claims at this stage of the work. We anticipate the model to
be also useful for tidal evolution studies, especially in exo-planetary settings.



CHAPTER 4

CONCLUSIONS AND OUTLOOK

In this thesis work, we addressed a variety of geophysical phenomena that are germane
to the long term dynamical evolution of the Earth-Moon system. The global picture is
to enhance our understanding of and better retrieve the complex dynamical history of
the system.

Focusing on the past evolution of the axial precession of the Earth, we provided a con-
strained contribution of the Cenozoic glacial cycles to the Earth’s dynamical ellipticity.
This constrained history will be used in the future long term numerical solutions for
the orbital and rotational quantities of the Earth, entering through the time-dependent
variation of the precession “constant" (Laskar et al., 2004, 2011a). Besides providing the
evolution time-series, our model prediction of the surface loading effect precludes, when
considered alone, the possibility of a past crossing of resonance with Jupiter and Saturn
through the 𝑠6 − 𝑔6 + 𝑔5 mode. However, along with surface loading, redistribution of
mass within the Earth due to mantle convection also contributes to the evolution of the
dynamical ellipticity, perhaps dominating its evolution over the long timescale. Such
a contribution is also dependent on the viscosity profile. At present, different methods
of recovering the past mantle flow yielded vastly different results, albeit using the same
viscosity profile (e.g., Forte and Mitrovica, 1997; Morrow et al., 2012; Ghelichkhan
et al., 2020). Moreover, the backward tidal evolution of the Earth’s rotational veloc-
ity counteracts the effect of the dynamical ellipticity variation, driving the precession
frequency away from this resonance. Thus a thorough and realistic study of the past
evolution of the precession frequency and the occurrence of such a resonance requires
a self consistent model that combines all three elements, leaving us with the need for
more effort in this direction. Finally, while we focused on the symmetric second zonal
harmonic of the geopotential, namely the 𝑐20 Stokes’ coefficient, it is straightforward
to extend our simulations to retrieve the other harmonics. The latter are required to
compute a history of the Cenozoic true polar wander.

183
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Next, we revisited the classic time-scale problem of the lunar origin. The problem
was originally postulated in tidal models focused on bodily solid tides. However, it is
well established now that this approach is obsolete, as the tidal response is dominated
by oceanic tides which feature a completely differed dissipation spectrum. We thus
addressed the following question: Can we develop a model based on the linear analytical
theory of fluid tides, with a minimum number of free parameters, that can evade the
time-scale problem? It turns out we can. In our constructed model, we coupled oceanic
dissipation with solid Earth deformation, along with solid Earth dissipation when called
for. The model also took into account, mimetically, the effect of continental drift and
plate tectonic evolution. Our end result is, to our knowledge, the first modelled history
of the Earth-Moon distance that fits both the present state of the system and the lunar
formation age. Perhaps surprisingly, this modelled history was also in good agreement
with the geological data, though we intentionally decided to be agnostic of the data when
constructing the model.

While this result satisfactorily addresses the time-scale problem, we aim in the future to
build on it and allow for other physical ingredients:

i) From a tidal perspective, we have only considered the predominant semi-diurnal
luni-solar tidal constituents. However, it is straightforward to aim for a com-
prehensive tidal interplay by accounting for the other constituents (Williams and
Boggs, 2016).

ii) From a modelling perspective, we argued for the spin rate of the Earth as the
dominant regulator of tidal dissipation. However, as we have shown, the varying
oceanic geometry also has its signature on the tidal spectrum. While we tried to
take this effect into account by allowing for a hemispheric continental cap, we
might still have undersampled the intricately varying continental configuration
over geological timescales. Changing the oceanic domain on the sphere in the
simple version we offered has already presented serious analytical and computa-
tional challenges in computing the tidal response. However, it is certainly worthy
to develop a model of oceanic tides where the oceanic domain is not constrained to
the hemisphere, but rather can be defined over any surface domain on the sphere.
We have already taken steps in this direction and shall describe the theory in a
forthcoming work. Such a model upgrade will allow us to actually follow the
history of the continental formation and evolution smoothly, rather than switching
between a hemispheric and a global oceanic configuration.
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iii) Also from a modelling perspective, we have fixed the fitted free parameters over
the Earth’s lifetime. While this might be justified for the linear drag frequency as
we argued in the main text, we are faced with growing evidence on the variation
of oceanic volume with geologic time (e.g., Korenaga, 2013, 2018; Dong et al.,
2021). It might thus be necessary to examine the sensitivity of the modelled
history to uncertainties in the oceanic volume. We already know the effect of
the volume on the spectrum: it will slightly vary the resonance amplitudes while
shifting their spectral positions. That said, variations in water volume could be
important during the relatively short time intervals spanned by resonant states.
Another source of uncertainty emerges from the interplay between the possible
presence of ice cap and oceanic tides. Ice caps accumulation and disintegration
affect the water volume and increase the area of continental shelves. While
their periodic effects can be averaged-out over the long tidal time-scale, severe
glaciation episodes, such as those encountered in a snowball Earth scenario, may
still leave their signature (Wunsch, 2016).

iv) From a dynamical perspective, we have adopted a reduced dynamical model where
we focused on the polar component of the torque and its associated angular mo-
mentum exchange, all the while ignoring obliquity and eccentricity tides in the
system. This may very well be justified as we are merely concerned with the
time-scale problem. However, allowing for these components provides a critical
opportunity of matching our backward integration predictions with forward in-
tegrations where more complex dynamical mechanisms are encountered (Touma
and Wisdom, 1998). Such experiments can help us in our quest of constraining
lunar formation scenarios and the resulting inclination problem. Namely, forward
integrations that do not match the backward counterpart can help eliminate impact
scenarios that produce the corresponding initial conditions. Furthermore, gener-
alizing to triaxiality will allow us to test fundamental dynamical features of the
system such as the vertical angular momentum constraint suggested by Tian and
Wisdom (2020).

v) Also within the realm of dynamics, we shall next allow for lunar tides. Solid-body
tidal dissipation within the Moon have also affected the evolution of the system.
However, since the Moon is at present tidally locked into synchronous rotation,
its semi-diurnal tide is characterized by zero frequency. The largest periodic
tides on the moon are monthly, and they are associated with lunar eccentricity
and obliquity (e.g., Williams and Boggs, 2015; Daher et al., 2021). Due to its
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synchronous rotation, energy dissipation within the Moon should reduce its semi-
major axis, opposing the dominant effect of terrestrial tides. As we argued in the
main text, we ignored this effect because it is about 0.03% of the total tidal energy
dissipation rate (e.g., Daher et al., 2021), and it gets significant only in the earliest
times. However, we shall account for this effect if we plan to match our modelled
history with post-impact predictions.

Furthermore, allowing for lunar tides will give us the opportunity to revisit lunar
spin dynamics. A particular scenario of interest is the lunar spin axis Cassini state
transition around 33 𝑅E (Peale and Cassen, 1978; Ward, 1975). This transition
involves an amplified forced obliquity that enhances obliquity tides, feeding back
into the tidal evolution. It furthermore plays an important role in the thermal
history, and consequently the surface morphology of the Moon Wisdom (2006).

Though it seems compelling to expand our tidal evolution model to accommodate these
elements, it will be difficult to decide what ingredient falls next in the hierarchy of
contributions. Our initial hunch, supported by preliminary exploration, suggests that
thermal tides are our runner up. This was the focus of Chapter 3. There we predicated
that idealized models established earlier and utilized to suggest a fixed Precambrian
day length should be abandoned. We attempted a cautious incursion on establishing a
rudimentary model that provides the thermal tidal spectrum of a rocky planet. While
we have not yet applied this model to the tidal evolution of the Earth, we successfully
managed to benchmark it against the results of earlier GCM simulations. The key
result of this model is that when we account for the thermal response of the ground,
which lags the thermal forcing and shifts the thermal tidal bulge, the high-frequency
Lamb resonance features an asymmetry. The latter is such that the peak of the tidal
torque required for the rotational equilibrium of the Earth, which is present in idealized
models, diminishes in our model and may even vanish completely. However, even if this
thermal tidal peak, which opposes the effect of gravitational tides, is completely absent,
its opposite peak is still present, and may be comparable in magnitude to Precambrian
oceanic tides. It would then be necessary to account for thermal tides in the Earth’s tidal
evolution history. Finally, though this was our first foray into the problem, the analytical
model we developed provides a physical description of multiple intervening players, and
it can be easily implemented in other solar and extra-solar settings. A more rigorous
attempt pertaining to the Earth’s history, however, may very well require an armada of
GCM simulations.
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1.1 The beginning of La Mer de Glace: one of the largest persisting glaciers
in the Alps, extending nearly 5.6 km to the north of Mont Blanc near
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as the glacier retreats, and it does so by 30 ∼ 40 meters per year, losing
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normalized frequency 𝜔 = (Ω − 𝑛orb)/Ω0, where the Earth’s spin rate
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the Earth. The logarithms of𝑄 is plotted as functions of the normalized
tidal frequency 𝜔 = Ω − 𝑛orb/Ω0 (where Ω0 designates the present spin
rate of the Earth) for different orders of magnitude of the dissipative
frequency 𝜎R. The frequency spectrum of 𝑄 is computed via the Love
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2.9 The tidal response of the Earth, quantified by the imaginary part of the
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the present spin rate of the Earth. The panels differ by the prescribed
value of the 𝜎R. In each panel, we plot the Love number in two settings:
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independent of present day age distributions (Dhuime et al., 2012; Sun
et al., 2019). While acknowledging the discrepancies in the predictions
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2.14 Temporal evolution of the latitude of the surface “paleo-barycenter" over
the last one billion years. The plate tectonics reconstruction is adopted
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2.17 History of the tidal torque. The logarithm of the semi-diurnal tidal
torque of the Earth (normalized by its present value: T̃ = T/T (𝑡 = 0))
is plotted as a function of time. The solid curve corresponds to the torque
of the combined model that involves three phases: in the first phase, a
hemispherical ocean migrates on the surface of the Earth following the
evolution of the continental barycenter of Figure 2.14. Given that we lack
a continuous plate tectonics model beyond 1 Ga, in Phase 2, we fix the
hemispherical ocean to its configuration at 1 Ga to avoid discontinuities
in the modeling. It is noteworthy that the attenuated tidal torque over
this phase is not due to the fixed oceanic position but due to the tidal
response occupying the non-resonant background of the spectrum for
the tidal frequencies associated with this interval. Beyond 𝑡switch, we
enter Phase 3 of the model with the global ocean configuration. The
dashed and dashed-dotted curves correspond, respectively, to the global
and hemispherical oceanic torques that are ignored over the specified
intervals by the selective combined model. . . . . . . . . . . . . . . . 135

2.18 Evolution of the Earth’s length of the day with time. Similar to Figure
2.16, but here for the LOD evolution associated with the three studied
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frequency from tidal rhythmites and cyclostratigraphy are also plotted
on top of the curve (Tables 2.1 and 2.2). We note that the precession
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3.1 Daily variations in temperature and pressure recorded over one year and
averaged over a day, with the subsolar point anchored to 12 h. The data
was recorded every minute over the year 2013 with a Vantage Pro 2
weather station at latitude 48.363◦ N. The average values of temperature
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3.2 The evolution of the LOD in the resonance trapping scenario. We regen-
erate the results of Bartlett and Stevenson (2016), where the authors use
a simplified lunar tidal forcing scaled to the present by the coefficient
𝜏0 [see their Section 4], along with a thermal torque that encounters a
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3.3 The spectrum of the thermal tidal response. Left: The spectrum of
the tidal torque is plotted as a function of the length of day on Earth,
as computed by the model of BS16 (panel adapted from their Figure
1). The panel is zoomed over the part of the spectrum where the
Lamb resonance occurs. Solid curves correspond to different prescribed
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the assumed value of the Precambrian oceanic tidal torque, while the
gray horizontal line marks the present value, both multiplied by −1. The
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spectrum of the pressure anomaly, which is directly proportional to the
tidal torque (via Eq. 3.55) is plotted as a function of the normalized tidal
frequency 𝜔 (panel adapted from Figure 3 of ALM19). In contrast with
the left panel, the full spectrum is plotted here, with the Lamb resonance
occurring in the high frequency regime for 𝜔 = 260.. The spectrum in
blue interpolates the data points in black, which were retrieved via GCM
simulations for a dry Venus-sized planet with a surface of bare rocks,
and a 10 bar atmosphere. The GCM-spectrum shows that the resonance
is asymmetric, with a single negative peak that acts to complement
the oceanic tidal torque. In contrast, the spectrum in yellow, obtained
from an analytical model assuming an isothermal atmosphere, shows
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3.8 Surface maps of the logarithm of the imaginary and real parts of the radial
wavenumbers �̂�𝑥;𝑛 and �̂� IS

𝑥 . The former corresponds to the neutrally
stratified case (panels on the left), while the latter corresponds to the
isothermal case (panels on the right). The surfaces are plotted as a
function of logarithms of the normalized tidal frequency 𝜔 = 𝜎/(2𝑛S)
and the dissipative frequency 𝜎0. The vertical line in the isothermal
case marks the Lamb frequency given by Eq. (3.106). The plots indicate
the strong evanescent nature of the tidal waves in the neutrally stratified
atmosphere, and the existence of propagating and evanescent modes in
the isothermal atmosphere, with a regime shift around the Lamb frequency.174

3.9 Left: Imaginary part of the quadrupolar component of the surface
pressure anomaly as a function of the normalized forcing frequency
𝜔 = (Ω − 𝑛S)/𝑛S. Plotted are the two curves corresponding to the
spectrum of our analytical ab initio model in the neutrally stratification
case (blue, given by Eq. (3.113)), and the spectrum obtained via the
GCM simulations in Auclair-Desrotour et al. (2019b). To compare the
two curves, we adopted the same reference case parameters of Auclair-
Desrotour et al. (2019b), which correspond to a rocky Venus-like planet;
more specifically, a dry Venus-sized planet with a surface of bare rocks,
and a 10 bar atmosphere with the composition of the Earth’s atmosphere,
but irradiated by the same Solar flux as Venus. Right: We zoom over
the vicinity of the Lamb resonance and plot the torque, which is directly
proportional to the imaginary part of 𝑝s (Eq. 3.55). We do so for dif-
ferent values of 𝜎bl, the effective frequency characterizing the thermal
response of the ground. The values cover a range that goes from an
instantaneous ground response (dark blue) to a delayed response (light
blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

3.10 The position of the thermal peak near synchronization plotted in terms
of the rotational period of the planet, as a function of the dissipation
frequency 𝜎0, for different values of the planetary semi-major axis (Eq.
3.120). Color coding corresponds to the amplitude of the peak. . . . . 180



LIST OF TABLES

1.1 Parameters of our standard 11-layer volume averaged Earth model. For
each layer of thickness Δ𝑟 (second column), the radial boundaries are
identified in the third column, while the constant density 𝜌, shear modu-
lus 𝜇, and viscosity 𝜂 are identified in the third, fourth, and fifth columns
respectively. The material parameters are derived from the PREM. The
viscosity profile is adopted from Lau et al. (2016b). Variations are
plotted in Figure1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.2 Relaxation spectrum of the Earth using an 11-layer model with 9 vis-
coelastic layers. 27 modes are retrieved, as expected from the analytical
constraints. The normal modes are displayed in the second column, the
associated Love number 𝑘2 viscoelastic residue (non-normalized) in the
third column, and the relaxation times in the fourth column. . . . . . . 45

1.3 A compilation of references used to constrain the spatio-temporal dis-
tribution of ice over the Earth’s surface. Some elements of the list
correspond to geological evidence of various ice sheets extent over the
Cenozoic. Others correspond to numerical modelling of ice sheets,
specifically used to simulate onsets of continental glaciation. . . . . . . 59

2.1 Cyclostratigraphic data. In boldface, we display the direct observables we used: the
precession frequency 𝑝 in arcsec/yr. The time of observation, 𝑇, is in the second
column. The semi-major axis of the Moon (𝑎M) given in Earth radius (𝑅E) or in
km, and the length of the solar day (LOD), in hours, are derived from the observed
quantities using the model that is presented in the text. These values may thus differ
from the corresponding values published in the referenced publications; IC denotes
the initial conditions (Laskar et al., 2004). The two values (a,b) for the Lucaogou data
set correspond to different analyses (a): TimeOptMCMC (Meyers and Malinverno,
2018); (b) obliquity and precession cycle counting (Huang et al., 2020). Whenever it
is specified in the original publication, the uncertainty in 𝑝 is set to 2𝜎. The uncertainty
of the other variables is propagated through the nominal solution of the present study.
The references for the datasets, indicated by superscripts are as follows: 1- Laskar
et al. (2004), 2- Meyers and Malinverno (2018), 3- Huang et al. (2020), 4- Zhong et al.
(2020), 5- Sørensen et al. (2020), 6- Fang et al. (2020), 7- Lantink et al. (2022). . . . 121

229



List of Tables 230

2.2 Tidal rhythmites data. In boldface, we display the observables. In general, the
observable is the number of synodic lunar months per year or in an equivalent way,
as quoted here, the number of sidereal lunar months per year (col. 3). The values are
issued from the referenced publications (col. 1). For the Moodies Group, we could
not infer this quantity from the original publication, and the corresponding estimate
of the lunar semi-major axis was taken from de Azarevich and Azarevich (2017). The
semi-major axis, 𝑎M, is obtained through Kepler’s law (𝑛2

M𝑎
3
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